

Academic Press is an imprint of Elsevier
30 Corporate Drive, Suite 400
Burlington, MA 01803

This book is printed on acid-free paper.

Copyright © 2009 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trade-
marks or registered trademarks. In all instances in which Academic Press is aware of a
claim, the product names appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
scanning, or otherwise, without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and
Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

ISBN 13: 978-0-12-374498-2

For information on all Academic Press publications,
visit our Website at www.books.elsevier.com

Printed in the United States
09  10  11  12  13  10  9  8  7  6  5  4  3  2  1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

Preface

Approach

Control systems are an integral part of everyday life in today’s society. They
control our appliances, our entertainment centers, our cars, and our office envi-
ronments; they control our industrial processes and our transportation systems;
they control our exploration of land, sea, air, and space. Almost all of these appli-
cation use digital controllers implemented with computers, microprocessors, or
digital electronics. Every electrical, chemical, or mechanical engineering senior
or graduate student should therefore be familiar with the basic theory of digital
controllers.

This text is designed for a senior or combined senior/graduate-level course in
digital controls in departments of mechanical, electrical, or chemical engineering.
Although other texts are available on digital controls, most do not provide a sat-
isfactory format for a senior/graduate-level class. Some texts have very few exam-
ples to support the theory, and some were written before the wide availability of
computer-aided-design (CAD) packages. Others make some use of CAD packages
but do not fully exploit their capabilities. Most available texts are based on the
assumption that students must complete several courses in systems and control
theory before they can be exposed to digital control. We disagree with this
assumption, and we firmly believe that students can learn digital control after a
one-semester course covering the basics of analog control. As with other topics
that started at the graduate level—linear algebra and Fourier analysis to name
a few—the time has come for digital control to become an integral part of the
undergraduate curriculum.

Features

To meet the needs of the typical senior/graduate-level course, this text includes
the following features:

Numerous examples. The book includes a large number of examples. Typically,
only one or two examples can be covered in the classroom because of time

�    Preface

limitations. The student can use the remaining examples for self-study. The
experience of the authors is that students need more examples to experiment
with so as to gain a better understanding of the theory. The examples are varied
to bring out subtleties of the theory that students may overlook.

Extensive use of CAD packages. The book makes extensive use of CAD packages.
It goes beyond the occasional reference to specific commands to the integration
of these commands into the modeling, design, and analysis of digital control
systems. For example, root locus design procedures given in most digital
control texts are not CAD procedures and instead emphasize paper-and-pencil
design. The use of CAD packages, such as MATLAB®, frees students from the
drudgery of mundane calculations and allows them to ponder more subtle
aspects of control system analysis and design. The availability of a simulation
tool like Simulink® allows the student to simulate closed-loop control systems
including aspects neglected in design such as nonlinearities and disturbances.

Coverage of background material. The book itself contains review material from
linear systems and classical control. Some background material is included in
appendices that could either be reviewed in class or consulted by the student
as necessary. The review material, which is often neglected in digital control
texts, is essential for the understanding of digital control system analysis and
design. For example, the behavior of discrete-time systems in the time domain
and in the frequency domain is a standard topic in linear systems texts but
often receives brief coverage. Root locus design is almost identical for analog
systems in the s-domain and digital systems in the z-domain. The topic is covered
much more extensively in classical control texts and inadequately in digital
control texts. The digital control student is expected to recall this material or
rely on other sources. Often, instructors are obliged to compile their own
review material, and the continuity of the course is adversely affected.

Inclusion of advanced topics. In addition to the basic topics required for a one-
semester senior/graduate class, the text includes some advanced material to
make it suitable for an introductory graduate-level class or for two quarters
at the senior/graduate level. We would also hope that the students in a single-
semester course would acquire enough background and interest to read the
additional chapters on their own. Examples of optional topics are state-space
methods, which may receive brief coverage in a one-semester course, and
nonlinear discrete-time systems, which may not be covered.

Standard mathematics prerequisites. The mathematics background required
for understanding most of the book does not exceed what can be reasonably
expected from the average electrical, chemical, or mechanical engineering
senior. This background includes three semesters of calculus, differential
equations, and basic linear algebra. Some texts on digital control require more
mathematical maturity and are therefore beyond the reach of the typical senior.

Preface    xi

On the other hand, the text does include optional topics for the more advanced
student. The rest of the text does not require knowledge of this optional
material so that it can be easily skipped if necessary.

Senior system theory prerequisites. The control and system theory background
required for understanding the book does not exceed material typically covered
in one semester of linear systems and one semester of control systems. Thus,
the students should be familiar with Laplace transforms, the frequency domain,
and the root locus. They need not be familiar with the behavior of discrete-time
systems in the frequency and time domain or have extensive experience with
compensator design in the s-domain. For an audience with an extensive
background in these topics, some topics can be skipped and the material can
be covered at a faster rate.

Coverage of theory and applications. The book has two authors: the first is
primarily interested in control theory and the second is primarily interested
in practical applications and hardware implementation. Even though some
control theorists have sufficient familiarity with practical issues such as
hardware implementation and industrial applications to touch on the subject
in their texts, the material included is often deficient because of the rapid
advances in the area and the limited knowledge that theorists have of the
subject.

It became clear to the first author that to have a suitable text for his course
and similar courses, he needed to find a partner to satisfactorily complete the text.
He gradually collected material for the text and started looking for a qualified and
interested partner. Finally, he found a co-author who shared his interest in digital
control and the belief that it can be presented at a level amenable to the average
undergraduate engineering student.

For about 10 years, Dr. Antonio Visioli has been teaching an introductory and
a laboratory course on automatic control, as well as a course on control systems
technology. Further, his research interests are in the fields of industrial regulators
and robotics. Although he contributed to the material presented throughout the
text, his major contribution was adding material related to the practical design
and implementation of digital control systems. This material is rarely covered in
control systems texts but is an essential prerequisite for applying digital control
theory in practice.

The text is written to be as self-contained as possible. However, the reader is
expected to have completed a semester of linear systems and classical control.
Throughout the text, extensive use is made of the numerical computation and
computer-aided-design package MATLAB. As with all computational tools, the
enormous capabilities of MATLAB are no substitute for a sound understanding of
the theory presented in the text. As an example of the inappropriate use of sup-
porting technology, we recall the story of the driver who followed the instructions

xii    Preface

of his GPS system and drove into the path of an oncoming train!1 The reader must
use MATLAB as a tool to support the theory without blindly accepting its compu-
tational results.

Organization of Text

The text begins with an introduction to digital control and the reasons for its
popularity. It also provides a few examples of applications of digital control from
the engineering literature.

Chapter 2 considers discrete-time models and their analysis using the z-
transform. We review the z-transform, its properties, and its use to solve differ-
ence equations. The chapter also reviews the properties of the frequency
response of discrete-time systems. After a brief discussion of the sampling
theorem, we are able to provide rules of thumb for selecting the sampling rate
for a given signal or for given system dynamics. This material is often covered in
linear systems courses, and much of it can be skipped or covered quickly in a
digital control course. However, the material is included because it serves as a
foundation for much of the material in the text.

Chapter 3 derives simple mathematical models for linear discrete-time systems.
We derive models for the analog-to-digital converter (ADC), the digital-to-analog
converter (DAC), and for an analog system with a DAC and an ADC. We include
systems with time delays that are not an integer multiple of the sampling period.
These transfer functions are particularly important because many applications
include an analog plant with DAC and ADC. Nevertheless, there are situations
where different configurations are used. We therefore include an analysis of a
variety of configurations with samplers. We also characterize the steady-state
tracking error of discrete-time systems and define error constants for the unity
feedback case. These error constants play an analogous role to the error constants
for analog systems. Using our analysis of more complex configurations, we are
able to obtain the error due to a disturbance input.

In Chapter 4, we present stability tests for input-output systems. We examine
the definitions of input-output stability and internal stability and derive con-
ditions for each. By transforming the characteristic polynomial of a discrete-time
system, we are able to test it using the standard Routh-Hurwitz criterion for
analog systems. We use the Jury criterion, which allows us to directly test the
stability of a discrete-time system. Finally, we present the Nyquist criterion for
the z-domain and use it to determine closed-loop stability of discrete-time
systems.

Chapter 5 introduces analog s-domain design of proportional (P), proportional-
plus-integral (PI), proportional-plus-derivative (PD), and proportional-plus-integral-

1The story was reported in the Chicago Sun-Times, on January 4, 2008. The driver, a computer
consultant, escaped just in time before the train slammed into his car at 60 mph in Bedford Hills,
New York.

Preface    xiii

plus-derivative (PID) control using MATLAB. We use MATLAB as an integral part
of the design process, although many steps of the design can be competed using
a scientific calculator. It would seem that a chapter on analog design does not
belong to a text on digital control. This is false. Analog control can be used as a
first step toward obtaining a digital control. In addition, direct digital control
design in the z-domain is similar in many ways to s-domain design.

Digital controller design is topic of Chapter 6. It begins with proportional
control design then examines digital controllers based on analog design. The
direct design of digital controllers is considered next. We consider root locus
design in the z-plane for PI and PID controllers. We also consider a synthesis
approach due to Ragazzini that allows us to specify the desired closed-loop trans-
fer function. As a special case, we consider the design of deadbeat controllers that
allow us to exactly track an input at the sampling points after a few sampling
points. For completeness, we also examine frequency response design in the w-
plane. This approach requires more experience because values of the stability
margins must be significantly larger than in the more familiar analog design. As
with analog design, MATLAB is an integral part of the design process for all digital
control approaches.

Chapter 7 covers state-space models and state-space realizations. First, we
discuss analog state-space equations and their solutions. We include nonlinear
analog equations and their linearization to obtain linear state-space equations. We
then show that the solution of the analog state equations over a sampling period
yields a discrete-time state-space model. Properties of the solution of the analog
state equation can thus be used to analyze the discrete-time state equation. The
discrete-time state equation is a recursion for which we obtain a solution by induc-
tion. In Chapter 8, we consider important properties of state–space models: stabil-
ity, controllability, and observability. As in Chapter 4, we consider internal
stability and input-output stability, but the treatment is based on the properties of
the state-space model rather than those of the transfer function. Controllability is
a property that characterizes our ability to drive the system from an arbitrary initial
state to an arbitrary final state in finite time. Observability characterizes our ability
to calculate the initial state of the system using its input and output measurements.
Both are structural properties of the system that are independent of its stability.
Next, we consider realizations of discrete-time systems. These are ways of imple-
menting discrete-time systems through their state-space equations using summers
and delays.

Chapter 9 covers the design of controllers for state-space models. We show
that the system dynamics can be arbitrarily chosen using state feedback if the
system is controllable. If the state is not available for feedback, we can design a
state estimator or observer to estimate it from the output measurements. These
are dynamic systems that mimic the system but include corrective feedback to
account for errors that are inevitable in any implementation. We give two types
of observers. The first is a simpler but more computationally costly full-order
observer that estimates the entire state vector. The second is a reduced-order

xiv    Preface

observer with the order reduced by virtue of the fact that the measurements are
available and need not be estimated. Either observer can be used to provide an
estimate of the state for feedback control, or for other purposes. Control schemes
based on state estimates are said to use observer state feedback.

Chapter 10 deals with the optimal control of digital control systems. We con-
sider the problem of unconstrained optimization, followed by constrained optimi-
zation, then generalize to dynamic optimization as constrained by the system
dynamics. We are particularly interested in the linear quadratic regulator where
optimization results are easy to interpret and the prerequisite mathematics
background is minimal. We consider both the finite time and steady-state regulator
and discuss conditions for the existence of the steady-state solution. The first 10
chapters are mostly restricted to linear discrete-time systems. Chapter 11 examines
the far more complex behavior of nonlinear discrete-time systems. It begins with
equilibrium points and their stability. It shows how equivalent discrete-time
models can be easily obtained for some forms of nonlinear analog systems
using global or extended linearization. It provides stability theorems and insta-
bility theorems using Lyapunov stability theory. The theory gives sufficient condi-
tions for nonlinear systems, and failure of either the stability or instability tests is
inconclusive. For linear systems, Lyapunov stability yields necessary and sufficient
conditions. Lyapunov stability theory also allows us to design controllers by select-
ing a control that yields a closed-loop system that meets the Lyapunov stability
conditions. For the classes of nonlinear systems for which extended linearization
is straightforward, linear design methodologies can yield nonlinear controllers.

Chapter 12 deals with practical issues that must be addressed for the success-
ful implementation of digital controllers. In particular, the hardware and software
requirements for the correct implementation of a digital control system are ana-
lyzed. We discuss the choice of the sampling frequency in the presence of anti-
aliasing filters and the effects of quantization, rounding, and truncation errors. We
also discuss bumpless switching from automatic to manual control, avoiding
discontinuities in the control input. Our discussion naturally leads to approaches
for the effective implementation of a PID controller. Finally, we consider nonuni-
form sampling, where the sampling frequency is changed during control opera-
tion, and multirate sampling, where samples of the process outputs are available
at a slower rate than the controller sampling rate.

Supporting Material

The following resources are available to instructors adopting this text for use in
their courses. Please visit www.elsevierdirect9780123744982.com to register for
access to these materials:

Instructor solutions manual. Fully typeset solutions to the end-of-chapter
problems in the text.

PowerPoint images. Electronic images of the figures and tables from the
book, useful for creating lectures.

Preface    xv

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers who provided excellent sug-
gestions for improving the text. We would also like to thank Dr. Qing-Chang
Zhong of the University of Liverpool who suggested the cooperation between the
two authors that led to the completion of this text. We would also like to thank
Joseph P. Hayton, Maria Alonso, Mia Kheyfetz, Marilyn Rash, and the Elsevier staff
for their help in producing the text. Finally, we would like to thank our wives
Betsy Fadali and Silvia Visioli for their support and love throughout the months
of writing this book.

Chapter

1Introduction to Digital
Control

Objectives
After completing this chapter, the reader will be able to do the following:

1.	 Explain the reasons for the popularity of digital control systems.
2.	 Draw a block diagram for digital control of a given analog control system.
3.	 Explain the structure and components of a typical digital control system.

In most modern engineering systems, there is a need to control the evolution with
time of one or more of the system variables. Controllers are required to ensure
satisfactory transient and steady-state behavior for these engineering systems. To
guarantee satisfactory performance in the presence of disturbances and model
uncertainty, most controllers in use today employ some form of negative feedback.
A sensor is needed to measure the controlled variable and compare its behavior
to a reference signal. Control action is based on an error signal defined as the
difference between the reference and the actual values.

The controller that manipulates the error signal to determine the desired control
action has classically been an analog system, which includes electrical, fluid, pneu-
matic, or mechanical components. These systems all have analog inputs and outputs
(i.e., their input and output signals are defined over a continuous time interval and
have values that are defined over a continuous range of amplitudes). In the past few
decades, analog controllers have often been replaced by digital controllers whose
inputs and outputs are defined at discrete time instances. The digital controllers are
in the form of digital circuits, digital computers, or microprocessors.

Intuitively, one would think that controllers that continuously monitor the
output of a system would be superior to those that base their control on sampled
values of the output. It would seem that control variables (controller outputs) that
change continuously would achieve better control than those that change peri-
odically. This is in fact true! Had all other factors been identical for digital and
analog control, analog control would be superior to digital control. What then is
the reason behind the change from analog to digital that has occurred over the
past few decades?

�    CHAPTER 1  Introduction to Digital Control

1.1  Why Digital Control?
Digital control offers distinct advantages over analog control that explain its
popularity. Here are some of its many advantages:

Accuracy. Digital signals are represented in terms of zeros and ones with typically
12 bits or more to represent a single number. This involves a very small error
as compared to analog signals where noise and power supply drift are always
present.

Implementation errors. Digital processing of control signals involves addi
tion and multiplication by stored numerical values. The errors that result
from digital representation and arithmetic are negligible. By contrast, the
processing of analog signals is performed using components such as resistors
and capacitors with actual values that vary significantly from the nominal
design values.

Flexibility. An analog controller is difficult to modify or redesign once implemen
ted in hardware. A digital controller is implemented in firmware or software,
and its modification is possible without a complete replacement of the original
controller. Furthermore, the structure of the digital controller need not follow
one of the simple forms that are typically used in analog control. More complex
controller structures involve a few extra arithmetic operations and are easily
realizable.

Speed. The speed of computer hardware has increased exponentially since the
1980s. This increase in processing speed has made it possible to sample and
process control signals at very high speeds. Because the interval between
samples, the sampling period, can be made very small, digital controllers
achieve performance that is essentially the same as that based on continuous
monitoring of the controlled variable.

Cost. Although the prices of most goods and services have steadily increased, the
cost of digital circuitry continues to decrease. Advances in very large scale
integration (VLSI) technology have made it possible to manufacture better,
faster, and more reliable integrated circuits and to offer them to the consumer
at a lower price. This has made the use of digital controllers more economical
even for small, low-cost applications.

1.2  The Structure of a Digital Control System
To control a physical system or process using a digital controller, the controller
must receive measurements from the system, process them, and then send
control signals to the actuator that effects the control action. In almost all applica-
tions, both the plant and the actuator are analog systems. This is a situation

1.3  Examples of Digital Control Systems   �

where the controller and the controlled do not “speak the same language” and
some form of translation is required. The translation from controller language
(digital) to physical process language (analog) is performed by a digital-to-analog
converter, or DAC. The translation from process language to digital controller
language is performed by an analog-to-digital converter, or ADC. A sensor is
needed to monitor the controlled variable for feedback control. The combination
of the elements discussed here in a control loop is shown in Figure 1.1. Variations
on this control configuration are possible. For example, the system could have
several reference inputs and controlled variables, each with a loop similar to that
of Figure 1.1. The system could also include an inner loop with digital or analog
control.

1.3  Examples of Digital Control Systems
In this section, we briefly discuss examples of control systems where digital imple-
mentation is now the norm. There are many other examples of industrial pro-
cesses that are digitally controlled, and the reader is encouraged to seek other
examples from the literature.

1.3.1  Closed-Loop Drug Delivery System

Several chronic diseases require the regulation of the patient’s blood levels of a
specific drug or hormone. For example, some diseases involve the failure of the
body’s natural closed-loop control of blood levels of nutrients. Most prominent
among these is the disease diabetes, where the production of the hormone insulin
that controls blood glucose levels is impaired.

To design a closed-loop drug delivery system, a sensor is utilized to measure
the levels of the regulated drug or nutrient in the blood. This measurement is
converted to digital form and fed to the control computer, which drives a pump
that injects the drug into the patient’s blood. A block diagram of the drug delivery
system is shown in Figure 1.2. Refer to Carson and Deutsch (1992) for a more
detailed example of a drug delivery system.

Figure 1.1

Configuration of a digital control system.

Controlled
Variable

Reference
Input

Computer DAC

ADC

Actuator
and Process

Sensor

�    CHAPTER 1  Introduction to Digital Control

1.3.2  Computer Control of an Aircraft Turbojet Engine

To achieve the high performance required for today’s aircraft, turbojet engines
employ sophisticated computer control strategies. A simplified block diagram for
turbojet computer control is shown in Figure 1.3. The control requires feedback
of the engine state (speed, temperature, and pressure), measurements of the air-
craft state (speed and direction), and pilot command.

1.3.3  Control of a Robotic Manipulator

Robotic manipulators are capable of performing repetitive tasks at speeds and
accuracies that far exceed those of human operators. They are now widely used
in manufacturing processes such as spot welding and painting. To perform their
tasks accurately and reliably, manipulator hand (or end-effector) positions and
velocities are controlled digitally. Each motion or degree of freedom (D.O.F.) of
the manipulator is positioned using a separate position control system. All the

Figure 1.2

Drug delivery digital control system. (a) Schematic of a drug delivery system. (b) Block diagram
of a drug delivery system.

Drug
Pump

Regulated
Drug
or Nutrient

Computer

Blood
Sensor

Drug Tank

(a)

Drug
Pump

Regulated
Drug
or Nutrient

Reference
Blood
Level

ADC

DAC Computer

Blood
Sensor

Patient

(b)

1.3  Examples of Digital Control Systems   �

motions are coordinated by a supervisory computer to achieve the desired speed
and positioning of the end-effector. The computer also provides an interface
between the robot and the operator that allows programming the lower-level
controllers and directing their actions. The control algorithms are downloaded
from the supervisory computer to the control computers, which are typically
specialized microprocessors known as digital signal processing (DSP) chips. The
DSP chips execute the control algorithms and provide closed-loop control for the
manipulator. A simple robotic manipulator is shown in Figure 1.4a, and a block
diagram of its digital control system is shown in Figure 1.4b. For simplicity, only
one motion control loop is shown in Figure 1.4, but there are actually n loops for
an n-D.O.F. manipulator.

Figure 1.3

Turbojet engine control system. (a) F-22 military fighter aircraft. (b) Block diagram of an engine
control system.

(a)

Aircraft
State

Engine
State

Pilot
Command

Computer

Aircraft
Sensors

DAC

ADC

ADC

Aircraft Turbojet
Engine

Engine
Sensors

(b)

�    CHAPTER 1  Introduction to Digital Control

Resources
Carson, E. R., and T. Deutsch, A spectrum of approaches for controlling diabetes, Control

Syst. Mag., 12(6):25-31, 1992.
Chen, C. T., Analog and Digital Control System Design, Saunders–HBJ, 1993.
Koivo, A. J., Fundamentals for Control of Robotic Manipulators, Wiley, 1989.
Shaffer, P. L., A multiprocessor implementation of a real-time control of turbojet engine,

Control Syst. Mag., 10(4):38-42, 1990.

Figure 1.4

Robotic manipulator control system. (a) 3-D.O.F. robotic manipulator. (b) Block diagram of a
manipulator control system.

(a)

Manipulator

Reference
Trajectory

Position
Sensors

Velocity
Sensors

Computers
Supervisory
Computer DAC

ADC

ADC

(b)

Problems

1.1	 A fluid level control system includes a tank, a level sensor, a fluid source,
and an actuator to control fluid inflow. Consult any classical control text1 to
obtain a block diagram of an analog fluid control system. Modify the block
diagram to show how the fluid level could be digitally controlled.

1.2	 If the temperature of the fluid in Problem 1.1 is to be regulated together
with its level, modify the analog control system to achieve the additional
control. (Hint: An additional actuator and sensor are needed.) Obtain a block
diagram for the two-input-two-output control system with digital control.

1.3	 Position control servos are discussed extensively in classical control texts.
Draw a block diagram for a direct current motor position control system
after consulting your classical control text. Modify the block diagram to
obtain a digital position control servo.

1.4	 Repeat Problem 1.3 for a velocity control servo.

1.5	 A ballistic missile is required to follow a predetermined flight path by
adjusting its angle of attack a (the angle between its axis and its velocity
vector v). The angle of attack is controlled by adjusting the thrust angle d
(angle between the thrust direction and the axis of the missile). Draw a
block diagram for a digital control system for the angle of attack including a
gyroscope to measure the angle a and a motor to adjust the thrust angle d.

α

δ

Thrust
Direction

Velocity
Vector v

Figure P1.5

Missile angle-of-attack control.

1.6	 A system is proposed to remotely control a missile from an earth station.
Because of cost and technical constraints, the missile coordinates would be
measured every 20 seconds for a missile speed of up to 500 m/s. Is such a
control scheme feasible? What would the designers need to do to eliminate
potential problems?

1See, for example, J. Van deVegte, Feedback Control Systems, Prentice Hall, 1994.

Problems   �

�    CHAPTER 1  Introduction to Digital Control

1.7	 The control of the recording head of a dual actuator hard disk drive (HDD)
requires two types of actuators to achieve the required a high real density.
The first is a coarse voice coil motor (VCM) with a large stroke but slow
dynamics, and the second is a fine piezoelectric transducer (PZT) with a
small stroke and fast dynamics. A sensor measures the head position and
the position error is fed to a separate controller for each actuator. Draw a
block diagram for a dual actuator digital control system for the HDD.2

2J. Ding, F. Marcassa, S.-C. Wu, and M. Tomizuka, Multirate control for computational saving, IEEE
Trans. Control Systems Tech., 14(1):165-169, 2006.

Chapter

2Discrete-Time Systems

Objectives
After completing this chapter, the reader will be able to do the following:

1.	 Explain why difference equations result from digital control of analog systems.
2.	 Obtain the z-transform of a given time sequence and the time sequence

corresponding to a function of z.
3.	 Solve linear time-invariant (LTI) difference equations using the z-transform.
4.	 Obtain the z-transfer function of an LTI system.
5.	 Obtain the time response of an LTI system using its transfer function or

impulse response sequence.
6.	 Obtain the modified z-transform for a sampled time function.
7.	 Select a suitable sampling period for a given LTI system based on its dynamics.

Digital control involves systems whose control is updated at discrete time instants.
Discrete-time models provide mathematical relations between the system variables
at these time instants. In this chapter, we develop the mathematical properties of
discrete-time models that are used throughout the remainder of the text. For most
readers, this material provides a concise review of material covered in basic
courses on control and system theory. However, the material is self-contained,
and familiarity with discrete-time systems is not required. We begin with an
example that illustrates how discrete-time models arise from analog systems under
digital control.

2.1  Analog Systems with Piecewise Constant Inputs
In most engineering applications, it is necessary to control a physical system or
plant so that it behaves according to given design specifications. Typically, the
plant is analog, the control is piecewise constant, and the control action is updated
periodically. This arrangement results in an overall system that is conveniently

10    CHAPTER 2  Discrete-Time Systems

described by a discrete-time model. We demonstrate this concept using a simple
example.

Example 2.1

Consider the tank control system of Figure 2.1. In the figure, lowercase letters denote per-
turbations from fixed steady-state values. The variables are defined as

■	 H = steady-state fluid height in the tank
■	 h = height perturbation from the nominal value
■	 Q = steady-state flow through the tank
■	 qi = inflow perturbation from the nominal value
■	 q0 = outflow perturbation from the nominal value

It is necessary to maintain a constant fluid level by adjusting the fluid flow rate into the
tank. Obtain an analog mathematical model of the tank, and use it to obtain a discrete-time
model for the system with piecewise constant inflow qi and output h.

Solution
Although the fluid system is nonlinear, a linear model can satisfactorily describe the system
under the assumption that fluid level is regulated around a constant value. The linearized
model for the outflow valve is analogous to an electrical resistor and is given by

	 h Rq= 0

where h is the perturbation in tank level from nominal, q0 is the perturbation in the outflow
from the tank from a nominal level Q, and R is the fluid resistance of the valve.

Assuming an incompressible fluid, the principle of conservation of mass reduces to the
volumetric balance: rate of fluid volume increase = rate of volume fluid in—rate of volume
fluid out:

	
dC h H

dt
q Q q Qi o

+()
= +() − +()

where C is the area of the tank or its fluid capacitance. The term H is a constant and its
derivative is zero, and the term Q cancels so that the remaining terms only involve perturba-

Figure 2.1

Fluid level control system.

H

h
qi

qo

tions. Substituting for the outflow q0 from the linearized valve equation into the volumetric
fluid balance gives the analog mathematical model

	
dh

dt

h q

C
i+ =

τ
where t = RC is the fluid time constant for the tank. The solution of this differential equation
is

	 h t e h t
C

e q dt t t
i

t

t
() = () + ()− −() − −()∫0

0
0

1τ λ τ λ λ

Let qi be constant over each sampling period T, that is, qi(t) = qi(k) = constant for t in
the interval [k T, (k + 1) T] . Then we can solve the analog equation over any sampling
period to obtain

	 h k e h k R e q kT T
i+() = () + −[] ()− −1 1τ τ

where the variables at time kT are denoted by the argument k. This is the desired discrete-
time model describing the system with piecewise constant control. Details of the solution
are left as an exercise (Problem 2.1).

The discrete-time model obtained in Example 2.1 is known as a difference
equation. Because the model involves a linear time-invariant analog plant, the
equation is linear time invariant. Next, we briefly discuss difference equations;
then we introduce a transform used to solve them.

2.2  Difference Equations
Difference equations arise in problems where the independent variable, usually
time, is assumed to have a discrete set of possible values. The nonlinear difference
equation

	 y k n f y k n y k n y k y k u k n

u k n

+() = + −() + −() +() () +()[
+ −()

1 2 1

1

, , . . . , , , ,

,, . . . , ,u k u k+() ()]1

	
(2.1)

with forcing function u(k) is said to be of order n because the difference between
the highest and lowest time arguments of y(.) and u(.) is n. The equations we deal
with in this text are almost exclusively linear and are of the form

	 y k n a y k n a y k a y k
b u k n b u k n

n

n n

+() + + −() + + +() + ()
= +() + + −

−

−

1 1 0

1

1 1. . .
11 11 0() + + +() + (). . . b u k b u k

	
(2.2)

We further assume that the coefficients ai, bi, i = 0, 1, 2, . . . , are constant. The
difference equation is then referred to as linear time invariant, or LTI. If the forcing
function u(k) is equal to zero, the equation is said to be homogeneous.

2.2  Difference Equations   11

12    CHAPTER 2  Discrete-Time Systems

Example 2.2

For each of the following difference equations, determine the order of the equation. Is the
equation (a) linear, (b) time invariant, or (c) homogeneous?

1.	 y(k + 2) + 0.8y (k + 1) + 0.07y(k) = u(k)
2.	 y(k + 4) + sin(0.4k)y(k + 1) + 0.3y(k) = 0
3.	 y(k + 1) = −0.1y 2(k)

Solution
1.	 The equation is second order. All terms enter the equation linearly and have constant

coefficients. The equation is therefore LTI. A forcing function appears in the equation,
so it is nonhomogeneous.

2.	 The equation is fourth order. The second coefficient is time dependent but all the terms
are linear and there is no forcing function. The equation is therefore linear time varying
and homogeneous.

3.	 The equation is first order. The right-hand side (RHS) is a nonlinear function of y(k) but
does not include a forcing function or terms that depend on time explicitly. The equation
is therefore nonlinear, time invariant, and homogeneous.

Difference equations can be solved using classical methods analogous to those
available for differential equations. Alternatively, z-transforms provide a conve-
nient approach for solving LTI equations, as discussed in the next section.

2.3  The z-Transform
The z-transform is an important tool in the analysis and design of discrete-time
systems. It simplifies the solution of discrete-time problems by converting LTI
difference equations to algebraic equations and convolution to multiplication.
Thus, it plays a role similar to that served by Laplace transforms in continuous-time
problems. Because we are primarily interested in application to digital control
systems, this brief introduction to the z-transform is restricted to causal signals
(i.e., signals with zero values for negative time) and the one-sided z-transform.

The following are two alternative definitions of the z-transform.

Definition 2.1:  Given the causal sequence {u0, u1, u2, …, uk, …}, its z-transform is
defined as

	 U z u u z u z u z

u z

k
k

k
k

k

() = + + + +

=

− − −

−

=

∞

∑
0 1

1
2

2

0

. . . 	

(2.3)

■

The variable z −1 in the preceding equation can be regarded as a time delay
operator. The z-transform of a given sequence can be easily obtained as in the
following example.

2.3  The z-Transform   13

Definition 2.2:  Given the impulse train representation of a discrete-time signal,

	 u t u t u t T u t T u t kT

u t kT

k

k

* () = () + −() + −() + + −() +

= −(

0 1 2 2d d d d

d

.

))
=

∞

∑
k 0

	

(2.4)

the Laplace transform of (2.4) is

	 U s u u e u e u e

u e

sT sT
k

ksT

k
sT k

k

* () = + + + + +

= ()

− − −

−

=

∞

∑
0 1 2

2

0

. 	

(2.5)

Let z be defined by

	 z esT= 	 (2.6)

Then substituting from (2.6) in (2.5) yields the z-transform expression (2.3).	 ■

Example 2.3

Obtain the z-transform of the sequence uk k{ } { }=
∞ =0 1 1 3 2 0 4 0 0 0, , , , , , , , ,

Solution
Applying Definition 2.1 gives U(z) = 1 + 3z −1 + 2z −2 + 4z −4.

Although the preceding two definitions yield the same transform, each has its
advantages and disadvantages. The first definition allows us to avoid the use of
impulses and the Laplace transform. The second allows us to treat z as a complex
variable and to use some of the familiar properties of the Laplace transform (such
as linearity).

Clearly, it is possible to use Laplace transformation to study discrete time,
continuous time, and mixed systems. However, the z-transform offers significant
simplification in notation for discrete-time systems and greatly simplifies their
analysis and design.

2.3.1  z-Transforms of Standard Discrete-Time Signals

Having defined the z-transform, we now obtain the z-transforms of commonly
used discrete-time signals such as the sampled step, exponential, and the discrete-
time impulse. The following identities are used repeatedly to derive several
important results:

	
a

a

a
a

a
a

a

k

k

n n

k

k

=

+

=

∞

∑

∑

=
−
−

≠

=
−

<

0

1

0

1

1
1

1

1
1

,

,

	

(2.7)

14    CHAPTER 2  Discrete-Time Systems

Example 2.4:  Unit Impulse

Consider the discrete-time impulse (Figure 2.2)

	
u k k

k

k
() = () =

=
≠{d

1 0

0 0

,

,

Applying Definition 2.1 gives the z-transform

	 U z() =1

Alternatively, one may consider the impulse-sampled version of the delta function u*(t)
= d(t). This has the Laplace transform

	 U s* () =1

Substitution from (2.6) has no effect. Thus, the z-transform obtained using Definition
2.2 is identical to that obtained using Definition 2.1.

Example 2.5: S ampled Step

Consider the sequence uk k{ } { }=
∞ =0 1 1 1 1 1 1, , , , , , Definition 2.1 gives the z-transform

	 U z z z z z

z

k

k

k

() = + + + + + +

=

− − − −

−

=

∞

∑

1 1 2 3

0

.

Using the identity (2.7) gives the following closed-form expression for the z-transform:

	
U z

z
z

z

() =
−

=
−

−

1

1

1

1

Note that (2.7) is only valid for |z | < 1. This implies that the z-transform expression we
obtain has a region of convergence outside which it is not valid. The region of convergence
must be clearly given when using the more general two-sided transform with functions that

Figure 2.2

Discrete-time impulse.

−1 10

k

1

2.3  The z-Transform   15

are nonzero for negative time. However, for the one-sided z-transform and time functions
that are zero for negative time, we can essentially extend regions of convergence and use
the z-transform in the entire z-plane.1 (See Figure 2.3.)

Example 2.6: E xponential

Let
	

u k
a k

k

k

() =
≥
<





,

,

0

0 0

Then
	 U z az a z a zk k() = + + + + +− − −1 1 2 2

Using (2.7), we obtain
	

U z
a z

z

z a

() =
− ()

=
−

1

1

As in Example 2.5, we can use the transform in the entire z-plane in spite of the validity
condition for (2.7) because our time function is zero for negative time. (See Figure 2.4.)

1The idea of extending the definition of a complex function to the entire complex plane is known
as analytic continuation. For a discussion of this topic, consult any text on complex analysis.

Figure 2.3

Sampled unit step.

−1 1 2 30

k

1

…

Figure 2.4

Sampled exponential.

−1 1 2 30

k

1

…a
a2

a3

16    CHAPTER 2  Discrete-Time Systems

2.3.2  Properties of the z-Transform

The z-transform can be derived from the Laplace transform as shown in
Definition 2.2. Hence, it shares several useful properties with the Laplace trans-
form, which can be stated without proof. These properties can also be easily
proved directly and the proofs are left as an exercise for the reader. Proofs
are provided for properties that do not obviously follow from the Laplace
transform.

Linearity
This equation follows directly from the linearity of the Laplace transform.

	 Z α β α βf k f k F z F z1 2() + (){ } = () + ()1 2 	 (2.8)

Example 2.7

Find the z-transform of the causal sequence

	 f k k k k() = × () + () =2 1 4 0 1 2d , , , , . . .

Solution
Using linearity, the transform of the sequence is

	
F z k k k k

z

z

z

z
() = × () + (){ } = (){ } + (){ } =

−
+ = −

−
Z Z Z2 1 4 2 1 4

2

1
4

6 4

1
d d

Time Delay
This equation follows from the time delay property of the Laplace transform and
equation (2.6).

	 Z f k n z F zn−(){ } = ()− 	 (2.9)

Example 2.8

Find the z-transform of the causal sequence

	 f k
k

() =
={4 2 3

0

, , , . . .

, otherwise

Solution
The given sequence is a sampled step starting at k = 2 rather than k = 0 (i.e., it is delayed
by two sampling periods). Using the delay property, we have

	
F z k z k z

z

z z z
() = × −(){ } = (){ } =

−
=

−()
− −Z Z4 1 2 4 1

4

1

4

1
2 2

2.3  The z-Transform   17

Time Advance

	 Z
Z

f k zF z z f
f k n z F z z f z fn n n

+(){ } = () − ()
+(){ } = () − () − () −−

1
11

0
0 −− −()z f n 1

	
(2.10)

Proof.  Only the first part of the theorem is proved here. The second part can be easily
proved by induction. We begin by applying the z-transform Definition 2.1 to a discrete-
time function advanced by one sampling interval. This gives

	 Z f k f k z

z f k z

k

k

k

k

+(){ } = +()

= +()

−
∞

− +()
∞

∑

∑

1 1

1

0

1

0

=

=

Now add and subtract the initial condition f(0) to obtain

	 Z f k z f f k z f
k

k+(){ } = () + +()




− ()








∞
− +()∑1 0 1 0

0

1

=

Next, change the index of summation to m = k + 1 and rewrite the z-transform as

	 Z f k z f m z f

zF z z f
m

m+(){ } = ()




− ()








= () − ()

∞
−∑1 0

0
0=

	

■

Example 2.9

Using the time advance property, find the z-transform of the causal sequence

	 f k(){ } = { }4 8 16, , , . . .

Solution
The sequence can be written as

	 f k g k kk() = = +() =+2 2 0 1 22 , , , , . . .

where g(k) is the exponential time function

	 g k kk() = =2 0 1 2, , , , . . .

Using the time advance property, we write the transform

	 F z z G z z g zg z
z

z
z z

z

z
() = () − () − () =

−
− − =

−
2 2 2 20 1

2
2

4

2

Clearly, the solution can be obtained directly by rewriting the sequence as

	 f k(){ } = { }4 1 2 4, , , . . .

and using the linearity of the z-transform.

18    CHAPTER 2  Discrete-Time Systems

Multiplication by Exponential

	 Z a f k F azk− (){ } = () 	 (2.11)

Proof

	 LHS a f k z f k az F azk k

k

k

k

= () = ()() = ()− −

=

∞
−

=

∞

∑ ∑
0 0

	 ■

Example 2.10

Find the z-transform of the exponential sequence

	 f k e kkT() = =−α , , , , . . .0 1 2

Solution
Recall that the z-transform of a sampled step is

	 F z z() = −()− −
1 1 1

and observe that f(k) can be rewritten as

	 f k e kT k() = () × =−α 1 0 1 2, , , , . . .

Then apply the multiplication by exponential property to obtain

	 Z e f k e z
z

z e
T k T

T
α α

α() (){ } = − ()  =
−

− − −

−1
1 1

This is the same as the answer obtained in Example 2.6.

Complex Differentiation

	 Z k f k z
d

dz
F zm

m

(){ } = −

 () 	 (2.12)

Proof.  To prove the property by induction, we first establish its validity for m = 1. Then
we assume its validity for any m and prove it for m + 1. This establishes its validity for
1 + 1 = 2, then 2 + 1 = 3, and so on.
For m = 1, we have

	 Z k f k k f k z f k z
d

dz
z

z
d

dz
f k

k

k

k

k

(){ } = () = () −



= −

 ()

−

=

∞
−

=

∞

∑ ∑
0 0

zz z
d

dz
F zk

k

−

=

∞

∑ = −

 ()

0

2.3  The z-Transform   19

Next, let the statement be true for any m and define the sequence

	 f k k f k km
m() = () =, , , , . . .0 1 2

and obtain the transform

	 Z k f k k f k z

f k z
d

dz
z

z
d

dz
f

m m
k

k

m
k

k

(){ } = ()

= () −



= −



−

=

∞

−

=

∞

∑

∑
0

0

mm
k

k

mk z z
d

dz
F z() = −


 ()−

=

∞

∑
0

Substituting for Fm(z), we obtain the result

	 Z k f k z
d

d z
F zm

m

(){ } = −





()
+1

	 ■

Example 2.11

Find the z-transform of the sampled ramp sequence

	 f k k k() = =, , , , . . .0 1 2

Solution
Recall that the z-transform of a sampled step is

	 F z
z

z
() =

−1

and observe that f (k) can be rewritten as

	 f k k k() = × =1 0 1 2, , , , . . .

Then apply the complex differentiation property to obtain

	 Z k z
d

dz

z

z
z

z z

z

z

z
×{ } = −


 −




 = −() −() −

−()
=

−()
1

1

1

1 12 2

2.3.3  Inversion of the z-Transform

Because the purpose of z-transformation is often to simplify the solution of time
domain problems, it is essential to inverse-transform z-domain functions. As in the
case of Laplace transforms, a complex integral can be used for inverse transforma-
tion. This integral is difficult to use and is rarely needed in engineering applica-
tions. Two simpler approaches for inverse z-transformation are discussed in this
section.

20    CHAPTER 2  Discrete-Time Systems

Long Division
This approach is based on Definition 2.1, which relates a time sequence to its z-
transform directly. We first use long division to obtain as many terms as desired
of the z-transform expansion; then we use the coefficients of the expansion to
write the time sequence. The following two steps give the inverse z-transform of
a function F(z):

1.	 Using long division, expand F(z) as a series to obtain

	 F z f f z f z f zt i
i

k

k

i
k() = + + + =− −

=

−∑0 1
1

0

. . .

2.	 Write the inverse transform as the sequence

	 f f fi0 1, , . . . , , . . .{ }

The number of terms obtained by long division i is selected to yield a sufficient
number of points in the time sequence.

Example 2.12

Obtain the inverse z-transform of the function F z
z

z z
() = +

+ +
1

0 2 0 12 . .

Solution

1.  Long Division

	
z z z

z
2

1

0 2 0 1 1+ + +

−

. .)
++ − +

+ +

− −

−

0 8 0 26

0 2 0 1

2 3.

. .

z z

z z

11

10 8 0 10

0 8 0 1

. .

. .

−
+

−z

66 0 08

0 26

1 2

1

z z

z

− −

−

+
− −

.

. . . .

Thus, Ft(z) = 0 + z −1 + 0.8z −2 − 0.26z −3

2.  Inverse Transformation

	 fk{ } = −{ }0 1 0 8 0 26, , . , . , . . .

Partial Fraction Expansion
This method is almost identical to that used in inverting Laplace transforms.
However, because most z-functions have the term z in their numerator, it is often
convenient to expand F(z)/z rather than F(z). As with Laplace transforms, partial
fraction expansion allows us to write the function as the sum of simpler functions

2.3  The z-Transform   21

that are the z-transforms of known discrete-time functions. The time functions are
available in z-transform tables such as the table provided in Appendix I.

The procedure for inverse z-transformation is

1.	 Find the partial fraction expansion of F(z)/z or F(z).
2.	 Obtain the inverse transform f(k) using the z-transform tables.

We consider three types of z-domain functions F(z): functions with simple
(nonrepeated) real poles, functions with complex conjugate and real poles, and
functions with repeated poles. We discuss examples that demonstrate partial frac-
tion expansion and inverse z-transformation in each case.

Case 1

Simple Real Roots

The most convenient method to obtain the partial fraction expansion of a
function with simple real roots is the method of residues. The residue of a
complex function F(z) at a simple pole zi is given by

	 A z z F zi i z zi
= −() ()] → 	 (2.13)

This is the partial fraction coefficient of the ith term of the expansion

	 F z
A

z z
i

ii

n

() =
−=

∑
1

	 (2.14)

Because most terms in the z-transform tables include a z in the numerator
(see Appendix I), it is often convenient to expand F(z)/z and then to multiply
both sides by z to obtain an expansion whose terms have a z in the numera-
tor. Except for functions that already have a z in the numerator, this approach
is slightly longer but has the advantage of simplifying inverse transformation.
Both methods are examined through the following example.

Example 2.13

Obtain the inverse z-transform of the function F z
z

z z
() = +

+ +
1

0 3 0 022 . .
.

Solution
It is instructive to solve this problem using two different methods. First we divide by z; then
we obtain the partial fraction expansion.

22    CHAPTER 2  Discrete-Time Systems

1.  Partial Fraction Expansion
Dividing the function by z, we expand as

	 F z

z

z

z z z

A

z

B

z

C

z

()
=

+
+ +()

= +
+

+
+

1

0 3 0 02

0 1 0 2

2 . .

. .

where the partial fraction coefficients are given by

	
A z

F z

z
F

B z
F z

z

z

z

=
() 


= () = =

= +() () 


=
−

−

=

=−

0

0 1

0
1

0 02
50

0 1
1 0 1

.

.
.

. 00 1 0 1
90

0 2
1 0 2

0 2 0 1
4

0 2

. .

.
.

. ..

()()
= −

= +() () 


=
−

−() −()
=

=−
C z

F z

z z

00

Thus, the partial fraction expansion is

	 F z
z

z

z

z

z

z
() = −

+
+

+
50 90

0 1

40

0 2. .

2.  Table Lookup

	
f k

k k

k

k k

() = () − −() + −() ≥
<




50 90 0 1 40 0 2 0

0 0

d . . ,

,

Note that f(0) = 0 so the time sequence can be rewritten as

	
f k

k

k

k k

() = − −() + −() ≥
<





90 0 1 40 0 2 1

0 1

. . ,

,

Now, we solve the same problem without dividing by z.

1.  Partial Fraction Expansion
We obtain the partial fraction expansion directly

	
F z

z

z z

A

z

B

z

() = +
+ +

=
+

+
+

1

0 3 0 02

0 1 0 2

2 . .

. .

where the partial fraction coefficients are given by

	
A z F z

B z F z

z

z

= +() ()] =
−

=

= +() ()] =
−
−

=−

=−

0 1
1 0 1

0 1
9

0 2
1 0 2

0 1

0 2

.
.

.

.
.

.

. 00 1
8

.
= −

2.3  The z-Transform   23

Thus, the partial fraction expansion is

	
F z

z z
() =

+
−

+
9

0 1

8

0 2. .

2.  Table Lookup
Standard z-transform tables do not include the terms in the expansion of F(z). However,
F(z) can be written as

	
F z

z

z
z

z

z
z() =

+
−

+
− −9

0 1

8

0 2
1 1

. .

Then we use the delay theorem to obtain the inverse transform

	
f k

k

k

k k

() = −() − −() ≥
<





− −9 0 1 8 0 2 1

0 1

1 1. . ,

,

Verify that this is the answer obtained earlier when dividing by z written in a different form
(observe the exponent in the preceding expression).

Although it is clearly easier to obtain the partial fraction expansion without
dividing by z, inverse transforming requires some experience. There are situations
where division by z may actually simplify the calculations as seen in the following
example.

Example 2.14

Find the inverse z-transform of the function

	
F z

z

z z z
() =

+() +() +()0 1 0 2 0 3. . .

Solution

1.  Partial Fraction Expansion
Dividing by z simplifies the numerator and gives the expansion

	 F z

z z z z

A

z

B

z

C

z

()
=

+() +() +()

=
+

+
+

+
+

1

0 1 0 2 0 3

0 1 0 2 0 3

. . .

. . .

24    CHAPTER 2  Discrete-Time Systems

where the partial fraction coefficients are

	
A z

F z

z

B z
F z

z

z

z

= +() () 


=
()()

=

= +() () 


=−

=−

0 1
1

0 1 0 2
50

0 2

0 1

.
. .

.

.

00 2

0 3

1

0 1 0 1
100

0 3
1

0 2 0 1

.

.

. .

.
. .

=
−()()

= −

= +() () 


=
−() −(=−

C z
F z

z z))
= 50

Thus, the partial fraction expansion is

	 F z
z

z

z

z

z

z
() =

+
−

+
+

+
50

0 1

100

0 2

50

0 3. . .

2.  Table Lookup

	
f k

k

k

k k k

() = −() − −() + −() ≥
<




50 0 1 100 0 2 50 0 3 0

0 0

. . . ,

,

Case 2

Complex Conjugate and Simple Real Roots

For a function F(z) with real and complex poles, the partial fraction expan-
sion includes terms with real roots and others with complex roots. Assuming
that F(z) has real coefficients, then its complex roots occur in complex con-
jugate pairs and can be combined to yield a function with real coefficients
and a quadratic denominator. To inverse-transform such a function, use the
following z-transforms:

	 Z e k
e z

z e z e
k

d
d

d

−
−

− −(){ } = ()
− () +

α
α

α αω ω
ω

sin
sin

cos2 22
	 (2.15)

	 Z e k
z z e

z e z e
k

d
d

d

−
−

− −(){ } = − ()[]
− () +

α
α

α αω
ω

ω
cos

cos

cos2 22
	 (2.16)

The denominators of the two transforms are identical and have complex
conjugate roots. The numerators can be scaled and combined to give the
desired inverse transform.

To obtain the partial fraction expansion, we use the residues method
shown in Case 1. With complex conjugate poles, we obtain the partial frac-
tion expansion

	 F z
Az

z p

A z

z p
() =

−
+

−
*

*
	 (2.17)

2.3  The z-Transform   25

We then inverse z-transform to obtain

	 f k Ap A p

A p e e

k k

k j k j kp A p A

() = +

= + 
+() − +()

* *
θ θ θ θ

where qp and qA are the angle of the pole p and the angle of the partial frac-
tion coefficient A, respectively. We use the exponential expression for the
cosine function to obtain

	 f k A p kk
p A() = +()2 cos θ θ 	 (2.18)

Most modern calculators can perform complex arithmetic, and the residues
method is preferable in most cases. Alternatively, by equating coefficients, we can
avoid the use of complex arithmetic entirely but the calculations can be quite
tedious. The following example demonstrates the two methods.

Example 2.15

Find the inverse z-transform of the function

	
F z

z z

z z z
() = + +

−() + +()
3

2

2 1

0 1 0 5. .

Solution: Equating Coefficients

1.  Partial Fraction Expansion
Dividing the function by z gives

	 F z

z

z z

z z z z

A

z

A

z

Az B

z z

()
=

+ +
−() + +()

= +
−

+
+

+ +

3

2

1 2

2

2 1

0 1 0 5

0 1 0 5

. .

. .

The first two coefficients can be easily evaluated as before. Thus,

	 A F

A z
F z

z

1

2

0 20

0 1 19 689

= () = −

= −() ()
≅. .

To evaluate the remaining coefficients, we multiply the equation by the denominator and
equate coefficients to obtain

	 z A A A

z A A B

3
1 2

1
1 2

1

0 4 0 5 0 1 2

:

: . . .

+ + =
+ − =

26    CHAPTER 2  Discrete-Time Systems

where the coefficients of the third- and first-order terms yield separate equations in A and
B. Because A1 and A2 have already been evaluated, we can solve each of the two equations
for one of the remaining unknowns to obtain

	 A B≅ ≅ −1 311 1 557. .

Had we chosen to equate coefficients without first evaluating A1 and A2, we would have
faced that considerably harder task of solving four equations in four unknowns. The remain-
ing coefficients can be used to check our calculations

	 z A

z A A A B

0
1

2
1 2

0 05 0 05 20 1

0 9 0 1 0 9 20 19 689 0

: . .

:

− = () =
+ − + = −() + − 11 1 311 1 557 0. .() − ≅

The results of these checks are approximate, because approximations were made in the
calculations of the coefficients. The partial fraction expansion is

	
F z

z

z

z z

z z
() = − +

−
+

−
+ +

20
19 689

0 1

1 311 1 557

0 5

2

2

.

.

. .

.

2.  Table Lookup
The first two terms of the partial fraction expansion can be easily found in the z-transform
tables. The third term resembles the transforms of a sinusoid multiplied by an exponential
if rewritten as

	

1 311 1 557

2 0 5 0 5

1 3112

2

. .

. .

. cos siz z

z z

z z e Czed−
− −() +

=
− ()[] −− −α αω nn

cos

ω
ωα α

d

dz e z e

()
− () +− −2 22

Starting with the constant term in the denominator, we equate coefficients to obtain

	 e− = =α 0 5 0 707. .

Next, the denominator z1 term gives

	 cos . . .ω α
d e() = − = − = −−0 5 0 5 0 707

Thus, wd = 3p/4, an angle in the second quadrant, with sin(wd) = 0.707.
Finally, we equate the coefficients of z1 in the numerator to obtain

	 − () − () = − −() = −− −1 311 0 5 1 311 1 557. cos sin . . .e Ce Cd d
α αω ω

and solve for C = 4.426. Referring to the z-transform tables, we obtain the inverse
transform

	 f k k kk k() = − () + () + () () −20 19 689 0 1 0 707 1 311 3 4 4 426 3d p. . . . cos . sin pp k 4()[]
for positive time k. The sinusoidal terms can be combined using the trigonometric identities

	

sin sin cos sin cos

sin . . .

A B A B B A−() = () () − () ()

() =−1 1 311 4 616 0 288

and the constant 4 616 1 311 4 4262 2. . .= () + () . This gives

	 f k k kk k() = − () + () − () −()20 19 689 0 1 4 616 0 707 3 4 0 288d p. . . . sin .

2.3  The z-Transform   27

Residues

1.  Partial Fraction Expansion
Dividing by z gives

	

F z

z

z z

z z z

A

z

A

z

A

z

()
=

+ +
−() +() + 

= +
−

+
+

3

2 2

1 2 3

2 1

0 1 0 5 0 5

0 1 0 5

. . .

. . −−
+

+ +j

A

z j0 5 0 5 0 5
3

.

*

. .

The partial fraction expansion can be obtained as in the first approach

	

A
z z

z z z j
j

F z

z j

3

3

0 5 0 5

2 1

0 1 0 5 0 5
0 656 2 213=

+ +
−() + +()

≅ +

()

=− +. . .
. .

. .

== − +
−

+
+()

+ −
+

−(
20

19 689

0 1

0 656 2 213

0 5 0 5

0 656 2 213.

.

. .

. .

. .z

z

j z

z j

j))
+ +

z

z j0 5 0 5. .

We convert the coefficient A3 from Cartesian to polar form:

	 A j e j
3

1 2830 656 2 213 2 308= + =. . . .

We inverse z-transform to obtain

	 f k k kk k() = − () + () + () +()20 19 689 0 1 4 616 0 707 3 4 1 283d p. . . . cos .

This is equal to the answer obtained earlier because 1.283 − p/2 = −0.288.

Case 3

Repeated Roots

For a function F(z) with a repeated root of multiplicity r, r partial fraction
coefficients are associated with the repeated root. The partial fraction expan-
sion is of the form

	 F z
N z

z z z z

A

z z

A

z zr
j

j r

n

i

r i
i

r
j

jj r

() = ()

−() −
=

−()
+

−
= +

+ −
= = +∏
∑

1

1

1

1
1

1 11

n

∑ 	 (2.19)

The coefficients for repeated roots are governed by

	 A
i

d

dz
z z F z i ri

i

i

r

z z

1

1

1 1

1

1
1 2

1

,
!

, , , . . . ,=
−()

−() ()


=
−

−
→

	 (2.20)

The coefficients of the simple or complex conjugate roots can be obtained
as before using (2.13).

28    CHAPTER 2  Discrete-Time Systems

Example 2.16

Obtain the inverse z-transform of the function

	 F z
z z

() =
−()
1

0 52 .

Solution

1.  Partial Fraction Expansion
Dividing by z gives

	
F z

z z z

A

z

A

z

A

z

A

z

()
=

−()
= + + +

−
1

0 5 0 53

11

3

12

2

13 4

. .

where

	

A z
F z

z z

A
d

dz
z

F z

z

d

dz z

z z

z z

11
3

0 0

12
3

0

1

0 5
2

1

1

1

0 5

=
()

=
−

= −

=
()

=
−

= =

=

.

! . == =

=

=
−
−()

= −

=
()

= 



−
−

0
2

0

13

2

2
3

0

1

0 5
4

1

2

1

2

1

0

z

A
d

dz
z

F z

z

d

dz z

z

z

.

!

.55

1

2

1 2

0 5
8

0 5

2
0

3
0

4
0 5

()
= 




−() −()
−()

= −

= −() ()
=

= =

=

z z

z

z

A z
F z

z

.

.
.

11
8

3
0 5z z=
=

.

Thus, we have the partial fraction expansion

	 F z
z z

z

z
z z() =

−()
=

−
− − −− −1

0 5

8

0 5
2 4 8

2
2 1

. .

2.  Table Lookup
The z-transform tables and Definition 2.1 yield

	
f k

k k k k

k

k

() = () − −() − −() − () ≥
<




8 0 5 2 2 4 1 8 0

0 0

. ,

,

d d d

Evaluating f(k) at k = 0, 1, 2 yields

	 f

f

f

0 8 8 0

1 8 0 5 4 0

2 8 0 5 2 02

() = − =

() = () − =

() = () − =

.

.

2.3  The z-Transform   29

We can therefore rewrite the inverse transform as

	 f k
k

k

k

() = () ≥
<





−0 5 3

0 3

3. ,

,

Note that the solution can be obtained directly using the delay theorem without the need
for partial fraction expansion because F(z) can be written as

	 F z
z

z
z() =

−
−

0 5
3

.

The delay theorem and the inverse transform of an exponential yield the solution
obtained earlier.

2.3.4  The Final Value Theorem

The final value theorem allows us to calculate the limit of a sequence as k tends
to infinity, if one exists, from the z-transform of the sequence. If one is only inter-
ested in the final value of the sequence, this constitutes a significant short cut.
The main pitfall of the theorem is that there are important cases where the limit
does not exist. The two main case are

1.	 An unbounded sequence
2.	 An oscillatory sequence

The reader is cautioned against blindly using the final value theorem, because this
can yield misleading results.

Theorem 2.1: T he Final Value Theorem.  If a sequence approaches a constant limit as
k tends to infinity, then the limit is given by

	 f f k
z

z
F z z F z

k z z
∞() = () = −



 () = −() ()

→∞ → →
Lim Lim Lim

1 1

1
1 	 (2.21)

Proof.  Let f(k) have a constant limit as k tends to infinity; then the sequence can be
expressed as the sum

	 f k f g k k() = ∞() + () =, , , , . . .0 1 2

with g(k) a sequence that decays to zero as k tends to infinity; that is,

	 Lim
k

f k f
→∞

() = ∞()

The z-transform of the preceding expression is

	 F z
f z

z
G z() = ∞()

−
+ ()

1

30    CHAPTER 2  Discrete-Time Systems

The final value f(∞) is the partial fraction coefficient obtained by expanding F(z)/z
as follows:

	 f z
F z

z
z F z

z z
∞() = −() ()

= −() ()
→ →

Lim Lim
1 1

1 1 	 ■

Example 2.17

Verify the final value theorem using the z-transform of a decaying exponential sequence and
its limit as k tends to infinity.

Solution
The z-transform pair of an exponential sequence is

	 e
z

z e
akT

aT
−

−{ }← →
−

Z

with a > 0. The limit as k tends to infinity in the time domain is

	 f e
k

akT∞() = =
→∞

−Lim 0

The final value theorem gives

	 f
z

z

z

z ez aT
∞() = −



 −




 =→ −Lim

1

1
0

Example 2.18

Obtain the final value for the sequence whose z-transform is

	 F z
z z a

z z b z c
() = −()

−() −() −()

2

1

What can you conclude concerning the constants b and c if it is known that the limit
exists?

Solution
Applying the final value theorem, we have

	 f
z z a

z b z c

a

b cz
∞() = −()

−() −()
=

−
−() −()→

Lim
1

1

1 1

To inverse z-transform the given function, one would have to obtain its partial fraction expan-
sion, which would include three terms: the transform of the sampled step, the transform of
the exponential (b)k, and the transform of the exponential (c)k. Therefore, the conditions for
the sequence to converge to a constant limit and for the validity of the final value theorem
are |b | < 1 and |c | < 1.

2.4  Computer-Aided Design
In this text, we make extensive use of computer-aided design (CAD) and analysis
of control systems. We use MATLAB,2 a powerful package with numerous useful
commands. For the reader’s convenience, we list some MATLAB commands
after covering the relevant theory. The reader is assumed to be familiar with
the CAD package but not with the digital system commands. We adopt the nota-
tion of bolding all user commands throughout the text. Readers using other CAD
packages will find similar commands for digital control system analysis and
design.

MATLAB typically handles coefficients as vectors with the coefficients listed in
descending order. The function G(z) with numerator 5(z + 3) and denominator
z3 + 0.1z2 + 0.4z is represented as the numerator polynomial

>> num = 5*[1, 3]

and the denominator polynomial

>> den = [1, 0.1, 0.4, 0]

Multiplication of polynomials is equivalent to the convolution of their vectors of
coefficients and is performed using the command

>> denp = conv(den1, den2)

where denp is the product of den1 and den2.
The partial fraction coefficients are obtained using the command

>> [r, p, k] = residue(num, den)

where p represents the poles, r their residues, and k the coefficients of
the polynomial resulting from dividing the numerator by the denominator. If
the highest power in the numerator is smaller than the highest power in the
denominator, k is zero. This is the usual case encountered in digital control
problems.

MATLAB allows the user to sample a function and z-transform it with the
commands

>> g = tf (num, den)

>> gd = c2d(g, 0.1, ‘imp’)

Other useful MATLAB commands are available with the symbolic manipulation
toolbox.

ztrans  z-transform

iztrans  inverse z-transform

2MATLAB® is a copyright of MathWorks Inc., of Natick, Massachusetts.

2.4  Computer-Aided Design   31

32    CHAPTER 2  Discrete-Time Systems

To use these commands, we must first define symbolic variables such as z, g, and
k with the command

>> syms z g k

Powerful commands for symbolic manipulations are also available through pack-
ages such as MAPLE, MATHEMATICA, and MACSYMA.

2.5  z-Transform Solution of Difference Equations
By a process analogous to Laplace transform solution of differential equations, one
can easily solve linear difference equations. The equations are first transformed
to the z-domain (i.e., both the right- and left-hand side of the equation are z-
transformed). Then the variable of interest is solved for and z-transformed. To
transform the difference equation, we typically use the time delay or the time
advance property. Inverse z-transformation is performed using the methods of
Section 2.3.

Example 2.19

Solve the linear difference equation

	 x k x k x k k+() − () +() + () () = ()2 3 2 1 1 2 1

with the initial conditions x(0) = 1, x(1) = 5/2.

Solution

1.  z-Transform
We begin by z-transforming the difference equation using (2.10) to obtain

	 z X z z x zx zX z zx X z z z2 2 0 1 3 2 0 1 2 1() − () − ()[] − () () − ()[] + () () = −()

2.  Solve for X(z)
Then we substitute the initial conditions and rearrange terms to obtain

	 z z X z z z z z2 23 2 1 2 1 5 2 3 2− () + ()[] () = −() + + −()
Then

	
X z

z z z

z z z

z

z z
() = + +() −()[]

−() −() −()
=

−() −()
1 1 1

1 1 0 5 1 0 5

3

2. .

3.  Partial Fraction Expansion
The partial fraction of X(z)/z is

	 X z

z

z

z z

A

z

A

z

A

z

()
=

−() −()
=

−()
+

−
+

−

2

2

11

2

12 3

1 0 5 1 1 0 5. .

where

	
A z

X z

z

z

z

A z
X z

z

z z

z

11
2

1

2

1

3
0 5

1
0 5

1

1 0 5
2

0 5

= −() ()
=

−
=

−
=

= −() ()

= =

=

. .

.
.

==
−()

=
()

−()
=

=

z

z z

2

2
0 5

2

21

0 5

0 5 1
1

.

.

.

To obtain the remaining coefficient, we multiply by the denominator and get the
equation

	 z A z A z z A z2
11 12 3

20 5 0 5 1 1= −() + −() −() + −(). .

Equating the coefficient of z2 gives

	 z A A A A2
12 3 12 121 1 0: = + = + =i.e.,

Thus, the partial fraction expansion in this special case includes two terms only. We now
have

	 X z
z

z

z

z
() =

−()
+

−
2

1 0 52 .

4.  Inverse z-Transformation
From the z-transform tables, the inverse z-transform of X(z) is

	 x k k k() = + ()2 0 5.

2.6  The Time Response of a Discrete-Time System
The time response of a discrete-time linear system is the solution of the difference
equation governing the system. For the linear time-invariant (LTI) case, the
response due to the initial conditions and the response due to the input can be
obtained separately and then added to obtain the overall response of the system.
The response due to the input, or the forced response, is the convolution sum-
mation of its input and its response to a unit impulse. In this section, we derive
this result and examine its implications.

2.6.1  Convolution Summation

The response of a discrete-time system to a unit impulse is known as the impulse
response sequence. The impulse response sequence can be used to represent the
response of a linear discrete-time system to an arbitrary input sequence

	 u k u u u i(){ } = () () (){ }0 1, , . . . , , . . . 	 (2.22)

2.6  The Time Response of a Discrete-Time System   33

34    CHAPTER 2  Discrete-Time Systems

To derive this relationship, we first represent the input sequence in terms of
discrete impulses as follows

	 u k u k u k u k u i k i

u i

() = () () + () −() + () −() + + () −() +

= (

0 1 1 2 2d d d d.

)) −()
=

∞

∑ d k i
i 0

 

(2.23)

For a linear system, the principle of superposition applies and the system
output due to the input is the following sum of impulse response sequences:

	 y l h l u h l u h l u h l i u i(){ } = (){ } () + −(){ } () + −(){ } () + + −(){ }0 1 1 2 2 . . . (() + . . .

Hence, the output at time k is given by

	 y k h k u k h k i u i
i

() = ()∗ () = −() ()
=

∞

∑
0

	 (2.24)

where (*) denotes the convolution operation.
For a causal system, the response due to an impulse at time i is an impulse

response starting at time i and the delayed response h(k - i) satisfies (Figure 2.5)

	 h k i i k−() = >0, 	 (2.25)

In other words, a causal system is one whose impulse response is a causal time
sequence. Thus, (2.24) reduces to

	 y k u h k u h k u h k u k h

u i h k i

() = () () + () −() + () −() + + () ()

= () −(

0 1 1 2 2 0. . .

))
=
∑
i

k

0

	

(2.26)

A simple change of summation variable (j = k - i) transforms (2.26) to

	 y k u k h u k h u k h u h k

u k j h j

() = () () + −() () + −() () + + () ()

= −() (

0 1 1 2 2 0. . .

))
=
∑
j

k

0

	

(2.27)

Equation (2.24) is the convolution summation for a noncausal system, whose
impulse response is nonzero for negative time, and it reduces to (2.26) for a causal

Figure 2.5

Response of a causal LTI discrete-time system to an impulse at iT.

iT

δ(k – i)

iT

{h(k – i)}

LTI System

…

system. The summations for time-varying systems are similar, but the impulse
response at time i is h(k, i). Here, we restrict our analysis to LTI systems. We can
now summarize the result obtained in the following theorem.

Theorem 2.2: R esponse of an LTI S ystem.  The response of an LTI discrete-time
system to an arbitrary input sequence is given by the convolution summation of the
input sequence and the impulse response sequence of the system.	� ■

To better understand the operations involved in convolution summation, we
evaluate one point in the output sequence using (2.24). For example,

	

y u i h i

u h u h u h
i

2 2

0 2 1 1 2 0
0

2

() = () −()

= () () + () () + () ()
=
∑

From Table 2.1 and Figure 2.6, one can see the output corresponding to various
components of the input of (2.23) and how they contribute to y(2). Note that
future input values do not contribute because the system is causal.

Table 2.1  Input Components and Corresponding Output
Components

Input Response Figure 2.6 Color

u(0) d(k) u(0) {h(k)} White

u(1) d(k−1) u(1) {h(k−1)} Gray

u(2) d(k−2) u(2) {h (k−2)} Black

Figure 2.6

Output at k = 2.

k

k

k
2

u(0) h(2)

u(1) h(1)

u(2) h(0)

10 3

2.6  The Time Response of a Discrete-Time System   35

36    CHAPTER 2  Discrete-Time Systems

2.6.2  The Convolution Theorem

The convolution summation is considerably simpler than the convolution integral
that characterizes the response of linear continuous-time systems. Nevertheless,
it is a fairly complex operation, especially if the output sequence is required over
a long time period. The following theorem shows how the convolution summation
can be avoided by z-transformation.

Theorem 2.3: T he Convolution Theorem.  The z-transform of the convolution of two
time sequences is equal to the product of their z-transforms.

Proof.  z-transforming (2.24) gives

	 Y z y k z

u i h k i z

k

k

i

k

k

() = ()

= () −()





−

=

∞

=

∞
−

=

∞

∑

∑∑
0

00

	

(2.28)

Interchange the order of summation and substitute j = k - i to obtain

	 Y z u i h j z
j i

i j

i

() = () ()
=−

∞
− +()

=

∞

∑∑
0

	 (2.29)

Using the causality property, (2.24) reduces (2.29) to

	 Y z u i z h j zi

i

j

j

() = ()





()









−

=

∞
−

=

∞

∑ ∑
0 0

	 (2.30)

Therefore,

	 Y z H z U z() = () () 	 (2.31)
 ■

The function H(z) of (2.31) is known as the z-transfer function or simply
the transfer function. It plays an important role in obtaining the response of an
LTI system to any input, as explained later. Note that the transfer function and
impulse response sequence are z-transform pairs.

Applying the convolution theorem to the response of an LTI system allows us
to use the z-transform to find the output of a system without convolution by doing
the following:

1.	 z-transforming the input
2.	 Multiplying the z-transform of the input and the z-transfer function
3.	 Inverse z-transforming to obtain the output temporal sequence

An added advantage of this approach is that the output can often be obtained
in closed form. The preceding procedure is demonstrated in the example that
follows.

Example 2.20

Given the discrete-time system

	 y k y k u k y+() − () = () () =1 0 5 0 0. ,

find the impulse response of the system h(k):

1.	 From the difference equation
2.	 Using z-transformation

Solution
Let u(k) = d(k). Then

	

y

y y

y y

h i
i

1

2 0 5 1 0 5

3 0 5 2 0 5

0 5

2

1

()

() = () =

() = () = ()

() = () −

. .

. .

. ,
i.e.,

ii

i

=
<





1 2 3

0 1

, , , . . .

,

Alternatively, z-transforming the difference equation yields the transfer function

	

H z
Y z

U z z

Y z

U z z

() = ()
()

=
−

=
()
()

=
−

1

0 5

1

0 5

.

.

Inverse-transforming with the delay theorem gives the impulse response

	 h i
i

i

i

() = () =
<





−0 5 1 2 3

0 1

1. , , , , . . .

,

Observe that the response decays exponentially because the pole has magnitude less than
unity. In Chapter 4, we discuss this property and relate to the stability of discrete-time systems.

Example 2.21

Given the discrete-time system

	 y k y k u k+() − () = +()1 1

find the system transfer function and its response to a sampled unit step.

Solution
The transfer function corresponding to the difference equation is

	 H z
z

z
() =

−1

2.6  The Time Response of a Discrete-Time System   37

38    CHAPTER 2  Discrete-Time Systems

We multiply the transfer function by the sampled unit step’s z-transform to obtain

	 Y z
z

z

z

z

z

z
z

z

z
() =

−




 × −





 = −





 =

−()1 1 1 1

2

2

The z-transform of a unit ramp is

	 F z
z

z
() =

−()1 2

Then, using the time advance property of the z-transform, we have the inverse
transform

	 y i
i i

i
() =

+ =
<{ 1 0 1 2 3

0 0

, , , , , . . .

,

It is obvious from this simple example that z-transforming yields the response
of a system in closed form more easily than direct evaluation. For higher-order
difference equations, obtaining the response in closed form directly may be impos-
sible, whereas z-transforming to obtain the response remains a relatively simple
task.

2.7  The Modified z-Transform
Sampling and z-transformation capture the values of a continuous-time function
at the sampling points only. To evaluate the time function between sampling
points, we need to delay the sampled waveform by a fraction of a sampling inter-
val before sampling. We can then vary the sampling points by changing the delay
period. The z-transform associated with the delayed waveform is known as the
modified z-transform.

We consider a causal continuous-time function y(t) sampled every T seconds.
Next, we insert a delay Td < T before the sampler as shown in Figure 2.7. The
output of the delay element is the waveform

	 y t
y t T t

t
d

d() =
−() ≥

<{ ,

,

0

0 0
	 (2.32)

Figure 2.7

Sampling of a delayed signal.

Delay Td

T
y(t) yd(t) yd (kT)

Note that delaying a causal sequence always results in an initial zero value. To
avoid inappropriate initial values, we rewrite the delay as

	 T T mT m

m T T

d

d

= − ≤ <

= −

, 0 1

1

	
(2.33)

For example, a time delay of 0.2 s with a sampling period T of 1 s corresponds
to m = 0.8—that is, a time advance of 0.8 of a sampling period and a time delay
of one sampling period. If y−1(t + mT) is defined as y(t + mT) delayed by one
complete sampling period, then, based on (2.32), yd(t) is given by

	 y t y t T mT y t mTd() = − +() = +()−1 	 (2.34)

We now sample the delayed waveform with sampling period T to obtain

	 y kT y kT mT kd() = +() =−1 0 1 2, , , , . . . 	 (2.35)

From the delay theorem, we know the z-transform of y−1(t)

	 Y z z Y z−
−() = ()1

1 	 (2.36)

We need to determine the effect of the time advance by mT to obtain the z-
transform of yd(t). We determine this effect by considering specific examples.
At this point, it suffices to write

	 Y z, m y kT z y kT mTm() = (){ } = +(){ }−Z Z1 	 (2.37)

where Zm •{ } denotes the modified z-transform.

Example 2.22: S tep

The step function has fixed amplitude for all time arguments. Thus, shifting it or delaying it
does not change the sampled values. We conclude that the modified z-transform of a
sampled step is the same as its z-transform, times z −1 for all values of the time advance
mT—that is, 1/(1−z −1).

Example 2.23: E xponential

We consider the exponential waveform

	 y t e pt() = − 	 (2.38)

The effect of a time advance mT on the sampled values for an exponential decay is shown
in Figure 2.8. The sampled values are given by

	 y kT mT e e e kp k m T pmT pkT+() = = =− +() − − , , , , . . .0 1 2 	 (2.39)

We observe that the time advance results in a scaling of the waveform by the factor e−pmT.
By the linearity of the z-transform, we have the following:

2.7  The Modified z-Transform   39

40    CHAPTER 2  Discrete-Time Systems

	 Z y kT mT e
z

z e
pmT

pT
+(){ } =

−
−

−
	 (2.40)

Using (2.37), we have the modified z-transform

	 Y z m
e

z e

pmT

pT
,() =

−

−

− 	 (2.41)

For example, for p = 4 and T = 0.2 s, to delay by 0.7 T, we let m = 0.3 and calculate e−pmT
= e−0.24 = 0.787 and e−pT = e−0.8 = 0.449. We have the modified z-transform

	
Y z m

z
,

.

.
() =

−
0 787

0 449

3Unlike continuous sinusoids, sampled sinusoids are only periodic if the ratio of the period of the
waveform and the sampling period is a rational number (equal to a ratio of integers). However, the
continuous envelope of the sampled form is clearly always periodic. See the text by Oppenheim
et al., 1997, p. 26) for more details.

Figure 2.8

Effect of time advance on sampling an exponential decay.

kT

.

0 T 2T

e−p (k +m−1) T

e−p kT

3T

e−p (k + m) T

The modified z-transforms of other important functions, such as the ramp and
the sinusoid, can be obtained following the procedure presented earlier. The
derivations of these modified z-transforms are left as exercises.

2.8  Frequency Response of Discrete-Time Systems
In this section, we discuss the steady-state response of a discrete-time system
to a sampled sinusoidal input.3 It is shown that, as in the continuous-time
case, the response is a sinusoid of the same frequency as the input with
frequency-dependent phase shift and magnitude scaling. The scale factor and

phase shift define a complex function of frequency known as the frequency
response.

We first obtain the frequency response using impulse sampling and the Laplace
transform to exploit the well known relationship between the transfer function
Ha(s) and the frequency response Ha(jw)

	 H j H sa a s jω ω() = () = 	 (2.42)

The impulse-sampled representation of a discrete-time waveform is

	 u t u kT t kT
k

* () = () −()
=

∞

∑ d
0

	 (2.43)

where u(kT) is the value at time kT, and d(t − kT) denotes a Dirac delta at time
kT. The representation (2.43) allows Laplace transformation to obtain

	 U s u kT e kTs

k

* () = () −

=

∞

∑
0

	 (2.44)

It is now possible to define a transfer function for sampled inputs as

	 H s
Y s

U s
*

*

* zero initial conditions

() = ()
()

	 (2.45)

Then, using (2.42), we obtain

	 H j H s s j* *ω ω() = () = 	 (2.46)

To rewrite (2.46) in terms of the complex variable z = esT, we use the
equation

	 H z H s
s

T
z

() = ()
= ()

* 1
ln

	 (2.47)

Thus, the frequency response is given by

	 H j H z

H e
z e

j T

j T* ω ω

ω

() = ()
= ()

= 	
(2.48)

Equation (2.48) can also be verified without the use of impulse sampling by
considering the sampled complex exponential

	 u kT u e

u k T j k T k

jk T() =
= () + ()[] =

0

0 0 0

0

0 1 2

ω

ω ωcos sin , , , , . . .

	
(2.49)

This eventually yields the sinusoidal response while avoiding its second-order
z-transform. The z-transform of the chosen input sequence is the first-order
function

	 U z u
z

z e j T
() =

−0
0ω

	 (2.50)

2.8  Frequency Response of Discrete-Time Systems   41

42    CHAPTER 2  Discrete-Time Systems

Assume the system z-transfer function to be

	 H z
N z

z pi

i

n
() = ()

−()
=
∏

1

	 (2.51)

where N(z) is a numerator polynomial of order n or less, and the system poles pi
are assumed to lie inside the unit circle.

The system output due to the input of (2.49) has the z-transform

	 Y z
N z

z p

u
z

z e
i

i

n j T
() = ()

−()



















−
=
∏

1

0
0ω

	 (2.52)

This can be expanded into the partial fractions

	 Y z
Az

z e

B z

z pj T

i

ii

n

() =
−

+
−=

∑ω0
1

	 (2.53)

Then inverse z-transforming gives the output

	 y kT Ae B p kjk T
i

i

n

i
k() = + =

=
∑ω0

1

0 1 2, , , , . . . 	 (2.54)

The assumption of poles inside the unit circle implies that, for sufficiently large
k, the output reduces to

	 y kT Ae kss
jk T() = ω0 , large 	 (2.55)

where yss (kT) denotes the steady-state output.
The term A is the partial fraction coefficient

	 A
Y z

z
z e

H e u

j T

z e

j T

j T
=

()
−()

= ()
=

ω

ω

ω

0

0

0
0

	
(2.56)

Thus, we write the steady-state output in the form

	 y kT H e u e kss

j T
j T j k T H e() = () +∠ () ω ω ω

0 0 0

0 , large 	 (2.57)

The real part of this response is the response due to a sampled cosine input, and the
imaginary part is the response of a sampled sine. The sampled cosine response is

	 y kT H e u k T H e kss
j T j T() = () + ∠ ()[]ω ωω0 0

0 0cos , large 	 (2.58)

The sampled sine response is similar to (2.58) with the cosine replaced by sine.
Equations (2.57) and (2.58) show that the response to a sampled sinusoid is a

sinusoid of the same frequency scaled and phase-shifted by the magnitude and
angle

	 H e H ej T j Tω ω0 0() ∠ () 	 (2.59)

respectively. This is the frequency response function obtained earlier using impulse
sampling. Thus, one can use complex arithmetic to determine the steady-state
response due to a sampled sinusoid without the need for z-transformation.

Example 2.24

Find the steady-state response of the system

	 H z
z z

() =
−() −()

1

0 1 5. .

due to the sampled sinusoid u(kT) = 3 cos(0.2 k).

Solution
Using (2.58) gives the response

	

y kT H e k H e k

e e

ss
j j

j

() = () + ∠ ()()

=
−()

0 2 0 2

0 2

3 0 2

1

0 1

. .

.

cos . ,

.

 large

jj j j
k

e e0 2 0 2 0 20 5
3 0 2

1

0 1 0 5

6 4 0

. . ..
cos .

. .

. cos

−() + ∠
−() −()







= .. .2 0 614k −()

2.8.1  Properties of the Frequency Response  
of Discrete-Time Systems

Using (2.48), the following frequency response properties can be derived:

1.	 DC gain: The DC gain is equal to H(1).

Proof.  From (2.48),

	

H e H z

H

j T
z

ω
ω() = ()

= ()
→ →0 1

1 	 ■

2.	 Periodic nature: The frequency response is a periodic function of frequency
with period ws = 2p/T rad/s.

Proof.  The complex exponential

	 e T j Tj Tω ω ω= () + ()cos sin

is periodic with period ws = 2p/T rad/s. Because H(e jwT) is a single-valued function of
its argument, it follows that it also is periodic and that it has the same repetition
frequency.	 ■

2.8  Frequency Response of Discrete-Time Systems   43

44    CHAPTER 2  Discrete-Time Systems

3.	 Symmetry: For transfer functions with real coefficients, the magnitude of the
transfer function is an even function of frequency and its phase is an odd func-
tion of frequency.

Proof.  For negative frequencies, the transfer function is

	 H e H ej T j T−() = ()ω ω

For real coefficients, we have

	 H e H ej T j Tω ω() = ()
Combining the last two equations gives

	 H e H ej T j T−() = ()ω ω

Equivalently, we have

	

H e H e

H e H e

j T j T

j T j T

−

−

() = ()
∠ () = −∠ ()

ω ω

ω ω 	 ■

Hence, it is only necessary to obtain H(e jwT) for frequencies w in the range
from DC to ws/2. The frequency response for negative frequencies can be obtained
by symmetry, and for frequencies above ws/2 the frequency response is periodi-
cally repeated. If the frequency response has negligible amplitudes at frequencies
above ws/2, the repeated frequency response cycles do not overlap. The overall
effect of sampling for such systems is to produce a periodic repetition of the
frequency response of a continuous-time system.

Because the frequency response functions of physical systems are not band-
limited, overlapping of the repeated frequency response cycles, known as folding,
occurs. The frequency ws/2 is known as the folding frequency. Folding results in
distortion of the frequency response and should be minimized. This can be accom-
plished by proper choice of the sampling frequency ws/2 or filtering. Figure 2.9
shows the frequency response of a second-order underdamped digital system.

2.8.2  MATLAB Commands for the Discrete-Time  
Frequency Response

The MATLAB commands bode, nyquist, and nichols calculate and plot the fre-
quency response of a discrete-time system. For a sampling period of 0.2 s and a
transfer function with numerator num and denominator den, the three com-
mands have the form

>> g = tf(num, den, 0.2)

>> bode(g)

>> nyquist(g)

>> nichols(g)

MATLAB does not allow the user to select the grid for automatically generated
plots. However, all the commands have alternative forms that allow the user to
obtain the frequency response data for later plotting.

The commands bode and nichols have the alternative form

>> [M, P, w] = bode(g, w)

>> [M, P, w] = nichols(g, w)

where w is predefined frequency grid, M is the magnitude, and P is the phase of
the frequency response. MATLAB selects the frequency grid if none is given and
returns the same list of outputs. The frequency vector can also be eliminated from
the output or replaced by a scalar for single-frequency computations. The command
nyquist can take similar forms to those just described but yields the real and
imaginary parts of the frequency response as follows

>> [Real, Imag, w] = nyquist(g, w)

As with all MATLAB commands, printing the output is suppressed if any of the
frequency response commands is followed by a semicolon. The output can then
be used with the command plot to obtain user selected plot specifications. For
example, a plot of the actual frequency response points without connections is
obtained with the command

>> plot(Real(:), Imag(:), ‘*’)

where the locations of the data points are indicated with the ‘*’. The command

>> subplot(2, 3, 4)

Figure 2.9

Frequency response of a digital system.

3

2.5

1.5

|H
(j

w
)|

0.5

2

1

0
0 200 400 600 800 1000 1200

w rad/s

2.8  Frequency Response of Discrete-Time Systems   45

46    CHAPTER 2  Discrete-Time Systems

creates a 2-row, 3-column grid and draw axes at the first position of the second
row (the first three plots are in the first row and 4 is the plot number). The next
plot command superimposes the plot on these axes. For other plots, the subplot
and plot commands are repeated with the appropriate arguments. For example,
a plot in the first row and second column of the grid is obtained with the
command

>> subplot(2, 3, 2)

2.9  The Sampling Theorem
Sampling is necessary for the processing of analog data using digital elements.
Successful digital data processing requires that the samples reflect the nature of
the analog signal and that analog signals be recoverable, at least in theory, from a
sequence of samples. Figure 2.10 shows two distinct waveforms with identical
samples. Obviously, faster sampling of the two waveforms would produce distin-
guishable sequences. Thus, it is obvious that sufficiently fast sampling is a pre
requisite for successful digital data processing. The sampling theorem gives a
lower bound on the sampling rate necessary for a given band-limited signal (i.e.,
a signal with a known finite bandwidth).

Figure 2.10

Two different waveforms with identical samples.

Theorem 2.4: T he Sampling Theorem.  The band-limited signal with

	 f t F j F j m m()← → () () ≠ − ≤ ≤F ω ω ω ω ω, ,0

 elsewhereF jω() = 0,

	
(2.60)

with F denoting the Fourier transform, can be reconstructed from the discrete-time
waveform

	 f t f t t kT
k

* () = () −()
=−∞

∞

∑ d 	 (2.61)

if and only if the sampling angular frequency ws = 2p/T satisfies the condition

	 ω ωs m> 2 	 (2.62)

The spectrum of the continuous-time waveform can be recovered using an ideal
low-pass filter of bandwidth wb in the range

	 ω ω ωm b s< < 2 	 (2.63)

Proof.  Consider the unit impulse train

	 d dT

k

t t kT() = −()
=−∞

∞

∑ 	 (2.64)

and its Fourier transform

	 d ω p d ω ωT s

nT
n() = −()

=−∞

∞

∑2
	 (2.65)

Impulse sampling is achieved by multiplying the waveforms f(t) and dT(t). By the
frequency convolution theorem, the spectrum of the product of the two waveforms is
given by the convolution of their two spectra; that is,

	

ℑ () × (){ } = ()∗ ()

= −()




∗ ()

=−∞

∞

∑

d
p
d ω ω

d ω ω ω

T T

s

n

t f t j F j

T
n F j

1

2

1

== −()
=−∞

∞

∑1

T
F n s

n

ω ω

where wm is the bandwidth of the signal. Therefore, the spectrum of the sampled
waveform is a periodic function of frequency ws. Assuming that f(t) is a real valued
function, then it is well known that the magnitude |F(jw)| is an even function of fre-
quency, whereas the phase ∠F(jw) is an odd function. For a band-limited function, the
amplitude and phase in the frequency range 0 to ws/2 can be recovered by an ideal
low-pass filter as shown in Figure 2.11.	 ■

Figure 2.11

Sampling theorem.

ωs–w s

2
ωm

ωb

s ωs

2
–w

2.9  The Sampling Theorem   47

48    CHAPTER 2  Discrete-Time Systems

2.9.1  Selection of the Sampling Frequency

In practice, finite bandwidth is an idealization associated with infinite-duration
signals, whereas finite duration implies infinite bandwidth. To show this, assume
that a given signal is to be band limited. Band limiting is equivalent to multiplica-
tion by a pulse in the frequency domain. By the convolution theorem, multiplica-
tion in the frequency domain is equivalent to convolution of the inverse Fourier
transforms. Hence, the inverse transform of the band-limited function is the con-
volution of the original time function with the sinc function, a function of infinite
duration. We conclude that a band-limited function is of infinite duration.

A time-limited function is the product of a function of infinite duration and a
pulse. The frequency convolution theorem states that multiplication in the time
domain is equivalent to convolution of the Fourier transforms in the frequency
domain. Thus, the spectrum of a time-limited function is the convolution of
the spectrum of the function of infinite duration with a sinc function, a function
of infinite bandwidth. Hence, the Fourier transform of a time-limited function
has infinite bandwidth. Because all measurements are made over a finite time
period, infinite bandwidths are unavoidable. Nevertheless, a given signal often has
a finite “effective bandwidth” beyond which its spectral components are negligi-
ble. This allows us to treat physical signals as band limited and choose a suitable
sampling rate for them based on the sampling theorem.

In practice, the sampling rate chosen is often larger than the lower bound
specified in the sampling theorem. A rule of thumb is to choose ws as

	 ω ωs mk k= ≤ ≤, 5 10 	 (2.66)

The choice of the constant k depends on the application. In many applications,
the upper bound on the sampling frequency is well below the capabilities of state-
of-the-art hardware. A closed-loop control system cannot have a sampling period
below the minimum time required for the output measurement; that is, the sam-
pling frequency is upper-bounded by the sensor delay.4 For example, oxygen
sensors used in automotive air/fuel ratio control have a sensor delay of about
20 ms, which corresponds to a sampling frequency upper bound of 50 Hz. Another
limitation is the computational time needed to update the control. This is becom-
ing less restrictive with the availability of faster microprocessors but must be
considered in sampling rate selection.

In digital control, the sampling frequency must be chosen so that samples
provide a good representation of the analog physical variables. A more detailed
discussion of the practical issues that must be considered when choosing the
sampling frequency is given in Chapter 12. Here, we only discuss choosing the
sampling period based on the sampling theorem.

4It is possible to have the sensor delay as an integer multiple of the sampling period if a state esti-
mator is used, as discussed in Franklin et al. (1998).

For a linear system, the output of the system has a spectrum given by the
product of the frequency response and input spectrum. Because the input is not
known a priori, we must base our choice of sampling frequency on the frequency
response.

The frequency response of a first-order system is

	 H j
K

j b

ω
ω ω

() =
+1

	 (2.67)

where K is the DC gain and wb is the system bandwidth. The frequency response
amplitude drops below the DC level by a factor of about 10 at the frequency
7wb. If we consider wm = 7wb, the sampling frequency is chosen as

	 ω ωs bk k= ≤ ≤, 35 70 	 (2.68)

For a second-order system with frequency response

	 H j
K

j n n

ω
ζω ω ω ω

() =
+ − ()2 1 2

	 (2.69)

and the bandwidth of the system is approximated by the damped natural
frequency

	 ω ω ζd n= −1 2 	 (2.70)

Using a frequency of 7wd as the maximum significant frequency, we choose
the sampling frequency as

	 ω ωs dk k= ≤ ≤, 35 70 	 (2.71)

In addition, the impulse response of a second-order system is of the form

	 y t Ae tnt
d() = +()−ζω ω φsin 	 (2.72)

where A is a constant amplitude, and f is a phase angle. Thus, the choice of sam-
pling frequency of (2.71) is sufficiently fast for oscillations of frequency wd and
time to first peak p/wd.

Example 2.25

Given a first-order system of bandwidth 10 rad/s, select a suitable sampling frequency and
find the corresponding sampling period.

Solution
A suitable choice of sampling frequency is ws = 60, wb = 600 rad/s. The corresponding
sampling period is approximately T = 2p/ws ≅ 0.01 s.

2.9  The Sampling Theorem   49

50    CHAPTER 2  Discrete-Time Systems

Example 2.26

A closed-loop control system must be designed for a steady-state error not to exceed 5
percent, a damping ratio of about 0.7, and an undamped natural frequency of 10 rad/s.
Select a suitable sampling period for the system if the system has a sensor delay of

1.	0.02 s
2.	0.03 s

Solution
Let the sampling frequency be

	

ω ω

ω ζ
s d

n

≥

= −

= −
=

35

35 1

350 1 0 49

249 95

2

.

. rad s

The corresponding sampling period is T = 2p/ws ≤ 0.025 s.

1.	 A suitable choice is T = 20 ms because this is equal to the sensor delay.
2.	 We are forced to choose T = 30 ms, which is equal to the sensor delay.

Resources
Chen, C.-T., System and Signal Analysis, Saunders, 1989.
Feuer, A., and G. C. Goodwin, Sampling in Digital Signal Processing and Control,

Birkhauser, 1996.
Franklin, G. F., J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems,

Addison-Wesley, 1998.
Goldberg, S., Introduction to Difference Equations, Dover, 1986.
Jacquot, R. G., Modern Digital Control Systems, Marcel Dekker, 1981.
Kuo, B. C., Digital Control Systems, Saunders, 1992.
Mickens, R. E., Difference Equations, Van Nostrand Reinhold, 1987.
Oppenheim, A. V., A. S. Willsky, and S. H. Nawab, Signals and Systems, Prentice Hall,

1997.

Problems

2.1	 Derive the discrete-time model of Example 2.1 from the solution of the system
differential equation with initial time kT and final time (k + 1)T.

2.2	 For each of the following equations, determine the order of the equation and
then test it for (i) linearity, (ii) time invariance, (iii) homogeneity.
(a)	 y(k + 2) = y(k + 1) y(k) + u(k)
(b)	 y(k + 3) + 2 y(k) = 0
(c)	 y(k + 4) + y(k − 1) = u(k)
(d)	 y(k + 5) = y(k + 4) + u(k + 1) − u(k)
(e)	 y(k + 2) = y(k) u(k)

2.3	 Find the transforms of the following sequences using Definition 2.1.
(a)	 {0, 1, 2, 4, 0, 0, . . .}
(b)	 {0, 0, 0, 1, 1, 1, 0, 0, 0, . . .}
(c)	 {0, 2−0.5, 1, 2−0.5, 0, 0, 0, . . .}

2.4	 Obtain closed forms of the transforms of Problem 2.3 using the table of z-
transforms and the time delay property.

2.5	 Prove the linearity and time delay properties of the z-transform from basic
principles.

2.6	 Use the linearity of the z-transform and the transform of the exponential
function to obtain the transforms of the discrete-time functions.
(a)	 sin(kwT)
(b)	 cos(kwT)

2.7	 Use the multiplication by exponential property to obtain the transforms of the
discrete-time functions.
(a)	 e−akTsin(kwT)
(b)	 e−akTcos(kwT)

2.8	 Find the inverse transforms of the following functions using Definition 2.1 and,
if necessary, long division.
(a)	 F (z) = 1 + 3z−1 + 4z−2

(b)	 F (z) = 5z−1 + 4z−5

(c)	 F z
z

z z
() =

+ +2 0 3 0 02. .

(d)	 F z
z

z z
() = −

+ +
0 1

0 04 0 252

.

. .

2.9	 For Problems 2.8(c) and (d), find the inverse transforms of the functions using
partial fraction expansion and table lookup.

2.10	 Solve the following difference equations.
(a)	 y(k + 1) − 0.8 y(k) = 0, y(0) = 1
(b)	 y(k + 1) − 0.8 y(k) = 1(k), y(0) = 0

Problems   51

52    CHAPTER 2  Discrete-Time Systems

(c)	 y(k + 1) − 0.8 y(k) = 1(k), y(0) = 1
(d)	 y(k + 2) + 0.7 y(k + 1) + 0.06 y(k) = d(k), y(0) = 0, y(1) = 2

2.11	 Find the transfer functions corresponding to the difference equations of
Problem 2.2 with input u(k) and output y(k). If no transfer function is defined,
explain why.

2.12	 Test the linearity with respect to the input of the systems for which you found
transfer functions in Problem 2.11.

2.13	 If the rational functions of Problems 2.8.(c) and (d) are transfer functions of
LTI systems, find the difference equation governing each system.

2.14	 We can use z-transforms to find the sum of integers raised to various powers.
This is accomplished by first recognizing that the sum is the solution of the
difference equation

	 f k f k a k() = −() + ()1

where a(k) is the kth term in the summation. Evaluate the following
summations using z-transforms.

(a)	 k
k

n

=
∑

1

(b)	 k
k

n
2

1=
∑

2.15	 Find the impulse response functions for the systems governed by the following
difference equations.
(a)	 y(k + 1) − 0.5 y(k) = u(k)
(b)	 y(k + 2) − 0.1 y(k + 1) + 0.8 y(k) = u(k)

2.16	 Find the final value for the functions if it exists.

(a)	 F z
z

z z
() =

− +2 1 2 0 2. .

(b)	 F z
z

z z
() =

+ +2 0 3 2.

2.17	 Find the steady-state response of the systems resulting from the sinusoidal
input u(k) = 0.5 sin(0.4 k).

(a)	 H z
z

z
() =

− 0 4.

(b)	 H z
z

z z
() =

+ +2 0 4 0 03. .

2.18	 Find the frequency response of a noncausal system whose impulse response
sequence is given by

	 u k u k u k K k() () = +() = −∞ ∞{ }, , , . . . ,

Hint: The impulse response sequence is periodic with period K and can be
expressed as

	
u t u l mK t l mK

ml

K

* () = +() − −()
=−∞

∞

=

−

∑∑ d
0

1

2.19	 The well-known Shannon reconstruction theorem states that any band-limited
signal u(t) with bandwidth ws/2 can be exactly reconstructed from its samples
at a rate ws = 2p/T. The reconstruction is given by

	

u t u k
t kT

t kT

s

sk

() = ()
−()





−()=−∞

∞

∑
sin

ω

ω
2

2

Use the convolution theorem to justify the preceding expression.

2.20	 Obtain the convolution of the two sequences {1, 1, 1} and {1, 2, 3}.
(a)	 Directly
(b)	 Using z-transformation

2.21	 Obtain the modified z-transforms for the functions of Problems (2.6) and
(2.7).

2.22	 Using the modified z-transform, examine the intersample behavior of the
functions h(k) of Problem 2.15. Use delays of (1) 0.3T, (2) 0.5T, and (3) 0.8T.
Attempt to obtain the modified z-transform for Problem 2.16 and explain why it is
not defined.

2.23	 The following open-loop systems are to be digitally feedback-controlled. Select
a suitable sampling period for each if the closed-loop system is to be designed
for the given specifications.

(a)	 G s
s

ol() =
+
1

3
 Time constant = 0.1 s

(b)	 G s
s s

ol() =
+ +

1

4 32
 Undamped natural frequency = 5 rad/s, damping

ratio = 0.7

2.24	 Repeat problem 2.23 if the systems have the following sensor delays.
(a)	 0.025 s
(b)	 0.03 s

Computer Exercises

2.25	 Consider the closed-loop system of Problem 2.23(a).
(a)	 Find the impulse response of the closed-loop transfer function, and

obtain the impulse response sequence for a sampled system output.

Computer Exercises   53

54    CHAPTER 2  Discrete-Time Systems

(b)	 Obtain the z-transfer function by z-transforming the impulse response
sequence.

(c)	 Using MATLAB, obtain the frequency response plots for sampling
frequencies ws = kwb, k = 5, 35, 70.

(d)	 Comment on the choices of sampling periods of part (b).

2.26	 Repeat Problem 2.25 for the second-order closed-loop system of Problem
2.23(b) with plots for sampling frequencies ws = kwd, k = 5, 35, 70.

2.27	 Use MATLAB with a sampling period of 1 s and a delay of 0.5 s to verify the
results of Problem 2.17 for w = 5 rad/s and a = 2 s−1.

2.28	 The following difference equation describes the evolution of the expected
price of a commodity5

	 p k p k p ke e+() = −() () + ()1 1 γ γ

where pe(k) is the expected price after k quarters, p(k) is the actual price after
k quarters, and g is a constant.
(a)	 Simulate the system with g = 0.5 and a fixed actual price of one unit, and

plot the actual and expected prices. Discuss the accuracy of the model
prediction.

(b)	 Repeat part (a) for an exponentially decaying price p(k) = (0.4)k.
(c)	 Discuss the predictions of the model referring to your simulation results.

5D. N. Gujarate, Basic Econometrics. McGraw-Hill, p. 547, 1988.

Chapter

3Modeling of Digital
Control Systems

Objectives
After completing this chapter, the reader will be able to do the following:

1.	 Obtain the transfer function of an analog system with analog-to-digital and
digital-to-analog converters including systems with a time delay.

2.	 Find the closed-loop transfer function for a digital control system.
3.	 Find the steady-state tracking error for a closed-loop control system.
4.	 Find the steady-state error caused by a disturbance input for a closed-loop

control system.

As in the case of analog control, mathematical models are needed for the analysis
and design of digital control systems. A common configuration for digital control
systems is shown in Figure 3.1. The configuration includes a digital-to-analog con-
verter (DAC), an analog subsystem, and an analog-to-digital converter (ADC). The
DAC converts numbers calculated by a microprocessor or computer into analog
electrical signals that can be amplified and used to control an analog plant. The
analog subsystem includes the plant as well as the amplifiers and actuators neces-
sary to drive it. The output of the plant is periodically measured and converted
to a number that can be fed back to the computer using an ADC. In this chapter,
we develop models for the various components of this digital control configura-
tion. Many other configurations that include the same components can be similarly
analyzed. We begin by developing models for the ADC and DAC, then for the
combination of DAC, analog subsystem, and ADC.

3.1  ADC Model
Assume that

■	 ADC outputs are exactly equal in magnitude to their inputs (i.e., quantiza-
tion errors are negligible).

56    CHAPTER 3  Modeling of Digital Control Systems

3.2  DAC Model
Assume that

■	 DAC outputs are exactly equal in magnitude to their inputs.
■	 The DAC yields an analog output instantaneously.
■	 DAC outputs are constant over each sampling period.

Then the input-output relationship of the DAC is given by

	 u k u t u k kT t k T kZOH(){ }  → () = () ≤ < +() =, , , , , . . .1 0 1 2 	 (3.1)

Figure 3.1

Common digital control system configuration.

Analog
Output Computer or

Microprocessor

External
Input Analog

Subsystem

ADC

DAC

Figure 3.2

Ideal sampler model of an ADC.

T

■	 The ADC yields a digital output instantaneously.
■	 Sampling is perfectly uniform (i.e., occurs at a fixed rate).

Then the ADC can be modeled as an ideal sampler with sampling period T as
shown in Figure 3.2.

Clearly, the preceding assumptions are idealizations that can only be approxi-
mately true in practice. Quantization errors are typically small but nonzero; varia-
tions in sampling rate occur but are negligible, and physical ADCs have a finite
conversion time. Nevertheless, the ideal sampler model is acceptable for most
engineering applications.

where {u(k)} is the input sequence. This equation describes a zero-order hold
(ZOH), shown in Figure 3.3. Other functions may also be used to construct an
analog signal from a sequence of numbers. For example, a first-order hold con-
structs analog signals in terms of straight lines, whereas a second-order hold
constructs them in terms of parabolas.

In practice, the DAC requires a short but nonzero interval to yield an output;
its output is not exactly equal in magnitude to its input and may vary slightly over
a sampling period. But the model of (3.1) is sufficiently accurate for most engineer-
ing applications. The zero-order hold is the most commonly used DAC model and
is adopted in most digital control texts. Analyses involving other hold circuits are
similar, as seen from Problem 3.1.

3.3  The Transfer Function of the ZOH
To obtain the transfer function of the ZOH, we replace the number or discrete
impulse shown in Figure 3.3 by an impulse d(t). The transfer function can then
be obtained by Laplace transformation of the impulse response. As shown in the
figure, the impulse response is a unit pulse of width T. A pulse can be represented
as a positive step at time zero followed by a negative step at time T. Using
the Laplace transform of a unit step and the time delay theorem for Laplace
transforms,

	
L

L

1

1

t
s

t T
e

s

sT

(){ } =

−(){ } =
−

1 	

(3.2)

where 1(t) denotes a unit step.

Figure 3.3

Model of a DAC as a zero-order hold.

kTkT (k+1)T Zero-Order
Hold

Positive Step

Negative Step

3.3  The Transfer Function of the ZOH   57

58    CHAPTER 3  Modeling of Digital Control Systems

Thus, the transfer function of the ZOH is

	 G s
e

s
ZOH

sT

() =
− −1 	 (3.3)

Next, we consider the frequency response of the ZOH:

	 G j
e

j
ZOH

j T

ω
ω

ω

() =
− −1

	 (3.4)

We rewrite the frequency response in the form

	
G j

e e e

j

e T

ZOH

j
T

j
T

j
T

j
T

ω
ω

ω
ω

ω ω ω

ω

() =
−











= 








− −

−

2 2 2

2

2
2

sin 
 =

()−
Te

T

T

j
Tω

ω

ω
2 2

2

sin

We now have

	 G j G j T
T T

ZOH ZOHω ω ω ω() ∠ () = 



 ∠ −sinc

2 2
	 (3.5)

The angle of frequency response of the ZOH hold is seen to decrease linearly with
frequency, whereas the magnitude is proportional to the sinc function. As shown
in Figure 3.4, the magnitude is oscillatory with its peak magnitude equal to the
sampling period and occurring at the zero frequency.

3.4  Effect of the Sampler on the Transfer  
Function of a Cascade

In a discrete-time system including several analog subsystems in cascade and
several samplers, the location of the sampler plays an important role in determin-
ing the overall transfer function. Assuming that interconnection does not change
the mathematical models of the subsystems, the Laplace transform of the output
of the system of Figure 3.5 is given by

	
Y s H s X s

H s H s U s

() = () ()
= () () ()

2

2 1

	 (3.6)

Inverse Laplace transforming gives the time response

	
y t h t x d

h t h u d d

t

t

() = −() ()

= −() −() ()





∫
∫ ∫

2
0

2
0

1
0

τ τ τ

τ τ λ λ λ τ
τ 	 (3.7)

Changing the order and variables of integration, we obtain

	
y t u t h h d d

u t h d

t

eq

t

() = −() −() ()





= −() ()

∫ ∫
∫

τ τ λ λ λ τ

τ τ τ

τ

0
1 2

0

0

	 (3.8)

where h t h t h deq

t
() = −() ()∫ 1 2

0
τ λ τ .

Thus, the equivalent impulse response for the cascade is given by the convolu-
tion of the cascaded impulse responses. The same conclusion can be reached by

Figure 3.4

Magnitude of the frequency response of the zero-order hold with T = 1 s.

–30 –20 –10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.5

Cascade of two analog systems.

U(s) X(s) Y(s)
H1(s) H2(s)

3.4  Effect of the Sampler on the Transfer Function of a Cascade   59

60    CHAPTER 3  Modeling of Digital Control Systems

inverse-transforming the product of the s-domain transfer functions. The time
domain expression shows more clearly that cascading results in a new form for
the impulse response. So if the output of the system is sampled to obtain

	 y iT u iT h d ieq
o

iT
() = −() () =∫ τ τ τ, , , . . .1 2 	 (3.9)

it is not possible to separate the three time functions that are convolved to
produce it.

By contrast, convolving an impulse-sampled function u*(t) with a continuous-
time signal as shown in Figure 3.6 results in repetitions of the continuous-time
function each of which is displaced to the location of an impulse in the train.
Unlike the earlier situation, the resultant time function is not entirely new and
there is hope of separating the functions that produced it. For a linear time-
invariant (LTI) system with impulse-sampled input, the output is given by

	

y t h t u d

h t u kT kT d

t

k

t

() = −() ()

= −() () −()





∫

∑∫
=

∞

τ τ τ

τ δ τ τ

0

0
0

	 (3.10)

Changing the order of summation and integration gives

	 y t u kT h t kT d

u kT h t kT

k

t

k

() = () −() −()

= () −()

=

∞

=

∞

∑ ∫

∑
0

0

0

τ δ τ τ 	

(3.11)

Sampling the output yields the convolution summation

	 y iT u kT h iT kT i
k

() = () −() =
=

∞

∑ , , , , , . . .0 1 2 3
0

	 (3.12)

As discussed earlier, the convolution summation has the z-transform

	 Y z H z U z() = () () 	 (3.13)

or in s-domain notation

	 Y s H s U s* * *() = () () 	 (3.14)

Figure 3.6

Analog system with sampled input.

