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Preface

This book has evolved over a period of several years of teaching the courses
Digital Control and Modelling and System Identification at IIT Bombay. Several
undergraduate and postgraduate students, some without a good analog control back-
ground, have successfully completed these courses. Several working professionals, some
with a long gap in their education, have also gone through these courses successfully.
This material has also been used in the year 2004 to teach the course Intermediate
Process Control at the University of Alberta. There were students with a gap in their
education, as they had enrolled in the academia–industry co-op programme.

Keeping the above mentioned requirement to cater for different kinds of students,
we have designed this book to teach digital control from scratch. Apart from a few
elementary concepts on calculus and differential equations, not much background is
required to understand this book. In particular, the reader need not have a good
analog control background to understand most of the topics presented. As a result,
this book is suitable also for students whose domain of interest is made up of only
discrete time systems, such as the field of computing systems.

In order to make the book self-contained, we have presented the topic of digital
signal processing in reasonable detail. This is because most students, except those in
electrical engineering, do not take a course in this important topic, exposure to which
is useful in understanding the control design techniques presented in this book.

Because we focus on discrete time techniques, it is possible to present some
advanced topics as well. For example, this approach allows us to present the important
topic of system identification in some detail. Indeed, it is possible to use the material
presented in this book to teach a first course in identification. Although the topic of
identification is useful in all areas, it may be the only way to obtain realistic models
in human–made systems, such as computing systems.

We have adopted a transfer function approach, more or less exclusively. We
strongly believe that one gets good insight into the control problems through this
approach. Practising engineers are generally more comfortable with transfer function
based design techniques. They present an ideal platform to deal with a large number
of basic facts about control design in an elementary fashion. Explaining some of
these topics through the state space approach would have been more difficult. For
completeness, however, we also present the state space approach to control design.
We restrict our attention to single input single output systems.

We believe that one of the most important benefits that the reader of this book
will acquire is to think digital. We strongly believe that learning to discretize analog
controllers alone does not prepare the student to exploit the full potential of digital
systems.
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This book is useful also for students who may have a good analog control
background. Comparison of the concepts presented in this book with those from
analog control will only help strengthen these ideas. These students, as well as industry
professionals, will find the coverage on PID controllers useful.

Working exclusively with discrete time domain has its own shortcomings. The
most glaring one amongst them is the antialiasing filter, which is generally designed
using continuous time techniques. Addressing this requirement through discrete
time techniques may require fast sampling rates. We do not discuss the effects of
quantization errors in this book. Nevertheless, because these are generally modelled
with the help of random noise, the material developed in this book should help address
these problems.

A first course on control can be taught using this book, especially in disciplines
that deal with only discrete time models. It may also be used to teach a second course
on control. Because it is more or less self-contained, this book could be useful to people
who have had a break in their studies, such as practising professionals. It follows that
a course using the book may also be useful for students who may not have taken a
good analog control course.

A first course on identification may be taught using this book. The first six chapters
could form the basis of a digital signal processing course. Finally, using the material
presented in this book on identification and control, it is possible to formulate an
adaptive control course.

We have provided an extensive set of Matlab1 routines to explain the various
ideas presented in this book. The heart of the routines is a solver for Aryabhatta’s
identity [39], which is also known as the Diophantine equation [59]. We have
implemented the algorithm of [8] in Matlab to solve this polynomial equation. We
have used the notation in [27] to represent polynomials in this book. We also make
use of some basic routines from this reference.

An extensive index of Matlab routines is given to help locate the programs. The
built–in functions, including the routines of Matlab toolboxes, appear at the beginning
of this index, with the routines developed for this book appearing at the end. Most
of the latter are listed in the book, at the end of every chapter. A few routines,
although freely downloadable, are not listed in the book, owing to space constraints.
Appendix A.2 explains the procedure for downloading and installing the software. We
recommend that the reader traces through the calculations using the Matlab debugger.

The website http://www.moudgalya.org/dc/ provides much useful material
related to this book. All Matlab programs discussed in this book are available at this
location. Instructional material, such as slides, based on this book are also available
at this website. Finally, the reader will find at this website some other useful material,
omitted in the book owing to space constraints.

Authors of previous books on the topics presented in this book have used titles
such as Discrete Time Control [45]. This nomenclature presupposes that time is an
independent variable and that the control effort is something different. We have shown,
however, that it is possible to apply the control design principles to problems in which
the sampling time itself is the control effort [35]. In view of this generality, we choose
to use the title of Digital Control for this book.

1Matlab r© and Simulink r© are registered trademarks of The Mathworks, Inc. Other product or
brand names are trademarks or registered trademarks of their respective holders.
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Chapter 1

Introduction

The concept of control is ubiquitous. We see the application of control in everyday
appliances and equipment around us: washing machines, elevators, automobiles,
satellites, aeroplanes, room heater, etc. It is no wonder that control is an important
component in all engineering disciplines. Lately, the topic of control has become an
important one in computing [22] and supply chain systems [14].

A typical feedback control configuration is given in Fig. 1.1. It consists of a plant or
a process and a controller, along with the necessary control accessories, such as sensors
and actuators. The objective of the controller is to maintain the plant output y close
to the desired value r, known as the reference signal or setpoint. The role of controller
is to provide stable and agile performance in the presence of any disturbance, even if
we do not have an exact knowledge of the plant.

The requirements expected from a controller in different fields are not identical,
because of the differences in plants/processes. For example, in the mechanical and
aerospace industries, while stability is an issue, nonlinearity and delays are not that
significant. Just the converse is true in chemical engineering. Because of these reasons,
advanced control in these areas have become separate fields in their own right.
Nevertheless, the basic principles of control are the same in all fields. We present
some of these common basic principles in this book.

There are two broad classes of control design techniques: analog and digital. These
work with continuous time and discrete time systems, respectively. Because many real
world systems are described by differential equations, analog control design techniques
have become popular. Because most controllers are made of digital systems, the
latter is equally popular. Although it is possible to discretize analog controllers to
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Figure 1.1: A schematic of feedback control loop
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2 1. Introduction

obtain digital controllers, an independent study of the latter could be useful [2, 20].
We present techniques for the design of digital controllers, from scratch, in this book.

Why is it that most controllers are now implemented using digital systems? In
order to answer this, we need to first compare analog and digital circuits. In analog
circuits, noise is a serious problem in all signal transmissions. In contrast, the digital
signals refer to a range of values and hence it is possible to provide good noise margins.
For example, in transistor transistor logic (TTL), there is a noise margin of 0.4 V in
both high and low levels. The basic ability of digital systems to reject noise in a
fundamental way has resulted in these systems becoming extremely popular.

We now list some of the advantages of digital systems over analog systems [38].
It is easy to implement and modify digital controllers – we just have to change the
coefficients! The margins mentioned above can take care of unavoidable difficulties,
such as the noise and drift. We can achieve the desired accuracy by using a sufficient
number of bits. It is possible to implement error checking protocols in digital systems.
Because of the advances in the manufacturing processes of digital circuits, the
components can be produced in large volumes. Large digital circuits can be fully
integrated through VLSI. Through a multiplexer, a single processor can handle a large
number of digital signals. Digital circuits pose no loading problems, unlike analog
circuits. Because of these reasons, digital devices became popular, which formed
an important impetus for the advancement of digital systems. Digital devices have
become rugged, compact, flexible and inexpensive. It is no wonder that most modern
electronic devices, such as controllers, watches, computers, etc., are made of digital
systems.

We will now present some of the advantages that digital control has over analog
control. For some naturally occurring discrete time plants, a continuous time version
may not even exist. For example, consider a scalar state space equation,

ẋ(t) = fx(t) + gu(t)

where f and g are constants. Under uniform sampling, the ZOH equivalent of this
plant is

x(k + 1) = ax(k) + bu(k)

where a = efTs and Ts is the sampling time. Note that a > 0. Thus, if a turns out to
be negative in an identification exercise applied to plant data, no continuous control
design technique may be suitable.

It is possible to design first-cut filters in the discrete time domain by the placement
of poles and zeros at appropriate locations [49]. To amplify a signal at a particular
frequency, place a pole at that frequency; to filter out a frequency, place a zero. There
are no equivalent techniques in the continuous time domain.

There are design techniques that exist only in the discrete domain, the notable
example being the dead-beat controller. Discrete time control theory comes up with
unusual, but useful, control designs, with negative PID tuning parameters being one
of them, see [30, pp. 58–62].

In several respects, discrete time control techniques are easier to understand. For
example, we can present controllers in powers of z−1, and realize them through
recursive techniques. Most of the identification procedures known today determine
discrete time models [32]. Identification of continuous time models is in its infancy.
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In view of this, it is a lot easier to teach identification techniques in the discrete
time domain. It is also a lot easier to teach control design techniques, such as model
predictive and adaptive controllers, in the discrete time domain.

Handling of delays is a lot easier in the discrete time domain, whether they are
fractional or multiples of the sampling period [2, 17]. The concept of a unit pulse is
a lot easier in the discrete time domain: it is a signal of unit height with one sample
width.

Although most real life systems are nonlinear, we generally use linear controllers
with them. The reason is that a lot more is known about linear, as opposed to
nonlinear, controllers. Moreover, if the controllers are well designed, the deviations
from the operating point are expected to be small. When the deviations are small,
nonlinear systems can be approximated reasonably well with first order Taylor
approximations. Because of these reasons of ease and adequacy, we generally use
linear controllers to regulate our systems. We restrict our attention to the design of
linear controllers in this book.

We have organized this book into four parts and fourteen chapters. In the second
chapter, we lay the framework for control system design. If the plant is described in
continuous time, we outline a procedure to connect it with digital systems, through
discretization and A/D and D/A converters.

We devote the first part to the topic of digital signal processing. In the third
chapter, we present the basic concepts of linearity, time invariance and causality.
While linear systems in the transfer function framework should have their initial
state at zero, there is no such constraint in the state space framework. We define
the former concept as input/output linearity and bring out its relation to the latter
concept, which we refer to as simply linearity.

In signal processing books, the variable u is used to denote the unit step input.
In control texts, however, this symbol is reserved for control effort. The variable x
is used for input and state in signal processing and control books, respectively. In
this book, we use u, x and y for input, state and output, respectively. We use 1(n)
to denote the discrete time unit step signal, as practised in some popular control
texts [44].

We present the topic of the Z-transform in the fourth chapter. We also present
the concept of region of convergence in great detail, unlike most control books. This
study helps derive the conditions for stability and causality of transfer functions and
helps understand the limits of performance of control systems.

In order to understand the concept of spectrum, required in identification, we need
to work with noncausal signals. This, in turn, necessitates the use of the two sided
Z-transform, although most control books work only with the one sided Z-transform.
Because the two sided Z-transform requires signals to be defined from the time instant
of −∞, we need to precisely define the concept of initial rest in state space systems.

We present frequency domain analysis in the fourth chapter. We explain the
topics of Fourier transform, frequency response, sampling and reconstruction. We also
explain filter design by placement of poles and zeros.

We present the topic of identification in the third part. We have given an
exhaustive introduction to this topic, because this subject is becoming increasingly
important, owing to the increased automation, and consequently increased availability
of data. Most plants use digital devices for data acquisition and storage. As the price of
storage devices has dropped, most plants also have a large amount of operating data.
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Identification is concerned with the important topic of determining the plant transfer
function from measurements, for the explicit purpose of achieving good control.

We devote the fourth part to transfer function based control design techniques.
In the seventh chapter, we present some of the important principles required for
control system design. We present a Z-transform based direct design method for lead–
lag controllers. In this book, we introduce a procedure to translate the performance
specifications directly to a desired region of the Z-transform complex plane, and use
this to design controllers.

We devote Chapter 8 to PID controllers. Keeping in mind the popularity of PID
controllers in industry, we discuss in detail different methods to discretize them, in
case they have already been designed using continuous time techniques. This is the
only chapter in the entire book that requires an analog control background. All other
control techniques presented in this book do not require such a background.

In Chapter 9, we present pole placement controller design to arrive at two degrees
of freedom controllers. We use this framework to present all controllers, including
implementation of specific ones, such as anti windup controllers, in the rest of the
book.

Because the coverage of this book is broad, there is a paucity of symbols. The two
degrees of freedom discrete time controller, which is popular in the transfer function
approach, is usually known as the RST controller, with three polynomials,R, S and T .
We use the symbols Rc, Sc and Tc, respectively, for this purpose. We reserve R, S
and T for reference signal, and sensitivity and complementary sensitivity functions,
respectively.

We have used the phrases good and bad in place of the invertible and noninvertible
factors of a polynomial [48]. Although somewhat unconventional, we believe that this
usage helps remember the underlying concepts clearly. It is also less confusing than
the use of notation, such as + and −, borrowed from analog control.

It turns out that working with polynomials in powers of z−1 helps simplify
controller design. We work with polynomials in powers of z as well as z−1. We have
avoided using the operator q to denote shift operation. The Z-transform variable z is
used to define the shift as well.

We discuss the Smith predictor and internal model control technique in Chap-
ter 10. In Chapter 11, we present minimum variance and generalized minimum
variance controllers. In Chapter 12, we discuss model predictive controllers. In
particular, we present generalized predictive control and dynamic matrix control
design techniques. We also make an attempt to implement these controllers through
a PID framework. We devote Chapter 13 to the design of linear quadratic Gaussian
control system design.

We devote the last part to state space techniques for control design. In Chapter 14,
we discuss pole placement controllers, linear quadratic regulators, observers, and the
combined controller and observer. We touch upon topics such as Kalman filters.

An extensive set of Matlab routines have been provided along with the book.
The heart of these is the program to solve Aryabhatta’s identity [39], also known as
Bezout identity or Diophantine equation. Links have been provided to download the
programs from the web. A procedure to download the entire set of programs is given
in Appendix A.2.



Chapter 2

Modelling of Sampled Data
Systems

In this chapter, we present an overview of feedback control systems, consisting of a
mix of analog and digital systems. We will refer to analog systems as continuous time
systems and present a few examples. One way of connecting analog and digital systems
is through sampling of the former or, equivalently, through discretization of continuous
time systems. We will summarize analog to digital conversion and digital to analog
conversion, through which the signals become compatible with the systems under
consideration. We also present models of naturally occurring discrete time systems.
We conclude this chapter with a brief discussion on different approaches to controller
design and its validation.

2.1 Sampled Data System

There are many reasons why we use controllers. Some of these are: to stabilize unstable
plants, to improve the performance of plants and to remove the effect of disturbances.
There are two major types of controllers – feed forward and feedback. We will discuss
these in more detail in Chapter 7. For the current discussion, we will consider the
feedback control structure, a schematic of which is given in Fig. 1.1.

In this figure, the block G denotes the plant or the process that needs to be
controlled. It could be a continuous system, described by differential equations.
Examples of a plant are a room whose temperature has to be regulated, an RC
circuit, a robot, a reactor, a vehicle or a distillation column. In this chapter, we will
use models of the following form to represent these systems:

ẋ(t) = Fx(t) +Gu(t) (2.1a)
y(t) = Cx(t) +Du(t) (2.1b)

These are known as state space equations. The first one is the state equation and
the second one is the output equation. The variable x(t) is known as the state. State
is defined as the set of variables required to completely understand the system. The
state variables are supposed to represent the effect of all past inputs to the system.

Digital Control Kannan M. Moudgalya
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03143-8
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For example, knowing the current state and the future inputs to the system, one can
completely specify the future states and the future outputs of the system.

The input to the system can consist of two types of variables: disturbance variable
and manipulated or control variable. The former is one over which we have no control.
These are typically external to a system. The manipulated or control variables help
make the system behave the way we want. The values of these variables are calculated
by the controller.

Typically, one does not measure all the states, but only a smaller number of
variables, which could be functions of states. We use the symbol y to refer to the
measured vector and call it the output. Eq. 2.1b is known as the output equation.
Here, C and D are constant matrices.

The plant could also be a discrete time system. Examples of these are computing
and supply chain systems. These systems are modelled using the variables available
at specific time instants only:

x(n+ 1) = Ax(n) +Bu(n) (2.2a)
y(n) = Cx(n) +Du(n) (2.2b)

As in the continuous time case, x, u and y refer to state, input to and output from
the plant, respectively.

In the figure, Gc denotes the controller. We will restrict Gc to a digital controller,
that is, a control algorithm implemented in a digital device. Examples of a digital
device are personal computers, printers and calculators. Digital devices work with
quantized data only. For example, a calculator can represent numbers only to a certain
precision. This is because all the required information has to be represented with the
help of a finite number of bits only.

There are many advantages in using digital controllers. Digital controllers are
robust and flexible. It is possible to implement any complicated algorithm using digital
devices. Because of the low prices of digital components, it is possible to achieve a
sophisticated amount of automation without too much expenditure. In summary,
digital controllers provide sophisticated yet rugged performance at affordable prices.
Design of digital controllers is easier than that of analog controllers. The reason is
that the analysis of difference equations is easier than that of differential equations.

If the plant is naturally described by a discrete time model, design of the digital
controller is straightforward. In case the plant is described by a continuous time
model, however, two different methods could be used: the first approach is to design a
continuous time controller for the continuous time plant and discretize it. The second
approach is to discretize the continuous time plant and to design a controller for it.
We will use the second approach in this book.

In order to design digital controllers for continuous time systems, it is necessary
to convert the continuous time models, given in Eq. 2.1, into discrete time models,
given in Eq. 2.2. In addition, we should convert the signals so that the discrete and
the continuous time systems that participate in the control structure can understand
each other. We address these issues in this chapter.

We will next look at the variables that help the blocks communicate with each
other. The output variable y is also known as the controlled variable. The reference
variable for y is given by r, which is also known as the setpoint for y. The error,
namely the difference r − y, is used by the controller to decide the control effort u,
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Figure 2.1: Magnetically suspended steel ball. The current through the coil creates a
magnetic force, which counter balances the force due to gravity.

which is also known as the manipulated variable or the plant input. Finally, v denotes
the disturbance variable.

The connections indicated in the diagram are not straightforward. The reason is
that the controller Gc is a digital device that can understand only digital signals,
represented through a string of binary numbers. The plant, on the other hand, could
be a continuous time system described by a system of differential equations. How
does one make these two, different, types of systems understand each other? We will
answer this question in Sec. 2.5.

The next question is how does a digital device communicate the control action to
be implemented to the plant? The answer is not obvious because the digital devices
can work with numbers defined at discrete points in time only, whereas the plant could
be a continuous time system described by variables that are defined at every instant
of time. We will address this issue in Sec. 2.4. Once these questions are answered, we
will be able to develop a unified view of all the devices present in the control structure
of Fig. 1.1. In the next section, we present models of a few popular continuous time
systems.

2.2 Models of Continuous Time Systems1

In this section, we will present the models of a magnetically suspended ball, a DC
motor, an inverted pendulum, a flow system and a chemical reactor, and show how
they can be represented using state space equations of the form given by Eq. 2.1.

2.2.1 Magnetically Suspended Ball

In this section, we will present the model of a magnetically suspended ball system,
a schematic of which is shown in Fig. 2.1. The current passing through the wire
wound around the armature creates a magnetic force, which attracts the steel ball
and counter balances the force due to gravity [12].

The magnetic force is proportional to the square of the current and inversely
proportional to the distance between the ball and the armature. The force balance

1If the reader does not have to deal with continuous time systems, they can skip this section.
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can be written as

M
d2h

dt2
= Mg − Ki2

h
(2.3)

where K is the proportionality constant. The voltage balance in the circuit can be
written as

V = L
di

dt
+Ri (2.4)

Suppose that the current i is such that the ball is stationary at a chosen distance hs.
We would like to derive a linear model that relates a deviation in h to a deviation
in i. Let the force balance corresponding to the stationary point be modelled as

M
d2hs

dt2
= Mg − Ki2s

hs
= 0 (2.5)

Subtracting Eq. 2.5 from Eq. 2.3, we obtain

M
d2∆h
dt2

= −K
[
i2

h
− i2s
hs

]
(2.6)

Linearizing the right-hand side about the stationary point, we obtain

i2

h
=
i2s
hs

+ 2
i

h

∣∣∣∣
(is,hs)

∆i− i2

h2

∣∣∣∣
(is,hs)

∆h

=
i2s
hs

+ 2
is
hs

∆i− i2s
h2

s

∆h

Substituting in Eq. 2.6, we obtain

M
d2∆h
dt2

= −K
[
i2s
h2

s

+ 2
is
hs

∆i− i2s
h2

s

∆h− i2s
h

]
Simplifying, we obtain

d2∆h
dt2

=
K

M

i2s
h2

s

∆h− 2
K

M

is
hs

∆i (2.7)

We will next derive the voltage balance in deviational form. Using the variables
corresponding to the force balance, we obtain

Vs = L
dis
dt

+R is (2.8)

Subtracting this from Eq. 2.4, we obtain

∆V = L
d∆i
dt

+R∆i (2.9)



2.2. Models of Continuous Time Systems 9

We define the state variables as follows:

x1
�
= ∆h

x2
�
= ∆ḣ

x3
�
= ∆i

u
�
= ∆V

(2.10)

From the definition of x1 and x2, we obtain

dx1

dt
= x2

Eq. 2.7 becomes

dx2

dt
=
K

M

i2s
h2

s

x1 − 2
K

M

is
hs
x3

Eq. 2.9 becomes

dx3

dt
= −R

L
x3 +

1
L
u

Combining these equations, we arrive at

d

dt

x1

x2

x3

 =

 0 1 0
K
M

i2s
h2

s
0 −2 K

M
is

hs

0 0 −R
L


x1

x2

x3

 +

0
0
1
L

 u (2.11)

The following are typical values of the parameters:

M Mass of ball 0.05 kg
L Inductance 0.01 H
R Resistance 1 Ω
K Coefficient 0.0001
g Acceleration due to gravity 9.81 m/s2

hs Distance 0.01 m

The current corresponding to the stationary point is obtained from Eq. 2.5 as

i2s =
Mghs

K
=

0.05× 9.81× 0.01
0.0001

is = 7.004 A

With these values, we arrive at the state space equation, given by Eq. 2.1a, with

x =

x1

x2

x3

 , F =

 0 1 0
981 0 −2.801
0 0 −100

 , G =

 0
0

100

 (2.12)
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Let us now see by how much we should change the voltage if we want to move the
ball by 1%. As this displacement is small, we expect the linear model to hold. Let
the variables corresponding to the new position be indicated by a prime. The new
distance is,

h′s = 0.0101

From Eq. 2.5, we obtain

i′2s =
Mgh′s
K

=
0.05× 9.81× 0.0101

0.0001
i′s = 7.039

∆i = i′s − is = 0.035 A
∆V = R∆i = 0.035 V

(2.13)

In other words, we have to increase the voltage by 0.035 V to maintain the ball at
the new stationary point, given by hs = 0.0101 m.

We have converted a second order ordinary differential equation (ODE ) into a set
of two first order ODEs. This procedure can be used to convert higher order ODEs
as well into systems of first order.

2.2.2 DC Motor

A DC motor is a popular rotary actuator in control systems. On application of an
electrical voltage, the rotor rotates, as per the following Newton’s law of motion:

J

b
θ̈ = −θ̇ +

K

b
V (2.14)

where θ and J are the angular position and the moment of inertia of the shaft,
respectively. V , b and K are the voltage, damping factor and a constant, respectively.
The initial angular position and the angular velocity may be taken to be zero. Suppose
that in an implementation, we have

K

b
= 1 (2.15)

If we define

x1 = θ̇

x2 = θ
(2.16)

it implies that θ̈ = ẋ1, and the above system gets reduced to the state space equation
given by Eq. 2.1a, with

x =
[
x1

x2

]
, F =

[−b/J 0
1 0

]
, G =

[
b/J
0

]
(2.17)

Because the initial angular position and the angular velocity are given as zero, we
obtain x1(0) = 0 and x2(0) = 0.

The same model can be used to describe a satellite tracking antenna system [17],
as well as ships, if J/b is interpreted as the time constant [2].
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Figure 2.2: Inverted pendulum

2.2.3 Inverted Pendulum Positioning System

The next example is concerned with the positioning of a pendulum in an inverted
position in a carriage. The pivot of the pendulum is mounted on a carriage, see
Fig. 2.2. Although the natural position of the pendulum is to point downwards from
the pivot, we are interested in positioning the pendulum upwards. This is proposed
to be achieved by moving the carriage in a horizontal direction. The carriage is driven
by a small motor that at time t exerts a force µ(t) on the carriage. This force is the
input variable to the system.

We define s(t), φ(t), m, L, J and M , respectively, as displacement of pivot at
time t, angular rotation of pivot at time t, mass of pendulum, distance of pivot from
the centre of gravity (CG) of the pendulum, moment of inertia about CG and mass
of carriage. Let H(t) and V (t) denote the horizontal and vertical reaction forces at t.

The horizontal and vertical force balances and the angular momentum balance on
the pendulum are given, respectively, by

m
d2

dt2
[s(t) + L sinφ(t)] = H(t)

m
d2

dt2
[L cosφ(t)] = V (t)−mg

J
d2φ(t)
dt2

= LV (t) sinφ(t)− LH(t) cosφ(t)

The force balance on the carriage, with the assumption of zero frictional force, is given
by

M
d2s

dt2
= µ(t)−H(t)

Linearizing the equations about the equilibrium point defined by µ = φ = φ̇ = ṡ = 0,
and letting x1, x2, x3 and x4 denote ∆s, ∆φ, ∆ṡ and ∆φ̇, respectively, we obtain

d

dt


x1

x2

x3

x4

 =


0 0 1 0
0 0 0 1
0 −γ 0 0
0 α 0 0



x1

x2

x3

x4

 +


0
0
δ
−β

∆µ (2.18)
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where

α =
mgL(M +m)

Γ
, β =

mL

Γ
, γ =

m2L2g

Γ
, δ =

J +mL2

Γ
Γ = (J +mL2)(M +m)−m2L2

The control effort in the above equation is in terms of horizontal force, which is not
measured. We will now show how it can be represented in terms of the measurable
variable, voltage. The expression for applied voltage E is given as

E = ImRm +KmKgωg = ImRm +KmKg
ṡ

r

where E, Im, Km, Kg, ωg and r are voltage applied to motor in volts, current in motor
in amperes, back EMF constant in V s/rad, gear ratio in motor gear box, motor output
angular velocity in rad/s and radius of motor pinion that meshes with the track in m.

The torque generated by the motor is given by T = KmKgIm, which is transmitted
as a force to the carriage through the pinion by µ = T/r. Substituting the expression
for T and then for Im from the voltage equation, we obtain

µ =
KkKg

Rmr
E − K2

mK
2
g

Rmr2
ṡ

As ṡ = ∆ṡ, we can write this as µ = α1E − α2∆ṡ. With µ = ∆µ, Eq. 2.18 becomes

d

dt


x1

x2

x3

x4

 =


0 0 1 0
0 0 0 1
0 −γ −α2δ 0
0 α α2β 0



x1

x2

x3

x4

+


0
0
α1δ
−α1β

E
With the following values,

Km = 0.00767 V s/rad
Kg = 3.7
Rm = 2.6 Ω
r = 0.00635 m
M = 0.522 kg
m = 0.231 kg

g = 9.81 m/s2

L = 0.305 m
J = 0

we arrive at

d

dt


x1

x2

x3

x4

 =


0 0 1 0
0 0 0 1
0 −4.3412 −14.7164 0
0 46.3974 48.2506 0



x1

x2

x3

x4

 +


0
0

3.2929
−10.7964

E (2.19)

which is in the form of Eq. 2.1a. M 2.1 shows how to construct the state space equation
for this system.
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Figure 2.3: Liquid flow system

2.2.4 Liquid Flow Systems

We frequently come across flow systems in everyday life. We present a model of these
in this section. Let a liquid flow into a tank of uniform cross-sectional area A at a
flow rate of Qi(t). Let the output flow rate be Qo(t). Let the height of the liquid in
the tank be h(t). Let us assume that the density is constant in the tank. A schematic
of this system is given in Fig. 2.3. The mass balance for this system is

A
dh(t)
dt

= Qi(t)−Qo(t) (2.20)

Suppose that the outflow rate is proportional to the square root of height in the tank,
that is, Qo(t) = k

√
h(t). Then the linearized model of this system about the operating

point (Qis, hs) can be derived as

d∆h(t)
dt

= − k

2A
√
hs

∆h(t) +
1
A

∆Qi(t) (2.21)

where

∆h(t)
�
= h(t)− hs

∆Qi(t)
�
= Qi(t)−Qis

(2.22)

with the initial condition at t = 0 given as

∆h(t) = 0 (2.23)

This is in the standard state space equation form, given by Eq. 2.1a.

2.2.5 van de Vusse Reactor

In this section, we will present a chemical reaction system, studied by [3]. Consider
the following two reactions carried out at a constant temperature,

A
k1→ B

k2→ C

2A k3→ D
(2.24)
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that describe how the reactant A is converted into a desired product B and undesired
chemicals C and D. In order to understand how the concentration of B varies with
time, we need to study the following mass balance equations:

dCA

dt
=
F

V
(CAf − CA)− k1CA − k3C

2
A

dCB

dt
= −F

V
CB + k1CA − k2CB

(2.25)

Here, CAf denotes the concentration of A in the feed. CA and CB denote the
concentration of A and B in the reactor, respectively. All of these have the units of
gmol/l. F denotes the flow rate and V denotes the volume in the reactor. We define
deviation variables

x =
[
x1

x2

]
=
[
CA − CAs

CB − CBs

]
m =

F

V
− Fs

V
d = CAf − CAfs

(2.26)

where x, m and d, respectively, refer to state, manipulated and disturbance variables.
CAf − CAfs is termed the disturbance variable, because variations in it cannot be
avoided. On the other hand, the deleterious consequences due to this variation can
be countered by adjusting m – hence the name, manipulated variable. Linearizing
about the operating point defined by CAs = 3 gmol/l, CBs = 1.117 gmol/l and
Fs/V = 0.5714 min−1, we obtain the following state space model:

ẋ = Fx+G1m+G2d (2.27)

where

F =
[−2.4048 0

0.8833 −2.2381

]
, G1 =

[
7

−1.117

]
, G2 =

[
0.5714

0

]
(2.28)

An objective of developing this model is to explore the possibility of regulating the
concentration ofB, namely CB , by manipulating the flow rate F , despite the variations
in CAf . If we define u =

[
m d

]T , Eq. 2.27 gets reduced to the standard form given
by Eq. 2.1a with G =

[
G1 G2

]
. We will refer to this system as the van de Vusse

reactor.
In this section, we have seen several continuous time systems and methods to

discretize them. There are also naturally occurring discrete time systems, some of
which will be presented in the next section.

2.3 Naturally Occurring Discrete Time Systems

In this section, we consider plants that have naturally discrete time models. That is,
these systems may not even have a differential equation model. Computing systems
are ideal examples of this category. Indeed, a digital control text book devoted to
the control of only computing systems has recently appeared [22]. In this section, we
present the example of an IBM Lotus Domino server and an example from the supply
chain area.
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2.3.1 IBM Lotus Domino Server

IBM Lotus Domino server is an email server. In this discussion, we will abbreviate it
as simply the server. Clients may be considered as the conduits through which the end
users access the server. Clients access the database of emails maintained by the server
through Remote Procedure Calls (RPCs). The number of RPCs, denoted as RIS, has
to be controlled. If the number of RIS becomes large, the server will be overloaded,
with a consequent degradation of performance. RIS should not be made small either.
If RIS is less than what can be handled, the server is not being used optimally.

Unfortunately, it is not possible to regulate RIS directly. Although RIS is closely
related to the number of users, the correspondence could be off at times, because
some users could just be idling. Regulation of RIS may be achieved by limiting the
maximum number of users (MaxUsers) who can simultaneously use the system.

Based on experience in operating the server, it is possible to come up with an
optimal RIS to achieve acceptable performance. If the actual RIS is smaller than the
reference value of RIS, MaxUsers may be increased and vice versa.

It is difficult to come up with an exact analytical model that relates MaxUsers
and the actual RIS in the server. This is because the server could have different types
of administrative loads, such as memory swapping and garbage collection at different
times. Moreover, it is difficult to predict how many users will idle at a given time.

A possible way to arrive at a model is through identification, which consists of the
following steps: experimentation, data collection and curve fitting, to be explained
in detail in Chapter 6. Hellerstein et al. [22] report an experiment in which the
parameter MaxUsers is varied about the operating level of MaxUsers = 165 and
the corresponding variation of RIS about the operating level of RIS = 135. Defining

x(k) = RIS(k)− RIS

u(k) = MaxUsers(k)−MaxUsers
(2.29)

and carrying out an identification exercise, they arrive at the following relationship:

x(k + 1) = 0.43x(k) + 0.47u(k) (2.30)

which is in the form of Eq. 2.2a. Discrete time models are a natural choice in the field
of computing systems.

2.3.2 Supply Chain Control

Another field in which discrete time modelling is on the upswing is the area of
supply chains. The main reasons for the increased activity in this field are increasing
competition and availability of data. We now present an example from this field.

If a manufacturer produces less than what is required, they may lose market share.
On the other hand, if they produce more than required, they will incur losses through
inventory costs, interest, etc.

We will now present an example from the general area of supply chain management
[58]. The idea is that if we have a good estimate of the inventory and the demand
for goods, we can decide how much to manufacture. The system inventory is made
up of the inventories at the manufacturer and the distributor, as well as the goods in
transit, corrected for estimated arrival times.
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The functions of the production ordering and inventory management system
include demand forecasting, customer order fulfilment, production ordering (deter-
mining the production release quantities), and the production process. The forecasted
demand FD of the products is based on first order exponential smoothing of the
customer sales rate SALES, with a smoothing constant ρ and a sampling interval δ:

FD(n) = FD(n− 1) + ρδ(SALES(n− 1)− FD(n− 1)) (2.31)

The sampling interval δ or the integration time step is said to correspond to the
frequency at which the information is updated within the system. The inventory level
(INV) accumulates the difference in the production rate (PRATE) and the sales rate:

INV(n) = INV(n− 1) + δ(PRATE(n)− SALES(n)) (2.32)

The term production release refers to the quantity ordered for production. The work
in process (WIP) level accumulates the difference in the production release (PREL)
and production rate (PRATE):

WIP(n) = WIP(n− 1) + δ(PREL(n)− PRATE(n)) (2.33)

The production release quantities (PREL) are determined using the ordering rule in
Eq. 2.33, based upon the forecasted demand, the difference between the desired level
of WIP and the current WIP level, and the difference between the desired level of
inventory and the current inventory level:

PREL(n) = FD(n− 1) + α(L × FD(n− 1)−WIP(n− 1))
+ β(FD(n− 1)− INV(n− 1))

(2.34)

where α is the fractional adjustment rate for WIP and it describes how much of the
discrepancy between the desired and current levels of WIP are to be added to the
production release order. Similarly, β is the fractional adjustment rate for inventory
and it describes how much of the discrepancy between the desired and current levels
of inventory are to be added to the production release order. These variables are to
be chosen so as to achieve a good performance. This topic is discussed in more detail
in Example 4.20 on page 88.

Based on the Little’s law, the desired WIP in the system is set to yield the
desired throughput (set equal to forecasted demand), given the lead time, L [58]. To
provide adequate coverage of inventory, the manufacturer seeks to maintain a desired
level of inventory set equal to the forecasted demand. In the following equation, the
production process is typically modelled as a fixed pipeline delay L:

PRATE(n) = PREL(n− L) (2.35)

An objective of this model is to determine production release as a function of sales.
In this section, we have presented two models that have been posed directly in

discrete time. For similar models in diverse fields, such as banking and the criminal
justice system, the reader is referred to [4].
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Figure 2.4: Analog to digital converter

2.4 Establishing Connections

In this section, we will discuss the issues in connecting up the feedback loop as given
in Fig. 1.1 on page 1. As mentioned earlier, the connections are not straightforward,
because the plant may be a continuous time system, while the controller is digital.2

Digital systems can understand only binary numbers. They can also produce only
binary numbers, at discrete time intervals, synchronized by a clock. The real life
systems, on the other hand, could be continuous with their properties specified by
variables that are defined at all times. In this section, we explain how these two types
of devices communicate with each other.

2.4.1 Continuous Time to Digital Systems – A/D Converter

We will first look at the transformation to be carried out on the signal from the plant,
before it can be communicated to the digital device: it has to be quantized for the
digital device to understand it.

For example, suppose that the variable y in Fig. 1.1 denotes a voltage in the range
of 0 to 1 volt. This could be the conditioned signal that comes from a thermocouple,
used in a room temperature control problem. Suppose also that we use a digital device
with four bits to process this information. Because there are four bits, it can represent
sixteen distinct numbers, 0000 to 1111, with each binary digit taking either zero or
one. The resolution we can achieve is 1/15 volt, because, sixteen levels enclose fifteen
intervals. The continuous variable y that lies in the range of 0 to 1 volt is known as
the analog variable.

Representation of an analog value using binary numbers is known as analog to
digital conversion. The circuit that is used for this purpose is known as an analog
to digital converter, abbreviated as A/D converter. It reads the analog variable at a
time instant, known as sampling, and calculates its binary equivalent, see Fig. 2.4.

This calculation cannot be done instantaneously; it requires a nonzero amount of
time. This is the minimum time that should elapse before the converter attempts to
quantize another number. Sampling is usually done at equal intervals, synchronized
by a clock. In all digital devices, the clock is used also to synchronize the operations
of different components. Because of this reason, the binary equivalents of an analog
signal are evaluated at discrete time instants, known as the sampling instants, only.
The binary signals produced by the A/D converter are known as the digital signals.
These signals are quantized in value, because only specific quantization levels can be
represented and discrete in time, and because these conversions take place only at
sampling instants. This is the reason why the device used for this purpose is known
as the A/D converter.

2If the reader does not have to deal with continuous time systems, they can now go straight to
Sec. 2.4.3.
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Figure 2.5: Sampling, quantization of analog signals
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Figure 2.6: Quantization

The left diagram in Fig. 2.5 illustrates the fact that the A/D converter takes a
continuous function of real values, known as an analog signal, and produces a sequence
of quantized values. The data seen by the digital device for this example are given in
the right diagram of the same figure. In view of the above discussion, Fig. 2.4 can be
redrawn as in Fig. 2.6.

The error in quantization varies inversely with the number of bits used. The falling
hardware prices have ensured that even low cost devices have large numbers of bits
with small quantization errors. As a result, it is reasonable to assume that no major
difficulties arise because of quantization.

It should be pointed out that the time required for A/D conversion usually depends
on the value of the analog signal itself. Nevertheless, the A/D converters are designed
so as to sample the analog signal at equal intervals, with the requirement that the
interval is at least as large as the maximum conversion time required. Most A/D
converters sample analog signals at equal time intervals only. This is referred to as
uniform sampling. The digital processing devices that are connected to the output of
A/D converters also read the digital signals at the same instants.

As it takes a finite but nonzero amount of time for A/D conversion, it can be
assumed that the analog signal, sampled at a time instant, will be available for digital
processing devices in quantized form, at the next time instant only.

The next question to ask is whether there is any loss in information because of
sampling in the A/D converter. The answer is no, provided one is careful. Many
variables of practical interest vary slowly with time – in any case, slower than the
speeds at which the data acquisition systems work. As a result, the loss of information
due to sampling is minimal. Moreover, it is possible to get high performance A/D
converters with small sampling time at a low cost and, as a result, the sampling losses
can be assumed to be minimal. Indeed it is possible to use a single A/D converter to
digitize several analog signals simultaneously. That is, an A/D converter can sample
several analog signals, one at a time, without affecting the performance.
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Figure 2.7: Zero order hold

We have talked about the procedure to follow to make the continuous time devices,
such as the plant in Fig. 1.1 on page 1, communicate with digital devices. We will
now present the issues in the reverse communication – now the digital devices want
to communicate to continuous time devices.

2.4.2 Digital to Continuous Time Systems – D/A Converter

The outputs from the digital devices are also digital signals and they are available
only at regular intervals. A typical signal is presented in the left hand diagram of
Fig. 2.7.

The real world that has to deal with the digital device may be analog in nature. For
example, suppose that the controller, through binary numbers, indicates the desired
position of a valve position. The valve, being a continuous time device, can only
understand analog values. This is where the digital to analog converter, abbreviated
as D/A converter, comes in. It converts the binary vector into a decimal number.

There is one more issue to be resolved. The valve cannot work with the numbers
arriving intermittently. It should know the value of the signal during the period that
separates two samples. The most popular way to do this is to hold the value constant
until the next sampling instant, which results in a staircase approximation, as shown in
the right diagram of Fig. 2.7. Because a constant value is a polynomial of zero degree,
this is known as the zero order hold (ZOH) scheme. Although more complicated types
of hold operations are possible, the ZOH is most widely used and it is usually sufficient.
The ZOH operation usually comes bundled as a part of the D/A converter. In the
rest of this book, we will use only ZOH.

We have talked about the procedure to convert the signals so that they are suitable
to the receiving systems. Now let us discuss some issues in connecting the plant to
the loop.

2.4.3 Input–Output View of Plant Models

We have shown that it is possible to express several continuous time systems in the
form of Eq. 2.1a on page 5, namely ẋ(t) = Fx(t) + Gu(t). Here, x, known as the
state vector, denotes the variables that characterize the state of the system. The
variable u(t), which denotes the input to the system, can consist of disturbance
and manipulated or control variables. As most systems are nonlinear, linearization
is required to arrive at such state space models.

We will show in the next section that it is possible to discretize continuous
time systems to arrive at an equation of the form of Eq. 2.2a on page 6, namely
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x(n + 1) = Ax(n) + Bu(n). Such equations also arise in naturally occurring discrete
time systems, as we have seen in Sec. 2.3.

Although the states contain all the information about a system, it may not be
possible to measure all of them, unfortunately. We give below two reasons:

1. It may be very expensive to provide the necessary instruments. For example,
consider a distillation column with 50 trays. Suppose the temperature in each
tray is the state variable. It may be expensive to provide 50 thermocouples.
Moreover the column may not have the provision to insert 50 thermocouples.
Usually, however, a limited number of openings, say in the top and the bottom
tray, will be available for thermocouple insertions.

