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Series Editors’ Foreword 

The series Advances in Industrial Control aims to report and encourage technology 

transfer in control engineering. The rapid development of control technology has 

an impact on all areas of the control discipline. New theory, new controllers, 

actuators, sensors, new industrial processes, computer methods, new applications, 

new philosophies…, new challenges. Much of this development work resides in 

industrial reports, feasibility study papers and the reports of advanced collaborative 

projects. The series offers an opportunity for researchers to present an extended 

exposition of such new work in all aspects of industrial control for wider and rapid 

dissemination. 

Today’s control software and technology offers the potential to implement 

more advanced control algorithms but often the preferred strategy of many 

industrial engineers is to design a robust and transparent process control structure 

that uses simple controllers. This is one reason why the PID controller remains 

industry’s most widely implemented controller despite the extensive developments 

of control theory; however, this approach of structured control can create 

limitations on good process performance. One such limitation is the possible lack 

of a coordinator within the hierarchy that systematically achieves performance 

objectives. Another is the omission of a facility to accommodate and handle 

process operational constraints easily. The method of model predictive control 

(MPC) can be used in different levels of the process control structure and is also 

able to handle a wide variety of process control constraints systematically. These 

are two of the reasons why MPC is often cited as one of the more popular 

advanced techniques for industrial process applications. 

Surprisingly, MPC and the associated receding horizon control principle have a 

history of development and applications going back to the late 1960s; Jacques 

Richalet developed his predictive functional control technique for industrial 

application from that time onward. Work on using the receding horizon control 

concept with state-space models can be identified in the literature of the 1970s, and 

the 1980s saw the emergence first of dynamic matrix control and then, towards the 

end of the decade, of the influential generalised predictive control technique. 

This field continues to develop and the Advances in Industrial Control 

monograph series has several volumes on the subject. These include Applied 
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Predictive Control by S. Huang, K.K. Tan and T.H. Lee (ISBN 978-1-85233-338-

6, 2002), Fuzzy Logic, Identification and Predictive Control by J.J. Espinosa, 

J.P.L. Vandewalle and V. Wertz (ISBN 978-1-85233-828-2, 2005) and Advanced 

Control of Industrial Processes  by P. Tatjewski (ISBN 978-1-84628-634-6, 2007). 

In our related series, Advanced Textbooks in Control and Signal Processing, we 

have published Model Predictive Control by E.F. Camacho and C. Bordons (2nd 

edition, ISBN 978-1-85233-694-3, 2004), and Receding Horizon Control (ISBN 

978-1-84628-024-5, 2005) by W.H. Kwon and S. Han . 

To the above group of books we are now able to add this monograph, Model 

Predictive Control System Design and Implementation Using MATLAB®, by 

Liuping Wang. Professor Wang aims to provide both the industrial and the 

academic reader with a direct but graded route into understanding MPC as used in 

the solution of industrial control problems. The interleaved exposition, and 

MATLAB® tutorials, allow the reader to work through a structured introduction to 

the design and implementation of MPC and use some related tools to condition, 

tune and test the control design solutions. 

Some features of MPC that makes it worthy of study as an industrial control 

technique include: 

• the technique uses simple concepts; 

• the controller tuning can be packaged for ease of use;  

• the technique can be used in either supervisory or primary control modes; and 

• constraint handling is naturally accommodated by the method, and can be 

packaged for automated systematic constraint setup. 

Professor Wang’s book illustrates these issues and uses a small set of 

theoretical tools to great effect; these tools include the exponential weighting of 

signals, weights to achieve a prescribed degree of stability, re-parameterisation of 

the feedback using orthogonality principles, Laguerre and Kautz basis functions, 

and quadratic programming. The book is structured so that discrete methods are 

considered first, and these are followed by continuous-time system techniques. 

Over the course of the book, the MATLAB® interludes result in readers  

constructing their own libraries of MPC routines that can be used in other control 

problems. Towards the end of the book, Professor Wang demonstrates the use of 

the MPC algorithms in some application studies. These range from a motor control 

application to the control of a food extruder process and these studies illustrate 

both the software and hardware aspects of the solutions. 

The book’s “hands-on” approach is expected to appeal to a wide readership 

ranging from the industrial control engineer to the postgraduate student in the 

process and control disciplines. Both will undoubtedly find the MATLAB® 

demonstrations of the control concepts an invaluable tutorial route to 

understanding MPC in practice. 

Industrial Control Centre M.J. Grimble 

Glasgow M.A. Johnson 

Scotland, UK 

2008 



Preface

About this Book

Model predictive control (MPC) has a long history in the field of control en-
gineering. It is one of the few areas that has received on-going interest from
researchers in both the industrial and academic communities. Four major as-
pects of model predictive control make the design methodology attractive to
both practitioners and academics. The first aspect is the design formulation,
which uses a completely multivariable system framework where the perfor-
mance parameters of the multivariable control system are related to the engi-
neering aspects of the system; hence, they can be understood and ‘tuned’ by
engineers. The second aspect is the ability of the method to handle both ‘soft’
constraints and hard constraints in a multivariable control framework. This
is particularly attractive to industry where tight profit margins and limits on
the process operation are inevitably present. The third aspect is the ability
to perform on-line process optimization. The fourth aspect is the simplicity
of the design framework in handling all these complex issues.

This book gives an introduction to model predictive control, and recent
developments in design and implementation. Beginning with an overview of
the field, the book will systematically cover topics in receding horizon con-
trol, MPC design formulations, constrained control, Laguerre-function-based
predictive control, predictive control using exponential data weighting, refor-
mulation of classical predictive control, tuning of predictive control, as well
as simulation and implementation using MATLAB� and SIMULINK� as a
platform. Both continuous-time and discrete-time model predictive control is
presented in a similar framework.

Development of this Book

There are several aspects of the developments that may be of interest to the
reader.



Theory

This book was originally planned as a research monograph to cover the
methodologies of predictive control using orthonormal basis functions. De-
sign of predictive control using time-domain functions is not new. It was
proposed by Richalet in the 1970s and has been successfully used in vari-
ous control engineering applications (see Richalet et al., 1978, Richalet, 1987,
1993, 2000). However, the design of predictive control that uses orthonormal
functions is new, particularly the approaches that use the sets of exponential
orthonormal functions such as Laguerre functions and Kautz functions. With
my background in system identification, I naturally saw the link between sys-
tem identification and predictive control from the perspective of modelling
of the control trajectory. Once the predictive control problem is formulated
as that of modelling the future control trajectory, both continuous-time and
discrete-time predictive control is solved in the same framework. Both have di-
rect links to the classical linear quadratic regulator (LQR) in continuous time
and discrete time when using a sufficiently long prediction horizon. The key
difference between predictive control and LQR is that the predictive control
solves the optimization problem using a moving time horizon window whilst
LQR solves the same problem within a fixed window. The advantages of us-
ing a moving time horizon window include the ability to perform real-time
optimization with hard constraints on plant variables.

As we know, the majority of industrial control systems have integral action
(e.g., PID controllers). This integral functionality has also been embedded in
the classical predictive control systems such as generalized predictive control
(GPC) and dynamic matrix control (DMC) (see Clarke et al., 1987, Cutler
and Ramaker, 1979). In this book, in order to have an integral function in
the MPC algorithms, the design models are embedded with integrators. The
formulation of the design models was inspired by the state-space approach
given in Ricker’s paper (Ricker, 1991). By doing so, similar to GPC and DMC,
the optimized control trajectory is either the increment of the control signal
(discrete-time case) or the derivative of the control signal (continuous-time
case). The added benefit is the simplified implementation procedure, where
less steady-state plant information is required.

One of the well-known problems in classical predictive control is its nu-
merical problem when the prediction horizon is large (for example, Rossiter
et al., 1998). This was inevitable because the model used for design contained
an integrating mode. To overcome this problem, the design model needs to
be asymptotically stable. Using the classical results in LQR by Anderson
and Moore (see Anderson and Moore, 1971), a simple transformation of the
design model from unstable to stable was made by choosing a cost that con-
tains an exponential factor, hence overcoming the numerical ill-conditioning
problem (see Wang 2001c). In order to guarantee closed-loop stability of the
predictive control system, the original weight matrices in the cost function
are adjusted when the exponential weight is used. An important by-product

xii Preface
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of this transformation is the creation of a prescribed degree of stability in the
MPC algorithms, both continuous-time and discrete-time. This prescribed de-
gree of stability in conjunction with the use of orthonormal functions made
the tuning of the predictive control system a relatively easy task.

The idea of creating a prescribed degree of stability has been previously
used in receding horizon control (see Kwon and Han, 2005, Yoon and Clarke,
1993), and the key in the previous approaches relies on the use of an ex-
ponentially increasing weight in the cost function, along with the solution
obtained analytically from a Riccati approach. The distinguishing point for
the approaches in this book is that instead of increasing, an exponentially
decreasing weight is used in the cost function to resolve the numerical prob-
lem, followed by adjustment of the constant weight matrices to recover and
create more stability margins if required. Use of an exponentially decreasing
weight is counter-intuitive from a closed-loop stability point of view, however,
it makes sense when the numerical issue is of concern.

Practice

Predictive control using orthornomal basis functions has been successfully
used in numerous applications, mainly by my previous undergraduate and
postgraduate students. The majority of the applications were based on MAT-
LAB real-time Workshop and SIMULINK xPC target. The MATLAB pro-
grams I wrote over the years are often directly translated into MATLAB C or
SIMULINK programs for xPC target, then the applications followed through.
The MATLAB programs are useful for practitioners as a start point, adopting
them later for their own applications. The MATLAB programs are explained
in a tutorial manner, step by step, so that the reader can understand how the
algorithms are developed.

Presentation

The first version of this book had a different structure from the current version.
The book had begun with continuous-time predictive control using orthonor-
mal basis functions. The pre-conference predictive control workshop in the
American Control Conference (ACC) 2007 made me change my mind about
the structure of this book. When preparing for the workshop, I realized that a
discrete-time system offers a natural setting for the development of predictive
control, and the design framework is easier to understand when it is presented
in discrete time. The discussion with Mr Oliver Jackson (Editor, Springer) in
(ACC) 2007 also helped me think harder on how to deliver the complex issues
in a manner as simple as possible. In the end, I chose to present the materials
in a bottom-up manner to suit the background of a fourth-year undergraduate
student. The best way to do so is to actually try the presentation on a class
of fourth year students and then find out what the difficult issues are. This
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is indeed what I have tried. The first three chapters were taught in the class-
room, and the students provided the suggestions and feedback, which helped
to set the level and pace of the presentation. The book is intended for readers
who have completed or are about to complete four years engineering studies
with some basic knowledge in state-space design. The textbooks for an intro-
duction to state-space methods include Franklin et al. (1991), Kailath (1980),
Bay (1999) and Goodwin et al. (2000). However, some of the basic knowledge
will be reviewed in the relevant chapters, and the book is self-contained with
MATLAB tutorials and numerous examples. The targeted readers are stu-
dents, practitioners, instructors and researchers who wish to apply predictive
control.

Book Structure

The structure of the book is illustrated by the block diagram as shown in
Figure 0.1. There are ten chapters in this book, and both continuous-time
and discrete-time predictive control systems are introduced and discussed (see
Chapters 1 to 8). Discrete-time algorithms are introduced first because of their
strong relevance to industrial applications and their natural settings in the
development. Chapters 9 and 10 contain both continuous-time and discrete-
time systems, from using special state-space realization to implementation
of those control systems via MATLAB Real-time Workshop and SIMULINK
xPC Target. Each chapter contains MATLAB tutorials, which illustrate how
the algorithms can be used in simulation, computation and implementation,
and a problem section for practice of the design.

Chapter 1 is for beginners, where we will use simple examples to show
the principle of receding horizon control, which underpins predictive control.
The solutions are limited to simple analytical solutions. In Chapter 1, we
will also discuss implementation using observer and observability with sev-
eral simple examples. In Chapter 2, the basic ideas about constrained control
are introduced within the framework of receding horizon control. The key
is to formulate the constrained control problem as a real-time optimization
problem subject to inequality constraints. The solution to this problem relies
on application of a quadratic programming procedure. Given that the ma-
jority of the readers may not have studied constrained optimization before,
in this chapter, we will also discuss optimization with equality and inequal-
ity constraints. The discussion is followed by the introduction of Hildreth’s
quadratic programming procedure, which offers simplicity and reliability in
real-time implementation.

In essence, the core technique in the design of discrete-time MPC is based
on optimizing the future control trajectory subject to plant operational con-
straints. In the traditional predictive control, as demonstrated in Chapter 1
and 2, by assuming a finite control horizon Nc and prediction horizon Np, the
difference of the control signal ∆u(k) for k = 0, 1, 2, . . . , Nc −1 is captured by
the control vector ∆U , while the rest of the ∆u(k) for k = Nc, Nc + 1, . . . , Np
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is assumed to be zero. The idea in Chapter 3 is to generalize the traditional
design procedure by introducing a set of discrete Laguerre functions into the
design. This generalization will help us in re-formulating the predictive control
problem and simplifying the solutions, in addition to providing a set of new
performance-tuning parameters that can be readily understood by engineers.
Furthermore, a long control horizon can be realized through the exponential
nature of the Laguerre functions, hence without using a large number of para-
meters. Several MATLAB tutorials are presented in this chapter for the design
of discrete-time predictive control systems, with or without constraints.

It is fair to say that the majority of industrial control systems require in-
tegral action. In this book, the design models are embedded with integrators
to achieve this objective, which is similar to other classical predictive control
systems. Because of the embedded integrators, the prediction horizon Np as
a design parameter plays an important role in a predictive control system.
In Chapter 4, we demonstrate that if it is chosen too short, the closed-loop

Continuous-time basis functions (Ch. 5)

�
Laguerre-function-based CMPC (Ch. 6)

�

Introduction to DMPC (Ch. 1)

�
DMPC with constraints (Ch. 2)

�
CMPC with constraints (Ch. 7)

�

Laguerre-function-based DMPC (Ch. 3)

�

CMPC with prescribed degree of stability (Ch. 8)

DMPC with prescribed degree of stability (Ch. 4)

� �
DMPC and CMPC without observer (Ch. 9)

�
Real-time implementation of DMPC and CMPC (Ch. 10)

Fig. 0.1. Structure of the book
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system is not necessarily stable, and if it is too large, the predictive control
system will encounter a numerical stability problem. To overcome this prob-
lem, in Chapter 4, we propose the use of an exponentially weighted moving
horizon window in model predictive control design. Within this framework,
the numerical ill-conditioning problem is resolved by a simple modification
of the design model. Equally important are an asymptotic stability result
for predictive control designed using infinite horizon with exponential data
weighting and a modification of the weight matrices, as well as a result that
establishes the predictive control system with a prescribed degree of stability.
Analytical and numerical results are used in this chapter to show the equiv-
alence between the new class of discrete-time predictive control systems and
the classical discrete-time linear quadratic regulators (DLQR) without con-
straints. When constraints are present, the optimal solutions are obtained by
minimizing the exponentially weighted cost subject to transformed inequality
constraints.

Chapters 6 to 8 will introduce the continuous-time predictive control re-
sults. To prepare the background, in Chapter 5, we will discuss continuous-
time orthonormal basis functions and their applications in dynamic system
modelling. Laguerre functions and Kautz functions are special classes of or-
thonormal basis functions. Both sets of functions possess simple Laplace trans-
forms, and can be compactly represented by state-space models. The key prop-
erty is that when using the orthonormal functions, modelling of the impulse
response of a stable system, which has a bounded integral squared value,
will have a guaranteed convergence as the number of terms used increases.
This forms the fundamental principle of the model predictive control design
methods presented in this book.

After introducing the background information, in Chapter 6, we begin with
the topics in continuous-time model predictive control (CMPC). It is natural
that when the design model is embedded with integrators, the derivative of the
control signal should be modelled by the orthonormal basis functions, not the
control signal itself. With this as a start point, systematically, we will cover the
principles of continuous-time predictive control design, and the solutions of
the optimal control problem. It shows that when constraints are not involved
in the design, the continuous-time model predictive control scheme becomes
a state feedback control system, with the gain being chosen from minimizing
a finite prediction horizon cost. The continuous-time Laguerre functions and
Kautz functions discussed in Chapter 5 are utilized in the design of continuous-
time model predictive control.

In Chapter 7, we introduce continuous-time model predictive control with
constraints. Similar to the discrete-time case, we will first formulate the con-
straints for the continuous-time predictive control system, and present the
numerical solution of the constrained control problem using a quadratic pro-
gramming procedure. Because of the nature of the continuous-time formu-
lation such as fast sampling, there might be computational delays when a
quadratic programming procedure is used in the solution of the real-time op-
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timization problem. In general terms, we discuss the real-time implementation
of continuous-time model predictive control in the presence of constraints in
this chapter too.

The numerical instability problem discussed in the discrete-time case, also
occurs in the continuous-time algorithms that is shown by a numerical example
in Chapter 8. In a similar spirit to previous chapters, Chapter 8 proposes the
use of exponential data weighting in the design of continuous-time model
predictive control systems. This essentially transforms the original state and
derivative of the control variables into exponentially weighted variables for the
optimization procedure. With a simple modification on the weight matrices,
asymptotic stability is established for model predictive control systems with
infinite prediction horizon. Similarly, a prescribed degree of stability can also
be obtained. Without constraints, analytical and numerical results are used
to demonstrate the equivalence between the continuous-time model predictive
controllers and the classical linear quadratic regulators (LQR). Constraints are
imposed on the transformed variables.

In a general framework of state feedback control, an observer is often
needed for its implementation. The design of an observer is a separate task
from the design of predictive controller. The role of an observer is to ensure
small errors between the estimated and the actual state variables. However,
if one faces many inputs and many outputs in a system, tuning of an ob-
server’s dynamics may not be a trivial task. The classical predictive control
systems, such as dynamic matrix control (DMC) and generalized predictive
control (GPC), have directly utilized plant input and output signals in the
closed-loop feedback control, hence avoiding observers in their implementa-
tion. In Chapter 9, we will link the predictive control systems designed using
the framework of state space to the classical predictive control systems. The
key to the link is to choose the state variables to be identical to the feed-
back variables that have been used in the classical predictive control systems.
Once the state-space model is formulated, the framework from the previous
chapters is naturally extended to the classical predictive control systems, pre-
serving all the advantages of a state-space design, including stability analysis,
exponential data weighting and LQR equivalence. In addition, because of the
utilization of plant input and output signals in the implementation, the pre-
dictive controller can be represented in a transfer function form, allowing a
direct frequency response analysis of the system to obtain critical informa-
tion, such as gain and phase margins. It is worthwhile to point out that the
discrete-time single-input and single-output predictive controller is very sim-
ple and easy for implementation. Simplicity as a feature of the algorithms
remains when they are extended to multi-input and multi-output systems.
Different from discrete-time, in the continuous-time design, an implementa-
tion filter is required, and the poles of the filter become part of the desired
closed-loop poles when we choose to optimize the output errors in the design.

Chapter 10 presents three different implementation procedures for model
predictive control systems. The first implementation is based on a (low-cost)
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micro-controller for controlling a DC motor. In this application, the MAT-
LAB design programs are utilized to calculate the predictive controller gain
and the previous MATLAB closed-loop simulation program is converted to a
C program for real-time implementation on the micro-controller. The second
implementation is based on MATLAB Real-time Workshop and xPC target.
This application is very useful for those who are not familiar with C lan-
guage because the MATLAB Real-time Workshop and xPC target perform
the conversion from MATLAB programs to C programs through their com-
pilers in a systematic way. With these tools, we only need to create MATLAB
embedded functions for the real-time applications. The third implementation
uses the platform of a real-time PC-based supervisory control and data ac-
quisition (SCADA) system. A pilot food extrusion plant is controlled by the
continuous-time predictive controller developed in Chapter 6. The previous
MATLAB closed-loop simulation program for a continuous-time system is
converted to C program for this real-time implementation.
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1

Discrete-time MPC for Beginners

1.1 Introduction

In this chapter, we will introduce the basic ideas and terms about model pre-
dictive control. In Section 1.2, a single-input and single-output state-space
model with an embedded integrator is introduced, which is used in the design
of discrete-time predictive controllers with integral action in this book. In Sec-
tion 1.3, we examine the design of predictive control within one optimization
window. This is demonstrated by simple analytical examples. With the results
obtained from the optimization, in Section 1.4, we discuss the ideas of reced-
ing horizon control, and state feedback gain matrices, and the closed-loop
configuration of the predictive control system. The results are extended to
multi-input and multi-output systems in Section 1.5. In a general framework
of state-space design, an observer is needed in the implementation, and this is
discussed in Section 1.6. With a combination of estimated state variables and
the predictive controller, in Section 1.7, we present state estimate predictive
control.

1.1.1 Day-to-day Application Example of Predictive Control

The general design objective of model predictive control is to compute a tra-
jectory of a future manipulated variable u to optimize the future behaviour
of the plant output y. The optimization is performed within a limited time
window by giving plant information at the start of the time window. To help
understand the basic ideas that have been used in the design of predictive
control, we examine a typical planning activity of our day-to-day work.

The day begins at 9 o’clock in the morning. We are, as a team, going to
complete the tasks of design and implementation of a model predictive control
system for a liquid vessel. The rule of the game is that we always plan our
activities for the next 8 hours work, however, we only implement the plan for
the first hour. This planning activity is repeated for every fresh hour until the
tasks are completed.
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Given the amount of background work that we have completed for 9 o’clock, we
plan ahead for the next 8 hours. Assume that the work tasks are divided into
modelling, design, simulation and implementation. Completing these tasks will
be a function of various factors, such as how much effort we will put in, how
well we will work as a team and whether we will get some additional help from
others. These are the manipulated variables in the planning problem. Also, we
have our limitations, such as our ability to understand the design problem, and
whether we have good skills of computer hardware and software engineering.
These are the hard and soft constraints in the planning. The background
information we have already acquired is paramount for this planning work.

After everything is considered, we determine the design tasks for the next
8 hours as functions of the manipulated variables. Then we calculate hour-by-
hour what we need to do in order to complete the tasks. In this calculation,
based on the background information, we will take our limitations into con-
sideration as the constraints, and find the best way to achieve the goal. The
end result of this planning gives us our projected activities from 9 o’clock to
5 o’clock. Then we start working by implementing the activities for the first
hour of our plan.

At 10 o’clock, we check how much we have actually done for the first
hour. This information is used for the planning of our next phase of activities.
Maybe we have done less than we planned because we could not get the
correct model or because one of the key members went for an emergency
meeting. Nevertheless, at 10 o’clock, we make an assessment on what we have
achieved, and use this updated information for planning our activities for the
next 8 hours. Our objective may remain the same or may change. The length
of time for the planning remains the same (8 hours). We repeat the same
planning process as it was at 9 o’clock, which then gives us the new projected
activities for the next 8 hours. We implement the first hour of activities at
10 o’clock. Again at 11 o’clock, we assess what we have achieved again and
use the updated information for the plan of work for the next 8 hours. The
planning and implementation process is repeated every hour until the original
objective is achieved.

There are three key elements required in the planning. The first is the way
of predicting what might happen (model); the second is the instrument of
assessing our current activities (measurement); and the third is the instrument
of implementing the planned activities (realization of control). The key issues
in the planning exercise are:

1. the time window for the planning is fixed at 8 hours;
2. we need to know our current status before the planning;
3. we take the best approach for the 8 hours work by taking the constraints

into consideration, and the optimization is performed in real-time with a
moving horizon time window and with the latest information available.

The planning activity described here involves the principle of MPC. In this
example, it is described by the terms that are to be used frequently in the
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following: the moving horizon window, prediction horizon, receding horizon
control, and control objective. They are introduced as below.

1. Moving horizon window: the time-dependent window from an arbitrary
time ti to ti + Tp. The length of the window Tp remains constant. In this
example, the planning activity is performed within an 8-hour window,
thus Tp = 8, with the measurement taken every hour. However, ti, which
defines the beginning of the optimization window, increases on an hourly
basis, starting with ti = 9.

2. Prediction horizon: dictates how ‘far’ we wish the future to be predicted
for. This parameter equals the length of the moving horizon window, Tp.

3. Receding horizon control: although the optimal trajectory of future control
signal is completely described within the moving horizon window, the
actual control input to the plant only takes the first sample of the control
signal, while neglecting the rest of the trajectory.

4. In the planning process, we need the information at time ti in order to
predict the future. This information is denoted as x(ti) which is a vec-
tor containing many relevant factors, and is either directly measured or
estimated.

5. A given model that will describe the dynamics of the system is paramount
in predictive control. A good dynamic model will give a consistent and
accurate prediction of the future.

6. In order to make the best decision, a criterion is needed to reflect the ob-
jective. The objective is related to an error function based on the difference
between the desired and the actual responses. This objective function is
often called the cost function J , and the optimal control action is found
by minimizing this cost function within the optimization window.

1.1.2 Models Used in the Design

There are three general approaches to predictive control design. Each ap-
proach uses a unique model structure. In the earlier formulation of model
predictive control, finite impulse response (FIR) models and step response
models were favoured. FIR model/step response model based design algo-
rithms include dynamic matrix control (DMC) (Cutler and Ramaker, 1979)
and the quadratic DMC formulation of Garcia and Morshedi (1986). The
FIR type of models are appealing to process engineers because the model
structure gives a transparent description of process time delay, response time
and gain. However, they are limited to stable plants and often require large
model orders. This model structure typically requires 30 to 60 impulse re-
sponse coefficients depending on the process dynamics and choice of sampling
intervals. Transfer function models give a more parsimonious description of
process dynamics and are applicable to both stable and unstable plants. Rep-
resentatives of transfer function model-based predictive control include the
predictive control algorithm of Peterka (Peterka, 1984) and the generalized
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predictive control (GPC) algorithm of Clarke and colleagues (Clarke et al.,
1987). The transfer function model-based predictive control is often considered
to be less effective in handling multivariable plants. A state-space formulation
of GPC has been presented in Ordys and Clarke (1993).

Recent years have seen the growing popularity of predictive control de-
sign using state-space design methods (Ricker, 1991, Rawlings and Muske,
1993, Rawlings, 2000, Maciejowski, 2002). In this book, we will use state-space
models, both in continuous time and discrete time for simplicity of the design
framework and the direct link to the classical linear quadratic regulators.

1.2 State-space Models with Embedded Integrator

Model predictive control systems are designed based on a mathematical model
of the plant. The model to be used in the control system design is taken to be
a state-space model. By using a state-space model, the current information
required for predicting ahead is represented by the state variable at the current
time.

1.2.1 Single-input and Single-output System

For simplicity, we begin our study by assuming that the underlying plant is a
single-input and single-output system, described by:

xm(k + 1) = Amxm(k) + Bmu(k), (1.1)

y(k) = Cmxm(k), (1.2)

where u is the manipulated variable or input variable; y is the process output;
and xm is the state variable vector with assumed dimension n1. Note that this
plant model has u(k) as its input. Thus, we need to change the model to suit
our design purpose in which an integrator is embedded.

Note that a general formulation of a state-space model has a direct term
from the input signal u(k) to the output y(k) as

y(k) = Cmxm(k) + Dmu(k).

However, due to the principle of receding horizon control, where a current
information of the plant is required for prediction and control, we have im-
plicitly assumed that the input u(k) cannot affect the output y(k) at the same
time. Thus, Dm = 0 in the plant model.

Taking a difference operation on both sides of (1.1), we obtain that

xm(k + 1) − xm(k) = Am(xm(k) − xm(k − 1)) + Bm(u(k) − u(k − 1)).
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Let us denote the difference of the state variable by

∆xm(k + 1) = xm(k + 1) − xm(k); ∆xm(k) = xm(k) − xm(k − 1),

and the difference of the control variable by

∆u(k) = u(k) − u(k − 1).

These are the increments of the variables xm(k) and u(k). With this transfor-
mation, the difference of the state-space equation is:

∆xm(k + 1) = Am∆xm(k) + Bm∆u(k). (1.3)

Note that the input to the state-space model is ∆u(k). The next step is to
connect ∆xm(k) to the output y(k). To do so, a new state variable vector is
chosen to be

x(k) =
[
∆xm(k)T y(k)

]T
,

where superscript T indicates matrix transpose. Note that

y(k + 1) − y(k) = Cm(xm(k + 1) − xm(k)) = Cm∆xm(k + 1)

= CmAm∆xm(k) + CmBm∆u(k). (1.4)

Putting together (1.3) with (1.4) leads to the following state-space model:

x(k+1)
︷ ︸︸ ︷
[

∆xm(k + 1)
y(k + 1)

]

=

A
︷ ︸︸ ︷
[

Am oT
m

CmAm 1

]

x(k)
︷ ︸︸ ︷
[

∆xm(k)
y(k)

]

+

B
︷ ︸︸ ︷
[

Bm

CmBm

]

∆u(k)

y(k) =

C
︷ ︸︸ ︷
[
om 1

]
[

∆xm(k)
y(k)

]

, (1.5)

where om =

n1

︷ ︸︸ ︷
[
0 0 . . . 0

]
. The triplet (A, B, C) is called the augmented model,

which will be used in the design of predictive control.

Example 1.1. Consider a discrete-time model in the following form:

xm(k + 1) = Amxm(k) + Bmu(k)

y(k) = Cmxm(k) (1.6)

where the system matrices are

Am =

[
1 1
0 1

]

; Bm =

[
0.5
1

]

; Cm =
[
1 0

]
.

Find the triplet matrices (A, B, C) in the augmented model (1.5) and calcu-
late the eigenvalues of the system matrix, A, of the augmented model.
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Solution. From (1.5), n1 = 2 and om = [0 0]. The augmented model for this
plant is given by

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k), (1.7)

where the augmented system matrices are

A =

[
Am oT

m

CmAm 1

]

=

⎡

⎣

1 1 0
0 1 0
1 1 1

⎤

⎦ ; B =

[
Bm

CmBm

]

=

⎡

⎣

0.5
1

0.5

⎤

⎦ ;

C =
[
om 1

]
=

[
0 0 1

]
.

The characteristic equation of matrix A is given by

ρ(λ) = det(λI − A) = det

[
λI − Am oT

m

−CmAm (λ − 1)

]

= (λ − 1) det(λI − Am) = (λ − 1)3. (1.8)

Therefore, the augmented state-space model has three eigenvalues at λ = 1.
Among them, two are from the original integrator plant, and one is from the
augmentation of the plant model.

1.2.2 MATLAB Tutorial: Augmented Design Model

Tutorial 1.1. The objective of this tutorial is to demonstrate how to obtain a
discrete-time state-space model from a continuous-time state-space model, and
form the augmented discrete-time state-space model. Consider a continuous-
time system has the state-space model:

ẋm(t) =

⎡

⎣

0 1 0
3 0 1
0 1 0

⎤

⎦ xm(t) +

⎡

⎣

1
1
3

⎤

⎦u(t)

y(t) =
[
0 1 0

]
xm(t). (1.9)

Step by Step

1. Create a new file called extmodel.m. We form a continuous-time state vari-
able model; then this continuous-time model is discretized using MATLAB
function ‘c2dm’ with specified sampling interval ∆t.

2. Enter the following program into the file:

Ac = [0 1 0; 3 0 1; 0 1 0 ];

Bc= [1; 1; 3];

Cc=[0 1 0];

Dc=zeros(1,1);

Delta_t=1;

[Ad,Bd,Cd,Dd]=c2dm(Ac,Bc,Cc,Dc,Delta_t);
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3. The dimensions of the system matrices are determined to discover the
numbers of states, inputs and outputs. The augmented state-space model
is produced. Continue entering the following program into the file:

[m1,n1]=size(Cd);

[n1,n_in]=size(Bd);

A_e=eye(n1+m1,n1+m1);

A_e(1:n1,1:n1)=Ad;

A_e(n1+1:n1+m1,1:n1)=Cd*Ad;

B_e=zeros(n1+m1,n_in);

B_e(1:n1,:)=Bd;

B_e(n1+1:n1+m1,:)=Cd*Bd;

C_e=zeros(m1,n1+m1);

C_e(:,n1+1:n1+m1)=eye(m1,m1);

4. Run this program to produce the augmented state variable model for the
design of predictive control.

1.3 Predictive Control within One Optimization Window

Upon formulation of the mathematical model, the next step in the design of a
predictive control system is to calculate the predicted plant output with the
future control signal as the adjustable variables. This prediction is described
within an optimization window. This section will examine in detail the opti-
mization carried out within this window. Here, we assume that the current
time is ki and the length of the optimization window is Np as the number of
samples. For simplicity, the case of single-input and single-output systems is
considered first, then the results are extended to multi-input and multi-output
systems.

1.3.1 Prediction of State and Output Variables

Assuming that at the sampling instant ki, ki > 0, the state variable vector
x(ki) is available through measurement, the state x(ki) provides the current
plant information. The more general situation where the state is not directly
measured will be discussed later. The future control trajectory is denoted by

∆u(ki), ∆u(ki + 1), . . . , ∆u(ki + Nc − 1),

where Nc is called the control horizon dictating the number of parameters
used to capture the future control trajectory. With given information x(ki),
the future state variables are predicted for Np number of samples, where Np

is called the prediction horizon. Np is also the length of the optimization
window. We denote the future state variables as

x(ki + 1 | ki), x(ki + 2 | ki), . . . , x(ki + m | ki), . . . , x(ki + Np | ki),
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where x(ki+m | ki) is the predicted state variable at ki+m with given current
plant information x(ki). The control horizon Nc is chosen to be less than (or
equal to) the prediction horizon Np.

Based on the state-space model (A, B, C), the future state variables are
calculated sequentially using the set of future control parameters:

x(ki + 1 | ki) = Ax(ki) + B∆u(ki)

x(ki + 2 | ki) = Ax(ki + 1 | ki) + B∆u(ki + 1)

= A2x(ki) + AB∆u(ki) + B∆u(ki + 1)

...

x(ki + Np | ki) = ANpx(ki) + ANp−1B∆u(ki) + ANp−2B∆u(ki + 1)

+ . . . + ANp−NcB∆u(ki + Nc − 1).

From the predicted state variables, the predicted output variables are, by
substitution

y(ki + 1 | ki) = CAx(ki) + CB∆u(ki) (1.10)

y(ki + 2 | ki) = CA2x(ki) + CAB∆u(ki) + CB∆u(ki + 1)

y(ki + 3 | ki) = CA3x(ki) + CA2B∆u(ki) + CAB∆u(ki + 1)

+ CB∆u(ki + 2)

...

y(ki + Np | ki) = CANpx(ki) + CANp−1B∆u(ki) + CANp−2B∆u(ki + 1)

+ . . . + CANp−NcB∆u(ki + Nc − 1). (1.11)

Note that all predicted variables are formulated in terms of current state
variable information x(ki) and the future control movement ∆u(ki +j), where
j = 0, 1, . . .Nc − 1.

Define vectors

Y =
[
y(ki + 1 | ki) y(ki + 2 | ki) y(ki + 3 | ki) . . . y(ki + Np | ki)

]T

∆U =
[
∆u(ki) ∆u(ki + 1) ∆u(ki + 2) . . . ∆u(ki + Nc − 1)

]T
,

where in the single-input and single-output case, the dimension of Y is Np

and the dimension of ∆U is Nc. We collect (1.10) and (1.11) together in a
compact matrix form as

Y = Fx(ki) + Φ∆U, (1.12)

where

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

CA
CA2

CA3

...
CANp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
CANp−1B CANp−2B CANp−3B . . . CANp−NcB

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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1.3.2 Optimization

For a given set-point signal r(ki) at sample time ki, within a prediction horizon
the objective of the predictive control system is to bring the predicted output
as close as possible to the set-point signal, where we assume that the set-
point signal remains constant in the optimization window. This objective is
then translated into a design to find the ‘best’ control parameter vector ∆U
such that an error function between the set-point and the predicted output is
minimized.

Assuming that the data vector that contains the set-point information is

RT
s =

Np

︷ ︸︸ ︷
[
1 1 . . . 1

]
r(ki),

we define the cost function J that reflects the control objective as

J = (Rs − Y )T (Rs − Y ) + ∆UT R̄∆U, (1.13)

where the first term is linked to the objective of minimizing the errors between
the predicted output and the set-point signal while the second term reflects
the consideration given to the size of ∆U when the objective function J is
made to be as small as possible. R̄ is a diagonal matrix in the form that
R̄ = rwINc×Nc

(rw ≥ 0) where rw is used as a tuning parameter for the
desired closed-loop performance. For the case that rw = 0, the cost function
(1.13) is interpreted as the situation where we would not want to pay any
attention to how large the ∆U might be and our goal would be solely to
make the error (Rs − Y )T (Rs − Y ) as small as possible. For the case of large
rw, the cost function (1.13) is interpreted as the situation where we would
carefully consider how large the ∆U might be and cautiously reduce the error
(Rs − Y )T (Rs − Y ).

To find the optimal ∆U that will minimize J , by using (1.12), J is ex-
pressed as

J = (Rs−Fx(ki))
T (Rs−Fx(ki))−2∆UT ΦT (Rs−Fx(ki))+∆UT (ΦT Φ+R̄)∆U.

(1.14)
From the first derivative of the cost function J :

∂J

∂∆U
= −2ΦT (Rs − Fx(ki)) + 2(ΦT Φ + R̄)∆U, (1.15)

the necessary condition of the minimum J is obtained as

∂J

∂∆U
= 0,

from which we find the optimal solution for the control signal as

∆U = (ΦT Φ + R̄)−1ΦT (Rs − Fx(ki)), (1.16)
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with the assumption that (ΦT Φ + R̄)−1 exists. The matrix (ΦT Φ + R̄)−1 is
called the Hessian matrix in the optimization literature. Note that Rs is a
data vector that contains the set-point information expressed as

Rs =

Np

︷ ︸︸ ︷

[1 1 1 . . . 1]T r(ki) = R̄sr(ki),

where

R̄s =

Np

︷ ︸︸ ︷

[1 1 1 . . . 1]T .

The optimal solution of the control signal is linked to the set-point signal r(ki)
and the state variable x(ki) via the following equation:

∆U = (ΦT Φ + R̄)−1ΦT (R̄sr(ki) − Fx(ki)). (1.17)

Example 1.2. Suppose that a first-order system is described by the state equa-
tion:

xm(k + 1) = axm(k) + bu(k)

y(k) = xm(k), (1.18)

where a = 0.8 and b = 0.1 are scalars. Find the augmented state-space model.
Assuming a prediction horizon Np = 10 and control horizon Nc = 4, calcu-
late the components that form the prediction of future output Y , and the
quantities ΦT Φ, ΦT F and ΦT R̄s. Assuming that at a time ki (ki = 10 for
this example), r(ki) = 1 and the state vector x(ki) = [0.1 0.2]T , find the
optimal solution ∆U with respect to the cases where rw = 0 and rw = 10,
and compare the results.

Solution. The augmented state-space equation is
[

∆xm(k + 1)
y(k + 1)

]

=

[
a 0
a 1

] [
∆xm(k)

y(k)

]

+

[
b
b

]

∆u(k)

y(k) =
[
0 1

]
[

∆xm(k)
y(k)

]

. (1.19)

Based on (1.12), the F and Φ matrices take the following forms:

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CA
CA2

CA3

CA4

CA5

CA6

CA7

CA8

CA9

CA10

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CB 0 0 0
CAB CB 0 0
CA2B CAB CB 0
CA3B CA2B CAB CB
CA4B CA3B CA2B CAB
CA5B CA4B CA3B CA2B
CA6B CA5B CA4B CA3B
CA7B CA6B CA5B CA4B
CA8B CA7B CA6B CA5B
CA9B CA8B CA7B CA6B

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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The coefficients in the F and Φ matrices are calculated as follows:

CA =
[
s1 1

]

CA2 =
[
s2 1

]

CA3 =
[
s3 1

]

...

CAk =
[
sk 1

]
, (1.20)

where s1 = a, s2 = a2 + s1, . . ., sk = ak + sk−1, and

CB = g0 = b

CAB = g1 = ab + g0

CA2B = g2 = a2b + g1

...

CAk−1B = gk−1 = ak−1b + gk−2

CAkB = gk = akb + gk−1. (1.21)

With the plant parameters a = 0.8 and b = 0.1, Np = 10 and Nc = 4, we
calculate the quantities

ΦT Φ =

⎡

⎢
⎢
⎣

1.1541 1.0407 0.9116 0.7726
1.0407 0.9549 0.8475 0.7259
0.9116 0.8475 0.7675 0.6674
0.7726 0.7259 0.6674 0.5943

⎤

⎥
⎥
⎦

ΦT F =

⎡

⎢
⎢
⎣

9.2325 3.2147
8.3259 2.7684
7.2927 2.3355
6.1811 1.9194

⎤

⎥
⎥
⎦

; ΦT R̄s =

⎡

⎢
⎢
⎣

3.2147
2.7684
2.3355
1.9194

⎤

⎥
⎥
⎦

.

Note that the vector ΦT R̄s is identical to the last column in the matrix ΦT F .
This is because the last column of F matrix is identical to R̄s.

At time ki = 10, the state vector x(ki) = [0.1 0.2]T . In the first case, the
error between predicted Y and Rs is reduced without any consideration to
the magnitude of control changes. Namely, rw = 0. Then, the optimal ∆U is
found through the calculation

∆U = (ΦT Φ)−1(ΦT Rs − ΦT Fx(ki)) =
[
7.2 −6.4 0 0

]T
.

We note that without weighting on the incremental control, the last two ele-
ments ∆u(ki +2) = 0 and ∆u(ki +3) = 0, while the first two elements have a
rather large magnitude. Figure 1.1a shows the changes of the state variables
where we can see that the predicted output y has reached the desired set-point
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(a) State variables with no weight on
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(b) State variables with weight on ∆u

Fig. 1.1. Comparison of optimal solutions. Key: line (1) ∆xm; line (2) y

1 while the ∆xm decays to zero. To examine the effect of the weight rw on
the optimal solution of the control, we let rw = 10. The optimal solution of
∆U is given below, where I is a 4 × 4 identity matrix,

∆U = (ΦT Φ + 10 × I)−1(ΦT Rs − ΦT Fx(ki)) (1.22)

=
[
0.1269 0.1034 0.0829 0.065

]T
.

With this choice, the magnitude of the first two control increments is signifi-
cantly reduced, also the last two components are no longer zero. Figure 1.1b
shows the optimal state variables. It is seen that the output y did not reach
the set-point value of 1, however, the ∆xm approaches zero.

An observation follows from the comparison study. It seems that if we want
the control to move cautiously, then it takes longer for the control signal to
reach its steady state (i.e., the values in ∆U decrease more slowly), because
the optimal control energy is distributed over the longer period of future time.
We can verify this by increasing Nc to 9, while maintaining rw = 10. The result
shows that the magnitude of the elements in ∆U is reducing, but they are
significant for the first 8 elements:

∆UT =
[
0.1227 0.0993 0.0790 0.0614 0.0463 0.0334 0.0227 0.0139 0.0072

]
.

In comparison with the case where Nc = 4, we note that when Nc = 9, the
first four parameters in ∆U are slightly different from the previous case.

Example 1.3. There is an alternative way to find the minimum of the cost
function via completing the squares. This is an intuitive approach, also the
minimum of the cost function becomes a by-product of the approach.
Find the optimal solution for ∆U by completing the squares of the cost func-
tion J (1.14).
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Solution. From (1.14), by adding and subtracting the term

(Rs − Fx(ki))
T Φ(ΦT Φ + R̄)−1ΦT (Rs − Fx(ki))

to the original cost function J , its value remains unchanged. This leads to

J = (Rs − Fx(ki))
T (Rs − Fx(ki))

︷ ︸︸ ︷

−2∆UT ΦT (Rs − Fx(ki)) + ∆UT (ΦT Φ + R̄)∆U

+
︷ ︸︸ ︷

(Rs − Fx(ki))
T Φ(ΦT Φ + R̄)−1ΦT (Rs − Fx(ki))

− (Rs − Fx(ki))
T Φ(ΦT Φ + R̄)−1ΦT (Rs − Fx(ki)), (1.23)

where the quantities under the ︷︸︸︷. are the completed ‘squares’:

J0 =
(
∆U − (ΦT Φ + R̄)−1ΦT (Rs − Fx(ki))

)T

× (ΦT Φ + R̄)
(
∆U − (ΦT Φ + R̄)−1ΦT (Rs − Fx(ki))

)
. (1.24)

This can be easily verified by opening the squares. Since the first and last
terms in (1.23) are independent of the variable ∆U (sometimes, we call this
a decision variable), and (ΦT Φ + R̄) is assumed to be positive definite, then
the minimum of the cost function J is achieved if the quantity J0 equals zero,
i.e.,

∆U = (ΦT Φ + R̄)−1ΦT (Rs − Fx(ki)). (1.25)

This is the optimal control solution. By substituting this optimal solution into
the cost function (1.23), we obtain the minimum of the cost as

Jmin = (Rs − Fx(ki))
T (Rs − Fx(ki))

− (Rs − Fx(ki))
T Φ(ΦT Φ + R̄)−1ΦT (Rs − Fx(ki)).

1.3.3 MATLAB Tutorial: Computation of MPC Gains

Tutorial 1.2. The objective of this tutorial is to produce a MATLAB function
for calculating ΦT Φ, ΦT F , ΦT R̄s. The key here is to create F and Φ matrices.
Φ matrix is a Toeplitz matrix, which is created by defining its first column,
and the next column is obtained through shifting the previous column.

Step by Step

1. Create a new file called mpcgain.m.
2. The first step is to create the augmented model for MPC design. The

input parameters to the function are the state-space model (Ap, Bp, Cp),
prediction horizon Np and control horizon Nc. Enter the following program
into the file:
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function [Phi_Phi,Phi_F,Phi_R,A_e, B_e,C_e]

=mpcgain(Ap,Bp,Cp,Nc,Np);

[m1,n1]=size(Cp);

[n1,n_in]=size(Bp);

A_e=eye(n1+m1,n1+m1);

A_e(1:n1,1:n1)=Ap;

A_e(n1+1:n1+m1,1:n1)=Cp*Ap;

B_e=zeros(n1+m1,n_in);

B_e(1:n1,:)=Bp;

B_e(n1+1:n1+m1,:)=Cp*Bp;

C_e=zeros(m1,n1+m1);

C_e(:,n1+1:n1+m1)=eye(m1,m1);

3. Note that the F and Phi matrices have special forms. By taking advantage
of the special structure, we obtain the matrices.

4. Continue entering the program into the file:

n=n1+m1;

h(1,:)=C_e;

F(1,:)=C_e*A_e;

for kk=2:Np

h(kk,:)=h(kk-1,:)*A_e;

F(kk,:)= F(kk-1,:)*A_e;

end

v=h*B_e;

Phi=zeros(Np,Nc); %declare the dimension of Phi

Phi(:,1)=v; % first column of Phi

for i=2:Nc

Phi(:,i)=[zeros(i-1,1);v(1:Np-i+1,1)]; %Toeplitz matrix

end

BarRs=ones(Np,1);

Phi_Phi= Phi’*Phi;

Phi_F= Phi’*F;

Phi_R=Phi’*BarRs;

5. Type into the MATLAB Work Space with Ap = 0.8, Bp = 0.1, Cp = 1,
Nc = 4 and Np = 10. Run this MATLAB function by typing

[Phi_Phi,Phi_F,Phi_R,A_e, B_e,C_e]

=mpcgain(Ap,Bp,Cp,Nc,Np);

6. Comparing the results with the answers from Example 1.2. If it is identical
to what was presented there, then your program is correct.

7. Varying the prediction horizon and control horizon, observe the changes
in these matrices.

8. Calculate ∆U by assuming the information of initial condition on x and
r. The inverse of matrix M is calculated in MATLAB as inv(M).

9. Validate the results in Example 1.2.
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1.4 Receding Horizon Control

Although the optimal parameter vector ∆U contains the controls ∆u(ki),
∆u(ki +1), ∆u(ki +2), . . ., ∆u(ki +Nc−1), with the receding horizon control
principle, we only implement the first sample of this sequence, i.e., ∆u(ki),
while ignoring the rest of the sequence. When the next sample period arrives,
the more recent measurement is taken to form the state vector x(ki + 1) for
calculation of the new sequence of control signal. This procedure is repeated
in real time to give the receding horizon control law.

Example 1.4. We illustrate this procedure by continuing Example 1.2, where
a first-order system with the state-space description

xm(k + 1) = 0.8xm(k) + 0.1u(k)

is used in the computation. We will consider the case rw = 0. The initial
conditions are x(10) = [0.1 0.2]T and u(9) = 0.

Solution. At sample time ki = 10, the optimal control was previously com-
puted as ∆u(10) = 7.2. Assuming that u(9) = 0, then the control signal to
the plant is u(10) = u(9) + ∆u(10) = 7.2 and with xm(10) = y(10) = 0.2, we
calculate the next simulated plant state variable

xm(11) = 0.8xm(10) + 0.1u(10) = 0.88. (1.26)

At ki = 11, the new plant information is ∆xm(11) = 0.88 − 0.2 = 0.68 and

y(11) = 0.88, which forms x(11) =
[
0.68 0.88

]T
. Then we obtain

∆U = (ΦT Φ)−1(ΦT Rs − ΦT Fx(11)) =
[
−4.24 −0.96 0.0000 0.0000

]T
.

This leads to the optimal control u(11) = u(10) + ∆u(11) = 2.96. This new
control is implemented to obtain

xm(12) = 0.8xm(11) + 0.1u(11) = 1. (1.27)

At ki = 12, the new plant information is ∆xm(12) = 1 − 0.88 = 0.12 and
y(12) = 1, which forms x(12) =

[
0.12 1

]
. We obtain

∆U = (ΦT Φ)−1(ΦT Rs − ΦT Fx(11)) =
[
−0.96 0.000 0.0000 0.0000

]T
.

This leads to the control at ki = 12 as u(12) = u(11) − 0.96 = 2. By imple-
menting this control, we obtain the next plant output as

xm(13) = axm(12) + bu(12) = 1. (1.28)

The new plant information is ∆xm(13) = 1 − 1 = 0 and y(13) = 1. From this
information, we obtain
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Fig. 1.2. Receding horizon control

∆U = (ΦT Φ)−1(ΦT Rs − ΦT Fx(11)) =
[
0.000 0.000 0.0000 0.0000

]T
.

Figure 1.2 shows the trajectories of the state variable ∆xm and y, as well
as the control signal that was used to regulate the output. This example also
illustrated the differences between the ∆U parameter vectors at different time
instances. We note that as the output response reaches the desired set-point
signal, the parameters in the ∆U approach zero.

1.4.1 Closed-loop Control System

There is another aspect that was illustrated by Example 1.4. If we examine this
example carefully, then we find that at a given time ki, the optimal parameter
vector ∆U is solved using

∆U = (ΦT Φ + R̄)−1(ΦT Rs − ΦT Fx(ki)),

where (ΦT Φ+R̄)−1ΦT Rs corresponds to the set-point change, while −(ΦT Φ+
R̄)−1ΦT F corresponds to the state feedback control within the framework of
predictive control. Both depend on the system parameters, hence are constant
matrices for a time-invariant system. Because of the receding horizon control
principle, we only take the first element of ∆U at time ki as the incremental
control, thus

∆u(ki) =

Nc
︷ ︸︸ ︷
[
1 0 . . . 0

]
(ΦT Φ + R̄)−1(ΦT R̄sr(ki) − ΦT Fx(ki))

= Kyr(ki) − Kmpcx(ki), (1.29)

where Ky is the first element of

(ΦT Φ + R̄)−1ΦT R̄s,

and Kmpc is the first row of
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(ΦT Φ + R̄)−1ΦT F.

Equation (1.29) is in a standard form of linear time-invariant state feedback
control. The state feedback control gain vector is Kmpc. Therefore, with the
augmented design model

x(k + 1) = Ax(k) + B∆u(k)

the closed-loop system is obtained by substituting (1.29) into the augmented
system equation; changing index ki to k, leading to the closed-loop equation

x(k + 1) = Ax(k) − BKmpcx(k) + BKyr(k) (1.30)

= (A − BKmpc)x(k) + BKyr(k). (1.31)

Thus, the closed-loop eigenvalues can be evaluated through the closed-loop
characteristic equation:

det[λI − (A − BKmpc)] = 0.

Because of the special structures of the matrices C and A, the last column of F
is identical to R̄s, which is [1 1 . . . , 1]T , therefore Ky is identical to the last ele-
ment of Kmpc. Noting that the state variable vector x(ki) = [∆xm(k)T y(k)]T ,
and with the definition of Ky, we can write Kmpc = [Kx Ky], where Kx corre-
sponds to the feedback gain vector related to ∆xm(k), and Ky corresponds to
the feedback gain related to y(k). Then, we obtain the closed-loop block dia-
gram for the predictive control system as in Figure 1.3 where q−1 denotes the
backward shift operator. The diagram shows the state feedback structure for
the discrete model prediction control (DMPC) with integral action in which
the module 1

1−q−1 denotes the discrete-time integrator.

Example 1.5. This example will examine the closed-loop feedback gain matri-
ces generated from Example 1.2 and the eigenvalues of the closed-loop system
with weight rw = 0 and rw = 10.

Solution. When the weight rw = 0, we have

Ky =
[
1 0 0 0

]
(ΦT Φ + R̄)−1(ΦT

⎡

⎢
⎢
⎢
⎣

1
1
...
1

⎤

⎥
⎥
⎥
⎦
) = 10

Kmpc =
[
1 0 0 0

]
(ΦT Φ + R̄)−1(ΦT F ) =

[
8 10

]
.

Hence, the eigenvalues of the closed-loop system are calculated by evaluating
the eigenvalues of the closed-loop matrix A − BKmpc, where, from Example
1.2

A =

[
0.8 0
0.8 1

]

; B =

[
0.1
0.1

]

.
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Fig. 1.3. Block diagram of discrete-time predictive control system

They are λ1 = −6.409 × 10−7 and λ2 = 6.409 × 10−7, approximately on the
origin of the complex plane.

When the weight rw = 10, we have

Ky =
[
1 0 0 0

]
(ΦT Φ + R̄)−1(ΦT

⎡

⎢
⎢
⎢
⎣

1
1
...
1

⎤

⎥
⎥
⎥
⎦
) = 0.2453

Kmpc =
[
1 0 0 0

]
(ΦT Φ + R̄)−1(ΦT F ) =

[
0.6939 0.2453

]
.

With this gain vector, the eigenvalues of the closed-loop system are λ1,2 =
0.8530± j0.0542, indicating that the dynamics of the closed-loop system have
a much slower response than the one in the case when rw = 0.

Example 1.6. Suppose that a continuous-time system is described by the
Laplace transfer function

G(s) =
ω2

s2 + 0.1ωs + ω2
,

where ω = 10. This system is discretized using a sampling interval ∆t = 0.01.
Examine sensitivity issues in the selection of design parameters with Nc = 3,
Np = 20 and 200; R̄ = 0.5I.

Solution. We first use the MATLAB function script, given below, to obtain
the continuous-time state-space model, then by following Tutorial 1.1 obtain
the discrete-time state-space model.
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omega=10;

numc=omega^2;

denc=[1 0.1*omega omega^2];

[Ac,Bc,Cc,Dc]=tf2ss(numc,denc);

Here, the augmented discrete-time state-space equation is

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k),

where

A =

⎡

⎣

0.9851 −0.9934 0
0.0099 0.9950 0
0.9934 99.5021 1

⎤

⎦ ; B =

⎡

⎣

0.0099
0.0000
0.0050

⎤

⎦

C = [0 0 1].

Let us first look at the effect of the prediction horizon on the solution of
∆U . We assume that at sampling instant k = 10, the initial condition
of x(10) = [0.1 0.2 0.3]T . The solution of ∆U for Np = 20 is ∆U =
[−144.9984 − 65.4710 1.2037]T . By using the receding horizon control prin-
ciple, the state feedback control gain is Kmpc = [45.4168 705.6132 0.9513],
and the closed-loop eigenvalues are 0.6974, 0.8959 ± 0.1429j. However, the
solution of ∆U for Np = 200 is ∆U = [−645.5885 − 0.4664 629.0276]T .
In comparison with the previous case where the shorter prediction horizon
Np = 20 was used, the parameter vector ∆U has changed significantly. Again,
from using the receding horizon control principle, the state feedback control
gain is Kmpc = [80.6 3190 0.79] and the resultant closed-loop eigenvalues are
0.9749, 0.5207 ± j0.2919. This comparison study illustrated the existing sen-
sitivity in the design with respect to the choice of prediction horizon. Looking
closely, we will discover that the Hessian matrix

ΦT Φ + R̄

is a function of the prediction horizon. For example, for Np = 20

ΦT Φ =

⎡

⎣

9.8796 8.9387 8.0099
8.9387 8.1020 7.2737
8.0099 7.2737 6.5425

⎤

⎦ ,

with condition number κ(ΦT Φ + 0.5I) = 49.98. However, for Np = 200,

ΦT Φ =

⎡

⎣

236.0557 235.5010 234.5466
235.5010 235.3753 234.8473
234.5466 234.8473 234.7473

⎤

⎦ ,

with condition number κ(ΦT Φ + 0.5I) = 1410. The condition number of the
Hessian matrix has significantly increased as the prediction horizon Np in-
creased to 200. This large condition number of the Hessian matrix for a long
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prediction horizon results in the numerical sensitivity that causes the signifi-
cant difference between the short and long prediction horizon cases.

With short prediction and control horizons, the closed-loop predictive con-
trol system is not necessarily stable. Traditionally, these are the tuning para-
meters for closed-loop stability and performance. In Chapter 4, we will propose
an approach that uses large prediction and control horizons so as to guarantee
closed-loop stability.

1.4.2 MATLAB Tutorial: Implementation
of Receding Horizon Control

Tutorial 1.3. The objective of this tutorial is to learn how to implement a
predictive control system using receding horizon control. The plant state-space
model is given by

xm(k + 1) =

[
1 1
0 1

]

xm(k) +

[
0.5
1

]

u(k)

y(k) =
[
1 0

]
xm(k). (1.32)

Step by Step

1. Create a new file called reced.m
2. The first step is to define the plant, enter the values of prediction horizon

and control horizon. The plant is the double integrator system (1.32). Con-
trol horizon is selected to be Nc = 4 and prediction horizon is Np = 20.
Enter the following program into the file:

Ap=[1 1;0 1];

Bp=[0.5;1];

Cp=[1 0];

Dp=0;

Np=20;

Nc=4;

3. The program calls the function mpcgain.m to generate the necessary gain
matrices and specifies the initial conditions for implementation of receding
horizon control. The initial state variable for the plant is xm=0; and the
initial state feedback variable is Xf=0; set-point signal is specified and the
number of simulation points is specified as 100.

4. Continue entering the following program into the file:

[Phi_Phi,Phi_F,Phi_R,A_e, B_e,C_e]

= mpcgain(Ap,Bp,Cp,Nc,Np);

[n,n_in]=size(B_e);

xm=[0;0];

Xf=zeros(n,1);

N_sim=100;
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r=ones(N_sim,1);

u=0; % u(k-1) =0

y=0;

5. From the receding horizon control, at sample time kk, the ∆U vector is
calculated using the set-point signal r(kk) and the state vector Xf . Then,
∆u(kk) is taken as the first element of ∆U ; and u(kk) = u(kk−1)+∆u(k).
The weight factor is selected as 0.1.

6. Continue entering the following program into the file:

for kk=1:N_sim;

DeltaU=inv(Phi_Phi+0.1*eye(Nc,Nc))*(Phi_R*r(kk)-Phi_F*Xf);

deltau=DeltaU(1,1);

u=u+deltau;

u1(kk)=u;

y1(kk)=y;

7. The plant state and output are simulated using the control signal gener-
ated; the state variable used in the feedback mechanism is updated as Xf.

8. Continue entering the following program into the file:

xm_old=xm;

xm=Ap*xm+Bp*u;

y=Cp*xm;

Xf=[xm-xm_old;y];

end

9. The input and output signals are plotted against samples.
10. Continue entering the following program into the file:

k=0:(N_sim-1);

figure

subplot(211)

plot(k,y1)

xlabel(’Sampling Instant’)

legend(’Output’)

subplot(212)

plot(k,u1)

xlabel(’Sampling Instant’)

legend(’Control’)

11. Save the program in the same directory as the one that contains the func-
tion. Run the program.

12. Change the weight rw in the design to 2 and observe that the closed-loop
response speed is slower.

13. Create your own plant using different Ap, Bp and Cp, and experiment
with different prediction and control horizons.
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1.5 Predictive Control of MIMO Systems

In the previous section, for simplicity of illustration the predictive control
system was designed based on a single-input and single-output system. This
design methodology can be readily extended to multi-input and multi-output
systems without much additional effort, because of the state-space formula-
tion.

1.5.1 General Formulation of the Model

Assume that the plant has m inputs, q outputs and n1 states. We also assume
that the number of outputs is less than or equal to the number of inputs
(i.e., q ≤ m). If the number of outputs is greater than the number of inputs,
we cannot hope to control each of the measured outputs independently with
zero steady-state errors. In the general formulation of the predictive control
problem, we also take the plant noise and disturbance into consideration.

xm(k + 1) = Amxm(k) + Bmu(k) + Bdω(k) (1.33)

y(k) = Cmxm(k), (1.34)

where ω(k) is the input disturbance, assumed to be a sequence of integrated
white noise. This means that the input disturbance ω(k) is related to a zero-
mean, white noise sequence ǫ(k) by the difference equation

ω(k) − ω(k − 1) = ǫ(k). (1.35)

Note that from (1.33), the following difference equation is also true:

xm(k) = Amxm(k − 1) + Bmu(k − 1) + Bdω(k − 1). (1.36)

By defining ∆xm(k) = xm(k)− xm(k − 1) and ∆u(k) = u(k)− u(k− 1), then
subtracting (1.36) from (1.33) leads to

∆xm(k + 1) = Am∆xm(k) + Bm∆u(k) + Bdǫ(k). (1.37)

In order to relate the output y(k) to the state variable ∆xm(k), we deduce
that

∆y(k + 1) = Cm∆xm(k + 1) = CmAm∆xm(k) + CmBm∆u(k) + CmBdǫ(k),

where ∆y(k + 1) = y(k + 1) − y(k).
Choosing a new state variable vector x(k) = [∆xm(k)T y(k)T ]T , we have:

[
∆xm(k + 1)

y(k + 1)

]

=

[
Am oT

m

CmAm Iq×q

] [
∆xm(k)

y(k)

]

+

[
Bm

CmBm

]

∆u(k)

+

[
Bd

CmBd

]

ǫ(k)

y(k) =
[
om Iq×q

]
[

∆xm(k)
y(k)

]

, (1.38)
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where Iq×q is the identity matrix with dimensions q × q, which is the number
of outputs; and om is a q × n1 zero matrix. In (1.38), Am, Bm and Cm have
dimension n1 × n1, n1 × m and q × n1, respectively.

For notational simplicity, we denote (1.38) by

x(k + 1) = Ax(k) + B∆u(k) + Bǫǫ(k)

y(k) = Cx(k), (1.39)

where A, B and C are matrices corresponding to the forms given in (1.38).
In the following, the dimensionality of the augmented state-space equation is
taken to be n (= n1 + q).

There are two points that are worth investigating here. The first is related
to the eigenvalues of the augmented design model. The second point is related
to the realization of the state-space model. Both points will help us understand
the model.

Eigenvalues of the Augmented Model

Note that the characteristic polynomial equation of the augmented model is

ρ(λ) = det

[
λI − Am oT

m

−CmAm (λ − 1)Iq×q

]

= (λ − 1)q det(λI − Am) = 0 (1.40)

where we used the property that the determinant of a block lower triangular
matrix equals the product of the determinants of the matrices on the diagonal.
Hence, the eigenvalues of the augmented model are the union of the eigenvalues
of the plant model and the q eigenvalues, λ = 1. This means that there are
q integrators embedded into the augmented design model. This is the means
we use to obtain integral action for the MPC systems.

Controllability and Observability of the Augmented Model

Because the original plant model is augmented with integrators and the MPC
design is performed on the basis of the augmented state-space model, it is
important for control system design that the augmented model does not be-
come uncontrollable or unobservable, particularly with respect to the unstable
dynamics of the system. Controllability is a pre-requisite for the predictive
control system to achieve the desired closed-loop control performance and ob-
servability is a pre-requisite for a successful design of an observer. However,
the conditions may be relaxed to the requirement of stabilizability and de-
tectability, if only closed-loop stability is of concern.1 In this book, unless it is

1 A system is stabilizable if its uncontrollable modes, if any, are stable. Its control-
lable modes may be stable or unstable. A system is detectable, if its unobservable
modes, if any, are stable. Its observable modes may be stable or unstable. Stable
modes here means that the corresponding eigenvalues are strictly inside the unit
circle.
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specifically stated, we require the model to be both controllable and observ-
able in order to achieve desired closed-loop performance. An example is given
in Section 1.6 to illustrate the importance of observability for the design of
observer.

Because the augmented model introduced additional integral modes, we
need to examine under what conditions these additional modes become con-
trollable. The simplest way for the investigation is based on the assumption
of minimal realization of the plant model. The discussion of minimal realiza-
tion, controllability and observability can be found in control textbooks (for
example Kailath (1980), Bay (1999)).

Definition: A realization of transfer function G(z) is any state-space triplet
(A, B, C) such that G(z) = C(zI − A)−1B. If such a set (A, B, C) exists,
then G(z) is said to be realizable. A realization (A, B, C) is called a minimal
realization of a transfer function if no other realization of smaller dimension
of the triplet exists.
A minimal realization has the distinctive feature summarized in the theorem
below.

Theorem 1.1. A minimal realization is both controllable and observable
(Kailath, 1980, Bay, 1999).

With this background information, we aim to show conditions such that the
augmented model is both controllable and observable through the argument
of minimal realization.

Theorem 1.2. Assume that the plant model (Am, Bm, Cm) is both control-
lable and observable having the transfer function Gm(z) with minimal realiza-
tion, where

Gm(z) = Cm(zI − Am)−1Bm.

Then, the transfer function of augmented design model (1.39) has the repre-
sentation

G(z) =
z

z − 1
Gm(z), (1.41)

and is both controllable and observable if and only if the plant model Gm(z)
has no zero at z = 1.2

Proof. To prove that the augmented model is controllable and observable,
we need to show that (1.41) is true. After that, the results follow from the
minimal structure of the augmented model without pole-zero cancellation.

Note that for a given square matrix M with the block structure

M =

[
A11 0
A21 A22

]

,

2 The zeros of a MIMO transfer function are those values of z that make the matrix
Gm(z) lose rank.
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if A−1
11 and A−1

22 exist, then

M−1 =

[
A−1

11 0
−A−1

22 A21A
−1
11 A−1

22

]

. (1.42)

By applying the equality (1.42), we obtain

G(z) = C(zI − A)−1B, (1.43)

where

(zI − A)−1 =

[
(zIm − Am)−1 0

(1 − z−1)CmAm(zIm − Am)−1 (1 − z−1)Iq

]

.

By substituting the B and C matrices from (1.39), the transfer function of
the augmented model is obtained as (1.41). Under the assumption that the
plant model Gm(z) has no zero at z = 1 and has a minimal realization, the
transfer function of the augmented model has a minimal structure from (1.41),
therefore it is both controllable and observable.

For a single-input, single-output system, if one of the zeros of the transfer
function is at z = 1, then the augmented model is not controllable. For in-
stance, if

Gm(z) =
(z − 1)

(z − 0.6)(z − 0.8)
,

then there will be a pole-zero cancellation in G(z), which is

G(z) =
z

z − 1

(z − 1)

(z − 0.6)(z − 0.8)
.

In the single-input, single-output case, the steady-state gain of the plant model
is zero, and it does not permit integral control.

We emphasize that the number of inputs is greater than or equal to the
number of outputs (m ≥ q). When the number of inputs is less than the
number of outputs, the augmented integral modes may become uncontrollable.

When using MATLAB, minimal realization of a state-space model is
achieved through model-order reduction. For example, when a discrete-time
transfer function is

Gm(z) =
(z − 0.1)

(z − 0.1)(z − 0.9)
,

there is a pole-zero cancellation at z = 0.1. One of the realizations of the state-
space model based on Gm(z) using MATLAB function (tf2ss.m) has two state
variables with

Am =

[
1 −0.09
1 0

]

; Bm =

[
1
0

]

; Cm =
[
1 −0.1

]
.

This is not a minimal realization as the corresponding transfer function has
a pole-zero cancellation. To obtain a minimal state-space realization, the fol-
lowing MATLAB script is used for this simple illustrative example.
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numd=[1 -0.1];

dend=conv([1 -0.1],[1 -0.9]);

sys1=tf(numd,dend);

sys=ss(sys1,’min’);

[Am,Bm,Cm,Dm]=ssdata(sys);

The minimal realization through model-order reduction is

Am = 0.9; Bm = −0.9806; Cm = −1.0198,

which only has one state variable as we expected in a minimal realization for
this example.

1.5.2 Solution of Predictive Control for MIMO Systems

The extension of the predictive control solution is quite straightforward, and
we need to pay attention to the dimensions of the state, control and output
vectors in a mult-input, multi-output environment. Define the vectors Y and
∆U as

∆U =
[
∆u(ki)

T ∆u(ki + 1)T . . . ∆u(ki + Nc − 1)T
]T

Y =
[
y(ki + 1 | ki)

T y(ki + 2 | ki)
T y(ki + 3 | ki)

T . . . y(ki + Np | ki)
T

]T
.

Based on the state-space model (A, B, C), the future state variables are cal-
culated sequentially using the set of future control parameters

x(ki + 1 | ki) = Ax(ki) + B∆u(ki) + Bdǫ(ki)

x(ki + 2 | ki) = Ax(ki + 1 | ki) + B∆u(ki + 1) + Bdǫ(ki + 1 | ki)

= A2x(ki) + AB∆u(ki) + B∆u(ki + 1)

+ ABǫǫ(ki) + Bdǫ(ki + 1 | ki)

...

x(ki + Np | ki) = ANpx(ki) + ANp−1B∆u(ki) + ANp−2B∆u(ki + 1)

+ ANp−NcB∆u(ki + Nc − 1) + ANp−1Bdǫ(ki)

+ ANp−2Bdǫ(ki + 1 | ki) + . . . + Bdǫ(ki + Np − 1 | ki).

With the assumption that ǫ(k) is a zero-mean white noise sequence, the pre-
dicted value of ǫ(ki + i | ki) at future sample i is assumed to be zero. The
prediction of state variable and output variable is calculated as the expected
values of the respective variables, hence, the noise effect to the predicted val-
ues being zero. For notational simplicity, the expectation operator is omitted
without confusion.

Effectively, we have
Y = Fx(ki) + Φ∆U, (1.44)

where
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F =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

CA
CA2

CA3

...
CANp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
CANp−1B CANp−2B CANp−3B . . . CANp−NcB

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The incremental optimal control within one optimization window is given by

∆U = (ΦT Φ + R̄)−1(ΦT R̄sr(ki) − ΦT Fx(ki)), (1.45)

where matrix ΦT Φ has dimension mNc×mNc and ΦT F has dimension mNc×
n, and ΦT R̄s equals the last q columns of ΦT F . The weight matrix R̄ is a block
matrix with m blocks and has its dimension equal to the dimension of ΦT Φ.
The set-point signal is r(ki) = [r1(ki) r2(ki) . . . rq(ki)]

T as the q set-point
signals to the multi-output system.

Applying the receding horizon control principle, the first m elements in
∆U are taken to form the incremental optimal control:

∆u(ki) =

Nc
︷ ︸︸ ︷
[
Im om . . . om

]
(ΦT Φ + R̄)−1(ΦT R̄sr(ki) − ΦT Fx(ki))

= Kyr(ki) − Kmpcx(ki), (1.46)

where Im and om are, respectively, the identity and zero matrix with dimen-
sion m × m.

Further work on predictive control approaches to MIMO systems will be
presented in Chapter 3, where Laguerre functions will be used in the design.
In that chapter, MATLAB functions will be given for the design of MIMO
predictive control systems.

1.6 State Estimation

In the design of model predictive controllers, we assumed that the information
x(ki) is available at the time ki. This assumes that all the state variables
are measurable. In reality, with most applications, not all state variables are
measured (or available). Some of them may be impossible to measure. One
approach is to select the state variables corresponding to the input and output
using a special state-space realization (see Chapter 9) and the alternative
is to estimate the state variable x(k) from the process measurement. The
‘soft’ instrument used to estimate unknown state variables based on process
measurement, in a control engineering context, is called an observer. The
concept of an observer has been widely used in the science and engineering
fields. In addition, in a noisy environment, a state observer can also act like a
noise filter to reduce the effect of noise on the measurement. Our focus here
is to use an observer in the design of predictive control.
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1.6.1 Basic Ideas About an Observer

It would not be difficult to imagine that an observer is constructed based
on a mathematical model of the plant. For instance, we assume the plant
state-space model:

xm(k + 1) = Amxm(k) + Bmu(k). (1.47)

Then we can use this model to calculate the state variable x̂m(k), k = 1, 2, . . . ,
with an initial state condition x̂m(0) and input signal u(k) as

x̂m(k + 1) = Amx̂m(k) + Bmu(k). (1.48)

This approach, in fact, would work after some transient time, if the plant
model is stable and our guess of the initial condition is nearly correct. What
could be the problems with this type of approach? Basically, it is an open-loop
prediction. The error x̃m(k) = xm(k)− x̂m(k) satisfies the difference equation:

x̃m(k + 1) = Am(xm(k) − x̂m(k))

= Amx̃m(k). (1.49)

For a given initial error state x̃m(0) �= 0, we have

x̃m(k) = Ak
mx̃m(0). (1.50)

Two points are discussed here. If Am has all eigenvalues inside the unit circle,
then the error system (1.50) is stable and ||x̃m(k)|| → 0 as k → ∞, which
means that the estimated state variable x̂m(k) converges to xm(k). However,
if Am has one or more eigenvalues outside the unit circle, then the error
system (1.50) is unstable and ||x̃m(k)|| → ∞ as k → ∞, which means that
the prediction x̂m(k) does not converge to xm(k). If Am has one or more
eigenvalues on the unit circle, the error states ||x̃m(k)|| will not converge to
zero. The second point is that in the case of a stable plant model Am, we
have no ‘control’ on the convergence rate of the error ||x̃m(k)|| → 0, which is
dependent on the location of the plant poles. Namely, if the plant poles are
close to the origin of the complex plane, then the error converges at a fast
rate to zero; otherwise, the convergence rate could be slow.

The question is how to improve the estimate of xm(k). The solution is
to use a feedback principle where an error signal is deployed to improve the
estimation. The observer is constructed using the equation:

x̂m(k + 1) =

model
︷ ︸︸ ︷

Amx̂m(k) + Bmu(k)+

correction term
︷ ︸︸ ︷

Kob(y(k) − Cmx̂m(k)), (1.51)

where Kob is the observer gain matrix. In the observer form, the state variable
estimate x̂m(k+1) consists of two terms. The first term is the original model,
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and the second term is the correction term based on the error between the
measured output and the predicted output using the estimate x̂m(k).

To choose the observer gain Kob, we examine the closed-loop error equa-
tion. By substituting y(k) = Cmxm(k) into (1.51), with the definition of error
state x̃m(k) = xm(k) − x̂m(k), we obtain that

x̃m(k + 1) = Amx̃m(k) − KobCmx̃m(k)

= (Am − KobCm)x̃m(k). (1.52)

Now, with given initial error x̃m(0), we have

x̃m(k) = (Am − KobCm)kx̃m(0). (1.53)

Comparing the observer error response given by (1.53) with the open-loop
prediction (1.50), it is apparent that the observer gain Kob can be used to
manipulate the convergence rate of the error. If there is only a single output,
a commonly used approach is to place the closed-loop eigenvalues of the error
system matrix Am − KobCm at a desired location of the complex plane. The
following example shows how to select the observer gain Kob.

Example 1.7. The linearized equation of motion of a simple pendulum is

d2θ

dt2
+ ω2θ = u, (1.54)

where θ is the angle of the pendulum. Design an observer that reconstructs
the angle of the pendulum given measurements of dθ

dt . Assume ω = 2 rad/sec
and sampling interval ∆t = 0.1 (sec). The desired observer poles are chosen
to be 0.1 and 0.2. Compare the open-loop estimation with the observer-based
estimation.

Solution. Let x1(t) = θ and x2(t) = θ̇, using the motion equation (1.54), the
corresponding state-space model is

[
ẋ1(t)
ẋ2(t)

]

=

[
0 1

−ω2 0

] [
x1(t)
x2(t)

]

+

[
0
1

]

u(t)

y(t) =
[
0 1

]
[

x1(t)
x2(t)

]

. (1.55)

With ω = 2 rad/sec and sampling interval ∆t = 0.1 (sec), the corresponding
discrete-time state-space model is

[
x1(k + 1)
x2(k + 1)

]

=

[
0.9801 0.0993
−0.3973 0.9801

] [
x1(k)
x2(k)

]

+

[
0.0050
0.09930

]

u(k) (1.56)

y(k) =
[
0 1

]
[

x1(k)
x2(k)

]

. (1.57)
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To begin this study, we investigate what happens if the pendulum model alone
is used for the prediction of the angle θ(x1). Assume that the input signal
u(k) = 0 and the initial conditions of the state variables are θ(0) = x1(0) = 1
and θ̇(0) = x2(0) = 0. The trajectories of movement for both θ and θ̇ are
shown in Figure 1.4a. Both θ and θ̇ are sinusoidal signals. Now, suppose that
we take a guess at the initial conditions of the state variables as x̂1(0) = 0.3
and x̂2(0) = 0. By using the state-space model (1.48), the estimates of θ and
θ̇ are calculated and shown in comparison to the true trajectories (see Figure
1.4a). It is seen that the estimate of θ, denoted x̂1, is not close to the true
θ (see the top plot of Figure 1.4a). This study demonstrated that using the
model alone is not sufficient to predict the angle of the pendulum.

Let us design and implement an observer to predict the angle of the pen-
dulum. Assume that the observer gain Kob = [j1 j2]

T . The closed-loop char-
acteristic polynomial for the observer is

det(λI −
[

0.9801 0.0993− j1
−0.3973 0.9801− j2

]

)

= (λ − 0.9801)(λ + j2 − 0.9801)− 0.3973× (j1 − 0.0993),

which is made to be equal to the desired closed-loop characteristic polynomial
(λ − 0.1)(λ − 0.2). Namely,

(λ − 0.9801)(λ + j2 − 0.9801)− 0.3973× (j1 − 0.0993) = (λ − 0.1)(λ − 0.2).

Solution of the polynomial equation gives us the observer gain as j1 = −1.6284
and j2 = 1.6601. The estimation of angle is carried out using the observer
equation:

[
x̂1(k + 1)
x̂2(k + 1)

]

=

[
0.9801 0.0993
−0.3973 0.9801

] [
x̂1(k)
x̂2(k)

]

+ Kob(x2(k) − x̂2(k)), (1.58)

with initial condition x̂1(0) = 0.3 and x̂2(0) = 0. Figure 1.4b shows that the
estimated angle converges to the true angle in about three steps.

1.6.2 Basic Results About Observability

Definition of Observability

A state variable model of a dynamic system is said to be completely observable
if, for any sample time k0, there exists a sample time k1 > k0 such that a
knowledge of the output y(k) and input u(k) in the time interval k0 ≤ k ≤ k1

is sufficient to determine the initial state xm(k0) and as a consequence, xm(k),
for all k between k0 and k1. A necessary and sufficient condition for a linear
discrete-time system to be completely observable is, if the observability matrix
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(b) Estimation with observer

Fig. 1.4. Observer design and implementation

Lo =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Cm

CmAm

CmA2
m

...
CmAn−1

m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

has rank n, where n is the dimension of the state variable model.

Example 1.8. A DC motor can be described by a second-order model with an
integrator and one time constant (see Figure 1.5). The input is the voltage to
the motor and the output is the shaft position. The time constant is due to
the mechanical parts of the system. The dynamics due to the electrical parts
are neglected because they have small time constants.

� 1
s+1

U(s) � 1
s

�
X2(s)X1(s)

Fig. 1.5. Motor model

By choosing x1 as the angular velocity and x2 as the angular position of
the motor shaft, we obtain the continuous-time state-space equation:

[
ẋ1(t)
ẋ2(t)

]

=

[
−1 0
1 0

] [
x1(t)
x2(t)

]

+

[
1
0

]

u(t). (1.59)

Suppose that we take the measurement of rotational speed, leading to
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y(t) =
[
1 0

]
[

x1(t)
x2(t)

]

.

The model is discretized using a sampling interval ∆t = 0.1 to give
[

x1(k + 1)
x2(k + 1)

]

=

[
0.9048 0
0.0952 1

] [
x1(k)
x2(k)

]

+

[
0.0952
0.0048

]

u(k)

y(k) =
[
1 0

]
[

x1(k)
x2(k)

]

. (1.60)

Verify that the discrete-time model (1.60) is not observable, and as a conse-
quence, the closed-loop observer system has a pole at 1.

Solution. The open-loop system has eigenvalues at 0.9048 and 1. The ob-
servability matrix is

Lo =

[
Cm

CmAm

]

=

[
1 0

0.9048 0

]

,

where det(Lo) = 0. Thus, the pair (Cm, Am) is not observable. Let us inves-
tigate this example further to discover what happens when the system is not

observable. Assume that Kob =
[
j1 j2

]T
. Then the closed-loop observer error

system is:

x̃(k + 1) =

[[
0.9048 0
0.0952 1

]

−
[

j1
j2

]
[
1 0

]
]

x̃(k). (1.61)

Suppose that we put the desired eigenvalues of the observer system at 0.1 and
0.2.3 Then the closed-loop characteristic polynomial is:

det

[
λ − 0.9048 + j1 0

−0.0952 λ − 1

]

= (λ − 0.9048 + j1)(λ − 1). (1.62)

In the design of the observer, we let the actual closed-loop characteristic poly-
nomial equal the desired closed-loop characteristic polynomial, and solve for
the observer gain vector. In this case, we would let

(λ − 0.9048 + j1)(λ − 1) = (λ − 0.1)(λ − 0.2).

Note that the second pole at λ = 1 in (1.62) cannot be moved no matter
what choice we make for j2, simply because the closed-loop pole is indepen-
dent of the observer gain. This is the consequence of the pair (Cm, Am) being
unobservable. If the pole that cannot be changed using the observer is asymp-
totically stable, then the system is not observable, however, it is detectable.
In this particular example, the unobservable pole is on the unit circle, thus
the system is not even detectable. So, if we measure the angular speed of the
motor, then the angular position of the motor cannot be estimated accurately
from this measurement.
3 We also call the eigenvalues of the observer system as the closed-loop poles of the

observer.
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1.6.3 Kalman Filter

If the pair (Am, Cm) is observable, then for the single-output case, as we
discussed, a pole-assignment strategy can be used to determine Kob such that
the eigenvalues of the observer (i.e., of the matrix Am−KobCm) are at desired
locations. For a multi-output system, Kob can be calculated recursively using
a Kalman filter. Kalman filters are proposed in a stochastic setting. To this
end, we assume that

xm(k + 1) = Amxm(k) + Bmu(k) + d(k)

y(k) = Cmxm(k) + ξ(k), (1.63)

with the covariance matrix of d and ξ, respectively, defined by

E{d(k)d(τ)T } = Θδ(k − τ)

E{ξ(k)ξ(τ)T } = Γδ(k − τ),

where δ(k − τ) = 1, if k = τ and δ(k − τ) = 0 if k �= τ .
The optimal observer gain Kob is solved recursively for i = 0, 1, . . . , using

Kob(i) = AmP (i)CT
m(Γ + CmP (i)CT

m)−1, (1.64)

and

P (i + 1) = Am{P (i)− P (i)CT
m(Γ + CmP (i)CT

m)−1CmP (i)}AT
m + Θ. (1.65)

More specifically, P (0) satisfies

E{[x(0) − x̂(0)][x(0) − x̂(0)]T } = P (0).

