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Preface

This book is devoted to new methods of control for complex dynamical systems and
deals with nonlinear control systems having several degrees of freedom, subjected
to unknown disturbances, and containing uncertain parameters. Various constraints
are imposed on control inputs and state variables or their combinations.

The book contains an introduction to the theory of optimal control and the theory
of stability of motion, and also a description of some known methods based on these
theories.

Major attention is given to new methods of control developed by the authors over
the last 15 years. Mechanical and electromechanical systems described by nonlinear
Lagrange’s equations are considered. General methods are proposed for an effective
construction of the required control, often in an explicit form. The book contains
various techniques including the decomposition of nonlinear control systems with
many degrees of freedom, piecewise linear feedback control based on Lyapunov’s
functions, methods which elaborate and extend the approaches of the conventional
control theory, optimal control, differential games, and the theory of stability.

The distinctive feature of the methods developed in the book is that the con-
trols obtained satisfy the imposed constraints and steer the dynamical system to a
prescribed terminal state in finite time. Explicit upper estimates for the time of the
process are given. In all cases, the control algorithms and the estimates obtained are
strictly proven.

The methods are illustrated by a number of control problems for various en-
gineering systems: robotic manipulators, pendular systems, electromechanical sys-
tems, electric motors, multibody systems with dry friction, etc. The efficiency of the
proposed approaches is demonstrated by computer simulations.

The authors hope that the monograph will be a useful contribution to the sci-
entific literature on the theory and methods of control for dynamical systems. The

v



vi Preface

book could be of interest for scientists and engineers in the field of applied mathe-
matics, mechanics, theory of control and its applications, and also for students and
postgraduates.

Moscow, Felix L. Chernousko
April 2008 Igor M. Ananievski

Sergey A. Reshmin
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Introduction

There exist numerous methods for the design of control for dynamical systems.
The classical methods of the theory of automatic control are meant for linear

systems and represent the control in the form of a linear operator applied to the
current phase state of the system. Shortcomings of this approach are obvious both
in the vicinity of the prescribed terminal state as well as far from it. Near the terminal
state, the magnitude of the control becomes small, so that control possibilities are
not fully realized. As a result, the time of the control process occurs to be, strictly
speaking, infinite, and the phase state can only tend asymptotically to the terminal
state as time goes to infinity. On the other hand, far from the terminal state, the
control magnitude becomes large and can violate the constraints usually imposed
on the control. That is why it is difficult and often impossible to take account of
the constraints imposed when the linear methods are used. Moreover, the classical
methods based on linear models are usually inapplicable to nonlinear systems; at
least, their applicability should be justified thoroughly.

In principle, the methods of the theory of optimal control can be applied to non-
linear systems. These methods take account of various constraints imposed on the
control and, though with considerable complications, on the state variables. The
methods of optimal control bring a dynamical system to a prescribed terminal state
in an optimal (in a certain sense) way; for example, in a minimum time. However, to
construct the optimal control for a nonlinear system is a very complicated problem,
and its explicit solution is seldom available. Especially difficult is the construction
of a feedback optimal control for a nonlinear system, even for a system with a small
number of degrees of freedom and even with the help of modern computers.

There exist a number of other general methods of control: the method of systems
with variable structure [123, 116, 115], the method of feedback linearization [70, 71,
91], and their various generalizations. However, these methods usually do not take
into account constraints imposed on the control and state variables. Moreover, being
very general, these methods do not take account of specific properties of mechanical
systems such as conservation laws or the structure of basic equations of motions that
can be presented in the Lagrangian or the Hamiltonian forms. Some other control

1



2 Introduction

methods applicable to nonlinear mechanical systems were developed in [61, 62, 94,
95, 59, 51, 52, 85, 90, 118].

In this book, some methods of control for nonlinear mechanical systems sub-
jected to perturbations and uncertainties are proposed. These methods are applicable
in the presence of various constraints on control and state variables. By taking into
account some specific properties inherent in the equations of mechanical systems,
these methods yield more efficient control algorithms compared with the methods
developed for general systems of differential equations.

The authors’ objective was to develop control methods having the following fea-
tures.

1. Methods are applicable to nonlinear mechanical systems described by the La-
grange equations.

2. Methods are applicable to systems with many degrees of freedom.
3. Methods take into account the constraints imposed on the control, and, in a

number of cases, also on the state variables as well as on both the control and state
variables.

4. Methods bring the control system to the prescribed terminal state in finite time,
and an efficient upper estimate is available for this time.

5. Methods are applicable in the presence of uncertain but bounded external per-
turbations and uncertain parameters of the system. Thus, the methods are robust.

6. There exist efficient algorithms for the construction of the desired feedback
control.

7. Efficient sufficient controllability conditions are stated for the control methods
proposed.

8. In all cases, a rigorous mathematical justification of the proposed methods is
given.

It is clear that the above requirements are very useful and important from the
standpoint of the control theory as well as various practical applications.

Several methods are proposed and developed in the book, and not all of them
possess all of the features 1–8 listed above. Properties 3, 4, 7, and 8 are always
fulfilled, whereas other features are inherent in some of the methods and not present
in others.

The book consists of 10 chapters.
Chapters 2, 3, 5, and 6 deal with nonlinear mechanical systems with many de-

grees of freedom governed by Lagrange’s equations and subjected to control and
perturbation forces.

These equations are taken in the form:

d
dt

∂T
∂ q̇i

− ∂T
∂qi

= Ui +Qi, i = 1, . . . ,n. (0.1)

Here, t is time, the dots denote time derivatives, qi are the generalized coordi-
nates, q̇i are the generalized velocities, Ui are the generalized control forces, Qi are
all other generalized forces including uncertain perturbations, n is the number of de-
grees of freedom, and T (q, q̇) is the kinetic energy of the system. The kinetic energy
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is a symmetric positive definite quadratic form of the generalized velocities q̇i:

T (q, q̇) =
1
2
〈A(q)q̇, q̇〉 =

1
2

n

∑
j,k=1

a jk(q)q̇ jq̇k. (0.2)

Here, q and q̇ are the n-vectors of the generalized coordinates and velocities,
respectively, and the brackets 〈·, ·〉 denote the scalar product of vectors.

The quadratic form (0.2) satisfies the conditions

m|q̇|2 ≤ 〈A(q)q̇, q̇〉 ≤ M|q̇|2 (0.3)

for any q ∈ Rn and q̇ ∈ Rn, where m and M are positive constants such that M > m.
Condition (0.3) implies that all eigenvalues of the matrix A(q), for all q∈ Rn, belong
to the interval [m,M].

In Chapters 2 and 3, the coefficients of the quadratic form (0.2) are supposed to be
known functions of the coordinates: a jk = a jk(q). In Chapters 5 and 6, the functions
a jk(q) may be unknown but the constants m and M in (0.3) are given. Also, the case
of rheonomic systems for which T = T (q, q̇, t) is considered in Chapter 5.

We suppose that the control forces are subjected to the geometric constraints at
any time instant:

|Ui| ≤U0
i , i = 1, . . . ,n, (0.4)

where U0
i are given constants.

The generalized forces Qi may be more or less arbitrary functions of the co-
ordinates, velocities, and time; these functions may be unknown but are assumed
bounded by the inequality

|Qi(q, q̇, t)| ≤ Q0
i , i = 1, . . . ,n, (0.5)

The constants Q0
i are supposed to be known, and certain upper bounds are im-

posed on Q0
i in order to achieve the control objective.

The control problem is formulated as follows:

Problem 0.1. It is required to construct the feedback control Ui(q, q̇) that brings
system (0.1) subject to constraints (0.3)–(0.5) from the given initial state

q(t0) = q0, q̇(t0) = q̇0 (0.6)

at a given initial time instant t = t0 to the prescribed terminal state with zero terminal
generalized velocities

q(t∗) = q∗, q̇(t∗) = 0 (0.7)

in finite time. The time instant t∗ is not prescribed but an upper estimate on it should
be obtained.

In some sections of Chapter 3, the case of nonzero terminal velocities q̇i(t∗) �= 0
is also considered.
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In many practical applications, it is desirable to bring the system from the state
(0.6) to the state (0.7) as soon as possible, i.e., to minimize t∗. However, to construct
the exact solution of this time-optimal control problem for the nonlinear system is
a very difficult problem, especially, if one desires to obtain the feedback control.
The methods proposed in Chapters 2, 3, and 5–8 do not provide the time-optimal
control but include certain procedures of optimization of the time t∗. Therefore,
these methods may sometimes be called suboptimal.

The main difficulties arising in the construction of the control for system (0.1) are
due to its nonlinearity and its high order. The complex nonlinear dynamical interac-
tion of different degrees of freedom of the system is characterized by the elements
a jk(q) of the matrix A(q) of the kinetic energy. Another property that complicates
the construction of the control is the fact that the dimension n of the control vector
is two times less than the order of system (0.1).

Manipulation robots can be regarded as typical examples of mechanical or elec-
tromechanical systems described by equations (0.1). Being an essential part of au-
tomated manufacturing systems, these robots can serve for various technological
operations. A manipulation robot is a controlled mechanical system that consist of
one or several manipulators, a control system, drives (actuators), and grippers. A
manipulator can perform a wide range of three-dimensional motions and bring ob-
jects (instruments and/or workpieces) to a prescribed position and orientation in
space. Various types of drives, namely, electric, hydraulic, pneumatic, and other, are
employed in robotic manipulators, the electric drives being the most widespread.

The manipulator is a multibody system that consists of several links connected
by joints. The drives are usually located at the joints or inside links adjacent to
the joints. Relative angular or linear displacements of neighboring links are usu-
ally chosen as the generalized coordinates qi of the manipulator. The kinetic energy
T (q, q̇) of the manipulator consists of the kinetic energy of its links and also, if
the drives are taken into account, the kinetic energy of electric drives and gears.
The Lagrange equations (0.1) of the manipulator involve the generalized forces Qi

due to the weight and resistance forces; the latter are often not known exactly and
may change during operations. Moreover, parameters of the manipulator may also
change in an unpredictable way. Therefore, some of the forces Qi should be regarded
as uncertain perturbations. The control forces Ui are forces and/or torques produced
by the drives.

Since the manipulator is a nonlinear multibody system subject to uncertain per-
turbations, it is quite natural to consider the problem of control for the manipulator
as a nonlinear control problem formulated above as Problem 0.1.

Let us outline briefly the contents of Chapters 1–10.
Chapter 1 gives an introduction to the theory of optimal control. Basic concepts

and results of this theory, especially the Pontryagin maximum principle, are often
used throughout the book. The maximum principle is formulated and illustrated by
several examples. The feedback optimal controls obtained for these examples are
often referred to in the following chapters.

In Chapters 2 and 3, the methods of decomposition for Problem 0.1 are proposed
and developed. The essence of these methods is a transformation of the original
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nonlinear system (0.1) with n degrees of freedom to the set of n independent linear
subsystems

ẍi = ui + vi, i = 1, . . . ,n. (0.8)

Here, xi are the new (transformed) generalized coordinates, ui are the new controls,
and forces vi include the generalized forces Qi, as well as the nonlinear terms that
describe the interaction of different degrees of freedom in system (0.1). The pertur-
bations vi in system (0.8) are treated as uncertain but bounded forces; they can also
be regarded as the controls of another player that counteract the controls ui.

The original constraints (0.3)–(0.5) imposed on the kinetic energy and general-
ized forces of system (0.1) are, under certain conditions, reduced to the following
normalized constraints on controls ui and disturbances vi:

|ui| ≤ 1, |vi| ≤ ρi, ρi < 1, i = 1, . . . ,n. (0.9)

By applying the approach of differential games [69, 79] to system (0.8) subject
to constraints (0.9), we obtain the feedback control ui(xi, ẋi) that solves the control
problem for the ith subsystem, if ρi < 1.

Besides the game-theoretical technique, a simpler approach to the control con-
struction is also considered, where the perturbations in system (0.8) are completely
ignored. As the control ui(xi, ẋi) of the ith subsystem (0.8) we choose the time-
optimal feedback control for the system

ẍi = ui, i = 1, . . . ,n.

It is shown that this simplified approach is effective, i.e., brings the ith subsystem
(0.8) to the prescribed terminal state, if and only if the number ρi in (0.9) does not
exceed the golden section ratio:

ρi < ρ∗ =
1
2
(
√

5−1) ≈ 0.618.

In other words, uncertain but bounded perturbations can be neglected while con-
structing the feedback control, if and only if their magnitude divided by the magni-
tude of the control does not exceed the golden section ratio ρ∗.

Two versions of the decomposition method presented in Chapters 2 and 3 differ
both by the assumptions made and the results obtained.

The assumptions of the second version (Chapter 3) are less restrictive; on the
other hand, the time of the control process is usually less for the first version (Chap-
ter 2).

As a result of each decomposition method, explicit feedback control laws for the
original system (0.1) are obtained. These control laws Ui = Ui(q, q̇), i = 1, . . . ,n,
satisfy the imposed constraints (0.4) and bring the system to the terminal state (0.7)
under any admissible perturbations Qi(q, q̇, t) subject to conditions (0.5). Sufficient
controllability conditions are derived for the methods proposed. The time of control
t∗ is finite, and explicit upper bounds on t∗ are given.
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Certain generalizations and modifications of the decomposition methods are pre-
sented in Chapters 2 and 3. The original system (0.1) with n degrees of freedom
can be reduced to sets of subsystems more complicated than (0.8); these subsystems
can be either linear or nonlinear, and these two cases are examined. The decompo-
sition method is extended to the case of nonzero prescribed terminal velocity q̇i(t∗)
in (0.7), and also to the problem of tracking the prescribed trajectory of motion.

Control problems for the manipulation robots with several degrees of freedom
are considered as examples illustrating the methods proposed. Purely mechanical
models of robots as well as electromechanical models that take account of processes
in electric circuits are considered.

Chapter 4 briefly presents basic concepts and results of the theory of stability.
Here, the notion of the Lyapunov function plays the central role, and the corre-
sponding theorems using this notion are formulated. The Lyapunov functions are
widely used in the following Chapters 5 and 6.

In these chapters, the method of control based on the piecewise linear feedback
for system (0.1)–(0.7) is presented. The required control vector U is sought in the
form

U = −β (q−q∗)−α q̇, U = (U1, . . . ,Un), (0.10)

where α and β are scalar coefficients.
During the motion, the coefficients increase in accordance with a certain algo-

rithm and may tend to infinity as the system approaches the terminal state (0.7),
i.e., t → t∗. However, the control forces (0.10) stay bounded and satisfy the imposed
constraints (0.4).

In Chapter 5, the coefficients α and β are piecewise constant functions of time.
These coefficients change when the system reaches certain prescribed ellipsoidal
surfaces in 2n-dimensional phase space. In Chapter 6, the coefficients α and β are
continuous functions of time.

In both Chapters 5 and 6, the proposed algorithms are rigorously justified with the
help of the second Lyapunov method. It is proven that this control technique brings
the system (0.1) to the prescribed terminal state (0.7) in finite time. An explicit upper
bound for this time is obtained.

The methods of Chapters 5 and 6 are applicable not only in the case of uncertain
perturbations satisfying (0.5), but also if the matrix A of the kinetic energy (0.2) is
uncertain. It is only necessary that restrictions (0.3) hold and the constants m and M
be known.

The approach based on the feedback control (0.10) is extended also to rheonomic
systems whose kinetic energy is a second-order polynomial of the generalized ve-
locities with coefficients depending explicitly on the generalized coordinates and
time (Chapter 5). The coefficients of the kinetic energy are assumed unknown, and
the system is acted upon by uncertain perturbations. The control algorithm is given
that brings the rheonomic system to the prescribed terminal state by a bounded con-
trol force.

Several examples of controlled multibody systems are considered in Chapters 5
and 6. Some parameters of the systems, namely, masses, coefficients of stiffness
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and friction, are assumed unknown, and uncertain perturbations are also taken into
account. It is shown that the methods proposed in Chapters 5 and 6 can control such
systems and bring them to the terminal state; moreover, the methods are efficient
even if the sufficient controllability conditions derived in Chapters 5 and 6 are not
satisfied.

Note that, together with the methods discussed in the book, there are other ap-
proaches that ensure asymptotic stability of a given state of the system, i.e., bring
the system to this state as t → ∞. In practice, one needs to bring the system to the
vicinity of the prescribed state; therefore, the algorithms based on the asymptotic
stability practically solve the control problem in finite time. However, as the re-
quired vicinity of the terminal state decreases and tends to zero, the time of motion
for the control methods ensuring the asymptotic stability increases and tends to in-
finity. By contrast, the methods proposed in this book ensure that the time of motion
is finite, and explicit upper bounds for this time are given in Chapters 2, 3, 5, and 6.

In Chapters 1–6, systems with finitely many degrees of freedom are considered;
these are described by systems of ordinary differential equations. A number of books
and papers (see, for example, [25, 122, 86, 113, 117, 87]) are devoted to control
problems for systems with distributed parameters that are described by partial dif-
ferential equations. The methods of decomposition proposed in Chapters 2 and 3
can also be applied to systems with distributed parameters.

In Chapter 7, control systems with distributed parameters are considered. These
systems are described by linear partial differential equations resolved with respect to
the first or the second time derivative. The first case corresponds, for example, to the
heat equation, and the second to the wave equation. The control is supposed to be
distributed and bounded; it is described by the corresponding terms in the right-hand
side of the equation. The control problem is to bring the system to the zero terminal
state in finite time. The proposed control method is based on the decomposition of
the original system into subsystems with the help of the Fourier method. After that,
the time-optimal feedback control is applied to each mode. A peculiarity of this
control problem is that there is an infinite (countable) number of modes.

Sufficient controllability conditions are derived. The required feedback control
is obtained, together with upper estimates for the time of the control process. These
results are illustrated by examples.

In Chapters 8–10, we return to control systems governed by ordinary differential
equations.

In Chapter 8, we consider linear systems subject to various constraints. Control
and phase constraints, as well as mixed constraints imposed on both the control and
the state variables are considered. Integral constraints on control and state variables
are also taken into account. Though the original systems are linear, the presence
of complex constraints makes the control problem essentially nonlinear and rather
complicated.

Note that various constraints on control and state variables are often encountered
in applications. For example, if the system includes an electric drive, it is usually
necessary to take account of constraints on the angular velocity of the shaft, the
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control torque, and also on their combination. Integral constraints typically occur, if
there are energy restrictions.

The approach developed in Chapter 8 is a generalization of the well-known
Kalman’s method [72, 73]. This method, originally proposed for the control of linear
systems in the absence of constraints, is based on the representation of the control
as a linear combination of the eigenmodes of motion. In Chapter 8, this method
is extended to some cases with different constraints. Explicit control laws are ob-
tained for various oscillatory systems, in particular, a system of many oscillators
controlled by one bounded control. For certain systems of the second order, the
controls obtained are compared with time-optimal controls. The method is applied
also to systems of the fourth (and higher) order with mixed constraints. The models
considered here correspond to mechanical and electromechanical systems contain-
ing an oscillator and an electric motor. Sufficient controllability conditions derived
in Chapter 8 ensure that the control obtained brings the system to the prescribed
state in finite time, and all mixed constraints are satisfied.

Chapter 9 is devoted to several control problems for a simple dynamical system
with one degree of freedom described by the second Newton’s law and subject to
different constraints that model real constraints typical for actuators. The system is
to be brought to the origin of the coordinate system in the phase plane.

First, the time-optimal control problem is considered in the presence of mixed
constraints imposed on the control and state variables. The time-optimal feedback
control is obtained. As an example, a control problem for the electric drive is exam-
ined.

Next, a constraint is imposed on the rate of change of the control force. Such a
constraint is often inherent in various drives. The resultant equations are reduced
to a third-order system. The time-optimal control problem for this system is solved,
and the required control is obtained in the open-loop as well as in the feedback form.
The solution of this problem is based on a group-invariant approach that reduces the
number of the essential phase variables from three to two.

At the end of Chapter 9, it is supposed that the absolute value of the control force
can grow only gradually, with a bounded rate, whereas this force can be switched
off instantly. Under these assumptions, which model real drives, we find the control
that brings the system to a prescribed state and has the simplest possible structure.

In Chapter 10, two time-optimal control problems for the nonlinear pendulum
are solved. The pendulum is a classical nonlinear system that often serves as a test
model in nonlinear dynamics and control theory. We assume that the bounded con-
trol torque is applied to the axis of the pendulum. The terminal state is either the
upper unstable or the lower stable equilibrium position of the pendulum; thus, we
study the time-optimal swing-up and damping control problems, respectively. The
peculiarity of these problems is that the pendulum has a cylindrical phase space and
an infinite number of equivalent equilibrium positions which differ by 2π . The feed-
back controls for both the swing-up and the dumping cases have a very complicated
structure, which is obtained numerically for a wide range of the system parameters.

Thus, a number of new methods for the control of nonlinear dynamical sys-
tems are presented in the book. The control algorithms are described, their rigorous
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mathematical proof is given, and a number of specific control problems are analyzed
and solved by these methods.

This book is mostly based on the results obtained by the authors during the last
two decades.



Chapter 1
Optimal control

In the following chapters of the book we will often use the approach and concepts
of the optimal control theory. Also, some of the proposed methods of control utilize
certain results obtained for particular optimal control problems and use these results
as integral parts of our control algorithms. Thus, it would be useful to recall the basic
concepts of the optimal control theory and describe the solution of several typical
problems.

1.1 Statement of the optimal control problem

We consider a general dynamical system subjected to control and described by the
following nonlinear differential equation

ẋ = f (x,u, t). (1.1.1)

Here, x = (x1, . . . ,xn) is the n-dimensional vector of state and u = (u1, . . . ,um) is
the m-dimensional vector of control; these vectors are functions of time t: x = x(t),
u = u(t). The dot . denotes differentiation with respect to time. The n-dimensional
vector f (x,u, t) is a given function of its arguments. Equation (1.1.1) is sometimes
called equation of motion.

Control systems can also be described by more general classes of equations: dif-
ferential algebraic equations (DAE), integro-differential equations, functional dif-
ferential equations, etc. In this book, we mostly restrict ourselves to differential
equations (1.1.1).

To formulate the optimal control problem, we should, in addition to (1.1.1), im-
pose boundary conditions, constraints, and an optimality criterion, or a cost func-
tional. The control process is considered on the time interval t ∈ [t0,T ], the ends t0
and T of this interval may be fixed or free.

In general, the boundary conditions can be stated as follows:

11
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(t0,x(t0)) ∈ X0, (T,x(T )) ∈ XT , (1.1.2)

where X0 and XT are given sets in the (n+1)-dimensional (t,x)-space.
Let us restrict ourselves to the case mostly considered in this book, where the

initial data are fixed so that the set X0 in (1.1.2) is a given point (t0,x0) in the (t,x)-
space. Hence, we have the initial condition

x(t0) = x0. (1.1.3)

Here, the time instant t0 and the vector x0 are fixed.
We assume also that the set XT in (1.1.2) is defined by r equations in the x-space

XT = {t = T, x : gi(x) = 0}, i = 1, . . . ,r ≤ n, (1.1.4)

whereas the terminal time T may be either fixed or free. Here, gi(x) are given scalar
functions of x such that the Jacobian matrix

G =

(
∂gi

∂x j

)
, i = 1, . . . ,r, j = 1, . . . ,n, (1.1.5)

has the maximal possible rank r on the set defined by (1.1.4).
The simplest case of the conditions (1.1.2) often referred to in this book is the so-

called two-point boundary conditions where both vectors x(t0) and x(T ) are fixed.
In this case, in addition to (1.1.3) we have

x(T ) = x1, (1.1.6)

where x1 is a given vector. The terminal time T may be fixed or free. Note that in
the case of (1.1.6) we have

gi = xi − x1
i , i = 1, . . . ,n, r = n, G = I,

in (1.1.4) and (1.1.5), where I is the identity matrix.
Constraints may be imposed on the control u, the state x, or both. Control con-

straints are often expressed in the form

u(t) ∈U, t ∈ [t0,T ], (1.1.7)

where U is a given closed set in the m-dimensional u-space.
State constraints can be expressed in a similar way

x(t) ∈V, t ∈ [t0,T ], (1.1.8)

where V is a given closed set in the n-dimensional x-space.
Both sets in (1.1.7) and (1.1.8) may depend on time so that we have U =U(t) and

V = V (t). Note that the boundary conditions (1.1.2) can be formally considered as
a particular case of the state constraints imposed at two specific time instants t = t0
and t = T .
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In more general [than (1.1.7) and (1.1.8)] case of mixed constraints, we have

u(t) ∈U(x(t), t), t ∈ [t0,T ], (1.1.9)

where U(x, t) is, for all x and t ∈ [t0,T ], a closed set in the m-dimensional u-space;
this set depends on x and t. The constraint (1.1.9) can be also expressed as follows:

(u(t),x(t)) ∈W (t), t ∈ [t0,T ]. (1.1.10)

Here, W (t) is, for any t ∈ [t0,T ], a closed set in the (m+n)-dimensional (u,x)-space.
All constraints described by (1.1.7)–(1.1.10) are sometimes called geometric;

they are imposed on the values of the control and state at any given instant t.
Another class of constraints are integral constraints that can be imposed on con-

trol and state variables. These constraints can be either of equality or inequality type,
and the integrals can be taken over either a fixed or variable time interval.

Integral constraints can be often reduced to the boundary conditions and geo-
metric state constraints. As an example, let us consider two integral constraints: an
equality type constraint with a fixed interval of integration and an inequality type
constraint with a variable integration interval. We have

T∫
t0

ϕ1(x(t),u(t), t)dt = c1,

t∫
t0

ϕ2(x(τ),u(τ),τ)dτ ≥ c2(t), t ∈ [t0,T ],

(1.1.11)

where ϕ1 and ϕ2 are given functions, c1 is a constant, and c2 is a given function of
t.

We introduce additional state variables xn+i defined by the following equations
and boundary conditions

ẋn+i = ϕi(x,u, t), xn+i(t0) = 0, i = 1,2.

Then our integral constraints (1.1.11) can be rewritten as follows:

xn+1(T ) = c1, xn+2(t) ≥ c2(t), t ∈ [t0,T ].

Thus our integral constraints (1.1.11) are reduced to the boundary condition for
xn+1(T ) and the state constraint imposed on xn+2(t).

The cost functional, or the optimality criterion, is mostly given as a function
depending on the terminal values of the state variables and time

J = F(x(T ),T ) (1.1.12)

or as an integral functional
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J =

T∫
t0

f0(x(t),u(t), t)dt. (1.1.13)

Here, F(x, t) and f0(x,u, t) are given functions of their arguments. Each type of the
functionals (1.1.12) and (1.1.13) can be reduced to the other one.

If the original functional is given in the terminal form (1.1.12), we introduce the
function

f0(x,u, t) =
∂F
∂ t

+
〈∂F

∂x
, f (x,u, t)

〉
. (1.1.14)

Here, ∂/∂x denotes the vector of gradient, and brackets 〈., .〉 denote the scalar
product of vectors.

Then, taking into account (1.1.1), (1.1.3), and (1.1.14), we reduce the terminal
functional (1.1.12) to the integral one

J =

T∫
t0

f0(x,u, t)dt + const .

Vice versa, if we have an integral functional (1.1.13), we introduce an additional
state variable by the following equation and initial condition

ẋ0 = f0(x,u, t), x0(t0) = 0

and express our functional (1.1.13) in the terminal form

J = x0(T ).

Also, combinations of terminal and integral functionals can be considered as the
optimality criteria; these combinations can be also reduced to one of the basic types
(1.1.12) or (1.1.13).

More complicated example of the cost functional is the minimum (or maximum)
of some given function ψ(x, t) over the time interval [t0,T ], i.e.,

J = min
t

ψ(x(t), t), t ∈ [t0,T ]. (1.1.15)

In general, this kind of the functional cannot be reduced to the conventional types
(1.1.12) and (1.1.13). However, this reduction is possible, if the derivative

dψ
dt

=
∂ψ
∂ t

+
〈∂ψ

∂x
, f (x,u, t)

〉
= g(x, t)

does not depend on u, and the function ψ(x(t), t) has only one minimum with respect
to t ∈ [t0,T ]. Then our functional (1.1.15) can be expressed as follows:

J = ψ(x(τ),τ),
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where τ is the new terminal time, and the following terminal boundary condition

g(x(τ),τ) = 0

should be imposed on τ and x(τ).
In this book, we will not deal with cost functionals of the type presented by

(1.1.15).
Now we can formulate the optimal control problem in general terms.
For the given system, find the control u(t) and the corresponding state trajectory

x(t) such that they provide the minimal possible value of the optimality criterion J
under the imposed boundary conditions and constraints.

We will always take the system in the form (1.1.1) and impose initial and terminal
conditions in one of the forms (1.1.2)–(1.1.4) or (1.1.6). The constraints will be
imposed in one of the forms (1.1.7)–(1.1.10), whereas the cost functional J will be
given by (1.1.12) or (1.1.13).

Without loss of generality, we will always deal with the minimization of the
cost functional J. If we are interested in the maximization of the functional J, it is
sufficient just to change the sign of the functional and minimize (−J).

The control u(t) and state x(t) as the functions of time that correspond to the
minimal possible value of the functional J are called the optimal control and optimal
state trajectory, respectively.

The problem of optimal control formulated above is very important for numer-
ous practical applications. In particular, this problem arises naturally in control of
such mechanical and electromechanical systems as various vehicles (aircraft and
spacecraft, rockets, automobiles, ships, and other transport systems), industrial and
mobile robots, motors, machines, machine tools, etc. In these applications, the state
variables xi, i = 1, . . . ,n, are usually generalized coordinates and velocities of the
mechanical part of the system under consideration as well as electric currents in
the electric part of the system. The variables ui, i = 1, . . . ,m, denoted usually con-
trol forces and torques, electric voltages, and other controls acting upon the system.
The boundary conditions and constraints reflect real limitations and bounds imposed
upon the system under consideration.

For example, if u is the thrust acting upon the aircraft, the constraint (1.1.7)
expresses the bounds upon the magnitude and direction of the thrust. Since these
bounds may depend on the altitude and velocity of the aircraft, we come to the
condition (1.1.9), where the set U at any instant t depends on the current state x(t).
Integral constraints (1.1.11) may reflect bounds imposed upon the energy or fuel
expenditure. The cost functional (1.1.12) can be related to the desired position and
velocity at the terminal state of the aircraft, whereas the integral functional (1.1.13)
can be the measure of the fuel or energy consumption.

An important particular case of the optimality criterion J is the time of the control
process. This case can be considered, if we put F = T in (1.1.12) or f0 = 1 in
(1.1.13). The optimal control with this cost functional is called time-optimal.
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1.2 The maximum principle

In this section, we will formulate the maximum principle for a class of optimal
control problems. This principle was first stated and proved by Pontryagin and his
colleagues [93]. Comprehensive information and complete proofs of the maximum
principle can be found in numerous books; see, for example, [19, 24, 84, 83].

We consider the system (1.1.1) under the initial condition (1.1.3), terminal con-
dition (1.1.4), control constraint (1.1.7), and the cost functional (1.1.13). Thus, our
optimal control problem is determined by the following set of equations and condi-
tions

ẋ = f (x,u, t), x(t0) = x0, t ∈ [t0,T ],

gi(x(T )) = 0, i = 1, . . . ,r ≤ n, u(t) ∈U,

J =

T∫
t0

f0(x(t),u(t), t) → min .

(1.2.1)

The functions f and f0 as well as their first derivatives with respect to xi, i = 1, . . . ,n,
are assumed to satisfy the Lipschitz conditions with respect to x and u. The functions
gi, i = 1, . . . ,r, are smooth, and the rank of the matrix G from (1.1.5) at the set
defined by (1.1.4) is equal to r. The set U in (1.2.1) is a closed set in Rm. We will
consider two cases: the terminal time T is either fixed or free.

The control u(t) will be called admissible, if it is a piecewise continuous function
of t for t ∈ [t0,T ] and satisfies the constraint u(t) ∈U for all t ∈ [t0,T ].

The admissible control u(t) is called optimal, if it corresponds to the minimal
possible value of the cost functional J among all admissible controls.

Suppose the optimal control exists. If we substitute it into our equation of motion
and integrate this equation subject to the given initial condition [see (1.2.1)], we
obtain the optimal state trajectory x(t).

Let us introduce the additional state variable x0 defined by the following differ-
ential equation and initial condition

ẋ0 = f0(x,u, t), x0(t0) = 0. (1.2.2)

Then our functional J from (1.2.1) can be expressed as J = x0(T ).
We introduce now the (n+1)-dimensional adjoint, or conjugate, vector with the

components
p̄(t) = (p0, p1, . . . , pn) (1.2.3)

and the Hamiltonian H defined by

H(p̄,x,u, t) =
n

∑
i=0

pi fi(x,u, t) = p0 f0 + 〈p, f 〉. (1.2.4)

Here, p = (p1, . . . , pn).
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Note that our equation of motion from (1.2.1) together with (1.2.2) can be rewrit-
ten in terms of the Hamiltonian (1.2.4) as follows:

ẋi =
∂H
∂ pi

, i = 0,1, . . . ,n. (1.2.5)

The components of the adjoint vector (1.2.3) will obey the following differential
equations

ṗi = −∂H
∂xi

, i = 0,1, . . . ,n. (1.2.6)

Hence, the variables xi and pi, i = 0,1, . . . ,n, satisfy the system of Hamiltonian
equations (1.2.5) and (1.2.6). The components xi of the state vector and the ad-
joint variables pi play the role of the coordinates and impulses, respectively, of the
Hamiltonian system.

Now we can formulate the maximum principle that is a necessary optimality
condition. We consider both cases: of the fixed or free terminal time T .

Theorem 1.1. Let u(t) be an optimal control for the problem defined by (1.2.1) and
x(t) be the corresponding optimal trajectory. Then there exists a nonzero adjoint
vector p̄(t) satisfying the adjoint system (1.2.6) and such that

1)
H(p̄(t),x(t),u(t), t) = sup

u∈U
H(p̄(t),x(t),u, t) (1.2.7)

for t ∈ [t0,T ];
2)

p0 = const ≤ 0; (1.2.8)

3) the following boundary conditions hold

pi(T ) =
r

∑
j=1

λ j
∂g j(x(T ))

∂xi
, i = 1, . . . ,n, (1.2.9)

where λ j are constants;
4) if the terminal time T is free, then

H(p̄(T ),x(T ),u(T ),T ) = 0. (1.2.10)

The proof of Theorem 1.1 can be found in books [93, 19, 24, 84, 83]. We will
restrict ourselves only with comments on this theorem.

Conditions (1.2.9) are called the transversality conditions. They are absent in the
case of the two-point problem where the boundary conditions are given by (1.1.3)
and (1.1.6). In this case, we have r = n, and the number of unknown constants λi is
equal to the number of equations (1.2.9), so that these equations do not provide any
additional conditions.

If there are no boundary conditions (1.1.4), we have r = 0, and the transversality
conditions (1.2.9) become pi(T ) = 0, i = 1, . . . ,n.
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If the closed set U is bounded, then the upper bound of H over u ∈ U in (1.2.7)
is attained, and this equation implies

u(t) = argmax
v∈U

H(p̄(t),x(t),v, t). (1.2.11)

Of course, the control u providing the maximum in (1.2.11) may be not unique.
Suppose it is unique so that we can express u as a single valued function of p̄,x, t

by means of (1.2.11). Then we have

u = V (p̄,x, t), (1.2.12)

where V is a given function of its arguments.
By substituting u from (1.2.12) into the Hamiltonian system formed by (1.2.5)

and (1.2.6) for i = 1, . . . ,n, we obtain a system of 2n differential equations for 2n
variables xi and pi, i = 1, . . . ,n.

Let us consider the boundary conditions related to this system. We have n initial
(at t = t0) and r terminal (at t = T ) conditions from (1.2.1) as well as n transversality
conditions (1.2.9). The latter conditions contain r unknown parameters λ1, . . . ,λr

that can be excluded from (1.2.9), since the corresponding matrix G defined by
(1.1.5) has the rank r. After such elimination of λ j from (1.2.9), the transversality
conditions will consist of n−r equalities imposed on x(T ) and p(T ). Thus, the total
number of boundary conditions for our system will be equal to the number 2n of the
variables xi and pi, i = 1, . . . ,n.

If the terminal time T is not fixed, we have an additional unknown parameter T
and an additional boundary condition given by (1.2.10).

Note that the Hamiltonian (1.2.4) and, therefore, the right-hand sides of (1.2.11)
and (1.2.12) depend also on p0. Since the Hamiltonian (1.2.4) does not depend on
x0, we have ∂H/∂x0 = 0. Hence, by virtue of (1.2.6), p0 is constant. Consider the
following linear transformation of the adjoint vector

pi → μ pi, i = 0,1, . . . ,n, μ > 0, (1.2.13)

where μ is an arbitrary positive constant.
Under transformation (1.2.13), the Hamiltonian (1.2.4) is transformed similarly:

H → μH, whereas the equations (1.2.5) and (1.2.6) stay invariant. As a result, the
function V from (1.2.12) will also stay invariant, and the constants λ j in (1.2.9) will
be simply multiplied by μ .

Thus, without loss of generality, we can restrict ourselves to two cases in (1.2.8).
If p0 = const < 0, we normalize the adjoint vector and set p0 = −1; otherwise, we
have p0 = 0. The first case is called regular, or normal, and takes place usually in
well-posed problems. The second case is singular (abnormal) and occurs in ill-posed
problems.

Therefore, in both cases of the fixed and free terminal time T and under the as-
sumptions made, the maximum principle formally reduces the optimal control prob-
lem to the two-point boundary value problem for the nonlinear system of differential
equations of the 2nth order.
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Consider now some particular cases of the general problem defined by (1.2.1).
Let the system (1.1.1) be autonomous, i.e., its right-hand side does not depend

explicitly on t. Instead of (1.1.1), we have

ẋ = f (x,u). (1.2.14)

The following theorem holds for this case.

Theorem 1.2. For the optimal control problem defined by (1.2.1), where the equa-
tion of motion (1.1.1) is replaced by the autonomous equation (1.2.14), Theorem 1.1
holds and, besides,

H(p̄(t),x(t),u(t)) ≡ const (1.2.15)

for the optimal control. If the terminal time T is free, then the constant in (1.2.15) is
zero, i.e.,

H(p̄(t),x(t),u(t)) ≡ 0. (1.2.16)

Thus, for the autonomous system, the Hamiltonian is the first integral of the
Hamiltonian system (1.2.5), (1.2.6) along the optimal trajectory. This fact can be
used in order to check the correctness of the obtained optimal solution. This is es-
pecially useful for computational methods.

In case of free time T , we need an additional boundary condition. On the strength
of (1.2.16), we have

H(p̄(t0),x(t0),u(t0)) = 0, H(p̄(T ),x(T ),u(T )) = 0. (1.2.17)

By virtue of the first integral (1.2.15), only one of the conditions (1.2.17) is an
independent one, and one of them follows from the other. Hence, any of these con-
ditions and only one of them can be imposed as an additional boundary condition in
case of free time T .

Let us consider an important case of time-optimal control for the autonomous
system (1.2.14). In terms of (1.2.1), we have f0 = 1, and the Hamiltonian (1.2.4)
can be presented as follows:

H = p0 +H1, H1(p,x,u) = 〈p, f (x,u)〉. (1.2.18)

Substituting (1.2.18) into conditions of Theorems 1.1 and 1.2 for the autonomous
system (1.2.14), we come to the following assertion.

Theorem 1.3. Let u(t) be an optimal control for the time-optimal control problem
defined by (1.2.14), (1.1.3), (1.1.4), and (1.1.7), and x(t) be the corresponding opti-
mal trajectory. Then there exists a nonzero adjoint vector p(t) satisfying the adjoint
system

ṗi = −∂H1

∂xi
, i = 1, . . . ,n, (1.2.19)

where the truncated Hamiltonian H1 is defined by (1.2.18), and such that
1)
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H1(p(t),x(t),u(t)) = sup
u∈U

H1(p(t),x(t),u), t ∈ [t0,T ]; (1.2.20)

2) the transversality conditions

pi(T ) =
r

∑
j=1

λ j
∂g j(x(T ))

∂xi
, i = 1, . . . ,n, (1.2.21)

hold, where λ j are constant;
3)

H1(p(t),x(t),u(t)) ≡ const ≥ 0. (1.2.22)

It follows from (1.2.22) that H1 = const is the first integral of our Hamiltonian
system defined by (1.2.14) and (1.2.19). One can normalize the adjoint variables
using the transformation (1.2.13) and set H1 = 1 or H1 = 0. If H1 = 1, we have the
regular case, whereas H1 = 0 corresponds to the abnormal one. The value of H1 can
be fixed at one and only one time instant: for example, in the regular case we can
impose the following boundary condition

H1(p(T ),x(T ),u(T )) = 1. (1.2.23)

This additional boundary condition is necessary because of an additional unknown,
namely, terminal time T .

The approach to the optimal control briefly described above and based upon the
maximum principle meets many difficulties and open questions. Let us mention
some of them considering the general case treated in Theorem 1.1.

1) The maximum principle is only a necessary optimality condition; if it is satis-
fied, the corresponding control can still be not optimal.

2) The maximal value of the Hamiltonian over u ∈U in (1.2.11) can be reached
at many values of the control. Hence, it may be impossible to express u as a single
valued function given by (1.2.12).

3) The constant p0 may be equal to either −1 or 0, that is, the problem may be
abnormal.

4) Equations (1.2.5) and (1.2.6) are strongly nonlinear, even if the system (1.1.1)
is linear.

5) The boundary value problem for (1.2.5) and (1.2.6) is usually very compli-
cated. It can have many solutions or no solution at all.

The maximum principle is, together with the dynamic programming [21], one of
the basic cornerstones lying in the foundation of the mathematical theory of optimal
control. This principle was generalized and applied to various classes of optimal
control problems.

It was proved that for some of these classes, including time-optimal control for
linear systems and so-called linear-quadratic problems, the maximum principle pro-
vides not only necessary but also sufficient optimality conditions, and exact optimal
solutions can be obtained by means of this principle [93, 19, 24, 84, 83]. On the
other hand, a number of efficient computational methods based on the maximum
principle [24, 84, 89, 33] were developed. Even if these methods do not always
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overcome the difficulties listed above and cannot provide the rigorous proof of the
control optimality, they make it possible to find reasonable and close to optimal so-
lutions for many practical problems. In all cases, a preliminary knowledge of the
specific properties of the engineering, technological, or economical problem under
consideration helps to choose the relevant computational algorithm and an initial
approximation and, as a result, to find a good approximation to the desired optimal
solution.

1.3 Open-loop and feedback control

Let us discuss the important notions of open-loop and closed-loop, or feedback,
control.

The optimal control u(t) considered above is a function of time. But since it
corresponds to a certain initial condition (1.1.3), it depends also on the initial data
t0 and x0. Hence, it can be presented as

u = ũ(t; t0,x
0). (1.3.1)

This form of control is called open-loop, or program, control.
In practical problems, the engineers are interested usually in another form of

control called closed-loop, or feedback control. It defines the control as a function of
the current state and, maybe, also of time. The feedback control can be represented
as the following function

u = ū(x, t). (1.3.2)

The feedback optimal control (1.3.2) is sometimes called also as the synthesis of
optimal control.

The open-loop control (1.3.1) does not use measurement results, it does not take
into account possible disturbances and errors. As a result, the open-loop control can
be applied only in the ideal situation where the motion of the system is precisely
determined by the equation of motion (1.1.1), the chosen control u(t), and initial
condition (1.1.3).

In practical problems, the system (1.1.1) is usually subjected to unknown distur-
bances. Moreover, there are inaccuracies in the mathematical model of the system
and parametric errors. Hence, it is quite natural to prefer the feedback control that is
based on the current measurements of state. The feedback form of control is widely
used in applications as an on-line control.

A natural question arises: what is the relation between the open-loop (1.3.1) and
feedback (1.3.2) forms of optimal control?

To establish this relation, we consider first the case where the feedback optimal
control given by (1.3.2) is known, and we wish to find the open-loop control for the
given initial condition (1.1.3).

Let us substitute the control (1.3.2) into (1.1.1) and integrate this equation under
the given initial condition
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ẋ = f (x, ū(x, t), t), x(t0) = x0. (1.3.3)

Denote the solution of the initial value problem (1.3.3) by

x = x(t; t0,x
0). (1.3.4)

Now we substitute the obtained optimal trajectory (1.3.4) into the feedback control
(1.3.2).

Thus, we obtain the desired open-loop optimal control for the given initial con-
dition

ū(x(t; t0,x
0), t) = ũ(t; t0,x

0). (1.3.5)

Consider now the inverse situation and suppose the open-loop control (1.3.1) is
known for all t, t0, and x0. Let us set the initial time t0 equal to the current time
t and regard the initial state x0 as the current state x in the open-loop control. In
other words, we consider that each current time instant is an initial one. Then the
open-loop control coincides with the feedback and we have

ũ(t; t,x) = ū(x, t). (1.3.6)

Thus, the relation between the open-loop and feedback optimal control is deter-
mined by (1.3.5) and (1.3.6).

In case of the autonomous system (1.2.14), this relation is simplified.
The open-loop control for the system (1.2.14) depends on the time difference

t − t0, and we have instead of (1.3.1)

u = ũ(t − t0;x0). (1.3.7)

The feedback control (1.3.2) here does not depend on time

u = ū(x). (1.3.8)

The initial value problem (1.3.3) takes the form

ẋ = f (x, ū(x)), x(t0) = x0

and its solution can be expressed as follows:

x = x(t − t0;x0). (1.3.9)

By substituting the optimal trajectory (1.3.9) into the feedback control (1.3.8),
we obtain

ū(x(t − t0;x0)) = ũ(t − t0;x0). (1.3.10)

Similarly, instead of the relationship (1.3.6), we have

ũ(0;x) = ū(x). (1.3.11)
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The open-loop and feedback controls in the autonomous case are given by the
respective equations (1.3.7) and (1.3.8) and satisfy (1.3.10) and (1.3.11).

The approach of the maximum principle described in the previous section is
aimed at the obtaining the optimal control for a given initial condition. Thus, the
maximum principle can provide the open-loop control in the form given by (1.3.1)
or (1.3.7), for autonomous systems.

The transformation of the open-loop control into the feedback one described by
(1.3.6) and (1.3.11) is realizable, only if the open-loop optimal control can be found
for all possible initial data. This situation occurs in rather rare and simple cases. In
the next section, we consider two such cases, where the feedback optimal control is
obtained by means of the maximum principle.

Note that the feedback optimal control can be, in principle, obtained by the
method of dynamic programming [21]. However, this method requires a great
amount of computation and needs a huge memory. Up till now, the approach of dy-
namic programming is used for optimal control problems of low dimension (n ≤ 3).
Moreover, this method represents the feedback control only numerically, not in an
explicit form.

1.4 Examples

We consider below two examples of linear dynamical systems for which the feed-
back control will be obtained by means of the maximum principle [93].

Example 1

Consider a mechanical system with one degree of freedom controlled by a bounded
force. Let us take the equation of motion and the control constraint as follows

ẍ = u, |u| ≤ 1. (1.4.1)

Without loss in generality, we assume that the mass of the system and the max-
imal admissible forces are equal to unity. Note that (1.4.1) describes not only the
progressive motion of a body along the x-axis but also its rotation by the angle x
about the fixed axis; the control u denotes the force or torque, respectively.

Let us rewrite (1.4.1) as a system

ẋ1 = x2, ẋ2 = u, |u| ≤ 1. (1.4.2)

We impose arbitrary initial conditions

x1(t0) = x0
1, x2(t0) = x0

2 (1.4.3)

and zero terminal conditions
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x1(T ) = 0, x2(T ) = 0. (1.4.4)

We will find the time-optimal control for the problem defined by (1.4.2)–(1.4.4).
Using Theorem 1.3, we introduce the truncated Hamiltonian defined by (1.2.18)

as follows:
H1(p,x,u) = p1x2 + p2u. (1.4.5)

Its maximum with respect to u under the constraint |u| ≤ 1 is attained at

u = sign p2. (1.4.6)

The adjoint system given by (1.2.19) for the Hamiltonian (1.4.5) has the form

ṗ1 = 0, ṗ2 = −p1. (1.4.7)

Integrating system (1.4.7), we get

p1(t) = c1, p2(t) = −c1t + c2, (1.4.8)

where c1 and c2 are constants. By substituting p2 from (1.4.8) into (1.4.6), we have

u(t) = sign(c2 − c1t). (1.4.9)

The linear function of time (c2−c1t) can change its sign not more than once over
the time interval [t0,T ]. Hence, the control u(t) is equal to ±1 for all t ∈ [t0,T ], and
the switch, i.e., the change of the control sign, can happen not more than once over
the time interval t ∈ [t0,T ].

The control that takes only the maximal and minimal admissible values is called
the bang-bang control.

Let us consider arcs of phase trajectories in the (x1,x2)-plane corresponding to
u = 1 and u = −1. By substituting u = 1 into (1.4.2), we obtain

dx1

dx2
= x2.

Integrating this equation, we get

x1 =
1
2

x2
2 +A, (1.4.10)

where A is an arbitrary constant. Similarly, for the control u = −1, we obtain from
(1.4.2)

x1 = −1
2

x2
2 +B, (1.4.11)

where B is an arbitrary constant.
The families of parabolas corresponding to (1.4.10) and (1.4.11) are shown in

Fig. 1.1 by solid and dashed (broken) lines, respectively. According to (1.4.2), x2

grows (decreases) for u = 1 (u = −1). Hence, we can determine the direction of
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motion, or the direction of the time growth, along the phase trajectories; this direc-
tion is shown by arrows in Fig. 1.1.

x1

x2

0

Fig. 1.1 Phase trajectories for Example 1

Let us now construct the optimal phase trajectory starting at the given initial
point (1.4.3) and ending at the zero terminal point (1.4.4). We can see from Fig. 1.1
that this trajectory can reach the terminal point only along the one of two parabolas
given (1.4.10) and (1.4.11) for A = 0 and B = 0, respectively, in the directions shown
by arrows. Since our bang-bang control has no more than one switch, the phase
trajectory consists of no more than two arcs of parabolas belonging to different
families (1.4.10) and (1.4.11). The last part of the trajectory is an arc reaching the
zero point and corresponding to A = 0 in (1.4.10) or B = 0 in (1.4.11). Hence,
the first part of the trajectory should belong to the other family of parabolas. This
part starts at the initial point (1.4.3) and intersects the parabola of the other family
reaching the zero point.

Thus, we obtain the field of optimal phase trajectories shown in Fig. 1.2 by thin
lines.

The locus of states where the bang-bang control changes its sign is called the
switching curve. In our example, the switching curve consists of two semi-parabolas
of different families that reach the zero point. These semi-parabolas are optimal
phase trajectories themselves. The switching curve is shown by the thick line in
Fig. 1.2.

Since the families of optimal trajectories given by (1.4.10) and (1.4.11) corre-
spond to u = 1 and u = −1, respectively, the feedback optimal control can be easily
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x1

x2

0

u = 1

u = −1

Fig. 1.2 Optimal phase trajectories for Example 1

determined by Fig. 1.2. This control u(x1,x2) is equal to 1 and −1 to the left and
right of the switching curve, respectively. Along the switching curve, the control is
determined as u = signx1 or u = −signx2. Thus, the optimal feedback control in
our example is determined as follows:

u = 1 if x1 < −1
2

x2|x2|,

u = −1 if x1 > −1
2

x1|x2|,

u = signx1 = −signx2 if x1 = −1
2

x1|x2|.
By introducing the switching function

ψ(x1,x2) = −x1 − 1
2

x2|x2|, (1.4.12)

we can express our feedback control in the form

u(x1,x2) = signψ(x1,x2) if ψ �= 0,

u(x1,x2) = signx1 = −signx2 if ψ = 0.
(1.4.13)

Thus, we have obtained the optimal feedback control for our system (1.4.2). Since
this system is autonomous, the feedback control (1.4.13) does not depend on time
explicitly, in accordance with (1.3.8).
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Example 2

Consider now the time-optimal control problem for a linear oscillator. The equation
of motion and the control constraint are given by

ẍ+ x = u, |u| ≤ 1

or, in the form of a system similar to (1.4.2), by the equations

ẋ1 = x2, ẋ2 = −x1 +u, |u| ≤ 1. (1.4.14)

The initial and terminal conditions are defined again by (1.4.3) and (1.4.4).
The truncated Hamiltonian H1 for our system (1.4.14) is given by

H1(p,x,u) = p1x2 + p2(−x1 +u). (1.4.15)

Its maximum with respect to u is attained again at u given by (1.4.6). The adjoint
system for the Hamiltonian (1.4.15) is

ṗ1 = p2, ṗ2 = −p1.

Integrating this system, we obtain

p2(t) = C sin(t +α), p1(t) = −C cos(t +α),

where C and α are arbitrary constants. Here, we can set C > 0, without loss in
generality. By substituting p2(t) into (1.4.6), we have

u(t) = signsin(t +α). (1.4.16)

As in Example 1, we have again the bang-bang optimal control that takes the
values u =±1. By contrast to (1.4.9), the control defined by (1.4.16) can have many
switches.

To determine the arcs of phase trajectories corresponding to u = 1 and u = −1,
we substitute these values of control into (1.4.14) and obtain

dx1

dx2
=

x2

−x1 +u
for u = ±1.

By integrating these equation, we get

(x1 −1)2 + x2
2 = r2

+ for u = 1,

(x1 +1)2 + x2
2 = r2

− for u = −1.
(1.4.17)

These curves are families of circles of arbitrary radii r+ and r− with centers at the
points (1,0) and (−1,0) for the controls u = 1 and −1, respectively. The families of
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circles defined by (1.4.17) are shown in Fig. 1.3 by solid and dashed lines for u = 1
and u = −1, respectively.

x1

x2

0 1−1

Fig. 1.3 Phase trajectories for Example 2

On the strength of (1.4.17), we can express the state coordinates x1 and x2 as
follows:

x1 −1 = r+ cosϕ+, x2 = r+ sinϕ+ for u = 1,

x1 +1 = r− cosϕ−, x2 = r− sinϕ− for u = −1,
(1.4.18)

where ϕ+ and ϕ− are angles of rotation about the centers of the respective circles.
Substituting (1.4.18) into (1.4.14), we obtain

ϕ̇+ = −1, ϕ̇− = −1.

Thus, the direction of rotation of phase trajectories along the circles given by
(1.4.18) is clockwise. This direction is shown by arrows in Fig. 1.3. The angles of
rotation ϕ+ and ϕ− change linearly with time t with a unit angular velocity, so that
one revolution occurs in the time interval equal to 2π .

It follows from (1.4.16) that the control u(t) changes its sign at time intervals
equal to π . Thus, the time intervals between the control switches are equal to π ,
and the phase trajectory always travels along a half-circle between the neighbouring
switches.

Taking into account the above considerations, we come to the field of optimal
phase trajectories depicted in Fig. 1.4. Here, thin lines correspond to the trajectories,
and the switching curve is shown by a thick line. This curve consists of semi-circles
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of the unit radii given by (1.4.17) for r+ = r− = 1; the semi-circles of the first family
(1.4.7) lie in the quadrant x1 ≥ 0, x2 ≤ 0, and the semi-circles of the second family
(1.4.17) lie in the quadrant x1 ≤ 0, x2 ≥ 0. The whole picture is centrally symmetric
with respect to the origin of coordinates. Only two semi-circles of the switching
curve adjacent to the zero point are arcs of the optimal trajectories; all other semi-
circles are intersected by the trajectories.

x1

x2

0

u = 1

u = −1

Fig. 1.4 Optimal phase trajectories for Example 2

The feedback optimal control is equal to 1 (−1) below (above) the switching
curve.

Analytically, the feedback optimal control can be presented in the same form
(1.4.13) as in Example 1, where the switching function ψ(x1,x2) is given by

ψ(x1,x2) = (−x2
1 −2x1)

1/2 − x2 if −2 ≤ x1 ≤ 0,

ψ(x1,x2) = ψ(x1 +2,x2) if x1 < −2,

ψ(x1,x2) = −ψ(−x1,−x2) if x1 > 0.

(1.4.19)

Here, the first expression defines the semi-circle of the second family (1.4.17) be-
longing to the switching curve and adjacent to the origin, and the other expressions
(1.4.19) define all other semi-circles of this curve.

The optimal feedback controls obtained above for Examples 1 and 2 will be
used below as integral parts of the non-optimal feedback controls for more general
nonlinear systems.



Chapter 2
Method of decomposition (the first approach)

In this chapter, we present the method of decomposition for the control design in
nonlinear dynamical systems. We suppose the system is described by Lagrangian
ordinary differential equations and subjected to controls, the number of independent
control forces being equal to the number of degrees of freedom. The material of the
chapter is based on papers [27, 28, 29, 34, 98, 102, 42, 43, 44].

2.1 Problem statement and game approach

2.1.1 Controlled mechanical system

Consider a nonlinear control system whose dynamics is described by Lagrange’s
equations

d
dt

∂T
∂ q̇i

− ∂T
∂qi

= Ui +Qi, i = 1, . . . ,n. (2.1.1)

Here, q = (q1, . . . ,qn) denotes the generalized coordinates of the system, n is the
number of its degrees of freedom, and a dot over a letter denotes the derivative
with respect to the time t. The generalized forces consist of the control forces Ui

to be determined and terms Qi representing all other external and internal forces,
including the uncontrolled perturbations.

The kinetic energy of the system T is given by a quadratic form

T (q, q̇) =
1
2

n

∑
j,k=1

a jk(q)q̇ jq̇k, (2.1.2)

where a jk are elements of a symmetric positive-definite matrix A(q) of order n×n.
Substituting (2.1.2) into (2.1.1), we write the equations of motion in the form

A(q)q̈ = U +S(q, q̇, t). (2.1.3)

31
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Here, U = (U1, . . . ,Un) is the vector of the control forces and S = (S1, . . . ,Sn) is the
vector function

S(q, q̇, t) = Q(q, q̇, t)−
n

∑
j,k=1

Γjkq̇ jq̇k, (2.1.4)

where Γjk = (Γ1 jk, . . . ,Γn jk) are n-dimensional vectors with components

Γi jk =
∂ai j

∂qk
− 1

2

∂a jk

∂qi
. (2.1.5)

We impose the constraints

|Ui| ≤U0
i , i = 1, . . . ,n, (2.1.6)

on the control forces, where U0
i > 0 are given positive constants.

The initial conditions for system (2.1.3)

q(t0) = q0, q̇(t0) = q̇0 (2.1.7)

lie in a given domain Ω in 2n-dimensional phase space: {q, q̇} ∈ Ω .
Let us formulate the control problem:

Problem 2.1. Find a feedback control U = U(q, q̇) satisfying constraint (2.1.6) and
bringing system (2.1.3) from an arbitrary initial state (2.1.7) in domain Ω to a given
state with zero velocities

q(t∗) = q∗, q̇(t∗) = 0 (2.1.8)

in finite time (instant t∗ > t0 is not fixed).

2.1.2 Simplifying assumptions

Problem 2.1 will be solved under certain simplifying assumptions (conditions),
which are formulated below.

We represent the matrix A(q) in the form

A(q) = B(q)A∗,

B(q) = E +[A(q)−A∗]A−1∗ ≡ A(q)A−1∗ ,
(2.1.9)

where A∗ is some constant symmetric positive-definite n× n matrix and E is the
n×n identity matrix. Matrix B(q) is nonsingular; hence, the inverse matrix B−1(q)
exists. We multiply both sides of (2.1.3) by B−1(q) and, using the relationships
(2.1.9), transform (2.1.3) to the form

A∗q̈ = U +V (q, q̇, t,U). (2.1.10)
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Here, we use the notation

V = V ′ +V ′′, V ′ = B−1(q)S(q, q̇, t),

V ′′ = [B−1(q)−E]U.
(2.1.11)

By virtue of this notation, (2.1.10) is equivalent to the original equation (2.1.3).
Let us suppose that the conditions

V ′
i = −λi(A∗q̇)i +V ∗

i ,

|V ∗
i +V ′′

i | ≤V 0
i < U0

i , i = 1, . . . ,n,
(2.1.12)

hold for all t ≥ t0, all {q, q̇} ∈ Ω , and all U satisfying (2.1.6). Here, V 0
i > 0 and

λi > 0 are constants. If all λi are equal to zero, conditions (2.1.12) become more
simple

|Vi| ≤V 0
i < U0

i , i = 1, . . . ,n, (2.1.13)

for all t ≥ t0, all {q, q̇} ∈ Ω , and all U satisfying (2.1.6).
The following lemma allows to check whether condition (2.1.13) is satisfied.

Lemma 2.1. Suppose that, for any n-dimensional vector z, the following conditions
are satisfied for all t ≥ t0 and all {q, q̇} ∈ Ω :

|A∗z| ≥ μ∗|z|, |[A(q)−A∗]z| ≤ μ |z|,

|Si(q, q̇, t)| ≤ ϑU0
i , i = 1, . . . ,n,

0 < μ < μ∗, ϑ > 0,

(2.1.14)

where μ∗, μ , and ϑ are constants. Then, for all t ≥ t0, all {q, q̇} ∈ Ω , and all U
meeting (2.1.6), the components of vector V in (2.1.11) satisfy the estimates

|Vi| ≤ ϑU0
i + μ(μ∗ −μ)−1(1+ϑ)|U0|, i = 1, . . . ,n,

U0 = (U0
1 , . . . ,U0

n ).
(2.1.15)

We note that, since A∗ is a positive-definite matrix, we can take as μ∗ any positive
number not exceeding its smallest eigenvalue.

Proof. From the first of inequalities (2.1.14), we have

|A−1
∗ z| ≤ μ−1

∗ |z|. (2.1.16)

Here and below, z denotes any n-dimensional vector. We define

L = [A(q)−A∗]A−1
∗ . (2.1.17)

It follows from (2.1.16) and the second of inequalities (2.1.14) that
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|Lz| ≤ μμ−1
∗ |z|. (2.1.18)

By virtue of (2.1.17), we can rewrite relationship (2.1.9) for B in the form

Bz = z+Lz. (2.1.19)

With the aid of (2.1.19) and (2.1.18), we obtain the estimate

|Bz| ≥ |z|− |Lz| ≥ (1−μμ−1
∗ )|z|. (2.1.20)

It follows from condition (2.1.14) of the lemma that (1− μμ−1∗ ) > 0. Setting z =
B−1z′ in (2.1.20), we obtain

|B−1z′| ≤ (1−μμ−1
∗ )−1|z′|. (2.1.21)

Inequalities (2.1.18) and (2.1.21) yield

|LB−1z| ≤ μ(μ∗ −μ)−1|z|. (2.1.22)

Let us set z = B−1z′ in (2.1.19):

B−1z′ = z′ −LB−1z′. (2.1.23)

Using (2.1.11) for V ′ and (2.1.23) with z′ = S, we represent the components Vi of
the vector V ′ in the form

V ′
i = (B−1S)i = Si − (LB−1S)i, i = 1, . . . ,n. (2.1.24)

The subscripts denote the components of the vectors. By virtue of the third of con-
ditions (2.1.14) and inequality (2.1.22), we obtain from (2.1.24)

|V ′
i | ≤ |Si|+ |(LB−1S)i| ≤ ϑU0

i + μ(μ∗ −μ)−1|S|

≤ ϑU0
i + μ(μ∗ −μ)−1ϑ |U0|, i = 1, . . . ,n.

(2.1.25)

Here, we used notation (2.1.15) for U0. We substitute (2.1.23) with z′ = U into
(2.1.11) for vector V ′′:

V ′′
i = (B−1U −U)i = −(LB−1U)i, i = 1, . . . ,n. (2.1.26)

From this equation, using inequalities (2.1.22) and (2.1.6), we obtain

|V ′′
i | ≤ |(LB−1U)i| ≤ |LB−1U | ≤ μ(μ∗ −μ)−1|U |

≤ μ(μ∗ −μ)−1|U0|, i = 1, . . . ,n.
(2.1.27)

This and inequality (2.1.25) imply (2.1.15). This completes the proof of the
lemma. ��



2.1 Problem statement and game approach 35

Corollary 2.1. If, under the conditions of Lemma 2.1, ϑ < 1 and μ is sufficiently
small, then condition (2.1.13) is satisfied.

Remark 2.1. We should take for matrix A∗ some “average” value of the matrix A(q)
for domain Ω . In particular, we can choose for A∗ the matrix A(q∗) for some value
of vector q∗, for example, A(q∗), A(q0), or A((q0 + q∗)/2). Then, if the domain Ω
is sufficiently small, the matrix A(q) will differ only slightly from A∗ for all the mo-
tions considered, and the number μ will, under conditions (2.1.14) of Lemma 2.1,
be sufficiently small. Thus, by virtue of Corollary 2.1, condition (2.1.13) can be
ensured for a given nonlinear system (2.1.3) if, first, the possibilities of control are
increased [that is, if the constants U0

i in (2.1.6) are increased so that the condition
ϑ < 1 holds] and, second, the domain Ω is decreased, so that A(q) is close to A∗
(that is, the number μ is decreased).

We shall show in Sect. 2.5 that formulation of Problem 2.1 and condition (2.1.12)
are natural often and are satisfied for manipulation robots with electromechanical
drives.

2.1.3 Decomposition

Let us turn to the solution of Problem 2.1 with condition (2.1.12) satisfied. We
assume that all motions of system (2.1.3) considered lie in the domain Ω .

If condition (2.1.12) is satisfied, system (2.1.3) can, by virtue of (2.1.10)–
(2.1.12), be represented in the form

(A∗q̈)i +λi(A∗q̇)i = Ui +Ṽi, Ṽi = V ∗
i +V ′′

i , i = 1, . . . ,n. (2.1.28)

In system (2.1.28), we make the change of variables

A∗(q−q∗) = y, (2.1.29)

where q∗ was introduced in (2.1.8). We obtain

ÿi +λiẏi = Ui +Ṽi, i = 1, . . . ,n. (2.1.30)

For the terms on the right-hand sides of (2.1.30), we have, by virtue of (2.1.6),
(2.1.28), and (2.1.12), the constraints

|Ui| ≤U0
i , |Vi| ≤V 0

i < U0
i , i = 1, . . . ,n. (2.1.31)

After the change of variables (2.1.29), the initial conditions (2.1.7) and the
boundary conditions (2.1.8) take the forms

y(t0) = A∗(q0 −q∗), ẏ(t0) = A∗q̇0, (2.1.32)
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y(t∗) = ẏ(t∗) = 0. (2.1.33)

Thus, Problem 2.1 reduces to the construction of a control U(y, ẏ) that brings sys-
tem (2.1.30) from an arbitrary initial state (2.1.32) to state (2.1.33) under constraint
(2.1.31). System (2.1.30) consists of n subsystems, each with a single degree of free-
dom. Each of the subsystems has its own scalar control Ui that satisfies constraint
(2.1.31). In this subsystem, we treat the function Vi as a perturbation subject to con-
straint (2.1.31), but otherwise arbitrary. Then the result obtained can be summed up
in the form of the following assertion.

Theorem 2.1. Suppose that condition (2.1.12) is satisfied and that all the motions
of system (2.1.3) that are being considered lie in the domain Ω . Then, to solve
Problem 2.1, it is sufficient to solve n control problems for the linear subsystems
(2.1.30) with a single degree of freedom. In each of these problems, it is necessary
to construct a scalar control Ui(yi, ẏi) satisfying constraint (2.1.31) and taking the
ith subsystem (2.1.30) from an arbitrary initial state (2.1.32) to the coordinate origin
(2.1.33) in finite time for arbitrary admissible perturbations Vi satisfying constraint
(2.1.31).

The described approach to the control decomposition has been first suggested in
[27] for the case λ = 0 and in [29] for the general case λ ≥ 0.

2.1.4 Game problem

Let us consider the ith subsystem (2.1.30) and, in it, let us set

yi = U0
i x, Ui = U0

i u, Ṽi = U0
i v. (2.1.34)

Then, this system combined with constraints (2.1.31) takes the form

ẍ+λ ẋ = u+ v, |u| ≤ 1, |v| ≤ ρ < 1, (2.1.35)

and the boundary conditions (2.1.32) and (2.1.33) become

x(0) = ξ , ẋ(0) = η , x(τ) = ẋ(τ) = 0. (2.1.36)

In (2.1.35) and (2.1.36), we used the notation

ρ =
V 0

i

U0
i

< 1, ξ = (U0
i )−1yi(t0) = (U0

i )−1[A∗(q0 −q∗)]i,

η = (U0
i )−1ẏi(t0) = (U0

i )−1(A∗q̇0)i, λ = λi,

τ = t∗ − t0, i = 1, . . . ,n.

(2.1.37)

Without loss of generality, the initial instant of time is taken equal to zero.
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Let us consider the problem of bringing system (2.1.35) to the coordinate origin
in the shortest time, that is, for minimum τ in (2.1.36). We treat this problem as a
differential game, in which one of the players (the controlling side) chooses a control
u, and the second player (the opponent) chooses a perturbation v. We will use the
approach of the theory of differential games [79] and construct a feedback control
u(x, ẋ) that brings system (2.1.35) to the coordinate origin in the shortest guaranteed
time τ for an arbitrary admissible perturbation v. We note that this differential game
(2.1.35) and (2.1.36) is a linear differential game of similar objects.

Its solution reduces [79] to the solution of the time-optimal control problem for
the system

ẍ+λ ẋ = (1−ρ)u, |u| ≤ 1, τ → min, (2.1.38)

with the boundary conditions (2.1.36). The sought control u(x, ẋ) and the minimum
guaranteed time τ in the game problem (2.1.35) and (2.1.36) coincide with the syn-
thesis of the optimal control and optimal time for problem (2.1.38) and (2.1.36).
We note that system (2.1.38) is obtained from (2.1.36) for a perturbation equal to
v = −ρu that is the optimal control of the opponent choosing the perturbation v.
In other words, the worst perturbation in this problem can be taken in the form
v = −ρu.

Thus, as a result of the decomposition, the solution of Problem 2.1 is reduced
to the construction of the time-optimal feedback control for system (2.1.38) and
(2.1.36).

2.2 Control of the subsystem and feedback control design

2.2.1 Optimal control for the subsystem

Let us rewrite the time-optimal control problem (2.1.38) and (2.1.36) in the form

ẋ1 = x2, ẋ2 = −λx2 +w, w = (1−ρ)u, |u| ≤ 1, (2.2.1)

x1(0) = ξ , x2(0) = η , x1(τ) = x2(τ) = 0, (2.2.2)

0 ≤ ρ < 1, λ ≥ 0, τ → min, (x1 = x, x2 = ẋ).

This problem is easily solved by means of the maximum principle, see Sect. 1.2.
Here, we present the necessary relationships.

Hamilton’s function for system (2.2.1) is equal to

H = p1x2 + p2[(1−ρ)u−λx2], |u| ≤ 1,

where p1 and p2 are conjugate variables. From this we obtain, by virtue of the
maximum principle,

u = sign p2 = ±1. (2.2.3)
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The adjoint system has the form

ṗ1 = 0, ṗ2 = −p1 +λ p2.

Integrating it, we obtain

p2 = C1 +C2eλ t for λ > 0,

p2 = C1 +C2t for λ = 0,

where C1 and C2 are arbitrary constants. It follows that p2(t) is a monotone function
for λ ≥ 0. Therefore, control (2.2.3) has no more than one switching point.

For a constant w = const, the general solution of system (2.2.1) has the form

x1 = B1 +λ−1w(t − τ)−λ−1(B2 −λ−1w)[e−λ (t−τ)−1],

x2 = λ−1w+(B2 −λ−1w)e−λ (t−τ) for λ > 0,

(2.2.4)

x1 = B1 +B2(t − τ)+
1
2

w(t − τ)2,

x2 = B2 +w(t − τ) for λ = 0.

(2.2.5)

Here and in what follows, all the relationships are given separately for the cases
λ > 0 and λ = 0. We note that the case λ = 0 can be obtained by taking the limit as
λ →+0. The arbitrary constants B1 and B2 in (2.2.4) and (2.2.5) are chosen in such
a way that, for B1 = B2 = 0, the zero boundary conditions (2.2.2) hold for t = τ .
Eliminating t − τ from (2.2.4) and (2.2.5), we obtain the equations for the phase
trajectories

x1 = B′ −λ−1x2 −λ−2w log |1−λw−1x2| for λ > 0, (2.2.6)

x1 = B′ +(2w)−1x2
2 for λ = 0. (2.2.7)

Here, B′ is a new constant expressed in terms of B1 and B2. In deriving (2.2.6), we
assume that λB2 �= w. If λB2 = w, we obtain from (2.2.4) the equation for the phase
trajectory in the form

x2 = λ−1w. (2.2.8)

The phase trajectories (2.2.7) for λ = 0 are parabolas that are symmetric about
the x1-axis. They can be obtained successively, one from another, by a parallel trans-
lation along the x1-axis.

Let us consider trajectory (2.2.6) for λ > 0, u = 1, and B′ = 0. Using (2.2.1) with
w = 1−ρ , we obtain the following properties of the curve x1(x2):

• As x2 increases from −∞ to 0, x1 decreases from ∞ to 0 and attains a zero mini-
mum at x2 = 0;

• In the interval x2 ∈ (0,λ−1(1−ρ)), the value of x1 increases from 0 to ∞;
• In the interval (λ−1(1−ρ),∞), the value of x1 decreases from ∞ to −∞.
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Thus, the curve x1(x2) consists of two branches which approach the asymptote
x2 = λ−1(1−ρ). By (2.2.8), this asymptote is itself also a phase trajectory for u = 1.
Dependence x1(x2) is shown for u = 1 and B′ = 0 in Fig. 2.1, where the arrows indi-
cate the direction of increasing t. The phase trajectories corresponding to u = 1 and
arbitrary B′ in (2.2.6) are obtained from the curve described above by a translation
along the x1 axis.

x2

O x1

Fig. 2.1 Phase trajectories for w = const and λ > 0

If we simultaneously change the signs of x1, x2, u, B1, B2, and B′ in (2.2.4)–
(2.2.8), the resulting relationships remain valid. Consequently, the phase trajectories
corresponding to u = −1 are obtained by means of the central symmetry from the
trajectories described above and corresponding to u = 1.

The only phase trajectories that reach the coordinate origin as t increases are
curves (2.2.6) and (2.2.7) with B′ = 0 and u = ±1. Motions along these curves are
described by (2.2.4) and (2.2.5) with B1 = B2 = 0 and u = ±1. These two semitra-
jectories [(2.2.4) for λ > 0 and (2.2.5) for λ = 0] constitute the switching curve of
the optimal control: the only possible change of sign of the control u along each tra-
jectory takes place on this curve. As a result, we arrive at the field of optimal phase
trajectories that is shown in Fig. 2.2 for λ > 0. Here, the bold curves represent the
switching lines and the arrows indicate the direction of increasing t. For the field of
optimal trajectories for λ = 0, see Fig. 1.2, Sect. 1.4.

The feedback optimal control can be represented in the form [see (1.4.13)]
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x1

x2

ψρ < 0

u = −1

ψρ > 0

u = 1 ψρ = 0

Fig. 2.2 Optimal phase trajectories

u(x1,x2) = signψρ(x1,x2) for ψρ �= 0,

u(x1,x2) = signx1 = −signx2 for ψρ = 0,
(2.2.9)

where ψρ(x1,x2) is the switching function. It is equal to

ψρ(x1,x2) = −x1 −λ−1x2

+λ−2(1−ρ) log[1+λ (1−ρ)−1|x2|]signx2 for λ > 0,

ψρ(x1,x2) = −x1 − x2|x2|[2(1−ρ)]−1 for λ = 0.

(2.2.10)

Let us also determine the time necessary to reach the coordinate origin for the
optimal trajectory starting from arbitrary initial conditions (2.2.2). To be definite,
suppose that the initial point lies in the region ψρ ≤ 0 and that the only possible
switching takes place at an instant s ∈ [0,τ]. The point (x1(s),x2(s)) lies, on the
one hand, on the phase trajectory corresponding to u = −1 that passes through the
initial point and, on the other hand, on the switching curve for u = 1. Equating the
corresponding expressions (2.2.5) (we have B1 = B2 = 0 on the switching curve),
we obtain, for λ = 0,
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x1(s) = B1 −B2θ − 1
2
(1−ρ)θ 2 =

1
2
(1−ρ)θ 2,

x2(s) = B2 +(1−ρ)θ = −(1−ρ)θ , θ = τ − s > 0.

(2.2.11)

Let us also write down condition (2.2.2) determining that the phase trajectory
(2.2.5) with u = −1 passes through the initial point:

ξ = B1 −B2τ − 1
2
(1−ρ)τ2,

η = B2 +(1−ρ)τ.

(2.2.12)

Eliminating constants B1 and B2 from (2.2.11) and (2.2.12), we obtain two equa-
tions for θ and τ . Solving them, we find

τ(ξ ,η) =
1

1−ρ

{
2

[
1
2

η2 − (1−ρ)ξ γ
]1/2

−ηγ

}
,

γ = signψρ , (λ = 0).

(2.2.13)

Here, we take into account the symmetry of the phase trajectories. Function ψρ
is defined in (2.2.10). On the switching curve, that is, for ψρ = 0, we can take for
γ in (2.2.13) any of the numbers γ = ±1: the value of τ(ξ ,η) is the same in both
cases.

The optimal time for λ > 0 is obtained in an analogous manner. Here, instead of
(2.2.5), we use formulas (2.2.4). We have finally (see [2])

τ(ξ ,η) = 2λ−1 log{M1/2 +[M−1+ληγ(1−ρ)−1]1/2},

M = exp[−(λη +λ 2ξ )γ(1−ρ)−1],

γ = signψρ , (λ > 0),

(2.2.14)

where ψρ is given by (2.2.10) for λ > 0.
Equations (2.2.9), (2.2.10) and (2.2.13), (2.2.14) determine the synthesis of the

optimal control and the minimum guaranteed time τ in the game problem (2.1.35)
and (2.1.36). If the perturbation v is different from the worst one (v �= −ρu), then
the phase trajectories will differ from the optimal ones. However, the time needed
to get the system to the coordinate origin will not exceed τ given by (2.2.13) and
(2.2.14). We note that, when the motion has arrived on the switching curve, it will,
for arbitrary admissible perturbations, proceed along that curve until it gets to the
coordinate origin. If v �=−ρu, a sliding regime of motion along the switching curves
is realized. Thus, if v = 0 on the switching curve, the control assumes the values
u = ±1 with infinitely many changes of sign, so that we have “on the average”
u = 1−ρ or u = −(1−ρ) on the corresponding branches of the switching curve.
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2.2.2 Simplified control for the subsystem

With the method of control proposed in Sect. 2.2.1, we did not assume the pertur-
bation, that is, the function v in system (2.1.35), to be known. However, we did
assume its maximum possible value [ρ with constraint (2.1.35)] to be known, and
the control synthesis given by (2.2.9) and (2.2.10) depends on this maximum value.

There is another possible approach to determine the control in a system with per-
turbations. In it, the perturbations are completely ignored at the stage of the control
design and are taken into account only in the modelling and processing of the con-
trol. This approach, which is completely natural in the case of small perturbations,
we shall call the simplified approach.

Below, we compare the two approaches, and determine to what extent ignoring
the perturbations in the control design is justified.

By Theorem 2.1, if condition (2.1.12) holds, the system in question in the form
(2.1.3), (2.1.10), or (2.1.30) is broken down into n subsystems of the form (2.1.35).
Therefore, a comparison of the two approaches needs to be made only for system
(2.1.35).

If we neglect perturbation v in system (2.1.35), it takes the form

ẍ+λ ẋ = u, |u| ≤ 1. (2.2.15)

Let us write down the time-optimal control for system (2.2.15) with the boundary
conditions (2.1.36). Since system (2.2.15) coincides with system (2.1.38) at ρ = 0,
the desired control is determined by (2.2.9) and (2.2.10) in which we set ρ = 0. We
obtain

u(x1,x2) = signψ0(x1,x2) for ψ0 �= 0,

u(x1,x2) = signx1 = −signx2 for ψ0 = 0,

ψ0(x1,x2) = −x1 −λ−1x2 +λ−2 log[1+λ |x2|]signx2, (λ > 0),

ψ0(x1,x2) = −x1 − 1
2

x2|x2|, (λ = 0).

(2.2.16)

The switching curve ψ0 = 0 for the feedback control (2.2.16) is the dashed curve in
Fig. 2.3. For comparison, the solid curve in Fig. 2.3 shows the switching curve ψρ =
0 for control (2.2.9) and (2.2.10) with 0 < ρ < 1. Both these curves are symmetric
about the coordinate origin. The equation of the curve ψ0 = 0 can be represented in
the form

x1 = φ(x2), (2.2.17)

where φ(x2) is a monotonically decreasing odd function of its argument.
In the case of the control law (2.2.16), system (2.1.35) takes the form
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x1

x2

u = −1

(ξ ,η)

ψρ = 0

ψ0 = 0

Fig. 2.3 Switching curves for ρ > 0 and ρ = 0

ẋ1 = x2, ẋ2 = −λ ẋ2 +u(x1,x2)+ v, λ ≥ 0,

|v| ≤ ρ < 1, (x1 = x, x2 = ẋ).
(2.2.18)

To estimate the possible influence of the perturbations on the motion of system
(2.2.18), we pose the problem of finding the “worst” perturbation.

Problem 2.2. Find the optimal feedback control v(x1,x2) for system (2.2.18) satis-
fying the constraint |v| ≤ ρ and having the property that the phase trajectory of that
system first intersects the switching curve [ψ0 = 0 or x1 = φ(x2), see (2.2.16) and
(2.2.17)] as far as possible from the coordinate origin, that is, for as large |x1| as
possible or, what amounts to the same thing, for as large |x2| as possible.

To be definite, we assume that the initial point (ξ ,η) lies in the region ψ0 < 0.
Then, by (2.2.16), we have u = −1 on the entire trajectory in question. Then, the
phase trajectory of system (2.2.18) first intersects that branch of the switching curve
on which x1 > 0 and x2 < 0, see Fig. 2.3. As a result, Problem 2.2 is described by
the following relationships:

ẋ1 = x2, ẋ2 = −λx2 −1+ v, |v| ≤ ρ < 1,

λ ≥ 0, 0 ≤ t ≤ τ, x1(0) = ξ , x2(0) = η , (2.2.19)

x1(τ) = φ(x2(τ)), x1(τ) > 0, x2(τ) < 0, x1(τ) → max .
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Here, τ is the terminal instant of the process that is not fixed. Function φ(x2) in
(2.2.17) and (2.2.19) is obtained from the equation ψ0 = 0 [see (2.2.16)] with ρ = 0
and x2 < 0. We obtain

φ(x2) = −λ−1x2 −λ−2 log(1−λx2), (λ > 0),

φ(x2) =
1
2

x2
2, (λ = 0).

It follows from these relationships that

φ(x2) ≥ 0, φ ′(x2) = x2(1−λx2)
−1 < 0, (x2 < 0). (2.2.20)

We note that maximization of x1(τ) in (2.2.19) is equivalent to minimization of
the following integral functional:

τ∫
0

(−x2)dt → min . (2.2.21)

Let us apply the maximum principle, see Sect. 1.2, to Problem 2.2. The Hamil-
tonian function for problem (2.2.19) and (2.2.21) has the form

H = p1x2 + p2(v−λx2 −1)+ x2, |v| ≤ ρ, (2.2.22)

where p1 and p2 are conjugate variables. They satisfy the following adjoint equa-
tions

ṗ1 = 0, ṗ2 = λ p2 − p1 −1 (2.2.23)

and the transversality conditions

p1(τ)φ ′(x2(τ))+ p2(τ) = 0, H(τ) = 0. (2.2.24)

We find p1(τ) from the first of conditions (2.2.24) and substitute it into the sec-
ond one, using expression (2.2.22) for the Hamiltonian H. We obtain

p2[(v−λx2 −1)φ ′(x2)− x2]+ x2φ ′(x2) = 0, (t = τ). (2.2.25)

Substituting φ ′(x2) given by (2.2.20) into (2.2.25), we get, after some simplifica-
tions,

x2[p2(v−2)+ x2] = 0, (t = τ). (2.2.26)

Since, by (2.2.19), we have |v| ≤ ρ < 1 and x2(τ) < 0, it follows from (2.2.26) that

p2(τ) < 0. (2.2.27)

It follows from the maximum principle and (2.2.22) that the optimal control is
expressed in the form

v(t) = ρ sign p2(t). (2.2.28)
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Integrating system (2.2.23), we obtain

p1 = C1, p2 = λ−1(C1 +1)+C2eλ t , (λ > 0),

p1 = C1, p2 = C2 − (C1 +1)t, (λ = 0),
(2.2.29)

where C1 and C2 are constants. It follows from (2.2.29) that p2(t) is a monotone
function. Consequently, the optimal control (2.2.28) has no more than one switching
point.

Since system (2.2.19) is autonomous, its Hamiltonian H is constant along the
optimal trajectory and, by virtue of (2.2.24), equal to zero. Then, by (2.2.22), we
obtain

H(t) = (p1 +1)x2 + p2(v−λx2 −1) ≡ 0. (2.2.30)

At the instant of switching, we have, by (2.2.28), p2 = 0. Then it follows from
(2.2.30) that at that instant either p1 = −1 or x2 = 0.

Let us consider the first possibility. It follows from (2.2.29) that, if p1 = −1,
p2(t) does not change sign along the trajectory and hence a switching cannot take
place for p1 = −1.

The second possibility x2 = 0 means that the control is switched when the trajec-
tory crosses the line x2 = 0. Since p2(τ) is, by (2.2.27), negative, the optimal control
(2.2.28) is negative for x2 < 0 and positive for x2 > 0. Thus, the feedback optimal
control has the form

v(x1,x2) = ρ signx2. (2.2.31)

The optimal control in the region ψ0 < 0 is constructed. We note that system
(2.2.19) is, along with relationships (2.2.16), invariant with respect to the trans-
formation x1 → −x1, x2 → −x2, and v → −v. Consequently, the optimal feedback
control v(x1,x2) possesses the property of central symmetry, and synthesis (2.2.31)
satisfies that condition. Thus, (2.2.31) provides the solution of Problem 2.2 formu-
lated above in the whole phase plane (x1,x2).

2.2.3 Comparative analysis of the results

Let us use solution (2.2.31) of Problem 2.2 obtained above to analyze possible mo-
tions of system (2.2.18) for the case of the simplified control (2.2.16). We first as-
sume that perturbation v is given by (2.2.31). For u given by (2.2.16) and v given by
(2.2.31), all trajectories of system (2.2.18) consist of arcs of curves corresponding
to constant u = ±1 and v = ±ρ . The equations of these curves are determined by
(2.2.4)–(2.2.7), in which, according to (2.2.16) and (2.2.31), we set

w = u+ v = signψ0 +ρ signx2. (2.2.32)

One of the trajectories for the control law (2.2.16) in the case of perturbation
(2.2.31) is shown in Fig. 2.3 by the thin dashed curve. The solid curve represents the
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optimal trajectory for control (2.2.9) and v =−ρu. The arrows indicate the direction
of increasing time. We note that the arcs of the optimal trajectories for the two
control laws coincide in regions where the three functions ψ0, ψρ , and (−x2) have
the same signs. The heavy solid and the dashed curves in Fig. 2.3 represent the
switching curves ψρ = 0 and ψ0 = 0 for controls (2.2.16) and (2.2.9), respectively.

To be definite, we construct the optimal phase trajectory for control (2.2.16) that
begins at the point (ξ ,η) on the switching curve ψ0 = 0 for η ≥ 0 and ends at
the point (ξ ∗,η∗) on the other branch of the switching curve, that is, for ξ ∗ > 0
and η∗ < 0. This trajectory lies in the region ψ0 < 0 and consists of two sections
that meet at x2 = 0. On the first section, where x2 > 0, we have, by (2.2.16) and
(2.2.31), u = −1 and v = ρ . On the second section, x2 < 0. Therefore, by (2.2.16)
and (2.2.31), we have on it u = −1 and v = −ρ .

The first section of the trajectory passes through the initial point (ξ ,η) and, on
this section, we have, by (2.2.32), w = u + v = −1 + ρ . Consequently, its equation
is, by (2.2.6) and (2.2.7), represented in the form

x1 = B′
1 −λ−1x2 +λ−2(1−ρ) log[1+λ (1−ρ)−1x2],

B′
1 = ξ +λ−1η −λ−2(1−ρ) log[1+λ (1−ρ)−1η ] for λ > 0;

x1 = B′
1 − [2(1−ρ)]−1x2

2,

B′
1 = ξ +[2(1−ρ)]−1η2 for λ = 0;

0 ≤ x2 ≤ η .

(2.2.33)

The second section of the trajectory passes through the final point (ξ ∗,η∗), and,
on it, w = u+v =−1−ρ . Therefore, for the second section, we obtain from (2.2.6)
and (2.2.7)

x1 = B′
2 −λ−1x2 +λ−2(1+ρ) log[1+λ (1+ρ)−1x2],

B′
2 = ξ ∗ +λ−1η∗ −λ−2(1+ρ) log[1+λ (1+ρ)−1η∗] for λ > 0;

x1 = B′
2 − [2(1+ρ)]−1x2

2,

B′
2 = ξ ∗ +[2(1+ρ)]−1(η∗)2 for λ = 0;

η∗ ≤ x2 ≤ 0.

(2.2.34)

At the joining point of the sections, we have x2 = 0, and the values of x1 for the
two sections coincide. We then obtain from (2.2.33) and (2.2.34)

B′
1 = B′

2. (2.2.35)
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The points (ξ ,η) and (ξ ∗,η∗) belong to two branches of the switching curve
ψ0 = 0; also, η > 0 and η∗ < 0. Consequently, on the basis of formulas (2.2.16),
we obtain

ξ = −λ−1η +λ−2 log(1+λη),

ξ ∗ = −λ−1η∗ −λ−2 log(1−λη∗) for λ > 0; (2.2.36)

ξ = −1
2

η2, ξ ∗ =
1
2
(η∗)2 for λ = 0.

We substitute into (2.2.35) expressions (2.2.33) and (2.2.34) for B′
1 and B′

2 and
also formulas (2.2.36) expressing ξ and ξ ∗ in terms of η and η∗. As a result, after
some simplification, we obtain the relationships

[1+(1−ρ)−1λη ]1−ρ(1+λη)−1

= [1+(1+ρ)−1λη∗]1+ρ(1−λη∗) for λ > 0,

ρ(1−ρ)−1η2 = (2+ρ)(1+ρ)−1(η∗)2 for λ = 0,

(2.2.37)

where η > 0 and η∗ < 0.
Equations (2.2.37) connect the values of η∗ and η . Let us first consider the case

λ = 0. Here, the relationship (2.2.37) takes the form

∣∣∣∣η∗

η

∣∣∣∣ = κ =

[
ρ(1+ρ)

(1−ρ)(2+ρ)

]1/2

,

0 ≤ ρ < 1.

(2.2.38)

One can easily see that κ increases monotonically from 0 to ∞ as ρ increases
from 0 to 1. In particular, κ = 1 for ρ equal to

ρ∗ =
1
2
(
√

5−1) ≈ 0.618. (2.2.39)

The number ρ∗ is the “golden-section” ratio. Thus, if λ = 0, then, for ρ < ρ∗,
we have, on the basis of (2.2.38), |η∗/η | < 1; for ρ = ρ∗, we have |η∗/η | = 1; and
for ρ > ρ∗, we have |η∗/η | > 1.

In the case λ > 0, relationship (2.2.37) defines an implicit dependence of η∗ on
η . To investigate this connection, we set

λη = X > 0, −λη∗ = Y > 0 (2.2.40)

and represent dependence (2.2.37) in the form
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Φρ(X) = Ψρ(Y ), X > 0, Y > 0, 0 < ρ < 1,

Φρ(X) = [1+(1−ρ)−1X ]1−ρ(1+X)−1,

Ψρ(Y ) = [1− (1+ρ)−1Y ]1+ρ(1+Y ).

(2.2.41)

We note certain properties of the functions Φρ and Ψρ in (2.2.41). The function
Φρ is defined for all X ≥ 0 and approaches zero as X →∞; the function Ψρ is defined
in the interval [0,1+ρ] and vanishes at Y = 1+ρ . Both functions are equal to unity
for X =Y = 0. By direct differentiation of functions (2.2.41), we see that Φ ′

ρ(X) < 0
and Ψ ′

ρ(Y ) < 0, so that both Φρ and Ψρ are monotone decreasing functions. Let us
also calculate the following derivative:[

Ψρ(X)

Φρ(X)

]′
= 2[1+(1−ρ)−1X ]ρ−2[1− (1+ρ)−1X ]ρ

×(1+X)(1−ρ2)−1X [ρ −1+ρ2 − (1+ρ)X ].

(2.2.42)

We note that the expression ρ −1+ρ2 in (2.2.42) is nonpositive for ρ ≤ ρ∗ and
positive for ρ > ρ∗. Consequently, for ρ ≤ ρ∗, the ratio Ψρ/Φρ decreases monoton-
ically in the interval [0,1+ρ]. Therefore, Ψρ(X) < Φρ(X) for 0 < X ≤ 1+ρ . On the
other hand, if ρ > ρ∗, we haveΨρ(X) > Φρ(X) in some interval 0 < X ≤X∗ < 1+ρ .
However, Ψρ(X) < Φρ(X) close to X = 1+ρ since

Ψρ(1+ρ) = 0 < Φρ(1+ρ).

Figures 2.4 and 2.5 show graphs of the functions Φρ(X) and Ψρ(Y ) for the cases
ρ ≤ ρ∗ and ρ > ρ∗, respectively. These figures illustrate graphically the relationship
between X and Y that is established by (2.2.41). These equations and the properties
mentioned for the functions Φρ and Ψρ lead to the following conclusions for the
case λ > 0:

• If ρ ≤ ρ∗, we always have Y < X and, by (2.2.40), |η∗/η | ≤ 1.
• If ρ > ρ∗, then, for sufficiently small X , we have Y > X (that is, |η∗/η | > 1),

whereas, for sufficiently large X , we have Y < X (that is, |η∗/η | < 1). Here, we
always have Y < 1+ρ; that is, |η∗| < (1+ρ)λ−1.