2. There may not be any sensors, to measure some of the states. Suppose for
instance the rate of change of viscosity is a state vector. There is no sensor that
can measure this state directly.

Because of these reasons, only a subset of the state vector is usually measured.
Sometimes a function of states also may be measured. The following example
illustrates this idea.

Example 2.1 Consider a system in which there are two immiscible liquids.
Suppose the height of the two liquids forms the state vector. Construct the output
equation for the following two cases:

1. Only the level of the second fluid is measured.

2. Only the sum of two levels is measured.

Let x1 and x2 denote the heights of liquids 1 and 2, respectively. We obtain

x =
[
x1

x2

]
Let y denote the measured variable. When the level of the second fluid is measured,
we obtain

y =
[
0 1

] [x1

x2

]
= x2

Note that the above expression can be written as y = Cx+Du, where C is given
by

[
0 1

]
and D = 0. When the sum of levels is measured, we obtain

y =
[
1 1

] [x1

x2

]
= x1 + x2

This can once again be written as y = Cx+Du, where C is given by
[
1 1

]
and

D = 0.

In view of the reasons explained above, complete state space models are given by
Eq. 2.1 on page 5 or Eq. 2.2 on page 6.

The control effort or the manipulated variable u(n) becomes the input to the plant,
with y(n) being the output from it. These two variables connect to the external world.
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2.5 Discretization of Continuous Time Systems

Recall that the objective of this chapter is to establish connections between
the building blocks of Fig. 1.1 and to study them in a uniform framework.
We demonstrated that A/D and D/A converters can be used to establish connections.
The models of the plant and the controller are quite different from each other, though.
The former is often made up of differential equations with continuous time variables.
The latter, on the other hand, can understand only the transitions between the
sampling intervals. If the controller has to take meaningful control decisions, it better
understand how the plant works. One way to do this is to transform the continuous
time plant model into a discrete time model that relates the parameters of the system
at the sampling intervals. Through this mechanism, we can bring the plant and the
controller models to a uniform framework. It is then possible to design the control
law. This section is devoted to the discretization of continuous time models.

2.5.1 Solution to the State Space Equation

In this section, we will discuss how to discretize a continuous time model of the form
Eq. 2.1a on page 5, reproduced here for convenience,

ẋ(t) = Fx(t) +Gu(t) (2.36)

One of the popular methods of discretization is to solve the system and choose
appropriate time values, as we will explain shortly. With this objective in mind,
we define the exponential of a square matrix. Through its derivative, we construct
an integrating factor, using which we obtain an explicit solution to the state space
equation.

The exponential of a square matrix F , namely eFt, is defined as follows:

eFt �
= I + Ft+

1
2!
F 2t2 + · · · (2.37)

We will present an example to illustrate this idea.

Example 2.2 Determine the exponential of the matrix F for the DC motor
system, defined in Sec. 2.2.2, with J/b = 1.

It is given that

F =
[−1 0

1 0

]
We will first calculate powers of F :

F 2 =
[−1 0

1 0

] [−1 0
1 0

]
=
[

1 0
−1 0

]
F 3 =

[−1 0
1 0

] [
1 0
−1 0

]
=
[−1 0

1 0

]
Using the definition given in Eq. 2.37, we obtain the exponential of Ft as

eFt =
[
1 0
0 1

]
+
[−1 0

1 0

]
t+

1
2

[
1 0
−1 0

]
t2 +

1
3!

[−1 0
1 0

]
t3 + · · ·
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Carrying out a term by term summation, we obtain

eFt =
[
1− t+ t2/2− t3/3! + · · · 0
t− t2/2 + t3/3!− · · · 1

]
=
[

e−t 0
1− e−t 1

]
There are many ways to calculate a matrix exponential. Matlab calculates it using
a numerically stable procedure. M 2.2 shows how this calculation is done for t = 1.
We obtain

eF =
[
0.3679 0
0.6321 1

]

We also need the concept of derivative of the exponential of a matrix. Differen-
tiating both sides of Eq. 2.37, we obtain

d

dt

(
eFt

)
=

d

dt

(
I + Ft+

1
2!
F 2t2 +

1
3!
F 3t3 + · · ·

)
= 0 + F +

1
2!
F 22t+

1
3!
F 33t2 + · · ·

= F + F 2t+
1
2!
F 3t2 + · · ·

= (I + Ft+
1
2!
F 2t2 + · · · )F = eFtF

Note that we could have factored F on the left-hand side as well. Thus, we obtain

d

dt
(eFt) = FeFt = eFtF (2.38)

Now consider solving the state space equation of Eq. 2.36. First we rewrite it as
follows:

ẋ(t)− Fx(t) = Gu(t)

Premultiply both sides by e−Ft to obtain

e−Ftẋ(t)− e−FtFx(t) = e−FtGu(t)

Using Eq. 2.38, the left-hand side can be simplified as

d

dt
(e−Ftx(t)) = e−FtGu(t)

Integrating both sides with respect to time from t0 to t, we obtain

e−Ftx(t)− e−Ft0x(t0) =
∫ t

t0

e−FτGu(τ)dτ

e−Ftx(t) = e−Ft0x(t0) +
∫ t

t0

e−FτGu(τ)dτ
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Premultiplying both sides by eFt, we obtain

x(t) = eF (t−t0)x(t0) +
∫ t

t0

eF (t−τ)Gu(τ)dτ (2.39)

This is the solution to the state space equation, given in Eq. 2.36.

2.5.2 Zero Order Hold Equivalent of the State Space Equation

We will now make an assumption that all inputs to analog devices that describe
continuous processes are outputs of a ZOH device. This assumption allows us to
develop a systematic theory of systems consisting of both analog and digital devices.
If the sampling rate is sufficiently high, this assumption poses no major problems
even when the staircase approximation is used for smoothly varying analog signals.

The easiest way to study both analog and digital devices in a single framework is
to observe their behaviour at sampling instants only. Let us denote by tn and tn+1

two successive sampling instants. Let us substitute tn and tn+1, respectively, for t0
and t in Eq. 2.39. We obtain

x(tn+1) = eF (tn+1−tn)x(tn) +
∫ tn+1

tn

eF (tn+1−τ)Gu(τ)dτ (2.40)

We will next make the ZOH assumption, that is, assume that u is held constant in a
sampling interval, as in Fig. 2.7:

u(τ) = u(tn), tn ≤ τ < tn+1 (2.41)

We will also assume that we use uniform sampling intervals, Ts, defined by

Ts
�
= tn+1 − tn, ∀n (2.42)

We obtain

x(tn+1) = eFTsx(tn) +
[∫ tn+1

tn

eF (tn+1−τ)Gdτ

]
u(tn).

We define

A
�
= eFTs (2.43)

B
�
=
∫ tn+1

tn

eF (tn+1−τ)Gdτ (2.44)

Note that A and B are constants as are F and Ts. We obtain

x(tn+1) = Ax(tn) +Bu(tn)

We now assume that we begin the sampling operations at t0 = 0. Making use of the
uniform sampling assumption of Eq. 2.42, we obtain

x((n+ 1)Ts) = Ax(nTs) +Bu(nTs)
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Because the sampling period is constant, we don’t have to explicitly state the presence
of Ts. It is sufficient to use only the sampling number , namely n and n+ 1. We obtain

x(n+ 1) = Ax(n) +Bu(n) (2.45)

This is known as the ZOH equivalent of the continuous time state space model, given
by Eq. 2.36. We observe the following:

1. There is no approximation in discretization, so long as u(t) is kept constant
during one interval. Thus both discrete and continuous time models predict
identical behaviour at the sampling instants.

2. Consider the case of F being a scalar. As it is defined as the exponential of
a real number, A cannot be negative. Thus the ZOH equivalent of continuous
models will give rise to positive A.

3. There could be systems with A(n) negative,3 for example, when we use
plant data for identification, the topic of discussion in Chapter 6. Because of
the previous observation, such systems cannot be represented by the usual
continuous time state space models. As a result, the discrete time model
equations given above can accommodate a larger class of systems.

4. The discrete time model derived above cannot explain what happens between
sampling instants. If the sampling interval is sufficiently small and if there are no
hidden oscillations,4 it is possible to make a reasonable guess of what happens
between the samples.

5. By a change of variable, the expression for B(n) can be written as

B(n)
�
=

[∫ Ts

0

eFtdt

]
G (2.46)

see Problem 2.4. As a result, B(n) also is a constant matrix.

We now illustrate this idea with an example.

Example 2.3 Calculate the ZOH equivalent of the DC motor, presented in
Sec. 2.2.2, for J/b = 1, with the sampling time Ts = 1 s.

From Eq. 2.17, the continuous time matrices are given by

F =
[−1 0

1 0

]
, G =

[
1
0

]
The exponential of this matrix has been calculated in Example 2.2 as

eFt =
[

e−t 0
1− e−t 1

]
3An example of this is presented in Sec. 9.8.
4A procedure to avoid intra sample oscillations is presented in Example 9.10 on page 343.
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A and B matrices are calculated next. Using Eq. 2.43 and Eq. 2.46, with Ts = 1,
we obtain

A = eFTs =
[

e−1 0
1− e−1 1

]
=
[
0.3679 0
0.6321 1

]
B =

∫ 1

0

eFτdτG

=
∫ 1

0

[
e−τ 0

1− e−τ 1

]
dτ

[
1
0

]
=
[ −e−τ 0
τ + e−τ τ

]1

0

[
1
0

]
=
[ −e−τ

τ + e−τ

]1

0

=
[ −e−1 + 1
1 + e−1 − 1

]
=
[
0.6321
0.3679

]
M 2.3 shows how to carry out the above calculation in Matlab.

Now we will present another approach to find the ZOH equivalent of continuous
time systems. In this, we will first diagonalize the system matrix F .

Example 2.4 Using the diagonalization procedure of Appendix A.1.2, deter-
mine the ZOH equivalent model of the antenna control system described in
Sec. 2.2.2, with J/b = 10 and Ts = 0.2 s.

The system has a state space model

ẋ = Fx+Gu

y = Cx

with

F =
[−0.1 0

1 0

]
, G =

[
0.1
0

]
, C =

[
0 1

]
and x1(0) = 0, x2(0) = 0. It is easy to verify that the eigenvalues of F are given
by λ = 0 and −0.1. The corresponding eigenvectors are given by[

0
1

]
and

[
1
−10

]

Thus the matrix F can be diagonalized as F = SΛS−1, where

S =
[
0 1
1 −10

]
, Λ =

[
0 0
0 −0.1

]
Finally we obtain the discrete time state space matrices as

A = eFTs = SeΛTsS−1
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where

eΛTs =
[
1 0
0 e−0.1Ts

]
and hence

A =
[
0 1
1 −10

] [
1 0
0 e−0.1Ts

] [
10 1
1 0

]
=
[

e−0.1Ts 0
10
(
1− e−0.1Ts

)
1

]
Using the procedure described in Example 2.3, we obtain

B =
[

1− e−0.1Ts

Ts + 10(e−0.1Ts−1)

]
When we use a sampling interval of 0.2 s, i.e., Ts = 0.2 s, we obtain

A =
[

0.9802 0
0.19801 1

]
, B =

[
0.01980
0.001987

]

2.5.3 Approximate Method of Discretization

The method presented in the previous section is not the only one available to discretize
continuous time models. In this section, we present a simple method of discretization.
More methods will be discussed in Sec. 8.2.

If we replace the derivative of x with a rectangular approximation, Eq. 2.36
becomes

x(n+ 1)− x(n)
Ts

= Fx(n) +Gu(n)

from which it follows that

x(n+ 1) = (I + FTs)x(n) + TsGu(n) (2.47)

We will achieve the same result if we substitute the definition of eFTs given in Eq. 2.37
and expand Eq. 2.43 and Eq. 2.46:

A = I + FTs + higher degree terms in Ts

B =
∫ Ts

0

eFτdτG = F−1eFτ
∣∣Ts

0
G

= F−1[eFTs − I]G

= F−1[I + FTs + higher degree terms in Ts − I]G
= TsG+ higher degree terms in Ts

If Ts is small, the higher degree terms in Ts may be dropped in the above expressions
for A and B, which, when substituted in Eq. 2.45, become identical to Eq. 2.47.
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Figure 2.8: Original and time shifted versions of a signal

2.5.4 Discretization of Systems with Delay

Often, changes in the input u do not affect the state immediately. Suppose that the
control effort u is the flow rate of some liquid. If a long pipe were to separate the
control valve and the place where the liquid enters the plant, it would take some time
for any change in the flow rate to be felt by the plant.

Oil and process industries have plants of extremely large orders. These are often
sluggish systems. It is conventional to approximate these systems with low order
models and a dead time [33], also known as time delay. If a system has a large time
delay or dead time, it will take a long time to respond to any stimulus.

Suppose that any change in u is felt at the plant only after D time units, as
expressed by the following state space equation:

ẋ(t) = Fx(t) +Gu(t−D), 0 ≤ D < Ts (2.48)

This can be graphically illustrated as in Fig. 2.8 where u(t) and u(t−D) are drawn.
The solution to this equation is identical to Eq. 2.40, but for the delay D in u. We
obtain

x(tn+1) = eF (tn+1−tn)x(tn) +
∫ tn+1

tn

eF (tn+1−τ)Gu(τ −D)dτ (2.49)

From Fig. 2.8, we see that the effect of the delay is to shift the constant values of u
by D units to the right. If there had been no delay, we would have used u(tn) during
the interval (tn, tn+1), see Eq. 2.41. Because of the delay, u(tn−1) will be used during
the period (tn, tn +D) and u(tn) during the rest of the interval. As a result, the last
term in the above equation can be written in two parts:∫ tn+1

tn

eF (tn+1−τ)Gu(τ −D)dτ =
∫ tn+D

tn

eF (tn+1−τ)Gdτu(tn−1)

+
∫ tn+1

tn+D

eF (tn+1−τ)Gdτu(tn)

�
= B1u(tn−1) + B0u(tn)
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where the symbol
�
= has to be read as defined as. The above expressions for B1 and

B0 can be simplified to arrive at the following relations, see Problem 2.5:

B1 = eF (Ts−D)

∫ D

0

eFtGdt (2.50a)

B0 =
∫ Ts−D

0

eFtGdt (2.50b)

Substituting the above expressions in Eq. 2.49 and making use of Eq. 2.42 and
Eq. 2.43, we obtain

x(n+ 1) = Ax(n) + B1u(n− 1) +B0u(n) (2.51)

which can be written using an augmented state vector:[
x(n+ 1)
u(n)

]
=
[
A B1

0 0

] [
x(n)

u(n− 1)

]
+
[
B0

I

]
u(n) (2.52)

where, as before, A is given by Eq. 2.43 and I is an identity matrix of the same size
as u. If we define the vector (x(n), u(n − 1)) as an augmented state at the sampling
instant n, Eq. 2.52 is reduced to the standard state space model of the form Eq. 2.45.

Recall that the concept of state has been introduced to remember the effects of
the past. The presence of time delay requires us to remember the previous control
effort as well. What better place to store this information than the state? We present
an example below.

Example 2.5 Discretize the state space equation

ẋ(t) = −1
τ
x(t) +

1
τ
u(t−D) (2.53)

where τ and D are constants and the delay is less than one sampling period, i.e.,
D < Ts.

Using Eq. 2.50a,

B1 = e−(Ts−D)/τ

∫ D

0

e−t/τ 1
τ
dt = e−(Ts−D)/τ

[
1− e−D/τ

]
(2.54a)

Using Eq. 2.50b,

B0 =
∫ Ts−D

0

e−t/τ 1
τ
dt =

[
1− e−(Ts−D)/τ

]
(2.54b)

From Eq. 2.52, we arrive at the discrete time equivalent of Eq. 2.53 as[
x(n+ 1)
u(n)

]
=
[

Φ B1

0 0

] [
x(n)

u(n− 1)

]
+
[
B0

1

]
u(n) (2.54c)

where

Φ = e−Ts/τ (2.54d)



2.6. Approaches to Controller Design and Testing 29

What do we do when the delay is greater than the sampling time, i.e., D > Ts?
A procedure to deal with this situation is given in Problem 2.5.

We have so far discussed how to discretize the state equation only. What about
discretization of the output equation, discussed in detail in Sec. 2.4.3? At the sampling
instant, the relation for y is unchanged, provided we synchronize the sampling of y(t)
with that of x(t) and u(t). Thus, it is possible to arrive at the discrete time state
space model, given by Eq. 2.2 on page 6. The discrete time state equation also arises
naturally, see Sec. 2.3. In these systems also, it is difficult to measure all the states;
the reasons are same as that for continuous time systems. Thus, once again, we arrive
at Eq. 2.2.

2.6 Approaches to Controller Design and Testing

In this chapter, we have discussed in detail how to connect the blocks given in Fig. 1.1.
If the plant G denotes a discrete time model, the blocks can be directly connected.
If, on the other hand, the plant is described through a continuous time model, we
discretize it, as explained in Sec. 2.5, and use it. In this case, the signals also have to
be converted, as explained above.

There are two broad categories of control design techniques. The first one is based
on a transfer function approach. In this approach, one gets an algebraic relation
between the input u and the output y with the help of the Z-transform, known
as the transfer function, to be explained in Sec. 4.3. The control design technique
based on transfer functions is known as the transfer function approach. The transfer
function methods are easy to explain and implement. We present several control design
techniques that use this approach.

The second category of control design methods uses the state space models directly.
This method is useful, especially when one has to deal with several input variables u.
In Chapter 14, we present a few state space model based control techniques as well.

Validation of the controller is an important issue, especially in hybrid systems that
consist of a continuous time plant and a digital controller. What is the guarantee that
we did not lose information while discretizing the plant? What is the guarantee that
the plant behaves properly in between the sampling instants? The minimum rate at
which we have to sample a system is given by Shannon’s sampling theorem, to be
derived in Sec. 5.3.2. In reality, we have to sample the continuous time much faster.
Unfortunately, however, there are only heuristic guidelines for this, some of which are
presented in Sec. 8.1.

If one takes some precautions while designing the controller, one does not have to
worry about how the system will behave in between the sampling instants. This topic
is discussed in Chapter 9. The performance of the final digital controller is tested on
the continuous time system through simulations, with tools such as Simulink. The
only difference between evaluating the performance of the digital controller on plant
that is described by a continuous time or a discrete time model is in the usage of the
zero order hold element. It is present in the former only. There is no need to explicitly
state the presence of an A/D converter in these simulations.

A large number of pre-defined Simulink programs are given in Appendix A.2 on
page 524, the usage of which will be studied in great detail in Parts III and IV.
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2.7 Matlab Code

Matlab Code 2.1 Model of inverted pendulum, presented in Sec. 2.2.3. This code
is available at HOME/ss/matlab/pend model.m5

1 Km = 0.00767 ; Kg = 3 . 7 ; Rm = 2 . 6 ; r = 0 .00635 ;
2 M = 0 . 5 2 2 ; m = 0 . 2 3 1 ; g = 9 . 8 1 ; L = 0 . 3 0 5 ; J = 0 ;
3

4 D1 = ( J+m∗Lˆ2) ∗(M+m)−mˆ2∗Lˆ2 ;
5 alpha = m∗g∗L∗(M+m) /D1 ;
6 beta = m∗L/D1 ;
7 gamma = mˆ2∗g∗Lˆ2/D1 ;
8 d e l t a = ( J+m∗Lˆ2)/D1 ;
9 alpha1 = Km∗Kg/Rm/ r ;

10 alpha2 = Kmˆ2∗Kgˆ2/Rm/ r ˆ2 ;
11

12 A = zeros (4 ) ; A(1 ,3 ) = 1 ; A(2 ,4 ) = 1 ;
13 A(3 ,2 ) = −gamma; A(3 , 3 ) = −alpha2 ∗ d e l t a ;
14 A(4 ,2 ) = alpha ; A(4 ,3 ) = alpha2 ∗beta ;
15 B = zeros (4 , 1 ) ; B(3 ) = alpha1 ∗ d e l t a ; B(4 ) = −alpha1 ∗beta ;

Matlab Code 2.2 Exponential of the matrix presented in Example 2.2 on page 21.
Available at HOME/chap2/matlab/mat exp.m

1 F = [−1 0 ;1 0 ] ;
2 expm(F)

Matlab Code 2.3 ZOH equivalent state space system, as discussed in Example 2.2
on page 21. Available at HOME/chap2/matlab/ZOH1.m

1 F = [−1 0 ;1 0 ] ; G = [ 1 ; 0 ] ;
2 C = [ 0 1 ] ; D = 0 ; Ts=1;
3 sys = s s (F ,G,C,D) ;
4 sysd = c2d ( sys , Ts , ’ zoh ’ )

5HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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Qi(t)

Q(t) = x(t)h(t)

h(t)

Figure 2.9: Water flow in a tank

2.8 Problems

2.1. It is desired to model the flow of water into and out of a tank of uniform cross-
section, see Fig. 2.9. The inflow rate Qi(t) need not be steady. The opening of
the outflow valve can be adjusted so as to reduce the variations in the outflow.
The outflow rate Q(t) is a multiple of the height of water in the tank and a
variable x(t) that is a function of valve opening, i.e.,

Q(t) = x(t)h(t) (2.55)

Derive a linearized model of this system in deviation variables.

2.2. Repeat Problem 2.1 with the difference that the outflow now is proportional to
square root of the height of water in the tank:

Q(t) = x(t)
√
h(t) (2.56)

2.3. The motion of a unit mass in an inverse square law force field is governed by a
pair of second order equations

d2r(t)
dt2

= r(t)
(
dθ(t)
dt

)2

− K

r2(t)
+ u1(t)

d2θ(t)
dt2

= − 2
r(t)

dθ(t)
dt

dr(t)
dt

+
1
r(t)

u2(t)

where r(t) and θ(t) are defined in Fig. 2.10. The radial thrust of the unit mass
(say a satellite) is denoted by u1(t) and that in the tangential direction is
denoted by u2(t). If u1(t) = u2(t) = 0, the equations admit the solution

r(t) = σ constant
θ(t) = ωt, with ω constant
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u1

Figure 2.10: Satellite in a circular orbit

where σ3ω2 = K. This means that circular orbits are possible. Define x1 =
r − σ, x2 = dr

dt , x3 = σ(θ − ωt), x4 = σ(dθ
dt − ω) and write down the linearized

differential equations which describe the resulting motion for small deviations
from a circular orbit. Show that the F and G matrices are given by

F =


0 1 0 0

3w2 0 0 2w
0 0 0 1
0 −2w 0 0

 , G =


0 0
1 0
0 0
0 1



2.4. Derive Eq. 2.46 on page 24. Also, show that B can be written as B = A1TsG,
with A1 given by A = I + FTsA1, where A is given by Eq. 2.43.

2.5. This problem is concerned with discretization of time delay systems, addressed
in Sec. 2.5.4.

(a) Derive the expressions for B0 and B1, derived in Eq. 2.50.

(b) Derive the ZOH equivalent discrete time state space model for d = 2.

(c) Is there any relation between the matrices B0 and B1 that we derived for
d = 1 and those for d = 2?

(d) Can you repeat the above two questions for a general integer d > 0?

2.6. The following equations model a thermal system where the states denote
temperature and the control effort u(t) can stand for either steam or electric
current:

d

dt

[
x1(t)
x2(t)

]
=
[
1 1
1 1

] [
x1(t)
x2(t)

]
+
[
0
1

]
u(t)

Find a ZOH equivalent discrete system. Let the sample time be Ts in consistent
units. Use the diagonalization procedure described in Sec. A.1.2 and check the
results with that obtained through the direct method.
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Chapter 3

Linear System

The approach followed in this book is to design linear controllers using linear
models. We also have to ensure that the controllers are realizable, or equivalently,
implementable. We need the concept of causality for this purpose. In this chapter, we
present the concepts of linearity, causality, as well as time invariance and stability.

We will be concerned with discrete time signals that are defined at discrete time
instants, from −∞ to ∞. An example of such a sequence is given by

{u(n)} �
= {. . . , u(−2), u(−1), u(0), u(1), u(2), . . .} (3.1)

where u(i) on the right-hand side of the equation denotes the scalar value of u taken
at time instant i. For example, u(−1), u(0) refer to the values of u taken at time
instants of −1 and 0. In general, we will denote such a sequence u as {u(n)} with
double braces. We will denote the value of the sequence u taken at time instant n as
u(n). When there is no confusion, we will drop the braces, even when talking about
sequences.

We work with finite energy signals in this book. The energy of a discrete time
signal {u(n)} is defined as

Eu =
∞∑

n=−∞
|u(n)|2 (3.2)

where, u can be complex. In case of real signals, the energy is the sum of the squares of
u at al time instants. We would also be interested in signals with finite power. Recall
that power is defined as energy per unit time. Periodic sequences are an example of
signals with finite power.

In this chapter, we will show the importance of convolution operation in the
modelling of linear time invariant systems: for any arbitrary input, the plant output
can be obtained by a convolution of the input and the impulse response.

3.1 Basic Concepts

In this section, we introduce the concepts of linearity, time (or shift) invariance and
causality. One that has all these properties is known as a linear time invariant (LTI)
causal system. In this book, we will deal mostly with LTI causal systems. We begin
the discussion with the property of linearity.

Digital Control Kannan M. Moudgalya
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03143-8
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3.1.1 Linearity

Linear systems are easier to understand compared to nonlinear systems. Often,
controllers designed with the assumption of the underlying process being linear are
sufficient. In view of this observation, the concept of linearity, to be discussed in this
section, becomes extremely important.

Let us first recall the definition of linearity of functions. A function f(x) is said to
be linear if

f(αx1 + βx2) = αf(x1) + βf(x2) (3.3)

where α and β are arbitrary scalars. For example, f1(x) = 2x is linear, but f2(x) =
sinx is nonlinear. We now ask the question, is

f3(x) = 2x+ 3 (3.4)

linear? Let us see whether Eq. 3.3 is satisfied with α = β = 1. The left-hand side
becomes

f3(x1 + x2) = 2(x1 + x2) + 3

while the right-hand side is

f3(x1) + f3(x2) = (2x1 + 3) + (2x2 + 3) = 2(x1 + x2) + 6

We see that the two sides are unequal. Because Eq. 3.3 has to be satisfied for all α and
β in order that the function be linear, we see that f3 is not linear. Thus, addressing
functions of the form of Eq. 3.4 as linear should at best be considered as colloquial.
The presence of the nonzero constant in Eq. 3.4 is the reason why f3 is nonlinear.
Thus, we arrive at the following necessary condition for linearity:

f(0) = 0 (3.5)

Now we will present the concept of a linear system. Consider a system at the state
x(n0) at time instant n0. Suppose that we apply an input sequence of the form Eq. 3.1,
starting at time n0, i.e.,

{u(n)} = {u(n0), u(n0 + 1), u(n0 + 2), . . .}, n ≥ n0

Suppose that the future states and the output of the system are defined as functions
of the input and the initial state:

x(n) = fn(x(n0), {u(n)})
y(n) = gn(x(n0), {u(n)})

This can be represented as in Fig. 3.1, where the inputs, shown on the left-hand side
of the block diagram, are

1. {u(n)} – input sequence

2. x(n0) – initial state

and the outputs, shown on the right-hand side of the block diagram, are
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{y(n)}

{x(n)}{u(n)}

x(n0)

Figure 3.1: Diagrammatic representation of a system

1. x(n), n > n0, the future states

2. y(n), n > n0, the future outputs

If fn and gn are linear functions of x(n0) and {u(n)}, n ≥ n0, the system is said to be
linear. In other words, a linear combination of (x(n0), {u(n)}) should give the same
combination of (x(n), y(n)) for all future n. In other words, suppose that under the
action of fn, we obtain the following two mappings:[

x1(n0)
{u1(n)}

]
fn−→ {x1(n)} (3.6a)[

x2(n0)
{u2(n)}

]
fn−→ {x2(n)} (3.6b)

If the system is linear, a linear combination of the left-hand sides should give the
same combination of the right-hand sides:

α

[
x1(n0)
{u1(n)}

]
+ β

[
x2(n0)
{u2(n)}

]
fn−→ α{x1(n)}+ β{x2(n)} (3.6c)

where, as before, α and β are arbitrary scalars. The output function gn should also
satisfy this property. That is, under the condition[

x1(n0)
{u1(n)}

]
gn−→ {y1(n)} (3.7a)[

x2(n0)
{u2(n)}

]
gn−→ {y2(n)} (3.7b)

the following also should hold true:

α

[
x1(n0)
{u1(n)}

]
+ β

[
x2(n0)
{u2(n)}

]
gn−→ α{y1(n)} + β{y2(n)} (3.7c)

This concept can be illustrated as in Fig. 3.2. We refer to this property as the
superposition principle when α = β = 1. We will present an example below.

Example 3.1 The system given by the following equations is linear:

x(n+ 1) = A(n)x(n) +B(n)u(n) (3.8)
y(n) = C(n)x(n) +D(n)u(n) (3.9)



38 3. Linear System

{u1(n)} {x1(n)}

x1(n0) {y1(n)}

{u2(n)} {x2(n)}

x2(n0) {y2(n)}

α{u1(n)} + β{u2(n)}

αx1(n0)+βx2(n0)

α{x1(n)} + β{x2(n)}

α{y1(n)} + β{y2(n)}

Figure 3.2: Linearity of a system defined

We will first show that Eq. 3.8 is linear. Let us suppose that the future states for
(x1(n0), {u1(n)}) and (x2(n0), {u2(n)}) are {x1(n)} and {x2(n)}, respectively.
In particular, at the time instant n0 + 1, we obtain the following relations:

x1(n0 + 1) = A(n0)x1(n0) +B(n0)u1(n0)
x2(n0 + 1) = A(n0)x2(n0) +B(n0)u2(n0)

Now, suppose that we use a linear combination of (xi(n0), {ui(n)}), i = 1, 2, as
the starting point. At n0 + 1, we obtain the following relation:

x(n0 + 1) = A(n0)(αx1(n0) + βx2(n0)) +B(n0)(αu1(n0) + βu2(n0))

Note that we have used the same linear combination for both the input sequence
and the initial state. This can be written as

x(n0 + 1) = α(A(n0)x1(n0) +B(n0)u1(n0))
+ β(A(n0)x2(n0) +B(n0)u2(n0))

This is nothing but αx1(n0 + 1) + βx2(n0 + 1). That is, a linear combination of
(xi(n0), {ui(n)}), i = 1, 2, has given rise to the next state also being of the same
combination. Thus, the linearity of fn is verified for n = n0 + 1. By induction, this
can be shown to be true ∀n ≥ n0. Therefore fn is linear. In a similar way, gn can
also be shown to be linear. Thus, it is a linear system.

The next example is obvious.

Example 3.2 If the outflow from a tank y is proportional to the square root of
the height of the liquid x in the tank, i.e.,

y = k
√
x

the system is not linear.
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{u(n)} {x1(n)}

0 {yu(n)}

0 {x2(n)}

x(n0) {yx(n)}

yu: Due to only input yx: Due to only initial state

{yu(n)} + {yx(n)}x(n0)

{u(n)} {x1(n)} + {x2(n)}

Figure 3.3: Output (y) is the sum of output due to input (yu) and output due to
initial state (yx)

The superposition principle allows us to study the system with zero and nonzero
values of the initial state. In particular, we have the following important property:
In a linear system, the output y(n) is the sum of output with zero input and output
with zero initial state. Suppose that under the action of the function gn, (x(n0), {0})
is mapped to {yx(n)}.1 Also, (0, {u(n)}) gets mapped to {yu(n)}. Pictorially, this can
be seen as follows:[

x(n0)
{0}

]
gn−→ {yx(n)}[

0
{u(n)}

]
gn−→ {yu(n)}

Using the property of linearity given by Eq. 3.7c, with α = β = 1, we obtain[
x(n0)
{u(n)}

]
=
[
x(n0)
{0}

]
+
[

0
{u(n)}

]
gn−→ yx(n) + yu(n)

This superposition property can be summarized by the following equation:

y(n) = yx(n) + yu(n) (3.10)

This idea is illustrated in Fig. 3.3.

3.1.2 Time Invariance

Suppose that an input {u} = {α, β, . . .} is applied to a system at some initial state
x0 at time n0. Thus, {u} is just a sequence of numbers. Let the state and the output
evolve as {x1(n)} and {y1(n)}, n ≥ n0. That is, as given in Eq. 3.6a and Eq. 3.7a,
respectively. Suppose also that the same input sequence {α, β, . . .} is applied to the
system at the same initial state x0 but at some other time n0 − k0. Even though the

1The subscript x does not denote a partial derivative. It says that the output is due to nonzero
value of initial state only.
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n0

{x1(n)}

{y1(n)}

{u1(n)} = {α, β, . . .}

x0

n0 − k0

{x2(n)}

{y2(n)}

{u2(n)} = {α, β, . . .}

x0

Figure 3.4: Time invariance of linear systems. Identical input sequence u is applied
at n = n0 (left) and at n = n0 − k0 (right).

same sequence of numbers is used, because these start at two different time instants,
they will be represented by two different functions, u2 and u1, respectively. We have

{u2(n)} = {u1(n− k0)}
Let the state and output corresponding to u2 evolve, respectively, as {x2(n)} and
{y2(n)}, n ≥ n0 − k0, i.e., as given in Eq. 3.6b and Eq. 3.7b, respectively. This is
illustrated in Fig. 3.4. Now if x2(n) and y2(n) are time shifted versions of x1(n) and
y1(n), i.e.,

x2(n) = x1(n− k0)
y2(n) = y1(n− k0)

for all n ≥ n0 and for all k0, then the system is said to be time invariant. In this case,
we can replace fn by f and gn by g. That is, fn and gn are not functions of time.

Example 3.3 It is easy to verify that the system described by

x(n+ 1) = Ax(n) +Bu(n)
y(n) = Cx(n) +Du(n)

where A, B, C and D are constants, is a time invariant system.

Now we will give an example of a system that does not satisfy the time invariance
property.

Example 3.4 Determine whether the system described by

y(n) = nu(n) (3.11)

is time invariant.

Since x does not appear in the equation, it is sufficient to consider u and y only.
Suppose that when an input ui is applied, we obtain the output yi, where, i can
take 1 or 2. That is,

yi(n) = nui(n), i = 1, 2

Let us take u2(n) = u1(n− k), k �= 0. We would like to check whether under the
application of u2(n), we obtain the output y2(n) equal to y1(n− k). We see that

y2(n) = nu2(n) = nu1(n− k)
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But, from Eq. 3.11, we obtain

y1(n− k) = (n− k)u1(n− k)

We see that y2(n) �= y1(n − k), even though u2(n) = u1(n − k). Hence, the
system is not time invariant.

3.1.3 Causality and Initial Rest

We will now discuss the important topic of causality. A system is causal if its output
depends only on the current and the past inputs. As a result, if two inputs that are
identical up to some time are applied to a causal system, the corresponding outputs
will also be identical up to that time. Such a system is known as nonanticipative as it
does not anticipate the future values of the input. In contrast, systems whose output
depends on future inputs are known as noncausal. An example of such a system has
the following input–output mapping: y(n) = u(n+ 1).

Noncausal systems cannot be implemented, because no physical system can predict
the future. In view of this, we have to ensure that our designs produce causal systems.
In turns out that improper specification of initial conditions can result in the loss of
causality. One way to achieve causality is through initial conditions that correspond
to the system being at rest, also known as initial rest. A system that is initially at
rest will have all its past inputs and outputs zero. Equivalently, the initial state of
the system is zero. We illustrate these ideas in the following example [47].

Example 3.5 Solve the system

y(k)− ay(k − 1) = u(k) (3.12)

for initial conditions given at different time instances.

We will first consider giving an initial condition to determine the solution. Multiply
both sides of Eq. 3.12 by a−k and sum the result from N + 1 to n, with N < n.
The left-hand side is

+
y(N + 1)
aN+1

+
y(N + 2)
aN+2

+ · · ·+ y(n− 1)
an−1

+
y(n)
an

−y(N)
aN

− y(N + 1)
aN+1

− y(N + 2)
aN+2

− · · · − y(n− 1)
an−1

Summing, all terms except the first and the last vanish. We obtain

y(n)
an
− y(N)

aN
=

n∑
k=N+1

u(k)
ak

Solving this, we obtain

y(n) = an−Ny(N) +
n∑

k=N+1

an−ku(k) (3.13)
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N nm

Figure 3.5: Specifying condition at a finite point, as discussed in Example 3.5

This shows that the output y(n) depends on y(N) and the values of the input
between the interval N and n, see Fig. 3.5. If we use the initial condition,
limN→−∞ a−Ny(N) = 0, we obtain

y(n) =
n∑

k=−∞
an−ku(k) (3.14)

Eq. 3.13 suggests that the output y(m) could depend on u(N) even when m < N .
To see this, we carry out the following calculation. Multiplying both sides of
Eq. 3.12 by 1/ak and summing the result from m + 1 to N , the left-hand side
becomes

+
y(m+ 1)
am+1

+
y(m+ 2)
am+2

+ · · ·+ y(N − 1)
aN−1

+
y(N)
aN

−y(m)
am

− y(m+ 1)
am+1

− y(m+ 2)
am+2

− · · · − y(N − 1)
aN−1

Summing, we obtain

−y(m)
am

+
y(N)
aN

=
N∑

k=m+1

u(k)
ak

Solving this, we obtain

y(m) = am−Ny(N)−
N∑

k=m+1

am−ku(k) (3.15)

This shows that the output y(m) depends on y(N) and the values of the input
between the interval m and N , see Fig. 3.5. We see that the value of y is specified
at a finite point N ; the system loses causality.

Let us consider the extreme case of limN→∞ a−Ny(N) = 0. We obtain

y(m) = −
∞∑

k=m+1

am−ku(k) (3.16)

making it clear that the current output y(m) depends on only future values of
input, u(k), k > m.

From this example, we see that if the value of output y is specified at a finite
point N , the system is not causal. There are two ways of handling this difficulty:
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Figure 3.6: Unit step (left) and unit impulse (right) signals

• The first solution is to choose N to be −∞. In this case, there is no question of
even worrying about what happens before N . On the flip side, we will have to
remember all the input values applied from −∞ onwards.

• The second solution to this problem is to choose N to be finite, but let all values
of u in the interval (−∞, N) be zero. If the system is I/O LTI, the output y will
also be zero during this interval. This condition is known as initial rest. Thus,
the condition of initial rest helps achieve causality.

We generally prefer the second solution. A way to accommodate nonzero initial
conditions is explained in Sec. 3.4. The meaning of a nonzero initial condition is
explained in Sec. 4.3.3. Although we can assign any finite value to it, we generally
choose N to be zero.

If noncausal systems cannot be implemented, why should we study them? While
identifying a plant from input–output data, we need the concept of past inputs (see
Sec. 6.3.5), which calls for a general framework that can accommodate noncausal
systems as well.

3.2 Basic Discrete Time Signals

In this section, we will discuss a few discrete time signals that we will encounter
many times, their use and the relation between them. A unit step sequence {1(n)} =
{. . . , 1(−2), 1(−1), 1(0), 1(1), 1(2), . . .} is now defined:

1(n) =

{
1 n ≥ 0
0 n < 0

(3.17)

As a result, {1(n)} = {. . . , 0, 0, 1, 1, . . .}, where the first one appears at the location
corresponding to n = 0. The left-hand side of Fig. 3.6 shows the unit step sequence.
We will often refer to it simply as a step sequence.

Unit impulse sequence or unit sample sequence is defined as {δ(n)} = {. . . , δ(−2),
δ(−1), δ(0), δ(1), δ(2), . . .}, where

δ(n) =

{
1 n = 0
0 n �= 0

(3.18)
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Thus {δ(n)} = {. . . , 0, 0, 1, 0, 0, . . .}, where 1 appears at the location corresponding
to n = 0. The right-hand side of Fig. 3.6 shows the unit impulse signal. We will often
refer to it simply as an impulse sequence.

It is easy to verify the following relation between unit step and unit impulse signals:

{δ(n)} = {1(n)} − {1(n− 1)} (3.19)

Note that {1(n)} and {1(n − 1)} are unit steps that start at n = 0 and n = 1,
respectively.

We will now present an important property of impulse sequences: it is possible
to represent arbitrary sequences as linear combinations of impulse sequences. Let us
consider an arbitrary sequence {u(n)}, defined in Eq. 3.1 on page 35, reproduced here
for convenience:

{u(n)} = {. . . , u(−2), u(−1), u(0), u(1), u(2), . . .}

Writing this as a sum of an infinite number of sequences, each with only one nonzero
term, we obtain

{u(n)} = · · ·+ {. . . , 0, 0, u(−2), 0, 0, 0, 0, 0, . . .}
+ {. . . , 0, 0, 0, u(−1), 0, 0, 0, 0, . . .}+ {. . . , 0, 0, 0, 0, u(0), 0, 0, 0, . . .}
+ {. . . , 0, 0, 0, 0, 0, u(1), 0, 0, . . .}+ {. . . , 0, 0, 0, 0, 0, 0, u(2), 0, . . .}+ · · ·

where the summation sign indicates component wise addition. The first term on the
right-hand side can be written as u(−2){δ(n+ 2)}, because the nonzero term occurs
at n = −2. Note that this is a product of a scalar, u(−2), and a shifted impulse
sequence, {δ(n + 2)}. Similarly, all other terms can also be written as products of a
scalar and a shifted sequence. We arrive at

{u(n)} = · · ·+ u(−2){δ(n+ 2)}+ u(−1){δ(n+ 1)}
+ u(0){δ(n)}+ u(1){δ(n− 1)}+ u(2){δ(n− 2)}+ · · ·

Thus the sequences {δ(n + 2)}, {δ(n − 1)}, etc., can be thought of as unit vectors
and u(−2), u(1), etc., can be thought of as components along these directions. The
above equation can be written as

{u(n)} =
∞∑

k=−∞
u(k){δ(n− k)} (3.20)

If u(n) = 0 for n < 0, Eq. 3.20 becomes

{u(n)} =
∞∑

k=0

u(k){δ(n− k)} (3.21)

3.3 Input–Output Convolution Models

Transfer function based control design techniques are popular in industry. A starting
point for these models is the input–output convolution models. This section is devoted
to a study of such models. We begin with the concept of input–output linear models.
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3.3.1 Input–Output Linearity

There are times when we would be interested in systems that are linear from an input-
output perspective only, that is, without worrying about the state. To be precise, we
would want these systems to satisfy the following condition. If

{u1(n)} g′
n−→ {y1(n)} (3.22a)

{u2(n)} g′
n−→ {y2(n)} (3.22b)

then we would want

α{u1(n)}+ β{u2(n)} g′
n−→ α{y1(n)} + β{y2(n)} (3.22c)

In order to fulfil this requirement, we need to study the general result so as to arrive
at the required condition on the initial state. Using the superposition principle of
Eq. 3.10, Eq. 3.7c can be written as

α

[
x1(n0)
{u1(n)}

]
+ β

[
x2(n0)
{u2(n)}

]
gn−→ α{y1x(n)}+ α{y1u(n)}

+ β{y2x(n)} + β{y2u(n)}
Comparing the outputs of gn and g′n, we see that the latter has the additional
component of response due to initial state, yx. We see that yx has to be zero if
the outputs of g′n and gn are to be equal. In other words, the right-hand sides of the
above two mappings g′n and gn are equal if and only if {y1x(n)} ≡ 0 and {y2x(n)} ≡ 0
and {y1(n)} ≡ {y1u(n)} and {y2(n)} ≡ {y2u(n)}. Using the definition that the output
with the subscript x refers to the response due to initial state only, this observation
is equivalent to the requirement[

x1(n0)
{0}

]
gn−→ {0} and

[
x2(n0)
{0}

]
gn−→ {0}

From Eq. 3.5, we know that this is possible if x1(n0) = x2(n0) = 0. As a result,
we conclude that systems that are linear from the input–output perspective can be
produced by enforcing a zero initial condition.