Assuming that the system (Cm, Am) is detectable from the output y(k) (i.e.,
there are no unstable states whose response can not be ‘seen’ from the output)
and (Am, Θ1/2) is stabilizable, then, as k → ∞, the steady-state solutions of
(1.64) and (1.65) satisfy the discrete-time algebraic Riccati equation:

P (∞) = Am{P (∞) − P (∞)CT
m(Γ + CmP (∞)CT

m)−1CmPm(∞)}AT
m + Θ,

(1.66)
and

Kob(∞) = AmP (∞)CT
m(Γ + CmP (∞)CT

m)−1. (1.67)

Also, the eigenvalues of Am−Kob(∞)Cm are guaranteed to be inside the unit
circle (i.e. stable). To avoid confusion, it is emphasized that the iterative so-
lution of the Riccati equation (1.65) is not required in real time. The observer
gain is calculated off-line for predictive control applications.

Kalman filters can be found in the textbooks (see for example, Anderson
and Moore, 1979, Grimble and Johnson 1988b, Goodwin, et al., 2000).
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1.6.4 Tuning Observer Dynamics

It is often the case that the covariance matrices Θ and Γ , corresponding to
the characteristics of the disturbances, are unknown. Thus, in practice, we
choose Θ, Γ and an initial P (0) to calculate an observer gain Kob by solving
the Riccati equation iteratively until the solution converges to a constant
matrix. Then, the closed-loop system obtained is analyzed with respect to the
location of eigenvalues contained in Am − KobCm, the transient response of
the observer, robustness and effect of noise on the response. The elements of
the covariance matrices are modified until a desired result is obtained. Such
a trial-and-error procedure can be time consuming and frustrating, and is
one of the challenges we face when using Kalman-filter-based multivariable
system design. In some circumstances, however, it is possible to specify a
region in which the closed-loop observer error system poles should reside and
to enforce this in the solution. We propose a simple approach, along similar
lines to the classic approach in Anderson and Moore (1979), in which the
closed-loop observer poles are assigned inside a circle with a pre-specified
radius α (0 < α < 1). The procedure is summarized as follows. Let the error
of the estimated state x̃(k) = x(k)− x̂(k). Then the observer error system is:

x̃(k + 1) = (Am − KobCm)x̃(k). (1.68)

We perform the transformation Âm = Am

α and Ĉm = Cm

α where 0 < α < 1,
leading to a transformed system:

x̃t(k + 1) =
1

α
(Am − K̂obCm)x̃t(k) = (Âm − K̂obĈm)x̃t(k). (1.69)

Solving the iterative equations (1.64) and (1.65), or the steady-state Riccati
equation (1.66) by using Âm and Ĉm to replace Am and Cm matrices, and then
the eigenvalues of Âm−K̂ob(∞)Ĉm are guaranteed to be inside the unit circle
(i.e., stable). The resultant observer gain K̂ob is then applied to the original
observer system (1.68), leading to the closed-loop characteristic equation:

det(zI − (Am − K̂obCm)) = det(zI − (Âm − K̂obĈm) × α) = 0. (1.70)

Therefore, we conclude that the eigenvalues of (Am − K̂obCm) are equal to
the eigenvalues of Âm − K̂obĈm multiplied by the factor α, which guarantees
that the eigenvalues of the observer error system with K̂ob reside inside the
circle of radius α. This procedure makes a direct connection to the observer
dynamics via the choice of α. The trial-and-error procedure can be reduced
to choose a suitable α along with Θ and Γ to achieve the desired closed-loop
performance.

1.7 State Estimate Predictive Control

In the implementation of predictive control, an observer is used for the cases
where the state variable x(ki) at time ki is not measurable. Essentially, the
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state variable x(ki) is estimated via an observer of the form:

x̂(ki + 1) = Ax̂(ki) + B∆u(ki) + Kob(y(ki) − Cx̂(ki)). (1.71)

Note that in the implementation of predictive control using an observer, the
control signal is ∆u(ki) and the matrices (A, B, C) come from the augmented
model used for the predictive control design. With the information of x̂(ki)
replacing x(ki), the predictive control law is then modified to find ∆U by
minimizing

J = (Rs − F x̂(ki))
T (R̄sr(ki) − F x̂(ki)) − 2∆UT ΦT (Rs − F x̂(ki))

+ ∆UT (ΦT Φ + R̄)∆U, (1.72)

where R̄s, F , Φ , R̄ and ∆U were defined in (1.44 and 1.45).
The optimal solution ∆U is obtained as,

∆U = (ΦT Φ + R̄)−1ΦT (Rs − F x̂(ki)). (1.73)

Furthermore, application of the receding horizon control principle leads to the
optimal solution of ∆u(ki) at time ki:

∆u(ki) = Kyr(ki) − Kmpcx̂(ki), (1.74)

which is a standard state feedback control law with estimated x(ki). The
closed-loop state feedback structure is illustrated in Figure 1.6.

What about the closed-loop characteristic equation, and hence the eigen-
values of the closed-loop system? To investigate these issues, we form the
closed-loop state-space equation as below:

x(k + 1) = Ax(k) + B∆u(k)

= Ax(k) + BKyr(k) − BKmpcx̂(k), (1.75)

where we substituted ∆u(k) with (1.74). Note that the closed-loop observer
error equation is:

x̃(k + 1) = (A − KobC)x̃(k), (1.76)

where x̃(k) = x(k) − x̂(k). Replacing x̂(k) by x(k) − x̃(k), (1.75) is rewritten
as,

x(k + 1) = (A − BKmpc)x(k) − BKmpcx̃(k) + BKyr(k). (1.77)

Combination of (1.76) with (1.77) leads to:

[
x̃(k + 1)
x(k + 1)

]

=

[
A − KobC on×n

−BKmpc A − BKmpc

] [
x̃(k)
x(k)

]

+

[
on×m

BKy

]

r(k), (1.78)

where on×n is a n × n zero matrix and on×m is a n × m zero matrix. The
characteristic equation of the closed-loop state-space system is determined by
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Fig. 1.6. Block diagram of DMPC with observer

det

[

λI −
[

A − KobC on×n

−BKmpc A − BKmpc

]]

= 0,

which is equivalent to

det(λI − (A − KobC)) det(λI − (A − BKmpc)) = 0,

because the system matrix in (1.78) has a lower block triangular structure.
This effectively means that the closed-loop model predictive control system
with state estimate has two independent characteristic equations

det(λI − (A − KobC)) = 0 (1.79)

det(λI − (A − BKmpc)) = 0. (1.80)

Since the closed-loop eigenvalues are the solutions of the characteristic equa-
tions, (1.79) and (1.80) indicate that the set of eigenvalues of the com-
bined closed-loop system consists of predictive control-loop eigenvalues and
observer-loop eigenvalues. This means that the design of the predictive con-
trol law and the observer can be carried out independently (or separately), yet
when they are put together in this way, the eigenvalues remain unchanged.

Example 1.9. The augmented model for a double integrated plant (see Exam-
ple 1.1) is given by

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k), (1.81)
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where A =

⎡

⎣

1 1 0
0 1 0
1 1 1

⎤

⎦ ; B =

⎡

⎣

0.5
1

0.5

⎤

⎦ ; C =
[
0 0 1

]
.

We will design a state estimate predictive control system and simulate the
closed-loop response for a set-point change. The design specifications are
Nc = 5, Np = 30, the weight on the control signal is rw = 10. The ob-
server is designed using the pole-assignment method where the closed-loop
observer poles are 0.01, 0.0105, 0.011, corresponding to a fast dynamic re-
sponse speed from the observer.

Solution. The open-loop plant has three eigenvalues at 1 where two of these
were from the double-integrated plant and one from the predictive controller
structure. We use the MATLAB command ‘place’ and write a few lines of
MATLAB program to produce the observer gain vector Kob.

Pole=[0.01 0.0105 0.011];

K_ob=place(A’,C’,Pole)’;

where A
′

, C
′

are the transposed matrices AT and CT . The transposes are
needed because the MATLAB program ‘place’ was written for controller de-
sign. By using this program, we have used the dual relationship between con-
troller and observer. The resultant observer gain is

Kob = [1.9685 0.9688 2.9685]T .

With this set of performance parameters specified, the state feedback con-
trol gain is Kmpc = [0.8984 1.3521 0.4039], which effectively yields a set of
closed-loop eigenvalues at 0.3172 ± j0.4089 and 0.3624. Figure 1.7 shows the
closed-loop response for a step set-point change. It is seen that the closed-loop
output response follows the set-point change, and the control signal converges
to zero as the plant has integrators.

1.8 Summary

This chapter has discussed the basic ideas about discrete-time model predic-
tive control. The key terms are: moving horizon window, prediction horizon
and control horizon. With the current plant information represented by the
state variable vector x(ki), the prediction of the future behaviour of the plant
output relies on the state-space model where the optimal control trajectory is
captured by the set of parameters that define the incremental control move-
ment as: ∆u(ki), ∆u(ki + 1), . . ., ∆u(ki + Nc − 1). Within the optimization
window, the objective of the control system is expressed in terms of the er-
ror function between the desired set-point signal and the predicted output
signal. With a specific choice of an error function as the measurement of the
objective, an optimal solution is obtained for the set of incremental control
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movement: ∆u(ki), ∆u(ki + 1), . . ., ∆u(ki + Nc − 1). Although the optimal
control trajectory is calculated for Nc future samples, the implementation of
the predictive control uses only the first sample, ∆u(ki) while ignoring the
rest of the trajectory. The optimization procedure repeats itself when the next
sample period arrives. This is based on the receding horizon control principle,
where feedback is naturally incorporated in the control system design.

The design model used here is an augmented plant model with embedded
integrator(s). By doing so, the control signal to be optimized is the sequence
of ∆u(ki + m), m = 0, 1, 2, . . ., instead of the sequence of the control signal
u(ki + m). An integrator is naturally embedded into the design, leading to
the predictive control system tracking constant references and rejecting con-
stant disturbances without steady-state errors. Another significant advantage
of this approach is that in implementation, it neither requires the steady-state
information about the control (u(k) = u(k − 1) + ∆u(k)) nor the information
about the steady state of the state variable xm (∆xm at steady state is zero).
This simplified information requirement becomes more important for a plant
having many inputs and many outputs. Because of this formulation of embed-
ding integrators in the design, the model used for prediction has at least one
eigenvalue on the unit circle. As a result, it inherits a numerical instability
problem when the prediction horizon Np becomes large. Stability cannot be
guaranteed with a small prediction horizon and control horizon parameters,
although it can be checked. Parameters Np and Nc are used as tuning pa-
rameters. With some small modifications, as shown in the later chapters of
this book (see Chapter 4), this numerical problem is overcome and stability
is guaranteed.

There are several major reviews published for MPC that clarify the economic
benefits of this class of control algorithms when applied to process industry
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(Garcia et al., 1989, Richalet, 1993, Qin and Badgwell, 1996, Morari and Lee,
1999, Mayne et al., 2000). There are also several excellent tutorial papers
published in the area of model predictive control (Ricker, 1991, Shah, 1995,
Rawlings, 2000, Allgower et al., 1999). Books about predictive control include
‘Adaptive Optimal Control the thinking man’s GPC’ by Bitmead et al., in
1990, ‘Predictive Control’ by Camacho and Bordons in 2004, ‘Predictive Con-
trol with Constraints’ by Maciejowski in 2002, and ‘Model-based Predictive
Control, a Practical Approach’ by Rossiter in 2003. There is also a book about
receding horizon control by Kwon and Han published in 2005.

Problems

1.1. Draw a road map for the contents of this chapter. List the key equations
and key concepts at the corresponding locations.

1.2. Imagine yourself as a driver who is trying to steer a vehicle at a bend.
Describe your activity in terms of a predictive control system.

1.3. Assume a discrete-time system with input u(k) and output y(k). The
system has a constant input disturbance d. Find the augmented state-space
model with input ∆u(k) and output y(k) for the plant model given as below:

xm(k + 1) = Amxm(k) + Bmu(k) + Bdd; y(k) = Cmxm(k) (1.82)

where Am =

⎡

⎣

1 0.5 0
0 1 −0.1
0 0 0.8

⎤

⎦ ; Bm =

⎡

⎣

0.5
1

−0.6

⎤

⎦ ; Cm =
[
1 0 1

]
; Bd =

⎡

⎣

1
0
0

⎤

⎦ .

1. Calculate the plant transfer function that relates the input u(k) to the
output y(k), and the transfer function of the augmented state-space model
that relates the input ∆u(k) to the output y(k).

2. Compare the poles and zeros of these transfer functions.

1.4. Assume that the augmented mathematical model for a discrete-time sys-
tem is given by

x(k + 1) = Ax(k) + B∆u(k); y(k) = Cx(k), (1.83)

where A =

[
0.6 0
0.6 1

]

; B =

[
0.3
0.3

]

; C =
[
0 1

]
.

1. At time ki = 0, assuming control horizon Nc = 4, Np = 10 and the initial
state variable x(0) = [0.1 0.2]T , express the predicted output

y(ki + 1 | ki), y(yi + 2 | ki), . . . , y(ki + Np | ki)

in terms of ∆U where

∆U = [∆u(ki) ∆u(ki + 1) ∆u(ki + 2) ∆u(ki + 3)]T .
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2. With the set-point signal r(ki) = 0, find the optimal control ∆U that
minimizes the cost function:

J = Y T Y + ∆UT R̄∆U,

where R̄ is a diagonal matrix (R̄ = rwI, rw = 3 and I is 4 × 4 identity
matrix). What is the minimum of the cost function, Jmin?

3. Reduce rw to 0, and observe the changes to the optimal control ∆U .
4. Compare the value of Jmin for the case of rw = 0 with the value from the

previous case when rw = 3.

1.5. A first-order model is often used to describe the dynamics of a liquid
vessel, where the input to the system is the flow rate and the output is the
fluid level (see Figure 1.8). Assume that a discrete-time first-order transfer

Fig. 1.8. Schematic diagram for a single tank

function is obtained for a fluid system, leading to the relationship between
the input and output:

Y (z) =
0.01

z − 0.6
U(z)

1. Choosing xm(k) = h(k) = y(k), convert the transfer function model to
a state-space model, and design a model predictive control system that
will maintain the liquid level at a desired reference position r(k) = 0.5.
The design parameters for the predictive control system are specified as
Nc = 4, Np = 16, R̄ = I.

2. With initial condition x(0) = [0 0]T , simulate the closed-loop predictive
control system using receding horizon control. (Hint: the state variables
are x1(k) = y(k) − y(k − 1) and x2(k) = y(k). Both are measurable.)
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1.6. Time delay in a discrete-time system appears as part of the denomina-
tor of the transfer function. Hence the number of delays will increase the
dimensionality of the state-space model. Assume that a discrete-time system
is described by the z transfer function

G(z) =
0.1z−5

1 − 1.4z−1 + 0.48z−2
.

This is a time-delay system. An alternative representation of this transfer
function is

G(z) =
0.1

z3(z2 − 1.4z + 0.48)
,

indicating that the system is of fifth order (the number of poles determines
the model order). A state-space model for this transfer function is

xm(k + 1) = Amxm(k) + Bmu(k); y(k) = Cmxm(k) (1.84)

where Am =

⎡

⎢
⎢
⎢
⎢
⎣

1.4 −0.48 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

; Bm =

⎡

⎢
⎢
⎢
⎢
⎣

1
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎦

; Cm =
[
0 0 0 0 0.1

]
.

1. Design a predictive control system that will track a unit step reference
signal. It takes about 20 samples for the step response of this system to
reach steady state. Assuming that the closed-loop response will be faster
than the open-loop response, choose the prediction horizon Np = 16 and
the control horizon Nc = 4. The choice of weight matrix R̄ could interact
with the choices of Np and Nc. Here, select R̄ = rwI with rw = 0.01. For
a larger diagonal element rw in R̄, the prediction horizon may be larger.

2. With the selection of design parameters, following the Tutorial 1.2, calcu-
late the feedback gain of the predictive control system and the closed-loop
eigenvalues.

3. With zero initial condition at x(0) and a unit step input signal at time
k = 0, simulate the closed-loop response by following the Tutorial 1.3.

1.7. A discrete-time signal f0(k) = β(k − 10)2 is corrupted by white noise
ǫ(k), where β is unknown. Design an observer that will estimate the unknown
coefficient β from the noisy measurement f(k) = f0(k) + ǫ(k). The closed-
loop poles of the observer are placed at 0.1, 0.15, 0.2. (Hint: choose x1(k) =
β(k − 10)2; x2(k) = β(k − 10); x3(k) = β.)

1.8. A severely under-damped mechanical system is described by the continuous-
time transfer function model G(s), where

G(s) =
0.1

s2 + 2ξω0s + ω2
0

with the damping coefficient ξ = 0.001 and ω0 = 1.
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1. Discretize the continuous-time transfer function using sampling interval
∆t = 0.5 to obtain the discrete-time transfer function.

2. Design a predictive control system with observer for rejecting constant
input disturbance and following a step set-point change with zero steady-
state error. Because the open-loop system is severely under-damped, large
prediction horizon and control horizon are required to achieve desired
performance. Choose the prediction horizon Np = 60 and the control
horizon Nc = 20. The weight matrix R̄ = rwI with rw = 0.1. The observer
poles are placed at 0.1, 0.2, 0.3.

3. Simulate the closed-loop performance with a unit step input set-point
signal at k = 0 and a unit step input disturbance entering the system at
k = 100.

1.9. Robustness of a predictive control system against plant unmodelled dy-
namics is a very important aspect of the design. Without changing the predic-
tive control system, introduce a time-delay of 3 samples to the plant transfer
function G(z) in Problem 1.8. Simulate the closed-loop performance with the
identical conditions. Is the closed-loop predictive control system stable? If not,
go back to the original Problem 1.8 and increase rw in the weight matrix until
the closed-loop system is stable. Analyze your observations.

1.10. Verify that the state-space model of a DC motor is observable when the
position of the motor shaft is taken as the measurement and the state-space
equation is

[
x1(k + 1)
x2(k + 1)

]

=

[
0.9048 0
0.0952 1

] [
x1(k)
x2(k)

]

+

[
0.0952
0.0048

]

u(k)

y(k) =
[
0 1

]
[

x1(k)
x2(k)

]

, (1.85)

where x1 is the velocity and x2 is the position of the motor shaft.

1. Augment the discrete-time plant model with an integrator, and check
controllability and observability of the augmented model.

2. Choosing Np = 10, Nc = 4, and R̄ = 0.1I, calculate the gain matrices
Ky and Kmpc for the predictive control system. Where are the closed-loop
eigenvalues?

3. Design an observer, positioning the closed-loop observer poles at 0.1, 0.2
and 0.3.

4. Simulate the state estimate predictive control system, using the set-point
signal r(k) = 2 for all k. Now, create an input voltage drop by adding
a constant d = −0.5 to the control signal at k = 20, and simulate how
the predictive control system rejects the disturbance and maintains the
output at set-point r = 2.
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Discrete-time MPC with Constraints

2.1 Introduction

This chapter discusses discrete-time model predictive control with constraints.
The chapter begins with a motivational example to illustrate how the perfor-
mance of a control system can deteriorate significantly when the control signals
from the original design meet with operational constraints. The example also
shows that with a small modification, the degree of performance deterioration
can be reduced if the constraints are incorporated in the implementation,
leading to the idea of constrained control. Then, the chapter reveals how to
formulate the constrained control problem in the context of predictive con-
trol, which essentially becomes a quadratic programming problem. Assuming
that most readers have not studied quadratic programming before, a section
is devoted to introducing the fundamentals of quadratic programming and
presenting the solutions with simple and effective numerical algorithms. The
final section of this chapter shows several examples of constrained control
problems.

2.2 Motivational Examples

Before we begin our study on constrained control, let us look at an example
where the control system operates with and without control signal saturation
limits.

Example 2.1. A mathematical model for an undamped oscillator is given by

[
ẋ1(t)
ẋ2(t)

]

=

[
0 1
−4 0

] [
x1(t)
x2(t)

]

+

[
1
0

]

u(t)

y(t) =
[
0 1

]
[

x1(t)
x2(t)

]

. (2.1)
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With sampling interval ∆t = 0.1, the corresponding discrete-time state-space
model is

[
x1(k + 1)
x2(k + 1)

]

=

[
0.9801 0.0993
−0.3973 0.9801

] [
x1(k)
x2(k)

]

+

[
0.0993
−0.0199

]

u(k) (2.2)

y(k) =
[
0 1

]
[

x1(k)
x2(k)

]

. (2.3)

Suppose that the design objective is to design the predictive control system
such that the output of the plant has to track a unit step reference signal as
fast as possible. To this end, we select the prediction horizon Np = 10 and
the control horizon Nc = 3. There is no weight on the control signal, i.e.,
R̄ = 0. Examine what happens if the control amplitude is limited to ±25 by
saturation.

Solution. The data matrices in the predictive control system are

ΦT Φ =

⎡

⎣

6.0067 4.8853 3.8150
4.8853 4.0013 3.1475
3.8150 3.1475 2.4952

⎤

⎦ ; ΦT F =

⎡

⎣

65.5285 −25.2099 −6.1768
53.1281 −19.6709 −4.7606
41.3553 −14.6974 −3.5334

⎤

⎦

ΦT R̄s =

⎡

⎣

−6.1768
−4.7606
−3.5334

⎤

⎦ .

The state feedback gain matrix is

Kmpc =
[
17.9064 −39.0664 −29.9659

]
.

The closed-loop eigenvalues are at −0.1946, 0, 0. An observer is designed with
poles positioned at 0, 0, 0. In the following, we look at two cases: without
control saturation; and with control signal saturation.

Case A. Without control saturation

The closed-loop response is illustrated in Figure 2.1a. It is seen that the output
converges to the set-point signal after 4 samples. Indeed, the design objective
has been achieved. If the control amplitude is of concern, then we note that
this optimal control has a large amplitude that is close to 40 at its maximum.

Case B. With control saturation

Assume that the control amplitude has limits at ±25 due to operational con-
straint, namely, −25 ≤ u(k) ≤ 25. Then, this limit prevents the control signal
from being implemented to the plant when its amplitude exceeds this limit.
Thus, u(k) = 25, if u(k) > 25; and u(k) = −25 if u(k) < −25. When this
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(a) Closed-loop response without con-
straint
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(b) Closed-loop control with saturation

Fig. 2.1. Comparison of responses with and without constraints

happens, the closed-loop performance significantly deteriorates, as shown in
Figure 2.1b. The figure shows that when the control signal comes out of the
saturation after two sample periods, it becomes oscillatory, and as a result,
the plant output has a significant over-shoot.

This example illustrated that if we do not pay attention to the saturation
of the control, then in the presence of constraints, the closed-loop control
performance could severely deteriorate. From this example, it is obvious that
it is important to find a way to deal with the problem when the control signal
becomes saturated. The next example shows that a small modification in the
predictive control law will enable the system to handle the constraint without
significant performance deterioration.

Example 2.2. A common practice in dealing with saturation is to let the model
know the difference in ∆u(k) when saturation becomes effective. Continue
with Example 2.1 with a modification of the control calculation where the
difference of the control signal ∆u(k) is taken into consideration in the pres-
ence of the constraint.

Solution. The small modification is to calculate ∆u(ki) in the following way.
If the calculated control u(ki) > 25, then

u(ki) = 25 and

∆u(ki) = 25 − u(ki − 1). (2.4)

If the calculated control u(ki) < −25, then

u(ki) = −25 and

∆u(ki) = −25 − u(ki − 1). (2.5)

This new ∆u(ki) is used in the observer to predict the next sample of state
variable x̂(ki + 1):
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(a) Saturation with modification
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Fig. 2.2. Comparison of results when constraints are present

x̂(ki + 1) = Ax̂(ki) + B∆u(ki) + Kob(y(ki) − Cx̂(ki)). (2.6)

The calculation is performed for all sample points. This small modification
results in a significant change in the control system performance. Figure 2.2a
shows the improvement of the control system in the presence of activated
constraint. What we notice is that the control signal comes out of saturation
without oscillation. As a result, the over-shoot in the closed-loop response
(as shown in Figure 2.2b of Example 2.1) is significantly reduced. For com-
parison purpose, the output responses are presented in Figure 2.2b for three
different cases, where Case A is the output response without saturation (solid
line); Case B is the output response with saturation (dotted); and Case C
is the output response with modified control saturation (dotted+solid). The
improvement on closed-loop performance with this modified saturation is fur-
ther illustrated by the comparative data in Table 2.1. As we will learn later
in the chapter, this solution is in fact the optimal solution in the context of
predictive control with amplitude constraint for a single-input, single-output
system.

There are several issues to note from these examples. The saturation on the
control signal can make the control system performance deteriorate signifi-

Table 2.1. Comparison of performance parameters. Predictive control system with
saturation and predictive control system with modified saturation

With control saturation With modified control saturation

ymax 2.01 1.25

Over-shoot(%) 100 25

No. Samples to settling 11 6

umax 25 25

umin −25 −25
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cantly. The modification to overcome control saturation effects is to calculate
the value ∆u(k) when the saturation is reached, and use this information
to modify the predicted state variables. Because it was a single-input, single-
output system and only two constraints were imposed, this small modification
was feasible. However, for a multi-input, multi-output system, the limits of
the system operation appear in many forms, such as the limits on each control
signal and its difference ∆u(k), as well as on the state variables and output
variables. It is a much more complex task to work out the individual satura-
tion limits in a co-ordinated manner. Even if we could do this, the solution
still would not guarantee the optimal performance of the multi-input, multi-
output system. It is on these grounds that we propose a constrained control
framework using the model predictive control system. The strength of the
approach lies in the optimality that it achieves in a systematic manner, and
the flexibility/generality to cope with a multi-input, multi-out system with
various constraints. Perhaps above all, this simplicity in concept is readily
accepted by application engineers.

2.3 Formulation of Constrained Control Problems

The core idea in Example 2.2 was to modify ∆u(k) to suit the situation
when the constraint became activated. In the context of predictive control,
this problem is handled systematically by using optimization. To this end, we
need to formulate the predictive control problem as an optimization problem
that takes into account the constraints present.

This section discusses the operational constraints that are frequently en-
countered in the design of control systems. These operational constraints are
presented as linear inequalities of the control and plant variables.

2.3.1 Frequently Used Operational Constraints

There are three major types of constraints frequently encountered in appli-
cations. The first two types deal with constraints imposed on the control
variables u(k), and the third type of constraint deals with output y(k) or
state variable x(k) constraints. For clarity, we will discuss single-input, single-
output systems first and subsequently extend the cases to multi-input, multi-
output systems.

Constraints on the Control Variable Incremental Variation

These are hard constraints on the size of the control signal movements, i.e.,
on the rate of change of the control variables (∆u(k)). Suppose that for a
single-input system, the upper limit is ∆umax and the lower limit is ∆umin.
The constraints are specified in the form
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∆umin ≤ ∆u(k) ≤ ∆umax. (2.7)

Note that we use less than plus equal to in (2.7), where the equality will play
the critical role in the solution of the constrained control problem (see later
sections).

The rate of change constraints can be used to impose directional movement
constraints on the control variables; for instance, if u(k) can only increase,
not decrease, then possibly, we select 0 ≤ ∆u(k) ≤ ∆umax. The constraint
on ∆u(k) can be used to cope with the cases where the rate of change of
the control amplitude is restricted or limited in value. For example, in a con-
trol system implementation, assuming that the control variable u(k) is only
permitted to increase or decrease in a magnitude less 0.1 unit, then the oper-
ational constraint is

−0.1 ≤ ∆u(k) ≤ 0.1.

Constraints on the Amplitude of the Control Variable

These are the most commonly encountered constraints among all constraint
types. For instance, we cannot expect a valve to open more than 100 per-
cent nor a voltage to go beyond a given range. These are the physical hard
constraints on the system. Simply, we demand that

umin ≤ u(k) ≤ umax.

Here, we need to pay particular attention to the fact that u(k) is an incre-
mental variable, not the actual physical variable. The actual physical control
variable equals the incremental variable u plus its steady-state value uss. A
common mistake is to mix these two. For instance, if a valve is allowed to open
in the range between 15% and 80% and the valve’s normal operating value is
at 30%, then umin = 15% − 30% = −15% and umax = 80%− 30% = 50%.

Output Constraints

We can also specify the operating range for the plant output. For instance,
supposing that the output y(k) has an upper limit ymax and a lower limit
ymin, then the output constraints are specified as

ymin ≤ y(k) ≤ ymax. (2.8)

Output constraints are often implemented as ‘soft’ constraints in the way that
a slack variable sv > 0 is added to the constraints, forming

ymin − sv ≤ y(k) ≤ ymax + sv. (2.9)

There is a primary reason why we use a slack variable to form ‘soft’ con-
straints for output. Output constraints often cause large changes in both the
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control and incremental control variables when they are enforced (we term
them become active in the later sections). When that happens, the control or
incremental control variables can violate their own constraints and the prob-
lem of constraint conflict occurs. In the situations where the constraints on
the control variables are more essential to plant operation, the output con-
straints are often relaxed by selecting a larger slack variable sv to resolve the
conflict problem.

Similarly, we can impose constraints on the state variables if they are
measurable or impose the constraints on observer state variables. They also
need to be in the form of ‘soft’ constraints for the same reasons as the output
case above.

Constraints in a Multi-input and Multi-output Setting

If there is more than one input, then the constraints are specified for each
input independently. In the multi-input case, suppose that the constraints are
given for the upper limits as

[
∆umax

1 ∆umax
2 . . . ∆umax

m

]
,

and lower limits as
[
∆umin

1 ∆umin
2 . . . ∆umin

m

]
.

Each variable with rate of change is specified as

∆umin
1 ≤ ∆u1(k) ≤ ∆umax

1

∆umin
2 ≤ ∆u2(k) ≤ ∆umax

2

...

∆umin
m ≤ ∆um(k) ≤ ∆umax

m . (2.10)

Similarly, suppose that the constraints are given for the upper limit of the
control signal as

[
umax

1 umax
2 . . . umax

m

]
,

and lower limit as
[
umin

1 umin
2 . . . umin

m

]
.

Then, the amplitude of each control signal is required to satisfy the con-
straints:

umin
1 ≤ u1(k) ≤ umax

1

umin
2 ≤ u2(k) ≤ umax

2

...

umin
m ≤ um(k) ≤ umax

m . (2.11)

Similarly, constraints are specified for each output and state variable if they
are required. In short, the constraints for a multi-input and multi-output
system are specified for each input and output independently.
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2.3.2 Constraints as Part of the Optimal Solution

Having formulated the constraints as part of the design requirements, the
next step is to translate them into linear inequalities, and relate them to the
original model predictive control problem. The key here is to parameterize the
constrained variables using the same parameter vector ∆U as the ones used
in the design of predictive control. Therefore, the constraints are expressed
in a set of linear equations based on the parameter vector ∆U . The vector
∆U is often called the decision variable in optimization literature. Since the
predictive control problem is formulated and solved in the framework of re-
ceding horizon control, the constraints are taken into consideration for each
moving horizon window. This allows us to vary the constraints at the begin-
ning of each optimization window, and also gives us the means to tackle the
constrained control problem numerically. Based on this idea, if we want to
impose the constraints on the rate of change of the control signal ∆u(k) at
time ki, the constraints at sample time ki are expressed as

∆umin ≤ ∆u(ki) ≤ ∆umax.

From the time instance ki, the predictive control scheme looks into the future.
The constraints at future samples, for example on the first three samples,
∆u(ki),∆u(ki + 1), ∆u(ki + 2) are imposed as

∆umin ≤ ∆u(ki) ≤ ∆umax

∆umin ≤ ∆u(ki + 1) ≤ ∆umax

∆umin ≤ ∆u(ki + 2) ≤ ∆umax.

In principle, all the constraints are defined within the prediction horizon.
However, in order to reduce the computational load, we sometimes choose a
smaller set of sampling instants at which to impose the constraints, instead
of all the future samples. The following example shows how to express the
constraints from the design specification in terms of a function of ∆U .

Example 2.3. In the motor control system, suppose that the input voltage
variation is limited to 2 V and 6 V. The steady state of the control signal is at
4 V. Assuming that the control horizon is selected to be Nc = 4, express the
constraint on ∆u(ki) and ∆u(ki + 1) in terms of ∆U for the first two sample
times.

Solution. The parameter vector to be optimized in the predictive control

system at time ki is ∆U =
[
∆u(ki) ∆u(ki + 1) ∆u(ki + 2) ∆u(ki + 3)

]T
.

Note that

u(ki) = u(ki − 1) + ∆u(ki) = u(ki − 1) +
[
1 0 0 0

]
∆U (2.12)

u(ki + 1) = u(ki) + ∆u(ki + 1) = u(ki − 1) + ∆u(ki) + ∆u(ki + 1)

= u(ki − 1) +
[
1 1 0 0

]
∆U. (2.13)
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With the limits on the control variables, by subtracting the steady-state value
of the control, as umin = 2 − 4 = −2 and umax = 6 − 4 = 2, the constraints
are expressed as

[
−2
−2

]

≤
[

1
1

]

u(ki − 1) +

[
1 0 0 0
1 1 0 0

]

∆U ≤
[

2
2

]

. (2.14)

Now, since we have expressed the constraints as the inequalities with linear-
in-the-parameter ∆U , the next step is to combine the constraints with the
original cost function J used in the design of predictive control. As the optimal
solutions will be obtained using quadratic programming, the constraints need
to be decomposed into two parts to reflect the lower limit, and the upper limit
with opposite sign. Namely, for instance, the constraints

∆Umin ≤ ∆U ≤ ∆Umax

will be expressed by two inequalities:

−∆U ≤ −∆Umin (2.15)

∆U ≤ ∆Umax. (2.16)

In a matrix form, this becomes
[
−I
I

]

∆U ≤
[
−∆Umin

∆Umax

]

. (2.17)

This procedure applies to all the constraints mentioned in this section, includ-
ing control and output constraints.

Traditionally, the constraints are imposed for all future sampling instants,
and all constraints are expressed in terms of the parameter vector ∆U . In the
case of a manipulated variable constraint, we write:
⎡

⎢
⎢
⎢
⎢
⎢
⎣

u(ki)
u(ki + 1)
u(ki + 2)

...
u(ki + Nc − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I
I
I
...
I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

u(ki − 1) +

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I 0 0 . . . 0
I I 0 . . . 0
I I I . . . 0
...
I I . . . I I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∆u(ki)
∆u(ki + 1)
∆u(ki + 2)

...
∆u(ki + Nc − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(2.18)
Re-writing (2.18) in a compact matrix form, with C1 and C2 corresponding to
the appropriate matrices, then the constraints for the control movement are
imposed as,

−(C1u(ki − 1) + C2∆U) ≤ −Umin (2.19)

(C1u(ki − 1) + C2∆U) ≤ Umax, (2.20)

where Umin and Umax are column vectors with Nc elements of umin and
umax, respectively. Similarly, for the increment of the control signal, we have
the constraints:
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−∆U ≤ −∆Umin (2.21)

∆U ≤ ∆Umax, (2.22)

where ∆Umin and ∆Umax are column vectors with Nc elements of ∆umin and
∆umax, respectively. The output constraints are expressed in terms of ∆U :

Y min ≤ Fx(ki) + Φ∆U ≤ Y max. (2.23)

Finally, the model predictive control in the presence of hard constraints is
proposed as finding the parameter vector ∆U that minimizes

J = (Rs−Fx(ki))
T (Rs−Fx(ki))−2∆UT ΦT (Rs−Fx(ki))+∆UT (ΦT Φ+R̄)∆U,

(2.24)
subject to the inequality constraints

⎡

⎣

M1

M2

M3

⎤

⎦∆U ≤

⎡

⎣

N1

N2

N3

⎤

⎦ , (2.25)

where the data matrices are

M1 =

[
−C2

C2

]

; N1 =

[
−Umin + C1u(ki − 1)
Umax − C1u(ki − 1)

]

; M2 =

[
−I
I

]

;

N2 =

[
−∆Umin

∆Umax

]

; M3 =

[
−Φ
Φ

]

; N3 =

[
−Y min + Fx(ki)
Y max − Fx(ki)

]

.

The matrix ΦT Φ + R̄ is the Hessian matrix and is assumed to be positive
definite. Since the cost function J is a quadratic, and the constraints are linear
inequalities, the problem of finding an optimal predictive control becomes one
of finding an optimal solution to a standard quadratic programming problem.
For compactness of expression, we denote (2.25) by

M∆U ≤ γ, (2.26)

where M is a matrix reflecting the constraints, with its number of rows equal
to the number of constraints and number of columns equal to the dimension
of ∆U . When the constraints are fully imposed, the number of constraints
is equal to 4 × m × Nc + 2 × q × Np, where m is the number of inputs and
q is the number of outputs. The total number of constraints is, in general,
greater than the dimension of the decision variable ∆U . Because the receding
horizon control law implements the first control movement and ignores the
rest of the calculated future control signals, a question naturally arises as to
whether it is necessary to impose constraints on all future trajectories of both
the control signals and system output. This question will be investigated in a
later section of this chapter.
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2.4 Numerical Solutions Using Quadratic Programming

The standard quadratic programming problem has been extensively studied
in the literature (see for example, Luenberger, 1984, Fletcher, 1981, Boyd
and Vandenberghe, 2004). Since this is a field of study in its own right, it
requires a considerable effort to completely understand the relevant theory
and algorithms. The required numerical solution for MPC is often viewed as
an obstacle in the application of MPC. However, what we can do here is to
understand the essence of quadratic programming so that we can produce
the essential computational programs required. The advantage of doing so is
that we can access the code if anything goes wrong; we can also write safety
’jacket’ software for real-time applications. These aspects are very important
in an industrial environment. To be consistent with the literatures of quadratic
programming, the decision variable is denoted by x. The objective function J
and the constraints are expressed as

J =
1

2
xT Ex + xT F (2.27)

Mx ≤ γ, (2.28)

where E, F , M and γ are compatible matrices and vectors in the quadratic
programming problem. Without loss of generality, E is assumed to be sym-
metric and positive definite.

2.4.1 Quadratic Programming for Equality Constraints

The simplest problem of quadratic programming is to find the constrained
minimum of a positive definite quadratic function with linear equality con-
straints. Each linear equality constraint defines a hyperplane. Positive definite
quadratic functions have their level surfaces as hyperellipsoids. Intuitively, the
constrained minimum is located at the point of tangency between the bound-
ary of the feasible set and the minimizing hyperellipsoid. Further illustration
is given by the following example.

Example 2.4. Minimize

J = (x1 − 2)2 + (x2 − 2)2,

subject to
x1 + x2 = 1.

Solution. The global minimum, without constraint, is at

x1 = 2; x2 = 2.

The feasible solutions are the combinations of x1 and x2 that satisfy the linear
equality. From the constraint, the feasible solution x2 is expressed as
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Fig. 2.3. Illustration of constrained optimal solution

x2 = 1 − x1.

Substituting this into the objective function, we obtain

J = (x1 − 2)2 + (1 − x1 − 2)2

= 2x2
1 − 2x1 + 5. (2.29)

In order to minimize J , the derivative ∂J
∂x1

= 4x1−2 = 0, giving the minimizing
solution x1 = 0.5. Now, from the constraint equation, x2 = 1 − x1 = 0.5.

Figure 2.3 illustrates the optimal solution on (x1,x2) plane, where the
equality constraint defines the straight line and the positive definite quadratic
function has its level surface as circles and the constrained minimum is located
at the point of tangency between the straight line and the minimizing circle,
which is x1 = 0.5 and x2 = 0.5.

The solution of Example 2.4 is easy to understand and it demonstrated the
location of the constrained minimum. We consider a general approach to the
constrained optimization with equality constraints.

Lagrange Multipliers

To minimize the objective function subject to equality constraints, let us con-
sider the so-called Lagrange expression

J =
1

2
xT Ex + xT F + λT (Mx − γ). (2.30)

It is easy to see that the value of (2.30) subject to the equality constraints
Mx = γ being satisfied is the same as the original objective function. We
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now consider (2.30) as an objective function in n + m variables x and λ,
where n is the dimension of x and m is the dimension of λ. The procedure of
minimization is to take the first partial derivatives with respect to the vectors
x and λ, and then equate these derivatives to zero. This gives us the results

∂J

∂x
= Ex + F + MT λ = 0 (2.31)

∂J

∂λ
= Mx − γ = 0. (2.32)

The linear equations (2.31) together with (2.32) contain n+m variables x and
λ, which are the necessary conditions for minimizing the objective function
with equality constraints. The elements of the vector λ are called Lagrange
multipliers.

The minimization of the Lagrange expression is straightforward. The op-
timal λ and x are found via the set of linear equations defined by (2.31) and
(2.32) where

λ = −(ME−1MT )−1
(
γ + ME−1F

)
(2.33)

x = −E−1(MT λ + F ). (2.34)

It is interesting to note that (2.34) can be written as two terms:

x = −E−1F − E−1MT λ = x0 − E−1MT λ,

where the first term x0 = −E−1F is the global optimal solution that will give
a minimum of the original cost function J without constraints, and the second
term is a correction term due to the equality constraints.

The following example is used to illustrate the minimization with equality
constraints.

Example 2.5. Minimize

J =
1

2
xT Ex + xT F,

subject to

x1 + x2 + x3 = 1

3x1 − 2x2 − 3x3 = 1, (2.35)

where E =

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦ ; F =

⎡

⎣

−2
−3
−1

⎤

⎦ .

Solution. Without the equality constraints, the optimal solution is

x0 = −E−1F =
[
2 3 1

]T
.

Writing the two equality constraints given by (2.35) in matrix form, we obtain
the M and γ matrices as
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M =

[
1 1 1
3 −2 −3

]

; γ =

[
1
1

]

.

To use (2.33) the following quantities are required

ME−1MT =

[
3 −2
−2 22

]

; ME−1F =

[
−6
3

]

.

Note that the determinant det(ME−1MT ) = 62, thus the matrix ME−1MT

is invertible. The λ vector is

λ = −(ME−1MT )−1
(
γ + ME−1F

)
=

[
1.6452
−0.0323

]

.

The x vector that minimizes the objective function is

⎡

⎣

x1

x2

x3

⎤

⎦ = x0 − E−1MT λ =

⎡

⎣

2
3
1

⎤

⎦ −

⎡

⎣

1 3
1 −2
1 −3

⎤

⎦

[
1.6452
−0.0323

]

=

⎡

⎣

0.4516
1.2903
−0.7419

⎤

⎦ .

Example 2.6. In this example, we examine what happens to the constrained
optimal solution when the linear constraints are dependent. We assume that
the objective function

J =
1

2
xT Ex + xT F, (2.36)

where the matrices E =

[
1 0
0 1

]

, F =

[
−2
−2

]

and the constraints are

x1 + x2 = 1

2x1 + 2x2 = 6. (2.37)

Use graphs to demonstrate that there is no feasible solution of x1 and x2 that
will satisfy the equality constraints (2.37). In addition, demonstrate that the
matrix MT E−1M is not invertible.

Solution. Figure 2.4 shows that the two equality constraints are defined by
two parallel lines on the (x1, x2) plane. Because the lines do not intersect,
there does not exist a feasible set of parameters x1 and x2 that will simul-
taneously satisfy both linear equations. We can also examine what happens
to the Lagrange multipliers when there is no feasible solution. The M and γ
matrices are

M =

[
1 1
2 2

]

; γ =

[
1
6

]

.

Note that because of the linear dependency in the constraints, the matrix

ME−1MT =

[
2 4
4 8

]

has a zero determinant, and does not have an inverse.
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Fig. 2.4. Illustration of no feasible solution of the constrained optimization problem.
Solid-line x1 + x2 = 1; darker-solid-line 2x1 + 2x2 = 6

In summary, in order to find the optimal constrained solution, the linear
equality constraints are required to be linearly independent.

Example 2.7. In this example, we will show how the number of equality con-
straints is also an issue in the constrained optimal solution.

Once again, we use the same objective function as in Example 2.5 where

E =

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦ ; F =

⎡

⎣

−2
−3
−1

⎤

⎦, but add an extra constraint to the original con-

straints so that

x1 + x2 + x3 = 1

3x1 − 2x2 − 3x3 = 1

x1 − 3x2 + 2x3 = 1. (2.38)

Solution. The additional constraint is independent of the first two original
constraints. Now the only feasible solution that satisfies all the constraints

is x = M−1γ =
[
0.6552 0.069 0.2759

]T
, which is the unique solution of the

linear equations (2.38). There is no point in proceeding to the optimization
of the objective function, because the only feasible solution is the constrained
optimal solution.

In summary, the number of equality constraints is required to be less than or
equal to the number of decision variables (i.e., x). If the number of equality
constraints equals the number of decision variables, the only feasible solution
is the one that satisfies the constraints and there is no additional variable in
x that can be used to optimize the original objective function. If the num-
ber of equality constraints is greater than the number of decision variables,
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then there is no feasible solution to satisfy the constraints. Alternatively, the
situation is called infeasible.

2.4.2 Minimization with Inequality Constraints

In the minimization with inequality constraints, the number of constraints
could be larger than the number of decision variables. The inequality con-
straints Mx ≤ γ as in (2.28) may comprise active constraints and inactive
constraints. An inequality Mix ≤ γi is said to be active if Mix = γi and inac-
tive if Mix < γi, where Mi together with γi form the ith inequality constraint
and are the ith row of M matrix and the ith element of γ vector, respec-
tively. We introduce the Kuhn-Tucker conditions, which define the active and
inactive constraints in terms of the Lagrange multipliers.

Kuhn-Tucker Conditions

The necessary conditions for this optimization problem (Kuhn-Tucker condi-
tions) are

Ex + F + MT λ = 0

Mx − γ ≤ 0

λT (Mx − γ) = 0

λ ≥ 0, (2.39)

where the vector λ contains the Lagrange multipliers. These conditions can
be expressed in a simpler form in terms of the set of active constraints. Let
Sact denote the index set of active constraints. Then the necessary conditions
become

Ex + F +
∑

i∈Sact

λiM
T
i = 0

Mix − γi = 0 i ∈ Sact (2.40)

Mix − γi < 0 i �∈ Sact (2.41)

λi ≥ 0 i ∈ Sact (2.42)

λi = 0 i �∈ Sact, (2.43)

where Mi is the ith row of the M matrix. In other words, (2.40) says that
for the ith row, Mix − γi = 0 means that this is an equality constraint,
hence an active constraint. In contrast, Mix − γi < 0 (see (2.41)) means that
the constraint is satisfied, hence it is an inactive constraint. For an active
constraint, the corresponding Lagrange multiplier is non-negative (see (2.42)),
whilst the Lagrange multiplier is zero if the constraint is inactive (see (2.43)).

It is clear that if the active set were known, the original problem could
be replaced by the corresponding problem having equality constraints only.
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Fig. 2.5. Illustration of the constrained optimization problem with inequality con-
straints. Solid-line x1 + x2 = 1; darker-solid-line 3x1 + 3x2 = 6

Explicitly, supposing that Mact and λact are given, the optimal solution with
inequality solution has the closed-form

λact = −(MactE
−1MT

act)
−1(γact + MactE

−1F ) (2.44)

x = −E−1(F + MT
actλact). (2.45)

Example 2.8. In Example 2.6, we showed that when optimizing with equality
constraints, if the constraints are dependent, then there is no feasible solution.
In this example, we examine what happens to the optimal solution if they are
inequality constraints. We assume that the objective function

J =
1

2
xT Ex + xT F, (2.46)

where the matrices E =

[
1 0
0 1

]

, F =

[
−2
−2

]

and the constraints are

x1 + x2 ≤ 1 (2.47)

2x1 + 2x2 ≤ 6. (2.48)

Solution. Clearly the set of variables that satisfy inequality (2.47) will also
satisfy the inequality (2.48). This is illustrated in Figure 2.5. Thus, the con-
straint (2.47) is an active constraint, while the constraint (2.48) is an inac-
tive constraint. We find the constrained optimum by minimizing J subject to
equality constraint: x1 + x2 = 1, which is x1 = 0.5 and x2 = 0.5. We verify
that indeed with this set of x1 and x2 values, inequality (2.48) is satisfied.
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Active Set Methods

The idea of active set methods is to define at each step of an algorithm a set
of constraints, termed the working set, that is to be treated as the active set.
The working set is chosen to be a subset of the constraints that are actually
active at the current point, and hence the current point is feasible for the
working set. The algorithm then proceeds to move on the surface defined
by the working set of constraints to an improved point. At each step of the
active set method, an equality constraint problem is solved. If all the Lagrange
multipliers λi ≥ 0, then the point is a local solution to the original problem. If,
on the other hand, there exists a λi < 0, then the objective function value can
be decreased by relaxing the constraint i (i.e., deleting it from the constraint
equation). During the course of minimization, it is necessary to monitor the
values of the other constraints to be sure that they are not violated, since all
points defined by the algorithm must be feasible. It often happens that while
moving on the working surface, a new constraint boundary is encountered.
It is necessary to add this constraint to the working set, then proceed to the
re-defined working surface. To illustrate the basic idea of active set methods,
let us look at the example below.

Example 2.9. Optimize the objective function where

E =

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦ ; F =

⎡

⎣

−2
−3
−1

⎤

⎦ ,

subject to the inequality constraints:

x1 + x2 + x3 ≤ 1

3x1 − 2x2 − 3x3 ≤ 1

x1 − 3x2 + 2x3 ≤ 1. (2.49)

Solution. The feasible solution of equality constraints (2.49) exists, which is
the solution of the linear equations

x1 + x2 + x3 = 1

3x1 − 2x2 − 3x3 = 1

x1 − 3x2 + 2x3 = 1. (2.50)

Thus, the three equality constraints are taken as the first working set. We
calculate the Lagrange multiplier for the three constraints leading to

λ = −(ME−1MT )−1
(
γ + ME−1F

)
=

⎡

⎣

1.6873
0.0309
−0.4352

⎤

⎦ .

Clearly the third element in λ is negative, therefore, the third constraint is
an inactive constraint and will be dropped from the constrained equation



2.4 Numerical Solutions Using Quadratic Programming 61

set. We take the first two constraints as the active constraints, and solve the
optimization problem as minimizing

J =
1

2
xT Ex + xT F,

subject to

x1 + x2 + x3 = 1

3x1 − 2x2 − 3x3 = 1, (2.51)

which is the identical problem to the one given in Example 2.5. We solve this
equality constraint problem, obtaining as before

λ =

[
1.6452
−0.0323

]

.

Clearly the second element in λ is negative. We drop the second constraint
and solve the optimization problem as

J =
1

2
xT Ex + xT F,

subject to
x1 + x2 + x3 = 1.

Once more, we solve this equality constrained optimization problem, and ob-

tain λ = 5
3 , leading to x =

[
0.3333 1.3333 −0.6667

]T
. Clearly, the optimal

solution x satisfies the equality constraint. We also check whether the rest of
the inequality constraints (2.49) are satisfied. They are all indeed satisfied.

There are several comments as follows.

1. In the case of equality constraints, the maximum number of equality con-
straints equals the number of decision variables. In this example, it is 3,
and the only feasible solution x is to satisfy the equality constraints (see
(2.50)). In contrast, in the case of inequality constraints, the number of
inequality constraints is permitted to be larger than the number of de-
cision variables, as long as they are not all active. In this example, only
one constraint becomes active so it becomes an equality constraint. Once
the optimal solution is found against this active constraint, the rest of the
inequalities are automatically satisfied.

2. It is clear that an iterative procedure is required to solve the optimiza-
tion problem with inequality constraints, because we did not know which
constraints would become active constraints. If the active set could be
identified in advance, then the iterative procedure would be shortened.

3. Note that the conditions for the inequality constraints are more relaxed
than the case of imposing equality constraints. For instance, the number
of constraints is permitted to be greater than the number of decision
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variables, and the set of inequality constraints is permitted to be linearly
dependent. However, these relaxations are only permitted to the point that
the active constraints need to be linearly independent and the number of
active constraints needs to be less than or equal to the number of decision
variables.

2.4.3 Primal-Dual Method

The family of active methods belongs to the group of primal methods, where
the solutions are based on the decision variables (also called primal variables
in the literature). In the active set methods, the active constraints need to be
identified along with the optimal decision variables. If there are many con-
straints, the computational load is quite large. Also, the programming of an
active method is not a straightforward task, as we illustrated through Example
2.9. A dual method can be used systematically to identify the constraints that
are not active. They can then be eliminated in the solution. The Lagrange mul-
tipliers are called dual variables in the optimization literature. This method
will lead to very simple programming procedures for finding optimal solutions
of constrained minimization problems.

The dual problem to the original primal problem is derived as follows.
Assuming feasibility (i.e., there is an x such that Mx < γ), the primal problem
is equivalent to

max
λ≥0

min
x

[
1

2
xT Ex + xT F + λT (Mx − γ)]. (2.52)

The minimization over x is unconstrained and is attained by

x = −E−1(F + MT λ). (2.53)

Substituting this in (2.52), the dual problem is written as

max
λ≥0

(−1

2
λT Hλ − λT K − 1

2
FT E−1F ), (2.54)

where the matrices H and K are given by

H = ME−1MT (2.55)

K = γ + ME−1F. (2.56)

Thus, the dual is also a quadratic programming problem with λ as the decision
variable. Equation (2.54) is equivalent to

min
λ≥0

(
1

2
λT Hλ + λT K +

1

2
γT E−1γ). (2.57)

Note that the dual problem may be much easier to solve than the primal
problem because the constraints are simpler (see Hildreth’s quadratic pro-
gramming procedure in the next section).
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The set of optimal Lagrange multipliers that minimize the dual objective
function

J =
1

2
λT Hλ + λT K +

1

2
γT E−1γ, (2.58)

subject to λ ≥ 0, are denoted as λact, and the corresponding constraints are
described by Mact and γact. With the values of λact and Mact, the primal
variable vector x is obtained using

x = −E−1F − E−1MT
actλact, (2.59)

where the constraints are treated as equality constraints in the computation.

2.4.4 Hildreth’s Quadratic Programming Procedure

A simple algorithm, called Hildreth’s quadratic programming procedure (Lu-
enberger, 1969, Wismer and Chattergy, 1978), was proposed for solving this
dual problem. In this algorithm, the direction vectors were selected to be equal
to the basis vectors ei = [0 0 . . . 1 . . . 0 0]T . Then, the λ vector can be varied
one component at a time. At a given step in the process, having obtained a
vector λ ≥ 0, we fix our attention on a single component λi. The objective
function may be regarded as a quadratic function in this single component.
We adjust λi to minimize the objective function. If that requires λi < 0, we
set λi = 0. In either case, the objective function is decreased. Then, we con-
sider the next component λi+1. If we consider one complete cycle through the
components to be one iteration taking the vector λm to λm+1, the method
can be expressed explicitly as

λm+1
i = max(0, wm+1

i ), (2.60)

with

wm+1
i = − 1

hii
[ki +

i−1∑

j=1

hijλ
m+1
j +

n∑

j=i+1

hijλ
m
j ], (2.61)

where the scalar hij is the ijth element in the matrix H = ME−1MT , and
ki is the ith element in the vector K = γ + ME−1F . Also note that in (2.61)
there are two sets of λ values in the computation: one involves λm and one
involves the updated λm+1.

Because the converged λ∗ vector contains either zero or positive values of
the Lagrange multipliers, by (2.53), we have

x = −E−1(F + MT λ∗). (2.62)

There are a few comments to be made. First, Hildreth’s quadratic program-
ming algorithm is based on an element-by-element search, therefore, it does
not require any matrix inversion. As a result, if the active constraints are
linearly independent and their number is less than or equal to the number
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of decision variables, then the dual variables will converge. However, if one
or both of these requirements are violated, then the dual variables will not
converge to a set of fixed values. The iteration will terminate when the itera-
tive counter reaches its maximum value. Because there is no matrix inversion,
the computation will continue without interruption. As we will observe in
the coming examples, the algorithm will give a compromised, near-optimal
solution with constraints if the situation of conflict constraints arises. This is
one of the key strengths of using this approach in real-time applications, be-
cause the algorithm’s ability to automatically recover from an ill-conditioned
constrained problem is paramount for the safety of plant operation.

When the conditions are satisfied, the one-dimensional search technique in
Hildreth’s quadratic programming procedure has been shown to converge to
the set of λ∗, where λ∗ contains zeros for inactive constraints and the positive
components corresponding to the active constraints. The positive component
collected as a vector is called λ∗

act with its value defined by

λ∗
act = −(MactE

−1MT
act)

−1(γact + MactE
−1F ), (2.63)

where Mact and γact are the constraint data matrix and vector with the dele-
tion of the row elements that corresponding to the zero elements in λ∗. The
proof of the convergence relies on the existence of a set of bounded λ∗

act. This
is virtually determined by the existence of the (MactE

−1MT
act)

−1 (see Wismer
and Chattergy (1978)).

Example 2.10. Minimize the cost function:

J =
1

2
xT Ex + FT x,

where E =

[
2 −1
−1 1

]

; F =

[
−1
0

]

. The constraints are 0 ≤ x1, 0 ≤ x2 and

3x1 + 2x2 ≤ 4.

Solution. We form the linear inequality constraints

⎡

⎣

−1 0
0 −1
3 2

⎤

⎦

[
x1

x2

]

≤

⎡

⎣

0
0
4

⎤

⎦ . (2.64)

The global optimal solution without constraints is

[
x0

1

x0
2

]

= −E−1F = −
[

2 −1
−1 1

]−1 [
−1
0

]

=

[
1
1

]

.

By substituting the global optimal solution into (2.64), we note that the in-
equality constraints are violated, with respect to the third constraint (i.e.,
3 + 2 > 4).
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To find the optimal λ∗, we form

H =

⎡

⎣

−1 0
0 −1
3 2

⎤

⎦

[
2 −1
−1 1

]−1 [
−1 0 3
0 −1 2

]

=

⎡

⎣

1 1 −5
1 2 −7
−5 −7 29

⎤

⎦ (2.65)

K = γ + ME−1F =

⎡

⎣

0
0
4

⎤

⎦ +

⎡

⎣

−1 0
0 −1
3 2

⎤

⎦

[
−1
−1

]

=

⎡

⎣

1
1
−1

⎤

⎦ . (2.66)

The iteration starts at k = 0, with the initial conditions of λ0
1 = λ0

2 = λ0
3 = 0.

At k = 1,

w1
1 + 1 = 0 (2.67)

λ1
1 + 2w1

2 + 1 = 0 (2.68)

−5λ1
1 − 7λ1

2 + 29w1
3 − 1 = 0. (2.69)

Solving (2.67) gives λ1
1 = max(0, w1

1) = 0, solving (2.68) gives λ1
2 =

max(0, w1
2) = 0 and solving (2.69 ) gives λ1

3 = max(0, w1
3) = 0.0345.

At k = 2,

w2
1 + λ1

2 − 5λ1
3 + 1 = 0 (2.70)

λ2
1 + 2w2

2 − 7λ1
3 + 1 = 0 (2.71)

−5λ2
1 − 7λ2

2 + 29w2
3 − 1 = 0. (2.72)

This gives λ2
1 = max(0, w2

1) = 0, λ2
2 = max(0, w2

2) = 0 and λ2
3 = max(0, w2

3) =
0.0345. Since λ2 = λ1, the iterative procedure has converged. The optimal
solution of λ is λ∗

1 = 0, λ∗
2 = 0 and λ∗

3 = 0.0345. The optimal solution of x is
given by

x∗ =

[
x0

1

x0
2

]

− E−1MT λ∗ =

[
1
1

]

−
[

0.1724
0.2414

]

=

[
0.8276
0.7586

]

. (2.73)

From (2.73), it is seen that the constrained optimal solution consists of two
parts. One is identical to the global optimal solution, and the second part is
a correction term due to the active constraint.

Example 2.11. Solve a quadratic programming problem where the constraints
are defined by 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1 and the objective function is
defined by

J =
1

2
[(x1 − 2)2 + (x2 − 2)2]. (2.74)

Solution. The inequalities can be written as
⎡

⎢
⎢
⎣

1 0
−1 0
0 1
0 −1

⎤

⎥
⎥
⎦

[
x1

x2

]

≤

⎡

⎢
⎢
⎣

1
0
1
0

⎤

⎥
⎥
⎦

. (2.75)



66 2 Discrete-time MPC with Constraints

The objective function can be written as

J =
1

2
xT Ex + FT x, (2.76)

where E =

[
1 0
0 1

]

and F =
[
−2 −2

]T
. The global optimal solution is

[
x0

1

x0
2

]

= −E−1F =

[
2
2

]

. (2.77)

The upper limits for x1 and x2 are violated. To follow Hildreth’s quadratic
programming procedure, we define

H = ME−1MT =

⎡

⎢
⎢
⎣

1 0
−1 0
0 1
0 −1

⎤

⎥
⎥
⎦

[
1 0
0 1

] [
1 −1 0 0
0 0 1 −1

]

=

⎡

⎢
⎢
⎣

1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

⎤

⎥
⎥
⎦

(2.78)

K = γ + ME−1F (2.79)

=

⎡

⎢
⎢
⎣

1
0
1
0

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

1 0
−1 0
0 1
0 −1

⎤

⎥
⎥
⎦

[
1 0
0 1

] [
−2
−2

]

=

⎡

⎢
⎢
⎣

−1
2
−1
2

⎤

⎥
⎥
⎦

. (2.80)

We start the one-dimensional search with λ0
1 = λ0

2 = λ0
3 = λ0

4 = 0.
At k = 1,

w1
1 − 1 = 0 (2.81)

−λ1
1 + w1

2 + 2 = 0 (2.82)

w1
3 − 1 = 0 (2.83)

−λ1
3 + w1

4 + 2 = 0. (2.84)

This gives λ1
1 = max(0, w1

1) = 1, λ1
2 = max(0, w1

2) = 0, λ1
3 = max(0, w1

3) = 1,
λ1

4 = max(0, w1
4) = 0.

At k = 2,

w2
1 − λ1

2 − 1 = 0 (2.85)

−λ2
1 + w2

2 + 2 = 0 (2.86)

w2
3 − λ1

4 − 1 = 0 (2.87)

−λ2
3 + w2

4 + 2 = 0. (2.88)
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Similarly, solving (2.85) gives λ2
1 = max(0, w2

1) = 1, solving (2.86) gives
λ2

2 = max(0, w2
2) = 0, solving (2.87) gives λ2

3 = max(0, w2
3) = 1, and

λ2
4 = max(0, w2

4) = 0. Since λ2 = λ1, the iterative procedure has converged.
The optimal solution of λ is λ∗

1 = 1, λ∗
2 = 0, λ∗

3 = 1 and λ∗
4 = 0.

We delete the inactive constraints and find that the constrained optimal
solution is

x∗ = x0 − E−1

([
1 0
0 1

] [
1
1

])

=

[
1
1

]

. (2.89)

As we can see, the constrained optimal solution is the solution that consists
of an original global optimal solution and a correction term due to the active
constraints.

2.4.5 MATLAB Tutorial: Hildreth’s Quadratic Programming

Tutorial 2.1. The objective of this tutorial is to demonstrate how to solve the
constrained optimization problem using Hildreth programming. The problem is
written as minimizing

J =
1

2
ηT Hη + ηT f, (2.90)

subject to constraints
Aconsη ≤ b. (2.91)

Step by Step

1. Create a new file called QPhild.m.
2. The program finds the global optimal solution and checks if all the con-

straints are satisfied. If so, the program returns the optimal solution η. If
not, the program then begins to calculate the dual variable λ.

3. Enter the following program into the file:

function eta=QPhild(H,f,A_cons,b);

% E=H;

% F=f;

% M=A_cons;

% gamma=b;

% eta =x

[n1,m1]=size(A_cons);

eta=-H\f;

kk=0;

for i=1:n1

if (A_cons(i,:)*eta>b(i)) kk=kk+1;

else

kk=kk+0;

end

end

if (kk==0) return; end
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4. Note that in the quadratic programming procedure, the ith Lagrange mul-
tiplier λi becomes zero if the corresponding constraint is not active. Oth-
erwise it is positive. We need to calculate the Lagrange multipliers itera-
tively. We will first set-up the matrices of the dual quadratic programming,
followed by the computation of the Lagrange multipliers.

5. Continue entering the following program into the file:

P=A_cons*(H\A_cons’);

d=(A_cons*(H\f)+b);

[n,m]=size(d);

x_ini=zeros(n,m);

lambda=x_ini;

al=10;

for km=1:38

%find the elements in the solution vector one by one

% km could be larger if the Lagranger multiplier has a slow

% convergence rate.

lambda_p=lambda;

for i=1:n

w= P(i,:)*lambda-P(i,i)*lambda(i,1);

w=w+d(i,1);

la=-w/P(i,i);

lambda(i,1)=max(0,la);

end

al=(lambda-lambda_p)’*(lambda-lambda_p);

if (al<10e-8); break; end

end

6. We can directly use the λ vector and the constraint equation to calculate
the changes in η due to the active constraints, because the elements in λ
are either positive or zero.

7. Continue entering the following program into the file:

eta=-H\f -H\A_cons’*lambda;

8. Test your program using the data matrices generated from Examples 2.10
and 2.11. If the constrained optimal solutions are identical to the solutions
given in the examples, then your program is correct.

2.4.6 Closed-form Solution of λ∗

We noticed that the Hildreth quadratic programming procedure produces the
optimal λ∗ that has zeros and the components corresponding to the active
constraints. The converged vector is called λ∗

act with its value defined by

λ∗
act = −(MactE

−1MT
act)

−1(γact + MactE
−1F ), (2.92)
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where Mact and γact are the constraint data matrix and vector with the dele-
tion of the row elements that correspond to the zero elements in λ∗. Thus, if we
could correctly identify a priori the active constraints, then we can compute
the closed-form solution of the constrained optimization problem.

Example 2.12. Suppose that with a priori knowledge, the third constraint in
Example 2.10 is known to be active. Find the optimal solution using the
closed-form solution.

Solution. With the given information, we let λ∗
1 = λ∗

2 = 0. We form

Mact =
[
3 2

]
; γact = 4

λ∗
act = −(MactE

−1MT
act)

−1(γact + MactE
−1F ) =

1

29
= 0.0345.

The results are identical to those obtained in Example 2.10.

Example 2.13. Assume that the active constraints in Example 2.11 are num-
ber one and number three. Find the optimal solution with respect to the
constraints using the closed-form solution.

Solution. With the a priori knowledge, λ∗
2 = λ∗

4 = 0. The active constraints
are formed using number one and number three constraints as

Mact =

[
1 0
0 1

]

; γact =

[
1
1

]

.

Hence, the optimal dual variable is solved as

λ∗
act = −(MactE

−1MT
act)

−1(γact + MactE
−1F ) =

[
1
1

]

.

Because the elements in λ∗
act are positive, the solution is accepted as the

optimal solution for λ∗. Again, the results are identical to those obtained in
Example 2.11.

This technique of guessing active constraints is useful in the situation
when the computational speed is critical for an application, with which we
can resort to the closed-form solution of a constrained control problem. Also,
the computational speed is increased if we only need to search for part of the
active constraints set, while the other part comes from guesswork.

2.5 Predictive Control with Constraints on Input

Variables

This section will present several worked examples of predictive control show-
ing how constraints on the input variable u(k) are imposed. The constraints
include those on rate of change and amplitude constraints. These constraints
are commonly encountered in industrial applications. MATLAB tutorials for
constrained control can be found in Chapter 3.
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2.5.1 Constraints on Rate of Change

We present two worked examples of predictive control here. The first example
is to show how to incorporate constraints for the first element in ∆U , and the
second example is to show how to incorporate constraints for all the elements
in ∆U . The first example demands less in computation, but sometimes it can
compromise the closed-loop performance of the predictive control system.

Example 2.14. A continuous-time plant is described by a transfer function
model,

G(s) =
10

s2 + 0.1s + 3
, (2.93)

which has a pair of poles at −0.0500 ± 1.7313j. Suppose that the system is
sampled with an interval ∆ = 0.1. Design a discrete-time model predictive
control with control horizon Nc = 3, Np = 20, and R̄ = 0.01 × I. The limit
on the rate of change on the control signal is specified as

−1.5 ≤ ∆u(k) ≤ 3.

For this example, we only consider the case of imposing the constraints on
the first element of ∆U .

Solution. By following Tutorial 1.1 we first obtain the discrete-time state-
space model, then augment the model with an integrator. With the program
presented in Tutorial 1.2, we obtain the objective function:

J = ∆UT (ΦT Φ + R̄)∆U − 2∆UT ΦT (Rs − Fx(ki)), (2.94)

where

ΦT Φ =

⎡

⎣

0.1760 0.1553 0.1361
0.1553 0.1373 0.1204
0.1361 0.1204 0.1057

⎤

⎦ ; ΦT F =

⎡

⎣

0.1972 −0.1758 1.4187
0.1740 −0.1552 1.2220
0.1522 −0.1359 1.0443

⎤

⎦ ,

and Rs =

⎡

⎣

1.4187
1.2220
1.0443

⎤

⎦ r(ki). r(ki) and x̂(ki) are the set-point signal and the

estimated state variable at time ki, respectively. For simplicity, we assume
that the observer poles are selected at 0, 0, 0. The closed-loop system without
constraints has its eigenvalues located at 0.6851, 0.9109± 0.1070j, and 0, 0, 0.
For a unit set-point change, the closed-loop responses are presented in Figure
2.6.

Based on the procedures presented in Section 2.3, the constraints are trans-
lated to the two linear inequalities as

[
1 0 0
−1 0 0

]
⎡

⎣

∆u(ki)
∆u(ki + 1)
∆u(ki + 2)

⎤

⎦ ≤
[

3.0000
1.5000

]

. (2.95)
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To demonstrate how the solution evolves, we illustrate the first two steps in
the computational procedure.

1. Assume that the initial observer state is zero, and a set-point signal at
time ki = 1, is 1. Then, without constraints, the global optimal solution of
∆U is [6.1083 2.3334 −0.5861]T . Thus, the constraint (2.95) is violated.
The problem is solved using Hildreth’s quadratic programming to obtain

∆U = [3.0000 4.2751 1.0494]T .

2. With the first component ∆u(1) = 3, and y(1) = 0 the estimated state
variable is updated to yield x̂(2) = [3.0000 0 0.0015]T .

3. Again, the global optimal solution is ∆U = [4.6329 1.1265 − 1.5559]T ,
which violates the constraint. The optimization problem is again solved
using the Hildreth’s quadratic programming to obtain

∆U = [3.0000 2.1466 − 0.6967]T .

4. With updated information on y(2) = 0.0015 and ∆u(2) = 3, the estimated
state variable is updated with value x̂(3) = [8.9961 3.0000 0.0075]T .

5. The global optimal solution is ∆U = [2.9338 −0.2126 −2.5828]T , which
satisfies the constraint.

6. The computation continues simultaneously in closed-loop simulation and
development of constrained control.

Figure 2.6 shows the control signal, plant output and ∆u in the presence of
the constraints, where the comparison with the unconstrained solution is also
illustrated. It is seen from Figure 2.6b that the constraints on ∆u are satisfied,
whilst Figure 2.6a shows that the control signal and output responses have
very small differences in the presence of constraints.
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Fig. 2.6. Closed-loop system response with constraints. Key: line (1) without con-
straints; line (2) with constraints −1.5 ≤ ∆u(k) ≤ 3
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Example 2.15. This example will investigate the scenario where the con-
straints are imposed for all elements in ∆U , which is the case often referred to
in the predictive control literature. The nominal design of predictive control
remains the same as in Example 2.14.

Solution. From Section 2.3, when the constraints are fully imposed on all the
components in ∆U , they are translated to the six linear inequalities as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
−1 0 0
0 −1 0
0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣

∆u(ki)
∆u(ki + 1)
∆u(ki + 2)

⎤

⎦ ≤

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
3
3

1.5
1.5
1.5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.96)

Since there are three decision variables (Nc = 3), the number of active con-
straints should not be greater than 2 at any given time in order to have an
optimal solution. We illustrate the solutions for the first two cycles of the
computation.

1. At ki = 1, without constraints, the global optimal solution is ∆U =
[6.1083 2.3334 − 0.5861]T . Thus, the constraint (2.96) is violated. The
problem is solved using Hildreth’s quadratic programming to obtain ∆U =
[3.0000 3.0000 2.3731]T . In comparison with the results in Example 2.14,
the first solution has two active constraints. Namely, the first two elements
in ∆U are the results from active constraints.

2. At ki = 2, with the first component ∆u(1) = 3, and y(1) = 0 the estimated
state variable is updated to yield x̂(2) = [3.0000 0 0.0015]T .

3. Again, the global optimal solution is ∆U = [4.6329 1.1265 − 1.5559]T ,
which violates the constraint. The optimization problem is again solved
using Hildreth’s quadratic programming to obtain ∆U = [3.0000 2.1466 −
0.6967]T , where only the first constraint becomes activated, therefore the
solution is identical to the solution in the second step of Example 2.14.

4. With updated information on y(2) = 0.0015 and ∆u(2) = 3, the estimated
state variable is updated with value x̂(3) = [8.9961 3.0000 0.0075]T .

5. The global optimal solution is ∆U = [2.9338 −0.2126 −2.5828]T , where
the third element violates the constraint −1.5 ≤ ∆u(k). The optimization
problem is solved using Hildreth’s quadratic programming to obtain ∆U =
[2.4885 −0.6280 −1.5000]T . The effect of the third constraint becoming
activated made the first component drop from 2.9338 (see the previous
example) to 2.4885.

Because the constraints are imposed on all the element of ∆U , there are
possibilities that non-essential constraints become activated. Figure 2.7 shows
that this is indeed the case, which results in the non-smooth solution for
∆u(ki). In Figure 2.8, we compare the results with those from Example 2.14
where the constraints were only imposed on the first sample of ∆U . The
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Fig. 2.7. All control elements with constraints. Key: line (1) ∆u(ki); line (2) ∆u(ki+
1); line (3) ∆u(ki + 2)
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Fig. 2.8. Comparison results between Example 2.15 and 2.14. Key: line (1) solution
from Example 2.15; line (2) the solution from Example 2.14

difference is caused by the constraints from the set of non-essential constraints
becoming active.

2.5.2 Constraints on Amplitude of the Control

The amplitude of the control signal u(k) is another important object for im-
posing constraint. The examples below illustrate how to impose constraints
on the amplitude of the control signal. We will consider two examples. The
first example is to impose the constraints on the first sample of the control
signal and the second example is to impose constraints on all elements of the
control signal.
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Example 2.16. We will consider the same system given in Example 2.14 with
identical design specification, except that the constraints are changed to

−3 ≤ u(k) ≤ 6.

Again, in this example, we will consider the case of imposing the constraints
on the first sample of control.

Solution. Note that at sample time ki,

u(ki) = ∆u(ki) + u(ki − 1); ∆u(ki) = [1 0 0]∆U.

Here, ∆U is the parameter vector to be optimized. Therefore, from Section
2.3, the inequality constraints are translated into

−3 ≤ [1 0 0]∆U + u(ki − 1) ≤ 6.

That is,
[

1 0 0
−1 0 0

]
⎡

⎣

∆u(ki)
∆u(ki + 1)
∆u(ki + 2)

⎤

⎦ ≤
[

6 − u(ki − 1)
3 + u(ki − 1)

]

. (2.97)

Note that the value of past control signal u(ki − 1) is embedded into the
constraint equations, thus the constraint equations need to be updated as the
control system is implemented in real time.

Let us examine the first two cycles of the implementation.

1. When ki = 1, without constraints, the global optimal solution is:

∆U = [6.1083 2.3334 − 0.5861]T ,

which gives u(ki) = 6.108, where u(ki − 1) = 0 is assumed as the initial
condition. Therefore, the constraint is violated. The quadratic program
procedure finds the optimal solution as ∆U = [6.0000 2.4010 −0.5291]T ,
which leads to u(1) = 6 satisfying the constraint.

2. With the updated information on the estimated state variable and the
information u(1) = 6, with constraint on the control amplitude, the opti-
mal solution for ki = 2 is ∆U = [0 1.8921 − 0.8643]T , which gives the
optimal control as u(2) = 6 satisfying the constraint.

3. As time progresses, the predictive control system finds the optimal control
at each sampling period with respect to the specified constraints on the
control signal.

Figure 2.9 shows the constrained control response in comparison with the case
without using constraints. It is seen that constraints are satisfied, and the out-
put response remains close to the response obtained from the unconstrained
case.
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Fig. 2.9. Closed-loop response with constraints (Example 2.16). Key: line (1) solu-
tion with constraints; line (2) solution without constraints

Example 2.17. In this example, we will continue the Example 2.16 by consid-
ering the case −3 ≤ u(k) ≤ 6, however, where the constraints are imposed on
all elements of the control signal.

Solution. Note that

u(ki + 1) = ∆u(ki + 1) + u(ki) = ∆u(ki + 1) + ∆u(ki) + u(ki − 1);

u(ki + 2) = ∆u(ki + 2) + ∆u(ki + 1) + ∆u(ki) + u(ki − 1).

In matrix vector form, the expression for the three elements of control in terms
of ∆U is

⎡

⎣

u(ki)
u(ki + 1)
u(ki + 2)

⎤

⎦ =

⎡

⎣

1 0 0
1 1 0
1 1 1

⎤

⎦

⎡

⎣

∆u(ki)
∆u(ki + 1)
∆u(ki + 2)

⎤

⎦ +

⎡

⎣

u(ki − 1)
u(ki − 1)
u(ki − 1)

⎤

⎦ . (2.98)

Now, with constraints to be imposed on both upper and lower limits of the
control signals, the linear inequalities are formulated into the matrix vector
form ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
1 1 0
1 1 1
−1 0 0
−1 −1 0
−1 −1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣

∆u(ki)
∆u(ki + 1)
∆u(ki + 2)

⎤

⎦ ≤

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 − u(ki − 1)
6 − u(ki − 1)
6 − u(ki − 1)
3 + u(ki − 1)
3 + u(ki − 1)
3 + u(ki − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.99)

With the same implementation as before, the predictive control finds the op-
timal solution that satisfies the six inequality constraints. Figure 2.10 shows
the three components in the optimal solution ∆U . It is seen that the two ad-
ditional constraints on u(ki +1) and u(ki +2) are activated during the process
of optimization, which is indicated by the zero values of the components in
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Fig. 2.10. All control elements. Key: line (1) ∆u(ki); Line(2) ∆u(ki + 1); line (3)
∆u(ki + 2).

∆U . Strictly speaking, the active constraints are indicated by the positive val-
ues of the Lagrange multipliers. However, when the amplitude of the control
reaches its limit, the corresponding component in ∆U is zero so as to satisfy
the constraint in the solution. In order to illustrate the difference between the
approach where the constraints are imposed on all future control and the one
with only constraints on u(ki), Figure 2.11 shows the plant output, control
signal and ∆u(k). Again, the difference is insignificant. However, the number
of constraints is three times larger when the constraints are imposed for all
future control movements.
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Fig. 2.11. Comparison of results between Example 2.16 and 2.17. Key: line (1)
solution with constraints on all future control; line (2) solution with constraints on
the first sample of future control



2.5 Predictive Control with Constraints on Input Variables 77

2.5.3 Constraints on Amplitude and Rate of Change

It is also a common practice that constraints are imposed on both the ampli-
tude and the rate of change of control signal. If this is required in the design
specification, both constraints will be combined together to form a larger set
of linear inequalities. Two examples are given below to illustrate the design
and implementation procedure. Again, we will consider first the case where
constraints are imposed at the sampling instant ki, and secondly extend the
constraints to all future control movements.

Example 2.18. We consider the same system as in Example 2.14 with con-
straints on

−1.5 ≤ ∆u(k) ≤ 3; − 3 ≤ u(k) ≤ 6.

Solution. Assuming that at the sampling instant ki the constraints are only
imposed on ∆u(ki) and u(ki), the set of linear inequality constraints is for-
mulated into the matrix vector form

⎡

⎢
⎢
⎣

1 0 0
−1 0 0
1 0 0
−1 0 0

⎤

⎥
⎥
⎦

⎡

⎣

∆u(ki)
∆u(ki + 1)
∆u(ki + 2)

⎤

⎦ ≤

⎡

⎢
⎢
⎣

3.0000
1.5000

6 − u(ki − 1)
3 + u(ki − 1)

⎤

⎥
⎥
⎦

. (2.100)

The first two rows are used for the rate constraints and the last two rows are
for the amplitude constraints. We solve the constrained optimization problem
by minimizing the objective function J subject to the constraints given by
(2.100). The control, output and ∆u(k) signals are shown in Figure 2.12. It is
seen that both constraints are satisfied with a small amount of performance
change when compared with the case of optimal control without constraints,
which can be viewed in Figure 2.12.
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Fig. 2.12. Closed-loop control response with constraints (Example 2.18). Key: line
(1) responses with constraints on both amplitude and rate of change; line (2) re-
sponses without constraints
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Example 2.19. In this example, we consider the case

−1.5 ≤ ∆u(k) ≤ 3; − 3 ≤ u(k) ≤ 6.

However, the constraints will be imposed on all future components of ∆U and
u(ki), u(ki+1), u(ki+2) and the results will be compared with those presented
in Example 2.18.

Solution. With all the constraints imposed on both the rate of change and
the amplitude of the control signal, the inequalities are translated into the
matrix vector form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
−1 0 0
0 −1 0
0 0 −1
1 0 0
1 1 0
1 1 1
−1 0 0
−1 −1 0
−1 −1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣

∆u(ki)
∆u(ki + 1)
∆u(ki + 2)

⎤

⎦ ≤

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
3
3

1.5
1.5
1.5

6 − u(ki − 1)
6 − u(ki − 1)
6 − u(ki − 1)
3 + u(ki − 1)
3 + u(ki − 1)
3 + u(ki − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.101)

The predictive control system is solved by optimizing the objective function
(2.94) subject to the constraints defined in (2.101). Figure 2.13 shows the
optimal solution for the three components in ∆U . It is seen that all constraints
are satisfied. With this predictive control, the plant control, output and ∆u(k)
signals are shown in Figure 2.14. In order to see the improvement of this case
over the previous case in Example 2.18, the three signals are compared with
these obtained when the constraints on the first sample are imposed.

There is some improvement in the performance with a slightly smaller
over-shoot in the output response. However, the difference is very small, as
viewed in Figure 2.14.

2.5.4 Constraints on the Output Variable

In this section, we investigate the case where the constraints are imposed on
the output variable. Here, we will use a state-space model that has the state
variables measurable.

Example 2.20. Assume that a discrete-time system is described by the z-
transfer function

Y (z)

U(z)
=

0.0048z + 0.0047

(z − 1)(z − 0.9048)
,
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Fig. 2.13. All control elements with constraints. Key: line (1) ∆u(ki); line (2)
∆u(ki + 1); line (3) ∆u(ki + 2)
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Fig. 2.14. Comparison of results between Examples 2.18 and 2.19. Key: line (1)
solution with constraints on all future control; line (2) solution with constraints on
the first sample of future control

which corresponds to the equation with shift operator q,

(q2 − 1.9048q + 0.9048)y(k) = (0.0048q + 0.0047)u(k),

where qy(k) = y(k + 1) and qu(k) = u(k + 1). Choosing the state variable
xm(k) = [y(k) y(k−1) u(k−1)]T , the state-space model with this set of state
variables is given by

⎡

⎣

y(k + 1)
y(k)
u(k)

⎤

⎦ =

⎡

⎣

1.9048 −0.9048 0.0047
1 0 0
0 0 0

⎤

⎦

⎡

⎣

y(k)
y(k − 1)
u(k − 1)

⎤

⎦ +

⎡

⎣

0.0048
0
1

⎤

⎦u(k)

y(k) =
[
1 0 0

]
xm(k). (2.102)
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Because the variables in xm(k) are measurable, there is no need to use an
observer in the implementation of the predictive control system.

Assume that Np = 46, Nc = 8, and R̄ = 0.1 × I. Here, with zero initial
conditions of the state variables, a unit step set-point change occurs at sample
time k = 0. Then at k = 20, an input unit step disturbance is introduced into
the system and at k = 40, a negative unit input disturbance is introduced.
The operating constraint is that

0 ≤ y(k) ≤ 1.

Design and simulate the predictive control system with output constraints.
Also, examine the case when the following input constraints are present,

−1.2 ≤ u(k) ≤ 1.8, − 0.5 ≤ ∆u(k) ≤ 0.5.

For simplicity, all constraints are imposed on the first sample of the signals in
the optimization window.

