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  ...إلى قارئ ھذا الكتاب ، تحية طيبة وبعد 

حقيقياً في عالم يعج بالأبحاث والكتب والمعلومات، وأصبح العلم معياراً نعيش لقد أصبحنا 
حلاً شبه  بدورهوقد أمسى لتفاضل الأمم والدول والمؤسسات والأشخاص على حدٍّ سواء، 

، فالبيئة تبحث عن حلول، وصحة الإنسان تبحث عن دة وخطورةاكل العالم حوحيدٍ لأكثر مش
الطاقة والغذاء حلول، والموارد التي تشكل حاجة أساسية للإنسان تبحث عن حلول كذلك، و

فأين نحن من . ويحاول أن يجد الحلول لھاالآن والماء جميعھا تحديات يقف العلم في وجھھا 
   ھذا العلم ؟ وأين ھو منا؟

ن نوفر بين أيدي كل من حمل لأ www.4electron.comسعى في موقع عالم الإلكترون ن
من أدوات تساعده في ھذا الدرب، من  ما نستطيعالتحديات لى عاتقه مسيرة درب تملؤه ع

ء والأفكار العلمية مواضيع علمية، ومراجع أجنبية بأحدث إصداراتھا، وساحات لتبادل الآرا
والمرتبطة بحياتنا الھندسية، وشروحٍ لأھم برمجيات الحاسب التي تتداخل مع تطبيقات الحياة 
الأكاديمية والعملية، ولكننا نتوقع في نفس الوقت أن نجد بين الطلاب والمھندسين والباحثين 

مجتمعٍ يساھم  من يسعى مثلنا لتحقيق النفع والفائدة للجميع، ويحلم أن يكون عضواً في
   بتحقيق بيئة خصبة للمواھب والإبداعات والتألق، فھل تحلم بذلك ؟

رأيتھا في إحدى المواضيع حاول أن تساھم بفكرة، بومضة من خواطر تفكيرك العلمي، بفائدة 
تأكد بأنك ستلتمس الفائدة في كل . جانب مضيء لمحته خلف ثنايا مفھوم ھندسي ماالعلمية، ب

  ...رى غيرك يخطوھا معك خطوة تخطوھا، وت

، أخي القارئ، نرجو أن يكون ھذا الكتاب مقدمة لمشاركتك في عالمنا العلمي التعاوني
بكل الإمكانيات المتوفرة لديه جاھزاً  ww.4electron.com سيكون موقعكم عالم الإلكترونو
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Preface

If you are acquainted with neural networks, automatic control problems
are good industrial applications and have a dynamic or evolutionary nature
lacking in static pattern-recognition; control ideas are also prevalent in the
study of the natural neural networks found in animals and human beings.

If you are interested in the practice and theory of control, artificial neu-
ral networks offer a way to synthesize nonlinear controllers, filters, state
observers and system identifiers using a parallel method of computation.

The purpose of this book is to acquaint those in either field with current
research involving both. The book project originated with O. Omidvar.
Chapters were obtained by an open call for papers on the InterNet and by
invitation. The topics requested included mathematical foundations; bio-
logical control architectures; applications of neural network control meth-
ods (neurocontrol) in high technology, process control, and manufacturing;
reinforcement learning; and neural network approximations to optimal con-
trol. The responses included leading edge research, exciting applications,
surveys and tutorials to guide the reader who needs pointers for research
or application. The authors’ addresses are given in the Contributors list;
their work represents both academic and industrial thinking.

This book is intended for a wide audience— those professionally involved
in neural network research, such as lecturers and primary investigators in
neural computing, neural modeling, neural learning, neural memory, and
neurocomputers. Neural Networks in Control focusses on research
in natural and artificial neural systems directly applicable to control or
making use of modern control theory.

The papers herein were refereed; we are grateful to those anonymous
referees for their patient help.

Omid M. Omidvar, University of
the District of Columbia

David L. Elliott, University of
Maryland, College Park

July 1996
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1

Introduction: Neural Networks
and Automatic Control

David L. Elliott

1 Control Systems

Through the years artificial neural networks (Frank Rosenblatt’s Percep-
trons, Bernard Widrow’s Adalines, Albus’ CMAC) have been invented with
both biological ideas and control applications in mind, and the theories of
the brain and nervous system have used ideas from control system theory
(such as Norbert Wiener’s Cybernetics). This book attempts to show how
the control system and neural network researchers of the present day are
cooperating. Since members of both communities like signal flow charts, I
will use a few of these schematic diagrams to introduce some basic ideas.

Figure 1 is a stereotypical control system. (The dashed lines with arrows
indicate the flow of signals.)

One box in the diagram is usually called the plant, or the object of
control. It might be a manufactured object like the engine in your automo-
bile, or it might be your heart-lung system. The arrow labeled command
then might be the accelerator pedal of the car, or a chemical message from
your brain to your glands when you perceive danger— in either case the
command being to increase the speed of some chemical and mechanical
processes. The output is the controlled quantity. It could be the en-
gine revolutions-per-minute, which shows on the tachometer; or it could
be the blood flow to your tissues. The measurements of the internal state
of the plant might include the output plus other engine variables (mani-
fold pressure for instance) or physiological variables (blood pressure, heart
rate, blood carbon dioxide). As the plant responds, somewhere under the
car’s hood or in your body’s neurochemistry a feedback control uses these
measurements to modify the effect of the command.

Automobile design engineers may try, perhaps using electronic fuel in-
jection, to give you fuel economy and keep the emissions of unburnt fuel
low at the same time; such a design uses modern control principles, and
the automobile industry is beginning to implement these ideas with neural
networks.

To be able to use mathematical or computational methods to improve
the control system’s response to its input command, mathematically the
plant and the feedback controller are modeled by differential equations,
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2 D.L. Elliott

PlantΣ
Command Output

Feedback
Control

Measurement

+

−

FIGURE 1. Control System

difference equations, or, as will be seen, by a neural network with internal
time lags as in Chapter 5.

Some of the models in this book are industrial rolling mills (Chapter 8),
a small space robot (Chapter 11), robot arms (Chapter 6) and in Chapter
10 aerospace vehicles which must adapt or reconfigure the controls after
the system has changed, perhaps from damage. Industrial control is often
a matter of adjusting one or more simple controllers capable of supplying
feedback proportional to error, accumulated error (“integral”) and rate of
change of error (“derivative”)— a so-called PID controller. Methods of
replacing these familiar controllers with a neural network-based device are
shown in Chapter 9.

The motivation for control system design is often to optimize a cost, such
as the energy used or the time taken for a control action. Control designed
for minimum cost is called optimal control.

The problem of approximating optimal control in a practical way can be
attacked with neural network methods, as in Chapter 11; its authors, well-
known control theorists, use the “receding-horizon” approach of Mayne and
Michalska and use a simple space robot as an example. Chapter 6 also is
concerned with control optimization by neural network methods. One type
of optimization (achieving a goal as fast as possible under constraints) is
applied by such methods to the real industrial problem of Chapter 8.

Some biologists think that our biological evolution has to some extent op-
timized the controls of our pulmonary and circulatory systems well enough
to keep us alive and running in a dangerous world long enough to perpet-
uate our species.

Control aspects of the human nervous system are addressed in Chapters
2, 3 and 4. Chapter 2 is from a team using neural networks in signal pro-
cessing; it shows some ways that speech processing may be simulated and
sequences of phonemes recognized, using Hidden Markov methods. Chap-
ter 3, whose authors are versed in neurology and computer science, uses
a neural network with inputs from a model of the human arm to see how
the arm’s motions may map to the cerebral cortex in a computational way.
Chapter 4, which was written by a team representing control engineer-
ing, chemical engineering and human physiology, examines the workings of
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1. Introduction 3

blood pressure control (the vagal baroreceptor reflex) and shows how to
mimic this control system for chemical process applications.

2 What is a Neural Network?

The “neural networks” referred to in this book are a artificial neural net-
works, which are a way of using physical hardware or computer software
to model computational properties analogous to some that have been pos-
tulated for real networks of nerves, such as the ability to learn and store
relationships. A neural network can smoothly approximate and interpo-
late multivariable data, that might otherwise require huge databases, in a
compact way; the techniques of neural networks are now well accepted for
nonlinear statistical fitting and prediction (statisticians’ ridge regression
and projection pursuit are similar in many respects).

A commonly used artificial neuron shown in Figure 2 is a simple struc-
ture, having just one nonlinear function of a weighted sum of several data
inputs x1, . . . , xn; this version, often called a perceptron, computes what
statisticians call a ridge function (as in “ridge regression”)

y = σ(w0 +
n∑

i=1

wixi),

and for the discussion below assume that the function σ is a smooth, in-
creasing, bounded function.

Examples of sigmoids in common use are:

σ1(u) = tanh(u),
σ2(u) = 1/(1 + exp(−u)), or
σ3(u) = u/(1 + |u|),

generically called “sigmoid functions” from their S-shape. The weight-
adjustement algorithm will use the derivatives of these sigmoid functions,
which are easily evaluated for the examples we have listed by using the
differential equations they satisfy:

σ′
1 = 1 − (σ1)2

σ′
2 = σ2(1 − σ2)

σ′
3 = (1 − |σ3|)2

Statisticians use many other such functions, including sinusoids. In
proofs of the adequacy of neural networks to represent quite general smooth
functions of many variables, the sinusoids are an important tool.
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4 D.L. Elliott
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FIGURE 2. Feedforward neuron

The weights wi are to be selected or adjusted to make this ridge function
approximate some known relation which may or may not be known in ad-
vance. The basic principles of weight adjustment were originally motivated
by ideas from the psychology of learning (see Chapter 1).

In order to to learn functions more complex than ridge functions, one
must use networks of perceptrons. The simple example of Figure 3 shows
a feedforward perceptron network, the kind you will find most often
in the following chapters 1.

Thus the general idea of feedforward networks is that they allow us to
realize functions of many variables by adjusting the network weights. Here
is a typical scenario corresponding to Figure 2:

• From experiment we obtain many numerical data samples of each
of three different “input” variables which we arrange as an array
array X = (x1, x2, x3), and another variable Y which has a functional
relation to the inputs, Y = F (X).

• X is used as input to two perceptrons, with adjustable weight arrays
[w1 j , w2 j : j = 1, 2, 3]; their outputs are y1, y2.

• This network’s single output is Ŷ = a1y1 +a2y2 where a1, a2 can also
be adjusted; the set of all the adjustable weights is

W = {w1 0, w1 1, · · · , w2 3, a1, a2}.

• The network’s input-output relationship is now

Ŷ
∆= F̂ (X;W ) =

2∑
i=1


aiσ(w0 i +

3∑
j=1

wi jxj)




1There are several other kinds of neural network in the book, such as CMAC and
Radial Basis Function networks.
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FIGURE 3. A small feedforward network

• We systematically search for values of the numbers in W which give
us the best approximation for Y by minimizing a suitable cost such
as the sum of the squared errors taken over all available inputs; that
is, the weights should achieve

min
W

∑
X

(F (X) − F̂ (X;W ))2.

The purpose of doing this is that now we can rapidly estimate Y using the
optimized network, with good interpolation properties (called generaliza-
tion in the neural network literature). In the technique just described,
supervised training, the functional relationship Y = F (X) is available
to us from many experiments, and the weights are adjusted to make the
squared error (over all data) between the network’s output Ŷ and the de-
sired output Y as small as possible. Control engineers will find this notion
natural, and to some extent neural adaptation as an organism learns may
resemble weight adjustment. In biology the method by which the adjust-
ment occurs is not yet understood; but in artificial neural networks of the
kind just described, and for the quadratic cost described above, one may
use a convenient method with many parallels in engineering and science,
based on the “Chain Rule” from Advanced Calculus, called backpropaga-
tion.

The kind of weight adjustment (learning) that has been discussed so far
is called supervised learning, because at each step of adjustment target
values are available. In building model-free control systems one may also
consider more general frameworks in which a control is evolved by mini-
mizing a cost, such as the time-to-target or energy-to-target. Chapter 1 is
a scholarly survey of a type of unsupervised learning known as reinforce-
ment learning, a concept that originated in psychology and has been of
great interest in applications to robotics, dynamic games, and the process
industries. Stabilizing certain control systems, such as the robot arms and
similar nonlinear systems considered in Chapter 6, can be achieved with
on-line learning.

One of the most promising current applications of neural network tech-
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nology is to “intelligent sensors,” or “virtual instruments” as described in
Chapter 7 by a chemical process control specialist; the important variables
in an industrial process may not be available during the production run,
but with some nonlinear statistics it may be possible to associate them with
the available measurements, such as time-temperature histories. (Plasma-
etching of silicon wafers is one such application.) This chapter considers
practical statistical issues including the effects of missing data, outliers,
and data which is highly correlated. Other techniques of intelligent con-
trol, such as fuzzy logic, can be combined with neural networks as in the
reconfigurable control of Chapter 10.

If the input variables xt are samples of a time-series and a future value
Y is to be predicted, the neural network becomes dynamic. The samples
x1, . . . , xn can be stored in a delay-line, which serves as the input layer
to a feedforward network of the type illustrated in Figure 3. (Electrical
engineers know the linear version of this computational architecture as an
adaptive filter). Chapter 5 uses fundamental ideas of nonlinear dynamical
systems and control system theory to show how dynamic neural networks
can identify (replicate the behavior of) nonlinear systems. The techniques
used are similar to those introduced by F. Takens in studying turbulence
and chaos.

Most control applications of neural networks currently use high-speed mi-
crocomputers, often with coprocessor boards that provide single-instruction
multiple-data parallel computing well-suited to the rapid functional eval-
uations needed to provide control action. The weight adjustment is often
performed off-line, with historical data; provision for online adjustment
or even for online learning, as some of the chapters describe, can permit
the controller to adapt to a changing plant and environment. As cheaper
and faster neural hardware develops, it becomes important for the control
engineer to anticipate where it may be intelligently applied.
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Reinforcement Learning

Andrew G. Barto

ABSTRACT Reinforcement learning refers to ways of improving perfor-
mance through trial-and-error experience. Despite recent progress in de-
veloping artificial learning systems, including new learning methods for ar-
tificial neural networks, most of these systems learn under the tutelage of a
knowledgeable ‘teacher’ able to tell them how to respond to a set of training
stimuli. But systems restricted to learning under these conditions are not
adequate when it is costly, or even impossible, to obtain the required train-
ing examples. Reinforcement learning allows autonomous systems to learn
from their experiences instead of exclusively from knowledgeable teachers.
Although its roots are in experimental psychology, this chapter provides an
overview of modern reinforcement learning research directed toward devel-
oping capable artificial learning systems.

1 Introduction

The term reinforcement comes from studies of animal learning in exper-
imental psychology, where it refers to the occurrence of an event, in the
proper relation to a response, that tends to increase the probability that
the response will occur again in the same situation [Kim61]. Although the
specific term “reinforcement learning” is not used by psychologists, it has
been widely adopted by theorists in engineering and artificial intelligence
to refer to a class of learning tasks and algorithms based on this princi-
ple of reinforcement. Mendel and McLaren, for example, used the term
“reinforcement learning control” in their 1970 paper describing how this
principle can be applied to control problems [MM70]. The simplest rein-
forcement learning methods are based on the common-sense idea that if an
action is followed by a satisfactory state of affairs, or an improvement in the
state of affairs, then the tendency to produce that action is strengthened,
i.e., reinforced. This basic idea follows Thorndike’s [Tho11] classical 1911
“Law of Effect”:

Of several responses made to the same situation, those which
are accompanied or closely followed by satisfaction to the an-
imal will, other things being equal, be more firmly connected
with the situation, so that, when it recurs, they will be more
likely to recur; those which are accompanied or closely followed
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by discomfort to the animal will, other things being equal, have
their connections with that situation weakened, so that, when it
recurs, they will be less likely to occur. The greater the satisfac-
tion or discomfort, the greater the strengthening or weakening
of the bond.

Although this principle has generated controversy over the years, it re-
mains influential because its general idea is supported by many experiments
and it makes such good intuitive sense.

Reinforcement learning is usually formulated mathematically as an opti-
mization problem with the objective of finding an action, or a strategy for
producing actions, that is optimal in some well-defined way. Although in
practice it is more important that a reinforcement learning system continue
to improve than it is for it to actually achieve optimal behavior, optimal-
ity objectives provide a useful categorization of reinforcement learning into
three basic types, in order of increasing complexity: non-associative, as-
sociative, and sequential. Non-associative reinforcement learning involves
determining which of a set of actions is best in bringing about a satisfactory
state of affairs. In associative reinforcement learning, different actions are
best in different situations. The objective is to form an optimal associative
mapping between a set of stimuli and the actions having the best immedi-
ate consequences when executed in the situations signaled by those stimuli.
Thorndike’s Law of Effect refers to this kind of reinforcement learning. Se-
quential reinforcement learning retains the objective of forming an optimal
associative mapping but is concerned with more complex problems in which
the relevant consequences of an action are not available immediately after
the action is taken. In these cases, the associative mapping represents a
strategy, or policy, for acting over time. All of these types of reinforcement
learning differ from the more commonly studied paradigm of supervised
learning, or “learning with a teacher”, in significant ways that I discuss in
the course of this article.

This chapter is organized into three main sections, each addressing one
of these three categories of reinforcement learning. For more detailed
treatments, the reader should consult refs. [Bar92, BBS95, Sut92, Wer92,
Kae96].

2 Non-Associative Reinforcement Learning

Figure 1 shows the basic components of a non-associative reinforcement
learning problem. The learning system’s actions influence the behavior
of some process, which might also be influenced by random or unknown
factors (labeled “disturbances” in Figure 1). A critic sends the learning
system a reinforcement signal whose value at any time is a measure of
the “goodness” of the current process behavior. Using this information,
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FIGURE 1. Non-Associative Reinforcement Learning. The learning system’s
actions influence the behavior of a process, which might also be influenced by
random or unknown “disturbances”. The critic evaluates the actions’ immediate
consequences on the process and sends the learning system a reinforcement signal.

the learning system updates its action-generation rule, generates another
action, and the process repeats.

An example of this type of problem has been extensively studied by
theorists studying learning automata.[NT89] Suppose the learning system
has m actions a1, a2, . . ., am, and that the reinforcement signal simply
indicates “success” or “failure”. Further, assume that the influence of the
learning system’s actions on the reinforcement signal can be modeled as
a collection of success probabilities d1,d2, . . ., dm, where di is the proba-
bility of success given that the learning system has generated ai (so that
1 − di is the probability that the critic signals failure). Each di can be
any number between 0 and 1 (the di’s do not have to sum to one), and
the learning system has no initial knowledge of these values. The learning
system’s objective is to asymptotically maximize the probability of receiv-
ing “success”, which is accomplished when it always performs the action
aj such that dj = max{di|i = 1, . . . ,m}. There are many variants of this
task, some of which are better known as m-armed bandit problems [BF85].

One class of learning systems for this problem consists of stochastic learn-
ing automata. [NT89] Suppose that on each trial, or time step, t, the
learning system selects an action a(t) from its set of m actions according
to a probability vector (p1(t), . . . , pn(t)), where pi(t) = Pr{a(t) = ai}. A
stochastic learning automaton implements a common-sense notion of rein-
forcement learning: if action ai is chosen on trial t and the critic’s feedback
is “success”, then pi(t) is increased and the probabilities of the other ac-
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tions are decreased; whereas if the critic indicates “failure”, then pi(t) is
decreased and the probabilities of the other actions are appropriately ad-
justed. Many methods that have been studied are similar to the following
linear reward-penalty (LR−P ) method:

If a(t) = ai and the critic says “success”, then

pi(t + 1) = pi(t) + α(1 − pi(t))
pj(t + 1) = (1 − α)pj(t), j �= i.

If a(t) = ai and the critic says “failure”, then

pi(t + 1) = (1 − β)pi(t)

pj(t + 1) =
β

m − 1
+ (1 − β)pj(t), j �= i,

where 0 < α < 1, 0 ≤ β < 1.

The performance of a stochastic learning automaton is measured in terms
of how the critic’s signal tends to change over trials. The probability that
the critic signals success on trial t is M(t) =

∑m
i=1 pi(t)di. An algorithm is

optimal if for all sets of success probabilities {di},

lim
t→∞E[M(t)] = dj ,

where dj = max{di|i = 1, . . . ,m} and E is the expectation over all possible
sequences of trials. An algorithm is said to be ε-optimal , ε > 0, if for all
sets of success probabilities and any ε > 0, there exist algorithm parameters
such that

lim
t→∞E[M(t)] = dj − ε.

Although no stochastic learning automaton algorithm has been proved to
be optimal, the LR−P algorithm given above with β = 0 is ε-optimal,
where α has to decrease as ε decreases. Additional results exist about
the behavior of groups of stochastic learning automata forming teams (a
single critic broadcasts its signal to all the team members) or playing games
(there is a different critic for each automaton) [NT89].

Following are key observations about non-associative reinforcement learn-
ing:

1. Uncertainty plays a key role in non-associative reinforcement learn-
ing, as it does in reinforcement learning in general. For example, if
the critic in the example above evaluated actions deterministically
(i.e., di = 1 or 0 for each i), then the problem would be a much
simpler optimization problem.

www.4electron.com



2. Reinforcement Learning 11

2. The critic is an abstract model of any process that evaluates the learn-
ing system’s actions. The critic does not need to have direct access to
the actions or have any knowledge about the interior workings of the
process influenced by those actions. In motor control, for example,
judging the success of a reach or a grasp does not require access to the
actions of all the internal components of the motor control system.

3. The reinforcement signal can be any signal evaluating the learning
system’s actions, and not just the success/failure signal described
above. Often it takes on real values, and the objective of learning is
to maximize its expected value. Moreover, the critic can use a vari-
ety of criteria in evaluating actions, which it can combine in various
ways to form the reinforcement signal. Any value taken on by the
reinforcement signal is often simply called a reinforcement (although
this is at variance with traditional use of the term in psychology).

4. The critic’s signal does not directly tell the learning system what ac-
tion is best; it only evaluates the action taken. The critic also does not
directly tell the learning system how to change its actions. These are
key features distinguishing reinforcement learning from supervised
learning, and we discuss them further below. Although the critic’s
signal is less informative than a training signal in supervised learn-
ing, reinforcement learning is not the same as the learning paradigm
called unsupervised learning because, unlike that form of learning, it
is guided by external feedback.

5. Reinforcement learning algorithms are selectional processes. There
must be variety in the action-generation process so that the conse-
quences of alternative actions can be compared to select the best.
Behavioral variety is called exploration; it is often generated through
randomness (as in stochastic learning automata), but it need not be.
Because it involves selection, non-associative reinforcement learning
is similar to natural selection in evolution. In fact, reinforcement
learning in general has much in common with genetic approaches to
search and problem solving [Gol89, Hol75].

6. Due to this selectional aspect, reinforcement learning is traditionally
described as learning through “trial-and-error”. However, one must
take care to distinguish this meaning of “error” from the type of
error signal used in supervised learning. The latter, usually a vec-
tor, tells the learning system the direction in which it should change
each of its action components. A reinforcement signal is less informa-
tive. It would be better to describe reinforcement learning as learning
through “trial-and-evaluation”.

7. Non-associative reinforcement learning is the simplest form of learn-
ing which involves the conflict between exploitation and exploration.
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In deciding which action to take, the learning system has to bal-
ance two conflicting objectives: it has to use what it has already
learned to obtain success (or, more generally, to obtain high evalu-
ations), and it has to behave in new ways to learn more. The first
is the need to exploit current knowledge; the second is the need to
to explore to acquire more knowledge. Because these needs ordinar-
ily conflict, reinforcement learning systems have to somehow balance
them. In control engineering, this is known as the conflict between
control and identification. This conflict is absent from supervised and
unsupervised learning, unless the learning system is also engaged in
influencing which training examples it sees.

3 Associative Reinforcement Learning

Because its only input is the reinforcement signal, the learning system in
Figure 1 cannot discriminate between different situations, such as different
states of the process influenced by its actions. In an associative reinforce-
ment learning problem, in contrast, the learning system receives stimulus
patterns as input in addition to the reinforcement signal (Figure 2). The
optimal action on any trial depends on the stimulus pattern present on
that trial. To give a specific example, consider this generalization of the
non-associative task described above. Suppose that on trial t the learn-
ing system senses stimulus pattern x(t) and selects an action a(t) = ai

through a process that can depend on x(t). After this action is executed,
the critic signals success with probability di(x(t)) and failure with probabil-
ity 1−di(x(t)). The objective of learning is to maximize success probability,
achieved when on each trial t the learning system executes the action a(t) =
aj where aj is the action such that dj(x(t)) = max{di(x(t))|i = 1, . . . , m}.

The learning system’s objective is thus to learn an optimal associative
mapping from stimulus patterns to actions. Unlike supervised learning, ex-
amples of optimal actions are not provided during training; they have to be
discovered through exploration by the learning system. Learning tasks like
this are related to instrumental, or cued operant, tasks studied by animal
learning theorists, and the stimulus patterns correspond to discriminative
stimuli.

Several associative reinforcement learning rules for neuron-like units have
been studied. Figure 3 shows a neuron-like unit receiving a stimulus pattern
as input in addition to the critic’s reinforcement signal. Let x(t), w(t), a(t),
and r(t) respectively denote the stimulus vector, weight vector, action, and
the resultant value of the reinforcement signal for trial t. Let s(t) denote
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FIGURE 2. Associative Reinforcement Learning. The learning system receives
stimulus patterns in addition to a reinforcement signal. Different actions can be
optimal depending on the stimulus patterns.

the weighted sum of the stimulus components at trial t:

s(t) =
n∑

i=1

wi(t)xi(t),

where wi(t) and xi(t) are respectively the i-th components of the weight
and stimulus vectors.
Associative Search Unit—One simple associative reinforcement learning
rule is an extension of the Hebbian correlation learning rule. This rule was
called the associative search rule by Barto, Sutton, and Brouwer [BSB81,
BS81, BAS82] and was motivated by Klopf’s [Klo72, Klo82] theory of the
self-interested neuron. To exhibit variety in its behavior, the unit’s output
is a random variable depending on the activation level. One way to do this
is as follows:

a(t) =
{

1 with probability p(t)
0 with probability 1 − p(t), (1)

where p(t), which must be between 0 and 1, is an increasing function (such
as the logistic function) of s(t). Thus, as the weighted sum increases (de-
creases), the unit becomes more (less) likely to fire (i.e., to produce an
output of 1). The weights are updated according to the following rule:

∆w(t) = η r(t)a(t)x(t),
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FIGURE 3. A Neuron-Like Adaptive Unit. Input pathways labeled x1 through
xn carry non-reinforcing input signals, each of which has an associated weight
wi, 1 ≤ i ≤ n; the pathway labelled r is a specialized input for delivering rein-
forcement; the unit’s output pathway is labelled a.

where r(t) is +1 (success) or −1 (failure).
This is just the Hebbian correlation rule with the reinforcement signal

acting as an additional modulatory factor. It is understood that r(t) is
the critic’s evaluation of the action a(t). In a more real-time version of
the learning rule, there must necessarily be a time delay between an action
and the resulting reinforcement. In this case, if the critic takes time τ to
evaluate an action, the rule appears as follows, with t now acting as a time
index instead of a trial number:

∆w(t) = η r(t)a(t − τ)x(t − τ), (2)

where η > 0 is the learning rate parameter. Thus, if the unit fires in the
presence of an input x, possibly just by chance, and this is followed by “suc-
cess”, the weights change so that the unit will be more likely to fire in the
presence of x, and inputs similar to x, in the future. A failure signal makes
it less likely to fire under these conditions. This rule, which implements
the Law of Effect at the neuronal level, makes clear the three factors mini-
mally required for associative reinforcement learning: a stimulus signal, x;
the action produced in its presence, a; and the consequent evaluation, r.

Selective Bootstrap and Associative Reward-Penalty Units—
Widrow, Gupta, and Maitra [WGM73] extended the Widrow/Hoff, or LMS,
learning rule [WS85] so that it could be used in associative reinforcement
learning problems. Since the LMS rule is a well-known rule for super-
vised learning, its extension to reinforcement learning helps illuminate one
of the differences between supervised learning and associative reinforce-
ment learning, which Widrow et al.[WGM73] called “learning with a critic”.
They called their extension of LMS the selective bootstrap rule. Unlike the
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associative search unit described above, a selective bootstrap unit’s output
is the usual deterministic threshold of the weighted sum:

a(t) =
{

1 if s(t) > 0
0 otherwise.

In supervised learning, an LMS unit receives a training signal, z(t), that
directly specifies the desired action at trial t and updates its weights as
follows:

∆w(t) = η[z(t) − s(t)]x(t). (3)

In contrast, a selective bootstrap unit receives a reinforcement signal, r(t),
and updates its weights according to this rule:

∆w(t) =
{

η[a(t) − s(t)]x(t) if r(t) = “success′′

η[1 − a(t) − s(t)]x(t) if r(t) = “failure′′,

where it is understood that r(t) evaluates a(t). Thus, if a(t) produces
“success”, the LMS rule is applied with a(t) playing the role of the desired
action. Widrow et al. [WGM73] called this “positive bootstrap adapta-
tion”: weights are updated as if the output actually produced was in fact
the desired action. On the other hand, if a(t) leads to “failure”, the desired
action is 1− a(t), i.e., the action that was not produced. This is “negative
bootstrap adaptation”. The reinforcement signal switches the unit between
positive and negative bootstrap adaptation, motivating the term “selective
bootstrap adaptation”. Widrow et al. [WGM73] showed how this unit was
capable of learning a strategy for playing blackjack, where wins were suc-
cesses and losses were failures. However, the learning ability of this unit is
limited because it lacks variety in its behavior.

A closely related unit is the associative reward-penalty (AR−P ) unit of
Barto and Anandan [BA85]. It differs from the selective bootstrap algo-
rithm in two ways. First, the unit’s output is a random variable like that
of the associative search unit (Equation 1). Second, its weight-update rule
is an asymmetric version of the selective bootstrap rule:

∆w(t) =
{

η[a(t) − s(t)]x(t) if r(t) = “success′′

λη[1 − a(t) − s(t)]x(t) if r(t) = “failure′′,

where 0 ≤ λ ≤ 1 and η > 0. This is a special case of a class of AR−P rules
for which Barto and Anandan [BA85] proved a convergence theorem giving
conditions under which it asymptotically maximizes the probability of suc-
cess in associative reinforcement learning tasks like those described above.
The rule’s asymmetry is important because its asymptotic performance
improves as λ approaches zero.

One can see from the selective bootstrap and AR−P units that a rein-
forcement signal is less informative than a signal specifying a desired action.
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It is also less informative than the error z(t) − a(t) used by the LMS rule.
Because this error is a signed quantity, it tells the unit how , i.e., in what
direction, it should change its action. A reinforcement signal—by itself—
does not convey this information. If the learner has only two actions, as in
a selective bootstrap unit, it is easy to deduce, or at least estimate, the de-
sired action from the reinforcement signal and the actual action. However,
if there are more than two actions the situation is more difficult because
the the reinforcement signal does not provide information about actions
that were not taken.

Stochastic Real-Valued Unit—One approach to associative reinforce-
ment learning when there are more than two actions is illustrated by the
Stochastic Real-Valued (SRV) unit of Gullapalli [Gul90]. On any trial t, an
SRV unit’s output is a real number, a(t), produced by applying a function
f , such as the logistic function, to the weighted sum, s(t), plus a random
number noise(t):

a(t) = f [s(t) + noise(t)].

The random number noise(t) is selected according to a mean-zero Gaussian
distribution with standard deviation σ(t). Thus, f [s(t)] gives the expected
output on trial t, and the actual output varies about this value, with σ(t)
determining the amount of exploration the unit exhibits on trial t.

Before describing how the SRV unit determines σ(t), we describe how
it updates the weight vector w(t). The weight-update rule requires an
estimate of the amount of reinforcement expected for acting in the presence
of stimulus x(t). This is provided by a supervised-learning process that
uses the LMS rule to adjust another weight vector, v, used to determine
the reinforcement estimate r̂:

r̂(t) =
m∑

i=1

vi(t)xi(t),

with
∆v(t) = η[r(t) − r̂(t)]x(t).

Given this r̂(t), w(t) is updated as follows:

∆w(t) = η[r(t) − r̂(t)]
[
noise(t)

σ(t)

]
x(t),

where η > 0 is a learning rate parameter. Thus, if noise(t) is positive,
meaning that the unit’s output is larger than expected, and the unit re-
ceives more than the expected reinforcement, the weights change to increase
the expected output in the presence of x(t); if it receives less than the ex-
pected reinforcement, the weights change to decrease the expected output.
The reverse happens if noise(t) is negative. Dividing by σ(t) normalizes
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the weight change. Changing σ during learning changes the amount of
exploratory behavior the unit exhibits.

Gullapalli [Gul90] suggests computing σ(t) as a monotonically decreas-
ing function of r̂(t). This implies that the amount of exploration for any
stimulus vector decreases as the amount of reinforcement expected for act-
ing in the presence of that stimulus vector increases. As learning proceeds,
the SRV unit tends to act with increasing determinism in the presence of
stimulus vectors for which it has learned to achieve large reinforcement
signals. This is somewhat like simulated annealing [KGV83] except that it
is stimulus-dependent and is controlled by the progress of learning. SRV
units have been used as output units of reinforcement learning networks in
a number of applications (e.g.,refs. [GGB92, GBG94]).

Weight Perturbation—For the units described above (except the selec-
tive bootstrap unit), behavioral variability is achieved by including random
variation in the unit’s output. Another approach is to randomly vary the
weights. Following Alspector et. al [AMY+93], let δw be a vector of small
perturbations, one for each weight, which are independently selected from
some probability distribution. Letting J denote the function evaluating the
system’s behavior, the weights are updated as follows:

∆w = −η

[
J(w + δw) − J(w)

δw

]
, (4)

where η > 0 is a learning rate parameter. This is a gradient descent
learning rule that changes weights according to an estimate of the gradient
of E with respect to the weights. Alspector et. al [AMY+93] say that the
method measures the gradient instead of calculates it as the LMS and
error backpropagation [RHW86] algorithms do. This approach has been
proposed by several researchers for updating the weights of a unit, or of
a network, during supervised learning, where J gives the error over the
training examples. However, J can be any function evaluating the unit’s
behavior, including a reinforcement function (in which case, the sign of the
learning rule would be changed to make it a gradient ascent rule).

Another weight perturbation method for neuron-like units is provided
by Unnikrishnan and Venugopal’s [KPU94] use of the Alopex algorithm,
originally proposed by Harth and Tzanakou [HT74], for adjusting a unit’s
(or a network’s) weights. A somewhat simplified version of the weight-
update rule is the following:

∆w(t) = ηd(t), (5)

where η is the learning rate parameter and d(t) is a vector whose compo-
nents, di(t), are equal to either +1 or −1. After the first two iterations in
which they are assigned randomly, successive values are determined by:

di(t) =
{

di(t − 1) with probability p(t)
−di(t − 1) with probability 1 − p(t).
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Thus, p(t) is the probability that the direction of the change in weight
wi from iteration t to iteration t + 1 will be the same as the direction it
changed from iteration t−2 to t−1, whereas 1−p(t) is the probability that
the weight will move in the opposite direction. The probability p(t) is a
function of the change in the value of the objective function from iteration
t−1 to t; specifically, p(t) is a positive increasing function of J(t)−J(t−1)
where J(t) and J(t−1) are respectively the values of the function evaluating
the behavior of the unit at iteration t and t−1. Consequently, if the unit’s
behavior has moved uphill by a large amount, as measured by J , from
iteration t− 1 to iteration t, then p(t) will be large so that the probability
of the next step in weight space being in the same direction as the preceding
step will be high. On the other hand, if the unit’s behavior moved downhill,
then the probability will be high that some of the weights will move in the
opposite direction, i.e., that the step in weight space will be in some new
direction.

Although weight perturbation methods are of interest as alternatives to
error backpropagation for adjusting network weights in supervised learn-
ing problems, they utilize reinforcement learning principles by estimating
performance through active exploration, in this case, achieved by adding
random perturbations to the weights. In contrast, the other methods de-
scribed above—at least to a first approximation—use active exploration to
estimate the gradient of the reinforcement function with respect to a unit’s
output instead of its weights. The gradient with respect to the weights
can then be estimated by differentiating the known function by which the
weights influence the unit’s output. Both approaches—weight perturba-
tion and unit-output perturbation—lead to learning methods for networks
to which we now turn our attention.

Reinforcement Learning Networks—The neuron-like units described
above can be readily used to form networks. The weight perturbation ap-
proach carries over directly to networks by simply letting w in Equations 4
and 5 be the vector consisting all the network’s weights. A number of re-
searchers have achieved success using this approach in supervised learning
problems. In these cases, one can think of each weight as facing a rein-
forcement learning task (which is in fact non-associative), even though the
network as a whole faces a supervised learning task. A significant advantage
of this approach is that it applies to networks with arbitrary connection
patterns, not just to feedforward networks.

Networks of AR−P units have been used successfully in both supervised
and associative reinforcement learning tasks ([Bar85, BJ87]), although only
with feedforward connection patterns. For supervised learning, the output
units learn just as they do in error backpropagation, but the hidden units
learn according to the AR−P rule. The reinforcement signal, which is de-
fined to increase as the output error decreases, is simply broadcast to all the
hidden units, which learn simultaneously. If the network as a whole faces
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FIGURE 4. A Network of Associative Reinforcement Units. The reinforcement
signal is broadcast to the all the units.

an associative reinforcement learning task, all the units are AR−P units, to
which the reinforcement signal is uniformly broadcast (Figure 4). The units
exhibit a kind of statistical cooperation in trying to increase their common
reinforcement signal (or the probability of success if it is a success/failure
signal) [Bar85]. Networks of associative search units and SRV units can be
similarly trained, but these units do not perform well as hidden units in
multilayer networks.

Methods for updating network weights fall on a spectrum of possibili-
ties ranging from weight perturbation methods that do not take advantage
of any of a network’s structure, to algorithms like error backpropagation,
which take full advantage of network structure to compute gradients. Unit-
output perturbation methods fall between these extremes by taking advan-
tage of the structure of individual units but not of the network as a whole.
Computational studies provide ample evidence that all of these methods
can be effective, and each method has its own advantages, with pertur-
bation methods usually sacrificing learning speed for generality and ease
of implementation. Perturbation methods are also of interest due to their
relative biological plausibility compared to error backpropagation.

Another way to use reinforcement learning units in networks is to use
them only as output units, with hidden units being trained via error back-
propagation. Weight changes of the output units determine the quantities
that are backpropagated. This approach allows the function approximation
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success of the error backpropagation algorithm to be enlisted in associative
reinforcement learning tasks (e.g., ref. [GGB92]).

The error backpropagation algorithm can be used in another way in
associative reinforcement learning problems. It is possible to train a multi-
layer network to form a model of the process by which the critic evaluates
actions. The network’s input consists of the stimulus pattern x(t) as well
as the current action vector a(t), which is generated by another component
of the system. The desired output is the critic’s reinforcement signal, and
training is accomplished by backpropagating the error

r(t) − r̂(t),

where r̂(t) is network’s output at time t. After this model is trained suf-
ficiently, it is possible to estimate the gradient of the reinforcement signal
with respect to each component of the action vector by analytically differ-
entiating the model’s output with respect to its action inputs (which can be
done efficiently by backpropagation). This gradient estimate is then used
to update the parameters of the action-generation component. Jordan and
Jacobs [JJ90] illustrate this approach. Note that the exploration required
in reinforcement learning is conducted in the model-learning phase of this
approach instead in the action-learning phase.

It should be clear from this discussion of reinforcement learning networks
that there are many different approaches to solving reinforcement learn-
ing problems. Furthermore, although reinforcement learning tasks can be
clearly distinguished from supervised and unsupervised learning tasks, it
is more difficult to precisely define a class of reinforcement learning algo-
rithms.

4 Sequential Reinforcement Learning

Sequential reinforcement requires improving the long-term consequences of
an action, or of a strategy for performing actions, in addition to short-term
consequences. In these problems, it can make sense to forego short-term
performance in order to achieve better performance over the long-term.
Tasks having these properties are examples of optimal control problems,
sometimes called sequential decision problems when formulated in discrete
time.

Figure 2, which shows the components of an associative reinforcement
learning system, also applies to sequential reinforcement learning, where
the box labeled “process” is a system being controlled. A sequential re-
inforcement learning system tries to influence the behavior of the process
in order to maximize a measure of the total amount of reinforcement that
will be received over time. In the simplest case, this measure is the sum of
the future reinforcement values, and the objective is to learn an associative
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mapping that at time step t selects, as function of the stimulus pattern
x(t), an action a(t) that maximizes

∞∑
k=0

r(t + k),

where r(t+k) is the reinforcement signal at step t+k. Such an associative
mapping is called a policy.

Because this sum might be infinite in some problems, and because the
learning system usually has control only over its expected value, researchers
often consider the following discounted sum instead:

E{r(t) + γr(t + 1) + γ2r(t + 2) + · · ·} = E{
∞∑

k=0

γkr(t + k)}, (6)

where E is the expectation over all possible future behavior patterns of
the process. The discount factor determines the present value of future
reinforcement: a reinforcement value received k time steps in the future is
worth γk times what it would be worth if it were received now. If 0 ≤ γ < 1,
this infinite discounted sum is finite as long as the reinforcement values are
bounded. If γ = 0, the robot is “myopic” in being only concerned with
maximizing immediate reinforcement; this is the associative reinforcement
learning problem discussed above. As γ approaches one, the objective
explicitly takes future reinforcement into account: the robot becomes more
far-sighted.

An important special case of this problem occurs when there is no imme-
diate reinforcement until a goal state is reached. This is a delayed reward
problem in which the learning system has to learn how to make the pro-
cess enter a goal state. Sometimes the objective is to make it enter a goal
state as quickly as possible. A key difficulty in these problems has been
called the temporal credit-assignment problem: When a goal state is finally
reached, which of the decisions made earlier deserve credit for the resulting
reinforcement? A widely-studied approach to this problem is to learn an
internal evaluation function that is more informative than the evaluation
function implemented by the external critic. An adaptive critic is a system
that learns such an internal evaluation function.

Samuel’s Checker Player—Samuel’s [Sam59] checkers playing program
has been a major influence on adaptive critic methods. The checkers player
selects moves by using an evaluation function to compare the board con-
figurations expected to result from various moves. The evaluation function
assigns a score to each board configuration, and the system make the move
expected to lead to the configuration with the highest score. Samuel used
a method to improve the evaluation function through a process that com-
pared the score of the current board position with the score of a board
position likely to arise later in the game:
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. . . we are attempting to make the score, calculated for the
current board position, look like that calculated for the terminal
board position of the chain of moves which most probably occur
during actual play. (Samuel [Sam59])

As a result of this process of “backing up” board evaluations, the eval-
uation function should improve in its ability to evaluate long-term con-
sequences of moves. In one version of Samuel’s system, the evaluation
function was represented as a weighted sum of numerical features, and the
weights were adjusted based on an error derived by comparing evaluations
of current and predicted board positions.

If the evaluation function can be made to score each board configuration
according to its true promise of eventually leading to a win, then the best
strategy for playing is to myopically select each move so that the next
board configuration is the most highly scored. If the evaluation function
is optimal in this sense, then it already takes into account all the possible
future courses of play. Methods such as Samuel’s that attempt to adjust
the evaluation function toward this ideal optimal evaluation function are
of great utility.

Adaptive Critic Unit and Temporal Difference Methods—An adap-
tive critic unit is a neuron-like unit that implements a method similar to
Samuel’s. The unit is as in Figure 3 except that its output at time step
t is P (t) =

∑n
i=1 wi(t)xi(t), so denoted because it is a prediction of the

discounted sum of future reinforcement given in Expression 6. The adap-
tive critic learning rule rests on noting that correct predictions must satisfy
a consistency condition, which is a special case of the Bellman optimality
equation, relating predictions at adjacent time steps. Suppose that the pre-
dictions at any two successive time steps, say steps t and t+1, are correct.
This means that

P (t) = E{r(t) + γr(t + 1) + γ2r(t + 2) + · · ·}
P (t + 1) = E{r(t + 1) + γr(t + 2) + γ2r(t + 3) + · · ·}.

Now notice that we can rewrite P (t) as follows:

P (t) = E{r(t) + γ[r(t + 1) + γr(t + 2) + · · ·]}.
But this is exactly the same as

P (t) = E{r(t)} + γP (t + 1).

An estimate of the error by which any two adjacent predictions fail to
satisfy this consistency condition is called the temporal difference (TD)
error (Sutton [Sut88]):

r(t) + γP (t + 1) − P (t), (7)
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where r(t) is an used as an unbiased estimate of E{r(t)}. The term tem-
poral difference comes from the fact that this error essentially depends on
the difference between the critic’s predictions at successive time steps.

The adaptive critic unit adjusts its weights according to the following
learning rule:

∆w(t) = η[r(t) + γP (t + 1) − P (t)]x(t). (8)

A subtlety here is that P (t+1) should be computed using the weight vector
w(t), not w(t+1). This rule changes the weights to decrease the magnitude
of the TD error. Note that if γ = 0, it is equal to LMS learning rule
(Equation 3). In analogy with the LMS rule, we can think of r(t)+γP (t+1)
as the prediction target: it is the quantity that each P (t) should match.
The adaptive critic is therefore trying to predict the next reinforcement,
r(t), plus its own next prediction (discounted), γP (t + 1). It is similar to
Samuel’s learning method in adjusting weights to make current predictions
closer to later predictions.

Although this method is very simple computationally, it actually con-
verges to the correct predictions of discounted sum of future reinforcement
if these correct predictions can be computed by a linear unit. This is shown
by Sutton [Sut88], who discusses a more general class of methods, called
TD methods, that include Equation 8 as a special case. It is also possible to
learn nonlinear predictions using, for example, multi-layer networks trained
by back propagating the TD error. Using this approach, Tesauro [Tes92]
produced a system that learned how to play expert-level backgammon.

Actor-Critic Architectures—In an actor-critic architecture, the predic-
tions formed by an adaptive critic act as reinforcement for an associative
reinforcement learning component, called the actor (Figure 5). To distin-
guish the adaptive critic’s signal from the reinforcement signal supplied
by the original, non-adaptive critic, we call it the internal reinforcement
signal. The actor tries to maximize the immediate internal reinforcement
signal while the adaptive tries to predict total future reinforcement. To the
extent that the adaptive critic’s predictions of total future reinforcement
are correct given the actor’s current policy, the actor actually learns to in-
crease the total amount of future reinforcement (as measured, for example,
by expression 6).

Barto, Sutton, and Anderson [BSA83] used this architecture for learning
to balance a simulated pole mounted on a cart. The actor had two actions:
application of a force of a fixed magnitude to the cart in the plus or minus
directions. The non-adaptive critic only provided a signal of failure when
the pole fell past a certain angle or the cart hit the end of the track.
The stimulus patterns were vectors representing the state of the cart-pole
system. The actor was an associative search unit as described above except
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FIGURE 5. Actor-Critic Architecture. An adaptive critic provides an internal
reinforcement signal to an actor which learns a policy for controlling the process.

that it used an eligibility trace [Klo82] in its weight-update rule:

∆w(t) = η r̂(t)a(t)x̄(t),

where r̂(t) is the internal reinforcement signal and x̄(t) is an exponentially-
decaying trace of past input patterns. When a component of this trace
is non-zero, the corresponding synapse is eligible for modification. This is
used instead of the delayed stimulus pattern in Equation 2 to improve the
rate of learning. It is assumed that r̂(t) evaluates the action a(t). The
internal reinforcement is the TD error used by the adaptive critic:

r̂(t) = r(t) + γP (t + 1) − P (t).

This makes the original reinforcement signal, r(t), available to the actor, as
well as changes in the adaptive critic’s predictions of future reinforcement,
γP (t + 1) − P (t).

Action-Dependent Adaptive Critics—Another approach to sequential
reinforcement learning combines the actor and adaptive critic into a sin-
gle component that learns separate predictions for each action. At each
time step the action with the largest prediction is selected, except for a
random exploration factor that causes other actions to be selected occa-
sionally. An algorithm for learning action-dependent predictions of future
reinforcement, called the Q-learning algorithm, was proposed by Watkins
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in 1989, who proved that it converges to the correct predictions under cer-
tain conditions [WD92]. The term action-dependent adaptive critic was
first used by Lukes, Thompson, and Werbos [LTW90], who presented a
similar idea. A little-known forerunner of this approach was presented by
Bozinovski [Boz82].

For each pair (x, a) consisting of a process state, x, and and a possible
action, a, let Q(x, a) denote the total amount of reinforcement that will
be produced over the future if action a is executed when the process is in
state x and optimal actions are selected thereafter. Q-learning is a simple
on-line algorithm for estimating this function Q of state-action pairs. Let
Qt denote the estimate of Q at time step t. This is stored in a lookup
table with an entry for each state-action pair. Suppose the learning sys-
tem observes the process state x(t), executes action a(t), and receives the
resulting immediate reinforcement r(t). Then

∆Qt(x, a) ={
η(t)[r(t) + γP (t + 1) − Qt(x, a)] if x = x(t) and a = a(t)
0 otherwise,

where η(t) is a positive learning rate parameter that depends on t, and

P (t + 1) = max
a∈A(t+1)

Qt(x(t + 1), a),

with A(t + 1) denoting the set of all actions available at t + 1. If this set
consists of a single action for all t, Q-learning reduces to a lookup-table
version of the adaptive critic learning rule (Equation 8). Although the Q-
learning convergence theorem requires lookup-table storage (and therefore
finite state and action sets), many researchers have heuristically adapted
Q-learning to more general forms of storage, including multi-layer neural
networks trained by back propagation of the Q-learning error.

Dynamic Programming—Sequential reinforcement learning problems
(in fact, all reinforcement learning problems) are examples of stochastic
optimal control problems. Among the traditional methods for solving these
problems are dynamic programming (DP) algorithms. As applied to opti-
mal control, DP consists of methods for successively approximating optimal
evaluation functions and optimal decision rules for both deterministic and
stochastic problems. Bertsekas[Ber87] provides a good treatment of these
methods. A basic operation in all DP algorithms is “backing up” evalua-
tions in a manner similar to the operation used in Samuel’s method and in
the adaptive critic and Q-learning algorithms.

Recent reinforcement learning theory exploits connections with DP algo-
rithms while emphasizing important differences. For an overview and guide
to the literature, see [Bar92, BBS95, Sut92, Wer92, Kae96]. Following is a
summary of key observations.
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1. Because conventional dynamic programming algorithms require mul-
tiple exhaustive “sweeps” of the process state set (or a discretized
approximation of it), they are not practical for problems with very
large finite state sets or high-dimensional continuous state spaces.
Sequential reinforcement learning algorithms approximate DP algo-
rithms in ways designed to reduce this computational complexity.

2. Instead of requiring exhaustive sweeps, sequential reinforcement learn-
ing algorithms operate on states as they occur in actual or simulated
experiences in controlling the process. It is appropriate to view them
as Monte Carlo DP algorithms.

3. Whereas conventional DP algorithms require a complete and accu-
rate model of the process to be controlled, sequential reinforcement
learning algorithms do not require such a model. Instead of comput-
ing the required quantities (such as state evaluations) from a model,
they estimate these quantities from experience. However, reinforce-
ment learning methods can also take advantage of models to improve
their efficiency.

4. Conventional DP algorithms require lookup-table storage of evalua-
tions or actions for all states, which is impractical for large problems.
Although this is also required to guarantee convergence of reinforce-
ment learning algorithms, such as Q-learning, these algorithms can
be adapted for use with more compact storage means, such as neural
networks.

It is therefore accurate to view sequential reinforcement learning as a col-
lection of heuristic methods providing computationally feasible approxima-
tions of DP solutions to stochastic optimal control problems. Emphasizing
this view, Werbos [Wer92] uses the term heuristic dynamic programming
for this class of methods.

5 Conclusion

The increasing interest in reinforcement learning is due to its applicability
to learning by autonomous robotic agents. Although both supervised and
unsupervised learning can play essential roles in reinforcement learning sys-
tems, these paradigms by themselves are not general enough for learning
while acting in a dynamic and uncertain environment. Among the topics
being addressed by current reinforcement learning research are: extend-
ing the theory of sequential reinforcement learning to include generalizing
function approximation methods; understanding how exploratory behavior
is best introduced and controlled; sequential reinforcement learning when
the process state cannot be observed; how problem-specific knowledge can
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be effectively incorporated into reinforcement learning systems; the design
of modular and hierarchical architectures; and the relationship to brain
reward mechanisms.
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Neurocontrol in Sequence
Recognition

William J. Byrne
Shihab A. Shamma

ABSTRACT An artificial neural network intended for sequence modeling
and recognition is described. The network is based on a lateral inhibitory
network with controlled, oscillatory behavior so that it naturally models
sequence generation. Dynamic programming algorithms can be used to
transform the network into a sequence recognizer (e.g., for speech recogni-
tion). Markov decision theory is used to propose alternative, more neural
recognition control strategies as alternatives to dynamic programming.

1 Introduction

Central to many formulations of sequence recognition are problems in
sequential decision making. Typically, a sequence of events is observed
through a transformation which introduces uncertainty into the observa-
tions and, based on these observations, the recognition process produces a
hypothesis of the underlying events. The events in the underlying process
are constrained to follow a certain loose order, for example by a grammar,
so that decisions made early in the recognition process restrict or narrow
the choices which can be made later. This problem is well known and leads
to the use of Dynamic Programming (DP) algorithms [Bel57] so that un-
alterable decisions can be avoided until all available information has been
processed.

DP strategies are central to Hidden Markov Model (HMM) recogniz-
ers [SLM84, S.L85, Rab89, RBH86] and have also been widely used in
systems based on Neural Networks (e.g. [SIY+89, Bur88, BW89, SL92,
BM90, FLW90]) to transform static pattern classifiers into sequence recog-
nizers. The similarities between HMMs and neural network recognizers are
a topic of current interest [NS90, WHH+89]. The neural network recog-
nizers considered here will be those which fit within an HMM formulation.
This covers many networks which incorporate sequential decisions about
the observations, although some architectures of interest are not covered
by this formulation (e.g. [TH87, UHT91, Elm90]).

The use of dynamic programming in neural network based recognition
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systems is somewhat contradictory to the motivating principles of neuro-
computing. DP algorithms first require precise propagation of probabilities,
which can be implemented in a neural fashion [Bri90]. However, the com-
ponent events which make up the recognition hypothesis are then found by
back-tracking, which requires processing a linked list in a very non-neural
fashion.

The root of this anomaly is that the recognition process is not restricted
to be local in time. In the same way that neural computing emphasizes
that the behavior of processing units should depend only on physically
neighboring units, the sequential decision process used in recognition ide-
ally should use only temporally local information. Dynamic programming
algorithms which employ backtracking to determine a sequence of events
are clearly not temporally local.

This problem has also been addressed in HMMs. In many applications,
it is undesirable to wait until an entire sequence of observations is available
before beginning the recognition process. A related problem is that the
state space required by the DP algorithms becomes unmanageably large in
processing long observation sequences. As solutions to these problems, ap-
proximations to the globally optimal DP algorithms are used. For example,
the growth of the state space is restricted through pruning and real-time
sequence hypotheses are generated through partial-traceback algorithms.

Suboptimal approximations to the globally optimal DP search strate-
gies are therefore of interest in both HMM and neural network sequence
recognition. One approach to describing these suboptimal strategies is to
consider them as Markov Decision Problems (MDPs) [Ros83].

In this work the theoretical framework for such a description is presented.
The observation sequence is assumed to be generated by an HMM source
model, which allows the observation and recognition process to be described
jointly as a first order controlled Markov process. Using this joint formu-
lation the recognition problem can formulated as an MDP and recognition
strategies can be found using stochastic dynamic programming.

The relationship of this formulation to neural network based sequence
recognition will be discussed. A stochastic neural network architecture will
be presented which is particularly suited to use in both sequence generation
and recognition. This novel architecture will be employed to illustrate this
MDP description of sequence recognition. The intended application is to
speech recognition.

2 HMM Source Models

Computational models which describe temporal sequences must necessar-
ily balance accuracy against computational complexity. This problem is
addressed in HMMs by assuming that there is an underlying process which
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controls the production of the observed process. The underlying, or hid-
den, process is assumed to be Markov and the observations are generated
independently as a function of the current hidden state. The hidden state
process models event order and duration. Observation variability or uncer-
tainty is described by the state dependent observation distributions. The
value of this formulation is that statistics required for training and recogni-
tion can be computed efficiently. Brief definitions of the HMMs considered
in this paper are presented here.

The observation sequences are assumed to be generated by a discrete
time, discrete observation HMM source with hidden process S and obser-
vations I. The source is assumed to have N states and the model param-
eters are Λ = (a, b), with transition probabilities a and state-dependent
observation probabilities b.

The hidden process is a first-order Markov process which produces a state
sequence S = {St}T

t=1 where the process state takes values in {1, . . . , N},
and T is random. For convenience, it will be assumed that this process is
“left-to-right” so that that the sequence begins with the value 1, ends with
the value N , and intermediate values satisfy St ≤ St+1.

The state transition probabilities are

Pr(St+1 | St) =




1 − an St+1 = n St = n
an St+1 = n + 1 St = n
0 otherwise

where an is the probability of a transition from state n to state n + 1.
Pr(St+1 | St) is denoted aSt,St+1 .

At each time instant, the source generates an observation It according
to the distribution

Pr(It|St) = bSt
(It). (1)

Given a hidden state sequence the observations are independently gener-
ated. When the process leaves state N , the sequence ends; an end-of-string
symbol is generated to indicate this. The joint source likelihood can be
expressed as

Q(I, S) =
T∏

t=1

bSt
(It) aSt+1,St

.

3 Recognition: Finding the Best Hidden Sequence

In one formulation of HMM sequence recognition, a model is constructed
for each observation class and each of these models is used to score an
unknown sequence. The unknown sequence is then identified according to
which model gave it the maximum likelihood. For example, models {Qi}
would be trained for a set of words {W i}. An observation I would then
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be classified as an instance of a particular word W j if LQj (I) ≥ LQi(I) ∀i
according to some model-based likelihood criterion LQ.

The scoring criterion considered here is the maximum likelihood Viterbi
score maxR Q(I,R), so-called because of the DP-based algorithm used in
its computation [For67]. R is used to denote estimates of the hidden state
sequence, S, to emphasize the distinction between the unobserved source
hidden process which generated the observation and any estimate of it by
the recognizer. For an observed sequence I, the most likely state sequence
(MLSS) RI is found. The joint likelihood Q(I,RI) = maxR Q(I,R) is used
to score the observation.

The Viterbi algorithm is a dynamic programming technique which solves
maxR Q(I,R). For an observation sequence I, it directly produces the like-
lihood score maxR Q(I,R). Backtracking can then be used to find the
MLSS RI . If only the Viterbi score maxR Q(I,R) is desired, neural archi-
tectures are available which can compute this quantity [LG87].

This formulation is typical of Maximum Likelihood HMM based recog-
nizers. While it does not describe all neural network sequence recognition
systems, it can be used to describe systems which use a DP algorithm to
transform static pattern classifiers (i.e. feed-forward neural networks) into
sequence recognizers. Such systems have been widely experimented with
and have been termed Hidden Control Neural Networks [Lev93]. Neural
networks have also been used in HMM hybrid systems which also employ
the Viterbi algorithm [MB90, FLW90].

4 Controlled Sequence Recognition

If HMMs are considered as source models and inherently as models of
sequence generation, they are easily understood as systems in which the
hidden state process controls the production of the observation sequence.
In recognition, however, control flows in the opposite direction: observed
sequences control the formation of symbol sequences which are estimates
of the source hidden state sequence. An architecture which models both
sequence production and recognition should include mechanisms by which
the observable and underlying events can control each other. The role of
control processes in these two systems is presented in Figure 1. A complex
control framework of this nature can be described using Controlled Markov
Models [Ros83]. The value of formulating both sequence production
and recognition in terms of CMMs will be shown by using the same basic
architecture in both problems. This differs from the usual HMM formalism
in which a model is first trained in “source mode” and its parameters are
then embedded in a recognition system of a different architecture.
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FIGURE 1. Aspects of Control in Sequence Generation and Recognition.

4.1 Controlled Markov Models

A Controlled Markov Model (CMM) is a Markov process whose state tran-
sition probabilities can be modified by an applied control. The control is
usually a function of the current model state and is applied to improve sys-
tem performance as the process evolves. The CMM formalism can be used
to describe both sequence generation and MLSS recognition by Hidden
Markov Models.

Suppose a homogeneous Markov process Xt has the following transition
probability

P (Xt+1 = x′ |Xt) = ax,x′ Xt = x.

A CMM has a modified transition probability which depends upon an ap-
plied control process U

P (Xt+1 = x′ |Xt;Ut) = ax,x′(u) Xt = x, Ut = u.

Ut is called a stationary Markov control if it is a function of the process
state Xt, but depends only on the state identity and is not a function of
time.

The choice of which control to apply when the system is in a given state
is determined according to a control policy. If a policy is based upon
stationary, Markov controls, the resulting CMM will also yield a stationary
Markov process [Mak91]. If such a policy, π, is chosen, the probability
distribution it defines is denoted Pπ. It will later be necessary to take
expectations with respect to this distribution. Given that the process starts
from a state x, expectation with respect to the distribution which arises
from the control policy is denoted Eπ

x .
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Source Models: A CMM Description

The HMM source model describes jointly the observed process I and the
hidden process S involved in sequence production. The production of I
and S in a left-to-right HMM will be described here as a CMM.

It is assumed that the progression of the hidden process is completely
determined by a binary control signal Ut. Applying Ut = 0 forces St+1 to
equal St, i.e. there is no change in the hidden state from time t to time
t+1. Conversely, applying Ut = 1 forces a change of state so that if St = n,
then St+1 = n + 1.

The control Ut is a random process defined as

Pr(Ut = u | St) =
{

aSt,St
u = 0

aSt,St+1 u = 1 .

The original hidden process is effectively embedded in the control law.
While the effect of an applied control is exact, the choice of control is
random, and the choice is made in a way which duplicates the original
hidden process. This describes how the hidden Markov process can be
described as a CMM. The observations It are then generated as a function
of St according to Equation 1.

While this may seem somewhat contrived, its value will be shown in the
next section, in which this same CMM formalism will be used to describe
sequence recognition.

MLSS Recognition: A CMM Description

As described earlier, the MLSS is obtained using the Viterbi Algorithm.
The observed sequence I is assumed to be generated by an HMM jointly
with an unobserved sequence S. The log-likelihood of the observed se-
quence is computed as maxR log Q(I,R). R is used to distinguish the
recognizer state sequence from the source hidden state sequence S which
was generated, but not observed, with I.

For any recognition strategy, including but not necessarily the Viterbi
algorithm, the joint log-likelihood of the observed sequence and hidden
state sequence estimated by the recognizer is

log Q(I,R) =
T∑

t=1

log bRt
(It) aRt,Rt+1 .

This sum can be accumulated by the recognizer while the sequence is
observed and it is possible to describe this as a controlled process. Suppose
that at time t, the recognizer is in state Rt = n and the symbol It is
observed. The control ut = 0 can be applied so that Rt+1 = n, or ut = 1
can be applied so that Rt+1 = n + 1. The action of the applied control is
summarized as

f(R;u) =
{

R u = 0
R + 1 u = 1 . (2)
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The function f indicates the new recognizer state that results from applying
the control.

At each time, the recognizer receives a reward which depends upon the
observed symbol, the current recognizer state and the chosen control. If at
time t the recognizer state is Rt = n and It = i is observed, the reward
received is

v(i, n;ut) =
{

log bn(i) an,n ut = 0
log bn(i) an,n+1 ut = 1 . (3)

The observations are scored under the state observation distribution that
corresponds to the current recognizer state. Before the observation is
scored, the observer chooses whether or not to advance the recognizer state
at the next time instant. The contribution of the hidden state sequence
likelihood is added accordingly. The accumulated reward is then the joint,
log-likelihood of the recognizer state sequence and the observation sequence

∑
t

v(It, Rt;Ut) = log Q(I,R).

This is the cumulative score which the recognizer obtains by applying con-
trols Ut to produce the hidden state sequence estimate R in response to
the observations I.

Any control law could be used in recognition. While it would be un-
necessarily complicated to formulate the Viterbi algorithm in this way,
the recognition controls could be applied to obtain the Viterbi score and
the corresponding Viterbi sequence if the entire observation sequence were
known beforehand. However this is not possible if the recognizer is not
provided information from arbitrarily far into the future. In the next sec-
tion, suboptimal but causal recognition strategies will be described which
are based on providing limited, future information to the recognizer.

As a technical note, the source emits an end-of-string symbol when the
sequence ends. When this symbol is observed, the recognizer is driven
into the final state N , and the recognition process terminates. If some
future information is available, the sequence termination can be anticipated
gracefully.

The Viterbi score has been described as a decision-reward process which
occurs incrementally as estimates of the hidden state sequence are pro-
duced. In the next section, the choice of recognition control rules will be
investigated.

4.2 Source-Driven Recognizers

When the recognizer is not provided complete information about the future
it is necessary to guess what the correct recognizer behavior should be. It
is possible to describe this as a Markov Decision Problem [Ros83]. In this
formulation the optimal DP search is approximated by a gambling strategy

www.4electron.com



38 William J. Byrne, Shihab A. Shamma

which uses estimates of the future based on the stochastic source model.
To use Markov decision theory in finding a recognition control law, the
entire process - which includes both the source and the recognizer - must
be described as a Markov process.

The Joint Source-Recognizer Model

While the source process (It, St) is Markov, during recognition the pro-
cess St is not available. It is not true in general that It is Markov, i.e.
Pr(It+1|It

1) �= Pr(It+1|It) (where It+h
t denotes {It, . . . , It+h}), however it

is possible to accumulate a statistic

α̃t(n) = Pr(St = n | It
1)

so that the joint process (It, α̃t) is Markov. This state occupancy statis-
tic is found by the forward part of the scaled Forward-Backward algo-
rithm [S.L85] and is also well-known in the literature on the control of
partially observed Markov processes [Mon82].

More generally, it is also possible to compute state occupancy statis-
tics which maintain some limited “future” information. Define a vector of
conditional probabilities

α̃h
t (n) = Pr(St = n | It+h

1 ) n = 1, . . . , N

which maintains a current source state probability based on information
which extends h observations into the future. It is not difficult to show
(as in [KM93]) that α̃h

t satisfies a recursion in It+h
t and α̃h

t−1. This recur-
sion is denoted α̃h

t = Th(It+h
t , α̃h

t−1). It is also straightforward to deter-
mine that, because the hidden process is Markov, α̃h

t is sufficient to deter-
mine Pr(It+1+h

t+1 |It+h
1 ). This computation is denoted Pr(It+1+h

t+1 | It+h
1 ) =

Ψh(It+1+h
t+1 , α̃h

t ). It will be shown that by maintaining these statistics it is
possible to describe a recognition decision processes which at time t uses
information from the future up to time t + h.

The first step in summarizing the joint source-recognizer process as
Markov uses the following property of the source model:

Property 1 (It+h
t , α̃h

t ) is a time-homogeneous Markov Process.

Proof

Pr
(
It+1+h
t+1 = i, α̃h

t+1 = a | It+h
1 , α̃h

t , . . . , α̃h
1

)
= Pr

(
α̃h

t+1 = a | It+1+h
1 , α̃h

t , . . . , α̃h
1

)
Pr

(
It+1+h
t+1 = i | It+h

1 , α̃h
t , . . . , α̃h

1

)
= Pr

(
T (i, α̃h

t ) = a | It+1+h
1 , α̃t

1

)
Ψh(i, α̃t)

= δa(T (i, α̃h
t ))Ψh(i, α̃h

t )

�

The process (It+h
t , α̃h

t ) → (It+1+h
t+1 , α̃h

t+1) is therefore first-order Markov.
The accumulated source statistics are fairly complex, however, consisting of
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the (h+1)-element observation vector It+h
t and the N -element probability

vector α̃h
t .

The recognizer state Rt, and the observed and accumulated source statis-
tics (It+h

t , α̃h
t ) can be combined into a state (Rt, I

t+h
t , α̃h

t ) and treated
jointly as a single process. This is termed the source-recognizer process.
In a sense, the recognizer is modeled as a CMM driven by the observa-
tion process. Because the observations and the recognizer are Markov, the
source-recognizer process is also Markov.

The source-recognizer process has the following CMM transition proba-
bility

Pr( (Rt+1, I
t+1+h
t+1 , α̃h

t+1) = (n, i, a) | Rt, I
t+h
t , α̃h

t ;u) =

Pr(Rt+1 = n | Rt;u) Pr((It+1+h
t+1 , α̃h

t+1) = (i, a) | It+h
t , α̃h

t ).

If u is a stationary Markov control, this defines a valid, stationary Markov
process [Mak91].

Note that while the control may be a function of the complete source-
recognizer state (Rt, I

t+h
t , α̃h

t ), it appears only in the recognizer state tran-
sition probability. This reflects the separation between the source and the
recognizer: the recognizer can be controlled, while the source statistics can
only be accumulated.

For simplicity, Pr((Rt+1, I
t+1+h
t+1 , α̃t+1) = (n, i, α̃) | Rt, I

t+h
t , α̃t;u) is de-

noted ph(n, i, α̃ | Rt, I
t+h
t , α̃t;u). Some portion of the state process is de-

terministic, so this probability simplifies to

ph(n, i, α̃ | Rt, I
t+h
t , α̃t;u) = Ψh(i, α̃h

t ) δn(f(Rt;u)) δα̃(Th(i, α̃h
t )). (4)

To completely specify the source-recognizer process, the initial source-
recognizer state probability must also be defined. It must be consistent
with the knowledge that the source starts in state S1 = 1. This requires
that α̃h

1 assign probability 1 to state 1. The initial state probability is

P1((R1, I
1+h
1 , α̃h

1 ) = (n, i, α̃)) =
{

Q(I1+h
1 = i) n = 1, α̃(n) = δ1(n)

0 otherwise
.

Recognition as a Markov Decision Problem

When a reward is associated with the observations and control policy in
a CMM, maximizing the expected reward is termed a Markov Decision
Problem. It will be shown here how MLSS recognition can be formulated
as an MDP.

It is first necessary to specify the allowable control policies. The set of
admissible recognition control laws will be determined by fixing h ≥ 0. Fix-
ing h specifies the amount of future information provided to the recognition
decision process. For a fixed h, Uh will be the 0/1-valued control laws mea-
surable with respect to the source-recognizer state process (It+h

t , αh
t , Rt).

Policies which are restricted to using control laws from Uh are denoted πh.
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Using the incremental reward given in Equation 3 for the sequential
recognition problem, the expected, discounted cost resulting from a policy
can be given as

Jπ(x) = Eπ
x

∑
t

βtv(It+h
t , α̃h

t , Rt;Ut) .

where β (0 ≤ β ≤ 1) is a discounting parameter. This is the expected
reward which can follow from a source-recognizer state x under the policy
π.

The goal is to find the optimum policy which maximizes the expected
discounted reward. This optimum expected reward is termed the value
function and is defined as

V h(x) = max
π∈{πh}

Jπ(x).

This is the maximum reward which can be expected given a CMM state x.
The value function satisfies [Ros83]

V h(r, i, α̃) = max
u=0,1

{v(r, i, α̃;u)+β
∑

r′,i′,α̃′
ph(r′, i′, α̃′ | r, i, α̃;u)V h(r′, i′, α̃′)}.

Using the simplified expression of the transition probability, Equation 4,
this reduces to

V h(r, i, α̃) = max
u=0,1

{v(r, i, α̃;u) + β
∑
i′

Ψh(i′, α̃) V h(f(r;u), i′, T (i′, α̃))}
(5)

where f describes the action of the control law as defined in Equation 2.
The corresponding optimum control for each state is [Ros83]

uh(r, i, α̃) = arg max
u=0,1

{v(r, i, α̃;u) + β
∑
i′

Ψh(i′, α̃)V h(f(r;u), i′, T (i′, α̃))}

This is a complete, exact description of the combined source-recognizer
processes and the optimum control rules which the maximize the expected
reward following from any source-recognizer state.