When this property of input–output linearity holds, we can easily handle a
combination of two or more inputs. For example, suppose that a combination of m
inputs is given as below:

u = α1u1 + α2u2 + · · ·+ αmum

If the output corresponding to u1 alone is yu1, that for u2 alone is yu2, etc., then using
input-output linearity, we arrive at

yu = α1yu1 + α2yu2 + α3yu3 + · · ·+ αmyum (3.23)

This idea is illustrated in Fig. 3.7.
An input–output model does not consist of state information and it can be

constructed from input–output data2 alone. In Sec. 3.4, we will show how it can be
2This topic is discussed in detail in Chapter 6.
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{u1(n)} {x1(n)}

0 {yu1(n)}

{u2(n)} {x2(n)}

0 {yu2(n)}

(a) Input/Output linear because the initial state is zero in both the experiments

α{u1(n)} + β{u2(n)}+ · · ·

0

α{x1(n)} + β{x2(n)}+ · · ·

α{yu1(n)} + β{yu2(n)}+ · · ·

(b) Superimposed system

α{yu1(n)} + β{yu2(n)}+ · · ·

Initial State = 0

Linear

Model

I/Oα{u1(n)} + β{u2(n)}+ · · ·

(c) Can drop the initial state information as the system is input/output linear

Figure 3.7: Superposition principle for zero initial state

generated from a state space model. In view of this, we can say that the input–output
model is more general than the state space model.

Because of all of the above benefits, we will assume the initial state to be zero,
i.e., x(n0) = 0, in the rest of the book, unless otherwise stated. We will refer to
input–output linear systems as I/O linear systems and when no confusion arises as
simply linear systems.

Now we will address the question of what happens if the initial state x(n0) and
hence {yx(n)} are not zero. Recall that for linear systems, the output y can be written
as

y = Output at zero initial state and actual input (yu)
+ Output at actual initial state and zero input (yx0)

Substituting for yu from Eq. 3.9, this equation becomes

y = α1yu1 + α2yu2 + · · ·+ αmyum + yx0

It is clear from this discussion that if we want I/O linearity (i.e., linear combination
of inputs giving the same linear combination of corresponding outputs), yx0 must be
zero. This is satisfied if x0 = 0.

We will next study the important concept of impulse response models, which one
can use to derive convolution models.
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Time Invariant
System

{g(n)}{δ(n)} Time Invariant
System

{δ(n− k)} {g(n− k)}

Figure 3.8: Impulse response (left) and response to a shifted impulse (right) for a time
invariant system

3.3.2 Impulse Response Models

The impulse response of an LTI system is the output measured as a function of time
for an impulse {δ(n)} when the initial state value is zero. Similarly, a step response
model is the response due to a unit step {1(n)} with zero initial state. The impulse
response will be denoted by {g(n)} and step response by {s(n)}. We will now derive
expressions for these responses.

Suppose the input to an LTI system is {δ(n)}. We obtain the response as in the
left-hand side of Fig. 3.8. For a time invariant system, the response to a time shift
in input will be a corresponding shift in the output also. As a result, we obtain the
input–output behaviour as in the right-hand side of Fig. 3.8. Notice that if the system
is not time invariant, we cannot use the same symbol g in both the figures.

We will now develop a formula to express the response to an arbitrary input {u(n)}
resolved in terms of impulses. Recall Eq. 3.21, reproduced here for convenience:

{u(n)} =
∞∑

k=−∞
u(k) {δ(n− k)}

The term u(k) on the right-hand side is a scalar. It refers to the value of {u} taken
at time k. Thus, u is a linear combination of sequences of the form {δ(n− k)}. The
output corresponding to this input u is the same linear combination of responses due
to {δ(n− k)} – this follows from the I/O linearity of the system. Also note that if the
response of {δ(n)} is g(n), the response due to {δ(n−k)} is g(n−k). This follows from
time invariance, as illustrated in Fig. 3.8. In view of these observations, we obtain the
following expression for y:

{y(n)} =
∞∑

k=−∞
u(k){g(n− k)} (3.24)

We have made three assumptions to arrive at the above equation: the initial state is
zero, the system is linear and time invariant. In other words, the above equation holds
for I/O LTI systems. The right-hand side of Eq. 3.24 is known as the convolution sum
or superposition sum or convolutionof the sequences {u(n)} and {g(n)}, which will
be denoted symbolically as

{y(n)} = {u(n)} ∗ {g(n)} (3.25)

The implication of Eq. 3.25 is that to find the output due to an arbitrary input,
all we have to do is to convolve the latter with the impulse response function of the
system. Hence it follows that all information about an LTI system at zero initial state
is contained in its impulse response function.
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We will now look at a simpler way of writing the above two equations. If we write
Eq. 3.24 term by term, we obtain the following relation:

{. . . , y(−1), y(0), y(1), . . .} =
∞∑

k=−∞
u(k){. . . , g(−1− k), g(−k), g(1− k), . . .}

On equating the two sides term by term, we obtain the following relations:

y(−1) =
∞∑

k=−∞
u(k)g(−1− k)

y(0) =
∞∑

k=−∞
u(k)g(−k)

y(1) =
∞∑

k=−∞
u(k)g(1− k)

This can be generalized as

y(n) =
∞∑

k=−∞
u(k)g(n− k) (3.26)

In other words, the output at sampling instant n is obtained by summing the terms
of the form u(k)g(n − k) for all k values. Note that the sum of the arguments of u
and g is n, which is the same as the argument of y. This equation is also written as

y(n) = u(n) ∗ g(n) (3.27)

Comparing the above two equations with Eq. 3.24–3.25, we see that the only
difference is the presence or absence of the braces.3 In case the initial state is not
zero, we obtain

y(n) = yx(n) + u(n) ∗ g(n) (3.28)

Now we present an example to calculate the convolution sum.

Example 3.6 If a system with impulse response {g(n)} = {1, 2, 3} is subjected
to an input sequence {u(n)} = {4, 5, 6}, determine the output sequence {y(n)}.
It can be assumed that both g and u start at n = 0 and that they are zero for
n < 0.

It is given that g(0) = 1, g(1) = 2 and g(2) = 3. Similarly the values of u at
n = 1, 2 and 3 are 4, 5 and 6, respectively. Evaluating Eq. 3.26 for different values
of n, we obtain

y(0) = u(0)g(0) = 4
y(1) = u(0)g(1) + u(1)g(0) = 13
y(2) = u(0)g(2) + u(1)g(1) + u(2)g(0) = 28
y(3) = u(1)g(2) + u(2)g(1) = 27
y(4) = u(2)g(0) = 18

3In view of this observation, we will write the convolution sum with or without braces.
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All possible u and g combinations whose arguments sum up to that of y have
appeared in every line of the above set of equations. All terms that don’t appear
in these equations are zero. M 3.2 shows how to do these computations in Matlab.

In case the state at k = 0 is not zero, then Eq. 3.24 should be modified as

{y(n)} =
∞∑

k=−∞
u(k){g(n− k)}+ yx0 (3.29)

where yx0 is the zero input response due to nonzero initial state. We will now present
an example that requires the calculation of the impulse response.

Example 3.7 Through convolution sum calculation, verify that the impulse
response of an LTI system is the response one gets for an impulse input.

Let the impulse response be {g(n)}. The output sequence {y(n)} is calculated
using Eq. 3.27:

y(n) = u(n) ∗ g(n) =
∞∑

k=−∞
u(k)g(n− k)

We want to check whether we will obtain y(n) as g(n) if we substitute δ(n) for
u(n). After this substitution, we obtain

y(n) =
∞∑

k=−∞
δ(k)g(n− k)

All the terms in the above sum are zero, except when k is zero, by the property of
the impulse sequence, see Eq. 3.18. As a result, we obtain

y(n) = g(n)

This is in agreement with the definition of the impulse response.

Systems that have finite numbers of terms in their impulse response are known
as finite impulse response systems and these are abbreviated as FIR systems. The
definition of infinite impulse response systems is obvious. These are abbreviated as
IIR systems.

3.3.3 Properties of Convolution

As the response of a system with zero initial state to an arbitrary input is given
in terms of this operation, convolution is fundamental to I/O LTI systems. In this
section, we present some of the well known and useful properties of convolution.
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u(n)
g2(n)g1(n)

w(n) y1(n)
g1(n) ∗ g2(n)

u(n) y2(n)

Figure 3.9: Explanation of associative property of convolution

Commutativity: Convolution is a commutative operation, i.e.,

u(n) ∗ g(n) = g(n) ∗ u(n) (3.30)

We start with the left-hand side. Using the definition of convolution sum, we obtain

u(n) ∗ g(n) =
∞∑

k=−∞
u(k)g(n− k)

Substituting r = n− k, this becomes

u(n) ∗ g(n) =
∞∑

r=−∞
u(n− r)g(r) =

∞∑
r=−∞

g(r)u(n− r)

which is the same as the right-hand side of Eq. 3.30. This property does not hold even
if one of the sequences is either nonlinear or time varying, or both, see Problem 3.2.

Associativity: Convolution is associative, i.e.,

(u(n) ∗ g1(n)) ∗ g2(n) = u(n) ∗ (g1(n) ∗ g2(n)) (3.31)

Because convolution has been defined with only two sequences at a time, brackets
in the above equation are necessary to indicate the order of the calculations. Let y1
denote the term on the left-hand side. We have

y1 =

( ∞∑
r=−∞

u(r)g1(n− r)
)
∗ g2(n) =

∞∑
k=−∞

∞∑
r=−∞

u(r)g1(n− r − k)g2(k)

Let y2 be the term on the right-hand side of Eq. 3.31. We have

y2 = u(n) ∗
( ∞∑

k=−∞
g1(n− k)g2(k)

)
=

∞∑
r=−∞

u(r)
∞∑

k=−∞
g1(n− k − r)g2(k)

which is the same as y1. An interpretation is given in Fig. 3.9. We obtain y1 as the
final output while sending u into the first system and then sending the resulting
output to the second system. The output y2 is computed by sending the input u to
the convolved system g1 ∗ g2. We have shown that y1 = y2.

This property says that it does not matter in what order we carry out the
convolution operation. In other words, it does not matter where we put the brackets
in a convolution sum involving more than two terms. As a result, the expressions
given in Eq. 3.31 can be written as u(n) ∗ g1(n) ∗ g2(n). If the associativity property
does not hold, however, we cannot remove the brackets in Eq. 3.31.
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g1(n) + g2(n)
u(n) y1(n)

y2(n)
+

u(n)

g2(n)

g1(n)

Figure 3.10: Explanation of distributive property of convolution

Distributivity: Convolution distributes over addition, i.e.,

u(n) ∗ (g1(n) + g2(n)) = u(n) ∗ g1(n) + u(n) ∗ g2(n) (3.32)

Let the left-hand side be equal to y1. We have

y1 =
∞∑

r=−∞
u(n− r)(g1(r) + g2(r))

Expanding the brackets in the second term, we obtain

y1 =
∞∑

r=−∞
u(n− r)g1(r) +

∞∑
r=−∞

u(n− r)g2(r)

which is equal to the right-hand side of Eq. 3.32; call it y2. The usefulness of this
property is illustrated in Fig. 3.10. The output y1 can be thought of as the response
of a system with impulse response g1 + g2 for an input u. The output y2, on the
other hand, is the sum of responses of two systems with impulse responses g1 and
g2, for the same input u. This property says that these two outputs y1 and y2 are
equal. By induction, we can extend this to any number of systems in parallel. Thus,
a parallel combination of LTI systems can be replaced by a single LTI system whose
unit sample response is the sum of the individual unit sample responses in the parallel
combination.

3.3.4 Step Response Models

In Sec. 3.3.2, We have presented the usefulness of impulse response models. The
problem with these models, though, is that it is difficult to generate the required
impulse signal at the input. For example, imagine opening a valve fully for only one
instant and then closing it back fully at the next instant. In comparison, step signals
are somewhat easier to generate. The response of an I/O LTI system to a unit step
signal {1(n)} is known as the step response and it will be denoted by {s(n)}.

In Sec. 3.3.2, we have shown that all information about an I/O LTI system is
contained in its impulse response model. In this section, we will show that it is possible
to characterize an I/O LTI system in terms of its unit step response also. That is, all
the information about this system is contained in its unit step response. We will begin
the discussion by calculating the step response. By substituting 1(k) in the place of
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u(k) in Eq. 3.24, we obtain

{s(n)} =
∞∑

k=−∞
1(k){g(n− k)}

Using the definition of {1(n)} from Eq. 3.17, this is simplified as

{s(n)} =
∞∑

k=0

{g(n− k)} (3.33)

This shows that the step response is the sum of the impulse response.
We can also obtain the impulse response from the step response. Because the

response to {1(n)} is denoted as {s(n)}, the response to {s(n−1)} is {1(n−1)}. This
follows from the time invariance property of the system. Recall the relation between
step and impulse signals, given by Eq. 3.19:

{δ(n)} = {1(n)} − {1(n− 1)}

Using the property of linearity, we obtain

{g(n)} = {s(n)} − {s(n− 1)} (3.34)

In Sec. 3.3.2, we have shown that the impulse response contains all information.
The above equation, however, shows that given the step response s(n) of an I/O
LTI system, one can easily calculate its impulse response. This implies that the step
response also contains all information about an I/O LTI system.

Since {s(n)} also contains all the information about an I/O LTI system, it must
be possible to express the response of the system to an arbitrary input {u(n)} as a
function of {s(n)} only. To arrive at this relationship, we start with the convolution
relation involving impulse response:

{y(n)} = {u(n)} ∗ {g(n)} = {g(n)} ∗ {u(n)}

Using Eq. 3.34, we obtain

{y(n)} = [{s(n)} − {s(n− 1)}] ∗ {u(n)}

Using the distributivity property of convolution, this becomes

{y(n)} = {s(n)} ∗ {u(n)} − {s(n− 1)} ∗ {u(n)} (3.35)

The second term on the right-hand side can be simplified:

{s(n− 1)} ∗ {u(n)} =
∞∑

k=−∞
s(k − 1){u(n− k)}

With j = k − 1, the above equation becomes

{s(n− 1)} ∗ {u(n)} =
∞∑

j=−∞
s(j){u(n− j − 1)} = {s(n)} ∗ {u(n− 1)}
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Substituting this in Eq. 3.35, we obtain

{y(n)} = {s(n)} ∗ [{u(n)} − {u(n− 1)}]

where we have used the distributivity property of convolution. We finally arrive at

{y(n)} = {s(n)} ∗ {
u(n)} (3.36)

where

∆u(n)
�
= u(n)− u(n− 1) (3.37)

This gives a procedure to calculate the response to an arbitrary input, given that the
step response is known. Recalling the discussion to arrive at Eq. 3.28, we obtain

y(n) = yx(n) + s(n) ∗∆u(n) (3.38)

3.3.5 Impulse Response of Causal Systems

In Sec. 3.1.3, we have shown that one popular way to achieve causality in LTI systems
is through initial�rest. Impulse response implies application of zero input everywhere,
except at n = 0. For I/O LTI systems, this is nothing but initial rest. It follows that
the output y(n) = 0 for n < 0. By the definition of impulse response, this is nothing
but {g(n)}. Thus we have g(n) = 0 for n < 0 in case of causal, I/O LTI systems.
Problem 3.5 examines this issue further.

The above observation that g(n) = 0 for n < 0 results in a simplification of the
impulse response expression. For example, Eq. 3.26 becomes

y(n) =
n∑

k=−∞
u(k)g(n− k)

Most signals that we deal with take nonzero values only from the zeroth sampling
instant. For such systems, this equation becomes

y(n) =
n∑

k=0

u(k)g(n− k) (3.39)

When expanded, the above equation becomes

y(n) = u(0)g(n) + u(1)g(n− 1) + · · ·+ u(n)g(0)

which can be rewritten as

y(n) =
n∑

m=0

g(m)u(n−m) (3.40)
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Note that Eq. 3.40 can also be obtained by starting with y(n) = g(n) ∗ u(n) and
simplifying.

We extend the above discussed property of causality of systems to sequences: a
sequence {u(n)} is said to be causal if u(k) = 0 for k < 0. This definition is extremely
useful because, in control applications, we often work with signals that are nonzero
from the time instant zero onwards.

3.3.6 Parametric and Nonparametric Models

The step and the impulse response models are known as nonparametric models. These
are characterized by a large number of variables. For example, we need to specify
{g(n)} for all n values in the case of impulse response models. Although an infinite
number of parameters are implied, we need to specify only a finite number of them
in most cases. In this case, the expression for the output given by Eq. 3.40 becomes

y(n) =
M∑
0

g(m)u(n−m) (3.41)

where M is some large positive integer. Note that when n → ∞, an infinite number
of g values are required in Eq. 3.40, while only M + 1 values are required in the
above equation. In view of the fact that only a finite number of impulse response
coefficients are required, Eq. 3.41 is known as the finite impulse response (FIR) model,
as mentioned earlier.

Although M is finite, it can still be large. For example, M is known to take values
even as large as 100. In view of this large number, the FIR model also can be classified
as nonparametric.

In contrast to the above, models that are characterized by a small number of
parameters are known as parametric models. For example, the following model

y(n) + a1y(n− 1) = b1u(n− 1) (3.42)

between the input u and the output y is classified as parametric. In Sec. 6.6, we will
study such models from a probabilistic view point.

There is a tradeoff between the number of parameters and the ease of their
determination. For example, although the FIR models have more parameters, it is
easier to estimate them. In contrast, the identification of the nonparametric models
is more involved. We discuss some of these issues in Sec. 6.7 and 6.8.

3.3.7 BIBO Stability of LTI Systems

One of the important objectives of control system design is to ensure stability.
There are many notions of stability. Some are: stability in the sense of Lyapunov,
asymptotic stability and asymptotic stability at large [29]. For linear systems, these
notions are equivalent. In this section, we will present the concept of external stability.
In Sec. 7.4.2, we present the concept of internal stability.

A system is said to be externally stable if every bounded input produces bounded
output. This is also known as BIBO stability. We now characterize the condition under
which this property is fulfilled.
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Let an LTI system have an impulse response g(k). Then it is BIBO stable if and
only if

∞∑
k=−∞

|g(k)| <∞ (3.43)

First we will show that if Eq. 3.43 is satisfied, the system is BIBO stable. Consider
an input sequence {u(n)} such that |u(n)| < M ∀n. Using Eq. 3.26, we obtain the
response to this input as

y(n) =
∞∑

k=−∞
g(k)u(n− k)

Taking absolute values, we obtain

|y(n)| ≤
∞∑

k=−∞
|g(k)||u(n− k)|

If we replace |u| by its bound M , we obtain

|y(n)| ≤M
∞∑

k=−∞
|g(k)|

Because
∑∞

k=−∞ |g(k)| < ∞, we see that y(n) is bounded. As this is true for all n,
we find that the output signal is bounded at all the sampling instants.

Now we will show that if the system is BIBO stable, Eq. 3.43 will be satisfied. We
will prove this by contradiction. That is, we will show that if Eq. 3.43 is violated, i.e.,∑∞

k=−∞ |g(k)| → ∞, the system will not be BIBO stable. We produce the following
input signal that can take either 1 or −1

u(k) =

{
g(−k)/|g(−k)| g(−k) �= 0
0 g(−k) = 0

Because it can take only 1 or −1, this input is bounded. We will now calculate an
expression for the output signal at time zero:

y(0) =
∞∑

k=−∞
u(k)g(n− k)|n=0 =

∞∑
k=−∞

u(k)g(−k)

Substituting the specific choice of u(k) constructed above, we obtain

y(0) =
∞∑

k=−∞
|g(−k)|

Because of the assumption on g, y(0) is unbounded. Note that an unbounded output
has been obtained with a bounded input. As a result, we have shown that the system
is not BIBO stable.
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BIBO stability for causal LTI systems is equivalent to the following condition:
∞∑

k=0

|g(k)| <∞ (3.44)

as g(k) = 0 for k < 0. Notice that if this violated, using arguments similar to the ones
used above, one can show that a particular choice of bounded inputs applied from
n = 0 onwards will produce an unbounded output at n =∞. We can do this because
in time invariant systems shifting the time makes no difference to the behaviour of the
system. The fact that this condition implies stability can be shown using arguments
identical to the ones used earlier. Note that Eq. 3.44 can be satisfied only if

g(k) = 0, ∀k > M (3.45)

where M is some large positive integer.

3.4 State Space Models Revisited

We conclude this chapter with an input–output study of state space models. Consider
the state space system

x(n+ 1) = Ax(n) +Bu(n)
y(n) = Cx(n) +Du(n)

Suppose that the initial state is x(0) and that the sequence {u(n)} = {u(0), u(1),
u(2), . . .} is applied. We obtain

x(1) = Ax(0) +Bu(0)

x(2) = Ax(1) +Bu(1) = A[Ax(0) +Bu(0)] +Bu(1)

= A2x(0) +ABu(0) +Bu(1)

x(3) = Ax(2) +Bu(2) = A3x(0) + A2Bu(0) +ABu(1) +Bu(2)

Continuing, we get

x(n) = Anx(0) +
n−1∑
i=0

An−(i+1)Bu(i), A0 = I (3.46)

Substituting this in the output equation, we obtain

y(n) = CAnx(0)︸ ︷︷ ︸
zero input response

+
n−1∑
i=0

CAn−(i+1)Bu(i) +Du(n)︸ ︷︷ ︸
zero state response

(3.47)

Recall that in the input–output setting, we got the following relation for causal
systems:

y(n) = yx + yu

= yx +
n∑

i=0

u(i)g(n− i) = yx +
n−1∑
i=0

u(i)g(n− i) + u(n)g(0)
(3.48)
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Comparing terms, we obtain

yx = CAnx(0)

g(n) = CAn−1B, n > 0
g(0) = D

(3.49)

Most real life systems have at least one time delay in the sense that the output
depends only on the past inputs and not on the current one. That is, y(n) can depend
only on u(n− k), k > 0. The reason is that realistic systems require a nonzero time
to respond to external stimuli. As the input and output are synchronized by a clock,
even a small delay in the response can reflect only in the next sample of the output.
In view of this, D and hence g(0) are zero.

3.5 Matlab Code

Matlab Code 3.1 Energy of a signal. This code is available at
HOME/system/matlab/energy.m4

1 u = [ 4 5 6 ] ;
2 Eu = norm(u ) ˆ2 ;
3 ruu = xcorr (u) ;
4 Lu = length ( ruu ) ;
5 Eu = ruu ( ce i l (Lu/2) ) ;

Matlab Code 3.2 Convolution of two sequences. This code is available at
HOME/system/matlab/conv2.m

1 h = [ 1 2 3 ] ;
2 u = [ 4 5 6 ] ;
3 y = conv (u , h )

4HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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3.6 Problems

3.1. Suppose that a discrete LTI system has input u(n), impulse response g(n) and
output y(n). Suppose also that g(n) is zero everywhere outside the intervalN0 ≤
n ≤ N1 and that u(n) is zero everywhere outside the interval N2 ≤ n ≤ N3.
Determine over what maximum interval y(n) is not zero.

3.2. Commutativity of an I/O LTI system, discussed in Sec. 3.3.3, depends on both
linearity as well as time invariance of both systems. This is brought out by the
following two examples [49].

(a) Consider two systems A and B, where A is an LTI system with unit
sample response g(n) =

(
1
2

)n 1(n). If the input to system B is w(n), its
output is z(n) = nw(n), i.e., B is linear but time-varying. Show that the
commutativity property does not hold for these two systems by computing
the response of each of the systems below to the input u(n) = δ(n).

u(n)

u(n) y2(n)
System B System A

System A System B
y1(n)

Figure 3.11: Checking commutativity

(b) Suppose that we replace system B in each of the interconnected systems
of the above figure by the system with the following relationship between
its input w(n) and output z(n): z(n) = w(n) + 2. Repeat the calculations
of part (a) in this case.

3.3. Given s(n) =
(

1
2

)n 1(n+ 1) and u(n) =
(− 1

2

)n 1(n), find y(n).

3.4. Let {s(n− 1)} denote the response of an I/O linear system to a unit step input
given at n = 1, i.e., response to 1(1). Comparing with Eq. 3.33, show that

{s(n− 1)} =
∞∑

k=1

{g(n− k)}

Subtracting the above from Eq. 3.33, show that

{s(n)} − {s(n− 1)} = {g(n)}
the same as Eq. 3.34.

3.5. The objective of this problem is to show by direct calculations that the impulse
response {g(n)} of I/O LTI causal systems satisfies g(n) = 0 for n < 0. Do this
as follows. Apply the following two inputs to this system:

u1(n)

{
= u2(n) n ≤ n0

�= u2(n) n > n0
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Argue that the expressions for y1(n0) and y2(n0) should be equal. Comparing
the convolution sum of these two outputs, show the following:

−1∑
−∞

g(k)u1(n0 − k) =
−1∑
−∞

g(k)u2(n0 − k)

From this, conclude that g(k) = 0 for k < 0.

3.6. This problem is concerned with the solution of a discrete time linear equation.

(a) Consider the homogeneous difference equation

N∑
k=0

aky(n− k) = 0 (3.50)

Show that if z0 is a solution of

N∑
k=0

akz
−k = 0

Azn
0 is a solution of Eq. 3.50, where A is arbitrary.

(b) Show that if z0 is a zero of the polynomial p(z) defined as

p(z)
�
=

N∑
k=0

akz
N−k (3.51)

then also Azn
0 is a solution of Eq. 3.50.

(c) Show that if y(n) = nzn−1 then

N∑
k=0

aky(n− k) =
dp(z)
dz

zn−N + (n−N)p(z)zn−N−1 (3.52)

for p(z) defined in Eq. 3.51.
(d) Suppose p(z) defined in Eq. 3.51 is factored as

p(z) = a0(z − z1)m1 . . . (z − zr)mr (3.53)

where z1, . . . , zr are distinct zeros of p(z) and m1, . . . ,mr are integers ≥ 1.
If one of the zeros of p(z), say zi, has multiplicity 2, i.e., mi = 2, then
show that at z = zi, the right-hand side of Eq. 3.52 becomes zero.

(e) Using the fact from (d) above, show that nzn−1
i and hence Bnzn−1

i are
solutions of Eq. 3.50, where B is arbitrary.

(f) Using the results from (b) and (e) above, show that if mi = 2 in Eq. 3.53,
Azn

i and Bnzn−1
i are solutions of Eq. 3.50.

(g) Qualitatively argue by extending the logic of (c), (d) and (e) above that if
mi > 1 in Eq. 3.53,

B
n!

j!(n− j)!z
n−j

satisfies Eq. 3.50, where j = 0, 1, . . . ,mi − 1.



Chapter 4

Z-Transform

In the previous chapter, we have seen that convolution is an important operation in
I/O LTI systems. In particular, the output at any instant is obtained as a convolution
sum involving an infinite number of products of impulse response and input. If the
output has to be evaluated at another time instant, the convolution sum has to
be recalculated. We show in this chapter that the Z-transform is a tool to simplify
convolution operations. The Z-transform makes easy the task of analysis and design
of useful devices, such as filters and controllers. This aspect of the Z-transform will
become clear as we proceed through the book.

We first present the conditions under which one can use the Z-transform. The
conditions for stability and causality follow immediately. After presenting some facts
about Z-transforms, we move on to the topic of transfer functions. The final topic is
related to inversion of the Z-transform, a step to be carried out for implementation.

4.1 Motivation and Definition of Z-Transform

We begin this section with a motivational discussion of the Z-transform. We discuss
the conditions under which the infinite sum converges. We formally define the
Z-transform next. We conclude this section with a discussion on properties of the
region where the Z-transform converges.

4.1.1 Motivation

Z-transforms are used to simplify the operations involving difference equations. For
example, the convolution of two discrete time signals gets reduced to the product
of two algebraic expressions with the use of Z-transforms. To see this, consider the
convolution sum

y(n) =
∞∑

k=−∞
u(k)g(n− k)

Digital Control Kannan M. Moudgalya
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03143-8
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and let {u(n)} = {u(0), u(1), u(2)}, {g(n)} = {g(0), g(1), g(2)}. Let these sequences
be zero at all other times. We obtain the following y values:

y(0) = u(0)g(0)
y(1) = u(0)g(1) + u(1)g(0)
y(2) = u(0)g(2) + u(1)g(1) + u(2)g(0)
y(3) = u(1)g(2) + u(2)g(1)
y(4) = u(2)g(2)

(4.1)

The same result will be obtained from the coefficients of the resultant series, if we
define two functions U(z) and G(z)

U(z) = u(0) + u(1)z−1 + u(2)z−2

G(z) = g(0) + g(1)z−1 + g(2)z−2
(4.2)

and multiply them. Let V (z) denote the product of U and V :

V (z) = G(z)U(z) (4.3)

Substituting for G and U from above and multiplying out, V is obtained as a fourth
degree polynomial in z−1, of the following form:

V (z) = y(0) + y(1)z−1 + y(2)z−2 + y(3)z−3 + y(4)z−4 (4.4)

where, y(i), i = 1 to 4, are identical to the ones obtained in Eq. 4.1. The functional
form U(z) and G(z) will be defined as the Z-transform in Sec. 4.1.3. At this point,
we may think of z as a position marker. For example, the term that multiplies z−i

occurs at the ith time instant in Eq. 4.2. Thus, the function U(z), given in Eq. 4.2,
can be thought of as a way of representing a sequence {u(n)} = {u(0), u(1), u(2)}.
The advantage in using U(z) in place of {u(n)} is that the former can often be
represented by a more compact expression, even if the original sequence has infinitely
many nonzero terms.

With an example, we have shown that the product of the polynomial equivalent
of two sequences gives the same result as their convolution. This approach is not of
great use to short sequences, because the effort involved in evaluating the convolution
and polynomial product is about the same. The main motivation for proposing this
approach is that it could come in handy for sequences consisting of an infinite number
of elements. The moment we have a sum consisting of an infinite number of elements,
we have to ascertain that it converges.

The second issue we have to address is whether we can recover from the product
polynomial the time domain elements, i.e., the values that the sequence takes at
different time instants. We would also like to know whether we can recover the
sequence uniquely from the polynomial. Both of these issues will now be addressed.

4.1.2 Absolute Convergence

We claim that the two issues raised above, namely convergence of the sum and
uniqueness of inversion, can be satisfactorily answered by the concept of absolute
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Figure 4.1: Plots of 0.9n1(n) (left) and −(0.9)n1(−n− 1) (right)

convergence. We begin the discussion with a motivational example. Let us study the
following two sequences:

u1(n) = an1(n)
u2(n) = −an1(−n− 1)

Fig. 4.1 shows the plots of these functions for a = 0.9. M 4.1 and M 4.2 have been
used to generate these plots. We will use the position marker approach with z−1 and
calculate the sum of these two sequences. We will assign upper case letters to denote
this sum:

U1(z) =
∞∑

n=0

anz−n =
∞∑

n=0

(az−1)n

=
1

1− az−1
(if the sum exists) =

z

z − a

U2(z) = −
∞∑

n=−∞
an1(−n− 1)z−n = −

−∞∑
n=−1

anz−n

Substituting m = −n, this becomes

= −
∞∑

m=1

a−mzm = 1−
∞∑

m=0

(a−1z)m

= 1− 1
1− a−1z

(if the sum exists) =
z

z − a
Thus both U1(z) and U2(z) give z

z−a . We see that given the polynomial, such as
U(z), we cannot determine the underlying sequence {u(n)} uniquely. We would like to
explore whether this difficulty can be overcome. Note that we have not yet addressed
the phrase if the sum exists. The conditions for the sums in u1 and u2 to exist, if a
and z are real numbers, are

az−1 < 1 for u1 and

a−1z < 1 for u2
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We see that these two conditions are completely different. We show below that this
convergence condition can help overcome the difficulty in uniquely determining the
time domain sequence.

In the above discussion, we have assumed z to be real. This can be restrictive.
For example, we could be interested in the roots of the polynomial in z after
Z-transformation. These roots could turn out to be complex. Moreover, in some
problems, a can also be complex. Both situations are taken care of by modifying
the above conditions as

|az−1| < 1 for u1

|a−1z| < 1 for u2

The above conditions result in absolute convergence. For example, the absolute
sum

∑∞
n=0 |az−1|n converges. This implies that the original sum

∑∞
n=0(az−1)n also

converges. Thus, convergence is not affected by the use of absolute values. The above
two conditions result in the following pair:

u1(n)↔ z

z − a , |az−1| < 1 or |a| < |z|

u2(n)↔ z

z − a , |a−1z| < 1 or |z| < |a|

Another advantage of using the absolute values is the restriction of the region of
convergence to one side of a circle. For example, the u1 sum converges for all z
values outside the circle z = |a| and the u2 sum converges for all z values inside
the same circle. Thus, the use of absolute values clearly demarcates the two regions
of convergence. This fact helps us to arrive at the inverse uniquely. For example, if
we know that the z value used is inside the circle of radius |a|, we can immediately
say that the inverse of z/(z − a) is u2(n). We will explain this idea further with the
following calculations:

U1(z) =
z

z − a =
1

1− az−1
= 1 + az−1 + (az−1)2 + · · ·

since |az−1| < 1. On inverting, we obtain

{u1(n)} = {1, a, a2, . . .} = 1(n)an

with the sequence in the braces beginning at n = 0. As the region of convergence1 of
U2 is different, it has to be factored differently:

U2(z) =
z

z − a =
za−1

za−1 − 1
=
−za−1

1− za−1

= (−za−1)[1 + (za−1) + (za−1)2 + · · · ], since |za−1| < 1

= −za−1 − (za−1)2 − (za−1)3 − · · ·
↔ u2(n)

Thus ROC allows the sequences to be determined uniquely.
1We will abbreviate the region of convergence as ROC.
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4.1.3 Definition of Z-Transform

The Z-transform of a sequence {u(n)} is denoted by U(z) and it is calculated using
the formula

U(z) =
∞∑

n=−∞
u(n)z−n (4.5)

where z is chosen such that
∑∞

n=−∞ |u(n)z−n| <∞. As discussed earlier, the stronger
condition of absolute convergence

1. allows complex quantities in u and z,

2. ensures that ROC lies on one side of a circle.

We will also use the following notation to represent a sequence {u(n)} and its
Z-transform U(z):

{u(n)} ↔ U(z)

The main advantage in taking the Z-transform is that cumbersome convolution
calculations can be done easier. Moreover, issues such as stability, causality and
oscillatory behaviour of an infinite signal can easily be established by analyzing the
closed form expression involving the Z-transform. This fact will come in handy while
designing controllers.

Of course, there is an added burden of converting the polynomial to a closed form
expression and inverting this procedure to arrive at the resultant polynomial. We will
see later that it is possible to develop techniques to simplify these operations.

4.1.4 Region of Convergence

In Sec. 4.1.2, we have seen that z/(z − a) is the Z-transform of

−an1(−n− 1) for |z| < |a|
an1(n) for |z| > |a|

From this observation it is clear that in specifying the Z-transform of a signal, both the
algebraic expression and the range of values of z for which the expression is valid are
required. In general, as mentioned earlier, the range of values of z for which the sum
in the Z-transform converges absolutely is referred to as the ROC of the Z-transform.

It is convenient to describe ROC with respect to coordinate axes with the real part
of the complex number being on the abscissa and the imaginary part on the ordinate,
see Fig. 4.2.2 Such a plane is referred to as the z plane. Since the condition |z| > |a|
refers to the region outside the circle of radius |a| with centre at the origin, ROC for
u1 is shown on the left by shaded lines. Similarly, ROC for u2 is shown on the right.

Example 4.1 Let us now consider a signal that is the sum of two real
exponentials:

u(n) =
(

1
2

)n

1(n) +
(

1
3

)n

1(n)

2 We will abbreviate imaginary as Im and real as Re throughout this book.
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Re( z )

Im (z )

Re( z )

Figure 4.2: Region of convergence of u1(n) = an1(n) (left) and u2(n) = −an1(−n−1)
(right), shown with shaded lines, on the z plane

The Z-transform is

U(z) =
∞∑

n=−∞

[(
1
2

)n

1(n) +
(

1
3

)n

1(n)
]
z−n

=
∞∑

n=−∞

(
1
2

)n

1(n)z−n +
∞∑

n=−∞

(
1
3

)n

1(n)z−n

=
∞∑

n=0

(
1
2

)n

z−n +
∞∑

n=0

(
1
3

)n

z−n

=
∞∑

n=0

(
1
2
z−1

)n

+
∞∑

n=0

(
1
3
z−1

)n

Notice that the first and the second sums are, respectively,

1
1− 1

2z
−1

for |z| > 1
2
,

1
1− 1

3z
−1

for |z| > 1
3

If we choose |z| > 1/2, both sums converge. We obtain

U(z) =
1

1− 1
2z

−1
+

1
1− 1

3z
−1

=
z
(
2z − 5

6

)(
z − 1

2

) (
z − 1

3

) for |z| > 1
2

We observe that U is a ratio of polynomials in z.

The Z-transform of an exponential becomes a ratio of polynomials in z, because
of the presence of an infinite number of terms. In view of this, suppose that we have
the Z-transform of u as U(z), with the following form:

U(z) =
N(z)
D(z)

(4.6)
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Figure 4.3: Pole–zero plot for
[(

1
2

)n +
(

1
3

)]n
1(n), studied in Example 4.1. The poles

are indicated by × and zeros by ◦.

where N(z) is the numerator polynomial and D(z) stands for the denominator
polynomial. When U(z) is of this form, it is referred to as a rational function
of z. In the above example, we have seen that the sum of the Z-transform of two
exponentials also is a rational. This property holds as long as we have a finite number
of exponentials. In the above equation, if we assume that N(z) is a polynomial of
degree n, we can write it as

N(z) = K1(z − z1)(z − z2) . . . (z − zn)

N(z) and hence U(z) become zero at z = zi, i = 1, . . . , n, which are the roots of the
equation N(z) = 0. As at these values U(z) becomes zero, zi, i = 1, . . . , n, are known
as the zeros of U(z). Similarly if D(z) is a polynomial of degree m, we can write it as

D(z) = K2(z − p1)(z − p2) . . . (z − pm)

At pi, i = 1, . . . ,m, the roots of D(z) = 0, U(z) becomes infinite. These pi, i =
1, . . . ,m, are known as the poles of U(z). The zeros in the above example are at
zero and 5/12 while the poles are at 1/2 and 1/3. From the above discussion, the
Z-transform of u(n) consisting of a finite number of exponentials can be written as

U(z) = K
(z − z1)(z − z2) . . . (z − zn)
(z − p1)(z − p2) . . . (z − pm)

where K = K1/K2. It is clear that but for a scale factor, the Z-transform of {u(n)}
can be specified by its poles, zeros and ROC. In view of this, we can say that the pole-
zero plot in Fig. 4.3, along with ROC information, represents the function presented
in Example 4.1. In this figure, we have marked the zeros by circles (◦) and poles by
crosses (×). ROC is indicated by the shaded region. M 4.3 can also be used to produce
a similar plot.

If the degree of the denominator polynomial is greater than that of the numerator
polynomial, then U(z) will become zero as z approaches infinity. Conversely, if the
degree of the denominator polynomial is less than that of the numerator polynomial,
then U(z) will become unbounded as z approaches infinity. This behaviour can be
interpreted as zeros or poles at infinity. If we include the zeros or poles at infinity in
counting, the number of poles will be equal to that of zeros in any rational function.
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|z|
z

|z0|
z0

z

|z0|

|z|

z0

Figure 4.4: ROC has rings (left). Larger rings belong to ROC.

The order of a pole is the number of times it is repeated at a given location.
Similarly, the order of a zero can be defined. A first order pole is known as a simple
pole. In a similar way, a simple zero is defined. In the following transfer function,

U(z) =
z2(z − 1)
(z − 0.6)3

, |z| > 0.6

there is a pole of order 3 at z = 0.6, a simple zero at z = 1 and a second order zero
at z = 0.

When the degree of the numerator polynomial is less than or equal to that of the
denominator polynomial, we describe the transfer function as proper. For example, if
dN ≤ dD in Eq. 4.6, we describe U as proper. Here, the prefix d denotes degree of.3

If, instead, the degree is strictly less, i.e., dN < dD, we describe U as strictly proper.
Finally, if the degree of N is higher than that of D, i.e., dN > dD, it is improper.