Solution. With the performance specification, we design a predictive control
system with constraints. Figure 2.15 shows the closed-loop response of the
constrained control system. It is seen from the plots that the constraints on
the output are satisfied. At sampling time k = 13 and k = 23, the constraints
are active, where we notice two separate sharp drops occurring in the control.
The first is due to the slight over-shoot in the set-point change, and the second
is due to the input disturbance. By comparing the control signals with and
without constraints, we also notice that there are sharp changes on the ∆u(k)
as well as on the control signal u(k) in order to satisfy the constraints on the
output. These two sharp changes on both control and increment of control at
the same time instant could cause violation of constraints if constraints on the
control signal are imposed. We illustrate this by continuing this study with
additional constraints on the control.

Now, suppose that there are constraints on the input variables as well as
the output variable. With the identical simulation conditions, the constraints
on the input variables and output variable are

−1.2 ≤ u(k) ≤ 1.8, − 0.5 ≤ ∆u(k) ≤ 0.5, 0 ≤ y(k) ≤ 1.

Figure 2.16 shows the closed-loop predictive control responses in the presence
of the constraints. It is seen from the plots that the output constraints are
satisfied. However, the constraints on both the amplitude and increment of
the control are violated when the sharp adjustment of control is generated
in order to satisfy the constraint on the output. The active constraints on
input and output at the same sampling instant become linearly dependent.
Therefore, something has to give. Here, without any interferring, Hildreth’s
programming algorithm chose a solution that satisfies the output constraint
and relaxed the input constraints.
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Fig. 2.15. Predictive control with output constraints 0 ≤ y(k) ≤ 1. Solid line
constrained response; solid dotted line unconstrained response
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Fig. 2.16. Predictive control with constraints. −1.2 ≤ u(k) ≤ 1.8, −0.5 ≤ ∆u(k) ≤
0.5, 0 ≤ y(k) ≤ 1

2.6 Summary

This chapter has discussed discrete-time model predictive control with con-
straints. Imposing constraints in the design and implementation of predictive
control system involves the following steps:

1. Defining plant operational limits, including limits on the input variables,
the incremental change of the input variables, state variables and plant
output variables.
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2. Expressing these limits as parameters for the minimum and maximum of
u, ∆u, xm and y, with consideration of steady-state information.

3. With parameterization of the future control trajectory, these minimum
and maximum values are expressed in the form of inequalities with ∆u(ki),
∆u(ki + 1), . . ., ∆u(ki + Nc − 1) as the variables.

4. The design objective of model predictive control becomes the minimization
of the original error function subject to the inequality constraints, where
the set of parameters ∆u(ki), ∆u(ki + 1), . . ., ∆u(ki + Nc − 1) become
decision variables.

5. Solving the constrained optimization problem using a quadratic program-
ming procedure at every sampling instance to obtain the optimal solution
of the decision variables.

Because the constraints are expressed in terms of inequalities (constraints may
or may not be violated at a particular time), in general there is no closed-form
solution of the constrained control problem, unless the set of active constraints
are known. If the active constraints are known, the optimal solution of the
decision variables is expressed in a closed-form. In this chapter, instead of
solving the decision variables iteratively, Hildreth’s programming procedure
was used to identify the active constraints via Lagrange multipliers (or the
dual variables). Although it is still a quadratic programming problem on the
dual variables, the constraints are much simplified (λ ≥ 0 ) so a simple it-
erative procedure was used to obtain the optimal solution of the multipliers.
Perhaps even more importantly, the iterative solution does not involve matrix
inversion, so in the situation of conflict constraints, the algorithm still deliv-
ers a compromised, sub-optimal solution without being numerically unstable.
This is particularly important in the real-time implementation of the predic-
tive control system.

There is a rich literature on the topic of predictive control with constraints.
The primal methods have dominated the numerical solutions in the classical
literature (see for example, Muske and Rawlings, 1993, Ricker, 1985, Zafiriou,
1991) until more recent years specially tailored interior-point methods ap-
plicable to MPC have appeared (Rao et al., 1998, Gopal and Biegler, 1998,
Hansson, 2000). Some attempts have been made to find analytical solutions
(see for example, Bemporad et al., 1999, Seron et al., 2000). A study done by
Zheng (1999) has indicated that for stable systems, reducing the number of
constraints on the future control movements could cause little performance de-
terioration. Another interesting approach to the constrained control problem
was proposed by Rossiter and Kouvaritakis (1993) where it was solved itera-
tively using a weighted least squares type of algorithm (Lawson’s algorithm).
In Tsang and Clarke (1988), optimal solutions were derived for constrained
GPC of SISO systems with a control horizon of 1 or 2. The essence of their
approach was to take a ‘guess’ at the active constraints for the two special
cases and apply the closed-form solution.
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Problems

2.1. Assume that the set of constraints is defined by

x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 3, 2x1 − x2 ≤ 4, x2 ≤ 2,

and the objective function is

J =
1

2
xT Ex + xT F,

where E =

[
3 1
1 1

]

and F =
[
−15 −7

]
.

1. Find the unconstrained minimum of the objective function J .
2. How many constraints are violated with this global optimal solution?
3. Draw the linear inequality constraints on (x1, x2) plane, also mark the

global optimal solution on the plane. From this plot, take a guess at the
active constraints for this constrained optimization problem. Validate your
guess by treating the active constraints as equality constraints.

4. If your initial guess is not correct, take another guess at the active con-
straints until the validation shows that you have correctly found the set
of active constraints.

5. What have you learned from this exercise?

2.2. Continue from Problem 2.1. Find the constrained minimum of J by using
Hildreth quadratic programming method and compare with the answer you
obtained from Problem 2.1.

2.3. Consider the discrete-time DC motor model
[

x1(k + 1)
x2(k + 1)

]

=

[
0.9048 0
0.0952 1

] [
x1(k)
x2(k)

]

+

[
0.0952
0.0048

]

u(k)

y(k) =
[
0 1

]
[

x1(k)
x2(k)

]

. (2.103)

Assuming the measurement of shaft position, design a predictive control sys-
tem that will follow a unit set-point signal with constraints. The closed-loop
observer system has poles at 0.1, 0.2 and 0.3, and the control signal satisfies
the constraints

0 ≤ u(k) ≤ 0.6; − 0.2 ≤ ∆u(k) ≤ 0.2.

The prediction horizon Np = 60, and control horizon Nc = 5; R̄ = I. The
initial conditions of the plant state variable vector and the observer states are
assumed to be zero.
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2.4. Transportation of materials in a feedback manner is often called plant
with recycle characteristics, which is essentially embedded with time delays in
the continuous-time transfer function. An irrational continuous-time transfer
function used to describe such a process is given by

Gp(s) =
1

s + 1 − e−s−2
. (2.104)

In order to design a feedback control system for this process, one of the ap-
proaches is to approximate the continuous-time transfer function with a ratio-
nal one. Such a continuous-time transfer function approximation (Wang and
Cluett, 2000) is found by using a Laguerre model (see Figure 2.17), and has
the form

G(s) =
1.0117s2 + 2.1709s + 1.4949

(s + 1.09)3
.

Assume that the control objective of the predictive control system is to main-
tain the output to be constant while rejecting input step disturbance. Choos-
ing the sampling interval ∆t = 0.2, R̄ = I, Nc = 4, Np = 20, design a
discrete-time model predictive control system with constraints, assuming a
unit step set-point signal and zero initial conditions on the state variables,
where the constraints are specified as

−0.1 ≤ ∆u(k) ≤ 0.1; 0 ≤ u(k) ≤ 1.1.

An observer may be used in the control system, where the closed-loop poles of
the observer are chosen to be 0.1,0.2, 0.3 and 0.4. The constraints are imposed
on the first two samples of the variables. Simulate the nominal closed-loop
performance by assuming zero initial conditions of u and y. In this simulation,
the plant is assumed to be identical to the approximate model.



3

Discrete-time MPC Using Laguerre Functions

3.1 Introduction

In essence, the core technique in the design of discrete-time MPC is based on
optimizing the future control trajectory, that is the difference of the control
signal, ∆u(k). By assuming a finite control horizon Nc, the difference of the
control signal ∆u(k) for k = 0, 1, 2, . . . , Nc−1 is captured by the control vector
∆U while the rest of the ∆u(k) for k = Nc, Nc + 1, . . . , Np is assumed to be
zero. In the examples encountered before, there were cases where the neglected
trajectory ∆u(k) was not zero, however, it was small in its magnitude. The
idea in this chapter is to generalize the design procedure by introducing a set
of discrete orthonormal basis functions into the design. For the present, let us
focus on the basic ideas by treating it as a generalization of the basic approach.
This generalization will help us in reformulating the predictive control problem
and simplifying the solutions, in addition to tuning the predictive control
system. Furthermore, a long control horizon can be realized without using
a large number of parameters. Several MATLAB tutorials are presented in
this chapter for the design of discrete-time predictive control systems, with or
without constraints.

3.2 Laguerre Functions and DMPC

For notational simplicity the single-input and single-output case is examined
first, and the results are extended to multi-input and multi-output cases later
in the chapter.

Recall that the control vector that is optimized in the design of predictive
control is ∆U , defined by

∆U =
[
∆u(ki) ∆u(ki + 1) . . . ∆u(ki + Nc − 1)

]T
,

where the dimension of the control vector is Nc, called the control horizon.
At time ki, any element within ∆U can be represented using the discrete
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δ-function in conjunction with ∆U

∆u(ki + i) =
[
δ(i) δ(i − 1) . . . δ(i − Nc + 1)

]
∆U,

where δ(i) = 1, if i = 0; and δ(i) = 0 if i �= 0. The δ function acts like a
pulse (and is also called the pulse operator), and the function δ(i − d) shifts
the centre of the pulse forward as the index d increases. From this expression,
it is clear that pulse operators are used in capturing the control trajectory
if we regard ∆U as the coefficient vector. It is understood that ∆u(ki + i),
i = 0, 1, . . . , Nc − 1 can be approximated by a discrete polynomial function.
There are many approaches to using discrete polynomial functions. What we
propose here is to use a set of discrete Laguerre functions to approximate the
sequence ∆u(ki), ∆u(ki + 1), . . ., ∆u(ki + Nc − 1). For the time being, let us
introduce discrete-time Laguerre functions, and the reasons for using this set
of functions will be justified later.

3.2.1 Discrete-time Laguerre Networks

The discrete-time Laguerre network was generated from the discretization of a
continuous-time Laguerre network (a more detailed discussion on continuous-
time Laguerre functions can be found in Chapter 5). The z-transforms of the
discrete-time Laguerre networks are written as

Γ1(z) =

√
1 − a2

1 − az−1

Γ2(z) =

√
1 − a2

1 − az−1

z−1 − a

1 − az−1

...

ΓN (z) =

√
1 − a2

1 − az−1
(

z−1 − a

1 − az−1
)N−1, (3.1)

where a is the pole of the discrete-time Laguerre network, and 0 ≤ a < 1 for
stability of the network. The free parameter, a, is required to be selected by
the user; this is also called the scaling factor. The Laguerre networks are well
known for their orthonormality. In the frequency domain, this orthonormality
is expressed in terms of the orthonormal equations for Γm, m = 1, 2, . . ., as

1

2π

∫ π

−π

Γm(ejw)Γm(ejw)∗dw = 1 (3.2)

1

2π

∫ π

−π

Γm(ejw)Γn(ejw)∗dw = 0 m �= n, (3.3)

where A∗ denotes complex conjugate of A. In the design of predictive control,
we explicitly use the Laguerre functions in the time domain. The discrete-
time Laguerre functions are obtained through the inverse z-transform of the
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Fig. 3.1. Discrete Laguerre network

Laguerre networks. However, taking the inverse z-transform of the Laguerre
networks does not lead to a compact expression of the Laguerre functions
in the time-domain. A more straightforward way to find these discrete-time
functions is based on a state-space realization of the networks.

Note that

Γk(z) = Γk−1(z)
z−1 − a

1 − az−1
, (3.4)

with Γ1 =
√

1−a2

1−az−1 . With this relation, the Laguerre network is illustrated in
Figure 3.1.

Letting l1(k) denote the inverse z-transform of Γ1(z, a), l2(k) the inverse
z-transform of Γ2(z, a) and so on to lN(k) the inverse z-transform of ΓN (z, a).
This set of discrete-time Laguerre functions are expressed in a vector form as

L(k) =
[
l1(k) l2(k) . . . lN(k)

]T
.

Taking advantage of the network realization (3.4), the set of discrete-time
Laguerre functions satisfies the following difference equation,

L(k + 1) = AlL(k), (3.5)

where matrix Al is (N×N) and is a function of parameters a and β = (1−a2),
and the initial condition is given by

L(0)T =
√

β
[
1 −a a2 −a3 . . . (−1)N−1aN−1

]
.

For example, in the case where N = 5,

Al =

⎡

⎢
⎢
⎢
⎢
⎣

a 0 0 0 0
β a 0 0 0

−aβ β a 0 0
a2β −aβ β a 0
−a3β a2β −aβ β a

⎤

⎥
⎥
⎥
⎥
⎦

; L(0) =
√

β

⎡

⎢
⎢
⎢
⎢
⎣

1
−a
a2

−a3

a4

⎤

⎥
⎥
⎥
⎥
⎦

.
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The orthonormality expressed in (3.2) and (3.3) also exists in the time domain,
namely

∞∑

k=0

li(k)lj(k) = 0 for i �= j (3.6)

∞∑

k=0

li(k)lj(k) = 1 for i = j. (3.7)

The orthonormality will be used in the design of discrete-time model predictive
control.

The Special Case when a = 0

When a = 0, the Al matrix in (3.5) becomes

Al =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.8)

and the initial condition vector becomes

L(0)T =
[
1 0 0 0 . . . 0

]
.

Then, l1(k) = δ(k), l2(k) = δ(k−1), l3(k) = δ(k−2), . . ., lN (k) = δ(k−N +1),
where δ(i) = 1 when i = 0; and δ(i) = 0 when i �= 0. It is seen that the La-
guerre functions become a set of pulses when a = 0. This is important because
the previous work in the design of predictive control essentially uses this type
of description for the incremental control trajectory, thus the MPC design
using Laguerre functions with a = 0, becomes equivalent to the traditional
approach as we discussed in Chapters 1 and 2.

Example 3.1. Suppose that the pole takes the two different locations a = 0.5
and a = 0.9, respectively, generate the first three Laguerre functions for each
case. Also investigate the orthonormal property of both sets of Laguerre func-
tions in terms of finite sums.

Solution. For a given a, the difference equation for the first three Laguerre
functions is

⎡

⎣

l1(k + 1)
l2(k + 1)
l3(k + 1)

⎤

⎦ =

⎡

⎣

a 0 0
1 − a2 a 0

−a(1 − a2) 1 − a2 a

⎤

⎦

⎡

⎣

l1(k)
l2(k)
l3(k)

⎤

⎦ . (3.9)
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With the initial condition l1(0) =
√

1 − a2, l2(0) = −a
√

(1 − a2) and

l3(0) = a2
√

(1 − a2), the Laguerre functions are calculated iteratively. Figure
3.2 shows the Laguerre functions for a = 0.5 and a = 0.9 respectively. It is
seen that with a = 0.5, the Laguerre functions decay to zero in less than 15
samples. By contrast, with a = 0.9, the Laguerre functions decay to zero at a
much slower speed (approximately 50 samples are required). Also, the initial
values for the Laguerre functions with the smaller a value are larger than the
corresponding functions with a larger a, particularly with the first function in
each set. To investigate the orthonormal property of the Laguerre functions,
we calculate the finite sums, for a = 0.5 (S1) and for a = 0.9 (S2)

S1 =

19∑

k=0

L(k)L(k)T ; S2 =

50∑

k=0

L(k)L(k)T

The matrices S1 and S2 are

S1 =

⎡

⎣

1.0000 −0.0000 −0.0000
−0.0000 1.0000 −0.0000
−0.0000 −0.0000 1.0000

⎤

⎦ ; S2 =

⎡

⎣

1.0000 −0.0003 −0.0012
−0.0003 0.9970 −0.0129
−0.0012 −0.0129 0.9430

⎤

⎦ .

It is seen that S1 is an identity matrix (to 4-digit accuracy), however, S2 is
not an identity matrix. When we increase the number of samples from 50 to
90, and a = 0.9, we obtain that

S2 =
90∑

k=0

L(k)L(k)T =

⎡

⎣

1.0000 −0.0000 −0.0000
−0.0000 1.0000 −0.0000
−0.0000 −0.0000 0.9998

⎤

⎦ ,

which is much closer to an identity matrix. This illustrates that the number
of samples required to achieve the orthonormality is dependent on the choice
of the scaling factor a and the number of terms N .
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Fig. 3.2. Laguerre functions. Key: line (1) l1(.); line (2) l2(.); and line (3) l3(.)
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3.2.2 Use of Laguerre Networks in System Description

The application of Laguerre networks so far is mainly in the area of system
identification, where the discrete-time impulse response of a dynamic system
is represented by a Laguerre model (see Wahlberg, 1991). In this regard,
suppose that the impulse response of a stable system is H(k), then with a
given number of terms N , H(k) is written as

H(k) = c1l1(k) + c2l2(k) + . . . + cN lN (k), (3.10)

where c1, c2, . . ., cN are the coefficients to be determined from the system
data. The discrete-time Laguerre functions are orthonormal functions, and
with these orthonormal properties, the coefficients of the Laguerre network
are defined by the following relation, where i = 1, 2, . . . , N

ci =
∞∑

k=0

H(k)li(k).

In fact, because of the orthornomal properties, the coefficients also minimize
the sum of the squared error function

JSE =

∞∑

k=1

(

H(k) −
∑N

i=1 cili(k)
)2

.

In a similar spirit to the approximation in the continuous-time domain (see
Chapter 5), the approximation to H(k) improves as the number of terms N
increases, independent of the choice of the parameter 0 ≤ a < 1.

It is the description of the discrete-time impulse response that leads to
the design of predictive control using Laguerre functions. The parameters in
the description are the Laguerre pole location a and the number of terms
N . In order to understand how to use a Laguerre network to describe an
impulse response, the following MATLAB tutorial is presented so that we can
experience the modelling process. We can also use this tutorial to obtain a
Laguerre dynamic model for the design of discrete-time MPC.

3.2.3 MATLAB Tutorial: Use of Laguerre Functions
in System Modelling

Tutorial 3.1. Suppose that a discrete-time system has the z-transfer function

G(z) =
z − 0.1

(z − 0.8)(z − 0.9)
.

Use a third order Laguerre network (N = 3) to approximate the impulse
response of this discrete-time system. Observe how the choice of parameters
N and a affects the accuracy of the approximation.
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Step by Step

1. Create a new file called lagd.m.
2. The following program generates the initial condition of the Laguerre func-

tion L(0) and the state-space system matrix Al. Because Al is a Toeplitz
matrix, we generate its first column, and shift the first column to obtain
the rest of the columns.

3. Enter the following program into the file:

function [A,L0]=lagd(a,N)

v(1,1)=a;

L0(1,1)=1;

for k=2:N

v(k,1)=(-a).^(k-2)*(1-a*a);

L0(k,1)=(-a).^(k-1);

end

L0=sqrt((1-a*a))*L0;

A(:,1)=v;

for i=2:N

A(:,i)=[zeros(i-1,1);v(1:N-i+1,1)];

end

4. Create a new file called lagdmodel.m
5. The discrete-time impulse response of the system is generated for the nu-

merical experiment. MATLAB function dimpule.m is used to obtain the
impulse response data from a transfer function model.

6. Enter the following program into the file:

clear

numd=[1 -0.1];

dend=conv([1 -0.8],[1 -0.9]);

N_sim=60;

k=0:(N_sim-1);

H=dimpulse(numd,dend,k);

7. The discrete-time Laguerre functions are generated for a given a and N .
Continue entering the following program into the file:

a=0.8;

N=3;

[A1,L0]=lagd(a,N);

L(:,1)=L0;

for kk=2:N_sim;

L(:,kk)=A1*L(:,kk-1);

end

8. The coefficients of the Laguerre model are computed. Continue entering
the following program into the file:
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c1=L(1,:)*H;

c2=L(2,:)*H;

c3=L(3,:)*H;

H_model=c1*L(1,:)+c2*L(2,:)+c3*L(3,:);

figure

plot(k,H)

hold on

plot(k,H_model,’LineWidth’,2,’Color’,[.8 0 0])

set(gca,’FontSize’,20,’FontName’,’helvetica’);

legend(’data’,’model’)

xlabel(’Sampling Instant’)

ylabel(’Impulse Response’)

9. Run the program lagdmodel.m to produce the response of the Laguerre
model for comparison with the actual data.

10. You may check the orthonormality of the Laguerre functions by typing in
the work space

L(:,1)*L(:,1)’

L(:,1)*L(:,2)’

11. Try increasing the parameter N to 4 and see the improvement of the mod-
elling results.

12. Try to determine the effect of the pole location a on the modelling results.
For instance, try a = 0.

Figure 3.3 shows the modelling results for N = 3 and N = 4 with a = 0.8.
When N increases to 4, the modelling result is improved. One observation
is that when N = 4, there are only 4 parameters to be used in capturing
the dynamics of the impulse response. In contrast, in the case of a = 0, i.e.,
the pulse operator, 60 parameters are required to capture the dynamics of the
system. Therefore, it is understandable that when an appropriate a is selected,
the Laguerre network is much more efficient than the pulse operator model
(i.e., a = 0).

3.3 Use of Laguerre Functions in DMPC Design

The previous chapters saw the design of DMPC using the pulse operator
(i.e., ∆U), which corresponds to the case where the parameter a = 0 in the
Laguerre polynomial. As a consequence, in the case of rapid sampling, com-
plicated process dynamics and /or high demands on closed-loop performance,
satisfactory approximation of the control signal ∆u may require a very large
number of parameters, leading to poorly numerically conditioned solutions
and heavy computational load when implemented on-line. Instead, a more
appropriate approach is to use Laguerre networks in the design of model pre-
dictive control. For example, supposing that the underlying optimal control
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Fig. 3.3. Comparison between actual data and Laguerre model response

trajectory was the impulse response of the second-order system in Figure
3.3, then when a = 0 which was the case of the pulse operator, there are
60 parameters required to capture the response. However, with the Laguerre
polynomial with a = 0.8, there were only 4 parameters required to perform
the same task.

3.3.1 Design Framework

At time ki, the control trajectory ∆u(ki), ∆u(ki +1), ∆u(ki +2), . . ., ∆u(ki +
k), . . ., is regarded as the impulse response of a stable dynamic system. Thus,
a set of Laguerre functions, l1(k), l2(k), . . . , lN (k) are used to capture this
dynamic response with a set of Laguerre coefficients that will be determined
from the design process. More precisely, at an arbitrary future sample instant
k,

∆u(ki + k) =

N∑

j=1

cj(ki)lj(k), (3.11)

with ki being the initial time of the moving horizon window and k being
the future sampling instant; N is the number of terms used in the expansion
and cj , j = 1, 2, . . . , N , are the coefficients, and they are functions of the
initial time of the moving horizon window, ki. Within this design framework,
the control horizon Nc from the previous approach has vanished. Instead,
the number of terms N is used to describe the complexity of the trajectory
in conjunction with the parameter a. For instance, a larger value of a can be
selected to achieve a long control horizon with a smaller number of parameters
N required in the optimization procedure. We note that when a = 0, N = Nc,
and we recover the traditional approach of previous chapters.

Equation (3.11) may also be written in a vector form:

∆u(ki + k) = L(k)T η, (3.12)
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where the parameter vector η comprises N Laguerre coefficients:

η =
[
c1 c2 . . . cN

]T
,

and L(k)T is the transposed Laguerre function vector as defined in the dif-
ference equation (3.5). When using Laguerre functions, given the state-space
model (A, B, C) with ∆u(.) as the input signal with the initial state variable
information x(ki), the prediction of the future state variable, x(ki + m | ki)
at sampling instant m, becomes

x(ki + m | ki) = Amx(ki) +

m−1∑

i=0

Am−i−1BL(i)T η, (3.13)

where we replaced the function ∆u(ki+i) by L(i)T η. Similarly, upon obtaining
the prediction of state variables, the prediction for the plant output at future
sample m is

y(ki + m | ki) = CAmx(ki) +
m−1∑

i=0

CAm−i−1BL(i)T η. (3.14)

With this formulation, both predictions of state variable and output variable
are expressed in terms of the coefficient vector η of the Laguerre network,
instead of ∆U as in the more traditional approach. Thus, the coefficient vector
η will be optimized and computed in the design.

3.3.2 Cost Functions

Although the model predictive control algorithms in Chapters 1 and 2, pre-
sented in matrix vector forms, are easy to understand and the implementation
is simple, it requires a large computer memory to form and store the system
data matrices. Here, with the Laguerre functions, an alternative formulation
of the cost function is obtained, and this may be easier from the program-
ming point of view, particularly for systems with a large number of inputs and
outputs. In the first instant, let us keep things simple by assuming a SISO
system. Recall from Chapter 1 that at time ki the set-point signal, Rs is a
constant vector within the prediction horizon, and the original cost function
is

J = (Rs − Y )T (Rs − Y ) + ∆UT R̄∆U,

where

Y =
[
y(ki + 1 | ki) y(ki + 2 | ki) y(ki + 3 | ki) . . . y(ki + Np | ki)

]T
,

∆U =
[
∆u(ki) ∆u(ki + 1) ∆u(ki + 2) . . . ∆u(ki + Nc − 1)

]T
,
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RT
s =

Np

︷ ︸︸ ︷
[
1 1 . . . 1

]
r(ki),

and R̄ is a diagonal matrix with identical element rw. Noting that Y and ∆U
are in a vector form, this cost function is equivalent to

J =

Np∑

m=1

(
r(ki) − y(ki + m | ki)

)T (
r(ki) − y(ki + m | ki)

)
+ ηT RLη, (3.15)

where RL is a diagonal matrix (N × N) with an rw ≥ 0 on its diagonal and
r(ki) is the set-point signal for the output y at time ki. In (3.15), we have
used the orthonormal properties of the Laguerre functions in the way that

∆UT R̄∆U =

Np∑

m=0

∆u(ki + m)T rw∆u(ki + m),

with
∆u(ki + m) =

[
l1(m) l2(m) . . . lN (m)

]
η

and the orthonormal property of the Laguerre functions (see (3.6) and (3.7))
with a sufficiently large prediction horizon Np so that

Np∑

m=0

li(m)lj(m) = 0 for i �= j

Np∑

m=0

li(m)lj(m) = 1 for i = j.

Here, the large value of Np is related to the choice of both the scaling factor
a and N . We have investigated this issue in Example 3.1.

The cost function (3.15) is based on the minimization of the error between
the set-point signal and the output signal. The reasons for this choice include
simplicity, practicality of the cost and its relevance to applications, and its
similarity to the classical predictive control systems. Here, the cost function is
re-formulated with a link to discrete-time linear quadratic regulators (DLQR)
(see (3.36) to (3.38)), where the objective is to find the coefficient vector η to
minimize the cost function:

J =

Np∑

m=1

x(ki + m | ki)
T Qx(ki + m | ki) + ηT RLη, (3.16)

with the weighting matrices Q ≥ 0 and RL > 0. In particular, Q has the
dimension equal to the number of state variables and RL has the dimension
equal to dimension η. The reason for this re-formulation is to connect the
discrete-time MPC with the DLQR system so that the numerous classical
results in DLQR will lend themselves to the analysis, tuning and design of
discrete-time MPC. To this end, let us compare the cost function (3.16) with
the cost function (3.15).
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Regulator Design where the Set-point r(k) = 0

When the set-point signal r(k) = 0, if Q is chosen to be CT C, then the cost
(3.16) is identical to (3.15). Note that the set-point signal r(k) represents an
incremental change of the plant operating condition, where r(k) = 0 means
that the plant output maintains its steady-state operation. Thus, traditionally,
the cost (3.16) is often used in regulator design where the purpose of the
control is to maintain closed-loop stability and reject disturbances occurring
in the plant.

Inclusion of Set-point Signal r(k) �= 0

In order to include the set-point signal in the cost function (3.16), we need to
re-define the state variable x(ki+m | ki). Recall that in the original augmented
model, the output matrix C is defined as

C =
[
0 0 . . . 0 1

]
,

and the state variable vector x(k) =
[
∆xm(k)T y(k)

]T
. We choose a vector

xr(ki), where xr(ki) is defined by

xr(ki) =
[
0 0 . . . 0 r(ki)

]T
,

which has the same dimension as the augmented state variable x(.), with
the number of zeros identical to the dimension of ∆xm(k). This will lead to
r(ki) = Cxr(ki). Also, note that in the prediction and optimization, the set-
point signal r(ki) remains unchanged within the optimization window. Thus,
with the inclusion of a set-point signal r(ki), within the optimization window,
if the state variable x(ki + m | ki) is chosen to be

x(ki + m | ki) =
[
∆xm(ki + m | ki)

T y(ki + m | ki) − r(ki)
]T

,

then the cost function for minimization of output errors (see (3.15)) is identical
to the cost function:

J =

Np∑

m=1

x(ki + m | ki)
T Qx(ki + m | ki) + ηT RLη, (3.17)

with Q = CT C, which is (3.16). It is emphasized that this inclusion of the set-
point signal in the cost function does not alter the model used for prediction.
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3.3.3 Minimization of the Objective Function

Recall from (3.13) that

x(ki + m | ki) = Amx(ki) +

m−1∑

i=0

Am−i−1BL(i)T η

= Amx(ki) + φ(m)T η, (3.18)

where the matrix φ(m)T =
∑m−1

i=0 Am−i−1BL(i)T .
Note that the number of rows in φ(m) is identical to the number of rows

in η. By substituting (3.18) into the cost function (3.16), we obtain

J = ηT
(
∑Np

m=1 φ(m)Qφ(m)T + RL

)

η

+ 2ηT
(
∑Np

m=1 φ(m)QAm
)

x(ki) +

Np∑

m=1

x(ki)
T (AT )mQAmx(ki).(3.19)

To find the minimum of (3.19), without constraints, we use the partial deriv-
ative of the cost function:

∂J

∂η
= 2

(
∑Np

m=1 φ(m)Qφ(m)T + RL

)

η + 2
(
∑Np

m=1 φ(m)QAm
)

x(ki). (3.20)

Assuming that
(
∑Np

m=1 φ(m)Qφ(m)T + RL

)−1

exists, when ∂J
∂η = 0, the op-

timal solution of the parameter vector η is

η = −
(
∑Np

m=1 φ(m)Qφ(m)T + RL

)−1 (
∑Np

m=1 φ(m)QAm
)

x(ki). (3.21)

For simplicity of the expression, we define

Ω =
(
∑Np

m=1 φ(m)Qφ(m)T + RL

)

(3.22)

Ψ =
(
∑Np

m=1 φ(m)QAm
)

, (3.23)

leading to
η = −Ω−1Ψx(ki). (3.24)

The Minimum of the Cost

The minimum value of the cost, Jmin, is of interest to us. To find the minimum,
we complete the square
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J = ηT
(
∑Np

m=1 φ(m)Qφ(m)T + RL

)

η

+ 2ηT
(
∑Np

m=1 φ(m)QAm
)

x(ki) +

Np∑

m=1

x(ki)
T (AT )mQAmx(ki)(3.25)

=
(
η + Ω−1Ψx(ki)

)T
Ω

(
η + Ω−1Ψx(ki)

)

− x(ki)
T ΨT Ω−1Ψx(ki) +

Np∑

m=1

x(ki)
T (AT )mQAmx(ki). (3.26)

Therefore, with the optimal solution (3.21), the minimum of the cost function
is

Jmin = x(ki)
T

(
∑Np

m=1(A
T )mQAm − ΨT Ω−1Ψ

)

x(ki) (3.27)

= x(ki)
T Pdmpcx(ki), (3.28)

where the matrix Pdmpc =
∑Np

m=1(A
T )mQAm − ΨT Ω−1Ψ .

3.3.4 Convolution Sum

To compute the prediction, the convolution sum

Sc(m) =

m−1∑

i=0

Am−i−1BL(i)T

needs to be computed. To this end, note that

Sc(1) = BL(0)T

Sc(2) = ABL(0)T + BL(1)T = ABL(0)T + BL(0)T AT
l = ASc(1) + Sc(1)AT

l

Sc(3) = A2BL(0)T + ABL(1)T + BL(2)T

= ASc(2) + Sc(1)(A2
l )

T , (3.29)

where we have used the relation L(k + 1) = AlL(k) which is the difference
equation for generating the set of Laguerre functions in (3.5). Continuing the
recursion in (3.29) reveals that

Sc(m) = ASc(m − 1) + Sc(1)(Am−1
l )T , (3.30)

where Sc(1) = BL(0)T and m = 2, 3, 4, . . . , Np. Note that in the computation
of Sc(.), the Laguerre functions are defined through its state-space formula-
tion. For a given a and N , Al and L(0) are defined according to (3.5).

3.3.5 Receding Horizon Control

Upon obtaining the optimal parameter vector η, the receding horizon control
law is realized as
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∆u(ki) = L(0)T η, (3.31)

where for a given N and a,

L(0)T =
√

(1 − a2)
[
1 −a a2 −a3 · · · (−1)N−1aN−1

]
.

The control ∆u(k) can be written in the form of linear state feedback control
by replacing ki with k (η is a function of state variable x(ki)). Namely,

∆u(k) = −Kmpcx(k), (3.32)

and the state feedback gain matrix

Kmpc = L(0)T
(

(
∑Np

m=1 φ(m)Qφ(m)T + RL)−1
∑Np

m=1 φ(m)QAm
)

,

which is simplified in notation as

Kmpc = L(0)T Ω−1Ψ.

Note that in the case when a = 0 (see (3.8)), the solution becomes identical
to the case where we solve ∆U instead of the Laguerre coefficient vector η.

Since the prediction of future states is based on the current information
on x(ki), the set-point information is contained in x(ki). More specifically

x(ki) =
[
∆xm(ki)

T e(ki)
]T

e(ki) = y(ki) − r(ki).

When an observer is used in the design, the information of the observed states
replaces the actual state variables.

3.3.6 The Optimal Trajectory of Incremental Control

In order to understand the behaviour of the DMPC, we present the following
example, which examines the trajectory of the optimal trajectory of ∆u(ki +
m), for m = 0, 1, 2, . . ..

Example 3.2. Suppose that a first-order system is described by the state equa-
tion

xm(k + 1) = 0.8xm(k) + 0.6u(k)

y(k) = xm(k). (3.33)

Given at time ki = 10, the state vector x(ki) = [0.1 0.2]T and a pre-
diction horizon Np = 16, find the optimal trajectory of ∆u(ki + m) for

m = 0, 1, 2, . . . , Np. The design parameters are Q =

[
0 0
0 1

]

, R = 1, and

a = 0.6. Examine solutions where N increases from 1 to 4.
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Table 3.1. Parameters in η

N c1 c2 c3 c4

1 −0.1149

2 −0.1734 0.0804

3 −0.1844 0.1120 −0.0293

4 −0.1842 0.1110 −0.0274 −0.0022

Solution. The augmented state-space equation is
[

∆xm(k + 1)
y(k + 1)

]

=

[
0.8 0
0.8 1

] [
∆xm(k)

y(k)

]

+

[
0.6
0.6

]

∆u(k). (3.34)

With the initial state variable at ki = 10 given as x(ki) = [0.1 0.2]T , the
optimal solution of the parameter vector η is

η = −
(
∑Np

m=1 φ(m)Qφ(m)T + RL

)−1 (
∑Np

m=1 φ(m)QAm
)

x(ki).

The coefficient vector η is presented in the Table 3.1 for N = 1, 2, 3, 4. With
the coefficients from Table 3.1, the optimal control trajectory ∆u(ki + m) is
constructed as, m = 0, 1, 2, . . . , 16,

∆u(ki + m) =

N∑

j=1

cj lj(m).

Figure 3.4a shows ∆u(ki + m) for ki = 10, and m = 0, 1, 2, . . .. It is seen from
this figure that the incremental control signal is almost identical for N = 3
and N = 4. This is confirmed from the output responses for the two cases,
as shown in Figure 3.4b. However, when N = 1, the control trajectory is
very different from the trajectory of N = 3 or 4. The output response from
N = 1 is much slower than the other three cases, because the control signal
is restricted to the first-order response.

Convergence of the Incremental Control Trajectory

Assuming a large prediction horizon Np, we understand from Section 3.2 that
for a given pole a, as N increases, the trajectory ∆u(.) captured by the La-
guerre functions will converge to the function that is being modelled. What is
this function and how can we define it? This underlying function is the incre-
mental control trajectory ∆u(m) with a given initial condition x(ki), defined
by the optimal minimizing solution of

J =

∞∑

m=1

x(ki + m | ki)
T Qx(ki + m | ki) +

∞∑

m=0

∆u(ki + m)T R∆u(ki + m).

(3.35)
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(a) Incremental control signal
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(b) Output response

Fig. 3.4. Comparison of responses within one optimization window. Key: line (1)
N = 1; line (2) N = 2; line (3) N = 3; line (4) N = 4.

The optimal controller that minimizes the cost function is also called a
discrete-time linear quadratic regulator (DLQR) (Kailath, 1980, Bay, 1999,
Grimble and Johnson, 1988a). The solution for this discrete-time regulator
is found through the following steps. Firstly the algebraic Riccati equation
(3.36) is solved for the Riccati matrix P∞; secondly, the matrix P∞ is used to
construct the state feedback gain matrix K using (3.37); thirdly the feedback
control signal is defined using K and the state variable x(k) using (3.38).

AT
(
P∞ − P∞B(R + BT P∞B)−1BT P∞

)
A + Q − P∞ = 0 (3.36)

K =
(
R + BT P∞B

)−1
BT P∞A (3.37)

∆u(k) = −Kx(k). (3.38)

With the given initial condition x(ki), this optimal control ∆u(k), k =
0, 1, 2, . . . , is the control trajectory that the Laguerre functions are to cap-
ture when N is large. This control trajectory is unique for a specific choice of
Q and R matrices.

Let us illustrate these points using the following example.

Example 3.3. Illustrate that as N increases, for a given Laguerre pole a, the
control trajectory converges to the optimal solution generated by using a
linear quadratic regulator. Use the same system and design parameters as in
Example 3.2, where the augmented system model is described by the matrices,

A =

[
0.8 0
0.8 1

]

; B =

[
0.6
0.6

]

; C =
[
0 1

]
.
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Table 3.2. Sum of squared errors between the control trajectories

N 1 2 3 5

E 0.0179 0.0018 1.384 × 10−4 7.3913 × 10−6

Solution. We use the MATLAB program called ‘dlqr’ to find the state-
feedback control gain matrix K as

K = [0.8350 0.6113].

for which we use the MATLAB Script

[K,P,Z]=dlqr(A,B,Q,R);

where Q = CT C and R = 1. Then the optimal control trajectory from the
linear quadratic regulator is described by

∆u(ki + m) = −K(A − BK)mx(ki),

where m = 0, 1, 2, . . ..
We use a = 0.6, and compute the set of the control trajectories with

N = 1, 2, 3 and 5. The sum of squared errors between the DLQR and DMPC
trajectories is calculated as E = ||∆ulqr − ∆umpc||22, where Table 3.2 shows
how the error decreases as N increases. Furthermore, Figure 3.5a compares
the control trajectory obtained from DLQR with the lower-order Laguerre de-
scription (N = 3, a = 0.6 ), where we can see there is a difference between the
two trajectories. However, by increasing N to 5, the two control trajectories
become almost identical as shown in Figure 3.5b.

To illustrate that the performance is determined by Q and R matrices, we
examine the situation when R varies, while the matrix Q is selected as CT C.
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Fig. 3.5. Comparison of ∆u within one optimization window using DLQR and
using Laguerre functions
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Example 3.4. Continue the study from Example 3.3 with the identical system
and design parameters, except that the weight on the control is reduced from
R = 1 to R = 0.1. Examine the incremental control trajectory ∆u(ki +m) for
this performance specification, and compare the trajectory with the one from
DLQR solution.

Solution. With a = 0.6, N = 5, R = 0.1, Np = 16,

x(ki) = [0.1 0.2]T ; Q =

[
0 0
0 1

]

,

the Laguerre coefficient vector η is calculated as

η = −
(
∑Np

m=1 φ(m)Qφ(m)T + RL

)−1 (
∑Np

m=1 φ(m)QAm
)

x(ki),

which gives the value of η as

η =
[
−0.2253 0.2189 −0.1486 0.0777 −0.0354

]T
.

Using η, the incremental control trajectory is constructed as

∆u(ki + m) = L(m)T η,

where L(m) is the Laguerre function vector.
In comparison with the optimal control trajectory from DLQR, the optimal

control gain vector is found using the performance matrices Q and R, with
the value

K = [1.1485 1.1775],

and the control trajectory is generated using

∆u(ki + m) = −K(A − BK)mx(ki).

With a smaller weight R = 0.1, the feedback control gain K has increased
from that in Example 3.3. The DLQR control trajectory has also changed from
that in Figure 3.5, where faster response speed is observed. Figure 3.6 shows
the comparison results between the Laguerre based DMPC and the DLQR.
The sum of squared errors between the control trajectories is calculated as
E = ||∆ulqr − ∆umpc||22 = 3.44 × 10−4, which is larger than the previous
case, indicating that the scaling factor a = 0.6 is not as suitable for this case
because the control trajectory has a faster decay rate. However, the difference
is very small.

Closed-loop Poles of a DLQR System

In the DLQR design, when we choose Q = CT C, the closed-loop poles are
uniquely determined by the weighting parameter R = rw > 0 in the single-
input and single-output case (see Kailath, 1980) with their values given by
the inside-the-unit-circle zeros of the equation,
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Fig. 3.6. Comparison of ∆u and output response within one optimization window
using DLQR and using Laguerre functions

1 +
1

rw

Gm(z)Gm(z−1)

(z − 1)(z−1 − 1)
= 0. (3.39)

In the multi-input and multi-output case, when the weighting matrices
Q = CT C, and R = rwI, the closed-loop poles are the inside-the-unit-circle
zeros of the equation,

det(I +
1

rw

Gm(z)Gm(z−1)T

(z − 1)(z−1 − 1)
) = 0,

where Gm(z) = Cm(zI − Am)−1Bm is the z-transfer function for the plant.
We verify this property by re-examining solutions from the previous ex-

amples 3.2, 3.3, 3.4. The plant z-transfer function used in these examples is

Gm(z) =
0.6

z − 0.8
.

The equation corresponding to (3.39) for R = 1 is

1 +
0.36

(z − 0.8)(z−1 − 0.8)(z − 1)(z−1 − 1)
= 0. (3.40)

The zeros are 1.5589± j0.9563, 0.4661 ± j0.2859 from which the closed-loop
poles of the DLQR system are found to be 0.4661± j0.2859.

When we reduced R from 1 to 0.1, the equation corresponding to (3.39) is

1 +
3.6

(z − 0.8)(z−1 − 0.8)(z − 1)(z−1 − 1)
= 0. (3.41)

The zeros are 1.8228± j2.3858, 0.2022 ± j0.2647 from which the closed-loop
poles of the DLQR system are found to be 0.2022±j0.2647. Indeed, these pole
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locations are confirmed with the computation of the actual closed-loop poles
through the system matrix A−BKlqr. In addition, we can see that when the
weight parameter R is reduced, the closed-loop poles move towards the origin
of the complex plane, hence the closed-loop response speed is faster, as we
have observed from the responses in the examples.

Use of Laguerre Parameters as Tuning Parameters

The choice of a scaling factor a and a smaller N for the Laguerre functions af-
fects the closed-loop performance of the DMPC system, although for a large N
the performance converges to the underlying optimal DLQR system. However,
when N is small, the potential here is to use a as the performance fine-tuning
‘knob’. To illustrate these points, we consider the following example.

Example 3.5. Suppose that a continuous-time system is described by the
transfer function

G(s) =
s − 3

s2 + 2ξωs + ω2
,

where ξ = 0.3 and ω = 3. Suppose that the sampling interval ∆t = 0.1, and the
weight matrices are Q = CT C with C = [0 0 1] and R = 0.3. The prediction
horizon is chosen to be Np = 36. Examine the effect of parameter a and N on
the closed-loop performance. Assume at time ki = 10, x(ki) = [0.1 0.2 0.3]T .

Solution. With ∆t = 0.1, the augmented discrete-time state-space model is

x(k + 1) =

⎡

⎣

0.7956 −0.8114 0
0.0902 0.9579 0
0.5252 −3.6850 1.0000

⎤

⎦ x(k) +

⎡

⎣

0.0902
0.0047
0.0761

⎤

⎦∆u(k).

With R = 0.3, the closed-loop poles of the DLQR system are 0.7133±j0.3058,
and 0.7867 with feedback gain Klqr = [5.5331 31.2042 − 1.3752]. Let us look
at two scenarios.

Case A. We fix the parameter N with a large value (N = 8), and vary the
pole location a by choosing a = 0, a = 0.4, and a = 0.8. Table 3.3 shows the
comparison results for the cases where N is large while a changes. It is seen
from Table 3.3 that the closed-loop predictive control system is very similar
to the underlying DLQR system and the effect of a is quite small when N is
large.

Case B. For the second case, we fix N with a smaller value (N = 2), and
vary the parameter a. Table 3.4 summarizes the comparison results. It is seen
that with a smaller N , the closed-loop poles and gain of the predictive control
system are functions of the Laguerre pole a.
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Table 3.3. Closed-loop eigenvalues and feedback gain vector when N = 8 and a
varies from 0 to 0.8

a closed-loop eigenvalues feedback gain

0 0.7082 ± j0.3098, 0.7749 [5.7647 33.4547 − 1.4962]

0.4 0.7133 ± j0.3058, 0.7868 [5.5339 31.2102 − 1.3753]

0.8 0.7144 ± j0.3066, 0.7867 [5.5118 31.1298 − 1.3740]

Table 3.4. Closed-loop eigenvalues and feedback gain vector when N = 2 and a
varies from 0 to 0.9

a closed-loop eigenvalues feedback gain

0 0.7772 ± j0.2359, 0.5955 [6.4138 30.8348 − 1.5625]

0.4 0.6333 ± j0.3069, 0.8523 [6.2820 34.7725 − 1.2397]

0.8 0.7980 ± j0.1978, 0.7875 [3.9763 12.6001 − 0.6232]

0.9 0.8498 ± j0.2298i, 0.8302 [2.4923 7.4413 − 0.4697]

We observe that the parameters a and N affect the closed-loop control per-
formance, particularly when N is small. This is particularly useful in the
situation when the optimal DLQR system does not provide us with satisfac-
tory performance, and these additional tuning parameters help us with fine
tuning of the closed-loop performance.

3.4 Extension to MIMO Systems

In the formulation of MIMO predictive control system, each input signal is
designated to have a Laguerre pole location independently so that its pole
location a can be used to influence the decay rate of the incremental control
signal. For instance, if we want a specific incremental control to decay fast,
then we choose its pole location a = 0, otherwise, a is chosen to be greater
than zero. Bearing this in mind, the description is extended to multi-input
systems with full flexibility in the choice of a and N parameters. Let

∆u(k) =
[
∆u1(k) ∆u2(k) . . . ∆um(k)

]T
,

and the input matrix be partitioned to

B =
[
B1 B2 . . . Bm

]
,

where m is the number of inputs and Bi is the ith column of the B matrix.
We express the ith control signal ∆ui(k) by choosing a scaling factor ai and
order Ni, where ai and Ni are selected for this particular input, such that

∆ui(k) = Li(k)T ηi, (3.42)
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where ηi and Li(k) are the Laguerre network description of the ith control,
specifically

Li(k)T =
[
li1(k) li2(k) . . . liNi

(k)
]
.

Based on the partition of the input matrix and given state variable information
at x(ki), the prediction of the future state at time m is written as

x(ki + m | ki) = Amx(ki)

+

m−1∑

j=0

Am−j−1
[
B1L1(j)

T B2L2(j)
T . . . BmLm(j)T

]
η

= Amx(ki) + φ(m)T η, (3.43)

where the parameter vector η and the data matrix φ(m)T consist of the indi-
vidual coefficient vectors given by

ηT =
[
ηT
1 ηT

2 . . . ηT
m

]

φ(m)T =

m−1∑

j=0

Am−j−1
[
B1L1(j)

T B2L2(j)
T . . . BmLm(j)T

]
.

Note that the kth block matrix

φ(m)T
k =

m−1∑

j=0

Am−j−1BkLk(j)T

has the identical structure as the single-input case defined by Sc(m), thus it
can be computed recursively using (3.30). From here on, the convolution sum
in a multi-input system is decomposed into computing the subsystems, and
the computed results are put together block by block to form the multi-input
structure. We emphasize that in the formulation of the multivariable problem,
the scaling factors ai and the number of terms Ni can be chosen independently
for each input signal.

Similar to the SISO case, the cost function is defined as

J = ηT
(
∑Np

m=1 φ(m)Qφ(m)T + RL

)

η

+ 2ηT
(
∑Np

m=1 φ(m)QAm
)

x(ki) +

Np∑

m=1

x(ki)
T (AT )mQAmx(ki)

= ηT Ωη + 2ηT Ψx(ki) +

Np∑

m=1

x(ki)
T (AT )mQAmx(ki), (3.44)

where the matrices Ω and Ψ are

Ω =

Np∑

m=1

φ(m)Qφ(m)T + RL; Ψ =

Np∑

m=1

φ(m)QAm.
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Without constraints, the optimal solution of the cost function (3.44) is given
by

η = −Ω−1Ψx(ki). (3.45)

Upon obtaining the optimal parameter vector η, the receding horizon control
law is realised as

∆u(ki) =

⎡

⎢
⎢
⎢
⎣

L1(0)T oT
2 . . . oT

m

oT
1 L2(0)T . . . oT

m
...

...
. . .

...
oT
1 oT

2 . . . Lm(0)T

⎤

⎥
⎥
⎥
⎦

η. (3.46)

where oT
k , k = 1, 2, . . .m represents a zero block row vector with identical

dimension to Lk(0)T . The control variable ∆u(k) can be written in the form
of linear state feedback control by replacing ki with k and assuming that
the future reference trajectories are constant within the prediction horizon.
Namely,

∆u(k) = −Kmpcx(k), (3.47)

where the state feedback control gain matrix Kmpc is

Kmpc =

⎡

⎢
⎢
⎢
⎣

L1(0)T oT
2 . . . oT

m

oT
1 L2(0)T . . . oT

m
...

...
. . .

...
oT
1 oT

2 . . . Lm(0)T

⎤

⎥
⎥
⎥
⎦

Ω−1Ψ.

With the definition of state feedback control gain matrix Kmpc, the closed-loop
feedback control is

x(k + 1) = (A − BKmpc)x(k), (3.48)

and closed-loop stability and performance of the predictive control system can
be checked by examining the location of its eigenvalues.

3.5 MATLAB Tutorial Notes

3.5.1 DMPC Computation

This is one of the most important tutorials. The function created in this
exercise will be used for other applications through the remaining chapters in
discrete-time systems. Also, the examples presented before can be repeated
using this function.

Tutorial 3.2. Write a MATLAB function dmpc.m for generating the data
matrices in the design of discrete-time model predictive control system where
the cost function is expressed as
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J = ηT Eη + 2ηT Hx(ki),

with Laguerre functions for a multi-input system with weight matrix Q on
state variables and R on the input variables.

Step by Step

1. Create a new file called dmpc.m.
2. The following program sets the initial conditions and dimensionality of

the state, input and output variables. It also translates the weight matrix
R on each input variable to the diagonal weight on the parameter vector
η.

3. Enter the following program into the file:

function [E,H]=dmpc(A_e,B_e,a,N,Np,Q,R);

%A_e;B_e define the extended state-space model when

% integrator is used

%they can also be other forms of state-space models

% a contains the Laguerre pole locations for each input

%N the number of terms for each input

%Np prediction horizon

%Q weight on the state variables

%R weight on the input variables assumed to be diagonal.

% The cost function is J= eta ^T E eta +2 eta ^T H x(k_i)

[n,n_in]=size(B_e);

N_pa=sum(N); %the dimension of eta

E=zeros(N_pa,N_pa);

H=zeros(N_pa,n);

R_para=zeros(N_pa,N_pa);

n0=1;

ne=N(1);

for i=1:n_in-1;

R_para(n0:ne,n0:ne)= R(i,i)*eye(N(i),N(i));

n0=n0+N(i);

ne=ne+N(i+1);

end

R_para(n0:N_pa,n0:N_pa)=R(n_in,n_in)*eye(N(n_in),N(n_in));

4. The program below prepares the initial conditions for the convolution sum
and calculates the case i = 1. Each input takes a position in the convolu-
tion sum.

5. Continue entering the following program into the file:

S_in=zeros(n,N_pa);

[Al,L0]=lagd(a(1),N(1));

S_in(:,1:N(1))=B_e(:,1)*L0’;

In_s=1;
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for jj=2:n_in;

[Al,L0]=lagd(a(jj),N(jj));

In_s=N(jj-1)+In_s;

In_e=In_s+N(jj)-1;

S_in(:,In_s:In_e)=B_e(:,jj)*L0’;

end

S_sum=S_in;

phi=S_in;

E=(phi)’*Q*(phi);

H=phi’*Q*A_e;

6. There are two iterations in the program below. Iteration i is with respect
to the prediction horizon; and iteration kk is with respect to the number of
input variables. Upon obtaining the convolution sum, the E and H matrices
are the sum of the iterations with respect to i.

7. Continue entering the following program into the file:

for i=2:Np;

Eae=A_e^i;

%calculate the finite sum S for each input

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%For each sample i

%%%%%%%%%%%%calculate input number 1

%specify the L0 and state matrix Al

%associated with the first input

[Al,L0]=lagd(a(1),N(1));

% Laguerre function associated with input number 1

S_sum(:,1:N(1))=A_e*S_sum(:,1:N(1))+

S_in(:,1:N(1))*(Al^(i-1))’;

%%move on to input number 2 and so on

In_s=1;

for kk=2:n_in;

[Al,L0]=lagd(a(kk),N(kk));

In_s=N(kk-1)+In_s;

In_e=In_s+N(kk)-1;

S_sum(:,In_s:In_e)=A_e*S_sum(:,In_s:In_e)+

S_in(:,In_s:In_e)*(Al^(i-1))’;

end

phi=S_sum;

E=E+phi’*Q*phi;

H=H+phi’*Q*Eae;

end

E=E+R_para;

8. This program generates the predictive control cost function for a system
with an arbitrary number of inputs, states and outputs. It is a general
program and will be used later on for many other purposes.
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The program is very important and needs to be tested before any further
applications. We test it against the results obtained using the MATLAB dlqr
program.

Tutorial 3.3. Consider the mathematical model of a continuously stirred tank
reactor for copolymerization of methyl methacrylate and vinyl acetate, de-
scribed by the transfer function (Rao et al., 1998):

G(s) =

⎡

⎢
⎢
⎣

g11(s) g12(s) g13(s) g14(s) g15(s)
g21(s) g22(s) g23(s) g24(s) g25(s)
g31(s) g32(s) g33(s) g34(s) g35(s)
g41(s) g42(s) g43(s) g44(s) g45(s)

⎤

⎥
⎥
⎦

, (3.49)

where

g11 =
0.34

0.85s + 1
; g12 =

0.21

0.42s + 1

g13 =
0.50(0.50s + 1)

12s2 + 0.4s + 1
; g14 = 0

g15 =
6.46(0.9s + 1)

0.07s2 + 0.3s + 1
; g21 =

−0.41

2.41s + 1

g22 =
0.66

1.51s + 1
; g23 =

−0.3

1.45s + 1

g24 = 0; g25 =
−3.72

0.8s + 1

g31 =
0.3

2.54s + 1
; g32 =

0.49

1.54s + 1

g33 =
−0.71

1.35s + 1
; g34 =

−0.2

2.72s + 1

g35 =
−4.71

0.008s2 + 0.41s + 1
; g41 = 0

g42 = g43 = g44 = 0; g45 =
1.02

0.07s2 + 0.31s + 1
.

The normalized inputs into the system are the flows of monomer MMA u1,
monomer VA u2, initiator u3, and transfer agent u4 and the temperature of
the reactor jacket u5. The normalized outputs of the systems are the polymer
production rate y1, mole fraction of MMA in the polymer y2, average molecular
weight of the polymer y3, and reactor temperature y4.

The system has five inputs and four outputs, which will test the generality
of the program.

Step by Step

1. Create a new file called testexa.m.
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2. The program below is the specification of the denominators and numerators
of the transfer functions in the 5-input, 4-output system.

3. Enter the following program into the file:

%First row

n11=0.34;

d11=[0.85 1];

n12=0.21;

d12=[0.42 1];

n13=0.50*[0.50 1];

d13=[12 0.4 1];

n14=0;

d14=1;

n15=6.46*[0.9 1];

d15=[0.07 0.3 1];

%second row

n21=-0.41;

d21=[2.41 1];

n22=0.66;

d22=[1.51 1];

n23=-0.3;

d23=[1.45 1];

n24=0;

d24=1;

n25=-3.72;

d25=[0.8 1];

%third row

n31=0.3;

d31=[2.54 1];

n32=0.49;

d32=[1.54 1];

n33=-0.71;

d33=[1.35 1];

n34=-0.20;

d34=[2.71 1];

n35=-4.71;

d35=[0.008 0.41 1];

%fourth row

n41=0;

d41=1;

n42=0;

d42=1;

n43=0;

d43=1;

n44=0;
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d44=1;

n45=1.02;

d45=[0.07 0.31 1];

4. The transfer function matrix for this 5 inputs and 4 outputs system is
put together. After obtaining the MIMO transfer function, we obtain a
minimal realization by using the command ‘ss’. Continue entering the
following program

h=1; %sampling interval

Gs=tf({n11 n12 n13 n14 n15;n21 n22 n23 n24 n25;

n31 n32 n33 n34 n35;n41 n42 n43 n44 n45},

{d11 d12 d13 d14 d15;d21 d22 d23 d24 d25;

d31 d32 d33 d34 d35;d41 d42 d43 d44 d45});

Gsmin=ss(Gs,’min’);

[Ac,Bc,Cc,Dc]=ssdata(Gsmin);

[Ap,Bp,Cp,Dp]=c2dm(Ac,Bc,Cc,Dc,h,’zoh’);

[m1,n1]=size(Cp);

[n1,n_in]=size(Bp);

5. We specify the parameters in the Laguerre functions for each input. Con-
tinue entering the following program into the file:

a1=0.5;

a2=0.5;

a3=0.5;

a4=0.5;

a5=0.5;

N1=10;

N2=10;

N3=10;

N4=10;

N5=10;

a=[a1 a2 a3 a4 a5];

N=[N1 N2 N3 N4 N5];

Np=100;

6. Augment the plant state-space model with integrators, and specify the
weight matrices Q and R. Continue entering the following program into
the file:

%%%%%%%%%%%%%%%%

%Augment state equations

%%%%%%%%%%%%%%%%

A_e=eye(n1+m1,n1+m1);

A_e(1:n1,1:n1)=Ap;

A_e(n1+1:n1+m1,1:n1)=Cp*Ap;

B_e=zeros(n1+m1,n_in);
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B_e(1:n1,:)=Bp;

B_e(n1+1:n1+m1,:)=Cp*Bp;

C_e=zeros(m1,n1+m1);

C_e(:,n1+1:n1+m1)=eye(m1,m1);

Q=C_e’*C_e;

R=0.1*eye(n_in,n_in);

7. Call function dmpc.m to generate Ω and Ψ matrices, based on which the
feedback gain matrix K in the predictive controller is obtained using the
initial condition of the Laguerre functions. Continue entering the following
program into the file:

[Omega,Psi]=dmpc(A_e,B_e,a,N,Np,Q,R);

L_m=zeros(n_in,sum(N));

[A1,L0]=lagd(a(1),N(1));

L_m(1,1:N(1))=L0’;

In_s=1;

for jj=2:n_in;

[Al,L0]=lagd(a(jj),N(jj));

In_s=N(jj-1)+In_s;

In_e=In_s+N(jj)-1;

L_m(jj,In_s:In_e)=L0’;

end

K=L_m*(Omega\Psi);

Acl=A_e-B_e*K;

8. The above program produces the discrete-time model predictive control us-
ing Laguerre functions. The state feedback control gain is K and the closed-
loop system matrix is Acl.

9. Now, we will design the state feedback control using DLQR. Continue
entering the program.

[X,Y,Z]=dlqr(A_e,B_e,Q,R);

figure

plot(Z,’ro’)

hold on

plot(eig(Acl),’b*’)

10. Change the parameter vector a and N , and see the effects of these parame-
ters on the closed-loop eigenvalues in comparison to the DLQR solution.

11. If your plot shows that the eigenvalues of the discrete-time MPC system
are almost identical to those obtained from DLQR system (see Figure 3.7),
then your program has passed the test. You can retain it for future appli-
cations.
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3.5.2 Predictive Control System Simulation

Tutorial 3.4. This tutorial is to produce a multivariable closed-loop simula-
tion for predictive control systems without constraints. The performance of an
unconstrained system needs to be checked before introducing the constraints.
There is no observer used in the first program. An observer is included in the
second program. It is useful to write up your own MATLAB simulation pro-
grams, in conjunction with your own predictive control design programs. The
experience gained from the simulation will be useful in the implementation of
predictive control systems.

Step by Step

1. Create a new file called simuuc.m.
2. The set-point signal is called sp with number of rows equal to the number of

outputs and number of columns greater than the simulation time (Nsim).
Enter the following program into the file:

function [u1,y1,deltau1,k]=

simuuc(xm,u,y,sp,Ap,Bp,Cp,N_sim,Omega,Psi,Lzerot)

%closed-loop simulation without constraints

[m1,n1]=size(Cp);

[n1,n_in]=size(Bp);

Xf=[xm;(y-sp(:,1))];

for kk=1:N_sim;

eta=-(Omega\Psi)*Xf;

deltau=Lzerot*eta;

u=u+deltau;

deltau1(:,kk)=deltau;

u1(1:n_in,kk)=u;

y1(1:m1,kk)=y;

%%%%
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Fig. 3.7. Comparison of closed-loop eigenvalues between DLQR and DMPC



116 3 Discrete-time MPC Using Laguerre Functions

%plant simulation

%%%%%%

xm_old=xm;

xm=Ap*xm+Bp*u; % calculate xm(k+1)

y=Cp*xm; %calculate y(k+1)

%updating feedback state variable Xf

Xf=[xm-xm_old;(y-sp(:,kk+1))];

end

k=0:(N_sim-1);

Tutorial 3.5. We need to test the MPC simulation program simuuc.m before
its application. The test example follows from the MPC system designed in
Tutorial 3.3. This tutorial continues from MATLAB program testexa.m. We
will next simulate closed-loop system response using the function simuus.m.
The initial conditions for the simulation are specified first, and the function is
called to produce the closed-loop responses. Lzerot is the matrix used to recon-
struct the ∆u(ki) with the parameter vector η (see (3.46)), which is included
in the program Mdu.m (see Tutorial 3.7).

1. Copy testexa.m to testexa1.m. Continue entering the following program
into testexa1.m.

y=zeros(m1,1);

u=zeros(n_in,1);

xm=zeros(n1,1);

N_sim=100;

r1=ones(1,N_sim+10);

r2=zeros(1,N_sim+10);

r3=zeros(1,N_sim+10);

r4=zeros(1,N_sim+10);

sp=[r1;r2;r3;r4];

[M,Lzerot]=Mdu(a,N,n_in,1);

[u1,y1,deltau1,k]=simuuc(xm,u,y,sp,Ap,Bp,Cp,

N_sim,Omega,Psi,Lzerot);

2. Plot the output signal y1 and the control signal u1, which are shown in
Figure 3.8.

Tutorial 3.6. This tutorial produces a closed-loop simulation for predictive
control systems with an observer in the loop. The program is very similar to
the program presented in Tutorial 3.4. However, the feedback variable is based
on the estimated state variable xhat.

Step by Step
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Fig. 3.8. Closed-loop simulation results

1. Create a new file called simuob.m.
2. Enter the following program into the file:

function [u1,y1,deltau1,k]=simuob(xm,u,y,sp,

Ap,Bp,Cp,A,B,C,N_sim,Omega,Psi,K_ob,Lzerot)

%closed-loop simulation without constraints

[ny,n]=size(C);

[n,nu]=size(B);

X_hat=zeros(n,1);

for kk=1:N_sim;

Xsp=[zeros(n-ny,1);sp(:,kk)];

eta=-(Omega\Psi)*(X_hat-Xsp);

deltau=Lzerot*eta;

u=u+deltau; %update u

deltau1(:,kk)=deltau;

u1(1:nu,kk)=u; %keep u

y1(1:ny,kk)=y; %keep y

X_hat=A*X_hat+K_ob*(y-C*X_hat)+B*deltau;

%u and y to generate X_hat(k+1)

%%%%

%plant simulation

%%%%%%

xm=Ap*xm+Bp*u; % calculate xm(k+1)

y=Cp*xm; %calculate y(k+1)

end

k=0:(N_sim-1);

3. Notice how the set-point signal sp enters the simulation; this is exactly
what we could do in the implementation. sp is a signal that has number of

Step by Step
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rows equal to the number of outputs and number of columns greater than
the number of simulation.

4. A simple modification of this program will give us the computation needed
for constrained control (see Section 3.6). In the modification, we define
Xf = Xhat − Xsp and use QPhild.m to solve the constrained control
problem, as

eta=QPhild(Omega,Psi*Xf,M,gamma);

where M and gamma are defined through the analysis in Section 3.6. A
tutorial for continuous-time constrained control is introduced in Section
7.3, which illustrates the similar steps needed for the modification.

3.6 Constrained Control Using Laguerre Functions

One of the key features of model predictive control is the ability to handle
hard constraints in the design. This section will show how to systematically
incorporate constraints in the design and implementation of model predictive
control systems. The approach is based on application of quadratic program-
ming method as discussed in Chapter 2.

With parameterization of the control signal trajectory using Laguerre func-
tions, we have the flexibility to choose the locations of the future constraints.
This could potentially reduce the number of constraints within the prediction
horizon, and hence the on-line computational load for large-scale systems.
In addition, because of the existing exponential decay factor in the Laguerre
functions, the difference of the control signal is ensured to converge to zero
after the transient period. Thus, it is sufficient in the majority of cases that
the constraints are imposed in the transient period of the response. This in
turn will reduce the number of constraints.

3.6.1 Constraints on the Difference of the Control Variable

The constrained control requires real-time optimization using quadratic pro-
gramming. Assuming that state-variable information x(ki) at the sampling
time ki is given, and that the lower and upper limits on ∆u are ∆umin and
∆umax, the optimization procedure is to minimize the cost function J where

J = ηT Ωη + 2ηT Ψx(ki), (3.50)

while ensuring that

∆umin ≤ ∆u(ki + m) ≤ ∆umax,

with m = 0, 1, 2, . . ..
When using Laguerre functions in the design, the incremental control sig-

nal ∆u(ki + m) for a single-input system is represented as
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∆u(ki + m) = L(m)T η,

where m = 0, 1, 2, 3, . . . . We have the freedom to choose how many constraints
should be imposed on the solution. For a multi-input system, ∆umin and
∆umax are vectors containing individual limits for each control variable. Then
the constraints at a future sample m are in the matrix form

∆umin ≤

⎡

⎢
⎢
⎢
⎣

L1(m)T oT
2 . . . oT

m

oT
1 L2(m)T . . . oT

m
...

...
. . .

...
oT
1 oT

2 . . . Lm(m)T

⎤

⎥
⎥
⎥
⎦

η ≤ ∆umax, (3.51)

where m = 0, 1, .., denotes the set of future time instants at which we wish to
impose the limits on ∆u, and ok denotes the zero vector that has the same
dimension as Lk(m).

Before proceeding to constrained control using Laguerre functions, we need
to determine the data matrices that will be used in generating the constraints.
The MATLAB tutorials below will produce functions for constrained control.

Tutorial 3.7. Write a MATLAB program for generating the matrix M used
in the constraint of difference of the control signal (i.e., ∆u(k)). The M matrix
from this function will be part of the inequality constraints

Mη ≤ ∆Umax

−Mη ≤ −∆Umin

where ∆Umax contains upper limits for ∆u and ∆Umin contains the lower
limits for ∆u. We assume that the number of inputs is denoted by nin, the
number of future samples for constraints to be imposed is Nc, and the poles
of the Laguerre functions are a = [a1 a2 . . .] and the number of terms is
denoted by N = [N1 N2 . . .]. The program will be a general formulation of
the constraints imposed on all Nc samples.

Step by Step

1. Create a new file called Mdu.m.
2. M is the data matrix for imposing constraints on the first Nc samples

on ∆u(ki). The block matrix Lzerot is used for constructing the control
signal.

3. Enter the following program into the file:

function [M,Lzerot]=Mdu(a,N,n_in,Nc)

%a and N are for the Laguerre functions

%n_in is the number of inputs

%Nc is the number of constraints

N_pa=sum(N);

M=zeros(n_in,N_pa);
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M_du1=zeros(n_in,N_pa);

k0=1;

[Al,L0]=lagd(a(k0),N(k0));

M_du1(1,1:N(1))=L0’;

cc=N(1);

for k0=2:n_in;

[Al,L0]=lagd(a(k0),N(k0));

M_du1(k0,cc+1:cc+N(k0))=L0’;

cc=cc+N(k0);

end

Lzerot=M_du1;

M=M_du1;

4. The rest of the blocks are constructed iteratively. Enter the following pro-
gram into the file.

for kk=2:Nc

k0=1;

[Al,L0]=lagd(a(k0),N(k0));

L=Al^(kk-1)*L0;

M_du1(1,1:N(1))=L’;

cc=N(1);

for k0=2:n_in;

[Al,L0]=lagd(a(k0),N(k0));

L=Al^(kk-1)*L0;

M_du1(k0,cc+1:cc+N(k0))=L’;

cc=cc+N(k0);

end

M=[M;M_du1];

end

5. Test the program using a = 0, N = 3, nin = 1 and Nc = 3; then a =
[0.2 0.3], N = [3 3], nin = 2, Nc = 5.

Example 3.6. Suppose that a continuous-time system is described by the
transfer function

G(s) =
1

s2 + 2ξωs + ω2
,

where ξ = 0.1 and ω = 3. Suppose that the sampling interval ∆t = 0.1,
and the weight matrices are Q = CT C with C = [0 0 1] and R = 0.3.
The prediction horizon is chosen as Np = 46. We assume that at ki = 10,
x(ki) = [0.1 0.2 0.3]T . Within one optimization window, find the optimal η
and ∆u(ki + m) subject to the constraints

−1 ≤ ∆u(ki + m) ≤ 0.25.

Solution. Because this is a severely under-damped system, the optimal con-
trol trajectory is oscillatory. Let us choose a = 0.7 and N = 8. Figure 3.9
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Fig. 3.9. Optimal solution without constraints. Key: line (1) DMPC; line (2) DLQR

shows the comparison between the control signal and output response be-
tween Laguerre -based DMPC and DLQR. It is seen from this figure that
with this choice of a and N , without constraints, the responses are almost
identical. Incidently, if the parameter a = 0, which corresponds to the tra-
ditional approach, then N is required to be approximately 40 in order to
achieve similar performance. To ensure that the constraints are satisfied for
the whole response, the first 15 samples of ∆u are put into the constrained
solution. This gives 30 inequalities to be imposed. Because the data matri-
ces have large dimension, the MATLAB script below is used to illustrate the
procedure.

[Omega,Psi]=dmpc(A,B,a,N,Np,Q,R);

Deltau_min=-1;

Deltau_max=0.25;

Nc=15;

X0=[0.1;0.2;0.3];

[M0,Lzerot]=Mdu(a,N,1,Nc);

M=[M0;-M0];

gamma=[Deltau_max*ones(Nc,1);-Deltau_min*ones(Nc,1)];

eta=QPhild(Omega,Psi*X0,M,gamma);

Figure 3.10 shows the constrained results within one optimization window.
Although there are 30 constraints imposed, there are only three active con-
straints, which can be found through visual inspection of Figure 3.10a. The
first two samples and the 17th sample are the activated constraints in the so-
lution. By comparing Figure 3.10 with Figure 3.9 it can be seen that activated
constraints resulted in little performance deterioration.

3.6.2 Constraints on the Amplitudes of the Control Signal

Suppose that the limits on the control signals are umin and umax. Noting that
the increment of the control signal is u(k) =

∑k−1
i=0 ∆u(i), then the inequality
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Fig. 3.10. Optimal solution with constraints

constraint for the future time k, k = 1, 2, . . . , is expressed as

umin ≤

⎡

⎢
⎢
⎢
⎢
⎣

∑k−1
i=0 L1(i)

T oT
2 . . . oT

m

oT
1

∑k−1
i=0 L2(i)

T . . . oT
m

...
...

...
...

oT
1 oT

2 . . .
∑k−1

i=0 Lm(i)T

⎤

⎥
⎥
⎥
⎥
⎦

η + u(ki − 1)

≤ umax, (3.52)

where u(ki−1) is the previous control signal, and oT
k is a zero row vector with

the same dimension as Lk(0)T .

Tutorial 3.8. Write a MATLAB program for generating the matrix M used
in the constraint of the control signal (i.e., u(k)). The M matrix from this
function will be part of the inequality constraints

Mη ≤ Umax − ū(ki − 1)
−Mη ≤ −Umin + ū(ki − 1)

where ū(ki − 1) is the vector containing the past u value. We assume that
the number of input is denoted by nin, the number of future samples for
constraints to be imposed is Nc, and the poles of the Laguerre functions are
a = [a1 a2 . . .] and the number of terms is denoted by N = [N1 N2 . . .].
The program will be a general formulation of the constraints imposed on all
Nc samples. The program is written on the basis of Tutorial 3.7 by adding the
Laguerre vector matrix recursively. Since the control amplitude constraints are
the most frequently imposed constraints, it is important that we produce the
matrix correctly.

Step by Step

1. Create a new file called Mu.m.
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2. Enter the following program into the file:

function M=Mu(a,N,n_in,Nc)

%a and N are for the Laguerre functions

%n_in is the number of inputs

%Nc is the number of constraints

N_pa=sum(N);

M=zeros(n_in,N_pa);

M_du1=zeros(n_in,N_pa);

k0=1;

[Al,L0]=lagd(a(k0),N(k0));

M_du1(1,1:N(1))=L0’;

cc=N(1);

for k0=2:n_in;

[Al,L0]=lagd(a(k0),N(k0));

M_du1(k0,cc+1:cc+N(k0))=L0’;

cc=cc+N(k0);

end

M=M_du1;

Ms=M_du1;

for kk=2:Nc

k0=1;

[Al,L0]=lagd(a(k0),N(k0));

L=Al^(kk-1)*L0;

M_du1(1,1:N(1))=L’;

cc=N(1);

for k0=2:n_in;

[Al,L0]=lagd(a(k0),N(k0));

L=Al^(kk-1)*L0;

M_du1(k0,cc+1:cc+N(k0))=L’;

cc=cc+N(k0);

end

Ms=Ms+M_du1;

M=[M;Ms];

end

3. Test the program using a = 0, N = 3, nin = 1 and Nc = 3.

Example 3.7. We assume the same system in Example 3.6, which is

G(s) =
1

s2 + 2ξωs + ω2
,

where ξ = 0.1 and ω = 3. Suppose that the sampling interval ∆t = 0.1,
and the weight matrices are Q = CT C with C = [0 0 1] and R = 0.3.
The prediction horizon is chosen as Np = 46. We assume that at ki = 10,
x(ki) = [0.1 0.2 0.3]T . Find the optimal η and ∆u(ki + m) subject to the
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constraints on the control signal u, with the assumption at ki−1, u(ki−1) = 6.
The constraints are imposed for all future samples of the control signal such
that

1.8 ≤ u(ki + m) ≤ 4

where m = 0, 1, 2 . . . , 46.

Solution. In order to impose constraints on all future control movement,
there are 92 (46×2 ) inequality constraints involved. The following MATLAB
script is used to generate the constraints and the optimal solution with respect
to the constraints.

[Omega,Psi]=dmpc(A,B,a,N,Np,Q,R);

X0=[0.1;0.2;0.3];

up=6;

u_min=1.8;

u_max=4;

M0=Mu(a,N,1,Np);

M=[M0;-M0];

gamma=[(u_max-up)*ones(Nc,1);(-u_min+up)*ones(Nc,1)];

eta=QPhild(Omega,Psi*X0,M,gamma);

There are four active constraints as shown in Figure 3.11b. All the constraints
are satisfied.

Example 3.8. Following from Examples 3.6 and 3.7, at the first sample, with
given initial condition u(ki − 1) = 6, the constraints on umin ≥ 1.8 and
∆umin ≥ −1 both became activated at the first sample. However, they have
both worked in separate examples. This example shows that when both con-
straints are put together, they cannot be met at the same initial sample. As
a result, the optimal solution is compromised.
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Fig. 3.11. Optimal solution with constraints on u. Key: line (1) without constraints;
line (2) with constraints
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Solution. When all the constraints are imposed on ∆u and u for Np = 48,
the number of constraints is 4 × Np = 192. The following MATLAB script
is used to generate the constraints and find the optimal solution. A, B, a,
N , Np, Q, and R are specified. Here we only show how the constraints are
formulated and applied.

[Omega,Psi]=dmpc(A,B,a,N,Np,Q,R);

X0=[0.1;0.2;0.3];

up=6;

%%%%%%%%

Deltau_min=-1;

Deltau_max=0.25;

u_min=1.8;

u_max=4;

Nc=Np;

[M1,Lzerot]=Mdu(a,N,1,Nc);

M0=Mu(a,N,1,Nc);

M=[M0;-M0;M1;-M1];

gamma=[(u_max-up)*ones(Nc,1);(-u_min+up)*ones(Nc,1);

Deltau_max*ones(Nc,1); -Deltau_min*ones(Nc,1)];

eta=QPhild(Omega,Psi*X0,M,gamma);

Figure 3.12 shows the incremental control signal (∆u), the control signal (u)
and output signal y in comparison with the unconstrained responses. It is
seen from Figure 3.12b that some of the constraints on the control signal
were not met. By studying the multipliers, it is noticed that there were eight
active constraints and the multipliers could not converge because the active
constraints were in conflict. The values of the positive multipliers are listed
after 88 iterations in the calculation as:

λact = [34.2944 0.0545 0.0261 0.0654 0.0240 0.0474 34.4705 0.0136]

Numerically, the Mact matrix has row dependence, and as a result, the con-
straints are compromised (see Figure 3.12).

One comment relates to the number of constraints used in this example. Al-
though there are 192 constraints used in the optimization, there are only 8
active constraints. The rest of the constraints are inactive and have no ef-
fect on the optimal solution. Because of receding horizon control, where the
first sample of the optimal control ∆u(ki) (∆u(ki) = L(0)T η = −1) is im-
plemented, so from this point of view, only the constraint on the first sample
had an effect in this example.
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Fig. 3.12. Optimal solution with constraints on u and ∆u. Key: Line (1) with
constraints; Line (2) without constraints

Example 3.9. This example shows that by changing the specification of the
constraints on ∆u as

−2 ≤ ∆u(k) ≤ 0.25

while the constraints on u remain the same: 1.8 ≤ u(k) ≤ 4, all the constraints
are satisfied.

Solution. By a quick calculation, with given initial condition u(9) = 6, the
constraints at the first sample should be satisfied. With the same MATLAB
script used in Example 3.8, except that the minimum of ∆u(k) is −2, instead
of −1, the Lagrange multipliers converged to the set

[0.2307 0.0549 0.0242 0.0654 0.0268 0.0480 0.0112].

There are seven active constraints. Figure 3.13 shows the results of constrained
control in comparison with the case of unconstrained control. It is seen that
all the constraints are satisfied.

These examples raise the question of how many constraints should be included
in the optimization problem. Because the Laguerre functions are exponentially
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Fig. 3.13. Optimal solution with constraints on ∆u and u. Key: solid-line without
constraints; darker-solid-line with constraints

decaying, the constraints on ∆u(ki + j) will be automatically satisfied after
some initial period. Consequently, it is usual to impose constraints on the first
few samples of ∆u(ki + j) and u(ki + j).

When controlling a MIMO system with constraints, it is usual to impose
constraints on the first samples of ∆u(ki+j) and u(ki+j) because the number
of constraints will increase rapidly in this situation.

3.7 Stability Analysis

When the constraints in model predictive control are activated, the control law
effectively becomes a nonlinear control problem. Thus, the stability properties
of linear time-invariant systems do not apply. However, a remarkable property
of model predictive control is that one can establish stability of the closed-
loop system under certain conditions. In this section, we will first find out the
stabilizing conditions and then explore the links between the conditions and
the design parameters.

There is a rich literature on the topic of stability of predictive control
systems (see Keerthi and Gilbert, 1988, Mayne et al., 2000, Bitmead et al.,
1990, Rawlings and Muske, 1993, Muske and Rawlings, 1993).

3.7.1 Stability with Terminal-State Constraints

Recall that the model predictive control is established using the principle of
receding horizon control. That is, at current sample time ki the future of the
control trajectory ∆u(ki +m), m = 0, 1, 2, . . . , Np is optimized by minimizing
the cost function
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J =

Np∑

m=1

x(ki + m | ki)
T Qx(ki + m | ki) +

Np−1
∑

m=0

∆u(ki + m)T R∆u(ki + m),

(3.53)
subject to constraints, and upon obtaining the optimal control sequence, only
the first sample ∆u(ki) is implemented. At the next sample time ki + 1, the
same optimization and implementation procedures are repeated. The core to
establishing closed-loop stability is based on an equality constraint on the
terminal state, which is x(ki + Np | ki) = 0. For notational simplicity, we
replace ki by k in this section. We also consider a single-input system.

Theorem 3.1. We assume that

1. an additional constraint is placed on the final state of the receding horizon
optimization problem: x(k + Np | k) = 0, where x(k + Np | k) is the
terminal state resulting from the control sequence ∆u(k + m) = L(m)T η,
m = 0, 1, 2, . . . , Np; and

2. for each sampling instant, k, there exists a solution η such that the cost
function J is minimized subject to the inequality constraints and terminal
equality constraint x(k + Np | k) = 0.

Subject to the assumptions, the closed-loop model predictive control system is
asymptotically stable.

Proof. We consider the cost function (3.53). The key to the stability result is
to construct a Lyapunov function for the model predictive control system.

Choose the Lyapunov function V(x(k),k) as the minimum of the finite
horizon cost function (Jmin)

V (x(k), k) =

Np∑

m=1

x(k+m | k)T Qx(k+m | k)+

Np−1
∑

m=0

∆u(k+m)T R∆u(k+m),

(3.54)

where x(k +m | k) = Amx(k)+
∑m−1

i=0 Am−i−1BL(i)T ηk and ηk is, at time k,
the parameter vector solution of the original cost function (3.53) with respect
to both inequality and equality constraints, and ∆u(k + m) = L(m)T ηk. The
existence of ηk is ensured by the second assumption stated in the theorem.
Namely, V (x(k), k) = Jmin, where ηk is a function of x(k).

It is seen that V (x(k), k) is positive definite and V (x(k), k) tends to infin-
ity if x(k) tends to infinity. Similarly, at time k + 1, the Lyapunov function
becomes

V (x(k + 1), k + 1) =

Np∑

m=1

x(k + 1 + m | k + 1)T Qx(k + 1 + m | k + 1)

+

Np−1
∑

m=0

∆u(k + 1 + m)T R∆u(k + 1 + m), (3.55)
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and x(k + 1 + m | k + 1) = Amx(k + 1) +
∑m−1

i=0 Am−i−1BL(i)T ηk+1, ηk+1 is
the parameter vector solution at k + 1 and ∆u(k + 1 + m) = L(m)T ηk+1.

We need to make a link between the Lyapunov function at sample time
k + 1 and the function at sample time k. Assuming that all constraints are
satisfied at the sample time k, a feasible solution of ηk+1 (not the optimal
one) for the initial state information x(k + 1) in the receding horizon is ηk

given that x(k + 1) is the response one step ahead of x(k) related to x(k) by

x(k + 1) = Ax(k) + B∆u(k).