U(s) Y(s)U*(s)

T
H(s)

If a single block is an equivalent transfer function for the cascade of Figure 3.5,
then its components cannot be separated after sampling. However, if the cascade
is separated by samplers, then each block has a sampled output and input as well
as a z-domain transfer function. For n blocks not separated by samplers, we use
the notation

	
Y z H z U z

H H H z U zn

() = () ()
= ()() ()1 2 . . .

	 (3.15)

as opposed to n blocks separated by samplers where

	
Y z H z U z

H z H z H z U zn

() = () ()
= () () () ()1 2 . . .

	 (3.16)

Example 3.1

Find the equivalent sampled impulse response sequence and the equivalent z-transfer
function for the cascade of the two analog systems with sampled input

	
H s

s
H s

s
1 2

1

2

2

4
() =

+
() =

+
1.	 If the systems are directly connected.
2.	 If the systems are separated by a sampler.

Solution
1.	 In the absence of samplers between the systems, the overall transfer function is

	
H s

s s

s s

() =
+() +()

=
+

−
+

2

2 4

1

2

1

4

The impulse response of the cascade is

	 h t e et t() = −− −2 4

and the sampled impulse response is

	 h kT e e kkT kT() = − =− −2 4 0 1 2, , , , . . .

Thus, the z-domain transfer function is

	
H z

z

z e

z

z e

e e z

z e z eT T

T T

T T
() =

−
−

−
=

−()
−() −()− −

− −

− −2 4

2 4

2 4

2.	 If the analog systems are separated by a sampler, then each has a z-domain transfer
function and the transfer functions are given by

	
H z

z

z e
H z

z

z eT T1 2 2 4

2() =
−

() =
−− −

3.4  Effect of the Sampler on the Transfer Function of a Cascade   61

62    CHAPTER 3  Modeling of Digital Control Systems

The overall transfer function for the cascade is

	
H z

z

z e z eT T
() =

−() −()− −

2 2

2 4

The partial fraction expansion of the transfer function is

	
H z

e e

e z

z e

e z

z eT T

T

T

T

T
() =

− −
−

−




− −

−

−

−

−

2
2 4

2

2

4

4

Inverse z-transforming gives the impulse response sequence

	
h kT

e e
e e e e

e e
e

T T
T kT T kT

T T
k T

() =
−

−[]

=
−

−

− −
− − − −

− −
− +

2

2

2 4
2 2 4 4

2 4
2 1() ee kk T− +[] =4 1 0 1 2() , , , , . . .

Example 3.1 clearly shows the effect of placing a sampler between analog
blocks on the impulse responses and the corresponding z-domain transfer
function.

3.5	DAC, Analog Subsystem, and ADC Combination
Transfer Function

The cascade of a DAC, analog subsystem, and ADC, shown in Figure 3.7, appears
frequently in digital control systems (see Figure 3.1, for example). Because both
the input and the output of the cascade are sampled, it is possible to obtain its
z-domain transfer function in terms of the transfer functions of the individual
subsystems. The transfer function is derived using the discussion of cascades given
in Section 3.4.

Figure 3.7

Cascade of a DAC, analog subsystem, and ADC.

T
kTkT (k+1)TZero-Order

Hold
Analog

Subsystem

kT (k+1)T
Negative step at (k+1)T

Positive step at kT

3.5  DAC, Analog Subsystem, and ADC Combination   63

Using the DAC model of Section 3.3, and assuming that the transfer function
of the analog subsystem is G(s), the transfer function of the DAC and analog sub-
system cascade is

	

G s G s G s

e
G s

s

ZA ZOH

sT

() = () ()

= −() ()−1 	 (3.17)

The corresponding impulse response is

	

g t g t g t

g t g t T

g t
G s

s

ZA ZOH

s s

s

() = ()∗ ()
= () − −()

() (){ }−= L 1

	 (3.18)

The impulse response of (3.18) is the analog system step response minus a
second step response delayed by one sampling period. This response is shown in
Figure 3.8 for a second-order underdamped analog subsystem. The analog response
of (3.18) is sampled to give the sampled impulse response

	 g kT g kT g kT TZA s s() = () − −() 	 (3.19)

By z-transforming, we obtain the z-transfer function of the DAC (zero-order hold),
analog subsystem, and ADC (ideal sampler) cascade

Figure 3.8

Impulse response of a DAC and analog subsystem. (a) Response of an analog system to step
inputs. (b) Response of an analog system to a unit pulse input.

0 4 8

0.0

1.5

Time s
10

0.5

1.0
Positive Step

Delayed Negative
Step

−0.5

−1.0

−1.5
2 6

(a) (b)

0 2 4 6 8 10
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Time s

64    CHAPTER 3  Modeling of Digital Control Systems

	

G z z g t

z
G s

s

ZAS S() = −() (){ }
= −() ()



{ }

−

− −

1

1

1

1 1

Z

Z L

*

*
	 (3.20)

The cumbersome notation in (3.20) is to emphasize that sampling of a time
function is necessary before z-transformation. Having made this point, the equa-
tion can be rewritten more concisely as

	 G z z
G s

s
ZAS () = −() (){ }−1 1 Z 	 (3.21)

Example 3.2

Find GZAS(z) for the cruise control system for the vehicle shown in Figure 3.9, where u is
the input force, v is the velocity of the car, and b is the viscous friction coefficient.

Solution
We first draw a schematic to represent the cruise control system as shown in Figure 3.10.
Using Newton’s law, we obtain the following model:

	 Mv t bv t u t () + () = ()

which corresponds to the following transfer function:

	
G s

V s

U s Ms b
() =

()
()

=
+

1

Figure 3.9

Automotive vehicle.

Figure 3.10

Schematic representation of a cruise control system for an automotive vehicle.

ubv
M

3.5  DAC, Analog Subsystem, and ADC Combination   65

We rewrite the transfer function in the form

	
G s

K

s

K

s
() =

+
=

+τ
τ
τ1 1

where K = 1/b and τ = M/b. The corresponding partial fraction expansion is

	 G s

s

K A

s

A

s

()
= 



 +

+




τ τ

1 2

1

where

	
A

s s
A

s s
1 2

1

1

1 0

1
=

+ =
= = = −

=−τ
τ τ

τ

Using (3.21) and the z-transform table (see Appendix I), the desired z-domain transfer
function is

	
G z z

K

s s

K
z

z e

ZAS

T

() = −() 



 −

+














= +
−

−



−

−

1
1

1
1

1 Z
τ

τ τ
τ

τ



We simplify to obtain the transfer function

	
G z K

z e

z e
ZAS

T

T
() =

− +()
−







−

−

2 1 τ

τ

Example 3.3

Find GZAS(z) for the vehicle position control system shown in Figure 3.10, where u is the
input force, y is the position of the car, and b is the viscous friction coefficient.

Solution
As with the previous example, we obtain the following equation of motion:

	 My t by t u t () + () = ()

and the corresponding transfer function

	
G s

Y s

U s s Ms b
() =

()
()

=
+()

1

We rewrite the transfer function in terms of the system time constant

	
G s

K

s s

K

s s
() =

+()
=

+()τ
τ

τ1 1

66    CHAPTER 3  Modeling of Digital Control Systems

where K = 1/b and τ = M/b. The corresponding partial fraction expansion is

	 G s

s

K A

s

A

s

A

s

()
= 



 + +

+




τ τ

11

2

12 2

1

where

	 A
s

A
d

ds sS S

11

0

12

0

21

1

1

1
=

+
= =

+






= −
= =τ

τ
τ

τ

	
A

s s
2 2

1

21
= =

=− τ
τ

Using (3.21), the desired z-domain transfer function is

	
G z z K

s s s

K
z

z

z

ZAS () = −() − +
+















=
−

− + −()
−

−1
1

1

1

1

1
2

Z
1 τ τ

τ

τ τ
ee T−





τ

which can be simplified to

	
G K

e z e

z z e
ZAS

T T

T
z() =

− +() + − +()[]
−() −()







− −

−

1 1

1

τ τ τ ττ τ

τ

Example 3.4

Find GZAS(z) for the series R-L circuit shown in Figure 3.11 with the inductor voltage as
output.

Solution
Using the voltage divider rule gives

	 V

V

Ls

R Ls

L R s

L R s

s

s

L

R
o

in

=
+

=
()
+ ()

=
+

=
1 1

τ
τ

τ

Figure 3.11

Series R-L circuit.

L

R

Vin Vo

3.5  DAC, Analog Subsystem, and ADC Combination   67

Hence, using (3.21), we obtain

	

G z z
s

z

z

z

z e

z

z e

ZAS

TT

() = −()
+









= − ×
−

= −
−

−

− −

1
1

1 1

1 Z
1

τ

τ τ

Example 3.5

Find the z-domain transfer function of the furnace sketched in Figure 3.12, where the inside
temperature Ti is the controlled variable, Tw is the wall temperature, and To is the outside
temperature. Assume perfect insulation so that there is no heat transfer between the
wall and the environment. Assume also that heating is provided by a resistor and that the
control variable u has the dimension of temperature with the inclusion of an amplifier with
gain K.

Figure 3.12

Schematic of a furnace.

u
Ti

Tw

To

Solution
The system can be modeled by means of the following differential equations:

	





T t g Ku t T t g T t T t

T t g T t T

w rw w iw i w

i iw w i

() = () − ()() + () − ()()

() = () − tt()()

where grw and giw are the heat transfer coefficients. By applying the Laplace transform and
after some trivial calculations, we obtain the following transfer function

	
G s

T s

U s

Kg g

s g g s g g
i rw iw

iw rw rw iw

() =
()
()

=
+ +() +2 2

68    CHAPTER 3  Modeling of Digital Control Systems

Note that the two poles are real and therefore the transfer function can be rewritten as

	 G s
Y s

U s

K

s p s p
() =

()
()

=
+() +()1 2

	 (3.22)

with appropriate values of p1 and p2. The corresponding partial fraction expansion is

	

G s

s
K

A

s

A

s p

A

s p

()
= +

+
+

+






1 2

1

3

2

where

	
A

s p s p p ps

1
1 2 0 1 2

1 1
=

+() +()
=

=

	

A
s s p p p ps p

2
2 1 2 1

1 1

1

=
+()

= −
−()=−

	

A
s s p p p ps p

3
1 2 2 1

1 1

2

=
+()

=
−()=−

Using (3.21), the desired z-domain transfer function is

G z z K
p p s

p p

p p s p p p s p p
ZAS () = −() −

+
+

−() +()
−−1

1 1 11

1 2
2

1 2

1
2

2
2

1
2

2 1 1

Z
22
2

2 1

2

1 2

11

1

p p
s p

K
p p z

p

−()
+()





































=
−()

−
+ pp

p p p p p
z z e

p p p
z z ep T p

2

1
2

2
2

1
2

2 1 2
2

2 1

1

1

1

11 2

+
−()

−() −()

−
−()

−() −− − TT()



















which can be rewritten as

	

G K

p e p e p p z
p e p e p e

ZAS

p T p T
p T p T p p

z() =
− + −() + − +− −

− − − +

1 2 2 1
1 2 22 1

1 2 1 22

1 2

1 2

1

1 2 2 1

()

− +()

− −

−






−() −() −()










T

p p T

p T p T

p e

p p p p z e z e








Example 3.6

Find the z-domain transfer function of an armature-controlled DC motor.

Solution
The system can be modeled by means of the following differential equations:

3.5  DAC, Analog Subsystem, and ADC Combination   69

	

J t b t K i t

L
di t

dt
Ri t u t K t

y t t

t

e

 



θ θ

θ

θ

() + () = ()

()
+ () = () − ()

() = ()
where θ is the position of the shaft (i.e., the output y of the system), i is the armature current,
u is the source voltage (i.e., the input of the system), J is the moment of inertia of the motor,
b is the viscous friction coefficient, Kt is the armature constant, Ke torque is the motor
constant, R torque is the electric resistance, and L is the electric inductance. By applying the
Laplace transform and after some trivial calculations, we obtain the following transfer function:

	
G s

Y s

U s

K

s Js b Ls R K K
t

t e

() =
()
()

=
+() +() +[]

which can be rewritten as

	
G s

Y s

U s

K

s s p s p
() =

()
()

=
+() +()1 2

with appropriate values of K, p1, and p2. The corresponding partial fraction expansion is

	

G s

s
K

A

s

A

s

A

s p

A

s p

()
= + +

+
+

+






11

2

12 2

1

3

2

where

	
A

s p s p p ps

11
1 2 0 1 2

1 1
=

+() +()
=

=

	
A

d

ds s p s p

p p

p ps

12
1 2 0

1 2

1
2

2
2

1
=

+() +()






= −
+

=

	
A

s s p p p ps p

2 2
2 1

2
2 1

1 1

1

=
+()

=
−()=−

	
A

s s p p p ps p

3 2
1 2

2
2 1

1 1

2

=
+()

= −
−()=−

Using (3.21), the desired z-domain transfer function is

G z z K
p p s

p p

p p s p p p s p p
ZAS () = −() −

+
+

−() +()
−−1

1 1 11

1 2
2

1 2

1
2

2
2

1
2

2 1 1

Z
22
2

2 1

2

1 2

11

1

p p
s p

K
p p z

p

−()
+()





































=
−()

−
+ pp

p p p p p
z z e

p p p
z z ep T p

2

1
2

2
2

1
2

2 1 2
2

2 1

1

1

1

11 2

+
−()

−() −()

−
−()

−() −− − TT()



















70    CHAPTER 3  Modeling of Digital Control Systems

Note that if the velocity of the motor is considered as output (i.e., y t t() = ()θ), we have
the transfer function

	
G s

Y s

U s

K

Js b Ls R K K
t

t e

() =
()
()

=
+() +() +

and the calculations of Example 3.5 can be repeated to obtain the z-domain transfer func-
tion (see (3.22)).

In the preceding examples, we observe that if the analog system has a pole at
pS, then GZAS(z) has a pole at p ez

p Ts= . The division by s in (3.21) results in a pole
at z = 1 that cancels, leaving the same poles as those obtained when sampling and
z-transforming the impulse response of the analog subsystem. However, the zeros
of the transfer function are different in the presence of a DAC.

3.6  Systems with Transport Lag
Many physical system models include a transport lag or delay in their transfer
functions. These include chemical processes, automotive engines, sensors, digital
systems, and so on. In this section, we obtain the z-transfer function GZAS(z) of
(3.21) for a system with transport delay.

The transfer function for systems with a transport delay is of the form

	 G s G s ea
T sd() = () − 	 (3.23)

where Td is the transport delay. As in Section 2.7, the transport delay can be
rewritten as

	 T lT mT md = − ≤ <, 0 1 	 (3.24)

where m is a positive integer. For example, a time delay of 3.1 s with a sampling
period T of 1s corresponds to l = 4 and m = 0.9. A delay by an integer multiple
of the sampling period does not affect the form of the impulse response of the
system. Therefore, using the delay theorem and (3.20), the z-transfer function for
the system of (3.23) can be rewritten as

	

G z z
G s e

s

z z

ZAS
a

T l m s

l

() = −() ()



{ }

= −()

− −
− −()

− − −

1

1

1 1

1 1

Z L

Z L

*

GG s e

s
a

mTs()



{ }*

	 (3.25)

From (3.25), we observe that the inverse Laplace transform of the function

	 G s
G s

s
s

a() =
()

	 (3.26)

is sampled and z-transformed to obtain the desired z-transfer function. We rewrite
(3.26) in terms of Gs(s) as

	 G z z z G s eZAS
l

s
mTs() = −() ()[]{ }− − −1 1 1Z L * 	 (3.27)

Using the time advance theorem of Laplace transforms gives

	 G z z z g t mTZAS
l

s() = −() +(){ }− −1 1 Z * 	 (3.28)

where the impulse-sampled waveform must be used to allow Laplace transforma-
tion. The remainder of the derivation does not require impulse sampling, and we
can replace the impulse-sampled waveform with the corresponding sequence

	 G z z z g kT mTZAS
l

s() = −() +(){ }− −1 1 Z 	 (3.29)

The preceding result hinges on our ability to obtain the effect of a time advance
mT on a sampled waveform. In Section 2.7, we discussed the z-transform of a
signal delayed by T and advanced by mT, which is known as the modified z-transform.
To express (3.29) in terms of the modified z-transform, we divide the time delay
lT into a delay (l − 1)T and a delay T and rewrite the transfer function as

	 G z z z z g kT mTZAS
l

s() = −() +(){ }− −() − −1 1 11 Z 	 (3.30)

Finally, we express the z-transfer function in terms of the modified z-transform

	 G z
z

z
g kTZAS l m s() =

−



 (){ }1

Z 	 (3.31)

We recall two important modified transforms that are given in Section 2.7:

	 Zm kT
z

1
1

1
(){ } =

−
	 (3.32)

	 Zm
pkT

mpT

pT
e

e

z e
−

−

−{ } =
−

	 (3.33)

Returning to our earlier numerical example, a delay of 3.1 sampling periods gives
a delay of 3 sampling periods and the corresponding z−3 term and the modified
z-transform of g(kT) with m = 0.9.

Example 3.7

If the sampling period is 0.1 s, determine the z-transfer function GZAS(z) for the system

	
G s

e

s

s

() =
+

−3

3

0 31.

Solution
First write the delay in terms of the sampling period as 0.31 = 3.1 × 0.1 = (4 − 0.9) × 0.1.
Thus, l − 1 = 3 and m = 0.9. Next, obtain the partial fraction expansion

3.6  Systems with Transport Lag   71

72    CHAPTER 3  Modeling of Digital Control Systems

	
G s

s s s s
s () =

+()
= −

+
3

3

1 1

3

This is the transform of the continuous-time function shown in Figure 3.13, which must
be sampled, shifted, and z-transformed to obtain the desired transfer function. Using the
modified z-transforms obtained in Section 2.7, the desired transfer function is

	

G z
z

z z

e

z e

z
z z

ZAS () =
−



 −

−
−{ }

=
− −

− ×

−

−

1 1

1

0 741 0 763

4

0 3 0 9

0 3

4

. .

.

. . −−()
−{ } =

+
−()

1

0 741

0 237 0 022

0 7414z

z

z z.

. .

.

Figure 3.13

Continuous time function gs(t).

Time s

gs(t)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3.7  The Closed-Loop Transfer Function
Using the results of Section 3.5, the digital control system of Figure 3.1 yields the
closed-loop block diagram of Figure 3.14. The block diagram includes a compara-
tor, a digital controller with transfer function C(z), and the ADC-analog subsystem-
DAC transfer function GZAS(z). The controller and comparator are actually computer
programs and replace the computer block in Figure 3.1. The block diagram is
identical to those commonly encountered in s-domain analysis of analog systems

with the variable s replaced by z. Hence, the closed-loop transfer function for the
system is given by

	 G z
C z G z

C z G z
cl

ZAS

ZAS

() =
() ()

+ () ()1
	 (3.34)

and the closed-loop characteristic equation is

	 1 0+ () () =C z G zZAS 	 (3.35)

The roots of the equation are the closed-loop system poles, which can be selected
for desired time response specifications as in s-domain design. Before we discuss
this in some detail, we first examine alternative system configurations and their
transfer functions.

When deriving closed-loop transfer functions of other configurations, the
results of Section 3.4 must be considered carefully, as seen from the following
example.

Example 3.8

Find the Laplace transform of the analog and sampled output for the block diagram of
Figure 3.15.

Solution
The analog variable x(t) has the Laplace transform

	 X s H s G s D s E s() = () () () ()

which involves three multiplications in the s-domain. In the time domain, x(t) is obtained
after three convolutions.

From the block diagram

	 E s R s X s() = () − ()*

Substituting in the X(s) expression, sampling then gives

	 X s H s G s D s R s X s() = () () () () − ()[]*

Figure 3.14

Block diagram of a single-loop digital control system.

C(z) GZAS(z)
Y(z)E(z)R(z) +

–

U(z)

3.7  The Closed-Loop Transfer Function   73

74    CHAPTER 3  Modeling of Digital Control Systems

Thus, the impulse-sampled variable x*(t) has the Laplace transform

	 X s HGDR s HGD s X s* * * *() = () () − () () ()

where, as in the first part of Example 3.1, several components are no longer separable.
These terms are obtained as shown in Example 3.1 by inverse Laplace transforming, impulse
sampling, and then Laplace transforming the impulse-sampled waveform.

Next, we solve for X*(s)

	
X s

HGDR s

HGD s
*

*

*
() =

() ()
+ () ()1

and then E(s)

	
E s R s

HGDR s

HGD s
() = () −

() ()
+ () ()

*

*1

With some experience, the last two expressions can be obtained from the block diagram directly.
The combined terms are clearly the ones not separated by samplers in the block diagram.

From the block diagram the Laplace transform of the output is Y(s) = G(s)D(s)E(s).
Substituting for E(s) gives

	
Y s G s D s R s

HGDR s

HGD s
() = () () () −

() ()
+ () ()







*

*1

Thus, the sampled output is

	
Y s GDR s GD s

HGDR s

HGD s
* * *

*() = () () − () () () ()
+ () ()1 *

With the transformation z = est, we can rewrite the sampled output as

	
Y z GDR z GD z

HGDR z

HGD z
() = ()() − ()() ()()

+ ()()1

Figure 3.15

Block diagram of a system with sampling in the feedback path.

E(s)R(s) +

–

U(s)

X(s)X *(s)

Y(s)

H(s)

T

T

Y *(s)

G(s)D(s)

The last equation demonstrates how for some digital systems, no expression
is available for the transfer function excluding the input. Nevertheless, the preced-
ing system has a closed-loop characteristic equation similar to (3.35) given by
1 + (HGD)(z) = 0.

This equation can be used in design as in cases where a closed-loop transfer
function is defined.

3.8  Analog Disturbances in a Digital System
Disturbances are variables that are not included in the system model but affect
its response. They can be deterministic, such as load torque in a position control
system, or stochastic, such as sensor or actuator noise. However, almost all dis-
turbances are analog and are inputs to the analog subsystem in a digital control
loop. We use the results of Section 3.7 to obtain a transfer function with a distur-
bance input.

Consider the system with disturbance input shown in Figure 3.16. Because the
system is linear, the reference input can be treated separately and is assumed to
be zero.

The Laplace transform of the impulse-sampled output is

	 Y s GG D s GG s C s Y sd ZOH* * * * *() = () () − () () () () 	 (3.36)

Solving for Y *(s), we obtain

	 Y s
GG D s

GG s C s
d

ZOH

*
*

* *
() =

() ()
+ () () ()1

	 (3.37)

The denominator involves the transfer function for the zero-order hold, analog
subsystem, and sampler. We can therefore rewrite (3.37) using the notation of
(3.21) as

	 Y s
GG D s

G s C s
d

ZAS

*
*

* *
() =

() ()
+ () () ()1

	 (3.38)

Figure 3.16

Block diagram of a digital system with an analog disturbance.

TT

D(s)

+

+
−

Y *(s)

Gd(s)

G(s)GZOH(s)C*(s)

3.8  Analog Disturbances in a Digital System   75

76    CHAPTER 3  Modeling of Digital Control Systems

or in terms of z as

	 Y z
GG D z

G z C z
d

ZAS

() =
()()

+ () ()1
	 (3.39)

Example 3.9

Consider the block diagram of Figure 3.16 with the transfer functions

	
G s

K

s
G s

s
C z K

p
d c() =

+
() = () =

1

1
, ,

Find the steady-state response of the system to an impulse disturbance of strength A.

Solution
We first evaluate

	
G s G s D s

K A

s s
K A

s s
d

p
p() () () =

+()
= −

+




1

1 1

1

The z-transform of the corresponding impulse response sequence is

	
GG D z K A

z

z

z

z e
d p T

()() =
−

−
−





−1

Using (3.21), we obtain the transfer function

	
G z K

e

z e
ZAS p

T

T
() =

−
−

−

−

1

From (3.38), we obtain the sampled output

	

Y z
K A

z

z

z

z e

K K
e

z e

p T

c p

T

T

() = −
−

−






+ −
−







−

−

−

1

1
1

To obtain the steady-state response, we use the final value theorem

	

y z Y z

K A

K K

z

p

c p

∞() = −() ()

=
+

=1

1

1

Thus, as with analog systems, increasing the controller gain reduces the error due to the
disturbance. Equivalently, an analog amplifier before the point of disturbance injection can
increase the gain and reduce the output due to the disturbance and is less likely to saturate
the DAC. Note that it is simpler to apply the final value theorem without simplification
because terms not involving (z − 1) drop out.

3.9  Steady-State Error and Error Constants
In this section, we consider the unity feedback block diagram shown in Figure
3.14 subject to standard inputs and determine the associated tracking error in
each case. The standard inputs considered are the sampled step, the sampled
ramp, and the sampled parabolic. As with analog systems, an error constant is
associated with each input, and a type number can be defined for any system from
which the nature of the error constant can be inferred. All results are obtained by
direct application of the final value theorem.

From Figure 3.13, the tracking error is given by

	
E z

R z

G z C z

R z

L z

ZAS

() =
()

+ () ()

=
()

+ ()

1

1

	 (3.40)

where L(z) denotes the loop gain of the system.
Applying the final value theorem yields the steady-state error

	

e z E z

z R z

z L z

z

z

∞() = −() ()

=
−() ()

+ ()()

−
=

=

1

1

1

1
1

1

	 (3.41)

The limit exists if all (z − 1) terms in the denominator cancel. This depends on
the reference input as well as on the loop gain.

To examine the effect of the loop gain on the limit, rewrite it in the
form

	 L z
N z

z D z
n

n
() =

()
−() ()

≥
1

0, 	 (3.42)

where N(z) and D(z) are numerator and denominator polynomials, respectively,
with no unity roots. The following definition plays an important role in determin-
ing the steady-state error of unity feedback systems.

Definition 3.1:  Type Number.  The type number of the system is the number of unity
poles in the system z-transfer function.	� ■

The loop gain of (3.42) has n poles at unity and is therefore type n. These
poles play the same role as poles at the origin for an s-domain transfer function
in determining the steady-state response of the system. Note that s-domain poles
at zero play the same role as z-domain poles at e0.

Substituting from (3.42) in the error expression (3.41) gives

3.9  Steady-State Error and Error Constants   77

78    CHAPTER 3  Modeling of Digital Control Systems

	

e
z D z R z

z N z z D z

z D R z

n

n

z

n

∞() =
−() () ()
() + −() ()()

=
−() () (

+

=
+

1

1

1 1

1

1

1))
() + −() () =N z Dn

z1 1 1 1

	 (3.43)

Next, we examine the effect of the reference input on the steady-state error.

3.9.1  Sampled Step Input

The z-transform of a sampled unit step input is

	
R z

z

z
() =

−1

Substituting in (3.41) gives the steady-state error

	 e
L z z

∞() =
+ () =

1

1 1

	 (3.44)

The steady-state error can also be written as

	 e
Kp

∞() =
+
1

1
	 (3.45)

where Kp is the position error constant given by

	 K Lp = ()1 	 (3.46)

Examining (3.42) shows that Kp is finite for type 0 systems and infinite for
systems of type 1 or higher. Therefore, the steady-state error for a sampled unit
step input is

	 e L
n

n

∞() = + ()
=

≥







1

1 1
0

0 1

,

,

	 (3.47)

3.9.2  Sampled Ramp Input

The z-transform of a sampled unit ramp input is

	
R z

Tz

z
() =

−()1 2

Substituting in (3.41) gives the steady-state error

	

e
T

z L z

K

z

v

∞() =
−[] + ()[]

=

=1 1

1
1 	 (3.48)

where Kv is the velocity error constant. The velocity error constant is thus given
by

	 K
T

z L zv
z

= −() ()
=

1
1

1

	 (3.49)

From (3.49), the velocity error constant is zero for type 0 systems, finite for
type 1 systems and infinite for type 2 or higher systems. The corresponding steady-
state error is

	 e

n

T

z L z
n

n
z

∞() =

∞ =

−() ()
=

≥










=

,

,

0

1
1

0 2
1

	 (3.50)

Similarly, it can be shown that for a sampled parabolic input, an acceleration
error constant given by

	 K
T

z L za
z

= −() ()
=

1
1

2

2

1

	 (3.51)

can be defined, and the associated steady-state error is

	 e

n

T

z L z
n

n
z

∞() =

∞ ≤

−() ()
=

≥











=

,

,

,

1

1
2

0 3

2

2

1

	 (3.52)

Example 3.10

Find the steady-state position error for the digital position control system with unity feedback
and with the transfer functions

	
G z

K z a

z z b
C z

K z b

z c
a b cZAS

c() =
+()

−() −()
() =

−()
−

< <
1

0 1, , , ,

1.	 For a sampled unit step input.
2.	 For a sampled unit ramp input.

Solution
The loop gain of the system is given by

	
L z C z G z

KK z a

z z c
ZAS

c() = () () =
+()

−() −()1

The system is type 1. Therefore, it has zero steady-state error for a sampled step input and
a finite steady-state error for a sampled ramp input given by

3.9  Steady-State Error and Error Constants   79

80    CHAPTER 3  Modeling of Digital Control Systems

	
e

T

z L z

T

KK

c

az c

∞() =
−() ()

=
−
+







=1

1

11

Clearly, the steady-state error is reduced by increasing the controller gain and is also
affected by the choice of controller pole and zero.

Example 3.11

Find the steady-state error for the analog system

	
G s

K

s a
a() =

+
> 0

1.	 For proportional analog control with a unit step input.
2.	 For proportional digital control with a sampled unit step input.

Solution
The transfer function of the system can be written as

	
G s

K a

s a
a() =

+
>

1
0

Thus, the position error constant for analog control is K/a, and the steady-state error is

	 e
K

a

K ap

∞() =
+

=
+

1

1

For digital control, it can be shown that for sampling period T, the DAC-plant-ADC z-
transfer function is

	
G z

K

a

e

z e
ZAS

aT

aT
() =

−
−







−

−

1

Thus, the position error constant for digital control is

	 K G z K ap zZAS= () ==1

and the associated steady-state error is the same as that of the analog system with propor-
tional control. In general, it can be shown that the steady-state error for the same control
strategy is identical for digital or analog implementation.

3.10  MATLAB Commands
The transfer function for the ADC, analog subsystem, and DAC combination
can be easily obtained using the MATLAB program. Assume that the sampling

period is equal to 0.1 s and that the transfer function of the analog subsystem
is G.

3.10.1  MATLAB

The MATLAB command to obtain a digital transfer function from an analog
transfer function is

>> g = tf(num,den)

>> gd = c2d(g, 0.1, ‘method’)

where num is a vector containing the numerator coefficients of the analog trans-
fer function in descending order, and den is a similarly defined vector of denom-
inator coefficients. For example, the numerator polynomial (2s2 + 4s + 3) is
entered as

>> num = [2, 4, 3]

The term “method” specifies the method used to obtain the digital transfer
function. For a system with a zero-order hold and sampler (DAC and ADC), we
use

>> gd = c2d(g, 0.1, ‘zoh’)

For a first-order hold, we use

>> gd = c2d(g, 0.1, ‘foh’)

Other options of MATLAB commands are available but are not relevant to the
material presented in this chapter.

For a system with a time delay, the discrete transfer function can be obtained
using the commands

gdelay = tf(num, den, ‘inputdelay’, Td) % Delay = Td

gdelay_d = c2d(gdelay, 0.1, ‘method’)

Resources
Franklin, G. F., J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems,

Addison-Wesley, 1998.
Jacquot, R. G., Modern Digital Control Systems, Marcel Dekker, 1981.
Katz, P., Digital Control Using Microprocessors, Prentice Hall International, 1981.
Kuo, B. C., Digital Control Systems, Saunders, 1992.
Ogata, K., Discrete-Time Control Systems, Prentice Hall, 1987.

Resources   81

82    CHAPTER 3  Modeling of Digital Control Systems

Problems

3.1	 Find the magnitude and phase at frequency w = 1 of a zero-order hold with
sampling time T = 0.1 s.

3.2	 The first-order hold uses the last two numbers in a sequence to generate its
output. The output of both the zero-order hold and the first-order hold is
given by

	
u t u kT a

u kT u k T

T
t kT , kT t k T k() = () +

() − −()[] −() ≤ ≤ +() =
1

1 0,1, 2, . . .

with a = 0,1, respectively.
(a)	 For a discrete impulse input, obtain and sketch the impulse response for

the preceding equation with a = 0 and a = 1.
(b)	 Write an impulse-sampled version of the preceding impulse response, and

show that the transfer function is given by

	
G s

s
e ae

a

sT
eH

sT sT sT() = −() − + −()





− − −1
1 1 1

(c)	 Obtain the transfer functions for the zero-order hold and for the first-order
hold from the preceding transfer function. Verify that the transfer function
of the zero-order hold is the same as that obtained in Section 3.3.

3.3	 Many chemical processes can be modelled by the following transfer function:

	
G s

K

s
e T sd() =

+
−

τ 1

where K is the gain, t is the time constant and Td is the time delay. Obtain
the transfer function GZAS(z) for the system in terms of the system
parameters. Assume that the time delay Td is a multiple of the sampling
time T.

3.4	 Obtain the transfer function of a point mass (m) with force as input and
displacement as output neglecting actuator dynamics; then find GZAS(z) for the
system.

3.5	 For an internal combustion engine, the transfer function with injected fuel
flow rate as input and fuel flow rate into the cylinder as output is given by1

	
G s

s

s
() =

+
+

ετ
τ

1

1

where t is a time constant and e is known as the fuel split parameter. Obtain
the transfer function GZAS(z) for the system in terms of the system parameters.

1J. Moskwa, Automotive Engine Modeling and Real time Control, MIT doctoral thesis, 1988.

3.6	 Repeat Problem 3.5 including a delay of 25 ms in the transfer function with
a sampling period of 10 ms.

3.7	 Find the equivalent sampled impulse response sequence and the equivalent z-
transfer function for the cascade of the two analog systems with sampled input

	
H s

s
H s

s
1 2

1

6

10

1
() =

+
() =

+
(a)	 If the systems are directly connected.
(b)	 If the systems are separated by a sampler.

3.8	 Obtain expressions for the analog and sampled outputs from the block
diagrams shown in Figure P3.8.

(a)

Y(s)R(s)

+ − TT

U*(s)U(s) Y*(s)
G(s)

H(s)

C(s)

(b)

C(s) G(s)

H(s)

Y(s)R(s)

+ − TT

Y*(s)E*(s)E(s)

(c)

Y(s)R(s)

+ − TTT

Y *(s)U*(s)E*(s)E(s) U(s)

H(s)

C(s) G(s)

Figure P3.8

Block diagrams for systems with multiple samplers.

3.9	 For the unity feedback system shown in Figure P3.9, we are given the analog
subsystem

	
G s

s

s
() =

+
+

8

5

Problems   83

84    CHAPTER 3  Modeling of Digital Control Systems

The system is digitally controlled with a sampling period of 0.02 s. The
controller transfer function was selected as

	
C z

z

z
() =

−
0 35

1

.

(a)	 Find the z-transfer function for the analog subsystem with DAC and ADC.
(b)	 Find the closed-loop transfer function and characteristic equation.
(c)	 Find the steady-state error for a sampled unit step and a sampled unit

ramp. Comment on the effect of the controller on steady-state error.

R(z)

+ −

Y(z)U(z)E(z)
G(s) ADCDACC(z)

Figure P3.9

Block diagram for a closed-loop system with digital control.

3.10	 Find the steady-state error for a unit step disturbance input for the systems
shown in Figure P3.10 with a sampling period of 0.03 s and the transfer functions

	
G s

s
G s

s

s s
C s

e

e
d

sT

sT
() =

+
() =

+()
+()

() =
−

−
2

1

4 2

3

0 95

1
*

.

(a)

C*(s) G(s)

D(s)

Y(s)R(s)

−+
T T T +

+ Y*(s)
ZOH

Gd(s)

(b)

C*(s)

D(s)

Y(s)R(s)

+ − T TT

+
+ Y*(s)

ZOH

Gd(s)

G(s)

Figure P3.10

Block diagrams for systems with disturbance inputs.

3.11	 For the following systems with unity feedback, find
(a)	 The position error constant.
(b)	 The velocity error constants.
(c)	 The steady-state error for a unit step input.
(d)	 The steady-state error for a unit ramp input.

(i)    G z
z

z z
() =

+()
−() −()

0 4 0 2

1 0 1

. .

.

(ii)  G z
z

z z
() =

+()
−() −()
0 5 0 2

0 1 0 8

. .

. .

Computer Exercises
3.12	 For the analog system with a sampling period of 0.05 s

	
G s

s

s s
() =

+()
+()

10 2

5

(a)	 Obtain the transfer function for the system with sampled input and output.
(b)	 Obtain the transfer function for the system with DAC and ADC.
(c)	 Obtain the unit step response of the system with sampled output and

analog input.
(d)	 Obtain the poles of the systems in (a) and (b), and the output of (c), and

comment on the differences between them.

3.13	 For the system of Problem 3.9
(a)	 Obtain the transfer function for the analog subsystem with DAC and

ADC.
(b)	 Obtain the step response of the open-loop analog system and the closed-

loop digital control system and comment on the effect of the controller on
the time response.

(c)	 Obtain the frequency response of the digital control system, and verify
that 0.02 s is an acceptable choice of sampling period. Explain briefly why
the sampling period is chosen based on the closed-loop rather than the
open-loop dynamics.

3.14	 Consider the internal combustion engine model of Problem 3.5. Assume that,
for the operational conditions of interest, the time constant t is approximately
1.2 s, whereas the parameter e can vary in the range 0.4 to 0.6. The digital
cascade controller

	
C z

z

z
() =

−
0 02

1

.

was selected to improve the time response of the system with unity feedback.
Simulate the digital control system with e = 0.4, 0.5, and 0.6, and discuss the
behavior of the controller in each case.

Computer Exercises   85

86    CHAPTER 3  Modeling of Digital Control Systems

3.15	 Simulate the continuous-discrete system discussed in Problem 3.9 and examine
the behavior of both the continuous output and the sampled output. Repeat
the simulation with a 10% error in the plant gain. Discuss the simulation
results, and comment on the effect of the parameter error on disturbance
rejection.

Chapter

4Stability of Digital
Control Systems

Objectives
After completing this chapter, the reader will be able to do the following:

1.	 Determine the input-output stability of a z-transfer function.
2.	 Determine the asymptotic stability of a z-transfer function.
3.	 Determine the internal stability of a digital feedback control system.
4.	 Determine the stability of a z-polynomial using the Routh-Hurwitz criterion.
5.	 Determine the stability of a z-polynomial using the Jury criterion.
6.	 Determine the stable range of a parameter for a z-polynomial.
7.	 Determine the closed-loop stability of a digital system using the Nyquist criterion.
8.	 Determine the gain margin and phase margin of a digital system.

Stability is a basic requirement for digital and analog control systems. Digital
control is based on samples and is updated every sampling period, and there is a
possibility that the system will become unstable between updates. This obviously
makes stability analysis different in the digital case. We examine different defini-
tions and tests of the stability of linear time-invariant (LTI) digital systems based
on transfer function models. In particular, we consider input-output stability and
internal stability. We provide several tests for stability: the Routh-Hurwitz crite-
rion, the Jury criterion, and the Nyquist criterion. We also define the gain margin
and phase margin for digital systems.

4.1  Definitions of Stability
The most commonly used definitions of stability are based on the magnitude
of the system response in the steady state. If the steady-state response is unbounded,
the system is said to be unstable. In this chapter, we discuss two stability defini-
tions that concern the boundedness or exponential decay of the system output.

88    CHAPTER 4  Stability of Digital Control Systems

The first stability definition considers the system output due to its initial condi-
tions. To apply it to transfer function models, we need the assumption that no
pole-zero cancellation occurs in the transfer function. Reasons for this assumption
are given later and are discussed further in the context of state-space models.

Definition 4.1: A symptotic Stability.  A system is said to be asymptotically stable if its
response to any initial conditions decays to zero asymptotically in the steady state—that
is, the response due to the initial conditions satisfies

	 Lim
k

y k
→∞

() = 0 	 (4.1)

If the response due to the initial conditions remains bounded but does not decay to
zero, the system is said to be marginally stable.	� ■

The second definition of stability concerns the forced response of the system
for a bounded input. A bounded input satisfies the condition

	
u k b k

b

u

u

() < =
< < ∞

, , , , . . .0 1 2

0
	 (4.2)

For example, a bounded sequence satisfying the constraint |u(k)| < 3 is shown
in Figure 4.1.

Figure 4.1

Bounded sequence with bound bu = 3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–3

–2

–1

0

1

2

3
u(k)

kT

4.3  Stability Conditions   89

Definition 4.2:  Bounded-Input–Bounded-Output Stability.  A system is said to be
bounded-input–bounded-output (BIBO) stable if its response to any bounded input
remains bounded—that is, for any input satisfying (4.2), the output satisfies

	
y k b k

b

y

y

() < =
< < ∞

, , , , . . .0 1 2

0
	 (4.3)

	 ■

4.2  Stable z-Domain Pole Locations
The examples provided in Chapter 2 show that the locations of the poles of the
system z-transfer function determine the time response. The implications of this
fact for system stability are now examined more closely.

Consider the sampled exponential and its z-transform

	 p k
z

z p
k , , , , . . .= ← →

−
0 1 2 Z

	 (4.4)

where p is real or complex. Then the time sequence for large k is given by

	 p

p

p

p

k →
<
=

∞ >







0 1

1 1

1

,

,

,

	 (4.5)

Any time sequence can be described by

	 f k A p k F z A
z

z p
i i

k

i

n

i
ii

n

() = = ← → () =
−= =

∑ ∑
1 1

0 1 2, , , , . . . Z 	 (4.6)

where Ai are partial fraction coefficients and pi are z-domain poles. Hence, we
conclude that the sequence is bounded if its poles lie in the closed unit disc (i.e.,
on or inside the unit circle) and decays exponentially if its poles lie in the open
unit disc (i.e., inside the unit circle). This conclusion allows us to derive stability
conditions based on the locations of the system poles. Note that the case of
repeated poles on the unit circle corresponds to an unbounded time sequence
(see, for example, the transform of the sampled ramp).

Although the preceding conclusion is valid for complex as well as real-time
sequences, we will generally restrict our discussions to real-time sequences. For
real-time sequences, the poles and partial fraction coefficients in (4.6) are either
real or complex conjugate pairs.

4.3  Stability Conditions
The analysis of Section 4.2 allows the derivation of conditions for asymptotic and
BIBO stability based on transfer function models. It is shown that, in the absence

90    CHAPTER 4  Stability of Digital Control Systems

of pole-zero cancellation, conditions for BIBO stability and asymptotic stability are
identical.

4.3.1  Asymptotic Stability

The following theorem gives conditions for asymptotic stability.

Theorem 4.1: A symptotic Stability.  In the absence of pole-zero cancellation, an LTI
digital system is asymptotically stable if its transfer function poles are in the open unit
disc and marginally stable if the poles are in the closed unit disc with no repeated poles
on the unit circle.

Proof.  Consider the LTI system governed by the constant coefficient difference
equation

	
y k n a y k n a y k a y k

b u k m b u k m
n

m m

+() + + −() + + +() + ()
= +() + + −

−

−

1 1 0

1

1 1. . .
11 1 0 1 21 0() + + +() + () =. . . , , , , . . .b u k b u k k

with initial conditions y(0), y(1), y(2), . . . , y(n − 1). Using the z-transform of the
output, we observe that the response of the system due to the initial conditions with
the input zero is of the form

	
Y z

N z

z a z a z an
n

n
() =

()
+ + + +−

−
1

1
1 0. . .

where N(z) is a polynomial dependent on the initial conditions. Because transfer func-
tion zeros arise from transforming the input terms, they have no influence on the
response due to the initial conditions. The denominator of the output z-transform is
the same as the denominator of the z-transfer function in the absence of pole-zero
cancellation. Hence, the poles of the function Y(z) are the poles of the system transfer
function.

Y(z) can be expanded as partial fractions of the form (4.6). Thus, the output due
to the initial conditions is bounded for system poles in the closed unit disc with no
repeated poles on the unit circle. It decays exponentially for system poles in the open
unit disc (i.e., inside the unit circle).	 ■

Theorem 4.1 applies even if pole-zero cancellation occurs, provided that the
poles that cancel are stable. This follows from the fact that stability testing is
essentially a search for unstable poles, with the system being declared stable if
none are found. Invisible but stable poles would not lead us to a wrong conclu-
sion. However, invisible but stable poles would. The next example shows how to
determine asymptotic stability using Theorem 4.1.

4.3  Stability Conditions   91

Example 4.1

Determine the asymptotic stability of the following systems:

(a)	 H z
z

z z
() =

−()
−() −()
4 2

2 0 1.
	 (b)	 H z

z

z z
() =

−()
−() −()
4 0 2

0 2 0 1

.

. .

(c)	 H z
z

z z
() =

−()
−() −()
5 0 3

0 2 0 1

.

. .
	 (d)	 H z

z

z z
() =

−()
−() −()
8 0 2

0 1 1

.

.

Solution
Theorem 4.1 can only be used for transfer functions (a) and (b) if their poles and zeros are
not canceled. Ignoring the zeros, which do not affect the response to the initial conditions,
(a) has a pole outside the unit circle and the poles of (b) are inside the unit circle. Hence,
(a) is unstable, whereas (b) is asymptotically stable.

Theorem 4.1 can be applied to the transfer functions (c) and (d). The poles of (c) are
all inside the unit circle, and the system is therefore asymptotically stable. However, (d) has
one pole on the unit circle and is only marginally stable.

4.3.2  BIBO Stability

BIBO stability concerns the response of a system to a bounded input. The response
of the system to any input is given by the convolution summation

	 y k h k i u i k
i

k

() = −() () =
=
∑

0

0 1 2, , , , . . . 	 (4.7)

where h(k) is the impulse response sequence.
It may seem that a system should be BIBO stable if its impulse response is

bounded. To show that this is generally false, let the impulse response of a linear
system be bounded and strictly positive with lower bound bh1 and upper bound
bh2—that is,

	 0 0 1 21 2< < () < < ∞ =b h k b kh h , , , , . . . 	 (4.8)

Then using the bound (4.8) in (4.7) gives the inequality

	 y k h k i u i b u i k
i

k

h

i

k

() = −() () > () =
= =
∑ ∑

0

1

0

0 1 2, , , , . . . 	 (4.9)

which is unbounded as k → ∞ for the bounded input u(k) = 1, k = 0,1,2, . . .
The following theorem establishes necessary and sufficient conditions for BIBO

stability of a discrete-time linear system.

Theorem 4.2:  A discrete-time linear system is BIBO stable if and only if its impulse
response sequence is absolutely summable—that is,

	 h i
i

() < ∞
=

∞

∑
0

	 (4.10)

92    CHAPTER 4  Stability of Digital Control Systems

Proof
1.  Necessity (only if)
To prove necessity by contradiction, assume that the system is BIBO stable but does
not satisfy (4.10). Then consider the input sequence given by

	
u k i

h i

h i
−() =

() ≥
− () <{1 0

1 0

,

,

The corresponding output is

	 y k h i
i

k

() = ()
=
∑

0

which is unbounded as k → ∞. This contradicts the assumption of BIBO stability.

2.  Sufficiency (if)
To prove sufficiency, we assume that (4.10) is satisfied and then show that the system
is BIBO stable. Using the bound (4.2) in the convolution summation (4.7) gives the
inequality

	 y k h i u k i b h i k
i

k

u

i

k

() ≤ () −() < () =
= =
∑ ∑

0 0

0 1 2, , , , . . .

which remains bounded as k → ∞ if (4.10) is satisfied.	 ■

Because the z-transform of the impulse response is the transfer function, BIBO
stability can be related to pole locations as follows.

Theorem 4.3:  A discrete-time linear system is BIBO stable if and only if the poles of
its transfer function lie inside the unit circle.

Proof.  Applying (4.6) to the impulse response and transfer function shows that the
impulse response is bounded if the poles of the transfer function are in the closed unit
disc and decays exponentially if the poles are in the open unit disc. It has already been
established that systems with a bounded impulse response that does not decay expo-
nentially are not BIBO stable. Thus, it is necessary for BIBO stability that the system
poles lie inside the unit circle.

To prove sufficiency, assume an exponentially decaying impulse response (i.e.,
poles inside the unit circle). Let Ar be the coefficient of largest magnitude and |ps | < 1
be the system pole of largest magnitude in (4.6). Then the impulse response (assuming
no repeated poles for simplicity) is bounded by

	 h k A p A p n A p ki i
k

i

n

i i
k

i

n

r s
k() = ≤ ≤ =

= =
∑ ∑

1 1

0 1 2, , , , . . .

Hence, the impulse response decays exponentially at a rate determined by the largest
system pole. Substituting the upper bound in (4.10) gives

	 h i n A p n A
pi

r s
i

i

r
s

() ≤ =
−

< ∞
=

∞

=

∞

∑ ∑
0 0

1

1

Thus, the condition is sufficient by Theorem 4.2.	 ■

4.3  Stability Conditions   93

Example 4.2

Investigate the BIBO stability of the class of systems with the impulse response

	 h k
K k m

elsewhere
() =

≤ ≤ < ∞{ ,

,

0

0

where K is a finite constant.

Solution
The impulse response satisfies

	 h i h i m K
i i

m

() = () = +() < ∞
=

∞

=
∑ ∑

0 0

1

Using condition (4.10), the systems are all BIBO stable. This is the class of finite impulse
response (FIR) systems (i.e., systems whose impulse response is nonzero over a finite
interval). Thus, we conclude that all FIR systems are BIBO stable.

Example 4.3

Investigate the BIBO stability of the systems discussed in Example 4.1.

Solution
After pole-zero cancellation, the transfer functions (a) and (b) have all poles inside the unit
circle and are therefore BIBO stable. The transfer function (c) has all poles inside the unit
circle and is stable; (d) has a pole on the unit circle and is not BIBO stable.

The preceding analysis and examples show that for LTI systems, with no pole-
zero cancellation, BIBO and asymptotic stability are equivalent and can be inves-
tigated using the same tests. Hence, the term stability is used in the sequel to
denote either BIBO or asymptotic stability with the assumption of no unstable
pole-zero cancellation. Pole locations for a stable system (inside the unit circle)
are shown in Figure 4.2.

Figure 4.2

Stable pole locations in the z-plane. Im[z] denotes the imaginary part and Re[z] denotes the
real part of z.

Stable

Unit Circle

Re[z]

Im[z]

Unstable

94    CHAPTER 4  Stability of Digital Control Systems

4.3.3  Internal Stability

So far, we have only considered stability as applied to an open-loop system. For
closed-loop systems, these results are applicable to the closed-loop transfer func-
tion. However, the stability of the closed-loop transfer function is not always suf-
ficient for proper system operation because some of the internal variables may be
unbounded. In a feedback control system, it is essential that all the signals in the
loop be bounded when bounded exogenous inputs are applied to the system.

Consider the unity feedback digital control scheme of Figure 4.3 where, for
simplicity, a disturbances input is added to the controller output before the ADC.
We consider that system as having two outputs, Y and U, and two inputs, R and
D. Thus, the transfer functions associated with the system are given by

	
Y z

U z

C z G z

C z G z

G z

C z G z
ZAS

ZAS

ZAS

ZAS()
()







=

() ()
+ () ()

()
+ () (1 1))

()
+ () ()

−
() ()

+ () ()



















C z

C z G z

C z G z

C z G z

R z

ZAS

ZAS

ZAS1 1

(()
()





D z

	 (4.11)

Clearly, it is not sufficient to prove that the output of the controlled system Y
is bounded for bounded reference input R because the controller output U can
be unbounded. In addition, the system output must be bounded when a different
input is applied to the system, namely, in the presence of a disturbance. This sug-
gests the following definition of stability.

Definition 4.3:  Internal Stability.  If all the transfer functions that relate system inputs
(R and D) to the possible system outputs (Y and U) are BIBO stable, then the system
is said to be internally stable.	� ■

Because internal stability guarantees the stability of the transfer function from
R to Y, among others, it is obvious that an internally stable system is also externally
stable (i.e., the system output Y is bounded when the reference input R is bounded).
However, external stability does not, in general, imply internal stability.

We now provide some results that allow us to test internal stability.

Figure 4.3

Digital control system with disturbance D(z).

C(z) GZAS(z)
Y(z)E(z)R(z) +

−

U(z)
D(z)

4.3  Stability Conditions   95

Theorem 4.4:  The system shown in Figure 4.3 is internally stable if and only if all its
closed-loop poles are in the open unit disc.

Proof
1.  Necessity (only if)
To prove necessity, we write C(z) and GZAS(z) as ratios of coprime polynomials (i.e.,
polynomials with no common factors):

	 C z
N z

D z
G z

N z

D z
C

C
ZAS

G

G

() =
()
()

() =
()
()

	 (4.12)

Substituting in (4.11), we rewrite it as

	
Y

U D D N N

N N D N

N D N N

R

DC G C G

C G C G

C G C G







=
+ −













1
	 (4.13)

where we have dropped the argument z for brevity. If the system is internally stable,
then the four transfer functions in (4.11) have no poles on or outside the unit circle.
Thus, we can conclude that polynomial DCDG + NCNG has no zeros on or outside the
unit circle because it cannot have a zero that is also a zero of the four numerators
(which cancels, leaving four stable transfer functions).

2.  Sufficiency (if)
Sufficiency is evident from (4.13). In fact, if the characteristic polynomial DCDG + NCNG
has no zeros on or outside the unit circle, then all the transfer functions are asymp-
totically stable and the system is internally stable.	 ■

Theorem 4.5:  The system of Figure 4.3 is internally stable if and only if the following
two conditions hold:

1.	 The characteristic polynomial 1 + C(z)GZAS(z) has no zeros on or outside the unit
circle.

2.	 The loop gain C(z)GZAS(z) has no pole-zero cancellation on or outside the unit
circle.

Proof
1.  Necessity (only if)
Condition 1 is clearly necessary by Theorem 4.4. To prove the necessity of condition
2, we first factor C(z) and GZAS(z) as in (4.12) to write the characteristic polynomial in
the form DCDG + NCNG. We also have that C(z) GZAS(z) is equal to NCNG/DCDG. Assume that
condition 2 is violated and that there exists Z0, |Z0| ≥1, which is a zero of DCDG as well
as a zero of NCNG. Then clearly Z0 is also a zero of the characteristic polynomial DCDG
+ NCNG, and the system is unstable. This establishes the necessity of condition 2.

2.  Sufficiency (if)
By Theorem 4.4, condition 1 implies internal stability unless unstable pole-zero cancel-
lation occurs in the characteristic polynomial 1 + C(z)GZAS(z). We therefore have inter-

96    CHAPTER 4  Stability of Digital Control Systems

nal stability if condition 2 implies the absence of unstable pole-zero cancellation. If
the loop gain C(z)GZAS(z) = NCNG/DCDG has no unstable pole-zero cancellation, then
1 + C(z)GZAS(z) = [DCDG+NCNG]/DCDG does not have unstable pole-zero cancellation,
and the system is internally sable.	 ■

Example 4.4

An isothermal chemical reactor where the product concentration is controlled by manipulat-
ing the feed flow rate is modeled by the following transfer function1:

	
G s

s

s
() =

− +()
+ +

0 5848 0 3549 1

0 1828 0 8627 12

. .

. .

Determine GZAS(Z) with a sampling rate T = 0.1, and then verify that the closed-loop system
with the feedback controller

	
C z

z z

z z
() =

− −() −()
−() −()

10 0 8149 0 7655

1 1 334

. .

.

is not internally stable.

Solution
The discretized process transfer function is

	
G z z

G s

s

z

z z
ZAS () −() (){ } =

− −()
−() −

−= 1
0 075997 1 334

0 8149 0 76
1 Z

. .

. . 555()

The transfer function from the reference input to the system output is given by

	

Y z

R z

C z G z

C z G z

z z

ZAS

ZAS

()
()

=
() ()

+ () ()

=
−() −

1

1 2054 0 8149 0 7655. . .(()
−() − +()z z z0 8756 1 27 0 69082. . .

The system appears to be asymptotically stable with all its poles inside the unit circle.
However, the system is not internally stable as seen by examining the transfer function

	

U z

R z

z z

z z

()
()

= −
−() −()
−() −()

12
0 8149 0 7655

1 334 0 08798

. .

. .

which has a pole at 1.334 outside the unit circle. The control variable is unbounded even
when the reference input is bounded. In fact, the system violates condition 2 of Theorem
4.5 because the pole at 1.334 cancels in the loop gain

	
C z G z

z z

z z
ZAS() () =

− −() −()
−() −()

×
−10 0 8149 0 7655

1 1 334

0 07599. .

.

. 77 1 334

0 8149 0 7655

z

z z

−()
−() −()

.

. .

1B. W. Bequette, Process Control: Modeling, Design, and Simulation, Prentice Hall, 2003.

4.4  Stability Determination
The simplest method for determining the stability of a discrete-time system given
its z-transfer function is by finding the system poles. This can be accomplished
using a suitable numerical algorithm based on Newton’s method.

4.4.1  MATLAB

The roots of a polynomial are obtained using one of the MATLAB commands,

>> roots(den)

>> zpk(g)

where den is a vector of denominator polynomial coefficients. The command zpk
factorizes the numerator and denominator of the transfer function g and displays
it. The poles of the transfer function can be obtained with the command pole
and then sorted with the command dsort in order of decreasing magnitude.

Alternatively, one may use the command ddamp, which yields the pole loca-
tions (eigenvalues), the damping ratio, and the undamped natural frequency. For
example, given a sampling period of 0.1 s and the denominator polynomial with
coefficients

>> den = [1.0, 0.2, 0.0, 0.4]

the command is

>> ddamp(den, 0.1)

The command yields the output.

Eigenvalue Magnitude Equiv. Damping Equiv. Freq.
(rad/sec)

0.2306 + 0.7428I 0.7778 0.1941 12.9441
0.2306 − 0.7428I 0.7778 0.1941 12.9441
−0.6612 0.6612 0.1306 31.6871

The MATLAB command

>> T = feedback(g, gf, ±1)

calculates the closed-loop transfer function T using the forward transfer function
g and the feedback transfer function gf. For negative feedback, the third argument
is -1 or is omitted. For unity feedback, we replace the argument gf with 1. We
can solve for the poles of the closed-loop transfer function as before using zpk
or ddamp.

4.4  Stability Determination   97

98    CHAPTER 4  Stability of Digital Control Systems

4.4.2  Routh-Hurwitz Criterion

The Routh-Hurwitz criterion determines conditions for left half plane (LHP) poly-
nomial roots and cannot be directly used to investigate the stability of discrete-time
systems. The bilinear transformation

	 z
w

w
w

z

z
=

+
−

⇔ =
−
+

1

1

1

1
	 (4.14)

transforms the inside of the unit circle to the LHP. This allows the use of the
Routh-Hurwitz criterion for the investigation of discrete-time system stability. For
the general z-polynomial,

	
F z a z a z a a

w

w
an

n
n

n
z

w

w
n

n

n() = + + +  →
+
−





 +

+
−

−
= +

−
−1

1
0

1

1
1

1

1

1
. . .

ww

w
a

n

1

1

0−




 + +

−

. . .

	 (4.15)

The Routh-Hurwitz approach becomes progressively more difficult as the order
of the z-polynomial increases. But for low-order polynomials, it easily gives stabil-
ity conditions. For high-order polynomials, a symbolic manipulation package can
be used to perform the necessary algebraic manipulations. The Routh-Hurwitz
approach is demonstrated in the following example.

Example 4.5

Find stability conditions for

1.	 The first-order polynomial a1z+a0, a1>0
2.	 The second-order polynomial a2z

2+a1z+a0, a2>0

Solution
1.	 The stability of the first-order polynomial can be easily determined by solving for its root.

Hence, the stability condition is

	
a

a
0

1

1< 	 (4.16)

2.	 The roots of the second-order polynomial are in general given by

	 z
a a a a

a
1 2

1 1
2

0 2

2

4

2
, =

− ± −
	 (4.17)

Thus, it is not easy to determine the stability of the second-order polynomial by solving for
its roots. For a monic polynomial (coefficient of z2 is unity), the constant term is equal to
the product of the poles. Hence, for pole magnitudes less than unity, we obtain the neces-
sary stability condition

	
a

a
0

2

1< 	 (4.18)

or equivalently

	 − < <a a a a0 2 0 2and

This condition is also sufficient in the case of complex conjugate poles where the two
poles are of equal magnitude. The condition is only necessary for real poles because the
product of a number greater than unity and a number less than unity can be less than unity.
For example, for poles at 0.01 and 10, the product of the two poles has magnitude 0.1,
which satisfies (4.18), but the system is clearly unstable.

Substituting the bilinear transformation in the second-order polynomial gives

	
a

w

w
a

w

w
a2

2

1 0

1

1

1

1

+
−





 +

+
−





 +

which reduces to

	 a a a w a a w a a a2 1 0
2

2 0 2 1 02− +() + −() + + +()

By the Routh-Hurwitz criterion, it can be shown that the poles of the second-order
w-polynomial remain in the LHP if and only if its coefficients are all positive. Hence, the
stability conditions are given by

	

a a a

a a

a a a

2 1 0

2 0

2 1 0

0

0

0

− + >

− >

+ + >

	 (4.19)

Adding the first and third conditions gives

	 a a a a2 0 0 20+ > ⇒ − <

This condition, obtained earlier in (4.18), is therefore satisfied if the three conditions of
(4.19) are satisfied. The reader can verify through numerical examples that if real roots
satisfying conditions (4.19) are substituted in (4.17), we obtain roots between −1 and +1.

Without loss of generality, the coefficient a2 can be assumed to be unity, and the
stable parameter range can be depicted in the a0 versus a1 parameter plane as shown in
Figure 4.4.

Figure 4.4

Stable parameter range for a second-order z-polynomial.

a1

a0

1

1

−1

−1

Stable

4.4  Stability Determination   99

100    CHAPTER 4  Stability of Digital Control Systems

4.5  Jury Test
It is possible to investigate the stability of z-domain polynomials directly using the
Jury test for real coefficients or the Schur-Cohn test for complex coefficients.
These tests involve determinant evaluations as in the Routh-Hurwitz test for s-
domain polynomials but are more time consuming. The Jury test is given next.

Theorem 4.6:  For the polynomial

	 F z a z a z a z a an
n

n
n

n() = + + + + = >−
−

1
1

1 0 0 0. . . , 	 (4.20)

the roots of the polynomial are inside the unit circle if and only if

	

1 1 0

2 1 1 0

3

4

5

1

0

0 1

0 2

() () >

() −() −() >
() <
() >
() >

+

−

−

F

F

a a

b b

c c

n

n

n

n

n

.

.

.

(() >r r0 2

	 (4.21)

where the terms in the n + 1 conditions are calculated from Table 4.1.
The entries of the table are calculated as follows

	

b
a a

a a
k n

c
b b

b b
k n

k
n k

n k

k
n k

n k

= = −

= = −

−

−

−

0

0

1

0 1 1

0 1 2

, , , . . . ,

, , , . . . ,

.

.

..

, ,r
s s

s s
r

s s

s s
r

s s

s s
0

0 3

3 0
1

0 2

3 1
2

0 1

3 2

= = =

	 (4.22)

■

Based on the Jury table and the Jury stability conditions, we make the follow-
ing observations:

1.	 The first row of the Jury table is a listing of the coefficients of the polynomial
F(z) in order of increasing power of z.

2.	 The number of rows of the table 2 n − 3 is always odd, and the coefficients of
each even row are the same as the odd row directly above it with the order
of the coefficients reversed.

3.	 There are n + 1 conditions in (4.21) that correspond to the n + 1 coefficients
of F(z).

4.	 Conditions 3 through 2 n − 3 of (4.21) are calculated using the coefficient of
the first column of the Jury table together with the last coefficient of the
preceding row. The middle coefficient of the last row is never used and need
not be calculated.

5.	 Conditions 1 and 2 of (4.21) are calculated from F(z) directly. If one of the first
two conditions is violated, we conclude that F(z) has roots on or outside the
unit circle without the need to construct the Jury table or test the remaining
conditions.

6.	 Condition 3 of (4.21), with an = 1, requires the constant term of the polynomial
to be less than unity in magnitude. The constant term is simply the product of
the roots and must be smaller than unity for all the roots to be inside the unit
circle.

7.	 Conditions (4.21) reduce to conditions (4.18) and (4.19) for first and second-
order systems respectively where the Jury table is simply one row.

8.	 For higher-order systems, applying the Jury test by hand is laborious, and it is
preferable to test the stability of a polynomial F(z) using a computer-aided
design (CAD) package.

Table 4.1  Jury Table

Row z0 z1 z2 … zn−k … zn−1 zn

1 a0 a1 a2 … an−k … an−1 an

2 an an−1 an−2 … ak … a1 a0

3 b0 b1 b2 … bn−k … bn−1

4 bn−1 bn−2 bn−3 … bk … b0

5 c0 c1 c2 … … cn−2

6 cn−2 cn−3 cn−4 … … c0

. . . . … …

. . . . … …

. . . . … …

2 n − 5 s0 s1 s2 s3

2 n − 4 s3 s2 s1 s0

2 n − 3 r0 r1 r2

4.5  Jury Test   101

102    CHAPTER 4  Stability of Digital Control Systems

9.	 If the coefficients of the polynomial are functions of system parameters, the
Jury test can be used to obtain the stable ranges of the system parameters.

Example 4.6

Test the stability of the polynomial.

	 F z z z z z z() = + − − + + =5 4 3 22 6 0 56 2 05 0 0775 0 35 0.

We compute the entries of the Jury table using the coefficients of the polynomial (see
Table 4.2).

The first two conditions require the evaluation of F(z) at z = ±1.

1.	 F(1) = 1 + 2.6 - 0.56 - 2.05 + 0.0775 + 0.35 = 1.4175 > 0
2.	 (-1)5F(-1) = (-1)(-1 + 2.6 + 0.56 - 2.05 - 0.0775 + 0.35) = -0.3825 < 0

Conditions 3 through 6 can be checked quickly using the entries of the first column of the
Jury table.

3.	 | 0.35 | < 1
4.	 | −0.8775 | > | 0.8325 |
5.	 | 0.0770 | < | 0.5151 |
6.	 | −0.2593 | < | −0.3472 |

Conditions 2, 5, and 6 are violated, and the polynomial has roots on or outside the unit
circle. In fact, the polynomial can be factored as

	 F z z z z z z() = −() −() +() +() +() =0 7 0 5 0 5 0 8 2 5 0.

and has a root at −2.5 outside the unit circle. Note that the number of conditions violated
is not equal to the number of roots outside the unit circle and that condition 2 is sufficient
to conclude the instability of F(z).

Table 4.2  Jury Table for Example 4.6

Row z 0 z1 z 2 z 3 z 4 z 5

1 0.35 0.0775 −2.05 −0.56 2.6 1

2 1 2.6 −0.56 −2.05 0.0775 0.35

3 −0.8775 −2.5729 −0.1575 1.854 0.8325

4 0.8325 1.854 −0.1575 −2.5729 −0.8775

5 0.0770 0.7143 0.2693 0.5151

6 0.5151 0.2693 0.7143 0.0770

7 −0.2593 −0.0837 −0.3472

Example 4.7

Find the stable range of the gain K for the unity feedback digital cruise control system of
Example 3.2 with the analog plant transfer function

	
G s

K

s
() =

+ 3

and with digital-to-analog converter (DAC) and analog-to-digital converter (ADC) if the sam-
pling period is 0.02 s.

Solution
The transfer function for analog subsystem ADC and DAC is

	

G z z
G s

s

z
K

s s

ZAS () = −() ()



{ }

= −()
+()





{

− −

− −

1

1
3

1 1

1 1

Z L

Z L }}
Using the partial fraction expansion

	
K

s s

K

s s+()
= −

+




3 3

1 1

3

we obtain the transfer function

	
G z

K

z
ZAS () =

×
−

−1 9412 10

0 9418

2.

.

For unity feedback, the closed-loop characteristic equation is

	 1 0+ () =G zZAS

which can be simplified to

	 z K− + × =−0 9418 1 9412 10 02. .

The stability conditions are

	 0 9418 1 9412 10 12. .− × <− K

	 − + × <−0 9418 1 9412 10 12. . K

Thus, the stable range of K is

	 − < <3 100 03K .

Example 4.8

Find the stable range of the gain K for the vehicle position control system (see Example 3.3)
with the analog plant transfer function

4.5  Jury Test   103

104    CHAPTER 4  Stability of Digital Control Systems

	
G s

K

s s
() =

+()10

and with DAC and ADC if the sampling period is 0.05 s.

Solution
The transfer function for analog subsystem, ADC, and DAC is

	

G z z
G s

s

z
K

s s

ZAS () = −() ()



{ }

= −()
+()







− −

− −

1

1
10

1 1

1 1
2

Z L

Z L 








Using the partial fraction expansion

	

K

s s
K

s s s2 210
0 1

10 1 1

10+()
= − −

+






.

we obtain the transfer function

	
G z

K z

z z
ZAS () =

× +()
−() −()

−1 0653 10 0 8467

1 0 6065

2. .

.

For unity feedback, the closed-loop characteristic equation is

	 1 0+ () =G zZAS

which can be simplified to

	
z z K z

z K
−() −() + × +()
= + × −

−

−
1 0 6065 1 0653 10 0 8467

1 0653 10 1 6

2

2 2

. . .
. . 0065 0 6065 9 02 10 03() + + × =−z K. .

The stability conditions are

1.	 F(1) = 1 + (1.0653 × 10−2 K − 1.6065) + 0.6065 + 9.02 × 10−3 K > 0 ⇔ K > 0
2.	 F(−1) = 1 − (1.0653 × 10−2 K − 1.6065) + 0.6065 + 9.02 × 10−3 K > 0 ⇔

K < 1967.582
3.	 | 0.6065 + 0.0902 K | <1 ⇔ + (0.6065 + 0.0902 K) <1

− (0.6065 + 0.0902 K) <1
⇔ −178.104 < K < 43.6199

The three conditions yield the stable range

	 0 43 6199< <K .

4.6  Nyquist Criterion
The Nyquist criterion allows us to answer two questions:

1.	 Does the system have closed-loop poles outside the unit circle?
2.	 If the answer to the first question is yes, how many closed-loop poles are

outside the unit circle?

We begin by considering the closed-loop characteristic polynomial

	 p z C z G z L zcl () = + () () = + () =1 1 0 	 (4.23)

where L(z) denotes the loop gain. We rewrite the characteristic polynomial in
terms of the numerator of the loop gain NL and its denominator DL in the form

	 p z
N z

D z

N z D z

D z
cl

L

L

L L

L

() = +
()
()

=
() + ()

()
1 	 (4.24)

We observe that the zeros of the rational function are the closed-loop poles,
whereas its poles are the open-loop poles of the system. We assume that we are
given the number of open-loop poles outside the unit circle, and we denote this
number by P. The number of closed-loop poles outside the unit circle is denoted
by Z and is unknown.

To determine Z, we use some simple results from complex analysis. We first
give the following definition.

Definition 4.4:  Contour.  A contour is a closed directed simple (does not cross itself)
curve.	 ■

An example of a contour is shown in Figure 4.5. In the figure, shaded text
denotes a vector. Recall that in the complex plane the vector connecting any point
a to a point z is the vector (z − a). We can calculate the net angle change for the
term (z − a) as the point z traverses the contour in the shown (clockwise) direc-
tion by determining the net number of rotations of the corresponding vector.
From Figure 4.5, we observe that the net rotation is one full turn or 360° for the
point a1, which is inside the contour. The net rotation is zero for the point a2,
which is outside the contour. If the point in question corresponds to a zero, then
the rotation gives a numerator angle; if it is a pole, we have a denominator angle.
The net angle change for a rational function is the angle of the numerator minus

Figure 4.5

Closed contours (shaded letters denote vectors).

×
z1

z2

a1

a2

0

− a1

z1
z1− a1

4.6  Nyquist Criterion   105

106    CHAPTER 4  Stability of Digital Control Systems

the angle of the denominator. So for Figure 4.5, we have one clockwise rotation
because of a1 and no rotation as a result of a2 for a net angle change of one clock-
wise rotation. Angles are typically measured in the counterclockwise direction.
We therefore count clockwise rotations as negative.

The preceding discussion shows how to determine the number of zeros of a
rational function in a specific region; given the number of poles, we perform the
following steps:

1.	 Select a closed contour surrounding the region.
2.	 Compute the net angle change for the function as we traverse the contour

once.
3.	 The net angle change or number of rotations N is equal to the number of

zeros inside the contour Z minus the angle of poles inside the contour P.
Calculate the number of zeros as

	 Z N P= + 	 (4.25)

To use this to determine closed-loop stability, we need to select a contour that
encircles the outside of the unit circle. The contour is shown in Figure 4.6. The
smaller circle is the unit circle, whereas the large circle is selected with a large
radius so as to enclose all poles and zeros of the functions of interest.

The value of the loop gain on the unit circle is L(e jwT), which is the frequency
response of the discrete-time system for angles wT in the interval [−p,p]. The
values obtained for negative frequencies L(e- j|wT |) are simply the complex conju-
gate of the values L(e j|wT |) and need not be separately calculated. Because the order
of the numerator is equal to that of the denominator or less, points on the large
circle map to zero or to a single constant value. Because the value e is infinitesimal,
the values on the straight-line portions close to the real axis cancel.

Figure 4.6

Contour for stability determination.

ε

We can simplify the test by plotting L(e jwT) as we traverse the contour and
then counting its encirclements of the point −1 + j 0. As Figure 4.7 shows, this is
equivalent to plotting pcl(z) and counting encirclements of the origin.

If the system has open-loop poles on the unit circle, the contour passes through
poles and the test fails. To avoid this, we modify the contour to avoid these open-
loop poles. The most common case is a pole at unity for which the modified
contour is shown in Figure 4.8. The contour includes an additional circular arc of
infinitesimal radius. Because the portions on the positive real axis cancel, the
contour effectively reduces to the one shown in Figure 4.9. For m poles at unity,
the loop gain is given by

	 L z
N s

z D s

L

m
() =

()
−() ()1

	 (4.26)

where NL and D have no unity roots. The value of the transfer function on the
circular arc is approximately given by

	 L z
K

ez e j m
j()] = ∈ −



→ +1 2 2ε θθ

ε
θ π π

, , 	 (4.27)

where K is equal to NL(1)/D(1) and (z − 1) = ee jq, with e the radius of the small
circular arc. Therefore, the small circle maps to a large circle and traversing the

Figure 4.7

Nyquist plots of L and 1 + L.

–1 –0.5 0 0.5 1 1.5 2

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

Real Axis

Im
ag

in
ar

y
A

xi
s

L

1+ L

4.6  Nyquist Criterion   107

108    CHAPTER 4  Stability of Digital Control Systems

small circle once causes a net denominator angle change of −mp radians (clock-
wise) (i.e., m half circles). The net angle change for the quotient on traversing
the small circular arc is thus mp radians (counterclockwise). We conclude
that for a type m system the Nyquist contour will include m large clockwise
semicircles.

We now summarize the results obtained in the following theorem.

Theorem 4.7:  Nyquist Criterion.  Let the number of counterclockwise encirclements
of the point (−1, 0) for a loop gain L(z) when traversing the stability contour be N (i.e.,
−N for clockwise encirclements), where L(z) has P open-loop poles inside the contour.
Then the system has Z closed-loop poles outside the unit circle with Z given by

	 Z N P= −() + 	 (4.28)
	 ■

Figure 4.8

Modified contour for stability determination.

ε

Figure 4.9

Simplification of the modified contour for stability determination with (1, 0) shown in gray.

•

Corollary: An open-loop stable system is stable if and only if it does not encircle
the point (−1, 0) (i.e., if N = 0).

Although counting encirclements appears complicated, it is actually quite
simple using the following recipe:

1.	 Starting at a distant point, move toward the point (−1, 0).
2.	 Count all lines of the stability contour crossed. Count each line with an

arrow pointing from your left to your right as negative and every line with
an arrow pointing from your right to your left as positive.

3.	 The net number of lines counted is equal to the number of encirclements
of the point (−1, 0).

The recipe is demonstrated in the following examples.

Example 4.9

Consider a linearized model of a furnace:

	
G s

T s

U s

Kg g

s g g s g g
i rw iw

iw rw rw iw

() =
()
()

=
+ +() +2 2

During the heating phase, we have the model2

	
G s

s s
() =

+ +
1

3 12

Determine the closed-loop stability of the system with digital control and a sampling period
of 0.01.

Solution
In Example 3.5, we determined the transfer function of the system to be

	 G K

p e p e p p z
p e p e p e

ZAS

p T p T
p p p p

z() =
− + −() + − +− −

− − − +(

1 2 2 1
1 2 22 1

1 2 1 2))

− +()

− −

−





−() −() −()


















p e

p p p p z e z e

p p

p T p T

1

1 2 2 1

1 2

1 2



Substituting the values of the parameters in the general expression gives the z-transfer
function

	
G

z

z z
ZAS z() =

+
− +

−10
4 95 4 901

1 97 0 9704
5

2

. .

. .

The Nyquist plot of the system is shown in Figure 4.10. The plot shows that the Nyquist
plot does not encircle the point (−1, 0). Because the open-loop transfer function has no

2T. Hagglund and A. Tengall, An automatic tuning procedure for unsymmetrical processes, Proceed-
ings of the European Control Conference, Rome, 1995.

4.6  Nyquist Criterion   109

110    CHAPTER 4  Stability of Digital Control Systems

RHP poles, the system is closed-loop stable. Note that there is a free path to the point
(−1, 0) without crossing any lines of the plot because there are no encirclements.

4.6.1  Phase Margin and Gain Margin

In practice, the stability of a mathematical model is not sufficient to guarantee
acceptable system performance or even to guarantee the stability of the physical
system that the model represents. This is because of the approximate nature of
mathematical models and our imperfect knowledge of the system parameters. We
therefore need to determine how far the system is from instability. This degree of
stability is known as relative stability. To keep our discussion simple, we restrict
it to open-loop stable systems where zero encirclements guarantee stability. For
open-loop stable systems that are nominally closed-loop stable, the distance from
instability can be measured by the distance between the set of points of the
Nyquist plot and the point (−1, 0).

Typically, the distance between a set of points and the single point (−1, 0) is
defined as the minimum distance over the set of points. However, it is more
convenient to define relative stability in terms of two distances: a magnitude
distance and an angular distance. The two distances are given in the following
definitions.

Definition 4.5:  Gain Margin.  The gain margin is the gain perturbation that makes the
system marginally stable.	 ■

Figure 4.10

Nyquist plot of the furnace transfer function.

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

Real Axis
Re[G(jw)]

Im[G(jw)]
Im

ag
in

ar
y

A
xi

s

Definition 4.6: P hase Margin.  The phase margin is the negative phase perturbation
that makes the system marginally stable.	 ■

The two stability margins become clearer by examining the block diagram
of Figure 4.11. If the system has a multiplicative gain perturbation ΔG(z) = ΔK,
then the gain margin is the magnitude of ΔK that makes the system on the verge
of instability. If the system has a multiplicative gain perturbation ΔG(z) = e−jΔq,
then the gain margin is the lag angle Δq that makes the system on the verge of
instability. Clearly, the perturbations corresponding to the gain margin and phase
margin are limiting values, and satisfactory behavior would require smaller model
perturbations.

The Nyquist plot of Figure 4.12 shows the gain margin and phase margin for
a given polar plot (the positive frequency portion of the Nyquist plot). Recall that
each point on the plot represents a complex number, which is represented by a

Figure 4.11

Model perturbation ΔG(s).

∆G(z) G(z)
+

−

C(z)R(s)

Figure 4.12

Nyquist plot with phase margin and gain margin.

PM

Im
ag

in
ar

y
A

xi
s

1/GM

1

0

–1

–2

–2 –1.8 –0.8 –0.6 –0.4 –0.2 0–1.6 –1.4 –1.2
Real Axis

–1

–3

–4

–5
Re[G(jw)]

Im[G(jw)]

4.6  Nyquist Criterion   111

112    CHAPTER 4  Stability of Digital Control Systems

vector from the origin. Scaling the plot with a gain ΔK results in scaled vectors
without rotation. Thus, the vector on the negative real axis is the one that reaches
the point (−1, 0) if appropriately scaled, and the magnitude of that vector is the
reciprocal of the gain margin. On the other hand, multiplication by e−jΔq rotates
the plot clockwise without changing the magnitudes of the vectors, and it is the
vector of magnitude unity that can reach the point (−1, 0) if rotated by the phase
margin.

For an unstable system, a counterclockwise rotation or a reduction in gain is
needed to make the system on the verge of instability. The system will have a
negative phase margin and a gain margin less than unity, which is also negative if
it is expressed in decibels—that is, in units of 20 log{|G(jw)|}. The polar plot of a
system with negative gain margin and phase margin is shown in Figure 4.13.

The gain margin can be obtained analytically by equating the imaginary part
of the frequency response to zero and solving for the real part. The phase margin
can be obtained by equating the magnitude of the frequency response to unity
and solving for angle, and then adding 180°. However, because only approximate
values are needed in practice, it is easier to use MATLAB to obtain both margins.
In some cases, the intercept with the real axis can be obtained as the value where
z = −1 provided that the system has no pole at −1 (i.e., the frequency response
has no discontinuity at the folding frequency ws/2).

It is sometimes convenient to plot the frequency response using the Bode plot,
but the availability of frequency response plotting commands in MATLAB reduces
the necessity for such plots. The MATLAB commands for obtaining frequency

Figure 4.13

Nyquist plot with negative gain margin (dBs) and phase margin.

Im
ag

in
ar

y
A

xi
s

1

0.5

0

–0.5

–1.5

–2
–3 –0.5 0–2.5 –2 –1.5

Real Axis
–1

–1

Re[G(jw)]

Im[G(jw)]

response plots (which work for both continuous-time and discrete-time systems)
are

>> nyquist(gd)   % Nyquist plot

>> bode(gd)   % Bode plot

It is also possible to find the gain and phase margins with the command

>> [gm,pm] = margin(gd)

An alternative form of the command is

>> margin(gd)

The latter form shows the gain margin and phase margin on the Bode plot of the
system. We can also obtain the phase margin and gain margin using the Nyquist
plot by clicking on the plot and selecting

Characteristics

All stability margins

The concepts of the gain margin and phase margin and their evaluation using
MATLAB are illustrated by the following example.

Example 4.10

Determine the closed-loop stability of the digital control system for the furnace model of
Example 3.4 with a discrete-time first-order actuator of the form

	
G z

z
a () =

−
0 9516

0 9048

.

.

and a sampling period of 0.01. If an amplifier of gain K = 5 is added to the actuator, how
does the value of the gain affect closed-loop stability?

Solution
We use MATLAB to obtain the z-transfer function of the plant and actuator:

	
G z

z

z z z
ZAS () =

+
− + −

−10
4 711 4 644

2 875 2 753 0 8781
5

3 2

. .

. . .

The Nyquist plot for the system, Figure 4.14, is obtained with no additional gain and then
for a gain K = 5. We also show the plot in the vicinity of the point (−1, 0) in Figure 4.15
from which we see that the system with K = 5 encircles the point twice clockwise.

We count the encirclements by starting away from the point (−1, 0) and counting the
lines crossed as we approach it. We cross the gray curve twice and at each crossing the
arrow indicates that the line is moving from our right to our left (i.e., two clockwise encircle-
ments). The system is unstable and the number of closed-loop poles outside the unit circle
is given by

4.6  Nyquist Criterion   113

114    CHAPTER 4  Stability of Digital Control Systems

Figure 4.14

Nyquist plot for the furnace and actuator (K = 1, black, K = 5, gray).

–5 0 5 10 15 20 25 30 35 40 45 50

–25

–20

–15

–10

–5

0

5

10

15

20

25

Real Axis

Im
ag

in
ar

y
A

xi
s

Re[G(jw)]

Im[G(jw)]

Figure 4.15

Nyquist plot for the furnace and actuator in the vicinity of the point (−1, 0) (K = 1, black,
K = 5, gray).

Real Axis

Im
ag

in
ar

y
A

xi
s

–5 –4.5 –4 –3.5 –3 –2.5 –2 –1.5 –1 –0.5 0
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

System: untitled1
Real: –1.41
Imag: 0.000741
Frequency (rad/sec): –5.33

System: gdt
Real: –0.795
Imag: –0.624
Frequency (rad/sec): 2.59

Re[G(jw)]

Im[G(jw)]

	

Z N P= −() +
= +2 0

For the original gain of unity, the intercept with the real axis is at a magnitude of approximately
0.28 and can be increased by a factor of about 3.5 before the system becomes unstable.

At a magnitude of unity, the phase is about 38 degrees less negative than the instability
value of −180°. We therefore have a gain margin of about 3.5 and a phase margin of about
38 degrees. Using MATLAB, we find approximately the same values for the margins

>> [gm,pm] = margin(gtd)

gm = 3.4817

pm = 37.5426

Thus, an additional gain of over 3 or an additional phase lag of over 37° can be tolerated
without causing instability. However, such perturbations may cause a significant deteriora-
tion in the time response of the system. Perturbations in gain and phase may actually occur
upon implementing the control, and the margins are needed for successful implementation.
In fact, the phase margin of the system is rather low, and a controller may be needed to
improve the response of the system.

To obtain the Bode plot showing the phase margin and gain margin of Figure 4.16, we
use the following command.

Figure 4.16

Phase margin and gain margin for the oven control system shown on the Bode plot.

–80
–70
–60
–50
–40
–30
–20
–10

0
10
20

M
ag

ni
tu

de
 (

dB
)

10–1 100 101 102
–360
–315
–270
–225
–180
–135
–90
–45

0

P
ha

se
 (

de
g)

GM = 10.8 dB (at 6.25 rad/sec), PM = 37.5 deg (at 2.6 rad/sec)

Frequency (rad/sec)

GM

PM

4.6  Nyquist Criterion   115

116    CHAPTER 4  Stability of Digital Control Systems

>> margin(gtd)

1.	 The phase margin for unity gain shown on the plot is as obtained with the first form of
the command margin, but the gain margin is in dBs. The values are nevertheless identi-
cal as verified with the MATLAB command

>> 20*log10(gm)

ans = 10.8359

2.	 The gain margin and phase margin can also be obtained using the Nyquist command
as shown in Figure 4.17.

Figure 4.17

Phase margin and gain margin for the oven control system shown on the Nyquist plot.

Real Axis

Im
ag

in
ar

y
A

xi
s

–1 –0.9 –0.8 –0.7 –0.6 –0.5 –0.4 –0.3 –0.2 –0.1 0
–6

–4

–2

0

2

4

6

System: gdt
Phase Margin (deg): 37.5
Delay Margin (samples): 25.2
At frequency (rad/sec): 2.6
Closed-Loop Stable? Yes

System: gdt
Gain Margin (dB): 10.8
At frequency (rad/sec): 5.25
Closed-Loop Stable? Yes

Re[G(jw)]

Im[G(jw)]

Example 4.11

Determine the closed-loop stability of the digital control system for the position control system
with analog transfer function

	
G s

s s
() =

+()
10

1

and with a sampling period of 0.01. If the system is stable, determine the gain margin and
the phase margin.

Solution
We first obtain the transfer function for the analog plant with ADC and DAC. The transfer
function is given by

	
G z

z

z z
ZAS () = ×

+
−() −()

−4 983 10
0 9967

1 0 99
4.

.

.

Note that the transfer function has a pole at unity because the analog transfer function has
a pole at the origin or is type I. Although such systems require the use of the modified
Nyquist contour, this has no significant impacts on the steps required for stability testing
using the Nyquist criterion. The Nyquist plot obtained using the MATLAB command nyquist
is shown in Figure 4.18.

The plot does not include the large semicircle corresponding to the small semicircle on
the modified contour of Figure 4.9. However, this does not prevent us from investigating
stability. It is obvious that the contour does not encircle the point (−1, 0) because the point
is to the left of the observer moving along the polar plot (lower half). In addition, we can
reach the (−1, 0) point without crossing any of the lines of the Nyquist plot. The system is
stable because the number of closed-loop poles outside the unit circle is given by

	

Z N P= −() +
= + =0 0 0

Figure 4.18

Nyquist plot for the position control system of Example 4.11.

Real Axis

Im
ag

in
ar

y
A

xi
s

–7 –6 –5 –4 –3 –2 –1 0
–10

–8

–6

–4

–2

0

2

4

6

8

10

System: gd
Phase Margin (deg): 17.1
Delay Margin (samples): 9.67
At frequency (rad/sec): 3.08
Closed-Loop Stable? Yes

System: gd
Gain Margin (dB): 26
At frequency (rad/sec): 14.1
Closed-Loop Stable? Yes

Re[G(jw)]

Im[G(jw)]

4.6  Nyquist Criterion   117

118    CHAPTER 4  Stability of Digital Control Systems

The gain margin is 17.1°, and the phase margin is 26 dB. The gain margin and phase
margin can also be obtained using the margin command as shown in Figure 4.19.

Resources
Franklin, G. F., J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems,

Addison-Wesley, 1990.
Gupta, S. C., and L. Hasdorff, Fundamentals of Automatic Control, Wiley, 1970.
Jury, E. I., Theory and Applications of the z-Transform Method, Krieger, 1973.
Kuo, B. C., Digital Control Systems, Saunders, 1992.
Ogata, K., Digital Control Engineering, Prentice Hall, 1987.
Oppenheim, A. V., A. S. Willsky, and I. T. Young, Signals and Systems, Prentice Hall, 1983.
Ragazzini, J. R., and G. F. Franklin, Sampled-Data Control Systems, McGraw-Hill, 1958.

Problems
4.1	 Determine the asymptotic stability and the BIBO stability of the following

systems:
(a)	 y k y k y k u k u k k+() + +() + () = +() + () =2 0 8 1 0 07 2 1 0 2 0 1 2. . . , , , . . .
(b)	 y k y k y k u k u k k+() − +() + () = +() + () =2 0 8 1 0 07 2 1 0 2 0 1 2. . . , , , . . .
(c)	 y k y k y k u k k+() + +() + () = () =2 0 1 1 0 9 3 0 0 1 2. . . , , , . . .

Figure 4.19

Bode diagram with phase margin and gain margin for the position control system of Example
4.11.

–150

–100

–50

0

50

100
M

ag
ni

tu
de

 (
dB

)

10–2 10–1 100 101 102 103
–270

–225

–180

–135

–90

P
ha

se
 (

de
g)

GM = 26 dB (at 14.1 rad/sec), PM = 17.1 deg (at 3.08 rad/sec)

Frequency (rad/sec)

4.2	 Biochemical reactors are used in different processes such as waste treatment
and alcohol fermentation. By considering the dilution rate as the manipulated
variable and the biomass concentration as the measured output, the bio
chemical reactor can be modeled by the following transfer function in the
vicinity of an unstable steady-state operating point3:

	
G s

s
() =

− +
5 8644

5 888 1

.

.

Determine GZAS(z) with a sampling rate T = 0.1, and then consider the
feedback controller

	
C z

z

z
() = −

−
−

1 017

1

.

Verify that the resulting feedback system is not internally stable.

4.3	 Use the Routh-Hurwitz criterion to investigate the stability of the following
systems:

(a)	 G z
z

z z
() =

−()
−() −()

5 2

0 1 0 8. .

(b)	 G z
z

z z
() =

+()
−() −()
10 0 1

0 7 0 9

.

. .

4.4	 Repeat Problem 4.3 using the Jury criterion.

4.5	 Obtain the impulse response for the systems shown in Problem 4.3, and verify
the results obtained using the Routh-Hurwitz criterion. Also determine the
exponential rate of decay for each impulse response sequence.

4.6	 Use the Routh-Hurwitz criterion to find the stable range of K for the closed-
loop unity feedback systems with loop gain

(a)	 G z
K z

z z
() =

−()
−() −()

1

0 1 0 8. .

(b)	 G z
K z

z z
() =

+()
−() −()

0 1

0 7 0 9

.

. .

4.7	 Repeat Problem 4.6 using the Jury criterion.

4.8	 Use the Jury criterion to determine the stability of the following polynomials:
(a)	 z5 + 0.2z4 + z2 + 0.3z − 0.1 = 0
(b)	 z5 − 0.25z4 + 0.1z3 + 0.4z2 + 0.3z − 0.1 = 0

4.9	 Determine the stable range of the parameter a for the closed-loop unity
feedback systems with loop gain

(a)	 G z
z

z a z
() =

−()
−() −()
1 1 1

0 8

.

.

(b)	 G z
z

z a z
() =

+()
−() −()

1 2 0 1

0 9

. .

.

3B. W. Bequette, Process Control: Modeling, Design, and Simulation, Prentice Hall, 2003.

Problems   119

120    CHAPTER 4  Stability of Digital Control Systems

4.10	 For a gain of 0.5, derive the gain margin and phase margin of the systems
shown in Problem 4.5 analytically. Let T = 1 with no loss of generality because
the value of wT in radians is all that is needed for the solution. Explain why
the phase margin is not defined for the system shown in Problem 4.6(a).
Hint: The gain margin is obtained by finding the point where the imaginary
part of the frequency response is zero. The phase margin is obtained by
finding the point where the magnitude of the frequency response is unity.

Computer Exercises
4.11	 Write a computer program to perform the Routh-Hurwitz test using a suitable

CAD tool.

4.12	 Write a computer program to perform the Jury test using a suitable CAD
tool.

4.13	 Write a computer program that uses the Jury test program in Exercise 4.12 to
determine the stability of a system with an uncertain gain K in a given range
[Kmin, Kmax]. Verify the answers obtained for Problem 4.6 using your
program.

4.14	 Show how the program written for Exercise 4.13 can be used to test the
stability of a system with uncertain zero location. Use the program to test the
effect of a ±20% variation in the location of the zero for the systems shown in
Problem 4.6, with a fixed gain equal to half the critical value.

4.15	 Show how the program written for Exercise 4.13 can be used to test the
stability of a system with uncertain pole location. Use the program to test the
effect of a ±20% variation in the location of the first pole for the systems
shown in Problem 4.6, with a fixed gain equal to half the critical value.

4.16	 Simulate the closed-loop systems shown in Problem 4.6 with a unit step input
and (a) gain K equal to half the critical gain and (b) gain K equal to the critical
gain. Discuss their stability using your simulation results.

4.17	 For unity gain, obtain the Nyquist plots of the systems shown in Problem 4.6
using MATLAB and determine the following:
(a)	 The intersection with the real axis using the Nyquist plot and then using

the Bode plot
(b)	 The stable range of positive gains K for the closed-loop unity feedback

systems
(c)	 The gain margin and phase margin for a gain K = 0.5

4.18	 For twice the nominal gain, use MATLAB to obtain the Nyquist and Bode plots
of the systems of the oven control system of Example 4.10 with a sampling
period of 0.01 and determine the following:
(a)	 The intersection with the real axis using the Nyquist plot and then using

the Bode plot

(b)	 The stable range of additional positive gains K for the closed-loop unity
feedback systems

(c)	 The gain margin and phase margin for twice the nominal gain

4.19	 In many applications, there is a need for accurate position control at the
nanometer scale. This is known as nanopositioning and is now feasible
because of advances in nanotechnology. The following transfer function
represents a single-axis nanopositioning system4:

	

G s
s s

s s s
() =

× + + ×()
+ + ×() +

4 29 10 631 2 9 4 10

178 2 6 10 412 3

10 2 6

2 6 2

. . .

. . ss
s s

s s s

+ ×()
+ + ×()

+ + ×() +()

16 10
638 8 45 10

209 7 56 10 5818

6

2 6

2 6

.

.

(a)	 Obtain the DAC-analog system-ADC transfer function for a sampling period
of 100 ms, and determine its stability using the Nyquist criterion.

(b)	 Obtain the DAC-analog system-ADC transfer function for a sampling period
of 1 ms, and determine its stability using the Nyquist criterion.

(c)	 Plot the closed-loop step response of the system of (b), and explain the
stability results of (a) and (b) based on your plot.

4A. Sebastian and S. M. Salapaka, Design methodologies of robust nano-positioning, IEEE Trans.
Control Systems Tech., 13(6), 2005.

Computer Exercises   121

Chapter

5Analog Control System
Design

Objectives
After completing this chapter, the reader will be able to do the following:

1.	 Obtain root locus plots for analog systems.
2.	 Characterize a system’s step response based on its root locus plot.
3.	 Design proportional (P), proportional-derivative (PD), proportional-integral (PI),

and proportional-integral-derivative (PID) controllers in the s-domain.
4.	 Tune PID controllers using the Ziegler-Nichols approach.

Analog controllers can be implemented using analog components or approxi-
mated with digital controllers using standard analog-to-digital transformations. In
addition, direct digital control system design in the z-domain is very similar to the
s-domain design of analog systems. Thus, a review of classical control design is
the first step toward understanding the design of digital control systems. This
chapter reviews the design of analog controllers in the s-domain and prepares the
reader for the digital controller design methods presented in Chapter 6. The reader
is assumed to have had some exposure to the s-domain and its use in control
system design.

5.1  Root Locus
The root locus method provides a quick means of predicting the closed-loop
behavior of a system based on its open-loop poles and zeros. The method is based
on the properties of the closed-loop characteristic equation

	 1 0+ () =KL s 	 (5.1)

where the gain K is a design parameter and L(s) is the loop gain of the system.
We assume a loop gain of the form

124    CHAPTER 5  Analog Control System Design

	 L s

s z

s p

i

i

n

j

j

n

z

p
() =

−()

−()

=

=

∏

∏
1

1

	 (5.2)

where zi, i = 1, 2, . . . , nz, are the open-loop system zeros and pj, j = 1, 2, . . . , np
are the open-loop system poles. It is required to determine the loci of the closed-
loop poles of the system (root loci) as K varies between zero and infinity.1 Because
of the relationship between pole locations and the time response, this gives a
preview of the closed-loop system behavior for different K.

The complex equality (5.1) is equivalent to the two real equalities

■	 Magnitude condition K|L(s)| = 1
■	 Angle condition ∠L(s) = ±(2m + 1)180°, m = 0,1,2,...

Using (5.1) or the preceding conditions, the following rules for sketching root
loci can be derived:

1.	 The number of root locus branches is equal to the number of open-loop
poles of L(s).

2.	 The root locus branches start at the open-loop poles and end at the open-
loop zeros or at infinity.

3.	 The real axis root loci have an odd number of poles plus zeros to their
right.

4.	 The branches going to infinity asymptotically approach the straight lines
defined by the angle

	 θa
p z

m

n n
m= ±

+() °
−

=
2 1 180

0 1 2, , , ,. . . 	 (5.3)

and the intercept

	 σa

i

i

n

j

j

n

p z

p z

n n

p z

=
−

−
= =
∑ ∑

1 1
	 (5.4)

5.	 Breakaway points (points of departure from the real axis) correspond to
local maxima of K, whereas break-in points (points of arrival at the real
axis) correspond to local minima of K.

6.	 The angle of departure from a complex pole pn is given by

	 180
1

1

1

° − ∠ −() + ∠ −()
=

−

=
∑ ∑p p p zn i

i

n

n j

j

np z

	 (5.5)

The angle of arrival at a complex zero is similarly defined.

1In rare cases, negative gain values are allowed, and the corresponding root loci are obtained.
Negative root loci are not addressed in this text.

5.1  Root Locus   125

Example 5.1

Sketch the root locus plots for the loop gains

1.	 L s
s s

() =
+() +()

1

1 3

2.	 L s
s s s

() =
+() +() +()

1

1 3 5

3.	 L s
s

s s
() = +

+() +()
5

1 3

Comment on the effect of adding a pole or a zero to the loop gain.

Solution
The root loci for the three loop gains as obtained using MATLAB are shown in Figure 5.1.
We now discuss how these plots can be sketched using root locus sketching rules.

Figure 5.1

Root loci of second- and third-order systems. (a) Root locus of a second-order system.
(b) Root locus of a third-order system. (c) Root locus of a second-order system with zero.

1
0.8
0.6
0.4
0.2

–0.2
–0.4
–0.6
–0.8

–1
–3 –2.5 –1.5 –0.5 0

Real Axis
(a) (b)

Im
ag

in
ar

y
A

xi
s

–1–2

0

5

4

3

–1
–2.5 –1.5 0 0.5

Real Axis

Im
ag

in
ar

y
A

xi
s

–0.5–2 –1

0

1

2

(c)

4

3

1

–4

–3

–9 –8 –7 –5 0 1
Real Axis

Im
ag

in
ar

y
A

xi
s

–1–2–3–4–6

–2

–1

0

2

126    CHAPTER 5  Analog Control System Design

1.	 Using rule 1, the function has two root locus branches. By rule 2, the branches start
at −1 and −3 and go to infinity. By rule 3, the real axis locus is between (−1) and
(−3). Rule 4 gives the asymptote angles

	

θa

m
m= ±

+() °
=

= ± ° ± °

2 1 180

2
0 1 2

90 270

, , , , . . .

, , . . .

and the intercept

	
σa =

− −
= −

1 3

2
2

To find the breakaway point using Rule 5, we express real K using the characteristic
equation as

	 K = − +() +() = − + +()σ σ σ σ1 3 4 32

We then differentiate with respect to s and equate to zero for a maximum to obtain

	
− = + =

dK

dσ
σ2 4 0

Hence, the breakaway point is at sb = −2. This corresponds to a maximum of K because
the second derivative is equal to −2 (negative). It can be easily shown that for any system
with only two real axis poles, the breakaway point is midway between the two poles.

2.	 The root locus has three branches, with each branch starting at one of the open-loop
poles (−1, −3, −5). The real axis loci are between −1 and −3 and to the left of −5.
The branches all go to infinity, with one branch remaining on the negative real axis
and the other two breaking away. The breakaway point is given by the maximum of
the real gain K

	 K = − +() +() +()σ σ σ1 3 5

Differentiating gives

	

− = +() +() + +() +() + +() +()

= + +
=

dK

dσ
σ σ σ σ σ σ

σ σ

1 3 3 5 1 5

3 18 23

0

2

which yields sb = −1.845 or −4.155. The first value is the actual breakaway point
because it lies on the real axis locus between the poles and −1 and −3. The second
value corresponds to a negative gain value and is therefore inadmissible. The gain at
the breakaway point can be evaluated from the magnitude condition and is given by

	 K = − − +() − +() − +() =1 845 1 1 845 3 1 845 5 3 079. . . .

The asymptotes are defined by the angles

	

θa

m
m= ±

+() °
=

= ± ° ± °

2 1 180

3
0 1 2

60 180

, , , , . . .

, , . . .

5.1  Root Locus   127

and the intercept by

	
σa =

− − −
= −

1 3 5

3
3

The closed-loop characteristic equation corresponds to the Routh table

	

s

s

s

s

K

K

K

3

2

1

0

1 23

9 15

192

9

15

+
−

+

Thus, at K = 192, a zero row results. This value defines the auxiliary equation

	 9 207 02s + =

Thus, the intersection with the jw-axis is ± j4.796 rad/s.

3.	 The root locus has two branches as in (1), but now one of the branches ends at the
zero. From the characteristic equation, the gain is given by

	
K = −

+() +()
+

σ σ
σ
1 3

5

Differentiating gives

	

dK

dσ
σ σ σ σ σ

σ
σ σ

σ

= −
+ + +() +() − +() +()

+()

= −
+ +

+()
=

1 3 5 1 3

5

10 17

5

0

2

2

2

which yields sb = −2.172 or −7.828. The first value is the breakaway point because
it lies between the poles, whereas the second value is to the left of the zero and cor-
responds to the break-in point. The second derivative

	

d K

d

2

2

2

3

3

2 10 5 2 10 17

5

16 5

σ
σ σ σ σ

σ
σ

= −
+() +() − + +()

+()
= − +()

is negative for the first value and positive for the second value. Hence, K has a
maximum at the first value and a minimum at the second. It can be shown that the
root locus is a circle centered at the zero with radius given by the geometric mean of
the distances between the zero and the two real poles.

Clearly, adding a pole pushes the root locus branches toward the RHP, whereas
adding a zero pulls them back into the left half plane. Thus, adding a zero allows

128    CHAPTER 5  Analog Control System Design

the use of higher gain values without destabilizing the system. In practice, the
allowable increase in gain is limited by the cost of the associated increase in
control effort and by the possibility of driving the system outside the linear range
of operation.

5.2  Root Locus Using MATLAB
While the above rules together with (5.1) allow the sketching of root loci for any
loop gain of the form (5.2), it is often sufficient to use a subset of these rules to
obtain the root loci. For higher-order or more complex situations, it is easier to
use a CAD tool like MATLAB. These packages do not actually use root locus sketch-
ing rules. Instead they numerically solve for the roots of the characteristic equation
as K is varied in a given range and then display the root loci.

The MATLAB command to obtain root locus plots is “rlocus”. To obtain the
root locus of the system

	
G s

s

s s
() = +

+ +
5

2 102

using MATLAB enter

>> g = tf([1, 5], [1, 2, 10]);

>> rlocus(g);

To obtain specific points on the root locus and the corresponding data, we
simply click or the root locus. Dragging the mouse allows us to change the refer-
enced point to obtain more data.

5.3  Design Specifications and the Effect  
of Gain Variation

The objective of control system design is to construct a system that has a desirable
response to standard inputs. A desirable transient response is one that is suffi-
ciently fast without excessive oscillations. A desirable steady-state response is one
that follows the desired output with sufficient accuracy. In terms of the response
to a unit step input, the transient response is characterized by the following
criteria:

1.	 Time constant t. Time required to reach about 63% of the final value.
2.	 Rise time Tr. Time to go from 10% to 90% of the final value.
3.	 Percentage overshoot (PO).

	
PO

Peak value Final value

Final value
=

−
×100%

4.	 Peak time Tp. Time to first peak of an oscillatory response.
5.	 Settling time Ts. Time after which the oscillatory response remains

within a specified percentage (usually 2 percent) of the final value.

Clearly, the percentage overshoot and the peak time are intended for use with
an oscillatory response (i.e., for a system with at least one pair of complex con-
jugate poles). For a single complex conjugate pair, these criteria can be expressed
in terms of the pole locations.

Consider the second-order system

	 L s
s s

n

n n

() =
+ +

w
zw w

2

2 22
	 (5.6)

where z is the damping ratio and wn is the undamped natural frequency. Then
criteria 3 through 5 are given by

	 PO e= ×
−

−

πz

z1 2
100% 	 (5.7)

	 Tp
d n

= =
−

π
w

π
w z1 2

	 (5.8)

	 Ts
n

=
4

zw
	 (5.9)

From (5.7) and (5.9), the damping ratio z is an indicator of the oscillatory nature
of the response, with excessive oscillations occurring at low z values. Hence, z is
used as a measure of the relative stability of the system. From (5.8), the time to
first peak drops as the undamped natural frequency wn increases. Hence, wn is used
as a measure of speed of response. For higher-order systems, these measures and
equations (5.7) through (5.9) can provide approximate answers if the time response
is dominated by a single pair of complex conjugate poles. This occurs if additional
poles and zeros are far in the left half plane or almost cancel. For systems with
zeros, the percentage overshoot is higher than predicted by (5.7) unless the zero
is located far in the LHP or almost cancels with a pole. However, equations (5.7)
through (5.9) are always used in design because of their simplicity.

Thus, the design process reduces to the selection of pole locations and the
corresponding behavior in the time domain. The root locus summarizes informa-
tion on the time response of a closed-loop system as dictated by the pole locations
in a single plot. Together with the previously stated criteria, it provides a
powerful design tool, as demonstrated by the next example.