As a technical note, β may equal 1 if the final state can be reached with
probability 1 from any state in a finite number of transitions, regardless
of the controls. This is called the terminating assumption ( [MO70], page
42), which is satisfied here. All observation sequences are finite length
with probability 1 and the recognizer is forced to its final state when the
end-of-string symbol is observed.

Any technical assumptions required for the MDP formulation are as-
sumed to be met by placing restrictions on the source model. For example,
the observation distributions b are assumed to be bounded away from 0 for
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all possible observations so that B ≤ log bn(i) ≤ 0. However, B can be
arbitrarily small, so imposing this constraint is not restrictive.

There are several problems with this formulation, however. Although
the state space is countable, α̃ can take an extremely large number of val-
ues - almost as many values as sequences which could be observed. The
dimensionality of the value function and control laws therefore grows un-
manageably large. If it is necessary to maintain the control law explicitly
for each state, the computational advantages obtained by assuming that
the source processes are Markov are lost.

Further, these optimal rewards and their associated decision rules are
difficult to obtain from these equations. The equations are contractions,
so they can be solved numerically. However a different approach will be
described here which is based on neural computation and control.

Relationship to the Viterbi Algorithm

While basing a recognizer on the optimum expected reward may be an
unusual formulation, it is possible to compare it to the usual Viterbi score.
When the amount of future information is unrestricted, choosing the control
which optimizes this criterion leads to scoring all observation sequences
according to the Viterbi algorithm. This will be shown here.

Consider the expected reward resulting from any of the valid initial,
t = 1, source-recognizer states. For β = 1 the expected reward can be
restated as

Jπ(x) = Eπ
x log Q(I,Rπ)

where Rπ denotes the recognizer sequence produced by recognition control
policy π in response to the observation sequence I. In this version of the
expected reward, which is “pointwise” in I, the α̃ are not required because
they are functions of I.

When h is unrestricted, the maximization is performed over policies al-
lowed to employ all possible controls U = ∪hUh so that the optimum reward
becomes

max
π

E log Q(I,Rπ).

Property 2

max
π

E log Q(I,Rπ) = E max
R

log Q(I,R).

A sketch of a proof of this property is given for models which assign proba-
bility zero to infinite length sequences, i.e. for which Q({I : T = ∞}) = 0.

Proof
Uh ⊂ Uh+1 implies

max
π

E log Q(I,Rπ) = lim
h→∞

max
π∈{πh}

E log Q(I,Rπ).
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For a fixed h, the Viterbi algorithm is an allowable policy for all obser-
vations I with length T ≤ h, so for such I, maxπ∈{πh} log Q(I,Rπ) =
maxR log Q(I,R). Therefore

max
π∈{πh}

E log Q(I,Rπ) =
∑

I:T≤h

Q(I)max
R

log Q(I,R)

+ max
π∈{πh}

∑
I:T>h

Q(I) log Q(I,Rπ).

and

lim
h→∞

max
π∈{πh}

E log Q(I,Rπ) =
∑

I:T<∞
Q(I)max

R
log Q(I,R)

+max
π

∑
I:T=∞

Q(I) log Q(I,Rπ).

Loosely, since Q({I : T = ∞}) = 0, the sum over infinite length sequences
is negligible so that

lim
h→∞

max
π∈{πh}

E log Q(I,Rπ) = E max
R

log Q(I,R)

�

In summary, for every possible observation sequence it is possible to pick
a value of h which provides complete information about the future. Given
unrestricted future information, the Viterbi algorithm is an admissible and,
by design, optimum strategy for all possible sequences. This gives an in-
tuitive motivation for the expected likelihood criterion. As the restrictions
on the temporal locality of the decision making process are removed, the
Viterbi algorithm is recovered as the best recognition strategy.

Before investigating the application of the MDP sequence recognition
formulation, a neural architecture which is particularly well suited for use
as a source model or recognizer will be presented.

5 A Sequential Event Dynamic Neural Network

A neural network architecture is presented here which can be used to gen-
erate and recognize simple sequences of events. After the network is de-
scribed it will be shown that it can be embedded into the MDP recognition
framework presented above.

The network is based on a single layer of units n = 1, . . . , N which inhibit
each other with strength wn (wn > 0). The network operates in discrete
time: each unit updates its potential x(n) according to

xt(n) =
N∑

j �=n

j=1

[−wj yt−1(j) + c]
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FIGURE 2. Dynamical Network Architecture: (top) Lateral Inhibitory Network
with Directed Excitation; (bottom) Network Unit Schematic.

The unit output values y(n) are {0, 1} valued with

yt(n) = o(xt(n))

where o is the unit activation function. When y(n) = 1 unit n is on, or
active. c is a bias term included so that uninhibited units will activate.
The inhibition exceeds the bias: wn > c.

As presented, this is a stable, lateral inhibitory network [MY72]. In
particular, if the network reaches a state in which a single unit is active,
that unit will remain active and prevent any other unit from activating.

The units can be made to activate sequentially by adding excitatory
connections between units. While a unit n is active, it exhibits a slowly
increasing, weak excitatory effect upon its neighbor, unit n+1, so that this
unit becomes less inhibited. The excitation of unit n by unit n− 1 is given
as

et(n) = (1 − k) et−1(n) + g yt(n − 1).
This directed excitation channel is modeled as a connection of strength g
followed by a leaky integrator with a decay factor of 1 − k. The result
is that the excitation saturates at the value g/k. The lateral inhibitory
network architecture with the directed excitation channels and the unit
activity functions are presented in Figure 2.

The unit states must be modified to include this excitation, so the net-
work state vector is (xt, et). The update equations for each unit are

xt(n) =
N∑

j �=n

j=1

[−wj yt−1(j) + et−1(n) + c]

et(n) = (1 − k) et−1(n) + g yt(n − 1).
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Suppose k ≈ 0, i.e. the directed excitation grows linearly. If unit n − 1
has been active for a period τ , the excitation of unit n is et(n) = g τ and
all other excitations are zero. The unit states are then

xt(n′) =




c n′ = n − 1
−wn−1 + g τ + c n′ = n
−wn−1 + c otherwise

. (6)

If the activation function o is the unit-step function, unit n activates when
xn becomes non-negative. When this happens, unit n shuts off unit n− 1.
After unit n−1 first activates, the time required for the directed excitation
to overcome the inhibition of unit n is

τn−1 =
wn−1 − c

g
.

This determines the duration of unit n−1’s activity and leads to sequential
behavior in that unit n activates only after unit n − 1 has been active for
a fixed duration.

A network can be constructed to represent events which occur sequen-
tially for fixed durations. The parameters g, c, k, and w can be chosen
to satisfy the above relationship so that each unit is active for a specified
duration.

Under this updating rule the network activity sequence is fixed. Given
an initial network state, each unit activates at a known time and remains
active for a fixed period. The activity sequence of the network is denoted
St, where St = n if yt(n) = 1.

Such a network is not well suited to model sequences in which the event
durations may vary. A simple way to model variable duration events is to
randomize the unit activation function. Rather than mapping the unit acti-
vation to the unit output deterministically, suppose the activation function
o is such that each unit activates randomly according to

Pr( yt(n) = 1 | xt(n) ) =
1

1 + e−xt(n)
.

The connectivities are chosen to satisfy wn 
 c 
 0, so that an inhibited
unit will not activate, while a unit which is uninhibited will always activate.
This is equivalent to activating the next unit in the sequence by flipping a
biased coin whose bias towards activation increases with time.

Again consider the case when k ≈ 0. If at time t unit n−1 has been active
for a period τ , the unit states will be as in Equation 6. While unit n − 1
is active and until unit n activates, under the assumption wn−1 
 c 
 0,
the unit activation functions behave according to

Pr(y(n′) = 1 |x(n′)) ≈



1 n′ = n − 1
1

1+e−[−wn−1+g τ+c] n′ = n

0 otherwise
.
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The probability that unit n + 1 activates given that unit n has been active
for a period τ is denoted

an(τ) =
1

1 + e−[−wn+g τ+c]
.

Each unit remains active for a duration τn according to the distribution
Pr(τn = τ) = dn(τ) where

dn(τ) =
τ−1∏
t=1

(1 − an(t)) an(τ). (7)

Without further modification, the network can be used to model se-
quences of the form

{St : 1 ≤ St ≤ St+1 ≤ N},
that is, ordered events of varying duration. The probability of a sequence
S is found through the probabilities of its component events

Pr(S) =
N∏

n=1

dn(τn) (8)

where τn is the duration of the nth event in sequence S.
The hidden state process is not a simple first-order Markov process. Be-

cause the transition probabilities depend upon the state duration, duration
must be included in the process state. If duration information is retained,
the state transition mechanism is described by a first order Markov process
(n, τ). If the process has value (n, τ), unit n has been active for a period
τ . The process transition probability is

Pr( (n, τ)t+1 = (n′, τ ′) | (n, τ)t ) =
{

ant
(τt) n′ = nt + 1, τ ′ = 1

1 − ant
(τt) n′ = nt, τ ′ = τ + 1 .

(9)
This is illustrated in Figure 3.

More general sequences can be modeled by adding another group of units
to the network. The original, sequential event units now form a hidden layer
and these new units are the visible network units. The visible units are
also stochastic and their behavior depends on the unit activity sequence in
the hidden layer. These visible units are meant to represent observations
of labels, such as vector quantized acoustic features or phoneme identities.

At each time an observation It is generated by the visible units according
to distribution bSt

, which depends upon transitions in the hidden layer. The
probability of an observation sequence I given the underlying sequence S
is

Pr(I|S) =
T∏

t=1

bSt
(It).
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n, t

n+1, 1

n, t+1

a(n,t)

1-a(n,t)

Duration

State

FIGURE 3. Duration Dependent Transition Probabilities. (left) Markov process
defined by duration dependent state transition probabilities. (right) Markov
Chain corresponding to duration dependent transition probabilities.

FIGURE 4. Network of visible units controlled by a sequential network.

An exact mechanism for the behavior of the visible units is not needed for
this presentation, however, a possible architecture would be a Boltzmann
Machine whose units were influenced by the sequential units, as in Figure 4.

Alternatively, the observations could be generated according to state-
dependent Gaussian distributions. While this is not covered by the current
MDP formulation, which assumes discrete observations, the log-likelihood
computation becomes a distance measurement between the observation and
an exemplar feature. The interpretation of this process is that a state is
represented by a single feature vector and the reward accrued in recognition
is based on the distance from the observations to the exemplars.

The network can now be described as a probabilistic model with processes
I and S which are the output sequence and unit activity sequence

{(It, St) : 1 ≤ St ≤ St+1 ≤ N, t = 1, . . . , T}.

The joint distribution of the activity and observation sequences is

Q(S, I) = Pr(I|S) Pr(S)

www.4electron.com



3. Neurocontrol in Sequence Recognition 47

=
T∏

t=1

bSt
(It)

N−1∏
n=1

dn(τn).

The distribution has the form of a Hidden Markov Model, specifically, a
variable duration Hidden Markov Model (VDHMM) [Lev86], where the
probability of leaving a state depends on how long the system has been in
that state.

The duration distribution dn determined by the network parameters has
some attractive properties. When k ≈ 0, it has a peak at τn ≈ wn

g , which
specifies the most likely duration. Additionally, for wn

g fixed, the variance
of the unit activity duration decreases as g increases. This can be used to
incorporate uncertainty about event duration in the network model.

In a non-variable duration HMM, the state duration probability has the
form (1− a)τ−1a, where a is the probability of remaining in a state. It has
been argued that other distributions, such as Gaussian and Gamma dis-
tributions, provide better temporal modeling. The distribution that arises
here enjoys the two main features of the previously used distributions,
namely the non-zero maximum likelihood duration and an adjustable vari-
ance. The difference between this model and other VDHMMs is that the
duration distribution is not chosen beforehand - dn(τ) doesn’t have a closed
form expression - but arises from the state transition mechanism.

When k is not negligible, the potential of unit n+1 when excited by unit
n eventually approaches

xt(n + 1) = −wn + c + g/k

so that an(τ), the probability of unit n + 1 activating, approaches

K =
1

1 + e−{−wn+c+g/k} .

Since an(τ) approaches K for large τ , the distribution dn falls off as
(1−K)τ (Equation 7). This shows the importance of the excitation channel
decay parameter k. It can be used to control the tail of the state duration
distribution.

Two examples of model density durations are presented in Figure 5. The
durations of 7500 instances of the phonemes /iy/ and /n/ were obtained
from the TIMIT database. Model fits are plotted along with the sample
densities. The parameter k is particularly valuable in fitting the exponen-
tial decay often described in phoneme duration histograms.

Training this network is discussed in Chapter 3 of [Byr93]. The EM
algorithm is used to train it as a VDHMM [Lev86] under a maximum
likelihood criterion. This training problem is developed in an information
geometric framework similar to that used to describe Boltzmann Machine
learning in [Byr92]. Other neural training schemes based on sequential
approximations to the EM algorithm are also possible [WFO90]. In general,
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FIGURE 5. Modeling sample duration histograms computed from phoneme du-
rations found in the TIMIT database: 6950 instances of /iy/ (top); 7068 instances
of /n/ (bottom).
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FIGURE 6. Dynamical Network Architecture Embedded in a Sequence Recog-
nizer

modeling duration dependent transition probabilities is difficult, however
there has been previous work using neural architectures to address this
problem [GS89].

Similar networks have been presented elsewhere [RT91, BT91], and in
general, dynamic neural networks intended for sequence recognition and
production have been widely studied [DCN87, Kle86, SK86, BK91]. The
network presented here has the benefit that individual parameters can be
associated with desirable aspects of the network behavior. The gain param-
eter g determines the variance of the duration distribution, for example,
the inhibition profile determines the relative duration of each units activ-
ity, and the decay factor k in the directed excitation channel is used in
modeling the duration distribution tail, as described above.

In source mode, the gain function g is fixed and the state progression
is a random function of the state (n, τ). In use as a recognizer, the gain
function g is used to control the state progression. To force a change in
state from (n, τ) to (n + 1, 1), g is set to a very large value, so that the
directed excitation immediately activates the next unit in the sequence.
Otherwise g is kept small so that the current unit remains active. This
architecture is illustrated in Figure 6.

6 Neurocontrol in sequence recognition

Thus far, two topics have been discussed. MLSS sequence recognition with
limited future information has been formulated as a Markov Decision Prob-
lem and a stochastic neural architecture intended for modeling observation
sequences has been introduced. In this section, a controlled sequence rec-
ognizer built on this network architecture will be described.
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As described in the previous section, the hidden process of the dynamical
network is a first order Markov process with state St = (n, τ)t. While this
is more complicated than the formulation of section 4.2 which is based on
a simple Markov process, the recognizer and control rule are formulated
identically.

The following conditional probability can be computed recursively

α̃(n, τ)h
t = Pr(St = (n, τ)t | It+h

1 )

which is denoted α̃h
t = Th(It+h

t , α̃h
t−1), as before. The statistics (It+h

t , α̃h
t )

again form a first order Markov process. The joint source-recognizer de-
scription is as in Equation 4.

The specification of the optimum recognition control is as presented ear-
lier (Equation 5). While the MDP formulation proves the existence of an
optimum rule and provides methods to construct it, it is impractical to
solve explicitly for the control rules. However, the MDP formulation de-
scribes the input to the control rule, i.e. how the observations should be
transformed before presentation to the controller. According to this for-
mulation, the optimum control Ut should be a function of (α̃h

t , It+h
t , Rt).

The control rule which is produced as a function of the source-recognizer
state is unknown, however the MDP formulation specifies that it does exist.
Here, a neural network can be trained in an attempt to approximate it.

A set of training sequences is assumed to be available for the model. For
example, if a network is to be trained to model the digit “nine”, utter-
ances of “nine” form the training set. After the network has been trained,
the Viterbi algorithm is used to find the best hidden state sequence for
each training sequence. The training sequences and their corresponding
MLSSs form a training set which can be used to build a neural network
to implement the recognizer control rule. The source-recognizer statistics
are accumulated recursively, and the recognizer control rule neural network
is trained to implement the control which generates the Viterbi sequence.
This is illustrated in Figure 7.

Experimental Results

A small, speaker independent, isolated digit speech recognition experiment
was performed. The observations used were vector quantized features ob-
tained from the cochlear model as described in [BRS89]. The features were
computed at a frame rate of 20 msec and a step size of 2 msec and quan-
tized using a 32 codeword vector quantizer. The speech taken from the TI
Connected Digits database, and networks were trained for each of the ten
digits using ten utterances from ten different male speakers (10 utterances
from 10 speakers). The recognition score testing on ten utterances from ten
other speakers using the Viterbi algorithm was approximately 95% correct.

From the Viterbi segmentation, a recurrent neural network was trained
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FIGURE 7. Viterbi algorithm supplying recognizer control law as training target
(top); neurocontrol implementation of recognition control law (bottom).
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to implement the recognition control law. The network consisted of two
hidden layers with four units in the first hidden layer and 2 units in the
second layer. Five frames (h = 5, 10.0 msec) of future information was
provided to the recognizer and a discounting parameter β = 0.9 was cho-
sen. Using this neurally implemented recognition control law, recognition
performance of approximately 93% correct was obtained.

This experiment is presented as an example of an application of the MDP
formulation of MLSS sequence recognition and is far from conclusive. While
promising, as currently implemented in software on conventional comput-
ers, the computational burden in training and testing prohibits evaluating
the performance on large problems. However, it is hoped that this for-
mulation might prove valuable both in investigations into the behavior of
suboptimal approximations to the Viterbi algorithm and to prompt further
investigation into applications of neurocontrol in sequence recognition.

7 Observations and Speculations

As MDP sequence recognition has been formulated, it has been assumed
that the observations are produced by the source HMM Q which is also
used to define the likelihood criterion LQ. A more general formulation is
possible. A more complex source could be used, for example, such as a
mixture of HMM sources. The only restriction is that it must be possible
to accumulate statistics so that the recognizer can be described as driven
by a Markov process.

Model training and training of the neural network which implements the
control law were presented as separate procedures. In many applications
of neurocontrol estimation of model parameters and the control law are
performed simultaneously [BSS90]. Such a formulation is possible here, and
could be based upon sequential versions of the EM algorithm [WFO90].

7.1 The Good Recognizer Assumption

An interesting simplification which follows from the MDP formulation of
MLSS sequence recognition problem arises from the following assumption.
If the recognizer state Rt is assumed to be a very good estimate of the
source hidden state St, the problem is greatly simplified. The assumption
is

Pr(St = n | It+h
1 , Rt) =

{
1 Rt = n
0 otherwise .

This assumption leads to a drastic reduction in the source-recognizer state
dimension and to an interesting relationship between the source and recog-
nition controls.
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The first simplification due to the assumption is the elimination of the
statistic α̃t. Because
α̃h

t (n) = Pr(St = n|It+h
1 ), and Rt is a function of It+h

1 , α̃h
t (n) = δn(Rt).

Therefore α̃t is constant for fixed Rt . As a result, the optimum value
function V (r, i, α̃) is a function of r and i alone.

Similarly, the recursive computation of the likelihood term involving It+h
t

is also simplified. Note that Rt+1 is a function of It+h
t and Rt, since the

control is applied at time t to determine the next recognizer state, so that

Pr( It+1+h
t+1 = ih+1

1 | It+h
1 = ih1 ) = Pr( It+h+1 = ih+1 | It+h

1 = ih1 )

=
∑

n

Pr(It+1+h = ih+1 |St+1, It+h
1 ) Pr(St+1 = n | It+h

1 = ih1 )

=
∑

n

Pr(It+1+h = ih+1 |St+1, It+h
t+2 = ih2 ) Pr(St+1 = n |Rt+1, It+h

1 )

Using φh(i|St+1) to denote the probability
Pr(It+1+h = ih+1 |St+1, It+h

t+2 = ih2 ), the above reduces to

Pr( It+1+h
t+1 = i | It+h

1 = ih1 ) = φh(i |Rt+1).

The accumulated statistics α̃h
t are no longer used in computing

Pr( It+1+h
t+1 = i | It+h

1 ). Instead, this term is approximated by
Pr( It+1+h

t+1 = i | It+h
t+2 , St+1), where the recognizer state Rt+1 is used as an

estimate of the source state St+1.
Modifying the optimum value equations to include this simplification

yields

V h(r, i) = max
u

{ v(r, i1;u) + β
∑
i′

V h(f(r;u), i′) φh( i′ | f(r;u) ) }.

This assumption leads to interesting interpretations of the control rules.
Because the recognition control u appears directly in the source observation
statistics, the recognizer acts as if it directly controls the source sequence
production. This suggests a close link between the production and recog-
nition processes. When the recognition process is accurate, the recognition
control law recovers the source control law best suited to produce the ob-
servation sequence. This suggests that this formulation of sequence recog-
nition may provide an avenue for the use of speech production mechanisms,
or articulatory models, in speech recognition.

Control Rules

The value functions which result from the simplifying assumption can be
solved fairly easily. The Good Recognizer assumption removes the de-
pendence upon the accumulated statistics α̃ so that the dimensionality of
the value functions is greatly reduced. It is possible to solve them in a
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left-to-right manner: V (r, i) depends upon itself and V (r + 1, i). This is
made particularly easy when the recognizer state r is expanded to include
the state-duration τ . In this case, the Markov chain allows only the two
transitions (r, τ) → {(r, τ + 1), (r + 1, 1)}. In this case, V (r, τ, i) depends
solely upon V (r, τ + 1, i) and V (r + 1, 1, i). V (N, τ, i) is solved first and
then V (r, τ, i) is solved for decreasing r. In practice, this requires picking
a maximum value of τ . The V (N, τ, i) can be then be solved directly; an
approximation is to pick V (N, τmax, i) at random and solve backwards for
decreasing τ .

Consider the h = 1 case. Here, i = (i1, i2) and
φ1(i|St+1) = Pr(It+2 = i2|St+1). The value functions are presented here
with the reward expressed in likelihood form

V (N, τ, i) = log(1 − aN (τ))bN (i1) +

β
∑
i3

φ1((i2, i3)|N)V (N, τ + 1, (i2, i3))

V (r, τ, i) = max{log(1 − ar(τ))br(i1) +

β
∑
i3

φ1( (i2, i3) | r)V (r, τ + 1, (i2, i3)) ,

log ar(τ) br(i1) +

β
∑
i3

φ1( (i2, i3) | r + 1 ) V (r + 1, 1, (i2, i3)) }.

Denoting
∑

i2
φ1( (i1, i2) | r)V (r, τ, (i1, i2)) as V̄ (r, τ, i1), the decision rule

can be simplified. Suppose that at time t, the recognizer is in state (r, τ)
and the observation symbol It+1 becomes available. The recognition control
law is chosen according to

V̄ (r, τ + 1, It+1) − V̄ (r + 1, 1, It+1)
u = 0≥

<
u = 1

1
β

log
1 − ar(τ)

ar(τ)
.

The recognition control law becomes a fairly simple table lookup which,
using the next available observation, is based upon comparing expected
rewards against a duration-dependent threshold. This could easily be im-
plemented in a neuro-control architecture.

Experiments have been carried out using recognition control rules based
upon this simplification. However, the results were unsatisfactory. For
whatever reasons, but most likely due to overly optimistic nature of the
assumption, the recognizers behaved poorly. Typical behavior was to either
remain in the initial state or move to the final state as quickly as possible.
This assumption may yet prove valuable however, as it suggests methods
by which the dimensionality of the value functions and control rules may
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be reduced. A topic of future interest might be the investigation of other,
not so drastic, approximating assumptions which might yield reductions in
computational cost without too much loss in performance.

7.2 Fully Dynamic Sequential Behavior

As presented in Section 5, the dynamical network is suitable for recogniz-
ing single, individual sequences, such as words spoken in isolation. While
determining the underlying event sequence in such applications is not of
crucial importance, it has been given as a demonstration of the MDP recog-
nition formulation in which local decisions can be made that avoid the use
of non-causal dynamic programming algorithms.

The ultimate desired application of the dynamical network is in iden-
tifying subsequences in continuous observation streams as necessary for
connected or continuous speech recognition. To be useful in such appli-
cations, the network architecture must be modified. By allowing the final
network unit N to excite the first network unit, the network can be made
to oscillate. After the N th unit has been active, the first unit activates and
the network repeats its pattern sequence. In this way the network behaves
as a controlled oscillator.

Oscillatory networks have been used as models of central pattern gener-
ation in simple neural systems [Mat87, Mat85, SK86, Kle86]. Such oscil-
latory behavior has been investigated in the network presented here and
has been described elsewhere [BRS89]. As in the isolated sequence case,
it is desirable to use the dynamical behavior of the network in these more
complex sequence recognition problems.

In problems in which higher level context must be modeled, such as when
sequences can appear as substrings in other sequences, it is hopeful that
large networks with cyclic behavior might be built which would capture the
complexity of the task. Ideally, a “grammar” which describes the problem
would control the cyclic behavior of the network in much the same way that
language models are currently used in HMM speech recognition systems to
constrain the acoustic search.

In such an application, the dynamical network operates in either phase-
locked or free-cycling mode. A recognition controller is used to vary the
excitation gain g to induce either of these modes, as described earlier in
Section 5. In free-cycling mode, the excitation gain is set to a high value so
that the network progresses quickly through its state sequence. In phase-
locked mode, the network progresses through its state sequence at a rate
matched to the observed sequence. This is an indication that the observa-
tions agree with the network model. Because this behavior is indicated by
the control law itself, the value of g serves as an indication of the match
between the observations and the model.

An example of early experiments into this phase-locking behavior is de-
scribed here. The dynamical network is intended to synchronize with the
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FIGURE 8. Dynamical network embedded in a simple phone classifier architec-
ture: (top) System architecture; (bottom) Synchronization of a network trained
to recognize “four” to the utterance “nine four two”.

output of phoneme classifiers when the correct word is in the input stream.
When incorrect words are in the input, the network should lose synchro-
nization and free-cycle.

Feed-forward networks were trained to classify hand-labeled segments
of spoken digits. The classifier outputs were thresholded to make a bi-
nary decision about the identity of the observation, so that the network
is presented with a binary vector of classifier signals. The Hamming dis-
tance between the network activity vector and the classifier output is used
as a measure of instantaneous agreement between the observations and the
recognizer. The network gain is obtained directly from this agreement mea-
surement by simple low-pass filtering. If the network and classifier vectors
are in agreement, the gain will decay, and the network state progression
will slow. Conversely, if the agreement is poor, the error will drive up the
gain, and the network will speed up. Ideally, the network will synchronize
its progression to the rate of the input signal. This network architecture
is presented in Figure 8 and preliminary experiments with this system are
described in [Byr93]. While the example presented here is simple, it cap-
tures the formulation of the intended application of the dynamical network
in sequence recognition.

Constructing a recognition control law to implement the desired control
is a non-trivial task. A topic of future research is to extend the MDP
formulation to describe recurrent behavior by multiple networks so that a
rigorous framework for sequential decisions in connected and continuous
speech recognition can be developed.
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A Learning Sensorimotor Map
of Arm Movements: a Step
Toward Biological Arm Control

Sungzoon Cho
James A. Reggia
Min Jang

ABSTRACT Proprioception refers to sensory inputs that principally reg-
ulate motor control, such as inputs that signal muscle stretch and tension.
Proprioceptive cortex includes part of SI cortex (area3a) as well as part
of primary motor cortex. We propose a computational model of neocortex
receiving proprioceptive input, a detailed map of which has not yet been
clearly defined experimentally. Our model makes a number of testable pre-
dictions that can help guide future experimental studies of proprioceptive
cortex. They are, in particular, first, overlapping maps of both individual
muscles and of spatial locations, second, multiple, redundant representa-
tions of individual muscles where antagonist muscle length representations
are widely separated and third, neurons tuned to plausible combinations
of muscle lengths and tensions, and finally proprioceptive “hypercolumns”,
i.e., compact regions in which all possible muscle lengths and tensions and
spatial regions are represented.

1 Introduction

It has long been known that there are multiple feature maps occurring in
sensory and motor regions of the cerebral cortex. The term feature map
refers to the fact that there is a systematic, two-dimensional representation
of sensory or motor features identifiable over the cortical surface. Generally,
neurons close to one another in such maps respond to or represent features
that are similar. In most cases, neurons or other supraneuronal processing
units (“columns”) have broadly tuned responses, and thus the receptive
fields of neighboring units overlap.

Feature maps are conveniently classified as being either topographic or
computational. A feature map is called topographic when the stimulus
parameter being mapped represents a spatial location in a peripheral space,
for instance, the location of a point stimulus on the retina or the location of
a tactual stimulus on the skin. A feature map is called computational when
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the stimulus parameter represents an attribute value in a feature space, for
instance, the orientation of a line segment stimulus or the spatial location
of a sound stimulus [KdLE87, UF88].

Several computational models have been developed to simulate the self-
organization and plasticity of these cortical maps, including topographic
maps in somatosensory (SI) cortex [GM90, PFE87, Skl90, Sut92] and com-
putational maps in visual cortex [BCM82, Lin88, MKS89, vdM73]. While
not without their limitations, these and related models have shown that
fairly simple assumptions, such as a Mexican Hat pattern of lateral corti-
cal interactions and Hebbian learning, can qualitatively account for several
fundamental facts about cortical map organization.

To our knowledge, the goal of all past computational models of cortical
maps has been to explain previously established experimental data concern-
ing relatively well-defined maps. In contrast, in this paper we develop a
computational model of neocortex receiving proprioceptive input (hereafter
called “proprioceptive cortex”), a detailed map of which has not yet been
clearly defined experimentally. Proprioception refers to sensory inputs that
principally regulate motor control, such as inputs that signal muscle stretch
and tension. Proprioceptive cortex includes part of SI cortex (area3a) as
well as part of primary motor cortex [Asa89]. Our model makes a num-
ber of testable predictions that can help guide future experimental studies
of proprioceptive cortex. In addition, the results of our simulations may
help clarify recent experimental results obtained from studies of primary
motor cortex, a cortical region that is heavily influenced by proprioceptive
inputs [Asa89]. To our knowledge, this is the first computational model of
map formation in proprioceptive cortex that has been developed.

The overall concern in this paper is with what sensory feature maps
could emerge in cortex related to the control of arm movements. Insight
into this issue is not only of interest in a biological context, but also to
those concerned with control of robotic arms or other engineering control
applications [WS92]. There have been several previous models of map for-
mation with model arms [BG88, BGO+92, Kup88, Mel88, RMS92]. These
previous models are different from that described here in that they are usu-
ally concerned with visuomotor transformation process of a 3-D reaching
arm movement taking place in motor cortex. Thus, they typically use spa-
tial location such as xyz-coordinates of an arm’s endpoint as input rather
than only muscle length and tension as was done here.

Thus, these past models have not been concerned with proprioceptive
map formation.

The role of primary motor (MI) cortex in motor control has been an
area of intense research during the last several years [Asa89]. Recent
studies have discovered a great deal about the encoding of movements in
MI [CJU90, DLS92, GTL93, LG94, SSLD88], although many aspects of
the organization of the MI feature map remain incompletely understood
or controversial (see [SSLD88] for a cogent review). For example, exper-
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imental maps of MI muscle representations have revealed that upper ex-
tremity muscles are activated from multiple, spatially separated regions of
cortex [DLS92]. It has been suggested that this organization may provide
for local cortical interactions among territories representing various muscle
synergies. While this may be true, the model proprioceptive cortex de-
veloped here offers another explanation: that such an organization may be
secondary to multiple, spatially separated muscle representation in proprio-
ceptive cortex. Proprioceptive input exerts a significant influence on motor
cortex [Asa89]. Thus, this model of proprioceptive cortex may help clarify
these and other organizational issues concerning primary motor cortex.

In our work, a model arm provides proprioceptive input to cortex. Our
model arm is a substantial simplification of reality: there are only six
muscles (or muscle groups), there are no digits, there is no rotation at joints,
gravity is ignored, and only information about position is considered. Two
pairs of shoulder muscles (flexor and extensor, abductor and adductor) and
one pair of elbow muscles (flexor and extensor) control and move the model
arm which we study in a three dimensional (3-D) space. Nevertheless,
as will be seen, this simplified arm provides sufficient constraints for a
surprisingly rich feature map in the cortex.

The resultant feature map consists of regularly spaced clusters of corti-
cal columns representing individual muscle lengths and tensions. Cortical
units become tuned to plausible combinations of tension and length, and
multiple representations of each muscle group are present. The map is or-
ganized such that compact regions within which all muscle group lengths
and tensions are represented could be identified. Most striking was the
observation that, although not explicitly present in the input, the cortical
map developed a representation of the three-dimensional space in which
the arm moved.

2 Methods

We first present a neural network model of proprioceptive cortex, its acti-
vation mechanism and learning rule. Secondly, the structure of the model
arm and the constraints it imposes on input patterns are given. The model
arm is not a neural model; it is a simple simulation of the physical con-
straints imposed by arm positioning. Finally, we describe how we generate
the proprioceptive input patterns from the model arm.

2.1 Neural Network

The model network has two separate layers of units, the arm input layer
and proprioceptive cortex layer (or simply “cortical layer” from now on)
(see Fig. 1). Each unit in the arm layer competitively distributes its ac-
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  k
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muscle length muscle tension

fully connected

(20x20)

(6) (6)

kjw ljw

Input layer

Cortical layer

FIGURE 1. Neural network. The arm input layer contains six muscle length
units and six muscle tension units, whose activation values represent the propri-
oceptive inputs of muscle length and tension values. The cortical layer consists
of a grid of 20 × 20 units which represents proprioceptive cortex. Each unit
is connected to its six immediate neighboring units (a hexagonal tessellation is
used). To remove edge effects, units on the edges are connected with units on
the opposite edges, so the cortical layer effectively forms a torus. The connection
weights from input layer to cortical layer are initially randomly generated from
a uniform distribution, then updated through training. The lateral connection
weights between cortical units are constant.
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tivation to every unit in the cortical layer. Each unit in the cortical layer
also competitively distributes its activation to its neighbors through lateral
connections. Competitive activation mechanisms have been shown to be
quite effective in many different applications [RDSW92, RSC91]. With the
recent development of learning algorithms for use with competitive activa-
tion mechanisms, these activation mechanisms can now be used in a wide
variety of applications [CR92, CR93, RSC91]. One distinct feature of a
competitive activation mechanism is its ability to induce lateral inhibition
among units, and thus to support map formation, without using explicit in-
hibitory connections [CR92, RDSW92, Sut92, UF88]. Even with constant
weight values for all cortico-cortical connections, a Mexican Hat pattern of
activation appears in the cortex [RDSW92]. It is this feature that we try
to exploit in map formation at the cortical layer.

The activation level of unit k at time t, ak(t) is determined by 1

dak(t)
dt

= csak(t) + (max − ak(t))ink(t) (1)

where

ink(t) =
∑

j

okj(t) =
∑

j

cp
(ap

k(t) + q)wkj∑
l(a

p
l (t) + q)wlj

aj(t). (2)

This activation rule is same as the rule used in [RDSW92]. The weight on
the connection from unit j to unit k is denoted by wkj , which is assumed
to be zero when there is no connection between the two units. Although
the weight variable is also a function of time due to learning, it is consid-
ered constant in the activation mechanism because activation levels change
much faster than weights. The constant parameters cs and cp represent
decay at unit k (with negative value) and excitatory output-gain at unit
j, respectively. The value of cs controls how fast activation decays while
that of cp determines how much output a unit sends in terms of its activa-
tion level. The exponent parameter p determines how much competition
exists among the units. The larger the value of p, the more competitive
the model’s behavior, and thus the greater peristimulus inhibition. The
parameter q (a small constant such as 0.0001) is added to ak(t) for all
k, to prevent division by zero (denominator term in Eq. 2) and to influ-
ence the intensity of lateral inhibition. The parameter max represents
the maximum activation level. The output okj(t) from unit j to unit k
is proportional not only to the sender’s activation level, aj(t), but also to
the receiver’s activation level, ak(t). Therefore, a stronger unit receives
more activation. Another unit l which also gets input from unit j can be
seen as competing against unit k for the output from unit j because the
normalizing factor

∑
l∈N (al(t) + q)wlj in the denominator constrains the

1Arm layer units are clamped to the length and tension values computed from random
cortical signals to six muscles, thus the equation applies only to the cortical layer units.

www.4electron.com



66 Sungzoon Cho, James A. Reggia, Min Jang

sum of the outputs from unit j to be equal to its activation level, aj(t),
when cp = 1. The activation sent to unit k, therefore, depends not only on
the activation values of the units from which it receives activation such as
unit j, but also on the activation values of its competitors to which unit
k has no explicit connections. Since competitive distribution of activation
implicitly assumes that activation values are nonnegative, we used a hard
lower bound of zero when we update activation values in Eq. 1 in order
to prevent the activation values from ever going negative. The equation
is approximated by a difference equation with ∆t = 0.1. Other parameter
values were determined empirically as follows. For cortical layer units, de-
cay constant cs and ceiling max values in Eq. 1 were set to −4.0 and 5.0
respectively. Their q and output gain parameter cp values in Eq. 2 were set
to 0.001 and 0.9, respectively. For arm layer units, q and cp values in Eq. 2
were set to 0.1 and 0.8, respectively. Since arm layer units were clamped,
their cs and max values were not relevant. Further details of the activation
mechanism can be found in [RDSW92].

2.2 Learning

Connection weights are modified according to competitive learning, a vari-
ant of Hebbian Learning that tends to change the incoming weight vectors
of the output units (cortical layer units here) into prototypes of the input
patterns [RZ86]. The particular learning rule used here is adapted from
[Sut92] and [vdM73]:

∆wkj = η[aj − wkj ]a∗
k (3)

where

a∗
k =

{
ak − θ if ak > θ
0 otherwise (4)

and where parameters η and θ are empirically set to 0.1 and 0.32. Only the
weights from the arm layer to the cortical layer are changed by Eq. 3; the
cortico-cortical connections are constant. Before training, weights were ran-
domly selected initially from a uniform distribution in the range of [0.1,1.0].
Updated weights were also normalized such that the 1-norm of the incom-
ing weight vector of each cortical unit is equal to that of input patterns (the
average size of input pattern was empirically found to be 7.45). Instead
of checking at each iteration whether the network reached equilibrium we
ran the network for fixed number of iterations, 32, which was found to
approximate equilibrium empirically and at this point one step of learning
was done according to Eq. 3.

2.3 Model Arm

Basically, the model arm consists of two segments we call the upper arm
and lower arm, connected at the elbow. The model arm is fixed at the
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TABLE 1. Proprioceptive input values for the network. The value inM denotes
the randomly generated neuronal input to muscle M . The values lM and TM

respectively represent the length and tension input values of muscle M .

Joint Angle Muscle (M) Length (lM ) Tension (TM )
α π

2 (inB − inD) Abductor sin ( 1
2 (π

2 − α)) inB + 0.1 · lB
Adductor cos ( 1

2 (π
2 − α)) inD + 0.1 · lD

β π
2 (inE − inF ) Extensor sin ( 1

2 (π
2 − β)) inE + 0.1 · lE

Flexor cos ( 1
2 (π

2 − β)) inF + 0.1 · lF
γ π

2 (inO − inC) Opener sin ( 1
2 (π

2 − γ)) inO + 0.1 · lO
Closer cos ( 1

2 (π
2 − γ)) inC + 0.1 · lC

shoulder and has only six generic muscles or muscle groups. We assume
that there are four muscles that control the upper arm and two muscles that
control the lower arm. These “muscles” correspond to multiple muscles in
a real arm. Abductor and adductor muscles move the upper arm up and
down through 180◦, respectively, while flexor and extensor muscles move it
forward and backward through 180◦, respectively. These four muscles are
attached at points equidistant from the shoulder. The lower arm is moved
up to 180◦ in a plane, controlled by closer (lower arm flexor) and opener
(extensor) muscles as described in Fig. 2.

This model arm is a great simplification of biological reality, and is in-
tended as only a first effort for modeling feature map formation in the
proprioceptive cortex. Neither the dynamics of the arm movement nor the
effects of gravity on the arm are considered. Also the arm is assumed not to
rotate around the elbow or shoulder joints. Only the positional information
about the arm is part of the model.

2.4 Proprioceptive Input

Since there is no motor cortex in our model, input activation to muscles
must somehow be generated. We first generate six random numbers which
represent input activation to the six muscles that control the model arm.
Given this input activation, we compute the expected proprioceptive infor-
mation from muscles, i.e., muscle length and tension values. This informa-
tion consisting of twelve values is used as input to the proprioceptive cortex
in the model. The activation values of arm layer units are clamped to these
values. Table 1 shows the formulae from which we compute proprioceptive
input to the cortical layer.

Fig. 3 shows a generic joint. First, we define the joint angle as a function
of difference between the input activation level of agonist and antagonist
muscles.
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(0,0,-l/2)

α
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Upper Arm

Lower Arm

Shoulder

Elbow

Hand

adductor

extensor

flexorabductor
closer opener

FIGURE 2. Schematic view of model arm. The model arm is considered as the
right arm of a human facing the negative side of the x-axis. The pair of abductor
and adductor muscles control the upper arm’s vertical movement around the
x-axis through contraction and stretch, with their joint angle denoted as α. The
pair of flexor and extensor muscles control the arm’s horizontal movement around
the z-axis, with their angle denoted as β. All four muscles are attached to the
midpoint of the upper arm and to imaginary points on either the x-axis or the
z-axis. The upper arm can move up to 180◦ around the two axes, x and z, thus the
possible positions of elbow E define a hemisphere. The pair of opener and closer
muscles moves the lower arm up to 180◦ around only one axis, a time-varying
line perpendicular to the “hand plane” (plane which is generated by the x-axis
and elbow) and that passes through the elbow. Thus, the lower arm swings from
a position collinear with the upper arm to a “folded” position where hand meets
shoulder. Both muscles are attached to the midpoint of the lower arm and to
imaginary points on the extended line of upper arm, both length l/2 apart from
the elbow. Their joint angle is denoted γ(= � HEB) where H and E represent
hand and elbow positions, respectively and B is the projection of H onto the
line segment which is perpendicular to upper arm and on the hand plane. The
possible positions of hand H define a semicircle with center E and radius l on
the hand plane.
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21 ll
θ

W

Z

Q
P

BYOXA

FIGURE 3. Generic joint of muscles XZ and Y Z and arm segment OQ of length
l. The pair of muscles XZ and Y Z move the arm segment OQ from positions
OA to OB through contraction and stretch. For example, contraction of muscle
Y Z and stretch of muscle XZ moves the arm segment to the right as shown
in the figure. Thus, the possible positions of Q define a semicircle APB. Both
muscles are attached to the mid-point Z of the arm segment, (i.e., OZ = l/2).
muscle XZ is also attached to point X and muscle Y Z to point Y , respectively,
which are located distance l/2 apart from the joint O on opposite sides (i.e.,
OX = OY = l/2). Joint angle θ denotes the angle between OQ and OP .
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Joint angle: Let us denote as inag and inant the input activation level
of agonist and antagonist muscles. Then, the joint angle θ is defined as
θ = π

2 (inag − inant).
Note that value θ ranges from −π/2 to π/2, exclusive of the end points. In
simulations, values of in are randomly generated from a uniform distribu-
tion in [0,1].

Muscle length units in the network model muscle spindle, or stretch re-
ceptor inputs, which fire strongly when the muscle is mechanically stretched.
We can derive the lengths of the muscles, l1 (=XZ) and l2 (=Y Z) from
the joint model shown in Fig. 3.

Muscle length: Given joint angle θ and appendage length l as in Fig. 3,
muscle lengths l1 and l2 are

l1 = l cos
1
2
(
π

2
− θ) (5)

l2 = l sin
1
2
(
π

2
− θ). (6)

To see this, consider �OY Z, an isosceles triangle with OY = OZ = l/2.
Let W be on Y Z such that OW ⊥ Y Z, so �OWY is a right triangle with

� Y OW =
1
2
(
π

2
− θ) (7)

and
Y W =

l2
2

. (8)

From Eqs. 7 and 8, we get

sin
1
2
(
π

2
− θ) =

Y W

OY
=

l2/2
l/2

= l2/l,

thus, we have Eq. 6.
Now consider �XZY . Point Z is on a semi-circle with center O and

diameter l, so � XZY = π
2 . Thus, we have

XZ
2

+ Y Z
2

= XY
2

l21 + l22 = l2

l1 =
√

l2 − l22.

Substituting Eq. 6 for l2, we have Eq. 5 since 1
2 (π

2 − θ) ∈ [0, π
2 ].

Because of their location serial to muscle fibers, Golgi tendon organs
strongly respond when the muscle actively contracts. Passive stretching of
the muscle also activates the Golgi tendon organ but not as much [CG85].
These observations lead to the following.
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Muscle Tension: Let ini denote the input activation to muscle i. Then,
the muscle tension Ti is defined as

Ti = ini + T · li (9)

where T is a small constant.
The first term ini at unit i represents the active portion of the total

tension generated by the muscle. The second term, T li, represents the
secondary sensitivity of the Golgi tendon organ to passive muscle stretch-
ing.

Input values to muscles in are uniform random variables whose values
range from 0 to 1. However, actual input values to the neural network such
as joint angle, length, and tension are not uniform random variables. This
is because any arbitrary transformation of uniform random variables does
not usually result in another uniform random variable. This leads us to
the observation that certain combinations of length and tension values are
presented disproportionally more often during training. For instance, joint
angle values near zero will be presented more often than other values.

3 Simulation Results

We present three types of results from this study of map formation in the
proprioceptive sensory cortex. First, we show that both length and ten-
sion maps formed during training. Second, we characterize these maps by
describing various redundancies and relationships that appear. Third, we
describe the map of hand position in three dimensional space that formed
even though there was no explicit input of hand position.

3.1 Formation of length and tension maps

To examine whether maps of muscle length and tension formed during
training, we measured which muscle’s length or tension each cortical unit
responded to most strongly. Consider an input pattern where only one
muscle length or tension unit (arm unit) is activated. There are 12 such
input patterns, because we have six muscle length and six tension units.
Since the arm units represent the length and tension of six muscles of the
model arm (flexor and extensor, abductor and adductor in upper arm, and
flexor and extensor in lower arm), each of these input patterns corresponds
to the unphysiological situation where either length or tension of only one
muscle is activated. For instance, an input pattern of (P, 0, 0, ..., 0) rep-
resents the case where the upper arm extensor’s length unit is activated
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while all other units are not 2These input patterns were not used during
training. Nevertheless, they provide an unambiguous and simple method
for measuring map formation. A cortical unit is taken here to be “tuned”
to an arm input unit if the sole excitation of the input unit produced acti-
vation larger than a threshold of 0.5 at that cortical unit. A cortical unit
is “maximally tuned” to an arm input unit if it is tuned to that input unit
and the activation corresponding to that input unit is largest. We deter-
mined to which of the six muscles each cortical unit was tuned maximally.
This was done with respect to both the length and tension of each muscle
independently.

Fig. 4 shows the maximal tuning of cortical units, before (on the top) and
after (at the bottom) training. Consider, for example, the unit displayed in
the upper left corner of the cortical layer. After training (bottom figures),
it was maximally tuned to ‘O’ in the length tuning figure and ‘c’ in the
tension tuning figure. This translates into: this unit responded maximally
to the opener with respect to the muscle length, but to the closer with
respect to the muscle tension 3cortical units marked with a “-” character
were found to be not tuned to the length or tension of any muscle.

The number of untuned cortical units decreased 16% (length) and 30%
(tension) with training. The number of cortical units tuned to multiple
muscle lengths and multiple tension lengths after training were 46 and 27,
respectively. The number of those units multiply tuned to either length or
tension was 230.

Now compare the figures regarding length tuning before and after train-
ing (those on the left of Fig. 4). Clusters of units responsive to the same
muscle became more uniform in size after training. The size of clusters
ranged from 2 to 10 before training, but ranged from 3 to 4 after training,
and their shape became more regular. Clusters of units tuned to antagonist
muscles were usually pushed maximally apart from each other during train-
ing. Many of these changes are more obvious visually if one considers a map
of just two antagonist muscles. For instance, consider the clusters shown in
Fig. 5, where only those units in Fig. 4 tuned to upper arm extensor (‘E’)
and flexor (‘F’) muscles are displayed. After training, clusters of ‘E”s and
‘F”s are pushed maximally away from each other, evenly spaced, and more
uniform in size. The network captures the mechanical constraint imposed
by the model arm that two antagonist muscles cannot be stretched at the
same time. This result is representative: clusters of antagonist muscles are
pushed apart for other pairs, such as upper arm abductor and adductor
muscles (‘B’ and ‘D’) and opener and closer muscles (‘O’ and ’C’).

In the case of tension tuning figures, the results are similar. The size of

2A positive constant P is introduced to make the magnitude of a test input pattern
similar to that of a normalized training pattern whose size was 7.45.

3Implications of this type of ‘multiple tuning to antagonists’ will be explored in the
next section.
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F F E E - B B - - - - B B E E - - O - - - - - - e e c - - f f c c f - c c - - -

D D - D O B B - F F - E E - - - O B - - - - - e e - - e e f o o f b c c d d - -

D D D O O E - C D E E E - D F O B E E - b d d o - - - b e c o o b b - - o o f b

B D D - E E - C D - - - D D F - E E C B b d f f - - b b d c - - - e e - o f c b

- - C B E - O O - - - - D C C - - C C B - - - c c - o d d - - - - e e c c e e -

E C C F F - O - B B - - - C - - - F - E - - - c - o o - - b - - - - c c - d - -

- C F F - - - - F O - E E - - - F F O E - b b - o o - - b b f d d e e o d d c -

- F O - - - - - F - E E F - D D B O - - - b b e f - - - e e f d - b b o - f f -

- O O O O C E D D - - O - - D - - - D D d d e e f b - - - - o o - - - - - f o -

- - - D O E E D D C C O E C - - - - D B d o c f f b o - - - o - - - - - - e - -

C - - D F F E - B B C E C C F F - - B B o o c f d o o - - c e o f - - d c - - -

C C B D F - E O B F F D - F F C - E E C b f - - d o f f c c c f f - d d c - - b

C B B D - - O O - F F E - - C C E E E D f - - - - e f f c c - f b b d - e - - f

F O - - C C E E - - E O - D D E O O D D - - - - e e b - - - - b b b - e e - - -

O O E - C D - - B - O - - D E - O B - F - - - - - b - o f - - - o o o o - - - d

O E E - F D - B B O O - B B - - B B - - - c c - - - d d - e - - o f f o b b d d

Length Tuning in Trained Cortical Layer Tension Tuning in Trained Cortical Layer

O E - - F - E E - F F - O E D D C F - - c - - - e - f f - - e e c f b b - e e c

O - C C - O O - C B B O O - D C C - - O - d d o o c c - d o o c c - - - o o c c

- B C C D O O - C C - O F - - - E D D - - d o o - c e d d o - - - e - - f - b -

F B E D D F F - E E - F F B B E E D D F e - f b b e e - f - b - d e c f f b b e

- E E - F F - E D D C F B B O - - C C F c f f b - e - f f b b o d c c - - b - e

O O - C C - O O D - C - - O O - - C C - c - - d o c c - - b o o - c - d d o o c

O - B B B - O - - - E E D D F B B - D D - - d d o c c e e - f f b b e d - o - -

F - B E - - F F B - E D D F F B E E D D e e f f - - - e e f f b b e e - f f b b

F - E E - - F B B O - C C F - O E E - F e - f f b - d d c c - - o e c c f - b -

- O D D C C - - O O - C C - O O - - C B c c - b b o o - c - d d o - c - - d o o

- O D - C C D D F F B B E D D - - B B - c c - - - o - b - e d - - - b - d d o o

- F F - E E D D F - B E E D D F - - E - - d e e f f b b e e - f f b b e e f f -

F B B - E - - C - - O E - C F F O E E - d d e f f - b o e c c f - o e e c f b -

C B - O O - C C - O O - C C - O O D - C o o c c - d o o - c - - d o o c c b b -

- - - F B B C E D D F - B B - O D D C C o - c - d d f - b b e d d - - c - b - o

D D F F B B E E - F F - E E - - F - - E - b - e e f f - b e e f f - - - e e f f

D - C - - O - - - F - O E - - F F - E E b b o e - c - d - e c f f b d d e c f f

- C C - O O - B C - O O - C C B B O O - b o o - c c d d o o c c b d o o c c - -

B C E D O F B B C - D D - C B B - O F B - - f b c e d - o - b b - - o - c - d d

B E E D F F - E E - F F - E E D - F F B - f b b e e f f - b b e e f f b b d e -

FIGURE 4. Tuning of cortical units to muscle length and tension. Labels E, F,
B, D, O, and C represent length of upper arm extensor and flexor, upper arm
abductor, adductor, lower arm opener and closer, respectively while labels e, f,
b, d, o, and c represent tension of corresponding muscle.
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Extensor/Flexor Length Tuning Extensor/Flexor Tension Tuning

in Untrained Cortical Layer in Untrained Cortical Layer

- - - - F - - - F - - - - - F - - - - - e - f f - - - - e e - - - f - - - - - e

- - - - - - - F F - - - - F F - - - F F - - f - - - - e e - - - - - - - - - f e

- - - - - - E E - - - - - F - - - - F - - - - - - - f f - - - - - e e - - f f e

- F - E E - - - - - - - - - E E E - - - - - - - - e - - - - - - - e - - - - - -

F F E E - - - - - - - - - E E - - - - - - - - - e e - - - f f - - f - - - - - -

- - - - - - - - F F - E E - - - - - - - - - - e e - - e e f - - f - - - - - - -

- - - - - E - - - E E E - - F - - E E - - - - - - - - - e - - - - - - - - - f -

- - - - E E - - - - - - - - F - E E - - - - f f - - - - - - - - - e e - - f - -

- - - - E - - - - - - - - - - - - - - - - - - - - - - - - - - - - e e - - e e -

E - - F F - - - - - - - - - - - - F - E - - - - - - - - - - - - - - - - - - - -

- - F F - - - - F - - E E - - - F F - E - - - - - - - - - - f - - e e - - - - -

- F - - - - - - F - E E F - - - - - - - - - - e f - - - e e f - - - - - - f f -

- - - - - - E - - - - - - - - - - - - - - - e e f - - - - - - - - - - - - f - -

- - - - - E E - - - - - E - - - - - - - - - - f f - - - - - - - - - - - - e - -

- - - - F F E - - - - E - - F F - - - - - - - f - - - - - - e - f - - - - - - -

- - - - F - E - - F F - - F F - - E E - - f - - - - f f - - - f f - - - - - - -

- - - - - - - - - F F E - - - - E E E - f - - - - e f f - - - f - - - - e - - f

F - - - - - E E - - E - - - - E - - - - - - - - e e - - - - - - - - - e e - - -

- - E - - - - - - - - - - - E - - - - F - - - - - - - - f - - - - - - - - - - -

- E E - F - - - - - - - - - - - - - - - - - - - - - - - - e - - - f f - - - - -

Extensor/Flexor Length Tuning Extensor/Flexor Tension Tuning

in Trained Cortical Layer in Trained Cortical Layer

- E - - F - E E - F F - - E - - - F - - - - - - e - f f - - e e - f - - - e e -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - F - - - E - - - - - - - - - e - - - - - - e - - f - - -

F - E - - F F - E E - F F - - E E - - F e - f - - e e - f - - - - e - f f - - e

- E E - F F - E - - - F - - - - - - - F - f f - - e - f f - - - - - - - - - - e

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - E E - - F - - - - - - - - - - - - e e - f f - - e - - - - -

F - - E - - F F - - E - - F F - E E - - e e f f - - - e e f f - - e e - f f - -

F - E E - - F - - - - - - F - - E E - F e - f f - - - - - - - - - e - - f - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - F F - - E - - - - - - - - - - - - - - - - e - - - - - - - - - -

- F F - E E - - F - - E E - - F - - E - - - e e f f - - e e - f f - - e e f f -

F - - - E - - - - - - E - - F F - E E - - - e f f - - - e - - f - - e e - f - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - F - - - E - - F - - - - - - - - - - - - - - - f - - - e - - - - - - - - -

- - F F - - E E - F F - E E - - F - - E - - - e e f f - - e e f f - - - e e f f

- - - - - - - - - F - - E - - F F - E E - - - e - - - - - e - f f - - - e - f f

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - E - - F - - - - - - - - - - - - F - - - f - - e - - - - - - - - - - - - - -

- E E - F F - E E - F F - E E - - F F - - f - - e e f f - - - e e f f - - - e -

FIGURE 5. Tuning of cortical units to length and tension of upper arm extensor
and flexor muscles only. The same set of labels defined in Fig. 4 are used.
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clusters became more uniform. However, the clusters of antagonistic mus-
cles were not separated maximally apart. In fact, some antagonist clusters
were located adjacent to each other. This is due to the fact that unlike
with muscle lengths, there are no constraints preventing two antagonist
muscles from contracting at the same time. Co-contraction of antagonist
muscles is employed when a stiffer joint is necessary, for instance, to ensure
the desired position when unexpected external forces are present [CG85].

3.2 Relationships

Additional evidence of the trained network’s capturing of the mechanical
constraints imposed by the arm is found among those cortical units which
are tuned to multiple proprioceptive inputs (i.e., activation over 0.5 for
multiple test patterns, each of which corresponds to an input unit). Such
multiple tuning could potentially not be compatible with physiological con-
straints. For instance, it seems unlikely that a cortical unit would be tuned
to both a muscle’s length and to its tension together since a muscle tends
not to contract (high tension) and lengthen simultaneously. Another im-
plausible case would be when a cortical unit is tuned to lengths of two
antagonist muscles since they cannot be stretched at the same time.

Table 2 shows the number of implausible multiple tuning cases found in
the network before and after training. For instance, pair (E,F) represents
the number of cortical units which are tuned to both ‘E’ (length of upper
arm extensor) and ‘F’ (length of upper arm flexor), and pair (B,b) rep-
resents the number of cortical units which are tuned to both length and
tension of the upper arm abductor muscle. Each entry represents the num-
ber of cortical layer units which were tuned to a physiologically implausible
pair of arm layer units. Entries in the top row show the number of units
before training and those at the bottom row after training. Before training,
a total of 69 cortical units were tuned to implausible pairs. After training
none of the cortical units had implausible tuning. This clearly shows that
the trained network captured the physiological constraints imposed by the
mechanics of the arm by eliminating implausible multiple tuning effects
introduced by random initial weights.

Tuning of units to some multiple proprioceptive inputs, on the other
hand, could be compatible with the constraints imposed by the mechanics
of the model arm. For instance, in Section 3.1, we considered the unit
shown on the left upper corner in Fig. 4 c and 4 d, which is tuned to both
the length of the opener and to the tension of the closer. This unit is, in
that sense, tuned to the contraction of a single muscle, the closer. Con-
traction of this muscle increases its arm tension (c) and also increases the
length of its antagonist muscle, the opener (O). Table 3 shows the number
of the cortical units tuned to specific plausible tuning pairs, with the top
row being before training and the bottom row being after training. The
tuning pairs follow the same convention used in Table 2. The pair (E, f),
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TABLE 2. Numbers of implausibly tuned cortical layer units. Uppercase letters
represent muscle length while lowercase letters represent muscle tension.

Tuning
Pairs

E,F B,D O,C E,e F,f B,b D,d O,o C,c total

Before
training

7 5 6 6 10 7 9 9 10 69

After
training

0 0 0 0 0 0 0 0 0 0

TABLE 3. Numbers of plausibly tuned cortical units

Tuning
Pairs

E,f F,e B,d D,b O,c C,o total

After
training

12 13 8 6 2 6 47

After
training

42 37 18 35 35 33 200
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for instance, represents the extensor’s length and flexor’s tension, thus con-
traction of the upper arm flexor. Those cortical units which were also tuned
to implausible pairs were not counted here even though they might also be
tuned to contraction of a plausible pair. The data ‘before training’ shows
the effect of randomness of initial weights. Training increased the number
of such cortical units by more than four times. This effect is clearly illus-
trated in Fig. 5 c. and d.(compare left (c.) illustration with corresponding
right (d.) illustration).

After training, the map can be viewed as being organized into fairly
compact contiguous regions where all possible features are represented in
each region. For instance, the region of about 30 units in the lower left
corner of the upper right quadrant (Fig. 4 c. and d.) illustrates this
especially clearly: it has units tuned to every possible muscle length and
tension. Such an organization is reminiscent of hypercolumns in visual
cortex and quite different from that seen with past cortical maps of touch
sensation [GM90, PFE87, Sut92].

3.3 Formation of hand position map

Recall that the sole input information to the model cortex is length and
tension information from each of the six muscle groups that control arm
position. In other words, there is no explicit input information about the
“hand” position in the three dimensional space in which it moves. To assess
what, if any, kind of map of three dimensional hand position develops in
cortex, we divided up the hand position space into 27 cubicles (three seg-
ments for each axis), computed an ‘average’ hand position for each cubicle,
presented the input patterns corresponding to the average hand positions,
and determined to which of these 27 test input patterns each cortical unit
is maximally tuned. We considered also for each cortical unit to which of
the three segments of x, y, and z axes it is tuned. In this scheme, the x, y,
and z axes are divided into three equal-length segments (Fig. 6). We chose
this particular division of space based on the facts that a large number of
the training patterns were covered by the resulting 27 cubicles (86%) and
that every cubicle contains at least one training pattern 4

A cubicle is identified as a triplet (i, j, k) where values of i, j, and k
denote the location of the cubicle as

i =




1 if Hx ∈ [−2,−1.2]
2 if Hx ∈ [−1.2,−0.4]
3 if Hx ∈ [−0.4, 0.4]

j =




1 if Hy ∈ [−0.4, 0.4]
2 if Hy ∈ [0.4, 1.2]
3 if Hy ∈ [1.2, 2.0]

4The training patterns were not evenly spaced.
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x = 0.4

x = -0.4

x = -1.2

x = -2.0

y = -0.4 y = 0.4 y = 0.8 y = 1.2

z = -1.2

z = -0.4

z = 0.4

z = 1.2

FIGURE 6. Division of hand position space into 27 cubicles. The x axis was
segmented into three sections X1, X2, and X3 of [−2,−1.2], [−1.2,−0.4], and
[−0.4, 0.4], respectively. The y axis was segmented into three sections Y1, Y2, and
Y3 of [−0.4, 0.4], [0.4, 1.2], and [1.2, 2.0], respectively. The z axis was segmented
into three sections Z1, Z2, and Z3 of [−1.2,−0.4], [−0.4, 0.4], and [0.4, 1.2], re-
spectively.
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k =




1 if Hz ∈ [−1.2,−0.4]
2 if Hz ∈ [−0.4, 0.4]
3 if Hz ∈ [0.4, 1.2]

where hand position is (Hx,Hy,Hz). For each cubicle (i, j, k), the average
hand position was calculated from the training samples whose resultant
hand positions were within the boundaries of the cubicle, and the corre-
sponding muscle lengths and tensions were computed. Note, however, that
only muscle lengths are determined uniquely, given hand positions: muscle
tensions are not unique. For simplicity, we chose the tension values such
that the total tension at each joint was either maximal or minimal. We
ran the 27 resulting testing patterns with the already trained network and
observed each cortical unit’s activation. Since we get similar results from
maximal tension and minimal tension patterns, we present the results from
maximal tension patterns only from now on.

Figs. 7 and 8 show the cortical units’ spatial tuning to arm location
before and after training, respectively. Tuning after training clearly show
map formation.

There are also clear relationships between spatial position and specific
proprioceptive inputs in the map. To understand this, recall that muscle
length and hand positions are jointly involved in a set of mechanical con-
straints imposed by the model arm. For example, the contraction of the
adductor muscle, and thus the stretch of its antagonist abductor muscle,
positions the elbow and hand below the shoulder. This translates into the
hand position’s z-coordinate being negative (namely segment Z1 in Fig. 6).
In other words, a stretched abductor muscle is very likely to correlate with
hand position being in Z1

5 Stretching of the adductor muscle, on the
other hand, is very unlikely to place the hand in Z1, but is very likely to
be correlated with the hand position in Z3 (i.e., a positive z-coordinate).
Another similar constraint is that the contraction of the upper arm flexor
muscle, and thus the stretching of its antagonist upper arm extensor mus-
cle, tends to position the elbow in front of the body, resulting in the hand
being placed very far in front of the body. This translates to the hand posi-
tion’s x-coordinate being very negative (i.e., in segment X1, also defined in
Sec. 3.3). Therefore, the stretch of the upper arm extensor is very likely to
position the hand in X1. In short, the mechanics of the model arm imposes
constraints on the relations between muscle length and hand positions such
that there are certain pairs of muscle and hand positions which are very
likely to happen simultaneously and that there are some other pairs which
are not likely to happen simultaneously.