Therefore, the feasible control sequence at k + 1 is to shift the elements in
L(0)T ηk, L(1)T ηk, L(2)T ηk, . . . , L(Np − 1)T ηk one step forward and replace
the last element by zero to obtain the sequence L(1)T ηk, L(2)T ηk, . . . , L(Np−
1)T ηk, 0. Because of optimality in the solution of ηk+1, it is seen that

V (x(k + 1), k + 1) ≤ V̄ (x(k + 1), k + 1), (3.56)

where V̄ (x(k + 1), k + 1) is similar to (3.55) except that the control sequence
is replaced by the feasible sequence L(1)T ηk, L(2)T ηk, . . . , L(Np − 1)T ηk, 0.
The difference between V (x(k + 1), k + 1) and V (x(k), k) is then bounded by

V (x(k + 1), k + 1) − V (x(k), k) ≤ V̄ (x(k + 1), k + 1) − V (x(k), k). (3.57)

Note that because the V̄ (x(k + 1), k + 1) shares the same control sequence
and the same state sequence with V (x(k), k) for the sample time k + 1, k +
2, . . . , k + Np − 1, the difference between these two functions is

V̄ (x(k + 1, k + 1) − V (x(k), k) = x(k + Np | k)T Qx(k + Np | k)

− x(k + 1)T Qx(k + 1) − ∆u(k)T R∆u(k). (3.58)

From the first assumption, we have

V̄ (x(k+1, k+1)−V (x(k), k) = −x(k+1)T Qx(k+1)−∆u(k)T R∆u(k). (3.59)

Hence, the difference of the Lyapunov function is

V (x(k +1), k+1)−V (x(k), k) ≤ −x(k +1)T Qx(k +1)−∆u(k)T R∆u(k) < 0,
(3.60)

which we see is negative. Hence, we have established the asymptotic stability
of the model predictive control system.

3.7.2 Stability with Large Prediction Horizon

The requirement of terminal state constraint x(k + Np | k) = 0 was originally
from (3.58). However, as we know from Chapter 2, equality constraints are
active constraints. Therefore, in order to have constrained optimal solutions,
firstly, the number of decision variables should be larger than the number of
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active constraints. Thus, having the terminal-state constraints, the number of
decision variables, i.e., the dimension of η, is likely to be increased. Secondly,
there is a possibility that the active constraints from the terminal-state could
cause a linear dependence with other inequality constraints such as constraints
on input and output signals. When this happens, the active constraints (in-
cluding the terminal-state constraints) may not be satisfied. For these reasons,
the terminal-state constraints are seldom used in practice. Instead, we explore
under what conditions the term x(k + Np | k)T Qx(k + Np | k) is sufficiently
small so that the difference of the Lyapunov function is guaranteed to be
negative.

From the study in Section 3.3.6, without constraints, we understand that
for a large prediction horizon and a large N in the Laguerre functions, the
optimal control trajectory ∆u(k + m) converges to the underlying optimal
control dictated by a discrete-time linear quadratic regulator with the same
weight matrices Q and R. The cost functions of predictive control and DLQR
become nearly identical. We illustrated this by several examples (see Examples
3.2 to 3.5). When this happens, because of the asymptotic stability of the
DLQR system, with a large N , for some large prediction horizon Np,

x(k + Np | k)T Qx(k + Np | k) ≈ 0

Consequently, this leads to the closed-loop stability of the predictive control
system from the Lyapunov function analysis.

However, we also note that the plants used in these examples are stable
systems, and the underlying optimal DLQR control trajectory converges to
zero in less than 20 samples. In other words, we have achieved the convergence
without using a very large prediction horizon in the computation, but suffi-
ciently covered the transient period of the state response, and consequently
avoided a numerical ill-conditioning problem that will be discussed in Chapter
4.

Since we do not deploy the equality terminal-state constraint in the design
of MPC, how does the predictive controller stabilize the plant when constraints
become active? The stabilization is argued through the combination of dual
mode control system and a terminal-state constraint set (Mayne et al, 2000).
The terminal-state equality constraint, x(k + Np | k) = 0, is considered to be
severe as we argued before. Thus a relaxation is to specify a terminal constraint
set X0, that contains the origin. The idea of a terminal constraint set was
introduced by Michalska and Mayne (1993). It is assumed that within the
terminal constraint set X0 the constraints are inactive and conventional state
feedback control is adequate when the state is within this terminal set. With
the idea of terminal set, in order to obtain stability, a predictive controller
with constraints is used first to drive the state into such a set and then switch
to another control law that will stabilize the system with the initial conditions
equal to the terminal state conditions of the predictive control. This is in the
spirit of classical dual-mode control systems (Anderson and Moore, 1971).
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Here, stability of the predictive control systems will be examined from a
combination of dual mode control system and a terminal-state constraint set.
The key to establish stability is to define the state feedback control law that
will not violate the constraints and will keep the state in the set, once the
state enters the terminal set.

In Examples 3.7 to 3.9, we have examined the optimal control law within
one optimization window. It is seen that the predictive control law is identical
to the underlying optimal LQR when constraints are not active. When con-
straints are active, the predictive control law satisfies the constraints at the
places where they are violated, and yet the control trajectory returns to the
underlying optimal control after the constraints are not active. Therefore, the
state feedback control law within the terminal-state set is the original optimal
control law with controller Klqr, defined by

∆u(ki + m) = −Klqrx(ki + m | ki),

where m = N0, N0 + 1, N0 + 2, . . . with N0 defining the sample time when
the state feedback control law becomes effective. We can actually identify
the time N0 when we compare the control trajectory ∆u(.) in the presence
of constraints with the one without constraints. For instance, in Examples
3.8 and 3.9, we can see after the first 33 samples (N0 = 33), the predictive
control trajectory returns to the LQR control trajectory, all the constraints
are satisfied and the state is regulated to zero (see Figures 3.12a and 3.13).
Also it is interesting to note that in Example 3.8, there are conflict constraints
close to the sample time 20 (see Figure 3.12). However, the predictive control
solution is compromised to reach a sub-optimal solution at the conflicting
point and returns to the optimal LQR trajectory after the initial period.

Further analysis of closed-loop stability is given in Chapter 4, where an
asymptotically stable model is used in the design via exponential data weight-
ing.

3.8 Closed-form Solution of Constrained Control for

SISO Systems

The question we often ask as an engineer is whether there is a simplified
solution to a complex problem. Simplicity is often the key that leads to a
wider range of applications. The quadratic programming approach is cer-
tainly needed for a multi-input and multi-output system, as we note that
it is an effective way to identify the active constraints when there are many
variables interacting with each other. As for a single-input and single-output
system, the variables are limited to control u(k), and difference of the control
∆u(k) and output y(k) signals. It is possible to find analytical solutions for
the constrained control problem. Also, the role of observer can be eliminated
to simplify the design. In the traditional approach to MPC, constraints
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are introduced on the variables in the optimization window. As a result, the
number of constraints rapidly grows even for a single-input and single-out
system. Certainly in the presence of a large number of constraints, quadratic
programming is the most effective way to sort out the active constraints. The
question here is whether this is necessary. If not, what might be compromised?
To answer this question, we return to the receding horizon control principle,
which states that although the optimal control is sought for the whole trajec-
tory within the optimization window, only the first sample of the trajectory
is implemented. Therefore, if the first sample of the constraint is an active
constraint, whether it is based on ∆u or u, then the optimal solution is ob-
tained based on the active constraint that becomes an equality constraint,
and the rest of constraints do not affect the optimal solution. The rest of the
constraints will affect the optimal solution if they are activated, and the first
sample of the constraint is not active. From a practical point of view, it is
possible only to impose the constraints on the first sample of the variables
in the optimization window. The rest of the constraints are neglected on the
assumption that they are not active or they have a small effect on the closed-
loop performance. Based on this rationale, there are six constraints for a SISO
system, which are the upper and lower limits of the control variable, difference
of the control variable and output variable. The closed-form solutions for the
six cases are discussed as follows.

Closed-form Solution with Constraints on Difference of the
Control Variable

Suppose that the constraints are expressed as ∆umin ≤ ∆u(k) ≤ ∆umax.
At sample instant ki, the state variable x(ki) is available that also contains
set-point information for simplicity, minimization of the cost function

J = ηT Ωη + 2ηT Ψx(ki),

subject to the constraints on ∆u(ki)(= L(0)T η) leads to three possible solu-
tions:

1. η = −Ω−1Ψx(ki), if ∆umin < L(0)T η < ∆umax. The optimal solution is
the global optimal solution that minimizes the quadratic cost function J .

2. If L(0)T η ≤ ∆umin, where η = −Ω−1Ψx(ki), then the constrained optimal
solution η is the one that leads to ∆u(ki) = ∆umin. This is because this
constraint is the active constraint and the active constraint becomes an
equality constraint. Hence the optimal solution satisfies the equality, which
is imposed by ∆umin. Instead of finding out the value of η, we directly
take ∆u(ki) = ∆umin as the optimal solution.

3. Similarly, when L(0)T η ≥ ∆umax with η = −Ω−1Ψx(ki), this constraint
becomes active. The optimal solution η leads to the one that
∆u(ki) = ∆umax.

After finding ∆u(ki), as before, the optimal control is u(ki) = u(ki − 1) +
∆u(ki).
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Closed-form Solution with Constraints on Control Variable

Assume that the constraints on the control variable are expressed as
umin ≤ u(k) ≤ umax. Suppose that at sample time ki, the previous control
signal is u(ki − 1). There are, again, three different cases:

1. η = −Ω−1Ψx(ki) if umin < u(ki − 1) + L(0)T η < umax, which says that
if the global optimal solution satisfies the constraints, then the optimal
solution is the global optimal solution.

2. If u(ki −1)+L(0)Tη ≤ umin, where η = −Ω−1Ψx(ki), then u(ki) = umin,
from which we derive ∆u(ki) = umin − u(ki − 1).

3. Similarly, if u(ki − 1) + L(0)T η ≥ umax, where η = −Ω−1Ψx(ki), then
u(ki) = umax, and ∆u(ki) = umax − u(ki − 1).

The information about ∆u(ki) calculated using the limits is important, be-
cause it will be updated in the implementation of the control as a feedback
variable.

Closed-form Solution with Constraints on the Output Variable

Assume that the predictive control is designed using the state-space model
with (A, B, C) matrices and the constraints on the output are expressed as
ymin ≤ y(k) ≤ ymax. At sample time ki, the prediction of x(ki + 1 | ki) is
described by the relation

x(ki + 1 | ki) = Ax(ki) + BL(0)T η, (3.61)

which gives the predicted output as

y(ki + 1 | ki) = CAx(ki) + CBL(0)T η. (3.62)

There are three possible solutions for this case.

1. At sample time ki with given plant information x(ki), if

ymin < CAx(ki) + CBL(0)T η < ymax, (3.63)

where η = −Ω−1Ψx(ki). Then the optimal solution η is the solution with
the constraints.

2. If the constraint on the lower limit is violated such that

CAx(ki) + CBL(0)T η ≤ ymin, (3.64)

where η = −Ω−1Ψx(ki), then this constraint becomes active. The con-
strained optimal solution is not as straightforward as the case for the
constraints on the control signal, however, an analytical solution is found
by treating this constraint as an equality constraint. Namely, we need
to find η that will minimize the cost function J as well as satisfy the
inequality below:
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−CBL(0)T η ≤ −ymin + CAx(ki). (3.65)

Defining Mact = −CBL(0)T for notational simplicity, the Lagrange mul-
tiplier λact has an analytical expression:

λact = −(MactΩ
−1MT

act)
−1(−ymin +CAx(ki)+MactΩ

−1Ψx(ki)). (3.66)

Based on this expression, the analytical optimal solution of the parameter
vector η is obtained as

η = −Ω−1(Ψx(ki) + MT
actλact). (3.67)

3. Similarly, if the constraint on the upper limit is violated when η =
−Ω−1Ψx(ki), then the constrained optimal solution η is the one that will
minimize the cost function J and satisfy the inequality:

CBL(0)T η ≤ ymax − CAx(ki). (3.68)

In this case with Mact = CBL(0)T , the analytical solution for the La-
grange multiplier is expressed as

λact = −(MactΩ
−1MT

act)
−1(ymax − CAx(ki) + MactΩ

−1Ψx(ki)), (3.69)

which gives the constrained optimal solution η by (3.67).

Ranking of the Constraints

What if the constraints on the difference of the control, the control and the
output were all violated or any combinations of two kinds of constraints were
violated? If they were violated at the same time, could the violated con-
straints be treated as active constraints so that the optimal control satisfies
the constraints? The answer is negative. At any given sample time ki and
state variable x(ki), the constrained optimal solution η exists under the con-
dition that only one constraint is active. This observation is based on the
fact that the three types of constraints are linearly dependent. For instance,
the Mact = ±L(0)T for the constraints on ∆u; and for the constraints on u,
Mact = ±L(0)T ∆t and for the constraints on y, Mact = ±CBL(0)T . There-
fore, when putting them together, the determinant of (MactΩ

−1MT
act) is zero

and there is no solution for λact. This leads to the ranking of the constraints
for their importance so that the most crucial constraint will be satisfied, and
the less important constraints will be left alone.

The most important constraints are associated with the control signals,
whether it is the amplitude of the control or the difference of the control. The
less important constraints are the output constraints, because the effectiveness
of this type of constraints is dependent on the existence of an accurate model
for prediction. This is evident from the prediction (3.62) where the model is
used to predict the next step of y. In addition, if an observer is used, x(ki)
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is replaced by the estimated state x̂(ki), which leads to the question of the
effect of estimation error on the constraints.

After ranking the constraints, assuming that the most important con-
straints are on the amplitude of the control, and the less important constraints
are on the difference of the control and the least important constraints are on
the output, the implementation is as follows:

1. The least important constraints on y if they are violated, will be treated
as an active constraint so as to obtain η that will satisfy this constraint
on y.

2. Check whether this η will lead to the satisfaction of the constraints on
∆u. If not, ∆u will be modified to satisfy the constraints on ∆u. With
this new ∆u, we need to check if the constraints on u are satisfied. If not,
u will be modified to satisfy the constraints on u.

3.8.1 MATLAB Tutorial: Constrained Control of DC Motor

A DC motor has a continuous-time transfer function as

G(s) =
K

s(Ts + 1)
, (3.70)

where the control signal is input voltage to the motor and the output is the
angular position. The discrete-time model with zero-order-hold is expressed
as

G(z) =
b1z + b2

z2 + a1z + a2
. (3.71)

Instead of using an observer in the implementation, we will choose the state
variables according to the input and output signals so that the state variables
are directly measurable. To do so, let us look at the difference equation that
relates the input to the output:

y(k + 2) + a1y(k + 1) + a2y(k) = b1u(k + 1) + b2u(k). (3.72)

Choosing the state variable vector as

xm(k) =
[
y(k) y(k − 1) u(k − 1)

]T

⎡

⎣

y(k + 1)
y(k)
u(k)

⎤

⎦ =

⎡

⎣

−a1 −a2 b2

1 0 0
0 0 0

⎤

⎦

⎡

⎣

y(k)
y(k − 1)
u(k − 1)

⎤

⎦ +

⎡

⎣

b1

0
1

⎤

⎦u(k)

y(k) =
[
1 0 0

]
xm(k). (3.73)

The augmented state-space model is obtained by choosing the state variable
vector as

x(k) =
[
∆y(k) ∆y(k − 1) ∆u(k − 1) y(k)

]T
,
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leading to

⎡

⎢
⎢
⎣

∆y(k + 1)
∆y(k)
∆u(k)

y(k + 1)

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

−a1 −a2 b2 0
1 0 0 0
0 0 0 0

−a1 −a2 b2 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

∆y(k)
∆y(k − 1)
∆u(k − 1)

y(k)

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

b1

0
1
b1

⎤

⎥
⎥
⎦

∆u(k)

y(k) =
[
0 0 0 1

]
x(k). (3.74)

To be more precise, here ∆y(k) = y(k) − y(k − 1) and ∆u(k) = u(k) −
u(k − 1). At a sampling instant ki, with plant input and output’s current
and past information, x(ki) is explicitly known. Therefore, an observer is not
needed when using this state-space formulation. Also, note that the set-point
information at ki will be incorporated into the state variable x(ki) with its
last element replaced by y(ki) − r(ki).

Next, we proceed to the tutorial that will incorporate the analytical con-
straints into the optimal solution. In order to avoid confusion, the cases of con-
straints on plant input signal are presented first as these are the constraints
most likely to be used in a practical application. The case of constraints on
the output will follow in the second tutorial. Although the tutorials are pre-
sented for the DC motor control, they can be readily extended to an nth-order
single-input and single-output system.

Tutorial 3.9. Write a MATLAB program for controlling a DC motor where
both time constant and gain are normalized to yield T = 1 and K = 1. Sam-
pling interval h is 0.1. The design parameters are Q = CT C, and R = 0.1.
The Laguerre parameters are tuning parameters, initially with a = 0.5 and
N = 1. The prediction horizon Np = 46. The tutorial will be divided into
two parts. The first part deals with the constraints on input and second part
deals with constraints on both input and output. The solutions are suitable for
implementation on micro-controllers that have a limited computational power.

Part A. Constraints on u and ∆u

Step by Step

1. Create a new file called motor1.m.
2. We will first discretize the continuous-time model, then make the state-

space model. Enter the following program into the file:

K=1; % gain of the motor

T=1; % time constant of the motor

h=0.1; % sampling interval

num=K;

den=conv([1 0],[T 1]);
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[numd,dend]=c2dm(num,den,h);

Ap=zeros(3,3);

Ap(1,:)=[-dend(1,2:3) numd(1,3)];

Ap(2,:)=[1 0 0];

Ap(3,:)=[0 0 0];

Bp(1,1)=numd(1,2);

Bp(2,1)=0;

Bp(3,1)=1;

Cp(1,1)=1;

Cp(1,2)=0;

Cp(1,3)=0;

Dp(1,1)=0;

3. Now, make the augmented state-space model. Enter the following program
into the file:

n1=3;

m1=1;

n_in=1;

A=eye(n1+m1,n1+m1);

A(1:n1,1:n1)=Ap;

A(n1+1:n1+m1,1:n1)=Cp*Ap;

B=zeros(n1+m1,n_in);

B(1:n1,:)=Bp;

B(n1+1:n1+m1,:)=Cp*Bp;

C=zeros(m1,n1+m1);

C(:,n1+1:n1+m1)=eye(m1,m1);

4. Enter the design parameters and performance parameters and call the
function DMPC.m to generate matrices required for the predictive control
cost function J . Continue entering the following program into the file:

Q=C’*C;

R=0.3;

a=0.7;

N=1; %you can increase N

Np=46;

[Omega,Psi]=dmpc(A,B,a,N,Np,Q,R);

5. We can evaluate the closed-loop performance by calculating the feedback
gain matrix and closed-loop system matrix. Continue entering the follow-
ing program into the file:

[A1,L0]=lagd(a,N);

K_mpc=L0’*(Omega\Psi);

Acl=A-B*K_mpc;

Pole_close=eig(Acl);
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6. Set up the initial conditions for closed-loop simulation using constrained
control. We also specify the limits for ∆u and u. Continue entering the
following program into the file:

xm=zeros(n1,1);

N_sim=170;

u=0;

y=0;

y_delta_k=0;

y_delta_k_m1=0;

u_delta_k_m1=0;

r=[ones(1,200) ones(1,100) ones(1,200)];

Xf=[y_delta_k; y_delta_k_m1; u_delta_k_m1;

y-r(1,1)];

u_min=-0.3;

u_max=0.2;

deltau_min=-0.1;

deltau_max=0.1;

up=0.0;

7. The closed-loop simulation is performed recursively, and the optimal con-
trol is also found recursively. The analytical solution of optimal control is
as discussed before.

for kk=1:N_sim;

eta=-(Omega\Psi)*Xf;

deltau=L0’*eta;

if (deltau>deltau_max) deltau=deltau_max;end

if (deltau<deltau_min)

deltau=deltau_min;end

u=up+deltau;

if (u>u_max) deltau=u_max-up;

u=u_max;

end

if (u<u_min) deltau=u_min-up;

u=u_min; end

deltau1(1,kk)=deltau; %save data

u1(1,kk)=u; %save data

y1(1,kk)=y; %save data

%%%%

%plant simulation

%%%%%%

yp=y;

xm_old=xm;

xm=Ap*xm+Bp*u; % calculate xm(k+1)

y=Cp*xm; %calculate y(k+1)

%updating feedback state variable Xf
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y_delta_k_m1=y_delta_k;

y_delta_k=y-yp;

u_delta_k_m1=deltau;

Xf=[y_delta_k;

y_delta_k_m1;u_delta_k_m1;y-r(1,kk+1)];

up=u;

end

8. In a real-time implementation of the predictive control system on a DC
motor, the four lines regarding plant simulation will not exist. Instead, the
control signal u will be sent to the change on voltage and y will be taken
as the measurement of the angular position. If the implementation uses a
micro-controller, then storage of the data may not be permitted.

9. The simulation results are presented graphically. Continue entering the
following program into the file:

k=0:(N_sim-1);

figure(1)

subplot(211)

plot(k,y1,’b’)

ylabel(’y’)

xlabel(’Sampling Instant’)

subplot(212)

plot(k,u1,’b’)

ylabel(’u’)

xlabel(’Sampling Instant’)

figure(2)

plot(k,deltau1,’g’)

ylabel(’Delta u’)

xlabel(’Sampling Instant’)

10. Run this program, and compare the control results with and without con-
straints. Figure 3.14 shows the comparison results. Indeed, both control u
and difference of control ∆u satisfy the constraints when they are imposed.
It can be verified that this closed-form solution produces identical results
when using quadratic programming.

Part B. Constraints on Output

The closed-form solution for constraints on output is slightly more compli-
cated than the cases with constraints on input. The constraints on output,
relatively speaking, need to be introduced cautiously because they could cause
instability of the closed-loop system and severe deterioration of the closed-
loop performance. The program below will show how to incorporate the output
constraints in a closed-form solution. In the demonstration, we will assume
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Fig. 3.14. Comparison results of predictive control with and without constraints.
Key: darker-solid-line, control with constraints; solid-line, control without con-
straints

that the set-point signal is zero, and the predictive control is to reject an in-
put step disturbance. The program is built on the top of Part A of this tutorial.

Step by Step

1. Copy program motor1.m to motor2.m.
2. Before the closed-loop simulation, modify the constraints and add the lines

to motor2.m that specify the simulation condition, the disturbance and
constraints, including input and output.

r=[ones(1,120) -zeros(1,120) ones(1,200)]*0;

d=[ones(1,120) -zeros(1,120) ones(1,200)];

Xf=[y_delta_k; y_delta_k_m1;u_delta_k_m1;y-r(1,1)];

u_min=-1.5;

u_max=1.5;

deltau_min=-0.4;

deltau_max=0.4;

y_min=-0.14;

y_max=0.14;

M_act=C*B*L0’;

E=C*A;

y_bar_min=y_min-r(1,1);

y_bar_max=y_max-r(1,1);

3. Change the simulation part of the program in motor1.m to the following
paragraph, where the closed-form solution for output constraints is pre-
sented.

for kk=1:N_sim;

eta=-(Omega\Psi)*Xf;
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deltau=L0’*eta;

beta=E*Xf+M_act*eta;

if (beta<y_bar_min)

M_act1=-M_act;

lambda=-inv(M_act1*inv(Omega)*M_act1’)*

(-y_bar_min+E*Xf+M_act1*(-eta));

eta=-inv(Omega)*(Psi*Xf+M_act1’*lambda);

deltau=L0’*eta;

end

if (beta>y_bar_max)

lambda=-inv(M_act*inv(Omega)*M_act’)

*(y_bar_max-E*Xf+M_act*(-eta));

eta=-inv(Omega)*(Psi*Xf+M_act’*lambda);

deltau=L0’*eta; end

if(deltau>deltau_max) deltau=deltau_max;end

if (deltau<deltau_min)

deltau=deltau_min;end

u=u+deltau;

if (u>u_max) deltau=u_max-up; u=u_max;end

if (u<u_min) deltau=u_min-up; u=u_min; end

deltau1(1,kk)=deltau;

u1(1,kk)=u;

y1(1,kk)=y;

%%%%

%plant simulation

%%%%%%

yp=y;

xm_old=xm;

xm=Ap*xm+Bp*(u+d(kk)); % calculate xm(k+1)

y=Cp*xm; %calculate y(k+1)

%updating feedback state variable Xf

y_delta_k_m1=y_delta_k;

y_delta_k=y-yp;

u_delta_k_m1=deltau;

Xf=[y_delta_k; y_delta_k_m1;u_delta_k_m1;y-r(1,kk+1)];

y_bar_min=y_min-r(1,kk+1);

y_bar_max=y_max-r(1,kk+1);

up=u;

end

4. Run this program and compare the control results with and without con-
straints on the output.

5. Figure 3.15 shows the comparison of the control results. It is seen from
these plots that all constraints are satisfied. However, in order to bring the
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Fig. 3.15. Comparison results of predictive control with and without constraints.
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output within the constraints, the control signal u has a spike, also, ∆u
has a spike whenever the constraints on the output become active.

6. To demonstrate possible performance deterioration, choose smaller bounds
for the output with ymin = −0.12 and ymax = 0.12, and simulate the
closed-loop performance. Figure 3.16 shows that the closed-loop system
responses oscillate within the constraints. This highlights the difficulties
when imposing constraints on the plant output and that we need to take
extra care if plant output constraints are necessary.
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Fig. 3.16. Comparison results of predictive control with and without constraints.
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3.9 Summary

This chapter has proposed the design of discrete-time model predictive con-
trol using a set of Laguerre functions. The central idea is to express the future
incremental control trajectory ∆u(ki+m), m = 0, 1, 2, . . . , using an orthonor-
mal expansion, and by doing so, the problem of finding the future incremental
control trajectory is converted into one of finding the set of optimal coefficients
for the expansion. A set of Laguerre functions, which is orthonormal, is used
in the design. When the scaling factor a = 0, the predictive control designed
using a set of Laguerre functions collapses to the original case of using the
pulse operator where the coefficients of the expansion become identical to
∆u(ki), ∆u(ki + 1), . . ., ∆u(ki + N).

In the literature of predictive control design, other analytical functions,
such as exponential functions associated with the desired eigenvalues of the
closed-loop system, have been used to capture the control trajectory (see
Gawthrop and Ronco, 2002). Use of Laguerre functions is different from the
other approaches. This is because the set of Laguerre functions form a group
of candidate functions with appropriate orders, and with an increase of the
number of terms, the orthonormal expansion will converge to the underlying
optimal control trajectory. Thus, the accuracy is guaranteed to improve as
the number of terms, N , increases. This could not be said if an arbitrary set
of exponential functions or a set of other functions were put together without
consideration of orthogonality.

The tuning of the predictive control system consists of the following steps:

1. Choose the weight matrix Q = CT C for minimization of the error between
the set-point signal and output. This choice of Q produces excellent closed-
loop performance when using the augmented state-space model, which
virtually puts no weight on the incremental state variable ∆xm and iden-
tity weight matrix on the error between the set-point and output. R is
selected as a diagonal matrix with smaller components corresponding to
faster response speed.

2. Once Q and R are selected, the underlying optimal control trajectories
are fixed. In general, a is selected as an estimate of the real part (absolute
value) of the closed-loop dominant eigenvalue dictated by Q, R, and N is
increased until the control trajectory no longer changes with the increase
of N .

3. In some difficult applications, the closed-loop predictive control perfor-
mance can be fine-tuned, input by input with the selection of the pair
of parameters in the Laguerre functions, (a, N). For instance, a larger a
with a smaller number of N corresponds to a control signal with a slower
decay rate. In any case, an increase of N will lead to the convergence of
the control trajectory to the underlying trajectory dictated by the pair
(Q, R) matrices.

4. The prediction horizon Np is a tuning parameter, because the design
model has an embedded integrator(s). Its value needs to be selected suffi-
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ciently large to include the range within which the Laguerre functions de-
cay to sufficiently small values. However, numerical ill-conditioning prob-
lems may occur, and they will be resolved in Chapter 4.

The idea is applicable to other orthonormal functions, such as a set of gen-
eral orthonormal functions like Kautz functions (see Chapter 6). However, the
Laguerre functions offer the advantage of simplicity for programming. In ad-
dition, the scaling factor and the number of terms are the tuning parameters
without a priori knowledge of the desired closed-loop poles.

The initial idea of using Laguerre functions in the design of discrete-time
model predictive control was published in Wang (2001a) and Wang (2004).

Problems

3.1. Discrete-time Laguerre models are used to describe stable dynamic sys-
tems. This class of models are called basis function models in the literature
of system identification (see for example, Wang and Cluett, 2000, Wahlberg,
1991) in which a Laguerre model is estimated from plant experimental data.
This type of model structure has been used in predictive control to describe
the dynamics of a plant (see Finn et. al., 1993). When using this class of
models in the design of a predictive control system, an observer is not needed
for the implementation of the predictive control system (see Problem 3.2).
Suppose that a dynamic system is described by a continuous-time transfer
function model G(s), where G(s) is

G(s) =
e−3s

(10s + 1)3
. (3.75)

Approximate this continuous-time model by a discrete-time Laguerre transfer
function model G(z):

GA(z) =

√
1 − a2

1 − az−1

(

c1 + c2
z−1−a
1−az−1 + c3

(
z−1−a
1−az−1

)2

+ . . . + cn

(
z−1−a
1−az−1

)n−1
)

.

(3.76)
A suggestion is to obtain the corresponding discrete-time transfer function
model by discretization, based on which the discrete-time impulse response
is generated. By following Tutorial 3.1, the coefficients of the discrete-time
Laguerre model are obtained. The sampling interval ∆t is 1, and n = 3 while
the scaling factor a is 0.9.

3.2. Continue from Problem 3.1. Based on the description of the Laguerre
function’s state-space realization (3.5), choosing the state variable vector
xm(k) corresponding to L(k), Am to Al, Bm to L(0), verify that by letting
Cm be the Laguerre coefficient vector (i.e., Cm = [c1 c2 . . . cn]) the Laguerre
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transfer function (3.76) is realized by this state-space model. With this state-
space realization, the state variables are measurable through the input signal,
thus an observer is not required. Find the augmented state-space model that
has embedded an integrator in the Laguerre transfer function (3.76).

3.3. Continue from Problem 3.2. Based on the discrete-time state space model
obtained from Problem 3.2 for the plant (3.75), design a discrete-time model
predictive control system that will reject step input disturbance and follow a
step set-point signal. Here, the design specifications are Q = CT C, R = 1,
Np = 30, N = 3, and a = 0.5. Assuming that a step set-point signal r = 1
enters the system at k = 0 and a step input disturbance enters the system at
k = 30, simulate the nominal closed-loop system response for k = 0, 1, . . . , 100
(use the Laguerre model GA(z) as the plant in the nominal closed-loop system
simulation). The initial conditions of the state variables are assumed to be
zero.

Repeat the simulation using the discrete-time plant model G(z) obtained
directly from G(s) (3.75) and compare the closed-loop responses with the
nominal closed-loop responses. What is the cause of the performance differ-
ence?

3.4. Laguerre models by nature are approximate models. In control system
design, the higher the performance requirement, the more accurate the model
needs to be. Improving accuracy of the approximation relies on an increase
of the model term n in the Laguerre model. Repeat the Problems 3.1- 3.3
by using a different set of parameters. Firstly, increase the model order n
in Problem 3.1 to 8, and observe the improvement of the Laguerre model.
Secondly, maintaining all other parameters unchanged, use this higher-order
Laguerre model in the design by repeating Problem 3.3. Compare the closed-
loop responses with the results obtained from Problem 3.3.

3.5. An unstable, non-minimum phase system has the z-transfer function

G(z) =
0.3(z − 1.1)

(z − 0.3)(z − 1.5)
,

where one of the poles as well as the zero are outside the unit circle of the
complex plane. Design a discrete-time predictive control system with integral
action. The weight matrices are Q = CT C and R = 0.1. Choose the prediction
horizon as Np = 28, and select N = 3, the scaling factor in the Laguerre
function as a = 1

1.5 , which is the inverse of the unstable pole. Verify that this
set of design parameters will produce a stable closed-loop predictive control
system. The choice of prediction horizon Np is particularly important for
this unstable system (see Chapter 4). Therefore, reducing and increasing the
prediction horizon Np, observe the effects of this parameter on the closed-loop
stability and numerical condition of the Hessian matrix Ω.
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Fig. 3.17. Schematic plot for a double-tank process

3.6. A dynamic model of a vessel with two tanks connected in series is de-
scribed by

[
ẋ1(t)
ẋ2(t)

]

=

[

− β
α1

β
α1

β
α2

− β
α2

] [
x1(t)
x2(t)

]

+

[ 1
α1

0

0 1
α2

] [
u1(t)
u2(t)

]

(3.77)

y(t) =

[
1 0
0 1

] [
x1(t)
x2(t)

]

, (3.78)

where α1 > 0 and α2 > 0 are the coefficients reflecting the dynamics of
the first tank and second tank; β is the coefficient reflecting the connection
between the two tanks; x1 and x2 are the liquid levels of the tanks; u1(t)
and u2(t) are the control valves for the liquid flow into the tanks (see Figure
3.17). The coefficients are normalized and dimensionless. The double-tank has
an integrating mode, which is revealed by examining the eigenvalues of the
state-space model (0,−1.5).

We assume that α1 = 2, α2 = 1 and β = 1; ∆t = 0.1. Design a discrete-
time MPC for this double tank so that both tank levels will follow step input
references without steady-state errors. The weight matrices Q = CT C and
R = 0.1I, where I is the identity matrix. The prediction horizon is selected
as Np = 20. Fixing N1 = N2 = 3, change a1 = a2 from 0.0, to 0.5 and to 0.8,
observe the changes in the closed-loop step responses. If you do not want any
over-shoot in the closed-loop responses, which Laguerre scaling parameters
would you use?

3.7. Continue from Problem 3.6. We incorporate operational constraints into
the predictive control system. With the design parameters as a1 = a2 = 0.8,
N1 = N2 = 3, Np = 20, Q = CT C, and R = 0.1I, we compute the matrices
Ω and Ψ in the cost function
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J = ηT Ωη + 2Ψx(ki).

With zero initial conditions, we fill the tanks where the step reference signals
are r1 = 1 and r2 = 0.5 unit. After the levels reach the desired values, we then
maintain the same reference signal for the second tank, whilst doubling the
desired reference value for the first tank. To realize this, we could generate
the references using the MATLAB command:

Nsim=100;

sp=0.5*ones(2,Nsim);

sp(1,1:N_sim/2)=ones(1,Nsim/2);

sp(1,N_sim/2+1:N_sim)=2*ones(1,Nsim/2);

where Nsim is the number of simulation samples. The constraints for the
control signals are

−0.3 ≤ ∆u1(k) ≤ 0.3; −0.1 ≤ ∆u2(k) ≤ 0.1; 0 ≤ u1(k) ≤ 2; −2 ≤ u2(k) ≤ 0.5.

Simulate the predictive control system with constraints.

3.8. Extrusion is a continuous process in which a rotating screw is used to
force the food material through the barrel of the machine and out through
a narrow die opening. In this process the material is simultaneously trans-
ported, mixed, shaped, stretched and sheared under elevated temperature and
pressure. Suppose that u1, u2, y1 and y2 represent screw speed, liquid pump
speed, specific mechanical energy (SME) and motor torque, respectively. A
continuous-time model for the food extruder is

[
y1

y2

]

=

[
G11 G12

G21 G22

] [
u1

u2

]

(3.79)

where

G11 =
0.21048s + 0.00245

s3 + 0.302902s2 + 0.066775s + 0.002186

G12 =
−0.001313s2 + 0.000548s− 0.000052

s4 + 0.210391s3 + 0.105228s2 + 0.00777s + 0.000854

G21 =
0.000976s− 0.000226

s3 + 0.422036s2 + 0.091833s + 0.003434

G22 =
−0.00017

s2 + 0.060324s + 0.006836
.

Design a discrete-time model predictive control system for this food extruder.

1. Choosing sampling interval ∆t = 3 sec, obtain the discrete-time food
extruder model. Tutorial 3.3 shows how to convert individual transfer
functions into an MIMO system and obtain a discrete state-space model.
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2. Design a discrete model predictive controller that will track step set-point
signals and reject constant disturbances. The design parameters are pre-
diction horizon Np = 28, N1 = N2 = 4, a1 = a2 = 0.6; and the weight
matrices R = I and Q = CT C, where I is the identity matrix with an ap-
propriate dimension. What is the closed-loop feedback control gain matrix
and where are the closed-loop poles allocated in the complex plane?

3. Repeat the predictive control design with R = 0, and R = 6I. Compare
the predictive control system parameters with those from case R = I.
What are your observations?

4. Design an observer using MATLAB program ‘dlqr’

Kob= dlqr(A’,C’,Qob,Rob)’

where Qob = I1, and Rob = 0.1I2, I1 and I2 are the identity matrices with
dimension equal to the number of states and to the number of outputs
respectively. What is the observer gain vector Kob?

5. Simulate the closed-loop predictive control system using an observer to
estimate the state variables for reference following. The set-point signals
are r1 = 3 and r2 = 0. The steady-state vector of the control signal is
uss = [300 2000]T and the steady-state vector of the output signal is
yss = [639 42]T . Present your simulation results in terms of the actual
control signals and output signals that contain their steady-state values
(i.e., uact = u + uss, yact = y + yss).

6. Simulate the closed-loop predictive control system using observer to esti-
mate the state variables for disturbance rejection and noise attenuation.
A white noise with standard deviation of 0.1 is added to output y2 to sim-
ulate the situation of measurement noise in the system; and a unit step
input disturbance enters the system at control signal u2 after 40 sample
periods into the simulation. Present your simulation results in terms of the
actual control signals and output signals that contain their steady-state
values.

3.9. Continue from Problem 3.8. Incorporate operational constraints in the
predictive control system. The design parameters are specified as Np = 28,
N1 = N2 = 4, a1 = a2 = 0.8; and the weight matrices R = I and Q = CT C,
leading to the cost function:

J = ηT Ωη + 2ηT Ψx̂(ki).

The operational constraints are imposed on the changes of control signals as

−0.1 ≤ ∆u1(k) ≤ 0.1; − 0.1 ≤ ∆u2(k) ≤ 0.1,

which protect the screws and pumps from possible damage caused by large
sudden demand changes. Simulate the predictive control system with an ob-
server designed from Problem 3.8 by making a unit step set-point change to
the motor torque, while maintaining SME as constant.
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Discrete-time MPC with Prescribed Degree of

Stability

4.1 Introduction

In this chapter, we discuss discrete-time model predictive control with a pre-
scribed degree of stability. In Section 4.2, we begin with illustrative exam-
ples to show how the prediction horizon in the discrete-time model predictive
control affects the stability and numerical condition of the algorithm. In Sec-
tion 4.3, we propose the use of an exponentially weighted moving horizon
window in model predictive control design, which converts the numerically
ill-conditioned Hessian matrix into a numerically well-conditioned Hessian in
the presence of a large prediction horizon. The solution is extended to predic-
tive control with an infinite horizon. In Section 4.4, asymptotic stability for
predictive control designed using an infinite horizon is achieved through expo-
nential data weighting and modification of the weight matrices. In Section 4.5
we show how to design a predictive control system with a prescribed degree
of stability. In Section 4.6, we discuss the tuning parameters in the design of
model predictive control systems. In Section 4.7, we introduce exponentially
weighted constrained control. In the final section (see Section 4.8), an addi-
tional benefit when using exponential data weighting is illustrated through a
case study of predictive control of a complex system.

The results are established first by using the control vector ∆u with the
Laguerre pole a = 0, and then extended to the general case using Laguerre
functions where 0 ≤ a < 1. The case of smaller N is of particular interest to
us as an approximation to the optimal closed-loop performance (see Section
4.6).

4.2 Finite Prediction Horizon: Re-visited

In this section, we will investigate the sensitivity issues in the design of pre-
dictive control using finite prediction horizon.
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Table 4.1. Eigenvalues and condition number κ of the Hessian matrix

Np λmin(Ω) λmax(Ω) κ(Ω)

10 9.85 1.01 × 104 1.03 × 103

30 279.5 2.43 × 106 8.7 × 103

300 2.85 × 105 2.43 × 1011 8.64 × 105

4.2.1 Motivational Example

Example 4.1. Suppose that the discrete-time model is of the form

xm(k + 1) = Amxm(k) + Bmu(k)

y(k) = Cmxm(k), (4.1)

where Am =

[
1 1
0 1

]

; Bm =

[
0.5
1

]

; Cm =
[
1 0

]
.

Illustrate the changes on the condition number of the Hessian matrix

Ω =
(
∑Np

m=1 φ(m)Qφ(m)T + RL

)

,

with increase of the prediction horizon Np, where the Laguerre pole a = 0,
and N = 2. Assume RL = 0 to simplify the problem.

Solution. To examine how the choice of prediction horizon affects the nu-
merical condition of the Hessian matrix, we select the prediction horizon
Np = 10, 30, 300 respectively. The minimum and maximum eigenvalues of
the Hessian matrix are calculated. The results are presented in Table 4.1. It is
seen from Table 4.1 that the condition number of the Hessian matrix increases
as the prediction horizon Np increases.

4.2.2 Origin of the Numerical Conditioning Problem

The essence of model predictive control is to minimize the cost function J at
a given time ki by solving for the optimal control trajectory ∆u(.) which is
described by a set of coefficients and Laguerre functions, where J is defined
as

J =

Np∑

j=1

x(ki + j | ki)
T Qx(ki + j | ki) +

Np∑

j=0

∆u(ki + j)T R∆u(ki + j), (4.2)

where Q ≥ 0 and R > 0. The strength of MPC formulated using Laguerre
functions lies in the fact that the cost function J is optimized in real time,
subject to a set of linear inequality constraints:

Mη ≤ γ, (4.3)



4.2 Finite Prediction Horizon: Re-visited 151

where ∆U =
[
∆u(ki)

T ∆u(ki + 1)T .. ∆u(ki + Np)
T

]T
. This cost function

(4.2) is expressed in terms of the coefficients η and transformed into the cost,
given by

J = ηT Ωη + 2ηT Ψx(ki). (4.4)

Recall that we embedded integrators in the state-space model (A, B, C) for
obtaining integral action, and the prediction of the state variables (see (3.43))
involves the matrix power Am and the convolution sum φ(m). The matrices
Ω and Ψ are the following quantities:

Ω =

Np∑

m=1

φ(m)Qφ(m)T + RL; Ψ =

Np∑

m=1

φ(m)QAm.

When there is an integrator in the system matrix A, the norms of the matrix
power ||Am|| and the convolution sum ||φ(m)|| do not decay to zero, as m in-
creases. Thus, the magnitudes of the elements in Ω increase as the prediction
horizon Np increases. Hence, if the prediction horizon Np is large, a numer-
ical conditioning problem occurs. This problem exists in the majority of the
classical predictive controllers formulations, including GPC and DMC. The
traditional approaches to overcome this numerical problem include the use of
an inner-loop state feedback stablization of the design model (Kouvaritakis
and Rossiter, 1992, Rossiter et al., 1998) that may compromise the closed-loop
performance when constraints become active, or the use of prediction horizon
Np and control horizon Nc as the tuning parameters (see for example Clarke
et al., 1987), which is exactly the technique that we used in the previous chap-
ters. This finite horizon idea relies on the fact that the solution for η is based
on

η = −
(
∑Np

m=1 φ(m)Qφ(m)T + RL

)−1 (
∑Np

m=1 φ(m)QAm
)

x(ki), (4.5)

where for a large prediction horizon Np, we have the scenario of a large number
divided by another large number. With a matrix inversion algorithm that
improves the numerical accuracy of this type of situations, not surprisingly,
finite horizon predictive control systems are used in many applications. This
numerical problem becomes severe when the plant model itself is unstable, or
when the dimension of the matrix A is large.

What we propose in the following is to modify the original cost function
(4.2) so that it produces numerically well conditioned solutions in real time. By
doing so, a long prediction horizon Np can be used safely without jeopardizing
the numerical stability of the algorithms. The target of our approach is to
produce a predictive control system with a prescribed degree of closed-loop
stability.

The development consists of three stages. In stage one, we will propose an
intuitive approach for improving the numerical condition of MPC algorithms,
but without guaranteeing closed-loop stability. Asymptotic stability will arrive
at stage two. Stage three will show how to use the results to create a prescribed
degree of closed-loop stability for the predictive control algorithm.
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4.3 Use of Exponential Data Weighting

We will introduce the idea of exponential data weighting in the design of model
predictive control systems. Use of exponential data weighting originated from
Anderson and Moore (1971), where continuous-time systems were encountered
in the LQR design and the exponential factor eλt was used. The discrete
counterpart to eλt for t ≥ 0 is the geometric sequence {αj, j = 0, 1, 2 . . .},
in which we set α = eλ∆t with ∆t being the sampling interval. Because of
this link to the continuous-time counterpart, we call the discrete weights an
exponential weighting set.

4.3.1 The Cost Function

For simplicity, we will first consider the case of a = 0 that corresponds to the
case of shift operator, then extend the case to the more general case when
0 ≤ a < 1. Let us propose the cost function in the following form:

J =

Np∑

j=1

α−2jx(ki + j | ki)
T Qx(ki + j | ki)

+

Np∑

j=0

α−2j∆u(ki + j)T R∆u(ki + j). (4.6)

If α = 1, then the cost function becomes identical to the traditional cost
function that has been used in the previous chapters. We are more interested
in the cases when α �= 0.

Exponentially Increasing Weight

If α < 1, the exponential weights α−2j , j = 1, 2, . . . , Np, de-emphasizes the
state x(ki + j | ki) at the current time and places emphasis on those at the
future time, because the weights increase as the sample index j increases.
The continuous-time counterpart of this exponentially increasing weight was
used in Anderson and Moore (1971) for LQR design. Their solutions were
obtained through the use of a steady-state Riccati equation. The idea was
used in receding horizon control (see Kwon and Han, 2005, Yoon and Clarke,
1993). The key in all the previous approaches relies on the use of an exponen-
tially increasing weight in the cost function, along with the solution obtained
analytically from a Riccati approach.

Exponentially Decreasing Weight

If α > 1, the exponential weights α−2j , j = 1, 2, . . . , Np place more emphasis
on the state x(ki + j | ki) at the current time and less emphasis on those at
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future times, because the weights decrease as the sample j increases. This is
the case that will be used in the design of predictive control systems.

We will show the equivalence of the cost and progress to understanding
the reasons why the exponentially decreasing weight is useful in the context
of predictive control design.

4.3.2 Optimization of Exponentially Weighted Cost Function

The design of discrete-time model predictive control with exponential data
weighting is to minimize the cost function J for a given α > 1 where

J =

Np∑

j=1

α−2jx(ki + j | ki)
T Qx(ki + j | ki)

+

Np∑

j=0

α−2j∆u(ki + j)T R∆u(ki + j), (4.7)

subject to inequality constraints expressed by

M∆U ≤ γ, (4.8)

and the state-equation constraint:

x(ki + j + 1 | ki) = Ax(ki + j | ki) + B∆u(ki + j), (4.9)

where M and γ are the data matrices for the constraints and the parameter
vector

∆UT =
[
∆u(ki)

T ∆u(ki + 1)T ∆u(ki + 2)T . . . ∆u(ki + Np)
T

]
.

The exponentially weighted cost function by itself does not reveal much about
its role in predictive control design. Its role is revealed through the transformed
variables. Define the sequence of exponentially weighted incremental control:

∆ÛT =
[
α−0∆u(ki)

T α−1∆u(ki + 1)T . . . α−Np∆u(ki + Np)
T

]
,

and the exponentially weighted state variable:

X̂T =
[
α−1x(ki + 1 | ki)

T α−2x(ki + 2 | ki)
T . . . α−Npx(ki + Np | ki)

T
]
.

By using these exponentially weighted variables, the exponentially weighted
cost function is expressed in terms of the transformed variables. The result is
summarized by the theorem below.

Theorem 4.1. The minimum solution of the exponentially weighted cost
function J (4.7) subject to the inequality constraints (4.8) and state-equation
constraints (4.9) can be found by minimizing
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Ĵ =

Np∑

j=1

x̂(ki + j | ki)
T Qx̂(ki + j | ki) +

Np∑

j=0

∆û(ki + j)T R∆û(ki + j), (4.10)

subject to
Mα∆Û ≤ γ, (4.11)

where x̂(ki + j | ki) and ∆û(ki + j) are governed by the following difference
equation:

x̂(ki + j + 1 | ki) =
A

α
x̂(ki + j | ki) +

B

α
∆û(ki + j), (4.12)

where Mα is the matrix defined by

Mα = M

⎡

⎢
⎢
⎣

I 0 . . . 0 0
0 α1I . . . 0 0
0 0 · · · αNp−1I 0
0 0 . . . 0 αNpI

⎤

⎥
⎥
⎦

.

Proof. To find the optimal solution for the exponentially weighted cost and
constraints by (4.7) and (4.9), we let

x̂(ki + j | ki) = α−jx(ki + j | ki)

∆û(ki + j) = α−j∆u(ki + j).

Then the exponentially weighted cost function J (4.7) equals the expression
of Ĵ given by (4.10). Note that the state variable model (4.9) can also be
written in terms of x̂(ki) and ∆û(ki). At a future sample j, multiplying (4.9)
by the factor α−(j+1) leads to

x̂(ki + j + 1 | ki) = α−(j+1)x(ki + j + 1 | ki)

= α−1Ax̂(ki + j | ki) + α−1B∆û(ki + j), (4.13)

where we used the relationship that

α−jx(ki + j | ki) = x̂(ki + j | ki); α−j∆u(ki + j) = ∆û(ki + j).

In addition, the original inequality constraints can be transformed into the
constraints (4.11) by substituting ∆u(ki) = ∆û(ki), ∆u(ki+1) = α∆û(ki+1),
. . ., ∆u(ki + j) = αj∆û(ki + j). Thus, with the identical initial condition
at the present time ki, i.e., x̂(ki) = x(ki) and ∆û(ki) = ∆u(ki), the cost
function presented by (4.7) subject to the inequality constraints (4.8) and
state variable constraints (4.9) is identical to the cost function (4.10) subject
to the inequality constraints (4.11) and state variable constraints (4.9).

This result shows that if we choose a cost function with exponential data
weight, the equivalent result is to minimize the unweighted cost function,
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but with a re-scaling applied to the design model. As we discussed previously,
instability of the design model is the cause of the numerical problem occurring
in the class of predictive control systems that have embedded integrators.
Therefore, with a suitable choice of scaling factor α, the original unstable
design model could be substituted with the transformed design model that is
stable with all poles inside the unit circle.

Example 4.2. Consider the same double-integrator system given in Example
4.1. Examine how the parameter α used in the weighting affects the numer-
ical condition and closed-loop control performance with constraints on the
amplitude of the control signal as

−12 ≤ u(k) ≤ 12.

Solution. We make a simple modification to the design of a model predictive
controller by using the exponential weight factor α. We use the following
MATLAB scripts to generate Ω and Ψ matrices.

%A_e and B_e are the matrices for

%the augmented state space model.

alpha=1.2;

[Omega,Psi]=dmpc(A_e/alpha,B_e/alpha,a,N,Np,Q,R);

We only impose constraints on the first sample of the control, therefore, there
is no change at the constraint formulation.

The closed-loop responses for α = 1 with the three different prediction
horizons are shown in Figure 4.1a. It is seen that when the prediction horizon
changes, the closed-loop responses differ. In contrast, it is shown in Figure
4.1b that with exponential data weighting α = 1.2, the closed-loop responses
become invariant after a certain prediction horizon.
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(a) α = 1, with constraints
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(b) α = 1.2, with constraints

Fig. 4.1. Closed-loop responses using different prediction horizons. Top figure, out-
put response; middle figure, control signal response; bottom figure, input distur-
bance. Key: solid line Np = 300; solid-dotted line Np = 30; solid-plus line: Np = 10
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Table 4.2. Eigenvalues and condition number of the Hessian matrix Ω

Np α λmin(Ω) λmax(Ω) κ(Ω)

10 1/1.2 69.5 2.44 × 105 3.52 × 103

30 1/1.2 3.46 × 105 4.59 × 1010 1.32 × 105

300 1/1.2 3.1 × 1048 3.5 × 1057 1.13 × 109

10 1 9.85 1.01 × 104 1.03 × 103

30 1 279.5 2.43 × 106 8.7 × 103

300 1 2.85 × 105 2.43 × 1011 8.64 × 105

10 1.2 1.98 561.4 283.5

30 1.2 5.0 1.83 × 103 365.2

300 1.2 5.11 1.86 × 103 362.9

To examine how the choice of prediction horizon affects the numerical
condition of the Hessian matrix, we select the parameters in the Laguerre
functions as N = 2 and a = 0, prediction horizon Np = 10, 30, 300, respec-
tively. Table 4.2 shows the changes in eigenvalues and the condition number
of the Hessian matrix with respect to Np. For comparison purpose, the re-
sults have been presented for the cases of α = 1/1.2 (exponentially increasing
weight), α = 1 (no exponential weighting) and α = 1.2 (exponentially decreas-
ing weighting). From this table, it is seen that with exponentially increasing
weighting, the Hessian matrix is poorly conditioned even for short predic-
tion horizon; without exponential weighting the condition number increases
rapidly as the prediction horizon increases. However, with exponentially de-
creasing data weighting, the condition number converges to a finite value and
is much smaller than the one obtained without using exponential weighting.
Obviously, it is not feasible to use exponentially increasing weighting in this
context, as the numerical condition rapidly deteriorates as prediction horizon
increases, when α < 1.

4.3.3 Interpretation of Results from Exponential Weighting

The key point is that by transforming the exponentially weighted cost func-
tion to the traditional cost function, the augmented state-space model (A, B)
is changed into (α−1A, α−1B). Suppose that the |λmax(A)| denotes the max-
imum modulus of all the eigenvalues of A. Thus, by choosing α > |λmax(A)|,
the system matrix α−1A is transformed to a matrix with the maximum mod-
ulus of all eigenvalues being less than 1. For instance, assuming that the plant
model is stable and the augmented system matrix A contains eigenvalues equal
to unity, then by choosing α = 1.1, all eigenvalues of A are divided by 1.1,
and the transformed design model is asymptotically stable with all eigenvalues
within the unit circle in the complex plane. Hence, the numerical problems
associated with the class of predictive control systems are resolved, because
of the stable design model.
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Because the optimization is performed using the exponentially weighted
variables, the Hessian matrix has a significantly reduced numerical condition
number. Furthermore, with receding horizon control, upon finding the solu-
tion, the actual control ∆u(ki) = ∆û(ki).

With this simple modification, intuitively we understand that there is no
guarantee on the closed-loop stability with an arbitrary choice of α > 1.
However, when α is chosen to be slightly larger than one for the class of
stable plants with embedded integrator, the closed-loop predictive systems
are often found to be stable with Q = CT C and a diagonal R matrix with
small positive elements. In addition, closed-loop stability needs to be checked
by examining the eigenvalues of the closed-loop system when constraints are
not activated. To make sure that we understand the issues properly, they are
investigated further.

With the exponentially weighted cost function, for the first time, the pre-
diction horizon Np can be selected to be sufficiently large to approximate the
infinite prediction horizon case. Thus with Q ≥ 0 and R > 0, and sufficiently
large Np (→ ∞), minimizing

J =

Np∑

j=1

x̂(ki + j | ki)
T Qx̂(ki + j | ki) +

Np∑

j=0

∆û(ki + j)T R∆û(ki + j)

x̂(k + 1) =
A

α
x̂(k) +

B

α
∆û(k)

is equivalent to the discrete-time linear quadratic regulator (DLQR) problem.
The traditional DLQR problem is solved using the algebraic Riccati equa-

tion shown in (4.14). The basic results are summarized below. For those who
are interested in further study of this topic, Kailath (1980) gives a good in-
troduction. For our particular problem, suppose that the pair (α−1A, α−1B)
is controllable, and the pair (α−1A, C) is observable where Q = CT C. Then
there is a stabilizing state feedback control gain matrix K where

K =
(
R + α−2BT P∞B

)−1
α−2BT P∞A

AT

α
[P∞ − P∞

B

α
(R +

BT

α
P∞

B

α
)−1 BT

α
P∞]

A

α
+ Q − P∞ = 0, (4.14)

so that the closed-loop system

x̂(ki + j + 1 | ki) = α−1(A − BK)x̂(ki + j | ki) (4.15)

is stable with all its eigenvalues inside the unit circle. Thus for a given bounded
initial state condition x̂(ki), there exists an ǫ where 0 < ǫ < 1 such that the
transformed state variable satisfies

||x̂(ki + j | ki)|| ≤ (1 − ǫ)j ||x̂(ki)||. (4.16)
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Because x(ki + j | ki) = αj x̂(ki + j | ki), then with the identical initial
condition x(ki) = x̂(ki),

||x(ki + j | ki)|| ≤ (α × (1 − ǫ))j ||x(ki)||. (4.17)

Both (4.15) and (4.17) point to the same conclusion. Namely, this choice of
exponentially weighted cost function will produce a stable closed-loop system
if

α × (1 − ǫ) < 1.

We can also examine the closed-loop eigenvalues of the original system. From
(4.15), the transformed system matrix α−1(A − BK) has all its eigenvalues
inside the unit circle by taking the prediction horizon Np to infinity, which is

α−1|λmax(A − BK)| < 1,

therefore, the actual closed-loop system (A − BK) has eigenvalues

|λmax(A − BK)| < α.

By choosing α > 1, there is no guarantee that the closed-loop of the original
system will be stable. But, if α is chosen to be slightly larger than unity, then
the closed-loop system A−BK would often be stable. Indeed, a large number
of simulation tests show that this simple modification usually produces a
stable closed-loop system, if the unstable modes from the augmented model
come from the embedded integrators. However, a proper choice of the weight
matrices Q and R is important to create the degree of stability 1 − ǫ for the
transformed system.

4.4 Asymptotic Closed-loop Stability with Exponential

Weighting

Further work is required to produce a predictive control system with guaran-
teed stability as well as a numerically well-conditioned solution.

4.4.1 Modification of Q and R Matrices

In order to produce an asymptotic closed-loop predictive control system with
exponential data weighting, the matrices Q and R need to be selected to
produce the closed-loop system with stability margin 1

α . Better still is the
selection of a new Q and a new R to achieve the same original cost function
when the exponential data weight was not used.

The basic idea is as follows. The exponentially decreasing weight α > 1
increased the magnitudes of the actual closed-loop eigenvalues by the α factor.
If the new Q and R matrices are selected to decrease the magnitudes of the
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eigenvalues of the exponentially weighted system by a factor of α−1, then
the magnitudes of the actual closed-loop eigenvalues become unchanged from
this exercise. This basic idea is summarized by the theorem below, which
establishes the relationship between the original cost and the weighted cost
function by selecting the new Q and R matrices.

Theorem 4.2. Subject to the same system state equation

x(ki + j + 1 | ki) = Ax(ki + j | ki) + B∆u(ki + j), (4.18)

the optimal solution of ∆u(ki + j) by minimizing the cost function Jα defined
as

Jα =

∞∑

j=1

α−2jx(ki + j | ki)
T Qαx(ki + j | ki)

+
∞∑

j=0

α−2j∆u(ki + j)T Rα∆u(ki + j) (4.19)

is identical to the solution found by minimizing the original cost

J =

∞∑

j=1

x(ki + j | ki)
T Qx(ki + j | ki) +

∞∑

j=0

∆u(ki + j)T R∆u(ki + j), (4.20)

where the new Qα and Rα are selected according to

γ =
1

α
(4.21)

Qα = γ2Q + (1 − γ2)P∞ (4.22)

Rα = γ2R, (4.23)

and P∞ is the solution of the algebraic Riccati equation as below:

AT [P∞ − P∞B(R + BT P∞B)−1BT P∞]A + Q − P∞ = 0. (4.24)

Proof. For a fixed initial condition x(ki), the optimal solution to the cost
function (4.20), when constraints are not activated, is given by the Riccati
equation

AT
(
P∞ − P∞B(R + BT P∞B)−1BT P∞

)
A + Q − P∞ = 0 (4.25)

K = −
(
R + BT P∞B

)−1
BT P∞A. (4.26)

From Section 4.3.3, that the optimal solution of the exponentially weighted
cost function (4.19) is given by the Riccati equation

K̄ =
(
Rα + α−2BT P̄∞B

)−1
α−2BT P̄∞A (4.27)
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AT

α
[P̄∞ − P̄∞

B

α
(Rα +

BT

α
P̄∞

B

α
)−1 BT

α
P̄∞]

A

α
+ Qα − P̄∞ = 0. (4.28)

We will next verify that (4.25) is equal to (4.28) and (4.26) is equal to (4.27).
From the Riccati equation (4.25), we multiply each A and B with α

α and

then let Â = A
α and B̂ = B

α . The Riccati equation (4.25) becomes

ÂT

γ
[P∞ − P∞

B̂

γ
(R +

B̂T

γ
P∞

B̂

γ
)−1 B̂T

γ
P∞]

Â

γ
+ Q − P∞ = 0, (4.29)

where γ = 1
α . Multiplying γ2 by both sides of (4.29) leads to

ÂT [P∞ − P∞B̂(Rγ2 + B̂T P∞B̂)−1B̂T P∞]Â + γ2Q − γ2P∞ = 0. (4.30)

Adding and subtracting P∞ from (4.30) and letting

Qα = γ2Q − γ2P∞ + P∞; Rα = γ2R,

the Riccati equation (4.30) becomes identical to (4.28). Hence, P̄∞ = P∞.
Applying the same procedure to K given by (4.26) leads to K̄. Hence K̄ = K.
This establishes that the optimal solution of the exponentially weighted cost
function Jα by (4.19) is identical to the one from the commonly used cost
function J (4.20).

4.4.2 Interpretation of the Results

The essence of the results lies in the fact that the two cost functions lead to the
same optimal control. However, the commonly used cost function is limited
to a finite prediction horizon for the class of predictive control algorithms
that have embedded integrators. In contrast, the exponentially weighted cost
function removes the problem because the model used in the prediction is
modified to be stable using the factor α. As a result, the prediction horizon
Np can be selected to be sufficiently large without numerical problems. Hence,
asymptotic closed-loop stability is guaranteed.

Example 4.3. Consider the simple double-integrator system described in 4.1

where Am =

[
1 1
0 1

]

; Bm =

[
0.5
1

]

; Cm =
[
1 0

]
.

Design a predictive control system with an integrator for disturbance rejec-
tion, where Q = CT C, R = 1, Np = 150, N = 4, a = 0. Calculate the
closed-loop eigenvalues, gain matrix via the cost function using exponential
data weighting with α = 1.6 and compare the results with the case without
weighting (α = 1).
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Solution.

With exponential data weighting

For the given Q and R, we solve the steady-state Riccati equation

AT
(
P∞ − P∞B(R + BT P∞B)−1BT P∞

)
A + Q − P∞ = 0

to obtain

P∞ =

⎡

⎣

1.7367 1.6663 1.2633
1.6663 2.0965 1.0000
1.2633 1.0000 2.1663

⎤

⎦ .

With this P∞, Qα and Rα are calculated as

Qα = 0.6252Q + (1 − 0.6252)P∞ =

⎡

⎣

1.0583 1.0154 0.7698
1.0154 1.2775 0.6094
0.7698 0.6094 1.7107

⎤

⎦

Rα = 0.6252R = 0.3906.

With this set of design parameters, the cost function used in the receding
horizon control is calculated for a given x(ki)

J = ηT
(
∑Np

m=1 φ(m)Qαφ(m)T + RαI
)

η

+ 2ηT
(
∑Np

m=1 φ(m)QαÂm
)

x(ki), (4.31)

where the pair (α−1A, α−1B) is used in the computation to replace the pair
(A, B) in the predictive control algorithm. The results are

Np∑

m=1

φ(m)Qαφ(m)T + RαI =

⎡

⎢
⎢
⎣

24.7384 23.0396 20.4633 17.3134
23.0396 24.7384 23.0396 20.4633
20.4633 23.0396 24.7384 23.0396
17.3134 20.4633 23.0396 24.7384

⎤

⎥
⎥
⎦

Np∑

m=1

φ(m)QαÂm =

⎡

⎢
⎢
⎣

11.0121 29.8538 3.0071
8.7619 27.4206 1.8794
6.6508 23.7887 1.1746
4.8909 19.7589 0.73

⎤

⎥
⎥
⎦

.

The condition number of the Hessian matrix is 124.6. The state feedback
control gain matrix is the first row of the matrix

(
∑Np

m=1 φ(m)Qαφ(m)T + RαI
)−1 (

∑Np

m=1 φ(m)QαÂm
)

=

⎡

⎢
⎢
⎣

0.7978 1.2634 0.3678
−0.1952 0.0594 −0.1992
−0.1793 −0.1010 −0.0950
−0.0321 −0.0405 0.0255

⎤

⎥
⎥
⎦

. (4.32)
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From the data shown so far, the predictive control system numerically behaves
well. To confirm the result that this is equivalent to the DLQR solution, the
MATALB function dlqr with the Q and R parameter matrices is used to obtain
the gain vector as

Kdlqr =
[
0.7980 1.2633 0.3684

]
.

In comparison, there is a small discrepancy between the gain vectors calculated
from DMPC and dlqr. However, this discrepancy can be further reduced by
increasing the number of terms in the Laguerre functions, for example, from
N = 4 to N = 6. By doing so the quantity in (4.32) becomes

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.7980 1.2634 0.3684
−0.1919 0.0606 −0.1949
−0.1757 −0.0992 −0.0913
−0.0515 −0.0457 −0.0037
0.0017 −0.0055 0.0145
0.0139 0.0092 0.0101

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By inspection of the first row, it is seen that the predictive control gain vector
is identical to the gain vector from dlqr function (at least up to three digits).

Without exponential data weighting (α = 1)

When α = 1, the pair (A, B) is used in the computation of the predictive
control system. The data matrices are

Np∑

m=1

φ(m)Qφ(m)T + RI = 108

⎡

⎢
⎢
⎣

3.8604 3.7966 3.7333 3.6706
3.7966 3.7339 3.6717 3.6101
3.7333 3.6717 3.6107 3.5501
3.6706 3.6101 3.5501 3.4907

⎤

⎥
⎥
⎦

Np∑

m=1

φ(m)QAm = 108

⎡

⎢
⎢
⎣

0.0641 3.8925 0.0006
0.0630 3.8281 0.0006
0.0619 3.7643 0.0005
0.0608 3.7010 0.0005

⎤

⎥
⎥
⎦

.

The condition number of the Hessian matrix is 1.4347× 109. The quantity in
(4.32) is

⎡

⎢
⎢
⎣

1.0338 1.4553 0.5068
−0.6706 −0.1772 −0.5570
−0.7583 −0.5100 −0.4055
0.3951 0.2318 0.4556

⎤

⎥
⎥
⎦

.

Comparing the first row of this quantity with the dlqr gain matrix, it is seen
that there are much larger errors for each component in this gain matrix, due
to the numerical instability of the data matrices.
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The next example shows the use of exponential data weighting in the predic-
tive control design of a MIMO system.

Example 4.4. Consider the continuous-time system with transfer function rep-
resentation

[
y1(s)
y2(s)

]

=

[
12.8(−s+4)2

(16.7s+1)(s+4)2
−1.89(−3s+4)2

(21.0s+1)(3s+4)2

1.28(−7s+4)2

(10.9s+1)(7s+4)2
−19.4(−3s+4)2

(14.4s+1)(3s+4)2

] [
u1(s)
u2(s)

]

.

The system is sampled using the interval ∆t = 1. Integrators are used in the
design for disturbance rejection. Assuming that Q = CT C, and R = I; a = 0,
N = 5 and Np = 140, compute the solution using the long prediction horizon
with exponential data weight α = 1.2, and modified Qα and Rα. Compare
the eigenvalues and the gain matrices with DLQR solution.

Solution. First, we compute the DLQR solution to obtain the Riccati matrix
P . Then, the P is used to obtain matrices Qα and Rα, where γ = 1

α = 0.8333

Qα = 0.83332Q + (1 − 0.83332)P (4.33)

Rα = 0.83332R. (4.34)

The MATLAB� code is

[K,P,E]=dlqr(A,B,Q,R);

gamma=0.8333;

Q_alpha=gamma^2*Q+(1-gamma^2)*P;

R_alpha=gamma^2*R;

The new Qα and Rα matrices are used in the design of discrete-time model
predictive control with exponential data weighting. Due to the large dimen-
sion of the system, instead of using tables, we present the comparison results
graphically. Figure 4.2 is the comparison of closed-loop eigenvalues between
the DMPC and DLQR where the results are seen to be identical to each other;
and this is also verified by the comparison of the control gain matrices (see
Figure 4.3); the condition number of the Hessian matrix is 475. In contrast,
without exponential weighting, the condition number of the Hessian matrix
is 44607, and the numerical solution is ill-conditioned.

Example 4.5. Suppose that a continuous-time system is described by the
transfer function

G(s) =
1

s2 + 2ξωs + ω2
,

where ξ = 0.5 and ω = 3. Suppose that the sampling interval ∆t = 0.1, and
the weight matrices are Q = CT C with C = [0 0 1] and R = 0.3. The pre-
diction horizon is chosen to be Np = 46. The parameters for the Laguerre
functions are a = 0.7 and N = 18. We assume that at sample index ki = 10,
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Fig. 4.2. Closed-loop eigenvalues (α = 1.2). Key: (1) from DLQR; (2) from DMPC

0 5 10 15
Ŧ0.4

Ŧ0.2

0

0.2

0.4

0.6

0.8

1
Gain Elements

1

2

Fig. 4.3. Parameters in the first row of the control gain matrix (α = 1.2). Key: (1)
from DLQR; (2) from DMPC

the state variable x(ki) = [0.1 0.2 0.3]T . With α = 1.2 and without con-
straints, illustrate the equivalence within one optimization window between
LQR (scaled) and the exponentially weighted predictive control. In addition,
show that when receding horizon control is applied, the closed-loop control
systems are identical.



4.5 Discrete-time MPC with Prescribed Degree of Stability 165

Solution. The feedback control gain vector K using DLQR program is

K = [1.7022 5.6548 1.6689],

which is identical to the predictive control gain vector generated using

Kmpc = L(0)T (Ω−1Ψ) = [1.7022 5.6548 1.6689].

Within one optimization window, the optimal parameter vector for the La-
guerre function is

η = −Ω−1Ψx(ki).

With this η, the transformed ∆û(ki + j) is constructed where

∆û(ki + j) = L(j)T η.

Then, this ∆û(ki + j) is used to generate the closed-loop state trajectory
x̂(ki + j | ki) based on the pair (α−1A, α−1B).

To emphasize the transformation, the optimal LQR control trajectory is
compared in the transformed variables, where by applying the controller K to
the system specified by the pair (α−1A, α−1B), the closed-loop control signal
is u(ki+j) = −K(α−1A−α−1BK)jx(ki) and the closed-loop state variable in
the transformed version is x(ki + j | ki) = (α−1A−α−1BK)jx(ki). Numerical
results show identical results between the transformed variables in DLQR
system and the predictive control system within one optimization window.
These identical plots are shown in Figure 4.4. Because predictive control uses
the principle of receding horizon control, at j = 0 the first sample of the
optimization window, the weight factor α0 is unity. Thus, the unconstrained
control should be completely identical to the optimal LQR solution when
receding horizon control is applied. In the closed-loop simulation, a step input
signal is applied at sampling time k = 0, and the predictive control systems are
compared for the cases. Numerical results show that the closed-loop responses
are identical. These identical responses are plotted in Figure 4.5. This is very
good because the scaling factor is not needed when the predictive control is
implemented.

4.5 Discrete-time MPC with Prescribed Degree of

Stability

The closed-loop performance of the predictive control system is specified by
the choice of Q and R matrices when a sufficiently large prediction horizon
and a large N are used in the design. So often, we select Q = CT C to minimize
the output errors, and R is used to tune the closed-loop response speed. A
smaller element in R corresponds to less weight on the corresponding control,
hence permitting a larger change in the control increment, and resulting in
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Fig. 4.4. Comparison of responses within one optimization window. Key: line (1)
predictive control solution; line (2) DLQR solution with exponential scaling

a faster closed-loop response. For a system with many inputs and outputs, it
might be time consuming to tune the closed-loop performance using the Q
and R. At other times, it may be desirable to have the closed-loop eigenvalues
within a prescribed circle on the complex plane. For instance, by inspection,
the three dominant eigenvalues in Example 4.4 are very close to the unit circle
(see Figure 4.2). It would be useful if there was a way to move the eigenvalues
inside a concentric circle that is well inside the unit circle.

The Design Objective

When constraints are not activated, for a given value of λ, where 0 < λ < 1,
the performance specification is to design a predictive control system such
that the closed-loop eigenvalues are within the λ circle of the complex plane.
In other words, for a given initial condition x(ki), the predicted future state
variable decays at a rate at least equal to λ:

||x(ki + j | ki)|| ≤ λj ||x(ki)||.
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Fig. 4.5. Predictive control without constraints. Key: line (1) Closed-loop control
using linear quadratic regulator; line (2) closed-loop predictive control with expo-
nential weight (α = 1.2)

The continuous-time counterpart of variable λ is called the degree of stability
by Anderson and Moore (1971).

Results for DMPC with Prescribed Degree of Stability

This design objective can be realized using the procedure described in Section
4.4. The results are summarized in the following theorem.

Theorem 4.3. Subject to the same system state equation

x(ki + j + 1 | ki) = Ax(ki + j | ki) + B∆u(ki + j), (4.35)

the optimal solution of ∆u(ki + j) by minimizing the cost function Jα defined
by



168 4 Discrete-time MPC with Prescribed Degree of Stability

Jα =
∞∑

j=1

α−2jx(ki + j | ki)
T Qαx(ki + j | ki)

+

∞∑

j=0

α−2j∆u(ki + j)T Rα∆u(ki + j) (4.36)

is identical to the solution found by minimizing the original cost:

J =
∞∑

j=1

λ−2jx(ki + j | ki)
T Qx(ki + j | ki)

+

∞∑

j=0

λ−2j∆u(ki + j)T R∆u(ki + j), (4.37)

where α > 1, 0 < λ < 1; Qα and Rα are are defined by

γ =
λ

α
(4.38)

Qα = γ2Q + (1 − γ2)P∞ (4.39)

Rα = γ2R, (4.40)

and P∞ is the solution of the Riccati equation:

ÂT

γ
[P∞ − P∞

B̂

γ
(R +

B̂T

γ
P∞

B̂

γ
)−1 B̂T

γ
P∞]

Â

γ
+ Q − P∞ = 0,

where the matrices Â = α−1A and B̂ = α−1B.

Proof. From the results in Section 4.3 and for 0 < ǫ < 1, it is clear that the
minimization of the cost function (4.37) will result in,

||x(ki + j | ki)|| ≤ (λ × (1 − ǫ))j ||x(ki)||, (4.41)

based on the same rationale given in (4.14) to (4.17). Because 0 < λ < 1 is
specified, (4.41) ensures that the ||x(ki + j | ki)|| decays, at least at a speed
faster than λj . In addition, all the closed-loop eigenvalues of the actual system
reside inside the circle with a radius of 0 < λ < 1.

Also, from Section 4.3, the optimal control of (4.37) is solvable through
the algebraic Riccati equation

AT

λ
[P∞ − P∞

B

λ
(R +

BT

λ
P∞

B

λ
)−1 BT

λ
P∞]

A

λ
+ Q − P∞ = 0. (4.42)

We multiply all A and B matrices in (4.42) by the quantity α
α and replacing

α−1A by Â, α−1B by B̂. Denote the quantity λ
α = γ. After that, (4.42)

becomes
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ÂT

γ
[P∞ − P∞

B̂

γ
(R +

B̂T

γ
P∞

B̂

γ
)−1 B̂T

γ
P∞]

Â

γ
+ Q − P∞ = 0. (4.43)

Multiplying both sides of (4.43) with γ2, and letting

Qα = γ2Q + (1 − γ2)P∞ (4.44)

Rα = γ2R, (4.45)

the Riccati equation (4.43) is

ÂT [P∞ − P∞B̂(Rα + B̂T P∞B̂)−1B̂T P∞]Â + Qα − P∞ = 0, (4.46)

which is the Riccati equation for the cost function (4.36).

Computational Procedure

The design procedure is summarized as below.

1. With a given degree of stability 0 < λ < 1, solve the steady-state Riccati
equation for a given Q ≥ 0, and R > 0

AT

λ
[P∞ − P∞

B

λ
(R +

BT

λ
P∞

B

λ
)−1 BT

λ
]
A

λ
+ Q − P∞ = 0. (4.47)

2. Assuming that α > 1 is the exponential weighting factor, use the Riccati
solution P∞ from (4.47) in the computation of Qα and Rα:

γ =
λ

α
(4.48)

Qα = γ2Q + (1 − γ2)P∞ (4.49)

Rα = γ2R. (4.50)

3. Use the Qα and Rα in the design of model predictive control with the
chosen exponential weight α for a sufficiently large Np

J =

Np∑

j=1

x(ki + j | ki)
T Qαx(ki + j | ki)

+

Np∑

j=0

∆u(ki + j)T Rα∆u(ki + j), (4.51)

based on the pair (α−1A, α−1B).

Example 4.6. Consider the system given in Example 4.4 with identical design
specifications except that the degree of stability λ is chosen to be 0.9, namely
all closed-loop eigenvalues are specified to be within the circle of radius 0.9.
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Solution. With the prescribed degree of stability λ = 0.9, and the weight
matrices Q and R, together with the augmented state model (A, B) (see Ex-
ample 4.4), we solve the following steady-state algebraic Riccati equation to
find P∞.

AT

λ
[P∞ − P∞

B

λ
(R +

BT

λ
P∞

B

λ
)−1 BT

λ
]
A

λ
+ Q − P∞ = 0.

The exponential weight factor in Example 4.4 was selected as α = 1.2. we
calculate γ, Qα and Rα as

γ =
λ

α

Qα = γ2Q + (1 − γ2)P∞

Rα = γ2R

With the weight matrices Qα and Rα and the transformed model (Â, B̂), we
calculate the predictive control gain matrices. The MATLAB code is given as
below.

lambda=0.9;

alpha=1.2;

[K,P,E]=dlqr(A/lambda,B/lambda,Q,R);

gamma=lambda/alpha;

Q_alpha=gamma^2*Q+(1-gamma^2)*P;

R_alpha=gamma^2*R;

Ahat=A/alpha;Bhat=B/alpha;

[Omega,Psi]=dmpc(Ahat,Bhat,a,N,Np,Q_alpha,R_alpha);

Figure 4.6 shows that all eigenvalues are within the circle of radius 0.9. The
condition number of the Hessian matrix is κ(Ω) = 1080.

4.6 Tuning Parameters for Closed-loop Performance

There is another option that is available to us for tuning of closed-loop per-
formance. This option relies on the functionality of the Laguerre functions.
The basic idea is to use the parameters a and N in the Laguerre functions as
part of the closed-loop tuning parameters, where the number of terms N is
deliberately limited to a relatively small number.

The question that requires immediate attention is what the control system
would be doing if the choice of a and N did not lead to the optimal control
specified by the discrete-time LQR system with the pair (Q, R). The answer
is important, particulary if the pair a and N is used as tuning parameters for
closed-loop performance. To answer this question, the relationship between
the Riccati solution P∞ and the minimum of the cost function is investigated.
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Fig. 4.6. Closed-loop eigenvalues inside λ-circle (α = 1.2 and λ = 0.9)

4.6.1 The Relationship Between P∞ and Jmin

Recall from Section 3.3 that the cost function is, after completing the squares

J =

Np∑

j=1

x(ki + j | ki)
T Qx(ki + j | ki)

+

Np∑

j=0

∆u(ki + j)T R∆u(ki + j)

=
(
η + Ω−1Ψx(ki)

)T
Ω

(
η + Ω−1Ψx(ki)

)

− x(ki)
T ΨT Ω−1Ψx(ki) +

Np∑

m=1

x(ki)
T (AT )mQAmx(ki), (4.52)

where we define

Ω =
(
∑Np

m=1 φ(m)Qφ(m)T + RL

)

(4.53)

Ψ =
(
∑Np

m=1 φ(m)QAm
)

. (4.54)

Therefore, with the optimal solution

η = −Ω−1Ψx(ki),

the minimum of the cost function is
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Jmin = x(ki)
T

(
∑Np

m=1(A
T )mQAm − ΨT Ω−1Ψ

)

x(ki). (4.55)

Before introducing the exponentially weighted cost function, for a large predic-
tion horizon, it was not appropriate to make a statement about the minimum
of the cost function (4.55) because the computation of Jmin is numerically
unstable. This is seen from involvement of the power function of the A ma-
trix, where A has at least an eigenvalue on the unit circle. Thus, in fact, due
to the numerical error, Jmin increases as Np increases.

With exponential data weighting, Jmin can be computed with accuracy.
Now, it is appropriate to study Jmin with exponentially decaying weighting
in the cost function.

Case A. Sufficiently large N is used

When a sufficiently large N is used in the Laguerre functions, the control
trajectory will converge to the underlying optimal control trajectory defined
by the discrete-time LQR cost function:

J̃ =

Np∑

j=0

x(ki + j | ki)
T Qx(ki + j | ki)

+

Np∑

j=0

∆u(ki + j)T R∆u(ki + j). (4.56)

The minimum of this cost function, with optimal control, is given by

J̃min = x(ki)
T P∞x(ki). (4.57)

With exponential data weighting, in the predictive control, the cost function
is

J =

Np∑

j=1

x(ki + j | ki)
T Qαx(ki + j | ki)

+

Np∑

j=0

∆u(ki + j)T Rα∆u(ki + j), (4.58)

subject to the pair (α−1A, α−1B), where α > 1 ensures stability of the de-
sign model. The weightings Qα and Rα lead to the equivalence between the
weighted and unweighted solutions, as demonstrated before.

Note that when the initial term x(ki)
T Qαx(ki) is added to the cost func-

tion for predictive control, J = J̃ . Namely, these two cost functions become
identical. Although two different approaches, the uniqueness of the minimum
of the same quadratic function leads to the relation between the Riccati solu-
tion P∞ and the error matrix of the discrete-time MPC solution as
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lim
Np→∞

Pdmpc = Qα +
(
∑Np

m=1(Â
T )mQαÂm − ΨT Ω−1Ψ

)

= P∞, (4.59)

where Â = α−1A and B̂ = α−1B are used in the computation, and the num-
ber of terms N in the Laguerre functions is assumed to be sufficiently large.
We emphasize that this relationship is established based on the choice of a suf-
ficiently large N so that the discrete-time MPC control trajectory converges
to the underlying control trajectory of the discrete-time LQR system. The
relation is illustrated by the following example.

Example 4.7. Consider the continuous-time plant model with transfer function

G(s) =

[
12.8(−s+4)2

(16.7s+1)(s+4)2
−1.89

(21.0s+1)

0 −19.4(−3s+4)2

(14.4s+1)(3s+4)2

]

. (4.60)

Choosing sampling interval ∆t = 1, design a predictive control system with
integral action. Assume that Q = CT C, and R = I; a = 0, Np = 140, and
compute the solution using the long prediction horizon with exponential data
weight α = 1.2, and modified Qα and Rα. Compare the relative errors of the
diagonal elements between Riccati solution P∞ and the matrix Pdmpc when
N1 = N2 = 6 and N1 = N2 = 8.

Solution. With the choice of weight matrices Q and R, we compute the
Riccati solution P using the MATLAB dlqr function. Then, we obtain the
weight matrices in the cost function of the predictive control as Qα and Rα.
The matrix Pdmpc is computed as

Pdmpc = Qα +
(
∑Np

m=1(Â
T )mQαÂm − ΨT Ω−1Ψ

)

.

Define the jth element of the relative error:

e(j) = |P∞(j, j) − Pdmpc(j, j)|/P∞(j, j),

where the elements P∞(j, j) and Pdmpc(j, j) are the diagonal elements of P∞
and Pdmpc, respectively. The error vector e(.) is for N1 = N2 = 6,

e = 10−3 × [0.0929 0.2126 0.2289 0.5548 0.1047 0.0546 0.3086 0.0451 0.0048].

For comparison, with N1 = N2 = 8, the error vector e(.) is

e = 10−3 × [0.0100 0.0140 0.0038 0.2477 0.0441 0.0307 0.1533 0.0090 0.0008].