Example 5.2

Discuss the effect of gain variation on the time response of the position control system
described in Example 3.3 with

	
L s

s s p
() =

+()
1

5.3  Design Specifications and the Effect of Gain Variation   129

130    CHAPTER 5  Analog Control System Design

Solution
The root locus of the system is similar to that of Example 5.1(1), and it is shown in Figure
5. 2(a) for p = 4. As the gain K is increased, the closed-loop system poles become complex
conjugate; then the damping ratio z decreases progressively. Thus, the relative stability of
the system deteriorates for high gain values. However, large gain values are required to
reduce the steady-state error of the system due to a unit ramp, which is given by

	
e

K

p

Kv

∞() = =%
100 100

In addition, increasing K increases the undamped natural frequency wn (i.e., the mag-
nitude of the pole), and hence the speed of response of the system increases. Thus, the
chosen gain must be a compromise value that is large enough for a low steady-state error
and an acceptable speed of response, but small enough to avoid excessive oscillations. The
time response for a gain of 10 is shown in Figure 5.2(b).

Figure 5.2

Use of the root locus in the design of a second-order system. (a) Root locus for a = 4. (b) Step
response for K = 10.

–4 –2 0 2
–4

–3

–2

–1

0

1

2

3

4

σ

jω

Time s

Amplitude

(b)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

(a)

The preceding example illustrates an important feature of design—namely, that
it typically involves a compromise between conflicting requirements. The designer
must always remember this when selecting design specifications so as to avoid
over-optimizing some design criteria at the expense of others.

Note that the settling time of the system does not change in this case when
the gain is increased. For a higher-order system or a system with a zero, this is
usually not the case. Yet for simplicity the second-order equations (5.7) through
(5.9) are still used in design. The designer must always be alert to errors that this
simplification may cause. In practice, design is an iterative process where the
approximate results from the second-order approximation are checked and, if
necessary, the design is repeated until satisfactory results are obtained.

5.4  Root Locus Design
Laplace transformation of a time function yields a function of the complex
variable s that contains information about the transformed time function. We can
therefore use the poles of the s-domain function to characterize the behavior
of the time function without inverse transformation. Figure 5.3 shows pole
locations in the s-domain and the associated time functions. Real poles are associ-
ated with an exponential time response that decays for LHP poles and increases
for RHP poles. The magnitude of the pole determines the rate of exponential
change. A pole at the origin is associated with a unit step. Complex conjugate
poles are associated with an oscillatory response that decays exponentially for
LHP poles and increases exponentially for RHP poles. The real part of the pole
determines the rate of exponential change, and the imaginary part determines
the frequency of oscillations. Imaginary axis poles are associated with sustained
oscillations.

The objective of control system design in the s-domain is to indirectly select a
desirable time response for the system through the selection of closed-loop pole
locations. The simplest means of shifting the system poles is through the use of
an amplifier or proportional controller. If this fails, then the pole locations can be
more drastically altered by adding a dynamic controller with its own open-loop
poles and zeros.

As Examples 5.1 and 5.2 illustrated, adding a zero to the system allows the
improvement of its time response because it pulls the root locus into the LHP.
Adding a pole at the origin increases the type number of the system and reduces
its steady-state error but may adversely affect the transient response. If an improve-
ment of both transient and steady-state performance is required, then it may be
necessary to add two zeros as well as a pole at the origin. At times, more complex
controllers may be needed to achieve the desired design objectives.

The controller could be added in the forward path, in the feedback path, or
in an inner loop. A prefilter could also be added before the control loop to allow
more freedom in design. Several controllers could be used simultaneously, if
necessary, to meet all the design specifications. Examples of these control con-
figurations are shown in Figure 5.4.

In this section, we review the design of analog controllers. We restrict the
discussion to proportional (P), proportional-derivative (PD), proportional-integral

5.4  Root Locus Design   131

132    CHAPTER 5  Analog Control System Design

(PI), and proportional-integral-derivative (PID) control. Similar procedures can be
developed for the design of lead, lag, and lag-lead controllers.

5.4.1  Proportional Control

Gain adjustment or proportional control allows the selection of closed-loop pole
locations from among the poles given by the root locus plot of the system loop

Figure 5.3

Pole locations and the associated time responses.

0 5
–1.5

–1
–0.5

0
0.5

1
1.5

2
2.5

3

0 5
–0.4
–0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 5
–2

–1.5
–1

–0.5
0

0.5
1

1.5
2

0 5
–250
–200
–150
–100
–50

0
50

100
150

ω

σ
¥ ¥¥¥ ¥

¥ ¥

¥

¥

0 0.5 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 0 5
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0

50

100

150

0 1 2
0

50
100
150
200
250
300
350
400
450

gain. For lower-order systems, it is possible to design proportional control systems
analytically, but a sketch of the root locus is still helpful in the design process, as
seen from the following example.

Example 5.3

A position control system (see Example 3.3) with load angular position as output and motor
armature voltage as input consists of an armature-controlled DC motor driven by a power
amplifier together with a gear train. The overall transfer function of the system is

	
G s

K

s s p
() =

+()

Design a proportional controller for the system to obtain

1.	 A specified damping ratio z
2.	 A specified undamped natural frequency wn

Figure 5.4

Control configurations. (a) Cascade compensation. (b) Feedback compensation. (c) Inner loop
feedback compensation.

−

+

+

−

(a)

(b)

Plant

Plant

Controller

Controller

Output

Output

Reference
Input

Reference
Input

+

−

(c)

+

+

Actuator
and Plant

Feedback
Controller

Cascade
Controller

Output
Reference

Input

5.4  Root Locus Design   133

134    CHAPTER 5  Analog Control System Design

Solution
The root locus of the system was discussed in Example 5.2 and shown in Figure 5.2(a).
The root locus remains in the LHP for all positive gain values. The closed-loop characteris-
tic equation of the system is given by

	 s s p K s sn n+() + = + + =2 22 0zw w

Equating coefficients gives

	 p Kn n= =2 2zw w
which can be solved to yield

	
w zn K

p

K
= =

2

Clearly, with one free parameter either z or wn can be selected, but not both. We now
select a gain value that satisfies the design specifications.

1.	 If z is given and p is known, then the gain of the system and its undamped natural
frequency are obtained from the equations

	
K

p p
n= 


 =

2 2

2

z
w

z

2.	 If wn is given and p is known, then the gain of the system and its damping ratio are
obtained from the equations

	
K

p
n

n

= =w z
w

2

2

The preceding example reveals some of the advantages and disadvantages of
proportional control. The design is simple, and this simplicity carries over to
higher-order systems if a CAD tool is used to assist in selecting the pole locations.
Using cursor commands, the CAD tools allow the designer to select desirable pole
locations from the root locus plot directly. The step response of the system can
then be examined using the MATLAB command step. But the single free param-
eter available limits the designer’s choice to one design criterion. If more than
one aspect of the system time response must be improved, a dynamic controller
is needed.

5.4.2  PD Control

As seen from Example 5.1, adding a zero to the loop gain improves the time
response in the system. Adding a zero is accomplished using a cascade or feedback
controller of the form

	
C s K K s K s a

a K K

p d d

p d

() = + = +()

=
	 (5.10)

This is known as a proportional-derivative, or PD, controller. The deriva-
tive term is only approximately realizable and is also undesirable because differ-
entiating a noisy input results in large errors. However, if the derivative of the
output is measured, an equivalent controller is obtained without differentiation.
Thus, PD compensation is often feasible in practice.

The design of PD controllers depends on the specifications given for the closed-
loop system and on whether a feedback or cascade controller is used. For a
cascade controller, the system block diagram was shown in Figure 5.4(a) and the
closed-loop transfer function is of the form

	

G s
G s C s

G s C s

K s a N s

D s K s a N s

cl

d

d

() = () ()
+ () ()

=
+() ()

() + +() ()

1
	 (5.11)

where N(s) and D(s) are the numerator and denominator of the open-loop gain,
respectively. Pole-zero cancellation occurs if the loop gain has a pole at (−a). In
the absence of pole-zero cancellation, the closed-loop system has a zero at (−a),
which may drastically alter the time response of the system. In general, the zero
results in greater percentage overshoot than is predicted using (5.7).

Figure 5.5 shows feedback compensation including a preamplifier in cascade
with the feedback loop and an amplifier in the forward path. We show that both
amplifiers are often needed. The closed-loop transfer function is

	
G s

K K G s

K G s C s

K K N s

D s K K s a N s

cl
p a

a

p a

a d

() =
()

+ () ()

=
()

() + +() ()

1 	 (5.12)

where Ka is the feedforward amplifier gain and Kp is the preamplifier gain. Note
that although the loop gain is the same for both cascade and feedback compensa-
tion, the closed-loop system does not have a zero at (−a) in the feedback case. If D(s)
has a pole at (−a), the feedback-compensated system has a closed-loop pole at (−a)
that appears to cancel with a zero in the root locus when in reality it does not.

Figure 5.5

Block diagram of a PD feedback compensated system.

Amplifier
Ka

Plant
G(s)

+

−

PD Compensator
Kd (s + a)

Preamplifier
Kp

R(s) Y(s)

5.4  Root Locus Design   135

136    CHAPTER 5  Analog Control System Design

In both feedback and cascade compensation, two free design parameters are
available and two design criteria can be selected. For example, if the settling time
and percentage overshoot are specified, the steady-state error can only be checked
after the design is completed and cannot be independently chosen.

Example 5.4

Design a PD controller for the type 1 system described in Example 5.3 to meet the following
specifications:

1.	 Specified z and wn

2.	 Specified z and steady-state error e(∞)% due to a ramp input

Consider both cascade and feedback compensation, and compare them using a numerical
example.

Solution
The root locus of the PD-compensated system is of the form of Figure 5.1(3). This shows
that the system gain can be increased with no fear of instability. Even though this example
is solved analytically, a root locus plot is needed to give the designer a feel for the variation
in pole locations with gain.

With a PD controller the closed-loop characteristic equation is of the form

	

s ps K s a s p K s Ka

s sn n

2 2

2 22

+ + +() = + +() +
= + +zw w

where K = Kd for cascade compensation and K = Ka Kd for feedback compensation.
Equating coefficients gives the equations

	 Ka p Kn n= + =w zw2 2

1.	 In this case, there is no difference between (K, a) in cascade and in feedback com-
pensation. But the feedback case requires a preamplifier with the correct gain to yield
zero steady-state error due to unit step. We examine the steady-state error in part 2.
In either case, solving for K and a gives

	
K p a

p
n

n

n

= − =
−

2
2

2

zw w
zw

2.	 For cascade compensation, the velocity error constant of the system is

	
K

Ka
p e

v = =
∞()

100

%

The undamped natural frequency is fixed at

	 wn vKa pK= =
Solving for K and a gives

	
K pK p a

pK

pK p
v

v

v

= − =
−

2
2

z
z

For feedback compensation with preamplifier gain Kp and cascade amplifier gain Ka, as
in Figure 5.5, the error is given by

	

R s Y s R s
K K

s p K s Ka

R s
s p K s Ka K

p a

p

() − () = () −
+ +() +







= ()
+ +() + −

1
2

2 KK

s p K s Ka
a

2 + +() +
Using the final value theorem gives the steady-state error due to a unit ramp input as

	
e s

s

s p K s Ka K K

s p K s Kas

p a∞() = 





+ +() + −
+ +() +

×
→

% %Lim
0 2

2

2

1
100

This error is infinite unless the amplifier gain is selected such that KpKa = Ka. The steady-
state error is then given by

	
e

p K

Ka
∞() =

+
×% %100

The steady-state error e(∞) is simply the percentage error divided by 100. Hence, using the
equations governing the closed-loop characteristic equation

	
Ka

p K

e e
n

n=
+
∞()

=
∞()

=
2 2zw w

the undamped natural frequency is fixed at

	
w z

n
e

=
∞()

2

Then solving for K and a we obtain

	
K

e
p=

∞()
−

4 2z

	
a

e pe
=

∞() − ∞()()
4

4

2

2

z
z

Note that, unlike cascade compensation, wn can be freely selected if the steady-state
error is specified and z is free. To further compare cascade and feedback compensation,
we consider the system with the pole p = 4, and require z = 0.7 and wn = 10 rad/s for part
1. These values give K = Kd = 10 and a = 10. In cascade compensation, (5.11) gives the
closed-loop transfer function

	
G s

s

s s
cl () = +()

+ +
10 10

14 1002

For feedback compensation, amplifier gains are selected such that the numerator is equal
to 100 for unity steady-state output due to unit step input. For example, one may select

	
K K
K a

p a

d

= =
= =

10 10
1 10

,
,

5.4  Root Locus Design   137

138    CHAPTER 5  Analog Control System Design

Substituting in (5.12) gives the closed-loop transfer function

	
G s

s s
cl () =

+ +
100

14 1002

The responses of the cascade- and feedback-compensated systems are shown together in
Figure 5.6. The PO for the feedback case can be predicted exactly using (5.7) and is equal
to about 4.6%. For cascade compensation, the PO is higher due to the presence of the
zero. The zero is at a distance from the imaginary axis less than one and a half times
the negative real part of the complex conjugate poles. Therefore, its effect is significant, and
the PO increases to over 10% with a faster response.

For part 2 with p = 4, we specify z = 0.7, and a steady-state error of 4%. Cascade
compensation requires K = 10, a = 10. These are identical to the values of part (i) and
correspond to an undamped natural frequency wn = 10 rad/s.

For feedback compensation we obtain K = 45, a = 27.222. Using (5.12) gives the
closed-loop transfer function

	
G s

s s
cl () =

+ +
1225

49 12252

with wn = 35 rad/s.
The responses of cascade- and feedback-compensated systems are shown in Figure

5.7. The PO for the feedback-compensated case is still 4.6% as calculated using (5.7). For
cascade compensation, the PO is higher due to the presence of the zero that is close to the
complex conjugate poles.

Figure 5.6

Step response of PD cascade (dotted) and feedback (solid) compensated systems with a given
damping ratio and undamped natural frequency.

0
0

0.2

1.2

1

0.2 0.4

0.4

0.6

0.6

O
ut

pu
t

0.8

0.8

1
Time s

Although the response of the feedback-compensated system is superior, several
amplifiers are required for its implementation with high gains. The high gains may cause
nonlinear behavior such as saturation in some situations.

Having demonstrated the differences between cascade and feedback compen-
sation, we restrict our discussion in the sequel to cascade compensation. Similar
procedures can be developed for feedback compensation.

Example 5.4 is easily solved analytically because the plant is only second order.
For higher-order systems, the design is more complex, and a solution using CAD
tools is preferable. We develop design procedures using CAD tools based on the
classical graphical solution methods. These procedures combine the convenience
of CAD tools and the insights that have made graphical tools successful. The pro-
cedures find a controller transfer function such that the angle of its product with
the loop gain function at the desired pole location is an odd multiple of 180°.
From the angle condition, this ensures that the desired location is on the root
locus of the compensated system. The angle contribution required from the
controller for a desired closed-loop pole location scl is

	 θC clL s= ± ° − ∠ ()180 	 (5.13)

where L(s) is the open-loop gain with numerator N(s) and denominator D(s). For
a PD controller, the controller angle is simply the angle of the zero at the desired

Figure 5.7

Step response of PD cascade (dotted) and feedback (solid) compensated systems with a given
damping ratio and steady-state error.

0
0

0.2

1.2

1

0.2 0.4

0.4

0.6

0.6

O
ut

pu
t

0.8

0.8

1
Time s

5.4  Root Locus Design   139

140    CHAPTER 5  Analog Control System Design

pole location. Applying the angle condition at the desired closed-loop location, it
can be shown that the zero location is given by

	 a d

C
n=

()
+

w
θ

zw
tan

	 (5.14)

The proof of (5.13) and (5.14) is straightforward and is left as an exercise (see
Problem 5.5).

In some special cases, a satisfactory design is obtained by cancellation, or near
cancellation, of a system pole with the controller zero. The desired specifications
are then satisfied by tuning the reduced transfer function’s gain. In practice, exact
pole-zero cancellation is impossible. However, with near cancellation the effect
of the pole-zero pair on the time response is usually negligible.

A key to the use of powerful calculators and CAD tools in place of graphical
methods is the ease with which transfer functions can be evaluated for any
complex argument using direct calculation or cursor commands. The following
CAD procedure exploits the MATLAB command evalfr to obtain the design
parameters for a specified damping ratio and undamped natural frequency. The
command evalfr evaluates a transfer function g for any complex argument s as
follows:

>> evalfr(g, s)

The angle command gives the angle of any complex number. The complex value
and its angle can also be evaluated using any hand calculator.

Procedure 5.1:  Given z and wn

MATLAB or Calculator

1.	 Calculate the angle of the loop gain function evaluated at the desired location
scl, and subtract the angle from p using a hand calculator or the MATLAB
commands evalfr and angle.

2.	 Calculate the zero location using equation (5.14) using tan(theta), where theta
is in radians.

3.	 Calculate the magnitude of the numerator of the new loop gain function, including
the controller zero, using the command abs and the * pole-zero operator to mul-
tiply transfer functions; then calculate the gain using the magnitude condition.

4.	 Check the time response of the PD-compensated system, and modify the design
to meet the desired specifications if necessary. Most currently available calcu-
lators cannot perform this step.

The following MATLAB function calculates the gain and zero location for PD
control.

% L is the open loop gain
% zeta and wn specify the desired closed-loop pole
% scl is the closed-loop pole, theta is the controller angle at scl
% k (a) are the corresponding gain (zero location)

function [k, a, scl] = pdcon(zeta, wn, L)
scl = wn*exp(j*(pi-acos(zeta))); % Find the desired closed-loop
     % pole location.
theta = pi - angle(evalfr(L, scl)) ; % Calculate the controller
  % angle.
a = wn * sqrt(1-zeta∧2)/ tan(theta) + zeta*wn; % Calculate the
  % controller zero.
Lcomp = L*tf([1, a],1) ; % Include the controller zero.
k = 1/abs(evalfr(Lcomp, scl)); % Calculate the gain that yields the
   %  desired pole.

For a specified steady-state error, the system gain is fixed and the zero location
is varied. Other design specifications require varying parameters other than the
gain K. Root locus design with a free parameter other than the gain is performed
using the following procedure.

Procedure 5.2:  Given Steady-State Error and z
1.	 Obtain the error constant from the steady-state error, and determine a system

parameter that remains free after the error constant is fixed for the system with
PD control.

2.	 Rewrite the closed-loop characteristic equation of the PD-controlled system in
the form

	 1 0+ () =K G sf f 	 (5.15)

where Kf is a gain dependent on the free system parameter and Gf(s) is a func-
tion of s.

3.	 Obtain the value of the free parameter Kf corresponding to the desired closed-
loop pole location. As in Procedure 5.1, Kf can be obtained by applying the
magnitude condition using MATLAB or a calculator.

4.	 Calculate the free parameter from the gain Kf using the MATLAB command
rlocus.

5.	 Check the time response of the PD-compensated system, and modify the design
to meet the desired specifications if necessary.

Example 5.5

Using a CAD package, design a PD controller for the type 1 position control system of
Example 3.3 with transfer function

	
G s

s s
() =

+()
1

4

5.4  Root Locus Design   141

142    CHAPTER 5  Analog Control System Design

to meet the following specifications:
1.	 z = 0.7 and wn = 10 rad/s.
2	 z = 0.7 and 4% steady-state error due to a unit ramp input.

Solution
1.	 We solve the problem using Procedure 5.1 and the MATLAB function pdcon. Figure

5.8 shows the root locus of the compensated plot with the desired pole location at
the intersection of the radial line for a damping ratio of 0.7 and the circular arc for
an undamped natural frequency of 10. A compensator angle of 67.2 is obtained using
(5.13) with a hand calculator or MATLAB. The MATLAB function pdcon gives

>> [k, a, scl] = pdcon(0.7, 10,tf(1, [1,4,0]))
k =
   10.0000
a =
   10.0000
scl =
  -7.0000 + 7.1414i

Figure 5.9 shows the root locus of the compensated plot with the cursor at the desired
pole location and a corresponding gain of 10. The results are approximately equal to
those obtained analytically in Example 5.4.

2.	 The specified steady-state error gives

	
K

e

Ka
Kav = ∞()

= = = ⇒ =
100 100

4
25

4
100

% %

Figure 5.8

Root locus plot of uncompensated systems.

–8 –7 –6 –5 –4 –3 –2 –1 0
0

1

2

3

4

5

6

7

8

0.7

Real Axis

Im
ag

in
ar

y
A

xi
s

The closed-loop characteristic equation of the PD-compensated system is given by

	
1

4
0+

+
+()

=K
s a

s s

Let K vary with a so that their product Ka remains equal to 100; then Procedure 5.2 requires
that the characteristic equation be rewritten as

	
1

4 100
0

2
+

+ +
=K

s

s s

The corresponding root locus is a circle centered at the origin as shown in Figure 5.10
with the cursor at the location corresponding to the desired damping ratio. The desired
location is at the intersection of the root locus with the z = 0.7 radial line. The correspond-
ing gain value is K = 10, which yields a = 10, that is, the same values as in Example 5.3.
We obtain the value of K using the MATLAB commands

>> g = tf([1, 0], [1, 4, 100]); rlocus(g)

(Click on the root locus and drag the mouse until the desired gain is obtained.)
The time responses of the two designs are identical and were obtained earlier as the

cascade-compensated responses of Figures 5.6 and 5.7, respectively.

Figure 5.9

Root locus plot of PD-compensated systems.

–20 –18 –16 –14 –12 –10 –8 –6 –4 –2 0
–8

–6

–4

–2

0

2

4

6

8
0.7

0.7

10

System: gcomp
Gain: 10
Pole: –7.01 + 7.13i
Damping: 0.701
Overshoot (%): 4.56
Frequency (rad/sec): 10

Real Axis

Im
ag

in
ar

y
A

xi
s

5.4  Root Locus Design   143

144    CHAPTER 5  Analog Control System Design

5.4.3  PI Control

Increasing the type number of the system drastically improves its steady-state
response. If an integral controller is added to the system, its type number is
increased by one but its transient response deteriorates or the system becomes
unstable. If a proportional control term is added to the integral control, the con-
troller has a pole and a zero. The transfer function of the proportional-integral
(PI) controller is

	
C s K

K

s
K

s a

s
a K K

p
i

p

i p

() = + =
+

=
	 (5.16)

and is used in cascade compensation. An integral term in the feedback path is
equivalent to a differentiator in the forward path and is therefore undesirable (see
Problem 5.6).

PI design for a plant transfer function G(s) can be viewed as PD design for the
plant G(s)/s. Thus, Procedure 5.1 or 5.2 can be used for PI design. However, a better
design is often possible by placing the controller zero close to the pole at the origin
so that the controller pole and zero “almost cancel.” An almost canceling pole-zero
pair has a negligible effect on the time response. Thus, the PI controller results in
a small deterioration in the transient response with a significant improvement in the
steady-state error. The following procedure can be used for PI controller design.

Figure 5.10

Root locus plot of PD-compensated systems with Ka fixed.

10

8

6

4

2

–2

–4

–6

–8

–10
–10 –5 0–15

0

Real Axis

Im
ag

in
ar

y
A

xi
s

System: g
Gain: 10
Pole: –6.99 + 7.13i
Damping: 0.7
Overshoot (%): 4.59
Frequency (rad/sec): 9.98

Procedure 5.3
1.	 Design a proportional controller for the system to meet the transient response

specifications (i.e., place the dominant closed-loop system poles at a desired
location scl = −zwn ± jwd).

2.	 Add a PI controller with the zero location specified by

	 a n=
+ − ()

w
z z φ1 2 tan

	 (5.17)

or

	 a n=
ξw
10

	 (5.18)

where f is a small angle (3 → 5°).

3.	 Tune the gain of the system to move the closed-loop pole closer to scl.

4.	 Check the system time response.

If a PI controller is used, it is implicitly assumed that proportional control meets
the transient response but not the steady-state error specifications. Failure of the
first step in Procedure 5.3 indicates that a different controller (one that improves
both transient and steady-state behavior) must be used.

To prove (5.17) and justify (5.18), we use the pole-zero diagram of Figure 5.11.
The figure shows the angle contribution of the controller at the closed-loop pole
location scl. The contribution of the open-loop gain L(s) is not needed and is not
shown.

Proof.  The controller angle at scl is

	 − = − = ° −() − ° −()φ θ θ θ θz p p z180 180

5.4  Root Locus Design   145

Figure 5.11

Pole-zero diagram of a PI controller.

a

jω

σ

ζωn

ωd

θz =∠ (scl + a)
θ p=∠scl

scl

×

146    CHAPTER 5  Analog Control System Design

From Figure 5.11, the tangents of the two angles in the preceding equation are

	
tan 180

1 2

° −() = =
−θ w

zw
z

zp
d

n

	
tan 180

1 2

° −() =
−

=
−
−

θ w
zw

z
zz

d

n a x

where x is the ratio (a/wn). Next we use the trigonometric identity

	
tan

tan tan

tan tan
A B

A B

A B
−() = () − ()

+ () ()1

to obtain

	

tan φ

z
z

z
z

z
z z

z
z

() =

−
−

− −

+ −
−()

=
−

−

1 1

1
1

1

1

2 2

2

2x

x

x

x

Solving for x, we have

	
x =

+ − ()
1

1 2z z φtan

Multiplying by wn gives (5.17).
If the controller zero is chosen using (5.8), then x = z/10. Solving for f we obtain

	
φ z z

z
=

−
−







−tan 1
2

2

1

10

This yields the plot of Figure 5.12, which clearly shows an angle f of 3° or less.	� ■

The use of Procedure 5.1 or Procedure 5.3 to design PI controllers is demon-
strated in the following example.

Example 5.6

Design a controller for the position control system

	
G s

s s
() =

+()
1

10

to perfectly track a ramp input and have a dominant pair with a damping ratio of 0.7 and
an undamped natural frequency of 4 rad/s.

Solution
Design 1
Apply Procedure 5.1 to the modified plant

	
G s

s s
i () =

+()
1

102

This plant is unstable for all gains as seen from its root locus plot of Figure 5.13. The con-
troller must provide an angle of about 111° at the desired closed-loop pole location. Sub-
stituting in (5.14) gives a zero at −1.732. Then moving the cursor to the desired pole
location on the root locus of the compensated system (Figure 5.14) gives a gain of about
40.6.

The design can also be obtained analytically by writing the closed-loop characteristic
polynomial as

	

s s Ks Ka s s s

s s

n n

n n n

3 2 2 2

3 2 2

10 2

2 2

+ + + = +() + +()
= + +() + +(

α zw w
α zw zw α w)) +s nαw2

Then equating coefficients gives

	

α zw
w zα w

= − = − ()() =
= +() = × ()() +[] =

10 2 10 2 0 7 4 4 4

2 4 2 0 7 4 4 4 4

n

n nK

. .

. . 00 64

4 4 4

40 64
1 732

2 2

.

.

.
.a

K
n= =

×
=

αw

which are approximately the same as the values obtained earlier.

Figure 5.12

Plot of the controller angle f at the underdamped closed-loop pole versus z.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

1

1.5

2

2.5

3

3.5
φ

ζ

5.4  Root Locus Design   147

148    CHAPTER 5  Analog Control System Design

Figure 5.14

Root locus of a PI compensated system.

5

4.5

3

4

2

1.5

1

0.5

0
–2 –1–1.5 –0.5 0–5 –4–4.5 –3.5 –2.5–3

2.5

3.5

Real Axis

Im
ag

in
ar

y
A

xi
s

System: l
Gain: 40.7
Pole: –2.8 + 2.87i
Damping: 0.698
Overshoot (%): 4.69
Frequency (rad/sec): 4.01

Figure 5.13

Root locus of a system with an integrator.

–10 –8 –6 –4 –2 0
0

1

2

3

4

5

6

0.7

4

Real Axis

Im
ag

in
ar

y
A

xi
s

The MATLAB commands to obtain the zero location and the corresponding gain are

>> g = tf(1, [1, 10, 0, 0]); scl = 4*(−0.7 + j * sqrt(1 − 0.7Ÿ2))

scl = −2.8000 + 2.8566i

>> theta = pi − angle(polyval([1, 10, 0, 0], scl))

theta = 1.9285

>> a = imag(scl)/tan(theta) − real(scl)

a = 1.7323

>> k = 1/abs(evalfr(g * tf([1, a],1), scl))

k = 40.6400

The closed-loop transfer function for the preceding design (Design 1) is

	

G s
s

s s s

s

s

cl () = +()
+ + +

=
+()

+

40 64 1 732

10 40 64 69 28

40 64 1 732

3 2

. .

. .

. .

44 4 5 6 162. .() + +()s s

The system has a zero close to the closed-loop poles, which results in excessive
overshoot in the time response of Figure 5.15 (together with the response for a later
design).

Figure 5.15

Step response of a PI compensated system: Design 1 (dotted), Design 2 (solid).

0

0.5

1

0 1 2 3 4 5
Time s

O
ut

pu
t

5.4  Root Locus Design   149

150    CHAPTER 5  Analog Control System Design

Design 2
Next, we apply Procedure 5.3 to the same problem. The proportional control gain for a
damping ratio of 0.7 is approximately 51.02 and yields an undamped natural frequency of
7.143 rad/s. This is a faster design than required and is therefore acceptable. Then we use
(5.18) and obtain the zero location

	

a n=
+ − −()

=
+ − °()

≅

w
z z φ1

7 143

0 7 1 0 49 3
0 5

2 tan

.

. . tan
.

If (5.18) is used, we have

	
a n= =

×
≅

zw
10

7 143 0 7

10
0 5

. .
.

That is, the same zero value is obtained.
The closed-loop transfer function for this design is

	

G s
s

s s s
s

s s s

cl () = +()
+ + +

=
+()

+() +

50 0 5

10 50 25
50 0 5

0 559 9 441

3 2

2

.

.

. . ++()44.7225

where the gain value has been slightly reduced to bring the damping ratio closer to 0.7.
This actually does give a damping ratio of about 0.7 and an undamped natural frequency
of 6.6875 rad/s for the dominant closed-loop poles.

The time response for this design (Design 2) is shown, together with that of Design 1,
in Figure 5.15. The percentage overshoot for Design 2 is much smaller because its zero
almost cancels with a closed-loop pole. Design 2 is clearly superior to Design 1.

5.4.4  PID Control

If both the transient and steady-state response of the system must be improved,
then neither a PI nor a PD controller may meet the desired specifications. Adding
a zero (PD) may improve the transient response but does not increase the type
number of the system. Adding a pole at the origin increases the type number but
may yield an unsatisfactory time response even if one zero is also added. With a
proportional-integral-derivative (PID) controller, two zeros and a pole at the
origin are added. This both increases the type number and allows satisfactory
reshaping of the root locus.

The transfer function of a PID controller is given by

	
C s K

K
s

K s K
s s

s

K K K K

p
i

d d
n n

n p d n i d

() = + + =
+ +

= =

2 2

2

2

2

zw w

zw w,

	 (5.19)

where Kp, Ki, and Kd are the proportional, integral, and derivative gain,
respectively.

The zeros of the controller can be real or complex conjugate, allowing the
cancellation of real or complex conjugate LHP poles if necessary. In some cases,
good design can be obtained by canceling the pole closest to the imaginary axis.
The design then reduces to a PI controller design that can be completed by apply-
ing Procedure 5.3. Alternatively, one could apply Procedure 5.1 or 5.2 to the
reduced transfer function with an added pole at the origin. A third approach
to PID design is to follow Procedure 5.3 with the proportional control design
step modified to PD design. The PD design is completed using Procedure 5.1 or
5.2 to meet the transient response specifications. PI control is then added to
improve the steady-state response. The following examples illustrate these design
procedures.

Example 5.7

Design a PID controller for an armature-controlled DC motor with transfer function

	
G s

s s s
() =

+() +()
1

1 10

to obtain zero steady-state error due to ramp, a damping ratio of 0.7, and an undamped
natural frequency of 4 rad/s.

Solution
Canceling the pole at −1 with a zero and adding an integrator yields the transfer function

	
G s

s s
i () =

+()
1

102

This is identical to the transfer function obtained in Example 5.6. Hence, the overall PID
controller is given by

	
C s

s s
s

() = +() +()
50

1 0 5.

This design is henceforth referred to as Design 1.
A second design (Design 2) is obtained by first selecting a PD controller to meet the

transient response specifications. We seek an undamped natural frequency of 5 rad/s in
anticipation of the effect of adding PI control. The PD controller is designed using the
MATLAB commands (using the function pdcon)

>> [k, a, scl] = pdcon(0.7, 5, tf(1, [1, 11, 10, 0]))

k = 43.0000

a = 2.3256

scl = -3.5000 + 3.5707i

5.4  Root Locus Design   151

152    CHAPTER 5  Analog Control System Design

The PI zero is obtained using the command

>> b = 5 /(0.7 + sqrt(1-.49)/tan(3*pi/ 180))

b = 0.3490

The gain is reduced to 40, and the controller transfer function for Design 2 is

	
C s

s s
s

() = +() +()
40

0 349 2 326. .

The step responses for Designs 1 and 2 are shown in Figure 5.16. Clearly, Design 1 is
superior because the zeros in Design 2 result in excessive overshoot. The plant transfer
function favors pole cancellation in this case because the remaining real axis pole is far in
the LHP. If the remaining pole is at −3, say, the second design procedure would give better
results. The lesson to be learned is that there are no easy solutions in design. There are
recipes with which the designer should experiment until satisfactory results are obtained.

Example 5.8

Design a PID controller to obtain zero steady-state error due to step, a damping ratio of 0.7,
and an undamped natural frequency of at least 4 rad/s for the transfer function

	
G s

s s s
() =

+() + +()
1

10 2 102

Figure 5.16

Time response for Design 1 (dotted) and Design 2 (solid).

0

0.4

0.2

1

1.4

1.2

0.8

0.6

0 1 2 3 4 5
Time s

O
ut

pu
t

Solution
The system has a pair of complex conjugate poles that slow down its time response and a
third pole that is far in the LHP. Canceling the complex conjugate poles with zeros and
adding the integrator yields the transfer function

	
G s

s s
() =

+()
1

10

The root locus of the system is similar to Figure 5.2(a), and we can increase the gain without
fear of instability. The closed-loop characteristic equation of the compensated system with
gain K is

	 s s K2 10 0+ + =
Equating coefficients as in Example 5.3, we observe that for a damping ratio of 0.7 the

undamped natural frequency is

	
w

zn = = =
10

2

5

0 7
7 143

.
. rad s

This meets the design specifications. The corresponding gain is 51.02, and the PID control-
ler is given by

	
C s

s s
s

() = + +
51 02

2 102

.

In practice, pole-zero cancellation may not occur, but near cancellation is sufficient to obtain
a satisfactory time response, as shown in Figure 5.17.

Figure 5.17

Step response of the PID-compensated system described in Example 5.8.

0

0.4

0.2

1.2

1

0.8

0.6

0 10.5 1.5
Time s

O
ut

pu
t

5.4  Root Locus Design   153

154    CHAPTER 5  Analog Control System Design

5.5  Empirical Tuning of PID Controllers
In industrial applications, PID controllers are often tuned empirically. Typically,
the controller parameters are selected based on a simple process model using a
suitable tuning rule. This allows us to address (1) load disturbance rejection
specifications (which are often a major concern in process control) and (2) the
presence of a time delay in the process. We first write the PID controller transfer
function (5.19) in the form

	
C s K

T s
T s

T K K T K K

p
i

d

i p i d d p

() = + +





= =

1
1

,

	 (5.20)

where Ti denotes the integral time constant and Td denotes the derivative time
constant. The three controller parameters Kp, Ti, and Td have a clear physical
meaning. Increasing Kp (i.e., increasing the proportional action) provides a faster
but more oscillatory response. The same behavior results from increasing the
integral action by decreasing the value of Ti. Finally, increasing the value of Td
leads to a slower but more stable response.

These considerations allow tuning the controller by a trial-and-error procedure.
However, this can be time consuming, and the achieved performance depends
on the skill of the designer. Fortunately, tuning procedures are available to simplify
the PID design. Typically, the parameters of the process model are determined
assuming a first-order-plus-dead-time model. That is,

	 G s
K

s
e Ls() =

+
−

τ 1
	 (5.21)

where K is the process gain, t is the process (dominant) time constant, and L is
the (apparent) dead time of the process. These parameters can be estimated based
on the step response of the process through the tangent method.2 The method
consists of the following steps.

Tangent Method

1.	 Obtain the step response of the process experimentally.
2.	 Draw a tangent to the step response at the inflection point as shown in

Figure 5.18.
3.	 Compute the process gain as the ratio of the steady-state change in the

process output y to the amplitude of the input step A.

2See Åström and Hägglund (2006) and Visioli (2006) for a detailed description and analysis of
different methods for estimating the parameters of a first-order-plus-dead-time system.

4.	 Compute the apparent dead time L as the time interval between the appli-
cation of the step input and the intersection of the tangent line with the
time axis.

5.	 Determine the sum t + L (from which the value of t can be easily com-
puted) as the time interval between the application of the step input and
the intersection of the tangent line with the straight representing the final
steady-state value of the process output. Alternatively, the value of t + L
can be determined as the time interval between the application of the
step input and the time when the process output attains 63.2% of its final
value. Note that in case the dynamics of the process can be perfectly
described by a first-order-plus-dead-time model, the values of t obtained
in the two cases are identical.

Figure 5.18

Application of the tangent method.

0 2 4 6 8 10 12 14
–0.2

0

0.2

0.4

0.6

0.8

1

Time s

Pr
oc

es
s

O
ut

pu
t

L τ

τ

KA

5.5  Empirical Tuning of PID Controllers   155

Given the process model parameters, several tuning rules are available for
determining the PID controller parameter values, but different rules address dif-
ferent design specifications. The most popular tuning rules are those attributed
to Ziegler-Nichols. Their aim is to provide satisfactory load disturbance rejection.
Table 5.1 shows the Ziegler-Nichols rules for P, PI, and PID controllers. Although
the rules are empirical, they are consistent with the physical meaning of the
parameters. For example, consider the effect the derivative action in PID control
governed by the third row of Table 5.1. The derivative action provides added
damping to the system, which increases its relative stability. This allows us to

156    CHAPTER 5  Analog Control System Design

increase both the proportional and integral action while maintaining an acceptable
time response. We demonstrate the Ziegler-Nichols procedure using the following
example.

Example 5.9

Consider the control system shown in Figure 5.19, where the process has the following
transfer function:

	
G s

s
e s() =

+()
−1

1 4
0 2.

Estimate a first-order-plus-dead-time model of the process, and design a PID controller by
applying the Ziegler-Nichols tuning rules.

Solution
The process step response is shown in Figure 5.20. By applying the tangent method, a
first-order-plus-dead-time model with gain K = 1, L = 1.55 and a delay t = 3 is estimated.
The Ziegler-Nichols rules of Table 5.1 provide the following PID parameters: Kp = 2.32,

Table 5.1  Ziegler-Nichols Tuning Rules for a First-Order-
Plus-Dead-Time Model of the Process

Controller Type Kp Ti Td

P τ
KL

— —

PI 0 9.
τ

KL
3 L —

PID 1 2.
τ

KL
2 L 0.5 L

Figure 5.19

Block diagram of the process of Example 5.9.

−

Load
Disturbance

++
G(s)PID

Controller

Output
Reference

Input

Ti = 3.1, and Td = 0.775. Figure 5.21 shows the response of the closed-loop system due a
step input at t = 0 followed by a step load disturbance input at t = 50.

The system response is oscillatory, which is a typical feature of the Ziegler-Nichols
method, whose main objective is to satisfy load disturbance response specifications. However,
the effect of the disturbance on the step response is minimized.

Figure 5.20

Application of the tangent method in Example 5.9.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time s

P
ro

ce
ss

 O
ut

pu
t

Figure 5.21

Process output with the PID controller tuned with the Ziegler-Nichols method.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Time s

P
ro

ce
ss

 O
ut

pu
t

5.5  Empirical Tuning of PID Controllers   157

158    CHAPTER 5  Analog Control System Design

Resources
Åström, K. J., and T. Hägglund, Advanced PID Controllers, ISA Press, 2006.
D’Azzo, J. J., and C. H. Houpis, Linear Control System Analysis and Design, McGraw-Hill,

1988.
Kuo, B. C., Automatic Control Systems, Prentice Hall, 1995.
Nise, N. S., Control Systems Engineering, Benjamin Cummings, 1995.
O’Dwyer, A., Handbook of PI and PID Tuning Rules, Imperial College Press, 2006.
Ogata, K., Modern Control Engineering, Prentice Hall, 1990.
Van de Vegte, J., Feedback Control Systems, Prentice Hall, 1986.
Visioli, A., Practical PID Control, Springer, 2006.

Problems
5.1	 Prove that for a system with two real poles and a real zero

	
L s

s a

s p s p
a p p p p a() = +

+() +()
< < < <

1 2
1 2 1 2, or

the breakaway point is at a distance a p a p−() −()1 2 from the zero.

5.2	 Use the result of Problem 5.1 to draw the root locus of the system

	
KL s

K s

s s
() = +()

+()
4

2

5.3	 Sketch the root loci of the following systems:

(a)	 KL s
K

s s s
() =

+() +()2 5

(b)	 KL s
K s

s s s
() = +()

+() +()
2

3 5

5.4	 Consider the system in 5.3(b) with a required steady-state error of 20%, and an
adjustable PI controller zero location. Show that the corresponding closed-loop
characteristic equation is given by

	
1

1

3 5
0+

+



 +() +()

=K
s a

s s s

Next, rewrite the equation as

	 1 0+ () =K G sf f

where Kf = K, Kz is constant, and Gf(s) is a function of s, and examine the
effect of shifting the zero on the closed-loop poles.
(a)	 Design the system for a dominant second-order pair with a damping ratio

of 0.5. What is wn for this design?

(b)	 Obtain the time response using a CAD program. How does the time
response compare with that of a second-order system with the same wn
and z as the dominant pair? Give reasons for the differences.

(c)	 Discuss briefly the trade-off between error, speed of response, and relative
stability in this problem.

5.5	 Prove equations (5.13) and (5.14), and justify the design Procedures 5.1 and 5.2.

5.6	 Show that a PI feedback controller is undesirable because it results in a differ
entiator in the forward path. Discuss the step response of the closed-loop system.

5.7	 Design a controller for the transfer function

	
G s

s s
() =

+() +()
1

1 5

to obtain (a) zero steady-state error due to step, (b) a settling time of less than
2 s, and (c) an undamped natural frequency of 5 rad/s. Obtain the response
due to a unit step, and find the percentage overshoot, the time to the first
peak, and the steady-state error percentage due to a ramp input.

5.8	 Repeat Problem 5.7 with a required settling time less than 0.5 s and an
undamped natural frequency of 10 rad/s.

5.9	 Consider the oven temperature control system of Example 3.5 with transfer
function

	
G s

K

s s
() =

+ +2 3 10

(a)	 Design a proportional controller for the system to obtain a percentage
overshoot less than 5%.

(b)	 Design a controller for the system to reduce the steady-state error due to
step to zero without significant deterioration in the transient response.

5.10	 For the inertial system governed by the differential equation

	 θ τ=
design a feedback controller to stabilize the system and reduce the percentage
overshoot below 10% with a settling time of less that 4 s.

Computer Exercises
5.11	 Consider the oven temperature control system described in Example 3.5 with

transfer function

	
G s

K

s s
() =

+ +2 3 10

(a)	 Obtain the step response of the system with a PD cascade controller with
gain 80 and a zero at −5.

(b)	 Obtain the step response of the system with PD feedback controller with
a zero at −5 and unity gain and forward gain of 80.

Computer Exercises   159

160    CHAPTER 5  Analog Control System Design

(c)	 Why is the root locus identical for both systems?
(d)	 Why are the time responses different although the systems have the same

loop gains?
(e)	 Complete a comparison table using the responses of (a) and (b) including

the percentage overshoot, the time to first peak, the settling time, and the
steady-state error. Comment on the results, and explain the reason for the
differences in the response.

5.12	 Use Simulink to examine a practical implementation of the cascade controller
described in Exercise 5.11. The compensator transfer function includes a pole
because PD control is only approximately realizable. The controller transfer is
of the form

	
C s

s

s
() = +

+
80

0 2 1

0 02 1

.

.

(a)	 Simulate the system with a step reference input both with and without a
saturation block with saturation limits ±5 between the controller and
plant. Export the output to MATLAB for plotting (you can use a Scope
block and select “Save data to workspace”).

(b)	 Plot the output of the system with and without saturation together, and
comment on the difference between the two step responses.

5.13	 Consider the system

	
G s

s
() =

+()
1

1 4

and apply the Ziegler-Nichols procedure to design a PID controller. Obtain the
response due to a unit step input as well as a unit step disturbance signal.

5.14	 Write a computer program that implements the estimation of a first-order-plus-
dead-time transfer function with the tangent method and then determines the PID
parameters using the Ziegler-Nichols formula. Apply the program to the system

	
G s

s
() =

+()
1

1 8

and simulate the response of the control system when a set-point step change
and a load disturbance step are applied. Discuss the choice of the time
constant value based on the results.

5.15	 Apply the script of Exercise 5.14 to the system

	
G s

s
() =

+()
1

1 2

and simulate the response of the control system when a set-point step change
and a load disturbance step are applied. Compare the results obtained with
those of Problem 5.14.

Chapter

6Digital Control System
Design

Objectives
After completing this chapter, the reader will be able to do the following:

1.	 Sketch the z-domain root locus for a digital control system, or obtain it
using MATLAB.

2.	 Obtain and tune a digital controller from an analog design.
3.	 Design a digital controller in the z-domain directly using the root locus

approach.
4.	 Design a digital controller directly using frequency domain techniques.
5.	 Design a digital controller directly using the synthesis approach of Ragazzini.
6.	 Design a digital control system with finite settling time.

To design a digital control system, we seek a z-domain transfer function or differ-
ence equation model of the controller that meets given design specifications. The
controller model can be obtained from the model of an analog controller that
meets the same design specifications. Alternatively, the digital controller can be
designed in the z-domain using procedures that are almost identical to s-domain
analog controller design. We discuss both approaches in this chapter. We begin
by introducing the z-domain root locus.

6.1  z-Domain Root Locus
In Chapter 3, we showed that the closed-loop characteristic equation of a digital
control system is of the form

	 1 0+ () () =C z G zZAS 	 (6.1)

where C(z) is the controller transfer function, and GZAS (z) is the transfer function
of the DAC, analog subsystem, and ADC combination. If the controller is assumed

162    CHAPTER 6  Digital Control System Design

to include a constant gain multiplied by a rational z-transfer function, then (6.1)
is equivalent to

	 1 0+ () =K L z 	 (6.2)

where L(z) is the open-loop gain.
Equation (6.2) is identical in form to the s-domain characteristic equation (5.1)

with the variable s replaced by z. Thus, all the rules derived for equation (5.1) are
applicable to (6.2) and can be used to obtain z-domain root locus plots. The plots
can also be obtained using the root locus plots of most computer-aided design
(CAD) programs. Thus, we can use the MATLAB command rlocus for z-domain
root loci.

Example 6.1

Obtain the root locus plot and the critical gain for the first-order type 1 system with loop
gain

	
L z

z
() =

−
1

1

Solution
Using root locus rules gives the root locus plot of Figure 6.1, which can be obtained using
the MATLAB command rlocus. The root locus lies entirely on the real axis between
the open-loop pole and the open-loop zero. For a stable discrete system, real axis z-plane

Figure 6.1

Root locus of a type 1 first-order system.

–1
–0.5 0.50 1

Real Axis

Im
ag

in
ar

y
A

xi
s

–1–1.5

0

0.2

–0.2

–0.4

–0.6

–0.8

0.4

0.6
System: g
Gain: 2
Pole: –1
Damping: 0.000141
Overshoot (%): 100
Frequency (rad/sec): 314

0.8

1

poles must lie between the point (−1, 0) and the point (1, 0). The critical gain for the
system corresponds to the point (−1, 0). The closed-loop characteristic equation of the
system is

	 z K− + =1 0

Substituting z = −1 gives the critical gain Kcr = 2 as shown on the root locus plot.

Example 6.2

Obtain the root locus plot and the critical gain for the second-order type 1 system with loop
gain

	
L z

z z
() =

−() −()
1

1 0 5.

Solution
Using root locus rules gives the root locus plot of Figure 6.2, which has the same form as
the root locus of Example 5.1(1) but is entirely in the right-hand plane (RHP). The breakaway
point is midway between the two open-loop poles at zb = 0.75. The critical gain now occurs
at the intersection of the root locus with the unit circle. To obtain the critical gain value, first
write the closed-loop characteristic equation

	 z z K z z K−() −() + = − + + =1 0 5 1 5 0 5 02. . .

Figure 6.2

Z-Root locus of a type 1 second-order system.

–1
–0.5 0.5 1.50 1

Real Axis

Im
ag

in
ar

y
A

xi
s

–1–1.5

0

0.2

–0.2

–0.4

–0.6

–0.8

0.4

0.6

0.8

1

System: g
Gain: 0.5
Pole: 0.75 + 0.661i
Damping: –4.84e – 005
Overshoot (%): 100
Frequency (rad/sec): 72.3

6.1  z-Domain Root Locus   163

164    CHAPTER 6  Digital Control System Design

On the unit circle, the closed-loop poles are complex conjugate and of magnitude unity.
Hence, the magnitude of the poles satisfies the equation

	 z Kcr1 2
2 0 5 1, .= + =

where Kcr is the critical gain. The critical gain is equal to 0.5, which, from the closed-loop
characteristic equation, corresponds to unit circle poles at

	 z j1 2 0 75 0 661, . .= ±

6.2  z-Domain Digital Control System Design
In Chapter 5, we were able to design analog control systems by selecting their
poles and zeros in the s-domain to correspond to the desired time response. This
approach was based on the relation between any time function and its s-domain
poles and zeros. If the time function is sampled and the resulting sequence is z-
transformed, the z-transform contains information about the transformed time
sequence and the original time function. The poles of the z-domain function can
therefore be used to characterize the sequence, and possibly the sampled con-
tinuous time function, without inverse z-transformation. However, this latter char-
acterization is generally more difficult than characterization based on the s-domain
functions described by Figure 5.3.

Figure 6.3 shows z-domain pole locations and the associated temporal
sequences. As in the continuous case, positive real poles are associated with
exponentials. Unlike the continuous case, the exponentials decay for poles inside
the unit circle and increase for poles outside it. In addition, negative poles are
associated with sequences of alternating sign. Poles on the unit circle are associ-

Figure 6.3

z-domain pole locations and the associated temporal sequences.

.

. . .

.

.
.
. . .

.
.

.

.

. . . .

.

.
.
..

.
.
.
.
. . . .

.

.
.
.
.

.

Im{z}

Re{z}
¥¥¥¥

¥
¥

¥

¥

¥

6.2  z-Domain Digital Control System Design   165

ated with a response of constant magnitude. For complex conjugate poles, the
response is oscillatory with the rate of decay determined by the pole distance
from the origin, and the frequency of oscillations determined by the magnitude
of the pole angle. Complex conjugate poles on the unit circle are associated with
sustained oscillations.

Because it is easier to characterize time function using s-domain poles, it may
be helpful to reexamine Figure 5.3 and compare it to Figure 6.3. Comparing the
figures suggests a relationship between s-domain and z-domain poles that greatly
simplifies z-domain pole characterization. To obtain the desired relationship, we
examine two key cases, both in the s-domain and in the z-domain. One case yields
a real pole and the other a complex conjugate pair of poles. More complex time
functions can be reduced to these cases by partial fraction expansion of the trans-
forms. The two cases are summarized in Tables 6.1 and 6.2.

Using the two tables, it appears that if F(s) has a pole at −a, F(z) has a pole at
e−aT, and if F(s) has poles at −zwn + jwd, F(z) has poles at e n dj T− +()zω ω . We therefore
make the following observation.

Observation
If the Laplace transform F(s) of a continuous-time function f(t) has a pole ps, then
the z-transform F(z) of its sampled counterpart f(kT) has a pole at

	 p ez
p Ts= 	 (6.3)

where T is the sampling period.

Remarks

1.	 The preceding observation is valid for a unit step with its s-domain pole
at the origin because the z-transform of a sampled step has a pole at
1 = e0.

2.	 There is no general mapping of s-domain zeros to z-domain zeros.
3.	 From (6.3), the z-domain poles in the complex conjugate case are given

by

	

p e e

e e k

z
T j T

T j T k

d

d

=
= =+

σ ω

σ ω p() , , , , . . .2 0 1 2

Thus, pole locations are a periodic function of the damped natural frequency
wd with period (2p/T) (i.e., the sampling angular frequency ws). The mapping of
distinct s-domain poles to the same z-domain location is clearly undesirable in
situations where a sampled waveform is used to represent its continuous coun-
terpart. The strip of width ws over which no such ambiguity occurs (frequencies
in the range [(−ws/2), ws/2] rad/s is known as the primary strip (Figure 6.4). The

Ta
bl

e
6.

1 
Ti

m
e

Fu
nc

tio
ns

 a
nd

 R
ea

l P
ol

es

Co
nt

in
uo

us
La

pl
ac

e T
r

an
sf

or
m

Sa
m

pl
ed

z
-T

ra
ns

fo
rm

f
t

e
t t

t

(
) =

≥ <
  

−α
,

,

0

0
0

F
s

s
(
) =

+1

α
f

k
T

e
k k

k
T

(
) =

≥ <
  

−α
,

,

0

0
0

F
z

z

z
e

T
(
) =

−
−α

Ta
bl

e
6.

2 
Ti

m
e

Fu
nc

tio
ns

 a
nd

 C
om

pl
ex

 C
on

ju
ga

te
 P

ol
es

Co
nt

in
uo

us
La

pl
ac

e T
r

an
sf

or
m

Sa
m

pl
ed

z
-T

ra
ns

fo
rm

f
t

e
t

t t

t
d

(
) =

(
)

≥ <
  

−α
ω

si
n

,

,

0

0
0

F
s

s

d

d

(
) =

+
(

)
+

ω α
ω

2
2

f
t

e
t

t t

t
d

(
) =

(
)

≥ <
  

−α
ω

si
n

,

,

0

0
0

F
z

T
e

z

z
T

e
e

d
T

d
T

T
(
) =

(
)

−
(

)
+

− −
−

si
n

co
s

ω ω

α α
α

2
2

2

166   

6.2  z-Domain Digital Control System Design   167

width of this strip can clearly be increased by faster sampling, with the choice of
suitable sampling rate dictated by the nature of the continuous time function. We
observe that the minimum sampling frequency for good correlation between the
analog and digital signals is twice the frequency wd as expected based on the
sampling theorem of Section 2.9.

6.2.1  z-Domain Contours

Using the observation (6.3), one can use s-domain contours over which certain
characteristics of the function poles are fixed to obtain the shapes of similar z-
domain contours. In particular, the important case of a second-order underdamped
system yields Table 6.3.

The information in the table is shown in Figures 6.5 and 6.6 and can be used
to predict the time responses of Figure 6.3. From Figure 6.5, we see that negative
values of s correspond to the inside of the unit circle in the z-plane, whereas
positive values correspond to the outside of the unit circle. The unit circle is the
s = 0 contour. Both Table 6.3 and Figure 6.5 also show that large positive s values
correspond to circuits of large radii, whereas large negative s values correspond
to circles of small radii. In particular, a positive infinite s corresponds to the point
at ∞, and a negative infinite s corresponds to the origin of the z-plane.

Figure 6.4

Primary strip in the s-plane.

ω

2
s

σPrimary

Strip

−ws
2

w

Table 6.3  Pole Contours in the s-Domain and the z-Domain.

Contour s-Domain Poles Contour z-Domain Poles

a = constant Vertical line |z| = eσT = constant Circle

wd = constant Horizontal line ∠z = ωdT = constant Radial line

168    CHAPTER 6  Digital Control System Design

From Figure 6.6, we see that larger wd values correspond to larger angles,
with wd = ±ws/2 corresponding to ±p. As observed earlier using a different
argument, a system with poles outside this range (outside the primary strip)
does not have a one-to-one correspondence between s-domain and z-domain
poles.

Figure 6.5

Constant s contours in the s-plane and in the z-plane. (a) Constant s contours in the s-plane.
(b) Constant s contours in the z-plane.

–10 –5 0 5 10
–5

–4

–3

–2

–1

0

1

2

3

4

5
jω

σ –3 –2 –1 0 1 2 3
–3

–2

–1

0

1

2

3

6
2

–2
–6

–10

10

Im(z)

Re(z)
(a) (b)

Figure 6.6

Constant wd contours in the s-plane and the z-plane. (a) Constant wd contours in the s-plane.
(b) Constant wd contours in the z-plane.

–3

p/2

-p/2

–2 –1 0 1 2 3

3p/4

−3p/4 −3p/4

−p/4

−p/4−p/2

0

jω

σ –3 –2 –1 0 1 2 3
–3

–2

–1

0

1

2

3

0−π

3π/4 π/2 π/4

Re(z)

Im(z)

(a) (b)

p/4

6.2  z-Domain Digital Control System Design   169

The z-domain characteristic polynomial for a second-order underdamped
system is

	 z e z e z T e z en d n d nj T j T
d

T−() −() = − () +− +() − −() − −zω ω zω ω zω zωω2 22cos nnT

Hence, the poles of the system are given by

	 z e TnT
d1 2, = ∠ ±−zω ω 	 (6.4)

This confirms that constant zwn contours are circles, whereas constant wd con-
tours are radial lines.

Constant z lines are logarithmic spirals that get smaller for larger values of z.
The spirals are defined by the equation

	 z e e= =
−

−

− ()
−

z θ

z

z pθ

z1

180

12 2




	 (6.5)

where |z| is the magnitude of the pole and q is its angle. Constant wn contours
are defined by the equation

	 z e nT= − () −ω θ2 2 	 (6.6)

Figure 6.7 shows constant z contours and constant wn contours.

Figure 6.7

Constant z and wn contours in the z-plane.

–1 –0.5 0 0.5 1

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0.9
0.8

0.7
0.6

0.5
0.4

0.3
0.2

0.1

0.8 p/T

0.6 p/T
0.5 p/T

0.7 p/T

0.9 p/T

0.8 p/T

0.9 p/T

0.7 p/T

0.6 p/T

0.1 p/T

0.1 p/T

0.3 p/T

0.3 p/T

0.2 p/T

0.2 p/T

0.4 p/T

0.4 p/T
0.5 p/T

p/T

p/T

170    CHAPTER 6  Digital Control System Design

To prove (6.5), rewrite the complex conjugate poles as

	 z e T znT
d1 2, = ∠ ± = ∠ ±−zω ω θ 	 (6.7)

or equivalently,

	 θ ω ω z= = −d nT T 1 2 	 (6.8)

	 z e nT= −zω 	 (6.9)

Eliminating wn T from (6.9) using (6.8), we obtain the spiral equation (6.5).
The proof of (6.6) is similar and is left as an exercise (Problem 6.2).

The following observations can be made by examining the spiral equation
(6.5):

1.	 For every z value, there are two spirals corresponding to negative and positive
angles q. The negative q spiral is below the real axis and is the mirror image
of the positive q spiral.

2.	 For a given spiral, the magnitude of the pole drops logarithmically with its
angle.

3.	 At the same angle q, increasing the damping ratio gives smaller pole magnitudes.
Hence, the spirals are smaller for larger z values.

4.	 All spirals start at q = 0, |z| = 1 but end at different points.

5.	 For a given damping ratio and angle q, the pole magnitude can be obtained by
substituting in (6.5). For a given damping ratio and pole magnitude, the pole
angle can be obtained by substituting in the equation

	 θ z
z

=
− ()1 2

ln z 	 (6.10)

The standard contours can all be plotted using a hand-held calculator, a pro-
tractor, and a compass. Their intersection with the root locus can then be used
to obtain the pole locations for desired closed-loop characteristics. However, it is
more convenient to obtain the root loci and contours using a CAD tool, especially
for higher-order systems. The unit circle and constant z and wn contours can be
added to root locus plots obtained with CAD packages to provide useful informa-
tion on the significance of z-domain pole locations. In MATLAB, this is accom-
plished using the command

>> zgrid(zeta, wn)

where zeta is a vector of damping ratios and wn is a vector of the undamped
natural frequencies for the contours.

Clearly, the significance of pole and zero locations in the z-domain is com-
pletely different from identical locations in the s-domain. For example, the stabil-
ity boundary in the z-domain is the unit circle, not the imaginary axis. The
characterization of the time response of a discrete-time system based on z-domain
information is more complex than the analogous process for continuous-time

6.2  z-Domain Digital Control System Design   171

systems based on the s-domain information discussed in Chapter 5. These are
factors that slightly complicate z-domain design, although the associated difficul-
ties are not insurmountable.

The specifications for z-domain design are similar to those for s-domain design.
Typical design specifications are as follows:

Time constant. This is the time constant of exponential decay for the continuous
envelope of the sampled waveform. The sampled signal is therefore not
necessarily equal to a specified portion of the final value after one time constant.
The time constant is defined as

	 τ
zω

=
1

n

	 (6.11)

Settling time. The settling time is defined as the period after which the envelope
of the sampled waveform stays within a specified percentage (usually 2%) of
the final value. It is a multiple of the time constant depending on the specified
percentage. For a 2% specification, the settling time is given by

	 Ts
n

=
4

zω
	 (6.12)

Frequency of oscillations wd. This frequency is equal to the angle of the
dominant complex conjugate poles divided by the sampling period.

Other design criteria such as the percentage overshoot, the damping ratio, and
the undamped natural frequency can also be defined analogously to the continu-
ous case.

6.2.2  Proportional Control Design in the z-Domain

Proportional control involves the selection of a DC gain value that corresponds
to a time response satisfying design specifications. As in s-domain design, a
satisfactory time response is obtained by tuning the gain to select a dominant
closed-loop pair in the appropriate region of the complex plane. Analytical
design is possible for low-order systems but is more difficult than its analog
counterpart. The following example illustrates the design of proportional digital
controllers.

Example 6.3

Design a proportional controller for the digital system described in Example 6.2 with a
sampling period T = 0.1 s to obtain

1.	 A damped natural frequency of 5 rad/s
2.	 A time constant of 0.5 s
3.	 A damping ratio of 0.7

172    CHAPTER 6  Digital Control System Design

Solution
After some preliminary calculations, the design results can be easily obtained using the
rlocus command of MATLAB. The following calculations, together with the information pro-
vided by a cursor command, allow us to determine the desired closed-loop pole locations:

1.	 The angle of the pole is wd T = 5 × 0.1 = 0.5 rad or 28.65º.
2.	 The reciprocal of the time constant is zwn = 1/0.5 = 2 rad/s. This yields a pole mag-

nitude of e nT− =zω 0 82. .
3.	 The damping ratio given can be used directly to locate the desired pole.

Using MATLAB, we obtain the results shown in Table 6.4. The corresponding sampled
step response plots obtained using the command step (MATLAB) are shown in Figure 6.8.
As expected, the higher gain designs are associated with a low damping ratio and a more
oscillatory response.

Table 6.4 results can also be obtained analytically using the characteristic equation for
the complex conjugate poles of (6.4). The system’s closed-loop characteristic equation is

	 z z K z T e z ed
T Tn n2 2 21 5 0 5 2− + + = − () +− −. . cos ω zω zω

Table 6.4  Proportional Control Design Results

Design Gain z wn rad/s

(a) 0.23 0.3 5.24

(b) 0.17 0.4 4.60

(c) 0.10 0.7 3.63

Figure 6.8

Time response for the designs of Table 6.4: (a)  , (b) +, (c) *.

15 20 3025 35
Time s

O
ut

pu
t

0 5 10
0

0.2

0.4

0.6

1.4

1.2

1

0.8

6.2  z-Domain Digital Control System Design   173

Equating coefficients gives the two equations

	

z T e

z K e

d
T

T

n

n

1

0 2

1 5 2

0 5

: . cos

: .

= ()

+ =

−

−

ω zω

zω

1.	 From the z1 equation,

	
zω

ωn
dT T

=
()





 = ()





 =

1 1 5

2
10

1 5

2 0 5
1 571ln

.

cos
ln

.

cos .
.

In addition,

	 ω ω zd n
2 2 21 25= −() =

Hence, we obtain the ratio

	

ω
zω

z
z

d

n

2

2

2

2 2

1 25

1 571()
=

−
=
().

This gives a damping ratio z = 0.3 and an undamped natural frequency wn =
5.24 rad/s. Finally, the z 0 equation gives a gain

	 K e enT= − = − =− − × ×2 2 1 571 0 10 5 0 5 0 23zω

2.	 From (6.11) and the z1 equation, we obtain

	

zω
τ

ω
zω

n

d

T

T

e
e

n

= = =

= 



 =

− −

1 1

0 5
2

1 1 5

2
10 0 751 1 0 2

.

cos
.

cos . .

rad s

(() = 4 127. rad s

Solving for z gives

	

ω
zω

z
z

d

n

2

2

2

2

2

2

1 4 127

2()
=

−
=
().

which gives a damping ratio z = 0.436 and an undamped natural frequency
wn = 4.586 rad/s. The gain for this design is

	 K e enT= − = − =− − × ×2 2 2 0 10 5 0 5 0 17zω

3.	 For a damping ratio of 0.7, the z1 equation obtained by equating coefficients remains
nonlinear and is difficult to solve analytically. The equation now becomes

	 1 5 2 0 0714 0 07. cos . .= () −ω ω
n e n

The equation can be solved numerically by trial and error with a calculator to obtain
the undamped natural frequency wn = 3.63 rad/s. The gain for this design is

	 K e= − =− ×0 14 3 63 0 5 0 10. . . .

This controller can also be designed graphically by drawing the root locus and a segment
of the constant z spiral and finding their intersection. But the results obtained graphically
are often very approximate, and the solution is difficult for all but a few simple root loci.

174    CHAPTER 6  Digital Control System Design

Example 6.4

Consider the vehicle position control system of Example 3.3 with the transfer function

	
G s

s s
() =

+()
1

5

Design a proportional controller for the unity feedback digital control system with analog
process and a sampling period T = 0.04 s to obtain

1.	 A steady-state error of 10% due to a ramp input
2.	 A damping ratio of 0.7

Solution
The analog transfer function together with a DAC and ADC has the z-transfer function

	
G z

z

z z
ZAS() = × +()

−() −()

−7 4923 10 0 9355

1 0 8187

4. .

.

and the closed-loop characteristic equation is

	

1 1 8187 7 4923 10 0 8187 7 009 102 4 4

2

+ () = − − ×() + − ×
=

− −KG z z K z K

z

ZAS

−− () +− −2 2cos ω zω zω
d

T TT e z en n

The equation involves three parameters z, wn, and K. As in Example 6.3, equating coeffi-
cients yields two equations that we can use to evaluate two unknowns. The third parameter
must be obtained from a design specification.

1.	 The system is type 1, and the velocity error constant is

	

K
T

z
z

KG z

K

K

v
z

=
− ()

=
× +()

() −()

=

=
−

1 1

7 4923 10 1 0 9355

0 04 1 0 8187

1

4. .

. .

55

This is identical to the velocity error constant for the analog proportional control
system. In both cases, a steady-state error due to ramp of 10% is achieved with

	

K
K

e
v

5

100

100

10
10

= =
∞

= =

()%

Hence, the required gain is K = 50.

2.	 As in Example 6.3, the analytical solution for constant z is difficult. But the design
results are easily obtained using the root locus cursor command of any CAD program.
As shown in Figure 6.9, moving the cursor to the z = 0.7 contour yields a gain value
of approximately 11.7

6.2  z-Domain Digital Control System Design   175

Figure 6.9

Root locus for the constant z design.

0
0.50.40.30.20.1 0.90.80.70.6 1

Real Axis

Im
ag

in
ar

y
A

xi
s

0

0.5

0.6

0.1

0.2

0.3

0.4

0.7

0.8

0.9

.3
31.4

23.6

15.7

7.85

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System: gd
Gain: 11.7
Pole: 0.904 + 0.0889i
Damping: 0.699
Overshoot (%): 4.63
Frequency (rad/sec): 3.42

Figure 6.10

Root locus for K = 50.

0
0.50.40.30.20.1 0.90.80.70.6 1

Real Axis

Im
ag

in
ar

y
A

xi
s

0

0.5

0.6

0.1

0.2

0.3

0.4

0.7

0.8

0.9

.3
31.4

23.6

15.7

7.85

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System: gd
Gain: 50
Pole: 0.89 + 0.246i
Damping: 0.284
Overshoot (%): 39.4
Frequency (rad/sec): 7.09

System: gd
Gain: 268
Pole: 0.807 + 0.592i
Damping: –0.000758
Overshoot (%): 100
Frequency (rad/sec): 15.8

176    CHAPTER 6  Digital Control System Design

The root locus of Figure 6.10 shows that the critical gain for the system Kcr is approxi-
mately 268, and the system is therefore stable at the desired gain and can meet the design
specifications for both (1) and (2). However, other design criteria, such as the damping ratio
and the undamped natural frequency, should be checked. Their values can be obtained
using a CAD cursor command or by equating characteristic equation coefficients as in
Example 6.3. For the gain of 50 selected in (1), the root locus of Figure 6.10 and the cursor
give a damping ratio of 0.28. This corresponds to the highly oscillatory response of Figure
6.11, which is likely to be unacceptable in practice. For the gain of 11.7 selected in (2),
the steady-state error is 42.7% due to a unit ramp. It is therefore clear that to obtain the
steady-state error specified together with an acceptable transient response, proportional
control is inadequate.

6.3  Digital Implementation of Analog  
Controller Design

This section introduces an indirect approach to digital controller design. The
approach is based on designing an analog controller for the analog subsystem and
then obtaining an equivalent digital controller and using it to digitally implement
the desired control. The digital controller can be obtained using a number of
recipes that are well known in the field of signal processing, where they are used
in the design of digital filters. In fact, a controller can be viewed as a filter that
attenuates some dynamics and accentuates others so as to obtain the desired time
response. We limit our discussion of digital filters and the comparison of various

Figure 6.11

Time response for K = 50.

0
3

Time s

A
m

pl
it

ud
e

0 0.5 1.51 2 2.5

0.6

0.2

0.4

0.8

1

1.2

1.4

System: gdc
Setting Time: 2

System: gdc
Peak amplitude: 1.4
Overshoot (%): 39.6
At time: 0.48

recipes for obtaining them from analog filters to differencing methods and bilinear
transformation. The system configuration we consider is shown in Figure 6.12.
The system includes (1) a z-transfer function model of a DAC, analog subsystem,
and ADC; and (2) a cascade controller. We begin with a general procedure to
obtain a digital controller using analog design.

Procedure 6.1
1.	 Design a controller Ca(s) for the analog subsystem to meet the desired design

specifications.
2.	 Map the analog controller to a digital controller C(z) using a suitable

transformation.
3.	 Tune the gain of the transfer function C(z)GZAS(z) using proportional z-domain

design to meet the design specifications.
4.	 Check the sampled time response of the digital control system and repeat

steps 1 to 3, if necessary, until the design specifications are met.

Step 2 of Procedure 6.1—that is, the transformation from an analog to a digital
filter—must satisfy the following requirements:

1.	 A stable analog filter (poles in the left half plane (LHP) must transform to a
stable digital filter.

2.	 The frequency response of the digital filter must closely resemble the frequency
response of the analog filter in the frequency range 0 → ws/2 where ws is the
sampling frequency.

Most filter transformations satisfy these two requirements to varying degrees.
However, this is not true of all analog-to-digital transformations, as illustrated by
the following section.

6.3.1  Differencing Methods

An analog filter can be represented by a transfer function or differential equation.
Numerical analysis provides standard approximations of the derivative so as to
obtain the solution to a differential equation. The approximations reduce a dif-
ferential equation to a difference equation and could thus be used to obtain the

Figure 6.12

Block diagram of a single-loop digital control system.

Y(z)E(z)R(z) +

−

U(z)
C(z) GZAS(z)

6.3  Digital Implementation of Analog Controller Design   177

178    CHAPTER 6  Digital Control System Design

difference equation of a digital filter from the differential equation of an analog
filter. We examine two approximations of the derivative: forward differencing and
backward differencing.

Forward Differencing
The forward differencing approximation of the derivative is

	 y k
T

y k y k() ≅ +() − ()[]1
1 	 (6.13)

The approximation of the second derivative can be obtained by applying (6.13)
twice, that is,

	

  y k
T

y k y k

T T
y k y k

T
y k y k

() ≅ +() − ()[]

≅ +() − +()[] − +() − ()

1
1

1 1
2 1

1
1[[]{ }

= +() − +() + (){ }1
2 2 1

2T
y k y k y k

	 (6.14)

Approximations of higher-order derivatives can be similarly obtained. Alterna-
tively, one may consider the Laplace transform of the derivative and the z-
transform of the difference in (6.13). This yields the mapping

	 sY s
T

z Y z() → −[] ()1
1 	 (6.15)

Therefore, the direct transformation of an s-transfer function to a z-transfer func-
tion is possible using the substitution

	 s
z

T
→

−1
	 (6.16)

Example 6.5:  Forward Difference

Apply the forward difference approximation of the derivative to the second-order analog filter

	
C s

s s
a

n

n n

() =
+ +

ω
zω ω

2

2 22

and examine the stability of the resulting digital filter for a stable analog filter.

Solution
The given filter is equivalent to the differential equation

	  y t y t y t u tn n n() + () + () = ()2 2 2zω ω ω

where y(t) is the filter output and u(t) is the filter input. The approximation of the first
derivative by (6.13) and the second derivative by (6.14) gives the difference equation

	
1

2 2 1 2
1

1
2

2 2

T
y k y k y k

T
y k y k y k u kn n n+() − +() + (){ } + +() − ()[] + () =zω ω ω (()

Multiplying by T 2 and rearranging terms, we obtain the digital filter

	 y k T y k T T y k T u kn n n n+() + −[] +() + () − +  () = () ()2 2 1 1 2 12 2zω ω zω ω

Equivalently, we obtain the transfer function of the filter using the simpler transformation
(6.16)

	

C z
s s

T

z T z T

n

n n
s

z

T

n

n n n

() =
+ +

=
()

+ −[] + () −

= −
ω
zω ω

ω
zω ω zω

2

2 2 1

2

2 2

2

2 1 2 TT + 1

For a stable analog filter, we have z > 0 and wn > 0 (positive denominator coefficients
are sufficient for a second-order polynomial). However, the digital filter is unstable if the
magnitude of the constant term in its denominator polynomial is greater than unity. This
gives the instability condition

	

ω zω

z ω
n n

n

T T

T

() − + >

<

2 2 1 1

2i.e.,

For example, a sampling period of 0.2 s and an undamped natural frequency of 10 rad/s
yield unstable filters for any underdamped analog filter.

Backward Differencing
The backward differencing approximation of the derivative is

	 y k
T

y k y k() ≅ () − −()[]1
1 	 (6.17)

The approximation of the second derivative can be obtained by applying (6.17)
twice, that is,

	

  y k
T

y k y k

T T
y k y k

T
y k y k

() ≅ () − −()[]

≅ () − −()[] − −() − −()

1
1

1 1
1

1
1 2[[]{ }

= () − −() + −(){ }1
2 1 2

2T
y k y k y k

	 (6.18)

Approximations of higher-order derivatives can be similarly obtained. One may
also consider the Laplace transform of the derivative and the z-transform of the
difference in (6.17). This yields the substitution

	
s

z

zT
→

−1

	 (6.19)

6.3  Digital Implementation of Analog Controller Design   179

180    CHAPTER 6  Digital Control System Design

Example 6.6:  Backward Difference

Apply the backward difference approximation of the derivative to the second-order analog
filter

	
C s

s s
a

n

n n

() =
+ +

ω
zω ω

2

2 22

and examine the stability of the resulting digital filter for a stable analog filter.

Solution
We obtain the transfer function of the filter using (6.19)

	

C z
s s

Tz

T T z

n

n n
s

z

zT

n

n n

() =
+ +

=
()

() + +  −

= −
ω
zω ω

ω
ω zω z

2

2 2 1

2

2 2

2

2 1 2 ωωnT z+[] +1 1

The stability conditions for the digital filter are (see Chapter 4)

	

ω zω zω

ω zω

ω

n n n

n n

n

T T T

T T

T

() + +  + +[] + >

() + +  − >

(

2

2

2 1 2 1 1 0

2 1 1 0

)) + +  − +[] + >2 2 1 2 1 1 0zω zωn nT T

The conditions are all satisfied for z > 0 and wn > 0, that is, for all stable analog
filters.

6.3.2  Bilinear Transformation

The relationship

	 s c
z

z
=

−
+

1

1
	 (6.20)

with a linear numerator and a linear denominator and a constant scale factor c is
known as a bilinear transformation. The relationship can be obtained from the
equality z = esT using the first-order approximation

	 s
T

z
T

z

z
= () ≅ −

+






1 2 1

1
ln 	 (6.21)

where the constant c = 2/T. A digital filter C(z) is obtained from an analog filter
Ca(s) by the substitution

	 C z C sa
s c

z

z

() = ()
= −

+






1

1

	 (6.22)

The resulting digital filter has the frequency response

	

C e C s

C c
e e

e

j T
a

a

j T j T

j T

s c
e j T

e j T

ω

ω ω

ω

ω
ω

() = ()

=
−
+

= −

+













−

1

1

2 2

2 ee j T−










ω 2

Thus, the frequency responses of the digital and analog filters are related by

	 C e C jc
Tj T

a
ω ω() = 









tan

2
	 (6.23)

Evaluating the frequency response at the folding frequency ws/2 gives

	

C e C jc
T

C jc C j

j T
a

s

a a

sω ω

p

2

4
2

4

() = 











= 









 = ∞(

tan

tan))

We observe that bilinear mapping squeezes the entire frequency response of the
analog filter for a frequency range 0 → ∞ into the frequency range 0 → ws/2.
This implies the absence of aliasing (which makes the bilinear transformation a
popular method for digital filter design) but also results in distortion or warping
of the frequency response. The relationship between the frequency wa of the
analog filter and the frequency w of the digital filter for the case c = 2/T,
namely,

	
ω ω

a
T

T
= 





2

2
tan

is plotted in Figure 6.13 for T = 1. Note that, in general, if the sampling time is
sufficiently small so that w << p/T, then

	
tan

ω ωT T

2 2




 ≅

and therefore wa ≅ w, so that the effect of the warping is negligible.
In any case, the distortion of the frequency response can be corrected at a

single frequency w0 using the prewarping equality

	 C e C jc
T

C jj T
a a

ω ω ω0 0
0

2
() = 









 = ()tan 	 (6.24)

The equality holds provided that the constant c is chosen as

	 c
T

= ()
ω
ω
0

0

2
tan

	 (6.25)

6.3  Digital Implementation of Analog Controller Design   181

182    CHAPTER 6  Digital Control System Design

The choice of the prewarping frequency w0 depends on the mapped filter. In
control applications, a suitable choice of w0 is the 3-dB frequency for a PI or PD
controller and the upper 3-dB frequency for a PID controller. This is explored
further in design examples.

In MATLAB, the bilinear transformation is accomplished using the following
command:

>> gd = c2d(g,tc,‘tustin’)

where g is the analog system and tc is the sampling time. If prewarping is
requested at a frequency w, then the command is

>> gd = c2d(g,tc,‘prewarp’,w)

Example 6.7

Design a digital filter by applying the bilinear transformation to the analog filter

	 C s
s

a() =
+

1

0 1 1.
	 (6.26)

with T = 0.1 s. Examine the warping effect and then apply prewarping at the 3-dB
frequency.

Figure 6.13

Relationship between analog filter frequencies and digital filter frequencies with bilinear
transformation.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

Analog Filter Frequency

D
ig

it
al

 F
il

te
r

F
re

qu
en

cy

Solution
By applying the bilinear transformation (6.21) to (6.26), we obtain

	

C z
z

z

z

z
() = −

+
+

=
+
−

1

0 1
2

0 1

1

1
1

1

3 1.
.

The Bode plots of Ca(s) (solid line) and C(z) (dashed line) are shown in Figure 6.13, where
the warping effect can be evaluated. We select the 3-dB frequency w0 = 10 as a prewarping
frequency and apply (6.25) to obtain

	

C z
z

z

z

z
() =

⋅()
−
+

+
≅

+
−

1

0 1
10
10 0 1

2

1

1
1

0 35 0 35

0 29.
tan

.

. .

.

The corresponding Bode plot is shown again in Figure 6.14 (dash-dot line). It coincides
with the Bode plot of C(s) at w0 = 10. Note that for lower values of the sampling time, the
three Bode plots tend to coincide.

Another advantage of bilinear transformation is that it maps points in the LHP
to points inside the unit circle and thus guarantees the stability of a digital filter

Figure 6.14

Bode plots of the analog filter (solid) and the digital filter obtained without (dashed) and with
prewarping (dash-dot).

100 101
–6

–5

–4

–3

–2

–1

0

M
ag

ni
tu

de
 (

dB
)

Frequency (rad/sec)

6.3  Digital Implementation of Analog Controller Design   183

184    CHAPTER 6  Digital Control System Design

for a stable analog filter. To verify this property, consider the three cases shown
in Figure 6.15. They represent the mapping of a point in the LHP, a point in the
RHP, and a point on the jw axis. The angle of s after bilinear transformation is

	 ∠ = ∠ −() − ∠ +()s z z1 1 	 (6.27)

For a point inside the unit circle, the angle of s is of a magnitude greater than
90º, which corresponds to points in the LHP. For a point on the unit circle, the
angle is ±90º, which corresponds to points on the imaginary axis. And for points
outside the unit circle, the magnitude of the angle is less than 90º, which corre-
sponds to points in the RHP.

Bilinear transformation of the analog PI controller gives the following digital
PI controller:

	

C z K
s a

s

K
a c

c

z
a c

a c
z

s c
z

z

() = +()

=
+





+ −
+()

−

= −
+







1

1

1

	 (6.28)

The digital PI controller increases the type of the system by one and can therefore
be used to improve steady-state error. As in the analog case, it has a zero that
reduces the deterioration of the transient response due to the increase in system
type. The PI controller of (6.28) has a numerator order equal to its denominator
order. Hence, the calculation of its output from its difference equation requires
knowledge of the input at the current time. Assuming negligible computational
time, the controller is approximately realizable.

Bilinear transformation of the analog PD controller gives the digital PD
controller

Figure 6.15

Angles associated with bilinear transformation.

X

X

X

Im(s) Im(z)

Re(s) Re(z)

s3

z3

z2

z1

s2

s1
z1 1−z1 1+

z2 1+

z2 1−

1 −1

z3 1+

z3 1−

	

C z K s a

K a c
z

a c

a c
z

s c
z

z

() = +()

= +()
+ −

+()
+

= −
+







1

1

1

	 (6.29)

This corresponds to a zero that can be used to improve the transient response
and a pole at z = −1. A pole at z = −1 corresponds to an unbounded frequency
response at the folding frequency, as e ej T jsω p2 1= = − and must therefore be
eliminated. However, eliminating the undesirable pole would result in an unreal-
izable controller. An approximately realizable PD controller is obtained by replac-
ing the pole at z = −1 with a pole at the origin to obtain

	 C z K a c
z

a c

a c
z

() = +()
+ −

+()
	 (6.30)

A pole at the origin is associated with a term that decays as rapidly as possible so
as to have the least effect on the controller dynamics. However, this variation from
direct transformation results in additional distortion of the analog filter and com-
plication of the digital controller design.

Bilinear transformation of the analog PID controller gives the digital PD con
troller

	

C z K
s a s b

s

K
a c b c

c

z
a c

a c

s c
z

z

() = +() +()

=
+() +() + −

+()


= −
+







1

1




+ −
+()





+() −()

z
b c

b c
z z1 1

The controller has two zeros that can be used to improve the transient response
and a pole at z = 1 to improve the steady-state error. As with PD control, the pole
at z = −1 is replaced by a pole at the origin to yield a transfer function with a
bounded frequency response at the folding frequency. The resulting transfer func-
tion is approximately realizable and is given by

	 C z K
a c b c

c

z
a c

a c
z

b c

b c
z z

() = +() +() + −
+()





+ −
+()





−()1
	 (6.31)

Using Procedure 6.1 and equations (6.28) through (6.31), digital PI, PD, and
PID controllers can be designed to yield satisfactory transient and steady-state
performance.

6.3  Digital Implementation of Analog Controller Design   185

186    CHAPTER 6  Digital Control System Design

Example 6.8

Design a digital controller for the DC motor speed control system described in Example 3.6,
where the (type 0) analog plant has the transfer function

	
G s

s s
() =

+() +()
1

1 10

to obtain (1) a zero steady-state error due to a unit step, (2) a damping ratio of 0.7, and (3)
a settling time of about 1 s.

Solution
The design is completed following Procedure 6.1. First, an analog controller is designed for
the given plant. For zero steady-state error due to unit step, the system type must be
increased by one. A PI controller effects this increase, but the location of its zero must be
chosen so as to obtain an acceptable transient response. The simplest possible design is
obtained by pole-zero cancellation and is of the form

	
C s K

s
sa() = +1

The corresponding loop gain is

	
C s G s

K

s s
a() () =

+()10

Hence, the closed-loop characteristic equation of the system is

	 s s K s sn n+() + = + +10 22 2zω ω

Equating coefficients gives zwn = 5 rad/s and the settling time

	
Ts

n

= = =
4 4

5
0 8

zω
. s

as required. The damping ratio of the analog system can be set equal to 0.7 by appropriate
choice of the gain K. The gain selected at this stage must often be tuned after filter trans-
formation to obtain the same damping ratio for the digital controller. We solve for the
undamped natural frequency

	 ω zn = () = ×() =10 2 10 2 0 7 7 142. . rad s

The corresponding analog gain is

	 K n= =ω2 51 02.

We therefore have the analog filter

	
C s

s
sa() = +

51 02
1

.

Next, we select a suitable sampling period for an undamped natural frequency of about
7.14 rad/s. We select T = 0.02 s < 2p/(40wd), which corresponds to a sampling frequency

higher than 10 times the damped natural frequency (see Chapter 2). The model of the
analog plant together with an ADC and sampler is

	

G z z
G s

s
z

z z

ZAS() = −() (){ }
= ×

+
−() −

−

−

1

1 8604 10
0 9293

0 8187 0 9

1

4

Z

.
.

. . 8802()
Bilinear transformation of the PI controller, with gain K included as a free parameter, gives

	
C z K

z

z
() = −

−
1 01

0 9802

1
.

.

Because the analog controller was obtained using pole-zero cancellation, near pole-zero
cancellation occurs when the digital controller C(z) is multiplied by GZAS(z). The gain can
now be tuned for a damping ratio of 0.7 using a CAD package with the root locus of the
loop gain C(z)GZAS(z). From the root locus, shown in Figure 6.16, at z = 0.7, the gain K is
about 46.7, excluding the 1.01 gain of C(z) (i.e., a net gain of 47.2). The undamped natural
frequency is wn = 6.85 rad/s. This yields the approximate settling time

	

Ts
n

= =
×

=

4 4

6 85 0 7

0 83

zω . .

. s

The settling time is acceptable but is slightly worse than the settling time for the analog
controller. The step response of the closed-loop digital control system shown in Figure 6.17

Figure 6.16

Root locus for PI design.

0
0.50.40.30.20.1 0.90.80.70.6 1

Real Axis

Im
ag

in
ar

y
A

xi
s

0

0.5

0.6

0.1

0.2

0.3

0.4

0.7

0.8

0.9
.5

62.8

47.1

31.4

15.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System: l
Gain: 46.7
Pole: 0.904 + 0.0888i
Damping: 0.699
Overshoot (%): 4.63
Frequency (rad/sec): 6.85

6.3  Digital Implementation of Analog Controller Design   187

188    CHAPTER 6  Digital Control System Design

is also acceptable and confirms the estimated settling time. The net gain value of 47.2,
which meets the design specifications, is significantly less than the gain value of 51.02 for
the analog design. This demonstrates the need for tuning the controller gain after mapping
the analog controller to a digital controller.

Example 6.9

Design a digital controller for the DC motor position control system described in Example
3.6, where the (type 1) analog plant has the transfer function

	
G s

s s s
() =

+() +()
1

1 10

to obtain a settling time of about 1 second and a damping ratio of 0.7.

Solution
Using Procedure 6.1, we first observe that an analog PD controller is needed to improve
the system transient response. Pole-zero cancellation yields the simple design

	 C s K sa() = +()1

We can solve for the undamped natural frequency analytically, or we can use a CAD package
to obtain the values K = 51.02 and wn = 7.143 rad/s for z = 0.7.

Figure 6.17

Step response for PI design with K = 46.2.

0
1.2

Time s

A
m

pl
it

ud
e

0 0.2 0.60.4 0.8 1

0.6

0.2

0.4

0.8

1

1.2

1.4

System: gcl
Setting Time: 0.88

System: gcl
Peak amplitude: 10.5
Overshoot (%): 4.74
At time: 0.64

A sampling period of 0.02 s is appropriate because it is less than 2p/(40wd). The plant
with the ADC and DAC has the z-transfer function

	

G z z
G s

s
z z

z

ZAS() = −() (){ }
= ×

+() +()
−(

−

−

1

1 2629 10
0 2534 3 535

1

1

6

Z

.
. .

)) −() −()z z0 8187 0 9802. .

Bilinear transformation of the PD controller gives

	
C z K

z

z
K z() = −

= −()−0 9802
1 0 9802 1.

.

The root locus of the system with PD control (Figure 6.18) gives a gain K of 2,160 and an
undamped natural frequency of 6.79 rad/s at a damping ratio z = 0.7. The settling time for
this design is about

	
T ss

n

= =
×

=
4 4

0 7 6 51
0 88

zω . .
.

which meets the design specifications.
Checking the step response with MATLAB gives Figure 6.19 with a settling time of 0.94 s,

a peak time of 0.6 s, and 5% overshoot. The time response shows a slight deterioration from
the characteristics of the analog system but meets all the design specifications. In some
cases, the deterioration may necessitate repeatedly modifying the digital design or modifying
the analog design and then mapping it to the z-domain until the resulting digital filter meets
the desired specifications.

Figure 6.18

Root locus for PD design.

Real Axis

Im
ag

in
ar

y
A

xi
s

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

–0.1

–0.2

–0.3

0

0.1

0.2
System: l
Gain: 2.16e + 0.03
Pole: 0.909 + 0.0854i
Damping: 0.695
Overshoot (%): 4.8
Frequency (rad/sec): 6.51

6.3  Digital Implementation of Analog Controller Design   189

190    CHAPTER 6  Digital Control System Design

Note that for a prewarping frequency w0 = 1 rad/s, the 3-dB frequency of the PD con-
troller, w0T = 0.02 rad and tan(w0 T/2) = tan(0.01) ≅ 0.01. Hence, equation (6.25) is
approximately valid and prewarping has a negligible effect on the design.

Example 6.10

Design a digital controller for the speed control system of Example 3.6, where the analog
plant has transfer function

	
G s

s s
() =

+() +()
1

1 3

to obtain a time constant of less than 0.3 second, a dominant pole damping ratio of at least
0.7, and zero steady-state error due to a step input.

Solution
The root locus of the analog system is shown in Figure 6.20. To obtain zero steady-state
error due to a step input, the system type must be increased to one by adding an integrator
in the forward path. However, adding an integrator results in significant deterioration of the
time response or in instability. If the pole at −1 is canceled, the resulting system is stable
but has zwn = 1.5—that is, a time constant of 2/3 s and not less than 0.3 s as specified.
Using a PID controller provides an additional zero that can be used to stabilize the system
and satisfy the remaining design requirements.

Figure 6.19

Time step response for PD design with K = 2,160.

0
1.5

Time s

A
m

pl
it

ud
e

0 0.5 1

0.6

0.2

0.4

0.8

1

1.2

1.4

System: cl
Peak amplitude: 1.05
Overshoot (%): 4.76
At time: 0.68

System: cl
Setting Time: 0.94

For a time constant t of 0.3 s, we have zwn = 1/t ≥ 3.33 rad/s. A choice of z = 0.7, wn
of about 6 rad/s meets the design specifications. The design appears conservative, but we
choose a larger undamped natural frequency than the minimum needed in anticipation of
the deterioration due to adding PI control. We first design a PD controller to meet these
specifications using MATLAB. We obtain the controller angle of about 52.4º using the angle
condition. The corresponding zero location is

	
a =

− ()
°()

+ ()() ≅6 1 0 7

52 4
0 7 6 7 5

2.

tan .
. .

The root locus for the system with PD control (Figure 6.21) shows that the system with
z = 0.7 has wn of about 6 rad/s and meets the transient response specifications with a gain
of 4.4 and zwn = 4.2. Following the PI design procedure, we place the second zero of the
PID controller at one-tenth this distance from the jw axis to obtain

	
C s K

s s
sa() = +() +()0 4 7 5. .

To complete the analog PID design, the gain must be tuned to ensure that z = 0.7.
Although this step is not needed, we determine the gain K ≈ 5.8, and wn = 6.7 rad/s (Figure
6.22) for later comparison to the actual gain value used in the digital design. The analog
design meets the transient response specification with zwn = 4.69 > 3.33, and the dynam-
ics allow us to choose a sampling period of 0.025 s (ws > 50wd).

The model of the analog plant with DAC and ADC is

	

G z z
G s

s
z

z z

ZAS() = −() (){ }
= ×

+
−() −(

−

−

1

1 170 10
0 936

0 861 0 951

1

3

Z

.
.

. .))

Figure 6.20

Root locus for the analog system for PD design.

–5 –4 –3 –2 –1 0

–1

0

1

2

3

4

5

ζ = 0.7

σ

jω

 ωn= 6

6.3  Digital Implementation of Analog Controller Design   191

192    CHAPTER 6  Digital Control System Design

Bilinear transformation and elimination of the pole at −1 yields the digital PID controller

	 C z K
z z

z z
() = −() −()

−()
47 975

0 684 0 980

1
.

. .

The root locus for the system with digital PID control is shown in Figure 6.23, and the system
is seen to be minimum phase (i.e., its zeros are inside the unit circle).

Figure 6.21

Root locus of a PD-controlled system.

–6 –5 –4 –3 –2 –1 0
0

1

2

3

4

5

6 6

ζ = 0.7

jω

σ

ωn = 6

Figure 6.22

Root locus of an analog system with PID control.

–6 –5 –4 –3 –2 –1 00

1

2

3

4

5

6
 System: 1
 Gain: 5.76
 Pole: –4.69 + 4.78i
 Damping: 0.70
 Overshoot (%): 4.57
 Frequency (rad/sec): 6.7

ζ

ωn = 6

σ

jω

= 0.7

For design purposes, we zoom in on the most significant portion of the root locus
and obtain the plot of Figure 6.24. With K = 9.62, 13.2, the system has z = 0.7, 0.5, and
wn = 43.2, 46.2 rad/s, respectively. Both designs have a sufficiently fast time constant, but
the second damping ratio is less than the specified value of 0.7. The time response of the

Figure 6.23

Root locus of a system with digital PID control.

1
Real Axis

Im
ag

in
ar

y
A

xi
s

–1.5
–1.5

–0.5

0

0.5

1

1.5

–1

–2.5 0.5–0.5–1–2 0

Figure 6.24

Detail of the root locus of a system with digital PID control.

0
0.50.40.30.20.1 0.90.80.70.6 1

Real Axis

Im
ag

in
ar

y
A

xi
s

0

0.5

0.6

0.1

0.2

0.3

0.4

0.7

0.8

0.9
π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

0.1

0.2

0.3
0.4
0.5

0.6

0.7

0.8

0.9

1

System: l
Gain: 9.65
Pole: 0.337 + 0.327i
Damping: 0.701
Overshoot (%): 4.57
Frequency (rad/sec): 43.2

System: l
Gain: 13.2
Pole: 0.303 + 0.471i
Damping: 0.502
Overshoot (%): 16.2
Frequency (rad/sec): 46.2

6.3  Digital Implementation of Analog Controller Design   193

194    CHAPTER 6  Digital Control System Design

two digital systems and for analog control with K = 100 are shown in Figure 6.25. Lower
gains give an unacceptably slow analog design. The time response for the high-gain
digital design is very fast. However, it has an overshoot of over 4% but has a settling time
of 5.63 s. The digital design for z = 0.7 has a much slower time response than its analog
counterpart.

It is possible to improve the design by trial and error, including redesign of the analog
controller, but the design with z = 0.5 may be acceptable. One must weigh the cost of
redesign against that of relaxing the design specifications for the particular application at
hand. The final design must be a compromise between speed of response and relative
stability.

6.3.3  Empirical Digital PID Controller Tuning

As explained in Section 5.5, the parameters of a PID controller are often selected
by means of tuning rules. This concept can also be exploited to design a digital
PID controller. The reader can show (Problem 6.4) that bilinear transformation of
the PID controller expression (5.20) yields

	 C z K
T

T z

z
T

T

z

z
p

i
d() = +

+
−

+
−
+





1

1

2

1

1

2 1

1
	 (6.32)

Figure 6.25

Time step response for the digital PID design with K = 9.62 (light gray), K = 13.2 (dark gray)
and for analog design (black).

0
8

Time s

A
m

pl
it

ud
e

0 1 2 3 4 5 6 7

0.6

0.2

0.4

0.8

1

Digital 9.62

Digital 13.2Analog 100

If parameters Kp, Ti, and Td are obtained by means of a tuning rule as in the
analog case, then the expression of the digital controller is obtained by substitut-
ing in (6.32). The transfer function of a zero-order hold can be approximated by
truncating the series expansions as

	
G s

e

s

Ts Ts

Ts

Ts
eZOH

sT T
s

() = −
≅

− + − () +
= − + ≅

− −1 1 1 2
1

2

2

2




Thus, the presence of the ZOH can be considered as an additional time delay equal
to half of the sampling period. The tuning rules of Table 5.1 can then be applied
to a system with a delay equal to the sum of the process time delay and a delay
of T/2 due to the zero-order hold.

Example 6.11

Design a digital PID controller (with sampling time T = 0.1) for the analog plant (see Example
5.9)

	
G s

s
e s() =

+()
−1

1 4
0 2.

by applying the Ziegler-Nichols tuning rules of Table 5.1.

Solution
A first-order-plus-dead-time model of the plant was obtained in Example 5.9 by applying
the tangent method. We obtained a process gain K = 1, a process dominant time constant
t = 3, and an apparent time delay L = 1.55. The apparent time delay for digital control
obtained by adding half of the value of the sampling period is L = 1.6. The application of
the tuning rules shown earlier in Table 5.1 yields

	

K
KL

T L

T L

p

i

d

= =

= =

= =

1 2 2 25

2 3 2

0 5 0 8

. .

.

. .

τ

Thus, the digital PID controller has the transfer function

	

C z
z

z

z

z

z z

() = +
+
−

+
−
+







=
−

2 25 1
1

3 2

0 1

2

1

1
0 8

2

0 1

1

1

38 29 71 932

.
.

.
.

.

. . ++
−

33 79

12

.

z

The response of the digital control system due to a unit step input applied to the set
point at time t = 0 and to a unit step change in the control variable at time t = 50 is shown

6.3  Digital Implementation of Analog Controller Design   195

196    CHAPTER 6  Digital Control System Design

in Figure 6.26. The response is similar to the result obtained with the analog PID controller
(see Example 5.9).

6.4  Direct z-Domain Digital Controller Design
Obtaining digital controllers from analog designs involves approximation that may
result in significant controller distortion. In addition, the locations of the control-
ler poles and zeros are often restricted to subsets of the unit circle. For example,
bilinear transformation of the term (s + a) gives [z − (c − a)/(c + a)] as seen from
(6.28) through (6.29). This yields only RHP zeros because a is almost always
smaller than c. The plant poles are governed by p ez

p Ts= , where ps and pz are the
s-domain and z-domain poles, respectively, and can be canceled with RHP zeros.
Nevertheless, the restrictions on the poles and zeros in (6.28) through (6.29) limit
the designer’s ability to reshape the system root locus.

Another complication in digital approximation of analog filters is the need to
have a pole at 0 in place of the pole at −1, as obtained by direct digital transforma-
tion, to avoid an unbounded frequency response at the folding frequency. This
may result in a significant difference between the digital and analog controllers
and may complicate the design process considerably.

Alternatively, it is possible to directly design controllers in the less familiar
z-plane. The controllers used are typically of the same form as those discussed
in Section 6.3, but the poles of the controllers are no longer restricted as in

Figure 6.26

Process output with the digital PID controller tuned with the Ziegler-Nichols method.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Time s

O
ut

pu
t

s-domain–to–z-domain mapping. Thus, the poles can now be in either the LHP or
the RHP as needed for design.

Because of the similarity of s-domain and z-domain root loci, Procedures 5.1,
5.2, and 5.3 are applicable with minor changes in the z-domain. However, equa-
tion (5.14) is no longer valid because the real and imaginary components of the
complex conjugate poles are different in the z-domain. In addition, a digital con-
troller with a zero and no poles is not realizable, and a pole must be added to the
controller. To minimize the effect of the pole on the time response, it is placed
at the origin. This is analogous to placing an s-plane pole far in the LHP to minimize
its effect. We must now derive an expression similar to (5.14) for the digital PID
controller.

Using the expression for the complex conjugate z-domain poles (6.3), we
obtain (see Figure 6.27)

	

a z
z

e T
e T

cl
cl

a

T
d

T
dn

n

= { } − { }
()

= () − ()−
−

Re
Im

tan

cos
sin

tan

θ

ω ω
θ

zω
zω

aa() 	

(6.33)

where qa is the angle of the controller zero. qa is given by

	
θ θ θ

θ θ
a c p

c zcl

= +
= +

	 (6.34)

In (6.34), qzcl is the angle of the controller pole and qc is the controller
angle contribution at the closed-loop pole location. The sign of the second
term in (6.33) is negative, unlike (5.14), because the real part of a stable z-domain
pole can be positive. In addition, a digital controller with a zero and no poles is
not realizable and a pole, at the origin or other locations inside the unit circle,
must first be added to the system before computing the controller angle. The

Figure 6.27

PD compensator zero.

Im{zcl}

Re{zcl}

a

θc

zcl

Im{z}

Re{z}

6.4  Direct z-Domain Digital Controller Design   197

198    CHAPTER 6  Digital Control System Design

computation of the zero location is simple using the following MATLAB
function:

% Digital PD controller design with pole at origin and zero to be selected.
function [c,zcl]=dpdcon(zeta,wn,g,T)
% g (l) is the uncompensated (compensated) loop gain
% zeta and wn specify the desired closed-loop pole, T = sampling period
% zcl is the closed-loop pole, theta is the angle of the
% compensator zero at zcl.
% The corresponding gain is “k” and the zero is “a”.
wdT = wn*T*sqrt(1-zeta^2);    % Pole angle: T*damped natural frequency
rzcl = exp(-zeta*wn*T)*cos(wdT);    % Real part of the closed-loop pole.
izcl = exp(-zeta*wn*T)*sin(wdT);    % Imaginary part of the closed-loop pole.
zcl = rzcl + j*izcl;    % Complex closed-loop pole.
% Find the angle of the compensator zero. Include the contribution
% of the pole at the origin.
theta = pi - angle(evalfr(g,zcl)) - angle(polyval([1,0],zcl));
a = rzcl-izcl/tan(theta);    % Calculate the zero location.
c = zpk([a],[0],1,T);    % Calculate the compensator transfer function.
L = c*g;    % Loop gain.
k = 1/abs(evalfr(l, zcl)); % Calculate the gain.
c = k*c; %Include the correct gain.

Although equation (6.33) is useful in some situations, in many others PD or
PID controllers can be more conveniently obtained by simply canceling the slow
poles of the system with zeros. Design by pole-zero cancellation is the simplest
possible and should be explored before more complex designs are attempted.

The main source of difficulty in z-domain design is the fact that the stable
region is now the unit circle as opposed to the much larger left half of the s-
plane. In addition, the selection of pole locations in the z-domain directly is less
intuitive and is generally more difficult than s-domain pole selection. Pole selection
and the entire design process are significantly simplified by the use of CAD
tools and the availability of constant z contours, constant wn contours, and cursor
commands.

No new theory is needed to introduce z-domain design, and we proceed
directly to design examples. We repeat Examples 6.7, 6.8, and 6.9, using direct
digital design to demonstrate its strengths and weaknesses compared to the indi-
rect design approach.

Example 6.12

Design a digital controller for the DC motor speed control system of Example 3.6, where the
(type 0) analog plant has the transfer function

	
G s

s s
() =

+() +()
1

1 10

to obtain (1) zero steady-state error due to a unit step, (2) a damping ratio of 0.7, and (3)
a settling time of about 1 s.

Solution
First, selecting T = 0.1 s, we obtain the z-transfer function

	
G z z

G s

s

z

z z
ZAS() = −() (){ } = ×

+
−() −()

− −1 3 55 10
0 694

0 368 0 905
1 3Z .

.

. .

To perfectly track a step input, the system type must be increased by one and a PI control-
ler is therefore used. The controller has a pole at z = 1 and a zero to be selected to meet
the remaining design specifications. Directly canceling the pole at z = 0.905 gives a design
that is almost identical to that of Example 6.7 and meets the design specifications.

Example 6.13

Design a digital controller for the DC motor position control system described in Example
3.6, where the (type 1) analog plant has the transfer function

	
G s

s s s
() =

+() +()
1

1 10

for a settling time of less than 1 s and a damping ratio of 0.7.

Solution
For a sampling period of 0.01 s, the plant, ADC, and DAC have the z-transfer function

	

G z z
G s

s

z z

z

ZAS() = −() (){ }
= ×

+() +()
−(

−

−

1

1 6217 10
0 2606 3 632

1

1

7

Z

.
. .

)) −() −()z z0 9048 0 99. .

Using a digital PD controller improves the system transient response as in Example 6.8.
Pole-zero cancellation yields the simple design

	
C z K

z
z

() = − 0 99.

which includes a pole at z = 0 to make the controller realizable. The design is almost iden-
tical to that of Example 6.8 and meets the desired transient response specifications with a
gain of 4,580.

Example 6.14

Design a digital controller for the DC motor speed control system described in Example 3.6,
where the analog plant has the transfer function

6.4  Direct z-Domain Digital Controller Design   199

200    CHAPTER 6  Digital Control System Design

	
G s

s s
() =

+() +()
1

1 3

for a time constant of less than 0.3 second, a dominant pole damping ratio of at least 0.7,
and zero steady-state error due to a step input.

Solution
The plant is type 0 and is the same as in Example 6.9 with a sampling period
T = 0.005 s.

	
G z z

G s

s

z

z z
ZAS() = −() (){ } = ×

+
−() −

− −1 1 2417 10
0 9934

0 9851 0 9
1 5Z .

.

. . 995()

For zero steady-state error due to step, the system type must be increased by one by adding
a pole at z = 1. A controller zero can be used to cancel the pole at z = 0.995, leaving the
loop gain

	
L z

z

z z
() = ×

+
−() −()

−1 2417 10
0 9934

1 0 9851
5.

.

.

The system root locus of Figure 6.28 shows that the closed-loop poles are close to the
unit circle at low gains, and the system is unstable at higher gains. Clearly, an additional
zero is needed to meet the design specification, and a PID controller is required. To make
the controller realizable, a pole must be added at z = 0. The simplest design is then to
cancel the pole closest to but not on the unit circle, giving the loop gain

	
L z

z

z z
() = ×

+
−()

−1 2417 10
0 9934

1
5.

.

Figure 6.28

Root locus for digital PI control.

1
Real Axis

Im
ag

in
ar

y
A

xi
s

–1.5

–2

–0.5

0

0.5

1

1.5

2

–1

–5 –1–2–3–4 0

Adding the zero to the transfer function, we obtain the root locus of Figure 6.29 and
select a gain of 20,200. The corresponding time response is shown in Figure 6.30. The time
response shows less than 5% overshoot with a fast time response that meets all design
specifications. The design is better than that of Example 6.9, where the digital controller
was obtained via analog design.