We will refer to the sequence {u(n)} and its Z-transform U(z) as Z-transform pair.
We will use the symbol ↔ to indicate that one came from the other. We will indicate
all of these by writing u(n)↔ U(z).

Before concluding this section, it is emphasized that the Z-transform is defined so
as to represent an infinite sum in a compact way. If the sequence that is Z-transformed
is a growing (unbounded) one, it is handled by choosing ROC appropriately, so as to
make |z| sufficiently large.4

4.1.5 Properties of Region of Convergence

In this section, some of the properties of ROC will be discussed. Suppose {u(n)} is a
sequence and U(z) its transform.

ROC has rings: ROC of U(z) consists of a ring in the z plane centred around the
origin. The claim is that if a point r0ejφ on a circle of radius r0 belongs to ROC, then
all points r0ejθ where θ is arbitrary will also belong to ROC, see the diagram on the
left-hand side of Fig. 4.4. Let us start with the definition of the Z-transform of U(z):

3The prefix d will denote the degree of the polynomial that follows.
4Thus the compactness of the Z-transform has nothing to do with whether the sequence is growing

or bounded.
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U(z) =
∞∑

n=−∞
u(n)z−n

By the requirement of absolute convergence of Z-transforms, we obtain

∞ >

∞∑
n=−∞

|u(n)z−n
0 | =

∞∑
n=−∞

|u(n)||z−n
0 |

=
∞∑

n=−∞
|u(n)||z0|−n |z|=|z0|=

∞∑
n=−∞

|u(n)||z|−n =
∞∑

n=−∞
|u(n)z−n|

Thus, arbitrary z also belongs to ROC.

ROC has no pole: No pole can be present within ROC. This is because, at a pole,
the Z-transform is infinite and hence, by definition, does not converge.

ROC for causal systems: Suppose {g(n)} is causal. If the circle |z| = r0 is in
ROC then all z for which |z| > r0 will also belong to ROC, see the diagram on the
right-hand side of Fig. 4.4.

This is because the larger the radius of z, the smaller will be the sum, thanks to
the negative powers of z. We will now demonstrate this. G(z) is of the form g(0) +
g(1)z−1 + g(2)z−2 + · · · . This shows that whenever z ∈ ROC, z cannot be zero. From
this it follows that r0 > 0. Because z0 ∈ ROC,

∞∑
n=0

|g(n)z−n
0 | <∞

Rewriting this expression with obvious steps,

∞ >

∞∑
n=0

|g(n)z−n
0 | =

∞∑
n=0

|g(n)||z−n
0 | =

∞∑
n=0

|g(n)||z0|−n =
∞∑

n=0

|g(n)|
|z0|n

>

∞∑
n=0

|g(n)|
|z|n , ∵ |z| > |z0|

=
∞∑

n=0

|g(n)z−n|

We have shown that all z such that |z| > |z0| belongs to ROC. It is clear that ROC
includes limz→∞ as well. We say that larger circles belong to ROC.

Using the above discussed properties, we now proceed to prove two extremely
useful properties.

Poles of stable systems: If a system with impulse response g(n) is causal and
stable, the poles of G(z) will be inside the unit disc |z| < 1.

As g(k) is causal and stable, we have
∑∞

k=0 |g(k)| < ∞. From the expression for
the Z-transform of {g(n)},

G(z) =
∞∑

k=0

g(k)z−k
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we obtain

∞ >
∞∑

k=0

|g(k)| =
∞∑

k=0

∣∣g(k)z−k
∣∣
z=1

Thus, there is absolute convergence at |z| = 1. In other words, the unit circle belongs
to ROC. Because larger circles belong to ROC for causal sequences, all points outside
the unit circle also belong to ROC. From the property of the poles, the unit circle or
the region outside of it does not contain the poles and thus the poles should lie inside
the circle.

Degrees of the Z-transform of causal systems: Let u(k) be a causal sequence
with its Z-transform U(z) = N(z)/D(z), where N(z) is a polynomial of degree n and
D(z) is a polynomial of degree m. Then n ≤ m.

Since u(k) is causal, larger circles belong to ROC and hence limz→∞ is in ROC.
If n > m, U(z) will diverge at ∞. Thus n ≤ m.

4.2 Z-Transform Theorems and Examples

In this section, we will present some properties of the Z-transform. We will
demonstrate these with some examples. We will begin first with the Z-transform
of some fundamental sequences.

Example 4.2 Find the Z-transform of the unit impulse sequence {δ(n)}.
We obtain

δ(n)↔
∞∑

n=−∞
δ(n)z−n

By the definition of δ, there is only one nonzero term in the above infinite
summation. In view of this, we obtain

δ(n)↔ 1 (4.7)

Because the above expression is true for all values of z, ROC includes all of the z
plane.

Example 4.3 Find the Z-transform of the unit step sequence {1(n)}.
Note that 1(n) is nothing but u1(n) with a = 1 in Sec. 4.1.2. As a result, we
obtain

1(n)↔ z

z − 1
, |z| > 1 (4.8)

Recall from Example 4.2 that there is no restriction on z for the Z-transform of
the impulse function. But this is not true in the case of step functions.
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4.2.1 Linearity

The Z-transform of a linear combination of sequences is the same linear combination
of the Z-transform of individual sequences:

Z [α{u1(n)} + β{u2(n)}] = αU1(z) + βU2(z)

where u1(n)↔ U1(z) and u2(n)↔ U2(z), with α and β as arbitrary scalars.
The left-hand side is given by

∞∑
n=−∞

[αu1(n) + βu2(n)] z−n =
∞∑

n=−∞
αu1(n)z−n +

∞∑
n=−∞

βu2(n)z−n

= αU1(z) + βU2(z)

which is equal to the right-hand side. We will use this result and calculate the
Z-transform of a few signals.

Example 4.4 Find the Z-transform of

u1(n) = 2δ(n)− 3δ(n− 2) + 4δ(n− 5)

U1(z) = 2
∞∑

n=−∞
δ(n)z−n − 3

∞∑
n=−∞

δ(n− 2)z−n + 4
∞∑

n=−∞
δ(n− 5)z−n

= 2− 3z−2 + 4z−5 ∀z−1 finite

=
2z5 − 3z3 + 4

z5
, |z| > 0

That is, all points, except the origin of the z plane, are in ROC.

Example 4.5 Find the Z-transform of a signal obtained by sampling the
continuous function e−t/τ , τ > 0, t > 0, with a period Ts.

u(n) = e−nTs/τ1(n) =
(
e−Ts/τ

)n

1(n)

Taking the Z-transform, we obtain

U(z) =
z

z − e−Ts/τ
, |z| > e−Ts/τ

This approach is useful in discretizing transfer functions that correspond to the
continuous time domain, the topic to be discussed in detail in Sec. 8.2.2.

Example 4.6 Find the Z-transform of

{u2(n)} = [2 + 4(−3)n] {1(n)}

U2(z) =
∞∑

n=0

[2 + 4(−3)n] z−n

=
2z
z − 1

+
4z
z + 3

, |z| > 1 ∩ |z| > 3
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Simplifying this expression, we obtain

U2(z) =
6z2 + 2z

(z − 1)(z + 3)
, |z| > 3

This shows that the region outside of the circle with radius 3 lies in ROC.

Now we will demonstrate with an example that it is not always necessary for the
Z-transform of a sequence to exist.

Example 4.7 Find the Z-transform of

{u3(n)} = {1(n)}+ {0.5n1(−n)}

The Z-transform of the first term is z/(z− 1) for |z| > 1. The Z-transform of the
second term is now calculated:

∞∑
n=−∞

0.5n 1(−n) z−n =
0∑

n=−∞
0.5nz−n =

∞∑
m=0

(0.5−1z)m

=
1

1− 0.5−1z
,

∣∣0.5−1z
∣∣ < 1

=
0.5

0.5− z , |z| < 0.5

ROCs of the first and second terms are, respectively, |z| > 1 and |z| < 0.5, which
are mutually exclusive. Thus the Z-transform for this example does not exist.

This example is presented just to prove the point that we cannot take the existence
of the Z-transform for granted. Fortunately, however, we will not come across this
situation again in this book, as the signals of interest to us have Z-transforms.

Example 4.8 Find the Z-transform of cosωn 1(n) and sinωn 1(n). Since the
Z-transform is easy to obtain for sequences of the form an, Euler’s identity helps
achieve precisely this:

cosωn+ j sinωn = ejωn

Take the Z-transform of both sides to obtain

Z [cosωn+ j sinωn] = Z
{
ejωn

}
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Im(z)

Re(z)

Im(z)

Re(z)

× ×

× ×

Figure 4.5: Poles and zeros of cosωn 1(n) (left) and sinωn 1(n) (right)

Comparing real and imaginary parts, we obtain Z [cosωn] = Re
[
Z
{
ejωn

}]
and

Z [sinωn] = Im
[
Z
{
ejωn

}]
. Let us now evaluate the Z-transform of ejωn:

Z
[
ejωn 1(n)

]
=

∞∑
n=−∞

ejωn z−n 1(n) =
∞∑

n=0

ejωn z−n

=
z

z − ejω
, |z| > ∣∣ejω

∣∣ = 1

=
z(z − e−jω)

(z − ejω)(z − e−jω)

=
z(z − cosω + j sinω)
(z − ejω)(z − e−jω)

=
z(z − cosω)

(z − ejω)(z − e−jω)
+ j

z sinω
(z − ejω)(z − e−jω)

Equating the real and imaginary terms, we obtain

(cosωn)1(n)↔ z(z − cosω)
(z − ejω)(z − e−jω)

(sinωn)1(n)↔ z sinω
(z − ejω)(z − e−jω)

Notice that the zeros of (cosωn)1(n) are at 0 and cosω while the poles are at
e±jω. The zero of (sinωn)1(n) is at 0 and its poles are at e±jω . Pole–zero plots
of these two functions are given in Fig. 4.5.

4.2.2 Shifting

The Z-transform of a shifted sequence is given as follows:

Z [u(k + d)] = zdU(z) (4.9)
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Starting with the left-hand side, we arrive at the following:
∞∑

k=−∞
u(k + d)z−k = zd

∞∑
k=−∞

u(k + d)z−(k+d) = zdU(z)

which is the expression on the right-hand side of Eq. 4.9.

Example 4.9 If

{u(n)} ↔ U(z)

then

{u(n+ 3)} ↔ z3U(z), {u(n− 2)} ↔ z−2U(z)

In Example 3.5 on page 41, we have explained that the time at which we specify
the condition may determine the causality. We will continue this discussion here.

Example 4.10 Calculate the Z-transform of Eq. 3.14 on page 42 and Eq. 3.16.

Expanding the summation in Eq. 3.14, we obtain

y(n) = u(n) + au(n− 1) + a2u(n− 2) + · · ·

Making use of the linearity and the shifting property, we take the Z-transform of
both sides to obtain

Y (z) = U(z) + az−1U(z) + a2z−2U(z) + · · ·

=
[
1 +

a

z
+
(a
z

)2

+ · · ·
]
U(z)

Because there are an infinite number of entries within the square brackets, we need
to enforce a convergence condition. We obtain

Y (z) =
z

z − aU(z), |z| > |a| (4.10)

Note that ROC is the region outside a circle of radius |a|, as expected in causal
systems.

Let us now consider taking the Z-transform of Eq. 3.16 on page 42. Expanding
the summation term in this equation, we obtain

y(n) = −a−1u(n+ 1)− a−2u(n+ 2)− · · ·

Once again, we make use of the linearity and the shifting properties, take the
Z-transform of both sides and obtain

Y (z) = −a−1zU(z)− a−2z2U(z)− · · ·

= −
[
z

a
+
(z
a

)2

+ · · ·
]
U(z) = −z

a

[
1 +

z

a
+
(z
a

)2

+ · · ·
]
U(z)
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As before, we need to be concerned with ROC. We obtain

Y (z) = −z
a

a

a− z , |z| < |a| = z

z − aU(z), |z| < |a| (4.11)

Note that this ROC is inside the circle of radius |a|, as expected in noncausal
systems. The expression for Y (z) in Eq. 4.11 is identical to the one obtained in
Eq. 4.10, but for ROC. The algebraic expressions are identical, because both are
Z-transforms of Eq. 3.12 on page 41. ROCs are different because of the difference
in the initial condition.

4.2.3 Effect of Damping

The presence of an exponential in the time sequence results in the following:

Z
[
u(k)e−ak

]
= U(zea) (4.12)

i.e., U evaluated at zea. Starting from the left-hand side, we obtain

∞∑
k=−∞

u(k)e−akz−k =
∞∑

k=−∞
u(k)(eaz)−k

which is the right-hand side of Eq. 4.12.

4.2.4 Initial Value Theorem for Causal Signals

Provided the limit exists, the initial value of a causal signal can be obtained by its
Z-transform,

u(0) = lim
z→∞U(z) (4.13)

From the definition of causal signals, we obtain

U(z) =
∞∑

k=−∞
u(k)z−k = u(0) + u(1)z−1 + u(2)z−2 + · · ·

Taking the limit, we obtain

lim
z→∞U(z) = u(0)

4.2.5 Final Value Theorem for Causal Signals

If U(z) converges for all |z| > 1 and if all the poles of U(z)(z − 1) are inside the unit
circle then

lim
k→∞

u(k) = lim
z→1

(1− z−1)U(z) = lim
z→1

z − 1
z

U(z) (4.14)
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The condition on U(z) assures that the only possible pole of U(z) not strictly
inside the unit circle is a simple pole at z = 1, which is removed in (z − 1)U(z).
This allows the important situation of stable systems being excited by a unit step
signal. Moreover, the fact that U(z) is finite for arbitrarily large z implies that u(k)
is causal. As u(∞) is bounded we can evaluate the following expression, which has an
extra u(−1) = 0:

u(1) = −u(−1) + u(0)− u(0) + u(1)
u(2) = −u(−1) + u(0)− u(0) + u(1)− u(1) + u(2)

lim
k→∞

u(k) = −u(−1) + u(0)︸ ︷︷ ︸
∆u(0)

−u(0) + u(1)︸ ︷︷ ︸
∆u(1)

−u(1) + u(2)︸ ︷︷ ︸
∆u(2)

− · · ·

With the definition ∆u(k) = u(k)− u(k − 1), the above equation can be written as

lim
k→∞

u(k) = ∆u(0) + ∆u(1) + ∆u(2) + · · ·
= lim

z→1
∆u(0) + ∆u(1)z−1 + ∆u(2)z−2 + · · ·

Because it is a causal sequence, ∆u(k) = 0 for all k < 0. Thus, we can extend the
sum and obtain

lim
k→∞

u(k) = lim
z→1

∞∑
k=−∞

∆u(k)z−k

Invoking the meaning of ∆u(k), we obtain

lim
k→∞

u(k) = lim
z→1

∞∑
k=−∞

[u(k)− u(k − 1)]z−k

Using linearity and shifting properties of the Z-transform, we obtain

lim
k→∞

u(k) = lim
z→1

[
U(z)− z−1U(z)

]
= lim

z→1

(
1− z−1

)
U(z)

Note that we can write the right-hand side also as limz→1(z − 1)U(z).

Example 4.11 Using the final value theorem, calculate the steady state value
of (0.5n − 0.5)1(n) and verify that it agrees with the direct result.

We will start with the pair

(0.5n − 0.5)1(n)↔ z

z − 0.5
− 0.5z
z − 1

, |z| > 1

It is easy to see that as n → ∞, the left-hand side becomes −0.5. We can also
apply the final value theorem, by multiplying the right-hand side by (z− 1)/z and
taking the limit as z → 1. When we do this, only the second term is nonzero. We
obtain

lim
z→1

(z − 1)RHS = − lim
z→1

z − 1
z

0.5z
z − 1

= −0.5

where RHS denotes right-hand side. We see that the two approaches give identical
results.
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Example 4.12 Find the initial value and final value of a causal sequence whose
Z-transform is given by

U(z) =
0.792z2

(z − 1)(z2 − 0.416z + 0.208)

and verify.

Initial Value = lim
z→∞U(z) =

0.792z2

z3
= 0

Final Value = lim
z→1

(z − 1)U(z) =
0.792

1− 0.416 + 0.208
= 1

We will verify these results as follows. Expanding the expression for U(z) by long
division, we obtain

U(z) = 0.792z−1 + 1.12z−2 + 1.091z−3 + 1.01z−4

+ 0.983z−5 + 0.989z−6 + 0.99z−7 + · · ·
It is easy to verify the initial and final values from this expression.

The next example shows the importance of the preconditions required to be satisfied
for the application of the final value theorem.

Example 4.13 Is it possible to use the final value theorem on 2n1(n)?

2n1(n)↔ z

z − 2
, |z| > 2

Since the right-hand side is valid only for |z| > 2, the theorem cannot even be
applied. On the left-hand side, we have a growing sequence without a limit; this
once again violates the conditions of the theorem. Thus, the final value theorem
cannot be used.

We conclude this section with the observation that the final value theorem for causal
signals cannot be used for growing sequences.

4.2.6 Convolution

Recall that while motivating the Z-transform, we showed with an example that the
product of the Z-transform of two sequences gives the same result as the convolution
of the said sequences. Now we will generalize this result. If U(z) and G(z) are
Z-transforms of {u(n)} and {g(n)}, respectively, then U(z)G(z) is the Z-transform
of {u(n)} ∗ {g(n)}. In other words, if u(n)↔ U(z) and g(n)↔ G(z), then

g(n) ∗ u(n)↔ G(z)U(z) (4.15)

Let y(n) = g(n) ∗ u(n). Using the definition of convolution, we obtain

y(n) =
∞∑

k=−∞
g(k)u(n− k)
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Taking its Z-transform, we obtain

Y (z) =
∞∑

n=−∞

∞∑
k=−∞

g(k)u(n− k)z−n =
∞∑

k=−∞
g(k)z−k

∞∑
n=−∞

u(n− k)z−(n−k)

which is nothing but the right-hand side of Eq. 4.15.
The same result is applicable for causal g and u also, as we now show. Let

y(n) =
∞∑

k=0

g(k)u(n− k)

Taking its Z-transform,

Y (z) =
∞∑

n=0

∞∑
k=0

g(k)u(n− k)z−n

With m = n− k,

Y (z) =
∞∑

k=0

g(k)z−k
∞∑

n=0

u(n− k)z−(n−k) =
∞∑

k=0

g(k)z−k
∞∑

m=−k

u(m)z−m

Because u is causal, the last term can be written as

Y (z) =
∞∑

k=0

g(k)z−k
∞∑

m=0

u(m)z−m

which is nothing but the right side of Eq. 4.15. It is possible to show the ROC condition
for convolved sequences, see Problem 4.10.

Example 4.14 Determine the step response of a system with impulse response
g(n) = 0.5n1(n) using the convolution and Z-transform approaches.

First, we will evaluate the step response using the convolution approach:

y(n) =
∞∑

r=−∞
g(r)u(n− r) =

∞∑
r=0

0.5ru(n− r)

=
∞∑

r=0

0.5r1(n− r) = 1(n)
n∑

r=0

0.5r

Note that 1(n) appears in the last expression, because, for negative n, the previous
summation is zero. As this is a geometric progression, we obtain

y(n) = 1(n)
1− 0.5(n+1)

1− 0.5
= (2 − 0.5n)1(n)
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Next, we take the Z-transform of u and g and multiply them:

U(z) =
∞∑

j=−∞
u(j)z−j =

∞∑
j=0

0.5jz−j

= [1 + 0.5z−1 + (0.5z−1)2 + · · · ] =
1

1− 0.5z−1

where we have assumed |z| > 0.5. We also have

G(z) =
∞∑

j=−∞
g(j)z−j =

∞∑
j=0

z−j = [1 + z−1 + z−2 + · · · ] =
1

(1− z−1)

where we have assumed |z| > 1. On multiplying these two expressions, we obtain

Y (z) = G(z)U(z) =
1

1− z−1

1
1− 0.5z−1

, |z| > 1

Note that we have taken ROC to be |z| > 1, which lies in ROC of both G and U . A
procedure to handle expressions such as the one obtained above will be explained
in Sec. 4.4. For the time being, it is easy to check that the above expression is
equivalent to

Y (z) =
2

1− z−1
− 1

1− 0.5z−1
, |z| > 1

On inverting this expression, we obtain

y(n) = 2× 1(n)− 0.5n1(n) = (2− 0.5n)1(n)

Thus the two expressions for y(n) are identical.

4.2.7 Differentiation

We have the following useful result that deals with derivatives:

u(n)↔ U(z) with ROC = Ru then

nu(n)↔ −z dU(z)
dz

with ROC = Ru

(4.16)

Differentiating the Z-transform of u(n), we obtain

dU(z)
dz

=
d

dz

∞∑
n=−∞

u(n)z−n = −
∞∑

n=−∞
nu(n)z−n−1 = −z−1

∞∑
n=−∞

nu(n)z−n

Therefore,

−z dU(z)
dz

=
∞∑

n=−∞
nu(n)z−n

which is what we have to show. We will present an example to illustrate this approach.
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Example 4.15 Invert

U(z) = log(1 + az−1), |z| > |a|

Differentiating both sides with respect to z, we obtain

−z dU(z)
dz

=
az−1

1 + az−1
, |z| > |a|

We need to find the inverse Z-transform of the right-hand side. But we know that

(−a)n1(n)↔ 1
1 + az−1

, |z| > |a|

Multiplying both sides by a and applying the shifting theorem, we obtain

a(−a)n−11(n− 1)↔ az−1

1 + az−1
, |z| > |a|

The left-hand side is equal to −(−a)n1(n− 1). By Eq. 4.16, it should be equal to
nu(n). Equating the two, we obtain

u(n) = − 1
n

(−a)n1(n− 1)

We can also carry out the differentiations with respect to a. By successively
differentiating

an1(n)↔ z

z − a =
∞∑

n=0

anz−n,
∣∣az−1

∣∣ < 1 (4.17)

with respect to a, we obtain

(p− 1)!z
(z − a)p

=
∞∑

n=0

n(n− 1) . . . (n− p+ 2)an−p+1z−n (4.18)

see Problem 4.9. By substituting p = 2, 3, respectively, we obtain

nan−11(n)↔ z

(z − a)2
, |z| > |a|

n(n− 1)an−21(n)↔ 2z
(z − a)3

, |z| > |a|
(4.19)

We will now illustrate the utility of this development with an example.
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Example 4.16 Determine the Z-transform of n21(n).

We first split the given function into two terms:

n21(n) = [n(n− 1) + n] 1(n)

We find that Eq. 4.19 is applicable with a = 1. We obtain

n21(n)↔ 2z
(z − 1)3

+
z

(z − 1)2
=

z2 + z

(z − 1)3
, |z| > 1

If a were not 1, the above approach could still be used, with a little more work. This
is illustrated in the next example.

Example 4.17 Find the Z-transform of n2an1(n).

First, we will split n2an into a convenient form:

n2an1(n) = [n(n− 1) + n] an−2a2

=
[
n(n− 1)an−2 + nan−1a−1

]
a2

We will now use Eq. 4.19 and obtain

n2an1(n)↔
[

2z
(z − a)3

+
z

(z − a)2
a−1

]
a2, |z| > |a|

=
2za2 + az(z − a)

(z − a)3
=
az(z + a)
(z − a)3

, |z| > |a|

This reduces to the result of Example 4.16 for a = 1.

4.2.8 Z-Transform of Folded or Time Reversed Functions

In control applications, signals defined in the time instant n ≥ 0 only are used.
On the other hand, identification techniques require the concept of signals being
defined over negative n, see, for example, Sec. 6.3.5. This motivates the next result. If
the Z-transform of u(n) is U(z), the Z-transform of u(−n) is U(z−1). If ROC of U(z)
is given by |z| > |a|, ROC of U(z−1) is given by |z| < |a−1|.

u(−n)↔ =
∞∑

n=−∞
u(−n)z−n

=
∞∑

m=−∞
u(m)zm, where m = −n

=
∞∑

m=−∞
u(m)(z−1)−m = U(z−1)
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If ROC of u is given by |z| > |a|, it implies that u(n) = an1(n) and hence

U(z) =
∞∑

n=0

anz−n = 1 + az−1 + a2z−2 + a3z−3 + · · ·

Substituting z−1 in the place of z, we see that

U(z−1) = 1 + az + a2z2 + a3z3 + · · ·
converges if |az| < 1 or |z| < |1/a|.

4.3 Transfer Function

The transfer function of a system is defined as the Z-transform of its impulse response.
For example, if g(n) is the impulse response, the transfer function is given by the
Z-transform of g and it will be denoted by G(z). Similarly, given the transfer function
G(z) of a system, its impulse response is denoted by g(n). This is denoted by the
following expression:

g(n)↔ G(z)

Now suppose an arbitrary signal {u(n)} is applied to such a system. The output
{y(n)} is given as

{y(n)} = {g(n)} ∗ {u(n)}
Using the Z-transform of convolutions given by Eq. 4.15, we obtain

Y (z) = G(z)U(z)

In Sec. 3.3.2, we introduced the notion of FIR systems. Because FIR systems have a
finite number of terms, the corresponding transfer function will be a polynomial in
powers of z−1 with a finite number of terms. For example, if {g(n)} has only three
nonzero terms, say g0, g1 and g2, the transfer function is given by Z-transform of
{g(n)}, i.e.,

G(z) = g0 + g1z
−1 + g2z

−2

Because the above is a polynomial in z−1, these systems are also known as all zero
systems, even though, when written in powers of z, G(z) has two poles at z = 0, as
can be seen from the following:

G(z) =
g0z

2 + g1z + g2
z2

In other words, the poles at z = 0 don’t count. IIR systems, also defined in Sec. 3.3.2,
have an infinite number of terms in the impulse response. The Z-transform of the
impulse response of these systems generally results in a ratio of two polynomials.
Indeed, all the impulse responses with infinite terms presented so far in this chapter
have given rise to a ratio of two polynomials. Transfer functions of the following type,

G(z) =
1

A(z)
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where A(z) is a polynomial in z−1, are known as all pole systems. This is in spite of
the fact that when written as powers of z, G(z) will have zeros at z = 0.

4.3.1 Gain of a Transfer Function

The gain of a transfer function of a stable system to a unit step input is an important
parameter, especially in control applications. Let the Z-transforms of input to and
output from a system be U(z) and Y (z), respectively. Let G(z), the Z-transform of
the impulse response g(n), be the transfer function of the system. Because u(n) is a
unit step sequence, U(z) = z/(z − 1). We obtain

Y (z) = G(z)U(z) = G(z)
z

z − 1
(4.20)

By applying the final value theorem,

lim
n→∞ y(n) = lim

z→1

z − 1
z

G(z)
z

z − 1
= G(1) (4.21)

where, as usual, y(n) is the response y at the sampling instant n. As a result, the
steady state gain of a stable system to a unit step input is simply G(1).

4.3.2 Transfer Function of Connected Systems

We will often connect linear systems in series and in parallel. In the case of parallel
interconnection of LTI systems, the impulse response is added. For example, we obtain
from Fig. 3.10 on page 51,

g(n) = g1(n) + g2(n)

and from the linearity of the Z-transform,

G(z) = G1(z) +G2(z)

where G1 and G2 are respectively the Z-transforms of g1 and g2. In the case of LTI
systems in series, their impulse responses are convolved. For example, from Fig. 3.9
on page 50, we obtain

g(n) = g1(n) ∗ g2(n)

and the corresponding transfer functions satisfy the convolution property

G(z) = G1(z)G2(z)

The above properties help us to arrive at a transfer function of a feedback loop
that arises in control applications. Consider the feedback loop given in Fig. 4.6.
The different signals appearing in this system representation are given next:

r(n) reference trajectory or setpoint or reference input
e(n) error between reference and actual value
u(n) control variable or manipulated variable
y(n) output variable or controlled variable
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u(n)e(n)

−

y(n)
+

r(n)
gc(n) g(n)

Figure 4.6: Feedback control

Analysis of this system in the Z-transform domain is straightforward. As usual, let the
capitals indicate the Z-transform of the corresponding discrete time signal represented
with lower case letters. We obtain

Y (z) = G(z)U(z)
= G(z)Gc(z)E(z)
= G(z)Gc(z)(R(z)− Y (z))

Bringing all terms involving Y on one side, we obtain

Y (z) +G(z)Gc(z)Y (z) = G(z)Gc(z)R(z)

Solving this for Y , we obtain

Y (z) =
G(z)Gc(z)

1 +G(z)Gc(z)
R(z)

We define the closed loop transfer functions as

T (z)
�
=

G(z)Gc(z)
1 +G(z)Gc(z)

(4.22)

The closed loop transfer function maps the reference input R(z) to the output variable
Y (z). An important objective in control design is to make T (z) well behaved. Using
similar arguments, the relation between the Z-transform of e(n) and r(n) is given by

E(z) = S(z)R(z) (4.23)

where

S(z) =
1

1 +G(z)Gc(z)
(4.24)

The use of Z-transforms allows us to replace time domain operations, such as
convolution and time shifting with algebraic equations. The use of Z-transforms
to convert system descriptions to algebraic equations is also useful in analyzing
interconnections of LTI systems, such as series, parallel and feedback interconnections.
This comes in handy while designing controllers. We conclude this section with a
discussion of how Z-transforms can be applied to state space models.
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4.3.3 Z-Transform of Discrete Time State Space Systems

In this section, we would like to study systems described by state space models.
In addition to the advantages already explained, Z-transforming the state space
system helps clearly state the implicit assumptions, including those in the nonzero
initial conditions. Consider the standard state space system,

x(n+ 1) = Ax(n) +Bu(n) (4.25)
y(n) = Cx(n) +Du(n) (4.26)

with

x(0) = x0 (4.27)

The state space model is defined only for n > 0. For example, the state equation, given
by Eq. 4.25, is not meant to be used to calculate x(0) by setting n = −1. Because
of this, the model does not clearly explain the state of the system before n = 0 and
what happens at the time of transition, namely at n = 0. Nevertheless, our definition
of Z-transform, given by Eq. 4.5 on page 65, requires values from −∞. As a result,
we are forced to explain what happens for n ≤ 0. As a first step, we rewrite the state
equation as suggested by [17]. We obtain

x(n+ 1) = Ax(n) +Bu(n) + δ(n+ 1)x0 (4.28)

If, in addition, we assume that our system is initially at rest (see Sec. 3.1.3) and u(n)
is a causal sequence (see Sec. 3.3.5), the system is defined for all times, as we now
describe.

Causal sequence implies that u(n) = 0 for all negative n. Initial rest implies that
the state x(n) is zero for negative n. We will now evaluate the validity of Eq. 4.28 for
different values of n:

1. For all n ≤ −2, both sides are zero.

2. For n = −1, it gets reduced to Eq. 4.27.

3. For n ≥ 0, it is identical to Eq. 4.25.

Thus Eq. 4.28 and the conditions of initial rest and causal u present a clear picture:
all the variables are zero prior to n = 0 and, somehow, x takes the value of x0 at
n = 0.

We are now in a position to take Z-transform of Eq. 4.28. We obtain

zX(z) = AX(z) +BU(z) + x0z

(zI −A)X(z) = BU(z) + x0z

As in the scalar case, we have to make a choice for z once again. We choose z in such
a way that zI−A is invertible. This selection procedure is explained in Problem 4.11.

X(z) = (zI −A)−1BU(z) + z(zI −A)−1x0 (4.29)
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The Z-transform of Eq. 4.26 is

Y (z) = CX(z) +DU(z)

Substituting the expression for X(z) from Eq. 4.29, we obtain

Y (z) = C(zI −A)−1BU(z) +DU(z) + C(zI −A)−1zx(0)
�
= Gu(z)U(z)︸ ︷︷ ︸

zero state response

+ Gx(z)x0︸ ︷︷ ︸
zero input response

The first term on the right-hand side is due to nonzero input. The second term is due
to nonzero initial state. In Eq. 3.46 on page 56, we derived an expression for y(n) in
the time domain. Because Y (z) is the Z-transform of y(n), we see that the RHS of
the above equation is the Z-transform of RHS of Eq. 3.46. Comparing the zero state
response terms, we obtain

C(zI −A)−1B ↔ CAn−1B

Example 4.18 Find the transfer function of the antenna control system,
discussed in Example 2.4 on page 25.

Because the initial conditions are zero, we obtain

G(z) = C(zI −A)−1B

=
[
0 1

] [z − 0.9802 0
−0.19801 z − 1

]−1 [ 0.0198
0.001987

]
=

[
0 1

]
(z − 1)(z − 0.9802)

[
z − 1 0

0.19801 z − 0.9802

] [
0.0198

0.001987

]
=

[
0.19801 z − 0.9802

]
(z − 1)(z − 0.9802)

[
0.0198

0.001987

]
=

0.001987z+ 0.0019732
(z − 1)(z − 0.9802)

= 0.001987
z + 0.9931

(z − 1)(z − 0.9802)

M 4.4 illustrates how this calculation is carried out in Matlab.

These calculations could be more involved in some applications. We illustrate this by
taking the Z-transform of the supply chain problem, given in Sec. 2.3.2.

Example 4.19 Determine the transfer function between production release
PREL and sales SALES, in the supply chain problem discussed in Sec. 2.3.2.
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By taking the Z-transform of Eq. 2.31–2.35, we obtain

FD(z) =
δ ρ SALES(z)
z − 1 + δρ

INV(z) =
zδ(PRATE(z)− SALES(z))

z − 1

WIP(z) =
zδ(PREL(z)− PRATE(z))

z − 1

PREL(z) =
(1 + Lα+ β)FD(z)− αWIP(z)− β INV(z)

z

PRATE(z) =
PREL(z)
zL

Solving the equations simultaneously, we obtain the following relation between
PREL and SALES:

PREL(z)
SALES(z)

=
zLδ[(z − 1)(1 + Lα)ρ+ β(z − 1− ρ+ zρ+ δρ)]

[zL+1 + (β − α)δ + zL(αδ − 1)](z − 1 + δα)
(4.30)

In Matlab, the impulse response of a discrete time transfer function can be
obtained by the function dimpulse.

4.3.4 Jury’s Stability Rule

We have seen that for a causal LTI system to be stable, its poles should be inside
the unit circle. While designing controllers, we would like to know the range of
control parameters for which the closed loop system is stable. Jury’s test provides
an analytical procedure to determine this range. We present it in this section and
give an example to illustrate the application.

Let the transfer function of a causal LTI system be given as

G(z) =
B(z)
A(z)

with dB ≤ dA, where d denotes the degree of the polynomial. Suppose that A is given
by

A(z) = a0z
n + a1z

n−1 + · · ·+ an (4.31)

Form the entries as in Table 4.1. Here, the first row consists of the coefficients from
Eq. 4.31. The coefficients in the second row have been obtained by reversing those in
the first row. The third row is obtained by multiplying the second row by bn = an/a0

and subtracting it from the first row. It is easy to see that the last coefficient in the
third row will be zero. As a result, only the rest of the elements have been written in
the third row. The fourth row is obtained by reversing the third row. The fifth row
(not shown) is obtained by multiplying the fourth row by bn−1 and subtracting from
the third row. Here, bn−1 is the ratio of the last entry of third row to the fourth row.
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Table 4.1: Jury’s table

a0 a1 · · · an−1 an

an an−1 · · · a1 a0 bn = an/a0

an−1
0 an−1

1 · · · an−1
n−1

an−1
n−1 an−1

n−2 · · · an−1
0 bn−1 = an−1

n−1/an−1
0

...

a0
0

As a result, the fifth row is one term shorter than the third or fourth row. This process
is continued until only the first entry in a row is nonzero.

Jury’s stability rule can be stated as follows. If a0 > 0, Eq. 4.31 has all its roots
inside the unit circle if and only if am

0 > 0, where m = 0, 1, . . . , n−1. If no am
0 is zero,

the number of negative am
0 is equal to the number of roots outside the unit circle.

We illustrate Jury’s stability criterion with an example.

Example 4.20 Determine the stability region for the transfer function obtained
in Example 4.19 with L = 2, ρ = 1 and δ = 1.

With L, ρ and δ as chosen above, Eq. 4.30 becomes

PREL(z)
SALES(z)

=
z [(z − 1)(1 + 2α) + β(2z − 1)]
z3 + (α− 1)z2 + (β − α)

The characteristic polynomial is given by the denominator of the above transfer
function:

φcl = z3 + (α− 1)z2 + (β − α) (4.32)

We have the following values for variables:

n = 3, a1 = α− 1, a2 = 0, a3 = β − α
Jury’s table is constructed as in Table 4.2, where we have shown only the first six
rows. Jury’s table ends with one more row with the following entry:

1− (β − α)2 − (β − α)2(α− 1)2

1− (β − α)2
−

[
(α− 1) + (β−α)(α−1)2

1−(β−α)2

]2
1− (β − α)2 − (β−α)2(α−1)2

1−(β−α)2

(4.33)

We apply Jury’s stability condition now. Because a0 = 1, the conditions to be
satisfied for stability are

a2
0 = 1− (β − α)2 > 0

a1
0 = 1− (β − α)2 − (β − α)2(α− 1)2

1− (β − α)2
> 0
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Table 4.2: Jury’s table for the problem discussed in Example 4.20

1 α − 1 0 β − α
β − α 0 α − 1 1

1 − (β − α)2 α − 1 −(β − α)(α − 1)
−(β − α)(α − 1) α − 1 1 − (β − α)2

1 − (β − α)2 − (β − α)2(α − 1)2

1 − (β − α)2
(α − 1) +

(β − α)(α − 1)2

1 − (β − α)2

(α − 1) +
(β − α)(α − 1)2

1 − (β − α)2
1 − (β − α)2 − (β − α)2(α − 1)2

1 − (β − α)2

and that the expression given in Eq. 4.33 is greater than zero. We have mentioned
in Sec. 2.3.2 that we have to assign the values of α and β so as to achieve a
certain performance. One such performance indicator is stability: these parameters
have to be chosen so as to make the system stable.

Although the conditions for stability look complicated, we can make some quick
observations. For example, if we choose α = 0 and β = 1, a2

0 becomes 0, violating
the condition for stability. This implies that even if we make a complete account
of the shortcoming in the inventory (β = 1), if we ignore the work in process
(α = 0), the system will become unstable. Often it is difficult to get information
on the work in process and hence one may like to ignore this factor. The above
analysis suggests that it is suicidal to do so. For more details on how such an
approach is used in supply chain problems, the reader should refer to studies such
as [58] or [14].

A symbolic computing program is usually used for this purpose. An alternative
approach is to assign values for the model parameters and to calculate the zeros
of the characteristic equation, using a Matlab routine such as roots. In other
words, one assigns values for α and β in Eq. 4.32, finds the roots, and repeats this
procedure.

4.4 Inverse of Z-Transform

As mentioned earlier, Z-transformation is carried out to simplify convolution. After
completing all the calculations in the Z domain, we have to map the results back to
the time domain so as to be of use. We will give a simple example next to explain
this.

Example 4.21 How would you implement a system, whose transfer function is
given by G(z) = 1/(1− 0.5z−1)?

Let the input and the output be e(n) and y(n), respectively. We have

U(z) = G(z)E(z) =
1

1− 0.5z−1
E(z)
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Cross multiplying,

(1− 0.5z−1)U(z) = E(z)

Inverting,

u(n)− 0.5u(n− 1) = e(n)

Thus, we obtain the system’s output u(n) as

u(n) = 0.5u(n− 1) + e(n)

This equation says that the current output u(n) is a sum of the previous output
u(n− 1) and the current input e(n). This is a popular way to implement transfer
functions in real life.

The above method is known as inversion. It is also known as realization, because
it is through this methodology that we can realize transfer functions in real life.

Now we will see how to come up with methods to invert general transfer functions.
In this section, we will present different techniques of inversion. We will present
contour integration, partial fraction expansion, combined with table lookup and long
division.

4.4.1 Contour Integration

We now discuss how to obtain the sequence u(n) by contour integration, given its
Z-transform. Recall that the Z-transform is defined by

U(z) =
∞∑

k=−∞
u(k)z−k (4.34)

Let us multiply both sides by zn−1 and integrate over a closed contour within ROC
of U(z); let the contour enclose the origin. We have∮

C

U(z)zn−1dz =
∮

C

∞∑
k=−∞

u(k)zn−1−kdz

where C denotes the closed contour within ROC, taken in a counterclockwise
direction. As the curve C is inside ROC, the sum converges on every part of C and,
as a result, the integral and the sum on the right-hand side can be interchanged. The
above equation becomes

∮
C

U(z)zn−1dz =
∞∑

k=−∞
u(k)

∮
C

zn−1−kdz (4.35)
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Now we make use of the Cauchy integral theorem, according to which

1
2πj

∮
C

zn−1−k =

{
1 k = n

0 k �= n
(4.36)

Here, C is any contour that encloses the origin. Using the above equation, the right-
hand side of Eq. 4.35 becomes 2πju(n) and hence we obtain the formula

u(n) =
1

2πj

∮
C

U(z)zn−1dz (4.37)

Depending on the nature of U(z), the above integral can be simplified further. The
Cauchy residue theorem can be used for this. Let f(z) be a function of the complex
variable z and let C be a closed contour in the z plane. If the derivative df/dz exists
on and inside the contour C and if f(z) has no pole at z = z0, then

1
2πj

∮
C

f(z)
z − z0 =

{
f(z0) if z0 is inside C
0 if z0 is outside C

(4.38)

If the (m+ 1)th order derivative of f(z) exists and if f(z) has no pole at z = z0, then

1
2πj

∮
f(z)

(z − z0)m
dz =


1

(m− 1)!
dm−1f(z)
dzm−1

∣∣∣∣
z=z0

if z0 is inside C

0 if z0 is outside C
(4.39)

We can use Eq. 4.38 and Eq. 4.39 to determine the values of useful contour integrals.
For example, suppose that the integrand of the contour integral is G(z) = f(z)/A(z),
where f(z) has no pole inside the contour and A(z) is a polynomial with simple zeros
at zk, n ≥ k ≥ 1. Then, the contour integral is given by

1
2πj

∮
f(z)
A(z)

dz =
1

2πj

∮ [
n∑

k=1

fk(z)
z − zk

]
dz =

n∑
k=1

1
2πj

∮
fk(z)
z − zk

dz

=
n∑

k=1

fk(zk)

(4.40)

where

fk(z) = (z − zk)G(z) = (z − zk)
f(z)
A(z)

∣∣∣∣
z=zk

(4.41)

We call fk(z) the residue at the pole zk. Thus, the contour integral is the sum of the
residues of all the poles inside the contour. When higher order poles are present, one
will have to make use of Eq. 4.39.