Therefore, with an increasing N , the relative errors between the diagonal
elements of these two matrices are reduced. Furthermore, by choosing x(ki)
being a vector containing unity elements, the minimum of the cost function is
evaluated. For discrete-time LQR, Jmin = 11.0811, and for the discrete-time
MPC when a1 = a2 = 0.0, N1 = N2 = 8, Jmin = 11.0812.
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Case B. Relatively small N is used

This is to investigate what occurs when a relatively smaller N is used for a
given a. When this happens, the predictive control trajectory will not converge
to the underlying optimal control trajectory defined by the pair of weight
matrices (Q, R). If we term the case when N is sufficiently large as the global
optimum for the given cost function, then the case corresponding to a smaller
N could be termed a truncated approximation to the global optimum. There is
only one global optimal solution once Q and R are selected. However, there are
many approximations to the optimal solutions depending on the selection of
the parameters a and N in the Laguerre functions. They provide the user with
the means to select the closed-loop performance that might be desirable in a
specific application. More explicitly, once Q and R are selected, the parameters
a and N are used as fine-tuning parameters for the closed-loop performance.
This is particularly useful when dealing with a complex system, where the
variations of a and N are selected for each input independently to find the
desired closed-loop performance.

An approximation to the global optimal solution could also be interpreted
as a global optimal solution on its own for a pair of weight matrices Q̃ and R̃
which are unknown, also different from the original Q and R. This interpreta-
tion also sets the conditions such that the approximate optimal solution will
stabilize the closed-loop system. This is obtained through reverse engineering.

Suppose that the pair (or pairs) of a and N parameters are chosen to
form the Laguerre functions, the cost function J is minimized with respect to
optimal control. Then the minimum of the cost function J is

Jmin = x(ki)
T

(
∑Np

m=1(Â
T )mQαÂm − ΨT Ω−1Ψ

)

x(ki), (4.61)

where Â = α−1A and B̂ = α−1B are used in the computation. This Jmin is
unique with respect to the choice of a and N parameters, when Ω−1 exists.
The second term x(ki)

T ΨT Ω−1Ψx(ki) is a function of the a and N parame-
ters. With restricted a and N , this Jmin is different from the global minimum,
and the optimal control is different from the discrete-time LQR optimal con-
trol defined by the pair (Q, R). Therefore, for a restricted pair of a and N
parameters, there is a pair of unknown weight matrices Q and R defining a dif-
ferent cost function. We call the unknown weight matrices Q̃ and R̃. Through
reverse engineering, we find out what they are.

With the original choice of Q and R, and a, N parameters, the Riccati
solution Pdmpc is calculated as

Pdmpc = Qα +
(
∑Np

m=1(Â
T )mQαÂm − ΨT Ω−1Ψ

)

, (4.62)

where α > 1 is used to ensure that Â is stable. Assuming that the choice of a
and N leads to a stable closed-loop system, then following the derivation of
linear quadratic optimal control, the Riccati equation holds
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ÂT [Pdmpc−PdmpcB̂(R̃α+B̂T PdmpcB̂)−1B̂T Pdmpc]Â+Q̃α−Pdmpc = 0. (4.63)

Choosing R̃α = Rα, then the free parameter Q̃α can be used to balance the
Riccati equation, leading to

Q̃α = Pdmpc − ÂT [Pdmpc − PdmpcB̂(Rα + B̂T PdmpcB̂)−1B̂T Pdmpc]Â. (4.64)

This means that by choosing a restricted pair of a and N parameters, the
predictive control system is equivalent to a discrete-time LQR system with a
pair of weight matrices Q̃ and R̃. By substituting the value of Q̃α, the value
of Q̃ is

Q̃ = α2Q̃α − (α2 − 1)Pdmpc

= Pdmpc − AT [Pdmpc − PdmpcB(R + BT PdmpcB)−1BT Pdmpc]A. (4.65)

Therefore, for a small N , the closed-loop predictive control system is stable if
Pdmpc is positive definite and Q̃ is non-negative definite, where Q̃ is calculated
using (4.65). There are a few comments to make. Firstly, (4.65) says that if
Pdmpc is equal to P∞ from the original cost function using discrete-time LQR

design, then Q̃ = Q, thus there is no change in the cost function. However,
if Pdmpc differs from P∞, then equivalently a different discrete-time LQR

problem is solved using the predictive control framework, with the pair Q̃ and
R̃. Additionally, the prescribed degree of stability λ can be effectively enforced
with an arbitrary pair of a and N , without Q̃ entering the computation.

It is worthwhile to emphasize that Q̃ will not enter the computation, and
its existence is for theoretical justification and for understanding the essence
of the problem in relation to the existing discrete-time LQR design.

Example 4.8. Suppose that a first-order plus time-delay system is described
by the transfer function

G(z) =
0.1z−6

z − 0.8
.

Choosing Q = CT C, and R = 0.1, α = 1.2 as the design parameters, show
the variation of closed-loop performance by varying the Laguerre pole a for
0 ≤ a ≤ 0.9 where the parameter N = 1 is fixed. The prediction horizon
Np = 46 is selected for the computation.

Solution. To illustrate the tuning procedure, a unit step response test is used
with zero initial condition of the state variables. We select the value of a equal
to 0, 0.3, 0.6, 0.9, respectively, in the predictive control system and compare
the closed-loop control results with the results obtained using DLQR design.
Figure 4.7 shows the comparative results. It is seen that for N = 1, the closed-
loop predictive control system is stable for the range of a used in the design.
Furthermore, the optimal DLQR system offers the fastest rise time and slight
over-shoot. For this particular system, as a increases, the closed-loop response
speed of the predictive control system reduces. There is a performance trend
dependent on the variation of a.
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(a) Incremental control signal
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(b) Control signal
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(c) Output response

Fig. 4.7. Tuning of predictive control system (N = 1, varying a). Key: line (1)
DLQR control; line (2) a = 0; line (3) a = 0.3; line (4) a = 0.6; line (5) a = 0.9

4.6.2 Tuning Procedure Once More

With exponential data weighting, the closed-loop performance parameters are
very similar to the discrete-time LQR performance parameters. Basically, the
choice of weight matrices Q and R determines the closed-loop performance.
The prediction horizon Np no longer plays a role in the design, because a
large Np is used to approximate an infinite prediction horizon. For a choice of
large N , with any 0 ≤ a < 1, the trajectory of the future control trajectory
converges to the underlying optimal control trajectory defined by the corre-
sponding LQR control law. Therefore, if we wish, a large N is selected for
each input variable, so that the closed-loop performance is solely dependent
on the Q and R matrices. Of course, the prescribed degree of stability, λ, is
a very important parameter in the specification of closed-loop performance.
This is because, with this parameter, the closed-loop poles of the predictive
control system are constrained to be within a λ-circle of the complex plane,
where 0 < λ < 1.

It is understandable that tuning closed-loop performance through the
choice of Q and R matrices can be quite time consuming. There are two
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reasons for this. One is that not only the diagonal elements, but also the
off-diagonal elements in these matrices influence the closed-loop performance.
The other reason is that the diagonal and off-diagonal elements lack a direct
link to the closed-loop performance, hence offering little by way of intuitive
guidelines to the designer. It goes without saying that tuning a predictive
control system with many inputs, many outputs and many state variables is
indeed a complex task in its own right.

What we propose here is to make the tuning procedure as simple as pos-
sible. First, the weight matrix Q is always important for the closed-loop per-
formance. However, the optimal Q is often selected as

Q = CT C.

With integrators embedded in the MPC design, C is the output matrix of the
augmented model so it contains all zeros apart from the unit diagonal elements
corresponding to the outputs. With this choice, the closed-loop eigenvalues are
determined by the weight matrix R. More specifically, if it is a single-input
and single-output system where R = rw is a scalar, the closed-loop eigenvalues
are the inside-the-unit-circle zeros of the equation,

1 +
1

rw

Gm(z)Gm(z−1)

(z − 1)(z−1 − 1)
= 0. (4.66)

In the multi-input and multi-output case, when the weighting matrices
Q = CT C, and R = rwI, the closed-loop poles are the inside-the-unit-circle
zeros of the equation,

det(I +
1

rw

Gm(z)Gm(z−1)T

(z − 1)(z−1 − 1)
) = 0,

where Gm(z) = Cm(zI − Am)−1Bm is the z-transfer function for the plant.
By varying the scalar rw, we will obtain the set of closed-loop eigenvalues as
a function of the weight rw, and choose the weight rw that correspond to the
desired closed-loop eigenvalues.

A more general case, but still maintaining simplicity, will include the choice
of Q being Q = CT QyC, where Qy > 0 is the diagonal weight matrix that
the designer wishes to use for distributing weights on individual output vari-
ables, as well as the choice of R > 0 being a diagonal matrix for distributing
weights on individual input variables. Note that weighting R is assumed to
be a diagonal matrix to simplify the computation of MPC using the Laguerre
basis functions. The smaller elements in R corresponds to faster closed-loop
response speed.

Next, the exponential weight factor α needs to be specified. Use of the
exponential weight will avoid the numerical ill-conditioning problem for the
class of MPC systems that have embedded integrators. If the plant is stable,
any α > 1 will serve this purpose. A modest α is recommended when dealing
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with constraints. For instance, α = 1.1 is sufficient for the class of stable plants
or plants with integrators. When using exponential data weighting the closed-
loop performance requires to be compensated so that the original targeted
performance by Q and R remains unchanged. This compensation is simply
achieved by using

γ =
1

α
(4.67)

Qα = γ2Q + (1 − γ2)P∞ (4.68)

Rα = γ2R, (4.69)

where P∞ is the Riccati solution of the algebraic Riccati equation with the
original augmented model (A, B), and the performance matrices Q and R. If
desired, a prescribed degree of stability λ can also be embedded at this stage,
where the value of γ is selected to be γ = λ

α .
With Q, R and λ chosen, the closed-loop performance of the predictive

control system is determined. This closed-loop performance will be achieved
when the number of terms in the Laguerre functions is selected to be large.
How large is dependent on the selection of the scaling factor a. Bearing this in
mind, the pair of a and N is used as fine-tuning parameters for the closed-loop
performance.

The tuning procedure is summarized as follows.

1. Select the weight matrices Q = CT QyC and R, where Qy ≥ 0, R > 0
are diagonal matrices with elements corresponding to the weights on the
individual output and control signals, respectively. A larger element in Qy

means the demanding of a faster response from that particular output,
while a larger element in R means less control action required from that
particular control signal.

2. Specify an α > 1 to ensure numerical stability and a λ-circle in which all
the closed-loop poles of the predictive control system are to reside.

3. Use a large prediction horizon Np to approximate the infinite horizon
control case, and set the Laguerre function order N to be a large value,
and the Laguerre pole a to be close to the dominant pole of the closed-loop
LQR system.

4. Calculate the Ω and Ψ in the cost function of the predictive control system:

J = ηT Ωη + 2ηT Ψx(ki). (4.70)

5. Increase the Laguerre function order N until the closed-loop performance
has no further change. This is the predictive control system that is iden-
tical to the DLQR system with a prescribed degree of stability.

6. If we wish to fine-tune the closed-loop performance, we could reduce the
Laguerre function order N to find the approximations to the optimum. We
could also perturb the Laguerre pole a to vary the closed-loop performance
for some small N . These variations are equivalent to different choices of
Q matrix.
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4.7 Exponentially Weighted Constrained Control

This section examines constrained control with exponential weighting in the
cost function. Recall in the solution of exponentially weighted predictive con-
trol problem, essentially, the cost function

J =

Np∑

j=1

x̂(ki + j | ki)
T Qαx̂(ki + j | ki)

+

Np∑

j=0

∆û(ki + j)T Rα∆û(ki + j) (4.71)

is minimized using the pair (α−1A, α−1B), where α > 1 is used to scale the
eigenvalues of matrix A. The equivalence to the optimal DLQR solution was
also established. Suppose that with Q and R weight matrices, ∆u(ki + j) and
x(ki + j | ki) are the LQR solution, then, the transformed variables are

∆û(ki + j) = α−j∆u(ki + j); x̂(ki + j | ki) = α−jx(ki + j | ki).

As the constraints are specified in terms of the original physical variables,
the constraints need to be transformed to correspond with the exponen-
tially weighted variables in the solution of the optimization problem. Since
the transformed variables at the beginning of the optimization window are
∆û(ki) = ∆u(ki) and û(ki) = u(ki), and if the constraints are only imposed
at the initial sample of the variables within the window, then the constraints
will be used unchanged, namely, the constraints are formulated as

∆umin ≤ L(0)T η ≤ ∆umax; umin ≤ u(ki − 1) + L(0)T η ≤ umax.

However, because the constraints on the state variables are imposed one step
ahead, the exponential factor needs to be included, leading to

α−1Xmin ≤ α−1Ax(ki) + φ(0)T η ≤ α−1Xmax.

Suppose that all the original constraints are uniformly imposed on the future
samples. Then the transformed constraints are changing with respect to the
future sample instant. For example, the future constraints for ∆u at j =
1, 2, 3, . . . , m become

α−1∆umin ≤ L(1)T η ≤ α−1∆umax

α−2∆umin ≤ L(2)T η ≤ α−2∆umax

α−3∆umin ≤ L(3)T η ≤ α−3∆umax

...

α−m∆umin ≤ L(m)T η ≤ α−m∆umax. (4.72)
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The constraints on the state variable are transformed to

α−2Xmin ≤ α−2A2x(ki) + φ(1)T η ≤ α−2Xmax

α−3Xmin ≤ α−3A3x(ki) + φ(2)T η ≤ α−3Xmax

...

α−mXmin ≤ α−mAmx(ki) + φ(m − 1)T η ≤ α−mXmax, (4.73)

where φ(j) is the data vector used in the design of predictive control. As for
the constraints on the control variable, they are transformed to:

umin ≤ u(ki − 1) + αL(1)T η ≤ umax

umin ≤ u(ki − 1) + (αL(1)T + α2L(2)T )η ≤ umax

umin ≤ u(ki − 1) + (αL(1)T + α2L(2)T + α3L(3)T )η ≤ umax

...

umin ≤ u(ki − 1) +

m∑

j=1

αjL(j)T η ≤ umax. (4.74)

There are a few comments to be made here. It is seen here that the originally
uniformly imposed constant constraints are all transformed into constraints
that are functions of the exponential weight factor α−j . Because α is greater
than unity, the bounds converge to some constants as the future sample index
increases. On the other hand, if the original constraints are not uniformly
imposed, and if they are imposed in an exponentially increasing manner with
the factor α, then the constraints become constants for the transformed vari-
ables, at least for ∆u and state variable x. In addition, because the control
trajectory ∆û(ki + j) is captured by a set of Laguerre functions, which are
exponentially decaying functions, it decays as future sample index j increases.

Example 4.9. Suppose that a second-order discrete-time system with time de-
lay is described by

G(z) =
z−16

(z − 0.8)(z − 0.6)
.

Design and simulate a predictive control system with unit step input and zero
initial conditions. The weight matrices are Q = CT C, R = 0.1. With N = 8,
a = 0.5, Np = 46 the predictive control system is almost identical to the
DLQR control system. The constraints are specified as

−0.3 ≤ ∆u(k) ≤ 1; 0.7 ≤ u(k) ≤ 1.

For the choice of α = 1, α = 1.1 and α = 1.2, illustrate the closed-loop per-
formance and numerical condition of the Hessian matrix with respect to the
exponential weight factor α.
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Table 4.3. Condition number of Hessian matrix Ω

α 1 1.1 1.2

κ(Ω) 4005 538 141

Solution. The condition numbers for the Hessian matrix are listed in Table
4.3. For this simple system, without exponential data weighting (α = 1),
the condition number of the Hessian is very large (4005). With the choice
of α = 1.1, the condition number is reduced to 13% of the previous case.
When α further increases to 1.2, the condition number reduces to 141. In
addition, with α = 1.1, the Ω and Ψ matrices become invariant with the
large prediction horizon Np. For comparison purpose, the unconstrained case
is shown in Figure 4.8.

To impose constraints, we transform the constraints to the forms that
embed the exponential factor α using (4.72) and (4.74). We impose the con-
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Fig. 4.8. Predictive control with constraints. Key: line (1) without constraints; line
(2) constraints on the first sample (α = 1.2); line (3) constraints on the first 10
samples (α = 1.2); line (4) constraints on the first 10 samples (α = 1.1). The plots
for case 2, 3, 4 are identical
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straints for the first 10 samples. All together, there are three cases being
investigated, where α = 1.2 with constraints on the first sample and the first
10 samples, and α = 1.1 with the first 10 samples. Although different α val-
ues are used in the constrained control simulation, the numerical results show
that the constrained control results are identical, as seen in Figure 4.8. These
results mean that when transforming the constraints to the forms that embed
the exponential weight α, the constrained control system is consistent with
respect to the weight factor α.

To emphasize this, use of exponential data weighting significantly improves the
numerical condition of the predictive control system, and removes the effect
of prediction horizon in the design. Also, a prescribed degree of stability can
be added in the design.

4.8 Additional Benefit

The following example will illustrate the additional benefit when using expo-
nential data weighting in the predictive control design.

Example 4.10. A mechanical system (van Donkelaar et al., 1999) that is highly
oscillatory and non-minimum-phase, is described by

G(z) =
−5.7980z3 + 19.5128z2 − 21.6452z + 7.9547

z4 − 3.0228z3 + 3.8630z2 − 2.6426z + 0.8084
. (4.75)

This system has four poles located at

0.5162 ± j0.7372 0.9952 ± j0.0877

and the three zeros at

1.3873 0.9891 ± j0.1034.

The unit step response and the frequency response of this system are shown in
Figure 4.9. Design and simulate predictive control systems with and without
exponential data weighting (α = 1.2 and α = 1); and compare the results.
The design specification for the weight matrices are Q = CT C; R = 0.3. The
prediction horizon, and the parameters in the Laguerre functions will be se-
lected depending on the choice of α. Observe the large differences between N
and Np when α = 1 and α = 1.2.

Solution.

The LQR control system

The discrete-time LQR solution leads to the gain vector
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Fig. 4.9. Open-loop response of mechanical system

K = [2.0269 − 4.8132 3.6065 − 0.8047 0.1233].

Assuming the initial state variable condition at sampling time ki = 10 as

x(ki) = [0.1 0.2 0.3 0.4 0.5],

the LQR optimal trajectory ∆u(ki + j) is constructed using the x(ki), A, B
and K, and is shown in Figure 4.10a for the initial response and Figure 4.10b
for the entire response. It is seen that because the system is highly oscillatory,
it takes about 460 samples for the LQR control trajectory to decay to zero.
In addition, the initial part of the control trajectory is quite complicated (see
Figure 4.10a). However, it takes about 20 samples for the system output to
decay to zero (see Figure 4.10d), which illustrates that the closed-loop system
has a very fast response speed.

Predictive control without exponential weighting (α = 1)

From Figure 4.10, we see that in order for the predictive control system to
match the discrete-time LQR system, the prediction horizon needs to be se-
lected as 460 or above. As for the parameters in the Laguerre function, if
a = 0, then N needs to be 400 or above to achieve the LQR desired results. If
a larger a is used, then the parameter N is smaller. Indeed, with the selection
of a = 0.9 and N = 60, and predictive control system matches the results ob-
tained from discrete-time LQR within one optimization window. In contrast,
if a = 0 and N = 199 are selected, then the predictive control signals will
match the LQR control up to the sampling instant of 199. Figure 4.11 shows
the comparison results with one optimization with ki = 10 and the control
signal before the optimization window is u(9) = 6. Control increment ∆u con-
tinues to oscillate about 500 samples, which is not shown in Figure 4.11a. It is
worthwhile to mention that the Hessian matrix is ill-conditioned with either
a = 0.9 or a = 0. When a = 0.9, the condition number is 4.6595× 105, while
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Fig. 4.10. LQR control of mechanical system

the condition number is 1.7418 × 104 for the case a = 0. The question arises
as why the MPC with Laguerre functions (a = 0.9) has the larger condition
number. This is because the Laguerre functions with a = 0.9 did not decay
to zero after 199 samples and the convolution sum φ(m) continued until m
reached Np = 480. In comparison, when a = 0, the incremental control is zero
after 199 samples.

Predictive control with exponential weighting (α = 1.2)

With α = 1.2, the original variables ∆u(ki + j) and x(ki + j | ki) are trans-
formed into ∆û(ki + j) = α−j∆u(ki + j) and x̂(ki + j | ki) = α−jx(ki + j | ki).
The transformed optimal control trajectory is shown in Figure 4.12. It is seen
(Figure 4.12a) that the slow oscillation from the original ∆u trajectory has
disappeared. It is a relatively easy task to model the transformed optimal
control trajectory using the Laguerre functions. In addition, the prediction
horizon is much less than 480, instead, 46 is selected. Thus, with Np = 46,
N = 10 and a = 0.4, the predictive control system matches the discrete-time
LQR system as shown in Figure 4.12. The condition number of the Hessian
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Fig. 4.11. Comparison study: LQR vs predictive control. Key: line (1) LQR; line
(2) predictive control a = 0.9 and N = 60; line (3) predictive control a = 0 and
N = 199.

is 59.2435, which is contrasted with the condition number 4.6595× 105 when
α = 1 (no exponential weighting) and a = 0.9. Also, the feedback gain matrix
is

Kmpc = [2.0269 − 4.8131 3.6065 − 0.8047 0.1233],

which is identical to K with accuracy up to 4 digits.

Constrained control (α = 1.2)

Assume that the constraints are specified as

−0.01 ≤ ∆u(k) ≤ 0.05; 0.1 ≤ u(k) ≤ 0.4.

A unit step signal is used as the reference signal at k = 0. Figure 4.13 shows
the closed-loop control system responses. It is seen that the constraint on
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Fig. 4.12. Comparison results: LQR vs predictive control. Key: line (1) LQR; line
(2) predictive control a = 0.4 and N = 10 (α = 1.2).
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0.1 ≤ u was not met at the same time when the constraint on ∆u(k) became
activated. When both of them are activated, they become conflict constraints.
Nevertheless, Hildreth’s quadratic programming method found a compromise
solution where the constraint on u was relaxed.
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Fig. 4.13. Predictive control with constraints. Key: line (1) without constraints;
line (2) constraints on the first sample (α = 1.2)

4.9 Summary

This chapter has proposed use of exponential data weighting in the design of
predictive control. There are two main purposes for using exponential data
weighting in the design. For the class of model predictive control systems that
have embedded integrator(s) in the design model, the prediction horizon Np is
limited to a finite value because the design model has at least one eigenvalue
on the unit circle. With the exponential data weighting, the design model is
modified so that it has all eigenvalues within the unit circle of the complex
plane, thus prediction is based on a stable model. As a result, the prediction
horizon Np can be selected to be sufficiently large so as to approximate the
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infinite horizon case. Furthermore, the numerical ill-conditioning issue with
regard to a large prediction horizon without exponential weighting is removed.
This is practically very important.

The results of this chapter followed three stages.

1. In stage one, by choosing a cost function with exponentially decreasing
weight α−j , j = 0, 1, 2, . . . , Np, where α > 1, the original predictive control
problem is converted into one with transformed variables x̂ and ∆û. That
is, to minimize

J =

Np∑

j=1

x̂(ki + j | ki)
T Qx̂(ki + j | ki) +

Np∑

j=0

∆û(ki + j)T R∆û(ki + j),

x̂(k + 1) =
A

α
x̂(k) +

B

α
∆û(k),

subject to transformed constraints. This very simple modification of the
original model leads to a stable design model and allows a large prediction
horizon to be used in the design. Hence, the computation of the predictive
control gain matrices is no longer sensitive to the choice of prediction
horizon. One uncertain aspect of this design is that depending on the
value of α, the closed-loop predictive control system may not be stable,
particularly in the situation where α is large. This drawback is overcome
in the stage-two development.

2. To guarantee that the predictive control system is stable when using expo-
nentially decreasing weight, we need to introduce a different pair of weight
matrices Qα and Rα, where P∞ is the steady-state Riccati solution of the
original cost function, and

γ =
1

α
(4.76)

Qα = γ2Q + (1 − γ2)P∞ (4.77)

Rα = γ2R, (4.78)

then we use the Qα and Rα in the design of model predictive control with
the chosen exponential weight α for a sufficiently large Np by minimizing

J =

Np∑

j=1

x̂(ki + j | ki)
T Qαx̂(ki + j | ki)

+

Np∑

j=0

∆û(ki + j)T Rα∆û(ki + j), (4.79)

based on the pair (α−1A, α−1B). This new pair of Qα and Rα will guar-
antee that the exponentially weighted solution will lead to the identical
solutions of the actual x(ki + j | ki) and ∆u(ki + j).
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3. In stage-three development, a prescribed degree of stability is embedded
into the design where the actual x(ki + j | ki) and ∆u(ki + j) are dictated
to decay at a rate not less than λj ||x(ki)||, λ < 1. Alternatively, all the
eigenvalues of the predictive control system are strictly within the λ circle.
This is achieved by solving the Riccati equation to find P∞:

AT

λ
[P∞ − P∞

B

λ
(R +

BT

λ
P∞

B

λ
)−1 BT

λ
P∞]

A

λ
+ Q − P∞ = 0, (4.80)

and choosing the pair of weight matrices Qα and Rα according to

γ =
λ

α
(4.81)

Qα = γ2Q + (1 − γ2)P∞ (4.82)

Rα = γ2R. (4.83)

When using exponential data weighting, the optimization is performed using
the transformed variables and the transformed variables have a faster decay
rate than the original variables. As a result, the prediction horizon is shorter
and the number of terms in the Laguerre functions is smaller. These will re-
sult in a less number of constraints to be imposed on the future samples in
a constrained control environment. Additional benefit to predictive control of
complex system is illustrated by the example given in Section 4.8.

The initial idea of using exponential data weighting to overcome the numerical
problem of a predictive control system was published in Wang (2001b) and
Wang (2003).

Problems

4.1. A second-order discrete-time system with time delay is described by the
z-transfer function

G(z) =
0.1(z − 0.3)

(z − 1.25)(z − 0.6)
z−6. (4.84)

Design a discrete-time predictive control system that will include integral
action. The design parameters are specified as a = 0.5, N = 5, Q = CT C,
R = 1, however, with the prediction horizon Np and the weight R as tuning
parameters. Compute the matrices Ω and Ψ in the cost function J , where J
is defined as

J = ηT Ωη + 2ηT Ψx(ki).

Show that as the prediction horizon Np increases, the elements in Ω, Ψ and
the condition number of Ω increase.
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4.2. Continue from Problem 4.1 with further investigation of the effects of the
numerical problem when Np is large.

1. Show that without constraints, the feedback control gain matrix
Kmpc = L(0)T Ω−1Ψ is a function of Np, also for a large Np = 100, the
gain Kmpc is numerically sensitive.

2. Suppose that for a unit step set-point change, the limit of the opera-
tion only allows −0.2 ≤ ∆u(k) ≤ 0.2. For this set of simple constraints
(Mη ≤ γ), with Np = 100, investigate how the numerical ill-conditioning
problem is carried over to the optimization problem of finding the active
constraints. (Hint: from (2.54) in Chapter 2, you can calculate the com-
ponents in H = MT Ω−1M and K = γ + MT Ω−1Ψx(ki) in functions of
Np, and go through Hildreth’s programming procedure with an assumed
value for x(ki).)

4.3. The simple modification of discrete-time MPC systems through (4.10)
to (4.12) does not guarantee closed-loop stability for all α > 1. However, if
the original plant is stable with open-loop poles within the unit circle and
the unstable modes in the design model come from the augmented integra-
tor(s), the simple approach proposed in (4.10) to (4.12) could produce a stable
closed-loop system, provided that the weight α is slightly larger than 1. Good
choices are often α = 1.05 to 1.1. This could be practical for process control
applications where the majority of the plants are stable systems. With this
small and simple modification, as the prediction horizon Np increases, Ω and
Ψ will converge. Hence, the numerically ill-conditioning problem is avoided.
Test this simple modification with the food extruder process given in Problem
3.8 from Chapter 3, where

[
y1

y2

]

=

[
G11 G12

G21 G22

] [
u1

u2

]

, (4.85)

with

G11 =
0.21048s + 0.00245

s3 + 0.302902s2 + 0.066775s + 0.002186

G12 =
−0.001313s2 + 0.000548s− 0.000052

s4 + 0.210391s3 + 0.105228s2 + 0.00777s + 0.000854

G21 =
0.000976s− 0.000226

s3 + 0.422036s2 + 0.091833s + 0.003434

G22 =
−0.00017

s2 + 0.060324s + 0.006836
,

and the other conditions remain the same except the use of α weight and
change of the prediction horizon as stated as follow. Choose α = 1.1, calculate
the MPC gain matrix Kmpc and the closed-loop eigenvalues as functions of
prediction horizon Np. Increase α until one of the eigenvalues of the closed-
loop predictive control system reaches the unit circle on the complex plane.
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What is the maximum value of α that is permitted in this application to
produce a stable closed-loop system, and what is the condition number of the
Hessian matrix Ω?

4.4. Consider the augmented state-space model
[

x1(k + 1)
x2(k + 1)

]

=

[
0.5 0
0.5 1

] [
x1(k)
x2(k)

]

+

[
0.5
0.5

]

∆u(k)

y(k) =
[
0 1

]
[

x1(k)
x2(k)

]

.

Choose Q = CT C and R = 0.1. Compare the solution of LQR with the
solution of predictive control with exponential data weighting.

1. Find the control gain matrix K, Riccati solution P∞ and the closed-loop
eigenvalues of the LQR system using the MATLAB function dlqr.

2. With exponential weight α = 1.5, Qα, Rα, a = 0.3, N = 4 and the
prediction horizon of Np = 20, calculate the predictive control gain matrix
Kmpc and the closed-loop eigenvalues. Qα and Rα are calculated according
to

γ =
1

α

Qα = γ2Q + (1 − γ2)P∞

Rα = γ2R.

Compare the results with those from the LQR design. If they are not
sufficiently close to the accuracy as you would like, increase the parameter
N until you are satisfied.

3. With the initial condition x(0) = [1 2]T , simulate the closed-loop response
of the LQR system with K. Separately, for m = 0, 1, 2, . . . , 30, simulate the
predictive control system with ∆û(m) = L(m)T η, where η = −Ω−1Ψx(0).
Scale the responses ∆u(m) and x(m) from the LQR system by a factor
of α−m and compare them with the responses ∆û(m) and x̂(m) from the
predictive control system. What are your observations?

4.5. A discrete-time system with two-input and two-output is described by
the transfer function model

G(z) =

[
G11(z) G12(z)
G21(z) G22(z)

]

,

where the four transfer functions are

G11(z) =
0.1(z − 0.5)

(z − 0.7 + j0.8)(z − 0.7 − j0.8)
, G12(z) =

0.001

z − 0.3
,

G21 =
−0.1

z2
, G22(z) =

1.1(z − 0.8)

(z − 1)2
.
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Design a predictive control system with integral action, which also has the
closed-loop poles inside a circle of radius 0.8. The rest of the design spec-
ifications are a1 = a2 = 0.5, N1 = N2 = 12, Q = CT C and R = 0.3,
α = 1.2, Np = 60. An observer is needed in the implementation of the pre-
dictive control system, where it is designed using the MATLAB dlqr function
with Qob = I and Rob = 0.1I. Show that through comparison, placing the
closed-loop poles inside the circle of radius 0.8 has moved the pair of reso-
nant poles from 0.5779 ± j0.6732 to 0.3902 ± j0.4496, hence, the closed-loop
performance has improved significantly.

When a unit set-point change is applied to y1 (r1(k) = 1), while r2(k) = 0,
assuming zero steady-state and initial conditions, simulate the closed-loop
system without constraints. The next step is to impose constraints on the
input variables, where they have the following values:

−1 ≤ ∆u1(k) ≤ 1, − 1 ≤ ∆u2(k) ≤ 1,

8 ≤ u1(k) ≤ 16,−2 ≤ u2(k) ≤ 2.

Repeat the simulation with the operating constraints.

4.6. Consider the polymerization process in Tutorial 3.3 (Chapter 3). Utilize
the MATLAB program in that tutorial to produce a discrete-time state-space
model for this five-input and four-output system. Design a discrete-time MPC
with integral action. The closed-loop poles of the MPC system are inside a
circle of radius 0.8. The weight matrices are Q = CT C, R = I. The expo-
nential weight factor is α = 1.2, and the prediction horizon is Np = 40. The
parameters in the Laguerre functions, α1, . . . , α5, and N1, . . . , N5 are used as
tuning parameters for this predictive control system. Experiment with these
tuning parameters and find a combination to achieve a satisfactory response.
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Continuous-time Orthonormal Basis Functions

5.1 Introduction

This chapter introduces orthonormal basis functions and their applications in
dynamic system modelling. The chapter begins with an introduction to the
basic concepts in approximating an arbitrary function with a set of orthonor-
mal basis functions. Laguerre functions not only satisfy these properties, but
also possess simple Laplace transforms. The chapter discusses how Laguerre
functions are used in modelling the impulse response of a stable system with
convergence. A more general class of orthonormal basis functions, called Kautz
functions, are introduced towards the end of this chapter. Kautz functions al-
low complex poles to be used in their structures, however, they require more
effort in computing the realization. The modelling idea using a set of ortho-
normal basis functions forms a fundamental principle of the model predictive
control design methods presented in this book. It is helpful if we understand
these basic ideas.

5.2 Orthonormal Expansion

A sequence of real functions li(t), i = 1, 2, ... is said to form an orthonormal
set over the interval [0,∞) if they have the property that

∫ ∞

0

l2i (t)dt = 1 (5.1)

and ∫ ∞

0

li(t)lj(t)dt = 0 i �= j. (5.2)

A set of orthonormal functions li(t) is said to be complete if the relation
∫ ∞

0

f(t)li(t)dt = 0 (5.3)



194 5 Continuous-time Orthonormal Basis Functions

can only hold for all values of i if the squared f(t) satisfies
∫ ∞

0

f(t)2dt = 0. (5.4)

It is known that with respect to a set of functions li(t), i = 1, 2, ... which
are orthonormal and complete over the interval [0,∞), an arbitrary function
f(t) has a formal expansion analogous to a Fourier expansion (Wylie, 1960,
Lee, 1960). Such an expansion has been widely used in numerical analysis for
the approximation of functions in differential and integral equations. In the
context of approximation, the function f(t) is written as

f(t) =
∞∑

i=1

cili(t), (5.5)

where ci, i = 1, 2, . . . are the coefficients of the expansion and are defined by

c1 =

∫ ∞

0

l1(t)f(t)dt

c2 =

∫ ∞

0

l2(t)f(t)dt

... =
...

ci =

∫ ∞

0

li(t)f(t)dt. (5.6)

The expansion (5.5), in theory, has an infinite number of coefficients. However,
the assumed completeness of the set of orthonormal functions (Wylie, 1960,
Lee, 1960) ensures that for any piece-wise continuous function f(t) with

∫ ∞

0

f2(t)dt < ∞, (5.7)

and any ε > 0, there exists an integer N such that

∫ ∞

0

(f(t) −
N∑

i=1

cili(t))
2dt < ε. (5.8)

Thus, we can approximate the function f(t) arbitrarily closely by
∑N

i=1 cili(t)
with an increasing number of terms, N .

5.3 Laguerre Functions

Definition of Laguerre Functions

The Laguerre functions are one set of the orthonormal functions (Lee, 1960)
that satisfy the orthonormal and complete properties defined by (5.1) to (5.4).
The set of Laguerre functions is defined as, for any p > 0,
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l1(t) =
√

2p × e−pt

l2(t) =
√

2p(−2pt + 1) e−pt

... =
...

li(t) =
√

2p
ept

(i − 1)!

di−1

dti−1
[ti−1e−2pt]. (5.9)

In the literature, parameter p here is called the time scaling factor for the
Laguerre functions. This time scaling factor plays an important role in the
application of Laguerre functions, which determines their exponential decay
rate. It is used as a design parameter that the user will specify as part of the
design requirement.

The Laplace transform of the Laguerre functions (5.9) forms the Laguerre
network Li(s), i = 1, 2, . . ., where

L1(s) =

∫ ∞

0

l1(t)e
−stdt =

√
2p

(s + p)

L2(s) =

∫ ∞

0

l2(t)e
−stdt =

√
2p(s − p)

(s + p)2

... =
...

Li(s) =

∫ ∞

0

li(t)e
−stdt =

√
2p(s − p)i−1

(s + p)i
. (5.10)

Each Li(s) may also be called a Laguerre filter. As we can see from (5.10), the
Laguerre filters have simple analytical expressions where all the poles are on
the same location p and all filters other than the first one have a first-order
filter in series with all-pass filters. 1 Figure 5.1 shows the structure of the Nth
Laguerre network.

Generating Laguerre Functions

Although Laguerre functions can be generated using (5.9), there is a system-
atic way to generate the Laguerre functions through the Laguerre networks
(5.10). We can derive the Laguerre functions by constructing the state-space
form as follows. Define the state vector L(t) = [l1(t) l2(t) . . . lN (t)]T . As-

suming initial conditions of the state vector as L(0) =
√

2p
[
1 1 . . . 1

]T
, then

the Laguerre functions satisfy the state-space equation:

1 Because the zeros mirror locations of their poles on the complex plane, the am-

plitude of the frequency response of the filter (s−p)i−1

(s+p)i−1 is unity for all frequencies,

so it is termed all-pass.
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s+p

1 � s−p

s+p
· · · � s−p
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�

LN (s)L2(s)L1(s)

Fig. 5.1. Laguerre network

⎡

⎢
⎢
⎢
⎣

l̇1(t)

l̇2(t)
...

l̇N(t)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

−p 0 . . . 0
−2p −p . . . 0

...
. . .

. . .
...

−2p . . . −2p −p

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

l1(t)
l2(t)

...
lN (t)

⎤

⎥
⎥
⎥
⎦

. (5.11)

The solution of the differential equation (5.11) gives the set of Laguerre func-
tions for i = 1, 2, . . . , N as

L(t) = eAptL(0), (5.12)

where

Ap =

⎡

⎢
⎢
⎢
⎣

−p 0 . . . 0
−2p −p . . . 0

...
. . .

. . .
...

−2p . . . −2p −p

⎤

⎥
⎥
⎥
⎦

.

This compact state-space representation of Laguerre functions is paramount
in the design of continuous-time predictive control. Also note that the matrix
Ap is a lower triangular matrix, leading to simplified solutions when used in
predictive control.

Tutorial 5.1. Since Laguerre functions are used numerous times in this book,
this tutorial demonstrates how to generate these functions effectively and un-
derstand how the scaling factor affects the response time of a set of Laguerre
functions.

Step by Step

1. Create a new MATLAB function ‘lagc.m’. The input parameters to this
function are p and N , and the output parameters from this function are
Ap and L(0). Enter the following program into the file:
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function [Ap,L0]=lagc(p,N)

%Generating system matrix Ap

Ap=-p*eye(N,N);

for ii=1:N

for jj=1:N

if jj<ii, Ap(ii,jj)=-2*p;

end

end

end

L0=sqrt(2*p)*ones(N,1);

2. Test this program by creating a new program ‘test.m’. The Laguerre func-
tions are generated via the solution of the differential equation,

L(t) = eAptL(0).

Enter the following program into ‘test.m’.

p=1;

N=3;

[Ap,L0]=lagc(p,N);

delta_t=0.01;

Tm=8;

N_sample=Tm/delta_t;

t=0:delta_t:(N_sample-1)*delta_t;

%solution of the differential equation

for i=1:N_sample;

L(:,i)=expm(Ap*t(i))*L0;

end

figure

plot(t,L(1,:),t,L(2,:),’--’,t,L(3,:),’.’)

xlabel(’Time (sec)’)

3. Run ‘test.m’. Figure 5.2 shows the first three Laguerre functions where the
scaling factor p = 1.

4. Select p = 0.1 and p = 10, and compare the Laguerre functions for i =
1, 2, 3. What is your observation of the effect of the time scaling factor p
on the Laguerre functions?

5.4 Approximating Impulse Responses

This set of orthonormal basis functions has been widely used in mathematical
modelling and system identification. The idea behind system approximation
using Laguerre functions is to take the impulse response of the system to be
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Fig. 5.2. Laguerre functions (p = 1). Solid line: l1(t); dashed line: l2(t); dotted line:
l3(t)

h(t) (Lee, 1960). We write the impulse response h(t) in terms of an orthonor-
mal expansion using Laguerre functions. That is

h(t) = c1l1(t) + c2l2(t) + ... + cili(t) + .... (5.13)

The expansion (5.13), in theory, requires an infinite number of terms, unless
the impulse response function h(t) satisfies the following condition:

∫ ∞

0

h2(t)dt < ∞. (5.14)

Equation (5.14) is the condition for a system being L2 stable. A system that
satisfies the L2 stability condition will have all poles strictly on the left-half
complex plane, and its Laplace transfer function is strictly proper. For this
class of systems, for any ε > 0, there exists an integer N such that

∫ ∞

0

(h(t) −
N∑

i=1

cili(t))
2dt < ε. (5.15)

Thus, we can approximate the function h(t) arbitrarily closely by
∑N

i=1 cili(t)
with an increasing number of terms, N . This is true for an arbitrary choice of
scaling factor p > 0. This basically says that for a given function h(t) satisfying
(5.14), with a choice of p > 0, the accuracy of the approximation using an
orthonormal expansion increases as the number of terms, N , increases. Namely
the expansion converges to the function it tries to model.

If the function h(t) is given, the optimal coefficients ci, i = 1, 2, . . . , N can
be found by minimizing the cost function:
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J =

∫ ∞

0

(h(t) −
N∑

i=1

cili(t))
2dt. (5.16)

Noting the orthonormal property of the Laguerre functions, the optimal solu-
tions are given by

c1 =

∫ ∞

0

l1(t)h(t)dt

c2 =

∫ ∞

0

l2(t)h(t)dt

... =
...

cN =

∫ ∞

0

lN(t)h(t)dt. (5.17)

In other applications, if the impulse response is not explicitly given, alternative
means and criteria need to be found to optimally determine the coefficients
ci, i = 1, 2, 3, . . .. This is exactly what we do in the design of model predictive
control using Laguerre functions.

Note that the coefficients are optimal with respect to a pre-determined
Laguerre scaling factor p. For a finite N and given p > 0, the integral squared
error between the function h(t) and the impulse response of the Laguerre
model is defined and calculated by

∫ ∞

0

(h(t) −
N∑

i=1

cili(t))
2dt =

∞∑

i=N+1

c2
i , (5.18)

where we used the orthonormal properties and the definition of the optimal
coefficients to obtain the result. For a given number of terms N , the scaling
factor p could be optimized with respect to the integral squared error by
maximizing

∑N
i=1 c2

i (Wang and Cluett, 2000).
To make us familiar with the approximation of the impulse response of a

stable system, we introduce a tutorial as follows.

Tutorial 5.2. In this tutorial, we find the approximate Laguerre model based
on the impulse response of a system, h(t), where the impulse is generated based
on the Laplace transfer function G(s) = 1

(s+1)(s+2) . The scaling factor p = 1

and N = 4 are used in the simulation. The sampling interval ∆t = 0.01.
We first introduce a simple numerical integration function based on Simp-

son’s rule, which will be used to calculate the Laguerre coefficients.

Step by Step

1. Create a function called ‘inte.m’. Enter the following program into the file:

function v=inte(F,h)
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%Use Simpson’s Rule to compute an integral expression

% F is the discretized function

% h is the sampling interval

% v is the computed value

[m,n]=size(F);

if m==1 m=n;

end

if n==1 n=m; end

NN=(n-1)/2;

s=0;

for j=2:2:2*NN

s=s+4*F(j);

end

for j=3:2:2*NN-1

s=s+2*F(j);

end

v=(s+F(1)+F(2*NN+1))*h/3;

2. This simple function is useful for computing numerical integrations, which
provides better accuracy than other simple schemes.

3. We next create a new function called ‘lagmodel.m’. The four Laguerre
functions will be generated first. Enter the following program into the file
(lagmodel.m):

p=1;

N=4;

delta_t=0.01;

Tm=8;

N_sample=Tm/delta_t;

t=0:delta_t:(N_sample-1)*delta_t;

[Ap,L0]=lagc(p,N);

for i=1:N_sample;

L(:,i)=expm(Ap*t(i))*L0;

end

4. Generate the impulse response of the system. Continue entering the fol-
lowing program into the file:

num=1;

den=conv([1 1],[1 2]);

h_t=impulse(num,den,t)’;

5. Solve the integral equations using Simpson’s rule to get the four Laguerre
coefficients. Continue entering the following program into the file:

hL_1=L(1,:).*h_t;

c1=INTE(hL_1,delta_t);

hL_2=L(2,:).*h_t;
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c2=INTE(hL_2,delta_t);

hL_3=L(3,:).*h_t;

c3=INTE(hL_3,delta_t);

hL_4=L(4,:).*h_t;

c4=INTE(hL_4,delta_t);

6. We will construct two models for comparative study. One is a second-order
model and one is a fourth-order model. Continue entering the following
program into the file:

h_model2=c1*L(1,:)+c2*L(2,:);

h_model4=c1*L(1,:)+c2*L(2,:)+c3*L(3,:)+c4*L(4,:);

figure subplot(211)

plot(t,h_t,t,h_model2,’--’);

xlabel(’Time(sec)’)

subplot(212)

plot(t,h_t,t,h_model4,’--’);

xlabel(’Time (sec)’)

7. Run ‘lagmodel.m’. Figure 5.3 shows the impulse response of the Laguerre
model in comparison to the true response. By comparing the top plot with
the bottom plot, it is seen that as the number of terms N increases from
2 to 4, the accuracy of the approximation increases.
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Fig. 5.3. Approximate impulse response. Top plot: solid-line, true impulse response;
dashed line second-order Laguerre model response. Bottom plot: solid-line, true
impulse response; dashed line, fourth-order Laguerre model response
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5.5 Kautz Functions

Perhaps one of the reasons why Laguerre functions have been so popular in
system identification and control is their simplicity. The properties of the
functions are predominately determined by the scaling factor p, and the com-
plexity of the functions increases as the order N increases (see Figure 5.2).
However, this simplicity can also lead to limitations in the application of La-
guerre networks, particularly in the situation where the underlying system has
complex poles. The Kautz networks discussed in the following will overcome
the drawback of Laguerre networks by allowing non-identical poles to be used
in the construction of the networks, as well as complex poles.

Kautz Networks

Kautz networks were first proposed by Kautz in his 1954 paper (Kautz, 1954).
The original Kautz networks were used for modelling an impulse response of
a continuous-time system, as a generalization of the original work by Wiener
and Lee in the 1930s (see Lee, 1960). At that time, there were no computa-
tional tools to obtain solutions and only analytical solutions were available,
hence the Kautz networks were derived through orthonormality analysis us-
ing the location of poles and zeros of the networks (Lee, 1960, Kautz, 1954).
Kautz functions in the time domain were derived through the inverse Laplace
transform.

There are three basic cases in the construction of Kautz networks. They
offer different degrees of complexity.

Case A. Kautz networks with non-identical real poles

Let −p1,−p2, . . . ,−pN be the real pole locations for the Kautz networks. For
all pk > 0, the Kautz networks for k = 1, 2, . . . , N were proposed as

K1(s) =
√

2p1
1

s + p1

K2(s) =
√

2p2
1

s + p2

s − p1

s + p1

K3(s) =
√

2p3
1

s + p3

s − p2

s + p2

s − p1

s + p1

...

KN(s) =
√

2pN
1

s + pN
ΠN−1

i=1

s − pi

s + pi
.

This case is the closest one to the Laguerre network. When all the poles
are chosen to be identical, this Kautz network becomes a Laguerre network.
Figure 5.4 shows the block structure of this Kautz network.
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· · · � s−pN−1
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�

�√
2pN
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�√
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�√
2p2

� K2(s)

Fig. 5.4. Kautz network with real poles

Case B. Kautz networks with non-identical complex poles

Let n = N
2 , where N is the number of terms in the networks. Denote the

complex poles as −αi ± jβi for i = 1, 2, . . . , n where αi > 0 for all i. We also
denote γi =

√

α2
i + β2

i as the parameters used in the parametrization of the
Kautz networks. The Kautz networks with complex poles are defined as

K1(s) =
√

2α1
s + γ1

(s + α1 + jβ1)(s + α1 − jβ1)

K2(s) =
√

2α1
s − γ1

(s + α1 + jβ1)(s + α1 − jβ1)

K3(s) =
√

2α2
s + γ2

(s + α2 + jβ2)(s + α2 − jβ2)

(s − α1 − jβ1)(s − α1 + jβ1)

(s + α1 + jβ1)(s + α1 − jβ1)

K4(s) =
√

2α2
s − γ2

(s − α2 + jβ2)(s + α2 − jβ2)

(s − α1 − jβ1)(s − α1 + jβ1)

(s + α1 + jβ1)(s + α1 − jβ1)

...

K2n−1(s) =

√
2αn/2(s + γn/2)

(s + αn/2 + jβn/2)(s + αn/2 − jβn/2)
Γn(s)

K2n(s) =

√
2αn/2(s − γn/2)

(s + αn/2 + jβn/2)(s + αn/2 − jβn/2)
Γn(s),

where Γn(s) is defined by the following network:

Γn(s) = Π
n/2−2
i=1

(s − αi − jβi)(s − αi + jβi)

(s + αi + jβi)(s + αi − jβi)
.

Figure 5.5 shows the Kautz network with two pairs of complex poles. A sim-
plified representation of the networks is to use only one pair of complex poles
by letting α1 = α2 = . . . = α, β1 = β2 = . . . = β, γ1 = γ2 = . . . = γ. This
representation becomes similar to the Laguerre networks.
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Fig. 5.5. Kautz network with two pairs of complex poles, γ1 =
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Case C. Combination of real and complex poles in Kautz network

When putting together a Kautz network with real poles and one with complex
poles, it is best to first construct the network for the part with all the real
poles, followed by the part with all the complex poles. To illustrate this idea,
we assume a Kautz network having a real pole at −p1 and a pair of complex
poles at −α1 ± jβ1. Then, the Kautz network is constructed as below:

K1(s) =

√
2p1

s + p1

K2(s) =
√

2α1
s + γ1

(s + α1 + jβ1)(s + α1 − jβ1)

(s − p1)

(s + p1)

K3(s) =
√

2α1
s − γ1

(s + α1 + jβ1)(s + α1 − jβ1)

(s − p1)

(s + p1)
.

5.5.1 Kautz Functions in the Time Domain

All Kautz functions, both real and complex, are included in one network,
where the dimension of the Kautz network N = nreal + 3 + 4(ncomplex − 1).
Let F (t) denotes the state vector for the Kautz functions. Then, we express
the Kautz functions using the state-space model:

Ḟ (t) = AkF (t) + Bkδ(t)

K(t) = CkF (t), (5.19)
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where we assume zero initial condition for F (t) and δ(t) is the unit impulse
function. The matrices Ak, Bk and Ck are determined by the locations of
the poles of the Kautz network. However, the realization is chosen such that
the system matrix Ak is a lower triangular matrix which is important in
the applications of Kautz functions for design of continuous-time predictive
control systems (See Chapter 6) to ensure closed-form solutions.

Example 5.1. Suppose that a Kautz network has three real poles −α1, −α2,
and −α3, where α1, α2, α3 > 0. Find the state-space representation of the
Kautz functions.

Solution. By choosing F (t) = [f1(t) f2(t) f3(t)]
T , the Kautz functions K(t) =

[k1(t) k2(t) k3(t)]
T are described by the differential equation (5.19) with Ak,

Bk and Ck given by

Ak =

⎡

⎣

−α1 0 0
−2α1 −α2 0
−2α1 −α2 −α3

⎤

⎦ ; Bk =

⎡

⎣

1
1
1

⎤

⎦ ; Ck =

⎡

⎣

√
2α1 0 0
0

√
2α2 0

0 0
√

2α3

⎤

⎦ .

Example 5.2. Suppose that a Kautz network has two poles at −α1 and −α2,
and a pair of complex poles at −α3± jβ3. Find the state-space representation
of the Kautz functions.

Solution. We define p3 = −α3 + jβ3 and p̄3 = −α3 − jβ3. α1, α2, α3 > 0.
With γ3 =

√

α2
3 + β2

3 , the Kautz functions K(t) = [k1(t) k2(t) k3(t) k4(t)]
T

are described by the differential equation (5.19) with

Ak =

⎡

⎢
⎢
⎢
⎢
⎣

−α1 0 0 0 0
−2α1 −α2 0 0 0
−2α1 −α2 −p3 0 0
−2α1 −α2 γ3 − p3 −p̄3 0
−2α1 −α2 γ3 − p3 −γ3 − p̄3 −γ3

⎤

⎥
⎥
⎥
⎥
⎦

; Bk =

⎡

⎢
⎢
⎢
⎢
⎣

1
1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎦

Ck =

⎡

⎢
⎢
⎣

√
2α1 0 0 0 0
0

√
2α2 0 0 0

0 0 0
√

2α3 0
0 0 0 0

√
2α3

⎤

⎥
⎥
⎦

.

5.5.2 Modelling the System Impulse Response

Similar to the Laguerre model, the approximate model using a Kautz network
is given by

h(t) =

∞∑

i=1

ciki(t), (5.20)

where the coefficients are defined by
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c1 =

∫ ∞

0

k1(t)h(t)dt

c2 =

∫ ∞

0

k2(t)h(t)dt

... =
...

ci =

∫ ∞

0

ki(t)h(t)dt. (5.21)

The integral squared error for the Kautz model with order N is defined by

∫ ∞

0

(h(t) −
N∑

i=1

ciki(t))
2dt =

∞∑

i=N+1

c2
i . (5.22)

For a given transfer function, the integral squared error can be made to be
zero if we choose N to be equal to the model order and the set of poles in the
Kautz filters to be equal to the poles of the system. This means, in theory,
that by correctly choosing the poles of the Kautz filters, the Kautz model can
be made to be identical to the underlying system. This is illustrated by the
following numerical example.

Example 5.3. Suppose that the transfer function of a continuous-time system
is

G(s) =
(−s + 1)

(s + 1.1)(s + 0.7)(s + 0.1)
.

Choose the three poles in the Kautz network to be equal to the system’s poles,
namely p1 = 1.1, p2 = 0.7, p3 = 0.1, and find the Kautz model for this system.
Evaluate the integral squared error.

Solution. We first generate the impulse response of this system by using
sampling interval ∆t = 0.01 (sec) and response time 48 (sec). We also use the
same set of parameters to generate the Kautz functions via the solution of
differential equation (5.19). Then, we compute the coefficients of the Kautz
network to obtain c1 = −0.0312, c2 = −0.9293, c3 = 2.5572 from which we
construct the Kautz model as

hk(t) = c1k1(t) + c2k2(t) + c3k3(t).

The integral squared error between the impulse response of the system and
the Kautz model is 4.4307× 10−7.

5.6 Summary

This chapter has introduced orthonormal basis functions. There are two main
classes of orthonormal basis functions that have been widely used in the con-
trol and systems community. One is the set of Laguerre functions; and the
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other is the set of Kautz functions. Both sets of functions have been used in
the design of predictive control systems.

The important assumption when applying the Laguerre functions or the
Kautz functions is that the integral squared value of the time function to
be captured by the basis functions is required to be bounded. If this is the
case, then the accuracy of the approximation increases as the number of terms
increases. Namely convergence is guaranteed.

Problems

5.1. Based on Tutorial 5.2 and the plant transfer function G(s) = 1
(s+1)(s+2) ,

identify a Laguerre model with the number of terms N = 3, where the optimal
scaling factor p is found by maximizing

∑3
i=1 c2

i .

5.2. Continuous-time Laguerre models are useful to capture the process dy-
namics from plant impulse or step response data (Wang and Cluett, 2000).

Consider the 12th- order continuous-time system described by the transfer
function

G(s) =
(15s + 1)2(4s + 1)(2s + 1)

(20s + 1)3(10s + 1)3(5s + 1)3(0.5s + 1)3
.

This higher-order system was approximated quite accurately using a Laguerre
model with 6 terms and p = 0.063. Following Tutorial 5.2, find the approx-
imate Laguerre transfer function model for this higher-order system. Verify
that the equivalent state-space model is (Am, Bm, Cm), where Am equals Ap

and Bm equals L(0) and Cm = [c1 c2 . . . c6].

5.3. Suppose that we have a severely underdamped system with transfer func-
tion G(s) = 1

(s+1+j6)(s+1−j6) . If we approximate this system with a Laguerre

network, we will observe a large error for a lower-order Laguerre model. How-
ever, the error reduces as the number of terms N increases. From your obser-
vation, how many terms would be sufficient to describe this system (assuming
p = 1)? Repeat the modelling process with Kautz filters by choosing a pair
of complex poles that are identical to the system poles. Show that if you use
a fourth-order Kautz model with two identical pairs of the complex poles as
you first chose, the coefficients for the two additional filters are negligible.
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Continuous-time MPC

6.1 Introduction

This chapter discusses continuous-time model predictive control (CMPC)
without constraints. It will take the reader through the principles of continuous-
time predictive control design, and the solutions of the optimal control prob-
lem. It shows that when constraints are not involved in the design, the
continuous-time model predictive control scheme becomes a state feedback
control system, with the gain being chosen from minimizing a finite prediction
horizon cost. The continuous-time Laguerre functions and Kautz functions
discussed in Chapter 5 are utilized in the design of continuous-time model
predictive control. When a set of Laguerre functions is used in the design, the
desired closed-loop response can be achieved by tuning the time scaling fac-
tor p and the number of terms N . Without constraints, the model predictive
control has an analytical optimal solution. Since constant input disturbance
rejection and set-point following are the most commonly encountered design
requirements, this chapter will treat those cases extensively by embedding an
integrator in the design model.

This chapter concludes with the use of Kautz functions in the design,
which leads to explicit specification of the poles in the othonormal functions.
Without constraints, if numerically permitted for a sufficiently large prediction
horizon, this could become entirely identical to the underlying continuous-time
linear quadratic regulator (LQR).

6.2 Model Structures for CMPC Design

The design principle of a continuous-time predictive control is very similar
to the one used in the discrete-time counterpart. More explicitly, the reced-
ing horizon control idea is used in the continuous-time design. However, the
difference is that the continuous-time design is based on a continuous-time
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state-space model, and all the design parameters, such as, the prediction hori-
zon and prediction time are based on actual time, instead of the number of
samples as in the discrete-time case. Although the model and design are based
on continuous time, the implementation of a continuous-time predictive con-
trol system is performed in a digital environment, which may give advantages
to systems with a fast sampling rate or an irregular sampling rate.

The general design philosophy of model predictive control is to compute a
trajectory of a future manipulated variable u(t) to optimize the future behav-
iour of the plant output y(t). The optimization is performed within a limited
time window. This time-dependent window for optimization is described by
an initial time, ti, and the length of the window, Tp. With a given initial time
ti, the window is taken from ti to ti + Tp. The length of the window Tp re-
mains constant. Similar to discrete-time MPC, the prediction horizon equals
the length of the moving horizon window Tp and dictates how ‘far’ we wish
the future to be predicted. Unlike the discrete-time case, there is no explicit
control horizon parameter. This is because it is difficult to determine when ex-
actly a control signal represented by a set of exponential functions will reach a
steady state before the optimization is performed. Similar to the discrete-time
case, based on the receding horizon control principle, although the optimal
trajectory of the future control signal is completely captured within the mov-
ing horizon window, the actual control input to the plant only takes the first
instant of the control signal, while neglecting the rest of the trajectory.

The key to the design of a continuous-time predictive control system is to
model the control trajectory using a set of orthonormal functions. In order to
achieve convergence with an increase of complexity of the othonormal model
structure, as stated in Chapter 5, the underlying control trajectory is required
to satisfy the property that its integral squared value is bounded. Or explicitly,
if the underlying control signal is called u(t), then

∫ ∞

0

u(t)2dt < ∞. (6.1)

It is a fact that if there is an external constant input signal to the control
system, such as a set-point signal or a constant disturbance signal, the control
signal itself does not satisfy (6.1). This is because in order to follow the set-
point signal, the control signal needs to converge to a non-zero constant that is
related to the steady-state gain of the plant and the magnitude of the set-point
change. Therefore, instead of modelling the control signal, the continuous-time
predictive control design will target the derivative of the control signal, u̇(t),
which will satisfy the property,

∫ ∞

0

u̇(t)2dt < ∞, (6.2)

for external constant input signals. A by-product of this choice is that the
predictive control system will have integral action, which will be shown later.
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6.2.1 Model Structure

The objective here is to propose the model structure that will use the deriva-
tive of the control as its input signal, while maintaining the same output. As
a result, an integrator is embedded into the design model.

Suppose that the plant to be controlled is an m-input and q-output mul-
tivariable system having a state-space model

ẋm(t) = Amxm(t) + Bmu(t)

y(t) = Cmxm(t), (6.3)

where xm(t) is the state vector of dimension n1. In (6.3), Am, Bm and Cm

have dimension n1 ×n1, n1 ×m and q×n1, respectively. We assume that the
number of outputs is less than or equal to the number of inputs (i.e., q ≤ m).
If the number of outputs is greater than the number of inputs, we cannot hope
to control each of the measured outputs independently with zero steady-state
errors.

Note that a general formulation of a continuous-time state-space model
has a direct term from the input signal u(t) to the output y(t) as

y(t) = Cmxm(t) + Dmu(t).

However, due to the principle of receding horizon control, where a current
information of the plant is required for prediction and control, we have im-
plicitly assumed that the input u(t) cannot affect the output y(t) at the same
time. Thus, Dm = 0 in the plant model.

Let us now define the auxiliary variables

z(t) = ẋm(t)

y(t) = Cmxm(t),

and choose a new state variable vector x(t) = [z(t)T y(t)T ]T . With these aux-
iliary variables, in conjunction with (6.3), the augmented state-space model
is defined as

[
ż(t)
ẏ(t)

]

=

A
︷ ︸︸ ︷
[

Am oT
m

Cm oq×q

] [
z(t)
y(t)

]

+

B
︷ ︸︸ ︷
[

Bm

oq×m

]

u̇(t) (6.4)

y(t) =
[
om Iq×q

]

︸ ︷︷ ︸

C

[
z(t)
y(t)

]

, (6.5)

where Iq×q is the identity matrix with dimensions q × q; oq×q is a q × q zero
matrix, oq×m is a q × m zero matrix, and om is a q × n1 zero matrix. For
notational simplicity, the augmented model (6.5) is denoted by the matrices
(A, B, C), where explicitly
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ẋ(t) = Ax(t) + Bu̇(t)

y(t) = Cx(t), (6.6)

where A, B and C are matrices corresponding to the forms given in (6.5).
In the following, the dimensionality of the augmented state-space equation is
taken to be n (= n1 + q). Note that the augmented state-space description
(6.6) has the first derivative of the control signal as its input and its output
remains the same.

In the presence of a disturbance, we assume that the plant model has the
form:

ẋm(t) = Amxm(t) + Bmu(t) + Bdω(t)

y(t) = Cmxm(t), (6.7)

where ω(t) represents unmeasured disturbance sources. We will discuss two
cases. The first case is the deterministic disturbance, followed by the stochastic
disturbance case.

Model for deterministic disturbance

We consider the case of a deterministic disturbance, where ω(t) is a constant
so that

dω(t)

dt
= 0. (6.8)

Again, let us now define the auxiliary variables

z(t) = ẋm(t)

y(t) = Cmxm(t),

and choose a new state variable vector x(t) = [z(t)T y(t)T ]T . With these
auxiliary variables, the augmented state space model is identical to the model
without disturbance (see (6.5)), where the differentiation of a constant dis-
turbance becomes zero.

Stochastic disturbance

In the case where there is a random disturbance in the system, we assume that
the input disturbance is a source of continuous-time integrated white noise.
Namely

ω(t) =

∫ t

0

ǫ(τ)dτ, (6.9)

where ǫ(·) is a band-limited, zero-mean, white noise. With this,

E{dω(t)

dt
} = E{ǫ(t)} = 0, (6.10)
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and

E{ǫ(t)ǫ(τ)} = Wωδ(t − τ),

where E{} denotes expectation and δ(.) is the Dirac function. The augmented
model with input integrated white noise is expressed as

[
ż(t)
ẏ(t)

]

=

A
︷ ︸︸ ︷
[

Am oT
m

Cm oq×q

] [
z(t)
y(t)

]

+

B
︷ ︸︸ ︷
[

Bm

oq×m

]

u̇(t) +

Bǫ
︷ ︸︸ ︷
[

Bd

oq×m

]

ǫ(t)

y(t) =
[
om Iq×q

]

︸ ︷︷ ︸

C

[
z(t)
y(t)

]

. (6.11)

The key here is that the plant integrated white noise becomes zero-mean,
white noise in the augmented model (6.11). Thus, when the augmented model
is used for prediction, the effect of disturbance in expectance on the future
state variable is zero.

Example 6.1. Assuming that a constant input disturbance is d, find the aug-
mented model for the system

[
ẋ1

ẋ2

]

=

[
0 1

−ω2
0 0

] [
x1

x2

]

+

[
0
1

]

u(t) +

[
0
1

]

d

y(t) =
[
1 0

]
[

x1

x2

]

. (6.12)

Show that the augmented model is both controllable and observable. Further-
more, design a state feedback control system with closed-loop poles allocated
at −3ω0 and examine the behaviour of the derivative of the control in the
presence of a constant input disturbance.

Solution. Using the formulation defined by (6.4) and (6.5), the augmented
model for (6.12) is obtained as below, where the input to the model is the
derivative of the control signal and the derivative of the constant disturbance
is 0

⎡

⎣

ẍ1(t)
ẍ2(t)
ẋ3(t)

⎤

⎦ =

⎡

⎣

0 1 0
−ω2

0 0 0
1 0 0

⎤

⎦

⎡

⎣

ẋ1(t)
ẋ2(t)
x3(t)

⎤

⎦ +

⎡

⎣

0
1
0

⎤

⎦ u̇(t) (6.13)

y(t) =
[
0 0 1

]

⎡

⎣

ẋ1(t)
ẋ2(t)
x3(t)

⎤

⎦ . (6.14)

The eigenvalues for this system are λ1 = jω0, λ2 = −jω0 and λ3 = 0. The
augmented model is both controllable and observable, which can be checked
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through the computation of the controllability and observability matrices.
Here, the controllability matrix is calculated as

[
B AB A2B

]
=

⎡

⎣

0 1 0
1 0 −ω2

0

0 0 1

⎤

⎦ ,

and the observability matrix is calculated as
⎡

⎣

C
CA
CA2

⎤

⎦ =

⎡

⎣

0 0 1
1 0 0
0 1 0

⎤

⎦ .

Both matrices have non-zero determinant. Therefore, the augmented model is
both controllable and observable.

Here, the desired closed-loop polynomial is selected as (s + 3ω0)
3. The

feedback control law is defined as

u̇(t) = −
[
k1 k2 k3

]

⎡

⎣

ẋ1(t)
ẋ2(t)
x3(t)

⎤

⎦ . (6.15)

The closed-loop characteristic polynomial is calculated via

det

⎡

⎣

s −1 0
ω2

0 + k1 s + k2 k3

−1 0 s

⎤

⎦ = s3 + k2s
2 + (ω2

0 + k1)s + k3.

By equating the closed-loop characteristic polynomial to the desired closed-
loop polynomial, we find the coefficients for the controller as k1 = 26ω2

0,
k2 = 9ω0 and k3 = 27ω3

0.
To examine the behaviour of the closed-loop system, we note that the

derivative of the constant input disturbance is zero, i.e., ḋ(t) = 0. The closed-
loop system is

⎡

⎣

ẍ1(t)
ẍ2(t)
ẋ3(t)

⎤

⎦ =

⎡

⎣

0 1 0
−27ω2

0 −9ω2
0 −27ω2

0

1 0 0

⎤

⎦

⎡

⎣

ẋ1(t)
ẋ2(t)
x3(t)

⎤

⎦ (6.16)

u̇(t) = −
[
k1 k2 k3

]

⎡

⎣

ẋ1(t)
ẋ2(t)
x3(t)

⎤

⎦ . (6.17)

Figure 6.1a shows that the derivative u̇(t) exponentially decays to zero, and
Figure 6.1b shows the area under the plot u̇(t)2 is bounded for an arbitrarily
large t. Since the signal u(t) is an exponentially decay function that goes to
zero,

∫ ∞
0

u̇(t)2dt < ∞. In conjunction with the discussion given in Sections 5.2
and 5.3, this example demonstrated that the derivative of the control signal
is a good candidate to be modelled by using a set of Laguerre functions.
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Fig. 6.1. Derivative of the control signal

6.2.2 Controllability and Observability of the Model

It is important to investigate the controllability and observability of the aug-
mented model (6.5). Because the original plant model is augmented with in-
tegrators and the MPC design is performed on the basis of the augmented
continuous-time state-space model, it is important for control system design
that the augmented model does not become uncontrollable or unobservable,
particularly with respect to the unstable dynamics of the system. Similar to
discrete-time systems, controllability is a pre-requisite for the continuous-time
predictive control system to achieve desired closed-loop control performance
and observability is a pre-requisite for a successful design of an observer, with
a desired performance.

The investigation is based on the transfer function of the state-space model
(6.6) in relation to the plant model (6.3). The relationship between a state-
space system denoted by (A, B, C) and the transfer function G(s) is described
by the following definition.

Definition: A realization of transfer function G(s) is any state-space triplet
(A, B, C) such that G(s) = C(sI − A)−1B. If such a set (A, B, C) exists,
then G(s) is said to be realizable. A realization (A, B, C) is called a minimal
realization of a transfer function if there is no other realization of smaller state
dimension.
A minimal realization has this distinctive feature, summarized in the theorem
below.

Theorem 6.1. A minimal realization is both controllable and observable.

The proof of this results can be found in (Kailath, 1980, Bay, 1999). With
this background information, the aim is to show conditions such that the
augmented model is both controllable and observable through the argument
of minimal realization.
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Theorem 6.2. Assume that the plant model (Am, Bm, Cm) in (6.3) is both
controllable and observable, having the transfer function Gm(s) with minimal
realization, where

Gm(s) = Cm(sI − Am)−1Bm.

Then the transfer function of augmented design model (6.5) has the represen-
tation

G(s) =
1

s
Gm(s), (6.18)

and is both controllable and observable if and only if the plant model Gm(s)
has no zero at s = 0.1

Proof. To prove that the augmented model is controllable and observable, we
need to show that (6.18) is true. After that, the results follow from the minimal
structure of the augmented model without pole-zero cancellation. Note that
for a given square matrix M with the block structure

M =

[
A11 0
A21 A22

]

,

if A−1
11 and A−1

22 exist, then

M−1 =

[
A−1

11 0
−A−1

22 A21A
−1
11 A−1

22

]

. (6.19)

By applying the equality (6.19), we obtain

G(s) = C(sI − A)−1B (6.20)

where

(sI − A)−1 =

[
(sIm − Am)−1 oT

m

s−1Cm(sIm − Am)−1 s−1Iq

]

,

and Im is the identity matrix with dimensions equal to that of Am, Iq is the
identity matrix with dimensions q × q. By substituting the B and C matrices
from (6.5), the transfer function of the augmented model is obtained as (6.18).
Under the assumption that the plant model has no zero at s = 0 and has
a minimal realization, the transfer function of the augmented model has a
minimal structure from (6.5), therefore it is both controllable and observable.

6.3 Model Predictive Control Using Finite Prediction

Horizon

From the analysis in Section 6.2, we understand that for a linear time in-
variant system, when the closed-loop system is stable, the derivative of the

1 The zeros of a MIMO transfer function are those values of s that make the matrix
Gm(s) lose rank.
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control signal for disturbance rejection exponentially converges to zero after
the transient response period. The same is true for a set-point change. We use
this observation in the design of a continuous-time model predictive control
system using the receding horizon control principle.

6.3.1 Modelling the Control Trajectory

Consider a moving time window which is taken from ti to ti + Tp, and the
time variable within this window is called τ to distinguish it from t, and the
derivative of the control within this window is u̇(τ). The augmented plant
model is described by (A, B, C) matrices. With a given information of the
state vector at time ti as x(ti) for the initial state, the state feedback control,
with gain matrix K is, for 0 ≤ τ ≤ Tp,

u̇(τ) = −Kx(τ).

The closed-loop system with initial condition x(ti) is captured by

x(τ) = e(A−BK)τx(ti)

u̇(τ) = −Ke(A−BK)τx(ti).

Suppose that K is chosen such that the closed-loop system is stable with all
the eigenvalues of the system matrix (A − BK) strictly within the left-half
complex plane. Then it is seen that the derivative u̇(τ) exponentially decays
to zero.

With this observation in mind, it is sufficient to assume that for every
feedback control gain matrix K, there is an underlying control trajectory
u̇(τ), defined by a set of exponentially decaying functions within the interval
0 ≤ τ ≤ Tp. Furthermore, this underlying trajectory satisfies

lim
Tp→∞

∫ Tp

0

u̇(τ)2dτ < ∞. (6.21)

From the analysis in Chapter 5, the derivative of the control signal can be
described by a set of orthonormal basis functions. Namely, for 0 ≤ τ ≤ Tp,

u̇(τ) ≈
N∑

i=1

cili(τ) = L(τ)T η, (6.22)

where η = [c1 c2 . . . cN ]T is the vector of coefficients and li(τ), i =
1, 2, . . . , N are the set of orthonormal basis functions. Both Laguerre functions
and Kautz functions are the natural candidates for this task (see Chapter 5).
For this description, a set of Laguerre functions is used, and for a given scaling
factor p > 0 and some small ǫ > 0, with increase of N ,

∫ ∞

0

(

u̇(τ) −
N∑

i=1

cili(τ)

)2

< ǫ,
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which ensures the convergence of the approximation.
As discussed in Chapter 5, the Laguerre functions are best described by the

state-space model (6.23), where the state vector L(τ) = [l1(τ) l2(τ) . . . lN(τ)]T .

Assuming initial conditions of the state vector as L(0) =
√

2p
[
1 1 . . . 1

]T
,

then the Laguerre functions satisfy the state-space equation

⎡

⎢
⎢
⎢
⎣

l̇1(τ)

l̇2(τ)
...

l̇N (τ)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

−p 0 . . . 0
−2p −p . . . 0

...
−2p . . . −2p −p

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

l1(τ)
l2(τ)

...
lN (τ)

⎤

⎥
⎥
⎥
⎦

. (6.23)

The solution of the differential equation (6.23) gives the set of Laguerre func-
tions for i = 1, 2, . . . , N as

L(τ) = eApτL(0), (6.24)

where

Ap =

⎡

⎢
⎢
⎢
⎣

−p 0 . . . 0
−2p −p . . . 0

...
−2p . . . −2p −p

⎤

⎥
⎥
⎥
⎦

.

Unlike the Laguerre functions, Kautz functions allow the flexibility of spec-
ifying the pole locations. If a set of Kautz functions is used in the description
of the derivative of the control trajectory, then by choosing the set of poles
of the Kautz functions to be identical to the eigenvalues of the system matrix
(A − BK), the description can be made identical to the underlying control
trajectory. Due to its increased complexity, the case that uses Kautz functions
will be treated at the end of this chapter. Therefore, the focus here will be on
the case that uses a set of Laguerre functions.

6.3.2 Predicted Plant Response

Assume that at the current time, say ti, the state variable x(ti) is available.
Then at the future time τ , τ > 0, the predicted state variable x(ti + τ | ti) is
described by the following equation:

x(ti + τ | ti) = eAτx(ti) +

∫ τ

0

eA(τ−γ)Bu̇(γ)dγ, (6.25)

where the expected effect of the random disturbances with zero mean in the
future prediction is zero. To keep notation simple, the prediction (6.25) repre-
sents both cases of deterministic and stochastic disturbance. Let the control
signal be written as

u̇(τ) = [u̇1(τ) u̇2(τ) . . . u̇m(τ)]T ,
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and the input matrix be written in column form as

B = [B1 B2 . . . Bm],

where Bi is the ith column of the B matrix. The ith control signal u̇i(t)
(i = 1, 2 . . .m) is expressed as the orthonormal expansion:

u̇i(τ) = Li(τ)T ηi,

where the ith vector Li(τ)T consists of

Li(τ)T =
[
li1(τ) li2(τ) . . . liNi

(τ)
]
,

and the ith coefficient vector:

ηi =
[
ci
1 ci

2 . . . ci
Ni

]T
.

Here, there are a pair of pi and Ni parameters defined for each Li(τ).
Then, the predicted future state at time τ is

x(ti + τ | ti) = eAτx(ti) +

∫ τ

0

eA(τ−γ)
[
B1L1(γ)T ... BmLm(γ)T

]
dγη,

written as
x(ti + τ | ti) = eAτx(ti) + φ(τ)T η, (6.26)

where φ(τ)T is the convolution integral with

φ(τ)T =

∫ τ

0

eA(τ−γ)
[
B1L1(γ)T B2L2(γ)T ... BmLm(γ)T

]
dγ,

and the coefficient vector η contains all sub-coefficient vectors for each control
input defined as

ηT =
[
ηT
1 ηT

2 . . . ηT
m

]
,

which has dimension
∑m

i=1 Ni. Matrix φ(τ)T has dimension n × ∑m
i=1 Ni.

Note that the prediction of the state variable x(ti + τ | ti) is captured by
the set of unknown coefficients η. The integral φ(τ)T is uniquely determined
as shown in the next section, if the orthonormal basis functions L1(γ), L2(γ),
. . ., Lm(γ) are chosen and the pair of matrices (A, B) are specified.

From the prediction of the state variable, the predicted output at time τ
is

y(ti + τ | ti) = CeAτx(ti) + Cφ(τ)T η. (6.27)

6.3.3 Analytical Solution of the Predicted Response

The major computational load in evaluating the prediction comes from the
convolution operation in (6.26), which requires the computation of n×∑m

i=1 Ni

integral expressions.
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Let us define the convolution integral corresponding to the ith input

φi(τ)T =

∫ τ

0

eA(τ−γ)BiLi(γ)T dγ, (6.28)

where φi(τ)T is a matrix with dimensionality of n×Ni, and Ni is the number
of coefficients for the Laguerre functions used to describe the ith control signal.
We observe that

x(ti + τ | ti) = eAτx(ti) +
[
φ1(τ)T φ2(τ)T . . . φm(τ)T

]
η. (6.29)

Thus the prediction of the future state trajectory is partly expressed in terms
of φi(τ)T with 1 ≤ i ≤ m.

Computation of φi(τ)T

Effectively, the integral expression φ(τ)T for an m-input system is decomposed
into the computation of the individual component φi(τ)T for 1 ≤ i ≤ m.
This is the expression for a single input. To avoid confusion and to introduce
notational simplicity in the following, we will use φ(τ)T , p and N for the
description of the ith input signal, and (A, B, C) as the system matrices.
Parameters p and N may vary with different control input signals.

Proposition 6.1. For a given τ , the matrix φ(τ)T satisfies the linear alge-
braic equation

Aφ(τ)T − φ(τ)T AT
p = −BL(τ)T + eAτBL(0)T , (6.30)

where L(τ)T , L(0)T and Ap are defined by (6.23) and (6.24).

Proof. From matrix differentiation, another representation of (6.28) is

Aφ(τ)T = −
∫ τ

0

d(eA(τ−γ))BL(γ)T . (6.31)

By applying integration by parts to the right-hand side of the above equation,
we obtain

Aφ(τ)T = −[BL(τ)T − eAτBL(0)T ]

+

∫ τ

0

eA(τ−γ)BL(γ)T AT
p dγ (6.32)

= −[BL(τ)T − eAτBL(0)T ] + φ(τ)T AT
p , (6.33)

where (6.24) is used to derive (6.32).

The elements in the matrix φ(τ)T are to be determined from the solution of n×
N linear algebraic equations formed from (6.30). However, taking advantage
of the lower triangular structure of the matrix Ap (see (6.24)), the elements
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in φ(τ)T can be solved column by column in a systematic manner. Assume
that we let Ii denote the ith column of φ(τ)T and Ji denote the ith column
on the left-hand side of (6.30), we have

(A + pI)I1 = J1.

For i = 2, . . . , N ,

(A + pI)Ii = Ji − 2p

i−1∑

k=1

Ik. (6.34)

Through (6.34), the original solution to (6.30), which has n × N variables, is
decoupled to the N separate solutions of n linear equations. This procedure
enhances the numerical stability of these computations, particularly when the
numbers of states and outputs are large. It is seen from (6.34) that in order to
guarantee invertibility of (A+pI), i.e., a unique solution for φ(τ)T , the choice
of p must satisfy p �= −λi(A) for all i, where λi(A) denotes the ith eigenvalue
of the matrix A.

Upon obtaining the matrices φi(τ)T for i = 1, 2, . . . , m, as outlined above,
we finally obtain the prediction x(ti+τ | ti) by putting the computed matrices
side by side as shown in (6.29).

6.3.4 The Recursive Solution

If the prediction x(ti + τ | ti) is calculated in terms of τ = 0, h, 2h, . . . , Tp,
then the integral expression can be solved recursively. This may prove to be
useful if there are many inputs and state variables in the predictive control
system. The following proposition summarizes the results.

Proposition 6.2. For a given h > 0, we define

φ(h)T =

∫ h

0

eA(h−γ)BLT (γ)dγ (6.35)

φ(2h)T =

∫ 2h

0

eA(2h−γ)BLT (γ)dγ (6.36)

...
...

...

φ(kh)T =

∫ kh

0

eA(kh−γ)BLT (γ)dγ. (6.37)

Then,

φ(kh)T = eAhφ((k − 1)h)T + φ(h)T e(k−1)AT
p h. (6.38)
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Proof.

φ(2h)T =

∫ 2h

0

eA(2h−γ)BLT (γ)dγ

= eAh
(
∫ h

0 eA(h−γ)BLT (γ)dγ +
∫ 2h

h eA(h−γ)BLT (γ)dγ
)

= eAh
(

φ(h)T +
∫ 2h

h eA(h−γ)BLT (γ)dγ
)

. (6.39)

Note that
∫ 2h

h

eA(h−γ)BLT (γ)dγ = e−Ah

∫ h

0

eA(h−β)BLT (β)dβeAT
p h, (6.40)

where β = γ − h. Substituting (6.40) into (6.39), we obtain

φ(2h)T = eAhφ(h)T + φ(h)T ehAT
p . (6.41)

Let us assume that φ((k−1)h)T is available, and we calculate φ(kh)T through

φ(kh)T =

∫ kh

0

eA(kh−γ)BLT (γ)dγ (6.42)

= eAh[

∫ (k−1)h

0

eA((k−1)h−γ)BLT (γ)dγ

+

∫ kh

(k−1)h

eA((k−1)h−γ)BLT (γ)dγ]. (6.43)

Note that the first term in (6.43) is φ((k − 1)h)T , the second term can be
expressed as

∫ kh

(k−1)h

eA((k−1)h−γ)BLT (γ)dγ = e−Ah

∫ h

0

eA(h−β)BLT (β)dβeAT
p (k−1)h,

(6.44)
where β = γ − (k − 1)h and

LT (β + (k − 1)h) = LT (β)eAT
p (k−1)h

because of the exponential nature of the Laguerre functions.
By substituting (6.44) into (6.43), (6.38) is shown to be true.

Example 6.2. Assume a first-order system with scalars A = a and B = b. A
single Laguerre function is used with N = 1 and scaling factor p. Evaluate
the convolution integral expression using the recursive approach and the di-
rect computation via Proposition 6.2.

Solution. For a given sampling interval h, through straightforward calcula-
tion, we have
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φ(h)T =

∫ h

0

ea(h−γ)bl(0)e−pγdγ =
b
√

2p

a + p
[eah − e−ph]

φ(2h)T =

∫ 2h

0

ea(2h−γ)bl(0)e−pγdτ =
b
√

2p

a + p
[e2ah − e−2ph],

and so on, then leading to

φ(kh)T =

∫ 2h

0

ea(kh−τ)bl(0)e−pτdτ =
b
√

2p

a + p
[eakh − e−pkh]. (6.45)

Using the results presented in Proposition 6.1, we can also come to the same
expression of φ(kh)T through

φ(kh)T = eahφ((k − 1)h)T + φ(h)T e−(k−1)hp

=
b
√

2p

a + p
[eakh − e(−(k−1)p+a)h + e(−(k−1)p+a)h − e−pkh]

=
b
√

2p

a + p
[eakh − e−pkh]. (6.46)

The results in Proposition 6.2 simplify the computational procedure to obtain
the gain matrices for the continuous-time model predictive control. Instead
of solving a set of linear equations at every discrete time, the integral expres-
sion is solved through a simple recursive procedure. Also, note that h is the
discretization interval within the optimization window. This is not related to
the actual sampling interval in the implementation of the predictive control
system. In general, h can be very small to approximate the continuous-time
prediction as accurately as possible.