To see if the network learned these types of constraints, we calculated
the number of cortical units which were tuned both to stretch of a muscle
and to various segments of the hand positions of all three axes, both be-

5Recall that the model arm segments do not rotate.
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X-direction Tuning in Untrained Cortical Layer

2 1 1 3 3 3 3 1 3 3 3 - - 3 2 1 1 1 - 3

1 1 3 1 1 1 1 1 1 2 2 - - 2 3 3 1 2 2 3

3 2 1 1 1 1 2 2 1 2 3 3 3 3 3 1 1 1 - 2

3 3 1 - 2 2 3 3 1 3 3 3 2 - 1 1 1 1 2 3

2 1 - 2 2 3 3 1 1 3 2 2 2 1 1 2 2 2 3 2

1 3 - 3 3 3 2 - 1 2 1 1 1 1 3 2 2 - 1 2

3 3 2 3 1 2 2 1 1 1 1 2 2 3 3 2 2 1 1 3

2 3 1 1 1 1 2 - - 1 1 2 2 2 1 1 1 2 2 3

3 2 1 2 1 2 1 1 1 1 3 2 3 1 1 2 1 1 2 2

1 2 2 2 3 1 1 2 3 3 3 2 1 1 2 2 2 2 3 2

2 3 3 2 2 3 3 2 2 2 2 1 1 2 1 1 3 3 3 1

3 3 3 2 1 1 2 2 2 2 1 1 2 1 1 1 3 3 2 1

3 3 2 3 1 1 1 2 3 - 1 - - 2 1 1 3 2 1 1

3 3 2 2 2 2 3 3 1 1 1 1 1 1 1 3 2 2 2 2

- 3 3 2 3 3 3 1 3 3 1 1 1 - 3 3 2 2 2 2

1 3 3 3 3 3 2 1 3 3 3 2 2 3 3 3 3 3 2 1

2 3 3 - 3 1 1 2 2 3 3 2 1 3 3 2 3 3 2 1

2 3 - - 2 1 2 1 1 3 1 1 1 1 2 2 2 2 2 2

3 3 2 1 2 3 1 1 1 1 3 1 1 1 2 2 2 3 2 2

3 1 1 1 3 3 3 1 1 3 3 - - 2 2 2 1 - - 3

Y-direction Tuning in Untrained Cortical Layer

2 1 2 3 2 1 1 3 1 1 2 - - 1 2 1 1 1 - 3

2 3 2 2 1 2 3 2 1 2 1 - - 1 3 3 1 3 3 3

2 3 2 2 1 2 3 2 1 1 2 2 1 2 1 3 3 2 - 3

3 3 1 - 2 3 2 1 2 1 2 1 1 - 2 3 2 1 1 1

3 1 - 1 1 2 1 3 3 3 1 1 1 2 2 1 1 1 1 2

1 1 - 2 1 1 2 - 3 3 3 1 1 1 2 2 2 - 3 2

1 1 1 2 2 1 1 1 1 3 1 1 1 1 3 3 3 2 2 2

1 3 2 1 1 2 2 - - 1 1 1 1 3 3 3 2 3 3 2

3 3 1 1 3 2 2 1 1 2 3 2 1 3 3 1 2 2 2 2

2 2 1 1 2 3 1 1 1 2 3 3 3 2 1 1 2 2 1 2

3 3 2 1 3 3 3 2 1 3 3 3 1 2 1 1 3 2 1 3

3 3 1 1 2 2 3 2 1 3 1 1 1 1 1 3 3 1 1 3

3 3 2 3 1 2 3 1 1 - 3 - - 3 3 1 3 2 1 3

3 3 1 2 3 3 3 3 2 3 3 2 2 2 1 3 2 3 3 3

- 3 2 2 2 3 3 3 3 1 2 1 1 - 3 1 2 3 3 3

2 3 2 1 1 1 1 2 2 1 2 2 2 3 2 2 3 3 3 1

3 1 2 - 1 3 2 3 3 1 1 1 1 3 1 2 1 2 2 1

2 1 - - 3 3 1 2 2 1 1 2 3 3 1 2 2 1 1 2

2 2 1 2 2 3 1 3 3 1 2 1 3 1 3 2 1 1 1 1

2 1 1 1 2 3 1 3 3 1 2 - - 2 3 3 1 - - 1

Z-direction Tuning in Untrained Cortical Layer

2 2 1 1 2 2 2 2 1 1 2 - - 2 1 1 3 3 - 2

3 1 1 1 2 2 2 1 1 3 3 - - 1 1 3 3 1 1 3

2 1 1 1 3 3 1 2 1 3 2 1 1 1 3 3 1 1 - 3

1 1 1 - 3 1 2 2 1 3 2 1 1 - 3 3 1 1 2 2

2 1 - 3 3 2 2 1 2 1 2 1 1 3 3 2 1 1 2 2

2 2 - 3 3 2 1 - 3 2 1 1 3 3 2 2 1 - 3 3

2 2 1 3 1 1 1 3 3 2 2 3 3 3 3 1 1 1 3 3

2 2 2 1 2 2 3 - - 1 2 3 3 3 2 1 1 1 2 3

1 2 3 3 3 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1

2 3 3 2 2 1 1 1 2 1 1 1 3 3 1 2 2 2 1 1

2 3 3 2 3 1 1 1 2 2 3 2 2 3 3 2 2 1 2 1

3 2 1 3 3 1 1 3 3 3 1 2 2 3 3 2 2 3 2 3

1 1 1 2 1 2 2 3 3 - 1 - - 1 1 2 3 1 3 3

1 1 1 1 2 2 2 3 3 1 1 1 1 1 2 1 1 2 3 1

- 1 1 2 2 1 2 3 2 1 1 1 1 - 1 1 2 3 1 1

1 2 3 2 1 1 1 2 2 1 1 1 1 1 1 2 3 1 1 1

1 3 3 - 1 1 1 3 3 3 3 2 2 1 2 3 3 1 2 1

1 3 - - 3 1 3 3 3 3 2 2 2 1 3 3 1 1 2 2

1 2 3 3 3 3 3 3 3 2 1 1 1 3 3 1 1 2 1 1

2 1 2 2 3 3 2 3 3 1 2 - - 2 2 1 1 - - 1

FIGURE 7. Tuning of untrained cortical units to hand position in each direction,
x, y, and z. Each unit is labeled such that the corresponding element of cubicle
(i, j, k) is displayed when the unit is maximally tuned to the hand position from
the cubicle.
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X-direction Tuning in Trained Cortical Layer

2 - 2 3 3 2 2 - - 3 3 2 2 2 1 1 3 3 2 2

3 - 2 2 2 2 2 - 2 2 2 2 2 2 2 1 2 - 2 2
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2 2 2 2 3 - 2 1 1 2 3 - 1 2 2 2 2 2 1 2

1 2 3 2 3 1 1 1 2 2 2 2 1 1 - 2 2 2 2 1

1 2 3 3 2 1 1 - 2 3 3 2 1 1 - 3 3 2 1 1

1 3 3 3 - 2 2 - 3 3 2 2 1 1 1 3 2 2 2 1

2 2 2 2 2 2 - 2 2 2 2 2 1 1 2 2 2 2 2 -
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1 1 1 3 3 3 2 1 1 - 3 2 - 1 1 1 2 3 3 2

Y-direction Tuning in Trained Cortical Layer

1 - 3 3 3 2 1 - - 3 2 1 1 1 2 2 3 3 2 1

1 - 3 3 2 2 1 - 3 3 1 2 1 1 2 3 3 - 1 1

2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2 2

2 1 1 2 2 2 1 1 1 1 2 3 2 2 1 1 1 2 2 3

1 1 - 3 3 2 1 1 1 2 3 3 2 1 1 1 2 3 3 3

1 1 - 3 3 2 1 1 2 3 3 3 - 1 1 2 3 3 3 2

2 2 3 2 1 - 1 2 2 1 2 1 2 1 2 1 2 2 1 1

2 2 3 1 1 - 2 2 1 1 1 2 3 3 2 1 1 1 1 1

2 1 1 1 - 3 3 2 1 1 - 3 3 3 2 1 1 2 3 3

1 2 1 1 2 3 3 - 1 1 - 3 3 - 1 1 1 3 3 3

2 1 2 1 1 2 1 1 2 2 2 2 1 1 1 2 - 3 1 1

1 2 2 1 1 1 1 2 3 2 1 1 1 2 2 2 1 2 1 1

3 2 1 1 1 - - 3 3 - 1 - 2 3 3 2 1 1 2 3

3 2 1 1 1 - 3 2 1 1 1 - 3 3 2 1 1 1 3 3

1 2 1 2 1 2 2 1 1 1 2 1 2 1 - 1 2 2 3 2

1 3 2 2 2 1 1 - 2 2 1 1 1 1 - 2 2 2 1 1

2 3 3 3 - 1 1 - 3 3 2 1 1 2 3 3 2 1 1 1

3 3 3 2 1 1 - 3 3 3 1 1 2 3 3 2 1 1 1 -

2 2 1 2 1 2 1 2 2 1 1 2 - 3 1 - 1 1 2 1

1 1 2 1 2 2 2 1 2 - 2 2 - 1 1 1 1 2 2 1

Z-direction Tuning in Trained Cortical Layer

2 - 3 2 2 1 2 - - 2 1 1 2 2 3 3 3 1 1 1

2 - 2 3 3 3 2 - 2 2 1 3 2 3 3 2 1 - 3 2

2 1 1 2 3 3 2 1 1 2 3 3 2 2 1 1 2 3 3 2

1 1 2 3 3 2 1 1 2 2 3 3 2 1 1 1 2 3 3 2

1 2 - 3 3 1 1 2 3 3 3 1 1 1 2 2 2 2 2 1

2 2 - 2 1 1 2 2 3 3 2 1 - 3 2 2 2 2 3 3

2 2 2 1 1 - 2 2 2 1 1 2 3 3 2 1 1 1 3 3

2 2 3 2 2 - 3 2 1 1 2 3 3 2 1 1 1 2 3 3

1 1 3 3 - 3 1 1 1 2 - 3 2 1 1 2 2 2 3 2

1 3 3 3 3 1 1 - 2 2 - 1 1 - 2 2 2 2 2 1

3 3 2 3 1 2 3 3 3 2 1 1 2 3 3 2 - 1 1 1

3 2 2 3 1 2 3 3 2 1 1 2 2 3 3 2 1 1 2 2

3 1 1 3 2 - - 3 1 - 2 - 3 3 1 1 1 3 3 3

1 1 3 2 2 - 1 3 3 2 2 - 2 1 1 1 2 2 3 2

1 3 3 2 1 1 1 2 3 3 2 1 1 1 - 3 3 2 3 1

3 3 3 1 1 1 2 - 3 3 1 1 1 2 - 3 2 2 1 2

2 3 2 1 - 2 2 - 1 2 1 2 3 3 3 2 1 1 2 2

2 2 3 3 3 2 - 1 2 3 3 2 3 3 1 1 1 2 2 -

1 1 3 3 3 2 1 1 2 3 3 2 - 1 1 - 3 3 2 1

1 2 3 3 3 1 1 2 3 - 3 2 - 1 2 2 3 3 1 1

FIGURE 8. Tuning of trained cortical units to hand position in each direction,
x, y, and z. Each unit is labeled such that the corresponding element of cubicle
(i, j, k) is displayed when the unit is maximally tuned to the hand position from
the cubicle. In the x-axis tuning, stripes of 1’s, 2’s and 3’s in the orientation of
northwest to southeast appear. Also in the y-axis and z-axis tuning shown are
similar stripes of 1’s, 2’s and 3’s in the orientation of northeast to southwest.
There were no such tuning stripes found in the untrained cortical layer (Fig. 7).
A careful examination of the spatial location of stripes formed reveals that their
orientation does not match the hexagonal tessellation of the underlying network,
and thus it is not an artifact of the particular tessellation used in the model.
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TABLE 4. Number of cortical units maximally tuned to length and hand position
(before training)

X1 X2 X3 Y1 Y2 Y3 Z1 Z2 Z3 total

Extensor (E) 28 17 5 19 17 14 17 17 16 150
Flexor (F) 5 13 24 15 13 14 21 13 8 126

Abductor (B) 6 13 15 12 10 12 15 11 8 102
Adductor (D) 14 12 15 19 9 13 11 11 19 123

Opener (O) 11 10 15 13 17 6 22 9 5 108
Closer (C) 23 11 8 13 15 14 15 11 16 126

total 87 76 82 91 81 73 101 72 72

TABLE 5. Number of cortical units maximally tuned to length and hand position
(after training)

X1 X2 X3 Y1 Y2 Y3 Z1 Z2 Z3 total

Extensor (E) 37 7 0 39 5 0 6 30 8 132
Flexor (F) 0 15 37 2 33 17 18 24 10 156

Abductor (B) 17 21 5 21 16 6 40 2 1 129
Adductor (D) 18 23 4 22 21 2 0 6 39 135

Opener (O) 0 38 9 41 6 0 2 33 12 141
Closer (C) 19 23 5 1 11 35 16 19 12 141

total 91 127 60 126 92 60 82 114 82
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fore and after training. Tables 4 and 5 show the number of cortical units
which are maximally tuned both to length (stretch) of a certain muscle
and to a certain segment of hand positions before and after training, re-
spectively. For instance, the entry 28 in the upper left corner of Table 4
represents the number of cortical units which were tuned to the stretch of
the upper arm extensor muscle and to the hand position in segment X1,
before training. The entry 37 in the upper left corner of Table 5 represents
the same thing after training. After training, the number of the cortical
units tuned to plausible pairs of muscle stretch and hand position values
increased significantly while the number of cortical units tuned to implau-
sible pairs decreased. For example, as discussed above, the number of units
tuned to abductor-Z1 pair and to adductor-Z3 pair (i.e., likely pairs) has
increased from 15 to 40 and 19 to 39, respectively, while the number of
units tuned to adductor-Z1 pair and abductor-Z3 pair (i.e., unlikely pairs)
has decreased from 11 to 0 and 8 to 1, respectively. Fig. 9 illustrate that
cortical units representing a stretched, longer abductor muscle are over-
whelmingly embedded in the stripes representing hand position Z1. The
other constraints we discussed above also seemed to be learned, as shown
in the significant change between before and after training of the entries in
the left upper box and the middle lower box of Tables 4 and 5 6 In addi-
tion, these tables show more instances of interesting tuning such as in the
upper middle box where the entries in upper arm extensor-Y1 and upper
arm flexor-Y2 greatly increased while those in upper arm extensor-Y2, up-
per arm extensor-Y3, and upper arm flexor-Y1 significantly decreased. This
is due to the fact that the stretch of the upper arm extensor and stretch of
the upper arm flexor tends to place the hand toward the negative side of
the y-axis (i.e., Y1) and toward the positive side of the y-axis (i.e.,Y2 and
Y3), respectively. Comparison of the two tables shows that the network
learned the constraint that the contraction/stretch of certain muscles po-
sitions the hand in certain locations in space. Since the hand position was
not explicitly provided as input, the network seems to learn to encode the
“interrelationship” among the muscle lengths. The spatial map of hand
position that the model developed can be considered as a higher order map
than muscle length or tension maps.

Finally, the cortical units inside a compact contiguous region, mentioned
in the last paragraph of Sec. 3.2, also contained the cortical units tuned to
all three segments of three axes. This particular region of about 30 units
located in the lower left corner of the upper right quadrant, for instance,
contains those cortical units tuned to hand positions from 24 out of all
possible 27 cubicles 7

66. Entries in the tables are divided up into nine boxes excluding the ‘total’ column
and row. Each box is associated with one set of antagonist muscles and one axis of hand
positions.

7Very few training samples were picked from the three cubicles which were not repre-
sented in the particular region, but were represented in other area of the cortical layer.
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Units tuned to the abductor Units tuned to Z_1

- - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - 1 1 - - - - - 1 1 1

- - - - - - - - - 1 1 - - - - - - - - - - - - - - - - - - - 1 - - - - - 1 - - -

- 1 - - - - - - - - - - - - - - - - - - - 1 1 - - - - 1 1 - - - - - 1 1 - - - -

- 1 - - - - - - - - - - - 1 1 - - - - - 1 1 - - - - 1 1 - - - - - 1 1 1 - - - -

- - - - - - - - - - - - 1 1 - - - - - - 1 - - - - 1 1 - - - - 1 1 1 - - - - - 1

- - - - - - - - - - - - - - - - - - - - - - - - 1 1 - - - - - 1 - - - - - - - -

- - 1 1 1 - - - - - - - - - - 1 1 - - - - - - 1 1 - - - - 1 1 - - - - 1 1 1 - -

- - 1 - - - - - 1 - - - - - - 1 - - - - - - - - - - - - 1 1 - - - - 1 1 1 - - -

- - - - - - - 1 1 - - - - - - - - - - - 1 1 - - - - 1 1 1 - - - - 1 1 - - - - -

- - - - - - - - - - - - - - - - - - - 1 1 - - - - 1 1 - - - - 1 1 - - - - - - 1

- - - - - - - - - - 1 1 - - - - - 1 1 - - - - - 1 - - - - - 1 1 - - - - - 1 1 1

- - - - - - - - - - 1 - - - - - - - - - - - - - 1 - - - - 1 1 - - - - - 1 1 - -

- 1 1 - - - - - - - - - - - - - - - - - - 1 1 - - - - - 1 - - - - - 1 1 1 - - -

- 1 - - - - - - - - - - - - - - - - - - 1 1 - - - - 1 - - - - - - 1 1 1 - - - -

- - - - 1 1 - - - - - - 1 1 - - - - - - 1 - - - 1 1 1 - - - - 1 1 1 - - - - - 1

- - - - 1 1 - - - - - - - - - - - - - - - - - 1 1 1 - - - - 1 1 1 - - - - - 1 -

- - - - - - - - - - - - - - - - - - - - - - - 1 - - - - 1 - 1 - - - - - 1 1 - -

- - - - - - - 1 - - - - - - - 1 1 - - - - - - - - - - 1 - - - - - - 1 1 1 - - -

1 - - - - - 1 1 - - - - - - 1 1 - - - 1 1 1 - - - - 1 1 - - - - - 1 1 - - - - 1

1 - - - - - - - - - - - - - - - - - - 1 1 - - - - 1 1 - - - - - - 1 - - - - 1 1

Units tuned to both the abductor and Z_1 Units tuned to either the abductor or Z_1

- - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - 1 1 - - - - - 1 1 1

- - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - 1 1 - - - - - 1 - - -

- 1 - - - - - - - - - - - - - - - - - - - 1 1 - - - - 1 1 - - - - - 1 1 - - - -

- 1 - - - - - - - - - - - 1 1 - - - - - 1 1 - - - - 1 1 - - - - - 1 1 1 - - - -

- - - - - - - - - - - - 1 1 - - - - - - 1 - - - - 1 1 - - - - 1 1 1 - - - - - 1

- - - - - - - - - - - - - - - - - - - - - - - - 1 1 - - - - - 1 - - - - - - - -

- - - 1 1 - - - - - - - - - - 1 1 - - - - - 1 1 1 - - - - 1 1 - - - - 1 1 1 - -

- - - - - - - - 1 - - - - - - 1 - - - - - - 1 - - - - - 1 1 - - - - 1 1 1 - - -

- - - - - - - 1 1 - - - - - - - - - - - 1 1 - - - - 1 1 1 - - - - 1 1 - - - - -

- - - - - - - - - - - - - - - - - - - 1 1 - - - - 1 1 - - - - 1 1 - - - - - - 1

- - - - - - - - - - 1 1 - - - - - 1 1 - - - - - 1 - - - - - 1 1 - - - - - 1 1 1

- - - - - - - - - - 1 - - - - - - - - - - - - - 1 - - - - 1 1 - - - - - 1 1 - -

- 1 1 - - - - - - - - - - - - - - - - - - 1 1 - - - - - 1 - - - - - 1 1 1 - - -

- 1 - - - - - - - - - - - - - - - - - - 1 1 - - - - 1 - - - - - - 1 1 1 - - - -

- - - - 1 1 - - - - - - 1 1 - - - - - - 1 - - - 1 1 1 - - - - 1 1 1 - - - - - 1

- - - - 1 1 - - - - - - - - - - - - - - - - - 1 1 1 - - - - 1 1 1 - - - - - 1 -

- - - - - - - - - - - - - - - - - - - - - - - 1 - - - - 1 - 1 - - - - - 1 1 - -

- - - - - - - 1 - - - - - - - 1 1 - - - - - - - - - - 1 - - - - - - 1 1 1 - - -

1 - - - - - 1 1 - - - - - - 1 - - - - 1 1 1 - - - - 1 1 - - - - - 1 1 1 - - - 1

1 - - - - - - - - - - - - - - - - - - 1 1 - - - - 1 1 - - - - - - 1 - - - - 1 1

FIGURE 9. Relation between the tuning to abductor length and tuning to hand
position Z1. Units tuned to abductor length comprise a subset of units tuned to
hand position Z1.

www.4electron.com



4. A learning sensorimotor map of arm movements 85

3.4 Variation of Model Details

The results reported above are from the network trained with arbitrary
model arm positions. Quantitatively identical results were also obtained
when the network was trained with equilibrium model arm positions [JC93].
The model arm is in equilibrium if, at each joint, the total tension (active
and passive) of the agonistic and antagonistic muscles is the same. Given
two different neuronal input values, the two muscles generate the same total
tension as the muscle with less neuronal input, therefore with less active
tension, becomes stretched, thus generating passive tension. The network
trained with equilibrium model arm positions produced almost identical
maps as in the case of arbitrary model arm positions. Both length and
tension maps were qualitatively identical. So were the spatial hand position
maps. Also the mechanical constraints of the model arm were learned.

In addition, we have done simulations to identify the possible role of some
model parameters in shaping the computational maps. In particular, the
lateral connection radius (LCR), cortical layer size, and competition pa-
rameter value were altered and the resulting maps examined [CJR]. First,
the average size of the length clusters grew proportional to the square of the
LCR value while the number of clusters remained the same. Second, as the
cortical layer size increased the number of clusters increased while the size
of clusters stayed almost constant. Finally, a small change in the competi-
tion parameter value made an enormous change in the qualitative behavior
of length maps, ranging from total inactivity of units to full saturation.

4 Discussion

To the authors’ knowledge, this is the first attempt to develop a computa-
tional model of primary proprioceptive cortex. Input to our model cortex
consists of length and tension signals from each of six muscle groups that
control arm position. Although this model arm is greatly simplified from
reality, it still leads to formation of a remarkably rich feature map with an
unexpected representation of external three dimensional spatial positions.

Our results can be summarized as follows. First, cortical units became
tuned to length or tension of a particular muscle during map formation.
The units tuned to the same muscle, be it length or tension, tended to
group together as clusters, and the size of these clusters became more uni-
form with training. In particular, the clusters of cortical units tuned to
antagonistic muscle lengths were pushed far apart from each other, thus
implying learning by the network of the constraints imposed by the me-
chanics of arm movement (antagonistic muscles do not become stretched
together, usually only one tends to be highly activated, etc.).

Second, many cortical units were tuned to multiple muscles. Among
the cortical units which were initially tuned to more than one arm layer
unit, some did not follow the constraints of the arm movement mechanics
(implausible tuning) while some did (plausible tuning). It was found that
training eliminated the implausibly tuned cortical units while it increased
the number of the cortical units which were tuned to plausible pairs of
arm layer units. The map self-organized such that redundant length and
tension clusters exist. These regularly spaced clusters are reminiscent of
clusters of orientation sensitive cells in primary visual cortex.

A spatial map of hand positions was also found in the cortical layer. Units
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tuned to one area of hand position were located in the cortical layer near
those units tuned to adjacent areas of hand location. The units tuned to
certain segments of axes formed stripes which ran in different orientations
from the hexagonal tessellation. To the authors’ knowledge, there has been
no report of finding a spatial map of hand position in the somatosensory
cortex, so this represents a testable prediction of our model. Further, the
physical constraints involving muscle length and hand position were also
learned by the network. The number of cortical units tuned to plausible
pairs of muscle stretch and hand position values increased while that of
cortical units tuned to less plausible pairs decreased significantly. Another
characteristic is that when multiple parameters are mapped onto the same
2-D surface, they tended to organize such that there is maximum overlap
between the parameters (muscle vs. spatial in our case). Thus muscle tun-
ing forms a fine-grain map within a coarse-grain map of spatial segments.
Many of these results from the computational model can be viewed as
testable predictions about the organization of primary proprioceptive cor-
tex. Our model predicts that experimental study of proprioceptive regions
of cortex should find the following: 1) overlapping maps of both individual
muscles and of spatial locations; 2) multiple, redundant representations
of individual muscles where antagonist muscle length representations are
widely separated; 3) neurons tuned to plausible combinations of muscle
lengths and tensions; and 4) proprioceptive “hypercolumns”, i.e., compact
regions in which all possible muscle lengths and tensions and spatial regions
are represented.
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Neuronal Modeling of the
Baroreceptor Reflex with
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Modeling and Control
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Ilya Rybak

ABSTRACT Biological control systems exhibit high performance, robust
control of highly complex underlying systems; on the other hand, engi-
neering approaches to robust control are still under development. This
motivates neuromorphic engineering: the reverse engineering of biological
control structures for applications in control systems engineering. In this
work, several strategies are outlined which exploit fundamental descrip-
tions of the neuronal architectures which underly the baroreceptor vagal
reflex (responsible for short term blood pressure control). These applica-
tions include process controller scheduling, non-square controller design,
and dynamic process modeling. A simplified neuronal model of the baro-
reflex is presented, which provides a framework for the development of the
process tools.

1 Motivation

The biological term homeostasis refers to the coordinated actions which
maintain the equilibrium states in a living organism. A control engineer
can readily associate this term with the systems engineering concept of
“regulation.” In each case, a variety of tasks is performed which include:
the collection, storage, retrieval, processing, and transmission of data, as
well as the generation and implementation of appropriate control action.
In the engineering context, these tasks are accomplished by “hardwired”
networks of devices whose tasks are typically coordinated by distributed
computer controllers. In the biology context, there are analogous devices
and architectures, the most important of which is the brain. Comprised
of a vast network of “microprocessors” (neurons), this “central controller”
simultaneously coordinates many complex functions.

Consider the regulation of arterial blood pressure. The mean blood pres-
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sure is controlled around a setpoint dictated by cardiovascular system de-
mands. The pressure is a function of the cardiac output and the resistance
of the blood vessels. However, the blood volume is an order of magnitude
less than that of the blood vessels. Thus, in order to optimize circulating
blood weight and pumping requirements, the distribution of blood to spe-
cific vascular beds varies as a function of: (i) demand (e.g. eating, exercise);
(ii) external influence (e.g. cold weather); (iii) emotional state (e.g. joy,
anger); and (iv) anticipated action (e.g. postural adjustment). Because
the major objective in maintaining blood pressure (and thus blood flow)
is the exchange of gases in the tissues, the respiratory and cardiovascular
systems are intimately linked. Consequently, blood gas composition and
respiratory action modulate cardiovascular function.

The regulation of blood pressure in response to changing requirements
and external disturbances is accomplished by a complex network of process-
ing elements in the central nervous system. This control system performs
a wide variety of tasks which include:

1. integration of multiple inputs from pressure sensors, chemo-sensors,
and other brain systems;

2. noise filtering of the sensory inputs;

3. provision of control which is robust to sensor drift and loss;

4. compensation for nonlinear, interacting features of cardiovascular
function.

Clearly, these functions have direct parallels in engineering applications.
Our long term objectives are therefore to understand the mechanisms be-
hind the control of blood pressure and cardiovascular function, and to “re-
verse engineer” the relevant attributes of the baroreceptor reflex for process
engineering applications.

This chapter contains a summary of some preliminary results; it is orga-
nized as follows. In Section 2, we provide an overview of the baroreceptor
reflex, including a description of its key processing elements. In Section
3, simplified neuron models are used as the basis for constructing a net-
work model of the overall reflex. A potential application of this structure
to scheduled process control is then described. In Section 4, blood pres-
sure control architectures are examined from a systems perspective, and
applications to the control of “non-square” process systems are discussed.
In Section 5, a simplified, “biologically-inspired” dynamic processing ele-
ment is presented for process modeling using network architectures. These
models are used to develop a model-based control strategy for a simple
reactor problem. Finally, some conclusions and directions for future work
are discussed in Section 6.

2 The Baroreceptor Vagal Reflex

2.1 Background

The baroreceptor reflex (baroreflex) performs adaptive, nonlinear control
of arterial blood pressure. Its components consist of pressure transduc-
ers in major blood vessels, a central processing network in the brain, and
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FIGURE 1. Schematic diagram of the baroreceptor reflex.

actuators in the heart and vessels. A schematic diagram of the barorecep-
tor reflex circuit is shown in Figure 1. Arterial pressure is transduced by
stretch receptors (baroreceptors) located in the major blood vessels. These
“first-order” neurons project their input onto “second-order” neurons in
a specific “cardio-respiratory” subdivision of the nucleus tractus solitarii
(crNTS), where they are integrated with other sensory signals which re-
flect demands on cardio-respiratory performance [Sch87], [Spy90]. Con-
trol signals are sent to the heart to regulate its rate, rhythm and force of
contraction. Other limbs of the baroreflex send signals to the individual
vascular beds to determine flow and resistance. For example, if the blood
pressure rises above its desired setpoint, the heart rate is slowed, thereby
reducing cardiac output and increasing total peripheral resistance, with a
consequent reduction in blood pressure.

www.4electron.com



92 F.J. Doyle III, M.A. Henson, B.A. Ogunnaike, J.S. Schwaber, I. Rybak

The underlying signal processing mechanism appears to be more complex
then mere linear filtering of input signals. For instance, following the elim-
ination of the baroreceptor inputs, rhythmic output activity and stability
in the heart rate and blood pressure are observed, although “reflex” ad-
justments to pressure perturbations are lost. In addition, there is a central
processing delay (typically in the 100 ms range) that is an order of magni-
tude larger than would be anticipated for a straight-through transmission
of input signals. Finally, the activity in the reflex oscillates at the cardiac
frequency, and it is plausible that this behavior is due to reflex computa-
tion. In short, the processing of inputs by second-order NTS neurons is a
remarkably complex operation.

We are interested in the baroreflex not only because it exhibits interesting
behavior, but also because it offers important advantages for analysis: (i)
the input and output are nerves, and are therefore easily accessible for
morphological and physiological study; (ii) the circuit (in its simplest form)
may be restricted to a single level of the brainstem, and thus may be studied
(at least partially) in vitro using transverse slices of the brainstem; (iii) in
principle, it is possible to delineate the complete reflex connectional circuit
at the cellular level; (iv) the total number of neurons is small enough to
allow system simulations which incorporate neuronal dynamics; and (v)
the location of the NTS is highly advantageous for whole cell patch studies
in vivo.

2.2 Experimental Results

In an effort to develop accurate network models of the baroreflex, we have
performed a variety of experiments to understand the computational mech-
anisms carried out by its individual elements. The work discussed here will
focus on the processing of inputs from the baroreceptors by second-order
neurons in the NTS. By focusing on the interactions taking place within
the NTS at the initial stage of the processing, we aim to determine the
circuit architectures and the basis for the nonlinear, dynamical, adaptive
signal processing it performs.

The first-order baroreceptors are highly sensitive, rapidly adapting neu-
rons which encode each pressure pulse with a train of spikes on the ris-
ing phase of pressure, with activity that is sensitive to dP/dt [AC88],
[SvBD+90]. A typical response of the baroreceptor to rhythmic changes
of blood pressure is shown in Figure 2. There are approximately 100
baroreceptor afferent fibers per nerve. Variations in the pressure thresh-
olds of these fibers are considerably more than a scattering around the
mean pressure, but rather cover a range from well below (approximately
35 mmHg) to well above (approximately 170 mmHg) resting pressure. We
have studied the connections between the first- and second-order neurons in
neuroanatomical experiments using a virus that crosses synapses [SES94].
The results of this work suggest the possibility of a topographic organiza-
tion of the crNTS, such that there is a spatial arrangement of the first-order
inputs by their pressure thresholds [BDM+89], [MRSS89]

The second-order neurons are of interest not only because this is where
the first synaptic processing of pressure information in the NTS

takes place, but also because this processing creates an activity pattern
which is not well understood but appears important. In order to analyze
the processing characteristics, we have conducted single neuron recording
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FIGURE 2. Recording of natural waveform pulses into the isolated carotid sinus
(top trace) and associated activity of a single baroreceptor sensory neuron in the
carotid sinus nerve (bottom trace). [Data provided courtesy of M. Chapleau and
F. Abboud, personal communication]

FIGURE 3. Typical response of an NTS neuron to an arterial pressure step
change.

experiments in the NTS of anesthetized rats. In initial experiments we have
recorded from second-order neurons and characterized their responses to
naturalistic changes in arterial pressure. Although the first-order neurons
have ongoing bursting activity patterns at the cardiac rhythm (Figure 2),
this pattern is not observed in the relatively low-rate, irregular spiking
activity of second-order neurons (Figure 3). In addition, our results show
that second-order neurons exhibit nonlinear responses to changes in blood
pressure, and seem to encode both mean arterial blood pressure and the
rate of pressure change. Figure 3 shows a typical second-order neuron which
initiates its response as pressure rises but decreases its firing frequency at
higher pressures. This is difficult to interpret because the sign and strength
of the synaptic connection from first to second-order neurons is strong and
positive.

In order to develop conductance-based Hodgkin-Huxley neuron models
[HH52] for the second-order neurons, we have performed in vitro experi-
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ments [FPSU93], [FUS93], [PFS93], [SGP93]. These experiments aimed:
(1) to characterize the voltage dynamics of the NTS neuronal population;
and (2) to determine whether (and in what approximate amount) candidate
conductances which might contribute to the voltage dynamics are present
in various neuron types. The in vitro work showed that NTS neuronal
responses to current steps fall into three broad classes which depend on
the relative abundance of conductance channels: (i) single spike response;
(ii) rapidly adapting, delayed response; and (iii) adapting but repetitive
response. It is not known at this time whether baroreceptor inputs land
haphazardly on neurons of each of these response types, or whether these
different neural types represent the front ends of different information chan-
nels for NTS processing.

2.3 Nonlinear dynamical processing

The role of nonlinear neuronal mechanisms is highlighted by our in vitro ob-
servations of dynamical behavior of baroreceptive NTS neurons arising from
their active membrane properties, in particular the large potassium con-
ductances and the calcium dependent potassium channels. This presents
the interesting possibility that neuronal dynamics play an important role
in the signal processing performed by the network of first-order inputs
to second-order neurons. Thus, one of our strong interests is to explore
whether or not nonlinearities in cellular input-output functions play an im-
portant signal processing role in baroreceptive NTS neurons, and to extend
this work to explore the interaction of cell properties with synaptic inputs
for network processing and parallel processing in this system.

We use computational models to explore the contribution of neuron dy-
namics and specific baroreceptor circuitry to the function of the barore-
ceptor vagal reflex [GSP+91]. The model circuitry is composed of specific
classes of neurons, each class having unique cellular-computational proper-
ties. Focusing on the interactions taking place within the NTS at the input
synaptic stage of the processor, we aim to determine the circuit architec-
tures and single-neuron functionality that contribute to the complex signal
processing in the reflex. Our work suggests that biological neural networks
compute by virtue of their nonlinear dynamical properties. Individual neu-
rons are intrinsically highly nonlinear due to active processes inherent in
their membrane biophysics. Collectively, there is even more opportunity
for nonlinearity due to the connectivity patterns between neurons.

Characterizing the behavior of this sort of system is a difficult challenge,
as a neuronal system constantly receives many parallel inputs, executes
some dynamic computation, and continuously generates a set of parallel
outputs. The relationship between inputs and outputs is often complex,
and the first task in emulating biological networks is to find this relation-
ship, and then to understand the dynamical computational mechanisms
underlying it. If this functionality can be captured mathematically in a
model, one has a powerful tool for investigating mechanisms and principles
of computation which cannot be explored in physiological experiments. The
work presented in this chapter represents a preliminary step in this process.
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3 A Neuronal Model of the Baroreflex

In this section, a simple closed-loop model of the baroreflex is presented.
This network model serves a dual purpose: (i) it provides information
about the network-level computation which underlie the control functions
of the baroreflex; and (ii) it provides the basis for “reverse engineering”
the scheduled transitions in neuron activity which occur in response to
blood pressure changes for applications in scheduling the action of a process
controller.

3.1 Background

In the previous section, we described some of the relevant experimental
results on the dynamics of the second-order NTS neurons (Figure 3) which
were used as a basis for the development of a neural network model of the
baroreceptor reflex. An analysis of these results (see Figure 3) reveals the
following dynamic properties of the second-order neurons:

1. The second-order NTS neurons respond to a change in mean blood
pressure with a burst of activity whose frequency is much lower than
the frequency of the cardiac cycle;

2. The responses suggest that NTS neurons are inhibited immediately
before and immediately after the bursts;

3. It is reasonable to assume that this bursting activity is the source of
regulatory signals which are relayed to, and cause the compensatory
changes at, the heart;

4. It is plausible that each NTS neuron responds to pressure changes
and provides this regulation in a definite static and dynamic range of
pressure.

These observations, combined with other physiological data and general
principles of sensory system organization, suggest the following hypotheses
which have been used to construct a simple baroreflex model:

1. The first hypothesis, barotopical organization, as explained previously
in [SPRG93], [SPR+93], proposes that: (a) the thresholds of the
baroreceptors are topographically distributed in pressure space; and
that (b) each second-order neuron receives inputs from barorecep-
tors with thresholds belonging to a narrow pressure range. There
are anatomical [BDM+89], [DGJS82] and physiological [RPS93] data
which support these suppositions.

2. The second hypothesis proposes that projections of the first-order
neurons onto the second-order neurons are organized like “ON–center–
OFF–surround” receptive fields in the visual sensory system [HW62].
Each group of second-order neurons receives “lateral” inhibition from
neighboring neuron groups which respond to lower and higher levels
of blood pressure (compared to the center group). This supposition
results from the second experimental observation listed above and
corresponds to a general organizational principle of sensory systems.
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FIGURE 4. Schematic of the simplified baroreflex model.

3.2 Model Development

Structure of the Model
A diagram of the proposed network model for the closed-loop baroreflex is
shown in Figure 4. The first-order neurons, which are arranged in increas-
ing order of pressure threshold, receive an excitatory input signal that is
proportional to the mean blood pressure. The second-order neurons receive
both synaptic excitation and inhibition from the first-order neurons as de-
picted in Figure 4. The lateral inhibition of the second-order neurons is
achieved by direct synaptic inhibition from the neighboring, off-center first-
order neurons (i.e., the periphery of the receptive field [HW62]). A more
biologically accurate mechanism would employ inhibitory interneurons and
reciprocal inhibition between the second-order neurons. An investigation
of these more complex inhibition mechanisms is left for future work; here
we only consider the simple mechanism shown in Figure 4. The outputs
of the second-order neurons are summed and, via an intermediate dynamic
subsystem, are used as an input to a model of the the heart. This model
receives inputs from both the neural feedback subsystem and an external
disturbance signal. The output of this model is fed back to the neural
control system as the blood pressure signal.

Model of a Single Neuron

Detailed conductance-based neuron models of first- and second-order bar-
oreflex neurons show ([SPRG93], [SPR+93]) close correspondence to ex-
perimental observations. However, the complexity of these models poses
a difficult problem for efficient network-level simulations. In this case, a
simplified model of a spiking neuron is preferred. A summary of the single
neuron model used in the baroreflex network (based on previously described
neuron models [Get89], [Hil36], [Mac87]) is given below.

Following the Hodgkin-Huxley formalism, the dynamics of a neuron’s
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membrane potential can be described by the following differential equation:

cV̇ =
∑

i

giabs(Ei − V ) + I

where c is the membrane capacitance, V is the membrane potential, giabs
is the conductance of the ith ionic channel, Ei is the reversal potential of
the ith ionic channel, and I is the input current.

Following a long period which is devoid of excitatory and inhibitory
signals (I = 0), the neuron will cease to generate action potentials and the
variables will attain the following “resting” or steady-state values: V =
Vr and giabs = gir. The conductances can be represented as “deviation
variables” by defining:

gi = gabs − gir

so that gi is the relative change of the ith conductance. The deviation form
of the membrane potential equation is:

cV̇ = g0(Vr − V ) +
∑

i

gi(Ei − V ) + I

where the resting membrane potential, Vr, and generalized conductance,
g0, are defined by the following expressions:

Vr =
∑

i girEi∑
i gir

; g0 =
∑

i

gir

Three types of conductances (gi) are used in the current model. They
include conductances for excitatory and inhibitory synaptic currents (gesyn

and gisyn) which are opened by action potentials (AP) coming from other
neurons, and a gAHP conductance for the potassium current which is
opened by AP generation in the neuron itself. There are, in fact, sev-
eral potassium channel types [CWM77] and the AHP notation identifies
the specific class considered here.

With this assumption, the membrane potential can be represented in the
following form:

cV̇ = g0(Vr − V ) + gesyn(Esyn − V ) + gisyn(Eisyn − V ) +
gAHP (EK − V ) + I (1)

Because the first-order baroreflex neurons do not receive synaptic inputs,
they can be described by the following simplified expression:

cV̇ = g0(Vr − V ) + gAHP (EK − V ) + I (2)

where the input signal I is proportional to the blood pressure. The mem-
brane potential of second-order neurons is described as in Equation (1)
without the input I.

In models of this type [Get89], [Hil36], [Mac87], it is generally assumed
that g0 is constant and that gesyn, gisyn and gAHP depend on time, but not
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on the membrane potential. It is also assumed that the neuron generates
an action potential at the moment of time when its membrane potential
reaches, or exceeds, a threshold value. The dynamic behavior of the thresh-
old value (H) is described as:

τHoḢo = −Ho + Hr + Ad (V − Vr) (3)

H = Ho + (Hm − Ho) exp
(
− t − t0

τH

)
(4)

Equation (4) describes the fast changes of the threshold immediately fol-
lowing an AP which is generated in the neuron at time t0. The threshold
(H) jumps from the current level to the higher level Hm at t0, and then
decays exponentially to H0 with time constant τH . Equation (3) describes
the slow adaptive dynamics of the current threshold level (H0). The degree
of adaptation is determined by the coefficient Ad. Hr is the resting level
of the threshold, and τH0 is the time constant of adaptation.

The dynamics of the gAHP conductance are described as follows:

gAHP = gmAHP

∑
ti≤t

exp
(
− t − ti

τAHP

)
(5)

The conductance increases from the current level by the constant value
gmAHP at each time ti when an AP is generated in the neuron and then
decays back to zero with time constant τAHP . These changes in gAHP
cause the short-time hyperpolarization which occurs after each AP. Equa-
tions (3)–(5) define slow and fast interspike dynamics of the neuron ex-
citability. A more realistic description of neuron dynamics can be obtained
by considering the dynamics of Ca++, as well as the voltage and Ca++

dependencies of the conductances. Nevertheless, our results have shown
that the simplified model describes the behavior of the baroreflex neurons
with sufficient accuracy for the purpose of network modeling.

The connections between neurons are captured in the model by the
changes of synaptic conductances in target neurons caused by each AP
coming from source neurons. The transmittance of the action potential is
captured in the output activity of a neuron (Y ):

Y = V + (Am − V ) f1(t − t0)

where Am is the amplitude of the action potential, and f1=1 if t = t0, and 0
otherwise. Synaptic potentials in a target neuron, which cause its excitation
or inhibition, result from changes of gesyn and gisyn conductances in that
neuron. These changes are modeled using the output variable of the source
neuron (y) which causes the inhibition or excitation:

y = ym

∑
ti≤t

exp
(
− t − ti

τy

)

where ti is the time at which an action potential is generated, and ym and τy

are the parameters which define the normalized amplitude and decay time
constant, respectively. The synaptic conductances in the target neuron are
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generated by the weighted sum of the respective output signals from the
source neurons:

gesyn = ke

∑
j

aejyj

gisyn = ki

∑
j

aijyj

where aej and aij are weights associated with the excitatory and inhibitory
synapses, respectively, from the neuron j, and ke and ki are tuning param-
eters.

A Simplified Model of the Baroreflex Control System

Let us now consider how the single neuron model is used in the baroreflex
control model depicted in Figure 4. The first-order neurons are arranged
in increasing order of threshold rest levels (Hr) using a constant threshold
difference of ∆Hr. The input signal to the first-order neurons depends on
the pressure P via the amount of stretch in the blood vessels, modeled sim-
ply here as: I = fP (P ). As a first approximation, a linear relationship is
assumed: fP (P ) = kP P , where kP is a “tuning” coefficient. The synaptic
inputs from the first-order neurons to the second-order neurons are sketched
in Figure 4. The weighted sum of the outputs from the second-order neu-
rons form the input for an intermediate subsystem which is modeled as a
simple linear filter:

τintİint = −Iint + kint

∑
j

yj

This dynamical system captures the effects of the interneurons and mo-
tor neurons which lie between the second-order baroreflex neurons and the
heart. (Note: in this model we have focused on the vagal motor neurons
which affect the cardiac output, and have ignored the effects of the sym-
pathetic system on the peripheral resistance in the vascular bed.)

A first-order approximation of the blood pressure dynamics is described
below. The pressure decays exponentially from a current level to the level
P0 with the time constant τP . At selected time points, denoted t1, the
pressure responds with a “jump” to the level Pm in response to the pumping
action of the heart:

P = P0 + (Pm − P0) exp
(
− t − t1

τP

)

This pressure jump occurs at the moment when Pmin exceeds P0, where
Pmin is modeled by a first-order differential equation with time constant
TP and rest level Pmin0 (in the absence of inputs):

TP Ṗmin = −Pmin + Pmin0 + Pi − kfbIint

One of the driving forces in this equation is the disturbance Pi which rep-
resents the the effects of an external agent (e.g. drug infusion). The second
input is the feedback signal from the neural mechanism (Iint) multiplied
by a constant feedback gain (kfb).
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FIGURE 5. Responses of four first-order neurons (rows 1-4) with different blood
pressure thresholds to increasing mean blood pressure (row 5).

Computer Simulation Results

The responses of four first-order neurons (the four upper rows) with dis-
tributed blood pressure thresholds (increasing from the bottom to the top)
to increasing mean blood pressure (the bottom row) are shown in Figure 5.
The neurons exhibit a spiking response to each pressure pulse and the neu-
rons with lower thresholds exhibit increased activity. The values of the
model parameters are shown in Table 1. These values are consistent with
the physiological results described in the previous section.

Figures 6 and 7 show the responses of the four first-order neurons (the
2nd-5th rows) and one second-order neuron (the upper row) to a fluctuating
pressure signal (the bottom row). Due to the barotopical distribution of
thresholds, the first-order neurons respond sequentially to increasing mean
blood pressure. Hence, the neuron with the lowest threshold (2nd row)
displays the greatest amount of activity. The middle pair of first-order
neurons (3rd and 4th rows) excite the second-order neuron, while the other
two first-order neurons (2nd and 5th rows) are inhibitory.

In Figure 6, the feedback loop is disabled (kfb = 0), and mean pressure
increases in response to a persistent external signal Pi. It is clear that the
first-order neurons respond sequentially with increasing activity in direct
proportion to the pressure signal, while the second-order neuron is only
active in a narrow pressure range.

In Figure 7, the feedback loop is closed, and the second-order neuron
participates in pressure control. As the pressure enters the sensitive range
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FIGURE 6. Open-loop responses of four first-order neurons (rows 2-5) and one
second-order neuron (row 1) to a blood pressure signal (row 6).

of the second-order neuron, a signal burst is sent to the intermediate block.
This block drives the heart with a negative feedback signal, leading to a
temporary decrease in the pressure level. The persistent external signal
drives the pressure up again, and the trend is repeated. Note that the
second-order neuron exhibits low frequency bursts in a similar manner to
its real counterpart (Figure 3).

Observe therefore that the network behavior of the proposed barore-
flex model is a reasonable approximation of the experimentally recorded
neuronal behavior. Refinements to the current model will be the subject
of future work; in particular, the structural organization of the first- and
second-order network will be modified to match the experimental data. As
the sophistication of the model increases, we anticipate a commensurate
increase in our understanding of the role of the second-order neurons in
blood pressure control.

3.3 Application to Scheduled Process Control

From a control perspective, an interesting feature of the proposed model
is that individual second-order neurons are active in a narrow static and
dynamic range of pressure changes. In effect, second-order neurons regulate
the pressure through a sequence of adaptive control actions in response to
the dynamics of pressure change. Thus, the second-order neurons may be
considered as a set of interacting controllers which are active in a specific
range of the controlled variable.
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FIGURE 7. Closed-loop responses of four first-order neurons (rows 2-5) and one
second-order neuron (row 1) to a blood pressure signal (row 6).

This behavior can be exploited in the formulation of scheduling algo-
rithms for controller design [DKRS94]. Just as competition between second-
order neurons leads to a selective dynamic response, a selectively scheduled
nonlinear controller can be designed for a process system. Two paradigms
for achieving this functionality are proposed:

1. In the implicit formulation, a control architecture consisting of a num-
ber of individual dynamic elements is designed to provide effective
compensation over a wide operating regime. The second-order net-
work structure is employed to provide the scheduling between these
dynamic components. The individual entities do not represent dis-
tinct control laws; they represent basis elements of a larger dynamic
structure. In this case, the network must be “trained” to learn the
proper control strategies over the operating regime.

2. An explicit control formulation can be achieved by using the second-
order network to model the open-loop response of a nonlinear system.
Individual components of the second layer are trained to emulate
the open-loop system behavior over a limited operating regime. In
this case, the biological scheduling mechanism is used for transitions
between different open-loop dynamic behaviors. A control law can be
synthesized using traditional model-based control techniques [MZ89]
(e.g. model predictive control (MPC), internal model control (IMC)).

Additional details of the control algorithm and simulations with chemical
process examples are presented in [DKRS94].
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FIGURE 8. (a) Multiple-input, single-output control system and (b) single-input,
multiple-output control system.

4 Parallel Control Structures in the Baroreflex

In this section, two parallel control architectures in the baroreceptor reflex
are described. Also discussed are two novel process control strategies which
have been abstracted from these biological control architectures. Simpli-
fied block diagrammatic representations of the reflex control structures are
shown in Figure 8. In each case, the system is regulated by two controllers
which operate in parallel. The two control systems, which differ accord-
ing to the number of manipulated inputs and measured outputs, can be
interpreted as duals.

1. Multiple-Input, Single-Output (MISO) Control System The control
system consists of two manipulated inputs (u1, u2) and a single mea-
sured output (y). The objective is to make y track the setpoint ysp.
The ith parallel controller (i = 1, 2) receives y and ysp and computes
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flex.

the manipulated input ui.

2. Single-Input, Multiple-Output (SIMO) Control System The control
system consists of a single manipulated input (u) and two measured
outputs (y1, y2). The objective is to make y1 track ysp. The ith
parallel controller receives yi and ysp and computes the value ui.
The manipulated input u is the sum of the u1 and u2 values.

4.1 MISO Control Structure

Baroreceptor Reflex

A simplified block diagrammatic representation of a MISO control archi-
tecture employed in the baroreceptor reflex is shown in Figure 9. The
baroreceptor discharges are processed by two parallel controllers in the cen-
tral nervous system: the sympathetic and parasympathetic systems. The
controllers compare the baroreceptor discharges to a desired blood pressure
signal which is determined by a variety of factors which affect cardiorespira-
tory performance [Spy90]. The sympathetic and parasympathetic systems
affect the cardiovascular system via sympathetic and vagal postganglionic
motor neurons, respectively. For simplicity, the effects of the sympathetic
system on the heart have been neglected. Hence, the only couplings con-
sidered are those between the parasympathetic system and cardiac output,
and between the sympathetic system and total peripheral resistance.

The effect of the parasympathetic system on arterial pressure is quite
rapid, while that of the sympathetic system is comparatively slow. In mod-
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eling the closed-loop response of each control system to a step disturbance
in the carotid sinus pressure of the dog, Kumada et al. [KTK90] reported
the following results. Using a first-order-plus-deadtime model structure,
the time constant and time delay for the sympathetic system response were
estimated respectively as: 10 ≤ τ1 ≤ 80 s, 2 ≤ θ1 ≤ 4.5 s; for the parasym-
pathetic response, the corresponding estimates (7 ≤ τ2 ≤ 25 s, 0.6 ≤ θ2 ≤
1.2 s) are comparatively small. Although the parasympathetic system is
able to affect the arterial pressure quite rapidly, sustained variations in the
cardiac output are undesirably “expensive” whereas long-term variations
in the peripheral resistance are more acceptable [SKS71].

Cardiac output is therefore an expensive manipulated variable as com-
pared to the peripheral resistance. The brain coordinates the use of the
sympathetic and parasympathetic systems in order to provide effective
blood pressure control while minimizing the long-term cost of the con-
trol actions. For instance, consider a blood pressure decrease caused by
an external disturbance (e.g. standing up). The parasympathetic system
induces a rapid increase in blood pressure by enhancing cardiac output,
while a significantly slower increase in blood pressure is caused by the sym-
pathetic system raising peripheral resistance. As the effects of increased
peripheral resistance on the blood pressure become more pronounced, the
parasympathetic controller habituates by returning cardiac output to its
initial steady-state value.

Process Control Applications

The baroreceptor reflex provides an excellent biological paradigm for the
development of control strategies for multiple-input, single-output (MISO)
processes. As indicated in italics in Figure 9, the components of the sys-
tem have well defined control analogs: the central nervous system is the
“controller”, the sympathetic and vagal postganglionic motor neurons are
the “actuators”, the cardiovascular system is the “plant”, and the barore-
ceptors are the “sensors”. More importantly, many processes have manip-
ulated inputs which differ in terms of their dynamic effects on the outputs
and relative costs.

For example, consider the polymerization process depicted in Figure 10.
The process consists of a continuous stirred tank polymerization reactor
and an overhead condenser. The feed to the reactor consists of monomer,
initiator, and solvent. The condenser is used to condense solvent and mon-
omer vapors, and a cooling water jacket is available to cool the reactor
contents. The process also includes a vent line for condensibles and a ni-
trogen admission line which can be used to regulate the reactor pressure P .
One of the control objectives is to control the reactor temperature (T ); the
cooling water flow rate (Fj) and P (which can be changed almost instan-
taneously via nitrogen admission) are the potential manipulated variables.
The reactor pressure P has a much more rapid and direct effect on T than
does Fj . However, because significant and/or extended pressure fluctua-
tions affect the reaction kinetics adversely, it is desirable to maintain P
near its setpoint. It is therefore desirable to develop a control strategy in
which P (the secondary input) is used track setpoint changes and reject
disturbances rapidly. As Fj (the primary input) begins to effect T , P can
“habituate” by returning to its previous steady-state value.

Henson et al. [HOS95] have developed a habituating controller design
methodology for two-input, single-output systems such as the polymeriza-

www.4electron.com



106 F.J. Doyle III, M.A. Henson, B.A. Ogunnaike, J.S. Schwaber, I. Rybak

ProductT

Fj

Feed
Vapor Liquid

Condenser
Cooling
Water

Reactor

Condenser

Jacket
Cooling
Water

P

Vapor

N2

Vent
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tion process by reverse engineering the parallel control structure of the
baroreceptor reflex. The approach is beneficial for processes with the fol-
lowing characteristics: (i) control system performance is limited by the
nature of the dynamic effect exerted on the output by the primary manip-
ulated input; (ii) a secondary input is available whose effect on the output
is characterized by superior dynamics; and (iii) the long-term cost asso-
ciated with the secondary input is greater than that associated with the
primary input. There are several techniques which are similar to the ha-
bituating control strategy, including valve position control [Luy90, Shi78],
coordinated control [CB91, PMB86], parallel control [BM88], and variants
of H∞ control [Med93, WHD+92]. These control strategies also employ
more manipulated inputs than controlled outputs. However, there are sev-
eral important differences between the habituating control strategy and
these related control schemes.

1. Our primary objective is to understand, and then to mimic, the func-
tions of a biological system for process control applications. The ha-
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bituating control strategy therefore is a translation of a biological
control solution to a particular process control problem. By con-
trast, these other techniques are direct control solutions to control
problems.

2. The habituating control strategy is formulated to exploit specific char-
acteristics and operating objectives of processes with two different
types of manipulated variables: (i) a slow, cheap type; and (ii) a
fast, expensive type. By contrast, H∞ control techniques were devel-
oped for a considerably more general class of systems, and therefore
fundamental differences in the dynamic effects and costs of the ma-
nipulated inputs are not easily exploited. This point is illustrated
quite clearly in Williams et al. [WHD+92]. In order to obtain an
acceptable H∞ controller for a system with one slow, cheap input
and one fast, expensive input, significant design effort is required to
select appropriate frequency domain weighting functions used in the
H∞ cost function.

3. The habituating control architectures are generalizations of the series
[Luy90] and the parallel [BM88, CB91, PMB86] control structures
employed in other techniques.

4. The habituating control strategy is supported by a systematic con-
troller synthesis methodology. By contrast, the design procedures
proposed for the valve position, coordinated, and parallel control
techniques are largely ad-hoc, especially for non-minimum phase sys-
tems.

5. The effects of controller saturation and actuator failure on the habitu-
ating control strategy are considered explicitly, while these important
issues are neglected in most other studies.

Habituating Controller Design

The following is a controller design methodology for habituating controllers
based on the direct synthesis approach. An alternative technique based
on model predictive control is discussed by Henson et al. [HOS95]. The
discussion is restricted to transfer function models of the form,

y(s) = g1(s)u1(s) + g2(s)u2(s) + g3(s)d(s)

where y is the controlled output, u1 and u2 are the primary and secondary
inputs, respectively, and d is an unmeasured disturbance. Because u2 is
chosen as a result of its favorable dynamic effects on y, the transfer function
g2 is assumed to be stable and minimum phase. By contrast, the transfer
function g1 may be unstable and/or non-minimum phase.

Because there are two manipulated inputs and one controlled output,
the combination of control actions which produce the desired output ysp

at steady-state is non-unique. An additional objective is therefore required
to obtain a well-defined control problem. In habituating control problems
such as the polymerization process, the secondary input u2 should also
track a desired value u2sp

. The desired control objectives are therefore as
follows:

1. Obtain the transfer function gyd
(s) between ysp and y.
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FIGURE 11. Parallel control architecture for habituating control.

2. Obtain the transfer function gud
(s) between u2sp

and u2.

3. Obtain a decoupled response between u2sp
and y.

4. Ensure nominal closed-loop stability.

5. Achieve asymptotic tracking of ysp and u2sp
in the presence of plant-

model mismatch.

The closed-loop transfer function matrix should therefore have the form,

 y

u1

u2


 =


 gyd

0 ∗
∗ ∗ ∗
∗ gud

∗




 ysp

u2sp

d




where gyd and gud have the property that gyd(0) = gud(0) = 1 and each
asterisk (*) denotes a stable transfer function.

A parallel architecture for habituating control is shown in Figure 11. The
term “parallel” is used because the input to both controllers is the error
between y and ysp, and each controller responds to setpoint changes and
disturbances independently of the other controller. Note that this control
structure is analogous to parallel architecture employed in the baroreceptor
reflex (Figure 9). The parallel controllers have the form:

u1(s) = gc11(s) [ysp(s) − y(s)] + gc12(s)u2sp
(s)

u2(s) = gc21(s) [ysp(s) − y(s)] + gc22(s)u2sp
(s)
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If the transfer function g1 associated with the primary input is minimum
phase, the control objectives can be satisfied by designing the primary and
secondary controllers as [HOS95]:

gc11 =
gyd

− (1 − gyd
)g2gc21

(1 − gyd)g1
; gc12 = −g2

g1
gc22

gc22 = gud

where the Laplace variable s has been omitted for convenience. The free
transfer function gc21 can be used to tune the responses of the two manipu-
lated inputs. The transfer function gyd

is tuned according to the dynamics
of the secondary transfer function g2, while gud

is chosen according to the
dynamics of g1. If the manipulated inputs are constrained, the habituating
control approach offers the possibility of significantly improved performance
as compared to conventional SISO control schemes which only employ the
primary input [HOS95].

If g1 is non-minimum phase, the primary and secondary controllers are
chosen as [HOS95],

gc11 =
gud

gyd

(1 − gyd
)g∗1

gc12 = −g2

g∗1
gud

gc21 =
(g∗1 − g1gud

)
(1 − gyd

)g∗1g2
gc22 =

g1

g∗1
gud

where g∗1 is the minimum phase approximation of g1 [MZ89]. In the non-
minimum phase case, a free controller transfer function is not available and
the u2 tracking objective is only approximately satisfied:

u2

u2sp

=
g1

g∗1
gud

However, the undesirable effects of the non-minimum phase transfer func-
tion g1 have been “transferred” from the output to the secondary input u2.
This property clearly demonstrates the advantage of habituating control as
compared to conventional SISO control techniques. The transfer functions
gyd

and gud
can be tuned as in the minimum phase case.

Simulation Example

Consider the following process model:

y(s) =
−2s + 1
(2s + 1)2

u1(s) +
1

2s + 1
u2(s) +

1
s + 1

d(s)

The transfer function g1 contains a right-half-plane zero that limits the
performance achievable with u1 alone. An IMC controller [MZ89] and a
habituating controller based on direct synthesis have been compared for
this example [HOS95]. The IMC controller employs only the primary in-
put u1, while the habituating controller coordinates the use of the two
available inputs. Therefore, this comparison demonstrates the performance
enhancements that can be achieved by manipulating both the primary and
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FIGURE 12. Direct synthesis and IMC control for an output setpoint change.

secondary inputs. As discussed above, the habituating control strategy also
offers important advantages over alternative control schemes which employ
more manipulated inputs than controlled outputs. In the IMC design, a
first-order filter with time constant λ = 1 and an additional setpoint filter
with the same time constant are employed. The habituating controller is
designed as,

gyd
(s) =

1
εys + 1

; gud
(s) =

1
εus + 1

with εy = εu = 1. An additional setpoint filter with the same time constant
is also used.

Setpoint responses for IMC (dashed line) and habituating control (solid
line) are shown in Figure 12. By using the secondary input u2, habitu-
ating control yields excellent performance without an inverse response in
the output. The secondary control returns to its setpoint (u2sp

= 0) once
the setpoint change is accomplished. By contrast, IMC produces very slug-
gish setpoint tracking with a significant inverse response. In Figure 13, the
closed-loop responses of the two controllers for a unit step change in the
unmeasured disturbance d are shown. Habituating control provides excel-
lent performance, while the response of the IMC controller is very sluggish.
The performance of the habituating controller for a setpoint change in the
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FIGURE 13. Direct synthesis and IMC control for an unmeasured disturbance.

secondary input is shown in Figure 14. Note that the deleterious effects
of the non-minimum phase element have been transferred to the u2sp

/u2

response, which is less important than the ysp/y response. Moreover, the
output is not affected by the u2sp

change. Additional simulation studies
are presented by Henson et al. [HOS95].

4.2 SIMO Control Structure

Baroreceptor Reflex

Carotid sinus baroreceptors have been classified as Type I or Type II recep-
tors according to their firing patterns in response to slow ramp increases in
pressure [SvBD+90]. Type I receptors exhibit the following characteristics:
hyperbolic response patterns with sudden onset of firing at a threshold pres-
sure; high sensitivities; and small operating ranges. By contrast, Type II
receptors exhibit sigmoidal response patterns with spontaneous firing below
a threshold pressure, low sensitivities, and large operating ranges. Type I
and Type II baroreceptors also exhibit significant differences in acute reset-
ting behavior [SGHD92], which is defined as a short-term (5-30 minutes)
shift of the activity response curve in the direction of the prevailing pres-
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FIGURE 14. Direct synthesis control for an input setpoint change.

sure. Type I receptors acutely reset in response to mean pressure changes,
while Type II receptors do not exhibit acute resetting. These firing charac-
teristics indicate that Type I and Type II baroreceptors primarily measure
rate of change of pressure and mean pressure, respectively [SGHD92].
Type I receptors generally have large myelinated fibers with high conduc-
tion velocities (2−40 m/s), while Type II baroreceptors have unmyelinated
and small myelinated fibers with comparatively low conduction velocities
(0.5− 2 m/s). These physiological data suggest a differential role for Type
I and Type II baroreceptors in dynamic and steady-state control of arterial
blood pressure. Due to their high conduction velocities and measurement
properties, Type I receptors may contribute primarily to dynamic control
of blood pressure.

By contrast, Type II receptors may be effectively used for steady-state
pressure control because they provide accurate, but slow, measurements
of mean blood pressure. Seagard and co-workers [SHDW93] have verified
this hypothesis by selectively blocking Type I and Type II receptors and
examining the effects on dynamic and steady-state pressure control.

Coleman [Col80] has conducted an analogous investigation on the dif-
ferential roles of the parasympathetic and sympathetic nervous systems in
heart rate control. By selectively blocking the parasympathetic and sympa-
thetic heart rate responses, Coleman has demonstrated that the parasym-
pathetic and sympathetic systems are primarily responsible for dynamic
and steady-state control of heart rate, respectively. Neglecting reflex ma-
nipulation of stroke volume and peripheral resistance, the results of Sea-
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FIGURE 15. Simplified representation of a SIMO control structure in the baro-
reflex.

gard [SHDW93] and Coleman [Col80] suggest a differential central nervous
system pathway in which Type I and Type II baroreceptors preferentially
affect the parasympathetic and sympathetic systems, respectively. Under
this hypothesis depicted in Figure 15, the heart rate is determined by two
parallel controllers which selectively process input from Type I and Type
II baroreceptors.

Process Control Applications

Many chemical processes contain output measurements which are analo-
gous to the Type I and Type II baroreceptors. For example, consider the
distillation column shown in Figure 16. Suppose that the objective is to
control the composition of the product leaving the top of the column, and
measurements of the top composition and an upper tray temperature are
available. The top composition is the output variable to be controlled, but
the inherent dynamics of typical on-line composition analyzers are such
that such measurements are only available after a significant delay. By
contrast, the tray temperature, measured by a thermocouple, is available
without delay; it is however not always an accurate indication of the top
composition. Observe that in this example, the composition analyzer is
analogous to the Type II receptor, while the thermocouple is analogous to
the Type I receptor.

Hence, it is desirable to use the tray temperature for dynamic control
and the top composition for steady-state control.

Pottmann et al. [PHOS96] have proposed a controller design methodol-
ogy for single-input, two-output processes (such as this distillation column
example) by reverse engineering the contributions of Type I and II recep-
tors to blood pressure control. The approach is beneficial for processes
which have two output measurements:

1. Primary measurement – a measurement of the process output to be
controlled which has unfavorable dynamic (e.g. delayed) responses
to changes in manipulated input and disturbance variables.

2. Secondary measurement – a measurement of a different process output
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which has more favorable dynamic responses to changes in manipu-
lated input and disturbance variables.

Several related control schemes, including cascade control [Luy73, MZ89,
SEM89, Yu88] have been proposed. In the most general sense the so-called
“inferential control” schemes as well as feedback control schemes incor-
porating state-estimation may also be considered as related. In these in-
stances, available “secondary” measurements are used to “infer” the status
of the “primary” measurement. The novel feature of the strategy proposed
by Pottmann et al. [PHOS96] is its control architecture in which the con-
trollers act in parallel; this offers the potential of superior performance and
significantly improved robustness to controller and sensor failure as com-
pared to cascade control approaches in which the controllers are in series.
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FIGURE 17. Parallel control architecture for SIMO control

Parallel Control Architecture
The process model is assumed to have the following parallel form,

y1(s) = g11(s)u(s) + g12(s)d(s)
y2(s) = g21(s)u(s) + g22(s)d(s)

where y1 and y2 are the primary and secondary measurements, respectively,
u is the manipulated input, and d is an unmeasured disturbance. It is
easy to show that the parallel structure is more general than the cascade
process structure used in most cascade control schemes [PHOS96]. Because
the secondary output is assumed to exhibit favorable dynamic responses
to input changes, the transfer functions g21 and g22 are assumed to be
stable and minimum phase. By contrast, the transfer functions g11 and g12
associated with the primary measurement may be non-minimum phase.

The control objective is to make the primary output y1 track its setpoint
y1sp

. In analogy to the baroreceptor reflex depicted in Figure 15, the par-
allel control architecture in Figure 17 is proposed. The controller has the
form,

u(s) = gc1(s)[y1sp
(s) − y1(s)] + gc2(s)[y2sp

(s) − y2(s)]

where y2sp
is the setpoint for y2. Because y2 is not a controlled output,

the secondary setpoint is chosen as: y2sp
(s) = gsp(s)y1sp

(s). The controller
design problem is to select the transfer functions gc1, gc2, and gsp.

For process control applications, the proposed architecture has two dis-
advantages: (i) it does not provide a convenient parameterization for con-
troller design; and (ii) it is difficult to reconfigure the control system in
the event of a measurement failure. In order to overcome these shortcom-
ings, the parallel controllers are reparameterized and the resulting parallel
control architecture is employed for controller design and implementation.
Pottmann et al. [PHOS96] demonstrate that the parallel control strategy
can yield superior performance and robustness as compared to a conven-
tional cascade control scheme.
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5 Neural Computational Mechanisms for Process
Modeling

In this section, the neural computational mechanisms in the baroreflex are
shown to have direct applications in the nonlinear modeling of chemical
process systems. A brief description of a simplified conductance model will
be presented, with special emphasis on the autoregulatory role played by
the calcium channel. A novel processing element abstracted from the non-
linear dynamic nature of the neuron is then described, prior to discussing
a chemical process modeling example. Finally, we outline a model-based
control technique which employs the proposed dynamic processing element
as a key component.

5.1 Neuron-level Computation

As discussed earlier, the neurons in the cardiovascular NTS exhibit a wide
range of complex nonlinear dynamic behavior. NTS neuron responses can
be a function of time, voltage, and Ca++ concentration; and neurons in
different regions of the baroreflex architecture display widely varying dy-
namic characteristics. These dynamic features are represented in Hodgkin-
Huxley models by specific ion channels. For instance, accommodation (the
lengthening of interspike intervals) is captured by the calcium channel.
From a process modeling perspective, this suggests that neuronal elements
used for computational modeling may be “tailored” to exhibit particular
dynamic characteristics (e.g. asymmetric responses, oscillatory behavior,
large deadtime, etc.), and incorporated in a suitable network architecture
to yield desired input-output behavior.

As part of our research program, we seek to exploit these dynamic neu-
ronal characteristics to develop tools for nonlinear process modeling. The
approach discussed makes use of the biologically inspired neuron models
(i.e., based on biologically plausible constitutive relations) for process ap-
plications. However, these detailed models will be reduced to a simpler
form to facilitate network computation.

Role of Calcium in Autoregulation

The simplified model presented in Section 3 omitted the effect of calcium
in modifying neuronal behavior. However, calcium plays an integral role
in conductance-based neuron models, as it contributes to interspike inter-
val modulation and accommodating responses [SGP93]. The intracellular
calcium concentration has been proposed as an agent which regulates the
maximal conductances [AL93]. This mechanism is described by modeling
the maximal conductances of the membrane channels (ḡi) as a function of
the calcium concentration:

τi([Ca])
dḡi

dt
= Fi([Ca]) − ḡi (6)

where [Ca] is the intracellular calcium concentration and Fi is the limiting
value of the conductance. The function Fi is taken to be a rising or falling
sigmoidal function in the original work [AL93]. In the context of dynamic
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chemical process models, Equation (6) may be recognized as a first-order
system with variable time constant and steady state gain; the process input
is the calcium concentration, the process output is the maximal conduc-
tance. The incorporation of the simple mechanism in Equation (6) into
a conductance model can lead to a broad range of dynamic behavior in-
cluding: bursting activity, tonic firing, silent behavior, or “locked-up” (e.g.
permanently depolarized) responses. Consequently, this mechanism was
chosen as the basis for the development of a canonical element for dynamic
process modeling.

A Canonical Dynamic Element

Calcium autoregulation suggests a simple computational element for pro-
cess modeling: a first-order dynamic operator with a nonlinear time con-
stant and an independent, nonlinear gain (cf. the Hopfield neuron model
[Hop90] where the gain and time constant share the same nonlinear de-
pendence on the state). It should be noted that a fixed time constant and
a sigmoidal gain function were used in [AL93]. In this work, we choose a
more general formulation and employ Taylor series approximations of the
nonlinear gain and time constant. Furthermore, the functional dependence
of the time constant and gain are restricted to the operator output (y)
to facilitate the numeric computations. By introducing first-order Taylor
series approximations for the gain and time constant, one obtains:

Ni : (τ0 + τ1y)
dy

dt
= (K0 + K1y)u − y (7)

Previous approaches for empirical nonlinear process modeling have em-
ployed similar mathematical forms to Equation (7) in an effort to capture
the nonlinear dynamics of such chemical processes as distillation [CO93].
The present work differs from these earlier results by considering network
arrangements of these processing elements.

Although the interconnection of these processing elements can take a
variety of forms, we examine a fully recurrent Hopfield network [Hop90] in
this work. The range of dynamic behavior of a Hopfield network composed
of the biologically inspired neurons may be demonstrated by a simple in-
terconnection of linear first-order systems. If the elements are connected
in a feedback configuration with one system in the forward path and one
system in the feedback path, a second-order transfer function is obtained.
The coefficients of the first-order elements can be chosen to give general
second-order responses between the input and output variables of the over-
all system.

This cannot be accomplished with many of the time series neural net-
work techniques proposed for process modeling. For example, consider the
approach in [MWD+91] where a first-order dynamic element is introduced
at the output of a feedforward network. Such an architecture falls into the
general class of Hammerstein dynamic systems (i.e. a static nonlinearity
followed by a linear dynamic system). It is straightforward to show [SDS96]
that such structures lead to nonlinear dynamic systems with relative de-
gree one, underdamped responses, and (possibly) input multiplicity. By
contrast, the architecture we propose yields dynamic systems which can
have the following properties:
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• arbitrary relative degree;

• arbitrary placement of the eigenvalues of the Jacobian matrix in the
left-half (stable) complex plane;

• output and input multiplicity.

Clearly, the range of dynamic behavior which can be produced with the
structure we propose is rather broad. In both [MWD+91] and the present
case, an arbitrary system order can be achieved by employing an appropri-
ate number of hidden layers.

Simulation Example

To demonstrate the effectiveness of the proposed structure, we now ex-
amine the problem of modeling a nonlinear continuous stirred-tank reactor
(CSTR). The system considered is a stirred-tank jacketed reactor in which
a simple first-order irreversible reaction occurs. This is a realistic example
of practical significance, and will serve as a preliminary testbed for the
proposed modeling strategy. The dimensionless mass and energy balances
for this system are given by [URP74]:

ẋ1 = −x1 + Da(1 − x1)e
x2

1+x2/γ

ẋ2 = −x2 + BDa(1 − x1)e
x2

1+x2/γ + β(u − x2)

The physical parameters chosen for this study are identical to those consid-
ered in [HS93]. The identification problem is to model the effect of coolant
temperature (u) on the reactor temperature (x2).

In Figure 18, the construction of a network model consisting of two fully
interconnected dynamic processing elements is presented.

Additional dynamic elements can be added at the lower summation junc-
tion. Using a first-order Taylor series approximation for the nonlinear el-
ements (i.e. gain, time constant), a model structure with 8 parameters is
obtained. The parameters of the network model were identified using a
random search procedure [SGF90] because of the presence of multiple local
minima in the solution space. The responses of the network model, an ap-
proximate linear model, and the actual CSTR to symmetric step changes in
the input (±4 degrees) are shown in Figure 19. As can be seen in the figure,
the system behavior is extremely nonlinear. While the linear model fails

www.4electron.com



5. Modeling of the Baroreceptor Reflex with Applications 119

0 1 2 3 4 5 6 7 8 9 10
376

378

380

382

384

386

388

390

392

Time (min)

R
ea

ct
or

 T
em

pe
ra

tu
re

 (
K

)

FIGURE 19. Process Model Dynamic Response.

to track the reactor temperature accurately, the proposed network model
exhibits excellent tracking over the range of these simulations. Additional
details on the simulation results are contained in [SDS96].

5.2 Model-based Control Application

The biologically motivated dynamic network (BDN) model derived in the
previous section can be directly incorporated in control schemes which
depend explicitly upon a process model (e.g. Internal Model Control (IMC)
or Model Predictive Control (MPC) [MZ89]). In this section, a direct
synthesis approach to controller design will be presented which utilizes the
BDN model as a key component. Such schemes typically rely on a model
inverse for control move computations. However, recent results presented
for Volterra-series-based models [DOP95] reveal a straightforward method
for constructing a nonlinear model inverse which only requires linear model
inversion. The details of this approach are omitted here; the interested
reader is referred to the original reference. The resultant control structure is
displayed in Figure 20, where it can be seen that the controller is composed
of two components:

1. the proposed dynamic model (BDN) which contributes to a feedback
signal representing the difference between the true process output
and the modeled output; and
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FIGURE 20. Closed-loop Control Structure.

2. a model inverse loop which contains the BDN model, a linear approx-
imation to the BDN model, and a linear IMC controller.

Simulation Results
The reactor example from the previous section is considered where the
control objective is the regulation of the reactor temperature using the
coolant temperature. Simulations were carried out for two control schemes:
(i) a standard linear IMC controller which utilizes a linear model and its
inverse; and (ii) the nonlinear controller depicted in Figure 20. In both
cases, the desired closed-loop time constant was chosen to be 0.5 minutes.
The closed-loop responses to a sequence of step changes in the temperature
setpoint are shown in Figure 21. The setpoint is raised from 385K to
400K at t = 0 and back down to 380K at t = 25. The dashed line
represents the response of the linear controller, the dotted line represents
the response of the nonlinear controller, and the solid line represents the
ideal reference trajectory that would be achieved with perfect control. The
nonlinear controller achieves vastly superior trajectory following. In fact,
the linear controller response is unstable for the lower setpoint change.
This demonstrates the improved performance that can be attained with a
more accurate nonlinear model (such as the BDN) in a model-based control
scheme.

6 Conclusions and Future Work

The neural circuitry in the baroreceptor reflex— the control system respon-
sible for short-term regulation of arterial blood pressure— is a rich source
of inspiration for process modeling and control techniques. Neuronal mod-
eling has revealed some of the underlying principles which are responsible
for the robust, nonlinear, adaptive, multivariable control functions which
are utilized by the reflex. Preliminary results “reverse engineered” from
this biological control system have been presented for scheduled control,
parallel control, and nonlinear modeling strategies. Future work will fo-
cus on further development and industrial applications of the approaches
described in this chapter.
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Parameter Value
c 1.0 µF
g0 0.5 mS (1.0 for second-order neurons)
Vr −60 mV
Ek −70 mV

Eesyn 20 mV
Eisyn −70 mV
Hr −48 to −56 mV

∆Hr 1 mV
Hm −10 mV
Ad 0.6

gmAHP 0.12 mS
Am 45 mV
ym 0.5 mV
τH0 30 ms
τH 10 ms

τAHP 10 ms
τy 60 ms
ke 1.0
ki 20.0
aej 3.6 mS

mV

aij 1.6 mS
mV

kP 0.038 mA
mmHg

kint 1.0 1
mV

τint 700 ms
P0 50 mmHg

Pmin0 120 mmHg
Pm 30 mmHg
τP 400 ms
TP 3000 ms
kfb 600 mmHg

TABLE 1. Baroreflex Model Parameter Values
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Identification of Nonlinear
Dynamical Systems Using
Neural Networks

A. U. Levin
K. S. Narendra

ABSTRACT This paper is concerned with the identification of a finite
dimensional discrete-time deterministic nonlinear dynamical system using
neural networks. The main objective of the paper is to propose specific
neural network architectures that can be used for effective identification of
a nonlinear system using only input-output data. Both recurrent and feed-
forward models are considered and analyzed theoretically and practically.
The main result of the paper is the establishment of input-output models
using feedforward networks. Throughout the paper, simulation results are
included to complement the theoretical discussions.