The trajectory that begins at an arbitrary point (ξ ,η) in the phase plane can be
continued indefinitely even after its intersection with the switching curve ψ0 = 0 at
the point (ξ ∗,η∗). For this, we need to take the point (ξ ∗,η∗) as the initial point
and continue the motion on the basis of system (2.2.18), substituting into it control u
defined by (2.2.16) and the optimal perturbation v defined by (2.2.31). The trajectory
obtained in this way intersects both branches of the switching curve infinitely many
times. The values of ordinates x2 at two successive points of intersection of the
switching curve ψ0 = 0 are in the ratio |η∗/η | that is given by formula (2.2.38) for
λ = 0, and is given by (2.2.40) and (2.2.41) for λ > 0.

The nature of the motion is quite dependent on the parameters ρ and λ .
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Fig. 2.4 Functions Φρ (X) and Ψρ (Y ) for the case ρ ≤ ρ∗
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Fig. 2.5 Functions Φρ (X) and Ψρ (Y ) for the case ρ > ρ∗
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Let us first set λ = 0. If ρ < ρ∗, where ρ∗ is defined by (2.2.39), then κ < 1 in
(2.2.38). Here, the values of |x2| at the instants of intersection of the switching curve
ψ0 = 0 by the trajectory decrease in a geometric progression with the denominator
κ < 1. Therefore, the phase trajectory approaches the coordinate origin and reaches
it in finite time, though after an infinite number of switchings.

If ρ = ρ∗, then κ = 1 in (2.2.38) and the phase trajectory is periodic. At equal in-
tervals of time, it passes through the same points in the phase plane. In this case, the
trajectory remains in a bounded region though it does not approach the coordinate
origin.

If ρ > ρ∗, then κ > 1 in (2.2.38). Here, the phase trajectory moves to infinity
along a spiral path.

The behavior of the phase trajectories is shown in Figs. 2.6, 2.7, and 2.8 for the
cases ρ < ρ∗, ρ = ρ∗, and ρ > ρ∗, respectively.

x

ẋ

ψ0 = 0

ρ < ρ∗

(ξ ,η)

Fig. 2.6 Phase trajectory for ρ < ρ∗

Let us turn to the case λ > 0. If in addition ρ ≤ ρ∗, then, by the analysis that
we made, |η∗/η | < 1. In this case, the phase trajectory approaches the coordinate
origin and reaches it in a finite time for ρ < ρ∗. One can show that, for ρ = ρ∗, the
phase point approaches the coordinate origin as t → ∞.

For ρ > ρ∗, the phase trajectory does not approach the coordinate origin but
remains in a bounded region. From some instant on, we have |x2| ≤ λ−1(1+ρ) (as
a consequence of the inequality Y < 1+ρ).

Let us now characterize the possible motions of system (2.2.18) for the control
law (2.2.16) and an arbitrary perturbation |v| ≤ ρ .
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x

ẋ

ψ0 = 0

ρ = ρ∗

Fig. 2.7 Phase trajectory for ρ = ρ∗

x

ẋ

ψ0 = 0

ρ > ρ∗

(ξ ,η)

Fig. 2.8 Phase trajectory for ρ > ρ∗
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If the ratio of the maximum possible value of the perturbation to the maximum
possible value of the control is less than the “golden-section” ratio (2.2.39), namely,
if ρ < ρ∗, then, for any admissible control and any nonnegative λ , the control law
(2.2.16) ensures that system (2.2.18) will move to the coordinate origin in finite
time. This follows from the fact that the origin is reached even for the “worst” per-
turbation (2.2.31) that tries to takes the system as far as possible from the coordinate
origin.

If ρ = ρ∗, then, for λ = 0, the control law (2.2.16) ensures that the system will
be kept in a bounded region and, for λ > 0, it ensures that it will approach the
coordinate origin as t → ∞.

On the other hand, if the ratio of the maximum possible perturbation to the max-
imum possible control exceeds the “golden-section” ratio (ρ > ρ∗), then there exist
perturbations for which it is impossible to move the system to the coordinate ori-
gin. In the case λ > 0, perturbation (2.2.31) takes the system arbitrarily far from the
coordinate origin, whereas in the case λ = 0 it takes the system out of some neigh-
borhood of the coordinate origin though the system remains in a bounded region.

Thus, the simplified control law (2.2.16), which does not take into account the
presence of perturbations, achieves the control purpose and brings the system to the
coordinate origin, only if the perturbation level is sufficiently low. Specifically, the
ratio of this level to the maximum level of control must not exceed the “golden-
section” ratio (ρ < ρ∗).

In other words, one can ignore the presence of perturbations in constructing the
control, only if the ratio of the maximum level of the perturbation to that of the
control does not exceed the “golden-section” ratio ρ∗ ≈ 0.618.

We recall that the optimal control law (2.2.9) and (2.2.10) is based on the game
approach and guarantees that system (2.1.35) will move to the coordinate origin in
a finite time for any admissible perturbation, if ρ < 1. Thus, in comparison with the
simplified control of Sect. 2.2.2, the control law described in Sect. 2.2.1 has a wider
field of applicability. Furthermore, the game approach ensures the minimum guar-
anteed time for bringing the system to the coordinate origin because it is based on
the time-optimal feedback control. However, the game approach, unlike the simpli-
fied approach, needs the knowledge of the maximal level of possible perturbations,
i.e. the parameter ρ . In their structure, the two methods are similar, of a bang-bang
type, and differ only in the switching curves, see Fig. 2.3.

2.2.4 Control for the initial system

Let us turn to solution of the original Problem 2.1. We obtain the feedback control
in this problem on the basis of (2.1.34) and (2.1.29) in the following form:

Ui(q, q̇) = U0
i u(x1,x2),

x1 = x = (U0
i )−1yi = (U0

i )−1[A∗(q−q∗)]i, (2.2.43)
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x2 = ẋ = (U0
i )−1ẏi = (U0

i )−1(A∗q̇)i, i, . . . ,n.

Here, in the case of the optimal control of Sect. 2.2.1, function u(x1,x2) is defined
by (2.2.9), in which ψρ is given by (2.2.10). Parameters λ and ρ in formulas (2.2.10)
are expressed by (2.1.37); that is

λ = λi, ρ =
V 0

i

U0
i

< 1, i = 1, . . . ,n. (2.2.44)

Control (2.2.43) is a bang-bang control, and it assumes the limiting admissible
values: Ui = ±U0

i , i = 1, . . . ,n. Let us describe the nature of the motion in the case
of this control. We first suppose that perturbations Vi in system (2.1.28) or (2.1.30)
assume at every instant the optimal (“worst”) values. In terms of system (2.1.35),
this means that v =−ρu. In terms of system (2.1.28), we have, by virtue of (2.1.34),
(2.2.43), and (2.2.44),

Vi = −ρU0
i u = −V 0

i (U0
i )−1Ui(q, q̇), i = 1, . . . ,n. (2.2.45)

In the case of perturbation (2.2.45), the motion of system (2.1.30), for the coordi-
nate yi, takes place along the time-optimal trajectories of system (2.1.38) or (2.2.1),
that is, along the trajectories of Fig. 2.2 for λi > 0 or Fig. 1.2 for λ = 0. The re-
lationship between the original coordinates q, the variables yi, and the variables x1

and x2 is given by (2.1.29) and (2.2.43).
Now, if the perturbations Vi differ from the worst ones (2.2.45), as is usually the

case, then the phase trajectories for each ith degree of freedom in the plane (x1,x2)
deviate from the optimal ones. Here, the motion along the switching curves takes
place in a sliding regime.

Time t∗ needed to bring system (2.1.3) [or (2.1.10), (2.1.28), (2.1.30)] to the
given state (2.1.8) does not exceed the maximum of the optimal times for each of
subsystems (2.1.30) [or (2.1.35), (2.1.38), (2.2.1)]. We have

t∗ ≤ t0 + max
1≤i≤n

τ(ξi,ηi), ξi = (U0
i )−1[A∗(q0 −q∗)]i,

ηi = (U0
i )−1(A∗q̇0)i, i = 1, . . . ,n.

(2.2.46)

Here, we used (2.1.29) and (2.1.37) for ξ and η . The function τ(ξ ,η) is defined
by (2.2.13) for those i for which λi = 0 and by (2.2.14) for those i for which λi > 0.

We summarize the results in the form of a theorem.

Theorem 2.2. Suppose that conditions (2.1.12) are satisfied, and that all the trajec-
tories considered lie in domain Ω . Then, the feedback control U(q, q̇) that solves
Problem 2.1 is given by (2.2.43), where the function u(x1,x2) is defined by (2.2.9)
and (2.2.10). This control brings system (2.1.3) to the terminal state (2.1.8) no later
than at time t∗ defined by (2.2.46), (2.2.13), and (2.2.14). Parameters λ and ρ in
these formulas are given for each degree of freedom by (2.2.44).
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The control constructed can be called suboptimal, since it is close to the time-
optimal one and becomes optimal in the case of the “worst” perturbations.

Using the simplified approach described in Sect. 2.2.2, one should replace the
function u(x1,x2) in relations (2.2.43) by its expression from (2.2.16). Otherwise,
the procedure for the control design for the original system remains the same as for
the game approach.

2.3 Weak coupling between degrees of freedom

The first method of decomposition presented in Sect. 2.1.3 leads to the control that
solves Problem 2.1. This control is given in explicit form in Sect. 2.2.4. The main
assumption that made it possible to carry out the decomposition was the existence
of a domain Ω in the 2n-dimensional space (q, q̇) in which all the motions being
considered lie and in which inequalities (2.1.12) are satisfied.

By virtue of (2.1.11) for V , inequalities (2.1.12) and (2.1.13) impose constraints
on the uncontrolled forces Q and the inertial terms S. We can see from (2.1.4) that
the inertial terms depend quadratically on the generalized velocities q̇. Therefore,
inequalities (2.1.12) and (2.1.13) limit somehow the domain Ω with respect to q̇,
whereas the obtained control can carry the system to the region with large |q̇|.

It is clear, on the one hand, that to solve Problem 2.1 it is necessary to impose
constraints on the uncontrolled forces Q, otherwise the bounded controls U will not
be able to overcome these forces Q. On the other hand, it follows from what was said
above that it is expedient to impose constraints on quantities Si during the control
process. These considerations served as the basis for the modification of the first
method of decomposition suggested in [98, 102].

2.3.1 Modification of the decomposition method

Let us turn again to the system described by relations (2.1.1)–(2.1.8).
The domain D in the n-dimensional q-space, where the motions of the system

being considered can occur, is specified in the form of independent constraints on
the coordinates qi

D = {q : q−i ≤ qi ≤ q+
i }. (2.3.1)

We will make certain simplifying assumptions concerning the kinetic energy and
the generalized forces Qi. Suppose that matrix A(q) from (2.1.3) can be represented
in the form

A(q) = J + Ã(q), J = diag(J1, . . . ,Jn), Ji = const > 0, (2.3.2)

where Ã(q) is a symmetric matrix such that, for any n-dimensional vector z, the
inequality
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|Ã(q)z| ≤ μ |z|, μ > 0, ∀q ∈ D (2.3.3)

is satisfied. Here, μ is a sufficiently small parameter, its possible values are specified
below.

Furthermore, we assume that∣∣∣∣∂a jk

∂qi

∣∣∣∣≤C, C = const > 0, i, j,k = 1, . . . ,n, (2.3.4)

and that the generalized forces Qi can be represented in the form

Qi = Gi +Fi (2.3.5)

where Gi(q, q̇, t) are restricted forces satisfying constraints

|Gi| ≤ G0
i , i = 1, . . . ,n. (2.3.6)

The magnitudes of constants G0
i do not exceed constants U0

i in constraints (2.1.6)
for the permissible values of the control forces, that is

G0
i < U0

i , i = 1, . . . ,n. (2.3.7)

Note that, if the inequality G0
i > U0

i that is the inverse of (2.3.7) holds for certain i,
then the system can be uncontrollable.

The forces denoted by Fi in (2.3.5) are sufficiently small at low velocities and
satisfy the constraints

Fi = Fi(q, q̇, t), |Fi| ≤ F0 (|q̇|) , i = 1, . . . ,n. (2.3.8)

Here, F0(ϑ) is a monotonically increasing continuous function defined for ϑ ≥ 0
and such that F0(0) = 0. The exact form of functions Gi(q, q̇, t) and Fi(q, q̇, t) in
(2.3.5) may be unknown.

We multiply both sides of (2.1.3) by JA−1 [matrix J has been introduced in
(2.3.2)] and obtain

Jiq̈i = Ui +Vi, (2.3.9)

Vi = Si − [ÃA−1(U +S)]i. (2.3.10)

System (2.3.9) and (2.3.10) is equivalent to the initial equation (2.1.3). Relations
(2.1.4), (2.3.4)–(2.3.6), and (2.3.8) yield the constraint on the components of vector
S

|Si(q, q̇, t)| ≤ G0
i + S̃0(q̇), S̃0(q̇) = F0 (|q̇|)+

3
2

C

(
n

∑
j=1

|q̇ j|
)2

. (2.3.11)

We assume that the inequalities

|Vi| ≤ ρiU
0
i , ρi < 1 (2.3.12)
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hold, where ρi are constants to be specified below. We shall treat the functions Vi

in (2.3.9) as independent restricted perturbations not exceeding the permissible val-
ues of the controls. In this case, the initial non-linear system is decomposed into n
linear subsystems [the ith subsystem is described by the ith equation (2.3.9)] sub-
jected to perturbations, and each subsystem has a single degree of freedom. To solve
Problem 2.1, it is therefore sufficient to solve n simpler control problems for the
second-order subsystems.

2.3.2 Analysis of the controlled motions

As has been done previously, we shall specify the scalar control Ui which trans-
fers the ith subsystem (2.3.9) in finite time from an arbitrary initial state (q0

i , q̇
0
i )

to the terminal state (q∗i ,0) for any permissible perturbation Vi satisfying condition
(2.3.12). We will again define the feedback control by (2.2.43), (2.2.9), and (2.2.10).
Here, one should substitute matrix J instead of matrix A∗ in (2.2.43) and set λ = 0
in (2.2.10). After these transformations, we obtain

Ui = −U0
i sign(q̇i −ψ∗

i ) for q̇i �= ψ∗
i ,

Ui = −U0
i sign q̇i for q̇i = ψ∗

i , (2.3.13)

ψ∗
i (qi) = −(2Xi|qi −q∗i |)1/2 sign(qi −q∗i ).

Here, Xi is a positive control parameter connected with constant ρi from (2.3.12) by
the relation

Xi =
U0

i (1−ρi)

Ji
. (2.3.14)

In inequalities (2.3.12), we express ρi in terms of the control parameters Xi using
(2.3.14). We obtain

|Vi| ≤U0
i − JiXi, i = 1, . . . ,n. (2.3.15)

In order to specify the control law (2.3.13), it is necessary to choose the values of
parameters Xi > 0, so that inequalities (2.3.15) are satisfied.

Remind that the above-mentioned control was obtained as the time-optimal con-
trol in a game problem in which Ui and Vi are considered as the controls of two
players [79]. This control is a bang-bang control and takes its limiting permissible
values:

Ui = ±U0
i .

The switching curve
q̇i = ψ∗

i (qi)

consists of two parabolic branches which are symmetric about the point (q∗i ,0).
We will now specify the set Ωi in the two-dimensional phase space of the ith

subsystem (Fig. 2.9):
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Ωi = {(qi, q̇i) : q−i ≤ qi ≤ q+
i , ψ−

i ≤ q̇i ≤ ψ+
i },

ψ−
i (qi) = ψ∗

i (qi +q∗i −q−i ), ψ+
i (qi) = ψ∗

i (qi +q∗i −q+
i ).

(2.3.16)

q̇i

ψ+
i (qi)

ψ∗
i (qi)

(q0
i , q̇

0
i )

q−i (q∗i ,0) q+
i

qi

ψ−
i (qi)

Fig. 2.9 Set Ωi and the switching curve

We will describe the motion of subsystem (2.3.9) in the case where the control
Ui is specified by (2.3.13), the disturbance Vi satisfies constraint (2.3.15), and the
initial point (q0

i , q̇
0
i ) lies in Ωi:

(q0
i , q̇

0
i ) ∈ Ωi. (2.3.17)

The control process is divided into two main stages. In the first stage, the motion
is performed with a constant control until the phase point of the subsystem reaches
the switching curve. To fix our ideas, we assume that q̇i > ψ∗

i (qi); then, according
to (2.3.13), we have Ui =−U0

i . In this case, from (2.3.9) and (2.3.15), it follows that

q̈i ≤−Xi. (2.3.18)

Note that, by virtue of (2.3.16) and (2.3.13), the following equality holds

dψ+
i

dqi
= − Xi

ψ+
i

. (2.3.19)
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Along the trajectory of the subsystem in the domain Ωi, we have, according to
(2.3.16), q̇i ≤ ψ+

i . Therefore, taking into account (2.3.18) and (2.3.19), we obtain
for q̇i > 0

dq̇i

dqi
=

q̈i

q̇i
≤− Xi

ψ+
i

=
dψ+

i

dqi
, q̇i > 0. (2.3.20)

For q̇i < 0, we have, in accordance with (2.3.18)

dq̇i

dqi
=

q̈i

q̇i
> 0, q̇i < 0. (2.3.21)

From inequalities (2.3.20) and (2.3.21) it follows that, for any perturbations, the
phase trajectory of the subsystem under consideration does not intersect the curve
q̇i = ψ+

i (qi) and, due to (2.3.18), reaches the switching curve in finite time without
going out beyond the limits of the domain Ωi. This fact is proved in a similar way
also for q̇i < ψ∗

i .
On reaching the switching curve, the phase point continues to move along it

to the terminal state. The parabolic branches of the switching curve coincide with
the phase trajectories of subsystem (2.3.9) in the case of the control Ui chosen in
accordance with (2.3.13) and (2.3.14) and for Vi = −ρiUi. If, however, Vi �= −ρiUi,
then the motion occurs along a parabolic arc in a sliding mode. In this case, control
Ui takes the values ±U0

i with infinitely frequent changes of sign so that “on average”
q̈i = Xi or q̈i = −Xi for the corresponding branches of the switching curve.

Hence, if conditions (2.3.16) and (2.3.17) are satisfied for all subsystems (2.3.9)
at the initial instant of time, then their phase trajectories as a whole lie in the corre-
sponding domains Ωi. In this case, constraints (2.3.1) are satisfied, and the inequal-
ities

|q̇i| ≤ −ψ−
i (q+

i ) = ψ+
i (q−i ) = ψ∗

i (q−i −q+
i ) (2.3.22)

following from (2.3.16) and (2.3.13) also hold. Introducing new notation

Yi = ψ∗
i (−di), di = q+

i −q−i , (2.3.23)

we rewrite inequality (2.3.22) in the form

|q̇i| ≤ Yi. (2.3.24)

Using expression (2.3.13) for ψ∗
i , we obtain

Yi = (2Xidi)
1/2. (2.3.25)

A possible phase trajectory of subsystem (2.3.9) is shown in Fig. 2.9. The direc-
tion of motion is indicated by the arrows.

It has been shown in Sect. 2.2.1 that the time for the motion of the ith subsystem
(2.3.9) is maximal in the case of the “worst” perturbation Vi = −ρiUi and, on the
strength of notation (2.3.14), is equal to [see (2.2.13)]



2.3 Weak coupling between degrees of freedom 59

τ∗i (q0
i , q̇

0
i ) = X−1

i

{
2

[
1
2
(q̇0

i )
2 −Xi(q

0
i −q∗i )γi

]1/2

− q̇0
i γi

}
,

γi = −sign[q̇0
i −ψ∗

i (q0
i )], q̇0

i �= ψ∗
i ; γi = ±1, q̇0

i = ψ∗
i .

(2.3.26)

Since time τ required to bring the original system (2.1.1) to the terminal state
(2.1.8) is defined as the greatest of the control times for each of subsystems (2.3.9),
we obtain the estimate

τ ≤ τ∗ = max
i

(τ∗i ), i = 1, . . . ,n. (2.3.27)

2.3.3 Determination of the parameters

Control (2.3.13) can only be used when inequalities (2.3.15) [or (2.3.12)] are satis-
fied throughout the whole control process. We shall now find those control parame-
ters Xi for which the above-mentioned relations are, in fact, satisfied.

We will first estimate the moduli of the quantities Vi from (2.3.10). Using rela-
tions (2.3.3), (2.3.11), and (2.3.24), we obtain

|Vi| ≤ G0
i + S̃0(Y )+ μ |A−1(U +S)|, Y = (Y1, . . . ,Yn). (2.3.28)

From (2.3.2) and (2.3.3), we have for any n-dimensional vector z

Az = Jz+ Ãz, |Az| ≥ Jmin|z|−μ |z| = (Jmin −μ)|z|. (2.3.29)

Here, Jmin is the least of the quantities Ji. Let us set z = A−1z′ in inequality (2.3.29).
Then for μ < Jmin we obtain

|A−1z′| ≤ |z′|
Jmin −μ

. (2.3.30)

Using (2.1.6), (2.3.11), and (2.3.24), we obtain the relations

|(U +S)i| ≤ |Ui|+ |Si| ≤U0
i +G0

i + S̃0(Y ) = (U0 +G0)i + S̃0(Y ),

U0 = (U0
1 , . . . ,U0

n ), G0 = (G0
1, . . . ,G

0
n).

(2.3.31)

Combining (2.3.28), (2.3.30), and (2.3.31), we find the final estimate for the distur-
bances:
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|Vi| ≤ G0
i + S̃0(Y )+

μ
Jmin −μ

|U +S|

≤ G0
i +

(
1+

μn1/2

Jmin −μ

)
S̃0(Y )+

μ
Jmin −μ

|U0 +G0|.
(2.3.32)

In inequalities (2.3.15), instead of the quantities |Vi|, we substitute their estimates
from (2.3.32). After transformations, we obtain

JiXi +

(
1+

μn1/2

Jmin −μ

)
S̃0(Y ) ≤U0

i −G0
i −

μ
Jmin −μ

|U0 +G0|. (2.3.33)

System of inequalities (2.3.33) determines the permissible parameters Xi. It is a
nonlinear system because the values Yi are connected with Xi by (2.3.25).

If parameter μ is sufficiently small, such that the condition

μ <
mini(U0

i −G0
i )Jmin

mini(U0
i −G0

i )+ |U0 +G0| (2.3.34)

is satisfied, the expressions on the right-hand sides of inequalities (2.3.33) are pos-
itive. Since S̃0(Y ) → 0 as Xi → 0 due to (2.3.11), positive values of Xi can always
be found, for which inequalities (2.3.33) and, consequently, inequalities (2.3.12) are
satisfied.

We will sum up the results obtained in the form of a theorem.

Theorem 2.3. Suppose that condition (2.3.34) is satisfied. Then the feedback control
Ui(qi, q̇i) that solves Problem 2.1 in domain (2.3.16) is specified by relations (2.3.13)
in which parameters Xi must be chosen in such a way that inequalities (2.3.33) are
satisfied. This control transfers system (2.1.1) from the initial state (2.1.7) to the
specified terminal state (2.1.8), if, at the initial instant of time, constraints (2.3.17)
are satisfied. In this case, motion q(t) of the system lies in domain D from (2.3.1),
and the time of the control process τ does not exceed τ∗ determined by expressions
(2.3.26) and (2.3.27).

We will now describe a method of selecting the permissible values of Xi. We shall
seek these values in the form

Xi = Z2di, (2.3.35)

where di is defined in (2.3.23), and the magnitude of Z is still unknown. We sub-
stitute (2.3.35) into inequalities (2.3.33) taking into account (2.3.25) and (2.3.11).
Selecting the maximum value of Z

Z0 = maxZ (2.3.36)

that satisfies the inequality obtained, we calculate the control parameters Xi, using
formulas (2.3.35). In this case, at least one of inequalities (2.3.33) is transformed
into the equality.
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Suppose, for example, constraint (2.3.8) has the form

|Fi| ≤ F0 (|q̇|) = a|q̇|+b|q̇|2,

where a and b are positive constants. Then inequalities (2.3.33) can be reduced to
the form

Z2 +2giZ ≤ hi, (2.3.37)

where gi and hi are positive coefficients that can be found from (2.3.25), (2.3.11),
and (2.3.33). The solution of the system of inequalities (2.3.37) can be written in
the form

Z ≤ Z0 = min
i

[(g2
i +hi)

1/2 −gi], i = 1, . . . ,n. (2.3.38)

Conditions (2.3.33) for determining the set of permissible values Xi together with
constraint (2.3.34) imposed on parameters of system (2.1.1) are sufficient conditions
that differ from the necessary ones. For specific systems, it is possible to obtain more
precise estimates than (2.3.32). Substituting such estimates into inequality (2.3.15)
instead of Vi, one can obtain a more broad set of permissible control parameters. As
a result, increasing of Xi allows one to widen domains Ωi from (2.3.16) that bound
initial velocities for the subsystems [see (2.3.17)] and, thus, significantly shorten the
time of motion τ . In some instances, this allows one to relax restrictions imposed
upon parameters of the system.

The control method proposed is quite simple and does not require an exact
knowledge of the nonlinear terms and perturbing forces in the equations of motion.
The method is not overly sensitive to slight variations in the system parameters or to
additional perturbations: to take such factors into consideration, one needs only to
decrease parameters Xi, leaving a sufficient “safety margin” for the controls of the
corresponding subsystems.

2.3.4 Case of zero initial velocities

While solving Problem 2.1, we assumed that the initial state of the system is an
arbitrary point in the domain Ωi, see (2.3.17). Consider a special but important case
of the zero initial velocities q̇0 = 0.

Under control (2.3.13), the coordinates qi of all subsystems are bounded by the
inequalities min(q0

i ,q
∗
i ) ≤ qi(t) ≤ max(q0

i ,q
∗
i ). Therefore, it is possible to restrict

the domain of the possible motions, setting

q−i = min(q0
i ,q

∗
i ), q+

i = max(q0
i ,q

∗
i ) (2.3.39)

in (2.3.1) for all i = 1, . . . ,n. For such presetting of the domain D, the magnitudes
di = q+

i −q−i are minimal, and hence the estimates obtained in (2.3.24) for the gen-
eralized velocities and in (2.3.32) for the disturbances are of the maximum accuracy.
We suppose that the boundaries q−i and q+

i of the domain of motion are given in the
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form (2.3.39). Estimates (2.3.26) and (2.3.27) in this case take the form

τ ≤ τ∗ = max
i

(τ∗i ), τ∗i = 2

√
di

Xi
, i = 1, . . . ,n. (2.3.40)

In accordance with (2.3.35), (2.3.36), and (2.3.40), we have the equal estimates
on times needed for steering each of subsystems (2.3.9) to the terminal state:

τ∗ = τ∗i = τ∗0 , τ∗0 = 2Z−1
0 , (2.3.41)

where Z0 is defined by (2.3.36). Let us demonstrate that for control (2.3.13) with any
other permissible parameters Xi, satisfying (2.3.33), but not related to each other by
equalities (2.3.35) and (2.3.36), the estimate for the motion time τ∗, calculated by
using (2.3.40), will be greater than τ∗0 .

Really, in order to reduce τ∗, it is required, according to (2.3.40) and (2.3.41),
to increase Xi for all i = 1, . . . ,n. Then, due to the strict monotony of the left-hand
sides of inequalities (2.3.33) with respect to Xi, all the left-hand sides will grow up,
and at least one of inequalities (2.3.33), which was transformed into the equality
while choosing Z = Z0 according to (2.3.36), will fail. Thus, the magnitude τ∗ = τ∗0 ,
obtained in (2.3.41), is minimal for q̇0 = 0 and control (2.3.13).

Modified control law

In the case q̇0 = 0, it is possible to modify the control law (2.3.13) so that the new
(corresponding to the modified control law) estimate of the motion time will be less
than the estimate obtained in (2.3.41). To this end, let us re-define functions ψ∗

i in
(2.3.13) so that the switching curve q̇i = ψ∗

i (qi) (see Fig. 2.10) will consist of the
parabolic arc (for |qi −q∗i | ≤ d∗

i ) and straight-line section (for d∗
i < |qi −q∗i | ≤ di).

Here, d∗
i is some positive constant that will be determined. We impose the only

constraint upon this constant

d∗
i ≤ 1

2
di, (2.3.42)

where di is defined by (2.3.23) and (2.3.39). Thus, we define functions ψ∗
i in the

form:

ψ∗
i (qi) = −(2Xi|qi −q∗i |)1/2 sign(qi −q∗i ) for |qi −q∗i | ≤ d∗

i ,

ψ∗
i (qi) = Yi sign(qi −q∗i ) for d∗

i < |qi −q∗i | ≤ di,

(2.3.43)

Here, Xi and Yi are positive parameters for the new control law; they are not already
related to each other by (2.3.25) but subjected to the additional contraints

Yi ≤ (Xidi)
1/2. (2.3.44)

Parameters d∗
i are expressed through Xi and Yi by the following formula
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q̇i

(q∗i ,0) (q0
i ,0)

qi

ψ∗
i (qi)

−Yi

d∗
i

Fig. 2.10 Modified switching curve and the trajectory

d∗
i =

Y 2
i

2Xi
. (2.3.45)

Due to (2.3.44) and (2.3.45), constraint (2.3.42) is satisfied.
If conditions (2.3.15) [or (2.3.12)] hold during the motion, then the control de-

fined by (2.3.13) and (2.3.43) surely steers the system to the terminal state. Herein,
the velocities of the subsystems are bounded and the inequalities |q̇i| ≤ Yi hold.
Hence, the estimate (2.3.32) for the maximal absolute values of the disturbances
|Vi| is also true. Substituting (2.3.32) into (2.3.15), we obtain inequalities that com-
pletely coincide with (2.3.33). Hence, if Xi and Yi obey inequality (2.3.33), then the
control defined by (2.3.13) and (2.3.43) solves Problem 2.1 for q̇0 = 0.

The following estimates of the motion time are true:

τ ≤ τ∗ = max
i

(τ∗i ), τ∗i =
di

Yi
+

Yi

Xi
, i = 1, . . . ,n, (2.3.46)

where τ∗i is the estimate of the motion time for the ith subsystem. Let us prove these
relations.

Proof. The motion time for the ith subsystem is maximal under the worst distur-
bance Vi =−ρiUi. The motion consists of three stages, see Fig. 2.10. First, according
to (2.3.9), (2.3.13), (2.3.14), and (2.3.43), the motion has the constant acceleration

q̈i = −Xi sign(q0
i −q∗i )

until the phase point reaches the switching curve q̇i = ψ∗
i (qi). Further, the phase

point moves along the straight-line section of the switching curve with the constant
velocity

q̇i = −Yi sign(q0
i −q∗i ),

and then, along the parabolic section of the switching curve, with the constant ac-
celeration

q̈i = Xi sign(q0
i −q∗i ).

The durations of the first and the final stages are the same and equal to Yi/Xi. The
duration of the second stage is equal to (di −2d∗

i )/Yi. Summing up the durations of
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all three stages and taking into account (2.3.45), we come to the estimate (2.3.46)
for τ . ��

Let us demonstrate that the modified control law (2.3.43) allows one to reduce
the estimate of the motion time (2.3.41).

Proof. To this end, consider the concrete choice of the parameters Xi and Yi in
(2.3.43), supposing that each Yi depends on the corresponding Xi so that constraints
(2.3.44) are trasformed into equalities

Yi = (Xidi)
1/2. (2.3.47)

Note, that (2.3.47) differs from (2.3.25) used earlier. From (2.3.45) and (2.3.47), we
have

d∗
i =

1
2

di.

In this case, under the worst disturbances, the strait-line stage of motion is missing
and relations (2.3.46) are transformed into (2.3.40). We will seek for the parameters
Xi in the form of (2.3.35), as it has been done earlier, and express the parameters Yi

according to (2.3.47). Choose the maximal value of Z:

Z′
0 = maxZ (2.3.48)

satisfying (2.3.33). Due to the monotone dependence of the left-hand side (2.3.33)
on parameters Yi and to (2.3.47), value Z′

0 is greater than Z0 from (2.3.36). Therefore,
we obtain a new upper estimate of the time of motion that is lower than the estimate
given by (2.3.40) and (2.3.41):

τ∗ = τ∗i = τ ′∗0 , τ ′∗0 = 2(Z′
0)

−1. (2.3.49)

Thus, the modified control law really allows one to reduce the motion time estimate.
��

Optimization of the control parameters

For the modified control law defined by (2.3.13) and (2.3.43), we suggest below a
numerical procedure for finding the optimal permissible parameters Xi and Yi satis-
fying inequalities (2.3.33) and (2.3.44) [but not connected by relations (2.3.47) and
(2.3.35)], for which the motion time estimate τ∗ given by (2.3.46) is minimal.

If parameters Xi and Yi are optimal, then the quantities τ∗i in (2.3.46) are equal,
i.e.,

τ∗ = τ∗i , i = 1, . . . ,n, (2.3.50)

and inequalities (2.3.33) are transformed into the exact equalities

Xi +KiS̃
0(Y ) = Δi, i = 1, . . . ,n, (2.3.51)
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where

Ki =

(
1+

μn1/2

Jmin −μ

)
J−1

i ,

Δi =

(
U0

i −G0
i −

μ
Jmin −μ

|U0 +G0|
)

J−1
i .

This fact is proved by the reasoning analogous to that have been used earlier and
given after (2.3.41). We assume that inequality (2.3.34) holds, so that Δi are positive.

The procedure for finding the optimal parameters Xi and Yi of the modified con-
trol law is as follows. In accordance with (2.3.46) and (2.3.50), we set

Xi = Y 2
i (Yiτ∗ −di)

−1 (2.3.52)

in system (2.3.33). We obtain

Y 2
i

Yiτ∗ −di
+KiS̃

0(Y ) ≤ Δi. (2.3.53)

Let us choose some initial value τ∗ [for example, τ∗ = τ ′∗0 from (2.3.49)] and find
numerically some values of parameters Yi satisfying (2.3.53). The set [Y−

i ,Y +
i ], i =

1, . . . ,n, in which it is possible to make this search, can be easily obtained by setting
S̃0 = 0 in inequalities (2.3.53). As a result, we obtain

Y±
i =

1
2

τ∗Δi±
[(

1
2

τ∗Δi

)2

−diΔi

]1/2

.

If any solution Yi of inequalities (2.3.53) is found, then we decrease the value τ∗ in
(2.3.53) by some increment δτ∗ and repeat the search of the permissible parameters
Yi corresponding to the new value of τ∗. The minimal value of τ∗ for which in-
equalities (2.3.53) have the solution Yi > 0 for all i = 1, . . . ,n, defines together with
(2.3.52) the optimal parameters Xi and Yi.

Let us show also that the motion time estimate τ ′∗0 [see (2.3.49)] obtained ana-
lytically earlier for the modified control law defined by (2.3.13) and (2.3.43) is not
minimal and can be improved by using the suggested numerical procedure.

Proof. It is sufficient to show that, if τ ′∗0 is chosen as the initial estimate τ∗, then,
for the sufficiently low step size δτ∗, the suggested algorithm surely finds, during
the second iteration, the values of the parameters Xi and Yi providing even less the
motion time estimate

τ∗ = τ ′∗0 −δτ∗.

Suppose the contrary. Let τ∗ = τ ′∗0 from (2.3.49) is the minimal motion time esti-
mate. Then, as it has been pointed above, (2.3.50) and (2.3.51) should be satisfied.
Let us choose some value i (1 ≤ i ≤ n) and, by using (2.3.46), find the derivative
∂τ∗i /∂Yi, assuming that parameter Xi is connected with Yi by the ith equality in
(2.3.51):



66 2 Method of decomposition (the first approach)

∂τ∗i
∂Yi

= − di

Y 2
i

+
1
Xi

− Yi

X2
i

∂Xi

∂Yi
. (2.3.54)

For the given i, due to the monotony of S̃0(Y ) with respect to Yi, see (2.3.11), we
have from (2.3.51)

∂Xi

∂Yi
= −Ki

∂ S̃0(Y )

∂Yi
< 0. (2.3.55)

Values Xi and Yi providing the estimate τ∗i = τ ′∗0 are connected by (2.3.47). There-
fore, the sign of the derivative (2.3.54) is positive

∂τ∗i
∂Yi

= − Yi

X2
i

∂Xi

∂Yi
> 0. (2.3.56)

Let us decrease the parameter Yi for the given i by a sufficiently small value δYi (all
Yj, j �= i, are fixed) and, at the same time, increase parameters Xi, i = 1, . . . ,n, for
all subsystems, without violating equations (2.3.51). Obviously, for such variations,
the new values of the parameters will satisfy constraints (2.3.44). Herein, due to
(2.3.46) and (2.3.56), the motion time estimates for all subsystems decrease. Thus,
we come to the contradiction, and τ ′∗0 cannot be the minimal estimate for τ∗. ��

Note that control (2.3.13) with the modified switching curve (2.3.43) can be used
also in the case where q̇0 �= 0. The corresponding domain Ωi that contains possible
initial states for the ith subsystem is described by relations (2.3.16) and depicted in
Fig. 2.11.

q̇i

Yi

(q0
i , q̇

0
i )

q−i (q∗i ,0) q+
i

qi

ψ∗
i (qi)

−Yi

Fig. 2.11 Domain Ωi for the modified control law
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2.4 Nonlinear damping

The method of solving Problem 2.1 that we have presented in Sects. 2.1.3–2.2.4
consists of two stages: 1) the decomposition of the original nonlinear system (2.1.3)
into subsystems (2.1.30) with one degree of freedom each [see (2.1.35)]; 2) the use
of the game approach to construct a control for the subsystems.

Certain modifications of the suggested approach are possible at both stages. At
the first stage, a system can be reduced to a collection of other subsystems, either
more simple or more complicated than (2.1.35). System (2.1.35) with λ = 0 is ev-
idently the simplest subsystem with one degree of freedom. In the case λ = 0, the
imposed constraint (2.1.12) is replaced by a more simple condition (2.1.13) that can
be immediately verified by means of Lemma 2.1 from Sect. 2.1.2.

At the second stage, it is not necessary to use the game approach in order to
construct a control for the subsystems (see Sect. 2.2.2).

Let us consider in greater detail the modification of the described approach, in
which a system with a nonlinear resistance is considered as a subsystem with one
degree of freedom [28].

2.4.1 Subsystem with nonlinear damping

Let the dynamics of a system with one degree of freedom be described by the equa-
tion

mq̈ = R(q̇)+U +V (q, q̇, t). (2.4.1)

Here, q is the generalized coordinate of the system, m > 0 is a constant inertial
coefficient (the mass), R(q̇) is the resistance, U is the control, and V (q, q̇, t) is the
disturbance.

We will assume that the resistance R(q̇) is directed opposite to the velocity, and
its magnitude increases with the velocity; it is zero in the state of rest. Also, R(q̇) is
a smooth function. Hence, we have

q̇R(q̇) < 0,
dR(q̇)

dq̇
< 0 (q̇ �= 0), R(0) = 0. (2.4.2)

The control and the disturbance are assumed to be bounded by geometric con-
straints, and the maximum disturbance is strictly less than the maximum control.
We have

|U | ≤U0, |V (q, q̇, t)| ≤ ρU0, ρ < 1, (2.4.3)

where U0 > 0 and ρ < 1 are constants. In all other respects, the disturbance V (q, q̇, t)
may be an arbitrary function of its arguments.

It is required to construct a feedback control U(q, q̇) that takes system (2.4.1)
from an arbitrary initial state
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q(t0) = q0, q̇(t0) = q̇0 (2.4.4)

to the prescribed terminal state with zero velocity

q(t∗) = q∗, q̇(t∗) = 0 (2.4.5)

in finite time. Here, t0, q0, q̇0, and q∗ are some given values, time t∗ is not fixed.
Let l > 0 be a quantity of the same dimension as coordinate q. We introduce the

dimensionless variables

x =
q−q∗

l
, t ′ =

t − t0
τ0

, u =
U
U0

, f = − R
U0

,

v =
V
U0

, τ0 =

(
ml
U0

)1/2

.

(2.4.6)

Making the change of variables (2.4.6) in (2.4.1), we obtain

ẍ+ f (ẋ) = u+ v(x, ẋ, t). (2.4.7)

Here and in what follows, dots denote derivatives with respect to the dimensionless
time t ′; in (2.4.7) and below t ′ is replaced by t. According to (2.4.2) and (2.4.6), the
smooth function f (z) has the following properties:

z f (z) > 0, f ′(z) > 0 (z �= 0), f (0) = 0. (2.4.8)

The variables u and v in (2.4.7) are constrained by [see (2.4.3) and (2.4.6)]

|u| ≤ 1, |v| ≤ ρ, ρ < 1. (2.4.9)

After the change of variables (2.4.6), the initial conditions (2.4.4) and the final
conditions (2.4.5) take the form

x(0) = ξ , ẋ(0) = η , (2.4.10)

x(τ) = 0, ẋ(τ) = 0. (2.4.11)

Here,

ξ =
q0 −q∗

l
, η =

q̇0τ0

l
, τ =

t∗ − t0
τ0

.

Our control problem can now be stated in the following form.

Problem 2.3. Construct a feedback control u(x, ẋ) that satisfies constraint (2.4.9)
and takes system (2.4.7) with an arbitrary disturbance v constrained by (2.4.9) from
any initial state (2.4.10) to the prescribed terminal state (2.4.11) in finite time.

The formulation of the problem and the approach applied below for its solution
are analogous to those described in Sects. 2.1.3–2.2.3 and are their generalization.
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2.4.2 Control for the nonlinear subsystem

The game-theoretical approach

Let us consider (2.4.7) from the point of view of the differential games theory, as-
suming that u and v are the controls of two opponents constrained by (2.4.9). We
will seek a feedback control u(x, ẋ) that takes system (2.4.7) from state (2.4.10) to
state (2.4.11) in the shortest guaranteed time τ for any admissible disturbance v.
Control u(x, ẋ) obtained by solving the differential game produces, as is easily seen,
a solution of Problem 2.3. On the other hand, the solution of the differential game
reduces [79, 80] to the solution of the time-optimal control problem for the system

ẍ+ f (ẋ) = (1−ρ)u; |u| ≤ 1, 0 ≤ ρ < 1, τ → min (2.4.12)

with the boundary conditions (2.4.10) and (2.4.11). Equation (2.4.12) is obtained
from (2.4.7) for v =−ρu that corresponds to the worst (for u) opponent control: the
optimal controls of the players are such that u = ±1, v = ∓ρ at any instant.

Control u(x, ẋ) required in Problem 2.3 and the corresponding time τ can be
found by obtaining the time-optimal control for (2.4.12) with boundary conditions
(2.4.10) and (2.4.11). The corresponding time-optimal control problem is written in
the form

ẋ1 = x2, ẋ2 = − f (x2)+(1−ρ)u; |u| ≤ 1, 0 ≤ ρ < 1,

x1(0) = ξ , x2(0) = η , x1(τ) = x2(τ) = 0, τ → min,

(x1 = x, x2 = ẋ).

(2.4.13)

Time-optimal control

We will solve problem (2.4.13) by the maximum principle. The Hamiltonian for
problem (2.4.13) has the form

H = p1x2 + p2[(1−ρ)u− f (x2)], |u| ≤ 1, (2.4.14)

where p1 and p2 are conjugate variables.
The conjugate system has the form

ṗ1 = 0, ṗ2 = −p1 + f ′(x2)p2. (2.4.15)

Since (2.4.13) is an autonomous system, we have the first integral for our time-
optimal control problem

H = p1x2 + p2[(1−ρ)u− f (x2)] = h ≥ 0, (2.4.16)
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where h is a constant.
By the maximum principle, we obtain from (2.4.14)

u = sign p2. (2.4.17)

Let us consider the possibility of the existence of singular sections of the opti-
mal trajectory on which p2 = 0. On such a singular section, by the second equation
in (2.4.15), we have also p1 = 0. Therefore, if a singular section exists, we have
p1 ≡ const = 0 on the entire trajectory. But then the second equation in (2.4.15) is
homogeneous with respect to p2 on the entire trajectory, and since p2 = 0 on the
singular section, we have p2 ≡ 0 on the entire trajectory. However, by the maximum
principle, the conjugate vector does not vanish identically on the optimal trajectory.
The contradiction proves that the optimal trajectory is free from singular sections.
Thus, the equality p2 = 0 may be observed only at isolated instants of time (switch-
ing points) and, by (2.4.17), we have u = ±1 almost everywhere.

Let us first consider the sections of the optimal trajectory where p2 > 0 and u = 1.
From (2.4.13), we obtain for these sections

dx1

dx2
= x2[(1−ρ)u− f (x2)]

−1. (2.4.18)

It follows from (2.4.18) that, in the (x1,x2)-plane, the sections of the optimal
trajectory with p2 > 0 are arcs of the curves

x1 = φ+
ρ (x2)+ c+, (2.4.19)

where c+ is an arbitrary constant and the function φ+
ρ (x2) is defined by the equality

φ+
ρ (y) =

y∫
0

zdz
1−ρ − f (z)

, 0 ≤ ρ < 1. (2.4.20)

Let us note some properties of the function φ+
ρ (y) that follow from (2.4.20) and

(2.4.8) and are needed in the sequel. As y varies from −∞ to 0, the function φ+
ρ is

positive and strictly decreasing, vanishing for y = 0. The point y = 0 is the unique
extremum of the function φ+

ρ (y) (its minimum). If the transcendental equation for
z+

f (z+) = 1−ρ (2.4.21)

is unsolvable, i.e., if f (z) < 1− ρ for all z, then the function φ+
ρ (y) is strictly in-

creasing for all y ≥ 0. In this case φ+
ρ (y) > 0 for all y �= 0.

If, however, z+ is a root of (2.4.21), then this root is positive and unique by
conditions (2.4.8). In this case, the function φ+

ρ (y) is strictly increasing from 0 to
∞ in the interval y ∈ (0,z+) and strictly decreasing for y > z+. A typical curve of
the dependence (2.4.19) in the (x1,x2)-plane for c+ = 0 is shown in Fig. 2.12 for
the case where (2.4.21) has a root z+ > 0. The direction in which time t increases
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along the trajectory according to the first equation in (2.4.13) is shown by arrows in
Fig. 2.12.

x1

x2

O

Fig. 2.12 Phase trajectory for c+ = 0 and z+ > 0

We similarly consider the sections of the trajectories with p2 < 0. These sections
are arcs of the curves

x1 = φ−
ρ (x2)+ c−. (2.4.22)

Here, as in (2.4.19), c− is an arbitrary constant and the function φ−
ρ is defined by an

equality similar to (2.4.20):

φ−
ρ (y) =

y∫
0

zdz
−(1−ρ)− f (z)

, 0 ≤ ρ < 1. (2.4.23)

We introduce a transcendental equation for z− similar to (2.4.21):

f (z−) = −(1−ρ). (2.4.24)

If (2.4.24) does not have a solution z−, i.e., if f (z) > ρ − 1 for all z, then the
function φ−

ρ (y) from (2.4.23) is strictly increasing for y < 0 and strictly decreasing
for y > 0. Here, φ−

ρ (y) < 0 for all y �= 0.
If z− is a root of (2.4.24), then it is unique and negative (z− < 0) by condi-

tions (2.4.8). In this case, the function φ−
ρ (y) is strictly decreasing for y ∈ (−∞,z−),
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strictly increasing for y ∈ (z−,0), and again strictly decreasing for y ∈ (0,∞). As
y → z−, this function tends to −∞, and for y = 0 it has a local zero maximum. A
typical graph of the function φ−

ρ (y) can be obtained from the graph of the func-
tion φ+

ρ (y) in Fig. 2.12 by a central symmetry transformation (or, equivalently, by
simultaneously reversing the directions of both axes x1 and x2).

The curves described above are the trajectories corresponding to p2 > 0 and p2 <
0 that pass through the origin in the (x1, x2)-plane. Other curves whose arcs may
be sections of the optimal trajectories are obtained from these curves by parallel
translation by c+ and c− along the x1 axis [see (2.4.19) and (2.4.22)].

Note that if the transcendental equations (2.4.21) and (2.4.24) have solutions,
then system (2.4.13) has the corresponding solutions

x2 = z+ (p2 > 0), x2 = z− (p2 < 0). (2.4.25)

In the (x1,x2)-plane, solutions (2.4.25) correspond to the phase trajectories in the
form of straight lines parallel to the x1-axis. These lines are the asymptotes of curves
(2.4.19) and (2.4.22), respectively (see Fig. 2.12).

Thus, the required optimal trajectories consist of sections of curves (2.4.19) and
(2.4.22) with various c+ and c− and also, possibly, segments of the straight lines
(2.4.25), if the corresponding equations (2.4.21) and (2.4.24) are solvable.

We will now show that each optimal trajectory has at most one control switching
point, i.e., the function p2(t) vanishes at most once.

Suppose that this is not so, and the function p2(t) vanishes at two instants t ′ and
t ′′, being positive between them. Then

p2(t) > 0, t ∈ (t ′, t ′′); p2(t
′) = p2(t

′′) = 0. (2.4.26)

From the first integral (2.4.16) for t ′ and t ′′, we obtain by (2.4.26)

p1x2(t
′) = p1x2(t

′′) = h ≥ 0. (2.4.27)

If p1 = const = 0, then, from (2.4.15), we obtain for p2(t) a linear homogeneous
equation, which with zero conditions (2.4.26) at t ′ and t ′′ has an identically zero so-
lution p2(t)≡ 0. But this contradicts to the maximum principle that asserts the exis-
tence of a nonzero conjugate vector. Therefore, p1 = const �= 0, and, from (2.4.27),
we obtain x2(t ′) = x2(t ′′). However, on all phase trajectories except the straight lines
(2.4.25) the variable x2 is either strictly increasing or strictly decreasing as time t
increases. This follows from the previous analysis of the phase trajectories and is
clear from Fig. 2.12. The equality x2(t ′) = x2(t ′′) is therefore possible only if the
relevant section of the trajectory is a segment of the straight line (2.4.25), i.e.,

x2(t) ≡ z+, t ∈ (t ′, t ′′). (2.4.28)

Substituting (2.4.28) into the second conjugate equation (2.4.15), we obtain a linear
equation with constant coefficients
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ṗ2(t) = −p1 + kp2, k = f ′(z+) > 0,

where k > 0 by (2.4.8). The general solution of this equation has the form

p2(t) =
p1

k
+Cekt , (2.4.29)

where C is an arbitrary constant. But solution (2.4.29) is monotone in t and cannot
satisfy conditions (2.4.26) for any p1 �= 0 and C. Thus, the section of the optimal
trajectory, where conditions (2.4.26) hold, cannot be a straight segment of the line
(2.4.28). We have thus shown that an optimal trajectory may not include sections of
the form (2.4.26).

We can similarly prove that an optimal trajectory may not include sections such
that the function p2(t) is negative inside the section and vanishes at its endpoints.

Therefore, on each optimal trajectory the function p2(t) vanishes at most once,
i.e., the control may have at most one switching point.

The only phase trajectories that reach the origin as the time increases are the
branch of curve (2.4.19) with c+ = 0 which lies in the quadrant x1 ≥ 0, x2 ≤ 0
(Fig. 2.12) and the branch of curve (2.4.22) with c− = 0 which lies in the quadrant
x1 ≤ 0, x2 ≥ 0. These curve branches correspond to the controls u = 1 and u =
−1, respectively. The collection of these branches form the switching curve, whose
equation is written as

x1 = ψρ(x2). (2.4.30)

Here, we have introduced the notation

ψρ(y) = φ+
ρ (y), y ≤ 0; ψρ(y) = φ−

ρ (y), y ≥ 0. (2.4.31)

By the properties of functions (2.4.20) and (2.4.23), the function ψρ(y) defined
by (2.4.31) is strictly decreasing for all y and vanishes for y = 0, where it has a point
of inflection.

We can now easily describe the entire field of optimal trajectories. An optimal
trajectory originating from any point of the phase plane (x1,x2) consists of a segment
of one of the families (2.4.19) or (2.4.22) and a section of switching curve (2.4.30).

The field of optimal trajectories is qualitatively shown in Fig. 2.13 for the case
where (2.4.21) and (2.4.24) have roots. The thick curve in Fig. 2.13 is the switching
curve (2.4.30), and the arrows indicate the direction of increase of the time t. Note
that this picture of the field of optimal trajectories is similar to the picture observed
for the linear resistance, see Sect. 2.2.1, Fig. 2.2.

The optimal control corresponding to this field of phase trajectories may be rep-
resented in the form

uρ(x1,x2) = sign[ψρ(x2)− x1] for x1 �= ψρ(x2),

uρ(x1,x2) = signx1 = −signx2 for x1 = ψρ(x2), (2.4.32)

(x1 = x, x2 = ẋ),
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x1

x2

u = −1

u = 1

Fig. 2.13 Optimal phase trajectories

where the function ψρ is defined by relationships (2.4.31), (2.4.20), and (2.4.23).
The control law (2.4.32) solves Problem 2.3. This solution may be called sub-

optimal, because it is time-optimal (unimprovable) when v is the “worst-case” dis-
turbance, as assumed in the game-theoretical approach. With the worst-case distur-
bance v = −ρu, the system moves along optimal trajectories, see Fig. 2.13. If the
disturbance deviates from the worst case (v �= −ρu), which is usually so, the trajec-
tories deviate from the optimal trajectories. The motion along the switching curve
occurs in the sliding mode, and the time taken to reach the origin only diminishes.

2.4.3 Simplified control for the subsystem and comparative analysis

So far, we have assumed that the disturbance is unknown, but its maximum attain-
able value is known and essentially affects the feedback control. In dimensionless
variables, the disturbance bound has the form |v| ≤ ρ , see (2.4.9), and the feedback
control (2.4.32) depends on the parameter ρ .

We can use a different approach to the control synthesis in the presence of dis-
turbances, which simply ignores the disturbances (see Sect. 2.2.2).

In our case, this simplified approach means that the parameter ρ is set equal
to zero during the control synthesis, and the disturbances are ignored. The control
u0(x1,x2) obtained in this way is defined by relationships (2.4.32), (2.4.31), (2.4.20),
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and (2.4.23) with ρ = 0. The switching curve for the simplified control is given by
(2.4.30) with ρ = 0. It is represented in Fig. 2.14 by the thick curve.

x1

x2

(ξ ,η)

(ξ ∗,η∗)

x∗1 x0
1

(ξ ′,η ′)

x1 = ψ0(x2)

Fig. 2.14 Switching curve with ρ = 0 and a trajectory for simplified control

Let us compare the two control synthesis techniques — the game-theoretical and
the simplified method. To this end, we will examine the dynamics of system (2.4.1)
for some ρ ∈ (0,1) under the action of the simplified control u0(x1,x2). We will
represent this system in the form

ẋ1 = x2, ẋ2 = − f (x2)+u0(x1,x2)+ v, (2.4.33)

|v| ≤ ρ < 1, (x1 = x, x2 = ẋ).

For system (2.4.33), we consider the following auxiliary problem of finding the
worst-case disturbance (see analogous Problem 2.2 in Sect. 2.2.2).

Problem 2.4. Find the optimal control v(x1,x2) for system (2.4.33) that satisfies the
constraint |v| ≤ ρ and such that the first intersection of any phase trajectory of this
system with the switching curve x1 = ψ0(x2) lies as far as possible from the origin,
i.e., at the maximum possible |x1| or, equivalently, the maximum possible |x2|.

First assume that the starting point is in the region x1 ≥ψ0(x2). Then, by (2.4.32),
we have u0 = −1 for the given trajectory. The phase trajectory of system (2.4.33)
first crosses that branch of the curve x1 = ψ0(x2), where x1 > 0, x2 < 0 [see Fig. 2.14,
where it is assumed that the initial point (ξ ,η) lies on the curve x1 = ψ0(x2)].
Problem 2.4 is described by the relationships
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ẋ1 = x2, ẋ2 = − f (x2)−1+ v, |v| ≤ ρ < 1,

x1(0) = ξ , x2(0) = η , ξ ≥ ψ0(η), (2.4.34)

x1(τ) = φ0(x2(τ)), x1(τ) > 0, x2(τ) < 0, x1(τ) → max .

The instant τ when the process terminates is not fixed. Maximization of x1(τ) is
equivalent by (2.4.34) to the minimization of the integral functional

τ∫
0

(−x2)dt → min . (2.4.35)

Applying the maximum principle to our problem defined by (2.4.34) and (2.4.35),
we form the Hamiltonian

H = p1x2 + p2[v−1− f (x2)]+ x2, (2.4.36)

where p1 and p2 are the conjugate variables. They satisfy the conjugate system

ṗ1 = 0, ṗ2 = f ′(x2)p2 − p1 −1 (2.4.37)

and the transversality conditions corresponding to the boundary conditions (2.4.34):

p1φ ′
0(x2)+ p2 = 0, H = 0, t = τ. (2.4.38)

From the first condition in (2.4.38), applying relationships (2.4.31) and (2.4.20)
for ρ = 0 and noting that x2(τ) < 0 by (2.4.34), we obtain

p1 = −p2
1− f (x2)

x2
, t = τ. (2.4.39)

Substituting (2.4.39) into (2.4.36) and using the second transversality condition
in (2.4.38), we obtain after simplifications

H = p2(v−2)+ x2 = 0, t = τ.

Since x2(τ) < 0 and |v| ≤ ρ < 1, we obtain from this equality

p2(τ) < 0. (2.4.40)

We find the optimal control by maximizing H from (2.4.36) over |v| ≤ ρ:

v = ρ sign p2. (2.4.41)

Singular sections of the trajectory are ruled out. Indeed, if p2 ≡ 0 in some time
interval, then in this interval p1 = −1 by the second equation (2.4.37). But p1 ≡
const, and therefore p1 = −1 on the entire trajectory. Then the second equation
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in (2.4.37) becomes linear and homogeneous for p2, and its solution with initial
condition (2.4.40) does not vanish.

Thus, there are no singular sections, and (2.4.41) implies that control v(t) has
switching points when p2(t) = 0.

Let us find the switching curve in the (x1,x2)-plane. Since system (2.4.34) is
autonomous, its Hamiltonian (2.4.36) preserves a constant value along the optimal
trajectory, and by (2.4.38) this constant value is zero:

H = (p1 +1)x2 + p2[v−1− f (x2)] ≡ 0.

Hence, it follows that at the switching point, i.e., for p2 = 0, we have either
p1 = −1 or x2 = 0. But the equality p1 = −1, as we have shown, implies that p2

never vanishes. We thus have x2 = 0 at the switching point, and the switching curve
in this case is the ray x2 = 0, x1 > 0.

In order to determine the sign of the control for x2 < 0 and x2 > 0, it suffices to
determine its sign at a single point. At the terminal time τ we have x2(τ) < 0 by
(2.4.34) and p2(τ) < 0 by (2.4.40). Thus, v = −ρ for x2 < 0.

As a result,
v(x1,x2) = ρ signx2. (2.4.42)

We have obtained the optimal feedback control in the region x1 > ψ0(x2). To
obtain the control in the region x1 < ψ0(x2), we note some symmetry properties.
When f (z) is replaced by g(z) = − f (−z), we have by (2.4.20) and (2.4.23)

φ+
ρ (y) →−φ−

ρ (−y), φ−
ρ (y) →−φ+

ρ (−y). (2.4.43)

From (2.4.31) and (2.4.43), it follows that after this change

ψρ(y) →−ψρ(−y). (2.4.44)

Let us now make in (2.4.33) the change of variables

x1 →−x1, x2 →−x2, v →−v, f (z) →− f (−z). (2.4.45)

By (2.4.44) and (2.4.32), u0 is changed to −u0, and system (2.4.33) remains
invariant. Hence, it follows that in the region x1 < ψ0(x2) the field of optimal tra-
jectories and the optimal control are the same as in the region x1 > ψ0(x2), but with
f (z) replaced by g(z) =− f (−z). Since synthesis (2.4.42) is independent of the spe-
cific form of function f (z), it also applies in the region x1 < ψ0(x2). Thus, (2.4.42)
defines the solution of Problem 2.2 in the entire (x1,x2)-plane.

Analysis of the phase trajectories

Consider the motion of system (2.4.33) under the action of the simplified control
u0(x1,x2) defined by relationships (2.4.32), (2.4.31), (2.4.20), and (2.4.23) for ρ = 0
and the worst-case disturbance v from (2.4.42). Assume that the initial point ξ ,η
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lies on the branch of the switching curve x1 = ψ0(x2), where x1 < 0 and x2 > 0 (see
Fig. 2.14). Let us investigate the phase trajectory until its next intersection with the
same branch of the switching curve. This piece of the trajectory consists of four
sections, each with constant u0 and v. These sections have the following endpoints
and controls (see Fig. 2.14):

1) (ξ ,η) → (x0
1,0), u0 = −1, v = ρ;

2) (x0
1,0) → (ξ ′,η ′), u0 = −1, v = −ρ;

3) (ξ ′,η ′) → (x∗1,0), u0 = 1, v = −ρ;
4) (x∗1,0) → (ξ ∗,η∗), u0 = 1, v = ρ.

(2.4.46)

The parameters of endpoints (2.4.46) satisfy relationships that reflect their posi-
tion on the switching curve and on the coordinate axes (see Fig. 2.14):

ξ = ψ0(η), η > 0, ξ < 0; x0
1 > 0;

ξ ′ = ψ0(η ′), η ′ < 0, ξ ′ > 0; x∗1 < 0; (2.4.47)

ξ ∗ = ψ0(η∗), η∗ > 0, ξ ∗ < 0.

Substituting u0 and v from (2.4.46) into (2.4.33) and integrating along the corre-
sponding sections of the trajectory, we have

ξ ′ −ξ =

0∫
η

zdz
−1+ρ − f (z)

+

η ′∫
0

zdz
−1−ρ − f (z)

,

ξ ∗ −ξ ′ =
0∫

η ′

zdz
1−ρ − f (z)

+

η∗∫
0

zdz
1+ρ − f (z)

.

Replacing ξ , ξ ′, and ξ ∗ by their expressions from (2.4.47) and using formulas
(2.4.31), (2.4.20), and (2.4.23) for ρ = 0, we obtain

η ′∫
0

zdz
1− f (z)

−
η∫

0

zdz
−1− f (z)

=

η∫
0

zdz
1−ρ + f (z)

−
η ′∫

0

zdz
1+ρ + f (z)

,

η∗∫
0

zdz
−1− f (z)

−
η ′∫

0

zdz
1− f (z)

=

η ′∫
0

zdz
−1+ρ + f (z)

+

η∗∫
0

zdz
1+ρ − f (z)

.

(2.4.48)

Recall that η ′ < 0, η > 0, and η∗ > 0 by (2.4.47). Set η ′ = −η0, η0 > 0 and
transform relationships (2.4.48) so that they contain integrals only over intervals
lying on the positive half-axis. Simplifying, we obtain

Φ4(η0) = κ2(ρ)Φ1(η), Φ2(η∗) = κ2(ρ)Φ3(η0). (2.4.49)
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Here,
Φ1(y) = Φ+(y; f ), Φ2(y) = Φ−(y; f ),

Φ3(y) = Φ+(y;g), Φ4(y) = Φ−(y;g),

Φ±(y;h) =

y∫
0

zdz
(1+h)[1± (1∓ρ)−1h]

, (2.4.50)

f = f (z) ≥ 0, g = − f (−z) ≥ 0,

κ(ρ) =

[
ρ(1+ρ)

(1−ρ)(2+ρ)

]1/2

.

Consider the transcendental equations (2.4.49) that determine η0 and η∗ for
given η > 0 and ρ ∈ (0,1). To this end, we will note some properties of func-
tions Φi, i = 1,2,3,4, from (2.4.50). Recall that by (2.4.8) f (z) > 0 for z > 0 and
f (z) → 0 as z → 0.

The denominators in the integrands for functions Φ1 and Φ3 in (2.4.50) are pos-
itive for all z ≥ 0. Therefore, functions Φ1 and Φ3 are defined and bounded for all
y ≥ 0.

If the equations

f (z2) = 1+ρ, g(z4) = − f (−z4) = 1+ρ (2.4.51)

have solutions for z2 and z4, then the denominators of the integrands of the corre-
sponding functions Φ2 and Φ4 in (2.4.50) vanish for finite z2 and z4 equal to the
roots of equations (2.4.51). In this case, Φ2 and Φ4 are monotone increasing and go
to infinity at y = z2 and y = z4, respectively. If (2.4.51) have no solutions, then the
functions Φ2 and Φ4 are defined for all y > 0. In both cases, the denominators of the
integrands for the functions Φ2 and Φ4 have maxima over f ≥ 0 and g ≥ 0, which
are both equal to (2+ρ)2(1+ρ)−1/4. We thus have the inequalities

Φ2(y) ≥ 1
2

ϑy2, Φ4 ≥ 1
2

ϑy2, ϑ = 4(1+ρ)(2+ρ)−2.

The functions Φ2 and Φ4 are thus always positive and strictly increasing, taking
all values from 0 to ∞ for y ≥ 0.

Hence, it follows that the transcendental equations (2.4.49) for any η > 0 and
ρ ∈ (0,1) have unique positive solutions η0 > 0 and η∗ > 0. These solutions are
continuous and monotone functions of η .

Let us differentiate equalities (2.4.49) with respect to η . After simple reductions
we obtain

dη∗

dη
=

κ2(ρ)Φ ′
3(η0)

Φ ′
2(η∗)

dη0

dη
=

κ4(ρ)Φ ′
3(η0)Φ ′

1(η)

Φ ′
2(η∗)Φ ′

4(η0)
. (2.4.52)

From relationships (2.4.50) and properties (2.4.8) of the function f (z), we obtain
the inequalities
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Φ ′
1(y)

Φ ′
2(y)

< 1,
Φ ′

3(y)

Φ ′
4(y)

< 1, y > 0.

Using the second inequality, we obtain from (2.4.52)

dη∗

dη
< κ4(ρ)

Φ ′
1(η)

Φ ′
2(η∗)

, η > 0. (2.4.53)

We can verify that the function κ2(ρ) from (2.4.50) is strictly increasing from 0
to ∞ on ρ ∈ [0,1], and κ = 1 for ρ equal to (see Sect. 2.2.3)

ρ∗ =
1
2
(
√

5−1) ≈ 0.618. (2.4.54)

First assume that ρ < ρ∗ and therefore κ2(ρ) < α , where α < 1 is a positive
number. Then, from (2.4.53), we have

dη∗

dη
< α2 Φ ′

1(η)

Φ ′
2(η∗)

, η > 0, (2.4.55)

and hence
Φ2(η∗) < α2Φ1(η), η > 0. (2.4.56)

We will show that η∗ < η . Assume that this is not so, specifically η∗ ≥ η . From
(2.4.50), we obtain Φ2(y) > Φ1(y) for all y > 0. Then, by the monotonicity of the
function Φ2(y), we obtain the chain of inequalities

Φ2(η∗) ≥ Φ2(η) > Φ1(η),

which leads to the contradiction with inequality (2.4.56). Thus, η∗ < η .
Let us transform inequality (2.4.55), substituting the expressions for the deriva-

tives Φ ′
1 and Φ ′

2 from (2.4.50) and using the positivity of the function f (z):

dη∗

dη
<

α2η [1+ f (η∗)][1− (1+ρ)−1 f (η∗)]
η∗[1+ f (η)][1+(1−ρ)−1 f (η)]

<
α2η [1+ f (η∗)]

η∗[1+ f (η)]
, η > 0.

We can simplify the last inequality, noting that f (η∗) < f (η) by the monotonic-
ity of f (z) and by the inequality η∗ < η . We obtain

dη∗

dη
<

α2η
η∗ , η > 0.

Integrating this inequality with η∗ = 0 when η = 0, we obtain (η∗)2 < α2η2 or
η∗/η < α .

Thus, if ρ < ρ∗, where ρ∗ is defined in (2.4.54), then η∗/η < α , i.e., the phase
trajectory approaches the origin. The distance from the origin diminishes at a rate
not slower than geometric progression. The system, therefore, reaches the prescribed
state in finite time, although after infinitely many control switchings.
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Suppose that the system has reached a small neighbourhood of the origin, so that
η is sufficiently small. Here, η0 and η∗ are also small in view of their continuous
dependence on η . Since f (z) → 0 as z → 0 by (2.4.8), terms f (z) and g(z) can be
omitted in integrals (2.4.50) for small y, and we have

Φi(y) ∼ 1
2

y2, y → 0, i = 1,2,3,4.

The transcendental equation (2.4.49) for small η thus takes the form

(η0)2 = κ2(ρ)η2, (η∗)2 = κ2(ρ)(η0)2.

Hence, we obtain
η∗

η
= κ2(ρ). (2.4.57)

Let ρ > ρ∗ and, therefore, κ2(ρ) > 1. Then, by (2.4.57), we obtain η∗ > η ,
and the phase trajectory, even if it has reached a small neighbourhood of the origin,
eventually moves away from the origin. The system does not come to the prescribed
state.

Thus, with an arbitrary function f (z) that satisfies condition (2.4.8), the simpli-
fied approach produces control u0(x1,x2) that is defined by relationships (2.4.32) for
ρ = 0 and has the following properties:

• If ρ < ρ∗ ≈ 0.618, then, for any admissible disturbance |v| ≤ ρ , the system
reaches the origin. The time to reach the origin is finite, although the number
of switchings in general is infinite.

• If ρ > ρ∗, there exists an admissible disturbance v defined by (2.4.42) for which
the system never reaches the origin.

Therefore, simplified control guarantees a solution of Problem 2.3 only for
ρ < ρ∗, i.e., when the ratio of the maximum allowed disturbance to the maximum
allowed control does not exceed the golden section.

Specifying the form of the function f (z), we can construct a more detailed picture
of the phase motion. Note that the results presented here and obtained first in [28]
generalize the results of [27] and [29], where the cases of zero and linear resistance,
respectively, have been previously considered in detail, see Sects. 2.2.1–2.2.3.

Conclusions

The proposed control law (2.4.32) based on the game-theoretical approach takes the
given system (2.4.7) to the origin in finite time for any non-linearity f (z) and any
uncertain disturbance, if ρ < 1. This control law does not require a knowledge of
the disturbance; we only need to know the maximum allowed disturbance, which
must not exceed the maximum control.

Let us stress the difference in the requirements imposed on functions f (z) and
v(x, ẋ, t). Both these functions may be arbitrary in the framework of the correspond-
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ing conditions: (2.4.8) for f (z) and (2.4.9) for v. However, the non-linear resistance
function f (z) should be known in order to construct the control, while the distur-
bance v(x, ẋ, t) is not needed.

The simplified approach to the control synthesis, which totally ignores the dis-
turbances, is less effective. It a priori takes the system to the origin only for
ρ < ρ∗ ≈ 0.618. If ρ > ρ∗, then there exists a disturbance for which the system
never reaches the origin.

Yet both approaches have a similar structure and differ only by their switching
curves.

The proposed control technique is robust with respect to various disturbances
and parameter variations. These factors can be easily incorporated in the analysis, if
we increase the assumed level of allowed disturbances, i.e., parameter ρ , creating a
certain safety margin by this parameter.

Note that the obtained feedback control is suboptimal in the sense that it is time-
optimal for the worst-case disturbance.

Our results can be applied to various dynamic systems, e.g., to control the elec-
tric motors of robotic systems. This opens up the possibility of taking into account
various resistance laws that are often encountered in practice.

2.5 Applications and numerical examples

2.5.1 Application to robotics

Let us consider applications of the results obtained to problems of robot dynam-
ics. For this, we will see that the formulation of Problem 2.1 as well as conditions
(2.1.12) and (2.1.13) are typical and are often satisfied for robots.

Let us consider a manipulation robot that has n degrees of freedom and consists
of n links connected by cylindrical or prismatic joints. Each link of the robot is an
absolutely rigid body. The position of the ith link relative to that of the (i−1)st one
is characterized by the relative angle of rotation (in the case of a cylindrical joint)
or by a relative displacement (in the case of a prismatic joint). We take these angles
and displacements as generalized coordinates (q1, . . . ,qn) determining the position
of the robot. The equations of motion of the robot can be represented in the form
of Lagrange’s equations (2.1.1), where the kinetic energy has the form (2.1.2). The
role of the generalized forces is played by the torques about the axes of cylindrical
joints and by the forces in the directions of displacements in the case of prismatic
joints. Here, the forces Ui in (2.1.1) are the control torques or forces caused by the
motors (drives), and Qi include all the other external and internal forces and torques:
gravity, resistance, friction, various perturbations, etc.

Let us now look at the dynamics of the robot together with its drives. We sup-
pose that each control torque or force Ui is produced by a separate direct-current
electric motor, i = 1, . . . ,n, and forces Qi can be represented in the form (2.3.5)–
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(2.3.8). The kinetic energy of the robot T is made up of the kinetic energy of its
links T 1(q, q̇) and the kinetic energy of the rotors of the electric motors T 2(q, q̇,N).
Here, N = (N1, . . . ,Nn) are the gear ratios of the reduction gears, which are treated
as parameters. We shall assume that Ni ≥ 1 and neglect the inertia of the moving
parts of the reduction gears. According to König’s theorem, the kinetic energy of
the ith rotor is equal to the sum of two terms: the kinetic energy of a point mass
equal to the mass of the rotor and located at its center, and the kinetic energy of
rotation of the rotor, that is

T 2
i (q, q̇,Ni) = T v

i (q, q̇)+T ω
i (q, q̇,Ni).

Suppose that Ji and J′i are the moments of inertia of the ith rotor about its axis of
rotation and an axis passing through the centre of inertia perpendicular to the axis
of rotation. Then, if the angular velocity vector of the stator of the ith electric motor
has a projection on the axis of rotation of the rotor equal to ωi and a perpendicular
component equal to ω ′

i , we have

T ω
i (q, q̇,Ni) =

1
2

[
Ji(Niq̇i +ωi)

2 + J′i ω ′2
i

]
.

The angular velocities ωi and ω ′
i are linear combinations of the generalized veloci-

ties q̇1, . . . , q̇n with coefficients depending on q. The kinetic energy of the robot can
therefore be represented in the form

T =
1
2

n

∑
j=1

Jj(Njq̇ j)
2 +

1
2

Nmax〈Bq̇, q̇〉, (2.5.1)

where B(q,N) is a bounded matrix such that the inequality

|B(q,N)z| ≤ λ |z|, λ = const, (2.5.2)

is satisfied in the case of an arbitrary vector z.
The largest and smallest of the gear ratios N1, . . . ,Nn are henceforth denoted by

Nmax and Nmin, and λ is independent of Ni.
We substitute (2.5.1) into Lagrange’s equations in the form of (2.1.1) and obtain

N2
i Jiq̈i +Nmax[B(q,N)q̈]i = Ui +Si(q, q̇, t,N). (2.5.3)

We divide the ith equation of (2.5.3) by Ni and make the change of variables

pi = Niqi. (2.5.4)

As a result, we obtain

Ji p̈i +NmaxN−1
i

n

∑
j=1

Bi jN
−1
j p̈ j = N−1

i (Ui +Si). (2.5.5)
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Allowing for the fact that N−1
i Ui = Mi, where Mi is the electromagnetic torque

produced by the electric motor, we reduce system (2.5.5) to the form

(J + B̃)p̈ = M +S∗. (2.5.6)

Here,

J = diag(J1, . . . ,Jn), B̃ = NmaxH−1BH−1, M = (M1, . . . ,Mn),

(2.5.7)

S∗ = H−1S, H = diag(N1, . . . ,Nn).

Consequently, when account is taken of the change of variables (2.5.4) and no-
tation (2.5.7), the equations of motion can be represented in the form of (2.1.3) and
(2.3.2), and, by (2.5.2) and (2.5.7), we have the inequality

|B̃z| ≤ μ |z|, μ = NmaxN−2
minλ , (2.5.8)

that is analogous to constraint (2.3.3). The initial and terminal conditions can be
represented in the form (2.1.7) and (2.1.8).

We will now consider different ways of formulating control problems.
1◦. Suppose that the constraints

|Mi| ≤ M0
i (2.5.9)

are imposed on the control torques Mi produced by the electric motors. In this case,
the results obtained in the preceding sections and summarized in Theorem 2.3 can
be used to construct the control. Inequality (2.3.34), rewritten in the notation of
system (2.5.6), defines the permissible values of parameter μ . On substituting its
value from (2.5.8) into this inequality instead of μ , we obtain a constraint on the
possible values of the gear ratios of the reduction gears

N2
min

Nmax
>

λ
Jmin

(
1+

|M0 +H−1G0|
mini(M0

i −N−1G0
i )

)
,

M0 = (M0
1 , . . . ,M0

n), G0 = (G0
1, . . . ,G

0
n).

(2.5.10)

Here, Jmin is the least of the moments of inertia of the rotors J1, . . . ,Jn, constants G0
i

are introduced in (2.3.5)–(2.3.7); besides, we assume that

G0
i < NiM

0
i

for all i = 1, . . . ,n.
2◦. Suppose that the voltages applied to the windings of the electric motors play

the role of controls. We augment the equations of motion (2.5.6) with the balance
equations for the voltages in the rotor circuits and relations associating torques Mi

with the currents [50]:
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Li
d ji
dt

+Ri ji + kE
i ṗi = ui, Mi = kM

i ji −bi ṗi. (2.5.11)

Here, Li is the coefficient of inductance, Ri is the electrical resistance, kE
i and kM

i
are constant coefficients, ui is the voltage in the rotor circuit of the ith motor, term
bi ṗi is the moment due to mechanical resistance, and bi is a positive constant coeffi-
cient. The first term in the first equation (2.5.11) is usually small compared with the
remaining terms. Therefore, the expression

Mi = kM
i R−1

i (ui − kE
i ṗi)−bi ṗi

is obtained from (2.5.11); when this is substituted into (2.5.6), we obtain

(J + B̃)p̈ = U∗ +S∗∗,

S∗∗ = S∗ −Λ ṗ, Λ = diag(kM
1 kE

1 R−1
1 +b1, . . . ,k

M
n kE

n R−1
n +bn), (2.5.12)

U∗ = (kM
1 R−1

1 u1, . . . ,k
M
n R−1

n un).

Suppose that the constraints
|ui| ≤ u0

i (2.5.13)

are imposed on the control voltages. Constraints (2.5.13) are transformed into con-
straints on the components of vector U∗ from (2.5.12):

|U∗
i | ≤U∗0

i = kM
i R−1

i u0
i . (2.5.14)

The equations of motion (2.5.12) are again reduced to the form (2.1.3) and
(2.3.2). Inequalities (2.5.14) are of the same form as relations (2.1.6). It is obvi-
ous that in this case we can use the method of control considered above in Sect. 2.3.
By Theorem 2.3, we obtain a constraint which is analogous to (2.5.10):

N2
min

Nmax
>

λ
Jmin

(
1+

|U∗0 +H−1G0|
mini(U∗0

i −N−1
i G0

i )

)
, U∗0 = (U∗0

1 , . . . ,U∗0
n ). (2.5.15)

Thus, if the gear ratios of the drives and the parameters of the robot are such
that inequalities (2.5.10) and (2.5.15) are satisfied, then it is possible to construct
a control which transfers the system under consideration from an initial state to a
specified state in finite time. The control takes account of the existence of perturba-
tions and structural constraints.

Remark 2.2. Considering system (2.5.3) and rewriting in its terms condition (2.3.34),
one can obtain constraints imposed on parameters of the system in another form. We
have

mini(N2
i Ji)

Nmaxλ
> 1+

|HM0 +G0|
mini(NiM0

i −G0
i )

for the case 1◦ of the bounded electromagnetic torques and
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mini(N2
i Ji)

Nmaxλ
>1+

|HU∗0 +G0|
mini(NiU∗0

i −G0
i )

for the case 2◦ of the bounded electric voltages. It seems that these sufficient condi-
tions for the method of control decomposition are more efficient in the case, where
moments of inertia of the rotors Ji, i = 1, . . . ,n are essentially different from each
other, but the difference between the effective moments of inertia N2

i Ji is not very
large.

Remark 2.3. If the elements of the matrix Λ are sufficiently large, then, in order to
shorten the motion time, it is advisable to reduce system (2.5.12) to the form of
(2.1.28). In this case, one should set matrix A∗ equal to matrix J, and coefficients
λi should be made equal to the corresponding elements of matrix Λ . After that, the
approach described in Sects. 2.1.3–2.2.3 can be applied to the obtained subsystems
with linear resistance.

3◦. Recently, direct drives without gears are often used in robots. For such drives,
we have Ni = 1 and Ji = 0, so that we set J = 0 and H = E in (2.5.6) and (2.5.7). The
equations of motion and the constraints are again reduced to the forms (2.1.3) and
(2.1.6). However, it is no longer possible to choose matrix A∗ in the form (2.3.2) and
(2.3.3), since J = 0. This matrix must be chosen differently, for example, in the form
A∗ = A(q∗) [see Remark 2.1 at the end of Sect. 2.1.2]. To apply the results obtained,
it is necessary to verify conditions (2.1.12) or (2.1.13), and this has to be done in
each specific case. In order to demonstrate this proposition, in the next subsection,
the problem of the feedback control design for the two-link manipulator with direct
drives is considered.

Thus, the results obtained can, under certain conditions, be used for constructing
control for manipulation robots.

2.5.2 Feedback control design and modelling of motions for
two-link manipulator with direct drives

The system considered in this subsection is a simplified model of a mechanical ma-
nipulation robot with two absolutely rigid links. The system can perform motions in
a horizontal plane and is controlled by two torques produced by drives installed at
its joints. Geometric constraints are imposed on the control torques. Using the de-
composition method described in Sects. 2.3 and 2.5, we will construct the feedback
control that brings the system to the prescribed terminal position.

Problem statement

Consider a mechanical two-link system (see Fig. 2.15) that consists of a stationary
base G0 and two absolutely rigid links G1 and G2. The elements of the system are
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connected by two revolute joints O1 and O2 such that both links can move only in
horizontal plane.

G2

C2

q2

O2

G1

O1
q1

G0

Fig. 2.15 Two-link manipulator

Lagrange’s equations that describe the motion of this system are obtained are
[41]:

(m2l2
1 + I1 + I2 +2m2l1lg2 cosq2) q̈1 +(I2 +m2l1lg2 cosq2) q̈2

−2m2l1lg2 sinq2 q̇1q̇2 −m2l1lg2 sinq2 q̇2
2 = M1 +Q1, (2.5.16)

(I2 +m2l1lg2 cosq2) q̈1 + I2 q̈2 +m2l1lg2 sinq2 q̇2
1 = M2 +Q2.

Here, q1 is the angle of rotation of link G1 relative to base G0, and q2 is the angle
between the straight lines O1O2 and O2C2; C2 is a center of mass of link G2. Angle
q2 defines the position of link G2 relative to link G1; l1 is the length of segment
O1O2; lg2 is the length of segment O2C2; m2 is the mass of link G2; Ii is the moment
of inertia of the ith link relative to the axis of joint Oi; and Mi and Qi are the control
torque and moment of other forces applied at the joint Oi, respectively; here and
below i = 1,2.

The constraints
|Mi| ≤ M0

i (2.5.17)

are imposed on the control torques. Here, M0
i are given constants.

Let us turn to dimensionless variables
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t ′ =
[

M0
2

m2l1lg2

]1/2

t, Ui =
Mi

M0
2

, U0
i =

M0
i

M0
2

,

Q′
i =

Qi

M0
2

, α =
I1 +m2l2

1

m2l1lg2
, β =

I2

m2l1lg2
.

(2.5.18)

If we now drop the primes at t ′ and Q′
i, then relations (2.5.16) take the form

(α +β +2cosq2) q̈1 +(β + cosq2) q̈2 − (2q̇1q̇2 + q̇2
2)sinq2 = U1 +Q1,

(β + cosq2) q̈1 +β q̈2 + q̇2
1 sinq2 = U2 +Q2,

(2.5.19)

and inequalities (2.5.17) coincide with (2.1.6). Note that the conditions αβ > 1 and
U0

2 = 1 are fulfilled due to notation (2.5.18).
Next, we consider Problem 2.1 (see Sect. 2.1.2) for system (2.5.19) with con-

straints (2.1.6) imposed on the new controls Ui. We suppose that the domain of
possible motions is given by (2.3.1). In this subsection, we assume that all external
forces and disturbances are missing, i.e.,

Q1 = Q2 = 0.

Simplifying assumptions and decomposition of the system

Let us resolve system (2.5.19) with respect to the second derivatives q̈1 and q̈2 and
multiply the left-hand sides of the obtained relations by some positive coefficients
J1 and J2. Then the system takes the form (2.3.9), where the functions Vi are equal
to

V1 = U1

(
J1

β
αβ − cos2 q2

−1

)
− J1U2

β + cosq2

αβ − cos2 q2

+J1
β (q̇1 + q̇2)

2 sinq2 + q̇2
2 sinq2 cosq2

αβ − cos2 q2
,

V2 = U2

(
J2

α +β +2cosq2

αβ − cos2 q2
−1

)
− J2U1

β + cosq2

αβ − cos2 q2

−J2
(β + cosq2)(q̇1 + q̇2)

2 sinq2 +(α + cosq2)q̇2
1 sinq2

αβ − cos2 q2
.

(2.5.20)

Suppose that the inequalities (2.3.12) hold. If we treat Vi as independent restricted
disturbances, then the original nonlinear system is divided into two linear subsys-
tems with one degree of freedom each.

Control for each of these subsystems can be given by relations (2.3.13) and
(2.3.14). In what follows, we show that conditions (2.3.12) are really fulfilled under
some restrictions on the parameters of the system and constants Ji.
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Determination of the control parameters X1 and X2

Let us impose certain restrictions on the parameters of system (2.5.19) and show
that there exist Xi entering control law (2.3.13) such that relations (2.3.12) are really
fulfilled.

(a) Suppose the inequality
β < 1 (2.5.21)

is true. For example, if link G2 is a thin rod of length l2 < l1 with an arbitrary
distribution of density ρ(x), then

β =
1

m2l1lg2

l2∫
0

ρ(x)x2dx =
1

m2l1lg2

l2∫
0

xd

⎛
⎝ x∫

0

ρ(y)ydy

⎞
⎠

=
1

m2l1lg2

⎛
⎝m2l2lg2 −

l2∫
0

x∫
0

ρ(y)ydydx

⎞
⎠ < 1.

(b) Let us require that the magnitudes of the angles q−2 and q+
2 in (2.3.1) are

restricted:
−arccos(−β ) < q−2 , q+

2 < arccos(−β ). (2.5.22)

From (2.5.22) and inequalities q−2 < q2 < q+
2 that are satisfied under control (2.3.13)

(see Sect. 2.3), it follows that
cosq2 > −β (2.5.23)

during the whole control process.
(c) Suppose that the value U0

1 that restricts control U1 satisfies the inequalities

β +1
β

< U0
1 <

α +β +2
β +1

. (2.5.24)

Since
α +β +2

β +1
− β +1

β
=

αβ −1
β (β +1)

> 0,

one can always ensure the fulfillment of relations (2.5.24) by imposing more rigid
restrictions on one of torques Mi in (2.5.17). We point out that in view of (2.5.21)
and (2.5.24), U0

1 > 2.
(d) We choose constants Ji in system (2.3.9) so that the following inequalities

hold:

J1
β

αβ −1
< 1, J2

α +β +2
αβ −1

< 1. (2.5.25)

Let us estimate magnitude of V1 from (2.5.20) using assumptions (a)–(d). On the
strength of inequalities (2.1.6), (2.5.23), and (2.5.25), we obtain
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|V1| ≤U0
1

∣∣∣∣J1
β

αβ − cos2 q2
−1

∣∣∣∣+ J1U0
2
|β + cosq2|

αβ − cos2 q2

+J1
β (q̇1 + q̇2)

2 + q̇2
2

αβ −1
= U0

1 + J1
β + cosq2 −U0

1 β
αβ − cos2 q2

+J1
β (q̇1 + q̇2)

2 + q̇2
2

αβ −1
.

Now, using inequalities (2.3.24) and (2.5.24), we get

|V1| ≤U0
1 + J1

β +1−U0
1 β

αβ
+ J1

Y 2
2 +β (Y1 +Y2)

2

αβ −1
. (2.5.26)

In a similar manner, we can obtain the following estimate on V2

|V2| ≤ 1+ J2
βU0

1 +(U0
1 −2)cosq2 −α −β

αβ − cos2 q2

+J2
(β +1)(q̇1 + q̇2)

2 +(α +1)q̇2
1

αβ −1
.

By virtue of relations (2.3.24), (2.5.24), and U0
1 > 2, we have

|V2| ≤ 1+ J2
U0

1 (β +1)−α −β −2
αβ

+J2
(α +1)Y 2

1 +(β +1)(Y1 +Y2)
2

αβ −1
.

(2.5.27)

Let us replace values |Vi| by their estimates (2.5.26) and (2.5.27) in inequalities
(2.3.15). We obtain

X1 +
Y 2

2 +β (Y1 +Y2)
2

αβ −1
≤ U0

1 β −β −1
αβ

,

X2 +
(α +1)Y 2

1 +(β +1)(Y1 +Y2)
2

αβ −1
≤ α +β +2−U0

1 (β +1)

αβ
.

(2.5.28)

By virtue of (2.5.24), the expressions in the right-hand sides of inequalities (2.5.28)
are positive. Let us choose Yi according to (2.3.25). Then Yi → 0 as Xi → 0. Hence,
there always exist positive X1 and X2 that satisfy inequalities (2.5.28) and, thus,
inequalities (2.3.12). Note that constants Ji do not appear in restrictions (2.5.28)
directly; therefore, their specific values are not essential.

To sum up, we may state the following.
Let conditions (2.5.21), (2.5.22), and (2.5.24) be fulfilled. Then, the feedback

control Ui(qi, q̇i) that solves Problem 2.1 for system (2.5.16) is given by relations
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(2.3.13). In these relations, parameters Xi are chosen so that inequalities (2.5.28)
should be fulfilled. This control carries system (2.5.16) from the initial position
(2.1.7) to the terminal position (2.1.8), if, at the initial instant, restrictions (2.3.17)
are satisfied. The trajectory of the system lies in the domain D defined by (2.3.1);
time τ of the control process is not greater than value τ∗ that is defined by expres-
sions (2.3.26) and (2.3.27).

Let us show the way to choose admissible values Xi. We search for them in the
form (2.3.35). In this case, inequalities (2.5.28) become

Z2 ≤ U0
1 β −β −1

αβ
×
[

d1 +2
d2

2 +β (d1 +d2)
2

αβ −1

]−1

,

Z2 ≤ α +β +2−U0
1 (β +1)

αβ
×
[

d2 +2
(α +1)d2

1 +(β +1)(d1 +d2)
2

αβ −1

]−1

.

Now, we find the maximum value Z that satisfies the both inequalities obtained and
then determine the parameters Xi by formulas (2.3.35).

Note that the set of possible values Xi may be significantly extended. For this pur-
pose, it is necessary to obtain more precise estimates of |Vi| in (2.5.26) and (2.5.27).

Computer simulation

Calculations were carried out for the following dimensional characteristics of sys-
tem (2.5.16):

l1 = 1m, lg2 = 0.5m, I1 = I2 = 3.33kg ·m2,

m2 = 10kg, M0
1 = 2.9N ·m, M0

2 = 1N ·m.
(2.5.29)

For this example, we suppose that Q1 = Q2 = 0 (see Sect. 2.5.2). The initial and
terminal conditions, and also values q±i defining the permissible domain of motion,
are given by:

q−1 = q0
1 = −0.1rad, q−2 = q0

2 = −0.05rad,

q̇0
1 = q̇0

2 = q∗1 = q∗2 = q+
1 = q+

2 = 0.
(2.5.30)

In this case, α = 2.66 and β = 0.66 < 1; inequalities (2.5.22) and (2.5.24) become
−2.3 < q−2 ,q+

2 < 2.3 and 2.5 < U0
1 < 3.2. Obviously, the parameters of the system

(2.5.29) and (2.5.30) satisfy these restrictions. Let us choose dimensionless values
for Xi that satisfy inequalities (2.5.28). For X1 = 1.82×10−2 and X2 = 9.13×10−3,
the dimensional estimate τ∗ = 4.68 s of the time of control and the real time of the
process τ = 3.64 s are obtained. Figure 2.16 demonstrates the time histories of an-
gular velocities q̇1 and q̇2. At the final stage, q̇1 and q̇2 vary linearly that agrees with
the motion of the phase points of subsystems (2.3.9) along the parabolic sections
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of the switching curves. The phase trajectories of the subsystems are depicted in
Figs. 2.17 and 2.18. The termination of the motion occurs at different instants for
two degrees of freedom.

q̇1, q̇2,s−1

1

2

t,s

0 1 2 3 4

0.02

0.04

0.06

Fig. 2.16 Time history of the angular velocities

2.5.3 Modelling of motions of three-link manipulator

The three-link mechanism shown in Fig. 2.19 is chosen as an example of the control
design by the method described in this chapter. This mechanism models the arm of
the manipulation robot consisting of the upper and lower arms. The arm lies in the
vertical plane and is connected to the vertical column supported by a fixed base.

The moment of inertia of the vertical column with respect to its axis of rotation
is equal to IZ

1 . The links of the arm are the rods of the masses m2, m3 and lengths l2,
l3, respectively. The centers of mass of the upper and lower arms are located exactly
in the middle of the corresponding links. The principal central moments of inertia of
the links with respect to the axes that are perpendicular to the rods and with respect
to the longitudinal axes are equal to IS

i and IN
i , i = 2,3, respectively.

The vertical column as well as the upper and lower arms are supplied by the ac-
tuators that include DC motors and reduction gears. For the sake of simplicity, we
suppose that the axis and direction of rotation of the rotor in each electric drive co-
incide with the axis and direction of rotation of the corresponding joint. The masses
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0

0

0.04

0.08

−0.04

−0.04

−0.08

−0.08−0.12

q̇1,s−1

Ω1

q1

Fig. 2.17 Phase trajectory of the subsystem 1

0

0

0.02

0.02

0.04

−0.02

−0.02

−0.04

−0.04−0.06

q̇2,s−1

Ω2

q2

Fig. 2.18 Phase trajectory of the subsystem 2
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q3

q2

q1

Fig. 2.19 Three-link manipulator

of the rotors of the motors are equal to mR
i , i = 1,2,3. We neglect the inertia of the

rotational parts of the reduction gears. The generalized coordinates q1, q2, and q3

are the angles of rotation in the three cylindrical joints of the manipulator: angle q1

of rotation of the vertical column about the vertical axis, angles q2 and q3 of rotation
of the upper and lower arms about the corresponding horizontal axes (Fig. 2.19).