The first quantity in the recursive calculation requires the solution of the
linear equations. The following tutorial demonstrates how to solve the alge-
braic matrix equation (6.30) effectively.

Tutorial 6.1. The objective of this tutorial is to demonstrate how to obtain
the integral expression φ(τ)T by solving the linear algebraic equation

AX − XAT
p = Y, (6.47)

where Ap is defined by the system matrix used to generate the set of Laguerre
functions (see (6.24)).

Step by Step

1. Create a new file called Iint.m. This function will be used to solve the linear
algebraic equation (6.47) with matrices A, Ap and Y . We will find the
solution recursively by taking advantage of the lower triangular structure
of the matrix Ap.

2. Enter the following program into the file:
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function X=Iint(A,p,Y)

[n,N]=size(Y);

X=zeros(n,N);

Ai=inv(A+p*eye(n,n));

X(:,1)=Ai*Y(:,1);

alpha=-2*p*X(:,1);

for i=2:N;

X(:,i)=Ai*(Y(:,i)+alpha);

alpha=alpha-2*p*X(:,i);

end

3. Write a test program to verify if the results are correct, based on the first-
order system of Example 6.2.

4. This function is useful later as part of the design program for the continuous-
time model predictive control.

6.4 Optimal Control Strategy

The Cost function

Similar to the discrete-time case, in the continuous-time predictive control,
the cost function is also assumed to take the form:

J =

∫ Tp

0

(
x(ti + τ | ti)

T Qx(ti + τ | ti) + u̇(τ)T Ru̇(τ)
)
dτ, (6.48)

with initial state information given as x(ti). The optimal control u̇(τ) is found
by minimizing this cost function J , which is the optimal control within the
moving window. The question arises as to how the set-point signal should enter
the optimization. The optimal performance is specified by selecting weight
matrices Q ≥ 0 and R ≥ 0.

In the traditional predictive control design, at time ti, the cost function is
often chosen as

J =

∫ Tp

0

(
(r(ti) − y(ti + τ | ti))

T (r(ti) − y(ti + τ | ti)) + u̇(τ)T Ru̇(τ)
)
dτ.

(6.49)
Without constraints, the objective of model predictive control in the case of
set-point following is to find the control law that will drive the predicted plant
output y(ti + τ | ti) as close as possible, in a least squares sense, to the future
trajectory of the set-point r(ti). The assumption is that the set-point signal
r(ti) is a constant (or a set of constants) within the optimization window.

When the set-point is a constant signal, by subtracting r(ti) from the
variable y(ti + τ | ti), then the augmented model takes the form:

[
ż(ti + τ | ti)
ė(ti + τ | ti)

]

=

[
Am oT

m

Cm oq×q

] [
z(ti + τ | ti)
e(ti + τ | ti)

]

+

[
Bm

oq×m

]

u̇(τ), (6.50)
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where e(ti + τ | ti) = y(ti + τ | ti) − r(ti), and r(ti) is a constant vector for
0 ≤ τ ≤ Tp , defined by

r(ti) =
[
r1(ti) r2(ti) . . . rq(ti)

]T
.

Note that C =
[
om Iq×q

]
. By choosing Q = CT C, in conjunction with the

augmented model (6.50), the traditional cost function (6.49) can be written
in the form

J =

∫ Tp

0

(
x(ti + τ | ti)

T Qx(ti + τ | ti) + u̇(τ)T Ru̇(τ)
)
dτ, (6.51)

where the initial state variable information x(ti) contains the error y(ti)−r(ti),
instead of y(ti).

Solution of optimal control

We may work directly with the cost function (6.51). However, for simplicity,
we assume that R is a diagonal matrix with

R = diag{rk}, (6.52)

where k = 1, 2, . . . , m.
Then, the second term in the cost function (6.51) is

∫ Tp

0

u̇(τ)T Ru̇(τ)dτ =
m∑

k=1

∫ Tp

0

rku̇k(τ)2dτ. (6.53)

Note, in common practice, the prediction horizon Tp is chosen to be sufficiently
large such that u̇(τ) ≈ 0 for τ ≥ Tp. Namely, the prediction horizon is selected
to be larger than the time for which the control signal is effective. Thus,

∫ Tp

0

u̇k(τ)T u̇k(τ)dτ ≈
∫ ∞

0

ηT
k Lk(τ)Lk(τ)T ηkdτ = ηT

k ηk, (6.54)

where we have taken advantage of the orthonormal property of the Laguerre
functions (see Chapter 5) that

∫ ∞
0 Lk(τ)Lk(τ)T dτ is the identity matrix with

dimension equal to the number of Laguerre coefficients for the kth input. The
cost function J is then equivalently given by

J =

∫ Tp

0

x(ti + τ | ti)
T Qx(ti + τ | ti)dτ + ηT RLη, (6.55)

where RL is a block diagonal matrix with the kth block being Rk, and
Rk = rkINk×Nk

(where INk×Nk
is a unit matrix with dimensions Nk × Nk).
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Minimization of the cost function

By substituting the prediction of the state variable x(ti + τ | ti) from (6.26)
into (6.55), the cost function becomes

J =

∫ Tp

0

(
eAτx(ti) + φ(τ)T η

)T
Q

(
eAτx(ti) + φ(τ)T η

)
dτ + ηT RLη, (6.56)

which is a quadratic function of η

J = ηT

[
∫ Tp

0

φ(τ)Qφ(τ)T dτ + RL

]

η + 2ηT

∫ Tp

0

φ(τ)QeAτdτx(ti)

+ x(ti)
T

∫ Tp

0

eAT τQeAτdτx(ti). (6.57)

For notational simplicity, we define

Ω =

∫ Tp

0

φ(τ)Qφ(τ)T dτ + RL (6.58)

Ψ =

∫ Tp

0

φ(τ)QeAτ dτ. (6.59)

Completing the square of (6.57) leads to

J =
[
η + Ω−1Ψx(ti)

]T
Ω

[
η + Ω−1Ψx(ti)

]

+ x(ti)
T

∫ Tp

0

eAT τQeAτdτx(ti) − x(ti)
T ΨT Ω−1Ψx(ti).

Hence, the optimal η that minimizes J is, as the last two terms are independent
of η

η = −Ω−1Ψx(ti), (6.60)

and the minimum of the cost function is

Jmin = x(ti)
T

[
∫ Tp

0

eAT τQeAτdτ − ΨT Ω−1Ψ

]

x(ti). (6.61)

Once η is found, the whole trajectory of u̇(τ) can be constructed using the
Laguerre functions as

u̇(τ) =

⎡

⎢
⎢
⎢
⎣

L1(τ)T o2 . . . om

o1 L2(τ)T . . . om

...
...

. . .
...

o1 o2 . . . Lm(τ)T

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

η1

η2

...
ηm

⎤

⎥
⎥
⎥
⎦

, (6.62)

where the row vector ok contains zero elements and has a dimension identical
to Lk(τ)T .
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Computation of Ω and Ψ Matrices

The matrices Ω and Ψ are constant matrices defined by the integral expres-
sions (6.58) and (6.59). They are computed off-line. In general, it is difficult to
obtain the analytical solutions for the integral expressions that produce Ω and
Ψ . However, noting that these matrices are computed over a given prediction
horizon Tp, the integral expressions can be evaluated off-line using a numerical
approximation scheme. More specifically, letting τ = 0, h, 2h, . . . , Mh with a
constant step size h, we have the approximate relations as below:

Ω ≈
M∑

k=0

φ(kh)Qφ(kh)T h + RL (6.63)

Ψ ≈
M∑

k=0

φ(kh)QeAkhh, (6.64)

where φ(kh)T is computed recursively using (6.38). The step size h in the
numerical scheme would typically be chosen related to the scaling factor p,
ideally as small as possible, but independent of the actual sampling interval
of the process.

6.5 Receding Horizon Control

With the optimal coefficient vector η, the derivative of the future control
signal is obtained using (6.62) for all 0 ≤ τ ≤ Tp.

By applying the principle of receding horizon control (i.e., the control
action will use only the derivative of the future control signal at τ = 0), the
derivative of the optimal control for the unconstrained problem with finite
horizon prediction is

u̇(ti) =

⎡

⎢
⎢
⎢
⎣

L1(0)T o2 . . . om

o1 L2(0)T . . . om

...
...

. . .
...

o1 o2 . . . Lm(0)T

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

η1

η2

...
ηm

⎤

⎥
⎥
⎥
⎦

. (6.65)

For an arbitrary time t, η = −Ω−1Ψx(t), the continuous-time derivative of
the control is

u̇(t) = −

⎡

⎢
⎢
⎢
⎣

L1(0)T o2 . . . om

o1 L2(0)T . . . om

...
...

. . .
...

o1 o2 . . . Lm(0)T

⎤

⎥
⎥
⎥
⎦

Ω−1Ψx(t)

= −Kmpcx(t), (6.66)
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where the feedback gain matrix is

Kmpc =

⎡

⎢
⎢
⎢
⎣

L1(0)T o2 . . . om

o1 L2(0)T . . . om

...
...

. . .
...

o1 o2 . . . Lm(0)T

⎤

⎥
⎥
⎥
⎦

Ω−1Ψ.

It is seen from (6.66) that the receding horizon control law is in the nature of
state feedback control because of the dependence on the current state variable
x(t). Note that the augmented state-space model is

ẋ(t) = Ax(t) + Bu̇(t).

Using this augmented state-space model where the input is u̇(t), we obtain
the closed-loop control system as

ẋ(t) = (A − BKmpc)x(t), (6.67)

from which the closed-loop eigenvalues of the predictive control system can
be evaluated.

Here, we only need to integrate to reveal the control law and the action of
integral control,

u(t) =

∫ t

0

u̇(τ)dτ. (6.68)

Note that the state variable x(t) consists of two components. The first com-
ponent is the derivative of the plant state xm(t). With a set-point signal r(t),
the error signal y(t)−r(t) is the second part of the feedback component. Thus,
we can write the state feedback control as

u̇(t) = −Kmpcx(t) = −[Kx Ky]

[
ẋm(t)

y(t) − r(t)

]

.

Figure 6.2 illustrates the block diagram of the predictive control system, where
we can clearly see that it has embedded integral action.

MATLAB Tutorial: Continuous-time Predictive Control

Tutorial 6.2. The objective of this tutorial is to demonstrate how to calculate
Ω and Ψ matrices in the cost function

J = ηT Ωη + 2ηT Ψx(ti),

used for the design of continuous-time model predictive control. The state-
space model is captured by the pair (A, B) matrices; the weight matrices are Q
and R; the prediction horizon is Tp, and the number of Laguerre parameters
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Fig. 6.2. Block diagram of continuous-time predictive control system

for each input is specified as an element in N , with a corresponding scaling
parameter in p. Both N and p have dimension equal to the number of inputs.

Step by Step

1. Create a new file called cmpc.m.
2. This function will be used as the basis for the design of a continuous-time

model predictive control system. The input parameters to the function are
the state-space model, scaling factor and number of terms in the Laguerre
functions, prediction horizon in a time unit, and the weight matrices Q
and R. In the first part of the program, the initialization of the parameter
matrices are sought. The continuous-time window is discretized in order
to compute the integral expressions numerically.

3. Enter the following program into the file:

function [Omega,Psi]=cmpc(A,B,p,N,Tp,Q,R);

[n,n_in]= size(B);

tau_del=0.001/max(p);

Tpm=max(Tp);

tau=0:tau_del:Tpm;

Np=length(tau);

N_pa=sum(N);

Omega=zeros(N_pa,N_pa);

Psi=zeros(N_pa,n);

S_in=zeros(n,N_pa);
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4. RL is the weight matrix corresponding to the weight on the coefficient
vector η, which is directly related to the original weight R on the input
signal u̇.

5. Continue entering the following program into the file:

R_L=eye(N_pa,N_pa);

kk=1;

for i=1:n_in

R_L(kk:kk-1+N(i),kk:kk-1+N(i))=

R(i,i)*R_L(kk:kk-1+N(i),kk:kk-1+N(i));

kk=kk+N(i);

end

6. The computation of φ(τ)T at the first sample τ = taudel is performed
by solving the linear algebraic matrix equation using the function Iint.m
that we created before. The integral expression corresponding to the first
input is solved first, and the rest of the integral expressions are computed
input by input and put together to form Ssum. lagc.m is the MATLAB
function for generating the continuous-time Laguerre system matrix and
initial condition, which can be found in Tutorial 5.1.

7. Continue entering the following program into the file:

[Al,L0]=lagc(p(1),N(1));

Eae=expm(A*tau_del);

Eap=expm(Al*tau_del);

L=Eap*L0;

Y=-B(:,1)*L’+Eae*B(:,1)*L0’;

X=Iint(A,p(1),Y);

S_in(:,1:N(1))=X;

In_s=1;

for jj=2:n_in;

[Al,L0]=lagc(p(jj),N(jj));

Eap=expm(Al*tau_del);

L=Eap*L0;

Y=-B(:,jj)*L’+Eae*B(:,jj)*L0’;

X=Iint(A,p(jj),Y);

In_s=N(jj-1)+In_s;

In_e=In_s+N(jj)-1;

S_in(:,In_s:In_e)=X;

end

S_sum=S_in;

8. Ssum is the initial condition for the recursive computation of the convolu-
tion integral expression. From this point onwards, the integral expression
is computed recursively.

9. Continue entering the following program into the file:
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for i=2:Np-1;

kk=1;

[Al,L0]=lagc(p(kk),N(kk));

Eap=expm(Al*tau_del);

S_sum(:,1:N(kk))=Eae*S_sum(:,1:N(kk))

+S_in(:,1:N(kk))*(Eap^(i-1))’;

In_s=1;

for kk=2:n_in;

[Al,L0]=lagc(p(kk),N(kk));

Eap=expm(Al*tau_del);

In_s=N(kk-1)+In_s;

In_e=In_s+N(kk)-1;

S_sum(:,In_s:In_e)=Eae*S_sum(:,In_s:In_e)+

S_in(:,In_s:In_e)*(Eap^(i-1))’;

end

phi=S_sum;

Omega=Omega+phi’*Q*phi;

Psi=Psi+phi’*Q*Eae^i;

end

10. Finally multiplying the sampling interval taudel and adding the weight
matrix RL gives the Ω and Ψ matrices. Continue entering the following
program into the file:

Omega=Omega*tau_del+R_L;

Psi=Psi*tau_del;

The function cmpc.m needs to be tested before further application. This test
will be based on comparing results of the feedback gain matrices and closed-
loop eigenvalues when using CMPC and using LQR design.

Example 6.3. Suppose that a two-input and two-output system with three
states is described by the state-space model

ẋm(t) = Amxm(t) + Bmu(t); y(t) = Cmx(t),

where the system matrices are

Am =

⎡

⎣

−1 0 0
0 −3 0
3 3 −5

⎤

⎦ ; Bm =

⎡

⎣

1 0
0 1
1 1

⎤

⎦ ; Cm =

[
1 0 0
0 1 0

]

.

Augment this model with integrators and design a continuous-time predictive
control with the specified parameters as follows, N1 = N2 = 4; and p1 = 1.5;
p2 = 2; Tp = 10; Q = CT C and R = 0.2I. Calculate the continuous-time
predictive control gain matrix Kmpc and the closed-loop eigenvalues of the
predictive control system. Compare the continuous-time MPC results with
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the results obtained using MATLAB LQR function.

Solution.

Step by Step

1. Create a program called testcmpc.m
2. We will first form the augmented state-space model and set the design

parameters in the continuous-time predictive control.
3. Enter the following program into the file:

Am=[-1 0 0;0 -3 0;3 3 -5];

Bm=[1 0;0 1; 1 1];

Cm=[1 0 0;0 1 0];

[m1,n1]=size(Cm);

[n1,n_in]=size(Bm);

A=zeros(n1+m1,n1+m1);

A(1:n1,1:n1)=Am;

A(n1+1:n1+m1,1:n1)=Cm;

B=zeros(n1+m1,n_in);

B(1:n1,:)=Bm;

C=zeros(m1,n1+m1);

C(:,n1+1:n1+m1)=eye(m1,m1);

Q=C’*C;

R=0.2*eye(2,2);

p1=1.5;

p2=2;

N1=4;

N2=4;

p=[p1 p2];

N=[N1 N2];

Tp=10;

4. Call the function cmpc.m created from Tutorial 6.2 by entering the fol-
lowing line into the file:

[Omega,Psi]=cmpc(A,B,p,N,Tp,Q,R);

5. We need to recover the state feedback control gain matrix and the closed-
loop eigenvalues. In order to do so, the initial condition of the Laguerre
functions needs to be used. Matrix Lzerot is used for realization of the
feedback gain matrix.

6. Continue entering the following program into the file:

[Ap1,L1]=lagc(p1,N1);

[Ap2,L2]=lagc(p2,N2);

Lzerot=zeros(2,N1+N2);

Lzerot(1,1:N1)=L1’;
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Lzerot(2,N1+1:N1+N2)=L2’;

7. We are ready to calculate the state feedback gain matrix and the closed-
loop eigenvalues. Continue entering the following program into the file:

K_mpc=Lzerot*(Omega\Psi);

Acl=A-B*K_mpc;

eig(Acl)

8. Finally we should compare the results with the LQR results. Enter the
following line into the file:

[K,S,E]=lqr(A,B,Q,R);

9. Run this test program.

The state feedback control gain matrices of CMPC and LQR are shown in
Table 6.1. It is seen that the elements in the state feedback control gain
matrix from CMPC are crude approximationes to those from LQR. The same
can be said for the elements of the closed-loop eigenvalues. It will be shown
in Chapter 8 that the numerical instability of the predictive control algorithm
is the main cause of the discrepancy and the accuracy of the approximation
will improve if exponential data weighting is used in the design.

Table 6.1. Comparison of numerical results between LQR and CMPC

State feedback gain Closed-loop eigenvalues

CMPC
1.3017 0 0 2.1838 0

0 0.6226 0 0 2.0970
−5 − 2.8993 − 0.7233 − 1.1508 ± j0.9270

LQR
1.3393 0 0 2.2361 0

0 0.6704 0 0 2.2361
−5 − 2.8992 − 0.7713 − 1.1696 ± j0.9317

Example 6.4. Consider the state-space model

ẋm(t) =

[
0 1
−1 −3

]

xm(t) +

[
0
1

]

u(t)

y(t) =
[
1 0

]
xm(t). (6.69)

The augmented model for the design of model predictive control takes the
form:

ẋ(t) =

⎡

⎣

0 1 0
−1 −3 0
1 0 0

⎤

⎦x(t) +

⎡

⎣

0
1
0

⎤

⎦ u̇(t)

y(t) =
[
0 0 1

]
x(t). (6.70)
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Within one optimization window, examine the trajectory of the model pre-
dictive control as an approximation of the true optimal solution from linear
quadratic regulator (LQR).

Solution. Since the design principle is to model the optimal derivative of
control trajectory using Laguerre functions, we examine the accuracy of the
approximation for a chosen set of weight matrices Q and R. For simplicity,
we choose Q = I (i.e., a 3× 3 identity matrix) and R = 0.1. Using MATLAB
function lqr, the optimal controller K is obtained via minimizing the cost
function:

J =

∫ ∞

0

(x(t)T Qx(t) + u̇(t)T Ru̇(t))dt. (6.71)

Table 6.2 shows the comparative results between the optimal control system
designed by solving the algebraic Riccati equation and the predictive control
system using Laguerre functions.

Figure 6.3 shows the comparative results of the closed-loop response be-
tween LQR and the predictive control systems (i.e., N = 1, 2, 3) with an
identical initial state variable condition. Two sets of initial state variable con-
ditions are examined. It is seen that the approximation of the derivative of
the control signal is indeed very close to the optimal signal, even with N = 1.
As N increases, the accuracy improves. As a result, the output response is
very close to the response from LQR system for higher values of N .

Table 6.2. Comparison between LQR and predictive control

State feedback gain Closed-loop eigenvalues

LQR 5.7796 2.5280 3.1623 −4.0454 − 0.7413 ± j0.4818

MPC (N = 1) 5.7494 1.9016 2.5278 −2.8360 − 1.4515 − 0.6141

MPC (N = 2) 5.2423 2.1431 3.2292 −3.6879 − 0.7276 ± j0.5884

MPC (N = 3) 5.3663 2.3530 2.8289 −3.9097 − 0.7216 ± j0.4503

This example shows that within one optimization window, the derivative of
the control trajectory converges to the underlying optimal control dictated
by the linear feedback control law, which is the linear quadratic regulator
solution with the same Q and R matrices.

6.6 Implementation of the Control Law in Digital

Environment

6.6.1 Estimation of the States

The prediction of the future plant behaviour is dependent on the availability
of the state variable x(ti) at time ti. In general, x(ti) is not measurable. In
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Fig. 6.3. Comparison study between LQR and predictive control,
x1(0)=x2(0)=x3(0)=1

this particular formulation, x(t) contains the derivative of the original plant
state variable xm(t). Because the derivative operation will amplify the high
frequency noise in the system, it is not recommended to obtain the derivative
functions without a filter. A continuous-time observer will play the dual role,
which involves accessing the plant state variable information and filtering the
measurement noise.

The observer equation that is needed for implementing the continuous-
time MPC that has embedded integrators is given by

dx̂(t)

dt
= Ax̂(t) + Bu̇(t) + Kob(y(t) − Cx̂(t)), (6.72)

where x̂(t) is the estimate of x(t), Kob is the observer gain, and (A, B, C) are
the system matrices for the augmented model. Signal u̇(t) is determined from
the optimal solution of the model predictive control strategy with integrator
embedded. Provided that the system model (A, B, C) is completely observ-
able, in theory, Kob can be chosen such that the error, x̃(t) = x(t) − x̂(t),
decays exponentially at a desired rate. However, in practice, the observer gain
Kob is often limited by the presence of measurement noise and is selected
based on the disturbance characteristics of the process. The continuous-time
Kalman filters are often used in the noise environment to estimate the state
variable x̂(t) (Anderson and Moore, 1979, Grimble and Johnson, 1988b).

Figure 6.4 shows the block diagram of the closed-loop feedback system
using an observer. Note that the set-point signal is weighted by the feedback
gain Ky, which was the gain matrix applied to the output y(t) in Figure 6.2.

The observer (6.72) is implemented in a discretized-form as

x̂(ti + ∆t) = x̂(ti) + (Ax̂(ti) + Bu̇(ti) + Kob(y(ti) − Cx̂(ti)))∆t. (6.73)
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Fig. 6.4. Block diagram of CMPC with an observer

Thus, in conjunction with the information of u̇(ti), obtained from predictive
control, and y(ti), x(ti), the next sample of state estimate x̂(ti + ∆t) is com-
puted.

The advantage of the proposed control system structure lies in the ease of
implementation. First, the steady state of the state vector ẋm(t) is zero, so
is the steady state of u̇(t). Thus, these steady-state values do not enter the
implementation. In addition, the control calculation is carried out by simply
approximating the derivative u̇(t) with

u̇(ti) ≈
u(ti) − u(ti − ∆t)

∆t
. (6.74)

Hence,
u(ti) = u(ti − ∆t) + u̇(ti)∆t. (6.75)

Assume that the steady state value of the control signal is uss, then the actual
control signal to the plant is

uact(ti) = uss + u(ti) = uss + u(ti − ∆t) + u̇(ti)∆t. (6.76)

By taking uact(ti − ∆t) = uss + u(ti − ∆t), then the actual control signal to
the plant is calculated as

uact(ti) = uact(ti − ∆t) + u̇(ti)∆t. (6.77)
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In this way, the involvement of a steady-state value of the control signal is
avoided. Instead, the actual control signal will repeatedly update itself from
its past value.

In the receding horizon control, we construct the derivative u̇(ti) through

u̇(ti) =

⎡

⎢
⎢
⎢
⎣

L1(0)T o2 . . . om

o1 L2(0)T . . . om

...
...

. . .
...

o1 o2 . . . Lm(0)T

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

η1

η2

...
ηm

⎤

⎥
⎥
⎥
⎦

. (6.78)

Finally,

uact(ti) = uact(ti − ∆t) +

⎡

⎢
⎢
⎢
⎣

L1(0)T o2 . . . om

o1 L2(0)T . . . om

...
...

. . .
...

o1 o2 . . . Lm(0)T

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

η1

η2

...
ηm

⎤

⎥
⎥
⎥
⎦

∆t. (6.79)

Equation (6.79) is the so called control signal in velocity form. If we set
uact(0) = uss at the initial time, then the actual control signal will be au-
tomatically updated as each new value of the derivative of the control signal
is computed.

6.6.2 MATLAB Tutorial: Closed-loop Simulation

Tutorial 6.3. The objective of this tutorial is to demonstrate how to perform
a simulation of a closed-loop continuous-time model predictive control system
without constraints. An observer is used in the simulation.

Step by Step

1. Create a new file called cssimuob.m.
2. This function will be used as the basis for the simulation of a continuous-

time model predictive control system without constraints. The input para-
meters to the function are the initial conditions of the plant state xm(0),
control signal u(−h) (h is the sampling interval for the continuous-time
system), output signal y(0). Set-point signal for the entire simulation, sp,
where sp is defined as a data matrix with the number of rows correspond-
ing to the number of outputs and the number of columns corresponding to
the number of data points for the set-point signal. Ap, Bp and Cp corre-
spond to the plant model; A, B and C correspond to the augmented model
used in the design of a continuous-time predictive control system. The
plant model may be different from the model used for design, permitting
an assessment of robustness of the predictive control system. Nsim is the
number of simulation time steps in discrete points. Omega and Psi are the
gain matrices in the predictive control system. Kob is the observer gain,
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Lzerot is the data matrix for the initial condition of the Laguerre functions
in transposed form. Because the problem is formulated in continuous-time,
the sampling interval h can also change during the simulation to simulate
the case of irregular sampling.

3. Enter the following program into the file:

function [u1,y1,udot1,t]=cssimuob(xm,u,y,sp,Ap,Bp,Cp,

A,B,C,N_sim,Omega,Psi,K_ob,Lzerot,h)

[m1,n1]=size(Cp);

[n1,n_in]=size(Bp);

X_hat=zeros(n1+m1,1);

4. The above program finds the number of inputs and number of outputs, and
defines the initial condition of the estimated state variable.

5. The simulation is performed recursively. At time kk, the set-point signal
enters the simulation through the difference between Xhat(kk) and Xsp,
where Xsp is a vector having the number of zeros corresponding to the
number of states, the rest of it corresponds to the set-point signal at time
kk. The Laguerre coefficient vector eta (η) is found using the closed-form
expression: η = −Ω−1Ψ(x̂(tk) − xsp(tk)). The derivative of the control
signal is constructed using the value of η and the initial Laguerre data
matrix Lzerot. The control signal is updated with its past value and the
current derivative value.

6. Continue entering the following program into the file:

for kk=1:N_sim;

Xsp=[zeros(n1,1);sp(:,kk)];

eta=-(Omega\Psi)*(X_hat-Xsp);

udot=Lzerot*eta;

u=u+udot*h;

7. Store the signals for plotting later, and update the observed state variable
with y and new udot.

8. Continue entering the following program into the file:

udot1(1:n_in,kk)=udot;

u1(1:n_in,kk)=u;

y1(1:m1,kk)=y;

X_hat=X_hat+(A*X_hat+K_ob*(y-C*X_hat))*h+B*udot*h;

9. Using the current control u, the plant state and output are updated. Con-
tinue to enter the following program into the file:

xm=xm+(Ap*xm+Bp*u)*h;

y=Cp*xm;

end

t=0:h:(N_sim-1)*h;
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10. In the real-time implementation of continuous-time MPC, the computation
of the plant output is replaced by the measurement of the plant output and
the input is sent to the plant input.

11. If there is measurement noise or input disturbance, they can be easily
added to the simulation. For instance, if the measurement noise sequence
is epsilon, then we will change the output to

y=Cp*xm+E*epsion(kk);

where E is used to indicate which output will have the noise. For example,
if the measurement noise is added to the first output, then E is equal to
one for the first element and zero for the rest. Similarly, if there are input
disturbances to the plant, then we will add the input disturbances to the
control signal in the simulation.

This simulation program will be used to assess performance for the predictive
control system without constraints. It needs to be tested. A test example is
given as follows.

Example 6.5. Consider a two-input, two-output system described by the trans-
fer function

[
y1(s)
y2(s)

]

=

[
12.8(−s+4)2

(16.7s+1)(s+4)2
−10.9(−3s+4)2

(21.0s+1)(3s+4)2

12.8(−7s+4)2

(10.9s+1)(7s+4)2
−19.4(−3s+4)2

(14.4s+1)(3s+4)2

][
u1(s)
u2(s)

]

. (6.80)

In the simulation, a unit-step reference signal is applied to y1 and the reference
signal to y2 is zero. The Laguerre parameters are selected as N1 = N2 = 2;
and p1 = 0.5/15; p2 = 0.5/26. Q = CT C and R = 0.2I. The prediction hori-
zon is selected as Tp = 50. The observer is designed using MATLAB program
LQR where the weight matrices Q1 = I and R1 = 0.0001 × I. The sampling
interval in the simulation is selected as 0.001 sec.

Solution. Create a program called testsim.m. Following the steps in the ex-
ample with the appropriate system parameters and performance parameter
specifications leads to the computation of the Ω and Ψ matrices. To calculate
the observer gain matrix, enter the following lines into the file:

Q1=eye(n1+m1,n1+m1);

R1=0.0001*eye(m1,m1);

K_ob=lqr(A’,C’,Q1,R1)’;

Also, enter the initial conditions for the simulation by entering the following
lines into the file:

xm=zeros(n1,1);

u0=zeros(n_in,1);

y0=zeros(m1,1);

N_sim=60000;
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h=0.001;

r1=ones(1,N_sim+200);

r2=zeros(1,N_sim+200);

sp=[r1;r2];

The function from Tutorial 6.3 is called to produce closed-loop simulation
results. Enter the following line into the file:

[u,y,udot,t]=cssimuob(xm,u0,y0,sp,Ap,Bp,Cp,A,B,C,N_sim,

Omega,Psi,K_ob,Lzerot,h);

Figure 6.5 shows the output signal y1 and y2 and the closed-loop control signal
u1 and u2. It is seen from this figure that the closed-loop system is stable,
and due to the integral action, the output y1 has followed the set-point signal
without steady-state error, while the output y2 is equal to zero at steady state.
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Fig. 6.5. Closed-loop system response

6.7 Model Predictive Control Using Kautz Functions

Until now, the orthonormal basis functions used in the design were Laguerre
functions. For a set of Laguerre functions, there are two pre-chosen parame-
ters. One is its pole location p, while the other is the number of terms, N , to
be used in the orthonormal expansion. We understand that for a pair of Q
and R matrices, there is an underlying control trajectory that is the optimal
control of the LQR system with given initial condition x(ti). Therefore, the
best choice of p should correspond to the dominant pole of the closed-loop
system A − BKlqr . With this choice, increasing the number of terms N will
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lead to convergence of the predictive control trajectory to the optimal control
trajectory of LQR within one optimization window. The question arises as
to whether there is another set of orthonormal functions that will precisely
capture the optimal LQR control trajectory with a finite number of terms
corresponding to the number of state variables. The answer to this question
leads to the application of Kautz functions in the design of predictive control.
Although the solution is presented in continuous time, the same procedure
can be extended to discrete time when using discrete-time Kautz functions.

Kautz functions are also orthonormal functions, which have been discussed
in Chapter 5. They are a generalization of Laguerre functions, allowing both
real and complex poles to be used in its Laplace transfer function networks.

Similar to the application of Laguerre functions in predictive control, when
using Kautz functions to describe the derivative of the control trajectory, we
have

u̇(τ) = Lk(τ)T η = BT
k (eAkτ )T CT

k η. (6.81)

For example, with the assumption of a pair of real poles (−α1, −α2) and a
pair of complex poles (−α3 ± jβ3), the system matrices to describe a set of
Kautz functions are

Ak =

⎡

⎢
⎢
⎢
⎢
⎣

−α1 0 0 0 0
−2α1 −α2 0 0 0
−2α1 −α2 −p3 0 0
−2α1 −α2 γ3 − p3 −p̄3 0
−2α1 −α2 γ3 − p3 −γ3 − p̄3 −γ3

⎤

⎥
⎥
⎥
⎥
⎦

; BT
k =

[
1 1 1 1 1

]

Ck =

⎡

⎢
⎢
⎣

√
2α1 0 0 0 0
0

√
2α2 0 0 0

0 0 0
√

2α3 0
0 0 0 0

√
2α3

⎤

⎥
⎥
⎦

,

where p3 = −α3 + jβ3, p̄3 = −α3 − jβ3, γ3 =
√

α2
3 + β2

3 ; α1, α2, α3 > 0. Note
that the Ak matrix is a lower triangular matrix, which leads to a simplified
solution in the design.

The prediction of the state at the future time τ from time ti is

x(ti + τ | ti) = eAτx(ti) +

∫ τ

0

eA(τ−γ)Bu(γ)dγ

= eAτx(ti) +

∫ τ

0

eA(τ−γ)BBT
k (eAkγ)T dγCT

k η.

Similar to the situation when Laguerre functions are used, we let

φ(τ)T =

∫ τ

0

eA(τ−γ)BBT
k (eAkγ)T dγCT

k . (6.82)

Furthermore, we recognize that the case is identical to the case presented in
the Laguerre functions by defining
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φ̂(τ)T =

∫ τ

0

eA(τ−γ)BBT
k (eAkγ)T dγ. (6.83)

For a given τ , the matrix φ(τ)T can be found analytically through the alge-
braic equation

Aφ̂(τ)T − φ̂(τ)T AT
k = −BBT

k (eAkτ )T + eAτBBT
k (6.84)

φ(τ)T = φ̂(τ)T CT
k . (6.85)

Since Ak is a lower triangular matrix, it is straightforward to solve this matrix
algebraic equation, as demonstrated in the early part of this chapter (see
Section 6.3). The rest of the solution follows exactly the same procedure used
in the Laguerre function case to solve the multi-input and multi-output case
by decomposing the multi-input system as single-input systems.

Kautz functions have more flexibility in their pole locations. We utilize
this flexibility in the situation where the desired closed-loop poles are exactly
known for a given cost function characterized by the pair of Q and R matri-
ces. For instance, assuming that the state variable vector x has dimension n,
with the optimal solution from LQR, the set of closed-loop eigenvalues are λ1,
λ2, . . ., λn, then by choosing the poles of the Kautz functions to be identical
to λ1, λ2, . . ., λn, in theory, the solution of the continuous-time predictive
control for a sufficiently large prediction horizon would be identical to the
LQR solution without error. In practice, because the algorithm is not numer-
ically stable for a large prediction horizon, the numerical instability causes
some errors, but the numerical errors can be removed using exponential data
weighting (see Chapter 8). The scenario here is that when the number of real
and complex Kautz functions is equal to n and the pole locations of Kautz
functions are selected to be equal to the eigenvalues of LQR system, there is
no approximation error between the structures of the control trajectories of
the predictive control system and the LQR system.

Example 6.6. Suppose that an augmented state-space model for a continuous-
time system is described by

ẋ(t) = Ax(t) + Bu̇(t) (6.86)

y(t) = Cx(t), (6.87)

where the matrices (A, B, C) are

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 0 0 0 0
−2 −3 0 0 0 0
−1 −2 −5 0 0 0
1 2 3 −5 0 0
1 0 0 0 0 0
0 1 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1
1 1
0 1
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; C =

[
0 0 0 0 1 0
0 0 0 0 0 1

]

.
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Choosing Q = CT C and R =

[
0.2000 0

0 0.2000

]

, design the LQR control sys-

tem first. Using LQR’s optimal poles as the poles of Kautz functions, calculate
the feedback control gain matrix Kmpc via minimisation of the predictive con-
trol cost function J , where

J = ηT Ωη + 2ηT Ψx(ti),

compare the predictive control solution with the LQR solution in terms of
feedback gain and closed-loop pole locations. The prediction horizon Tp = 8.

Solution. We first use MATLAB function for LQR design by calling

[K_lqr,S,E]=lqr(A,B,Q,R);

The eigenvalues of the LQR system contained in the vector E, having the
values

E = [−5.5081 − 3.9681± j0.2918 − 1.1066± j1.0251 − 1.4113],

and the feedback control gain matrix is

Klqr =

[
1.6234 −0.3840 0.0028 0.0073 2.2356 0.0478
−0.5812 0.8302 0.2074 0.4050 −0.0478 2.2356

]

. (6.88)

There are two pairs of complex poles and two real poles. Selecting the poles of
Kautz functions to be identical to E, we construct the state-space descriptions
Ak, Bk, Ck for the Kautz functions using the form proposed in Chapter 5.

The solution of the continuous-time MPC problem leads to MPC feedback
control gain,

Kmpc =

[
1.9444 −0.4572 0.0070 0.0165 2.5149 0.0973
−0.7961 0.8844 0.2086 0.4032 −0.2673 2.2225

]

. (6.89)

The eigenvalues of the closed-loop predictive control system are −5.5081,
−3.9703 ± j0.2865, −1.2938 ± j0.9376, −1.4113. The results show that the
solution using Kautz functions is very close indeed to the LQR solution. The
discrepancies come from using the finite horizon Tp = 8 that is different from
the infinite horizon solution obtained from the steady-state Riccati equation.

Before closing this section, there are a few comments that are related to
the choice between Laguerre and Kautz functions. The justification we often
have for using Kautz functions is that they allow complex poles to be used
in their structures. Thus, they are more effective for modelling a signal that
is oscillatory in nature. Namely, it requires more terms to approximate an
oscillatory signal using a set of Laguerre functions than using a set of Kautz
functions, provided that the set of poles in the Kautz functions is correctly
selected. The correct selection of poles in the Kautz functions is based on the
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a priori knowledge from the LQR solution of the original problem. On the
other hand, it is fair to say that the complex poles lead to a more complicated
formulation of the state-space description of the Kautz functions (Ak, Bk, Ck),
although they are computed systematically.

The key advantage of using Laguerre functions lies in the simplicity of the
algorithm. Without a priori knowledge of the underlying optimal LQR system,
the pair of parameters (p, N) can be treated as tuning parameters for closed-
loop performance. Because the eigenvalues of the closed-loop system are never
intentionally designed to be severely under-damped, the task of modelling the
closed-loop control trajectory is adequate for a set of Laguerre functions that
have identical real poles. The appropriate choice of (Q, R) matrices will ensure
that the closed-loop eigenvalues are suitably damped. Based on the above
reasons, the orthonormal functions used in the design in both continuous-
time and discrete-time cases are mainly Laguerre functions in most practical
applications.

6.8 Summary

This chapter has discussed continuous-time model predictive control using or-
thonormal basis functions. This chapter is the counterpart of the discrete-time
model predictive control, introduced in Chapter 3. The central idea is to model
the derivative of the control signal, whose integral squared value is bounded,
using a set of orthonormal basis functions. As a result, the continuous-time
model predictive control system is designed using a similar framework to the
discrete-time counterpart.

However, the continuous-time predictive control is designed based on a
continuous-time model, which is independent of the sampling interval at the
design stage, even though the implementation is carried out in a digital envi-
ronment. Because the sampling interval is used in the implementation stage,
it permits irregular sampling, and could offer more flexibility and better per-
formance with a fast sampling rate.

Similar to discrete-time MPC, the augmented model is embedded with
integrator(s). Thus, the prediction horizon is limited to a finite value, and is
used as a tuning parameter in the design. Also, the algorithms suffer from a
numerical problem when the prediction horizon is large. This problem will be
discussed and overcome in Chapter 8.

Gawthrop and colleagues proposed pole-placement predictive control systems
(Gawthrop, 2000, Gawthrop and Ronco, 2002), where a set of exponential
functions, chosen corresponding to the underlying poles of the LQR system,
is used to describe the control signal u(t). The distinguishing point between
Gawthrop’s approach and the approach in this section is that the Kautz func-
tions are exponential functions with orthonormality, and the Kautz filters have
the same poles of the LQR system, but their zeros are determined through the
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orthonormal properties. It is the orthonormal properties of the Kautz func-
tions that lead to the guaranteed convergence of predictive control trajectory
to the underlying optimal control trajectory, as the number of terms increases.

The initial idea of using continuous-time Laguerre functions in predictive
control was published in Wang (2000, 2001b).

Problems

6.1. Consider the augmented model for a continuous-time system given by

ẋ(t) =

[
−2 0
1 0

]

x(t) +

[
2
0

]

u̇(t); y(t) =
[
01

]
x(t). (6.90)

Assume that the optimal control signal is to minimize the cost function

J =

∫ ∞

0

(x(t)T Qx(t) + u̇(t)T Ru̇(t))dt, (6.91)

where Q = CT C and R = 1.

1. Using the MATLAB ‘lqr’ function, find the feedback control gain matrix
Klqr.

2. With the initial condition x(0) = [2 3]T , compute the optimal control
u̇(t) = −Klqre

Aclt where Acl = A − BKlqr is the closed-loop system
matrix, and t is specified as t = 0, ∆t, 2∆t, . . . , Tm with ∆t = 0.01 and
Tm = 3.

3. Find the approximation of the control trajectory using a set of Laguerre
functions. Suppose that p = 1. What is the number of terms, N , required
so that the error equation below is satisfied?

∫ Tm

0

(u̇(t) −
N∑

i

cili)
2dt < 0.01. (6.92)

4. Change the initial condition of the state variables to x(0) = [−1 − 6]T ,
and repeat the same procedure. Observe how the coefficients c1, c2, . . . , cN

have changed due to the change of the initial condition.

6.2. Assuming that R = β, the closed-loop poles of the optimal control that
minimizes the cost function (Kailath, 1980)

J =

∫ ∞

0

(y(t)T y(t) + u̇(t)T Ru̇(t))dt, (6.93)

are the roots of the left-half-plane of the solution

D(s2) = 1 +
1

β2
G(s)G(−s) = 0.
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In the modelling of optimal control trajectory, we can use this knowledge to
find the optimal p in the Laguerre network. An approximate approach is to
take the real part of the dominant pole of the LQR system as the −p value.
Find the parameter p for Problem 6.1. What is the number of terms, N ,
required to achieve the accuracy specified in (6.92)?

6.3. A continuous-time system has the transfer function

G(s) =
(1 − 3s)

(s2 + 2 × 0.2s + 1)(1 + 3s)
,

where part of the transfer function 1−3s
1+3s is due to the approximation of the

time delay factor e−3s.

1. Find the augmented state-space model that will be used as the basis for
the design of continuous-time MPC.

2. Choosing Q = CT C, R = 0.1, N = 5, p = 1, and Tp = 6, calculate the Ω
and Ψ matrices in the corresponding cost function

J = ηT Ωη + 2ηT Ψx(ti),

where the computational interval used in obtaining Ω and Ψ is selected
to be a small fraction of 1

p .

3. With given initial condition x(ti) = [1 0 − 1 2]T and set-point signal
r(ti) = 1 at time ti = 10, compute the optimal state response for t =
ti, ti + ∆t, ti + 2∆t, . . . , ti + Tp, where ∆t = 0.01. Present the results
graphically.

4. What are your observations of these responses?

6.4. Continue from Problem 6.3. Experiment with the tuning parameters. The
experiments should include the following combinations.

1. p = 1, R = 1, N = 2, the other parameters being unchanged.
2. p = 1, R = 0.01, N = 8, the other parameters being unchanged.
3. N = 2, R = 0.5, vary p between 0.5 and 5.

Compare the state variables in the above cases with the results obtained from
Problem 6.3. What are your observations on R and N?

6.5. In the context of state-space design, when using Laguerre models, the
state variable information can be constructed directly from plant input vari-
ables. Therefore, an observer is not required in the control system implemen-
tation.

A continuous-time plant is described by the transfer function model

G(s) =
0.001(s− 2)(s − 0.5)

(s + 2)(s + 1)4(s + 0.5)(s + 0.1)(s + 0.001)
. (6.94)
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Fig. 6.6. Illustration of the accuracy of the Laguerre model

By optimizing the scaling factor p, where the optimal p is found to be 0.0222,
this continuous-time transfer function model can be quite accurately approx-
imated with a fourth-order Laguerre model

Gm(s) = c1L1(s) + c2L2(s) + c3L3(s) + c4L4(s),

where the coefficients are

c1 = 0.0439, c2 = −0.0500, c3 = 0.0012, c4 = −0.0084,

and the Laguerre filters are

L1(s) =

√
2p

s + p
; L2(s) =

√
2p(s − p)

(s + p)2
;

L3(s) =

√
2p(s − p)2

(s + p)3
; L4(s) =

√
2p(s − p)3

(s + p)4
.

Figure 6.6 shows the comparison results of the step and frequency responses.
It is seen from this figure that the Laguerre model is indeed an excellent
approximation of the original transfer function model.

1. Show that the matrices (Am, Bm, Cm) for the Laguerre state-space model
are

Am =

⎡

⎢
⎢
⎣

−p 0 0 0
−2p −p 0 0
−2p −2p −p 0
−2p −2p −2p −p

⎤

⎥
⎥
⎦

, Bm =
√

2p

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦

,

and Cm =
[
c1 c2 c3 c4

]
.

2. Design a predictive control system based on this state-space model that
will follow a constant input signal without steady-state error. The design
specifications are: N = 3, p = 0.1, Q = CT C, R = 1, Tp = 300.



248 6 Continuous-time MPC

3. What is the feedback control gain matrix Kmpc? Where are the closed-loop
poles allocated?

4. Because the state variables can be constructed through the derivative
of the control signal, there is no need for the use of an observer in the
implementation of the predictive control system. Simulate the nominal
closed-loop system with a unit step reference signal and sampling interval
∆t = 0.01. Also, perform the same closed-loop simulation using the origi-
nal order model, and compare the closed-loop response with the nominal
closed-loop response.

6.6. A mechanical system is described by a second-order transfer function
model

G(s) =
s − 1

s2 + 0.02s + 1
.

1. Use the MATLAB function ‘tf2ss’ to obtain the state-space representa-
tion for this transfer function model, and find the augmented state-space
model.

2. Design a predictive control system that will have sufficient damping and
follow a step set-point change. Use the left-half-plane roots of D(s2) =

1+ 1
β2

G(s)G(−s)
−s2 to find the value of β that will produce the desired closed-

loop poles that you prefer.
3. This set of closed-loop poles are utilized in the Kautz functions for design

of continuous-time MPC. The prediction horizon Tp is chosen to be 6.
Verify that the closed-loop poles of the predictive control system are close
to the desired closed-loop poles.

4. Implement the predictive control system with an observer, where the ob-
server gain Kob is selected so that the closed-loop observer system has
poles twice the magnitude of the control loop poles.
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Continuous-time MPC with Constraints

7.1 Introduction

This chapter discusses continuous-time model predictive control with con-
straints. Section 7.2 formulates the constraints for the continuous-time predic-
tive control system, including the cases of set-point following and disturbance
rejection of constant signals. Section 7.3 presents the numerical solution of
the constrained control problem with an example, where Hildreth’s quadratic
programming procedure is employed. Because of the nature of the continuous-
time formulation such as fast sampling, there might be computational delays
when the quadratic programming procedure is used in the solution of the real-
time optimization problem. Section 7.4 discusses the real-time implementation
of continuous-time model predictive control in the presence of constraints.

7.2 Formulation of the Constraints

7.2.1 Frequently Used Constraints

There are three types of constraints frequently encountered in continuous-
time applications. The first two types deal with constraints imposed on the
manipulated variables, and the third type of constraint deals with output or
state variable constraints.

Constraints on the Manipulated Variable Rate of Change

In the context of continuous-time control, the rate of change on the control
signal is given by the limit:

lim
∆t→0

∆u(ti) − ∆u(ti − ∆t)

∆t
= u̇(t) |t=ti

. (7.1)
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We often use an approximation of the derivative for a given small ∆t to
calculate the upper and lower limits of the derivative. Assume that for a
single-input system, the upper limit is dumax and the lower limit is dumin.
Then, constraints are specified as

dumin ≤ u̇(t) ≤ dumax. (7.2)

Note that we use ≤, not <, which includes the case of =. This is because
the optimal solution involves the active constraints, and they are the equality
ones. If we have more than one input, say m inputs, then we can specify the
constraints for each input independently. In the multi-input case, suppose that
the constraints are given for the upper limit as

[
dumax

1 dumax
2 . . . dumax

m

]
,

and lower limit as
[
dumin

1 dumin
2 . . . dumin

m

]
.

We can specify each variable with rate of change, as

dumin
1 ≤ u̇1(t) ≤ dumax

1

dumin
2 ≤ u̇2(t) ≤ dumax

2

...

dumin
m ≤ u̇m(t) ≤ dumax

m . (7.3)

The derivative constraints can be used to impose directions of movement on
the manipulated variables. For instance, if u1(t) can only increase, and not
decrease, then we select 0 ≤ u̇1(t) ≤ dumax

1 .

Constraints on the Amplitude of the Manipulated Variable

Suppose that the constraints are given for the upper limit of the control signal
as

[
umax

1 umax
2 . . . umax

m

]
,

and lower limit as
[
umin

1 umin
2 . . . umin

m

]
.

Then, we specify the amplitude of each control signal to satisfy the constraints:

umin
1 ≤ u1(t) ≤ umax

1

umin
2 ≤ u2(t) ≤ umax

2

...

umin
m ≤ um(t) ≤ umax

m . (7.4)
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Output Constraints

We can also specify the operating range for the plant output. For instance,
supposing that the output y(t) has an upper limit ymax and a lower limit
ymin, then the output constraints are specified as

ymin ≤ y(t) ≤ ymax. (7.5)

Output constraints are often used in the regulation case where disturbance
rejection is the primary focus for control. However, because output constraints
could cause a predictive control system to become unstable, we need to be cau-
tious when implementing output constraints. So they are often implemented
as ‘soft’ constraints and a slack variable sv > 0 is added to the constraints,
forming

ymin − sv ≤ y(t) ≤ ymax + sv. (7.6)

This means that they will not become active if the slack variable sv is chosen
large enough.

There are several reasons why we use a slack variable to form ‘soft’ con-
straints for outputs. One is that the output constraints often cause the prob-
lem of conflict constraints in the situation where the input constraints become
activated. Also, when the predictive control system tries to alter the behav-
iour of a plant output, severe nonlinearity appears in the control law, which
may result in closed-loop system oscillation, and system instability. We have
observed this in the discrete-time case when output constraints are enforced
(see Section 2.5.4 and Section 3.8.1). Similarly, this can occur in continuous-
time control. When this happens, we relax the output constraints by selecting
a larger slack variable sv to resolve the problem so that the active constraints
do not become active. Another reason is that the constraints are imposed
based on the model and in the case where there is a model-plant mismatch,
the prediction of the output may not be accurate. The constraints are not
meaningful unless the model used for prediction is reasonably accurate.

Similarly, we can impose constraints on the state variables if they are
measured or estimated. They also need to be in the form of ‘soft’ constraints
for the same reasons as the output case.

7.2.2 Constraints as Part of the Optimal Solution

Having formulated the constraints as part of design requirements, the next
step is to translate them into linear inequalities, and relate them to the orig-
inal model predictive control problem. The key here is to parameterize the
constrained variables using the same orthonormal basis functions as the ones
used in the design of predictive control. Subsequently, we represent the con-
straints in terms of the parameter vector η. Since the predictive control prob-
lem is formulated and solved in the framework of receding horizon control, the
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constraints are taken into consideration frame-by-frame for each moving hori-
zon window. This allows us to vary the constraints at the beginning of each
frame and also gives us the means to solve the constrained control problem
numerically.

Constraints on the Derivative of Control

If we want to impose the constraints on the derivative of the control signal
u̇(t) at time ti, the constraints are expressed as

dumin ≤ u̇(t) ≤ dumax,

where dumin and dumax are the minimum and maximum limits of the deriv-
ative at time t = ti. From the time instance ti, the predictive control scheme
looks into the future, and we need to express the future of the derivative of the
control signal in terms of the Laguerre coefficient vector η. Differing from the
discrete-time case, the future control trajectory in the continuous-time case is
represented by continuous-time Laguerre functions. Thus, in order to obtain
a finite set of linear inequalities for the constraints, the future time within the
optimization window is discretized to obtain the time intervals 0, τ1, τ2, . . .
for which we wish to impose the constraints. The parameters τ1, τ2, . . ., may
not be related to the sampling interval ∆t used for the implementation of the
continuous-time predictive control, however, the first sample τ0 = 0 is always
imposed to ensure that the constraints are satisfied when the receding horizon
principle is applied. The implementation of the constraints on the first sample
is performed as

−L(0)T η ≤ −dumin (7.7)

L(0)T η ≤ dumax. (7.8)

At an arbitrary future time τi, the derivative of the control signal is ex-
pressed as

dumin ≤ u̇(τi) ≤ dumax. (7.9)

Note that
u̇(τi) = L(τi)

T η,

where L(τi) =
[
l1(τi) l2(τi) . . . lN (τi)

]T
is the vector of the Laguerre func-

tions and η is the parameter vector. Thus, the inequalities for the constraints
at the time τi are

−L(τi)
T η ≤ −dumin (7.10)

L(τi)
T η ≤ dumax. (7.11)

The inequalities are readily extended to a multi-input system, as illustrated
by the following example.
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Example 7.1. Consider a continuous-time system with two inputs, u1 and u2.
The constraints for the derivatives of the control signals are specified as

dumin
1 ≤ u̇1(t) ≤ dumax

1 ; dumin
2 ≤ u̇2(t) ≤ dumax

2 , (7.12)

where dumin
1 = 0.5, dumax

1 = 0.8, dumin
2 = −0.3, dumax

1 = 1. Within the
optimization window, the constraints are imposed on the first sample τ0 = 0
and τ1 = 0.2. Assuming p1 = 0.6 and p2 = 1; N1 = N2 = 2, formulate the
inequalities for imposing the constraints in the solution of continuous-time
predictive control.

Solution. In the design of predictive control, the two derivatives of the control
are expressed as

u̇1(τ) = L1(τ)T η1; u̇2(τ) = L2(τ)T η2. (7.13)

Letting η =
[
ηT
1 ηT

2

]T
with η1 and η2 having two coefficients each (N1 =

N2 = 2), the inequalities corresponding to the constraints are

[
L1(0)T oT

2

oT
1 L2(0)T

]

η ≤
[

dumax
1

dumax
2

]

(7.14)

[
L1(τ1)

T oT
2

oT
1 L2(τ1)

T

]

η ≤
[

dumax
1

dumax
2

]

(7.15)

−
[

L1(0)T oT
2

oT
1 L2(0)T

]

η ≤
[
−dumin

1

−dumin
2

]

(7.16)

−
[

L1(τ1)
T oT

2

oT
1 L2(τ1)

T

]

η ≤
[
−dumin

1

−dumin
2

]

, (7.17)

where o1 and o2 are the zero vectors with their dimensions equal to those in
L1(0) and L2(0), respectively. Numerically, these eight linear inequalities are
shown as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0954 1.0954 0 0
0 0 1.4142 1.4142

0.9716 0.7384 0 0
0 0 1.1579 0.6947

−1.0954 −1.0954 0 0
0 0 −1.4142 −1.4142

−0.9716 −0.7384 0 0
0 0 −1.1579 −0.6947

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

η ≤

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.8
1

0.8
1

−0.5
0.3
−0.5
0.3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.18)

MATLAB tutorial: how to formulate the derivative constraints

Tutorial 7.1. The purpose of this tutorial is to show how to formulate the
derivative constraints using MATLAB.
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Step by Step

1. Create a new file called Mder.m.
2. We only impose constraints on the first sample τ0 = 0 and a sample at τ

in the future time. The program can be easily modified to include a larger
number of constraints within the optimization window. The parameters p
and N are the parameters for the Laguerre functions; nin is the number of
inputs and τ is the future sample of the constraints to be imposed. The first
part of the program will formulate the constraints for the initial sample,
so L(0) will be generated and used. Because it is a multi-input system,
attention is paid to the dimension of the matrix.

3. Enter the following program into the file:

function [M_dv,Lzerot]=Mder(p,N,n_in,tau)

N_pa=sum(N);

k0=1;

[Al,L0]=lagc(p(k0),N(k0));

L_t=zeros(n_in,N_pa);

L_t(1,1:N(1))=L0’;

cc=N(1);

for k0=2:n_in;

[Al,L0]=lagc(p(k0),N(k0));

L_t(k0,cc+1:cc+N(k0))=L0’;

cc=cc+N(k0);

end

4. The second part of the program is to formulate the constraints for the
second sample at time τ .

5. Continue entering the following program into the file:

Lzerot=L_t;

k0=1;

[Al,L0]=lagc(p(k0),N(k0));

L1=expm(Al*tau)*L0;

L_t1=zeros(n_in,N_pa);

L_t1(1,1:N(1))=L1’;

cc=N(1);

for k0=2:n_in;

[Al,L0]=lagc(p(k0),N(k0));

L1=expm(Al*tau)*L0;

L_t1(k0,cc+1:cc+N(k0))=L1’;

cc=cc+N(k0);

end

M_dv=[L_t1];

6. Test the function with the following parameters

p=[0.2 1];
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N=[2 3];

n_in=2;

tau=0.3;

7. The results are

M_dv= 0.5956 0.5241 0 0 0

0 0 0.7079 0.5805 0.4645

Lzerot= 0.6325 0.6325 0 0 0

0 0 0.7746 0.7746 0.7746

Constraints on the Amplitude of Control

As for the control signal, assuming that ∆t is the sampling interval for imple-
mentation, the first sample of the control signal at the optimization window,
is calculated as

u(ti) = u(ti − ∆t) + L(0)T η∆t, (7.19)

where L(0)T η is the derivative of control at the beginning of the optimization
window. This leads to the constraints for the control signal at the first sample
time of the window as

umin − u(ti − ∆t) ≤ L(0)T η∆t ≤ umax − u(ti − ∆t), (7.20)

which is in agreement with how the control is calculated using the velocity
form. At the arbitrary time τi, we have

u(τi) = u(ti) +

∫ τi

0

u̇(γ)dγ (7.21)

= u(ti) +

∫ τi

0

L(γ)T ηdγ (7.22)

= u(ti) + (L(τi)
T − L(0)T )A−T

p η. (7.23)

With the information of u(ti − ∆t), the future control signal at time τi (�= 0)
is expressed as

u(τi) = u(ti − ∆t) +

Cu
︷ ︸︸ ︷

(L(0)T ∆t + L(τi)
T A−T

p − L(0)T A−T
p ) η. (7.24)

Therefore, the inequality constraints are formulated as

umin − u(ti − ∆t) ≤ Cuη ≤ umax − u(ti − ∆t), (7.25)

where umin and umax are the lower and upper limits of control signal u.
Note that the choice of the set of future time instants plays an impor-

tant role in the numerical solution of the constrained control problem. In the
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continuous-time case, the choice of τ1, τ2, . . .,τm needs to be considered care-
fully. If they are selected too close to each other, then the constraints will be
approximately equal to each other, which leads to redundancy among them.
An appropriate choice will reduce the number of constraints.

Tutorial 7.2. This tutorial shows how to produce the data matrix Cu for a
multi-input system.

1. Create a new file called Mucon.m.
2. We only impose constraints on the first sample τ0 = 0 and a sample at τ

in the future time. The program can be easily modified to include a larger
number of constraints within the optimization window. The parameters p
and N are the parameters for the Laguerre functions; nin is the number of
inputs and τ is the future time of the constraints to be imposed. The first
part of the program will formulate the constraints for the initial sample,
so L(0)∆t will be generated and used. Because it is a multi-input system,
attention is paid to the dimension of the matrix.

3. Enter the following program into the file:

function [Mu,Mu1]=Mucon(p,N,n_in,delta_t,tau)

%function for generating matrix M for

%the constraints on the control signal

%constraints are imposed on the zero time and tau time

%delta-t is the sampling interval

%Mu is for constraints to be imposed on the zero sample

%Mu1 is for constraints to be imposed on tau time

N_pa=sum(N);

k0=1;

[Al,L0]=lagc(p(k0),N(k0));

L_t=zeros(n_in,N_pa);

L_t(1,1:N(1))=L0’;

cc=N(1);

for k0=2:n_in;

[Al,L0]=lagc(p(k0),N(k0));

L_t(k0,cc+1:cc+N(k0))=L0’;

cc=cc+N(k0);

end

% constraints on second sample

k0=1;

[Al,L0]=lagc(p(k0),N(k0));

L1=expm(Al*tau)*L0;

L_t1=zeros(n_in,N_pa);

L_t1(1,1:N(1))=(L1’-L0’)*inv(Al’)+L0’*delta_t;

cc=N(1);

Step by Step
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for k0=2:n_in;

[Al,L0]=lagc(p(k0),N(k0));

L1=expm(Al*tau)*L0;

L_t1(k0,cc+1:cc+N(k0))=(L1’-L0’)*inv(Al’)+L0’*delta_t;

cc=cc+N(k0);

end

Mu=[L_t*delta_t];

Mu1=[L_t1];

4. Test the function using the following parameters:

p=[1 2];

N=[3 2];

n_in=2;

tau=1;

delta_t=0.1;

5. The results are

Mu= 0.1414 0.1414 0.1414 0 0

0 0 0 0.2000 0.2000

Mu1=1.0354 0.2880 -0.0051 0 0

0 0 0 1.0647 -0.1233

7.3 Numerical Solutions for the Constrained Control

Problem

Now, the predictive control problem with hard constraints imposed in the
design becomes the problem of finding the optimal solution of the quadratic
cost function:

J = ηT Ωη + 2ηT Ψx(ti)

+ x(ti)
T

∫ Tp

0

eAT τQeAτdτx(ti), (7.26)

where Ω and Ψ are given as

Ω =

∫ Tp

0

φ(τ)Qφ(τ)T dτ + RL (7.27)

Ψ =

∫ Tp

0

φ(τ)QeAτ dτ (7.28)

φ(τ)T =

∫ τ

0

eA(τ−γ)BL(γ)T dγ, (7.29)

subject to the linear inequality constraints that are formed from the previous
analysis. When set-point following is required in the predictive control, if it
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is a piece-wise constant signal, the last block element corresponding to the
output y will be the error signal between the actual and desired signals of the
output.

Finding the numerical solution to the continuous-time predictive control
with constraints is concerned with the problems of constrained minimization
where the constraint functions are linear and the objective function is a posi-
tive definite quadratic function. Similar to the discrete-time case, because the
constraint functions are expressed in the form of linear inequalities, in gen-
eral, the solutions involve quadratic programming procedures as outlined in
Chapter 2.

Tutorial 7.3. In this tutorial, we will produce a MATLAB function that per-
forms constrained control for a continuous-time system. The program is writ-
ten for a MIMO system, and we only impose constraints on the first sample
of the control signals (both derivative and amplitude). sp is the set-point sig-
nal, which has the same number of rows as the output and number of columns
greater than or equal to the simulation time Nsim. The plant model is described
by (Ap, Bp, Cp), and the augmented model is described by (A, B, C). Lzerot is
the data matrix for reconstructing the derivative of the control from Laguerre
functions. M is the data matrix for the inequality constraints (Mη ≤ γ) where
η is the Laguerre parameter vector. h is the sampling interval. The initial con-
ditions of the plant are specified by the data vectors xm, u, y.

Step by Step

1. Create a new file called cssimucon.m. We will set the initial conditions
and the data vector γ. Enter the following program into the file:

function [u1,y1,udot1,t]=

cssimucon(xm,u,y,sp,Ap,Bp,Cp,A,B,C,N_sim,Omega,Psi,

K_ob,Lzerot,h,M,u_max,u_min,Deltau_max,Deltau_min);

up=u;

gamma=[(u_max-up);(-u_min+up);Deltau_max;-Deltau_min];

[m1,n1]=size(Cp);

[n1,n_in]=size(Bp);

X_hat=zeros(n1+m1,1);

2. In order to incorporate the set-point signal in the simulation, we define a
vector Xsp, which has the same dimension as the observed state with all
zero elements except the last m1 rows as the set-point signal. The state
feedback variable Xf is defined and the constrained control problem is solved
using the MATLAB function QPhild.m (see Section 2.4.4 in Chapter 2).
With the optimized udot (u̇), the control and observer state are updated.
Continue entering the following program into the file:

for kk=1:N_sim;

Xsp=[zeros(n1,1);sp(:,kk)];
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Xf=X_hat-Xsp;

eta=QPhild(Omega,Psi*Xf,M,gamma);

udot=Lzerot*eta;

u=u+udot*h;

udot1(1:n_in,kk)=udot;

u1(1:n_in,kk)=u;

y1(1:m1,kk)=y;

X_hat=X_hat+(A*X_hat+K_ob*(y-C*X_hat))*h+B*udot*h;

3. We update the plant state and output in the simulation. (If the predictive
control were implemented on a real plant, then the control signal would
be sent to the actuator and the output y would be the signal sensed in the
plant operation.) Continue entering the following program into the file:

xm=xm+(Ap*xm+Bp*u)*h;

y=Cp*xm;

up=u;

gamma=[(u_max-up);(-u_min+up);Deltau_max;-Deltau_min];

end

t=0:h:(N_sim-1)*h;

4. Test your program using the data from Tutorial 7.4.

Tutorial 7.4. In this tutorial, we will present a case study of continuous-time
model predictive control with constraints based on an industrial process.

A sugar mill model was presented in Goodwin et al. (2000) for a case study
of control system design. In the study, a single stage of a milling train was
described by the following continuous-time transfer function model:

[
y1(s)
y2(s)

]

=

[
g11(s) g12(s)
g21(s) g22(s)

] [
u1(s)
u2(s)

]

, (7.30)

where the output y1 is the mill torque, and y2 is the buffer chute height; the
input u1 is the flap position and input u2 is the turbine speed set-point. The
four transfer functions are given as

g11(s) =
−5

25s + 1
; g12(s) =

s2 − 0.005s− 0.005

s(s + 1)
;

g21(s) =
1

25s + 1
; g22(s) =

−0.0023

s
.

This process has significant multivariable interaction, nonminimum-phase be-
haviour. Also, the plant contains integrators.

The design specifications for the model predictive control are Q = CT C,
R = I, Tp = 100, N1 = N2 = 6, p1 = p2 = 0.6; and the observer design
specifications are Q1 = I, and R1 = 0.2I. A sampling interval ∆t = 0.03
(sec) is suggested for this continuous-time system simulation.
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The constraints are imposed on the derivatives and amplitudes of both u1

and u2, and we only implement them on the first sample of the signals. The
simulation scenario assumes that with zero initial conditions, the output y1

performs a positive unit set-point change, and output y2 performs a negative
unit set-point change, while the constraints are specified as, −1 ≤ u1 ≤ 0;
−3 ≤ u2 ≤ 3; −0.4 ≤ u̇1; −0.4 ≤ u̇2 ≤ 4.

Step by Step

1. When the turbine speed set-point u2 changes, the effect on the mill torque is
almost instantaneous, and this is reflected on the model by having g12(s) as
a proper transfer function (both numerator and denominator are second-
order s-polynomials). The structure of this proper transfer function causes
a problem in the design of predictive control, as we have assumed that
there is no direct connection between the input and output to allow the
computation of receding horizon control law. However, by adding a filter
with a very small time constant to g12(s), we obtain the modified transfer
function as:

g12(s) =
s2 − 0.005s− 0.005

s(s + 1)(0.1s + 1)
.

The modified g12(s) is a strictly proper transfer function, and there is no
direct link between u2 and y1.

2. Create a new MATLAB program called sugarmill.m. We will first define
the plant and create the augmented state-space model. Enter the following
program into the file:

num11=-1;

den11=[25 1];

num12=[1 -0.005 -0.005];

den12=conv([1 0],[1 1]);

den12=conv(den12,[0.1 1]);

num21=1;

den21=[25 1];

num22=-0.0023;

den22=[1 0];

Gs=tf({num11 num12; num21 num22},

{den11 den12; den21 den22});

Gs1=ss(Gs,’min’);

[Ap,Bp,Cp,Dp]=ssdata(Gs1);

[m1,n1]=size(Cp);

[n1,n_in]=size(Bp);

A=zeros(n1+m1,n1+m1);

A(1:n1,1:n1)=Ap;

A(n1+1:n1+m1,1:n1)=Cp;

B=zeros(n1+m1,n_in);
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B(1:n1,:)=Bp;

C=zeros(m1,n1+m1);

C(:,n1+1:n1+m1)=eye(m1,m1);

3. We enter the design parameters and compute Ω and Ψ . Continue entering
the following program into the file:

n=n1+m1;

Q=C’*C;

R=1*eye(2,2);

p1=0.6;

p2=0.6;

N1=6;

N2=6;

Tp1=100;

Tp2=100;

p=[p1 p2];

N=[N1 N2];

Tp=[Tp1 Tp2];

[Omega,Psi]=cmpc(A,B,p,N,Tp,Q,R);

4. We design the observer. Continue entering the following program into the
file:

Q1=eye(n,n);

R1=0.2*eye(m1,m1);

K_ob=lqr(A’,C’,Q1,R1)’;

5. The initial conditions and the set-point signals are specified. Pay atten-
tion to the data structure of the set-point signal. Continue entering the
following program into the file:

xm=zeros(n1,1);

u=zeros(n_in,1);

y=zeros(m1,1);

h=0.03;

N_sim=8*1400;

sp1=ones(1,N_sim);

sp2=[zeros(1,N_sim/2) -ones(1,N_sim/2)];

sp=[sp1;sp2]; %set-point signal

6. Define the constraints by calling ‘Mder.m’ and ‘Mucon.m’. Since we only
impose constraints on the first sample, the second sample of constraints is
neglected (we choose τ = 0.1 as an arbitrary choice). Continue entering
the following program into the file:

[Md,Lzerot]=Mder(p,N,n_in,0.1);

[Mu,Mu1]=Mucon(p,N,n_in,h,0.1);

M=[Mu;-Mu;Lzerot;-Lzerot];
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u_max=[0;3];

u_min=[-1;-3];

Deltau_max=[0.4;0.4];

Deltau_min=[-0.4;-0.4];

7. The constrained control simulation is performed using the function ‘cssimu-
con.m’. Continue entering the following program into the file:

[u1,y1,udot1,t]=cssimucon(xm,u,y,sp,Ap,Bp,Cp,A,B,C,N_sim,

Omega,Psi,K_ob,Lzerot,h,M,u_max,u_min,Deltau_max,

Deltau_min);

Figure 7.1 shows the constrained control results for this example. There are
eight constraints in the case. So it is difficult to take a guess at the active con-
straints, and it is necessary to identify the active constraints in the optimiza-
tion. We have done so by using Hildreth’s quadratic programming algorithm.
If we carefully examine the number of iterations required to identify the active
constraints in the quadratic programming, then we find that the convergence
rate of the Lagrange multipliers is very fast. In fact, it takes about two iter-
ations to achieve the convergence, and this is due to the fact that the active
constraints are linearly independent.

It is seen from Figure 7.1 that all the constraints are satisfied. By com-
paring with the unconstrained case, we see in Figure 7.1 that the response
speed of the constrained control system is slightly slower. The Laguerre pa-
rameters p1, p2, N1 and N2 could be used as performance related tuning
parameters. For instance, in this example, when we choose p1 = p2 = 0.1 and
N1 = N2 = 3, the closed-loop control results are different from the previous
case (see Figure 7.2). In particular, the overshoot and undershoot in y1 are
reduced, and also the constraints on the control signal u2 become active in
shorter time intervals.

7.4 Real-time Implementation of Continuous-time MPC

The essence of continuous-time model predictive control is to minimize the
cost function:

J = ηT Ωη + 2ηT Ψx(ti) + constant,

subject to the set of inequality constraints:

Mη ≤ γ.

This formulation in the continuous-time case is fundamentally identical to the
one in the discrete-time case. One of the key advantages in using continuous-
time predictive control instead of discrete-time predictive control is that the
design model and the algorithm are robust in a fast sampling environment.
The discrete-time models and predictive control algorithms could encounter
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Fig. 7.1. Comparison of CMPC with and without constraints. Key: solid-line, with-
out constraints; darker-solid-line, with constraints (−1 ≤ u1 ≤ 0; −3 ≤ u2 ≤ 3;
−0.4 ≤ u̇1; −0.4 ≤ u̇2 ≤ 4)

problems when the system is under a fast sampling condition. Another advan-
tage is that because the design is performed in the continuous-time domain,
the discretization is carried out in the implementation stage and the frame-
work permits the control of an irregular sampled-data system.

Without imposing constraints, the computational requirement of minimiz-
ing the objective function J is negligible because the analytical expression is
presented for the optimal solution with Ω and Ψ computed off-line. There-
fore, implementing a continuous-time predictive control without constraints
is not a challenging task. Also, if it is a single-input and single-output system,
then the closed-form solution of the constrained control problem, introduced
for discrete-time systems in Chapter 2, can be adapted to the applications
in continuous-time. However, when introducing constraints for a multi-input
and multi-output system, it is often necessary to use quadratic programming
procedures to find the active constraints because the violated constraints may
not be the active constraints. An optimal combination of the input signals
needs to be found through the iterative search procedure (see Chapter 2).
Therefore, there is a larger computational demand for finding the optimal
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Fig. 7.2. Comparison of CMPC with different performance parameters. Key: solid-
line (p1 = p2 = 0.6,N1 = N2 = 6); darker-solid-line (p1 = p2 = 0.1,N1 = N2 = 3);
(−1 ≤ u1 ≤ 0; −3 ≤ u2 ≤ 3; −0.4 ≤ u̇1; −0.4 ≤ u̇2 ≤ 4)

solution of the constrained control problem for a MIMO system. Since the
optimal solution cannot be found instantaneously, a computational delay will
occur in the implementation of a continuous-time predictive control. If the
computational rate is faster than the sampling rate in implementation, then
the computational delay is not an issue. However, if the computational rate
is slower than the sampling rate, then the computational delay must be ad-
dressed carefully.

Understanding the Problem of Computational Delay

As we understand, at time ti the receding horizon control is performed within
the optimization window 0 ≤ τ ≤ Tp. Closed-loop feedback is introduced
through the initial condition of the state variable x(ti). Or in the general case,
x(ti) is replaced by its estimate x̂(ti) through an observer. The continuous-
time observer is represented by the observer equation

dx̂(t)

dt
= Ax̂(t) + Bu̇(t) + Kob(y(t) − Cx̂(t)).

With approximation for sufficiently small ∆t, at time ti

dx̂(t)

dt
≈ x̂(ti + ∆t) − x̂(ti)

∆t
.

Therefore, the estimated future state variable x̂(ti + ∆t) is calculated based
on current values of x̂(ti), u̇(ti) and y(ti), using the formula,

x̂(ti + ∆t) = (Ax̂(ti) + Bu̇(ti) + Kob(y(ti) − Cx̂(ti)))∆t + x̂(ti). (7.31)

With the estimated future state variable x̂(ti +∆t) and the set-point informa-
tion r(ti + ∆t) as the new initial condition at ti + ∆t, the predictive control
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algorithm optimizes J subject to the set of linear inequality constraints to find
the new u̇(ti + ∆t). Therefore, the optimization is required to be completed
within the allocated ∆t time to avoid any computational delay. If the com-
putational algorithm is sufficiently fast to produce u̇(ti + ∆t) on time when
the real-time clock ticks at ti + ∆t, then there will not be a computational
delay. However, if the computational speed is not matched with the fast sam-
pling rate, then u̇(ti + ∆t) is produced with the time ∆t + ∆c, and ∆c is the
computational delay.

Strategy to Deal with Computational Delay

When computational delay occurs, the implementation clock time ticks at
ti +∆t and the optimal coefficient vector η is not available. To distinguish the
difference, let us call ηc the vector η computed using the information x̂(ti+∆t)
and r(ti +∆t), and ηp the vector η computed using the information x̂(ti) and
r(ti). A common strategy is to replace the optimal control derivative

u̇(ti + ∆t) = L(0)T ηc, (7.32)

where ηc is still being computed, by the extended optimal control derivative
from the previously computed ηp with the expression:

u̇(ti + ∆t) = L(∆t)T ηp. (7.33)

This is not an optimal solution, but a sub-optimal solution. The difference is
that u̇(ti + ∆t) used the estimated state variable x̂(ti), instead of x̂(ti + ∆t).
However, we argue that there are two scenarios related to this sub-optimal
solution.

The first scenario is the case where there is no external set-point change or
disturbance occurring at time ti or during the time from ti to ti+∆t. Another
important underlying assumption is that the model (A, B, C) is an accurate
representation of the dynamic system. This statement actually means that the
prediction generated by the model is sufficiently close to the actual output. If
this happens, then

x̂(ti + ∆t) = (Ax̂(ti) + Bu̇(ti))∆t + x̂(ti); r(ti + ∆t) = r(ti). (7.34)

The predictive control has taken this prediction into account in its design,
thus the optimal control at time ti + ∆t is identical to L(∆t)T ηp and there
is no compromise in the solution. We have demonstrated similar cases in the
examples presented in the discrete-time case (see Chapters 3 and 4).

The second scenario is the case where there are external set-point changes
or disturbances occurring at time ti or during the time from ti to ti + ∆t.
Or the predicted response from the model is different from the actual system
response. Then, the information presented in (7.34) is no longer accurate.
There will be a difference between the solutions obtained from L(0)T ηc and
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from L(∆t)T ηp. The changes in the external signals could not be contained
in the information L(∆t)T ηp. Thus, the computational delay appears as a
time delay in the measurement. We emphasize that if computational delay
is anticipated, then the constraints need to be imposed on the time intervals
where the extended control trajectory will be used. For instance, if we prepare
to extend the solution at ∆t, then the constraints will be imposed at least at
0 and ∆t so to ensure that they are satisfied when computational delay occurs
and ηp is used to replace the unavailable optimal solution ηc.

7.5 Summary

This chapter has discussed continuous-time predictive control with con-
straints. Similar to the discrete-time counterpart, the constraints in the
continuous-time MPC are also placed on the current and future values of
the control signal, and the derivative of the control signal. In addition, if
desired, constraints on the future state variable and plant output are intro-
duced. The constrained control problem in continuous time is formulated as
a minimization of a quadratic cost function subject to linear inequality con-
straints, which is a quadratic programming problem. Similar to the discrete-
time case, the coefficients of the Laguerre functions are the decision variables.
In the solution, Hildreth’s quadratic programming procedure is used to iden-
tify the active constraints, and subsequently the optimal decision variable η
is found. When the set of active constraints can be correctly guessed, the de-
cision variable η is obtained using the closed-form solution (see Chapter 2).
This is particularly useful in the continuous-time case, as a fast sampling rate
is often used to take advantage of the continuous-time setting.

One of the key differences between continuous-time and discrete-time MPC
systems is that the orthonormal basis functions are in the continuous-time
domain. Therefore, when introducing constraints on the future trajectories, a
set of fixed nodes are chosen as the discretized time intervals for the constraints
to be enforced upon. If the nodes were selected to be too close to each other,
then constraints could be redundant. Therefore, a sensible choice needs to be
made from application to application. In any case, the constraints are always
enforced at the current time, and perhaps, one or two nodes are sufficient for
the future time.

When the sampling rate in the implementation is faster than the compu-
tational rate dictated by the quadratic programming procedure, a computa-
tional delay occurs. A natural way to deal with the computational delay is
to extend the optimal control trajectory obtained from previous computation
to the current sample time, through the Laguerre functions and the previous
optimal Laguerre coefficients. Like any other predictor-based approach, this
strategy will work well if the modelling error between the plant and the model
is small. An application of this approach to an inverted pendulum was pre-
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sented in Gawthrop and Wang (2006). The approach was termed intermittent
model predictive control in Gawthrop and Wang (2007).

Problems

7.1. A DC motor with speed as output variable and voltage as input variable
has a first-order transfer function model given by

G(s) =
1

s + 1

Design a continuous-time predictive controller with constraints for this DC
motor. Assuming zero initial conditions, the output response is required to
follow a positive and a negative step input change where the constraints are
specified as

−0.5 ≤ u̇(t) ≤ 0.5;−1 ≤ u(t) ≤ 1.

The other performance parameters are Q = CT C, R = 1, N = 2, p = 0.5,
and the prediction horizon Tp = 3. Sampling interval ∆t = 0.01.

1. Impose the constraints on the first sample of the signal and solve the
constrained control problem analytically.

2. Simulate the constrained MPC system with zero initial conditions, and
a positive unit step reference change at t = 0 and a negative unit step
change at t = 5.

3. Show that without constraints the control signal can be written as com-
ponents of proportional and integral controls,

u(t) = k1

∫

(r(τ) − y(τ))dτ − k2y(t),

where k1 and k2 are the gains of the predictive control system. Present
schematically the configuration of the predictive control system, which is
identical to a traditional proportional integral (PI) control system (see
Astrom and Hagglund, 1995, Johnson and Moradi, 2005).

7.2. Assume that a second-order system has the continuous-time transfer
function

G(s) =
b0

s2 + a1s + a0
.

Verify that the augmented state-space model using x1(t) = ÿ(t), x2(t) = ẏ(t)
and x3(t) = y(t) has the following form:

ẋ(t) =

⎡

⎣

−a1 −a0 0
1 0 0
0 1 0

⎤

⎦x(t) +

⎡

⎣

b0

0
0

⎤

⎦ u̇(t)

y(t) =
[
0 0 1

]
. (7.35)
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1. Show that a continuous-time MPC based on this model structure has the
control signal in the form:

u(t) = k1

∫

(r(τ) − y(τ))dτ − k2y(t) − k3ẏ(t),

which is equivalent to a proportional integral derivative (PID) controller.
2. Suppose that a1 = 1, a0 = 0.1 and b0 = 1. Find the predictive controller

parameters for Q = CT C, R = 0.1, p = 0.5, N = 2, and Tp = 20.
3. Implement this predictive control system with constraints in a closed-

form solution, assuming sampling interval ∆t = 0.01, step reference input
signal, zero initial conditions. The constraints are

−0.1 ≤ u̇(t) ≤ 0.1; − 0.1 ≤ u(t) ≤ 0.1.

4. In the implementation of a PID controller (see Astrom and Hagglund,
1995), a derivative filter is often needed because of the presence of mea-
surement noise. Similarly, you could use a derivative filter in the imple-
mentation here by using the relationship

k3sY (s) ≈ k3s

βk3s + 1
Y (s),

where k3 is the state feedback gain corresponding to ÿ(t), and β is 0.1 or
less. Use of an observer is another option in the presence of measurement
noise. Positioning observer poles at −2,−2.1 and −2.2, implement the
predictive control system. Compare the implementations in the presence
of measurement noise that is simulated using a sequence of zero-mean
white noise with standard deviation of 0.1.

7.3. A distillation column is described by the transfer function model

G(s) =

⎡

⎢
⎢
⎣

0.66e−2.6s

6.7s+1
−0.51e−3s

8s+1
−0.3e−s

10s+1
1.5e−8s

4.1s+1
−5e−2s

5.4s+1
−1.3e−2s

9s+1
−0.3e−11s

8s+1
0.1e−10.8s

9s+1
0.9e−2s

50s+1

⎤

⎥
⎥
⎦

, (7.36)

where typically the outputs are product concentration and product purity,
and the inputs are the feed flow, temperature and vaporization rate. A case
study of a distillation train was given in (Wang and Cluett, 2000) for the
purpose of mathematical modelling.

1. Approximate the time delays in the transfer function model using the

second-order Pade approximation where e−ds = (ds−4)2

(ds+4)2 , and find a min-

imal state-space realization (Am, Bm, Cm) of the transfer function model
using MATLAB functions ‘tf’ and ‘ss’ (see e.g., Tutorial 3.3).
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2. Design a continuous-time MPC system that will reject a constant input
disturbance and follow a constant setpoint change without steady-state
errors. The performance specifications are Q = CT C, R = 0.2I where I is
the 3× 3 identity matrix, Tp = 50. N1 = 3, N2 = 3 and N3 = 3. p1 = 1/6,
p2 = 1/5, p3 = 1/40, which are close to the dominant poles of the diagonal
elements in G(s). The Laguerre scaling parameters should not be equal
to the poles in the model as the inverse of matrix A + pI is required in
the solution of convolution integral equations (see section 6.3.3).