Example 4.22 Using the contour integration approach, calculate the inverse
Z-transform of

U(z) =
1

1− az−1
, |z| > |a|
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We will now use Eq. 4.37 to arrive at

u(n) =
1

2πj

∮
zn−1

1− az−1
dz

where C is a circle of radius > |a|. We will first convert all the terms into
polynomials in z:

u(n) =
1

2πj

∮
zn

z − adz (4.42)

Let us evaluate this using the Cauchy residue theorem, stated in Eq. 4.38. Because
|z| > a is ROC, the closed contour, which is in ROC, will enclose the pole at z = a.
We will have to consider two cases, one for n ≥ 0 and another for n < 0. For
n < 0, zn will give rise to a simple or a multiple pole at z = 0.

n ≥ 0: f(z) = zn, which has no pole at z = a (z0 = a), and hence, using
Eq. 4.38, we obtain

u(n) = f(a) = an

n < 0: zn has an nth order pole at z = 0, which is also inside C. Thus we have
poles at z = 0 and at z = a. In Eq. 4.37, we will substitute n = −1,−2, . . . ,
evaluate each integral and thus obtain values of u at these negative n values.
For n = −1,

u(−1) =
1

2πj

∮
C

1
z(z − a)

dz

The right-hand side is equal to the sum of the residues at z = a and at z = 0.
Using Eq. 4.38, we obtain

u(−1) =
1
z

∣∣∣∣
z=a

+
1

z − a
∣∣∣∣
z=0

= 0

We do the same for n = −2:

u(−2) =
1

2πj

∮
1

z2(z − a)
dz

The right-hand side is once again equal to the sum of the residues at z = a
and at z = 0. For the first integral, we use Eq. 4.38 and for the second, we
use Eq. 4.39 to obtain

u(−2) =
1
a2

+
1

(2 − 1)
d

dz

(
1

z − a
)∣∣∣∣

z=0

Differentiating and simplifying, we obtain

u(−2) =
1
a2
− 1

(z − a)2

∣∣∣∣
z=a

=
1
a2
− 1
a2

= 0
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We can continue this procedure and find that u(n) = 0, ∀n < 0. As a result, we
obtain u(n) = an1(n), as expected.

In the above example, we have taken ROC as |z| > |a|. From Sec. 4.1.2, we know that
we should obtain a different answer if ROC is taken as |z| < |a|. We will illustrate
this in the next example.

Example 4.23 Using the contour integration approach, calculate the inverse
Z-transform of

U(z) =
1

1− az−1
, |z| < |a|

The closed contour, which has to be inside ROC, will be inside the circle of radius
|a|. As a result, the contour integral in Eq. 4.42 will have poles only at z = 0, and
that too when n < 0. When n ≥ 0, there will be no pole inside the closed contour
and hence u(n) = 0. We will now carry out the calculations for n < 0.

For n = −1, we obtain

u(−1) =
1

2πj

∮
1
z

1
z − a

Using the Cauchy residue theorem, we obtain

u(−1) =
1

z − a
∣∣∣∣
z=0

= −1
a

For n = −2, we obtain

u(−2) =
1

2πj

∮
1
z2

1
z − a

Using the Cauchy residue theorem, we obtain

u(−2) =
d

dz

1
z − a

∣∣∣∣
z=0

=
−1

(z − a)2

∣∣∣∣
z=0

= − 1
a2

For n = −3, we obtain

u(−3) =
1
2!
d2

dz2

1
z − a

∣∣∣∣
z=0

=
1

(z − a)3

∣∣∣∣
z=0

= − 1
a3

In summary, we obtain u(n) = −an1(−n− 1). Thus, the results of this example
and Example 4.22 are in agreement with the results of Sec. 4.1.2.

We would like to remark that depending on ROC and therefore the selection of
the closed contour, we would obtain different inverse Z-transforms. Signal processing
books, such as [49], state the condition on the contour in a general way, so as to
accommodate noncausal transfer functions as well. Control texts, such as [44], on the
other hand, make the contour enclose all poles of the transfer function, thus ensuring
that the result of contour integration is a causal sequence.

The contour integration approach is especially suitable when we want to find the
inverse at a few points only. In the next section, we will present a simpler and a more
popular method of determining the inverse Z-transform.
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Table 4.3: Z-transform of popular discrete time sequences

Time sequence Z-transform

δ(n) 1

1(n)
z

z − 1
, |z| > 1

an1(n)
z

z − a
, |z| > |a|

nan−11(n)
z

(z − a)2
, |z| > |a|

1

2!
n(n − 1)an−21(n)

z

(z − a)3
, |z| > |a|

cos ωn 1(n)
z(z − cos ω)

(z − ejω)(z − e−jω)
, |z| > 1

sin ωn 1(n)
z sin ω

(z − ejω)(z − e−jω)
, |z| > 1

−an1(−n − 1)
z

z − a
, |z| < |a|

4.4.2 Partial Fraction Expansion

Z-transforms of popular discrete time sequences are listed in Table 4.3. From such a
table, we can directly read out the sequence, given its Z-transform. In case the given
Z-transform is more complicated, it is decomposed into a sum of standard fractions,
which appear in Table 4.3. One can then calculate the overall inverse Z-transform using
the linearity property. We will restrict our attention to inversion of Z-transforms that
are proper.

Because the inverse Z-transform of z/(z − p) is given by pn, we split Y (z)/z into
partial fractions, as given below:

Y (z)
z

=
A1

z − p1
+

A2

z − p2
+ · · ·+ Am

z − pm
(4.43)

where we have assumed that Y (z)/z has m simple poles at p1, p2, . . . , pm. The
coefficients A1, . . . , Am are known as residues at the corresponding poles. The residues
are calculated using the formula

Ai = (z − pi)
Y (z)
z

∣∣∣∣
z=pi

, i = 1, . . . ,m (4.44)

We will now present a few examples to illustrate this approach, before taking up the
case of multiple poles.

Example 4.24 Find the inverse Z-transform of

Y (z) =
2z2 + 2z
z2 + 2z − 3

, |z| > 3
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Because Y (z) has z as a factor in the numerator, division by z is simplified:

Y (z)
z

=
2z + 2

(z + 3)(z − 1)
=

A

z + 3
+

B

z − 1
(4.45)

with the region of convergence being |z| > 3. Multiply throughout by z + 3 and
let z = −3 to obtain

A =
2z + 2
z − 1

∣∣∣∣
z=−3

=
−4
−4

= 1

Next we calculate B. Multiply Eq. 4.45 throughout by z − 1 and let z = 1 to
obtain B = 4/4 = 1. Thus, we have

Y (z)
z

=
1

z + 3
+

1
z − 1

, |z| > 3

Cross multiplying, we obtain

Y (z) =
z

z + 3
+

z

z − 1
, |z| > 3 (4.46)

It is straightforward to invert the fractions in this equation. We obtain the inverse
of Y (z) as

y(n) = (−3)n1(n) + 1(n)

M 4.6 sets up the problem discussed in this example and invokes M 4.5 to obtain
the result. M 4.5 divides Y (z) by z and carries out the residue computation.

In the next example, we will see another approach to solve this problem.

Example 4.25 Determine the inverse Z-transform of the problem discussed in
Example 4.24, namely

Y (z) =
2z2 + 2z
z2 + 2z − 3

, |z| > 3

after splitting it into a strictly proper transfer function.

Because the degrees of the numerator and the denominator polynomials are equal,
we can begin by dividing, as follows:

Y (z) = 2 +
−2z + 6

z2 + 2z − 3

We define

Y1(z) =
−2z + 6

z2 + 2z − 3
=

−2z + 6
(z + 3)(z − 1)

=
A

z + 3
+

B

z − 1
(4.47)



96 4. Z-Transform

We will now describe how to calculate the residues A and B. Multiply the above
equation by z − 3, cancel common terms and let z = 3 to obtain

A =
−2z + 6
z − 1

∣∣∣∣
z=−3

=
12
−4

= −3

We calculate B in a similar manner. Multiply Eq. 4.47 by z + 1, cancel common
terms and let z = −1 to obtain B = 4/4 = 1. Putting it all together, we obtain,

Y (z) = 2− 3
z + 3

+
1

z − 1

Because the inverse Z-transform of z/(z + 3) is (−3)n1(n), using the shifting
property of Sec. 4.2.2 we see that 1/(z + 3) has the inverse Z-transform
(−3)n−11(n − 1). The same approach is to be used for the third term in the
above equation as well. The inverse of Y (z) is obtained as

y(n) = 2δ(n)− 3(−3)n−11(n− 1) + 1n−11(n− 1)
= 2δ(n) + (−3)n1(n− 1) + 1(n− 1)

Note that we can write 2δ(n) = (−3)0δ(n) + 10δ(n). Substituting this in the
above expression and using the fact that 1(n) = δ(n) + 1(n− 1), we obtain

y(n) = (−3)n1(n) + 1(n)

which is identical to the result obtained in Example 4.24.

Now, we will take up the case of repeated poles. From Eq. 4.19 on page 80, we
see that it is useful to have z in the numerator of fractions with multiple poles as
well. In view of this, when we have multiple poles, we look for an expansion of the
following form:

Y (z)
z

=
N(z)

(z − α)pD1(z)

where α is not a root of N(z) and D1(z) is a polynomial not containing α as its zero.
On expanding this in partial fractions, we obtain

Y (z)
z

=
A1

z − α +
A2

(z − α)2
+ · · ·+ Ap

(z − α)p
+G1(z)

where G1(z) is a rational that has poles corresponding to those of D1(z).
On multiplying this by (z − α)p, we obtain

(z − α)p Y (z)
z

= A1(z − α)p−1 +A2(z − α)p−2 + · · ·+Ap + G1(z)(z − α)p

(4.48)
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Substituting z = α, we obtain

Ap = (z − α)p Y (z)
z

∣∣∣∣
z=α

Now we differentiate Eq. 4.48 once and let z = α:

Ap−1 =
d

dz

(
(z − α)p Y (z)

z

)∣∣∣∣
z=α

Then we differentiate Eq. 4.48 twice and let z = α:

Ap−2 =
1
2!
d2

dz2

(
(z − α)p Y (z)

z

)∣∣∣∣
z=α

In general, for an arbitrary integer m such that 0 ≤ m ≤ p− 1,

Ap−m =
1
m!

dp−1

dzp−1

(
(z − α)p Y (z)

z

)∣∣∣∣
z=α

Substituting m = p− 1, we obtain

A1 =
1

(p− 1)!
dp−1

dzp−1

(
(z − α)p Y (z)

z

)∣∣∣∣
z=α

We now illustrate this with a few examples:

Example 4.26 Carry out a partial fraction expansion:

Y (z) =
z2 + z

(z − 1)3

Expanding this in partial fractions, we obtain

Y (z)
z

=
z + 1

(z − 1)3
=

A

z − 1
+

B

(z − 1)2
+

C

(z − 1)3
(4.49)

On multiplying both sides of Eq. 4.49 by (z − 1)3, we obtain

z + 1 = A(z − 1)2 +B(z − 1) + C (4.50)

On letting z = 1, we obtain C = 2. On differentiating Eq. 4.50 with respect to z
and letting z = 1, we obtain B = 1. On differentiating Eq. 4.50 twice with respect
to z and letting z = 1, we obtain A = 0. Substituting these in Eq. 4.49, we arrive
at the partial fraction expansion:

Y (z) =
z

(z − 1)2
+

2z
(z − 1)3

Using Eq. 4.19 on page 80, we obtain its inverse as

y(n) = n1(n) + n(n− 1)1(n)

M 4.7 shows how to solve this problem through Matlab.
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Now we will consider a transfer function Y (z) with two poles: one is a simple pole
and the other has multiplicity two. If Y (z) is not divisible by z, we can proceed with
the methods developed earlier, but without first dividing by z. We illustrate this also
in the next example.

Example 4.27 Obtain the inverse of Y (z), defined by

Y (z) =
11z2 − 15z + 6
(z − 2)(z − 1)2

We begin with partial fraction expansion:

Y (z) =
B

z − 2
+

A1

z − 1
+

A2

(z − 1)2

Multiplying this equation by z−2 and letting z = 2, we obtain B = 20. Multiplying
it by (z − 1)2, we obtain the following equation:

11z2 − 15z + 6
z − 2

= A1(z − 1) +A2 +B
(z − 1)2

z − 2

Substituting z = 1, we obtain A2 = −2. On differentiating once with respect to z
and substituting z = 1, we obtain

A1 =
(z − 2)(22z − 15)− (11z2 − 15z + 6)

(z − 2)2

∣∣∣∣
z=1

= −9

Thus we obtain

Y (z) =
20
z − 2

− 9
z − 1

− 2
(z − 1)2

Because we need z in the numerator for easy inversion, we multiply by z:

zY (z) =
20z
z − 2

− 9z
z − 1

− 2z
(z − 1)2

To invert the last term, we make use of Eq. 4.19 on page 80. After inverting and
making use of the shifting theorem of Sec. 4.2.2, we arrive at

y(n+ 1) = (20× 2n − 9− 2n)1(n)

Finally, we arrive at the solution we are looking for:

y(n) = (20× 2n−1 − 9− 2(n− 1))1(n− 1)

M 4.8 shows how to solve this problem through Matlab.

If Y (z) is proper, but not divisible by z, we have to divide the numerator by the
denominator and then carry out the partial fraction expansion, to be illustrated in
the next example.
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Example 4.28 Obtain the inverse of

Y (z) =
(z3 − z2 + 3z − 1)
(z − 1)(z2 − z + 1)

Because it is proper, we first divide the numerator by the denominator and obtain

Y (z) =
[
1 +

z(z + 1)
(z − 1)(z2 − z + 1)

]
�
= (1 + Y ′(z))

As Y ′(z) has a zero at the origin, we can divide by z:

Y ′(z)
z

=
z + 1

(z − 1)(z2 − z + 1)
=

z + 1
(z − 1)(z − ejπ/3)(z − e−jπ/3)

Note that complex poles or complex zeros, if any, would always occur in conjugate
pairs for real sequences, see Problem 4.13. We obtain

Y ′(z) =
2

z − 1
− 1
z − ejπ/3

− 1
z − e−jπ/3

We cross multiply by z and invert:

Y ′(z) =
2z
z − 1

− z

z − ejπ/3
− z

z − e−jπ/3

↔
(

2− ejπk/3 − e−jπk/3
)

1(k) =
(

2− 2 cos
π

3
k
)

1(k)

Recall the fact that Y (z) = 1 + Y ′(z). Because the inverse Z-transform of 1 is
δ(k), we obtain

y(k) = δ(k) +
(

2− 2 cos
π

3
k
)

1(k)

For the sake of completeness, we will now take an example where ROC lies in a
ring.

Example 4.29 Determine the inverse Z-transform of

Y (z) =
z2 + 2z

(z + 1)2(z − 2)
, 1 < |z| < 2

As the degree of the numerator polynomial is less than that of the denominator
polynomial, and as it has a zero at the origin, first divide by z and do a partial
fraction expansion:

Y (z)
z

=
z + 2

(z + 1)2(z − 2)
=

A

z + 1
+

B

(z + 1)2
+

C

z − 2
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Multiplying by z−2 and letting z = 2, we obtain C = 4/9. Multiplying by (z+1)2

and letting z = −1, we obtain B = −1/3. Multiplying by (z + 1)2, differentiating
with respect to z and letting z = −1, we obtain

A =
[
d

dz

{
z + 2
z − 2

}]∣∣∣∣
z=−1

=
(z − 2)− (z + 2)

(z − 2)2

∣∣∣∣
z=−1

= −4
9

Combining the above, we obtain

Y (z)
z

= −4
9

1
z + 1

− 1
3

1
(z + 1)2

+
4
9

1
z − 2

Because it is given to be the annulus 1 < |z| < 2, and because it does not contain
the poles, ROC should be as follows:

Y (z) = −4
9

z

z + 1
− 1

3
z

(z + 1)2︸ ︷︷ ︸
|z|>1

+
4
9

z

z − 2︸ ︷︷ ︸
|z|<2

We make use of Eq. 4.19 on page 80 to invert the second term and the results of
Sec. 4.1.2 to invert the third term. We obtain the inverse as

y(n) = −4
9

(−1)n1(n) +
1
3
n(−1)n1(n)− 4

9
2n1(−n− 1)

M 4.9 shows how to solve this problem through Matlab.

Sometimes it helps to work directly in powers of z−1. We illustrate this in the next
example.

Example 4.30 Invert

Y (z) =
3− 5

6z
−1(

1− 1
4z

−1
) (

1− 1
3z

−1
) , |z| > 1

3

A note on the notation used here is in order. Even though the right-hand side is a
function of z−1, we call it a function of z only.5

There are two poles, one at z = 1
3 and one at 1

4 . As ROC lies outside the outermost
pole, the inverse transform is a right handed sequence:

Y (z) =
3− 5

6z
−1(

1− 1
4z

−1
) (

1− 1
3z

−1
) =

A

1− 1
4z

−1
+

B

1− 1
3z

−1
(4.51)

Multiply both sides by 1− 1
4z

−1 and let z = 1
4 to obtain

A =
3− 5

6z
−1

1− 1
3z

−1

∣∣∣∣
z= 1

4

= 1

5We use this notation throughout this book, unless stated otherwise.
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Multiply both sides of Eq. 4.51 by 1− 1
3z

−1 and let z = 1
3 to obtain

B =
3− 5

6z
−1

1− 1
4z

−1

∣∣∣∣
z= 1

3

= 2

Substituting in Eq. 4.51, we obtain

Y (z) =
1

1− 1
4z

−1
+

2
1− 1

3z
−1
↔

[(
1
4

)n

+ 2
(

1
3

)n]
1(n)

M 4.10 shows how to solve this problem through Matlab.

Now we will present another method of inversion. In this, both the numerator and
the denominator are written in powers of z−1 and we divide the former by the latter
through long division. Because we obtain the result in a power series, this method is
known as the power series method. We illustrate it with an example.

Example 4.31 Invert the following transfer function by the power series
method:

Y (z) =
1

1− az−1
, |z| > |a|

Now the method of long division is applied:

1 + az−1 + a2z−2 + · · ·

1− az−1 | 1
1 −az−1

az−1

az−1 −a2z−2

a2z−2

To summarize,

1
1− az−1

= 1 + az−1 + a2z−2 + · · · (4.52)

from which it follows that

y(n) = 0, n < 0
y(0) = 1
y(1) = a

y(2) = a2

Generalizing,

y(n) = an1(n)

which is in agreement with the result obtained in Sec. 4.1.2.
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In the next example, we will explain how to carry out long division in Matlab.

Example 4.32 Obtain a long division solution of Example 4.27 through Matlab.

In Example 4.27, we have obtained the solution as y(0) = 0, and for n ≥ 1,
y(n) = −9 − 2(n − 1) + 20 × 2n−1. Substituting for n we obtain y(1) = 11,
y(2) = 29, y(3) = 67 and y(4) = 145.

M 4.11 implements this in Matlab. The command filter provides numerical
values through long division. The command impulse provides the solution in a
graphical form.

How does one use the long division method for noncausal sequences? This is explained
in the next example.

Example 4.33 In Example 4.31, we have solved for a causal sequence.
If, instead, ROC is specified as |z| < |a|, we cannot use the expansion of Eq. 4.52.
Instead, we would solve the problem as given below:

−a−1z − a−2z2 − · · ·

−az−1 + 1 | 1
1 −a−1z

a−1z
a−1z +a−2z2

a−2z2

From this, we obtain

1
1− az−1

= −a−1z − a−2z2 − · · · ↔ −an1(−n− 1)

which is in agreement with the result obtained in Sec. 4.1.2.

Although we have presented examples of both causal and noncausal systems, in
view of the fact that control applications require mostly the former, we will assume
causality from now on,6 unless stated otherwise.

We will next present an example that shows how to convert a parametric model
presented in Sec. 3.3.6 into a nonparametric model.

Example 4.34 Determine the impulse response of the system described by
Eq. 3.42, reproduced here for convenience

y(n) + a1y(n− 1) = b1u(n− 1)

6In view of this observation, ROC will also not be explicitly stated.
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Taking the Z-transform of this system and using the notation, as mentioned in
Footnote 5 on page 100, we obtain

(1 + a1z
−1)Y (z) = b1z

−1U(z)

Y (z) =
b1z

−1

1 + a1z−1
U(z)

Using the power series method explained in Example 4.31 for causal systems, we
obtain

Y (z) = b1z
−1(1− a1z

−1 + a2
1z

−2 − · · · )U(z)

Using the shifting theorem, we invert this and obtain

y(n) = b1[u(n− 1)− a1u(n− 2) + a2
1u(n− 3)− · · · ]

which can be written as

y(n) = b1

∞∑
k=0

(−1)kak
1u(n− k − 1)

In the latter part of this book, we will design controllers to improve the
performance of plants of interest. We will often work with transfer functions of
the plant. As a result, control design techniques will give rise to controller transfer
functions. We cannot implement the controller if we know only its transfer function;
we need to derive its time domain equivalent. Deriving the time domain equivalent of
the transfer function is known as realization, as mentioned earlier. In the next section,
we will look at two approaches to obtaining the time domain equivalent of transfer
functions.

4.4.3 Realization

For discrete time systems, the time domain equivalent can be obtained by direct
inversion. Suppose that the transfer function to be inverted is given by G(z):

G(z) =
b0 + b1z

−1 + b2z
−2 + b3z

−3 + · · ·
1 + a1z−1 + a2z−2 + a3z−3 + · · ·

�
=
B(z)
A(z)

(4.53)

If the input to this system is U(z) and the corresponding output is Y (z), we obtain

Y (z) =
B(z)
A(z)

U(z)

Cross multiplying,

A(z)Y (z) = B(z)U(z)
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x3

U(z)

Y (z)

−a3 −a2 −a1

z−1 z−1 z−1+ + +

b3 b1b2

x2 x1

Figure 4.7: State space realization: observer canonical form

Using the expressions for A and B, the above equation becomes

Y (z) + a1z
−1Y (z) + a2z

−2Y (z) + a3z
−3Y (z) + · · ·

= b0U(z) + b1z
−1U(z) + b2z

−2U(z) + b3z
−3U(z) + · · ·

From this, we obtain the following expression for Y (z):

Y (z) = −a1z
−1Y (z)− a2z

−2Y (z)− a3z
−3Y (z)− · · ·

+ b0U(z) + b1z
−1U(z) + b2z

−2U(z) + b3z
−3U(z) + · · · (4.54)

Using the shifting theorem, given by Eq. 4.9 on page 73, the above equation becomes

y(n) = −a1y(n− 1)− a2y(n− 2)− a3y(n− 3) + · · ·
+ b0u(n) + b1u(n− 1) + b2u(n− 2) + b3u(n− 3) + · · · (4.55)

Suppose that u is the input to and y the output from the controller, whose transfer
function is given by G(z). Then, the current control action at time instant n is
obtained as a function of previous control actions and current and previous inputs.
This approach is applicable only to discrete time systems.

In Sec. 3.4, we have shown how to obtain a transfer function, given the state space
description of a system. The next section is devoted to the inverse problem: how to
obtain a state space equivalent, given the transfer function? This is another way to
realize transfer functions.

Because most real life systems have at least one sample delay (see Sec. 3.4), we
will take b0 to be zero. The resulting expression can be realized as in Fig. 4.7, where
we have taken the numerator and denominator degrees to be 3. If the states xi are
ignored for the time being, it is easy to check that this figure is just an implementation
of Eq. 4.54.

Because the transfer function z−1 denotes a system with the input–output
equation y(n) = u(n − 1), a block containing z−1 is known as the delay block.
It is clear that if the output of a delay block is x1(n), its input should be x1(n + 1).
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Using this idea, we arrive at the following relations from Fig. 4.7, where the outputs
of the delay blocks are denoted as x1, x2 and x3:

y(k) = x1(k)
x1(k + 1) = x2(k) + b1u(k)− a1x1(k)
x2(k + 1) = x3(k) + b2u(k)− a2x1(k)
x3(k + 1) = b3u(k)− a3x1(k)

which can be written in the form of state space equations:x1(k + 1)
x2(k + 1)
x3(k + 1)

 =

−a1 1 0
−a2 0 1
−a3 0 0

x1(k)
x2(k)
x3(k)

 +

b1b2
b3

u(k)

y(k) =
[
1 0 0

]x1(k)
x2(k)
x3(k)

 (4.56)

This realization is known as the observer canonical form. It should be pointed out
that this state space realization is not unique. A way to arrive at another realization,
known as controller canonical form, is given in Problem 4.18. For other forms of
realization, the reader is referred to [24].

4.5 Matlab Code

Matlab Code 4.1 To produce an1(n), discussed in Sec. 4.1.2. This code is available
at HOME/Z-trans/matlab/aconv1.m7

1 a = 0 . 9 ;
2 n = −10:20;
3 y = zeros ( s ize (n ) ) ;
4 for i = 1 : length (n )
5 i f n( i )>=0,
6 y ( i ) = aˆn( i ) ;
7 end
8 end
9 axes ( ’ FontSize ’ ,18) ;

10 o = stem(n , y ) ;
11 set ( o (1 ) , ’ Marker ’ , ’ . ’ ) ;
12 l a b e l ( ’ u1 ’ ,18 , ’Time(n) ’ , ’ 0 .9ˆ n1 (n) ’ ,18 )

Matlab Code 4.2 To produce −(a)n1(−n− 1), discussed in Sec. 4.1.2. This code is
available at HOME/Z-trans/matlab/aconv2.m

1 a = 0 . 9 ;
2 n = −10:20;
3 y = zeros ( s ize (n ) ) ;

7HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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4 for i = 1 : length (n )
5 i f n( i )<=−1,
6 y( i ) = −(aˆn( i ) ) ;
7 end
8 end
9 axes ( ’ FontSize ’ ,18) ;

10 o = stem(n , y ) ;
11 set ( o (1 ) , ’ Marker ’ , ’ . ’ ) ;
12 l a b e l ( ’ u2 ’ ,18 , ’Time(n) ’ , ’ −(0.9) ˆn 1(−n−1) ’ ,18)

Matlab Code 4.3 To produce pole–zero plots of the form of Fig. 4.3 on page 67.
This code is available at HOME/Z-trans/matlab/pz.m

1 % P o l e z e r o p l o t

2 z = [ 0 ; 5 / 1 2 ] ;
3 p = [ 1 / 2 ; 1 / 3 ] ;
4 A = axes ( ’ FontSize ’ ,18) ;
5 [ hz , hp , h l ] = zplane ( z , p ) ; % Ge t h a n d l e

6 set ( hz , ’ MarkerSize ’ ,12 , ’ Color ’ , [ 0 0 0 ] ) % S e t c o l o u r a nd s i z e

7 set (hp , ’ MarkerSize ’ ,12 , ’ c o l o r ’ , [ 0 0 0 ] )
8 l a b e l ( ’ Pole−Zero p lo t ’ ,18 , ’ Real ( z ) ’ , ’ Imaginary ( z ) ’ ,18 )

Matlab Code 4.4 Discrete transfer function of the continuous state space system,
discussed in Example 4.18 on page 86. This code is available at
HOME/Z-trans/matlab/disc1.m

1 F = [ 0 0 ;1 −0 .1 ] ; G = [ 0 . 1 ; 0 ] ;
2 C = [ 0 1 ] ; D = 0 ; Ts = 0 . 2 ;
3 sys = s s (F ,G,C,D) ;
4 sysd = c2d ( sys , Ts , ’ zoh ’ ) ;
5 H = t f ( sysd )

Matlab Code 4.5 Computation of residues, useful for calculations in Sec. 4.4.2. This
code is available at HOME/Z-trans/matlab/respol.m

1 % T h i s f u n c t i o n c o m p u t e s r e s i d u e s f o r G ( z )

2 % I f G ( z ) =0 a t z =0 , r e s i d u e s a r e c a l c u l a t e d f o r G ( z ) / z

3

4 function [ res , pol , o ther ] = r e s p o l (num, den )
5 l en = length (num) ;
6 i f num( l en ) == 0
7 num = num( 1 : len−1) ;
8 end
9 [ res , pol , o ther ] = residue (num, den ) ;

Matlab Code 4.6 Partial fraction expansion for Example 4.24 on page 94. This
code is available at HOME/Z-trans/matlab/respol1.m
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1 % 2 z ˆ 2 + 2 z

2 % G ( z ) = −−−−−−−−−−−−−−−
3 % z ˆ 2 + 2 z − 3

4

5 num = [ 2 2 0 ] ;
6 den = [ 1 2 −3];
7 [ res , po l ] = r e s p o l (num, den ) % r e s p o l i s u s e r d e f i n e d

Matlab Code 4.7 Partial fraction expansion for Example 4.26 on page 97. This
code is available at HOME/Z-trans/matlab/respol2.m

1 % z ˆ 2 + z A B C

2 % G ( z ) = −−−−−−−−−−− = −−−−−−− + −−−−−−−−− + −−−−−−−−−
3 % ( z − 1 ) ˆ 3 ( z − 1 ) ( z − 1 ) ˆ 2 ( z − 1 ) ˆ 3

4 num = [ 1 1 0 ] ;
5 den = conv ( [ 1 −1] ,conv ( [ 1 −1] , [1 −1]) ) ; % p o l y m u l t i p l i c a t i o n

6 [ res , po l ] = r e s p o l (num, den )
7

8 % % O u t p u t I n t e r p r e t a t i o n :

9 % % r e s =

10 % % 0 . 0 0 0 0 A = 0

11 % % 1 . 0 0 0 0 B = 1

12 % % 2 . 0 0 0 0 C = 2

13 % % p o l =

14 % % 1 . 0 0 0 0 ( z − 1 )

15 % % 1 . 0 0 0 0 ( z − 1 ) ˆ 2

16 % % 1 . 0 0 0 0 ( z − 1 ) ˆ 3

Matlab Code 4.8 Partial fraction expansion for Example 4.27 on page 98. This
code is available at HOME/Z-trans/matlab/respol3.m

1 % 11 z ˆ 2 − 1 5 z + 6 A1 A2 B

2 % G ( z ) = −−−−−−−−−−−−−−−−− = −−−−−−− + −−−−−−−−− + −−−−−−−
3 % ( z − 2 ) ( z − 1 ) ˆ 2 ( z − 1 ) ( z − 1 ) ˆ 2 ( z − 2 )

4

5 num = [11 −15 6 ] ;
6 den = conv ( [ 1 −2] ,conv ( [ 1 −1] , [1 −1]) ) ;
7 [ res , po l ] = r e s p o l (num, den ) % U s e r d e f i n e d f u n c t i o n

8

9 % % r e s =

10 % % 2 0 . 0 0 0 0 <−−−−−−
11 % % − 9 . 0 0 0 0 <−−−−−|−−−−−−−−
12 % % − 2 . 0 0 0 0 <−−−−−|−−−−−−−|−−−−−−−−
13 % % | | |
14 % % p o l = | | |
15 % % 2 . 0 0 0 0 <−−−−−− | |
16 % % 1 . 0 0 0 0 <−−−−−−−−−−−−−− |
17 % % 1 . 0 0 0 0 <−−−−−−−−−−−−−−−−−−−−−−
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Matlab Code 4.9 Partial fraction expansion for Example 4.29 on page 99. This
code is available at HOME/Z-trans/matlab/respol5.m

1 % z ˆ 2 + 2 z

2 % G ( z ) = −−−−−−−−−−−−−−−−−−−−
3 % ( z + 1 ) ˆ 2 ( z − 2 )

4

5 num = [ 1 2 0 ] ;
6 den = conv (conv ( [ 1 1 ] , [ 1 1 ] ) , [ 1 −2]) ;
7 [ res , po l ] = r e s p o l (num, den )

Matlab Code 4.10 Partial fraction expansion for Example 4.30 on page 100. This
code is available at HOME/Z-trans/matlab/respol6.m

1 % C o e f f i c i e n t s a r e i n a s c e n d i n g p o w e r o f z ˆ−1

2 % 3 − ( 5 / 6 ) z ˆ −1 A B

3 % G = −−−−−−−−−−−−−−−−−−−−−−−−−− = −−−−−−−−−−− + −−−−−−−−−−−
4 % ( 1 − ( 1 / 4 ) z ˆ −1 ) ( 1 − ( 1 / 3 ) z ˆ −1 ) 1 − ( 1 / 4 ) z ˆ −1 1 − ( 1 / 3 ) z ˆ−1

5

6 num = [ 3 −5/6];
7 den = conv ( [ 1 −1/4] , [1 −1/3]) ; % P o l y n o m i a l m u l t i p l i c a t i o n

8 [ res , pol , o ther ] = r e s i d u e z (num, den )

Matlab Code 4.11 Long division of the problems discussed in Example 4.32 on
page 102. This code is available at HOME/Z-trans/matlab/division.m

1 num = [11 −15 6 ] ;
2 den = conv ( [ 1 −2] , conv ( [ 1 −1] , [1 −1]) ) ;
3 u = [ 1 zeros (1 , 4 ) ] ;
4 y = f i l t e r (num, den , u)
5 G = t f (num, den ,−1)
6 impulse (G)
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4.6 Problems

4.1. Find the Z-transform of the following and draw the pole–zero plot and ROC, if
the transform exists:

u(n) = an1(n) ∗ bn1(−n)

4.2. Consider the sequence u(n) = (n+ 1)1(n).

(a) Find its Z-transform using the fact that u(n) = 1(n) ∗ 1(n) (derive this).
(b) Find the Z-transform of u through the Z-transform of n1(n) and 1(n).

Compare the results.

4.3. Consider the equation

y(n) =
n∑

k=−∞
u(k)

(a) Express the Z-transform of y(n) in terms of U(z). [Hint: Find the difference
y(n)− y(n− 1).]

(b) Use the convolution property to determine the Z-transform of y(n) in terms
of U(z). [Hint: If the right-hand side of the above equation can be written
as u(n) ∗ g(n), what is g(n)?]

4.4. Find the causal sequence, whose Z-transform is given by

G(z) =
1

(1 − az−1)(1− bz−1)

where you can assume that a �= b. Verify by computing g(0) and g(1) through
some other means.

4.5. The inverse Z-transform of

G(z) =
z2 + 2z

(z + 1)2(z − 2)

has already been computed for the case of 1 < |z| < 2 in Example 4.29 on
page 99. Now, find its inverse for two other cases: (a) |z| > 2; (b) |z| < 1.

4.6. Determine the inverse Z-transform of

Y (z) =
4z2 − 17z + 17

(z − 1)(z − 2)(z − 3)
, |z| > 3

4.7. Recall that the ratio test [25] is one possible way of determining if a series
is convergent. Use this test to show that the sequence {kpk} is absolutely
summable if |p| < 1. Will this test also work for a sequence of the form {knpk},
|p| < 1? Take k ≥ 0.

4.8. Consider a right sided sequence u(n) with the Z-transform

U(z) =
1

(1− 1
2z

−1)(1 − z−1)
(4.57)
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(a) Carry out a partial fraction expansion expressed as a ratio of polynomials
in z−1 and, from this expansion, determine u(n).

(b) Rewrite Eq. 4.57 as a ratio of polynomials in z and carry out a partial
fraction expansion of U(z) expressed in terms of polynomials in z. From
this expansion determine u(n). How does this compare with the result
obtained in part (a)?

4.9. Differentiating Eq. 4.17 on page 80 with respect to a, show that

z

(z − a)2
=

∞∑
n=0

nan−1z−n

and hence that

nan−11(n)↔ z

(z − a)2

Successively differentiating with respect to a, show that

n(n− 1)an−21(n)↔ 2z
(z − a)3

n(n− 1)(n− 2)an−31(n)↔ 3!z
(z − a)4

Generalize this to arrive at Eq. 4.18. Verify the condition on ROC.

4.10. If

z ∈ ROCG ∩ ROCU

then show that∑
|y(n)z−n| <∞, i.e., z ∈ ROCY

4.11. In Eq. 4.29 on page 85 we assumed the existence of (zI − A)−1. Show that a
sufficient condition is given by |z| > ‖A‖. [Hint: Key theorem 5.8 on page 169 of
[42] gives a sufficient condition for the existence of (I−A/z)−1 to be ‖A/z‖ < 1.]

4.12. Show that with z = ejθ in the stable function

G(z) =
z − 1

a

z − a , 0 < a < 1 (4.58)

|G(ejθ)| is independent of θ. Since its magnitude is not a function of θ, G(z) is
known as an all pass transfer function. [Hint: Show that G(z)H

(
z−1

)
= 1

a2 .]

4.13. This problem demonstrates a condition on complex poles of a real sequence [49].
Consider a real valued sequence u(n) with a rational Z-transform U(z).



4.6. Problems 111

(a) From the definition of the Z-transform, show that

U(z) = U∗(z∗)

where ∗ indicates complex conjugation. The RHS means: take the transform
with respect to z∗ and then take the complex conjugate of the entire thing.

(b) From the result in part (a), show that if a pole of U(z) occurs at z = z,
then a pole must also occur at z = z∗. Show also that the same result is
true for zeros.

4.14. Invert the following transfer functions:

(a)
z − bejω1

z − aejω2
, |z| > |a|

(b)
z − bejω1

z − aejω2
+
z − be−jω1

z − ae−jω2
, |z| > |b|

and determine whether the result is real. Explain.

4.15. Obtain the time domain equivalent of a system whose transfer function is

G(z) =
z2 + 3z + 1

z3 − 2z2 + z + 1

Use the following two approaches:

(a) Recursive formulation.

(b) State space realization.

4.16. This problem involves the solution of a famous difference equation.

(a) Consider

x(n+ 2) = x(n+ 1) + x(n) + δ(n+ 2) (4.59)

with x(n) = 0 for n < 0. Evaluate x(n) recursively for n = 0 to 4. Do you
know the name of this famous sequence?

(b) By Z-transforming Eq. 4.59 and simplifying, obtain an expression for X(z).

(c) Invert the Z-transform obtained above and obtain an expression for x(n).

(d) Find the ratio x(n + 1)/x(n) for large n. Do you know what the ancient
Greeks called this famous ratio?

4.17. Suppose that in a sequence {u(k)}, u(k) = 0 for k < 0, i.e., u is causal. Let

U(z) =
N(z)
D(z)

, |z| > r0

be its Z-transform with the degree of N(z) = n and the degree of D(z) = m.
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(a) Show that m = n if and only if u(0) �= 0. Notice that you have to show
both the directions.

(b) Suppose that u(0) = 0, u(1) �= 0. Then show that n = m− 1.

(c) Generalize the above result for u(k) = 0, 0 < k ≤ k0.

If possible, give examples for each.

4.18. In this problem we obtain another realization of the transfer function given in
Eq. 4.53. We do this as follows:

(a) Show that the following relation can be arrived at from the transfer
function:

y(k + 3) + a1y(k + 2) + a2y(k + 1) + a3y(k) =
b3u(k) + b2u(k + 1) + b1u(k + 2)

Show that

u(k) = ξ(k + 3) + a1ξ(k + 2) + a2ξ(k + 1) + a3ξ(k)
y(k) = b3ξ(k) + b2ξ(k + 1) + b1ξ(k + 2)

satisfy the above relation.

(b) Fill in the boxes in the following block diagram so that it implements the
above equation. Ignore xi for now.

(c) The ξ at different time instants become different states as indicated by x in
the diagram. Write expressions for states at k+1 in terms of the states at k
and the input at k. Write this in matrix form. Similarly write an expression
for y(k) in terms of the states at k and the input at k. This is known as
the controller canonical form.

ξ(k + 3) ξ(k)ξ(k + 1)ξ(k + 2)u(k)
z−1 z−1 z−1

x1 x2 x3

y(k)



Chapter 5

Frequency Domain Analysis

In this chapter, we study frequency domain aspects of signals and systems. Such an
insight is extremely important for the design of filters and controllers. We present the
tools required for this study: Fourier series and Fourier transform. We also discuss
Shannon’s sampling theorem, which specifies the minimum speed of sampling. Finally,
we present a brief introduction to filtering.

5.1 Basics

In this section, we discuss how oscillations naturally enter the system response. We
also point out the differences between continuous time and discrete time sinusoids.

5.1.1 Oscillatory Nature of System Response

Let us first consider I/O LTI systems with a single real pole. These systems have a
transfer function of the form

G(z) =
z

z − ρ (5.1)

see Footnote 6 on page 102. We will consider different cases of the location of the
pole, ρ. If the impulse response of the system is denoted by y(n), its Z-transform,
Y (z), is identical to G(z). On inversion, we obtain y(n) = ρn. A plot of the response
for different ρ values is presented in Fig. 5.1.

Notice that when 1 > ρ > 0, y decays to zero monotonically. If, on the other
hand, ρ > 1, the response grows monotonically. For negative values of ρ, we obtain
an oscillatory response. For 0 ≥ ρ > −1, we obtain an oscillatory, but decaying
exponential, while for ρ < −1, the output grows with oscillations.

We will next consider a system with a complex pole, at ρejω. If complex poles are
present in real systems, they should occur in conjugate pairs, see Problem 4.13. As a
result, ρe−jω will also be a pole, as shown in the diagram on the left-hand side of
Fig. 5.2. Let the transfer function be given by

G(z) =
z2

(z − ρejω)(z − ρe−jω)
(5.2)

Digital Control Kannan M. Moudgalya
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03143-8
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Figure 5.1: Impulse response for poles on the real axis

The response Y (z) for an impulse input is

Y (z)
z

=
z

(z − ρejω)(z − ρe−jω)
=

A1

z − ρejω
+

A∗
1

z − ρe−jω

where A1 is some complex number, of the form αejθ, and A∗
1 is the complex conjugate

of A1. On inverting, we obtain the impulse response y(n) as

y(n) = A1ρ
nejnω +A∗

1ρ
ne−jnω = αρn

[
ej(nω+θ) + e−j(nω+θ)

]
= 2αρn cos (nω + θ), n ≥ 0

(5.3)

Notice that this response is sinusoidal. One can see ω to be the frequency of oscillation.
For ω = 0, there is no oscillation, which reaches the maximum for ω = 180◦. So long
as the denominator is of the form assumed here, Eq. 5.3 holds true. For different
numerator values, only the value of A1 and hence those of α and θ will vary. The
impulse responses for different pole locations are given in the diagram on the right-
hand side of Fig. 5.2.