Under the assumptions made, let us obtain the elements of the matrix of the
kinetic energy A(q) from (2.1.2)

A(q) =

⎛
⎝ a11 0 0

0 a22 a23

0 a32 a33

⎞
⎠ .

We have
a11 = J1N2

1 + J′2 + J′3 + IZ
1

+
1
2

{
(m3l2

2 + IS
2 − IN

2 )cos2q2 +(IS
3 − IN

3 )cos2(q2 +q3)

+m3l2l3[cosq3 + cos(q3 +2q2)]+ IS
2 + IS

3 + IN
2 + IN

3 +m3l2
2

}

+
1
8

{
m2l2

2(1+ cos2q2)+m3l2
3 [cos2(q2 +q3)+1]

}
,
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a22 = J2N2
2 + J3 + IS

2 + IS
3

+l2
2

(
mR

3 +m3 +
1
4

m2

)
+m3l3

(
l2 cosq3 +

1
4

l3
)
,

a23 = a32 = J3N3 + IS
3 +

1
2

m3l3
(

l2 cosq3 +
1
2

l3
)
,

a33 = J3N2
3 + IS

3 +
1
4

m3l2
3 .

Here, the notation for the moments of inertia Ji and J′i of the rotors and gear ratios
Ni of the reduction gears introduced in Sect. 2.5.1 is used.

As the generalized forces Qi in (2.1.1), we will consider only torques due to
the gravity in the joints (the forces of viscous and dry friction are not taken into
account):

Q1 = 0,

Q2 = −9.81l2
(1

2
m2 +mR

3 +m3

)
cosq2 −9.81 · 1

2
m3l3 cos(q2 +q3),

Q3 = −9.81 · 1
2

m3l3 cos(q2 +q3).

We will consider the case, where the constraints are imposed on the magnitude
of the control electric voltages (see Sect. 2.5.1, case 2◦).

Below, four variants of the simulation results (1–4) for the control of the con-
sidered system are presented. Input data for each case are shown in Tables 2.1–2.7,
including the parameters of the links and electric drives, initial and terminal condi-
tions, and domains of the possible motions. Output data are presented in Tables 2.3–
2.7 and Figs. 2.20–2.24, including the control parameters, estimates of the motion
time for each of three subsystems, real values of the motion time, time histories of
the generalized velocities q̇1, q̇2, and q̇3, and phase trajectories of the subsystems.
In addition, for the first set of the manipulation robot parameters, we give three vari-
ants of the simulation results (1a, 1b, and 1c) obtained by using the control method
described in Sect. 2.3.4. While implementing the numerical simulations 1a, 1b, and
1c, the current states of the subsystems are determined at the discrete time instants
(with finite time step). As a result, the motion along the switching curve takes place
with a finite frequency of the sign change of the control; this motion approximates
the sliding regime along the switching curve.
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Table 2.1 Parameters of the links (variants 1–4)

i mi, li, lgi, IS
i , IN

i , IZ
i ,

kg m m kg×m2 kg×m2 kg×m2

1 – – – – – 0.2
2 5 0.8 0.4 0.25 0.01 –
3 5 0.8 0.4 0.25 0.01 –

1 – – – – – 0.2
2 5 0.8 0.4 0.25 0.01 –
3 4 0.64 0.32 0.20 0.01 –

1 – – – – – 0.2
2 5 0.8 0.4 0.25 0.01 –
3 4 0.64 0.32 0.17 0.086 –

1 – – – – – 0.2
2 5 0.8 0.4 0.25 0.01 –
3 4 0.74 0.37 0.18 0.009 –

Table 2.2 Parameters of the actuators (variants 1–4)

i kE
i , kM

i , Ri, ui, mR
i , Ji, J′i , Ni

J/A J/A Ω V kg kg×m2 kg×m2

1 0.04 0.04 1 27 0.5 0.00079 0.00041 160
2 0.04 0.04 1 27 0.5 0.00079 0.00041 250
3 0.04 0.04 1 27 0.5 0.00079 0.00041 150

1 0.04 0.04 0.7 27 0.4 0.00069 0.00036 120
2 0.04 0.04 0.6 27 0.25 0.00039 0.00022 180
3 0.04 0.04 0.6 27 0.25 0.00039 0.00022 150

1 0.113 0.109 0.7 42 0.4 0.00069 0.00036 150
2 0.1 0.09 0.6 36 0.25 0.00039 0.00022 250
3 0.1 0.09 0.6 36 0.25 0.00039 0.00022 200

1 0.08 0.07 0.7 27 0.4 0.00039 0.00022 120
2 0.06 0.06 0.6 27 0.25 0.00039 0.00022 180
3 0.06 0.05 0.6 27 0.25 0.00039 0.00022 150
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Table 2.3 Variant 1: initial (q0
i , q̇0

i ) and terminal (q∗i ) conditions, domain of possible motions
([q−i ,q+

i ]), control parameter (Xi), estimated (τ∗i ) and real(τi) motion times for the ith subsystem

i q0
i q̇0

i , s−1 q∗i q−i q+
i Xi, s−2 τ∗i , s τi, s

1 -1 1 0 -1 0 1.060 1.413 1.382
2 -0.3 0 0 -0.35 0.05 0.424 1.682 1.263
3 -1 0 0 -1 0 1.060 1.942 1.467

q̇1, q̇2, q̇3,s−1

t,s

0

1

2

3

0.4

0.4

0.8

0.8

1.2
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1.6

q̇1,s−1

Ω1

q1

0

0

1

2

−1

−2
0.4−0.4−0.8−1.2

q̇2,s−1

Ω2

q2

0

0−0.3 −0.2 −0.1 0.1

0.8

0.4

−0.4

−0.4
−0.8

q̇3,s−1

Ω3

q3

0

0

1

2

−1

−2
0.4−0.4−0.8−1.2

Fig. 2.20 Time histories of the generalized velocities and phase trajectories of the subsystems
(variant 1)
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Table 2.4 Variants 1a–1c: domain of possible motions ([q−i ,q+
i ]), initial (q0

i , q̇0
i ) and terminal (q∗i )

conditions, and real motion time (τi) for the ith subsystem

i q−i q+
i q0

i q̇0
i , s−1 q∗i τi, s

1 -1 0 -1 0 0 1.22
2 -0.3 0 -0.3 0 0 1.35
3 -0.9 0 -0.9 0 0 1.27

1 -1 0 -1 0.5 0 1.27
2 -0.35 0.05 -0.3 0 0 0.97
3 -1 0 -1 0 0 1.07

1 -1 0 -1 0.5 0 1.18
2 -0.35 0.05 -0.3 0 0 1.01
3 -1 0 1 -0.3 -0.1 1.20

q̇1, q̇2, q̇3,s−1

t,s

0

1

2

3

0.4

0.4

0.8

0.8

1.2

1.2 1.6

q̇1, q̇2, q̇3,s−1

t,s
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1.2 1.6

q̇1, q̇2, q̇3,s−1
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1
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3
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0.5
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Fig. 2.21 Time histories of the generalized velocities (variants 1a–1c)
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Table 2.5 Variant 2: initial (q0
i , q̇0

i ) and terminal (q∗i ) conditions, domain of possible motions
([q−i ,q+

i ]), control parameter (Xi), estimated (τ∗i ) and real(τi) motion times for the ith subsystem

i q0
i q̇0

i , s−1 q∗i q−i q+
i Xi, s−2 τ∗i , s τi, s

1 -0.8 1 0 -0.85 0.05 1.392 1.145 1.109
2 -0.3 -0.2 0 -0.35 0.05 0.619 1.788 1.023
3 -1 0 0 -1 0 1.547 1.607 1.172

q̇1, q̇2, q̇3,s−1

t,s
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11
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Fig. 2.22 Time histories of the generalized velocities and phase trajectories of the subsystems
(variant 2)
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Table 2.6 Variant 3: initial (q0
i , q̇0

i ) and terminal (q∗i ) conditions, domain of possible motions
([q−i ,q+

i ]), control parameter (Xi), estimated (τ∗i ) and real(τi) motion times for the ith subsystem

i q0
i q̇0

i , s−1 q∗i q−i q+
i Xi, s−2 τ∗i , s τi, s

1 1 0 -0.2 -0.4 1.1 0.413 3.407 2.413
2 3 0 2 2 3 0.275 3.809 2.697
3 -0.25 0 0.3 -0.5 0.5 0.413 2.825 1.994
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Fig. 2.23 Time histories of the generalized velocities and phase trajectories of the subsystems
(variant 3)
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Table 2.7 Variant 4: initial (q0
i , q̇0

i ) and terminal (q∗i ) conditions, domain of possible motions
([q−i ,q+

i ]), control parameter (Xi), estimated (τ∗i ) and real(τi) motion times for the ith subsystem

i q0
i q̇0

i , s−1 q∗i q−i q+
i Xi, s−2 τ∗i , s τi, s

1 -1.5 0.7 -1 -1.6 -0.7 0.317 4.052 1.766
2 -0.3 -0.2 -0.2 -0.5 0 0.176 3.332 1.071
3 -0.5 0 -1 -1.3 -0.3 0.352 2.380 1.683
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Fig. 2.24 Time histories of the generalized velocities and phase trajectories of the subsystems
(variant 4)



Chapter 3
Method of decomposition (the second approach)

This chapter describes another approach to the method of decomposition for the
construction of the feedback control for nonlinear Lagrangian systems. The chapter
is based, mostly, on papers [31, 32, 14, 15, 54, 100, 103, 45].

3.1 Problem statement and game approach

3.1.1 Controlled mechanical system

Let us return to the system described in Sect. 2.1.1 but make a different set of as-
sumptions. Consider a non-linear dynamical system described by Lagrange’s equa-
tions

d
dt

∂T
∂ q̇i

− ∂T
∂qi

= Ui +Qi, i = 1, . . . ,n. (3.1.1)

Here and below, the dot stands for differentiation with respect to time t, q =
(q1, . . . ,qn) is the vector of generalized coordinates, T is the kinetic energy of the
system, Qi are uncontrollable generalized forces, and Ui are control forces. We shall
assume that all relevant motions of system (3.1.1) take place in a domain D in n-
space Rn, so that q ∈ D always. In particular, D may coincide with Rn.

We will now state our basic assumptions concerning the kinetic energy

T (q, q̇) =
1
2
〈A(q)q̇, q̇〉 =

1
2

n

∑
j,k=1

a jk(q)q̇ jq̇k (3.1.2)

of the system and the generalized forces. Here, A(q) is a symmetric positive-definite
(n×n)-matrix with elements a jk that are continuously differentiable functions of q
for q ∈ D. Throughout this chapter, 〈·, ·〉 stands for the scalar product. It is assumed
that, for any q ∈ D, all the eigenvalues of A(q) lie in an interval [m,M], where M ≥
m > 0. Thus, for any n-vector z

103
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m〈z,z〉 ≤ 〈A(q)z,z〉 ≤ M〈z,z〉, ∀q ∈ D. (3.1.3)

In addition, we will assume that

|∂a jk/∂qi| ≤C, ∀q ∈ D, C = const > 0, (3.1.4)

and that the uncontrollable generalized forces Qi in (3.1.1) consist of three terms,
each subject to different restrictions:

Qi = Pi +Ri +Gi. (3.1.5)

The forces Pi(q, q̇, t) are given functions of the generalized coordinates and time.
The terms Ri(q, q̇, t) in (3.1.5) represent dissipative forces. The exact form of

Ri(q, q̇, t) may be unknown. Our only requirement is that these forces possess the
property of dissipativeness, and that they be sufficiently small at low velocities. The
former property means that the power of the dissipative forces is non-positive:

n

∑
i=1

Riq̇i ≤ 0 (3.1.6)

for all q ∈ D, all q̇, and all t ≥ t0, where t0 is the initial time instant. The second
property may be stated as follows: there exists a sufficiently small number ϑ0 > 0
such that, if |q̇i| ≤ ϑ ≤ ϑ0 for all i, then

|Ri| ≤ R0
i (ϑ). (3.1.7)

Here, R0
i (ϑ) are certain continuous monotone increasing functions defined for ϑ ∈

[0,ϑ0] and such that R0
i (0) = 0.

The terms Gi(q, q̇, t) in (3.1.5) represent uncertain external perturbations, the
only restriction being that they are bounded

|Gi| ≤ G0
i (3.1.8)

for all q ∈ D, all q̇, and t ≥ t0. Here, G0
i > 0 are specified constants.

As for control forces Ui in (3.1.1), we will assume that they are large enough to
balance the given external forces Pi, and the remaining part of the control may be
chosen from a certain domain. Thus, we assume that Ui can be written as

Ui = −Pi(q, q̇, t)+wi. (3.1.9)

The vector w = (w1, . . . ,wn) may be chosen from some set W that will generally
depend on q, q̇, and t, i.e.,

w ∈W (q, q̇, t) ⊂ Rn. (3.1.10)

We will assume that, for all q ∈ D, all q̇, and all t ≥ t0, the set W contains a
neighbourhood W0 of the origin:

W (q, q̇, t) ⊃W0, 0 ∈W0. (3.1.11)
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We will assume that W0 is either a sphere of radius r > 0:

W0 = {w : |w| ≤ r}, (3.1.12)

or a rectangular parallelepiped corresponding to independent constraints on wi:

W0 = {w : |wi| ≤ w0
i }. (3.1.13)

In the case of constraints (3.1.13), we define

r = min
i

w0
i . (3.1.14)

3.1.2 Statement of the problem

Substituting (3.1.5) and (3.1.9) into system (3.1.1), we get

d
dt

∂T
∂ q̇i

− ∂T
∂qi

= Ri +Gi +wi. (3.1.15)

Suppose we are given initial conditions

q(t0) = q0, q̇(t0) = q̇0 (3.1.16)

and terminal conditions corresponding to the state of rest

q(t∗) = q∗, q̇(t∗) = 0, (3.1.17)

where q0 ∈ D, q∗ ∈ D, and t∗ > t0. The control problem may be formulated as fol-
lows.

Problem 3.1. It is required to find a feedback control w(q, q̇) that satisfies the con-
dition

w ∈W0 (3.1.18)

and steers system (3.1.15) from any initial state (3.1.16) to a given terminal state
(3.1.17) in finite (but not fixed) time. The set W0 is given as (3.1.12) or (3.1.13) and
in either case, by (3.1.14), contains the sphere |w| ≤ r. The kinetic energy of system
(3.1.15) is defined by (3.1.2) and satisfies conditions (3.1.3) and (3.1.4), while the
forces Ri and Gi in (3.1.15) satisfy constraints (3.1.6)–(3.1.8).

Note that if the control w satisfies constraint (3.1.18), it follows from (3.1.11)
that it also satisfies the initial constraint (3.1.10).

We will first construct a solution of Problem 3.1 on the assumption that system
(3.1.15) involves no dissipative forces or perturbations, that is, Ri = Gi = 0. The
general case will be considered later.
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3.1.3 Control in the absence of external forces

If Ri = Gi = 0, system (3.1.15) becomes

d
dt

∂T
∂ q̇i

− ∂T
∂qi

= wi. (3.1.19)

Let ε > 0 be some given positive number and let Ω1 denote the set of all points
of the 2n-dimensional phase space (q, q̇) where q ∈ D and |q̇i| > ε for at least one i.
Let Ω2 denote the set of all points (q, q̇) where q ∈ D and |q̇i| ≤ ε for all i. Thus,

Ω1 = {(q, q̇) : q ∈ D;∃i, |q̇i| > ε}
Ω2 = {(q, q̇) : q ∈ D;∀i, |q̇i| ≤ ε} (3.1.20)

We will construct the control w(q, q̇) separately for each of the domains Ω1 and
Ω2, and also specify the number ε . By the theorem on the variation of kinetic energy,
applied to system (3.1.19), we have

dT
dt

=
n

∑
i=1

wiq̇i = 〈w, q̇〉. (3.1.21)

Let us choose a control w in Ω1 so as to satisfy constraints (3.1.18) and so that
derivative (3.1.21) is negative. To that end, we define

w = −rq̇|q̇|−1; wi = −w0
i sign |q̇i|, i = 1, . . . ,n, (3.1.22)

for cases (3.1.12) and (3.1.13), respectively. Substituting (3.1.22) into (3.1.21), we
obtain, respectively,

dT
dt

= −r|q̇|, dT
dt

= −
n

∑
i=1

w0
i |q̇i|. (3.1.23)

In view of notation (3.1.14), we see that, in both cases (3.1.12) and (3.1.13),

dT
dt

≡ 2T 1/2 dT 1/2

dt
≤−r|q̇|. (3.1.24)

The upper bound (3.1.3) for the kinetic energy (3.1.2) gives

|q̇| ≥
(

2T
M

)1/2

. (3.1.25)

Substituting (3.1.25) into the right-hand side of inequality (3.1.24) and noting that
T > 0 in Ω1 [see (3.1.20)], we obtain

dT 1/2

dt
≤−r(2M)−1/2. (3.1.26)
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Integrating inequality (3.1.26), we have

T 1/2 −T 1/2
0 ≤−r(2M)−1/2(t − t0), (3.1.27)

where T0 is the kinetic energy at the initial instant t0. It follows from (3.1.27) that
in finite time the kinetic energy will become as small as desired. Consequently, at
some time t1, the system will reach the border between Ω1 and Ω2.

We shall need bounds for the time t1 and generalized coordinates q(t1). By (3.1.3)
and (3.1.20), if T1 is the kinetic energy at time t1, then

T1 ≥ 1
2

m〈q̇, q̇〉 ≥ 1
2

mε2. (3.1.28)

Inequalities (3.1.27) and (3.1.28) yield the required bound for t1:

t1 − t0 ≤ τ1, τ1 = (2M)1/2r−1[T 1/2
0 − (m/2)1/2ε]. (3.1.29)

To estimate q(t1), we write the obvious inequalities

|qi(t1)−q0
i | ≤

t1∫
t0

|q̇i|dt ≤
t1∫

t0

|q̇|dt. (3.1.30)

We will use the following inequalities that arise from (3.1.3) and (3.1.27):

|q̇| ≤
(

2T
m

)1/2

≤
(

2
m

)1/2

[T 1/2
0 − r(2M)−1/2(t − t0)]. (3.1.31)

Substituting (3.1.31) into (3.1.30) and integrating, we obtain

|qi(t1)−q0
i | ≤ φ(t1 − t0),

φ(τ) =

(
2T0

m

)1/2

τ − 1
2

r(Mm)−1/2τ2.

(3.1.32)

A direct check will show that φ(τ) is a strictly increasing function in the interval
[0,τ1], where τ1 is defined in (3.1.29). Since t1 − t0 ≤ τ1 [see (3.1.29)], it follows
that φ(t1 − t0) ≤ φ(τ1), and therefore, using (3.1.29), we deduce from (3.1.32) that

|qi(t1)−q0
i | ≤ φ(τ1) =

(
M
m

)1/2

r−1
(

T0 − 1
2

mε2
)

. (3.1.33)
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3.1.4 Decomposition

Thus, at the instant t1, the system is on the boundary of Ω1 and Ω2. We construct the
control in Ω2 so that the system, having once entered Ω2, will never leave it again
but will reach the terminal state (3.1.17) in finite time.

We will write Lagrange’s equations (3.1.19) in expanded form substituting T
from (3.1.2):

n

∑
j=1

ai jq̈ j +
n

∑
j,k=1

Γi jkq̇ jq̇k = wi. (3.1.34)

Expression for Γi jk is given by (2.1.5), and Γi jk may be regarded as the components
of n-vectors

Γjk = (Γ1 jk, . . . ,Γn jk). (3.1.35)

We rewrite (3.1.34) in vector notation and solve it for q̈. This gives

q̈ = U ′ +V ′, (3.1.36)

where

U ′ = A−1w, V ′ = −
n

∑
j,k=1

A−1Γjkq̇ jq̇k. (3.1.37)

It follows from condition (3.1.3) that the eigenvalues of the inverse A−1 lie in the
interval [M−1,m−1]. Consequently, for any n-vector z,

|Az| ≤ M|z|, |A−1z| ≤ m−1|z|. (3.1.38)

We subject the components U ′
i of the vector U ′ to the constraints

|U ′
i | ≤U0, U0 = rM−1n−1/2. (3.1.39)

The truth of constraints (3.1.39) implies that of the inequality |U ′| ≤ rM−1 that,
in turn, by (3.1.37) and (3.1.38), implies |w| = |AU ′| ≤ M|U ′| ≤ r. Consequently,
w satisfies (3.1.18) whether W0 is taken to be (3.1.12) or (3.1.13). Thus, constraint
(3.1.39) implies the truth of condition (3.1.18).

To estimate the vector V ′ in (3.1.37), we use the second inequality of (3.1.38)

|V ′| ≤ m−1
n

∑
j,k

|Γjk||q̇ j||q̇k|. (3.1.40)

Inequalities (3.1.4) imply estimates for the quantities Γi jk introduced in (2.1.5):
|Γi jk| ≤ (3/2)C. Hence, using (3.1.35), we have

|Γjk| =
(

n

∑
i=1

Γ 2
i jk

)1/2

≤ 3
2

Cn1/2.
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We substitute these bounds for Γjk and also the inequalities |q̇i| ≤ ε—that are
true in Ω2 by virtue of (3.1.20)—into (3.1.40). This gives |V ′| ≤ (3/2)Cn5/2m−1ε2.
Consequently, we have the following bounds for the components V ′

i of vector V ′

|V ′
i | ≤V0, V0 =

3
2

Cn5/2m−1ε2. (3.1.41)

Equations (3.1.36) and constraints (3.1.39) and (3.1.41) may be rewritten as

q̈i = U ′
i +V ′

i , |U ′
i | ≤U0, |V ′

i | ≤V0, (3.1.42)

where U0 and V0 are defined in (3.1.39) and (3.1.41).
Assuming that

ρ =
V0

U0
< 1, (3.1.43)

we will construct a control U ′
i separately for each degree of freedom of system

(3.1.42).
To do this, we will admit that V ′

i may be arbitrary functions satisfying constraints
(3.1.42). We will use the minimax (guaranteed) approach that is characteristic of the
theory of differential games.

Considering the ith equation of (3.1.42), we define

qi −q∗i = x, q̇i = ẋi = y, U ′
i = u, V ′

i = v (3.1.44)

and rewrite (3.1.42) and (3.1.43) as

ẋ = y, ẏ = u+ v, |u| ≤U0, |v| ≤ ρU0, 0 < ρ < 1. (3.1.45)

At time t1, by assumption, the system is at the boundary of the domains Ω1

and Ω2 [see (3.1.20)]. Taking (3.1.44) into account, we have the following initial
conditions for system (3.1.45):

x(t1) = x1 = qi(t1)−q∗i , y(t1) = y1 = q̇i(t1), |y1| ≤ ε. (3.1.46)

The terminal conditions (3.1.17) become

x(t∗) = 0, y(t∗) = 0. (3.1.47)

To ensure that the system, having reached Ω2 at the instant t1, will not leave the
domain again, we require that

|y(t)| ≤ ε, t > t1. (3.1.48)

System (3.1.45) is similar to system (2.1.30) for λ = 0. The only distinction is
an additional phase constraint (3.1.48).

Thus, we have the following decomposition of Problem 3.1 in Ω2: instead of the
problem for the initial system with n degrees of freedom, we obtain n analogous
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problems for systems with one degree of freedom each. To solve Problem 3.1 in Ω2,
therefore, we need only solve the following problem.

Problem 3.2. Find a control u(x,y) for system (3.1.45) that satisfies constraints
(3.1.45) and (3.1.48) and will steer the system from the initial state (3.1.46) to a
terminal state (3.1.47) in finite time for any admissible v satisfying (3.1.45).

To construct the control, we can, just as in Sect. 2.2.1, use the game approach
and find the solution of the corresponding differential game with phase constraints.
Instead, we suggest a simpler, though not optimal, control of the form

u(x,y) = U0 sign[ψ(x)− y], y �= ψ(x);

u(x,y) = U0 signx = −U0 signy, y = ψ(x),
(3.1.49)

where the function ψ(x) is defined by the relations

ψ(x) = −[2U0(1−ρ)|x|]1/2 signx, |x| ≤ x∗;

ψ(x) = −δ signx, |x| > x∗.
(3.1.50)

Here, δ > 0 is any number from the interval 0 < δ < ε , and the parameter x∗ is
defined by the condition of continuity of the function ψ(x). According to this con-
dition, (3.1.50) yields

x∗ = δ 2[2U0(1−ρ)]−1. (3.1.51)

The switching curve ψ(x) for control (3.1.49) and (3.1.50) is symmetrical about
the origin and is the union of two arcs of parabolas and two rays. It is depicted by
the thick curve in Fig. 3.1. Note that the parabolic arcs of the switching curve are
identical with those of the switching curve constructed in Sect. 2.2.1, see (2.2.10)
for λ = 0. Since δ < ε , this curve lies within the strip |y| ≤ ε and divides it into two
symmetrical parts: the domain X+, where y < ψ(x) and u =U0, and the domain X−,
where y > ψ(x) and u = −U0 [see (3.1.49)].

We shall prove that control (3.1.49) and (3.1.50) solves Problem 3.2.
The initial conditions (3.1.46) hold at the instant t1.
According to (3.1.45) and the control law (3.1.49), we have

ẏ ≥U0(1−ρ), (x,y) ∈ X+;

ẏ ≤−U0(1−ρ), (x,y) ∈ X−.
(3.1.52)

The width of the domains X+ and X− in the y direction is at most ε + δ (see
Fig. 3.1), while the velocity of motion in that direction is finite and directed toward
the switching curve according to (3.1.52). Consequently, the phase point will never
leave the strip |y| ≤ ε but at a certain time t2 > t1 will be incident on the switching
curve y = ψ(x).

Suppose that at time t2 the phase point has hit the straight part y = ±δ of the
switching curve y = ψ(x). After that, the point will move along the straight part of
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y

ε

−ε

X+

X−
δ

−δ

x∗

−x∗ x0

Fig. 3.1 Switching curve and phase trajectories

the curve in a sliding regime. This follows from the fact that the phase velocities on
both sides of this part of the curve are finite and directed toward the switching curve.
The motion will take place along these parts of the curve at an appropriate constant
velocity y = ẋ = ±δ in the direction of decreasing |x|. Consequently, at some time
t3 > t2, the phase point will reach one of the points (±x∗,∓δ ) at the junction of the
straight and curved parts of the switching curve. The curved (parabolic) parts are
the phase trajectories of system (3.1.45), if u is selected in accordance with (3.1.49)
and v = −ρu. If v �= −ρu, the motion induced by control (3.1.49) will nevertheless
take place along these parts of the parabolas, but in a sliding regime. Therefore, at
some time t∗, the phase point will reach the origin.

The thin curves in Fig. 3.1 represent some possible phase trajectories. The arrows
indicate the direction of increasing time t.

The entire motion, from time t1 to time t∗, is divided into three stages: motion in
the domain X+ or X−, motion along the straight lines y =±δ , and motion along the
parabolas. Some of these stages may be missing. For example, at the initial time t1
the phase point may either lie on the switching curve or proceed directly from X+

or X− to the parabolic part of the curve. In all cases, however, the duration t∗ − t1 of
the motion is finite.

To estimate this total time, let us assume that all three stages actually occur—this
will lead us to an upper bound. The length t2 − t1 of the first stage (motion in X+ or
X−) is estimated by dividing the maximum width ε +δ of the domains along the y
axis by the velocity ẏ of minimum absolute value as in (3.1.52). This gives
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t2 − t1 ≤ (ε +δ )[U0(1−ρ)]−1. (3.1.53)

To estimate the coordinate x(t2), we will use constraint (3.1.48) and the initial
condition (3.1.46):

|x(t2)− x1| ≤
t2∫

t1

|y|dt ≤ ε(t2 − t1).

Hence, using (3.1.53), we get

|x(t2)| ≤ |x1|+ ε(ε +δ )[U0(1−ρ)]−1. (3.1.54)

The length t3 − t2 of the second stage (motion along straight lines y = ±δ ) is
obtained by dividing the distance along the x axis by the velocity that is δ in absolute
value

t3 − t2 = [|x(t2)|− x∗]δ−1.

Substituting (3.1.51) and (3.1.54) into this equality, we obtain

t3 − t2 ≤ |x1|δ−1 + ε(ε +δ )[U0(1−ρ)δ ]−1 −δ [2U0(1−ρ)]−1. (3.1.55)

The length t∗ − t3 of the third, last stage (parabolic motion) may be estimated by
dividing the velocity δ of maximum absolute value at the beginning of the stage by
the acceleration of minimum absolute value defined by (3.1.52). This gives

t∗ − t3 = δ [U0(1−ρ)]−1. (3.1.56)

Adding together (3.1.53), (3.1.55), and (3.1.56), we obtain an upper bound for
the total duration of motion in Problem 3.2:

t∗ − t1 ≤ |x1|δ−1 +(2ε2 +4εδ +3δ 2)δ−1[2U0(1−ρ)]−1. (3.1.57)

The result may be summarized in the form of a theorem.

Theorem 3.1. The control u(x,y) determined by (3.1.49) and (3.1.50) in which the
number x∗ is defined by (3.1.51) and δ by any number in the interval (0,ε) is a
solution of Problem 3.2, i.e., it satisfies constraints (3.1.45) and (3.1.48) and steers
system (3.1.45) from the initial state (3.1.46) to the terminal state (3.1.47) in finite
time t∗ − t1 that is bounded as in (3.1.57).

3.2 Feedback control design and its generalizations

3.2.1 Feedback control design

We now turn to the solution of the original Problem 3.2 in the case Ri = Gi = 0.
The required control w(q, q̇) in Ω1 is defined by (3.1.22); the control in Ω2 may be
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obtained from the solution u(x,y) of Problem 3.2. To that end, it is sufficient to use
the relations w = AU ′ of (3.1.37) and notation (3.1.44). The result is

w(q, q̇) = A(q)U ′(q, q̇), U ′
i (qi, q̇i) = u(qi −q∗i , q̇i). (3.2.1)

We recall that the solution u(x,y) of Problem 3.1 was obtained on the assump-
tion that ρ < 1 [see (3.1.43)]; with notation (3.1.39) and (3.1.41), this leads to the
following restriction on ε:

ε < ε0 =

(
2mr

3MCn3

)1/2

. (3.2.2)

To estimate the total duration t∗ − t0 of the motion, we must add the times of
motion in the domains Ω1 and Ω2. When evaluating t∗ − t1, we take into consid-
eration that |x1| in (3.1.57) should be replaced by the maximum over i difference
|qi(t1)− q∗i | [see (3.1.46)], since the system will reach the terminal state when all
coordinates take their terminal values. Using estimate (3.1.33), we obtain

|x1| = max
i

|qi(t1)−q∗i | ≤ max
i

(|qi(t1)−q0
i |+ |q0

i −q∗i |)

≤ max
i

|q0
i −q∗i |+

(
M
m

)1/2

r−1
[

T0 − 1
2

mε2
]
.

This expression is substituted into (3.1.57) that we then add to inequality (3.1.29):

t∗ − t0 ≤ δ−1 max
i

|qi(t1)−q∗i |+(2M)1/2r−1
[

T 1/2
0 −

(m
2

)1/2
ε
]

+

(
M
m

)1/2

r−1δ−1
(

T0 − 1
2

mε2
)

+(2ε2 +4εδ +3δ 2)δ−1[2U0(1−ρ)]−1.

(3.2.3)

The parameters U0 and ρ are defined by (3.1.39), (3.1.41), and (3.1.43) with
ρ < 1 by condition (3.2.2).

The result may be stated as the following theorem.

Theorem 3.2. Problem 3.1 for system (3.1.19), i.e., when Ri = Gi = 0, is always
solvable. For any ε ∈ (0,ε0) with ε0 given by (3.2.2), the control w(q, q̇) defined by
(3.1.22) in Ω1 [for cases (3.1.12) and (3.1.13), respectively] and by (3.2.1) in Ω2

solves the problem, i.e., it steers system (3.1.19) from any initial state (3.1.16) to a
given terminal state (3.1.17) in finite time t∗− t0 that satisfies inequality (3.2.3). Un-
der these conditions, the function u(x,y) in (3.2.1) is defined by (3.1.49) and (3.1.50)
in which the parameters U0, ρ , and x∗ are given by formulas (3.1.39), (3.1.41),
(3.1.43), and (3.1.51) and δ is any number in the interval (0,ε).
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We observe that, in order to reduce the duration of the motion, δ should be cho-
sen as close as possible to ε . If δ = ε , however, one can no longer guarantee that the
system will remain in Ω2 after reaching the boundary of Ω1 and Ω2. For that reason,
δ should be chosen in the interval (0,ε). Our solutions to Problems 3.1 and 3.2 are
naturally not unique. In particular, there are other possible ways to synthesize con-
trols in the one-dimensional system (3.1.45) obtained by the above decomposition.

3.2.2 Control in the general case

We now proceed to solve Problem 3.1 for system (3.1.15) in the general case. The
approach is largely the same as in Sects. 3.1.3–3.2.1.

Letting ε > 0 be given, we again introduce the domains Ω1 and Ω2 defined by
(3.1.20). By the dissipative property (3.1.6) of the forces Ri, the theorem on the
variation of the kinetic energy of system (3.1.15) yields a relation similar to (3.1.21)

dT
dt

≤
n

∑
i=1

(wi +Gi)q̇i. (3.2.4)

The control w in Ω1 will be chosen so as to minimize the scalar product 〈w, q̇〉
subject to constraint (3.1.18). Whether W0 is defined by (3.1.12) or (3.1.13), we
again obtain the appropriate expression of (3.1.22). We now substitute these ex-
pressions into inequality (3.2.4) and use constraints (3.1.8) as well as the Cauchy
inequality. If W0 is a sphere (3.1.12), we obtain

dT
dt

≤−r|q̇|+
n

∑
i=1

G0
i |q̇i| ≤ −r1|q̇|, (3.2.5)

where
r1 = r−|G0| > 0, G0 = (G0

1, . . . ,G
0
n). (3.2.6)

If W0 is a rectangular parallelepiped (3.1.13), we obtain

dT
dt

≤−
n

∑
i=1

(w0
i +G0

i )|q̇i| ≤ −r2|q̇|. (3.2.7)

Here,
r2 = |w0 −G0|, w0 = (w0

1, . . . ,w
0
n), (3.2.8)

and it is assumed that
w0

i > G0
i , i = 1, . . . ,n. (3.2.9)

Thus, if inequalities (3.2.6) hold for the sphere (3.1.12), or inequalities (3.2.9)
for the parallelepiped (3.1.13), then inequalities (3.2.5) and (3.2.7) lead directly to
inequality (3.1.24) with the constant r > 0 replaced by rα > 0. Here and below, the
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indices α = 1,2 correspond to cases (3.1.12) and (3.1.13), respectively. Hence, all
the formulas of Sect. 3.1.3 relating to Ω1 remain valid with the above reservation.

We will now consider Ω2. We impose the condition

ε ≤ ϑ0, (3.2.10)

under which estimates (3.1.7) will hold in the domain Ω2. Lagrange’s equations
(3.1.15) may again be converted to the form (3.1.36) by solving them for the deriva-
tives

q̈ = U ′ +V ∗ (3.2.11)

with the same relation (3.1.37) holding for U ′ as before. The vector V ∗ in (3.2.11)
is given by

V ∗ = V ′ +A−1(R+G). (3.2.12)

The vector V ′ is defined by (3.1.37); R and G are the vectors with components Ri

and Gi, respectively.
Using inequalities (3.1.38) for A−1, (3.1.7) for Ri, and (3.1.8) for Gi, we obtain

the estimate
|A−1(R+G)| ≤ m−1|R0(ε)+G0|,

R0(ε) = (R0
1(ε), . . . ,R0

n(ε)).
(3.2.13)

In accordance with the assumptions made in Sect. 3.1.1 about the functions R0
i

[see (3.1.7)], R0
i (ε) is a continuous monotone increasing function of ε with R0

i (0) =
0.

Inequalities (3.1.41) and (3.2.13) imply the following bound for the vector V ∗ in
(3.2.12):

|V ∗| ≤V ∗
0 = V0 +m−1|R0(ε)+G0|

= m−1
[

3
2

Cn5/2ε2 + |R0(ε)+G0|
]
.

(3.2.14)

We impose on V ∗
0 the following analogue of condition (3.1.43):

ρ∗ =
V ∗

0

U0
< 1. (3.2.15)

The procedure for constructing the control in Ω2 and all the subsequent estimates
in that domain remain the same as in Sects. 3.1.4 and 3.2.1. The only changes are to
replace ρ by ρ∗ and r by rα in estimates (3.2.3) for the time. In formula (3.1.39) for
U0, the parameter r must be retained without change: here, it is defined by (3.1.12)
and (3.1.14) for cases (3.1.12) and (3.1.13), respectively. In addition, the restrictions
on the choice of ε are changed: instead of (3.2.2), we now have two conditions:
(3.2.10) and (3.2.15). In developed form, using (3.1.39) and (3.2.14), we obtain

ε ≤ ϑ0,
3
2

Cn5/2ε2 + |R0(ε)+G0| < mM−1rn−1/2. (3.2.16)
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Thus, our procedure for the control synthesis will produce a solution of Prob-
lem 3.1 provided the following conditions are satisfied: inequalities (3.2.6) or (3.2.9)
in cases α = 1,2, respectively, and both inequalities (3.2.16) for ε . A number ε sat-
isfying (3.2.16) will always exist if there are no perturbations (G0 = 0) or if the
perturbations are sufficiently small

|G0| < mM−1rn−1/2. (3.2.17)

This follows from the continuity of |R0(ε)|: |R0| → 0 as ε → 0. We note that, in the
case of dissipative forces proportional to the velocities, the functions R0

i in (3.1.7)
and R0 in (3.2.13) are linear in ε .

We summarize the results.

Theorem 3.3. Let α be 1 or 2 depending on whether W0 is a sphere (3.1.12) or a
parallelepiped (3.1.13), respectively. Assume that conditions (3.2.6) and (3.2.9) are
satisfied for α = 1,2, respectively, and that there exists ε > 0 satisfying both condi-
tions (3.2.16). Then, the control w(q, q̇) defined by (3.1.22) in Ω1 (for α = 1,2, re-
spectively) and by (3.2.1) in Ω2 solves Problem 3.1 for system (3.1.15), i.e., it steers
the system from any initial state (3.1.16) to the given terminal state (3.1.17). Under
these conditions, the function u(x,y) in (3.2.1) is defined by (3.1.49) and (3.1.50) in
which the parameters U0 and x∗ are given by (3.1.39) and (3.1.51). The parameter
ρ in formula (3.1.51) should be replaced by ρ∗ as in (3.2.15) and (3.2.14); under
these conditions, we have ρ∗ < 1. The number δ may be chosen anywhere in the
interval (0,ε). The duration t∗ − t0 of the motion is finite and satisfies inequality
(3.2.3) with r replaced by rα [see (3.2.6) and (3.2.8)] and ρ by ρ∗.

Let us note that the full duration of time depends on the value of ε . First, an
increase of the number ε results in a decrease in time for reaching by the trajectory
of the set Ω2. Second, in the set Ω2 the system goes through the straight-line tra-
jectory segments along the rays y = ±δ in (3.1.49) and (3.1.50) at the velocity with
|q̇| = δ < ε . Consequently, the greater ε , the greater the number δ can be, and the
higher will be the velocity of motion along these segments. According to (3.2.16),
the selection of ε is determined, in particular, by the constants M and m that bound
in (3.1.3) the maximal and minimal eigenvalues of the matrix A(q), and the constant
C from inequalities (3.1.4). Thus, as region for change of the vector of generalized
coordinates q, it is reasonable to use, not the entire region D, but some subregion
D′ ⊂ D in which the trajectory of motion will lie. The region D′ depends on the
initial and terminal conditions in the problem. A decreasing region D′ in general
causes the constants M and C to decrease, and the constant m to increase, which
allows the parameter ε to be increased.

Remark 3.1. In this approach, the values m, M, C, ε , δ , ρ , and x∗ are selected earlier;
they are general for the entire motion process. Nevertheless, it is clear that in real
mechanical systems the eigenvalues m(q), M(q) and the derivatives ∂ai j(q)/∂qk of
the elements of the matrix A(q) by far do not always reach the boundaries of in-
equalities (3.1.3) and (3.1.4). For this reason, the modified control law according
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to which values m, M, and C are selected at each instant, depending on the cur-
rent condition of the matrix A(q), becomes of interest. Thus, if at time t the vector
of phase coordinates for the system is q, then the control is formed according to
law (3.1.22), where m = m(q), M = M(q), C = maxi, j,k |∂ai j(q)/∂qk|, and the num-
bers ε , δ , ρ , and x∗ are selected in accordance with (3.1.39), (3.1.51), (3.2.15), and
(3.2.16). Modelling described in details in Sect. 3.3.2 has shown that the system
controlled according to this modified law reaches the terminal state more quickly;
nevertheless, to determine the region of applicability of such an approach, further
studies are needed.

3.2.3 Extension to the case of nonzero terminal velocity

Let us generalize the suggested approach to the case of nonzero terminal velocities.

Problem 3.3. We want to construct a control w(q, q̇) that satisfies constraints (3.1.18)
and transfers system (3.1.15) from the arbitrary initial state (3.1.16) to the assigned
terminal state

q(t∗) = q∗ ∈ D, q̇(t∗) = q̇∗, t∗ > t0 (3.2.18)

in finite nonfixed time.

Without loss of generality, we can say that, in the end state (3.2.18), of all phase
coordinates q∗i and q̇∗i only one, q̇∗1, the first component of the velocity vector, is
not equal to zero. To see this, we note that there exists an orthogonal matrix B,
BT B = E (E is the identity matrix), such that the linear transformation q �→B(q−q∗)
transforms conditions (3.2.18) to the form

q∗ = 0, q̇∗1 = |q̇∗|, q̇∗i = 0, i = 2, . . . ,n. (3.2.19)

The constants that bound the components of the matrices ∂A/∂qk and the vectors
G and w as well as function R0

i that bounds the components of the vector R do not
change more than by a factor n1/2. For simplicity, we will assume that inequalities
(3.1.4), (3.1.6)–(3.1.8), and (3.1.12) refer to the system of coordinates obtained after
the transformation made.

Let us assume at the outset that the parameters of the problem satisfy (3.2.17),
and the absolute value of the terminal velocity q̇∗ is sufficiently small so that the
number ε is selected on the basis of the condition

|q̇∗1| ≤ ε. (3.2.20)

Following Sects. 3.1.3–3.2.2, the solution of Problem 3.3 will be split into two
stages.

The purpose of the first stage is to lower the phase velocity to values at which the
decomposition of the system is possible, namely |q̇i| ≤ ε . In order to attain the goal
of the first stage, we will use the control constructed in Sects. 3.1.3 and 3.2.2 in the
domain Ω1 defined by (3.1.20).
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In the region Ω2 of small velocities in the phase space (q, q̇), the original non-
linear system (3.1.15) of order 2n reduces to a set of n controllable subsystems
(3.2.11) of second order in which the nonlinear terms are treated as perturbations.
The purpose of the second stage is to construct for each subsystem (3.2.11) in the
domain |q̇i| ≤ ε of the phase space (qi, q̇i) a feedback control U ′

i satisfying the con-
straint |U ′

i | ≤U0 that brings the corresponding subsystem from a certain initial state
(q1

i , q̇
1
i ) at t = t1 to the assigned terminal state (q∗i , q̇∗i ) in finite time. The initial

state and the entire trajectory here should belong to the set |q̇i| ≤ ε . In Sects. 3.1.4–
3.2.2, this problem is solved for the case of zero terminal conditions. The control
proposed there brings each subsystem (3.2.11) with indices i = 2, . . . ,n to the origin
of coordinates and keeps it there.

We will construct the desired control for the first equation of (3.2.11) correspond-
ing to the component q1 of the vector q. The terminal value for the velocity of this
component is not zero. Let us designate

x = q1, y = ẋ = q̇1, u = U ′
1, v = V ∗

1

and reduce the considered equation to the form of (3.1.45). Concerning finding the
constants U0 and ρ that figure in the constraints imposed on the functions u and v in
(3.1.45), see Sects. 3.1.3–3.2.2. Let us examine there an additional problem.

Problem 3.4. Construct a control u(x,y) that brings system (3.1.45) from the initial
state

x(t1) = q1(t1), y(t1) = q̇1(t1), |y(t1)| ≤ ε (3.2.21)

to the terminal state
x(t∗) = 0, y(t∗) = y∗ (3.2.22)

in finite time with any allowable v [the phase limits (3.1.48) are ignored for the time
being].

Let us solve Problem 3.4 as a differential game using the mini-max approach. In
this game, the side selecting the control u strives to reduce the time t∗ for reaching
the terminal state, and the second side strives to increase this time with the help of
control v. The optimal control u in this game coincides [79] with the minimum time
control for the system:

ẋ = y, ẏ = (1−ρ)u, |u| ≤U0. (3.2.23)

System (3.2.23) is obtained by substitution of the control v = −ρu optimal for
the second player (and the worst for the first player) into system (3.2.11). Let us syn-
thesize a time-optimal feedback control for system (3.2.23) with terminal condition
(3.2.22). In the phase space (x,y), the time-optimal trajectories for system (3.2.23)
consist of segments of two families of parabolas (see Chapter 1)

x =
y2

2(1−ρ)U0
+b, x = − y2

2(1−ρ)U0
+b, (3.2.24)
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where b is an arbitrary constant. Motion along the parabolas of the first family occurs
in the (x,y)-plane upward in the direction of increasing y, and along parabolas of
the second family, downward in the direction of decreasing y [see Fig. 3.2]. It is
not difficult to see that only two parabolas pass through the point (0,y∗), the final
state of the system. Consequently, the switching curve consists of segments of these
parabolas and is described by

x = − y2 − y∗2

2(1−ρ)U0
, y ≥ y∗; x =

y2 − y∗2

2(1−ρ)U0
, y < y∗. (3.2.25)

y

u = −U0

x

y∗

u = U0

Fig. 3.2 Switching curve and phase trajectories

Since on every optimal trajectory there is no more than one control switching, the
feedback optimal control is as follows: to the right of the switching curve (3.2.25)
and on its upper segment (where y≥ y∗), we have u(x,y) =−U0 and at all remaining
points of the phase space u(x,y) = U0. Each optimal motion of system (3.2.23) con-
sists of two stages: at first the representative point moves along one of the parabolas
(3.2.24) to the switching curve (3.2.25), then along this curve to the point (0,y∗). If
in the initial position the system is located on curve (3.2.25), then the first stage is
missing.

Let us remember that motion of system (3.1.45) is subject to (3.2.23) in the case
v =−ρu, i.e., if the second player acts in a manner optimal for him. If, however, the
control v is selected in some other way, then the motion along the switching curve
(3.2.25) also occurs along different trajectories, while on segments of this curve
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where y > y∗ or y < 0, sliding regimes appear. In addition, on the segment of the
switching curve where 0 ≤ y < y∗, the trajectory can leave the curve returning to it
again when y > y∗. Then, the system will come to its terminal state (3.2.22) along
the upper segment of curve (3.2.25). We point out that, if the second player uses
a nonoptimal method (v = −ρu), the time of motion to the terminal state can only
decrease.

Using the solution to Problem 3.4, we will synthesize a control (already nonopti-
mal) for system (3.1.45) taking into account the phase limits (3.1.48). Let the num-
bers δ and x∗ be such that

y∗ < δ < ε, x∗ =
δ 2 − y∗2

2(1−ρ)U0
. (3.2.26)

Let us designate by K the continuous curve located in the strip Ω ε = {(x,y) : |y| ≤ ε}
of the phase space (x,y) and passing through point (0,y∗). Curve K consists of two
rays

L1 = {(x,y) : x ≤−x∗,y = δ}, L2 = {(x,y) : x ≥ x∗,y = −δ},

and also the segment of curve (3.2.25) enclosed between the lines y = ±δ (see
Fig. 3.3).

-

y

ε

−ε

E1

E2

E3

E4

Ω+

Ω−

δ

−δ

x∗

x∗ x

y∗

Fig. 3.3 Modified switching curve
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Let us split the strip Ω ε into two sets. The part Ω− will represent the set of points
of Ω ε lying above and to the right of the curve K or on that segment of it, where
y > y∗. The symbol Ω+ will be used to designate the supplement of the set Ω− in
Ω ε . In the strip Ω ε , we will define the control u(x,y) as follows:

u(x,y) =

{−U0, (x,y) ∈ Ω−,

U0, (x,y) ∈ Ω+.
(3.2.27)

On the strength of (3.1.45) and (3.2.27), the derivative ẏ on Ω− satisfies the
inequality

ẏ ≤−(1−ρ)U0 < 0, (3.2.28)

and on Ω+,
ẏ ≥ (1−ρ)U0 > 0. (3.2.29)

Inequalities (3.2.28) and (3.2.29) are analogous to inequalities (3.1.52).
Consequently, the value of ẏ on the line y = ε is negative, and, on the line y =−ε ,

it is positive. Thus, the trajectory, having fallen into the set Ω ε , will not leave it, and
condition (3.1.48) will be fulfilled.

We will show that control (3.2.27) brings system (3.1.45) to the terminal state in
finite time, and we will estimate this time. At the instant t = t1, let the trajectory of
system (3.1.45) be located on the set Ω− (or Ω+), i.e., (x1,y1) ∈ Ω− [or (x1,y1) ∈
Ω+]. Taking into consideration inequality (3.2.28) [or (3.2.29) for set Ω+], we can
conclude that the trajectory reaches the curve K in time τ1 that does not exceed the
ratio of the maximum width of the set Ω− (or Ω+) along the y axis and the minimal
derivative ẏ in absolute value:

τ1 ≤ ε +δ
(1−ρ)U0

. (3.2.30)

In this time, the x coordinate changes no more than by ετ1, since |ẋ|= |y| ≤ ε . Thus,

|x(t2)| ≤ |x1|+ ε(ε +δ )

(1−ρ)U0
, (3.2.31)

where (x(t2),y(t2)) is the point at which the trajectory first reaches the switching
curve. Estimates (3.2.30) and (3.2.31) are analogous to (3.1.53) and (3.1.54).

If |x(t2)| > x∗, i.e., if the point (x(t2),y(t2)) lies on one of the rays L1 or L2,
then further motion will occur along this ray in the direction of decreasing |x| with
the constant velocity ẋ = ±δ . The system will pass this segment of the trajectory
in a sliding regime because on both sides the phase velocities are finite and di-
rected toward the switching curve. The motion time τ2 along the ray from point
(x(t2),y(t2)) to point E1 (or E2) with the abscissa ±x∗ (see Fig. 3.3) is equal to
τ2 = (|x(t2)|− x∗)/δ . Taking into account (3.2.31), we get the estimate

τ2 ≤
[
|x1|+ ε(ε +δ )

(1−ρ)U0
− x∗

]
1
δ

(3.2.32)
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that is analogous to (3.1.55). The described stage of motion along rays L1 and L2

is absent if |y(t2)| ≤ δ , i.e., if the point (x(t2),y(t2)) lies on the segment of curve
(3.2.25) between the lines y = ±δ .

From point E1, the system moves, possibly in a sliding regime, along the segment
y∗ < y < δ of curve (3.2.25). The time τ3 of passing this segment will be defined as
follows:

τ3 =
δ − y∗

(1−ρ)U0
. (3.2.33)

From point E2, the motion occurs in time τ4 along curve (3.2.25) to point E3

lying on the x axis, and

τ4 =
δ

(1−ρ)U0
. (3.2.34)

Finally, from point E3, the system can move along curve (3.2.25) to the terminal
state (if v = −ρU0), or it can move off it (if v �= −ρU0). In the second case, the
trajectory falls on the switching curve at some point E4 [that lies either on the ray L1

or, as shown in Fig. 3.3, on the segment y > y∗ of curve (3.2.25)], after which, along
the switching curve, it will come to the terminal state. The time τ5 of motion on this
segment of the path reaches the maximum if control v is optimal from the point of
view of the second player, i.e., if v = −ρU0. Then, on the strength of (3.2.29), we
get

τ5 ≤ y∗

(1−ρ)U0
. (3.2.35)

From (3.2.33) and (3.2.34), it follows that τ3 < τ4 and, hence, from point E1, the
trajectory reaches the terminal state clearly more quickly than from point E2. Thus,
to obtain the estimate τ∗1 for the complete time of motion of system (3.1.45) from
the initial point (x1,y1) to the terminal state (0,y∗), it is sufficient to sum up the
right-hand sides of inequalities (3.2.30), (3.2.32), (3.2.34), and (3.2.35). After some
transformations taking into account (3.2.26), we obtain

τ∗1 =
(y∗ +δ )2 +2(ε +δ )2

2(1−ρ)U0δ
+

|x1|
δ

, x1 = q1(t1). (3.2.36)

We note that the control constructed above can be used to bring the ith subsystem,
i ≥ 2, to the zero terminal position and keep it there. In order to do this, we need
to assume that y∗ = 0 and u(0,0) = 0 (we will then get the control presented in
Sect. 3.1.4). The time estimate τ∗i for motion of the ith subsystem (3.2.11) or (3.1.45)
to zero can be obtained by assuming y∗ = 0 and x1 = qi(t1) in (3.2.36):

τ∗i =
δ 2 +2(ε +δ )2

2(1−ρ)U0δ +
|qi(t1)|

δ , i ≥ 2. (3.2.37)

Let τ∗ = maxi τ∗i , i = 2, . . . ,n. Then

τ∗ =
δ 2 +2(ε +δ )2

2(1−ρ)U0δ
+

maxi |qi(t1)|
δ

, i ≥ 2. (3.2.38)
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In bounds (3.2.36)–(3.2.38), the values of coordinates qi(t1) enter into the time
t1 for emergence of the system onto the boundary between sets Ω1 and Ω2. These
coordinates can be estimated analogously to (3.1.33). We will get

|qi(t1)| ≤ |q0
i |+

1
2

√
M
m

M
(
q̇0
)2 −mε2

r
. (3.2.39)

Estimate (3.2.39) can be substituted into inequalities (3.2.36)–(3.2.38).
In contrast with other subsystems, the subsystem corresponding to the first com-

ponent of the vector q cannot be maintained constantly in the terminal state (0,y∗).
Thus, for i = 1, system (3.1.36) will not stop; nevertheless, its trajectory will return
to the point (0,y∗) in a time not exceeding τ∗1 .

Let us return to the solution of Problem 3.3. From the above considerations, it
follows that the control given in the form (3.1.22) in set Ω1 brings system (3.1.15)
from the initial state (3.1.16) to the boundary separating the sets Ω1 and Ω2 in a
certain time t1 for which estimate (3.1.29) is valid. Sets Ω1 and Ω2 are determined
in (3.1.20), and the number ε is specified by (3.2.16).

In the set Ω2, the system splits into n separate subsystems (3.2.11) or (3.1.45).
Using the control of the form (3.2.27), each of these subsystems (3.1.45) having i
greater than one is brought to the origin of coordinates no later than in time t1 + τ∗
and is kept there. Let us note that, for i > 1, during construction of sets Ω− and Ω+,
it must be assumed that y∗ = 0.

Subsystem (3.2.11) with i = 1 will be brought to the terminal state (0,y∗) for the
first time no later than in time t1 + τ∗1 . If τ∗ ≤ τ∗1 , then the entire system as a whole
at this time will turn out to be in the given terminal state. If, however, τ∗ > τ∗1 , then
the first subsystem will come out of the terminal state, and it will again be brought
to this state with the same control (3.2.27). Thus, for the time t∗ necessary to bring
the entire system to the given terminal state, we have the estimate

t∗ ≤ t1 + τ∗ + τ∗1 , (3.2.40)

where τ∗1 and τ∗ are subject to inequalities (3.2.36) and (3.2.38), respectively.
Thus, if the parameters of the original system (3.1.15) satisfy the limitations

(3.1.3), (3.1.4), (3.1.6)–(3.1.8), (3.1.12), and (3.2.17), then in finite time the system
can be brought from an arbitrary initial state (3.1.16) to the nonzero terminal state
(q∗, q̇∗), if conditions (3.2.16) and (3.2.20) are satisfied. These conditions restrict
the choosing of the parameter ε: on the one hand, it should be sufficiently low so
that inequalities (3.2.16) are satisfied, on the other hand, the fulfillment of inequal-
ity (3.2.20) is required. Thus, the realization of the suggested control approach is
possible only in the case of the sufficiently low terminal velocity q̇∗1. The feedback
control law for solving the stated problem is determined by formulas (3.1.22) in the
set Ω1 and by (3.2.1) and (3.2.27) in the set Ω2. This control law ensures, under
conditions mentioned above, the steering of system (3.1.15) to the terminal state at
the instant t∗, for which estimate (3.2.40) holds. Remarks concerning the choosing
of the parameter ε , given at the end of Sect. 3.2.2, remain valid also for the case
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of nonzero terminal velocity, under a restriction: here, condition (3.2.20) should be
satisfied.

3.2.4 Tracking control for mechanical system

Statement of the problem

Following [15], we apply the decomposition method to the problem of tracking the
given trajectory of mechanical system. Consider a system whose dynamics is gov-
erned by (3.1.1) and (3.1.2), where forces Qi consist of the given generalized forces
Pi(t) and the unknown generalized forces Gi(q, q̇, t) called hereafter perturbations:

Qi = Pi +Gi. (3.2.41)

We assume that the perturbations Gi(t,q, q̇) satisfy the conditions

|Gi(t,q, q̇)| ≤ G0
i , (3.2.42)

while the control forces Ui are subject to the constraints

|Ui| ≤U0
i , i = 1, . . . ,n, (3.2.43)

where U0
i and G0

i are given constants such that

U0
i > G0

i > 0. (3.2.44)

It is assumed that, for any q∈Rn, the eigenvalues of the positive definite symmet-
ric matrix A(q) lie on the segment [m,M], where 0 < m ≤ M, i.e., condition (3.1.3)
holds. We also assume that the matrix A(q) is twice differentiable and its partial
derivatives of the first and second order are uniformly bounded in the norm, i.e.,∥∥∥∥ ∂A

∂qi
(q)

∥∥∥∥≤C1,

∥∥∥∥ ∂ 2A
∂qi∂q j

(q)

∥∥∥∥≤C2, C1,C2 > 0, i, j = 1, . . . ,n. (3.2.45)

By ‖Z‖, we denote the induced norm of a matrix, i.e., the norm of the corresponding
linear operator in the Euclidean space:

‖Z‖ = max
|z|=1

|Zz|,

where z is a vector of the appropriate dimension. If the matrix Z is symmetric then
its norm is equal to the maximal absolute value of all eigenvalues of the matrix. If
the matrix Z is not symmetric then its norm is equal to the square root or maximal
eigenvalue of the symmetric nonnegative definite matrix Z�Z.
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Since the matrices mentioned in (3.2.45) are symmetric, the constants C1 and C2

may be chosen as the maximal absolute value of eigenvalues of the matrices ∂A/∂qi

and ∂ 2A/∂qi∂q j, i, j = 1, . . . ,n, respectively.
Suppose that the vector functions q̃(t) and ˙̃q(t) define the motion trajectory that

starts at the moment t = t0 at the point

q̃0 = q̃(t0), ˙̃q0
= ˙̃q(t0)

and is realized under the action of generalized forces Pi(t) on the unperturbed system
for

Ui(t) ≡ 0, Gi(t) ≡ 0, t ≥ t0

Henceforth, we call such a trajectory nominal.
Denote by x and ẋ the deviations of the phase coordinates and velocities of the

perturbed trajectory from the nominal one, i.e.,

x(t) = q(t)− q̃(t), ẋ(t) = q̇(t)− ˙̃q(t), (3.2.46)

and let
x0 = x(t0) = q0 − q̃0, ẋ0 = ẋ(t0) = q̇0 − ˙̃q0 (3.2.47)

be the initial deviation of the trajectory of the system from the nominal one, where
q0 = q(t0) and q̇0 = q̇(t0).

Problem 3.5. Construct a control U = (U1, . . . ,Un) as a vector function of the phase
variables q and q̇ that satisfies condition (3.2.43) and find a domain Ω x ⊂ R2n of
admissible initial deviations x0 and ẋ0 such that any trajectory of the perturbed con-
trol system (3.1.1) starting in this domain reaches the nominal trajectory in finite
time and will move along this trajectory under any perturbations G = (G1, . . . ,Gn)
subject to constraints (3.2.42).

Equations in deviations

Let us write the equation of motion along the nominal trajectory as

n

∑
j=1

ai j(q̃) ¨̃q j = −
n

∑
j,k=1

Γi jk(q̃) ˙̃q j
˙̃qk +Pi(t) (3.2.48)

and the equation of motion along the perturbed trajectory as

n

∑
j=1

ai j(q̃+ x)( ¨̃q j + ẍ j) = −
n

∑
j,k=1

Γi jk(q̃+ x)( ˙̃q j + ẋ j)( ˙̃qk + ẋk)

+Pi(t)+Ui +Gi, i = 1, . . . ,n.

(3.2.49)
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Here, the functions Γi jk are defined by (2.1.5). Applying the Taylor formula with the
remainder term in the Lagrangian form:

ai j(q̃+ x) = ai j(q̃)+
n

∑
m=1

∂ai j(q̄)

∂qm
xm,

where q̄ = q̃+ θ̄x, 0 < θ̄ < 1, we transform the left-hand side of (3.2.49) to

n

∑
j=1

ai j(q̃+ x)( ¨̃q j + ẍ j) =
n

∑
j=1

ai j(q̃+ x)ẍ j

+
n

∑
j=1

ai j(q̃) ¨̃q j +
n

∑
j,m=1

∂ai j(q̄)

∂qm
xm ¨̃q j.

(3.2.50)

Using the equality

Γi jk(q̃+ x) = Γi jk(q̃)+
n

∑
m=1

∂Γi jk( ¯̄q)

∂qm
xm, ¯̄q = q̃+ ¯̄θx, 0 < ¯̄θ < 1,

we reduce the expression on the right-hand side of (3.2.49) to

n

∑
j,k=1

Γi jk(q̃+ x)
(

˙̃q j
˙̃qk + ˙̃q jẋk + ˙̃qkẋ j + ẋ j ẋk

)
=

n

∑
j,k=1

Γi jk(q̃) ˙̃qk
˙̃q j

+
n

∑
j,k=1

Γi jk(q̃+ x)
(

˙̃q jẋk + ˙̃qkẋ j + ẋ j ẋk
)
+

n

∑
j,k,m=1

∂Γi jk( ¯̄q)

∂qm
xm ˙̃q j

˙̃qk.

(3.2.51)

Taking into account relations (3.2.48)–(3.2.51), we write the equations in deviations
as

n

∑
j=1

ai j(q̃+ x)ẍ j = −
n

∑
j,m=1

∂ai j(q̄)

∂qm
xm ¨̃q j −

n

∑
j,k,m=1

∂Γi jk( ¯̄q)

∂qm
xm ˙̃q j

˙̃qk

−
n

∑
j,k=1

Γi jk(q̃+ x)
(

˙̃q jẋk + ˙̃qkẋ j + ẋ j ẋk
)
+Gi +Ui

and, then, in the vector form
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A(q̃+ x)ẍ = −
(

n

∑
m=1

∂A(q̄)

∂qm
xm

)
¨̃q−

(
n

∑
k,m=1

∂ 2A( ¯̄q)

∂qk∂qm
xm ˙̃qk

)
˙̃q

+
1
2

∂
∂q

〈(
n

∑
m=1

∂A( ¯̄q)

∂qm
xm

)
˙̃q, ˙̃q

〉
−
(

n

∑
k=1

∂A(q̃+ x)
∂qk

ẋk

)
˙̃q

−
(

n

∑
k=1

∂A(q̃+ x)
∂qk

˙̃qk

)
ẋ−

(
n

∑
k=1

∂A(q̃+ x)
∂qk

ẋk

)
ẋ

+
∂
∂q

(
〈A(q̃+ x) ˙̃q, ẋ〉+ 1

2
〈A(q̃+ x)ẋ, ẋ〉

)
+G+U.

(3.2.52)

Let us estimate the individual terms on the right-hand side of (3.2.52). We assume
that the phase coordinates, velocities, and accelerations along the nominal trajectory
are subject to the following constraints:

| ˙̃q| ≤ Q1,
∣∣ ¨̃q∣∣≤ Q2. (3.2.53)

In view of (3.2.45), (3.2.53), and the inequality

n

∑
m=1

|zm| ≤
√

n |z|, z ∈ Rn, (3.2.54)

the following estimates hold:∣∣∣∣∣
(

n

∑
m=1

∂A(q̄)

∂qm
xm

)
¨̃q

∣∣∣∣∣≤C1

n

∑
m=1

|xm|
∣∣ ¨̃q∣∣≤√

nC1Q2|x|,

∣∣∣∣∣
(

n

∑
k=1

∂A(q̃+ x)
∂qk

ẋk

)
˙̃q

∣∣∣∣∣≤C1

n

∑
k=1

|ẋk|
∣∣ ˙̃q∣∣≤√

nC1Q1 |ẋ| ,

∣∣∣∣∣
(

n

∑
k=1

∂A(q̃+ x)
∂qk

˙̃qk

)
ẋ

∣∣∣∣∣≤C1

n

∑
k=1

∣∣ ˙̃qk

∣∣ |ẋ| ≤ √
nC1Q1|ẋ|,

∣∣∣∣∣
(

n

∑
k=1

∂A(q̃+ x)
∂qk

ẋk

)
ẋ

∣∣∣∣∣≤C1

n

∑
k=1

|ẋk||ẋ| ≤
√

nC1|ẋ|2.

(3.2.55)

Conditions (3.2.45), inequality (3.2.54), and the Cauchy inequality imply the
relations ∣∣∣∣∣ ∂

∂qi

〈(
n

∑
m=1

∂A( ¯̄q)

∂qm
xm

)
˙̃q, ˙̃q

〉∣∣∣∣∣ =

∣∣∣∣∣
〈(

n

∑
m=1

∂ 2A( ¯̄q)

∂qi∂qm
xm

)
˙̃q, ˙̃q

〉∣∣∣∣∣
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≤C2

n

∑
m=1

|xm|
∣∣ ˙̃q∣∣2 ≤√

nC2Q2
1|x|,

∣∣∣∣ ∂
∂qi

〈
A(q̃+ x) ˙̃q, ẋ

〉∣∣∣∣≤C1
∣∣ ˙̃q∣∣ |ẋ| ≤C1Q1|ẋ|,∣∣∣∣ ∂

∂qi
〈A(q̃+ x)ẋ, ẋ〉

∣∣∣∣≤C1|ẋ|2, i = 1, . . . ,n,

whence we obtain∣∣∣∣∣1
2

∂
∂q

〈(
n

∑
m=1

∂A( ¯̄q)

∂qm
xm

)
˙̃q, ˙̃q

〉∣∣∣∣∣≤ n
2

C2Q2
1|x|,

∣∣∣∣ ∂
∂q

(〈
A(q̃+ x) ˙̃q, ẋ

〉
+

1
2
〈A(q̃+ x)ẋ, ẋ〉

)∣∣∣∣≤√
n

(
C1Q1|ẋ|+ 1

2
C1|ẋ|2

)
.

(3.2.56)

Here, we used the following assertion that is valid for an arbitrary vector z ∈ Rn: if
|zi| ≤ h, i = 1, . . . ,n, then |z| ≤ √

nh.
Applying again relations (3.2.45) and (3.2.54), we estimate the remaining term

in (3.2.52) as follows:∣∣∣∣∣
(

n

∑
k,m=1

∂ 2A( ¯̄q)

∂qk∂qm
xm ˙̃qk

)
˙̃q

∣∣∣∣∣≤ ∣∣ ˙̃q∣∣ n

∑
k,m=1

C2
∣∣xm ˙̃qk

∣∣

≤C2
∣∣ ˙̃q∣∣ n

∑
m=1

|xm|
n

∑
k=1

| ˙̃qk| ≤ nC2|x|
∣∣ ˙̃q∣∣2 ≤ nC2|x|Q2

1.

(3.2.57)

Let us denote by v the sum of all terms on the right-hand side of (3.2.52) except
for the control forces U and perturbations G and rewrite the equations in deviations
as

A(q̃+ x)ẍ = v+G+U. (3.2.58)

Formulas (3.2.55)–(3.2.57) yield the following estimate:

|v| ≤ v0 (x, ẋ) =

(√
nC1Q2 +

3n
2

C2Q2
1

)
|x|

+3
√

nC1Q1|ẋ|+ 3
2

√
nC1|ẋ|2.

(3.2.59)

Decomposition of the system

Let us resolve (3.2.58) for ẍ. We obtain

ẍ = U ′ +V ′. (3.2.60)
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Here,
U ′ = A−1U, V ′ = A−1(v+G). (3.2.61)

We will interpret U ′ as a new control vector and impose the following constraints
on its components:

|U ′
i | ≤U0, U0 ≤ rM−1n−1/2,

r = min
i

U0
i , 1 ≤ i ≤ n.

(3.2.62)

Constraints (3.2.62) guarantee that the original constraints (3.2.43) are fulfilled.
We define control U ′ satisfying (3.2.62) in the same way as before in Sect. 2.3.2

in the feedback form (2.3.13):

U ′
i = −U0 sign(ẋi −ψi), ẋi �= ψi;

U ′
i = −U0 sign ẋi, ẋi = ψi;

ψi(xi,Xi) = −(2Xi|xi|)1/2 signxi, i = 1, . . . ,n.

(3.2.63)

Here, Xi are positive control parameters to be identified.
Let us define a set Ω x in the form analogous to (2.3.16):

Ω x = Ω x
1 × . . .×Ω x

n , Ω x
i = {(xi, ẋi) : x−i ≤ xi ≤ x+

i ,

ψi(xi − x−i ,Xi) ≤ ẋi ≤ ψi(xi − x+
i ,Xi)}.

(3.2.64)

Here, the values of x−i < 0 and x+
i > 0 are unknown and also to be found. We note

that the terminal state x = ẋ = 0 lies in the domain Ω x so that xi = 0 ∈ [x−i ,x+
i ].

If, at the intitial instant, conditions (x0
i , ẋ

0
i ) ∈ Ω x

i hold for all i, then during the
control process the following relations are true:

|xi| ≤ di, |ẋi| ≤ ψd
i , di = x+

i − x−i , ψd
i = ψi(−di,Xi). (3.2.65)

Using the technique of Sect. 2.3.3, we obtain the system of inequalities [anal-
ogous to (2.3.33)] for finding admissible parameters Xi and di, i = 1, . . . ,n, in the
form

Xi +m−1v0
(
d,ψd

)≤U0 −m−1|G0|, i = 1, . . . ,n,

d = (d1, . . . ,dn), ψd = (ψd
1 , . . . ,ψd

n ),

X = (X1, . . . ,Xn), G0 = (G0
1, . . . ,G

0
n).

(3.2.66)

Note that for a fixed di, the values x−i and x+
i may be chosen arbitrarily; it is only

needed that conditions x−i < 0, x+
i > 0, and x+

i − x−i = di, i = 1, . . . ,n are satisfied.
The expressions on the left-hand side of the system of inequalities (3.2.66) in-

crease monotonically with di and Xi and vanish when di = Xi = 0. Therefore, a
solution di > 0 and Xi > 0 exists, if the capabilities of the correcting control are
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sufficiently large and if the following condition holds:

U0 ≥ m−1|G0|, i = 1, . . . ,n. (3.2.67)

Let us summarize the results obtained. Suppose that condition (3.2.67) holds and
that we have found positive parameters di and Xi, i = 1, . . . ,n, that satisfy inequality
(3.2.66). Then, the feedback control U(q, q̇) that solves our problem is defined by
the relations U(q, q̇) = A(q̃ + x)U ′(x, ẋ), (3.2.46) and (3.2.63). This control steers
system (3.1.1), (3.1.2), and (3.2.41) to the nominal trajectory in finite time provided
that the initial deviations (x0, ẋ0) lie in domain Ω x defined by constraints (3.2.64).

Note that, if the lower boundary m of the eigenvalues of the matrix A(q) is small,
then constraint (3.2.67) may prove to be too stringent. In this case, it is expedient
to apply another modification of the suggested control method. Let us introduce the
notation

y = A(q̃)x (3.2.68)

and represent system (3.2.58) as

ÿ = U +V, V = G+ v− [A(q̃+ x)−A(q̃)]A−1(q̃+ x) (U +G+ v)

+

(
n

∑
k,m=1

∂ 2A(q̃)

∂qk∂qm
˙̃qk

˙̃qm +
n

∑
m=1

∂A(q̃)

∂qm
¨̃qm

)
x+2

(
n

∑
m=1

∂A(q̃)

∂qm
˙̃qm

)
ẋ.

(3.2.69)

Taking into account that

‖A(q̃+ x)−A(q̃)‖ ≤C1
√

n|x|,

we obtain analogously to (3.2.59)

|Vi| ≤ G0
i + v0(x, ẋ)+C1

√
nm−1|x|(v0(x, ẋ)+ |U0|+ |G0|)

+
(
nC2Q2

1 +
√

nC1Q2
) |x|+2C1Q1

√
n|ẋ|.

(3.2.70)

Here, U0 = (U0
1 , . . . ,U0

n ) and G0 = (G0
1, . . . ,G

0
n) are vectors with the components in-

troduced in (3.2.42) and (3.2.43). In view of notation (3.2.68) and constraint (3.1.3),
the following relations hold:

|x| = |A−1(q̃)y| ≤ m−1|y|,

|ẋ| =
∣∣∣∣∣A−1(q̃)ẏ−A−1(q̃)

(
n

∑
m=1

∂A(q̃)

∂qm
˙̃qm

)
A−1(q̃)y

∣∣∣∣∣
≤ m−1|ẏ|+√

nm−2C1Q1|y|.

(3.2.71)

Let us replace |x| and |ẋ| in inequalities (3.2.70) by their upper bounds (3.2.71).
We obtain
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|Vi| ≤ G0
i + ṽ0(y, ẏ).

The specific form of the function ṽ0(y, ẏ) is determined from (3.2.70) and (3.2.71).
Let us apply the control law (3.2.63) to system (3.2.69) replacing xi and U ′

i in
it by yi and Ui, respectively. To determine the admissible control parameters Xi and
di = y+

i −y−i , i = 1, . . . ,n, we obtain the following system of inequalities, analogous
to (3.2.66):

Xi + ṽ0(d,ψd) ≤U0
i −G0

i , i = 1, . . . ,n. (3.2.72)

The expressions on the right-hand sides of inequalities (3.2.72) are positive, while
the function ṽ0(d,ψd) increases monotonically with in the variables di and Xi and
vanishes when di = 0 and Xi = 0. Therefore, a solution di > 0 and Xi > 0 to the
system of inequalities (3.2.72) always exists.

After choosing parameters Xi > 0 and di > 0 that satisfy (3.2.72), we find the
corresponding values of y−i < 0 and y+

i > 0 and admissible set Ω y of initial values
(y0

i , ẏ
0
i ). Note that, for a fixed di, the values y−i and y+

i may be chosen arbitrarily; it is
only needed that conditions y−i < 0, y+

i > 0, and y+
i −y−i = di, i = 1, . . . ,n are satis-

fied. Now, the set Ω y is defined by relations (3.2.64), where x should be replaces by
y. Further, using change of a variable (3.2.68) and returning to the original variables
x, we obtain the set Ω x of the admissible initial deviations (x0

i , ẋ
0
i ) from the nominal

trajectory.

3.3 Applications to robots

3.3.1 Symbolic generation of equations for multibody systems

Control methods proposed above can be applied to various controlled mechanical
systems. The most interesting application of these methods is that to the robotic
systems and, primarily, to the manipulation robots. The manipulator has several
degrees of freedom, each of which is controlled, as a rule, by its own motor. There-
fore, the number of the control functions here is equal to the number of degrees
of freedom as assumed in system (3.1.1). The motion equations of the manipula-
tion robot may be generated by different ways, in particular, using Lagrangian or
Hamiltonian equations. Composing the system of equations by hand implies cum-
bersome calculations requiring considerable time and efforts, and this way is also
not guaranteed from mistakes. That is why the symbolic generation of equations for
multibody systems is widespread [76]. A series of software tools are developped
allowing one automatically generate the motion equations for multibody systems
[121, 120, 108, 109].

The description of the scheme for forming the motion equations of the holonomic
systems [54] is given below. Note that for its realization it is not required to write
programs on the special-purpose language of symbolic computation. It is sufficient
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to use any universal software tool, which allows one to create significantly more
simple user interface, often not assuming the special experience in programming.

Kinetic energy

Let the state of the mechanical system with n degrees of freedom be described by
the generalized coordinates qi, i = 1, . . . ,n.

Motion of the system of N rigid bodies is considered with respect to the fixed
coordinate system OXY Z. Let us introduce successively N local coordinate systems
Oixiyizi, the ith of which is rigidly connected with the ith body so that axes Oixi,
Oiyi, and Oizi are the main axes of inertia of the ith body, i = 1, . . . ,N. Position of
the trihedron Oixiyizi in the cordinate system OXY Z is defined by the following way.

The pair {rOi ,NUM} gives coordinates rOi = (xOi ,yOi ,zOi) of the point Oi in the
system ONUMxNUMyNUMzNUM , where NUM < i, i = 1, . . . ,N, i.e., in the preceding
local system. The case NUM = 0 corresponds to the assignment of the coordinates
of the point Oi in the fixed system OXY Z.

Orientation of the trihedron Oixiyizi relative to ONUMxNUMyNUMzNUM is given by
the sequence of the pairs {γ1,K1}, {γ2,K2}, {γ3,K3}, which determines the sequence
of the rotations of the trihedron ONUMxNUMyNUMzNUM bringing it to the position
where its axes become parallel to the axes of Oixiyizi. Parameter Kj, j = 1, 2, 3,
takes the values 1, 2, 3, which conventionally designate the axis with respect to
which the rotation occurs. Axes ONUMxNUM , ONUMyNUM , ONUMzNUM correspond
to the values K1 = 1, K2 = 2, K3 = 3, respectively. The first turn occurs relative to
the axis K1 by angle γ1, the second turn—relative to the new position of the axis K2

by angle γ2, and the third—relative to the new position of the axis K3 by angle γ3.
The matrix of transition from the coordinate system Oixiyizi to the coordinate

system OXY Z is formed for every ith body:

Γi =

⎛
⎝ gi11 gi12 gi13

gi21 gi22 gi23

gi31 gi32 gi33

⎞
⎠ .

Finding the matrix Γi, and also the absolute angular velocity of the trihedron Oixiyizi,
is performed gradually for the given triplet of the parameters {γ j, Kj, NUM}, j = 1,
2, 3:

Step 1. K1 = 1. The auxiliary variable Δ is assigned to

Δ =

⎛
⎝1 0 0

0 cosγ1 −sinγ1

0 sinγ1 cosγ1

⎞
⎠ .

The auxiliary variable ωr is assigned to

ωr = (γ̇1,0,0),
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where γ̇1 means the derivative of γ1 with respect to time. Go to Step 4.
Step 2. K2 = 2. The auxiliary variable Δ is assigned to

Δ =

⎛
⎝ cosγ2 0 sinγ2

0 1 0
−sinγ2 0 cosγ2

⎞
⎠ .

The auxiliary variable ωr is assigned to

ωr = (0, γ̇2,0).

Go to Step 4.
Step 3. K3 = 3. The auxiliary variable Δ is assigned to

Δ =

⎛
⎝ cosγ3 −sinγ3 0

sinγ3 cosγ3 0
0 0 1

⎞
⎠ .

The auxiliary variable ωr is assigned to

ωr = (0,0, γ̇3).

Go to Step 4.
Step 4. New values of Γi and ωi are determined:

Γi := ΓiΔ ,

ωi := ωi +Γiωr.

Assign Γi = ΓNUM in the case of the first calling the procedure.
Find the absolute velocity of the center of mass of the ith body by the formula

vCi =
d
dt

ΓNUMrOi +
d
dt

ΓirCi , (3.3.1)

where the vector rCi defines the coordinates of the center of mass of the ith body in
the coordinate system Oixiyizi.

Assuming that the moments of inertia of the ith body in the coordinate system
Oixiyizi are known:

Ixi =
∫
mi

(y2
i + z2

i )dmi, Iyi =
∫
mi

(x2
i + z2

i )dmi, Izi =
∫
mi

(x2
i + y2

i )dmi, (3.3.2)

we obtain elements of the matrix of the inertia tensor in the coordinate system
OXY Z. It follows from (3.3.2) that

∫
mi

x2
i dmi =

1
2
(Iyi + Izi − Ixi),
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mi

y2
i dmi =

1
2
(Ixi + Izi − Iyi),

∫
mi

z2
i dmi =

1
2
(Ixi + Iyi − Izi).

Taking into account that

Xi = gi11xi +gi12yi +gi13zi,

Yi = gi21xi +gi22yi +gi23zi,

Zi = gi31xi +gi32yi +gi33zi,

where gi jk, j,k = 1,2,3 are elements of the transition matrix Γi for the ith body, we
obtain

IiX =
1
2
[(g2

21 +g2
31)(Iyi + Izi − Ixi)

2 +(g2
22 +g2

32)(Ixi + Izi − Iyi)
2

+(g2
23 +g2

33)(Ixi + Iyi − Izi)
2],

IiY =
1
2
[(g2

11 +g2
31)(Iyi + Izi − Ixi)

2 +(g2
12 +g2

32)(Ixi + Izi − Iyi)
2

+(g2
13 +g2

33)(Ixi + Iyi − Izi)
2],

IiZ =
1
2
[(g2

11 +g2
21)(Iyi + Izi − Ixi)

2 +(g2
12 +g2

22)(Ixi + Izi − Iyi)
2

+(g2
13 +g2

23)(Ixi + Iyi − Izi)
2],

IiXY =
1
2
[g2

12g2
21(Iyi + Izi − Ixi)

2 +g2
12g2

22(Ixi + Izi − Iyi)
2

+g2
13g2

23(Ixi + Iyi − Izi)
2,

IiXZ =
1
2
[g2

12g2
31(Iyi + Izi − Ixi)

2 +g2
12g2

32(Ixi + Izi − Iyi)
2

+g2
13g2

33(Ixi + Iyi − Izi)
2,

IiY Z =
1
2
[g2

22g2
31(Iyi + Izi − Ixi)

2 +g2
22g2

32(Ixi + Izi − Iyi)
2

+g2
23g2

33(Ixi + Iyi − Izi)
2.

(3.3.3)

The kinetic energy of the ith body is obtained by the formula

Ti =
1
2

miv
2
Ci

+
1
2
(ωi, Iiωi), (3.3.4)

where mi is the mass of the ith body, vCi is the absolute velocity of the center of
mass of the ith body determined by (3.3.1), ωi is the absolute angular velocity of
the trihedron Oixiyizi, and Ii is the matrix of the inertia tensor of the ith body in the
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coordinate system OXY Z:

Ii =

⎛
⎝ IiX IiXY IiXZ

IiXY IiY IiY Z

IiXZ IiY Z IiZ

⎞
⎠ ,

the elements of which are presented in (3.3.3).
The kinetic energy of the system of N bodies is equal to

T =
N

∑
i=1

Ti. (3.3.5)

Thus, the procedure of finding the total kinetic energy is subdivided into several
steps.

At the first step, the matrix of transition from the local coordinate system Oixiyizi

to the fixed one OXY Z is found for every body. Then, the kinetic energy of the ith
body is obtained by (3.3.4).

At the last step, the kinetic energy T of the system is determined in accordance
with (3.3.5).

Forming the Lagrangian equations of the second kind

Motion of the multibody system can be described by the Lagrangian equations:

d
dt

∂T
∂ q̇i

− ∂T
∂qi

= Qi, i = 1, . . . ,n, (3.3.6)

where generalized force Qi is defined by the following expession:

Qi =
k

∑
j=1

Fj
∂ r j

∂qi
.

Here, Fj, j = 1, . . . ,k are forces acting upon the system; these forces are applied at
the points r1, . . . ,rk.

Finding the derivatives

∂T
∂qi

,
∂T
∂ q̇i

,
d
dt

∂T
∂ q̇i

=
n

∑
j=1

(
∂

∂q j

∂T
∂ q̇i

q̇ j +
∂

∂ q̇ j

∂T
∂ q̇i

q̈ j

)
,

we form the Lagrangian equations. Algorithm for obtaining the expression of the
kinetic energy T is given above.
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3.3.2 Modelling of control for a two-link mechanism (with three
degrees of freedom)

Description of the dynamical system

Let us apply the control law proposed in Sect. 3.2.3 to the system describing the
dynamics of a two-link mechanism that models transport motions of a manipula-
tion robot. The elements of the two-link mechanism are connected by a cylindrical
joint , while the two-link mechanism itself is fastened to an immovable base by a
two-degree joint (see Fig. 3.4), whose movable axis is parallel to the axis of the
joint connecting the links. It is assumed that the links are homogeneous thin-walled
straight rods with a round cross section. The links have the following parameters:
masses of the rods m1 and m2, lengths of the rods l1 and l2, and the radii of the round
cross sections R1 and R2. The principal central moments of inertia of the links with
respect to their longitudinal and transverse axes are equal to Jx1, Jx2 and J1, J2,
respectively.

1

2

q1
q2

q3

Fig. 3.4 Two-link mechanism with three degrees of freedom
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Kinetic energy and equations of motion

The system has three degrees of freedom. For the first two generalized coordinates
q1 = ψ and q2 = θ , the angles of rotation around the axes of the two-degree joint
are selected while the third coordinate q3 = β is the angle between the axes of the
links. The control is effected independently for each degree of freedom; the control
torques are applied to the appropriate axes of the links. In addition, certain moments
Gi, i = 1,2,3, of the force of gravity and uncertain external perturbations act on the
two-link mechanism.

For establishing the matrix A of the kinetic energy, the eigenvalues λi of the
matrix A, and Lagrange’s equations for the two-link mechanism, MAPLE computer
algebra system was used. The procedure to obtain these equations is presented in
Sect. 3.3.1.

The matrix A has the form

A =

⎛
⎝a11 0 0

0 a22 a23

0 a32 a33

⎞
⎠ ,

where

a11 = 1
2

{
(m2l2

1 + J1 − Jx1)cos2θ +(J2 − Jx2)cos2(θ +β )

+m2l1l2 [cosβ + cos(2θ +β )]+ J1 + J2 + Jx1 + Jx2 +m2l2
1

}
+1

8
{

m1l2
1(1+ cos2θ)+m2l2

2 [cos2(θ +β )+1]
}

,

a22 = J1 + J2 + l2
1

(
m2 + 1

4m1

)
+m2l2

(
l1 cosβ + 1

4 l2
)

,

a23 = J2 + 1
2m2l2

(
l1 cosβ + 1

4 l2
)

,

a32 = a23,

a33 = J2 + 1
4m2l2

2 .

The eigenvalues of the matrix A are equal to

λ1 = 1
2

{(
J1 − Jx1 +m2l2

1 + 1
4m1l2

1

)
cos2θ

+
(

J2 − Jx2 + 1
4m2l2

2

)
cos2(θ +β )+m2l1l2 [cosβ + cos(2θ +β )]

+ J1 + J2 + Jx1 + Jx2 +m2l2
1 + 1

4 (m1l2
1 +m2l2

2)
}

,
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λ2 = 1
2

[
J1 +2J2 +m2l1(l1 + l2 cosβ )+ 1

2m2l2
2 + 1

4m1l2
1

]
+1

2
[
(J1 +m2l1l2 cosβ )2 +(2J2 +m2l1l2 cosβ )2

+1
2m1l2

1(J1 +m2l2
1 +m2l1l2 cosβ )+2m2l2(l2J2 +m2l3

1 cosβ )

+ 2m2l2
1J1 +16m2

1l4
1 + 1

2m2
2l2

2 +m2
2l1(l3

1 + l3
2 cosβ )

]1/2
,

λ3 = 1
2

[
J1 +2J2 +m2l1(l1 + l2 cosβ )+ 1

2m2l2
2 + 1

4m1l2
1

]
−1

2
[
(J1 +m2l1l2 cosβ )2 +(2J2 +m2l1l2 cosβ )2

+1
2m1l2

1(J1 +m2l2
1 +m2l1l2 cosβ )+2m2l2(l2J2 +m2l3

1 cosβ )

+ 2m2l2
1J1 +16m2

1l4
1 + 1

2m2
2l2

2 +m2
2l1(l3

1 + l3
2 cosβ )

]1/2
.

Lagrange’s equations for the system under consideration have the form:

ψ̈
2

{
J1 + J2 + Jx1 + Jx2 +m2l2

1 + 1
4 (m1l2

1 +m2l2
2)

+
(

J2 − Jx2 + 1
4m2l2

2

)
cos2(θ +β )

+m2l1l2 [cosβ + cos(2θ +β )]+
(

J1 − Jx1 +m2l2
1 + 1

4m1l2
1

)
cos2θ

}
−θ̇ ψ̇

{(
j2 − Jx2 + 1

4m2l2
2

)
sin2(θ +β )

+m2l1l2 sin(2θ +β )+
(

J1 − Jx1 +m2l2
1 + 1

4m1l2
1

)
sin2θ

}
−β̇ ψ̇

{(
J2 − Jx2 + 1

4m2l2
2

)
sin2(θ +β )

+ 1
2m2l1l2 [sinβ + sin(2θ +β )]

}
= Mψ +G1,

θ̈
[

1
4
(
m1l2

1 +m2l2
2

)
+m2l1(l1 + l2 cosβ )+ J1 + J2

]
+β̈

[
J2 + 1

2m2l2
(

1
2 l2 + l1 cosβ

)]
−
(

θ̇ β̇ − β̇ 2

2

)
m2l1l2 sinβ

ψ̇2

2

{(
J2 − Jx2 + 1

4m2l2
2

)
sin2(θ +β )+m2l1l2 sin(2θ +β )

+
(

J1 − Jx1 +m2l2
1 + 1

4m1l2
1

)
sin2θ

]
= Mθ +G2,

(3.3.7)

β̈
(

J2 + 1
4m2l2

2

)
+ θ̈

[
J2 + 1

2m2l2
(

1
2 l2 + l1 cosβ

)]
+θ̇ 2 1

2m2l1l2 sinβ +
ψ̇2

2

{(
J2 − Jx2 + 1

4m2l2
2

)
sin2(θ +β )

+ 1
2m2l1l2 [sinβ + sin(2θ +β )]

}
= Mβ +G3.
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Results of modelling for a nonzero terminal state

The modelling is carried out for the following parameters of the system: masses of
the rods m1 = 8 kg and m2 = 2 kg, lengths of the rods l1 = 0.4 m and l2 = 0.5 m,
and the radii of the round cross sections R1 = R2 = 0.05 m.

Consider one of the variants of the initial and terminal states:

q0 = (45◦; −30◦; −100◦), q̇0 = (57.3◦/s; −40◦/s; 30◦/s),

q∗ = (0; 0; −80◦), q̇∗ = (5.73◦/s; 0; 0).

The perturbations Gi are taken in the form:

G1(t) = cos(10 πt), G2(t) = 2 cos(8 πt), G3(t) = 3 cos(6 πt),

(dimensions of the torques Gi(t) are N·m).
The region D of change of the generalized coordinates in this case is:

0 ≤ q1 ≤ 180◦, −90◦ ≤ q2 ≤ 90◦, −180◦ ≤ q3 ≤ 180◦.

We remind that
q1 = ψ, q2 = θ , q3 = β .

The eigenvalues of the matrix A(q) with q changing in the entire region D lie
between

m = 2.5 ·10−2 kg ·m2 and M = 1.4 kg ·m2.

The derivatives ∂ai j(q)/∂qk of the elements of the matrix A(q) in the region D sat-
isfy inequality (3.1.4) for C = 1.3 kg ·m2. The number r in bounds (3.1.39) and the
parameters ε and δ are selected taking into account (3.2.16), (3.2.20), and (3.2.26).
We have

r = 6.5 ·102 N ·m, ε = 0.19 s−1, δ = 0.17 s−1.

According to (3.1.39), (3.2.14), (3.2.15), and (3.2.26), for these values for m, M, C,
r, and ε , we get

ρ = 0.96, x∗ = 1.4 ·10−3.

Figures 3.5 and 3.6 illustrate the behavior of the phase trajectories of system
(3.3.7) controlled in the set Ω1 according to law (3.1.22) and in the set Ω2 accord-
ing to law (3.2.27). Figure 3.5 shows the behavior of all phase coordinates on the
entire interval of motion t ∈ [0, t∗], and Fig. 3.6, using a different scale, shows their
behavior near the terminal state. For each generalized coordinate, there is a corre-
sponding curve designated with the number of the coordinate. From Fig. 3.5, it is
clear that, in the set Ω1, the components of the phase velocity vector q̇ quickly drop.
The absolute value of the velocity |q̇1|= |ψ̇| reaches the value ε last of all velocities,
after that the trajectory enters the set Ω2, and the control law (3.1.22) changes to law
(3.2.27). Further, each of the curves represents a phase trajectory appropriate to a
subsystem of type (3.1.45) and behaves as described in Sect. 3.2.3 (see Fig. 3.6).
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The first coordinate q1 reaches the final state in 4.67 s; the second arrives at 3.12 s,
and the third at 2.07 s. Thus, the duration of the process is 4.67 s.

q1,q2,q3

q̇1, q̇2, q̇3

q̇∗1

q∗3

ε

−ε

0

1

1−1

2

3

0.5

−0.5

Fig. 3.5 Projections of the phase trajectory of the system onto the planes (qi, q̇i), i = 1,2,3

The modelling of the dynamics for the two-link mechanism controlled according
to the law presented above is carried out also for the case, where the parallelepiped

−35◦ ≤ q2 ≤ 5◦, −105◦ ≤ q3 ≤−75◦, 0 ≤ q1 ≤ 180◦

was chosen as region D [the eigenvalues of matrix A(q) do not depend on the vari-
able q1 = ψ]. In this parallelepiped, inequalities (3.1.4) and (3.1.3) are fulfilled with

m = 0.12 kg ·m2, M = 1.08 kg ·m2, C = 0.84 kg ·m2.

The number ε is taken equal to 0.34 s−1, and it turned out that it is possible to reduce
the constant r to 1.3 ·102 N·m.