3. An observer is required in the implementation, where the observer gain
Kob is found by using the MATLAB lqr function with the pair AT , CT

and the weight matrices are Qob = I and Rob = 0.1I.
4. Simulate the nominal closed-loop performance without constraints, with

zero initial conditions and a unit step reference input for y2 at time 0 and
a unit input disturbance added to u1(t) at time 60. The reference signals
for y1 and y3 are zero. The sampling interval for implementation is 0.01.

5. It is relatively easy to build a SIMULINK simulation program when the
plant has time delays. Writing the predictive control system as state feed-
back control u̇(t) = −Kmpcx(t), without constraints, simulate the predic-
tive control system with the plant model that contains the time delays and
compare the closed-loop responses with the nominal closed-loop responses.

7.4. Continue from Problem 7.3, where we will design and implement con-
strained MPC for the distillation column. The objective of the constraints is
to maintain plant input and output within a desired operating region when
performing set-point changes and rejecting disturbances originating from plant
operations such as upstream feed flow changes. Assuming zero steady state
for the system, introduce unit step change at y2(t) at time t = 0, then in-
troduce unit step input disturbance at u1(t) at time t = 30. The operational
constraints are specified as

−1.3 ≤ u1 ≤ 0, − 0.3 ≤ u2 ≤ 0.1, − 0.4 ≤ u3 ≤ 0.1

−0.1 ≤ u̇1(t) ≤ 0.05, − 0.1 ≤ u̇2(t) ≤ 0.1, − 0.05 ≤ u̇3(t) ≤ 0.05.

Realize the constrained control using Hildreth’s quadratic programming pro-
cedure. Impose the constraints on the first sample of the control signals in
the first set of simulation experiments; then impose constraints on the first
sample, τ0 = 0 and the second sample τ1 = 1.

7.5. Continue from Problem 7.4. The sampling interval for implementation
of the constrained control is 0.01 in the simulation study. In the actual real-
time implementation, the solution of the quadratic programming problem
may require a longer computational time. Assume that the computational
time on average is about 20 times the ∆t used in the simulation. Revise the
constrained predictive control scheme to cope with this computational delay
using the technique introduced in Section 7.4. Compare the results obtained
from using this predictive control to the results obtained in Problem 7.4.
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Continuous-time MPC with Prescribed Degree

of Stability

8.1 Introduction

This chapter will propose a set of continuous-time model predictive control
algorithms that are numerically stable and have a prescribed degree of stabil-
ity. Section 8.2 begins with an example of the control of an unstable system,
demonstrating that when the prediction horizon increases, the original ap-
proaches to continuous-time MPC design described in Chapter 6 will lead to
an ill-conditioned Hessian matrix. This problem is caused by the open-loop
prediction using the unstable model in addition to the embedded integrator(s)
in the system matrix A for integral action. In Section 8.3, we show a strategy
to overcome this by using a stable matrix A for the design, which is achieved by
using an exponential weight in the cost function. This essentially transforms
the original state and derivative of the control variables into exponentially
weighted variables for the optimization procedure. In Section 8.4, we move on
to the next step that produces a model predictive control system with infinite
prediction horizon with asymptotic stability. With a slight modification on
the weight matrices, a prescribed degree of stability can be achieved in the
design of model predictive control (see Section 8.5). The final section discusses
how constraints are introduced in the design (see Section 8.6). The stability
results in this chapter are all based on the assumption of a sufficiently large
prediction horizon Tp used in the design.

8.2 Motivating Example

This section examines an example based on the design algorithms introduced
in Chapter 6. It emphasizes that because the design model is unstable, the
algorithms are numerically ill-conditioned for a large prediction horizon Tp.
This problem is particularly severe for systems that contain unstable poles,
as illustrated in the example below.
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Example 8.1. A dynamic system is described by the state-space model given
as

ẋ(t) =

⎡

⎢
⎢
⎣

0 1 0 0

0 α1

V
β1

V 0
0 0 −a a
0 0 0 0

⎤

⎥
⎥
⎦

x(t) +

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦

u(t)

y(t) =
[
1 0 0 0

]
x(t), (8.1)

where α1 = 10.2, β1 = 0.32,a = 72 and V = 60. This system has four open-
loop eigenvalues as

[
0 0 0.17 −72

]
.

Design a continuous-time model predictive control for this system using the
algorithm presented in Chapter 6. The design parameters are p = 0.8, N = 4,
and R = 0.1, however, the prediction horizon Tp should be used as a tuning
parameter. The design objective is for reference following of a step input signal.

Solution. We change the prediction horizon Tp and observe what happens
with respect to the closed-loop performance and numerical condition of the
algorithm.

Case A. The case of a short prediction horizon Tp = 10 is examined. With
this choice the closed-loop control system is unstable, which is indicated by
the location of the closed-loop eigenvalues

[
−71.99 −2.883 0.0554± j0.166 −0.088

]
,

where the pair of complex poles are on the right half of the complex plane.
The condition number of the Hessian matrix is 146.68, which is irrelevant be-
cause the predictive control system is unstable.

Case B. The prediction horizon Tp is selected to be 13, which is increased on
the one used in Case A. The Hessian matrix is

Ω =

⎡

⎢
⎢
⎣

85.9886 −57.8910 37.0031 −21.7936
−57.8910 47.8025 −35.1036 21.6875
37.0031 −35.1036 31.2090 −21.6632
−21.7936 21.6875 −21.6632 18.8841

⎤

⎥
⎥
⎦

.

The closed-loop control system is stable, which is seen from the location of
the closed-loop eigenvalues

[
−71.99 −2.7355 −0.0334± j0.1568 −0.1394

]
.

The state feedback control gain obtained from the predictive control is

Kmpc =
[
18.6 212.24 0.0164 3.11 1.837

]
.
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Fig. 8.1. Comparison of closed-loop responses for Case B (solid-line) and Case C
(darker-solid-line)

For this choice of prediction horizon, the condition number for the Hessian
matrix is 240.8.

Case C. The case of long prediction horizon Tp is examined. Let us choose
Tp = 50. The Hessian matrix is

Ω = 108 ×

⎡

⎢
⎢
⎣

1.4102 −0.9097 0.5854 −0.3754
−0.9097 0.5869 −0.3776 0.2422
0.5854 −0.3776 0.2430 −0.1558
−0.3754 0.2422 −0.1558 0.0999

⎤

⎥
⎥
⎦

.

The closed-loop control system is stable with the location of the closed-loop
eigenvalues as

[
−71.99 −2.6016 −0.0412± j0.0737 −0.2616

]
,

and the state feedback control gain obtained from the predictive control
scheme is

Kmpc =
[
14.355 273.33 0.0208 3.115 0.909

]
.

Figure 8.1 shows the comparison results of the closed- loop responses for
Case B and Case C. It is seen that the closed-loop output response from
Case C is less oscillatory than the one from Case B. Although the closed-loop
response is satisfactory when Tp = 50, the condition number for the Hessian
has increased from 240.8 to 3.11 × 108. It is clear that the predictive control
scheme is numerically ill-conditioned for Case C.

This example shows that the predictive control algorithm is sensitive to the
choice of prediction horizon. If the prediction horizon is short, the closed-loop
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control system could become unstable; however, if the prediction horizon is
long, then the algorithm would become numerically ill-conditioned. Despite
these sensitivities in the predictive control algorithms, they have still gained
acceptance by the process industry. This is mainly due to their simplicity and
easy-to-implement features.

For the rest of the chapter, the continuous-time predictive control algo-
rithms presented in Chapter 6 will be modified to achieve the three objec-
tives: (1) removing the numerical ill-condition problem from the design when
the prediction horizon Tp is large; (2) deriving a design that will lead to as-
ymptotic closed-loop stability for a large prediction horizon; (3) providing a
solution that will have a prescribed degree of stability. Perhaps, above all, the
key features of the model predictive control algorithms will be maintained to
be simple and easy-to-implement.

8.3 CMPC Design Using Exponential Data Weighting

From the analysis, we can see that the model predictive control algorithm
became numerically ill-conditioned when the prediction horizon Tp became
large. The reason for this is that the system matrix used for prediction contains
eigenvalues with positive real parts and an integrator, which leads to

||eAt|| → ∞,

as t → ∞.
In this section, we explore the exponential data weighting strategy used

in Anderson and Moore (1971) to produce a predictive control algorithm that
is numerically well-conditioned. To begin, let us define a cost function to be
optimized by the predictive control as

J =

∫ Tp

0

[e−2ατx(ti + τ | ti)
T Qx(ti + τ | ti) + e−2ατ u̇(τ)T Ru̇(τ)]dτ, (8.2)

subject to
ẋ(ti + τ | ti) = Ax(ti + τ | ti) + Bu̇(τ),

with initial condition x(ti). If the set-point signal is non-zero, as before, the
last block variables in x(ti +τ | ti) correspond to the error signals between the
output and set-point, which is translated to the difference in initial condition
x(ti), while the rest of the formulations remain unchanged.

As before, Q is a symmetric nonnegative definite matrix, and R is a sym-
metric positive definite matrix. The constant α can be either positive or neg-
ative or equal to zero, depending on the application. The exponential weight
used by Anderson and Moore was e−2ατ with α negative, which effectively
produces an exponentially increasing weight. Their results were to produce
an optimal regulator with prescribed degree of stability (see Section 8.5). Our
interest here is to use a positive α that effectively produces an exponentially
decreasing weight.
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Minimization of Exponentially Weighted Cost

The results of α ≥ 0 are summarized in the theorem as follows.

Theorem 8.1. For a given α ≥ 0, Tp > 0, Q ≥ 0, and R > 0, minimization
of the cost function

J1 =

∫ Tp

0

[
e−2ατx(ti + τ | ti)

T Qx(ti + τ | ti) + e−2ατ u̇(τ)T Ru̇(τ)
]
dτ, (8.3)

subject to

ẋ(ti + τ | ti) = Ax(ti + τ | ti) + Bu̇(τ); x(ti | ti) = x(ti),

is equivalent to minimization of

J =

∫ Tp

0

[
xα(ti + τ | ti)

T Qxα(ti + τ | ti) + u̇α(τ)T Ru̇α(τ)
]
dτ, (8.4)

subject to

ẋα(ti+τ | ti) = (A−αI)xα(ti+τ | ti)+Bu̇α(τ); xα(ti | ti) = x(ti | ti) = x(ti),

where xα(.) and u̇α(.) are the exponentially weighted variables of x(.) and u̇(.)

xα(ti + τ | ti) = e−ατx(ti + τ | ti); u̇α(τ) = e−ατ u̇(τ).

Proof. The cost function J1 (8.3) equals the cost function J (8.4) with the
transformed variables xα(.) and u̇α(.). In addition

ẋ(ti + τ | ti) =
deατxα(ti + τ | ti)

dτ
= αeατxα(ti + τ | ti) + eατ ẋα(ti + τ | ti) (8.5)

= Ax(ti + τ | ti) + Bu̇(τ). (8.6)

Therefore, by multiplying both (8.5) and (8.6) with e−ατ , and re-arranging,
we obtain the following equation

ẋα(ti + τ | ti) = (A − αI)xα(ti + τ | ti) + Bu̇α(τ),

with the identical initial condition at τ = 0,

xα(ti | ti) = x(ti | ti).
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Use of the Results in CMPC Design

Theorem 8.1 shows that if we use a cost function that contains exponential
decay weight, which is a time-varying weight, then the optimal solution is
found by minimizing a cost function that has eliminated the time-varying
weight. However, the state-space system matrix A is shifted by a −αI matrix.
If α is positive, then all eigenvalues of original A matrix are shifted by the
scalar −α to yield the eigenvalues of the matrix A − αI, which effectively
changes the real part of all eigenvalues. In this transformed formulation, the
α value is selected such that the eigenvalues of A− αI lie strictly on the left-
half of the complex plane, i.e., real(λi(A − αI)) < −ǫ for ǫ > 0 and all i.
Thus, the continuous-time model used for the design then becomes a stable
model, instead of the unstable model in the original formulation. As a result,
the numerical ill-conditioning problem is overcome.

Denote Aα = A − αI. At time ti, xα(ti | ti) = x(ti) and the transformed
derivative of the control signal is

u̇α(τ) =
[
L1(τ)T L2(τ)T . . . Lm(τ)T

]
η.

The predicted, transformed state variable xα(τ | ti) at time τ is

xα(ti + τ | ti) = eAατx(ti)

+

∫ τ

0

eAα(τ−γ)
[
B1L1(γ)T B2L2(γ)T ... BmLm(γ)T

]
dγη, (8.7)

where we assume that the number of inputs is m and Laguerre functions are
used in the parameterization of the derivative of the control signal. Namely,
we optimize the transformed control variable u̇α(τ), instead of the original
variable u̇(τ). Introducing

φi(τ)T =

∫ τ

0

eAα(τ−γ)BiLi(γ)T dγ, (8.8)

and
φ(τ)T =

[
φ1(τ)T φ2(τ)T . . . φm(τ)T

]
.

Equation (8.7) is simplified into

xα(ti + τ | ti) = eAατx(ti) + φ(τ)T η. (8.9)

Substituting (8.9) into the cost function (8.4), we obtain

J =

∫ Tp

0

(ηT φ(τ)Qφ(τ)T η + 2ηT φ(τ)QeAατx(ti))dτ + ηT RLη + constant,

(8.10)
where RL is a block diagonal matrix with the kth block being Rk, and
Rk = rwkINk×Nk

(where INk×Nk
is a unit matrix with dimension Nk). Here,
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for simplicity of the solution, we have assumed that the weight matrix R is a
diagonal matrix.

Defining the data matrices

Ω =

∫ Tp

0

φ(τ)Qφ(τ)T dτ + RL (8.11)

Ψ =

∫ Tp

0

φ(τ)QeAατdτ, (8.12)

the quadratic cost function (8.10) becomes

J = ηT Ωη + 2ηT Ψx(ti) + constant. (8.13)

The optimal solution that minimizes the above quadratic cost function is

η = −Ω−1Ψx(ti). (8.14)

Upon obtaining η, the exponentially weighted derivative of the control signal
u̇α(τ) is constructed through

u̇α(τ) =
[
L1(τ)T L2(τ)T . . . Lm(τ)T

]
η. (8.15)

From the receding horizon control, the optimal solution for the actual u̇(0) is

u̇(0) = u̇α(0) =
[
L1(0)T L2(0)T . . . Lm(0)T

]
η. (8.16)

Because the optimization is performed on the transformed variables xα(.) and
u̇α(.), when constraints are introduced, all the original constraints are required
to be transformed from the variables x(.) and u̇(.) to xα(.) and u̇α(.). Con-
strained control will be discussed further in the later sections of the chapter.

8.4 CMPC with Asymptotic Stability

This section establishes equivalent results with LQR when exponential weight-
ing is used. The results are investigated through two different cost functions,
and we then establish that the optimal control results are identical. The results
are summarized in the theorem as follows.

Case A

Suppose that the optimal control u̇1(τ) is obtained by minimizing cost func-
tion J1 with Q ≥ 0, and R > 0

J1 =

∫ ∞

0

[
x(ti + τ | ti)

T Qx(ti + τ | ti) + u̇(τ)T Ru̇(τ)
]
dτ, (8.17)



278 8 Continuous-time MPC with Prescribed Degree of Stability

subject to
ẋ(ti + τ | ti) = Ax(ti + τ | ti) + Bu̇(τ),

where the initial state is x(ti). The optimal solution of the derivative of the
control u̇(τ) is obtained through the state feedback control law

u̇1(τ) = −R−1BPx(ti + τ | ti), (8.18)

and P is the solution of the Riccati equation

PA + AT P − PBR−1BT P + Q = 0. (8.19)

Case B

Choosing Qα = Q + 2αP , α > 0, R unchanged, the optimal control u̇2(τ) is
obtained by minimizing

J2 =

∫ ∞

0

e−2ατ
(
x(ti + τ | ti)

T Qαx(ti + τ | ti) + u̇(τ)T Ru̇(τ)
)
dτ, (8.20)

subject to
ẋ(ti + τ | ti) = Ax(ti + τ | ti) + Bu̇(τ),

with the initial condition x(ti).

Theorem 8.2. The optimal control solutions stated in Case A and Case B
have the following relation:

u̇2(τ) = u̇1(τ); min(J2) = min(J1).

Proof. The optimal solution for Case A is found through the algebraic Riccati
equation (Kailath, 1980, Bay, 1999)

PA + AT P − PBR−1BT P + Q = 0, (8.21)

with u̇1(τ) = −R−1BPx(ti + τ | ti) and min(J1) = x(ti)
T Px(ti).

By adding and subtracting the term 2αP , (8.21) becomes

PA + AT P − PBR−1BT P + Q + 2αP − 2αP = 0, (8.22)

which is

P (A − αI) + (A − αI)T P − PBR−1BT P + Q + 2αP = 0. (8.23)

With Qα = Q + 2αP , the Riccati equation (8.23) becomes identical to

P (A − αI) + (A − αI)T P − PBR−1BT P + Qα = 0. (8.24)

Relating these back to the exponential data weighting results in Theorem 8.1,
(8.24) is the Riccati equation for the optimization of Case B. Since (8.24)
is identical to (8.21), therefore, the Riccati solution P from (8.23) remains
unchanged, and hence

u̇2(τ) = u̇1(τ); min(J1) = min(J2).



8.4 CMPC with Asymptotic Stability 279

The original Case A is not solvable in the context of predictive control for
a sufficiently large prediction horizon Tp, when the design model contains
eigenvalues on the imaginary axis or on the right half of the complex plane,
and the prediction becomes numerically ill-conditioned. In contrast, the Case
B is solvable in the context of predictive control because of the choice of the
exponential weight α > 0 that will lead to the system matrix A−αI becoming
stable.

The following list summarizes the relationship between the design para-
meters and variables in LQR and the continuous-time MPC with exponential
data weighting for sufficiently large N and Tp.

Model (LQR) ẋ(ti + τ | ti) = Ax(ti + τ | ti) + Bu̇(τ)

Model (CMPC) ẋα(ti + τ | ti) = (A − αI)xα(ti + τ | ti) + Bu̇α(τ)

Weight matrices (LQR) Q, R

Weight matrices (CMPC) Qα = Q + 2αP , R unchanged

Cost (LQR) J =
∫ ∞
0

(x(·)T Qx(·)+ u̇(τ)T Ru̇(τ))dτ

Cost (CMPC) J =
∫ Tp

0
(xα(·)T Qαxα(·)+ u̇α(τ)T Ru̇α(τ))dτ

Optimal control (LQR) u̇(τ) = −R−1BPx(ti + τ | ti)

Optimal control (CMPC) u̇(τ) = −L(τ)T Ω−1Ψx(ti)

0 ≤ τ ≤ Tp u̇α(τ) = u̇(τ)e−ατ

0 ≤ τ ≤ Tp xα(ti + τ | ti) = x(ti + τ | ti)e
−ατ

Feedback gain Kmpc = Klqr

Closed-loop Eigenvalues. λi(A − BKmpc) = λi(A − BKlqr), for all i.

Tutorial 8.1. We consider the same system as in Example 8.1, where the
augmented dynamic system with an integrator is described by the state-space
model given as below

ẋ(t) =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0 0

0 α1

V
β1

V 0 0
0 0 −a a 0
0 0 0 0 0
1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

x(t) +

⎡

⎢
⎢
⎢
⎢
⎣

0
0
0
1
0

⎤

⎥
⎥
⎥
⎥
⎦

u̇(t)

y(t) =
[
0 0 0 0 1

]
x(t), (8.25)

where α1 = 10.2, β1 = 0.32,a = 72 and V = 60. The parameters in the
Laguerre functions are selected as p = 0.8 and N = 4.

1. Choosing Q = CT C and R = 0.1, design the LQR control system with the
weight matrices Q and R, and find the Riccati equation solution P , the
feedback gain matrix K and the closed-loop eigenvalues.
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2. Using exponential data weighting in the cost function of predictive control
with α = 0.18 in the modified Qα, compute the data matrices Ω and Ψ
and verify the convergence of Ω and Ψ with respect to a large prediction
horizon Tp.

3. Compare the exponentially weighted predictive control system with the
LQR system.

Step by Step

1. Create a program called exptut.m.
2. We will first set-up the state-space model and the augmented state-space

model. Enter the following the program into the file:

alpha1=10.2;

beta1=0.32;

a=72;

v=60;

Ap=[0 1 0 0; 0 alpha1/v beta1/v

0; 0 0 -a a; 0 0 0 0] ;

Bp=[0;0;0;1];

Cp=[1 0 0 0];

Dp=0;

[m1,n1]=size(Cp);

[n1,n_in]=size(Bp);

A=zeros(n1+m1,n1+m1);

A(1:n1,1:n1)=Ap;

A(n1+1:n1+m1,1:n1)=Cp;

B=zeros(n1+m1,n_in);

B(1:n1,:)=Bp;

C=zeros(m1,n1+m1);

C(:,n1+1:n1+m1)=eye(m1,m1);

3. Compute the LQR solution using the MATLAB ‘lqr’ function. K is the
feedback gain, P is the Riccati equation solution and E is the set of closed-
loop eigenvalues. Continue entering the following program into the file:

Q=C’*C;

R=0.1*eye(m1,m1);

[K,P,E]=lqr(A,B,Q,R);

4. Compute Qα and specify the design parameters for the continuous-time
predictive control system. We also modify the unstable system matrix A to
stable Aα. A large N is used in this design to demonstrate that the results
converge to the LQR system. You can choose a smaller N and discover
the difference is small.

alpha=0.18;

Q_alpha=Q+2*alpha*P;

A_alpha=A-alpha*eye(n1+m1,n1+m1);
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p=0.6;

N=10;

Tp=35;

[Omega,Psi]=cmpc(A_alpha,B,p,N,Tp,Q_alpha,R);

5. With Ω and Ψ matrices, the cost function for the on-line optimization
is determined. With receding horizon control, the feedback control gain
matrix Kmpc is calculated. Continue entering the following program into
the file:

[Al,L0]=lagc(p,N);

K_mpc=L0’*(Omega\Psi);

A_cl=A-B*K_mpc;

E_mpc=eig(A_cl);

6. We need to verify the relationship between uα(τ) and u(τ); and the rela-
tionship between xα(ti+τ | ti) and x(ti +τ | ti). We solve for the Laguerre
parameter vector η using an initial state variable, and construct the whole
control trajectory u̇α(.) using Laguerre functions. The trajectory of xα(.)
is calculated by solving the differential equation. Continue entering the
following program into the file:

N_sim=22000;

h=0.001;

X0=[0.1;0.2;0.3;0.4;0.5];

eta=-Omega\Psi*X0;

x=X0;

t=0:h:(N_sim-1)*h;

for kk=1:N_sim

u_dot(kk)=(expm(Al*t(kk))*L0)’*eta;

xs(:,kk)=x;

x=x+(A_alpha*x+B*u_dot(kk))*h;

end

7. To compare the results, we also compute the LQR control trajectory and
the trajectory of x(.). Continue entering the following program into the
file:

A_lqr=A-B*K;

A_lqr_alpha=A_lqr-alpha*eye(n1+m1,n1+m1);

for kk=1:N_sim

x_lqr(:,kk)=expm(A_lqr*t(kk))*X0;

u_dot_lqr(kk)=-K*x_lqr(:,kk);

x_lqr_alpha(:,kk)=expm(A_lqr_alpha*t(kk))*X0;

end

8. Run this program, then you will have the numerical results for the expo-
nentially weighted continuous-time MPC system.
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9. Increasing prediction horizon Tp, you will notice this parameter does not
affect the control results after a certain large number.

Figure 8.2 shows the comparison results within one optimization window,
between the variables in the original LQR systems and the transformed pre-
dictive control system using exponential weighting. For simplicity, instead of
examining all components in x, we examine the last component in x, which is
the output y. By visual inspection, we can see that the exponentially weighted
variables decay faster. To show that indeed there is the factor of e−ατ differ-
ence between xα and x, and uα and u, we calculate the errors

ey =

∫ 22

0

(yα(τ) − y(τ)e−ατ )2dτ = 5.5529× 10−4, (8.26)

eu =

∫ 22

0

(u̇α(τ) − u̇(τ)e−ατ )2dτ = 6.1761× 10−6. (8.27)
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Fig. 8.2. Top figure: comparison between y(.) (solid-line) and yα(.) (darker-solid-
line); bottom figure: comparison between u̇(.) (solid-line) and u̇α(.) (darker-solid-
line)

Furthermore, the gain and closed-loop eigenvalues of LQR and continuous-
time MPC systems are compared as below:

Kmpc [23.2346 121.8435 0.0090 1.1371 3.1639]
Klqr [23.2281 121.8430 0.0090 1.1372 3.1623]
eigenvalues(mpc) −72.0000 − 0.1411 ± j0.3241 − 0.3424± j0.1334
eigenvalues(lqr) −72.0000 − 0.1411 ± j0.3240 − 0.3425± j0.1334
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8.5 Continuous-time MPC with Prescribed Degree of

Stability

The term ‘prescribed degree of stability of β’ means that the closed-loop
eigenvalues of the predictive control system reside to the left of the line s = −β
on the complex plane. This is very practical in the design of continuous-
time predictive control systems. For instance, the value of β becomes part of
the closed-loop performance specification. For a multi-input and multi-output
system, tuning the predictive control system can be very time consuming. By
specifying a degree of stability, the tuning process for a complex system can
be simplified.

8.5.1 The Original Anderson and Moore’s Results

We resort to the wealth of literature on the linear quadratic regulator (LQR).
In Anderson and Moore (1971), the cost function with (β > 0 ) is

J1 =

∫ ∞

0

e2βt
[
x(t)T Qx(t) + u̇(t)T Ru̇(t)

]
dt, (8.28)

and it is minimized subject to

ẋ(t) = Ax(t) + Bu̇(t). (8.29)

The minimization of the cost function (8.28) produces a closed-loop system
with a prescribed degree of stability determined by the value of β. Note that
the choice of the weight exponent, β, has an opposite sign to what we proposed
earlier, and let us call this an exponentially increasing weight.

To proceed further, denote

xβ(t) = eβtx(t); uβ(t) = eβtu(t).

Then, the problem of minimizing (8.28) is equivalent to the minimization of
the cost function:

J2 =

∫ ∞

0

[
xβ(t)T Qxβ(t) + u̇β(t)T Ru̇β(t)

]
dt, (8.30)

subject to
ẋβ(t) = (A + βI)xβ(t) + Bu̇β(t). (8.31)

The optimal control is obtained through the solution of the algebraic Riccati
equation to solve for the transformed system (A + βI, B)

P (A + βI) + (A + βI)T P − PBR−1BT P + Q = 0, (8.32)

u̇β(t) = −R−1BPxβ(t). (8.33)
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However, the original control signal is

u̇(t) = u̇β(t)e−βt = −R−1BPx(t). (8.34)

Therefore, the feedback controller gain has the identical formula, except that
the Riccati matrix P is solved using (8.32), where (A + βI) is used to replace
the original system matrix A.

The following points are given to establish that the closed-loop system has
a prescribed degree of stability β.

1. If the pair (A, D) is observable where Q = DT D, then (A + βI, D) is ob-
servable; if the pair (A, B) is controllable, then (A+βI, B) is controllable.
The solution of the Riccati equation (8.32) leads to asymptotic stability
of the closed-loop system for the pair (A + βI, B). Namely

||xβ(t)|| → 0

as t → ∞.
2. Note that

x(t) = e−βtxβ(t).

This means that x(t) decays at least as fast as the rate of e−βt.
3. This establishes that the exponentially weighted cost function produces a

closed-loop system with a prescribed degree of stability β.
4. The asymptotic stability of the closed-loop system for the pair (A+βI, B)

ensures that the closed-loop eigenvalues, for all k

real{λk(A + βI − BK)} < 0,

where K = R−1BP . This means that the closed-loop eigenvalues for the
pair (A, B) must be at least, for all k

real{λk(A − BK)} < −β.

5. This establishes that the closed-loop eigenvalues are on the left of the
s = −β line in the complex plane.

8.5.2 CMPC with a Prescribed Degree of Stability

Although the exponentially increasing weight proposed by Anderson and
Moore produces a closed-loop system with a prescribed degree of stability,
their solution was obtained through the Riccati equation (see (8.32)). If their
approach was used in predictive control design, then numerical problems
would arise. This is because the system matrix A + βI (design model) has
eigenvalues shifted further towards the right-half of the complex plane by a
distance of β, and the prediction that uses this model will exponentially grow
at least at a rate of β. This approach to obtain a prescribed degree of stability
is re-developed in the context of predictive control design. The results are
summarized as below.
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Case A

Suppose that the optimal control u̇1(τ) is obtained by minimizing with Q ≥ 0,
R > 0, β > 0,

J1 =

∫ ∞

0

e2βτ
[
x(ti + τ | ti)

T Qx(ti + τ | ti) + u̇(τ)T Ru̇(τ)
]
dτ, (8.35)

subject to

ẋ(ti + τ | ti) = Ax(ti + τ | ti) + Bu̇(τ); x(ti | ti) = x(ti),

where A may contain eigenvalues that are either on the jw axis or on the
right-half of the complex plane. The optimal solution of the derivative of the
control u̇(τ) is obtained through the state feedback law

u̇1(τ) = −R−1BPx(ti + τ | ti), (8.36)

and P is the solution of the Riccati equation

P (A + βI) + (A + βI)T P − PBR−1BT P + Q = 0. (8.37)

Case B

Choosing α > 0, R unchanged, and

Qα = Q + 2(α + β)P,

the optimal control u̇2(τ) is obtained by minimizing

J2 =

∫ ∞

0

e−2ατ
[
x(ti + τ | ti)

T Qαx(ti + τ | ti) + u̇(τ)T Ru̇(τ)
]
dτ, (8.38)

subject to

ẋ(ti + τ | ti) = Ax(ti + τ | ti) + Bu̇(τ); x(ti | ti) = x(ti).

Theorem 8.3. The optimal solutions given in Case A and Case B satisfy the
following relation:

u̇2(τ) = u̇1(τ); min(J2) = min(J1).

Proof. The proof follows a similar procedure to that in the proof of Theorem
8.2.

From the Anderson and Moore’s results, the optimal solution for Case A
is found through the algebraic Riccati equation

P (A + βI) + (A + βI)T P − PBR−1BT P + Q = 0, (8.39)
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with u̇1(τ) = −R−1BPx(ti + τ | ti) and min(J1) = x(ti)
T Px(ti).

By adding and subtracting the term 2αP , (8.39) becomes

P (A + βI) + (A + βI)T P − PBR−1BT P + Q + 2αP − 2αP = 0, (8.40)

which is

P (A − αI) + (A − αI)T P − PBR−1BT P + Q + 2αP + 2βP = 0. (8.41)

With Qα = Q + 2(α + β)P , the Riccati equation (8.41) becomes identical to

P (A − αI) + (A − αI)T P − PBR−1BT P + Qα = 0. (8.42)

Comparing the Riccati equation (8.42) to the exponential data weighting re-
sults in Theorem 8.1, (8.42) is the Riccati equation for the optimization Case
B. Since (8.42) is identical to (8.39), therefore, the Riccati solution P from
(8.42) remains unchanged, and hence

u̇2(τ) = u̇1(τ); min(J1) = min(J2).

8.5.3 Tuning Parameters and Design Procedure

Selection of the Exponential Weighting Factor

From a given augmented state-space model (A, B), the eigenvalues of A are
determined. If the plant is stable, then the unstable eigenvalues of A come
from the integrators that have been embedded in the model. In this case, any
α > 0 will serve the purpose of exponential data weighting. However, if the
plant is unstable with all its eigenvalues lying on the left of the ǫ line of the
complex plane where ǫ > 0, the parameter α is required to be at least greater
than ǫ. In summary, the idea behind the selection of α is to make sure that
the design model with (A − αI) is stable with all eigenvalues on the left-half
of the complex plane.

Selection of Prediction Horizon

Once the exponential weight factor α is selected, the eigenvalues of the ma-
trix A − αI are fixed. Since this matrix is stable with an appropriate choice
of α, the prediction of the state variables is numerically sound. Thus, the
prediction horizon Tp is selected sufficiently large to capture the transformed
state variable response. In general, if the eigenvalues of A − αI were further
away from the imaginary axis on the complex plane, then a smaller Tp would
be required. However, some attention needs to be paid to the computation
of Ω and Ψ matrices when discretization is used to recursively evaluate the
integrals given in Section 6.3.4. In general, the discretization interval (h) for
the computation should be smaller if the exponential weight factor α is used.
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Choice of Weight Matrices in the Cost Functions

From the model formulation, the Q matrix is usually selected as Q = CT C,
which corresponds to minimization of integral squared output errors. This
choice has been found to produce satisfactory closed-loop performance for set-
point tracking of a reference signal. Weight matrix R is selected as a diagonal
matrix, with each element weighting the corresponding control signal. For
instance, if the influence of a particular control is to be reduced, then the
corresponding diagonal element will be increased to reflect this intention.

Selection of Degree of Stability β

The closed-loop performance of a predictive control system so far is deter-
mined by the choice of Q and R matrices. The tuning could be very time
consuming as it often requires finding the off-diagonal elements in Q and R
to achieve satisfactory performance. This is often carried out in a trial-and-
error manner. Now, with the additional parameter β that dictates the de-
gree of stability, the closed-loop eigenvalues of the predictive control system
are effectively positioned to some desired regions on the complex plane. This
parameter is very useful in the closed-loop performance specification. For in-
stance, β is related to the minimal decay rate of the closed-loop system. So
we can use this parameter to specify the closed-loop response speed.

The Parameters in Laguerre Functions

When N increases, the predictive control trajectory converges to the under-
lying optimal control trajectory of the linear quadratic regulator. However,
with a small N , the pole location p will affect the closed-loop response. The
pair of parameters (p, N) can be used as a pair of fine tuning parameters for
the closed-loop performance. Detailed discussion on the Laguerre parameters
for the discrete-time counterpart is given in Chapter 4.

The Qα Matrix

With the choice of β, which is the degree of stability, the Riccati equation is
solved for the P matrix:

P (A + βI) + (A + βI)T P − PBR−1BT P + Q = 0. (8.43)

MATLAB script can be used for this solution:

[K,P,E]= lqr(A+beta*eye(n,n), B, Q, R);

Matrix Qα is determined, with the values of α, β and P , using

Qα = Q + 2(α + β)P.
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The Modified Design Model

The augmented state-space model (A, B) is modified for use in the design.
The matrix B is unchanged, however, the matrix A is modified to become

A − αI

With this set of performance parameters (Qα, R) and the design model
(A − αI, B), the predictive control problem is converted back to the origi-
nal problem stated in Chapter 6, thus the cost function for the predictive
control system is expressed as a function of η

J = ηT Ωη + 2ηT Ψx(ti) + constant. (8.44)

8.6 Constrained Control with Exponential Data

Weighting

The design of continuous-time predictive control using exponential data
weighting is based on the transformed variables xα(.) and u̇α(.). By using
the transformed variables, a large prediction horizon is used to approximate
the infinity horizon case so as to guarantee asymptotic stability or to achieve
a prescribed degree of stability, and the numerical ill-conditioning problem
is overcome. In the constraints handling, the design specification of the con-
straints is given for the original variables x(.) and u̇(.), and these are required
to be mapped into constraints with respect to the transformed variables xα(.)
and u̇α(.).

Constraints at τ = 0

Since within one optimization window, at τ = 0 the transformed variables
xα(ti | ti) and u̇α(0) are identical to the original variables x(ti | ti) and u̇(0),
there is no change for the constraints at the time τ = 0.

Constraints at τ > 0

As we know, the relationship between the transformed variables and the orig-
inal variables is given as

u̇α(τ) = u̇(τ)e−ατ ; xα(ti + τ | ti) = x(ti + τ | ti)e
−ατ .

Thus, supposing that the upper and lower limits of u̇(τ) are specified as

dumin ≤ u̇(τ) ≤ dumax,

with respect the transformed variable u̇α(t) within one optimization window,
the constraints are mapped into the relation:
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e−ατdumin ≤ u̇α(τ) ≤ dumaxe−ατ , (8.45)

which is expressed, in terms of the decision variable η, as

e−ατdumin ≤ L(τ)η ≤ dumaxe−ατ . (8.46)

Similarly, the original constraints on the state variables, xmin and xmax, are
transformed into

e−ατxmin ≤

xα(ti+τ |ti)
︷ ︸︸ ︷

eAατ x(ti) + φ(τ)T η ≤ xmaxe−ατ . (8.47)

Since the transformed variables exponentially decay in a faster rate, the orig-
inal constant bounds become exponentially decaying with respect to u̇α and
xα to form tighter bounds.

What we will do next is to transform the bounds on the original control
signal to the bounds on the transformed variables. Note that the control signal
with assumed zero initial condition is expressed as

u(τ) =

∫ τ

0

u̇(γ)dγ. (8.48)

By substituting u̇(γ) = u̇α(γ)eαγ = L(γ)T eαγη into (8.48), we obtain

u(τ) =

∫ τ

0

L(0)T e(Ap+αI)T γηdγ (8.49)

= L(0)T
(

e(Ap+αI)T τ − I
)

(Ap + αI)−T η. (8.50)

Adding the first sample of the control signal, the bounds are expressed in
terms of the decision variable η as

umin ≤ u(ti−∆t)+L(0)T η∆t+L(0)T
(

e(Ap+αI)T τ − I
)

(Ap+αI)−T η ≤ umax.

(8.51)
Upon setting up the constraints with respect to the transformed variables,
the remaining procedures to the solution of the constrained control problem
are identical to those without exponential data weighting, as discussed in
Chapter 7, namely, the inequality constraints are used in the optimization of
η by minimizing the cost function:

J = ηT Ωη + 2ηT Ψx(ti).

Example 8.2. Consider a two-input and two-output system described by the
transfer function:

[
y1(s)
y2(s)

]

=

[
12.8(−s+4)2

(40s+1)(s+4)2
−10.9(−3s+4)2

(21.0s+1)(3s+4)2

12.8(−7s+4)2

(10.9s+1)(7s+4)2
−19.4(−3s+4)2

(20s+1)(3s+4)2

][
u1(s)
u2(s)

]

. (8.52)
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This system has complex unstable zeros and strong couplings as shown by
the off diagonal elements of the transfer function. Choose the weight matrices
Q = CT C, R = I, and the prediction horizon Tp = 50, N1 = N2 = 6, and
p1 = p2 = 1. An observer is needed in the implementation of the predictive
control system. MATLAB function lqr is used with Qob = I and R = 0.2I.
With zero initial conditions on the state variables, for a unit set-point change,
the operational constraints on the control signals are specified as

0 ≤ u1(t), u2(t) ≤ 0.3; − 0.2 ≤ u̇1(t), u̇2(t) ≤ 0.4.

Design and simulate a continuous-time predictive control system with con-
straints using exponential data weighting, where α = 0.18, and compare
the results with the case when α = 0. The sampling interval is selected as
∆t = 0.009 sec.

Solution. The condition number of the Hessian matrix with exponential data
weighting (α = 0.18) is κ(Ω) = 720. In contrast, the condition number with-
out exponential data weighting (α = 0) is κ(Ω) = 1.474 × 105, which clearly
indicates that the Hessian matrix is ill-conditioned. Table 8.3 shows the com-
parison between the elements of the first row in the state feedback gain ma-
trix with three different approaches. It is seen that with exponential weighting
(α = 0.18), the elements of the predictive feedback control gain Kmpc are very
close to the elements of feedback gain from LQR design. However, without
exponential data weighting, there are large differences between the elements
of the predictive controller gain and those from LQR design. We also confirm
the large differences between the closed-loop responses from using exponen-
tial data weighting and not using exponential weighting (see Figure 8.3). In
the simulation, we introduce a unit set-point change for output y1 and zero
set-point signal for output y2. Without constraints, the responses when using
exponential data weighting are almost identical to those from LQR design (not
shown here), and exhibit faster set-point responses than those from not using
exponential weighting. We also compare the constrained control results with
and without exponential data weighting, where we only impose the constraints
on the first sample of the control signals. All constraints are satisfied for both
cases. Figure 8.4 shows the comparative results. It is seen that the responses
are quite different. Again, the output responses from using exponential data
weighting are faster than those without exponential data weighting.

Table 8.3. Elements of the first row in Klqr, Kmpc with and without exponential
data weighting

Klqr 2.7 −11.2 3.9 −3.0 3.1 1.2 −2.9 9.0 3.5 1.1 0.8 −0.6

Kmpc(α = 0.18) 2.7 −11.2 3.9 −3.0 3.1 1.2 −2.8 8.9 3.5 1.1 0.8 −0.6

Kmpc(α = 0) 0.4 −1.7 0.6 −0.4 0.5 0.4 0.6 0.7 −0.1 0.3 0.2 −0.2
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Fig. 8.3. Comparison of CMPC with and without exponential data weighting.
Key: solid-line without exponential data weighting α = 0; darker-solid-line with
exponential data weighting α = 0.18
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Fig. 8.4. Comparison of CMPC with and without exponential data weighting, in the
presence of constraints. Key: solid-line without exponential data weighting α = 0;
darker-solid-line with exponential data weighting α = 0.18

8.7 Summary

This chapter has discussed continuous-time model predictive control with ex-
ponential data weighting. In the original design of a continuous-time predictive
control system, because of embedded integrator(s) in the model, the prediction
horizon is limited to a finite value, and a numerical ill-conditioning problem
occurs when the prediction horizon is large. These problems are resolved in
this chapter by choosing a cost function with an exponential weight factor
e−2αt, where α > 0:

J =

∫ Tp

0

[e−2ατx(ti + τ | ti)
T Qx(ti + τ | ti) + e−2ατ u̇(τ)T Ru̇(τ)]dτ, (8.53)

subject to
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ẋ(ti + τ | ti) = Ax(ti + τ | ti) + Bu̇(τ).

With the exponential weight, the optimization problem at time ti is solved
based on a pair of transformed variables xα(ti+τ | ti) and uα(τ) by minimizing

J =

∫ Tp

0

[
xα(ti + τ | ti)

T Qxα(ti + τ | ti) + u̇α(τ)T Ru̇α(τ)
]
dτ, (8.54)

subject to

ẋα(ti + τ | ti) = (A − αI)xα(ti + τ | ti) + Bu̇α(τ),

where the transformed variables are defined by

xα(ti + τ | ti) = e−ατx(ti + τ | ti); uα(τ) = e−ατu(τ).

The initial conditions are identical when τ = 0. The central idea is that when
the system matrix A contains eigenvalues on the imaginary axis or on the
right-half of the complex plane, by choosing a suitable α > 0 such that the
eigenvalues of the modified system matrix A−αI are all strictly on the left-half
complex plane, then the model used for prediction is stable, and a sufficiently
large prediction horizon can be used in the design. As a consequence, the
numerical conditioning problem is overcome. Without any modification on
the pair of weight matrices Q, R, the solution does not guarantee exponential
decay of the original variable x(ti +τ | ti) within the optimization window. To
resolve this issue, a simple modification of the weight matrix Q is proposed.
Choosing Qα = Q + 2αP , α > 0, R unchanged, the optimal control u̇(τ) is
obtained by minimizing

J =

∫ Tp

0

[
xα(ti + τ | ti)

T Qαxα(ti + τ | ti) + u̇α(τ)T Ru̇α(τ)
]
dτ, (8.55)

subject to

ẋα(ti + τ | ti) = (A − αI)xα(ti + τ | ti) + Bu̇α(τ),

where P is the solution of the steady-state Riccati equation:

PA + AT P − PBR−1BT P + Q = 0.

In fact, the optimal solution with the exponentially weighted cost function is
identical to the original optimal control solution without exponential weight-
ing, when the prediction horizon is sufficiently large. The proposed approach
is not only numerically sound, but also allows the use of a sufficiently large
prediction horizon to guarantee asymptotic stability.

To introduce a prescribed degree of stability β in the predictive control
system such that all the closed-loop eigenvalues are on the left of the line
s = −β in the complex plane, we only need to choose Qα as
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Qα = Q + 2(α + β)P,

and R unchanged and minimize the cost function J given by (8.55) with
transformed variables xα and uα, where P is the solution of the steady-state
Riccati equation:

P (A + βI) + (A + βI)T P − PBR−1BT P + Q = 0.

When imposing constraints, all the constraints are transformed and expressed
using the exponentially weighted variables.

Problems

8.1. A mathematical model for an inverted pendulum is described by the
Laplace transfer function:

G(s) =
−Ki

s2 − a2
, (8.56)

where the input to the inverted pendulum is external force, and output is
angle θ (rad) (see Figure 8.5). The parameters in the model are Ki = 0.01
and a = 3.

Fig. 8.5. Schematic diagram for an inverted pendulum

Since the inverted pendulum is an unstable system with one pole on the
right-half of the complex plane, the choice of the prediction horizon needs
careful consideration without using exponential data weighting. The design
parameters are N = 4, p = 3.3, Q = CT C (C is the output matrix of the
augmented model) and R = 0.1. Design a continuous-time predictive control
system with a final prediction horizon that will bring the angle θ as close as
possible to 0o in the presence of input step disturbance.
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1. Show that the Hessian matrix Ω in the cost function

J = ηT Ωη + 2ηT Ψ

is numerically ill-conditioned by examining its condition number with re-
spect to an increasing prediction horizon Tp.

2. Demonstrate that this numerical sensitivity causes the variations of the
closed-loop feedback control gain Kmpc and the closed-loop pole locations.

8.2. Continue from Problem 8.1 and use exponential data weighting in the
design of predictive control for this inverted pendulum.

1. Choose the exponential weight factor α = 3.8 that is greater than the
unstable pole, and modify the weight matrix Qα according to

Qα = Q + 2αP ; PA + AT P − PBR−1BT P + Q = 0,

where A and B are the matrices in the augmented state-space model.
2. With exponential data weighting, examine the elements of Ω and Ψ ma-

trices in the cost function

J = ηT Ωη + 2ηT Ψ,

as functions of prediction horizon Tp and demonstrate graphically that
the diagonal elements in Ω converge to constants as Tp increases.

3. For a large Tp, compute the closed-loop feedback control gain Kmpc and
the closed-loop poles with the predictive control system. Compare them
with Klqr and the LQR closed-loop poles (use the MATLAB lqr function
for this computation).

4. If Kmpc and Klqr are not sufficiently close to your expectation, increase
the number of terms N in the Laguerre functions to improve the accuracy.

8.3. A continuous-time system has three inputs and two outputs described by
the Laplace transfer function

G(s) =

[
G11(s) G12(s) G13(s)
G21(s) G22(s) G23(s)

]

, (8.57)

where G11(s) = 1
(s+1)3 , G12(s) = 0.1

0.1s+1 , G13(s) = −0.8
s+4 , G21(s) = 0.01

s+1 ,

G22(s) = (−3s+1)
(10s+1)(3s+1) , G23(s) = −0.4

0.3s+1 .

1. Find the state-space model and augment it with integrators.
2. Choose Q = CT C and R = I, p1 = p2 = p3 = 0.8, and N1 = N2 = N3 = 3

as the design parameters. Find the matrices Ω and Ψ in the cost function
of the predictive control J , where J is expressed as

J = ηT Ωη + 2ηT Ψ,
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such that the closed-loop eigenvalues of the predictive control system are
positioned on the left of a line s = −1 in the complex plane. Hint: you
need to solve the following Riccati equation to find P matrix

P (A + I) + (A + I)T P − PBR−1BT P + Q = 0,

with exponential weight factor α > 0 (say α = 0.5), Q is modified to
Qα = Q + 2(α + 1)P . The solution of the Riccati equation is performed
using MATLAB lqr function.

3. We can also design an observer with the observer poles to be constrained.
For instance,if we want to position the observer poles on the left of a line
s = −γ (γ > 0) in the complex plane, we choose Qob = I and Rob = 0.1I,
and then modify A with A + γI. The MATLAB script for doing this is

K_ob=lqr((A+gamma*eye(n,n))’,C’,Qob,Rob)’;

where n is the dimension of A matrix. Find the observer Kob such that the
closed-loop observer poles are on the left of a line s = −2 in the complex
plane.

8.4. Consider the problems of using a prescribed degree of stability to improve
the robustness of a predictive control system. Assume that the open-loop
system is described by a transfer function

G(s) =
K

(10s + 1)2(s − 0.3)
.

1. Assuming K = 1, design a predictive control system with prescribed de-
gree of stability β = 0.4 (i.e., all closed-loop eigenvalues are on the left of
a line s = −0.4 in the complex plane). The remaining design parameters
are specified as N = 6, p = 0.6, Q = CT C, R = 1 and Tp = 35. Parameter
α is chosen as α = 0.38 to be greater than the magnitude of the unstable
pole. An observer is used in the implementation. The weight matrices for
the observer are Qob = I and Rob = 0.0001.

2. Construct the closed-loop predictive control system, respectively, with
K = 0.8, 0.9, 1, 1.2, 1.4 and 1.6, and calculate the closed-loop eigenvalues
with the variations of parameter K, show that the closed-loop system is
stable for this range of parameters.

3. Repeat the design with β = 0, but the other design parameters remaining
the same. Show that the closed-loop system is only stable with respect
to the changes of K between 0.9 and 1.1. Present your comparative re-
sults using a tabulation of closed-loop eigenvalues, and comment on your
findings.
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Classical MPC Systems in State-space

Formulation

9.1 Introduction

Dynamic matrix control (DMC) and generalized predictive control (GPC) are
two classes of predictive control systems that have found application in many
areas. This chapter will link the predictive control systems designed using the
framework of state space to the classical predictive control systems. One of the
common features of the classical predictive control systems is the direct uti-
lization of plant input and output signals in the closed-loop feedback control,
hence avoiding observers in the implementation. The key to the link is to re-
vise the classical predictive control schemes using a special class of state-space
formulations, where the state variables are chosen to be identical to the feed-
back variables that have been used in the classical predictive control systems.
An example of a state-space formulation of GPC is the work by Ordys and
Clarke (1993). Once the state-space model is formulated, the framework from
the previous chapters is naturally extended to the classical predictive control
systems, preserving all the advantages of a state-space design, including sta-
bility analysis, exponential data weighting and LQR equivalence. In addition,
because of the direct use of plant input and output signals in the implementa-
tion, the predictive controller can be represented in a transfer function form,
allowing direct frequency response analysis of the system to obtain critical
information, such as gain and phase margins.

More specifically, in Section 9.2, we will discuss GPC in state-space formu-
lation, where we select the same feedback variables and the same cost function
in the design. It is seen that the design methodology becomes quite straight-
forward once the state-space formulation is used. In GPC formulation, the
state variables are the output and delayed output signals, the system matrices
(A, B, C) need to be modified to incorporate integrators, also its implementa-
tion involves an equivalent set-point filter. Instead, the formulation we used in
the previous chapters (see Chapters 1 to 4) offers a simplified approach, and
in Section 9.3, we present this alternative approach to GPC, completed with
transfer function analysis, root-locus analysis and Nyquist plots. The sim-



298 9 Classical MPC Systems in State-space Formulation

plicity of the algorithms remains when they are extended to multi-input and
multi-output systems (see Section 9.4). In Sections 9.5 and 9.6 we discuss the
continuous-time counterpart of the model predictive control using the NMSS
formulation. Different from discrete time, in the continuous-time design, an
implementation filter is required, and the poles of the filter become part of the
desired closed-loop poles when we choose to optimize the output errors in the
design. In Section 9.7, we discuss predictive control using impulse response
models, which is a special case of general transfer function representation of
the plant. Along similar lines, discrete-time Laguerre models could offer an
alternative to impulse response models.

9.2 Generalized Predictive Control in State-space

Formulation

In the previous chapters, we assumed that state-space models in both contin-
uous time and discrete time are controllable and observable. Controllability
is required in order for the design of MPC to access all dynamic modes in
the plant, and observability is required for the design of observer to access all
plant dynamic modes through measurement of input and output signals.

9.2.1 Special Class of Discrete-time State-space Structures

In this chapter, the model predictive control systems are described using a
special class of state-space models. This special formulation uses plant input
and output variables as its state variables. Hence, in the implementation of
the predictive control system, an observer is not required. A simple example
of this class of state-space models is shown below.

Example 9.1. Suppose that a discrete-time transfer function model is given as

G(z) =
(z − 0.1)z−2

(z − 0.6)(z − 0.8)
. (9.1)

Let u(k) and y(k) denote the input and output signals, respectively. Choose

x(k) =
[
y(k) y(k − 1) u(k − 1) u(k − 2) u(k − 3)

]T
.

Show that the state-space representation of the transfer function model is a
non-minimal realization and the model is controllable, but not observable.

Solution. This is a fourth-order discrete-time system with 4 poles (z = 0,
z = 0, z = 0.6 and z = 0.8). A minimal state-space realization of this transfer
function should have four state variables.

Using the forward shift operator, the difference equation that relates the
input signal u(k) to the output signal y(k) through the transfer function (9.1)
is expressed as
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y(k + 4) − 1.4y(k + 3) + 0.48y(k + 2) = u(k + 1) − 0.1u(k). (9.2)

This is the forward shift version of the difference equation. However, at sam-
pling instant k, future information on u and y is required. To avoid this, (9.2)
is multiplied with a backward shift q−3, leading to

y(k + 1) = 1.4y(k) − 0.48y(k − 1) + u(k − 2) − 0.1u(k − 3). (9.3)

Choosing the state variable vector as

x(k) =
[
y(k) y(k − 1) u(k − 1) u(k − 2) u(k − 3)

]T
,

then, the state-space model is

⎡

⎢
⎢
⎢
⎢
⎣

y(k + 1)
y(k)
u(k)

u(k − 1)
u(k − 2)

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1.4 −0.48 0 1 −0.1
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

y(k)
y(k − 1)
u(k − 1)
u(k − 2)
u(k − 3)

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

0
0
1
0
0

⎤

⎥
⎥
⎥
⎥
⎦

u(k)

y(k) =
[
1 0 0 0 0

]
x(k). (9.4)

It is seen that the number of state variable in this special realization is five,
instead of four which is the number corresponding to a minimal realization. By
using the MATLAB� script listed as below, controllability and observability
can be checked, where (A, B, C) are the system matrices in (9.4).

AB=ctrb(A,B);

rank(AB)

CA=ctrb(A’,C’);

rank(CA)

The numerical results are: the rank of the controllability matrix is 5; and
the rank of the observability matrix is 4. Hence, the state-space model is
controllable, but not observable. The eigenvalues of the system matrix are
0.6; 0.8; 0; 0; 0, where the first four eigenvalues are from the poles of the transfer
function (i.e. the system) while the last eigenvalue at 0 is from the extra state
variable used in the special realization.

Young and his colleagues (see Young et al., 1987, Wang and Young, 1988,
Chotai et al., 1998) have termed this special realization as non-minimal state-
space realization (NMSS). The terminology of non-minimal state-space real-
ization comes from the opposite of minimal realization. In Kailath (1980), a
realization (Am, Bm, Cm) is minimal if it has the smallest number of state
variables among all realizations having the same transfer function Gm(z) =
Cm(zI −Am)−1Bm. For a transfer function Gm(z), there could be many min-
imal realizations, but they share the same important properties. For instance,
a realization is minimal if and only if the denominator A(z) = det(zI − Am)
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and the numerator B(z) = CmAdj(zI − Am)Bm are relatively prime, where

Adj(.) denotes the adjugate matrix with (zI − Am)−1 = Adj(zI−Am)
det(zI−Am) . For a

single-input and single-output system, the smallest number of state variables
is equal to the order of denominator, which is the number of state variables
for a minimal realization. A realization (Am, Bm, Cm) is minimal if and only
if the pair (Am, Bm) is controllable and the pair (Cm, Am) is observable.

In a general term, a state-space model which does not have a minimal
realization is a non-minimal state-space (NMSS) model. However, what is of
interest to us is this special class of non-minimal state space realizations that
will utilize the input and output signals as the state-space variables, hence,
rendering the state variables measurable. In addition, the state variables in the
feedback configuration are similar to the classical predictive control systems
such as GPC and DMC.

We will present a state-space formulation of GPC using the special class of
state-space models. Generalized predictive control (GPC) is designed using a
transfer function model, with the assumption that the disturbance is a random
walk. Namely the disturbance d(k) is represented in the form that

d(k) =
1

1 − q−1
ǫ(k),

where ǫ(k) is a white noise signal. With this assumption, the incremental
control ∆u(k) is used as the signal to be optimized in the design and an
integrator is embedded in the structure of the predictive controller.

The non-minimal state-space model can also deal with disturbances by
incorporating disturbance models. With this formulation, an identical predic-
tive control system to GPC can be obtained in the framework of state-space.
The following example shows how to incorporate a random walk disturbance
into the non-minimal state-space model.

Example 9.2. Suppose that a discrete-time system is described by the dynamic
model

y(k) =
q−1 − 0.5q−2

1 − 1.6q−1 + 0.64q−2
u(k) +

1 − 1.6q−1 + 0.64q−2

1 − q−1
ǫ(k − 1), (9.5)

where q−1 is the backward shift operator and ǫ(k) is a white noise sequence;
y(k) and u(k) are the output and input signal. The disturbance to the system
contains an integrator. Find the state-space expression of the dynamic system
with input signal ∆u(k) and white noise input disturbance ǫ(k). Analyze the
eigenvalues and check controllability and observability of the model.

Solution. With the inverse filtering by the disturbance model, (9.5) becomes

(1− 1.6q−1 +0.64q−2)(1− q−1)y(k) = (q−1 − 0.5q−2)(1− q−1)u(k)+ ǫ(k− 1),
(9.6)

which is
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(1−2.6q−1 +2.24q−2−0.64q−3)y(k) = (q−1−0.5q−2)∆u(k)+ ǫ(k−1), (9.7)

where ∆u(k) = u(k) − u(k − 1). With y(k + 1) as the leading term, the
difference equation for (9.7) is

y(k+1) = 2.6y(k)−2.24y(k−1)+0.64y(k−2)+∆u(k)−0.5∆u(k−1)+ ǫ(k).
(9.8)

Choosing the state variable vector as

x(k) =
[
y(k) y(k − 1) y(k − 2) ∆u(k − 1)

]T
,

the state-space model is expressed as

⎡

⎢
⎢
⎣

y(k + 1)
y(k)

y(k − 1)
∆u(k)

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

2.6 −2.24 0.64 −0.5
1 0 0 0
0 1 0 0
0 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

y(k)
y(k − 1)
y(k − 2)

∆u(k − 1)

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

1
0
0
1

⎤

⎥
⎥
⎦

∆u(k) +

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦

ǫ(k)

y(k) =
[
1 0 0 0 0

]
x(k). (9.9)

By following the same procedure as in Example 9.1, we find that the NMSS
model is controllable, but not observable. The eigenvalues of the system matrix
are 0.8, 0.8, 1, 0. The eigenvalue at 1 comes from the incorporation of the
integrator, and 0 comes from the additional state variable associated with the
input delay.

9.2.2 General NMSS Structure for GPC Design

Once the problem is formulated in terms of a state-space model, the predic-
tive control using the receding horizon control principle is solved in terms of
the state-space model. The prediction horizon can be taken to infinity with
exponential data weighting, also a prescribed degree of stability can be incor-
porated in the design.

In the general discrete-time model, the input and output relationship is
described by the equation:

F (q−1)(1 − q−1)y(k) = H(q−1)∆u(k) + q−1ǫ(k), (9.10)

where the polynomials F (q−1) and H(q−1) are given in the following forms:

F (q−1) = 1 + f1q
−1 + f2q

−2 + . . . + fnq−n

H(q−1) = h1q
−1 + h2q

−2 + . . . + hnq−n.
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Let the polynomial F (q−1)(1 − q−1) be denoted by

F (q−1)(1 − q−1) = 1 + f̄1q
−1 + f̄2q

−2 + . . . + f̄n+1q
−(n+1).

Then, by choosing the state variable vector as

x(k) =
[
y(k) y(k − 1) . . . y(k − n − 1) ∆u(k − 1) . . . ∆u(k − n)

]T
,

the state-space model with non-minimal realization is expressed as

x(k + 1) = Ax(k) + B∆u(k) + Bdǫ(k)

y(k) = Cx(k), (9.11)

where A is a matrix of (2n + 1)× (2n + 1); B is a matrix of (2n + 1)× 1 and
C is 1 × (2n + 1). More specifically,

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−f̄1 −f̄2 . . . −f̄n−1 −f̄n h2 . . . hn−1 hn

1 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
... . . .

...
...

...
0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

. . .
. . .

...
...

0 0 . . . 0 0 0 . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h1

0
0
...
0
1
0
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

C =
[
1 0 0 . . . 0 0 0 0

]
; BT

d =
[
1 0 0 . . . 0 0 0 0

]
.

9.2.3 Generalized Predictive Control in State-space Formulation

After the state-space model is formulated, at sample time ki and for a given
initial condition x(ki), the prediction of the state variables is obtained for the
future sampling time m as

x(ki + m | ki) = Amx(ki) +

m−1∑

i=0

Am−i−1BL(i)T η

+

m−1∑

i=0

Am−i−1Bdǫ(ki + i | ki), (9.12)

where the parameter vector η comprises N Laguerre coefficients:

η =
[
c1 c2 . . . cN

]T
.

Note that the noise ǫ(k) is assumed to be a white noise sequence with zero
mean and the optimal prediction of a zero-mean white noise sequence is a
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zero sequence. Thus, effectively, the noise term vanishes from the prediction
equation (9.12) to yield

x(ki + m | ki) = Amx(ki) +

m−1∑

i=0

Am−i−1BL(i)T η. (9.13)

If the set-point signal is zero, for a large prediction horizon Np, the cost
function is chosen as

J =

Np∑

j=1

α−2jx(ki + j | ki)
T Qαx(ki + j | ki)

+

Np∑

j=0

α−2j∆u(ki + j)T Rα∆u(ki + j), (9.14)

where Q = CT C, α > 1, 0 < λ < 1; Qα and Rα satisfy

γ =
λ

α
(9.15)

Qα = γ2Q + (1 − γ2)P∞ (9.16)

Rα = γ2R. (9.17)

Here, P∞ is the solution of the Riccati equation:

AT

λ
[P∞ − P∞

B

λ
(R +

BT

λ
P∞

B

λ
)−1 BT

λ
P∞]

A

λ
+ Q − P∞ = 0,

where the matrices Â = α−1A and B̂ = α−1B. The optimal solution ∆u(.)
converges to the LQR solution with a prescribed degree of stability 0 < λ <
1, as discussed in Chapter 4. When constraints are imposed, the predictive
control problem is converted to an optimization of the objective function J
subject to a set of linear inequality constraints.

If the set-point signal r(k) �= 0, then the output variables, y(k), y(k − 1),
. . ., are replaced by the error signals y(k) − r(k), y(k − 1) − r(k − 1), . . .,
in the state variable vector x(k). 1 The form of the cost function remains
unchanged. Because of receding horizon control principle, the information for
set-point following is translated into initial conditions of the state variables
at the beginning of the optimization window.

Example 9.3. Use the same system as given in Example 9.2, where

y(k) =
q−1 − 0.5q−2

1 − 1.6q−1 + 0.64q−2
u(k) +

1 − 1.6q−1 + 0.64q−2

1 − q−1
ǫ(k − 1). (9.18)

1 The error signals are defined by subtracting the set-point signals from the outputs
and ensuring that negative state feedback is achieved.
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Choosing Q = CT C and R = 1, show that the predictive control system with
α = 1.2, Np = 46, a = 0.3 and N = 3 is a close approximation to the LQR
design. Simulate the predictive control system with unit set-point change and
demonstrate rejection of a constant input disturbance with unit amplitude.
Measurement noise with standard deviation of 0.01 is added to the output in
the simulation.

Solution. The feedback control gain vector using the MATLAB function
‘dlqr’ is

K = [1.7626 − 1.8848 0.5898 − 0.4608].

The predictive control is designed by minimizing the cost function:

J = ηT Ωη + 2ηT Ψx(ki),

where the data matrices Ω and Ψ are calculated using the results presented
in Chapters 3 and 4 as

Ω =

⎡

⎣

48.682 46.861 44.363
46.861 48.682 46.861
44.363 46.861 48.682

⎤

⎦ ; Ψ =

⎡

⎣

96.330 −138.411 51.325 −40.098
93.373 −137.046 51.376 −40.138
88.103 −131.483 49.799 −38.905

⎤

⎦ .

Thus, the feedback gain vector via the computation of predictive control is

Kmpc = L(0)T Ω−1Ψ = [1.7783 − 1.8723 0.5682 − 0.4439].

For this particular example, if the number of terms, N , in the Laguerre func-
tions increases from 3 to 4, the predictive control gain vector converges to the
underlying discrete-time LQR gain vector, where the computational result
shows that

Kmpc = [1.7626 − 1.8848 0.5898 − 0.4608].

Figure 9.1 shows the control signal and output response for the generalized
predictive control (GPC) system using the state-space formulation, in which
the unit set-point signal entered the system at k = 0 and the unit constant
input disturbance entered the system at k = 40. A white noise sequence was
added to the output to simulate measurement noise. From Figure 9.1b, we can
see that the output y has followed the set-point change without steady-state
error and the unit constant input disturbance has been rejected rapidly.

Note that in this formulation the exponential data weighting is used to
obtain a numerically well-conditioned solution. The condition number of the
Hessian matrix Ω is 152. In contrast, if we set α = 1, the data matrices Ω
and Ψ would take the values:

Ω =

⎡

⎣

1.0245 0.9946 0.9595
0.9946 0.9707 0.9408
0.9595 0.9408 0.9168

⎤

⎦ × 104
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Fig. 9.1. Generalized predictive control using state-space formulation

Ψ =

⎡

⎣

1.5107 −2.3981 0.9531 −0.7446
1.4651 −2.3293 0.9268 −0.7240
1.4120 −2.2480 0.8953 −0.6995

⎤

⎦ × 104.

The condition number of Ω is κ(Ω) = 12864, which clearly indicates that the
Hessian matrix is ill-conditioned.

9.3 Alternative Formulation to GPC

The non-minimal state-space model was derived based on the input-output
model (9.10), where the input to the model is ∆u and the output from the
model is y. This follows the GPC formulation using output y as the feedback
variable. Alternatively, the approaches introduced in the previous chapters
used the incremental of the state variables as part of the feedback signals,
namely ∆xm. The corresponding variables here are the ∆y variables. Both
approaches yield a similar closed-loop performance as long as the cost func-
tions are the same. However, there are a few advantages when using ∆y(k) as
part of the feedback signals. Firstly, when using ∆y(k) as part of the feedback
signal, then (9.10) becomes

F (q−1)∆y(k) = H(q−1)∆u(k) + ǫ(k). (9.19)

Thus the coefficients in the state-space model are directly related to the orig-
inal transfer function model. Also, the steady-state values of ∆y(k) are zero
for constant reference signals and disturbances, therefore ignored, leading to
convenience in implementation. Both advantages are even more significant for
a multi-input and multi-output system.

9.3.1 Alternative Formulation for SISO Systems

We assume that a z-transfer function is given by
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Gm(z) =
H(z)

F (z)
z−d, (9.20)

where the polynomial F (z) and H(z) are defined as

F (z) = zn + f1z
n−1 + . . . + fn

H(z) = h1z
n−1 + h2z

n−2 + . . . + hn.

As the number of time delays is counted as part of the model order in the
discrete-time system, the minimal realization of a state space model has the
number of state variables equal to n+d. However, in a non-minimal realization
by taking the state variables as

xm(k)T =
[
y(k) y(k − 1) . . . y(k − n + 1) u(k − 1) . . . u(k − n − d + 1)

]
,

the number of state variables is equal to 2n+d−1.2 With this choice of state
variables, we obtain the particular state-space realization as

xm(k + 1) = Amxm(k) + Bmu(k)

y(k) = Cmxm(k). (9.21)

The matrices Am, Bm, Cm are defined as the block matrices

Am =

[
A1 A2

A3 A4

]

; Bm =

[
B1

B2

]

; Cm =
[
C1 C2

]
,

where the matrix A1 has dimension n×n, A4 has the dimension (n+d−1)×
(n + d − 1), A2 has the dimension n × (n + d − 1), and A3 is a zero matrix
and has the dimension (n + d − 1) × n. More specifically, for d �= 0,

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−f1 −f2 . . . −fn−1 −fn

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
. . .

. . .
. . .

0 0 . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; A2 =

⎡

⎢
⎢
⎢
⎣

0 . . . h1 . . . hn

0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0

⎤

⎥
⎥
⎥
⎦

A4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
. . .

. . .
. . .

0 0 . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

B1 has the dimension n × 1 and B2 has the dimension (n + d − 1) × 1 with
the following forms:

2 Note that in the case that n = 1, the number of state variables in the NMSS is
equal to the number of states in the minimal realization.
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B1 =
[
0 0 . . . 0

]T
; B2 =

[
1 0 . . . 0

]T
,

C2 has the dimension 1× (n+d−1) and C1 has the dimension 1×n with the
form: C1 =

[
1 0 . . . 0

]
. When d = 0, there are differences in the matrices A2

and B1, where

A2 =

⎡

⎢
⎢
⎣

h2 h3 . . . hn−1 hn

0 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 0

⎤

⎥
⎥
⎦

; B1 =
[
h1 0 . . . 0

]T
.

With this NMSS model, the design and implementation of predictive control
systems that have been discussed in the previous chapters will be applicable.
When embedding an integrator into the NMSS model, as before, we obtain
the augmented state-space model as

x(k+1)
︷ ︸︸ ︷
[

∆xm(k + 1)
y(k + 1)

]

=

A
︷ ︸︸ ︷
[

Am oT
m

CmAm 1

]

x(k)
︷ ︸︸ ︷
[

∆xm(k)
y(k)

]

+

B
︷ ︸︸ ︷
[

Bm

CmBm

]

∆u(k)

y(k) =

C
︷ ︸︸ ︷
[
om 1

]
[

∆xm(k)
y(k)

]

. (9.22)

Because the state variable vector x(k) consists of ∆xm(k) and y(k), we can
assume its initial condition is zero when starting up the predictive control sys-
tem. Noting that the majority of the elements in x(k) are the shifted variables
from the previous x(k− 1), at sampling time k, it is only necessary to update
the ∆y(k), ∆u(k − 1) and the error y(k)− r(k). Thus, the implementation of
the predictive control system is quite simple.

9.3.2 Closed-loop Poles of the Predictive Control System

Because the matrix Am has the block upper triangular structure with A3

being a zero matrix, the eigenvalues of Am comprise the eigenvalues of A1

and the eigenvalues of A4. To calculate the eigenvalues of A1, we evaluate
det(λI − A1), by taking advantage of its special structure, which is

det(λI − A1) = λn + f1λ
n−1 + . . . + fn = 0.

This gives the n poles that are identical to the poles of the transfer func-

tion model H(z)
F (z) . Note that the matrix A4 is a special matrix, and has the

characteristic equation,

det(λI − A4) = λn+d−1 = 0,

whose solutions give the (n+d−1) poles located on the origin of the complex
plane. Here, the n + d − 1 poles include the poles from the time delay d and
the n − 1 poles from the non-minimal state space realization.



308 9 Classical MPC Systems in State-space Formulation

What is particularly of interest to us is that the n + d − 1 poles at λ = 0
are part of the closed-loop poles and cannot be changed by the predictive
control system, if we select the weight matrix Q = CT C. The simplest way
to illustrate this is to examine the closed-loop eigenvalues of the predictive
control through the root locus of DLQR. Assuming that the cost function is,
Np → ∞,

J =

Np∑

j=0

x(ki + j | ki)
T Qx(ki + j | ki)

+

Np∑

j=0

∆u(ki + j)T R∆u(ki + j), (9.23)

where the weights are R = rw, and Q = CT C, then, the closed-loop eigenval-
ues are the inside-the-unit-circle zeros of the equation,

ρ = 1 +
1

rw

Gnmss(z)Gnmss(z
−1)

(z − 1)(z−1 − 1)
= 0, (9.24)

where Gnmss = Cm(zI − Am)−1Bm. By going through the matrix computa-
tion, we will obtain the transfer function

Gnmss = Cm(zI − Am)−1Bm =
H(z)zn−1

F (z)zn−1
z−d. (9.25)

With (n − 1) pole and zero cancellation at the location z = 0, the original
transfer function Gm(z) returns. However, in order to find the locations of the
closed-loop eigenvalues, substituting (9.25) into (9.24), we obtain

ρ(z) =
zn−1z−(n−1)

[
rwF (z)F (z−1)(z − 1)(z−1 − 1)zdz−d + H(z)H(z−1)

]

rwF (z)F (z−1)(z − 1)(z−1 − 1)zdz−dzn−1z−(n−1)
.

(9.26)
The closed-loop eigenvalues of the predictive control system are the inside-the
-unit-circle zeros of the equation ρ(z) = 0.

There are two comments here. From (9.26), one set of the inside-the-unit-
circle zeros of the equation are the n − 1 zeros on the origin of the complex
plane that are from the non-minimal state space structure, which cannot be
changed by the predictive controller if we select Q = CT C. In addition, the
number of plant’s delay samples becomes the poles of the model, which cannot
be changed by closed-loop feedback control. Therefore, in total, there are
d + n − 1 eigenvalues on the origin of the complex plane, which cannot be
changed by the predictive controller. The rest of the closed-loop eigenvalues
are determined by the inside-unit-circle zeros of the equation

ρ̄(z) =
rwF (z)F (z−1)(z − 1)(z−1 − 1) + H(z)H(z−1)

rwF (z)F (z−1)(z − 1)(z−1 − 1)
. (9.27)
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Fig. 9.2. Dual root locus of predictive control system

Example 9.4. Suppose that a discrete-time system is described by the transfer
function

Gm(z) =
0.5z − 0.1

z2 − 1.8z + 0.6
z−3.

Determine the eigenvalues of the closed-loop predictive control system with
integral action as function of the weight rw by examining the zeros of (9.27),
where we assume that NMSS structure is used, and that Q = CT C.

Solution. Essentially, the polynomial equation needed for determining the
closed-loop eigenvalues is

rw(z2 + f1z + f2)(1 + f1z + f2z
2)(z − 1)(1− z) + z2(h1z + h2)(h1 + h2z) = 0.

This is a sixth-order polynomial which has six zeros. When rw varies from 0.01
to 20 with increment of 0.01, we compute the zeros of the polynomial equation
for each rw. The dual root locus is shown in Figure 9.2. It is seen that there
are three branches inside the unit circle and another three branches outside
the unit circle. The three branches outside the unit circle are the inverse of the
three branches inside the unit circle. The root locus of the predictive control
system are the three branches inside the unit circle. There are another four
closed-loop poles (= n + d − 1 = 4) at the origin of the complex plane which
cannot be changed by the control. We can use the root locus to determine the
rw according to the closed-loop pole locations, and we can also use the root
locus to determine the scaling factor of the Laguerre function a. For instance,
once we know the dominant closed-loop poles, we can choose a to be close to
these dominant poles so the number of terms N , required for optimal control,
is reduced.

Let us consider the case when rw = 20. From the root locus, the closed-
loop poles are at 0.7275 ± j0.1633, 0.4364, 0, 0, 0, 0. By choosing a = 0.7,
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N = 6, and Np = 38, the exponential weight α = 1.2, we calculate the Ω and
Ψ matrices, leading to the feedback predictive control gain matrix:

Kmpc = [6.1523 − 2.6683 0.9086 1.3351 1.9148 − 0.4447 0.1423],

which then returns the closed-loop eigenvalues of the actual predictive control
system (A − BKmpc) as

[0.7275± j0.1634 0.4365 0 0 0 0].

9.3.3 Transfer Function Interpretation

This state-space predictive control system design can also be interpreted in
terms of transfer functions. The interpretation will be particularly useful in
assessing the nominal performance of the model predictive control such as
gain and phase margins via frequency response analysis tools. We investigate
the example below.

Example 9.5. Assume that a discrete-time plant is represented by the transfer
function model:

G(z) =
h1z + h2

z2 + f1z + f2
z−3. (9.28)

Find the predictive control system configuration in terms of a transfer func-
tion form.

Solution. From (9.28), the difference equation that relates the input signal
u(k) to the output y(k) is

y(k) = −f1y(k − 1) − f2y(k − 2) + h1u(k − 4) + h2u(k − 5).

So, we define

x(k) = [∆y(k) ∆y(k − 1) ∆u(k − 1) ∆u(k − 2) ∆u(k − 3) ∆u(k − 4) y(k)]T ,

which leads to the augmented NMSS model:

x(k + 1) = Ax(k) + B∆u(k); y(k) = Cx(k),

where the matrices are

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−f1 −f2 0 0 h1 h2 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

−f1 −f2 0 0 h1 h2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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C =
[
0 0 0 0 0 0 1

]
.

With receding horizon control, we have

∆u(k) = −L(0)T Ω−1Ψx(k).

When introducing a set-point signal, the element y(k) in the state vector
x(k) is replaced by the error signal e(k) = y(k) − r(k). Explicitly, with the
predictive controller, without constraints, the difference of the control signal
is expressed as

∆u(k) = −
[
ky
1 ky

2 ku
1 ku

2 ku
3 ku

4 ke
]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆y(k)
∆y(k − 1)
∆u(k − 1)
∆u(k − 2)
∆u(k − 3)
∆u(k − 4)
y(k) − r(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By taking the z-transform of this difference equation, we obtain

(1 − z−1)U(z) = −(ku
1 z−1 + ku

2 z−2 + ku
3 z−3 + ku

4 z−4)(1 − z−1)U(z)

− (ky
1 + ky

2z−1)(1 − z−1)Y (z) − ke(Y (z) − R(z)). (9.29)

This gives the z-transform of the control signal

U(z) = − ke(Y (z) − R(z))

(1 − z−1)(1 + ku
1 z−1 + ku

2 z−2 + ku
3 z−3 + ku

4 z−4)

− (ky
1 + ky

2z−1)Y (z)

1 + ku
1 z−1 + ku

2 z−2 + ku
3 z−3 + ku

4 z−4
. (9.30)

Define the following polynomial functions:

L(z) = 1 + ku
1 z−1 + ku

2 z−2 + ku
3 z−3 + ku

4 z−4, P (z) = ky
1 + ky

2z−1.

Figure 9.3 shows the block diagram of the feedback control system structure.
It is clearly seen that the predictive control system has integral action and it
also has a two-degrees-of-freedom configuration.

Using the structure of the predictive controller in transfer function form, the
robustness of the closed-loop predictive control system can be analyzed. A
commonly known approach is to assess the stability margins of the control
system, such as gain margin and phase margin. The relevant information is
valuable in the design of a control system. The Nyquist plot is the frequency

response of the open-loop system G(z)C(z), where C(z) = ke

(1−z−1)L(z) + P (z)
L(z)

with z = ejω , 0 ≤ ω ≤ π.
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Fig. 9.3. Block diagram of feedback structure using NMSS

Example 9.6. Assume that the plant transfer function is

G(z) =
h1z + h2

z2 + f1z + f2
z−3

where h1 = 1, h2 = −0.1, f1 = −1.6, and f2 = 0.68. The design parameters
are a = 0.6, N = 8, Q = CT C, α = 1.2,Np = 38, R = 10. Present the Nyquist
plot of the predictive control system and evaluate its gain margin.

Solution. The gain matrix for the predictive control system is

Kmpc = [1.77 − 1.15 0.962 1.273 1.554 − 0.169 0.189].

The corresponding transfer function of the controller has

L(z) = 1 + 0.962z−1 + 1.273z−2 + 1.554z−3 − 0.169z−4

P (z) = 1.77 − 1.15z−1 ke = 0.189.

The roots of L(z) are at −1.1460, 0.0422± j1.2141, 0.1000, among which are
three poles outside the unit circle. Because the plant has all poles inside the
unit circle, in conjunction with the information of three unstable poles with
the controller, the Nyquist plot will encircle the (−1, 0) point three times
in a counter-clock wise manner, if the predictive control system is stable.
Figure 9.4a shows that the Nyquist plot of the predictive control system,
which indeed has done so. The gain margin is calculated as the inverse of
the magnitude of point A (=0.755), hence the system has a gain margin of
1/0.755 = 1.3245. With this information, we know that the predictive control
system can tolerate increasing plant gain to a maximum of 1.3245 times the
original gain before closed-loop instability occurs. Indeed, when we multiply
the original Nyquist plot by 1.3245, the inner branch of the Nyquist plot
touches the (−1, 0) point on the complex plane (see Figure 9.4b), which means
that the closed-loop predictive control system becomes marginally stable. This
result can also be confirmed through closed-loop simulation. Figure 9.5a shows
the nominal closed-loop predictive control system response for a unit set-point
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Fig. 9.4. Nyquist plot of predictive control system
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(a) Nominal closed-loop response
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gain increasing 1.3245 times

Fig. 9.5. Closed-loop predictive control system response

change. When multiplying the numerator of the plant model by 1.3245, the
closed-loop control system response exhibits sustained oscillation, as shown
in Figure 9.5b.

9.4 Extension to MIMO Systems

The extension of the predictive control to multi-input and multi-output sys-
tems is based on the formulation of non-minimal state-space models, where
the plant input and output variables as the state variables.
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9.4.1 MNSS Model for MIMO Systems

Consider that a multi-input and multi-output system is described by the dif-
ference equation,

y(k + 1) + F1y(k) + F2y(k − 1) + . . . + Fny(k − n + 1) =

H1u(k) + H2u(k − 1) + . . . + Hnu(k − n + 1). (9.31)

The state variable vector xm(k) is chosen as:

xm(k)T =
[
y(k)T . . . y(k − n + 1)T u(k − 1)T . . . u(k − n + 1)T

]
.

With this choice of state variables, we obtain the particular non-minimal
state-space realization as

xm(k + 1) = Amxm(k) + Bmu(k)

y(k) = Cmxm(k). (9.32)

The matrices Am, Bm, and Cm are defined as the block matrices

Am =

[
A1 A2

A3 A4

]

; Bm =

[
B1

B2

]

; Cm =
[
C1 C2

]

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−F1 −F2 . . . −Fn−1 −Fn

I o . . . o o
o I . . . o o
...

. . .
. . .

. . .
. . .

o o . . . I o

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; A2 =

⎡

⎢
⎢
⎣

H2 H3 . . . Hn−1 Hn

o o . . . o o
. . . . . . . . . . . . . . .
o o . . . o o

⎤

⎥
⎥
⎦

;

A4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

o o . . . o o
I o . . . o o
o I . . . o o
...

. . .
. . .

. . .
. . .

o o . . . I o

⎤

⎥
⎥
⎥
⎥
⎥
⎦

B1 =
[
H1 o . . . o

]T
; B2 =

[
I o . . . o

]T
; C1 =

[
I o . . . o

]
,

where A3 is a zero matrix, the o symbol denotes the zero matrices with ap-
propriate dimensions. We assume that the number of inputs is equal to the
number of outputs for notional simplicity, although the formulation is applica-
ble when the number of inputs is not equal to the number of outputs. When
the number of inputs is equal to the number of outputs (assuming m inputs
and m outputs), then I is the identity matrix of m × m and o is the zero
matrix of m × m. However, when the number of inputs is not equal to the
number of outputs, the dimensions of the zero matrices and identity matrices
need to be decided case by case. The following example illustrates how to do
this.
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Example 9.7. A dynamic system with two inputs and one output is described
by the difference equation

y(k + 1) = −f1y(k) − f2y(k − 1) +
[
h1 h2

]
[

u1(k)
u2(k)

]

+
[
g1 g2

]
[

u1(k − 1)
u2(k − 1)

]

.

Find the expression of the non-minimal state-space structure in the form of
equation (9.32).

Solution. Choosing the state variable vector

xm(k)T =
[
y(k) u1(k − 1) u2(k − 1)

]
,

then,

⎡

⎣

y(k + 1)
u1(k)
u2(k)

⎤

⎦ =

⎡

⎣

−f1 −f2 g1 g2 0
0 0 0 0 0
0 0 0 0 0

⎤

⎦

⎡

⎣

y(k)
u1(k − 1)
u2(k − 1)

⎤

⎦ +

⎡

⎣

h1 h2

1 0
0 1

⎤

⎦

[
u1(k)
u2(k)

]

.