1 Introduction

System theory provides a mathematical framework for the analysis and
design of dynamical systems of various types, regardless of their special
physical natures and functions. In this framework a system may be repre-
sented as an operator σ which belongs to a class Σ of operators that map
an input space U into an output space Y. The inputs u ∈ U are the set
of all external signals that influence the behavior of the system and the
outputs y ∈ Y are the set of dependent variables which are of interest and
which can be observed by an external observer. To analyze any system
σ we need to select a model σ̄ which approximates σ in some sense. The
model σ̄ is an element of a parameterized family of operators Σ̄ ⊂ Σ. To
be able to find a model which approximates any σ ∈ Σ as closely as de-
sired, Σ̄ must be dense in Σ. For example, in the celebrated Weierstrass
theorem, Σ is the class of continuous functions on a compact set while Σ̄
is the class of polynomial functions. In this paper Σ represents a class of
finite dimensional discrete-time nonlinear systems while Σ̄ is the class of
discrete dynamical systems generated by neural networks.

An extensive literature exists on linear system identification (a compre-
hensive list of references is given in [L.L91]). For such systems, transfer
functions, linear differential equations and state equations have been used
as models. In some cases, the class of systems Σ may itself be the class of
nth order transfer functions or n-dimensional state equations and in such
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cases the model Σ̄ is also chosen to have the same form. We shall assume
in this paper that the class of interest, Σ, is the class of discrete-time finite
dimensional system of the form

Σ :
x(k + 1) = f [x(k), u(k)]

y(k) = h[x(k)] (1)

where x(k) ∈ X ⊂ �n is the state of the system, u(k) ∈ U ⊂ �r is the input
to the system, and y(k) ∈ Y ⊂ �m is the output of the system respectively
and f and h are smooth functions1. Based on some prior information
concerning the system (1) our objective is to identify it using neural network
based models. In particular the following class of identification models will
be considered:

(i) state space (recurrent) models

(ii) input-output (feedforward) models

The structure of the neural networks used to identify the system is justified
using results from analysis and differential topology. The relative merits
of the models are compared and simulation results are presented wherever
necessary to complement the theoretical developments.

Notation

The space of input and output sequences of length l will be denoted by Ul
and Yl, respectively.
An input and output sequences of length l starting at time k will be denoted
respectively by

Ul(k)
	
= [u(k), u(k + 1), . . . u(k + l − 1)]

and
Yl(k)

	
= [y(k), y(k + 1), . . . y(k + l − 1)].

By definition of the state, it follows that x(k + l) can be represented as

x(k + l)
	
= Fl[x(k), Ul(k)]

where Fl : X ×Ul → X . Similarly, the output at time k+l can be expressed
as

y(k + l) = h[Fl(x(k), Ul(k)), u(k)]
	
= hl[x(k), Ul−1(k)]

where hl : X × Ul → Y and Yl(k) can be expressed as

Yl(k)
	
= Hl[x(k), Ul−1(k)]

1For clarity of exposition, we will state all results for SISO systems. Extension of
these to MIMO systems is quite straightforward. Also without loss of generality, an
equilibrium point x0, u0, y0, will always be assumed to be (0, 0, 0).
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where Hl : X × Ul−1 → Yl. When no confusion can arise, the index k will

be omitted, e.g Ul
	
= Ul(k).

Following the notation introduced in [NP90], an L-layer neural network
with nl neurons at the lth-layer will be denoted by

NL
n0,n1,n2,...nL

For example a network with 2 inputs, 3 neurons in the first hidden layer,
5 in the second, and 1 output unit will be described by N 3

2,3,5,1. The set of
weights of a network NN will be denoted by Θ(NN) and a generic weight
(or parameter) will be commonly denoted by θ.

Organization of Paper

The paper is organized as follows: Section 2 presents mathematical prelim-
inaries and is devoted to concepts and definitions as well as mathematical
theorems which will be used throughout the paper. Section 3 deals with
identification using state space models. Using the dynamic backpropa-
gation algorithm, it is shown how a recurrent structure can be used to
identify a system. In Section 4 the problem of identification using input-
output models is considered. First, the simpler problem of constructing
a local input-output model around an equilibrium state is considered and
then conditions for the existence of a global model are derived. In all cases
the theoretical basis is stated for the architectures chosen, and simulation
results are presented to complement the theoretical discussions.

2 Mathematical Preliminaries

This section is intended to serve as a concise introduction to some of the
notions that this paper relies upon. First in section 2.1 we give a brief sum-
mary of neural networks as will be used in the paper. The establishment
of input-output models will rely on the concept of observability which is
presented in section 2.2. Finally, in section 2.3 some definitions and re-
sults from differential topology, which will be used to establish the global
existence of input-output realizations of nonlinear systems, are introduced.

2.1 Neural Networks
In the current work, neural networks are treated merely as conveniently
parameterized nonlinear maps, capable of approximating arbitrary contin-
uous functions over compact domains. Specifically, we make use of sig-
moidal feedforward networks as components of dynamical systems. The
algorithms presented rely on supervised learning. Since the main objective
of this work is to propose a general methodology by which identification
based on neural networks can be made more rigorous, no particular effort
is made to optimize the computation time, and training relies on the stan-
dard backpropagation and dynamic backpropagation algorithms. These
could be easily replaced by any other supervised learning method. Also,
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all results are presented in such a way that they can be implemented by
any feedforward architecture capable of universal approximation.

In the following, the term neuron will refer to an operator which maps
�n → � and is explicitly described by the equation:

y = Γ(
n∑

j=1

wjuj + w0) (2)

where UT = [u1, u2, . . . un] is the input vector, WT = [w1, w2, . . . wn] is
referred to as the weight vector of the neuron and w0 is termed its bias.
Γ(·) is a monotone continuous function Γ : � → (−1, 1) (commonly referred
to as a “sigmoidal function” e.g. tanh(·)). The neurons are organized in
a feedforward layered architecture (l = 0, 1 . . . L) and a neuron at layer l
receives its inputs only from neurons in the layer l − 1.

A neural network, as defined above, represents a specific family of pa-
rameterized maps. If there are n0 input elements and nL output elements,
the network defines a continuous mapping NN : �n0 → �nL . To enable
this map to be surjective (onto), we will choose the output layer to be
linear.

Two facts make the networks defined above powerful tools for approxi-
mating functions.

Multilayer feedforward neural networks are universal approximators:

It was proved by Cybenko [Cyb89] and Hornik et. al. [HSW89] that
any continuous mapping over a compact domain can be approximated as
accurately as necessary by a feedforward neural network with one hidden
layer. This implies that given any ε > 0 a neural network with sufficiently
large number of nodes can be determined such that

‖f(u) − NN(u)‖ < ε for all u ∈ D
where f is the function to be approximated and D is a compact domain of
a finite dimensional normed vector space.

The backpropagation algorithm:

This algorithm, [MRtPRG86], which performs stochastic gradient descent,
provides an effective method to train a feedforward neural network to ap-
proximate a given continuous function over a compact domain D.

Let u ∈ D be a given input. The network approximation error for this
input is given by

e(u) = f(u) − NN(u)

Training NN(·) to closely approximate f over D is equivalent to minimizing

I =
∫
D
‖e(u)‖du

The training procedure for the network is carried out as follows: The net-
work is presented with a sequence of training data (input-output pairs).
Let θ denote a generic parameter (or weight) of the network. Following
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each training example, the weights of the network are adjusted according
to

θ(k + 1) = θ(k) − η(k)
∂I

∂θ
|θ=θ(k)

Stochastic approximation theory [Lju77] guarantees that, if the step size
η(k) satisfies certain conditions, I will converge to a local minimum w.p.1.
If the performance hypersurface is unimodal, this implies that the global
minimum is achieved.

Recurrent networks
By interconnecting several such feedforward blocks using feedback connec-
tions into a recurrent structure, the network’s behavior can no longer be
described in terms of a static mapping from the input to the output space.
Rather, its output will exhibit complex temporal behavior that depends on
the current states of the neurons as well as the inputs.

In the same manner that a feedforward layered network can be trained
to emulate a static mapping, a training algorithm named dynamic back-
propagation 2 [WZ89, NP90, NP91] has been proposed to train a recurrent
network to follow a temporal sequence. The Dynamic Back Propagation
Algorithm is based on the fact that the dependence of the output of a dy-
namical system on a parameter is itself described by a recursive equation.
The latter in turn contains terms which depend both explicitly and im-
plicitly on the parameter [NP91], and hence the gradient of the error with
respect to a parameter can be described as an output of a linear system.

The Dynamic Backpropagation Algorithm:

A natural performance criterion for the recurrent network would be the
summation of the square of the error between the sequence we want the
network to follow, denoted by the vector process y(k), and the outputs of
the network denoted by ŷ(k):

I(k) =
∑

k

‖y(k) − ŷ(k)‖2 	
=
∑

k

‖e(k)‖2

By its definition, a recurrent network can refer to its inputs u(k), states
x(k), and outputs ŷ(k). The algorithm presented will make use of these
notions.

Let θ denote a generic parameter of the network. The gradient of I with
respect to θ is computed as follows:

dI(k)
dθ

= −2
∑

k

[y(k) − ŷ(k)]T
dŷ(k)

dθ
(3)

dŷ(k)
dθ

=
∑

j

∂ŷ(k)
∂xj(k)

dxj(k)
dθ

(4)

dxj(k)
dθ

=
∑

l

∂xj(k)
∂xl(k − 1)

dxl(k − 1)
dθ

+
∂xj(k)

∂θ
(5)

2In this paper we use the name coined by Narendra and Parthasarathy.
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Thus the gradient of the output with respect to θ is given by the output of
the linear system:

dx(k + 1)
dθ

= A
dx(k)

dθ
+ b

∂x(k)
∂θ

dŷ(k)
dθ

= cT dx(k)
dθ

(6)

where dx(k)

dθ
is the state vector, ∂x(k)

∂θ is the input and A, b, c are time varying

parameters defined by aij
	
= ∂xi(k+1)

∂xj(k) , bi
	
= 1 and ci

	
= ∂ŷ(k)

∂xi(k) . Initial
conditions for the states are set to zero. This linear system is referred to
in the control literature as the sensitivity network for θ ([JC73, NP90]).

2.2 Observability.

One of the fundamental concepts of systems theory, which concerns the
ability to determine the states of a dynamical system from the observations
of its inputs and outputs, is observability.

Definition 1 A dynamical system is said to be observable if for any two
states x1 and x2 there exist an input sequence of finite length l Ul =
(u(0), u(1), . . . , u(l − 1)) such that Yl(x1, Ul) �= Yl(x2, Ul) where Yl is the
output sequence.

The ability to effectively estimate the state of a system, or to identify
it based on input-output observations, is determined by the observabil-
ity properties of the system. However, the definition of observability as
given above is too broad to guarantee the existence of efficient methods
to perform these tasks. Thus, in the following we will present two specific
observability notions: strong observability and generic observability, based
on which practical algorithms can be derived.

Linear Systems

Observability has been extensively studied in the context of linear systems
and is now part of the standard control literature. A general linear time
invariant system is described by the set of equations

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) (7)

where x(k) ∈ �n, u(k) ∈ �r, y(k) ∈ �m and A,B and C are respectively
n× n, n× r and m× n matrices. If r = m = 1 the system is referred to as
single-input/single-output (SISO). If r,m > 1 it is called multi-input/multi-
output (MIMO).

Definition 2 (Observability - Linear Systems) A linear time invari-
ant system of order n is said to be observable if the state at any instant
can be determined by observing the output y over a finite interval of time.
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A basic result in linear control theory states that the system (7) will be
observable if and only if the (nr × n) matrix

Mo =




C
CA
. . .

CAn−1




is of rank n. For a SISO system this implies that Mo is nonsingular. Mo is
called the observability matrix.

Observability of a linear system is a system theoretic property and re-
mains unchanged even when inputs are present, provided they are known.
For a linear observable system of order n, any input sequence of length n
will distinguish any state from any other state. If two states are not dis-
tinguishable by this randomly chosen input, they cannot be distinguished
by any other input sequence. In that case, the input-output behavior of
the system can be realized by an observable system of lower dimension,
where each state in the new system represents an equivalent class which
corresponds to a set of states that could not be distinguished in the original
one.

Whereas a single definition (2) is found to be adequate for linear time-
invariant systems, the concept of observability is considerably more in-
volved for nonlinear systems [Fit72] (a detailed discussion on different no-
tions of observability is given in [Son79a]). As defined, observability guar-
antees the existence of an input sequence that can distinguish between any
two states. This input sequence may, however, depend on those states.
Further, in some cases, the determination of the state of a system, may
require the resetting of the system and re-exploring it with different inputs
as shown in Example 1:

Example 1 Given the second order system

x1(k + 1) = x2(k)
x2(k + 1) = sin[x1(k)u(k)]

y(k) = x2(k)

if U = (c, u(1), u(2) . . .) all states of the form (2π
c , x2(0)) cannot be dis-

tinguished from (0, x2(0)). However, if the system is reset to the initial
state and run with U ′ = (c′, u(1), u(2) . . .) (c �= c′) the initial state can be
uniquely determined. �

For observable systems, to assure that a state can be determined by a
single input sequence of finite length (single experiment observability), we
will require that the system be state invertible:

Definition 3 We will call the system (1) state invertible if for a given u,
f defines a diffeomorphism on x.

State invertible systems arise naturally when continuous-time systems are
sampled or when an Euler approximation is used to discretize a differential
equation [JS90]. For a given input sequence, the invertibility of a sys-
tem guarantees that the future as well as the past of a state are unique.
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Whenever necessary, we shall make the assumption that the system is state
invertible.

While single experiment observability concerns the existence of an input
such that the state can be determined by applying this input to the system,
the input required may still depend upon the state. Hence, to be able to
determine the state in a practical context, a stronger form of observability
is needed. A desirable situation would be if any input sequence of length l
will suffice to determine the state uniquely for some integer l. This form of
observability will be referred to as strong observability. It readily follows
from definition (2) that any observable linear system is strongly observable
with l = n, n being the order of the linear system.

As will be shown in Section 4.1, conditions for strong observability can
be derived locally around an equilibrium point. Unfortunately, unlike the
linear case, global strong observability is too stringent a requirement and
may not hold for most nonlinear systems of the form (1). However, practical
determination of the state can still be achieved if there exists an integer l
such that almost any input sequence (generic) of length greater or equal to l,
will uniquely determine the state. This will be termed generic observability.

Example 2 (Generic Observability) Let

x(k + 1) = x(k) + u(k)
y(k) = x2(k)

The outputs are given by

y(k) = x2(k)
y(k + 1) = x2(k) + u2(k) + 2x(k)u(k)

= y(k) + u2(k) + 2x(k)u(k)

From the above two equations we have

x(k) =
y(k + 1) − y(k) − u2(k)

2u(k)

and if u(k) �= 0, x(k) can be uniquely determined. Hence, the system is
generically observable. �

In the rest of the paper, only strongly or generically observable systems
will be discussed. The notion of generic observability is considered in de-
tail in Section 4.2. That discussion should also help clarify the difference
between these two concepts.

2.3 Transversality

The discussion on generic observability will rely on some concepts and
results from differential topology - most notably Transversality. It will
be shown how observability can be described as a transversal intersection
between maps. Based on this, the genericity of transversal intersections
will be used to prove the genericity of generically observable systems. Our
aim in this section is to present these results for the sake of easy reference.
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The reader may, if he wishes, skip this section on first reading and return
to it later, after going through section 4.2. For an excellent and extensive
introduction, the reader is referred to [GP74].

Transversality is a notion which classifies the manner in which smooth
manifolds intersect:
Definition 4 Let X and Y be smooth manifolds and f : X → Y be a
smooth mapping. Let W be a submanifold of Y and x a point in X . Then
f intersects W transversally at x (denoted by f�∩W at x) if either one of
the following hold:

1. f(x) �∈ W
2. f(x) ∈ W and Tf(x)Y = Tf(x)W + (df)x(TxX )

(TaB denoting the tangent space to B at a).

If V is a subset of X then f intersects W transversally on V (denoted by
f�∩W on V) if f�∩W at x for all x ∈ V. Finally f intersects W transversally
(denoted by f�∩W) if f�∩W on X
Example 3 Let W be a plane in �3. Let f : � → �3 be a linear function
i.e. f defines a line in �3. Now f�∩W unless f(x) lies inside W. �

An important consequence of the property that a mapping is transversal is
given by the following proposition [GG73]:

Proposition 1 Let X and Y be smooth manifolds and W be a submanifold
of Y. Suppose dimW + dimX < dimY. Let f : X → Y be a smooth
mapping and suppose that f�∩W. Then f(X )

⋂W = ∅
Thus, in the last example, if W represented a line in �3, transversality
implies that f(x) and W do not intersect i.e. if two lines are picked at
random in a three dimensional space, they will not intersect (which agrees
well with our intuition).

The key to transversality is families of mappings. Suppose fs : X → Y
is a family of smooth maps, indexed by a parameter s that ranges over a
set S. Consider the map F : X × S → Y defined by F (x, s) = fs(x). We
require that the mapping vary smoothly by assuming S to be a manifold
and F to be smooth. The central theorem is:
Theorem 1 (Transversality Theorem) Suppose F : X × S → Y is a
smooth map of manifolds and let W be a submanifold of Y. If F�∩W then
for almost every s ∈ S (i.e. generic s) fs is transversal to W.

From the Transversality Theorem it follows that transversality is a generic
property of maps:

Theorem 2 Let X and Y be smooth manifolds and W be a closed subman-
ifold of Y. Then the set of smooth mappings f : X → Y which intersects
W transversally is open and dense in C∞.

Another typical behavior of functions, which we will make use of is the
the Morse property:

Definition 5 A function h will be called a Morse function if it has only
nondegenerate (isolated) critical points.
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The set of Morse functions is open and dense in Cr [GG73]. Hence, we may
confidently assume that h in (1), is such a function.

3 State space models for identification

Since, by our assumption, the system is described by a state equation
(1), the natural identification model for the system using neural networks
also has the same forms. Relying on the approximation capabilities of
feedforward neural networks [Cyb89, HSW89], each of these functions can
be approximated by a multilayered neural network with appropriate input
and output dimensions. The efficiency of the identification procedure then
depends upon the prior information that is assumed.

If the state of the system is assumed to be directly measurable the iden-
tification model can be chosen as

Σ :
x(k + 1) = NNf [x(k), u(k)]

y(k) = NNh[x(k)] (8)

where NNh and NNf are maps realized by feedforward neural networks
(for ease of exposition they will be referred to as neural networks). In this
case, the states of the plant to be identified are assumed to be directly
accessible, and each of the networks NNf and NNh can be independently
trained using static learning [LN93]. Once constructed, the states of the
model provide an approximation to the states of the system.

When the state x(k) of the system is not accessible, the problem of
identification is substantially more difficult. In such a case, one cannot
obtain an estimate x̂(k) of the x(k) and the identification model has the
form

z(k + 1) = NNf [z(k), u(k)]
ŷ(k) = NNh[z(k)] (9)

where again NNh and NNf denote feedforward neural networks (Figure
1). This model provides an equivalent representation of the system (1) and

its state z(k)
	
= [z1(k), z2(k), . . . , zn(k)] is related by a diffeomorphism to

x(k), the state of the system.
A natural performance criterion for the model would be the sum of the

squares of the errors between the system and the model outputs:

I(K) =
K∑

k=0

‖y(k) − ŷ(k)‖2 	
=
∑

k

‖e(k)‖2

Since x(k) is not accessible and the error can be measured only at the out-
put, the networks cannot be trained separately. Since the model contains
a feedback loop, the gradient of the performance criterion with respect to
the weights of NNf varies with time, and thus dynamic back propagation
needs to be used [NP91].
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Σ e(k)

+

-

Z
-1NNf NNh

u(k)

Z
-1 x(k)

f h y(k)

y(k)^z(k)

FIGURE 1. State Space Model for Identification

Let θ ∈ Θ(NNf ) denote a parameter of NNf . The gradient of I with
respect to θ is derived as follows:

dI(K)
dθ

= −2
K∑

k=0

[y(k) − ŷ(k)]
dŷ(k)

dθ
(10)

dŷ(k)
dθ

=
n∑

j=1

∂ŷ(k)
∂zj(k)

dzj(k)
dθ

(11)

dzj(k)
dθ

=
n∑

l=1

∂zj(k)
∂zl(k − 1)

dzl(k − 1)
dθ

+
∂zj(k)

∂θ
(12)

Thus the gradient of the output with respect to θ is given by the output of
the linear system:

dz(k + 1)
dθ

= A
dz(k)

dθ
+ b

∂z(k)
∂θ

dŷ(k)
dθ

= cT dz(k)
dθ

(13)

where dz(k)

dθ
is the state vector, ∂z(k)

∂θ is the input and A, b, c are defined by

aij
	
= ∂zi(k+1)

∂zj(k) , bi
	
= 1 and ci

	
= ∂ŷ(k)

∂zi(k) . The initial conditions of the states
are set to zero.

Since NNh is directly connected to the output, with no feedback loops,
the gradients of the error with respect to its parameters are calculated using
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static back propagation. This can be done either on-line or in a batch mode
in which the error over a finite number of steps is summed before updating
the weights3.

As constructed, the model is not unique and thus the state of the model
(after identification is achieved) is given by z = φ(x) and the neural net-
works converge to a transform of the system’s functions:

NNh(·) � h(·) ◦ φ−1

NNf (·, ·) � φ ◦ f(φ−1(·), ·)
where φ : �n → �n is continuous and invertible.

If the system can be reset at the discretion of the designer to a fixed
initial state (which without loss of generality can be assumed to be the
origin), the training procedure will be more tractable. The corresponding
state for the model can, also without loss of generality, be set to zero, so
that each training sequence can start with both the system and the model
at the initial state. Thus, in such a framework, the functional relation φ
between the states of the system and the model will emerge naturally.

On the other hand, if resetting is not possible, the initial state of the
model must be treated as an independent parameter. The gradient of the
error at time k with respect to the model’s initial conditions is given by

dI(K)
dz(0)

= −2
K∑

k=0

[e(k)]
dŷ(k)
dz(0)

(14)

dŷ(k)
dz(0)

=
n∑

j=1

∂ŷ(k)
∂zj(k)

dzj(k)
dz(0)

dzj(k)
dz(0)

=
n∑

l=1

∂zj(k)
∂zl(k − 1)

dzl(k − 1)
dz(0)

(15)

This can be described as the output of a homogeneous time varying linear
system

dz(k + 1)
dz(0)

= A
dz(k)
dz(0)

dŷ(k)
dz(0)

= cT dz(k)
dz(0)

(16)

This is a system of order n2 where dz(k)

dz(0)
is the state vector at time k and

A, c are defined by aij
	
= ∂zi(k+1)

∂zj(k) and ci
	
= ∂ŷ(k)

∂zi(k) . Initial conditions for the
states are set to In×n, the n dimensional identity matrix.

3In many cases, the output is known to be a subset of the state, i.e., h is merely a
projection matrix. For such systems, the complexity of the algorithm is greatly reduced,
since the gradient of the output with respect to the state is known a priori and the error
can be calculated at the state level.
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Simulation 1 (Identification: State Model) 4 5 The system is given
by

x1(k + 1) = x2(k)[1 + 0.2u(k)]
x2(k + 1) = −0.2x1(k) + 0.5x2 + u(k)

y(k) = 0.3[x1(k) + 2x2(k)]2

The neural network based model used to identify the system is given by:

x̂1(k + 1) = NNf1[x̂1(k), x̂2(k), u(k)]
x̂2(k + 1) = NNf2[x̂1(k), x̂2(k), u(k)]

ŷ(k) = NNh[x̂1(k), x̂2(k)] (17)

A separate network was used for the estimation of each of the nonlinear
functions f1, f2 and h. All three networks were of the class N 3

1,10,5,1.
For the training of the networks, it is assumed that the system can be

initiated at the discretion of the experimenter. Training was done with
a random input uniformly distributed in [−1, 1]. Training sequences were
gradually increased, starting with k = 10, and after successful learning was
achieved, the length of the sequence was gradually increased by units of ten
until k = 100 was reached. Parameter adjustment was carried out at the
end of each sequence using the summed error square as indicated earlier.

Adaptation was halted after 80,000 steps, (with time between consecu-
tive weight adjustments varying between 10 and 100 steps) and the identi-
fication model was tested with sinusoidal inputs. A particular example is
shown in Figure 2. �

4 Identification using Input-Output Models

It is clear from section 3 that choosing state space models for identification
requires the use of dynamic back propagation, which is computationally
a very intensive procedure. At the same time, to avoid instabilities while
training, one needs to use small gains to adjust the parameters, and this
in turn results in long convergence times.

4The use of gradients with respect to initial conditions requires reinitializing the
model with its corrected initial conditions and running it forward to the current time
step. Such a process is very tedious and practically infeasible in real time. In the
simulations given below, it is assumed that the system can be reset periodically at the
discretion of the designer.

5When running the dynamic backpropagation algorithm, the following procedure
was adopted: The network was run for a predetermined number of steps Kmax and the
weights adjusted so that I(Kmax) was minimized. Our experience showed that better
results are achieved if training sequences were gradually increased. Thus, starting the
training with short sequences of length k1, the network was trained on longer sequences
of length k2, k3, . . . etc. until Kmax is reached. For each sequence, the total error at the
end of the sequence was used to determine the weight adjustment.
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FIGURE 2. Testing of the state space model with sinusoidal input.

If, instead, it is possible to determine the future outputs of the system
as a function of past observations of the inputs and outputs, i.e., if there
exists a number l and a continuous function h̃ : Yl ×Ul → Y such that the
recursive model

y(k + 1) = h̃[Yl(k − l + 1), Ul(k − l + 1)] (18)

has the same input-output behavior as the original system (1), then the
identification model can be realized by a feedforward neural network with
2l inputs and one output. Since both inputs and outputs to the network
are directly observable at each instant of time, static back propagation can
be used to train the network (Figure 3).

For linear systems such a model always exists. More specifically, the
input-output behavior of any linear system can be realized by a recursive
relation of the form

y(k) =
n∑

i=1

aiy(k − i) +
n∑

i=1

biu(k − i) (19)

Although the use of input-output models for the identification of nonlin-
ear dynamical systems has been suggested in the connectionist literature
[Jor86, NP90], it is not at all obvious that such models exist for general sys-
tems of the form (1). Actually, the only global results concerning the use of
input-output models for the identification of nonlinear dynamical systems
are due to Sontag [Son79b] who studied the existence of such realizations
for the restricted class of polynomial systems (i.e., systems in which f and
h are described by polynomials of finite degree). For this class of systems,
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FIGURE 3. Input-Output Model for Identification (TDL represents a tapped
delay line)

he has shown that the input-output realization can be described as a ra-
tional function (a ratio of two finite degree polynomials). In the following
we will determine sufficient conditions for the existence of such models for
nonlinear systems given by (1). These will be based on the observability
properties of a system.

4.1 Local Input-Output Models

We first consider the simpler problem of establishing a local input-output
model around an equilibrium state of the system (to be referred to as the
origin). Intuitively, the problem is stated as follows: given that the origin
is an equilibrium state, does there exist a region Ωx around the origin, such
that as long as x(k) ∈ Ωx the output of the system at time k is uniquely
determined as a function of a finite number of previous input and output
observations. As will be shown here, this can be achieved if the system is
locally strongly observable over Ωx.

Formal Derivation
Sufficient conditions for strong local observability of a system Σ around the
origin can be derived from the observability properties of its linearization
at the origin:

δx(k + 1) = fx|0,0δx(k) + fu|0,0δu(k) = Aδx(k) + bδu(k)

δy(k) = hx|0δx(k) = cT δx(k) (20)

where A
	
= fx|0,0, b

	
= fu|0,0 cT 	

= hx|0
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This is summarized by the following theorem:

Theorem 3 Let Σ be the nonlinear system (1) and ΣL its linearization
around the equilibrium (as given in (20)). If ΣL is observable then Σ is
locally strongly observable. Furthermore, locally Σ can be realized by an
input-output model.

Proof: The outputs of Σ given by Yn(k) = (y(k), y(k+1), . . . , y(k+n−1))
can also be expressed as a function of the initial state and inputs:

Yn(k) = Hn[x(k), Un−1(k)] (21)

The Jacobian of Yn(k) with respect to x(k) (
	
= DxYn(k)) at the origin is

the observability matrix of Σl given by

Mo = [cT |cT A| . . . |cT An−1]T .

Let H̃ : Un−1 ×X → Un−1 × Yn be defined by

(Un−1(k), Yn(k))
	
= H̃[Un−1(k), x(k)]

The Jacobian matrix of H̃(·, ·) at (0, 0) is given by

DH̃|(0,0) =
[

I 0
DUn−1Yn(k) DxYn(k)

]

Because of its special form, the determinant of the Jacobian equals
det[DxYn(k)|(0,0)] (= Mo). Thus if Mo is full rank (i.e. Σl is observ-
able), D0,0H̃ is of full rank. Now using the inverse mapping theorem, if
Mo is full rank, there exists a neighborhood V ⊂ X × Un−1 of (0, 0) on
which H̃ is invertible. Let Φ̃ : Yn × Un−1 → X × Un−1 denote the inverse
of H̃ and let Φ be the projection on the first n components of Φ̃. Then
locally we have

x(k) = Φ[Un−1(k), Yn(k)] (22)

The second part follows readily since y(k+n) can be written as a function
of x(k), u(k), . . . , u(k + n − 1) and thus after rearranging indices we get

y(k + 1) = h̃[Yn(k − n + 1), Un(k − n + 1)] (23)

�

The essence of the above result is that the existence of a local input-
output model for the nonlinear system can be determined by simply testing
the observability properties of the underlying linearized system. This is
demonstrated by the following example:

Example 4 Let

x(k + 1) = x(k) + u(k)
y(k) = x(k) + x2(k)
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∂y(k)
∂x(k)

= 2x + 1 and
∂y(k)
∂x(k)

|(0,0) = 1

Hence the linearized system at the origin (x = 0, u = 0) is observable and
around the origin there is an input output representation for the above
equation given by

y(k + 1) = x(k + 1) + x2(k + 1)
= x(k) + u(k) + x2(k) + u2(k) + 2x(k)u(k)

= y(k) + u2(k) + 2u(k)
√

1 + 4y(k)

�

Sufficient conditions concerning the existence of local input-output re-
alizations have also been established in [LB85]. The derivation there was
based on calculating the Hankel matrix of a system. The above result, re-
lying on the properties of the underlying linearized system is much simpler
to derive.

Neural Network Implementation

If strong observability conditions are known (or assumed) to be satisfied
in the system’s region of operation, then the identification procedure using
a feedforward neural network is quite straightforward. At each instant of
time, the inputs to the network (not to be confused with the inputs to the
system) consisting of the system’s past n input values and past n output
values (altogether 2n), are fed into the neural network.6 The network’s
output is compared with the next observation of the system’s output, to
yield the error

e(k + 1) = y(k + 1) − NN [Yn(k − n + 1), Un(k − n + 1)]

The weights of the network are then adjusted using static back propagation
to minimize the sum of the squared error.

Once identification is achieved, two modes of operation are possible:

• Series Parallel mode: In this mode, the outputs of the actual
system are used as inputs to the model. This scheme can be used
only in conjunction with the system and it can generate only one
step ahead prediction. The architecture is identical to the one used
for identification (Figure 3).

• parallel Mode: If more then one-step-ahead prediction are required,
the independent mode must be used. In this scheme, the output of
the network is fed back into the network (as shown in Figure 4),
i.e., the outputs of the network itself are used to generate future
predictions. While one cannot expect the identification model to be
perfect, this mode of operation provides a viable way to make short

6It is assumed that the order n of the system is known. If, however, only an upper
bound n̄ on the order, is known, all algorithms have to be modified accordingly, using n̄
in place of n.
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FIGURE 4. Independently Running Model

term prediction (> 1). Further, in many cases the objective is not
to make specific predictions concerning a system but rather to train
the network to generate complex temporal trajectories. In this case,
if identification is accurate, the model will exhibit the same type of
behavior (in the topological sense) as the original system.

Simulation 2 (Local Identification: An Input-Output Model) The
system to be identified is given by

x1(k + 1) = 0.5x2(k) + 0.2x1(k)x2(k)
x2(k + 1) = −0.3x1(k) + 0.8x2 + u(k)

y(k) = x1(k) + [x2(k)]2

The linearized system around the equilibrium is

δx1(k + 1) = 0.5δx2(k
δx2(k + 1) = −0.3δx1(k) + 0.8δx2 + δu(k)

δy(k) = δx1(k)

and its observability matrix

Mo = [c|cA] =
[

1 0
0 0.5

]

is full rank. Thus the system can be realized by an input-output model
of order 2. A neural network NNh̃ ∈ N 3

4,12,6,1 was trained to implement
the model. The system was driven with random input u(k) ∈ [−1, 1].
The inputs to the network at each instant of time consisted of y(k), y(k −
1), u(k), u(k − 1) and the output of the network ŷ(k + 1) was compared to
the output of the system y(k +1). The error e(k +1) = y(k +1)− ŷ(k +1)
was used as the performance criterion for the network and the weights were
adjusted using static back propagation along the negative gradient.

Figure 5 shows the performance of the network after 20,000 training
steps. The system is driven with a random input and prediction of the
network at the next step is compared to the actual output. �
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FIGURE 5. Local Identification with Input-Output Model

4.2 Global Input - Output Models

The input-output results presented so far are local in nature, and one can-
not be certain that the conditions upon which these results rest are actually
satisfied in the system’s domain of operation. While strong global observ-
ability which it can be achieved are too restrictive to be satisfied by most
systems. Also, even though the existence of a region over which the system
is strongly observable can be determined by examining the observability
properties of the linearized system, determining the actual size of that
region can be extremely cumbersome [Fit72]. Hence, practical use of the
result assumes that the conditions for strong observability are satisfied over
the system’s domain of operation.

Once we relax the observability requirement to generic observability (i.e.,
almost any input of sufficient length will make the states observable), global
results can be attained. As will be shown, almost all observable systems
are globally generically observable. Hence, with no need for further testing,
one can assume that the particular system under consideration is generi-
cally observable. This in turn can be used to derive a global input-output
identification model for the system.

In addition to the knowledge of the order of the system, the ensuing
development will rely on the following two assumptions:

Assumption 1 f and h are smooth functions.

Assumption 2 the system is state invertible (as defined in Section 2.2).
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Formal Derivation
The central idea of this section is to show how observability can be de-
scribed as a transversal intersection between maps. Through that, the
genericity of transversal intersections will be used to prove the genericity
of generically observable systems. On the other hand, we prove that a
generically observable system can be realized by an input-output model.
Bringing the two together we conclude that generic systems of the form (1)
can be identified using a recursive model of the form (18).

For continuous time homogeneous dynamical systems described by

ẋ = f(x), y = h(x) (24)

the question of the genericity of observability has been investigated by
Aeyels [Aey81]. By expressing the observability property in terms of trans-
versality conditions, he has shown that almost any such system will be
observable if at least 2n + 1 measurements of the output are taken.

Following similar reasoning we first wish to extend this result to nonho-
mogeneous systems of the form (1). In order to express the observability of
Σ in terms of transversality conditions we need the notion of the diagonal:

Definition 6 Let X be a smooth manifold and let x ∈ X . The diagonal
∆(X × X ) is the set of points of the form (x, x).

Recalling the definition of observability, a system is observable if for a
given input the mapping from the state space to the output is injective,
i.e., Y (x1, U) = Y (x2, U) if and only if x1 = x2. This is equivalent to
saying that for any x1 �= x2, Yl(x1, Ul), Yl(x2, Ul) �∈ ∆(Yl ×Yl). Now, from
Proposition 1, transversality implies empty intersection if dim ∆(Yl×Yl)+
2 dimX < 2 dimYl, and since dim ∆(Yl ×Yl) = dimYl ≥ l and dimX = n,
observability can be expressed in terms of transversality condition if

l ≥ 2n + 1

With this in mind, the following result which is the equivalent of Aeyels’s
result for discrete systems can be stated:

Lemma 1 Let h : X → Y be a Morse function with distinct critical points.
Let U∗

2n+1 ∈ U2n+1 be a given input sequence. Then the set of smooth
functions f ∈ C∞ for which the system

x(k + 1) = f [x(k), u∗(k)]
y(k) = h[x(k)]

is observable, is open and dense in C∞.

The proof is long and since it is not pertinent to the ensuing development,
it is given in the appendix.

Using Lemma 1 we can deduce that (2n+1)-step generic observability is
a natural assumption for nonhomogeneous discrete time systems described
by (1), i.e., it holds for almost all systems. More precisely we have the
following theorem:

Theorem 4 Let h : X → Y be a Morse function. Then the set of functions
f ∈ C∞, for which the system (1) is 2n + 1-step generically observable, is
open and dense in C∞.
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Proof: Let F ⊂ C∞ and V ⊂ U2n+1 be compact and let A = F × V.
open: Assume for a given v∗ ∈ V and a given f∗ ∈ F the system (1)
is observable. Observability means that the map H∗

l (v∗) : X → Y2n+1 is
injective (the definition of Hl was given in Section 1). Injectiveness is a
stable property, thus there exists a neighborhood B ⊂ A such that for all
(v, f) ∈ B the system is observable.
dense: For any neighborhood B of a given v∗ and a given f∗ there exists
W ⊂ V and G ⊂ F such that W × G ⊂ B. From Lemma 1, for a given
v∗ there exists f̃ ∈ G for which the triplet f̃ , h, v∗ is observable. Thus
(f̃ , v∗) ∈ B.

�

To understand the importance of the result, the following short discussion
may prove useful. In the real world of perceptions and measurements, no
continuous quantity or functional relationship is ever perfectly determined.
The only physically meaningful properties of a mapping, consequently, are
those that remain valid when the map is slightly deformed. Such properties
are stable properties and the collection of maps that possesses a particular
stable property may be referred to as a stable class of maps. A property is
generic if it is stable and dense, that is if any function may be deformed
by an arbitrary small amount into a map that possesses that property.
Physically, only stable maps can be observed, but if a property is generic
all observed maps will possess it. Hence, the above theorem states that in
practice only generically observable systems will ever be observed.

For a generically observable system 7 we wish to show that an observer
can be realized by a neural network, that for almost all values of u will
give the state as a function of the observed inputs and outputs. The above
theorem suggests that this set is generic. To build an input-output model
we will also need to assume that the complement of this set (i.e. the set
of input sequences for which the system is not observable ) is of measure
zero. More formally:

Assumption 3 In the systems under consideration, the complement of the
generic input set for which the system is observable, is of measure zero.

With this preamble, the following result can be stated:

Theorem 5 Let Σ be a generically observable system(1). Let K ⊂ X and
C ⊂ U2n+1 be compact. Let As ⊂ C denote the set of input sequences for
which the system is not observable. If Assumption 3 holds, then for all
ε > 0 there exists an open set Aε ⊃ As such that:

1. µ(Aε) < ε (µ denoting the measure).

2. there exists a continuous function Φ : �2(2n+1) → �n such that for
all x(k) ∈ K and all U2n+1(k) ∈ A1−ε (denoting the complement of
Aε in C) we have:

x(k) = Φ[Y2n+1(k), U2n+1(k)] (25)

7Since generic observability requires 2n + 1 measurements, from now on by generic
observability we will mean 2n + 1-step generic observability.
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3. there exists a feedforward neural network, NNΦ such that for all
x(k) ∈ K and all U2n+1(k) ∈ A1−ε we have

‖x(k) − NNΦ[Y2n+1(k), U2n+1(k)]‖ < ε (26)

Proof: Since As is of measure zero, for any ε there exists an open set Aε

such that As ⊂ Aε and µ(Aε) < ε.
To prove part 2, consider the mapping H̃ : K×A1−ε → B×A1−ε defined

by
(Y2n+1(k), U2n+1(k)) = H̃[x(k), U2n+1(k)]

where B denotes the image of this map in the Y2n+1 space. H̃ is continuous
and bijective on the compact set K ×A1−ε, hence B is compact and there
exists a continuous inverse Φ̃ : B ×A1−ε → K×A1−ε such that

[x(k), U2n+1(k)] = Φ̃[Y2n+1(k), U2n+1(k)]

Since this map is continuous on the compact set B × A1−ε, by the Tietze
Extension Theorem [RS80], it can be extended to all of Y2n+1 × C, and if
we denote its first n components by Φ we get (25).

The last part follows immediately from the approximation properties
[Cyb89, HSW89] of feedforward neural networks. �

Finally, combining theorems 4 and 5 the existence of an input-output
model can be established:
Theorem 6 Let Σ be defined by (1). Then for generic f and h and for
every ε > 0, there exists a set (Aε|µ(Aε) < ε, a continuous function h̃ :
�2n+1 × �2n+1 → � and a multilayer feedforward neural network NNh̃
such that:

1. for all input sequences U2n+1(k − 2n) �∈ Aε

y(k + 1) = h̃[Y2n−1(k − 2n), U2n+1(k − 2n)] (27)

2. for all input sequences U2n+1(k − 2n)

‖h̃[Y2n−1(k−2n), U2n+1(k−2n)]−NNh̃[Y2n−1(k−2n), U2n+1(k−2n)]‖ < ε
(28)

Proof: From Theorem 4 we have that for generic f and h, Σ is generically
observable. Hence, from Theorem 5, for any ε > 0, for all input sequences
not contained in a set (Aε|µ(Aε) < ε, x(k−2n) can be written as a function
of Y2n+1(k − 2n), U2n+1(k − 2n) (n denoting the order of the system).
Now, y(k + 1) can be written as a continuous function of x(k − 2n), u(k −
2n), . . . , u(k) and thus there exists a continuous function h̃ such that

y(k + 1) = h̃[y(k), . . . , y(k − 2n), u(k), . . . , u(k − 2n)]

= h̃[Y2n+1(k − 2n), U2n+1(k − 2n)] (29)
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for all U2n+1(k − 2n) �∈ Aε. The second part follows immediately from the
approximation properties of feedforward neural networks [Cyb89, HSW89].
�

Hence, generically, input-output models can be used to identify systems
whose underlying behavior is given by (1). Thus the result implies that
practically all systems, can be identified using input-output models. Fur-
ther, even though the algorithm presented relied on the knowledge of the
system’s order (which may not be available), we are guaranteed that even
without this information a finite number of past observations suffices to
predict the future (as opposed to the Volterra or Wiener series [Rug81]).

Neural Network Implementation

The input-output model based on the assumption of generic observability
is similar to the one introduced for the local input-output model with a
few modifications. First, a minimum of 2n+1 observations of the system’s
inputs and outputs need to be fed into the network at each time instant.
Further, for a generic 2n + 1 sequence of inputs, for any x1 �= x2 we have

Y2n+1(x1, U2n+1) �= Y2n+1(x2, U2n+1)

but there is no lower bound on the distance between the two values. This
may cause the inverse map (25), upon which the recursive model is based, to
be very steep. In theory, a neural network should be able to approximate
any continuous function. However, the more rugged the function to be
approximated, the more difficult is the task. Thus, practically, it might
prove advantageous to use even longer sequences as inputs to the neural
network which can only increase the distance between the image of any two
points thus resulting in a smoother inverse map to be approximated and
thus easier to identify.

Simulation 3 (Identification: A Generically Observable System)
The system to be identified is given by

x1(k + 1) = −0.7x2(k) + x3(k)
x2(k + 1) = tanh[0.3x1(k) + x3(k) + (1 + 0.3x2(k))u(k)]
x3(k + 1) = tanh[−0.8x1(k) + 0.6x2(k) + 0.2x2(k)x3(k)]

y(k) = [x1(k)]2

Since c = ∂y
∂x |0 = 0, the linearized system is unobservable. From the above

result we have that a third order system can be realized by an input-output
model of order 7 = (2 · 3 + 1). i.e, the prediction relies on 7 past obser-
vations of the inputs and outputs (a total of 14). To test the relevance of
this number, we tried to identify the system different input-output models
with the recursion varying between l = 1 and l = 10. The models were
implemented using a feedforward network of size NNh̃ ∈ N 3

2l,12,6,1. Thus,
for a given l the input-output model is given by

ŷ(k + 1) = NNh̃[y(k), . . . y(k − l + 1), u(k), . . . u(k − l + 1)]

Training was done by driving the system and the model using a random
input signal u(k) uniformly distributed in the interval [−1, 1]. At each
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instant of time, the prediction error is given by e(k) = y(k)−ŷ(k) and using
the backpropagation algorithm, the weights of NNh̃ are adjusted along the
negative gradient of the squared error. The comparative performance of
the different models after 50,000 training iterations is shown in Figure 6.
As a figure of merit for the identification error we chose the ratio between
the variance of the error and the variance of the output of the system.
It is seen that the initially the error drops rapidly and reaches a plateau
approximately around

l = 7. To have an intuitive appreciation as to what this error means,
Figure 7 compares the next step prediction of the system and the model
with l = 7, when both are driven with a random input signal. As can
be seen, the model approximates the input-output behavior of the system
quite accurately. �
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FIGURE 6. Identification error as a function of the number of past observations
used for the identification model.

5 Conclusion

The identification of nonlinear dynamical systems by neural networks is
treated in this paper for both state space and input-output models. It
is shown how prior assumptions concerning the properties of the system
influence the type of architectures that can be used.

The state space model offers a more compact representation. However,
learning such a model involves the use of dynamic backpropagation, which
is a very slow and computationally intensive algorithm. Furthermore, prac-
tical use of such models requires the ability to reset the system periodically.
Both these disadvantages are overcome when input-output models are used.
Thus the latter offers a much more viable solution to the identification of
real world systems.

The most important result presented in this paper is the demonstration
of the existence of a global input-output model based on generic observ-
ability. The fact that generic observability is a generic property of systems
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FIGURE 7. Identification of a generically observable system using 7th order
recursive input-output model.

implies that almost all systems can be identified using input-output mod-
els, and hence realized by feedforward networks. The algorithm presented
is based on the knowledge of an upper bound on the system’s order. While
the latter may not always be available, this does not detract from the util-
ity of the proposed method. In such a case the number of past observations
used for the identification process can be increased to achieve a good pre-
diction. The result guarantees that this procedure will converge, since a
finite number of past observations suffices to predict the future.
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Appendix

Proof of Lemma 1

First the following lemma is necessary:

Lemma 2 Let Σ be the system (1). Let h in Σ be a Morse function with
distinct critical points. The set of functions f that satisfy the conditions:

1. No two trajectories with period ≤ 2n + 1 belong to the same level
surface of h.

2. No trajectory with period ≤ 2n + 1 coincides with a critical point of
h.
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3. No integral trajectory contains two or more critical points of h.

4. No integral trajectory (except equilibrium points) belongs to a single
level surface of h.

is open and dense in C∞.

Proof: The proof of the lemma is an immediate consequence of transversal-
ity theory. Violation of any of the above conditions involves the intersection
of manifolds whose sum of dimensions is less then n, i.e., manifolds which
do not intersect transversally. Since transversal intersections are generic
the conditions follow.

Proof of Lemma 1: Let fi(x)
	
= f(x, ui), where ui denotes the input at

time i. For a given f , Σ will be observable if the mapping φ : ∆(F ×F)×
X × X → �2n+1 ×�2n+1 defined by

φ(f, f, x, z, u∗) =




h ◦ f1(x)
h ◦ f2 ◦ f1(x)
...
h ◦ f2n+1 . . . f1(x)




,




h ◦ f1(z)
h ◦ f2 ◦ f1(z)
...
h ◦ f2n+1 . . . f1(z)




(30)

is transversal to W = ∆(�2n+1 ×�2n+1).
To prove that this is true for a generic f , we will consider the fam-

ily of maps F (x, s) = f(x) + sg(x) where s is a parameter and g is a
smooth function. In the same manner that φ was defined, we can define
Φ(f, f, x, z, u∗, s) by replacing fi(x) in (30) with Fi(x, s).

Now, from the Transversality Theorem, if Φ�∩W then for a generic f ,
φ�∩W, i.e., the system is observable. By definition, Φ�∩W if, for each x �= z,
either φ(f, f, x, z) �∈ W or ∂Φ

∂s |s=0 spans Wc (the complement of W).
Since all elements of W are of the form (w,w), then if we can find g such

that, whenever φ(f, f, x, z) ∈ W, ∂Φ
∂s |s=0 is of the form




a1 0 . . . 0
∗ a2 . . . 0

...
∗ ∗ . . . a2n+1

∣∣∣∣∣∣∣∣∣

b1 0 . . . 0
∗ b2 . . . 0

...
∗ ∗ . . . b2n+1


 (31)

where ai �= bi for all i, ∂Φ
∂s |s=0 will span Wc and thus φ�∩W.

Four possible cases need to be considered:

Case I: Neither x nor z is periodic with period ≤ 2n + 1.

The trajectories of both x and z consist of at least 2n + 1 distinct points.
If φ(f, f, x, z) �∈ W, the mapping is transversal, else we need to show that
∂Φ
∂s |s=0 spans Wc. For 2n + 1, write N .

∂Φ
∂s |s=0 = (32)
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∂y1
∂x1

g(x1) 0 . . . 0
∂y2
∂x1

g(x1) ∂y2
∂x2

g(x2) . . . 0
...

∂yN

∂x1
g(x1) ∂yN

∂x2
g(x2) . . . ∂yN

∂xN
g(xN )

∣∣∣∣∣∣∣∣∣∣

∂y1
∂z1

g(z1) 0 . . . 0
∂y2
∂z1

g(z1) ∂y2
∂x2

g(z2) . . . 0
...

∂yN

∂z1
g(z1) ∂yN

∂z2
g(z2) . . . ∂yN

∂zN
g(zN )




If for all i,
∂yi

∂xi
g(xi) �= ∂yi

∂z1
g(zi) (33)

then (33) is of the form (31) and hence ∂Φ
∂s |s=0 spans Wc. From condition 1

in Lemma 2, ∂h
∂xi

and ∂h
∂zi

cannot be zero simultaneously, thus, g can always
be chosen so that (33) holds.

Case II: Either x or z is periodic with period ≤ N .

Without loss of generality let x be periodic. By condition 2 of Lemma 2,
∂h
∂zi

can be zero for at most a single value of i(= m). For all i �= m, g(zi) can
be chosen so that ∂yi

∂xi
g(xi) �= ∂yi

∂zi
g(zi). Now, from condition 2 of Lemma

2, no periodic trajectory with period ≤ N coincides with a critical point of
h, thus ∂ym

∂xm
�= 0 and g(xm) can be selected so that ∂ym

∂xm
g(xm) �= ∂ym

∂zm
g(zm)

Case III: Both x and z are periodic with period ≤ N .

By condition 1 of Lemma 2, no two orbits with period ≤ N belong to the
same level surface of h, thus φ(f, f, x, z) �∈ W.

Case IV: x and z are on the same trajectory.

From condition 4 in Lemma 2, no integral trajectory belongs to a single
level surface of h. Thus for some i, yi(x) �= yi(z), and thus φ(f, f, x, z) �∈ W.

Since the family of systems parameterized by s is transversal to W, it
follows from the transversality theorem that transversality will hold for
almost all s, both in the sense that it is satisfied on an open and dense set
as well as in the sense that the set of parameters for which the system is
unobservable is of measure zero.

�
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Neural Network Control of
Robot Arms and Nonlinear
Systems

F.L. Lewis
S. Jagannathan
A. Yeşildirek

ABSTRACT Neural network (NN) controllers are designed that give guar-
anteed closed-loop performance in terms of small tracking errors and bound-
ed controls. Applications are given to rigid-link robot arms and a class of
nonlinear systems. Both continuous-time and discrete-time NN tuning al-
gorithms are given. New NN properties such as strict passivity avoid the
need for persistence of excitation. New NN controller structures avoid the
need for preliminary off-line learning, so that the NN weights are easily
initialized and the NN learns on-line in real-time. No regression matrix
need be found, in contrast to adaptive control. No certainty equivalence
assumption is needed, as Lyapunov proofs guarantee simultaneously that
both tracking errors and weight estimation errors are bounded.

1 Introduction

Neural networks (NN) can be used for classification and decision-making,
or for controls applications. Some background on NN is given in [MSW91,
MB92, Pao89, PG89, RHW86, Wer74, Wer89]. In classification and decis-
ion-making NN have by now achieved common usage and are very effective
in solving certain types of problems, so that their use is commonplace in
image and signal processing and elsewhere. A major reason for this is
the existence of a mathematical framework for selecting the NN weights
using proofs based on the notion of energy function, or of algorithms that
effectively tune the weights on line.

1.1 Neural Networks for Control

In controls there have been many applications of NN, but few rigorous
justifications or guarantees of performance. The use of ad hoc controller
structures and tuning strategies has resulted in uncertainty on how to se-
lect the initial NN weights, so that a so-called ’learning phase’ is often
needed that can last up to 50,000 iterations. Although preliminary NN off-
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line training may appear to have a mystique due to its anthropomorphic
connotations, it is not a suitable strategy for controls purposes.

There are two sorts of controls applications for NN: identification and
control. Some background on robotics and controls applications of NN
is given in [CS92, CS93, HHA92, IST91, MSW91, Nar91, NA87, NP90,
YY92]. In identification the problems associated with implementation are
easier to solve and there has been good success (see references). Since the
system being identified is usually stable, it is only necessary to guarantee
that the weights remain bounded. This can generally be accomplished
using standard tuning techniques such as the delta rule with, for instance,
backpropagation of error. In identification, it is generally not a problem to
have a learning phase.

Unfortunately, in closed-loop control using NN the issues are very much
more complicated, so that approaches that are suitable for NN classifica-
tion applications are of questionable use. A long learning phase is detri-
mental to closed-loop applications. Uncertainty on how to initialize the
NN weights to give initial stability means that during the learning phase
the NN controller cannot be switched on line. Most importantly, in closed-
loop control applications one must guarantee two things— boundedness
of the NN weights and boundedness of the regulation or tracking errors,
with the latter being the prime concern of the engineer. This is diffi-
cult using approaches to NN that are suitable for classification applica-
tions. Some work that successfully uses NN rigorously for control appears
in [CK92, LC93, PI91, PI92, RC95, Sad91, SS91], though most of these
papers that contain proofs are for 2-layer (linear-in-the-parameters) NN.

The background work for this chapter appears in [JL96, LLY95, LYL96,
YL95]. To guarantee performance and stability in closed-loop control ap-
plications using multilayer (nonlinear) NN, it is found herein that the stan-
dard delta rule does not suffice. Indeed, we see that the tuning rules must
be modified with extra terms. In this chapter we give new controller struc-
tures that make it easy to initialize the NN weights and still guarantee
stability. No off-line learning phase is needed, and tuning to small errors
occurs in real-time in fractions of a second. New NN properties such as pas-
sivity and robustness make the controller robust to unmodeled dynamics
and bounded disturbances.

Our primary application is NN for control of rigid robot manipulators,
though a section on nonlinear system control shows how the technique can
be generalized to other classes of systems in a straightforward manner. Our
work provides continuous-time update algorithms for the NN weights; a sec-
tion is added to show how to use the same approach to derive discrete-time
weight tuning algorithms, which are directly applicable in digital control.

1.2 Relation to Adaptive Control

One will notice, of course, the close connection between NN control and
adaptive control [Cra88, Goo91, KC91, SB89]; in fact, from this chapter
one may infer that NN comprise a special class of nonlinear adaptive con-
trollers with very important properties. Thus, this chapter considerably
extends the capabilities of linear-in-the-parameters adaptive control. In
indirect adaptive control, especially in discrete time, one makes a certainty
equivalence assumption that allows one to decouple the controller design
from the adaptive identification phase. This is akin to current approaches
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to NN control. This chapter shows how to perform direct NN control, even
in the discrete-time case, so that the certainty equivalence assumption is
not needed. The importance of this is that closed-loop performance in
terms of small tracking errors and bounded controls is guaranteed.

In adaptive control it is often necessary to make assumptions, like those of
Erzberger or the model-matching conditions, on approximation capabilities
of the system, which may not hold. By contrast the NN approximation
capabilities employed in this chapter always hold. In the NN controllers
of this chapter, no persistence of excitation condition is needed. Finally, a
major debility of adaptive control is the need to find a ’regression matrix’,
which often entails determining the full dynamics of the system. In NN
control, no regression matrix is needed; the NN learns in real time the
dynamical structure of the unknown system.

2 Background in Neural Networks, Stability, and
Passivity

Some fairly standard notation is needed prior to beginning. Let IR denote
the real numbers, IRn denote the real n-vectors, IRm×n the real m × n
matrices. Let S be a compact simply connected set of IRn. With map
f : S → IRm, define Cm(S) as the space such that f is continuous. We
denote by ‖.‖ any suitable vector norm; when it is required to be specific
we denote the p-norm by ‖.‖p. The supremum norm of f(x) (over S) is
defined as [Bar64]

sup
x∈S

‖f(x)‖, f : S → IRm.

Given A = [aij ], B ∈ IRm×n the Frobenius norm is defined by

‖A‖2
F = tr(AT A) =

∑
i,j

a2
ij

with tr() the trace. The associated inner product is < A,B >F = tr(AT B).
The Frobenius norm is nothing but the vector 2-norm over the space defined
by stacking the matrix columns into a vector. As such, it cannot be defined
as the induced matrix norm for any vector norm, but is compatible with
the 2-norm so that ‖Ax‖2 ≤ ‖A‖F ‖x‖2, with A ∈ IRm×n and x ∈ IRn.

When x(t) ∈ IRn is a function of time we may refer to the standard Lp

norms [LAD93] denoted ‖x(.)‖p. We say vector x(t) is bounded if the L∞
norm is bounded. We say matrix A(t) ∈ IRm×n is bounded if its induced
matrix ∞-norm is bounded.

2.1 Neural Networks

Given x= [x1 x2 ...xN1]T ∈ IRN1 , a three-layer neural net (NN) (Figure 1)
has a net output given by

yi =
N2∑
j=1

wijσ[
N1∑
k=1

vjkxk + θvj ] + θwi]; i = 1, .., N3 (1)
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FIGURE 1. Three layer neural net structure

with σ(.) the activation function, vjk the first-to-second layer interconnec-
tion weights, and wij the second-to-third layer interconnection weights.
The θvj , θwi, i = 1, 2, ..., are threshold offsets and the number of neurons
in layer � is N�, with N2 the number of hidden-layer neurons. In the NN
we should like to adapt the weights and thresholds on-line in real time to
provide suitable performance of the net. That is, the NN should exhibit
’learning behavior’.

Typical selections for the activation functions σ(.) include, with z ∈ IR,

σ(z) = 1
1+e−z – sigmoid

σ(z) = 1−e−z

1+ez – hyperbolic tangent (tanh)

σ(z) = e−(z−mj)
2/sj – radial basis functions (RBF)

Matrix Formulation
The NN equation may be conveniently expressed in matrix format by re-
defining x = [x0 x1 x2 ...xN1]T , and defining y = [y1 y2 ...yN3]T and weight
matrices WT = [wij ], V T = [vjk]. Including x0 ≡ 1 in x allows one to in-
clude the threshold vector [θv1 θv2 . . . θvN2]T as the first column of V T ,
so that V T contains both the weights and thresholds of the first-to-second
layer connections. Then,

y = WT σ(V T x), (2)

where, if z = [z1 z2 . . .]T is a vector we define the activation function
componentwise as σ(z) = [σ(z1) σ(z2) . . .]T . Including 1 as a first term
in the vector σ(V T x) (i.e. prior to σ(z1)) allows one to incorporate the
thresholds θwi as the first column of WT . Any tuning of W and V then
includes tuning of the thresholds as well.
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Although, to account for nonzero thresholds, the vector x may be aug-
mented by x0 = 1 and the vector σ(V T x) by the constant first entry of 1,
we loosely say that x ∈ IRN1 and σ : IRN2 → IRN2.

Approximation Property of NN

With x ∈ IRn, A general function f(x) ∈ Cm(S) can be written as

f(x) = WT σ(V T x) + ε(x), (3)

with N1 = n, N3 = m, and ε(x) a NN functional reconstruction error
vector. If there exist N2 and constant ’ideal’ weights W and V so that
ε = 0 for all x ∈ S, we say f(x) is in the functional range of the NN. In
general, given a real number εN > 0, we say f(x) is within εN of the NN
range if there exist N2 and constant weights so that for all x ∈ IRn, (3)
holds with ‖ε‖ < εN . Unless the net is “minimal“, the weights minimizing
may not be unique [AS92, Sus92].

Various well-known results for various activation functions σ(.), based,
e.g. on the Stone-Weierstrass theorem, say that any sufficiently smooth
function can be approximated by a suitably large net [Cyb89, HSW89,
PS91, SS91]. The functional range of NN 2 is said to be dense in Cm(S) if
for any f ∈ Cm(S) and εN > 0 there exist finite N2, and W and V such
that (3) holds with ε < εN , N1 = n,N3 = m. Typical results are like
the following, for the case of σ(.) any “squashing function” (a bounded,
measurable, nondecreasing function from the real numbers onto (0, 1)), for
instance the sigmoid function.

Theorem 2.6 Set N1 = n, N3 = m and let σ(.) be any squashing function.
Then the functional range of NN (2) is dense in Cm(S).

In this result, the metric defining denseness is the supremum norm.
Moreover, the last layer thresholds θwi are not needed for this result. The
engineering design issues of selecting σ(.), and of choosing N2 for a specified
S ⊂ IRn and εN are current topics of research (see e.g. [PS91]).

2.2 Stability and Passivity of Dynamical Systems

Some stability notions are needed to proceed [LAD93]. Consider the non-
linear system

ẋ = f(x, u, t), y = h(x, t).(2.4) (4)

We say the solution is uniformly ultimately bounded (UUB) if there exists
a compact set U ⊂ IRn such that for all x(t0) = x0 ∈ U, there exists an
ε > 0 and a number T (ε, x0) such that x(t) < ε for all t ≥ t0 + T . UUB
is a notion of stability in a practical sense that is good enough for suitable
tracking performance of robot manipulators if, of course, the bound is small
enough.

Passive systems are important in robust control, where bounded distur-
bances or unmodeled dynamics are present. Since we intend to define some
new passivity properties of NN, some aspects of passivity will subsequently
be important [GS84, Lan79, LAD93, SL91]. A system with input u(t) and
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output y(t) is said to be passive if it verifies an equality of the so-called
’power form’

L̇(t) = yT u − g(t) (5)

with L(t) lower bounded and g(t) ≥ 0. That is,

∫ T

0

yT (τ)u(t) dτ ≥
∫ T

0

g(t) dt − γ2 (6)

for all T ≥ 0 and some γ ≥ 0.
We say the system is dissipative if it is passive and in addition∫ ∞

o

yT (τ)u(τ) dt �= 0 implies
∫ ∞

o

g(τ) dτ > 0 (7)

A special sort of dissipativity occurs if g(t) is a monic quadratic function
of x with bounded coefficients, where x(t) is the internal state of the system.
We call this state strict passivity, and are not aware of its use previously
in the literature (although cf. [GS84]). Then the L2 norm of the state
is bounded above in terms of the L2 inner product of output and input
(i.e. the power delivered to the system). This we use to advantage to
conclude some internal boundedness properties of the system without the
usual assumptions of observability (e.g. persistence of excitation), stability,
etc.

3 Dynamics of Rigid Robot Arms

In some sense the application of NN controllers to rigid robot arms turns out
to be very natural. A main reason is that the robot dynamics satisfy some
important properties, including passivity, that are very easy to preserve in
closed loop by considering the corresponding properties on the NN. Thus,
one is motivated in robotics applications to discover new properties of NN.
The dynamics of robot manipulators and some of their properties are now
discussed.

3.1 Robot Dynamics and Properties

The dynamics of an n-link rigid (i.e. no flexible links or joints) robot
manipulator may be expressed in the Lagrange form [Cra88, LAD93]

M(q)q̈ + Vm(q, q̇)q̇ + G(q) + F (q̇) + td = t (8)

with q(t) ∈ IRn the joint variable vector, M(q) the inertia matrix, Vm(q, q̇)
the Coriolis/centripetal matrix, G(q) the gravity vector, andF (q̇) the fric-
tion. Bounded unknown disturbances (including e.g. unstructured unmod-
eled dynamics) are denoted by td, and the control input torque is τ(t).

The following standard properties of the robot dynamics are required
[LAD93].

Property 1: M(q) is a positive definite symmetric matrix bounded by
m1I ≤ M(q) ≤ m2I with m1, m2 known positive constants.

Property 2: Vm(q, q̇) is bounded by vb(q)‖q̇‖, with vb(q) ∈ C1(S).
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Property 3: The matrix Ṁ − 2Vm is skew-symmetric.
Property 4: The unknown disturbance satisfies ‖τd‖ < bd, with bd a

known positive constant.

3.2 Tracking a Desired Trajectory and the Error Dynamics

An important application in robot arm control is for the manipulator to
follow a prescribed trajectory.

Error Dynamics

Given a desired arm trajectory qd(t)IRn the tracking error is

e(t) = qd(t) − q(t). (9)

It is typical in robotics to define a so-called filtered tracking error as

r = ė + Λe (10)

where Λ = ΛT > 0 is a design parameter matrix, usually selected diagonal.
Differentiating r(t) and using (8), the arm dynamics may be written in
terms of the filtered tracking error as

Mṙ = −Vmr − τ + f + τd (11)

where the important nonlinear robot function is

f(x) = M(q)(q̈d + ė) + Vm(q, q̇)(q̇d + e) + G(q) + F (q.) (12)

and we may define, for instance,

x ≡ [eT ėT qT
d q̇T

d q̈T
d ]T . (13)

A suitable control input for trajectory following is given by

τo = f̂ + Kvr (14)

Kv = KT
v > 0 a gain matrix and f̂(x) an estimate of f(x) found by

some means not yet discussed. Using this control, the closed-loop system
becomes

Mṙ = −(Kv + Vm)r + f̃ + τd ≡ −(Kv + Vm)r + ζo (15)

where the functional estimation error is given by

f̃ = f − f̂ (16)

This is an error system wherein the filtered tracking error is driven by the
functional estimation error. The control τ0 incorporates a proportional-
plus-derivative (PD) term in Kvr = Kv(ė + Λe).
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The Control Problem
In the remainder of the chapter we shall use (15) to focus on selecting NN
tuning algorithms that guarantee the stability of the filtered tracking error
r(t). Then, since (10),with the input considered as r(t) and the output as
e(t) describes a stable system, standard techniques [LL92, SL91] guarantee
that e(t) exhibits stable behavior. In fact, one may show using the notion
of ’operator gain’ that ‖e‖2 ≤ ‖r‖2/σmin(Λ), ‖ė‖2 ≤ ‖r‖2, with σmin(Λ)
the minimum singular value of Λ. Generally Λ is diagonal, so that σmin(Λ)
is the smallest element of Λ.

Therefore, the control design problem is to complete the definition of the
controller so that both the error r(t) and the control signals are bounded.
It is important to note that the latter conclusion hinges on showing that
the estimate f̂(x) is bounded. Moreover, for good performance, the bounds
on r(t) should be in some sense ’small enough’.

Passivity Property

The next property is important in the design of robust NN controllers.
Property 5: The dynamics (15) from ζo(t) to r(t) are a state strict

passive system.
Proof of Property 5:

Take the nonnegative function

L =
1
2
rT Mr

so that, using (15)

L̇ = rT Mṙ + 1
2rT Ṁr = −rT Kvr + rT (Ṁ − 2Vm)r + rT ζo

whence skew-symmetry yields the power form

L̇ = rT ζo − rT Kvr.

4 NN Controller for Robot Arms

In this section we derive a NN controller for the robot dynamics in Section 3.
This controller consists of the control strategy ( developed in that section,
where the robot function estimate f̂(x) is now provided by a NN. Since we
must demonstrate boundedness of both the NN weights and the tracking
error, it will be found that the standard delta rule does not suffice in tuning
this NN, but extra terms must be added.

4.1 Some Assumptions and Facts

Some required mild assumptions are now stated. The assumptions will be
true in every practical situation, and are standard in the existing literature.
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Assumption 1 The nonlinear robot function (12) is given by a neural
net as in (3)for some constant ’target’ NN weights W and V , where the
net reconstruction error ε(x) is bounded by a known constant εN .

Unless the net is “minimal“, suitable target weights may not be unique
[AS92, Sus92]. The ’best’ weights may then be defined as those which mini-
mize the supremum norm over S of ε(x). This issue is not of major concern
here, as we only need to know that such target weights exist; their actual
values are not required. According to the discussion in Section 2, results on
the approximation properties of NN guarantee that this assumption does
in fact hold. This is in direct contrast to the situation often arising in
adaptive control, where assumptions (e.g. Erzberger, model-matching) on
the plant structure often do not hold in practical applications.

For notational convenience define the matrix of all the weights as

Z =
[

W 0
0 V

]
(17)

Assumption 2
The target weights are bounded by known positive values so that ‖V ‖F ≤

VM , ‖W‖F ≤ WM , or
‖Z‖F ≤ ZM (18)

with ZM known.
Assumption 3
The desired trajectory is bounded in the sense, for instance, that∥∥∥∥∥∥

qd

q̇d

q̈

∥∥∥∥∥∥ ≤ Qd, (19)

where Qd ∈ IR is a known constant.
The next fact follows directly from the assumptions and previous defini-

tions.
Fact 4
For each time t, x(t) in (13) is bounded by

‖x‖ ≤ c1Qd + c2‖r‖ (20)

for computable positive constants ci (c2 decreases as Λ increases.)

4.2 A Property of the Hidden-Layer Output Error

The next discussion is of major importance in this paper (cf. [PI92]). It
shows a key structural property of the hidden-layer output error that plays
a major role in the upcoming closed-loop stability proof. It is in effect the
step that allows one to progress to nonlinear adaptive control as opposed to
linear-in-the-parameters control. The analysis introduces some novel terms
that will appear directly in the NN weight tuning algorithms, effectively
adding additional terms to the standard delta rule weight updates.

With V̂ , Ŵ some estimates of the target weight values, define the weight
deviations or weight estimation errors as

Ṽ = V − V̂ , W̃ = W − Ŵ , Z̃ = Z − Ẑ. (21)
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In applications, the weight estimates are provided by the NN weight
tuning rules. Define the hidden-layer output error for a given x as

σ̃ = σ − σ̂ ≡ σ(V T x) − σ(V̂ T x). (22)

The Taylor series expansion for a given x may be written as

σ(V T x) = σ(V̂ T x) + σ′(V̂ T x)Ṽ T x + O(Ṽ T x)2 (23)

with

σ′(ẑ) ≡ dσ(z)
dz

|z=ẑ,

and O(z)2 denoting terms of order two. Denoting σ̂′ = σ′(V̂ T x), we have

σ̃ = σ′(V̂ T x)Ṽ T x + O(Ṽ T x)2 = σ̂′Ṽ T x + O(Ṽ T x)2. (24)

Different bounds may be put on the Taylor series higher-order terms
depending on the choice for σ(.). Noting that

O(Ṽ T x)2 = [σ(V T x) − σ(V̂ T x)] − σ′(V̂ T x)Ṽ T x

we take the following.
Fact 5
For sigmoid, RBF, and tanh activation functions, the higher-order terms
in the Taylor series are bounded by

‖O(Ṽ T x)2‖ ≤ c3 + c4Qd‖Ṽ ‖F + c5‖Ṽ ‖F ‖r‖
where ci are computable positive constants.