For such values of parameters, the behavior of the trajectory of the system does
not change drastically; nevertheless, the time of transition from the initial state to
the terminal state reduces to 2.63 s.

Figure 3.7 shows the results of modelling for the motion of system (3.3.7) con-
trolled by the modified law (see Remark 3.1 in Sect. 3.2.3). In contrast to Figs. 3.5
and 3.6, straight-line segments of motion are absent here, which is due to the depen-
dence of the value δ on time. As to be expected, the given control method reaches
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q1,q2,q3 −q∗3

q̇1, q̇2, q̇3

ε

−ε

0
1

2,3

0.5

−0.5

0.005−0.005

Fig. 3.6 Behavior of the phase trajectory near the terminal state

the target faster than the preceding ones: the complete time for moving the two-link
mechanism from the initial to the terminal position is 1.8 s.

Results of modelling for the zero terminal state

In this case, the following parameters of the system are chosen:

l1 = l2 = 1 m, m1 = m2 = 20 kg, R1 = R2 = 5 ·10−2 m,

M0
ψ = M0

θ = M0
β = r = 200 N ·m.

The moments of inertia and variables entering the expressions for the control are

J1 = J2 = 1.67 kg ·m2, Jx1 = Jx2 = 2.5 kg ·m2,

m = 7.5 ·10−2 kg ·m2, M = 58.67 kg ·m2, C = 53.26 kg ·m2,

ε = 9.8 ·10−3 s−1, δ = 8.82 ·10−3s−1, U0 = 1.97s−2,

ρ = 0.81, x∗ = 1.04 ·10−4.

The identical values of parameters δ and x∗ are chosen for all three degrees of
freedom. Therefore, the switching curves for all control torques in the domain Ω2
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q1,q2,q3

q̇1, q̇2, q̇3

q̇∗1

q∗3 0

1

1−1

2

3
0.5

−0.5

Fig. 3.7 Projections of the phase trajectory of the system under the modified control law

are also identical, and the final sections of the phase trajectories for all three degrees
of freedom lie on these switching curves.

Some typical phase trajectories of the system are shown in Figs. 3.8 and 3.9,
where solid, dashed, and dot-and-dash lines correspond to different degrees of free-
dom (angles ψ , θ , and β , respectively). Here, the final sections of the trajectories—
inside the domain Ω2 and alongside it—are shown.

x∗−x∗

ε

−ε

δ

−δ

ψ,θ ,β (q) ·10−3

ψ̇, θ̇ , β̇

0

0.562

−0.562

0.281

−0.281

0.843

−0.843

−1.124

0.053−0.053 0.159−0.159 0.212

Fig. 3.8 Projections of the phase trajectory of the system in the case of zero terminal state
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x∗−x∗

ε

−ε

δ

−δ

ψ,θ ,β (q) ·10−3

ψ̇ , θ̇ , β̇

0

0.562

−0.562

0.281

−0.281

0.843

1.124

−1.124

0.053−0.053 0.159−0.159 0.212

Fig. 3.9 Projections of the phase trajectory of the system in the case of zero terminal state

The time histories of the angular velocities ψ̇ , θ̇ , and β̇ are presented in Fig. 3.10
for one of the variants of simulations. At the final stage, the angular velocities vary
linearly, which agrees with the motion along the parabolic sections of the switching
curves in the domain Ω2. The terminal states for different degrees of freedom are
reached at different times.

t,s

q̇ ·10−2,s−1

(ψ̇, θ̇ , β̇ )

0

0.562

−0.562

1.124

−1.124

0.012 0.024 0.036 0.048

Fig. 3.10 Time history of the angular velocities
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3.3.3 Modelling of tracking control for a two-link mechanism (with
two degrees of freedom)

The modelling is carried out for system (2.5.16) with the characteristics used earlier
and given in (2.5.29). For this example, we suppose Q = P(t)+ G, where P(t) are
given forces, and G are unknown forces and disturbances (see Sect. 3.2.4). After the
transition to the dimensionless variables (2.5.18), the original system (2.5.16) takes
the form of (2.5.19).

The nominal trajectory (q̃i, ˙̃qi) is obtained by the numerical integration of system
(2.5.19) for

U1 = U2 = 0, G1 = G2 = 0,

P1(t) = 1− q̃1(t)− ˙̃q1(t), P2(t) = 1− q̃2(t)− ˙̃q2(t),

q̃1(0) = q̃2(0) = 0.8, ˙̃q1(0) = 0.45, ˙̃q2(0) = 0.15.

We determine particular values of the constants introduced in (3.1.3), (3.2.45), and
(3.2.53). It turns out that

m = 0.13, M = 5.87, C1 = C2 = 2.41,

| ˙̃q| ≤ Q1 = 0.47, | ¨̃q| ≤ Q2 = 0.28

for such a trajectory.
Then, we set the following initial values of the generalized coordinates and ve-

locities:
q1(0) = q2(0) = 1.8, q̇1(0) = 1.45, q̇2(0) = 1.15.

System (2.5.19) is integrated with the control designed in accordance with the
method suggested at the end of Sect. 3.2.4 with Xi = U0

i . Under such a simplified
control, the nonlinearities and the perturbations

G1 = −(q1 − q̃1)− (q̇1 − ˙̃q1), G2 = −(q2 − q̃2)− (q̇2 − ˙̃q2)

in the system are completely ignored. Nevertheless, the application of such a sim-
plified approach is justified, since, in many cases, it enables one to steer the system
to the nominal trajectory.

Figure 3.11 shows the graphs of the time history of the generalized coordinates
of the system, and Fig. 3.12 represents similar graphs for the generalized velocities.
The dashed curves correspond to the motion along the nominal trajectory, and the
solid curves correspond to the motion of the perturbed system. One can see that,
approximately 7 s after the beginning of the process, the system reaches the nom-
inal trajectory and then moves along it in the sliding mode. Thus, the algorithm
described allows one to reach the control objective also in the cases, where the suf-
ficient conditions (3.2.72) are not fulfilled.
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Fig. 3.11 Time history of the generalized coordinates
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Fig. 3.12 Time history of the generalized velocities



Chapter 4
Stability based control for Lagrangian
mechanical systems

Two general approaches to the synthesis of control laws for nonlinear dynamical
systems are discussed in this book. One of them, based on the decomposition of
a Lagrangian system, is considered Chapters 2 and 3. This approach is associated
with the theory of optimal control.

Another approach is based on the methods of the theory of stability of motion. In
Chapters 5 and 6, this approach will be utilized for designing control algorithms for
various mechanical systems. Both scleronomic and rheonomic systems will be con-
sidered. In the present chapter, we recall the concepts of scleronomic and rheonomic
mechanical systems, as well as some notions of the theory of stability of motion.

4.1 Scleronomic and rheonomic mechanical systems

In classical mechanics, a system is said to be holonomic if all constraints of the
system can be expressed as functions of the coordinates and time only. They do not
depend on the velocities.

A holonomic mechanical system is called scleronomic, if the equations of the
constraints imposed on it do not contain time as an explicit variable; otherwise it is
said to be rheonomic.

In our book, we deal with holonomic mechanical systems whose dynamics is
described by Lagrange’s equations of the second kind

d
dt

∂T
∂ q̇

− ∂T
∂q

= Q, (4.1.1)

where q, q̇ are the generalized coordinates and velocities, T is the kinetic energy of
the system, Q is the vector of generalized forces acting upon the system.

In the scleronomic case the kinetic energy of the system is a quadratic form of
the generalized velocities q̇ with coefficients depending on the generalized coordi-
nates q, i.e.,
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T (q, q̇) =
1
2
〈A(q)q̇, q̇〉, (4.1.2)

where A(q) is a symmetric positive definite matrix called the matrix of the kinetic
energy or the matrix of inertia.

A two-link manipulator on a stationary base represents an example of a sclero-
nomic system (see Fig.2.15).

In the rheonomic case, the kinetic energy of the system has the form of a full
quadratic polynomial

T =
1
2
〈A(t,q)q̇, q̇〉+ 〈a1(t,q), q̇〉+a0(t,q), (4.1.3)

where the matrix of the kinetic energy A(t,q), the vector-valued function a1(t,q),
and the function a0(t,q) depend on time explicitly.

A body with a moment of inertia depending on time provides an example of the
rheonomic system.

A body with a variable moment of inertia

Let us consider a system consisting of a weightless bar and a particle of mass m0 that
can slide along the bar (see Fig. 4.1). We assume that the bar rotates in a horizontal
plane about one of its ends under the action of a torque Q.

m0

q

Q

l(t
)

Fig. 4.1 A bar and a particle

We denote the angular coordinate and the angular velocity of the bar by q and q̇,
respectively, and the distance from the axis of rotation to the particle by l(t). With
this notation, the individual terms in expression (4.1.3) for the kinetic energy of the
system take the form

A(t) = m0l2(t), a1 ≡ 0, a0(t) = m0 l̇ 2(t)/2,
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and the equation of motion can be written as follows:

m0l2(t)q̈+2m0l(t)l̇(t)q̇ = Q. (4.1.4)

Here, the moment of inertia (which is the matrix of inertia of the dimension 1×1)
equals m0l2(t) and depends on time.

Another example of a rheonomic system is a two-link manipulator on a mov-
able base (see Fig. 4.2). In Chapters 6, the dynamics of such a manipulator will be
simulated numerically.

A two-link manipulator on a movable base

q1

q2

x1(t)

x2(t)

Fig. 4.2 Two-link manipulator on a movable base

We assume that the manipulator moves in a horizontal plane, and the base per-
forms a translational motion. Denote by x1 and x2 the coordinates of the base, and
by q1 and q2 the angular coordinates of the links.

At first, let us note that such a manipulator can be described as a scleronomic
mechanical system with four degrees of freedom. Its kinetic energy (4.1.2) has the
form

T =
(

m0 +
m1

3
+m2

)
l2
1 q̇2

1 +
(

m0 +
m2

3

)
l2
2 q̇2

2

+
(

2m0 +
m2

2

)
l1l2 cos(q1 −q2)q̇1q̇2

+
m0 +M0 +m1 +m2

2

(
ẋ2

1(t)+ ẋ2
2(t)

)
(4.1.5)

+
(

m0 +
m1

2
+m2

)
l1 (ẋ2(t)cosq1 − ẋ1(t)sinq1) q̇1

+
(

m0 +
m2

2

)
l2(ẋ2(t)cosq2 − ẋ1(t)sinq2)q̇2,
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where m1 and m2 are the masses of the links, l1 and l2 are the lengths of the links,
M0 is the mass of the base, and m0 is the mass of a load into the gripper of the
manipulator. The motion of this system is governed by the equations

d
dt

∂T
∂ q̇

− ∂T
∂q

= Q1,
d
dt

∂T
∂ ẋ

− ∂T
∂x

= Q2, (4.1.6)

where Q1 and Q2 are the projections of the vector of generalized forces Q onto the
subspaces q = (q1,q2) and x = (x1,x2).

Since the motion of the links affects the dynamics of the base and vice versa, in
order to investigate the dynamics of the links, it is necessary to consider equations
(4.1.5) in the aggregate. However, in some cases, for investigating the dynamics of
the links, it suffices to take into account only the first group of equations (4.1.5).
For instance, if the mass of the base is much bigger than the mass of the links (the
manipulator performs its operations onboard a rolling ship), then the influence of
the links on the base may be neglected. Another such possibility happens if the base
moves according to a certain fixed law, independent of the motion of the links. Then,
the law of motion of the base can be considered as constraint imposed on the system
and the functions x1(t) and x2(t) may be regarded either as known (if the dynamics
of the base is given or if the position of the base in the space is measured) or as
unknown.

Consequently, such a manipulator can be described as a rheonomic system with
two degrees of freedom corresponding to the joint angles q1 and q2. In this case, the
kinetic energy of the manipulator can be represented as a full quadratic polynomial
of the generalized velocities q̇1 and q̇2 with coefficients, depending on the functions
x1(t) and x2(t). Regarding these functions as arbitrary functions of time, we come
to the following expressions for the inertia matrix A(t,q), the vector-valued function
a(t,q) and the function a0(t,q) in (4.1.3):

A=

⎡
⎣

(
m0 +

m1

3
+m2

)
l2
1

(
m0 +

m2

2

)
l1l2 cos(q1 −q2)(

m0 +
m2

2

)
l1l2 cos(q1 −q2)

(
m0 +

m2

3

)
l2
2

⎤
⎦,

a1 =

⎡
⎣
(

m0 +
m1

2
+m2

)
l1 (ẋ2(t)cosq1 − ẋ1(t)sinq1)(

m0 +
m2

2

)
l2(ẋ2(t)cosq2 − ẋ1(t)sinq2)

⎤
⎦, (4.1.7)

a0 =
m0 +M0 +m1 +m2

2

(
ẋ2

1(t)+ ẋ2
2(t)

)
.

Let us note that, in this particular case, the matrix A does not depend on time
but in the case of a generic rheonomic system it does, and so do the vector-valued
function a1 and the function a0.

In Chapters 6, we will investigate the problem of control of mechanical systems
with respect to some part of the variables; hence, we will consider the first group of
equations (4.1.5) only. In our consideration, we will assume that the functions x1(t)
and x2(t) are unknown and so are the coefficients of polynomial (4.1.3).
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4.2 Lyapunov stability of equilibrium

The state (q, q̇) ∈ R2n is called a state of rest (or an equilibrium point) of system
(4.1.1) if q(t) = q̄, q̇(t) = 0 is a solution of system (4.1.1).

Lyapunov stability of an equilibrium point means that, if solutions of system
(4.1.1) start close enough to the equilibrium, than it remain close enough for-
ever. Asymptotic stability means that all solutions of system (4.1.1) that start close
enough to the equilibrium remain close enough to it and, furthermore, tend to the
equilibrium as time goes to infinity. This properties can be formalize in the follow-
ing definitions [88].

The state of rest q = q̄, q̇ = 0 of system (4.1.1) is called stable if for every ε > 0
there exists δ > 0 such that (|q(t0)− q̄|2 + |q̇(t0)|2)1/2 < δ implies (|q(t)− q̄|2 +
|q̇(t)|2)1/2 < ε for all t ≥ t0.

The state of rest q = q̄, q̇ = 0 of system (4.1.1) is called asymptotically stable if it
is stable and, in addition, there exists δ1 > 0 such that (|q(t0)− q̄|2 + |q̇(t0)|2)1/2 < δ1

implies
lim
t→∞

q(t) = q̄, lim
t→∞

q̇(t) = 0. (4.2.1)

The initial states (q(t0), q̇(t0)) of the trajectories with property (4.2.1) make a
domain of attraction G ⊂ R2n of the state of rest q = q̄, q̇ = 0.

The state of rest q = q̄, q̇ = 0 is called globally asymptotically stable if G = R2n.
Lyapunov’s direct method (also called the second method of Lyapunov) provides

us with a powerful tool for investigating the stability in nonlinear dynamical systems
without solving them [88, 77, 107]. The method is based on the use of Lyapunov
functions. The idea of this method is to find a function that does not increase along
solutions if the system is stable.

4.3 Lyapunov’s direct method for autonomous systems

At first, we present the basic theorems of Lyapunov’s direct method for autonomous
systems, i.e., for the systems the equations of motion of which do not contain time
as an explicit variable. An example of such a system is scleronomic mechanical
system (4.1.1) with the kinetic energy (4.1.2) and the time-independent vector of
the generalized force Q(q, q̇).

Let Ω ⊂ R2n be an open neighborhood of the state of rest q = q̄, q̇ = 0 of system
(4.1.1). A continuous scalar function V : Ω →R is called positive [negative] definite
if V (q̄,0) = 0 and V (q, q̇) > 0 [respectively, V (q, q̇) < 0] in Ω \{(q̄,0)}.

Theorem 4.1. Suppose that there exists a continuously differentiable positive defi-
nite function V in Ω such that its derivative calculated by virtue of system (4.1.1)
satisfies the inequality V̇ ≤ 0. Then the state of rest q = q̄, q̇ = 0 is stable.
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Theorem 4.2. Suppose that there exists a continuously differentiable positive defi-
nite function V in Ω such that its derivative calculated by virtue of system (4.1.1) is
negative definite. Then the state of rest q = q̄, q̇ = 0 is asymptotically stable.

Theorem 4.3. Suppose that there exists a continuously differentiable positive defi-
nite function V in Ω such that its derivative calculated by virtue of system (4.1.1)
satisfies the inequality V̇ ≤ 0. Suppose, in addition, that the set

{(q, q̇) ∈ Ω \{(q̄,0)} : V̇ (q, q̇) = 0}

does not contain positive semitrajectories of (4.1.1). Then the state of rest q = q̄, q̇ =
0 is asymptotically stable.

Theorem 4.4. Let Ω = R2n. Suppose that there exists a continuously differentiable
positive definite function V in Ω such that V (q, q̇) → ∞ as |q|2 + |q̇|2 → ∞. Sup-
pose also that the derivative of the function V calculated by virtue of system (4.1.1)
satisfies the inequality V̇ ≤ 0 and the set

{(q, q̇) ∈ Ω \{(q̄,0)} : V̇ (q, q̇) = 0}

does not contain positive semitrajectories of (4.1.1). Then the state of rest q = q̄, q̇ =
0 is globally asymptotically stable.

The functions V (q, q̇) that appear in the theorems presented are called Lyapunov
functions of system (4.1.1).

The classic example of a Lyapunov function is the total energy of a conservative
mechanical system. The total energy of a system without any external energy source
does not increase. Such a system remains in a neighborhood of an equilibrium point
as it illustrates the following Lagrange–Dirichlet Theorem.

Theorem 4.5. Let

Q(q) = −∂P
∂q

(q),

where P(q) is a continuously differentiable, in a neighborhood of q̄, function of the
potential energy. Suppose that q = q̄ is the point of a local strict minimum of P(q).
Then the state of rest q = q̄, q̇ = 0 of the scleronomic system (4.1.1) with the kinetic
energy (4.1.2) is stable.

Proof. Without loss of generality one may assume that P(q̄) = 0. The total energy
E(q, q̇) = T (q, q̇)+ P(q) may be chosen as a Lyapunov function of system (4.1.1).
The function E is, obviously, positive definite in a neighborhood of the state of rest
q = q̄, q̇ = 0. Its derivative along the solutions of system (4.1.1) equals zero. Hence,
by virtue of Theorem 4.1, the state of rest q = q̄, q̇ = 0 of system (4.1.1) is stable.
��
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4.4 Lyapunov’s direct method for nonautonomous systems

Since the kinetic energy (4.1.3) of the rheonomic mechanical system depends on
time in an explicit form the dynamics of such a system is described by nonau-
tonomous differential equations (4.1.1). In this section, we present Lyapunov func-
tion method technique conformably to nonautonomous systems. Now, Lyapunov
functions depend on time explicitly.

As above, let Ω ⊂ R2n be an open neighborhood of the state of rest q = q̄, q̇ = 0
of system (4.1.1).

A continuous scalar function V (t,q, q̇) is called positive [negative] definite if
V (t, q̄,0) = 0, for any t ≥ t0, and there exists a positive [negative] definite function
W1(q, q̇) such that V (t,q, q̇) ≥W1(q, q̇) [respectively, V (t,q, q̇) ≤W1(q, q̇)], for any
t ≥ t0 and (q, q̇) ∈ Ω \{(q̄,0)}.

A positive definite function V (t,q, q̇) is said to have an infinitesimal upper limit
if there exists a positive definite function W2(q, q̇) such that V (t,q, q̇)≤W2(q, q̇), for
any t ≥ t0 and (q, q̇) ∈ Ω \ {(q̄,0)}, i.e., the function V (t,q, q̇), uniformly in t for
t ≥ t0, tends to zero as (q, q̇) → (q̄,0).

Theorem 4.6. Suppose that there exists a continuously differentiable positive defi-
nite function V (t,q, q̇) such that its derivative calculated by virtue of system (4.1.1)
satisfies the inequality V̇ (t,q, q̇) ≤ 0. Then the state of rest q = q̄, q̇ = 0 is stable.

Theorem 4.7. Suppose that there exists a continuously differentiable positive defi-
nite function V (t,q, q̇) that has an infinitesimal upper limit and such that its deriva-
tive calculated by virtue of system (4.1.1) is negative definite. Then the state of rest
q = q̄, q̇ = 0 is asymptotically stable.

Theorem 4.8. Let Ω = R2n. Suppose that there exists a continuously differentiable
positive definite function V (t,q, q̇) that has an infinitesimal upper limit and tends to
infinity, uniformly in t for t ≥ t0, as |q|2 + |q̇|2 → ∞. Suppose also that the derivative
of the function V calculated by virtue of system (4.1.1) is negative definite. Then the
state of rest q = q̄, q̇ = 0 is globally asymptotically stable.

4.5 Stabilization of mechanical systems

Very often, in control theory and in applications, the objective of control design is
to stabilize a system, i.e., to design a control that makes the motion of the system
(asymptotically) stable. The stability theory based approach to designing control al-
gorithms has being developed, for instance, in the framework of the classical theory
of automatic control and consists in constructing simple regimes of feedback con-
trol which ensure the asymptotic stability of the required motion (in particular, the
terminal state). In so doing, the form of the feedback is given in advance, most often
in the form of a linear function of phase variables.
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Let us consider a scleronomic mechanical system subjected to PD-controller, i.e,
the control vector-function chosen in the form of a linear feedback

U(q, q̇) = −α q̇−βq, (4.5.1)

where the feedback factors α and β are some positive real constants. It is not diffi-
cult to prove that, for such a system, in the absence of other forces, the origin of the
phase space is globally asymptotically stable. Really, in this case the equations of
motion can be written as follows:

d
dt

∂T
∂ q̇

− ∂T
∂q

= −α q̇−βq, (4.5.2)

where the kinetic energy T (q, q̇ is given by (4.1.2). The first term of the right-hand
side in (5.1.12) is a dissipative force, and the second term plays the role of the
potential force, i.e.,

βq =
∂P
∂q

(q), P(q) =
β
2

q2.

The total energy of system (5.1.12)

E(q, q̇) = T (q, q̇)+P(q)

is a positive definite Lyapunov function whose derivative along the trajectory of the
system satisfies the inequality

Ė = −α q̇2 ≤ 0,

and the set
{(q, q̇) ∈ R2n : Ė(q, q̇) = 0}

does not contain entire positive semitrajectories (with the exception for the trivial
solution). By Theorem 4.4, this implies the asymptotic stability of the state of rest
q = q̇ = 0.

Aside from simplicity, the PD-controller has some other important advantages.
It has a closed loop form, does not depend on the parameters of the system, and can
be applied for stabilizing the state of rest of system (5.1.12) with an arbitrary matrix
of the kinetic energy A(q). To utilize this control, it is sufficient to know the current
phase state only.

However, the above linear feedback control has some disadvantages. First, the
control force is not bounded and does not meet constraint which is present, as a
rule, in practice. The control generated by the PD-controller is too large when the
current state of the system is far away from the origin of the phase space.

Second, the asymptotic stability of the state of rest of system (5.1.12) means that
it takes for the system infinite time to approach this state. The closer the system to
the terminal state, the smaller the control force. The control force tends to zero as the
trajectory tends to the origin of the phase space, therefore, in a small neighborhood
of the origin, the PD-controller does not use the control possibilities to full extent,
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which implies infinite time of steering. In addition, in the presence of even small
final force disturbances in the system, such steering becomes impossible because,
in a small neighborhood of the origin of the phase space, the disturbances exceed
the control.

4.6 Modification of Lyapunov’s direct method

As we already mentioned, in our book, we are searching for the control algorithms
which are bounded, capable of coping with uncertain bounded disturbances, and
steer the system to the prescribed terminal state in finite time. For this purpose, we
use a modification of Lyapunov’s direct method.

In Chapters 5 and 6 the stability theory based control laws are presented that
can be treated as linear feedback control (4.5.1) with variable feedback factors α
and β . To make the control bounded and more effective, and to speed up steering,
in Chapters 5, we change the feedback factors in a jump-like manner while the
trajectory approaches the terminal state. In Chapters 6, we specify the feedback
factors α and β as continuously differentiable functions of the phase variables q
and q̇, and time t. In both cases, the feedback factors increase and tend to infinity as
the trajectory approaches the terminal state; nevertheless, the control force remains
bounded and meets the imposed constraint.

Below, the following theorem will be applied for justifications of the controls to
be design.

Theorem 4.9. Let Ω ⊂ R2n be an open neighborhood of the state q = q̄, q̇ = 0,
and V (t,q, q̇) be a positive definite scalar function, (q, q̇) ∈ Ω , t ≥ t0, which is
continuously differentiable, for all (q, q̇) ∈ Ω \ {(q̄,0), t ≥ t0, has an infinitesimal
upper limit, and tends to infinity, uniformly in t for t ≥ t0, if |q|2 + |q̇|2 → ∞. Suppose
that the derivative of the function V calculated by virtue of system (4.1.1), along the
trajectory starting at the point (t0,q0, q̇0), satisfies the inequality

V̇ ≤−δV 1/2,

where δ is a positive real constant. Then this trajectory approaches the state q =
q̄, q̇ = 0 in finite time.

This theorem concerns both scleronomic and rheonomic cases and is an obvious
modification of the theorems of Lyapunov’s direct method stated above.



Chapter 5
Piecewise linear control for mechanical systems
under uncertainty

In the fifth chapter, we consider a Lagrangian mechanical system (2.1.1) under the
assumption that the kinetic energy matrix A(q) of the system is unknown and the
system is subject to uncontrollable bounded external forces. A control law is pro-
posed that transfers the system from an arbitrary initial state to a given terminal
state in finite time by a bounded force. In the algorithm proposed, a linear feedback
control is used with piecewise constant coefficients: the coefficients increase and
tend to infinity as the system approaches the terminal state. Nevertheless, the con-
trol force is bounded and meets the imposed constraint. The algorithm is based on
the Lyapunov’s direct method.

By an example of two-mass oscillatory systems, it is shown that the proposed ap-
proach can be used for control of underactuated systems, that is, in the case where
the number of degrees of freedom exceeds the dimension of the control force vec-
tor. In the final part of Chapter 5, piecewise linear feedback control is applied to
rheonomic systems.

The results presented in this chapter were published previously in [4, 5, 6, 8, 9].

5.1 Piecewise linear control for scleronomic systems

5.1.1 Problem statement

In the first section of this chapter, we consider, as before, a controlled scleronomic
mechanical system whose kinetic energy has the form of a quadratic polynomial of
the generalized velocities q̇ with coefficients depending on the generalized coordi-
nates q

T (q, q̇) =
1
2
〈A(q)q̇, q̇〉, (5.1.1)

where A(q) is a symmetric positive definite matrix of the kinetic energy.
The system dynamics is described by Lagrange’s equations of the second kind

157
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d
dt

∂T
∂ q̇

− ∂T
∂q

= U +Q, (5.1.2)

where U is the vector of control forces, Q is the vector of all other forces acting on
the system. The vector of generalizes forces Q(t,q, q̇) may be an arbitrary vector-
valued function, including a discontinuous one, satisfying some existence conditions
for the solution of system (5.1.2) and meeting the constraint

|Q| ≤ Q0, Q0 > 0. (5.1.3)

The vector of control forces U is also bounded

|U | ≤U0, U0 > 0. (5.1.4)

The vector of the forces Q is considered to be unknown and treated as an un-
certain disturbance. Along with them, other specified forces may act on the system.
However, we assume that the control possibilities are large enough to compensate
these specified forces. Let U0 be the maximum admissible control magnitude re-
maining after such compensation.

We assume that the kinetic energy matrix A(q) is continuously differentiable and
unknown, its eigenvalues belong to the interval [m,M], 0 < m≤M for any q, and the
partial derivatives of A(q) are bounded uniformly in q with respect to the Euclidean
norm, that is,

mz2 ≤ 〈A(q)z,z〉 ≤ Mz2, z ∈ Rn, (5.1.5)

‖∂A(q)

∂qi
‖ ≤ D, D > 0, i = 1, . . . ,n. (5.1.6)

The phase variables q and q̇ are assumed to be available for measuring at every
time instant.

Problem 5.1. For given initial state q(0) = q∗ and q̇(0) = q̇∗, and constants m,M,D,
U0, and Q0, it is required to construct a control that satisfies (5.1.4) and steers system
(5.1.2) to a prescribed terminal state (q̄,0) in finite time.

Let us note that in case of U = Q = 0 the terminal state is a rest point of system
(5.1.2). Without loss of generality, we assume that q̄ = 0, i.e., the terminal state
coincides with the phase space origin. Otherwise, we can take q− q̄ as a vector of
generalized coordinates.

The problem of control for a system of connected rigid bodies whose precise
mass-inertial characteristics are unknown gives us an illustrative example of the
formulation of the above problem. In this case, not only the inertia matrix of the
system, but also the forces acting on the bodies remain unknown. Apart from these
forces, the system may be subject to other external perturbations.

The problem of transporting a load of unknown mass by a manipulator is a special
case of this problem.
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5.1.2 Description of the control algorithm

We will construct the desired control on the base of liner feedback control (4.5.1).
In Chapter 4, we have already mentioned the merits of such PD-controller which
are the simplicity of its implementation and the robustness with respect to the dis-
turbances of parameters of a dynamical system over a wide range. Control (4.5.1)
guarantees asymptotic stability of the phase space origin, i.e., steers the system to
the terminal state in infinite time. Besides, control (4.5.1) is neither bounded and nor
capable of coping with disturbances in a small neighborhood of the terminal state.

To meet the constraints imposed and to use the control possibilities to full extent
we will change the feedback factors α and β in a jump-like manner during the
motion. Therefore, the control law proposed below uses linear feedback (4.5.1) with
the feedback factors α and β as step-functions of time.

Now, we reformulate the original problem as follows.

Problem 5.2. For given initial state q(0) = q∗ and q̇(0) = q̇∗, and constants m,M,D,
U0, and Q0, it is required to specify how the feedback factors α and β in the control
function (4.5.1) should be varied so that for any disturbances Q that satisfy (5.1.3)
the trajectory of system (5.1.2) and(4.5.1) arrives at the state (0,0) in finite time and
the control U meets constraints (5.1.4) along the trajectory.

Consider the function

W (q, q̇) = Mq̇2 +

(
M2q̇4 +

U2
0

2
q2
)1/2

. (5.1.7)

The quantity W (q, q̇) has the dimension of energy and characterizes the distance
between the point (q, q̇) and the terminal state (0,0). The level set W (q, q̇) = C of
the function W in the phase space R2n is an ellipsoid 4CMq̇2 +U2

0 q2 = 2C2, that
collapses to the phase space origin (0,0) as C → 0.

We put

D1 =

√
nD
2

, W0 =
MU0

2
√

2D1
Wk =

W0

2k , (5.1.8)

and define a set of ellipsoids

{(q, q̇) ∈ R2n : W (q, q̇) = Wk},

where k runs through the set of integers (see Fig. 5.1). Suppose that the point (q∗, q̇∗)
corresponding to the phase state of the original system at the initial instant of time
t = 0 lies on the ellipsoid {(q, q̇) ∈ R2n : W (q, q̇) = Wk∗} or inside it, but outside the
ellipsoid {(q, q̇) ∈ R2n : W (q, q̇) = Wk∗+1}, i.e.,

Wk∗+1 < W (q∗, q̇∗) ≤Wk∗ .

Let tk∗+1 be the first instant of time when the trajectory of the system hits the
ellipsoid {(q, q̇) ∈ R2n : W (q, q̇) = Wk∗+1}. Below, it will be shown that, for the
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Wk

Wk+1

Wk+2

q̇
(qk, q̇k)

(qk+1, q̇k+1)

q

Fig. 5.1 The set of ellipsoids and the trajectory of the system

chosen control algorithm, the trajectory of the system tends to the origin, which
means that such an instant of time exists.

We denote q(tk∗+1) = qk∗+1, q̇(tk∗+1) = q̇k∗+1. Let tk∗+2 be the first instant of time
when the trajectory of the system hits the ellipsoid {(q, q̇)∈R2n : W (q, q̇) =Wk∗+2}.
We denote q(tk∗+2) = qk∗+2, q̇(tk∗+2) = q̇k∗+2, and so on.

The sequence {tk},k = k∗ + 1,k∗ + 2, . . ., defines the instants of time when we
change the feedback factors α and β in (4.5.1). We specify the values of these
factors in the time half-interval [tk, tk+1) as follows:

βk =
U2

0

4Wk
, α2

k = mβk. (5.1.9)

The initial values of the factors are defined by formulas (5.1.9), where k = k∗.
In the phase space (q, q̇), the trajectory of the mechanical system under con-

sideration, therefore, consists of segments of trajectories of different systems of
differential equations (see Fig. 5.1): the kth segment connects points (qk, q̇k) and
(qk+1, q̇k+1) and corresponds to a system of the form (5.1.2) and (4.5.1) in which
the gains α = αk and β = βk are constant and given by (5.1.9). All points (qk, q̇k)
lie on the corresponding ellipsoids {(q, q̇) ∈ R2n : W (q, q̇) = Wk}, k > k∗.

Remark 5.1. The trajectory of the system tends to the space origin (0,0), but the
function W is not, in general, a decreasing function along the trajectory. Therefore,
along with the points (qk, q̇k), the trajectory can also have other points of intersection
with the ellipsoids from the above set. Suppose, for example, that once the new
feedback factors are assigned at time tk, the trajectory of the system starts “moving
away” from the terminal state (0,0) and intersects the ellipsoid with number k− 1
again at some instant of time t ′ > tk. At the instant t ′, the index k and the gains αk

and βk not vary. They take new values only when the trajectory reaches the ellipsoid
W (q, q̇) = Wk+1. The index k increases by one and, in an accordance to formulas
(5.1.8) and (5.1.9), the gain α increases by a factor of

√
2 and the gain β by a factor

of 2.

Remark 5.2. The proposed control law is not, strictly speaking, a feedback one. To
determine the control force, besides the current phase state of the system, one must
know also the time history of the trajectory. For a given matrix of kinetic energy A(q)
and the proposed algorithm of specifying feedback factors in control law (4.5.1),
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the trajectory of the system is defined by the initial state (q∗, q̇∗) and the disturbance
Q(t,q, q̇). However, to calculate the control force at any instant of time, it is suffi-
cient to know the current value of index k. Having known k, one can find the gains
αk and βk through formulas (5.1.8) and (5.1.9) and, then, the control force U ac-
cording to (4.5.1). Thus, the control is a function of the phase variables q and q̇ and
the integer k:

U(q, q̇,k) = −αkq̇−βkq. (5.1.10)

To implement the proposed control, it is sufficient to measure the phase state of
the system and keep in store of the computer the current value of index k. At each
instant of time, the index k is equal to the number of the minimum ellipsoid that
has already been visited by the trajectory of the system. Every time when the gains
change, the index k increases by unity.

5.1.3 Justification of the algorithm

We shall study the behavior of the trajectory of the kth system for some k > k∗. The
segment of the trajectory that is of interest to us starts at the point (qk, q̇k) at instant
of time tk and ends, in accordance with the algorithm, at time tk+1 on the ellipsoid
W (q, q̇) = Wk+1. Since the existence of an intersection of the trajectory with the
(k+1)st ellipsoid has not been shown so far, we shall assume that tk+1 = ∞, if there
is no such intersection. Below it will be shown that tk+1 < ∞.

We introduce a family of the Lyapunov functions

V k(q, q̇) = T (q, q̇)+
βk

2
q2 + εk〈A(q)q, q̇〉, (5.1.11)

where k is an integer, the number εk > 0 is specified below.
The expression for the function V k(q, q̇) contains the inertia matrix A(q), that is

assumed to be unknown. We shall estimate the value of this function at the point
(q, q̇) in the phase space by means of known quantities.

Suppose that εk satisfies the condition

ε2
k <

mβk

4M2 . (5.1.12)

We estimate the function V k(q, q̇) from below using (5.1.5) and the inequality

εkM|q||q̇| ≤ ε2
k M2

m
q2 +

m
4

q̇2

as follows:

V k(q, q̇) ≥ βk

2
q2 +

m
2

q̇2 − εkM|q||q̇| ≥
(

βk

2
− ε2

k M2

m

)
q2 +

m
4

q̇2.
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This together with (5.1.12) yields

V k
−(q, q̇) ≤V k(q, q̇), V k

−(q, q̇) =
1
4
(βkq2 +mq̇2). (5.1.13)

We now estimate the function V k(q, q̇) from above using (5.1.5) and the inequal-
ity

εk|q||q̇| ≤
ε2

k

2
q2 +

1
2

q̇2

as follows:

V k(q, q̇) ≤ βk

2
q2 +

M
2

q̇2 + εkM|q||q̇| ≤ (βk + ε2
k M)

2
q2 +Mq̇2.

Since m < 4M, inequality (5.1.12) implies that ε2
k M < βk, from whence we come to

the inequality

V k(q, q̇) ≤V k
+(q, q̇), V k

+(q, q̇) = βkq2 +Mq̇2. (5.1.14)

We shall establish relations between the quadratic forms V k
+(q, q̇) and the func-

tion W (q, q̇), whose level sets generate the family of ellipsoids defined above. Let
us show that, for any integer k, the equality

2V k
+(qk, q̇k) = Wk (5.1.15)

holds.
For the proof, we substitute the expression for βk given by (5.1.9) into expression

(5.1.14) for the function V k
+. We obtain

V k
+(qk, q̇k) =

U2
0 q2

k +4WkMq̇2
k

4Wk
. (5.1.16)

By construction, the point (qk, q̇k) lies on the ellipsoid with the number k. Hence,
by the definition (5.1.7) of the function W , it follows that

Wk = W (qk, q̇k) = Mq̇2
k +

(
M2q̇4

k +
U2

0

2
q2

k

)1/2

and
U2

0 q2
k +4WkMq̇2

k = 2W 2
k .

The latter equality and (5.1.16) yield (5.1.15).
Equality (5.1.15) means that, for any k, the ellipsoid with the number k is a level

set of the quadratic form V k
+(q, q̇) corresponding to Wk/2.

Suppose that the system is in a state (q, q̇) at an instant of time t, tk < t < tk+1.
We shall estimate know the value of the quadratic form V k

+(q, q̇) at time t through
its value V k

+(qk, q̇k) at time tk, i.e., when the trajectory hits the kth ellipsoid for
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the first time. Let us recall that, due to the function W being nonmonotone along
the trajectory, the point (q, q̇) may lie either inside or outside the kth ellipsoid (see
Remark 5.1 in Sect. 5.1.2). Anyway, according to the algorithm and by virtue of
condition t < tk+1, the point (q, q̇) lies outside the (k + 1)st ellipsoid whereas the
point (qk+1, q̇k+1) belongs to it. Therefore, taking into account (5.1.15), we obtain

V k+1
+ (q, q̇) ≥V k+1

+ (qk+1, q̇k+1) =
Wk+1

2
.

By (5.1.8), (5.1.9), and definition (5.1.14) of the function V k
+, the equalities

Wk+1 =
Wk

2
, βk+1 = 2βk, V k+1

+ (q, q̇) = βk+1q2 +Mq̇2

hold. Hence,

V k+1
+ (q, q̇) = 2βkq2 +Mq̇2 ≥ Wk

4
and, consequently,

V k
+(q, q̇) ≥ βkq2 +

M
2

q̇2 =
1
2

V k+1
+ (q, q̇) ≥ Wk

8
. (5.1.17)

From here and using (5.1.15), we draw the following estimate for quadratic form
V k

+(q, q̇) at time t through its value V k
+(qk, q̇k) at time tk:

V k
+(q, q̇) ≥ 1

4
V k

+(qk, q̇k). (5.1.18)

We now proceed to calculating the derivative V̇ k. By differentiating V k according
to (5.1.2) and (5.1.10), we obtain

V̇ k(q, q̇) = −εkβkq2 −〈
[

αkI − εkA(q)− εk

2

n

∑
i=1

qi
∂A
∂qi

]
q̇, q̇〉

(5.1.19)
−εkαk〈q, q̇〉+ 〈Q,εkq+ q̇〉,

where I is the identity matrix. Let us estimate the individual terms in expression
(5.1.19). By virtue of (5.1.5), (5.1.6), and (5.1.8, the inequalities

‖εkA(q)‖ ≤ εkM, ‖εk

2

n

∑
i=1

qi
∂A
∂qi

‖ ≤ εkD1|q| (5.1.20)

hold.
Using relationships (5.1.3), (5.1.12), (5.1.14), (5.1.15), and (5.1.18), we estimate

the last term in expression (5.1.19) as follows:

|〈Q,εkq+ q̇〉| ≤ Q0|εkq+ q̇| ≤ Q0

(
5ε2

k q2 +
5
4

q̇2
)1/2
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≤
√

5Q0

2

(
mβk

M2 q2 + q̇2
)1/2

≤ Q0

2

√
5
M

(
βkq2 +Mq̇2)1/2

(5.1.21)

=

√
5Q0V k

+(q, q̇)

2
√

MV k
+(q, q̇)

≤
√

5Q0V k
+(q, q̇)√

MV k
+(qk, q̇k)

=

√
10Q0√
MWk

(βkq2 +Mq̇2).

Substituting (5.1.20) and (5.1.21) into (5.1.19) and using the inequality

|εkαk〈q, q̇〉| ≤ ε2
k αkq2 +

αk

4
q̇2,

we arrive at the estimate

V̇ k(q, q̇) ≤−εk

(
βk − εkαk −

√
10Q0βk

εk
√

MWk

)
q2

(5.1.22)

−
(

3αk

4
− εkM− εkD1|q|−

√
10MQ0√

Wk

)
q̇2.

We define the parameter εk by the formula

εk = min{
√

mU0

8M
√

Wk
,

√
mU2

0

16D1Wk
√

2Wk
} (5.1.23)

and introduce the domain

G = {(q, q̇) : |q| < 2
√

2Wk

U0
}.

Lemma 5.1. Let the condition

Q0 ≤ min{
√

mU0

16
√

10M
,

εk
√

MWk

2
√

10
} (5.1.24)

be satisfied. Then, at those points of the trajectory that lie in the domain G, the
derivative V k(t) = V k (q(t), q̇(t)) calculated by virtue of system (5.1.2) and (5.1.10)
satisfies the inequality

V̇ k(q, q̇) ≤−εkβk

4
q2 − αk

8
q̇2. (5.1.25)

Proof. Definition (5.1.23) of the parameter εk yields (5.1.12). Therefore, relation-
ships (5.1.13), (5.1.14), (5.1.21), and (5.1.22) are valid.

Using (5.1.9) and (5.1.23), we obtain

εkαk ≤ mU0
√

βk

8MW 1/2
k

=
mβk

4M
≤ βk

4
,

(5.1.26)
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εkM ≤
√

mU0

8
√

Wk
=

√
mβk

4
=

αk

4
.

Relationship (5.1.24) and formulas (5.1.9) imply that
√

10Q0βk

εk
√

MWk
≤ βk

2
,

√
10MQ0√

Wk
≤

√
mU0

16
√

Wk
=

αk

8
. (5.1.27)

From (5.1.23) and the definition of G, it follows that

εkD1|q| ≤
√

mU2
0

16Wk
√

2Wk
|q| ≤

√
mU0

8
√

Wk
=

αk

4
. (5.1.28)

Substituting inequalities (5.1.26)–(5.1.28) into estimate (5.1.22), we obtain (5.1.25).
This completes the proof of the lemma. ��
Lemma 5.2. Suppose that conditions (5.1.24) are satisfied. Then the part of the tra-
jectory corresponding to the time interval [tk, tk+1) lies wholly in the domain G.

Proof. We shall verify that the initial point of the trajectory (qk, q̇k) belongs to the
domain G. By construction, the point (qk, q̇k) belongs to the ellipsoid with number
k, i. e.,

Mq̇2
k +

(
M2q̇4

k +
U2

0

2
q2

k

)1/2

= Wk.

Therefore, q2
k ≤ 2W 2

k /U2
0 , that implies (qk, q̇k) ∈ G.

Suppose that the assertion of the Lemma does not hold and let t ′ be the first
instant of time when the trajectory reaches the boundary of G, t ′ > tk. By Lemma
5.1, the function V k is strictly decreasing in G along the solutions of system (5.1.2)
and (5.1.10). Whence, by (5.1.14) and (5.1.15), we obtain

V k (q(t ′), q̇(t ′)
)

< V k(qk, q̇k) = V k(q(tk), q̇(tk)) ≤V k
+(qk, q̇k) =

Wk

2
.

On the other hand, relationship (5.1.13) yields the inequality

V k(q(t ′), q̇(t ′)) ≥V k
−(q(t ′), q̇(t ′)) ≥ βk

4
q2(t ′).

By supposition, the point q(t ′) lies on the boundary of G. By definition of G, we
have q2(t ′) = 8W 2

k /U2
0 . From whence, formulas (5.1.9), and the latter inequality, it

follows that

V k(q(t ′), q̇(t ′)) ≥ Wk

2
.

This contradiction completes the proof of the lemma. ��
By inequality (5.1.13), for any k, Lyapunov’s function (5.1.11) is positive def-

inite, while inequality (5.1.25) implies that its derivative is negative and non-zero
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outside the (k + 1)st ellipsoid. Hence, we can conclude that there exists an instant
of time tk+1 < ∞, when the trajectory reaches the ellipsoid with number k +1.

We shall verify now that control forces (5.1.10) meet constraint (5.1.4) on the
segment of the trajectory corresponding to the half-interval of time [tk, tk+1). Let us
estimate from above the norm of the vector U using formula (5.1.9) for the gain αk

and inequality (5.1.13) as follows:

|U(q, q̇,k)|2 = |βkq+αkq̇|2 ≤ 2(β 2
k q2 +α2

k q̇2)

= 2βk(βkq2 +mq̇2) = 8βkV
k
−(q, q̇) ≤ 8βkV

k(q, q̇).

As it has been already shown, the function V k does not increase along this part of
the trajectory, therefore, we have V k(q, q̇)≤V k(qk, q̇k). Taking relationships (5.1.9),
(5.1.14), and (5.1.15) into account, we obtain

|U(q, q̇,k)|2 ≤ 8βkV
k(qk, q̇k) ≤ 8βkV

k
+(qk, q̇k) = 4βkWk = U2

0 .

Thus, condition (5.1.4) is fulfilled.

5.1.4 Estimation of the time of motion

It follows from (5.1.9) and (5.1.23) that

αk

8
=

√
mU0

16
√

Wk
≥ Mεk

2
.

Using this estimate, we continue inequality (5.1.25) as follows:

V̇ k(q, q̇) ≤−εkβk

4
q2 − Mεk

2
q̇2 ≤−εk

4
V k

+(q, q̇) ≤−εk

4
V k(q, q̇).

We integrate this inequality over the half-interval [tk, tk+1) to get

tk+1 − tk ≤ 4
εk

log
V k(qk, q̇k)

V k(qk+1, q̇k+1)
. (5.1.29)

Let us estimate the expression under the logarithm sign. The numerator of this
expression, obviously, satisfies the inequality

V k(qk, q̇k) ≤V k
+(qk, q̇k) =

Wk

2
.

By definition, the quadratic forms (5.1.13) and (5.1.14) are connected by the
relationship

V k
−(q, q̇) ≥ m

4M
V k

+(q, q̇),
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whence, using (5.1.15) and the equalities βk = βk+1/2 and Wk+1 = Wk/2, we obtain
the following estimate for the denominator:

V k(qk+1, q̇k+1) ≥V k
−(qk+1, q̇k+1) ≥ m

4M
V k

+(qk+1, q̇k+1)

=
m

4M
(

βk+1

2
q2

k+1 +Mq̇2
k+1) ≥

m
8M

V k+1
+ (qk+1, q̇k+1) =

mWk

32M
.

Using the obtained estimates of the numerator and denominator, the inequality
(5.1.29) can be transformed as follows:

tk+1 − tk ≤ 4
εk

log
16M

m
, (5.1.30)

εk being given by (5.1.23). It is easy to see that the expressions under the min sign
in (5.1.23) are identical for k = 0. If the point (qk, q̇k) lies outside the ellipsoid with
number 0, i.e., k < 0, then

√
mU0

8M
√

Wk
>

√
mU2

0

16D1Wk
√

2Wk
,

and if (qk, q̇k) lies inside or on the null ellipsoid, i.e., k ≥ 0, then the reverse inequal-
ity holds.

Let us suppose first that k < 0. We substitute the expressions for εk and Wk into
(5.1.30) to obtain the following estimate for the time of motion along the kth seg-
ment of the trajectory:

tk+1 − tk ≤ τ2−3k/2, τ =
16 4

√
2M

√
M√

mD1U0
log

16M
m

. (5.1.31)

Therefore, the time of motion τ1 of the system from the state (qk, q̇k) to the state
(q0, q̇0), i. e. from the ellipsoid with number k to that with number zero does not
exceed

τ1 = τ
−1

∑
i=k

2−3i/2 = τ2
√

2
(2
√

2)−k −1

2
√

2−1
. (5.1.32)

Let us suppose now that k ≥ 0. In this case inequality (5.1.30) takes the form

tk+1 − tk ≤ τ2−k/2, (5.1.33)

and the time of motion τ2 from the ellipsoid with number 0 to the terminal position
(0,0) does not exceed the sum of the series

τ2 = τ
∞

∑
i=0

2−i/2 = τ
√

2

(
√

2−1)
. (5.1.34)

We have assumed until now that k > k∗, and the segment of trajectory whose
end-points lie on two nearby ellipsoids from the the family of ellipsoids specified
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above was considered. Inequalities (5.1.33) and (5.1.34) provide an estimate for the
time of motion of system (5.1.2) and (5.1.10) along such a segment. Now, let k = k∗.
At the point (q∗, q̇∗) corresponding to the initial state of the system, the function W
satisfies the inequality

Wk∗+1 < W (q∗, q̇∗) ≤Wk∗ .

Therefore, the point (q∗, q̇∗) does not, in general, lie on the ellipsoid with number
k∗. Nevertheless, at the initial instant of time t = 0, we determine the gains αk and
βk in control (5.1.10) according to formulas (5.1.9) for k = k∗. Using the reasoning
similar to the used above, it can be shown that the trajectory of system (5.1.2) and
(5.1.10) reaches the ellipsoid with number k∗ + 1, and the time of motion towards
this ellipsoid either satisfies inequality (5.1.31) if k∗ < 0 or inequality (5.1.33) if
k∗ ≥ 0. The total time τ∗ of motion of the system from the point (q∗, q̇∗) to the
terminal state (0,0) satisfies the inequality τ∗ ≤ τ1 + τ2, where τ1 and τ2 can be
computed from (5.1.32) and (5.1.34) for k = k∗.

5.1.5 Sufficient condition for steering the system to the prescribed
state

We now consider the restrictions imposed on the external perturbations Q. One can
see easily that for k ≥ 0, i.e., inside the ellipsoid with number 0, condition (5.1.24)
is equivalent to the enequality

Q0 ≤
√

mU0

16
√

10M
, (5.1.35)

and outside the null ellipsoid (5.1.24), i.e., for k < 0, it is equivalent to the enequality

Q0 ≤ 2k√mU0

16
√

10M
. (5.1.36)

The least value of index k along the trajectory starting at the point (q∗, q̇∗) is equal
to k∗. Thus, if the point (q∗, q̇∗) lies inside or on the null ellipsoid, then k∗ ≥ 0 and
inequality (5.1.35) provides a sufficient condition for the system under consideration
to be taken from this point to the phase space origin in finite time using the above
control law. But if (q∗, q̇∗) lies outside the null ellipsoid and k∗ < 0, then such a
sufficient condition is provided by inequality (5.1.36) for k = k∗.

The proposed sufficient conditions for the system to be taken to the phase space
origin are such that the maximum admissible magnitude Q0 of external perturbations
depends on the initial state of the system: the further away (q∗, q̇∗) is from (0,0),
the smaller should the value Q0 be. However, these conditions may be weakened,
if the control law is modified. We will show that condition (5.1.35) is sufficient for
steering the system from (q∗, q̇∗) to the origin (0,0).
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It has been mentioned above that any point of the form (q̄,0) in the phase space
of the system can be chosen as the terminal state. Then the family of ellipsoids
on which the gains are changed turns out to be shifted by the vector q̄, while the
parameters of the ellipsoids remain the same. Let us assume first that at the initial
instant of time the velocity of the system satisfies the inequality

q̇2
∗ ≤

U0

4
√

2D1
, (5.1.37)

that is, the point (q∗, q̇∗) lies on or inside the ellipsoid W (q− q∗, q̇) = W0 [this is
the null ellipsoid with the centre moved to (q∗,0)]. We apply the control algorithm
presented and transfer the system to the state (q∗,0). It follows from the above
reasoning that condition (5.1.35) is sufficient for such transferring.

We choose a finite sequence of points (q̄ j,0) such that q̄0 = q∗, q̄J = 0, and

|q̄ j − q̄ j−1| ≤ M
2D1

, j = 1, . . . ,J. (5.1.38)

We transfer the system from the state (q∗,0) to the phase space origin in J steps
applying the above control algorithm again each time. At the jth step, the point
(q̄ j−1,0) corresponds to the initial state and (q̄ j,0) to the final state of the system
(see Fig. 5.2). Inequality (5.1.38) means that for any j the point (q̄ j−1,0) lies on
or inside the null ellipsoid with the centre at (q̄ j,0). Consequently, the value Q0

satisfying (5.1.35) is sufficient for transferring the system from (q̄ j−1,0) to (q̄ j,0).

q̇

(q∗, q̇∗)

G1

q̄J q̄1 q̄0 q

G1

Fig. 5.2 Step-by-step transferring of the system

Let us assume now that (5.1.37) is not satisfied at the initial instant of time. We
supplement the control algorithm by one more stage preceding all the others. The
purpose of this preliminary stage is to reduce the velocity of motion of the system
to the value satisfying inequality (5.1.37).

We introduce the domain

G1 = {(q, q̇) : q̇2 >
U0

4
√

2D1
}

and define the control in it as follows:
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U = −U0

|q̇| q̇.

By the theorem on the variation of the kinetic energy of the system, conditions
(5.1.35), and the definition of the domain G1, it follows that the estimates

T (q, q̇) ≥ m
2

q̇2 >
mU0

8
√

2D1
,

Ṫ (q, q̇) = 〈U +Q, q̇〉 ≤ −(U0 −Q0)|q̇|

≤ −
(

1−
√

m

16
√

10M

)(
U3

0

2
√

2D1

)1/2

< 0

hold in G1. Therefore, the system leaves the domain G1 in finite time. As soon as the
trajectory reaches the boundary of G1, the preliminary stage of control is completed,
and the realization of the above algorithm of the step-by-step transferring of the
system to the terminal state begins.

Thus, inequality (5.1.35) provides a sufficient condition for steering the system
from an arbitrary initial state (q∗, q̇∗) to the phase space origin (0,0).

Remark 5.3. The control law proposed does not depend on the value Q0 and can
therefore also be formally applied in cases where constraint (5.1.35) does not hold.
Computer simulation of the dynamics of various mechanical systems shows that
the control law is also effective far beyond the limits of the sufficient condition
stated. To explain this phenomenon, let us note that the sufficient condition (5.1.35)
guarantees monotone decrease of the Lyapunov functions V k along the trajectory of
system (5.1.2) controlled by law (5.1.10). However, it may happen that the functions
V k are not monotone while the trajectories tend to the terminal state. The results of
the computer simulation presented below show such behavior of the system.

5.2 Applications to mechanical systems

5.2.1 Control of a two-link manipulator

The control law proposed will be used for the numerical simulation of the controlled
motion of a two-link manipulator on a fixed base (see Fig. 2.15). The manipulator is
assumed to move in a horizontal plane, hence, it is not subject to gravity. The hinge
angles of the links in the stationary reference system are chosen as the generalized
coordinates of the system. The matrix of the kinetic energy of the manipulator has
the form

A(q) =

(
A1 A3 cos(q1 −q2)

A3 cos(q1 −q2) A2

)
.

Calculations are performed for the following parameter values:
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A1 = 13.9kg ·m2, A2 = 2.1kg ·m2, A3 = 4kg ·m2.

The eigenvalues of the inertia matrix lie between constants m = 1.8kg · m2 and
M = 14.2 kg · m2. The norm of the partial derivatives of the matrix is bounded
by D = 3. The maximum admissible magnitude of the vector of control torques is
chosen to be equal to U0 = 500 N ·m. When modelling, we specify the disturbances
by the constant vector-function Q(t) = (0; 30) N ·m. The manipulator moves from
the initial state

q∗1 = 0.5rad, q∗2 = 1rad, q̇∗1 = q̇∗2 = 0rad/s

to the “stretched arm” position

q1 = q2 = q̇1 = q̇2 = 0.

The value of W at the initial state of the system is equal to W (q∗, q̇∗) = 395,
and the quantity determining the null ellipsoid is equal to W0 = 837. Since W0/4 <
W (q∗, q̇∗) < W0/2, the first value of index k is equal to 1. The initial point of the tra-
jectory lie inside the null ellipsoid, so the preliminary stage of the control (slowing
down and step-by-step transferring the system into the null ellipsoid) is absent. Suf-
ficient condition (5.1.35) in the case in question takes the form Q0 ≤ 3.47 and does
not hold for the chosen vector of the disturbances. Nevertheless, the manipulator
reaches the terminal state in finite time (see Remark 5.3 in Sect. 5.1.5).

System (5.1.2) was integrated by the Runge – Kutta method. Integrating was
stopped, when, in phase space (q, q̇), the Euclidean distance

ρ(t) =
(
q2

1(t)+q2
2(t)+ q̇2

1(t)+ q̇2
2(t)

)1/2

between the current state of the system and the terminal state became less than 0.01.
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Fig. 5.3 The first link

Figures 5.3 and 5.4 depict the graphs of the time histories of the phase variables
of the system. The solid lines correspond to the generalized coordinates (rad), and
the dashed lines correspond to the generalized velocities (rad/s). Figure 5.3 describes
the motion of the first link, and Fig. 5.4 the motion of the second link.
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Fig. 5.4 The second link
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Fig. 5.5 The function W

The solid line in Fig. 5.5 shows the behavior of the function W along the trajec-
tory. One can see that the function W does not depend monotonically on time.
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Fig. 5.6 The absolute value of the control torque and the gain α

Figure 5.6 shows the time history of the absolute value of the vector of control
torques (the thin line) and the magnitude of the gain α (the step function). During
the time of integration of the equations, the gains in (5.1.10) changed 12 times.

In accordance with the algorithm, the feedback factors αk and βk are chosen in
such a way that for any admissible values of the unknown parameters, that is, the
elements of the inertia matrix and the components of the vector of disturbances,
the control constraint (5.1.4) holds along the resulting trajectory of motion. For a
specified mechanical system, the domain of variation of these parameters contracts
significantly and the choice of the gains may turn out to be unnecessarily conserva-
tive. One can see that, in the case under consideration, the control torques obtained
are much smaller than the maximum allowed magnitude U0 equal to 500. This is
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why we could simulate the motion of the two-link manipulator controlled by the
same law, but with gains αk and βk twice as large as those prescribed by the algo-
rithm. The results of such simulation are depicted by dashed lines in Fig. 5.5 and
5.6.

In Fig. 5.5, the dashed line represents the time history of W , and in Fig. 5.6 it
represents the absolute magnitude of the vector of control torques for this control
method. The time it takes to bring the system to the terminal position has been
reduced by a factor of two, while the control satisfies (5.1.4) as before, with a sub-
stantial margin.

5.2.2 Control of a two-mass system with unknown parameters

Control of mechanical systems with so-called structural perturbations is an impor-
tant area of control theory. The term ’structural perturbations’ implies the appear-
ance of additional degrees of freedom that are not controlled directly but affect the
motion of the system and its controlled part. The aim of the control, as a rule, is
to bring controlled coordinates to a given terminal set, whereas the values of the
variables corresponding to these additional degrees of freedom are not important.

Below, we consider some simple systems of this kind. The first system consists
of two concentrated masses (bodies) placed on a horizontal plane and connected by
a spring (see Fig. 5.7). Both bodies are subject to dry friction forces with varying
coefficients (depending on the position of the bodies). The masses of the bodies,
the spring stiffness, and the coefficients of friction are assumed to be unknown but
belong to certain, a priori specified, intervals. The first (controlled) mass is subject
to a bounded control force. The controlled mass must be brought to a given terminal
state in finite time (the state of the other mass at this moment is of no importance).

What distinguishes the second system from the first one is that one body rests on
the other (a load on a cart, Fig. 5.8).

m1 m2

Fig. 5.7 A two-mass elastic system

m1

m2

Fig. 5.8 A load on a cart
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The third system under consideration also consists of two masses: a body is sus-
pended from another one moving along a horizontal plane (a pendulum on a cart, see
Fig. 5.9). The initial assumptions and the aim of the control are the same as in the
previous cases. In all cases under consideration, there are ”stagnation” regions be-
cause of dry friction. Hence, there exist segments of trajectories where the original
system can be viewed as a system with only one degree of freedom.

m1

m2

Fig. 5.9 A pendulum on a cart

We will apply the control laws based on the algorithm developed in Sect 5.1 that
utilize a linear feedback with piecewise constant gains.

Consider a system consisting of two bodies placed on a horizontal plane and
connected by a spring. Masses m1 and m2 of the bodies and the spring stiffness c0

are assumed to be unknown but belong to the given intervals:

m ≤ m1,m2 ≤ M, (5.2.1)

c ≤ c0 ≤C. (5.2.2)

The first body of mass m1 and the second body of mass m2 will be referred to
as carrying and carried bodies, respectively. A control force u is applied to the first
body. Let us choose an immovable frame of reference on the horizontal line and
denote a coordinate of the first mass in this frame by x. Let the variable φ describe
the position of the second mass with respect to the first one so that φ = 0 corresponds
to the undeformed spring. Thus, φ is the extension of the spring.

Suppose that coefficients of the dry friction forces acting on both bodies are not
constant and depend on the positions of the bodies (the “roughness” of the plane
is different in different segments). Denote the friction forces acting on the carrying
and carried bodies by f1 and f2, respectively.

In terms of the generalized coordinates x and y, the equations of the motion of
the system are given by

m1ẍ = c0φ +u+ f1,
(5.2.3)

m2(ẍ+ φ̈) = −c0φ + f2.

Here,
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f1 = −sign(ẋ)γ1(x)m1g,

f2 = −sign(ẋ+ φ̇)γ2(x+φ)m2g,

and g is the acceleration of gravity. The friction coefficients γ1(x) and γ2(x+φ) are
assumed to be unknown but satisfy the conditions

0 < γ ≤ γ1(x),γ2(x+φ) ≤ Γ .

Hence, it follows that
| f1|, | f2| ≤ F, F = Γ Mg. (5.2.4)

We assume that the control force u satisfies the inequality

|u| ≤U0, (5.2.5)

and
U0 > 3F. (5.2.6)

We also assume that the phase coordinates x,φ and velocities ẋ, φ̇ are available
for measuring.

Problem 5.3. At the initial instant of time t = 0, let the system be at the state

x(0) = x0, ẋ(0) = ẋ0, φ(0) = φ0, φ̇(0) = φ̇0.

It is required to bring system (5.2.3) to the prescribed terminal set

x = x∗, ẋ = 0

in finite time; i.e., the carrying body is to be brought to the state (x∗,0).

Without loss of generality, we can assume that x∗ = 0, because the origin can be
placed at the point the first mass should be brought to.

The required control will be constructed on the basis of a linear feedback with
respect to the generalized coordinates and velocities (PD-regulator):

u = −α ẋ−βx, (5.2.7)

where the coefficients α,β > 0 are considered, for now, to be constant. This control
is equivalent to the incorporation of a spring of stiffness β and viscous damping
with coefficient α into the system. This spring connects the carrying body with the
immovable foundation, and the spring is undeformed when x = 0.

The total energy of the system inclusive of the elastic energy of this “fictitious”
spring is given by

E(x, ẋ,φ , φ̇) =
1
2

(
m1ẋ2 +m2(ẋ+ φ̇)2 +βx2 + c0φ 2) .

For brevity, we will denote the total energy at the moment t along the trajectory
under consideration by E(t). Differentiating E(t) by virtue of (5.2.3) and (5.2.7),
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we obtain
Ė = −α ẋ2 + f1ẋ+ f2(ẋ+ φ̇)

= −α ẋ2 − γ1(x)m1g|ẋ|− γ2(x+φ)m2g|ẋ+ φ̇ |.
It is easy to see that the total energy is not negative and does not increase along

the trajectory. Because of the dry friction forces, the system can have stagnation
regions, that is, the states at which both masses are at rest while the springs are
deformed. The total energy E(t) of the system at these states is positive, and its
derivative Ė(t) is zero. Hence, it follows that

lim
t→∞

E(t) = E∗, E∗ ≥ 0. (5.2.8)

Let us prove some auxiliary propositions.

Lemma 5.3. The following relationships are valid:

lim
t→∞

ẋ(t) = 0, lim
t→∞

φ̇(t) = 0. (5.2.9)

Proof. Note that the second derivatives ẍ and φ̈ are bounded along the trajectory
that starts at the point (x0, ẋ0,φ0, φ̇0). Indeed, the total energy of the system satisfies
the inequality E(t) ≤ E(0), t ≥ 0. Thus, the trajectory of the system lies inside the
ellipsoid E(x, ẋ,φ , φ̇) = E(0), and the phase coordinates and velocities are bounded.
This means that the right-hand sides of equations (5.2.3), and, hence, the second
derivatives ẍ and φ̈ are bounded, that is, there exists a number D > 0 such that

|ẍ|, |φ̈ | ≤ D. (5.2.10)

Let us prove that the first of equations (5.2.9) is valid. Assume the contrary.
Let there exist a number δ > 0 and a sequence {tk}, tk → ∞ as k → ∞, such that
|ẋ(tk)| ≥ δ . This, together with (5.2.10), implies that, on the time intervals Ik =
[tk, tk + δ/(2D)], k = 1,2, . . . , the inequality |ẋ(t)| ≥ δ/2 holds, and the derivative
of the total energy satisfies the inequality

Ė(t) ≤−γm1gδ/2.

Hence, the total energy infinitely decreases, which contradicts (5.2.8). The first of
equations (5.2.9) is proved; the second equation can be proved in the same way. ��
Lemma 5.4. The following inequality is valid:

lim
t→∞

|φ(t)| ≤ F
c0

,

where F is defined in (5.2.4).

Proof. Assume the contrary. Let there exist a number δ > 0 and a sequence
{tk}, tk → ∞ as k → ∞, such that
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|φ(tk)| ≥ F
c0

+2δ .

Let v > 0 be an arbitrary number. In view of Lemma 5.3, there exists t ′ > 0 such
that |φ̇(t)| ≤ v for t > t ′. Then, for tk > t ′, the inequality

|φ(t)| ≥ F
c0

+δ (5.2.11)

holds on the time intervals Ik = [tk, tk + δ/v]. From this inequality and conditions
(5.2.2) and (5.2.4), it follows that the inequalities

|− c0φ + f2| ≥ c0|φ |− | f2| ≥ c0

(
F
c0

+δ
)
−F ≥ c0δ (5.2.12)

hold for sufficiently large k and for t ∈ Ik.
The force f2 and, hence, the right-hand side of (5.2.3) are not continuous func-

tions of time whereas the function φ(t) is. By virtue of (5.2.11), for sufficiently
large k, the sign of the function φ(t) is constant on any interval Ik. It follows from
(5.2.12) that the sign of the right-hand side of the second equation (5.2.3) coincides
with the sign of the function φ(t) and, hence, does not change on any of these in-
tervals. Therefore, the sign of the derivative ẍ(t)+ φ̈(t) also does not change (this
derivative is, generally speaking, a discontinuous function of time).

Relationships (5.2.3) and (5.2.12) imply

|m2
(
ẍ(t)+ φ̈(t)

) | ≥ c0δ , t ∈ Ik, tk > t ′. (5.2.13)

Therefore, for sufficiently large k, the variation of the velocity ẋ(t) + φ̇(t) on the
interval Ik is not less than c0δ 2/(m2v). Choosing v to be sufficiently small, we see
that inequality |ẋ(t) + φ̇(t)| holds for an arbitrary large interval of time, and the
magnitude of the velocity |ẋ(t)+ φ̇(t)| of the second mass can be arbitrarily large.
This contradicts the fact that the total energy of the system is bounded. ��
Lemma 5.5. The following inequality is valid:

lim
t→∞

|x(t)| ≤ 2F
β

.

Proof. Assume the contrary. Let there exist a number δ > 0 and a sequence
{tk}, tk → ∞ as k → ∞, such that

|x(tk)| ≥ 2F
β

+4δ .

Let v satisfy the inequality 0 < v < βδ/α . In view of Lemmas 5.3 and 5.4, there
exists an instant of time t ′ > 0 such that the inequalities

|ẋ(t)| < v <
βδ
α

, |φ(t)| < F +βδ
c0

(5.2.14)
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hold for t > t ′. Then, for tk > t ′, the inequality

|x(t)| ≥ 2F
β

+3δ (5.2.15)

holds on the intervals Ik = [tk, tk + δ/v]. Using (5.2.4), (5.2.14), and (5.2.15), the
right-hand side of the first of equations (5.2.3) at the instant of time t ∈ Ik, tk > t ′,
can be estimated as follows:

|c0φ +u+ f1| = |c0φ −α ẋ−βx+ f1| ≥
(5.2.16)

≥ β |x|−α|ẋ|− c0|φ |− | f1| ≥ βδ .

Hence, the inequality

|ẍ(t)| ≥ βδ
m1

(5.2.17)

holds for tk > t ′ on any intervals Ik.
The force f1 and, hence, the both sides of the first equation (5.2.3) are not con-

tinuous functions of time whereas the function x(t) is. By virtue of (5.2.15), for
sufficiently large k, the sign of the function x(t) is constant on any interval Ik. It
follows from (5.2.16) that the sign of the right-hand side of the first equation (5.2.3)
coincides with the sign of the function x(t) and, hence, does not change on any of
these intervals. Whence and by (5.2.17), we obtain that variation of the velocity ẋ
on any of the intervals Ik is not less than βδ 2/(m1v). Choosing v to be sufficiently
small, we see that the velocity of the first mass can be arbitrarily large, which con-
tradicts the fact that the total energy of the system is bounded. ��

We will bring the system to the prescribed terminal set in two stages. First, the
carrying mass will be brought to a neighborhood of the point x = 0 on the horizontal
line; simultaneously, the total energy of the system will be reduced to a sufficiently
small level. Then, considering only the first of equations (5.2.3), where the elastic
force c0φ is treated as a perturbation, we will bring the carrying mass to the point
x = 0. At that, on each of the stage the gains α and β in control (5.2.7) are chosen
as piecewise constant functions.

5.2.3 The first stage of the motion

Let us carry out some auxiliary construction. We put

G(ẋ,φ , φ̇) = Mẋ2 +M(ẋ+ φ̇)2 +Cφ 2

and consider the function

H(x, ẋ,φ , φ̇) = G+(G2 +2U2
0 x2)1/2. (5.2.18)
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The function H plays the same role as the function W in the control design earlier
in this section. The value of H is calculated along the trajectory of the system,
and when the function H achieves certain preset values Hk, the feedback factors in
control change. The difference from the described above procedure of change of
these factors is that the sequence Hk does not tend to zero, as k → ∞, whereas it did
with sequence Wk.

Let
H0 = H(x0, ẋ0,φ0, φ̇0).

Let us introduce the notation

ξ =
CF2

c2 , η =
3F
U0

, H∗ =
3ξ

1−η2 . (5.2.19)

By virtue of (5.2.6), the number η satisfies the inequality η < 1.
We will suppose at first, that at the instant of time t = 0 the condition

H0 > H∗ (5.2.20)

holds. We introduce the sequence Hk:

Hk = ξ +(ξ 2 +η2H2
k−1)

1/2, k = 1,2, . . . . (5.2.21)

Lemma 5.6. The sequence Hk satisfies the conditions

H0 > H1 > H2 > .. . , lim
k→∞

Hk =
2ξ

1−η2 .

Proof. We put

z∗ =
2ξ

1−η2

and consider the function

h(z) = ξ +(ξ 2 +η2z2)1/2

on the half-line {z ∈ R : z ≥ z∗}. It is easy to see that h(z∗) = z∗. By definition
(5.2.19) of the number H∗ and by condition (5.2.20), the inequality H0 > z∗ holds.
Using definition (5.2.19) of η , condition (5.2.6), and the inequality (ξ 2 +η2z2)1/2 >
ηz, we estimate the derivative of the function h(z) as follows:

h′(z) = η2z(ξ 2 +η2z2)−1/2 < η < 1.

Therefore, h(z) is a contractive mapping, and the sequence H0, H1 = h(H0), H2 =
h(H1), . . . tends monotonically to the fixed point z∗ of the mapping h(z). ��

Let us describe an algorithm of changing the gains in control (5.2.7) on the first
stage of motion. At the initial time instant t = 0, we specify the gains α0 and β0 as
follows:
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β0 =
U2

0

H0
, α0 =

√
mβ0. (5.2.22)

Denote
lim
t→∞

H(t) = H∗
0 , H(t) = H(x(t), ẋ(t),φ(t), φ̇(t)).

Here, the limit is calculated along the trajectory of system (5.2.3) governed by con-
trol law (5.2.7) with gains (5.2.22), starting at the point (x0, ẋ0,φ0, φ̇0).

Lemma 5.7. The following relationship is valid:

H∗
0 < H1.

Proof. By definition of the function G(t) = G(ẋ(t),φ(t), φ̇(t)), assertions of Lem-
mas 5.3–5.5, condition (5.2.2), and notations (5.2.19), the inequality

lim
t→∞

G(t) ≤ ξ , G(t) = G(ẋ(t),φ(t), φ̇(t))

holds. Whence, by the definitions of β0 and η , and also in view of assertion of
Lemma 5.5, we obtain

H∗
0 = lim

t→∞
H(t) ≤ ξ +

(
ξ 2 +

8F2U2
0

β 2
0

)1/2

< ξ +(ξ 2 +η2H2
0 )1/2 = H1.

��
Let us prove that condition (5.2.5) is fulfilled along the trajectory of system

(5.2.3) and (5.2.7) with gains (5.2.22) that starts at the point (x0, ẋ0,φ0, φ̇0). to that
end, let us introduce the notation

E0
+(x, ẋ,φ , φ̇) =

1
2

(
Mẋ2 +M(ẋ+ φ̇)2 +β0x2 +Cφ 2) ,

(5.2.23)

E0
−(x, ẋ,φ , φ̇) =

1
2

(
mẋ2 +m(ẋ+ φ̇)2 +β0x2 + cφ 2) .

In view of (5.2.1) and (5.2.2), the total energy E0 of the system (inclusive of the
elastic energy of the “fictitious” spring of stiffness β0) satisfies the inequalities

E0
−(t) ≤ E0(t) ≤ E0

+(t). (5.2.24)

We put G0 = G(ẋ0,φ0, φ̇0). By definitions of the function H and the number H0, we
have

H0 = G0 +(G2
0 +2U2

0 x2
0)

1/2,

that is, the number H0 is a root of the equation z2 −2G0z−2U2
0 x0

2 = 0 being con-
sidered with respect to z. Hence, the equality

H2
0 −2G0H0 −2U2

0 x0
2 = 0
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is valid. We divide this equality by H0 and transform it with the help of formula
(5.2.22) for the gain β0 to get

2G0 +2β0x0
2 = H0.

Whence, and by definitions of functions G and E0
+, we obtain

4E0
+(x0, ẋ0,φ0, φ̇0) = H0. (5.2.25)

Using relationships (5.2.22), (5.2.23), and (5.2.24), we estimate the control force
as follows:

|u|2 = |α0ẋ+β0x|2 ≤ 2(α2
0 ẋ2 +β 2

0 x2)

= 2β0(mẋ2 +β0x2) ≤ 4β0E0
−(x, ẋ,φ , φ̇) ≤ 4β0E0(x, ẋ,φ , φ̇).

Taking into account the fact that the total energy E0(t) of the system does not in-
crease along the trajectory under consideration, we can further extend the sequence
of inequalities by means of (5.2.24) and (5.2.25):

4β0E0(t) ≤ 4β0E0(0) ≤ 4β0E0
+(0) = β0H0 = U2

0 .

Thus, condition (5.2.5) is fulfilled.
The function H(x, ẋ,φ , φ̇) defined by (5.2.18) is expressed in terms of the known

parameters only, and all phase coordinates and velocities can, by assumption, be
measured. Hence, H(t) can be calculated at any instant of time. Denote by t1 the
first instant when the value of the function H(t) on the trajectory under consideration
becomes equal to H1. It follows from the definition of number H∗

0 and the assertion
of Lemma 5.7 that such a moment exists.

Let
x(t1) = x1, ẋ(t1) = ẋ1, φ(t1) = φ1, φ̇(t1) = φ̇1.

At the moment t1, we change the gains in the control law (5.2.7):

β1 =
U2

0

H1
, α1 =

√
mβ1. (5.2.26)

Introduce the notation
lim
t→∞

H(t) = H∗
1 .

Applying similar arguments, we can show that, on the trajectory starting at the point
(x1, ẋ1,φ1, φ̇1) of system (5.2.3) that is subject to control (5.2.7) with gains (5.2.26),
condition (5.2.5) is fulfilled, and

H∗
1 < H2. (5.2.27)

Remark 5.4. The numbers H∗
0 and H∗

1 , generally speaking, do not coincide because
they are defined as limits of function H(t) along the trajectories with the different
initial conditions and different gains in the control law.



182 5 Piecewise linear control for mechanical systems under uncertainty

In view of (5.2.27), there exists a moment t2 when the value of the function H(t)
becomes equal to H2 for the first time. At the moment t2, we redefine the gains in
control law (5.2.7) as follows:

β2 =
U2

0

H2
, α2 =

√
mβ2,

and so on.
Thus, the trajectory of the motion consists of segments of the trajectories corre-

sponding to different systems of differential equations: the kth segment connects the
points (xk, ẋk,φk, φ̇k) and (xk+1, ẋk+1,φk+1, φ̇k+1) and corresponds to system (5.2.3)
subject to control (5.2.7) with the gains given by

βk =
U2

0

Hk
, αk =

√
mβk.

The numbers Hk are defined recursively by formulas (5.2.21), and

Hk = H(xk, ẋk,φk, φ̇k) = H(tk), k = 0,1, . . . .

Repeating the arguments given above for the case of k = 0, we can show that, for
any k on the kth segment of the trajectory, the control force meets constraint (5.2.5).

Theorem 5.1. Let condition (5.2.20) be fulfilled. Then, there exists an instant of time
τ0 when the function H(t) on the trajectory of system (5.2.3) controlled by means of
the algorithm described above becomes equal to H∗.

Proof. Condition (5.2.20) implies that, at the initial instant of time t = 0, the in-
equality H∗ < H0 holds. In view of Lemma 5.6, the relationships

lim
k→∞

Hk < H∗, H0 > H1 > H2 > .. .

are valid. Therefore, there exists such integer k that H(tk) > H∗ > H(tk+1), and the
continuous function H(t), on the kth segment of the trajectory, becomes equal to H∗.
��

We denote by τ0 the first instant of time when the function H(t) becomes equal
to H∗. The first stage of the motion is completed at τ0. If condition (5.2.20) is not
fulfilled at the initial instant of time, then there is no first stage. In this case, we have
H(τ0) < H∗ and, putting τ0 = 0, we turn to the second stage.

5.2.4 The second stage of the motion

At the second stage, we apply the control law put forward in Sect. 5.1, that brings
a general-type Lagrangian system with an unknown matrix of kinetic energy to a
given state.
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Consider the motion of the first mass only that is governed by the equation

m1ẍ = u+Q, Q = c0φ + f1, (5.2.28)

where Q is treated as a perturbation.
As before, the first mass is subject to the control law (5.2.7) with the gains be-

ing piecewise constant functions. Let us describe an algorithm of changing these
coefficients.

We introduce the function

W (x, ẋ) = Mẋ2 +(M2ẋ4 +2U2
0 x2)1/2

and the notation

W0 = W (x(τ0), ẋ(τ0)), Wk =
W0

2k , k > 1,2, . . . .

Let the gains α and β , at the initial instant τ0, be

β0 =
U2

0

W0
, α0 =

√
mβ0.

Let τ1 be the first instant when the value of the function W (t) calculated along the
trajectory becomes equal to W1. We set

β1 =
U2

0

W1
, α1 =

√
mβ1.

Denote the first instant of time when the function W (t) is equal to W2 by τ2, and so
on.

Thus, the sequence τk, k = 0,1, . . . , specifies the moments when the coefficients
are switched. At the moment τk, the function W (t) becomes equal to Wk for the first
time, and the gains are defined as

βk =
U2

0

Wk
, αk =

√
mβk, k = 0,1, . . . ,

that is, each time, the gains β and α are increased by the factors 2 and
√

2, respec-
tively.

Remark 5.5. In Sect. 5.1.2, in the description of the control law, the sequence Wk

defined by relationships (5.1.8) depends only on parameters of the problem D,M,
and U0. Therefore, the set of ellipsoids on which the gains switches, also depends
only on these parameters. In the present case, the modified control law is applied.
The difference is that now the ellipse with index 0 coincides with the level set of
the function W corresponding to value of this function at the initial instant of time.
Thus, the set of ellipsoids on which the feedback factors change is defined by the
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initial state of the system, and the trajectory of the controlled motion on the second
stage always starts on the ellipsoid with index 0.

According to Sect. 5.1.5, the condition

|Q| ≤
√

mU0

16
√

10M
‘ (5.2.29)

is sufficient for the first mass to be brought to the origin in finite time by means of
this algorithm. Note that, in this case, condition (5.2.5) holds on the trajectory.

Let us prove that inequality (5.2.29) is satisfied. To do this, let us estimate the to-
tal energy Ek of system (5.2.3) on each interval of the second-stage motion. Denote
by Ēk the energy of the first mass on the kth interval of the trajectory inclusive of
the elastic energy of the “fictitious” spring of stiffness βk:

Ēk(x, ẋ) =
1
2
(m1ẋ2 +βkx2).

Using algebraic transformations, it is not difficult to find that

Ēk(x, ẋ) ≤ Ēk
+(x, ẋ), 4Ēk

+(τk) = Wk,
(5.2.30)

Ēk
+(x, ẋ) =

1
2
(Mẋ2 +βkx2), k = 0,1, . . . .

In view of definition (5.2.18) of the function G and conditions (5.2.1) and (5.2.2),
the energy of the system at the beginning of the second stage (except the elastic
energy of the “fictitious” spring) satisfies the inequalities

1
2

(
m1ẋ2(τ0)+m2(ẋ(τ0)+ φ̇(τ0))

2 + c0φ 2(τ0)
)

≤ G(ẋ(τ0),φ(τ0), φ̇(τ0))/2 ≤ H(τ0)/4 ≤ H∗/4.

In view of (5.2.30), the elastic energy of the “fictitious” spring satisfies the inequal-
ities

β0

2
x2(τ0) ≤ Ē0

+(τ0) =
W0

4
.

Hence,

E0(τ0) ≤ H∗ +W0

4
. (5.2.31)

On each time interval [τk,τk+1), k = 0,1, . . . , the gains in the control law (5.2.7)
are constant; therefore, the total energy of the system does not increase. At the
moment τk+1, the stiffness β of the “fictitious” spring is doubled; hence, the elastic
energy of the spring is increased by

πk+1 =
1
2
(βk+1 −βk)x

2(τk+1) =
βk+1

4
x2(τk+1).
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By the definition of the total energy Ēk and by virtue of (5.2.30), the quantity
πk+1 satisfies the inequality

πk+1 ≤ 1
2

Ēk+1
+ (τk+1) =

Wk+1

8
=

W0

2k+4 .

The total increment of the elastic energy of the “fictitious” spring due to the instan-
taneous variation of the spring stiffness does not exceed the sum of the series

∞

∑
k=1

W0

2k+4 =
W0

16
.

Whence and by (5.2.31), for any t ≥ τ0, the total energy E(t) of the system is
bounded:

E(t) ≤ E0(τ0)+
W0

16
≤ H∗

4
+

5W0

16
.

By definitions of the functions W and H, we have

W0 = W (τ0) ≤ H(τ0) = H∗.

Taking this into account and using condition (5.2.2), we arrive at the conclusion
that the deformation of the spring connecting the masses m1 and m2 satisfies the
inequality

|φ(t)| ≤
√

2E(t)
c0

≤
(

4H∗ +5W0

8c

)1/2

≤ 3
2

√
H∗
2c

, t ≥ τ0.

Hence, the value of the perturbation Q in equation (5.2.28) is bounded during the
second stage:

|Q| ≤C|φ |+F ≤ F +
3C

2
√

2c

( 3ξ
1−η2

)1/2
.

Taking into account expressions (5.2.19) for ξ and η , the latter can be written as

|Q| ≤ Q0, Q0 = F

(
1+

(
3C
2c

)3/2 U0

(U2
0 −9F2)1/2

)
.

Substituting Q0 for |Q| into (5.2.29), we obtain the following sufficient condition
for bringing the first mass to the origin:

F
[
1+

(
3C
2c

)3/2 U0

(U2
0 −9F2)1/2

]
≤

√
mU0

16
√

10M
. (5.2.32)

Thus, the following theorem is valid.
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Theorem 5.2. Let the parameters m,M,c,C,F, and U0 of the problem satisfy con-
dition (5.2.32). Then, the suggested control algorithm brings the first mass to the
origin in finite time.

5.2.5 System “a load on a cart”

Consider the mechanical system consisting of two bodies connected by a spring.
The first body moves along the horizontal line; the second body is placed on the
first body and can also move in the horizontal direction (see Fig. 5.8). The equations
governing the motion of this system have the form

m1ẍ = c0φ +u+ f1 − f2, m2(ẍ+ φ̈) = −c0φ + f2.

Here, x is the coordinate of the first mass, and φ is the coordinate of the second mass
with respect to the first body, so that φ = 0 corresponds to the undeformed state of
the spring. Denote the friction forces between the carrying body and the foundation
and between the bodies f1 and f2, respectively:

f1 = −sign(ẋ)γ1(x)(m1 +m2)g,

f2 = −sign(φ̇)γ2(φ)m2g.

Restrictions imposed on the values of the masses, spring stiffness, and the coeffi-
cients of friction are assumed to be the same as before. Restriction (5.2.5) on the
control force remains the same; however, now we assume that

U0 > 2
√

5F. (5.2.33)

It is required to bring the carrying body to the state x = ẋ = 0 in finite time.
Applying the same reasoning as in the previous case, one can prove the following

relations:
lim
t→∞

ẋ(t) = 0, lim
t→∞

φ̇(t) = 0,

lim
t→∞

|φ(t)| ≤ F
c0

, lim
t→∞

|x(t)| ≤ 3F
β

.

Let us apply the control algorithm described above to this system. In view of the
new restriction (5.2.33) on the value of F , we take

η =
2
√

5F
U0

.

The formulas for ξ and H∗ remain the same. At the first stage, the system is brought
to the set

{(x, ẋ,φ , φ̇) ∈ R4 : H(x, ẋ,φ , φ̇) ≤ H∗}.
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At the second stage, the carrying body reaches its terminal state. The dynamics of
the carrying body at the second stage is described, as before, by equations (5.2.28);
however, the perturbation Q takes the form

Q = c0φ + f1 − f2.

The value of Q can be estimated as follows:

|Q| ≤C|φ |+2F ≤ 2F +
3C

2
√

2c

( 3ξ
1−η2

)1/2
.

The sufficient conditions for bringing the carrying body to the terminal state take
the form

F

[
2+

(
3C
2c

)3/2 U0

(U2
0 −20F2)1/2

]
≤

√
mU0

16
√

10M
.

5.2.6 System “a pendulum on a cart”

Now, we consider the control problem for the mechanical system consisting of a
mass m1 moving along a horizontal line and a mass m2 suspended from the first
mass (see Fig. 5.9). We will consider the motion of the system in the vertical plane.

Let us introduce a rectangular frame of reference with the abscissa axis directed
along the horizontal line. The dynamics of the system is described by the equations

(m1 +m2)ẍ+m2l cosφ φ̈ = u+m2l sinφ φ̇ 2 + f (t,x),
(5.2.34)

m2l cosφ ẍ+(m2l2 + J)φ̈ = −m2gl sinφ + μ(t,φ).

Here, x is the coordinate of the first mass on the line, φ is the angle between the
vertical line and the line connecting the suspension point and the center of inertia
of the second body, l is the distance between the suspension point and the center of
inertia, J is the moment of inertia of the second body with respect to its center of
inertia, f (t,x) is the dry friction force acting on the first body from the immovable
foundation, and μ(t,φ) is the moment due to the dry friction at the suspension point.
We assume that f and μ are unknown and satisfy the inequalities

0 ≤ | f (t,x)| ≤ F, f (t,x)ẋ ≤ 0,
(5.2.35)

0 < μ1 ≤ |μ(t,φ)| ≤ μ2, μ(t,φ)φ̇ ≤ 0.

As before, we assume that masses m1 and m2 of the bodies are unknown but
belong to given intervals (5.2.1); the control force u is subject to restrictions (5.2.5)
and (5.2.6); and all phase variables x, ẋ,φ , and φ̇ can be measured. The carrying
body must be brought to the state x = ẋ = 0 in finite time.

At the initial instant of time t = 0, let the system be at the state
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x(0) = x0, ẋ(0) = ẋ0, φ(0) = φ0, φ̇(0) = φ̇0.

As in the previous case, the control is sought in the form of a linear feedback (5.2.7)
with piecewise constant gains. Let us introduce a “fictitious” spring of stiffness β
that connects the first body and the immovable foundation with the position x = 0
corresponding to its undeformed state. The total energy of the system inclusive of
the elastic energy of the “fictitious” spring is

E =
1
2

(
(m1 +m2)ẋ

2 +(m2l2 + J)φ̇ 2 +2m2lẋφ̇ cosφ +βx2)+m2gl(1− cosφ),

and the derivative of E calculated by virtue of system (5.2.34) is given by

Ė = −α ẋ2 −| f ẋ|− |μφ̇ |.

Using arguments similar to those in Sect. 5.2.2, we can prove the following rela-
tionships:

lim
t→∞

E(t) = E∗, E∗ ≥ 0,

(5.2.36)
lim
t→∞

ẋ(t) = 0, lim
t→∞

φ̇(t) = 0.

Lemma 5.8. The following inequality is valid:

lim
t→∞

|x(t)| ≤ F
β

.

Proof. Let us assume the contrary. Let there exist a number δ > 0 and a sequence
{tk}, tk → ∞ as k → ∞ such that

|x(tk)| ≥ F
β

+4δ . (5.2.37)

Denote the left-hand side of the first equation in (5.2.34) by Ψ(t)

Ψ(t) = (m1 +m2)ẍ+m2lφ̈ cosφ .

Let a number v satisfy the conditions

0 < v <
βδ
α

, v2 <
βδ
m2l

.

In view of (5.2.36), there is t ′ > 0 such that |φ̇(t)|, |ẋ(t)| ≤ v for t > t ′. Let us substi-
tute expression (5.2.7) for the control u into the first of equations (5.2.34) and, taking
into account (5.2.37), estimate the terms in the right-hand side of the equation thus
obtained on the intervals

Ik = [tk, tk +
δ
v
], tk > t ′,
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as follows:

|βx| ≥ F +3βδ , |α ẋ| ≤ αv < βδ , |m2lφ̇ 2 sinφ | ≤ m2lv2 ≤ βδ .

It follows from these inequalities and from (5.2.35) that

|Ψ(t)| ≥ βδ > 0, t ∈ Ik, tk > t ′.

Hence, ∫
Ik
|Ψ(t)|dt ≥ βδ 2

v
. (5.2.38)

The function Ψ(t) is not continuous; however, on each of the intervals Ik, tk > t ′,
the sign of the function Ψ(t) does not change, because it coincides with the sign of
the variable x(t), that is continuous and, in view of the condition

|βx| ≥ F +3βδ ,

does not vanish. Therefore,

∫
Ik
|Ψ(t)|dt =

∣∣∣∣
∫

Ik
Ψ(t)dt

∣∣∣∣
=

∣∣∣∣
∫

Ik
m2lφ̇ 2 sinφ dt +

(
(m1 +m2)ẋ+m2lφ̇ cosφ

) |tk+δ/v
tk

∣∣∣∣ .
We estimate the summands in the expression for the integral of Ψ(t) as follows:∣∣∣(m1 +m2)ẋ|tk+δ/v

tk

∣∣∣≤ 4Mv,
∣∣∣m2lφ̇ cosφ |tk+δ/v

tk

∣∣∣≤ 2Mlv,

∣∣∣∣
∫

Ik
m2lφ̇ 2 sinφ dt

∣∣∣∣≤ Mlδv.

Hence, ∫
Ik
|Ψ(t)|dt ≤ 2M(2+ l +δ l)v,

which contradicts inequality (5.2.38) for sufficiently small v. ��
We will transfer the carrying body to the prescribed terminal state in two stages.

Introduce the notation

G(ẋ,φ , φ̇) =
1
2

(
Mẋ2 +M(|ẋ|+ l|φ̇ |)2 + Jφ̇ 2)+Mgl(1− cosφ)

and consider the function

H(x, ẋ,φ , φ̇) = G+

(
G2 +

U2
0

2
x2
)1/2

. (5.2.39)
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Let
H(x0, ẋ0,φ0, φ̇0) = H0, G(ẋ0,φ0, φ̇0) = G0.

We define the gains α0 and β0 in the control law (5.2.7) at the initial instant of time
by the formulas

β0 =
U2

0

2H0
, α0 =

√
mβ0.

We introduce the notation

E0
+(x, ẋ,φ , φ̇) = G(ẋ,φ , φ̇)+

β0

2
x2,

(5.2.40)

E0
−(x, ẋ,φ , φ̇) =

1
2

(
mẋ2 + Jφ̇ 2)+mgl(1− cosφ)+

β0

2
x2.