In Sec. 3.3.2, we have shown that the response to any signal can be written as
a linear combination of impulse responses. As a result, one can expect the poles to
have a say in the oscillatory nature of general responses as well. Problem 5.2 asks the
reader to verify that the step response of Eq. 5.2 also is oscillatory.

Often, transfer functions having more than one or two poles can also be
approximated by simpler transfer functions. As a result, the examples studied in
this section are of general interest and the results are applicable to a larger class of
systems.
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Figure 5.2: Pole locations of a typical stable second order discrete time LTI system,
indicated within unit circle

These examples show that oscillations are inherent in a large class of systems. In
order to understand this aspect, we undertake a frequency domain study of signals
and systems.

5.1.2 Continuous and Discrete Time Sinusoidal Signals

We will first see some properties of continuous sinusoidal signals. Consider a
continuous time sinusoidal signal of the form

ua(t) = A cos (Ωt+ θ), −∞ < t <∞ (5.4)

where A is the amplitude, Ω is the angular frequency in rad/s and θ is the phase in
rad. With Ω = 2πF , where F is the frequency in cycles/s or hertz, we can write ua(t)
also as

ua(t) = A cos (2πFt+ θ) (5.5)

Some properties of such signals are now listed. For every fixed value of F , ua(t) is
periodic with a period Tp = 1/F :

ua(t+ Tp) = A cos (2πF (t+ 1/F ) + θ) = A cos (2π + 2πFt+ θ)
= A cos (2πFt+ θ) = ua(t)

Because ua(t+ Tp) = ua(t) for an arbitrary t, the signal is periodic with a period Tp.
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Figure 5.3: Plot of u1(t) = cos (2π × t/8) (slow changing) and u2(t) = cos (2π × 7t/8)
(fast changing)

Continuous time sinusoidal signals with different frequencies are different. To see
this, observe the plots of u1 = cos (2π × t/8) and u2 = cos (2π × 7t/8) in Fig. 5.3.
It is clear that these plots are distinct from each other.

Increasing the frequency of u results in an increase in the rate of oscillation of the
signal. We can go on decreasing the frequency, i.e., F → 0 and Tp →∞. Similarly, we
can go on increasing F as t is a continuous variable. These relations hold good also
for complex exponential signals of the following form:

ua(t) = Aej(Ωt+θ) = A[cos (Ωt+ θ) + j sin (Ωt+ θ)]

For mathematical convenience, the concept of negative frequency is introduced.
While positive frequency can be thought of as a counterclockwise rotation
(see Fig. 5.2), negative frequency can be assumed to produce clockwise rotation. With
this, sinusoidal signals can be expressed as a combination of complex exponential
signals:

ua(t) = A cos (Ωt+ θ) =
A

2

[
ej(Ωt+θ) + e−j(Ωt+θ)

]
If we refer to the real and the imaginary parts of ua as uR and uI , we have

uR(t) = A cos (Ωt+ θ) = Re
[
Aej(Ωt+θ)

]
see Footnote 2 on page 65. We obtain,

uI(t) = A sin (Ωt+ θ) = Im
[
Aej(Ωt+θ)

]
We will now study discrete time sinusoidal signals briefly. Consider discrete time

periodic signals of the form

u(n) = A cos (ωn+ θ), −∞ < n <∞ (5.6)

where the variables have the following meaning:
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n integer variable, sample number
A amplitude of the sinusoid
ω frequency in radians per sample and
θ phase in radians.

If ω = 2πf , where f is known as the normalized frequency with units of cycles/sample,
we obtain

u(n) = A cos (2πfn+ θ), −∞ < n <∞ (5.7)

The reason why f is called normalized frequency will be made clear shortly.
The signal u(n) is said to be periodic with period N , N > 0, if and only if

u(n+N) = u(n) for all n. The smallest nonzero value for which this is true is known
as the fundamental period. Some properties of a discrete time sinusoid are now listed.

Periodicity: A discrete time sinusoid is periodic only if its frequency f is a rational
number. To see this, let

u(n) = cos (2πf0n+ θ)

To check whether u has a period N , we need to calculate u(n+N):

u(n+N) = cos (2πf0(n+N) + θ)

The signals u(n) and u(n + N) will be equal if and only if there exists an integer k
such that

2πf0N = 2kπ (5.8)

or equivalently,

f0 =
k

N
(5.9)

i.e., f0 is rational. N obtained after cancelling the common factors in k/f0, obtained
from Eq. 5.8, is known as the fundamental period.

Identical signals: Discrete time sinusoids whose frequencies are separated by
integer multiple of 2π are identical, as the following equation holds for all integer n:

cos ((ω0 + 2π)n+ θ) = cos (ω0n+ θ), ∀n

As a matter of fact, all sinusoidal sequences

uk(n) = A cos (ωkn+ θ)

where

ωk = ω0 + 2kπ, −π < ω0 < π (5.10)
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Figure 5.4: Plots of sinusoids of different frequencies

are indistinguishable or identical. In view of this observation, only the sinusoids in
the frequency range −π < ω0 < π are different, i.e.,

−π < ω0 < π or − 1
2
< f0 <

1
2

(5.11)

As a result, the above equation gives the unique frequency range. This property is
different from the previous one: now we have a fixed n and a variable f while we had
f fixed and n a variable earlier.

Alias: The highest rate of oscillation in a discrete time sinusoid is attained when
ω = π or ω = −π, or equivalently, f = 1/2 or f = −1/2. In Fig. 5.4, plots of cosω0n
have been drawn for ω0 values of π/8, π/4, π/2 and π with n taking integer values.
Matlab code M 5.1 shows how these plots are produced.

As ω0 increases, the frequency of oscillation also increases reaching a maximum
at ω0 = π. What happens if ω0 increases beyond π? Let ω1 = ω0 and ω2 = 2π − ω0.
Then, u1 = A cosω1n and u2 = A cosω2n are identical, as shown below:

u1(n) = A cosω1n = A cosω0n

u2(n) = A cosω2n = A cos(2π − ω0)n = A cosω0n

Observe that u2(n) = u1(n). We say that ω2 is an alias of ω1. We will study more
about these properties shortly.

5.1.3 Sampling of Continuous Time Signals

The first decision to make in sampled data systems is the sampling period. Although
we will study it in detail in Sec. 5.3, we introduce the topic of sampling now. Suppose
that we sample the analog signal ua(t) at a uniform sampling rate of Ts. Then

u(n) = ua(nTs), −∞ < n <∞ (5.12)
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where we have used

t = nTs =
n

Fs
(5.13)

where Fs = 1/Ts is the sampling frequency, in samples/s or hertz.
Let the continuous time signal have a frequency of F cycles/s. We will derive a

relation between the continuous time frequency F and the discrete time frequency f .
Let us sample the continuous time signal, given by Eq. 5.4–5.5, at a rate of Fs = 1/Ts.
We obtain

u(n) = A cos (2πFTsn+ θ) = A cos
(

2π
F

Fs
n+ θ

)
(5.14)

Comparing this with Eq. 5.7, we obtain

f =
F

Fs
(5.15)

and, therefore, f is called normalized frequency or relative frequency. Multiplying both
sides by 2π, we obtain the following relationship in angular frequency:

ω =
Ω
Fs

= ΩTs (5.16)

We know from the earlier discussion that while the continuous frequencies can vary all
the way up to infinity, i.e., −∞ < F <∞ or −∞ < Ω <∞, the discrete frequencies
are bounded, as given by Eq. 5.11. In view of this, the maximum continuous time
frequency that can be accommodated is given by

Fmax =
Fs

2
, Ωmax = 2πFmax = πFs =

π

Ts
(5.17)

We see that by sampling, frequency values in an infinite range are mapped into a
finite range. We illustrate this with an example.

Example 5.1 Consider sampling at the rate of Ts = 1 s the two functions
plotted in Fig. 5.3, namely u1(t) = cos (2π × t/8) and u2(t) = cos (2π × 7t/8).

On sampling, we obtain the discrete time signals as

u1(n) = cos 2π
1
8
n

u2(n) = cos 2π
7
8
n = cos 2π

(
1− 1

8

)
n

= cos
(

2πn− 2π
1
8
n

)
= cos

(
2π

1
8
n

)
Thus, we see that u2(n) = u1(n) at all the sampling instants, which can be seen
from Fig. 5.3 as well. In this figure, the two waveforms intersect exactly at the
sampling instants. Thus if we have a sequence generated by sampling cos 2π × n/8
at the rate of 1 s, we will not know whether it comes from u1(t) or from u2(t).
We see that f2 = 7/8 Hz is an aliasof f1 = 1/8 Hz. In fact, f1 + nFs are aliases
of f1 for all integer values of n.



120 5. Frequency Domain Analysis

The above example shows that we lose information when u2 is sampled at a slow
rate. We are interested in knowing the rate that we should maintain while sampling a
continuous signal. The Fourier transform is a tool that will help us study this problem.
We discuss the topic of Fourier transforms in the next section.

5.2 Fourier Series and Fourier Transforms

Fourier series is a powerful tool to study periodic signals. Many useful signals are
not periodic, though. Fourier transforms can be used to study these. We begin
the discussion with continuous time signals. We motivate the discrete time Fourier
transform with frequency response and point out how it can be obtained from the
Z-transform. We also discuss some properties of Fourier transforms.

5.2.1 Fourier Series for Continuous Time Periodic Signals

Let u(t) be a periodic signal with a fundamental period, Tp, given by

Tp =
1
F0

(5.18)

where F0 is the frequency of oscillations. We can write it in a Fourier series as follows:

u(t) =
∞∑

k=−∞
Cke

j2πkF0t (5.19)

To find Ck, we multiply both sides by e−j2πlF0t and integrate from t0 to t0 + Tp:

∫ t0+Tp

t0

u(t)e−j2πlF0tdt =
∫ t0+Tp

t0

e−j2πlF0t

( ∞∑
k=−∞

Cke
j2πkF0t

)
dt

Exchanging integration and summation,

∫ t0+Tp

t0

u(t)e−j2πlF0tdt =
∞∑

k=−∞
Ck

∫ t0+Tp

t0

ej2π(k−l)F0tdt

Separating the integral corresponding to k = l, we obtain

∫ t0+Tp

t0

u(t)e−j2πlF0tdt = Cl

∫ t0+Tp

t0

dt+
∞∑

k=−∞,k �=l

Ck

∫ t0+Tp

t0

ej2π(k−l)F0tdt

Carrying out the integration, we obtain

∫ t0+Tp

t0

u(t)e−j2πlF0tdt = ClTp +
∞∑

k=−∞,k �=l

Ck
ej2π(k−l)F0t

j2π(k − l)F0

∣∣∣∣t0+Tp

t0

(5.20)



5.2. Fourier Series and Fourier Transforms 121

Tp

u(t)

t
Tp

2−Tp

2
up(t)

−Tp

2
Tp

2

t

−Tp

Figure 5.5: Conversion of an aperiodic signal into a periodic signal

Note that if we had not separated the k = l term, we would have had a zero in the
denominator of the second term. On taking limits, the second term becomes zero, as
we show now:

ej2πnF0t
∣∣t0+Tp

t0
= ej2πnF0(t0+Tp) − ej2πnF0t0 = ej2πnF0t0(ej2πn − 1) = 0

because, from Eq. 5.18, F0Tp = 1. In view of this result, Eq. 5.20 becomes

∫ t0+Tp

t0

u(t)e−j2πlF0tdt = ClTp

from which it follows that

Cl =
1
Tp

∫ t0+Tp

t0

u(t)e−j2πlF0tdt =
1
Tp

∫
Tp

u(t)e−j2πlF0tdt (5.21)

where the last integral is over any one period Tp, as u(t) is periodic. Eq. 5.19 and
Eq. 5.21 make the Fourier series pair, which we reproduce below in one place:

u(t) =
∞∑

k=−∞
Cke

j2πkF0t

Cl =
1
Tp

∫
Tp

u(t)e−j2πlF0tdt

(5.22)

5.2.2 Fourier Transform of Continuous Time Aperiodic Signals

To extend the above analysis to aperiodic signals, which are common in control
applications, we produce a periodic extension of u(t), as shown in Fig. 5.5, and call
it up(t). Here we have assumed that u(t) vanishes outside the interval (−Tp/2, Tp/2),
where Tp can be arbitrarily large. We can recover u(t) from up(t), as follows:

lim
Tp→∞

up(t) = u(t) (5.23)
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As up(t) is periodic with period Tp, it has a Fourier series pair, similar to Eq. 5.22:

up(t) =
∞∑

k=−∞
Cke

j2πkF0t

Ck =
1
Tp

∫ Tp/2

−Tp/2

up(t)e−j2πkF0tdt

(5.24)

where F0 and Tp are reciprocals of each other, see Eq. 5.18. As up and u are identical
over one period, we obtain

Ck =
1
Tp

∫ Tp/2

−Tp/2

u(t)e−j2πkF0tdt

As u vanishes outside one period, this becomes

Ck =
1
Tp

∫ ∞

−∞
u(t)e−j2πkF0tdt (5.25)

We define a function U(F ), called the Fourier transform of u(t), as

U(F ) =
∫ ∞

−∞
u(t)e−j2πFtdt (5.26)

where U(F ) is a function of the continuous variable F . It doesn’t depend on Tp or F0.
But if we compare Eq. 5.25 and Eq. 5.26, we obtain

Ck =
1
Tp
U

(
k

1
Tp

)
(5.27)

where we have used Eq. 5.18. Thus, Fourier coefficients are samples of U(F ) taken at
multiples of F0 and scaled by F0. Substituting Eq. 5.27 in Eq. 5.24, we obtain

up(t) =
1
Tp

∞∑
k=−∞

U

(
k

Tp

)
ej2πkF0t

Defining ∆F = 1/Tp = F0, the above equation becomes

up(t) =
∞∑

k=−∞
U(k∆F )ej2πk∆Ft∆F

Invoking Eq. 5.23, we obtain

u(t) = lim
Tp→∞

up(t) = lim
∆F→0

∞∑
k=−∞

U(k∆F )ej2πk∆Ft∆F
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t
0 Ts

1

Figure 5.6: Impulse response of zero order hold

This is nothing but rectangular approximation of an integral. We obtain, on taking
limits,

u(t) =
∫ ∞

−∞
U(F )ej2πFtdF

Thus, along with Eq. 5.26, we obtain the following Fourier transform pair:

u(t) =
∫ ∞

−∞
U(F )ej2πFtdF

U(F ) =
∫ ∞

−∞
u(t)e−j2πFtdt

(5.28)

With radian frequency Ω given by Ω = 2πF , we obtain the following Fourier transform
pair:

u(t) =
1

2π

∫ ∞

−∞
U(Ω)ejΩtdΩ

U(Ω) =
∫ ∞

−∞
u(t)e−jΩtdt

(5.29)

We will now illustrate these ideas with an example.

Example 5.2 Find the Fourier transform of a pulse of height 1 and width Ts,
as given in Fig. 5.6.

We can think of this function as the response of zero order hold to an impulse
sequence. In other words, this can be thought of as the impulse response of ZOH.
We obtain its Fourier transform as

ZOH(jΩ) =
∫ Ts

0

e−jΩtdt =
e−jΩt

−jΩ
∣∣∣∣Ts

0

=
1− e−jΩTs

jΩ

We can write this in polar form by factoring out e−jΩTs/2 and multiplying and
dividing by 2:

ZOH(jΩ) = e−jΩTs/2

(
ejΩTs/2 − e−jΩTs/2

2j

)
2
Ω

= e−jΩTs/2 sin (ΩTs/2)
Ω/2

Thus, we arrive at the Fourier transform of ZOH:

ZOH(jΩ) = Tse
−jΩTs/2 sin (ΩTs/2)

ΩTs/2
(5.30)
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5.2.3 Frequency Response

In this section, we will motivate the need for the discrete time Fourier transform with
the concept of frequency response. The phrase frequency response denotes the response
of an I/O LTI system to a sinusoidal input. Suppose that a complex frequency signal

u(n) = ejωn (5.31)

is applied to an LTI system with impulse response g(n). The output y is given by

y(n) = g(n) ∗ u(n) =
∞∑

k=−∞
g(k)u(n− k) =

∞∑
k=−∞

g(k)ejω(n−k)

Pulling the constant part out of the summation sign, we obtain

y(n) = ejωn
∞∑

k=−∞
g(k)e−jωk (5.32)

Notice that the term inside the summation is a function of ω alone. It is of the form∑∞
k=−∞ g(k)z−k, which is the Z-transform of {g(n)}. Motivated by this fact, we define

the discrete time Fourier transform of {g(n)} as

G(ejω)
�
=

∞∑
k=−∞

g(k)e−jωk (5.33)

We will discuss the convergence condition for this series in Sec. 5.2.5. Combining
Eq. 5.32 and Eq. 5.33, we obtain

y(n) = ejωnG(ejω) (5.34)

As G(ejω) is a complex number, it can be written as |G(ejω)|ejϕ, where ϕ is the phase
angle of G(ejω) at the given ω. With this, the above equation becomes

y(n) = ejωn|G(ejω)|ejϕ = |G(ejω)|ej(wn+ϕ) (5.35)

We see that when the input is a sinusoid with frequency ω (see Eq. 5.31), the output
of the LTI system also is a sinusoid with the same frequency ω. In addition, we observe
the following:

1. The amplitude of the output is multiplied by the magnitude of G(ejω).

2. The output sinusoid shifts by ϕ, the phase angle of G(ejω), with respect to the
input.

The frequency response behaviour is fundamental to the design of filters, which are
ubiquitous. This topic is discussed in detail in Sec. 5.4. Central to frequency response
is the Fourier transform of discrete time signals, defined in Eq. 5.33. Problem 5.4
is concerned with the Fourier transform of discrete time periodic signals. The next
section is devoted to the topic of Fourier transform of discrete time aperiodic signals.
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5.2.4 Fourier Transform of Discrete Time Aperiodic Signals

In the previous section, we motivated the need for the Fourier transform of discrete
time signals. Such a transform is known as the discrete time Fourier transform. Unless
otherwise stated, we will refer to this simply as the Fourier transform. The Fourier
transform of a finite energy discrete time signal u(n) is defined as

U(ejω) �=
∞∑

n=−∞
u(n)e−jωn (5.36)

Recall the definition given earlier in Eq. 5.35. We would like to find an expression for
u(n) in terms of its Fourier transform, U . First observe that U is periodic in ω with
a period of 2π:

U
(
ej(ω+2πk)

)
=

∞∑
n=−∞

u(n)e−j(ω+2πk)n = U(ejω) (5.37)

This periodicity is just a consequence of the frequency of any discrete time signal
being unique only in the range (−π, π) or (0, 2π). The Fourier transform in this case
is a summation instead of an integral. Because U is periodic, it has a Fourier series
expansion, the same as in Eq. 5.36. The Fourier series coefficients, namely u(n), can
be calculated by integrating both sides of Eq. 5.36 as follows:

∫ π

−π

U(ejω)ejωmdω =
∫ π

−π

[ ∞∑
n=−∞

u(n)e−jωn

]
ejωmdω (5.38)

If the infinite sum in this equation converges, we can change the order of integration
and summation to obtain∫ π

−π

U(ejω)ejωmdω =
∞∑

n=−∞
u(n)

∫ π

−π

ejω(m−n)dω

Using the procedure used to arrive at Eq. 5.20, we can split the right-hand side into a
term consisting of only m and the rest and then show that the entire right-hand side
is equal to 2πu(m). We arrive at the expression we are looking for:

u(m) =
1

2π

∫ π

−π

U(ejω)ejωmdω =
∫ 1/2

−1/2

U
(
ej2πf

)
ej2πfmdf (5.39)

because ω = 2πf . To summarize, we obtain the Fourier transform pair

U(ejω) =
∞∑

n=−∞
u(n)e−jωn

u(m) =
∫ 1/2

−1/2

U
(
ej2πf

)
ej2πfmdf

(5.40)
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5.2.5 Convergence Conditions for Fourier Transform1

We now briefly address the conditions under which the Fourier transform of discrete
time sequences converges. Recall that while defining the Z-transform, we have enforced
the condition of absolute convergence. The objectives of this requirement are that the
Z-transform should exist and that we can uniquely invert it.

In case of the Z-transform, we have had the luxury of choosing z so as to
achieve absolute convergence. As a result, we can obtain Z-transforms of unstable
sequences as well, see Footnote 4 on page 68. In the case of Fourier transforms,
we substitute z = ejω and hence get constrained to the unit circle. As a result,
absolute convergence becomes restrictive for Fourier transforms. A weaker condition
is that of mean square convergence. This results in the sequence converging to
the mean at the points of discontinuity. Signals with finite energy (see Eq. 3.2 on
page 35) can be accommodated through this relaxation, even if they do not satisfy the
condition of absolute convergence. Unfortunately, even this condition is not sufficient
to accommodate useful signals, such as step and sinusoidal sequences. These sequences
may be accommodated by requiring the convergence in a distributional sense, through
special functions such as Dirac delta functions. This is the least restrictive criterion
of all.

This topic is not pursued any further here. The interested reader is referred to
texts such as [38].

5.2.6 Fourier Transform of Real Discrete Time Signals

As the Fourier transform is the Z-transform evaluated at z = ejω, all properties of
the Z-transform hold, with appropriate substitutions. In this section we will discuss
some additional properties, in the case of real signals. Starting from the definition of
Fourier transform, we obtain

U(ejω) =
∞∑

n=−∞
u(n)e−jωn =

∞∑
n=−∞

u(n) cosωn− j
∞∑

n=−∞
u(n) sinωn (5.41)

Similarly, we obtain for negative frequency:

U(e−jω) =
∞∑

n=−∞
u(n)ejωn =

∞∑
n=−∞

u(n) cosωn+ j

∞∑
n=−∞

u(n) sinωn (5.42)

Next, we will derive the inverse Fourier transform for real valued signals. From
Eq. 5.39, we obtain for a real valued signal u,

u(m) =
1

2π

∫ π

−π

U(ejω)ejωmdω

Denoting the real and imaginary parts of U as UR and UI , respectively, we obtain

u(m) =
1

2π

∫ π

−π

(UR(ejω) + jUI(ejω))(cosωm+ j sinωm)dω

1This section may be skipped in a first reading.
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Let us compare the real and imaginary parts. Because u is real, we obtain

u(m) =
1

2π

∫ π

−π

(UR(ejω) cosωm− UI(ejω) sinωm)dω (5.43)

Symmetry of real and imaginary parts for real valued sequences: Notice
that the real parts of Eq. 5.41 and Eq. 5.42 are identical. Also, the imaginary parts
of these two expressions are negatives of each other:

UR(ejω) = UR(e−jω)

UI(ejω) = −UI(e−jω)
(5.44)

From the above equations, we see that the real part is an even function of ω, while
the imaginary part is an odd function of ω. We can summarize these properties as

U(ejω) = U∗(e−jω) (5.45)

where the asterisk denotes complex conjugation.

Symmetry of magnitude and phase angle for real valued sequences: By
the definition of magnitude and phase of complex signals, we have

|U(ejω)| =
√
U2

R(ejω) + U2
I (ejω)

Arg(U(ejω)) = tan−1 UI(ejω)
UR(ejω)

In view of Eq. 5.44, we obtain the following symmetry properties for both magnitude
and phase:

|U(ejω)| = |U(e−jω)|
Arg(U(ejω)) = −Arg(U(e−jω))

(5.46)

In other words, the magnitude and the phase are even and odd functions, respec-
tively.

Example 5.3 Find the Fourier transform of the unit impulse sequence, {δ(n)}.
The Z-transform of {δ(n)} is one, see Eq. 4.7 on page 70. Because the Fourier
transform is obtained by substituting z = ejω, the Fourier transform of {δ(n)}
also is one.

We see that the Fourier transform of the impulse sequence is unity at all
frequencies. Because the time sequence is real, as expected, the symmetry
properties implied by Eq. 5.44 and Eq. 5.46 are trivially satisfied: the imaginary
part of the Fourier transform is zero.
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Example 5.4 Find the Fourier transform of

u(n) =

{
A 0 ≤ n ≤ N − 1
0 otherwise

where A can be taken to be real. As u(n) is a finite sequence, its Fourier transform
exists. We obtain

U(ejω) =
N−1∑
n=0

Ae−jωn = A
1− e−jωN

1− e−jω

= A
e−jωN/2

(
ejωN/2 − e−jωN/2

)
e−jω/2

(
ejω/2 − e−jω/2

)
= Ae−jω(N−1)/2 sinωN/2

sinω/2

Using

lim
ω→0

sinωN/2
sinω/2

= lim
ω→0

N/2 cosωN/2
1/2 cosω/2

= N,

we obtain

|U(ejω)| =
AN ω = 0

A

∣∣∣∣ sinωN/2sinω/2

∣∣∣∣ otherwise

Arg(U) = −ω
2

(N − 1) + Arg

(
sinωN/2
sinω/2

)
The symmetry properties of Eq. 5.44 and Eq. 5.46 are once again satisfied.

Properties of real and even signals: If u is real, we obtain from Eq. 5.41 the
real and imaginary parts of U , respectively, as

UR(ejω) =
∞∑

n=−∞
u(n) cosωn

UI(ejω) = −
∞∑

n=−∞
u(n) sinωn

(5.47)

If u(n) is real and even, i.e., u(−n) = u(n), then u(n) cosωn is even and u(n) sinωn
is odd. Hence, from Eq. 5.47, we obtain

UR(ejω) = u(0) + 2
∞∑

n=1

u(n) cosωn

UI(ejω) = 0

(5.48)
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This shows that for real and even signals, the Fourier transform is real. In view of the
fact that the imaginary part is zero, using Eq. 5.43, we obtain a simplified expression
for the inverse Fourier transform as

u(m) =
1
π

∫ π

0

UR(ejω) cosωmdω (5.49)

The fact that the Fourier transform of real and even signals is real has been
demonstrated already in Example 5.3. We present one more example to illustrate
this fact.

Example 5.5 A moving average filter of order n averages n consecutive inputs.
Find the Fourier transform of the moving average filter of order three,

y(n) =
1
3

[u(n+ 1) + u(n) + u(n− 1)]

We would like to determine the impulse response coefficients first. Let us write
y(n) as a convolution of impulse response and input:

y(n) =
∞∑

k=−∞
g(k)u(n− k) = g(−1)u(n+ 1) + g(0)u(n) + g(1)u(n− 1)

Comparing the above two expressions for y(n), we obtain

g(−1) = g(0) = g(1) =
1
3

and g is zero at all other time instants. We can now calculate the Fourier transform:

G
(
ejω

)
= G(z)|z=ejω =

∞∑
n=−∞

g(n)z−n|z=ejω

=
1
3
(
ejω + 1 + e−jω

)
=

1
3

(1 + 2 cosω)

Observe that G is real for ω, which is not surprising as the time sequence is real and
even. For ω in the range [0, 2π/3), cosω > −1/2. As a result, G(ejω) > 0 in this
range. For ω in the range (2π/3, π], cosω < −1/2 and, as a result, G(ejω) < 0.
In view of this, we obtain the phase of G as

Arg(G) =


0 0 ≤ ω < 2π

3
π

2π
3
< ω ≤ π

As G is real, but with sign changes, we obtain

|G(ejω)| = 1
3
|(1 + 2 cosω)|

Plots of magnitude of G vs. ω using a log–log scale and the phase of G vs. ω
using a semi-log scale are together known as the Bode plot. A Bode plot of this
example, evaluated using M 5.3, is given in Fig. 5.7.
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Figure 5.7: Bode plot of moving average filter

Example 5.6 Find the Fourier transform of the differencing filter,

y(n) = u(n)− u(n− 1)

Using the procedure of Example 5.5, it is easy to verify that g(0) = 1, g(1) = −1
and all other terms are zero. We obtain

G
(
ejω

)
= G(z)|z=ejω =

∞∑
n=−∞

g(n)z−n|z=ejω

= 1− e−jω = e−jω/2
(
ejω/2 − e−jω/2

)
= 2je−jω/2 sin

ω

2

|G| = 2
∣∣∣sin ω

2

∣∣∣
A Bode plot of this example is given in Fig. 5.8. M 5.4 is used to draw this. From
this figure, one can see that the differencing filter is high pass.

5.2.7 Parseval’s Theorem

In this section, we will derive a relation for finite energy signals. The energy of a
discrete time signal {u(n)} has been defined in Eq. 3.2 on page 35; we reproduce it
for convenience:

Eu =
∞∑

n=−∞
|u(n)|2 (5.50)
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Figure 5.8: Bode plot of differencing filter

We write |u(n)|2 as u(n)u∗(n) and express u∗(n) with the inverse Fourier transform,
given by Eq. 5.39:

Eu =
∞∑

n=−∞
u(n)u∗(n) =

∞∑
n=−∞

u(n)
[

1
2π

∫ π

−π

U∗(ejω)dω
]

As u is a finite energy signal, it is possible to exchange the order of integration and
summation. We obtain

Eu =
1

2π

∫ π

−π

U∗(ejω)

[ ∞∑
n=−∞

u(n)e−jωn

]
dω =

1
2π

∫ π

−π

|U(ejω)|2dω

We arrive at the relation

Eu =
∞∑

n=−∞
|u(n)|2 =

1
2π

∫ π

−π

|U(ejω)|2dω (5.51)

5.3 Sampling and Reconstruction

We saw in Example 5.1 on page 119 the pitfalls that result from not sampling a signal
at a fast enough rate. Using Fourier transforms, we will study this problem in more
detail. This will also help determine the minimum rate at which a continuous signal
has to be sampled and how to reconstruct the continuous signal, given the discrete
time signal.

It is not difficult to understand that a frequency domain perspective is useful in the
sampling rate selection problem. For example, we expect that large sampling periods
Ts will be sufficient for slowly varying signals. Similarly, small Ts will be required for
fast changing signals. It is obvious that the phrases slowly varying and fast changing
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denote the frequency aspect of the underlying signal. Hence, it should not come as a
surprise to the reader that the Fourier transform will be used to decide the sampling
rate.

5.3.1 Sampling of Analog Signals

Suppose that an aperiodic analog signal ua(t) is sampled at a uniform sampling period
of Ts to produce a discrete time signal u(n). Then,

u(n) = ua(nTs), −∞ < n <∞ (5.52)

Suppose that ua(t) has finite energy. Then, Fourier transforms of these signals exist.
We will write each of the two sides in Eq. 5.52 with the help of the inverse Fourier
transform, using Eq. 5.29 and Eq. 5.40. We obtain∫ 1/2

−1/2

U(f)ej2πfndf =
∫ ∞

−∞
Ua(F )ej2πFnTsdF

where we have replaced U(ej2πf ) with the simplified notation of U(f). Because Ts =
1/Fs, we obtain∫ 1/2

−1/2

U(f)ej2πfndf =
∫ ∞

−∞
Ua(F )ej2πnF/FsdF (5.53)

The left-hand side of the above equation becomes∫ 1/2

−1/2

U(f)ej2πfndf =
1
Fs

∫ Fs/2

−Fs/2

U

(
F

Fs

)
ej2πnF/FsdF (5.54)

while the right-hand side becomes∫ ∞

−∞
Ua(F )ej2πnF/FsdF =

∞∑
k=−∞

∫ (k+1/2)Fs

(k−1/2)Fs

Ua(F )ej2πnF/FsdF

Substituting Q = F − kFs,

=
∞∑

k=−∞

∫ Fs/2

−Fs/2

Ua(Q+ kFs)ej2πn(Q+kFs)/FsdQ

Because ej2πn = 1,

=
∞∑

k=−∞

∫ Fs/2

−Fs/2

Ua(Q+ kFs)ej2πnQ/FsdQ

Because Q is dummy,

=
∞∑

k=−∞

∫ Fs/2

−Fs/2

Ua(F + kFs)ej2πnF/FsdF
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Finally, exchanging the integral and the sum, we obtain

∫ ∞

−∞
Ua(F )ej2πnF/FsdF =

∫ Fs/2

−Fs/2

( ∞∑
k=−∞

Ua(F + kFs)

)
ej2πnF/FsdF (5.55)

Because of Eq. 5.53, Eq. 5.54 and Eq. 5.55 are equal. So we obtain

1
Fs

∫ Fs/2

−Fs/2

U

(
F

Fs

)
ej2πnF/FsdF =

∫ Fs/2

−Fs/2

( ∞∑
k=−∞

Ua(F + kFs)

)
ej2πnF/FsdF

From this it follows that

1
Fs
U

(
F

Fs

)
=

∞∑
k=−∞

Ua(F + kFs)

or equivalently,

U

(
F

Fs

)
= Fs

∞∑
k=−∞

Ua(F + kFs) (5.56)

A study of this equation will help us determine the minimum required speed of
sampling. The above equation can be written for a specific F0, Fs/2 > F0 > −Fs/2,
as follows:

U

(
F0

Fs

)
= Fs[· · ·+ Ua(F0 − Fs) + Ua(F0) + Ua(F0 + Fs) + · · · ] (5.57)

In Fig. 5.9, a function ua(t) and its Fourier transform Ua(F ) are plotted. It is assumed
that Ua(F ) = 0 for F > B, i.e., B is its bandwidth. It is also assumed that Fs

2 > B,
i.e., a fast sampling rate is used and hence Ua(F ) = 0 for F > Fs

2 . In other words,
Ua(F0 + kFs) = 0, k = ±1,±2, . . . . Using this fact in Eq. 5.57, we obtain

U

(
F0

Fs

)
= FsUa(F0)

i.e., U is a scaled version of Ua. In other words, the shape of the Fourier transform of
the analog signal is not affected by sampling. Thus for Fs/2 > F > −Fs/2, the plot
of U(F/Fs) looks similar to Ua(F ). From Eq. 5.56, however, notice that U(F/Fs) is
periodic in F with a period Fs, i.e.,

U

(
F

Fs

)
= U

(
F + Fs

Fs

)
= U

(
F − Fs

Fs

)
= · · · = U

(
F + kFs

Fs

)
, k = ±1, ±2

A plot of U(F/Fs) reflects this fact in Fig. 5.9. The right-hand side consists of a
periodic repetition of the scaled spectrum of FsUa(F ) with period Fs.

If sampled fast enough, we will not lose any information, as shown in Fig. 5.9. We
can recover Ua(F ) from U(F/Fs). If not sampled fast enough, aliasing takes place
as shown in Fig. 5.10. We cannot recover Ua(F ) from U(F/Fs), because the high
frequency components have changed.
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Figure 5.9: Fast sampling preserves all required information. The central part of U is
identical in shape to that of Ua.

Sometimes aliasing cannot be avoided. This will happen when the Fourier
transform of the continuous signal never vanishes. For example, consider Fig. 5.11. We
can see that the Fourier transform of the sampled signal is a superposition of frequency
shifted signals. In a situation like this, there will always be aliasing irrespective of the
sampling rate. The only way to handle this problem is to filter the high frequency
components before sampling, as shown in Fig. 5.12.

5.3.2 Reconstruction of Analog Signal from Samples

In the previous section, we have presented the condition to be satisfied so that the
Fourier transform of the discrete time signal will have no distortions. Suppose that we
sample at the required rate and obtain discrete time signals. Observe that this is the
only measurement we have of the continuous time signal, i.e., we do not measure the
values in between the sampling instants. Given that we have not lost any information
while sampling, can we recover the continuous time signal completely? Because this
method of reconstructing the continuous time signal is likely to be more accurate than
ZOH, presented in Sec. 2.4.2 and Sec. 2.5, can we use it for control purposes?

To answer these questions, let us first see if it is possible to reconstruct the
continuous time signal from the sampled data. Let us assume that we have sampled
the analog signals fast enough and hence that there is no aliasing. As a result, let

Ua(F ) =


1
Fs
U

(
F

Fs

)
|F | ≤ Fs/2

0 |F | > Fs/2
(5.58)

Let us proceed to construct the analog signal from the samples. Recall the inverse
Fourier transform relation given in Eq. 5.28 on page 123:

ua(t) =
∫ ∞

−∞
Ua(F )ej2πFtdF
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Figure 5.10: Slow sampling results in aliasing. The central part of U is no longer
identical to Ua and, as a result, Ua cannot be recovered from U .

Ua(F )

1
Fs

U
(
F
Fs

)

Ua(F )Ua(F + Fs) Ua(F − Fs)

Figure 5.11: Signal that is not band limited results in aliasing, whatever the sampling
rate

Next, substitute for Ua from Eq. 5.58:

ua(t) =
1
Fs

∫ Fs/2

−Fs/2

U

(
F

Fs

)
ej2πFtdF
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U ′a(F − Fs)

U ′a(F )

1
Fs

U ′
(
F
Fs

)

Ua(F )U ′a(F + Fs)

Figure 5.12: Filtering of signal of Fig. 5.11 to produce a band limited signal

Substitute for U the Fourier transform relation given in Eq. 5.40 on page 125:

ua(t) =
1
Fs

∫ Fs/2

−Fs/2

[ ∞∑
n=−∞

u(n)e−j2πnF/Fs

]
ej2πFtdF

Assume that this expression converges and hence exchange the summation and
integration:

ua(t) =
1
Fs

∞∑
n=−∞

u(n)
∫ Fs/2

−Fs/2

ej2πF (t−n/Fs)dF

Integrating,

ua(t) =
1
Fs

∞∑
n=−∞

ua(nT )
1

j2π
(
t− n

Fs

) ej2πF (t−n/Fs)
∣∣∣Fs/2

−Fs/2

Taking the limits,

ua(t) =
1
Fs

∞∑
n=−∞

ua

(
n

Fs

)
ej2π(t−n/Fs)Fs/2 − e−j2π(t−n/Fs)Fs/2

j2π(t− n/Fs)

Simplifying, we obtain the reconstruction formula,

ua(t) =
∞∑

n=−∞
ua

(
n

Fs

) sin
{
π
(
t− n

Fs

)
Fs

}
π
(
t− n

Fs

)
Fs

(5.59)

This is also known as the ideal interpolation formula. Let us summarize our findings.
If the highest frequency contained in any analog signal ua(t) is Fmax = B and the

signal is sampled at a rate Fs > 2Fmax = 2B, then ua(t) can be exactly recovered
from its sample values using the interpolation function

g(t) =
sin (2πBt)

2πBt
(5.60a)
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Thus

ua(t) =
∞∑

n=−∞
ua

(
n

Fs

)
g(t− n/Fs) (5.60b)

where

ua

(
n

Fs

)
= ua(nT ) = u(n) (5.60c)

are the samples of ua(t). Thus, we have answered the first question of whether we can
uniquely reconstruct the analog signal in the affirmative.

Now, let us look at the second question of whether we can use this reconstruction
procedure to replace ZOH. The reconstruction procedure indicated in Eq. 5.59–5.60
is not causal: the sum requires all samples, including the ones yet to be obtained.
For example, the reconstruction formula requires samples from the infinite future as
well. As a result, this reconstruction is not useful for real time applications, such as
control.

What is the utility of this result, if it is not causal and hence not useful for
real time applications? This important result provides the absolute minimum limit
of sampling rate. If the sampling rate is lower than this minimum, then no filter
(whether causal or not) can achieve exact reproduction of the continuous function
from the sampled signals. Moreover, in certain applications, such as image processing,
the reconstruction takes place offline, i.e., reconstruction is attempted on all sampled
data already obtained. Here, the variable t can be taken to denote the space and the
results derived earlier can be used.

We conclude this section by stating that if Fs = 2Fmax, Fs is denoted by FN , the
Nyquist rate.

5.3.3 Frequency Domain Perspective of Zero Order Hold

Although the Shannon sampling theorem gives a way of reconstructing the original
signal from samples, ZOH is more practical as it is a causal function. Suppose u(k)
is the sample sequence and we want to produce a continuous function out of this. We
define uh(t) as

uh(t) = u(kTs), kTs ≤ t < (kTs + Ts)

As uh is composed of a zero order polynomial passing through the samples u(kTs),
this hold operation is called the zero order hold or ZOH. The result of applying ZOH
on sampled signals is that we obtain a staircase waveform. It is clear that if we sample
fast enough, the staircase becomes a better approximation of the original, smooth,
waveform. It is also clear that if the original signal sample is one of high frequency,
we need to sample it fast so as to make the staircase waveform a good approximation.
It is clear from this that the goodness of ZOH is dependent on the frequency content
of the original waveform. In order to get a better feel for this, we would like to study
the effect of ZOH in the frequency domain.

The process of sampling and ZOH, which will be abbreviated as SH, is not a time
invariant function. This will be clear if one studies Fig. 5.13, where a continuous time
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time

Figure 5.13: Staircase waveforms obtained for different starting sampling times. The
sampled waveforms are not time shifted versions of each other.

function is sampled, followed by ZOH, for two different starting points, arriving at
two staircase forms. If the operation of SH, considered as a single operation, is time
invariant, the two staircases will be time shifted versions of each other. It is clear from
this figure, though, that this is not the case. As a result, SH is not time invariant.
Nevertheless, we will pretend that SH is LTI and carry out the following approximate
analysis, as it provides a frequency domain perspective of SH.