Fact 5 is direct to show using (20),some standard norm inequalities, and
the fact that σ(.) and its derivative are bounded by constants for RBF,
sigmoid, and tanh.

The extension of these ideas to nets with greater than three layers is not
difficult, and leads to composite function terms in the Taylor series (giving
rise to backpropagation filtered error terms for the multilayer net case– See
Theorem4.6.

4.3 Controller Structure and Error System Dynamics

The NN controller structure will now be defined; it appears in Figure 2,
where q ≡ [qT q̇T ]T , , e ≡ [eT ėT ]T . It is important that the NN controller
structure is not ad hoc, but follows directly from a proper treatment of the
robot error dynamics and its properties; it is not open to question.

NN Controller
Define the NN functional estimate of (12) by

f̂(x) = ŴT σ(V̂ T x), (25)
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FIGURE 2. Neural net controller structure

with V̂ , Ŵ the current (estimated) values of the target NN weights V,W .
These estimates will be provided by the weight tuning algorithms. With
τo(t) defined in (14), select the control input

τ = τo − v = ŴT σ(V̂ T x) + Kvr − v, (26)

with v(t) a function to be detailed subsequently that provides robustness
in the face of higher-order terms in the Taylor series.

Closed-Loop Error Dynamics and Disturbance Bounds

Using this controller, the closed-loop filtered error dynamics become

Mṙ = −(Kv + Vm)r + WT σ(V T x) − ŴT σ(V̂ T x) + (ε + τd) + v.

Adding and subtracting WT σ̂ yields
Mṙ = −(Kv + Vm)r + W̃T σ̂ + WT σ̃ + (ε + τd) + v. (27)

with σ̂ and σ̃ defined in (22).Adding and subtracting now ŴT σ̃ yields

Mṙ = −(Kv + Vm)r + W̃T σ̂ + ŴT σ̃ + W̃T σ̃ + (ε + τd) + v. (28)

A key step is the use now of the Taylor series approximation (24) for σ̃,
according to which the closed-loop error system is

Mṙ = −(Kv + Vm)r + W̃T σ̂ + ŴT σ̂′Ṽ T x + w1 + v (29)
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where the disturbance terms are

w1(t) = W̃T σ̂′Ṽ T x + WT O(Ṽ T x)2 + (ε + τd). (30)

Unfortunately, using this error system does not yield a compact set outside
which a certain Lyapunov function derivative is negative; this makes the
upcoming stability proof extremely difficult. Therefore, write finally the
error system

Mṙ = −(Kv + Vm)r + W̃T (σ̂ − σ̂′V̂ T x) + ŴT σ̂′Ṽ T x + w + v

≡ −(Kv + Vm)r + ζ1. (31)

where the disturbance terms are
w(t) = W̃T σ̂′V T x + WT O(Ṽ T x)2 + (ε + τd). (32)

It is important to note that the NN reconstruction error ε(x), the robot
disturbances τd, and the higher-order terms in the Taylor series expansion
of f(x) all have exactly the same influence as disturbances in the error sys-
tem. The next key bound is required. Its importance is in allowing one to
bound the unknown disturbance w(t) at each time by a known computable
function; it follows from Fact 5 and some standard norm inequalities.

Fact 6
The disturbance term (32) is bounded according to

‖w(t)‖ ≤ (εN + bd + c3ZM ) + c6ZM‖Z̃‖F + c7ZM‖Z̃‖F r
or

w(t) ≤ C0 + C1‖Z̃‖F + C2‖Z̃‖F ‖r‖ (33)

with Ci known positive constants.

4.4 NN Weight Updates for Guaranteed Tracking
Performance

We give here a NN weight tuning algorithm that guarantees the perfor-
mance of the closed-loop system. To confront the stability and tracking
performance of the closed-loop NN robot arm controller we require: (1)
the modification of the delta rule weight tuning algorithm, and (2) the ad-
dition of a robustifying term v(t). The problem in the closed-loop control
case is that, though it is not difficult to conclude that the error r(t) is
bounded, it is very hard without these modifications to show that the NN
weights are bounded in general. Boundedness of the weights is needed to
verify that the control input τ(t) remains bounded.

The next main theorem relies on an extension to Lyapunov theory. The
disturbance τd, the NN reconstruction error ε , and the nonlinearity of f(x)
make it impossible to show that the Lyapunov derivative L̇ is nonpositive
for all r(t) and weight values. In fact, it is only possible to show that L̇ is
negative outside a compact set in the state space. This, however, allows one
to conclude boundedness of the tracking error and the neural net weights.
In fact, explicit bounds are discovered during the proof.

www.4electron.com



7. Neural Network Control of Robot Arms 169

Theorem 4.6 Let the desired trajectory be bounded by (19). Take the
control input for the robot (8) as (26) with robustifying term

v(t) = −KZ(‖Ẑ‖F + ZM )r (34)

and gain
KZ > C2 (35)

with C2 the known constant in (33). Let NN weight tuning be provided by

˙̂
W = F σ̂rT − F σ̂′V̂ T xrT − κF‖r‖Ŵ (36)
˙̂
V = Gx(σ̂′T Ŵ r)T − κG‖r‖V̂ (37)

with any constant matrices F = FT > 0, G = GT > 0, and scalar design
parameter κ > 0 . Then, for large enough control gain Kv, the filtered
tracking error r(t) and NN weight estimates V̂ , Ŵ are UUB, with practical
bounds given specifically by the right-hand sides of (39) and (40). Moreover,
the tracking error may be kept as small as desired by increasing the gains
Kv in (26).

Proof: Let the approximation property (3) hold for f(x) in (12) with a
given accuracy εN for all x in the compact set Ux ≡ {x|‖x‖ ≤ bx} with
bx > c1Qd in (20). Define Ur = {r|‖r‖ ≤ (bx − c1Qd)/c2}. Let r(0) ∈ Ur.
Then the approximation property holds.

Define the Lyapunov function candidate

L = rT Mr + tr(W̃T F−1W̃ ) + tr(Ṽ T G−1Ṽ ). (38)

Differentiating yields

L̇ =
1
2
rT Mṙ + rT Ṁr + tr(W̃T F−1 ˙̃W ) + tr(Ṽ T G−1 ˙̃V ).

Substituting now from the error system (31) yields

L̇ = −rT Kvr +
1
2
rT (Ṁ − 2Vm)r + trW̃T (F−1 ˙̃W + σ̂rT − σ̂′V̂ T xrT )

+trṼ T (G−1 ˙̃V + xrT ŴT σ̂′) + rT (w + v).

The tuning rules give

L̇ = −rT Kvr + κ‖r‖trW̃T (W − W̃ ) + κ‖r‖trṼ T (V − Ṽ ) + rT (w + v)

= −rT Kvr + κ‖r‖trZ̃T (Z − Z̃) + rT (w + v).

Since

trZ̃T (Z − Z̃) =< Z̃, Z >F −‖Z̃‖2
F ≤ ‖Z̃‖F ‖Z‖F − ‖Z̃‖2

F ,
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there results

L̇ ≤ −Kvmin‖r‖2 + κ‖r‖‖Z̃‖F (ZM − ‖Z̃‖F ) − KZ(‖Ẑ‖F + ZM )‖r‖2

+‖r‖ ‖w‖
≤ −Kvmin‖r‖2 + κ‖r‖‖Z̃‖F (ZM − ‖Z̃‖F ) − KZ(‖Ẑ‖F + ZM )‖r‖2

+‖r‖[C0 + C1‖Z̃‖F + C2‖Z̃‖F ‖r‖]
≤ −‖r‖[Kvmin‖r‖ + κ‖Z̃‖F (‖Z̃‖F − ZM ) − C0 − C1‖Z̃‖F ],

where Kvmin is the minimum singular value of Kv and the last inequality
holds due to (35). Thus, L̇ is negative as long as the term in braces is
positive. We show next that this occurs outside a compact set in the
(‖r‖, ‖Z̃‖F ) plane.

Defining C3 = ZM + C1/κ and completing the square yields

Kvmin‖r‖ + κ‖Z̃‖F (‖Z̃‖F − C3) − C0

= κ(‖Z̃‖F − C3/2)2 − κC2
3/4 + Kvmin‖r‖ − C0,

which is guaranteed positive as long as either

‖r‖ >
κC2

3/4 + C0

Kvmin
≡ br (39)

or
‖Z̃‖F > C3/2 +

√
C2

3/4 + C0/κ ≡ bZ , (40)

where
C3 = ZM + C1/κ. (41)

Thus, L̇ is negative outside a compact set. The form of the right-hand
side of (39) shows that the control gain Kv can be selected large enough
so that br < (bx − c1Qd)/c2. Then, any trajectory r(t) beginning in Ur

evolves completely within Ur. According to a standard Lyapunov theorem
extension [LAD93, NA87], this demonstrates the UUB of both ‖r‖ and
‖Z̃‖F .

The complete NN controller is given in Table 1 and illustrated in Figure 2.
It is important to note that this is a novel control structure with an inner
NN loop and an outer robust tracking loop that has important ramifications
as delineated below. Some discussion of these results is now given.

Bounded Errors and Controls
The dynamical behavior induced by this controller is as follows. Due to
the presence of the disturbance terms, it is not possible to use Lyapunov’s
theorem directly as it cannot be demonstrated that L̇ is always negative;
instead an extension to Lyapunov’s theorem is used (cf. [NA87] and The-
orem 1.5-6 in [LAD93]). In this extension, it is shown that L̇ is negative
if either ‖r‖ or ‖Z̃‖ are above some specific bounds. Therefore, if either
norm increases too much, L decreases so that both norms decrease as well.
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If both norms are small, nothing may be said about L̇ except that it is
probably positive, so that L increases. This has the effect of making the
boundary of a compact set an attractive region for the closed-loop system.
Thus the errors are guaranteed bounded, but in all probability nonzero.

In applications, therefore, the right-hand sides of (39) and (40) may be
taken as practical bounds on the norms of the error r(t) and the weight
errors Z̃(t). Since the target weights Z are bounded, it follows that the
NN weights Ŵ (t) and V̂ (t) provided by the tuning algorithms are bounded;
hence the control input is bounded.

In fact, it is important to note that according to (39), arbitrarily small
tracking error bounds may be achieved by selecting large control gains Kv.
(If Kv is taken as a diagonal matrix, Kvmin is simply the smallest gain
element.) On the other hand, (40) reveals that the NN weight errors are
fundamentally bounded by ZM (through C3). The parameter κ offers a
design tradeoff between the relative eventual magnitudes of ‖r‖ and ‖Z̃‖.

An alternative to guaranteeing the boundedness of the NN weights for
the 2-layer case V = I (i.e. linear in the parameters) is presented in
[PI91, RC95] where a projection algorithm is used for tuning Ŵ .

Initializing the NN Weights and Real-Time Learning

Note that the problem of net weight initialization occurring in other ap-
proaches in the literature does not arise. In fact, selecting the initial weights
Ŵ (0), V̂ (0) as zero takes the NN out of the circuit and leaves only the outer
tracking loop in Figure 2. It is well known that the PD term Kvr in (44)
can then stabilize the robot arm on an interim basis until the NN begins
to learn. A formal proof reveals that Kv should be large enough and the
initial filtered error r(0) small enough. The exact value of Kv needed for
initial stabilization is given in [DQLD90], though for practical purposes it
is only necessary to select Kv large.

This means that there is no off-line learning phase for this NN controller.
Results in a simulation example soon to be presented show that convergence
of the tracking error occurs in real time in a fraction of a second.

Extension of Delta Rule with Error Backpropagation

The first terms of (46), (47) are nothing but continuous-time versions of
the standard backpropagation algorithm. In fact, the first terms are

˙̂
W = F σ̂rT (42)

V̂ = Gx(σ̂′T Ŵ r)T (43)

In the scalar sigmoid case, for instance

σ′(z) = σ(z)(1 − σ(z)).

so that
σ̂′T Ŵ r = diag{σ(V̂ T x)}[I − diag{σ(V̂ T x)}]Ŵ r,

which is the filtered error weighted by the current estimate Ŵ and mul-
tiplied by the usual product involving the hidden-layer outputs.

www.4electron.com



172 F.L. Lewis, S. Jagannathan, A. Yeşildirek
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FIGURE 3. 2-link planar elbow arm

The last terms in (46), (47) correspond to the e-modification [NA87]
in standard use in adaptive control to guarantee bounded parameter esti-
mates. They are needed due to the presence of the NN reconstruction error
ε and the robot unmodeled disturbances τd(t).

The second term in (46) is a novel one and bears discussion. The standard
backprop terms can be thought of as backward propagating signals in a
nonlinear ’backprop’ network [NP90] that contains multipliers. The second
term in (46) corresponds to a forward traveling wave in the backprop net
that provides a second-order correction to the weight tuning for Ŵ . This
term is needed to bound certain of the higher-order terms in the Taylor
series expansion of σ̃, and arises from the extension of adaptive control
from the linear-in-the-parameters case to the nonlinear case.

Design Freedom in NN Complexity

Note that there is design freedom in the degree of complexity (e.g. size) of
the NN. For a more complex NN (e.g. more hidden units), the bounding
constants will decrease, resulting in smaller tracking

errors. On the other hand, a simplified NN with fewer hidden units will
result in larger error bounds; this degradation can be compensated for,
as long as bound εN is known, by selecting a larger value for Kz in the
robustifying signal v(t), or for Λ in (49).

Example 4.1: NN Control of 2-Link Robot Arm

A planar 2-link arm used extensively in the literature for illustration pur-
poses appears in Figure 3. The dynamics are given in, for instance, [LAD93];
no friction term was used in this example. The joint variable is q = [q1 q2]T .
We should like to illustrate the NN control scheme derived herein, which
will require no knowledge of the dynamics, not even their structure which
is needed for adaptive control.
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TABLE 1. Neural Net Robot Controller

NN Controller:
τ = ŴT σ(V̂ T x) + Kvr − v, (44)

Robustifying Term:

v(t) = −KZ(‖Ẑ‖F + ZM )r (45)

NN weight tuning:

˙̂
W = F σ̂rT − F σ̂′V̂ T xrT − κF‖r‖Ŵ (46)

˙̂
V = Gx(σ̂′T Ŵ r)T − κG‖r‖V̂ (47)

Signals:

e = q(t) − qd(t), tracking error (48)

r(t) = ė(t) + Λe(t),filtered tracking error (49)

with a Λ a symmetric positive definite matrix

x ≡ [eT ėT qT
d q̇T

d q̈T
d ]T , NN Input signal vector (50)

Design Parameters:
GainsKv, KZ symmetric and positive definite.
ZM a bound on the unknown target weight norms.
Tuning matrices F, G symmetric and positive definite.
Scalar κ > 0.
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Adaptive Controller: Baseline Design

For comparison, a standard adaptive controller is given by [SL88]

τ = Y ψ̂ + Kvr (51)
˙̂
ψ = FY T r (52)

with F = FT > 0 a design parameter matrix and Y (e, ė, qd, q̇d, q̈d) the
regression matrix, a fairly complicated matrix of robot functions that must
be explicitly derived from the dynamics for each arm. The is the vector of
unknown parameters, in this case simply the link masses m1,m2.

We took the arm parameters as �1 = �2 = 1 meter, m1 = 0.8 kg, m2 =
2.3 kg, and selected q1d(t) = sin(t), q2d(t) = cos(t), Kv = diag{20, 20},
F = diag{10, 10}, Λ = diag{5, 5}. The response with this controller when
q(0) = 0, q̇(0) = 0, m̂1(0) = 0, m̂2(0) = 0 is shown in Figure 4. Note the
good behavior, which obtains since there are only two unknown parameters,
so that the single mode (e.g. 2 poles) of qd(t) guarantees persistence of
excitation [GS84].

The (1,1) entry of the robot function matrix Y is �21(q̈d1 + λ1ė1) +
�1g cos(q1) (with Λ = diag{λ1, λ2}). To demonstrate the deleterious effects
of unmodeled dynamics in adaptive control, the term �1g cos(q1) was now
dropped in the controller. The result appears in Figure 5 and is unsatisfac-
tory. This demonstrates conclusively the fact that the adaptive controller
cannot deal with unmodeled dynamics. It is now emphasized that in the
NN controller all the dynamics are unmodeled.

NN Controller
Some preprocessing of signals yields a more advantageous choice for x(t)
than (12), one that already contains some of the nonlinearities inherent
to robot arm dynamics. Since the only occurrences of the revolute joint
variables are as sines and cosines, the vector x can be taken for a general
n-link revolute robot arm as (componentwise)

x = [ ζT
1 ζT

2 cos(q)T sin(q)T q̇T sgn(q̇)T ]T (53)

where ζ1 = q̈d + ė, ζ2 = q̇d + Λe and the signum function is needed in the
friction terms (not used in this example). The NN controller appears in
Figure 2.

The sigmoid activation functions were used, and 10 hidden-layer neurons.
The values for qd(t), Λ, F , Kv were the same as before, and we selected
G = diag{10, 10}. The response of the controller ( with the weight tuning
in Theorem 4.6 appears in Figure 6, where we took κ = 0.1. The compar-
ison with the performance of the standard adaptive controller in Figure 4
is impressive, even though the dynamics of the arm were not required to
implement the NN controller. That is, no regression matrix was needed.

No initial NN training or learning phase was needed. The NN weights
were simply initialized at zero in this figure.

To study the contribution of the NN, Figure 7 shows the response with
the controller τ = Kvr, that is, with no neural net. Standard results in the
robotics literature indicate that such a PD controller should give bounded
errors ifKv is large enough. This is observed in the figure. However, it is
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very clear that the addition of the NN makes a very significant improvement
in the tracking performance.

5 Passivity and Structure Properties of the NN

A major advantage of the NN controller is that it has some important
passivity properties that result in robust closed-loop performance, as well
as some structure properties that make it easier to design and implement.

5.1 Neural Network Passivity and Robustness

The closed-loop error system appears in Figure 8, with the signal ζ2 defined
as

ζ2(t) = −W̃T (σ̂ − σ̂′V̂ T x) (54)

Note the role of the NN, which is decomposed into two effective blocks
appearing in a typical feedback configuration, in contrast to the role of the
NN in the controller in Figure 2.

Passivity is important in a closed-loop system as it guarantees the bound-
edness of signals, and hence suitable performance, even in the presence of
additional unforeseen disturbances as long as they are bounded. In general
a NN cannot be guaranteed to be passive. The next results show, however,
that the weight tuning algorithm given here does in fact guarantee desirable
passivity properties of the NN, and hence of the closed-loop system.

Theorem 5.6 The weight tuning algorithms (46), (47) make the map from
r(t) to −W̃T (σ̂−σ̂′V̂ T x), and the map from r(t) to −ŴT σ̂′Ṽ T x, both state
strict passive (SSP) maps.

Proof:
The dynamics relative to W̃ , Ṽ are given by

˙̃W = −Fσ̂rT + F σ̂′V̂ T xrT + κF‖r‖Ŵ (55)
˙̃V = −Gx(σ̂′T Ŵ r)T + κGrV̂ . (56)

1. Selecting the nonnegative function

L =
1
2
tr(W̃T F−1W̃ )

and evaluating L̇ yields

L̇ = tr(W̃T F−1W̃ ) = tr{[−W̃T (σ̂ − σ̂′V̂ T x)]rT + κ‖r‖W̃T Ŵ}
Since

tr(W̃T (W − W̃ )) =< W̃ ,W >F −‖W̃‖2
F ≤ ‖W̃‖F ‖‖W‖F − ‖W̃‖2

F ,

there results
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L̇ ≤ rT [−W̃T (σ̂ − σ̂′V̂ T x)] − κ‖r‖(‖W̃‖2
F − ‖W̃‖F ‖‖W‖F )

≤ rT [−W̃T (σ̂ − σ̂′V̂ T x)] − κ‖r‖(‖W̃‖2
F − WM‖W̃‖F ) (57)

which is in power form with the last function quadratic in W̃F .
2. Selecting the nonnegative function

L =
1
2
tr(Ṽ T G−1Ṽ )

and evaluating L̇ yields

L̇ = tr(Ṽ T G−1 ˙̃V ) (58)

= rT (−ŴT σ̂′Ṽ T x) − κ‖r‖(‖Ṽ ‖2
F− < Ṽ , V >F ) (59)

≤ rT (−ŴT σ̂′Ṽ T x) − κ‖r‖(‖Ṽ ‖2
F − VM ṼF ) (60)

which is in power form with the last function quadratic in ‖ṼF ‖.
Thus, the robot error system in Figure 8 is state strict passive (SSP) and

the weight error blocks are SSP; this guarantees the SSP of the closed-loop
system (cf. [SL91]). Using the passivity theorem one may now conclude
that the input/output signals of each block are bounded as long as the
external inputs are bounded. Now, the state-strictness of the passivity
guarantees that all signals internal to the blocks are bounded as well. This
means specifically that the tracking error r(t) and the weight estimates
Ŵ (t), V̂ (t) are bounded (since W̃ ,W, Ṽ , V are all bounded).

We define a NN as robust if, in the error formulation, it guarantees the
SSP of the weight tuning subsystems. Then, the weights are bounded if
the power into the system is bounded. Note that: (1) SSP of the open-loop
plant error system is needed in addition for tracking stability, and (2) the
NN passivity properties are dependent on the weight tuning algorithm used.
It can be shown, for instance, that using only the first (backprop) terms in
weight tuning as in (42), (43), the weight tuning blocks are only passive, so
that no bounds on the weights can be concluded without extra (persistence
of excitation) conditions.

5.2 Partitioned Neural Nets and Preprocessing of Inputs

A major advantage of the NN approach is that it allows one to partition the
controller in terms of partitioned NN or neural subnets. This (1) simplifies
the design, (2) gives added controller structure, and (3) makes for faster
weight tuning algorithms.

Partitioned Neural Nets
In [OSF+91] a NN scheme was presented for robot arms that used separate
NNs for the inertia and Coriolis terms in (12). We now give a rigorous
approach to this simplified NN structure.
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The nonlinear robot function (12) is

f(x) = M(q)ζ1(t) + Vm(q, q̇)ζ2(t) + G(q) + F (q̇), (61)

where for controls purposes, ζ1(t) = q̈d + Λė, ζ2(t) = q̇d + Λe.
Let q ∈ IRn. Taking the four terms in f(x) one at a time, use separate

NN to reconstruct each one so that

M(q)ζ1(t) = WT
MσM (V T

MxM )

Vm(q, q̇)ζ2(t) = WT
V σV (V T

V xV ) (62)

G(q) = WT
G σG(V T

G xG)

F (q̇) = WT
F σF (V T

F xF ). (63)
(64)

Now, write f(x) as

f(x) = [WT
M WT

V WT
G WT

F ]




σM

σV

σG

σF


 (65)

so that σ(.) is a diagonal function composed of the activation function
vectors σM , σV , σG, σF of the separate partitioned NNs. Formulation 65
reveals that the theory developed herein for stability analysis applies when
individual NNs are designed for each of the terms in f(x).

This procedure results in four neural subnets, which we term a structured
NN, as shown in Figure 9.. It is direct to show that the individual par-
titioned NNs can be separately tuned, making for a faster weight update
procedure. That is, each of the NN in (63) can be tuned individually using
the rules in Theorem 4.6.

Preprocessing of Neural Net Inputs

The selection of a suitable x(t) for computation remains to be addressed;
some preprocessing of signals, as used in Example 4.1, yields a more advan-
tageous choice than (50) since it already contains some of the nonlineari-
ties inherent to robot arm dynamics. Let an n-link robot have nr revolute
joints with joint variables qr, and np prismatic joints with joint variables
qp. Define n = nr + np. Since the only occurrences of the revolute joint
variables are as sines and cosines, transform q = [qT

r qT
p ]T by preprocessing

to [cos(qr)T sin(qr)T qT
p ]T to be used as arguments for the basis functions.

Then the vector x can be taken as

x = [ζT
1 ζT

2 cos(qr)T sin(qr)T qT
p q̇T sgn(q̇)T ]T ,

(where the signum function is needed in the friction terms).
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6 Neural Networks for Control of Nonlinear
Systems

In this section, for a class of continuous-time systems, we will give a design
procedure for multilayer NN controller. That is, a stable NN adaptation
rules and feedback structures will be derived so that systems of interest
perform a desired behavior while all the generated signals remain bounded.

6.1 The Class of Nonlinear Systems

When the input/output representation of a plant is in “affine form,” the
problem of control is significantly simplified. Consequently, there has been
considerable interest in studying those systems. Consider a single-input
single-output (SISO) system having a state space representation in the
Brunovsky canonical form

ẋ1 = x2

ẋ2 = x3

...
ẋn = f(x) + u + d
y = x1

(66)

with a state vector x = [x1, x2, . . . , xn]T , bounded unknown disturbances
d(t), which is bounded by a known constant bd, and an unknown smooth
function f : IRn → IR.
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6.2 Tracking Problem

Control action will be used for output tracking, which can be described as,
given a desired output, yd(t), find a bounded control action, u(t), so that
the plant follows the desired trajectory with an acceptable accuracy (i.e.
bounded-error tracking), while all the states remain bounded.

For this purpose we will make some mild assumptions which are widely
used. First define a vector

xd(t) =




yd

ẏd

...
y
(n−1)
d


 .

The desired trajectory, xd(t) is assumed to be continuous, available for
measurement and have a bounded norm,

‖xd(t)‖ ≤ Q, (67)

with Q a known bound.

6.3 Error Dynamics

Define a state error vector as

e = x − xd (68)

and a filtered error as
r = ΛT e (69)

where Λ = [Λ̄ 1]T with Λ̄ = [λ1, λ2, · · · , λn−1] is an appropriately chosen
coefficient vector so that the state error vector e(t) exponentially goes to 0
as the filtered error r(t) tends to 0, i.e. sn−1 +λn−1s

n−2 + · · ·+λ2s+λ1 is
Hurwitz. Then, the time derivative of the filtered error can be written as

ṙ = f(x) + u + Yd + d (70)

with

Yd = −x
(n)
d +

n−1∑
i=1

λiei+1.

Next we will construct a NN controller to regulate the error system
dynamics (70) which guarantees that the desired tracking performance is
achieved.

6.4 Neural Network Controller

If we knew the exact form of the nonlinear function f(x), then the control
action

u = −f(x) − Kvr − Yd
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would bring the r(t) to zero exponentially for any Kv > 0 when there was
no disturbance d(t). Since, in general, f(x) is not exactly known to us we
will choose a control signal as

uc = −f̂(x) − Kvr − Yd + v (71)

where the estimate of f(x) is f̂(x) and the auxiliary robustifying term v(t)
will be revealed later that provides robustness. Hence, the filtered error
dynamics (70) becomes

ṙ = −Kvr + f̃ + d + v (72)

As shown in Theorem 2.1, multilayer neural networks which have linear
activation in the input and output layers and nonlinear activation function
in the hidden layer can approximate any continuous function uniformly on
a compact set arbitrarily well provided that enough neurons are used. Let
f(x) be a continuous function, then there exists best set of weights W and
V such that the equation

f(x) = WT σ(V T x) + ε (73)

holds for any ε > 0. Therefore, f(x) may be constructed by a multilayer
neural network as

f̂(x) = ŴT σ(V̂ T x), (74)

Using the steps similar to Section 4.3, we can write the functional approx-
imation error by using Taylor series expansion of σ(V T x) as

f̃(x) = W̃T (σ̂ − σ̂′V̂ T x) + ŴT σ̂′Ṽ T x + w (75)

with, (cf. (33)),

|w(t)| ≤ C0 + C1‖Z̃‖F + C2|r|‖Z̃‖F (76)

where Cis are some computable constants and the generalized weight ma-
trix Z is defined in (18). In the sequel, ‖ · ‖ will indicate Frobenius norm,
unless otherwise mentioned. Also recall that the Frobenius norm of a vector
is equivalent to its 2-norm, i.e. these norms are compatible.

6.5 Stable NN Control System

In order to give theoretical justification for the proposed controller struc-
ture which is shown in Fig. 10, we will choose NN weight update rules
as

˙̂
W = M(σ̂ − σ̂′V̂ T x)r − κ|r|MŴ
˙̂
V = NrxŴT σ̂′ − κ|r|NV̂.

(77)

Now, we can reveal the stability properties of the system (66) by the fol-
lowing theorem.
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FIGURE 10. Neural network controller.

Theorem 6.6 Assume that the system has a representation in the reach-
ability form as in (66) and the control input is given by (71) with the
auxiliary control signal

v = −Kz(‖Ẑ‖ + Zm) (78)

with Kz ≥ C2 > 0. Let the neural net weight update law be provided by
(77). Then the filtered tracking error r(t), neural net weight error Z̃ are
UUB with specific bounds giving by (82).

Proof: Since f(x) is continuous in x, then the NN approximation property
holds in any compact subset of IRn. Given xd(t) ∈ Ud define a bound bx

so that U = {x | ‖x‖ ≤ bx} and Ud ⊂ U . Let |r(0)| ≤ br with br defined in
(82).

Substitution of the functional approximation error as shown in (75) into
the error system dynamics for f̃ yields

ṙ = −Kvr + W̃T (σ̂ − σ̂′V̂ T x) + ŴT σ̂′Ṽ T x + d + w. (79)

Let the Lyapunov function candidate be

L =
1
2
r2 +

1
2
tr
{

W̃T M−1W̃
}

+
1
2
tr
{

Ṽ T N−1Ṽ
}

(80)

Now substitute (79) into the time derivative of (80) and perform a simple
manipulation, (i.e. using the equality

xT y = tr
{
xT y

}
= tr

{
yxT

}
,
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one can place weight matrices inside a trace operator) to obtain

L̇ = −Kvr2 + tr
{

W̃T (σ̂ − σ̂′V̂ T x)r + M−1 ˙̃W
}

+tr
{

Ṽ T (xrŴT σ̂′ + N−1 ˙̃V )
}

+ r(d + w).

With the update rules given in (77) one has

L̇ = −Kvr2 + r(d + w + v) + κ|r|tr{Z̃T Ẑ}
From the inequality

tr
{

Z̃T Ẑ
}

=< Z̃T , Z > −tr
{

Z̃T Z̃
}
≤ ‖Z̃‖(Zm − ‖Z̃‖),

it follows that

L̇ ≤ − Kvr2 + r(d + w + v) + κ|r|‖Z̃‖(Zm − ‖Z̃‖).
Substitute the upper bound of w according to (76), bd for disturbances and
v from (78) to yield

L̇ ≤ −Kvr2 − Kz(‖Ẑ‖ + Zm)r2 + κ|r|‖Z̃‖(Zm − ‖Z̃‖)
+
[
C2‖Z̃‖|r| + C1‖Z̃‖ + (bd + C0)

]
|r|

Picking Kz > C2 and completing the squares yields

L̇ ≤ −|r|
{

Kv|r| + κ(‖Z̃‖ − C3/2)2 − D1

}
(81)

where
D1 = bd + C0 +

κ

4
C2

3 ,

and
C3 = Z

m
+ C1/κ.

Observe that the terms in braces in (81) defines a compact set around
the origin of the error space (|r|, ‖Z̃‖) outside of which L̇ ≤ 0. We can,
therefore, deduce from (81) that, if either |r| > br or ‖Z̃‖ > bf then L̇ ≤ 0
where

br =
D1

Kv
, bf =

C3

2
+

√
D1

κ
. (82)

Note that br can be kept small by adjusting the design parameter Kv

which ensures that x(t) stays in the compact set U . Thus, NN approxima-
tion property remains valid. According to a standard Lyapunov theorem
extension, (cf. Theorem 4.6), this demonstrates the UUB of both |r| and
‖Z̃‖. This concludes the proof.

The NN functional construction error ε, the bounded disturbances, the
norm of the desired performance and the neural network size are all con-
tained in the constants Cj , and increase the bounds on error signals. Nev-
ertheless, the bound on the tracking error may be kept arbitrarily small by
increasing the gain Kv. Therefore, for the class of systems, stability of the
closed-loop system is shown in the sense of Lyapunov without making any
assumptions on the initial weight values. We may simply select Ẑ(0) = 0.
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FIGURE 11. State trajectory of the van der Pol’s system.

Example 6.1

Let us illustrate the stable NN controller design on a Van der Pol’s system

ẋ1 = x2

ẋ2 = (1 − x2
1)x2 − x1 + u

(83)

which is in the Brunovsky canonical form. Note that (83) has an unstable
equilibrium point at the origin x = (0, 0) and a stable limit cycle. A typical
trajectory for this system is illustrated in Figure 11.

The neural net which is used for estimation of f(x1, x2) = (1−x2
1)x2−x1

consists of 10 neurons. Design parameters are set to Kv = 20, Λ = 5,
Kz = 10, Zm = 1, M = N = 20, and κ = 1. Initial conditions are Ẑ(0) = 0
and x1 = x2 = 1. The desired trajectory is defined as yd(t) = sin t.
Actual and desired outputs are shown in Figures 12 and 13. Recall that
the dynamic model (83) has not been used to implement the NN-based
control of Theorem 6.6. The control input is illustrated in Figure 14.

7 Neural Network Control with Discrete-Time
Tuning

In Section 4 we designed a robot arm Neural Net Controller and in Section
6 a NN controller for a fairly general class of nonlinear systems. We gave
algorithms for tuning the NN weights in continuous-time; the algorithms
in those sections are virtually identical. Hover, it is often more convenient
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to implement control systems in discrete-time. Therefore, in this section
we present discrete-time NN weight tuning algorithms for digital control
purposes. This will also provide a connection to the usual form of tuning
algorithms based on the delta rule as used by the NN community.
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The notation is similar to that in previous sections, but variables are
now functions of the time index k. Though the development follows that
in section 6, the derivation and proofs for the control algorithm are more
complex, as is usual for discrete-time analysis.

The approach in this section is unusual even from the point of view
of linear adaptive control for discrete-time systems. This is because for
adaptive control of discrete-time systems, it is usual to design a controller
that requires an estimate of some unknown function. Then one makes two
assumptions: “linearity-in-the parameters” and “certainty equivalence”.
According to the former, a parameter vector is extracted from the func-
tional estimate which is tuned using a derived algorithm. According to the
latter, one uses the resulting estimate for the function in the control law.
A third assumption of ”persistence of excitation” is needed to show the
boundedness of the parameter estimation errors.

Unfortunately, a great deal of extra analysis is needed to show that both
the tracking error and the parameter estimation error are bounded (e.g.
the so called “averaging methods”). In contrast, our approach selects a
Lyapunov function containing both the tracking error and the functional
estimation error, so that closed-loop performance is guaranteed from the
start. It is a key factor that our work requires none of the usual assump-
tions of linearity-in-the-parameters, certainty equivalence, or persistence of
excitation. As such, this NN controller may be considered as a nonlinear
adaptive controller for discrete-time systems.

7.1 A Class of Discrete-Time Nonlinear Systems

Consider an mn-th order multi-input and multi-output discrete-time non-
linear system, to be controlled, given in the form
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TABLE 2. Neural Net Controller

NN Controller:
u = −ŴT σ(V̂ T x) − Kvr + v (84)

Robustifying Term:

v = −Kz(‖Ẑ‖ + Zm) (85)

NN Weight Tuning:

˙̂
W = M(σ̂ − σ̂′V̂ T x)r − κ|r|MŴ
˙̂
V = NrxŴT σ̂′ − κ|r|NV̂.

(86)

Signals:
e(t) = x(t) − xd(t), Tracking error (87)

r(t) = ΛT e(t), Filtered tracking error (88)

x(t) = [x1, x2, · · · , xn]T , NN input signal vector (89)

Design Parameters:
Gains Kv, Kz positive
Λ a coefficient vector of a Hurwitz function.
Zm a bound on the unknown target weight norms.
Tuning matrices M , N symmetric and positive definite.
Scalar κ > 0.

x1(k + 1) = xk

...
xn−1(k + 1) = xn(k)

xn(k + 1) = f(x(k)) + u(k) + d(k) (90)

with state x(k) = [x1(k) . . . xn(k)]T with xi(k) ∈ IRm; i = 1, . . . , n, control
u(k) ∈ IRm, d(k) ∈ IRm an unknown disturbance vector acting on the
system at time instant k with a known constant upper bound, ‖d‖ ≤ dM ,
and f(x(k)) an unknown smooth function.

7.2 Tracking Problem

Given a desired trajectory and its delayed values, define the tracking error
as

en(k) = xn(k) − xnd(k),

and the filtered tracking error, r(k) ∈ IRm,

r(k) = en(k) + λ1en−1(k) + . . . + λn−1e1(k) (91)
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where en−1(k), . . . , e1(k) are the delayed values of the error , and λ1 . . . λn−1

are constant matrices selected so that det(zn−1 + λzn−2 + . . . + λn−1) is
stable. Equation (91) can be further expressed as

r(k + 1) = en(k + 1) + λ1en−1(k + 1) + . . . + λn−1e1(k + 1). (92)

Using (90) in (92), the dynamics of the MIMO system can be written in
terms of the filtered tracking error as

r(k+1) = f(x(k))−xnd(k+1)+λ1en(k)+. . .+λn−1e2(k)+u(k)+d(k). (93)

Define the control input u(k) as

u(k) = kvr(k) − f̂(x(k)) + xnd(k + 1) − λ1en(k) − . . . − λn−1e2(k), (94)

with the diagonal gain matrix kv > 0, and f̂(x(k)) an estimate of f(x(k)).
Then, the closed-loop error system becomes

r(k + 1) = kvr(k) + f̃(x(k)) + d(k), (95)

where the functional estimation error is given by

f̃(x(k)) = f(x(k)) − f̂(x(k)).

This is an error system wherein the filtered tracking error is driven by the
functional estimation error.

In the remainder of this paper, equation (95) is used to focus on selecting
NN tuning algorithms that guarantee the stability of the filtered tracking
error r(k). Then, since (91), with the input considered as r(k) and the out-
put as e(k) describes a stable system, standard techniques [SB89] guarantee
that e(k) exhibits stable behavior.

7.3 Neural Net Controller Design

Approaches such as σ-modification [PS91], or ε-modification [Nar91] are
available for the robust adaptive control of continuous systems wherein a
persistency of excitation condition is not needed. However, modification of
the standard weight tuning mechanisms in discrete-time to avoid a PE like
condition is, to our knowledge, yet to be investigated. In this section an
approach similar to σ or e-modification is derived for discrete-time adaptive
control of dynamical systems. Then, it is applied to nonlinear NN tuning.

Assume that there exist some constant ideal weights W and V for a 3-
layer NN (Figure 1) so that the nonlinear function in (90)can be written
as

f(x(k)) = WT φ(V tφ(x(k)) + ε,

where the NN reconstruction error ε(k) satisfies ‖ε(k)‖ ≤ εN , with the
bounding constant εN known. It is needed to know only the existence of
such ideal weights; their actual values are not required. For notational
convenience define the matrix of all the ideal weights as

Z =
[

W 0
0 V

]
,

The bounding assumption provided in Section 4.1 is needed on the ideal
weights with the bound on ‖Z‖ denoted in this section as ZM .
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Structure of the NN Controller and Error System Dynamics

Now suppose the estimate for f(x(k)) is provided by a NN so that the NN
functional estimate is

f̂(x(k)) = ŴT (k)φ(v̂T (k)φ(x(k)),

with Ŵ and V̂ the current values of the weights given by the tuning
algorithms. The vector of input layer activation functions is given by
φ̂1(k) ≡ φ1(k) = φ(x(k)). Then the vector of activation functions of the
hidden layer with the actual weights at the instant k is denoted by

φ̂2(k) ≡ φ(V̂ T (k)φ(x(k)).

Fact 1 The usual activation functions, such as tanh, RBF, and sigmoids,
are bounded by known positive values so that

‖φ1(k)‖ ≤ φ1 max and ‖φ2(k)‖ ≤ φ2 max

The error in the weights or weight estimation errors are defined by

W̃ (k) = W − Ŵ (k), Ṽ (k) = V − V̂ (k), Z̃(k) = Ẑ(k),

where

Ẑ(k) =
[

Ŵ 0
0 V̂

]
(96)

and the hidden-layer output errors are defined as

φ̃2(k) = φ2(k) − φ̂2(k).

Now the control input (94) is

u(k) = xnd(k + 1 − ŴT (k)φ̂2(k) − λ1en(k) − . . . − λn−1e2(k) + kvr(k).

The closed-loop filtered error dynamics become

r(k + 1) = kvr(k) + ēi(k) + WT (k)φ̃2(k) + ε(k) + d(k), (97)

where the identification error is defined by

ēi(k) = W̃T (k)φ̂2(k).

The proposed NN controller structure is shown in Figure 15. The output of
the plant is processed through a series of delays in order to obtain the past
values of the output, and fed into the NN so that the nonlinear function
in (90) can be suitably approximated. Thus, the NN controller derived in
a straightforward manner using filtered error notion naturally provides a
dynamical NN control structure. Note that neither the input u(k) or its
past values are needed by the NN. The next step is to determine the weight
tuning updates so that the tracking performance of the closed-loop filtered
error dynamics is guaranteed.
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7.4 Weight Updates for Guaranteed Tracking Performance

A novel NN weight tuning paradigm that guarantees the stability of the
closed-loop system (97) is presented in this section. It is required to demon-
strate that the tracking error r(k) is suitably small and that the NN weights
Ŵ and V̂ remain bounded, for then the control u(k) is bounded. The up-
coming theorem shows a tuning algorithm that guarantees the performance
in this case of a multilayer NN.

The theorem relies on the extension to Lyapunov theory for dynami-
cal systems given as Theorem 1.5-6 in [LAD93]. The nonlinearity f(x),
the bounded disturbance d(k), and the NN reconstruction error ε(k) make
it impossible to show that the first difference for a Lyapunov function is
nonpositive for all values of r(k) and weight values. In fact, it is only
possible to show that the first difference is negative outside a compact set
in the state space, that is if either ‖r(k)‖ or ‖Z̃(k)‖ are above some spe-
cific bounds. Therefore, if either norm increases too much, the Lyapunov
function decreases so that both norms decrease as well. If both norms
are small, nothing may be said about the first difference of the Lyapunov
function except that it is probably positive, so that the Lyapunov function
increases. This has the effect of making the boundary of a compact set an
attractive region for the closed-loop system. This, however allows one to
conclude the boundedness of the output tracking error and the neural net
weights.

Theorem 7.6 Let the reference input r(k) be bounded and the NN func-
tional reconstruction error and the disturbance bounds, εN , dM , respec-
tively, be known constants. Let the weight tuning for the input and hidden
layers be provided as

V̂ (k+1) = V̂ (k)−α1φ̂1(k)[ŷ1(k)+B1kvr(k)]T −Γ‖I−αφ̂1(k)φ̂T
1 (k)‖V̂ T (k),

(98)
where ŷ1(k) = V̂ T (k)φ̂1(k), and B1 is a constant design parameter matrix.
Let the weight tuning for the output layer be given by

Ŵ (k + 1) = Ŵ (k)−α2φ̂2(k)rT (k + 1)−Γ‖I −α2φ̂2(k)φ̂T
2 (k)‖Ŵ (k). (99)

In both of these Γ > 0 is a design parameter. Then, the tracking error r(k)
and the NN weight estimates Ŵ and V̂ are uniformly ultimately bounded
provided the following conditions hold:

(1) α1φ
2
1 max < 2,

α2φ
2
2 max < 1, (100)

(2) 0 < Γ < 1, (101)

(3) kv max <
1√
σ̄

, (102)

where σ̄ is given by
σ̄ = β1 + κ2

1β2,

where κ1 is a bound on B1 so that ‖B1‖ ≤ κ1 and

β1 = 1 + α2φ
2
2 max +

[−α2φ
2
2 max + Γ(1 − α2φ

2
2 max)]

2

1 − α2φ2
2 max

, (103a)
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β2 = 1 + α1φ
2
1 max +

[α1φ
2
1 max + Γ(1 − α1φ

2
1 max]

2

2 − α1φ2
1 max

, (103b)

Proof: Select the Lyapunov function candidate

J = rT (k)r(k) +
1
α1

tr[Ṽ T (k)Ṽ (k)] +
1
α2

tr[W̃T (k)W̃ (k)] (104a)

whose first difference is given by

∆J = ∆J1 + ∆J2, (104b)

where
∆J1 = rT (k + 1)r(k + 1) − rT (k)r(k), (104c)

and

∆J2 =
1
α2

tr[W̃T (k + 1)W̃ (k + 1) − W̃T (k)W̃ (k)]

+
1
α1

tr[Ṽ T (k + 1)Ṽ (k + 1) − Ṽ T (k)Ṽ (k)]. (104d)

Using the tracking error dynamics (97), the term ∆J1 in (104c) is ob-
tained as

∆J1 =
−rT (k)[I − kT

v kv] + 2(kvr(k))T (ēi(k) + WT φ̃2(k) + ε(k) + d(k))

× ēT
i (k)(ēi(k) + 2WT φ̃2(k) + 2(ε(k) + d(k)))

+ (WT φ̃2(k))T (WT φ̃2(k) + 2(ε(k) + d(k)))

× (ε(k) + d(k)T (ε(k) + d(k)). (104e)

Considering the input and hidden (98), output (99) layer weight updates,
using these in (104d) and combining with (104c), one may obtain

∆J ≤
−(1 − σ̄k2

v max)‖r(k)‖2 + 2γkv max‖r(k)‖ + ρ − [2 − α1φ̂
T
1 (k)φ̂1(k)]

×
∥∥∥∥ Ṽ T (k)φ̂1(k)

(1 − α1φ̂
T
1 (k)φ̂1(k)) − Γ‖I − α1φ̂1(k)φ̂T

1 (k)‖
2 − α1φ̂T

1 (k)φ̂1(k)

× (V T φ̂(k) + B1kvr(k))
∥∥∥∥

2

−[1 − α2φ̂
T
2 (k)φ̂2(k)]

×
∥∥∥∥ ēi(k) − (1 − α2φ̂

T
2 (k)φ̂2(k)) + Γ‖I − α2φ̂2(k)φ̂T

2 (k)‖
1 − α2φ̂T

2 (k)φ̂2(k)

× (kvr(k) + WT φ̃2(k) + ε(k) + d(k))
∥∥∥∥

2

+
1
α1

‖I − α1φ̂1(k)φ̂1(k)‖2 tr[Γ2V̂ T (k)V̂ (k) + 2ΓV̂ T V̂ (k)]

+
1
α2

‖I − α2φ̂2(k)φ̂2(k)‖2 tr[Γ2ŴT (k)Ŵ (k) + 2ΓŴT Ŵ (k)], (105)
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where

γ = β1(Wmaxφ̃2 max + εN + dM + Γ(1 − α2φ
2
2max)‖φ2 maxWmax +

+κ1(β2 + Γ(1 − α1φ
2
1max)φ1 maxVmax,

and

ρ = [β1(Wmaxφ̃2 max + εN + dM ) + 2Γ(1 − α2φ
2
2max)‖φ2 maxWmax]

(Wmaxφ̃2 max + εN + dM )[(β2 + Γ(1 − α1φ
2
1max)φ2

1 maxV
2
max].

Completing the squares for ‖Z̃‖(k) in (105) yields ∆J ≤ 0 as long as the
conditions in (100) through (102) are satisfied and the tracking error given
is larger than

‖r(k)‖ >

1
(1 − σ̄k2

v max)

(
γkv max +

√
γ2k2

v max + (ρ +
Γ

(2 − Γ)
Z2

M ) (1 − σ̄k2
v max)

)
.

(106)

On the other hand, completing the squares for ‖r(k)‖ in (105) results in
∆J < 0 as long as the conditions (100) through (102) are satisfied and

‖Z̃(k)‖ >
1

Γ(2 − Γ)

(
Γ(1 − Γ)ZM +

√
Γ2(1 − Γ)2Z2

M + Γ(2 − Γ) θ

)
,

(107)
where

θ = Γ2Z2
M +

Γ2k2
v max

1 − σ̄k2
v max

+ ρ.

Therefore ∆J ≤ 0 as long as (100) through (102) are satisfied outside
a compact set (i.e. either (106) or (107) holds). In other words, if the
right hand sides of (106) and (107) are denoted as two constants δ1 and δ2

respectively, then ∆J ≤ 0 whenever ‖r(k)‖ > δ1 or ‖Z̃(k)‖ > δ2. Let us
denote (‖r(k)‖, ‖Z̃(k)‖) by a new coordinate system (ϑ1, ϑ2). Define the
region

D : {ϑ|ϑ1 < δ1, ϑ2 < δ2},
then there exists an open set

Ω : {ϑ|ϑ1 < δ̄1, ϑ2 < δ̄2},

where δ̄i > δi implies that D ⊂ Ω. This further implies that the Lyapunov
function J will stay in the region Ω which is an invariant set. Therefore,
from (106) or (107), it can be concluded that the Lyapunov function de-
creases outside a compact set, so that the tracking error r(k) and the error
in weight estimates are UUB.
Remarks: For practical purposes, (106) (107) can be considered as bounds
for ‖r(k)‖ and ‖Z̃(k)‖.
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The complete discrete-time NN controller is given in Table 3 and shown
in Figure 15. The NN reconstruction error bound εN and the bounded dis-
turbances dM affect the bounds on ‖r(k)‖ and ‖Z̃(k)‖ in a very interesting
way. Note that small tracking error bounds may be achieved by placing
the closed-loop poles inside the unit circle and near the origin through the
selection of the largest eigenvalue, kv max, of kv. On the other hand, the
NN weight error estimates are fundamentally bounded by ZM , the known
bound on the ideal weights Z. The parameter Γ offers a design tradeoff
between the relative eventual magnitudes of ‖r(k)‖ and ‖Z̃(k)‖; a smaller
Γ yields a smaller ‖r(k)‖ and a larger ‖Z̃(k)‖, and vice versa.

It is important to note that the problem of initializing the net weights
(referred to as symmetric breaking [RC95]) occurring in other techniques
in the literature does not arise, since when W (0) and V (0) are taken as
zero, the PD term (i.e. the outer loop in Figure 15) stabilizes the plant,
on an interim basis, for instance in certain restricted class of nonlinear
systems. Thus, the NN controller requires no off-line learning phase. In
other words, this algorithm exhibits a learning-while-functioning-features
instead of learning-then-control.

The tuning algorithms (98) and (99) are similar to the delta rule, but with
a “forgetting term” added. It can be shown [JL96] that if the forgetting
term is omitted, the performance of the delta rule cannot be guaranteed
without a stringent persistency of excitation condition.

7.5 Projection Algorithm

The theorem reveals that the NN tuning mechanisms given have a major
drawback, shared by delta rule tuning algorithms in the literature. Since
φ̂i(k) ∈ IRNpi , with Np the number of hidden-layer neurons in the i-th
layer and the maximum value of each hidden-node output in the i-th layer
is taken as unity (as for the sigmoid), then the bounds on the adaptation
gain in order to assure stability of the closed-loop system are in effect given
by

0 < α1 <
2

Np
,

0 < α2 <
1

Np
.

In other words, the upper bound on the adaptation gain at each layer
decreases with an increase in the number of hidden-layer nodes in that
particular layer, so that learning must slow down as the NN gets larger
for guaranteed performance. This behavior has been noted in the litera-
ture [MSW91] using the delta rule for tuning but never to our knowledge
explained.

This major drawback can be easily overcome by modifying the update
rule at each layer using a projection algorithm [GS84]. To wit, replace the
constant adaptation gain at each layer by

αi =
ξi

ζi + ‖φ̂(k)‖2
, i = 1, 2, (108)
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TABLE 3. Discrete-Time Neural Net Controller

NN Controller:

u(k) = xnd(k + 1) − W̃T (k)φ̂2(k) − λ1en(k) − . . . − λn−1e2(k) + kvr(k)

NN weight Tuning:

V̂ (k + 1)

= V̂ (k) − α1φ̂1(k)[ŷ1(k) + B1kvr(k)]T − Γ‖I − α1φ̂ 1(k)φ̂T
1 (k)‖V̂ (k)

Ŵ (k + 1)

= Ŵ (k) − α2φ̂2(k)r̂T (k + 1) − Γ‖I − α2φ̂2(k)φ̂T
2 (k)‖Ŵ (k)

Signals:

en(k) = xn(k) − xnd(k), tracking error
r(k) = en(k) + λ1en−1(k) + λn−1e1(k), filtered tracing error

with λ1, . . . , λn−1 constant matrices
selected so that det(zn−1 + λ1z

n−2 + . . . + λn−1) is stable.
Design Parameters:

kv Gain matrix, positive definite.
B1 a known parameter matrix.
ZM a bound on the unknown target weight norms.

α1 and α2 scalar tuning rates.
0 < Γ < 1 a scalar.

where ζi > 0, i = 1, 2 and 0 < ξi < 2, i = 1 are constants. Note that
ξi, i = 1, 2 is now the new adaptation gain at each layer and it is always
true that

ξi

ζi + ‖φ̂i(k)‖2
‖φ̂(k)‖2

{
< 2, i = 1,
< 1, i = 2,

(109)

thus guaranteeing (99) for every Np at each layer.
From the bounds indicated for the adaptation gains in both (100) and

(109), it is interesting to note that the upper bound on the adaptation
gains for the input and hidden layers is 2 whereas for the output layer the
upper bound is given by 1. It appears that the hidden layers act as pattern
extractors [RC95]. In other words, the hidden layers of a multilayer NN
are employed for the identification of the nonlinear plant and the output
layer is used for controlling the plant.

The weight tuning paradigm for the discrete-time NN controller is based
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on the delta rule but includes a correction term. This discrete-time NN
controller offers guaranteed performance without a persistency of excitation
condition on internal signals. In addition, it was shown that the adaptation
gains in the case of the given tuning mechanisms at each layer must decrease
with an increase in the number of hidden-layer neurons in that layer, so
that learning must slow down for large NN. The constant learning rate
parameters employed in these weight tuning updates were modified using a
projection algorithm, so that the learning rate is independent of the number
of hidden-layer neurons.

Example 7.1: NN control of Discrete-Time Nonlinear System

Consider the first order multi-input multi-output discrete-time nonlinear
system described by

[
x1(k + 1)
x2(k + 1)

]
=

[
x2(k)

1+x2
1(k)

x1(k)
1+x2

1(k)

]
+
[

u1(k)
u2(k)

]
. (110)

The objective is to track the a periodic step input of magnitude two units
with a period of 30 sec.

The elements in the diagonal gain matrix were chosen as

kv =
[

0.1 0
0 0.1

]

and a sampling interval of T= 10 msec was considered. A three-layer
NN was selected with 2 input, 6 hidden and 2 output nodes. Sigmoidal
activation functions were employed in all the nodes in the hidden layer.
The initial conditions for the plant were chosen to be [1, − 1]T . The
weights were initialized to zero with a initial threshold value of 3.0. No
learning is performed initially to train the network.

The response of the NN controller with weight tuning in (98) and (99)
with projection algorithm (108) is illustrated in Figure 16. The design pa-
rameters are selected as ξ1 = 1.0, ξ2 = 0.7 with ζ1, ζ2 chosen as 0.001. The
parameter Γ is selected as 0.01. All the elements of the design parameter
matrix B1 are chosen to be 0.1. Note that with the weight tuning algo-
rithms given here, the weights are guaranteed to be bounded without the
need of a PE condition.

Let us consider the case when a bounded disturbance given by

d(k) =
{

0.0, 0 ≤ kT < 12,
0.5, kT ≥ 12.

(111)

is acting on the plant at the time instant k. Figure 17 presents the tracking
response using the NN controller with the projection algorithm. It can be
seen from the figure that the bounded disturbance induces bounded track-
ing errors at the output of the plant, but the performance is satisfactory.
Smaller tracking errors can be achieved by modifying kv.
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FIGURE 16. Tracking errors using discrete-time NN controller. (a) Output 1.
(b) Output 2.
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8 Conclusion

Continuous-time and digital Neural network (NN) controllers were designed
that give guaranteed closed-loop performance in terms of small tracking
errors and bounded controls. New NN properties such as strict passivity
avoided the need for persistence of excitation. New NN controller structures
avoided the need for preliminary off-line learning, so that the NN weights
are easily initialized and the NN learns on-line in real-time. No regression
matrix need be found, in contrast to adaptive control. No certainty equiv-
alence assumption is needed, as Lyapunov proofs guarantee simultaneously
that both tracking errors and weight estimation errors are bounded.

To guarantee performance and stability in closed-loop control applica-
tions using multilayer (nonlinear) NN, it was found that the standard delta
rule does not suffice, but that the NN tuning rules must be modified with
extra terms.

Our primary application was NN for control of rigid robot manipulators,
though a section on nonlinear system control shows how the technique can
be generalized to other classes of systems in a straightforward manner.
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Neural Networks for Intelligent
Sensors and Control —
Practical Issues and Some
Solutions

S. Joe Qin

ABSTRACT Multilayer neural networks have been successfully applied as
intelligent sensors for process modeling and control. In this paper, a few
practical issues are discussed and some solutions are presented. Several
biased regression approaches, including ridge regression, PCA, and PLS,
are integrated with neural net training to reduce the prediction variance.

1 Introduction

The availability of process control computers and associated data histo-
rians make it easy to generate neural network solutions for process mod-
eling and control. Numerous applications of neural networks in the field
of process engineering have been reported in recent annual meetings and
technical journals. Neural network solutions are well accepted in process
industries since they are cost-effective, easy-to-understand, nonlinear, and
data-driven.

This chapter addresses several practical issues and some solutions re-
garding to use of neural networks for intelligent sensors and control. The
chapter begins with an introduction to neural network applications as in-
telligent soft sensors to predict process variables that are not measurable
on-line. Then several practical issues in the intelligent sensor applications
are presented: (i) outlier detection and missing value treatment; (ii) vari-
able selection; (iii) correlated input data versus network training, prediction
and control; and (iv) neural network training and validation. Approaches
to integrating biased statistical methods with neural network training are
discussed to handle correlated input data. The integration of neural net-
works with partial least squares is discussed and illustrated with a real
process application. Last, conclusions are given and further issues are rec-
ommended for future investigation.

Artificial neural networks have found many applications in process mod-
eling and control. These applications include: (i) building intelligent soft
sensors to estimate variables which usually need to be measured through lab
tests (McAvoy, et al. [M+89]; Willis, et al [WDM+91]); (ii) dynamic system
identification (Bhat, et al. [BMMW90]; Narendra, et al [NP90]); (iii) fault
detection and diagnosis (Venkatasubramanian, et al. [VVY90]; Ungar, et
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al. [UPK90]); (iv) process data screening and analysis (Kramer [Kra92]);
and (v) use of neural nets for control (Hernandez and Arkun [HA90];
Hoskins and Himmelblau, et al. [HH92]).

Among all types of neural networks, multilayer feedforward networks
(MFN, Rumelhart, et al. [RHW86]) have primarily been applied in process
modeling and control. There are a number of reasons that can explain why
MFN’s are widely applied to process industries. First of all, multilayer feed-
forward networks are good nonlinear function approximators. A number of
researchers (Hornik, Stinchcombe and White [HSW89]; Cybenko [Cyb89])
have proven that an MFN can approximate any continuous function suffi-
ciently well. Since many chemical processes are highly nonlinear, the non-
linear capability of neural nets is promising to process engineers. Second, a
neural network can be trained to learn a chemical process by using histor-
ical process data. With plenty of process data available from distributed
control systems in industrial processes, building a neural network based on
process data is cost-effective. The third reason is the ease of use for process
engineers. Building a neural network model does not necessarily require as
much knowledge as the first principles approach or statistical approaches,
although fundamental understanding of the process is required.

Owing to the availability of distributed control systems (DCS) and asso-
ciated database historians in process industries, huge amounts of historical
data exist that can be used for neural network applications without addi-
tional investment. Typically, the historical data have been poorly utilized
in the past, although much useful information could be extracted from the
data. This is one of the areas in process industries where neural networks
can be applied without further investment in data acquisition. One such
applications is to predict key process variables that cannot be measured
on-line. This type of applications is known as soft sensor or intelligent sen-
sor. The hard-to-measure variables are usually quality variables or directly
related to the economic interest of the production. These quality variables
are often observed from analyzing product samples off-line in a laboratory.
An obvious time-delay is incurred in analyzing the test samples, which can
be in the range of one to ten hours. Although one could know the product
quality after this delay, it might be too late to make timely control adjust-
ment if required. Figure 1 illustrates the intelligent sensor application using
neural networks. A neural network is trained on historical data to predict
process quality variables so that it can replace the lab-test procedure. An
immediate benefit of building intelligent sensors is that the neural network
can predict product quality in a timely manner. If the product quality does
not meet the requirement and hence a correction is needed, the intelligent
sensors allow early control actions to be made, which can avoid continuing
manufacturing of poor quality product.

This chapter presents a few practical issues that are often encountered
in using neural networks for intelligent soft sensors and control. These
issues are: (i) data preprocessing, including missing values and outlier de-
tection; (ii) variable selection; (iii) network training and control issues with
correlated variables; and (iv) integrating statistical approaches and neural
network for intelligent sensors.

The organization of the chapter is as follows. Section 2 discusses the
typical characteristics of historical process data. Section 3 addresses the
issues in data pre-processing, including outlier detection and missing value
replacement. Section 4 presents the issue of variable selection in deal-
ing with real applications. Sections 5 analyzes the effect of collinearity
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FIGURE 1. Use of neural networks as intelligent sensors to predict process
quality variables that can only be measured through lab test.

on neural network training, generalization, and control. Section 6 presents
approaches to integrating neural networks with statistical methods are pre-
sented, including partial least squares (PLS), principal component analysis
(PCA), and ridge regression. Section 7 uses a real application example
to illustrate how the integrated approach may outperform a direct neural
network approach. The final section gives concluding remarks.

2 Characteristics of Process Data

Most industrial processes are well equipped with on-line process sensors,
such as temperature, flowrate, and pressure sensors, and in some cases ana-
lytical sensors. These sensors allow the process computer to acquire on-line
process information and make appropriate control to maintain consistent
product quality. Most of the control strategies are feedback control, where
PID control and model-based control are dominant. A data historian that
collects and stores historical data is usually linked to the process computer.
Some variables, especially the quality variables, do not have on-line sensors,
or the available sensors are not cost-effective or reliable. However, since
these variables are of crucial importance, lab tests of the product samples
are usually conducted to measure the product quality off-line on a specified
interval base.

In the situation where lab tests are conducted, a time-delay of one to
ten hours is often incurred. In order to detect the quality variables in a
timely manner, one can build intelligent sensors to infer the quality vari-
ables from other on-line measured process variables. The foundation of
building intelligent sensors is that the product quality variables have a
functional relationship with other process variables that can be measured
on-line, such as compositions of raw materials, temperature, pressure, and
residence time during which the product is made. Since the functional
relationship between the quality variables and other variables are usually
nonlinear, the neural network approach is a convenient choice for modeling
the relationship.

The neural network approach to building intelligent sensors is funda-
mentally an empirical approach based on process data. This approach is
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efficient when alternative approaches such as the first principles approach
are difficult or too expensive to obtain. However, one of the difficulties
involved in the neural network approach is that many issues are not well
defined and have to be determined based on data analysis. These issues
include data acquisition, outliers and missing values, input variable selec-
tion, and variable collinearity. Practical experience shows that resolving
these issues takes much more time than training a neural network.

There are three categories of data that could be used to build intelligent
sensors. The first category is historical data that are collected from on-line
sensors during the process operation. Most of the available data are in
this category. The nature of the historical data is known as data-rich and
information-poor (Piovoso [PO91]). Usually, a large portion of the data
is collected under a particular operating condition. Relatively little infor-
mation is available under other operating conditions. In order to collect
data that cover various types of operating conditions, one needs to use data
that cover a long period of history. In the case where the process is slowly
varying over time or where significant change was made in the process, old
data may be obsolete and useless for building intelligent sensors for the
current process. Therefore, a trade-off is needed in data acquisition to get
the greatest amount of truly representative data.

The second category of data is lab-test data that are collected for hard-to
measure quality variables. These data are often available with much larger
time intervals than the historical data. Typically the lab-test data are not
collected at a regular rate. This is due to the fact that the lab-test is done
by a human being instead of a digital computer. Further, the lab-test data
often have missing data points. The sampling rate must be regularized
with interpolation or other techniques. When there are missing values in
the lab-test data, they should be either replaced or not used for training a
neural network. Dayal, et al. [DMT+92] discussed a practical treatment of
missing values in this regard.

The third category of data are experimental data that can be collected
by conducting an experimental design. This category of data is most de-
sirable in terms of the data quality, but it is often not available due to the
high cost of obtaining it or because of safety considerations. Sometimes an
experimental design may be allowed to collect a few samples as a comple-
mentary approach to the historical data. In this chapter, we focus on the
case where the experimental data are generally not available for intelligent
sensor modeling.

Building intelligent sensors based on historical and lab-test data is a pas-
sive approach, since no experimental designs are conducted. This approach
has the least intervention to process operation. Therefore, it is generally
applicable to all kinds of processes. However, due to the limited informa-
tion content in the historical data, the resulting intelligent sensors are valid
only on the particular region in which the data are collected. Therefore, it
is important to identify the valid region associated with the intelligent sen-
sor. It is necessary, though not sufficient, to check the lower-upper bounds
for new data when a trained neural network is implemented on-line. When
the process operation changes significantly, the intelligent sensor has to be
re-calibrated on new data in order to give a valid prediction.
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3 Data Pre-processing

Before training a neural network, data preprocessing is normally required
since most of the historical data and lab-test data are not ready to use for
training. The first step in pre-processing is to identify and remove outliers,
since industrial data bases typically have outliers. Outliers are treated in
statistics as samples that carries high leverage (Martens, et al. [MN89]), yet
are so few to be statistically meaningful. Outliers can result from sensor
failure, misreading from lab tests, and other unknown upsets to the process.
Some outliers can be normal data and represent important information, but
additional knowledge is needed to discriminate them against bad outliers.
A distinctive feature of outliers is that they normally have extremely large
influence on the model. Since neural network training employs a least
squares type of objective function with individual training error,

Ei =
p∑

j=1

(ŷij − yij)2 (1)

or cumulative training error,

E =
1
N

N∑
i=1

Ei (2)

which is generally sensitive to outliers with large model errors (Kosko
[Kos92]). Although it is felt that a neural network training scheme which
includes both training and testing might stop training before overfitting
the outliers, there is no guarantee that network training will ignore outliers
and fit well on good samples. This scheme is even less reliable when there
are outliers in the test set. Further, since neural networks can be extremely
nonlinear, it is experienced that neural networks are more sensitive to out-
liers than linear regression methods because they can bend to reach the
outliers. As a consequence, it is necessary to perform outlier detection and
pre-treatment before training the network .

3.1 Obvious Outliers
Some outliers are so obvious that they can be identified by using prior
knowledge and physical laws. For example, a temperature variable cannot
reach below absolute zero degree, and a flowrate variable cannot be neg-
ative. Generally, one can determine the possible maximum and minimum
values of a process variable based on experience. Therefore, some outliers
can be identified simply by checking them against the minimum and max-
imum. If a sample is below the minimum or above the maximum, it is
considered as an outlier. Although this method is very simple, it is useful
for preliminary detection of outliers. Another reason to establish maximum
and minimum values is to define the operating region of interest. If the data
are outside the region of interest, they should be considered outliers.

After identifying the outliers, a number of approaches can be taken to
treat outliers. First, an outlier can be replaced by the maximum or mini-
mum value. Since we do not know the real value of the outlier, this approach
is often not reliable. A conservative approach is to replace the outlier with
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the mean of the process variable. The third approach is to treat them as
missing data, which will be discussed later.

3.2 Non-obvious Outliers
In contrast to the obvious outliers, many outliers lie within the boundaries
and are hard to identify. They do not violate the minimum and maximum,
but they can cause large model errors because they violate other physical
constraints. For example, the pressure and flowrate is supposed to have
quadratic relationship by physical principles, but an outlier may violate
this relation. In many cases, the process data are highly correlated. If
some samples appear to be not correlated, they are considered outliers be-
cause they violate the correlation structure. These outliers can be detected
using statistical methods such as principal component analysis (Wold, et
al. [WEG87]) and partial least squares (Martens, et al. [MN89]).

Outliers can also be detected by examining the signals in the frequency
domain. For example, a temperature variable has a certain frequency limit.
It cannot change too frequently because temperature is a slow process. If
the variable is identified as having impossibly high frequency components,
it is considered as having outliers. A properly designed filter can be used to
filter out the effect of outliers. In order to overcome phase lags introduced
by using low-pass filters, Piovoso, et al. [PO91] used the FIR median hybrid
filters to extract steady state information. The filtering approach is most
effective when an entire variable is heavily corrupted with noise.

3.3 Robust Backpropagation

Despite the various outlier detection techniques applied to the data, there
are usually some outliers left in the data set. Therefore, it is important
to use some training methods that are insensitive to outliers. As indicated
earlier, a distinct feature of outliers is that they carry large individual train-
ing errors. Since the regular backpropagation algorithm uses least squares
training error, it is sensitive to large training errors and thus sensitive to
outliers (Kosko [Kos92]). Robust backpropagation that is insensitive to
outliers can be developed by borrowing the techniques from robust regres-
sion methods. Instead of having a least squares training error that amplifies
large training errors, one can use the following training error that treats
the large errors and small errors linearly:

Ei =
p∑

j=1

|ŷij − yij | (3)

This error function can reduce the influence of outliers that carry large
individual errors. Another approach that uses suppressing functions is
given in Kosko [Kos92].

3.4 Missing Values

Missing values are very common in historical data bases from distributed
control systems and lab test data. In general, it is difficult for multilayer
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neural networks to handle missing values during training. Therefore, it is
necessary to pre-process missing values before training. There are a number
of ways to handle missing values. A simple way to deal with missing values
is to delete samples that have missing values. However, if the available
data are limited, and the missing values are not clustered together, one
can apply the techniques of missing data replacement to keep as many
samples as possible.

When the missing values are not clustered together, it is reasonable to
apply interpolation to replace the missing values. Dayal, et al. [DMT+92]
apply linear interpolation when there are less than three consecutive miss-
ing points. Of course, it is possible to apply other interpolation techniques
such as cubic splines. However, when there are more consecutive missing
values, it is not reliable to apply interpolation. More advanced techniques
have to be applied.

As long as the missing values are evenly distributed over the data set,
there are statistical methods such as principal component regression (PCR)
and partial least squares (PLS) which can work with data sets that have
missing values (Geladi & Kowalski [GK86]; Wold, et al. [WEG87]). These
methods perform principal component or principal factor calculations and
then build regression models based on them. They allow some “holes“ in
the data set. Therefore, one can apply principal component analysis on the
training data with some missing values, then build a neural network model
based on the principal components. One can handle the missing values in
the calculation of principal components. One can also integrate the partial
least squares with neural networks to handle the missing value problem.
Another benefit of integrating these statistical methods with neural net-
work training is to handle the correlated variables that can cause large
variance on the prediction. Details of the integration of neural networks
and partial least squares can be found in Qin and McAvoy [QM92b].

If the process variables are highly correlated in a nonlinear manner,
auto-associative neural networks can be used to recover the missing val-
ues (Kramer [Kra92]). The auto-associative neural networks are special
types of feedforward networks which have identical input and output vari-
ables. The auto-associative networks re-construct the variables from other
variables that are cross-correlated in a linear or nonlinear manner. This
correlation offers fundamental redundancy for recovering missing values. It
should be noted that, to recover a variable that has a missing value, it must
be highly correlated to other variables that do not have missing values. It
is not possible to recover a missing value of a variable that has no correla-
tion with other variables. An alternative approach to the auto-associative
networks is the principal curve approach integrated with neural networks
(Dong and McAvoy [DM94]). This approach provides a natural nonlinear
extension to principal component analysis.