It is not difficult to see that the total energy E0 of the system, inclusive of the
elastic energy of the “fictitious” spring of stiffness β0, satisfies the inequalities

E0
−(t) ≤ E0(t) ≤ E0

+(t). (5.2.41)

In view of (5.2.39), the number H0 is a root of the quadratic equation

H2
0 −2G0H0 − U2

2
x2

0 = 0,

being considered with respect to H0. Dividing this equation by H0 and making use
of the formula for β0 and expression (5.2.40) for E0

+, we obtain

2E0
+(x0, ẋ0,φ0, φ̇0) = H0. (5.2.42)

Using (5.2.40)–(5.2.42) and the above reasoning, let us show that restriction
(5.2.5) holds on the trajectory of system (5.2.34) and (5.2.7) with the gains α0 and
β0 that starts at the point (x0, ẋ0,φ0, φ̇0):

|u|2 ≤ 2(α2
0 ẋ2 +β 2

0 x2) = 2β0(mẋ2 +β0x2) ≤ 4β0E0
−(x, ẋ,φ , φ̇)

≤ 4β0E0(t) ≤ 4β0E0(0) ≤ 4β0E0
+(0) = 2β0H0 = U2

0 .

Let us introduce the notation:

ξ = 2Mgl, η =
3F
U0

, H∗ =
3ξ

1−η2 . (5.2.43)

In view of (5.2.6), the number η satisfies the inequality η < 1. Assume first that, at
the initial instant, the condition

H0 > H∗ (5.2.44)

holds. It follows from expression (5.2.39) for the function H(x, ẋ,φ , φ̇), Lemma 5.8,
the formula for the gain β0, and relationships (5.2.36) that
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lim
t→∞

H(t) ≤ ξ +

(
ξ 2 +

F2U2
0

2β 2
0

)1/2

< ξ +(ξ 2 +η2H2
0 )1/2.

We put
H1 = ξ +(ξ 2 +η2H2

0 )1/2.

Let t1 be the first instant of time when the value of the function H(t) on the trajectory
under consideration becomes equal to H1. We change the gains in the control law
(5.2.7) at the moment t1 for

β1 =
U2

0

2H1
, α1 =

√
mβ1,

and so on, for t2, . . .
As in the case of the two-mass elastic system, the trajectory of this system con-

sists of segments of trajectories of different systems of differential equations: the kth
segment corresponds to system (5.2.34) subjected to control (5.2.7) with the gains
given by the formulas

βk =
U2

0

2Hk
, αk =

√
mβk.

At that, on each segment constraint (5.2.5) holds. The numbers Hk are defined re-
cursively by the formulas

Hk = ξ +(ξ 2 +η2H2
k−1)

1/2, k = 1,2, . . . ,

and satisfy the inequalities

H0 > H1 > H2 > .. . , lim
k→∞

Hk =
2ξ

1−η2 < H∗.

This implies that the following theorem is valid.

Theorem 5.3. Let condition (5.2.44) be fulfilled. Then, there exists an instant of
time τ0 such that the value of the function H(t) on the trajectory of system (5.2.34)
controlled by means of the algorithm discussed above is equal to H∗.

At the instants τ0, the second stage of the motion begins. If condition (5.2.44) is
not fulfilled at the initial moment, then we set τ0 = 0 and go directly to the second
stage.

Let us extract the equation of motion of the first mass from set (5.2.34). To do
this, we multiply the second of the equations by m2l cosφ/(m2l2 + J) and subtract
the resulting equation from the first one:

m′ẍ = u+Q, m′ = m1 +m2 −m2
m2l2 cos2 φ
(m2l2 + J)

,

(5.2.45)

Q = f − m2lμ
(m2l2 + J)

cosφ +m2l sinφ
(

φ̇ 2 +
m2gl

(m2l2 + J)
cosφ

)
.
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The quantity Q will be treated as an unknown perturbation.
At the second stage, we use the algorithm proposed in Sect. 5.1.2 for the con-

trol of a scleronomic mechanical system. In contrast to the system considered in
Sect. 5.1.2, the coefficient m′ in (5.2.45) that plays a role of the kinetic energy ma-
trix depends on φ(t). The quantity φ(t) is a phase variable for the original system
(5.2.34) but not for system (5.2.45). Therefore, the applicability of the algorithm
needs additional justification. We will briefly give this substantiation.

Since, by our assumptions, the quantity φ can be measured at every time instant,
we consider φ(t) to be known.

In view of (5.2.1), m′ satisfies the inequalities

m ≤ m′ ≤ 2M.

We introduce the function

W (x, ẋ) = 2Mẋ2 +

(
4M2ẋ4 +

U2
0

2
x2
)1/2

and put

W0 = W (x(τ0), ẋ(τ0)), Wk =
W0

2k , k = 1,2, . . . .

Let τk be the first instant of time when the function W (t) calculated along the
trajectory becomes equal to Wk. We define the gains α and β at the moment τk by
the formulas

βk =
U2

0

4Wk
, αk =

√
mβk, k ≥ 0.

In the phase space (x, ẋ), the level sets W (x, ẋ) =Wk of the function W are ellipses
contracting to the origin (0,0) as k → ∞.

We set x(τk) = xk and ẋ(τk) = ẋk. Let us show that the trajectory starting at the
point (xk, ẋk) at the instant τk will reach the (k +1)st ellipse.

Consider the Lyapunov function

V k(x, ẋ) =
m′

2
ẋ2 +

βk

2
x2 + εkm′xẋ, εk =

√
mU0

8M
√

Wk
.

For τk ≤ t < τk+1, we have the following relations:

V k
−(x, ẋ) ≤V k(x, ẋ) ≤V k

+(x, ẋ),

V k
−(x, ẋ) =

1
4

(
βkx2 +mẋ2) , V k

+(x, ẋ) = βkx2 +2Mẋ2; (5.2.46)

V k
+(x, ẋ) ≥ Wk

8
, 2V k

+(xk, ẋk) = Wk, k = 0,1, . . .

To prove the latter relationship, let us note that the value
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Wk = W (xk, ẋk) = 2Mẋ2
k +

(
4M2ẋ4

k +
U2

0

2
x2

k

)1/2

,

is obviously a root of the quadratic equation

W 2
k −4Mẋ2

kWk −
U2

0

2
x2

k = 0,

being considered with respect to Wk. Dividing this equation by Wk and making use
of the formulas for βk and V k

+, we obtain the desired equality.
The derivative of the function V k calculated by virtue of system (5.2.45) and the

control law (5.2.7), is given by the formula

V̇ k(x, ẋ) = −εkβkx2 +(εkṁ′ − εkαk)xẋ
(5.2.47)

−
(

αk − εkm′ − ṁ′

2

)
ẋ2 +Q(εkx+ ẋ).

The following inequalities are valid:

|εkαkxẋ| ≤ ε2
k αkx2 +

αk

4
ẋ2, |εkṁ′xẋ| ≤ |ṁ′|

(
4ε2

k x2 +
1

16
ẋ2
)

. (5.2.48)

Let Q satisfy the inequality

|Q| ≤ Q0 =

√
mU0

32
√

5M
. (5.2.49)

Let us estimate the last summand in (5.2.47) as follows:

|Q(εkx+ ẋ)| ≤ Q0|εkx+ ẋ| ≤ Q0[5ε2
k x2 +

5
4

ẋ2]1/2

= Q0

(
5m

16M2 βkx2 +
5
4

ẋ2
)1/2

≤ Q0

(
5

8M
(βkx2 +2Mẋ2)

)1/2

=

√
5Q0

2
√

2M

V k
+(x, ẋ)√
V k

+(x, ẋ)
≤

√
mU0(βkx2 +2Mẋ2)

32M
√

Wk
.

Substituting the inequality obtained and inequality (5.2.48) into (5.2.47), we find
that

V̇ k(x, ẋ) ≤−εk

(
βk − εkαk −

√
mU0βk

32Mεk
√

Wk
−4εk|ṁ′|

)
x2

−
(

3αk

4
− εkm′ −

√
mU0

16
√

Wk
− 9|ṁ′|

16

)
ẋ2.

Let the derivative ṁ′ be bounded:
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|ṁ′| ≤ α0

8
. (5.2.50)

Since α0 < αk, k = 1,2 . . . , then |ṁ′| ≤ αk/8. Taking into account (5.2.46) and the
relationships

εkαk =
mU2

0

16MWk
≤ βk

4
, |εkm′| ≤ 2εkM =

αk

2
,

√
mU0

32Mεk
√

Wk
=

1
4
,

√
mU0

16
√

Wk
=

αk

8
,

we arrive at the estimate

V̇ k(x, ẋ) ≤−3εkβk

8
x2 − 7αk

128
ẋ2

≤−7εk

64

(
βkx2 +2Mẋ2) = −7εk

64
V k

+(t) ≤−7εk

64
V k(t).

Hence,

τk+1 − τk ≤ 64
7εk

log
V k(τk)

V k(τk+1)
.

Let us estimate the expression under the logarithm sign. By (5.2.46), the numer-
ator under the logarithm sign, satisfies the inequality

V k(τk) ≤V k
+(τk) = V k

+(xk, ẋk) =
Wk

2
.

Using the equality βk+1 = 2βk and relationships (5.2.46), we estimate the denomi-
nator as follows:

V k(τk+1) ≥V k
−(τk+1) =

1
4

(
βkx2

k+1 +mẋ2
k+1

)
=

1
8

(
βk+1x2

k+1 +2mẋ2
k+1

)
≥ m

8M

(
βk+1x2

k+1 +2Mẋ2
k+1

)
=

m
8M

V k+1
+ (τk+1) =

m
32M

Wk.

Therefore, the time of motion from the kth ellipse to the (k +1)st ellipsoid satisfies
the inequality

τk+1 − τk ≤ 64
7εk

log
16M

m
=

M
√

W0

7
√

mU0
2(9−k/2) log

16M
m

,

and the total time of the motion of the system to the origin does not exceed the
sum of the series of the right-hand sides of these inequalities. This series converges;
hence, the time of the motion is finite.

Let us find the conditions that guarantee inequality (5.2.49) during the whole sec-
ond stage of the motion. By the definition of the function G and condition (5.2.1), at
the initial moment τ0 of the second stage of the motion, the energy of the whole sys-
tem not including the elastic energy of the “fictitious” spring satisfies the inequality
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1
2

(
(m1 +m2)ẋ

2(τ0)+(m2l2 + J)φ̇ 2(τ0)+2m2lẋ(τ0)φ̇(τ0)cosφ(τ0)
)

+m2gl(1− cosφ(τ0)) ≤ G(τ0) ≤ H(τ0)/2 ≤ H∗/2,

and, in view of (5.2.46), the elastic energy of the “fictitious” spring satisfies the
inequality

β0

2
x2(τ0) ≤ 1

2
V 0

+(τ0) =
W0

4
.

On each time interval [τk,τk+1), k = 0,1, . . . , the gains in the control law (5.2.7) are
constant; therefore, the total energy of the system does not increase. At the moment
τk+1, the stiffness β of the “fictitious” spring is doubled; hence, the elastic energy
of the “fictitious” spring is increased by

πk+1 =
1
2
(βk+1 −βk)x

2(τk+1) =
βk+1

4
x2(τk+1).

In view of (5.2.46), the quantity πk+1 satisfies the inequality

πk+1 ≤ 1
4

V̄ k+1
+ (τk+1) =

Wk+1

8
=

W0

2k+4 .

The total increase of the elastic energy of the ”fictitious” spring due to the instanta-
neous change of the spring stiffness does not exceed the sum of the series

∞

∑
k=1

W0

2k+4 =
W0

16
.

Hence, for any t ≥ τ0, the total energy of the system E(t) is bounded

E(t) ≤ H∗
2

+
5W0

16
.

By the definition of the functions G,W , and H, we have

Mẋ2 ≤ G(ẋ,φ , φ̇), W (x, ẋ) ≤ 2G+

(
4G2 +

U2
0

2
x2
)1/2

≤ 2H(x, ẋ,φ , φ̇).

At the initial moment τ0 of the second stage, the inequality H(τ0)≤H∗ holds, hence,

W0 ≤ 2H(τ0) ≤ 2H∗,

which implies that, for any t ≥ τ0, the total energy of the system E(t) satisfies the
inequality E(t) ≤ 9H∗/8, and the angular velocity φ̇ satisfies the inequality

φ̇ 2 ≤ 2E(t)
m2l2 + J

≤ 9H∗
4(m2l2 + J)

. (5.2.51)
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Let us estimate the summands in the formula for the perturbation Q in equation
(5.2.45) as follows:

|m2lφ̇ 2 sinφ | ≤ 9m2lH∗
4(m2l2 + J)

≤ 9H∗
4l

,

|m
2
2l2gcosφ sinφ

m2l2 + J
| ≤ m2g ≤ Mg, |m2lμ cosφ

m2l2 + J
| ≤ μ2

l
.

Substituting the inequalities obtained and formula (5.2.43) for H∗ into the formula
for Q and transforming it, we find that

|Q| ≤= F +
μ2

l
+

29U2
0 −18F2

2(U2
0 −9F2)

Mg.

Comparing this inequality with (5.2.49), we conclude that, if the following inequal-
ity

F +
μ2

l
+

29U2
0 −18F2

2(U2
0 −9F2)

Mg ≤
√

mU0

32
√

5M
. (5.2.52)

is true, then (5.2.49) holds.
Now, let us find the conditions that guarantee the fulfillment of inequality

(5.2.50). To do this, we estimate the value of the derivative ṁ′ by means of (5.2.45)
and (5.2.51), and the value of α0/8 using the formulas for the gains α0 and β0 and
the inequality W0 ≤ 4H∗:

|ṁ′(t)| = 2
m2

2l2|φ̇ cosφ sinφ |
m2l2 + J

≤ M

(
7H∗

2(ml2 + J)

)1/2

,

α0

8
=

√
mβ0

8
=

√
mU0

16
√

W0
≥

√
mU0

32
√

H∗
.

The sufficient condition for the fulfillment of (5.2.50) is

7M2H∗
2(ml2 + J)

≤ mU2
0

210H∗
.

Substituting formula (5.2.43) for H∗ into this inequality and transforming it, we
obtain the relation

U2
0

(U2
0 −9F2)2

≤ m(ml2 + J)

217M4g2l2 , (5.2.53)

which guarantees the fulfillment of (5.2.50).
Thus, the following theorem is valid.

Theorem 5.4. Let the parameters of the problem satisfy conditions (5.2.52) and
(5.2.53). Then, the suggested control algorithm brings the carrying mass to the pre-
scribed terminal state in finite time.
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Remark 5.6. Inequalities (5.2.52) and (5.2.53) (sufficient conditions for bringing the
system to the prescribed terminal state) impose rather strong restrictions on the pa-
rameters of the original problem. This can be explained by the fact that some bounds
used for the justification of the algorithm are fairly rough; besides, we always sug-
gested the “worst” behavior of the system subject to the restrictions imposed. In
addition, inequalities (5.2.52) and (5.2.53) guarantee monotone decrease of the Lya-
punov function V k along the trajectory. However, it may happen that the function
V k is not monotone, while the trajectories reach the terminal state. Let us note, how-
ever, that the control algorithm itself does not contain these sufficient conditions and
can be formally applied to problems for which these restrictions on the parameters
are not satisfied. The results of the computer simulation show that this control law
is efficient far beyond the sufficient conditions derived.

5.2.7 Computer simulation results

Let us illustrate how the suggested control algorithm works.
At first, we present the results of the computer simulation for the dynamics of the

system depicted in Fig. 5.7. The equations of its motion (5.2.3) were integrated by
the Runge — Kutta method for the following values of the parameters:

M = m1 = 10kg, m = m2 = 5kg, C = c0 = 10N/m, γ = γ1 = γ2 = 0.2.

The quantity U0 was chosen to be equal to 100N. The system was transferred from
the initial state

x0 = 1m, φ0 = −0.5m, ẋ0 = φ̇0 = 0m/s

to the terminal set x = ẋ = 0, that is, the first mass had to be brought to the origin. In-
tegrating was stopped when the quantity (x2 + ẋ2)1/2, that is the Euclidean distance
between the projection of the current state of the phase trajectory onto subspace
(x, ẋ) and the origin, became less than 0.001.

It is not difficult to see that conditions (5.2.29) (sufficient conditions for bringing
the system to the terminal state) are not fulfilled for the above values of the pa-
rameters. Nevertheless, the trajectory of system (5.2.3) controlled by means of the
proposed algorithm comes to the terminal set in finite time.

The main characteristics of the motion were as follows:

H0 = 143.9kg ·m2/s2, H∗ = 706.8kg ·m2/s2.

Since H0 < H∗, there is no the first stage of the motion.
Figure 5.10 describes the behavior of the phase variables of the system. The thick

and thin lines correspond to the first (carrying) and second masses, respectively. The
solid lines represent the time history of the coordinates x and φ of the masses, the
dashed lines show the time history of their velocities. One can see that the graphs of
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Fig. 5.10 The time dependance of the coordinates and velocities
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Fig. 5.11 The control force and the gain α

the velocity ẋ of the first mass and the velocity φ̇ of the second mass with respect to
the first one are broken lines due to the discontinuity of the control force.

The thin line in Fig. 5.11 shows the dependence of the control force on time, and
the thick line depicts the behavior of the gain α (a step function). Although the gains
α and β in the control law (5.2.7) increase (during integration of the equations the
gains in the control have changed 16 times), the value of the control force u, as can
be seen from the figure, satisfies condition (5.2.5) and has a substantial margin.

Figure 5.12 shows the results of the computer simulation for the system “a load
on a cart”. As before, the solid lines correspond to the coordinates x and φ of the
masses, the dashed lines correspond to the velocities ẋ and φ̇ , the thick and thin lines
correspond to the first (carrying) and second masses, respectively.

As we have already mentioned, the system under consideration has “stagnation”
regions because of dry friction. One can see in Fig. 5.12 that, in the process of
motion, the second mass sticks and remains motionless with respect to the first mass,
again coming in motion on the final stage.
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Fig. 5.12 The system “a load on a cart”: coordinates and velocities

5.3 Piecewise linear control for rheonomic systems

5.3.1 Problem statement

In the following subsections a rheonomic mechanical system is considered, that is,
the system whose kinetic energy is represented by expression (4.1.3).

We assume that the symmetric positive definite matrix A(t,q) ∈C1 is unknown,
its eigenvalues for any t and q belong to the interval [m,M], 0 < m ≤ M, and the
partial derivatives are uniformly bounded with respect to the norm, that is,

mz2 ≤ 〈A(t,q)z,z〉 ≤ Mz2, ∀z ∈ Rn

(5.3.1)

‖ ∂A
∂qi

‖ ≤ D1, ‖∂A
∂ t

‖ ≤ D2, i = 1, . . . ,n, D1,D2 > 0.

The vector function a(t,q) ∈ C1 and the function a0(t,q) ∈ C1 are also assumed to
be unknown and to satisfy the conditions

|
(

∂a
∂q

)�
− ∂a1

∂q
| ≤ D3, |∂a0

∂q
− ∂a1

∂ t
| ≤ D4, D3,D4 > 0. (5.3.2)

The dynamics of the system under consideration is described by equations
(5.1.2).

We still assume that the system is directly controlled with respect to each degree
of freedom, the constraint

|U | ≤U0, U0 > 0, (5.3.3)

is imposed on the n-dimensional control forces vector U , and the generalized forces
Q are unknown and satisfy the condition



200 5 Piecewise linear control for mechanical systems under uncertainty

|Q| ≤ Q0, Q0 > 0. (5.3.4)

The phase variables q and q̇ are assumed to be available for measuring at every time
instant.

Problem 5.4. Suppose the constants m,M,U0, and D j ( j = 1, . . . ,4) are given. It
is required to construct the control that meets constraint (5.3.3) and to specify the
domain of admissible initial states from which system (5.1.2), under the action of
this control, reaches the prescribed terminal rest state (q̄,0) in finite time, what-
ever the matrix A, the vector a, the function a0, and the perturbations Q that satisfy
conditions (5.3.1), (5.3.2), and (5.3.4) be.

5.3.2 Control algorithm for rheonomic systems

Without loss of generality, we shall assume that the final state coincides with the
phase space origin, that is, q̄ = 0 (this can be achieved using an appropriate variables
transformation).

We will construct the control in the form of a linear feedback with respect to the
generalized coordinates and velocities

U = −αkq̇−βkq, αk,βk > 0, (5.3.5)

with the gains in the form of piecewise constant functions. To describe the algorithm
for changing these gains, we will set the sequence of numbers αk and βk.

Let q0 = q(0) and q̇0 = q̇(0) be the initial state of the system. We introduce the
function

W (q, q̇) = Mq̇2 +
(
M2q̇4 +U2

0 q2)1/2
. (5.3.6)

The quantity W (q, q̇) has the dimension of energy and characterizes the distance
between the point (q, q̇) and the terminal state (0,0): the level set W (q, q̇) = C of
the function W in the phase space (q, q̇) ∈ R2n is the ellipsoid 2CMq̇2 +U2

0 q2 = C2,
that contracts to the phase space origin (0,0) as C → 0.

We put

W0 = W (q0, q̇0), Wk =
W0

2k , k = 1,2, . . . . (5.3.7)

The level sets of the function W (q, q̇) corresponding to the constants Wk represent
a family of ellipsoids that contract to zero as k increases. We will denote by t1 the
instant of time when the trajectory hits the ellipsoid W (q, q̇) = W1 for the first time,
and we put q1 = q(t1) and q̇1 = q̇(t1). It will be shown below that, in the case of
the chosen control algorithm, the trajectory of the system tends to the phase space
origin and, therefore, such an instant of time exists. We will denote by t2 the instant
of time when the trajectory of the system hits the ellipsoid W (q, q̇) = W2 for the first
time and we put q2 = q(t2) and q̇2 = q̇(t2), and so on.
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The sequence {tk} defines the instants of time when the coefficients αk and βk in
control (5.3.5) are changed. We will specify the values of these coefficients in the
half-interval of time [tk, tk+1), k = 0,1, . . ., as follows:

βk =
U2

0

2Wk
, α2

k = mβk. (5.3.8)

In the phase space R2n, the trajectory of the mechanical system under considera-
tion comprises segments of the trajectories of different systems of differential equa-
tions: the kth segment joins the points (qk, q̇k) and (qk+1, q̇k+1) and corresponds to a
system of form (5.1.2) and (5.3.5) in which the feedback factors αk and βk are con-
stant and are defined by formula (5.3.8). All the points (qk, q̇k) lie on the respective
ellipsoids W (q, q̇) = Wk, k = 0,1, . . . , (see Fig. 1).

Remark 5.7. As we have already seen before, the function W may not be a monoton-
ically decreasing along the trajectory of the system, despite the fact that the trajec-
tory tends to the phase space origin. Hence, the trajectory may have more than one
point of intersection with some ellipsoids (see Remark 5.1 in Sect. 5.1.2). Besides,
unlike the approach used above for scleronomic systems, the family of ellipsoids in
this case is chosen from the very beginning, so that the initial state of the system lies
on the ellipsoid with an index 0.

Thus, when implementing the algorithm, it is sufficient to measure the actual
values of the phase variables of the system q and q̇ and to store in the memory the
actual value of the index k, i.e., equal to the number of the smallest ellipsoid already
visited by the trajectory of the system. Since, in expression (5.3.6) for the function
W , only the known parameters of the problem appear, the value of the function
W (q(t), q̇(t)) can be calculated at any instant of time. As the index k increases by
unity, the value of W decreases by a factor of two, the gain α increases by a factor
of

√
2, and the gain β increases by a factor of 2.

5.3.3 Justification of the control

We will use Lyapunov’s direct method to validate the algorithm. Consider the kth
segment of the trajectory for a certain fixed k ≥ 0. This segment starts at the point
(qk, q̇k) at the instant of time tk and corresponds to system (5.1.2) and (5.3.5) with
constant feedback factors specified by formulas (5.3.8). We will now show that there
is such an instant tk+1 when the trajectory of the system hits the ellipsoid W (q, q̇) =
Wk+1.

The Lyapunov function

We put
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εk =

√
mβk

4M
(5.3.9)

and introduce the Lyapunov function

V k(t,q, q̇) =
1
2
〈A(t,q)q̇, q̇〉+ βk

2
q2 + εk〈A(t,q)q̇,q〉. (5.3.10)

The expression for the function V k contains the kinetic energy matrix A(t,q) that
is assumed to be unknown. We estimate the value of this function at an arbitrary
point (t,q, q̇) of the augmented phase space in terms of the known quantities. The
relationships

|εk〈Aq̇,q〉| ≤ 1
8
〈Aq̇, q̇〉+2ε2

k 〈Aq,q〉 =
1
8

(
〈Aq̇, q̇〉+ mβk

M2 〈Aq,q〉
)

hold by virtue of the Cauchy inequality and expression (5.3.9), and it follows from
condition (5.3.1) that

mβk

M2 〈Aq,q〉 ≤ mβk

M
q2 ≤ βkq2.

Substituting the inequalities obtained into relationship (5.3.10) and again using
condition (5.3.1), we get the following estimates for the function V k:

V k
−(q, q̇) ≤V k(t,q, q̇) ≤V k

+(q, q̇), (5.3.11)

where

V k
−(q, q̇) =

3
8
(mq̇2 +βkq2), V k

+(q, q̇) =
5
8
(Mq̇2 +βkq2). (5.3.12)

We will now establish some relations connecting the functions V k
+(q, q̇) and

W (q, q̇). Substituting the formula for the gain βk from (5.3.8) into expression
(5.3.12), we obtain for the function V k

+:

V k
+(qk, q̇k) =

10Mq̇2
kWk +5U2

0 q2
k

16Wk
. (5.3.13)

By construction, the point (qk, q̇k) lies on the ellipsoid with number k. This and
definition (5.3.6) of the function W yield

Wk = W (qk, q̇k) = Mq̇2
k +(M2q̇4

k +U2
0 q2

k)
1/2.

Using this equality, the numerator in expression (5.3.13) is reduced to 5W 2
k , which

yields the relationship

V k
+(qk, q̇k) =

5
16

Wk (5.3.14)
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connecting the functions V k
+(q, q̇) and W (q, q̇). This relationship means that, for any

k, the ellipsoid with number k is the level set of the quadratic form V k
+(q, q̇) that

corresponds to the value 5Wk/16.
In accordance with the control algorithm, the point (q(t), q̇(t)), for t ∈ [tk, tk+1),

lies outside the ellipsoid with number (k +1), that is, outside the level set

{(q, q̇) : V k+1
+ (q, q̇) =

5
16

Wk+1},

hence

V k+1
+ (q(t), q̇(t)) >

5
16

Wk+1 =
5

32
Wk, tk ≤ t < tk+1.

The equality βk+1 = 2βk holds by virtue of formulas (5.3.7) and (5.3.8), and the
relationship

Mq̇2 +βkq2 ≥ 1
2

(
Mq̇2 +βk+1q2)

follows from this. Consequently, the estimates

V k
+(q(t), q̇(t)) ≥ 1

2
V k+1

+ (q(t), q̇(t)) ≥ 5
64

Wk (5.3.15)

hold along the kth segment of the trajectory.

The derivative of the Lyapunov function

To calculate the derivative V̇ k, let us introduce the notation

B(t,q) =

(
∂a
∂q

(t,q)

)�
− ∂a1

∂q
(t,q), b(t,q) =

∂a0

∂q
(t,q)− ∂a1

∂ t
(t,q) (5.3.16)

and differentiate the function V k according to (5.1.2) and (5.3.5). We obtain

V̇ k(t,q, q̇) = −〈
[

αkI − εkA+
1
2

∂A
∂ t

− εk

2

n

∑
i=1

qi
∂A
∂qi

]
q̇, q̇〉

(5.3.17)

−εkβkq2 − εkαk〈q̇,q〉+ 〈Q+b, q̇+ εkq〉− εk〈Bq̇,q〉,

where I is the identity matrix.
We will now estimate the individual terms in expression (5.3.17). Using the

Cauchy inequality and relationships (5.3.2) and (5.3.16), we obtain

|εkαk〈q̇,q〉| ≤ αk

4
q̇2 + ε2

k αkq2, |εk〈Bq̇,q〉| ≤ D3

2
q̇2 +

ε2
k D3

2
q2. (5.3.18)

Using the inequality



204 5 Piecewise linear control for mechanical systems under uncertainty

|2εk〈q̇,q〉| ≤ 1
16

q̇2 +16ε2
k q2,

for εk and relationship (5.3.15), we estimate the quantity |q̇+ εkq| as follows:

(q̇+ εkq)2 ≤ 17
16

q̇2 +17ε2
k q2 ≤ 17

16M
(Mq̇2 +βkq2) =

17
10M

V k
+(q, q̇)

=
17

10MV k
+(q, q̇)

(
V k

+(q, q̇)
)2

≤ 1088
50MWk

(
V k

+(q, q̇)
)2

,

whence, taking into account the second expression in (5.3.12), we obtain

|〈Q+b, q̇+ εkq〉| ≤ |Q+b|
√

17
2MWk

(
Mq̇2 +βkq2) . (5.3.19)

The relationship

|εk

2

n

∑
i=1

qi
∂A
∂qi

| ≤
√

nD1

2
εk|q| (5.3.20)

holds by virtue of (5.3.1) and the inequality ∑n
i=1 |qi| ≤

√
n|q|.

Substituting inequalities (5.3.18)–(5.3.20) into expression (5.3.17) and making
use of conditions (5.3.1), (5.3.2), and (5.3.4), we arrive at the following estimate for
the derivative of the function V k along the kth segment of the trajectory:

V̇ k(t,q, q̇) ≤−
(

εkβk − ε2
k αk −βk

√
17

2MWk
(Q0 +D4)−

ε2
k D3

2

)
q2 −

(5.3.21)

−
(

3αk

4
− εkM− D2 +D3

2
−
√

17M
2Wk

(Q0 +D4)−
√

nD1

2
εk|q|

)
q̇2.

We will now show that, under certain additional assumptions, the derivative V̇ k

will be negative definite. We put

Ω = min

{√
15MU0

8
√

nD1
,

mU2
0

32D2
2

,
mU2

0

32D2
3

}

and introduce the sets

G = {(q, q̇) ∈ R2n : W (q, q̇) ≤ Ω},

Gk =

{
(q, q̇) : |q| <

√
5
3

Wk

U0

}
, k = 0,1 . . . .

The inequality
3q2

kU2
0 ≤ 5W 2(qk, q̇k)
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results from the definition (5.3.6) of the function W . From this and by virtue of
relationships (5.3.7), it follows that the point (qk, q̇k) lies in the domain Gk.

Lemma 5.9. Suppose the initial point (qk, q̇k) of the kth segment belongs to the set
G, the matrix A, the vector functions Q and a, and the function a0 satisfy conditions
(5.3.1), (5.3.2), and (5.3.4), and

Q0 +D4 ≤
√

m
17M

U0

8
. (5.3.22)

Then, on the part of the trajectory that starts at the point (qk, q̇k) and lies outside
the ellipsoid W (q, q̇) = Wk+1 and in the set Gk, the derivative of the function V k

calculated by virtue of system (5.1.2), (5.3.5), and (5.3.8) satisfies the inequality

V̇ k(t,q, q̇) ≤− 3αk

40M
V k(t,q, q̇). (5.3.23)

Proof. By the condition of the lemma, W (qk, q̇k) ≤ Ω and, consequently,

D2
2 ≤

mU2
0

32Wk
, D2

3 ≤
mU2

0

32Wk
.

These inequalities and definitions (5.3.8) and (5.3.9) of the numbers εk,αk, and βk

yield
D2 +D3

2
≤ αk

4
,

ε2
k D3

2
≤ αkβk

64M
. (5.3.24)

From condition (5.3.22) and formulas (5.3.8), we obtain√
17M
2Wk

(Q0 +D4) ≤ αk

8
, βk

√
17

2MWk
(Q0 +D4) ≤ αkβk

8M
. (5.3.25)

By virtue of relationships (5.3.8) and (5.3.9), we have

εkM =
αk

4
, εkβk − ε2

k αk =
αkβk

4M

(
1− m

4M

)
≥ 3αkβk

16M
. (5.3.26)

The inequality W (qk, q̇k) ≤ Ω yields

D1 ≤
√

15MU0

8
√

nWk
.

Since the section of the trajectory under consideration lies in the set Gk, we have

εk|q| ≤
√

5αkWk

4
√

3MU0

and, consequently, √
nD1

2
εk|q| ≤ 5αk

64
. (5.3.27)
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Substituting inequalities (5.3.24)–(5.3.27) into (5.3.21) and using equalities (5.3.12),
we arrive at the relationships

V̇ k(t,q, q̇) ≤− 3αk

64M
(Mq̇2 +βkq2) ≤− 3αk

40M
V k

+(q, q̇),

whence the assertion of the lemma follows by virtue of estimates (5.3.11). ��
Lemma 5.10. Suppose the matrix A, the vector-functions Q and a, and the function
a0 satisfy conditions (5.3.1), (5.3.2), (5.3.4), and (5.3.22), and that (qk, q̇k) ∈ G.
Then, inequality (5.3.23) holds along the kth segment of the trajectory.

Proof. It has already been established above that (qk, q̇k)∈Gk. By virtue of Lemma 5.9,
to prove Lemma 5.10, it is sufficient to show that the kth segment of the trajectory
lies wholly in the domain Gk.

Let us assume the opposite. Suppose t ′ is the first instant when the trajectory
leaves the domain Gk, that is,

q2(t ′) =
5W 2

k

3U2
0

. (5.3.28)

On the other hand, it follows from definition (5.3.9) of the coefficient εk and from
relationships (5.3.11) and (5.3.12) that

ε2
k q2(t ′) =

m
16M2 βkq2(t ′) ≤ m

16M2 (mq̇2(t ′)+βkq2(t ′))

=
m

6M2 V k
−(q(t ′), q̇(t ′)) ≤ m

6M2 V k(t ′,q(t ′), q̇(t ′)).

Since the trajectory segment under consideration lies in the domain Gk when
tk ≤ t < t ′, the function V k, by virtue of Lemma 5.9, decreases along this segment.
Hence, using relationship (5.3.14), we continue the latter estimate as follows:

ε2
k q2(t ′) <

m
6M2 V k(tk,q(tk), q̇(tk)) ≤ m

6M2 V k
+(q(tk), q̇(tk)) =

5m
96M2 Wk.

Consequently,

q2(t ′) <
5mWk

96M2ε2
k

=
5W 2

k

3U2
0

.

This inequality contradicts condition (5.3.28). ��
It follows from the assertions of Lemmas 5.9 and 5.10 that, outside the ellipsoid

W (q, q̇) = Wk+1, the function V k strictly decreases along the trajectory of system
(5.1.2), (5.3.5), and (5.3.8), and, by virtue of relationships (5.3.11)–(5.3.14), there
exists an instant of time tk+1 when the trajectory hits the ellipsoid with number k+1.

It is clear that, if the initial state of the system (q0, q̇0) belongs to the set G, then
the null ellipsoid W (q, q̇) =W0 and, together with it, all the ellipsoids W (q, q̇) = Wk,
k = 1,2, . . . , lie entirely in this set. Consequently, all the points (qk, q̇k) also belong
to G and the assertions of Lemmas 5.9 and 5.10 are applicable to any of the segments
comprising the trajectory of the system.
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Estimation of the time of motion

We will now show that the system reaches the phase space origin in finite time.
In order to estimate the time of motion along the kth segment of the trajectory, we
integrate inequality (5.3.23) and obtain

tk+1 − tk ≤ 40M
3αk

log
V k(tk,qk, q̇k)

V k(tk+1,qk+1, q̇k+1)
. (5.3.29)

By virtue of relationships (5.3.8) and (5.3.11)–(5.3.14), we have

V k(tk,qk, q̇k) ≤ 5
16

Wk,

V k(tk+1,qk+1, q̇k+1) ≥V k
−(qk+1, q̇k+1) =

3
8

(
mq̇2

k+1 +βkq2
k+1

)
≥ 3m

16M

(
Mq̇2

k+1 +βk+1q2
k+1

)
=

3m
10M

V k+1
+ (qk+1, q̇k+1) =

3m
64M

Wk.

Substituting these relationships and expression (5.3.8) for αk into inequality
(5.3.29), we obtain the following estimate for the time of motion from the point
(qk, q̇k) up to the point (qk+1, q̇k+1):

tk+1 − tk ≤ τ2−k/2, k = 0,1, . . . ,

τ =
40M

√
2W0

3
√

mU0
log

20M
3m

.

The total time T∗ of motion of the system up to the terminal state does not exceed
the sum of the series

T∗ ≤ τ
∞

∑
k=0

2−k/2 =
τ
√

2√
2−1

. (5.3.30)

Consequently, the proposed control algorithm brings system (5.1.2) to the phase
space origin in finite time.

We will now verity that condition (5.3.3) is satisfied along the trajectory of the
motion. to that end, we estimate the modulus of the control force vector along
the kth segment of the trajectory using the Cauchy inequality and relationships
(5.3.5),(5.3.8),(5.3.11), and (5.3.12) as follows:

|U |2 ≤ 2(α2
k q̇2 +β 2

k q2) = 2βk(mq̇2 +βkq2) =
16
3

βkV
k
−(q, q̇) ≤ 16

3
βkV

k(t,q, q̇).

Since the function V k decreases in the half-interval [tk, tk+1), we can use relationship
(5.3.14) to continue the estimate as follows:

|U |2 ≤ 16
3

βkV
k(tk,qk, q̇k) ≤ 16

3
βkV

k
+(qk, q̇k) =

5
3

βkWk =
5
6

U2
0 ,
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whence inequality (5.3.3) follows.

Modification of the algorithm

It follows from the above consideration that the system reaches the point (0,0) in
finite time if the initial state belongs to the ellipsoid G. Let us note that any point of
the form (q̄,0) in the phase space of the system can be chosen as a terminal state.
Then, the set of ellipsoids on which the feedback factors change should to be shifted
by the vector q̄ while the parameters of the ellipsoids remain as before. We will now
show that, using this fact and modifying the proposed algorithm, it is possible to
extend the set of permissible initial states considerably.

Suppose that

(q0, q̇0) ∈ G∗, G∗ =

{
(q, q̇) ∈ R2n : q̇2 ≤ Ω

2M

}
. (5.3.31)

We first transfer the system to the point q = q0, q̇ = 0. to that end, we make the
change of variables q′ = q−q0. In the new variables q′ and q̇′ the set

G′ = {(q′, q̇′) : W (q′, q̇′) ≤ Ω},

that is analogous to the set G considered above, is an ellipsoid with its centre at
the point q′ = q̇′ = 0. The initial state of the system, that is, the point q′0 = 0, q̇′0 =
q̇0, belongs to this set by virtue of inclusion (5.3.31) and definition (5.3.6) of the
function W . Consequently, the control law

U = −αkq̇′ −βkq′

with the above algorithm for changing the coefficients αk and βk brings the system
in finite time to the centre of this ellipsoid, that is, to the point q = q0, q̇ = 0.

In the phase space (q, q̇) we choose a finite sequence of points (q̄ j,0), j =
1,2, . . . ,J, such that q̄1 = q0, q̄J = 0, and

|q̄ j − q̄ j−1| ≤ Ω
U0

. (5.3.32)

We transfer the system from the point (q̄1,0) = (q0,0) to the point (q̄J ,0) =
(0,0), that is, to the phase space origin, in J−1 steps applying the control algorithm
again each time. The point (q̄ j,0) corresponds to the initial state of the system at
the jth step and the point (q̄ j+1,0) corresponds to the terminal state. It follows from
inequality (5.3.32) and definition (5.3.6) of the function W that, for any j, the point
(q̄ j,0) belongs to the ellipsoid

G j = {(q, q̇) : W (q− q̄ j+1, q̇) ≤ Ω}.
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This ellipsoid is the set of admissible initial states of the system that will reach to
the terminal state (q̄ j+1,0) at the jth step.

Consequently, the control law

U = −αkq̇−βk(q− q̄ j+1)

with the presented above algorithm for changing the gains αk and βk transfers the
system from the point (q̄ j,0) to the center of this ellipsoid, that is, to the point
q = q̄ j+1, q̇ = 0, in finite time. Hence, after J −1 steps, system (5.1.2) reaches the
final state (0,0)).

The following theorem sums up the above reasoning.

Theorem 5.5. Suppose the matrix A, the vector functions Q and a, and the function
a0 satisfy conditions (5.3.1), (5.3.2), (5.3.4), and (5.3.22), and (q0, q̇0) ∈ G∗. Then,
the proposed control law transfers system (5.1.2) from the initial state (q0, q̇0) to the
phase space origin in finite time and meets constraint (5.3.3).

Remark 5.8. As has already been mentioned, the approach used here is an exten-
sion on the rheonomic systems of the approach developed above for scleronomic
systems. In the scleronomic case, the set of admissible initial states coincides with
all phase space, that is, the system is brought from an arbitrary initial state to the
prescribed terminal state. In the rheonomic case, the set of admissible initial states
(5.3.31) is a bounded set in the phase space R2n because the condition

q̇2
0 ≤

Ω
2M

is imposed on the initial velocities.

Remark 5.9. One can note that only the known parameters of the problem appear
in the definition of the set G∗ and in the expressions for the function W and the
feedback factors αk and βk. To implement the algorithm, it is sufficient to know
the values of m,M,U0, and the phase variables of the system at each current instant
of time. The constants D1,D2, and D3 appear only in the conditions determining
the set of permissible initial states G∗. These conditions, as well as the constraints
on the vector function a(t,q), function a0(t,q), and disturbances Q in relationships
(5.3.22), are only sufficient conditions for transferring the system to the terminal
state and guarantee monotone decrease of the Lyapunov function V k along the tra-
jectory. However, it may happen that the function V k is not monotone and tends
to zero, as the trajectories tend to the terminal state (see Remark 5.3 in Sect. 5.1.5).
The algorithm proposed can, therefore, be practically applied also in the cases where
constraints (5.3.22) are not satisfied and the initial state of the system does not be-
long to the set G∗. The computer simulation of the dynamics of various mechanical
systems shows that the algorithm is also effective beyond the limits of the sufficient
conditions that have been presented.
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Fig. 5.13 The angular coordinate of the rod

5.3.4 Results of simulation

We will illustrate the work of the algorithm through numerical simulation of the
rotation of a body with the moment of inertia depending on time. Let us consider
a system consisting of a weightless bar and a particle of unknown mass m0 that
moves uncertainly along the bar (see Fig. 4.1). We assume that the bar rotates in a
horizontal plane about one of its ends under the action of a control torque U and an
uncertain perturbing torque Q. With the notations accepted in Sect. 4.1 the equations
of motion of such a system can be written as follows:

m0l2(t)q̈+2m0l(t)l̇(t)q̇ = Q+U. (5.3.33)

In this case, the moment of the dry friction forces that acts on the bar serves as
the unknown generalized force Q. In the simulation, the constants m,M, and U0, the
mass m0, the perturbation Q, and the law of motion of the point mass along the bar
l(t) are taken as follows:

m = 0.25kg, M = 2.25kg, U0 = 10N ·m,

Q = −0.1sign(q̇)H ·m, m0 = 1kg, l(t) = 1+
1
2

sinωt m.

Using the proposed control law, the bar is transferred from the initial state q0 =
1rad and q̇0 = 1rad/s into the terminal state q = q̇ = 0. Integration of (5.3.33) was
stopped when the Euclidean distance from the actual point of the trajectory to the
terminal point in the phase space (q, q̇) ∈ R2 became less than 0.01.

The results of the simulation for the case where ω = 1s−1 are shown in Figs. 5.13
and 5.14. The solid curves correspond to the time histories of the angular coordinate
in Fig. 5.13 and the absolute value of the control torque |U | (the discontinuous line)
in Fig. 5.14. The total time of motion is found to be equal to T∗ = 3.98s.



5.3 Piecewise linear control for rheonomic systems 211

0
0

5

2 4

10 |U |

t

Fig. 5.14 The absolute value of the control torque
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Fig. 5.15 The time of motion and the maximum magnitude of the control torque

Figure 5.14 shows that that constraint |U | ≤ 10 is satisfied with a considerable
margin. Therefore, it is reasonable to simulate the motion of the system controlled
by law (5.3.5) with the feedback factors αk and βk twice than those prescribed by
algorithm (5.3.8). The time history of the angular coordinate of the bar and the
absolute value of the control torque |U |, for such control law, are represented by the
dashed curves in Figs. 5.13 and 5.14. In this case, the time of motion was reduced
to T∗ = 2.53s and, as previously, the control satisfies constraint (5.3.3).

In order to estimate the efficiency of the control algorithm when condition
(q0, q̇0)∈G∗ of the above theorem is violated, we simulated the dynamics of system
(5.3.33) for different values of ω . The solid curve in Fig. 5.15 depicts the depen-
dence of the overall time of motion T∗ up to the terminal state on the parameter ω
for ω ∈ [0,20]. In this case,

Ȧ(t) = m0ω(1+
1
2

sinωt)cosωt,
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and the constant D2 from constraints (5.3.1) satisfies the inequality ω ≤ D2. Con-
sequently, Ω ≤ mU2

0 /32ω2 and, in the case of the chosen values of the system
parameters, for a large part of the interval 0 ≤ ω ≤ 20s−1, the initial state q0 = 1rad
and q̇0 = 1rad/s does not lie in the domain G∗. Nevertheless, the proposed control
law does bring the system to the terminal state.

The dashed curve in Fig. 5.15 depicts the dependence of the maximum magni-
tude of the control torque U that is realized when the algorithm is applied, on the
parameter ω . One can see that constraints (5.3.3) are satisfied for all values of ω
considered.



Chapter 6
Continuous feedback control for mechanical
systems under uncertainty

In the aforegoing chapters, two approaches to constructing control algorithms have
been elaborated that enable a Lagrangian mechanical system to be steered to a
given terminal state in finite time, on the assumption that the control forces are
bounded and the system is subject to uncontrollable perturbations. The steering may
be achieved through approaches based on decomposition methods, as well as on a
linear feedback with piecewise constant coefficients. By using these and some other
methods [95, 96], one obtains control laws that are described, in general, by discon-
tinuous functions of time.

In this chapter, an approach to constructing continuous feedback control laws is
proposed that may be used to steer a mechanical system to a terminal state in finite
time. The control law proposed may be interpreted as a linear feedback with the
gains being continuous functions of the phase variables. The gains increase to in-
finity as the trajectory approaches the terminal state, nevertheless the control forces
remain bounded and satisfy the imposed constraint.

The results presented in this chapter were published previously in [10, 11, 12,
13].

6.1 Feedback control for scleronomic system with a given matrix
of inertia

6.1.1 Problem statement

We return now to the consideration of a scleronomic mechanical system governed by
Lagrange’s equations (5.1.2). As before, the kinetic energy of the system is given
by (5.1.1). We keep also the main assumptions of Sect. 5.1.1. Namely, the vector
of unknown disturbances Q(q, q̇) is an arbitrary vector-valued function satisfying
some existence conditions for the solution of system (5.1.2) and meeting constraint
(5.1.3). The vector of control forces U is also bounded and satisfies (5.1.4). The

213
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matrix A(q) is a continuously differentiable symmetric positive definite matrix of
the kinetic energy, its eigenvalues and partial derivatives are constrained by (5.1.5)
and (5.1.6). The phase variables q and q̇ are assumed to be available for measuring
at every instant of time.

Let us suppose, at first, that the matrix of inertia A(q) is given.

Problem 6.1. Construct a control U(q, q̇) as a continuous vector-valued function of
the phase variables (q, q̇)∈R2n\{(q̄,0)} that satisfies condition (5.1.4) and specify a
domain of admissible initial states such that any trajectory of system (5.1.2) starting
in that domain reaches a prescribed terminal state (q̄,0) in finite time, whatever the
perturbations Q(q, q̇) satisfying condition (5.1.3) be.

Let us note that the terminal state is a state of rest of the unperturbed system
(5.1.2), i.e., in case where U = 0 and Q = 0. Without loss of generality, we assume
that q̄ = 0, that is, the terminal state coincides with the origin of the phase space.
This may be achieved by a suitable choice of the generalized coordinates.

6.1.2 Control function

We define the control as follows:

U(q, q̇) = −α(q, q̇)A(q)q̇−β (q, q̇)q, (6.1.1)

where

α(q, q̇) =

√
β (q, q̇)

M
, β (q, q̇) =

3U2
0

8V (q, q̇)
, (6.1.2)

V (q, q̇) = T +
1
2

β (q, q̇)q2 +
1
2

α(q, q̇)〈A(q)q̇,q〉, q2 + q̇2 > 0. (6.1.3)

Relationships (6.1.2) and (6.1.3) define the functions α(q, q̇),β (q, q̇), and V (q, q̇)
implicitly.

The function V (q, q̇) plays a principal role in the present investigation. Given this
function, one can find the feedback factors α(q, q̇) and β (q, q̇) through the above re-
lations, and, consequently, the control U(q, q̇) according to formula (6.1.1). In addi-
tion, the function V has the dimension of energy and serves as a Lyapunov function
for the system under consideration. It tends to zero as the trajectory approaches
the terminal state. Since the function V (q, q̇) appears in the denominators in rela-
tionships (6.1.2), the feedback factors tend to infinity as the trajectory approaches
the origin. Nevertheless, the proposed control does not go beyond the admissible
boundaries.

Theorem 6.1. In the domain R2n \ {(0,0)}, there exist continuously differentiable
functions α(q, q̇),β (q, q̇), and V (q, q̇) satisfying (6.1.2) and (6.1.3) and such that
V > 0.
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Proof. Substituting the expressions for the functions α(q, q̇) and β (q, q̇) into (6.1.3)
and transforming equation (6.1.3), we obtain

16V 2(q, q̇) = 16T (q, q̇)V (q, q̇)+3U2
0 q2 +

2
√

6√
M

〈A(q)q̇,q〉V 1/2(q, q̇). (6.1.4)

We introduce the notation

x = V 1/2(q, q̇), ξ (q, q̇) = 4T 1/2(q, q̇),
(6.1.5)

η(q, q̇) =
2
√

6U0√
M

〈A(q)q̇,q〉, γ(q, q̇) =
√

3U0|q|

and rewrite (6.1.4) in the form

F(q, q̇,x) = 16x4 −ξ 2(q, q̇)x2 −η(q, q̇)x− γ2(q, q̇) = 0. (6.1.6)

Let us consider this equality as an equation in x. We will show that, for any
q, q̇ ∈ R2n \ {(0,0)}, there exists a unique positive root of equation (6.1.6), and its
multiplicity is one.

By the Cauchy inequality and condition (5.1.5), we have

η2(q, q̇) =
24U2

0

M
〈A(q)q̇,q〉2 ≤ 24U2

0

M
T (q, q̇)〈A(q)q,q〉

≤ 24U2
0 T (q, q̇)q2 = ξ 2(q, q̇)γ2(q, q̇),

whence it follows that
|η | ≤ γξ . (6.1.7)

We also note that, by formulas (6.1.5) and condition (5.1.2), the identity ξ (q, q̇) =
γ(q, q̇) = 0 cannot hold in the domain R2n \{(0,0)}.

Considering, for a while, the coefficients ξ ,η , and γ to be fixed, let us prove the
following auxiliary proposition.

Lemma 6.1. Every equation of the form

f (x) = 16x4 −ξ 2x2 −ηx− γ2 = 0, (6.1.8)

where the coefficients ξ ,η , and γ2 are constant and satisfy the inequalities (6.1.7)
and ξ 2 + γ2 > 0, has a unique positive real root, and its multiplicity is equal to one.

Proof. At first, we will prove that, if ξ ,γ > 0, then there exist exactly two real roots,
one positive and one negative, and the positive root has multiplicity one.

Since f (0) = −γ2 < 0 and f (x) > 0 for large absolute values of x, equation
(6.1.8) must have a positive and a negative roots. Let us verify that there are no other
real roots. Suppose the contrary: there exist parameters γ >,ξ 0 and η satisfying
(6.1.7) for which equation (6.1.8) has more than two real roots, i.e., three or four.
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Then, let us show that there exist parameters γ >,ξ 0 and η satisfying (6.1.7) for
which equation (6.1.8) has a multiple real root.

Obviously, if there are exactly three real roots, one of them is multiple.
Now, suppose that the coefficients ξ1,η1, and γ1 are such that |η1| ≤ ξ1γ1 and

equation (6.1.8) has four real roots. For sufficiently large γ2, equation (6.1.8) with
coefficients ξ1,η1, and γ2 has exactly two real roots and |η1| ≤ ξ1γ2. Consequently,
as the coefficient γ varies from γ1 to γ2, the number of roots changes, and there
exists γ3 at which a multiple root x0 of equation (6.1.8) appears. Obviously, this γ3

also satisfies condition (6.1.7).
Since x0 is a multiple root of the equation f (x) = 0 with coefficients ξ1,η1, and

γ3, it is also a root of the equation f ′(x) = 0 with coefficients ξ1 and η1 that is

f ′(x) = 64x3 −2ξ 2
1 x−η1 = 0. (6.1.9)

We multiply equation (6.1.8), where ξ = ξ1, η = η1, and γ = γ3, by −4, and
equation (6.1.9) by x, and add the resulting equations together. This gives the equa-
tion

2ξ 2
1 x2 +3η1x+4γ2

3 = 0 (6.1.10)

that must have x0 as a root. By condition (6.1.7) and the inequalities ξ1,γ3 > 0,
the discriminant D = 9η2

1 − 32ξ 2
1 γ2

3 of equation (6.1.10) is negative, and therefore
equation (6.1.7) has no real roots. This contradiction proves the lemma in the case
where ξ ,γ > 0.

Now, consider the case where ξ = 0 or γ = 0. If ξ = 0, then, by equation (6.1.7),
η = 0, and equation (6.1.8) becomes x4 = γ2/16, γ > 0, that has a single positive
root, and the multiplicity of the root is one.

In the case where γ = 0, equation (6.1.7) implies that η = 0, and equation (6.1.8)
reduces to the equation x4 = ξ 2x2, ξ > 0, that has three real roots. One of these
roots, namely x = 0, has multiplicity two, and the single positive root is of multi-
plicity one, which completes the proof of the lemma. ��

We now return to the proof of Theorem 6.1, considering the coefficients ξ ,η ,
and γ as functions of the phase variables q and q̇. It follows from the statement of
Lemma 6.1 that, for any (q, q̇) ∈ R2n \{(0,0)}, the polynomial equation (6.1.6) has
a unique positive real root x0(q, q̇) and its multiplicity is one. Consequently,

∂F
∂x

(q, q̇,x0(q, q̇)) �= 0, (q, q̇) ∈ R2n \{(0,0)},

and, by the Implicit Function Theorem, V (q, q̇) = x2
0(q, q̇). Then the function

V (q, q̇) = x2
0(q, q̇), and together with it also the functions α(q, q̇) and β (q, q̇) de-

fined by (6.1.2), are continuously differentiable in the domain R2n \ {(0,0)}, and
V > 0. The theorem is proved. ��

Bearing in mind the statement of Theorem 6.1 and formula (6.1.1), we conclude
that the control function U(q, q̇) is defined and continuously differentiable in the
domain R2n \{(0,0)}.
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The justification of the proposed control law is based on Lyapunov’s second
method. The peculiarity of the investigation is that we do not express the function
V (q, q̇) as well as the functions α(q, q̇) and β (q, q̇) in an explicit form. We establish
their properties and carry out all other necessary reasoning for the functions defined
implicitly.

6.1.3 Justification of the control

We shall now find the domain of admissible initial states and show that any trajectory
of system (5.1.2) and (6.1.1) beginning in that domain will reach the origin in finite
time. This will be done by methods of the theory of stability, and we will show that
the function V is a Lyapunov function of the system under consideration.

Let us find upper and lower bounds for V (q, q̇). Using the Cauchy inequality,
formulas (6.1.2), and conditions (5.1.5), we obtain

|α(q, q̇)〈A(q)q̇,q〉| ≤ |α(q, q̇)|(2T (q, q̇)〈A(q)q,q〉)1/2

≤ T (q, q̇)+
1
2

α2(q, q̇)〈A(q)q,q〉 ≤ T (q, q̇)+
1
2

β (q, q̇)q2,

which implies that
V−(q, q̇) ≤V (q, q̇) ≤ 3V−(q, q̇), (6.1.11)

where

V−(q, q̇) =
1
4

[
2T (q, q̇)+β (q, q̇)q2] . (6.1.12)

Let us substitute expressions (6.1.2) and (6.1.12) for the functions β (q, q̇) and
V−(q, q̇) into estimates (6.1.11). After some reduction, we obtain the inequalities

ξ (q, q̇) ≤ 32V 2(q, q̇) ≤ 3ξ (q, q̇), ξ (q, q̇) = 16T (q, q̇)V (q, q̇)+3U2
0 q2,

whence, solving for V (q, q̇), we arrive at the following limits (for brevity, we omit
the arguments q and q̇):

1
4

[
T +

(
T 2 +

3U2
0 q2

2

)1/2
]
≤V ≤ 3

4

[
T +

(
T 2 +

U2
0 q2

2

)1/2
]

.

Using conditions (5.1.5), we finally obtain

1
8

[
mq̇2 +

(
m2q̇4 +6U2

0 q2)1/2
]
≤V (q, q̇)

(6.1.13)
≤ 3

8

[
Mq̇2 +

(
M2q̇4 +2U2

0 q2)1/2
]
.
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Let us note that the functions of the phase variables q and q̇ on the right- and left-
hand sides of (6.1.13) are expressed explicitly in terms of the known parameters of
the problem. It follows from (6.1.13) that the function V (q, q̇) can be defined as zero
at (0,0) while still remaining continuous, but it will not be differentiable there (see,
for example, the graph of the function V for a mechanical system consisting of a
point mass moving along a horizontal line presented in Fig 6.3).

We will now evaluate the derivative V̇ . Differentiating the functions α(q, q̇),β (q, q̇),
and V (q, q̇) along trajectories of system (5.1.2) and (6.1.1), we obtain

α̇ = − α
2V

V̇ , β̇ = −β
V

V̇ ,
(6.1.14)

V̇ = Ṫ +β 〈q, q̇〉+αT +
α
2
〈 d

dt
Aq̇,q〉− V̇

2V

(
βq2 +

α
2
〈A(q)q̇,q〉

)
.

By the theorem on the variation of the kinetic energy of a scleronomic Lagrangian
system, and by the definition of the vector-valued function U(q, q̇), we have

Ṫ = 〈u+Q, q̇〉 = −2αT −β 〈q̇,q〉+ 〈Q, q̇〉. (6.1.15)

It follows from expression (5.1.1) for the kinetic energy and equation (5.1.2) that

d
dt

Aq̇ =
d
dt

∂T
∂ q̇

=
∂T
∂q

+U +Q. (6.1.16)

Substituting (6.1.15), (6.1.16), and (6.1.1) into the last equation of (6.1.14), we ob-
tain the following relation for the derivative of the function V (q, q̇):

V̇ = −α
[

T +
α
2
〈A(q)q̇,q〉+ β

2
q2
]

+
α
4
〈
(

n

∑
i=1

∂A
∂qi

qi

)
q̇, q̇〉

(6.1.17)

− V̇
2V

[
βq2 +

α
2
〈A(q)q̇,q〉

]
+ 〈Q, q̇+

α
2

q〉.

Let us transform and estimate the separate terms in the right-hand side of
(6.1.17). It follows from definitions (6.1.2) and (6.1.3) of the functions α(q, q̇) and
V (q, q̇) that

α
[

T +
a
2
〈A(q)q̇,q〉+ β

2
q2
]

= αV =

√
3U0

2
√

2M
V 1/2. (6.1.18)

By the Cauchy inequality, condition (5.1.5) and relations (6.1.2), (6.1.11), and
(6.1.12), we have

∣∣∣q̇+
α
2

q
∣∣∣2 = q̇2 +

α2

4
q2 +α〈q̇,q〉 ≤ 5

4
(q̇2 +α2q2)

(6.1.19)
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≤ 5
4

(
2
m

T +
β
M

q2
)
≤ 5

m
V− ≤ 5

m
V.

Hence, by condition (5.1.3), we have the inequality

|〈Q, q̇+
α
2

q〉| ≤ Q0

√
5
m

V 1/2. (6.1.20)

Using condition (5.1.6) and the estimate

n

∑
i=1

|qi| ≤
√

n|q|, (6.1.21)

we can conclude that ∥∥∥ n

∑
i=1

∂A
∂qi

qi

∥∥∥≤√
nD|q|. (6.1.22)

Relations (5.1.5), (6.1.2), (6.1.11), and (6.1.12) imply the following inequalities:

q2 ≤ 4
β

V− ≤ 4
Mα2 V, q̇2 ≤ 2

m
T ≤ 4

m
V− ≤ 4

m
V. (6.1.23)

Hence, by inequality (6.1.22), we obtain

|α
4
〈
(

n

∑
i=1

∂A
∂qi

qi

)
q̇, q̇〉| ≤ α

4

√
nD|q|q̇2 ≤ 2

√
nD

m
√

M
V 3/2. (6.1.24)

Substituting relations (6.1.18), (6.1.20), and (6.1.24) into expression (6.1.17) for
the derivative V̇ (q, q̇) and transposing the last term in V̇ (q, q̇) to the left-hand side,
we arrive at the inequality

BV̇ ≤−δ (q, q̇)V 1/2, (6.1.25)

where

δ (q, q̇) =

√
3U0

2
√

2M
−Q0

√
5
m
− 2

√
nC

m
√

M
V (q, q̇), (6.1.26)

B(q, q̇) = 1+
β (q, q̇)

2V (q, q̇)
q2 +

α(q, q̇)

4V (q, q̇)
〈A(q)q̇,q〉 =

1
V

[
T +βq2 +

3a
4
〈A(q)q̇,q〉

]
[the last equality in the chain is obtained using (6.1.3)].

By the Cauchy inequality, formula (6.1.2), and condition (5.1.5), we have

|3
4

α〈A(q)q̇,q〉| ≤ 1
2

T (q, q̇)+
9α2

16
〈Aq,q〉 ≤ 1

2
T +

3β
4

q2,

|3
4

α〈A(q)q̇,q〉| ≤ 3
2

T (q, q̇)+
3α2

16
〈Aq,q〉 ≤ 2T +

β
2

q2.
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Using the first inequality to estimate the function B(q, q̇) from below and the second
to estimate it from above, we obtain

0 <
1

4V

(
2T +βq2)≤ B(q, q̇) ≤ 3

V

[
T +

β
2

q2 +
α
2
〈A(q)q̇,q〉

]
= 3. (6.1.27)

Since B(q, q̇) > 0, it follows that the sufficient condition for the derivative V̇ (q, q̇)
to be negative is that the expression in parentheses on the right-hand side of inequal-
ity (6.1.25) should be negative. Let us put

V (t) = V (q(t), q̇(t)), B(t) = B(q(t), q̇(t)), δ (t) = δ (q(t), q̇(t)) (6.1.28)

and rewrite inequality (6.1.25) in the form

V̇ (t) ≤−δ (t)
B(t)

V 1/2(t). (6.1.29)

Theorem 6.2. Suppose the condition

δ (t0) > 0 (6.1.30)

holds at the initial instant of time t0. Then, the derivative of the function V along the
trajectories of system (5.1.2) and (6.1.1) satisfies the inequality

V̇ (t) ≤− δ (t0)
3

V 1/2(t), t ≥ t0. (6.1.31)

Proof. It follows from relations (6.1.27) and (6.1.29) and from condition (6.1.30)
that

V̇ (t0) ≤− δ (t0)
B(t0)

V 1/2(t0) ≤− δ (t0)
3

V 1/2(t0) < 0.

Consequently, for t > t0 in a sufficiently small neighborhood of the point t0, the
inequality V (t) < V (t0) holds. This inequality turns out to be true for all t > t0.

Suppose the contrary. Let t ′ > t0 be the first instant of time when the function
V again takes the value V (t0). Then V (t) < V (t0) for t ∈ (t0, t ′). Hence, we con-
clude from definitions (6.1.26) and (6.1.28) of the function δ (t) and from condition
(6.1.30) that

δ (t) > δ (t0) > 0. (6.1.32)

Thus, using (6.1.29), we obtain the inequality V̇ (t) < 0 for t ∈ (t0, t ′).
On the other hand, since V (t0) = V (t ′), it follows by Lagrange’s Theorem that

there exists a point t ′′ ∈ (t0, t ′) such that V̇ (t ′′) = 0. This contradiction shows that
V (t) < V (t0) for t > t0.

The inequality just proved implies the validity of the estimate δ (t)> δ (t0)> 0 for
all t > t0, whence, by relations (6.1.27) and (6.1.29), we obtain inequality (6.1.31).
��
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By Theorem 4.9, it follows from relations (6.1.13) and (6.1.31) that the value of
the function V along the trajectory of system (5.1.2) and (6.1.1) tends to zero, while
the trajectory itself approaches the origin.

To estimate the time of motion, let us integrate inequality (6.1.31) over the inter-
val [t0, t]. We obtain

t − t0 ≤ 6
δ (t0)

[
V 1/2(t0)−V 1/2(t)

]
.

Taking into account that V (t) → 0 as t increases, we obtain the following estimate
for the time taken by system (5.1.2) and (6.1.1) to move from the initial state q0 =
q(t0), q̇0 = q̇(t0) to the terminal state q = q̇ = 0:

τ ≤ 6
δ (q0, q̇0)

V 1/2(q0, q̇0). (6.1.33)

We will now verify that the control function U(q, q̇) satisfies condition (5.1.4).
By the Cauchy inequality, we have

u2 = α2|Aq̇|2 +β 2q2 +2αβ 〈A(q)q̇,q〉
(6.1.34)

≤ 4
3

[
α2|Aq̇|2 +β 2q2 +αβ 〈A(q)q̇,q〉] .

Since A(q) is a symmetric positive definite matrix satisfying conditions (5.1.5), the
matrix A−1(q) is also symmetric and positive definite, and its eigenvalues belong to
the interval [1/M,1/m]. Consequently,

z2M−1 ≤ 〈A−1(q)z,z〉, ∀q,z ∈ Rn.

Substituting z = A(q)q̇ into this inequality, we obtain the relations

|Aq̇|2 = z2 ≤ M〈A−1z,z〉 = 2MT

using which we can continue estimate (6.1.34) as follows:

u2 ≤ 4
3

[
2Mα2T +β 2q2 +αβ 〈A(q)q̇,q〉] .

Making use of expressions (6.1.2) and (6.1.3) for the functions α and V , we arrive
at the inequality

u2 ≤ 8β
3

V = U2
0

from which it follows that constraint (5.1.4) holds along the trajectory of system
(5.1.2) and (6.1.1).

We will discuss now some properties of the vector-valued control function
U(q, q̇). Let us calculate its values in the subspaces q = 0 and q̇ = 0 of the phase
space (q, q̇) ∈ R2n. If q = 0, then
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V (0, q̇) = T (0, q̇), α(0, q̇) =

√
3U0

2
(
2MT (0, q̇)

)1/2
.

Consequently,

U(0, q̇) = −
√

3U0

2
(
2MT (0, q̇)

)1/2
A(0)q̇ = −

√
3U0

2
(
2MT (0, ė)

)1/2
A(0)ė, (6.1.35)

where e is a unit vector collinear with q̇.
If q̇ = 0, then

V (q,0) =
β (q,0)

2
q2, β (q,0) =

3U2
0

4β (q,0)q2 ,

whence we get

β (q,0) =

√
3U0

2|q| , U(q,0) = −
√

3U0

2|q| q = −
√

3U0

2
f , (6.1.36)

where f is a unit vector collinear with q.
Thus, the control force vector U(q, q̇) is constant in the subspaces q = 0 and q̇ = 0

along any straight line passing through the origin of the phase space, and it points
toward the origin.

Remark 6.1. The proposed control law may be formulated without using the func-
tions α(q, q̇) and β (q, q̇). To that end, we transform expression (6.1.1) for U(q, q̇)
by substituting into it formulas (6.1.2) for α and β . This gives a new definition of
the vector-valued control function

U(q, q̇) = −
√

3U0

2
(
2MV (q, q̇)

)1/2
q̇− 3U2

0

8V (q, q̇)
q,

where the function V (q, q̇) is implicitly defined by equation (6.1.4).

6.1.4 Sufficient condition for controllability

Formulas (6.1.28) and (6.1.30) imply the following sufficient conditions for the sys-
tem to reach the prescribed terminal state:

U0 > Q∗ +
4
√

2nD√
3m

V (q0, q̇0), Q∗ = 2

√
10M
3m

Q0. (6.1.37)

This condition relates the maximum admissible value of the control U0 and pertur-
bations Q0 with the domain of admissible initial stales of the system. In particular, in
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a neighbourhood of the terminal state, where the function V (q, q̇) is small, condition
(6.1.37) may be written in the form

U0 > Q∗.

This condition characterizes the excess of the control forces over the perturbations
that is sufficient for the control objective to be achieved.

If there are no perturbations, i.e., Q0 = 0, the proposed control law steers system
(5.1.2) to the terminal state in finite time from any point of the domain of admissible
initial state sthat is given by the inequality

V (q, q̇) ≤
√

3
2n

mU0

4C
.

Taking into account relationship (6.1.13), we can state that this domain will certainly
contain the ellipsoid

T (q, q̇)+

[
T 2(q, q̇)+

U2
0

2
q2
]1/2

≤ mU0√
6nD

.

Remark 6.2. The control law defined by relations (6.1.1)–(6.1.3) does not depend
on the constants Q0 and D and on the initial state (q0, q̇0). It may, therefore, be
formally applied, even if inequality (6.1.37) does not hold. Computer simulation of
the dynamics of various systems shows that the control law is effective far beyond
the limits of the sufficient conditions (6.1.37). This is due to the fact that condition
(6.1.37) guarantees a monotone decrease of the function V along the trajectory of
system (5.1.2) subjected to control (6.1.1)–(6.1.3). However, the function V may
tend to zero in a non-monotone manner, while the trajectories of the system ap-
proach the terminal state as before. The simulation results presented below illustrate
such behavior of the system.

6.1.5 Computer simulation results

A two-link manipulator

To verify the effectiveness of the proposed control law and to illustrate its operation,
numerical simulation are carried out for controlled motions of a two-link manipu-
lator on a fixed base (see Fig. 2.15). It is assumed that the manipulator moves in a
horizontal plane, that is, the gravity force is not taken into account. The parameters
of the manipulator and the initial and terminal states are taken as in Sect. 5.2.1.

With the parameters thus chosen, the sufficient condition (6.1.37) for steering
the mechanical system to the terminal state using the proposed control law may be
rewritten as

U0 > 11.8Q0 +9.9V (q0, q̇0).



224 6 Continuous feedback control for mechanical systems under uncertainty

In the simulation, the perturbation torques were defined as a constant vector-
valued function Q(t) = (0,250). Consequently, the magnitude of the perturbation
vector in constraint (5.1.3) does not exceed the quantity Q0 = 250 in norm, and the
sufficient condition for the system to be steered to the terminal state becomes

U0 > 2950+9.9V (q0, q̇0),

that is, for the value of U0 selected in Sect. 5.2.1 (U0 = 500), the condition is not
satisfied for any initial values of the phase variables. Nevertheless, the proposed
control law overcomes the perturbations and steers the system to the terminal state.

5
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−10

0
10.5 1.5 2

t

q1

q2

q̇1

q̇2

Fig. 6.1 Angular coordinates and velocities

The graphs of the phase variables of the system are presented in Fig. 6.1. The
solid curves correspond to the angular coordinates (rad), the dashed curves corre-
spond to the angular velocities (rad/sec), the thick curves describe the motion of the
first link, and the thin curves describe that of the second.

The magnitude of the control vector |U | as a function of time is plotted in Fig. 6.2
(the solid curve). The dashed curve in Fig. 6.2 depicts the time history of the func-
tion V along the trajectory under consideration. Clearly, V tends to zero and the
control satisfies the restriction |U | ≤ 500. As already remarked, V tends to zero
non-monotonically, because the sufficient condition (6.1.37) for the derivative V̇ to
be negative is not satisfied.

Remark 6.3. In accordance with the algorithm, the control U is described in terms of
the function V that is defined implicitly by equation (6.1.4). The quantity x =

√
V as

a root of the fourth-order polynomial equation (6.1.6), and hence also the function V ,
may be expressed analytically using Cardano’s formulas. However, there is no need
for an explicit representation of the function V when running the algorithm. From
a computational point of view, it is more convenient to find the current value of the
function by solving equation (6.1.6) numerically, say by Newton’s method. At each
step of the integration, it is convenient to take the value of V from the previous step
as the initial approximation. Since the function V decreases monotonically along the
trajectory and is continuous, the old value is slightly larger than the new (unknown)
one.
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Fig. 6.2 Magnitude of the control U and the function V

A system with one degree of freedom

Let us investigate the limiting possibilities of the above control law by numerical
simulation and compare the proposed control with the time-optimal one. To that
end, we consider the mechanical system that consists of a particle of unit mass
moving along a horizontal straight line. For such a system, in the agreed notation,
we have A(q) = m = M = 1.

The equations of motion of the point are

q̈ = U +Q, (6.1.38)

where q is the coordinate of the point on the line. We assume that the control force
U and the perturbations Q are subject to the restrictions

|U | ≤U0 = 1, |Q| ≤ Q0 < 1. (6.1.39)

Due to the simplicity and low dimensionality of the system, one can express
the functions V (q, q̇) and U(q, q̇), and some other characteristics of the motion by
graphical means. The graph of the function V (q, q̇), in terms of which the control law
(6.1.1)–(6.1.3) is expressed and which is a Lyapunov function for system (6.1.38),
is depicted in Fig. 6.3.

Figure 6.4 shows a phase portrait of system (6.1.38) for the case where there are
no perturbations, that is, Q ≡ 0. The solid curves are the phase trajectories of the
motion of the particle and the dashed curves are the level sets of the function V .

By its definition, the function V is symmetrical about the origin, that is, V (q, q̇) =
V (−q,−q̇). The functions α,β , and U have the same property. Hence, the phase
portrait of the unperturbed system is also symmetrical about the point (0,0).

A graph of the control function U(q, q̇) is shown in Fig. 6.5. It follows from
formulas (6.1.35) and (6.1.36) that, for the values of parameters chosen, the function
U satisfies the following relations on the straight lines q = 0 and q̇ = 0:

U(0, q̇) = U(q,0) =

√
3

2
.
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Fig. 6.3 Function V (q, q̇)
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Fig. 6.4 Phase portrait of the system

One can see that, in the domains q, q̇ > 0 and q, q̇ < 0, and at values of the veloc-
ity q̇ of large magnitude, the surface shown in Fig. 6.5 has almost horizontal parts
corresponding to values of U close to ±√

3/2.
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Fig. 6.5 Control function U(q, q̇)
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As might have been expected, in the neighbourhood of the origin the function
U(q, q̇) has partial derivatives of arbitrarily large magnitude. This is because the
control force must cope with any perturbations (including discontinuous ones) sat-
isfying condition (6.1.39) and guarantee the monotone decrease of the function V
along the trajectory. Consequently, the closer to the origin, the higher the possible
rate of variation of the control force U [at the point (0,0), the function U is unde-
fined].

Let us find the curve on which the control changes its sign. This curve is defined
by the equation U(q, q̇) = 0. Using (6.1.1) and taking into account that A(q) = m =
M = 1 for system (6.1.38), we have

α(q, q̇) = − q̇
q

(6.1.40)

on this curve.
Using relations (6.1.2), let us express, in equation (6.1.3), the functions V (q, q̇)

and β (q, q̇) in terms of α(q, q̇) and substitute expression (6.1.40) into the resulting
equality. Taking into account that U0 = 1, we obtain the equation 3q2 = 4q̇4. The
function α(q, q̇) is positive by definition, hence, by (6.1.40), the coordinate q and
velocity q̇ have different signs at each point of the desired curve. Therefore, the
curve itself is defined by the relation

q =

⎧⎪⎨
⎪⎩

−2
√

3
3

q̇2, if q̇ > 0;

2
√

3
3

q̇2, if q̇ < 0.

(6.1.41)

It consists of two branches of parabolas that are symmetrical about the origin (the
thick curve in Fig. 6.5).

Comparison with the time-optimal control

Let us compare the control law proposed with the control that minimizes the time of
the motion. For system (6.1.38) with Q ≡ 0, the time-optimal control has the form

Uopt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1, if q̇ > 0 and q ≥−1
2

q̇2;

−1, if q̇ < 0 and q >
1
2

q̇2;

1, otherwise

(6.1.42)

[see formulas (1.4.12) and (1.4.13) in Sect. 1.4].
The function U(q, q̇), whose graph is shown in Fig. 6.5, and the time-optimal

control function Uopt given by (6.1.42) are readily seen to be qualitatively similar.
The switching curve for the time-optimal control Uopt and its analogue (6.1.41) for
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the proposed control U are each the union of two branches of parabolas in which
the coefficients at q̇2 are 1/2 and 2

√
3/3, respectively.

If perturbations appear in system (6.1.38), that is, the assumpton Q ≡ 0 is not
fulfilled, then the time-optimal control law becomes (see Sect. 2.2.1)

U ′
opt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1, if q̇ > 0 and q ≥− q̇2

2(1−Q0)
;

−1, if q̇ < 0 and q >
q̇2

2(1−Q0)
;

1, otherwise.

(6.1.43)

In that case, the switching curve is the union of two branches of parabolas q =
±q̇2/[2(1−Q0)]. If Q0 = 1−√

3/4, this switching curve coincides with the curve
U(q, q̇) = 0 given by formulas (6.1.41).
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Fig. 6.6 Time of motion τ(q, q̇)

Figure 6.6 shows the graph of the function τ(q, q̇) for system (6.1.38) subjected
to the control prescribed by law (6.1.1)–(6.1.3) when there are no perturbations, that
is, when Q ≡ 0. By definition, the value of this function at each point of the phase
space equals the time it takes for the system to move from that point to the terminal
state. For comparison, Fig. 6.7 shows the graph of the function equal at each point to
the minimum possible time of motion from that point to the terminal state. It can be
seen that the time of motion of the system controlled using the proposed algorithm
is approximately 1.5 times greater than the minimum time.

In order to determine the limiting possibilities of the control algorithm proposed,
the motion of system (6.1.38) is simulated numerically for the case of perturbations
specified by

Q(q, q̇) = −Q0Uopt,
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Fig. 6.7 Optimal time of motion

where Uopt is defined by formula (6.1.42); this is done for different values of Q0.
It turns out that the limiting value of the perturbations Q0 for which the system is
brought to the terminal state by algorithm (6.1.1)–(6.1.3) is approximately

√
3/2,

i.e., it is equal to the value of the function U on the straight lines q = 0 and q̇ = 0.
We recall (see Sect. 1.4) that, for the optimal control law, the system may be brought
to the terminal time if and only if Q0 < 1.

Thus, the approach proposed above enables one to construct algorithms that yield
bounded controls as smooth functions of the phase variables. These algorithms can
be used to control any scleronomic mechanical system and enable it to be steered
to the given terminal state in finite time. The results of the numerical simulation of
controlled motions of a point mass along a horizontal straight line demonstrate that
the proposed control law is qualitatively similar to the time-optimal control law.

6.2 Control of a scleronomic system with an unknown matrix of
inertia

6.2.1 Problem statement

Consider now a scleronomic mechanical system (5.1.2) under the assumption that
the matrix of the kinetic energy of the system is represented in the form

A(q) = A0(q)+A1(q), (6.2.1)

where A0(q) and A1(q) are symmetric continuously differentiable matrices, and
A0(q) is known and positive definite, whereas A1(q) is unknown.
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We put

T0(q, q̇) =
1
2
〈A0(q)q̇, q̇〉, T1(q, q̇) =

1
2
〈A1(q)q̇, q̇〉.

Then,
T (q, q̇) = T0(q, q̇)+T1(q, q̇). (6.2.2)

As above, we assume that the eigenvalues of matrices A(q) and A0(q) belong to
the interval [m,M], 0 < m ≤ M, for any q, i.e.,

mz2 ≤ 〈A(q)z,z〉 ≤ Mz2,
(6.2.3)

mz2 ≤ 〈A0(q)z,z〉 ≤ Mz2, ∀q,z ∈ Rn,

and the matrix A1 and the partial derivatives of the matrices A1 and A are uniformly
bounded in norm, i.e.,

‖A1(q)‖ ≤ M1, ‖∂A1

∂qi
(q)‖ ≤C1,

(6.2.4)

‖ ∂A
∂qi

(q)‖ ≤C, M1,C1,C > 0, i = 1, . . . ,n.

Problem 6.2. Construct a control U(q, q̇) as a continuous vector-valued function of
the phase variables q, q̇ ∈ R2n, q2 + q̇2 > 0, that satisfies condition (5.1.4), and spec-
ify a domain of admissible initial states such that any trajectory of system (5.1.2)
starting in that domain will reach the prescribed terminal state (0,0) in finite time,
whatever the matrix A1 and the perturbations Q satisfying conditions (6.2.4) and
(5.1.3) be.

We apply the approach proposed above for the control of a scleronomic me-
chanical system with a given matrix of the kinetic energy. We define the control as
follows:

U(q, q̇) = −α(q, q̇)A0(q)q̇−β (q, q̇)q, q2 + q̇2 �= 0, (6.2.5)

α(q, q̇) =

√
β (q, q̇)

M
, β (q, q̇) =

3U2
0

8V (q, q̇)
, (6.2.6)

V (q, q̇) = T0(q, q̇)+
1
2

β (q, q̇)q2 +
1
2

α(q, q̇)〈A0(q)q̇,q〉. (6.2.7)

By contrast to control (6.1.1)–(6.1.3), the matrix A0 that occurs in (6.2.5) and
(6.2.7) does not coincide with the matrix of inertia A of the system; it represents
“the known part” of A only.

Relationships (6.2.5)–(6.2.7) define the functions α(q, q̇),β (q, q̇), and V (q, q̇)
implicitly. By Theorem 6.1, in the domain q2 + q̇2 > 0, there exist continuously
differentiable functions α(q, q̇),β (q, q̇), and V (q, q̇) satisfying these relationships.
It has already been proved also that the function V satisfies inequalities (6.1.13).
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Let us show that V (q, q̇) is the Lyapunov function for system (5.1.2). The deriva-
tive V̇ (q, q̇) along the trajectories of this system has the form

V̇ = Ṫ0 +β 〈q, q̇〉+αT0 +
α
2
〈 d

dt
(A0q̇),q〉− β

2V
q2V̇ − α

4V
〈A0q̇,q〉V̇ . (6.2.8)

We evaluate the terms in expression (6.2.8) separately. We set

L(T1) =
d
dt

∂T1

∂ q̇
− ∂T1

∂q
. (6.2.9)

Taking (6.2.2) into account, we rewrite (5.1.2) in the form

d
dt

∂T0

∂ q̇
− ∂T0

∂q
= u+Q−L(T1). (6.2.10)

By the theorem on the variation of the kinetic energy of a scleronomic Lagrangian
system, and by the definition of the vector-valued function U(q, q̇), we have

Ṫ0 = 〈u+Q−L(T1), q̇〉 = −2αT0 −β 〈q, q̇〉+ 〈Q−L(T1), q̇〉. (6.2.11)

By virtue of equations (6.2.10), we obtain

d
dt

(A0q̇) =
d
dt

∂T0

∂ q̇
=

∂T0

∂q
+u+Q−L(T1). (6.2.12)

We substitute relations (6.2.11) and (6.2.12) into expression (6.2.8) for the derivative
V̇ and use the definition (6.2.5) of the control vector-valued function U . After some
reducing, we obtain the following expression for the derivative of the function V
along the trajectories of system (5.1.2) and (6.2.5):

V̇ = −α
(

T0 +
α
2
〈A0q̇,q〉+ β

2
q2
)
−
(

βq2 +
α
2
〈A0q̇,q〉

) V̇
2V

(6.2.13)
+

α
2
〈∂T0

∂q
,q〉+ 〈Q−L(T1),

α
2

q+ q̇〉.

Definitions (6.2.6) and (6.2.7) of functions α and V imply

α
(

T0 +
α
2
〈A0q̇,q〉+ β

2
q2
)

= αV =

√
3U0

2
√

2M
V 1/2. (6.2.14)

By virtue (5.1.2), we have the inequalities

Ȧq̇+Aq̈ =
d
dt

(Aq̇) =
d
dt

∂T
∂ q̇

=
∂T
∂q

+u+Q

that imply

q̈ = A−1
(

∂T
∂q

+U +Q− Ȧq̇

)
. (6.2.15)
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We write down the expression for L(T1), using (6.2.10) and equality (6.2.15).
Then,

L(T1) =
d
dt

A1q̇− ∂T1

∂q
= Ȧ1q̇+A1q̈− ∂T1

∂q
(6.2.16)

= Ȧ1q̇+A1A−1
(

∂T
∂q

+U +Q− Ȧq̇

)
− ∂T1

∂q
.

We introduce the function

B(q, q̇) = 1+
β (q, q̇)

2V (q, q̇)
q2 +

α(q, q̇)

4V (q, q̇)
〈A0(q)q̇,q〉. (6.2.17)

Substituting relations (6.2.14), (6.2.16), and (6.2.17) into (6.2.13), we write down
the final expression for the derivative of the function V (q, q̇) along the trajectories
of system (5.1.2) and (6.2.5):

BV̇ = −
√

3U0

2
√

2M
V 1/2 +

α
2
〈∂T0

∂q
,q〉〈Q− Ȧ1q̇

(6.2.18)
−A1A−1

(
∂T
∂q

+U +Q− Ȧq̇

)
+

∂T1

∂q
,

α
2

q+ q̇〉.

Let us estimate the terms in the right-hand side of equality (6.2.18). From rela-
tions (6.2.2), (6.2.4), (6.2.6), (6.1.21), and (6.1.23), it follows that

|α
2
〈∂T0

∂q
+

∂T1

∂q
,q〉| = |α

2
〈∂T

∂q
,q〉| = |α

4

n

∑
i=1

〈 ∂A
∂qi

q̇, q̇〉qi|
(6.2.19)

≤ α
4

Cq̇2
n

∑
i=1

|qi| ≤ α
4

√
nCq̇2|q| ≤ 2

√
nC

m
√

M
V 3/2.

Inequalities (6.1.21), (6.1.23), and (6.2.4) imply

|〈∂T1

∂q
, q̇〉| = |1

2

n

∑
i=1

〈∂A1

∂qi
q̇, q̇〉q̇i|

(6.2.20)

≤ 1
2

√
nC1q̇2|q̇| ≤ 4

√
nC1

m
√

m
V 3/2 ≤ 2

√
5nC1

m
√

m
V 3/2.

By virtue of (6.2.3), the inequality

‖A−1‖ ≤ 1
m

holds. This inequality, conditions (5.1.3), (6.2.4), and estimate (6.1.19) imply

|〈Q−A1A−1Q, q̇+
α
2

q〉| ≤ Q0

(
1+

M1

m

)√
5
m

V 1/2. (6.2.21)
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Since the control function U(q, q̇) satisfies constraint (5.1.4), we have

|〈A1A−1u, q̇+
α
2

q〉| ≤
√

5M1U0

m
√

m
V 1/2. (6.2.22)

Similarly, we obtain

|〈A1A−1 ∂T
∂q

, q̇+
α
2

q〉| ≤ |M1

2m

n

∑
i=1

〈 ∂A
∂qi

q̇, q̇〉
(

q̇i +
α
2

qi

)
|

(6.2.23)

≤ M1

2m

√
nCq̇2|q̇+

α
2

q| ≤ 2
√

5nCM1

m2
√

m
V 3/2,

|〈Ȧ1q̇, q̇+
α
2

q〉| ≤ |〈
(

n

∑
i=1

∂A1

∂qi
q̇i

)
q̇, q̇+

α
2

q〉|
(6.2.24)

≤√
nC1q̇2|q̇+

α
2

q| ≤ 4
√

5nC1

m
√

m
V 3/2,

|〈A1A−1Ȧq̇, q̇+
α
2

q〉| ≤ 4
√

5nCM1

m2
√

m
V 3/2. (6.2.25)

By substituting (6.2.19)–(6.2.25) into expression (6.2.18) for the derivative V̇ ,
we obtain that

V̇ (q, q̇) ≤− δ1U0 −δ2Q0 −δ3V (q, q̇)

B(q, q̇)
V 1/2(q, q̇), (6.2.26)

where

δ1 =

√
3

2
√

2M
−

√
5M1

m
√

m
, δ2 =

(
1+

M1

m

)√
5
m

,

(6.2.27)

δ3 =
2
√

nC

m
√

M
+

6
√

5n
m
√

m

(
C1 +

CM1

m

)
,

Hence, the function B(q, q̇) from (6.2.17) satisfies inequality (6.1.27).
Using reasoning similar to the above, we proved the following theorem.

Theorem 6.3. Suppose that at the initial instant of time t0, system (5.1.2), (6.2.5) is
in the state (q0, q̇0) and the condition

δ1U0 −δ2Q0 −δ3V (q0, q̇0) > 0 (6.2.28)

holds [the constants δ1,δ2, and δ3 are defined in (6.2.27)]. Then, the derivative of
the function V along the trajectory, starting at (q0, q̇0), satisfies the inequality

V̇ ≤− δ1U0 −δ2Q0 −δ3V (q0, q̇0)

3
V 1/2. (6.2.29)
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By virtue of (6.2.17) and the assertion of Theorem 6.3, we can conclude that the
value of the function V along the trajectory under consideration approaches zero,
and the trajectory itself approaches the origin. Integrating (6.2.29) on the interval
[t0, t], we obtain the following estimate from above for the time of motion τ(q0, q̇0)
of the system from the initial state (q0, q̇0) to the terminal state q0 = q̇0 = 0:

τ(q0, q̇0) ≤ 6V 1/2(t0,q0, q̇0)

δ1U0 −δ2Q0 −δ3V (q0, q̇0)
.

Relations (6.2.27) and the condition of Theorem 6.3 imply the following suffi-
cient controllability condition for steering the system to the terminal state by the
proposed control law

U0 >
δ2

δ1
Q0 +

δ3

δ1
V (q0, q̇0). (6.2.30)

Inequality (6.2.30) connects the maximum admissible values of control U0 and
perturbations Q0, the size of the domain of admissible initial states, and also the
estimate of the error, with which the inertia matrix of the system is known (the
constraints on the matrix A1 and its partial derivatives are involved in the expressions
for δi). This inequality characterizes the superiority of the control forces over the
perturbations that is sufficient for reaching the target of control, if the value of the
function V at the initial state and the error of knowing the inertia matrix of the
system are not large enough.

Remark 6.4. As in the case of a precisely known matrix of the kinetic energy, the
control law, defined by relations (6.2.5)–(6.2.7), depends neither on the initial state
(q0, q̇0) nor on the constants Q0 and δi, i = 1,2,3, that are used in the formulation
of the sufficient controllability conditions (6.2.30). Therefore, this law may also
be applied formally in the case where inequality (6.2.30) does not hold. Computer
simulation of the dynamics of various systems has shown that the proposed control
law is effective far beyond the sufficient condition stated (see Remark 6.3).

6.2.2 Computer simulation of the motion of a two-link manipulator

We present the results of the numerical simulation of controlled motions of a two-
link manipulator on a fixed base (see Fig. 2.15). We assume now that the gripper
of the manipulator holds a load of unknown mass. Such a mechanical system is
governed by Lagrange’s equations (5.1.2) with the kinetic energy given by (5.1.1),
where the matrix A(q) has form (4.1.5).

The computations were performed for the following values of parameters: m1 =
20 kg and m2 = 10 kg are the masses of the links; l1 = 0.8 m and l2 = 0.5 m are
the lengths of the links, respectively. In what follows, the mass m0 of the load of the
manipulator is taken equal to 3 kg or 5 kg. The maximum admissible magnitude of
the vector of control torques is chosen equal to U0 = 500 N ·m. When modelling,
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we specify the disturbances by the constant vector-function Q = (0; 30) N ·m. The
manipulator moves from the initial state

q01 = 0.5rad, q02 = 1rad, q̇01 = q̇02 = 0rad/s

to the “stretched arm” position

q1 = q2 = q̇1 = q̇2 = 0.

As the computations have shown, for the given set of parameters, sufficient con-
ditions (6.2.30) do not hold for all the initial states. Nevertheless, the control pro-
posed steers the system to the terminal state.
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Fig. 6.8 Angular coordinate of the first link
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Fig. 6.9 Angular coordinate of the second link
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In Figs. 6.8 and 6.9, the graphs of the time histories of the angular coordinates of
the first and second links are shown (in radians). Figure 6.10 illustrates the behavior
of the function V along the trajectories, and the magnitude of the control torque
vector U as a function of time is shown in Fig. 6.11. In all figures, the thin solid
lines correspond to the motion of the manipulator with a load of mass m0 = 5 kg
in its gripper subjected to the control law constructed under the assumption that the
mass of the load is m0 = 3 kg. The results of the modelling of the dynamics of the
manipulator for the case where the mass of the load is known and equal to m0 = 3 kg
are presented for comparison (bold solid lines). The dashed lines in Figs. 6.8–6.11
are related to the contents of Sect. 6.3.2.
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Fig. 6.10 Function V
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Fig. 6.11 Magnitude of the control torque vector U

From Fig. 6.10, we see that the function V approaches zero along the trajectories
in a non-monotone way, which is explained by the fact that sufficient condition
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(6.2.30) is not satisfied. Despite the fact that the derivative of the function V takes
not only negative values, and that the function itself has intervals of increase, it
vanishes after passing a finite time interval, and the system comes to the terminal
state in finite time. In this case, as Fig. 6.11 shows, the control U satisfies constraint
(5.1.4) everywhere.

6.3 Control of rheonomic systems under uncertainty

6.3.1 Problem statement

We have shown that the approach proposed can be applied to a scleronomic system
under the assumption that the inertia matrix of the system is unknown. Below, we
extend this approach to rheonomic systems in which the elements of the inertia
matrix are known only with some error, whereas the other coefficients of the kinetic
energy polynomial are not known at all.

Consider a generic rheonomic mechanical system with the kinetic energy given
by expression (4.1.3). Suppose that the symmetric positive definite continuously
differentiable matrix A(t,q) can be represented in the form

A(t,q) = A0(t,q)+A1(t,q), (6.3.1)

where A0(t,q) and A1(t,q) are also continuously differentiable matrices, the sym-
metric matrix A0(t,q) is positive definite and known, and A1(t,q) is an unknown
symmetric matrix. Denote

T0(t,q, q̇) =
1
2
〈A0(t,q)q̇, q̇〉, T1(t,q, q̇) =

1
2
〈A1(t,q)q̇, q̇〉.