Figure 6.29

Root locus for digital PID control design by pole-zero cancellation.

0
0.40.2 0.80.6 1

Real Axis

Im
ag

in
ar

y
A

xi
s

0

0.6

0.2

0.4

0.8

251

188

126

62.8

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

1
14

System: l
Gain: 2.02e + 004
Pole: 0.361 + 0.325i
Damping: 0.701
Overshoot (%): 4.55
Frequency (rad/sec): 206

Figure 6.30

Time step response for digital PID control.

0

Time s

A
m

pl
it

ud
e

0 0.01 0.02 0.03 0.04 0.05 0.06

0.6

0.2

0.4

0.8

1

System: cl
Peak amplitude: 1.04
Overshoot (%): 4.36
At time: 0.025

6.4  Direct z-Domain Digital Controller Design   201

202    CHAPTER 6  Digital Control System Design

Although it may be possible to improve the analog design to obtain better results than
those of Example 6.9, this requires trial and error as well as considerable experience. By
contrast, the digital design is obtained here directly in the z-domain without the need for
trial and error. This demonstrates that direct design in the z-domain using CAD tools can
be easier than indirect design.

6.5  Frequency Response Design
Frequency response design approaches, especially design based on Bode plots,
are very popular in the design of analog control systems. They exploit the fact
that the Bode plots of rational loop gains (i.e., ones with no delays) can be
approximated with straight lines. Further, if the transfer function is minimum
phase, the phase can be determined from the plot of the magnitude, and this
allows us to simplify the design of a compensator that provides specified stability
properties. These specifications are typically given in terms of the phase margin
and the gain margin. As with other design approaches, the design is greatly simpli-
fied by the availability of CAD packages.

Unfortunately, discrete transfer functions are not rational functions in jw
because the frequency is introduced through the substitution z = e jwT in the z-
transfer function (see Section 2.8). Hence, the simplification provided by methods
based on Bode plots for analog systems is lost. A solution to this problem is to
bilinearly transform the z-plane into a new plane, called the w-plane, where the
corresponding transfer function is rational and where the Bode approximation is
valid. For this purpose, we recall the bilinear transformation

	 w c
z

z
c

T
=

−
+

=
1

1

2
where 	 (6.35)

from Section 6.3.2, which maps points in the LHP into points inside the unit circle.
To transform the inside of the unit circle to the LHP, we use the inverse bilinear
transformation

	 z

wT

wT
=

+

−

1
2

1
2

	 (6.36)

This transforms the transfer function of a system from the z-plane to the w-plane.
The w-plane is a complex plane whose imaginary part is denoted by v. To express
the relationship between the frequency w in the s-plane and the frequency v
in the w-plane, we let s = jw and therefore z = e jwT. Substituting in (6.35) and
using steps similar to those used to derive (6.23), we have

	 w jv j
T

T
= =

2

2
tan

ω
	 (6.37)

From (6.37), as w varies in the interval [0, p/T], z moves on the unit circle and
v goes from 0 to infinity. This implies that there is a distortion or warping of the
frequency scale between v and w (see Section 6.3.2). This distortion is significant
especially at high frequencies. However, if w << ws/2 = p/T, we have from (6.37)
that w ≈ v and the distortion is negligible.

In addition to the problem of frequency distortion, the transformed transfer
function G(w) has two characteristics that can complicate the design: (1) The
transfer function will always have a pole-zero deficit of zero (i.e., the same number
of poles as zeros); (2) The bilinear transformation (6.36) can introduce RHP zeros
and result in a nonminimum phase system.

Nonminimum phase systems limit the achievable performance. For example,
because some root locus branches start at the open-loop pole and end at zeros,
the presence of RHP zeros limits the stable range of gains K. Thus, attempting to
reduce the steady-state error or to speed up the response by increasing the system
gain can lead to instability. These limitations clearly make w-plane design chal-
lenging. Examples 6.15, 6.16, and 6.17 illustrate w-plane design and how to over-
come its limitations.

We summarize the steps for controller design in the w-plane in the following
procedure.

Procedure 6.2
1.	 Select a sampling period and obtain a transfer function GZAS(z) of the

discretized process.
2.	 Transform GZAS(z) into G(w) using (6.36).
3.	 Draw the Bode plot of G(jv), and use analog frequency response methods to

design a controller C(w) that satisfies the frequency domain specifications.
4.	 Transform the controller back into the z-plane by means of (6.35), thus

determining C(z).
5.	 Verify that the performance obtained is satisfactory.

In controller design problems, the specifications are often given in terms of
the step response of the closed-loop system, such as the settling time and the
percentage overshoot. As shown in Chapter 5, the percentage overshoot specifica-
tion yields the damping ratio z, which is then used with the settling time to obtain
the undamped natural frequency wn. Thus, we need to obtain frequency response
specifications from z and wn to follow Procedure 6.2.

The relationship between the time domain criteria and the frequency domain
criteria is in general quite complicated. However, the relationship is much simpler
if the closed-loop system can be approximated by the second-order underdamped
transfer function

	 T s
s s

n

n n

() =
+ +

ω
ςω ω2 22

	 (6.38)

6.5  Frequency Response Design   203

204    CHAPTER 6  Digital Control System Design

The corresponding loop gain with unity feedback is given by

	 L s
s s

n

n

() =
+
ω
ςω2 2

	 (6.39)

We substitute s = jw to obtain the corresponding frequency response and equate
the square of its magnitude to unity

	 L j
n n

ω
ω ω z ω ω

() =
() + ()

=2

4 2 2

1

4
1 	 (6.40)

The magnitude of the loop gain, as well as its square, is unity at the gain crossover
frequency. For the second-order underdamped case, we now have the relation

	 ω ω z zgc n= + − 4 1 24 2
1 2

	 (6.41)

Next, we consider the phase margin and derive

	
PM G j gc= ° + ∠ () =

+ − 













−180
2

4 1 2

1

4 2
1 2

ω z

z z
tan

The last expression can be approximated by

	 PM ≈100z 	 (6.42)

Equations (6.41) and (6.42) provide the transformations we need to obtain
frequency domain specifications from step response specifications. Together with
Procedure 6.2, the equations allow us to design digital control systems using the
w-plane approach. The following three examples illustrate w-plane design using
Procedure 6.2.

Example 6.15

Consider the cruise control system of Example 3.2, where the analog process is

	
G s

s
() =

+
1

1

Transform the corresponding GZAS(z) to the w-plane by considering both T = 0.1 and T =
0.01. Evaluate the role of the sampling period by analyzing the corresponding Bode plots.

Solution
When T = 0.1 we have

	
G z

z
ZAS() =

−
0 09516

0 9048

.

.

and by applying (6.36), we obtain

	
G w

w

w
1

0 05 1

1
() = − +

+
.

.

When T = 0.01 we have

	
G z

z
ZAS() =

−
0 00995

0 99

.

.

and, again by applying (6.36), we obtain

	
G w

w

w
2

0 005 1

1
() = − +

+
.

The Bode plots of G(s), G1(w), and G2(w) are shown in Figure 6.31. For both sampling
periods, the pole in the w-plane is in the same position as the pole in the s-plane. However,
both G1(w) and G2(w) have a zero, whereas G(s) does not. This results in a big difference
between the frequency response of the analog system and that of the digital systems at the
high frequencies. However, the influence of the zero on the system dynamics is clearly more
significant when the sampling period is smaller. Note that for both sampling periods, distor-
tion in the low frequency range is negligible. For both systems, the gain as w goes to zero
is unity as is the DC gain of the analog system. This is true for the choice c = 2/T in (6.35).
Other possible choices are not considered because they do not yield DC gain equality.

Example 6.16

Consider the DC motor speed control system of Example 3.6, where the (type 0) analog
plant has the transfer function

Figure 6.31

Bode plots for Example 6.15.

–80

–60

–40

–20

0

M
ag

ni
tu

de
 (

dB
)

10–2 10–1 100 101 102 103 104
–180

–135

–90

–45

0

P
ha

se
 (

de
g)

Frequency (rad/sec)

G(s)

G1(w)

G2(w)

6.5  Frequency Response Design   205

206    CHAPTER 6  Digital Control System Design

	
G s

s s
() =

+() +()
1

1 10

Design a digital controller by using frequency response methods to obtain (1) zero
steady-state error due to a unit step, (2) an overshoot less than 10%, (3) a settling time of
about 1 s.

Solution
From the given specification, we have that the controller in the w-plane must contain a pole
at the origin. For 10% overshoot, we calculate the damping ratio as

	
z

p
=

()

() +
≈

ln .

ln .
.

0 1

0 1
0 6

2 2

Using the rule of thumb that the phase margin is about 100 times the damping ratio of the
closed-loop system, the required phase margin is about 60 degrees. For a settling time of
1 second, we calculate the undamped natural frequency

	
ω

zn
sT

= ≈
4

6 7. rad s

Using (6.41), we obtain the gain crossover wgc = 4.8 rad/s.
A suitable sampling period for the selected dynamics is T = 0.02 s (see Example 6.8).

The discretized process is then determined as

	
G z z

G s

s

z

z z
ZAS() = −() (){ } = ×

+
−() −

− −1 1 8604 10
0 9293

0 8187 0 9
1 4Z .

.

. . 8802()
Using (6.36), we obtain the w-plane transfer function

	
G w

w w

w w
() = − ⋅ +() −()

+() +()

−3 6519 10 2729 100

9 967 1

6.

.

Note the presence of the two additional zeros (with respect to G(s)), which, in any case do
not significantly influence the system dynamics in the range of frequencies of interest for
the design. The two poles are virtually in the same position as the poles of G(s). The simplest
design that meets the desired specifications is to insert a pole at the origin, to cancel the
dominant pole at −1, and to increase the gain until the required gain crossover frequency
is attained. Thus, the resulting controller transfer function is

	
C w

w

w
() = +

54
1

The Bode diagram of the loop transfer function C(w)G(w), together with the Bode
diagram of G(w), is shown in Figure 6.32. The figure also shows the phase and gain
margins. By transforming the controller back to the z-plane by means of (6.35), we obtain

	
C z

z

z
() = −

−
54 54 53 46

1

. .

The corresponding discretized closed-loop step response is plotted in Figure 6.33 and clearly
meets the design specifications.

Figure 6.32

Bode plots of C(w)G(w) and G(w) for Example 6.16.

–150

–100

–50

0

50

100

M
ag

ni
tu

de
 (

dB
)

–270
–225
–180
–135
–90
–45

0

P
ha

se
 (

de
g)

GM = 25.7 dB (at 32.2 rad/sec),
PM = 61.3 deg (at 4.86 rad/sec)

Frequency (rad/sec)

C(w)G(w)

G(w)

10–2 10–1 100 101 102 103 104 105

Figure 6.33

Discretized closed-loop step response for Example 6.16.

Time s

A
m

pl
it

ud
e

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

System: Gcl
Peak amplitude: 1.07
Overshoot (%): 7.17
At time (sec): 0.56 System: Gcl

Settling Time (sec): 0.818

6.5  Frequency Response Design   207

208    CHAPTER 6  Digital Control System Design

Example 6.17

Consider the DC motor speed control system described in Example 3.6 with transfer
function

	
G s

s s
() =

+() +()
1

1 3

Design a digital controller using frequency response methods to obtain (1) zero steady-state
error due to a unit step, (2) an overshoot less than 10%, (3) a settling time of about 1 s.
Use a sampling time of T = 0.2 s.

Solution
As in Example 6.15, (1) the given steady-state error specification requires a controller with
a pole at the origin, (2) the percentage overshoot specification requires a phase margin of
about 60 degrees, and (3) the settling time yields a gain crossover frequency of about
5 rad/s. The transfer function of the system with DAC and ADC is

	

G z z
G s

s

.
z .

z . z .

ZAS() = −() (){ }
=

+
−() −

−1

0 015437
0 7661

0 8187 0548

1 Z

88()

Transforming to the w-plane using (6.36), we obtain

	
G w

w w

w w
() = − ⋅ +() −()

+() +()

−12 819 10 75 5 10

2 913 0 9967

4. .

. .

Note again that the two poles are virtually in the same locations as the poles of G(s).
Here the RHP zero at w = 10 must be taken into account in the design because the required
gain crossover frequency is about 5 rad/s. To achieve the required phase margin, both poles
must be canceled with two controller zeros. For a realizable controller, we need at least two
controller poles. In addition to the pole at the origin, we select a high-frequency controller
pole so as not to impact the frequency response in the vicinity of the crossover frequency.
Next, we adjust the system gain to achieve the desired specifications.

As a first attempt, we select a high-frequency pole in w = −20 and increase the gain to
78 for a gain crossover frequency of 4 rad/s with a phase margin of 60 degrees. The control-
ler is therefore

	
C w

w w

w w
() = +() +()

+()
78

2 913 0 9967

20

. .

The corresponding open-loop Bode plot is shown in Figure 6.34 together with the Bode plot
of G(w). Transforming the controller back to the z-plane using (6.35), we obtain

	
C z

z

z
() = −

−
54 54 53 46

1

. .

The resulting discretized closed-loop step response, which satisfies the given requirements,
is plotted in Figure 6.35.

Figure 6.34

Bode plots of C(w)G(w) and G(w) for Example 6.17.

–60

–40

–20

0

20

40

M
ag

ni
tu

de
 (

dB
)

–225

–180

–135

–90

–45

0

Ph
as

e
(d

eg
)

GM = 9.7 dB (at 18.2 rad/sec),
PM = 59.9 deg (at 3.99 rad/sec)

Frequency (rad/sec)

C(w)G(w)

G(w)

10–1 100 101 102 103 104

Figure 6.35

Discretized closed-loop step response for Example 6.17.

Time s

A
m

pl
it

ud
e

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

System: Gcl
Peak amplitude: 1.08
Overshoot (%): 8.09
At time (sec): 0.4 System: Gcl

Settling Time (sec): 0.718

6.5  Frequency Response Design   209

210    CHAPTER 6  Digital Control System Design

6.6  Direct Control Design
In some control applications, the desired transfer function of the closed-loop
system is known from the design specification. For a particular system configura-
tion, it is possible to calculate the controller transfer function for a given plant
from the desired closed-loop transfer function. This approach to design is known
as synthesis. Clearly, the resulting controller must be realizable for this approach
to yield a useful design.

We consider the Figure 6.12 block diagram, with known closed-loop transfer
function Gcl(z). The controller transfer function C(z) can be computed analytically,
starting from the expression of the desired closed-loop transfer function Gcl(z):

	
G z

C z G z

C z G z
cl

ZAS

ZAS

() = () ()
+ () ()1

We solve for the controller transfer function

	 C z
G z

G z

G zZAS

cl

cl

() =
()

()
− ()

1

1
	 (6.43)

For the control system to be implementable, the controller must be causal and
must ensure the asymptotic stability of the closed-loop control system. For a causal
controller, the closed-loop transfer function Gcl(z) must have the same pole-zero
deficit as GZAS(z). In other words, the delay in Gcl(z) must be at least as long as
the delay in GZAS(z). We see this by examining (6.43) and observing that the
second term on the right side of the equality has as many poles as zeros.

Recall from Chapter 4 that if unstable pole-zero cancellation occurs, the system
is input-output stable but not asymptotically stable. This is because the response
due to the initial conditions is unaffected by the zeros and is affected by the
unstable poles, even if they cancel with a zero. Hence, one must be careful
when designing closed-loop control systems to avoid unstable pole-zero cancella-
tions. This implies that the set of zeros of Gcl(z) must include all the zeros of
GZAS(z) that are outside the unit circle. Suppose that the process has un unstable
pole z z= , z >1, namely:

	
G z

G z

z z
ZAS() = ()

−
1

In view of equation (6.38), we avoid unstable pole-zero cancellation by requiring

	

1
1

1 1 1

− () =
+ () ()

−

=
−

− + () ()
G z

C z
G z

z z

z z

z z C z G z
cl

In other words, z z= must be a zero of 1 − Gcl(z).
An additional condition can be imposed to address state accuracy require-

ments. In particular, if zero steady-state error is required, the condition must be

	 Gcl 1 1() =

This condition is easily obtained by applying the final value theorem (see Section
2.8.1). The proof is left as an exercise for the reader.

Summarizing, the conditions required for the choice of Gcl(z) are as follows:

■	 Gcl(z) must have the same pole-zero deficit as GZAS(z) (causality).
■	 Gcl(z) must contain as zeros all the zeros of GZAS(z) that are outside the

unit circle (stability).
■	 The zeros of 1 − Gcl(z) must include all the poles of GZAS(z) that are

outside the unit circle (stability).
■	 Gcl(1) = 1 (zero steady-state error).

The choice of a suitable closed-loop transfer function is clearly the main
obstacle in the application of the direct design method. The correct choice of
closed-loop poles and zeros to meet the design requirements is difficult for higher-
order systems. In practice, there are additional constraints on the control variable
because of actuator limitations. Further, the performance of the control system
relies heavily on an accurate process model.

To partially address the first problem, the poles of the continuous-time closed-
loop system can be specified based on desired properties of the closed-loop
system. For example, the Bessel pole locations shown in Tables 6.5 and 6.6 can
be exploited to obtain a closed-loop system step response with a given settling
time or a given bandwidth. The following ad hoc procedure often yields the
desired transfer function.

Procedure 6.3
1.	 Select the desired settling time Ts (desired bandwidth wd).
2.	 Select the nth-order pole location from the table and divide it by Ts (multiply it

by wd).
3.	 Obtain Gcl(z) by converting the s-plane pole location to the z-plane pole

location using the transformation z = esT.
4.	 Verify that Gcl(z) meets the conditions for causality, stability, and steady-state

error. If not, modify Gcl(z) until the conditions are met.

Table 6.5  Bessel Pole Location for Ts = 1 s

Order Poles

1 −4.6200

2 −4.0530 ± j 2.3400

3 −3.9668 ± j 3.7845 −5.0093

4 −4.0156 ± j 5.0723 −5.5281 ± j 1.6553

5 −4.1104 ± j 6.3142 −5.9268 ± j 3.0813 −6.4480

6 −4.2169 ± j 7.5300 −6.2613 ± j 4.4018 −7.1205 ± j 1.4540

6.6  Direct Control Design   211

212    CHAPTER 6  Digital Control System Design

Example 6.18

Design a digital controller for the DC motor speed control system described in Example 3.6,
where the (type 0) analog plant has the transfer function

	
G s

s s
() =

+() +()
1

1 10

to obtain (1) zero steady-state error due to a unit step and (2) a settling time of about 4 s.
The sampling time is chosen as T = 0.02 s.

Solution
As in Example 6.8, the discretized process transfer function is

	
G z z

G s

s

z

z z
ZAS() = −() (){ } = ×

+
−() −

− −1 1 8604 10
0 9293

0 8187 0 9
1 4Z .

.

. . 8802()

Note that there are no poles and zeros outside the unit circle and there are no zeros at infinity.
Then, according to Table 6.5, the desired continuous-time closed-loop transfer function

is chosen as second-order with poles at (−4.0530 ± j2.3400)/4 and with gain equal to one so
that the requirements on the settling time and on the steady-state error are satisfied, namely:

	
G s

s s
cl() =

+ +
1 369

2 027 1 3692

.

. .

Then the desired closed-loop transfer function is obtained using z = esT, namely:

	
G z

z

z z
cl() = ⋅

+
− +

−0 2683 10
1

1 9597 0 9603
3

2
.

. .

By applying (6.38) we have

	
C z

z z z

z z z
() = −() −() +()

−() +() −()
1 422 0 8187 0 9802 1

1 0 9293 0 96

. . .

. .

Table 6.6  Bessel Pole Location for wd = 1 rad/s

Order Poles

1 −1.0000

2 −0.8660 ± j 0.5000

3 −0.7455 ± j 0.7112 −0.9420

4 −0.6573 ± j 0.8302 −0.9047 ± j 0.2711

5 −0.5906 ± j 0.9072 −0.8516 ± j 0.4427 −0.9246

6 −0.5385 ± j 0.9617 −0.7998 ± j 0.5622 −0.9093 ± j 0.1856

We observe that stable pole-zero cancellation has occurred and that an integral term is
present, as expected, in the controller because the zero steady-state error condition has
been addressed. The digital closed-loop step response is shown in Figure 6.36.

Example 6.19

Design a digital controller for the type 0 analog plant

	
G s

s s

s s
() = − −() +()

+ +()
0 16738 9 307 6 933

0 3311 92

. . .

.

to obtain (1) zero steady-state error due to a unit step, (2) a damping ratio of 0.7, and (3)
a settling time of about 1 s. The sampling time is chosen as T = 0.01 s.

Solution
The discretized process transfer function is

	
G z z

G s

s

z z

z
ZAS() = −() (){ } = − −() −()

−
−1

0 16738 1 095 0 9319

1 99
1

2
Z

. . .

. 66 0 9967z + .

Note that there is a zero outside the unit circle and this has to be included in the desired
closed-loop transfer function, which is therefore selected as

Figure 6.36

Step response for the direct design method described in Example 6.18.

Time s

A
m

pl
it

ud
e

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
System: gcl
Settling Time (sec): 3.71

6.6  Direct Control Design   213

214    CHAPTER 6  Digital Control System Design

	
G z

K z

z z
cl() = −()

− +
1 095

1 81 0 82692

.

. .

The closed-loop poles have been selected as in Example 6.8 and the value K = −0.17789
results from solving the equation Gcl(1) = 1. By applying (6.38), we have

	
C z

z z

z z z
() =

− +()
−() −() −()

1 0628 1 81 0 8269

1 0 9319 0 6321

2. . .

. .

The stable pole-zero cancellation is evident again, as well as the presence of the pole
at z = 1. The digital closed-loop step response is shown in Figure 6.37. The presence of
the undershoot is due to the unstable zero that cannot be modified by the direct design
method. The achieved settling time is less than the required value, as the presence of the
zero has not been considered when selecting the closed-loop poles to meet requirements
(2) and (3).

Figure 6.37

Step response for the direct design method described Example 6.19.

Time s

A
m

pl
it

ud
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

System: gcl
Settling Time (sec): 0.489

Example 6.20

Design a digital controller for the type 0 analog plant

	
G s

s
e s() =

+
−1

10 1
5

to obtain (1) zero steady-state error that results from a unit step, (2) a settling time of about
10 s with no overshoot. The sampling time is chosen as T = 1 s.

Solution
The discretized process transfer function is

	
G z z

G s

s z
zZAS() = −() (){ } = −

− −1
0 09516

0 9048
1 5Z

.

.

To meet the causality requirements, a delay of five sampling periods must be included in
the desired closed-loop transfer function. Then the settling time of 10 s (including the time
delay) is achieved by considering a closed-loop transfer function with a pole in z = 0.5,
namely, by selecting

	
G z

K

z
zcl() =

−
−

0 5
5

.

Setting Gcl(1) = 1 yields K = 0.5, then applying (6.38) we have

	
C z

z z

z z
() = −()

− −
5 2543 0 9048

0 5 0 5

5

6 5

. .

. .

The resulting closed-loop step response is shown in Figure 6.38.

6.7  Finite Settling Time Design
Continuous-time systems can only reach the desired output asymptotically after
an infinite time period. By contrast, digital control systems can be designed to

Figure 6.38

Step response for the direct design method of Example 6.20.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Time s

A
m

pl
it

ud
e

6.7  Finite Settling Time Design   215

216    CHAPTER 6  Digital Control System Design

settle at the reference output after a finite time period and follow it exactly there-
after. By following the direct control design method described in Section 6.6, if
all the poles and zeros of the discrete-time process are inside the unit circle, an
attractive choice can be to select

	 G z zcl
k() = −

where k must be greater than or equal to the intrinsic delay of the discretized
process—namely, the difference between the degree of the denominator and
the degree of the numerator of the discrete process transfer function.

Disregarding the time delay, the definition implies that a unit step is tracked
perfectly starting at the first sampling point. From (6.43) we have the deadbeat
controller

	 C z
G z

z

zZAS

k

k
() =

() −






−

−

1

1
. 	 (6.44)

In this case, the only design parameter is the sampling period T, and the overall
control system design is very simple. However, finite settling time designs may
exhibit undesirable intersample behavior (oscillations) because the control is
unchanged between two consecutive sampling points. Further, the control vari-
able can easily assume values that may cause saturation of the DAC or exceed the
limits of the actuator in a physical system, resulting in unacceptable system behav-
ior. The behavior of finite settling time designs such as the deadbeat controller
must therefore be carefully checked before implementation.

Example 6.21

Design a deadbeat controller for the DC motor speed control system described in Example
3.6, where the (type 0) analog plant has transfer function

	
G s

s s
() =

+() +()
1

1 10

and the sampling time is initially chosen as T = 0.02 s. Redesign the controller with
T = 0.1 s.

Solution
Because the discretized process transfer function is

	

G z z
G s

s
z

z z

ZAS() = −() (){ }
= ×

+
−() −

−

−

1

1 8604 10
0 9293

0 8187 0 9

1

4

Z

.
.

. . 8802()
we have no poles and zeros outside or on the unit circle and a deadbeat controller can
therefore be designed by setting

	 G z zcl() = −1

(Note that the difference between the order of the denominator and the order of the
numerator is one.) By applying (6.39), we have

	
C z

z z

z z
() = −() −()

−() +()
5375 0533 0 9802 0 8187

1 0 9293

. . .

.

The resulting sampled and analog closed-loop step response is shown in Figure 6.39,
whereas the corresponding control variable is shown in Figure 6.40. It appears that, as
expected, the sampled process output attains its steady-state value after just one sample—
namely, at time t = T = 0.02 s, but between samples the output oscillates wildly and the
control variable assumes very high values. In other words, the oscillatory behavior of the
control variable causes an unacceptable intersample oscillation.

This can be ascertained analytically by considering the block diagram shown in Figure
6.41. Recall that the transfer function of the zero-order hold is

	
G s

e

s
ZOH

sT

() = − −1

Using simple block diagram manipulation, we obtain

	

E s
R s

e C s
G s

s
R s

C s G s

sT

ZAS

*
*

* *

*

* *

() = ()

+ −() () ()()
=

()

+ () ()

−1 1

1

	 (6.45)

Figure 6.39

Sampled and analog step response for the deadbeat control of Example 6.21 (T = 0.02 s).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

Time s

P
ro

ce
ss

 O
ut

pu
t

6.7  Finite Settling Time Design   217

218    CHAPTER 6  Digital Control System Design

Thus, the output is

	 Y s
e

s
G s C s

R s

C s G s

sT

ZAS

() = −



 () () ()

+ () ()













−1

1
*

*

* *
	 (6.46)

Equations (6.45) and (6.46) are quite general and apply to any system described by the
block diagram shown in Figure 6.41. To obtain the specific output pertaining to our example,
we substitute z = esT in the relevant expressions to obtain

Figure 6.40

Control variable for the deadbeat control of Example 6.21 (T = 0.02 s).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
¥ 104

Time s

C
on

tr
ol

 V
ar

ia
bl

e

Figure 6.41

Block diagram for finite settling time design with analog output.

Y(s)R(s) +

−

U*(z)T

T

T

E*(s)
R*(s)

Y*(s)

GZOH(s) C*(s) G(s)

	

G s e
e

e
ZAS

sT
sT

sT
* () = ×

+
−() −

− −
−

−1 8604 10
1 0 9293

1 0 8187 1 0 9802
4.

.

. . ee

C s
e e

e

sT

sT sT

sT

−

− −

−

()

() =
−() −()

−()* 5375 0533
1 0 9802 1 0 8187

1
.

. .

11 0 9293

1

1

+()

() =
−

−

−

. e

R s
e

sT

sT
*

Then substituting in (6.41) and simplifying gives

	
Y s

e e

s s s

sT sT

() =
−() −()
+() +() +

− −

5375 0533
1 0 9802 1 0 8187

1 10 1 0
.

. .

.99293e sT−()
Expanding the denominator using the identity

	

1 0 9293 1 0 9293 0 9293 0 9293
1 2+() = + −() + −() + −− − − − −. . . .e e e esT sT sT sTT

sT sT sTe e e

() +
= − + − +− − −

3

2 31 0 9293 0 8636 0 8025

. . .

.

we obtain

	

Y s
s s s

e e

e

sT sT() =
+() +()

− +(

−

− −5375 0533

1 10
1 2 782 3 3378

2 2993

2.
. .

. −− −+ +)3 40 6930sT sTe. . . .

Finally, we inverse Laplace transform to obtain the analog output

	

y t e e tt t() = − +



 () +

− +

− −5375 0533
1

10

1

9

1

90
1

5375 0533 0 2728

10.

. . 00 3031 0 0303 1

5375 0533 0 3338 0 3

10. .

. . .

e e t Tt T t T− −() − −()−() −() +
− 7709 0 0371 1 2

5375 0533 0 2299 0

2 10 2e e t Tt T t T− −() − −()+() −() +
− +

.

. . .22555 0 0255 1 3

5375 0533 0 0693 0

3 10 3e e t Tt T t T− −() − −()−() −() +
−

.

. . .00770 0 0077 1 44 10 4e e t Tt T t T− −() − −()+() −() +. . . .

where 1(t) is the unit step function. It is easy to evaluate that, at the sampling points, we
have y(0.02) = y(0.04) = y(0.06) = y(0.08) = … = 1, but between samples the output
oscillates wildly as shown in Figure 6.39. To reduce intersample oscillations, we set
T = 0.1 s and obtain the transfer function

	
G z z

G s
s

z

z z
ZAS() = −() (){ } = ×

+
−() −

− −1 35 501 10
0 6945

0 9048 0 3
1 4Z .

.

. . 6679()
For Gcl(z) = z −1 we obtain

	
C z

z z

z z
() = −() −()

−() +()
281 6855 0 9048 0 3679

1 0 6945

. . .

.

The resulting sampled and analog closed-loop step responses are shown in Figure 6.42,
whereas the corresponding control variable is shown in Figure 6.43. The importance of the
sampling period selection in the deadbeat controller design is clear. Note that the oscillations
and the amplitude of the control signal are both reduced; but it is also evident that the
intersample oscillations cannot be avoided completely with this approach.

6.7  Finite Settling Time Design   219

220    CHAPTER 6  Digital Control System Design

Figure 6.42

Sampled and analog step response for the deadbeat control of Example 6.21 (T = 0.1 s).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time s

P
ro

ce
ss

 O
ut

pu
t

Figure 6.43

Control variable for the deadbeat control of Example 6.21 (T = 0.1 s).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
–300

–200

–100

0

100

200

300

Time s

C
on

tr
ol

 V
ar

ia
bl

e

To avoid intersample oscillations, we maintain the control variable constant
after n samples, where n is the degree of the denominator of the discretized
process. This is done at the expense of achieving the minimum settling time (by
considering the sampled process output) as in the previous examples. By consid-
ering the control scheme shown in Figure 6.12, we have

	 U z
Y z

G z

Y z

R z

R z

G z
G z

R z

G zZAS ZAS

cl

ZAS

() = ()
()

=
()
()

()
()

= () ()
()

	 (6.47)

If we solve this equation with the constraints Gcl(1) = 1, we obtain the
expression of U(z) or, alternatively, we obtain the expression of Gcl(z),
which yields to the expression of the controller C(z) by applying (6.43).
Obviously, the overall design requires the specification a priori of the reference
signal to be tracked. In the following examples, a step reference signal is
assumed.

Example 6.22

Design a ripple-free deadbeat controller for the type 1 vehicle positioning system described
in Example 3.3 with transfer function

	
G s

s s
() =

+()
1

1

The sampling time is chosen as T = 0.1.

Solution
The discretized process transfer function is

	

G z z
G s

s

z z

z

ZAS() = −() (){ }
=

+()
−() −

−

− −

−

1

0 0048374 1 0 9672

1 1

1

1 1

1

Z

. .

00 9048 1. z−()
By considering that the z-transform of the step reference signal is

	
R z

z
() =

− −

1

1 1

we have

	

U z G z
R z

G z

G z
 z

z

cl

ZAS

cl

() = () ()
()

= ()⋅
−()

+

−

−

206 7218 1 0 9048

1

1

1

. .

00 9672 1. z−()

	 (6.48)

6.7  Finite Settling Time Design   221

222    CHAPTER 6  Digital Control System Design

Because the process is of type 1, we have to require that the control variable be zero after
two samples (note that n = 2)—namely, that

	 U z a a z() = + −
0 1

1

A solution of equation (6.48) is therefore

	 G z K z zcl() = ⋅ +()− −1 11 0 9672.

and

	 U z K z() = ⋅ −()−206 7218 1 0 9048 1. .

where the value K = 0.5083 is found by imposing Gcl(1) = 1. Thus, by applying (6.38) we
have

	
C z

z

z
() = −

+
105 1 95 08

0 4917

. .

.

The resulting sampled and analog closed-loop step response is shown in Figure 6.44,
whereas the corresponding control variable is shown in Figure 6.45. Note that the
control variable is constant after the second sample and that there is no intersample
ripple.

Figure 6.44

Sampled and analog step response for the deadbeat control of Example 6.22.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Time s

P
ro

ce
ss

 O
ut

pu
t

Example 6.23

Design a ripple-free deadbeat controller for the DC motor speed control system described
in Example 3.6, where the (type 0) analog plant has the transfer function

	
G s

s s
() =

+() +()
1

1 10

The sampling period is chosen as T = 0.1 s.

Solution
For a sampling period of 0.01, the discretized process transfer function is

	

G z z
G s

s

z z

z

ZAS() = −() (){ }
=

+()
−

−

− −

1

0 0035501 1 0 6945

1 0 9048

1

1 1

Z

. .

. −− −() −()1 11 0 3679. z

For a sampled unit step input,

	
R z

z
() =

− −

1

1 1

Figure 6.45

Control variable for the deadbeat control of Example 6.22.

Time s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

–100

–50

0

50

100

150

C
on

tr
ol

 V
ar

ia
bl

e

6.7  Finite Settling Time Design   223

224    CHAPTER 6  Digital Control System Design

we have the control input

	

U z G z
R z

G z

G z
z

cl

ZAS

cl

() = () ()
()

= ()⋅
−() −−281 6855 1 0 9048 1 0 361. . . 779

1 1 0 6945

1

1 1 1

z

z z z

−

− − −

()
−() +().

By taking into account the delay of one sampling period in GZAS(z), the control input
condition is satisfied with the closed-loop transfer function

	 G z K z zcl() = ⋅ +()− −1 11 0 6945.

where the value K = 0.5901 is found by imposing Gcl(1) = 1. Thus, by applying (6.38) we
have

	
C z

z z

z z
() = −() −()

−() +()
166 2352 0 9048 0 3679

1 0 4099

. . .

.

The resulting sampled and analog closed-loop step responses are shown in Figure 6.46,
whereas the corresponding control variable is shown in Figure 6.47. Note also that in this
case there is no intersample ripple.

Figure 6.46

Sampled and analog step response for the deadbeat control of Example 6.23.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Time s

P
ro

ce
ss

 O
ut

pu
t

Resources
Jacquot, R. G., Modern Digital Control Systems, Marcel Dekker, 1981.
Kuo, B. C., Automatic Control Systems, Prentice Hall, 1991.
Kuo, B. C., Digital Control Systems, Saunders, 1992.
Ogata, K., Digital Control Engineering, Prentice Hall, 1987.
Oppenheim, A. V., and R. W. Schafer, Digital Signal Processing, Prentice Hall, 1975.
Ragazzini, J. R., and G. F. Franklin, Sampled-Data Control systems, McGraw-Hill, 1958.

Problems
6.1	 Sketch the z-domain root locus, and find the critical gain for the following

systems:

(a)
	

	
G z

K

z
() =

− 0 4.

(b)	
	

G z
K

z z
() =

+() −()0 9 0 9. .

(c)	
	

G z
Kz

z z
() =

−() −()0 2 1.

(d)	

	
G z

K z

z z
() = +()

−() −()
0 9

0 2 0 8

.

. .

Figure 6.47

Control variable for the deadbeat control of Example 6.23.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–50

0

50

100

150

200

Time s

C
on

tr
ol

 V
ar

ia
bl

e

Problems   225

226    CHAPTER 6  Digital Control System Design

6.2	 Prove that expression (6.6) describes a constant wn contour in the
z-plane.

6.3	 Hold equivalence is a digital filter design approach that approximates an
analog filter using

	
C z

z
z

C s
s

a() = −





()



{ }−1 1Z L *

(a)	 Obtain the hold-equivalent digital filter for the PD, PI, and PID controllers.
Modify the results as necessary to obtain a realizable filter with finite
frequency response at the folding frequency.

(b)	 Why are the filters obtained using hold equivalence always stable?

6.4	 Show that the bilinear transformation of the PID controller expression (5.20)
yields expression (6.32).

6.5	 Design proportional controllers for the systems of Problem 6.1 to meet the
following specifications where possible. If the design specification cannot be
met, explain why and suggest a more appropriate controller.
(a)	 A damping ratio of 0.7
(b)	 A steady-state error of 10% due to a unit step
(c)	 A steady-state error of 10% due to a unit ramp

6.6	 Design digital controllers to meet the desired specifications for the systems
described in Problems 5.4, 5.7, and 5.8 by bilinearly transforming the analog
designs.

6.7	 Design a digital filter by applying the bilinear transformation to the analog
(Butterworth) filter

	
C s

s s
a() =

+ +
1

2 12

with T = 0.1 s. Then apply prewarping at the 3-dB frequency.

6.8	 Design a digital PID controller (with T = 0.1) for the plant

	
G s

s
e s() =

+
−1

10 1
5

by applying the Ziegler-Nichols tuning rules presented in Table 5.1.

6.9	 Design digital controllers to meet the desired specifications for the systems
described in Problems 5.4, 5.7, and 5.8 in the z-domain directly.

6.10	 In Example 4.9, we examined the closed-loop stability of the furnace temp
erature digital control system with proportional control and a sampling period
of 0.01 s. We obtained the z-transfer function

	
G z

z

z z
ZAS() = +

− +
−10

4 95 4 901

1 97 0 9704
5

2

. .

. .

Design a controller for the system to obtain zero steady-state error due to a
step input without significant deterioration in the transient response.

6.11	 Consider the DC motor position control system described in Example 3.6,
where the (type 1) analog plant has the transfer function

	
G s

s s s
() =

+() +()
1

1 10

and design a digital controller by using frequency response methods to obtain
a settling time about 1 and an overshoot less than 5%.

6.12	 Use direct control design for the system described in Problem 5.7 (with T =
0.1) to design a controller for the transfer function

	
G s

s s
() =

+() +()
1

1 5

to obtain (1) zero steady-state error due to step, (2) a settling time of less than
2 s, and (3) an undamped natural frequency of 5 rad/s. Obtain the discretized
and the analog output. Then apply the designed controller to the system

	
G s

s s s
() =

+() +() +()
1

1 5 0 1 1.

and obtain the discretized and the analog output to verify the robustness of
the control system.

6.13	 Design a deadbeat controller for the system of Problem 5.7 to obtain perfect
tracking of a unit step in minimum finite time. Obtain the analog output for
the system, and compare your design to that obtained in Problem 5.7. Then
apply the controller to the process

	
G s

s s s
() =

+() +() +()
1

1 5 0 1 1.

to verify the robustness of the control system.

6.14	 Find a solution for Problem 6.13 that avoids intersample ripple.

Computer Exercises
6.15	 Write a MATLAB function to plot a constant damped natural frequency

contour in the z-plane.

6.16	 Write a MATLAB function to plot a time-constant contour in the z-plane.

6.17	 Write a computer program that estimates a first-order-plus-dead-time transfer
function with the tangent method and determines the digital PID parameters
according to the Ziegler-Nichols formula. Apply the program to the system

Computer Exercises   227

228    CHAPTER 6  Digital Control System Design

	
G s

s
() =

+()
1

1 8

and simulate the response of the digital control system (with T = 0.1) when a
set point step change and a load disturbance step are applied. Compare the
results with those of Exercise 5.14.

6.18	 To examine the effect of the sampling period on the relative stability and
transient response of a digital control system, consider the system

	
G s

s s
() =

+() +()
1

1 5

(a)	 Obtain the transfer function of the system, the root locus, and the critical
gain for T = 0.01 s, 0.05 s, 0.1 s.

(b)	 Obtain the step response for each system at a gain of 2.
(c)	 Discuss the effect of the sampling period on the transient response and

relative stability of the system based on your results from (a) and (b).

Chapter

7State–Space Representation

Objectives
After completing this chapter, the reader will be able to do the following:

1.	 Obtain a state–space model from the system transfer function or differential
equation.

2.	 Determine a linearized model of a nonlinear system.
3.	 Determine the solution of linear (continuous-time and discrete-time) state–

space equations.
4.	 Determine an input-output representation starting from a state–space

representation.
5.	 Determine an equivalent state–space representation of a system by changing

the basis vectors.

In this chapter, we discuss an alternative system representation in terms of the
system state variables, known as the state–space representation or realization.
We examine the properties, advantages, and disadvantages of this representation.
We also show how to obtain an input-output representation from a state–space
representation. Obtaining a state–space representation from an input-output rep-
resentation is further discussed in Chapter 8.

The term “realization” arises from the fact that this representation provides the
basis for implementating digital or analog filters. In addition, state–space realiza-
tions can be used to develop powerful controller design methodologies. Thus,
state–space analysis is an important tool in the arsenal of today’s control system
designer.

7.1  State Variables
Linear continuous-time single-input-single-output (SISO) systems are typically
described by the input–output differential equation

230    CHAPTER 7  State–Space Representation

	

d y

dt
a

d y

dt
a

dy

dt
a y c

d u

dt

c
d u

dt

n

n n

n

n n

n

n

n

n

n

+ + + + =

+

−

−

−

−

−

1

1

1 1 0

1

1

. . .

−− + + +
1 1 0. . . c

du

dt
c u

	 (7.1)

where y is the system output, u is the system input, and ai, i = 0, 1, . . . , n − 1,
cj, j = 0, 1, . . . , n are constants. The description is valid for time-varying systems
if the coefficients ai and cj are explicit functions of time. For a multi-input-
multi-output (MIMO) system, the representation is in terms of l input-output
differential equations of the form (7.1) where l is the number of outputs. The
representation can also be used for nonlinear systems if (7.1) is allowed to include
nonlinear terms.

The solution of the differential equation (7.1) requires knowledge of the system
input u(t) for the period of interest as well as a set of constant initial conditions

	 y t dy t dt d y t dtn n(), , . . . ,0 0
1

0
1() ()− −

where the notation signifies that the derivatives are evaluated at the initial time
t0. The set of initial conditions is minimal in the sense that incomplete knowledge
of this set would prevent the complete solution of (7.1). On the other hand, addi-
tional initial conditions are not needed to obtain the solution. The initial condi-
tions provide a summary of the history of the system up to the initial time. This
leads to the following definition.

Definition 7.1:  System State.  The state of a system is the minimal set of numbers
{xi(t0), i = 1, 2, . . . , n} needed together with the input u(t), with t in the interval [t0, tf)
to uniquely determine the behavior of the system in the interval [t0, tf]. The number n
is known as the order of the system.	 ■

As t increases, the state of the system evolves and each of the numbers xi(t)
becomes a time variable. These variables are known as the state variables. In
vector notation, the set of state variables form the state vector

	 x t x x x

x

x

x

n
T

n

() = [] =



















1 2

1

2
. . .


	 (7.2)

The preceding equation follows standard notation in system theory where a
column vector is bolded and a row vector is indicated by transposing a column.

State–space is an n-dimensional vector space where {xi(t), i = 1, 2, . . . , n}
represent the coordinate axes. So for a second-order system, the state space is
two-dimensional and is known as the state plane. For the special case where the
state variables are proportional to the derivatives of the output, the state plane is
called the phase plane and the state variables are called the phase variables.

Curves in state space are known as the state trajectories and a plot of state trajec
tories in the plane is the state portrait (or phase portrait for the phase plane).

Example 7.1

Consider the equation of motion of a point mass m driven by a force f

	 my f =

where y is the displacement of the point mass. The solution of the differential equation is
given by

	
y t

m
y t y t t f d

t

t

t

t
() = () + () + (){ }∫∫

1
0 0

00

 τ τ

Clearly, a complete solution can only be obtained, given the force, if the two initial con-
ditions y t y t0 0() (){ },  are known. Hence, these constants define the state of the system at
time t0, and the system is second order. The state variables are

	

x t y t

x t y t

1

2

() = ()

() = ()

and the state vector is

	
x t x x

x

x
T() = [] = 





1 2
1

2

The state variables are phase variables in this case, because the second is the derivative of
the first.

The state variables are governed by the two first-order differential equations

	





x x

x u m

1 2

2

=

=

where u = f. The first of the two equations follows from the definitions of the two state
variables. The second is obtained from the equation of motion for the point mass. The two
differential equations together with the algebraic expression

	 y x= 1

are equivalent to the second-order differential equation because solving the first-order dif-
ferential equations and then substituting in the algebraic expression yields the output y. For
a force satisfying the state feedback law

	
u

m
x x= − −9 31 2

we have a second-order underdamped system with the solution depending only on the initial
conditions. The solutions for different initial conditions can be obtained by repeatedly using
the MATLAB commands lsim or initial. Each of these solutions yields position and velocity
data for a phase trajectory, which is a plot of velocity versus position. A set of these trajec-

7.1  State Variables   231

232    CHAPTER 7  State–Space Representation

tories corresponding to different initial states gives the phase portrait of Figure 7.1. The time
variable does not appear explicitly in the phase portrait and is an implicit parameter. Arrows
indicate the direction of increasing time.

Note that the choice of state variables is not unique. For example, one could
use the displacement y and the sum of displacement and velocity as state variables
(see Example 7.18). This choice has no physical meaning but nevertheless satisfies
the definition of state variables. The freedom of choice is a general characteristic
of state equations and is not restricted to this example. It allows us to represent
a system so as to reveal its characteristics more clearly and is exploited in later
sections.

7.2  State–Space Representation
In Example 7.1, two first-order equations governing the state variables were
obtained from the second-order input-output differential equation and the defini-
tions of the state variables. These equations are known as state equations. In
general, there are n state equations for an nth-order system. State equations can
be obtained for state variables of systems described by input-output differential
equations, with the form of the equations depending on the nature of the system.
For example, the equations are time varying for time-varying systems and nonlin-
ear for nonlinear systems. State equations for linear time-invariant systems can also
be obtained from their transfer functions.

The algebraic equation expressing the output in terms of the state variables is
called the output equation. For multi-output systems, a separate output equation

Figure 7.1

Phase portrait for a point mass.

–1.5 –1 –0.5 0 0.5 1 1.5
–3

–2

–1

0

1

2

3

7.2  State–Space Representation   233

is needed to define each output. The state and output equations together provide
a complete representation for the system described by the differential equation,
which is known as the state–space representation. For linear systems, it is often
more convenient to write the state equations as a single matrix equation referred
to as the state equation. Similarly, the output equations can be combined in a
single output equation in matrix form. The matrix form of the state–space repre-
sentation is demonstrated in the following example.

Example 7.2

The state–space equations for the system of Example 7.1 in matrix form are

	



x

x

x

x
m

u
1

2

1

2

0 1

0 0

0

1






= 











+














	
y

x

x
= []





1 0
1

2

The general form of the state–space equations for linear systems is

	
x x u

y x u

t A t B t

t C t D t

() = () + ()

() = () + ()
	 (7.3)

where x(t) is an n × 1 real vector, u(t) is an m × 1 real vector, and y(t) is an
l × 1 real vector. The matrices in the equations are

	 A n n= × state matrix

	 B n m= × or input control matrix

	 C l n= × output matrix

	 D l m= × direct transmission matrix

7.2.1  State–Space Representation in MATLAB

MATLAB has a special state–space representation obtained with the command ss.
However, some state commands only operate on one or more of the matrices
(A, B, C, D). To enter a matrix

	
A =

− −






1 1

5 4

use the command

>> A = [0, 1; -5, -4]

234    CHAPTER 7  State–Space Representation

If B, C, and D are similarly entered, we obtain the state–space quadruple p with
the command

>> p = ss(A, B, C, D)

We can also specify names for the input (torque, say) and output (position) using
the set command

>> set(p,‘inputn’,‘torque’,‘outputn’,‘position’)

7.2.2  Linear versus Nonlinear State–Space Equations

The orders of the matrices are dictated by the dimensions of the vectors and
the rules of vector-matrix multiplication. For example, in the single-input (SI)
case, B is a column matrix, and in the single-output (SO) case, both C and D are
row matrices. For the SISO case, D is a scalar. The entries of the matrices are
constant for time-invariant systems and functions of time for time-varying
systems.

Example 7.3

The following are examples of state–space equations for linear systems:

1.	 A third-order 2-input–2-output (MIMO) linear time-invariant system:

	





x

x

x

1

2

3

1 1 0 3 1 5

0 1 3 5 2 2

0 4 2 4 1 1

















=
−

−
















. . .

. . .

. . . 

















+






















x

x

x

u

u

1

2

3

1

2

0 1 0

0 1 1

1 0 1 0

.

.

. .

	

y

y

x

x

x

u

u

1

2

1

2

3

1

2

1 2 0

0 0 1

1 2

0 1






= 





















+ 











2.	 A second-order 2-output–single-input (SIMO) linear time-varying system:

	



x

x

t t

e

x

x
u

t

1

2
2

1

21

0

1






=
() ()











+ 



−

sin cos

	

y

y

x

x

1

2

1

2

1 0

0 1






= 











Here, the direct transmission matrix D is zero and the input and output matrices are
constant. But the system is time varying because the state matrix has some entries that
are functions of time.

It is important to remember that the form (7.3) is only valid for linear state
equations. Nonlinear state equations involve nonlinear functions and cannot be
written in terms of the matrix quadruple (A, B, C, D).

7.2  State–Space Representation   235

Example 7.4

Obtain a state–space representation for the s-degree-of-freedom (s-D.O.F.) robotic manipu-
lator from the equation of motion

	 M Vq q q q q g q() + () + () =  , t

where
q = vector of generalized coordinates
M(q) = s × s positive definite inertia matrix
V s sq q, () = × matrix of velocity related terms
g(q) = s × 1 vector of gravitational terms
t = vector of generalized forces

The output of the manipulator is the position vector q.

Solution
The system is of order 2s, as 2s initial conditions are required to completely determine the
solution. The most natural choice of state variables is the vector

	 x x x q q= { } = { }col col1 2, , 

where col{.} denotes a column vector. The associated state equations are

	



x

x

x

x x x x g x x
1

2

2

1
1 1 2 2 1

1
1

0







 = − () () + (){ }









 + ()




− −M V M, 




 u

with the generalized force now denoted by the symbol u
The output equation is

	 y x= 1

This equation is linear and can be written in the standard form

	
y

x

x
= []







×Is s s0

1

2

Example 7.5

Write the state–space equations for the 2-D.O.F. anthropomorphic manipulator of
Figure 7.2. The equations of motion of the manipulator are as in Example 7.4 with the
definitions

	
M

m m l m l m l l m l m l l

m l
q() =

+() + + () + ()1 2 1
2

2 2
2

2 1 2 2 2 2
2

2 1 2 2

2

2 cos cosθ θ
22
2

2 1 2 2 2 2
2+ ()





m l l m lcos θ

	
V

m l l

m l l
q q q,

sin

sin
 

  
() =

− () +()
()




2 1 2 2 2 1 2

2 1 2 2 1
2

2θ θ θ θ
θ θ 

236    CHAPTER 7  State–Space Representation

	
g q() =

+() () + +()
+()







m m gl m gl

m gl

1 2 1 1 2 2 1 2

2 2 1 2

sin sin

sin

θ θ θ
θ θ 

where mi, i = 1, 2 are the masses of the two links, li, i = 1, 2 are their lengths, and g is
the acceleration due to gravity; q q,() are the vectors of angular positions and angular
velocities, respectively.

Solution
The state equations can be written using the results of Example 7.4 as

	




  


x

x

x

1

2

2

2 1 2 2 2 1 2

2 1 2 2

2








 = −

− () +()
()L

m l l

m l l

sin

sin

θ θ θ θ
θ θθ

θ θ θ
θ θ

1
2

1 2 1 1 2 2 1 2

2 2 1 2







+

+() () + +()
+(

m m gl m gl

m gl

sin sin

sin))














































+










0
L

u

where

	
L

D

m l m l m l l

m l m l l
=

()
− + ()()

− + ()()
1 2 2

2
2 2

2
2 1 2 2

2 2
2

2 1 2 2det

cos

cos

θ
θ mm m l m l m l l1 2 1

2
2 2

2
2 1 2 22+() + + ()





cos θ

	 x = { } = { }col colx x1 2, , .q q

The general form of nonlinear state–space equations is

	
x f x u

y g x u

= ()

= ()

,

,
	 (7.4)

where f(.) (n × 1) and g(.) (l × 1) are vectors of functions satisfying mathematical
conditions that guarantee the existence and uniqueness of solution. But a form

Figure 7.2

A 2-D.O.F. anthropomorphic manipulator.

θ1

θ 2

Link 1

Link 2

that is often encountered in practice and includes the equations of robotic manip-
ulators is

	
x f x x u

y g x x u

= () + ()

= () + ()

B

D
	 (7.5)

The state equation (7.5) is said to be affine in the control because the RHS is affine
(includes a constant vector) for constant x.

7.3  Linearization of Nonlinear State Equations
Nonlinear state equations of the form (7.4) or (7.5) can be approximated by linear
state equations of the form (7.3) for small ranges of the control and state variables.
The linear equations are based on the first-order approximation

	 f x f x
df

dx
x O x

x

() = () + + ()0
2

0

Δ Δ 	 (7.6)

where x0 is a constant and Δx = x − x0 is a perturbation from the constant. The
error associated with the approximation is of order Δ2x and is therefore acceptable
for small perturbations. For a function of n variables, (7.6) can be modified to

	 f f
f

x
x

f

x
x O

n
nx x x

x x

() = () + + + + ()0
1

1
2

0 0

∂
∂

∂
∂

Δ Δ Δ. . . 	 (7.7)

where x0 is the constant vector

	 x0 = []x x xn
T

10 20 0. . .

and Δx denotes the perturbation vector

	 Δx = − − −[]x x x x x xn n
T

1 10 2 20 0. . .

The term ||Δx||2 denotes the sum of squares of the entries of the vector (i.e., its
2-norm), which is a measure of the length or “size” of the perturbation vector.1
The error term dependent on this perturbation is assumed to be small and is
neglected in the sequel.

For nonlinear state–space equations of the form (7.5), let the ith entry of the
vector f be fi. Then applying (7.7) to fi yields the approximation

	

f f
f

x
x

f

x
x

f

i i
i i

n
nx u x u

x u x u

, , . . .
, ,

() = () + + + +
() ()

0 0
1

1

0 0 0 0

∂
∂

∂
∂

∂

Δ Δ

ii i

m
m

u
u

f

u
u

∂
∂

∂1
1

0 0 0 0x u x u, ,

. . .
() ()

+ +Δ Δ
	 (7.8)

1Other norms can be used, but the 2-norm is used most commonly.

7.3  Linearization of Nonlinear State Equations   237

238    CHAPTER 7  State–Space Representation

which can be rewritten as

	

f f
f

x

f

x

x

x

i i
i i

n

x u x u
x u x u

, ,
, ,

() − () =










() ()
0 0

1

1

2

0 0 0 0

∂
∂

∂
∂

 

Δ
Δ

ΔΔ
Δ
x

x

f

u

f

u

n

n

i i

m

−

() ()























+










1

1 0 0 0 0

∂
∂

∂
∂x u x u, ,

 























−

Δ
Δ

Δ
Δ

u

u

u

u

m

m

1

2

1



	 (7.9)

In most situations where we seek a linearized model, the nominal state is an
equilibrium point. This term refers to an initial state where the system remains
unless perturbed. In other words, it is a system where the state’s rate of change,
as expressed by the RHS of the state equation, must be zero (see Definition 8.1).
Thus, if the perturbation is about an equilibrium point, then the derivative of the
state vector is zero at the nominal state; that is, fi(x0, u0) is a zero vector.

The ith entry gi of the vector g can be similarly expanded to yield the pertur-
bation in the ith output

	

Δ
Δ

y g g

g

x

g

x

i i i

i i

n

= () − ()

=










() ()

x u x u

x u x u

, ,

...
, ,

0 0

1 0 0 0 0

∂
∂

∂
∂

xx

x

x

x

g

u

g

u

n

n

i i

m

1

2

1

1 0 0 0

Δ

Δ
Δ



−

()























+
∂
∂

∂
∂x u x u, ,

...
00

1

2

1
()

−

































Δ
Δ

Δ
Δ

u

u

u

u

m

m



	 (7.10)

We also note that the derivative of the perturbation vector is

	 Δ
Δ x

x x x
x= =

−()
=

d

dt

d

dt
0 	 (7.11)

because the nominal state x0 is constant.
We now substitute the approximations (7.9) and (7.10) in the state and output

equations, respectively, to obtain the linearized equations

Δ 



  



x

x u x u

x u x u

=
() ()

()

∂
∂

∂
∂

∂
∂

∂
∂

f

x

f

x

f

x

f

x

n

n n

n

1

1

1

1

0 0 0 0

0 0 0

, ,

, , 00

1

2

1

1

1

()

−













































+

Δ
Δ

Δ
Δ

x

x

x

x

f

u

n

n



∂
∂ xx u x u

x u x u

0 0 0 0

0 0 0 0

1

1

, ,

, ,

() ()

() ()












  



∂
∂

∂
∂

∂
∂

f

u

f

u

f

u

m

n n

m





































=

−

()

Δ
Δ

Δ
Δ

Δ

u

u

u

u

g

x

m

m

1

2

1

1

1 0 0



y

x u

∂
∂ ,



  



∂
∂

∂
∂

∂
∂

g

x

g

x

g

x

n

n n

n

1

1

0 0

0 0 0 0

x u

x u x u

,

, ,

()

() ()













































+

−

()

.

,

Δ
Δ

Δ
Δ

x

x

x

x

g

u

g

u

n

n

m

1

2

1

1

1

1

0 0




∂
∂

∂
∂x u x00 0

0 0 0 01

1

,

, ,

u

x u x u

()

() ()























  


∂
∂

∂
∂

g

u

g

u

u

u

n n

m

Δ
Δ 22

1


Δ
Δ
u

u

m

m

−























(7.12)

Dropping the Δ’s reduces (7.12) to (7.13), with the matrices of the linear state
equations defined as the Jacobians

	

A

f

x

f

x

f

x

f

x

n

n n

n

=
() ()

() (

∂
∂

∂
∂

∂
∂

∂
∂

1

1

1

1

0 0 0 0

0 0 0 0

x u x u

x u x u

, ,

, ,



  


))

() ()























=B

f

u

f

u

f

u

m

n

∂
∂

∂
∂

∂
∂

1

1

1

1

0 0 0 0

0

x u x u

x

, ,



  

,, ,

,

u x u

x u

0 0 0

0 0

1

1

1

() ()

()























=





∂
∂

∂
∂

∂
∂

f

u

C

g

x

g

x

n

m

n xx u

x u x u

0 0

0 0 0 01

,

, ,

()

() ()























=  


∂
∂

∂
∂

∂

g

x

g

x

D

g

n n

n

11

1

1

1

0 0 0 0

0 0 0 0

∂
∂
∂

∂
∂

∂
∂

u

g

u

g

u

g

u

m

n n

m

x u x u

x u x u

, ,

, ,

() ()

() ()







  





















  (7.13)

Example 7.6

Consider the equation of motion of the nonlinear spring-mass-damper system given by

	 my b y y k y f + () + () =

where y is the displacement, f is the applied force, m is a mass of 1 kg, b(y) is a nonlinear
damper constant, and k(y) is a nonlinear spring force. Find the equilibrium position cor-
responding to a force f0 in terms of the spring force; then linearize the equation of motion
about this equilibrium.

7.3  Linearization of Nonlinear State Equations   239

240    CHAPTER 7  State–Space Representation

Solution
The equilibrium of the system with a force f0 is obtained by setting all the time derivatives
equal to zero and solving for y to obtain

	 y k f0
1

0= ()−

where k−1(•) denotes the inverse function. The equilibrium is therefore at zero velocity and
the position y0.

The nonlinear state equation for the system with state vector x = [] = []x x y yT T
1 2, ,  is

	



x

x

x

k x b x x
u

1

2

2

1 1 2

0

1






=
− () − ()







+ 





where u = f. Then linearizing about the equilibrium, we obtain

	



x

x
dk x

dx
b x

x

x
y

y

1

2

1

1
1

1

2

0 1
0

1
0

0







= −
()

− ()























+ 




u

Clearly, the entries of the state matrix are constants whose values depend on the equi-
librium position. In addition, terms that are originally linear do not change because of
linearization.

7.4  The Solution of Linear State–Space Equations
The state–space equations (7.3) are linear and can therefore be Laplace-
transformed to obtain their solution. Clearly, once the state equation is solved for
the state vector x, substitution in the output equation easily yields the
output vector y. So we begin by examining the Laplace transform of the state
equation.

The state equation involves the derivative x of the state vector x. Because
Laplace transformation is simply multiplication by a scalar followed by integration,
the Laplace transform of this derivative is the vector of Laplace transforms of its
entries. More specifically,

	
L x

X x
t sX s x s X s x

s s
i i i i(){ } = () − ()[] = ()[] − ()[]

= () − ()
0 0

0
	 (7.14)

Using a similar argument, the Laplace transform of the product Ax is

	
L L LA t a x a x a Xij j

j

n

ij j

j

n

ij jx (){ } =


















{ }







 =

= =
∑ ∑

1 1

= (()s

A s
j

n

=
∑









()
1

= X

	 (7.15)

Hence, the state equation

	 x x u x 0t A t B t() = () + () (),

has the Laplace transform

	 s s A s B sX x X U() − () = () + ()0 	 (7.16)

Rearranging terms, we obtain

	 sI A s B sn −[] () = () + ()X x U0 	 (7.17)

Then premultiplying by the inverse of [sIn − A] gives

	 X x Us sI A B sn() = −[] () + ()[]−1 0 	 (7.18)

We now need to inverse Laplace-transform to obtain the solution of the
state equation. So we first examine the inverse known as the resolvent
matrix

	 sI A
s

I
s

An n−[] = −





−
−

1
11 1
	 (7.19)

This can be expanded as

	
1 1 1 1 1 11

2
2

s
I

s
A

s
I

s
A

s
A

s
An n i

i−





= + + + + +{ }−

. 	 (7.20)

Then inverse Laplace-transforming yields the series

	 L − −−[]{ } = + +
()

+ +
()

+1 1
2

2
sI A I At

At At

i
n n

i

!
. . .

!
. . . 	 (7.21)

This summation is a matrix version of the exponential function

	 e at
at at

i
at

i

= + +
()

+ +
()

+1
2

2

!
. . .

!
. . . 	 (7.22)

It is therefore known as the matrix exponential and is written as

	 e
At

i
sI AAt

i

i

n=
()

= −[]{ }
=

∞
− −∑

!0

1 1L 	 (7.23)

Returning to (7.18), we see that the first term can now be easily inverse-
transformed using (7.23). The second term requires the use of the convolution
property of Laplace transforms, which states that multiplication of Laplace trans-
forms is equivalent to convolution of their inverses. Hence, the solution of the
state equation is given by

	 x x ut e e B dAt A t
t

() = () + ()−()∫0
0

τ τ τ 	 (7.24)

7.4  The Solution of Linear State–Space Equations   241

242    CHAPTER 7  State–Space Representation

The solution for nonzero initial time is obtained by simply shifting the time vari-
able to get

	 x x ut e t e B dA t t A t

t

t
() = () + ()−() −()∫0

0
0

τ τ τ 	 (7.25)

The solution includes two terms. The first is due to the initial conditions with
zero input and is known as the zero-input response. The second term is due to
the input with zero initial conditions and is known as the zero-state response.
By superposition, the total response of the system is the sum of the zero-state
response and the zero-input response.

The zero-input response involves the change of the system state from the initial
vector x(0) to the vector x(t) through multiplication by the matrix exponential.
Hence, the matrix exponential is also called the state-transition matrix. This
name is also given to a matrix that serves a similar function in the case of time-
varying systems and depends on the initial as well as the final time and not just
the difference between them. However, the matrix exponential form of the state-
transition matrix is only valid for linear time-invariant systems.

To obtain the output of the system, we substitute (7.24) into the output
equation

	 y x ut C t D t() = () + ()

This gives the time response

	 y x u ut C e t e B d D tA t t A t

t

t
() = () + (){ } + ()−() −()∫0

0
0

τ τ τ 	 (7.26)

Example 7.7

The state equations of an armature-controlled DC motor are given by

	





x

x

x

x

x

x

1

2

3

1

2

3

0 1 0

0 0 1

0 10 11

















=
− −

































+
















0

0

10

u

where x1 is the angular position, x2 is the angular velocity, and x3 is the armature current.
Find the following:

1.	 The state-transition matrix
2.	 The response due to an initial current of 10 mA with zero angular position and zero

angular velocity
3.	 The response due to a unit step input
4.	 The response due to the initial condition in part 2 together with the input in part 3.

Solution
1.	 The state-transition matrix is the matrix exponential given by the inverse Laplace trans-

form of the matrix

	

sI A

s

s

s

s s s

s s

3
1

11 0

0 1

0 10 11

1 10 11 1

0

−[] =
−

−
+

















=

+() +() +
+

−

−

111

0 10

1 10

1 11

1 10

1

2

()
−

















+() +()

=

+
+() +() +

s

s s

s s s

s

s

s s s s s 11 10

0
11

1 10

1

1 10

0
10

1 10 1

() +()
+

+() +() +() +()
−

+() +() +(

s

s

s s s s

s s

s

s)) +()

























=

−
+

+
+





 −

s

s s s s s

10

1 1

90

99 100

1

1

10

1

90

9 110

1

1

10

0
1

9

10

1

1

10

1

9

1

1

1

10

0
10

9

1

s s

s s s s

s

+
+

+






+
−

+




 +

−
+







−
+ 11

1

10

1

9

10

10

1

1
−

+




 +

−
+





























s s s

The preceding operations involve writing s in the diagonal entries of a matrix, subtract-
ing entries of the matrix A, then inverting the resulting matrix. The inversion is feasible
in this example but becomes progressively more difficult as the order of the system
increases. The inverse matrix is obtained by dividing the adjoint matrix by the determinant
because numerical matrix inversion algorithms cannot be used in the presence of the
complex variable s.

Next, we inverse Laplace-transform to obtain the state-transition matrix

	

e

e e e e

e eAt

t t t t

t t=

− +() − +()

−(

− − − −

− −

1
1

90
99 100

1

90
9 10

0
1

9
10

10 10

10)) −()

− −() −()



















− −

− − − −

1

9

0
10

9

1

9
10

10

10 10

e e

e e e e

t t

t t t t








The state-transition matrix can be decomposed as

	

e
e eAt =

















+
− −

− −

















−
10 11 1

0 0 0

0 0 0
10

0 10 1

0 10 1

0 10 1

0 tt te

9

0 1 1

0 10 10

0 100 100
90

10

+ − −
















−

7.4  The Solution of Linear State–Space Equations   243

244    CHAPTER 7  State–Space Representation

This last form reveals that a matrix exponential is nothing more than a matrix-weighted
sum of scalar exponentials. The scalar exponentials involve the eigenvalues of the state
matrix {0, −1, −10} and are known as the modes of the system. The matrix weights have
rank 1. This general property can be used to check the validity of the matrix exponential.

2.	 For an initial current of 10 mA and zero initial angular position and velocity, the initial
state is

	 x 0 0 0 0 01() = []. T

The zero-input response is

	

x xZI t e

e

At() = ()

=












+
− −

− −






0

10 11 1
0 0 0
0 0 0 10

0 10 1
0 10 1
0 10 1

0









+ − −
























− −e et t

9

0 1 1
0 10 10
0 100 100 90

0
0
1

10

10

00
1
0
0 1000

1
1
1 900

1
10

1

0



















=












+
−

−













+ −
−e e t

000 9000

10











−e t

By virtue of the decomposition of the state-transition matrix in part 1, the result is obtained
using multiplication by constant matrices rather than ones with exponential entries.

3.	 The response due to a step input is easier evaluated starting in the s-domain to avoid
the convolution integral. To simplify the matrix operations, the resolvent matrix is decom-
posed as

	 sI A
s

3
1

10 11 1

0 0 0

0 0 0

1

10

0 10 1

0 10 1

0 10 1

−[] =
















+
− −

− −










−







+()
+ − −

















+()
1

9 1

0 1 1

0 10 10

0 100 100

1

90 10s s

The Laplace transform of the zero-state response is

	

X UZS s sI A B s

s

() = −[] ()

=
















+
− −

−
3

1

10 11 1

0 0 0

0 0 0

1

10

0 10 1

0 10 1

00 10 1

1

9 1

0 1 1

0 10 10

0 100 100

1

− −

















+()







+ − −
















s

990 10

0

0

10

1

1

0

0

1
1

1

1
2

s s

s

+()























=
















+
−

−

















()
+()

+ −
















()
+()

=














10
9
1

1

10

100

1
9
10

1

0

0

s s s s




+
−

−
















() −

+






+ −
















1
1

1

1

10
9

1 1

1

1

10

100
2s s s

11
90

1 1

10
() −

+




s s

Inverse Laplace-transforming, we obtain the solution

	

xZS
tt t e() =

















+
−

−
















() −[] + −


−

1

0

0

1

1

1

10
9 1

1

10

100












() −[]

=
−














() +















−1
90 1

11

10

0

1
10

1

0

0

10e t




+ −















() +

−

−
















()− −t e et t

1

1

1

10
9

1

10

100

1
90

10

4.	 The complete solution due to the initial conditions of part 2 and the unit step input of
part 3 is simply the sum of the two responses obtained earlier. Hence,

	

x x xt t t

e

ZI ZS

t

() = () + ()

=
















+
−

−

















−
1

0

0

1

1000

1

1

1
9000

1

10

100
9000

11

10

0

1
10

1

0

0

10

+ −
















+
−















() +





−e t












+

−















() +

−

−
















()− −

t

e et

1

1

1

10
9

1

10

100

1
90

110

1 099

1

0

1

1

1

1 11

1

10

100

t

te=
−















+ −
















+
−

−








−

.

.











× +
















− −1 1 10

1

0

0

2 10. e tt

7.4.1  The Leverrier Algorithm

The calculation of the resolvent matrix [sI − A]−1 is clearly the bottleneck in the
solution of state–space equations by Laplace transformation. The Leverrier algo-
rithm is a convenient method to perform this calculation, which can be pro-
grammed on the current generation of hand-held calculators that are capable of
performing matrix arithmetic. The derivation of the algorithm is left as an exercise
(see Problem 7.8).

We first write the resolvent matrix as

	 sI A
sI A

sI A
n

n

n

−[] =
−[]
−[]

−1 adj

det
	 (7.27)

where adj[·] denotes the adjoint matrix, and det[·] denotes the determinant. Then
we observe that, because its entries are determinants of matrices of order n − 1,
the highest power of s in the adjoint matrix is n − 1. Terms of the same powers
of s can be separated with matrices of their coefficients, and the resolvent matrix
can be expanded as

	 sI A
P P s P s

a a s a s s
n

n
n

n
n n

−[] =
+ + +

+ + + +
− −

−

−
−

1 0 1 1
1

0 1 1
1

. . .

. . .
	 (7.28)

7.4  The Solution of Linear State–Space Equations   245

246    CHAPTER 7  State–Space Representation

where Pi, i = 1, 2, … , n − 1 are n × n constant matrices and ai, i = 1, 2, . . . ,
n − 1 are constant coefficients. The coefficients and matrices are calculated as
follows.

Leverrier Algorithm
1.	 Initialization: k = n − 1

	
P I a A an n n ii

i

n

− −
=

= = − { } = −∑1 1

1

tr

where tr{·} denotes the trace of the matrix.

2.	 Backward iteration: k = n − 2, . . . , 0

	
P P A a I a

n k
P Ak k k n k k= + = −

−
{ }+ +1 1

1
tr

3.	 Check:

	 0[] = +P A a In0 0

The algorithm requires matrix multiplication, matrix scalar multiplication,
matrix addition, and trace evaluation. These are relatively simple operations avail-
able in many hand-held calculators with the exception of the trace operation.
However, the trace operation can be easily programmed using a single repetition
loop. The initialization of the algorithm is simple, and the backward iteration starts
with the formulas

	 P A a I a P An n n n n− − − −= + = − { }2 1 2 2

1

2
tr

The Leverrier algorithm yields a form of the resolvent matrix that cannot be
inverse Laplace-transformed directly to obtain the matrix exponential. It is first
necessary to expand the following s-domain functions into the partial fractions:

	

s

s

q

s

s

s

q

s

n

i

i

n

i n

ii

n n

i

i

n

i n

i

−

=

−

=

−

=

−

−()
=

− −()

=
−

∏
∑

∏

1

1

1

1

2

1

2

λ λ λ

λ

,

,

,

ii

n

i

i

n

i

ii

n

s

q

s=

=

=
∑

∏
∑

−()
=

−1

1

0

1

1
, . . . , ,

λ λ

	 (7.29)

where li, i = 1, . . . , n are the eigenvalues of the state matrix A defined by

	 detsI A s a s a s a s s sn
n

n
n

n−[] = + + + + = −() −() −()−
−

1
1

1 0 1 2λ λ λ   (7.30)

To simplify the analysis, we assume that the eigenvalues in (7.30) are distinct
(i.e., li ≠ lj, i ≠ j). The repeated eigenvalue case can be handled similarly but
requires higher-order terms in the partial fraction expansion.

Substituting in (7.28) and combining similar terms gives

	

sI A P
q

s
P

q

s
P

q

s
n n

i n

ii

n
i

ii

n
i−[] =

−
+ +

−
+−

−
−

= =
∑ ∑1

1
1

1

1
1

1 1

0
0, , ,. . .

λ λ −−

=
−

+
−

+ +
−

=

=

−

=

−

∑

∑ ∑

λ

λ λ λ

ii

n

j j

i

n

j j

i

n

ns
q P

s
q P

s
q

1

1
1

0

1

2
2

0

11 1 1
, , . . . nn j j

i

n

i
i j j

i

n

i

n

P

s
q P

,

,

=

−

=

−

=

∑

∑∑=
−







0

1

0

1

1

1

λ

Thus, we can write the resolvent matrix in the simple form

	 sI A
s

Zn
i

i

i

n

−[] =
−

−

=
∑1

1

1

λ
	 (7.31)

where the matrices Zi, I = 1, 2, . . . , n are given by

	 Z q Pi i j j

j

n

=










=

−

∑ ,

0

1

	 (7.32)

Finally, we inverse the Laplace transform to obtain the matrix exponential

	 e Z eAt
i

t

i

n
i=

=
∑ λ

1

	 (7.33)

This is the general form of the expansion used to simplify the computation in
Example 7.7 and is the form we use throughout this text.

Example 7.8

Use the Leverrier algorithm to compute the matrix exponential for the state matrix described
in Example 7.7:

	

A =
− −

















0 1 0

0 0 1

0 10 11

Solution
1.	 Initialization:

	 P I a A2 3 2 11= = − { } =tr

2.	 Backward iteration: k = 1, 0
	 (a)  k = 1

	

P A a I A I1 2 3 311

11 1 0

0 11 1

0 10 0

= + = + =
−

















7.4  The Solution of Linear State–Space Equations   247

248    CHAPTER 7  State–Space Representation

	

a P A1 1

1

2

1

2

11 1 0

0 11 1

0 10 0

0 1 0

0 0 1

0 10 11

= − { } = −
−















 − −





tr tr 






















= − −
−





























1

2

0 11 1

0 10 0

0 0 10

tr == 10

(b)  k = 0

	

P P A a I0 1 1 3

11 1 0

0 11 1

0 10 0

0 1 0

0 0 1

0 10 11

= + =
−















 − −

















++
















=
















10 0 0

0 10 0

0 0 10

10 11 1

0 0 0

0 0 0

	

a P A0 0

1

3

1

3

10 11 1

0 0 0

0 0 0

0 1 0

0 0 1

0 10 11

= − { } = −














 − −









tr tr



















= −




























=

1

3

0 0 0

0 0 0

0 0 0

0tr

3.	 Check:

	

0[] = + ==
− −

































P A a In0 0

0 1 0

0 0 1

0 10 11

10 11 1

0 0 0

0 0 0

== []0

Thus, we have

	
sI A

s

n −[] =

















+
−

















+

−1

10 11 1

0 0 0

0 0 0

11 1 0

0 11 1

0 10 0

1 00 0

0 1 0

0 0 1

10 11

2

2 3

















+ +

s

s s s

The characteristic polynomial of the system is

	 s s s s s s3 211 10 1 10+ + = +() +()

and the system eigenvalues are {0, −1, −10}.

Next, we obtain the partial fraction expansions

	

s

s

q

s s s s
i

i

i

ii

2

1

3

2

1

3 0
1

9
1

10
9
10−()

=
−

= +
−()

+
+

()
+

=

=∏
∑

λ λ
,

	

s

s

q

s s s s
i

i

i

ii−()
=

−
= +

()
+

+
−()
+

=

=∏
∑

λ λ
1

3

1

1

3 0
1

9
1

1
9
10

,

	

1
1
10

1
9
1

1
90
10

1

3

0

1

3

s

q

s s s s
i

i

i

ii−()
=

−
=

()
+

−()
+

+
()

+
=

=∏
∑

λ λ
,

where some of the coefficients are zero due to cancellation. This allows us to evaluate the
matrices

Z1
1
10

10 11 1

0 0 0

0 0 0

= ()
















	Z2
1

9

10 11 1

0 0 0

0 0 0

1
9

11 1 0

0 11 1

0 10 0

= −()
















+ ()
−

















+ −−()
















= ()
− −

− −

















1
9

1 0 0

0 1 0

0 0 1

1
9

0 10 1

0 10 1

0 10 1

Z3
1

90

10 11 1

0 0 0

0 0 0

1
9

11 1 0

0 11 1

0 10 0

= ()
















+ −()
−

















++ ()
















= () − −















10
9

1 0 0

0 1 0

0 0 1

1
90

0 1 1

0 10 10

0 100 100 

Therefore, the state-transition matrix is

	

e
e eAt =

















+
− −

− −

















−
10 11 1

0 0 0

0 0 0
10

0 10 1

0 10 1

0 10 1

0 tt te

9

0 1 1

0 10 10

0 100 100
90

10

+ − −
















−

Thus, we obtained the answer of Example 7.7 with far fewer partial fraction expansions but
with some additional operations with constant matrices. Because these operations are easily
performed using a calculator, this is a small price to pay for the resulting simplification.

7.4.2  Sylvester’s Expansion

The matrices Zi, i = 1, 2, . . . , n, obtained in Section 7.4.1 using the Leverrier
algorithm, are known as the constituent matrices of A. The constituent matrices
can also be calculated using Sylvester’s formula as follows:

	 Z

A I

i

j n

j
j i

n

i j

j
j i

n
=

−[]

−[]

=
≠

=
≠

∏

∏

λ

λ λ

1

1

	 (7.34)

where li, i = 1, 2,…, n are the eigenvalues of the matrix A.

7.4  The Solution of Linear State–Space Equations   249

250    CHAPTER 7  State–Space Representation

Numerical computation of the matrix exponential using (7.34) can be prob-
lematic. For example, if two eigenvalues are almost equal, the scalar denominator
in the equation is small, resulting in large computational errors. In fact, the
numerical computation of the matrix exponential is not as simple as our presenta-
tion may suggest, with all known computational procedures failing in special
cases. These issues are discussed in more detail in a well-known paper by Moler
and Van Loan (1978).

Example 7.9

Calculate constituent matrices of the matrix A given in Examples 7.7 and 7.8, using
Sylvester’s formula.

Solution

	

Z

A I

A I A I
j n

j
j i

j

j
j i

n n
1

1

3

1

3

0

10

1 10
1
1=

−[]

−[]
=

+() +()
()()

=
=
≠

=
≠

∏

∏

λ

λ
00

10 11 1

0 0 0

0 0 0

()
















	

Z

A I

A A I
j n

j
j i

j

j
j i

n
2

1

3

1

3

1

10

1 1 10
1

9=

−[]

− −[]
=

+()
−() − +()

=
=
≠

=
≠

∏

∏

λ

λ
(()

− −

− −

















0 10 1

0 10 1

0 10 1

	

Z

A I

A A I
j n

j
j i

j

j
j i

n
3

1

3

1

3

10
10 10 1

1
9=

−[]

− −[]
=

+()
−() − +()

=
=
≠

=
≠

∏

∏

λ

λ
00

0 1 1

0 10 10

0 100 100
() − −

















The constituent matrices can be used to define any analytic function of a matrix
(i.e., a function possessing a Taylor series) and not just the matrix exponential.
The following identity is true for any analytic function f(l):

	 f fA Zi

i

n

i() = ()
=
∑

1

λ 	 (7.35)

This identity allows us to calculate the functions eAt and Ai, among others. Using
the matrices Zi described in Example 7.9 and (7.35), we obtain the state-transition
matrix described in Example 7.7.

7.4.3  The State-Transition Matrix for a Diagonal State Matrix

For a state matrix L in the form

	 L = { }1diag λ λ λ, , . . . ,2 n 	 (7.36)

The resolvent matrix is

	 sI
s s s

n
n

−[] =
− − −{ }−L 1

1 2

1 1 1
diag

λ λ λ
, , . . . , 	 (7.37)

The corresponding state-transition matrix is

	

e sI

e e e

e

t
n

t t tn

L L= −[]{ }
= { }
= { }

−L 1

1 2

1 0 0

diag

diag

λ λ λ, , . . . ,

, , . . . , λλ λ λ1 20 1 0 0 0t t te n e n+ { } + + { }diag diag, , . . . , . . . , , . . . ,
	 (7.38)

Thus, the ith constituent matrix for the diagonal form is a diagonal matrix with
unity entry (i, i) and all other entries equal to zero.

Example 7.10

Calculate the state-transition matrix if the state matrix L is

	 L = − − − −{ }diag 1 5 6 20, , ,

Solution
Using (7.38), we obtain the state-transition matrix

	 e e e e et t t t tL = { }− − − −diag , , ,5 6 20

Assuming distinct eigenvalues, the state matrix can in general be written in the
form

	 A V V V W= =−L L1 	 (7.39)

where

	

V Wn

T

T

n
T

= [] =



















v v v

w

w

w

1 2

1

2




vi, wi, = i = 1, 2,…, n are the right and left eigenvectors of the matrix A, respec-
tively. The fact that W is the inverse of V implies that their product is the identity
matrix—that is,

	 WV Ii
T

n= [] =w vj

7.4  The Solution of Linear State–Space Equations   251

252    CHAPTER 7  State–Space Representation

Equating matrix entries gives

	 w vi
T

j

i j

i j
=

=
≠{10,, 	 (7.40)

The right eigenvectors are the usual eigenvectors of the matrix, whereas the left
eigenvectors can be shown to be the eigenvectors of the matrix transpose.

The matrix A raised to any integer power i can be written in the form

	 A V W V W V W V Wi i= ()() () =L L L L. . . 	 (7.41)

Substituting from (7.41) in the matrix exponential series expansion gives

	

e
At

i

V Wt

i

V t W

i
V

t

i

At
i

i

n

i

i

n

i

i

n i

i

=
()

=
()

=
()

=
()

=

=

= =

∑

∑

∑

!

!

! !

1

1

1 1

L

L Lnn

W∑

That is,

	 e Ve WAt t= L 	 (7.42)

Thus, we have an expression for the matrix exponential of A in terms of the matrix
exponential for the diagonal matrix L. The expression provides another method
to calculate the state-transition matrix using the eigenstructure (eigenvalues and
eigenvectors) of the state matrix. The drawback of the method is that the eigen-
structure calculation is computationally costly.

Example 7.11

Obtain the constituent matrices of the state matrix using (7.42); then obtain the state-
transition matrix for the system:

	
x xt t() =

− −






()
0 1

2 3

Solution
The state matrix is in companion form, and its characteristic equation can be directly written
with the coefficient obtained by negating the last row of the matrix

	 λ λ λ λ2 3 2 1 2 0+ + = +() +() =

The system eigenvalues are therefore {−1, −2}. The matrix of eigenvectors is the Van der
Monde matrix

	
V W V=

− −






= =

− −





− +
=

− −






−1 1

1 2

2 1

1 1

2 1

2 1

1 1
1

The matrix exponential is

	

e Ve W
e

e
At t

t

t= =
− −















 − −







=
−







−

−
L 1 1

1 2

0

0

2 1

1 1

1

1

2

[] +
−






[]{ } − −











=
−






[] +

− −

−

e e

e

t t

t

0
1

2
0

2 1

1 1

1

1
2 1

1

2

−−






− −[]

=
− −







+
− −





−

− −

2
1 1

2 1

2 1

1 1

2 2

2

2

e

e e

t

t t

As one may infer from the partitioned matrices used in Example 7.11, expres-
sion (7.42) can be used to write the state-transition matrix in terms of the con-
stituent matrices. We first obtain the product

	

e W

e

e

e

t

t

t

t

T

T

n
Tn

L =




























λ

λ

λ

1

2

0 0

0 0

0 0

1

2




   




w

w

w










=



















+















×

×

×

×

w

w
1

1

1

1

2

1

0

0

0

0

1

T

n

n

t

n

T

n

e
 

λ 



+ +



















×

×
e et

n

n

n
T

tλ λ2 1

0

0

1

1
. . .


w

Then we premultiply by the partition matrix V to obtain

Ve W et
n

T

n

n

t

n

T

n

L = []



















+





×

×

×

×

v v v

w

w
1 2

1

1

1

1

2

1

0

0

0

0

1
 

λ














+ +


































×

×
e et

n

n

n
T

tnλ λ2

0

0

1

1
. . .


w







  (7.43)

Substituting from (7.43) into (7.42) yields

	 e Z e eAt
i

t

i

i i
T t

i

i i= =
= =
∑ ∑λ λ

1 1

n n

v w 	 (7.44)

7.4  The Solution of Linear State–Space Equations   253

254    CHAPTER 7  State–Space Representation

Hence, the ith constituent matrix of A is given by the product of the ith right and
left eigenvectors. The following properties of the constituent matrix can be
proved using (7.44). The proofs are left as an exercise.

Properties of Constituent Matrices
1.	 Constituent matrices have rank 1.
2.	 The product of two constituent matrices is

	 Z Z
Z i j

i j
i j

i=
=
≠{ ,

,0

Raising Zi to any power gives the matrix Zi. Zi is said to be idempotent.
3.	 The sum of the n constituent matrices of an n × n matrix is equal to the iden-

tity matrix

	 Z Ii n

i

n

=
=
∑

1

Example 7.12

Obtain the constituent matrices of the state matrix of Example 7.11 using (7.44), and verify
that they satisfy Properties 1 through 3. Then obtain the state-transition matrix for the
system.

Solution
The constituent matrices are

	
Z1

1

1
2 1

2 1

2 1
=

−





[] =

− −






	
Z2

1

2
1 1

1 1

2 2
=

−






− −[] =
− −





Both matrices have a second column equal to the first and clearly have rank 1. The product
of the first and second matrices is

	

Z Z1 2

2 1

2 1

1 1

2 2

0 0

0 0

1 1

2 2

2 1

2

=
− −







− −





= 





=
− −



 − −11

2 1






= Z Z

The squares of the matrices are

	
Z Z1 1

2 1

2 1

2 1

2 1

2 1

2 1
=

− −




 − −







=
− −







	
Z Z2 2

1 1

2 2

1 1

2 2

1 1

2 2
=

− −





− −





=
− −





The state-transition matrix is

	
e Z e e eAt

i
t

i

t ti= =
− −







+
− −



=

− −∑ λ

1

2
2 1

2 1

1 1

2 2

2

Example 7.13

Obtain the state-transition matrix for the system with state matrix

	

A =
















0 1 3

3 5 6

5 6 7

Solution
Using the MATLAB command eig, we obtain the matrices

	

V =
−
− −

− −

 0 8283 0 2159 0 5013

0 1173 0 6195 0 7931

0 5479 0 7547 0

. . .

. . .

. . .33459

0 8355 0 3121 0 4952

0 4050 0 5768 0 7357

0

















=
−

− − −W

. . .

. . .

.. . .4399 0 7641 0 5014−

















and the eigenvalues {−1.8429, 13.3554, 0.4875}. Then multiplying each column of V by
the corresponding row of W, we obtain the constituent matrices

	

Z1

0 6920 0 2585 0 4102

0 0980 0 0366 0 0581

0 4578 0 1710 0

=
−
−

− −

 . . .

. . .

. . .22713

0 0874 0 1245 0 1588

0 2509 0 3573 0 4558

0

2

















=Z

. . .

. . .

.. . .3057 0 4353 0 5552

















	

Z3

0 2205 0 3831 0 2513

0 3489 0 6061 0 3977

0 1521 0 2643 0

=
−

− −
− −

 . . .

. . .

. . ..1734

















The state-transition matrix is

	

e At =
−
−

− −

 0 6920 0 2585 0 4102

0 0980 0 0366 0 0581

0 4578 0 1710 0

. . .

. . .

. . ..

. . .

. ..

2713

0 0874 0 1245 0 1588

0 2509 0 35731 8429

















+−e t

0 4558

0 3057 0 4353 0 5552

0 2205 0 3

13 3554.

. . .

. .

.

















+
−

e t

8831 0 2513

0 3489 0 6061 0 3977

0 1521 0 2643 0 1734

.

. . .

. . .

− −
− −
















e t0 4875.

7.4  The Solution of Linear State–Space Equations   255

256    CHAPTER 7  State–Space Representation

7.5  The Transfer Function Matrix
The transfer function matrix of a system can be derived from its state and output
equations. We begin by Laplace transforming the state equation (7.3) with zero
initial conditions to obtain

	 X Us sI A B sn() = −[] ()−1 	 (7.45)

Then we Laplace transform the output equation and substitute from (7.45) to
get

	 Y U Us C sI A B s D sn() = −[] () + ()−1

The last equation can be rewritten in the form

	
Y U y u() () ()s H s s t H t t

H s C sI A B D H tn

= ← → () = ()∗ ()

() = −[] + ← → (−

L

L1)) = + ()Ce B D tAt δ
	 (7.46)

where H(s) is the transfer function matrix and H(t) is the impulse response matrix.
The equations emphasize the fact that the transfer function and the impulse
response are Laplace transform pairs.

The preceding equation cannot be simplified further in the MIMO case because
division by a vector U(s) is not defined. In the SI case, the transfer function can
be expressed as a vector of ratios of outputs to inputs. This reduces to a single
scalar ratio in the SISO case. In general, the ijth entry of the transfer function
matrix denotes

	 h s
Y s

U s
ij

i

j U l jl

() =
()
() = ≠0,

zero initial conditions

	 (7.47)

Equation (7.46) can be rewritten in terms of the constituent matrices of A as

	
H s C Z

s
B Di

ii

n

() =
−







+
=
∑ 1

1 λ

Thus,

	 H s CZ B
s

D H t CZ Be D ti
ii

n

i

i

n
i() =

−
+ ← → () = + ()

= =
∑ ∑1

1 1λ
δλL 	 (7.48)

This shows that the poles of the transfer function are the eigenvalues of the state
matrix A. In some cases, however, one or both of the matrix products CZi, ZiB
are zero, and the eigenvalues do not appear in the reduced transfer function.

The evaluation of (7.46) requires the computation of the resolvent matrix and
can be performed using the Leverrier algorithm or Sylvester’s formula. Neverthe-
less, this entails considerable effort. Therefore, we should only use (7.46) to
evaluate the transfer function if the state–space equations are given and the input-

output differential equations are not. It is usually simpler to obtain the transfer
function by Laplace-transforming the input-output differential equation.

Example 7.14

Calculate the transfer function of the system of Example 7.7 with the angular position as
output.

Solution

	

H s
s

() = []

















+
− −

− −











1 0 0

10 11 1

0 0 0

0 0 0

1

10

0 10 1

0 10 1

0 10 1





+()
+

− −
















+()















1

9 1

0 1 1

0 10 10

0 100 100

1

90 10

s

s































= −
+()

+
+()

=
+() +

0

0

10

1 10

9 1

1

9 10

10

1 10

s s s

s s s(()

7.5.1  MATLAB Commands

MATLAB obtains the transfer function for the matrices (A, B, C, D) with the
commands

>> g = tf(ss(A, B, C, D))

For example, the matrices

	

A B=
− − −

















=
















0 1 0

0 1 1

3 4 2

0 0

1 0

0 1

	
C D= 





= 





0 1 0

0 1 1

0 1

0 1

are entered as

>> A = [zeros(2, 1), [1, 0; 1, 1]; -3, -4, -2]; B = [zeros(1, 2); eye(2)]

>> C = [zeros(2, 1), [1, 0; 1, 1]]; D = [zeros(2, 1), ones(2, 1)

Then the transfer function for the first input is obtained with the transformation
command

>> g = tf(ss(A, B, C, D))

7.5  The Transfer Function Matrix   257

258    CHAPTER 7  State–Space Representation

Transfer function from input 1 to output

s∧2 + 2s
#1: ------------------

s∧3 + s∧2 + 2s + 3

s∧2 - 2s - 3
#2: ------------------

 s∧3 + s∧2 + 2s + 3 

Transfer function from input 2 to output

 s∧3 + s∧2 + 3s + 3
#1: -------------------

 s∧3 + s∧2 + 2s + 3

 s∧3 + 2s∧2 + 2s + 3
#2: --------------------

 s∧3 + s∧2 + 2s + 3

These correspond to the transfer function matrix

	
H s

s s

s s

s s s
1

2

2

3 2

2

2 3

2 3
() =

+
− −







+ + +

The transfer function column corresponding to the second input can be similarly
obtained.

The tf command can also be used to obtain the resolvent matrix by setting
B = C = In with D zero. The command takes the form

>> Resolvent = tf(ss(A, eye(n), eye(n), 0))

7.6  Discrete-Time State–Space Equations
Given an analog system with piecewise constant inputs over a given sampling
period, the system state variables at the end of each period can be related by a
difference equation. The difference equation is obtained by examining the solu-
tion of the analog state derived in Section 7.4, over a sampling period T. The
solution is given by (7.25), which is repeated here for convenience:

	 x x ut e t e B df
A t t A t

t

t
f f

f() = () + ()−() −()∫0

0
0

τ τ τ 	 (7.49)

Let the initial time t0 = kT, and the final time tf = (k + 1)T. Then the solution
(7.49) reduces to

	 x x uk e k e B dAT A k T

kT

k T
+() = () + ()+() −()+()

∫1 1
1 τ τ τ 	 (7.50)

where x(k) denotes the vector at time kT. For a piecewise constant input

	 u ut k kT t k T() = () ≤ < +(), 1

the input can be moved outside the integral. The integrand can then be simplified
by changing the variable of integration to

	

λ τ

λ τ

= +() −

= −

k T

d d

1

The integral now becomes

	 e B d k e Bd kA

T

A
Tλ λλ λ−(){ } () = { } ()∫ ∫

0

0
u u

Substituting in (7.50), we obtain the discrete-time state equation

	 x x uk A k B kd d+() = () + ()1 	 (7.51)

where

	 A ed
AT= 	 (7.52)

	 B e Bdd
A

T
= ∫ λ λ

0
	 (7.53)

Ad is the discrete-time state matrix and Bd is the discrete input matrix, and they
are clearly of the same orders as their continuous counterparts. The discrete-time
state matrix is the state-transition matrix for the analog system evaluated at the
sampling period T.

Equations (7.52) and (7.53) can be simplified further using properties of the
matrix exponential. For invertible state matrix A, the integral of the matrix expo-
nential is

	 e dt A e I e I AAt At
n

At
n∫ = −[] = −[]− −1 1 	 (7.54)

This allows us to write Bd in the form

	 B A e I B e I A Bd
AT

n
AT

n= −[] = −[]− −1 1 	 (7.55)

Using the expansion of the matrix exponential (7.33), we rewrite (7.52) and
(7.53) as

	 A Z ed i
T

i

n
i=

=
∑ λ

1

	 (7.56)

	

B Z e Bd

Z B e d

d i

i

nT

i

i

n T

i

i

= 





=

=

=

∑∫

∑ ∫

λ τ

λ τ

τ

τ

1
0

1
0

	 (7.57)

The integrands in (7.57) are scalar functions, and the integral can be easily
evaluated. Because we assume distinct eigenvalues, only one eigenvalue can be
zero. Hence, we obtain the following expression for Bd:

7.6  Discrete-Time State–Space Equations   259

260    CHAPTER 7  State–Space Representation

	 B

Z B
e

Z BT Z B
e

d

i

i

n T

i
i

i

T

ii

n

i

i
=

−
−







≠

+
−
−







=

=

∑

∑
1

1

2

1
0

1

λ

λ

λ
λ

λ
λλ1 0=










	 (7.58)

The output equation evaluated at time kT is

	 y x uk C k D k() = () + () 	 (7.59)

The discrete-time state–space representation is given by (7.51) and (7.59).
Equation (7.51) is approximately valid for a general input vector u(t) provided

that the sampling period T is sufficiently short. The equation can therefore be
used to obtain the solution of the state equation in the general case.

Example 7.15

Obtain the discrete-time state equations for the system of Example 7.7:

	





x

x

x

x

x

x

1

2

3

1

2

3

0 1 0

0 0 1

0 10 11

















=
− −

































+
















0

0

10

u

for a sampling period T = 0.01 s.

Solution
From Example 7.3, the state-transition matrix of the system is

	

e
e eAt =

















+
− −

− −

















−
10 11 1

0 0 0

0 0 0
10

0 10 1

0 10 1

0 10 1

0 tt te

9

0 1 1

0 10 10

0 100 100
90

10

+ − −
















−

Thus, the discrete-time state matrix is

	

A e
e

d
A= =

















+
− −

− −









×0 01
0

10 11 1

0 0 0

0 0 0
10

0 10 1

0 10 1

0 10 1

.









+ − −
















− − ×e e0 01 10 0 01

9

0 1 1

0 10 10

0 100 100
90

. .

This simplifies to

	

Ad =
−

















1 0 0 1 0 0

0 0 0 9995 0 0095

0 0 0 0947 0 8954

. . .

. . .

. . .

The discrete-time input matrix is

	

B Z B Z B e Z B ed = () + −() + −()

=










− − ×
1 2

0 01
3

10 0 010 01 1 1 10

0 01

0

0

.

.

. .







+
−

−
















() −() + −
















(−

1

1

1

10
9 1

1

10

100

1
90

0 01e .)) −()− ×1 10 0 01e .

This simplifies to

	

Bd =
×
×
×

















−

−

−

1 622 10

4 821 10

9 468 10

6

4

2

.

.

.

7.6.1  MATLAB Commands for Discrete-Time State–Space Equations

The MATLAB command to obtain the discrete state–space quadruple pd from the
continuous quadruple p with sampling period T = 0.1 is

>> pd = c2d(p, .1)

Alternatively, the matrices are obtained using (7.52) and (7.55) and the MATLAB
commands

>> Ad = expm(A * 0.05)

>> Bd = A\ (Ad-eye(3))* B

7.7  Solution of Discrete-Time State–Space Equations
We now seek an expression for the state at time k in terms of the initial condition
vector x(0) and the input sequence u(k), k = 0, 1, 2,…, k − 1. We begin by exam-
ining the discrete-time state equation (7.51)

	 x x uk A k B kd d+() = () + ()1

At k = 0, 1, we have

	
x x u

x x u

1 0 0

2 1 1

() = () + ()

() = () + ()

A B

A B

d d

d d

	 (7.60)

Substituting from the first into the second equation in (7.60) gives

	
x x u u

x u u

2 0 0 1

0 0 12

() = () + ()[] + ()
= () + () + ()

A A B B

A A B B

d d d d

d d d d

	 (7.61)

We then rewrite (7.61) as

	 x x u2 02 2 1

0

2 1

() = () + ()− −

=

−

∑A A B id d
i

d

i

	 (7.62)

and observe that the expression generalizes to

	 x x uk A A B id
k

d
k i

d

i

k

() = () + ()− −

=

−

∑0 1

0

1

	 (7.63)

7.7  Solution of Discrete-Time State–Space Equations   261

262    CHAPTER 7  State–Space Representation

This expression is in fact the general solution. Left as an exercise are details of
the proof by induction where (7.63) is assumed to hold and it is shown that a
similar form holds for x(k + 1).

The expression (7.63) is the solution of the discrete-time state equation. The
matrix Ad

k is known as the state-transition matrix for the discrete-time system,
and it plays a role analogous to its continuous counterpart. A state-transition matrix
can be defined for time-varying discrete-time systems, but it is not a matrix power
and it is dependent on both time k and initial time k0.

The solution (7.63) includes two terms as in the continuous-time case. The
first is the zero-input response due to nonzero initial conditions and zero input.
The second is the zero-state response due to nonzero input and zero initial
conditions. Because the system is linear, each term can be computed separately
and then added to obtain the total response for a forced system with nonzero
initial conditions.

Substituting from (7.63) in the discrete-time output equation (7.59) gives the
output

	 y x u uk C A A B i D kd
k

d
k i

d

i

k

() = () + ()







+ ()− −

=

−

∑0 1

0

1

	 (7.64)

7.7.1  z-Transform Solution of Discrete-Time State Equations

Equation (7.63) can be obtained by z-transforming the discrete-time state equation
(7.51). The z-transform is given by

	 z z z A z B zd dX x X U() − () = () + ()0 	 (7.65)

Hence, X(z) is given by

	 X x Uz zI A z B zn d d() = −[] () + ()[]−1 0 	 (7.66)

We therefore need to evaluate the inverse z-transform of the matrix [zIn − Ad]
−1z.

This can be accomplished by expanding the matrix in the form of the
series

	
zI A z I

z
A

I A z A z A z

n d n d

n d d d
i i

−[] = −





= + + + + +

−
−

− − −

1
1

1 2 2

1

.

	 (7.67)

The inverse z-transform of the series is

	 Z zI A z I A A An d n d d d
i−[]{ } = { }−1 2, , , . . . , , . . . 	 (7.68)

Hence, we have the z-transform pair

	 zI A z An d d
k

k
−[] ← → { }−

=
∞1

0

Z 	 (7.69)

This result is analogous to the scalar transform pair

	

z

z a
a

d
d
k

k−
← → { } =

∞Z
0

The inverse matrix in (7.69) can be evaluated using the Leverrier algorithm of
Section 7.4.1 to obtain the expression

	 zI A z
P z P z P z

a a z a z z
n d

n
n

n
n n

−[] =
+ + +

+ + + +
− −

−
−

1 0 1
2

1

0 1 1
1

. . .

. . .
	 (7.70)

Then, after denominator factorization and partial fraction expansion, we
obtain

	 zI A z
z

z
Zn d

i
i

i

n

−[] =
−

−

=
∑1

1 λ
	 (7.71)

where li, i = 1, 2,…, n are the eigenvalues of the discrete state matrix Ad. Finally,
we inverse z-transform to obtain the discrete-time state-transition matrix

	 A Zd
k

i

i

n

i
k=

=
∑

1

λ 	 (7.72)

Writing (7.72) for k = 1 and using (7.52), we have

	 A Z Z A ed i

i

n

i i
A T

i

n
i= = ()

=

()

=
∑ ∑

1 1

λ λ 	 (7.73)

where the parentheses indicate terms pertaining to the continuous-time state
matrix A. Because the equality must hold for any sampling period T and any matrix
A, we have the two equalities

	
Z Z A

e

i i

i
A Ti

= ()

= ()λ λ
	 (7.74)

In other words, the constituent matrices of the discrete-time state matrix
are simply those of the continuous-time state matrix A, and its eigenvalues
are exponential functions of the continuous-time characteristic values times
the sampling period. This allows us to write the discrete-time state-transition
matrix as

	 A Z ed
k

i

i

n
A kTi=

=

()∑
1

λ 	 (7.75)

To complete the solution of the discrete-time state equation, we examine the
zero-state response rewritten as

	 X UZS z zI A z z B zn d d() = −[]{ } ()− −1 1 	 (7.76)

7.7  Solution of Discrete-Time State–Space Equations   263

264    CHAPTER 7  State–Space Representation

The term in braces in (7.76) has a known inverse transform, and multiplication
by z−1 is equivalent to delaying its inverse transform by one sampling period. The
remaining terms also have a known inverse transform. Using the convolution
theorem, the inverse of the product is the convolution summation

	 x uZS k A B id
k i

d

i

k

() = ()− −

=

−

∑ 1

0

1

	 (7.77)

This completes the solution using z-transformation.
Using (7.75), the zero-state response can be written as

	 x uZS
jk Z e B ij

j

n
A k i T

d

i

k

() =








 ()

=

() − −

=

−

∑∑
1

1

0

1
λ 	 (7.78)

Then interchanging the order of summation gives

	 x uZS
j jk Z B e e ij d

A k T A iT

i

k

j

n

() = ()





() − − ()

=

−

=
∑∑ λ λ1

0

1

1

	 (7.79)

This expression is useful in some special cases where the summation over i can
be obtained in closed form.

Occasionally, the initial conditions are given at nonzero time. The complete
solution (7.63) can be shifted to obtain the response

	 x x uk A k A B id
k k

d
k i

d

i k

k

() = () + ()− − −

=

−

∑0

0

0
1

1

	 (7.80)

where x(k0) is the state at time k0.

Example 7.16

Consider the state equation

	



x

x

x

x
u

1

2

1

2

0 1

2 3

0

1






=
− −













+ 





1.	 Solve the state equation for a unit step input and the initial condition vector x(0) = [1 0]T.
2.	 Use the solution to obtain the discrete-time state equations for a sampling period of 0.1s.
3.	 Solve the discrete-time state equations with the same initial conditions and input as in

part 1, and verify that the solution is the same as that shown in part 1 evaluated at
multiples of the sampling period T.

Solution
1.	 We begin by finding the state-transition matrix for the given system. The resolvent matrix is

	
Φ s

s

s

s

s

s s

s

() =
−
+







=

+
−







+ +
=







+
−−1

2 3

3 1

2

3 2

1 0

0 1

3 1

2
1

2

00

1 2







+() +()s s

To inverse Laplace transform, we need the partial fraction expansions

	

1

1 2

1

1

1

2s s s s+() +()
=

+()
+

−
+()

	

s

s s s s+() +()
=

−
+()

+
+()1 2

1

1

2

2

Thus, we reduce the resolvent matrix to

	

Φ s
s s

() =
− 





+
−







+()
+







−
−







1 0

0 1

3 1

2 0

1

2
1 0

0 1

3 1

2 0

++()

= − −






+()
+

− −





+()

2

2 1

2 1

1

1 1

2 2

2s s

The matrices in the preceding expansion are both rank 1 because they are the con-
stituent matrices of the state matrix A. The expansion can be easily inverse Laplace
transformed to obtain the state-transition matrix

	
φ t e et t() =

− −






+
− −





− −2 1

2 1

1 1

2 2
2

The zero-input response of the system is

	

xZI t e et t() =
− −







+
− −



{ } 





=
−







− −2 1

2 1

1 1

2 2

1

0

2

2

2

 +
−





− −e et t
1

2
2

For a step input, the zero-state response is

	

xZS t e e tt t() =
− −







+
− −



{ } 




∗ ()

=
−

− −2 1

2 1

1 1

2 2

0

1
1

1

1

2







∗ () +
−





∗ ()− −e t e tt t1
1

2
12

where * denotes convolution. Because convolution of an exponential and a step is a
relatively simple operation, we do not need Laplace transformation. We use the identity

	
e t e d

et
t t

− −
−

∗ () = =
−

∫α ατ
α

τ
α

1
1

0

to obtain

	
xZS t e

et
t

() =
−







−() +
−





−
= 





−
−




−
−1

1
1

1

2

1

2

1 2

0

1

1

2


−

−





−
−

e
et

t1

2 2

2

7.7  Solution of Discrete-Time State–Space Equations   265

266    CHAPTER 7  State–Space Representation

The total system response is the sum of the zero-input and zero-state responses

	

x x xt t t

e e

ZI ZS

t t

() = () + ()

=
−







+
−





+ 





−
−

− −2

2

1

2

1 2

0

1
2

11

1

2 2

1 2

0

1

1

1

2

2





−
−





= 





+
−







+
−





−
−

−

e
e

e

t
t

t


−e t2

2

2.	 To obtain the discrete-time state equations, we use the state-transition matrix obtained
in step 1 with t replaced by the sampling period. For a sampling period of 0.1, we
have

	
A e ed = () =

− −






+
− −





=− − ×Φ 0 1
2 1

2 1

1 1

2 2

0 9909 0 08
0 1 2 0 1.