4 Variable Selection

! An industrial data base usually provides all the variables that can be
recorded. However, it is not necessarily true that all recorded variables are
relevant to the process variables to be predicted. Instead, it is often the case
that when some of the irrelevant variables are deleted from the data base,
the modeling results can be improved; if the irrelevant variables are kept in
the model, they play a role of noise which can potentially deteriorate the
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modeling results. Therefore, it is imperative to select a subset of process
variables that are truly relevant to the predicted variables. Prior knowledge
can be used to screen out totally irrelevant variable, but further approaches
are needed finally select relevant variables.

The issue of variable selection has been studied in regression analysis
(Hocking [Hoc76]). The more the variables are used in a model, the worse
the prediction variance is, and the better the prediction bias. Basically,
each process variable to be used in a model contributes a value to the pre-
diction with associated variance. When a variable’s contribution is larger
than its related variance, it is useful to the model. However, when a vari-
able’s contribution is smaller that its related variance, it could be harmful
to the model.

Variable selection can be performed by judging a variable’s contribution
or relevance to the predicted variables. Two typical schemes used for vari-
able selection are forward selection and backward elimination among all
variables. Both the forward selection and backward elimination schemes
can be used in neural network training. In a forward selection scheme,
one starts the neural network with a small set of variables and adds more
variables if they contribute to the prediction. In the backward elimination,
the neural network starts with all available variables and then eliminates
variables that are not relevant to the prediction. However, since neural
network training is involved in each selection step, these variable selection
schemes are quite laborious.

A sensitivity analysis approach is proposed in Qin and McAvoy [QM92a]
to select variables in a neural net PLS scheme. In this method, sensitiv-
ity analysis of model outputs with respect to model inputs is conducted
over the operation region where data are collected. If the sensitivity of an
output variable with respect to an input variable is very small, the input
variable is deleted from the model because it has little contribution to the
prediction. The sensitivity analysis provides an approach to identifying less
sensitive variables. The sensitivity is a measure of a variable’s significance
in explaining the output variable. To determine if a variable is truly con-
tributing to the output variable, the cross-validation method is conducted
and the prediction error on the test set is calculated before and after delet-
ing the variable. If the prediction error is not increased after deleting the
variable, it will be deleted from the network input; otherwise, it will be re-
tained in the network input. With this method, one can achieve improved
accuracy by deleting irrelevant variables and keeping relevant variables in
the neural network model.

A related issue is to determine the process dynamics and time delays asso-
ciated with the predicted outputs. Since the process data are collected over
a history of normal operation, it always contains dynamic information and
time delays. The dynamics and time delays can be included in the model
by using a time window (Qin and McAvoy [QM92a]). The time window
contains time delayed values of input variables and output variables. By
treating these delayed variables as individual variables, the variable selec-
tion techniques can be used to determine the process dynamics and time
delays.

There is usually high correlation or redundancy among the measured pro-
cess variables. Some correlation is due to the fact that a group of variables
affect each other. Correlation can also be due to insufficient variability
during the normal process operation. In many situations, however, it is
not desirable to delete variables that are correlated, since the correlation
offers necessary redundancy for replacing missing values and for reducing
gross errors (Kramer [Kra92]). One example is that one physical process
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variable is measured by two sensors. These two sensor measurements are
certainly correlated and using both measurements can reduce the measure-
ment noise. Therefore, it is desirable to include correlated variables as long
as they are relevant to the predicted variables.

However, correlated variables brings up the problem of collinearity. In
linear statistical regression, such as the ordinary least squares approach,
collinearity can cause the solution to be ill-conditioned and the resulted
model to have large prediction variance. In this case, biased regression
approaches such as principal component regression and partial least squares
are often used. The next section discusses the effect of collinearity on neural
network modeling.

5 Effect of Collinearity on Neural Network
Training

5.1 Collinearity and Network Training

It is well known that collinearity presents an ill-conditioned problem to
ordinary least squares in linear regression. Here the effect of collinearity
on neural network training is demonstrated. Given an input vector and an
output variable y, a multi-layer neural network with one hidden layer can
be represented as follows,

y =
n∑

i=0

νis(φi) (4)

φi =
m∑

j=0

wijxj ; i = 1, 2, . . . , n (5)

where φi (i = 1, 2, . . . , n) is input to the i-th hidden unit. The wij and
νi are weights for the input layer and output layer, respectively. s(·) is
a nonlinear function of a hidden unit which can be sigmoidal. x0 ≡ 1
and s(φ0) ≡ 1 stand for the bias units for the input and hidden layers,
respectively. Given a sequence of samples, (x1, y1), (x2, y2), . . . , (xN , yN ),
the neural network can be trained by minimizing the following error

E =
1
N

N∑
p=1

[yp − f(xp;v,W]2 (6)

where

W ≡ [wij ] ∈ IRn×(m+1) (7)

v ≡ [ν0, ν1, . . . , νn]T ∈ IRn+1 (8)

is a global function represented by Eqs. 4 and 5.
If the input variables are collinear, there are many sets of weights which

can minimize the error function in Eq. 6. For example, assuming that the
input collinearity can be described by the equation

Ax = 0 (9)
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where A ∈ IRr×(m+1), one has the following relation for any B ∈ IRn×r,
f(x;v,W) = f(x;v,W + BA) (10)

In other words, if a set of weights (v,W) minimizes the error function in
Eq 6, (v,W + BA) is also a solution to Eq. 6 for any B. In practice,
although the variables may not be exactly collinear as in Eq. 9, they are
often highly correlated. If a backpropagation algorithm is used for training,
significantly different weight distributions could result in little change in
the training error. This phenomenon is an indication of collinearity.

It is known that neural network training does not have the ill-conditioned
problem as does least squares, thus, one may think that collinearity is not
a problem in neural network training. However, this is not true when pre-
diction is made on new data. Since new data always include measurement
noise, the model derived from backpropagation training often results in
large prediction variance. In other words, neural networks trained by reg-
ular backpropagation tend to enlarge the noise variance in the presence of
collinearity. This point is illustrated by analyzing the variance of prediction
error in the following subsection.

5.2 Collinearity and Prediction Variance

To illustrate how collinearity effects prediction variance, the example in
MacGregor et al. [MMK+91] is used here. This example considers an ide-
alized process with one output variable and five input variables that are
exactly collinear. The real process relation is assumed to be

y = 1.0x2 + e (11)

The objective is to build a linear model of the five input variables and
the output variable. Since the input variables are exactly collinear, it is
obvious that an ordinary least squares approach yields an ill-conditioned
problem. When the PLS method is used, the following model results,

(PLS) : y = 0.2x1 + 0.2x2 + 0.2x3 + 0.2x4 + 0.2x5 (12)

When a linear network model without hidden layers is built, three different
models result from different initial conditions,

(NN1) : y = 0.63x1 + 0.36x2 + 0.09x3 + 0.22x4 − 0.30x5

(NN2) : y = −0.43x1 − 0.05x2 + 0.92x3 − 0.02x4 + 0.58x5 (13)
(NN3) : y = 0.23x1 + 0.35x2 − 0.26x3 − 0.22x4 + 0.91x5

These three models are adequate as long as their coefficients sum up as 1.0.
Consider that new data for the five inputs have independent, identically

distributed measurement noise with zero mean and variance , the prediction
variance of the three neural network models and the PLS model can be
calculated as follows,

Var(yNN1) = 0.67σ2

Var(yNN2) = 1.37σ2 (14)
Var(yNN3) = 1.12σ2

Var(yNN4) = 0.200σ2
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FIGURE 2. A model derived from collinear data is not valid when the collinearity
changes. “x“ – collinear data for modeling; “o“ – new data when collinearity
changes.

One can see that all the neural network models result in much larger pre-
diction variances than the PLS model. Although the first neural net model
reduces the variance, the other two models actually enlarge the variance.
This demonstrates that backpropagation is sensitive to collinearity and re-
sults in a large prediction variance.

5.3 Control of Collinear Processes

Having collinearity in a process is an indication that the number of mea-
surements are greater than the degrees of freedom or variability. Some
collinear relations are inherent to the process, which do not change under
normal conditions. For example, a pump outlet pressure and flowrate are
highly correlated. Changes in these collinear relations indicates that ab-
normal events occur in the process, which is useful for process monitoring
and diagnosis (Wise 1991 [Wis91]). Other collinear relations are due to
lack of variability in the data. This type of correlation can change when
new variability occurs in the data.

A neural net model derived from collinear data is valid only when the
correlation holds. Figure 2 depicts an example of two collinear inputs and
one output. The correlated data cluster occurs approximately on a line in
the (x1, x2) plane. When a neural net model is derived from these data,
it only captures the functional relation in a subspace where x1 and x2 are
correlated, since there are no data elsewhere for training. Therefore, the
derived model is valid when the collinearity conforms. However, when new
data do not follow the correlation, the model is no longer valid and needs
to be updated.

When a model from collinear data is used for control purposes, one has
to comply with the validity of the model, that is, the variables have to be
manipulated in such a way that the collinearity conforms. One cannot,
for example, manipulate one variable freely and keep other variables un-
changed. Another reason to change the collinearity is if a feedback loop
is introduced. See MacGregor, et al. [MMK+91] for further discussion. If
such a model is used for inverse control, which calculate what the input
values should be to achieve given output values, the inverted inputs have
to follow the correlation structure to keep the model valid.

www.4electron.com



218 S. Joe Qin

6 Integrating Neural Nets with Statistical
Approaches

6.1 Modifying Back-propagation to Minimize Variance

Since there are many solutions that satisfy the training problem in the case
of collinear data, we can use these extra degrees of freedom to minimize
the variance. In order to minimize the output variance of the neural net-
work given in Eqs. 4,5, the variance of input to the hidden layer should be
minimized first. Consider that each input is composed of a deterministic
signal and a random noise, i.e.,

xj = x̄j + εj (15)

where the measurement noise εj for each input variable is independent with
zero mean and variance σ2, the variance of the hidden layer inputs can be
written as

Var(φi) =
n∑

j=1

w2
ijσ

2; i = 1, 2, . . . , n (16)

To minimize the above variance while minimizing the network training error
in Eq. 6, we can minimize the following error,

Eλ = E + λ

n∑
i=1

m∑
j=1

w2
ij = E + λ‖W‖2

2 (17)

where λ is an adjustable weighting parameter. Similarly, the output vari-
ance with respect to the output layer weights should also be minimized.
Therefore, we have the following error function to minimize,

Eλµ = E +
1
2
µ‖v‖2

2 = E +
1
2
(µ‖v‖2

2 + λ‖W‖2
2) (18)

where λ and µ are penalty factors for the magnitude of the network weights.
Given many solutions that result in the same training error from Eq. 6, the
above training error chooses the one with minimum norm of weights. The
error in Eq. 18 can be minimized by gradient descent or conjugate gradient
methods. Note that Eq. 18 is actually one application of the statistical
technique known as ridge regression (Hoerl, et al. [Hoe70]).

6.2 Example

To illustrate the effectiveness of variance reduction, the example given in
the preceding section is reused here. Given that the five inputs are exactly
collinear and with the constraint that the magnitude of the weights is
minimized, It is easy to see that backpropagation with ridge regression
results in the following relation,

y = 0.2x1 + 0.2x2 + 0.2x3 + 0.2x4 + 0.2x5 (19)

which gives a prediction variance of 0.2σ2.
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Although ridge regression helps backpropagation reduce the prediction
variance, it is difficult to determine the penalty factors. Practical process
data may not be exactly collinear but rather highly correlated. In this case,
the penalty factors induce bias in prediction while reducing the variance.
The larger the penalty factors, the smaller the variance is but the larger
the bias is. Therefore, it is important to choose the penalty factors so as
to give the best model in a mean-square-error sense. Cross-validation may
be used to determine the penalty factors.

6.3 Principal Components for Neural Network Modeling

Principal component analysis (PCA) has been used to remove collinearity in
linear regression as principal component regression (PCR) (Jolliffe [Jol86]).
Here, the PCA is applied to remove collinearity for neural network training.
To follow the notation of PCA and PLS, the input and output data are
arranged into two data matrices, X and Y, respectively. The basic idea of
PCA is to transform the data matrix X into a matrix with fewer orthogonal
dimensions, while keeping most of the variance in the data matrix Xl, that
is,

T = XP (20)

where the columns of T ∈ IRm×p, known as principal components, are
orthogonal. Columns of P, known as loading vectors, are orthonormal.
The calculation of T and P is done by decomposing X into the following
bilinear relation,

X = TPT + R (21)
where the residual R is minimized during calculation.

When the residual R can be negligible, matrix Tis completely represen-
tative of matrix X. Therefore, a nonlinear relation between X and Y can
be modeled in two steps: first calculating T and then building a neural net-
work between T and Y. The model structure can be depicted in Figure 3.
The neural network training between the output variable and the principal
components can be treated as a regular network training problem. When
the trained model is used for prediction, it goes through a PCA calcula-
tion and a neural network calculation. The combined neural network and
PCA scheme offers a viable approach to overcoming collinearity in neural
network training. Since the principal components are orthogonal, they can
be used for analyzing the features of the data and for monitoring process
changes. A limitation of the neural net PCA approach is that PCA focuses
only on the variance of inputs which may ignore the inputs’ correlation to
the output. A component that is non-principal in PCA analysis can be
significant in explaining the output. This situation can happen when some
input variables carry a lot of variance but have little contribution to the
output, and some other variables carry less variance but have significant
contribution to the output. An integration of PLS with neural network
training can overcome the limitation.

6.4 A Neural Net PLS Approach

The PLS approach decomposes both input and output data into bilinear
terms as follows,

X = t1pT
1 + E1 (22)
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FIGURE 3. Use of principal component analysis for neural network modeling.

Y = u1qT
1 + F1 (23)

where and are latent score vectors of the first PLS factor, and are cor-
responding loading vectors. These vectors are determined such that the
residuals and are minimized. The PLS decomposition is different from
principal component analysis in that the correlation between X and Y is
emphasized (Geladi and Kowalski [GK86]). The above two equations for-
mulate a PLS outer model. After the outer calculation, the score vectors
are related by a linear inner model:

u1 = b1t1 + r1 (24)

where b1 is a coefficient which is determined by minimizing the residual
r1 . After going through the above calculation, the residual matrices are
calculated as

E1 = X − t1pT
1 for matrixX, (25)

F1 = Y − b1t1qT
1 for matrixY (26)

Then the second factor is calculated by decomposing the residuals E1 and
F1 using the same procedure as for the first factor. This procedure is
repeated until the last (ath) factor is calculated, which leaves almost no
information in the residual matrices Eh and Eh.

When the process to be modeled has significant nonlinearity, the inner
relationship between the score variables would be nonlinear. In this case,
a neural net PLS (NNPLS) approach is proposed which uses neural net-
works as inner models while keeping the outer PLS transforms to remove
collinearity (Qin & McAvoy [QM92b]). The framework of the integrated
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FIGURE 4. An illustrative structure of the neural net PLS approach. The input
and output variables are projected onto latent space and then the latent variables
are modeled with neural networks.

NNPLS method can be illustrated in Figure 4. The PLS outer transform is
kept to generate score variables from the data. Then the scores (uhandth)
are used to train the inner network models. Detail discussion of the NNPLS
algorithm can be found in Qin and McAvoy [QM92b].

The NNPLS method differs from the direct network approach in that the
data are not directly used to train the neural networks but are pre-processed
by the PLS outer transform. The transform decomposes a multivariate
regression problem into a number of univariate regressors. Each regressor
is implemented by a neural network in this method. A direct benefit of
doing so is that only one single-input-single-output network is trained at
a time. It can be shown that the score vectors th, h = 1, 2, . . . , a of
the NNPLS method are mutually orthogonal. As a result, the collinearity
problem is removed.

7 Application to a Refinery Process

To illustrate the effectiveness of the neural net PLS method and a regular
backpropagation network approach, a set of operating data from a catalytic
reforming system is used. It is known that the process has five input
variables and two output variables. Further there is strong correlation
among the five input variables. The data set consists of two batches, one
batch has 149 samples which are used for training, the other batch has 141
samples which are used for testing. To include plant dynamics, the model
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Training RMSE Testing RMSE
NNPLS 0.661 0.883

Neural Network 0.663 1.39

TABLE 1. Training and testing root-mean-square errors (RMSE) for a catalytic
reformer using the NNPLS method and the neural network approach.

uses several past output values and past input values, that is,

y(t) = f (y(t − 1),y(t − 2), . . . ,y(t − ny),u(t),u(t − 1), . . . ,u(t − nu))
(27)

The catalytic reformer data are modeled using the NNPLS approach. It
is found that the time-lags ny = 1 and nu = 1 are good choices for this ap-
plication. It is also found with test set validation that seven factors give the
best prediction. The training and test root-mean-square-errors (RMSE’s)
are given in Table 1. For comparison, the neural network approach with
gradient based training is applied to the same data set. The neural network
has one sigmoidal hidden layer and the output layer is linear. Under the
same condition as in the NNPLS approach, the training error and the test
error from back-propagation are listed in Table 1. It can be seen that al-
though both approaches give similar training results, the NNPLS approach
has better generalization results on the test data. The reason is that the
neural net PLS approach is able to reduce variance by removing collinearity
in the input data.

8 Conclusions and Recommendations

Owing to the availability of vast amount of historical process data, neural
networks have great potential in building models for process quality predic-
tion and control. The use of neural networks as intelligent soft sensors can
predict process variables that are not on-line measurable. An immediate
benefit of this application is to have a timely estimation of process quality
with a cost-effective approach, which allows early control of the process
quality if it does not meet the requirement.

When the process data are usually highly correlated, a regular backprop-
agation training can result in large prediction variance under correlated in-
puts. This large prediction variance causes a large prediction mean-square-
error. Several approaches to integrating neural networks with biased sta-
tistical methods, including ridge regression, principal component analysis,
and partial least squares seem to be able to reduce the mean-square-error.

While there are many training algorithms available, several practical is-
sues before and after training a neural network are most time-consuming
and deserve further study. Data pre-processing that includes outlier detec-
tion and missing value replacement is a typical problem in real applications.
Advanced solutions are needed besides check lower-upper bounds for out-
liers and interpolations for missing values. Since this topic has been long
studied in statistics, it seems to be beneficial to combine the results in
statistics with neural network training.

The issue of variable selection is very important to build a parsimonious
neural network that gives minimal prediction errors. The sensitivity anal-
ysis approach discussed is adequate to calculate the relative significance of
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each input variable with associated time-delay. A further issue is to deter-
mine the criteria for selecting or deleting a variable. The cross-validation
approach seems to be effective, but it can be quite time-consuming. Alter-
native approaches that could quantify a variable’s contribution against its
contributed variance would be desirable for variable selection.

After a neural network is trained and used for prediction, it is required
to check the validity of the predicted values. It is important to alert the
operator if a prediction is not valid. Checking the lower and upper bounds
for a variable is necessary, but not sufficient to identify valid regions, partic-
ularly when the input variables are highly correlated. Any control actions
based on the trained neural network should also be conducted within the
valid region.

The use of neural networks as intelligent sensors seems to be a rather
general application across various process industries. To build successful
applications, one need to use several techniques to handle the practical
issues. Therefore, it is worthwhile to study how to package these techniques
in a single software package for process engineers. Although there are many
commercial neural network training package available, most of them place
emphasis on training algorithms but little attention to pre-processing and
post-validation. An easy-to-use toolkit that has comprehensive features to
address the practical issues could significantly reduce the gap between the
academic research and real-world applications and thus could prevent any
potential misuse of the neural network technology.
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Approximation of
Time–Optimal Control for an
Industrial Production Plant
with General Regression
Neural Network

Clemens Schäffner
Dierk Schröder

ABSTRACT For plants which are characterized by a continuous moving
web of material passing between rollers, the sections are coupled by the
web. To make the web control forces smooth and provide fast response,
we approximate a time-optimal control with a General Regression Neural
Network; simulation results are shown.

1 Introduction

In the paper, plastics, textile or metal industry there are many plants
which are characterized by a continuous moving web of material. The web
has to pass various sections of rollers in order to enable the execution of
several processing steps. The rollers are driven by electric motors. All
sections of the continuous process are coupled by the web. To achieve
proper transport and processing results, the web forces have to be kept
within close limits. Therefore, the electrical and mechanical quantities
of the drives (e. g. currents, torques, web speeds, web forces) have to be
controlled by closed loop control.

Today most of such plants are equipped with current and speed closed
loop control in cascaded structure. The web forces are controlled only
indirectly in an open loop via the speed relations of neighboring rollers.
This control concept suffers from known limitations of cascaded control
structures.

An important improvement was the development of several linear state
space control concepts, which increased the control quality considerably
[WS87]. However, it is impossible to incorporate restrictions on control
variables in linear design procedures, because they represent nonlinearities.
Since restrictions are unavoidable in practical applications, it is desirable
to take them into account directly. The control behavior should be as good
as possible with adherence to all restrictions.

These objectives can be met best with an approximation of time-optimal
control. Classical time-optimal control laws have some severe drawbacks;
the most important one is that they lead to switching controllers, which are
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unwinder upwinder

nip–sections

�

FIGURE 1. Plant

likely to excite unmodeled high-frequency dynamics (see e. g. [PBGM62],
[Pap91], [AF66], [BH75], [Fan66], [Kir70]). The resulting oscillations pre-
vent stationary accuracy, stress the mechanical and electrical components
of the plant and can— in extreme cases— destroy parts of the plant. For
this reason an approximation of the time-optimum with a smooth control
surface is desirable. Radial basis networks provide smooth output functions
and are therefore well suited. Because of its favorable approximation prop-
erties we use a special type of radial basis network, the General Regression
Neural Network (GRNN).

The problem is to create a GRNN so that the plant is controlled in an
approximate time-optimal manner. This is the topic of the paper and is
described in detail below.

The paper is organized as follows: In section 2 and 3 we give a brief
description of the models used for the industrial production plant and the
induction motor drive, respectively. The properties of GRNNs are discussed
in section 4. The most important section is section 5 where the consider-
ations are described in order to obtain a neural control concept approxi-
mating time-optimal control for the plant. Simulation results demonstrate
the feasibility of the approach. Final remarks are given in the conclusion.

2 Description of the Plant

A scheme of the considered industrial production plant is depicted in figure
1. Such plants with continuous moving webs of material are driven by
a large number of electric motors and thus are— from a control point
of view— complex, highly coupled multiple-input/multiple-output systems
(MIMO systems).

The winders serve as material storage devices. The web moves with high
speed from the unwinder through a large number of nip-sections (in figure
1 there are only 3 nip-sections shown) to the upwinder. In every nip-section
a processing step is executed; for example the material is dried, deformed,
polished, coated, printed, colored, etc. Every section is equipped with an
induction motor drive.

In this paper we assume ideal working conditions for the nip-section next
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FIGURE 2. Signal flow graph of a nip-section

to the unwinder, which means in particular that this nip-section takes over
the function of the leading drive and impresses the nominal web velocity.
The following nip-sections are numbered starting from one. The upwinder
is controlled ideally so that the web is stored with a given constant web
force, by which the upwinder is decoupled from the last section. We shall
investigate the dynamic and static behavior of the nip-sections between the
leading drive and the upwinder.

In order to give an idea of the physics we want to discuss briefly the
signal flow in a nip-section, for example the third section. With the above
assumptions the normalized and linearized signal flow graph of this nip-
section is depicted in figure 2 ([WS87], [WS93]). To this section belong
the reference value of the motor torque m3soll, the actual motor torque
m3, the web velocity v3 at the third roller and the web force f23 between
the second and the third roller. IMD (Induction Motor Drive) denotes a
nonlinear numerical model for an induction motor drive including a voltage
source inverter and torque control, see section 3. The torque m3 of the
IMD acts on the integrator with the time constant Tm representing the
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combined inertia of the roller and the motor. The difference of the velocity
of the second and the third roller v3−v2 produces a strain ε23 via the time
constant Tb of the web. The factor v0 is the average transport velocity
of the web under steady state conditions. The web force f23 is produced
by ε23 according to Hooke’s law, expressed through the factor 1

εn
. The

difference f34 − f23 gives the reaction of the web to the third roller and
thus to the corresponding motor shaft1.

The variables that are to be kept within close limits and have to be
controlled with closed loop control are the web forces f23, f34, f45, f56 and
f67 of five coupled nip-sections2. The control variables are the reference
values of the motor torques m3soll, m4soll, m5soll, m6soll and m7soll. All
quantities are deviations from steady state conditions.

In this paper the following normalized plant parameters are used:

cvi = 1 i = 3 . . . 7
εn = 0,005333
v0 = 1
Ti = 0,00384 s i = 3 . . . 7
Tmi = 0,415 s i = 3 . . . 7
Tb = 0.4875 s

3 Model of the Induction Motor Drive

In this paper a nonlinear model for the induction motor drives is used for
the numerical simulations. The drives are equipped with a voltage source
inverter and are torque controlled via closed loop control. It is not the
topic of this paper to describe this model in detail. Nevertheless we want
to give a basic idea of its behavior.

A typical time plot of step responses obtained from an experimental set-
up of a modern induction motor drive is depicted in figure 3 [Hin93] The
upper half of the figure shows the reference value of the torque; the lower
part shows the actual motor torque. Obviously, these transients are quite
different from the often used PT1–approximation.

The numerical model is based on [Hin93] and was developed in order to
describe typical stationary and transient phenomena for torque controlled
induction motor drives in a single-phase model:

• During steady state conditions— this means the reference value of
the torque is constant— the actual torque shows ripples because of
the switching behavior of the voltage source inverter.

• During transients the gradient of the torque is approximately con-
stant. The value of the gradient varies within certain limits according
to the speed and internal quantities of the drive.

1Please note that all signals throughout this paper are normalized quantities as it
is usually done in control engineering. This means all signals are without dimension.
The basics of the normalization technique can be found in every introductory control
engineering book.

2The signal flow graph of the coupled system will be shown in section 5.6, figure 19.
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FIGURE 3. Time plots of the reference torque (top) and of the actual torque
(bottom) of an experimental set-up of an induction motor drive equipped with a
voltage source inverter

Time plots of step responses obtained from simulations of the numerical
model are depicted in figure 4 and show good congruence to the experi-
mental results of figure 3.

4 General Regression Neural Network

Neural Networks are universal approximators for multi-dimensional nonlin-
ear static functions. A neural network can be interpreted as a box, whose
outputs depend on the specific inputs and on the values of the internal ad-
justable weights. This approximation ability is necessary for the proposed
control concept. We shall show in section 5 how to generate data which is
used as input data for the neural network.

The different types of neural networks differ in their intra— and extrap-
olation behavior. In this paper the General Regression Neural Network
(GRNN) is chosen because it provides a smooth output function even with
sparse data and because its interpolation behavior is predictable [Spe91],
[MD89]. These are desirable features especially in closed control loops.
The GRNN is a one-pass learning network with a highly parallel structure.
The basic idea is similar to the probabilistic neural network, which involves
one-pass learning as well [Spe88].

We want to point out that our control concept does not depend on a
certain type of neural network. The control concept can be applied to all
neural network paradigms which implement a smooth output function like
e. g. the well known backpropagation neural network. However, one dis-
advantage of backpropagation is that it needs a large number of iterations
to converge to the desired solution.

The algorithmic form of the GRNN can be used for any regression prob-
lem in which an assumption of linearity is not justified. In comparison to
conventional regression techniques the GRNN does not need any a-priori
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FIGURE 4. Simulation results of the numerical model of the induction motor
drive equipped with a voltage source inverter: Time plots of the reference torque
msoll(t) (thick line) and of the actual torque m(t) (thin line)

information about the form of the regression functions. It can be imple-
mented in parallel hardware or computed in a parallel manner for instance
on transputers. However, sequential software simulation of GRNNs requires
substantial computation.

The basic equation for a GRNN with m inputs (x = [x1 x2 . . . xm]T )
and one output (y is scalar) is

y = y(x) =

p∑
ν=1

ϑν · exp
(
−Cν

σ

)

p∑
ν=1

exp
(
−Cν

σ

) = ϑT · w(x) (1)

where

Cν =
m∑

n=1

|xn − χν
n|

σ = smoothing parameter

The pairs χν = [χν
1 χν

2 . . . χν
m]T and ϑν are the data points, which deter-

mine the approximation surface.
The output y(x) can be considered as a weighted average of all data

points ϑν(χν) where each data point is weighted exponentially according
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to the Manhattan-distance3 from x. When the smoothing parameter σ is
made very large the output function y(x) is forced to be smooth. As σ
goes to 0 y(x) assumes the value of the ϑν(χν) associated with the data
point closest to x. For intermediate values of σ the data points closer to x
are given heavier weight then those further away.
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FIGURE 5. General Regression Neural Network with neural hardware imple-
mentation

A neural hardware implementation of a GRNN is depicted in figure 5.
The network consists of three layers. In the input layer the components of
the Manhattan distances |xn − χν

n| are computed. Note that the χν
n are

constant because they are part of the data points. The activation functions
of the neurons in the input layer are all identical; they are the absolute
value function. The outputs of the input layer are amplified by the factors
− 1

σ of the synaptic weights in order to provide the corresponding −Cν

σ as
inputs for the neurons in the hidden layer. The activation function of all
neurons in the hidden layer is the exponential function for the calculation of
exp(−Cν

σ ). The numerator of (1) is constructed by the ϑν–weighted sum of
the outputs of the hidden layer. The denominator of (1) is simply the sum
of all hidden layer outputs. The final division to obtain y has to be done
outside the GRNN. Extremely fast neural network hardware is available
on the market to implement the GRNN, see e. g. [FHS91]. We illustrate
the approximation behavior through a simple 2-dimensional example. The

3Other distance measures, such as e. g. the euclidean distance, are suitable as well.
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a) b)

FIGURE 6. Approximation of the XOR-problem on the unit-square. a) σ = 0.2,
b) σ = 1.0
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which represent the XOR-problem on the unit square. The result of equa-
tion (1) with m = 2 and p = 4 is shown in figure 6. There is no over- or
undershooting because the output y is bounded by the minimum and the
maximum of the ϑν , ν = 1, . . . , p. The output does not converge to poor
solutions corresponding to local minima of an error criterion as it some-
times happens with iterative techniques. Furthermore the GRNN allows
one-pass learning (however at the cost of an increasing number of neurons);
therefore the learning procedure is very fast. These are— in this context—
the main advantages relative to other nonlinear regression schemes, e. g.
the well known backpropagation neural network, whose approximation be-
havior is unpredictable in principle and which needs an iterative training
procedure.

The only parameter which has to be adjusted according to the data set is
the smoothing parameter σ. The simplest method to obtain an appropriate
σ is to carry out a few trial-and-error steps, which in our case can be done
easily with the help of visualization tools.

5 Control Concept

5.1 Some Preliminary Remarks about Time–Optimal Control

Controller design for coupled Multi-Input/Multi-Output (MIMO) systems
can be carried out easily for linear plants with well known linear design
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FIGURE 7. Simplification of induction motor drive

techniques, e. g. pole placement. The resulting large matrices can be han-
dled by modern high-end CPUs. However, from a practical point of view
there are some severe drawbacks. A correspondence between system be-
havior and specific matrix elements often does not exist. Putting the plant
into operation is a very difficult task. A change of system structure, caused
for instance by a web tear, can result in completely unpredictable and in-
definable system reactions.

Furthermore it is impossible to take into account nonlinearities in the
linear controller design procedure. Important nonlinearities are the restric-
tions on the motor torque due to indextorque, motorvoltage source inverter
physics and limited power of the induction motor drive. In this paper a
nonlinear control technique is developed which takes these restrictions into
account directly. The aim is to achieve time-optimal control behavior with
adherence to the restrictions.

In general time-optimal control means to drive a system from any initial
state into any reference state in the shortest time possible. This task can
be standardized by a linear transformation so that one has to consider only
the trajectories leading to the origin of the state space.

Often time-optimal control is designed with a single restriction only;
namely the limitation of the maximum absolute value of the control vari-
able. Under this circumstance the time optimal control obtained is an
ideal two-point switch. The zero-trajectory serves as switching curve. Zero-
trajectories are defined as trajectories which lead to the origin of the state
space while the controller output equals either the positive or the negative
maximum value. It is well-known that this type of time-optimal control
results in chattering system behavior. Under stationary conditions we ob-
serve the characteristic limit cycles, because the controller output switches
permanently between both maximum values.

Our control concept not only avoids these limit cycles but also takes the
restriction of the maximum gradient of motor torque changes into account.

5.2 System Trajectories of an Isolated Nip-Section

In order to provide
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• a transparent design procedure,

• predictable system behavior in the case of structure changes,

• the opportunity to put the plant into operation sectionwise and

• to achieve a good approximation of time optimal control

we first consider the controller design for an isolated nip-section of low
order. As a representative we consider the third section, which corresponds
to the control variable m3soll(t), the actual torque m3(t), the web velocity
v3(t) and the web force f23(t). After a controller for such a subsection is
found we shall extend the control concept in order to handle the complete
complex MIMO-system consisting of five coupled nip-sections.

An important idea of our control concept is to introduce restrictions such
that the actual motor torque is just able to follow the reference value of
the motor torque with reasonable accuracy. Considering the figures 3 and
4 we conclude that if we restrict the reference value of the torque as follows

• the absolute value of m3soll(t) does not exceed a maximum

|m3soll(t)| < |m3soll|max
∀t |m3soll|max

= constant (2)

• the absolute value of the time derivative ṁ3soll(t) does not exceed a
maximum

|ṁ3soll(t)| < |ṁ3soll|max
∀t |ṁ3soll|max

= constant (3)

then — provided the constant values |m3soll|Max and |ṁ3soll|Max are cho-
sen appropriately— it is guaranteed that we take nearly full advantage of
the dynamic capabilities of the induction motor drive while m3 ≈ m3soll;
see figure 7. Note that introducing the restrictions (2) and (3) is artificial
and thus can be seen as part of the controller. The resulting signal flow
graph for the third isolated nip-section is shown in figure 8. Another ad-
vantage resulting from the restrictions (2) and (3) is that now we know the
maximum values of the actual torque and its gradient which is important
for decoupling measures; see section 5.6. The maximum gradient would
depend otherwise on the speed and on internal quantities of the IMD.

Consequently an important simplification can be made. If we guarantee
that the controller output pays attention to (2) and (3) then it is sufficient
to consider two states of the subsystem: the web velocity v3 and the web
force f23. The internal states of the induction motor drive can be neglected.
This enables us to use in later sections the control surface with the three
dimensions v3, f23 and m3soll as a visualization tool for our considerations.

The two restrictions (2) and (3) imply that there is no analytical solution
possible for the time-optimal controller. Therefore the controller has to be
designed by some other means.

In principle the time-plots of time-optimal control trajectories have to
look like the transient in figure 9. Note that the transient is constructed
such that the restrictions are just not violated. It is sufficient to consider
two switching times, t1 and t2. Starting with t = 0 the control variable
m3soll(t) has to be set to the maximum value as fast as possible; therefore
the restriction (3) is active. When the maximum value is reached the
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FIGURE 8. Signal flow graph of the third isolated nip-section with restrictions

restriction (2) becomes active. At the first switching time t1 the control
variable has to be decreased with maximum velocity (again restriction (3)
is active) until the maximum negative value is reached (again restriction
(2) becomes active). After the second switching time t2 the control variable
has to be reduced to zero as fast as possible and after that the transient
is completed. We should point out the possibility that the switching time
occurs before the corresponding maximum value is reached; an example of
this effect will be given with the simulation results.

As already mentioned before it is the purpose of a transient like the one
shown in figure 9 to drive the system from any initial state into the origin of
the state space in the shortest time possible. A specific combination of the
switching times t1 and t2 corresponds to a certain initial state. However,
this initial state is unknown. On the other hand the final state is known,
namely the origin of the state space: web velocity v3 = 0 and web force
f23 = 0.

For this reason we integrate the system backwards in time. We start in
the origin of the state space and use control transients of the type depicted
in figure 9 in order to obtain time-optimal system trajectories. We do
this repeatedly with different switching times t1 and t2 in order to generate
time-optimal trajectories distributed over the entire state space. A selection
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FIGURE 9. Typical time-optimal transient m3soll(t)

FIGURE 10. Time-optimal trajectories in the state space

of six trajectories is shown in figure 10. In the meantime we store the
corresponding values of the velocity v3(tν), the web force f23(tν) and the
reference torque m3soll(tν) at time instants tν :

χν =
[

v3(tν)
f23(tν)

]
and ϑν = m3soll(tν) for ν = 1, . . . , p (4)

It is the basic idea of our control concept that this data can be used as
input data for a GRNN. The resulting control surface, implemented with
a GRNN, will be shown in section 5.5, where the simulation results are
presented.
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FIGURE 11. Regions in the state space

5.3 Linear-Integral Controller in a Small Region around the
Stationary State

In order to provide a smooth control surface and to guarantee stationary
accuracy in the presence of disturbances the state space is divided into three
regions (figure 11): The first region Ωin comprises a small area around the
stationary state (which corresponds to the origin of the phase plane of figure
11), where only a conventional linear state controller with an integrator
is active; the second region Ωtrans is a small layer around Ωin, where a
smooth transition between the linear state controller and the nonlinear
neural controller is provided; and the third region Ωout comprises the rest
of the state space, where only the neural controller is used.

The linear controller does not match the demand for time-optimality, but
its sphere of activity is so small that it hardly deteriorates the transients.
On the other hand the linear controller has some substantial advantages:
Because of the integrator the system shows a certain degree of robustness
against disturbances; the parameters of the linear controller can be opti-
mized with respect to good disturbance rejection. Furthermore no limit
cycles around the stationary state occur.

5.4 Approximation of Time-Optimal Control for an Isolated
Nip-Section

In section 5.2 we have assumed transitions from any initial state to the
origin of the state space. Now we want to allow arbitrary states as tar-
get states. Therefore a linear transformation on the controller has to be
performed. Controller inputs are then the differences m3d, v3d and f23d
between the actual and the corresponding reference states, which are com-
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puted as follows:

m3d = f23soll − m3 (5)
v3d = v3 − f23soll · εn · v0 (6)

f23d = f23soll − f23 (7)

To the controller output we have to add the reference value of the web
force f23soll. It is simple to verify this transformation through stationary
considerations. As we have already mentioned note that all signals are
normalized quantities.

The resulting controller structure approximating time-optimal control is
depicted in figure 12. It is assumed that all system states are measurable
with negligible time delay. The reference value is the web force f23soll; the
controlled value is the actual web force f23.

5.5 Simulation Results for an Isolated Nip-Section

Numerical simulations have been done for the control structure of figure
12. We applied a step function of the reference value of the web force:

f23soll(t) = 0 for t < 0
f23soll(t) = 1 for t ≥ 0

The simulation results are shown in the figures 13— 16. The controller
output m3soll(t), figure 13, does not violate the two restrictions (2) and
(3); for example:

|m3soll(t)| < 3
|ṁ3soll(t)| < 20s−1

The transient of the actual motor torque m3(t), figure 14, shows very clearly
the ripple on the torque because of the switching behavior of the voltage
source inverter4. The time plots of the web velocity v3(t), figure 15, and
of the actual web force f23(t), figure 16, show very good approximation of
the time-optimum. The slight overshoot of f23(t) is caused by the linear
controller in Ωin.

The resulting control surface, implemented with a GRNN, together with
a typical system trajectory is depicted in figure 17.

5.6 Approximation of Time-Optimal Control for the
Industrial Production Plant

We want to use now the results from the previous sections to control the
complex plant with five highly coupled nip-sections.

In order to maintain the very good approximation of time-optimality it
is necessary to introduce some decoupling measures. It is not the topic of
this paper to discuss decoupling techniques in detail. There are quite a lot

4The simulation was done with the IMD-model; see figure 7 left.
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of different techniques possible; in this paper a relatively simple extension
to the control concept developed so far is chosen. The resulting control
concept is shown in figures 18 and 19.

For the decoupling in the opposite moving direction of the web the signal
path a (see figure 18) is added which compensates the influence of the web
force f56 of the following nip-section, see figure 19. For the decoupling in
the moving direction of the web the signal b is generated as the weighted
sum of the web forces of all preceding nip-sections.

This decoupling measure has to be realized for each nip-section as it is
depicted in figure 19. Because of limited space the control structure of each
section is summarized by a nonlinear block marked with state/GRNN. This
block contains the linear-integral state controller and the GRNN controller
as well as the device for the generation of the correct final controller output
according to the description in section 5.3.

5.7 Simulation Results for the Industrial Production Plant

The control system of figure 19 was simulated numerically. We applied a
step function of the reference value of the web force of the third section:

f23soll(t) = 0 for t < 0
f23soll(t) = 1 for t ≥ 0

The transients of all web forces— f23(t), f34(t), f45(t), f56(t) and f67(t) —
are depicted in figure 20.

We applied a step function of the reference value of the web force of the
seventh section as well:

f67soll(t) = 0 for t < 0
f67soll(t) = 1 for t ≥ 0

The transients of all web forces are shown for this case in figure 21.
Figure 20 as well as figure 21 show that the very good approximation of

time-optimality is maintained for the MIMO-case. The transients of f23(t)
in figure 20 and of f67(t) in figure 21 are nearly the same as in section 5.5
where the time-optimal control for an isolated nip-section was considered.

6 Conclusion

All results and experiences with linear state control concepts for industrial
plants of the type described in section 2 show that there is a crucial ob-
jective conflict: Either the control parameters are adjusted such that the
decoupling works well but at the expense of a rather bad dynamical be-
havior or the other way round [WS93]. Acceptable compromises have to
be found.

It is our belief that via the incorporation of nonlinear control strategies
it is possible to soften this objective conflict, which means to find better
compromises than it is ever possible with linear techniques.

In this context we have developed a nonlinear control concept. The
use of neural networks was motivated by the fact that they can represent
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arbitrary nonlinear static functions. In this paper we have chosen the
General Regression Neural Network because of its favorable approximation
properties.

We have demonstrated how to gain data for the neural network in order
to achieve a control hypersurface which approximates time-optimal con-
trol. Simulation results have been presented for an isolated nip-section
of the plant and the entire complex industrial production plant with five
nip-sections. We have demonstrated that our neural control concept ap-
proximates the time-optimum very well. Note that the data acquisition
described in section 5.2 depends on the system parameters. However, in
the described type of industrial production plant there are some parame-
ters which vary considerably during operation, for example the proportional
factor en between the web force and the strain. Therefore it is necessary to
adapt the control surface according to these parameter changes. For this
purpose error signals have to be generated and a stable learning law has to
be derived in order to incorporate adaptivity in our control concept. Fur-
ther research work will show whether very promising approaches for stable
online learning [SSL95] [SS95] [Sch96] can be used.
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FIGURE 12. An isolated nip-section with neural control
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FIGURE 13. Time plot of m3soll(t) for a step function of f23soll(t); isolated
nip-section

FIGURE 14. Time plot of m3(t) for a step function of f23soll(t); isolated
nip-section

www.4electron.com



246 Clemens Schäffner , Dierk Schröder

t

v3(t)

FIGURE 15. Time plot of v3(t) for a step function of f23soll(t); isolated
nip-section
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FIGURE 16. Time plot of f23(t) for a step function of f23soll(t); isolated
nip-section
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FIGURE 17. Control surface of the General Regression Neural Network and a
typical system trajectory
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FIGURE 18. Signal flow graph of the neural control concept extended by a
decoupling measure (signals a and b)
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FIGURE 19. Signal flow graph of the neural control concept for the industrial
production plant extended by decoupling measures
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FIGURE 20. Time plot of the web forces f23(t), f34(t), f45(t), f56(t) and f67(t)
due to a step function of f23soll(t)
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due to a step function of f67soll(t)
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Neuro-Control Design:
Optimization Aspects

H. Ted Su
Tariq Samad

ABSTRACT This chapter views neural-network-based control system de-
sign as a nonlinear optimization problem. Depending on the role of a neural
network in the system, the neural-control problems are classified into a few
categories. A unifying framework for neuro-control design is presented to
view neural network training as a nonlinear optimization problem. This
article then outlines a new neuro-control concept, referred to as “Parame-
terized Neuro-Controller (PNC),” and discusses the optimization complex-
ities it poses. To demonstrate the unique characteristics of this new neural
control design concept, simulation results are presented at the end of this
article.

1 Introduction

The recent and considerable interest in neuro-control has resulted in a
number of different approaches to using neural networks in control system
design. For applications in the process industries, the most relevant of
these are based on using neural networks as identifiers or optimizing neural
network controllers using a process model. Successful practical applications
of this approach are now in operation, e.g. [TSSM92, Sta93].

This chapter views neural-network-based control system design as a non-
linear optimization problem. Depending on the characteristics of the appli-
cation, it also shows how different optimization algorithms may be appro-
priate. A fundamental distinction is made between gradient-based and non-
gradient-based algorithms. In the former case, a variety of techniques are
available for gradient computation. Although gradient-based algorithms
can be expected to be significantly more efficient than non-gradient-based
ones, there are applications where gradient computation is infeasible. For
example, desired control performance criteria are not always differentiable,
local minima may render strict gradient methods useless, and not all pro-
cess models allow analytical derivatives. This article reviews a number of
non-gradient algorithms that have recently been used in neuro-control.

To illustrate the appropriateness for non-gradient algorithms, this ar-
ticle outlines a new neuro-control concept and discusses the optimization
complexities it poses. This concept is referred to as “Parameterized Neuro-
Controller” (PNC) [SF93]. PNCs designed with two types of external pa-
rameters are considered: process parameters that provide the controller
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with information regarding the dynamical characteristics of the process
(e.g. dead time, gain), and control parameters that indicate characteris-
tics of the desired closed-loop behavior (e.g. maximum overshoot, desired
settling time). These two types of parameters make a PNC a generic con-
troller. It is generic in two aspects: 1) a PNC is applicable to different
processes, and 2) a PNC is adjustable or tunable for its closed-loop control
performance.

This article presents simulation results showing the pervasiveness of local
minima for this application. The algorithm used in this study integrates
the population-based search of a genetic algorithm with the random-walk
aspect of chemotaxis. Experimental results on a low-order model appro-
priate for chemical processes are presented.

2 Neuro-Control Systems

This section briefly reviews various approaches in current neuro-control
design. Although there are other ways to classify these approaches, e.g.
[HSZG92], this chapter nevertheless adopts one similar to adaptive control
theory: 1) indirect neuro-control and 2) direct neuro-control.

In the indirect neuro-control scheme, a neural network does not send a
control signal directly to the process. Instead, a neural network is often
used as an indirect process characteristics indicator. This indicator can
be a process model which mimics the process behavior, or a controller
auto-tuner which produces appropriate controller settings based upon the
process behavior. In this category, the neuro-control approaches can be
roughly distinguished as follows: 1) neural network model-based control,
2) neural network inverse model-based control, and 3) neural network auto-
tuner development.

In the direct neuro-control scheme, a neural network is employed as a
feedback controller, and it sends control signals directly to the process.
Depending on the design concept, the direct neuro-control approaches can
be categorized into: 1) controller modeling, 2) model-free neuro-control
design, 3) model-based neuro-control design, and 4) robust model-based
neuro-control design.

Regardless of these distinctions, a unifying framework for neuro-control
is to view neural network training as a nonlinear optimization problem:

NN : min
w

J(w) (1)

in which one tries to find an optimal representation of the neural network
that minimizes an objective function J over the network weight space w.
Here, NN indicates that the optimization problem formulation involves a
neural network. The role a neural network plays in the objective function
is then a key to distinguishing the various neuro-control design approaches.
To make this article more interesting, the appearance/formulation of Eqn. 1
will take various forms in the discussion to follow. As the main thrust of this
article, the optimization aspects of various neuro-control design approaches
are discussed based upon the formulation of the objective function. The
various optimization problems are not precisely but rather conceptually
formulated for discussion purposes.
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FIGURE 1. Neural network can be used as a black-box model of a process.

2.1 Indirect Neuro-Control

Neural Network Model-Based Control

Full Neural Network Model
The most popular control system application of neural networks is to use a
neural network as an input-output process model. This approach is a data
driven supervised learning approach, i.e., the neural network attempts to
mimic an existing process from being exposed to the process data (see Fig.
1). The most commonly adopted model structure for such a purpose is
the nonlinear auto-regressive and moving average with exogenous inputs
(known as NARMAX) model or a simpler NARX [CBG90, SMW92]. This
family of NARMAX models is a discrete-time nonlinear transfer function
[Lju87]. Alternatively, one can choose to identify a continuous-time model
with a dynamic neural network, e.g. a recurrent network [Wer90].

Regardless of the model structure and the control strategy, the neuro-
control design in this case can be conceptually stated as follows:

NN : min
w

F{yp − yn(w, ...)} (2)

where yp stands for plant/process output, yn for neural network output,
and w for neural network weights. Here F{·} is a functional that measures
the performance of the optimization process. It is usually an integral or
sum of the prediction errors between yp and yn. For example, in this model
development stage, process inputs and output {up, yp} are collected over a
finite period of time and used for neural network training. F{·} is usually
an integral of the 2-norm of yp − yn. A typical example of Eqn. 2 is as
follows:

NN : min
w

∑
t

|yp(t) − yn(t)|2; yn(t) = N (w, ...) (3)

Once the model is developed, it can then be implemented for model-based
control design.
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FIGURE 2. A neural network model can be incorporated into nonlinear Model
Predictive Control (MPC) scheme.

At the implementation stage, nevertheless, the neural network model
cannot be used alone. It must be incorporated with a model-based control
scheme. In the chemical process industry, for example, a neural network
is usually employed in a nonlinear model predictive control (MPC) scheme
[SM93b, SM93a]. Fig. 2 illustrates the block diagram of an MPC control
system. In fact, the MPC control is also an optimization problem. The
optimization problem here can often be expressed as follows:

min
u

F ′{y∗ − yn(u, ...)} (4)

where y∗ designates the desired closed-loop process output, u the pro-
cess/model input or control signal, and yn the predicted process output
(by the neural network model). Here F ′ stands for an objective function
that evaluates the closed-loop performance. For example, the optimization
problem in the implementation stage is usually as follows:

min
u

∑
t

|y∗(t) − yn(t) − d(t)|2, yn(t) = N (u, ...) (5)

where y∗(t) stands for desired setpoint trajectory, and d(t) for estimated
disturbance. This optimization is performed repeatedly at each time in-
terval during the course of feedback control. Although the constraints are
not particularly of interest in the discussion, one advantage of this indirect
control design approach over the direct ones is that the constraints can
be incorporated when solving the above optimization problem. For more
details about MPC, refer to [SDBM91, SM93b, SM93a] for example.

As discussed later, moreover, a full neural network model can be incorpo-
rated into other neuro-control schemes, such as neural network auto-tuner
design (Section 2.1), model-based controller modeling (Section 2.2), and
model-based neuro-control design (Section 2.2 and Section 2.2).

Parametric or Partial Neural Network Model
In some cases, a certain degree of knowledge about the process might be
available, such as model structure or particular physical phenomena that
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FIGURE 3. A neural network can be a parameter estimator, model structure
selector, or partial elements of a physical model.

are well-understood. In this case, a full black-box model might not be most
desirable. For example, if the structure of the process model is available,
values for the associated parameters can be determined by a neural net-
work. Examples of these parameters can be time constants, gains, and
delays or physical parameters such as diffusion rates and heat transfer co-
efficients. Psichogios and Ungar [PU92] employed such an approach to
model a fedbatch bioreactor. Kramer [TK94] also presented an hybrid
model structure that incorporated prior knowledge into neural network
models. When model structure is not known a priori, neural networks can
be trained to select elements of a model structure from a predetermined
set [KSF92]. These elements can then be composed into a legal structure.
Lastly, in other cases where model structure is partially known, neural net-
works can also be integrated with such a partial model so that the process
can be better modeled [SBMM92].

For illustration purpose, the parametric or partial neural network mod-
eling problem can be formulated as follows:

NN : min
w

F{yp − ym(θ, ...)}; θ = N (w, ...) (6)

where ym is the predicted output from the model and θ stands for the
process parameters, model structural information, or other elements re-
quired to complete the model. Notice the only difference between Eqn. 6
and Eqn. 2 is that ym replace yn. From a model-based control standpoint,
this approach is essentially identical to the full black-box neural network
model except that the neural network does not directly mimic the process
behavior.

Neural Network Inverse Model
In this approach, a neural network is trained to develop an inverse model
of the plant. The network input is the process output, and the network
output is the corresponding process input (see Fig. 4). In general, the
optimization problem can be formulated as:

NN : min
w

F{u∗
p−1 − un(w, ...)} (7)
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FIGURE 4. A neural network inverse model.

where u∗
p−1 is the process inputs. Typically, the inverse model is a steady

state/static model, which can be used for feedforward control. Given a
desired process setpoint y∗, the appropriate steady-state control signal u∗
for this setpoint can be immediately known:

u∗ = N (y∗, ...) (8)

Successful applications of inverse modeling are discussed in [MMW90] and
[SW90]. Obviously, an inverse model exists only when the process behaves
monotonically as a “forward” function at steady state. If not, this approach
is inapplicable.

One can also find a few articles addressing a similar “inverse model”
concept of using a non-static inverse neural network model for control
[BM90, Yds90, UPK90, PU91]. In principle, an inverse neural network
model can learn the inverse dynamics under some restrictions (e.g. min-
imum phase and causality are required). Then, the inverse model is ar-
ranged in a way similar to an MPC controller. In practice, especially for
discrete-type dynamic models, the inverse model may not be able to learn
the desired inverse dynamics. For example, Psichogios & Ungar [PU91]
trained an inverse model and then performed some control case studies.
The “inverse model” approach failed to function as expected. In many
cases, a process inverse is in fact non-causal even if the process behaves
monotonically as mentioned above. The non-causality of a process inverse
can result from transport delay (dead time) or discretization of a continu-
ous process in a sampled-data system. Even if an inverse model does exist,
the use of a dynamic inverse model as a feedback controller will not result
in a strictly proper control system. Strict properness is essential in control
system design [MZ89].

In some of the open literature, “inverse-modeling” is sometimes used to
refer to training a neural network “model” in a closed-loop environment,
e.g. [HSZG92, PSY88]. This “inverse-modeling” approach does not lead to
an “inverse model” that inverts the forward function of the process/plant
of interest. For example, the process as a function maps input variables
to output variables, whereas the “inverse model” does not map the same
output variables or to the same input variables. Instead, it often maps the
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FIGURE 5. Closed-Loop neural network auto-tuner.

difference between the output variables and the goal (or set points) to the
input variables. From this paper’s perspective, this approach belongs to
the category of “neuro-control” design, and will be discussed in sections to
follow.

Neural Network Auto-Tuner
As in the previous case where neural networks can be used to estimate
parameters of a known model, they can also be used to estimate tuning
parameters of a controller whose structure is known a priori. A controller’s
tuning parameter estimator is often referred to as an auto-tuner. The
optimization problem in this case can be formulated as follows:

NN : min
w

F{η∗ − ηn(w, ...)} (9)

where η∗ denotes the controller parameters as targets, and ηn stands for the
predicted values by the neural network. Network input can comprise sam-
pled process data or features extracted from it. However, these parameters
η cannot be uniquely determined from the process characteristics. They
also depend on the desired closed-loop control system characteristics. Usu-
ally, the controller parameters η∗ are solutions to the following closed-loop
control optimization:

min
η

F ′{y∗ − yp/m(u, ...)}; u = C(η, ...) (10)

where C is a controller with a known structure. Here, yp/m denotes that
either a process or a model can be employed in this closed-loop control in
order to find the target controller C.

Actually, the attraction of this approach is that the network can be
trained in simulation. Training on actual process data is not necessary.
For open-loop auto-tuning, an open-loop simulation is sufficient; otherwise
a closed-loop simulation is needed (see Fig. 5). The training must be con-
ducted over a space of process models. Ideally, this space should cover the
processes that will be encountered during operation.

Most work to date in auto-tuning is directed at the PID controllers
as they are still the most widely used control structure in practice. Ap-
propriate values for the PID gains (Kc/proportional gain, Ki/reset time,
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Kd/derivative time) are essential if the closed-loop system is to perform
in a desired manner. PID tuning is still largely a manual procedure of-
ten relying on heuristics developed over a half-century ago [ZN42]. Several
auto-tuners are commercially available, but improvements are still needed.
For neural-network auto-tuner design, low-order linear models with ranges
for parameters are likely to suffice for most PID applications.

Developments of this concept are discussed by Swiniarski [Swi90] and Ru-
ano et al. [RFJ92]. In [Swi90], the network is trained using Ziegler-Nichols
heuristics for determining target PID gains. During operation, the input to
the network is 128 samples of open-loop process step response. Thus the re-
sulting auto-tuner requires open-loop operation of the process. In contrast,
Ruano et al. describe a method for open-loop or closed-loop auto-tuning,
accomplished by preprocessing input/output data. Optimal PID gains for
training purposes are computed with a quasi-Newton optimization algo-
rithm initialized with Ziegler-Nichols values. The optimization criterion is
the minimization of the integral of time-multiplied absolute error (ITAE).
The authors show how a closed-loop auto-tuner can effectively adapt PID
parameters on-line in response to setpoint changes for the control loop.

2.2 Direct Neuro-Control

Controller Modeling

Among the four direct neuro-control schemes, the simplest one to neuro-
controller development is to use a neural network to model an existing
controller. The input to the existing controller is the training input to
the network and the controller output serves as the target. In fact, this
approach is similar to the neural network modeling approach discussed in
Section 2.1 except that the target here is not a process but a controller.
Likewise, this neuro-control design can be formulated as follows:

NN : min
w

F{uc − un(w, ...)} (11)

where uc∗ is the output of an existing controller C∗. Usually, the existing
controller C∗ can be a human operator or it can be obtained via:

min
C

F ′{y∗ − yp/m(u, ...)}; u = C(...) (12)

Like a process model, a controller is generally a dynamical system, and
often comprises integrators or differentiators. If an algebraic feed-forward
network is used to model the existing controller, dynamical information
must be explicitly provided as input to the network. This dynamical in-
formation can be provided either as appropriate integrals and derivatives
or as tapped delay signals of process data. For example, to model a PID
controller, an algebraic neural network needs not only the instantaneous
error between the set-point and the process output, but also the derivative
and integral of the error. Alternatively, one can train a neural network with
a series of those errors and/or the controller outputs in the previous time
steps. The latter approach is similar to developing an ARX (auto-regressive
with exogenous inputs) type process model, except that the inputs and the
outputs of the process are replaced with feedback errors and controller
outputs.
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FIGURE 6. The simplest approach to neuro control design is to use a neural
network to model an existing controller

In general, this approach can result in controllers that are faster and/or
cheaper than existing controllers. Using this approach, for example, Pomer-
leau [Pom91] presented an intriguing application, where a neural network
is used to replace a human operator, i.e. an existing controller. The CMU
Navlab van, equipped with a video camera and an imaging laser range-
finder, is driven by a human operator at about six miles per hour for about
five minutes. During this time, a neural network is trained “on-the-fly” to
learn the mapping from the video and laser range-finder inputs to steer-
ing actions. Subsequently, the network can drive the van autonomously at
speeds of up to the maximum of 20 MPH, which is over twice as fast as any
other sensor-based autonomous system has driven the Navlab. Moreover,
neural networks have been developed that are capable of driving on single-
lane dirt roads, two-lane suburban neighborhood streets, and lined two-
lane highways. With other sensory inputs additional capabilities have been
achieved, including collision avoidance and nocturnal navigation. Pottman
and Seborg [PS92] also present a neural network controller that is trained
to learn an existing MPC controller. Given any setpoint change and dis-
turbance, the MPC controller uses a neural network model and performs
on-line optimization to calculate the optimal control signal. The resulting
neuro-controller can then replace the “on-line optimizing” MPC and yields
similar near-optimal results except the neuro-controller is faster since it
does not need any on-line optimization.

While the benefits of this approach may be apparent when the existing
controller is a human, its utility may be limited. It is applicable only when
an existing controller is available, which is the case in many applications.
Staib and Staib [SS92] discuss how it can be effective in a multi-stage train-
ing process. A neural network is trained to mimic an existing controller,
and then further refined in conjunction with a process model—the model-
based control design concept to be discussed later.

Model-Free Neuro-Control
In the absence of an existing controller, some researchers have been inspired
by the way a human operator learns to “control/operate” a process with
little or no detailed knowledge of the process dynamics. Thus they have
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FIGURE 7. The model-free control design concept.

attempted to design controllers which, by adaptation and learning, can
solve difficult control problems in the absence of process models and human
design effort. In general, this model-free neuro-control design can be stated
as:

NN : min
w

F{y∗ − yp(u, ...)}; u = N (w, ...) (13)

where yp is the output from the plant. The key feature of this direct
adaptive control approach is that a process model is neither known in
advance nor explicitly developed during control design.

This control design problem is often referred to as “reinforcement learn-
ing.” However, this article chooses to refer to this class of control design as
“model-free neuro-control design” as it is more appropriate in the context
of the discussion [SF93]. Fig. 7 is a typical representation of this class of
control design.

The first work in this area was the “adaptive critic” algorithm proposed
by Barto et al. [BSA83]. Such an algorithm can be seen as an approximate
version of dynamic programming [Wer77, BSW90]. In this work, they posed
a well-known cart-pole balancing problem, and demonstrated their design
concept. In this class of control design, limited/poor information is often
adopted as an indication of performance criteria. For example, the objec-
tive in the cart-pole balancing problem is simply to maintain the pole in
a near-upright balanced position for as long as possible. The instructional
feedback is limited to a “failure” signal when the controller fails to hold the
pole in an upright position. The cart-pole balancing problem has become a
popular test-bed for explorations of the model-free control design concept.

Despite its historical importance and intuitive appeal, model-free adap-
tive neuro-control is not appropriate for most real-world applications. The
plant is most likely out-of-control during the learning process, and few in-
dustrial processes can tolerate the large number of “failures” needed to
adapt the controller.

Model-Based Neuro-Control
From a practical perspective, one would prefer to let failures take place in
a simulated environment (with a model) rather than in a real plant even
if the failures are not disastrous or do not cause substantial losses. As
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FIGURE 8. A model replaces the plant/process in the control system during the
control design phase.

opposed to the previous case, this class of neuro-control design is referred
to as “model-based neuro-control design.” Similar to Eqn. 13, as a result,
the problem formulation becomes:

NN : min
w

F{y∗ − ym(u, ...)}; u = N (w, ...) (14)

Here, yp in Eqn. 13 is replaced by ym—the model’s output. In this case,
knowledge about the processes of interest are required. As can be seen in
Fig. 8, a model replaces the plant/process in the control system (cf. Fig.
7).

If a process model is not available, one can first train a second neural
network to model the plant dynamics as discussed in Section 2.1. In the
course of modeling the plant, the plant must be operated “normally” in-
stead of being driven out-of control. After the modeling stage, the model
can then be used for control design. If a plant model is already available,
a neural network controller can then be developed in a simulation in which
failures cannot cause any loss but that of computer time. A neural network
controller after extensive training in the simulation can then be installed
in the actual control system.

In fact, these “model-based neuro-control design” approaches have not
only proven effective in several studies [NW90, Tro91], but also have already
produced notable economic benefits [Sta93]. These approaches can be used
for both off-line control design and for on-line adaptation.

Successful demonstrations have been performed for the “truckbackerup-
per” problem [NW90] and a multi-variable flight control problem [TGM92].
Perhaps the biggest commercial success of neuro-control to date is also
based on this approach. The Intelligent Arc FurnaceTM, developed by Neu-
ral Applications Corporation and Milltech-HOH, is a product that uses a
neural network to regulate electrode position in electric arc furnaces [SS92].
A trade publication reports typical savings of over $2 million per furnace
per year [Keh92]. Milltech-HOH and Neural Applications Corporation re-
ceived an Outstanding Engineering Achievement Award for 1992 from the
National Society of Professional Engineers.

The Intelligent Arc Furnace controller includes an interesting twist on
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FIGURE 9. In robust control design concept, the controller is designed not only
for a nominal process but also for a family of processes.

neuro-controller development. Initially, the neural network controller is
trained to mimic an existing plant controller (cf. Section 2.2). After train-
ing, the neural network then replaces the existing controller. In this latter
stage, a second, pre-trained, neural network is used as the process model.
Both the process model network and the controller network continue to
adapt on-line to compensate for plant drifts.

Nevertheless, the quality of control achieved with this approach depends
crucially on the quality of the process model. If a model is not accurate
enough, the trained neuro-controller is unlikely to perform satisfactorily on
the real process. Without an on-line adaptive component, it does not allow
for plant drifts or other factors that could adversely affect the performance
of the control system. A controller that is highly optimized for a specific
process cannot be expected to tolerate deviations from the nominal process
gracefully.

Robust Model-Based Neuro-Control
The neuro-controller approaches discussed above still share a common short-
coming: A neural network must be trained for every new application. Net-
work retraining is needed even with small changes in the control criterion,
such as the changes on the relative weighting of control energy and track-
ing response, or if the controller is to be applied to a different but similar
process. In order to circumvent such drawbacks, the concept of robust-
ness is naturally brought into the design of a neuro-controller. In robust
model-based neuro-control design, a family of process models is considered
instead of just a nominal one (see Fig. 9). Often such a family is specified
by a range of noise models or a range of the process parameters. Robust
neuro-control design can be formulated as follows:

NN : min
w

F{y∗ − ymi
(u, ...)};u = N (w, ...), ∀ mi ∈ M (15)

where mi stands the i−th member of the model family M. Ideally, the
real process to be control should belong to this family as well so that the
controller is robust not only for the model but also for the real process.

Two aspects of robustness are commonly distinguished. Robust stability
refers to a control system that is stable over the entire family of process,
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FIGURE 10. PNC control design is to design not only a robust but also a generic
controller.

whereas robust performance refers to performance criteria being satisfied
over the family [MZ89]. Not surprisingly, there is a tradeoff to achieve
robustness. By optimizing a neural network controller based upon a fixed
(and accurate) process model, high performance can be achieved as long
as the process remains invariant, but at the likely cost of brittleness. A
robust design procedure, on the other hand, is not likely to achieve the
same level of nominal performance but will be less sensitive to process
drifts, disturbances, and other sources of process-model mismatch.

2.3 Parameterized Neuro-Control
All the above neuro-control approaches share a common shortcoming—the
need for extensive application-specific development efforts. Each applica-
tion requires the optimization of the neural network controller and may also
require process model identification. The expense in time and computa-
tion is a significant barrier to widespread implementation of neuro-control
systems, and compares unfavorably to the cost of implementation for con-
ventional control. Simple linear control schemes such as PID controllers,
for example, enable the use of one control law in domains as diverse as
building, process, and flight control.

In an attempt to avoid application-specific development, a new neuro-
control design concept—“Parameterized Neuro-Control (PNC)”—is then
evolved [SF93, SF94]. Fig. 10 illustrates this PNC design strategy. The
PNC controller is equipped with parameters that specifies process charac-
teristics and those that provides performance criterion information. For
illustration purpose, a PNC can be conceptually formulated as follows:

NN : min
w

F (ξ){y∗ − ymi
(θ, u, ...)};u = N (w, θ̂, ξ, ...), ∀ mi(θ) ∈ M(θ)

(16)
where ξ designates the parameter set that define the space of performance
criteria, θ stands for the process parameter set, θ̂ is the estimates for process
parameters, and again M(θ) is a family of the parameterized models mi(θ)
in order to account for errors in process parameters estimates θ.
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FIGURE 11. A plausible PNC can be equipped with tunable knobs, such as
“Settling Time Knob” or “Maximum Overshoot Knob.” Such a PNC can be
much easier for an operator to set the tuning parameters in order to achieve a
desirable control performance without basic knowledge of control theory.

In fact, the two additional types of parameters (ξ and θ) make a PNC
generic. A PNC is generic in two perspectives: 1) the process model pa-
rameters θ facilitate its application to different processes and 2) the perfor-
mance parameters ξ allow its performance characteristics to be adjustable
or tunable. For example, if a PNC is designed for first-order plus delay
processes, the process parameters (i.e. process gain, time constant, and
dead time) will be adjustable parameters to this PNC. Once developed,
this PNC requires no application-specific training or adaptation when ap-
plied to a first order plus delay process. It only requires estimates of these
process parameters. These estimates do not have to be accurate because
the robustness against such inaccuracy is considered in the design phase.
Notice that the parameters θ̂ used as input to the PNC is not identical to
the parameter θ used in the process model simulation. Parameters that
specify the performance criterion can be, for example, the value of maxi-
mum allowable overshoots, desired settling times or rise times, or integral
absolute errors when encountering particular setpoint changes or distur-
bances. The resulting controller can be featured by a tuning knob that an
operator can easily understand for controlling the process. Using such tun-
ing knobs, say a “settling time knob” (see Fig. 11), an operator can set the
controller so that it makes the process settle faster or slower in the presence
of a disturbance. To do so, the operator does not need any sophisticated
knowledge of control theory or extensive practice. Fig. 11 presents a plau-
sible easy-to-use PNC in comparison with a conventional PID controller.
The performance criteria such as settling time or maximum overshoot can
be directly tunable by an operator.

3 Optimization Aspects

The previous section has discussed various neuro-control design approaches.
This section further addresses the optimization aspects in these neuro-
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control design problems. For convenience, all the optimization problems
are listed in Table 1. In the second column of the table, “S” indicates a
problem for which simple supervised learning is appropriate; whereas “C”
indicates that a closed-loop system is needed in order to solve the associ-
ated optimization problem. A closed-loop system consist of a plant or a
model and a feedback controller. It is needed for evaluating the controller’s
performance against the criterion.

As all the neuro-control design strategies require the solution of an op-
timization problem, solution techniques become crucial. Depending on the
characteristics of the application, a particular optimization algorithm may
or may not be appropriate. In particular, gradient-based optimization al-
gorithms, which require the availability of Jacobian of J with respect to
the decision variables, are not appropriate for applications involving non-
differentiable objective functions. To further address the optimization as-
pects of neuro-control design, this section hence discusses two classes of
optimization algorithms: gradient and non-gradient algorithms.

3.1 Gradient Algorithms

As a universal function approximator, a neural network has a remarkable
feature in providing gradient information. Gradient information of its out-
puts with respect to its weights as well as its inputs can be easily calculated
in a localized fashion. Such gradient information can be back-propagated
from its outputs through its internal variables (e.g. hidden layers) and then
the inputs of the network. The well-known back-propagation (BP) algo-
rithm [RHW86] is one of the best examples to illustrate this feature. In
the BP algorithm, all the gradients (Jacobian of J with respect to w) can
be calculated with merely localized information.

Gradient algorithm can be applied to items labeled with ”S” in Table 1.
In all indirect neuro-control approaches as well as the controller modeling
approach, the neural network is trained over a set of training data collected
from its target. The target is an existing process, or an existing controller.
Using the training data, the neural network can then be trained via super-
vised training approaches. One key advantage of the supervised learning
is that the gradient information, i.e. the Jacobian ∂J/∂w, can be easily
calculated. The analytical Jacobian is available as long as F or F ′ is in a
differentiable form. Often, F takes the form of a 2-norm of its arguments
(e.g. Eqn. 3) because of its simple differential form.

In Table 1, neuro-control problems labeled with “C” are in fact typical
formulations of optimal control. These optimal control problems requires a
clear mathematical definition of the performance criteria. The optimization
issue in these optimal control problems is in fact typical in the calculus of
variations [WJ92]. The time-variant characteristics of the decision variables
(i.e. states and control signals) make the problem extremely complex. In
optimal control theory, however, the introduction of “co-state” variables
provides a substantial reduction of complexity—the optimization problem
becomes a two-point boundary value problem. The co-state variables are
time-variant Lagrange multipliers as opposed to those in a time-invariant
constrained optimization problem.

Among all solution techniques to the boundary value problem, the gradi-
ent descent algorithm is probably the most straightforward one. Gradient
algorithms are useful as long as the Jacobian with respect to w or u is
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computable. A commonly adopted algorithm in neural network training for
a dynamic system is “back-propagation through time” [Wer90, SMW92].
Unlike the “S” problems listed in Table 1, the availability of an analytical
Jacobian (∂F/∂u or ∂F/∂w) requires that ∂yp/∂w or ∂yp/∂u is available
(in addition to that F is differentiable).