Then, in accordance with (4.1.3), we have

T (t,q, q̇) = T0(t,q, q̇)+T1(t,q, q̇)+ 〈a1(t,q), q̇〉+a0(t,q). (6.3.2)

As in the case of a scleronomic system (see Sect. 6.2.1), we suppose that the
eigenvalues of the matrices A(t,q) and A0(t,q) belong to the interval [m,M], 0 <
m ≤ M, for all t,q; i.e., the inequalities

mz2 ≤ 〈A(t,q)z,z〉 ≤ Mz2,
(6.3.3)

mz2 ≤ 〈A0(t,q)z,z〉 ≤ Mz2, ∀t, ∀q,z ∈ Rn,

hold. The matrix A1 and the partial derivatives of the matrices A0,A1, and A are
assumed to be bounded by the norm uniformly for all t and q:



238 6 Continuous feedback control for mechanical systems under uncertainty

‖A1‖ ≤ M1, ‖∂A1

∂qi
‖ ≤C1, ‖ ∂A

∂qi
‖ ≤C, i = 1, . . . ,n,

(6.3.4)

‖∂A0

∂ t
‖ ≤ D0, ‖∂A1

∂ t
‖ ≤ D1, M1,C,C1,D0,D1 > 0.

Moreover, it is assumed that the continuously differentiable function a0(t,q) and the
vector-valued function a1(t,q) are known and satisfy the conditions

|∂a0

∂q
− ∂a1

∂ t
| ≤ D2, ‖

(
∂a1

∂q

)�
− ∂a1

∂q
‖ ≤ D3, D2,D3 > 0. (6.3.5)

The dynamics of the system is governed by Lagrange’s equations (5.1.2), in
which the kinetic energy T (t,q, q̇) is given by the expression (4.1.3). In this case, as
above, constraints (5.1.3) and (5.1.4) are imposed on unknown n-dimensional force
vectors Q(t,q, q̇) and the control forces U(t,q, q̇), respectively.

Consider the problem of the synthesis of the control that ensures steering the
system to a given terminal state q = q̄ and q̇ = 0 in finite time. Without loss of
generality, we will assume that the terminal state coincides with the origin of phase
space (q, q̇).

Problem 6.3. Construct the control U as a continuous vector-valued function of
time t and the phase variables q and q̇ satisfying condition (5.1.4), and specify the
domain of admissible initial states such that any trajectory of system (5.1.2) starting
from this domain will come to the origin of the phase space q0 = q̇0 = 0 in finite
time, whatever the matrix A1, the vector-valued function a1, the function a0, and the
perturbation Q satisfying the conditions stated above be.

Consider the domain G of the extended phase space

G = {(t,q, q̇) ∈ R2n+1 : q2 + q̇2 �= 0}

and, in G, define the control in the form

U(t,q, q̇) = −α(t,q, q̇)A0(t,q)q̇−β (t,q, q̇)q, (6.3.6)

where

α(t,q, q̇) =

√
β (t,q, q̇)

M
, β (t,q, q̇) =

3U2
0

8V (t,q, q̇)
, (6.3.7)

V (t,q, q̇) = T0(t,q, q̇)+
1
2

β (t,q, q̇)q2 +
1
2

α(t,q, q̇)〈A0(t,q)q̇,q〉. (6.3.8)

Relations (6.3.7) and (6.3.8) define the functions α(t,q, q̇),β (t,q, q̇), and V (t,q, q̇)
in an implicit form.

By the reasoning, similarly to that used in Theorem 6.1, we can prove that, in
the domain G, there exist continuously differentiable positive functions α(t,q, q̇),
β (t,q, q̇), and V (t,q, q̇) satisfying relations (6.3.7) and (6.3.8). The fact that the
functions α,β , and V depend on time now virtually does not influence the proof.
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It is easy to show also that the function U(t,q, q̇) meets constraint (5.1.4), and the
function V (t,q, q̇) satisfies the inequalities

V−(t,q, q̇) ≤V (t,q, q̇) ≤ 3V−(t,q, q̇), (6.3.9)

where

V−(t,q, q̇) =
1
4

(
2T0(t,q, q̇)+β (t,q, q̇)q2) . (6.3.10)

As in the case of the scleronomic system considered above, these statements imply
the following two-sided estimates for the function V (t,q, q̇):

1
8

[
mq̇2 +

(
m2q̇4 +6U2

0 q2)1/2
]
≤V (t,q, q̇)

(6.3.11)
≤ 3

8

[
Mq̇2 +

(
M2q̇4 +2U2

0 q2)1/2
]
.

We introduce the notation

Ω(t,q) =

(
∂a1

∂q

)�
(t,q)− ∂a1

∂q
(t,q),

ω(t,q, q̇) =
∂a0

∂q
(t,q)− ∂a1

∂ t
(t,q)+Q(t,q, q̇), (6.3.12)

B(t,q, q̇) = 1+
β (t,q, q̇)

2V (t,q, q̇)
q2 +

α(t,q, q̇)

4V (t,q, q̇)
〈A0(t,q)q̇,q〉.

Taking (6.3.12) into account, the expression for the derivative of the function
V (t,q, q̇) along the trajectories of system (5.1.2) with kinetic energy (4.1.3) may be
written in the form

BV̇ = −αV +
α
2
〈∂T0

∂q
−Ω q̇,q〉+ 〈ω,

α
2

q+ q̇〉− ∂T0

∂ t
(6.3.13)

−〈Ȧ1q̇− ∂T1

∂q
+A1A−1

(
∂T
∂q

+U +ω −Ω q̇− Ȧq̇

)
,

α
2

q+ q̇〉.

Let us estimate the terms in (6.3.13) separately. For this purpose, note that re-
lations (6.2.14), (6.1.19)–(6.1.23), (6.2.19), (6.2.20), and (6.2.22)–(6.2.25) remain
valid, though some functions in them now depend on time explicitly.

By virtue of inequalities (6.1.23), the second condition of (6.3.5), and notation
(6.3.12), we have

|α
2
〈Ω q̇,q〉| ≤ α

2
D3|q̇||q| ≤ 2D3√

mM
V. (6.3.14)

Inequality (6.1.19), constraint (5.1.3), the first condition of (6.3.5), and notation
(6.3.12) yield

|〈ω, q̇+
α
2

q〉| ≤ (D2 +S0)

√
5
m

V 1/2. (6.3.15)
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Conditions (6.3.4) and (6.1.23) imply

|∂T0

∂ t
| ≤ D0

2
q̇2 ≤ 2D0

m
V. (6.3.16)

From relations (6.1.19), (6.1.23), (6.3.12), and (6.3.3)–(6.3.5), we obtain

|〈A1A−1Ω q̇, q̇+
α
2

q〉| ≤ M1D3

m
|q̇||q̇+

α
2

q| ≤ 2
√

5M1D3

m2 V. (6.3.17)

Similarly, equations (6.1.19), (6.3.12), and conditions (6.3.3) and (6.3.4) imply

|〈A1A−1ω, q̇+
α
2

q〉| ≤
√

5M1D2

m
√

m
V 1/2. (6.3.18)

After substituting relations (6.2.14), (6.2.19), (6.2.20), (6.2.22)–(6.2.25), and
(6.3.14)–(6.3.18) into expression (6.3.13) for the derivative V̇ , we come to the in-
equality

V̇ ≤− δ1U0 −δ2(D2 +S0)−δ3V −δ4V 1/2

B
V 1/2,

where

δ4 =
2D3√
mM

+
2D0

m
+

2
√

5M1D3

m2 (6.3.19)

and the quantities δ1,δ2, and δ3 are given by the expression (6.2.27).
Note that although the function B(t,q, q̇) depends on time explicitly now, it still

satisfies inequality (6.1.27). Taking this inequality into account and arguing as in
the proof of Theorem 6.2 in the scleronomic case, it is easy to show the validity of
an analogous theorem for the rheonomic case too.

Theorem 6.4. Assume that at the initial instant of time t0, system (5.1.2) controlled
by law (6.3.6)–(6.3.8) is in the state (q0, q̇0), and the condition

δ1U0 −δ2(D2 +S0)−δ3V0 −δ4V 1/2
0 ≥ 0 (6.3.20)

holds, where V0 = V (t0,q0, q̇0). Then the derivative of the function V along the tra-
jectory starting at the point (t0,q0, q̇0) satisfies the inequality

V̇ ≤− 1
3

[
δ1U0 −δ2(D2 +Q0)−δ3V0 −δ4V 1/2

0

]
V 1/2. (6.3.21)

From the assertion of Theorem 6.4, we conclude that, if condition (6.3.20) is sat-
isfied, the value of the function V on the trajectory under consideration approaches
zero, and the trajectory itself approaches the origin.

In order to estimate the time τ(t0,q0, q̇0) of motion of the system from the initial
state (t0,q0, q̇0) to the origin of the phase space q0 = q̇0 = 0, we integrate inequality
(6.3.21) on the interval [t0, t]. We obtain



6.3 Control of rheonomic systems under uncertainty 241

τ(t0,q0, q̇0) ≤
6V 1/2

0

δ1U0 −δ2(D2 +Q0)−δ3V0 −δ4V 1/2
0

.

Relations (6.3.20) and the conditions of Theorem 6.4 lead to the following suf-
ficient condition of bringing the system to the terminal state by using the proposed
control law:

U0 ≥ δ2

δ1
(D2 +Q0)+

δ3

δ1
V0 +

δ4

δ1
V 1/2

0 . (6.3.22)

Inequality (6.3.22) connects the maximum admissible magnitudes of the control
U0 and perturbation Q0, the size of the domain of admissible initial states, the es-
timate of the error with which the inertia matrix of the system is known, and the
estimate of the rate of change for the coefficients of the kinetic energy polynomial
on time. The constraints on the coefficients of the kinetic energy polynomial and the
rate of their change are involved in the expressions for δi. One can easily see that,
if the quantity U0 is big enough compared with the parameters of the problem listed
here, then the sufficient controllability condition (6.3.22) is satisfied.

Remark 6.5. The proposed control law, as in the scleronomic case (see Remark 6.4),
does not depend on the parameters listed above; therefore, it may be applied for-
mally, even if inequality (6.3.22) is not satisfied. The results of computer modelling
presented below have shown that the proposed control law also remains effective
beyond the range of sufficient condition (6.3.22).

6.3.2 Computer simulation results

A body with a variable moment of inertia

To illustrate the work of the algorithm let us return to the rotation of a body with
the moment of inertia depending on time (Fig. 4.1). The equations of motion of the
system has form (5.3.33). In the simulation, the constants m,M, and U0, the mass m0,
the law of motion of the particle along the rod l(t), and the initial and the terminal
states were taken as in Sect. 5.3.4.

Figures 6.12 and 6.13 illustrate the behavior of the system subjected to the control
described above. Figure 6.12 shows the phase portrait of the system. The thin solid
line depicts the trajectory in case ω = 0, that is, in the case where the moment of
inertia is constant and known. The thick line corresponds to the trajectory in case
ω = 2, that is, for the system with the variable moment of inertia. The dashed lines
depict the level sets of the Lyapunov function V .

The graphs in Fig. 6.13 show the time history of the function V (the solid line)
and the absolute value of the control torque U (the dashed line) along the trajectory
under consideration.
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Fig. 6.13 Function V and the absolute value of the control torque U

A two-link manipulator on a movable base

In Figs. 6.8–6.11, the results of computer simulation of the dynamics of a two-
link manipulator on a movable base are presented. We assume that the base of the
manipulator makes a translational motion (see Fig. 4.2) according to the law

x1(t) = H cosωt, x2(t) = H sinωt.

In Sect. 4.1, such manipulator was described as a rheonomic system with two
degrees of freedom. The corresponding inertia matrix A, the vector-valued function
a and the function a0 are given by expressions (4.1.7). The parameters of the ma-
nipulator are chosen as in Sect. 6.2.2 for simulating the motion of a manipulator
on a fixed base. The dashed lines in Figs. 6.8–6.11 correspond to the motion of the
manipulator for the case of H = 1 m and w = 2 rad/s. In this case, as in Sect. 6.2.2,
it is assumed that a load of mass m0 = 5 kg is held in the gripper of the manipulator
and that the control law is constructed for a load of mass m0 = 3 kg. In Figs. 6.8
and 6.9, the graphs describe the time histories of the angular coordinates of the first
and second links. In Figs. 6.10 and 6.11, the graphs show the time history of the
function V and the magnitude of the control torque vector U , respectively.

One can easily see that, for the values of the parameters chosen, the sufficient
controllability condition, i.e., inequality (6.3.22) is not satisfied. Nevertheless, as the



6.3 Control of rheonomic systems under uncertainty 243

results of simulation have shown, the manipulator is steered to the terminal state by
the control law proposed in finite time. In this case, the motion of the base increases
the total time of the process, as is quite natural.



Chapter 7
Control in distributed-parameter systems

Many publications have been devoted to systems with distributed parameters, for
example [25, 86, 113, 122, 87, 117]. The control method proposed below differs
from the earlier ones. It enables one to construct a constrained control in closed
form and ensures that the system is brought to a given state in a finite time. This
method published before in [30, 39, 36] uses a decomposition of the original system
into simple subsystems and in this sense is close in spirit to the approaches described
above in the present book, where systems with a finite number of degrees of freedom
were considered.

In this chapter, we deal with linear elastic systems controlled by distributed
bounded forces. Before constructing control for such distributed-parameters sys-
tems with infinite number of degrees of freedom, we consider first the control for an
oscillatory system with a finite number of degrees of freedom.

7.1 System of linear oscillators

7.1.1 Equations of motion

We consider a dynamical system with n degrees of freedom described by equations

Aẍ+Cx = Bv+ f (x, ẋ, t); v(t) ∈V, f (x, ẋ, t) ∈ F. (7.1.1)

Here, x∈Rn is the vector of generalized coordinates, A and C are constant symmetric
positive definite n× n matrices of the kinetic and potential energy, respectively, B
is a constant n×m matrix (m ≥ n), f is a given n-vector of nonlinear terms, and
v ∈ Rm is the vector of controls. The values of v and f are bounded by the given sets
V ⊂ Rm and F ⊂ Rn, respectively. We look for a feedback control law v(x, ẋ) which
satisfies the imposed constraints and drives the system (7.1.1) from any given initial
state

x(0) = x0, ẋ(0) = ẋ0 (7.1.2)

245
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to the zero terminal state x(T ) = ẋ(T ) = 0 in finite time T (not fixed a priori). Let
us introduce normal coordinates q = (q1, . . . ,qn) defined by the transformation [64]

x = Hq. (7.1.3)

Here, the n× n invertible matrix H consists of columns h1, . . . ,hn which are the
eigenvectors of the eigenvalue problem:

(C−λA)h = 0. (7.1.4)

It is well known [64] that problem (7.1.4) has n positive eigenvalues λ1, . . . ,λn sat-
isfying the characteristic equation

det(C−λA) = 0. (7.1.5)

In the case of multiple roots of (7.1.5), there are coincident values among λ1, . . . ,λn.
The number of coincident λi is equal to the multiplicity of the corresponding root.
The eigenvalues correspond to linearly independent eigenvectors h1, . . . ,hn, and
each multiple root correspondes to as many vectors as its multiplicity. The trans-
formation (7.1.3) reduces (7.1.1) to the system of linear oscillators

q̈k +ω2
k qk = wk +ζk, ωk = λ 1/2

k , k = 1, . . . ,n. (7.1.6)

Here, ωk is the eigenfrequency of the kth oscillator, whereas wk and ζk are the com-
ponents of the n-vectors w and ζ defined by

w = H−1A−1Bv, ζ = H−1A−1 f . (7.1.7)

The oscillators in (7.1.6) are coupled only through the control and nonlinear terms.
On the strength of (7.1.1), the vectors w and ζ belong to the following sets in Rn:

w ∈W = H−1A−1BV, ζ ∈ Z = H−1A−1F. (7.1.8)

From (7.1.2) and (7.1.3), we have the following initial conditions for system (7.1.6)

qk(0) = q0
k = (H−1x0)k, q̇k(0) = q̇0

k = (H−1ẋ0)k. (7.1.9)

7.1.2 Decomposition

Let us consider wk and ζk in each equation (7.1.6) as controls of two independent
players. The first player which chooses wk tends to bring the kth equation (7.1.6) to
the zero terminal state qk = q̇k = 0 in finite time, whereas the second player choos-
ing ζk counteracts. We assume that the master player, i.e., the first player, is well-
informed about the current values of the function f in system (7.1.1). Consequently,
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the first player knows the values of vector ζ at every instant. Thus, we come to the
following conditions.

Let the following inclusion
Z +Sε ⊂W (7.1.10)

hold for some ε (see Fig. 7.1).

W

Z

Fig. 7.1 Inclusion (7.1.10)

Here, the sets W and Z are defined by (7.1.8), and Sε is an n-dimensional ball of
the radius ε and with the center at the origin. Under the condition (7.1.10), we take

w = −ζ +u, (7.1.11)

where u is a new n-dimensional vector of control. Substituting (7.1.11) into (7.1.6),
we obtain

q̈k +ω2
k qk = uk, k = 1, . . . ,n. (7.1.12)

The inclusion (7.1.10) ensures that there exists an n-dimensional rectangular paral-
lelepiped

U : |uk| ≤Uk, k = 1, . . . ,n, (7.1.13)

such that any values u ∈ U are admissible. It means that, for any u ∈ U and any
ζ ∈ Z, the vector w from (7.1.11) satisfies the constraints (7.1.8). In other words, for
any u ∈U and any ζ ∈ Z, there exists v ∈V such that the corresponding w given by
(7.1.7) satisfies (7.1.8) and is presented in the form (7.1.11).

Thus, the inclusion (7.1.10) can be regarded as a sufficient controllability condi-
tion for the system (7.1.1). Under this condition, the control design for the system
(7.1.1) is reduced to the control of simple linear subsystems (7.1.12) with one degree
of freedom each by means of independent control forces uk bounded by constraints
(7.1.13).
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7.1.3 Time-optimal control problem

We will now consider the optimal control problem for (7.1.12) under constraint
(7.1.13) and initial conditions (7.1.9). We have

q̈k +ω2
k qk = uk, |uk| ≤Uk, ωk > 0,

qk(0) = q0
k , q̇k(0) = q̇0

k , qk(Tk) = q̇k(Tk) = 0, Tk → min .
(7.1.14)

We introduce non-dimensional variables and parameters

t = ω−1
k τ, qk = Ukω−2

k y, q̇k = Ukω−1
k z,

uk = Uku, Tk = ω−1
k T∗, T∗ → min .

(7.1.15)

After transformations (7.1.15), relations (7.1.14) acquire the normalized form

dy
dτ

= z,
dz
dτ

= −y+u, |u| ≤ 1,

y(0) = y0, z(0) = z0, y(T∗) = z(T∗) = 0, T∗ → min .

(7.1.16)

The solution of the time-optimal problem (7.1.16) is known [93] and presented
as Example 2 in Sect. 1.4. The optimal control synthesis for this problem is given
by (1.4.13) and (1.4.19). In the notation of this chapter, we have

u(y,z) = signψ(y,z) if ψ(y,z) �= 0;

u(y,z) = signy = −signz if ψ(y,z) = 0.
(7.1.17)

Here, the function ψ(y,z) is given by

ψ(y,z) = (−y2 −2y)1/2 − z if −2 ≤ y ≤ 0;

ψ(y,z) = ψ(y+2,z) if y < −2;

ψ(y,z) = −ψ(−y,−z) if y > 0.

(7.1.18)

The switching curve ψ(y,z) = 0 given by (7.1.17) and (7.1.18) possesses central
symmetry and consists of semicircles of unit radii with centers at the points

z = 0, y = ±(2i+1), i = 0,1, . . . . (7.1.19)

The plus (minus) sign in (7.1.19) corresponds to semicircles in the fourth (second)
quadrant of the y,z phase plane.

The optimal phase trajectory corresponding to the feedback control (7.1.17)
consists of circular arcs with centers at the points y = ±1, z = 0. In the domain
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ψ(y,z) < 0, where u =−1, the center of these circles lies at the point y =−1, z = 0,
while in the domain ψ(y,z) > 0, where u = 1, it is at the point y = 1, z = 0. The semi-
circles of the switching curve with centers at the points y =±1, z = 0 are themselves
segments of the phase trajectories.

In Fig. 7.2, similar to Fig. 1.4, the solid lines represent the switching curve, and
the thin line shows one of the optimal trajectories. The arrows indicate the time
growth.

y

z

y,z

P

α
α δ

θ

1

−1

Fig. 7.2 Switching curve and optimal phase trajectory

7.1.4 Upper bound for the optimal time

We will estimate the time of motion T∗(y,z) along the optimal phase trajectory that
starts at some point y,z. This estimate will be used hereafter. Suppose that this point
lies in the domain z > ψ(y). We will first make some auxiliary constructions.

We denote by r,θ the polar coordinates of the initial point y,z, the pole being the
point y = −1, z = 0. We have

y = r cosθ −1, z = r sinθ . (7.1.20)

The initial segment of the phase trajectory is a circular r = const. We continue
this arc in an anticlockwise direction until it intersects the switching curve z = ψ(y).
Suppose the point of intersection P lies on the ith (counting from the origin of co-
ordinates) semicircle of the switching curve (see Fig. 7.2, where i = 4). This means
that the coordinates of P can be taken in the form

yP = −2i+1+ cosα, zP = sinα,

i = 2,3, . . . , α ∈ [0,π).
(7.1.21)
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The angle α corresponds to the arc cut out by the point P from the semicircle of the
switching curve on which it lies. We note that such arcs α are cut out by the optimal
trajectory from all the semicircles of the switching curve which it intersects. The
final arc of the phase trajectory also has angular dimensions α , see Fig. 7.2.

Since the point P with coordinates (7.1.21) lies on a circle r = const, we have,
according to the elementary geometry, see Fig. 7.2

r2 = (yP +1)2 + z2
P = 4(i−1)2 +1−4(i−1)cosα. (7.1.22)

We denote by R the length of the radius-vector of the phase point y,z. Using
relation (7.1.20), we obtain

R2 = y2 + z2 = (r−1)2 +2r(1− cosθ). (7.1.23)

The inequalities

R ≥ r−1 ≥ [4(i−1)2 −4(i−1)+1]1/2 −1 = 2i−4. (7.1.24)

follow from (7.1.23) and (7.1.22).
The time of motion along any arc of the optimal trajectory is, according to

Sect. 1.4, equal to the angular length of this arc. Each arc between neighbouring
switches of the control is either equal to π , or (for the first and second sections)
does not exceed π , and the total number of sections is equal to the integer i in-
troduced above. Hence we have T∗ ≤ πi. Using inequality (7.1.24) we obtain the
estimate

T∗ ≤ π
(

R
2

+2

)
≡ T 0(R). (7.1.25)

Estimate (7.1.25) holds for all R ≥ 0, but it does not imply that T∗ → 0 as R → 0.
Hence, we will obtain yet another estimate for sufficiently small R.

Suppose i = 2, i.e., there is only one switch of the control, see Fig. 7.2. In this
case the optimal trajectory consists of an arc of radius r and angular dimension
θ +δ and an arc of radius 1 and angular dimension α , coinciding with a segment of
the switching curve. Here, we denote by δ the angle between the y axis and the ray
coming from the point y = −1, z = 0 to the point of the trajectory where the switch
occurs. Thus

T∗ = θ +δ +α, (7.1.26)

where, as can be determined with the help of Fig. 7.2, we have

sinδ = r−1 sinα, δ ∈
[
0,

π
2

]
. (7.1.27)

Let us obtain some auxiliary relations, which we will require in order to estimate
the time (7.1.26). Putting i = 2 in (7.1.22), we find

r =
[
1+8sin2

(α
2

)]1/2
. (7.1.28)
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Equations (7.1.27) and (7.1.28) determine the relation between angles δ and α .
The analysis of this relation shows that as the angle α varies within the interval
[0,π] in (7.1.21), the angle δ varies within the interval [0,π/6], and always δ ≤ α .
Thus, we have

0 ≤ δ ≤ π
6

, δ ≤ α, 0 ≤ α < π. (7.1.29)

The following inequality holds

sin
(γ

2

)
≥ γ

π
, γ ∈ [0,π). (7.1.30)

Putting γ = α in inequality (7.1.30), we obtain from (7.1.28) the relation

r ≥ (1+8π−2α2)1/2, α ∈ [0,π),

which we rewrite in the form

r ≥ g(ξ ) = (1+ξ )1/2, ξ = 8π−2α2, ξ ∈ [0,8). (7.1.31)

Since g(ξ ) is a concave function, the inequality

[g(ξ )−g(0)]ξ−1 ≥ 1
8
[g(8)−g(0)], ξ ∈ [0,8].

is satisfied. Substituting the values g(0) = 1 and g(8) = 3 from (7.1.31) into the last
equality, we obtain

r ≥ (1+ξ )1/2 ≥ 1+
ξ
4

, ξ ∈ [0,8].

This inequality makes it possible to simplify (7.1.31) as follows

r ≥ 1+2π−2α2, α ∈ [0,π). (7.1.32)

We now transform relation (7.1.23) using inequality (7.1.30) for γ = θ . We have

R2 = (r−1)2 +4r sin2
(

θ
2

)
≥ (r−1)2 +4π−2rθ 2.

Let us substitute (7.1.32) into the latter inequality. We obtain

R2 ≥ 4π−4α4 +4π−2θ 2.

The latter relation implies the following two inequalities

R ≥ 2π−2α2, R ≥ 2π−1|θ |. (7.1.33)

We now transform (7.1.26) for T∗, using inequalities (7.1.29) and (7.1.33)
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T∗ = θ +δ +α ≤ 2α +θ ≤ 2|α|+ |θ | ≤ π
[
(2R)1/2 +

R
2

]
≡ T 1(R). (7.1.34)

Let us compare estimates (7.1.25) and (7.1.34). We recall that estimate (7.1.34)
was obtained for i = 2, and estimate (7.1.25) for all i ≥ 2. But, according to (7.1.24),
we have R ≥ 2 for i ≥ 3. From (7.1.25) and (7.1.34) it follows that T 0(R) ≤ T 1(R)
for R ≥ 2. Consequently, for all i ≥ 3 we have T 0(R) ≤ T 1(R).

It has thus been established that the upper estimate (7.1.34) for the optimal time

T∗ ≤ T 1(R) = π
[

R
2

+(2R)1/2
]
, R = (y2 + z2)1/2 (7.1.35)

holds for all y,z.
Returning to the original dimensional variables (7.1.15), we obtain the following

upper estimate for our optimal time for problem (7.1.14) in the form

Tk(q
0
k , q̇

0
k) ≤ πU−1

k

[ρk

2
+(2U−1

k ω−1
k ρk)

1/2
]
,

ρk =
[
ω2

k (q0
k)

2 +(q̇0
k)

2
]1/2

; k = 1,2, . . . ; ωk > 0.

(7.1.36)

The time T of steering the total system (7.1.12) with n degrees of freedom to the
origin is equal to the largest Tk, i.e.,

T = max
k

Tk(q
0
k , q̇

0
k), k = 1, . . . ,n. (7.1.37)

The obtained inequality (7.1.36) allows one to estimate the time T from above.

7.2 Distributed-parameter systems

7.2.1 Statement of the control problem for a distributed-parameter
system

Let us turn to the consideration of control systems with distributed parameters de-
scribed by linear partial differential equations. We shall consider in tandem the equa-
tion

wt = Aw+ v, (7.2.1)

solved with respect to the first time derivative, and the equation

wtt = Aw+ v, (7.2.2)

solved with respect to the second derivative. In (7.2.1) and (7.2.2), w(x, t) is the
scalar function of the n-dimensional spatial coordinate vector x = (x1, . . . ,xn) and
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time t; w describes the state of the system, v is the required control, and A is a linear
differential operator containing partial derivatives with respect to the coordinates xi,
i = 1, . . . ,n. The coefficients of the operator A do not depend on t, and its order ordA
is assumed to be even and equal to 2m.

The most important and frequently encountered examples of (7.2.1) and (7.2.2),
which we shall have in mind in the following, are: 1) the heat-conduction equation,
which is obtained from (7.2.1) if m = 1 and A = Δ is the Laplace operator; 2) the
wave equation obtained from (7.2.2) with m = 1 and A = Δ ; 3) the equation for
the vibrations of an elastic beam or plate, obtained from (7.2.2) with m = 2, A =
−Δ 2 and n = 1,2, respectively. Equations (7.2.1) and (7.2.2) describe also heat-
conduction processes and vibrations in an inhomogeneous medium, if

Aw =
n

∑
i=1

∂
∂xi

[
a(x)

∂w
∂xi

]
, m = 1,

where a(x) is a specified function describing the inhomogeneity of the medium.
Equations (7.2.1) and (7.2.2) are considered in some bounded domain of varia-

tion for the spatial variables x ∈ Ω and for t ≥ 0. At the boundary Γ of the domain
Ω , a homogeneous boundary condition of the following form should be satisfied

Mw = 0, M = (M1, . . . ,Mm), x ∈ Γ . (7.2.3)

Here, Mj is a linear differential operator of order ordMj < 2m ( j = 1, . . . ,m) with
coefficients independent of t. In particular, for m = 1 the operator M is scalar and
has the form

Mw = b0(x)w+b1(x)
∂w
∂x

,

where b0(x) and b1(x) are functions given on Γ . Condition (7.2.3) can, in particular,
become the Dirichlet condition (for b0 = 1, b1 = 0) or the Neumann condition (for
b0 = 0, b1 = 1).

The initial conditions have the form

w(x,0) = w0(x), x ∈ Ω (7.2.4)

for (7.2.1) and

w(x,0) = w0(x), wt(x,0) = wt0(x), x ∈ Ω (7.2.5)

for (7.2.2).
The constraint

|v(x, t)| ≤ v0, x ∈ Ω , t ≥ 0, (7.2.6)

is imposed on the control function v in (7.2.1) and (7.2.2), where v0 > 0 is a given
constant.

We will now formulate the control problem.



254 7 Control in distributed-parameter systems

Problem 7.1. It is required to construct a control v(x, t) satisfying condition (7.2.6)
and such that the corresponding solution of (7.2.1) or (7.2.2) with boundary con-
dition (7.2.3) and the corresponding initial condition (7.2.4) or (7.2.5) vanishes at
some finite (unspecified) time instant T > 0. More precisely, everywhere in Ω the
condition w(x,T ) = 0 should be satisfied for (7.2.1) and w(x,T ) = wt(x,T ) = 0
should be satisfied for (7.2.2).

Obviously, if one puts v ≡ 0 for t ≥ T , the solution remains identically equal to
zero for t > T .

The boundary of the domain Ω is assumed to be piecewise-smooth. Require-
ments on the initial functions and the function classes to which the solutions of the
problems belong in various cases, are considered in Sect. 7.3.4.

7.2.2 Decomposition

The solution of Problem 7.1 is based on the Fourier method. To apply it, we will first
consider the following eigenvalue problem corresponding to the initial-boundary-
value problems (7.2.1)—(7.2.5) for v = 0.

The problem is to find the functions ϕ(x), x∈Ω , and the corresponding constants
λ that satisfy the following linear homogeneous equation with boundary conditions

Aϕ = −λϕ, x ∈ Ω ; Mϕ = 0, x ∈ Γ . (7.2.7)

It is known that, under specified conditions (for self-conjugate elliptic equations
and, in particular, for the Laplace equation, i.e., when A = Δ ), the eigenvalue prob-
lem (7.2.7) has the following properties.

There is a discrete denumerable spectrum of positive eigenvalues λk, which can
be numbered in non-decreasing order: λ1 ≤ λ2 ≤ . . ., with λk → ∞ as k → ∞. In
certain cases, for example, for the Laplace operator A = Δ with Neumann condi-
tions, there is also a zero eigenvalue λ = 0. That case will also be considered. To
these eigenvalues, there corresponds an orthogonal system of eigenfunctions ϕk(x)
complete in the domain Ω . Normalizing these functions, we obtain an orthonormal
system of functions ϕk(x) possessing the following properties

Aϕk = −λkϕk, x ∈ Ω ; Mϕk = 0, x ∈ Γ ,

(ϕk,ϕi) =
∫
Ω

ϕk(x)ϕi(x)dx = δki, k, i = 1, . . . ,n.
(7.2.8)

Here, δki is the Kronecker delta. The index k in (7.2.8) and below, unless other-
wise stated, runs over values from 0 to ∞ when there is a zero eigenvalue λ0 = 0 and
from 1 to ∞ when there is none. Summation over k will also be performed over the
ranges given above.
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We now use the Fourier method to separate the time (t) and space (x) depen-
dence. Solutions of (7.2.1) and (7.2.2) will be sought in the form of eigenfunction
expansions

w(x, t) = ∑qk(t)ϕk(x). (7.2.9)

where qk(t) are certain functions of time. The control v in (7.2.1) and (7.2.2) is also
represented in the form of an expansion

v(x, t) = ∑uk(t)ϕk(x). (7.2.10)

where uk(t) are currently unknown functions of time.
Substituting expansions (7.2.9) and (7.2.10) into (7.2.1), we obtain

∑ q̇k(t)ϕk(x) = ∑(qkAϕk +ukϕk).

Here and below, the dots denote time derivatives.
We use the equations for ϕk from (7.2.8) together with the orthogonality of ϕk.

As a result, we obtain the system of equations

q̇k +λkqk = uk. (7.2.11)

Similarly, substituting expansions (7.2.9) and (7.2.10) into (7.2.2), we obtain

q̈k +ω2
k qk = uk. (7.2.12)

Here and below, ωk are the frequencies of the natural modes given by

ωk = λ 1/2
k , 0 = ω0 ≤ ω1 ≤ ω2 ≤ . . . . (7.2.13)

We note that a solution of the form (7.2.9) satisfies, by construction, the boundary
condition (7.2.3) because, according to (7.2.8), all the eigenfunctions satisfy this
condition.

We substitute solution (7.2.9) into the initial conditions (7.2.4) and (7.2.5) and
use the orthonormality of the eigenfunctions (7.2.8). We obtain initial conditions for
(7.2.11) in the form

qk(0) = q0
k =

∫
Ω

w0(x)ϕk(x)dx (7.2.14)

and for (7.2.12) in the form

qk(0) = q0
k =

∫
Ω

w0(x)ϕk(x)dx,

q̇k(0) = (q̇k)
0 =

∫
Ω

wt0(x)ϕk(x)dx.

(7.2.15)



256 7 Control in distributed-parameter systems

The original control problem for the partial differential equations (7.2.1) and
(7.2.2) has thus been reduced to a control problem for linear control systems of in-
finite order (7.2.11) and (7.2.12). We impose the constraint on the control functions
uk of these systems

|uk(t)| ≤Uk, t ≥ 0. (7.2.16)

The values of the constants Uk should be chosen so that the imposed constraint
(7.2.6) is satisfied.

From (7.2.10) and (7.2.16), we obtain the following estimate

|v(x, t)| ≤ ∑Uk|ϕk(x)|. (7.2.17)

Consequently, to satisfy the original constraint (7.2.6), it is sufficient to require
that for all x ∈ Ω the inequality

∑Uk|ϕk(x)| ≤ v0, x ∈ Ω (7.2.18)

is satisfied.
We introduce the notation

Φk = max
Ω

|ϕk(x)|. (7.2.19)

Inequality (7.2.18) is clearly satisfied under the condition

∑Uk|Φk| ≤ v0. (7.2.20)

Thus, to solve the control problems for (7.2.1) and (7.2.2) (Problem 7.1), it is
sufficient to solve the following control problems for systems (7.2.11) and (7.2.12).

Problem 7.2. It is required to construct the feedback controls uk(qk) in system
(7.2.11) and uk(qk, q̇k) in system (7.2.12) for k = 0,1, . . ., satisfying constraints
(7.2.16) and bringing these systems to the zero terminal state [qk = 0 for (7.2.11)
and qk = q̇k = 0 for (7.2.12)] in a finite time for any initial conditions of the form
(7.2.14) or (7.2.15), respectively. Here, the constants Uk in (7.2.16) should satisfy
inequality (7.2.18) for all x, or, which is sufficient, the stronger inequality (7.2.20).

We note that, as a result of applying the Fourier method, we have achieved a de-
composition of the system: each mode of motion is described by its own (7.2.11) or
(7.2.12), with the corresponding control uk. Thus, Problem 7.1 is reduced to Prob-
lem 7.2 which was considered for the second order systems in Sect. 7.1.3 [see sys-
tem (7.1.12) with constraints (7.1.13)]. However, the constants Uk in the constraints
(7.2.16) are associated with inequalities (7.2.18) or (7.2.20), which is a substantial
difficulty in solving the problem.

For each of (7.2.11) and (7.2.12), we shall construct the time-optimal feedback
control uk under constraint (7.2.16) for arbitrary fixed Uk. These controls are well
known, they are given for the systems of the second order in Sect. 7.1.3.

Below, these time-optimal controls are analyzed in connection to inequalities
(7.2.18) and (7.2.20), and estimates obtained in Sect. 7.1.3 are used.
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7.2.3 First-order equation in time

Firstly, let us consider (7.2.1) which contains the first time derivative of the sought-
for function w(x, t). Due to the decomposition of this equation, the system of the
first order equations (7.2.11) was obtained.

Consider the problem of time-optimal control for one of (7.2.11) under constraint
(7.2.16) and initial condition (7.2.14). We have

q̇k +λkqk = uk, |uk(t)| ≤Uk, λk ≥ 0,

qk(0) = q0
k , qk(Tk) = 0, Tk → min .

(7.2.21)

The solution of problem (7.2.21) is very simple. Integrating (7.2.21) and satisfy-
ing the initial condition, we find that

qk(t) =
[
q0

k +

t∫
0

uk(τ)exp(λkτ)dτ
]

exp(−λkt). (7.2.22)

Hence, it follows that, for the fastest vanishing of the solution qk(t), the control
uk should be maximal in modulus and opposite to the sign of the initial value q0

k , or,
equivalently, of the solution qk(t).

The synthesis of the time-optimal control thus has the form

uk(qk) =

{−Uk signqk, qk �= 0

0, qk = 0.
(7.2.23)

The control (7.2.23) is constant along any phase trajectory. Substituting it into
(7.2.22) and integrating, we obtain

qk(t) =
{
|q0

k |−Ukλ−1
k [exp(λkt)−1]

}
exp(−λkt)signq0

k . (7.2.24)

At the final instant, according to (7.2.21), we have qk(Tk) = 0. From (7.2.24), we
find the instant when the process ends

Tk = λ−1
k log

(
1+λk|q0

k |U−1
k

)
, λk > 0, k ≥ 1;

T0 = |q0
0|U−1

0 , λ0 = 0.

(7.2.25)

The solution of the time-optimal control problem (7.2.21) for all k ≥ 0 is pre-
sented in the feedback form (7.2.23). The phase trajectory and optimal time are
given by formulas (7.2.24) and (7.2.25), respectively. Thus, the solution of Prob-
lem 7.2 for system (7.2.11) is obtained. Method for choosing the constants Uk will
be presented in Sect. 7.2.5.
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7.2.4 Second-order equation in time

We will now turn to (7.2.2) which contains the second time derivative of the function
w(x, t). In this case, the decomposition results in the system of the second order
equations (7.2.12).

Consider the optimal control problem for one of (7.2.12) under constraint (7.2.16)
and initial conditions (7.2.15).

In the case of ωk > 0, k ≥ 1, the results obtained in Sect. 7.1 for a finite system of
oscillators will be used. The optimal control synthesis uk(qk, q̇k) for k ≥ 1 is given
by relations (7.1.17) and (7.1.18) in non-dimensional variables. To express the con-
trol through original dimensional variables, it is sufficient to use the transformation
formulas (7.1.15).

We consider separately the case with the zero eigenvalue k = 0, ω0 = 0. In this
case, the feedback optimal control for problem (7.1.14), is presented in Sect. 1.4,
see Example 1, (1.4.12) and (1.4.13). We have

u0(q0, q̇0) = U0 signψ0(q0, q̇0) if ψ0 �= 0;

u0(q0, q̇0) = U0 signq0 = −U0 sign q̇0 if ψ0 = 0;

ψ0(q0, q̇0) = −U0q0 − 1
2

q̇0|q̇0|.

(7.2.26)

The optimal time for k = 0, ω0 = 0 is given by the formula

T0(q0, q̇0) = U−1
0

{
2

[
1
2
(q̇0)

2 −U0q0σ
]1/2

− q̇0σ

}
,

σ = signψ0(q0, q̇0) for ψ0 �= 0, σ = ±1 for ψ0 = 0

which can be obtained for Example 1 from Sect. 1.4, see (2.3.26). Here and below,
the superscript 0 at qk, q̇k, k = 0,1, . . . , is omitted.

Applying the inequality (a + b)1/2 ≤ |a|1/2 + |b|1/2 to the above relation, we
obtain the estimate

T0(q0, q̇0) ≤ (21/2 +1)U−1
0 |q̇0|+2U−1/2

0 |q0|1/2. (7.2.27)

We have thus obtained relations for the time-optimal control for system (7.2.12)
for all k ≥ 0. Optimal phase trajectories for this system are also well known, see
Sect. 1.4, Figs. 1.2 and 1.4. For the optimal time, estimates (7.1.36) and (7.2.27)
has been obtained for k ≥ 1 and k = 0, respectively. Thereby, the solution of Prob-
lem 7.2 for system (7.2.12) is found. The procedure for choosing the constants Uk

is discussed below.
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7.2.5 Analysis of the constraints and construction of the control

The relations obtained in Sects. 7.2.3 and 7.2.4 contain constants Uk that are con-
straints on the control for the kth mode of motion. We choose these constants so as
to reduce the total time of the motion equal to

T = max
k

Tk, k ≥ 0 or k ≥ 1 (7.2.28)

while satisfying constraints (7.2.18) or (7.2.20). The index k in (7.2.18), (7.2.20),
and (7.2.28) takes the values 0,1, . . . when there is a zero eigenvalue λ0 = 0 in
problem (7.2.8) and values 1,2, . . . when there is none.

Since Tk increases monotonically as Uk increases, and all the Uk occur linearly
with positive coefficients in constraints (7.2.18) and (7.2.20), it is natural to choose
Uk by requiring that all Tk are equal: T0 = T1 = . . . . This gives the least possible
value for T in (7.2.28) under given constraints (7.2.18) or (7.2.20).

Following the idea expressed above, for the first-order equation we put, in accor-
dance with (7.2.25)

Tk = λ−1
k log

(
1+λk|qk|U−1

k

)
= T.

Here, T is a constant to be determined, and the superscript 0 at qk is omitted.
From this we find

Uk = λk|qk|[exp(λkT )−1]−1, k ≥ 0. (7.2.29)

Formula (7.2.29) holds for all λk ≥ 0. Substituting (7.2.29) into inequality
(7.2.20), we obtain

∑λk[exp(λkT )−1]−1|qk|Φk ≤ v0. (7.2.30)

It is known that, under very general assumptions, the eigenvalues λk and the max-
ima of the eigenfunctions Φk increase no faster than some power of k as k → ∞. The
moduli of the Fourier coefficients |qk| increase less rapidly than k as k → ∞ for any
bounded initial function w0(x). Hence, because of the presence of the exponential
factor, the series on the left-hand side of inequality (7.2.30) converges for all T > 0.
As T takes values from 0 to ∞, the sum of the series decreases monotonically from ∞
to 0. Hence, there always exists such T > 0 for which inequality (7.2.30) is satisfied.
Thus, the stated control problem (Problem 7.1) for (7.2.1) is always solvable by the
proposed method. The time T of the process can be chosen from the condition for
satisfying inequality (7.2.30).

We obtain an upper estimate for the time T using the inequality

λk[exp(λkT )−1]−1 ≤ T−1. (7.2.31)

It follows from (7.2.30) and (7.2.31) that if T is chosen from the condition
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T =
Q1

v0 , Q1 = ∑ |qk|Φk < ∞, (7.2.32)

then inequality (7.2.30) is clearly satisfied. Consequently, if the series for Q1 con-
verges, the time T can be chosen according to the simple formula (7.2.32).

We now consider (7.2.2) that is of the second order in time. In this case, instead of
explicit formulas for times Tk, one only has the upper estimates (7.1.36) and (7.2.27),
hence the equality condition on all the Tk cannot be satisfied exactly. Bearing this in
mind, and also to simplify the subsequent formulas, we propose to choose Uk in the
form

Uk = cρk, c > 0, k = 1,2, . . . ,

U0 = max(c1|q̇0|,c2|q0|), c1 > 0, c2 > 0.
(7.2.33)

Here, c, c1, and c2 are constants. Substituting Uk from (7.2.33) into (7.1.36), we
obtain

Tk ≤ π
[
(2c)−1 +21/2(ωkc)−1/2

]
, k = 1,2, . . . .

The last inequality is not violated if all ωk are replaced by ω1 ≤ ωk. We obtain
the estimate

Tk ≤ π
[
(2c)−1 +21/2(ω1c)−1/2

]
. (7.2.34)

When substituting expression (7.2.33) for U0 into inequality (7.2.27), we shall
distinguish between two cases. In the first case, when c1|q̇0| ≥ c2|q0|, we obtain
from (7.2.27) and (7.2.33)

T0 ≤ (21/2 +1)c−1
1 +2|c1q̇0|−1/2q1/2

0 ≤ (21/2 +1)c−1
1 +2c−1/2

2 . (7.2.35)

In the second case, when c1|q̇0| > c2|q0|, similar estimates reduce to exactly the
same result (7.2.35). We choose the constants c1 and c2 so that both terms on the
right-hand sides of inequalities (7.2.34) and (7.2.35) are identical term by term, i.e.,

π(2c)−1 = (21/2 +1)c−1
1 , π21/2(ω1c)−1/2 = 2c−1/2

2 .

From this we find the required constants

c1 = ϑ1c, c2 = ϑ2c,

ϑ1 = 2(21/2 +1)π−1 ≈ 1.53, ϑ2 = 2ω1π−2.
(7.2.36)

Using (7.2.36), formulas (7.2.33), can be written in the form

Uk = cρk, k ≥ 1, U0 = cmax(ϑ1|q̇0|,ϑ2|q0|). (7.2.37)

The quantities ϑ1 and ϑ2 are defined in (7.2.36) and do not depend on c. Because
the right-hand sides of inequalities (7.2.34) and (7.2.35) are identical by virtue of
the choice of constants c1 and c2, estimate (7.2.34) holds for all k ≥ 0. Thus, in all
cases we have the estimate
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T ≤ π
[
(2c)−1 +21/2(ω1c)−1/2

]
(7.2.38)

for the time of the control process (7.2.28).
It remains to choose the constant c so that the constraint (7.2.18) is satisfied.

Substituting (7.2.37) into (7.2.18), we obtain

c ≤ v0(Q∗)−1. (7.2.39)

Here, we have introduced the notation

Q∗ = sup
x∈Ω

Q2(x), Q2(x) = ∑ρk|ϕk(x)|+max(ϑ1|q̇0|,ϑ2|q0|)|ϕ0(x)|,

ρk = [ω2
k q2

k +(q̇k)
2]1/2, k ≥ 1,

(7.2.40)

and used formulas (7.1.36) for the ρk. Inequality (7.2.40) is written for the case
when the zero eigenvalue is present. When it is not present one simply omits the last
term (max) in formula (7.2.40) for Q2.

Thus, a sufficient condition for the control problem (Problem 7.1) to be solvable
for (7.2.2) using the proposed approach is uniform boundedness of the series for
Q2(x) from (7.2.40) in the domain Ω . For this, it is sufficient to require the uniform
boundedness in Ω of the following two series

Q3(x) = ∑ωk|qk||ϕk(x)|, Q4(x) = ∑ |q̇k||ϕk(x)|. (7.2.41)

Using the notation (7.2.19), the boundedness condition on Q∗ from (7.2.40) can
be replaced by the stronger condition of the convergence of the numerical series

Q5(x) = ∑ρkΦk < ∞, ρk = [ω2
k q2

k +(q̇k)
2]1/2 (7.2.42)

or the condition of the convergence of the two series

Q6(x) = ∑ωk|qk|Φk < ∞, Q7(x) = ∑ |q̇k|Φk < ∞. (7.2.43)

We will sum up the results obtained. For both equations (7.2.1) and (7.2.2), the
solvability conditions of Problem 7.1 have been stated and upper limits have been
given on the control process time T .

Problem (7.2.1) is always solvable, and its time T can be chosen from condition
(7.2.30) or, when the series Q1 converges, from the simpler condition (7.2.32).

Problem (7.2.2) is clearly solvable if one of the series convergence conditions
(7.2.40)—(7.2.43) is satisfied: Q2, or Q3 and Q4, or Q5, or Q6 and Q7. We have
the estimate (7.2.38) for the time T , in which the constant c should be chosen by
condition (7.2.39). Here, the number Q∗ is determined from relations (7.2.40) or one
of the following relations

Q∗ = sup
x∈Ω

Q3(x)+ sup
x∈Ω

Q4(x), Q∗ = Q5, Q∗ = Q6 +Q7



262 7 Control in distributed-parameter systems

according to which of the series convergence conditions (7.2.41)—(7.2.43) is satis-
fied.

We remark that when the initial functions w0 and wt0 tend uniformly to zero, all
their Fourier coefficients tend to zero, and here all the series in (7.2.30), (7.2.32),
(7.2.40)—(7.2.43) also tend to zero. From estimates (7.2.32), (7.2.38), (7.2.39) it
follows that the process time T → 0 for both (7.2.1) and (7.2.2).

In the general case, we will firstly determine time T under aforesaid solubility
conditions of Problem 7.1. For (7.2.1), we take formula (7.2.32). For (7.2.2), we
find c from condition (7.2.39) and after that determine T from condition (7.2.38).

After determining the time T and the constant c, we find Uk from relations
(7.2.29) and (7.2.37) for (7.2.1) and (7.2.2), respectively. The coefficients uk of the
required control law (7.2.10) are found in the form of a synthesis, i.e., depending
on the current values qk and q̇k, in Sects. 7.2.3 and 7.2.4 for (7.2.1) and (7.2.2),
respectively. Because the optimal trajectories are known for the systems (7.2.1) and
(7.2.2), the controls obtained in the form of a synthesis can also be represented in
the form of a program uk(t), i.e., in the form of bang-bang functions with switching
points depending on the initial conditions.

Thus, the control (7.2.10) can be represented either in the form of a program
control for given initial conditions, or in the feedback form, if controls uk depending
on qk and q̇k are used. In the second case, the control is organized in the form
v = v(x;w(·, t)) for system (7.2.1) and in the form v = v(x;w(·, t),wt(·, t)) for system
(7.2.1). The notation introduced shows that the control v at a point x ∈ Ω at time
t is a functional of the functions w(y, t) and wt(y, t) with y ∈ Ω . However, here the
dependence on the initial functions w0 and wt0 is also preserved by means of the
constants Uk which depend on the initial data, see (7.2.29) and (7.2.37). In these
formulas the constants T and c also depend on the initial conditions.

The control (7.2.10) obtained is by construction such that all boundary and initial
conditions together with the constraint (7.2.6) are satisfied automatically. This con-
trol is near to being time-optimal because, firstly, the controls for each subsystem
are optimal, and secondly, the bounds Uk are chosen so that the control times for the
subsystems are equal or nearly equal to one another.

Below we consider some specific examples in which the convergence conditions
for series (7.2.32), (7.2.42), and (7.2.43) are analyzed. The conditions for Prob-
lem 7.1 to be solvable are obtained in the form of requirements on the initial func-
tions. In Sect. 7.3.4, some general conditions for the control Problem 7.1 to be solv-
able for (7.2.2) are given.
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7.3 Solvability conditions

7.3.1 The one-dimensional problems (n = 1, A = Δ )

We first consider the heat-conduction and oscillation equations for the case of one
spatial variable x. Equations (7.2.1) and (7.2.2) have the form

wt = wxx + v, wtt = wxx + v. (7.3.1)

The domain Ω is the interval [0,a] of the x axis, and its boundary consists of the
two points x = 0, x = a. We shall consider in tandem conditions (7.2.3) of Dirichlet
and Neumann type

w(0) = w(a) = 0, wx(0) = wx(a) = 0. (7.3.2)

The eigenfunctions ϕk(x) corresponding to problems (7.3.1) and (7.3.2) satisfy
the equations

ϕ ′′
k = −λkϕk, 0 < x < a, (7.3.3)

where the primes denote differentiation with respect to x, together with Dirichlet or
Neumann conditions

ϕk(0) = ϕk(a) = 0, ϕ ′
k(0) = ϕ ′

k(a) = 0. (7.3.4)

The eigenvalues of problems (7.3.3) and (7.3.4) are as follows:

λk = ω2
k , ωk =

πk
a

, (7.3.5)

where k ≥ 1 for the Dirichlet problem and k ≥ 0 for the Neumann problem. The
orthonormalized eigenfunctions for the Dirichlet and Neumann problems are, re-
spectively, equal to

ϕk(x) =

(
2
a

)1/2

sin(ωkx), k = 1,2 . . . ,

ϕ0(x) = a−1/2, ϕk(x) =

(
2
a

)1/2

cos(ωkx).

(7.3.6)

The quantities Φk from (7.2.19) are bounded in this case

Φk =

(
2
a

)1/2

, k ≥ 1, Φ0 = a−1/2. (7.3.7)

We shall compute the Fourier coefficients (7.2.14) and (7.2.15), assuming that
the initial functions w0(x) and wt0(x) are differentiable with respect to x a sufficient
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number of times and using integration by parts. With the help of (7.3.6) we obtain

qk(0) =

a∫
0

w0ϕkdx

=

(
2
a

)1/2

ω−1
k

{
[(−w0)cos(ωkx)]

∣∣∣a
0
+

a∫
0

w′
0 cos(ωkx)dx

}

=

(
2
a

)1/2

ω−1
k

{
[(−w0)cos(ωkx)]

∣∣∣a
0
−ω−1

k

a∫
0

w′′
0 sin(ωkx)dx

}

=

(
2
a

)1/2

ω−1
k

{
[(−w0 +ω−2

k w′′
0)cos(ωkx)]

∣∣∣a
0
+ω−3

k

a∫
0

wIV
0 sin(ωkx)dx

}
(7.3.8)

for the Dirichlet problem and

qk(0) =

(
2
a

)1/2

ω−2
k

{
[w′

0 cos(ωkx)]
∣∣∣a
0
+ω−1

k

a∫
0

w′′′
0 sin(ωkx)dx

}

=

(
2
a

)1/2

ω−2
k

{
[(w′

0 −ω−2
k w′′′

0 )cos(ωkx)]
∣∣∣a
0
−ω−3

k

a∫
0

wV
0 sin(ωkx)dx

}
,

k ≥ 1,

(7.3.9)

for the Neumann problem. From relations (7.3.8) and (7.3.9) one can derive esti-
mates for the Fourier coefficients depending, firstly, on the degree of smoothness of
the initial function w0 and secondly, on additional conditions at the boundary points
x = 0 and x = a, i.e., on Γ . We drop the argument 0 of the function qk. Henceforth,
B j are some positive constants and Ci are classes of functions having continuous
derivatives in the interval [0,a] up to order i inclusive. For the Dirichlet problem we
obtain, using (7.3.8),

|qk| ≤ B1ω−1
k for w0 ∈C1;

|qk| ≤ B2ω−2
k for w0 ∈C2, w0 = 0 on Γ ;

|qk| ≤ B3ω−3
k for w0 ∈C3, w0 = 0 on Γ ;

|qk| ≤ B4ω−4
k for w0 ∈C4, w0 = w′′

0 = 0 on Γ .

(7.3.10)

For the Neumann problem we similarly have from (7.3.9)
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|qk| ≤ B5ω−1
k for w0 ∈C1;

|qk| ≤ B6ω−2
k for w0 ∈C2;

|qk| ≤ B7ω−3
k for w0 ∈C3, w′

0 = 0 on Γ ;

|qk| ≤ B8ω−4
k for w0 ∈C4, w′

0 = 0 on Γ .

(7.3.11)

Obviously, estimates of the form (7.3.10) and (7.3.11) can be continued without
limit. For the Fourier coefficients q̇k(0) from (7.2.15) we have estimates similar to
(7.3.10) and (7.3.11), with w0 replaced by wt0.

Turning to the investigation of the convergence of the series in (7.2.32) and
(7.2.43), we note that according to (7.3.7) the quantities Φk are independent of k.
Using also relation (7.3.5), we obtain the following convergence conditions for the
series.

Series (7.2.32) for the Dirichlet problem converges under the conditions

w0 ∈C2, w0 = 0 on Γ , (7.3.12)

and for the Neumann problem under the condition

w0 ∈C2. (7.3.13)

The series (7.2.43) for the Dirichlet problem converges under the conditions

w0 ∈C3, wt0 ∈C2, w0 = wt0 = 0 on Γ , (7.3.14)

and for the Neumann problem under the conditions

w0 ∈C3, wt0 ∈C2,
∂w0

∂n
= 0 on Γ . (7.3.15)

We note that convergence conditions (7.3.12) and (7.3.14) for series (7.2.32) and
(7.2.43) for the Dirichlet problem include, as well as smoothness requirements,
Dirichlet conditions on the initial functions w0 and wt0. Generally speaking, such
conditions are not necessary in the statement of initial-boundary-value problems,
and they are an additional imposition. In the case of the Neumann problem, how-
ever, conditions (7.3.13) and (7.3.15) are less restrictive: for series (7.2.32) no con-
ditions other than smoothness are imposed, while for series (7.2.43) the Neumann
condition is only imposed on the initial function w0 (and not on the function wt0).

We recall that the control problem for the first equation of (7.3.1) (the heat con-
duction equation) is always solvable, and conditions (7.3.12) and (7.3.13) ensuring
the convergence of series (7.2.32) are there only to apply the simple estimate of the
control process time in (7.2.32). For the second equation of (7.3.1) (the vibrating
string equation), conditions (7.3.14) and (7.3.15) are sufficient conditions for the
control problem to be solvable by the proposed methods.
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Remark 7.1. If conditions of the form (7.3.14) or (7.3.15) on Γ are not fulfilled at
the initial instant t = 0, then, however, the proposed control method all the same
can be applied. We notice that these conditions will be necessarily satisfied for an
arbitrary small t = Δ t > 0 due to the imposed boundary conditions (for an arbitrary
control v(x, t) on the interval t ∈ [0,Δ t]). Therefore, the proposed control method
can be applied for t ≥ Δ t. Hence, these conditions on Γ for t = 0 are not essential.
Thus, sufficient solvability conditions of the control problem for the vibrating string
equation with Dirichlet and Neumann conditions have the form

w0 ∈C3, wt0 ∈C2. (7.3.16)

Hereafter, we will also use stated above consideration, omitting not essential condi-
tions on the boundary Γ at t = 0.

7.3.2 Control of beam oscillations (n = 1, A = −Δ 2)

As an example of a fourth-order equation we consider the control of transverse
oscillations of an elastic beam. Equation (7.2.2) in this case has the form

wtt = −wxxxx + v. (7.3.17)

We will restrict ourselves to hinged support boundary conditions at both ends of
a beam of length a, i.e.,

w = wxx = 0 on Γ , Γ = {x = 0,x = a}. (7.3.18)

The eigenvalue problem (7.2.7) for system (7.3.17), (7.3.18) has the form

ϕ IV = λϕ, x ∈ Ω = [0,a], ϕ = ϕ ′′ = 0 on Γ . (7.3.19)

It is well known that the eigenvalues of problem (7.3.19) are positive and are

λk = ω2
k , ωk =

(
kπ
a

)2

, k = 1,2, . . . , (7.3.20)

where ωk are interpreted as the frequencies of the natural oscillations of the beam.
The corresponding eigenfunctions of problem (7.3.19) can be represented in the
form of (7.3.6). Hence, estimates (7.3.7), (7.3.8), and (7.3.10) remain valid for the
problem under consideration, but throughout (7.3.6), (7.3.8), and (7.3.10) the fre-
quencies ωk are now defined by formulas (7.3.20) [instead of (7.3.5)]. Using the
given estimates, we obtain, like (7.3.14), the following sufficient conditions for se-
ries (7.2.43) to converge in the problem under consideration:

w0 ∈C4, wt0 ∈C2. (7.3.21)
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We omit not essential conditions on Γ at t = 0, in accordance with Remark 7.1 stated
above. It can be shown [36] that the sufficient conditions of the series convergence
in the control problem for the elastic beam oscillations have the same form (7.3.21)
also for other boundary conditions, namely:

w = wx = 0 at x = 0, x = a;

w = wx = 0 at x = 0, w = wxx = 0 at x = a;

w = wx = 0 at x = 0, wx = wxxx = 0 at x = a;

w = wx = 0 at x = 0, wxx = wxxx = 0 at x = a;

w = wxx = 0 at x = 0, wx = wxxx = 0 at x = a.

7.3.3 The two-dimensional and three-dimensional problems
(n = 2,3; A = Δ )

We now consider the equations

wt = Δw+ v, wtt = Δw+ v; n = 2,3 (7.3.22)

in the two-dimensional and three-dimensional cases. Suppose the domain Ω is a
rectangle when n = 2 and a rectangular parallelepiped when n = 3, i.e., specified by

Ω : 0 ≤ xl ≤ al ; l = 1,2 or l = 1,2,3. (7.3.23)

The solutions of the eigenvalue problem (7.2.8) for (7.3.22) in domains (7.3.23)
under Neumann and Dirichlet conditions are known and are obtained by separation
of variables. In the two-dimensional (n = 2) Dirichlet case we obtain, like (7.3.5)
and (7.3.6)

λik = ω2
ik = π

[(
i

a1

)2

+

(
k
a2

)2
]

; i,k = 1,2, . . . ,

ϕik(x1,x2) = 2(a1a2)
−1/2 sin

(
πix1

a1

)
sin

(
πkx2

a2

)
.

(7.3.24)

For the Neumann problem the eigenvalues are given by relations (7.3.24) for
i,k = 0,1, . . . , while the eigenfunctions have a form similar to (7.3.6)
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ϕik(x1,x2) = 2(a1a2)
−1/2 cos

(
πix1

a1

)
cos

(
πkx2

a2

)
,

ϕ00(x1,x2) = (a1a2)
−1/2,

ϕ0k(x1,x2) = (2a1a2)
−1/2 cos

(
πkx2

a2

)
,

ϕi0(x1,x2) = (2a1a2)
−1/2 cos

(
πix1

a1

)
; i,k = 1,2 . . . .

(7.3.25)

By the virtue of (7.3.24) and (7.3.25), the quantities (7.2.19) are bounded

Φik = (2a1a2)
−1/2; i,k = 1,2, . . . . (7.3.26)

We will now estimate the Fourier coefficients (7.2.14) and (7.2.15), assuming
that the initial functions w0 and wt0 are sufficiently smooth. Replacing the multiple
integrals over the domain Ω by repeated integration over x1, x2, and then using
integration by parts, we obtain, like (7.3.8)–(7.3.11), the following estimates

|qik| ≤ B1(ik)−1 for w0 ∈C(1);

|qik| ≤ B2(ik)−2 for w0 ∈C(2), w0 = 0 on Γ ;

|qik| ≤ B3(ik)−3 for w0 ∈C(3), w0 = 0 on Γ

(7.3.27)

for the Dirichlet problem and

|qik| ≤ B4(ik)−1, |qi0| ≤ B5k−1;

|qi0| ≤ B6i−1 for w0 ∈C(1);

|qik| ≤ B7(ik)−1, |q0k| ≤ B8k−2;

|qi0| ≤ B9i−2 for w0 ∈C(2);

|qik| ≤ B10(ik)−3, |q0k| ≤ B11k−3;

|qi0| ≤ B12i−3 for w0 ∈C(3),
∂w0

∂n
= 0 on Γ

(7.3.28)

for the Neumann problem. In (7.3.27) and (7.3.28) i,k = 1,2, . . ., everywhere, while
C(r) is the class of functions w having continuous partial derivatives of the form

∂ p+q

∂xp
1 ∂xq

2
, 0 ≤ p ≤ r, 0 ≤ q ≤ r. (7.3.29)
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in the closed domain Ω .
For the Fourier coefficients q̇ik from (7.2.15) there are estimates similar to

(7.3.27) and (7.3.28), with w0 replaced by wt0.
Using relations (7.3.24), (7.3.26)–(7.3.28) we obtain the required sufficient con-

ditions for series (7.2.32) and (7.2.43) to converge. In the cases considered here,
summation in these series is performed over two indices i and k, from 1 to ∞ for the
Dirichlet problem and from 0 to ∞ for the Neumann problem.

It turns out that series (7.2.32) converges for the Dirichlet problem under the
conditions

w0 ∈C(2), w0 = 0 on Γ , (7.3.30)

and for the Neumann problem under the condition

w0 ∈C(2). (7.3.31)

Series (7.2.43) converge for the Dirichlet problem under the conditions

w0 ∈C(3), wt0 ∈C(2), w0 = wt0 = 0 on Γ , (7.3.32)

and for the Neumann problem under the conditions

w0 ∈C(3), wt0 ∈C(2),
∂w0

∂n
= 0 on Γ . (7.3.33)

The convergence conditions (7.3.30)—(7.3.33) are completely analogous to the
corresponding conditions (7.3.12)—(7.3.15) for the one-dimensional problem.

Omitting not essential conditions on Γ at t = 0 in accordance with Remark 7.1,
we find that series (7.2.32) for the Dirichlet and Neumann problems converges under
the condition (7.3.31), and series (7.2.43) for the same problems converge under the
following conditions

w0 ∈C(3), wt0 ∈C(2). (7.3.34)

In the three-dimensional case (n = 3), which is completely analogous to the two-
dimensional one, the eigenvalues are given by equalities similar to (7.3.24)

λi jk = π2

[(
i

a1

)2

+

(
j

a2

)2

+

(
k
a3

)2
]

.

Here, i, j,k ≥ 1 for the Dirichlet problem and i, j,k ≥ 0 for the Neumann problem.
Formulas and estimates similar to (7.3.24)—(7.3.26) hold for the eigenfunctions

and Fourier coefficients. Finally, we arrive at exactly the same convergence condi-
tions (7.3.30)—(7.3.34) as in the two-dimensional case. Here, as in (7.3.29), C(r) is
the class of functions w having continuous partial derivatives of the form

∂ p+q+s

∂xp
1 ∂xq

2∂xs
3
, 0 ≤ p ≤ r, 0 ≤ q ≤ r, 0 ≤ s ≤ r,

in the closed domain Ω .
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7.3.4 Solvability conditions in the general case

As was pointed out in Sect. 7.2.5, no additional conditions are required for the con-
trol problem to be solvable for (7.2.1), while for the control of (7.2.2) it is sufficient,
for example, that the functions Q3(x) and Q4(x) from (7.2.41) be uniformly bounded
in Ω . We shall analyze these conditions.

Below we shall always assume sufficient smoothness of the coefficients of the
operators of A from (7.2.2) and M from (7.2.3), and also of the boundaries Γ and
initial functions w0 and wt0 from (7.2.5).

We note that the series (7.2.41) contain, firstly, eigenfunctions ϕk(x) of problem
(7.2.8), and secondly, Fourier coefficients qk and q̇k of the initial functions w0 and
wt0. It is therefore desirable to use the following estimates for the series (7.2.41),
which follow from the Cauchy inequality and enable us to separate the contributions
of the eigenfunctions and Fourier coefficients

Q3(x) ≤
[
∑λ−β

k ϕ2
k (x) ·∑λ 1+β

k q2
k

]1/2
,

Q4(x) ≤
[
∑λ−γ

k ϕ2
k (x) ·∑λ γ

k (q̇k)
2
]1/2

.

(7.3.35)

Here, β and γ are currently arbitrary numbers, which will be chosen later so that all
the series in (7.3.35) are bounded.

We shall consider fractional (positive and negative) powers of the differential
operator A. An operator A of order 2m defines a transformation Aw = f . Its domain
of definition DA is the class of functions w defined in the domain Ω , having square-
integrable partial derivatives up to order 2m inclusive (this fact can be expressed in
the form DA ⊂ H2m(Ω), where H2m is the corresponding Sobolev space), and also
satisfying boundary conditions (7.2.3).

According to Agmon’s kernel theorem [1], for 2ms > n the operator A−s is an
integral operator with a continuous kernel equal to

K(x,y) = ∑λ−s
k ϕk(x)ϕk(y).

Putting x = y, i.e., considering the kernel on the diagonal, we obtain the uniform
boundedness of the series

∑λ−s
k ϕ2

k (x) ≤ const < ∞, 2ms > n.

It follows from this that for uniform boundedness of the first factors on the right-
hand sides of (7.3.35), i.e., the series depending on x, it is sufficient that

β > n(2m)−1, γ > n(2m)−1. (7.3.36)

Conditions (7.3.36) for m = 1 were first given in [67]. The second factors in the
right-hand sides of (7.3.35) (series depending on the Fourier coefficients) can, by
Parceval’s equality, be represented in the form
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∑λ 1+β
k q2

k =
∫
Ω

(
A(1+β )/2w0

)2
dx,

∑λ γ
k q̇2

k =
∫
Ω

(
Aγ/2wt0

)2
dx.

(7.3.37)

Series (7.3.37) converge if the functions A(1+β )/2w0 and Aγ/2wt0 are square inte-
grable in the domain Ω , i.e., belong to the class L2(Ω). In other words, the functions
w0 and wt0 should belong to the domains of definition of the corresponding operator:

w0 ∈ DA(1+β )/2 , wt0 ∈ DAγ/2 . (7.3.38)

It follows from results of [110] that the domain of definition DAs , for s ∈ (0,1)
lies in H2ms(Ω) and is distinguished by those boundary conditions (7.2.3) whose
order ordMj = r j < r = 2ms−1/2. In the case when for some j we have r j = r, the
corresponding boundary condition is to be understood in some integral sense.

From (7.3.38) we have, in the case under consideration

s =
1
2
(1+β ), r = m(1+β )− 1

2
for w0,

s =
1
2

γ, r = mγ − 1
2

for wt0,

(7.3.39)

where s can also be greater than unity.
Suppose, for example, s = 1+σ , where σ ∈ (0,1). Then, representing the result

of the action of the operator As in the form Asw = Aσ (Aw) and applying Seeley’s
theorem [110], we arrive at the following assertion. The domain of definition DAs

lies in H2ms(Ω) and is distinguished by boundary conditions (7.2.3) and also those
boundary conditions MjAw = 0 for which ordMj < 2mσ − 1/2. In other words,
for s ∈ (1,2), as well as the boundary conditions (7.2.3), conditions of the form
MjAw = 0 for which ord(MjA) < r = 2ms− 1/2 are also imposed on the function
w.

Similar results also follow from lemmas derived in Appendix 2 of [68].
Thus, for the convergence of series (7.3.37), the functions w0 and wt0 should sat-

isfy conditions depending on parameters s and r, the stringency of these conditions
increasing with s and r. We note that for restrictions r j < r on operator orders, the
fractional part of r is not significant because r j are integers.

We determine two numbers for each of the functions w0 and wt0 with the help of
relations (7.3.36) and (7.3.39): the lower bound s∗ on the possible values of s and the
integer part r∗ of the lower bound on possible values of r. The values of ϑ ∗ = 2ms∗
and r∗ for various pairs n, m for n ≤ 3, m ≤ 2 are shown in Table 7.1.

Using the values of ϑ ∗ and r∗ obtained, one can answer the question of the con-
vergence of series (7.3.35) and thereby obtain sufficient conditions for the control
problems under consideration to be solvable. For this, it is sufficient to require that
the following conditions be satisfied.
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Table 7.1 The values of ϑ ∗ and r∗ for various pairs n, m

n,m ϑ ∗(w0) ϑ ∗(wt0) r∗(w0) r∗(wt0)

1,1 3/2 1/2 1 0
1,2 5/2 1/2 2 0
2,1 2 1 1 0
2,2 3 1 2 0
3,1 5/2 3/2 2 1
3,2 7/2 3/2 3 1

Firstly, the functions w0 and wt0 should belong to classes Hϑ (Ω), where ϑ is
any number greater than the corresponding ϑ ∗. In particular, ϑ can be chosen to be
an integer, and this requirement will then indicate the existence for the functions w0

and wt0 of square-integrable partial derivatives up to order ϑ inclusive.
Secondly, the functions w0 and wt0 should satisfy those boundary conditions

(7.3.36) on Γ for which ordMj ≤ r∗, and those of the boundary conditions MjAw = 0
for which ord(MjA) ≤ r∗. Because ordMj < ordA = 2m, the imposition of the con-
ditions MjAw = 0 is only required when r∗ ≥ 2m.

It is clear from Table 7.1 that the inequality r∗ ≥ 2m only holds when n = 3,
m = 1 for the function w0. In this case for the Dirichlet problem (ordM = 0) we have
ordMA = 2 = r∗(w0), and it is necessary to impose on w0 the additional condition
Aw = 0 on Γ .

In the case of the Neumann problem (ordM = 1) for n = 3, m = 1, and also for
all problems with other values of n, m, additional conditions do not appear.

The appearance of an additional boundary condition can be explained as follows.
The proposed control law (7.2.10) vanishes on Γ in the case of the Dirichlet problem
because here ϕk = 0 on Γ . This reduces the possibility of control on the boundary
of the domain, and can require additional conditions on the initial functions on Γ .

At the same time, some of the boundary conditions (7.2.3) for the problem to be
solvable need not be applied. For example, for n = 2, m = 1 we have r∗(w0) = 1,
r∗(wt0) = 0. Consequently, for a second-order operator A in the case of the Dirichlet
problem (ordM = 0) the functions w0 and wt0 should satisfy the Dirichlet condition,
while in the case of the Neumann problem (ordM = 1) the function w0 should satisfy
the Neumann condition, while the function wt0 need not satisfy it.

Comparing the data in the Table 7.1 with the results of the examples in Sects. 7.3.1–
7.3.3, we see that in the examples the convergence conditions turned out to be less
restrictive for n = 1, m = 2 and n = 3, m = 1. For n = 1, m = 2 in the example it is
not required to impose the condition w′′

0 = 0 on Γ , which appears in the Table 7.1:
r∗(w0) = 2. For n = 3, m = 1, it follows from Table 7.1 that in the Neumann prob-
lem example the condition ∂wt0/∂n = 0 is not required, as well as the condition is
Δw0 = 0 on Γ for the Dirichlet problem.
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It should be taken into account that, according to Remark 7.1 from Sect. 7.3.1,
conditions on Γ at t = 0 are not essential for the solution of the control problem, if
they are automatically fulfilled for t = Δ t > 0 due to the imposed boundary condi-
tions.



Chapter 8
Control system under complex constraints

In this chapter a method is elaborated for constructing a control in a linear sys-
tem under mixed constraints imposed at every instant of time on phase coordinates,
controls, and certain integrals depending on these variables. The control method
proposed is a generalization of Kalman’s approach to linear systems subjected to
constraints. A bounded scalar control is constructed in an explicit form for a system
of oscillators, as well as for some other oscillatory systems. For certain second-
order systems, the control law elaborated is compared with the time-optimal con-
trol. A control law is also constructed for some higher order systems, specifically,
for fourth-order systems with mixed constraints that are models of mechanical and
electromechanical systems containing oscillatory links and electric motors.

8.1 Control design in linear systems under complex constraints

8.1.1 Problem statement

We consider the linear control system

ẋ = A(t)x+B(t)u+ f (t). (8.1.1)

Here, x = (x1, . . . ,xn) is the n-dimensional vector of phase coordinates and u =
(u1, . . . ,um) is the m-dimensional vector of control. The (n×n)-matrix A(t), the (n×
m)-matrix B(t), and the n-dimensional vector f (t) are given piecewise continuous
functions of time t.

Let the phase and control variables of system (8.1.1) be constrained by the in-
equalities that express the boundedness of the absolute values or the components of
certain linear combinations of the variables x and u, and also certain integrals. To be
precise, we consider constraints of the following two types:

|Ci(t)x(t)+Di(t)u(t)

275



276 8 Control system under complex constraints

(8.1.2)

+
∫ T

t0
[Gi(t,τ)x(τ)+Hi(t,τ)u(τ)]dτ + μ i(t)| ≤ 1, i = 1, . . . ,r,

|〈p j(t),x(t)〉+ 〈q j(t),u(t)〉
(8.1.3)

+
∫ T

t0
[〈g j(t,τ),x(τ)〉+ 〈h j(t,τ),u(τ)〉]dτ ≤ 1, j = 1, . . . ,r.

Here, as before, brackets 〈., .〉 denote the scalar product of vectors.
Constraints (8.1.2) and (8.1.3) must hold for all t ∈ [t0,T ], where t0 and T are

the initial and terminal instants of time, respectively. We consider the instant t0 to
be fixed, whereas T not fixed, for a while. In relations (8.1.2) and (8.1.3), Ci and
Gi are (l × n)-matrices, Di and Hi are (l ×m)-matrices, μ i are l-vectors, for some
integer l, p j and g j are n-vectors, and q j and h j are m-vectors. The matrices and
vectors Ci,Di,μ i, p j, and q j are given piecewise continuous functions of t on the
segment [t0,T ], and the matrices and vectors Gi,Hi,g j, and h j are given piecewise
continuous functions of t and τ for t,τ ∈ [t0,T ].

Constraints (8.1.2) and (8.1.3), in particular, include the most commonly encoun-
tered restrictions imposed on control, state, and their combinations. Specifically, if
Di is the identity (m×m)-matrix and all other matrices and vectors Ci,Gi,Hi, and
μ i in (8.1.2) are equal to zero, then we obtain, from (8.1.2), the restriction |u(t)| ≤ 1
on the absolute value of control. If the vector q j has a single non-zero component
and all other vectors p j,g j, and h j in (8.1.3) are equal to zero, then we obtain, from
(8.1.3), a restriction on one component of the control vector. Setting all the matrix
and vector coefficients in (8.1.2) and (8.1.3) except Ci and p j equal to zero, we ob-
tain the phase constraints. Similarly, if we set all the matrices and vectors except Hi

and h j equal to zero, we obtain integral constraints on the control, etc.
Let us state the problem of constructing a control u(t) that satisfies constraints

(8.1.2) and (8.1.3) for t ∈ [t0,T ] and brings system (8.1.1) from a given initial state

x(t0) = x0 (8.1.4)

to a given terminal state
x(T ) = x1. (8.1.5)

Here, x0 and 1 are given n-dimensional vectors.
We denote by Φ(t) the fundamental matrix of the homogeneous system (8.1.1).

We have
Φ̇ = A(t)Φ , Φ(t0) = En, (8.1.6)

where En is the (n× n) identity matrix. Let us write the solution of system (8.1.1)
satisfying the initial condition (8.1.4) in the form

x(t) = Φ(t){x0 +

∫ t

t0
Φ−1(τ)[B(τ)u(τ)+ f (τ)]dτ}. (8.1.7)
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Substituting solution (8.1.7) into the boundary condition (8.1.5), we obtain

∫ T

t0
Φ−1(t)B(t)u(t)dt = x∗. (8.1.8)

Here, we have introduced the notation

x∗ = Φ−1(T )x1 − x0 −
∫ T

t0
Φ−1(t) f (t)dt. (8.1.9)

Thus, the desired control must satisfy constraints (8.1.2) and (8.1.3), and also con-
dition (8.1.8).

8.1.2 Kalman’s approach

We use the method of control proposed in [72, 73] for the case where there are no
constraints. We shall seek the control in the form

u = Q�c, (8.1.10)

where c denotes an n-dimensional constant vector, Q(t) denotes the (n×m)-matrix

Q(t) = Φ−1(t)B(t), (8.1.11)

and superscript � denotes the transpose. Substituting (8.1.10) into (8.1.8), we obtain
the equation for the vector c:

R(T )c = x∗. (8.1.12)

Here,

R(t) =
∫ t

t0
Q(τ)Q�(τ)dτ. (8.1.13)

It follows from (8.1.13) that R(t) is a symmetric nonnegative definite (n× n)-
matrix for t ≥ t0. We assume that the matrix R(t) is positive definite for t ≥ t0. As
is known [78], this property implies complete controllability of the linear system
(8.1.1). In this case, system (8.1.12) has the unique solution

c = R−1(T )x∗. (8.1.14)

Let us return to conditions (8.1.2) and (8.1.3). At first, we substitute control
(8.1.10) into solution (8.1.7). Using the notation (8.1.11) and (8.1.13), we get

x(t) = Φ(t)[x0 +R(t)c+

∫ t

t0
Φ−1(τ) f (τ)dτ]. (8.1.15)

We transform (8.1.15) with the aid of (8.1.9) and (8.1.14) as follows:
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x(t) = Φ(t)[Φ−1(T )x1 +R1(t,T )x∗ −
∫ T

t
Φ−1(τ) f (τ)dτ],

(8.1.16)
R1(t,T ) = R(t)R−1(T )−En.

We now substitute expression (8.1.16) for x and the expression

u(t) = Q�(t)R−1(T )x∗ (8.1.17)

for u that follows from (8.1.10) and (8.1.14), into constraints (8.1.2) and (8.1.3).
Constraints (8.1.2) then take the form

|Fi(t,T )x∗ +φ i(t,T )| ≤ 1, i = 1, . . . ,r. (8.1.18)

Here, the (l ×n)-matrix Fi and the l-vector φ i are equal, respectively, to

Fi(t,T ) = Ci(t)Φ(t)R1(t,T )+Di(t)Q�(t)R−1(T )

+
∫ T

t0
[Gi(t,τ)Φ(τ)R1(τ,T )+Hi(t,τ)Q�(τ)R−1(T )]dτ,

(8.1.19)

φ i(t,T ) = Ci(t)Φ(t)[Φ−1(T )x1 −
∫ T

t
Φ−1(τ) f (τ)dτ]

+
∫ T

t0
Gi(t,τ)Φ(τ)[Φ−1(T )x1 −

∫ T

τ
Φ−1(τ1) f (τ1)dτ1]dτ + μ i(t), i = 1, . . . ,r.

Similarly, constraints (8.1.3) take the form

〈ψ j(t,T ),x∗〉+ χ j(t,T ) ≤ 1, j = 1, . . . ,s, (8.1.20)

where the n-vector ψ j and the scalar χ j are given by

ψ j(t,T ) = R�
1 (t,T )Φ�(t)p j(t)+R−1(T )Q(t)q j(t)

+

∫ T

t0
[R�

1 (τ,T )Φ�(τ)g j(t,τ)+R−1(T )Q(τ)h j(t,τ)]dτ,

(8.1.21)

χ j(t,T ) = 〈p j(t),Φ(t)[Φ−1(T )x1 −
∫ T

t
Φ−1(τ) f (τ)dτ]〉

+

∫ T

t0
〈gi(t,τ),Φ(τ)[Φ−1(T )x1 −

∫ T

τ
Φ−1(τ1) f (τ1)dτ1]〉dτ, j = 1, . . . ,r.

Let us note that the functions Fi,φ i,ψ j, and χ j defined by (8.1.19) and (8.1.21)
are expressed in terms of given functions and hence can be considered as known. For
constraints (8.1.2) and (8.1.3) to be satisfied, it is necessary and sufficient that in-
equalities (8.1.18) and (8.1.20) hold for the given x∗ and all t ∈ [t0,T ]. This imposes
conditions on the time T of the process and on the vector x∗. By virtue of (8.1.9),
these conditions lead (for a given terminal state x1) to conditions on the time T
and the initial state x0. By majorizing and simplifying the left sides of inequalities
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(8.1.18) and (8.1.20), we can obtain conditions on T and x0 that guarantee con-
straints ((8.1.2) and (8.1.3). Thus, we will come to sufficient controllability condi-
tions for system (8.1.1) under constraints (8.1.2) and (8.1.3).

Let us present one of the possible versions of such conditions. Suppose that, for
all T ≥ t0 and all t ∈ [t0,T ], the inequalities

|φ i(t,T )| ≤ φ i
0 < 1, |χ j(t,T )| ≤ χ j

0 < 1, i = 1, . . . ,r, j = 1, . . . ,s, (8.1.22)

are valid, where φ i
0 and χ j

0 are positive constants. Inequalities (8.1.18) certainly
hold, if

|Fi(t,T )x∗| ≤ 1−φ i
0, i = 1, . . . ,r. (8.1.23)

Using the Cauchy inequality, let us estimate the left-hand side of (8.1.23) from
above as follows:

|Fi(t,T )x∗| = [
l

∑
j=1

(
n

∑
k=1

Fi
jkx∗k)

2]1/2

(8.1.24)

≤ [
l

∑
j=1

n

∑
k=1

(Fi
jk)

2]1/2|x∗|, i = 1, . . . ,r.

Substituting (8.1.24) into (8.1.23), we obtain a sufficient condition for inequalities
(8.1.18) to hold:

|x∗| ≤ min
i

{
(1−φ i

0)[max
t

l

∑
j=1

n

∑
k=1

(Fi
jk(t,T ))2]−1/2

}
,

(8.1.25)
i = 1, . . . ,r, t ∈ [t0,T ].

Similarly, inequalities (8.1.20) are certainly valid, if

|x∗| ≤ min
j
{(1−χ j

0)[max
t

|ψ j(t,T )|]−1}, j = 1, . . . ,s, t ∈ [t0,T ]. (8.1.26)

Thus, if conditions (8.1.25) and (8.1.26) are fulfilled, control (8.1.17) satisfies
constraints (8.1.2) and (8.1.3) for t ∈ [t0,T ] and brings system (8.1.1) from the initial
state (8.1.4) to the terminal state (8.1.5). Therefore, conditions (8.1.25) and (8.1.26)
can be regarded as sufficient conditions for controllability in finite time T . We note
that, by virtue of equality (8.1.9), these conditions relate the initial and terminal
states x0 and x1 and the time of the process T . Conditions (8.1.25) and (8.1.26) are
imposed on the absolute value of the vector x∗.

Below in this chapter, following [35, 26, 53, 99, 7], we present methods of con-
structing a control for various linear systems under complex constraints.

The following theorem [26] provides simple sufficient conditions for the con-
straint (a is a positive constant)

|u(t)| ≤ a (8.1.27)



280 8 Control system under complex constraints

to be satisfied for the control law (8.1.17) in case of f (t) ≡ 0.

Theorem 8.1. For some T > t0, let the matrix R(T ) be non-singular, i.e., the condi-
tion of complete controllability holds, and let the inequalities

|Q�(t)K(T )v| ≤ λ1(T )|v|, t ∈ [t0,T ], (8.1.28)

|R(T )K(T )v| ≥ λ2(T )|v|. (8.1.29)

be valid for any n-dimensional vector v. Here, K(T ) is a non-singular (n × n)-
matrix, λ1(T ) > 0 and λ2(T ) > 0 are positive scalars, and v is a constant n-vector.
Inequality (8.1.28) holds for all t ∈ [t0,T ]. Then, if the condition

|x∗| ≤ aλ2(T )λ−1
1 (T ), (8.1.30)

holds, then the control u(t) given by (8.1.17) brings system (8.1.1) from state (8.1.4)
to state (8.1.5) at the time instant T and satisfies constraint (8.1.27) for all t ∈ [t0,T ].

Proof. Control (8.1.17) is constructed in such a way that conditions (8.1.4) and
(8.1.5) hold. By (8.1.17), we have

|u(t)| = |Q�(t)R−1(T )x∗| = |Q�(t)K(T )K−1(T )R−1(T )x∗|.

Using inequality (8.1.28), we have

|u(t)| ≤ λ1(T )|K−1(T )R−1(T )x∗|.

Now, we put x∗ = R(T )K(T )v and first apply (8.1.29) and then (8.1.30) to obtain

|u(t)| ≤ λ1(T )|v| ≤ λ1(T )λ−1
2 (T )|R(T )K(T )v| = λ1(T )λ−1

2 (T )|x∗| ≤ a.

We have thus shown that constraint (8.1.27) holds. This proves the theorem. ��
Remark 8.1. The non-singular matrix K(T ) in (8.1.28) and (8.1.29) can be chosen
arbitrarily; in particular, we can take the identity matrix K = En. The arbitrary choice
of K(T ) can be useful, since it extends the range where our sufficient conditions
are applicable. In the case of the identity matrix K = En the number λ2(T ) is, by
(8.1.29), a lower bound for the minimal eigenvalue of the matrix R(T ).

Remark 8.2. To calculate the control (8.1.10), we have to solve the linear system of
equations (8.1.12), whereas, in the time-optimal case, we have to solve a system of
transcendental equations. Besides, control (8.1.10) is a continuous function of time,
whereas the time-optimal control is, in general, discontinuous.

In further considerations, for various examples of mechanical systems, we obtain
refined conditions of the controllability that take into account the contribution of
different components of vector x∗.



8.2 Application to oscillating systems 281

8.2 Application to oscillating systems

8.2.1 Control for the system of oscillators

Following [26], we consider a system of harmonic oscillators subject to scalar con-
trol:

ξ̈i +ω2
i ξi = u. (8.2.1)

Here, ξi are generalized coordinates, the constants ωi > 0, i = 1, . . . ,n, are the natu-
ral frequencies of the oscillators, u is the scalar control constrained by (8.1.27), i.e.,
|u| ≤ a where a is a constant.

As a mechanical model of system (8.2.1), one can take a system of mathematical
pendulums suspended from a body G that moves horizontally with the acceleration
u (see Fig. 8.1). Then, ξi, equal to liφi, are small linear deviations of the pendulums
from their points of suspension, where li is the length and φi is the angle of deviation
of the pendulum from the vertical direction.

G

u

φi

Fig. 8.1 System of mathematical pendulums

Another mechanical model of system (8.2.1) is a set of masses connected by
springs to the body G. The system as a whole performs a translational horizontal
motion, ξi being the springs elongations, and u is the acceleration of the body G
(see Fig. 8.2).

G

u

Fig. 8.2 Set of oscillators

Let us find a control u(t) that satisfies constraint (8.1.27) and brings system
(8.2.1) from the initial state at t0 = 0:



282 8 Control system under complex constraints

ξi(0) = ξ 0
i , ξ̇i(0) = η0

i (8.2.2)

to the given terminal state

ξi(T ) = ξ 1
i , ξ̇i(T ) = η1

i . (8.2.3)

We assume that the frequencies ωi are positive and distinct. There is no loss of
generality, if we number them in increasing order, put ω0 = 0, and introduce the
notation

Ω = min
0≤k≤n−1

(ωk+1 −ωk) > 0, 0 = ω0 < ω1 < .. . < ωn. (8.2.4)

Note that, if Ω > 0, system (8.2.1) is completely controllable [40]. If some fre-
quencies are the same, the system becomes uncontrollable. Indeed, if the initial
states of two oscillators with equal frequencies are different, no control can damp
the oscillations of these two oscillators simultaneously: the phase difference be-
tween them remains constant.

Using the change of variables

ξ̇i = yi, ξi = ω−1
i zi, (8.2.5)

we reduce system (8.2.1) to the form

ẏi = −ωizi +u, żi = ωiyi. (8.2.6)

The phase vector of system (8.2.6) is a 2n-dimensional column vector composed
of the components of vectors y and z. One can easily ascertain that the fundamental
matrix (8.1.6) of the homogeneous system (8.2.6) is orthogonal and has the form

Φ(t) =

[
diag(cosωit) diag(−sinωit)
diag(sinωit) diag(cosωit)

]
, Φ−1(t) = Φ�(t). (8.2.7)

Here, diag(ai) denotes a diagonal (n×n)-matrix with diagonal elements ai.
For system (8.2.6), matrices B(t) and Q(t) are 2n-dimensional column vectors.

By (8.1.11), (8.2.6), and (8.2.7), their elements are

Bi = 1, Bn+i = 0, Qi(t) = cosωit, Qn+i(t) = −sinωit. (8.2.8)

From (8.1.13) and (8.2.8), we have

QQ� =

[
Q1 Q0

Q0 Q2

]
, R(T ) =

[
R1 R0

R0 R2

]
,

(8.2.9)

Rk =
∫ T

0
Qk dt, k = 0,1,2.

Here, Qk and Rk are (n× n)-matrices. Their elements are calculated by means of
(8.2.8) and (8.2.9) (throughout, i, j = 1, . . . ,n):
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Q1
i j = cosωit cosω jt, Q2

i j = sinωit sinω jt, Q0
i j = −cosωit sinω jt,

R1,2
ii =

T
2
± sin2ωiT

4ωi
, R1,2

i j =
sin(ωi −ω j)T

2(ωi −ω j)
± sin(ωi +ω j)T

2(ωi +ω j)
, (8.2.10)

R0
ii =

cos2ωiT −1
4ωi

, R0
i j =

cos(ωi −ω j)T −1
2(ωi −ω j)

+
cos(ωi +ω j)T −1

2(ωi +ω j)
, i �= j.

Note that, by condition (8.2.4), we have

ωi ≥ Ω , |ωi −ω j| ≥ Ω , ωi +ω j ≥ 3Ω , i �= j. (8.2.11)

Takin into account (8.2.11), we obtain the following estimates for elements (8.2.10)
of the matrix R(T ):

|Rk
ii −

T
2
| ≤ 1

4Ω
, |R0

ii| ≤
1

2Ω
, |R0

i j| ≤
4

3Ω
,

(8.2.12)

|Rk
i j| ≤

1
2|ωi −ω j| +

1
2|ωi +ω j| ≤

2
3Ω

, k = 1,2, i �= j.

In inequalities (8.1.28) and (8.1.29), we put K(T ) = E2n and find λ1(T ) and
λ2(T ). Let us estimate the left-hand side of inequality (8.1.28), by using the Cauchy
inequality and expressions (8.2.8) for the components of the vector Q(T )

|Q�(t)v| ≤ |Q�(t)||v| = n1/2v.

Therefore, in (8.1.28), we can set

λ1(T ) = n1/2. (8.2.13)

Let us estimate the left-hand side of inequality (8.1.29). For any vector v, we
have

|R(T )v| =
∣∣∣∣T v

2
+

[
R(T )− T

2
E2n

]
v

∣∣∣∣≥ T
2
|v|− |Mv|,

(8.2.14)

M = R(T )− T
2

E2n.

Here, we introduce the symmetric (2n× 2n)-matrix M. For its elements, using
relations (8.2.9) and (8.2.12) for matrix R(T ), we obtain the estimates

|Mii| ≤ 1
4Ω

, |Mn+i,n+i| ≤ 1
4Ω

, |Mi j| ≤ 2
3Ω

,

(8.2.15)

|Mn+i,n+ j| ≤ 2
3Ω

, |Mi,n+i| ≤ 1
2Ω

, |Mi,n+ j| ≤ 4
3Ω

, i �= j.