. .
. .

661

0 1722 0 7326−




. .

The discrete-time input matrix Bd can be evaluated as shown earlier using (7.58). One
may also observe that the continuous-time system response to a step input of the dura-
tion of one sampling period is the same as the response of a system due to a piecewise
constant input discussed in Section 7.6. If the input is of unit amplitude, Bd can be
obtained from the zero-state response of part 1 with t replaced by the sampling period
T = 0.1. Bd is given by

	

B e
e

d =
− −







−() +
− −





−{ } 





=

−
− ×2 1

2 1
1

1 1

2 2

1

2

0

1
0 1

2 0 1
.

.

11 2

0

1

1

1

2 2

0 0045

0 0861
0 1

0 2





−
−







−
−





= 


−
−

e
e.

. .

. 

3.	 The solution of the discrete-time state equations involves the discrete-time state-transition
matrix

	
A k e ed

k k k= () =
− −







+
− −





− −Φ 0 1
2 1

2 1

1 1

2 2
0 1 0 2. . .

The zero-input response is the product

	

x xZI k k

e ek k

() = () ()

=
− −







+
− −



{ }− −

Φ 0 1 0

2 1

2 1

1 1

2 2
0 1 0 2

.

. .
11

0

2

2

1

2
0 1 0 2





=
−







+
−





− −e ek k. .

Comparing this result to the zero-input response of the continuous-time system reveals
that the two are identical at all sampling points k = 0, 1, 2,…

Next, we z-transform the discrete-time state-transition matrix to obtain

	
Φ z

z

z e

z

z e
() =

− −




 −

+
− −



 −− −

2 1

2 1

1 1

2 20 1 0 2. .

Hence, the z-transform of the zero-state response for a unit step input is

X ZS z z z B U z

z

z e

z

z e

d() = () ()

=
− −





 −

+
− −



 −

−

−

Φ 1

0 1

2 1

2 1

1 1

2 2. −−

−

−
−

{ } 



 −

= ×
−





 −

0 2

1

2

0 0045

0 0861 1

9 5163 10
1

1

.

.

.

.

z z

z

z

z e 00 1
2

0 21
9 0635 10

1

2 1. .
.() −()

+ ×
−



 −() −()

−
−z

z

z e z

We now need the partial fraction expansions

	

z

z e z e

z

z

z

z e

z

z−() −()
=

− −
+

−()
−







=
−− − −0 1 0 1 0 11

1

1 1

1
10 5083

. . .
.

11

1

0 9048
+

−()
−







z

z .

	

z

z e z e

z

z

z

z e

z

z−() −()
=

− −
+

−()
−







=
−− − −0 2 0 2 0 21

1

1 1

1
5 5167

1. . .
. ++

−()
−







1

0 8187

z

z .

Substituting in the zero-state response expression yields

	
X ZS z

z

z e

z

z e
() = 





−
−





 −

−
−



 −− −

0 5

0

1

1
0 5

1

20 1 0 2

.
.

. .

Then inverse-transforming gives the response

	
xZS k e ek k() = 





−
−







−
−





− −0 5

0

1

1
0 5

1

2
0 1 0 2

.
.. .

This result is identical to the zero-state response for the continuous system at time
t = 0.1 k, k = 0, 1, 2, . . . The zero-state response can also be obtained using (7.79) and
the well-known summation

	
a

a

a
ai

i

k k

=

−

∑ =
−
−

<
0

1 1

1
1,

Substituting the summation in (7.79) with constant input and then simplifying the result
gives

	

xZS
j

j

j
k Z B e

e

e

Z B

j d
A k T

A kT

A T
j

n

j d

() =
−
−







=

() −
− ()

− ()
=

∑ λ
λ

λ
1

1

1

1

11

11

−
−







()

()
=

∑ e

e

j

j

A kT

A T
j

n λ

λ

Substituting numerical values in the preceding expression yields the zero-state response
obtained earlier.

7.7  Solution of Discrete-Time State–Space Equations   267

268    CHAPTER 7  State–Space Representation

7.8  Z-Transfer Function from State–Space Equations
The z-transfer function can be obtained from the discrete-time state–space repre-
sentation by z-transforming the output equation (7.59) to obtain

	 Y X Uz C z D z() = () + () 	 (7.81)

The transfer function is derived under zero initial conditions. We therefore
substitute the z-transform of the zero-state response (7.76) for X(z) in (7.81) to
obtain

	 Y U Uz C zI A B z D zn d d() = −[]{ } () + ()−1
	 (7.82)

Thus, the z-transfer function matrix is defined by

	 Y Uz G z z() = () () 	 (7.83)

where G(z) is the matrix

	 G z C zI A B D G k
CA B k

D k
n d d

d
k

d() = −[]{ } + ← → () =
≥
=





−
−

1
1 1

0
Z ,

,
	 (7.84)

and G(k) is the impulse response matrix. The transfer function matrix and the
impulse response matrix are z-transform pairs.

Substituting from (7.71) into (7.84) gives the alternative expression

	 G z CZ B
z

D G k
CZ B k

D k

i d
ii

n
i d i

k

i

n

() =
−

+ ← → () =
≥

=





=

−

=∑ ∑1 1

01

1

1λ
λZ ,

,
	 (7.85)

Thus, the poles of the system are the eigenvalues of the discrete-time state matrix
Ad. From (7.74), these are exponential functions of the eigenvalues li(A) of the
continuous-time state matrix A. For a stable matrix A, the eigenvalues li(A) have
negative real parts and the eigenvalues li have magnitude less than unity. This
implies that the discretization of Section 7.6 yields a stable discrete-time system
for a stable continuous-time system.

Another important consequence of (7.85) is that the product CZiB can vanish
and eliminate certain eigenvalues from the transfer function. This occurs if the
product CZi is zero, the product ZiB is zero, or both. If such cancellation occurs,
the system is said to have an output-decoupling zero at li, an input-decoupling
zero at li, or an input-output-decoupling zero at li, respectively. The poles of
the reduced transfer function are then a subset of the eigenvalues of the state
matrix Ad. A state–space realization that leads to pole-zero cancellation is said to
be reducible or nonminimal. If no cancellation occurs, the realization is said to
be irreducible or minimal.

Clearly, in case of an output-decoupling zero at li, the forced system response
does not include the mode λi

k. In case of an input-decoupling zero, the mode
is decoupled from or unaffected by the input. In case of an input-output-

decoupling zero, the mode is decoupled from both the input and the output.
These properties are related to the concepts of controllability and observability
discussed in Chapter 8.

Example 7.17

Obtain the z-transfer function for the position control system described in Example 7.16.

1.	 With x1 as output
2.	 With x1 + x2 as output

Solution
From Example 7.16, we have

	
Φ z

z

z e

z

z e
() =

− −




 −

+
− −



 −− −

2 1

2 1

1 1

2 20 1 0 2. .

	
B e

e
d = 





−
−







−
−





= 


−
−1 2

0

1

1

1

2 2

0 0045

0 0861
0 1

0 2
.

. .

.



1.	 The output matrix C and the direct transmission matrix D for output x1 are

	 C D= [] =1 0 0

Hence, the transfer function of the system is

	

G z
z e z e

() = []
− −





 −

+
− −



 −{ }− −1 0

2 1

2 1

1 1 1

2 2

1 0 0045
0 1 0 2. .

.

00 0861

9 5163 10 9 0635 102

0 1

2

0 2

.

. .
. .







=
×

−
−

×
−

−

−

−

−z e z e

2.	 With x1 + x2 as output, C = [1, 1] and D = 0. The transfer function is

	

G z
z e z e

() = []
− −





 −

+
− −



 −{ }− −1 1

2 1

2 1

1 1 1

2 2

1 0 0045
0 1 0 2. .

.

00 0861

0 9 0635 10
0 1

2

0 2

.

.
. .







=
−

+
×

−−

−

−z e z e

The system has an output-decoupling zero at e−0.1 because the product CZ1 is zero. The
response of the system to any input does not include the decoupling term. For example,
the step response is the inverse of the transform

	

Y z
z

z e z

e

z

z

() =
×

−() −()

=
×

− −
+

−(

−

−

−

−

9 0635 10

1

9 0635 10

1 1

1

2

0 2

2

0 2

.

.

.

.

))
−







=
−

+
−()

−




−

z

z e

z

z

z

z0 2
0 5

1

1

0 8187.
.

.

7.8  Z-Transfer Function from State–Space Equations   269

270    CHAPTER 7  State–Space Representation

That is, the step response is

	 y k e k() = −[]−0 5 1 0 2. .

7.8.1  z-Transfer Function in MATLAB

The expressions for obtaining z-domain and s-domain transfer functions differ only
in that z in the former is replaced by s in the latter. The same MATLAB command
is used to obtain s-domain and z-domain transfer functions. The transfer function
for the matrices (Ad, Bd, C, D) is obtained with the commands

>> p = ss(Ad, Bd, C, D, T)

>> gd = tf(p)

where T is the sampling period. The poles and zeros of a transfer function are
obtained with the command

>> zpk(gd)

For the system described in Example 7.17 (2), we obtain

Zero/pole/gain:
0.090635 (z-0.9048)

(z-0.9048) (z-0.8187)
 
Sampling time: 0.1

The command reveals that the system has a zero at 0.9048 and poles at (0.9048,
0.8187) with a gain of 0.09035. With pole-zero cancellation, the transfer function
is the same as that shown in Example 7.17 (2).

7.9  Similarity Transformation
Any given linear system has an infinite number of valid state–space representa-
tions. Each representation corresponds to a different set of basis vectors in state
space. Some representations are preferred because they reveal certain system
properties, whereas others may be convenient for specific design tasks. This
section considers transformation from one representation to another.

Given a state vector x(k) with state–space representation of the form (7.3),
we define a new state vector z(k)

	 x z z xk T k k T kr r() = () ⇔ () = ()−1 	 (7.86)

where the transformation matrix Tr is assumed invertible. Substituting for x(k)
from (7.86) in the state equation (7.51) and the output equation (7.59) gives

	
T k A T k B k

k CT k D k

r d r d

r

z z u

y z u

+() = () + ()

() = () + ()

1
	 (7.87)

Premultipying the state equation by Tr
−1 gives

	 z z uk T A T k T B kr d r r d+ 1 1 1() = () + ()− − 	 (7.88)

Hence, we have the state–space quadruple for the state vector z(k)

	 A B C D, , , , , ,() = ()− −T A T T B CT Dr d r r d r
1 1 	 (7.89)

Clearly, the quadruple for the state vector x(k) can be obtained from the qua-
druple of z(k) using the inverse of the transformation Tr (i.e., the matrix Tr

−1).
For the continuous-time system of (7.3), a state vector z(t) can be defined as

	 x z z xt T t t T tr r() = () ⇔ () = ()−1 	 (7.90)

and substitution in (7.3) yields (7.89). Thus, a discussion of similarity transforma-
tion is identical for continuous-time and discrete-time systems. We therefore drop
the subscript d in the sequel.

Example 7.18

Consider the point mass m driven by a force f of Example 7.1, and determine the two
state–space equations when m = 1 and

1.	 The displacement and the velocity are the state variables.
2.	 The displacement and the sum of displacement and velocity are the state variables.

Solution
From first principle, as shown in Example 7.1, we have that the equation of motion is

	 my f =

and in case 1, by considering x1 as the displacement and x2 as the velocity, we can
write

	





x t x t

x t u t

y t x t

1 2

2

1

() = ()

() = ()

() = ()
Thus, we obtain

	
A B C D= 





= 





= [] =
1 0

0 0

0

1
1 0 0

To solve case 2, we consider the new state variables z1 and z2, and we write

	

z t x t

z t x t x t

1 1

2 1 2

() = ()

() = () + ()

That is,

	
Tr

− = 





1
1 0

1 1

7.9  Similarity Transformation   271

272    CHAPTER 7  State–Space Representation

By exploiting (7.89), we finally have

	

A B

C D

= =
−
−







= = 





= [] =

− −T A T T Br d r r d
1 1

1 1

1 1

0

1

1 0 0

To obtain the transformation to diagonal form, we recall the expression

	 A V V V AV= ⇔ =− −L L1 1 	 (7.91)

where V is the modal matrix of eigenvectors of A and L = diag{l1, l2, … , ln} is
the matrix of eigenvalues of A. Thus, for A = L in (7.89), we use the modal matrix
of A as the transformation matrix. The form thus obtained is not necessarily the
same as a diagonal form obtained in Section 8.5 from the transfer function using
partial fraction expansion. Even though all diagonal forms share the same state
matrix, their input and output matrices may be different.

Example 7.19

Obtain the diagonal form for the state–space equations

	

x k

x k

x k

1

2

3

1

1

1

0 1 0

0 0 1

0 0 04 0 5

+()
+()
+()

















=
− −















. .

xx k

x k

x k

u k

1

2

3

0

0

1

()
()
()

















+
















()

	

y k

x k

x k

x k

() = []
()
()
()

















1 0 0

1

2

3

Solution
The eig command of MATLAB yields the eigenvalues and the modal matrix

	

L = − −{ } =
−

−
−

diag 0 0 1 0 4

1 0 995 0 9184

0 0 0995 0 3674

0 0 00995 0

, . , .

. .

. .

.

V

..1469

1
















The state matrix is in companion form and the modal matrix is also known to be the Van
der Monde matrix:

	

V =
















= − −








1 1 1 1 1 1

0 0 1 0 4

0 0 01 0 16

1 2 3

1
2

2
2

3
2

λ λ λ
λ λ λ

. .

. .









The MATLAB command for similarity transformation is ss2ss. It requires the inverse Tr
−1

of the similarity transformation matrix Tr. Two MATLAB commands transform to diagonal

form. The first requires the modal matrix of eigenvectors V and the system to be
transformed

>> s_diag = ss2ss(system, inv(v))

The second uses similarity transformation but does not require the transformation matrix

>> s_diag = canon(system, ‘modal’)

The two commands yield

	

A diag B

C

t t

t

= − −{ } = []
= −

0 0 1 0 4 25 33 5012 9 0738

1 0000 0 9950

, . , . , . .

. .

T

00 9184 0.[] =Dt

For complex conjugate eigenvalues, the command canon yields a real realization but its state
matrix is not in diagonal form, whereas ss2ss will yield a diagonal but complex matrix.

7.9.1  Invariance of Transfer Functions and Characteristic Equations

Similar systems can be viewed as different representations of the same systems.
This is justified by the following theorem.

Theorem 7.1:  Similar systems have identical transfer functions and characteristic
polynomials.

Proof.  Consider the characteristic polynomials of similar realizations (A, B, C, D) and
(A1, B1, C1, D):

	

det det

det

det d

zI A zI T AT

T zI A T

T

n n r r

r n r

r

−() = −()
= −()[]
= []

−

−

−

1
1

1

1 eet det detzI A T zI An r n−() [] = −()

where we used the identity det detT Tr r
−[] × [] =1 1 .

The transfer function matrix is

	

G s C zI A B D

CT zI T AT T B D

C T zI T A

n

r n r r r

r n r

1 1 1 1 1

1 1

1

() = −[] +
= −[] +
= −

− −

− TT T B D

C zI A B D G s

r r

n

()[] +
= −[] + = ()

−1

where we used the identity (A B C)−1 = C−1 B−1 A−1.	 ■

Clearly, not all systems with the same transfer function are similar, due to the
possibility of pole-zero cancellation. Systems that give rise to the same transfer
function are said to be equivalent.

7.9  Similarity Transformation   273

274    CHAPTER 7  State–Space Representation

Example 7.20

Show that the following system is equivalent to the system shown in Example 7.17(2).

	

x k x k u k

y k x k

+() = () + × ()

() = ()

−1 0 8187 9 0635 10 2. .

Solution
The transfer function of the system is

	
G z

z
() =

×
−

−9 0635 10

0 8187

2.

.

which is identical to the reduced transfer function of Example 7.17(2).

Resources
D’Azzo, J. J., and C. H. Houpis, Linear Control System Analysis and Design, McGraw-Hill,

1988.
Belanger, P. R., Control Engineering: A Modern Approach, Saunders, 1995.
Brogan, W. L., Modern Control Theory, Prentice Hall, 1985.
Chen, C. T., Linear System Theory and Design, HRW, 1984.
Friedland, B., Control System Design: an Introduction to State–Space Methods, McGraw-

Hill, 1986.
Gupta, S. C., and L. Hasdorff, Fundamentals of Automatic Control, Wiley, 1970.
Hou, S.-H., A simple proof of the Leverrier-Faddeev characteristic polynomial algorithm,

SIAM Review, 40(3):706–709, 1998.
Kailath, T., Linear Systems, Prentice Hall, 1980.
Moler, C. B., and C. F. Van Loan, Nineteen dubious ways to calculate the exponential of a

matrix, SIAM Review, 20:801–836, 1978.
Sinha, N. K., Control Systems, HRW, 1988.

Problems

7.1	 Classify the state–space equations regarding linearity and time variance:

(a)	


x

x

t x

x
u

1

2

1

2

1

0 2

1

2






=
()

−












+ 





sin

y
x

x
= []





1 1
1

2

(b)	





x

x

x

x

x

x

1

2

3

1

2

3

1 1 0

0 2 0

1 5 7

1

2
















=
































+
00
















u

y

x

x

x

= []
















1 1 2

1

2

3

(c)	 x x x xu= − + +2 72

	 y x= 3

(d)	 x x u= − +7
	 y x= 3 2 	

7.2	 The equations of motion of a 2-D.O.F manipulator are

	
M D

f
 θ θ θ+ () + () = 





g
T

	
M

m m

m m D

g

g
= 





() = 





() =
()
()







11 12

12 22 2 2

1

2

0
d g

θ
θ

θ
θ
θ 

	
M M

m m

m m
a

a a

a a

= = 





−1 11 12

12 22

where q = [q1, q2]
T is a vector of joint angles. The entries of the positive definite

inertia matrix M depend on the robot coordinates q. D2 is a damping constant.
The terms gi, i = 1, 2, are gravity related terms that also depend on the coordinates.
The right hand side is a vector of generalized forces.

a)	 Obtain a state-space representation for the manipulator then linearize it in
the vicinity of a general operating point (x0, u0).

b)	 Obtain the linearized model in the vicinity of zero coordinates, velocities
and inputs.

c)	 Show that, if the entries of the state matrix are polynomials, the answer of
(b) can be obtained from the (a) by letting all nonlinear terms go to zero.

7.3	 Obtain the matrix exponentials for the state matrices using four different
approaches:

(a)	 A = − − −{ }diag 3 5 7, ,

(b)	 A = −
−

















0 0 1

0 1 0

6 0 0

(c)	 A =
− −

















0 1 1

0 0 1

0 6 5

(d)	 A is a block diagonal matrix with the matrices of (b) and (c) on its diagonal.

Problems   275

276    CHAPTER 7  State–Space Representation

7.4	 Obtain the zero-input responses of the systems of Problem 7.3 due to the
initial condition vectors:
(a), (b), (c)	 [1, 1, 0]T and [1, 0, 0]T

(d)	 [1, 1, 0, 1, 0, 0]T

7.5	 Determine the discrete-time state equations for the systems of Problem 7.3(a),
(b), and (c), with b = [0, 0, 1]T in terms of the sampling period T.

7.6	 Prove that the (right) eigenvectors of the matrix AT are the left eigenvectors of
A and that AT’s eigenvalues are the eigenvalues of A using

	 A V V V W= =−L L1

7.7	 Prove the properties of the constituent matrices given in Section 7.4.3 using
(7.44).

7.8  (a)	 Derive the expressions for the terms of the adjoint matrix used in the
Leverrier algorithm. Hint: Multiply both sides of (7.28) by the matrix
[sI − A] and equate coefficients.

(b)	 Derive the expressions for the coefficients of the characteristic equations
used in the Leverrier algorithm. Hint: Laplace-transform the derivative
expression for the matrix exponential to obtain

	 s e I e AAt AtL L{ } − = { }
Take the trace, then use the identity

	
tr sI A

a a s n a s ns

a a s a
n

n
n n

n

−[]() =
+ + + −() +

+ + +
− −

− −
1 1 2 1

2 1

0 1

2 1. . .

. . . −−
− +1

1s sn n

7.9	 The biological component of a fishery system is assumed to be governed by
the population dynamics equation

	
dx t

dt
rx t x t K h t

()
= () − ()() − ()1

where r is the intrinsic growth rate per unit time, K is the environment carrying
capacity, x(t) is the stock biomass, and h(t) is the harvest rate in weight2:
(a)	 Determine the harvest rate for a sustainable fish population x0 < K.
(b)	 Linearize the system in the vicinity of the fish population x0.
(c)	 Obtain a discrete-time model for the linearized model with a fixed average

yearly harvest rate h(k) in the kth year.
(d)	 Obtain a condition for the stability of the fish population from your

discrete-time model, and comment on the significance of the condition.

7.10	 The following differential equations represent a simplified model of an
overhead crane3:

2C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources,
Wiley, 1990.
3A. Piazzi and A. Visioli, Optimal dynamic-inversion-based control of an overhead crane, IEE Pro-
ceedings: Control Theory and Applications, 149(5):405–411, 2002.

	 m m x t m l x t x t x t x t uL C L+() () + () () − () ()() =  1 3 3 3
2

3cos sin

	 m x t x t m lx t m g x tL L L 1 3 3 3() () + () = − ()cos sin

where mC is the mass of the trolley, mL is the mass of the hook/load, l is the
rope length, g is the gravity acceleration, u is the force applied to the trolley,
x1 is the position of the trolley, and x3 is the rope angle. Consider the position
of the load y = x1 + l sin x3 as the output.
(a)	 Determine a linearized state–space model of the system about the

equilibrium point x = 0 with state variables x1, x3, the first derivative of x1,
and the first derivative of x3.

(b)	 Determine a second state–space model when the sum of the trolley
position and of the rope angle is substituted for the rope angle as a third
state variable.

7.11	 Consider the discretized armature-controlled DC motor system obtained in
Example 7.15. Obtain the diagonal form for the system (note that the angular
position of the motor is measured).

7.12	 A system whose state and output responses are always nonnegative for any
nonnegative initial conditions and any nonnegative input is called a positive
system.4 Positive systems arise in many applications where the system variable
can never be negative, including chemical processes, biological systems,
economics, among others. Show that the single-input-single-output discrete-
time system (A, b, cT) is positive if and only if all the entries of the state, input,
and output matrix are positive.

7.13	 To monitor river pollution, we need to model the concentration of
biodegradable matter contained in the water in terms of biochemical oxygen
demand for its degradation. We also need to model the dissolved oxygen
deficit defined as the difference between the highest concentration of
dissolved oxygen and the actual concentration in mg/l. If the two variables of
interest are the state variables x1 and x2, respectively, then an appropriate
model is given by

	
x x=

−
−







k

k k

1

1 2

0

where k1 is a biodegradation constant and k2 is a reaeration constant, and both
are positive. Assume that the two positive constants are unequal. Obtain a
discrete-time model for the system with sampling period T, and show that the
system is positive.

7.14	 Autonomous underwater vehicles (AUVs) are robotic submarines that can be
used for a variety of studies of the underwater environment. The vertical and

4L. Farina and S. Rinaldi, Positive Linear Systems: Theory & Applications, Wiley-Interscience,
2000.

Problems   277

278    CHAPTER 7  State–Space Representation

horizontal dynamics of the vehicle must be controlled to remotely operate the
AUV. The INFANTE (Figure P7.14) is a research AUV operated by the Instituto
Superior Tecnico of Lisbon, Portugal.5 The variables of interest in horizontal
motion are the sway speed and the yaw angle. A linearized model of the
horizontal plane motion of the vehicle is given by





x

x

x

1

2

3

0 14 0 69 0 0

0 19 0 048 0 0

0 0 1 0 0 0

















=
− −
− −





. . .

. . .

. . .





























+ −
















x

x

x

u

1

2

3

0 056

0 23

0 0

.

.

.

y

y

x

x

x

1

2

1

2

3

1 0 0

0 1 0






= 





















where x1 is the sway speed, x2 is the yaw angle, x3 is the yaw rate, and u is
the rudder deflection. Obtain the discrete state–space model for the system
with a sampling period of 50 ms.

Figure P7.14

The INFANTE AUV. (Source: From Silvestrea and Pascoa, 2004; used with
permission.)

Computer Exercises

7.15	 Write a computer program to simulate the systems described in Problem 7.1
for various initial conditions with zero input, and discuss your results referring
to the solutions of Example 7.4. Obtain plots of the phase trajectories for any
second-order system.

5C. Silvestrea and A. Pascoa, Control of the INFANTE AUV using gain scheduled static output feed-
back, Control Engineering Practice, 12:1501-1509, 2004.

7.16	 Write a program to obtain the state-transition matrix using the Leverrier
algorithm.

7.17	 Simulate the systems of Problem 7.3(a–c) with the initial conditions of 7.4, and
obtain state–trajectory plots with one state variable fixed for each system.

7.18	 Repeat Problem 7.5 using a computer-aided design (CAD) package for two
acceptable choices of the sampling period and compare the resulting systems.

7.19	 Simulate the river pollution system of Problem 7.13 for the normalized
parameter values of k1 = 1, k2 = 2, with a sampling period T = 0.01 s for the
initial conditions xT (0) = [1, 0], [0, 1], [1, 1], and plot all the results together.

7.20	 Repeat Problem 7.14 using a CAD package.

Computer Exercises   279

Chapter

8Properties of State–Space
Models

Objectives
After completing this chapter, the reader will be able to do the following:

1.	 Determine the equilibrium point of a discrete-time system.
2.	 Determine the asymptotic stability of a discrete-time system.
3.	 Determine the input-output stability of a discrete-time system.
4.	 Determine the poles and zeros of multivariable systems.
5.	 Determine controllability and stabilizability.
6.	 Determine observability and detectability.
7.	 Obtain canonical state–space representations from an input-output

representation of a system.

In Chapter 7, we described state–space models of linear discrete time and how
these models can be obtained from transfer functions or input–output differential
equations. We also obtained the solutions to continuous time and discrete-time
state equations. Now, we examine some properties of these models that play an
important role in system analysis and design.

We examine controllability, which determines the effectiveness of state feed-
back control; observability, which determines the possibility of state estimation
from the output measurements; and stability. These three properties are indepen-
dent, so that a system can be unstable but controllable, uncontrollable but stable,
and so on. However, systems whose uncontrollable dynamics are stable are stabi-
lizable, and systems whose unobservable dynamics are stable are called detectable.
Stabilizability and detectability are more likely to be encountered in practice than
controllability and observability.

Finally, we show how state–space representations of a system in several canon-
ical forms can be obtained from its input-output representation.

To simplify our notation, the subscript d used in Chapter 7 with discrete-time
state and input matrices is dropped if the discussion is restricted to discrete-time
systems. In sections involving both continuous-time and discrete-time systems, the
subscript d is retained. We begin with a discussion of stability.

282    CHAPTER 8  Properties of State–Space Models

8.1  Stability of State–Space Realizations
The concepts of asymptotic stability and bounded-input-bounded-output
(BIBO) stability of transfer functions are discussed in Chapter 4. Here, we give
more complete coverage using state–space models. We first discuss the asymptotic
stability of state–space realizations. Then we discuss the BIBO stability of their
input-output responses.

8.1.1  Asymptotic Stability

The natural response of a linear system because of its initial conditions may

1.	 Converge to the origin asymptotically.
2.	 Remain in a bounded region in the vicinity of the origin.
3.	 Grow unbounded.

In the first case, the system is said to be asymptotically stable; in the second,
the system is marginally stable; and in the third, it is unstable. Clearly, physical
variables are never actually unbounded even though linear models suggest this.
Once a physical variable leaves a bounded range of values, the linear model ceases
to be valid and the system must be described by a nonlinear model. Critical to the
understanding of stability of both linear and nonlinear systems is the concept of
an equilibrium state.

Definition 8.1: E quilibrium.  An equilibrium point or state is an initial state from which
the system never departs unless perturbed.	 ■

For the state equation

	 x 1 f xk k+() = ()[] 	 (8.1)

all equilibrium states xe satisfy the condition

	
x 1 f x

f x xe e

k k+
=

() = ()[]
= []

	 (8.2)

For linear state equations, equilibrium points satisfy the condition

	
x 1 x

x x x 0e e e

k A k

A A In

+() = ()
= = ⇔ −[] =

	 (8.3)

For an invertible matrix A − In, (8.3) has the unique solution 0 and the linear
system has one equilibrium state at the origin. Later we show that invertibility of
A − In is a necessary condition for asymptotic stability.

Unlike linear systems, nonlinear models may have several equilibrium states.
Leaving one equilibrium state, around which the linear model is valid, may drive
the system to another equilibrium state where another linear model is required.

Nonlinear systems may also exhibit other more complex phenomena that are not
discussed in this chapter but are discussed in Chapter 11.

The equilibrium of a system with constant input u can be derived from Defini-
tion 8.1 by first substituting the constant input value in the state equation to obtain
the form of equation (8.2).

Example 8.1

Find the equilibrium points of the following systems:

1.	 x(k + 1) = x(k) [x(k) − 0.5]
2.	 x(k + 1) = 2x(k)

3.	
x k

x k

x k

x k

1

2

1

2

1

1

0 1 0

1 0 9

+()
+()







= 





()
()







.

.

Solution
1.	 At equilibrium, we have

	 x x xe e e= −[]0 5.

We rewrite the equilibrium condition as

	 x xe e −[] =1 5 0.

Hence, the system has the two equilibrium states

	 x xe = =0 1 5and e .

2.	 The equilibrium condition is

	 x xe e= 2

The system has one equilibrium point at xe = 0.

3.	 The equilibrium condition is

	

x k

x k

x k

x k

1

2

1

2

0 1 0

1 0 9

0 1 1 0e

e

e

e

()
()







= 





()
()







⇔
−.

.

.

11 0 9 1

0

0

1

2. −






()
()







= 





x k

x k

e

e

The system has a unique equilibrium state at xe = [x1e, x2e]
T = [0, 0]T.

Although the systems of Example 8.1 all have equilibrium points, convergence
to an equilibrium point is not guaranteed. This additional property defines asymp-
totic stability for linear systems assuming that the necessary condition of a unique
equilibrium at the origin is satisfied.

Definition 8.2: A symptotic Stability.  A linear system is said to be asymptotically stable
if all its trajectories converge to the origin; that is, for any initial state x(k0), x(k) → 0
as k → ∞.

8.1  Stability of State–Space Realizations   283

284    CHAPTER 8  Properties of State–Space Models

Theorem 8.1:  A discrete-time linear system is asymptotically (Schur) stable if and only
if all the eigenvalues of its state matrix are inside the unit circle.

Proof.  To prove the theorem, we examine the zero-input response in (7.63) with the
state-transition matrix given by (7.72). Substitution yields

	

x x

x

ZI k A k

Z k

k k

i

i

n

i
k k

() = ()

= ()

−

=

−∑

0

0

0

1

0 λ
	 (8.4)

Sufficiency
The response decays to zero if the eigenvalues are all inside the unit circle. Hence, the
condition is sufficient.

Necessity
To prove necessity, we assume that the system is stable but that one of its eigenvalues
lj is outside the unit circle. Let the initial condition vector x(k0) = vj, the jth eigenvec-
tor of A. Then (see Section 7.4.3) the system response is

	

x x

v w v v

ZI k Z ki

i

n

i
k k

i i
T

i

n

j i
k k

j j
k k

() = ()

= =

=

−

=

− −

∑

∑
1

0

1

0

0 0

λ

λ λ

which is clearly unbounded as k → ∞. Hence, the condition is also necessary by
contradiction.	� ■

Remark
There are some nonzero initial states for which the product Zj x(k0) is zero because
the matrix Zj is rank 1 (x(k0) = vi, i ≠ j). So the response to those initial states may
converge to zero even if the corresponding lj has magnitude greater than unity.
However, the solution grows unbounded for an initial state in the one direction for
which the product is nonzero. Therefore, not all trajectories converge to the origin
for |lj| > 1. Hence, the condition of Theorem 8.1 is necessary.

We now discuss the necessity of an invertible matrix A − In for asymptotic
stability. The matrix can be decomposed as

	 A I V I V V Vn n i− = −[] = −{ }− −L 1 11diag λ

An asymptotically stable matrix A has no unity eigenvalues, and A − In is
invertible.

Example 8.2

Determine the stability of the systems of Example 8.1(2) and 8.1(3) using basic principles,
and verify your results using Theorem 8.1.

Solution
8.1(2):  Consider any initial state x(0). Then the response of the system is

	

x x

x x x x

x x x x

1 2 0

2 2 1 2 2 0 4 0

3 2 2 2 4 0 8 0

() = ()
() = () = × () = ()
() = () = × () = ()

x k xk() = ()2 0

Clearly, the response is unbounded as k → ∞. Thus, the system is unstable. The system
has one eigenvalue at 2 > 1, which violates the stability condition of Theorem 8.1.

8.1(3):  The state equation is

	

x k

x k

x k

x k

1

2

1

2

1

1

0 1 0

1 0 9

+()
+()







= 





()
()







.

.

Using Sylvester’s expansion (7.34), we obtain

	

0 1 0

1 0 9

1 0

1 0 8 0
0 1

0 0

1 0 8 1
0 9

.

. .
.

.
.







=
−







+ 





The response of the system due to an arbitrary initial state x(0) is

	

x k

x k
k k1

2

1 0

1 0 8 0
0 1

0 0

1 0 8 1
0 9

()
()







=
−







() + 





(){ .
.

.
. }} ()

()






x

x

1

2

0

0

This decays to zero as k → ∞. Hence, the system is asymptotically stable. Both system
eigenvalues (0.1 and 0.9) are inside the unit circle, and the system satisfies the conditions
of Theorem 8.1.

Note that the response due to any initial state with x1(0) = 0 does not include the first
eigenvalue. Had this eigenvalue been unstable, the response due to this special class of
initial conditions would remain bounded. However, the response due to other initial condi-
tions would be unbounded, and the system would be unstable.

In Chapter 4, asymptotic stability was studied in terms of the poles of the
system with the additional condition of no pole-zero cancellation. The condition
for asymptotic stability was identical to the condition imposed on the eigenvalues
of a stable state matrix in Theorem 8.1. This is because the eigenvalues of the
state matrix A and the poles of the transfer function are identical in the absence
of pole-zero cancellation. Next, we examine a stability definition based on the
input-output response.

8.1.2  BIBO Stability

For an input–output system description, the system output must remain bounded
for any bounded-input function. To test the boundedness of an n-dimensional

8.1  Stability of State–Space Realizations   285

286    CHAPTER 8  Properties of State–Space Models

output vector, the norm of the vector (a measure of the vector length or
size) must be used (see Appendix III). A vector x is bounded if it satisfies the
condition

	 x < < ∞bx 	 (8.5)

for some finite constant bx where ||x|| denotes any vector norm.
For real or complex n × 1 vectors, all norms are equivalent in the sense that

if a vector has a bounded norm ||x||a, then any other norm ||x||b, is also bounded.
This is true because for any two norms ||x||a, and ||x||b, there exist finite positive
constants k1 and k2 such that

	 k ka b a1 2x x x≤ ≤ 	 (8.6)

Because a change of norm merely results in a scaling of the constant bx, bounded-
ness is independent of which norm is actually used in (8.5). Stability of the input-
output behavior of a system is defined as follows.

Definition 8.3:  Bounded-Input-Bounded-Output Stability.  A system is BIBO stable if
its output is bounded for any bounded input. That is,

	 u yk b k bu y() < < ∞ ⇒ () < < ∞ 	 (8.7)
	 ■

To obtain a necessary and sufficient condition for BIBO stability, we need the
concept of the norm of a matrix (see Appendix III). Matrix norms can be defined
based on a set of axioms or properties. Alternatively, we define the norm of a
matrix in terms of the vector norm as

	
A

A

A

=

=
=

max

max

x

x

x

x

x
1

	 (8.8)

Multiplying by the norm of x, we obtain the inequality

	 A Ax x≤ ⋅ 	 (8.9)

which applies to any matrix norm induced from a vector norm. Next, we give a
condition for BIBO stability in terms of the norm of the impulse response
matrix.

Theorem 8.2:  A system is BIBO stable if and only if the norm of its impulse response
matrix is absolutely summable. That is,

	 G k
k

() < ∞
=

∞

∑
0

	 (8.10)

Proof.
Sufficiency
The output of a system with impulse response matrix G(k) and input u(k) is

	 y ui G k i k
k

i

() = () −()
=

∑
0

The norm of y(i) satisfies

	

y u

u u

i G k i k

G k i k G k i k

k

i

k

i

k

i

() = () −()

≤ () −() ≤ () −()

=

= =

∑

∑ ∑
0

0 0

For a bounded input u(k)

	 u k bu() < < ∞

Hence, the output is bounded by

	 y i b G k b G ku

k

i

u

k

() ≤ () ≤ ()
= =

∞

∑ ∑
0 0

which is finite if condition (8.10) is satisfied.

Necessity
The proof is by contradiction. We assume that the system is BIBO stable but that (8.10)
is violated. We write the output y(k) in the form

	

y G u

u

u

u

k k

G G G k

k

k

() = ()

= () () ()[]

()
−()

()



















0 1
1

0




Using the definition of a matrix norm, the norm of the output vector can be written
as

	

y

g u

k y k

k
s

s

s
s
T

() = ()

= ()

max

max

where g s
T k() is the s row of the matrix G(k). Select the vectors u(i) to have the rth

entry with unity magnitude and with sign opposite to that of gsr(i), where gsr(i) denotes
the srth entry of the impulse response matrix G(i). This gives the output norm

	 y k g i
s

sr

r

m

i

k

() = ()
==
∑∑max

00

8.1  Stability of State–Space Realizations   287

288    CHAPTER 8  Properties of State–Space Models

For BIBO stability, this sum remains finite. But for the violation of (8.10),

	 G k g i k
i

k

sr

r

m

s

l

i

k

() = () → ∞ → ∞
= ===
∑ ∑∑∑

0 110

as

The definition of the norm as the sum of absolute values of the entries of a matrix
is valid and can be shown to (1) satisfy all norm properties and (2) remain finite if and
only if other norms for the matrix are finite. Because the matrix has a finite number of
entries, (8.10) is violated only if the sum for fixed (s, r) is unbounded (i.e., if the output
is unbounded as k → ∞). This contradicts the assumption of BIBO stability.	 ■

Example 8.3

Determine the BIBO stability of the system with difference equations

	

y k y k u k

y k y k u k

1 2

2 1

2 0 1 1

2 0 9 1

+() + +() = ()
+() + +() = ()

.

.

Solution
To find the impulse response matrix, we first obtain the transfer function matrix

	

Y z

Y z

z z

z z
U z

z z

z z

1

2

2

2

1

2

2

0 1

0 9

0 1

0 9

()
()







= 





()

=

−
−




−
.

.

.

.



−()
() =

−
−







−() +()
()

z z
U z

z

z

z z z
U z

2 2 0 09

0 1

0 9

0 3 0 3.

.

.

. .

Inverse z-transforming the matrix gives the impulse response

	G k
kk k k k

() =
−() + (){ } −() + −() − (){5 556 0 3 0 3 1 111 1 1 852 0 3 0 3.δ }}

−() + −() − (){ } −() + (){ }




10 1 16 667 0 3 0 3 5 556 0 3 0 3δ k k k k k.







The entries of the impulse response matrix are all absolutely summable because

	
0 3

1

1 0 3
0 7

0

1.
.

.() =
−

= () < ∞
=

∞
−∑ k

k

Hence, the impulse response satisfies condition (8.10), and the system is BIBO stable.

Although it is possible to test the impulse response for BIBO stability, it is much
easier to develop tests based on the transfer function. The following theorem
relates BIBO stability to asymptotic stability and sets the stage for such a test.

Theorem 8.3:  If a discrete-time linear system is asymptotically stable, then it is BIBO
stable. Furthermore, in the absence of unstable pole-zero cancellation, the system is
asymptotically stable if it is BIBO stable.

Proof.  Substituting from (8.4) into (8.10) gives

	

G k CZ B

CZ B

k

j

j

n

j
k

k

j j
k

j

n

k

() =

≤

=

∞

==

∞

==

∞

∑ ∑∑

∑∑
0 10

10

λ

λ

For an asymptotically stable system, all poles are inside the unit circle. Therefore,

	
G k CZ B

k

j
jj

n

() ≤
−=

∞

=
∑ ∑

0 1

1

1 λ

which is finite provided that the entries of the matrices are finite. Thus, whenever the
product CZjB is nonzero for all j, BIBO and asymptotic stability are equivalent. However,
the system is BIBO stable but not asymptotically stable if the product is zero for some
lj with magnitude greater than unity. In other words, a system with unstable input-
decoupling, output-decoupling, or input–output-decoupling zeros and all other modes
stable is BIBO stable but not asymptotically stable. In the absence of unstable pole-zero
cancellation, BIBO stability and asymptotic stability are equivalent.	 ■

Using Theorem 8.3, we can test BIBO stability by examining the poles of the
transfer function matrix. Recall that, in the absence of pole-zero cancellation, the
eigenvalues of the state matrix are the system poles. If the poles are all inside
the unit circle, we conclude that the system is BIBO stable. However, we cannot
conclude asymptotic stability except in the absence of unstable pole-zero cancel-
lation. We reexamine this issue later in this chapter.

Example 8.4

Test the BIBO stability of the transfer function of the system of Example 8.3.

Solution
The transfer function is

	
G z

z

z

z z z
() =

−
−







−() +()

0 1

0 9

0 3 0 3

.

.

. .

The system has poles at the origin, 0.3, and −0.3, all of which are inside the unit circle.
Hence, the system is BIBO stable.

8.1  Stability of State–Space Realizations   289

290    CHAPTER 8  Properties of State–Space Models

8.2  Controllability and Stabilizability
When obtaining z-transfer functions from discrete-time state–space equations, we
discover that it is possible to have modes that do not affect the input–output
relationship. This occurs as a result of pole-zero cancellation in the transfer func-
tion. We now examine this phenomenon more closely to assess its effect on
control systems.

The time response of a system is given by a sum of the system modes weighted
by eigenvectors. It is therefore important that each system mode be influenced
by the input so as to be able to select a time response that meets design specifica-
tions. Systems possessing this property are said to be completely controllable
or simply controllable. Modes that cannot be influenced by the control are called
uncontrollable modes. A more precise definition of controllability is given
next.

Definition 8.4:  Controllability.  A system is said to be controllable if for any initial state
x(k0) there exists a control sequence u(k), k = k0, k0 + 1, . . . , kf − 1, such that an
arbitrary final state x(kf) can be reached in finite kf.	 ■

Controllability can be given a geometric interpretation if we consider a second-
order system. Figure 8.1 shows the decomposition of the state plane into a con-
trollable subspace and an uncontrollable subspace. The controllable subspace
represents states that are reachable using the control input, whereas the uncon-
trollable subspace represents states that are not reachable. Some authors prefer
to use the term reachability instead of “controllability.” Reachable systems are
ones where every point in state space is reachable from the origin.1 This definition
is equivalent to our definition of controllability.

The following theorem establishes that the previous controllability definition
is equivalent to the ability of the system input to influence all its modes.

Figure 8.1

Controllable and uncontrollable subspaces.

x2

x1

Controllable
SubspaceUncontrollable

Subspace
u

1Traditionally, controllable systems are defined as systems where the origin can be reached from
every point in the state space. This is equivalent to our definition for continuous-time systems but
not for discrete-time systems. For simplicity, we adopt the more practically relevant Definition
8.4.

8.2  Controllability and Stabilizability   291

Theorem 8.4:  Controllability Condition.  A linear time-invariant system is completely
controllable if and only if the products w i

T
dB , i = 1, 2, . . . , n are all nonzero where

w i
T is the ith left eigenvector of the state matrix. Furthermore, modes for which the

product w i
T

dB is zero are uncontrollable.

Proof.

Necessity and Uncontrollable Modes
Definition 8.4 with finite final time kf guarantees that all system modes are influenced
by the control. To see this, we examine the zero-input response

	 x xZI k Z ki

i

n

i
k() = ()

=
∑

1

0 λ

For any eigenvalue li inside the unit circle the corresponding mode decays to zero
exponentially regardless of the influence of the input. However, to go to the zero state
in finite time, it is necessary that the input influence all modes. For a zero product ZiBd,
the ith mode is not influenced by the control and can only go to zero asymptotically.
Therefore, the ith mode is uncontrollable for zero ZiBd. In Section 7.4.3, we showed
that Zi is a matrix of rank 1 given by the product of the ith right eigenvector vi of the
state matrix, and its ith left eigenvector is wi. Hence, the product ZiBd is given by

	

Z B B

v

v

v

B

v

v

v

i d i i
T

d

i

i

in

i
T

d

i i
T

i i
T

in

= =



















=v w w

w

w

w

1

2

1

2

 

ii
T

dB



















where vij, j = 1, . . . , n are the entries of the ith eigenvector of the state matrix. There-
fore, the product ZiBd is zero if and only if the product w i

T
dB is zero.

Sufficiency
We examine the total response for any initial and terminal state. From (7.80), we
have

	 x x x u= k A k A B id
k

d
k i

d

i k

k

() − () = ()− −

=

−

∑0
1

1

0

	 (8.11)

Using the Cayley-Hamilton theorem, it can be shown that for k > n, no “new” terms
are added to the preceding summation. By that we mean that the additional terms will
be linearly dependent and are therefore superfluous. Thus, if the vector x cannot be
obtained in n sampling periods by proper control sequence selection, it cannot be
obtained over a longer duration. We therefore assume that k = n and use the expansion
of (7.78) to obtain

	 x u= Z B ij

j

n

j
n i

d

i

n

=

− −

=

−

∑∑ 







 ()

1

1

0

1

λ 	 (8.12)

292    CHAPTER 8  Properties of State–Space Models

The outer summation in (8.12) can be written in matrix form to obtain

	 x =







=

−

=

−

= =
∑ ∑ ∑ ∑Z B Z B Z B Z Bj

j

n

d j
n

j

j

n

d j
n

j

j

n

d j j d

j

n

1

1

1

2

1 1

λ λ λ. . . .



()
()

−()
−()























=

u

u

u

u

u

0

1

2

1

.

n

n

L

  (8.13)

The matrix Bd is n × m and is assumed of full rank m. We need to show that the
n × m.n matrix L has full row rank. The constituent matrices Zi, i = 1, 2, . . . , n are of
rank 1 and each has a column linearity independent of the other constituent matrices.
Therefore, provided that the individual products ZiBd are all nonzero, each submatrix
of L has rank 1, and L has n linearly independent columns (i.e., L has full rank n).
Because the rank of a matrix cannot exceed the number of rows for fewer rows than
columns, we have

	 rank rankL L nx{ } = { } = 	 (8.14)

This condition guarantees the existence of a solution u to (8.12). However, the
solution is, in general, nonunique because the number of elements of u (unknowns) is
m.n > n. A unique solution exists only in the single-input case (m = 1). It follows that
if the products ZiBd, i = 1, 2, . . . , n are all nonzero, then one can solve for the vector
of input sequences needed to reach any x(kf) from any x(k0). As discussed in the proof
of necessity, the product ZiBd is zero if and only if the product w i

T
dB is zero.	 ■

The next theorem gives a simpler controllability test but, as first stated,
it does not provide a means of determining which of the system modes is
uncontrollable.

Theorem 8.5:  Controllability Rank Condition.  A linear time-invariant system is com-
pletely controllable if and only if the n × m.n controllability matrix

	 C = []−B A B A Bd d d d
n

d . . . 1 	 (8.15)

has rank n.

Proof.  We first write (8.11) in the form

	 x

u

u

u

u

= []

−()
−()

()
()























−B A B A B

n

n

d d d d
n

d1

1

2

1

0

== Cu

	 (8.16)

8.2  Controllability and Stabilizability   293

We now have a system of linear equations for which (8.15) is a necessary and sufficient
condition for a solution u to exist for any x. Hence, (8.15) is a necessary and sufficient
condition for controllability.	 ■

If the controllability matrix C is rank deficient, then the rank deficiency is equal
to the number of linearly independent row vectors that are mapped to zero on
multiplication by C. These row vectors are the uncontrollable states of the system
as well as the left eigenvectors of the state matrix A. The vectors are also the trans-
pose of the right eigenvectors of AT. Thus, the rank test can be used to determine
the uncontrollable modes of the system if the eigenstructure of AT is known.

Example 8.5

Determine the controllability of the following state equation:

	

x k

x k

x k

1

2

3

1

1

1

2 2 0

0 0 1

0 0 4 0 5

+()
+()
+()

















=
− −

− −
















. . 

()
()
()

















+
















()
x k

x k

x k

k

1

2

3

1 0

0 1

1 1

u

Solution
The controllability matrix for the system is

	

C = []

=
− −

− −
− − −





B A B A Bd d d d d 2

1 0 2 2 2 2

0 1 1 1 0 5 0 9

1 1 0 5 0 9 0 15 0 05

. .

. . . .













The matrix has rank 3, which implies that the third-order system is controllable. In fact,
the first three columns of the matrix are linearly independent, and the same conclusion can
be reached without calculating the entire controllability matrix. In general, one can gradually
compute more columns until n linearly independent columns are obtained to conclude
controllability for an nth-order system.

Although the controllability tests are given here for discrete-time systems, they
are applicable to continuous-time systems. This fact is used in the following two
examples.

Example 8.6

Show that the following state equation is uncontrollable, and determine the uncontrollable
mode. Then obtain the discrete-time state equation, and verify that it is also uncontrollable.

	



x t

x t

x t

x t
u t

1

2

1

2

0 1

0 0

1

0

()
()







= 





()
()







+
−





())

294    CHAPTER 8  Properties of State–Space Models

Solution
The system has a zero eigenvalue with multiplicity 2. The controllability matrix for the system is

	

C = []

=
−





B A B

1 0

0 0

The matrix has rank 1 (less than 2), which implies that the second-order system has one
(2 - 1) uncontrollable mode. In fact, integrating the state equation reveals that the second
state variable is governed by the equation

	 x t x t t t2 2 0 0() = () ≥,

Therefore, the second state variable cannot be altered using the control and corresponds
to an uncontrollable mode. The first state variable is influenced by the input and can be
arbitrarily controlled.

The state-transition matrix for this system can be obtained directly using the series expan
sion because the matrix Ai is zero for i > 1. Thus, we have the discrete-time state matrix

	
A e I AT

T
d

AT= = + = 





2

1

0 1

The discrete-time input matrix is

	
B e Bd I A d

T
d

A
T T

= = +[]
−





=
−



∫ ∫τ τ τ τ

0
2

0

1

0 0

The controllability matrix for the discrete-time system is

	

C = []

=
− −





B A B

T T

d d d

0 0

As with the continuous time system, the matrix has rank 1 (less than 2), which implies that
the second-order system is uncontrollable.

The solution of the difference equation for the second state variable gives

	 x k x k k k2 2 0 0() = () ≥,

with initial time k0. Thus, the second state variable corresponds to an uncontrollable unity
mode (e0), whereas the first state variable is controllable as with the continuous system.

Example 8.7

Show that the state equation for the motor system

	





x

x

x

x

x

x

1

2

3

1

2

3

0 1 0

0 0 1

0 10 11

















=
− −

































+
















1

0

0

u

8.2  Controllability and Stabilizability   295

with DAC and ADC is uncontrollable, and determine the uncontrollable modes. Obtain the
transfer functions of the continuous-time and discrete-time systems, and relate the uncon-
trollable modes to the poles of the transfer function.

Solution
From Example 7.7 the state-transition matrix of the system is

	

e
e eAt =

















+
− −

− −

















−
10 11 1

0 0 0

0 0 0
10

0 10 1

0 10 1

0 10 1

0 tt te

9

0 1 1

0 10 10

0 100 100
90

10

+ − −
















−

Multiplying by the input matrix, we obtain

	

e B e
e eAt

t t

=
















+
















+
















− −
1

0

0

0

0

0
9

0

0

0
9

0
10

00

1

0

0
10

0

=
















e

Thus, the modes e−t and e−10t are both uncontrollable for the analog subsystem. The two
modes are also uncontrollable for the digital system, including DAC and ADC.

Using the results of Example 7.9, the input matrix for the discrete-time system is

	

B Z BT Z B e Z B e Td
T T= + −() + −() =

















− −
1 2 3

101 1

1

0

0

and the matrix Ad = eAT. The controllability matrix for the discrete-time system is

	

C = []

=
















B A B A B

T

d d d d d 2

1 1 1

0 0 0

0 0 0

which clearly has rank 1, indicating that there are 2 (i.e., 3 − 1) uncontrollable modes. The
left eigenvectors corresponding to the eigenvalues e−T and e−10T have zero first entry, and
their product with the controllability matrix C is zero. Hence, the two corresponding modes
are not controllable. The zero eigenvalue has the left eigenvector [1, 0, 0], and its product
with C is nonzero. Thus, the corresponding mode is controllable.

The transfer function of the continuous-time system with output x1 is

	
G s C sI A B

s
() = −[] =−

3
1 1

This does not include the uncontrollable modes (input-decoupling modes) because they
cancel when the resolvent matrix and the input matrix are multiplied.

The z-transfer function corresponding to the system with DAC and ADC is

	
G z

z

z

G s

s

T

z
ZAS() = − ()



{ } =

−
−1

1
1Z L

296    CHAPTER 8  Properties of State–Space Models

The reader can easily verify that the transfer function is identical to that obtained using the
discrete-time state–space representation. It includes the pole at e0 but has no poles at e−T
or e−10T.

8.2.1  MATLAB Commands for Controllability Testing

The MATLAB commands to calculate the controllability matrix and determine its
rank are

>> c = ctrb(A, C)

>> rank(c)

8.2.2  Controllability of Systems in Normal Form

Checking controllability is particularly simple if the system is given in normal
form—that is, if the state matrix is in the form

	 A A A An= () () (){ }diag λ λ λ1 2, , . . . ,

The corresponding state-transition matrix is

	 e sI A e e eAt
n

A t A t A tn= −[]{ } = { }− () () ()L 1 1 2diag λ λ λ, , . . . , 	 (8.17)

The discrete-time state matrix is

	
A e e e ed

AT A T A T A T

n

n= = { }
= {

() () ()diag

diag

λ λ λ

λ λ λ

1 2

1 2

, , . . . ,

, , . . . , }}
	 (8.18)

The following theorem establishes controllability conditions for a system in normal
form.

Theorem 8.6:  Controllability of Systems in Normal Form.  A system in normal form
is controllable if and only if its input matrix has no zero rows. Furthermore, if the input
matrix has a zero row, then the corresponding mode is uncontrollable.

Proof.

Necessity and Uncontrollable Modes
For a system in normal form, the state equations are in the form

	 x k x k k i ni i i i
T+() = − () + () =1 1 2λ b u , , , . . . ,

where bi
T is the ith row of the input matrix Bd. For a zero row, the system is unforced

and can only converge to zero asymptotically for |li| inside the unit circle. Because
controllability requires convergence to any final state (including the origin) in finite
time, the ith mode is uncontrollable for zero bi

T .

8.2  Controllability and Stabilizability   297

Sufficiency
From the sufficiency proof of Theorem 8.4, we obtain equation (8.13) to be solved for
the vector u of controls over the period k = 0, 1, . . . , n − 1. The solution exists if the
matrix L in (8.13) has rank n. For a system in normal form, the state-transition matrix
is in the form

	 Ad
k

i
k= { }diag λ

and the n × n.m matrix L is in the form

	 L B B B Bj
n

d j
n

d j d d= { } { } { }[]− −diag diag diagλ λ λ1 2

Substituting for Bd in terms of its rows and using the rules for multiplying partitioned
matrices, we obtain

	

L

n T
c

n T T

n T n T T

n
n

n
T

n
n

=

− −

− −

−

λ λ
λ λ

λ λ

1
1

1 1
2

1 1

2
1

2 2
2

2 2

1

b b b

b b b

b




   
−−

















2b bn

T
n
T

For a matrix Bd with no zero rows, the rows of L are linearly independent and the
matrix has full rank n. This guarantees the existence of a solution u to (8.13).	 ■

Example 8.8

Determine the controllability of the system

	

x k

x k

x k

x k1

2

3

11

1

1

2 0 0

0 0 0

0 0 0 5

+()
+()
+()

















=
−

−















.

(()
()
()

















+
















()x k

x k

k2

3

1 0

0 1

1 1

u

Solution
The system is in normal form, and its input matrix has no zero rows. Hence, the system is
completely controllable.

8.2.3  Stabilizability

The system in Example 8.8 is controllable but has one unstable eigenvalue (outside
the unit circle) at (−2). This clearly demonstrates that controllability implies the
ability to control the modes of the system regardless of their stability. If the system
has uncontrollable modes, then these modes cannot be influenced by the control
and may or may not decay to zero asymptotically. Combining the concepts of
stable and controllable modes gives the following definition.

298    CHAPTER 8  Properties of State–Space Models

Definition 8.5:  Stabilizability.  A system is said to be stabilizable if all its uncontrol-
lable modes are asymptotically stable. 	 ■

Physical systems are often stabilizable rather than controllable. This poses no
problem provided that the uncontrollable dynamics decay to zero is sufficiently
fast so as not to excessively slow down the system.

Example 8.9

Determine the controllability and stabilizability of the system

	

x k

x k

x k

x k1

2

3

11

1

1

2 0 0

0 0 0

0 0 0 5

+()
+()
+()

















=
−

−















.

(()
()
()

















+
















()x k

x k

k2

3

1 0

0 0

1 1

u

Solution
The system is in normal form and its input matrix has one zero row corresponding to its
zero eigenvalue. Hence, the system is uncontrollable. However, the uncontrollable mode at
the origin is asymptotically stable, and the system is therefore stabilizable.

An alternative procedure to determine the stabilizability of the system is to transform it
to a form that partitions the state into a controllable part and an uncontrollable part, and
then determine the asymptotic stability of the uncontrollable part. We can do this by exploit-
ing the following theorem.

Theorem 8.7:  Standard Form for Uncontrollable Systems.  Consider the pair (Ad, Bd)
with nc controllable modes and n − nc uncontrollable modes and the transformation
matrix

	 T
Q

Qc

T

n
T

n
T

n
T

c

c

=

























=










+

−

−

q

q

q

q

1

1

1

1

2

1





	 (8.19)

where qi
T

ci n n, , . . . ,= +{ }1 are linearly independent vectors in the null space of the
controllability matrix C and qi

T
ci n, , . . . ,={ }1 are arbitrary linearly independent vectors

selected to make Tc nonsingular.
The transformed state-transition matrix A and the transformed input matrix B have

the following form:

	 a b=








 =











A A

A

Bc cuc

uc

c

0 0
	 (8.20)

where Ac is an nc × nc matrix, Bc is an nc × m matrix, and the pair (Ac, Bc) is
controllable.

8.2  Controllability and Stabilizability   299

Proof.  If the rank of the controllability matrix C is nc, there exist linearly independent
vectors q i

T
ci n n, , . . . ,= +{ }1 satisfying q 0i

T TC = , and the transformation Tc can
be obtained by adding nc linearly independent vectors. The null space of the control-
lability matrix is the unreachable space of the system and is also spanned by the set
of left eigenvectors corresponding to uncontrollable modes. Hence, the vectors

q i
T

ci n n, , . . . ,= +{ }1 are linear combinations of the left eigenvectors of the matrix Ad
corresponding to uncontrollable modes. We can therefore write the transformation
matrix in the form

	
T

Q

Q Wc
uc

=










−
1

2

1

where the matrix of coordinates Q2 is nonsingular and Wuc is a matrix whose rows are
the left eigenvectors of Ad, w i

T
ci n n, , . . . ,= −{ }1 , corresponding to uncontrollable modes.

By the eigenvector controllability test, if the ith mode is uncontrollable, we have

	 w 0i
T

d
T

cB i n n= = −, , . . . ,1

Therefore, transforming the input matrix gives

	
B = =









 =











−T B
Q

Q W
B

B
c d

uc
d

c1 1

2 0

Next, we show that the transformation yields a state matrix in the form (8.20). We
first recall that the left and right eigenvectors can be scaled to satisfy the condition

	 w vi
T

i ci n n= = −1 1, , . . . ,

If we combine the condition for all the eigenvectors corresponding to uncontrollable
modes, we have

	 W V Iuc uc i
T

j n nc= [] = −w v

We write the transformation matrix in the form

	 T R R R V Rc uc= [] = []1 2 1 2

which satisfies the condition

	
T T

Q

Q W
R V R

I

Ic c
uc

uc

n

n n

c

c

−

−
=









[] =











1 1

2
1 2

0

0

Because Q2 is nonsingular, we have the equality

	 W Ruc 1 = 0

The similarity transformation gives

	

T A T
Q

Q W
A R V R

Q A R Q A V R

Q W A R

c d c
uc

d uc

d d uc

uc d

− =








 []

=

1 1

2
1 2

1 1 1 2

2 1 QQ W A V Ruc d uc2 2











	 (8.21)

300    CHAPTER 8  Properties of State–Space Models

Because premultiplying the matrix Ad by a left eigenvector gives the same eigenvector
scaled by an eigenvalue, we have the condition

	 W A Wuc d u uc u u u n nc= = { }−Λ Λ, , . . . , ,diag λ λ1

with lu denoting an uncontrollable eigenvalue. This simplifies our matrix equality (8.21)
to

	

T A T
Q A R Q A V R

Q W R Q W V R

Q A R
c d c

d d uc

u uc u uc uc

d− =








 =1 1 1 1 2

2 1 2 2

1 1

Λ Λ
QQ A V R

Q W R Q R

Q A R Q A V R

Q R

d uc

u uc u

d d uc

u

1 2

2 1 2 2

1 1 1 2

2 2

Λ Λ

Λ











=






0 

 =










A A

A

c cuc

uc0

Because all the uncontrollable modes correspond to the eigenvalues of the matrix
Auc, the remaining modes are all controllable, and the pair (Ac, Bc) is completely
controllable.	 ■

Because the pair (Ad, Bd) has nc controllable modes, the rank of the control-
lability matrix is nc and the transformation matrix Tc is guaranteed to exist. The
columns q i

T
ci n n, , . . . ,= +{ }1 of the inverse transformation matrix have a geomet-

ric interpretation. They form a basis set for the unobservable subspace of the
system and can be selected as the eigenvectors of the uncontrollable modes of
the system.

The remaining columns of Tc form a basis set of the controllable subspace. The
similarity transformation is a change of basis that allows us to separate the control-
lable subspace from the uncontrollable subspace. After transformation, we can
check the stabilizability of the system by verifying that all the eigenvalues of the
matrix Auc are inside the unit circle.

Example 8.10

Determine the controllability, stability, and stabilizability of the system

	

x k

x k

x k

1

2

3

1

1

1

1 85 4 2 0 15

0 3 0 1 0 3

1

+()
+()
+()

















=
− −
−

−

. . .

. . .

.335 4 2 0 65

4 3

1 1

2 1

1

2

3. .−

















()
()
()

















+








x k

x k

x k









()u k

Solution
We first find the controllability matrix of the system

	

C = []

=
− −
− −
−

B A B A Bd d d d d 2

4 3 3 5 1 5 4 75 0 75

1 1 0 5 0 5 0 25 0 25

2 1 2

. . . .

. . . .

.. . . .5 0 5 4 25 0 25−

















The matrix has rank 2, and the first two columns are linearly independent. The dimension
of the null space is 3 − 2 = 1. We form a transformation matrix of the two first columns of
the controllability matrix and a third linearly independent column, giving

	

Tc =
















4 3 0

1 1 0

2 1 1

The system is transformed to

	

x k

x k

x k

1

2

3

1

1

1

2 0 1 05

1 5 0 5 1 35

0 0 0 1

+()
+()
+()

















=
− −

−




.

. . .

.













()
()
()

















+
















()
x k

x k

x k

k

1

2

3

1 0

0 1

0 0

u

The system has one uncontrollable mode corresponding to the eigenvalue at 0.1, which
is inside the unit circle. The system is therefore stabilizable but not controllable. The two
other eigenvalues are at −2, outside the unit circle, and at −0.5, inside the unit circle, and
both corresponding modes are controllable. The system is unstable because one eigenval-
ues is outside the unit circle.

8.3  Observability and Detectability
To effectively control a system, it may be advantageous to use the system state to
select the appropriate control action. Typically, the output or measurement vector
for a system includes a combination of some but not all the state variables. The
system state must then be estimated from the time history of the measurements
and controls. However, state estimation is only possible with proper choice of the
measurement vector. Systems whose measurements are so chosen are said to be
completely observable or simply observable. Modes that cannot be detected
using the measurements and the control are called unobservable modes. A more
precise definition of observability is given next.

Definition 8.6: O bservability.  A system is said to be observable if any initial state x(k0)
can be estimated from the control sequence x(k), k = k0, k0 + 1, . . . , kf − 1, and the
measurements y(k), k = k0, k0 + 1, . . . , kf.	 ■

As in the case of controllability, observability can be given a geometric inter-
pretation if we consider a second-order system. Figure 8.2 shows the decomposi-
tion of the state plane into an observable subspace and an unobservable subspace.
The observable subspace includes all initial states that can be identified using the
measurement history, whereas the unobservable subspace includes states that are
indistinguishable.

The following theorem establishes that this observability definition is
equivalent to the ability to estimate all system modes using its controls and
measurements.

8.3  Observability and Detectability   301

302    CHAPTER 8  Properties of State–Space Models

Theorem 8.8: O bservability.  A system is observable if and only if Cvi is nonzero for
i = 1, 2, . . . , n, where vi is the ith eigenvector of the state matrix. Furthermore, if the
product C vi is zero, then the ith mode is unobservable.

Proof.  We first define the vector

	

y y u u

x x

k k C A B i D k

CA k CZ k

d
k i

d

i k

k

d
k

i i
k

() () − () − ()

= () =

− −

=

−

∑= 1
1

0 0

0

λ (()
=
∑
i

n

1

Sufficiency
Stack the output vectors y i i k() =, , . . . ,1 to obtain

	

y

y

y

y

0

1

2

1

1

1

()
()

−()
−()























=

=

∑

∑
 

n

n

C Z

C Z

C

j

j

n

j

j

n

j

=

λ

ZZ

C Z

k

j

j

n

j
n

j

j

n

j
n

=

−

=

−

∑

∑





































1

2

1

1

λ

λ

x 00

0

()

= ()L kx

	 (8.22)

The products CZi are

	

CZ C C w w w

C w w w

i i i
T

i i i in

i i i i in i

= = []
= []

v v

v v v

w 1 2

1 2

. . .

. . .

where wij, j = 1, … , n are the entries of the ith left eigenvector, and vi is the ith right
eigenvector of the state matrix A (see Section 7.4.3). Therefore, if the products are
nonzero, the matrix L has n linearly independent columns (i.e., has rank n). An n × n
submatrix of L can be formed by discarding the dependent rows. This leaves us with

Figure 8.2

Observable and unobservable subspaces.

x2

x1

Observable
SubspaceUnobservable

Subspace
y

n equations in the n unknown entries of the initial condition vector. A unique solution
can thus be obtained.

Necessity
Let x(k0) be in the direction of vi, the ith eigenvector of Ad, and let CZi be zero.
Then the vector y(k) is zero for any k regardless of the amplitude of the initial
condition vector (recall that Zivj = 0 whenever i ≠ j). Thus, all initial vectors in the
direction vi are indistinguishable using the output measurements, and the system is not
observable.	 ■

The following theorem establishes an observability rank test that can be directly
checked using the state and output matrices.

Theorem 8.9: O bservability Rank Condition.  A linear time-invariant system is com-
pletely observable if and only if the l.n × n observability matrix

	 O =

















−

C

CA

CA

d

d
n


1

 	 (8.23)

has rank n.

Proof.  We first write (8.22) in the form

	

y

y

y

y

0

1

2

1
1

()
()

−()
−()























=
















−




n

n

C

CA

CA

d

d
n





()

= ()

x

x

k

k

0

0O

	 (8.24)

We now have a system of linear equations that can include, at most, n linearly inde-
pendent equations. If n independent equations exist, their coefficients can be used to
form an n × n invertible matrix. The rank condition (8.23) is a necessary and sufficient
condition for a unique solution x(k0) to exist. Thus, (8.23) is a necessary and sufficient
condition for observability.	 ■

If the controllability matrix C is rank deficient, then the rank deficiency is equal
to the number of linearly independent column vectors that are mapped to zero
on multiplication by O. This number equals the number of unobservable states of
the system and the column vectors mapped to zero are the right eigenvectors of
the state matrix. Thus, the rank test can be used to determine the unobservable
modes of the system if the eigenstructure of the state matrix is known.

8.3  Observability and Detectability   303

304    CHAPTER 8  Properties of State–Space Models

Example 8.11

Determine the observability of the system using two different tests:

	
A

I
C=

−






= []×0

0 3 4
0 0 1

2 1 2

If the system is not completely observable, determine the unobservable modes.

Solution
Because the state matrix is in companion form, its characteristic equation is easily obtained
from its last row. The characteristic equation is

	 λ λ λ λ λ λ3 24 3 1 3 0− + = −() −() =

Hence, the system eigenvalues are {0, 1, 3}.
The companion form of the state matrix allows us to write the modal matrix of eigenvec-

tors as the Van der Monde matrix:

	

V =
















1 1 1

0 1 3

0 1 9

Observability is tested using the product of the output matrix and the modal matrix:

	

CV = []
















= []0 0 1

1 1 1

0 1 3

0 1 9

0 1 9

The product of the output matrix and the eigenvector for the zero eigenvalue is zero. We
conclude that the system has an output-decoupling zero at zero (i.e., one unobservable
mode).

The observability matrix of the system is

	

O =
















−
−

















C

CA

CA

d

d
2

0 0 1

0 3 4

0 12 13

 =

which has rank 2 = 3 − 1. Hence, the system has one unobservable mode. The product of
the observability matrix and the eigenvector for the zero eigenvalue is zero. Hence, it cor-
responds to the unobservable mode of the system.

8.3.1  MATLAB Commands

The MATLAB commands to test observability are

>> o = obsv(A, C) % Obtain the observability matrix

>> rank(o)

8.3.2  Observability of Systems in Normal Form

The observability of a system can be easily checked if the system is in normal form
by exploiting the following theorem.

Theorem 8.10: O bservability of Normal Form Systems.  A system in normal form is
observable if and only if its output matrix has no zero columns. Furthermore, if the
input matrix has a zero column, then the corresponding mode is unobservable.

Proof.  The proof is similar to that of the controllability theorem (8.6) and is left as an
exercise.	 ■

8.3.3  Detectability

If a system is not observable, it is preferable that the unobservable modes be
stable. This property is called detectability.

Definition 8.7:  Detectability.  A system is detectable if all its unobservable modes
decay to zero asymptotically.	 ■

Example 8.12

Determine the observability and detectability of the system

	

x k

x k

x k

x k1

2

3

11

1

1

0 4 0 0

0 3 0

0 0 2

+()
+()
+()

















=
−

−

















. (()
()
()

















+
















()

() = []
(

x k

x k

k

y k

x k

2

3

1

1 0

0 0

1 1

1 1 0

u

))
()
()

















x k

x k

2

3

Solution
The system is in normal form, and its output matrix has one zero column corresponding to its
eigenvalue -2. Hence, the system is unobservable. The unobservable mode at -2, |-2| > 1,
is unstable, and the system is therefore not detectable.

Similar to the concepts described for stabilizability, a procedure to determine the
detectability of the system is to transform it to a form that allows partitioning the state
into an observable part and an unobservable part and then determine the asymptotic
stability of the unobservable part. We do this by exploiting the following theorem.

Theorem 8.11:  Standard Form for Unobservable Systems.  Consider the pair (Ad, Cd)
with n0 observable modes and n − n0 unobservable modes and the n × n transforma-
tion matrix

	 T T To o o n n n n n= [] = []− − +1 2 1 10 0t t t t.

8.3  Observability and Detectability   305

306    CHAPTER 8  Properties of State–Space Models

where {ti, i = 1, . . . , n − no} are linearly independent vectors in the null space of the
observability matrix O and {ti, i = n − no + 1, . . . , n} are arbitrary vectors selected to
make To invertible. The transformed state-transition matrix A and the transformed input
matrix C have the following form:

	
a c=









 = []

× −
× −

A A

A
C

u uo

n n n o
l n n o0

0
0 0

0

where Ao is an n0 × n0 matrix, Co is an l × n0 matrix, and the pair (Ao, Co) is observable.

Proof.  The proof is similar to that of Theorem 8.7, and it is left as an exercise.	 ■

Because the pair (Ad, Cd) has no observable modes, the rank of the observabil-
ity matrix is no and the transformation matrix To is guaranteed to exist. The
columns {ti, i = 1, … , n − no} of the transformation matrix have a geometric
interpretation. They form a basis set for the unobservable subspace of the system
and can be selected as the eigenvectors of the unobservable modes of the system.
The remaining columns of To form a basis set of the observable subspace. The
similarity transformation is a change of basis that allows us to separate the observ-
able subspace from the unobservable subspace. After transformation, we can
check the detectability of the system by verifying that all the eigenvalues of the
matrix Au are inside the unit circle.

Example 8.13

Determine the observability and detectability of the system

	

x k

x k

x k

1

2

3

1

1

1

2 0 4 0 2 0

1 1 2 5 1 15

2 6 6

+()
+()
+()

















= − − −
. . .

. . .

. .. .8 2 8

1 0

1 1

0 1

1

2

3

















()
()
()

















+
















x k

x k

x k

uu k

y k

x k

x k

x k

()

() = 





()
()
()

















2 10 3

1 8 3

1

2

3

Solution
We first find the observability matrix of the system

	

O =
















C

CA

CA

d

d
2

2 10 3

1 8 3

0 8 3 4 0 9

1 0 4 4 1 2

0 2 0 82 0 2

 =
. . .

. . .

. . . 11

0 28 0 16 0 3. . .

























The matrix has rank 2, and the system is not completely observable. The dimension of the
null space is 3 − 2 = 1, and there is only one vector satisfying O v1 = 8.230 h. The vector
is the eigenvector v1 corresponding to the unobservable mode satisfies O v1 = 8.230 h and
is given by

	

v1 = −
















1

0 5

1

.

The transformation matrix To can then be completed by adding any two linearly inde-
pendent columns—for example,

	

To = −
















1 1 0

0 5 0 1

1 0 0

.

The system is transformed to

	

x k

x k

x k

1

2

3

1

1

1

2 2 6 6 8

0 0 6 2 8

0 0 2 0 9

+()
+()
+()

















= − −





. .

. .

. .











()
()
()

















+ −
















()
x k

x k

x k

k

y

1

2

3

0 1

1 1

1 1 5.

u

kk

x k

x k

x k

() = 





()
()
()

















0 2 10

0 1 8

1

2

3

The system has one unobservable mode corresponding to the eigenvalue at 2, which is
outside the unit circle. The system is therefore not detectable.

8.4  Poles and Zeros of Multivariable Systems
As for single-input–single-output (SISO) systems, poles and zeros determine the
stability, controllability, and observability of a multivariable system. For SISO
systems, zeros are the zeros of the numerator polynomial of the scalar transfer
function, whereas poles are the zeros of the denominator polynomial. For multi-
input-multi-output (MIMO) systems, the transfer function is not scalar and it is no
longer sufficient to determine the zeros and poles of individual entries of the
transfer function matrix. In fact, element zeros do not play a major role in char-
acterizing multivariable systems and their properties beyond their effect on the
shape of the time response of the system. In our discussion of transfer function
matrices in Section 7.8, we mention three important types of multivariable
zeros:

1.	 Input-decoupling zeros, which correspond to uncontrollable modes
2.	 Output-decoupling zeros, which correspond to unobservable modes

8.4  Poles and Zeros of Multivariable Systems   307

308    CHAPTER 8  Properties of State–Space Models

3.	 Input–output-decoupling zeros (which correspond to modes that are
neither controllable nor observable)

We can obtain those zeros and others, as well as the system poles, from the
transfer function matrix.

8.4.1  Poles and Zeros from the Transfer Function Matrix

We first define system poles and zeros based on a transfer function matrix of a
MIMO system.

Definition 8.8: P oles.  Poles are the roots of the least common denominator of all
nonzero minors of all orders of the transfer function matrix.	 ■

The least common denominator of the preceding definition is known as the
pole polynomial and is essential for the determination of the poles. The pole
polynomial is in general not equal to the least common denominator of all nonzero
elements, known as the minimal polynomial. The MATLAB command pole
gives the poles of the system based on its realization. Unfortunately, the command
may not use the minimal realization of the transfer function of the system. Thus,
the command may give values for the pole that need not be included in a minimal
realization of the transfer function.

From the definition, the reader may guess that the poles of the system are the
same as the poles of the elements. Although this is correct, it is not possible
to guess the multiplicity of the poles by inspection, as the following example
demonstrates.

Example 8.14

Determine the poles of the transfer function matrix

	

G z
z z z

z

z z z

() =
− −() −()

−
−() −() −


















1

1

1

1 0 5

0 1

0 2 0 5

1

0 2

.

.

. . . 

Solution
The least common denominator of the matrix entries is

	 z z z−() −() −()0 2 0 5 1. .

The determinant of the matrix is

	
det

.

.

. .
G z

z z

z

z z z
()[] =

−() −()
− −

−() −() −()
1

1 0 2

0 1

0 2 0 5 12

The denominator of the determinant of the matrix is

	 z z z−() −() −()0 2 0 5 12. .

The least common denominator of all the minors is

	 z z z−() −() −()0 2 0 5 12. .

Thus, the system has poles at {0.2, 0.5, 0.5, 1}. Note that some poles of more than one
element of the transfer function are not repeated poles of the system.

For this relatively simple transfer function, we can obtain the minimal number of blocks
needed for realization, as shown in Figure 8.3. This clearly confirms our earlier determina-
tion of the system poles.

Figure 8.3

Block diagram of the system described in Example 8.14.

−1
z − 0.5 z − 1

z − 0.5 z − 0.2
z − 0.1

1

1

U1(z)

Y1(z)

+

U2(z)

Y2(z)

+

−1

8.4  Poles and Zeros of Multivariable Systems   309

The MATLAB command pole gives

>> pole(g)

ans =

     1.0000

     0.5000

     0.2000

     1.0000

     0.5000

     0.2000

This includes two poles that are not needed for the minimal realization of the transfer
function.

310    CHAPTER 8  Properties of State–Space Models

The definition of the multivariable zero is more complex than that of the pole,
and several types of zeros can be defined. We define zeros as follows.

Definition 8.9:  System Zeros.  Consider an l × m transfer function matrix written such
that each entry has a denominator equal to the pole polynomial. Zeros are values that
make the transfer function matrix rank deficient, that is, values z0 that satisfy either of
the two equations

	 G z in in0() = ≠w 0 w 0, 	 (8.25)

	 w 0 w 0out
T

outG z0() = ≠, 	 (8.26)

for some nonzero real vector win known as the input zero direction or a nonzero real
vector wout known as the output zero direction.	 ■

For any matrix, the rank is equal to the order of the largest nonzero minor.
Thus, provided that the terms have the appropriate denominator, the zeros are
the divisors of all minors of order equal to the minimum of the pair (l, m). For a
square matrix, zeros of the determinant rewritten with the pole polynomial as its
denominator are the zeros of the system. These definitions are examined in the
following examples.

Example 8.15

Determine the z-transfer function of a digitally controlled single-axis milling machine with a
sampling period of 40 ms if its analog transfer function is given by2

	
G s

s s s s
() =

+() +() +() +(){ }diag
3150

35 150

1092

35 30
,

Find the poles and zeros of the transfer function.

Solution
Using the MATLAB command c2d, we obtain the transfer function matrix

	
G z

z

z z
ZAS() = +()

−() − ×()−diag
0 4075 0 1067

0 2466 0 2479 10

0 38
2

. .

. .
,

. 6607 0 4182

0 2466 0 3012

z

z z

+()
−() −()









.

. .

Because the transfer function is diagonal, the determinant is the product of its diagonal
terms. The least common denominator of the determinant of the transfer function is

	 z z z− ×() −() −()−0 2479 10 0 2466 0 30122 2. . .

We therefore have poles at {0.2479 × 10−2, 0.2466, 0.2466, 0.3012}. The system is stable
because all the poles are inside the unit circle.

2S. J. Rober and Y. C. Shin, Modeling and control of CNC machines using a PC-based open archi-
tecture controller, Mechatronics 5(4):401-420, 1995.

To obtain the zeros of the system, we rewrite the transfer function in the form

	

G z
z

z z z
ZAS() = −()

−() − ×() −()
×

−

0 2466

0 2466 0 2479 10 0 3012
0 4

2 2

.

. . .
. 0075 0 1067 0 3012 0

0 0 38607 0 4182 0 2479 10 2

z z

z z

+() −()
+() − ×()−

. .

. . .






For this square 2-input-2-output system, the determinant of the transfer function is

	

z z z z z

z

+() −() +() − ×() −()
−

−0 1067 0 3012 0 4182 0 2479 10 0 24662 2.

00 2466 0 2479 10 0 3012

0 1067 0 4182

4 2 2 2. . .

. .

() − ×() −()

= +() +()

−z z

z z

zz z z−() − ×() −()−0 2466 0 2479 10 0 30122 2. . .

The roots of the numerator are the zeros {−0.1067, −0.4182}.
The same answer is obtained using the MATLAB command tzero.

Example 8.16

Determine the zeros of the transfer function matrix

	

G z
z z z

z

z z z

() =
− −() −()

−
−() −() −


















1

1

1

1 0 5

0 1

0 2 0 5

1

0 2

.

.

. . . 

Solution
From Example 8.14, we know that the poles of the system are at {0.2, 0.5, 0.5, 1}. We
rewrite the transfer function matrix in the form

	
G z

z z z z

z z z z() =

−() −() −() −()

−() −() −() −

0 2 0 5 0 2 0 5

0 1 0 5 1 0 5

2. . . .

. . .(() −()










−() −() −()

2

2

1

0 2 0 5 1

z

z z z. .

Zeros are the roots of the greatest common divisor of all minors of order equal to 2,
which in this case is simply the determinant of the transfer function matrix. The determinant
of the matrix with cancellation to reduce the denominator to the characteristic polynomial
is

	
det

. .

. .

.
G z

z z

z z z

z z

z
()[] = −() − −()

−() −() −()
= − +0 5 0 1

0 2 0 5 1

2 0 352

2

2

−−() −() −()0 2 0 5 12. .z z

The roots of the numerator yield zeros at {1.8062, −0.1938}.
The same answer is obtained using the MATLAB command zero.

8.4  Poles and Zeros of Multivariable Systems   311

312    CHAPTER 8  Properties of State–Space Models

8.4.2  Zeros from State–Space Models

System zeros can be obtained from a state–space realization using the definition
of the zero. However, this is complicated by the possibility of pole-zero cancella-
tion if the system is not minimal. We rewrite the zero condition (8.26) in terms
of the state–space matrices as

	

G z C z I A B D

C D

z I A B

n

w

w n

0 0
1

0
1

() = −[] +
= + =
= −[]

−

−

w w w

x w 0

x w

	 (8.27)

where xw is the state response for the system with input w. We can now rewrite
(8.27) in the following form, which is more useful for numerical solution:

	
− −()











= 





z I A B

C D

n w0 x

w

0

0
	 (8.28)

The matrix in (8.28) is known as Rosenbrock’s system matrix. Equation (8.28)
can be solved for the unknowns provided that a solution exists.

Note that the zeros are invariant under similarity transformation because

	

− −()











= 





−− − −z I T AT T B

CT D

T

I

z In r r r w r

l

n0
1 1 1

0x

w

0

0

−−()











= 





A B

C D

Tr wx

w

0

0

In Chapter 9, we discuss state feedback where the control input is obtained
as a linear combination of the measured state variables. We show that the zeros
obtained from (8.28) are also invariant under state feedback. Hence, the zeros are
known as invariant zeros.

The invariant zeros include decoupling zeros if the system is not minimal. If
these zeros are removed from the set of invariant zeros, then the remaining zeros
are known as transmission zeros. In addition, not all decoupling zeros can be
obtained from (8.28). We therefore have the following relation:

{system zeros} = {transmission zeros} + {input-decoupling zeros} +
{output-decoupling zeros} - {input-output-decoupling zeros}

Note that some authors refer to invariant zeros as transmission zeros and do not
use the term “invariant zeros.”

MATLAB calculates zeros from Rosenbrock’s matrix of a state–space model p
using the command

>> zero(p)

The MATLAB manual identifies the result as transmission zeros, but in our termi-
nology this refers to invariant zeros. Although the command accepts a transfer
function matrix, its results are based on a realization that need not be minimal
and may include superfluous zeros that would not be obtained using the proce-
dure described in Section 8.4.1.

Example 8.17

Consider the system

	

x k

x k

x k

x k1

2

3

11

1

1

0 4 0 0

0 3 0

0 0 2

+()
+()
+()

















=
−

−

















. (()
()
()

















+
















()x k

x k

k2

3

1 0

0 0

1 1

u

	

y k

x k

x k

x k

() = []
()
()
()

















1 1 0

1

2

3

	

− −()















=

− −
−

− −
z I A B

C D

z

z

z

n w0

0

0

0

0 4 0 0 1 0

0 3 0 0 0

0 0 2 1 1

0 0

x

w

.

−−









































=










2 0 0

0

0

0

0

0

1

2

3

1

2

x

x

x

w

w

w

w

w















From the second row we have the zero z0 = 3, which is also an input-decoupling zero
because it corresponds to an uncontrollable mode. The system also has an output-
decoupling zero at −2, but this cannot be determined from Rosenbrock’s system matrix.

8.5  State–Space Realizations
State–space realizations can be obtained from input–output time domain or z-
domain models. Because every system has infinitely many state–space realizations,
we only cover a few standard canonical forms that have special desirable proper-
ties. These realizations play an important role in digital filter design or controller
implementation. Because difference equations are easily transformable to z-
transfer functions and vice versa, we avoid duplication by obtaining realizations
from either the z-transfer functions or the difference equations.

We also restrict the discussion to SISO transfer functions of the form

	

G z
z z z

z a z a z a

c
c z

n
n

n
n

n
n

n

n
n

n

() = + + + +
+ + +

= +

−
−

−
−

−
−

c c c c1
1

1 0

1
1

1 0

1

. . .

11
2

2
1 0

1
1

1 0

+ + + +
+ + + +

−
−

−
−

c z c z c

z a z a z a
n

n

n
n

n

. . .

. . .

	 (8.29)

where the leading numerator coefficients cn and cn-1 can be zero and cn = cn, or
the corresponding difference equation

	 y k n a y k n a y k a y k
u k n u k n

n

n n

+() + + −() + + +() + ()
= +() + + −(

−

−

1 1 0

1

1 1
1
…

c c)) + + +() + (). . . c c1 01u k u k
	 (8.30)

8.5  State–Space Realizations   313

314    CHAPTER 8  Properties of State–Space Models

8.5.1  Controllable Canonical Realization

The controllable canonical realization is so called because it possesses the
property of controllability. The controllable form is also known as phase variable
form or as the first controllable form. A second controllable form, known as
controller form, is identical in structure to the first but with the state variables
numbered backward. We begin by examining the special case of a difference
equation whose RHS is the forcing function at time k. This corresponds to a
transfer function with unity numerator. We then use our results to obtain realiza-
tions for a general SISO linear discrete-time system described by (8.29) or
(8.30).

Systems with No Input Differencing
Consider the special case of a system whose difference equation includes the input
at time k only. The difference equation considered is of the form

	 y k n a y k n a y k a y k u kn+() + + −() + + +() + () = ()−1 1 01 1. . . 	 (8.31)

Define the state vector

	
x k x k x k x k x k

y k y k y k n y k

n n
T() = () () () ()[]

= () +() + −() +
−1 2 1

1 2

. . .

. . . nn T−()[]1
	 (8.32)

Hence, the difference equation (8.31) can be rewritten as

	 x k a x k a x k a x k u kn n n+() = − () − − () − () + ()−1 1 1 2 0 1. . . 	 (8.33)

Using the definitions of the state variables and the difference equation (8.31),
we obtain the matrix state equation

	

x k

x k

x k

x k

n

n

1

2

1

1

1

1

1

0 1 0 0

0 0

+()
+()

+()
+()























=

−

.

. . .

. .. .

.

. . .

. . .

0 0

0 0 0 1

0 1 2 1− − − −



















− −a a a an n






()
()

()
()























+












−

x k

x k

x k

x k

n

n

1

2

1

0

0

0

1

. .












()u k   (8.34)

and the output equation

	 y k

x k

x k

x k

x k

n

n

() = []

()
()

()
()























−

1 0 0 0

1

2

1

. . . . 	 (8.35)

The state–space equations can be written more concisely as

	
x

0
x

0
k

I

a a a
k u k

n n

n

n
+() = − − −









 () +









 ()

− × −

−

− ×
1

1

1 1 1

0 1 1

1 1

 

yy k kn() = [] ()× −1 1 10 x

	 (8.36)

Clearly, the state–space equations can be written by inspection from the trans-
fer function

	 G z
z a z a z an

n
n

() =
+ + + +−

−

1

1
1

1 0. . .
	 (8.37)

or from the corresponding difference equation because either includes all the
needed coefficients, ai, i = 0, 1, 2, . . . , n − 1.

Example 8.18

Obtain the controllable canonical realization of the difference equation

	 y k y k y k y k u k+() + +() + +() − () = ()3 0 5 2 0 4 1 0 8. . .

using basic principles; then show how the realization can be written by inspection from the
transfer function or the difference equation.

Solution
Select the state vector

	

x k x k x k x k

y k y k y k

T

T

() = () () ()[]
= () +() +()[]

1 2 3

1 2

and rewrite the difference equation as

	 x k x k x k x k u k3 3 2 11 0 5 0 4 0 8+() = − () − () + () + (). . .

Using the definitions of the state variables and the difference equation, we obtain the
state–space equations

	

x k

x k

x k

1

2

3

1

1

1

0 1 0

0 0 1

0 8 0 4 0 5

+()
+()
+()

















=
− −
















. . . 

()
()
()

















+
















()

() = []

x k

x k

x k

u k

y k

x k

1

2

3

1

0

0

1

1 0 0

(()
()
()

















x k

x k

2

3

because the system is of order n = 3, n − 1 = 2. Hence, the upper half of the state matrix
includes a 2 × 1 zero vector next to a 2 × 2 identity matrix. The input matrix is a column
vector because the system is SI and it includes a 2 × 1 zero vector and a unity last entry.
The output matrix is a row vector because the system is single output (SO) and it includes
a 1 × 2 zero vector and a unity first entry. With the exception of the last row of the state

8.5  State–Space Realizations   315

316    CHAPTER 8  Properties of State–Space Models

matrix, all matrices in the state–space description are completely determined by the order
of the system. The last row of the state matrix has entries equal to the coefficients of the
output terms in the difference equation with their signs reversed. The same coefficients
appear in the denominator of the transfer function

	
G z

z z z
() =

+ + −
1

0 5 0 4 0 83 2. . .

Therefore, the state–space equations for the system can be written by inspection from the
transfer function or input–output difference equation.

Systems with Input Differencing
We now use the results from the preceding section to obtain the controllable
canonical realization of the transfer function of equation (8.29). We assume that
the constant term has been extracted from the transfer function, if necessary, and
that we are left with the form

	 G z
Y z

U z
c G zn d() =

()
()

= + ()	 (8.38)

where

	 G z
c z c z c z c

z a z a z a
d

n
n

n
n

n
n

n
() = + + + +

+ + + +
−

−
−

−

−
−

1
1

2
2

1 0

1
1

1 0

. . .

. . .
	 (8.39)

We next consider a transfer function with the same numerator as Gd but with
unity numerator, and we define a new variable p(k) whose z-transform satisfies

	
P z

U z z a z a z an
n

n

()
()

=
+ + + +−

−

1

1
1

1 0. . .
	 (8.40)

The state equation of a system with the preceding transfer function can be written
by inspection, with the state variables chosen as

	
x k x k x k x k x k

p k p k p k n p k

n n
T() = () () () ()[]

= () +() + −() +
−1 2 1

1 2

. . .

. . . nn T−()[]1
	 (8.41)

This choice of state variables is valid because none of the variables can be written
as a linear combination of the others. However, we have used neither the numer-
ator of the transfer function nor the constant cn. Nor have we related the state
variables to the output. So we multiply (8.39) by U(z) and use (8.40) and (8.41)
to obtain

	

Y z c U z G z U z

c U z
c z c z c z c

z

n d

n
n

n
n

n

() = () + () ()

= () + + + + +−
−

−
−

1
1

2
2

1 0. . .
nn

n
n

n n
n

n
n

a z a z a
U z

c U z c z c z c

+ + + +
()

= () + + + +
−

−

−
−

−
−

1
1

1 0

1
1

2
2

1

. . .

. . . zz c P z+[] ()0

	 (8.42)

Then we inverse z-transform and use the definition of the state variables to
obtain

	

y k c u k c p k n c p k n c p k c p kn n n() = () + + −() + + −() + + +() + ()
=

− −1 2 1 01 2 1. . .

cc u k c x k c x k c x k c x kn n n n n() + () + () + + () + ()− − −1 2 1 1 2 0 1. . .
	 (8.43)

Finally, we write the output equation in the matrix form

	 y k c c c c

x k

x k

x k

x k

n n

n

n

() = []

()
()

()
()



















− −

−

0 1 2 1

1

2

1

. . .
.
.








+ ()du k 	 (8.44)

where d = cn.
As in the preceding section, the state–space equations can be written by

inspection from the difference equation or the transfer function.
A simulation diagram for the system is shown in Figure 8.4. The simulation

diagram shows how the system can be implemented in terms of summer, delay,
and scaling operations. The number of delay elements needed for implementation
is equal to the order of the system. In addition, two summers and at most

Figure 8.4

Simulation diagram for the controllable canonical realization.

T

cn

c0

−an−1

−an−2

−a0

u(k) y(k)x1(k)

x2(k)

xn(k)

c1

c2

T T T T+ +

8.5  State–Space Realizations   317

318    CHAPTER 8  Properties of State–Space Models

2 n + 1 gains are needed. These operations can be easily implemented using a
microprocessor or digital signal processing chip.

Example 8.19

Write the state–space equations in controllable canonical form for the following transfer
functions:

1.	 G z
z

z z z
() =

−()
+ + −

0 5 0 1

0 5 0 4 0 83 2

. .

. . .

2.	 G z
z z z z

z z z
() =

+ + +
+ + −

4 3 2

4 2

0 1 0 7 0 2

0 5 0 4 0 8

. . .

. . .

Solution
1.	 The transfer function has the same denominator as that shown in Example 8.18. Hence,

it has the same state equation. The numerator of the transfer function can be expanded
as (−0.05 + 0.5z + 0z2), and the output equation is of the form

	

y k

x k

x k

x k

() = −[]
()
()
()

















0 05 0 5 0

1

2

3

. .

2.	 The transfer function has the highest power of z equal to 4, in both the numerator and
denominator. We therefore begin by extracting a constant equal to the numerator z 4
coefficient to obtain

	

G z
z z z

z z z
() = + + −() + −() − −()

+ + −
1

0 1 0 7 0 5 0 2 0 4 0 8

0 5 0 4 0

3 2

4 2

.

. . .88

1
0 1 0 2 0 2 0 8

0 5 0 4 0 8

3 2

4 2
= + + − +

+ + −
. . . .

. . .

z z z

z z z

Now we can write the state–space equations by inspection as

	

x k

x k

x k

x k

1

2

3

4

1

1

1

1

0 1 0 0

0 0 1 0

0 0 0 1

0 8 0

+()
+()
+()
+()



















=

−. .. .4 0 5 0

0

0

0

1

1

2

3

4−



















()
()
()
()



















+

x k

x k

x k

x k 















()u k

	

y k

x k

x k

x k

x k

u k() = −[]

()
()
()
()



















+ ()0 8 0 2 0 2 0 1

1

2

3

4

. . . .

Theorem 8.5 can be used to show that any system in controllable form is actu-
ally controllable. The proof is straightforward and is left as an exercise (see
Problem 8.15).

8.5.2  Controllable Form in MATLAB

MATLAB gives a canonical form that is almost identical to the controllable form
of this section with the command

>> [A, B, C, D] = tf2ss(num, den)

Using the command with the system described in Example 8.19(2) gives the
state–space equations

	

x k

x k

x k

x k

1

2

3

4

1

1

1

1

0 0 5 0 4 0 8

1 0 0 0

0

+()
+()
+()
+()



















=

− −. . .

11 0 0

0 0 1 0

1

0

0

0

1

2

3

4



















()
()
()
()



















+

x k

x k

x k

x k 















()

() = −[]

()
()
()
()





u k

y k

x k

x k

x k

x k

0 1 0 2 0 2 0 8

1

2

3

4

. . . .














+ ()u k

The equations are said to be in controller form. By drawing a simulation diagram
for this system and then for the system described in Example 8.19 (2), we can
verify that the two systems are identical. The state variables for the form in
MATLAB are simply numbered in the reverse of the order used in this text (see
Figure 8.4; that is, the variables xi in the MATLAB model are none other than the
variables xn-i+1, i = 1, 2, . . . , n.

8.5.3  Parallel Realization

Parallel realization of a transfer function is based on the partial fraction
expansion

	 G z d
c z c z c z c

z a z a z a
d

n
n

n
n

n
n

n
() = + + + + +

+ + + +
−

−
−

−

−
−

1
1

2
2

1 0

1
1

1 0

. . .

. . .
== +

+=
∑d

K

z p
i

ii

n

1

	 (8.45)

The expansion is represented by the simulation diagram of Figure 8.5. The sum-
mation in (8.45) gives the parallel configuration shown in the figure, which justi-
fies the name parallel realization.

A simulation diagram can be obtained for the parallel realization by observing
that the z-transfer functions in each of the parallel branches can be rewritten as

	

1

1

1

1z p

z

p zi i+
=

− −()
−

−

which can be represented by a positive feedback loop with forward transfer func-
tion z−1 and feedback gain pi, as shown in Figure 8.6. Recall that z−1 is simply a

8.5  State–Space Realizations   319

320    CHAPTER 8  Properties of State–Space Models

time delay so that a physical realization of the transfer function in terms of con-
stant gains and fixed time delays is now possible.

We define the state variables as the outputs of the first-order blocks and inverse
z-transform to obtain the state equations

	 x k p x k u k i ni i i+() = − () + () =1 1 2, , , . . . , 	 (8.46)

The output is given by the summation

	 y k K x k du ki i

i

n

() = () + ()
=
∑

1

	 (8.47)

Figure 8.5

Block diagram for parallel realization.

1
z pn+

1

1z p+
K1

Kn

U(z)
Y(z)

X1(z)

Xn(z)

+

d

… …

Figure 8.6

Simulation diagram for parallel realization.

U(z) Y(z)

Xn(z)

+

z−1 K1

X1(z)
+

−p1

z−1 Kn+

−pn

d

… …

Equations (8.46) and (8.47) are equivalent to the state–space representation

	

x k

x k

x k

x k

p

n

n

1

2

1

11

1

1

1

0 0 0

0

+()
+()

+()
+()























=

−

−

.

. . .

−−

−
−























()

−

p

p

p

x k

x

n

n

2

1

1

0 0

0 0 0

0 0 0

. . .

. . .

. . .

. . .

   
22

1

1

1

1

1

k

x k

x k

u k

n

n

()

()
()























+























−

  (()

() = []

()
()

()
()



















−

−

y k K K K K

x k

x k

x k

x k

n n

n

n

1 2 1

1

2

1

. . .  




+ ()du k

	 (8.48)

Example 8.20

Obtain a parallel realization for the transfer function

	
G z

z z

z z
() = + +

+ +
2 2 1

5 6

2

2

Solution
We first write the transfer function in the form

	

G z
z z z z

z z

z

z z

() = +
+ + − + +()

+ +

= − +
+() +()

2
2 2 1 2 5 6

5 6

2
8 11

2 3

2 2

2

Then we obtain the partial fraction expansion

	
G z

z z
() = +

+
−

+
2

5

2

13

3

Finally, we have the state–space equations

	

x k

x k

x k

x k

1

2

1

2

1

1

2 0

0 3

1

1

+()
+()







=
−

−






()
()







+ 




uu k

y k
x k

x k
u k

()

() = −[]
()
()







+ ()5 13 2
1

2

8.5  State–Space Realizations   321

322    CHAPTER 8  Properties of State–Space Models

The block diagram for the parallel realization is shown in Figure 8.7, and the simulation
diagram is shown in Figure 8.8. Clearly, the system is unstable with two eigenvalues outside
the unit circle.

Parallel Realization for MIMO Systems
For MIMO systems, a parallel realization can be obtained by partial fraction expansion
as in the SISO case. The method requires that the minimal polynomial of the system
have no repeated roots. The partial fractions in this case are constant matrices.

The partial fraction expansion is in the form

	 G z D
P z P z P z P

z a z a z a
d

n
n

n
n

n
n

n
() = + + + + +

+ + + +
−

−
−

−

−
−

1
1

2
2

1 0

1
1

1 0

. . .

. . .
== +

+=
∑D

K

z p
i

ii

n

1

	 (8.49)

Figure 8.7

Block diagram for Example 8.20.

U(z)

Y(z)

1
2z +

5
X1(z)

+

2

1
3z + −13

X2(z)

Figure 8.8

Simulation diagram for Example 8.20.

U(z)

Y(z)

X2(z)

+

2

z−1
5

X1(z)
+

−2

z−1 −13+

−3

where D, Pi, and Ki, i = 1, … , n − 1 are l × m matrices. Each of the matrices Ki
must be decomposed into the product of two full-rank matrices: an input compo-
nent matrix Bi and an output component matrix Ci. We write the partial fraction
matrices in the form

	 K C B i ni i i= =, , . . . ,1 	 (8.50)

For full-rank component matrices, their order is dictated by the rank of the
matrix Ki. This follows from the fact that the rank of the product is at most equal
to the minimum dimension of the components. For rank (Ki) = ri, we have Ci as
an l × ri matrix and Bi as an ri × m matrix. The rank of the matrix Ki represents
the minimum number of poles pi needed for the parallel realization. In fact, it can
be shown that this realization is indeed minimal. The parallel realization is given
by the quadruple

	 A

I p

I p

I p

I

r

r

r n

r

n

=

−
−

−
−

− −

1

2

1

1

2

1

0 0 0

0 0 0

0 0 0

0 0 0

. . .

. . .

. . .

. . .

. . .

   

nn p

B

B

B

B

B

C C C

n

n

n























=























=

−

1

2

1

1 2



. . . CC C Dn n−[]1

	 (8.51)

Example 8.21

Obtain a parallel realization for the transfer function matrix of Example 8.14:

	

G z
z z z

z

z z z

() =
− −() −()

−
−() −() −


















1

1

1

1 0 5

0 1

0 2 0 5

1

0 2

.

.

. . . 

Solution
The minimal polynomial (z − 0.2)(z − 0.5)(z − 1) has no repeated roots. The partial fraction
expansion of the matrix is

	

G z
z z z

z

z z z

() =
− −() −()

−
−() −() −


















1

1

1

1 0 5

0 1

0 2 0 5

1

0 2

.

.

. . . 

=
−















−
+

−













−
+







−

0 0

1

3
1

0 2

0 2

4

3
0

0 5

1 2

0 0

1z z z. .

8.5  State–Space Realizations   323

324    CHAPTER 8  Properties of State–Space Models

The ranks of the partial fraction coefficient matrices given with the corresponding poles are
(1, 0.2), (2, 0.5), and (1, 1). The matrices can be factorized as

	

0 0

1

3
1

0

1

1

3
1

0 2

4

3
0

1 0

0 1

−















= 





−





−













= 





00 2

4

3
0

1 2

0 0

1

0
1 2

−



















= 




[]

The parallel realization is given by the quadruple

	

A B=



















=

−

−












0 2 0 0 0

0 0 5 0 0

0 0 0 5 0

0 0 0 1

1

3
1

0 2

4

3
0

1 2

.

.

.















= 





= ×C D
0 1 0 1

1 0 1 0
2 20

Note that the realization is minimal as it is fourth order and, in Example 8.14, the system
was determined to have four poles.

8.5.4  Observable Form

The observable realization of a transfer function can be obtained from the
controllable realization using the following steps:

1.	 Transpose the state matrix A.
2.	 Transpose and interchange the input matrix B and the output matrix C.

Clearly, the coefficients needed to write the state–space equations all appear in
the transfer function, and all equations can be written in observable form directly.
Using (8.36) and (8.44), we obtain the realization

	
x

0

xk

a

a

I

a

k

c

c

c

n

n

n n

+() =

−
−

−



















() +






× −

−

− −

1

1 1 0

1

1

1

0

1

1

 













()

() = [] () + ()× −

u k

y k k du kn0 x1 1 1

	 (8.52)

The simulation diagram for the observable realization is shown in Figure 8.9.
Note that it is possible to renumber the state variables in the simulation diagram
to obtain an equivalent realization known as observer form. However, the result-
ing realization will clearly have different matrices from those of (8.52). The second
observable realization can be obtained from the controller form by following the
two preceding steps.

The two observable realizations can also be obtained from the basic prin-
ciples; however, the derivations have been omitted in this text and are left as
an exercise.

Theorem 8.5 can be used to show that any system in observable form is actu-
ally observable. The proof is straightforward and is left as an exercise (see Problem
8.16).

Example 8.22

Write the state–space equations in observable canonical form for the transfer function of
Example 8.19(2).

	
G z

z z z z

z z z
() = + + +

+ + −

4 3 2

4 2

0 1 0 7 0 2

0 5 0 4 0 8

. . .

. . .

Solution
The transfer function can be written as a constant plus a transfer function with numerator
order less than the denominator order as in Example 8.19(2). Then, using (8.41), we obtain
the following:

Figure 8.9

Simulation diagram for the observable canonical realization.

d

−an−1

u(k)

y(k)x1(k) xn(k)

cn−1

+ +++T TT
xn − 1(k)

+

cn−2

−an−2

c0 c1

−a0
−a1

8.5  State–Space Realizations   325

326    CHAPTER 8  Properties of State–Space Models

	

x k

x k

x k

x k

1

2

3

4

1

1

1

1

0 0 0 0 8

1 0 0 0 4

0 1 0

+()
+()
+()
+()



















=
−
−

.

.

00 5

0 0 1 0

0 8

0

1

2

3

4

.

.

















()
()
()
()



















+
−

x k

x k

x k

x k

..

.

.

2

0 2

0 1

0 0 0 1

1

2

3

4



















()

() = []

()
()
()
()





u k

y k

x k

x k

x k

x k















+ ()u k

The same realization is obtained from the controllable realization of Example 8.19(2)
by transposing the state matrix and transposing, and then interchanging the matrices B
and C.