Note that when a unit impulse {δ(n)} is sent through a ZOH, the resulting output
is as shown in Fig. 5.6 on page 123. In other words, Fig. 5.6 has the impulse response
of a ZOH. Its Fourier transform has been calculated in Eq. 5.30. Using Ω = 2πF =
2πf/Ts, we obtain ΩTs/2 = πf . Thus Eq. 5.30 becomes

ZOH = Tse
−jπf sinπf

πf
(5.61)

Now we will see the effect of sampling and ZOH together. If the sampling is carried
out fast enough, the transfer function of sampling is Fs, see Fig. 5.9. Thus the transfer
function of sampling and ZOH, denoted as SH, is given as

SH = FsTse
−jπf sinπf

πf
= e−jπf sinπf

πf
(5.62)

since Fs = 1/Ts. If SH were equal to one, there would be zero distortion while going
from a continuous to a discrete time signal. Let us now evaluate the actual distortion
in the SH operation. From the above equation, we obtain the magnitude of the SH
operation as

|SH| =
∣∣∣∣ sinπfπf

∣∣∣∣ (5.63)

A plot of |SH|, as a function of f , is shown in Fig. 5.14. For f values close to 0, |SH |
is approximately one and hence there is not much distortion. For values of f close to
the maximum value of 0.5, however, the gain is far from one. If only we can operate
the system at low values of f , the distortion due to sampling will be small. We now
show that this can be achieved by increasing the sampling frequency.

Consider a band limited continuous signal as shown in Fig. 5.9. The frequency
over which the sampled function is nonzero is (0, B). Recall from Eq. 5.15 on page 119
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Figure 5.14: Magnitude Bode plot of SH and frequency limits when sampled at Fs =
4B or twice the minimum rate (dashed vertical line) and at Fs = 8B or four times
the minimum rate (solid vertical line)

that the normalized frequency is f = F/Fs. As a result, the maximum normalized
frequency becomes fmax = B/Fs. Hence, if the sampling rate Fs is twice the band, i.e.,
Fs = 2B, we obtain fmax = 1/2. As a result, the normalized frequency is nonzero only
in the interval (0,0.5). Note that this is the absolute minimum sampling frequency, as
dictated by the sampling theorem. Let this minimum sampling frequency be denoted
by Fs0 . In other words, we obtain

B

Fs0

= 0.5 (5.64)

Suppose that we now explore the use of a sampling frequency Fs1 at twice the
minimum frequency, i.e., Fs1 = 2Fs0 . Then, using Eq. 5.64, we obtain B/Fs1 = 0.25.
Because B is the largest frequency present in the continuous time signal, the largest
f that we have to deal with is precisely 0.25. In other words, for all other frequencies
present in the input signal, the f value will be even smaller. This frequency limit is
indicated by the dashed vertical line in Fig. 5.14. The maximum distortion is produced
at f = 0.25 and it is about 10%. If, instead, we use four times the minimum frequency
Fs2 , i.e., Fs2 = 4Fs0 , using the same argument as above, we obtain B/Fs2 = 0.125.
We once again indicate the working frequency range by drawing a solid vertical line
at f = 0.125 in Fig. 5.14. The maximum distortion is now produced at f = 0.125
and it is about 3%. It is easy to see that as the sampling frequency increases, the
distortion in the reconstructed signal decreases.

Thus, even though the above analysis is only approximate, it agrees with our
intuition that as the sampling frequency increases, the discrete time signal, obtained
through SH, gets closer to the continuous time signal.

5.4 Filtering

Measurements are often corrupted by high frequency noise, and have to be filtered
before further processing. Systems that transmit the low frequency information while
removing the effect of high frequency noise are known as low pass filters and this action
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is known as low pass filtering. Sometimes we are interested in monitoring a transient
response so as to take early corrective action. Often this requires a derivative action
that works on the basis of the slope of the response curve. We will see later that this
requires the usage of the high frequency content of the response. Indeed we may be
interested in filtering the frequency content in some arbitrary frequency range while
passing the others. We now show how to achieve this using the frequency response
property of LTI systems, discussed in Sec. 5.2.3.

We have seen in Sec. 5.2.3 that when the input to an LTI system is a sinusoid,
the output also is a sinusoid of the same frequency, but with a phase shift and an
amplitude change. Recall also from Eq. 5.35 on page 124 the expression for the filter
output y, reproduced here for convenience:

y(n) = |G(ejωn)|ej(wn+ϕ) (5.65)

where the input is ejwn and G is the transfer function of the LTI system. Observe
from this equation that at frequencies where |G(ejω)| is large, the sinusoid is amplified
and at those frequencies where it is small, the sinusoid is attenuated:

1. The systems with large gains at low frequencies and small gains at high
frequencies are called low pass filters as these transmit low frequency signals
without much loss in information.

2. On the other hand, the systems that have high gain at high frequencies and
small gain at low frequencies are called high pass filters.

3. A filter that filters out a specific frequency is called a notch filter, often used to
filter the harmonics associated with the power source.

4. A filter that amplifies frequencies in a specified frequency range [ω1, ω2] is known
as a band pass filter. This frequency range is known as the pass band of this
filter. The range [ω3, ω4] is known as a stop band when signals with frequency
in this range are stopped or filtered out.

Other filtering characteristics lead to other kinds of filters. We will look at some more
definitions associated with filtering. The cutoff frequency of ωc of a filter is defined as
the value of ω such that |G(ejωc)| = Ĝ/2, where Ĝ is |G(ej0)| for low pass, |G(ejπ)|
for high pass and the maximum value of |G(ejω)| in the pass band for the band pass
filter.

The bandwidth of a low pass filter is the frequency range [0, ωc], where ωc is the
cutoff frequency. Pass band filters have two cutoff frequencies, ωc2 > ωc1 > 0, and for
these, [ωc1, ωc2] is the bandwidth.

5.4.1 Pole–Zero Location Based Filter Design

There are many different ways to design filters. Indeed, there are entire books
devoted exclusively to this topic. In this section, we will look at the method of filter
design through appropriate choice of pole and zero locations. This quick and simple
method helps arrive at first-cut filters, capable of meeting all needs, except the most
demanding ones.

Consider the application of the input u(k) = ak1(k) to an LTI plant with transfer
function G(z). As we are interested in finding out what happens to the frequency
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content of u by the action of G(z), we will take a to be of the form ejω . Let the
output from the LTI system be y(k). Then

Y (z) = G(z)
z

z − a (5.66)

Suppose that G(z) does not have a pole at a. On expanding by partial fractions, we
obtain

Y (z) = e0 + e1
z

z − a + {terms due to the poles of G(z)} (5.67)

Notice that the effect of the input u on the output y depends on e1. If e1 is large,
this input component is present in the output y, while if e1 is small, the effect of u is
removed in the output. Substituting for Y in Eq. 5.67 from Eq. 5.66, we obtain

G(z)
z

z − a = e0 + e1
z

z − a + {terms due to the poles of G(z)}

From this, we arrive at the value of e1 as

e1 =
z − a
z

G(z)
z

z − a
∣∣∣∣
z=a

= G(a) (5.68)

From this equation, it is clear that if we want to pass the input signal ak in the output,
G(a) should be large, while a small G(a) would result in the attenuation of this input
signal in the output. Large G(a) can be achieved if G(z) has a pole close to a while
a zero of G(z) near a will ensure the reduction of the effect of u on the output.

In summary, a designer should place the poles of the transfer function near the
frequencies of the input signal that they want to transmit. Similarly, the zeros should
be placed at the frequencies of the input that they want to reject.

We have already seen that the frequency response characteristics of a system with
impulse response g(n) are given by its Fourier transform G(ejω). We also know that
the range of unique values of G are obtained over −π < ω ≤ π only. We have seen
earlier that values of ω close to 0 correspond to low frequencies while those close to
±π correspond to high frequencies as far as the sampled signal g(n) is concerned.
Notice that ejω with ω ∈ (−π, π] defines the unit circle. As a result, we can mark the
low and high frequency regions as in Fig. 5.15. From the earlier discussion, to pass
signals of frequency ω1, we should place poles around that frequency and, to reject
ω2, we should place zeros around that. In a low pass filter, we pass low frequency
signals and reject high frequency signals. Thus a low pass filter is of the form given
on the left-hand side of Fig. 5.16. Notice that the poles are generally placed inside the
unit circle so that the system is stable. Although we have shown three poles and three
zeros, there can be more or less number of poles. The only thing we have to ensure
is that the complex poles or zeros should occur in conjugate pairs. An example of a
high pass filter is given on the right-hand side of the same figure.

Example 5.7 Draw the Bode plots of two filters with transfer function G1(z) =
0.5/(z − 0.5) and G2(z) = 0.25(z + 1)/(z − 0.5) and comment on their filtering
characteristics.
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Figure 5.16: Pole and zero locations of a low pass filter (left) and of a high pass filter
(right)

Note that G1(z)|z=1 = 1, so that its steady state gain is 1, see Sec. 4.3.1.
Substituting z = ejω , we obtain

G1(ejω) =
0.5

ejω − 0.5
=

0.5
(cosω − 0.5) + j sinω

= 0.5
(cosω − 0.5)− j sinω
(cosω − 0.5)2 + sin2 ω

As we want to draw the Bode plot, let us evaluate the magnitude and the phase:

|G1(ejω)| = 0.5√
1.25− cosω

∠G1(ejω) = − tan−1

(
sinω

cosω − 0.5

)
The Bode plot for this system, obtained using M 5.1, is drawn with solid lines
in Fig. 5.17. From this plot it is clear that this filter only magnifies the signal
frequencies near ω = 0 in relation to other frequencies. As a result, it is a low pass
filter.

The filter G2, on the other hand, actively rejects high frequencies with the help
of a zero. Note that the steady state gain of G2 also is one, i.e., |G2(z)|z=1 = 1.
Let the filter now have the transfer function. Let us now calculate the magnitude
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Figure 5.17: Bode plot of G1(z) = 0.5/(z − 0.5) (solid line) and G2(z) =
0.25/(z + 1)(z − 0.5) (broken line)

and phase of G2:

G2(ejω)
K

=
ejω + 1
ejω − 0.5

=
cosω + j sinω + 1

cosω + j sinω − 0.5

=
[(cosω + 1) + j sinω][(cosω − 0.5)− j sinω]

(cosω − 0.5)2 + sin2 ω

G2(ejω)
0.25

=
(cos2 ω + 0.5 cosω − 0.5) + sin2 ω

sin2 ω + cos2 ω + 0.25− cosω

+
j sinω(cosω − 0.5− cosω − 1)
sin2 ω + cos2 ω + 0.25− cosω

G2 =
(0.5 + 0.5 cosω)− 1.5j sinω

1.25− cosω
0.25

The Bode plot of G2 is shown with dashed lines in M 5.1. Notice that
∣∣G2(ejω)

∣∣ <∣∣G1(ejω)
∣∣, ∀ω > 0. Thus, G2, which actively rejects high frequency input with the

help of a zero, is a better low pass filter.

Example 5.8 Study how the filter G3(z) = (z + 1)/(z − 1) handles the input
signal u(n) = (−1)n1(n).

First, we split G3(z) as

G3(z) =
z

z − 1
+

1
z − 1

Inverting this, we obtain the following impulse response:

g3(n) = 1(n) + 1(n− 1)
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Recall the expression for output as a convolution of impulse response and the input,
given by Eq. 3.26 on page 48, reproduced here for convenience:

y(n) =
∞∑

i=−∞
g(i)u(n− i)

Substituting the expression for the impulse response obtained above, we obtain

y(n) =
∞∑

i=−∞
[1(i) + 1(i− 1)]u(n− i)

Using the meaning of the step signal 1(n), this equation becomes

y(n) =
∞∑

i=0

u(n− i) +
∞∑

i=1

u(n− i) = 2
n∑

i=0

u(n− i)− u(n)

We will now use the statement of the problem, namely u(n) = (−1)n1(n):

y(n) =

[
2

n∑
i=0

(−1)n−i

]
1(n)− (−1)n1(n)

With the substitution of k = n− i, this becomes

y(n) =

[
2

0∑
k=n

(−1)k

]
1(n)− (−1)n1(n)

= 2
1− (−1)n+1

1− (−1)
1(n)− (−1)n1(n)

= 1(n)
[
1− (−1)n+1 − (−1)n

]
= 1(n)

This shows that (−1)n has been filtered in the output. This is only expected, of
course, because the filter has a zero at z = −1.

5.4.2 Classification of Filters by Phase

We will now classify the FIR or all zero systems, defined in Sec. 4.3, according to their
phase characteristic. An FIR filter that has the smallest phase change as ω goes from
0 to π is known as the minimum phase filter. Minimum phase filters have all their
zeros inside the unit circle. Filters that have some of their zeros outside the unit circle
are called nonminimum phase filters. The phase Bode plot of these systems shows a
net phase change as ω goes from 0 to π. An example of minimum and nonminimum
phase filters is given in the next example.
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Figure 5.18: Bode plot of G1(z) = 1.5(1 − 0.4z−1) (solid line) and G2(z) =
−0.6(1− 2.5z−1) (broken line), as discussed in Example 5.9

Example 5.9 Draw the Bode plots of the following transfer functions

G1(z) = 1.5(1− 0.4z−1)

G2(z) = −0.6(1− 2.5z−1)

and verify the above mentioned phase characteristic.

In Fig. 5.18, the Bode plots of G1 and G2 are drawn with solid and broken lines,
respectively. Note that the magnitude plots of these two functions coincide. This is
because the zeros of G1 and G2 are reciprocals of each other and the formula for
the magnitude of |G(ejω)|2 = |G(z)G(z−1)|z=e−jω . Note that in this expression,
G(z) and G(z−1) are polynomials in z and z−1, respectively. As expected, the
phase angle of G1 does not show a net change, which is not the case with G2.
M 5.5 shows how these plots are created using Matlab.

It is more difficult to design controllers for nonminimum phase systems, compared
to the minimum phase systems. For example, see Sec. 9.2 and Sec. 11.2.3. Because the
magnitude plots of a nonminimum phase and of the corresponding minimum phase
filters are identical, there is a loss of uniqueness while identifying systems from input–
output data. The standard practice is to choose minimum phase systems. The details
are in Sec. 6.4.4. A continuous time minimum phase system could lose this property on
sampling. Problem 8.4 shows how this happens. A standard reference that discusses
the fundamentals of nonminimum phase systems is [46].

If every zero of an FIR system is outside the unit circle, it is known as a maximum
phase filter. The phase of this filter changes the maximum as ω is varied from 0 to π.
When some zeros are inside and the rest outside the unit circle, it is known as a mixed
phase or nonminimum phase system.

A filter that has the same magnitude at all frequencies is known as an all pass
filter. Because the magnitude is constant at all frequencies, the zeros and the poles



146 5. Frequency Domain Analysis

are reciprocals of each other. As a result of this, it is possible to write any filter as a
product of minimum phase and all pass filters, as we see in the next example.

Example 5.10 Show that G1 and G2 of Example 5.9 can be related by a
transfer function, whose magnitude is constant at all frequencies.

G1 and G2 are related by the following equation:

G2 = G1(−0.4)
1− 2.5z−1

1− 0.4z−1

We need to show that G3(z), defined as

G3 =
1− 2.5z−1

1− 0.4z−1

has a constant magnitude at all frequencies. We have been using the argument
z to indicate polynomials in powers of z−1 as well, see Footnote 5 on page 100.
In this example, we have to use polynomials in z as well. In view of this, we will
explicitly use the dependence on z−1 and z. In other words, we let

G3(z−1) =
1− 2.5z−1

1− 0.4z−1

and

G3(z) =
1− 2.5z
1− 0.4z

We rewrite this relation as follows:

G3(z) =
2.5z(0.4z−1 − 1)
0.4z(2.5z−1 − 1)

= 6.25
1− 0.4z−1

1− 2.5z−1

It is easy to see that

G3(z−1)G3(z) = 6.25

By letting z = ejω, we obtain

G3(e−jω)G3(ejω) = |G3(ejω)|2 = 6.25

which shows that G3 has a constant magnitude at all frequencies.

Problem 5.12 generalizes this result.
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5.5 Discrete Fourier Transform

The Fourier transform of the discrete time signal {g(n)} is a continuous signal

G(ejω) =
∞∑

n=−∞
g(n)e−jωn

We know that this is a periodic signal with period 2π. The important thing to note
is that G(ejω) is a continuous signal. Indeed, the inverse Fourier transform of this
function is given by

g(n) =
1

2π

∫ π

−π

G(ejω)ejωndω

As we cannot store all of a continuous signal but only samples of it, we would like to
sample G(ejω). As we have to store G(ejω) only over a finite interval of length 2π,
we need to store only a finite number of its values. The discrete Fourier transform,
DFT, is the finite duration discrete frequency sequence that is obtained by sampling
one period of the Fourier transform. This sampling is carried out at N equally spaced
points over a period of 0 ≤ ω < 2π or at ωk = 2πk/N for 0 ≤ k ≤ N − 1. In other
words, if {g(n)} is a discrete time sequence with a Fourier transform G(ejω), then the
DFT denoted by {G(k)} is defined as

G(k) = G(ejω)|ω=ωk=2πk/N , 0 ≤ k ≤ N − 1

The DFT starts at ω = 0 but does not include 2π. It was shown in Sec. 5.3.2 that when
a continuous function of time is sampled with a sampling period Ts, then the spectrum
of the resulting discrete time sequence becomes a periodic function of frequency
Fs = 1/Ts. In a similar way, it can be shown that if the Fourier transform G(ejω) is
sampled with a sampling period of 1/N , i.e., N sampling points, the inverse of the
sampled function, denoted by {g̃(n)}, becomes a periodic function of frequency N .
This periodic discrete time sequence can be expressed in terms of {g(n)} as

g̃(n) =
∞∑

m=−∞
g(n+mN)

The sequence {g̃(n)} is called the periodic extension of {g(n)}. It has a period N .
As we are free to choose N , we should select it to be reasonably large. Ideally N
should be larger than the time during which g(n) is nonzero. Suppose g(n) is a causal
finite duration sequence containing M samples, choose N ≥M and let

g̃(n) =

{
g(n) 0 ≤ n ≤M − 1
0 M ≤ n ≤ N − 1

If N > M , we say that {g̃(n)} is obtained by padding {g(n)} with zeros. If N ≥ M ,
g(n) can be recovered uniquely from g̃: choose the values corresponding to the first
period. If M > N , time aliasing will take place. Since g̃ is periodic, it has a Fourier
series:

g̃ =
1
N

∞∑
k=−∞

G̃(k)ej2πkn/N
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Since ej2πkn/N is periodic in k with a period of N , this can be written as

g̃ =
1
N

N−1∑
k=0

G̃(k)ej2πkn/N

G̃(k) is calculated by multiplying both sides by e−j2πnr/N and summing over 0 ≤ n ≤
N−1. This is similar to the procedure we have used to arrive at Eq. 5.21 on page 121.
We obtain

G̃(r) =
N−1∑
n=0

g̃e−j2πnr/N

It is instructive to compare this with the Fourier transform of the original sequence.
Consider the Fourier transform of a causal, finite time sequence over 0 to M − 1,
M ≤ N :

G(ejω) =
M−1∑
n=0

g(n)e−jωn

Padding with zeros,

G(ejω) =
N−1∑
n=0

g(n)e−jωn

Sampling this at N equally spaced points over 0 ≤ w < 2π produces the sequence

G(k) = G(ejω)|ω=ωπk/N =
N−1∑
n=0

g(n)e−jωπkn/N , 0 ≤ k < N − 1

Notice that the first N samples of g̃ are equal to g(n), i.e.,

g(n) = g̃(n), 0 ≤ n ≤ N − 1

But only the first N values are required in the sum. Therefore G(k) = G̃(k), or

g(n) =
1
N

N−1∑
k=0

G(k)ej2πkn/N

It is a common practice to call this the discrete Fourier transform and abbreviate it
as DFT. We collect the DFT and inverse DFT pair as

G(k) =
N−1∑
n=0

g(n)e−j2πkn/N

g(n) =
1
N

N−1∑
k=0

G(k)ej2πkn/N
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Example 5.11 Find the DFT of the causal three point averager:

g(n) =

{
1
3 0 ≤ n ≤ 2
0 otherwise

G(k) =
N−1∑
n=0

g(n)e−j2πnk/N =
2∑

n=0

1
3
e−j2πnk/N

=
1
3

(
1 + e−j2πk/N + e−j4πk/N

)

5.6 Matlab Code

Matlab Code 5.1 Sinusoidal plots for increasing frequency, shown in Fig. 5.4 on
page 118. This code is available at HOME/freq/matlab/incr freq.m2

1 n=0:16 ;
2 subplot (2 , 2 , 1 ) , stem(n , cos (n∗pi /8) )
3 grid , xlabel ( ’n ’ ) , ylabel ( ’ co s (n∗ pi /8) ’ )
4 subplot (2 , 2 , 2 ) , stem(n , cos (n∗pi /4) )
5 grid , xlabel ( ’n ’ ) , ylabel ( ’ co s (n∗ pi /4) ’ )
6 subplot (2 , 2 , 3 ) , stem(n , cos (n∗pi /2) )
7 grid , xlabel ( ’n ’ ) , ylabel ( ’ co s (n∗ pi /2) ’ )
8 subplot (2 , 2 , 4 ) , stem(n , cos (n∗pi ) )
9 grid , xlabel ( ’n ’ ) , ylabel ( ’ co s (n∗ pi ) ’ )

Matlab Code 5.2 Bode plots for Example 5.7 on page 141. This code is available
at HOME/freq/matlab/filter1.m

1 omega = l inspace (0 , pi ) ;
2 g1 = 0 .5 . / ( cos ( omega )−0.5+ j ∗ sin ( omega ) ) ;
3 mag1 = abs ( g1 ) ;
4 ang le1 = angle ( g1 ) ∗ 180/pi ;
5 g2 = (0 .5+0 .5∗cos ( omega ) −1.5∗ j ∗ sin ( omega ) ) . . .
6 ∗ 0 .25 . / (1.25−cos ( omega ) ) ;
7 mag2 = abs ( g2 ) ;
8 ang le2 = angle ( g2 ) ∗ 180/pi ;
9 subplot (2 , 1 , 1 )

10 plot ( omega , mag1 , omega , mag2 , ’−− ’ )
11 axis t i ght , l a b e l ( ’ ’ , 18 , ’ ’ , ’ Magnitude ’ ,18)
12 subplot (2 , 1 , 2 )
13 plot ( omega , angle1 , omega , angle2 , ’−− ’ )
14 axis t i ght , l a b e l ( ’ ’ , 18 , ’w ( rad/ s ) ’ , ’ Phase ’ ,18)

2HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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Matlab Code 5.3 Bode plot of the moving average filter, discussed in Example 5.5
on page 129. This code is available at HOME/freq/matlab/ma bode.m

1 w = 0 : 0 . 0 1 : pi ;
2 subplot (2 , 1 , 1 )
3 loglog (w, abs(1+2∗cos (w) ) /3)
4 l a b e l ( ’ ’ , 18 , ’ ’ , ’ Magnitude ’ ,18)
5 subplot (2 , 1 , 2 )
6 semilogx (w, angle (1+2∗cos (w) ) ∗180/pi )
7 l a b e l ( ’ ’ , 18 , ’w ’ , ’ Phase ’ ,18)

Matlab Code 5.4 Bode plot of the differencing filter, discussed in Example 5.6 on
page 130. This code is available at HOME/freq/matlab/derv bode.m

1 w = 0 : 0 . 0 1 : pi ;
2 G = 1−exp(− j ∗w) ;
3 subplot (2 , 1 , 1 )
4 loglog (w, abs (G) )
5 l a b e l ( ’ ’ , 18 , ’ ’ , ’ Magnitude ’ ,18)
6 subplot (2 , 1 , 2 )
7 semilogx (w,180∗ angle (G) /pi ) ;
8 l a b e l ( ’ ’ , 18 , ’w ’ , ’ Phase ’ ,18)

Matlab Code 5.5 Bode plots of minimum and nonminimum phase filters, discussed
in Example 5.9 on page 145. This code is available at HOME/freq/matlab/nmp.m

1 omega = l inspace (0 , pi ) ;
2 ejw = exp(− j ∗omega ) ;
3

4 G1 = 1.5∗(1−0.4∗ ejw ) ;
5 mag1 = abs (G1) ; ang le1 = ( angle (G1) ) ∗180/pi ;
6 G2 = −0.6∗(1−2.5∗ejw ) ;
7 mag2 = abs (G2) ; ang le2 = ( angle (G2) ) ∗180/pi ;
8

9 subplot (2 , 1 , 1 )
10 plot ( omega , mag1 , omega , mag2 , ’−− ’ )
11 axis t i ght , l a b e l ( ’ ’ , 18 , ’ ’ , ’ Magnitude ’ ,18)
12 subplot (2 , 1 , 2 )
13 plot ( omega , angle1 , omega , angle2 , ’−− ’ )
14 axis t i ght , l a b e l ( ’ ’ , 18 , ’w ( rad / s ) ’ , ’ Phase ’ ,18)
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5.7 Problems

5.1. Consider an LTI system with the following transfer function:

G(z) =
z2

z2 + r2

Show that the output Y (z) for an impulse input is given by

Y (z)
z

=
z

(z − jr)(z + jr)
=

1
2

[
1

z − jr +
1

z + jr

]
Invert it and arrive at

y(n) =
1
2

[(jr)n + (−jr)n] =
1
2
rn [jn + (−j)n]

y(4m) = r4m

y(4m+ 1) = 0

y(4m+ 2) = −r4m+2

y(4m+ 3) = 0

Check that this is an oscillatory output.

5.2. Show that the step response of a system with transfer function given by Eq. 5.2
on page 113 is given by

y(z)
z

=
A2

z − ρejω
+

A∗
2

z − ρe−jω
+

C

z − 1
y(n) = A2ρ

nejnω +A∗
2ρ

ne−jnω + C

Observe that this response is also oscillatory in general, just like the impulse
response, given by Eq. 5.3.

5.3. Plot the following waveforms: cos (2π5n+ θ), cos (2π 1
4n+ θ), cos (2π

√
2n+ θ)

and cos (2π
√

2t+ θ), and verify whether the periodicity property of discrete
time signals, explained in Sec. 5.1.2, is satisfied [49].

5.4. This problem is concerned with the Fourier transform of discrete time periodic
signals, with period N , of the form u(n+N) = u(n).

(a) Start with the Fourier series for the discrete time periodic signal u(n) as
follows:

u(n) =
∞∑

k′=−∞
C′

ke
j2πk′n/N

Compare this with Eq. 5.19 on page 120. Notice that in the place of t
and Tp = 1/F0, we have n and N , respectively. For a fixed k′, show
that ej2πk′n/N is periodic in n with period N . That is, ej2πk′(n+N)/N =
ej2πk′n/N for all n.
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(b) Because ej2πk′n/N is periodic with period N , by summing all its coefficients
for every k′ ∈ [0, N − 1], obtain the following simplified Fourier series:

u(n) =
N−1∑
k=0

Cke
j2πkn/N

where

Ck =
∞∑

r=−∞
Ck′+rN , Ck, C

′
k ∈ [0, N − 1]

(c) Multiply both sides of the simplified Fourier series by e−j2πln/N and sum
over 0 to N − 1 to arrive at

N−1∑
n=0

u(n)e−j2πln/N =
N−1∑
n=0

N−1∑
k=0

Cke
j2π(k−l)n/N

Show that the right-hand side of the above equation is equal to NCl and
thus arrive at an expression for Cl.

(d) Show that Ci is periodic with period N , i.e., Ck = Ck+N , for all k.

In view of Ck being periodic, we see that N consecutive signals provide complete
information in the time and frequency domains. Some of the N intervals of
interest are

0 ≤ k ≤ N − 1⇔ 0 ≤ ωk =
2πk
N

< 2π

when N is odd and

−N
2
< k ≤ N

2
⇔ −π ≤ ωk =

2πk
N

< π

when N is even.

5.5. Find the minimum degree transfer function G(z) of an LTI system whose
magnitude function |G(ejω)| satisfies the following relation:

|G(ejω)| = |cosω|
In case the solution is not unique, state all the solutions.

5.6. Another approach to frequency response is given in this problem. Consider a
system with a transfer function G(z) whose poles are inside the unit circle.
Suppose that it is subjected to the input u(k) = M cos kw where M is the
amplitude, ω the frequency in rad/sample and k the sample number.

(a) Show that the Z-transform of the output is given by

Y (z) =
M

2

(
z

z − ejω
+

z

z − e−jω

)
G(z)
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(b) Show that this can be written as

Y (z) =
αz

z − ejω
+

α∗z
z − e−jω

+
n∑

i=1

Diz

z − pi

where α is given by α = MG(ejω)/2.

(c) Show that the Z-transform of the steady state portion of the output is

Y (z) =
M

2

[
G(ejω)z
z − ejω

+
G(e−jω)z
z − e−jω

]
=
M

2
|G(ejω)|

[
ejφz

z − ejω
+

e−jφz

z − e−jω

]
(d) Invert this and show that

y(k) = M |G(ejω)| cos (kw + φ)

This shows that the output also is a sinusoid and shifted in phase by φ,
the phase angle of G(ejω), and amplified by |G(ejω)|.

(e) Where did you use the fact that all the poles of G(z) are inside the unit
circle?

5.7. In Example 5.5 on page 129, we have seen the moving average filter to be low
pass. Is this in agreement with the findings of Sec. 5.4.1?

5.8. Repeat the above approach to verify the high pass property of the differencing
filter, discussed in Example 5.6 on page 130.

5.9. An LTI system, initially at rest and with impulse response g(n),

g(n) = δ(n)−√2δ(n− 1) + δ(n− 2)

is subjected to an input

u(n) =
[
cos

π

4
n+ cos

π

2
n
]

1(n)

(a) Calculate the output by convolution techniques.

(b) Find the zeros of the transfer function G(z) and using this explain the
results of part (a).

(c) Draw a Bode plot of G(z) and using this explain the results of part (a).

5.10. This problem is concerned with the design of an all-zero filter G(z).

(a) Using the pole–zero placement method developed in this chapter, design a
filter G(z) that filters out the frequency

ω0 =
2π
3

(5.69)

and at ω = 0, G(ejω) = 1. [Hint: Make the filter realizable, if required, by
including the necessary number of poles at z = 0.]
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(b) Let u(n) be the input to and y(n) be the output from the above filter G(z).
This filter can be expressed in the input–output notation as

y(n) = b0u(n) + b1u(n− 1) + b2u(n− 2) (5.70)

Find the coefficients b0, b1 and b2.

(c) By directly substituting u(n) = cosω0n into Eq. 5.70 and simplifying it,
show that y(n) = 0. Note that ω0 is given by Eq. 5.69. Explain if this
result is expected. [Hint: You may want to use the relation cosA+cosB =
2 cos A+B

2 cos A−B
2 ).]

(d) Show that the phase angle of this filter is a linear function of frequency.
[Hint: You may find the form in Eq. 5.70 to be easier to manipulate
compared to the product form derived in part (a).]

G(z) discussed above is known as an all zero filter because it has only zeros – the
poles at zero don’t count. It is also a linear phase filter, see the next problem.

5.11. This problem is concerned with linear phase filters.

(a) If the impulse response {g(n)} of an LTI system is given by

g(−1) = a

g(0) = b

g(1) = a

and all other terms are zero, find the system transfer function in the
frequency domain, i.e., G(ejω) using real terms only.

(b) Suppose that we make

g(−2) = g(2) = c �= 0

in the above. Repeat the calculations of the above part.

(c) Repeat the above calculations for the following general case:

g(0) = g0

g(1) = g1

...
g(M) = gM

with g(k) = 0, ∀k > M , and g(−i) = g(i), ∀i.
(d) Is it possible to use a filter with the impulse response as in the above part

for real time applications?

(e) Suppose that we shift the sequence {g(n)} to the right so that it becomes
causal and that we call the shifted sequence {g1(n)}, i.e.,

g1(k) = g(k −M), ∀k
What is the relation between the Fourier transforms of {g1(n)} and {g(n)}?
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(f) Let the impulse response of an arbitrary linear phase filter be denoted by
{g+(n)}. Suppose that its Fourier transform is given by

G+(ejω) = K(ω)e−jDω

where D is a positive integer and K(ω) is real and positive, i.e., K(ω) > 0
for all ω. Using the result obtained in the above parts, argue that this filter
produces no phase distortion.

This is known as the linear phase filter, as the phase is a linear function of
frequency. Such filters have the property that the delay through them is the
same at all frequencies. These filters are useful because they preserve edges and
bright spots in image processing applications.

5.12. This question is concerned with filters that have constant magnitude at all
frequencies. Suppose that

G(z) = z−N A(z−1)
A(z)

where

A(z) =
N∑

k=0

akz
−k, a0 = 1

Show that G(z)G(z−1) = 1 and hence that |G(ejω)| = 1. Recall from Sec. 5.4.2
that a filter, whose magnitude function is a constant for all frequencies, is known
as an all pass filter. Thus G is an all pass filter.

5.13. This problem is concerned with the phase angle property of all-pass transfer
functions. You will consider the following transfer function for this purpose:

Gap(z) =
z−1 − a
1− az−1

, 0 < |a| < 1

(a) Show that the magnitude Bode plot of Gap(z) is a constant. [Hint: Evaluate
Gap(z)Gap(z−1).]

(b) You have to determine the sign of the phase angle Bode plot of Gap(z).
You can do this directly or follow the steps given below:

i. Show that the phase angle of the transfer function 1−az−1, evaluated

at z = ejω , is given by tan−1 a sinω
1− a cosω

.

ii. Similarly, determine the angle contribution of the numerator term of
Gap(z). It may be useful to write Gap(z) as

Gap(z) = −a 1− bz−1

1− az−1
, b =

1
a

iii. Using the results of (i) and (ii) obtained above, determine an expression
for the phase angle of Gap(z), with z = ejω .
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iv. Does the phase angle Bode plot of Gap(z) remain negative or positive
or does it change sign over the range ω ∈ (0, π)? Examine for 0 < a < 1
and −1 < a < 0 separately.

5.14. Consider the infinite duration impulse response of an LTI system given by

g(n) = an1(n), 1 > a > 0

(a) Find its Fourier transform G(ejω).

(b) Sample this at N equal points and produce the DFT sequence given by

G(k) = G(ejω)
∣∣
ω=2πk/N

, 0 ≤ k ≤ N − 1

(c) Apply the inverse DFT to this sequence and call the result g1(n). We
would want g1(n) to be as close to g(n) as possible. Show that g1(n) can
be written as

g1(n) =
1
N

N−1∑
k=0

ej2πkn/N

[ ∞∑
m=0

ame−j2πkm/N

]
, 0 ≤ n ≤ N − 1

(d) Simplify the above expression. Is it the same as g(n)? If so, explain why.
If not, explain under what conditions they will become equal.
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Chapter 6

Identification

In order to design a good controller for a plant, a model is usually required.
A controller designed on the basis of a model often works better than the one designed
without a model. Unfortunately, model development from first principles is a difficult
and an expensive task, requiring participation of experts in fields such as engineering,
thermodynamics, materials, simulation and numerical analysis. This is also a time
consuming process, and often, as a result, model development from first principles is
attempted only if a company is interested in a major investment. The above discussion
suggests that although model based controllers are desirable, detailed first principles
models are generally not available. Another factor that complicates the modelling
process is the presence of noise. Typically, deterministic models cannot explain noise
processes – probabilistic models are required.

Statistical model development techniques have been developed to address both
of the above issues, namely, the quick determination of approximate models and
modelling of the noise. Although at best approximate, the models developed in this
fashion are often sufficient for control purposes. In this computerized age, a lot of plant
data is generally available, meeting the basic need of statistical modelling techniques.
It is no wonder that the data driven model development techniques appeal to those
people who want to quickly model their plants so as to improve the performance. The
process of construction of models from the input (u) and the output (y) data is known
as model identification, see Fig. 6.1.
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Figure 6.1: System identification, a schematic
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ξ(n)

G(z) y(n)u(n)

Figure 6.2: Transfer functions of plant with noise affecting the output

Once appropriate measurements are made, we proceed to obtain the plant model.
There are two steps in this process: 1. Identification of an appropriate model structure.
2. Estimation of values of parameters that pertain to the above model structure.

This chapter is organized as follows: The topic of identification is motivated
with the correlation approach applied to finite impulse response (FIR) models. This
naturally leads to a least squares estimation approach. We next present a summary
of time series terminology. We study LTI systems driven by white noise. In the
subsequent section, we present parametric models and demonstrate how identification
involving these can be posed in the least squares framework. A procedure to select the
order of the noise model H(z) that relates the white noise ξ(n) and the residual v(n)
is presented next. This is followed by a procedure for simultaneous determination of
G(z) and H(z). Interpreting identification from the frequency domain point of view,
we arrive at filtering functions required for identification. We present two case studies
to illustrate the identification techniques.

We assume that the reader has access to Matlab and the System Identification
Toolbox [32] and make extensive use of these to illustrate the principles of identifica-
tion. The area of identification is vast and there are entire books that are devoted to
it [32, 43, 53, 57]. We present just a summary of this topic in this chapter.

6.1 Introduction

In Sec. 2.2, we have discussed a general procedure to derive first principles models. In
real systems, there is usually some noise that acts on the output. An example of this
is the measurement noise. This can be depicted diagrammatically as in Fig. 6.2, where
G(z) is the transfer function of the plant. We have assumed the noise process to be
white, the concept of which will be explained in detail in Sec. 6.3.2. Roughly speaking,
a white noise process can be thought of as something that cannot be decomposed
further into simpler processes.

The mathematical model corresponding to Fig. 6.2 is given by

y(n) = g(n) ∗ u(n) + ξ(n) (6.1)

where, as usual, G(z) is the Z-transform of g(n). The objective of the identification
problem is to determine the impulse response coefficients, namely {g(n)}, by exciting
the process by an input sequence {u(n)}, and measuring the output sequence {y(n)}.
When the plant is stable, Eq. 6.1 can be written as

y(n) =
N∑

l=0

g(l)u(n− l) + ξ(n) (6.2)

We will now discuss a possible method to determine {g(n)}.
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Example 6.1 Writing the equations for y(n), y(n−1), y(n−2), . . . and stacking
them one below another, we obtain




y(n)
y(n − 1)
y(n − 2)

...


 =




u(n) · · · u(n − N)
u(n − 1) · · · u(n − N − 1)
u(n − 2) · · · u(n − N − 2)

...







g(0)
g(1)

...
g(N)


+




ξ(n)
ξ(n − 1)
ξ(n − 2)

...


 (6.3)

We have not mentioned how many rows we should include in the above matrix
equation, although it is easy to see that it should be greater than or equal to N+1.
We will defer the answer to this question. The above equation can be seen to be
in the following form:

Y (n) = Φ(n)θ + Ξ(n) (6.4)

where

Y (n) =


y(n)

y(n− 1)
y(n− 2)

...

 , Φ(n) =


u(n) · · · u(n−N)

u(n− 1) · · · u(n−N − 1)
u(n− 2) · · · u(n−N − 2)

...



θ =


g(0)
g(1)

...
g(N)

 , Ξ(n) =


ξ(n)

ξ(n− 1)
ξ(n− 2)

...


Note that θ consists of impulse response coefficients g(0), . . ., g(N). By
convention, the argument n of Y (n), Φ(n) and Ξ(n) indicates that the data
obtained at and before the time instant n have been used to construct
Eq. 6.4 [36].

The most popular way to solve the above equation, so as to determine the impulse
response coefficients, is the least squares estimation1 approach. Although this
approach may appear ad hoc at present, a rigorous justification for the use of LSE,
from the viewpoint of identification, will be provided in Sec. 6.6. In fact, it turns out
that LSE is the most popular tool used in identification problems. In view of this, we
will begin discussing LSE.

6.2 Least Squares Estimation

LSE is probably the most popular estimation technique used in parameter estimation.
We assemble the measurement information and minimize the residual between the
actual data and that predicted by the model in a least squares sense to arrive at the
solution.

1We will abbreviate least squares estimation as LSE .
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Table 6.1: Data for Example 6.2

i 1 2 3 4 5 6 7

φi 2 1 2.5 −0.8 1.25 −2.3 −1.75
yi 4.01 1.98 5.03 −1.61 2.52 −4.63 −3.49

6.2.1 Linear Model for Least Squares Estimation

LSE is a convenient method to determine model parameters from experimental data.
Let the model that relates the parameters and the experimental data at time instant j
be given by

y(j) = φ(j)θ + ξ(j) (6.5)

where y and φ consist of measurements and θ is a vector of parameters to be estimated.
ξ(j) can be thought of as a mismatch between the best that the underlying model,
characterized by θ, can predict and the actual measurement y(j). ξ(j) can also be
thought of as a random measurement noise. By stacking these equations one below
another for j = n, n− 1, . . . , n−N , where N is a large integer, we obtain

Y (n) = Φ(n)θ + Ξ(n) (6.6)

In the statistics literature, this is known as the linear model, even though it should
strictly be called an affine model [36]. We will refer to it as the linear model in this
book. An example of this is Eq. 6.3. By solving this equation, we can determine θ.
We will present more examples of this equation shortly.

Example 6.2 Find the best value of a scalar θ that satisfies Eq. 6.5 given the
data of Table 6.1.

It is clear from the data that we will get an unreliable answer if we use just one
data set (φ(j), y(j)) at some j. Although θ seems to vary from measurement to
measurement, an approximate value of θ is seen to be 2, since y is nearly twice φ
for every entry. If the measurement errors are large, it is not clear how θ will be
affected. This idea is explored further in Example 6.4.

We will now present the solution to Eq. 6.6.