By the Cauchy inequality, we have [the summation here and in (8.2.17) is from
1 to 2n]
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|Mv|2 = ∑
i
(∑

j
Mi jv j)

2 ≤ ∑
i
[(∑

j
M2

i j)(∑
j

v2
j)] = |v|2 ∑

i, j
M2

i j. (8.2.16)

Recalling estimates (8.2.15) and that the matrix M is symmetric, we obtain

∑
i, j

M2
i j ≤

2n
16Ω 2 +

8(n2 −n)

9Ω 2 +
2n

4Ω 2 +
32(n2 −n)

9Ω 2 =
5n(64n−55)

72Ω 2 . (8.2.17)

Inequalities (8.2.16) and (8.2.17) yield

|Mv| ≤ kn|v|
Ω

, kn =

[
5n(64n−55)

72

]1/2

, n ≥ 1. (8.2.18)

Using (8.2.14) and (8.2.18), we obtain

|R(T )v| ≥
(

T
2
− kn

Ω

)
|v|. (8.2.19)

Consequently, condition (8.1.29) holds, if T ≥ 2kn/Ω . Then, comparing (8.1.29)
and (8.2.19), we obtain

λ2(T ) =

(
T
2
− kn

Ω

)
> 0. (8.2.20)

Substituting relations (8.2.13) and (8.2.20) into (8.1.30) and solving for T , we get

T ≥ 2n1/2

a
|x∗|+ 2kn

Ω
. (8.2.21)

Vector x∗ is given by relation (8.1.9), where the last term in the right-hand side
equals zero since f (t) ≡ 0. By (8.2.5), (8.2.2), and(8.2.3), vectors x0 and x1 are:

x0 = {yi(0),zi(0)}� = {η0
i ,ωiξ 0

i }�,
(8.2.22)

x1 = {yi(T ),zi(T )}� = {η1
i ,ωiξ 1

i }�.

We substitute the elements of the vector Q(t) from (8.2.8) into control law
(8.1.10):

u(t) =
n

∑
i=1

(ci cosωit − cn+i sinωit). (8.2.23)

By Theorem 8.1, we come to the following assertion [26].

Theorem 8.2. Under condition (8.2.21), control (8.2.23), where vector c is given
by (8.1.14) and matrix R(T ) is given by (8.2.9) and (8.2.10), satisfies constraint
(8.1.27) and brings system (8.2.6) [or (8.2.1)] from the initial state (8.2.2) to the
terminal state (8.2.3) in time T .

Note that time T increases as |x∗| increases, the magnitude a of the control de-
creases, and the natural frequencies come closer together, i.e., as Ω decreases.
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As a special case, let us consider the problem of damping the initial oscillations,
i.e., the problem of bringing the system to its equilibrium state. In this case, we have
x1 = 0, and, taking into account that f (t) ≡ 0, from equalities (8.1.9) and (8.2.22),
we obtain [E(t) is the energy of oscillations]:

|x∗|2 =
n

∑
i=1

[(η0
i )2 +ω2

i (ξ 0
i )2] = 2E0, E0 = E(0), (8.2.24)

E(t) =
1
2

n

∑
i=1

(
[ξ̇i(t)]

2 +ω2
i [ξi(t)]

2
)

. (8.2.25)

Using (8.2.24), we rewrite condition (8.2.21) as follows:

T ≥ 2(2nE0)
1/2

a
+

2kn

Ω
. (8.2.26)

Under condition (8.2.26), control (8.2.23) brings system (8.2.1) from the initial state
(8.2.2) to the equilibrium state ξi = ξ̇ = 0.

In the special case where n = 1, the minimal time that satisfies condition (8.2.26)
is equal to [we use the second relation of (8.2.18)]

T ∗ =
2(2E0)

1/2

a
+

(5/2)1/2

ω1
. (8.2.27)

We compare time (8.2.27) with the optimal control time under the condition

ε =
a

E1/2
0 ω1

� 1, (8.2.28)

that means that the control is relatively small. Then, under constraint |u| ≤ 1, the
approximate optimal control for system (8.2.1) with n = 1 that is constructed in
[40] by the method of small parameter [22] has the form

u = −asign ξ̇1, (8.2.29)

while the phase coordinates are

ξ1 =
(2E)1/2

ω1
cos(ω1t +α), ξ̇1 = −(2E)1/2 sin(ω1t +α). (8.2.30)

Here, the energy E and phase α are slow variables.
We differentiate the energy E given by (8.2.25) with respect to t and use equa-

tions (8.2.1), (8.2.29), and(8.2.30):

Ė = ξ̇1(ξ̈1 +ω2
1 ξ1) = −ξ̇1u = −a|ξ̇1| = −a(2E)1/2|sin(ω1t +α)|.

In accordance with the method of averaging [22], we average the right-hand side of
the equation obtained with respect to t regarding E and α as constants. We come to
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the equation of the first approximation, which we integrate:

[2E(t)]1/2 = (2E0)
1/2 − 2a

π
t.

Hence, the time T 0 needed for damping oscillations (i.e., for implementation of
condition E(T 0) = 0), is equal to

T 0 =
π
2a

(2E0)
1/2. (8.2.31)

Expressions (8.2.27) and (8.2.31) should be compared under condition (8.2.28),
under which the approximate expression (8.2.31) is obtained. The second term in
(8.2.27) is much smaller than the first one, while the principal parts of (8.2.27) and
(8.2.31) differ by multipliers. We have

T ∗

T0
≈ 4

π
≈ 1.273 (ε � 1).

This relation permits to estimate how close are the results obtained by the control
method presented above and the time-optimal control.

8.2.2 Pendulum with a suspension point controlled by acceleration

We consider now the systems shown in Figs. 8.1 and 8.2 in the case of a single oscil-
lator (n = 1) but taking into account displacement ξ0 of the body G. The equations
of motion and constraint (8.1.27) take the form

ξ̈1 +ω2
1 ξ1 = u, ξ̈0 = u, |u| ≤ a. (8.2.32)

All the notation here is the same as in Sect. 8.2.1. Note that displacements ξ0

and ξ1 are measured in opposite directions, so that the absolute displacement of the
oscillator is ξ0 −ξ1.

We also consider a modified statement of the problem, in which the systems of
Figs. 8.1 and 8.2 are controlled not by the acceleration of the body G, but by force F
applied to the body G and bounded in magnitude by the constant F0. Then, instead
of relations (8.2.32), we have the following equations and constraint:

ξ̈1 +ω2
1 ξ1 = ξ̈0, (m0 +m1)ξ̈0 −m1ξ̈1 = F, |F | ≤ F0, (8.2.33)

where m0 is the mass of the body G, and m1 is the mass of the oscillator.
We introduce the coordinate of the center of mass of the system

ξ =
(m0 +m1)ξ0 −m1ξ1

m0 +m1
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and transform relations (8.2.33) to

ξ̈1 +
m0 +m1

m0
ω2

1 ξ1 =
F
m0

, ξ̈ =
F

m0 +m1
, |F | ≤ F0. (8.2.34)

The change of variables and constants

ξ ′ =
m0 +m1

m0
ξ , ω ′2 =

m0 +m1

m0
ω2

1 , u =
F
m0

transforms relations (8.2.34) to the form identical to (8.2.32). Thus, relations (8.2.32)
also describe systems (8.2.33) controlled by a bounded force.

In order to simplify (8.2.32), we make the change of variables

ξ1 =
ay

ω2
1

, ξ0 =
az

ω2
1

, t =
t ′

ω1
, u = au′. (8.2.35)

Substitution (8.2.35) transforms relations (8.2.32) to the form

ÿ+ y = u, z̈ = u, |u| ≤ 1. (8.2.36)

From now on, we consider the system in the form (8.2.36) and denote by points
derivatives with respect to the new time t ′, the primes of t ′ and u′ in (8.2.36) are
omitted.

Let us construct the control u(t) that satisfies the condition |u| ≤ 1 and brings
system (8.2.36) from the given initial state

y(0) = y0, ẏ(0) = v0, z(0) = z0, ż(0) = w0 (8.2.37)

to the given terminal state

y(T ) = y1, ẏ(T ) = v1, z(T ) = z1, ż(T ) = w1. (8.2.38)

The quantities in the right-hand sides of (8.2.37) and (8.2.38) are constants, and
T > 0 is the as yet unknown time when the process terminates.

The solution of this problem is obtained in [26, 53].
The phase vector of system (8.2.36) consists of the variables y, ẏ,z, and ż. Fol-

lowing the general idea of Sect. 8.1.2 for constructing the control, we find the fun-
damental matrix Φ(t) defined in (8.1.6), and then the inverse matrix Φ−1(t):

Φ(t) =

⎡
⎢⎢⎣

cos t sin t 0 0
−sin t cos t 0 0

0 0 1 t
0 0 0 1

⎤
⎥⎥⎦, Φ−1(t) =

⎡
⎢⎢⎣

cos t −sin t 0 0
sin t cos t 0 0

0 0 1 −t
0 0 0 1

⎤
⎥⎥⎦. (8.2.39)

The matrix Q(t) defined by (8.1.11) is here the four-dimensional column vector

Q�(t) = (−sin t,cos t,−t,1), (8.2.40)
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and control (8.1.10) has the form

u(t) = −c1 sin t + c2 cos t − c3t + c4. (8.2.41)

The expression for the matrix R(t) is given by (8.1.13) and (8.2.41). The solution
of system (8.1.12) is considerably simplified, if we put T = 2πk, k = 1,2, . . .. The
matrix R(T ) then becomes

R(T ) =

⎡
⎢⎢⎣

T/2 0 −T 0
0 T/2 0 0
−T 0 T 3/3 −T 2/2
0 0 −T 2/2 T

⎤
⎥⎥⎦. (8.2.42)

The case of arbitrary T �= 2πk will be considered in Sect. 8.2.2.
We express the components of the vector x∗ through the boundary conditions

(8.2.37) and (8.2.38) with the help of relations (8.1.9) and (8.2.39) and using the
equality f (t) ≡ 0:

x∗1 = y1 − y0, x∗2 = v1 − v0,

x∗3 = z1 −Tw1 − z0, x∗4 = w1 −w0 (T = 2πk).

Using the obtained expressions for the matrix R(T ) and vector x∗, we solve equa-
tions (8.1.3):

c1 =
2

T (T 2 −24)

[
T 2(y1 − y0)+12(z1 − z0)−6T (w0 +w1)

]
,

c2 =
2
T

(v1 − v0),

c3 =
6

T (T 2 −24)

[
4(y1 − y0)+2(z1 − z0)−T (w0 +w1)

]
,

c4 =
2

T (T 2 −24)

[
6T (y1 − y0)+3T (z1 − z0)− (T 2 +12)w1

−2(T 2 −6)w0
]
.

(8.2.43)

It is necessary now to choose integer k in the relation T = 2πk in such a way that
the control defined by (8.2.41) and (8.2.43) meets the constraint |u| ≤ 1 for t ∈ [0,T ].
By (8.2.41) and (8.2.43), we have

|u(t)| ≤ |c1|+ |c2|+ |c4 − c3t| ≤ 2
T (T 2 −24)

[
T 2|y1 − y0|+12|z1 − z0|

+6T |w0 +w1|+(T 2 −24)|v1 − v0|+6|y1 − y0||T −2t|
+3|z1 − z0||T −2t|+ψ(t)

]
,

ψ(t) = |(T 2 +12)w1 +2(T 2 −6)w0 −3Tt(w1 +w0)|.

(8.2.44)

Here, T = 2πk, k ≥ 1, so that T 2 > 24.
The function ψ(t) reaches its maximum at one end of the interval [0,T ], conse-

quently,
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ψ(t) ≤ max{ψ(0),ψ(T )} =
1
2

max{|3T 2(w0 +w1)− (T 2 −24)(w1 −w0)|,

|3T 2(w0 +w1)+(T 2 −24)(w1 −w0)|} =
3
2

T 2|w0 +w1|+ 1
2
(T 2 −24)|w1 −w0|.

Note also that |T −2t| ≤ T for t ∈ [0,T ].
Using these estimates, we obtain from (8.2.44):

|u(t)| ≤ 1
T

(
f1(T )|y1 − y0|+2|v1 − v0|+ f2(T )|w0 +w1|+ |w1 −w0|)

+
2

T 2 f2(T )|z1 − z0|, f1(T ) =
2T 2 +12T

T 2 −24
, f2(T ) =

3T 2 +12T
T 2 −24

.
(8.2.45)

On the right-hand side of (8.2.45), we replace the functions f1(T ) and f2(T ), that
are strictly decreasing for T ≥ T1 = 2π , by their maximum values at T ≥ T1 = 2π ,
and, in the resulting inequality, we put T = 2πk, T1 = 2π . We come to the inequality

|u(t)| ≤ Ak−1 +Bk−2,

A =
π +3
π2 −6

|y1 − y0|+ 1
π
|v1 − v0|+ 3(π +2)

2(π2 −6)
|w0 +w1| (8.2.46)

+
1

2π
|w1 −w0|, B =

3(π +2)

2(π2 −6)
|z1 − z0|.

It follows from (8.2.46) that constraint |u| ≤ 1 holds if

k2 −Ak−B ≥ 1,

i.e., if

T = 2πk, k ≥ k∗ =
1
2

[
A+(A2 +4B)1/2

]
. (8.2.47)

Formulas (8.2.41) and (8.2.43), together with relations (8.2.47) for T and (8.2.46)
for A and B, completely define the required control u(t) in an explicit form in terms
of the initial and terminal states.

We consider a special case of boundary conditions (8.2.37) and (8.2.38):

y0 = v0 = z0 = w0 = y1 = v1 = w1 = 0 (8.2.48)

that corresponds to the displacement of the entire system shown in Figs. 8.1 and
8.2 from one equilibrium state to another equilibrium state at a distance z1. In the
case of (8.2.48), the time-optimal control is of the bang-bang type u = ±1 and has
three switching points [40]. The optimal time T 0 is the unique positive root of the
equation

T 02

4
−2

[
arccos

(
cos2 T 0

4

)]
= |z1|,

and the relations
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T 0 ≥ 2|z1|1/2, T 0 ∼ 2|z1|1/2 as |z1| → ∞ (8.2.49)

are valid.
Let us compare this result with the time of the displacement for the control law

(8.2.41). By (8.2.46)–(8.2.48), we have

T = 2π(ent k∗ +1), k∗ = B1/2 = 0.7965|z1|1/2.

Hence, for large |z1|, we obtain

T ∼ 5.005|z1|1/2 as |z1| → ∞. (8.2.50)

If we use estimate (8.2.45) directly in the case of (8.2.48) for |z1| → ∞, we obtain

T ∼ [
2 f2(∞)|z1|]1/2

=
√

6|z1|1/2 = 2.449|z1|1/2 as |z1| → ∞. (8.2.51)

Comparing formulas (8.2.49)–(8.2.51) for T 0 and T , we see that for |z1| → ∞
they differ by their coefficients. This fact is due to both the difference of control
(8.2.41) from the optimal one and estimates used to obtain (8.2.46). Note that es-
timate (8.2.51) is much closer to (8.2.49) than estimate (8.2.50) because of the re-
duced “loss” in direct estimation (8.2.51).

We also note that, for arbitrary initial conditions, the time-optimal controls for
the problems considered in Sects. 8.2.1 and 8.2.2 are not known.

8.2.3 Pendulum with a suspension point controlled by acceleration
(continuation)

In Sect. 8.2.2, to simplify calculations, we assumed that the dimensionless time of
the process is multiple of 2π , i.e., T = 2πk. Now, we give up this assumption and
consider the problem for an arbitrary T .

Let us state the problem of constructing a control u(t) that satisfies the constraint
|u| ≤ 1 and brings system (8.2.36) from a given initial state

y(0) = x0
1, ẏ(T ) = x0

2, z(T ) = x0
3, ż(T ) = x0

4 (8.2.52)

to the equilibrium state

y(T ) = 0, ẏ(T ) = 0, z(T ) = 0, ż(T ) = 0. (8.2.53)

The matrix R(T ), for an arbitrary T , takes the form
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R(T ) =

⎡
⎢⎢⎣

(T − sc)/2 −s2/2 s−T c c−1
−s2/2 (T + sc)/2 1− c−T s s
s−T c 1− c−T s T 3/3 −T 2/2
c−1 s −T 2/2 T

⎤
⎥⎥⎦. (8.2.54)

Here, denotation s = sinT and c = cosT are introduced.
Let φi j, i, j = 1, ...,4, be the elements of the inverse matrix R−1(T ) of (8.2.54).

Then, by virtue of (8.1.14), the expression for control (8.2.41) becomes

u(t) =
4

∑
i=1

(φ1ix
0
i sin t −φ2ix

0
i cos t +φ3ix

0
i t −φ4ix

0
i ). (8.2.55)

Thus, control (8.2.55) brings, for any T > 0, system (8.2.36) from the initial state
(8.2.52) to the terminal equilibrium state (8.2.53) in time T . However, this control
does not, generally speaking, satisfy the constraint |u| ≤ 1. To take this constraint
into account, we apply the Cauchy inequality to relation (8.2.55):

|u| ≤
(

4

∑
i=1

x0
i

2

)1/2[ 4

∑
i=1

(−φ1i sin t +φ2i cos t −φ3it +φ4i)
2

]1/2

. (8.2.56)

We introduce the auxiliary functions

p(t,T ) =
4

∑
i=1

(−φ1i sin t +φ2i cos t −φ3it +φ4i)
2 (8.2.57)

and

r(T ) =

[
max

0≤t≤T
p(t,T )

]−1/2

. (8.2.58)

Then, inequality (8.2.56) can be rewritten in the form

|u| ≤ |x0| [p(t,T )]1/2 ≤ |x0|/r(T ). (8.2.59)

We choose the termination time T from the condition

|x0| = r(T ). (8.2.60)

It follows from (8.2.59) that, if T is chosen according to (8.2.60), constraint (8.2.36)
imposed on the control is satisfied for all t ∈ [0,T ].

Thus, we arrive at the following procedure for constructing the control u(t). First,
we determine the elements φi j(T ) of the inverse matrix R−1(T ) and calculate the
functions p(t,T ) and r(T ) with the help of equalities (8.2.54), (8.2.57), and (8.2.58).
These calculations should be performed once for the given system (see below).

When they have been executed, we can construct, for any initial vector x0, the
desired bounded control that brings the system to the coordinate origin. To do this,
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we first determine time T from condition (8.2.60) and then find the control u from
(8.2.55).

To determine the function r(T ), we use the REDUCE symbolic calculations lan-
guage and find, using a computer, the analytical representations of the elements
φi j, i, j = 1, ...,4, of the matrix R−1(T ) which is the inverse of (8.2.54). The expres-
sions for φi j turn out to be rather cumbersome. To illustrate, we present one element
of the matrix R−1(T ):

φ11 = 2[T 5 +T 4 sinT cosT −8T 3 sin2 T +24T 2 sinT (1− cosT )

−24T (1− cosT )2]/[T 6 −T 4(8cosT + sin2 T +16)
(8.2.61)

+8T 3 sinT (5−2cosT )+48T 2(1− cosT )(1+2cosT )

240T sinT (1− cosT )+192(1− cosT )2].

Using formula (8.2.57) and the obtained expressions (8.2.61) for φi j, we calculate
the maximum values of p(t,T ) from t ∈ [0,T ]. Thus, the function r(T ) in (8.2.58)
is determined. Its graph is shown in Fig. 8.3.

0

0
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4

6

8

10 20 30 40

T

r(T )

Fig. 8.3 Graph of the function r(T )

We analyze the behavior of the function r(T ) in the limiting cases.
Let the process duration T tends to 0. We expand the function p(t,T ) given by

(8.2.57) in the Maclaurin series (we use REDUCE) in the current time t:

p(t,T ) = (φ12 +φ14)
2 +(φ22 +φ24)

2 +(φ23 +φ34)
2 +(φ24 +φ44)

2

−2t[φ12(φ11 +φ13 +φ22 +φ24)+φ13(φ14 +φ23 +φ34) (8.2.62)

+φ14(φ11 +φ24 +φ44)+φ23(φ22 +φ24 +φ33)+φ34(φ24 +φ33 +φ44)]+ . . .

We then expand the numerators and denominators of the elements φi j, i, j =
1, . . . ,4, of the symmetric matrix R−1(T ) in series in T . We obtain
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φ11 =

(
T 9

180
− T 11

630
+ . . .

)(
T 16

18144000
− . . .

)−1

,

(8.2.63)

φ12 =

(
T 10

360
− 11T 12

18900
+ . . .

)(
T 16

18144000
− . . .

)−1

.

Other elements have similar representations.
Estimates of the orders of the expansions in T in the numerators and denomi-

nators of the functions φi j in (8.2.63) show that, to obtain the principal term of the
expansion of the function p(t,T ) in accordance with (8.2.62), it suffices to retain
only the principal term (of the order T 16) in the denominators of formulas (8.2.63).
In the numerators of expressions (8.2.63), one has to take into account terms of
various orders.

By collecting terms of like powers, one obtains the representation

p(t,T ) = 1411200T−8 f (τ). (8.2.64)

The notation

f (τ) = 1−24τ +204τ2 −760τ3 +1380τ4 −1200τ5 +400τ6, τ =
t
T

∈ [0,1],

(8.2.65)
is used here.

The graph of the polynomial f (τ) is shown in Fig. 8.4.

0

0

0.5

0.5

1

1

τ

f (τ)

Fig. 8.4 Graph of the polynomial f (τ)

One can easily see that f (τ) attains its largest value at the ends of the interval
τ ∈ [0,1], and f (0) = f (1) = 1. Then, it follows from (8.2.64) and (8.2.65) that

max p(t,T ) = 1411200T−8.

We substitute this result into (8.2.58) to obtain
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r(T ) = 8.4 ·10−4T 4, T → 0. (8.2.66)

Equality (8.2.66) defining the function r(T ) for small T is confirmed by the re-
sults of the numerical calculation of this function.

Now, let the control process duration tends to infinity, i.e., T → ∞. We substitute
into (8.2.57) the expressions for φi j, i, j = 1, . . . ,4, calculated by formulas (8.2.61)
and expand the function p(t,T ) in a series of negative powers of T . Transformations
made by using the REDUCE language yield the expansion

p(t,T ) =
4

T 2

(
9t2

T 2 − 12t
T

+5+
1
T

[
12(T −2t)

T
sin(T − t)

(8.2.67)

−sin2(T − t)− sin2t − 12(2T −3t)
T

sin t

])
+0

(
1

T 4

)
, T → ∞.

We rewrite expansion (8.2.67) in the form

p(t,T ) =
4

T 2 [p0(τ)+T−1 p1(τ,T )], p0(τ) = 9τ2 −12τ +5,

p1(τ,T ) = 12(1−2τ)sinT (1− τ)− sin2T (1− τ) (8.2.68)

−sin2T τ −12(2−3τ)sinT τ, τ =
t
T

∈ [0,1].

Let us find the maximum in (8.2.58) as T → ∞ using representation (8.2.68). One
can easily see that the quadratic trinomial p0(τ) attains its maximum on the interval
[0,1] at τ = 0. Since the contribution of the second term in (8.2.68) is small for
T → ∞, we have, up to higher-order infinitesimals,

max
0≤t≤T

p(t,T ) = p(0,T ) =
20
T 2 +

4
T 3 (12sinT − sin2T ), T → ∞. (8.2.69)

We use here expansion (8.2.67). Substituting (8.2.69) into (8.2.58) and expanding
the result in a series of powers of T−1, we obtain

r(T ) =
10T −12sinT + sin2T

20
√

5
+O(

1
T

), T → ∞. (8.2.70)

We differentiate (8.2.70) in T :

r′(T ) =
(2− cosT )(1− cosT )

5
√

5
≥ 0.

Hence, r(T ) is a monotonically increasing function as T → ∞.
It follows from the presented calculations and analytical expansions that the func-

tion r(T ) increases monotonically from 0 to ∞ as T varies from 0 to ∞. Conse-
quently, equation (8.2.60) has, for any |x0|, a unique solution.

Let us present the results of the numerical simulation. The procedure for design-
ing the control has been described above. We dwell first on a practical numerical
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solution of equation (8.2.60). We divide the entire semi-infinite interval of variation
of T into three parts: [0,T0], [T0,T1], and [T1,∞), to which three intervals of varia-
tion of r(T ) correspond: [0,r0], [r0,r1], and [r1,∞). Here, ri = r(Ti), i = 0,1. On the
interval [0,T0], we use the asymptotic representation (8.2.66) for small T ; on the
interval [T0,T1], we use the numerical values of r(T ), and on the interval [T1,∞), we
use the asymptotic representation (8.2.70) for large T . First, we determine, for the
specified x0, by comparing |x0| with r0 and r1, which of the three intervals contains
the desired T . We then determine T as follows. If T ∈ [0,T0], then, by (8.2.66), we

have T =
(|x0|/0.00084

)1/4
. If T ∈ [T0,T1], we find T by linear interpolation from

the table of values of r(T ) that is stored in the computer memory. If T ∈ [T1,∞), we
use representation (8.2.70). In this case, it is convenient to search for T in the form

T = 2
√

5|x0|+θ . (8.2.71)

Substituting (8.2.71) into (8.2.70), we obtain the equation for θ :

F(θ) = 10θ −12sin(2
√

5|x0|+θ)+ sin[2(2
√

5|x0|+θ)] = 0.

This equation is solved by some numerical method, for example, the method of
successive interval halving.

When the process duration T has been determined for the specified initial vector
x0, the control u(t) at any instant t can be calculated from (8.2.55). Here, one can use
the analytical expressions for the functions φi j, i, j = 1, . . . ,4, see (8.2.61), that were
obtained by analytical transformations. The control calculated in this way can be
substituted into the right-hand side of system (8.2.36), that is integrated numerically
or analytically for the initial conditions (8.2.52).

Some results of simulation with x0 = (−1,2,0.5,1) are presented in Fig. 8.5.
The thick curve represents the projection of the phase trajectory x(t) on the (y, ẏ)
hyperplane, and the thin curve represents the projection of this trajectory on the
(z, ż) hyperplane. For this example, the time of process is T = 13.116.

0−1

−1

1

1

t = 0

t = 0

t = T

ẏ, ż

ẏ(y)

ż(z)

y,z

Fig. 8.5 Projections of the phase trajectory
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8.2.4 Pendulum with a suspension point controlled by velocity

Consider a system that contains an oscillatory link and is subjected to a scalar con-
trol by the velocity of body G:

ξ̈1 +ω2(ξ1 −ξ0) = 0, ξ̇0 = u. (8.2.72)

Here, ξ0,ξ1 are generalized coordinates, ω > 0 is the natural frequency of the oscil-
lator, and u is a scalar control constrained by (8.1.27).

Equations (8.2.72) describe the motion of the systems shown in Figs. 8.1 and
8.2 in the case of a single oscillator (n = 1) and the body G being controlled by its
velocity.

In particular, this may be a two-mass system that consists of a body and a mass
connected by a spring. The system as a whole performs a translational horizontal
motion, with ξ0 being the displacement of the body, u the velocity of the body, and
ξ1 the absolute displacement of the mass.

Another mechanical model of system (8.2.72) is a mathematical pendulum sus-
pended from the body G that moves horizontally with the velocity u. Then, ξ0 the
displacement of the body, ξ1 =−l1φ1 +ξ0 is the absolute linear displacement of the
pendulum (here, l1 is the length, and φi is the angle of deviation of the pendulum
from the vertical direction; the deviation is assumed to be small). Relations (8.2.72)
and (8.1.27) describe also other mechanical systems controlled by a bounded veloc-
ity [40].

Let us state the problem of constructing a control u(t) that satisfies constraint
(8.1.27) and brings system (8.2.72) from an arbitrary initial state at t0 = 0:

ξ0(0) = ξ 0
0 , ξ 0

1 (0) = ξ 0
1 , ξ̇1(0) = ξ̇ 0

1 (8.2.73)

to the given terminal state

ξ0(T ) = 0, ξ1(T ) = 0, ξ̇1(T ) = 0. (8.2.74)

The time of the process T is not fixed.
Using the change of variables

ξ1 =
ay
ω

, ξ0 =
az
ω

, t =
t ′

ω
, u = au′, (8.2.75)

we reduce system (8.2.72) and (8.1.27) to the form

ÿ+ y = z, ż = u, (8.2.76)

|u| ≤ 1. (8.2.77)

We consider the system in the form (8.2.76) and (8.2.77) and denote by dots
derivatives with respect to time t ′, the primes of t ′ and u′ are omitted.
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After the change of variables (8.2.75), conditions (8.2.73) and (8.2.74) take the
form

y(0) = x0
1, ẏ(0) = x0

2, z(0) = x0
3, (8.2.78)

y(T ) = 0, ẏ(T ) = 0, z(T ) = 0. (8.2.79)

The quantities x0
1,x

0
2,x

0
3 are given constants, and T > 0 is the as yet unknown time

when the process terminates.
Thus, the problem stated is reduced to constructing the control u(t) that satisfies

condition (8.2.77) and brings system (8.2.76) from the given initial state (8.2.78) to
the terminal state (8.2.79).

The solution presented below is obtained in [99].
We use the approach described in Sect. 8.1.2. We denote the phase vector by

x = (y, ẏ,z) and reduce the system to form (8.1.1), where

A =

⎡
⎣ 0 1 0
−1 0 1
0 0 0

⎤
⎦, B =

⎡
⎣0

0
1

⎤
⎦, f =

⎡
⎣0

0
0

⎤
⎦. (8.2.80)

Initial conditions (8.2.78) and terminal ones (8.2.79) take the form

x(0) = x0 = (x0
1,x

0
2,x

0
3), x(T ) = 0. (8.2.81)

The inverse of the fundamental matrix of the homogeneous system is

Φ−1(t) =

⎡
⎣ cos t −sin t −cos t

sin t cos t −sin t
0 0 1

⎤
⎦, (8.2.82)

and the matrix Q of (8.1.11) is a three-dimensional column vector

Q�(t) = (1− cos t,−sin t,1). (8.2.83)

Substituting (8.2.83) into expression (8.1.10) for the control u, we obtain

u(t) = c1(1− cos t)− c2 sin t + c3, (8.2.84)

where c1,c2, and c3 are the components of the vector c defined by equation (8.1.12).
We find the matrix R(t) of (8.1.13) using (8.2.83):

R(T ) =

⎡
⎢⎢⎣

3T
2

−2sinT +
1
2

sinT cosT
1
2

sin2 T + cosT −1 T − sinT
1
2

sin2 T + cosT −1
T
2
− 1

2
sinT cosT cosT −1

T − sinT cosT −1 T

⎤
⎥⎥⎦

and denote the elements of the inverse matrix R−1(T ) by ψi j, i, j = 1,2,3. Then,
taking into account (8.1.14), we rewrite expression (8.2.84) for the control u(t) in
the form
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u(t) =
3

∑
i=1

(−ψ1ix
0
i (1− cos t)+ψ2ix

0
i sin t −ψ3ix

0
i ). (8.2.85)

For any given T > 0, control (8.2.85) brings system (8.2.76) from an arbitrary ini-
tial states (8.2.78) to the terminal equilibrium state (8.2.79) in time T , but does not,
generally speaking, meet constraint (8.2.77). To take this constraint into account,
we apply the Cauchy inequality to relation (8.2.85):

|u| ≤
(

3

∑
i=1

x0
i

2

)1/2[ 3

∑
i=1

(ψ1i(1− cos t)−ψ2i sin t +ψ3i)
2

]1/2

. (8.2.86)

We introduce the auxiliary functions

p(t,T ) =
3

∑
i=1

[ψ1i(1− cos t)−ψ2i sin t +ψ3i]
2 , (8.2.87)

r(T ) =

[
max

0≤t≤T
p(t,T )

]−1/2

(8.2.88)

and rewrite inequality (8.2.86) in the form

|u| ≤ |x0| [p(t,T )]1/2 ≤ |x0|
r(T )

. (8.2.89)

If the time of the process is chosen from the condition

|x0| = r(T ), (8.2.90)

then constraint (8.2.77) holds for all t ∈ [0,T ].
The values of the function p(t,T ) can be calculated numerically by formula

(8.2.87). Here, elements ψi j, i, j = 1,2,3, of the symmetric matrix R−1(T ) are cal-
culated according to the formula

ψi j =
Ri j

detR(T )
, (8.2.91)

where Ri j is the cofactor of the element ri j of the matrix R(T ). Using this procedure,
one can calculate the maximum values of p(t,T ) for t ∈ [0,T ] and find the function
r(T ) of (8.2.88). Since the function p(t,T ) is periodic in t with the period 2π , it
will suffice to search for its maximum on the interval [0,T ], if T < 2π , and on the
interval [0,2π], if T ≥ 2π .

Figure 8.6 shows the graph of the function r(T ) obtained by calculations with a
small step �T with respect to T . For every fixed T , we find the maximum of the
function p(t,T ) in t by the exhaustive search and comparison of the values.

Let us analyze the behavior of the function r(T ) in the limiting cases. Let time T
of the control be small. We expand the elements ψi j, i, j = 1,2,3, of the symmetric
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Fig. 8.6 Function r(T )

matrix R−1(T ) in series of powers of T−1 using formula (8.2.91). The principal
terms of this expansion are:

R−1(T ) =

⎡
⎣720T−5 360T−4 60T−3

360T−4 192T−3 36T−2

60T−3 36T−2 9T−1

⎤
⎦+ . . . , T → 0. (8.2.92)

Substituting expansions (8.2.92) of the elements ψi j, i, j = 1,2,3, into expression
(8.2.87) and taking into account that 1− cos t = t2/2 + O(t4), sin t = t + O(t3) for
small t, we get the following representation of the function p(t,T ) for small T and
t ∈ [0,T ]:

p(t,T ) = 3602T−6
(

t2

T 2 − t
T

+
1
6

)2

. (8.2.93)

Formula (8.2.93) yields

max
0≤t≤T

p(t,T ) = p(0,T ) = p(T,T ) = 3600T−6. (8.2.94)

Substituting (8.2.94) into (8.2.88), we obtain

r(T ) =
T 3

60
, T → 0. (8.2.95)

Now, let the time of the process T be large. We substitute into equality (8.2.87)
for the function p(t,T ) the expressions for ψi j, i, j = 1,2,3, calculated by formula
(8.2.91), and expand the function p(t,T ) in a series of negative powers of T :

p(t,T ) =
4

T 2

[
p0(t)+

1
T

p1(t,T )

]
+O

(
1

T 4

)
, T → ∞. (8.2.96)

Here, we have introduced the notation
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p0(t) = cos2 t + cos t +
5
4
, p1(t,T ) = 9(1− cos t)(sinT +

1
2

sin2T )

−8sinT − 5
2

sin2T + sin2 t sin2T +(−5+5cosT −7sin2 T )sin t (8.2.97)

−2(1− cos t)2(sinT + sin2T )+2(1− cos t)(1− cosT +3sin2 T )sin t.

Using expansions (8.2.96), one can easily find the maximum of the function
p(t,T ) in T for T → ∞. Obviously, the function p0(t) of (8.2.97) attains its max-
imum on the interval [0,T ] at t = 0. Since the contribution of the second term in
(8.2.96) is small as T → ∞, we have, up to higher-order infinitesimals,

max
0≤t≤T

p(t,T ) = p(0,T ) =
13
T 2 − 32

T 3 sinT − 10
T 3 sin2T, T → ∞. (8.2.98)

Substituting (8.2.98) into (8.2.88) and expanding the resulting expression in a
series of T−1, we obtain

r(T ) = f (T )+O(T−1), T → ∞. (8.2.99)

Here, we have introduced the notation

f (T ) =
1√
13

(
T +

16
13

sinT +
5

13
sin2T

)
.

We differentiate the function f (T ) in T :

f ′(T ) =
20cos2 T +16cosT +3

13
√

13
.

The derivative f ′(T ) vanishes at cosT = −0.5 and cosT = −0.3. Calculations
reveal that the function f (T ) has strict local maxima at T = −2π/3 + 2πn and
T = arccos(−0.3) + 2πn, and strict local minima at T = 2π/3 + 2πn and T =
−arccos(−0.3)+2πn.

A typical structure of these extrema can be seen in Fig. 8.7, that gives the graph
of the function f (T ). To make it more clear, a piece of the graph is zoomed in
100 times with respect to the y-axis. Thus, r(T ) is not a monotonically increasing
function as T varies from 0 to ∞, and equation (8.2.90), in general, has a non-unique
solution for some x0.

Let us describe the procedure for designing the control function u(t). We first
solve equation (8.2.90) numerically and find T . To that end, we divide the entire
semi-infinite interval of variation of T into three parts: [0,T0], [T0,T1], and [T1,∞),
where T0 and T1 are chosen in such a way that the asymptotic representation (8.2.95)
is valid on the interval [0,T0] for small T , and so is the asymptotic representation
(8.2.99) on the semi-infinite interval [T1,∞) for large T . We denote ri = r(Ti), i =
0,1. We compare the given quantity |x0| with r0 and r1 and determine T as follows.

If |x0| ∈ [0,r0], then, by formula (8.2.95), we have T =
(
60|x0|)1/3

. If |x0| ∈ [r0,r1],
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Fig. 8.7 Function f (T )

then we find T using the table of values of r(T ) that are calculated on the interval
[T0,T1] (if there are several solutions, we choose the least one). If |x0| ∈ [r1,∞), we
use asymptotic representation (8.2.99). In this case, we search for T in the form

T =
√

13|x0|+θ . (8.2.100)

Substituting (8.2.100) into (8.2.99), we obtain the equation for θ :

F(θ) = 13θ +16sin(
√

13|x0|+θ)+5sin[2(
√

13|x0|+θ)].

We solve this equation numerically. If there are several solutions, we find the least
value of θ in order to reduce the time of process T .

When the process duration T has been determined for the specified initial vec-
tor x0, we calculate the control u(t) at any time instant t by formula (8.2.85), using
analytical expressions (8.2.91) for the functions ψi j, i, j = 1,2,3. The control thus
obtained we substitute into the right-hand side of system (8.2.76), which is inte-
grated numerically under initial conditions (8.2.78). The control constructed is not
time-optimal one, but it is rather simple for the calculation and practical implemen-
tation. In Table 8.1, the results obtained for time T are compared with time T ∗ of
the time-optimal process that was determined in [40] for the various initial vectors
x0 = (x0

1,x
0
2,x

0
3).

The results of simulation are presented in Figs. 8.8 and 8.9 for the case where
x0 = (1,0.5,−1). In this case, we have T = 6.0. Figure 8.8 shows the time history
of u = u(t), and Fig. 8.9 depicts the trajectory x(t), i.e., the time histories of y, ẏ,
and z.
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Table 8.1 Time T compared with the optimal time T ∗

x0
1 0 0 −5 −4.9015 0.0245 −0.2070

x0
2 0 0 −4 3.5253 −1.9302 0.5441

x0
3 1.0471 6.2831 −1 −2.7750 1.5452 −1.0979

T 5.4 24.2 24.5 24.8 10.7 5.7

T ∗ 3.1415 6.2831 9.8362 8.0612 3.7410 1.0979

T/T ∗ 1.7 3.9 2.5 3.1 2.9 5.2

u(t)
t = T

t

0

0

1

2 4 6
−1

Fig. 8.8 Control u(t)

y, ẏ,z

y(t)

ẏ(t)

z(t)

t = T

t

0

0

1

2 4 6

0.5

1.5

−0.5

−1

−1.5

Fig. 8.9 Time histories of y, ẏ, and z
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8.3 Application to electro-mechanical systems

8.3.1 Model of the electro-mechanical system

Let us consider a two-mass system controlled by a direct-current electric motor with
independent excitation. We take the equations of motion of the system in the form

m1ξ̈1 = c(ξ2 −ξ1)+F, m2ξ̈2 = c(ξ1 −ξ2). (8.3.1)

Here, ξ1 and ξ2 are the coordinates of the system, m1 and m2 are constant inertial
coefficients, c is the constant stiffness of the elastic connection, and F is the con-
trol (force or torque) produced by the electric motor. Figures 8.10–8.12 show some
specific systems described by equations (8.3.1).

F

ξ

m1m2

c

Fig. 8.10 Two-mass system

Figure 8.10 shows a system of two bodies of masses m1 and m2 that move along
the ξ -axis under the action of force F . Here, ξ1 and ξ2 are the coordinates of the
bodies, c is the stiffness of the spring, and F is the control force applied to the first
body.

Figure 8.11 shows a cart of mass m1 being moved along the ξ -axis by the force
F . A mathematical pendulum of mass m2 and length l suspended from the cart
performs small oscillations.

F

m1

m2 φ

ξ

Fig. 8.11 Pendulum on a cart
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F

Fig. 8.12 Electric motor and elastic rod with a mass at its end

The equations of motion for the system of Fig. 8.11 have the form:

(m1 +m2)ξ̈1 −m2lφ̈ = F, m2l2φ̈ +m2glφ = m2lξ̈1. (8.3.2)

Here, φ is the angle of deviation of the pendulum from the vertical direction, g is the
acceleration of gravity. The first of equations (8.3.2) is the equation for the change
of momentum along the ξ -axis; the second one describes the change of the angular
momentum about the axis of the pendulum.

We introduce the notation

ξ2 = ξ1 − lφ , c =
m2g

l
. (8.3.3)

With notation (8.3.3), equations (8.3.2) take form (8.3.1).
The system shown in Fig. 8.12 is an electric motor. An elastic rod of mass m

at its end is attached to the axis of the motor. Neglecting the mass of the rod in
comparison with mass m and denoting by c its stiffness, we again arrive at equations
(8.3.1), where the variables and constants have the following meanings: m1 is the
moment of inertia of the rotor of the electric motor and the rotating parts of the
gear, m2 is the moment of inertia of the rod with mass m at its end, ξ1 and ξ2 are
the absolute angles of rotation of the roller of the motor and mass m about the axis
of rotation, and F is the moment produced by the electric motor. The equations of
motion of the motor with an elastic rod can be reduced to system (8.3.1) also in the
case where the mass of the rod is comparable with m, if we restrict our attention
with the fundamental (lowest) tone of elastic oscillations. We can regard the system
of Fig. 8.12 as the simplest model of an elastic manipulator.

The control F in system (8.3.1) is proportional (or equal) to the moment produced
by the electric motor and, hence, is proportional to the current I in the circuit of the
rotor, i.e.,

F = k1I, k1 > 0, (8.3.4)
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where k1 is a constant coefficient. The equation of balance of electric voltages in the
circuit of the rotor has the form

Lİ +RI + k2ξ̇1 = U. (8.3.5)

Here, L is the inductance, R is the electric resistance, k2 is a constant coefficient,
and U is the electric voltage. The term k2ξ̇1 in (8.3.5), equal to the counter-emf,
is proportional to the angular velocity of the roller of the motor, which, in turn, is
proportional (or equal) to ξ̇1. The first term in the left-hand side of equation (8.3.5)
is usually small in comparison with the other terms, and it can be neglected. Then,
from (8.3.4) and (8.3.5), we obtain

F =
k1

R
(U − k2ξ̇1) > 0. (8.3.6)

Let us consider the constraints imposed on the control and phase coordinates of
system (8.3.1). The control voltage is bounded in magnitude by a constant:

|U | ≤U0. (8.3.7)

The current I and the moment of the motor proportional to I should also be
bounded in magnitude. This, by virtue of (8.3.4), leads to the constraint

|F | ≤ F0, (8.3.8)

where F0 is constant. Furthermore, the angular velocity of rotation of the roller, that
is proportional to ξ̇1, is also bounded in such a way that, for a voltage U = ±U0 of
the maximum magnitude and for the maximum angular velocity, the control moment
cannot speed up the motor. By virtue of (8.3.6), this constraint can be written in the
form

|ξ̇1| ≤ U0

k2
. (8.3.9)

Taking into account (8.3.6), we represent the set of constraints (8.3.7)–(8.3.9) as
follows:

|F | ≤ F0, |ξ̇1| ≤ U0

k2
, |F +

k1k2

R
ξ̇1| ≤ k1

R
U0. (8.3.10)

We introduce new (dimensionless) variables, using the formulas

t ′ = ωt, x1 =
m1ξ1 +m2ξ2

(m1 +m2)l0
, x2 =

m1ξ̇1 +m2ξ̇2

(m1 +m2)l0ω
,

x3 =
m1(ξ1 −ξ2)

(m1 +m2)l0
, x4 =

m1(ξ̇1 − ξ̇2)

(m1 +m2)l0ω
, u =

F
(m1 +m2)l0ω2 , (8.3.11)

ω2 =
c(m1 +m2)

m1m2
, l0 =

F0m1m2

c(m1 +m2)2 .

Then, equations (8.3.1) take the form that does not contain any parameters:
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ẋ1 = x2, ẋ2 = u, ẋ3 = x4, ẋ4 = −x3 +u. (8.3.12)

Here and below, a dot denotes the derivatives with respect to the dimensionless time
t ′, but the prime will be omitted. Let us make substitution (8.3.11) also in constraints
(8.3.10). We obtain

|u| ≤ 1, |px2 + μ px4| ≤ 1, |px2 + μ px4 +qu| ≤ 1, (8.3.13)

where

p =
l0ωk2

U0
, q =

(m1 +m2)l0ω2R
k1U0

, μ =
m2

m1
. (8.3.14)

For system (8.3.12) with constraints (8.3.13), we state the problem of constructing
an admissible control u(t) that takes the system from the initial state

x1(0) = x0
1, x2(0) = x0

2, x3(0) = x0
3, x4(0) = x0

4 (8.3.15)

to the zero terminal state

x1(T ) = 0, x2(T ) = 0, x3(T ) = 0, x4(T ) = 0. (8.3.16)

Here, T is the as yet unfixed time of termination of the process.
The problem stated above is a special case of more general problem formulated

in Sect.8.1.1. First, we consider a simplified version of the problem described by a
second-order system.

8.3.2 Analysis of the simplified model

Let us set m2 = 0 in (8.3.1). We obtain a system with a single degree of freedom
that is described, in the dimensionless variables (8.3.11), by the equations

ẋ1 = x2, ẋ2 = u. (8.3.17)

In constraints (8.3.13) with m2 = 0, we need, by (8.3.14), to set μ = 0. The num-
ber of parameters in the constraints can be reduced with the aid of the change of
variables

t = p−1t ′, x1 = p−2x′1, x2 = p−1x′2. (8.3.18)

By substituting (8.3.18) into system (8.3.17) and omitting the primes of the new
variables, we arrive at the previous system (8.3.17), while constraints (8.3.13) take
the form

|u| ≤ 1, |x2| ≤ 1, |x2 +qu| ≤ 1, q > 0. (8.3.19)

Instead of the boundary conditions (8.3.15) and (8.3.16), we have

x1(0) = x0
1, x2(0) = x0

2, x1(T ) = x2(T ) = 0. (8.3.20)
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We apply the approach of Sect. 8.1.2 to problem (8.3.17), (8.3.19), and (8.3.20).
In notation (8.1.1) and (8.1.6), we have for system (8.3.17):

A =

[
0 1
0 0

]
, B =

[
0
1

]
, f =

[
0
0

]
, Φ(t) =

[
1 t
0 1

]
. (8.3.21)

Using (8.3.21), we find the inverse matrix Φ−1(t), and then the matrices Q(t)
and R(t) defined by (8.1.11) and (8.1.13):

Φ−1(t) =

[
1 −t
0 1

]
, Q(t) =

[−t
1

]
, R(t) =

[
t3/3 −t2/2
−t2/2 t

]
. (8.3.22)

Here, t0 = 0 in accordance with (8.3.20). Using (8.3.22), we also find the inverse
matrix

R−1(T ) = 2T−3
[

6 3T
3T 2T 2

]
. (8.3.23)

Using equalities (8.3.20), (8.3.21), and (8.1.9), we obtain

x1 = 0, x∗ = −x0. (8.3.24)

With the aid of relations (8.3.22)–(8.3.24), we represent the phase vector (8.1.16)
and control (8.1.17) in the form

x(t) = Φ(t)[E2 −R(t)R−1(T )]x0 = X(t,T )x0,
(8.3.25)

u(t) = −Q�(t)R−1(T )x0 = 〈w(t,T ),x0〉.

Here, E2 is the identity (2× 2)-matrix. The elements of the (2× 2)-matrix X(t,T )
and the two-dimensional vector w(t,T ) are equal to

X11(t,T ) = 1−3τ2 +2τ3, X12(t,T ) = T τ(1−2τ + τ2),

X21(t,T ) =
6τ(τ −1)

T
, X22(t,T ) = 1−4τ +3τ2, (8.3.26)

w1(t,T ) =
6(2τ −1)

T 2 , w2(t,T ) =
2(3τ −2)

T
, τ =

t
T

.

Each of constraints (8.3.19) can be represented in the form

|αx2 +βu| ≤ 1, 0 ≤ α ≤ 1, β ≥ 0, (8.3.27)

where α and β are constant coefficients. We substitute the expressions for x2 and u
from (8.3.25) and (8.3.26) into (8.3.27) and estimate from above the left-hand side
of inequality (8.3.27):

|αx2 +βu| ≤ (α|X21|+β |w1|) |x0
1|+(α|X22|+β |w2|) |x0

2|. (8.3.28)
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Since t ∈ [0,T ], we have τ ∈ [0,1]. We estimate from above the maxima, for
τ ∈ [0,1], of the absolute values of the elements (8.3.26) that appear in (8.3.28):

|X21| ≤ 3
2T

, |X22| ≤ 1, |w1| ≤ 6
T 2 , |w2| ≤ 4

T
. (8.3.29)

Let us substitute the estimates (8.3.29) into (8.3.28):

|αx2 +βu| ≤
(

3α
2T

+
6β
T 2

)
|x0

1|+
(

α +
4β
T

)
|x0

2|. (8.3.30)

Let us consider each of constraints (8.3.19) separately. Comparing inequalities
(8.3.19) and (8.3.27), we set α = 0 and β = 1 for the first constraint (8.3.19), α = 1
and β = 0 for the second, and α = 1 and β = q for the third. Then, we obtain from
(8.3.17) and (8.3.30) the following inequalities:

6
T 2 |x0

1|+
4
T
|x0

2| ≤ 1,
3

2T
|x0

1|+ |x0
2| ≤ 1,

(8.3.31)(
3

2T
+

6q
T 2

)
|x0

1|+
(

1+
4q
T

)
|x0

2| ≤ 1.

Since q > 0 by (8.3.19), the second inequality of (8.3.31) follows from the third one.
Therefore, the set of two inequalities

6
T 2 |x0

1|+
4
T
|x0

2| ≤ 1,

(
3

2T
+

6q
T 2

)
|x0

1|+
(

1+
4q
T

)
|x0

2| ≤ 1 (8.3.32)

constitute the sufficient conditions for solvability of the control problem (8.3.17),
(8.3.19), and (8.3.20). These conditions connect the initial state and the time of the
process, and can be regarded as the sufficient conditions for controllability of the
system from the given initial state x0 in the time T .

Let us analyze conditions (8.3.32). Suppose that the initial state x0
1,x

0
2 is given.

If |x0
2| > 1, then both conditions (8.3.32) are not satisfied, which is quite natural

since the initial state, in this case, violates the phase constraint |x2| ≤ 1 imposed in
(8.3.19). If |x0

2| < 1, then both conditions (8.3.32) are definitely satisfied for suffi-
ciently large T . The minimum time T ∗ for which both inequalities (8.3.32) hold is
of interest. Solving the quadratic inequalities (8.3.32) in T−1, we get

T ≥ T ∗ = max{ 1
z1

,
1
z2
}, |x0

2| ≤ 1,

z1 =
(6a1 +4a2

2)
1/2 −2a2

6a1
, ai = |x0

i |, i = 1,2, (8.3.33)

z2 =
[(3a1 +8qa2

2)
1/2 +96qa1(1−a2)]

1/2 −3a1 −8qa2

24qa1
.
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Thus, if |x0
2| < 1 and T ≥ T ∗, the proposed control method ensures bringing

system (8.3.17) to the given state, and constraints (8.3.19) hold. Fixing any T ≥
T ∗, we find the desired control u(t) and the phase trajectory x(t) from the explicit
formulas (8.3.25) and (8.3.26). This solves the problem stated.

Let us compare the constructed solution with the solution obtained in [35] (see
Chapter 9) for the time-optimal control problem for system (8.3.17) with constraints
(8.3.19) and boundary condition (8.3.20). We confine ourselves to the case of zero
initial velocity x0

2 = 0 and, for definiteness, take q = 1/2 in (8.3.19). We then obtain
from (8.3.33)

T ∗(a) = max{(6a)1/2,
12a

(9a2 +48a)1/2 −3a
} =

=

⎧⎨
⎩

(6a)1/2 for a ∈ [0,2/3], a = |x0
1|,

12a

(9a2 +48a)1/2 −3a
for a ∈ [2/3,∞).

(8.3.34)

From (8.3.34), we find the asymptotic behavior of the dependence T ∗(a) as
a → ∞:

T ∗(a) =
3a
2

+O(1), a → ∞. (8.3.35)

We note that the chosen value of the parameter q = 1/2 corresponds, by (8.3.19),
to the set of admissible values of the variables (x2,u) in the form of the hexagon
shown in Fig. 8.13. The dependence of the optimal time of process T 0 on a = |x0

1|
is given by the relationships [35]:

T 0(a) =

⎧⎨
⎩

2a1/2 for a ∈ [0,1/4],
1
2

+ v− log[2(1− v)]
2

, v ≥ 1
2
, a ≥ 1

4
,

(8.3.36)

a =
3
8
− v(1− v)

2
− log[2(1− v)]

2
.

For a ≥ 1/4, the dependence T 0(a) is given by (8.3.36) in the parametric form,
where v ≥ 1/2 is a parameter. Let us find the asymptotic behavior of the dependence
T 0(a) as a → ∞. To that end, we let v → 1. From (8.3.36), we obtain

T 0(a) = a+
9
8

+O(e−2a), a → ∞. (8.3.37)

Comparing dependences (8.3.34) and (8.3.36), we see that, for small a, the time
T ∗(a) exceeds the optimal time T 0(a) by about 22%. For large a, we see from
(8.3.35) and (8.3.37) that the time T ∗(a) exceeds by 50% the optimal time. The
dependences T ∗(a) and T 0(a) are shown in Fig. 8.14. Thus, the proposed method
of control brings the system to the given state in the time not greatly different from
the optimal one.
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Fig. 8.13 Set of admissible values of the variables (x2,u)
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Fig. 8.14 Dependence of times T ∗ and T 0 on parameter a

8.3.3 Control of the electro-mechanical system of the fourth order

We apply the proposed approach to system (8.3.12) subject to constraints (8.3.13)
and the boundary conditions (8.3.15) and (8.3.16). In notation (8.1.1), we have for
system (8.3.12)

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦, f =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦. (8.3.38)

We write, for the system under consideration, the fundamental matrix (8.1.6) and
its inverse:
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Φ(t) =

⎡
⎢⎢⎣

1 t 0 0
0 1 0 0
0 0 cos t sin t
0 0 −sin t cos t

⎤
⎥⎥⎦, Φ−1(t) =

⎡
⎢⎢⎣

1 −t 0 0
0 1 0 0
0 0 cos t −sin t
0 0 sin t cos t

⎤
⎥⎥⎦. (8.3.39)

Using relationships (8.3.38) and (8.3.39), let us set up the matrix Q(t) from (8.1.11)
as follows:

Q(t) = (−t,1,−sint,cos t)�. (8.3.40)

We set up the matrix R(t) from (8.1.13), using (8.3.40) and taking t0 = 0:

R(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t3

3
− t2

2
sin t − t cos t 1− cos t − t sin t

− t2

2
t cos t −1 sin t

sin t − t cos t cos t −1
2t − sin2t

4
cos2t −1

4

1− cos t − t sin t sin t
cos2t −1

4
2t + sin2t

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.3.41)

To simplify the calculations, as in Sect. 8.2.2, we put T = 2πk, k = 1,2, . . . . Then,
by (8.3.41), the matrix R(T ) and its inverse take the forms

R(T ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 3

3
−T 2

2
−T 0

−T 2

2
T 0 0

−T 0
T
2

0

0 0 0
T
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(8.3.42)

R−1(T ) =
1

T 2 −24

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
T

6
24
T

0

6
4(T 2 −6)

T
12 0

24
T

12 2T 0

0 0 0
2(T 2 −24)

T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using equations (8.3.16), (8.3.38), and (8.1.9), we obtain, similarly to (8.3.24),
that

x1 = 0, x∗ = −x0. (8.3.43)

With the aid of (8.3.43), we represent the phase vector (8.1.16) and control (8.1.17)
in the form similar to (8.3.25):
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x(t) = X(t,T )x0, u(t) = 〈w(t,T ),x0〉. (8.3.44)

Here, X(t,T ) is the (4×4)-matrix

X(t,T ) = Φ(t)−Φ1(t)R
−1(T ), Φ1(t) = Φ(t)R(t), (8.3.45)

and w(t,T ) is the four-dimensional vector

w(t,T ) = −Q�(t)R−1(T ). (8.3.46)

Let us analyze constraints (8.3.13). First of all, we note that since the coefficients
p and q are, by (8.3.14), positive, to meet these constraints, it is sufficient that the
following two inequalities hold:

|u| ≤ 1, p|x2 + μx4|+q|u| ≤ 1. (8.3.47)

Let us substitute relationships (8.3.44) into inequalities (8.3.47). We get

4

∑
i=1

|wi||x0
i | ≤ 1, (8.3.48)

p|
4

∑
i=1

(X2i + μX4i)x
0
i |+q

4

∑
i=1

|wi||x0
i | ≤ 1. (8.3.49)

We calculate the components of the vector w(t,T ) from (8.3.46), using equalities
(8.3.40) and (8.3.42). We have

w1 =
12t −6T +24sin t

T (T 2 −24)
, w2 =

6tT −4T 2 +24+12T sin t
T (T 2 −24)

,

(8.3.50)

w3 =
24t −12T +2T 2 sin t

T (T 2 −24)
, w4 =

−2cos t
T

.

To calculate the elements of the matrix X(t,T ) of (8.3.45), we first multiply the
matrices Φ(t) from (8.3.39) and R(t) from (8.3.41). We obtain

Φ1(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− t3

6
t2

2
sin t − t 1− cos t

− t2

2
t cos t −1 sin t

sin t − t 1− cos t
t cos t − sin t

2
t sin t

2

cos t −1 sin t − t sin t
2

t cos t + sin t
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.3.51)

We now calculate those elements of the matrix X(t,T ) that appear in constraints
(8.3.49). To that end, we substitute into equality (8.3.45) for X(t,T ) relationships
(8.3.39) for Φ(t), (8.3.51) for Φ1(t), and (8.3.42) for R−1(T ). We obtain
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X21 =
6t(t −T )+24(1− cos t)

T (T 2 −24)
,

X22 =
T (3t2 −4tT +T 2)+12(2t −T )−12T cos t

T (T 2 −24)
,

X23 =
12t(t −T )+2T 2(1− cos t)

T (T 2 −24)
, X24 =

−2sin t
T

,

X41 =
12(1− cos t)+6(2t −T )sin t

T (T 2 −24)
, (8.3.52)

X42 =
6T (1− cos t)−4(T 2 −6)sin t +6Tt sin t

T (T 2 −24)
,

X43 =
24(1− cos t)+T (12+ tT −T 2)sin t

T (T 2 −24)
,

X44 =
(T − t)cos t − sin t

T
.

Inequalities (8.3.48) and (8.3.49) must hold for all t ∈ [0,T ]. We first estimate
from the above the maximum values, for t ∈ [0,T ], of the quantities |wi| in (8.3.48)
and (8.3.49). We have

|12t −6T +24sin t| ≤ 6T +24, t ∈ [0,T ],

|24t −12T +2T 2 sin t| ≤ 12T +2T 2,
(8.3.53)

6tT −4T 2 +24+12T sin t ≤ 2T 2 +12T +24,

6tT −4T 2 +24+12T sin t ≥−4T 2 −12T +24.

Since T = 2πk, k ≥ 1, we have T 2 > 24. Then, it follows from the last two of
inequalities (8.3.53) that

|6tT −4T 2 +24+12T sin t|
(8.3.54)

≤ max{2T 2 +12T +24,4T 2 +12T −24} = 4T 2 +12T −24.

Substituting estimates (8.3.53) and (8.3.54) into (8.3.50), we obtain

|wi(t,T )| ≤ Ai, i = 1,2,3,4, t ∈ [0,T ]. (8.3.55)

Here,

A1 =
6(T +4)

T (T 2 −24)
, A2 =

4(T 2 +3T −6)

T (T 2 −24)
, A3 =

2(T +6)

T 2 −24
, A4 =

2
T

. (8.3.56)

Turning to inequality (8.3.49), we note that the elements X22,X43, and X44 in
(8.3.52) do not approach zero as T → ∞. To get more precise estimate of the princi-
pal terms in inequality (8.3.49) as T →∞, we estimate the first term in that inequality
as follows:
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|
4

∑
i=1

(X2i + μX4i)x
0
i | ≤ B1|x0

1|+B2|x0
2|+B3

(
x0

3
2
+ x0

4
2
)1/2

. (8.3.57)

Here, we introduced the notation

B1 = |X21 + μX41|, B2 = |X22 + μX42|,
(8.3.58)

B3 =
[
(X23 + μX43)

2 +(X24 + μX44)
2]1/2

.

Let us estimate the quantities Bi, i = 1,2,3. Taking into account the obvious
estimates

|2t −T | ≤ T, −T 2

4
≤ t(t −T ) ≤ 0, t ∈ [0,T ], (8.3.59)

we obtain from (8.3.52) that

T (T 2 −24)(X21 + μX41) ≤ 6t(t −T )+48+24μ +6μT ≤ 24(2+ μ)+6μT,

T (T 2 −24)(X21 + μX41) ≥ 6t(t −T )−6μT ≥−3T 2

2
−6μT.

This implies the following estimate for the quantity B1 in (8.3.58):

B1 ≤ D1 =
max{3T 2/2,24(2+ μ)}+6μT

T (T 2 −24)
. (8.3.60)

Then, by virtue of (8.3.52), we obtain

T (T 2 −24)(X22 + μX42) = T (3t2 −4tT +T 2)+12(2t −T )
(8.3.61)

+6μT −6T (2+ μ)cos t +2μT (3t −2T )sin t +24μ sin t.

One can easily see that

|3t2 −4tT +T 2| ≤ T 2, |3t −2T | ≤ 2T, t ∈ [0,T ]. (8.3.62)

By (8.3.61), (8.3.62), and (8.3.59), we obtain the following estimate for the quantity
B2 in (8.3.58):

B2 ≤ D2 =
T 3 +4μT 2 +12(2+ μ)T +24μ

T (T 2 −24)
. (8.3.63)

To single out the principal terms as T → ∞, we make, using formulas (8.3.52),
the following transformation:

X23 + μX43 =
μ(t −T )sin t

T
+X ′

3,

X ′
3 =

12t(t −T )+(2T 2 +24μ)(1− cos t)+12μ(2t −T )sin t
T (T 2 −24)

, (8.3.64)
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X24 + μX44 =
μ(T − t)cos t

T
+X ′

4, X ′
4 = − (2+ μ)sint

T
.

Substituting (8.3.64) into expression (8.3.58) for B3, we obtain that

B2
3 =

μ2(T − t)2

T 2 +
2μ(T − t)(X ′

4 cos t −X ′
3 sin t)

T
+X ′

3
2
+X ′

4
2

(8.3.65)

≤ μ2 +2μ
(

X ′
3

2
+X ′

4
2
)1/2

+X ′
3

2
+X ′

4
2
.

Using (8.3.59), we get for the quantity X ′
3 in (8.3.64) the estimates

T (T 2 −24)X ′
3 ≤ 12t(t −T )+4(T 2 +12μ)+12μT ≤ 4T 2 +12μT +48μ ,

T (T 2 −24)X ′
3 ≥ 12t(t −T )−12μT ≥−3T 2 −12μT.

These estimates imply the inequality

|X ′
3| ≤

4T 2 +12μT +48μ
T (T 2 −24)

. (8.3.66)

It follows from (8.3.64) that

|X ′
4| ≤

2+ μ
T

. (8.3.67)

Substituting inequalities (8.3.66) and (8.3.67) into (8.3.65), we get

|B3| ≤ D3 = μ +

[
(4T 2 +12μT +48μ)2

T 2(T 2 −24)2 +
(2+ μ)2

T 2

]1/2

. (8.3.68)

Now, let us analyze inequalities (8.3.48) and (8.3.49) that are sufficient condi-
tions for solvability of the control problem in time T = 2πk, k = 1,2, . . . . Substitut-
ing estimates (8.3.55) into (8.3.48), we obtain the condition

4

∑
i=1

Ai |x0
i | ≤ 1. (8.3.69)

Substituting (8.3.55) and (8.3.57) into (8.3.49) and using estimates (8.3.60), (8.3.63),
and (8.3.68) for Bi, we get

p

[
D1|x0

1|+D2|x0
2|+D3

(
x0

3
2
+ x0

4
2
)1/2

]
+q

4

∑
i=1

Ai |x0
i | ≤ 1. (8.3.70)

Conditions (8.3.69) and (8.3.70) are sufficient conditions for controllability of
system (8.3.12) in the finite time T = 2πk, k = 1,2, . . . . In other words, if these
conditions, for some initial state x0 and time T = 2πk are satisfied, then system
(8.3.12) can be brought from the initial state (8.3.15) to the given terminal state
(8.3.16) in time T . The control law u(t) and the phase trajectory x(t) of the system
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are given by relations (8.3.44), in which the matrix X(t,T ) and the vector w(t,T )
are defined by equalities (8.3.52) and (8.3.50), respectively. Thus, all the quantities
sought are determined in an explicit analytical form, once we have found the time
of the process T .

It remains to choose the time T = 2πk, k = 1,2, . . . , in such a way that, for
the given initial state x0, inequalities (8.3.69) and (8.3.70) hold. To do this, we
shall assign to k successively the values k = 1,2, . . . , calculate the coefficients
Ai, i = 1,2,3,4, from formulas (8.3.56) and D j, j = 1,2,3, from formulas (8.3.60),
(8.3.63), and (8.3.68), and then verify inequalities (8.3.69) and (8.3.70). We note
that Ai → 0, i = 1,2,3,4; D1 → 0, D2 → 1, D3 → μ as T → ∞. Consequently, in-
equality (8.3.69) always holds for sufficiently large T . Inequality (8.3.70) also holds
for sufficiently large T , if

p

[
|x0

2|+ μ
(

x0
3

2
+ x0

4
2
)1/2

]
≤ 1. (8.3.71)

Thus, inequality (8.3.71) is a sufficient condition for solvability of the control prob-
lem stated, i.e., for bringing the system under consideration to the terminal state in
finite time.

If, in system (8.3.12), there is only one constraint on the control |u| ≤ 1, whereas
the remaining (phase and mixed) constraints (8.3.13) are absent, then time T must
be chosen in such a way as to satisfy only one condition (8.3.69). In this case, the
control problem is always solvable in finite time.

We note that although the control law u(t) is represented in the open-loop form
(8.3.44), it can also be used for the feedback correction. To that end, one should
determine, at intervals, the current phase vector x and to treat it as the initial vector
x0 in (8.3.44), recalculating each time the duration of the process T , in accordance
with the algorithm described above. Since we have explicit relationships, this recal-
culation is not difficult.

Let us give an example of the numerical implementation of the described algo-
rithm for control of system (8.3.12) under constraints (8.3.13). The dimensionless
parameters (8.3.14) are taken as follows:

p = 0.1, q = 0.5, μ = 0.5. (8.3.72)

The initial data (8.3.15) are taken in the form

x0
1 = −5, x0

2 = 0, x0
3 = −5, x0

4 = 0. (8.3.73)

One can easily verify that parameters (8.3.72) and (8.3.73) satisfy condition
(8.3.71) of controllability in finite time.

As a result of the numerical implementation of the control algorithm described
in Sect. 8.3.3, we first find the minimum integer k for which conditions (8.3.69) and
(8.3.70) hold, and then construct the control u(t) and the phase trajectory x(t). In
this case, we have k = 3 and T = 6π .
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In Fig. 8.15, curves 1–3 show the time histories of the quantities u, p(x2 + μx4),
and p(x2 + μx4)+ qu, respectively, that appear in constraints (8.3.13). One can see
that these constraints hold everywhere. In Fig. 8.16, the projections of the four-
dimensional phase trajectory x(t) on the (x1,x2)- and the (x3,x4)-planes are depicted
by the curves 1 and 2, respectively.

1
1

−1

2

3
t

2π

Fig. 8.15 Time histories of u, p(x2 + μx4), and p(x2 + μx4)+qu

1
2

2

2

x2,x4

x1,x3

Fig. 8.16 Projections of the phase trajectory

8.3.4 Active dynamical damper

We consider the problem of damping oscillations of a load attached to the end of
an elastic beam by means of an active dynamical damper with a moving mass. The
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control variable is the interaction force between the damper and the load. Systems
of this type are used, for example, in a spacecraft (SC), where measuring devices
are mounted, by means of a long rod, on a platform (P) at a significant distance
from the main body of the spacecraft. High accuracy in positioning and stabilizing
the measuring instruments is required in order to perform measurements; hence, it
is of great importance to damp any oscillations of the rod, and this should be taken
into consideration in spacecraft design. One way to solve this problem is to use a
controlled damper located on the platform itself. The damper consists of a guide 1
perpendicular to the axis of the rod 2, and a movable mass 3 that can be displaced
along the guide by an electric drive. This scheme is suitable for damping transverse
oscillations of the rod (see Fig. 8.17).

1

2

3

u

SC

P

Fig. 8.17 Rod with a load and an active dynamical damper

A particular feature of this problem is the presence of two natural constraints on
the different variables of the system. One, due to the restricted possibilities of the
drive, is imposed on the control force; the other, due to the bounded path of the
damper mass (the damper guide is limited in size), is imposed on the displacement
of the mass relative to the platform.

Under certain simplifying assumptions [3], the following two-mass mechanical
controlled system containing oscillatory link (see Fig. 8.18) may serve as a model
for the structures just described. Two bodies, of masses m1 and m2, move along
a horizontal straight line. The first body is connected to a fixed base by a spring
of stiffness c > 0. The second body is connected to the first one by a drive that
generates force u.

m1 m2

u

Fig. 8.18 Simplified model

The equations of motion of the system are

m1ÿ+ cy = −u, m2z̈ = u. (8.3.74)
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Here, y and z are the coordinates of the first and second bodies, respectively, on the
straight line. The following constraints are imposed on the control force u and the
displacement z(t)− y(t) of the second body relative to the first one:

|u(t)| ≤ a, a > 0, (8.3.75)

|z(t)− y(t)| ≤ d, d > 0. (8.3.76)

It is required to construct control u(t) that meets constraint (8.3.75) and brings sys-
tem (8.3.74) from the given initial state

y(0) = y0, ẏ(0) = ẏ0, z(0) = z0, ż(0) = ż0 (8.3.77)

to the state of rest
y(T ) = z(T ) = 0, ẏ(T ) = ż(T ) = 0. (8.3.78)

In addition, the coordinates y(t) and z(t) must satisfy condition (8.3.76) throughout
the whole motion. The time of the process termination T is not fixed.

We introduce the new variables

x1 =
c
a

y, x3 = −m2c
m1a

z, t ′ =
√

c
m1

t, u′ = −au. (8.3.79)

In terms of variables (8.3.79), system (8.3.74) and constraint (8.3.75) become (here
and below, we denote by dots derivatives with respect to the new time t ′, the primes
of t ′ and u′ are omitted)

ẍ1 + x1 = u, ẍ3 = u, (8.3.80)

|u| ≤ 1, (8.3.81)

i.e., just the same as in (8.2.36). Constraint (8.3.76) takes the form

|m1

m2
x3 + x1| ≤ cd

a
.

We put ẋ1 = x2, ẋ3 = x4 and denote the phase vector of system (8.3.80) by x =
(x1,x2,x3,x4). We introduce a constant vector p = (1,0,m1/m2,0) and rewrite the
last inequality as follows:

|〈p,x(t)〉| ≤ cd
a

. (8.3.82)

After the change of variables (8.3.79), conditions (8.3.77) and (8.3.78) take the
form

xi(0) = x0
i , xi(T ) = 0, i = 1, . . . ,4. (8.3.83)

Here, x0
i are given constants, and T > 0 is the as yet unknown time when the process

terminates.
The problem stated reduces to constructing a control that satisfies the constraint

|u| ≤ 1 and brings system (8.3.80) from the given initial state (8.3.83) to the coor-
dinate origin without violation constraint (8.3.82) during the motion. It is the phase
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constraint (8.3.82) that essentially distinguishes this problem from those considered
in Sect. 8.2. Besides, here we will use other estimation technique than before.

The solution presented below obtained in [7].
We rewrite system (8.3.80) in the vector form

ẋ = Ax+bu, (8.3.84)

A =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦.

The initial and terminal states (8.3.83) become

x(0) = x0, x(T ) = 0. (8.3.85)

As in the case of the pendulum with a suspension point controlled by acceler-
ation, the fundamental matrix of the homogeneous system and the inverse matrix
have form (8.2.39), and the matrix Q(t) in (8.1.11) is the four-dimensional column
vector given by (8.2.40).

The expression for the control function u(t) that brings system (8.3.84) from the
initial state x0 to the coordinate origin can be written as follows:

u(t) = 〈V (t,T ),x0〉, V (t,T ) = −R−1(T )Q(t). (8.3.86)

Here, the matrix R(T ) is given by (8.2.54).
We will show that, if the duration T of the process is sufficiently large, the control

u(t) meets constraint (8.3.81). To that end, we estimate the function u(t) as follows:

|u(t)| ≤
4

∑
i=1

|Vi(t,T )x0
i | ≤ |V (t,T )|∞ |x0|1. (8.3.87)

Here, by | · |∞ and | · |1 we denote the norms in the spaces R4
∞ and R4

1, respectively,
which have the following form for an arbitrary vector q:

|q|∞ = max
1≤i≤4

|qi|, |q|1 =
4

∑
i=1

|qi|.

We introduce the auxiliary function

v(T ) = max
0≤t≤T

|V (t,T )|∞ (8.3.88)

and rewrite estimate (8.3.87) as follows:

max
0≤t≤T

|u(t)| ≤ v(T ) |x0|1. (8.3.89)
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We propose two ways of determining the duration T of the motion for which con-
straint (8.3.81) holds. The first is based on the analytical estimation of the function
v(T ), and the second on the numerical construction of the function.

Similarly to what has been done in Sect. 8.2, in order to simplify calculations,
we choose the time of the termination of motion in the form T = 2πk, where k is an
integer. In this case, the matrix R(T ) is given by (8.2.42) and its inverse matrix is

R−1(T ) =
1
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2T 0
24
T

12

0
2�
T

0 0
24
T

0
12
T

6

12 0 6
4(T 2 −6)

T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, � = T 2 −24. (8.3.90)

We write down the components of the vector-valued function V (t,T ) using ex-
pressions (8.3.90) and (8.2.40) for the matrix R−1(T ) and vector Q(t), respec-
tively. Then, taking into account the inequality T ≥ 2π , we estimate the components
Vi(t,T ) as follows:

|V1(t,T )| = |2T 2 sin t +24t −12T |
T� ≤ 2T +12

� ≤ 4T
� ,

|V2(t,T )| = |2cos t|
T

≤ 2
T

≤ 4T
� ,

|V3(t,T )| = |−24sin t −12t +6T |
T� ≤ 6T +24

T� ≤ 4T
� ,

|V4(t,T )| = |−12T sin t −6Tt +4T 2 −24|
T� ≤ 4T

� .

These estimates and definition (8.3.88) of the function v(T ) imply that v(T ) ≤
4T/�. Hence, using (8.3.89), we obtain the following estimate for the control func-
tion u(t):

max
0≤t≤T

|u(t)| ≤ 4T
T 2 −24

|x0|1. (8.3.91)

Since T = 2πk, k = 1,2 . . ., we have, for sufficiently large k, that

4T
T 2 −24

≤ 1
|x0|1 . (8.3.92)

Inequalities (8.3.91) and (8.3.92) ensure constraint (8.3.81).
We also propose another method of choosing the process duration T that en-

sures constraint (8.3.81) for the control function (8.3.86). To that end, we construct
the function v(T ) numerically, using relations (8.2.54), (8.3.86) and (8.3.88). The
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function v(T ) is completely defined by the matrix A and vector b of system (8.3.84),
therefore, it suffices to construct this function once for the given system.

Figure 8.19 shows the graph of the function v(T ). As we expected, v(T ) is a
decreasing function, and the longer the time of motion of the system to its terminal
state, the lower the maximum value of the control function u. As the time of the
process termination one can choose any time that satisfies inequality

v(T ) ≤ 1
|x0|1 . (8.3.93)

v

w

T

0
0

5 1510

10

20

30

Fig. 8.19 Functions v(T ) and w(T )

We now describe the method of choosing the process duration T that ensures
constraint (8.3.82). With the above notation, the solution of system (8.3.84) that
starts at the time instant t = 0 at the point x0 has the form

x(t) = Φ(t)

(
x0 +

∫ t

0
Q(τ)u(τ)dτ

)
.

Substituting into this formula expression (8.3.86) for the control function u(t) and
using relations (8.2.54) that define the matrix R(t), we obtain

x(t) = Φ(t)

(
x0 −

∫ t

0
Q(τ)

[
Q�(τ)R−1(T )x0

]
dτ

)
=

= Φ(t)

(
x0 −

[∫ t

0
Q(τ)Q�(τ)dτ

]
R−1(T )x0

)
=

(8.3.94)
= Φ(t)

(
x0 −R(t)R−1(T )x0) = W (t,T )x0,

W (t,T ) = Φ(t) [R(T )−R(t)]R−1(T ).
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As in the case of constraint (8.3.81), we propose two methods of determining the
values of T that ensure constraint (8.3.82).

We first choose the time of the process termination to be T = 2πk, k = 1,2 . . .,
and estimate the norm of the vector x(t) in terms of the norms of the matrices on
the right-hand side of (8.3.94). The quantity ‖Φ(t)‖2 is equal (see Sect. 3.2.4) to the
maximal eigenvalue φ(t) of the matrix

Φ�(t)Φ(t) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 t2 +1 t
0 0 t 1

⎤
⎥⎥⎦, t ∈ [0,T ].

It is not difficult to calculate that φ(t) ≤ t2 +2, whence we obtain

‖Φ(t)‖ ≤ (T 2 +2)1/2. (8.3.95)

The matrix R−1(T )) is symmetric and positive-definite; consequently, its eigen-
values are positive, and the maximal of them equals the norm of the matrix. In
addition [64], the sum of all these eigenvalues is equal to the trace of R−1(T ) (by
definition, the trace tr Z of a square matrix Z is the sum of the elements on the main
diagonal of Z). It follows from expression (8.3.90) for the matrix R−1(T ) that the
number 2/T is one of the eigenvalues of this matrix, and

tr R−1(T )

4
=

2T 2 −15
T (T 2 −24)

>
2
T

.

Consequently, 2/T is not the maximal eigenvalue, and

‖R−1(T )‖ ≤ tr R−1(T )− 2
T

=
6(T 2 −2)

T (T 2 −24)
, T = 2πk. (8.3.96)

Since system (8.3.84) is controllable, the matrices R(t),R(T ), and

R(T )−R(t) =
∫ T

t
Q(τ)Q�(τ)dτ.

are symmetric and positive definite. Besides,

R(T )−R(t) < R(T ), 0 < t ≤ T, (8.3.97)

(the inequality X < Y for the symmetric matrices X and Y means that the matrix
Y −X is positive definite). Since the norm of a symmetric positive definite matrix is
equal to the maximal of all its eigenvalues, and inequality (8.3.97) implies [64] the
corresponding inequality for the eigenvalues of matrices R(T )−R(t) and R(T ), we
have ‖R(T )−R(t)‖ ≤ ‖R(T )‖.

To estimate ‖R(T )‖, we employ reasoning similar to that used above for the
matrix R−1(T ). It follows from expression (8.2.42) for R(T ) that the number T/2 is
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a non-maximum eigenvalue of the matrix R(T ), therefore,

‖R(T )‖ ≤ trR(T )− T
2

=
T (2T 2 +9)

6
, T = 2πk.

By (8.3.94)–(8.3.96), equality |p|= (m2
1 +m2

2)
1/2/m2, and the last relation, we have

|〈p,x(t)〉| ≤ |p|‖Φ(t)‖‖R(T )−R(t)‖‖R−1(T )‖|x0| ≤

≤ (m2
1 +m2

2)
1/2(2T 2 +9)(T 2 −2)(T 2 +2)1/2

m2(T 2 −24)
|x0|.

Consequently, we can choose as the time of the process termination those values of
T = 2πk that satisfy the inequality

(2T 2 +9)(T 2 −2)(T 2 +2)1/2

T 2 −24
≤ m2cd

a(m2
1 +m2

2)
1/2|x0| . (8.3.98)

We propose one more method of choosing the process duration T that ensures
constraint (8.3.82). It follows from (8.3.94) that

|〈p,x(t)〉| ≤ |〈p,W (t,T )x0〉| ≤ w(T )|x0|, w(T ) = max
0≤t≤T

|W�(t,T )p|.

We construct the function w(T ) numerically. This function is completely defined
by the matrix A and vectors b and p, so it suffices to construct this function once for
the given system (8.3.84) and given vector p in constraint (8.3.82).

Figure 8.19 shows graph of the function w(T ) for p = (1,0,10,0). One can see,
that with the increase of the process duration T , the function w(t) first decreases
and then increases. As the duration of the process, one can take any T for which the
value of the function w(t) satisfies the inequality

w(T ) ≤ cd
a|x0| . (8.3.99)

Thus, we propose the following procedure for constructing the control function
u(t). First, given the initial state vector x0 we choose the time T of the process
duration. The value of T may be chosen in the form T = 2πk, where the natural
number k must ensure conditions (8.3.92) and (8.3.98). Another way to determine
T is to find the functions v(T ) and w(T ) numerically and then to find such a value
of T that guarantees inequalities (8.3.93) and (8.3.99).

After the time T of the process duration has been determined, we calculate the
control function u(t) analytically using (8.3.86). As we have already mentioned,
the expression for the inverse matrix R−1(T ), obtained by using the computer pro-
gram of symbolic calculations, turns out to be quite cumbersome. For illustration,
the element in the upper left corner of this matrix is presented in Sect.8.2.3 [see
formula (8.2.61)].
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In Fig. 8.20, we present the results of the numerical simulation of the dy-
namics of system (8.3.84). The system is brought from the initial state x0 =
(0.5,−0.5,0.5,0.5) to the coordinate origin. The time of the process duration is
taken as T = 10. The solid curve represents the projection of the phase trajectory
on the plane x1,x2 = ẋ1, while the thin curve represents its projection on the plane
x3,x4 = ẋ3.

1
0

0.5

0.5

−0.5

(x0
3, ẋ

0
3)

(x0
1, ẋ

0
1)

x1,x3

ẋ1, ẋ3

Fig. 8.20 Projections of the phase trajectory

The solid curves in Fig. 8.21 are graphs of the control function u(t) and the
quantity

|〈p,x(t)〉| =
∣∣∣∣m1

m2
x3 + x1

∣∣∣∣
that appears in constraint (8.3.82), as a function of time, for the case where m1/m2 =
10. For comparison, the dashed curves represent the same functions for the process
duration taken as T = 5.

t

0
5
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10

10

|〈p,x(t)〉|

u

Fig. 8.21 Control function u(t) and quantity |〈p,x(t)〉|
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One can see that, for the case of T = 5, the quantity |〈p,x(t)〉| is smaller, whereas
the maximum modulus of the control function u(t) is greater, than for T = 10.



Chapter 9
Optimal control problems under complex
constraints

The simplest dynamical system with one degree of freedom

mξ̈ = F (9.0.1)

often serves as a model in control theory. Here, ξ is a generalized coordinate, ξ̇ is
a generalized velocity, m is a constant inertial characteristic (the mass or moment
of inertia), F is the control (the force or the moment of the force), and dots denote
derivatives with respect to the time t. On the one hand, this model is used to work
out and demonstrate schemes and methods for solving control problems. On the
other, a system with one degree of freedom has been used as an element in certain
schemes for decomposing non-linear systems with many degrees of freedom into
simpler subsystems (see Chapters 2 and 3).

In this chapter, solutions of a series problems concerning the steering system
(9.0.1) to the origin of the phase plane under various constraints are presented. These
results have been obtained in papers [35, 48, 49, 38, 37].

In a number of practical control problems, the so-called mixed constraints are
imposed at every time instant on the current control and state variables. For example,
if the electric drive is present in the system, then the restrictions imposed on the
control torque of the motor, angular velocity of the shaft, and other mechanical
and electric parameters are often imposed. As known, the existence of the mixed
constraints in the optimal control problems causes significant difficulties even for
linear systems.

A time-optimal control problem in the presence of mixed constraints is analyzed
in Sect. 9.1. The results are applied to the control of an electric motor [35, 37].

In Sect. 9.2, the case, where system (9.0.1) is acted upon by a control force with
a bounded rate of change, is considered. The time-optimal open-loop control of
the system is constructed. The feedback optimal control is given in a closed form
[48, 49].

In Sect. 9.3, the case, where system (9.0.1) controlled by a force of bounded
magnitude, is considered. It is assumed that the magnitude of the force may increase
gradually at a finite rate and that the force is switched off instantaneously. Under

327
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these restrictions, which simulate real servo-systems, a control is constructed that
steers the system to the origin and has the simplest possible structure [38].

9.1 Time-optimal control problem under mixed and phase
constraints

9.1.1 Problem statement

Let us introduce the notation

x = ξ , v = ξ̇ , w =
F
m

(9.1.1)

and rewrite (9.0.1) in the form

ẋ = v, v̇ = w. (9.1.2)

We will consider control system of the second order (9.1.2), where x and v are the
phase coordinates (coordinate and velocity), and w is the control (acceleration). The
constraints

v1 ≤ v ≤ v2, v1 < 0, v2 > 0, (9.1.3)

where v1 and v2 are given constants, and the mixed constraint

f1(v) ≤ w ≤ f2(v), v ∈ [v1,v2] (9.1.4)

are imposed on the control and phase coordinates. Here, f1(v) and f2(v) are piece-
wise continuous functions given on the interval [v1,v2] and such that

f1(v) < 0, f2(v) > 0, v ∈ (v1,v2). (9.1.5)

Functions f1(v) and f2(v) may vanish only on the boundaries of the interval [v1,v2].
The domain in the plane (v,w) restricted by conditions (9.1.3) and (9.1.4) is shown
in Fig. 9.1.

Let us state the problem of determining the feedback control w(x,v) bringing
system (9.1.2) under constraints (9.1.3) and (9.1.4) from any (in the domain v1 ≤
v ≤ v2) initial phase state

x(t0) = x0, v(t0) = v0 (9.1.6)

to the state
x(T ) = 0, v(T ) = 0 (9.1.7)

in a minimal time (T → min). If we replace control w by a new control u in accor-
dance with formula
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w

f2(v)

v1 v2 v

f1(v)

Fig. 9.1 Domain of admissible values (v,w)

w = f3(v)u+ f4(v), f3(v) =
f2(v)− f1(v)

2
, f4(v) =

f1(v)+ f2(v)
2

,

then system (9.1.2) with constraints (9.1.3) and (9.1.4) takes the form

ẋ = v, v̇ = f3(v)u+ f4(v), |u| ≤ 1, v1 ≤ v ≤ v2. (9.1.8)

Here, the mixed constraint is absent. If we omit the phase constraint v1 ≤ v ≤ v2,
then the obtained time-optimal control problem for system (9.1.8) with boundary
conditions (9.1.6) and (9.1.7) becomes the particular case of a more general time-
optimal control problem for which the regular synthesis is constructed [23]. The
presence of the phase constraint leads to some modification of this synthesis. Below,
the time-optimal feedback control for the formulated time-optimal control problem
in the initial form (9.1.2)–(9.1.7) is proposed and the direct proof of its optimality
without using the maximum principle is given.

9.1.2 Time-optimal control under constraints imposed on the
velocity and acceleration

Supposing w = fi(v), i = 1,2, we obtain from (9.1.2)
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dx
dv

=
v

fi(v)
, i = 1,2. (9.1.9)

Integrating (9.1.9), we find equations of the phase trajectories corresponding to
the controls w = fi(v) in the form (Ci is a constant)

x = Xi(v)+Ci, i = 1,2, (9.1.10)

where

Xi(v) =

v∫
0

vdv
fi(v)

, i = 1,2. (9.1.11)

Due to (9.1.5), functions (9.1.11) have the following properties. Function X1(v)
increases monotonically for v < 0 and decreases monotonically for v > 0, and X2(v),
vice versa, decreases monotonically for v < 0 and increases monotonically for v >
0. Function X1(v) has a zero maximum at v = 0, and function X2(v) has a zero
minimum at v = 0. According to (9.1.2), the motion along trajectories (9.1.10) with
i = 1 occurs in the direction of decreasing of v, and along trajectories (9.1.10) with
i = 2—in the direction of increasing of v. If fi(v j) = 0 for some i, j = 1,2 and
integral Xi(v j) in (9.1.11) diverges, then the corresponding phase trajectory (9.1.10)
has the horizontal asymptote v = v j. Otherwise, i.e., if either fi(v j) �= 0 or fi(v j) = 0,
but the integral Xi(v j) converges, the curve x = Xi(v j) intersects the straight line
v = v j at the point x = Xi(v j).

First of all, we describe the proposed feedback control, and after that, we prove
its optimality. Let us define the switching curve in the phase plane (x,v) by the
equalities

x = X(v) =

{
X2(v), v ∈ [v1,0],

X1(v), v ∈ [0,v2].
(9.1.12)

Due to the properties of the functions Xi(v), i = 1,2, function X(v) decreases
monotonically on the interval [v1,v2] with X(0) = 0. The switching curve (9.1.12)
has an inflection point at the origin of coordinates. This curve is shown in Figs. 9.2
and 9.3 by the thick line. It divides the strip v1 < v < v2 defined by the phase con-
straints (9.1.3) into two domains: D1 [at the right top of curve (9.1.12)] and D2

(to the lower right of this curve), see Figs. 9.2 and 9.3. Figure 9.2 corresponds to
the case where both integrals X1(v1) and X2(v2) diverge, and Fig. 9.3—to the case
where all Xi(v j) are bounded, i, j = 1,2. We set in the open domains Di

w = f1(v) for x > X(v), v ∈ (v1,v2) (in D1);

w = f2(v) for x < X(v), v ∈ (v1,v2) (in D2).
(9.1.13)

Let us define the control on the boundaries of the domains D1 and D2. We set

w = f1(v) for x = X1(v), v ∈ [0,v2];

w = f2(v) for x = X2(v), v ∈ [v1,0]
(9.1.14)
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v2

D1

x

D2

v1

Fig. 9.2 Switching curve and phase trajectories [X1(v1) and X2(v2) diverge]

v

v2

D1

x

D2

v1

Fig. 9.3 Switching curve and phase trajectories [all Xi(v j) are bounded]
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on the switching curve (9.1.12) and

w = 0 for v = v1, x > X2(v1);

w = f2(v1) for v = v1, x < X2(v1);

w = 0 for v = v2, x < X1(v2);

w = f1(v2) for v = v2, x > X1(v2)

(9.1.15)

on the straight lines v = v1 and v = v2.
Relations (9.1.15) have the sense, if the magnitudes X2(v1) and X1(v2) are

bounded. If any of them [X2(v1) or X1(v2)] is unbounded, i.e., the corresponding
integral (9.1.11) diverges, then the switching curve has the horizontal asymptote
v = v1 or v = v2, respectively. In this case, the control is undefined on this straight
line (v = v1 or v = v2). Under the circumstances, it is impossible to reach the do-
main v1 < v < v2 starting from this straight line, and the control problem is un-
solvable, if the initial point (x0,v0) lies on the corresponding straight line. If the
magnitudes X1(v1) or X2(v2) are unbounded, then it means that the phase trajec-
tories starting inside the domains D1 and D2, respectively, do not reach the corre-
sponding straight lines v1 and v2 and, therefore, intersect the switching curve. If the
initial point (x0,v0) lies on one of these straight lines, then, according to (9.1.15),
the phase state moves along this line under the control w = 0 until it reaches the
switching curve.

The phase trajectories corresponding to the constructed feedback control (9.1.13)–
(9.1.15) are shown in Fig. 9.2 for the case of bounded values X1(v2) and X2(v1) but
unbounded values X1(v1) and X2(v2), and in Fig. 9.3—for the case where all values
Xi(v j) for i, j = 1,2 are bounded. The arrows in Figs. 9.2 and 9.3 show the direction
of motion. The trajectories cover compactly all the strip v1 ≤ v≤ v2. The every phase
trajectory consists of no more than three sections corresponding to three different
controls. To be definite, consider the phase trajectory beginning at point (9.1.6) in
domain D2 and ending at the origin of coordinates (9.1.7).

We have w = f2(v) on the first section, and the motion occurs along the curve of
family (9.1.10) with i = 2, namely, along the curve

x = X2(v)−X2(v0)+ x0 (9.1.16)

from the point (x0,v0) to some point on the straight line v = v2. According to
(9.1.15), the coordinates of this point are equal to

x = x2 = X2(v2)−X2(v0)+ x0, v = v2. (9.1.17)

We have w = 0 on the second section, and the motion occurs along the straight line
v = v2 from point (9.1.17) to the point

x = X1(v2), v = v2 (9.1.18)
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on the switching curve x = X(v). We have w = f1(v) on the third section, and the
motion occurs along the switching curve x = X1(v) from point (9.1.18) to the origin
of coordinates.

The second section is absent, if X2(v2) and X1(v2) are unbounded, and also if
point (9.1.17) lies to the right of point (9.1.18), i.e., for x2 > X1(v2). In these cases,
the transition from the first to the third section occurs at the intersection point of the
curves (9.1.16) and x = X1(v2). If the initial point lies on the straight line v = v2,
X1(v2) is bounded and x0 < X1(v2), then the first section is absent. Finally, if the
initial point lies on the switching curve, then the first and second sections are absent.
The phase trajectories in the domain D1 have a similary structure.