8.6  Duality
The concepts of controllability (stabilizability) and observability (detectability) are
often referred to as duals. This term is justified by the following theorem.

Theorem 8.12:  The system (A, B) is controllable (stabilizable) if and only if (AT, BT)
is observable (detectable). The system (A, C) is observable (detectable) if and only if
(AT, CT) is controllable (stabilizable).

Proof.  The relevant controllability and observability matrices are related by the
equations

	

C OA B B A B A B

B

B A

B A

n

T

T T

T T n

T

T,() = [] =

()





















=−

−

 . . . 1

1

 AA B

A B B A B A B

B

BA

BA

T T

T T T T T T n T

n

,

,

()

() = ()  =















−

−

C ...
1

1






= ()

T

T A B O ,

The proof follows from the equality of the rank of any matrix and the rank of its
transpose. The statements regarding detectability and stabilizability are true because a
matrix and its transpose have the same eigenvalues.	 ■

Example 8.23

Show that the reducible transfer function

	
G z

z

z z
() = −()

−() −()
0 3 0 5

1 0 5

. .

.

has a controllable but unobservable realization and an observable but uncontrollable
realization.

Solution
The transfer function can be written as

	
G z

z

z z
() = −

− +
0 3 0 15

1 5 0 52

. .

. .

The controllable realization for this system is

	

x k

x k

x k

x k

1

2

1

2

1

1

0 1

0 5 1 5

0

1

+()
+()







=
−







()
()







+ 
. .




()

= −[]
()
()







u k

y
x k

x k
0 15 0 3

1

2

. .

The observability matrix for this realization is

	
O =









 =

−
−











C

CAd

0 15 0 3

0 15 0 3

. .

. .

The observability matrix has rank 1. The rank deficit is 2 − 1 = 1, corresponding to one
unobservable mode.

Transposing the state, output, and input matrices and interchanging the input and output
matrices gives the observable realization

	

x k

x k

x k

x k

1

2

1

2

1

1

0 0 5

1 1 5

0 15+()
+()







=
−





()
()







+
−.

.

.

00 3

0 1
1

2

.






()

() = []
()
()







u k

y k
x k

x k

By duality, the realization is observable but has one uncontrollable mode.

Resources
Antsaklis, P. J., and A. N. Michel, Linear Systems, McGraw-Hill, 1997.
Belanger, P. R., Control Engineering: A Modern Approach, Saunders, 1995.
Chen, C. T., Linear System Theory and Design, HRW, 1984.

Resources   327

328    CHAPTER 8  Properties of State–Space Models

D’Azzo, J. J., and C. H. Houpis, Linear Control System Analysis and Design, McGraw-Hill,
1988.

Delchamps, D. F., State Space and Input-Output Linear Systems, Springer-Verlag, 1988.
Gupta, S. C. and L. Hasdorff, Fundamentals of Automatic Control, Wiley, 1970.
Kailath, T., Linear Systems, Prentice Hall, 1980.
Moler, C. B., and C. F. Van Loan, Nineteen dubious ways to calculate the exponential of a

matrix, SIAM Review, 20:801-836, 1978.
Patel, R. V., and N. Munro, Multivariable System Theory and Design, Pergamon Press, 1982.
Sinha, N. K., Control Systems, HRW, 1988.
Skogestad, S., and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design,

Wiley, 2005.

Problems
8.1	 Find the equilibrium state and the corresponding output for the system

	

x k

x k

x k

x k

1

2

1

2

1

1

0 1

0 5 0 1

0

1

+()
+()







=
− −







()
()







+ 
. . 




()

() = []
()
()







u k

y k
x k

x k
1 1

1

2

when
(a)	 u(k) = 0
(b)	 u(k) = 1

8.2	 A mechanical system has the state–space equations

	

x k

x k a

x k

x k

1

2 1

1

2

1

1

0 1

0 5

0

1

+()
+()







=
− −







()
()







+ 
.




()

() = []
()
()







u k

y k
x k

x k
1 0

1

2

where and a1 is dependent on viscous friction.
(a)	 Using the results of Chapter 4, determine the range of the parameter a1

for which the system is internally stable.
(b)	 Predict the dependence of the parameter a1 on viscous friction, and use

physical arguments to justify your prediction. (Hint: Friction dissipates
energy and helps the system reach its equilibrium.)

8.3	 Determine the internal stability and the input-output stability of the following
linear systems:

(a)	
x k

x k

x k

x k

1

2

1

2

1

1

0 1 0

1 0 2

0

0 2

+()
+()







= 





()
()







+ 


.

. .



()u k

y k
x k

x k
() = []

()
()







1 1
1

2

(b)	

x k

x k

x k

1

2

3

1

1

1

0 2 0 2 0

0 1 0 1

0 0 1

+()
+()
+()

















=
−

−
















. .

.



()
()
()

















+
















()
x k

x k

x k

k

1

2

3

1 0

0 0

1 1

u

y

x k

x k

x k

= []
()
()
()

















1 0 0

1

2

3

(c)	
x k

x k

x k

x k

1

2

1

2

1

1

0 1 0 3

1 0 2

0

0 2

+()
+()







= 





()
()







+
. .

. .






()u k

y k
x k

x k
() = []

()
()







1 1
1

2

(d)	

x k

x k

x k

1

2

3

1

1

1

0 1 0 3 0

0 1 1 0 1

0 3 0 1

+()
+()
+()

















=
− −

−








. .

. .

.









()
()
()

















+
















()
x k

x k

x k

k

1

2

3

1 0

1 0

0 1

u

y

x k

x k

x k

= []
()
()
()

















1 0 1

1

2

3

8.4	 Determine the stable, marginally stable, and unstable modes for each of the
unstable systems presented in Problem 8.3.

8.5	 Determine the controllability and stabilizability of the systems presented in
Problem 8.3.

8.6	 Transform the following system to standard form for uncontrollable systems,
and use the transformed system to determine if it is stabilizable:

	

x k

x k

x k

1

2

3

1

1

1

0 05 0 09 0 1

0 05 1 1 1

0 05 0

+()
+()
+()

















= −
−

. . .

. .

. ..9 1

1 0

0 1

0 1

1

2

3

















()
()
()

















+
















x k

x k

x k

ku (()

= []
()
()
()

















y

x k

x k

x k

1 0 1

1

2

3

8.7	 Transform the system to the standard form for unobservable systems, and use
the transformed system to determine if it is detectable:

	

x k

x k

x k

x k

1

2

1

2

1

1

0 2 0 08

0 125 0

+()
+()







=
− −





()
()







. .

.
++ 





()

() = []
()
()







1

0

1 0 8
1

2

u k

y k
x k

x k
.

Problems   329

330    CHAPTER 8  Properties of State–Space Models

8.8	 Determine the controllability and stabilizability of the systems presented in
Problem 8.3 with the input matrices changed to the following:
(a)	 B = [1	 0]T

(b)	 B = [1	 1	 0]T

(c)	 B = [1	 0]T

(d)	 B = [1	 0	 1]T

8.9	 An engineer is designing a control system for a chemical process with
reagent concentration as the sole control variable. After determining that the
system is not controllable, why is it impossible for him to control all the
modes of the system by an innovative control scheme using the same control
variables? Explain, and suggest an alternative solution to the engineer’s
problem.

8.10	 The engineer introduced in Problem 8.9 examines the chemical process more
carefully and discovers that all the uncontrollable modes with concentration as
control variable are asymptotically stable with sufficiently fast dynamics. Why
is it possible for the engineer to design an acceptable controller with reagent
concentration as the only control variable? If such a design is possible, give
reasons for the engineer to prefer it over a design requiring additional control
variables.

8.11	 Determine the observability and detectability of the systems described in
problem 8.3.

8.12	 Repeat Problem 8.11 with the following output matrices:
(a)	 C = [0	 1]
(b)	 C = [0	 1	 0]
(c)	 C = [1	 0]
(d)	 C = [1	 0	 0]

8.13	 Consider the system

	

A b c d=
− − −

















=
















= []
0 1 0

0 0 1

0 005 0 11 0 7

0

0

1

5 1 0

. . .

0. == 0

(a)	 Can we design a controller for the system that can influence all its
modes?

(b)	 Can we design a controller for the system that can observe all its
modes?

Justify your answers using the properties of the system.

8.14	 Consider the system (A, B, C) and the family of systems (aA, bB, gC) with
each of (a, b, g) nonzero.
(a)	 Show that, if l is an eigenvalue of A with right eigenvector v and left

eigenvector wT, then al is an eigenvalue of aA with right eigenvector v/a
and left eigenvector wT/a.

(b)	 Show that (A, B) is controllable if and only if (aA, bB) is controllable for
any nonzero constants (a, b).

(c)	 Show that system (A, C) is observable if and only if (aA, gC) is observable
for any nonzero constants (a, g).

8.15	 Show that any system in controllable form is controllable.

8.16	 Show that any system in observable form is observable.

8.17	 Obtain state–space representations for the following linear systems:
(a)	 In controllable form
(b)	 In observable form
(c)	 In diagonal form

(i)	 G z
z

z z
() = +

−() +()
3

0 5

0 1 0 1

.

. .

(ii)	 G z
z z

z z z
() = +()

−() +() +()
5

0 5

0 1 0 1 0 8

.

. . .

(iii)	 G z
z z

z z z
() = +()

−() −() +()

2 0 5

0 4 0 2 0 8

.

. . .

(iv)	 G z
z z

z z
() = −()

− +
0 1

0 9 0 82

.

. .

8.18	 Obtain the controller form that corresponds to a renumbering of the state
variables of the controllable realization (also known as phase variable form)
from basic principles.

8.19	 Obtain the transformation matrix to transform a system in phase variable form
to controller form. Prove that the transformation matrix will also perform the
reverse transformation.

8.20	 Use the two steps of Section 8.5.4 to obtain a second observable realization
from controller form. What is the transformation that will take this form to the
first observable realization of Section 8.5.4?

8.21	 Show that the observable realization obtained from the phase variable form
realizes the same transfer function.

8.22	 Show that the transfer functions of the following systems are identical, and
give a detailed explanation.

	

A

A

T=
−







= 





= [] =

= 





=

0 1

0 02 0 3

0

1
0 1 0

0 1 0

0 0 2

1

1

. .

.

.

b c d

b 





= −[] =c dT 1 2 0

8.23	 Obtain a parallel realization for the transfer function matrix presented in
Example 8.15.

Problems   331

332    CHAPTER 8  Properties of State–Space Models

8.24	 Find the poles and zeros of the following transfer function matrices:

(a)	 G z

z

z z

z

() =

−
+() +

−



















0 1

0 1

1

0 1

0
1

0 1

2

.

. .

.

(b)	 G z

z
z

z z z

z

() =

−
−

−() −() −

−





















0
1

0 1
0 2

0 1 0 3

1

0 3

0
2

0 3

.
.

. . .

.






8.25	 Autonomous underwater vehicles (AUVs) are robotic submarines that can be
used for a variety of studies of the underwater environment. The vertical and
horizontal dynamics of the vehicle must be controlled to remotely operate the
AUV. The INFANTE is a research AUV operated by the Instituto Superior
Tecnico of Lisbon, Portugal. The variables of interest in horizontal motion are
the sway speed and the yaw angle. A linearized model of the horizontal plane
motion of the vehicle is given by

	





x

x

x

1

2

3

0 14 0 69 0 0

0 19 0 048 0 0

0 0 1 0 0 0

















=
− −
− −





. . .

. . .

. . .





























+ −





















x

x

x

u

y

y

1

2

3

1

2

0 056

0 23

0 0

.

.

.


= 





















1 0 0

0 1 0

1

2

3

x

x

x

where x1 is the sway speed, x2 is the yaw angle, x3 is the yaw rate, and u is
the rudder deflection.
(a)	 Obtain the zeros of the system using Rosenbrock’s system matrix.
(b)	 Determine the system decoupling zeros by testing the system’s

controllability and observability.

8.26	 The terminal composition of a binary distillation column uses reflux and steam
flow as the control variables. The 2-input-2-output system is governed by the
transfer function

	

G s

e

s

e

s

e

s

e

s s

s s
() = +

−
+

+
−

− −

− −

12 8

16 7 1

18 9

21 0 1

6 6

10 9 1

19 4

3

7 3

.

.

.

.

.

.

.

114 4 1. s +



















Find the discrete transfer function of the system with DAC, ADC, and a
sampling period of one time unit; then determine the poles and zeros of the
discrete-time system.

Computer Exercises

8.27	 Write computer programs to simulate the second-order systems described in
Problem 8.3 for various initial conditions. Obtain state plane plots, and discuss
your results, referring to the solutions presented in Examples 8.1 and 8.2.

8.28	 Repeat Problem 8.22 using a computer-aided design (CAD) package. Comment
on any discrepancies between CAD results and solution by hand.

8.29	 Write a MATLAB function that determines the equilibrium state of the system
with the state matrix A, the input matrix B, and a constant input u as input
parameters.

Computer Exercises   333

Chapter

9State Feedback Control

Objectives
After completing this chapter, the reader will be able to do the following:

1.	 Design state feedback control using pole placement.
2.	 Design servomechanisms using state–space models.
3.	 Analyze the behavior of multivariable zeros under state feedback.
4.	 Design state estimators (observers) for state–space models.
5.	 Design controllers using observer state feedback.

State variable feedback allows the flexible selection of linear system dynamics.
Often, not all state variables are available for feedback, and the remainder of the
state vector must be estimated. This chapter includes an analysis of state feedback
and its limitations. It also includes the design of state estimators for use when
some state variables are not available and the use of state estimates in feedback
control.

Throughout this chapter, we assume that the state vector x is n × 1, the control
vector u is m × 1, and the output vector y is l × 1. We drop the subscript d for
discrete system matrices.

9.1  State and Output Feedback
State feedback involves the use of the state vector to compute the control action
for specified system dynamics. Figure 9.1 shows a linear system (A, B, C) with
constant state feedback gain matrix K. Using the rules for matrix multiplication,
we deduce that the matrix K is m × n so that for a single-input system K is a row
vector.

The equations for the linear system and the feedback control law are, respec-
tively, given by the following equations.

336    CHAPTER 9  State Feedback Control

	
x x u

y x

k A k B k

k C k

+() = () + ()

() = ()

1
	 (9.1)

	 u x vk K k k() = − () + () 	 (9.2)

The two equations can be combined to yield the closed-loop state equation

	
x x x v

x v

k A k B K k k

A BK k B k

+() = () + − () + ()[]
= −[] () + ()

1
	 (9.3)

We define the closed-loop state matrix as

	 A A BKcl = − 	 (9.4)

and rewrite the closed-loop system state–space equations in the form

	
x x v

y x

k A k B k

k C k

cl+() = () + ()

() = ()

1
	 (9.5)

The dynamics of the closed-loop system depend on the eigenstructure
(eigenvalues and eigenvectors) of the matrix Acl. Thus, the desired system dynam-
ics can be chosen with appropriate choice of the gain matrix K. Limitations of
this control scheme are addressed in the next section.

For many physical systems, it is either prohibitively costly or impossible to
measure all the state variables. The output measurements y must then be used to
obtain the control u as shown in Figure 9.2.

Figure 9.1

Block diagram of constant state feedback control.

x(k+1)
T

A

–K

C
v(k) y(k)u(k)

+ +
x(k)

B

Figure 9.2

Block diagram of constant output feedback control.

B

A

–K

C
v(k) y(k)u(k)

+ +
x(k)x(k+1)

T

9.2  Pole Placement   337

The feedback control for output feedback is

	
u y v

x v

k K k k

K C k k

y

y

() = − () + ()
− () + ()=

	 (9.6)

Substituting in the state equation gives the closed-loop system

	
x x x v

x v

k A k B K C k k

A BK C k B k

y

y

+() = () + − () + ()[]
= −[] () + ()

1
	 (9.7)

The corresponding state matrix is

	 A A BK Cy y= − 	 (9.8)

Intuitively, less can be accomplished using output feedback than state feedback
because less information is used in constituting the control law. In addition, the
postmultiplication by the C matrix in (9.8) restricts the choice of closed-loop
dynamics. However, output feedback is a more general design problem because
state feedback is the special case where C is the identity matrix.

9.2  Pole Placement
Using output or state feedback, the poles or eigenvalues of the system can be
assigned subject to system-dependent limitations. This is known as pole place-
ment, pole assignment, or pole allocation. We state the problem as follows.

Definition 9.1:  Pole Placement. Choose the gain matrix K or Ky to assign the system
eigenvalues to an arbitrary set {li, i = 1, . . . , n}.	 ■

The following theorem gives conditions that guarantee a solution to the pole-
placement problem with state feedback.

Theorem 9.1:  State Feedback.  If the pair (A, B) is controllable, then there exists a
feedback gain matrix K that arbitrarily assigns the system poles to any set {li, i = 1,
. . . , n}. Furthermore, if the pair (A, B) is stabilizable, then the controllable modes can
all be arbitrarily assigned.

Proof.

Necessity
If the system is not controllable, then by Theorem 8.4 the product wi

TB is zero for some
left eigenvector wi

T. Premultiplying the closed-loop state matrix by wi
T gives

	 w w wi
T

cl i
T

i i
TA A BK= −() = λ

Hence, the ith eigenpair (eigenvalue and eigenvector) of A is unchanged by state
feedback and cannot be arbitrarily assigned. Therefore, controllability is a necessary
condition for arbitrary pole assignment.

338    CHAPTER 9  State Feedback Control

Sufficiency
We first give the proof for the single-input (SI) case where b is a column matrix. For a
controllable pair (A, B), we can assume without loss of generality that the pair is in
controllable form. We rewrite (9.4) as

	 bkT
clA A= −

Substituting the controllable form matrices gives

	

0 0

0

n
n

n n

n
k k k

I

a a a
− × − × −

−






[] = − − −











−

1 1
1 2

1 1 1

0 1 11


... ...

nn n

d d
n
d

I

a a a

− × −

−− − −










1 1 1

0 1 1... ...

That is,

	

0 0n n

n

n n

d d
n
d

nk k k a a a a a a

− × − ×

− −









 = − − −






1

1 2

1

0 0 1 1 1 1 


Equating the last rows of the matrices yields

	 k k k a a a a a an
d d

n
d

n1 2 0 0 1 1 1 1[] = − − −[]− −... ... 	 (9.9)

which is the control that yields the desired characteristic polynomial coefficients.

Sufficiency Proof 2
We now give a more general proof by contraposition—that is, we assume that the result
is not true and prove that the assumption is not true. So we assume that the eigenstruc-
ture of the jth mode is unaffected by state feedback for any choice of the matrix K and
prove that the system is uncontrollable. In other words, we assume that the jth eigen-
pair is the same for the open-loop and closed-loop systems. Then we have

	 w w w w 0j
T

j
T

cl j j
T

j j
T TBK A A= −{ } = −{ } =λ λ

Assuming K full rank, we have wj
TB = 0. By Theorem 8.4, the system is not

controllable.	 ■

For a controllable SI system, the matrix (row vector) K has n entries with n
eigenvalues to be assigned, and the pole placement problem has a unique solution.
Clearly, with more inputs the K matrix has more rows and consequently more
unknowns than the n equations dictated by the n specified eigenvalues. This
freedom can be exploited to obtain a solution that has desirable properties in
addition to the specified eigenvalues. For example, the eigenvectors of the closed-
loop state matrix can be selected subject to constraints. There is a rich literature
that covers eigenstructure assignment, but it is beyond the scope of this text.

The sufficiency proof of Theorem 9.1 provides a method to obtain the feedback
matrix K to assign the poles of a controllable system for the SI case with the system
in controllable form. This approach is explored later. We first give a simple pro-
cedure applicable to low-order systems.

9.2  Pole Placement   339

Procedure 9.1:  Pole Placement by Equating Coefficients
1.	 Evaluate the desired characteristic polynomial from the specified eigenvalues

using the expression

	 Δc
d

i

i

n

λ λ λ() = −()
=

∏
1

	 (9.10)

2.	 Evaluate the closed-loop characteristic polynomial using the expression

	 det λ I A BKn − −(){ } 	 (9.11)

3.	 Equate the coefficients of the two polynomials to obtain n equations to be
solved for the entries of the matrix K.

Example 9.1: P ole Assignment

Assign the eigenvalues {0.3 ± j0.2} to the pair

	
A = 





= 





0 1

3 4

0

1
b

Solution
For the given eigenvalues the desired characteristic polynomial is

	 Δc
d j jλ λ λ λ λ() = − −() − +() = − +0 3 0 2 0 3 0 2 0 6 0 132.

The closed-loop state matrix is

	

A k k

k k

T− = 





− 




[]

=
− −







bk
0 1

3 4

0

1

0 1

3 4

1 2

1 2

The closed-loop characteristic polynomial is

	

det detλ
λ

λ
λ λ

I A
k k

k

n
T− −(){ } =

−
− −() − −()







= − −() − −

bk
1

3 4

4 3

1 2

2
2 kk1()

Equating coefficients gives the two equations

1.	 4 − k2 = 0.6	 ⇒ k2 = 3.4
2.	 −3 + k1 = 0.13 ⇒ k1 = 3.13

that is,

	 kT = []3 13 3 4. , .

Because the system is in controllable form, the same result can be obtained as the
coefficients of the open-loop characteristic polynomial minus those of the desired charac-
teristic polynomial using (9.9).

340    CHAPTER 9  State Feedback Control

9.2.1  Pole Placement by Transformation to Controllable Form

Any controllable single-input-single-output (SISO) system can be transformed into
controllable form using the transformation

	 T A A

a a a

a a

a

c c
n

n

n

= = []− −

−

−

CC 1 1

1 2 1

2 3

1

1

1 0

1 0 0

1 0 0

b b b...




    

 00























	 (9.12)

	 T

t

t

t t

t t

c c

n

n n

n n n

n n

− −

−

−

= =1 1

2

2

2 1

2 3

0 0 0 1

0 0 0

0 0 1

0 1

1

CC




    



,

,

 t

A A

nn

n

























[]− −
b b b... 1 1

	 (9.13)

where C is the controllability matrix, the subscript c denotes the controllable
form, and the terms tjn, j = 2, . . . , n, are given by

	 t an n2 1= − −

	 t a t j nj n n i

i

j

j i n+ − −
=

−

−= − = −∑1 1

0

1

2 1, , , , . . . ,

The state feedback for a system in controllable form is

	 u Tc
T

c c
T

c= − = − ()−k x k x1 	 (9.14)

	 kT d d
n
d

n ca a a a a a T= − − −[]− −
−

0 0 1 1 1 1
1... ... 	 (9.15)

We now have the following pole placement procedure.

Procedure 9.2
1.  Obtain the characteristic polynomial of the pair (A, B) using the Leverrier

algorithm described in Section 7.4.1.
2.	 Obtain the transformation matrix Tc

−1 using the coefficients of the polynomial
from step 1.

3.	 Obtain the desired characteristic polynomial coefficients from the given
eigenvalues using (9.10).

4.	 Compute the state feedback matrix using (9.15).

Procedure 9.2 requires the numerically troublesome inversion of the control-
lability matrix to obtain T. However, it does reveal an important characteristic of

9.2  Pole Placement   341

state feedback. From (9.15), we observe that the feedback gains tend to increase
as the change from the open-loop to the closed-loop polynomial coefficients
increases. Procedure 9.2, like Procedure 9.1, works well for low-order systems
but can be implemented more easily using a computer-aided design (CAD)
program.

Example 9.2

Design a feedback controller for the pair

	

A =
















=
















0 1 0 0 1

0 0 5 0 2

0 2 0 0 4

0 01

0

0 005

. .

. .

. .

.

.

b

to obtain the eigenvalues {0.1, 0.4 ± j0.4}.

Solution
The characteristic polynomial of the state matrix is

	 λ λ λ3 2
2 1 00 27 0 01 1 0 27 0 01− + − = − = = −. . . ., , . , .i e a a a

The transformation matrix Tc
−1 is

	

Tc
− =

















×















1 3

0 0 1

0 1 1

1 1 0 73

10

10 1 5 0 6

0 1 1 3

5 4 1 9.

. .

.

. 
=

−
−

−1

310

0 1923 1 25 0 3846

0 0577 0 625 0 1154

0 0173 0 3125 0 1

. . .

. . .

. . . 6654

















The desired characteristic polynomial is

	 λ λ λ3 2
2 1 00 9 0 4 0 032 0 9 0 4 0 032− + − = − = = −., . , . , .i e a a ad d d

Hence, we have the feedback gain vector

	

kT d d d
ca a a a a a T= − − −[]

= − + − − +[] ×

−
0 0 1 1 2 2

1

0 032 0 01 0 4 0 27 0 9 1 10. 33

0 1923 1 25 0 3846

0 0577 0 625 0 1154

0 0173 0 3125 0 1654

. . .

. . .

. . .

−
−

















= −[]10 85 40

9.2.2  Pole Placement Using a Matrix Polynomial

The gain vector for pole placement can be expressed in terms of the desired
closed-loop characteristic polynomial. The expression, known as Ackermann’s
formula, is

	 k tT T
c
d A= ()1 Δ 	 (9.16)

342    CHAPTER 9  State Feedback Control

where t1
T is the first row of the matrix Tc

−1 of (9.13) and Δc
d λ() is the desired

closed-loop characteristic polynomial. From Theorem 9.1, we know that state
feedback can arbitrarily place the eigenvalues of the closed-loop system for any
controllable pair (A, b). In addition, any controllable pair can be transformed into
controllable form (Ac, bc). By the Cayley-Hamilton theorem, the state matrix
satisfies its own characteristic polynomial Δ(l) but not that corresponding to the
desired pole locations. That is,

	 Δc i
i

i

n

A a A() = =
=
∑

0

0

	 Δc
d

i
d i

i

n

A a A() = ≠
=
∑

0

0

Subtracting and using the identity A T ATc c c= −1 gives

	 T A T a a Ac c
d

c i
d

i c
i

i

n
−

=

−

() = −()∑1

0

1

Δ 	 (9.17)

The matrix in controllable form possesses an interesting property, which we
use in this proof. If the matrix raised to power i, with i = 1, 2, . . . , n − 1, is
premuliplied by the first elementary vector

	 e 01 1 11T
n
T= []− ×

The result is the (i + 1)th elementary vector—that is,

	 e e1 1 0 1 1T
c
i

i
TA i n= = −+ , , , . . . , 	 (9.18)

Premultiplying (9.17) by the elementary vector e1, then using (9.18), we
obtain

	

e e

e

1
1

1

0

1

1

0

1

T
c c

d
c i

d
i

T
c
i

i

n

i
d

i i
T

i

n

T A T a a A

a a

−

=

−

+
=

−

() = −()

= −()

∑

∑

Δ

== − − −[]− −a a a a a ad d
n
d

n0 0 1 1 1 1

Using (9.15), we obtain

	

e

k k
1

1
0 0 1 1 1 1

T
c c

d
c

d d
n
d

n

c
T T

c

T A T a a a a a a

T

−
− −() = − − −[]

= =
Δ 

Postmultiplying by Tc
−1 and observing that the first row of the inverse is t1 1

1T T
ce T= − ,

we obtain Ackermann’s formula (9.16).
Minor modifications in Procedure 9.2 allow pole placement using Ackermann’s

formula. The formula requires the evaluation of the first row of the matrix Tc
−1

rather than the entire matrix. However, for low-order systems, it is often simpler
to evaluate the inverse and then use its first row. The following example demon-
strates pole placement using Ackermann’s formula.

9.2  Pole Placement   343

Example 9.3

Obtain the solution described in Example 9.2 using Ackermann’s formula.

Solution
The desired closed-loop characteristic polynomial is

	 Δc
d d d da a aλ λ λ λ() = − + − = − = = −3 2

2 1 00 9 0 4 0 032 0 9 0 4 0 032., . , . , .i e

The first row of the inverse transformation matrix is

	

t1 1
1 310 1 0 0

0 1923 1 25 0 3846

0 0577 0 625 0 1154

0 0

T T
ce T= = []

−
−−

. . .

. . .

. 1173 0 3125 0 1654

10 0 1923 1 25 0 38463

. .

. . .

















= −[]
We use Ackermann’s formula to compute the gain vector

	

k t

t

T T
c
d

T

A

A A A I

= ()
= − + −{ }

= −

1

1
3 2

3

3

0 9 0 4 0 032

10 0 1923 1 25 0 38

Δ
. . .

. . . 446 10

6 0 18

4 68 44

36 0 48

10 85 40

3[] ×
















= −[]

−

9.2.3  Choice of the Closed-Loop Eigenvalues

Procedures 9.1 and 9.2 yield the feedback gain matrix once the closed-loop eigen-
values have been arbitrarily selected. The desired locations of the eigenvalues are
directly related to the desired transient response of the system. In this context,
considerations similar to those made in Section 6.6 (see Tables 6.5 and 6.6) can
be applied. However, the designer must take into account that poles associated
with fast modes will lead to high gains for the state feedback matrix and conse-
quently to a high control effort. High gains may also lead to performance deg-
radation due to nonlinear behavior such as ADC or actuator saturation. If all the
desired closed-loop eigenvalues are selected at the origin of the complex plane,
the deadbeat control strategy is implemented (see Section 6.7), and the closed-
loop characteristic polynomial is chosen as

	 Δc
d nλ λ() = 	 (9.19)

Substituting in Ackermann’s formula (9.16) gives the feedback gain matrix

	 k tT T nA= 1 	 (9.20)

The resulting control law will drive all the states to zero in at most n sampling
intervals starting from any initial condition. However, the limitations of deadbeat
control discussed in Section 6.7 apply; namely, the control variable can assume
unacceptably high values, and undesirable intersample oscillations can occur.

344    CHAPTER 9  State Feedback Control

Example 9.4

Determine the gain vector k using Ackermann’s formula for the discretized state–space
model of the armature-controlled DC motor described in Example 7.15 for the following
choices of closed-loop eigenvalues:

1.	 {0.1, 0.4 ± j0.4}
2.	 {0.4, 0.6 ± j0.33}
3.	 {0, 0, 0} (deadbeat control)

Simulate the system in each case to obtain the zero-input response starting from the initial
condition x(0) = [1,1,1], and discuss the results.

Solution
The characteristic polynomial of the state matrix is

	 Δ λ λ λ λ() = − + −3 22 895 2 791 0 896. . .

That is,

	 a a a2 1 02 895 2 791 0 896= − = = −. , . , .

The controllability matrix of the system is

	

C = −10

0 001622 0 049832 0 187964

0 482100 1 381319 2 185571

94 6

3

. . .

. . .

. 8800 84 37082 75 73716. .

















Using (9.13) gives the transformation matrix

	

Tc
− =

−
− −1 410

1 0527 0 0536 0 000255

1 9948 0 20688 0 00102

0 94309

. . .

. . .

. −−















0 14225 0 00176. .

1.	 The desired closed-loop characteristic polynomial is

	 Δc
d λ λ λ λ() = − + −3 20 9 0 4 0 032. . .

That is,

	 a a ad d d
2 1 00 9 0 4 0 032= − = = −. , . , .

By Ackermann’s formula, the gain vector is

	

k t

t

T T
c
d

T

A

A A A I

= ()
= − + −{ }
= −

1

1
3 2

3

4

0 9 0 4 0 032

10 1 0527 0 0536 0

Δ
. . .

. . .0000255 0 9 0 4 0 032

10 4 9268 1 4324 0 0137

3 2
3

3

[] × − + −{ }
= []

A A A I. . .

. . .

The discretized zero-input response for the three states and the corresponding control
variable u are shown in Figure 9.3.

9.2  Pole Placement   345

2.	 The desired closed-loop characteristic polynomial is

	 Δc
d λ λ λ λ() = − + −3 21 6 0 9489 0 18756. . .

That is,

	 a a ad d d
2 1 01 6 0 9489 0 18756= − = = −. , . , .

And the gain vector is

	

k t
t

T T
c
d

T

A
A A A I

= ()
= − + −{ }
= −

1

1
3 2

3
4

1 6 0 9489 0 18756
10 1 0527 0 0

Δ
. . .

. . 5536 0 000255 1 6 0 9489 0 18756
10 1 6985 0 700

3 2
3

3

. . . .
. .

[] × − + −{ }
=

A A A I
888 0 01008.[]

The discretized zero-input response for the three states and the corresponding control
variable u are shown in Figure 9.4.

3.	 The desired closed-loop characteristic polynomial is

	 Δc
d d d da a aλ λ() = = = =3

2 1 00 0 0i e. ., , ,

and the gain vector is

	

k t

t

T T
c
d

T

A

A

A

= ()
= { }
= −[] × { }
=

1

1
3

4 3

4

10 1 0527 0 0536 0 000255

10 1

Δ

. . .

.00527 0 2621 0 0017. .[]

Figure 9.3

Zero-input state response and control variable for case 1 of Example 9.4.

0 0.05 0.1 0.15 0.2
–0.5

0

0.5

1

1.5

Time s

x 1

0 0.05 0.1 0.15 0.2
–6

–4

–2

0

2

Time s

x
2

0 0.05 0.1 0.15 0.2
–1000

–500

0

500

Time s

x 3

0 0.05 0.1 0.15 0.2
–1

–0.5

0

0.5

1
¥ 104

Time s
u

346    CHAPTER 9  State Feedback Control

Figure 9.4

Zero-input state response and control variable for case 2 of Example 9.4.

0 0.05 0.1 0.15 0.2
–0.5

0

0.5

1

1.5

Time s

x 1

0 0.05 0.1 0.15 0.2
–3

–2

–1

0

1

Time s

x 2

0 0.05 0.1 0.15 0.2
–300

–200

–100

0

100

Time s

x 3

0 0.05 0.1 0.15 0.2
–3000

–2000

–1000

0

1000

2000

Time s

u

Figure 9.5

Zero-input state response and control variable for case 3 of Example 9.4.

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

Time s

x 1

0 0.05 0.1 0.15 0.2
–6

–4

–2

0

2

Time s

x 2

0 0.05 0.1 0.15 0.2
–1500

–1000

–500

0

500

1000

1500

Time s Time s

x 3

0 0.05 0.1 0.15 0.2
–2

–1

0

1

2

3 ¥ 104

u

9.2  Pole Placement   347

Figure 9.6

Sampled and analog velocity of the motor with deadbeat control.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
–9

–8

–7

–6

–5

–4

–3

–2

–1

0

1

Time s

x 2

The discretized zero-input response for the three states and the corresponding control vari-
able u are shown in Figure 9.5.

We observe that when eigenvalues associated with faster modes are selected, higher
gains are required for the state feedback and the state variables have transient responses
with larger oscillations. Specifically, for the deadbeat control of case 3, the gain values are
one order of magnitude larger that those of cases 1 and 2, and the magnitude of its transient
oscillations is much larger. Further, for deadbeat control the zero state is reached in
n = 3 sampling intervals as predicted by the theory. However, transient intersample oscil-
lations actually occur in x2, the motor velocity. This is shown in Figure 9.6, where the analog
velocity and the sampled velocity of the motor are plotted.

Another consideration in selecting the desired closed-loop poles is the robust-
ness of the system to modeling uncertainties. Although we have so far assumed
that the state–space model of the system is known perfectly, this is never true in
practice. Thus, it is desirable that control systems have poles with low sensitivity
to perturbations in their state–space matrices. It is well known that low pole
sensitivity is associated with designs that minimize the condition number of the
modal matrix of eigenvectors of the state matrix.

For a SISO system, the eigenvectors are fixed once the eigenvalues are chosen.
Thus, the choice of eigenvalues determines the pole sensitivity of the system. For
example, selecting the same eigenvalues for the closed-loop system leads to a high
condition number of the eigenvector matrix and therefore to a closed-loop system
that is very sensitive to coefficient perturbations. For multi-input-multi-output

348    CHAPTER 9  State Feedback Control

(MIMO) systems, the feedback gains for a given choice of eigenvalues are nonu-
nique. This allows for more than one choice of eigenvectors and can be exploited
to obtain robust designs. However, robust pole placement for MIMO systems is
beyond the scope of this text and is not discussed further.

9.2.4  MATLAB Commands for Pole Placement

The pole placement command is place. The following example illustrates the use
of the command.

>> A = [0, 1; 3, 4];

>> B = [0; 1];

>> poles = [0.3 + j*.2, 0.3 – j*0.2];

>> K = place(A, B, poles)

place: ndigits = 16

K = 3.1300     3.4000

ndigits is a measure of the accuracy of pole placement.
It is also possible to compute the state feedback gain matrix of (9.14) or (9.15)

using basic MATLAB commands as follows:

1.	 Generate the characteristic polynomial of a matrix for (9.14) and (9.15).

>> poly(A)

2.	 Obtain the coefficients of the characteristic polynomial from a set of desired
eigenvalues given as the entries of a vector poles.

>> desired = poly(poles)

The vector desired contains the desired coefficients in descending order.

3.	 Generate the polynomial matrix for a matrix A corresponding to the
polynomial

	 λ λ λ3 20 9 0 4 0 032− + −. . .

>> polyvalm([1, −0.9, 0.4, −0.032], A)

9.2.5  Pole Placement by Output Feedback

As one would expect, using output feedback limits our ability to assign the eigen-
values of the state system relative to what is achievable using state feedback. It is,
in general, not possible to arbitrarily assign the system poles even if the system is
completely controllable and completely observable. It is possible to arbitrarily
assign the controllable dynamics of the system using dynamic output feedback,
and a satisfactory solution can be obtained if the system is stabilizable and detect-

able. Several approaches are available for the design of such a dynamic controller.
One solution is to obtain an estimate of the state using the output and input of
the system and use it in state feedback as explained in Section 9.6.

9.3  Servo Problem
The schemes shown in Figures 9.1 and 9.2 are regulators that drive the system
state to zero starting from any initial condition capable of rejecting impulse dis-
turbances. In practice, it is often necessary to track a constant reference input r
with zero steady-state error. For this purpose, a possible approach is to use the
two degree-of-freedom control scheme of Figure 9.7, so called because we
now have two matrices to select, the feedback gain matrix K and the reference
gain matrix F.

The reference input of (9.2) becomes v(k) = Fr(k), and the control law is
chosen as

	 u x rk K k F k() = − () + () 	 (9.21)

with r(k) the reference input to be tracked. The corresponding closed-loop system
equations are

	
x x r

x

k A k BF k

y k C k

cl+() = () + ()

() = ()

1
	 (9.22)

where the closed-loop state matrix is

	 A A BKcl = −

The z-transform of the corresponding output is given by (see Section 7.8)

	 Y Rz C zI A BF zn cl() = −[] ()−1

The steady-state tracking error for a unit step input is given by

	

Lim Lim
z z

n cl

n cl

z z z C zI A BF I

C I A

→ →

−

−

−() () − (){ } = −[] −{ }
= −[]

1 1

11 Y R

11BF I−

Figure 9.7

Block diagram of the two degree-of-freedom controller.

T

A

–K

C
v(k) y(k)u(k)

+ +
x(k)x(k+1)

F
r(k)

B

9.3  Servo Problem   349

350    CHAPTER 9  State Feedback Control

For zero steady-state error, we require the condition

	 C I A BF In cl n−[] =−1 	 (9.23)

If the system is square (m = l) and Acl is stable (no unity eigenvalues), we solve
for the reference gain

	 F C I A Bn cl= −() 
− −1 1

	 (9.24)

Example 9.5

Design a state–space controller for the discretized state–space model of the DC motor speed
control system described in Example 6.8 (with T = 0.02) to obtain (1) zero steady-state error
due to a unit step, (2) a damping ratio of 0.7, and (3) a settling time of about 1 s.

Solution
The discretized transfer function of the system with digital-to-analog converter (DAC) and
analog-to-digital converter (ADC) is

	
G z z

G s

s

z

z z
ZAS() = −() (){ } = × +

−() −
− −1 1 8604 10

0 9293

0 8187 0 9
1 4Z .

.

. . 8802()

The corresponding state–space model, computed with MATLAB, is

	

x k

x k

x k

x k

1

2

1

2

1

1

1 799 0 8025

1 0

+()
+()







=
−





()
()







+
. . 00 01563

0

.





()u k

	
y k

x k

x k
() = []

()
()







0 01191 0 01107
1

2

. .

The desired eigenvalues of the closed-loop system are selected as {0.9 ± j0.09} (see
Example 6.8). This yields the feedback gain vector

	 K = −[]0 068517 0 997197. .

and the closed-loop state matrix

	
Acl =

−





1 8 0 8181

1 0

. .

The feedforward gain is

	

F C I A Bn cl= −() 

= [] 





−
−

− −1 1

0 01191 0 01107
1 0

0 1

1 8 0 8181
. .

. .

11 0

0 01563

0
50 42666

1 1



























 =

− −
.

.

The response of the system to a step reference input r is shown in Figure 9.8. The system
has a settling time of about 0.84 s and percentage overshoot of about 4% with a peak time
of about 1 s. All design specifications are met.

The control law (9.21) is equivalent to a feedforward action determined by
F to yield zero steady-state error for a constant reference input r. Because the
forward action does not include any form of feedback, this approach is not robust
to modeling uncertainties. Thus, modeling errors (which always occur in practice)
will result in nonzero steady-state error. To eliminate such errors, we introduce
the integral control shown in Figure 9.9, with a new state added for each control
error integrated.

The resulting state–space equations are

	

x x u

x x r y

y x

u x

k A k B k

k k k k

k C k

k K k

+() = () + ()

+() = () + () − ()

() = ()

() = −

1

1

(() − ()K kx

	 (9.25)

where x is l × 1. The state–space equations can be combined and rewritten in
terms of an augmented state vector x x xk k k T() = () ()[] as

	

x

x

0 x

x 0

k

k

A

C I

k

k

B
K K

l

+()
+()







=
−







()
()







− 




[]1

1

xx

x

0
r

k

k I
k

l

()
()







+ 





()

	
y 0

x

x
k C

k

k
() = []

+()
+()







1

1

Figure 9.8

Step response of the closed-loop system described in Example 9.5.

Time s

A
m

pl
it

ud
e

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
System: syscl
Peak amplitude: 1.04
Overshoot (%): 4.22
At time (sec): 0.64

System: syscl
Settling time (sec): 0.842

9.3  Servo Problem   351

352    CHAPTER 9  State Feedback Control

That is,

	
    



x x
0

r

y 0 x

k A BK k
I

k

k C k

l

+() = −() () + 





()

() = [] ()

1
	 (9.26)

where

	   A
A

C I
B

B
K K K

l

=
−







= 





= []0

0
	 (9.27)

The eigenvalues of the closed-loop system state matrix A A BKcl = −()   can be
arbitrarily assigned by computing the gain matrix K using any of the procedures
for the regulator problem as described in Sections 9.1 and 9.2.

Example 9.6

Solve the design problem presented in Example 9.5 using integral control.

Solution
The state–space matrices of the system are

	
A B=

−





= 





1 799 0 8025

1 0

0 01563

0

. . .

	 C = []0 01191 0 01107. .

Adding integral control, we obtain

	

A
A

C
=

−






=
−

− −

















0

1

1 799 0 8025 0

1 0 0

0 01191 0 01107 1

. .

. .

B
B

= 





=
















0

0 01563

0

0

.

In Example 9.5, the eigenvalues were selected as {0.9 ± j0.09}. Using integral control
increases the order of the system by one, and an additional eigenvalue must be selected.
The desired eigenvalues are selected as {0.9 ± j0.09, 0.2}, and the additional eigenvalue

Figure 9.9

Control scheme with integral control.

r(k)
T

x(k)
K−

−K

v(k) u(k)
B

x(k+1)
+

A

T
x(k)

C
y(k)

+
x(k + 1)

−1

+

at 0.2 is chosen for its negligible effect on the overall dynamics. This yields the feedback
gain vector

	 K = − −[]51 1315 40 4431 40 3413. . .

The closed-loop system state matrix is

	

Acl =
−

− −

















1 0 1706 0 6303

1 0 0

0 0119 0 0111 1

. .

. .

The response of the system to a unit step reference signal r is shown in Figure 9.10.
The figure shows that the control specifications are satisfied. The settling time of 0.87 is
well below the specified value of 1 s, and the percentage overshoot is about 4.2%, which
is less than the value corresponding to ζ = 0.7 for the dominant pair.

9.4  Invariance of System Zeros
A severe limitation of the state-feedback control scheme is that it cannot change
the location of the zeros of the system, which significantly affect the transient
response. To show this, we consider the z-transform of the system (9.5):

	
zI A BK z B z

C z z

− −() () − () =

() = ()

X V

X Y

0
	 (9.28)

Figure 9.10

Step response of the closed-loop system presented in Example 9.6

Time s

A
m

pl
it

ud
e

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
System: syscl
Peak amplitude: 1.04
Overshoot (%): 4.21
At time (sec): 0.66

System: syscl
Settling time (sec): 0.867

9.4  Invariance of System Zeros   353

354    CHAPTER 9  State Feedback Control

If z = z0 is a zero of the system, then Y(z0) is zero with V(z0) and X(z0) nonzero.
Thus, for z = z0, the state–space equation (9.28) can be rewritten as

	
z I A BK B

C

z

z

0 0

00
0

− + −





()
()







=
X

V
	 (9.29)

We rewrite (9.29) in terms of the state–space matrices of the open-loop system
as

	

− −()





()
()







=
− − +()

−






z I A B

C D

z

z

z I A BK B

C DK D

n n0 0

0

0X

V 
()

() + ()






= 





X

V X

0

0

z

z K z

0

0 0

We observe that with the state feedback u(k) = −Kx(k) + r(k), the state–space
quadruple (A, B, C, D) becomes

	 A BK B C DK D− −(), , ,

Thus, the zeros of the closed-loop system are the same as those of the plant and
are invariant under state feedback. Similar reasoning can establish the same result
for the system of (9.22).

Example 9.7

Consider the following continuous-time system:

	
G s

s

s s
() = +

+() +()
1

2 1 3 1

Obtain a discrete model for the system with digital control and a sampling period T = 0.02,
then design a state–space controller with integral control and with the same closed-loop
eigenvalues as shown in Example 9.6.

Solution
The analog system with DAC and ADC has the transfer function

	
G z z

G s

s

z

z z
ZAS() = −() (){ } = × −

−() −
− −1 33 338 10

0 9802

0 9934 0 9
1 4Z .

.

. . 99()

with an open-loop zero at 0.9802. The corresponding state–space model (computed with
MATLAB) is

	

x k

x k

x k

x k

1

2

1

2

1

1

1 983 0 983

1 0

0+()
+()







=
−





()
()







+
. . ..0625

0






()u k

	
y k

x k

x k
() = []

()
()







0 0534 0 0524
1

2

. .

The desired eigenvalues of the closed-loop system are selected as {0.9 ± j0.09}, and this
yields the feedback gain vector

	 K = − −[]15 7345 24 5860 2 19016. . .

The closed-loop system state matrix is

	

Acl =
−

−

















1 0 55316 13 6885

1 0 0

0 05342 0 05236 1

. .

. .

The response of the system to a unit step reference signal r, shown in Figure 9.11, has
a huge peak overshoot due to the closed-loop zero at 0.9802. The closed-loop control cannot
change the location of the zero.

Figure 9.11

Step response of the closed-loop system presented in Example 9.7.

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

Time s

A
m

pl
it

ud
e

9.5  State Estimation   355

9.5  State Estimation
In most applications, measuring the entire state vector is impossible or prohibi-
tively expensive. To implement state feedback control, an estimate x̂ k() of the
state vector can be used. The state vector can be estimated from the input and
output measurements by using a state estimator or observer.

9.5.1  Full-Order Observer

To estimate all the states of the system, one could in theory use a system with the
same state equation as the plant to be observed. In other words, one could use
the open-loop system

356    CHAPTER 9  State Feedback Control

	 ˆ ˆx x uk A k B k+() = () + ()1

However, this open-loop estimator assumes perfect knowledge of the system
dynamics and lacks the feedback needed to correct the errors that are inevitable
in any implementation. The limitations of this observer become obvious on exam-
ining its error dynamics. We define the estimation error as x x x= − ˆ . We obtain
the error dynamics by subtracting the open-loop observer dynamics from the
system dynamics (9.1).

	  x xk A k+() = ()1

The error dynamics are determined by the state matrix of the system and
cannot be chosen arbitrarily. For an unstable system, the observer will be unstable
and cannot track the state of the system.

A practical alternative is to feed back the difference between the measured
and the estimated output of the system, as shown in Figure 9.12. This yields to
the following observer:

	 ˆ ˆ ˆx x u y xk A k B k L k C k+() = () + () + () − ()[]1 	 (9.30)

Subtracting the observer state equation from the system dynamics yields the esti-
mation error dynamics

	  x xk A LC k+() = −() ()1 	 (9.31)

The error dynamics are governed by the eigenvalues of the observer matrix
A0 = A − LC. We transpose the matrix to obtain

	 A A C LT T T T
0 = − 	 (9.32)

which has the same eigenvalues as the observer matrix. We observe that (9.32)
is identical to the controller design equation (9.4) with the pair (A, B) replaced
by the pair (AT, CT). We therefore have Theorem 9.2.

Figure 9.12

Block diagram of the full-order state estimator.

y(k)

B T

y(k)
x(k

Cx(k)
Bu(k)Ax(k)

=
+=+1)

L

u(k)

+
x(k)ˆ(k + 1)x̂

C

A

+

Theorem 9.2:  State Estimation.  If the pair (A, C) is observable, then there exists a
feedback gain matrix L that arbitrarily assigns the observer poles to any set {li, i =
1, . . . , n}. Furthermore, if the pair (A, C) is detectable, then the observable modes
can all be arbitrarily assigned.

Proof.  Based on Theorem 8.12, the system (A, C) is observable (detectable) if and
only if (AT, CT) is controllable (stabilizable). Therefore, Theorem 9.2 follows from
Theorem 9.1.	 ■

Based on Theorem 9.1, the matrix gain L can be determined from the desired
observer poles, as discussed in Section 9.2. Hence, we can arbitrarily select the
desired observer poles or the associated characteristic polynomial. From (9.32)
it follows that the MATLAB command for the solution of the observer pole
placement problem is

>> L = place(A′, C′, poles)’

Example 9.8

Determine the observer gain matrix L for the discretized state–space model of the armature-
controlled DC motor described in Example 7.15 with the observer eigenvalues selected as
{0.1, 0.2 ± j0.2}.

Solution
Recall that the system matrices are

	

A B=
−

















=
1 0 0 1 0 0

0 0 0 9995 0 0095

0 0 0 0947 0 8954

1 62. . .

. . .

. . .

. 22 10

4 821 10

9 468 10

1 0 0

6

4

2

×
×
×

















= []

−

−

−

.

.

C

The MATLAB command place gives the observer gain

	

L =
















2 3949

18 6734

4 3621

.

.

.

Expression (9.30) represents a prediction observer, because the estimated
state vector (and any associated control action) at a given sampling instant does
not depend on the current measured value of the system output. Alternatively,
a filtering observer estimates the state vector based on the current output
(assuming negligible computation time), using the expression

	 ˆ ˆ ˆx x u y x uk A k B k L k C A k B k+() = () + () + +() − () + ()()[]1 1 	 (9.33)

Clearly, the current output y(k + 1) is compared to its estimate based on variables
at the previous sampling instant. The error dynamics are now represented by

	  x xk A LCA k+() = −() ()1 	 (9.34)

9.5  State Estimation   357

358    CHAPTER 9  State Feedback Control

Expression (9.34) is the same as Expression (9.31) with the matrix product CA
substituted for C. The observability matrix O of the system (A, CA) is

	

 O O=



















=

CA

CA

CA

A

n

2



where O is the observability matrix of the pair (A, C) (see Section 8.3). Thus, if
the pair (A, C) is observable, the pair (A, CA) is observable unless A has one or
more zero eigenvalues. If A has zero eigenvalues, the pair (A, CA) is detectable
because the zero eigenvalues are associated with stable modes. Further, the zero
eigenvalues are associated with the fastest modes, and the design of the observer
can be completed by selecting a matrix L that assigns suitable values to the remain-
ing eigenvalues of A − LCA.

Example 9.9

Determine the filtering observer gain matrix L for the system described in Example 9.8.

Solution
Using the MATLAB command place,

>> L = place(A′, (C*A)′, poles)′

we obtain the observer gain

L =

1.0e + 002*

0.009910699530206

0.140383004697920

4.886483453094875

9.5.2  Reduced-Order Observer

A full-order observer is designed so that the entire state vector is estimated from
knowledge of the input and output of the system. The reader might well ask, why
estimate n state variables when we already have l measurements that are linear
functions of the same variables? Would it be possible to estimate n − l variables
only and use them with measurement to estimate the entire state?

This is precisely what is done in the design of a reduced-order observer. A
reduced-order observer is generally more efficient than a full-order observer.
However, a full-order observer may be preferable in the presence of significant
measurement noise. In addition, the design of the reduced-order observer is more
complex.

We consider the linear time-invariant system (9.1) where the input matrix B
and the output matrix C are assumed full rank. Then the entries of the output
vector y(t) are linearly independent and form a partial state vector of length l,
leaving n − l variables to be determined. We thus have the state vector

	
y

z
x x









 = =











−Q
C

Mo
1 	 (9.35)

where M is a full-rank n − l × n matrix with rows that are linearly independent of
those of C, and z is the unknown partial state.

The state–space matrices for the transformed state variables are

	 C CQ It o l l n l= = []× −0 	 (9.36)

	 B Q B
B

B

l

n l
t o= =













}

} −
−1

1

2

	 (9.37)

	 A Q AQ
A A

A A

l

n l

l n l

t o o= =












}

} −

−

−1
1 2

3 4


	 (9.38)

Thus, the state equation for the unknown partial state is

	 z y z uk A k A k B k+() = () + () + ()1 3 4 2 	 (9.39)

We define an output variable to form a state–space model with (9.39) as

	 y y y u zz k k A k B k A k() = +() − () − () = ()1 1 1 2 	 (9.40)

This output represents the portion of the known partial state y(k + 1) that is
computed using the unknown partial state. The observer dynamics, including the
error in computing yz, are assumed linear time invariant of the form

	

ˆ ˆ ˆ

ˆ

z y z u y z

z

k A k A k B k L k A k

A LA k

z+() = () + () + () + () − ()[]
= −()

1 3 4 2 2

4 2 (() + () + +() − () − ()[] + ()A k L k A k B k B k3 1 1 21y y y u u
	 (9.41)

where ẑ denotes the estimate of the partial state vector z. Unfortunately, the
observer (9.41) includes the term y(k + 1), which is not available at time k. Moving
the term to the LHS reveals that its use can be avoided by estimating the
variable

	 x z yk k L k() = () − ()ˆ 	 (9.42)

Using (9.41) and the definition (9.42), we obtain the observer

	
x x y u

x

k A LA k A L A LA LA L k B LB k

Ao

+() = −() () + + − −() () + −() ()
=

1 4 2 4 3 1 2 2 1

kk A k B ky o() + () + ()y u
  (9.43)

9.5  State Estimation   359

360    CHAPTER 9  State Feedback Control

where

	

A A LA

A A L A LA

B B LB

o

y o

o

= −

= + −

= −

4 2

3 1

2 1

	 (9.44)

The block diagram of the reduced-order observer is shown in Figure 9.13.
The dynamic of the reduced-order observer (9.43) is governed by the matrix

Ao. The eigenvalues of Ao must be selected inside the unit circle and must be suf-
ficiently fast to track the state of the observed system. This reduces observer
design to the solution of (9.44) for the observer gain matrix L. Once L is obtained,
the other matrices in (9.43) can be computed and the state vector x̂ can be
obtained using the equation

	

ˆ
ˆ

x
y

z

0 y

x

k Q
k

k

Q
I

L I

k

k

o

o
l l n l

n l

() =
()
()







= 





()
()







× −

−
 =

()
()







T
k

k
o

y

x

	 (9.45)

where the transformation matrix Qo is defined in (9.35).
Transposing (9.44) yields

	 A A A Lo
T T T T= −4 2 	 (9.46)

Because (9.46) is identical in form to the controller design equation (9.4), it can
be solved as discussed in Section 9.2. We recall that the poles of the matrix Ao

T
can be arbitrarily assigned provided that the pair A AT T

4 2,() is controllable. From the
duality concept discussed in Section 8.6, this is equivalent to the observability of
the pair A A4 2,() . The following theorem gives a necessary and sufficient condition
for the observability of the pair.

Figure 9.13

Block diagram of the reduced-order observer.

u(k)

y(k)

T

L

+

x(k)ˆ

)1(+kx

T
+

Ao

Bo

Ay

x(k)

y(k)
x(k

Cx(k)
Bu(k)Ax(k)

=
+=+1)

Theorem 9.3:  The pair A A4 2,() is observable if and only if the system (A, C) is
observable.

Proof.  The proof is left as an exercise.	 ■

Example 9.10

Design a reduced-order observer for the discretized state–space model of the armature-
controlled DC motor described in Example 7.15 with the observer eigenvalues selected as
{0.2 ± j0.2}.

Solution
Recall that the system matrices are

	

A B=
−

















=
1 0 0 1 0 0

0 0 0 9995 0 0095

0 0 0 0947 0 8954

1 62. . .

. . .

. . .

. 22 10

4 821 10

9 468 10

1 0 0

6

4

2

×
×
×

















= []

−

−

−

.

.

C

The output matrix C is in the required form, and there is no need for similarity transformation.
The second and third state variables must be estimated. The state matrix is partitioned as

	

A
a

A

T

=








 =

−

1 2

3 4

1 0 0 1 0 0

0 0 0 9995 0 0095

0 0 0 0947 0 8954

a

a

. . .

. . .

. . .

















The similarity transformation can be selected as an identity matrix; that is,

	

Qo
− =

















1

1 0 0

0 1 0

0 0 1

and therefore we have At = A, Bt = B, and Ct = C. Hence, we need to solve the linear
equation

	
Ao =

−






− []
0 9995 0 0095

0 0947 0 8954
0 1 0

. .

. .
.l

to obtain the observer gain

	 l = []14 949 550 191. . T

The corresponding observer matrices are

	
Ao =

−
−







0 4954 0 0095

55 1138 0 8954

. .

. .

	

b b lbo = −

=
×
×







− 





×
−

−

2 1

4

2

4 821 10

9 468 10

14 949

550 191
1

.

.

.

.
..

.
622 10

0 04579

9 37876
106 2× = 





×− −.

9.5  State Estimation   361

362    CHAPTER 9  State Feedback Control

	

a l a ly oA a= + −

=
−

−






3 1

0 4954 0 0095

55 1138 0 8954

14 949

550 1

. .

. .

.

. 991

0

0

14 949

550 191
1

0 1713

8 8145






+ 





− 





× =
−
−




.

.

.

.



×102

The state estimate can be computed using

	

ˆ .

.

x
0

l

y

x

0

k Q
I

k

k Io

T

T

() = 





()
()







=×
×

1
1

14 949

550 191

1 2

2

1 2

22

















()
()







y

x

k

k

Figure 9.14

Block diagram of a system with observer state feedback.

r(k)

−K

u(k)
B

x(k+1)
++

A

T
x(k)

C
y(k)

L

B T+
(k)x̂(ˆ k+1)x

A

+−C

9.6  Observer State Feedback
If the state vector is not available for feedback control, a state estimator can be
used to generate the control action as shown in Figure 9.14. The corresponding
control vector is

	 u x vk K k k() = − () + ()ˆ 	 (9.47)

Substituting in the state equation (9.1) gives

	 x x x vk A k BK k B k+() = () − () + ()1 ˆ 	 (9.48)

Adding and subtracting the term BKx(k), we rewrite (9.48) in terms of the estima-
tion error x x x= − ˆ as

	 x x x vk A BK k BK k B k+() = −() () + () + ()1  	 (9.49)

If a full-order (predictor) observer is used, by combining (9.49) with (9.31) we
obtain

	
x

x

x

x

k

k

A BK BK

A LC

k

k

B+()
+()







=
−

−






()
()







+ 


1

1 0 0 



()v k 	 (9.50)

The state matrix of (9.50) is block triangular, and its characteristic polynomial is

	
Δ

Δ Δ
cl

c o

I A BK I A LCλ λ λ
λ λ

() = − −()[] − −()[]
= () ()

det det
	 (9.51)

Thus, the eigenvalues of the closed-loop system can be selected separately from
those of the observer. This important result is known as the separation theorem
or the uncertainty equivalence principle.

Analogously, if a reduced-order observer is employed, the estimation error x
can be expressed in terms of the errors in estimating y and z as

	





 

x
y

z

y y y z z z

k Q
k

k

k k k k k k

o() =
()
()











() = () − () () = () − ()ˆ ˆ

	 (9.52)

We partition the matrix Qo into an n × l matrix Qy and an n × n − l matrix Qz
to allow the separation of the two error terms, and rewrite the estimation
error as

	 

  x
y

z
y zk Q Q

k

k
Q k Q ky z y z() = []

()
()









 = () + () 	 (9.53)

Assuming negligible measurement error y, the estimation error reduces to

	  x zk Q kz() = () 	 (9.54)

Substituting from (9.54) into the closed-loop equation (9.49) gives

	 x x zk A BK k BKQ kz+() = −() () + ()1  	 (9.55)

Evaluating z k() by subtracting (9.41) from (9.39) and substituting A k2z() for yz,
we obtain

	  z zk A LA k+() = −() ()1 4 2 	 (9.56)

Combining (9.55) and (9.56), we obtain the equation

	
x

z

x

z

k

k

A BK BKQ

A LA

k

k

z

n l n

+()
+()







=
−

−






()
()


− ×

1

1 0 4 2 



	 (9.57)

The state matrix of (9.57) is block triangular and its characteristic polynomial
is

9.6  Observer State Feedback   363

364    CHAPTER 9  State Feedback Control

	 det detλ λI A LA I A BK− −()[] − −()[]4 2 	 (9.58)

Thus, as for the full-order observer, the closed-loop eigenvalues for the reduced-
order observer state feedback can be selected separately from those of the reduced-
order observer. The separation theorem therefore applies for reduced-order
observers as well as for full-order observers.

In addition, combining the plant state equation and the estimator and using
the output equation, we have

	
x

x

0 x

x

k

k

A

A C A

k

k

B

B

n n l

y o

+()
+()







= 





()
()







+ 


× −1

1 0




()u k 	 (9.59)

We express the estimator state feedback of (9.47) as

	

u x v

y

x
v

x

x

k K k k

KT
k

k
k K T T

C k
o oy ox

() = − () + ()

= −
()
()







+ () = − []
()

ˆ

kk
k

()






+ ()v 	 (9.60)

where Toy and Tox are partitions of To of (9.45) of order n × l and n × n − l, respec-
tively. Substituting in (9.59), we have

	
x

x

k

k

A BKT C BKT

A C B KT C A B KT

oy ox

y o oy o o ox

+()
+()







=
− −
− −







1

1 
()
()







+ 





()
x

x
v

k

k

B

B
k

0

	 (9.61)

Equation (9.61) can be used to simulate the complete estimator state feedback
system.

9.6.1  Choice of Observer Eigenvalues

In the selection of the observer poles or the associated characteristic polynomial,
expressions (9.51) or (9.58) must be considered. The choice of observer poles is
not based on the constraints related to the control effort discussed in Section 9.2.3.
However, the response of the closed-loop system must be dominated by the poles
of the controller that meet the performance specifications. Therefore, as a rule of
thumb, the poles of the observer should be selected from 3 to 10 times faster than
the poles of the controller. An upper bound on the speed of response of the
observer is imposed by the presence of the unavoidable measurement noise. Inap-
propriately fast observer dynamics will result in tracking the noise rather than the
actual state of the system. Hence, a deadbeat observer, although appealing in
theory, is avoided in practice.

The choice of observer poles is also governed by the same considerations
related to the robustness of the system discussed in Section 9.2.3 for the state
feedback control. Thus, the sensitivity of the eigenvalues to perturbations in the
system matrices must be considered in the selection of the observer poles.

We emphasize that the selection of the observer poles does not influence the
performance of the overall control system if the initial conditions are estimated

perfectly. We prove this fact for the full-order observer. However, the result also
holds for the reduced-order observer, but the proof is left as an exercise for the
reader. To demonstrate this fact, we consider the state equation (9.50) with the
output equation (9.1):

	

x

x

x

x

k

k

A BK BK

A LC

k

k

B+()
+()







=
−

−






()
()







+ 


1

1 0 0 



()

() = []
()
()







v

y
x

x

k

k C
k

k
0


	 (9.62)

The zero input-output response of the system (v(k) = 0) can be determined itera-
tively as

	 y x0 0() = ()C

	
y

x

x
x1 0

0

0

0
0() = []

−
−







()
()







= −() () +C
A BK BK

A LC
C A BK CBK


xx 0()

	

y
x

x
x2 0

0

1

1
1() = []

−
−







()
()







= −() () +C
A BK BK

A LC
C A BK CBK


xx

x x x

1

0 0 02

()

= −() () − −() () − −() ()C A BK C A BK BK CBK A LC 



Clearly, the observer matrix L influences the transient response if and only if
x()0 0≠ . This fact is confirmed by the determination of the z-transfer function

from (9.61), which implicitly assumes zero initial conditions

	
G z C zI

A BK BK

A LC

B
C zI A BK() = [] −

−
−



















= − +()
−

−0
0 0

1
1BB

where the observer gain matrix L does not appear.

Example 9.11

Consider the armature-controlled DC motor described in Example 7.15. Let the true initial
condition be x(0) = [1, 1, 1], and let its estimate be the zero vector ˆ [, ,]x 0 0 0 0() = T . Design
a full-order observer state feedback for a zero-input response with a settling time of 0.2 s.

Solution
As Example 9.4 showed, a choice for the control system eigenvalues that meets the design
specification is {0.6, 0.4 ± j0.33}. This yields the gain vector

	 K = −[]10 1 6985 0 70088 0 010083 . . .

The observer eigenvalues must be selected so that the associated modes are sufficiently
faster than those of the controller. We select the eigenvalues {0.1, 0.1 ± j0.1}. This yields
the observer gain vector

9.6  Observer State Feedback   365

366    CHAPTER 9  State Feedback Control

	

L =
















10

0 02595

0 21663

5 35718

2

.

.

.

Using (9.62), we obtain the space–space equations

	

x

x

k

k

+()
+()







=

−
−1

1

0 9972 0 0989 0

0 8188 0 6616 0 0046

160 8



. .

. . .

. 113 66 454 0 0589

0 0028 0 0011 0

0 8188 0 3379 0 0049

160 813 66− −. .

. .

. . .

. .3359 0 9543

0

1 5949 0 1 0

21 663 0 9995 0 0095

535 79 0 0947 0 8

.

. .

. . .

. . .

−
−
− − 9954



























()
()







x

x

k

k

	
y

x

x
k

k

k
() = []

()
()







1 0 0 0


The response to the initial condition [1, 1, 1, 1, 1, 1] is plotted in Figure 9.15. We
compare the plant state variables xi, i = 1, 2, 3 to the estimation errors xi, i = 4, 5, 6. We
observe that the estimation errors decay to zero faster than the system states and that the
system has an overall settling time less than 0.2 s.

Figure 9.15

Zero-input response for Example 9.11.

0 0.1 0.2
–2

–1

0

1

Time s

x 1

0 0.1 0.2
–15

–10

–5

0

5

Time s

x 2

0 0.1 0.2

–2000

–1000

0

1000

Time s

x 3

0 0.1 0.2

–1

0

1

Time s

x 4

0 0.1 0.2

–20

–10

0

10

Time s

x 5

0 0.1 0.2

–500

0

500

Time s

x 6

Example 9.12

Solve Example 9.11 using a reduced-order observer.

Solution
In this case, we have l = 1 and, because the measured output corresponds to the
first element of the state vector is unnecessary for similarity transformation, that is,
Q0 = Q0

−1 = I3. Thus, we obtain

	
A A A A1 2 3 41 0 1

0

0

0 9995 0 0095

0 0947 0 8954
= = = 





=
−







.
. .

. .

	
B B1

6
2

4

2
1 622 10

4 821 10

9 468 10
= × =

×
×







−
−

−
.

.

.

We select the reduced-order observer eigenvalues as {0.1 ± j0.1} and obtain the
observer gain vector

	
L = 





10
0 16949

6 75538
2

.

.

and the associated matrices

	
A Ao y=

−
−







=
−
−

0 6954 0 0095

67 6485 0 8954
10

0 02232

1 21724
3

. .

. .

.

.






= 





−Bo 10
0 045461

9 358428
2

.

.

Partitioning Q0 = To = I3 gives

	

Q T Tz ox oy=
















=
















=
0 0

1 0

0 1

0 0

1 0

0 1

10

0 01

0 16949

6

2

.

.

..75538

















We have that the state–space equation of (9.57) is

	

x

z

k

k

+()
+()







=
−

1

1

0 99725 0 09886 0 00002

0 81884 0 66161 0



. . .

. . .000464

160 813 66 4540 0 05885

0 00114 0 00002

0 33789 0 00486

− − −. . .

. .

. .

666 3593 0 95435

0
0 6954 0 0095

67 6485 0 8954

. .

. .

. .

−
−























()
()







x

z

k

k

	 (9.63)

whereas the state–space equation of (9.61) is

	

x

x

k

k

+()
+()







=
−
−1

1

0 96693 0 1 0

9 82821 0 9995 0 0095

1930 17

. .

. . .

. −−

− −
− −
− −0 0947 0 8954

0 00114 0 00002

0 33789 0 00486

66 3593 0 9. .

. .

. .

. . 55425

31 5855 0 0

3125 07 0 0

1 01403 0 00492

133 240 0 04781

−
−

−
−







.

.

. .

. .


















()
()







x

x

k

k

9.6  Observer State Feedback   367

368    CHAPTER 9  State Feedback Control

The response of the state–space system (9.63) to the initial condition [1, 1, 1, 1, 1] is
plotted in Figure 9.16. As in Example 9.11, we observe that the estimation errors xi, i = 4,
and 5 decay to zero faster than the system states xi, i = 1, 2, and 3, and that the system
has an overall settling time less than 0.2 s.

Example 9.13

Consider the armature-controlled DC motor described in Example 7.15. Design a full-order
observer state feedback with feedforward action for a step response with a settling time of
0.2 s with an overshoot less than 10 percent.

Solution
As in Example 9.11, we can select the control system eigenvalues as {0.6, 0.4 ± j0.33} and
the observer eigenvalues as {0.1, 0.1 ± j0.1}. This yields the gain vectors

	

K L= −[] =




10 1 6985 0 70088 0 01008 10

0 02595

0 21663

5 35718

3 2. . . ,

.

.

.











From the matrix Acl = A − BK, we determine the feedforward term using (9.24) as

Figure 9.16

Zero-input response for Example 9.12.

0 0.1 0.2
–0.5

0

0.5

1

1.5

Time s

x 1

0 0.1 0.2

–4

–2

0

2

Time s
x 2

0 0.1 0.2
–300

–200

–100

0

100

200

Time s

x 3

0 0.1 0.2

–0.5

0

0.5

1

Time s

x 4

0 0.1 0.2

–60

–40

–20

0

Time s

x 5

	 F C I A BK Bn= − −()()  =− −1 1
1698 49.

Substituting Fr(k) for v(k) (9.62), we obtain the closed-loop state–space equations

	

x

x

k

k

+()
+()







=

−
−1

1

0 9972 0 0989 0

0 8188 0 6616 0 0046

160 8



. .

. . .

. 113 66 454 0 0589

0 0028 0 0011 0

0 8188 0 3379 0 0049

160 813 66− −. .

. .

. . .

. .3359 0 9543

0

1 5949 0 1 0

21 663 0 9995 0 0095

535 79 0 0947 0 8

.

. .

. . .

. . .

−
−
− − 9954

0 0028

0 8188

160 81



























()
()







+
x

x

k

k

.

.

. 33

0



























()r k

	
y

x

x
k

k

k
() = []

()
()







1 0 0 0


The step response of the system shown in Figure 9.17 has a settling time of about 0.1
and a percentage overshoot of about 6 percent. The controller meets the design specification.

Figure 9.17

Step response for Example 9.13.

Time s

A
m

pl
it

ud
e

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

1.2

System: syscl
Peak amplitude: 1.06
Overshoot (%): 6.45
At time (sec): 0.08 System: syscl

Settling time (sec): 0.112

9.6  Observer State Feedback   369

370    CHAPTER 9  State Feedback Control

9.7  Pole Assignment Using Transfer Functions
The pole assignment problem can be solved in the framework of transfer func-
tions. Consider the state–space equations of the two-degree-of-freedom controller
shown in Figure 9.7 with the state vector estimated using a full-order observer.
For a SISO plant with observer state feedback, we have

	

ˆ ˆ ˆ

ˆ

x x x

x

k A k Bu k L y k C k

u k K k Fr k

+() = () + () + () − ()()

() = − () + ()

1

or equivalently,

	

ˆ ˆ

ˆ

x x

x

k A BK LC k BF L
r k

y k

u k K k Fr k

+() = − −() () + []
()
()







() = − () +

1

(()

The corresponding z-transfer function from [r, y] to u is

	 U z K zI A BK LC BF F R z K zI A BK LC L Y z() = − + +() +() () + − + +()() ()− −1 1

Thus, the full-order observer state feedback is equivalent to the transfer func-
tion model depicted in Figure 9.18. In the figure, the plant G(z) = P(z)/Q(z) is
assumed strictly realizable; that is, the degree of P(z) is less than the degree of
Q(z). We also assume that P(z) and Q(z) are coprime (i.e., they have no common
factors). Further, it is assumed that Q(z) is monic (i.e., the coefficient of the term
with the highest power in z is one).

From the block diagram shown in Figure 9.18, simple block diagram manipu-
lations give the closed-loop transfer function

	
Y z

R z

P z N z

Q z D z P z S z

()
()

=
() ()

() () + () ()

and the polynomial equation

	 Q z D z P z S z Y z P z N z R z() () + () ()() () = () () () 	 (9.64)

Figure 9.18

Block diagram for pole assignment with transfer functions.

Q(z)
P(z)

D(z)
N(z)

D(z)
S(z)

R(z) U(z) Y(z)
+

Therefore, the closed-loop characteristic equation is

	 Δcl z Q z D z P z S z() = () () + () () 	 (9.65)

The pole placement problem thus reduces to finding polynomials D(z) and S(z)
that satisfy (9.65) for given P(z), Q(z), and for a given desired characteristic poly-
nomial Δcl(z). Equation (9.65) is called a Diophantine equation, and its solution
can be found by first expanding its RHS terms as

	 P z p z p z p z pn
n

n
n() = + + + +−

−
−

−
1

1
2

2
1 0. . .

	 Q z z q z q z qn
n

n() = + + + +−
−

1
1

1 0. . .

	 D z d z d z d z dm
m

m
m() = + + + +−

−
1

1
1 0. . .

	 S z s z s z s z sm
m

m
m() = + + + +−

−
1

1
1 0. . .

The closed-loop characteristic polynomial Δcl(z) is of degree n + m and has the
form

	 Δcl
n m

n m
n mz z z z() = + + + ++

+ −
+ −δ δ δ1

1
1 0. . .

Thus, (9.65) can be rewritten as

	
z z z z q z q z q

d z

n m
n m

n m n
n

n

m
m

+
+ −

+ −
−

−+ + + + = + + + +()
+

δ δ δ1
1

1 0 1
1

1 0.
dd z d z d p z p z p z p

s z
m

m
n

n
n

n

m
m

−
−

−
−

−
−+ + +() + + + + +()

+
1

1
1 0 1

1
2

2
1 0.

ss z s z sm
m

−
− + + +()1

1
1 0. . .

  (9.66)

Equation (9.66) is linear in the 2m unknowns di and si, i = 0, 1, 2, . . . , m −
1, and its LHS is a known polynomial with n + m −1 coefficients. The solution of
the Diophantine equation is unique if n + m − 1 = 2m—that is, if m = n − 1.
Equation (9.66) can be written in the matrix form

	

1 0 0 0 0 0 0

1 0 0 0 0

1 0 0

1 1

2 1 2 1

0 1 2

 
 
 

      

q p

q q p p

q q q

n n

n n n n

− −

− − − −

 
 
 

      

q p p p

q q q p p

q q p

n n

n n

n n

− −

− −

− −

1 0 1 1

0 1 2 0 2

0 3 3

0 0

0 0 0 0

0 0 00 0 00 0

1

2

0

1

 




q p

d

d

d

d

s

s

m

m

m

m

m



































−

−

−

ss

n

n

n

n

n

0

2 2

2 3

1

2

3

1

































=

−

−

−

−

−

δ
δ

δ
δ
δ

δ





00



































  (9.67)

It can be shown that the matrix on the LHS is nonsingular if and only if the
polynomials P(z) and Q(z) are coprime, which we assume. As discussed in Section
9.2.3, the matrix must have a small condition number for the system to be robust
with respect to errors in the known parameters. The condition number becomes
larger as the matrix becomes almost singular.

9.7  Pole Assignment Using Transfer Functions   371

372    CHAPTER 9  State Feedback Control

The structure of the matrix shows that it will be almost singular if the coeffi-
cients of the numerator polynomial P(z) and denominator polynomial Q(z) are
almost identical. We therefore require that the roots of the polynomials P(z) and
Q(z) be sufficiently different to avoid an ill-conditioned matrix. From expressions
(6.3)—the plant transfer function for a digitally controlled analog plant—the poles
of the discretized plant approach the zeros as the sampling interval is reduced
(see also Section 12.2.2). Thus, when the controller is designed by pole assign-
ment, to avoid an ill-conditioned matrix in (9.67), the sampling interval must not
be excessively short.

We now discuss the choice of the desired characteristic polynomial. From the
equivalence of the transfer function design to the state–space design described in
Section 9.6, the separation principle implies that Δcl

d z() can be written as the
product

	 Δ Δ Δcl
d

c
d

o
dz z z() = () ()

where Δc
d z() is the controller characteristic polynomial and Δo

d z() is the observer
characteristic polynomial. We select the polynomial N(z) as

	 N z k zff o
d() = ()Δ 	 (9.68)

so that the observer polynomial Δo
d z() cancels in the transfer function from the

reference input to the system output. The scalar constant kff is selected so that
the steady-state output is equal to the constant reference input

	

Y

R

P N P k

c
d

o
d

ff o
d

c
d

o
d

1

1

1 1

1 1

1 1

1 1
1

()
()

=
() ()
() ()

=
() ()

() ()
=

Δ Δ
Δ

Δ Δ

The condition for zero steady-state error is

	 k
P

ff
c
d

=
()
()

Δ 1

1
	 (9.69)

Example 9.14

Solve Example 9.13 using the transfer function approach.

Solution
The plant transfer function is

	
G z

P z

Q z

z z

z z z
() =

()
()

= + +
− + −

−10
1 622 45 14 48 23

2 895 2 791 0
6

2

3 2

. . .

. . .88959

Thus, we have the polynomials

	 P z z z() = × + × + ×− − −1 622 10 45 14 10 48 23 106 2 6 6. . .

That is,

	 p p p2
6

1
6

0
61 622 10 45 14 10 48 23 10= × = × = ×− − −. , . , .

	 Q z z z z() = − + −3 22 895 2 791 0 8959. . .

That is,

	 q q q2 1 02 895 2 791 0 8959= − = = −. , . , .

The plant is third order, that is, n = 3, and the solvability condition of the Diophantine
equation is m = n − 1 = 2. The order of the desired closed-loop characteristic polynomial
is m + n = 5. We can therefore select the controller poles as {0.6, 0.4 ± j0.33} and the
observer poles as {0.1, 0.2} with the corresponding polynomials

	 Δc
d z z z z() = − + −3 21 6 0 9489 0 18756. . .

	 Δo
d z z z() = − +2 0 3 0 02. .

	Δ Δ Δcl
d

c
d

o
dz z z z z z z z() = () () = − + − +5 4 3 21 9 1 4489 0 50423 0 075246. . . . −− 0 0037512.

In other words, δ4 = −1.9, δ3 = 1.4489, δ2 = −0.50423, δ1 = 0.075246, and δ0 = −0.0037512.
Using the matrix equation (9.67) gives

	

1 0 0 0 0 0

2 8949 1 0 1 622 10 0 0

2 790752 2 8949 1 45 14 10 1 622

6

6

− ×
− ×

−

−

. .

. . . . ××
− − × × ×

−

− −

10 0

0 895852 2 790752 2 8949 48 23 10 45 14 10 1 622 1

6

6 6. 00

0 0 895852 2 790752 0 48 23 10 45 14 10

0 0 0 895852 0 0 48

6

6 6

−

− −− × ×
−

. . . .

. ..23 10 6

2

1

0

2

1

0

×

















































=

−

d

d

d

s

s

s

11

1 9

1 4489

0 50423

0 075246

0 00375

−

−

−

























.

.

.

.

.

The MATLAB command linsolve gives the solution

	 d d d s s s2 1 0 2
4

1
4

01 0 9645 0 6526 1 8735 10 2 9556 10 1= = = = = − =⋅ ⋅, . , . , . , . , ..2044 104⋅
and the polynomials

	 D z z z() = + +2 0 9645 0 6526. .

	 S z z z() = − +⋅ ⋅ ⋅1 8735 10 2 9556 10 1 2044 104 2 4 4. . .

Then, from (9.68), we have kff = 1698.489 and the numerator polynomial

	 N z z z() = − +()1698 489 0 3 0 022. . .

The step response of the control system of Figure 9.19 has a settling time of 0.1 s and
a percentage overshoot less than 7%. The response meets all the design specifications.

9.7  Pole Assignment Using Transfer Functions   373

374    CHAPTER 9  State Feedback Control

Resources
D’Azzo, J. J., and C. H. Houpis, Linear Control System Analysis and Design, McGraw-Hill,

1988.
Bass, R. W., and I. Gura, High-order system design via state–space considerations, Proc.

JACC, Troy, NY, October 1983, pp. 11-93.
Chen, C. T., Linear System Theory and Design, HRW, 1984.
Delchamps, D. F., State–Space and Input–Output Linear Systems, Springer-Verlag, 1988.
Kailath, T., Linear Systems, Prentice Hall, 1980.
Kautsky, J. N., K. Nichols, and P. Van Dooren, Robust pole assignment in linear state feed-

back, Int. J. Control, 41(5):1129-1155, 1985.
Mayne, D. Q., and P. Murdoch, Modal control of linear time invariant systems, Int. J.

Control, 11(2):223-227, 1970.
Patel, R. V., and N. Munro, Multivariable System Theory and Design, Pergammon Press,

1982.

Problems

9.1	 Show that the closed-loop quadruple for (A, B, C, D) with the state feedback
u(k) = −Kx(k) + v(k) is (A − BK, B, C − DK, D).

9.2	 Show that for the pair (A, B) with state feedback gain matrix K to have the
closed-loop state matrix Acl = A − BK, a necessary condition is that for any
vector wT satisfying wTB = 0T, and wTA = lwT, Acl must satisfy wTAcl = lwT.

Figure 9.19

Step response for Example 9.14.

Time s

A
m

pl
it

ud
e

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4
System: syscl
Peak amplitude: 1.06
Overshoot (%): 6.45
At time (sec): 0.08

System: syscl
Settling time (sec): 0.112

Explain the significance of this necessary condition. (Note that the condition is
also sufficient).

9.3	 Show that for the pair (A, B) with m × n state feedback gain matrix K to have
the closed-loop state matrix Acl = A − BK, a sufficient condition is

rank{B} = rank{[A-Acl | B]} = m

Is the matrix K unique for given matrices A and Acl? Explain.

9.4	 Using the results of Problem 9.3, determine if the closed-loop matrix can be
obtained using state feedback for the pair

	

A B=
−

















=
















1 0 0 1 0

0 1 0 01

0 0 1 0 9

0 0

1 0

1 1

. .

.

. .

(a)	 Acl = − −
















1 0 0 1 0

12 2 1 2 0

0 01 0 01 0

. .

. .

. .

(b)	 Acl = − −
















0 0 1 0

12 2 1 2 0

0 01 0 01 0

.

. .

. .

9.5	 Show that for the pair (A, C) with observer gain matrix L to have the observer
matrix Ao = A − LC, a necessary condition is that for any vector v satisfying
Cv = 0, and Av = lv, Ao must satisfy Aov = lv. Explain the significance of this
necessary condition. (Note that the condition is also sufficient.)

9.6	 Show that for the pair (A, C) with n × l observer gain matrix L to have the
observer matrix Ao = A − LC, a sufficient condition is

	
rank C rank

C

A A
l

o
{ } = −



















=

Is the matrix L unique for given matrices A and Ao? Explain.

9.7	 Design a state feedback control law to assign the eigenvalues to the set
{0, 0.1, 0.2} for the systems with

(a)	 A =
















=
















0 1 0 5 0

2 0 0 2

0 2 1 0 4

0 01

0

0 005

. .

.

. .

.

.

b

(b)	 A =
− −

− −

















=
















0 2 0 2 0 4

0 5 0 1

0 0 4 0 4

0 01

0

0

. . .

.

. .

.

b

9.8	 Using eigenvalues that are two to three times as fast as those of the plant,
design a state estimator for the system

Problems   375

376    CHAPTER 9  State Feedback Control

(a)	 A C=
















= []
0 2 0 3 0 2

0 0 0 3

0 3 0 0 3

1 1 0

. . .

.

. .

(b)	 A C=
















= []
0 2 0 3 0 2

0 0 0 3

0 3 0 0 3

1 0 0

. . .

.

. .

9.9	 Consider the system

	

A B=
− − −

















=
















0 1 0

0 0 1

0 005 0 11 0 7

0

0

1. . .

	 C d= [] =0.5 1 0 0

(a)	 Design a controller that assigns the eigenvalues {−0.8, −0.3 ± j0.3}. Why is
the controller guaranteed to exist?

(b)	 Why can we design an observer for the system with the eigenvalues
{−0.5, −0.1 ± j0.1}. Explain why the value (−0.5) must be assigned.
(Hint: (s + 0.1)2 (s + 0.5) = s3 + 0.7s2 + 0.11s + 0.005.)

(c)	 Obtain a similar system with a second-order observable subsystem, for
which an observer can be easily designed, as in Section 8.3.3. Design an
observer for the transformed system with two eigenvalues shifted as in (b)
and check your design using the MATLAB command place or acker. Use
the result to obtain the observer for the original system. (Hint: Obtain an
observer gain lr for the similar third-order system from your design by
setting the first element equal to zero. Then obtain the observer gain for
the original system using l = Tr lr, where Tr is the similarity transformation
matrix.)

(d)	 Design an observer-based feedback controller for the system with the
controller and observer eigenvalues selected as in (a) and (b), respectively.

9.10	 Design a reduced-order estimator state feedback controller for the discretized
system

	

A T=
















=
















=
0 1 0 0 1

0 0 5 0 2

0 2 0 0 4

0 01

0

0 005

. .

. .

. .

.

.

b c 11 1 0, ,[]

to obtain the eigenvalues {0.1, 0.4 ± j0.4}.

9.11	 Consider the following model of an armature-controlled DC motor, which is
slightly different from that described in Example 7.15:

	





x

x

x

x

x

x

1

2

3

1

2

3

0 1 0

0 0 1

0 11 11 1

















=
− −



























.





+
















0

0

10

u

	

y

x

x

x

= []
















1 0 0

1

2

3

For digital control with T = 0.02, apply the state feedback controllers
determined in Example 9.4 in order to verify their robustness.

9.12	 Consider the following model of a DC motor speed control system, which
is slightly different from that described in Example 6.8:

	
G s

s s
() =

+() +()
1

1 2 1 10.

For a sampling period T = 0.02, obtain a state–space representation
corresponding to the discrete-time system with DAC and ADC; then use
it to verify the robustness of the state controller described in Example 9.5.

9.13	 Verify the robustness of the state controller determined in Example 9.6 by
applying it to the model shown in Problem 9.12.

9.14	 Consider the DC motor position control system described in Example 3.6,
where the (type 1) analog plant has the transfer function

	
G s

s s s
() =

+() +()
1

1 10

For the digital control system with T = 0.02, design a state feedback controller
to obtain a step response with null steady-state error, zero overshoot, and a
settling time of less than 0.5 s.

9.15	 Design a digital state feedback controller for the analog system

	
G s

s

s s
() = − +

+() +()
1

5 1 10 1

with T = 0.1 to place the closed-loop poles at {0.4, 0.6}. Show that the
zero of the closed-loop system is the same as the zero of the open-loop
system.

9.16	 Write the closed-loop system state–space equations of a full-order observer
state feedback system with integral action.

9.17	 Consider the continuous-time model of the overhead crane proposed in
Problem 7.10 with mc = 1000 kg, ml = 1500 kg, and l = 8 m. Design a discrete
full-order observer state feedback control to provide motion of the load
without sway.

9.18	 Consider the continuous-time model of the overhead crane proposed in
Problem 7.10 with mc = 1000 kg, ml = 1500 kg, and l = 8 m. Design a control
system based on pole assignment using transfer functions in order to provide
motion of the load without sway.

Problems   377

378    CHAPTER 9  State Feedback Control

Computer Exercises

9.19	 Write a MATLAB script to evaluate the feedback gains using Ackermann’s
formula for any pair (A, B) and any desired poles {l1, . . . , ln}.

9.20	 Write a MATLAB function that, given the system state–space matrices A, B, and
C, the desired closed-loop poles, and the observer poles, determines the
closed-loop system state–space matrices of a full-observer state feedback
system with integral action.

9.21	 Write a MATLAB function that uses the transfer function approach to
determine the closed-loop system transfer function for a given plant transfer
function G(z), desired closed-loop system poles, and observer poles.

Chapter

10Optimal Control

Objectives
After completing this chapter, the reader will be able to do the following:

1.	 Find the unconstrained optimum values of a function by minimization or
maximization.

2.	 Find the constrained optimum values of a function by minimization or
maximization.

3.	 Design an optimal digital control system.
4.	 Design a digital linear quadratic regulator.
5.	 Design a digital steady-state regulator.
6.	 Design a digital output regulator.
7.	 Design a regulator to track a nonzero constant input.

In this chapter, we introduce optimal control theory for discrete-time systems.
We begin with unconstrained optimization of a cost function and then generalize
to optimization with equality constraints. We then cover the optimization or
optimal control of discrete-time systems. We specialize to the linear quadratic
regulator and obtain the optimality conditions for a finite and for an infinite plan-
ning horizon. We also address the regulator problem where the system is required
to track a nonzero constant signal.

10.1  Optimization
Many problems in engineering can be solved by minimizing a measure of cost or
maximizing a measure of performance. The designer must select a suitable per-
formance measure based on his or her understanding of the problem to include
the most important performance criteria and reflect their relative importance. The
designer must also select a mathematical form of the function that makes solving
the optimization problem tractable.

380    CHAPTER 10  Optimal Control

We observe that any maximization problem can be recast as a minimization,
or vice versa. This is because the location of the maximum of a function f(x) is
the same as that of the minimum −f(x), as demonstrated in Figure 10.1 for a scalar
x. We therefore consider minimization only throughout this chapter.

We first consider the problem of minimizing a cost function or performance
measure; then we extend our solution to problems with equality constraints.

10.1.1  Unconstrained Optimization

We first consider the problem of minimizing a cost function or performance
measure of the form

	 J x() 	 (10.1)

where x is an n × 1 vector of parameters to be selected. Let the optimal parameter
vector be x* and expand the function J(x) in the vicinity of the optimum as

	
J J

J J
O

T
Tx x

x
x x

x
x x

x

x x

() = () + ∂
∂




+ ∂
∂










+ ()*
* *

D D D D

D

1

2

2

2

3

!

== −x x*

	 (10.2)

where

	
∂
∂




= ∂
∂

∂
∂

∂
∂







J J

x

J

x

J

x

T

nx x x* *1 2

 	 (10.3)

Figure 10.1

Minimization and maximization of a function of a single variable.

–6 –4 –2 0 2 4 6 8
–40

–30

–20

–10

0

10

20

30

40

x

f (x)

–f (x)

10.1  Optimization   381

	
∂
∂










= ∂
∂











2

2

2

2

J J

xijx x x* *
	 (10.4)

and the subscript denotes that the matrix is evaluated at x*. At a local minimum
or local maximum, the first-order terms of the expansion that appear in the
gradient vector are zero.

To guarantee that the point x* is a minimum, any perturbation vector Dx away
from x* must result in an increase of the value of J(x). Thus, the second term of
the expansion must at least be positive or zero for x* to have any chance of being
a minimum. If the second term is positive, then we can guarantee that x* is indeed
a minimum. The sign of the second term is determined by the characteristics of
the second derivative matrix, or Hessian. The second term is positive for any
perturbation if the Hessian matrix is positive definite, and it is positive or zero if
the Hessian matrix is positive semidefinite. We summarize this discussion in the
following theorem.

Theorem 10.1:  If x* is a local minimum of J(x), then

	
∂
∂




= ×
J T

n
x

0
x*

1 	 (10.5)

	
∂
∂










≥
2

2
0

J

x x*
	 (10.6)

A sufficient condition for x* to be a minimum is

	
∂
∂










>
2

2
0

J

x x*
	 (10.7)

	 ■

Example 10.1

Obtain the least-squares estimates of the linear resistance

	 v iR=

using N noisy measurements

	 z k i k R v k k N() = () + () =, , . . . ,1

Solution
We begin by stacking the measurements to obtain the matrix equation

	 z i v= +R

in terms of the vectors

	 z = () ()[]z z N T1 

382    CHAPTER 10  Optimal Control

	 i = () ()[]i i N T1 

	 v = () ()[]v v N T1 

We minimize the sum of the squares of the errors

	 J e k
k

N

= ()
=

∑ 2

1

	 e k z k i k R() = () − () ˆ

where the caret (∧) denotes the estimate. We rewrite the performance measure in terms of
the vectors as

	 J R RT T T T= = − +e e z z i z i i2 2ˆ ˆ

	 e = () ()[]e e N T1 

The necessary condition for a minimum gives

	

∂
∂

= − + =J

R
RT T

ˆ
ˆ2 2 0i z i i

We now have the least-squares estimate

	
R̂LS

T

T
= i z

i i

The solution is indeed a minimum because the second derivative is the positive sum of the
squares of the currents

	

∂
∂

= >
2

2
2 0

J

R
T

ˆ
i i

10.1.2  Constrained Optimization

In most practical applications, the entries of the parameter vector x are subject
to physical and economic constraints. Assume that our vector of parameters is
subject to the equality constraint

	 m x 0() = ×m 1 	 (10.8)

In the simplest cases only, we can use the constraints to eliminate m parameters
and then solve an optimization problem for the remaining n − m parameters.
Alternatively, we can use Lagrange multipliers to include the constraints in the
optimization problem. We add the constraint to the performance measure weighted
by the Lagrange multipliers to obtain the Lagrangian

	 L J Tx x m x() = () + ()λ 	 (10.9)

We then solve for the vectors x and l that minimize the Lagrangian as in
unconstrained optimization. The following example demonstrates the use of

10.1  Optimization   383

Lagrange multipliers in constrained optimization. Note that the example is simpli-
fied to allow us to solve the problem with and without Lagrange multipliers.

Example 10.2

A manufacturer decides the production level of two products based on maximizing profit
subject to constraints on production. The manufacturer estimates profit using the simplified
measure

	 J x xx() = 1 2
α β

where xi is the quantity produced for product i, i = 1, 2, and the parameters (a, β) are
determined from sales data. The quantity of the two products produced cannot exceed a
fixed level b. Determine the optimum production level for the two products subject to the
production constraint

	 x x b1 2+ =

Solution
To convert the maximization problem into minimization, we use the negative of the profit.
We obtain the optimum first without the use of Lagrange multipliers. We solve for x2 using
the constraint

	 x b x2 1= −

then substitute in the negative of the profit function to obtain

	 J x x b x1 1 1() = − −()α β

The necessary condition for a minimum gives

	

∂
∂

= − −() + −() =− −J

x
x b x x b x

1
1

1
1 1 1

1 0α βα β α β

which simplifies to

	
x

b
1 =

+
α

α β

From the production constraint we solve for production level

	
x

b
2 =

+
β

α β

We now show that the same answer can be obtained using a Lagrange multiplier. We
add the constraint multiplied by the Lagrange multiplier to obtain the Lagrangian

	 L x x x x bx() = − + + −()1 2 1 2
α β λ

The necessary conditions for the minimum are

	

∂
∂

= − + =−L

x
x x

1
1

1
2 0α λα β

384    CHAPTER 10  Optimal Control

	

∂
∂

= − + =−L

x
x x

2
1 2

1 0β λα β

	

∂
∂

= + − =L
x x b

λ 1 2 0

The first two conditions give

	 α βα β α βx x x x1
1

2 1 2
1− −=

which readily simplifies to

	
x x2 1= β

α

Substituting in the third necessary condition (i.e., in the constraint) gives the solution

	
x

b
1 =

+
α

α β

	
x

b
2 =

+
β

α β

10.2  Optimal Control
To optimize the performance of a discrete-time dynamic system, we minimize the
performance measure

	 J J k k L k k kf f f

k k

k f

= ()() + () ()()
=

−

∑x x u, , ,
0

1

	 (10.10)

subject to the constraint

	 x x uk A k B k k k kf+() = () + () = −1 10, , . . . , 	 (10.11)

We assume that the pair (A, B) is stabilizable; otherwise there is no point in
control system design, optimal or otherwise. If the system is not stabilizable, then
its structure must first be changed by selecting different control variables that
allow its stabilization.

The first term of the performance measure is a terminal penalty, and each
of the remaining terms represents a cost or penalty at time k. We change the
problem into unconstrained minimization using Lagrange multipliers. We have the
new performance measure

	
J J k k L k k k k A k

B k

f f f
T

k k

k f

= ()() + () ()() + +() ()[{
+ (

=

−

∑x x u x

u

, , , λ 1
0

1

)) − +()]}x k 1

	 (10.12)

We define the Hamiltonian function as

	
H k k k L k k k k A k B k

k k

Tx u x u x u() ()() = () ()() + +() () + ()[]
=

, , , , ,
, . .

λ 1

0 .. ,kf −1
  (10.13)

and rewrite the performance measure in terms of the Hamiltonian as

	

J J k k k k

H k k k k k

f f f
T

f f

T

k k

= ()() − () () +

() ()() − () (){ }
= +

x x

x u x

,

, ,

λ

λ
0 11

1

0 0 0

k f

H k k k
−

∑ + () ()()x u, ,
  (10.14)

Each term of the preceding expression can be expanded as a truncated Taylor
series in the vicinity of the optimum point of the form

	 J J J J= + + +* δ δ1 2 . . . 	 (10.15)

where the * denotes the optimum, d denotes a variation from the optimal, and the
subscripts denote the order of the variation in the expansion. From basic calculus,
we know the necessary condition for a minimum or maximum is that the first-
order term must be zero. For a minimum the second-order term must be positive
or zero, and a sufficient condition for a minimum is a positive second term. We
therefore need to evaluate the terms of the expansion to determine necessary and
sufficient conditions for a minimum.

Each term of the expansion includes derivatives with respect to the arguments
of the performance measure and can be obtained by expanding each term sepa-
rately. For example, the Hamiltonian can be expanded as

	

H k k k H k k k

H k k k

k
k

T

x u x u

x u

x
x

() ()() = () ()() +
∂ () ()()

∂ ()
(

, , , ,

, ,

* *

*
δ)) + ∂ () ()()

∂ ()
() +

() + ()[] +() +

H k k k

k
k

A k B k k

k

T

T

T

x u

u
u

x u

x

, ,

*

*

δ

δλ

δ

1

(() ∂ () ()()
∂ ()

() + () ∂ () ()()
∂

H k k k

k
k k

H k k k

k

T

Tx u

x
x u

x u

u

, , , ,
2

2

2
*

δ δ
(()

() +

() ∂ () ()()
∂ ()∂ ()

() + () ∂
*

*

T

T

T

T

k

k
H k k k

k k
k k

δ

δ δ δ

u

x
x u

x u
u u

, , 2HH k k k

k k
k

T
x u

u x
x

() ()()
∂ ()∂ ()

() +, ,

*
higher order terms

δ

	 (10.16)

where d denotes a variation from the optimal, the superscript (*) denotes the
optimum value, and the subscript (*) denotes evaluation at the optimum point.
The second-order terms can be written more compactly in terms of the Hessian
matrix of second derivatives in the form

	 δ δx u

x u

x

x u

x u
T Tk k

H k k k

k

H k k k

k k
() ()[]

∂ () ()()
∂ ()

∂ () ()()
∂ ()∂

, , , ,
2 (()

∂ () ()()
∂ ()∂ ()

∂ () ()()
∂ ()












2 2

2

H k k k

k k

H k k k

k

x u

u x

x u

u

, , , ,








()
()







*

δ
δ

x

u

k

k
  (10.17)

10.2  Optimal Control   385

386    CHAPTER 10  Optimal Control

We expand the linear terms of the performance measure as

	 λ λ δλ λ δT T T Tk k k k k k k k() () = () () + () () + () ()x x x x* * * * 	 (10.18)

The terminal penalty can be expanded as

	

J k k J k k
J k k

k
kf f f f f f

f f f

f

T

f

T

x x
x

x
x

x

()() = ()() +
∂ ()()

∂ ()
() +, ,

,
*

*
δ

δ kk
J k k

k
kf

f f f

f
f() ∂ ()()

∂ ()






()
2

2

x

x
x

*

*

,
δ

	 (10.19)

We now combine the first-order terms to obtain the increment

	

δ λ δ1

1

1

0

J
H k k k

k
k k

T

k k

N

= ∂ () ()()
∂ ()

− ()








 ()





= +

−

∑ x u

x
x

, ,

*
* ++

() + () − +()[] +()




+

∂ () ()()
∂ ()

A k B k k k

H k k k

k

Tx u x

x u

u

* * *

*

1 1δλ

, ,
TT

f f f

f
f

T

fk
J k k

k
k kδ λ δu

x

x
x() +

∂ ()()
∂ ()

− ()





(),

*

  (10.20)

From (10.15) and the discussion following it, we know that a necessary condi-
tion for a minimum of the performance measure is that the increment must be
equal to zero for any combination of variations in its arguments. A zero for any
combination of variations occurs only if the coefficient of each increment is equal
to zero. Equating each coefficient to zero, we have the necessary conditions

	 x x u* * *k A k B k k k kf+() = () + () = −1 10, , . . . , 	 (10.21)

	 λ*
*

k
H k k k

k
k k kf() = ∂ () ()()

∂ ()
= −x u

x

, ,
, . . . ,0 1 	 (10.22)

	
∂ () ()()

∂ ()
=H k k k

k

x u

u
0

, ,

*
	 (10.23)

	 0 =
∂ ()()

∂ ()
− () ()J k k

k
k kf f f

f
f

T

f

x

x
x

,

*
λ δ 	 (10.24)

If the terminal point is fixed, then its perturbation is zero and the terminal
optimality condition is satisfied. Otherwise, we have the terminal conditions

	 λ k
J k k

k
f

f f f

f

() =
∂ ()()

∂ ()
x

x

,
	 (10.25)

Similarly, conditions can be developed for the case of a free initial state with an
initial cost added to the performance measure.

The necessary conditions for a minimum of equations (10.21) through (10.23)
are known, respectively, as the state equation, the costate equation, and the

minimum principle of Pontryagin. The minimum principle tells us that the
cost is minimized by choosing the control that minimizes the Hamiltonian. This
condition can be generalized to problems where the control is constrained, in
which case the solution can be at the boundary of the allowable control region.
We summarize the necessary conditions for an optimum in Table 10.1.

The second-order term is

	

δ δ δ2

2

J k k

H k k k

k

H k k k

k
T T= () ()[]

∂ () ()()
∂ ()

∂ () ()()
∂ (

x u

x u

x

x u

x

, , , ,

))∂ ()
∂ () ()()

∂ ()∂ ()
∂ () ()()

∂ ()





 u

x u

u x

x u

u

k

H k k k

k k

H k k k

k

2 2

2

, , , ,













()
()







+

() ∂ ()()

=

−

∑
*

δ
δ

δ

x

u

x
x

k

k

k
J k k

k k

k

T
f

f f f

f

0

1

2 ,

∂∂ ()
()

x
x

2 k
k

f
f

*
δ

	 (10.26)

For the second-order term to be positive or at least zero for any perturbation, we
need the Hessian matrix to be positive definite, or at least positive semidefinite.
We have the sufficient condition

	

∂ () ()()
∂ ()

∂ () ()()
∂ ()∂ ()

∂ () ()

H k k k

k

H k k k

k k

H k k

x u

x

x u

x u

x u

, , , ,

,

2

2 ,, , ,k

k k

H k k k

k

()
∂ ()∂ ()

∂ () ()()
∂ ()



















>

u x

x u

u

2

2

0

*

	 (10.27)

If the Hessian matrix is positive semidefinite, then the condition is necessary
for a minimum but not sufficient because there will be perturbations for which
the second-order terms are zero. Higher-order terms are then needed to determine
if these perturbations result in an increase in the performance measure.

For a fixed terminal state, the corresponding perturbations are zero and no
additional conditions are required. For a free terminal state, we have the additional
condition

	
∂ ()()

∂ ()
>

2

2
0

J k k

k
f f

f

x

x

,

*
	 (10.28)

Table 10.1  Optimality Conditions

Condition Equation

State equation x x u* * *k A k B k k k kf+() = () + () = −1 10, . . . ,

Costate equation λ* k
H k k k

k
k k kf() = ∂ () ()()

∂ ()
= −x u

x

, ,

*
, . . . ,0 1

Minimum principle ∂ () ()()
∂ ()

= = −H k k k

k
k k kf

x u

u
0

, ,
, , . . . ,

*
0 1

10.2  Optimal Control   387

388    CHAPTER 10  Optimal Control

Example 10.3

Because of their preference for simple models, engineers often use first-order systems for
design. These are known as scalar systems. We consider the scalar system

	 x k ax k bu k x x b+() = () + () () = >1 0 00, ,

If the system is required to reach the zero state, find the control that minimizes the control
effort to reach the desired final state.

Solution
For minimum control effort, we have the performance measure

	 J u k
k

kf

= ()
=

∑1

2
2

0

The Hamiltonian is given by

	
H k k k u k k a k b k k kfx u x u() ()() = () + +() () + ()[] = −, , , , . . . ,

1

2
1 0 12 λ

For minimum time, we minimize the Hamiltonian by selecting the control

	 u k b k* *() = − +()λ 1

The costate equation is

	 λ λ* *k a k k kf() = +() = −1 0 1, . . . ,

and its solution is given by

	 λ λ* *k a k k kk k
f f

f() = () = −− , , . . . ,0 1

The optimal control can now be written as

	 u k ba k k kk k
f f

f* *() = − () = −− −1 0 1λ , . . . ,

We next consider iterations of the state equation with the optimal control

	 x ax bu ax b a kk
f

f* * *1 0 0 0
2 1() = () + () = − ()− λ

	 x ax bu a x b a a kk k
f

f f* * *2 1 1 2
0

2 2() = () + () = − +{ } ()− λ

	

x ax bu a x b a a a kk k k
f

f f f* * *3 2 2 3
0

2 1 1 3() = () + () = − + +{ } ()+ − − λ



	 x k ax k bu k a x b a a kf f f
k k

f
f f* * *() = −() + −() = − () + +{ } ()−

1 1 10
2 2 1 2. . . λ == 0

We solve the last equation for the terminal Lagrange multiplier

	
λ* k

a b x

a a
f

k

k

f

f
() = ()

() + +−

2
0

2 1 2 1. . .