Of course, the convergence rate of gradient descent can be greatly im-
proved with higher-order gradient information, such as the Hessian (sec-
ond order). With second-order derivatives, Newton methods can be used.
Additionally, Levenberg-Marquardt algorithm provides an adaptive com-
bination of a first and second order search. However, the second order
gradient computation is often expensive. Without exact Hessian informa-
tion, conjugate gradient method can also provide a significant acceleration
over the standard gradient descent. In fact, the “momentum” term often
used with back-propagation or back-propagation through time is a simpli-
fied version of the conjugate gradient method. Recently, techniques based
upon Kalman filter have been developed, and used for neuro-control design
[PF94]. The recursive nature of Kalman filter methods renders these tech-
niques well-suited for on-line adaptation. For further examples of second-
order methods for neural network optimization, refer to [vdS94].

Gradient algorithms have played a crucial role in progress in control sci-
ence, and they are also a popular choice in neuro-control design. However,
these algorithms are useful only when gradients are available (e.g. F dif-
ferentiable), and when cost functions are convex. For control design, the
near-exclusive reliance on gradient-based optimization will result in rela-
tively less progress on problems with any of the following characteristics—
all highly relevant to neuro-control:

• Nonlinear processes or process models

• Nonlinear control structures

• Non-quadratic cost functions

• More generally, non-differentiable cost functions

3.2 Non-Gradient Algorithms

Gradient information provides a guaranteed direction of decreasing er-
ror. In its absence, an optimization algorithm inevitably takes on an ex-
ploratory, trial and error aspect. A parameter vector may be postulated
with acceptance contingent on its cost function value.

The simplest non-gradient-based optimization algorithm may be random
search, and explorations of it have a long history, e.g. [Bro58, Mat65]. One
variation, the “Creeping Random Method” is as follows [Bro58]: From
some nominal starting point in parameter space, random perturbations
according to some distribution are attempted until one that reduces the
cost function value is found. The perturbed point is then accepted as the
new nominal point and the process repeated. Several extensions of this
scheme are possible:

• The mean and variance of the distribution can be adapted based on
results of recent trials [Mat65]. As a special case, successful pertur-
bations can be (recursively) re-applied—a variation that has been
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christened “Chemotaxis” [BA91]. An application of chemotaxis to
neuro-control design is described in [SV92].

• The acceptance of a perturbed point can be a stochastic decision. In
“simulated annealing,” for example, perturbations that reduce the
cost function are always accepted, but increased cost functions are
also sometimes accepted [KGV83]. The probability of this acceptance
is a function of the amount of increase and of the “temperature” of
the optimization “system” which is gradually cooled from a high non-
discriminating temperature to a state in which cost function increases
are deterministically rejected.

• Instead of maintaining a single nominal point, a “population” of
points can be maintained [FOW66]. There are a number of variations
on this “evolutionary computing” theme. Updates of the population
can be based on perturbations of individual points (“mutations”) and
they can also rely on “multi-parent” operators. The latter case is typ-
ical of genetic algorithms [Gol89], and the combinational operator is
“crossover”—a splicing of coded representations of two parent indi-
viduals. An application of genetic algorithms to neuro-control design
is described in [Wie91].

In some cases, non-gradient-based algorithms are more usefully viewed
as extensions of methods other than simple random search. Thus, the
“adaptive critic method” [BSA83] can be considered a stochastic form of
dynamic programming [Wer77, BSW90]. As allusion to this line of research
in the current context implies, non-gradient-based methods for model-based
neuro-control design are in principle applicable to model-free neuro-control
design as well. Care must be exercised, however. Real processes do not
accord the same freedom as simulations for evaluating control strategies.

3.3 To General Nonlinear Control Design

An underlying theme of this chapter has been that the various approaches
to the applications of neural networks in control systems can be differenti-
ated based on the optimization problem that must be solved for each. The
fact that process models or controllers are implemented as neural networks
is in fact of little consequence—no assumptions have been made regarding
the nature of the nonlinear structures.

An immediate consequence is that the above discussion applies to various
neural network models, including radial basis function networks, multilayer
Perceptron of arbitrary feedforward structure, and recurrent networks. Fur-
ther, much of this chapter can be read from the perspective of general non-
linear models and controllers. Whereas the existing literature in nonlinear
controls has often focused on restricted nonlinear forms that are amenable
to theoretical and analytical development, this paper has been concerned
with the conceptual treatment of arbitrary nonlinear structures. This work
is thus relevant not only to neuro-control and, as a second example, a brief
discussion on some research in fuzzy control design within this framework
is to follow.

The classical fuzzy controller model has discontinuities and is thus not ev-
erywhere differentiable (a consideration of little current relevance to neuro-
control). Thus non-gradient-based optimization algorithms are of particu-
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lar importance, and successful studies have been conducted with both ge-
netic algorithms [Wig92, KG93] and with reinforcement learning methods
[Lee91, BK92]. There are a variety of parameters that can be modified in
the fuzzy control structure. For example, Lee [Lee91] and Wiggins [Wig92]
modify peak values of membership functions whereas Karr and Gentry
search a space of trapezoidal membership functions.

In order to overcome the long convergence times that non-gradient-based
algorithms can require, some researchers have used differentiable models of
fuzzy controllers. One approach for realizing differentiable fuzzy controllers
is to train a neural network using data from the fuzzy controller [IMT90,
PP90]. Gradient-based algorithms can then be used for adapting the neuro-
fuzzy controller, either as a controller modeling task (cf. Eqn. 11) [LL91,
IFT93] or analogously to model-based neuro-control design (cf. Eqn. 14 or
Eqn. 15). Werbos [Wer92] makes the general point that if differentiable
fuzzy models are adopted, then a variety of existing techniques in neuro-
control are readily applicable. In particular, backpropagation-through-time
can be used for optimizing differentiable fuzzy controllers.

The availability of first-principles models has generally been assumed in
off-line fuzzy control design. Empirical models can also, of course, be used,
and in particular [FS94] employ a neural network process model.

4 PNC Design and Evolutionary Algorithm

To discuss the appropriateness of the non-gradient algorithms as well as
to demonstrate the promising advantage of the PNC design concept, a
simple PNC design is presented here. As a PNC is intended to be not only
a robust but also a generic controller, the complexity of PNC design is
daunting. For practical purpose, the the process models in this study have
been single input and single output linear systems with delays.

4.1 PNC Problem Formulation

Particularly, this article chooses to demonstrate the cases where first order
linear systems plus delay:

Kpe
−τds

Tps + 1
(17)

are used. The class of this linear models is defined by a range of Kmin <
Kp < Kmax, Tmin < Tp < Tmax, and τmin < τd < τmax, respectively. In
fact, Kp = 1 is sufficient because the process model is a linear one. By
simple scaling of its output, the resultant controller can be adjusted for
any first order plus delay process with any different magnitude of Kp.

In this experiment, the PNC is a feedforward neural network with dy-
namic inputs e(t),

∫
e(t)dt, and de(t)/dt. In addition, the PNC also takes

the two estimated model parameters T̂p, and τ̂d as inputs. The PNC is op-
timized for robustness in the continuous-time parameters space by allowing
for estimation errors as follows:

|1 − K̂p

Kp
| = |1 − T̂p

Tp
| = |1 − τ̂d

τd
| = α < 1 (18)
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in order to account for robustness. The PNC also takes an additional per-
formance parameter ast. This particular performance parameter is defined
as a weight factor for the importance of short settling time. The closed-loop
performance cost function is defined as follows:

NN : min
w

ave
ast∈[0,1]

{astf1(Tst) + (1 − astf2(Tst))} (19)

Here ast is the weight on settling time Tst, (1 − ast is the weight on rise
time Trt, and f1(·) and f2(·) are clipped linear scaling functions as follows:

f1(t) =

{ 0 if t ≤ 9
(t − 9)/21 if 9 < t < 30
1 if t ≥ 30

,

and

f2(t) =

{ 0 if t ≤ 4
(t − 4)/2.7 if 4 ≤< t < 6.7
1 if t ≥ 6.7

As can be seen in Eqn. 19, the larger the ast, the faster the settling time the
PNC should be achieving, and vice versa. The settling time Tst is defined
as the time the process takes before its step response is within 5% from its
steady state value. The average for Eqn. 19 is empirically estimated over
11 values of ast: 0, 0.1, 0.2, . . ., 0.9, 1.0. For each run, the process setpoint
is changed from 0 to 1.0. The cost function is computed from the closed-
loop response to the setpoint change. For comparison, this study uses a
PI controller optimized for minimum settling time over a two-dimensional
space of Kc and Ki. The optimal parameters for the PI controller are:
Kc = 0.243 and Ki = 0.177.

4.2 Evolutionary Algorithm

Apart from the fact that response features such as settling time or over-
shoot are not analytically differentiable, cost function surfaces for PNC
design are densely populated by local minima. Conventional neural net-
work training methods cannot easily produce satisfactory result in this
case. After initial experiments with gradient-descent techniques [RHW86],
genetic algorithms [Gol89], and [vdS94], the finally adopted algorithm is an
evolutionary optimization algorithm that incorporates chemotaxis [SS94].
The optimization algorithm is outlined below:

1. Generate an initial set of weight vectors. Evaluate the cost function
for each of them.

2. Locate the weight vector (wmax) which results in the maximum cost
function value (Jmax).

3. Select a weight vector w at random (uniform distribution) from pop-
ulation.

4. Generate a perturbation standard deviation (σ).

5. Generate a perturbation vector (δ ∈ N(0, σ2)).
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6. Generate a new weight vector (wnew = w + δ) by adding the pertur-
bation vector to the selected weight vector. Evaluate the new cost
function (Jnew) with respect to the new weight vector.

7. If Jnew ≤ Jmax, replace the weight vector wmax with the new weight
vector wnew, and repeat Step 6.

8. Repeat Step 2 until otherwise terminated.

However, optimization runs are still prolonged affairs—up to a week on an
HP700 series workstation, but results have been positive and promising.
Although PNCs are expensive to develop, they are cheap to operate. Most
of the neural networks investigated in this study seldom requires more
than 100 weights. An optimized neural network can be implemented as a
hardwired module in a controller which can then be installed and used on
any process and for any criterion within its design space.

4.3 Results and Discussion

One advantage of a conventional PID controller, the controller tuning pa-
rameters (the proportional band, reset time, and derivative time) are easily
understandable without any sophisticated knowledge of control theory. As
for the generic feature, a PID controller can be used for a wide variety of
different processes as long as its parameters are properly tuned. A rela-
tively well-trained operator can easily set these parameters such that the
controller will give a satisfactory performance. However, these PID tun-
ing parameters do not relate to performance criterion such as settling time
in a directly sensible manner. On the contrary, a PNC can be designed
with a tuning parameter monotonically related to a performance criterion,
say settling time in this study, during the development phase. The set-
tling time increases as the tuning parameter increases. As shown in Fig.
12, where ast stands for the dial of such a “settling time knob,” the PNC
clearly outperforms an optimal PI controller. More importantly, the set-
tling time decreases as ast increases as expected. To “tune” a “generic”
PNC controller, one only has to provide a set of estimated process charac-
teristics (such as process gain, process time constant, and delay). Once it
is “tuned,” an operator can simply turn a knob—a settling time knob—to
achieve what he/she would like the controller to perform.

While a generic PNC rendering the easiness of use, it also guarantees
better robustness than an optimal PI. A PNC control tuned for a nomi-
nal process can tolerate much more severe process parameter uncertainties
than an optimal PI controller. In Fig. 13 for example, both PNC and PI
controllers are tuned for a nominal process with Tp = 1 and Kp = 1 (the
nominal process parameters). As can be seen in the figure, PNC can oper-
ate on a process with process parameter uncertainties up to 300%; whereas
an optimal PI can tolerate only about 60%.

5 Conclusions

This article briefly reviews the progress of neuro-control design in terms of
an optimization problem. In the indirect neuro-control approaches, neural
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FIGURE 12. A PNC equipped with a settling time tuning factor ast can be used
to adjust the settling time of a process. In the design, the settling time decreases
as ast increases.
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networks are usually used to develop a predictor. The predictor is usually
a process model or a controller’s parameter predictor (i.e. auto-tuner), thus
it does not directly control the process. In the direct neuro-control design
approaches, the concept has progressed from simple controller modeling,
to model-free controller design, to nominal model-based controller design,
and finally to a robust model-based controller design. This progression
towards greater sophistication is accompanied by increasing application-
specific design effort requirement. Ease of use suffers.

In some ways, the concept behind the design of the “Parameterized
Neuro-Controller” is extended from robust control design. Nonetheless,
the PNC design concept is intended to to avoid the application-specific
development efforts, and to provide the simplicity of implementation and
ease of use. As a result, the PNC is not only a robust controller but also a
generic one. For SISO systems, PNC parameters are similar to those of a
PID controller but they are easier to understand and more directly related
to desired performance criteria. The PNC design concept is also illustrated
by a “settling time knob” example. In this example, results from a PNC
equipped with a “settling time tuning knob” verify these claim.

As the PNC design requires an extremely complicated formulation of
an optimization problem, this chapter further addresses the optimization
aspects of all the neuro-control design. It is shown that constraining as-
sumptions that are enforced in the formulation of a control design problem
can be beneficial for its solution. For appropriately formulated problems,
gradient-based optimization can ensure reliable, and often rapid, conver-
gence. An alternative control design methodology is also possible: the
problem formulation can be centered around application needs. The util-
ity of gradient-based optimization may be problematic in such cases, but
non-gradient-based methods such as evolutionary optimization are now a
practical recourse.
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Indirect Neuro-Control

MPC S min
w

F{yp − yn(w, ...)} Eqn. 2

or min
w

F{yp − ym(θ, ...)}; θ = N (w, ...) Eqn. 6

C min
u

F ′{y∗ − yn(u, ...)}
or min

u
F ′{y∗ − ym(u, ...)} Eqn. 4

IM S min
w

F{u∗
p−1 − un(w, ...)} Eqn. 7

Note: do not require optimization. u∗ = N (y∗, ...) Eqn. 8

AT C min
η

F ′{y∗ − yp/m(u, ...)};
u = C(ηc, ...) Eqn. 9

S min
w

F{η∗ − ηn(w, ...)} Eqn. 10

Direct Neuro-Control

CM C min
C

F ′{y∗ − yp/m(uc, ...)}; uc = C(, ...) Eqn. 12

S min
w

F{uc − un(w, ...)} Eqn. 11

MFNC C min
w
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w

F{y∗ − ym(u, ...)}; u = N (w, ...) Eqn. 14
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w
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w
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TABLE 1. Objective functions of all neuro-control design previously discussed.
Note: MPC: Model Predictive Control, IM: Inverse Model, AT: Auto-Tuner, CM:
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Neural networks for control systems—A survey. Automatica,
28(6):1083–1112s, 1992.

[IFT93] H. Ishibuchi, R. Fujioka, and H. Tanaka. Neural networks that
learn from fuzzy if-then rules. IEEE Trans. on Fuzzy Systems,
1:85–97, 1993.

[IMT90] T. Iwata, K. Machida, and Y. Toda. Fuzzy control using neu-
ral network techniques. In Proc. International Conference on
Neural Networks, volume III, pages 365–370, 1990.

[Keh92] B. Kehoe. Eaf controller passes intelligence test. Iron Age,
pages 28–29, March 1992.

[KG93] C. L. Karr and J. Gentry. Fuzzy control of pH using genetic
algorithms. IEEE Trans. on Fuzzy Systems, 1:46–53, 1993.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220:671–680, 1983.

[KSF92] A. F. Konar, Tariq Samad, and W. Foslien. Hybrid neural net-
work/algorithmic approaches to system identification. In Proc.
3rd IFAC Symposium on Dynamic and Control of Chemical
Reactors, Distillation Columns, and Batch Processes, 1992.

[Lee91] C.-C. Lee. A self-learning rule-based controller employing ap-
proximate reasoning and neural net concepts. International
Journal of Intelligent Systems, 6:71–93, 1991.

[Lju87] L. Ljung. System Identification: Theory for the User. Prentice-
Hall, Inc., 1987.

[LL91] C. T. Lin and C.S.G. Lee. Neural-network-based fuzzy logic
control and decision system. IEEE Trans. on Computers,
40:1320–1336, 1991.

[Mat65] J. Matyas. Random optimization. Automation and Remote
Control, 26, 1965.

www.4electron.com



10. Neuro-Control Design 275

[MMW90] W. Miller, W. Miller, and Paul J. Werbos, editors. Neural
Networks for Control. MIT Press, 1990.

[MZ89] Manfred Morari and Evanghelos Zafiriou. Robust Process Con-
trol. Prentice Hall, Englewood Cliffs, NJ, 1989.

[NW90] D. Nguyen and B. Widrow. The truck backer-upper: An
example of self-learning in neural networks. In Miller et al.
[MMW90].

[PF94] G.V. Puskorius and L.A. Feldkamp. Neurocontrol of nonlinear
dynamical systems with Kalman filter-trained recurrent net-
works. IEEE Trans. on Neural Networks, volume 5, pages 279–
297, 1994.

[Pom91] D. A. Pomerleau. Neural network-based vision processing for
autonomous robot guidance. In S. K. Rogers, editor, Appli-
cations of Artificial Neural Networks II, volume 1469, pages
121–128. SPIE, 1991.

[PP90] A. Patrikar and J. Provence. A self-organizing controller for dy-
namic processes using neural networks. In Proc. International
Conference on Neural Networks, pages III:359–364, 1990.

[PS92] M. Pottman and D. Seborg. A nonlinear predictive control
strategy based on radial basis function networks. In Proc. 3rd
IFAC Symposium on Dynamic and Control of Chemical Reac-
tor, Distillation Columns, and Batch Processes, pages 309–314,
1992.

[PSY88] D. Psaltis, A. Sideris, and A. A. Yamamura. A multilayered
neural network controller. IEEE Control Systems Magazine,
8(3):17–21, April 1988.

[PU91] D. C. Psichogios and L. H. Ungar. Direct and indirect model
based control using artificial neural networks. Industrial & En-
gineering Chemistry Research, 30(12):2564–2573, 1991.

[PU92] Dimitris C. Psichogios and Lyle H. Ungar. A hybrid neural
network-first principles approach to process modeling. AIChE
Journal, 38(10):1499–1511, 1992.

[RFJ92] A. E. B. Ruano, P. J. Fleming, and D. I. Jones. Connectionist
approach to PID tuning. IEE Proceedings, Part D, 129:279–
285, 1992.

[RHW86] D. Rumelhart, G. Hinton, and R. Williams. Chapter 8: Error
propagation and feedforward networks. In Rumelhart and Mc-
Clelland, editors, Parallel Distributed Processing, volume I and
II. MIT Press, 1986.

[SBMM92] Hongte Ted Su, Naveen V. Bhat, Peter A. Minderman, and
Thomas J. McAvoy. Integrating neural networks with first
principles model for dynamic modeling. In Proc. 3rd IFAC
Symposium on Dynamic and Control of Chemical Reactor, Dis-
tillation Columns, and Batch Processes, pages 77–81, 1992.

www.4electron.com



276 H. Ted Su , Tariq Samad

[SDBM91] J. Saint-Donat, N. Bhat, and T. J. McAvoy. Neural net based
model predictive control. International Journal of Control,
54(6):1453–1468, 1991.

[SF93] Tariq Samad and W. Foslien. Parametrized neuro-controllers.
In Proc. 8th International Symposium on Intelligent Control,
pages 352–357, 1993.

[SF94] Tariq Samad and W. Foslien. Neural networks as generic non-
linear controllers. In Proc. World Congress on Neural Net-
works, 1994.

[SM93a] Hongte Ted Su and Thomas J. McAvoy. Applications of neu-
ral network long-range predictive models for nonlinear model
predictive control. Journal of Process Control, 1993.

[SM93b] Hongte Ted Su and Thomas J. McAvoy. Neural model predic-
tive models of nonlinear chemical processes. In Proc. 8th In-
ternational Symposium on Intelligent Control, pages 358–363,
1993.

[SMW92] Hongte Ted Su, Thomas J. McAvoy, and Paul J. Werbos. Long-
term predictions of chemical processes using recurrent neural
networks: A parallel training approach. Industrial & Engineer-
ing Chemistry Research, 31:1338–1352, 1992.

[SS92] Williams E. Staib and R. B. Staib. The intelligent arc
furnaceTM controller: A neural network electrode position op-
timization system for the electric arc furnace. In Proc. Inter-
national Conference on Neural Networks, 1992.

[SS94] Tariq Samad and H. Ted Su. Neural networks as process
controllers—optimization aspects. In Proc. American Control
Conference, volume 3, pages 2486–2490, 1994.

[Sta93] Williams E. Staib. The intelligent arc furnaceTM: Neural net-
works revolutionize steelmaking. In Proc. World Congress on
Neural Networks, pages I:466–469, 1993.

[SV92] D.L. Styer and V. Vemuri. Adaptive critic and chemotaxis in
adaptive control. In Proc. Artificial Neural Networks in Engi-
neering, 1992.

[SW90] Donald A. Sofge and David A. White. Neural network based
process optimization and control. In Proc. IEEE Conference
on Decision & Control, pages 3270–3276, 1990.

[Swi90] R. W. Swiniarski. Novel neural network based self-tuning pid
controller which uses pattern recognition techniques. In Proc.
American Control Conference, pages 3023–3024, 1990.

[TGM92] T. Troudet, S. Garg, and W. Merrill. Design and evaluation
of a robust dynamic neurocontroller for a multivariable aircraft
control problem. In Proc. International Conference on Neural
Networks, 1992.

www.4electron.com



10. Neuro-Control Design 277

[TK94] Michael L. Thompson and Mark A. Kramer. Modeling chem-
ical processes using prior knowledge and neural networks.
AIChE Journal, 40(8):1328–1340, 1994.

[Tro91] T. Troudet. Towards practical control design using neural com-
putation. In Proc. International Conference on Neural Net-
works, 1991.

[TSSM92] Kwaku O. Temeng, Phillip Dave Schnelle, Hongte Ted Su, and
Thomas J. McAvoy. Neural model predictive control of an
industrial packed bed reactor. In AIChE Annual Meeting, 1992.

[UPK90] L. H. Ungar, B. A. Powell, and E. N. Kamens. Adaptive net-
works for fault diagnosis and process control. Computers &
Chemical Engineering, 14(4/5):561–572, 1990.

[vdS94] P. P. van der Smagt. Minimisation methods for training feed-
forward neural networks. Neural Networks, 7:1–12, 1994.

[Wer77] P. J. Werbos. Advanced forecasting methods for global crisis
warning and models of intelligence. In General Systems Year-
book, volume 22, pages 25–38, 1977.

[Wer90] P. J. Werbos. Backpropagation through time: What it is and
how to do it? Proceedings of the IEEE, 78:1550–1560, 1990.

[Wer92] P. J. Werbos. Neurocontrol and fuzzy logic: Connections
and designs. International Journal of Approximate Reasoning,
6:185–219, 1992.

[Wie91] A. P. Wieland. Evolving neural network controllers for un-
stable systems. In Proc. International Conference on Neural
Networks, 1991.

[Wig92] R. Wiggins. Docking a truck: A genetic fuzzy approach. AI
Expert, May 1992.

[WJ92] D. A. White and M. I. Jordan. Optimal control: A foundation
for intelligent control. In David A. White and Donald A. Sofge,
editors, Handbook of Intelligent Control: Neural, Fuzzy, and
Adaptive Approaches. Van Nostrand Reinhold, 1992.

[Yds90] B. E. Ydstie. Forecasting and control using adaptive connec-
tionist networks. Computers & Chemical Engineering, 14:583–
599, 1990.

[ZN42] J. B. Ziegler and N.B. Nichols. Optimum settings for automatic
controllers. Trans. ASME, 64:759–768, 1942.

www.4electron.com



278 H. Ted Su , Tariq Samad

www.4electron.com



11

Reconfigurable Neural Control
in Precision Space Structural
Platforms

Gary G. Yen1

ABSTRACT The design of control algorithms for flexible space struc-
tures, possessing nonlinear dynamics which are often time-varying and
likely ill-modeled, presents great challenges for all conventional method-
ologies. These limitations have recently led to the pursuit of autonomous
neural control systems.
In this chapter, we propose the innovative use of a hybrid connectionist sys-
tem as a learning controller with reconfiguration capability. The ability of
connectionist systems to approximate arbitrary continuous functions pro-
vides an efficient means of vibration suppression and trajectory slewing for
precision pointing of flexible space structures. Embedded with adjustable
time-delays and interconnection weights, an adaptive radial basis function
network offers a real-time modeling mechanism to capture most of the spa-
tiotemporal interactions among the structure members. A fault diagnosis
system is applied for health monitoring to provide the neural controller
with various failure scenarios. Associative memory is incorporated into an
adaptive architecture to compensate for catastrophic changes of structural
parameters by providing a continuous solution space of acceptable con-
troller configurations, which is created a priori. This chapter addresses the
theoretical foundation of a feasible reconfigurable control architecture and
demonstrates its applicability via specific examples.

1 Connectionist Learning System

Contemporary control design methodologies (e.g., robust, adaptive, and
optimal controls) face limitations for some of the more challenging realistic
systems. In particular, modern space structures are built of light-weight
composites and equipped with distributive piezoelectric sensors and actu-
ators. These flexible structures which are likely to be highly nonlinear,
time-varying, and poorly modeled, pose serious difficulties for all currently

1Adapted and revised from “Reconfigurable Learning Control in Large Space Struc-
tures” by Gary G. Yen, which appeared in IEEE Transactions on Control Systems
Technology 2(4): pp. 362-370; December 1994.
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advocated methods as summarized in [WS92], [AP92]. These control sys-
tem design difficulties arise in a broad spectrum of aerospace applications;
e.g., military robots, surveillance satellites or space vehicles. The ulti-
mate autonomous control, intended to maintain the above acceptable per-
formance over an extended operating range, can be especially difficult to
achieve due to factors such as high dimensionality, multiple inputs and
outputs, complex performance criteria, operational constraints, imperfect
measurements, as well as the inevitable failures of various actuators, sen-
sors, or other components. Indeed, an iterative and time-consuming process
is required to derive a high fidelity model in order to effectively capture all
of the spatiotemporal interactions among the structural members. There-
fore, the controller needs to be either exceptionally robust, or adaptable
after deployment. Also, catastrophic changes to the structural parameters,
due to component failures, unpredictable uncertainties, and environmental
threats, require that the controller be reconfigurable.

In this chapter, we investigate a hybrid connectionist system as a means
of providing a learning controller [Fu70] with reconfiguration capability.
The proposed control system integrates adaptive time-delay radial basis
function (ATRBF) networks, an eigenstructure bidirectional associative
memory (EBAM) and a cerebellar model articulation controller (CMAC)
network. A connectionist system consists of a set of interconnected pro-
cessing elements and is capable of improving its performance based on past
experimental information [Bar89]. An artificial neural network (herein re-
ferred to as simply “neural network”) is a connectionist system which was
originally proposed as a simplified model of the biological nervous system
[HKP91], [HN89]. Neural networks have been shown to provide an effi-
cient means of learning concepts from past experience, abstracting features
from uncorrelated data, and generalizing solutions from unforeseen inputs.
Other promising advantages of neural networks are their distributed data
storage and parallel information flow which cause them to be extremely
robust with respect to malfunctions of individual devices as well as being
computationally efficient. Neural networks have been successfully applied
to the control of various dynamic systems, including aerospace and under-
water vehicles [RÖMM94], [VSP92], nuclear power plants [BU92], chemical
process facilities [WMA+89], and manufacturing production lines [CSH93].

There have been many architectures (i.e., schema consisting of vari-
ous neuronic characteristics, interconnecting topologies, and learning rules)
proposed for neural networks over the last five years (least count over 200).
Simulation experience has revealed that success is problem-dependent. Some
networks are more suitable for adaptive control whereas others are more ap-
propriate for pattern recognition, signal filtering, or associative searching.
Neural networks which employ the well-known backpropagation learning
algorithm [RM86] are capable of approximating any continuous functions
(e.g., nonlinear plant dynamics and complex control laws) with an arbi-
trary degree of accuracy [HSW89]. Similarly, radial basis function networks
[MD89] are also shown to be universal approximators [HKK90]. These
model-free neural network paradigms are more effective at memory usage
in solving control problems than conventional learning control approaches.
An example is the BOXES algorithm, a memory intensive approach, which
partitions the control law in the form of a look-up table [MC68].

Our goal is to approach structural autonomy by extending the control
system’s operating envelope, which has traditionally required vast memory
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usage. Connectionist systems, on the other hand, deliver less memory-
intensive solutions to control problems and yet provide a sufficiently gen-
eralized solution space. In vibration suppression problems, we utilize the
adaptive time-delay radial basis function network as a building block to
allow the connectionist system to function as an indirect closed-loop con-
troller. Prior to training the compensator, a neural identifier based on an
ARMA model is utilized to identify the open-loop system. The horizon-of-
one predictive controller then regulates the dynamics of the nonlinear plant
to follow a prespecified reference system asymptotically as depicted in Fig. 1
(i.e., the model reference adaptive control architecture) [NP90]. The ref-
erence model, which is specified by an input-output relationship {R, YR}
describes all desired features associated with a specific control task, e.g.,
a linear and highly damped system to suppress the structural vibration.
As far as trajectory slewing problems are concerned, the generalized learn-
ing controller synthesized by the adaptive time-delay radial basis function
network compensates the nonlinear large space structure in a closed-loop
fashion in order to follow the motion specified by the command outputs as
given in Fig. 2 (i.e., Tapped delay lines (TDL) are incorporated to process
the time-varying structural parameters as suggested in [NP90].).

The function of the neural controller is to map the states of the system
into corresponding control actions in order to force the plant dynamics (YP )
to match a certain output behavior which is specified either by the refer-
ence model (YR) or the command output (YD). However, we cannot apply
the optimization procedure (e.g., gradient descent, conjugate gradient or
Newton-Raphson method) to adjust the weights of the neural controller
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because the desired outputs for the neural controller are not available. In
[PSY88], a ‘specialized learning algorithm’ which treats the plant as an
additional unmodifiable layer of network is proposed. The output error,e2,
is backpropagated through the plant to derive the neural controller output
error ê2. However, the authors fail to suggest a reliable way to compute
ê2.In [Els88], the inverse Jacobian of the plant is used to estimate ê2 at each
weight update, which results in a complicated and computational expen-
sive learning procedure. Moreover, since the plant is often not well-modeled
because of modeling uncertainties, the exact partial derivatives cannot be
determined. In [SS89], a ‘dynamic sign approximation’ is utilized to deter-
mine the direction of the error surface, assuming the qualitative knowledge
of the plant. This is not necessarily the case in space structure applications
which are often equipped with highly correlated parameters. To achieve
the true gradient descent of the square of the error, we use ‘dynamic back
propagation’ to accurately approximate the required partial derivatives as
suggested in [NP90]. A single-layer ATRBF network is first trained to
identify the open-loop system. The resulting neural identifier then serves
as extended unmodifiable layers to train the compensator (i.e., another
single-layer ATRBF network). If the structural dynamics are to change as
a function of time, the back-up neural identifier would require the learn-
ing algorithm to periodically update the network parameters accordingly
[NW90].

The proposed architecture for reconfigurable neural control includes neu-
ral networks dedicated to identification and to control; structural health
component assessment; and controller association retrieval and interpola-
tion. In order to provide a clear presentation, the integration of various
components in an intelligent architecture is presented first to achieve the
structural reconfigurable learning control in Section 2. This is followed by
discussion of each functional block in detail. For the purpose of system
identification and dynamic control of flexible space structures, an adaptive
time-delay radial basis function network which serves as a building block is
discussed in Section 3, providing a justification to achieve real-time perfor-
mance. A novel class of bidirectional associative memories synthesized by
the eigenstructure decomposition algorithm is covered in Section 4 to fulfill
the critical needs in real-time controller retrieval. This is followed by utiliz-
ing the cerebellar model articulation controller network for fault detection
and identification of structural failures (Section 5). Specific applications
in space structural testbed are used in Section 6 to demonstrate the effec-
tiveness of the proposed reconfigurable neural control architecture. This
chapter is concluded with a few pertinent observations regarding potential
commercial applications in Section 7.

2 Reconfigurable Control

In the uncertain space environment, all existing methods of adaptation
call for a finite time duration for exposure to the altered system as well
as computational duties before a suitable controller can be determined. A
controller designed for this adaptation is robust only with respect to plant
variations to some degree. When the plant dynamics experience abrupt
and drastic changes, the closed-loop system no longer exhibits acceptable
performance and may become unstable.
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Critical to autonomous system design is the development of a control
scheme with globally adaptive and reconfigurable capabilities. Reconfig-
uration refers to the ability of retrieving a workable controller from the
solution space (created prior to the failure). The motivation is to strive for
a high degree of structural autonomy in space platforms, thereby severing
the dependence of the dynamic system on a priori programming, perfect
communications, as well as the flawless operation of the system compo-
nents, while maintaining a precision pointing capability.

Existing reconfigurable control techniques often rely on computation-
ally intensive simulations (e.g., finite element analysis) or simple strategies
such as gain scheduling [mW89] and triple modular redundancy [BCJ+90].
Lately, novel design techniques— including linear quadratic control method-
ology [LWEB85], an adaptive control framework [MO90], knowledge-based
systems [HS89], eigenstructure assignment [Jia94], and the pseudo-inverse
method [GA91], to name a few— have been developed. These methods
show various degree of success in different respects. However, a common
shortcoming is the computational complexity involved to reconfigure the
controller configuration while maintaining the system stability and perfor-
mance level. In the present chapter, we achieve controller reconfiguration
capability by integrating an eigenstructure bidirectional associative mem-
ory into a model reference adaptive control framework. In a similar spirit,
bidirectional associative memory can be applied to the control of slewing
flexible multibody [Yen94]. The proposed architecture is expected to main-
tain stability for extended periods of time without external intervention,
while possibly suffering from unforeseeable perturbations. The architecture
of a real-time reconfigurable control system is given in Fig.3. The adap-
tive control framework handles slowly varying system parameters, which
commonly occur on structures exposed to an adverse space environment
(e.g., increased thermal and aerodynamic load). Subsequently, as experi-
ence with the actual plant is accumulated, the learning system would be
used to anticipate the appropriate control or model parameters as a func-
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tion of the current plant operating condition. Catastrophic changes to the
system dynamics are compensated for by retrieving an acceptable controller
from a continuous solution space, which is created beforehand and reflects
a host of various system configurations. The solution space is stored within
an EBAM network as opposed to a look-up table and therefore offers the
capabilities of real-time reconfiguration and generalization (see Fig.4). A
look-up table approach would only provide discrete controller solutions in
a lengthy and sequential search. The proposed reconfiguration capability
entails the design of a health monitoring procedure in detecting, isolating
and identifying adverse conditions. To achieve successful reconfiguration
capabilities, we devise a reliable bidirectional associative memory (BAM)
synthesized by the eigenstructure decomposition method. As pointed out
in [MSY91], [YM92], the eigenstructure method, which utilizes the energy
function approach, guarantees the storage of a given set of desired fault
scenarios/weight configurations as asymptotically stable equilibria in the
state space. The assumption is made that an acceptable fault detection
and identification (FDI) algorithm synthesized by the CMAC network will
be used for health monitoring to provide the required information (failure
index) to the eigenstructure associative memory [YK93].

3 Adaptive Time-Delay Radial Basis Function
Network

Biological studies have shown that variable time-delays do occur along
axons due to different conduction times and different lengths of axonal
fibers. In addition, temporal properties such as temporal decays and in-
tegration occur frequently at synapses. Inspired by this observation, the
time-delay backpropagation network was proposed in [WHH+88] for solv-
ing the phoneme recognition problem. In this architecture, each neuron
takes into account not only the current information from all neurons of the
previous layer, but also a certain amount of past information from those
neurons due to delay on the interconnections. However, a fixed amount of
time-delay throughout the training process has limited the usage, possibly
due to the mismatch of the temporal location in the input patterns. To
overcome this limitation, Lin et al. developed an adaptive time-delay back-
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propagation network [LDL92] to better accommodate the varying temporal
sequences, and to provide more flexibility for optimization tasks. In a simi-
lar spirit, the adaptive time-delay radial basis function network is proposed
in this section to take full advantages of temporal pattern matching and
learning/recalling speed.

A given adaptive time-delay radial basis function network can be com-
pletely described by its interconnecting topology, neuronic characteristics,
temporal delays, and learning rules. The individual processing unit per-
forms its computations based only on local information. A generic radial
basis function network is a two-layer neural network whose outputs form
a linear combination of the basis functions derived from the hidden neu-
rons. The basis function produces a localized response to input stimulus as
do locally-tuned receptive fields in human nervous systems. The Gaussian
function network, a realization of an RBF network using Gaussian kernels,
is widely used in pattern classification and function approximation. The
output of a Gaussian neuron in the hidden layer is defined by

ui
j = exp

(
−‖x − w1

j‖2

2σ2
j

)
, j = 1, . . . , N1 (1)

where u1
j is the output of the jth neuron in the hidden layer (denoted by

the superscript 1), x is the input vector, w1
j denotes the weighting vector

for the jth neuron in the hidden layer (i.e., the center of the jth Gaussian
kernel), σ2

j is the normalization parameter of the jth neuron (i.e., the width
of the jth Gaussian kernel), and N1is the number of neurons in the hidden
layer. Equation 1 produces a radially symmetric output with a unique
maximum at the center dropping off rapidly to zero for large radii. The
output layer equations are described by

yj =
N1∑
i=1

w2
jiu

1
j , j = 1, . . . , N2 (2)

where yj is the output of the jth neuron in the output layer, w2
ji denotes

the weight from the ith neuron in the hidden layer to the jth neuron in
the output layer, u1

j is the output from the ith neuron in the hidden layer,
and N2is the number of linear neurons in the output layer. Inspired by
the adaptive time-delay backpropagation network, the output equation of
ATRBF networks is described by

yj(tn) =
N1∑
i=1

Lji∑
l=1

w2
ji,lu

1
i (tn − τ2

ji,l), j = 1, . . . , N2 (3)

where w2
ji,l denotes the weight from the ith neuron in the hidden layer to

the jth neuron in the output layer with the independent time-delay τ2
ji,l,

u1
i (tn − τ2

ji,l is the output from the ith neuron in the hidden layer at time
tn − τ2

ji,l, Lji denotes the number of delay connections between the ith
neuron in the hidden layer and the jth neuron in the output layer. Shared
with generic radial basis function networks, adaptive time-delay Gaussian

www.4electron.com



286 Gary G. Yen

function networks have the property of undergoing local changes during
training, unlike adaptive time-delay backpropagation networks which expe-
rience global weighting adjustments due to the characteristics of sigmoidal
functions. The localized influence of each Gaussian neuron allows the learn-
ing system to refine its functional approximation in a successive and effi-
cient manner. The hybrid learning algorithm [MD89] which employs the
K-means clustering for the hidden layer and the least mean square (LMS)
algorithm for the output layer further ensures a faster convergence and
often leads to better performance and generalization. The combination
of locality of representation and linearity of learning offers tremendous
computational efficiency to achieve real-time adaptive control compared
to the backpropagation network, which usually takes considerable time to
converge. The K-means algorithm is perhaps the most widely known clus-
tering algorithm because of its simplicity and its ability to produce good
results. The normalization parameters, σ2

j are obtained once the clustering
algorithm is complete. They represent a measure of the spread of the data
associated with each cluster. The cluster widths are then determined by
the average distance between the cluster centers and the training samples,

σ2
j =

1
Mj

∑
x∈Θj

‖x − w1
j‖2, (4)

where Θj is the set of training patterns belonging to the jth cluster and
Mj is the number of samples in Θj . This is followed by applying a LMS al-
gorithm to adapt the time-delays and interconnecting weights in the output
layer. The training set consists of input/output pairs, but now the input
patterns are pre-processed by the hidden layer before being presented to
the output layer. The adaptation of the output weights and time delays
are derived based on error backpropagation to minimize the cost function,

E(tn) =
1
2

N2∑
j=1

(dj(tn) − yj(tn))2 , (5)

where dj(tn) indicates the desired value of the jth output neuron at time
tn. The weights and time-delays are updated step by step proportional to
the opposite direction of the error gradient respectively,

∆w2
ji,l = −η1

∂E(tn)
∂w2

ji,l

, (6)

∆τ2
ji,l = −η2

∂E(tn)
∂τ2

ji,l

(7)

where η1 and η2 are the learning rates. The mathematical derivation of this
learning algorithm is straightforward. The learning rule can be summarized
as follows.

∆w2
ji,l = η1 (dj(tn) − yj(tn))

Lji∑
l=1

u1
i (tn − τ2

ji,l), (8)

∆τ2
ji,l = η2 (dj(tn) − yj(tn))

Lji∑
l=1

w2
ji,l(u

1
i )

′(tn − τ2
ji,l). (9)
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4 Eigenstructure Bidirectional Associative Memory

Based on the failure scenario determined by a fault diagnosis network (to
be covered in Section 5), an eigenstructure bidirectional associative mem-
ory will promptly retrieve a corresponding controller configuration from
a continuous solution space. This controller configuration in the form of
weighting parameters will then be loaded into the neural controller block
to achieve controller reconfiguration.

Bidirectional associative memory (BAM) [Kos88] is a two-layer nonlin-
ear feedback neural network. Unlike the Hopfield network [Hop84], bidirec-
tional associative memory is a hetero associative memory which provides
a flexible nonlinear mapping from input data to output data. However,
bidirectional associative memory does not guarantee that a network will
necessarily store the desired vectors as equilibrium points. Furthermore,
experience has shown that BAM networks synthesized by ‘correlation en-
coding’ [Kos88] can store effectively only up to p < min(m,n) arbitrary
vectors as equilibrium points, where m and n denote the number of neu-
rons in each of the two layers. In [Yen95], we have shown that the BAM
network can be treated as a variation of a Hopfield network. Under ap-
propriate assumptions, we have demonstrated that the present class of
continuous BAM is a gradient system with the properties of global stability
(i.e, for any initial condition, the trajectories of solution will tend to some
equilibrium.) and structural stability (i.e., stability persists under small
weight perturbations).

The qualitative and quantitative results (equilibrium condition, asymp-
totic stability criteria, and estimation of trajectory bounds) which we have
developed for Hopfield-type networks [MSY91], [YM92], [YM91], [YM95]
can then be extended to the BAM networks through a special arrangement
of interconnection weights. Based on these results, we investigate a class
of discrete-time BAM networks defined on a closed hypercube of the state
space. For the present model, we establish stability analysis which enables
us to generalize the solutions of discrete-time systems, and to characterize
the set of system equilibria. In addition, we develop an efficient synthesis
procedure utilizing the eigenstructure decomposition method for the present
class of neural networks. The synthesized networks are capable of learning
new vectors as well as forgetting learned vectors without the necessity of
recomputing all interconnection weights and external inputs. The result-
ing network can easily be implemented in digital hardware. Furthermore,
when simulated by a serial processor, the present system offers extremely
efficient means of simulating discrete-time BAM (modeled by a system of
difference equations) compared to the computational complexity required
to approximate the dynamic behavior of the continuous system (modeled
by a system of differential equations).

Consider now a class of neural networks described by a pair of difference
equations (DNi) which are defined on a closed hypercube of the state space
for times k = 0, 1, 2, . . . by

xi(k + 1) = sat(
n∑

j=1

Wijyj(k) + Ii), i = 1, . . . , m (DNia)
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FIGURE 5. An implementation of eigenstructure bidirectional associative mem-
ory.

yi(k + 1) = sat(
n∑

i=1

Vjixi(k) + Ji), j = 1, . . . , n (DNib)

where the saturation function sat(), used in modeling all the neurons, is

sat(θ) =




1 if θ ≥ 1,
Θ if −1 < θ < 1
−1 if θ ≤ −1

In contrast to the usual system defined on open subsets of Rm+n, system
(DNi) is described on a closed hypercube

Bm+n = {x ∈ Rm, y ∈ Rn : |xi| ≤ 1, |yj | ≤ 1, i = 1, . . . ,m, j = 1, . . . , n}
(10)

Figure 5 depicts an analog implementation of the eigenstructure BAM net-
work. Within this study, vector x refers to the failure index while vector y
points to the weighting parameters for the retrieving controller configura-
tion. Equation (DNi) can be put into a compact form (DN),

x(k + 1) = sat(Wy(k) + I), k = 0, 1, 2, . . . (DNa)
y(k + 1) = sat(V x(k) + J), k = 0, 1, 2, . . . (DNb)

where sat(θ) is defined componentwise, W and V are matrices denot-
ing the interconnection weights, and I and J are vectors representing the
external inputs.
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The results established for system (DN) fall into one of two categories.
One type of result addresses the stability analysis of system (DN) while
the other type pertains to synthesis procedure for system (DN). In [Yen95],
we conduct a thorough and complete qualitative analysis of system (DN).
Among other aspects, this analysis discusses the distribution of equilib-
rium points in the state space, the qualitative properties of the equilibrium
points, global stability and structural stability properties of system (DN),
and the like. For the completeness of this discussion, we briefly summarize
the synthesis problem and synthesis procedure given below.

Synthesis Problem

Given p pairs of vectors in Bm+n, say (x1, y1), . . . , (xp, yp), to design a
system (DN) which satisfies the following properties
1) (x1, y1), . . . , (xp, yp) are asymptotically stable equilibrium points of sys-
tem (DN).
2) The system has no periodic solutions.
3) The total number of asymptotically stable equilibrium points of (DN)
in the set Bm+n is as small as possible.
4) The domain of attraction of each (xi, yi), i = 1, . . . , p, is as large as
possible.

Based on the detailed qualitative analysis results, the above synthesis
problem can be approached by the following algorithm (called the eigen-
structure decomposition method).

Synthesis Procedure

Suppose we are given p pairs of vectors, as desired library vectors to be
stored as asymptotically stable equilibrium points for system (DN). We
proceed as follows.
1) Form the vectors

µi =
[
xi�, yi�

]�
, i = 1, . . . , p.

2) Compute the matrices Sp = [s1, . . . , sp−1], where si = mui − µp, i =
1, . . . , p − 1, and the superscript p for matrix Sp denotes the number of
vectors to be stored in the BAM network.
3) Perform a singular value decomposition on matrix Sp to obtain the
factorization

Sp = UΣV �,

where U and V are orthogonal matrices and Σ is a diagonal matrix with
the singular values of Sp on its diagonals. (This can be accomplished
by standard computer routines, e.g. LSVRR in IMSL, SingularValues in
Mathematica, and svd in MATLAB or MatrixX .) Let

L = Span(s1, . . . , sp−1),

La = Aspan(µ1, . . . , µp).
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Then L is the linear subspace spanned by the vectors {s1, . . . , sp−1} and
La = L + µp denotes the affine subspace (i.e. the coefficients sum to 1)
generated by the vectors {µ1, . . . , µp}.
4) Decompose the matrix U as

U = [U+ U−],

where U+ = [u1, . . . , uk],U− = [uk+1, . . . , um+n] and k = rank(Σ) =
dim(L). From the properties of singular value decomposition, U+ is an
orthonormal basis of L and U− is an orthonormal basis of L⊥, the orthog-
onal complement of L.
5) Compute the matrices

T+ =
k∑

i=1

uiu
�
i = U+U+�

,

T− =
m+n∑

i=k+1

uiu
�
i = U−U−�

.

6) Choose parameters τ1 > 1 and −1 < τ2 < 1, and compute

Tτ = τ1T
+ − τ2T

−,

Kτ = τ1µ
p − Tτµp.

7) Decompose matrix Tτ and vector Kτ by

Tτ =
[

A1 Wτ

Vτ A2

] }m
}n

Kτ =
[

Iτ

Jτ

] }m
}n

Then all vectors in L will be stored as asymptotically stable equilibria of
the synthesized system (DNτ ),

x(k + 1) = sat(Wτy(k) + Iτ ), k = 0, 1, 2, . . . (DNτa)
y(k + 1) = sat(Vτx(k) + Jτ ), k = 0, 1, 2, . . . (DNτb)

The eigenstructure method developed above possesses several advantages
since it is possible by this method to exert control over the number of
spurious states, since it is possible to estimate the extent of the basin of
attraction of the stable memories, and since it is possible, under certain
circumstances, to store by this method a number of desired stable vectors
which by far exceeds the order of the network.

In synthesizing bidirectional associative memory, we usually assume that
all desired vectors (i.e., fault scenarios) to be stored are known a priori.
However, in the large space structure applications, this is usually not the
case. Sometimes, we are also required to update the stored vectors (i.e.,
controller configurations) dynamically in order to accommodate new sce-
narios (e.g., When a novel fault condition is identified.). In a similar spirit

www.4electron.com



11. Reconfigurable Control in Space Structures 291

of development as [MSY91], [YM92], we have successfully incorporated the
learning and forgetting capabilities into the present synthesis algorithm,
where learning refers to the ability of adding vectors to be stored as asymp-
totically stable equilibria to an existing set of stored vectors in a given net-
work, and where forgetting refers to the ability of deleting specified vectors
from a given set of stored equilibria in a given network. The synthesis
procedure is capable of adding an additional pattern as well as deleting an
existing pattern without the necessity of recomputing the entire intercon-
nection weights, i.e., W and V , and external inputs, i.e., I and J .

Making use of the updating algorithm for singular value decomposition
[BN78], we can construct the required orthonormal basis set i.e.,

{u1, . . . , um+n}
, for space L where L = Span(s1, . . . , sp−1) in accordance with the new
configuration. The detailed development of the learning and forgetting al-
gorithms can be found in [Yen95]. Furthermore, the incremental learning
and forgetting algorithm is proposed to improve the computational effi-
ciency of the eigenstructure decomposition method by taking advantage of
recursive evaluation [Yen95].

5 Fault Detection and Identification

Detection of structural failures in large-scale systems has been an inter-
esting subject for many decades. The existing damage detection methods
primarily depend on off-line destructive tests or computationally intensive
finite element analysis. Quite often, these heuristic algorithms are limited
to the analysis and design of a fixed structural concept or model, where
the loadings, materials, and design constraints need to be specified in ad-
vance. Because of the need for time-critical response in many situations,
available symptom data is either misinterpreted or unused, often leading
to the incorrect removal of a system’s components. Fault tolerance issues
have usually been ignored or have been assumed to be handled by a simple
strategy such as triple modular redundancy.

To date, relatively little systematic work has been pursued in connection
with damage detection, isolation, and identification. Literature surveys
have shown a promising potential in the application of artificial neural
networks to quantify structural failures [VD92]. It has become evident
that neural networks can also be trained to provide failure information
based on the structural response to given payloads, so that perturbations
in structural geometry and material properties can be identified by the
outputs of the neural network. This information can then be fed back to
the bidirectional associative network to invoke an effective neural controller
before the structure breaks down. In addition, the neural-network based
fault diagnosis system developed for a certain structural component can
also be used in a hierarchical manner where the same structural component
is used in several places on large space structures.

We approach damage detection of flexible structures from a pattern clas-
sification perspective. In doing so, the classification of the loading to struc-
tures and the output response to such a loading are considered as an input
pattern to the neural network. The output of the neural network indicates
the damage index of structural members. Neural networks trained with a
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backpropagation learning rule have been used for various problems, includ-
ing helicopter gearbox [CDL93], induction motor [MCY91], space shuttle
main engine [DGM90], jet engine [DKA89] and smart sensors [RPSK91].
Simulation results show that the neural network is capable of performing
fault detection and identification (FDI). Although the backpropagation al-
gorithm proves its effectiveness in these cases, it is generally known that it
takes considerable time to train the network and the network may easily
get trapped into local minima. Our proposed damage detection and identi-
fication system, which makes use of a CMAC network, is capable of incor-
porating new structural settings on a real-time basis (i.e., on-line learning);
handling noisy and incomplete input patterns (i.e., noise-reduction); and
recognizing novel structural configurations (i.e., generalization). In addi-
tion, the suggested system is not restricted to any specific problem, rather
it has the potential to be adapted into a generic diagnostic tool for various
complex systems.

The cerebellar model articulation controller, CMAC (also called cere-
bellar model arithmetic computer) network is an artificial neural network
architecture based on the knowledge of the organization and functionality
of the cerebellum [Alb75]. CMAC is defined by a series of mappings when
nearby input patterns produce similar outputs, while distinct input pat-
terns produce nearly independent outputs. An overlapping arrangement of
the input receptive fields provides local generalization capability as does
an RBF network. The desired mapping from the input to the output can
be achieved by adjusting the synaptic weights using any optimization al-
gorithm. The output of CMAC is simply determined by summing up the
weight values at each of the relevant retrieval memory locations, thus the
on-line training algorithm employed by CMAC is rather simple in imple-
mentation and has a fast convergence rate.

The CMAC network is capable of learning nonlinear functions extremely
fast due to the locality of representation and simplicity of mapping. How-
ever the rectangular shape of receptive field functions produces a stair-
case functional approximation; it is a perfect justification for fault decision
making. The first novel application of CMAC networks is dedicated to
the control of robot manipulators [Alb75]. Since then CMAC has been
used in real-time control of industrial robots [MGK87], pattern recogni-
tion [HMKG89], and signal filtering [GM89]. Unlike the traditional adap-
tive controller, CMAC assumes no prior knowledge of the controlled plants
which may be subject to noise perturbation or nonlinear functionality. The
capability of CMAC networks to approximate any nonlinear continuous
functions has been proven using B-spline approximation theory [LHG92].
CMAC performs a nonlinear mapping,

y = f(x)

using two primary functions,

S : X ⇒ A,

P : A ⇒ Y,

where vector X denotes the sensor and actuator readings from the space
structure and vector Y denotes the corresponding failure index.

Fault detection may be implemented in a hierarchical and distributed
manner. At the bottom level, damage detection may be designed for parts,
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FIGURE 6. Simulated actuator input/output relationship.

such as bearings, shafts, cables, sensors, or actuators. Once the appropriate
failure scenarios are available, a high-level decision maker can be employed
to perform a proper control action. Incorporated with the learning and
forgetting capabilities of associative memory, a robust FDI system can be
designed to detect, isolate, and identify evolutionary variations as well as
catastrophic change of large structures on a real-time basis.

6 Simulation Studies

Example 1. Generic large Space Structure

To simulate the characteristics of a large space structure, the plant is cho-
sen to possess low natural frequencies and damping as well as high modal
density, and the actuators are chosen to be highly nonlinear. The plant
consists of five modes with frequencies: 1, 4, 5, 6, and 10 Hertz. The
damping ratio for all five modes is selected to be 0.15% of critical. Two
sensors, two actuators, and ten states are used in this multi-input multi-
output system. The eigenvectors are arbitrarily selected under the condi-
tion that they remain linearly independent. The actuators are chosen to
exhibit a combination of saturation and exponentially decaying ripple. The
input/output relationship is shown in Fig.6 and is given below

u(ν) =
1 − e−2ν

1 + e−2ν
+ 0.1e−|ν| cos(4πν).

A compensator is trained so that the closed-loop system containing the
nonlinear actuators and lightly damped plant emulates the linear, highly
damped reference model. The five natural frequencies of the reference
model were set equal to those of the plant. This is realistic in a practical
sense because in many cases natural frequencies of space structures can
be identified with reasonable accuracy by modal testing. However, it is
much more difficult to identify accurately the eigenvectors (corresponding
to the mode shapes). Therefore the eigenvectors of the reference model were
chosen arbitrarily and they were different from the eigenvectors of the plant.
The degree of damping is chosen to be 10% of critical for each of the five
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FIGURE 7. Open-loop responses (neural identifier versus nonlinear plant).

modes. Prior to training the compensator, an adaptive time-delay Gaussian
function network consisting of 40 hidden neurons with learning rates equal
to 0.001 is trained to identify the open-loop system. The resulting neural
identifier assists the training of the compensator (another adaptive time-
delay Gaussian function network with 40 hidden neurons) by translating
the plant output error to compensator output error. There are chosen to
possess four time delays from each hidden neuron to each output neurons
for both neural identifier and neural controller.

Figure 7 presents the performance of the neural identifier with respect
to sensors 1 and 2, respectively, in response to random inputs for 2 sec-
onds after training for 100 trials. The mean square error converged to 0.01.
Within the scale of vertical axis, the plant output and the neural identifier
output are indistinguishable. The simulation results show that the neural
identifier has successfully emulated the structural dynamics of this simu-
lated space structure. Although the neural identifier learned to match the
open-loop system very quickly, the neural compensator with learning rate
0.001 took almost an hour to converge to mean square error 0.01. The
choice of a smaller learning rate ensures a monotonically decreasing mean
square error in the LMS training. Figure8 displays the closed-loop per-
formance for 2 seconds with respect to sensors 1 and 2, respectively, in
response to an impulse. Again, the reference model output and the plant
output are indistinguishable. The neural controller has learned to damp
out the vibration.

6.1 Example 2. ASTREX plant

The Advanced Space structures Technology Research EXperiments (AS-
TREX), currently located at the Phillips Laboratory, Edwards AFB, is
a testbed equipped with three-mirror space-based laser beam expander
to develop, test and validate control strategies for large space structures
[ARB+92]-[BRSC91]. The unique features of the experimental facility in-
clude a three-axis large angle slewing maneuver capability and active tripod
members with embedded piezoelectric sensors and actuators. The slew-
ing and vibration control can be achieved with a set of reaction control
thrusters, a reaction wheel, active members, control moment gyroscopes,
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FIGURE 8. Closed-loop responses (reference model versus nonlinear plant).

and linear precision actuators. The test article allows three degrees of rigid
body freedom, in pitch and roll and in yaw. A dedicated control and data
acquisition computer is used to command and control the operations. This
test article has provided a great challenge for researchers from academia and
industry to implement the control strategies to maneuver and to achieve
retargeting or vibration suppression. The test structure is shown in Fig.9.

The test article itself consists of three major sections:

1. The Primary Structure is a 5.5-meter diameter truss constructed
of over 100-cm diameter graphite epoxy tubes with aluminum end
fittings that are attached to star node connections. The primary
structure includes six sets of steel plates mounted on its surface to
simulate the primary mirror and two cylindrical masses mounted on
its sides to simulate tracker telescopes. A pair of 30-gallon air tanks
are attached inside the hub directly above the air-bearing system.
2. The Secondary Structure is a triangular structure which houses
the reaction wheel actuators and the mass designed to simulate the
secondary mirror. It is connected to the primary truss by a tripod
arrangement of three 5.1 meter graphite epoxy tubes manufactured
with embedded sensors and actuators.

3. The Tertiary Structure is a structure designed to hold the elec-
tronics and power supply for the data acquisition and control system,
and other masses to balance the secondary mirror.

The finite element model (FEM) of the entire testbed consists of approx-
imately 615 nodes and over 1000 elements. Even though the FEM has been
constantly modified based on the detailed modal survey, it is not consid-
ered an accurate dynamic model. The complicated factors in this control
design problem are lack of an accurate dynamic model, nonlinear thruster
characteristics, and nonlinear aerodynamic effects. In the rigid-body mo-
tion model, two reference frames are employed, The base pedestal axis is
an inertially fixed reference frame which points in the true vertical and true
horizon plane. The ASTREX rest position is pitch down in this coordinate
system. The test article axis is the body-fixed reference frame. As shown
in Fig. 10, the origin for both systems is the pivot point, the location where
the test article is attached to the base pedestal at the air bearing. Mod-
eling of the physical structure is implemented by an FEM formatted as a

www.4electron.com



296 Gary G. Yen

NASTRAN data deck. The dynamic modal equation is given by

Mẍ + Eẋ + Kx = f,

where M is the mass matrix, E denotes the viscous damping matrix, K
is the stiffness matrix, xis a vector representing the physical degrees of
freedom, and f is the force vector applied to structure. Through a mass
normalization procedure on the modal matrix, the state space model of
ASTREX can be obtained

ẋ = Ax + Bu + Dw, y = Cx, z = Mx + Hu,

where A, B, C, D, M , and H are constant matrices, and x, u, w, y and
z denote state, input, noise, output, and measurement vectors, respec-
tively. The data required for the system identification is obtained from
accelerometers and thrusters through finite element analysis simulations.
The locations for accelerometers are carefully selected based on expecta-
tions of capturing all the relevant structural modes. For simplicity, only
four accelerometers and four actuators, as described in Tables 1 and 2, are
used for this preliminary study.

System identification is simulated by an adaptive time-delay Gaussian
function network with 100 hidden neurons, while vibration suppression is
performed by another adaptive time-delay Gaussian function network with
100 hidden neurons. The closed-loop controller regulates the dynamics of
the ASTREX structure to follow a linearly and highly damped reference
model in which the degree of damping is chosen to be 10% of critical for
all modes. The five natural frequencies of the reference model were deter-
mined based upon modal test results. The eigenvectors of the reference
model were arbitrarily selected under the condition that they remain lin-
early independent. Both the neural identifier and the neural controller with
learning rate 0.01 took roughly five hours to converge to mean square error
0.01. Six time delays are used in each pair of neurons from the hidden
layer to the output layer for both neural identifier and neural controller.
Open-loop responses of sensors 1, 2, 3, and 4 for random inputs are given
in Fig.11, while the closed-loop performance of sensors 1, 2, 3, and 4 are
displayed in Fig.12 in response to an impulse.

Three possible configurations are simulated based on different fault sce-
narios (i.e., no fault, fault condition 1, and fault condition 2). A fault
diagnosis system synthesized by a fuzzy backpropagation network is per-
formed by mapping patterns of input sensors to damage indices of line-of-
sight errors that represent fault conditions. Angular rate sensors are used
at different locations for line-of-sight error measurements where failure sce-
narios may be evolutionary varying or catastrophically changing. Figure 13
shows that for each fault condition, the outputs exhibit distinct thresholds
crossing from the no fault region to fault regions. The eigenstructure bidi-
rectional associative memory, which is created prior to dynamic simulation,
provides a probability for decision making based on the information derived
from the fuzzy FDI network. Figure 14 displays the closed-loop reconfig-
uration performance of sensor 3 when the neural controller switches from
the no fault region to fault condition 1.
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Type Location Node Direction
accelerometer 1 secondary section 1 (1,0,0)
accelerometer 2 secondary section 1 (0,1,0)
accelerometer 3 tripod 1525 (1,0,0)
accelerometer 4 tripod 3525 (0,1,0)

TABLE 1. Sensor locations in the ASTREX testbed.

Type Location Node Direction
shaker primary truss 62 (0.5,0,0.86)

proof mass 1 secondary section 462 (0.86,0.5,0)
proof mass 2 secondary section 461 (-0.86,-0.5,0)
proof mass 3 secondary section 459 (0,1,0)

TABLE 2. Actuator locations in the ASTREX testbed.

7 Conclusion

The architecture proposed for reconfigurable neural control successfully
demonstrates the feasibility and flexibility of connectionist learning sys-
tems for flexible space structures. The salient features associated with
the proposed control strategy are discussed. In addition, a real-time au-
tonomous control system is made possible to accommodate uncertainty
through on-line interaction with nonlinear structures. In a similar spirit,
the proposed architecture can be extended to the dynamic control of aero-
propulsion engines, underwater vehicles, chemical processes, power plants,
and manufacturing scheduling. The applicability and implementation of
the present methodology to large realistic CSI structural testbeds will be
pursued in our future research.
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FIGURE 9. The Advanced Space structures Technology Research EXperiments
(ASTREX) test article.
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Neural Approximations for
Finite- and Infinite-Horizon
Optimal Control

Riccardo Zoppoli
Thomas Parisini

ABSTRACT This paper deals with the problem of designing a feedback
control law that drives a discrete-time dynamic system (in general, nonlin-
ear) so as to minimize a given cost function (in general, nonquadratic). The
control horizon lasts a finite number N of decision stages. The model of
the dynamic system is assumed to be perfectly known. Clearly, so general
non-LQ optimal control problems are very difficult to solve. The proposed
approximate solution is based on the following assumption: the control law
is assigned a given structure in which a finite number of parameters have to
be determined in order to minimize the cost function (the chosen structure
is that of a multilayer feedforward neural network). Such an assumption en-
ables us to approximate the original functional optimization problem by a
nonlinear programming one. The optimal control problem is then extended
from the finite to the infinite control horizon, for which a receding-horizon
optimal control scheme is presented. A stabilizing regulator is derived with-
out imposing, as is usually required by this class of control schemes, that
either the origin (i.e., the equilibrium point of the controlled plant) or a
suitable neighborhood of the origin be reached within a finite time. Stabil-
ity is achieved by adding a proper terminal penalty function to the process
cost. Also the receding-horizon regulator is approximated by means of a
feedforward neural network (only one network is needed instead of a chain
of N networks, as in the finite-horizon case). Simulation results show the
effectiveness of the proposed approach for both finite- and infinite-horizon
optimal control problems.

1 Introduction

Finite- and infinite-horizon optimal control problems are faced in two dif-
ferent, yet important, areas of control applications. Finite-horizon (FH)
optimal control typically refers to “maneuvering problems” or “servomech-
anism problems”, where the state vector of the dynamic system has to be
driven from a given initial point to a final one in a finite number N of de-
cision stages (discrete-time deterministic dynamic systems are considered).
During such a transition, a certain number of intermediate points may have
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to be tracked. For infinite-horizon (IH) optimal control, we assume that
there exists a given equilibrium point toward which the control device must
steer the system state whenever the state has been taken away from the
equilibrium point by some unpredictable action. Driving the state to such
a point (i.e., the origin of the state space, without loss of generality) is
usually defined as a “regulation problem.”

As is well known, both the N -stage optimal control problem and the
IH one can be solved analytically only in few cases, typically under LQ
assumptions (linear dynamic systems and quadratic cost functions). If
such assumptions are not verified, a variety of numerical techniques are
available for the first problem. In solving the second, greater difficulties
are encountered; an attractive approach consists in approximating the IH
control problem by means of the so-called “receding-horizon” (RH) optimal
control problem. In the paper, we shall adopt this approximation. Even
though the FH control problem is faced in a deterministic context (i.e.,
the model of the dynamic system is assumed to be perfectly known, no
stochastic variables act on the dynamic system and the state vector can
be measured without noise), it may be important that the control law
should take on a feedback form, i.e., that it should depend on the current
state vector xi measured at stage i. This is suggested by evident practical
reasons. In the RH case, the control law is intrinsically implemented by a
feedback scheme. Actually, an RH control mechanism can be described as
follows. When the controlled plant is in the state xt , at time t, an N -stage
optimal control problem is solved, thus the sequence of optimal control
vectors u◦

t , . . . , u
◦
t+N−1 is derived, and the first control of this sequence

becomes the control action uRH◦
t generated by the RH regulator at time

t (i.e., uRH◦
t

	
= u◦

t ). The procedure is repeated stage after stage; then a
feedback control law is obtained, as the control vector u◦

t depends on xt .
In the FH case, we want a little more than a feedback control law. More

specifically, we request that the control law should be able to drive the
system state from any initial state x0 , belonging to a given initial set
A0 , to any final state x∗

N , belonging to a given final set AN . It follows
that the control law must take on the feedback feedforward form ui =
γ

i
(xi, x

∗
N ) . As is well known, to derive the optimal feedback solution of

an N -stage optimal control problem, dynamic programming is the most
appropriate tool, at least in principle. This procedure, however, exhibits
some drawbacks. If a certain neighborhood of a given final state x∗

N must
be reached, while the initial state x0 can assume any possible value on A0 ,
by following the dynamic programming approach, the optimal feedback
law is derived in the backward phase of the procedure. This phase starts
from the final stage N by defining a suitable terminal penalty function, for
example, the Euclidean distance ‖x∗

N − xN‖ ; it terminates at the initial
stage i = 0 , when the state trajectories turn out to be optimized for all
states x0 ∈ A0 . Such a procedure, however, is not an easy numerical task,
for it requires, at each decision stage, the definition of a suitable grid that
is obtained by discretizing all the components of the state vector. The
optimal control vectors are then determined and stored in the memory, for
all the grid points; as soon as the dimension of xi increases, this may give
rise to prohibitive requirements for storage capacity. In some cases, possible
different versions of the conventional dynamic programming technique may
overcome the dimensionality barrier; some of them can be found in [Sag68]
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and [Lar68]. As to more recent works, see, for instance, [JSS+93] and
the references cited therein. If x∗

N is not fixed but, like x0 , can take
on any possible value from the final region AN , a set of optimal control
problems turn out to be stated, each characterized by the presence of a
proper final cost parameterized by x∗

N . Equivalently, we can decide to
double the dimension of the state vector by introducing the augmented
vector (xT

i , zT
i )T , where zi+1 = zi = x∗

N .
Due to the high complexity of calculations and to the huge amount of

memory generally needed to store the feedback feedforward control law (the
“curse of dimensionality”), we give up dynamic programming and prefer
to use an approximate approach. (However, we are careful not to state
that our approach does not incur, in general, the curse of dimensionality;
this will be discussed in Section 4.) The approach consists in assigning the
control law a given structure in which the values of a certain number of
parameters have to be determined via nonlinear programming in order to
minimize the cost function. Such an approach is not new in control theory;
actually, it dates back to the so-called Specific Optimal Control problem
considered by Eisenberg and Sage [ES66] for the general non-LQ case, and,
under LQ assumptions, to the parametric optimal control problem faced
by Kleinman and Athans [KA68] (see also the survey reported in [MT87]).
Once this kind of approach has been chosen, implementing our control laws
on multilayer feedforward neural networks appears quite a natural choice,
since it has been shown, both experimentally (in the past few years) and
theoretically (more recently [Bar93]), that these networks are very well
suited to approximating nonlinear functions. This approach has been used
in [ZP92],[PZ94b].

Things are more complicated in the RH optimal control problem, as the
asymptotic behavior of the controlled plant must be taken into account,
which involves stability issues. A stabilizing regulator is proposed that
seems particularly suited for applying neural approximations. Sufficient
conditions for ensuring asymptotic stability, even in the case of approximate
control laws, are then established.

The FH optimal control problem is addressed in Sections 2 to 5, and
the RH regulator is examined in Sections 7 to 10. Simulation results are
presented in Sections 6 and 10 for the FH and RH problems, respectively.

2 Statement of the finite–horizon optimal control
problem

We consider the discrete-time dynamic system (in general, nonlinear)

xi+1 = f
i
(xi, ui ) , i = 0, 1, . . . , N − 1 (1)

where xi ∈ Rn is the state vector of the time-varying dynamic system
and ui ∈ Rm is the control vector. The cost function (in general, non-
quadratic) is given by

J =
N−1∑
i=0

[
hi (xi, ui ) + ρi+1 ( ‖x∗

N − xi+1‖ )
]

(2)
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where x∗
N is the final point to be reached, f

i
∈ C1 [Rn × Rm,Rn] , hi ∈

C1 [Rn × Rm,R] , and ρi ∈ C1 [R+,R] . The transition costs hi (xi, ui ) ,
being in general nonquadratic, can take easily into account penalty or bar-
rier functions that describe constraints (possibly time-varying) on the con-
trol and state vectors, etc. ρi(z) are increasing functions for z ≥ 0 , with
ρi(0) = 0 . We assume that x0 and x∗

N can take on any value from the
given compact sets A0 and AN , respectively. Then we can state the
following
Problem 1. Find the optimal feedback feedforward control law

{u◦
i = γ◦

i
(xi, x

∗
N ), i = 0, 1, . . . , N − 1}

that minimizes cost (2) for any pair (x0, x
∗
N ) ∈ A0 ×AN . �

It is worth noting that the explicit introduction of the sets A0,AN
into the formulation of Problem 1 is due to the fact that this problem is
nonlinear and nonquadratic. For its LQ version, the optimal solution is
given by

u◦
i = −Lixi + Fivi , i = 0, 1, . . . , N − 1 (3)

where vi is a vector generated backward by means of the recursive equation

vi = Givi+1 + Vi+1 x∗
N , i = 0, 1, . . . , N − 2

vN−1 = VNx∗
N

(4)

and matrices Li, Fi, Gi can be computed after solving a discrete-time Ric-
cati equation (Vi are weighting matrices that appear in the quadratic cost
function). Since these matrices are independent of A0,AN , the introduc-
tion of these sets into the formulation of Problem 1 is unnecessary. An
extension of Problem 1, consisting in tracking a trajectory {x∗

1, . . . , x
∗
N} ,

where each vector x∗
i can take on any value from a given compact set Ai ,

has been considered in [PZ94b]. We also want to remark that situations
similar to the ones described above occur whenever some parameters ap-
pearing in the system model or in the cost (like x∗

N in Problem 1) are
not fixed, but may take their values from given compact sets. All such
situations do not differ in substance from the one considered in Problem 1,
provided that it is assumed that the parameters will become known to the
controller at stage i = 0 , before the control process begins.