Compare the motion times along two trajectories for the constructed feedback
control starting at the points (x′0,v0) and (x′′0 ,v0) lying on the straight line v = v0 in
the domain D2. If x′0 < x′′0, then it follows from the structure of the phase trajectories
that the first trajectory starting at x0 = x′0 contains all those sections that belong to
the second one (with the origin at x0 = x′′0). Therefore, the entire time of motion
along the first trajectory is greater than that for the second one. This property of
monotone dependence of the motion time on the abscissa x0 of the initial point will
be used below.

Let us turn to the optimality proof of the proposed feedback control. To this
end, together with some phase trajectory of the constructed synthesis, which will
be called an original one, we consider an arbitrary tentative trajectory satisfying
constraints (9.1.3) and (9.1.4). The tentative trajectory starts at the time instant t = t0
at the point (x0,v0), which is the same as the starting point for the original trajectory,
and ends at the moment t = T∗ at the origin of coordinates. To prove the optimality
of the constructed feedback control, it is sufficient to show that T∗ > T .

First of all, we note that the tentative trajectory may have self-intersections, i.e.,
contain closed loops. The motion time along each of the loops is positive. If one
deletes all the loops from the tentative trajectory joining the beginnings and the
ends for each of the loops, then the obtained new tentative trajectory is admissible,
and the time of motion along it will be less that the motion time for the tentative
trajectory with self-intersections. Hence, without loss of generality, it is sufficient to
consider further only tentative trajectories without self-intersections.

First, we assume that the point (x0,v0) lies on the switching curve x = X1(v).
According to (9.1.2), the time of motion along the original and tentative trajectories
are equal to

T − t0 =

0∫
v0

dv
f1(v)

, T∗ − t0 =

0∫
v0

dv
w

, (9.1.19)

respectively.
If the velocity v strictly decreases along the tentative trajectory (as it takes place

along the original trajectory), then dv < 0 and f1(v) ≤ w < 0 due to (9.1.4), and,
hence, it follows from (9.1.19) that T ≤ T∗. If v changes non-monotonically along
the tentative trajectory, then the second integral in (9.1.19) should be regarded as
an integral along a curve. If there are sections of the tentative trajectory where v
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increases, then dv > 0 and w > 0 on these sections. This gives an additional positive
input to the second integral in (9.1.19). Hence, we have T ≤ T∗ in all cases.

Thus, if the phase point (initial or current) reaches the switching curve, then the
further optimal motion occurs along this curve. Therefore, one may not consider
further tentative trajectories intersecting the switching curve and assume that the
final section of the tentative trajectory entering the origin of coordinates lies on the
switching curve.

Now, let the initial point (x0,v0) lies in the domain D2 with v0 ≥ 0. First, we
assume that the tentative trajectory does not intersect the axis x for t ≥ t0. Then, the
coordinate x increases monotonically both on the original and tentative trajectories.
The time of motion along these trajectories can be presented in the form

T − t0 =

0∫
x0

dx
v(x)

, T∗ − t0 =

0∫
x0

dx
v∗(x)

, (9.1.20)

in accordance with (9.1.2).
The dependence v(x) for the original trajectory, according to the facts stated

above, consists of no more than three sections: increasing from v0 to v2, motion
with maximal possible velocity v = v2, and decreasing from v2 to 0 (some of these
sections may be absent). The dependence v∗(x) for the tentative trajectory satisfies
the inequalities

f2(v∗)
v∗

≤ dv∗
dx

≤ f1(v∗)
v∗

, v∗ ≥ 0, (9.1.21)

in accordance with (9.1.4) and (9.1.9). The equal signs in (9.1.21) are attained at
the original trajectory. From (9.1.21), constraint v∗ ≤ v2, and boundary conditions
v∗(x0) = v0 and v∗(0) = 0 that are common for the original and tentative trajecto-
ries, it follows that the dependence v∗(x) (for every fixed v) increases no faster and
decreases no slower than v(x). In other words, the graph of the function v∗(x) lies
no higher than the graph of dependence v(x), i.e., v∗(x) ≤ v(x) for x ∈ [x0,0]. Then,
it follows from (9.1.20) that T ≤ T∗.

Now, let us assume that the tentative trajectory starting at the point (x0,v0) of the
domain D2 with v0 ≥ 0 intersects the axis x for some t1 > t0. We have x1 > x0 in
the intersection point, where the velocity changes its sign, and x starts to decrease.
Nevertheless, the tentative trajectory must eventually reach the domain v > 0. In this
case, either the self-intersection of the tentative trajectory may occur, the possibility
of which was excluded above, or the tentative trajectory comes to the point with
the coordinates (x2,v0), where x2 < x0, and after that the trajectory remains in the
domain v0 ≥ 0. The time t∗2 of motion along the tentative trajectory from the point
(x2,v0) to the point (0,0), in accordance to the facts proven above, is no less than the
corresponding time t2 for the original trajectory with the same starting point (x2,v0).
Due to the monotone dependence of the time of motion along the original trajectory
on the coordinates of the initial point, we have t2 > T − t0 because x2 < x0. Hence,
we have T∗ − t0 > t∗2 > t2 > T − t0. Thus, T < T∗ in the case considered.
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Thus, if the phase point comes to the axis x with x < 0, then the further optimal
motion occurs along the original trajectory passing throw the given point of the
axis x. Therefore, we conclude that the tentative trajectory in the half-plane v > 0
coincides with the original one.

Finally, consider the case, where the initial point (x2,v0) lies in domain D2 and
v0 < 0. Let us present both the tentative and original trajectories in the form of
two sections lying in the half-planes v < 0 and v > 0, respectively. Let us compare
the times of motions along the first sections (v < 0) similarly to the consideration
concerning the initial point on the switching curve [see (9.1.19)]. We obtain that the
tentative trajectory reaches the axis x not before the original one. The estimates of
the form (9.1.21) allow one to establish that the point x = x∗1, where the tentative
trajectory intersects the axis x, lies not to the right of the corresponding point x = x1

of the intersection of the axis x and the original trajectory, i.e., x∗1 ≤ x1. Due to
the monotone dependence of the time of motion along the original trajectory on
the abscissa of the initial point proven above, we conclude that the duration of the
second section of the tentative trajectory is not less than that for the second section
of the original trajectory. Hence, it is proved that T ≤ T∗ also in this case. Thus,
the time-optimality of the constructed feedback control given by (9.1.13)–(9.1.15)
is completely proved.

9.1.3 Problem of control of an electric motor

As an example, consider a simple model of a DC (direct current) motor with an
independent excitation. The torque M produced by the motor is proportional to the
armature circuit current I

M = kMI, (9.1.22)

where kM is a constant coefficient. Equation of balance of the electric voltages in
the armature circuit has the from

Lİ +RI + kEω = u, kE > 0. (9.1.23)

Here, L and R are the inductance and resistance of the armature winding, u is
the control voltage, ω is the angular velocity of the armature rotation, kEω is the
counter-emf, and kE is a constant coefficient. The first term on the left-hand side
of (9.1.23) is usually small compared with the remaining terms and can be omitted.
Then, having eliminated I from (9.1.22) by using (9.1.23), we obtain

M = kMR−1(u− kEω). (9.1.24)

The magnitude of the control voltage is bounded

|u| ≤ u0, (9.1.25)
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where u0 is a constant. It follows from (9.1.24) and (9.1.25) that torque M is bounded
by the inequalities

−kMR−1(u0 + kEω) ≤ M ≤ kMR−1(u0 − kEω). (9.1.26)

Additionally to (9.1.26), the restrictions on the magnitude of the electric current
I and torque M are often imposed; the later are associated with the requirements
related to the reduction gear. Both types of the constraints are reduced, according
to (9.1.22), to the restriction of the form |M| ≤ M0, where M0 is a constant. We

will bind the absolute value of the angular velocity by ω0 = u0
(
kE

)−1
. Under this

restriction, the left- and right-hand sides of inequality (9.1.26) have the opposite
signs, i.e., the moment M for |ω| < ω0 may be both accelerating and decelerating.
As a result, we come to the following set of the constraints

−k(ω0 +ω) ≤ M ≤ k(ω0 −ω), |M| ≤ M0, |ω| ≤ ω0,

k = kMR−1kE , ω0 = u0
(
kE

)−1
.

(9.1.27)

The equations of rotation of the rotor of the electric drive have the form

α̇ = ω, Jω̇ = M +M1. (9.1.28)

Here, α is the angle of rotation of the rotor, J is the moment of inertia of the rotor
and other parts of the reduction gear, M1 is the moment of all external forces except
the electromagnetic torque M, which can be considered as the control in system
(9.1.28). Constraints (9.1.27), among which there are the mixed constraint and also
constraints on the control and phase coordinate, are imposed on system (9.1.28). Let
us introduce the non-dimensional variables t ′, x, v, w, and parameter κ by relations

t = Jω0M−1
0 t ′, α = Jω2

0 M−1
0 x, ω = ω0v, M = M0w, κ = kω0M−1

0 .
(9.1.29)

Then, equations (9.1.28) with M1 = 0 and restrictions (9.1.27) are transformed to
the form

ẋ = v, v̇ = w, |w| ≤ 1, |v| ≤ 1, −κ(1+ v) ≤ w ≤ κ(1− v), (9.1.30)

where dot denotes derivatives with respect to the non-dimensional t ′ from (9.1.29).
Below, the prime at the variable t ′ is omitted. Equations (9.1.30) coincide with
(9.1.2), and constraints (9.1.30) are reduced to the form of (9.1.3) and (9.1.4), where

f1(v) = − f2(−v) =

{−κ(1+ v) for −1 ≤ v ≤ vc,

−1 for vc ≤ v ≤ 1,
(9.1.31)

vc = κ−1 −1, v1 = −1, v2 = 1.
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Here, the functions f1 are f2 are piecewise-linear and have the break points at
v = ±vc, respectively.

If κ ≤ 1/2, then the break points lie outside the interval (−1,1). In this case,
the functions f1 and f2 are linear on the interval [−1,1], the constraint |w| ≤ 1 is
satisfied automatically and becomes non-essential. Then, system (9.1.30) is reduced
to the form of the linear controlled system with the new control w1:

ẋ = v, v̇ = −κv+w1, |w1| ≤ κ, |v| ≤ 1.

Here, the mixed constraint is absent.
The points ±vc lie inside the interval (−1,1) for κ > 1/2. The points vc and

−vc lie in the intervals (0,1) and (−1,0) for κ ∈ (1/2,1), respectively, and in the
intervals (−1,0) and (0,1) for κ > 1, respectively.

The domain in the plane (v,w) allowed by constrains (9.1.30) is the hexagon in
the general case, possessing the central symmetry about the origin of coordinates. It
is shown in Fig. 9.4 for the case, where κ = 2.

1

1

−1

−1 −vc

vc

w

v

κ > 1

Fig. 9.4 Domain of admissible values (v,w)

Let us consider the time-optimal control problem for the described model of
the electric drive. In the non-dimensional variables (9.1.29), this model is given
by relations (9.1.30) that are the particular case of relations (9.1.2)–(9.1.4), where
notation (9.1.31) is used. Conditions (9.1.5) for functions f1 and f2 from (9.1.31)
hold true. The boundary conditions still have the form of (9.1.6) and (9.1.7). We will
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specify the general solution of the time-optimal feedback control problem obtained
for system (9.1.2)–(9.1.7) in the context of system (9.1.30).

Let us substitute (9.1.31) into (9.1.11) and find the corresponding integrals, con-
sidering separately the cases κ ≤ 1/2, κ ∈ [1/2,1], and κ ≥ 1. We obtain

X1(v) = −κ−1[v− log(1+ v)]

(
κ ≤ 1

2

)
,

X1(v) =

⎧⎪⎨
⎪⎩

−κ−1[v− log(1+ v)] for v ∈ [−1,vc],

1
2
(1− v2 −κ−2)−κ−1 logκ for v ∈ [vc,1],

(1
2
≤ κ ≤ 1, 0 ≤ vc ≤ 1

)
,

X1(v) =

⎧⎪⎨
⎪⎩

−κ−1[v− log(1+ v)]+
1
2
(κ−2 −1)+κ−1 logκ for v ∈ [−1,vc],

−1
2

v2 for v ∈ [vc,1],

(κ ≥ 1, −1 ≤ vc ≤ 0),

X2(v) = −X1(−v), vc = κ−1 −1.
(9.1.32)

The switching curve x = X(v), given by (9.1.12), divides the strip |v| ≤ 1 into the
domains D1, where x > X(v), and D2, where x < X(v). The feedback time-optimal
control is defined by (9.1.13)–(9.1.15), where v1 = −1 and v2 = 1, and functions
fi and Xi are defined by (9.1.31) and (9.1.32), respectively, i = 1,2. Note that the
switching curve and the entire field of optimal trajectories possess the central sym-
metry about the origin of coordinates due to (9.1.32). The field of optimal trajecto-
ries for the case κ = 2, vc = −1/2 is shown in Fig. 9.2.

Since the magnitudes of X1(1) and X2(−1) are bounded [see (9.1.32)], the time-
optimal feedback control is defined in the entire strip |v| ≤ 1 including its bound-
aries, in accordance with the remark in Sect. 9.1.2. On the other hand, it follows
from (9.1.32) that the magnitudes of X1(−1) and X2(1) are not bounded. Therefore,
according to Sect. 9.1.2, the phase trajectories starting inside the strip, i.e., with
|v| < 1, do not reach the boundary of the strip and intersect the switching curve (see
Fig. 9.2). Hence, all these trajectories consist of no more than two sections: the mid-
dle section described in Sect. 9.1.2 is absent. If the initial point lies on the boundary
of the strip, then the phase point moves along the boundary under the control w = 0
up to the switching curve, if v = −1 and x > X2(−1) or if v = 1 and x < X1(1). In
other cases, i.e., if v =−1 and x < X2(−1) or if v = 1 and x > X1(1), the phase point
comes inside the strip (see Fig. 9.2).
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Let us find the motion time along the optimal phase trajectory starting at t = 0 at
the point (x0,0) of the x-axis, where x0 < 0. According to the constructed synthesis
and remarks made above, the optimal trajectory starts in the domain D2 and consists
of the two sections. The first section is the arc of curve (9.1.16), i.e., of the curve

x = X2(v)+ x0 (9.1.33)

from the point (x0,0) to the point (xm,vm), where curve (9.1.33) intersects the
switching curve x = X1(v). Therefore, we have the following relations for deter-
mining the coordinates (xm,vm):

xm = X1(vm) = X2(vm)+ x0. (9.1.34)

The second section of the phase trajectory is the arc of the curve x = X1(v) from
the point (xm,vm) to the origin of coordinates. The velocity v increases from 0 to
vm on the first section, where w = f2(v), and decreases from vm to 0 on the second
section, where w = f1(v). We present the total motion time in the form

T =

vm∫
0

dv
f2(v)

+

0∫
vm

dv
f1(v)

. (9.1.35)

To be definite, we restrict our consideration by the case κ > 1 and denote

ξ = −x0 > 0, q = −vc = 1−κ−1 > 0, κ > 1. (9.1.36)

Let us determine integrals (9.1.35) substituting into them expressions (9.1.31)
and using notation (9.1.36). We obtain

T = 2vm for vm ≤ q,

T = q+ vm − (1−q) log

∣∣∣∣1− vm

1−q

∣∣∣∣ for vm ≥ q.
(9.1.37)

Substituting (9.1.32) with κ > 1 into (9.1.34) and using notation (9.1.36), we
obtain the relations connecting vm and ξ

ξ = v2
m for vm ≤ q,

ξ =
q2 + v2

m

2
+(1−q)

{
(q− vm)− log

∣∣∣∣1− vm

1−q

∣∣∣∣
}

for vm ≥ q.

(9.1.38)

Relations (9.1.37) and (9.1.38) determine the dependence T (ξ ) in the parametric
form. Assigning the values from 0 to 1 to the parameter vm, we obtain the required
dependence T (ξ ) for every fixed q. Note that (9.1.37) and (9.1.38) yield

T (ξ ) = 2ξ 1/2 for ξ ≤ q2. (9.1.39)
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Let us find the asymptotic behavior of the function T (ξ ) for ξ → ∞. To this end,
suppose vm → 1 and obtain from (9.1.37) and (9.1.38)

T = −(1−q) log(1− vm)+q+1+(1−q) log(1−q)+O(1− vm),

ξ = −(1−q) log(1− vm)+2q− q2 +1
2

+(1−q) log(1−q)+O(1− vm).

(9.1.40)
From (9.1.40), we find the desired asymptotic behavior

T (ξ ) = ξ +
3
2
−q+

q2

2
+O

(
exp[−ξ (1−q)−1]

)
, ξ → ∞. (9.1.41)

Let us consider separately the limiting case κ → ∞. According to (9.1.36), we
have here vc = −1 and q = 1, and constraints (9.1.30) determine the square |v| ≤ 1,
|w| ≤ 1 in the plane (v,w). In this case, according to (9.1.32),

X1(v) = −X2(v) = −v2

2
when v ∈ [−1,1]. (9.1.42)

All phase trajectories consist of the arcs of parabolas defined by (9.1.10) and
(9.1.42), and sections of the straight lines v = ±1, as shown in Fig. 9.3.

Let us find the total time T of motion from the initial point (x0,0), where x0 =
−ξ < 0, to the origin. If vm < 1, then relation (9.1.39) holds; if vm = 1, then the
motion time is the sum of the motion times along the parabolic arcs and along the
straight line v = 1. In the non-dimensional variables, the motion time along each of
the parabolas is equal to 1, and the time of motion along the straight line v = 1 is
equal to the length of the segment of this straight line equal to ξ −1. As a result, we
obtain for q = 1

T = 2ξ 1/2, if ξ ≤ 1,

T = ξ +1, if ξ ≥ 1.

Results of numerical calculations of the dependence T (ξ ) for various q are pre-
sented in Fig. 9.5.

Thus, the complete solution of the problem stated above is obtained.

9.2 Time-optimal control under constraints imposed on the rate
of change of the acceleration

9.2.1 Statement of the problem

We consider a system with a single degree of freedom described by equation (9.0.1).
When formulating optimal control problems, it is usually assumed that the absolute
magnitude of the force F is bounded by a constant F0, that is, |F | ≤ F0. In the case



9.2 Time-optimal control under constraints imposed on the rate of change of the acceleration 341

ξ

T

1

1

1

q = 0

1/4

1/2

3/4

Fig. 9.5 Dependence T (ξ ) for various q

of a time-optimal control problem, it is well-known that this constraint leads to the
bang-bang form of the optimal control. In this case, the force F(t) takes limiting
values ±F0 and instantaneously switches from one of these values to the other. Such
a control is not always practicable, for example, if an electric drive is used to realize
the control.

In this section, we assume that there is a more realistic constraint on the rate of
change of the control force of the form

|Ḟ | ≤ v0, (9.2.1)

where v0 > 0 is a specified constant. We shall also assume that the bound on the
absolute magnitude of the force is not attained and |F(t)| < F0 always.

Making the change of variables

ξ =
v0

m
x, ξ̇ =

v0

m
y, F = v0z,

we reduce (9.0.1) and constraint (9.2.1) to the form

ẋ = y, ẏ = z, ż = u, |u| ≤ 1. (9.2.2)

Now, the variables x, y, and z are phase coordinates and u plays the role of a
bounded control.

The initial conditions for system (9.2.2) are specified in the form
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x(0) = x0, y(0) = y0, z(0) = z0, (9.2.3)

where the initial instant of time is assumed to be equal to zero without any loss in
generality.

We now formulate the problem of constructing the control u(t) that satisfies the
constraint |u(t)| ≤ 1 for t ≥ 0 and transfers system (9.2.2) from an arbitrary initial
state (9.2.3) to the specified terminal set

x(T ) = 0, y(T ) = 0 (9.2.4)

for arbitrary z(T ) in the shortest time T .
In addition to determining the open-loop control, the problem of the feedback

time-optimal control for system (9.2.2) will also be solved. This control u(x,y,z),
which is expressed as a function of the current (or initial) phase coordinates x, y,
and z, ensures that system (9.2.2) is brought to the specified terminal set (9.2.4) in
the shortest time.

9.2.2 Open-loop optimal control

We now apply the maximum principle to the time-optimal control problem (9.2.2)–
(9.2.4). We set up the Hamiltonian function

H = pxy+ pyz+ pzu (9.2.5)

and write down the adjoint equations

ṗx = 0, ṗy = −px, ṗz = −py. (9.2.6)

Here, px, py, and pz are the adjoint variables. System (9.2.6) is integrated subject to
the transversality condition pz(T ) = 0 that corresponds to the condition that z(T ) is
not fixed, and we obtain

px = cx, py = cy + cxτ, pz = cyτ +
1
2

cxτ2. (9.2.7)

Here, τ = T − t is the time measured from the end of the process (the “inverse”
time), cx and cy are arbitrary constants. The condition for the Hamiltonian (9.2.5) to
be a maximum with respect to u subject to the constraint |u| ≤ 1 from (9.2.2) gives

u(t) = sign pz(t).

It follows from formula (9.2.7) for pz that the function pz(t) changes sign not more
than once when t ≤ T and τ ≥ 0. Consequently, the optimal control u(t) = ±1 has
not more than one switching when t ≤ T .
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We denote the lengths of the two possible segments of constancy of the control
u(t) by θ1 and θ2 and the value of u(t) in the first of these segments by σ =±1. The
optimal control can then be represented in the form

u(t) =

{σ when t ∈ (0,θ1),

−σ when t ∈ (θ1,T ), θ1 +θ2 = T.
(9.2.8)

We now substitute control (9.2.8) into system (9.2.2) and integrate it subject to
the initial conditions (9.2.3). We obtain

x(t) = x0 + y0t +
1
2

z0t2 +
1
6

σt3,

y(t) = y0 + z0t +
1
2

σt2, z(t) = z0 +σt when t ∈ (0,θ1);

x(t) = x0 + y0θ1 +
1
2

z0θ 2
1 +

1
6

σθ 3
1 +

(
y0 + z0θ1 +

1
2

σθ 2
1

)
(t −θ1)

+
1
2
(z0 +σθ1)(t −θ1)

2 − 1
6

σ(t −θ1)
3,

y(t) = y0 + z0θ1 +
1
2

σθ 2
1 +(z0 +σθ1)(t −θ1)− 1

2
σ(t −θ1)

2,

z(t) = z0 +σθ1 −σ(t −θ1) when t ∈ (θ1,T ).

(9.2.9)

Substituting solution (9.2.9) into conditions (9.2.4), we obtain two relations and,
on solving these for x0 and y0, we obtain

x0 =
1
2

z0T 2 +
1
3

σ(θ 3
1 +3θ 2

1 θ2 −θ 3
2 ),

y0 = −z0T − 1
2

σ(θ 2
1 +2θ1θ2 −θ 2

2 ).

(9.2.10)

Introduce the following notation

ξ = z−3
0 x0, η = z−1

0 |z0|−1y0, ζ = signz0,

s = |z0|−1T, λ = θ2T−1 (z0 �= 0),

X(λ ) =
1
3
(1−3λ 2 +λ 3), Y (λ ) = λ 2 − 1

2
.

(9.2.11)

Relations (9.2.10) then take the form

ζ
(

ξ s−3 − 1
2

s−1
)

= σX(λ ), ζ
(

ηs−2 + s−1
)

= σY (λ ). (9.2.12)

When z0 = 0, relations (9.2.10) give
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x0T−3 = σX(λ ), y0T−2 = σY (λ ). (9.2.13)

When the parameter λ changes from 0 to 1, a point with coordinates X(λ ),
Y (λ ) moves along the arc of the curve that joins points A1 and A2 with coordinates
(1/3,−1/2) and (−1/3,1/2), respectively. When λ ∈ [0,1] and σ = ±1, points
with coordinates σX(λ ), σY (λ ) form a closed curve Γ that is symmetric about the
origin of coordinates and has corner points A1 and A2, see Fig. 9.6. The curve Γ
bounds a convex domain containing the origin of the system of coordinates.

σY

λ

P

σ = −1

σX

Γ

σ = 1

λ

A2

A1

0 0.4

0.4

−0.4

−0.4

Fig. 9.6 Plane of parameters σX , σY

The solution of the time-optimal open-loop control problem (9.2.2)–(9.2.4) can
then be represented as follows.

We initially assume that z0 �= 0 and determine ξ , η , and ζ , in accordance with
(9.2.11), using the specified initial data x0, y0, and z0 from (9.2.3). The left-hand
sides of relations (9.2.12) specify the coordinates of a certain point P that depends
on the parameter s∈ [0,∞). As s changes from ∞ to 0, P moves along a smooth semi-
infinite curve from the origin of the system of coordinates (when s → ∞) to infinity
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(when s → 0). This point falls at least once on the closed curve Γ that encircles the
origin of the system of coordinates. The least value of s = s∗ for which P ∈ Γ is
found numerically. According to (9.2.11), the optimal time is equal to T = |z0|s∗.
The position of the point P on the curve Γ when s = s∗ determines the values of the
parameters σ =±1 and λ ∈ [0,1]. By virtue of (9.2.11), the lengths of the segments
of constancy of the control are equal to θ1 = (1−λ )T and θ2 = λT .

When z0 = 0, we consider equalities (9.2.13) instead of (9.2.12). The left-hand
sides of these equalities specify the coordinates of the point P that depends on the
parameter T . When T changes from ∞ to 0, the point P moves along a semicubic
parabola from the origin of the system of coordinates (when T → ∞) to infinity
(when T → 0). The least value of the parameter T for which P ∈ Γ is the optimal
time. The values of the parameters σ , λ , θ1, and θ2 are determined from the position
of the point P on Γ as in the case, where z0 �= 0.

When the quantities σ , θ1, and θ2 have been determined, the optimal control
u(t) and the corresponding optimal trajectory are specified by equalities (9.2.8) and
(9.2.9). The proposed algorithm completely determines the solution of the time-
optimal open-loop control problem. According to the construction, this solution is
unique.

As an example, we present the results of the determination of the optimal control
for the initial data

x0 = −72+27
√

3 ≈−25.2, y0 = 3, z0 = 1.

In this case, one obtains

T = s = 6, σ = 1, θ1 = 6−3
√

3 ≈ 0.80, θ2 = 3
√

3 ≈ 5.20.

The corresponding trajectory of the point P when T changes from ∞ to 0 is shown
in Fig. 9.6.

9.2.3 Feedback optimal control

In order to construct the feedback optimal control, it suffices to find the switching
surfaces in the phase space (x,y,z) on which the sign of the control u =±1 changes.
On these surfaces, the length of one of the segments of constancy vanishes, that
is, θ1 = 0 or θ2 = 0. From (9.2.11), we have here λ = 0 or λ = 1. According to
(9.2.11), values of X and Y equal to ±1/3 and ∓1/2 correspond to these values of
λ , respectively. From (9.2.12), we obtain the conditions

ζ
(

ξ s−3 − 1
2

s−1
)

= ±1
3

σ , ζ
(

ηs−2 + s−1
)

= ∓1
2

σ (9.2.14)
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that are satisfied in the (ξ ,η)-plane on the switching curves when z0 �= 0. However,
relations (9.2.14) are insufficient for determining the switching curves: for this, we
require a direct analysis of relations (9.2.12) that will be carried out below.

Note that, in the feedback control, the initial conditions x0, y0, and z0 can be
treated as the current values of the phase coordinates x, y, and z. Let us consider
relations (9.2.11) as formulas for the change of variables

ξ = z−3x, η = z−1|z|−1y, ζ = signz (9.2.15)

in phase space. This change of variables that introduces the self-similar variables ξ
and η enables one, when z �= 0, to reduce the dimension of the phase space by one
and to construct the feedback optimal control in the (ξ ,η)-plane.

We will first consider separately the case, where z = 0. Similarly to (9.2.14), we
obtain the conditions

xT−3 = ±1
3

σ , yT−2 = ∓1
2

σ (9.2.16)

from (9.2.13). These conditions are satisfied at the intersection of the switching
surfaces with the plane z = 0. When z = 0, conditions (9.2.16) define two halves
of the semicubic parabolas that form the switching curve in the plane z = 0. The
parabolas are described by the equation

γ(x,y) ≡ 3x+2y|2y|1/2 = 0. (9.2.17)

An analysis of the signs of σ on the branches of the switching curve (9.2.17) enables
one to determine the signs of the controls on the different sides of the switching
curve. As a result, we obtain the feedback optimal control for z = 0 in the form

u(x,y,0) =

{−signγ(x,y) when γ �= 0,

signx = −signy when γ = 0.
(9.2.18)

When z �= 0, the change of variables (9.2.15) transforms the first two equations
of (9.2.2) to the form

ξ̇ = |z|−1(η −3uζ ξ ), η̇ = |z|−1(1−2uζ η). (9.2.19)

By dividing the first equation of (9.2.19) by the second, we obtain the linear differ-
ential equation for ξ (η)

dξ
dη

=
η −3αξ
1−2αη

, α = uζ = ±1. (9.2.20)

The parameter α retains a constant value along the optimal trajectories that do not
intersect the plane z = 0. By integrating (9.2.20) in the case of constant α , we find
the general solution of equation (9.2.20):
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ξ = Φ(η ,α,A) ≡ αη − 1
3

+A|1−2αη |3/2, (9.2.21)

where A is an arbitrary constant. Note that the second equation of (9.2.19) enables
one to determine the direction of motion along the optimal trajectories. If α = 1,
the motion occurs in the direction of the increase in η when η < 1/2 and in the
direction of the decrease in η when η > 1/2. If, however, α = −1, the motion
occurs in the direction of the decrease in η when η < −1/2 and the increase in η
when η > −1/2.

We will now construct the feedback optimal control. As was shown above, in
order to do this, it is sufficient to establish the sign of the control u = σ at the initial
instant of time t = 0 as a function of the initial data x0, y0, and z0. On changing to
self-similar variables and returning to relations (9.2.12), the feedback problem can
be formulated as follows: it is required to find the value of σ =±1 that corresponds
to the solution of relations (9.2.12) (for fixed ξ , η , and ζ , where ζ = ±1) with the
least s, where s > 0 and λ ∈ [0,1].

We will now briefly describe the solution algorithm and subsequently explain its
most important features.

First, we note that relations (9.2.12) retain their form, if ζ and σ change signs
simultaneously. Consequently, if ζ is replaced by −ζ , the required quantity σ also
changes sign. It is therefore sufficient to construct the solution in the case, where
ζ = 1 for arbitrary ξ and η , and then for the case, where ζ = −1, simply to change
the sign in the resulting dependence σ(ξ ,η).

Without loss of generality, we therefore put ζ = 1 and eliminate λ using the
second of equations (9.2.12). We obtain

λ =

[
1
2

+σ
(

ηs−2 + s−1
)]1/2

, σ = ±1. (9.2.22)

Since λ ∈ [0,1], then, for fixed σ = ±1 and η , the ranges of variation of s in
which λ is real and λ ≤ 1 are determined from (9.2.22). We substitute λ from
(9.2.22) into the first equation of (9.2.12) and find the dependences of ξ on s, η ,
and σ = ±1. For fixed η , we shall denote these dependences by ξ +(s) and ξ−(s)
for σ = ±1, respectively. Subject to the condition λ ∈ [0,1], they define two curves
in the (s,ξ )-plane, each of which consists, generally speaking, of a finite number
of arcs. We investigate these curves and find their domains of definition and their
extrema in the whole range of variation in the argument s and the parameter η .
After that, we analyze their position with respect to each other. A line ξ = const
is then mentally drawn in the (s,ξ )-plane, and the minimum value of the abscissa
s > 0 is found for which this line intersects one of the above-mentioned curves. The
value of σ = ±1 that corresponds to that curve with which this intersection occurs
determines the required control u = σ for the data ξ , η , and ζ = 1, and the value
of s that corresponds to this point of intersection is equal to the normalized optimal
time: s = T |z|−1.

We will now describe these operations in greater detail taking account of the
fact that the following constructions are true only when s > 0. From (9.2.12) and
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(9.2.22), we have

ξ±(s) = ∓1
6

s3 − 1
2

s2 − sη ± 1
3

(1
2

s2 ±η ± s
)3/2

. (9.2.23)

If s → +∞, then ξ±(s) ≈±(−1+1/
√

2)s3/6 →∓∞.
Let us consider the function ξ +(s). In the case, where σ = 1, the condition λ ≤

1 selects the set s ∈ (0,s2]∪ [s1,+∞), where s1,2 = 1±√
1+2η . The expression

for ξ +(s) is determined if s ∈ [s5,+∞), where s5 = −1 +
√

1−2η . The derivative
dξ +/ds vanishes at the points s5 and s7 = −1+

√
2(1−2η), if s5 and s7 exist and

s5 ≤ s7. Furthermore, d2ξ +/ds2 < 0 when s = s7, that is, s7 is a maximum point. It
can be shown that, if s1, s2, s5, and s7 exist, then s2 ≤ s7 ≤ s1 and s2 ≥ s5.

If η ≥ 0, then s2 ≤ 0 and dξ +/ds < 0 when s ≥ s1, that is, the function ξ +(s) is
defined when s ∈ [s1,+∞) and decreases from ξ +(s1) to −∞. If −1/2 ≤ η < 0, then
s5 > 0, that is, the function ξ +(s) is defined when s ∈ [s5,s2]∪ [s1,+∞). It has a null
derivative when s = s5, increases in the interval [s5,s2] and decreases from ξ +(s1)
to −∞ when s ∈ [s1,+∞). If η <−1/2, then s5 > 0 and the value of s2 is undefined.
Then, the function ξ +(s) is defined when s ∈ [s5,+∞), dξ +/ds = 0 when s = s5,
and ξ +(s) increases up to its maximum at the point s = s7; after that it decreases
from ξ +(s7) to −∞.

We now consider the function ξ−(s). We require that λ ≤ 1 in (9.2.22) and ob-
tain that s ∈ [s5,+∞), where s5 = −1 +

√
1−2η . If s ∈ (0,s2]∪ [s1,+∞), then the

function ξ−(s) from (9.2.23) is defined. Its derivative vanishes at the points s1, s2,
and s3 = 1−

√
2(1+2η), if they exist and s3 ≥ s1. In addition, d2ξ−/ds2 > 0 when

s = s3, that is, s = s3 is the point of a minimum.
If η ≥ 0, then s2 ≤ 0, and the function ξ−(s) is defined when s ∈ [s1,+∞), and

dξ−/ds = 0 when s = s1. The function ξ−(s) decreases from ξ−(s1) up to the point
of a minimum s = s3; after that it increases from ξ−(s3) up to +∞. If −1/2≤ η < 0,
then s5 > 0, that is, the dependence ξ−(s) is defined when s∈ [s5,s2]∪ [s1,+∞). The
function ξ−(s) increases as s varies from s = s5 to s = s2 (dξ−/ds = 0 when s = s2)
and increases when s ∈ [s1,s3]; we have dξ−/ds = 0 when s = s1 and s = s3. Then,
ξ−(s) increases from ξ−(s3) to +∞. If η < −1/2, then s5 > 0, the values of s1, s2,
and s3 are not defined, and dξ−/ds > 0 when s ≥ s5, that is, the function ξ−(s) is
defined when s ∈ [s5,+∞) and increases over the whole of this interval up to +∞.

We now make two remarks concerning the mutual position of the pair of curves
from the two families investigated, for the same value of the parameter η .

First, we find the point of intersection of the curves ξ +(s) and ξ−(s); that re-
quires solution of the equation

1−
(

1
2
− η

s2 − 1
s

)3/2

=

(
1
2

+
η
s2 +

1
s

)3/2

. (9.2.24)

We square both sides of (9.2.24), reduce similar terms and then again square both
sides of the equation to obtain the equation in s:
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η
s2 +

1
s

)2

+2

][(
η
s2 +

1
s

)2

− 1
4

]2

= 0. (9.2.25)

An analysis of the roots of (9.2.25) shows that only s1, s2, and s5 are roots of
(9.2.24), and, moreover, they are positive for at least a single value of η . We shall
denote coincident values ξ + = ξ− at the above-mentioned points by ξ±.

Secondly, we establish that ξ±(s5) > ξ±(s1), if and only if −√
3/4 < η ≤ 0.

As a result, it turns out to be convenient to pick out four ranges of values of
the parameter η that correspond to different mutual positions of the curves ξ +(s)
and ξ−(s). Thus, we will determine the required control for all ξ and η with the
exception of ξ±(s1), ξ±(s2), and ξ±(s5).

When η ≥ 0 for any ξ < ξ±(s1), the minimum permissible abscissa s is reached
on the curve ξ +(s). When ξ > ξ±(s1), the same result holds for ξ−(s).

When −√
3/4 < η < 0, the closed isolated curve for s5 ≤ s ≤ s2 is added to

the curves ξ +(s) and ξ−(s) that have the same properties as considered above. The
curve ξ−(s) lies above the curve ξ +(s), and ξ±(s5) < ξ±(s2). Moreover, ξ±(s1) <
ξ±(s5), that is, ξ±(s1) lies below the lowest point of the closed isolated curve.
Consequently, the required control is defined in the same way as in the preceding
case.

When −1/2 ≤ η ≤−√
3/4, the inequality ξ (s1) > ξ (s5) is satisfied and, for any

ξ < ξ±(s5), the minimum permissible abscissa s is attained on the curve ξ +(s).
When ξ > ξ±(s5), the same assertion holds for ξ−(s).

The close isolated curve disappears when η < −1/2, and the required control is
specified as in the preceding case.

We now determine the control on the curves ξ±(s1(η)), ξ±(s2(η)), and ξ±(s5(η))
in the (ξ ,η)-plane. We recall that the dependences of s1, s2, and s5 on η have been
presented above. By (9.2.22), we have λ = 0 when σ =−1 on the curve ξ±(s1(η)),
that is, the time interval in which it is necessary to take u = 1 is equal to zero. Conse-
quently, it is necessary to take u = −1 on the curve ξ±(s1(η)) and it is a switching
curve when η > −√

3/4. Similarly, on the curve ξ±(s2(η)), one must use u = −1
when −1/2 ≤ η < 0 but this curve will not be a switching curve. It is easy to show
using the same method that we have u = 1 when η < 0 on the curve ξ±(s5(η)).
This curve serves as a switching curve.

We now completely present the feedback optimal control. To be specific, we
shall take z > 0 and ζ = 1. The switching curve in the (ξ ,η)-plane is defined by the
equalities

ξ = f (η) =

⎧⎪⎪⎨
⎪⎪⎩

Φ(η ,1,
1
3
), η ≤ η∗,

Φ(η ,−1,−1
3
), η > η∗; η∗ = −

√
3

4
,

(9.2.26)

where the notation (9.2.21) is used. The switching curve is continuous and has a
kink at the point K with the coordinates ξ ∗ = 1/12, η∗ = −√

3/4. This curve is
represented by the solid line in Figs. 9.7 and 9.8. Since the scale in Fig. 9.7 is
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smaller than that in Fig. 9.8, the points K and R shown in Fig. 9.8 are practically
indistinguishable in Fig. 9.7 and are therefore not labelled (the coordinates of the
point R are ξ = 1/6, η = −1/2). On the other hand, the scale used in Fig. 9.7
enables us to depict all the characteristic phase trajectories, the important part of
which is missing in Fig. 9.8. The rest of the notation employed in Figs. 9.7 and 9.8 is
identical. The branches of the switching curve corresponding to η < η∗ and η > η∗
are denoted by the letters M and N, respectively. In the (ξ ,η)-plane, we have

u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 when ξ < f (η),

1 when ξ = Φ(η ,1,1/3), η ≤ 0,

−1 at the remaining points of the (ξ ,η)-plane.

(9.2.27)

Hence, u = 1 to the left of and below the switching curve (9.2.26), on its seg-
ment KM to the right of and below point K and also on the arc of the curve
ξ = Φ(η ,1,1/3) that joins the origin of the system of coordinates and the point
K, see Fig. 9.8, where this arc is a part of the switching curve. In the remaining part
of the (ξ ,η)-plane, we have u = −1.

η

ξ

M

N

0

1

2

−1

−1.5

−2−4

Fig. 9.7 Switching curve and optimal trajectories
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0.2

−0.3

−0.6

Fig. 9.8 Switching curve and optimal trajectories around the origin of the system of coordinates

When z < 0 and ζ = −1, the switching curve remains the same and one simply
has to interchange the positions of the set of points (ξ ,η), where u = 1 and u =−1 in
relations (9.2.27). Thus, the synthesis of the optimal control u(x,y,z) is completely
determined by relations (9.2.15), (9.2.17), (9.2.18), (9.2.21), (9.2.26), and (9.2.27)
for all x, y, and z.

We now describe the set of optimal trajectories that, in the variables ξ and η ,
consist of arcs of the curves (9.2.21). Suppose that the initial point (x,y,z) is speci-
fied and, to be specific, we shall assume that z > 0. According to formulas (9.2.15),
we find ξ , η , and ζ = 1.

If a point (ξ ,η) lies on the curve ξ = Φ(η ,1,1/3), where η ≤ 0, then motion
occurs along this curve MK0 with a control u = 1 until it reaches the origin of the
system of coordinates (see Fig. 9.8).

All the remaining optimal trajectories also arrive at the origin of the system of
coordinates along this curve. An exception is the segment R0 of the curve ξ =
Φ(η ,−1,1/3) when η ∈ [−1/2,0] : this segment is a phase trajectory for u = −1
that begins at the point R with the coordinates (1/6,−1/2) and reaches the origin of
the system of coordinates. Phase trajectories are denoted by thin lines in Figs. 9.7
and 9.8, and arrows indicate the direction of the motion.

If the initial point lies in the domain
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η ≤ 0, Φ
(

η ,1,
1
3

)
< ξ < Φ

(
η ,−1,

1
3

)
, (9.2.28)

then the optimal trajectory consists of a segment with u = −1 until it reaches the
curve ξ = Φ(η ,1,1/3) and of the subsequent motion along this curve with u = 1
(see Fig. 9.8).

If the initial point lies in the domain ξ < f (η), the motion initially occurs with
u = 1 until it intersects the curve Φ = ξ (η ,−1,−1/3) that is the part KN of the
switching curve (9.2.26) (see Figs. 9.7 and 9.8); then the phase point moves with
u = −1 along this curve that departs to infinity. By (9.2.11), we have z = 0 at an
infinitely distant point of the (ξ ,η)-plane. At infinity, z changes its sign, and then
we have z < 0, ζ = −1. The phase trajectory continues, arriving with u = −1 from
infinity along the curve ξ = Φ(η ,1,1/3); after that, the phase point moves along
this curve to the origin of the system of coordinates. Note that motion through an
infinitely distant point occurs without a change in the control and takes a finite time.

It remains to consider initial points in the domain ξ > f (η) but outside of the
domain (9.2.28). Here, we initially have u =−1, and the trajectory ξ = Φ(η ,−1,A)
departs to infinity with A >−1/3. Subsequently, the motion occurs along the curves
ξ = Φ(η ,1,−A) with a change in the sign of A. These curves lie in the domain
ξ < f (η) and meet the branch KN of the switching curve ξ = Φ(η ,−1,−1/3).
Then the trajectory with u = 1 departs to infinity along this curve, where the sign of z
changes again. Later, the motion occurs with u = 1 along the curve ξ = Φ(η ,1,1/3)
until it reaches the origin of the system of coordinates.

Note that certain phase trajectories contain segments of the lines ξ = ±η −1/3
and η =±(2α)−1 that correspond to the values A = 0 and A = ∞ in (9.2.21), respec-
tively. On departing to infinity along these lines, the variable x (in the case of the
straight line with A = 0) or the variable y (in the case of the straight line with A = ∞)
simultaneously vanishes together with z, as is easily shown using (9.2.15). In other
respects, these lines are treated in the same manner as the remaining trajectories
(9.2.21).

Hence, for any initial point (x,y,z), the motion is completely described by the
trajectories of Figs. 9.7 and 9.8 and contains not more than two segments, where the
control is constant. The sign of z cannot change more than twice.

We now present the results of the investigation of the normalized optimal time
s as a function of ξ and η . The dependence of s on ξ for different fixed values of
η is studied, where s1, s2, and s5 are again considered to be the functions of η that
were introduced above. When η ≥ 0, the function s(ξ ,η) decreases as ξ increases,
if ξ < ξ±(s1), and has a discontinuity, if ξ = ξ±(s1). It increases on passing from
ξ < ξ±(s1) to ξ > ξ±(s1) and when ξ increases from ξ = ξ±(s1) to +∞.

When −√
3/4 < η < 0, the function s(ξ ,η) decreases as ξ increases, if ξ <

ξ±(s1), and has a discontinuity, if ξ = ξ±(s1). It increases on passing from
ξ < ξ±(s1) to ξ > ξ±(s1). There is a further discontinuity when ξ = ξ±(s5). The
function s(ξ ,η) decreases on passing from ξ < ξ±(s5) to ξ > ξ±(s5) but increases
when ξ±(s5) ≤ ξ ≤ ξ±(s2). There is another discontinuity when ξ = ξ±(s2). The
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function s(ξ ,η) also increases on passing from ξ < ξ±(s2) to ξ > ξ±(s2) and also
when ξ increases from ξ = ξ±(s2) to +∞.

When −1/2 ≤ η ≤ −√
3/4, the function s(ξ ,η) decreases as ξ increases, if

ξ < ξ±(s5), and has a discontinuity at ξ = ξ±(s5). It decreases on passing from
ξ < ξ±(s5) to ξ > ξ±(s5) but increases when ξ±(s5) ≤ ξ ≤ ξ±(s2). The next
discontinuity occurs when ξ = ξ±(s2). The function s(ξ ,η) increases on passing
from ξ < ξ±(s2) to ξ > ξ±(s2) and when ξ increases from ξ = ξ±(s2) to +∞.

When η <−1/2, the function s(ξ ,η) decreases as ξ increases when ξ < ξ±(s5)
and has a discontinuity at ξ = ξ±(s5). It decreases on passing from ξ < ξ±(s5) to
ξ > ξ±(s5) and increases as ξ increases from ξ = ξ±(s5) to +∞.

The computation results for the normalized optimal time s(ξ ,η) are presented in
Figs. 9.9 and 9.10. In Fig. 9.9, the thin lines are level lines of the function s(ξ ,η),
and the bold lines are the lines of discontinuity of this function. The rest of the no-
tation is the same as in Fig. 9.8. A three-dimensional graph of the function s(ξ ,η)
is shown in Fig. 9.10, where the darker is the background, the smaller is the corre-
sponding value.
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Fig. 9.9 Level lines of the function s(ξ ,η)
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Fig. 9.10 Function s(ξ ,η)

9.3 Time-optimal control under constraints imposed on the
acceleration and its rate of change

9.3.1 Problem statement

When formulating problem in Sect. 9.2.1, it was assumed that the constraint |F | ≤F0

is not attained. Let us now cancel this assumption. We will consider system (9.0.1)
under constraints imposed on the magnitude of the control force and the rate of its
change, i.e., under the following restrictions

|F | ≤ F0, (9.3.1)

|Ḟ | ≤ v0, (9.3.2)

where F0 and v0 are constants.
Let us analyze the problem of bringing system (9.0.1) to the origin of the phase

plane, that is, to the state ξ = ξ̇ = 0.
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It is well-known that if restriction (9.3.2) is absent, then the time-optimal con-
trol is a bang-bang control with at most one switching point. The typical time-
dependence of this control is shown in Fig. 9.11.

F

F0

t

−F0

Fig. 9.11 Bang-bang control

On the other hand, the solution of the time-optimal control problem in the ab-
sence of constraint (9.3.1) is given in Sect. 9.2. As to the time-optimal control prob-
lem for system (9.0.1) taking both restrictions (9.3.1) and (9.3.2) into account, we
have not come upon any solution in the literature.

The control problem for system (9.0.1) will be treated in the following formula-
tion. It is assumed that the control force is bounded as in (9.3.1), while condition
(9.3.2) will only be satisfied when the magnitude of the force increases, that is, when
d|F |/dt > 0. At the same time, the force may be switched off instantaneously. These
restrictions may be written as a system of inequalities

|F | ≤ F0;

Ḟ ≤ v0, if F ≥ 0, (9.3.3)

Ḟ ≥−v0, if F ≤ 0.

The domain defined by inequalities (9.3.3) in the (F, Ḟ)-plane is shown in
Fig. 9.12.

Conditions (9.3.3) simulate the following situation: the control force may be in-
creased only gradually, at a finite rate, but it can be switched off instantaneously.
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FF0

−v0

v0

−F0

F

Fig. 9.12 Domain of restrictions

This is not infrequently the case in practice, since the deceleration is often imple-
mented by means other than the acceleration.

We introduce the following non-dimensional variables

t ′ = v0F−1
0 t, x = mv2

0F−3
0 ξ ,

y = mv0F−2
0 ξ̇ , z = F−1

0 F, u = v−1
0 Ḟ .

(9.3.4)

Equation (9.0.1) and constraints (9.3.3) take the following form in terms of these
new variables

ẋ = y, ẏ = z, ż = u, (9.3.5)

|z| ≤ 1;

u ≤ 1, if z ≥ 0, (9.3.6)

u ≥−1, if z ≤ 0.

Here and below, dots denote differentiation with respect to the new (non-dimensional)
time. The prime indicating non-dimensional time will be omitted from now on.

The initial conditions for system (9.3.5) are

x(0) = x0, y(0) = y0, z(0) = 0, (9.3.7)

and the terminal state is
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x(T ) = 0, y(T ) = 0. (9.3.8)

Note that the terminal value of z(T ) may always be made equal to zero by ad-
justing the jump of the force z(t) at time t = T that is allowed by conditions (9.3.6).
We may therefore assume throughout that z(T ) = 0.

We now formulate the following problem.
It is required to find a control u(t) and the corresponding trajectory, that is,

functions x(t),y(t), and z(t) satisfying (9.3.5), constraints (9.3.6), initial conditions
(9.3.7), and terminal conditions (9.3.8) at some (non-fixed) time T > 0.

Henceforth, we will construct a solution that solves the problem and has the
simplest structure satisfying constraints (9.3.6). This control is presumably time-
optimal.

9.3.2 Possible modes of control

The possible time histories of the non-dimensional force z(t) are shown in Fig. 9.13.
The figure shows the intervals in which the force increases or decreases gradually,
here ż =±1, and the intervals over which the force is constant, z =±1. These modes
have the following properties.

z

t1

1 1 2 3

4 5 6

−1

Fig. 9.13 Modes of function z(t)

1◦. At the beginning of the process, we have z(0) = 0, in accordance with initial
conditions (9.3.7).

2◦. Modes 1–6 of Fig. 9.13 satisfy conditions (9.3.6).
3◦. Just before the end of the process, z(t) < 0 as t → T . This condition is

assumed for definiteness and does not affect the generality of our solution, since,
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besides the forms illustrated in Fig. 9.13, we might have similarly considered their
mirror images in the t axis, namely, z′(t) = −z(t).

4◦. The modes shown in Fig. 9.13 have at most one jump and one change in the
sign of the force z(t).

5◦. Mode 6 of Fig. 9.13 is a direct extension of the bang-bang form of Fig. 9.11
to the case of gradual increase of the magnitude of the force, that is, to the case of
constraints (9.3.6).

6◦. Modes 1–5 of Fig. 9.13 are special cases of 6. Indeed, in 5 the bound z = −1
is not achieved; in 4 the bound z = 1 is not achieved; in 3 neither bound z = ±1 is
achieved; in 1 and 2 there is no jump in the function z(t), the bound z = −1 being
achieved in 2 but not in 1.

As will be shown below, using modes 1–6 for z(t) as well as their mirror-image
laws z′(t) = −z(t), one can steer system (9.3.5) from any initial state (9.3.7) to the
terminal state (9.3.8).

We now introduce a domain D in the (x,y)-plane defined by the inequalities

D =

⎧⎨
⎩(x,y) :

x < −ϕ(−y), if y ≤ 0,

x ≤ ϕ(y), if y > 0.
(9.3.9)

Here, function ϕ(y) is defined as follows:

ϕ(y) =

⎧⎪⎪⎨
⎪⎪⎩

− (2y)3/2

3
, if 0 ≤ y ≤ 1

2
,

1
24

− y
2
− y2

2
, if y ≥ 1

2
.

(9.3.10)

It is not difficult to verify that these relations define ϕ(y) as a smooth function,
decreasing monotonically from 0 to −∞ over the non-negative real line y ∈ [0,∞).
At the point y = 1/2, we have ϕ(y) = −1/3 and ϕ ′(y) = −1.

The curves Γ and Γ ′ defined for y ≥ 0 and y ≤ 0 by the formulas x = ϕ(y) and
x = −ϕ(−y), respectively, are shown in Fig. 9.14 (thicker curves). The curves are
symmetrical to one another about the origin. We also show on these curves the points
A = (−1/3,1/2) and A′ = (1/3,−1/2) at which the sections defined by formulas
(9.3.10) meet smoothly.

The curves Γ and Γ ′ form the boundary of the domain D; according to (9.3.9),
Γ that lies in the second quadrant of the (x,y)-plane and belongs to D, while Γ ′ that
lies in the fourth quadrant is not contained in D. The union of the domain D with
the domain D′ symmetric to it with respect to the origin gives the whole (x,y)-plane
punctured at the origin O. By (9.3.7), O is the terminal point and is, therefore, of no
interest as an initial point: if x = y = 0 at time t = 0, the control is needless.

Below, we will construct a control and trajectories, that is, functions u(t), x(t),
y(t), and z(t), for all initial points (x0,y0) ∈ D. If (x0,y0) ∈ D′, the required
solution will be given by functions {−u(t),−x(t), −y(t),−z(t)}, where the set
{u(t),x(t),y(t),z(t)} is the solution for the initial point (−x0,−y0) ∈ D symmetric
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Fig. 9.14 Division of (x,y)-plane into domains Di

to (x0,y0) ∈ D′. Then, equations (9.3.5) and constraints (9.3.6) will be satisfied, the
trajectories starting from (x0,y0) ∈ D′ will be symmetric to the trajectories coming
from the point (−x0,−y0)∈D and will also lead to the origin, moreover, in the same
time.

Thus, it will suffice to solve the control problem as formulated for an initial point
(x0,y0) ∈ D. This will be done with the help of the modes 1–6 shown in Fig. 9.13.

9.3.3 Construction of the trajectories

We will construct appropriate trajectories for each of modes 1–6 in Fig. 9.13 and
determine the domains Di, i = 1, . . . ,6, of initial data x0 and y0 in the domain D from
which the mode in question steers the system to the terminal state x(T ) = y(T ) = 0.
The sets Di are indicated in Fig. 9.14 by the corresponding digits i = 1, . . . ,6.

Mode 1

By Fig. 9.13, we have u =−1 for t ∈ [0,T ]. Integrating (9.3.5) for initial data (9.3.7),
we obtain
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u = −1, z = −t, y = y0 − 1
2

t2,

x = x0 + y0t − 1
6

t3.

(9.3.11)

Let us set t = T in formulas (9.3.11) and substitute the results into the terminal
conditions (9.3.8). Eliminating T , we obtain

T = (2y0)
1/2 < 1, (9.3.12)

x0 = −1
3
(2y0)

3/2. (9.3.13)

The inequality T < 1 follows from the fact that the bound z = −1 is not achieved in
mode 1; see Fig. 9.13. Relations (9.3.12) and (9.3.13) imply the inequalities

−1
3

< x0 < 0, 0 < y0 <
1
2
. (9.3.14)

Thus, mode 1 defined by (9.3.11) is implemented, if the initial point (x0,y0) lies
on the arc of the curve defined by (9.3.13) and inequalities (9.3.14). Consequently,
the set D1 is the arc of the curve Γ , see (9.3.10), indicated by the numeral 1 in
Fig. 9.14, enclosed between the points O and A = (−1/3,1/2). All phase trajectories
beginning on this arc will ultimately lead to the origin if mode 1 is applied. The
trajectories are defined by (9.3.11), and the duration of the motion by (9.3.12). It is
easily verified that all these trajectories lie in the domain between the curve Γ and
the parabola Γ0 defined by the formulas

Γ0 : x = ϕ0(y) = −1
2

y2, y ≥ 0. (9.3.15)

This parabola Γ0 is at the same time the switching curve and a phase trajectory
leading to the origin for the time-optimal problem, if constraints (9.3.6) are replaced
by the simple restriction |z| ≤ 1.

Mode 2

We have
u = −1, z = −1, if 0 ≤ t < 1,

u = 0, z = −1, if 1 < t < T.
(9.3.16)

Motion along the first part of the trajectory (t < 1) is defined by relationships
(9.3.11). We conclude from (9.3.11) that at t = 1 we have:

y(1) = y0 − 1
2
, x(1) = x0 + y0 − 1

6
. (9.3.17)
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Integrating (9.3.5), taking (9.3.16) and initial data (9.3.17) in the second part of the
motion (t > 1) into account, we obtain

y(t) = y(1)− (t −1), x(t) = x(1)+ y(1)(t −1)− 1
2
(t −1)2. (9.3.18)

Let us substitute expressions (9.3.18) into terminal conditions (9.3.8) and elimi-
nate T . We obtain

T = y(1)+1 > 1, x(1) = − [y(1)]2

2
. (9.3.19)

Thus, the point (x(1),y(1)) lies on the parabola Γ0 of (9.3.15), and, according to
(9.3.16), motion along the second part of the trajectory (for t ∈ [1,T ]) takes place
along this parabola until the origin is reached. Substituting (9.3.17) into (9.3.19), we
obtain the conditions

x0 = −1
2

y2
0 −

1
2

y0 +
1
24

, y0 ≥ 1
2
. (9.3.20)

Formulas (9.3.20) define the set D2 of initial data for which mode 2 ensures that
the system will reach the origin. This set D2 is the part of the curve Γ [see (9.3.10)]
from the point A = (−1/3,1/2) inclusive to infinity. All trajectories starting in that
set are enclosed between Γ and Γ0 with their second parts (for t > 1) lying on the
parabola Γ0. Typical trajectories for modes 1 and 2 are shown in Fig. 9.14 by dashed
curves.

Thus, if the initial point (x0,y0) lies on the curve Γ , our problem is solved by
controls 1 and 2 with mode 1 applying, if (x0,y0) is between O and A, and mode 2,
if it is to the left of A in Fig. 9.14.

We now consider modes 3–6 of Fig. 9.13 letting θ denote the time at which
the function z(t), θ ∈ (0,T ), experiences a jump. It is not difficult to see that the
functions z(t) for t > θ for all modes 3–6 of Fig. 9.13 are identical with z(t) for t > 0
for one of modes 1 or 2: for modes 3 and 5 the relevant mode is 1, and for modes 4
and 6 it is 2. Hence, the segments of trajectories for modes 3–6 for t > θ coincide
with trajectories for one of modes 1 or 2. Consequently, the point (x(θ),y(θ)) for
modes 3–6 must belong to the sets of initial data for the appropriate modes 1 or 2,
namely,

{x(θ),y(θ)} ∈ D1 for modes 3 and 5;

{x(θ),y(θ)} ∈ D2 for modes 4 and 6.
(9.3.21)

To compute the numbers x(θ) and y(θ), we note that, apart from sign, the time
history of z(t) for t < θ in cases 3 and 4 is identical with mode 1, and in cases 5
and 6—with mode 2. Therefore, changing signs when needed and setting t = θ , we
conclude from (9.3.11) that for modes 3 and 4

y(θ) = y0 +
1
2

θ 2, x(θ) = x0 + y0θ +
1
6

θ 3, θ < 1. (9.3.22)
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Using formulas (9.3.17) and (9.3.18) and proceeding in analogous fashion, we ob-
tain the results for modes 5 and 6

y(θ) = y0 +
1
2

+(θ −1) = y0 +θ − 1
2
,

x(θ) = x0 + y0 +
1
6

+

(
y0 +

1
2

)
(θ −1)+

1
2
(θ −1)2 (9.3.23)

= x0 + y0θ +
1
2

θ 2 − 1
2

θ +
1
6
, θ ≥ 1.

Let us determine the domains Di in the (x,y)-plane containing the initial data x0

and y0 for the appropriate modes, i = 3,4,5,6. To do this, we use formulas (9.3.21)–
(9.3.23) and the previously presented definitions of D1 and D2.

Mode 3

Substituting expressions (9.3.22) for x(θ) and y(θ) in place of x0 and y0 into equa-
tion (9.3.13) and inequalities (9.3.14) defining the set D1, we obtain

x0 = −y0θ − 1
6

θ 3 − 1
3
(2y0 +θ)2/3,

0 < 2y0 +θ 2 < 1, 0 < θ < 1.

(9.3.24)

Let us determine the boundaries of the set D3 defined parametrically by formulas
(9.3.24). To do this, it will suffice to consider four cases corresponding to equality
in each of the four inequalities (9.3.24).

We first assume that 2y0 + θ 2 = 0. Substituting the value of θ found from this
equality into (9.3.24), we obtain

x0 =
1
3
(−2y0)

3/2, −1
2

< y0 < 0. (9.3.25)

By (9.3.9) and (9.3.10), formulas (9.3.25) define a segment of the curve Γ ′ from
the origin to the point A′ = (1/3,−1/2), see Fig. 9.14.

Putting 2y0 +θ 2 = 1 and substituting the value of θ thus determined into (9.3.24),
we obtain

x0 = −1
3
− y0(1−2y0)

1/2 − 1
6
(1−2y0)

3/2, 0 < y0 <
1
2
. (9.3.26)

Formulas (9.3.26) define an arc of a curve Γ1 in the (x,y)-plane joining the points
A = (−1/3,1/2) and B = (−1/2,0). This curve is shown in Fig. 9.14.

Setting θ = 0, we obtain from (9.3.24)

x0 = −1
3
(2y0)

3/2, 0 < y0 <
1
2
.
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By (9.3.10), this segment of the boundary of D3 coincides with the set D1, that is,
with the arc OA of the curve Γ .

Finally, setting θ = 1, we obtain from (9.3.24)

x0 = −1
6
− y0 − 1

3
(2y0 +1)3/2, −1

2
< y0 < 0. (9.3.27)

These formulas define an arc of a curve in the (x,y)-plane joining the points B and
A′. This curve Γ2 touches the curve Γ ′ at the point A′, see Fig. 9.14.

Thus, the set D3 is a curvilinear quadrilateral OABA′ bounded by arcs of the
curves Γ (from O to A), Γ1,Γ2, and Γ ′ (from A′ to O).

Mode 4

Substituting expressions (9.3.22) for x(θ) and y(θ) in place of x0 and y0 into rela-
tions (9.3.20) defining the set D2, we obtain

x0 =
1

24
− y2

0

2
− y0θ 2

2
− y0θ − 1

2
y0 − θ 4

8
− θ 3

6
− θ 2

4
,

2y0 +θ 2 ≥ 1, 0 < θ < 1.

(9.3.28)

The boundaries of the set D4 will be found by replacing the inequality sign in
each of the three inequalities of (9.3.28) in turn by an equality sign.

We first assume that 2y0 + θ 2 = 1 and eliminate θ : θ = (1− 2y0)
1/2 from the

given equality. Substituting the resulting value of θ into (9.3.28) and simplifying,
we obtain the relation defining the arc Γ1.

Setting θ = 0 in (9.3.28), we obtain, as is easily verified, relations (9.3.20) that
define the set D2, that is, the arc of the curve Γ from the point A to infinity.

Setting θ = 1 in (9.3.28), we have

x0 = −y2
0

2
−2y0 − 1

2
, y0 ≥ 0. (9.3.29)

The curve Γ3 defined by these relations begins at the point B = (−1/2,0) and goes
off to infinity, see Fig. 9.14.

As a result, the set D4 is bounded by the set D2, the curve Γ1, along which it
borders on D3, and the curve Γ3.

Mode 5

Substituting expressions (9.3.23) for x(θ) and y(θ) in place of x0 and y0 into equa-
tion (9.3.13) and inequalities (9.3.14) defining the set D1, we obtain
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x0 = −y0θ − θ 2

2
+

1
2

θ − 1
6
− 1

3
(2y0 +2θ −1)3/2,

1
2

< y0 +θ < 1, θ ≥ 1.

(9.3.30)

We now determine the boundaries of the set D5 reasoning similarly to the previ-
ous cases and replacing each of the three inequalities (9.3.30) in turn by equalities.

Setting y0 +θ = 1/2, we find that θ = 1/2−y0. Substituting this value of θ into
equality (9.3.30), we obtain

x0 =
y2

0

2
− 1

2
y0 − 1

24
, y0 ≤−1

2
.

By (9.3.10), these formulas define the arc of the curve Γ ′ from the point A′ =
(1/3,−1/2) to infinity; this arc is symmetric to D2 about the origin.

Settings y0 + θ = 1, we obtain θ = 1− y0. Substituting this value into equality
(9.3.30), we obtain

x0 = y2
0 −

1
2

y0 − 1
2
, y0 ≤ 0. (9.3.31)

Formulas (9.3.31) define a curve Γ4 beginning at B = (−1/2,0) and going off to
infinity, see Fig. 9.14.

Setting θ = 1 in (9.3.30), we obtain formulas (9.3.27) defining the curve Γ2.
Thus, the set D5 is bounded by an arc of the curve Γ2, along which it borders on

the set D3, the curve Γ4, and the arc of the curve Γ ′ from A′ to infinity.

Mode 6

Substituting expressions (9.3.23) for x(θ) and y(θ) in place of x0 and y0 into for-
mulas (9.3.20) defining the set D2, we obtain

x0 = −y2
0

2
−2y0θ −θ 2 +

1
2

θ , y0 +θ ≥ 1, θ ≥ 1. (9.3.32)

Replacing the first of inequalities (9.3.32) by an equality, we obtain θ = 1−
y0. Substituting this expression into equality (9.3.32), we obtain relations (9.3.31)
defining the curve Γ4.

Setting θ = 1 in (9.3.32), we obtain relations (9.3.29) defining the curve Γ3.
Thus, the set D6 borders on the sets D4 and D5 along the curves Γ3 and Γ4, re-

spectively, and lies below and to the left of these curves that have a common point
B = (−1/2,0).

Note that the curves Γ2 and Γ3 have a common tangent at the point B, and the
same is true of Γ1 and Γ4.

The solution of the control problem as formulated may be described as follows.
Given an initial state (9.3.7) in the domain D of the (x,y)-plane, we determine to
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which of the domains Di, i = 1,2, . . . ,6, it belongs. The boundaries between the
domains are given by the curves Γ , Γ ′, Γ1, Γ2, Γ3, and Γ4 defined by formulas (9.3.9),
(9.3.10), (9.3.26), (9.3.27), (9.3.29), and (9.3.31). The boundary between D1 and D2

is the point A = (−1/3,1/2).
1◦. If (x0,y0) ∈ D1, then we define u ≡ −1 for t > 0. The system reaches the

given state x = y = 0 in a time T < 1.
2◦. If (x0,y0) ∈ D2, we put u = −1 for t ∈ (0,1) and u = 0 for t ≥ 1. The system

reaches the terminal state in a time T ≥ 1.
3◦. If (x0,y0) ∈ D3, then u = 1 for t ∈ (0,θ), where the time θ < 1 is defined by

the condition {x(θ),y(θ)} ∈ D1. At time t = θ , we equate z to zero by a jump that
is admitted by restrictions (9.3.6). At t > θ , we define u = −1 up to the end of the
process. The trajectory for t > θ is the same as for mode 1.

4◦. If (x0,y0) ∈ D4, then u = 1 for t ∈ (0,θ ), where the time θ < 1 is defined by
the condition {x(θ),y(θ)} ∈ D2. At time t = θ , we equate z to zero by a jump. We
then define u = −1 for t ∈ (θ ,θ +1) and u = 0 for t ∈ (θ +1,T ).

5◦. If (x0,y0) ∈ D5, then u = 1 for t ∈ (0,1) and u = 0 for t ∈ (1,θ), where the
time θ > 1 is defined by the condition {x(θ),y(θ)} ∈ D1. At time θ , we equate z to
zero by a jump. We then define u = −1 for t ∈ (θ ,T ) up to the end of the process.

6◦. If (x0,y0) ∈ D6, then u = 1 for t ∈ (0,1) and u = 0 for t ∈ (1,θ), where the
time θ > 1 is defined by the condition {x(θ),y(θ)} ∈ D2. At time θ , we equate z to
zero by a jump. We then define u =−1 for t ∈ (θ ,θ +1) and u = 0 for t ∈ (θ +1,T ).

Note that T < 1 in case 1, T > 1 in cases 2, 4, and 5, and T > 2 in case 6.
All trajectories beginning in the domain D lie in the domain bounded by the

curves Γ0 and Γ ′ (to the left of and below those curves; see Fig. 9.14). They reach
the origin O either touching the curve Γ0 (for modes 1, 3, and 5) or coinciding with
Γ0 over its last part (for modes 2, 4, and 6; see the curves in Fig. 9.14).

If the initial point (x0,y0) is in the domain D′ symmetric to D about the origin, the
control is taken equal in magnitude and opposite in sign to the control corresponding
to the point (−x0,−y0) ∈ D.

The solution we have constructed was obtained for initial data (9.3.7), which
presume that z(0) = 0. The general case of initial data

x(0) = x0, y(0) = y0, z(0) = z0

is reduced to that considered above, if at time t = 0 we change z by a jump equating
it to zero that is admitted by restrictions (9.3.6). After that, one can use the solution
constructed for the initial data (9.3.7). Thus, terminal conditions (9.3.8) will be sat-
isfied. In that case, however, the property of time-optimality is not to be expected.



Chapter 10
Time-optimal swing-up and damping feedback
controls of a nonlinear pendulum

A pendulum is a well-know example of a nonlinear mechanical system that is of-
ten regarded as a benchmark for control algorithms. In a number of papers, various
feedback controls have been proposed that bring the pendulum to the upper unstable
or lower stable equilibrium position. These controls are called swing-up and damp-
ing controls, respectively. Time-optimal controls have been also considered, but the
obtained solutions were not complete.

In this chapter, the time-optimal controls both for the swing-up and damping
control problems are obtained. The solution is based on the maximum principle and
involves analytical investigations and extensive numerical computation for a wide
range of parameters. As a result, the switching and dispersal curves are obtained
that bound the domains in the phase plane corresponding to different values of the
optimal bang-bang control.

Optimal trajectories can intersect the switching curves but not the dispersal
curves. The latter curves have the following property: two different optimal tra-
jectories start from each point of the dispersal curve.

The switching and dispersal curves are obtained for various values of the max-
imal admissible control torque. These curves completely determine the feedback
optimal control.

Fine details of the structure of these curves as well as of the field of optimal
trajectories are analyzed. The structure depends essentially on the magnitude of the
control torque. In particular, numerical results show how the breaks of the switch-
ing curves (in the case of the damping control) are formed at the transition from
high torques, where these curves are smooth, to low torques corresponding to the
switching curves with breaks.

The chapter is based on papers [46, 47, 104, 105, 106],

367



368 10 Time-optimal swing-up and damping feedback controls of a nonlinear pendulum

10.1 Optimal control structure

10.1.1 Statement of the problem

Consider a pendulum that can rotate about a horizontal axis O and is controlled by
a torque M applied to the pendulum (Fig. 10.1). Denote by ϕ the angle between the
pendulum and the vertical axis, by m the mass of the pendulum, by J its moment of
inertia about the axis O, by l the distance from the axis O to the center of mass of
the pendulum, and by g the acceleration due to gravity.

ϕϕ

MM

OO

Fig. 10.1 Swing-up and damping control problems

The equation of motion of the pendulum is

Jϕ̈ +mgl sinϕ = M, (10.1.1)

where the dots denote derivatives with respect to time t. Let the control torque be
restricted by the constraint

|M| ≤ M0, (10.1.2)

where M0 is a given constant.
Denote

ω =

(
mgl

J

)1/2

, t ′ = ωt. (10.1.3)

Here, ω is the natural frequency of small oscillations of the pendulum, and t ′ is a
non-dimensional time.

Let us introduce non-dimensional variables
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x1 = ϕ, x2 =
dϕ
dt ′

, u =
M
M0

, k =
M0

mgl
(10.1.4)

and rewrite (10.1.1) as follows:

ẋ1 = x2, ẋ2 = −sinx1 + ku. (10.1.5)

Here and below, we denote by dots derivatives with respect to non-dimensional time
t ′. We will omit ′ after t ′.

Constraint (10.1.2) can be rewritten as follows:

|u(t)| ≤ 1. (10.1.6)

The initial conditions for system (10.1.5) are arbitrary

x1(0) = x0
1, x2(0) = x0

2, (10.1.7)

and the terminal coordinates correspond to the upper unstable or lower stable equi-
librium position

x1(T ) = π +2πn, x2(T ) = 0 (swing-up control),

x1(T ) = 2πn, x2(T ) = 0 (damping control),
(10.1.8)

where n is an arbitrary integer.
We will find the control, both in an open-loop and feedback form, that satisfies

constraint (10.1.6) for all t ∈ [0,T ] and brings system (10.1.5) from any initial state
(10.1.7) to the terminal state (10.1.8) in a minimal possible time T .

10.1.2 Phase cylinder

It is known that the presence of nonlinearity in the motion equation of the pendulum
results in a periodic structure (cylindrical property) in the angle of the synthesis
pattern. An infinite set of terminal points in the state space corresponds to the upper
or lower equilibrium position.

The cylindrical property of the state space results in specific features of the syn-
thesis. The main specific feature is the presence of a dispersal curve (the terminology
of [69]) on the cylinder such that two optimal trajectories with the same motion time
are originated from every its point.

For a very large control torque, we can omit the nonlinear term in the motion
equation of the pendulum. The synthesis pattern in this case consists of parabolic
switching curves passing through terminal points and dispersal curves situated be-
tween them, see Fig. 10.2. The equation of the dispersal curves in the case of a very
large control torque can be obtained in an explicit form [63].
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2π0
ϕ

ϕ̇

u = 1u = 1

u = −1

u = −1

Switching curves

Dispersal curve

Fig. 10.2 Time-optimal feedback control for a very large control torque: k � 1

The question arises of how the synthesis pattern changes when the maximum
admissible control torque gradually decreases beginning with a certain sufficiently
large value. The answer is given below, where time-optimal feedback controls are
designed for steering the nonlinear pendulum to the upper unstable or lower sta-
ble equilibrium position. The solution is given for various values of the maximum
possible control torque.

10.1.3 Maximum principle

Following the maximum principle, we introduce the Hamiltonian for system (10.1.5)

H = p1x2 + p2(−sinx1 + ku). (10.1.9)

Here, p1 and p2 are the adjoint variables that satisfy the equations

ṗ1 = p2 cosx1, ṗ2 = −p1. (10.1.10)

The optimal control satisfying constraint (10.1.6) is determined by the condition

u = sign p2. (10.1.11)

It follows from (10.1.8), (10.1.9), and (10.1.11) that, at the terminal time instant
t = T , we have

HT = k|p2(T )| ≥ 0.
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This inequality is one of the necessary optimality conditions [see (1.2.22)]. It fol-
lows from the results of Chapter 7 of [83] that there are no singular controls in our
optimal control problem.

It follows from (10.1.11) that the optimal control takes the values u = ±1, and,
in order to obtain the optimal feedback control, it is sufficient to find the switching
and dispersal curves in the (x1,x2)-plane that bound the domains, where u = +1 and
u = −1.

Note that the switching curves consist of points, where the control u(t) changes
its sign along the optimal trajectory. The dispersal curves consist of such points,
where the optimal control can be taken equal to either +1 or −1, and two optimal
trajectories starting from each of these points reach terminal states (10.1.8) (with
the same or different n) in the same time.

10.1.4 Numerical algorithm

To construct the complete field of optimal phase trajectories, we integrate numeri-
cally the system of equations (10.1.5), (10.1.10), and (10.1.11) backward with re-
spect to time (starting from some instant T ). The conditions for the phase coordi-
nates x1 and x2 at the time instant T are given by (10.1.8); the conditions for the
adjoint variables p1 and p2 are arbitrary. It is convenient to divide all optimal trajec-
tories into families identified by the integer parameter n, see (10.1.8). Within each
family, an individual trajectory is identified by two parameters, p1(T ) and p2(T ).

The maximum principle implies that at least one of the values p1(T ) and p2(T ) is
nonzero. Therefore, we can normalize the adjoint variables so that p2

1(T )+ p2
2(T ) =

1. Thus, the family of trajectories corresponding to a fixed n depends on one param-
eter. For example, we can take p1(T ) = cosα and p2(T ) = sinα . By changing α
in the interval α ∈ [0,2π), we obtain all extremal trajectories (x1(t),x2(t)) of system
(10.1.5) for a given n.

On each phase trajectory, we are interested in the points at which the adjoint
variable p2(t) changes in sign. We will refer to the points of this type as 1-points.
In addition, we are interested in the projections of the points of intersection of the
trajectory under consideration with other trajectories in the augmented phase space
(x1,x2, t) onto the (x1,x2)-plane. From all such projection points, we select only one
point corresponding to the maximum time instant t. We find such a point for every
trajectory. We will refer to the points of the latter type as 2-points. The intersecting
trajectories may belong to either the same or different families, i.e., they may cor-
respond to the same or different n. Note that some points can be both 1-points and
2-points simultaneously.

According to (10.1.11), 1-points are switching points for the optimal control.
From 2-points, the system can arrive at the desired terminal point along different
trajectories corresponding to different controls.

Continuous loci of 1-points form the switching curves, whereas continuous
loci of 2-points form the dispersal curves. Points that are 1-points and 2-points
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simultaneously are points of connection of switching and dispersal curves. Both
switching curves and dispersal curves divide the domains in the phase plane (x1,x2)
corresponding to u = −1 and u = +1. In terms of the field of optimal trajectories,
the difference between the switching curves and the dispersal curves is that the opti-
mal trajectories can only depart from the dispersal curves but cannot arrive at these
curves. No optimal trajectories can coincide with the dispersal curves. At the same
time, the phase state (x1,x2) of the system can arrive at a switching curve, move
along this curve, or depart from it.

The field of phase trajectories will be constructed using the maximum principle
that provides only the necessary optimality conditions. Nevertheless, the obtained
phase portrait provides the optimal feedback control under the condition that an
optimal control exists in the class of piecewise continuous functions u(t) for each
pair of the initial and final conditions (10.1.7) and (10.1.8). This follows from the
fact that the trajectory arriving at the terminal point from an initial point that does
not belong to the dispersal curve is unique. If the initial point lies on the dispersal
curve, then there exist two extremal curves that start from this point and arrive at the
terminal state, but the motion time for both trajectories is the same.

The software for the numerical calculations presented below in this chapter was
developed in Borland Delphi 5.1 environment. A widespread procedure RKF45 (see
[60, 56, 57, 111]) was used for the numerical construction of smooth parts of the
trajectories. A reliable PASCAL version of the aforementioned procedure can be
found in [55]. We do not give a detailed description of the numerical algorithm due
to its complexity, especially for the unit forming the dispersal curves.

10.2 Swing-up control

10.2.1 Literature overview

The problem of stabilization of a pendulum at the upper equilibrium position has
been a matter of considerable scientific interest. In [114, 74, 92], a pendulum is
stabilized due to the vertical motion of its base. In [66], a pendulum with a fixed
suspension point is stabilized by means of a rotating flywheel.

In a number of papers, controls have been proposed that bring the planar pen-
dulum on a cart to the upper unstable equilibrium position. Global stabilization of
this model has been studied, for instance, in [112, 18, 81]. Time-optimal control has
been studied in [97, 119]. These papers are focused on computing exact switching
times for an open-loop control starting from the down equilibrium.

However, the problem of time-optimal swing-up feedback control for the nonlin-
ear pendulum has not been solved.
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10.2.2 Special trajectories

Let us analyze special trajectories that reach the terminal states (π + 2πn,0) with
constant control u = +1 or u = −1. We will present detailed construction of the
special trajectory for x1 = π (n = 0), x2 = 0, and u = −1. All other special trajecto-
ries can be constructed in a similar way. We will set terminal values for the adjoint
variables so that p1(T ) < 0 and p2(T ) = 0 and prove that p2(t) < 0 for t < T . In
this case, condition (10.1.11) will be satisfied. Without loss of generality, we can
normalize the adjoint variables so that

p1(T ) = −1, p2(T ) = 0. (10.2.1)

We substitute u = −1 into equations (10.1.5) and find the first integral of these
equations

x2
2

2
− cosx1 + kx1 = C1.

To find the constant C1, we insert the terminal conditions x1 = π and x2 = 0 into this
integral. As a result we obtain

x2
2

2
= 1+ cosx1 + k(π − x1). (10.2.2)

For the trajectory that reaches the terminal state with u =−1, we have, according
to (10.1.5), x2 > 0 and x1 < π for small positive T − t, i.e., at the end of motion.
Introduce the change of variable

π − x1 = y (10.2.3)

to represent (10.2.2) as follows:

x2 = R(y) = [2(1− cosy+ ky)]1/2 . (10.2.4)

This function is shown in Fig. 10.3 for various values of k. Its behavior for small
and large y is determined by the expansions

R2(y) = 2ky+ y2 +O
(
y4) as y → 0,

R2(y) = 2ky+O(1) as y → ∞.

(10.2.5)

It follows from (10.1.5) and (10.2.3) that

dy
dt

= −R(y) < 0.

Therefore, as t changes form T to −∞, the variable y grows monotonically from 0
to ∞. Hence, y can be taken as an independent variable along the trajectory under
consideration.
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Fig. 10.3 Function R(y) for different values of k

Let us analyze the behavior of the adjoint variable p2(y) for this trajectory. Note
that, according to (10.1.11), the sign of p2 determines the control.

We rewrite the adjoint equations (10.1.10) using y as an independent variable and
taking into account (10.1.5) and (10.2.4):

d p1

dy
=

p2 cosy
R(y)

,
d p2

dy
=

p1

R(y)
. (10.2.6)

Eliminating p1 from these equations, we come to the following equation for p2:

d
dy

(
R

d p2

dy

)
=

p2 cosy
R

. (10.2.7)

Let us multiply (10.2.7) by R and transform it taking into account the relation

R
dR
dy

= siny+ k (10.2.8)

following from (10.2.4). We have

d
dy

(
R2 d p2

dy

)
=

d
dy

[(siny+ k)p2] .

Integrating this equation, we obtain

R2 d p2

dy
− (siny+ k)p2 = C2, (10.2.9)

where C2 is a constant.
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At the terminal time instant t = T , we have, according to (10.1.8), (10.2.1), and
(10.2.3),

y = 0, p2 = 0.

In addition, from (10.2.1), (10.2.5), and (10.2.6), it follows that

R2 d p2

dy
= Rp1 → 0 as y → 0.

Substituting these data into (10.2.9), we find C2 = 0, and (10.2.9) becomes

R2 d p2

dy
− (siny+ k)p2 = 0. (10.2.10)

Note that the general solution of this homogeneous equation can be expressed as
follows:

p2 = CR(y), (10.2.11)

where C is a constant; this can be easily verified by using relation (10.2.8).
Finally, we obtain from (10.2.6), (10.2.8), and (10.2.11) the expression for p1:

p1 = R
d p2

dy
= CR

dR
dy

= C(siny+ k). (10.2.12)

Therefore, in order to satisfy the terminal condition (10.2.1) for p1, we should set
C = −1/k in (10.2.11) and (10.2.12).

Thus, we see that along the phase trajectory corresponding to the control u =−1,
the adjoint variable p2(t) is negative for all y > 0 and, therefore, for all t < T .

Hence, this trajectory with u = −1 satisfies the necessary optimality conditions.
Numerical analysis shows that the special trajectory considered above is optimal and
coincides with the switching curve. This is the case also for the trajectory with u = 1
that is symmetric to the previous one about the point (π,0). The special trajectories
leading to the point (π +2πn,0) can be obtained by shifting the special trajectories
leading to the point (π,0) by 2πn.

10.2.3 Numerical results

Figures 10.4 and 10.5 present the field of optimal trajectories constructed accord-
ing to the procedure described in Sect. 10.1.4. The switching curves and dispersal
curves are designated by less thick and more thick lines, respectively. The optimal
trajectories are depicted by thin lines. The arrows specify the direction of the growth
of time along the trajectories. The figures present a part of the phase plane confined
by the switching curves passing through the points (−π,0) and (π,0). The complete
phase portrait can be obtained by a translation of this segment to the left and right
by the quantity 2πn, n = ±1,±2, . . ..
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Fig. 10.4 Time-optimal swing-up feedback control for k = 0.2

Let us describe the properties of the synthesis patterns obtained. In Figs. 10.4
and 10.5, all switching curves touch the axis x2 = 0 by one of their ends, and each
of the dispersal curves divides the optimal trajectories from different families (cor-
responding to different n). The specified properties are related to a special choice of
the values k = 0.2, 0.25, 0.35, 0.5, 0.85, 1, and 2 and may be absent for the other
values.

The figures show that, when k increases, the number of switching curves and
dispersal curves decreases gradually. After passing the threshold value k ≈ 0.80,
only special trajectories (investigated in Sect. 10.2.2) and only the smooth dispersal
curve passing between them remain. The specified mechanism of transformation of
the phase portrait corresponding to the optimal feedback control is depicted on a
larger scale in Fig. 10.6 (special trajectories are not shown).

Let us describe the properties of these phase portraits. Note that, in Fig. 10.6,
the switching curves do not touch the axis x2 = 0, and the dispersal curve passing
through the point (0,0) has three clearly distinguishable smooth legs. This is ex-
plained by the fact that its middle leg separates the optimal trajectories that belong
to two different families, and any of the extreme legs separates optimal trajectories
of the same family. A similar pattern takes place in a domain close to the origin
and in other ranges of k when the number of switching curves and dispersal curves
changes (for example, see Fig. 10.7, where the threshold value is k ≈ 0.44).
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Fig. 10.5 Time-optimal swing-up feedback control for k = 0.25, 0.35, 0.5, 0.85, 1, and 2
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We can suppose that, when k decreases, the switching curves and dispersal curves
[except for those that pass through the point (0,0) or go to infinity] lie between the
coordinate axes and the special trajectories in the first and third quadrants. Note
that these curves run through the specified domains of the phase plane more or less
uniformly. It is this behavior of the switching curves and dispersal curves that was
obtained as a result of numerical computations. Figure 10.8 presents this behavior.
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Fig. 10.8 Time-optimal swing-up feedback control in the first quadrant of the phase plane for
k = 0.1 and 0.05

10.3 Damping control

10.3.1 Literature overview

In [20, 65, 83, 82, 58], for sufficiently large values of the control torque, the open-
loop problem and the optimal synthesis of steering the pendulum to the lower stable
equilibrium position were investigated both on the whole phase plane and on the
phase cylinder.

Paper [65] analyzes control problem (10.1.5) and (10.1.6) for an equation that is
more general than (10.1.5). However, in that paper, a time-optimal steering of any
point of the phase plane to the origin was considered, and the cylindrical property
of the phase space was not taken into account. The presence of so-called FLAG
domains in the state space is the most essential feature found in [65]. The results
of [65] were used later in [20], where problem (10.1.5)–(10.1.8) was considered
for even n in (10.1.8), i.e., the cylindrical property of the state space arising in the
problems of controlling a satellite was taken into account.
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Remark 10.1. Here, we use the FLAG term introduced in [20] that is generated by
capital letters of the names of the authors of [65].

In [83, 82, 58], nothing is said about the existence of FLAG domains, and they
are not shown in the synthesis patterns. In other words, the control problem is con-
sidered under the large control torque and in the neighborhood of the terminal state.
In [58], the size of such neighborhood is determined by the auxiliary constraint im-
posed on the motion time along the optimal trajectory. This constraint, in its turn, is
forced to be related with the maximal admissible control torque.

In [17], the problem of optimal control of the mathematical pendulum that also
describes a controlled revolution of a satellite in the plane of circular orbit [16] was
considered. Numerical and qualitative investigations of the open-loop problem of
rotation of the pendulum that is placed initially at the lower stable position by 360◦
about the suspension point were presented. The dependences of the optimal time
and the number of switchings on the torque were constructed.

In [75], a controlled mechanical system in the form of a pendulum with a sus-
pension point on the axis of a wheel that can roll on a horizontal plane without slip
was considered. The control torque applied to the wheel was bounded. On the phase
cylinder, a time-optimal control for damping oscillations of the pendulum was con-
structed. An algorithm for constructing an open-loop control that steers the system
from the lower equilibrium position to the unstable upper one with damping of the
velocity of the suspension point at the end of motion was given. The problem ad-
dressed in [75] is essentially different from the problem that is solved in this chapter.

Note that the solution in a neighborhood of each of terminal points is close to the
optimal synthesis for a linear oscillator (see Example 2 in Sect. 1.4). The switch-
ing curve for a linear oscillator consists of an infinite number of semicircles, whose
radius is equal to the maximum admissible control torque. Therefore, the more strin-
gent constraints on control, the smaller the radii of the specified semicircles and the
more frequent the breaks on the switching curve. As k decreases from large values
(k � 1, see Fig. 10.2) to small ones (k � 1, see Fig. 10.9), the switching curves
transform from smooth ones to the curves with breakes. The question arises: at
which values of k the breaks first appear?

The calculations of the authors of this book have shown that the very first of the
specified breaks are generated as a result of transformation of the boundaries of the
FLAG domains that are confined by curves consisting of arcs of switching curves
and dispersal curves. Appearing of the FLAG domains is closely associated with
generation of additional switching curves corresponding to the optimal trajectories
with two switchings of control. Such bifurcation has been analyzed in details in
[101], where the bifurcation value of the maximal admissible control torque has
been obtained. If k ≈ 1.04, then one of such switching curves (infinitely small in
size) arises at the point with x1 ≈ −51.7 and x2 ≈ 10.4 of the phase plane. An
optimal trajectory with two switchings starting from this point goes the terminal
point (0,0). Its first interval with constant control u = +1 is assumed infinitely
small. As can be seen from these data, for the pendulum it is required to perform
approximately eight complete revolutions until its phase point gets to the terminal
point (0,0) from the specified point.
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Switching curves
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Fig. 10.9 Switching curves in the neighborhoods of the terminal points: k � 1

The further generation of breaks on the main switching curves (when the control
torque decreases) occurs according to a similary pattern, and the process is shown
in figures in Sect. 10.3.3 for various constraints imposed on the control torque.

10.3.2 Special trajectories

Let us analyze the special trajectories that lead to the terminal states (2πn,0) for
the constant control u = +1 or u = −1. Consider the special trajectory for x1 = 0
(n = 0), x2 = 0, and u = +1. All other special trajectories can be analyzed in a
similar way.

For the trajectory that reaches the terminal state with the control u = +1, by
(10.1.5), we have x2 < 0 and x1 > 0 for small positive T − t, i.e., at the end of the
motion. In this case, the solution of (10.1.5) can be represented in the form

x2 = −R(x1) = − [2(−1+ cosx1 + kx1)]
1/2 . (10.3.1)

The special trajectory (or its bounded final part, see Remarks 10.2–10.4 below)
described by (10.3.1) satisfies the necessary optimality conditions. This fact can
be proved similar to the case of swing-up control, see Sect. 10.2.2.

Remark 10.2. The function R(x1) is defined on the whole positive semi-axis if k ≥
k∗, where k∗ is determined by the relations

k∗ = sinz, z = tan
z
2
,

π
2

< z < π. (10.3.2)
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By calculations, we obtain k∗ ≈ 0.7246 and z ≈ 2.3311. Figure 10.10 shows the
dependence R2(x1) for various values of k.

Remark 10.3. The special trajectory with u = 1 and k ≥ k∗ is unbounded and de-
scribed by (10.3.1) for 0 ≤ x1 < ∞. We found that, if k ≥ kopt, kopt ≈ 0.9, then the
whole special trajectory is optimal. If k∗ ≤ k < kopt, then only some final part of the
considered special trajectory is optimal.

Remark 10.4. The special trajectory with u = 1 and k < k∗ is bounded. Its final part
is described by (10.3.1), where 0 < x1 ≤ x∗1. Here, x∗1 is the minimal positive root of
the following equation

R(x∗1) = 0.

Numerical analysis shows that this final part of the special trajectory is optimal.

The same situation takes place for the trajectory for u = −1 that is situated sym-
metrically to the considered one relative to the point (0,0). The special trajectories
that arrive at the points (2πn,0) can be obtained by shifting special trajectories ar-
riving at the point (0,0) by 2πn.
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Fig. 10.10 Function R2(x1) for different values of k

10.3.3 Numerical results

Figures 10.11–10.14 present the field of optimal trajectories constructed according
to the procedure described in Sect. 10.1.4. Switching curves and dispersal curves are
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designated by less thick or more thick lines, respectively. Optimal trajectories are de-
picted by thin lines. Arrows specify the direction of time growth along trajectories.
The figures present a segment of the phase plane confined by the dispersal curves
passing through the points (−π,0) and (π,0). The complete phase portrait can be
obtained by translation of this segment to the right and left by 2πn, n =±1,±2, . . . .
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Fig. 10.11 Time-optimal damping feedback control for k = 1.01

Let us describe the properties of synthesis patterns obtained. Figures 10.11–10.13
(k = 1.01, 1, 0.85, 0.75, 0.65, 0.64, and 0.62) show the process of generation of the
first break on the switching curve passing through the axis x2 = 0. In Fig. 10.11
(k = 1.01), we can see the boundary part of the FLAG domain that does not touch
the main switching curve [the special trajectory passing trough the point (0,0)]. In
Fig. 10.12 (k = 1, 0.85, and 0.8), similary areas are denoted by a rectangle as well
as shown separately with a larger scale. The comparison of synthesis patterns for
k = 1.01 and k = 1 allows one to make the conclusion that the location of the right
boundary of the FLAG domain is sensitive to the parameter k. For k = 0.85, the
FLAG domain and the switching curve merge generating a sufficiently long “slot”
that is much shorter for k = 0.8; and for k = 0.75, 0.65, and 0.64, it transforms
gradually into a sharp “tooth” that is turned so that its peak touches the axis x2 =
0 for k = 0.62. Meanwhile, the dispersal curve that generates the initial bottom
boundary of the FLAG domain disappears completely.
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Fig. 10.12 Time-optimal damping feedback control for k = 1, 0.85, and 0.8
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Fig. 10.13 Time-optimal damping feedback control for k = 0.75, 0.65, 0.64, and 0.62

Figure 10.14 (k = 0.31, 0.305, and 0.3) illustrates the process of generation of the
third break in the main switching curve. This means that the situation is repeated:
new breakes in the main switching curve emerge as k decreases.
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Fig. 10.14 Time-optimal damping feedback control for k = 0.31, 0.305, and 0.3
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