Substituting for the terminal Lagrange multiplier gives the optimal control

	
u k

a b x

a a
k k

k k

k f

f

f
* () = − ()

() + +
= −

− −

−

2 1
0

2 1 2 1
0 1

. . .
, . . . ,

For an open-loop stable system, we can write the control in the form

	
u k

a

a
a b x k k ak

k k
ff

f* () = − −
() −

() = − <− −
2

2

2 1
0

1

1
0 1 1, . . . , ,

Note that the closed-loop system dynamics of the optimal system are time varying even
though the open-loop system is time invariant. The closed-loop system is given by

	
x k ax k

a b x

a a
x x b

k k

k

f

f
+() = () − ()

() + +
() = >

− −

−1
1

0 0
2 1

0

2 1 2
0

. . .
, ,

For an initial state x0 = 1 and the unstable dynamics with a = 1.5 and b = 0.5, the
optimal trajectories are shown in Figure 10.2. The optimal control stabilizes the system and
drives its trajectories to the origin.

Figure 10.2

Optimal trajectories for the scalar system described in Example 10.3.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

x (k)

10.3  The Linear Quadratic Regulator   389

10.3  The Linear Quadratic Regulator
The choice of performance index in optimal control determines the performance
of the system and the complexity of the optimal control problem. The most

390    CHAPTER 10  Optimal Control

popular choice for the performance index is a quadratic function of the state vari-
able and the control inputs. The performance measure is of the form

	 J k S k k k Q k k k R k kT
f f f

T T

k k

k f

= () () () + () () () + () () ()()
=

1

2

1

2
0

x x x x u u
−−

∑
1

  (10.29)

where the matrices S(kf), Q(k), k = k0, . . . , kf − 1 are positive definite symmetric
n × n, and the matrices R(k), k = k0, . . . , kf − 1 are positive definite symmetric
m × m. This choice is known as the linear quadratic regulator, and in addition
to its desirable mathematical properties it can be physically justified. In a regulator
problem, the purpose is to maintain the system close to the zero state and the
quadratic function of the state variable is a measure of error. On the other hand,
the effort needed to minimize the error must also be minimized, as must the
control effort represented by a quadratic function of the controls. Thus, the qua-
dratic performance measure achieves a compromise between minimizing the
regulator error and minimizing the control effort.

To obtain the necessary and sufficient conditions for the linear quadratic regu-
lator, we use the results of Section 10.2. We first write an expression for the
Hamiltonian:

	
H k k k k Q k k k R k k

k A k

T T

T

x u x x u u

x

() ()() = () () () + () () ()

+ +() (

, ,
1

2

1

2
1λ)) + ()[] = −B k k k kfu , , . . . ,0 1

  (10.30)

The state equation is unchanged, but the costate equation becomes

	 λ λ* * *k Q k k A k k k kT
f() = () () + +() = −x 1 10, . . . , 	 (10.31)

Pontryagin’s minimum principle gives

	 R k k B kT() () + +() =u 0* *λ 1

which yields the optimum control expression

	 u* *k R k B kT() = − () +()−1 1λ 	 (10.32)

Substituting in the state equation, we obtain the optimal dynamics

	 x x* * * *k A k B R k B k k k kT
f+() = () − () +() = −−1 1 11

0λ , , . . . , 	 (10.33)

Equation (10.27) gives the condition

	
Q k

R

n m

m n

()





>×

×

0

0 *
0 	 (10.34)

Because R is positive definite, a sufficient condition for a minimum is that Q must
be positive definite. A necessary condition is that Q must be positive semidefinite.

10.3.1  Free Final State

If the final state of the optimal control is not fixed, we have the terminal condition
based on (10.25),

	 λ* *k
J k k

k
S k kf

f f f

f
f f() =

∂ ()()
∂ ()

= () ()x

x
x

,
	 (10.35)

where the matrix S(kf) is the terminal weight matrix of (10.29). The condition
suggests a general relationship between the state and costate—that is,

	 λ* *k S k k() = () ()x 	 (10.36)

If the proposed relation yields the correct solution, this would allow us to
conclude that the relation is indeed correct. We substitute the proposed relation
(10.36) in the state equation (10.33):

	 x x x* * * *k A k B R k B S k kT+() = () − () +() +()−1 1 11

This yields the recursion

	 x x* * *k I B R k B S k A kT+() = + () +(){ } ()− −
1 11 1

	 (10.37)

Using the proposed relation (10.36) and substituting in the costate equation, we
have

	

λ* * *

*

k Q k k A S k k

Q k A S k I B R k B S

T

T T

() = () () + +() +()

= () + +() + ()−

x x1 1

1 1 kk A k

S k k

+()[]{ } ()

= () ()

−
1

1
x

x

*

*

	 (10.38)

Equation (10.38) holds for all values of the state vector and hence we have the
matrix equality

	 Q k A S k I B R k B S k A S kT T() + +() + () +()[] = ()− −
1 11 1

*

We now apply the matrix inversion lemma (see Appendix III) to obtain

	
S k A S k S k B B S k B

R k B S k A Q k S k

T T

T

() = +() − +() +()({
+ ()) +()} + ()−

1 1 1

1
1

, ff()
	 (10.39)

The preceding equation is known as the matrix Riccati equation and can be
solved iteratively backward in time to obtain the matrices S(k), k = k0, . . . , kf − 1.

We now return to the expression for the optimal control (10.32) and substitute
for the costate to obtain

	

u x

x u

* *

* *

k R k B S k k

R k B S k A k B k

T

T

() = − () +() +()
= − () +() () + ()[

−

−

1

1

1 1

1]]

We solve for the control

	 u x* *k I R k B S k B R k B S k A kT T() = − + () +()[] () +() ()− − −1 1 11 1

Using the rule for the inverse of a product, we have the optimal state feedback

	
u x* *k K k k

K k R k B S k B B S k AT T

() = − () ()

() = () + +()[] +()−
1 1

1
	 (10.40)

10.3  The Linear Quadratic Regulator   391

392    CHAPTER 10  Optimal Control

Thus, with the offline solution of the Riccati equation, we can implement the
optimal state feedback.

The Riccati equation can be written in terms of the optimal gain of (10.40) in
the form

	

S k A S k A B B S k B R k B S k A Q k

A S k

T T T

T

() = +() − +() + ()() +(){ } + ()

= +(

−
1 1 1

1

1

)) − (){ } + ()A BK k Q k

In terms of the closed-loop state matrix Acl(k), we have

	
S k A S k A k Q k

A k A BK k

T
cl

cl

() = +() () + ()

() = − ()

1
	 (10.41)

Note that the closed-loop matrix is time varying even for a time-invariant pair
(A, B).

A more useful form of the Riccati is obtained by adding and subtracting terms
to obtain

	 S k A S k A k Q k K k B k S k A BK kcl
T

cl
T T() = +() () + () + () () +() − ()[]1 1

Using (10.39), the added term can be rewritten as

	

K k B k S k A BK k K k B k S k A

K k R k B S k

T T T T

T T

() () +() − ()[] = () () +()
− () () +

1 1

++() − ()[] ()
= () () () + () +()

− () + +

1

1

1

B R k K k

K k R k K k K k B S k A

R k B S k

T T T

T (()[] () + +()[]
+()

= () () ()

−
B R k B S k B

B S k A

K k R k K k

T

T

T

1

1

1

We now have the Joseph form of the Riccati equation:

	 S k A S k A k K k R k K k Q kcl
T

cl
T() = +() () + () () () + ()1 	 (10.42)

Because of its symmetry, this form performs better in iterative numerical
computation.

If the Riccati equation in Joseph form is rewritten with the optimal gain
replaced by a suboptimal gain, then the equation becomes a Lyapunov differ-
ence equation (see Chapter 11). For example, if the optimal gain is replaced by
a constant gain K to simplify implementation, then the performance of the system
will be suboptimal and is governed by a Lyapunov equation.

Example 10.4

A variety of mechanical systems can be approximately modeled by the double integrator

	 x t u t() = ()

where u(t) is the applied force. With digital control and a sampling period T = 0.02 s, the
double integrator has the discrete state–space equation

	
x xk

T
k

T

T
u k+() = 





() + 





()1
1

0 1

22

	 y k k() = [] ()1 0 x

1.	 Design a linear quadratic regulator for the system with terminal weight S(100) =
diag{10, 1}, Q = diag{10, 1}, and control weight r = 0.1, then simulate the system with
initial condition vector x(0) = [1, 0]T.

2.	 Repeat the design of part 1 with S(100) = diag{10, 1}, Q = diag{10, 1}, and control
weight r = 100. Compare the results to part 1, and discuss the effect of changing the
value of r.

Solution
The Riccati equation can be expanded with the help of a symbolic manipulation package
to obtain

	

s s

s s

s s s T s r s s s T
k

11 12

12 22

11 22 12
2 2

11 11 22 12
2 32 4







=

−() + −() + rr s T s

s s s T r s T s s s s T

11 12

11 22 12
2 3

11 12 11 22 12
2 4

2

2 4 2

+()
−() + +() −() ++ + +()







+ + +

+
+

4 2

4 4 4
11

2
12 22

4
11

3
12

2
22

1

s T Ts s r

T s T s T s r

Q
k

where the subscript denotes the time at which the matrix S is evaluated by backward-in-time
iteration starting with the given terminal value. We use the simple MATLAB script:

% simlqr: simulate a scalar optimal control DT system
t(1)=0;
x{1}=[1;0]; % Initial state
T=0.02; % Sampling period
N=150; % Number of steps
S=diag([10,1]);r=0.1; % Weights
Q=diag([10,1]);
A=[1,T;0,1];B=[T∧2/2;T]; % System matrices

for i=N:-1:1
     K{i}=(r+B′*S*A*B)\B′*S*A; % Calculate the optimal feedback gains
     % Note that K(1) is really K(0)
     kp(i)=K{i}(1); % Position gain
     kv(i)=K{i}(2); % Velocity gain
     Acl=A-B*K{i};
     S=Acl′*S*Acl+K{i}′*r*K{i}+Q; % Iterate backward (Riccati-Joseph form)
end

10.3  The Linear Quadratic Regulator   393

394    CHAPTER 10  Optimal Control

for i=1:N
     t(i+1)=t(i)+T;
     u(i)=-K{i}*x{i};
     x{i+1}=A*x{i}+B*u(i); % State equation
end
xmat=cell2mat(x); % Change cell to mat to extract data
xx=xmat(1,:); % Position
xv=xmat(2,:); % Velocity
plot(t,xx,′.′) % Plot Position
figure % New figure
plot(t,xv,′.′) % PLot Velocity
figure % New figure
plot(xx,xv,′.′)% PLot phase plane trajectory
figure % New figure
plot(t(1:N),u,′.′) % Plot control input
figure % New figure
plot(t(1:N),kp,′.′,t(1:N),kv,′.′) % Plot position gain & velocity gain

Five plots are obtained using the script for each part.

1.	 The first three plots are the position trajectory of Figure 10.3, the velocity trajectory of
Figure 10.4, and the phase-plane trajectory of Figure 10.5. The three plots show that
the optimal control drives the system toward the origin. However, because the final state
is free, the origin is not reached. From the gain plot shown in Figure 10.6, we observe

Figure 10.3

Position trajectory for the inertial control system described in Example 10.4(1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

t

x1(t)

Figure 10.4

Velocity trajectory for the inertial control system described in Example 10.4(1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

t

x2(t)

Figure 10.5

Phase plane trajectory for the inertial control system described in Example 10.4(1).

–0.2 0 0.2 0.4 0.6 0.8 1 1.2

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

x1(t)

x2(t)

10.3  The Linear Quadratic Regulator   395

396    CHAPTER 10  Optimal Control

that the controller gains, which are obtained by iteration backward in time, approach a
fixed level. Consequently, the optimal control shown in Figure 10.7 also approaches a
fixed level.

2.	 The first three plots are the position trajectory of Figure 10.8, the velocity trajectory of
Figure 10.9, and the phase-plane trajectory of Figure 10.10. The three plots show that

Figure 10.6

Plot of feedback gains versus time for Example 10.4(1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1

2

3

4

5

6

7

8

9

Position gain K(1)

Velocity gain K(2)

t

K

Figure 10.7

Optimal control input for Example 10.4(1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
–10

–8

–6

–4

–2

0

2

t

u(t)

the optimal control drives the system toward the origin. However, the final state reached
is farther from the origin than that of part 1 because the error weight matrix is now smaller
relative to the value of r. The larger control weight r results in smaller control gain as
shown in Figure 10.11. This corresponds to a reduction in the control effort as shown in
Figure 10.12. Note that the controller gains approach a fixed level at a slower rate than
in part 1.

Figure 10.8

Position trajectory for the inertial control system of Example 10.4(2).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1(t)

t

Figure 10.9

Velocity trajectory for the inertial control system of Example 10.4(2).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–0.35

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

0
x2(t)

t

10.3  The Linear Quadratic Regulator   397

398    CHAPTER 10  Optimal Control

Figure 10.10

Phase plane trajectory for the inertial control system of Example 10.4(2).

–0.2 0 0.2 0.4 0.6 0.8 1
–0.35

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

0
x2(t)

x1(t)

Figure 10.11

Plot of feedback gains versus time for Example 10.4(2).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
K

Position gain K(1)

Velocity gain K(2)

t

10.4  Steady-State Quadratic Regulator
Implementing the linear quadratic regulator is rather complicated because of the
need to calculate and store gain matrices. From Example 10.4 we observe that the
gain values converge to fixed values. This occurs in general with the fulfillment
of some simple requirements that are discussed in this section.

For many applications, it is possible to simplify implementation considerably
by using the steady-state gain exclusively in place of the optimal gains. This solution
is only optimal if the summation interval in the performance measure, known as the
planning horizon, is infinite. For a finite planning horizon, the simplified solu-
tion is suboptimal (i.e., gives a higher value of the performance measure) but often
performs almost as well as the optimal control. Thus, it is possible to retain the
performance of optimal control without the burden of implementing it if we solve
the steady-state regulator problem with the performance measure of the form

	 J k Q k k R kT T

k k

= () () + () ()()
=

∞

∑1

2
0

x x u u 	 (10.43)

We assume that the weighting matrices Q and R are constant, with Q positive
semidefinite and R positive definite. We can therefore decompose the matrix
Q as

	 Q Q Qa
T

a= 	 (10.44)

where Qa is the square root matrix. This allows us to write the state error terms
of “measurements” in terms of an equivalent measurement vector

Figure 10.12

Optimal control input for Example 10.4(2).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–0.35

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

0

0.05

t

u(t)

10.4  Steady-State Quadratic Regulator   399

400    CHAPTER 10  Optimal Control

	
y x

x y y

k Q k

k Qx k k k

a

T T

() = ()

() () = () ()
	 (10.45)

The matrix Qa is positive definite for Q positive definite and positive semi-
definite for Q positive semidefinite. In the latter case, large state vectors can be
mapped by Qa to zero y(k), and a small performance measure cannot guarantee
small errors or even stability. We think of the vector y(k) as a measurement of
the state and recall the detectability condition from Chapter 8.

We recall that if the pair (A, Qa) is detectable, then x(k) decays asymptotically
to zero with y(k). Hence, this detectability condition is required for acceptable
steady-state regulator behavior. If the pair is observable, then it is also detectable
and the system behavior is acceptable. For example, if the matrix Qa is positive
definite, there is a one–one mapping between the states x and the measurements
y and the pair (A, Qa) is always observable. Hence, a positive definite Q (and Qa)
is sufficient for acceptable system behavior.

If the detectability (observability) condition is satisfied and the system is stabi-
lizable, then the Riccati equation does not diverge and a steady-state condition is
reached. The resulting algebraic Riccati equation is in the form

	 S A S SB B SB R B S A QT T T= − +(){ } +−1
	 (10.46)

It can be shown that, under these conditions, the algebraic Riccati equation
has a unique positive definite solution. However, the equation is clearly difficult
to solve in general and is typically solved numerically. The MATLAB solution of
the algebraic Riccati equation is discussed in Section 10.4.2.

The optimal state feedback corresponding to the steady-state regulator is

	
u x* *= − ()

= +[]−

K k

K R B SB B SAT T1
	 (10.47)

Using the gain expression, we can write the algebraic Riccati equation in the
Joseph form:

	
S A SA K RK Q

A A BK

cl
T

cl
T

cl

= + +

= −
	 (10.48)

If the optimal gain K is replaced by a suboptimal gain, then the algebraic Riccati
equation becomes an algebraic Lyapunov equation (see Chapter 11). The
Lyapunov equation is clearly linear, and its solution is simpler than that of the
Riccati equation.

10.4.1  Output Quadratic Regulator

In most practical applications, the designer is interested in optimally controlling
the output y(k) rather than the state x(k). To optimally control the output, we
need to consider a performance index of the form

	 J k Q k k R kT
y

T

k k

= () () + ()()
=

∞

∑1

2
0

y y u u() 	 (10.49)

From (10.45), we observe that this is equivalent to the original performance
measure of (10.43) with the state weight matrix

	

Q C Q C

C Q Q C

Q Q

Q Q C

T
y

T
ya
T

ya

a
T

a

a ya

=
=
=

=

	 (10.50)

where Qya is the square root of the output weight matrix. As in the state qua-
dratic regulator, the Riccati equation for the output regulator can be solved using
the MATLAB commands discussed in Section 10.4.2. For a stabilizable pair (A, B),
the solution exists provided that the pair (A, Qa) is detectable with Qa as in
(10.50).

10.4.2  MATLAB Solution of the Steady-State Regulator Problem

MATLAB has several commands that allow us to conveniently design steady-state
regulators. The first is dare, which solves the discrete algebraic Riccati equation
(10.40). The command is

>> [S, E, K] = dare(A, B, Q, R)

The input arguments are the state matrix A, the input matrix B, and the weighting
matrices Q and R. The output arguments are the solution of the discrete algebraic
Riccati equation S, the feedback gain matrix K, and the eigenvalues E of the closed-
loop optimal system A − BK.

The second command for discrete optimal control is lqr, which solves the
steady-state regulator problem. The command has the form

>> [K, S, E] = dlqr(A, B, Q, R)

where the input arguments are the same as the command dare, and the output
arguments, also the same, are the gain K, the solution of the discrete algebraic
Riccati equation S, and the eigenvalues e of the closed-loop optimal system
A − BK.

For the output regulator problem, we can use the commands dare and dlqr
with the matrix Q replaced by CTQyC. Alternatively, MATLAB provides the
command

>> [Ky, S, E] = dlqry(A, B, C, D, Qy, R)

10.4  Steady-State Quadratic Regulator   401

402    CHAPTER 10  Optimal Control

Example 10.5

Design a steady-state regulator for the inertial system of Example 10.4, and compare its
performance to the optimal control by plotting the phase plane trajectories of the two
systems. Explain the advantages and disadvantages of the two controllers.

The pair (A, B) is observable. The state-error weighting matrix is positive definite, and
the pair (A, Qa) is observable. We are therefore assured that the Riccati equation will have
a steady-state solution. For the inertial system presented in Example 10.4, we have the
MATLAB output

>> [K,S,E] = dlqr(A,B,Q,r)

K = 9.4671    5.2817

S = 278.9525    50.0250    50.0250    27.9089

E = 0.9462 + 0.0299i

0.9462 – 0.0299i

If we simulate the system with the optimal control of Example 10.4 and superimpose
the trajectories for the suboptimal steady-state regulator, we obtain Figure 10.13. The figure
shows that the suboptimal control, although much simpler to implement, provides an almost
identical trajectory to that of the optimal control. For practical implementation, the subopti-
mal control is often preferable because it is far cheaper to implement and provides almost
the same performance as the optimal control. However, there may be situations where the
higher accuracy of the optimal control justifies the additional cost of its implementation.

Figure 10.13

Phase plane trajectories for the inertial system of Example 10.5 with optimal control (dark gray)
and suboptimal steady-state regulator (light gray).

–0.2 0 0.2 0.4 0.6 0.8 1 1.2
–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

x2(t)

x1(t)

Example 10.6

Design a digital output regulator for the double integrator system

	
x xk

T
k

T

T
u k+() = 





() + 





()1
1

0 1

22

	 y k k() = [] ()1 0 x

with sampling period T = 0.02 s, output weight Qy = 1, and control weight r = 0.1, and plot
the output response for the initial condition vector x(0) = [1, 0]T.

Solution
We use the MATLAB command

>> [Ky, S, E] = dlqry(A, B, C, 0, 1, 0.1)

Ky = 3.0837    2.4834

S = 40.2667    15.8114    15.8114    12.5753

E = 0.9749 + 0.0245i    0.9749 - 0.0245i

The response of the system to initial conditions x(0) = [1, 0]T is shown in Figure 10.14.
The output quickly converges to the target zero state.

Figure 10.14

Time response of the output regulator discussed in Example 10.6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

y(t)

t

10.4  Steady-State Quadratic Regulator   403

404    CHAPTER 10  Optimal Control

10.4.3  Linear Quadratic Tracking Controller

The minimization of the performance index (10.43) yields an optimal state feed-
back matrix K that minimizes integral square error and control effort (see (10.47)).
The error is defined relative to the zero state. In many practical applications, the
system is required to follow a specified function of time. The design of a control-
ler to achieve this objective is known as the tracking problem. If the control
task is to track a nonzero constant reference input, we can exploit the techniques
described in Section 9.3 to solve the new optimal regulator problem.

In Section 9.3, we showed that the tracking or servo problem can be solved
using an additional gain matrix for the reference input as shown in Figure 9.7,
thus providing an additional degree of freedom in our design. For a square system
(equal number of inputs and outputs), we can implement the degree-of-freedom
scheme of Figure 9.7 with the reference gain matrix

	 F C I A Bn cl= −() 
− −1 1

	 (10.51)

where

	 A A BKcl = − 	 (10.52)

All other equations for the linear quadratic regulator are unchanged.
Alternatively, to improve robustness, but at the expense of a higher-order

controller, we can introduce integral control, as in Figure 9.9. In particular, as in
(9.25) we consider the state–space equations

	

x x u

x x r y

y x

u x

k A k B k

k k k k

k C k

k K k

+() = () + ()

+() = () + () − ()

() = ()

() = −

1

1

(() − ()K kx

	 (10.53)

with integral control gain K . This yields the closed-loop state–space equations (9.26)

	
    



x x
0

r

y 0 x

k A BK k
I

k

k C k

l

+() = −() () + 





()

() = [] ()

1
	 (10.54)

where x x xk k k T() = () ()[] and the matrices are given by

	



  

A
A

C I

B
B

C C K K K

l

=
−







= 





= [] = []

0

0
0

	 (10.55)

The state feedback gain matrix can be computed as

	     K R B SB B SAT T= +[]−1
	 (10.56)

Example 10.7

Design an optimal linear quadratic state–space tracking controller for the inertial system of
Example 10.4 to obtain zero steady-state error due to a unit step input.

Solution
The state–space matrices are

	

A B

C

= 





= 





= []

1 0 02

0 1

0 0002

0 02

1 0

. .

.

Adding integral control, we calculate the augmented matrices

	

 A
A

C
B

B
=

−






=
















= 





=
0

1

1 0 02 0

0 1 0

1 0 1
0

0 0002

0 0

. .

. 22

0

















We select the weight matrices with larger error weighting as

	

Q r=
















=
10 0 0

0 1 0

0 0 1

0 1.

The MATLAB command dlqr yields the desired solution:

>> [Ktilde, S, E] = dlqr(Atilde, Btilde, Q, r)

Ktilde = 57.363418836015583   10.818259776359207  
-2.818765217602360

S = 1.0e + 003 * 2.922350387967343    0.314021626641202  
-0.191897141854919

0.314021626641202    0.058073322228013 -0.015819292019556

-0.191897141854919   -0.015819292019556    0.020350548700473

E = 0.939332687303670 + 0.083102739623114i

0.939332687303670 - 0.083102739623114i

0.893496746098272

The closed-loop system state–space equation is

	
    x x

0
rk A BK k

I
k

l

+() = −() () + 





()1

	 y 0 xk C k() = [] ()

The closed-loop step response shown in Figure 10.15 is satisfactory with a small overshoot
and zero steady-state error due to step.

10.4  Steady-State Quadratic Regulator   405

406    CHAPTER 10  Optimal Control

10.5  Hamiltonian System
In this section, we obtain a solution of the steady-state regulator problem using
linear dynamics without directly solving the Riccati equation of (10.46). We show
that we can obtain the solution of the Riccati equation from the state-transition
matrix of a linear system. We consider the case of constant weighting matrices.
We can combine the state and costate equations to obtain the 2n-dimensional
Hamiltonian system:

	
x x*

*

* *

*

k

k

A B R B

Q A

k

k
k

T

T

+()
()







=
−





()
+()







=
−1

1

1

λ λ
, kk kf0 1, . . . , − 	 (10.57)

If the state matrix A is obtained by discretizing a continuous-time system, then
it is a state transition matrix and is always invertible. We can then rewrite the
state equation in the same form as the equation of the costate l and obtain the
Hamiltonian system

	

x x*

*

*

*

k

k
H

k

k
k k k

H
A A

f

()
()







=
+()
+()







= −

=
−

λ λ
1

1
10

1

, , . . . ,

−− −

− − −+






() = () ()

1 1

1 1 1

B R B

QA A QA B R B

k S k k

T

T T

f f f

*

*

*λ x

	 (10.58)

Figure 10.15

Step response for Example 10.7.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

Time s

A
m

pl
it

ud
e

The Hamiltonian system of (10.58) describes the state and costate evolution
backward in time because it provides an expression for evaluating the vector at
time k from the vector at time k + 1. We can solve the linear equation and write
its solution in terms of the state-transition matrix for the Hamiltonian

	

x x*

*

*

*

k

k
H

k

k
k k k

H

k k f

f
f

k k

f

f

()
()







=
()
()







=

=

−

−

λ λ
, , . . . ,0

φφ φ
φ φ

11 12

21 22

k k k k

k k k k

f f

f f

−() −()
−() −()







	 (10.59)

The solution of the state equation yields

	
x x* *

*

k k k k k S k k

k k k k

f f f k

f

() = −() + −() (){ } ()

() = −() +

φ φ

λ φ φ

11 12

21 22 ff f kk S k k−() (){ } ()x*
	 (10.60)

We solve for the costate in terms of the state vector

	

λ

φ φ φ

φ

* *k M k k

M k k k k k S k k kf f f f

() = () ()

() = −() + −() (){ } −(){

+

x

21 22 11

112
1k k S kf f−() ()}−

	 (10.61)

Substituting in (10.32), we now have the control

	

u x

x u

* *

* *

k R B M k k

R B M k A k B k
k k

T

T

() = − +() +()
= − +() () + (){ }
=

−

−

1

1

0

1 1

1
, , kf −1

	 (10.62)

We multiply both sides by the matrix R and then solve for the control

	

u x* *k K k k

K k R B M k B B M k A

k k k

T T

f

() = () ()

() = − + +(){ } +()

= −

−
1 1

1

1

0, . . . ,

	 (10.63)

We compare the gain expression of (10.63) with that obtained by solving the
Riccati equation in (10.40). Because the two expressions are solutions of the same
problem and must hold for any state vector, conclude that they must be equal and
that M(k + 1) is identical to S(k + 1). Hence, the solution of the Riccati equation
is given in terms of the state-transition matrix of the Hamiltonian system by
(10.58). We can now write

S k k k k k S k k k k k S kf f f f f f() = −() + −() (){ } −() + −() (){ }−φ φ φ φ21 22 11 12
11   (10.64)

It may seem that the expression of (10.64) is always preferable to direct solu-
tion of the Riccati equation because it eliminates the nonlinearity. However,
because the dimension of the Hamiltonian system is 2n, the equation doubles the

10.5  Hamiltonian System   407

408    CHAPTER 10  Optimal Control

dimension of the problem. In many cases, it is preferable to solve the Riccati
equation in spite of its nonlinearity.

Example 10.8

Consider the double integrator described in Example 10.4 with a sampling period T = 0.02 s,
terminal weight S(10) = diag{10, 1}, Q = diag{10, 1}, and control weight r = 0.1. Obtain
the Hamiltonian system and use it to obtain the optimal control.

Solution
The Hamiltonian system is

	

x x*

*

*

*

k

k
H

k

k
k k kf

()
()







=
+()
+()







= −
λ λ

1

1
10, , . . . ,

	

H
A A B R B

QA A QA B R B

T

T T
=

+






=

−
− − −

− − −

1 1 1

1 1 1

1 0 02 0 0

0 1 0 0 004

10

*

*

.

.

−− −



















0 2 1 0 0004

0 1 0 02 1 004

. .

. .

	 λ* diag10 10 1 10() = { } (), x

Because the dynamics describe the evolution backward in time, each multiplication of the
current state by the matrix H yields the state at an earlier time. We define a backward-time
variable to use in computing as

	 k k kb f= − −()1

Proceeding backward in time, kb starts with the value zero at k = kf − 1, then increases
to kb = kf − 1 with k = 0. We solve for the transition matrices and the gains using the fol-
lowing MATLAB program.

% hamilton
% Form the Hamiltonian system for backward dynamics
[n,n]=size(a); % Order of state matrix
n2=2*n; % Order of Hamiltonian matrix
kf=11; % Final time
q=diag([10,1]);r=.1; % Weight matrices
sf=q; % Final state weight matrix
% Calculate the backward in time Hamiltonian matrix
a1=inv(a);
He=b/r*b′;
H3=q/a;
H=[a1,a1*He;H3,a′+H3*He];% Hamiltonian matrix
fi=H;% Initialize the state-transition matrix
% i is the backward time variable kb=k-(kf-1), k = discrete time
for i=1:kf-1
    fi11=fi(1:n,1:n); % Partition the state-transition matrix
    fi12=fi(1:n,n+1:n2);

    fi21=fi(n+1:n2,1:n);
    fi22=fi(n+1:n2,n+1:n2);
    s=(fi21+fi22*sf)/(fi11+fi12*sf);% Compute the Riccati egn. solution
K=(r+b′*s*b)\b′*s*a % Calculate the gains
fi=H*fi;% Update the state-transition matrix
end

The optimal control gains are given in Table 10.2. Almost identical results are obtained
using the program described in Example 10.4. Small computational errors result in small
differences between the results of the two programs.

Table 10.2  Optimal Gains for the Integrator with a Planning
Horizon kf = 10

Time Optimal Gain Vector K

0 2.0950     2.1507

1 1.7717     1.9632

2 1.4656     1.7730

3 1.1803     1.5804

4 0.9192     1.3861

5 0.6855     1.1903

6 0.4823     0.9935

7 0.3121     0.7958

8 0.1771     0.5976

9 0.0793     0.3988

Resources   409

Resources
Anderson, B.D.O., and J. B. Moore, Optimal Control: Linear Quadratic Methods, Prentice

Hall, 1990.
Chong, E. D., and S. H. Z

.
ak, An Introduction to Optimization, Wiley-Interscience, 1996.

Jacquot, R. G., Modern Digital Control Systems, Marcel Dekker, 1981.
Kwakernaak, H., and R. Sivan, Linear Optimal Control Systems, Wiley-Interscience,

1972.
Lewis, F. L., and V. L. Syrmos, Optimal Control, Wiley-Interscience, 1995.
Naidu, D. S., Optimal Control Systems, CRC Press, 2002.
Sage, A. P., and C. C. White III, Optimum Systems Control, Prentice-Hall, 1977.

410    CHAPTER 10  Optimal Control

Problems

10.1.	 Show that for a voltage source vs with source resistance Rs connected to a
resistive load RL, the maximum power transfer to the load occurs when
RL = Rs.

10.2.	 Let x be an n × 1 vector whose entries are the quantities produced by a
manufacturer. The profit of the manufacturer is given by the quadratic form

	
J PT Tx x x q x r() = + +1

2

where P is a negative definite symmetric matrix, and q and r are constant
vectors. Find the vector x to maximize profit
(a)	 With no constraints on the quantity produced.
(b)	 If the quantity produced is constrained by

	 Bx c=

where B is an m × n matrix, m < n, and c is a constant vector.

10.3.	 Prove that the rectangle of the largest area that fits inside a circle of diameter
D is a square of diagonal D.

10.4.	 With q = 1 and r = 2, S(kf) = 1, write the design equations for a digital
optimal quadratic regulator for the integrator

	 x u=

10.5.	 The discretized state–space model of the Infante AUV of Problem 7.14 is
given by

	

x k

x k

x k

1

2

3

1

1

1

0 9932 0 03434 0

0 009456 0

+()
+()
+()

















=
−

−
. .

. .99978 0

0 0002368 0 04994 1

1

2

3−

















()
()
()
















. .

x k

x k

x k 
+ −

−

















()
0 002988

0 0115

0 0002875

.

.

.

u k

y k

y k

x k

x k

x k

1

2

1

2

3

1 0 0

0 1 0

()
()







= 





()
()
()

















Design a steady-state linear quadratic regulator for the system using the
weight matrices Q = I3 and r = 2.

10.6.	 A simplified linearized model of a drug delivery system to maintain blood
glucose and insulin levels at prescribed values is given by

	

x k

x k

x k

1

2

3

5

1

1

1

0 04 4 4 0

0 0 025 1 3 10

0

+()
+()
+()

















=
− −

− × −

. .

. .

00 09 0

1 0

0 0

0 0 1

1

2

3. .

















()
()
()

















+













x k

x k

x k



()
()







u k

u k

1

2

	

y k

y k

x k

x k

x k

1

2

1

2

3

1 0 0

0 0 1

()
()







= 





()
()
()

















where all variables are perturbations from the desired steady-state levels.1
The state variables are the blood glucose concentration x1 in mg/dl, the
blood insulin concentration x3 in mg/dl, and a variable describing the
accumulation of blood insulin x2. The controls are the rate of glucose
infusion u1 and the rate of insulin infusion u2, both in mg/dl/min. Discretize
the system with a sampling period T = 5 min and design a steady-state
regulator for the system with weight matrices Q = I3 and R = 2I2. Simulate
the system with the initial state x(0) = [6 0 −1]T, and plot the trajectory in
the x1 - x3 plane as well as the time evolution of the glucose concentration.

10.7.	 Optimal control problems can be solved as unconstrained optimization
problems without using Lagrange multipliers. This exercise shows the
advantages of using Lagrange multipliers and demonstrates that discrete-time
optimal control is equivalent to an optimization problem over the control
history.
(a)	 Substitute the solution of the state equation

	

x x u

x

k A A B i

A k k

k k i

i

k

k

() = () + ()

= () + () ()

− −

=

−

∑0

0

1

0

1

C u

	 C k B AB A Bk() = []− 1

	 u k col k() = −() (){ }u u1 0, . . . ,

In the performance measure

J k S k k k Q k k k R k kT
f f f

T T

k

k f

= () () () + () () () + () () ()()
=

−1

2

1

2 0

x x x x u u
11

∑
to eliminate the state vector and obtain

	
J

k R k k A Q k k k

A Q k A

T T T k

T k k
=

() () () + ()() () () () +
()() ()

1

2

2 0

0

u u C ux

x x 000 () + () () ()




=

∑
u uT

k

k

k R k k

f

with Q k S k R kf f f m m() = () () = ×, 0
(b)	 Without tediously evaluating the matrix Req and the vector l, explain why it

is possible to rewrite the performance measure in the equivalent form

	
J k R k keq

T
f eq f

T
f= () () + ()1

2
u u u l

1F. Chee, A. V. Savkin, T. L. Fernando, and S. Nahavandi, Optimal H∞ insulin injection control for
blood glucose regulation in diabetic patients, IEEE Trans. Biomed. Eng., 52(10):1625-1631, 2005.

Problems   411

412    CHAPTER 10  Optimal Control

(c)	 Show that the solution of the optimal control problem is given by

	 u k Rf eq() = − −1l

10.8.	 For (A, B) stabilizable and (A, Q1/2) detectable, the linear quadratic regulator
yields a closed-loop stable system. To guarantee that the eigenvalues of the
closed-loop system will lie inside a circle of radius 1/a, we solve the
regulator problem for the scaled state and control

	 x x u uk k k kk k() = () () = ()+α α 1

(a)	 Obtain the state equation for the scaled state vector.
(b)	 Show that if the scaled closed-loop state matrix with the optimal control

u xk K k() = − () has eigenvalues inside the unit circle, then the
eigenvalues of the original state matrix with the control
u xk K k K K() = − () =, α are inside a circle of radius 1/a.

10.9.	 Repeat Problem 10.5 with a design that guarantees that the eigenvalues of
the closed-loop system are inside a circle of radius equal to one-half.

10.10.	 Show that the linear quadratic regulator with cross-product term of the form

	
J k S k k k Q k k S

k R k

T
f f f

T T

k k

k

T

f

= () () () + () () () +(

+ () ()
=

−

∑x x x x x u

u

2
0

1

uu k())
is equivalent to a linear quadratic regulator with no cross-product term with
the cost

	
J k S k k k Q k k

k R k k

T
f f f

T

k k

k

T T

f

= () () () + () () ()(

+ () () ())
=

−

∑x x x x

u u
0

1

	 Q Q SR ST= − −1

u u xk k R S kT() = () + ()−1

and the plant dynamics

	 x x uk A k B k k k kf+() = () + () = −1 10, . . . ,

	 A A BR BT= − −1

10.11.	 Rewrite the performance measure shown in Problem 10.10 in terms of a
combined input and state vector col{x(k), u(k)}. Then use the Hamiltonian
to show that for the linear quadratic regulator with cross-product term, a
sufficient condition for a minimum is that the matrix

	

Q N

N RT











must be positive definite.

Computer Exercises

10.12.	 Design a steady-state regulator for the Infante AUV presented in Problem
10.5 with the performance measure modified to include a cross-product
term with

	 S T= [. .]1 0 2 0 1

(a)	 Using the MATLAB command dlqr and the equivalent problem with no
cross product as in Problem 10.10.

(b)	 Using the MATLAB command dlqr with the cross-product term.

10.13.	 Design an output quadratic regulator for the Infante UAV presented in
Problem 10.5 with the weights Qy = 1 and r = 100. Plot the output response
for the initial condition vector x(0) = [1, 0, 1]T.

10.14.	 Design an optimal LQ state–space tracking controller for the drug delivery
system presented in Problem 10.6 to obtain zero steady-state error due to a
unit step input.

10.15.	 Write a MATLAB script that determines the steady-state quadratic regulator
for the inertial system of Example 10.4 for r = 1 and different values of Q.
Use the following three matrices, and discuss the effect of changing Q on
the results of your computer simulation:

(a)	 Q = 





1 0

0 1

(b)	 Q = 





10 0

0 10

(c)	 Q = 





100 0

0 100

Computer Exercises   413

Chapter

11Elements of Nonlinear
Digital Control Systems

Objectives
After completing this chapter, the reader will be able to do the following:

1.	 Discretize special types of nonlinear systems.
2.	 Determine the equilibrium point of a nonlinear discrete-time system.
3.	 Classify equilibrium points of discrete-time systems based on their state plane

trajectories.
4.	 Determine the stability or instability of nonlinear discrete-time systems.
5.	 Design controllers for nonlinear discrete-time systems.

Most physical systems do not obey the principle of superposition and can there-
fore be classified as nonlinear. By limiting the operating range of physical systems,
it is possible to approximately model their behavior as linear. This chapter exam-
ines the behavior of nonlinear discrete systems without this limitation. We begin
by examining the behavior of nonlinear continuous-time systems with piecewise
constant inputs. We discuss Lyapunov stability theory both for nonlinear and linear
systems. We provide a simple controller design based on Lyapunov stability
theory.

11.1  Discretization of Nonlinear Systems
Discrete-time models are easily obtained for linear continuous-time systems from
their transfer functions or the solution of the state equations. For nonlinear
systems, transfer functions are not defined and the state equations are analytically
solvable in only a few special cases. Thus, it is no easy task to obtain discrete-time
models for nonlinear systems.

We examine the nonlinear differential equation

	 x f x x u= () + ()B 	 (11.1)

416    CHAPTER 11  Elements of Nonlinear Digital Control Systems

where x and f are n × 1 vectors, u is an m × 1 vector, B(x) is a n × m matrix,
and B(.) and f(.) are continuous functions of all their arguments. We assume that
the input is defined by

	 u u ut kT k k kT k T() = () = () ∈ +()[), , 1 	 (11.2)

For each sampling period we have the model

	 x f x x u= () + () ()B k 	 (11.3)

where k = 0, 1, 2, . . . The behavior of the discrete-time system can, in theory, be
obtained from the solution of equations of the form (11.3) with the appropriate
initial conditions. In practice, only a numerical solution is possible except in a
few special cases. One way to obtain a solution for nonlinear systems is to trans-
form the dynamics of the system to obtain equivalent linear dynamics. The general
theory governing such transformations, known as global or extended lineariza-
tion, is beyond the scope of this text. However, in some special cases it is pos-
sible to obtain equivalent linear models and use them for discretization quite easily
without resorting to the general theory. These include models that occur fre-
quently in some applications. We present four cases where extended linearization
is quite simple.

11.1.1  Extended Linearization by Input Redefinition

Consider the nonlinear model

	 M tq q m q q v() + () = () , 	 (11.4)

where M(q) is an invertible m × m matrix, and m, q, and v are m × 1 vectors. A
natural choice of state variables for the system is the 2m × 1 vector

	 x x x q q= { } = { }col col1 2, ,  	 (11.5)

To obtain equivalent linear dynamics for the system, we redefine the input
vector as

	 u qt() =  	 (11.6)

This yields the set of double integrators with state equations

	







x x

x u

u q v m q q

1 2

2

1

=

= ()

() = () () − ()[]−

t

t M t ,

	 (11.7)

The solution of the state equations can be obtained by Laplace transformation,
and it yields the discrete-state equation

	 x x uk A k B kd d+() = () + ()1 	 (11.8)

11.1  Discretization of Nonlinear Systems   417

with

	 A
I T I

I
B

T I

T I
d

m m

m
s

m

m

= 





=
()



0

22

	 (11.9)

With digital control, the input is piecewise constant and is obtained using the
system model

	 v x u m x xk M k k k k() = ()() () + () ()()1 1 2, 	 (11.10)

The expression for the input v is approximate because it assumes that the state
does not change appreciably over a sampling period with a fixed acceleration
input. The approximation is only acceptable for sufficiently slow dynamics.

The model shown in (11.4) includes many important physical systems. In
particular, a large class of mechanical systems, including the m-D.O.F. (degree-of-
freedom) manipulator presented in Example 7.4, are in the form (11.4). Recall
that the manipulator is governed by the equation of motion

	 M Vq q q q q g q() + () + () =  , τ 	 (11.11)

where
q = vector of generalized coordinates
M(q) = m × m positive definite inertia matrix
V(q, q) = m × m matrix of velocity related terms
g(q) = m × 1 vector of gravitational terms
t = m × 1 vector of generalized forces

Clearly, the dynamics of the manipulator are a special case of (11.4). As applied
to robotic manipulators, extended linearization by input redefinition is known as
the computed torque method. This is because the torque is computed from the
acceleration if measurements of positions and velocities are available.

Example 11.1

Find a discrete-time model for the 2-D.O.F. robotic manipulator described in Example 7.5
and find an expression for calculating the torque vector.

Solution
The manipulator dynamics are governed by

	
M

m m l m l m l l m l m l l

m l
q() =

+() + + () + ()1 2 1
2

2 2
2

2 1 2 2 2 2
2

2 1 2 2

2

2 cos cosθ θ
22
2

2 1 2 2 2 2
2+ ()





m l l m lcos θ

	
V

m l l

m l l
q q q,

sin

sin
 

  

() =
− () +()

()





2 1 2 2 2 1 2

2 1 2 2 1
2

2θ θ θ θ

θ θ 


	
g q() =

+() () + +()
+()







m m gl m gl

m gl

1 2 1 1 2 2 1 2

2 2 1 2

sin sin

sin

θ θ θ
θ θ 

418    CHAPTER 11  Elements of Nonlinear Digital Control Systems

For this system the coordinate vector q = [θ1 θ2]
T. We have a fourth-order linear system of

the form

	 x x1 2t t() = ()

	 x u2 t t() = ()

	 x q1 11 12t x t x t T() = = () ()[]

	 x q2 21 22t x t x t T() = = () ()[]

	 u t t t T() = () ()[]τ τ1 2

As in (11.10), the torque is calculated using the equation

	 τ k M k k V k k k k() = ()() () + () ()() () + ()()x u x x x g x1 1 2 2 1,

11.1.2  Extended Linearization by Input and State Redefinition

Consider the nonlinear state equations

	




z f z z

z f z z z z v

1 2

2 1 2 1 2

1 = ()

= () + () ()
1

2

,

, ,G t
	 (11.12)

where fi(.), i = 1, 2, and v are m × 1, and G is m × m. We redefine the state vari-
ables and input as

	

x z

x z

u z

1 1

1

1

=

=

() =

2 

t

	 (11.13)

The new variables have the linear dynamics of (11.7) and the discrete-time model
of (11.8).

Using the state equations, we can rewrite the new input as

	 u
f z z

z
f z z

f z z

z
f z z z z1 2

1
1 2

1 2

2
1 2 1 2t G() = ∂ ()

∂
() + ∂ ()

∂
() + (1

1
1

2
,

,
,

, ,)) ()[]v t   (11.14)

We solve for the nonlinear system input at time k to obtain

	
v

f z z

z
z z u

f z z

z
f z z1 2

2
1 2

1 2

1
1k G k() = ∂ ()

∂
()





() − ∂ ()
∂

−
1

1
1

1
,

,
,

, 22

1 2

2
1 2

f z z

z
f z z

(){
− ∂ ()

∂
()}1

2
,

,
	 (11.15)

The expression for the input v(k) is approximate because the state of the system
changes over a sampling period for a fixed input u(k).

11.1  Discretization of Nonlinear Systems   419

Example 11.2

Discretize the nonlinear differential equation

	
z z z1 1 2

21

2
= − ()

	 z z z z v z z2 1 2
3

2 1 24 1 5 0 0= + − ≠ ≠. , ,

Solution
We differentiate the first state equation to obtain

	

  z z z z z z z

z z z z z z v u t z

1 1 2
2

1 1
2

2 2

1
3

2
4

1
2

2
2

1
2

23 5 1 5

= − −
= − − + = (). . , 11 20 0≠ ≠, z

We have the linear model

	





x x

x u t

1 2

2

=

= ()

This gives the equivalent discrete-time model

	
x x uk

T
k

T

T
k+() = 





() +
()





()1
1

0 1

22

with x(k) = [x1(k) x2(k)]T = [z1(k) z1(k + 1)]T. If measurements of the actual state of the
system are available, then the input is computed using

	
v k z k z k z k

u k

z k z k
z z() = () () + () +

()
() ()

≠ ≠3 5 1 5 0 01 2
3

2
1
2

2
1 2. . , ,

11.1.3  Extended Linearization by Output Differentiation

Consider the nonlinear state–space model

	
z f z z v

y c z

= () + () ()

= ()

G t
	 (11.16)

where z and f are n × 1, v is m × 1, y is l × 1, and G is m × m. If we differen
tiate each scalar output equation and substitute from the state equation, we
have

	

dy

dt

c

c
G t i l

i i
T

i
T

= ∂ ()
∂

= ∂ ()
∂

() + () ()[] =

z

z
z

z

z
f z z v



1, . . . ,

	 (11.17)

420    CHAPTER 11  Elements of Nonlinear Digital Control Systems

We denote the operation of partial differentiation with regard to a vector and the
multiplication by its derivative by

	 L y
y

x
x

x= ∂
∂()  	 (11.18)

Hence, the time derivative of an output is equivalent to the operation L yiz . We
denote ri repetitions of this operation by the symbol L yi

r
i

i .
If the coefficient of the input vector v

	
∂ ()

∂
() =c

Gi
T

Tz

z
z 0 	 (11.19)

is nonzero, we stop to avoid input differentiation. If the coefficient is zero, we
repeat the process until the coefficient becomes nonzero. We define an input
equal to the term where the input appears and write the state equations in the
form

	

d y

dt
u t

u t L y i l

d
i

d i

i i
r

i

i

i

i

= ()

() = =, , . . . ,1

	 (11.20)

where the number of derivatives ri required for the input to appear in the expres-
sion is known as the ith relative degree. The linear system is in the form of l
sets of integrators, and its order is

	 n r nl i

i

n

= ≤
=
∑

1

	 (11.21)

Because the order of the linear model can be less that the original order of the
nonlinear system n, the equivalent linear model of the nonlinear system can have
unobservable dynamics. The unobservable dynamics are known as the internal
dynamics or zero dynamics. For the linear model to yield an acceptable
discrete-time representation, we require the internal dynamics to be stable and
sufficiently fast so as not to significantly alter the time response of the system.
Under these conditions, the linear model provides an adequate though incomplete
description of the system dynamics, and we can discretize each of the l linear
subsystems to obtain the overall discrete-time model.

Example 11.3

Consider a model of drug receptor binding in a drug delivery system. The drug is assumed
to be divided between four compartments in the body. The concentrations in the four com-
partments are given by

	 z a z a z z b d1 11 1 12 1 2 1= + +

	 z a z a z z b d2 21 2 22 1 2 2= + +

11.1  Discretization of Nonlinear Systems   421

	 z a z a z3 31 1 32 3= +

	 z a z4 41 2=

where d is the drug dose, zi is the concentration in the i th compartment, and aij are time-
varying coefficients. The second compartment represents the drug receptor complex. Hence,
the output equation is given by

	 y z= 2

Obtain an equivalent linear model by output differentiation.

Solution
We differentiate the output equation once

	  y z a z a z z b d= = + +2 21 2 22 1 2 2

The derivative includes the input, and no further differentiation is possible because it would
lead to input derivative terms.

The model of the linearized system is

	

x u t

u t a z a z z b d

= ()

() = + +21 2 22 1 2 2

It is first order, even though we have a third-order plant, and is only equivalent to part of
the dynamics of the original system. We assume the system is detectable with fast unobserv-
able dynamics, which is reasonable for the drug delivery system. Hence, the linear model
provides an adequate description of the system, and we obtain the discrete-time model

	 x k x k Tu k+() = () + ()1

The drug dose is given by

	 d k
b

u k a z k a z k z k() = () − () + () ()[]1

2
21 2 22 1 2

11.1.4  Extended Linearization Using Matching Conditions

The following theorem gives the analytical solution in a special case where an
equivalent linear model can be obtained for a nonlinear system by a simple state
transformation.

Theorem 11.1:  For the system of (11.1), let B(x) and f(x) satisfy the matching
conditions

	
B B B

B A

x x

f x x h x

() = ()

() = () ()
1 2

1

	 (11.22)

where B1(x) is an n × n matrix invertible in some region D, B2 is an n × m constant
vector, A is an n × n matrix, and h(x) has the derivative given by

422    CHAPTER 11  Elements of Nonlinear Digital Control Systems

	
∂

∂
h x

x
x

()
= ()[]−B1

1 	 (11.23)

with h(.) invertible in the region D. Then the solution of (11.1) over D is

	 x h wt t() = ()()−1 	 (11.24)

where w is the solution of the linear equation

	 w w ut A t B t() = () + ()2 	 (11.25)

Proof.  From (11.24), w = h(x). Differentiating with respect to time and substituting
from (11.1) and (11.22) gives

	

 w
h x

x
x x f x x u

h x u

w u

=
() ()[] () + (){ }

= () +
= +

−∂
∂

= B B B

A B

A B

1
1

1 2

2

2 ■

Note that, if the decomposition of Theorem 11.1 is possible, we do not need
to solve a partial differential equation to obtain the vector function h(x), but we
do need to find its inverse function to obtain the vector x. The solution of a partial
differential equation is a common requirement for obtaining transformations of
nonlinear systems to linear dynamics that can be avoided in special cases.

The solution of the state equation for w over any sampling period T is

	 w w uk A k B kw w+() = () + ()1

where

	 A e B e B dw
AT

w
A

T
= = ∫, τ τ2

0

This is a discrete state–space equation for the original nonlinear system.

Example 11.4

Discretize the nonlinear differential equation

	



x

x

x x

x x x x
u x

1

2

1 2
2

2
3

1 2 2
3 1

1

2 8 3

0





=
− ()

() +








 +

−






≠, 00 02, x ≠

Solution
Assuming a piecewise constant input u, we rewrite the nonlinear equation as

	



x

x

x

x

x

x

1

2

1
2

2
3

1
1

2
2

0

0

0 1

4 3 2

0





=
−







−
−







−





+
−

− 11






()







u k

11.1  Discretization of Nonlinear Systems   423

To apply Theorem 11.1, we define the terms

	
B

x

x
B1

1
2

2
3 2

0

0

0

1
x() =

−






= 





	
A h

x

x
=

−
−







() =
−





−

−

0 1

4 3 2

1
1

2
2

x

We verify that the Jacobian of the vector satisfies

	

∂
∂
h

x
x

x()
=

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂







= ()[] =
−

−
−h x h x

h x h x
B

x

x

1 1 1 2

2 1 2 2
1

1 1
2

2

0

0 −−





3

and verify that Theorem 11.1 applies.
We first solve the linear state equation

	



w

w

w

w
u k

1

2

1

2

0 1

4 3

0

1






=
−

−












+ 





()

to obtain

	

w k

w k
e e

w k
T T1

2

4 11

1

1

5

1 1

4 4

4 1

4 1

+()
+()







=
−

−






+ 



{ } (−))

()






+

−





− + 





−(){ } ()−

w k
e

e u k
T

T

2
41

5

1

4

1

4

1

1
1

where w(k) = h[x(k)], k = 0, 1, 2, . . . We now have the recursion

	

w k

w k
e e

w k
T T1

2

4 11

1

1

5

1 1

4 4

4 1

4 1

+()
+()







=
−

−






+ 



{ } (−))

()






+

−





− + 





−(){ } ()−

w k
e

e u k
T

T

2
41

5

1

4

1

4

1

1
1

Using the inverse of the function, we solve for the state

	 x k w k x k w k1 1 2 2
1 21 1 1 1 1 2 1+() = − +() +() = ± +()(),

which is clearly nonunique. However, one would be able to select the appropriate solution
because changes in the state variable should not be large over a short sampling period. For
a given sampling period T, we can obtain a discrete nonlinear recursion for x(k).

It is obvious from the preceding example that the analysis of discrete-time
systems based on nonlinear analog systems is only possible in special cases. In
addition, the transformation is sensitive to errors in the system model. We con-
clude that this is often not a practical approach to control system design. However,
most nonlinear control systems are today digitally implemented even if based on
an analog design. We therefore return to a discussion of system (11.1) with the
control (11.2) in Section 11.4.

424    CHAPTER 11  Elements of Nonlinear Digital Control Systems

11.2  Nonlinear Difference Equations
For a nonlinear system with a DAC and ADC, system identification can yield a
discrete-time model directly. A discrete-time model can also be obtained analyti-
cally in a few special cases as discussed in Section 11.1. We thus have a nonlinear
difference equation to describe a nonlinear discrete-time system. Unfortunately,
nonlinear difference equations can be solved analytically in only a few special
cases. We discuss one special case where such solutions are available.

11.2.1  Logarithmic Transformation

Consider the nonlinear difference equation

	 y k n y k n y k u kn n+()[] + −()[] ()[] = ()−α α α1 1 0. . . 	 (11.26)

where ai, i = 0, 1, …, n are constant. Then taking the natural log of (11.26)
gives

	 α α αn nx k n x k n x k v k+() + + −() + () = ()−1 01 . . . 	 (11.27)

with x(k + i) = ln[y(k + i)], i = 0, 1, 2, …, n, and v(k) = ln[u(k)]. This is a linear
difference equation that can be easily solved by z-transformation. Finally, we
obtain

	 y k ex k() = () 	 (11.28)

Example 11.5

Solve the nonlinear difference equation

	 y k y k y k u k+()[] +()[] ()[] = ()2 1 5 4

with zero initial conditions and the input

	 u k e k() = −10

Solution
Taking the natural log of the equation, we obtain

	 x k x k x k k+() + +() + () = −2 5 1 4 10

The z-transform of the equation

	
z z X z

z

z
2

25 4
10

1
+ +[] () = −

−()
yields X(z) as

	
X z

z

z z z
() = −

−() +() +()
10

1 1 42

Inverse z-transforming gives the discrete-time function

	 x k k kk k() = − + − −() + −() ≥0 7 0 8333 1 0 1333 4 0. . . ,

Hence, the solution of the nonlinear difference equation is

	 y k e kk k k() = ≥− + − −() + −()0 7 0 8333 1 0 1333 4 0. . . ,

11.3  Equilibrium Of Nonlinear Discrete-Time Systems
Equilibrium is defined as a condition in which a system remains indefinitely unless
it is disturbed. If a discrete-time system is described by the nonlinear difference
equation

	 x f x x uk k B k k+() = ()[] + ()[] ()1 	 (11.29)

then at an equilibrium it is governed by the identity

	 x f x x ue e e= [] + [] ()B k 	 (11.30)

where xe denotes the equilibrium state. We are typically interested in the equilib-
rium for an unforced system, and we therefore rewrite the equilibrium condition
(11.30) as

	 x f xe e= [] 	 (11.31)

In mathematics, such an equilibrium point is known as a fixed point.
Note that the behavior of the system in the vicinity of its equilibrium point

determines whether we classify the equilibrium as stable or unstable. For a stable
equilibrium, we expect the trajectories of the system to remain arbitrarily close
or to converge to the equilibrium. Unlike continuous-time systems, convergence
to an equilibrium point can occur after a finite time period.

Clearly, both (11.30) and (11.31), in general, have more than one solution so
that nonlinear systems often have several equilibrium points. This is demonstrated
in the following example.

Example 11.6

Find the equilibrium points of the nonlinear discrete-time system

	

x k

x k

x k

x k

1

2

2

1
3

1

1

+()
+()







=
()
()







Solution
The equilibrium points are determined from the condition

	

x k

x k

x k

x k

1

2

2

1
3

()
()







=
()
()







11.3  Equilibrium of Nonlinear Discrete-Time Systems   425

426    CHAPTER 11  Elements of Nonlinear Digital Control Systems

or equivalently,

	 x k x k x k2 1 1
3() = () = ()

Thus, the system has the three equilibrium points: (0, 0), (1, 1), and (−1, −1).

To characterize equilibrium points, we need the following definition.

Definition 11.1:  Contraction.  A function f(x) is known as a contraction if it satisfies

	 f x y x y−() ≤ − <α α, 1 	 (11.32)

where a is known as a contraction constant and ||.|| is any vector norm.	 ■

The following theorem provides conditions for the existence of an equilibrium
point for a discrete-time system.

Theorem 11.2:  A contraction f(x) has a unique fixed point.	 ■

Example 11.7

Determine if the following nonlinear discrete-time system converges to the origin

	

x k af x k k

f x k x k a a

+() = ()[] =

()[] < () <

1 0 1 2

1

, , , , . . .

,

Solution
We have the inequality

	 x k af x k a x k a x k k+() = ()[] < () ≤ () = <1 0 1 2 1α α, , , , . . . ,

Hence, the system converges to a fixed point at the origin as k → ∞.

If a continuous-time system is discretized, then all its equilibrium points will
be equilibrium points of the discrete-time system. This is because discretization
corresponds to the solution of the differential equation governing the original
system at the sampling points. Because the analog system at an equilibrium
remains there, the discretized system will have the same behavior and therefore
the same equilibrium.

11.4  Lyapunov Stability Theory
Lyapunov stability theory is based on the idea that at a stable equilibrium, the
energy of the system has a local minimum, whereas at an unstable equilibrium, it
is at a maximum. This property is not restricted to energy and is in fact shared by

a class of function that depends on the dynamics of the system. We call such
functions Lyapunov functions.

11.4.1  Lyapunov Functions

If a Lyapunov function can be found for an equilibrium point, then it can be used
to determine its stability or instability. This is particularly simple for linear systems
but can be complicated for a nonlinear system.

We begin by examining the properties of energy functions that we need to
generalize and retain for a Lyapunov function. We note the following:

■	 Energy is a nonnegative quantity.
■	 Energy changes continuously with its arguments.

We call functions that are positive except at the origin positive definite. We
provide a formal definition of this property.

Definition 11.2:  A scalar continuous function V(x) is said to be positive definite if

■  V(0) = 0.
■  V(x) > 0 for any nonzero x.	 ■

Similar definitions are also useful where the greater-than sign in the second
condition is replaced by other inequalities with all other properties unchanged.
Thus, we can define positive semidefinite (≥), negative definite (<), and
negative semidefinite (≤) functions. If none of these definitions apply, the func-
tion is said to be indefinite. Definition 11.2 may hold locally, and then the func-
tion is called locally positive definite, or globally, in which case it is globally
positive definite. Similarly, we characterize other properties, such as negative
definiteness, as local or global.

A common choice of definite function is the quadratic form xTPx. The sign
of the quadratic form is determined by the eigenvalues of the matrix P (see Appen-
dix III). The quadratic form is positive definite if the matrix P is positive definite,
in which case its eigenvalues are all positive. Similarly, we can characterize the
quadratic form as negative definite if the eigenvalues of P are all negative, positive
semidefinite if the eigenvalues of P are positive or zero, negative semidefinite if
negative or zero, and indefinite if P has positive and negative eigenvalues.

Definition 11.3:  A scalar function V(x) is a Lyapunov function in a region D if it satis-
fies the following conditions in D:

■  It is positive definite.
■  It decreases along the trajectories of the system, that is,

	 ΔV k V k V k k() = +()() − ()() < =x x1 0 0 1 2, , , , . . . 	 (11.33)

	 ■

11.4  Lyapunov Stability Theory   427

428    CHAPTER 11  Elements of Nonlinear Digital Control Systems

The preceding definition is used in local stability theorems. To prove global stabil
ity, we need an additional condition in addition to extending the two listed earlier.

Quadratic forms are a common choice of Lyapunov function because of their
simple mathematical properties. However, it is often preferable to use other
Lyapunov functions with properties tailored to suit the particular problem. We
now list the mathematical properties of Lyapunov functions.

Definition 11.4:  A scalar function V(x) is a Lyapunov function if it satisfies the follow-
ing conditions:

■  It is positive definite.
■  It decreases along the trajectories of the system.
■  It is radially unbounded (i.e., it uniformly satisfies).

	 V k kx x()() → ∞ () → ∞, as 	 (11.34)
	 ■

This last condition ensures that whenever the function V remains bounded, the
state vector will also remain bounded. The condition must be satisfied regardless
of how the norm of the state vector grows unbounded so that a finite value of V
can always be associated with a finite state. Note that unlike Definition 11.3,
Definition 11.4 requires that the first and second conditions be satisfied globally.

11.4.2  Stability Theorems

We provide some sufficient conditions for the stability of nonlinear discrete-time
systems; then we specialize our results to linear time-invariant systems.

Theorem 11.3:  The equilibrium point x = 0 of the nonlinear discrete-time system

	 x f xk k k+() = ()[] =1 0 1 2, , , , . . . 	 (11.35)

is asymptotically stable if there exists a locally positive definite Lyapunov function for
the system satisfying Definition 11.3.

Proof.  For any motion along the trajectories of the system, we have

	

ΔV k V k V k

V k V k k

() = +()() − ()()
= ()[]() − −()[]() < =

x x

f x f x

1

1 0 0 1 2, , , ,

This implies that as the motion progresses the value of V decreases continuously.
However, because V is bounded below by zero, it converges to zero. Because V is only
zero for zero argument, the state of the system must converge to zero.	 ■

Example 11.8

Investigate the stability of the system using the Lyapunov stability approach

	

x k x k x k

x k x k x k k

1 1 2
2

2 1 2

1 0 2 0 08

1 0 3 0 1 2

+() = () − ()

+() = − () () =

. .

. , , , ,

Solution
We first observe that the system has an equilibrium point at the origin. We select the qua-
dratic Lyapunov function

	 V P P pTx x x() = = { }, ,diag 1 1

Note that the unity entry simplifies the notation without affecting the results because the
form of the function is unchanged if it is multiplied by any positive scalar p2.

The corresponding difference is

	

ΔV k p x k x k x k x k x k() = () − ()[] − (){ } + − () ()[] −1 1 2
2 2

1
2

1 2
20 2 0 08 0 3. . . xx k

p x k x k p x k p x

2
2

1 1
2

1
2

1 1 1 20 96 0 09 0 032 0 0064

(){ }
= − () + () − () +. . . . 22

2
21

0 1 2

k x k

k

() −{ } ()

= , , , . . .

The difference remains negative provided that the term between braces is negative. We
restrict the magnitude of x2(k) to less than 12.5 (the square root of the reciprocal of 0.0064)
and then simplify the condition to 9x 2

1(k) – 3.2p1x1(k) + 100(p1 – 1) < 0,k = 0,1,2, . . .
Choosing a very small but positive value for p1 makes the two middle terms negligible.

This leaves two terms that are negative for values of x1 of magnitude smaller than 3.33. For
example, a plot of the LHS of the inequality for p1 verifies that it is negative in the selected
x1 range. Thus, the difference remains negative for initial conditions that are inside a circle
of radius approximately equal to 3.33 centered at the origin. By Theorem 11.3, we conclude
that the system is asymptotically stable in the region ||x|| < 3.33.

The system is actually stable outside this region, but our choice of Lyapunov function
cannot provide a better estimate of the stability region than the one we obtained.

For global asymptotic stability, the system must have a unique equilibrium
point. Otherwise, starting at another equilibrium point prevents the system from
converging to another equilibrium state. We can therefore say that a system is
globally asymptotically stable and not just its equilibrium point. The following
theorem gives a sufficient condition for global asymptotic stability.

Theorem 11.4:  The nonlinear discrete-time system

	 x f xk k k+() = ()[] =1 0 1 2, , , , . . . 	 (11.36)

with equilibrium x(0) = 0 is globally asymptotically stable if there exists a globally
positive definite, radially unbounded Lyapunov function for the system satisfying
Definition 11.4.

Proof.  The proof is similar to that of Theorem 11.3 and the details are omitted. The
radial unboundedness condition guarantees that the state of the system will converge
to zero with the Lyapunov function.	 ■

The results of this section require the difference ΔV of the Lyapunov function
to be negative definite. In some cases, this condition can be relaxed to negative

11.4  Lyapunov Stability Theory   429

430    CHAPTER 11  Elements of Nonlinear Digital Control Systems

semidefinite. In particular, if the nonzero values of the vector x for which ΔV is
zero are ones that are never reached by the system, then they have no impact on
the stability analysis. This leads to the following result.

Corollary 11.1: The equilibrium point x = 0 of the nonlinear discrete-time system
of (11.36) is asymptotically stable if there exists a locally positive definite
Lyapunov function with negative semidefinite difference ΔV(k) for all k for the
system and with ΔV(k) zero only for x = 0.

Note that the preceding theorems only provide a sufficient stability condition.
Thus, failure of the stability test does not prove instability. In the linear time-
invariant case, a much stronger result is available.

11.4.3  Rate of Convergence

In some cases, we can use a Lyapunov function to determine the rate of conver-
gence of the system to the origin. In particular, if we can rewrite the difference
of the Lyapunov function in the form

	 ΔV k V k() ≤ − ()() < <α αx , 0 1 	 (11.37)

substituting for the difference gives the recursion

	 V k V kx x+()() ≤ −() ()()1 1 α 	 (11.38)

The upper bound of the constant a guarantees that V is positive definite. The
solution of the difference equation is

	 V k Vkx x()() ≤ −() ()()1 0α 	 (11.39)

If V is a Lyapunov function, then it converges to zero with the state of the
system and its rate of convergence allows us to estimate the rate of convergence
to the equilibrium point. If in addition V is a quadratic form, then the rate of
convergence of the state is the square root of that of V.

Example 11.9

Suppose that the quadratic form xTx is a Lyapunov function for a discrete-time system with
difference

	 ΔV k k k() = − () − () <0 25 0 5 02 4. .x x

Characterize the convergence of the system trajectories to the origin.

Solution

	 ΔV k k k k V x k() = − () − () ≤ − () = ()()0 25 0 5 0 25 0 252 4 2. . . .x x x

	 V k Vkx x()() < −() ()()1 0 25 0.

	 x xk k() < ()2 20 75 0.

	 x xk k() ≤ ()0 866 0.

The trajectories of the system converge to the origin exponentially with convergence rate
faster than 0.5.

11.4.4  Lyapunov Stability of Linear Systems

Lyapunov stability results typically provide us with sufficient conditions. Failure
to meet the conditions of a Lyapunov test leaves us with no conclusion and with
the need to repeat the test using a different Lyapunov function or to try a different
test. For linear systems, Lyapunov stability can provide us with necessary and
sufficient stability conditions.

Theorem 11.5:  The linear time-invariant discrete-time system

	 x k A k kd+() = () =1 0 1 2x , , , , . . . 	 (11.40)

is asymptotically stable if and only if for any positive definite matrix Q, there exists a
unique positive definite solution P to the discrete Lyapunov equation

	 A PA P Qd
T

d − = − 	 (11.41)

Proof.  We drop the subscript d for brevity.

Sufficiency
Consider the Lyapunov function

	 V k k P kTx x x()() = () ()

with P a positive definite matrix. The Lyapunov function changes along the trajectories
of the system following

	

ΔV k V k V k

k A PA P k k Q kT T T

() = +()() − ()()
= () −[] () = − () () <

x x

x x x

1

0x

Hence, the system is stable by Theorem 11.3.

Necessity
We first show that the solution of the Lyapunov equation is given by

	 P A QAT k k

k

= ()
=

∞

∑
0

This is easily verified by substitution in the Lyapunov equation and then changing the
index of summation as follows:

	 A A QA A A QA A QA A QAT T k k

k

T k k

k

T j j

j

T k()





− () = () − ()
=

∞

=

∞

=

∞

∑ ∑ ∑
0 0 1

kk

k

Q
=

∞

∑ = −
0

11.4  Lyapunov Stability Theory   431

432    CHAPTER 11  Elements of Nonlinear Digital Control Systems

To show that for any positive definite Q, P is positive definite, consider the quadratic
form

	

x x x x

x x y y

T T T k k

k

T
k
T

k

k

P A QA

Q Q

= ()

= +

=

∞

=

∞

∑

∑
0

0

For positive definite Q, the first term is positive for any nonzero x and the other terms
are nonnegative. It follows that P is positive definite.

Let the system be stable but for some positive definite Q there is no finite solution
P to the Lyapunov equation. We show that this leads to a contradiction.

Recall that the state-transition matrix of the discrete system can be written as

	 A Zk
i i

k

k

n

=
=

∑ λ
1

	 (11.42)

We use any matrix norm to obtain the inequality

	 A A n Z kk T k k k= () ≤ = ≥max max max,λ αλ 0

For a stable system, we have

	

P A QA A Q A

Q Q

T k k

k

T k k

k

k

k
k

= () ≤ ()

≤ =
−

=

∞

=

∞

=

∞

∑ ∑

∑
0 0

2 2

0

2

21
α λ α

λmax
max

This contradicts the assumption and establishes necessity.

Uniqueness
Let P1 be a second solution of the Lyapunov equation. Then we can write it in the
form of infinite summation including Q, then substitute for Q in terms of P using the
Lyapunov equation. This yields the equation

	

P A QA A A PA P A

A PA A

T k k

k

T k T k

k

T j j

j

T

1

0 0

1

= () = − () −[]

= − () + ()
=

∞

=

∞

=

∞

∑ ∑

∑ kk k

k

PA P
=

∞

∑ =
0

 ■

As in the nonlinear case, it is possible to relax the stability condition as
follows.

Corollary 11.2: The linear time-invariant discrete-time system of (11.40) is
asymptotically stable if and only if for any detectable pair (Ad, C), there exists
a unique positive definite solution P to the discrete Lyapunov equation

	 A PA P C Cd
T

d
T− = − 	 (11.43)

Proof.  The proof follows the same steps as the theorem. We only show that zero values
of the difference do not impact stability. We first obtain

	

ΔV k V k V k

k A PA P k

k C C k

T T

T T

() = +()() − ()()
= () −[] ()
= − () () = −

x x

x

x x y

1

x
TT k k() () ≤y 0

It is implicitly assumed that the system is observable, so y is zero only if x is zero.
If the system is only detectable, then the only nonzero values of x for which y is
zero are ones that correspond to stable dynamics and can be ignored in our stability
analysis.	 ■

Although using a semidefinite matrix in the stability test may simplify com
putation, checking the system for detectability (guaranteed by observability)
eliminates the gain from the simplification. However, the corollary is of
theoretical interest and helps clarify the properties of the discrete Lyapunov
equation.

The discrete Lyapunov equation is clearly a linear equation in the matrix P,
and by rearranging terms we can write it as a linear system of equations. The
equivalent linear system involves an n2 × 1 vector of unknown entries of P
obtained using the operation

	

st P

P

n

n

() = { }

= []

col p p p

p p p

1 2

1 2

, . . . ,



The n2 × n2 coefficient matrix of the linear system is obtained using the Kronecker
product of matrices. In this operation, each entry of the first matrix is replaced
by the second matrix scaled by the original entry. The Kronecker product is thus
defined by

	 A B a Bij⊗ = [] 	 (11.44)

It can be shown that the Lyapunov equation is equivalent to the linear
system

	

L

st P

L A A I IT T

p q

p

= −

= ()

= ⊗ − ⊗

	 (11.45)

Because the eigenvalues of any matrix are identical to those of its transpose, the
Lyapunov equation can be written in the form

	 A PA P Qd d
T − = − 	 (11.46)

The first form of the Lyapunov equation of (11.43) is the controller form,
whereas the second form of (11.46) is known as the observer form.

11.4  Lyapunov Stability Theory   433

434    CHAPTER 11  Elements of Nonlinear Digital Control Systems

11.4.5  MATLAB

To solve the discrete Lyapunov equation using MATLAB we use the command
dlyap. The command solves the observer form of the Lyapunov equation.

>> P = dlyap (A, Q)

To solve the equivalent linear system, we use the Kronecker product and the
command

>> kron(A′, A′)

Example 11.10

Use the Lyapunov approach with Q = I3 to determine the stability of the linear time-invariant
system

	

x k

x k

x k

1

2

3

1

1

1

0 2 0 2 0 4

0 5 0 1

0 0 4 0 5

+()
+()
+()

















=
− −

− −

 . . .

.

. .













()
()
()

















x k

x k

x k

1

2

3

Is it possible to investigate the stability of the system using Q = diag{0, 0, 1}?

Solution
Using MATLAB, we obtain the solution as follows

>> P = dlyap(A, Q) % Observer form of the Lyapunov equation

	

P = −
−

1 5960 0 5666 0 0022

0 5666 3 0273 0 6621

0 0022 0 6621 1 6261

. . .

. . .

. . .

>> eig(P) % Check the signs of the eigenvalues of P

	

ans =
1 1959

1 6114

3 4421

.

.

.

Because the eigenvalues of P are all positive, the matrix is positive definite and the system
is asymptotically stable.

For Q = diag{0, 0, 1} = CTC, with C =[0, 0, 1], we check the observability of the pair
(A, C) using MATLAB and the rank test

>> rank(obsv(a,[0, 0, 1])) % obsv computes the observability matrix

	 ans = 3

The observability matrix is full rank, and the system is observable. Thus, we can use the
matrix to check the stability of the system.

11.4.6  Lyapunov’s Linearization Method

It is possible to characterize the stability of an equilibrium for a nonlinear system
by examining its approximately linear behavior in the vicinity of the equilibrium.
Without loss of generality, we assume that the equilibrium is at the origin and
rewrite the state equation in the form

	 x
f x

x
f x

x

k
k

k
k k

k

+() = ∂ ()[]
∂ ()

+ ()[] =
()=

1 0 1 2
0

2 , , , , . . . 	 (11.47)

where f2[.] is a function including all terms of order higher than one. We then
rewrite the equation in the form

	

x x f x

f x

x

2

x

k A k k k

A
k

k k

+() = () + ()[] =

= ∂ ()[]
∂ () ()=

1 0 1 2

0

, , , , . . .

	 (11.48)

In the vicinity of the origin the behavior is approximately the same as that of the
linear system

	 x xk A k+() = ()1 	 (11.49)

This intuitive fact can be more rigorously justified using Lyapunov stability
theory, but we omit the proof. Thus, the equilibrium is stable if the linear
approximation is stable, and unstable if the linear approximation is unstable.
If the linear system (11.49) has an eigenvalue on the unit circle, then the stability
of the nonlinear system cannot be determined from the first-order approxima-
tion alone. This is because higher-order terms can make the nonlinear system
either stable or unstable. Based on our discussion, we have the following
theorem.

Theorem 11.6:  The equilibrium point of the system of (11.49) is as follows:

■	 Asymptotically stable if all the eigenvalues of A are inside the unit circle.
■	 Unstable if one or more of the eigenvalues is outside the unit circle.
■	 If A has one or more eigenvalues on the unit circle, then the stability of the nonlinear

system cannot be determined from the linear approximation.	 ■

Example 11.11

Show that the origin is an unstable equilibrium for the system

	

x k x k x k

x k x k x k x k x

1 1 2
2

2 1 2 1 2

1 2 0 08

1 0 1 0 3

+() = () + ()

+() = () + () + ()

.

. . kk k() =, , , , . . .0 1 2

11.4  Lyapunov Stability Theory   435

436    CHAPTER 11  Elements of Nonlinear Digital Control Systems

Solution
We first rewrite the state equations in the form

	

x k

x k

x k

x k

x k1

2

1

2

2
21

1

2 0

1 0 1

0 08+()
+()







= 





()
()







+
.

. (()
() ()







=
0 3

0 1 2
1 2.

, , , , . . .
x k x k

k

The state matrix A of the linear approximation has one eigenvalue = 2 > 1. Hence the
origin is an unstable equilibrium of the nonlinear system.

11.4.7  Instability Theorems

The weakness of the Lyapunov approach for nonlinear stability investigation is
that it only provides sufficient stability conditions. Although no necessary and
sufficient conditions are available, it is possible to derive conditions for instability
and use them to test the system if one is unable to establish its stability. Clearly,
failure of both sufficient conditions is inconclusive and it is only in the linear case
that we have the stronger necessary and sufficient condition.

Theorem 11.7:  The equilibrium point x = 0 of the nonlinear discrete-time system

	 x f xk k k+() = ()[] =1 0 1 2, , , , . . . 	 (11.50)

is unstable if there exists a locally positive function for the system with locally uniformly
positive definite changes along the trajectories of the system.

Proof.  For any motion along the trajectories of the system, we have

	

ΔV k V k V k

V k V k k

() = +()() − ()()
= ()[]() − −()[]() > =

x x

f x f x

1

1 0 0 1 2, , , ,

This implies that as the motion progresses, the value of V increases continuously.
However, because V is only zero with argument zero, the trajectories of the system will
never converge to the equilibrium at the origin and the equilibrium is unstable.	 ■

Example 11.12

Show that the origin is an unstable equilibrium for the system

	

x k x k x k

x k x k x k x k k

1 1 2
2

2 1 2 2

1 2 0 08

1 0 3 2 0

+() = − () + ()

+() = () () + () =

.

. , ,, , , . . .1 2

Solution
Choose the Lyapunov function

	 V P P pTx x x() = = { }, ,diag 1 1

The corresponding difference is given by

	

ΔV k p x k x k x k x k x k x k() = − () + ()[] − (){ } + () () + (1 1 2
2 2

1
2

1 2 22 0 08 0 3 2. .))[] − (){ }
= () + () + () + −

2
2
2

1 1
2

1 2
4

1
23 0 0064 0 09 1 2 0 3

x k

p x k p x k x k. . . . 22 3

0 1 2

1 1 2
2p x k x k

k

() () +{ } ()

=

,

, , , . . .

We complete the squares for the last term by choosing p1 3 75 1 3 2 0 5024= −() =. .
and reduce the difference to

	

ΔV k x k x k x k x k() = () + () + () +() ()
≥

1 5072 0 0032 0 3 3

1 5072

1
2

2
4

1

2

2
2. . .

. xx k x k k1
2

2
40 0032 0 1 2() + () =. , , , , . . .

The inequality follows from the fact that the last term in ΔV is positive semidefinite. We
conclude that ΔV is positive definite because it is greater than the sum of even powers and
that the equilibrium at x = 0 is unstable.

11.4.8  Estimation of the Domain of Attraction

We consider a system

	 x x f xk A k k+() = + ()[] =1 0 1 2, , , , . . . 	 (11.51)

where the matrix A is stable and f(.) includes second-order terms and higher and
satisfies

	 f x xk k k()[] ≤ () =α 2 0 1 2, , , , . . . 	 (11.52)

Because the linear approximation of the system is stable, we can solve the associ-
ated Lyapunov equation for a positive definite matrix P for any positive definite
matrix Q. This yields the Lyapunov function

	 V k k P kTx x x()() = () ()

and the difference

	 ΔV k k A PA P k k PA k k P kT T T Tx x x f x x f x f x()() = () −[] () + ()[] () + ()[] ()[2]]

To simplify this expression, we make use of the inequalities

	

λ λ

α

min maxP P P

PA PA PA

T

T

() ≤ ≤ ()

≤ ≤

x x x x

f x f x x

2 2

3 	 (11.53)

where the norm ||A|| denotes the square root of the largest eigenvalue of the
matrix ATA or its largest singular value.

Using the inequality (11.53), and substituting from the Lyapunov equation, we
have

	 ΔV k P PA Qx x x x()() ≤ () + − () α λ α λ2 2 22max min 	 (11.54)

11.4  Lyapunov Stability Theory   437

438    CHAPTER 11  Elements of Nonlinear Digital Control Systems

Because the coefficient of the quadratic is positive, its second derivative is also
positive and it has negative values between its two roots. The positive root defines
a bound on ||x|| that guarantees a negative difference:

	
x <

()
− () + + ()





1 2

αλ
λ αλ

max
max min

P
PA PA Q

An estimate of the domain of attraction is given by

	 B
P

PA PA Qx x x() = <
()

− () + + ()













:
max

max min
1 2

αλ
λ αλ 	 (11.55)

Example 11.13

Estimate the domain of attraction of the system

	

x k

x k

x k

x k

x1

2

1

2

1

1

0 1 0

1 0 5

0 25+()
+()







=
−







()
()







+
.

.

. 22
2

1
20 1

k

x k

()
()





.

Solution
The nonlinear vector satisfies

	 f x xk k k()[] ≤ () =0 5 0 1 2. , , , , . . .

We solve the Lyapunov equation with Q = I2 to obtain

	
P =

−
−







2 4987 0 7018

0 7018 1 3333

. .

. .

whose largest eigenvalue is equal to 2.8281. The norm ||PA|| = 1.8539 can be computed
with the MATLAB command

>> norm(P*A)

Our estimate of the domain of attraction is

	

B x x x

x x

() = < − + () +



{ }

= <

:
. .

. . .

: .

1

0 25 2 8281
1 8539 1 8539 0 25

0 093

2

77{ }

The state portrait presented in Figure 11.1 shows that the estimate of the domain of
attraction is quite conservative and that the system is stable well outside the estimated
region.

11.5  Stability of Analog Systems  
with Digital Control

Although most nonlinear design methodologies are analog, they are often digitally
implemented. The designer typically completes an analog controller design and
then obtains a discrete approximation of the analog controller. For example, a
discrete approximation can be obtained using a differencing approach to approx-
imate the derivatives (see Chapter 6). The discrete time approximation is then
used with the analog plant, assuming that the time response will be approximately
the same as that of the analog design. This section examines the question “Is the
stability of the digital control system guaranteed by the stability of the original
analog design?” As in the linear case discussed in Chapter 6, the resulting
digital control system may be unstable or may have unacceptable intersample
oscillations.

We first examine the system of (11.1) with the digital control (11.2). Substitut-
ing (11.2) in (11.1) gives the equation

	 x f x x u f x= () + () () = () ∈ +()[)B k t kT k Tk , , 1 	 (11.56)

Figure 11.1

Phase portrait for the nonlinear system described in Example 11.13.

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
–3

–2

–1

0

1

2

3

x2(k)

x1(k)

11.5  Stability of Analog Systems with Digital Control   439

440    CHAPTER 11  Elements of Nonlinear Digital Control Systems

Let the solution of (11.56) be

	 x g xt kTk() = ()() 	 (11.57)

where gk is a continuous function of all its arguments. Then at the sampling points,
we have the discrete model

	 x g xk k kk+() = ()() =1 0 1, , , . . . 	 (11.58)

The stability of the discrete-time system of (11.58) is governed by the following
theorem.

Theorem 11.8: A nalog System with Digital Control.  If the continuous system of
(11.56) with piecewise constant control is exponentially stable, then the discrete-time
system of (11.58) is exponentially stable.

Proof.  For an exponentially stable continuous-time system, we have

	 x xt k e t kT k Tkt() ≤ () ∈ +()[)−α , , 1 	 (11.59)

for some positive constant ak. Hence, at the sampling points we have the inequality

	 x xk k e kk T() ≤ −() =− −1 0 11α , , , . . .

Applying this inequality repeatedly gives

	
x x

x

k e

e k

s

m

T

T

() ≤ ()
≤ () =

−

−

0

0 0 1

α

α , , , . . .
	 (11.60)

with α αs k

k

k

=
=

−

∑
0

1

 and α αm
k

k= min . Thus, the discrete system is exponentially stable.	 ■

The preceding theorem may lead us to believe that digital approximation of
analog controllers preserves stability. However, the theorem assumes that the
continuous system of (10.56) is exponentially stable. Thus, it only provides a
necessary stability condition for the discretization of an analog plant with a digital
controller. If a stable analog controller is implemented digitally and used with the
analog plant, its stability cannot be guaranteed. The resulting system may be
unstable, as the following example demonstrates.

Example 11.14

Consider the system

	 x t x t x t u t() = () + () ()2

with the continuous control

	 u t x t x t() = − () − () >α α2 0,

Then the closed-loop system is

	 x t x t() = − ()α 3

which is asymptotically stable.1

Now consider the digital implementation of the analog control

	 u t x k x k t kT k T() = − () − () > ∈ +()[)α α2 0 1, , ,

and the corresponding closed-loop system

	 x t x t x t x k x k t kT k T() = () () − () +[] (){ } ∈ +()[)α 1 1, ,

We solve the equation by separation of variables

	

dx t

x t x t

dx t

x x
dt t kT k T

x

()
() () −()

=
()

−
−





= ∈ +()[)

=

β β β

β α

1 1
1, ,

kk x k() +[] ()1

Integrating from kT to (k + 1)T, we obtain

	
ln 1

1
1−

()









=]
=

= +()

=
= +()β

x t
dt

t kT

t k T

t kT
t k T

	
1

1
1−

+()




 = −

()






β β
x k x k

eT

	

x k

x k
e

x k x k

x k e

T

T

+() =
− −

()






=
() +[] ()

+ ()

1
1 1

1

1

β
β

α
α

For stability, we need the condition |x(k + 1)| < |x(k)|, that is,

	 1 1+ () > + ()α αx k e x kT

This condition is satisfied for positive x(k) but not for all negative x(k)! For example, with
T = 0.01s and ax(k) = −0.5, the LHS is 0.495 and the RHS is 0.5.

We do not provide a general result that guarantees the stability of the digital
implementation of a stable analog controller. However, once the digital controller
is obtained, one can investigate the stability of the closed-loop system using stabil-
ity tests for digital control systems, as discussed in Section 11.4.

1Slotine (1991, p. 66): x c x+ () = 0 is asymptotically stable if c(.) is continuous and satisfies
c(x)x > 0, ∀x ≠ 0. Here c(x) = x3.

11.5  Stability of Analog Systems with Digital Control   441

442    CHAPTER 11  Elements of Nonlinear Digital Control Systems

11.6  State Plane Analysis
As shown in Section 11.4.6, the stability of an equilibrium of a nonlinear system
can often be determined from the linearized model of the system in the vicinity
of the equilibrium. Moreover, the behavior of system trajectories of linear discrete-
time systems in the vicinity of an equilibrium point can be visualized for second-
order systems in the state plane. State plane trajectories can be plotted based on
the solutions of the state equations for discrete-time equations similarly to those
for continuous-time systems (see Chapter 7). Consider the unforced second-order
difference equation

	 y k a y k a y k k+() + +() + () = =2 1 0 0 11 0 , , , . . . 	 (11.61)

The associated characteristic equation is

	 z a z a z z2
1 0 1 2 0+ + = −() −() =λ λ 	 (11.62)

We can characterize the behavior of the system based on the location of
the characteristic values of the system li, i = 1, 2, in the complex plane. If
the system is represented in state–space form, then a similar characterization
is possible using the eigenvalues of the state matrix. Table 11.1 gives the
names and characteristics of equilibrium points based on the locations of the
eigenvalues.

Trajectories corresponding to different types of equilibrium points are shown
in Figures 11.2 through 11.9. We do not include some special cases such as two
real eigenvalues equal to unity, in which case the system always remains at the
initial state. The reader is invited to explore other pairs of eigenvalues through
MATLAB simulation.

Table 11.1  Equilibrium Point Classification

Equilibrium Type Eigenvalue Location

Stable node Real positive inside unit circle

Unstable node Real positive outside unit circle

Saddle point Real eigenvalues with one inside and one outside unit circle

Stable focus Complex conjugate or both real negative inside unit circle

Unstable focus Complex conjugate or both real negative outside unit circle

Vortex or center Complex conjugate on unit circle

Figure 11.2

Stable node (eigenvalues 0.1, 0.3).

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

y(k+1)

y(k)

Figure 11.3

Unstable node (eigenvalues 2, 3).

–5 –4 –3 –2 –1 0 1 2 3 4 5
–10

–8

–6

–4

–2

0

2

4

6

8

10

y(k+1)

y(k)

11.6  State Plane Analysis   443

444    CHAPTER 11  Elements of Nonlinear Digital Control Systems

Figure 11.4

Saddle point (eigenvalues 0.1, 3).

–1.5 –1 –0.5 0 0.5 1 1.5
–10

–8

–6

–4

–2

0

2

4

6

8

10
y(k+1)

y(k)

Figure 11.5

Stable focus (eigenvalues −0.1, −0.3).

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
y(k+1)

y(k)

Figure 11.6

Stable focus (eigenvalues 0.1 ± j0.3).

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
y(k+1)

y(k)

Figure 11.7

Unstable focus (eigenvalues −5, −3).

–2 0 2
× 1026

× 1018

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
y(k+1)

y(k)

11.6  State Plane Analysis   445

446    CHAPTER 11  Elements of Nonlinear Digital Control Systems

Figure 11.8

Unstable focus (eigenvalues 0.1 ± j3).

–20 –15 –10 –5 0 5 10 15 20
–15

–10

–5

0

5

10

15
y(k+1)

y(k)

Figure 11.9

Center (eigenvalues cos(45°) ± j sin(45°)).

–1.5 –1 –0.5 0 0.5 1 1.5
–1.5

–1

–0.5

0

0.5

1

1.5
y(k+1)

y(k)

11.7  Discrete-Time Nonlinear Controller Design
Nonlinear control system design for discrete-time systems is far more difficult than
linear design. It is also often more difficult than the design of analog nonlinear
systems. For example, one of the most powerful approaches to nonlinear system
design is to select a control that results in a closed-loop system for which a suitable
Lyapunov function can be constructed. It is usually easier to construct a Lyapunov
function for an analog nonlinear system than it is for a discrete-time system.

We discuss some simple approaches to nonlinear design for discrete-time
systems that are possible for special classes of systems.

11.7.1  Controller Design Using Extended Linearization

If one of the extended linearization approaches presented in Section 11.1 is appli-
cable, then we can obtain a linear discrete-time model for the system and use it in
linear control system design. The nonlinear control can then be recovered from
the linear design. We demonstrate this approach with the following example.

Example 11.15

Consider the mechanical system

	  x b x c x f+ () + () =
with b(0) = 0, c(0) = 0. For the nonlinear damping b x x () = 0 1 3. and the nonlinear spring
c(x) = 0.1x + 0.01x3, design a digital controller for the system by redefining the input and
discretization.

Solution
The state equations of the system are

	





x x

x b x c x f u

1 2

2 2 1

=

= − () − () + =
Using the results described in Example 11.2, we have the discrete-time model

	
x x uk k k+() = 





() +
×





()
−

1
1 0 02

0 1

2 10

0 02

4.

.

with x(k) = [x1(k) x2(k)]T = [x(k) x(k+1)]T.
We select the eigenvalues {0.1 ± j0.1} and design a state feedback controller for the

system as shown in Chapter 9. Using the MATLAB command place, we obtain the feedback
gain matrix

	 kT = []2050 69 5.

For a reference input r, we have the nonlinear control

	

f u b x c x

u k r k kT

= + () + ()

() = () − ()

2 1

k x

11.7  Discrete-Time Nonlinear Controller Design   447

448    CHAPTER 11  Elements of Nonlinear Digital Control Systems

The simulation diagram for the system is shown in Figure 11.10, and the simula-
tion diagram for the controller block is shown in Figure 11.11. We select the ampli-
tude of the step input to obtain a steady-state value of unity using the equilibrium
condition

	
x x xk k r k+() = 





() +
×





− [] ()(
−

1
1 0 02

0 1

2 10

0 02
2050 69 5

4.

.
.)) = () = 





x k
1

0

Figure 11.10

Simulation diagram for the system described in Example 11.15.

1
s

1
s

Zero-Order
Hold1

Zero-Order
Hold

Subtract2

–
–
+

Subsystem

r

x1

x1x2
z2

Out1
Step

Scope1

Scope

Polynomial2

P(u)
O(P) = 2

Polynomial1
P(u)

O(P) = 3

Figure 11.11

Controller simulation diagram described in Example 11.15.

x1

x2

Out1
1

Zero-Order
Hold

Subtract2

Subtract1

Polynomial2

P(u)
O(P) = 2

Polynomial1
P(u)

O(P) = 3

Gain1

-K-

Gain

-K-

3

2
r
1

–

–

+

+

+

+

This simplifies to

	

2 10

0 02

0 41

41

4×





= 





−

.

.
r

which gives the amplitude r = 2050. The step response for the nonlinear system with digital con
trol in Figure 11.12 shows a fast response to a step input at t = 0.2 s that quickly settles to the
desired steady-state value of unity. Figure 11.13 shows a plot of the velocity for the same input.

Figure 11.12

Step response for the linear design described in Example 11.15.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x1(k)

t

Figure 11.13

Velocity plot for the step response for the linear design described in Example 11.15.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–10

–5

0

5

10

15

20

25

30
x2(k)

t

11.7  Discrete-Time Nonlinear Controller Design   449

450    CHAPTER 11  Elements of Nonlinear Digital Control Systems

11.7.2  Controller Design Based on Lyapunov Stability Theory

Lyapunov stability theory provides a means of stabilizing unstable nonlinear
systems using feedback control. The idea is that if one can select a suitable Lyapu-
nov function and force it to decrease along the trajectories of the system, the
resulting system will converge to its equilibrium. In addition, the control can be
chosen to speed up the rate of convergence to the origin by forcing the Lyapunov
function to decrease to zero faster.

To simplify our analysis, we consider systems of the form

	 x x x uk A k B k k+() = () + ()() ()1 	 (11.63)

For simplicity, we assume that the eigenvalues of the matrix A are all inside
the unit circle. This model could approximately represent a nonlinear system in
the vicinity of its stable equilibrium.

Theorem 11.9  The open-loop stable affine system with linear unforced dynamics and
full-rank input matrix for all nonzero x is asymptotically stable with the feedback control
law

	 u x x x xk B k PB k B k PA kT T() = − ()() ()()[] ()() ()−1 	 (11.64)

where P is the solution of the discrete Lyapunov equation

	 A PA P QT − = − 	 (11.65)

and Q is an arbitrary positive definite matrix.

Proof.  For the Lyapunov function

	 V k k P kTx x x()() = () ()

The difference is given by

	

ΔV k V k V k

k A PA P k k B PA kT T T T T

() = +()() − ()()
= () −[] () + () + (

x x

x x u x u

1

2)) ()B PB kT u

where the argument of B is suppressed for brevity. We minimize the function with
respect to the control to obtain

	

∂ ()
∂ ()

= + ()[] =ΔV k

k
B A B PB kT T

u
x u 02

which we solve for the feedback control law using the full-rank condition for B.
By the assumption of open-loop stability, we have

	 ΔV k k Q k k A PB k QT T T() = − () () + () () >x x x u , 0

We substitute for the control and rewrite the equation as

	

ΔV k k Q A PB B PB B A k

k Q A MA k

T T T T

T T

() = − () + []{ } ()

= − () +{ } ()

−
x x

x x

1

	 M PB B PB BT T= []−1

The matrix M is not symmetric and must be replaced by its symmetric component in
the quadratic form (see Appendix III). The second term is therefore equal to

	

− () () = − () +{ } ()

= − () +{ } ()

x x y y

y y

T T T
T

T

k A MA k k
M M

k

k
PB BP

k

2

2

	 B B B B PB BT T T= = []−1

where we use the fact that transposition and inversion of a real matrix are com-
mutative operations. Because the matrix P is positive definite and B is full rank, the
matrix BTPB, and consequently its inverse, must be positive semidefinite. Thus, both
B and the symmetric component of M are positive semidefinite, and the term
–xT(k)ATMAx(k) is negative semidefinite. We conclude that the difference of the
Lyapunov function is negative definite, because it is the sum of a negative definite term
and a negative semidefinite term, and that the closed-loop system is asymptotically
stable.	 ■

Example 11.16

Design a controller to stabilize the origin for the system

	

x k x k x k u k

x k x k x k u k

1 1 2

2 2 1

1 0 2

1 0 2 1 0 4

+() = () + () ()

+() = () + + ()[] (

.

. .)) =, , , , . . .k 0 1 2

Solution
We rewrite the system dynamics in the form

	

x k

x k

x k

x k

x k1

2

1

2

21

1

0 2 0

0 0 2 1

+()
+()







= 





()
()







+
().

. ++ ()






()
0 4 1. x k

u k

The state matrix is diagonal with two eigenvalues equal to 0.2 < 1. Hence, the system is
stable. We choose the Lyapunov function

	 V P P pTx x x() = = { }, ,diag 1 1

for which Q = 0.16 I2 is positive definite.

11.7  Discrete-Time Nonlinear Controller Design   451

452    CHAPTER 11  Elements of Nonlinear Digital Control Systems

The corresponding stabilizing control is given by

	

u k B k PB k B k PA k

x k

T T() = − ()() ()()[] ()() ()

= −
+ ()()

−
x x x x

1

1
2

0 2

1 0 4

.

. ++ ()
() + ()[] ()

p x k
p x k x k k

1 2
2 1 2 11 0 4. x

We choose p1 = 5 and obtain the stabilizing control

	
u k

x k x k
x k x k k() = −

+ ()() + ()
() + ()[] ()1

1 0 4 5
0 2 0 08

1
2

2
2 2 1

.
. . x

Resources
Apostol, T. M., Mathematical Analysis, Addison-Wesley, 1975.
Fadali, M. S., Continuous drug delivery system design using nonlinear decoupling:

A tutorial, IEEE Trans. Biomedical Engineering, 34(8):650-653, 1987.
Goldberg, S., Introduction to Difference Equations, Dover, 1986.
Kalman, R. E., and J. E. Bertram, Control system analysis and design via the “Second

Method” of Lyapunov II: Discrete time systems, J. Basic Engineering Trans, ASME,
82(2):394-400, 1960.

Khalil, H. K., Nonlinear Systems, Prentice Hall, 2002.
Kuo, B. C., Digital Control Systems, Saunders, 1992.
LaSalle, J. P., The Stability and Control of Discrete Processes, Springer-Verlag, 1986.
Mickens, R. E., Difference Equations, Van Nostrand Reinhold, 1987.
Rugh, W. J., Linear System Theory, Prentice Hall, 1996.
Slotine, J.-J., Applied Nonlinear Control, Prentice Hall, 1991.

Problems

11.1	 Discretize the following system:

	



x

x

x x x

x x

x
u t

1

2

1 1
2

2
2

2
2

1

1
23 2

1 0






=
− − ()

+






+ 





()

11.2	 The equations for rotational maneuvering2 of a helicopter are given by

	

   θ ψ θ θ ψθ= −
−



 () − () +

−





1

2
2 2

I I

I
mgA

I I

I
z y

x

z y

x

sin cos

ssin

cos

cos

2

2

1

2

θ
θ

ψ
θ

()
+() + −() ()

=
+() + −() ()

I I I I
T

I I I I

z y z y
p

z y z y

 TTy

2A. L. Elshafei and F. Karray, Variable structure-based fuzzy logic identification of a class of nonlin-
ear systems, IEEE Trans. Control Systems Tech., 13(4):646-653, 2005.

where
Ix, Iy, and Iz = moments of inertia about the center of gravity
m = total mass of the system
g = acceleration due to gravity
q and y = pitch and yaw angles in radians
Tp and Ty = pitch and yaw input torques

Obtain an equivalent linear discrete-time model for the system, and derive the
equations for the torque in terms of the linear system inputs.

11.3	 A single-link manipulator3 with a flexible link has the equation of motion

	

I MgL mgA k

J k





θ θ θ θ ψ

ψ ψ θ τ

+ () − () + −() =

+ −() =

sin cos 0

where
L = distance from the shaft to the center of gravity of the link
M = mass of the link
I = moment of inertia of the link
J = moment of inertia of the joint
K = rotational spring constant for the flexible joint
L = distance between the center of gravity of the link and the flexible

joint
q and y = link and joint rotational angles in radians
t = applied torque

Obtain a discrete-time model of the manipulator (Figure P11.1).

L
k

ψ, τ
θ

M c.g.

Figure P11.1

Schematic of a single-link manipulator.

11.4	 Solve the nonlinear difference equation

	 y k y k y k u k+()[] +()[] ()[] = ()−2 1 2 1 25.

with zero initial conditions and the input u(k) = e–k.

3M. W. Spong and M. Vidyasagar, Robot Dynamics and Control, pp. 269-273, Wiley, 1989.

Problems   453

454    CHAPTER 11  Elements of Nonlinear Digital Control Systems

11.5	 Determine the equilibrium point for the system

	

x k

x k

x k x k

x k x k

1

2

1 2
2

2 1
2

1

1

9 2

9 0 4

+()
+()







=
− () + ()

− () + ()




.  +

()






()
0

1x k
u k

(a)	 Unforced
(b)	 With a fixed input ue = 1

11.6	 Use the Lyapunov approach to show that if the function f(x) is a contraction,
then the system x(k + 1) = f[x(k)] is asymptotically stable.

11.7	 Obtain a general expression for the eigenvalues of a 2 × 2 matrix, and use it
to characterize the equilibrium points of the second-order system with the
given state matrix

(a)	
0 9997 0 0098

0 0585 0 9509

. .

. .−






(b)	
3 1

1 2






(c)	
0 3 0 1

0 1 0 2

. .

. .

−





(d)	
1 2 0 4

0 4 0 8

. .

. .

−





11.8	 Determine the stability of the origin using the linear approximation for the system

	

x k x k x k

x k x k x k x k x

1 1 2
3

2 1 2 1 2
2

1 0 2 1 1

1 0 1 2

+() = () + ()

+() = () + () + ()

. .

. kk k() =, , , , . . .0 1 2

11.9	 Verify the stability of the origin using the Lyapunov approach, and estimate
the rate of convergence to the equilibrium

	

x k x k x k x k

x k x k x k

1 1 2 2
2

2 1 2

1 0 1 0 05

1 0 5 0 0

+() = () () − ()

+() = − () () +

. .

. . 55 0 1 22
3x k k() =, , , , . . .

11.10	 Show that the convergence of the trajectories of a nonlinear discrete-time
system x(k+1) = f[x(k)] to a known nominal trajectory x*(k) is equivalent to
the stability of the dynamics of the tracking error e(k) = x(k) - x*(k).

11.11	 Prove that the scalar system

	 x k ax k+() = − ()1 3

is locally asymptotically stable in the region x k a() ≤ 1 .

11.12	 Use Lyapunov stability theory to investigate the stability of the system

	

x k
ax k

a bx k

x k
bx k

b ax k
a b

1
1

2
2

2
2

1
2

1

1 0 0

+() =
()

+ ()

+() =
()

+ ()
> >, ,

11.13	 Use the Lyapunov approach to determine the stability of the discrete-time
linear time-invariant systems

(a)	
0 3 0 1

0 1 0 22

. .

. .

−





(b)	

0 3 0 1 0

0 1 0 22 0 2

0 4 0 2 0 1

. .

. . .

. . .

−















11.14	 Show that the origin is an unstable equilibrium for the system

	

x k x k x k

x k x k x k k

1 1 2
2

2 2 1

1 1 4 0 1

1 1 5 0 1 1

+() = − () + ()

+() = () () +() =

. .

. . , 00 1 2, , , . . .

11.15	 Estimate the domain of attraction of the system

	

x k

x k

x k

x k

1

2

1

2

1

1

0 2 0 3

0 4 0 5

0+()
+()







=
−







()
()







+
. .

. .

..

.

3

0 36

2
2

1
2

x k

x k

()
()







11.16	 Design a controller to stabilize the origin for the system

	

x k x k x k x k u k

x k x k x

1 1 2 2
2

2 1 2

1 0 4 0 5

1 0 1 0 2

+() = () + () + () ()

+() = () +

. .

. . kk x k x k u k k() + () + ()[] () =2 1 0 1 2, , , , . . .

Computer Exercises

11.17	 Write a MATLAB program to generate phase plane plots for a discrete-time
second-order linear time-invariant system. The function should accept the
eigenvalues of the state matrix and the initial conditions needed to generate
the plots.

11.18	 Design a controller for the nonlinear mechanical system described in
Example 11.15 with the nonlinear damping b x x () = 0 25 5. , the nonlinear
spring c(x) = 0.5x + 0.02x3, T = 0.02 s, and the desired eigenvalues for the
linear design equal to {0.2 ± j0.1}. Determine the value of the reference input
for a steady-state position of unity, and simulate the system using Simulink.

11.19	 Design a stabilizing digital controller with a sampling period T = 0.01 s for a
single-link manipulator using extended linearization; then simulate the system
with your design. The equation of motion of the manipulator is given by
θ θ θ θ τ+ () + + =0 01 0 01 0 001 3. sin . . .

Assign the eigenvalues of the discrete-time linear system to {0.6 ± j0.3}.
Hint: Use Simulink for your simulation, and use a ZOH block, or a discrete
filter block with both the numerator and denominator set to 1 for sampling.

Computer Exercises   455

Chapter

12Practical Issues

Objectives
After completing this chapter, the reader will be able to do the following:

1.	 Write pseudocode to implement a digital controller.
2.	 Select the sampling frequency in the presence of antialiasing filters and

quantization errors.
3.	 Implement a PID controller effectively.
4.	 Design a controller that addresses changes in the sampling rate during

control operation.
5.	 Design a controller with faster input sampling than output sampling.

Successful practical implementation of digital controllers requires careful attention
to several hardware and software requirements. In this chapter, we discuss the
most important of these requirements and their influence on controller design.
We analyze the choice of the sampling frequency in more detail (already discussed
in Section 2.9) in the presence of antialiasing filters and the effects of quantization,
rounding, and truncation errors. In particular, we examine the effective imple-
mentation of a proportional–integral–derivative (PID) controller. Finally, we
examine changing the sampling rate during control operation as well as output
sampling at a slower rate than that of the controller.

12.1  Design of the hardware and  
software architecture

The designer of a digital control system must be mindful of the fact that the control
algorithm is implemented as a software program that forms part of the control
loop. This introduces factors that are not present in analog control loops. This
section discusses several of these factors.