(9.33)

9.4.2 Case Study of NMSS Predictive Control System

The mathematical model for a glasshouse micro-climate given by Young et al.
(1994) takes the form:

[
y1(k)
y2(k)

]

=

[
0.015z−1

1−0.905z−1 −0.077z−1

−0.058z−1

1−0.793z−1 0.753z−1

][
u1(k)
u2(k)

]

, (9.34)

where y1(k) is the air temperature, y2(k) is the relative humidity of the air,
u1(k) is the fractional valve aperture of the boiler and u2(k) is the mist spray-
ing system input. We will design and simulate a NMSS-based predictive con-
trol system with constraints.

In order to obtain the special form of state-space representation, we need to
convert the transfer function model (9.34) to the form of the difference equa-
tion by (9.31). Note that the transfer function model in (9.34 ) is equivalent
to

Gm(z) =

[
1 − .905z−1 0

0 1 − .793z−1

]−1 [
.015z−1 −.077z−1(1 − .905z−1)
−.058z−1 .753z−1(1 − .793z−1)

]

,

which is called a left matrix fraction description (LMFD) (Kalaith, 1980).
With this description, the original mathematical model is written as

[
1 − 0.905z−1 0

0 1 − 0.793z−1

] [
y1(k)
y2(k)

]

=

[
0.015z−1 −0.077z−1(1 − 0.905z−1)
−0.058z−1 0.753z−1(1 − 0.793z−1)

] [
u1(k)
u2(k)

]

,
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which then leads to the following difference equation
[

1 0
0 1

] [
y1(k)
y2(k)

]

+

[
−0.905 0

0 −0.793

] [
y1(k − 1)
y2(k − 1)

]

=

[
0.015 −0.077
−0.058 0.753

] [
u1(k − 1)
u2(k − 1)

]

+

[
0 0.07
0 −0.597

] [
u1(k − 2)
u2(k − 2)

]

. (9.35)

The augmented NMSS model is then obtained by choosing the state vari-

able vector as x(k) =
[
∆y1(k) ∆y2(k) ∆u1(k − 1) ∆u2(k − 1) y1(k) y2(k)

]T
,

input variable vector as ∆u(k) =
[
∆u1(k) ∆u2(k)

]T
and output vector as

y(k) =
[
y1(k) y2(k)

]T
, giving the form

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k). (9.36)

Here,

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.905 0 0.0 0.07 0 0
0 0.793 0 −0.597 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.905 0 0.0 0.07 1 0
0 0.793 0 −0.597 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.015 −0.077
−0.058 0.753

1 0
0 1

0.015 −0.077
−0.058 0.753

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

C =

[
0 0 0 0 1 0
0 0 0 0 0 1

]

.

The air temperature in the glasshouse is set to operate between 15◦C and 20◦C
respectively (15 ≤ y1(k) ≤ 20) and the relative humidity of the air is to be
maintained at 85% allowing ±0.85% variations (85−0.85 ≤ y2(k) ≤ 85+0.85
(percent)), the fractional valve aperture is allowed to vary between 20% and
60% (20 ≤ u1(k) ≤ 60) and the spray input is allowed to vary between 2 and 18
(mg/s) (2 ≤ u2(k) ≤ 18). In addition, the rates of changes for the control sig-
nals are constrained as: −1.03 ≤ ∆u1(k) ≤ 1.35 and −1.03 ≤ ∆u2(k) ≤ 1.15.
The design parameters in the NMSS-MPC scheme are specified as follows.
The Laguerre parameters for both input signals are chosen to be a1 = a2 = 0,
N1 = N2 = 4; the predictive horizon for the air temperature is chosen as
200 samples and the prediction horizon for the relative humidity is chosen
as 100 samples. The weight matrix on the error signal is the identity matrix
(Q = CT C) and on the control signal is also the identity matrix (R = I).

There are three cases being considered in the simulation studies. In all
three cases, the set-point signal r1 is a square wave, whose amplitude varies
between 15◦C and 20◦C and the set-point signal r2 is a constant.

Case A

A white noise sequence with standard deviation of 0.09 is added to the relative
humidity of the air to simulate measurement noise. Figure 9.6a and 9.6b show
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(a) Closed-loop control signal response.
Top figure: valve aperture (20 ≤
u1(k) ≤ 60 ); bottom figure: mist spray-
ing (2 ≤ u2(k) ≤ 18)
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(c) Closed-loop output response. Top
figure: air temperature (15 ≤ y1(k) ≤
20); bottom figure: relative humidity of
the air (85 − 0.85 ≤ y2(k) ≤ 85 + 0.85)

Fig. 9.6. Case A. Measurement noise added to the output

the control signal responses and constrained rates of change on both control
signals, respectively, while Figure 9.6c shows the constrained output responses.
The figures show that all the control objectives are met by operation of the
proposed NMSS-MPC control scheme.

Case B

A near non-stationary disturbance η(k) is added to the relative humidity of
the air, where

η(k) =
0.05q−1

1 − 0.9999q−1
ǫ(k), (9.37)
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and ǫ(k) is a white noise with zero mean and variance of 1. Here the near non-
stationary disturbance simulates a drift in the humidity of the air. Figures 9.7a
and 9.7b show the control signal responses and constrained rates of change on
both control signals, while Figure 9.7c shows the constrained output responses
respectively. It is interesting to note that with this near non-stationary distur-
bance, not only constraints on the rate of change on both control signals are
activated, but also the one on the amplitude of control signal u2 is activated.
Nevertheless, all control objectives are met.
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(a) Closed-loop control signal response.
top figure: valve aperture (20 ≤
u1(k) ≤ 60); bottom figure: mist spray-
ing (2 ≤ u2(k) ≤ 18)
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(b) Rate of changes in control signal re-
sponse. Top figure: rate of change for
valve aperture (−1.03 ≤ ∆u1(k) ≤
1.35); bottom figure: rate of change for
mist spraying (−1.03 ≤ ∆u2(k) ≤ 1.15)
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(c) Closed-loop output response. Top
figure: air temperature (15 ≤ y1(k) ≤
20 ); bottom figure: relative humidity of
the air (85 − 0.85 ≤ y2(k) ≤ 85 + 0.85)

Fig. 9.7. Case B. Non-stationary disturbance is added
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Case C

In the simulation environment of Case B, the robustness of the NMSS -MPC
system is examined. The simulated plant is assumed to have an increase of
steady state gain of 25%. Figures 9.8a to 9.8c show the closed-loop responses
with respect to operational constraints. The results indicate that the design
is robust with respect to a small modelling error in the steady-state gain.
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(a) Closed-loop control signal response.
Top figure: valve aperture (20 ≤
u1(k) ≤ 60 ); bottom figure: mist spray-
ing (2 ≤ u2(k) ≤ 18)
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(b) Rate of changes in control signal re-
sponse. Top figure: rate of change for
valve aperture (−1.03 ≤ ∆u1(k) ≤ 1.35
); bottom figure: rate of change for mist
spraying (−1.03 ≤ ∆u2(k) ≤ 1.15)
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(c) Closed-loop output response. Top
figure: air temperature (15 ≤ y1(k) ≤
20 ); bottom figure: relative humidity of
the air (85 − 0.85 ≤ y2(k) ≤ 85 + 0.85)

Fig. 9.8. Case C. Robustness is examined
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9.5 Continuous-time NMSS model

Suppose that a continuous-time system is represented by the input and output
Laplace transform relation:

A(s)Y (s) = B(s)U(s) +
C(s)

s
ξ(s), (9.38)

where
A(s) = sn + a1s

n−1 + . . . + an

B(s) = b1s
n−1 + b2s

n−2 + . . . + bn,

and the integrated noise model C(s)
s with C(s) being a stable polynomial with

order m and unit leading coefficient. The Laplace transforms of input, output,
and disturbance signals are U(s), Y (s), and ξ(s), respectively.

Since a continuous-time control system involves the derivatives of the plant
input and output signal, this operation would amplify the existing noise in the
system. For implementation purposes, a stable and all-pole filter is utilized

here in conjunction with the noise model C(s)
s . Let the implementation filter

be chosen as

F (s) =
tn

sn + t1sn−1 + t2sn−2 + . . . + tn

=
tn

T (s)
, (9.39)

where T (s) = C(s)E(s), and degree of E(s) = n−m, with E(s) being a stable
polynomial. Pre-filtering the input and output signal with F (s), (9.38) can be
re-written as

A(s)F (s)(sY (s)) = B(s)F (s)(sU(s)) +
tnξ(s)

E(s)
. (9.40)

The selection of F (0) = 1 maintains the same steady-state values of the filtered
input and output signals.

Let us define the filtered output signal as

yn
f (t) = L−1{F (s)snY (s)}

yn−1
f (t) = L−1{F (s)sn−1Y (s)}

...

yf(t) = L−1{F (s)Y (s)},
and the filtered input signal as

un
f (t) = L−1{F (s)snU(s)}

un−1
f (t) = L−1{F (s)sn−1U(s)}

...

uf (t) = L−1{F (s)U(s)},
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and the filtered disturbance as

ξf (t) = L−1{ tnξ(s)

E(s)
},

where L−1{.} denotes the inverse Laplace operator. Equation (9.40) can be
written in the time domain by the filtered input and output relation:

yn+1
f (t)+a1y

n
f (t)+ . . .+anẏf(t) = b1u

n
f (t)+ b2u

n−1
f (t)+ . . .+ bnu̇f (t)+ ξf (t).

(9.41)
The filtered input signal is related to the derivative of the actual control signal
u̇(t), through

un+1
f (t) = −t1u

n
f (t) − t2u

n−1
f (t) − . . . − tnu̇f(t) + tnu̇(t), (9.42)

while the derivative of the actual output signal ẏ(t) is related to the filtered
output signal yf (t) through

tnẏ(t) = (t1 − a1)y
n
f (t) + (t2 − a2)y

n−1
f (t) + . . . + (tn − an)ẏf (t)

+ b1u
n
f (t) + b2u

n−1
f (t) + . . . + bnu̇f(t) + ξf (t). (9.43)

The predictive control design relies on the use of (9.41), (9.42) and (9.43)
to generate the predicted output responses. In the continuous-time domain,
we compute prediction of the output by utilizing a non-minimal state-space
formulation.

The state vector is chosen as:

x(t)T =
[
yn

f (t) yn−1
f (t) . . . ẏf (t) un

f (t) un−1
f (t) . . . u̇f(t) y(t)

]
.

Then the model is defined as follows,

ẋ(t) = Ax(t) + Bu̇(t) + Emξf (t)

y(t) = Cx(t), (9.44)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a1 −a2 . . . −an−1 −an b1 . . . bn−1 bn 0
1 0 . . . 0 0 0 . . . 0 0 0
0 1 . . . 0 0 0 . . . 0 0 0
...

... . . .
...

... . . .
...

...
... 0

0 0 . . . 1 0 0 . . . 0 0 0
0 0 . . . 0 0 −t1 . . . −tn−1 −tn 0
0 0 . . . 0 0 1 . . . 0 0 0
...

... . . .
...

... . . .
...

...
...

...
0 0 . . . 0 0 0 . . . 1 0 0

t1−a1

tn

t2−a2

tn

t3−a3

tn
. . . tn−an

tn

b1
tn

b2
tn

. . . bn

tn
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...
0
tn
0
...
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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C =
[
0 0 0 . . . 0 0 0 . . . 0 1

]

Em =
[
1 0 0 . . . 0 0 0 . . . 0 1

tn

]
.

Note that for a given nth-order transfer function, this particular state-space
realization has dimension 2n + 1 that includes an augmented state variable
for integral action.

In the realization above, the pair (A, B) is controllable. The pair (A, C) is
not observable from the output, therefore, when the predictive control scheme
is chosen to optimize the output response, the unobservable modes in the
system are not to be changed by output feedback control. This is achieved in
the state feedback framework by choosing Q = CT C. In this case, the poles
of the polynomial F (s) form part of the full set of closed-loop poles.

The filtered plant input and output signals can be conveniently realized
using the well-known state variable filter framework, where to obtain the
derivatives of filtered output responses, a state variable vector Xy is defined
as

Xy(t) =
[
yn

f (t) yn−1
f (t) . . . ẏf (t)

]T
.

With the state-space model in a control canonical form, we have
⎡

⎢
⎢
⎢
⎢
⎣

dyn
f (t)

dt
dyn−1

f
(t)

dt
· · ·

dy1

f (t)

dt

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

−t1 −t2 . . . −tn
1 0 . . . 0

. . .
. . .

...
0 . . . 1 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

yn
f (t)

yn−1
f (t)

...
yf (t)

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

tn
0
...
0

⎤

⎥
⎥
⎥
⎦

ẏ(t)

= AF

⎡

⎢
⎢
⎣

yn
f (t)

yn−1
f (t)

· · ·
yf (t)

⎤

⎥
⎥
⎦

+ BF ẏ(t). (9.45)

The solution of the state-space equation (9.45), assuming zero initial condi-
tions, gives the derivatives of the filtered output responses. Similarly, define
a state vector of filtered control signal

Xu(t) =
[
un

f (t) un−1
f (t) . . . u1

f (t)
]T

.

These state variables satisfy the following differential equation, assuming zero
initial conditions

Ẋu(t) = AF Xu(t) + BF u̇(t). (9.46)

Up to this point, the plant model is assumed to be a single-input, single-
output system. For a multi-input, multi-output system, by assuming that the
number of inputs equals the number of outputs, a left matrix fraction (LMF)
representation of input and output relationship leads to a similar expression
of continuous-time state space structure as in (9.44). It is worthwhile to men-
tion that the coefficient matrices ti, i = 1, 2, . . . , n are chosen to be diagonal
matrices in the case of a multi-input and multi-output system.
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9.6 Case Studies for Continuous-time MPC

The continuous-time NMSS based MPC is a special case of the general design
of continuous-time MPC using Laguerre functions. The central idea is that
instead of assuming that the state variables at time ti are not available, the
continuous-time NMSS model provides the realization of the state variables
through filtered measurement of plant input and output signals, hence, the use
of an observer is avoided. The entire design framework proposed in Chapters
6, 7 and 8 is carried through to the current chapter. Here, we will focus on
the special issues raised by the continuous-time state-space structure.

The Role of Filter F (s)

The filter F (s) used in the continuous-time MPC plays an important role in de-
termining the performance of the closed-loop system. Because the continuous-
time state-space model is not observable, by choosing the cost function as the
minimization of the integral squared output error, the poles of F (s) are a sub-
set of the closed-loop poles, hence their locations can be selected in conjunc-
tion with the consideration of dynamic response speed, disturbance rejection,
and robustness of the closed-loop MPC system. The example considered in
this section illustrates the effect of the filter parameters on these important
properties of the control system.

Consider an unstable system with the continuous-time transfer function

G(s) =
1

(s2 − 2s + 2)(s + 5)
, (9.47)

and a sampling interval for control of 0.0004 sec. The very small sampling
interval is used in the simulation study to attain numerical stability in the
environment of discrete simulation. This system has a pair of complex poles
at s = 1 ± j. In the design of predictive control, the weight matrices in the
cost function are selected as Q = CT C and R = 0.01. The selection of Q
and R ensures that the dominant closed-loop poles of the predictive control
are close to s = −1 ± j. Based on this observation, the scaling factor in the
Laguerre function is selected as p = 0.8, and the number of terms N is selected
to be 4. The prediction horizon is selected approximately as 10/p = 12.5,
approximately 10 times the dominant time constant of Laguerre functions. By
doing so, the Laguerre functions approximate the underlying optimal control
trajectory closely. The four closed-loop poles that result from the predictive
control design are

[
−4.9999 −1.1008± j0.6805 −0.9328

]
.

The first three closed-loop poles are an approximation of the optimal closed-
loop poles of a linear quadratic regulator in a high gain situation (R = 0.01).
Therefore, when constraints are not imposed, there is little scope for further
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improvement in the speed of response by employing different design parame-
ters in the predictive control component. Instead, we vary the locations of
the filter poles and obtain different types of closed-loop behaviour. In order
to compare the performance with different filter settings, four cases are ex-
amined: Case A represents the case of slow filter dynamic response where the
three poles of the filter are selected to be −1,−1.2,−1.3; Case B where the
filter dynamic response is made more rapid by increasing the negativity of
the three poles to −5,−5.2,−5.3; Case C where the negativity of the three
poles is increased further to −10, −10.2, −10.3; Case D represents the case
of fastest filter dynamic response where the poles of the filter are selected
as −50, −50.2, −50.3. Table 9.1 gives the details of the closed-loop poles for
these four cases. It shows that, as pointed out previously, the closed-loop poles
consist of predictive control poles and the filter poles. Table 9.2 shows that

Table 9.1. Closed-loop poles

Closed-loop poles

Case A −1,−1.2,−1.3, −4.99, −1.1008 ± j0.6805, −0.9328

Case B −5,−5.2,−5.3, −4.99, −1.1008 ± j0.6805, −0.9328

Case C −10, −10.2, −10.3, −4.99, −1.1008 ± j0.6805, −0.9328

Case D −50, −50.2, −50.3, −4.99, −1.1008 ± j0.6805, −0.9328

the feedback controller gains all change with the location of the filter poles,
except the gain related to the output signal y(t). The closed-loop responses
for cases A, B and C are compared in Figure 9.9 where a unit set-point signal
is applied at time t = 0, and a constant, unit input disturbance enters the
system at t = 19 sec. This demonstrates that the nominal set-point response
is independent of the filter pole locations, however, the disturbance rejection
speed is largely dependent on these locations. As expected, the closed-loop
MPC system has a faster disturbance rejection speed when the filter poles are
faster. This means that the filter pole locations can be used as very effective
closed-loop tuning parameters.

Table 9.2. State feedback controller gains

State Feedback Control Gain

Case A 69.8698, 262.4908, −490.5861, 3.2913, 19.2099, 50.0790, 7.8113

Case B 13.8153, 62.2304, −34.2297 0.0373, 0.6646, 4.4434, 7.8113

Case C 9.1177, 43.8322, −8.5769 0.0049, 0.1605, 1.8781, 7.8113

Case D 5.8700, 30.5201, 6.9898 0.0000, 0.0062, 0.3215, 7.8113

Since the filter pole locations affect the gain of the closed-loop control
system, they directly affect the robustness of the MPC system. In order to
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Fig. 9.9. Plant output y(t) (top figure) for Cases A, B and C; and control signal
u(t) (bottom figure) for Cases A, B and C

examine this, we reduce the plant gain by 20 percent (i.e., multiply by a factor
of 0.8) and simulate the closed-loop response for all the above cases. Figure
9.10 shows the closed-loop response for Cases B, C, and D. The closed- loop
system actually becomes unstable for Case A where the filter poles are located
at −1,−1.2,−1.3, so this is not shown in the figure. As expected, therefore,
the closed-loop system has a better tolerance to the model-plant mismatch for
the higher feedback gains that are induced by selection of faster responding
filter dynamics (see Figure 9.10). This result is consistent with the previous
results reported in connection with linear robust control of unstable systems
(Wang et al., 1999, Wang and Goodwin, 2000).

The locations of the filter poles play an important role in defining the
characteristics of disturbance rejection and noise attenuation in the predic-
tive control system. It has been demonstrated that faster filter dynamics give
rise to a higher rate of response to disturbance inputs (see Figure 9.9). How-
ever, the fast filter dynamics will tend to amplify the effects of measurement
noise in the system. In order to illustrate this, Case C is compared with Case
D in simulation studies where integrated white noise is added to the input,
while a discrete white noise is added to the output. The control objective is
to maintain the output signal at the steady state value (unity). Figure 9.11
compares the output and control signal responses in the presence of these
stochastic disturbances. Again, as expected, this demonstrates that although
the disturbance rejection response is slower when the filter poles are at the
vicinity of s = −10, the control signal is much less affected by the measure-
ment noise than when they are selected at around s = −50 and so is more
acceptable in practical terms.
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Fig. 9.10. Plant output y(t) (top figure) for Cases B,C and D; and control signal
u(t) (bottom figure) for Cases B, C and D
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Fig. 9.11. Effect of filter dynamics on disturbance rejection and noise attenuation

9.7 Predictive Control Using Impulse Response Models

The key feature of the dynamic matrix control (DMC) algorithm, different
from GPC, is the use of non-parametric models in its design. Non-parametric
models are typically step response models or impulse response models, both
having been widely used in the process industries. Both algorithms solve for
∆u by minimizing the predicted errors between the set-point signal and the
output signal. Plant operational constraints are included as inequality con-
straints in the numerical solutions.

There are a few reasons from a practitioner’s viewpoint why a step response
model or an impulse response model is desirable. A unit step response model
reveals a plant time constant, time-delay and gain in a transparent way. For
example, these parameters can be determined directly via a graphical display.
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For this reason alone, step response tests are widely used by process engineers
as the first step to access plant information. However, if the disturbances in
the plant contain significant low frequency components, and the plant has
many inputs and outputs and a long response time, the test by itself often
does not yield a sufficiently accurate plant model for predictive control design
purposes. Under these circumstances, a more rigorous dynamic test is carried
out to estimate a mathematical model for predictive control design using tools
from system identification. It is often the case that the finite impulse response
(FIR) models are directly estimated from plant test data, which are then easily
converted to step response models. The plant output is typically expressed via
an FIR model as

y(k) = h1u(k − 1) + h2u(k − 2) + . . . + hnu(k − n) +
ǫ(k)

1 − q−1
, (9.48)

where the model coefficients, h1, h2, . . ., hn form the response of a unit impulse
input with sampling instant at k = 0, 1, . . . , n. If there are d samples of time
delay, then the first d coefficients will be zero. Parameter n is the number of
the parameters included in the model, which is often estimated using the rule
n ≈ Ts

∆t , where Ts is the plant settling time and ∆t is the sampling interval.
For instance, if Ts is about 100 sec, and the sampling interval is 1 sec, then
the estimated n is 100, meaning that there will be 100 parameters required
to capture the dynamic response via an FIR model or equivalently, a step
response model.

Because the FIR models contain input-only variables (right hand side of
(9.48)), which will form a linear regressor that has only input variables, a
simple least squares algorithm will produce consistent estimation results from
open-loop test data, under mild statistical conditions (see Ljung, 1999). In
addition, the FIR model structure requires less a priori information than
the general transfer function models. For instance, a general transfer function
model requires the information of time delay and model order. Furthermore, a
mismatch of a general transfer function model structure could cause bias in the
estimated parameters. In contrast, an FIR model only needs the information
of settling time which is often available or easy to identify. These advantages
of FIR become even more relevant for a complex situation when the plant has
many input and output variables and has complicated dynamic responses due
to interactions and inner-loop feedback and feedforward.

For these reasons and arguments, FIR types of models have been used
in classical dynamic matrix control, and gained acceptance in the process
industry for the past three decades.

When a FIR model is obtained, the corresponding non-minimal state-space
model is expressed as a special case in Section 9.3, where the denominator
takes the form F (z) = I, I is the identity matrix. However, the number of
terms for the H(z) is increased to cover the dynamic response of the plant.
Thus all the ∆y(.) terms vanish from the state variable vector. Instead, the
state vector takes the form:
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x(k) =
[
∆u(k − 1)T ∆u(k − 2)T . . . ∆u(k − n)T y(k)T

]
.

The plant information at sampling time ki is captured by the current mea-
surement y(ki) and the past ∆u(k − 1), ∆u(k − 2), . . ., ∆u(k − n).

There are a few remarks to be made at this point. Although there are
many advantages in using a FIR model in the step of model identification, the
advantages apparently are lost when using the estimated FIR model directly
for predictive control design. It is seen that in order to capture the plant
information at time ki, the state variable vector x(ki) requires all the past
incremental control signals up to the model order n. The dimensionality of
x(ki) could be very large if the system is in a fast sampling environment
(∆t is small). The consequence of a large model dimension is the increase of
computational load in real time. Another disadvantage of the direct use of a
FIR model is that although the bias of the estimated parameter vector is small,
the variances could be larger than those from a model identified in a compact
transfer function form. Larger variances are typically reflected in a non-smooth
behaviour in the impulse response constructed from the model coefficients.
These random errors in a high dimensional matrix could be amplified in the
computation of predictive control gain matrices.

In order to reach a compromise between the FIR model and a compact
transfer function model with denominator and numerator, we need to use a
more general class of input-only variable models. The Laguerre models are
selected for this purpose. This class of models can be used to replace a FIR
model with an appropriate scaling factor to improve its efficiency. We briefly
mentioned this previously in Chapter 3. In this regard, suppose that the im-
pulse response of a stable system is h(k), then with a given number of terms
N , h(k) is written as (see Chapter 3)

h(k) = c1l1(k) + c2l2(k) + . . . + cN lN (k). (9.49)

Choosing the state variable vector xm(k) as the filtered input u(k) by the
Laguerre networks, with an arbitrary input signal u(k), the output signal
y(k) is

xm(k + 1) = Alxm(k) + Blu(k) (9.50)

y(k) = Clxm(k), (9.51)

where

Al =

⎡

⎢
⎢
⎢
⎢
⎣

ap 0 0 0 0
βp ap 0 0 0

−apβp βp ap 0 0
a2

pβp −apβp βp ap 0
−a3

pβp a2
pβp −apβp βp ap

⎤

⎥
⎥
⎥
⎥
⎦

Bl =
√

(1 − a2
p)

[
1 −ap a2

p −a3
p a4

p

]
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Cl =
[
c1 c2 c3 c4 c5

]
.

Parameter ap is the scaling factor, βp = 1− a2
p and N = 5 for this case. Note

that the subscript p is used for the scaling factor so as to differentiate this
dynamic model from the general design framework of MPC using Laguerre
functions.

By using similar manipulation as before, the augmented state-space model
is expressed as

x(k + 1) = Ax(k) + B∆u(k), (9.52)

where

x(k) =

[
∆xm(k)

y(k)

]

; A =

[
Al oT

m

ClAl 1

]

; B =

[
Bl

ClBl

]

; C =
[
om 1

]
,

oT
m is a zero column vector with its dimension equal to that of xm(k).

Note that in this formulation, the state variable vector x(k) is available
from the measurement of the output y(k) and the optimal incremental control
∆u(k). Thus, there is no need for an observer in the implementation. More
precisely, the following equation is used to generate the feedback variable
∆x(k):

∆xm(k + 1) = Al∆xm(k) + Bl∆u(k), (9.53)

where the initial condition of ∆xm(k) at k = 0 is assumed to be a zero vector.
The plant information at the beginning of the optimization window (sample
time ki) is captured by the state variable ∆xm(ki) (see (9.53)) and the current
measurement of the output signal y(ki). The design framework in discrete-time
MPC is carried over to the special case where the state variables are selected
as filtered responses of the ∆u(k) and the output y(k). This realization is
directly associated with the advantages of using this type of dynamic models
in system identification.

The discrete Laguerre model structure has been used in adaptive control
(Zervos and Dumont, 1988) and predictive control (see Finn et. al., 1993).
Those who are interested in finding plant step response models can follow the
two-step approach in Wang et al. (2003) where the first step was to compress
the plant test data to step responses of sub-systems, followed by a second
step of fitting each step response with a Laguerre model which will smooth
the response, reduce variances and the dimension of the subsystem model.
The second step was discussed in Wang and Cluett (2000).

9.8 Summary

This chapter has re-visited classical model predictive control using a state-
space formulation. The classical model predictive control systems such as
GPC and DMC directly utilize plant input and output information in their
feedback structures and avoid the use of an observer in the implementation.
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By using non-minimal state-space realizations in both continuous-time and
discrete-time domains, these classical model predictive control systems are
re-formulated in terms of a state-space model. Because of the state-space for-
mulation, all the previous design and analysis in both continuous time and
discrete time can be carried through to the classical predictive control systems,
including guaranteed asymptotic stability and numerically a well-conditioned
solution with exponential weighting.

In addition, these non-minimal state-space realizations lead to simplified
design procedures that do not require the design and implementation of ob-
servers. In discrete time, it is not necessary to filter the input and output
variables, as demonstrated in the chapter. However, if there is severe noise
present in the system, a noise filter can be implemented to reduce the effect
of high frequency noise, by following the same procedure as the introduction
of a continuous-time filter in the continuous-time formulations presented. In
continuous time, it is necessary to use an implementation filter to avoid dif-
ferentiation of the input and output measurement variables. The filter poles
become part of the closed-loop poles by choosing the weight matrix Q = CT C
in the cost function in predictive control. This is convenient because the filter
design problem is solved in a much easier manner than the one where an ob-
server is used. It is worthwhile to mention that for a discrete-time single-input
and single-output system, using the NMSS realization, the implementation of
a predictive control system with constraints is in fact easy. The tuning of the
predictive control system is also straightforward.

The initial idea of using the NMSS model in the design of a discrete-time
MPC system was published in Wang and Young (2006) and the continuous-
time counterpart was published in Wang et al., (2009).

Problems

9.1. A dynamic system model is often estimated from plant input and output
experimental data. Assume that a discrete-time transfer function is estimated
from a set of experimental data with the following form:

G(z) =
z − 0.1

(z − 0.8 + j0.1)(z − 0.8 − j0.1)
z−3.

The system is known to have a disturbance in the nature of random walk,
which is described by

d(k) =
0.005ǫ(k)

1 − 0.999z−1
,

where ǫ(k) is white noise with zero mean and unity variance.

1. Choose the state vector xm(k) = [y(k) y(k − 1) u(k − 1) u(k − 2) u(k −
3) u(k − 4)]T , and obtain the discrete-time NMSS model. Augment this
NMSS model with an integrator.
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2. Design a predictive control system that contains an integrator. The weight
matrices in the cost function are chosen as: Q = CT C where C is the
output matrix of the augmented state-space model, R = 1. The prediction
horizon Np = 48 and the exponential weight factor α = 1.2 to produce a
numerically sound solution. The parameters in the Laguerre functions are
a = 0.6 and N = 6.

3. Simulate closed-loop performance of this predictive control system with
d(k) added to the input signal.

9.2. Continue from Problem 9.1. Suppose that the plant output is given a
set-point change at the simulation time k = 20, with the input disturbance
assumed present at all simulation time. The system operational constraints
are

−0.2 ≤ ∆u(k) ≤ 0.2; 0 ≤ u(k) ≤ 0.25;−0.2 ≤ y(k) ≤ 1.2.

Impose the constraints and demonstrate a model predictive control designed
using the discrete-time NMSS model structure.

9.3. Frequency response analysis of a feedback control system provides valu-
able information about the robustness of the closed-loop system. When using
the NMSS structure, because the feedback variables are directly linked to
the plant input and output signals, the predictive controller, without impos-
ing constraints, can be expressed in a polynomial form: u(z) = −C(z)y(z). A
Nyquist plot is the graphical presentation of the open-loop frequency response
of a control system (Goodwin et al. 2000). Here the open-loop frequency re-
sponse is G(ejw)C(ejw), where 0 ≤ w ≤ π. Generate a Nyquist plot for the
predictive control system designed in Problem 9.1. What are the gain and
phase margins for this predictive control system? Validate your answers using
closed-loop simulation.

9.4. A continuous-time NMSS model is used for the design of a continuous-
time predictive control in the state-space formulation. A continuous-time sys-
tem is described by a transfer function model:

G(s) =
2

(10s + 1)3
. (9.54)

Design and implement a continuous-time predictive control system that will
follow a step set-point signal and reject a step input disturbance. The weight
matrices in the cost function are chosen as Q = CT C, where C is the output
matrix of the augmented model, R = 1. The parameters for the Laguerre
functions are p = 1 and N = 3. The prediction horizon Tp = 20 and the
exponential weight factor α = 0.5. The filter poles are tuning parameters,
which are often set according to the response speed of disturbance rejection.
Choose the filter poles as −0.1 for slow response; −1 as medium response
speed; and −5 as fast response speed. Simulate the closed-loop performance
of the predictive control system with a unit set-point change at t = 0 and a
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unit input step disturbance at t = 20. The sampling interval is ∆t = 0.001 for
the simulation.

9.5. A continuous-time predictive control system has advantages over its
discrete-time counterpart when the system operates in a fast sampling en-
vironment. A continuous-time predictive control system is designed using a
continuous-time model, and the discretization occurs at the final implementa-
tion stage. In contrast, a discrete-time system is designed using a discrete-time
model so the discretization occurs at the beginning of the design. Discretize
the continuous-time transfer function model (9.54) given in Problem 9.4 using
sampling interval ∆t = 0.001 to obtain the corresponding z-transfer function
G(z). With such a fast sampling rate, what happens to the parameters in
G(z)? Design a discrete-time NMSS model predictive control system based
on G(z). Choose all the performance parameters as you desire with the aim
to match the closed-loop performance of a continuous-time NMSS predictive
control system. What are the difficulties for design and implementation of a
discrete-time predictive control system in a fast sampling environment?

9.6. Step response or impulse response models are flexible in nature. They are
often used in the process industry for describing complex dynamic systems.
Consider the process given by the transfer function (Wang and Cluett, 2000)

G(s) =
KpR(τ2s + 1)e−d1s

(τ1s + 1)(τ2s + 1 − (1 − R)e−d2s)
, (9.55)

where d1 = 45, d2 = 75, Kp = 0.8, R = 0.6, τ1 = 5 and τ2 = 10. This transfer
function was obtained for a process that has a recycle stream. Choosing
∆t = 3, obtain the set of impulse response coefficients for this system
(SIMULINK simulation can be used to obtain the impulse response). De-
sign a discrete-time NMSS predictive control system for this recycle plant.
The weight matrices in the cost function are Q = CT C, and R = 1, where C
is the output matrix of the augmented model. The parameters in the Laguerre
functions are a = 0.2 and N = 6. The prediction horizon is Np = 100 with
exponential weight factor α = 1.2. Assuming a unit step set-point change at
k = 0 and a unit step input disturbance at k = 100, simulate the nominal
closed-loop response of this predictive control system. Determine whether the
closed-loop system will be stable when it is implemented on the original plant
by examining the Nyquist plot of the predictive controller and the original
plant model (the recycle system).
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Implementation of Predictive Control Systems

10.1 Introduction

This chapter presents three different implementation procedures for model
predictive control systems. The first implementation is based on a micro-
controller (low cost) for controlling a DC motor. In this application, the
MATLAB� design programs, ‘mpc.m’ and associated functions, are utilized
to calculate the predictive controller gain and the previous MATLAB closed-
loop simulation program is converted to a C program for real-time imple-
mentation on the micro-controller. The procedure is straightforward for those
who understand C language. The second implementation is based on MAT-
LAB Real-time Workshop and xPC target. This application is very useful for
those who are not familiar with C language because the MATLAB Real-time
Workshop and xPC target perform the conversion from MATLAB programs
to C programs through the compilers in a systematic way. With these tools,
we only need to create MATLAB embedded functions for the real-time appli-
cations. The third implementation uses the platform of a real-time PC-based
supervisory control and data acquisition (SCADA) system. A pilot food extru-
sion plant is controlled by the continuous-time predictive controller developed
in Chapter 6. In this application, the MATLAB program ‘cmpc.m’ is used to
generate the predictive controller gain and the previous MATLAB closed-loop
simulation program for a continuous-time system is converted to a C program
for the real-time implementation.

10.2 Predictive Control of DC Motor Using a

Micro-controller

In this application, a pair of low-cost brushed DC motors are used to control
the elevation and azimuth angles of a solar concentrator used for electrical
power generation. The concentrator requires very precise positional control to
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enable the Sun’s energy to be constantly and accurately focused onto a photo
voltaic array. Most of the concentrator’s movements are slow (nominally 15
degrees per hour) and predictable, however under emergency conditions the
concentrator will be required to move relatively rapidly (full motor RPM).1

10.2.1 Hardware Configuration

The core controller is a low-cost microchip single chip digital signal processor
(DSP). The chosen part is DSPIC30F6014 that contains a 16 bit processor,
and has multiple on-chip pulse width modulations (PWMs). Figure 10.1 shows
a photograph of the 2-axis controller. Note that this unit also provides data-
logging functions, and therefore has other unrelated hardware. Apart from
the Microchip or DSP, the plant in the study is a DC motor. A photograph
of the combined motor, encoder and gear head is shown in Figure 10.2. Note
the encoder, which consists of a pair of hall effect sensors, and a multi-pole
circular magnet.

Fig. 10.1. Micro-controller

1 Mr Stephen Gale, in Elektrika and RMIT, designed and implemented the hard-
ware and software for this low-cost MPC application. The total cost of the core
micro-control system was about 12 US dollars.
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Fig. 10.2. DC motor

Functionalities of the Micro-controller

In the configuration, the following tasks are performed by the micro-controller.

1. Compute the required concentrator position in terms of encoder counts.
2. Read the 2-bit discrete output of a pair of digital shaft encoders, and

convert the outputs to shaft position.
3. Compute the latest motor commands using the discrete-time model pre-

dictive algorithm described in Chapter 3.
4. Convert the motor command to a set of variable pulse width signals.
5. Amplify the PWMs output to provide a bipolar 0 to 24 V signal at up to

5 A.
6. Provide a serial communications link to enable the effectiveness of the

control scheme to be evaluated.

Some of the functions are performed in software. In particular, this DSP does
not have an in-built counter to convert the two phase encoder signal from
the encoder into a count value. Instead, the DSP was programmed to jump
to an interrupt routine on a change of state of either of the encoder outputs.
A look-up table was then used to determine if the software encoder counter
needs to be incremented or decremented. The DSP has on-chip PWMs which
are used to drive the lower halves of each of the H bridges. A software routine
determines which arm of the bridge is to be driven, and which high-side driver
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is required to be enabled, depending on the intended direction of travel. A
current shunt in series with the low side driver pairs is coupled to an amplifier
and applied to the DSPs on-chip analogue to digital converter (ADC) so that
current feedback can be employed if required. This was not used in this series
of experiments.

Finally, the DSPs serial port was configured to output real-time measure-
ment data. A National Instruments LabView application was created to accept
this data and create the performance plots shown later.

10.2.2 Model Development

Several model structures are available to capture the motor’s electrical equiv-
alent circuit. The simplest model has a first-order plus integrator structure:

Gm(s) =
Kp

s(τps + 1)
, (10.1)

where the output is angular position, Kp is the gain and τp is the time constant
related to the mechanical part of the motor. A sample interval of ∆t = 20
ms was selected as a starting point. Here, the sample interval was chosen
as a compromise between the position encoder accuracy response and the
controller response time. In other words, for an excessively short sampling
interval, if the motor is turning slowly, the encoder will have changed very
little or not at all, resulting in undesirably large steps in the calculated motor
command. Other sampling intervals of 10 ms and 50 ms were later tested,
however, the original choice provided the smoothest response.

To estimate the gain term Kp and the time constant τp, an experiment
was set up to provide the motor with a square wave control input, oscillating
between 25 percent and 75 percent of full scale. Note for this PWM and soft-
ware and hardware configuration, a control input of 100 percent corresponds
to an input value of 4000 counts. In addition, to reverse the motor and drive
it at 100 percent speed, a value of −4000 is used. A separate routine selects
the required PWM and selects the correct control signal that corresponds to
the desired high-side driver.

Figure 10.3 shows the angular velocity as seen by the encoder with the 25
to 75 percent PWM command. From this, we estimate the gain term to be
approximately Kp = 0.0125/0.02. Because the number of samples to steady
state is about 30 for increasing the speed and 50 samples for decelerating, the
response time is about 30 × 20 = 600 ms for acceleration and 50× 20 = 1000
ms for deceleration. This motor accelerates faster than it decelerates. Since
in our application of position control we are more interested in the motor’s
ability to stop in the correct position, the time constant was determined from
the decelerating side of the curve. Thus, the time constant τp = 1000

5 = 200
ms = 0.2 s, which is about one-fifth of the step response time.
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Fig. 10.3. Step response test of motor dynamics

10.2.3 DMPC Tuning

The discrete-time model predictive control system uses the non-minimal state-
space model as in Chapter 9 where the plant input and output are selected as
state-variables, hence avoiding use of an observer. The design has also been
discussed in Section 3.8 to demonstrate the closed-form solution for single-
input and single-output system.

The z-transfer function for the motor is obtained using a sampling interval
of 0.02 (sec) with zero-order hold, as

G(z) =
(0.6047z + 0.5849)× 10−3

z2 − 1.9048z + 0.9048
, (10.2)

where MATLAB function c2dm is used.
The state variable x(k) is chosen to contain the plant input and output

variables as
x(k) = [∆y(k) ∆y(k − 1) ∆u(k − 1) y(k)]T ,

then, following from Chapter 9, the augmented NMSS model is defined as

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k), (10.3)

where the matrices A, B, C are
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Fig. 10.4. PI controller with anti-windup mechanism

A =

⎡

⎢
⎢
⎣

1.9048 −0.9048 0.0006 0
1 0 0 0
0 0 0 0

1.9048 −0.9048 0.0006 1

⎤

⎥
⎥
⎦

; B =

⎡

⎢
⎢
⎣

0.0006
0
1

0.0006

⎤

⎥
⎥
⎦

C = [0 0 0 1].

The closed-loop response speed is not critical, however, overshoot in output
response is not desirable. Therefore, in the design of MPC, the parameters in
the Laguerre functions are selected to reflect this requirement with a = 0.95
and N = 1, which restricts the incremental of the control signal to behave
like a first order system response. A prediction horizon Np = 30 is used in the
design. The weight matrices in the cost function are chosen as Q = CT C and
RL = 0.3, leading to the cost function:

J =

Np∑

m=1

x(ki + m | ki)
T Qx(ki + m | ki) + ηT RLη. (10.4)

Here, RL is used as part of the performance tuning parameters.

10.2.4 DMPC Implementation

The programs for implementation are written in C language to suit the Micro-
controller. Although MATLAB has a compiler that can convert MATLAB
programs into C language, in this application, we directly write the real-time
executable programs using C Language.

For a SISO system, the majority of the controllers used in industries are
PID controllers. The main reason behind the success of PID controllers is
the simplicity of the design and implementation. It is useful that we make a
comparison between the MPC with NMSS structure and PID controllers.

PID controllers are implemented with an anti-windup mechanism to deal
with hard constraints on control signal amplitude and rate of change. There
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are numerous books that have discussed the anti-windup schemes (for exam-
ple, Astrom and Hagglund, 1988, Goodwin et al. 2000, Johnson and Moradi,
2005). There are many forms of anti-windup schemes. For instance, Figure
10.4 shows a PI controller with an anti-windup mechanism with amplitude
constraint, where Σ represents the saturation nonlinearity. If umin < u0(t) <
umax, then u(t) = u0(t); if u0(t) ≤ umin, then u(t) = umin; if u0(t) ≥ umax,
then u(t) = umax. If we replace the saturation by a unity gain, then the
transfer function from the error signal e to the control signal u is

U(s)

E(s)
=

c1s + c0

s
. (10.5)

The integral action in this configuration is achieved by putting positive feed-
back around a stable transfer function. If the control signal reaches a limit,
then the integral action will be stopped and the anti-windup scheme will be
achieved.

In comparison with predictive control, when the control signal reaches a
limit, the integral action in the prediction control is stopped by the solution
of optimal ∆u(k) = 0. In addition, this saturation information ∆u(k) = 0 is
fed into the state vector x(k) for calculation of the prediction in the next step,
as

x(k) = [∆y(k) ∆y(k − 1) ∆u(k − 1) y(k)]T .

The implementation of a discrete-time MPC control system using a non-
minimal state-space model is seen to be relatively straightforward. The task
is simpler than a PID controller with saturation, because the saturation in
DMPC is implemented as ‘clipping’ the original control signal in the single-
input and single-output case when the constraints are violated.

Furthermore, the framework of DMPC using a NMSS structure permits
control of higher-order systems with complex dynamics, while the amount
of implementation effort remains the same. However, the implementation of a
control system on a plant requires many practical skills and a full understand-
ing of the underlying system, particularly if the implementation is carried out
with C programs.

10.2.5 Experimental Results

Benefits of Imposing Constraints

Firstly, the control algorithm was tested without constraints. We found that
when giving large changes of command position, the predictive control system
became unstable. Investigation reveals that when a large change of command
position led to a large control signal, without constraints, the control signal
would reach its maximum value and would reverse its sign. As a consequence,
the closed-loop control system became unstable. For this reason alone the
constraint on the magnitude of the control signal u(k) is necessary in the
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implementation of predictive control using micro-controllers with limited ac-
curacy. Other benefits of limiting u(k) are related to the integrator effect of
the MPC algorithm. Without the constraints on the control amplitude, when
u(k) exceeds the limits corresponding to ±100 percent, or ±4000 counts in
this application, the response to large excursions will be slow while the inte-
grator unwinds. The constraints on ∆u provide the benefit of limiting the
peak current consumption of the motor. Apart from saving power, this will
prolong the life of the motor’s brushes and prevent undue stress from being
placed on the gear head.

Constrained Control Experiments

The constraints on the control signal are specified as

−4000 ≤ u(k) ≤ 4000,

and the constraints on the incremental control ∆u are specified as

−200 ≤ ∆u(k) ≤ 200.

In addition, there is a dead-band setup in the implementation to save battery
power and avoid unnecessary operation of the control system due to noise in
the system. When the error |y(k)− r(k)| < 12, the motor will be switched off
to avoid wasting battery power; and when the error |y(k) − r(k)| > 24, the
motor will be switched on to bring the error back within the specified error
band.

Figure 10.5 shows the error y(k)− r(k) and control signal u(k) in response
to a step input. In this experiment, both constraints on the control signal and
the increment of the control signal are not active, so the closed-loop response
is the response of a linear system. Figure 10.6 shows the closed-loop system
response when both constraints on the amplitude of the control u(k) and
increment of the control ∆u(k) become active. It is seen from this figure that
when constraints are active, the predictive control system not only satisfies the
operational constraints, but also produces a satisfactory closed-loop response.

10.3 Implementation of Predictive Control Using xPC

Target

10.3.1 Overview

Real-time Windows Target provides a PC solution for prototyping and testing
of real-time systems. Here, we use this platform for the implementation of pre-
dictive control systems. In this application, we use a computer as a host com-
puter and then another computer as the target computer. Figure 10.7 shows
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Fig. 10.5. Closed-loop response when constraints are not active. Top plot: the error
signal y(k) − r(k); bottom plot: control signal

Fig. 10.6. Closed-loop response when constraints are active. Top plot: the error
signal y(k) − r(k); bottom plot: control signal
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Fig. 10.7. xPC block diagram

xPC block diagram. The MATLAB programs we created in the previous chap-
ters will be used in the design of MPC systems, and the simulation programs
in MATLAB will be converted into SIMULINK embedded functions. The
Real-time Workshop provides utilities to convert the SIMULINK embedded
models in C code and then, with the open source Watcom C/C++ compiler,
compile the code into a real-time executable file. Although the underlying
code is compiled into a real-time executable file via the C/C++ compiler,
this conversion is performed automatically without much input from the user.
Thus the implementation experience is an extension from previous MATLAB
programming experience. This is particularly useful to those who have lim-
ited skills in hardware design, implementation and C programming. Another
interesting feature of the Real-time Windows Target is that the process from
the simulation to implementation is shortened, as illustrated in Figure 10.7.
The concept in Figure 10.7 shows that a simulation model can be used in the
simulation testing of the predictive control system, and after completing the
test, then with simple modification to the original SIMULINK programs, the
same real-time predictive control system can be connected to the actual plant
for controlling the plant.

10.3.2 Creating a SIMULINK Embedded Function

The key process in using Real-time Workshop is to create SIMULINK em-
bedded functions. The simulation programs we wrote in MATLAB will be
converted to SIMULINK embedded functions, in a straightforward manner,
except that the dimensions of the variables may be required to be specified
explicitly because of the conversion process to C codes.
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Tutorial 10.1. The objective of this tutorial is to demonstrate how to create a
SIMULINK embedded function from a MATLAB function. We use an observer
equation as the test process, where we compute

x̂(k + 1) = Ax̂(k) + B∆u(k) + Kob(y(k) − Cx̂(k)),

where the input variables are ∆u(k), y(k), and output is x̂(k + 1); A, B, Kob

are the parameters.

Step by Step

1. Open a new SIMULINK model and save it as ‘observer.mdl’. First, we
will choose the configuration parameters so that the file observer.mdl can
perform a real-time control task through xPC target.

2. Go to ‘Simulation’ and click to open ‘Configuration Parameters’. Under
‘Solver option’, choose fixed step and discrete; under ‘Periodic sampling
constraints’, choose ‘Unconstrained’; Under ‘Fixed step size’, enter the
sampling interval value (e.g. 0.02) ; under ‘task mode for periodic sample
time’, choose ‘auto’. Click ‘Apply’ to save and exit.

3. On the left hand side window, find ‘Real-time Workshop’. Click it to open
the window. Under ‘System target file’, choose ‘xpctarget.tlc’; Under ‘Lan-
guage’, choose ‘C’; Click ‘Apply’ to save and exit.

4. We are ready to create an embedded function from a MATLAB function.
5. Click ‘SIMULINK Library’ and find ‘User defined functions’; Drag ‘Em-

bedded MATLAB functions’ into the SIMULINK file ‘observer.mdl’.
6. We will next create the real-time simulation program based on the observer

equation. The basic procedure is to type the original MATLAB program
into the SIMULINK block first; then define the input and output variables
and the parameters.

7. We click to open MATLAB embedded function leading to embedded MAT-
LAB editor; enter the following program into the file for the embedded
function:

function state_observer = observer(A,B,C,K_ob,y,u_delta)

persistent X_hat

if isempty(X_hat)

X_hat = zeros(6,1);

% X_hat is stored locally in this embedded function,

% we need to define its initial condition.

end

X_hat=A*X_hat+K_ob*(y-C*X_hat)+B*u_delta;

state_observer = X_hat;

8. We need to let SIMULINK know, among the input and output variables,
which are the parameters, input variables and output variables.
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Fig. 10.8. Discrete-time MPC using xPC target

9. Within the embedded MATLAB editor, find ‘Tools’ and click to open
‘Tools’ and select ‘Edit data/ports’ leading to window of ‘data/ports man-
ager’. Change A, B, C, and Kob from the default input variables to para-
meters, and the input variables remain as y and udelta, the output variable
remains as stateo.

Figure 10.8 shows the SIMULINK embedded function as a component in
the real-time simulation of discrete-time predictive control system, which has
been connected with other components. Specifically this function as shown in
the figure has the two input variables udelta and y, and the output variable
stateo. We can apply the same technique to build other SIMULINK embedded
functions from the MATLAB functions we had before.

Tutorial 10.2. This tutorial is to show how to build the embedded function
for predictive control with constraints. Because the dimensions of some of the
variables are required to be specified, for simplicity, we consider the case with
four constraints and N = 3. The augmented system has two states. The di-
mensional numbers need to be checked, because if they are wrong, the program
will not work. This is the main difference between the MATLAB program and
the embedded SIMULINK program. All internal, local variables need to be de-
fined explicitly. Hildreth’s quadratic programming is used in the computation.
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Step by Step

1. Create a new embedded SIMULINK function called DMPCcon.mdl. De-
fine the embedded function’s input and output variables and parameters by
entering the following programs into the file:

function [output_c,u_delta]=DMPC_con(set_point,X_hat,

phi_r,phi_x,L0,last_ucon,u_max,u_min, A_cons,b_d,Omega)

2. Go to ‘Tool’ and edit the data/ports. Output variables are outputc and
udelta; the input variables are setpoint, Xhat, lastucon; and the rest of
the elements are parameters. Choose these specifications from the window
given in data/ports.

3. Since Hildreth’s quadratic programming is used in the computation, there
are several internal, local variables. Unlike the MATLAB programs we
wrote before, in the embedded function, these local variables are required
to be declared. For this reason, we need to specify the number of con-
straints considered. There are only four constraints: umin, umax, ∆umin

and ∆umax. When more constraints are included, the dimensions will be
changed to suit the new specifications. As before, the dimensions of the pa-
rameter vectors are given as an example. Continue entering the following
program into the file:

persistent con_val

if isempty(con_val)

con_val = zeros(1,1);

end

persistent b_a

if isempty(b_a)

b_a=zeros(2,1);

end

persistent P

if isempty(P)

P=zeros(4,4);

end

persistent d

if isempty(d)

d=zeros(4,1);

end

persistent kk

if isempty(kk)

kk=0;

end

persistent u_delta_ext

if isempty(u_delta_ext)

u_delta_ext=zeros(1,1);

end
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persistent eta_ext

if isempty(eta_ext)

eta_ext=zeros(3,1);

end

4. Acons, b are the pair of data matrices that define the constraints via

Acons × η ≤ b.

So, we define b and calculate η, as well as check whether the constraints
have been satisfied. Continue entering the following program into the file:

b_a=[u_max-last_ucon(1);-u_min+last_ucon(1)];

b=[b_d;b_a];

eta_1=phi_r*set_point; eta_2=phi_x*X_hat(1:2,1);

eta_ext=eta_1-eta_2;

kk=0; for ii=1:4

if (A_cons(ii,:)*eta_ext>b(ii)) kk=kk+1;end

end

5. If all constraints are satisfied, then kk = 0, the optimal solution is found.
Continue entering the following program into the file:

if (kk==0)

u_delta_ext=L0’*eta_ext;

con_val=con_val+u_delta_ext;

end

6. If one or more constraints are violated, then we use Hildreth’s quadratic
programming procedure to find the active constraints. Continue entering
the following program into the file:

%condition entering to the computation

%quadratic programming begins:

if (kk~=0)

P=A_cons*(Omega\A_cons’);

d=(A_cons*(-eta_ext)+b);

lambda=zeros(4,1);

al=10;

for km=1:38

lambda_p=lambda;

for il=1:4

w= P(il,:)*lambda-P(il,il)*lambda(il,1);

w=w+d(il,1);

la=-w/P(il,il);

lambda(il,1)=max(0,la);

end

al=(lambda-lambda_p)’*(lambda-lambda_p);
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if (al<10e-8);

break;

end

end

7. The Hildreth’s programming procedure has found the optimal λ. If the
ith constraint is active, λi > 0; otherwise, λi = 0 which shows that the
constraint is inactive. Therefore, we can calculate the constrained solution
directly using Acons and the optimal λ found by the iterative computation.
Continue entering the following program:

eta_ext=eta_ext-Omega\A_cons’*lambda;

%%%%%%quadratic programming ends%%%%%%

u_delta_ext=L0’*eta_ext;

con_val=con_val+u_delta_ext;

end

8. Finally define the output variables from this embedded function. Continue
entering the following program into the file:

output_c = con_val;

u_delta=u_delta_ext;

Figure 10.8 shows the configuration of the discrete-time model predictive con-
trol system with constraints. It is seen in this figure that the embedded MAT-
LAB functions written in this tutorial are used in the configuration, where
the output of the MPC function is passed to the LabView I/O board as the
control signal and the motor output is measured by the sensor and passed
back by the LabView I/O to the embedded function of the observer.

10.3.3 Constrained Control of DC Motor Using xPC Target

The discrete-time model predictive control system is tested by controlling a
DC motor, which is a teaching apparatus. The experiment setup is shown in
Figure 10.9.

The control variable is voltage and the output variable is speed. The sys-
tem is sampled with the sampling interval of 0.02 sec. A first-order model is
obtained after a step test to describe the dynamics of the model as

xm(k + 1) = 0.8817xm(k) + 0.5u(k); y(k) = 0.7512xm(k).

The augmented model with integrator is:

A =

[
0.8817 0
0.6623 1.0000

]

; B =

[
0.5

0.3756

]

; C = [0 1].

The parameters for the cost function are selected as Q = CT C; R = 6,
Np = 16. With the exponential weight factor of α = 1.2 being used in the
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Fig. 10.9. Laboratory setup for controlling a motor using xPC target

design, with the solution of the algebraic Riccati equation, P , the modified
weight matrices are

Qα =

[
2.1122 1.0472
1.0472 1.8120

]

; Rα = 4.1667.

The parameters in the Laguerre functions are selected as N = 3; a = 0.5.
With all the design parameters specified, the cost function for the discrete-
time predictive control system is defined by

J = ηT Ωη + 2ηT Ψx(ki) + constant,

where

Ω =

⎡

⎣

24.2686 16.8770 11.1140
16.8770 23.4915 15.6802
11.1140 15.6802 21.6471

⎤

⎦Ψ =

⎡

⎣

21.1042 7.2411
15.5525 4.0584
9.7059 2.1970

⎤

⎦ .

To avoid matrix inversion, the parameter vector η for the Laguerre function
is calculated as

η = φr × r(ki) − φx × x(ki)

where the gain matrices are
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φx = Ω−1Ψ =

⎡

⎣

0.8985 0.3760
0.2562 −0.0530
−0.0813 −0.1291

⎤

⎦ ,

and φr is the last column of φx, which is

φr =
[
0.3760 −0.0530 −0.1291

]
.

The constraints are specified as −0.6 ≤ u(k) ≤ 0.6; −0.1 ≤ ∆u(k) ≤ 0.1. The
observer is designed using the pole-assignment method, where the closed-
loop poles are placed at λ1 = 0.85, λ2 = 0.86 to obtain the observer gain
Kob = [0.0010 0.1717]T . All these data are stored in MATLAB workspace, in
addition to the information required for the formulation of the constraints.

Figures 10.10a to 10.10c show the comparison of the closed-loop control
experimental results with, and without constraints. Figure 10.10b shows that
the imposed constraints have limited the peaks of the control amplitude, while
Figure 10.10c shows the significant reduction on the peaks of the incremental
control signal. The constraints on ∆u(k) and u(k) limit the peak current
consumption of the motor, and also provide protection to gear box. It is
interesting to note from Figure 10.10a that the closed-loop response speed is
almost identical for the two cases, except that the overshoot in the constrained
control case is reduced. The experiment shows that the closed-loop control
performance has negligible deterioration, while all hard constraints are met.

10.4 Control of Magnetic Bearing Systems

Active magnetic bearing (AMB) system is a typical mechatronic system. It is
composed of mechanical components combined with electronic elements such
as sensors, power amplifiers and controller. As compared to the characteristics
of mechanical and hydro-static bearings, active magnetic bearings exhibit a
dramatic reduction in friction, which allows efficient operation at high speed.
The contactless nature also brings about other advantages such as the elim-
ination of lubrication and less vibration. In industry, AMB can be applied
in many areas, such as gas turbine engines, turbo-molecular vacuum pumps,
generators, and linear induction motors.

However, an AMB system requires high-performance feedback control for
operation since it is an open-loop unstable dynamical system. To apply effec-
tive control to the AMB system. it is necessary to construct a high perfor-
mance, real-time feedback controller to suspend and stabilize the rotor and
this has received much attention recently. The laboratory experimental system
is an apparatus called MBC500.

The MBC500 magnetic bearing system includes a rotor shaft, two active
magnetic bearing actuators and turbine driven by compressed air. On both
ends of the actuators, hall effect sensors are placed to detect the displace-
ments of the rotor shaft. With the internal analog controller, the rotor can be
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Fig. 10.10. Comparison of closed-loop control experimental results. Key: line (1)
without constraints; line (2) with constraints (−0.6 ≤ u(k) ≤ 0.6, −0.1 ≤ ∆u(k) ≤
0.1)

levitated with no physical contact to surrounding magnets, and the rotational
speed of the rotor shaft can reach up to 10000 rpm. There exist couplings in
the horizontal or vertical direction. However, these are small and neglected
for simplicity. The two channels for rotational vertical direction are held by
the analogue controllers and the two channels in the horizontal directions are
to be controlled by discrete-time model predictive controllers. Figure 10.11
shows the apparatus.

In this application, xPC target is used as the implementation platform for
this real-time control system using standard PC hardware. The system is sim-
ulated by SIMULINK and MATLAB, and compiled to C code by Real-time
Workshop, then transmitted into xPC target. Once completed, the xPC target
becomes a stand-alone system to apply the control algorithm to the appara-
tus. Figure 10.8 shows the configuration of the real-time predictive control
system via SIMULINK blocks, which is identical to the predictive control sys-
tem structure used in controlling the motor, except that the variables have
dimensions appropriate to the variables in the magnetic bearing apparatus.
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Fig. 10.11. The MBC500 magnetic bearing system

10.4.1 System Identification

After neglecting the couplings between the horizontal or vertical directions,
the AMB system is regarded as two separate systems in both horizontal and
vertical directions. Identification experiments are employed in the 2-input 2-
output subsystem along the x-axis (horizontal) with the y-axis (vertical) con-
trolled by built-in analogue controllers. Two uniformly distributed random
number signals of different seeds are applied to two inputs in the form of
voltage inputs. This system is sampled with the interval of 0.2 ms. The PEM
(prediction error method) function in System Identification Toolbox of MAT-
LAB is used to identify the plant model in discrete-time state-space form.

Here, the input variables are u1 and u2 (u = [u1 u2]
T ), where u1 is the

voltage used to control the horizonal axis x1 and u2 is to control the hori-
zonal axis x2. The two outputs are y1 and y2 (y = [y1 y2]

T ), where y1 is the
horizontal displacement at the left end of the apparatus (termed x1 in Fig-
ure 10.11), and y2 is the displacement at the right end (termed x2 in Figure
10.11). In the identification process, the model order is carefully selected so
as to produce a model structure that is controllable and observable, and the
state variables are not directly related to the physical variables in the system.
Minimization of the sum of squared prediction errors is used in the selection
of model structure.

The state-space discrete-time model with sampling interval 0.2 ms is iden-
tified as

xm(k + 1) = Amxm(k) + Bmu(k)

y(k) = Cmx(k), (10.6)

where the matrices are
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Am =

⎡

⎢
⎢
⎣

4.3875 6.0779 0.5034 −0.0174
−1.8758 −2.3667 −0.2701 −0.6275
−0.1295 −0.2413 0.8758 7.9509
0.0004 −0.0000 −0.0005 1.0944

⎤

⎥
⎥
⎦

; Bm =

⎡

⎢
⎢
⎣

0.0310 −0.0000
0.0541 −0.0000
0.0043 −0.0000
0.0000 0.0625

⎤

⎥
⎥
⎦

Cm =

[
0.0265 0.0785 0.0009 −0.0901
−0.0491 −0.0733 −0.0240 0.1109

]

.

The identified model is augmented to introduce integral action. The aug-
mented model is denoted as (A, B, C).

10.4.2 Experimental Results

The number of terms used in the Laguerre model to capture the 2-input
signals is selected as N1 = 3 for number one input, and N2 = 3 for the
number two input. The prediction horizon for DMPC is 160 steps forward.
The pole of Laguerre functions are selected as a1 = a2 = 0.95. The weight
matrices Q = CT C, and R = 0.1I, where I is the identity matrix with
appropriate dimension. Here the small weight 0.1 is used in R to produce
a fast closed-loop response speed. The observer is designed using pole as-
signment, based on the pair (AT , CT ) by allocating the observer poles at
[0.9210 0.9220 0.9230 0.9240 0.9250 0.9260]. As there is some measurement
noise in the system, we found that it is best to keep the observer poles away
from the origin of the complex plane so as to avoid amplification of the noise.

Figure 10.12 illustrates the step responses on horizontal axes x1 and x2.
The measured output is voltage, which is equivalent to the displacement of
the rotor in each channel. Where r is the step reference trajectories, y1, y2, u1
and u2 are the corresponding outputs and control signals, respectively. There
are two experiments that have been conducted as shown in Figure 10.12.
The plots in the left column show the experimental results when there is a
step change of 0.3 unit applied to the channel y1, and the set-point signal
to y2 remains unchanged. We can see from these figures that the closed-loop
control system is oscillatory, however, the set-point change has been achieved
without steady-state errors. Similarly, the plots in the right column of Figure
10.12 show the experimental results when there is a step change of 0.3 unit
applied to the channel y2 and the set-point signal to y1 remains unchanged.
The closed-loop response is also oscillatory.

Operational constraints were attempted in the predictive control system,
however, the closed-loop became unstable as soon as the constraints became
active. As the open-loop system is unstable with poles outside the unit cir-
cle, also on the unit circle, it is very difficult to control this system with
constraints. Successful experiments have been conducted with constraints im-
posed in the outer-loop control system in which the unstable bearing is sta-
bilized with this inner-loop predictive controller (Yang, 2008).



10.5 Continuous-time Predictive Control of Food Extruder 353

0.48 0.5 0.52 0.54 0.56
Ŧ0.1

0

0.1

0.2

0.3

0.4

 

 

0.48 0.5 0.52 0.54 0.56
Ŧ0.2

0

0.2

0.4

0.6

 

 

0.48 0.5 0.52 0.54 0.56
Ŧ0.1

0

0.1

0.2

0.3

0.4

 

 

r

y1

y2

0.48 0.5 0.52 0.54 0.56
Ŧ0.2

Ŧ0.1

0

0.1

0.2

 

 

u1

u2

r

y1

y2

u1

u2

Fig. 10.12. Step response for channel y1 and y2 with N1 = N2 = 3, a1 = a2 = 0.95.
The left column is for step response on channel y1, the right column is for a step
response on channel y2

10.5 Continuous-time Predictive Control of Food

Extruder

Extrusion is a continuous process in which a rotating screw is used to force
the food material through the barrel of the machine and out through a nar-
row die opening. In this process the material is simultaneously transported,
mixed, shaped, stretched and sheared under elevated temperature and pres-
sure. The extruder in the study is an APV-MPF40 co-rotating twin-screw
extruder (see Figure 10.13). The block diagram of the food cooking extruder
is shown in Figure 10.14. The food extruder uses ‘Gravimetric’ as its feeding
system with which the feeding material enters the machine from the top part
of the extruder. When it is in normal operation, the throughput is between 20
to 75 kg/hr. The screw diameter is 40 mm and its length to diameter ratio is
25:1. The experiments presented in this section were conducted using a screw
profile that has a high shear configuration. A real-time, PC-based process
monitoring and supervisory control system interfaces with the programmable
logic controller (Siemens 95U PLC ) in the extruder. This system continuously
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Fig. 10.13. Twin-screw food extruder
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Fig. 10.14. Block diagram of a twin-screw food extruder

monitors and logs the temperatures, screw speed, feed rate and liquid injec-
tion rate. The system is sampled in one second intervals. The extruder has
nine cooking zones, each of them has a set-point value for the temperature and
an actual measured value. These zone temperatures are under PID control.
There are also independent temperature measurements throughout the barrel
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called melt temperature. Unlike the zone temperature variables, they are not
controlled variables. If the location of the independent measurement (melt) is
close to a particular zone, then the melt temperature should be close to the
zone temperature variables, however, it may not be identical. There are 37
on-line measured variables in the food extruder, which are logged for analy-
sis. These variables include screw speed, motor torque, SME, die pressure,
cutter speed, material feed rate, liquid pump speed, the zone temperature
measurements for the nine zones and the melt temperature measurements for
the corresponding zones. Among them, the specific mechanical energy, SME,
is calculated based on the relation:

SME =
Ns × Tt × kW

Rf
, (10.7)

where Ns is the screw speed as % of maximum, Tt is the torque as % of
maximum, kW is the motor power and Rf is the feed rate. The factors in a
food extruder that can be adjusted on-line include the screw speed, the rate at
which the raw material enters the extruder (feed rate) and the liquid injection
rate (measured via liquid pump speed). Among the on-line measured variables,
a previous study (Wang et al., 2001) has found that motor torque, SME, die
pressure, Melt M9 (melt temperature at the 9th zone) have a strong impact on
the product quality attributes such as bulk density and moisture content. The
primary manipulated variables for controlling these process variables are screw
speed, liquid injection rate and material feed rate. Because in an industrial
setting the material feed rate is often maintained as a constant, even though it
has a strong influence on the process variables, it is avoided as a manipulated
variable. In this work, screw speed and liquid injection rate are used as the
manipulated variables, and specific mechanical energy and motor torque are
used as the controlled variables.

10.5.1 Experimental Setup

The physical setup for the experiment is shown in Figure 10.15. The sensors
fitted to the extruder are used to monitor a wide variety of variables including
screw speed, motor torque, liquid pump speed, die pressure, product temper-
ature and feed rate. specific mechanical energy (SME) as stated before is a
variable computed using screw speed, motor torque, motor power and fee-
drate. The programmable logic controller (PLC) serves to store temporarily
the sensory data while providing low-level control functions for the extruder.
The high-level data acquisition function is performed by a supervisory control
and data acquisition (SCADA) system (The system is called Citect in this
application). Data are transferred between the PLC and the main computer
running the SCADA program via a serial cable link. The computer control sys-
tem which integrates the PLC in a serial link with a SCADA system has been
widely used for monitoring and controlling small-to-medium size industrial
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processes, which include food extrusion processes. The real-time model pre-
dictive control system (developed for this application and is called ConQualEx
Control) communicates with the SCADA system via its communication pro-
tocol. The communication protocol allows the user to assign tag numbers to
the input and output variables. In this application, there are three input and
three output variables used in the communication protocol. The variable tags
read by the control module from the SCADA database are as follows:

1. Screw − Speed − Set (screw speed);
2. Liq − pump − set (liquid pump speed);
3. Feed − Rate − Set (powder feed rate);
4. SME − tag (specific mechanical energy);
5. Motor − Torque (motor torque);
6. Die − Pressure (die pressure).

The model predictive control module writes to the process inputs given
through variable tags 1, 2, and 3. Similarly, the control module also reads
the process outputs identified by variable tags 4, 5 and 6. The model predic-
tive controller that calculates the optimal control movement stands alone in
the main computer and is coded in C++ programming language. Although
there are three inputs and three outputs used in the communication channels,
the control signals are screw speed and liquid pump speed. The output sig-
nals used in the feedback control configuration are Specific Mechanical Energy
(SME) and Motor Torque. The results in Wang et al., (2001) demonstrated
that a pair of product quality attributes (moisture content and bulk density)
can be inferred from specific mechanical energy and motor torque.

Extruder

Process

ConQualEx

Control

Module

Citect 

Computer

Siemens

PLC

Serial

Link

Citect

API
Hard

Wired

Fig. 10.15. Experimental setup of the real-time control system



10.5 Continuous-time Predictive Control of Food Extruder 357

10.5.2 Mathematical Models

A project on the system identification of the food extruder (Wang et al., 2004)
was performed in parallel to the model predictive control work presented here.
In the identification project, a multi-frequency relay feedback control system
(Wang and Cluett, 2000) was implemented on the food extruder to ensure
safe operation of the process when performing the identification experiment
and to obtain experimental data that has the relevant frequency content for
dynamic modelling. Continuous-time transfer function models were estimated
using the state variable filter approach developed by Wang and Gawthrop
(2001). Some new results on identification of a continuous-time model can by
found in Garnier and Wang (2008). More specifically, suppose that u1, u2,
y1 and y2 represent screw speed, liquid pump speed, SME and motor torque
respectively. Then, the continuous-time model for the food extruder is

[
y1

y2

]

=

[
G11 G12

G21 G22

] [
u1

u2

]

, (10.8)

where

G11 =
0.21048s + 0.00245

s3 + 0.302902s2 + 0.066775s + 0.002186

G12 =
−0.001313s2 + 0.000548s− 0.000052

s4 + 0.210391s3 + 0.105228s2 + 0.00777s + 0.000854

G21 =
0.000976s− 0.000226

s3 + 0.422036s2 + 0.091833s + 0.003434

G22 =
−0.000017

s2 + 0.060324s + 0.006836
.

The continuous-time transfer function models have been validated using four
sets of experimental data that are independent of the data sets used for es-
timating the models. The mathematical models are further validated in the
design and implementation of the predictive control as demonstrated in the
following.

The continuous-time transfer function model (10.8) is converted to a
continuous-time state-space model using the MATLAB script given as be-
low, where the multi-input and multi-output transfer function is defined with
the four pairs of numerator and denominator, followed by converting it to a
minimal state-space realization:

num11=[0.21048 0.00245];

den11=[1 0.302902 0.066775 0.002186];

num12=[-0.001313 0.000548 -0.000052];

den12=[1 0.210391 0.105228 0.00777 0.000854];

num21=[0.000976 -0.000226];

den21=[1 0.422036 0.091833 0.003434];

num22=[-0.000017]; den22=[1 0.060324 0.006836];



358 10 Implementation of Predictive Control Systems

Gs=tf({num11 num12; num21 num22},

{den11 den12; den21 den22});

sys=ss(Gs,’min’);

[Am,Bm,Cm,Dm]=ssdata(sys);

Here a minimal realization is used to ensure that the state-space model is
observable and controllable. The state-space model with minimal realization
and 12 state variables is expressed as:

ẋm(t) = Amxm(t) + Bmu(t)

y(t) = Cmxm(t) (10.9)

which is then used as the basis for the continuous-time model predictive con-
troller design.

10.5.3 Operation of the Model Predictive Controller

The model predictive control system has a user interface to enable engineers
to enter operational conditions and design parameters. A screen capture of
the main control module window is shown in Figure 10.16. This window pro-
vides a means to access all other windows related to the model predictive
control module. The windows that form part of the control module are the
main control window; the model window; the control parameters window; and
the observer window. When the real-time control program is started, the op-
erational window is displayed. The control module may be accessed from this
screen via the ‘Control’ menu on this screen.

SCADA Communications

The first step in opening communications is to ensure the SCADA system is
running with the correct project. Once this has been checked, the user may
select the ‘Open’ Button in the Communications group in the main control
window. The status indicator in the Communication group should change from
‘Closed’ to ‘Open’ indicating that communications have been established.

Saturation Limits

The hard constraints on the control variables are realized through saturation
mechanisms, which assumed that once the constraints were violated, they be-
came active constraints. If the process input signal provided by the controller
is beyond the input variables’ safe operating range or the safe rate of change,
the input signal to the process is ‘clipped’ to the limiting value. Saturation
limits can be adjusted in the Saturation block shown in Figure 10.16.
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Fig. 10.16. Main operational window

Initiating On-line Control

Once all relevant control parameters are set, the ‘Begin Control Experiment’
button is enabled. When this button is pressed the program performs all
off-line calculations. Once completed, the on-line phase is initiated and the
process is under automatic control. The ‘Halt Control Experiment’ button
becomes enabled, and it may be pressed at any point thereafter to stop the
on-line phase of the experiment.

10.5.4 Controller Tuning Parameters

The tuning parameters in the continuous-time model predictive control algo-
rithm are parameter p, which is the scaling factor in the Laguerre functions
describing derivative of the control signal; parameter N , which is the number
of terms used in the Laguerre functions; the prediction horizon parameter
Tp; and the weighting matrices Q and R. These parameter settings in the
experiments are discussed as below.
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Parameter p

In the extruder control case, the scaling factor p for screw speed is chosen to
be p1 = 1/30 and for liquid pump speed p2 = 1/15. Both scaling factors are
selected to be approximately the same size as the open-loop dominant poles.

Parameter N

The parameter N is the number of terms that are used in capturing the future
control signal. As N increases, the degrees of freedom in describing the control
trajectory increase and the control signal tends to the underlying optimal
control defined by the choice of Q and R matrices. In the extruder control
case, the number of terms used for describing both control signal trajectories
is chosen to be N1 = N2 = 3.

Prediction Horizon Tp

For a stable system, the prediction horizon is recommended to be chosen
approximately equal to (or greater than) the open-loop process settling time.
The prediction horizon Tp is chosen to be 300 sec, which is greater than the
open-loop settling time.

The Weighting Matrices

The weighting matrices in the cost function of MPC are chosen to be Q = CT C
and R = I, where I is the (2 × 2) identity matrix. Increasing the size of the
components in the R matrix will decrease the closed-loop response speed.

Observer Gain

The observer is designed using a pole-assignment strategy by placing the ob-
server’s dominant closed-loop pole at −2/10, which is about twice the size of
the largest scaling factor of the Laguerre polynomial, and the rest of the ob-
server poles are placed on the locations of −2/10−k∗0.5 where k = 2, 3, . . . , 14.

10.5.5 On-line Control Experiments

The food extruder is brought to a steady-state operational condition before
the control system is switched on. Experiments are carried out for regulatory
control and set-point changes.
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Steady-State Operating Conditions

The feed material used in the control experiments is maize flour and the prod-
uct is snack chips. The process steady-state operating condition is determined
by the following parameters: Cutter Speed = 1620 rpm, Steady State Screw
Speed = 300 rpm, Steady State Liquid Pump Speed = 2000 rpm and Material
Feed Rate = 20 kg/hr. The corresponding steady-state output variables are
calculated as SME = 639 kWh/kg and Motor Torque = 42.0%. The screw
speed is constrained to operate between 250 rpm to 400 rpm with a maxi-
mum allowable change of 50 rpm. The liquid pump speed is constrained to
operate between 1000 rpm to 2800 rpm with a maximum allowable change
of 500 rpm. The control experiments conducted naturally satisfied the speci-
fied process constraints. A number of different experiments were carried out
to assess the performance of the controller, including regulatory control, and
set-point changes for each process output.

The results from these experiments are discussed as follows.

Regulatory Control

The food extruder was brought to the steady-state operational condition by
applying constant screw speed, liquid pump speed and material feed rate.
Once the process had settled, data on the process variables were gathered. The
steady-state value in the process output was yss = [SME MT ]T = [639 42]T

where SME and MT denote steady-state values of SME and motor torque. In
addition, the steady-state values of screw speed and liquid pump speed were
measured as uss = [SS LPS]T = [300 2000]T . At the process steady state
operation (say time ti), set the initial conditions of the estimated state variable
X̂(ti) = 0, and the incremental process output variable y(ti) = [0 0]T . The
previous control signal to the food extruder is initialized as u(ti − ∆t) = uss.
The implementation of the predictive control system is performed using the
following steps.

1. Calculate (r(ti) = 0)

η = −Ω−1{Ψx̂(ti)} (10.10)

u̇(ti) =
[
L1(0)T L2(0)T

]
η (10.11)

u(ti) = u(ti − ∆t) + u̇(ti)∆t. (10.12)

2. Calculate the estimated state variable x̂(ti + ∆t), using

x̂(ti + ∆t) = x̂(ti) + {Ax̂(ti) + Bu̇(ti) + Kob(y(ti)−Cx̂(ti))}∆t. (10.13)

3. Write the control signal to Variable tags 1 and 2 through the SCADA
Communication Protocol.

4. Read the actual plant output yact via Variable tags 4 and 5, and input
uact via the Variable tags 1 and 2, and calculate y(ti + ∆t) = yact − yss;
u(ti) = uact.
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5. Go to Step 1 with one increment of ∆t and the update on x̂(ti), u(ti−∆t)
and y(ti).

The above computational algorithm generated the values of screw speed and
liquid pump speed for the closed-loop operation of food extruder. Plots of the
process variables for the regulatory control result are shown in Figure 10.17.
The top two plots in Figure 10.17 show the process outputs, i.e., the SME
and motor torque, while the bottom two plots show the manipulated variables,
i.e., the screw speed and liquid pump speed. It is seen that the plant operation
made a smooth transition from open-loop operation to closed-loop operation.
The liquid pump speed, however, made an adjustment to a new steady state
value with respect to the specification of the process output variables. Because
the calculation of the control law is based on the derivatives of the control
signal, it is seen here that it is relatively easy to make the transition from the
open-loop operation to the closed-loop operation. In addition, the changes in
the control signal are gradual and smooth. It is also seen from this figure that
disturbances occur due to the changes in material feedrate, yet the continuous-
time model predictive controller rejects the disturbance and maintains the
process outputs at the specified operating conditions.

Fig. 10.17. Regulatory control of food extruder. Top two sub-figures: process out-
puts (SME and motor torque); Bottom two sub-figures: control signals (screw speed
and liquid pump speed)
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Reference Following Control

Two experiments were performed to examine the ability of the model predic-
tive controller to automatically adjust the process outputs to new set-points.
In the implementation of the set-point changes, the on-line control algorithm
listed above applies except that Step One is changed into the following com-
putational equation:

η = Ω−1{ψrr(ti) − Ψx̂(ti)}, (10.14)

where ψr is the last two columns of matrix Ψ , and the set-point signal r(ti)
was specified for the two cases.

Fig. 10.18. Set-point change for SME. Top two sub-figures: process outputs (SME
and motor torque); Bottom two sub-figures: control signals (screw speed and liquid
pump speed)
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Figure 10.18 shows the experimental results for a set-point change of SME
from 639 kWh/kg to 689 kWh/kg and back to 639 kWh/kg, while maintaining
motor torque to be constant. The increment of the SME set-point signal is
50 kWh/kg for the first step change, then with the change of −50 kWh/kg,
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the SME set-point signal is brought back to its original value of 639 kWh/kg.
The incremental change of the motor torque is zero. More specifically, r(ti) =
[0 0]T for 0 ≤ ti ≤ 69 sec, r(ti) = [50 0]T for 70 ≤ ti ≤ 594 sec and
r(ti) = [−50 0]T for 595 ≤ ti ≤ 1200 sec. The plots in Figure 10.18 show the
SME output, motor torque output, screw speed and liquid pump speed signals.
It is seen that the SME output variable has been automatically adjusted
to the new set-point within several minutes of the set-point change, then
brought back to its original operational point. This has been achieved while
maintaining the motor torque output close to its specified set-point.

Case B. Set-point change of motor torque

Case B investigates the set-point change of motor torque from 40.6% to 43.6%
while maintaining SME as constant. The tuning parameters in the model
predictive controller are selected as p1 = 1/30, p2 = 1/10, Q = I and R = I.
The increment of the motor torque set-point signal is 3%, and the increment
of the SME set-point signal is zero. In this experiment, r(ti) = [0 0]T for
0 ≤ ti < 3 sec and r(ti) = [0 3]T for 3 ≤ ti ≤ 750 sec. Figure 10.19 shows
the experimental results obtained in Case 2. It is seen that the motor torque
output variable has been automatically adjusted to the new set-point value,

Fig. 10.19. Set-point change for motor torque. Top two sub-figures: process outputs
(SME and motor torque); Bottom two sub-figures: control signals(screw speed and
liquid pump speed)
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while the SME output variable has been maintained close to its specified set-
point value. The results also show that the change of motor torque affects
the SME which is calculated partly based on the motor torque. After about
400 seconds, the predictive control system has brought the SME back to its
original set-point and the motor torque to the new set-point.

10.6 Summary

This chapter has discussed the real-time implementation of model predictive
control with constraints. The approaches used the MATLAB functions we
developed in the previous chapters to generate the cost J in the form of
quadratic function of decision variable η :

J = ηT Ωη + 2ηT Ψx(ki) + constant.

where Ω and Ψ are computed off-line with the MATLAB function dmpc.m for
discrete-time application and cmpc.m for continuous-time application. If it is
a continuous-time application, x(ki) is replaced by x(ti). Also, if an observer
is used in the implementation, then x(ki) is replaced by the estimate x̂(ki)
or the estimate x̂(ti) in the continuous-time application. The constraints are
also formulated off-line with appropriate dimensions and relationships. Some
of the constraints are required to be updated on-line.

The first implementation uses a micro-controller for controlling a DC mo-
tor. The model predictive control system is designed using discrete-time NMSS
model, so that the feedback signals are differenced input, output signals (∆u(.)
and ∆y ) and output signal y(.). Because the micro-controller has limited ca-
pacity for computation, the constraints are imposed analytically by enforcing
them on the first sample of both control and incremental of the control. The
implementation procedure is simple and straightforward, whose complexity
does not exceed that required in the implementation of a PID controller with
anti-windup protection. The implementation is written in C language. Exper-
imental results have shown that the control system has excellent performance.

The second implementation uses MATLAB/ SIMULINK xPC target as the
platform. In this implementation, there are two computers involved: one is the
host computer that we use to edit the programs and compile the programs;
the other is the target computer that executes the compiled C program in real
time as a controller. In this configuration, the control system has the capac-
ity to perform on-line optimization. In this chapter we showed how to convert
the MATLAB programs we developed in the previous chapters into MATLAB
embedded programs for implementation of predictive control systems, which
also includes Hildreth’s quadratic programming procedure. One of the main
differences when translating programs from MATLAB to embedded programs
is that in the latter applications, the dimensions of the variables are required
to be specifically defined, application by application. MATLAB/SIMULINK
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xPC target provides a powerful platform for testing and implementing predic-
tive control systems. The real-time predictive control systems with constraints
were demonstrated using a DC motor and a magnetic bearing system.

The third implementation uses the platform of a real-time PC-based su-
pervisory control and data acquisition (SCADA) system. A food extruder is
controlled by the continuous-time model predictive controller with successful
experimental tests.
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