3 Reduction of the functional optimization
Problem 1 to a nonlinear programming problem

As stated in the Introduction, the use of dynamic programming would give
rise to great difficulties in terms of computational complexity and memory
requirements for storing feedback feedforward control laws. Therefore, we
shall not use dynamic programming but adopt an approximate technique
that consists in assigning the control law a given structure in which the
values of a certain number of parameters have to be determined in order
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to minimize the cost function. This means that the control functions take
on the form

ui = γ̂(xi, x
∗
N , wi) , i = 0, 1, . . . , N − 1 (5)

where γ̂ is a known function of its arguments, and w0, . . . , wN−1 are vec-
tors of parameters to be optimized. The function γ̂ is time–invariant;
the dependence on time is expressed by the time–varying vector wi . Of
course, the choice of the function γ̂ is quite arbitrary and, in any case,
the control law (5), after the optimization of the vectors wi , constitutes
an approximation for the solution of Problem 1. Among various possi-
ble structures (or approximating functions), we choose nonlinear mappings
based on multilayer feedforward neural networks (it follows that the pa-
rameters appearing in (5) are the so-called synaptic weights). This choice
is suggested both by practical (i.e., computational) reasons and by theo-
retical properties that characterize such neural approximators. This point
will be discussed later on. For now, we want to remark that the method of
approximating the control laws by means of a preassigned control structure
was proposed, as stated previously, in the ’60s. However, it does not seem
that such a method met with great success, probably because the selected
structures were characterized by too small a number of free parameters to
attain satisfactory approximation properties. Moreover, such structures re-
quired rather complex computational procedures to determine the optimal
values of the unknown parameters.

Let us now describe in some detail the N neural networks that implement
the control functions (5). We assume that each of the N neural networks
is composed of L layers, and that, in the generic layer s, ns neural units
are active. The input/output mapping of the q-th neural unit of the s-th
layer is given by

yi
q(s) = g

[
zi

q(s)
]
, s = 1, . . . , L ; q = 1, . . . , ns (6)

zi
q(s) =

ns−1∑
p=1

wi
pq(s)y

i
p(s − 1) + wi

0q(s) (7)

where yi
q(s) is the output variable of the neural unit, g(x) = tanh(x)

is a shifted sigmoidal activation function, and wi
pq (s) and wi

0q (s) are
the weight and bias coefficients, respectively. All these coefficients are
the components of the vector wi appearing in the control function ui =
γ̂(xi, x

∗
N , wi) ; the variables yi

q(0) are the components of xi and x∗
N , and

the variables yi
q(L) are the components of ui . For the reader’s conve-

nience, the variables and weight notations are given in Fig. 1.
As shown in Fig. 2, the control scheme results in a chain of N neural

networks, each followed by the dynamic system. This chain is related to
the control scheme proposed in [NW90]. Our structure differs from that
scheme in the feedforward actions generated by the vectors x∗

N and in the
fact that the neural networks are allowed to be time-dependent.

If we now substitute (5) into (1) and (2), and use the state equation
repeatedly, thus eliminating the control and state vectors, the cost function
takes on the form J (w, x0, x

∗
N ) , where

w
	
= col (wi, i = 0, 1, . . . , N − 1) .
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FIGURE 1. A neural unit, showing variable and weight notations.
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FIGURE 2. The structure of the feedback feedforward neural control law.

Since the cost function J (w, x0, x
∗
N ) depends both on the vector w to be

determined and on x0, x
∗
N , we eliminate the dependence on x0, x

∗
N by as-

suming x0 and x∗
N to be mutually independent random vectors uniformly

distributed on A0 and AN , respectively, and by averaging J (w, x0, x
∗
N )

with respect to these vectors. It is worth noting that, though this proce-
dure is rather arbitrary, it is not unusual. For example, it has been applied
to solve parametric LQ optimal control problems (see again, for instance,
[KA68], where the gain matrix of the controller is determined after aver-
aging the cost function with respect to the initial state, considered as a
random vector). It is certainly true that another way of eliminating the
dependence of J(w, x0, x

∗
N ) on x0, x

∗
N may consist in adopting a min–

max approach, which means to maximize the cost function with respect to
x0 ∈ A0 and x∗

N ∈ AN . Our choice in favor of the expectation procedure
is essentially motivated by the reassuring experimental results given in Sec-
tion 6 and confirmed, in general, in the literature for similar optimization
problems. The min–max approach, however, appears more appropriate in
some practical cases, for example, when there is the danger of incurring un-
acceptably high costs. The possibility of using such an alternative approach
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should be examined carefully.
Once the expectation approach has been adopted, one has to solve the

following
Problem 2. Find the vector w◦ that minimizes the expected cost

E
x0,x∗

N

[ J (w, x0, x
∗
N ) ] .

�
It follows that the functional Problem 1 has been reduced to an uncon-

strained nonlinear programming problem. As the solution of Problem 2
constitutes an approximation for Problem 1, in the following we shall dis-
criminate between the corresponding solutions by calling them “optimal
neural control laws” and “optimal control laws”, respectively. The accu-
racy of this approximation will be discussed in the next section.

4 Approximating properties of the neural control
law

The accuracy to which the optimal neural control law

{γ̂(xi, x
∗
N , w◦

i ) , i = 0, 1, . . . , N − 1}

can approximate the control law {γ◦
i
(xi, x

∗
N ), i = 0, 1, . . . , N−1} is clearly

a crucial point of the method proposed in the paper. In this section, we
address two basic points: the first is the degree of accuracy that can be
attained by using neural control laws; the second concerns the complexity
that the neural networks implementing the control functions must exhibit
in order to achieve a given degree of accuracy.

Suppose now that the approximating control functions {γ̂} contain only
one hidden layer (i.e., L = 2 ) composed of νi neural units, and that the
output layer is composed of linear activation units. Denote such control
functions by {γ̂(νi)(xi, x

∗
N , wi) , i = 0, 1, . . . , N − 1 . As will be shown,

only one hidden layer is sufficient to obtain the required approximating
properties. Let us also introduce some useful notations and definitions.
Given the maps

gi
	
= f

i

[
xi, γ

◦
i
(xi, x

∗
N )
]
:Rn × Rn → Rn, i = 0, 1, . . . , N − 1 (8)

we define the following family of sets Bi ⊂ Rn × Rn

Bi
	
=




A0 ×AN , for i = 0

gi−1[Bi−1] ×AN , for i = 1, 2, . . . , N − 1
(9)

Now we can state the following proposition [PZ94b]:

Proposition 2 Assume that Problem 1 has only one solution γ◦
i
(xi, x

∗
N ) ∈

C[Bi,Rm] , i = 0, 1, . . . , N − 1 . Then, for every ε ∈ R, ε > 0 and every
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i with 0 ≤ i ≤ N − 1 , there exist an integer νi and a weight vector wi

(i.e., a neural control function γ̂(νi)(xi, x
∗
N , wi) ) such that

∥∥∥ γ◦
i
(xi, x

∗
N ) − γ̂(νi)(xi, x

∗
N , wi)

∥∥∥ < ε , ∀ (xi, x
∗
N ) ∈ Bi (10)

�
Proposition 2 has been derived directly from the results reported in

[HSW89],[HN89],[Cyb89], according to which continuous functions can be
approximated to any degree of accuracy on a given compact set by feed-
forward neural networks based on sigmoidal functions, provided that the
number νi of neural units is sufficiently large. It is important to note that
the results presented in Proposition 2 do not necessarily involve the need
for using a feedforward neural network as an approximator for the opti-
mal control function. Actually, results like those presented in Proposition
2 are very common in approximation theory and hold true even under
rather weak assumptions about the functions to be approximated. More
specifically, Proposition 2 states that the functions implemented by means
of feedforward neural networks are dense in the space of continuous func-
tions; in a sense, this can be considered as a necessary condition that every
approximation scheme should satisfy. Moreover, such results in themselves
are not very useful, in that they do not provide any information on the rate
of convergence of the approximation scheme, that is, on the rate at which
the approximation error decreases, as the number of parameters of the ap-
proximating structure (i.e., the number of hidden units, or, equivalently, of
parameters to be determined in our neural approximators) increases.

To address this very important issue, we now apply Barron’s results on
neural approximation [Bar93]. To this end, let us introduce an approxi-
mating network that differs slightly from the one previously introduced to
state Proposition 2. The new network is the parallel of m single-output
neural networks of the type described above (i.e., containing a single hidden
layer and linear output activation units). Each network generates one of
the m components of the control vector ui . Denote by γ̂

(νij)
j (xi, x

∗
N , wij)

the input-output mapping of such networks, where νij is the number of
neural units in the hidden layer and wij is the weight vector. Define also
as γ◦

ij(xi, x
∗
N ) the j-th component of the vector function γ◦

i
. In order to

characterize the ability of the functions γ̂
(νij)
j to approximate the functions

γ◦
ij , we introduce the integrated square error

∫ ∣∣∣γ◦
ij − γ̂

(νij)
j

∣∣∣2 σ[d (xi, x
∗
N )]

evaluated on the domain of γ◦
ij , that is, on the compact set Bi × AN

(σ is a probability measure). We now need to introduce some smoothness
assumptions on the optimal control functions γ◦

ij to be approximated. Fol-
lowing [Bar93], we assume that each of such functions has a bound to the
average of the norm of the frequency vector weighted by its Fourier trans-
form. However, the functions γ◦

ij have been defined on the compact sets

Bi × AN and not on the space Rd , where d
	
= dim [col (xi, x

∗
N )] = 2n .

Then, in order to introduce the Fourier transforms, we need “to extend”
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the functions γij(xi, x
∗
N ) , defined on the compact set Bi ×AN , from this

domain to Rd . Toward this end, we define the functions γij : Rd → R
that coincide with γij(xi, x

∗
N ) on Bi ×AN . Finally, we define the class of

functions

Gi
cij

	
=
{

γij such that
∫
Rd

|ω| |Γij(ω)| dω ≤ cij

}
(11)

where Γij(ω) is the Fourier transform of γij and cij is any finite positive
constant. Then, in [PZ94b], we prove the following

Proposition 3 Assume that Problem 1 has only one solution γ◦
i
(xi, x

∗
N ) ∈

C[Bi ×AN ,Rm] , i = 0, 1, . . . , N − 1 , such that γ◦
ij ∈ Gi

c̃ij
for some finite

positive scalar c̃ij , for every j with 1 ≤ j ≤ m . Then, for every i with
0 ≤ i ≤ N − 1 , for every j with 1 ≤ j ≤ m , for every probability measure
σ , and for every νij ≥ 1 , there exist a weight vector wij (i.e., a neural

strategy γ̂
(νij)
j (xi, x

∗
N , wij) ) and a positive scalar c′ij such that

∫
Bi×AN

∣∣∣ γ◦
ij(xi, x

∗
N ) − γ̂

(νij)
j (xi, x

∗
N , wij)

∣∣∣2 σ [d (xi, x
∗
N )] ≤ c′ij

νij
(12)

where c′ij = (2ric̃ij)
2 . ri is the radius of the smallest sphere (centered in

the origin) that contains Bi ×AN .
�

It is worth noting that, in a sense, Proposition 3 specifies quantitatively
the content of Proposition 2. More specifically, it states that, for any con-
trol function γ◦

ij(xi, x
∗
N ) , the number of parameters required to achieve an

integrated square error of order O(1/νij) is O(νijd) , which grows linearly
with d, where d represents the dimension of the input vector of the neural
network acting at stage i. This implies that, for the functions to be approx-
imated belonging to the class defined by (11), the risk of an exponential
growth of the number of parameters (i.e., the phenomenon of the curse
of dimensionality) is not incurred. This fact, however, is not completely
surprising. Actually, in [Gir94], it has been shown that a function belong-
ing to the class defined by (11) can be written as f(x) = ‖x ‖1−d ∗ λ(x) ,
where λ(x) is any function whose Fourier transform is integrable and ∗
stands for the convolution operator (the Fourier transform is assumed to
be defined in the sense of generalized functions, and the convolution op-
erator is defined accordingly). Then, the “slow” growth of the number of
parameters with d may be motivated by the fact that the space of func-
tions to be approximated is more and more constrained as d increases. It
is now reasonable to wonder whether the property outlined by Proposition
3 is peculiar to feedforward neural approximators or it is shared by tra-
ditional linear approximation schemes (like polynomial and trigonometric
expansions) as well as by other classes of nonlinear approximators.

Let us first address the case of linear approximators, that is, linear com-
binations of a number νij of preassigned basis functions. In [Bar93], it is
shown “that there is no choice of νij fixed basis functions such that lin-
ear combinations of them achieve integrated square error of smaller order
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than (1/νij)
2/d .” This applies to functions to be approximated that be-

long to the above-defined class Gi
c̃ij

. The presence of 2/d instead of 1 in
the exponent of 1/νij may then give rise to the curse of dimensionality.
However, this fact deserves another comment. Actually, if we assume a
higher degree of smoothness for the functions γ◦

ij by requiring them to
have square-integrable partial derivatives of order up to s (then γ◦

ij be-

long to the Sobolev space W
(s)
2 ), where s is the least integer greater than

1 +
d

2
, two results can be established: 1) there exists a scalar c∗ij such that

Gi
c∗

ij
⊃ W

(s)
2 (i.e., W

(s)
2 is a proper subset of Gi

c∗
ij

) [Bar93], and 2) the
linear schemes used to approximate functions belonging to Sobolev spaces
do not suffer the curse of dimensionality [Pin86]. It follows that neural
approximators should behave better than linear ones in the difference set
Gi

c∗
ij
\ W

(s)
2 .

For a comparison of neural approximators with other nonlinear approx-
imation schemes, it should be remarked that linear combinations of ba-
sis functions containing adaptable parameters may exhibit approximation
properties similar to the ones that characterize the neural mappings de-
scribed in the paper. This is the case with Radial Basis Functions [Gir94]
(for which the centers and the weighting matrices of the radial activation
functions can be tuned), or with linear combinations of trigonometric basis
functions [Jon92] (for which the frequencies are adaptable parameters). In
general, it is important that free parameters should not appear linearly,
as is the case with the coefficients of linear combinations of fixed basis
functions. It is also worth noting that the approximation bound of order
O(1/νij) is achieved under smoothness assumptions on the functions to be
approximated that depend on the chosen nonlinear approximation schemes.
The wider diffusion of feedforward neural approximators, as compared with
other nonlinear approximators, is probably to be ascribed to the simplicity
of the tuning algorithms (see the next section), to the robustness of such
algorithms, and to other practical features.

5 Solution of the nonlinear programming problem
by the gradient method

The unconstrained nonlinear programming Problem 2 can be solved by
means of some descent algorithm. We focus our attention on methods of
the gradient type, as, when applied to neural networks, they are simple and
well suited to distributed computation. To solve Problem 2, the gradient
algorithm can be written as follows

w (k + 1) = w (k) − α∇w E
x0,x∗

N

J [ w (k), x0, x
∗
N ] , k = 0, 1, . . . (13)

where α is a positive, constant step-size and k denotes the iteration step
of the descent procedure.

However, due to the general statement of the problem, we are unable to
express the average cost E

x0,x∗
N

[J (w, x0, x
∗
N )] in explicit form. This leads
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us to compute the “realization”

∇w J [ w(k), x0(k), x∗
N (k) ]

instead of the gradient appearing in (13). The sequence

{[x0(k), x∗
N (k)] , k = 0, 1, . . .}

is generated by randomly selecting the vectors x0(k), x∗
N (k) from A0 ,

AN , respectively. Then, in lieu of (13), we consider the following updating
algorithm

w(k+1) = w(k)−α(k)∇w J [w(k), x0(k), x∗
N (k) ] , k = 0, 1, . . . (14)

The probabilistic algorithm (14) is related to the concept of “stochastic
approximation”. Sufficient conditions for the algorithm convergence can
be found, for instance, in [Tsy71],[PT73]. Some of such conditions are
related to the behavior of the time-dependent step-size α(k) , the others to
the shape of the cost surface J [w(k), x0(k), x∗

N (k)] . To verify if the latter
conditions are fulfilled is clearly a hard task, due to the high complexity of
such a cost surface. As to α(k) , we have to satisfy the following sufficient
conditions for the algorithm convergence

α(k) > 0 ,
∞∑

k=1

α(k) = ∞ ,
∞∑

k=1

α2(k) < ∞ (15)

In the examples given in the following, we take the step-size α (k) =
c1 / (c2 +k) , c1, c2 > 0 , which satisfies conditions (15). In these examples,
we also add a “momentum” ρ [w(k) − w(k − 1)] to (14), as is usually done
in training neural networks ( ρ is a suitable positive constant). Other accel-
eration techniques have been proposed in the literature, and probably they
allow a faster convergence than the one achieved in the examples presented
later on. However, we limit ourselves to using the simple descent algorithm
described above, as the issue of convergence speed is beyond the scope of
this paper.

We now want to derive the components of ∇w J [w(k), x0(k), x∗
N (k)] , i.e.,

the partial derivatives

∂J [w(k), x0(k), x∗
N (k)]

∂wi
pq(s)

.

Toward this end, we define the following two variables, which play a basic
role in the development of the proposed algorithm (to simplify the notation,
we drop the index k)

δi
q(s)

	
=

∂J (w, x0, x
∗
N )

∂zi
q(s)

, i = 0, 1, . . . , N − 1; s = 1, . . . , L; q = 1, . . . , ns

(16)

λi
	
= ∇x

i
J (w, x0, x

∗
N ) , i = 0, 1, . . . , N − 1 (17)

www.4electron.com



318 Riccardo Zoppoli, Thomas Parisini

Then, by applying the well-known backpropagation updating rule (see, for
instance, [RM86]), we obtain

∂J ( w, x0, x
∗
N )

∂wi
pq(s)

= δi
q(s)y

i
p(s − 1) (18)

where δi
q(s) can be computed recursively by means of the equations

δi
q(s) = g′

[
zi

q(s)
] ns+1∑

h=1

δi
h(s + 1)wi

qh(s + 1) , s = 1, . . . , L − 1

δi
q(L) = g′

[
zi

q(L)
] ∂J

∂yi
q(L)

(19)
where g′ is the derivative of the activation function. Of course, (18) implies
that the partial derivatives with respect to the bias weights wi

0q(s) can be
obtained by setting the corresponding inputs to 1.

We now have to compute the partial derivatives
∂J

∂yi
q(L)

. First, we need

to detail the components of yi(0) which are the input vectors to the i-

th neural network. Since yi(0) = col(x∗
N , xi) , we let yi

∗(0)
	
= x∗

N and

yi
x
(0)

	
= xi . Thus, the components of x∗

N correspond to the components
yi

p(0), p = 1, . . . , n , and the components of xi to yi
p(0), p = n+1, . . . , 2n .

We also define(
∂J

∂yi(L)

)T

= col
[

∂J

∂yq(L)
, q = 1, . . . ,m

]
and, in a similar way,

∂J

∂yi
∗(0)

∂J

∂yi
x
(0)

. Finally, we let

h̃i(xi, ui, x
∗
N )

	
= hi(xi, ui) + ρi (‖x∗

N − xi‖) , i = 1, 2, . . . , N − 1,

and h̃0(x0, u0, x
∗
N )

	
= h0(x0, u0) . Then, we can use the following relation-

ships, which are demonstrated in [PZ94b],

∂J

∂yi(L)
=

∂

∂ui

h̃i(xi, ui, x
∗
N )+λT

i+1

∂

∂ui

f
i
(xi, ui), i = 0, 1, . . . , N−1 (20)

where vectors λT
i can be computed as follows

λT
i =

∂

∂xi

h̃i(xi, ui, x
∗
N ) + λT

i+1

∂

∂xi

f
i
(xi, ui) +

∂J

∂yi
x
(0)

, i = 1, . . . , N − 1

λT
N =

∂

∂xN

ρN (‖x∗
N − xN‖)

(21)
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and

∂J

∂yi
∗(0)

= col

[
n1∑

q=1

δi
q(1)wi

pq(1) , p = 1, . . . , n

]
, i = 0, 1, . . . , N − 1 (22)

∂J

∂yi
x
(0)

= col

[
n1∑

q=1

δi
q(1)wi

pq(1) , p = n + 1, . . . , 2n

]
, i = 0, 1, . . . , N − 1

(23)
It is worth noting that (21) is the classical adjoint equation of N -stage

optimal control theory, with the addition of a term (the third) to take
into account the introduction of the fixed-structure feedback control law,
i.e., this term is not specific for neural networks. Instead, the presence of
the feedforward neural networks is revealed by (22),(23), which include the
synaptic weights of the first layers of the networks.

It can be seen that the algorithm consists of the following two alternating
“passes”:
Forward pass . The state vectors x0 (k) ,x∗

N (k) are randomly generated
from A0 , AN , respectively. Then, the control sequence and the state
trajectory are computed on the basis of these vectors and of w(k) .
Backward pass . All the variables δi

q(s) and λi are computed, and the
gradient ∇w J [w(k), x0(k), x∗

N (k)] is determined by using (18). Then, the
new weight vector w(k + 1) is generated by means of (14).

In the next section, some examples will be given to illustrate the effec-
tiveness of the proposed method.

6 Simulation results

We now present two examples to show the learning properties of the neu-
ral control laws. In the first example, an LQ optimal control problem is
addressed to evaluate the capacity of the “optimal neural control laws” to
approximate the “optimal control laws” (i.e., the solution of Problem 1,
as previously defined), which, in this case, can be derived analytically. In
the second example, a more complex non-LQ optimal control problem is
dealt with, for which it is difficult to determine the optimal control law
by means of conventional methods. Instead, as will be shown, the neural
optimal control law can be derived quite easily. Both examples have been
drawn from [PZ94b].
Example 1.
Consider the following LQ optimal control problem, where the dynamic
system is given by

xi+1 =
[

0.65 −0.19
0 0.83

]
xi +

[
7
7

]
ui

where xi
	
= col(xi, yi) . The cost function is

N−1∑
i=0

ui
2 + vN ‖xN ‖2
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where vN = 40 , N = 10 . Note that the final set AN reduces to the origin.
As is well-known, the optimal control is generated by the linear feedback
law u◦

i = −Lixi , where the matrix gain Li is determined by solving a
discrete-time Riccati equation. To evaluate the correctness of the proposed
method for a problem admitting an analytical solution, we considered the
control strategies ui = γ̂(xi, wi) , implemented by means of neural net-
works containing one hidden layer of 20 units. (In the present example, as
well as in the following ones, the number of neural units was established
experimentally, that is, several simulations showed that a larger number
of units did not result in a significant decrease in the minimum process
cost.) A momentum ρ [w(k) − w(k − 1)] was added to the right-hand side
of (14), with ρ = 0.8 . The constants of the time-dependent step-size α(k)
were c1 = 100 and c2 = 105 . The parameters c1, c2 and η , too, were
derived experimentally. More specifically, they were chosen such as to ob-
tain a reasonable tradeoff between the convergence speed and a ”regular”
behavior of the learning algorithm (i.e., absence of excessive oscillations in
the initial part of the learning procedure, low sensitivity to the randomly
chosen initial values of the weight vector, etc.). A similar criterion was
used to choose the same parameters for the following examples. The ini-
tial set was A0 =

{
(x, y ) ∈ R2 : 2.5 ≤ x ≤ 3.5,−1 ≤ y ≤ 1

}
. Usually,

the algorithm converged to the optimal solution w◦ after 104 to 2 · 104

iterations.
The behaviors of the optimal neural state trajectories are pictorially

presented in Fig. 3, where four trajectories, starting from the vertices
of the initial region A0 , map A0 into the region Ã1 at stage i = 1 ,
then Ã1 into Ã2 at stage i = 2 , and so on, up to region Ã9 (more
precisely, the set Ãi+1 is generated by the set Ãi through the mapping
xi+1 = f

i

[
xi, γ̂(xi, wi)

]
).

For the sake of pictorial clarity, only the first regions are shown in the
figure. Since, in Fig. 3, the optimal neural trajectories and the analytically
derived ones practically coincide, A0 , Ã4 , Ã9 are plotted in enlarged
form in Fig. 4 so as to enable one to compare the neural results with the
analytical ones. The continuous lines represent the optimal neural control
law for different constant values of the control variable ui (”iso-control”
lines), and the dashed lines represent the optimal control law. As can
be seen, the optimal neural control law approximates the optimal one in
a very satisfactory way, and this occurs not only inside the sets A0 , Ã4 ,
Ã9 but also outside these regions, thus pointing out the nice generalization
properties of such control laws.
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FIGURE 5. The space robot.

Example 2.
Consider the space robot presented in Fig. 5, which, for the sake of sim-
plicity, is assumed to move in the plane.

The robot position with respect to the coordinate system is described by
the Cartesian coordinates x, y and by the angle ϑ that its axis of symmetry
(oriented in the direction of the vector e of unit length) forms with the
x axis. Two couples of thrusters, aligned with the axis of symmetry, are
mounted on the robot sides. Their thrusts, u1 and u2 , can be modulated
so as to obtain the desired intensity of the force F and the desired torque
T by which to control the robot motion. We assume the mass m and the
moment of inertia J to remain constant during the maneuver described in
the following. Then we can write

F = (u1 + u2) e = m
dv

dt
(24)

T = (u1 − u2) d = J
dω

dt
(25)
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FIGURE 6. Positions of the space robot during its maneuver.

where d is the distance between the thrusters and the axis of symmetry,
v is the robot velocity, and ω is the angular robot velocity. Let x1 = x ,
x2 = ẋ , x3 = y , x4 = ẏ , x5 = ϑ , x6 = ϑ̇ , and x

	
= col (xi, i = 1, . . . , 6) .

Then, from (24) and (25), we derive the nonlinear differential dynamic
system 



ẋ1 = x2

ẋ2 =
1
m

(u1 + u2) cos x5

ẋ3 = x4

ẋ4 =
1
m

(u1 + u2) sin x5

ẋ5 = x6

ẋ6 =
d

J
(u1 − u2)

(26)

under the constraints
|u1| ≤ U , |u2| ≤ U (27)

where U is the maximum thrust value allowed.
The space robot is requested to start from any given point of the segment

AB shown in Fig. 6 (the parking edge of a space platform) and to reach
an object moving along the segment A′B′ in an unpredictable way.

The dashed line shows the path of the object. When the robot is on the
segment A′B′ , it must stop with the angle ϑ = 0 . Then, the initial and
final sets are given by

A0 =
{
x ∈ R6 : x1 = 0, x2 = 0, 1 ≤ x3 ≤ 5, x4 = 0, x5 = 0, x6 = 0

}
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and

AN =
{
x ∈ R6 : x1 = 10, x2 = 0, 1 ≤ x3 ≤ 5, x4 = 0, x5 = 0, x6 = 0

}
,

respectively. The maneuver has to be completed at a given time tf , and
N = 10 control stages are allowed. The fuel consumption has to be min-
imized, and the robot trajectory has to terminate ”sufficiently near” the
target vector x∗

N . In accordance with these requirements, the cost function
can be expressed as

J =
N−1∑
i=0

[
c(ui1) + c(ui2) + ‖x∗

N − xi‖2
V

]
+ ‖x∗

N − xN‖2
VN

where xi
	
= x(i∆t) , ui

	
= u(i∆t) , and ∆t = tf/N (for the sake of brevity,

we do not write the discretized version of the differential system (26), as it is
simply given by a first-order Euler’s approximation for the system). More-
over, V = diag [1, 0.1, 40, 0.1, 40, 0.1] , VN = diag [40, 40, 40, 40, 40, 40] .
The cost of the fuel consumption is taken into account by the functions
c(uij) = k

[
1
β ln(2 + eβuij + e−βuij ) − 1

β ln(4)
]
, (j = 1, 2) , which approx-

imate (for large enough values of the parameter β ) the nondifferentiable
costs k |uij | (it is realistic to assume the fuel consumption to be propor-
tional to the thrust); for the present example, we took β = 50 , k = 0.01 .
We also chose c1 = 10−5, c2 = 104, η = 0.9 . The matrices V, VN and
the constant k were chosen such as to obtain a reasonable compromise
between the ”attractiveness” of the vectors to be tracked and the fuel con-
sumption. Note also that the sigmoidal functions generating the control
variables ui1, ui2 are bounded by unit values. Then, multiplying these
functions by U enables us to remove constraints (27). The control func-
tions γ̂ (xi, x

∗
N , wi) were implemented by means of neural networks with

12 input variables and one hidden layer of 80 units.
The positions of the space robot during its maneuver are shown in Fig.

6. The effect of the feedforward action is clearly revealed by the variation
occurring in the robot trajectory when the robot perceives the ”right-about
turn” of the object to be reached.

7 Statements of the infinite-horizon optimal
control problem and of its receding-horizon
approximation

Let us consider again the discrete-time dynamic system (1) that we now
assume to be time-invariant

xt+1 = f(xt, ut), t = 0, 1, . . . (28)

We shall use indexes t for the IH problems, whereas we shall go on using
indexes i for the FH ones. Constraints on state and control vectors are
explicitly taken into account, that is, we assume xt ∈ X ⊂ Rn and
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ut ∈ U ⊂ Rm . In general, denote by Z the class of compact sets A ⊂ Rq

containing the origin as an internal point. This means that A ∈ Z ⇔ ∃λ ∈
R, λ > 0 such that N(λ) ⊂ A , where N(λ)

	
= {x ∈ Rq : ‖x‖ ≤ λ} is the

closed ball with center 0 and radius λ. Then, assume that X,U ∈ Z . The
cost function is given by

JIH(xt, ut∞) =
+∞∑
i=t

h(xi, ui) , t ≥ 0 (29)

In (29) and in the following, we define utτ
	
= col (ut, . . . , uτ ) for both finite

and infinite values of the integer τ . Assume that f(0, 0) = 0 and h(0, 0) =
0 . Comparing cost (2) with cost (29), we notice that in (29) the cost terms
are time-invariant functions and that the cost terms ρi ( ‖x∗

N − xi‖ ) lose
their meanings and then vanish. Now we can state the following
Problem 3. At every time instant t ≥ 0 , find the IH optimal feedback
control law uIH◦

t = γ◦
IH

(xt) ∈ U that minimizes cost (29) for any state
xt ∈ X .

�
As is well-known, unless the dynamic system (28) is linear and cost

(29) is quadratic, deriving the optimal feedback law γ◦
IH

is a very hard,
almost infeasible task. Then, let us now consider an RH approximation for
Problem 3. To this end, we need to define the following FH cost function

JFH [xt, ut,t+N−1, N, hF (·)] =
t+N−1∑

i=t

h(xi, ui) + hF (xt+N ) , t ≥ 0 (30)

where hF (·) ∈ C1 [Rn,R+] , with hF (0) = 0 , is a suitable terminal cost
function, and N is a positive integer denoting the length of the control
horizon. Then we can state the following
Problem 4. At every time instant t ≥ 0 , find the RH optimal control
law uRH◦

t = γ◦
RH

(xt) ∈ U, where uRH◦
t is the first vector of the control

sequence uFH◦
t , . . . , uFH◦

t+N−1 (i.e., uRH◦
t

	
= uFH◦

t ), that minimizes cost (30)
for the state xt ∈ X .

�
As to Problem 4, we remark that stabilizing properties of the RH reg-

ulators were established in [KP77],[KP78],[KBK83], under LQ assump-
tions. Extensions to nonlinear systems were derived by Keerthi and Gilbert
[KG88] for discrete-time systems and, more recently, by Mayne and Michal-
ska [MM90],[MM93] for continuous-time systems. In [MM90], the RH op-
timal control problem was solved under the constraint xt+N = 0 . Such
a constraint was relaxed in [MM93] by requiring that the regulator drive
the system to enter a certain neighborhood W of the origin. Once the
boundary of W has been reached, a linear regulator, designed to stabilize
the nonlinear system inside W , takes over and steers the state to the ori-
gin. It is worth noting that, in both approaches, the regulator computes
its control actions on line; this can be accepted only if the process is slow
enough, as compared with the computation speed of the regulator itself.

As can be deduced from the statement of Problem 4, we shall derive
the RH stabilizing optimal regulator without imposing either the “exact”
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constraint xt+N = 0 or the condition of reaching the neighborhood W of
the origin. The stabilizing property of the RH regulator depends on proper
choices of the control horizon N and of the final cost hF (·) that penalizes
the fact that the system state is not steered to the origin at time t + N .

The statement of Problem 4 does not impose any particular way of com-
puting the control vector uRH◦

t as a function of xt . Actually, we have two
possibilities.

1) On-line computation. When the state xt is reached at time t,
cost (30) must be minimized at this instant (clearly, no other state
belonging to X is of interest for such minimization). Problem 2 is
then an open-loop optimal control problem and may be regarded as
a nonlinear programming one. This problem can be solved on line by
considering the vectors ut, . . . , ut+N−1, xt+1, . . . , xt+N as indepen-
dent variables. The main advantage of this approach is that many
well-established nonlinear programming techniques are available to
solve Problem 2. On the other hand, the approach involves a huge
computational load for the regulator. If the dynamics of the con-
trolled plant is not sufficiently slow, as compared with the speed of
the regulator’s computing system, a practical application of the RH
control mechanism turns out to be infeasible (see [YP93], where a
maximum time interval Tc was assigned to the control system to gen-
erate the control vector).

2) Off-line computation. By following this approach, the regulator
must be able to generate instantaneously uRH◦

t for any state xt ∈ X
that may be reached at stage t. In practice, this implies that the con-
trol law γ◦

RH
(xt) has to be computed “a priori” (i.e., off line) and

stored in the regulator’s memory. Clearly, the off-line computation
has advantages and disadvantages that are opposite to the ones of
the on-line approach. No on-line computational effort is requested
from the regulator, but an excessive amount of computer memory
may be required to store the closed-loop control law. Moreover, an
N -stage functional optimization problem has to be solved instead of a
nonlinear programming one. As is well-known, such a functional op-
timization problem can be solved analytically only in very few cases,
typically under LQ assumptions. As we are looking for feedback
optimal control laws, dynamic programming seems to be the most
efficient tool. This implies that the control function γ◦

RH
(xt) has to

be computed when the backward phase of the dynamic programming
procedure, starting from the final stage t + N − 1 , has come back
to the initial stage t. Unfortunately, as stated in the first sections
of the paper, dynamic programming exhibits computational draw-
backs that, in general, are very difficult to overcome. In Section 9,
we shall return to the off-line solution of Problem 2 and present a
neural approximation method to solve this problem.

Here we want to remark that the works by Keerthy and Gilbert and by
Mayne and Michalska aim to determine the RH optimal control law on
line, whereas we are more interested in an off-line computational approach.
For now, we do not address these computational aspects and, in the next
section, we present a stabilizing control law to solve Problem 4.
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8 Stabilizing properties of the receding–horizon
regulator

As stated in Section 7, we are looking for an RH feedback regulator that
solves Problem 4, while stabilizing the origin as an equilibrium point of the
closed-loop controlled plant. As previously specified, we relax the exact
terminal constraint xt+N = 0 , without imposing the condition of reaching
a certain neighborhood W of the origin. Toward this end, the following
assumptions are introduced:

(i) The linear system xt+1 = Axt + But , obtained via the linearization
of system (28) in a neighborhood of the origin, i.e.

A
	
=

∂f

∂xt

∣∣∣∣
x

t
=0, u

t
=0

and B
	
=

∂f

∂ut

∣∣∣∣
x

t
=0, u

t
=0

,

is stabilizable.

(ii) The transition cost function h(x, u) depends on both x and u , and
there exists a strictly increasing function r(·) ∈ C[R+,R+] , with
r(0) = 0 , such that h(x, u) ≥ r(‖(x, u)‖), ∀x ∈ X, ∀u ∈ U , where

(x, u)
	
= col (x, u) .

(iii) hF (·) ∈ H(a, P ) , where H(a, P )
	
= {hF (·) : hF (x) = a xT Px} , for

some a ∈ R , a > 0 , and for some positive-definite symmetric matrix
P ∈ Rn×n .

(iv) There exists a compact set X0 ⊂ X, X0 ∈ Z , with the property
that, for every neighborhood N(λ) ⊂ X0 of the origin of the state
space, there exists a control horizon M ≥ 1 such that there exists a
sequence of admissible control vectors {ui ∈ U, i = t, . . . , t + M − 1}
that yield an admissible state trajectory xi ∈ X, i = t, t+1, . . . , t+M
ending in N(λ) (i.e., xt+M ∈ N(λ) ) for any initial state xt ∈ X0 .

(v) The optimal FH feedback control functions γ◦
FH

(xi, i), i = t, . . . , t +
N − 1 , which minimize cost (30), are continuous with respect to xi ,
for any xt ∈ X and for any finite integer N ≥ 1 .

Assumption (i) is related to the possibility of stabilizing the origin as
an equilibrium point of the closed-loop system by using a suitable linear
regulator in a neighborhood of the origin itself. In the proof of the following
Proposition 4, this assumption is exploited in order to build the region
of attraction for the origin when the RH regulator γ◦

RH
(xt) is applied,

and to provide useful information on the form of the FH cost function
(30) that guarantees the stability properties of the control scheme [PZ95].
Assumption (i) is the discrete-time version of the one made in [MM93].

Assumption (iii) plays a key role in the development of the stability
results concerning the RH regulator, and is essentially related to the relax-
ation of the terminal state constraint xt+N = 0 . This is quite consistent
with intuition, as, in practice, the constraint xt+N = 0 is replaced with
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the final cost hF (·) that penalizes the fact that the system state is not
driven to the origin at time t + N .

Assumption (iv) substantially concerns the controllability of the nonlin-
ear system (1). In a sense, it is very similar to the Property C defined in
[KG88]. However, assumption (iv) seems to be weaker than this property,
which requires the existence of an admissible control sequence that forces
the system state to reach the origin after a finite number of stages, starting
from any initial state belonging to Rn .

Let us now denote by J◦
IH(xt) =

+∞∑
i=t

h(xIH◦
i , uIH◦

i ) the cost associated

with the IH optimal trajectory starting from xt (i.e., xIH◦
t = xt ). In an

analogous way, let us denote by J◦
RH [xt, N, hF (·)] =

+∞∑
i=t

h(xRH◦
i , uRH◦

i ) the

cost associated with the RH trajectory starting from xt (i.e., xRH◦
t = xt )

and with the solution of the FH control problem characterized by a control
horizon N and a terminal cost function hF (·) . Finally, let us denote by

J◦
FH [xt, N, hF (·)]

	
= JFH [xt, u

◦
t,t+N−1, N, hF (·)]

=
t+N−1∑

i=t

h(xFH◦
i , uFH◦

i ) + hF (xFH◦
t+N )

the cost corresponding to the optimal N -stage trajectory starting from xt .
Then, we present the following proposition, which is proved in [PZ95]:

Proposition 4 If assumptions (i) to (v) are verified, there exist a finite
integer Ñ ≥ M , a positive scalar ã and a positive-definite symmetric
matrix P ∈ Rn×n such that, for every terminal cost function hF (·) ∈
H(a, P ) , with a ∈ R, a ≥ ã , the following properties hold:
1) The RH control law stabilizes asymptotically the origin, which is an
equilibrium point of the resulting closed-loop system.
2) There exists a positive scalar β such that, for any N ≥ Ñ , the set

W[N,hF (·)] ∈ Z , W[N,hF (·)] 	
= {x ∈ X : J◦

FH [x,N, hF (·)] ≤ β} , is an
invariant subset of X0 and a domain of attraction for the origin, i.e., for
any xt ∈ W[N,hF (·)] , the state trajectory generated by the RH regulator
remains entirely contained in W[N,hF (·)] and converges to the origin.
3) For any N ≥ Ñ + 1 , we have

J◦
RH [xt, N, hF (·)] ≤ J◦

FH [xt, N, hF (·)], ∀xt ∈ W[N,hF (·)] (31)

4) ∀δ ∈ R, δ > 0, there exists an N ≥ Ñ + 1 such that

J◦
RH [xt, N, hF (·)] ≤ J◦

IH(xt) + δ, ∀xt ∈ W[N,hF (·)] (32)

�
Proposition 4 asserts that there exist values of a certain number of pa-

rameters, namely, Ñ , P , and ã, that ensure us the stabilizing property of

www.4electron.com



12. Neural Approximations for Optimal Control 329

the RH control law and some nice performances of this regulator, as com-
pared with those of the IH one (see (31) and (32)). As nothing is said as to
how such parameters can be found, one is authorized to believe that they
can but be derived by means of some heuristic trial–and–error procedure
to test if stability has indeed been achieved. However, some preliminary
results, based on the rather constructive proof of Proposition 4, as reported
in [PZ95], lead us to believe that appropriate values of Ñ , P , and ã can
be computed, at least in principle, by stating and solving some suitable
constrained nonlinear programming problems. We use the words “at least
in principle” because the efficiencies of the related descent algorithms have
still to be verified.

In deriving (both on line and off line) the RH control law uRH◦
t =

γ◦
RH

(xt) , computational errors may affect the vector uRH◦
t and possibly

lead to a closed-loop instability of the origin; therefore, we need to establish
the robustness properties of such a control law. This is done by means of
the following proposition, which characterizes the stabilizing properties of
the RH regulator when suboptimal control vectors ûRH

i ∈ U, i ≥ t are used
in the RH control mechanism, instead of the optimal ones uRH◦

i solving
Problem 4. Let us denote by x̂RH

i , i > t , the state vector belonging to the
suboptimal RH trajectory starting from xt .

Proposition 5 If assumptions (i) to (v) are verified, there exist a finite
integer Ñ , a positive scalar ã and a positive-definite symmetric matrix
P ∈ Rn×n such that, for any terminal cost function hF (·) ∈ H(a, P ) and
for any N ≥ Ñ , the following properties hold:
1) There exist suitable scalars δ̃i ∈ R, δ̃i > 0 such that, if

∥∥∥uRH◦
i − ûRH

i

∥∥∥ ≤ δ̃i, i ≥ t,

then
x̂RH

i ∈ W[N,hF (·)], ∀ i > t, ∀xt ∈ W[N,hF (·)] (33)

2) For any compact set Wd ⊂ Rn, Wd ∈ Z , there exist a finite integer
T ≥ t and suitable scalars δ̄i ∈ R, δ̄i > 0 such that, if

∥∥∥uRH◦
i − ûRH

i

∥∥∥ ≤ δ̄i, i ≥ t ,

then
x̂RH

i ∈ Wd , ∀ i ≥ T , ∀xt ∈ W[N,hF (·)] (34)
�

The proof of Proposition 5 is a direct consequence of the regularity as-
sumptions on the state equation (this proof is given in [PZ95]; see also
[CPRZ94] for some preliminary results). Proposition 5 has the following
meaning: the RH regulator can drive the state into every desired neigh-
borhood Wd of the origin in a finite time, provided that the errors on
the control vectors are suitably bounded. Moreover, the state will remain
contained in the above neighborhood at any future time instant. Clearly, if
the RH regulator (generating the above–specified suboptimal control vec-
tors) is requested to stabilize the origin asymptotically, the hybrid control
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mechanism described in [MM93] may be implemented. This involves de-
signing an LQ optimal regulator that stabilizes the nonlinear system inside
a proper neighborhood W of the origin. Then, if the errors affecting the
control vectors generated by the RH regulator are sufficiently small, this
regulator is able to drive the system state inside W (of course, the condi-
tion Wd ⊆ W must be satisfied). When the boundary of W is reached,
the RH regulator switches to the LQ regulator. It also follows that such
a hybrid control mechanism makes W[N,hF (·)] not only an invariant set
but also a domain of attraction for the origin.

9 The neural approximation for the
receding–horizon regulator

As stated in Section 7, we are mainly interested in computing the RH
control law uRH◦

t = γ◦
RH

(xt) off line. This requires that the regulator
generate the control vector uRH◦

t instantaneously, as soon as any state
belonging to the admissible set X is reached. Then, we need to derive (“a
priori”) an FH closed-loop optimal control law uFH◦

i = γ◦
FH

(xi, i), t ≥
0, i = t, . . . , t + N − 1 , that minimizes cost (30) for any xt ∈ X . Because
of the time-invariance of the dynamic system (28) and of the cost function
(30), we refer to an FH optimal control problem, starting from the state
xt ∈ X at a generic stage t ≥ 0 . Then, instead of uFH

i = γ
FH

(xi, i) , we
consider the control functions

uFH
i = γ

FH
(xi, i − t) , t ≥ 0 , i = t, . . . , t + N − 1 (35)

and state the following
Problem 5. Find the FH optimal feedback control law

{
uFH◦

i = γ◦
FH

(xi, i − t) ∈ U, t ≥ 0, i = t, . . . , t + N − 1
}

that minimizes cost (30) for any xt ∈ X .
�

Once the solution of Problem 5 has been found, we can write

uRH◦
t = γ◦

RH
(xt)

	
= γ◦

FH
(xt, 0) , ∀xt ∈ X, t ≥ 0 (36)

Dynamic programming seems, at least in principle, the most effective com-
putational tool for solving Problem 5. However, this algorithm exhibits
the well-known computational drawbacks previously pointed out for the
FH optimal control problem, namely, the necessity for discretizing (at each
control stage) the set X into a fine enough mesh of grid points, and, con-
sequently, the possibility of incurring the curse of dimensionality, even for
a small number of state components.

Unlike the requirements related to the N -stage optimal control problem
described in the first sections of the paper, it is important to remark that
we are now interested in determining only the first control function of
the control law that solves Problem 5, that is, γ◦

FH
(xt, 0) . On the other
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hand, we can compute (off line) any number of open-loop optimal control
sequences uFH◦

t , . . . , uFH◦
t+N−1 (see Problem 4) for different vectors xt ∈ X .

Therefore, we propose to approximate the function γ◦
FH

(xt, 0) by means
of a function γ̂

FH
(xt, w) , to which we assign a given structure. w is a

vector of parameters to be optimized. More specifically, we have to find a
vector w◦ that minimizes the approximation error

E(w)
	
=
∫

X

∥∥∥γ◦
FH

(xt, 0) − γ̂
FH

(xt, w)
∥∥∥2

dxt (37)

Clearly, instead of introducing approximating functions, it would be possi-
ble to subdivide the admissible set X into a regular mesh of points, as is
usually done at each stage of dynamic programming, and to associate with
any point xt ∈ X the control vector uFH◦

t corresponding to the nearest
point of the grid. Under the assumption that the function γ◦

FH
(xt, 0) is

continuous in X, it is evident that the mesh should be fine enough to satisfy
the conditions required in Proposition 5, i.e.,

∥∥∥uFH◦
i − ûFH

i

∥∥∥ ≤ δ̄i, i ≥ t ,

where uFH◦
i are the “true” stabilizing optimal controls (known only for the

grid points), and ûFH
i are the approximate ones. It is however clear that

the use of such a mesh would lead us again to the unwanted phenomenon
of the curse of dimensionality.

For the same reasons as explained in Sections 3 and 4, we choose again
a feedforward neural network to implement the approximating function
γ̂

FH
(xt, w) . With respect to Problem 2, it is worth noting that now i)

only one network is needed, and ii) the approximation criterion is differ-
ent, in that we have to minimize the approximation error (37), instead
of minimizing the expected process cost. In the following, we refer to
the neural mapping (6),(7), taking into account the fact that the super-
script i is useless. The weight and bias coefficients wpq (s) and w0q (s)
are the components of the vector w appearing in the approximating func-
tion γ̂

FH
(xt, w) ; the variables yq(0) are the components of xt , and the

variables yq(L) are the components of ut . To sum up, once the optimal
weight vector w◦ has been derived (off line), the RH neural approximate
control law takes on the form

ûRH◦
t = γ̂

RH
(xt, w

◦)
	
= γ̂

FH
(xt, w

◦) , ∀xt ∈ X , t ≥ 0 (38)

As to the approximating properties of the RH neural regulator, results
similar to the ones established in Propositions 2 and 3 can be obtained.
Proposition 2 plays an important role also for the stabilizing properties of
the RH regulator. Then, we repeat it here in a suitably modified version.
Proposition1′ Assume that, in the solution of Problem 5, the first con-
trol function γ◦

RH
(xt) = γ◦

FH
(xt, 0) of the sequence {γ◦

FH
(xi, i − t), i =

t, . . . , t + N − 1} is unique and that it is a C[X,Rm] function. Then, for
every ε ∈ R, ε > 0 , there exist an integer ν and a weight vector w (i.e., a
neural RH control law γ̂(ν)

RH
(xt, w) ) such that

∥∥∥γ◦
RH

(xt) − γ̂(ν)

RH
(xt, w)

∥∥∥ < ε , ∀xt ∈ X (39)
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�
Proposition 1′ enables us to state immediately the following

Corollary [PZ95]. If assumptions (i) to (v) are verified, there exists an RH
neural regulator ûRH

t = γ̂(ν)

RH
(xt, w), t ≥ 0 , for which the two properties of

Proposition 5 hold true. The control vectors ûRH
t are constrained to take

on their values from the admissible set Ū
	
= {u : u+∆u ∈ U, ∆u ∈ N(ε)} ,

where ε is such that ε ≤ δ̄i, i ≥ t (see the scalars in Proposition 5) and
Ū ∈ Z . �

The corollary allows us to apply the results of Proposition 5, thus ob-
taining an RH regulator able to drive the system state into any desired
neighborhood Wd of the origin in a finite time. Moreover, with reference
to what has been stated at the end of Section 8, a neural regulator, capable
of switching to an LQ stabilizing regulator when a proper neighborhood
W of the origin is reached, makes the region W[N,hF (·)] a domain of
attraction for the origin.

It should be noted that Proposition 1’ and the corollary constitute only
a first step towards the design of a stabilizing neural regulator. In fact,
nothing is said as to how the sequence of scalars δ̄i, i ≥ t (hence ε) as well
as the number ν of required neural units can be derived (as we did in com-
menting on the computation of the parameters appearing in Proposition 4,
we exclude trial–and–error procedures). The determination of the scalar
ε (see the corollary) is clearly a hard constrained nonlinear optimization
problem. Hopefully, some algorithm to solve it may be found. To this end,
research is currently being conducted.

As to the integer ν, its derivation is an open problem of neural approxi-
mation theory, at least if one remains in the class of feedforward neural net-
works. If other approximators are addressed, something more can be said.
Consider, for example, an approximator given by a nonlinear combina-
tion of Gaussian radial basis functions of the form gk(x) = e−‖x−x(k)‖2

/σ2
,

where x(k) are fixed centers placed in the nodes of a regular mesh. Such
a mesh is obtained by subdividing the n sides of the smallest hypercube
containing X into D − 1 segments of length ∆ (a suitable “extension”
γ̄◦

RH
(xt) of γ◦

RH
(xt) outside X must be defined). The number of nodes of

the mesh is then Dn and the components of the approximating function
are given by

γ̂RHj(xt, wj) =
Dn∑
k=1

wk
j gk(xt), j = 1, . . . ,m,

where wj
	
= col (wk

j , k = 1, . . . , Dn) . If the Fourier transform Γ◦
RHj(ω)

of the j–th component of γ̄◦
RH

(xt) is absolutely integrable on Rn , for
j = 1, . . . , m , it can be shown [SS92] that

‖ γ◦
RH

(xt) − γ̂(ν)

RH
(xt, w) ‖ ≤ ψ , ∀xt ∈ X (40)

where ψ can be made arbitrarily small by suitably choosing the number
D of nodes on the mesh side (or, equivalently, the mesh size ∆) and the
variance σ2. The important result given in [SS92] lies in the fact that such
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parameters can be determined quantitatively on the basis of the smooth-
ness characteristics of the function γ̄◦

RH
(xt) . Such characteristics are

specified by the “significant” frequency ranges of the Fourier transforms
Γ◦

RHj , j = 1, . . . , m and by L1 bounds to these transforms. Note that,
as the desired value of ψ decreases, or as the degree of smoothness of the
function γ̄◦

RH
(xt) decreases, the variance σ2 and the mesh size ∆ must

suitably decrease (for more details, see [SS92] again). Then, the above re-
sults enable one to specify the number ν = mDn of parameters required
to achieve a given error tolerance. This number reveals that we pay for the
possibility of computing an explicit uniform bound to the approximation
error with the feared danger of incurring the curse of dimensionality.

Coming back to the feedforward neural approximators, it can be expected
that, given a bound to the approximation error (see (39)), a computational
technique will be found to determine the number ν, on the basis of the
smoothness characteristics, also for functions to be approximated that be-
long to the difference set between Barron’s class of functions and Sobolev
spaces (as said in Section 4, in this difference set, feedforward neural ap-
proximators should behave better than linear ones). Waiting for such a
computational technique to be derived, and reassured by the fact that a
large quantity of simulation results lead us to believe that a heuristic (i.e.,
experimental) determination of the integer ν is, all things considered, rather
easy, we shall go on with our treatment, still considering feedforward neural
networks as our basic approximators. In the next section, we shall present
a method for deriving the weights of this type of networks, and conclude
by reporting some simulation results.

10 A gradient algorithm for deriving the RH
neural regulator and simulation results

To minimize the approximation error (37), we use again a gradient algo-
rithm (see (13)), that is,

w (k + 1) = w (k) − α∇w E [ w (k) ] , k = 0, 1, . . . (41)

Define now the function

D(w, xt)
	
=
∥∥∥γ◦

FH
(xt, 0) − γ̂

FH
(xt, w)

∥∥∥2

=
∥∥∥γ◦

RH
(xt) − γ̂

RH
(xt, w)

∥∥∥2

,

and note that we are able to evaluate γ
FH

(xt, 0) only pointwise, that is,
by solving Problem 4 for specific values of xt . It follows that we are unable
to compute the gradient ∇w E [w(k)] in explicit form. Then, we interpret
E (w) as the expected value of the function D(w, xt) by considering xt
as a random vector uniformly distributed on X. This leads to use again a
stochastic approximation approach and to compute the “realization”

∇w D[w, xt(k)],

instead of the gradient appearing in (41).
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We generate the sequence {xt(k), k = 0, 1, . . .} randomly, taking into
account the fact that xt is considered to be uniformly distributed on X.
Then, the updating algorithm becomes

w (k + 1) = w (k) − α(k)∇w D [ w(k), xt(k) ] , k = 0, 1, . . . (42)

To derive the components of

∇wD [w(k), xt(k)] , i.e., the partial derivatives
∂D[w(k), xt(k)]

∂wpq(s)
,

the backpropagation updating rule can be applied again. In the following,
we report such a procedure, taking into account the fact that only one
neural network has now to be trained. To simplify the notations, we drop
the index k and define

δq(s)
	
=

∂D [w, xt]
∂zq(s)

, s = 1, . . . , L; q = 1, . . . , ns (43)

Then, it is easy to show that

∂D [w, xt]
∂wpq(s)

= δq(s)yp(s − 1) (44)

where δq (s) can be computed recursively by means of the equations

δq(s) = g′ [zq(s)]
ns+1∑
h=1

δh(s + 1)wqh(s + 1) , s = 1, . . . , L − 1 (45a)

δq(L) = g′ [zq(L)]
∂D

∂yq(L)
(45b)

It can be seen that the algorithm consists of the following two “passes”:
Forward pass. The initial state xt(k) is randomly generated from X .
Then, the open-loop solution of the FH Problem 4 is computed and the
first control uFH◦

t = γ◦
FH

[xt(k), 0] is stored in the memory to determine
∂D

∂yq(L)
(see (45b)). All the variables required by (44) and (45) are stored

in the memory.
Backward pass. The variables δq(s) are computed via (45). Then the
gradient ∇wD [w(k), xt(k)] is determined by using (44) and the new weight
vector w(k + 1) is generated by using (42).

As we said in Sections 9 and 10, further research is needed to derive
a computational procedure that gives us the correct values of the param-
eters required for the design of a stabilizing RH regulator. However, at
least to judge by the following example, determining experimentally such
parameters may turn out to be quite an easy task.
Example 3.
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Consider the same robot as in Example 2. The space robot is now requested
to start from any point of a given region and to reach the origin of the state
space, while minimizing the nonquadratic IH cost

JIH =
+∞∑
i=0

[
c(ui1) + c(ui2) + ‖xi‖2

V

]

For the present example, we chose V = diag [1, 80, 5, 10, 1, 0.1] , β = 50 ,
k = 0.01 , c1 = 1, c2 = 108, and ρ = 0.9 . No constraint was imposed on the
state vector. Then, A = {x ∈ R6 : −2 ≤ x1 ≤ 2,−0.2 ≤ x2 ≤ 0.2,−2 ≤
x3 ≤ 2,−0.2 ≤ x4 ≤ 0.2,−π ≤ x5 ≤ π,−1 ≤ x6 ≤ 1} was chosen as a
training set. The FH cost function takes on the form

JFH =
t+N−1∑

i=t

[
c(ui1) + c(ui2) + ‖xi‖2

V

]
+ a ‖xN‖2

where a = 40 and N = 30 . The control function γ̂
FH

(xi, w) , i ≥ t ,
was implemented by means of a neural network with six input variables
and one hidden layer of 100 units. Usually, the algorithm converged to the
optimal solution w◦ after 2 · 105 to 3 · 105 iterations.

Figures 7 and 8 show the positions of the space robot along trajectories
generated by the neural RH (NRH) optimal control law. Such trajectories
are almost indistinguishable from the on-line computed ones, after solving
Problem 4 on line (we denote by ORH the corresponding optimal control
law). In Fig. 7, the initial velocities x2, x4, x6 are all set to zero, whereas,
in Fig. 8, even the initial velocities are not set to zero (in Fig. 8a, we set
xt2 = xt4 = 0 ,xt6 = 0.5 , and, in Fig. 8b, xt2 = 0.5 ,xt4 = 0.5 ,xt6 = 0.5 ).
It is worth noting that the initial velocities were chosen such as to launch
the space robot along trajectories that were “opposite” to the one that
would result from initial velocities set to zero (compare the trajectories in
Fig. 8 with the one shown in Fig. 7a). This causes the trajectories to
get out of the set A in the first stages. However, the control actions still
appear quite effective, thus showing the nice “generalization” capabilities
of the neural RH regulator (i.e., the neural network was tuned even in the
neighborhood of the training set A ).

11 Conclusions

Neural approximators have been shown to be powerful and simple approx-
imators for solving both FH and RH optimal control problems. Bounds
for the approximations have been given; this is particularly important in
RH control schemes, which involve stability issues. Deterministic prob-
lems have been addressed; however, the neural approximation approach
has proved effective also for the design of control devices for stochastic
dynamic systems [PZ94a] and for optimal state estimators [PZ94c] in non-
Gaussian contexts (i.e., outside the classical LQG framework).

As a final remark, it is worth noting that neural approximations en-
able us to face even so-called “non-classical” optimal control problems, like
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FIGURE 7. Trajectories of the space robot starting from four different initial
positions at zero initial velocity.

team control problems, characterized by the presence of informationally de-
centralized organizations in which several decision makers cooperate on the
accomplishment of a common goal. For this class of problems, quite typical
in large-scale engineering applications, neural methods seem to constitute a
very promising tool, as distributed computation, which is a peculiar prop-
erty of these methods, may turn out to be a necessity and not a choice (see
[PZ93] for an application in the communications area).
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Birkhäuser, Boston, 1992.

www.4electron.com



340 Riccardo Zoppoli, Thomas Parisini

www.4electron.com



Index

accomodation, 116
action potential (AP), 97, 98
activation

competitive distribution of, 63
activation function, 160, 161, 166,

174, 182, 185, 193, 200,
233

Adalines, 1
adaptation, 261, 266
adaptive control, 280
adaptive critic, see critic,adaptive,

260, 267
adjoint equation, 319
algorithm

EM, 47, 52
Forward-Backward, 38
Viterbi, 34, 36, 37, 41, 42,

50, 52
approximation, 231

-error, 333
integrated square, 314, 315
uniform, 333

error, 331
Euler, 324
neural, 314–335
receding-horizon (RH), 325
stochastic, 317, 333

approximation property, 161, 169,
187arm

model, 62, 63, 66–71
movement, 63
movements, 62
robotic, 62

ARMA, 281
artificial neural networks, 3
ARX, 258
ASTREX, 294, 296, 303
auto-tuner, 252, 272
autoassociative neural networks,

213
autonomous control, 280
autoregulation, 117

back-propagation, 265
back-propagation through time, 266
back-propagation-through-time, 268

backpropagation, 130, 150, 158,
166, 171, 172, 181, 231,
234, 280, 282, 284–286,
292, 318, 334

fuzzy, 296
backpropagation, dynamic, 129, 131,

136, 139, 150
BAM, see bidirectional associa-

tive memory
baroreceptor, 90–120

Type I, 111–113
Type II, 111–113

baroreceptor reflex, see baroreflex
baroreflex, 90–120
barotopical organization, 95
basis function

radial, 279–297
basis functions

radial (RBF), 316, 332
trigonometric, 315, 316

BDN, 119, 120
bidirectional associative memory,

280, 282–284, 287–291,
296

eigenstructure, 287
biologically organized dynamic net-

work, see BDN
blood pressure, 89–120
Boltzmann Machine, 46, 47
Brunovsky canonical form, 183,

188
building control, 263

cardiovascular system, 90, 104, 105
cart-pole balancing, 260
central pattern generation, 55
cerebellar model articulation con-

troller, 280, 282, 292
cerebral cortex, see cortex, see cor-

tex
chemical process, 252
chemotaxis, 252, 267, 269
CMAC, see cerebellar model ar-

ticulation controller
CMM, see Markov model, con-

trolled
co-state variable, 265
collinearity of data, 215–217, 222
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conjugate gradient method, 266
connectionist system, 279–281
continuous stirred-tank reactor, see

CSTR
control

adaptive, 281, 283, 286, 292
approximate time-optimal, 228
autonomous, 297
closed loop, 227, 230
feedback feedforward, 310
habituating, 105–107
learning, 279, 281
linear, 235, 239
linear state, 241
linear state-space, 227
min–max approach, 312
neural, 282, 287, 291, 294,

296
neural RH (NRH), 335
optimal, see optimal control
parallel, 103–120
parametric optimal, 309
reconfigurable, 279, 283, 297
smooth, 228
specific optimal, 309
time-optimal, 227, 235, 236,

239, 241
approximate, 242

tracking, 163, 168, 170, 184
control system

MISO, 103–105
SIMO, 104, 111, 113, 115

controller modeling, 252, 258, 268,
272

cortex, 61
motor, 63
motor (MI), 61, 62
proprioceptive, 61–86
prorioceptive, 62
somatosensory, 62
somatosensory (SI), 62

cortical columns, 77
clusters of, 63, 86

cortical map formation
simulation of, 71–83

creeping random method, 266
critic, 8–25

adaptive, 21–25
action-dependent, 25

cross-validation, 214, 223
CSTR, 118
curse of dimensionality, 309, 315,

316, 330, 331, 333

data

missing values, 208, 210, 212–
213

outliers, 210, 211–212
preprocessing, 208, 211
selecting variables from, 213–

215
dead time, 252, 256, 264
decoupling, 240, 241
delay, c.f. dead time, 268
delayed reward, 21
direct adaptive control, 260
direct neuro-control, 252, 258, 272
DP, 25–26
dynamic neural network, 253
dynamic programming, see DP,

31, 34, 55, 260, 267
approximate, 310
approximate), 309

dynamic programming), 308, 326,
330, 331

dynamics, 280–282, 294–296

EBAM, 280, 287
eigenstructure decomposition, 282,

284, 287, 289
electric arc furnace, 261
eligibility trace, 24
error dynamics, 163, 166, 167, 184,

185, 193, 196
evaluation function, 21–22, 25
evolutionary computing, 267
evolutionary optimization, 269

fault detection, 284, 292
feedforward networks, 127–131, 136,

140, 143, 148, 149, 151,
213

multilayer, 208
FEM (finite element model), 295
FH, see optimal control, finite-

horizon
flight control, 261, 263
function space

Barron’s, 309, 314, 333
Sobolev, 316, 333

fuzzy control, 267

gain scheduling, 283
General Regression Neural Net-

work, see GRNN
genetic algorithm, 252, 267, 269
Golgi tendon organs, 70, 71
gradient algorithm, 265
gradient method, 316, 317
gradient-based algorithm, 268
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gradient-based optimization, 265,
272

GRNN, 228, 231, 233, 234, 242

habituation, 107–109
health monitoring, 279, 284
heart, 91, 92, 95, 96, 99, 101, 104,

112
hidden layer, 165, 166, 171, 172,

174, 185
hidden-layer neurons, 160, 193, 196,

198–200
HMM, see Markov model, hidden
Hodgkin-Huxley neuron models,

93
homeostasis, 89
Hopfield network, 117
hybrid learning, 286

identification model, 128, 136, 139,
140, 143, 145

IH, see optimal control, infinite-
horizon

incremental learning, 291
indirect neuro-control, 252, 253,

265, 270
induction motor drive, 228–230,

235
industrial production plant, 241
input-output, 132, 133, 140, 143,

145, 150
Intelligent Arc Furnace, 261
intelligent sensors, 207–223
inverse model, 256
inverse modeling, 256

joint angle, 67, 68, 70, 71

Kalman filter, 266

lateral inhibition, 96
lateral inhibitory network, 43
Law of Effect, 7, 8, 14
learning, 8

competitive, 66
Hebbian, 62, 66
reinforcement, 7–27
supervised, 8

learning automata, 9–11
learning control, 280
learning system, 9
Levenberg-Marquardt algorithm,

266
limit cycles, 235, 239
linear model, 258
linearization, 141, 142

LMS, 14–17, 23

Manhattan distance, 233
map

computational, 61, 62, 65, 66,
85

feature, 62, 63
sensory feature, 62
topographic, 61

map formation, 62, 65
Markov

chain, 54
process, 50, 52

Markov control, 35
Markov decision problem, 37
Markov decision problem (MDP),

49
Markov model

controlled (CMM), 36, 39
variable duration hidden (VDHMM),

47
Markov model, hidden (HMM),

31
Markov models

controlled (CMM), 34–40
Markov process, 33, 38, 39, 50

controlled, 32
partially observed, 38

Mexican Hat, 62, 65
Miltech-NOH, 261
MIMO, 234, 236
model predictive control, 254
model-based control, 254
model-based controller, 272
model-based neuro-control, 252, 259,

260, 268
model-free controller, 272
model-free neuro-control, 252, 259,

267
models

input-output, 127, 128–150
state space, 128, 129, 139, 150

momentum, 266
motor neurons

postganglionic, 104, 105
vagal, 104, 105

MPC controller, 254, 256, 259
Multi-Input/Multi-Output, see MIMO
multilayer Perceptron, 267
muscle, 62–86

abductor and adductor, 63,
67, 68

agonist and antagonist, 67
antagonist, 61
flexor and extensor, 63, 67,

68, 79, 83
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length and tension, 71–75, 77
stretch, 62
tension, 62

NARMAX, 253
NARX, 253
Neural Applications Corporation,

261
neural control, 279, 281, 282
neural network

feed-forward, 34, 56
neural network auto-tuner, 252,

257
neural network inverse model, 255
neural network inverse model-based

control, 252
neural network model-based con-

trol, 252, 253
neural networks

multilayer feedforward, 309,
311

neuron model
Hopfield, 117

nip-section, 228, 236, 241, 242
non-gradient algorithm, 265, 266
non-gradient based optimization,

272
non-gradient-based optimization,

251, 267
nonlinear optimization, 251, 252
nonlinear programming, 307, 309,

310, 313, 316, 326
NTS, 91–95, 116
nucleus tractus solitarii, see NTS

objective function, 252
observability, 129–147

generic, 132–150
strong, 132

observability matrix, 133
observability, generic, 134, 145–

147
observability, strong, 134, 141, 143,

145
optimal control

finite-horizon (FH), 307–335
infinite-horizon (IH), 308–335
linear-quadratic, 308, 325
linear-quadratic), 310
receding-horizon (RH), 308–

335

parameterized neuro-controller, 251,
263, 272

parametric neural network, 254
parasympathetic system, 104, 105,

112

partial least squares
neural network (NNPLS), 220–

222
partial least squares (PLS), 213,

219
partitioned neural networks, 181,

182
passivity of neural network, 158,

161, 162, 177, 181
strict, 157, 162, 164, 177, 181,

203
PCA, see principle component anal-

ysis
perceptron, 1, 3
peripheral resistance, 99, 104, 105,

112
phase plane, 239
phoneme, 45, 47, 56
PI controller, 269
PID controller, 257, 258, 263, 264,

270, 272
PLS, see partial least squares
PNC, see paramaterized neuro-controller
polymerization, 105–107
potassium current, 97
predictive control, 281
principle component analysis (PCA),

209, 212, 219
principle component regression (PCR),

213, 215
process control, 263
process model, 251–253, 255, 257,

258, 260–262, 266, 268,
272

process model mismatch, 263
process soft sensors, 207, 208, 222
proprioception, map formation, 62

Q-learning, 24–26
quasi-Newton optimization, 258

radial basis function, see basis func-
tion, radial

radial basis function network, 267
radial basis function networks, adap-

tive time-delay, 280
Radial basis functions, 228
random search, 266
RBF, see radial basis function
RBF network, 279–297
receptor

stretch, 70
recurrent network, 253, 267
recurrent networks, 127–129, 131
redundancy, 283, 291
regression matrix, 159, 174, 203
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regulation problem, 308
reinforcement learning, 260
restrictions, 235, 236
reverse engineering, 95, 106, 113
RH, see control, receding-horizon,

325
ridge function, 3
ridge regression, 207, 209, 218, 219,

222
robot arm, 62
robot arm, control of, 162–164,

168, 171, 172, 174, 181,
182, 188

robust backpropagation, 212
robust model, 263
robust model-based neuro-control,

252, 262
robust performance, 263
robust stability, 262
robustness, 262
robustness of controller, 158, 167,

177, 185

scheduling algorithms, 102
second-order method, 266
self-organization– cortical maps,

62
sensitivity analysis, 214, 222
servomechanism problem, 307
sigmoids, 3
simulated annealing, 267
singular value decomposition, 290,

291
singular value decomposition (SVD),

289
skew-symmetry property– robot arm,

163, 164
space robot, 322–335
space structures, 279, 282, 291,

293, 294, 297
speech recognition, 50, 53, 55, 56
spindle, see receptor, stretch
stability

global, 287, 289
structural, 287, 289

state space, 146
statistical methods, 207, 212, 213,

222
stretch receptor, see receptor, stretch
stretch receptors, see barorecep-

tors
supervised learning, 253, 265
switching, 236, 237
sympathetic system, 99, 104, 105,

112
system identification, 282, 296

TDL (tapped delay lines), 281
time-optimal, see control, time-

optimal
torque, motor, 230, 235, 236, 240
tracking error, 163, 164, 168, 169,

171, 173, 181, 186, 187,
190, 191

transputers, 232
transversal, 134, 135, 146, 152,

153
truck-backer-upper, 261

uniformly ultimately bounded (UUB),
161, 195

unmyelinated fibers, 112

VDHMM, see Markov model, vari-
able duration hidden

vibration suppression, 279, 281,
295

Viterbi algorithm, see algorithm
Viterbi score, 34, 37, 41

web, 227, 228, 235
web force, 230
web forces, 227, 230
Wiener, Norbert, 1

XOR problem, 234

zero-trajectory, 235
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