458    CHAPTER 12  Practical Issues

12.1.1  Software Requirements

During the design phase, designers make several simplifying assumptions that
affect the implemented controller. They usually assume uniform sampling with
negligible delay due to the computation of the control variable. Thus, they assume
no delay between the sampling instant and the instant at which the computed
control value is applied to the actuator. This instantaneous execution assumption
is not realistic because the control algorithm requires time to compute its output
(see Figure 12.1). If the computational time is known and constant, we can use
the modified z-transform (see Section 2.7) to obtain a more precise discrete model.
However, the computational time of the control algorithm can vary from one
sampling period to the next. The variation in the computational delay is called
the control jitter. For example, control jitter is present when the controller
implementation utilizes a switching mechanism.

Digital control systems have additional requirements such as data storage and
user interface, and their proper operation depends not only on the correctness of
their calculations but also on the time at which their results are available. Each
task must satisfy either a start or completion timing constraint. In other words, a
digital control system is a real-time system. To implement a real-time system,
we need a real-time operating system that can provide capabilities such as multi-
tasking, scheduling, and intertask communication, among others. In a multitasking
environment, the value of the control variable must be computed and applied
over each sampling interval regardless of other tasks necessary for the operations
of the overall control system. Hence, the highest priority is assigned to the com-
putation and application of the control variable.

Clearly, the implementation of a digital control system requires skills in soft-
ware engineering and computer programming. There are well-known program-
ming guidelines that help minimize execution time and control jitter for the
control algorithm. For example, if-then-else and case statements must be avoided
as much as possible because they can lead to paths of different lengths and, con-
sequently, paths with different execution times. The states of the control variable
must be updated after the application of the control variable. Finally, the software
must be tested to ensure that no errors occur. This is known as software verifi-
cation. In particular, the execution time and the control jitter must be measured
to verify that they can be neglected relative to the sampling period, and memory
usage must be analyzed to verify that it does not exceed the available memory.
Fortunately, software tools are available to make such analysis possible.

Example 12.1

Write pseudocode that implements the following controller:

	
C z

U z

E z

z

z
() = ()

()
= -

-
10 5 9 5

1

. .

Then propose a possible solution to minimize the execution time (Figure 12.1).

Solution
The difference equation corresponding to the controller transfer function is

	 u k u k e k e k() = -() + () - -()1 10 5 9 5 1. .

This control law can be implemented by writing the following code:

function controller
% This function is executed during each sampling period
% r is the value of the reference signal
% u1 and e1 are the values of the control variable and of the control
% error respectively for the previous sampling period
y=read_ADC(ch0)   % Read the process output from channel 0 of the ADC
e=r-y;                  % Compute the tracking error
u=u1+10.5*e-9.5*e1;     % Compute the control variable
u1=u;         % Update the control variable for the next sampling period
e1=e;         % Update the tracking error for the next sampling period
write_DAC(ch0,u);  % Output the control variable to channel 0 of the DAC

To decrease the execution time, two tasks are assigned different priorities (using a real-
time operating system).

Figure 12.1

Execution time Te for the computation of the control variable value with respect to the sampling
interval T.

k−1 k k+1

Te

u

t/T

t/T

T

y

12.1  Design of the Hardware and Software Architecture   459

460    CHAPTER 12  Practical Issues

Task 1 (Maximum Priority)
y=read_ADC(ch0)  % Read the process output from channel 0 of the ADC
e=r-y;               % Compute the tracking error
u=u1+10.5*e-9.5*e1; % Compute the control variable
write_DAC(ch0,u);   % Write the control variable to channel 0 of the DAC

Task 2
u1=u;       % Update the control variable for the next sampling period
e1=e;       % Update the tracking error for the next sampling period

12.1.2  Selection of ADC and DAC

The ADC and DAC must be sufficiently fast for negligible conversion time relative
to the sampling period. In particular, the conversion delay of the ADC creates a
negative phase shift, which affects the phase margin of the system and must be
minimized to preserve the stability margins of the system. In addition, the word
length of the ADC affects its conversion time. With the conversion time provided
by standard modern analog-to-digital converters, this is not a significant issue in
most applications.

The choice of the ADC and DAC word length is therefore mainly determined
by the quantization effects. Typically, commercial ADCs and DACs are available in
the range of 8 to 16 bits. An 8-bit ADC provides a resolution of a 1 in 28, which
corresponds to an error of 0.4 percent, whereas a 16-bit ADC gives an error of
0.0015 percent.

Clearly, the smaller the ADC resolution, the better the performance, and there-
fore a 16-bit ADC should be preferred. However, the cost of the component
increases as the word length increases, and the presence of noise might render
the presence of a high number of bits useless in practical applications. For
example, if the sensor has a 5 mV noise and a 5 V range, there is no point in
employing an ADC with more than 10 bits because its resolution of 1 in 210 cor-
responds to an error of 0.1%, which is equal to the noise level. The DAC resolution
is usually chosen equal to the ADC resolution, or slightly higher, to avoid introduc-
ing another source of quantization error. Once the ADC and DAC resolution have
been selected, the resolution of the reference signal representation must be the
same as that of the ADC and DAC. In fact, if the precision of the reference signal
is higher than the ADC resolution, the control error will never go to zero and
therefore a limit cycle will occur.

Another important design issue, especially for MIMO control, is the choice of
data acquisition system. Ideally, we would use an analog-to-digital converter for
each channel to ensure simultaneous sampling as shown in Figure 12.2(a).
However, this approach can be prohibitively expensive, especially for a large
number of channels. A more economical approach is to use a multiplexer (MUX),
with each channel sampled in sequence and the sampled value sent to a master
ADC (Figure 12.2(b)). If we assume that the sampled signals change relatively

12.2  Choice of the Sampling Period   461

slowly, small changes in the sampling instant do not result in significant errors
and the measured variables appear to be sampled simultaneously. If this assump-
tion is not valid, a more costly simultaneous sample-and-hold (SSH) system
can be employed, as depicted in Figure 12.2(c). The system samples the channels
simultaneously, then delivers the sampled data to the ADC through a multiplexer.
In recent years, the cost of analog-to-digital converters has decreased significantly,
and the use of a simultaneous sample-and-hold system has become less popular
as using an ADC for each channel has become more affordable.

We discuss other considerations related to the choice of the ADC and DAC
components with respect to the sampling period in Section 12.2.2.

12.2  Choice of the Sampling Period
In Section 2.9, we showed that the choice of the sampling frequency must satisfy
the sampling theorem and is based on the effective bandwidth wm of the signals in
the control systems. This leads to relation (2.66), where we choose the sampling
frequency in the range between 5 and 10 times the value of wm. We now discuss the
choice of sampling frequency more thoroughly, including the effects of antialiasing
filters as well as the effects of quantization, rounding, and truncation errors.

Figure 12.2

Choices for the data acquisition system. (a) Separate ADC for each channel. (b) Multiplexer
with single master ADC. (c) Simultaneous sample-and-hold, multiplexer, and single master
ADC.

ADC

ADC

Controller

Channel 0

Channel n

Controller

Channel 0

Channel n
ADCMUX

Controller

Channel 0

Channel n
ADCMUX

(c)

(b)

(a)

SSH

SSH

462    CHAPTER 12  Practical Issues

12.2.1  Antialiasing Filters

If the sampling frequency does not satisfy the sampling theorem (i.e., the sampled
signal has frequency components greater than twice the sampling frequency),
then the sampling process creates new frequency components (see Figure 2.9).
This phenomenon is called aliasing and must obviously be avoided in a digital
control system. Hence, the continuous signal to be sampled must not include
significant frequency components greater than the Nyquist frequency ws/2.

For this purpose, it is recommended to low-pass filter the continuous signal
before sampling, especially in the presence of high-frequency noise. The analog
low-pass filter used for this purpose is known as the antialiasing filter. The
antialiasing filter is typically a simple first-order RC filter, but some applications
require a higher-order filter such as a Butterworth or a Bessel filter. The overall
control scheme is shown in Figure 12.3.

Because a low-pass filter can slow down the system by attenuating high-
frequency dynamics, the cut-off frequency of the low-pass filter must be higher
than the bandwidth of the closed-loop system so as not to degrade the transient
response. A rule of thumb is to choose the filter bandwidth equal to a constant
times the bandwidth of the closed-loop system. The value of the constant varies
depending on economic and practical considerations. For a conservative but more
expensive design, the cut-off frequency of the low-pass filter can be chosen as 10
times the bandwidth of the closed-loop system to minimize its effect on the control
system dynamics, and then the sampling frequency can be chosen 10 times higher
than the filter cut-off frequency so that there is a sufficient attenuation above the
Nyquist frequency. Thus, the sampling frequency is 100 times the bandwidth of the
closed-loop system. To reduce the sampling frequency, and the associated hard-
ware costs, it is possible to reduce the antialiasing filter cut-off frequency. In the
extreme case, we select the cut-off frequency slightly higher than the closed-loop
bandwidth. For a low-pass filter with a high roll-off (i.e., a high-order filter), the
sampling frequency is chosen as five times the closed-loop bandwidth. In summary,
the sampling period T can be chosen (as described in Section 2.9) in general as

	 5
2

100ω π ωb b
T

≤ ≤ 	 (12.1)

where wb is the bandwidth of the closed-loop system.

Figure 12.3

Control scheme with an antialiasing filter.

Analog
OutputComputer or

Microprocessor

External
Input Analog

System

ADC

DAC

Antialiasing
Filter

12.2  Choice of the Sampling Period   463

If the phase delay introduced by the antialiasing filter is significant, then (12.1)
may not yield good results and the filter dynamics must be considered when
selecting a dynamic model for the design phase.

Example 12.2

Consider a 1 Hz sinusoidal signal of unity amplitude with an additive 50 Hz sinusoidal noise.
Verify the effectiveness of an antialiasing filter for the signal sampled at a frequency of
30 Hz.

Solution
The noisy analog signal to be sampled is shown in Figure 12.4(a). If this signal is sampled
at 30 Hz without an antialiasing filter, the result is shown in Figure 12.4(b). Figure 12.4(c)

Figure 12.4

Effect of an antialiasing filter on the analog and sampled signals described in Example 12.2.
(a) Noisy analog signal. (b) Signal sampled at 30 Hz with no antialiasing filter. (c) Filtered
analog signal with a first-order antialiasing filter with cut-off frequency equal to 10 Hz. (d)
Sampled signal with a first-order antialiasing filter with cut-off frequency equal to 10 Hz.

0 0.5 1 1.5 2 2.5 3 3.5 4

–1

–0.5

0

0.5

1

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

–1

–0.5

0

0.5

1

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4

–1

–0.5

0

0.5

1

(c)
0 0.5 1 1.5 2 2.5 3 3.5 4

–1

–0.5

0

0.5

1

(d)

x(t)

x(t)

t

x(t)

t

t

x(t)

t

464    CHAPTER 12  Practical Issues

shows the filtered analog signal with a first-order antialiasing filter with cut-off frequency
equal to 10 Hz, and the resulting sampled signal is shown in Figure 12.4(d). The sampled
sinusoidal signal is no longer distorted because of the use of the antialiasing filter; however,
a small phase delay emerges because of the filter dynamics.

12.2.2  Effects of Quantization Errors

As discussed in Section 12.1, the design of the overall digital control system
includes the choice of the ADC and DAC components. In this context, the effects
of the quantization due to ADC rounding or truncation (Figure 12.5) are con-
sidered in the selection of the sampling period. The noise due to quantization can
be modeled as a uniformly distributed random process with the following mean
and variance values (denoted respectively by ē and σe

2) in the two cases:

	 Rounding e
q

e: = =0
12

2
2

σ 	 (12.2)

	 Truncation e
q q

e: = =
2 12

2
2

σ 	 (12.3)

where q is the quantization level—namely, the range of the ADC divided by 2n,
and n is the number of bits.

Obviously, the effects of the quantization error increase as q increases and the
resolution of the ADC decreases. To evaluate the influence of q on quantization
noise and on the sampling period, we consider a proportional feedback digital
controller with a gain K applied to the analog first-order lag

	
G s

s
() =

+
1

1τ
The z-transfer function of the DAC (zero-order hold), analog subsystem, and ADC
(ideal sampler) cascade has the discrete time state–space model

	

x k e x k e u k

y k x k

T T+() = [] () + -[] ()

() = ()

- -1 1τ τ

Figure 12.5

Quantization characteristics of the ADC. (a) Truncating ADC. (b) Rounding ADC.

(a) (b)

xx

yy

qq

12.2  Choice of the Sampling Period   465

For a truncating ADC as the only source of noise with zero set-point value, the
control action is

	 u k K y k w k() = - () + ()()[]
where w is the quantization noise governed by (12.3) and is subtracted with no
loss of generality. The state–space model of the closed-loop system is

	

x k e K e x k K e w k

y k x k

T T T+() = - -()[] () + -[] ()

() = ()

- - -1 1 1τ τ τ

For zero initial conditions, the solution of the difference equation is

	

x k e K e K e w k

y k x k

T T k i T

i

k

() = - -()[] -[] ()

() = ()

- - - - -

=

-

∑ τ τ τ1 1
1

0

1

the mean value of the output noise is

	

m k E x k e K e K e w k

K

y
T T k i T

i

k

() = (){ } = - -()[] -[] ()

=

- - - - -

=

-

∑ τ τ τ1 1

1

1

0

1

--[]() - -()[]- - - - -

=

-

∑e
q

e K eT T T k i

i

k
τ τ τ

2
1

1

0

1

where E{.} denotes the expectation. If T/t << 1, we use the linear approximation
of the exponential terms e–T/t ≈ 1 - T/t to obtain

	
m k K

T q T
Ky

k i

i

k

() = ()() - () +()





- -

=

-

∑τ τ2
1 1

1

0

1

We recall the relationship

	

1

1
1

0-
= <

=

∞

∑
a

a ak

j

,

and take the limit as k → ∞ to obtain the steady-state mean

	

m k K
T q

T
K

K

K

q
y() = ()() () +()

=
+ ()τ

τ
2

1

1 1 2

For small gain values, we have

	
m

K

K

q
K

q
Ky = + () ≈ () <<

1 2 2
1,

For large gain values, we have m
q

y ≈
2

.

We observe that the mean value is independent of the sampling period, is linear in
the controller gain for small gains, and is almost independent of the gain for large
gains. In any case, the worst value we can achieve is half the quantization interval.

466    CHAPTER 12  Practical Issues

The variance of the output is

	 σ y E x k E x k2 2 2= (){ } - (){ }

Using the expression for the mean and after some tedious algebraic manipulations,
we can show that

	
σ

τ

τ τy

T

T T

K e

K K Ke K e

q2
2 2

2

21

1 1 2 1 12
==

-()
+() -() - +()[]







-

- -

If T/t << 1, we use the linear approximations of the exponential terms e–T/t ≈
1 - T/t and e–2T/t ≈ 1 - 2T/t, the output variance simplifies to

	

σ
τ

τ
τ
τ

y
K

K

T q
KT q

K

K K

2
2 2

2

2
1 2 12

2 12
1

2
1

=
+





 ≈





 >>

<<









,

,

Unlike the output mean, the output variance is linear in the sampling period
and linear in the controller gain for large gains. Thus, the effect of the quantization
noise can be reduced by decreasing the sampling period, once the ADC has been
selected. We conclude that decreasing the sampling period has beneficial effects
with respect to both aliasing and quantization noise. However, decreasing the
sampling period requires more expensive hardware and may aggravate problems
because of the finite-word representation of parameters.

We illustrate this fact with a simple example. Consider an analog controller
with poles at s1 = −1 and s2 = −10. For a digital implementation of the analog
controller with sampling period T = 0.001, we have the digital controller poles as
given by (6.3) as

	 z e z e1
0 001

2
0 010 9990 0 9900= ≅ = ≅- -. .. .and

If we truncate the two values after two significant digits, we have z1 = z2 = 0.99;
that is, the two poles of the digital controller become identical and correspond
to two identical poles of the analog controller at

	
s s

T
z

T
z1 2 1 2

1 1
10 05= = = ≅ -ln ln .

For the longer sampling period T = 0.1, truncating after two significant digits
gives the poles z1 = 0.90 and z2 = 0.36, which correspond to s1 ≈ −1.05 and
s2 = −10.21. This shows that a much better approximation is obtained with the
longer sampling period.

12.2.3  Phase Delay Introduced by the ZOH

As shown in Section 3.3, the frequency response of the zero-order hold can be
approximated as

	
G j

e

j
eZOH

j T
j Tω

ω

ω
ω() = - ≈

-
-1 2

12.2  Choice of the Sampling Period   467

This introduces an additional delay in the control loop approximately equal to half
of the sampling period. The additional delay reduces the stability margins of the
control system, and the reduction is worse as the sampling period is increased.
This imposes an upper bound on the value of the sampling period T.

Example 12.3

Let wc be the gain crossover frequency of an analog control system. Determine the maximum
value of the sampling period for a digital implementation of the controller that decreases the
phase margin by no more than 5 degrees.

Solution
Because of the presence of the ZOH, the phase margin decreases by wcT /2, which yields
the constraint

	
ω π

c
T

2
5

180
≤

or equivalently, T ≤ 0.1745 wc.

Example 12.4

Consider the tank control system described in Example 2.1 with the transfer function

	
G s

s
e s() =

+
-1 2

20 1
1 5. .

and the PI controller

	
C s

s

s
() = +

7
20 1

20

Let the actuator and the sensor signals be in the range 0 to 5 V with a sensor gain of
0.169 V/cm. Design the hardware and software architecture of the digital control system.

Solution
The gain crossover frequency of the analog control system as obtained using MATLAB is
wc = 0.42 rad/s, and the phase margin is jm = 54 deg. We select a sampling period
T = 0.2 s and use a second-order Butterworth antialiasing filter with cut-off frequency of
4 rad/s. The transfer function of the Butterworth filter is

	
F s

s s
() =

+ +
64

11 31 642 .

The antialiasing filter does not change the gain crossover frequency significantly. The
phase margin is reduced to jm = 49.6°, which is acceptable. At the Nyquist frequency of
π/T = 10.47 rad/s, the antialiasing filter decreases the magnitude of the noise by more than

468    CHAPTER 12  Practical Issues

40 dB. The phase delay introduced by the zero-order hold is (wcT/2) × 180/π = 3.6°, which
is also acceptable. We select a 12-bit ADC with a quantization level of 1.2 mV, which cor-
responds to a quantization error in the fluid level of 0.07 mm. We also select a 12-bit DAC.
Because the conversion time is on the order of microseconds, this does not influence the
overall design.

12.3  Controller Structure
Section 12.2 demonstrates how numerical errors can affect the performance of a
digital controller. To reduce numerical errors and mitigate their effects, we must
select an appropriate controller structure for implementation. To examine the
effect of controller structure on errors, consider the controller

	

C z
N z

D z

a a a

b b

T
m

T
n

n
T

() = ()
()

=

= () () ()[]

= () (

,

,

q

q

b z

a z

a q q q

b q q

0 1

0 1



)) ()[]

= []




b

z z

m
T

l
l

q

z 1

	 (12.4)

where q is an l × 1 vector of controller parameters. If the nominal parameter
vector is q* and the corresponding poles are pi*, I = 1, 2, . . . , n, for an nth-order
controller, then the nominal characteristic equation of the controller is

	 D p i ni(,) , , , . . . ,* *q = =0 1 2 	 (12.5)

In practice, the parameter values are only approximately implemented and the
characteristic equation of the system is

	

D z D p
D

z
p

D

D

z

i
z p

i
z p

T

z

i i

, (,)q q
a

a() ≈ + ∂
∂




+ ∂
∂




= ∂
∂




= =
* * *

* *
δ δ

== =
+ ∂
∂




≈

∂
∂

= ∂
∂

∂
∂

∂
∂







p
i

z p

T

n

T

i i

p
D

D D

a

D

a

D

a

* *
*δ δ

a
a

a

0

0 1



	 (12.6)

In terms of the controller parameters, the perturbed characteristic equation is

	

D z
D

z
p

D

a

q

z p
i

T

i

j

i

, q
a

a

q
q

a

q

q q

() ≈ ∂
∂




+ ∂
∂

∂
∂




≈

∂
∂

= ∂
∂



= =* *

*δ δ 0




	 (12.7)

We solve for parameter perturbations in the location of the ith pole

	
δ δ

p
D

D

z

i

T

z pi

*
*

*

= - ∂
∂

∂
∂


 ∂

∂



=

=

a

a

q

q

q q
	 (12.8)

To characterize the effect of a particular parameter on the ith pole, we can set
the perturbations in all other parameters to zero to obtain

	

δ δ
p

D

q

q
D

z

q

a

q

a

q

i

T

i

i

z p

i i i

i

*
*

*

= - ∂
∂

∂
∂


 ∂

∂



∂
∂

= ∂
∂

∂
∂

∂

=

=

a

a

a

q q

0 1 
aa

q
n

i

T

∂






	 (12.9)

This concept is explained by the following example. Consider the following
second-order general controller:

	
C z

a b z ap bp

z p p z p p
() = +() - +()

- +() +
2 1

2
1 2 1 2

Let a1 = −(p1 + p2) and a0 = p1p2 denote the nominal coefficients of the charac-
teristic equation of the controller, and write characteristic equation as

	 D z a a, ,1 0 0() =

When a coefficient li is changed (due to numerical errors) to li + δli, then the
position of a pole is changed according to the following equation (where second-
and higher-order terms are neglected):

	
D p p D p

D

z
p

D
i i i i i i

z p
i

i
i

i

+ +() = () + ∂
∂

+ ∂
∂=

δ l δl l δ
l
δl, ,

That is,

	

δ
δl

lp
D

D

z

i

i

i

z pi

= -

∂
∂

∂
∂ =

Now we have the partial derivatives

	

∂
∂

= + ∂
∂

= ∂
∂

=D

z
z a

D

a
z

D

a
2 11

1 0

and therefore

	

δ
δ

δ
δ

p

a

p

p p p

p

p p

p

a

p

p p p

p

p p
1

1

1

1 1 2

1

1 2

2

1

2

2 1 2

2

2 12 2
= -

- +()
=

-
= -

- +()
=

-

12.3  Controller Structure   469

470    CHAPTER 12  Practical Issues

	

δ
δ

δ
δ

p

a p p p p p

p

a p p p p p
1

0 1 1 2 1 2

2

0 2 1 2 2 1

1

2

1 1

2

1= -
- +()

=
-

= -
- +

=
-()

Thus, the controller is most sensitive to changes in the last coefficient of the
characteristic equation, and its sensitivity increases when the poles are close. This
concept can be generalized to high-order controllers. Note that decreasing the
sampling period draws the poles closer when we start from an analog design. In
fact, for T → 0 we have that

	 p ez
p Ts= →1

independently on the value of the analog pole ps.
These problems can be avoided by writing the controller in an equivalent

parallel form:

	
C z

a

z p

b

z p
() =

-
+

-1 2

We can now analyze the sensitivity of the two terms of the controller separately
to show that the sensitivity is equal to one, which is less than the previous case
if the poles are close. Thus, the parallel form is preferred. Similarly, the parallel
form is also found to be superior to the cascade form:

	
C z

a b z ap bp

z p z p
() = +() - +()

- -
2 1

1 2

1

Example 12.5

Write the difference equations in direct, parallel, and cascade forms for the system

	
C z

U z

E z

z

z z
() = ()

()
= -

- +
0 4

0 3 0 022

.

. .

Solution
The difference equation corresponding to the direct form of the controller is

	 u k u k u k e k e k() = -() - -() + -() - -()0 3 1 0 02 2 1 0 4 2. . .

For the parallel form, we obtain the partial fraction expansion of the transfer function

	
C z

U z

E z z z
() = ()

()
= -

-
+

-
2

0 2

3

0 1. .

This is implemented using the following difference equations:

	

u k u k e k

u k u k e k

u k u k u

1

2

1

0 2 1 2 1

0 1 1 3 1

() = -() - -()

() = -() + -()

() = () +

.

.

22 k()

Finally, for the cascade form we have

	
C z

U z

E z

z

z z

X z

E z

U z

X z
() = ()

()
= -

- -
=

()
()

()
()

0 4

0 2

1

0 1

.

. .

which is implemented using the difference equations

	

x k x k e k e k

u k u k x k

() = -() + () - -()

() = -() + -()

0 2 1 0 4 1

0 1 1 1

. .

.

12.4  PID Control
In this section, we discuss several critical issues related to the implementation of
PID controllers. Rather than providing an exhaustive discussion, we highlight a
few problems and solutions directly related to digital implementation.

12.4.1  Filtering the Derivative Action

The main problem with derivative action is that it amplifies the high-frequency
noise and may lead to a noisy control signal that can eventually cause serious
damage to the actuator. It is therefore recommended that one filter the overall
control action with a low-pass filter or, alternatively, filter the derivative action.
In this case, the controller transfer function in the analog case can be written as
(see (5.20))

	

C s K
T s

T s
T

N
s

p
i

d

d
() = + +

+

















1
1

1

where N is a constant in the interval [1, 33], Kp is the proportional gain, Ti is the
integral time constant, and Td is the derivative time constant.

In the majority of cases encountered in practice, the value of N is in the smaller
interval [8, 16]. The controller transfer function can be discretized as discussed
in Chapter 6. A useful approach in practice is to use the forward differencing
approximation for the integral part and the backward differencing approximation
for the derivative part. This gives the discretized controller transfer function

	 C z K
T

T z

T

T
T

N

z

z
T

NT T

p
i

d

d d

d

() = +
-()

+
+

⋅ -

-
+

















1
1

1
	 (12.10)

which can be simplified to

	 C z
K K z K z

z z
() = + +

-() -()
0 1 2

2

1 γ
	 (12.11)

12.4  PID Control   471

472    CHAPTER 12  Practical Issues

where

	

K K
T

NT T

T

T

T

NT T

NT

NT T

K K
T

NT T

T

T

p
d

d i

d

d

d

d

p
d

d i

0

1 1

=
+

-
+

+
+







= - +
+

- + 22

1

1

1

2

NT

NT T

K K
NT

NT T

T

NT T N T T

d

d

p
d

d

d

d d

+






= +
+







=
+

=
() +

γ

	 (12.12)

Example 12.6

Select a suitable derivative filter parameter value N for the PID controller described in
Example 5.9 with a sampling period T = 0.01, and obtain the corresponding discretized
transfer function of (12.11).

Solution
The analog PID parameters are Kp = 2.32, Ti = 3.1, and Td = 0.775. We select the filter
parameter N = 20 and use (12.4) to obtain K0 = 38.72, K1 = −77.92, K2 = 39.20, and
γ = 0.79.

The discretized PID controller expression is therefore

	
C z

K K z K z

z z

z z

z z
() = + +

-() -()
= - +

-() -
0 1 2

2 2

1

38 72 77 92 39 20

1 0 79γ
. . .

.(()

12.4.2  Integrator Windup

Most control systems are based on linear models and design methodologies.
However, every actuator has a saturation nonlinearity as in the control loop shown
in Figure 12.6, which affects both the analog and digital control. The designer
must consider the nonlinearity at the design stage to avoid performance degrada-

Figure 12.6

Control loop with actuator saturation.

Process
Output y

Reference
Input

Controller Process
v u

tion. A common phenomenon related to the presence of actuator saturation is
known as integrator windup. If not properly handled, it may result in a step
response with a large overshoot and settling time.

In fact, if the control variable attains its maximum (or minimum) limit when a
step input is applied, the control becomes independent of the feedback and the
system behaves as in the open-loop case. Thus, the control error decreases more
slowly than in the absence of saturation, and the integral term becomes large or
winds up. The large integral term causes saturation of the control variable even
after the process output attains its reference value and a large overshoot occurs.

Many solutions have been devised to compensate for integrator windup and
retain linear behavior. The rationale of these anti-windup techniques is to design
the control law disregarding the actuator nonlinearity and then compensate for
the detrimental effects of integrator windup.

One of the main anti-windup techniques is the so-called conditional integra-
tion, which keeps the integral control term constant when a specified condition
is met. For example, the integral control term is kept constant if the integral
component of the computed control exceeds a given threshold specified by the
designer. Alternatively, the integral controller is kept constant if the actuator
saturates with the control variable and the control error having the same sign
(i.e., if u · e > 0). The condition u · e > 0 implies that the control increases rather
than corrects the error due to windup and that integral action should not
increase.

On the other hand, a positive saturation with u · e < 0 means that the error is
negative and therefore the integral action is decreasing and there is no point in
keeping it constant. The same reasoning can be easily applied in case of a negative
saturation. Thus, the condition avoids inhibiting the integration when it helps to
push the control variable away from saturation.

An alternative technique is back-calculation, which reduces (increases) the
integral control when the maximum (minimum) saturation limit is attained by
adding to the integrator a term proportional to the difference between the com-
puted value of the control signal v and its saturated value u. In other words, the
integral value I(k) is determined by

	 I k I k
K

T
e k

T
v k u kp

i t

() = -() + () - () - ()()1
1

	 (12.13)

where Tt is the tracking time constant. This is a tuning parameter that deter-
mines the rate at which the integral term is reset.

Example 12.7

Consider the digital proportional-integral (PI) controller transfer function

	
C z

z

z
() = -

-
1 2 1 185

1

. .

12.4  PID Control   473

474    CHAPTER 12  Practical Issues

with Kp = 1.2, Ti = 8, sampling period T = 0.1, and the process transfer function

	
G s

s
e s() =

+
-1

10 1
5

Obtain the step response of the system (1) if the saturation limits of the actuator are
umin = –1.2 and umax = 1.2, and (2) with no actuator saturation. Compare and discuss the
two responses, then use back-calculation to reduce the effect of windup on the step
response.

Solution
For the system with actuator saturation and no anti-windup strategy, the process output y,
controller output v, and process input u are shown in Figure 12.7. We observe that the
actuator output exceeds the saturation level even when the process output attains its refer-
ence value, which leads to a large overshoot and settling time. The response after the
removal of saturation nonlinearity is shown in Figure 12.8. The absence of saturation results
in a faster response with fast settling to the desired steady-state level.

The results obtained by applying back-calculation with Tt = Ti = 8 are shown in Figure
12.9. The control variable is kept at a much lower level and this helps avoid the overshoot
almost entirely. The response is slower than the response with no saturation but is signifi-
cantly faster than the response with no anti-windup strategy.

Figure 12.7

Process input u, controller output v, and process output y with actuator saturation and no
anti-windup strategy.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time s

y

v

u

Figure 12.8

Controller output v and process output y with no actuator saturation.

0 10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time s

y

v

Figure 12.9

Process input u, controller output v, and process output y with actuator saturation and a
back-calculation anti-windup strategy.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time s

v

y

u

12.4  PID Control   475

476    CHAPTER 12  Practical Issues

12.4.3  Bumpless Transfer between Manual and Automatic Mode

When the controller can operate in either manual mode or automatic mode,
switching between the two modes of operation must be handled carefully to avoid
a bump in the process output at the switching instant. During manual mode,
the operator provides feedback control and the automatic feedback is discon-
nected. The integral term in the feedback controller can assume a value different
from the one selected by the operator. Simply switching from automatic to
manual, or vice versa, as in Figure 12.10, leads to a bump in the control signal,
even if the control error is zero. This results in an undesirable bump in the output
of the system.

For a smooth or bumpless transfer between manual control and the automatic
digital controller C(z), we use the digital scheme shown in Figure 12.11. We write
the automatic controller transfer function in terms of an asymptotically stable
controller D(z) with unity DC gain—that is, D(1) = 1—as

	 C z
K

D z
() =

- ()1
	 (12.14)

We then solve for D(z) in terms of C(z) to obtain

	
D z

C z K

C z
() = () -

()

Figure 12.10

Block diagram for bumpy manual (M)/automatic (A) transfer.

R(z)

+ −

Y(z)E(z)
G(s) ADCDACC(z)

M

A U(z)

Figure 12.11

Block diagram for bumpless manual (M)/automatic (A) transfer.

+
u(k)e(k)

D(z)

K

M

A

M
A +

C(z)

If C(z) is the PID controller transfer function of (12.11), we have

	 D z
K K z K K K z K K

z z
() = -() + - -() + -

-() -()
2

2
1 0

1

γ γ
γ

	 (12.15)

If the coefficient of the term z2 in the numerator is nonzero, then the control-
ler has the form

	
D z

U z

E z
K K D za() = ()

()
= -() + ()2

where Da(z) has a first-order numerator polynomial. The controller output
u(k + 2) is equal to the sum of two terms, one of which is the controller output
u(k + 2) itself. Thus, the solution of the related difference equation cannot be
computed by a simple recursion. This undesirable controller structure is known
as an algebraic loop. To avoid an algebraic loop, we impose the condition

	 K K= 2 	 (12.16)

to eliminate the z2 term in the numerator. We illustrate the effectiveness of the
bumpless manual/automatic mode scheme using the following example.

Example 12.8

Verify that a bump occurs if switching between manual and automatic operation uses the
configuration shown in Figure 12.10 for the process

	
G s

s
e s() =

+
-1

10 1
2

and the PID controller (T = 0.1)

	
C z

z z

z z
() = - +

- +
44 85 37 41 43

1 368 0 368

2

2

. .

. .

Design a scheme that provides a bumpless transfer between manual and automatic
modes.

Solution
The unit step response for the system shown in Figure 12.10 is shown in Figure 12.12
together with the automatic controller output. The transfer between manual mode, where a
step input u = 1 is selected, and automatic mode occurs at time t = 100. The output of the
PID controller is about 11, which is far from the reference value of unity at t = 100. This
leads to a significant bump in the control variable on switching from manual to automatic
control that acts as a disturbance, causing a bump in the process output. To eliminate the
bump, we use the bumpless transfer configuration shown in Figure 12.11 with the PID
controller parameters

	 K K K2 1 044 85 37 41 43 0 368= = = =, . , . , .γ

12.4  PID Control   477

478    CHAPTER 12  Practical Issues

Figure 12.12

Process output (a) and controller output (b) for the system without bumpless transfer.

0 50 100 150
0

1

2

3

Time s
(a)

(b)

P
ro

ce
ss

 O
ut

pu
t

0 50 100 150

0

20

40

Time s

C
on

tr
ol

le
r

O
ut

pu
t

Figure 12.13

Process output (a) and controller output (b) for the bumpless manual/automatic transfer shown
in Figure 12.11.

(a)

(b)

0 50 100 150
0

0.5

1

Time s

Time s

P
ro

ce
ss

 O
ut

pu
t

0 50 100 150
0

0.5

1

C
on

tr
ol

le
r

O
ut

pu
t

Using (12.15) and (12.16), we have

	
D z

z

z z
() = - +

- +
0 572 0 574

1 94 0 9422

. .

. .

and K = 44. The results of Figure 12.13 show a bumpless transfer, with the PID output at
t = 100 equal to one.

12.4.4  Incremental Form

Integrator windup and bumpless transfer issues are solved by implementing the
PID controller in incremental form. We determine the increments in the control
signal at each sampling period instead of determining the actual values of the
control signal. This moves the integral action outside the control algorithm. To
better understand this process, we consider the difference equation of a PID
controller (the filter on the derivative action is not considered for simplicity):

	
u k K e k

T

T
e i

T

T
e k e kp

i

d

i

k

() = () + () + () - -()()



=

∑ 1
0

Subtracting the expression for u(k − 1) from that of u(k), we obtain the
increment

	
u k u k K

T

T

T

T
e k

T

T
e k

T

T
e kp

i

d d d() - -() = + +



 () + - -() -() + -(1 1 1

2
1 2))





which can be rewritten more compactly as

	 u k u k K e k K e k K e k() - -() = () + -() + -()1 1 22 1 0 	 (12.17)

where

	 K K
T

T

T

T
p

i

d
2 1= + +



 	 (12.18)

	 K K
T

T
p

d
1 1

2= - -() 	 (12.19)

	 K K
T

T
p

d
0 = 	 (12.20)

From the difference equation (12.17), we can determine the increments in
the control signal at each sampling period. Actually, in (12.17) there is no error
accumulation (in this case the integral action can be considered “outside” the
controller), and the integrator windup problem does not occur. In practice, it is
sufficient that the control signal is not incremented when the actuator saturates—
namely, we have u(k) = u(k − 1) when v(k) = u(k) in Figure 12.6. Further, the
transfer between manual mode and automatic mode is bumpless as long as the

12.4  PID Control   479

480    CHAPTER 12  Practical Issues

operator provides the increments in the control variable rather than their total
value.

The z-transform of the difference equation (12.17) gives the PID controller
z-transfer function in incremental form as

	 C z
U z

E z

K z K z K

z
() = ()

()
= + +Δ 2

2
1 0

2
	 (12.21)

where ΔU(z) is the z-transform of the increment u(k – p) − u(k – 1).

Example 12.9

For the process described in Example 12.7 and an analog PI controller with Kp = 1.2 and
Ti = 8, verify that windup is avoided with the digital PI controller in incremental form
(T = 0.1) if the saturation limits of the actuator are umin = –1.2 and umax = 1.2.

Solution
Using (12.18) and (12.19), we obtain K2 = 1.215 and K1 = −1.2 and the digital controller
transfer function

	
C z

z

z
() = -

-
1 215 1 2

1

. .

The output obtained with the PI controller in incremental form (avoiding controller updating
when the actuator saturates) is shown in Figure 12.14. Comparing the results to those shown
in Figure 12.7, we note that the response is much faster both in rising to the reference value
and in settling. In Figure 12.14, the effects of saturation are no longer noticeable.

Figure 12.14

Process output with the PID in incremental form.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time s

P
ro

ce
ss

 O
ut

pu
t

12.5  Sampling Period Switching
In many control applications, it is necessary to change the sampling period during
operation to achieve the optimal usage of the computational resources. In fact, a
single CPU usually performs many activities such as data storage, user interface,
and communication, and possibly implements more than one controller. It is
therefore necessary to optimize CPU utilization by changing the sampling period.
For a given digital control law, on the one hand it is desirable to decrease the
sampling period to avoid performance degradation; on the other hand decreasing
it can overload the CPU and violate real-time constraints.

The problem of changing the control law when the sampling frequency changes
can be solved by switching between controllers working in parallel, each with a
different sampling period. This is a simple task provided that bumpless switching
is implemented (see Section 12.4.3). However, using multiple controllers in paral-
lel is computationally inefficient and is unacceptable if the purpose is to optimize
CPU utilization. Thus, it is necessary to shift from one controller to another when
the sampling period changes rather than operate controllers in parallel.

This requires computing the new controller parameters as well as past values
of error and control variables that it requires to compute the control before switch-
ing. If the original sampling interval is T¢ and the new sampling interval is T, then
we must switch from the controller

	

′() = ()
()

=

= ′() ′()[]

= ′() ′()

C z
U z

E z

a T a T

b T b T b

T
m

T
n

T

b z

a z

a

b

0 1

0 1

1

 mm
T

l
l

T

z z

′()[]

= []z 1 

	 (12.22)

to the controller

	
C z

U z

E z

T
m

T
n

() = ()
()

= b z

a z

	

a

b

z

= () ()[]

= () () ()[]

= []

a T a T

b T b T b T

z z

T

m
T

l
l

0 1

0 1

1

1







Equivalently, we switch from the difference equation

	

u kT a T u k T a T u k n T

b T e k n

n′() = - ′() -() ′() - - ′() -() ′() +
′() -
-1 0

0

1 . . .

++() ′() + + ′() -() ′()m T b T e k n Tm. . .

12.5  Sampling Period Switching   481

482    CHAPTER 12  Practical Issues

to the difference equation

	

u kT a T u k T a T u k n T

b T e k n m T

n() = - () -()() - - () -()() +
() - +()(

-1 0

0

1 . . .

)) + + () -()(). . . b T e k n Tm

Thus, at the switching time instant, we must recompute the values of the param-
eter vectors a and b as well as the corresponding past m + 1 values of the track-
ing error e and the past n values of the control variable u.

We compute the new controller parameters using the controller transfer func-
tion, which explicitly depends on the sampling period. For example, if the PID
controller of (12.11) is used, the new controller parameters can be easily com-
puted using (12.12) with the new value of the sampling period T, or equivalently,
using (12.10) where the sampling period T appears explicitly. To compute the
past values of the tracking error e and of the control variable u, different tech-
niques can be applied depending on whether the sampling period increases or
decreases. For simplicity, we only consider the case where one sampling period
is a divisor or multiple of the other. The case where the ratio between the previ-
ous and the new sampling periods (or vice versa) is not an integer is a simple
extension, which is not considered here.

If the new sampling period T is a fraction of the previous sampling period
T ′ (i.e., T ′ = lT), the previous n values of the control variable [u((k − 1)T),
u((k − 2)T), . . ., u((k − n)T)] are determined with the control variable kept con-
stant during the past l periods. Otherwise, the m + 1 previous error values are
computed using an interpolator such as a cubic polynomial. In particular, the
coefficients c3, c2, c1, and c0 of a third-order polynomial e t c t c t c t c() = + + +3

3
2

2
1 0

can be determined by considering the past three samples and the current value
of the control error. The data yields the following linear system:

	

k T k T k T

k T k T k T

k

-() ′() -() ′() -() ′

-() ′() -() ′() -() ′

-

3 3 3 1

2 2 2 1

3 2

3 2

11 1 1 1

1

3 2

3 2

() ′() -() ′() -() ′

′() ′() ′





















T k T k T

kT kT kT

c33

2

1

0

3

2

1

c

c

c

e k T

e k T

e k T

e kT



















=

-() ′()
-() ′()
-() ′()

′()



















  (12.23)

Once the coefficients of the polynomial function have been determined, the
previous values of the control error with the new sampling period are determined
from the values of the polynomial functions evaluated at the required sampling
instants. The procedure is illustrated in Figure 12.15, where the dashed line
connecting the control error values between (k − 3)T and kT is the polynomial
function e t().

If the new sampling period T is a multiple of the previous sampling period T ′
(i.e., T = lT ′), the previous m error samples are known. However, the data struc-
ture must be large enough to store them even if they are not necessarily with the
sampling period T ′. If the pole-zero difference of the process is equal to one, the
equivalent n past control actions are approximately computed as the outputs
estimated using the model of the control system with sampling period T. Specifi-

cally, let the process model obtained by discretizing the analog process with
sampling period T be

	
G z

Y z

U z

z z

z z
ZAS

h
h

h
h

h
h

h
() = ()

()
= + + +

+ + +
-

-
-

-

-
-

β β β
α α

1
1

2
2

0

1
1

. . .

. . . 00

where h ≥ n. Then the equivalent past n control actions u((k − 1)T), u((k − 2)T),
…, u((k − n)T) are determined by minimizing the difference between the mea-
sured output and that estimated by the model at the switching time:

	
min . . .

. . .

y kT y k T a y k h T

u k T

h

h

() - - -()() - - -()() +(
-()()+

-

-

α
β

1 0

1

1

1 ββ0u k h T-()())
	 (12.24)

We solve the optimization problem numerically using an appropriate approach
such as the simplex algorithm (see Section 12.5.1). To initiate the search, initial
conditions must be provided. The initial conditions can be selected as the values
of the control signal at the same sampling instants determined earlier with the
faster controller. The situation is depicted in Figure 12.16.

12.5.1  Matlab Commands

When the sampling frequency is increased, the array en of the m + 1 previous
error values can be computed using the following MATLAB command:

>> en = interp1(ts, es, tn, ’cubic’)

where ts is a vector containing the last four sampling instants [(k − 3)T ′,
(k − 2)T ′, (k − 1)T ′, kT ′] of the slower controller and es is a vector containing

Figure 12.15

Switching controller sampling from a sampling period T ′ to a faster sampling rate with sampling
period T = T ′/3.

e

u

t

(k−2)T ′ (k−1)T ′ T ′k
kT (k−1)T (k−2)T (k−3)T (k−4)T (k−5)T (k−6)T

e~

12.5  Sampling Period Switching   483

484    CHAPTER 12  Practical Issues

the corresponding control errors [e((k − 3)T ′), e((k − 2)T ′), e((k − 1)T ′), e(kT ′)].
The array tn contains the m + 1 sampling instants for which the past control errors
for the new controller must be determined.

Alternatively, the vector of the coefficients c = [c3, c2, c1, c0]
T of the cubic

polynomial can be obtained by solving the linear system (12.23) using the
command

>> c = linsolve(M, e)

where M is the matrix containing the time instants and e is the column vector
containing the error samples such that (12.23) is written as M*c = e. Once the
coefficients of the polynomial are computed, the values of the control error at
previous sampling instants can be easily determined by interpolation.

To find the past control values using the simplex algorithm, use the
command

>> un = fminsearch(@(u)(abs(yk − ah1*yk1− . . . −a0 * ykh + bh1 *
u(1) + … + b0*u(n))), initcond)

where initcond is the vector of n elements containing the initial conditions, un
is the vector of control variables [u((k − 1)T), u((k − 2)T), . . ., u((k − n)T)], and
the terms in the abs function are the values corresponding to expression (12.24),
with the exception of u(1), . . . , u(n) that must be written explicitly. Details are
provided in the following examples.

Figure 12.16

Switching controller sampling from a sampling period T ′ to a slower sampling rate with
sampling period T = 3T ′.

e

u

t

(k−2)T (k−1)T kT
kT ′(k−1)T ′(k−2)T ′(k−3)T ′(k−4)T ′(k−5)T ′(k−6)T ′

Example 12.10

Discuss the effect of changing the sampling rate on the step response of the process
described in Example 12.7 and an analog PI controller with Kp = 1.2 and Ti = 8. Initially
use a digital PI controller in incremental form with T ′ = 0.4 s; then switch at time t = 22 s
to a faster controller with T = 0.1 s.

Solution
For PI control, we set Td to zero in (12.18) to (12.20) to obtain the parameters

	

K K
T

T

K K

K

p
i

p

2

1

0

1 1 2 1 0 4 8 1 26

1 2

0

= + ′



 = +() =

= - = -

=

. . .

.

Using (12.21), the initial digital controller transfer function is

	
C z

U z

E z

z

z
() = ()

()
= -

-
1 26 1 2

1

. .

We simulate the system using MATLAB to compute the control and error signals. The
control signal at t = 20.8, 21.2, and 21.6 s is plotted in Figure 12.17, whereas the error at
time t = 20.8, 21.2, 21.6, and 22 s is plotted as circles in Figure 12.18. At time t = 22 s,
the sampling period switches to T = 0.1 s and the control signal must be recomputed. The
new PI controller parameters are

	

K K
T

T

K K

K

p
i

p

2

1

0

1 1 2 1 0 1 8 1 215

1 2

0

= + ′



 = +() =

= - = -

=

. . .

.

yielding the following transfer function:

	
C z

z

z
() = -

-
1 215 1 2

1

. .

The associated difference equation is therefore

	 u k u k e k e k() = -() + () - -()1 1 215 1 2 1. . 	 (12.25)

Whereas at t = 22 s the value of e(k) = −0.3139 is unaffected by switching, the values
of u(k − 1) and e(k − 1) must in general be recomputed for the new sampling period.
For a first-order controller, the value of u(k − 1) is the value of the control signal at time
t = 22 − T = 22 − 0.1 = 21.9 s. This value is the same as that of the control signal for
sampling period T ′ over the interval 21.6 to 22 s. From the simulation results shown in
Figure 12.17, we obtain u(k − 1) = 0.8219 where the values of the control signal at
t = 21.7, 21.8, and 21.9 s with the new controller are denoted by stars.

To calculate the previous value of the control error e(k − 1), we use a cubic polynomial
to interpolate the last four error values with the slower controller (the interpolating function

12.5  Sampling Period Switching   485

486    CHAPTER 12  Practical Issues

Figure 12.17

Control signal (solid line) obtained by simulating the system described in Example 12.10 with
sampling period T ′ = 0.4 s. Circles denote the control values at the sampling instants, and
stars denote the control values for T = 0.1 s.

20.8 21 21.2 21.4 21.6 21.8 22
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

Time s

C
on

tr
ol

 S
ig

na
l

Figure 12.18

Control error interpolation e t() (solid line) obtained by simulating the system described in
Example 12.10 with sampling period T ′ = 0.4 s. Circles denote the error values at the sampling
instants, and stars denote the error values for T = 0.1 s.

20.8 21 21.2 21.4 21.6 21.8 22
–0.316

–0.3155

–0.315

–0.3145

–0.314

–0.3135

–0.313

–0.3125

Time s

E
rr

or

is the solid line in Figure 12.18). Using the control errors at t = 21.7, 21.8, 21.9 s,
e(21.6) = −0.3155, e(21.2) = −0.3153, and e(20.8) = −0.3131, the linear system (12.23)
is solved for the coefficients c3 = −0.0003, c2 = 0.0257, c1 = −0.6784, and c0 = 5.4458. To
solve the linear system, we use the MATLAB commands

>> M = [20.8∧3 20.8∧2 20.8 1; 21.2∧3 21.2∧2 21.2 1; 21.6∧3 21.6∧2
21.6 1; 22.0∧3 22.0∧2 22.0 1];

>> e = [-0.3131 -0.3153 -0.3155 -0.3139]’;
>> c = linsolve(M,e);  % Solve the linear system M c = e
>> en = c(1)*21.9∧3 + c(2)*21.9∧2 + c(3)*21.9 + c(4);

The value of the control error at time t = 21.9 s is therefore

	 e k -() = - ⋅ + ⋅ - ⋅ + = -1 0 0003 21 9 0 0257 21 9 0 6784 21 9 5 4458 0 313 2. 444

Alternatively, we can use the MATLAB command for cubic interpolation

>> en = interp1([20.8 21.2 21.6 22], [−0.3131 −0.3153 −0.3155
−0.3139],21.9,′cubic′);

The control error for the faster controller at t = 21.7, 21.8, and 21.9 s is denoted by
stars in Figure 12.18. From (12.25), we observe that only the error at t = 21.9 is needed
to calculate the control at t = 22 s after switching to the faster controller. We compute the
control value:

	

u k u k e k e k() = -() + () - -()
= + × -() -

1 1 215 1 2 1

0 8219 1 215 0 3139 1 2

. .

. . . . ×× -() =0 3144 0 8178. .

We compute the control at time t = 22.1 s and the subsequent sampling instants using
the same expression without the need for further interpolation. Note that the overall perfor-
mance is not significantly affected by changing the sampling period, and the resulting
process output is virtually the same as the one shown in Figure 12.8.

Example 12.11

Design a digital controller for the DC motor speed control system described in Example 6.16
with transfer function

	
G s

s s
() =

+() +()
1

1 10

to implement the analog PI controller

	
C s

s
s

() = +
47 2

1
.

with the sampling period switched from T ′ = 0.01 s to T = 0.04 s at time t = 0.5 s. Obtain
the step response of the closed-loop system, and discuss your results.

12.5  Sampling Period Switching   487

488    CHAPTER 12  Practical Issues

Solution
Applying the bilinear transformation with T ′ = 0.01 to the controller transfer function C(s),
we obtain the initial controller transfer function

	
C z

z

z
() = -

-
47 44 46 96

1

. .

We simulate the system using MATLAB to compute the error and process output values.
The error values at t = 0.42, . . . , 0.5 s are shown in Figure 12.19. The process output for
a unit step reference input step at the same sampling instants is shown in Figure 12.20.

Starting at t = 0.5 s, the controller transfer function obtained by bilinearly transforming
the analog controller with sampling period T = 0.04 s becomes

	
C z

U z

E z

z

z
() = ()

()
= -

-
48 14 46 26

1

. .

The corresponding difference equation

	 u k u k e k e k() = -() + () - -()1 48 14 46 26 1. .

is used to calculate the control variable starting at t = 0.5 s. From the MATLAB simulation
results, the error values needed to compute the control at t = 0.5 s are e(k) = −0.0172
at t = 0.5 s and e(k − 1) = 0.0151 at t = 0.5 − 0.04 = 0.46 s. The control u(k − 1) at
t = 0.46 s must be determined by solving the optimization problem (12.24). The z-transfer
function of the plant, ADC and DAC, with T = 0.04 is

Figure 12.19

Control error for the two controllers described in Example 12.11. Circles denote the error values
for the faster controller; the dark circles denote the error values for the slower controller.

0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5
–0.02

–0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time s

E
rr

or

	

G z
Y z

U z

z

z z
ZAS() = ()

()
= +

- +

= ×

-

-

10
6 936 5 991

1 631 0 644

6 936 10

4
2

. .

. .

. 44 1 4 2

1 2

5 991 10

1 1 631 0 644

z z

z z

- - -

- -

+ ×
- +

.

. .

and the corresponding difference equation is

	 y k y k y k u k u k() = -() - -() + ⋅ -() + ⋅- -1 631 1 0 644 2 6 936 10 1 5 991 104 4. . . . --()2

Therefore, the optimization problem is

	
min

.
y y y u0 5 1 631 0 46 0 644 0 42 6 936 10 0 46

5 9

4() - () - () + × ()(+-

991 10 0 424× ())- u .

Using the output values y(0.5) = 1.0235, y(0.46) = 0.9941, and y(0.42) = 0.9522, the
values of u(0.46) and u(0.42) are computed by solving the optimization problem using the
following MATLAB command:

>> u = fminsearch(@(un)(abs(1.0235-(1.631*0.9941-
0.644*0.9522+6.936e-4*un(1)+5.991e-4*un(2)))),[13.6 11.5]);

The initial conditions u(k − 1) = 13.6 at t = 0.46 and u(k − 2) = 11.5 at t = 0.42 are
obtained from the values of the control variable at time t = 0.42 and t = 0.46 with the
initial sampling period T ′ = 0.01 s (Figure 12.21). The optimization yields the control values
u(0.46) = 11.3995 and u(0.42) = 12.4069. The resulting value of the objective function is

Figure 12.20

Process output for the faster controller described in Example 12.11.

0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

Time s

P
ro

ce
ss

 O
ut

pu
t

12.5  Sampling Period Switching   489

490    CHAPTER 12  Practical Issues

Figure 12.21

Control values for the two controllers described in Example 12.11. The solid line represents
the control variable with the faster controller. The dashed line represents the equivalent control
variable with the slower controller.

0.42 0.43 0.44 0.45 0.46
Time s

0.47 0.48 0.49 0.5
10

10.5

11

11.5

12

12.5

13

13.5

14
C

on
tr

ol
 S

ig
na

l

Figure 12.22

Step response described in Example 12.11 with sampling period switching.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Time s

P
ro

ce
ss

 O
ut

pu
t

zero (i.e., the measured output is equal to the model estimate at the switching time). Thus,
the value of the control variable at the switching time t = 0.5 s is

	 u 0 5 11 3995 48 14 0 0172 46 26 0 0151 9 8730.() = + × - - × =

The step response of the system, shown in Figure 12.22, has a small overshoot and
time to first peak, and a short settling time. The response is smooth and does not have a
discontinuity at the switching point.

12.5.2  Dual-Rate Control

In some industrial applications, samples of the process output are available at a
rate that is slower than the sampling rate of the controller. If performance degrades
significantly when the controller sampling rate is reduced to equal that of the
process output, a dual-rate control scheme can be implemented. The situation is
depicted in Figure 12.23, where it is assumed that the slow sampling period lT
is a multiple of the fast sampling period T (i.e., l is an integer). Thus, the ADC
operates at the slower sampling rate lT, whereas the controller and the sample-
and-hold operate at the faster sampling rate T.

To achieve the performance obtained when the output is sampled at the fast
rate, a possible solution is to implement the so-called dual-rate inferential
control scheme. It uses a fast-rate model of the process ĜZAS(z) to compute the
missing output samples. The control scheme is shown in Figure 12.24, where a
is an availability parameter for the output measurement defined by

Figure 12.23

Block diagram of dual-rate control. The controller and the ZOH operate with sampling period
T; the process output sampling period is lT.

R(z)

+ −

Y(s)U(z)E(z)
G(s) ZOHC(z)

lT

R(z)

+ −

U(z)E(z)
G(s)ZOH C(z)

lT

(z)ĜZAS 1−a

a

Figure 12.24

Block diagram of dual-rate inferential control.

12.5  Sampling Period Switching   491

492    CHAPTER 12  Practical Issues

	
a

t k T

t k T
=

≠
={0

1

,

,

l
l

The controller determines the values of the control variable using the measured
output at t = klT and using the estimated output when t = kT and t ≠ klT. In the
absence of disturbances and modeling errors, the dual-rate control scheme is
equivalent to the fast single-rate control scheme. Otherwise, the performance of
dual-rate control can deteriorate significantly. Because disturbances and modeling
errors are inevitable in practice, the results of this approach must be carefully
checked.

Example 12.12

Design a dual-rate inferential control scheme with T = 0.02 and l = 5 for the process (see
Example 6.16)

	
G s

s s
() =

+() +()
1

1 10

and the controller

	
C s

s

s
() = +

47 2
1

.

Solution
The fast rate model (T = 0.02) for the plant with DAC and ADC is

	
G z

z

z z

Y z

U z
G zZAS ZAS() = +

- +
=

()
()

= ()-10
1 86 1 729

1 799 0 8025
4

2

. .

. .
ˆ

The difference equation governing the estimates of the output is

	y k y k y k u k u k() = -() - -() + × -() + ×- -1 799 1 0 8025 2 1 86 10 1 1 729 104 4. . . . --()2

With T = 0.02, the controller transfer function obtained by bilinear transformation is

	
C z

z

z
() = -

-
47 67 46 73

1

. .

The controller determines the values of the control variable from the measured output at
t = 5kT. When t = kT and t ≠ 5kT, we calculate the output estimates using the estimator
difference equation.

The control scheme shown in Figure 12.24 yields the step response shown in Figure
12.25. The results obtained using a single-rate control scheme with T = 0.1 are shown in
Figure 12.26. The step response for single-rate control has a much larger first peak and
settling time.

Figure 12.25

Step response described in Example 12.12 for a dual-rate controller with T = 0.02 and
l = 5.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Time s

P
ro

ce
ss

 O
ut

pu
t

Figure 12.26

Step response described in Example 12.12 for a single-rate controller with T = 0.1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time s

P
ro

ce
ss

 O
ut

pu
t

12.5  Sampling Period Switching   493

494    CHAPTER 12  Practical Issues

Resources
Albertos, P., M. Vallés, A. Valera, Controller transfer under sampling rate dynamic changes,

Proceedings European Control Conference, Cambridge (UK), 2003.
Åström, K. J., and T. Hägglund, Advanced PID Controllers, ISA Press, 2006.
Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén, How does control timing

affect performance? IEEE Control Systems Magazine, 23:16–30, 2003.
Gambier, A., Real-time control systems: A tutorial, Proceedings 5th Asian Control Confer-

ence, pp. 1024–1031, 2004.
Li, D. S., L. Shah, and T. Chen, Analysis of dual-rate inferential control systems, Automatica,

38:1053–1059, 2003.
Visioli, A., Practical PID Control, Springer, 2006.

Problems

12.1.	 Write pseudocode that implements the following controller:

	
C z

U z

E z

z

z
() = ()

()
= -

-
2 01 1 99

1

. .

12.2.	 Rewrite the pseudocode for the controller described in Problem 12.1 to
decrease the execution time by assigning priorities to computational
tasks.

12.3.	 Design an antialiasing filter for the position control system

	
G s

s s
() =

+()
1

10

with the analog controller (see Example 5.6)

	
C s

s

s
() = +

50
0 5.

Select an appropriate sampling frequency and discretize the controller.

12.4.	 Determine the mean and variance values of the quantization noise when a
12-bit ADC is used to sample a variable in a range 0 to 10 V for (a) rounding
and (b) truncation.

12.5.	 For the system and the controller described in Problem 12.3 with a sampling
interval T = 0.02 s, determine the decrease in the phase margin due to the
presence of the ZOH.

12.6.	 Consider an oven control system (Visioli, 2006) with transfer function

	
G s

s
e s() =

+
-1 1

1300 1
25.

and the PI controller

	
C s

s

s
() = +

13
200 1

200

Let both the actuator and the sensor signals be in the range 0 to 5 V, and let
1° Celsius of the temperature variable correspond to 0.02 V. Design the
hardware and software architecture of the digital control system.

12.7.	 Write the difference equations for the controller in (a) direct form, (b)
parallel form, and (c) cascade form.

	
C z

z z

z z
() = -() -()

-() -()
50

0 9879 0 9856

1 0 45

. .

.

12.8.	 For the PID controller that results by applying the Ziegler-Nichols tuning
rules to the process

	
G s

s
e s() =

+
-1

8 1
2

determine the discretized PID controller transfer functions (12.11) and
(12.12) with N = 10 and T = 0.1.

12.9.	 Design a bumpless manual/automatic mode scheme for the PID controller
(T = 0.1)

	
C z

z z

z z
() = - +

-() -()
252 493 4 241 6

1 0 13

2 . .

.
.

12.10.	 Design a bumpless manual/automatic mode scheme for the controller
obtained in Example 6.18

	
C z

z z z

z z z
() = -() -() +()

-() +() -()
1 422 0 8187 0 9802 1

1 0 9293 0 96

. . .

. .

12.11.	 Determine the digital PID controller (with T = 0.1) in incremental form for
the analog PID controller

	
C s

s
s() = + +()3 1

1

8
2

Computer Exercises

12.12.	 Write a MATLAB script and design a Simulink diagram that implements the
solution to Problem 12.8 with different filter parameter values N, and discuss
the set-point step responses obtained by considering the effect of
measurement noise on the process output.

Computer Exercises   495

496    CHAPTER 12  Practical Issues

12.13.	 Consider the analog process

	
G s

s
e s() =

+
-1

8 1
2

and the analog PI controller with Kp = 3 and Ti = 8. Obtain the set-point step
response with a saturation limit of umin = –1.1 and umax = 1.1 and with a
digital PI controller (T = 0.1) with
(a)	 No anti-windup
(b)	 A conditional integration anti-windup strategy
(c)	 A back-calculation anti-windup strategy
(d)	 A digital PI controller in incremental form

12.14.	 Consider the analog process and the PI controller described in Problem
12.13. Design a scheme that provides a bumpless transfer between manual
and automatic mode, and simulate it by applying a step set-point signal and
by switching from manual mode, where the control variable is equal to one,
to automatic mode at time t = 60 s. Compare the results with those obtained
by a scheme without bumpless transfer.

12.15.	 Design and simulate a dual-rate inferential control scheme with T = 0.01 and
l = 4 for the plant

	
G s

s s
() =

+() +()
1

1 5

and the analog PI controller (see Problem 5.7). Then apply the controller to
the process

	
G s

s s s
() =

+() +() +()
1

1 5 0 1 1.

to verify the robustness of the control system.

12.16.	 Consider the analog process and the analog PI controller described in
Problem 12.13. Write a MATLAB script that simulates the step response with
a digital controller when the sampling period switches at time t = 0.52 from
T = 0.04 to T = 0.01.

12.17.	 Consider the analog process and the analog PI controller described in
Problem 12.13. Write a MATLAB script that simulates the step response with
a digital controller when the sampling period switches at time t = 0.52 from
T = 0.01 to T = 0.04.

Appendix

ITable of Laplace and
z-Transforms

No.
Continuous
Time

Laplace
Transform Discrete Time* Z-Transform

1 δ(t) 1 δ(k) 1

2 1(t) 1

s

1(k) z

z −1

3 t 1
2s

k** z

z −()1 2

4 t 2

2!

1
3s

k2 z z

z

+()
−()

1

1 3

5 t 3

3!

1
4s

k3 z z z

z

2

4

4 1

1

+ +()
−()

6 e−akT 1

s + α
ak*** z

z a−

7 1 −e−at α
αs s +()

1 −ak 1

1

−()
−() −()

a z

z z a

8 e−at−e−bt β α
α β

−
+() +()s s

ak−bk a b z

z a z b

−()
−() −()

9 te−at 1
2s +()α

kak az

z a−()2

10 sin(ωnt) ω
ω
n

ns2 2+
sin(ωnk) sin

cos

ω
ω
n

n

z

z z

()
− () +2 2 1

11 cos(ωnt) s

s n
2 2+ ω

cos(ωnk) z z

z z
n

n

− ()[]
− () +

cos

cos

ω
ω2 2 1

*The discrete time functions are similar to but not always a sampled form of the continuous time
functions.
**Sampling t gives kT with a transform that is obtained by multiplying the transform of k by T.
***The function e-akT is obtained by setting a = e-aT.

498    APPENDIX I  Table of Laplace and z-Transforms

No.
Continuous
Time

Laplace
Transform Discrete Time* Z-Transform

12 e tn t
d

− ()ζω ωsin ω
ζω ω

d

n ds +() +2 2

e kn k
d

− ()ζω ωsin e z

z e z e

n

n n

d

d

−

− −

()
− () +

ζω

ζω ζω

ω
ω

sin

cos2 22

13 e tn t
d

− ()ζω ωcos s

s

n

n d

+
+() +

ζω
ζω ω2 2

e kn k
d

− ()ζω ωcos z z e

z e z e

n

n n

d

d

− ()[]
− () +

−

− −

ζω

ζω ζω

ω
ω
cos

cos2 22

14 sinh(βt) β
βs2 2−

sinh(βk) sinh

cosh

β
β

()
− () +

z

z z2 2 1

15 cosh(βt) s

s2 2− β
cosh(βk) z z

z z

− ()[]
− () +

cosh

cosh

β
β2 2 1

Appendix

IIProperties of the
z-Transform

No. Name Formula

1 Linearity Z α β α βf k f k F z F z1 2() + (){ } = () + ()1 2

2 Time Delay Z f k n z F zn−(){ } = ()−

3 Time Advance Z f k zF z z f+(){ } = () − ()1 0

Z f k n z F z z f z f z f nn n n+(){ } = () − () − () − −()−0 1 1 1

4 Discrete-Time Convolution Z Zf k f k f i f k i

F z F z
i

k

1 2 1 2

=

()∗ (){ } = () −()








= () ()

∑
0

1 2

5 Multiplication by Exponential Z a f k F azk− (){ } = ()

6 Complex Differentiation Z k f k z
d

dz
F zm

m

(){ } = −
) ()

7 Final Value Theorem f f k z F z

z

z
F z

k z

z

∞() = () = −() ()

=
−

) ()

→∞ →

−

→

Lim Lim

Lim

1

1

1

1

1

8 Initial Value Theorem f f k F z
k z

0
0

() = () = ()
→ →∞

Lim Lim

C

Appendix

IIIReview of Linear
Algebra

A.1  Matrices
An m × n matrix is an array of entries1 denoted by

	

A a

a a a

a a a

a a a

ij

n

n

m m mn

= [] =



















11 12 1

21 22 2

1 2




   


with m rows and n columns. The matrix is said to be of order m × n.

Rectangular matrix m ≠ n
Square matrix m = n
Row vector m = 1
Column vector n = 1

Example A.1: Ma trix Representation

	
A = 





×
1 2 3

4 5 6
3real 2 rectangular matrix

>> A = [1 2 3; 4 5 6]

	
A

j

j
=

−
+







×
1 2

4 5
2 2complex square matrix

>> A = [1, 2 − j; 4 + j, 5]

1Relevant MATLAB® commands are given as necessary and are preceded by “>>.” C

502   APPENDIX III  Review of Linear Algebra

A.2  Equality of Matrices
Equal matrices are matrices of the same order with equal corresponding entries:

	
A B a b i m

j n
ij ij= ⇔ [] = [] =

=
, , , . . . ,

, , . . . ,
1 2
1 2

Example A.2: E qual Matrices

	
A B C= 





= 





= 





1 2 3

4 5 6

1 1 2 3

4 5 6

1 2 3

4 5 6

.

	 A B C B A C≠ ≠ =, ,

A.3  Matrix Arithmetic
A.3.1  Addition and Subtraction

The sum (difference) of two matrices of the same order is a matrix with entries
that are the sum (difference) of the corresponding entries of the two matrices:

	

C A B c a b i m

j n

ij ij ij= ± ⇔ [] = ±[] =
=

, , , . . . ,

, , . . . ,

1 2

1 2

Example A.3: Ma trix Addition/Subtraction

>> C = A + B

>> C = A − B

Note: MATLAB accepts the command

>> C = A + b

if b is a scalar. The result is the matrix C = [aij + b].

A.3.2  Transposition

Interchanging the rows and columns of a matrix:

	

C A c a i m

j n

T
ij ji= ⇔ [] = [] =

=
, , , ,

, , ,

1 2

1 2


C

A.3  Matrix Arithmetic   503

Example A.4: Ma trix Transpose

	
A

j

j
=

−
+







1 2

4 5

>> B = A¢

	
B

j

j
=

−
+







1 4

2 5

Note: The (′) command gives the complex conjugate transpose for a complex matrix.

Symmetric matrix A = −AT

Hermitian matrix A = A* (*Denotes the complex conjugate transpose.)

Example A.5: S ymmetric and Hermitian Matrix

	
A = 





1 2

2 5
symmetric

	
A

j

j
=

−
+







1 2

2 5
hermitian

Notation

Column vector x = [] =



















x x x

x

x

x

n
T

n

1 2

1

2


Row vector xT=[x1  x2  …  xn]

Example A.6: C olumn and Row Vectors

	 x y= [] = []1 2 3 1 2 3T T

>> x = [1; 2; 3]

       x = 1

          2

          3

>> y = [1, 2, 3]

   y =   1   2   3 C

504   APPENDIX III  Review of Linear Algebra

A.3.3  Matrix Multiplication

A.3.3.1  Multiplication by a Scalar
Multiplication of every entry of the matrix by a scalar:

	

C A c a i m

j n

ij ji= ⇔ [] = [] =
=

α α , , , . . . ,

, , . . . ,

1 2

1 2

>> C = a*A

Note: MATLAB is a case-sensitive mode that distinguishes between uppercase and
lowercase variables.

A.3.3.2  Multiplication by a Matrix
The product of an m × n matrix and an n × l matrix is an m × l matrix—that is,
(m × n)·(n × l) = (m × l)

	

C A B c a b i m

j l

ij ik kj

k

n

= ⇔ [] = 





=

=
=

∑
1

1 2

1 2

, , , . . . ,

, , . . . ,

Noncummutative AB ≠ BA (in general).
Normal matrix A*A = AA* (commutative multiplication with its conjugate

transpose).

Clearly, any symmetric (hermitian) matrix is also normal. But some normal matri-
ces are not symmetric (hermitian).

Premultiplication by a row vector m = 1

	 1 1 1 2×() ×() = ×() = = []⋅n n l l C c c cT
lc . . .

Postmultiplication by a column vector l = 1

	 m n n m C c c cl
T×() ×() = ×() = = []⋅ 1 1 1 2c . . .

Multiplication of a row by a column m = l = 1

	 1 1 1 1×() ×() = ×() =⋅n n c scalar

Note that this product is the same for any two vectors regardless of which vector
is transposed to give a row vector because

	 c a bT T
i i

k

n

= = =
=

∑a b b a
1

This defines a dot product for any two real vectors and is often written in the
form

<a,b>
C

A.3  Matrix Arithmetic   505

Multiplication of a column by a row n = 1

	 m l m l C m l×() ×() = ×() = ×⋅1 1 matrix

Positive integral power of a square matrix

	 A AA A A ss = (). . . repeated times

	 A A A A As r s r r s= = ()+ commutative product

Example A.7: M ultiplication

	

A B= 





=
















1 2 3

4 5 6

1 1 2

4 5

1 2

.

1.  Matrix by scalar

	

C A= 4 =
× × ×
× × ×







= 





4 1 4 2 4 3

4 4 4 5 4 6
4 8 12

16 20 24

>> C = 4*[1, 2, 3;4, 5, 6]

2.  Matrix by matrix

	

C A B= = 





















=
× + × + × × + × +

1 2 3

4 5 6

1 1 2

4 5

1 2
1 1 1 2 4 3 1 1 2 2 5 3

.

. ××
× + × + × × + × + ×







= 





2

4 1 1 5 4 6 1 4 2 5 5 6 2
12 1 18

30 4 45

.
.

.

>> C = A*B

3.  Vector-matrix multiplication

	

C BT= = []
















= × + × + × × + × + ×[]
=

x 1 2 3

1 1 2

4 5

1 2
1 1 1 2 4 3 1 1 2 2 5 3 2
1

.

.
22 1 18.[]

C

506   APPENDIX III  Review of Linear Algebra

	

D A= = 





















=
× + × + ×
× + × + ×

y
1 2 3

4 5 6

1 1

4

1
1 1 1 2 4 3 1

4 1 1 5 4 6

.

.

. 11

12 1

30 4






= 





.

.

>> C = [1, 2, 3]*B;

>> D = A*[1.1; 4; 1];

4.  Vector-vector

	

z x y= = []
















= × + × + × =

T 1 2 3

1 1

4

1
1 1 1 2 4 3 1 12 1

.

. .

	

D T= =















[]

=
× × ×

× × ×
× ×

yx

1 1

4

1

1 2 3

1 1 1 1 1 2 1 1 3

4 1 4 2 4 3

1 1 1 2 1

.

. . .

××

















=
















3
1 1 2 2 3 3

4 8 12

1 2 3

. . .

>> z = [1, 2, 3]*[1.1; 4; 1]

>> D = [1.1; 4, 1]*[1, 2, 3]

5.  Positive integral power of a square matrix

	
S S= 





= 

















= 





1 2

0 4

1 2

0 4

1 2

0 4

1 2

0 4

1 42

0 64
3

>> SŸ3

Diagonal of a matrix: The diagonal of a square matrix are the terms aii, i = 1, 2, . . . , n.
Diagonal matrix: A matrix whose off-diagonal entries are all equal to zero.

	

A a a a
a

a

a

nn

nn

= { }

=



















diag 11 22

11

22

0 0

0 0

0 0

, , . . . ,



   
C

A.3  Matrix Arithmetic   507

Example A.8: D iagonal Matrix

	

A = =
















diag{ , , }1 5 7

1 0 0

0 5 0

0 0 7

>> A = diag ([1, 5, 7])

Identity or unity matrix: A diagonal matrix with all diagonal entries equal to unity:

	

I = { } =



















diag 1 1 1

1 0 0

0 1 0

0 0 1

, , . . . ,




   


We denote an n × n identity matrix by In. The identity matrix is a multiplicative
identity because any m × n matrix A satisfies AIm = InA = A. By definition, we have
A0 = In.

Example A.9: I dentity Matrix

	

I3 1 1 1

1 0 0

0 1 0

0 0 1

= =
















diag{ , , }

>> eye(3)

Zero matrix: A matrix with all entries equal to zero

	

C c i m

j n

m n ij= ⇔ [] = [] =
=

×0 0 1 2

1 2

, , , . . . ,

, , . . . ,

For any m × n matrix A, the zero matrix has the properties

	 A n l n l0 0× ×=

	 0 0l m l nA× ×=

	 A Am n± =×0

Example A.10:  Zero Matrix

	
02 3

0 0 0

0 0 0
× = 





>> zeros (2,3) C

508   APPENDIX III  Review of Linear Algebra

A.4  Determinant of a Matrix
The determinant of a square matrix is a scalar computed using its entries. For a
1 × 1 matrix, the determinant is simply the matrix itself. For a 2 × 2 matrix, the
determinant is

	 det A A a a a a() = = −11 22 12 21

For higher-order matrices, the following definitions are needed to define the
determinant.

Minor: The ijth minor of an n × n matrix is the determinant of the n − 1 × n − 1 matrix
obtained by removing the ith row and the jth column and is denoted Mij.

Cofactor of a matrix: The ij th cofactor of an n × n matrix is a signed minor given by

	 Cij
i j

ijM= −() +1

The sign of the ijth cofactor can be obtained from the ijth entry of the matrix

	

+ − +
− + −
+ − +























   

Determinant

	 det A A a ais is

i

n

sj sj

j

n

() = = =
= =
∑ ∑C C

1 1

that is, the determinant can be obtained by expansion along any row or
column.

Singular matrix det(A) = 0
Nonsingular matrix det(A) ≠ 0

Properties of Determinants

For an n × n matrix A,

	 det detA AT() = ()

	 det detα αA An() = ()

	 det det detAB A B() = () ()C

Example A.11: D eterminant of a Matrix

	

A

A

= −
−

















= × × −() − × − −() × × −() − ×[] +

1 2 3

4 5 1

1 5 0

3 4 5 5 1 1 1 5 2 1] [00

3 25 7 82= × −() + −() = −

>> det(A)

Adjoint matrix: The transpose of the matrix of cofactors

	 adj A Cij
T() = []

A.5  Inverse of a Matrix
The inverse of a square matrix is a matrix satisfying

	 AA A A In
− −= =1 1

The inverse of the matrix is given by

	
A

A

A
− =

()
()

1 adj

det

Example A.12: I nverse Matrix

	

A A
adj A

A
=

















= =
− − − −

−

1 2 3

2 4 5

0 6 7

28 30 14 18 10 1
1 ()

det()

() () (22

14 0 7 0 5 6

12 0 6 0 4 4

6

0 333 0

)

() () ()

() () ()
. .

− − − − −
− − − −

















=
− 6667 0 333

2 333 1 167 0 167

2 1 0

−
−

−

















.

. . .

Use the command

>> inv(A)

>> A\B

to calculate A−1B, and the command

>> A/B

to calculate AB −1

A.5  Inverse of a Matrix   509

C

510   APPENDIX III  Review of Linear Algebra

Combinations of Operations

	 ABC C B AT T T T() =

	 ABC C B A() =− − − −1 1 1 1

	 A A AT T T() = () =− − −1 1

Orthogonal matrix:  A matrix whose inverse is equal to its transpose

	 A AT− =1

That is,

	 A A AA IT T
n= =

Using the properties of a determinant of a square matrix,

	

det det det detI A A A

I A A
n

T

n
T

() = () () = () =
() () ()

2 1

det = det det = deet = 12A()

that is, det(A) = ±1 for an orthogonal matrix.

Example A.13: O rthogonal Matrix

The coordinate rotation matrix for a yaw angle (rotation about the z-axis) α is the orthogonal
matrix

	

R α
α α
α α() =
() − ()
() ()

















cos sin

sin cos

0

0

0 0 1

with det(R) = cos2(α) + sin2(α) = 1.

Unitary matrix:  A matrix whose inverse is equal to its complex conjugate transpose

	 A A− =1 *

Trace of a matrix:  The sum of the diagonal elements of a square matrix

	 tr A aii

i

n

() =
=
∑

1

The trace satisfies the following properties:

	 tr A tr AT() = ()

	 tr AB tr BA() = ()

	 tr A B tr A tr B+() = () + ()C

Example A.14: T race of a Matrix

Find the trace of the matrix R(a) shown in Example A.13.

	 tr R() = () + () + = + ()cos cos cosα α α1 1 2

	 For = , and α π αcos .() = − () = −1 1tr R

>> trace(R)

   −1

Linearly independent vectors: A set of vectors {xi, i = 1,2, . . . n} is linearly independent if

	 α α α α1 1 2 2 0 1 2x x x 0+ + + = ⇔ = = n n i i n, , , . . . ,

Otherwise, the set is said to be linearly dependent.

Example A.15: L inear Independence

Consider the following row vectors: aT = [3 4 0], bT = [1 0 0], and cT = [0 1 0].
The set {a, b, c} is linearly dependent because a = 3b + 4c. But the sets {a,b}, {b,c},

and {a,c} are linearly independent.

Rank of a Matrix

Column rank: Number of linearly independent columns.

Row rank: Number of linearly independent rows.

The rank of a matrix is equal to its row rank, which is equal to its column rank.
For an m × n (rectangular) matrix A, the rank of the matrix is

	 r A n m() ≤ { }min ,

If equality holds, the matrix is said to be full rank. A full rank square matrix is nonsingular.

Example A.16: Ra nk of a Matrix

The matrix

	

A =
















3 4 0

1 0 0

0 1 0

has the row vectors considered in Example A.15. Hence, the matrix has 2 linearly indepen-
dent row vectors (i.e., row rank 2). The first two columns of the matrix are also linearly
independent (i.e., it has column rank 2). The largest square matrix with nonzero determinant
is the 2 × 2 matrix:

A.5  Inverse of a Matrix   511

C

512   APPENDIX III  Review of Linear Algebra

	

3 4

1 0






Clearly, the matrix has rank 2.

A.6  Eigenvalues
The eigenvalues of an n × n matrix are the n roots of the characteristic
equation

	 det λ I An −[] = 0

Distinct eigenvalues: lj ≠ lj, i ≠ j, i, j, = 1, 2, . . . , n

Repeated eigenvalues: li ≠ lj, for some i ≠ j

Multiplicity of the eigenvalue: The number of repetitions of the repeated eigenvalue (also
known as the algebraic multiplicity).

Spectrum of matrix A: The set of eigenvalues {li, i = 1, 2, . . . , n}.

Spectral radius of a matrix: Maximum absolute value over all the eigenvalues of the
matrix.

Trace in terms of eigenvalues: tr = A i

i

n

()
=
∑λ

1

Upper triangular matrix

	

A

a a a

a a

a

n

n

nn

=



















11 12 1

22 20

0 0




   


Lower triangular matrix

	

A

a

a a

a a an n nn

=



















11

21 22

1 2

0 0

0




   


For lower triangular, upper triangular, and diagonal matrices,

	 λi iii n a i n, , , . . . , , , , . . . ,={ } = ={ }1 2 1 2C

A.7  Eigenvectors
The eigenvector of a matrix A are vectors that are mapped to themselves when
multiplied by the matrix A:

	 A I Anv v v 0= −[] =λ λ

For a nonzero solution v to the preceding equation to exist, the premuliplying
matrix must be rank deficient—that is, l must be an eigenvalue of the matrix A.

The eigenvector is defined by a direction or by a specific relationship between
its entries. Multiplication by a scalar changes the length but not the direction of
the vector.

Example A.17: E igenvalues and Eigenvectors

Find the eigenvalues and eigenvectors of the matrix

	

A =
















3 4 0

1 0 0

0 1 0

	

λ
λ

λ
λ

I A3

3 4 0

1 0

0 1

− =
− −

−
−

















	 det λ λ λ λ λ λ λ λ λ λI A3 −[] = −() −[] − −[] −() +()3 4 = 3 4 = 4 12

	 λ λ λ1 2 34 1 0= = − =

	

AV V
v v v

v v v

v v v

=




























Λ
3 4 0

1 0 0

0 1 0

11 12 13

21 22 23

31 32 33





=
















−








v v v

v v v

v v v

11 12 13

21 22 23

31 32 33

4 0 0

0 1 0

0 0 0





1.  l3 = 0
v13 = v23 = 0 and v33 free. Let v23 = 1.

2.  l2 = −1
v12 = − v22

v22 = − v32  Let v12 = 1.

3.  l1 = 4
v11 = 4 v21

v21 = 4 v31  Let v31 = 1.

Hence, the modal matrix of eigenvectors is

	

V = −
















16 1 0

4 1 0

1 1 1

A.7  Eigenvectors   513

C

514   APPENDIX III  Review of Linear Algebra

The lengths or 2-norms of the eigenvectors are

	 v1
1 2= []16 + 4 +12 2 2

	 v2
1 2= []1 + 1 +12 2 2

	 v3
1 2= []0 + 0 +12

The three eigenvectors can be normalized using the vector norms to obtain
the matrix

	

V = −
















0 9684 0 5774 0

0 2421 0 5774 0

0 0605 0 5774 1

. .

. .

. .

>> A = [3, 4, 0; 1, 0, 0; 0, 1, 0]

>> [V, L]= eig(A)

V =
0 0.5774 −0.9684
0 −0.5774 −0.2421
1.0000 0.5774 −0.0605

L =
0 0 0
0 −1 0
0 0 4

The trace of the preceding matrix is

	 tr 3 + 0 + 0 = 3 = 0 1 4 = + + 1 2 3A() = + −() + λ λ λ

Normal matrix: Multiplication by its (conjugate) transpose is commutative

	 A A A A A A A AT T= =()* *

This includes symmetric (hermitian) matrices as a special case.
The matrix of eigenvectors of a normal matrix can be selected as an orthogo-

nal (unitary) matrix:

	 A V V A V VT= =()Λ Λ *

Partitioned matrix: A matrix partitioned into smaller submatrices

	

A A

A A

11 12

21 22




  















C

Transpose of a partitioned matrix

	

A A

A A

T T

T T

11 21

12 22




  

















Sum/difference of partitioned matrices: C = A ± B ⇔ Cij = Aij ± Bij

Product of partitioned matrices: Apply the rules of matrix multiplication with the products
of matrix entries replaced by the noncommutative products of submatrices

	

C A B C A B i r

i s

ij ik kj

k

n

= ⇔ = =

=

∑ ,
=1

1 2

1 2

, , . . . ,

, , . . . ,

Determinant of a partitioned matrix

	

A A

A A

A A A A A A

A A A A A A

1 2

3 4

1 4 3 1
1

2 1
1

4 1 2 4
1

3 4
1

=
−
−

 − −

− −

,

,

exists

exists



Inverse of a partitioned matrix

	

A A

A A

A A A A A A A A A A

A

1 2

3 4

1
1 2 4

1
3

1
1

1
2 4 3 1

1
2

1

4









 =

−() − −()
−

− − − − − −

−11
3 1 2 4

1
3

1
4 3 1

1
2

1
A A A A A A A A A−() −()











− − − −

Example A.18: Pa rtitioned Matrices

	

A B=
















=
−

−

















1 2 5

3 4 6

7 8 9

3 2 5

3 1 7

4 0 2

	

A B+ =
− + +
+ + +
− + +

















=
−




1 3 2 2 5 5

3 3 4 1 6 7

7 4 8 0 9 2

2 4 10

6 5 13

3 8 11











	

AB =







−





+ 





−[] 











+
1 2

3 4

3 2

3 1

5

6
4 0

1 2

3 4

5

7

5

66
2

7 8
3 2

3 1
9 4 0 7 8

5

7
9 2







[]
−





+ −[] []





+ ×



















=
−
−
−

















17 4 29

21 10 55

33 22 109

A.7  Eigenvectors   515

C

516   APPENDIX III  Review of Linear Algebra

>> A1 = [1, 2; 3, 4];

>> a2 = [5; 6];

>> a3 = [7, 8];

>> a4 = 9;

>> A = [A1, a2; a3, a4];

>> B = [[−3,2; 3,1], [5; 7]; [−4,0], 2];

>> A + B

−2 4 10
6 5 13
3 8 11

>> A * B

−17 4 29
−21 10 55
−33 22 109

Matrix Inversion Lemma
The following identity can be used in either direction to simplify matrix expressions:

	 A A A A A A A A A A A A A1 2 4
1

3
1

1
1

1
1

2 4 3 1
1

2
1

3 1
1+[] = − +[]− − − − − − −

A.8  Norm of a Vector
The norm is a measure of size or length of a vector. It satisfies the following
axioms, which apply to the familiar concept of length in the plane.

Norm Axioms

1.  ||x|| = 0 if and only if x = 0
2.  ||x|| > 0 for x ≠ 0
3.  ||a x|| =|a| ||x||
4.  ||x + y|| ≤ ||x||+||y|| (triangle inequality)

lp Norms

	 l• norm:  x ∞ = max
i

ix

	 l2 norm:  x 2
2 2

1

=
=

∑ xi

i

n

	 l1 norm:  x 1

1

=
=

∑ xi

i

nC

Equivalent Norms
Norms that satisfy the inequality

	 k k1 2x x xi j i≤ ≤

with finite constants k1 and k2. All norms for n × 1 real vectors are equivalent. All
equivalent norms are infinite if and only if any one of them is infinite.

Example A.19:  Vector Norms

	 a , ,T = −[]1 2 3

	 a 1 1 2 3 6= + + − =

	 a 2
2 2 21 2 3 3 7417= + + −() = .

	 a ∞ = −{ } =max , ,1 2 3 3

>>a = [1; 2; −3]
>>norm(a, 2) % 2 induced norm (square root of sum of squares)
3.7417
>>norm(a, 1) % 1 induced norm (sum of absolute values)
6
>>norm(a, inf) % infinity induced norm (max element)
3

A.9  Matrix Norms
Satisfy the norm axioms.

Frobenius Norm

	 A a tr A AF ij

j

n

i

m
T= = { }

==
∑∑ 2

11

Other matrix norms

	
A a

i j
ij= max

,

	
A aF ij

j

n

i

m

=
==

∑∑
11

Induced Matrix Norms

Norms that are induced from vector norms using the definition

	
A

A
Ai = =

=
max max

x x

x

x
x

1

where ||•|| is any vector norm.

A.9  Matrix Norms   517

C

518   APPENDIX III  Review of Linear Algebra

Submultiplicative Property

	 A Ax x≤

	 AB A B≤

All induced norms are submultiplicative, but only some noninduced norms are.

l1 Norm A a
j

ij

i

m

1
1

=
=
∑max (maximum absolute column sum)

l• Norm A a
j

ij

ji

n

∞
=

= ∑max
1

(maximum absolute row sum)

l2 Norm A A A
j

i
T

2
1 2= ()max /λ (maximum singular value = maximum eigen-

value of ATA)

Note: The norms given earlier are not induced norms.

Example A.20: N orm of a Matrix

	
A =

−






1 2

3 4

	 A 1 1 3 2 4 6= + + −{ } =max ,

	 A 2
1 2 1 2

1 3

2 4

1 2

3 4

10 10

10 20
=

−




 −





{ } =

−
−





{ }λ λmax max == 5 1167.

	 A ∞ = + + −{ } =max ,1 2 3 4 7

	 A F = + + + − =1 2 3 4 5 47722 2 3 4 .

>>norm(A, 1) % 1 induced norm (max of column sums)
6
>>norm(A, 2) % 2 induced norm (max singular value)
5.1167
>>norm(A, inf) % infinity induced norm (max of row sums)
7
>>norm(A, ‘fro’) % 2 (square root of sum of squares)
5.4772

A.10  Quadratic Forms
A quadratic form is a function of the form

	 V P p x xT
ij i j

j

n

i

n

x x x() = =
==

∑∑
11

C

where x is an n × 1 real vector and P is an n × n matrix. The matrix P can be
assumed to be symmetric without loss of generality. To show this, assume that P
is not symmetric and rewrite the quadratic form in terms of the symmetric com-
ponent and the skew-symmetric component of P as follows:

	

V
P P P P

P P
P P

T
T

T
T

T
T

T

x x x x x

x x x x

() =
+



 +

−





=
+



 + −

2 2

2

1

2
xx x()()T

Interchanging the row and column in the last term gives

	

V
P P

P P

P P

T
T

T T

T
T

x x x x x x x

x x

() =
+



 + −()

=
+





2

1

2

2

Thus, if P is not symmetric, we can replace it with its symmetric component
without changing the quadratic form.

The sign of a quadratic form for nonzero vectors x can be invariant depending
on the matrix P. In particular, the eigenvalues of the matrix P determine the sign
of the quadratic form. To see this, we examine the eigenvalues-eigenvector decom-
position of the matrix P in the quadratic form

	 V PTx x x() =

We assume, without loss of generality, that P is symmetric. Hence, its eigen-
values are real and positive, and its modal matrix of eigenvectors is orthogonal.
The matrix can be written as

	 P V Vp p
T= Λ

	 Λ = { }diag λ λ λ1 2, , . . . , n

Using the eigenvalues decomposition of the matrix, we have

	

V V V

y

T
p p

T

T

i i

i

n

x x x
y y

() =
=

= >
=
∑

Λ
Λ

λ 2

1

0

	 y = []y y yn1 2 

Because the modal matrix Vp is invertible, there is a unique y vector associated
with each x vector. The expression for the quadratic form in terms of the eigen-
values allows us to characterize it and the associated matrix as follows.

Positive definite: A quadratic form is positive definite if

	 V PTx x x x 0() = > ≠0,

A.10  Quadratic Forms   519

C

520   APPENDIX III  Review of Linear Algebra

This is true if the eigenvalues of P are all positive, in which case we say that P is
a positive definite matrix and we denote this by P > 0 >.

Negative definite: A quadratic form is negative definite if

	 V PTx x x x 0() = < ≠0,

This is true if the eigenvalues of P are all negative, in which case we say that P is
a negative definite matrix and we denote this by P < 0.

Positive semidefinite: A quadratic form is positive semidefinite if

	 V PTx x x x 0() = ≥ ≠0,

This is true if the eigenvalues of P are all positive or zero, in which case we say
that P is a positive semidefinite matrix and we denote this by P ≥ 0. Note that in
this case, if an eigenvalues li is zero then the nonzero vector y with its ith entry
equal to 1 and all other entries zero gives a zero value for V. Thus, there is a
nonzero vector x = Vpy for which V is zero.

Negative semidefinite: A quadratic form is negative semidefinite if

	 V PTx x x x 0() = ≥ ≠0,

This is true if the eigenvalues of P are all negative or zero, in which case we say
that P is a negative semidefinite matrix and we denote this by P ≤ 0. In this case,
if an eigenvalues li is zero, then V is zero for the nonzero x = Vpy where y is a
vector with its ith entry equal to 1 and all other entries zero.

Indefinite: If the matrix Q has some positive and some negative eigenvalues, then the sign of
the corresponding quadratic form depends on the vector x and the matrix is called indefinite.

A.11  Matrix Differentiation/Integration
The derivative (integral) of a matrix is a matrix whose entries are the derivatives
(integrals) of the entries of the matrix.

Example A.21: Ma trix Differentiation and Integration

	
A t

t t

t t
() =

()
+







1 2

0 4

sin

	

A d
d d d

d d

t

t t t

t t
τ τ

τ τ τ τ τ

τ τ τ τ
() =

()

+()












∫

∫ ∫ ∫
∫ ∫

0

0 0 0

0 0

1 2

0 4

sin




=
− (){ }

+






t t t

t t t

2

2 2

2 1 2

2 0 4 2

cos
C

	

dA t

dt

d

dt

dt

dt

d t

dt
dt

dt

d t

dt

t()
=

()

+()

















=

1 2

0
4

0 1 2 2
sin

cos (()



1 0 1

Derivative of a product:
dAB

dt
A

dB

dt

dA

dt
B= +

Derivative of the inverse matrix: d A

dt
A

dA

dt
A

()−
− −= −

1
1 1

Gradient vector: The derivative of a scalar function f(x) with respect to the vector x is known
as the gradient vector and is given by the n by 1 vector

	
∂ ()

∂
=

∂ ()
∂







f f

xi

x

x

x

Some authors define the gradient as a row vector.

Jacobian matrix: The derivative of an n × 1 vector function f(x) with respect to the vector
x is known as the Jacobian matrix and is given by the n × n matrix

	

∂ ()
∂

=
∂ ()

∂






f x

x

xf

x
i

j

Gradient of inner product

	

∂
∂

=
∂

∂
=

∂

∂



















= [] ==
∑a x

x

x a

x
a

T T i i

i

n

i
i

a x

x
a1

Gradient matrix of a quadratic form

	

∂
∂

=
∂
∂

+
∂()

∂
= +()

x x

x
x

x

x

x

x
x

x

T
T

T T

T

P P P

P P

Because P can be assumed to be symmetric with no loss of generality, we write

	

∂
∂

=
x x

x
x

T P
P2

Hessian matrix of a quadratic form: The Hessian or second derivative matrix is given by

	

∂
∂

=
∂

∂
=

∂
∂







= []
2

2

2
2 2

x x

x

x

x

p xT
i
T

j
ij

P P

x
p

where the ith entry of the vector Px is

	 p xi
T

A.11  Matrix Differentiation/Integration   521

C

522   APPENDIX III  Review of Linear Algebra

	

P pij

T

T

n
T

= [] =



















p

p

p

1

2



	

∂
∂

=
2

2
2

x x

x

T P
P

A.12  Kronecker Product
The Kronecker product of two matrices A of order m × n and B of order p × q is
denoted by  and is defined as

	

A B

a B a B a B

a B a B a B

a B a B a B

n

n

m m mn

⊗ =


















11 12 1

21 22 2

1 2




   
 

The resulting matrix is of order m.p × n.q.

Example A.22: K ronecker Matrix Product

The Kronecker product of the two matrices:

	
A B= 





= 





1 2 3

4 5 6

1 1 2 3

4 5 6

.

	

A B⊗ =



















1
1 1 2 3

4 5 6
2

1 1 2 3

4 5 6
3

1 1 2 3

4 5 6

4
1 1 2 3

4 5 6

. . .

.



































=

5
1 1 2 3

4 5 6
6

1 1 2 3

4 5 6
1 1 2 3 2 2

. .

. . 44 6 3 3 6 9

4 5 6 8 10 12 12 15 18

4 4 8 12 5 5 10 15 6 6 12 18

16 20 24 20 25 30 24 10

.

. . .

336



















>> kron(a,b)

ans =
1.1000 2.0000 3.0000 2.2000 4.0000 6.0000 3.3000 6.0000 9.0000
4.0000 5.0000 6.0000 8.0000 10.0000 12.0000 12.0000 15.0000 18.0000
4.4000 8.0000 12.0000 5.5000 10.0000 15.0000 6.6000 12.0000 18.0000

16.0000 20.0000 24.0000 20.0000 25.0000 30.0000 24.0000 30.0000 36.0000C

Resources
Barnett, S., Matrices in Control Theory, R. E. Krieger, 1984.
Brogan, W. L., Modern Control Theory, Prentice Hall, 1985.
Fadeeva, V. N., Computational Methods of Linear Algebra, Dover, 1959.
Gantmacher, F. R., The Theory of Matrices, Chelsea, 1959.
Noble, B., and J. W. Daniel, Linear Algebra, Prentice Hall, 1988.

Resources   523

C

	Cover Page
	Copyright page
	Copyright page

	Preface
	Preface

	Chapter 1 Introduction to Digital Control
	Chapter 1 Introduction to Digital Control
	1.1 Why Digital Control?
	1.2 The Structure of a Digital Control System
	1.3 Examples of Digital Control Systems
	1.3.1 Closed-Loop Drug Delivery System
	1.3.2 Computer Control of an Aircraft Turbojet Engine
	1.3.3 Control of a Robotic Manipulator

	Resources

	Chapter 2 Discrete-Time Systems
	Chapter 2 Discrete-Time Systems
	2.1 Analog Systems with Piecewise Constant Inputs
	2.2 Difference Equations
	2.3 The z-Transform
	2.3.1 z-Transforms of Standard Discrete-Time Signals
	2.3.2 Properties of the z-Transform
	Linearity
	Time Delay
	Time Advance
	Multiplication by Exponential
	Complex Differentiation

	2.3.3 Inversion of the z-Transform
	Long Division
	Partial Fraction Expansion

	2.3.4 The Final Value Theorem

	2.4 Computer-Aided Design
	2.5 z-Transform Solution of Difference Equations
	2.6 The Time Response of a Discrete-Time System
	2.6.1 Convolution Summation
	2.6.2 The Convolution Theorem

	2.7 The Modified z-Transform
	2.8 Frequency Response of Discrete-Time Systems
	2.8.1 Properties of the Frequency Response of Discrete-Time Systems
	2.8.2 MATLAB Commands for the Discrete-Time Frequency Response

	2.9 The Sampling Theorem
	2.9.1 Selection of the Sampling Frequency

	Resources

	Chapter 3 Modeling of Digital Control Systems
	Chapter 3 Modeling of Digital Control Systems
	3.1 ADC Model
	3.2 DAC Model
	3.3 The Transfer Function of the ZOH
	3.4 Effect of the Sampler on the Transfer Function of a Cascade
	3.5	DAC, Analog Subsystem, and ADC Combination Transfer Function
	3.6 Systems with Transport Lag
	3.7 The Closed-Loop Transfer Function
	3.8 Analog Disturbances in a Digital System
	3.9 Steady-State Error and Error Constants
	3.9.1 Sampled Step Input
	3.9.2 Sampled Ramp Input

	3.10 MATLAB Commands
	3.10.1 MATLAB

	Resources

	Chapter 4 Stability of Digital Control Systems
	Chapter 4 Stability of Digital Control Systems
	4.1 Definitions of Stability
	4.2 Stable z-Domain Pole Locations
	4.3 Stability Conditions
	4.3.1 Asymptotic Stability
	4.3.2 BIBO Stability
	4.3.3 Internal Stability

	4.4 Stability Determination
	4.4.1 MATLAB
	4.4.2 Routh-Hurwitz Criterion

	4.5 Jury Test
	4.6 Nyquist Criterion
	4.6.1 Phase Margin and Gain Margin

	Resources

	Chapter 5 Analog Control System Design
	Chapter 5 Analog Control System Design
	5.1 Root Locus
	5.2 Root Locus Using MATLAB
	5.3 Design Specifications and the Effect of Gain Variation
	5.4 Root Locus Design
	5.4.1 Proportional Control
	5.4.2 PD Control
	5.4.3 PI Control
	5.4.4 PID Control

	5.5 Empirical Tuning of PID Controllers
	Resources

	Chapter 6 Digital Control System Design
	Chapter 6 Digital Control System Design
	6.1 z-Domain Root Locus
	6.2 z-Domain Digital Control System Design
	Observation
	6.2.1 z-Domain Contours
	6.2.2 Proportional Control Design in the z-Domain

	6.3 Digital Implementation of Analog Controller Design
	6.3.1 Differencing Methods
	Forward Differencing
	Backward Differencing

	6.3.2 Bilinear Transformation
	6.3.3 Empirical Digital PID Controller Tuning

	6.4 Direct z-Domain Digital Controller Design
	6.5 Frequency Response Design
	6.6 Direct Control Design
	6.7 Finite Settling Time Design
	Resources

	Chapter 7 State﻿–﻿Space Representation
	Chapter 7 State﻿–﻿Space Representation
	7.1 State Variables
	7.2 State–Space Representation
	7.2.1 State–Space Representation in MATLAB
	7.2.2 Linear versus Nonlinear State–Space Equations

	7.3 Linearization of Nonlinear State Equations
	7.4 The Solution of Linear State–Space Equations
	7.4.1 The Leverrier Algorithm
	Leverrier Algorithm

	7.4.2 Sylvester’s Expansion
	7.4.3 The State-Transition Matrix for a Diagonal State Matrix
	Properties of Constituent Matrices

	7.5 The Transfer Function Matrix
	7.5.1 MATLAB Commands

	7.6 Discrete-Time State–Space Equations
	7.6.1 MATLAB Commands for Discrete-Time State–Space Equations

	7.7 Solution of Discrete-Time State–Space Equations
	7.7.1 z-Transform Solution of Discrete-Time State Equations

	7.8 Z-Transfer Function from State–Space Equations
	7.8.1 z-Transfer Function in MATLAB

	7.9 Similarity Transformation
	7.9.1 Invariance of Transfer Functions and Characteristic Equations

	Resources
	Problems
	Computer Exercises

	Chapter 8 Properties of State﻿–﻿Space Models
	Chapter 8 Properties of State﻿–﻿Space Models
	8.1 Stability of State–Space Realizations
	8.1.1 Asymptotic Stability
	Remark
	8.1.2 BIBO Stability

	8.2 Controllability and Stabilizability
	8.2.1 MATLAB Commands for Controllability Testing
	8.2.2 Controllability of Systems in Normal Form
	8.2.3 Stabilizability

	8.3 Observability and Detectability
	8.3.1 MATLAB Commands
	8.3.2 Observability of Systems in Normal Form
	8.3.3 Detectability

	8.4 Poles and Zeros of Multivariable Systems
	8.4.1 Poles and Zeros from the Transfer Function Matrix
	8.4.2 Zeros from State–Space Models

	8.5 State–Space Realizations
	8.5.1 Controllable Canonical Realization
	Systems with No Input Differencing
	Systems with Input Differencing

	8.5.2 Controllable Form in MATLAB
	8.5.3 Parallel Realization
	Parallel Realization for MIMO Systems

	8.5.4 Observable Form

	8.6 Duality
	Resources

	Chapter 9 State Feedback Control
	Chapter 9 State Feedback Control
	9.1 State and Output Feedback
	9.2 Pole Placement
	9.2.1 Pole Placement by Transformation to Controllable Form
	9.2.2 Pole Placement Using a Matrix Polynomial
	9.2.3 Choice of the Closed-Loop Eigenvalues
	9.2.4 MATLAB Commands for Pole Placement
	9.2.5 Pole Placement by Output Feedback

	9.3 Servo Problem
	9.4 Invariance of System Zeros
	9.5 State Estimation
	9.5.1 Full-Order Observer
	9.5.2 Reduced-Order Observer

	9.6 Observer State Feedback
	9.6.1 Choice of Observer Eigenvalues

	9.7 Pole Assignment Using Transfer Functions
	Resources

	Chapter 10 Optimal Control
	Chapter 10 Optimal Control
	10.1 Optimization
	10.1.1 Unconstrained Optimization
	10.1.2 Constrained Optimization

	10.2 Optimal Control
	10.3 The Linear Quadratic Regulator
	10.3.1 Free Final State

	10.4 Steady-State Quadratic Regulator
	10.4.1 Output Quadratic Regulator
	10.4.2 MATLAB Solution of the Steady-State Regulator Problem
	10.4.3 Linear Quadratic Tracking Controller

	10.5 Hamiltonian System
	Resources

	Chapter 11 Elements of Nonlinear Digital Control Systems
	Chapter 11 Elements of Nonlinear Digital Control Systems
	11.1 Discretization of Nonlinear Systems
	11.1.1 Extended Linearization by Input Redefinition
	11.1.2 Extended Linearization by Input and State Redefinition
	11.1.3 Extended Linearization by Output Differentiation
	11.1.4 Extended Linearization Using Matching Conditions

	11.2 Nonlinear Difference Equations
	11.2.1 Logarithmic Transformation

	11.3 Equilibrium Of Nonlinear Discrete-Time Systems
	11.4 Lyapunov Stability Theory
	11.4.1 Lyapunov Functions
	11.4.2 Stability Theorems
	11.4.3 Rate of Convergence
	11.4.4 Lyapunov Stability of Linear Systems
	11.4.5 MATLAB
	11.4.6 Lyapunov’s Linearization Method
	11.4.7 Instability Theorems
	11.4.8 Estimation of the Domain of Attraction

	11.5 Stability of Analog Systems with Digital Control
	11.6 State Plane Analysis
	11.7 Discrete-Time Nonlinear Controller Design
	11.7.1 Controller Design Using Extended Linearization
	11.7.2 Controller Design Based on Lyapunov Stability Theory

	Resources

	Chapter 12 Practical Issues
	Chapter 12 Practical Issues
	12.1 Design of the hardware and software architecture
	12.1.1 Software Requirements
	12.1.2 Selection of ADC and DAC

	12.2 Choice of the Sampling Period
	12.2.1 Antialiasing Filters
	12.2.2 Effects of Quantization Errors
	12.2.3 Phase Delay Introduced by the ZOH

	12.3 Controller Structure
	12.4 PID Control
	12.4.1 Filtering the Derivative Action
	12.4.2 Integrator Windup
	12.4.3 Bumpless Transfer between Manual and Automatic Mode
	12.4.4 Incremental Form

	12.5 Sampling Period Switching
	12.5.1 Matlab Commands
	12.5.2 Dual-Rate Control

	Resources

	Appendix I Table of Laplace and z-Transforms
	Appendix I Table of Laplace and z-Transforms

	Appendix II Properties of the z-Transform
	Appendix II Properties of the z-Transform

	Appendix III Review of Linear Algebra
	Appendix III Review of Linear Algebra
	A.1 Matrices
	A.2 Equality of Matrices
	A.3 Matrix Arithmetic
	A.3.1 Addition and Subtraction
	A.3.2 Transposition
	A.3.3 Matrix Multiplication
	A.3.3.1 Multiplication by a Scalar
	A.3.3.2 Multiplication by a Matrix

	A.4 Determinant of a Matrix
	Determinant
	Properties of Determinants

	A.5 Inverse of a Matrix
	A.6 Eigenvalues
	Upper triangular matrix
	Lower triangular matrix

	A.7 Eigenvectors
	A.8 Norm of a Vector
	Norm Axioms
	lp Norms
	Equivalent Norms

	A.9 Matrix Norms
	Frobenius Norm
	Induced Matrix Norms
	Submultiplicative Property

	A.10 Quadratic Forms
	A.11 Matrix Differentiation/Integration
	A.12 Kronecker Product
	Resources