6.2.2 Least Squares Problem: Formulation and Solution

It is clear that Ξ(n) is an unknown in Eq. 6.6. Moreover, because it is often random,
it is not clear how to model it. Because of these reasons, we neglect it while forming
an estimate:

Ŷ (n) = Φ(n)θ̂(n) (6.7)
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where θ̂(n) is said to be an estimate of θ. Recall our convention that the argument n
indicates that this is an estimate of Eq. 6.6 constructed with measurement data up
to and including the time instant n. Because we would like the predicted model Ŷ (n)
to be close to the actual Y (n), we try to obtain θ̂ by minimizing a function of

Ỹ (n)
�
= Y (n)− Ŷ (n) (6.8)

where Ỹ (n) is the mismatch between the data and the model prediction. Let Ỹ (n) =
(ỹ(n), ỹ(n−1), . . . , ỹ(n−N)). A popular approach is to minimize the objective function

J [θ̂(n)] = w(n)ỹ2(n) + · · ·+ w(n−N)ỹ2(n−N) (6.9)

where w(j) is the positive constant used to weight the mismatch ỹ(j) at time instant j.
Using this, we can weight the data obtained at different times differently. If w(j) are
constant, all the errors are weighted equally. Small variations in the variance of θ
can be accommodated by varying w(j). Letting W (n) = diag(w(n), w(n − 1), . . . ,
w(n −N)), where diag stands for diagonal, we obtain

J [θ̂(n)] = Ỹ (n)TW (n)Ỹ (n) (6.10)

For notational simplicity, we will drop the argument n. The above equation becomes,
after substituting Eq. 6.8,

J [θ̂] = [Y − Ŷ ]TW [Y − Ŷ ] (6.11)

In the least squares approach, we minimize the objective function J so as to determine
the model parameter θ. This is formally stated in the following equation:

θ̂WLS = arg min
θ
J [θ̂] (6.12)

The subscript WLS indicates that the parameter θ is obtained by minimizing a sum
of weighted squares. Substituting for Ŷ (n) from Eq. 6.7 into Eq. 6.11, we obtain

J [θ̂] = [Y − Φθ̂]TW [Y − Φθ̂] (6.13)

Multiplying out the right-hand side, we obtain

J [θ̂] = Y TWY − 2Y TWΦθ̂ + θ̂T ΦTWΦθ̂ (6.14)

We would like to find θ̂ at which J is minimum. This requires that the derivative of
J with respect to θ̂ is zero. Following the approach of Sec. A.1.1, we obtain

∂J

∂θ̂
= −2ΦTWY + 2ΦTWΦθ̂WLS = 0 (6.15)

From this, we arrive at the normal equation,

ΦT (n)W (n)Φ(n)θ̂WLS(n) = ΦT (n)W (n)Y (n) (6.16)
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We will next assume that ΦTWΦ is nonsingular. If it is singular, the usual procedure
is to include more sets of data. This is equivalent to adding more rows in Eq. 6.3, for
example. If that also does not solve the problem, one has to check whether all the
components of θ are really required and whether some of them can be removed.

In identification problems, ΦTWΦ could turn out to be singular if the input signal,
used to excite the plant, is not designed properly. If this matrix product is nonsingular
instead, we call the input persistently exciting.

With the assumption that ΦTWΦ is nonsingular, we solve for θ̂ to arrive at

θ̂WLS(n) = [ΦT (n)W (n)Φ(n)]−1ΦT (n)W (n)Y (n) (6.17)

where we have once again explicitly indicated the dependence on n. We will now
demonstrate what normal equation is arrived at in the identification example discussed
earlier.

Example 6.3 Determine the equations to solve for impulse response coefficients
g(0), g(1) and g(2) when N = 2 in Eq. 6.2.

Recall that we developed the linear model for a general FIR model earlier. In
particular, Eq. 6.3 becomes




y(n)
y(n − 1)
y(n − 2)


 =




u(n) u(n − 1) u(n − 2)
u(n − 1) u(n − 2) u(n − 3)
u(n − 2) u(n − 3) u(n − 4)






g(0)
g(1)
g(2)


+




ξ(n)
ξ(n − 1)
ξ(n − 2)


 (6.18)

Premultiplying by the transpose of the coefficient matrix and ignoring the noise
term, we arrive at




u(n) u(n − 1) u(n − 2)
u(n − 1) u(n − 2) u(n − 3)
u(n − 2) u(n − 3) u(n − 4)






u(n) u(n − 1) u(n − 2)
u(n − 1) u(n − 2) u(n − 3)
u(n − 2) u(n − 3) u(n − 4)






g(0)
g(1)
g(2)




=




u(n) u(n − 1) u(n − 2)
u(n − 1) u(n − 2) u(n − 3)
u(n − 2) u(n − 3) u(n − 4)






y(n)
y(n − 1)
y(n − 2)




(6.19)

If the 3 × 3 matrix product, which is the coefficient of g on the left-hand side, is
nonsingular, the input is said to be persistently exciting.

In the next example, we continue with the discussion presented in Example 6.2
using Matlab.

Example 6.4 Randomly generate a set of 100 φ and 100 e values and, using
Eq. 6.5, generate the corresponding set of y for θ = 2. Thus, N = 100 in this
equation. Evaluate through Matlab the least squares solution of θ as well as the
maximum and minimum of yi/φi for different magnitudes of e.

As this is a batch experiment problem, as opposed to continuous identification,
the argument n in Eq. 6.17 can be dropped. Let us also take all the weights in
Eq. 6.11 to be equal to one. In view of these observations, the normal equation
and the solution to the least squares problem, given by Eq. 6.16–6.17, become

ΦT Φθ̂WLS = ΦTY, θ̂WLS = [ΦT Φ]−1ΦTY
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Table 6.2: Solution to problem presented in Example 6.4. These values have been
obtained by executing M 6.1.

V θ̂ max(yi/φi) min(yi/φi)

1 2.0049 3.1846 −8.4116
2 1.9649 3.8134 0.3274
5 1.8816 150.7621 −1.7748

10 2.1445 10.6843 −46.6836

In view of the fact that θ is a scalar, the above two equations, respectively, become

θ̂WLS

N∑
j=1

φ(j)2 =
N∑

j=1

φ(j)y(j), θ̂WLS =

∑N
j=1 φ(j)y(j)∑N

j=1 φ(j)2

M 6.1 implements this problem. The least squares solution of θ as well as the
maximum and minimum of yi/φi, for different magnitudes, are shown in Table 6.2.
It is easy to see that while the LSE is more or less equal to the actual value, the
maximum and minimum of individual solutions are arbitrary, especially when the
noise magnitude becomes large.

It should be observed that because of the presence of random numbers, it may
not be possible to reproduce these numbers exactly. Nevertheless, the above
observation that the least squares solution is close to the correct solution and the
calculation through individual division will give wrong answers should still hold.

Recall that we have been exploring the use of LSE to determine model parameters.
In Example 6.1, we showed how to establish the linear model for FIR for an assumed
noise process of the type depicted in Fig. 6.2. Often, this simple characterization of the
noise process is insufficient – we need more elaborate models. We need some concepts
from the area of time series to study these models. The next section is devoted to this
topic.

6.3 Covariance

A stochastic process is a statistical phenomenon that evolves in time according to
probabilistic laws. A realization is a sample of the many possibilities that a process
can take (population). A time series is a set of values sampled from the process
sequentially. A time series is a particular realization of the process. We can classify
time series in the following way. A discrete time series is a set of observations made
at discrete times. While a deterministic time series is one whose future values can be
generated by a known (mathematical) function, a stochastic time series is one whose
future values can be described only by some probabilistic distribution.
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6.3.1 Covariance in Stationary, Ergodic Processes

Consider a discrete time series {u(t1), u(t2), . . . , u(tN )} comprising N observations of
a stochastic process. The joint probability distribution function (pdf ) of {u(tk)}Nk=1

describes the probability that the random variable U takes on the values U = u(tk)
jointly in a sequence of samples.

A stochastic process is said to be stationary, in the strict sense, if the joint pdf
associated with the N observations taken at t1, t2, . . . , tN is identical to the joint pdf
associated with another set of N observations taken at times t1 + k, t2 + k, . . . , tN + k
for integers N and k. We will assume in this book that we deal with second order
stationary processes, which means that the mean and covariance, to be explained
below, do not depend on time. We will refer to such processes as simply stationary.

We will now present some important properties of a stationary time series.
The first property that is of interest in a stationary stochastic series is the mean.
The mean of a stationary process is defined as

µu = E (u) =
∫ ∞

−∞
up(u) du (6.20)

where, p stands for probability distribution function. We will refer to the above sum
as the statistical average. To calculate using the above formula, a lot of information,
such as the pdf p(u), is required. This, in turn, assumes several realizations of the
random signal. But in reality, we usually have only one realization of the random
signal. In view of this, one works with an estimate of the mean, given by the following
equation:

mu =
1

2N + 1

N∑
n=−N

u(n) (6.21)

Thus, the estimate of the mean is just the average. In other words, we estimate a
statistical average with a time average. The estimate becomes more accurate when N
is chosen large.

The next property of interest is variance, which gives a measure of variation of
data from the mean. The variance of a stationary process is defined as

σ2
u = E ((u(k)− µu)2) =

∫ ∞

−∞
(u(k)− µu)2p(u) du (6.22)

As mentioned above, when knowledge of the pdf is not available, one looks for a
simpler way to calculate it. The estimate of the variance, given by

σ̂2
u =

1
2N

N∑
k=−N

(u(k)−mu)2 (6.23)

comes to the rescue. Note that 2N is one less than the number of terms being summed.

We will next discuss the auto covariance function (ACF ) that helps us understand
the interdependence of samples of time series. The ACF for a general stochastic
time series is defined as γ(k, j) = E ((u(k) − µu(k))(u(j) − µu(j))). For a stationary
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time series, the mean is constant and the dependence is only a function of the lag
l = k − j. In view of this, for a stationary stochastic process, we obtain

γuu(k, j) = γuu(l) = E ((u(k)− µu)(u(k − l)− µu)) (6.24)

As in the case of the mean, the estimate of ACF is given by

ruu(l) =
1

2N

N∑
k=−N

(u(k)−mu)(u(k − l)−mu) (6.25)

Note that we need only one realization to calculate the above sum. The ACF is used in
detecting the underlying process, i.e., whether it is periodic, integrating, independent,
etc. We present a detailed study of a periodic process in Sec. 6.3.3. In Sec. 6.3.4, we
show that the ACF takes the largest value at lag l = 0.

In practice, a normalized function, known as the auto correlation function,

ρuu(l) =
γuu(l)
γuu(0)

(6.26)

is used. We abbreviate the auto correlation function also as ACF – the context will
explain what is intended.

It is easy to verify the following symmetry properties:

γuu(l) = γuu(−l)
ruu(l) = ruu(−l)
ρuu(l) = ρuu(−l)

(6.27)

Now we illustrate these ideas with a finite length sequence.

Example 6.5 Find the ACF of the sequence {u(n)} = {1, 2}.
Because there are only two nonzero elements, we obtainN = 2. First, we determine
an estimate of the mean, given by Eq. 6.21:

mu =
1
2

1∑
k=0

u(k) =
1
2

(u(0) + u(1)) = 1.5

Next, using Eq. 6.25, we calculate the ACF for every lag:

ruu(0) =
1∑

k=0

(u(k)− 1.5)2 = (−0.5)2 + 0.52 = 0.5

ruu(1) =
1∑

k=0

(u(k)− 1.5)(u(k − 1)− 1.5)

= (u(1)− 1.5)(u(0)− 1.5) = 0.5× (−0.5) = −0.25

ruu(−1) =
1∑

k=0

(u(k)− 1.5)(u(k + 1)− 1.5)

= (u(0)− 1.5)(u(1)− 1.5) = (−0.5)× 0.5 = −0.25
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Thus, we see that ruu(n) = {−0.25, 0.5,−0.25}, where the starting value of
−0.25 corresponds to n = −1. The Matlab command xcov carries out these
calculations. We can scale this sequence by dividing by ruu(0) to arrive at ρuu(n) =
{−0.5, 1,−0.5}.
We can also obtain this result using the Matlab command xcov with the optional
parameter coeff enabled. M 6.2 carries out this calculation. It can be seen that
the symmetry properties of both r and ρ are satisfied.

The calculations are easier if we work with sequences of zero mean. Zero mean
equivalent of a sequence is obtained by subtracting the mean from every entry of the
sequence. For example, by subtracting the mean of u discussed in the above example
from every entry, we obtain {−0.5, 0.5}. The ACF of this sequence is identical to
that obtained in the above example. Problem 6.5 shows that working with zero mean
sequences could help prevent some mistakes.2

Now we present the concept of cross covariance function (CCF). It is a measure
of dependence between samples of two time series. The CCF of two stationary time
series u and y is given by

γuy(l) = E ((u(k)− µu)(y(k − l)− µy)) (6.28)

while its estimate is given by

ruy(l) =
1

2N

N∑
k=−N

(u(k)−mu)(y(k − l)−my) (6.29)

Thus, to calculate ruy(l), l > 0, we need to shift y by l time points to the right, or
equivalently, introduce l zeros in front, multiply the corresponding elements and add.
For l < 0, we need to shift y to the left.

When the CCF between two sequences is large, we say that they are correlated,
when it is small, we say that they are less correlated and when it is small, we say
that they are uncorrelated. When two signals u and y are completely uncorrelated,
we obtain

γuy(l) = 0, ∀l
ruy(l) = 0, ∀l (6.30)

We would also say that u and y are independent, although usually this word refers
to a stricter condition. The CCF assumes the largest value when two time series have
the strongest correlation. This has wide application in determining the time delay of
a system, an important step in identification, see Sec. 6.3.4.

For negative arguments, the CCF result is somewhat different from that of the
ACF, given by Eq. 6.27. It is easy to verify the following property of the CCF:

γuy(l) = γyu(−l)
ruy(l) = ryu(−l) (6.31)

2In view of this observation, we will assume all sequences to be of zero mean in the rest of this
chapter, unless explicitly stated otherwise .
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The largest value occurs at the lag where the dependency is strongest. Suppose that
u and y refer to the input to and the output from an I/O LTI system. If the system is
causal, the current output cannot be correlated with a future input. As a result, we
obtain the following relationship:

γuy(l) = γyu(−l) = 0, ∀l > 0
ruy(l) = ryu(−l) = 0, ∀l > 0

(6.32)

In practice, a normalized function, known as the cross correlation function, which
is also be abbreviated as CCF,

ρuy(l) =
γuy(l)√

γuu(0)
√
γyy(0)

(6.33)

is used.
Recall that we have suggested the use of time averages to estimate statistical

averages. We will now state when such an estimation is valid. A random signal u(n)
is said to be ergodic if all the statistical averages can be determined from a single
realization with probability 1. That is, for an ergodic signal, time averages obtained
from a single realization are equal to the statistical averages. For ergodic processes, the
estimates of the statistical properties approach the actual values when a sufficiently
large number of samples are taken while evaluating the summation. In the rest of this
book, we will assume that we have a sufficient number of samples.

Unless otherwise stated, we will also assume that the noise process being studied
is of zero mean. This helps simplify the calculations. In case the process under study
does not obey this condition, we will subtract the mean, so that it becomes a zero
mean process. The first zero mean process that we will study is white noise.

6.3.2 White Noise

The discrete time white noise sequence {ξ(k)} is a set of independent identically
distributed (iid) values belonging to a stationary stochastic process, with the following
properties. The mean of white noise is zero. That is,

µξ = 0 (6.34)

Because ξ(k) is independent, its ACF is an impulse function:

γξξ(k) = σ2
ξδ(k) =

{
σ2

ξ k = 0
0 otherwise

(6.35)

where σ2
ξ is the variance of {ξ(k)}. On taking the Z-transform, we obtain

Γξξ(z) = σ2
ξ (6.36)

We obtain the Fourier transform of {γξξ(k)}, known as the power density spectrum

Γξξ(ejω) = σ2
ξ , ∀ω (6.37)
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The reason why Γ(ejω) and ξ are called the power density spectrum and white noise,
respectively, will be explained in Sec. 6.5.2.

Because white noise is uncorrelated with itself, it is easy to see that it is
uncorrelated with any other sequence. For example, for an arbitrary sequence u
different from ξ, we obtain

γuξ(k) = 0, ∀k (6.38)

Note that the above equation is true for k = 0 as well.
White noise, as defined in this section, is an idealization and it is difficult to

create it. We approximate it with random number sequences. Even though not iid,
these sequences satisfy Eq. 6.34–6.35. In Matlab, white noise is approximated using
the command randn.

The concept of white noise is indispensable in system identification. Most noise
sequences of interest can be modelled as filtered white noise. Moreover, because white
noise is uncorrelated with every other sequence, we can simplify calculations quite
a bit, as we will see in the rest of this chapter. We present a small example that
demonstrates how white noise, combined with the concepts of ACF and CCF, can be
used in estimating the model parameters of a simple system.

Example 6.6 Determine a procedure to find the model parameter a in the LTI
system given by

y(n)− ay(n− 1) = ξ(n) (6.39)

where ξ is white and y is stationary.

Because y is stationary, by applying the expectation operation to Eq. 6.39, we see
that y is of zero mean. Multiplying Eq. 6.39 by ξ(n−k) and taking the expectation,
we obtain

γyξ(k)− aγyξ(k − 1) = γξξ(k) (6.40)

where we have made use of the definition of CCF, given in Eq. 6.29. In the rest of
this chapter, we will carry out such calculations mechanically, without any further
explanation. By evaluating Eq. 6.40 for k = 0, we obtain

γyξ(0) = γξξ(0) = σ2
ξ (6.41)

where we have used the fact that

γyξ(−k) = 0, ∀k > 0 (6.42)

which is nothing but the causality condition of Eq. 6.32. Next, we substitute k = 1
in Eq. 6.40 to obtain γyξ(1)− aγyξ(0) = 0, where we have used Eq. 6.36. Using
Eq. 6.41, we obtain

γyξ(1) = aγyξ(0) = aσ2
ξ
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One may be tempted to think that the above equation can be used to determine
the model parameter a. Unfortunately, however, the white noise ξ is usually not
measured and hence it will not be possible to calculate γyξ(k), or even its estimate,
ryξ(k). Nevertheless, we now explain how to make use of the above relation.
Multiplying Eq. 6.39 by y(n− k) and, as before, taking the expectation,

γyy(k)− aγyy(k − 1) = γyξ(−k) (6.43)

By evaluating this for k = 1, we obtain

γyy(1)− aγyy(0) = 0 (6.44)

where we have used Eq. 6.42. We are now in a position to calculate the model
parameter a. From the above equation, we obtain

a =
γyy(1)
γyy(0)

(6.45)

Using the above calculations, we can also get an idea of the behaviour of ACF for
AR(1) processes. By evaluating Eq. 6.43 for k = 0, we obtain

γyy(0)− aγyy(1) = σ2
ξ (6.46)

Solving Eq. 6.44 and Eq. 6.46 simultaneously, we obtain

γyy(0) =
σ2

ξ

1− a2
(6.47)

Using Eq. 6.42, we obtain also from Eq. 6.43 the following recursive relations:

γyy(k) = aγyy(k − 1) = a2γyy(k − 2) = · · · = akryy(0) (6.48)

Substituting the expression for γyy(0) from Eq. 6.47, we obtain

γyy(k) =
σ2

ξ

1− a2
ak (6.49)

This equation shows that if |a| < 1, the ACF decays monotonically when a > 0
and with oscillations when a < 0.

Calculating model parameters in this manner is known as the theoretical prediction.
In reality, however, we work with actual data and hence replace all the quantities
of γ obtained above with their estimates, r. Thus, a may be determined from
experimental data, through ACF calculations.

The above example shows how the ACF naturally gets to be used in parameter
estimation problems and how the idealization of white noise plays a role in it.

We will next show that the ACF can be used to detect the periodicity of the
underlying process.
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6.3.3 Detection of Periodicity Through ACF

The ACF of a periodic function is also periodic, as we will show now. Consider a
periodic function u. We will assume that u is of zero mean. If it is not, we can subtract
the mean at every time and make it obey this property. Thus, Eq. 6.24 becomes

γuu(l) = E [u(k)u(k − l)] (6.50)

Let the period of u be M , M > 0. That is,

u(l) = u(l −M), ∀l (6.51)

Replacing l with l +M in Eq. 6.50, we obtain

γuu(l +M) = E [u(k)u(k − l −M)] = E [u(k)u(k − l)] (6.52)

using the periodicity property of u. In view of the above two relations, we see that

γuu(l) = γuu(l +M) (6.53)

and hence conclude that the ACF of u is also periodic, with the same period as u.
There is another property that is equally interesting: The ACF of a periodic

function exhibits periodicity even in the presence of noise. Let the noise affected
signal be {u′(k)}; that is,

u′(k) = u(k) + ξ(k) (6.54)

where ξ(k) is white noise of zero mean and variance σ2
ξξ. We make use of this relation

in the expression for γu′u′(l) and obtain

γu′u′(l) = E [[u(k) + ξ(k)][u(k − l) + ξ(k − l)]]
Expanding the terms, we obtain

γu′u′(l) = E [u(k)u(k − l) + u(k)ξ(k − l) + ξ(k)u(k − l) + ξ(k)ξ(k − l)] (6.55)

Because ξ is white, it is uncorrelated with u, see Eq. 6.38. As a result, the cross terms
involving u and ξ vanish. We are left with the ACF of u and ξ only. We make use of
Eq. 6.35 and obtain

γu′u′(l) = γuu(l) + σ2
ξξδ(l) (6.56)

Only when l = 0 is the ACF of u′ different from that of u. For all other values of l,
the ACFs of u and u′ are identical. In view of this result, we observe that γu′u′(l) also
is periodic, except for a spike at l = 0. This result is independent of the magnitude
of σ2

ξξ. This shows that even if noise corrupts a periodic signal, we can decipher the
periodicity through ACF calculations.

The above result is due to the averaging nature of the ACF. Because of this
averaging nature, ACF and CCF are used extensively in the identification problems
with experimental data, which are usually noisy.

In reality, however, we will only use an estimate of γ. In addition, we will choose
a large but finite N in the summations that define the estimates. In view of this, all
of the above relations will hold only approximately. Now we illustrate this idea with
a simple example.
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Example 6.7 Plot the function

y(n) = sin 0.1n+mξ(n)

and its ACF for m values of 0.1, 0.5 and 1. Determine the periodicity property for
all of these m values.

M 6.3 carries out the required calculations. Fig. 6.3 shows the plots of y and the
ACF for m values of 0.1, 0.5 and 1. It is easy to see that as m increases, y gets
noisier. In fact, if one were to see only Fig. 6.3(e), and not all the other figures in
the sequence that we have developed, one would not see the periodicity in y.

We can also see that the period of the ACF for all three m values is the same and
is equal to the period of the noise-free y.

As m is the variance of ξ, ryy(0) should increase with m. Because all the ACF
plots have been scaled by ryy(0), the amplitude of the sinusoids in the ACF gets
smaller as m increases.

We conclude this example by observing that the period of a periodic function can
be determined from its ACF.

Although the periodicity property has been illustrated with a single harmonic in
the above example, one can extend it to the general case as well. Typically, one takes
a Fourier transform of the ACF to identify the frequency content.

The averaging property of the ACF results in {u(l)} being greatest at zero lag,
i.e., at l = 0, compared to all other lags. This property allows the ACF and CCF to
detect pure delays in transmission, even in the presence of measurement noise. The
next section explains this idea in detail.

6.3.4 Detection of Transmission Delays Using ACF

In this section, we will show how to detect transmission delays in the passage of a
signal. We will first demonstrate that ruu(l) takes the largest value at zero lag, i.e., at
l = 0, compared to all other lags. Let {u(n)} and {y(n)} be real, zero mean signals,
with finite energy. We define a signal {w(n)}

w(n) = au(n) + by(n− k)

where a and b are real constants, not equal to zero. Let us calculate the energy of w:

Ew =
N∑

n=−N

[au(n) + by(n− k)]2

= a2
N∑

n=−N

u2(n) + b2
N∑

n=−N

y2(n− k) + 2ab
N∑

n=−N

u(n)y(n− k)

= (a2ruu(0) + b2ryy(0) + 2abruy(k))(2N)

From the definition of energy, Ew > 0. Because N > 0, we obtain the relation

a2ruu(0) + b2ryy(0) + 2abruy(k) > 0 (6.57)
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Figure 6.3: Plot of sin 0.1n + mξ(n) and its ACF for m values of 0.1, 0.5 and 1, as
discussed in Example 6.7

Assuming that b �= 0, we can divide by b2 (otherwise, we can divide by a2 to arrive
at the same result):(a

b

)2
ruu(0) + 2

(a
b

)
ruy(k) + ryy(0) ≥ 0

This is a quadratic in (a/b), with coefficients ruu(0), 2ruy(k) and ryy(0). As the
quadratic is nonnegative, it follows that its discriminant is nonpositive. That is,

4[ruy(k)2 − ruu(0)ryy(0)] ≤ 0 (6.58)
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That is,

|ruy(k)| ≤
√
ruu(0)ryy(0) (6.59)

When u = y, the above relation reduces to

|ruu(k)| ≤ ruu(0) (6.60)

This shows that ruu(k) takes the largest value at k = 0. In other words, the largest
value of ruu(k) is reached when k = 0. An intuitive explanation is that at zero lag, the
ACF is equal to the energy of the signal, while there could be cancellations of terms
for other l values. Another approach to arrive at Eq. 6.60 is presented in Problem 6.4.

As in the case of periodicity, the property described above generally holds true
even in the presence of noise. Also note that we do not need N to be infinite for this
property to hold. We now illustrate these ideas with a simple example.

Example 6.8 Study the ACF of the following sequences

y1 = {1, 2, 3, 4}+m{ξ}
y2 = {1,−2, 3,−4}+m{ξ}
y3 = {−1,−2, 3, 4}+m{ξ}

for m values of 0.1 and 1 and interpret.

M 6.4 implements this problem. The results are plotted in Fig. 6.4. It is easy to see
that the ACF at zero lag is the largest compared to all other lags. This property
holds true for all three sequences. The presence of noise does not change these
observations.

Now it is easy to see how Eq. 6.60 can be used to detect pure delays. Suppose that
the input to the delay system is given by {u(n)} = {u1, u2, . . .} and the corresponding
output is {y(n)} = {0, . . . , 0, u1, u2, . . .}, with d zeros in front. Note that d is an
unknown number at this point. We have to calculate ruy(l) for l = 0,−1, . . . . The lag
at which this sequence attains the maximum will correspond to d, the delay.

It is important to note that a zero mean signal should be used for the detection of
time delays. Alternatively, the mean of input and output signals should be calculated
in a consistent fashion, as explained in Problem 6.5.

The objective of this section is to bring out the important property that the ACF
is largest at zero lag. The above described method cannot be used to detect delays
in dynamical systems, however. The causality property of dynamical systems may be
used to estimate the delays. For example, one can make a step change in the input of
the plant at steady state and see the time it takes for the output to start responding.
The time that the output takes to respond to a change in input is the delay present
in the plant.

6.3.5 Covariance of Zero Mean Processes Through
Convolution

We conclude the discussion on covariance with a useful property that will help simplify
derivations. We will show in this section that the ACF can be obtained through
convolution.
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Figure 6.4: Plot of sequences (y1 solid line, y2 dashed, y3 dotted) and their ACFs for
different noise variances, as discussed in Example 6.8

As mentioned earlier, we can assume the signals to be of zero mean, without loss
of generality. As a result, Eq. 6.29 becomes

ruy(l) =
1

2N

N∑
k=−N

u(k)y(k − l) (6.61)

Comparing Eq. 6.61 with Eq. 3.27 on page 48, we see that

ruy(l) =
1

2N
u(l) ∗ y(−l) (6.62)

Let us now focus on a single series. When the mean mu is zero, Eq. 6.25 becomes

ruu(l) =
1

2N

N∑
k=−N

u(k)u(k − l) (6.63)

Substituting u for y, we obtain from Eq. 6.62 the following result:

ruu(n) =
1

2N
u(n) ∗ u(−n) (6.64)
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ξ(n)

G(z)

H(z)

v(n)

y(n)u(n)

Figure 6.5: Transfer functions of system and noise process

Finally, from the definition of auto covariance, see Eq. 6.63, and energy defined by
Eq. 3.2 on page 35, we arrive at

ruu(0) =
1

2N
Eu (6.65)

where N is taken as a large value, as mentioned earlier. Because Eu denotes energy
of u and N denotes time, ruu(0) can be thought of as power.

Recall that the main objective in introducing the discussion on time series is to
help identify plant models from measured data. In order to facilitate this, we examine
the effect of exciting a linear system with white noise.

6.4 ARMA Processes

One does not measure noise directly. For example, even though in Fig. 6.2 on page 160
we have shown that noise ξ affects the measurement, only the plant output y and the
input u are measured. If we know the transfer function G, the noise is obtained as
the difference between the measurement and what is expected.

Although the noise in Fig. 6.2 is modelled as white, it is usually inadequate in
practice. Fortunately, a large amount of noise behaviour can be modelled as auto
regressive moving average or ARMA processes. These noise processes, denoted by the
symbol v in Fig. 6.5, can be modelled by white noise filtered by a linear system, with
a transfer function, say, H(z).

The identification problem is to determine G(z) and H(z), given the measurements
u(n) and y(n). In this section, we restrict our attention to the estimation of H(z),
given v(n). We present the conditions under which we can represent H(z) as an all
zero and all pole model, respectively. We conclude this section with a combination of
these two models. We begin this section with a brief discussion on the notation we
will use in the rest of this book.

6.4.1 Mixed Notation

Recall that the system presented in Fig. 6.2 on page 160 has been modelled with the
help of Eq. 6.1, reproduced here for convenience:

y(n) = g(n) ∗ u(n) + ξ(n) (6.66)
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We have difficulty in taking the Z-transform of this equation. The reason is that the
Z-transform of ξ(n) may not exist, because it is a random number. For example,
the Z-transform may not converge for any value of z. On the other hand, it is also
inconvenient to carry the convolution operation. In view of this, a mixed notation,
consisting of the time domain representation of variables and the transfer function of
the linear systems, is used. With this notation, the above equation becomes

y(n) = G(z)u(n) + ξ(n) (6.67)

where G(z) denotes the Z-transform of g(n). Some control and identification books
follow the convention of using an operator notation G(q), in the place of G(z). In this
book, however, we have avoided using this notation. On seeing an equation such as
the one above, given in mixed notation, the reader should recognize that it denotes
Eq. 6.66. In a similar way, when the noise goes through a linear system, such as the
one shown in Fig. 6.5, we arrive at the following model for the output of the process:

y(n) = g(n) ∗ u(n) + h(n) ∗ ξ(n) (6.68)

Once again, we will write the above equation in the following mixed form:

y(n) = G(z)u(n) +H(z)ξ(n) (6.69)

where Y , U , G, H are, respectively, the Z-transforms of the output, input, process
impulse response and noise process impulse response. Once again, it is understood
that when we write the above equation, we mean Eq. 6.68.

6.4.2 What is an ARMA Process?

The noise process v of Fig. 6.5 is modelled in the most general form as an auto
regressive moving average process, abbreviated as an ARMA process:

v(n) + a1v(n− 1) + · · ·+ apv(n− p) = ξ(n) + c1ξ(n− 1) + · · ·+ cqξ(n− q)
(6.70)

The object of this model is to predict the latest value taken by the noise process,
namely v(n). As this prediction depends on the past measurements of v, we call it
auto regressive (AR). The phrase auto regressive refers to the fact that the current
value of v depends on its previous values. The phrase moving average refers to the
fact that a weighted average of ξ, over a moving window, is taken. For example, we
need the current value, ξ(n), as well as q previous values of it.

We refer to this as an ARMA(p, q) process. The symbol p refers to the number of
previous v values used or the length of the auto regressive part. The symbol q refers
to the number of previous ξ used in these calculations.

We will also study simpler forms of ARMA processes. Suppose that in Eq. 6.70,
p = 0, i.e., the model is

v(n) = ξ(n) + c1ξ(n− 1) + · · ·+ cqξ(n− q) (6.71)

which can be written in the mixed notation of the previous section as

v(n) =

(
1 +

q∑
n=1

cnz
−n

)
ξ(n) = C(z)ξ(n) (6.72)
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This is known as an MA(q) process. In other words, a random sequence whose value
v(n) can be represented as a finite combination of the past q entries of a white noise
sequence plus a random error ξ(n) is said to be an MA process of order q. An MA
process is also known as an all zero process, because the transfer function of the
process is a polynomial, C(z).

With p = 0 in Eq. 6.70, we have obtained an MA process. If instead q = 0, we
obtain

v(n) + a1v(n− 1) + · · ·+ apv(n− p) = ξ(n) (6.73)

This is known as an AR(p) process. In other words, a random sequence whose value
v(n) can be represented as a weighted finite aggregate of the p previous values plus
a white noise sequence ξ(n) is said to be an AR process of order p. Eq. 6.73 can be
written as (

1 +
p∑

n=1

anz
−n

)
v(n) = ξ(n)

or, equivalently, using the mixed notation of Sec. 6.4.1,

v(n) =
1(

1 +
p∑

n=1

anz
−n

) ξ(n) =
1

A(z)
ξ(n) (6.74)

A variety of practical processes can be represented using this structure. The process
is stationary if and only if the weights of the infinite polynomial 1/A(z) form a
convergent series. If at least one root of A(z) lies on the unit circle, the process
is said to contain an integrator. An AR process can also be represented as an infinite
summation of ξ(n), as discussed in Sec. 3.3.6. An AR process is also known as an all
pole process, because the transfer function has a polynomial only in the denominator.

Eq. 6.70 is known as the ARMA process as it contains both AR and MA
components. Using the terminology defined above, it can be written as

v(n) =
C(z)
A(z)

ξ(n) =

1 +
q∑

n=1

cnz
−n

1 +
p∑

n=1

anz
−n

ξ(n) (6.75)

6.4.3 Moving Average Processes

In this section, we will present a technique to determine the order q of MA processes,
i.e., how many parameters are required to define the model. We will illustrate this
idea with a simple example first and then generalize it.

Example 6.9 Determine a procedure to find the order of the MA(1) process

v(n) = ξ(n) + c1ξ(n− 1)

making use only of the output data generated, namely {v(n)}.
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We follow a procedure similar to the one outlined in Example 6.6 on page 170. We
begin with the calculation of the ACF at zero lag:

γvv(0) = E (v(n), v(n)) = E [(ξ(n) + c1ξ(n− 1))(ξ(n) + c1ξ(n− 1))]

Because ξ(n) is white, the expectation of cross products are zero. We obtain

γvv(0) = (1 + c21)σ2
ξ

Next, we determine the ACF at lag 1:

γvv(1) = E (v(n), v(n− 1))
= E [(ξ(n) + c1ξ(n− 1))(ξ(n− 1) + c1ξ(n− 2))]

Once again invoking the fact that ξ is white and cancelling the cross terms, we
obtain

γvv(1) = E (c1ξ2(n− 1)) = c1σ
2
ξ

These are the only nonzero terms. For all other lags, the ACF is zero. That is,

γvv(l) = 0, l > 1

The ACF is simply obtained as

ρvv(l) =
γvv(1)
γvv(0)

We observe from this example that for an MA(1) process, the ACF becomes zero
for lags greater than 1, i.e., |l| > 1.

We will now generalize the above result for MA(q) processes. Multiplying Eq. 6.71
by v(n) and taking the expectation, we obtain

γvv(0) = γvξ(0) + c1γvξ(1) + · · ·+ cqγvξ(q) (6.76)

Multiplying Eq. 6.71 by v(n− 1) and taking the expectation,

γvv(1) = c1γvξ(0) + c2γvξ(1) + · · ·+ cqγvξ(q − 1) (6.77)

where E [v(n− 1)ξ(n)] = 0, using the causality principle of Eq. 6.32 on page 169: for
causal systems, the output cannot depend on future input ξ(n). Continuing the above
process and stacking the resulting equations, we arrive at

γvv(0)
γvv(1)

...
γvv(q)

 =


1 c1 · · · cq−1 cq
c1 c2 · · · cq 0
...

...
cq 0 · · · 0



γvξ(0)
γvξ(1)

...
γvξ(q)

 (6.78)
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All the terms below the secondary diagonal are zero. It is clear that

γvv(n) = 0, ∀n > q (6.79)

Thus we obtain the rule that for MA(q) processes, a plot of {γvv(n)} vs. n becomes
zero for all n > q. In other words, the index corresponding to the last nonzero value
is q. We will now illustrate this idea with an example.

Example 6.10 Calculate {γvv(k)} for

v(n) = ξ(n) + ξ(n− 1)− 0.5ξ(n− 2) (6.80)

and verify that Eq. 6.79 is satisfied.

Multiplying Eq. 6.80 by v(n− k), k ≥ 0, and taking the expectation, we arrive at

γvv(0) = γvξ(0) + γvξ(1)− 0.5γvξ(2)
γvv(1) = γvξ(0)− 0.5γvξ(1)
γvv(2) = −0.5γvξ(0)
γvv(k) = 0, k ≥ 3

(6.81)

As explained in Example 6.6 on page 170, measurement of the white noise ξ is
not available and hence the CCFterms in the above equation cannot be calculated.
Nevertheless, we can come up with equivalent expressions for the CCF terms using
only the available quantities. We multiply Eq. 6.80 by ξ(n) and take the expectation
to arrive at

γvξ(0) = γξξ(0) = σ2
ξ (6.82a)

using Eq. 6.35 on page 169. Multiplying Eq. 6.80 by ξ(n − 1) and ξ(n − 2), one
at a time, and taking expectations, we obtain

γvξ(1) = γξξ(0) = σ2
ξ

γvξ(2) = −0.5γξξ(0) = −0.5σ2
ξ

(6.82b)

Substituting Eq. 6.82 in Eq. 6.81, we obtain

γvv(0) = (1 + 1 + 0.25)σ2
ξ = 2.25σ2

ξ

γvv(1) = (1 − 0.5)σ2
ξ = 0.5σ2

ξ

γvv(2) = −0.5σ2
ξ

γvv(k) = 0, k ≥ 3.

Recall that this procedure is known as theoretical prediction. Using the definition
of ACF, given in Eq. 6.26,

ρyy(0) = 2.25/2.25 = 1
ρyy(1) = 0.5/2.25 = 0.22
ρyy(2) = −0.5/2.25 = −0.22

(6.83)

For all other k values, ρyy(k) = 0. We conclude this example with the observation
that the output of the noise process v is either directly measured, or estimated
using a procedure to be outlined in Sec. 6.6.
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Figure 6.6: Input–output profiles (left) and the ACF of the system described by
Eq. 6.80. M 6.5 is used to generate it.

In the next example, we solve the above problem using Matlab.

Example 6.11 Simulate the process given in Eq. 6.80, calculate an estimate of
{γvv(k)} and compare with the results obtained in Example 6.10.

M 6.5 carries out this task. Pseudo random numbers are taken as a good approx-
imation to white noise process. The white noise process, thus generated, should
not be directly used to determine the parameters. For example, one should avoid
the temptation to apply least squares techniques to Eq. 6.80 in order to directly
estimate the parameters. The reason is that in reality, white noise is not measured.
Indeed, white noise is an idealization. The only available measurement is v.

The Matlab identification toolbox is required to carry out the simulation. The
system is simulated for 100,000 time instants. First 500 instances of {ξ(n)} and
{v(n)} are shown in the left hand plot of Fig. 6.6. A plot of the ACF, i.e., {ρvv(k)},
generated by M 6.6, is shown in the right hand plot of Fig. 6.6. It is easy to see
that the estimates reported in this figure are in agreement with the theoretically
predicted values, given by Eq. 6.83.

Once we know the order of an MA process, it is straightforward to determine the
coefficients. Let us start with Eq. 6.78. If we can express γvξ(n) as a function of γvv(n),
we are done. Multiplying Eq. 6.71 with ξ(n− k), k ≥ 0, and taking the expectation,
we obtain γvv(ξ)(k) = ckσ

2
ξ . For k = 0, ck is taken as 1. Substituting this result in

Eq. 6.78, we obtain
γvv(0)
γvv(1)

...
γvv(q)

 =


1 c1 · · · cq−1 cq
c1 c2 · · · cq 0
...

...
cq 0 · · · 0




1
c1
...
cq

σ2
ξ (6.84)

What we have above is a system of q+1 equations in q+1 unknowns, c1 to cq and σ2
ξ .

The left-hand side of the above equation can be determined from the experimental
data, using a procedure similar to the one given in Example 6.71.
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It should be pointed out that we do not calculate the coefficients using the above
method. Computationally efficient procedures are normally employed to estimate the
parameters of AR, MA and ARMA processes [5]. This topic is beyond the scope of
this book and hence will not be pursued here.

We will illustrate the above approach with an example.

Example 6.12 Determine the model parameters c1 and c2 in the following
MA(2) process:

v(n) = ξ(n) + c1ξ(n− 1) + c2ξ(n− 2) (6.85)

Using Eq. 6.84, we arrive at the following equations:

γvv(0) = σ2
ξ + c21σ

2
ξ + c22σ

2
ξ = (1 + c21 + c22)σ2

ξ

γvv(1) = c1γvξ(0) + c2γvξ(1) = c1(1 + c2)σ2
ξ

γvv(2) = c2γvξ(0) = c2σ
2
ξ

We have three equations in three unknowns, c1, c2 and σ2
ξ .

6.4.4 Is Unique Estimation Possible?

We would like to address the question of whether we can always determine the model
parameters of an MA process from the experimental data, as explained in the previous
section. The MA process, given by Eq. 6.72, implies

v(n) = c(n) ∗ ξ(n) (6.86)

where c(n) is the inverse Z-transform of C(z) and ξ(n) is white noise of variance 1.
We also obtain

v(−n) = c(−n) ∗ ξ(−n)

Convolving the expressions for v(n) and v(−n) and using the commutativity property
of convolution, we obtain

v(n) ∗ v(−n) = c(n) ∗ c(−n) ∗ ξ(n) ∗ ξ(−n)

Using the definition of auto covariance, as given by Eq. 6.64, we obtain

γvv(n) = c(n) ∗ c(−n) ∗ γξξ(n)

Taking the Z-transform of both sides, we obtain

Γvv(z) = C(z)C(z−1) (6.87)

where we have used the fact that γξξ(n) = δ(n) from Eq. 6.35 on page 169, for white
noise of variance 1, and that the Z-transform of δ(n) is 1, obtained in Example 4.2 on
page 70. We have also made use of the result of Sec. 4.2.8 to arrive at C(z−1). The
power of z−1 as an argument of C indicates that we have to replace the occurrences
of z in C(z) with z−1; compare this with Footnote 5 on page 100.

Because the zeros of C(z) are reciprocals of the corresponding zeros of C(z−1), we
should expect a loss in uniqueness. We illustrate this idea with a simple example.



184 6. Identification

Example 6.13 Study the ACFs of two processes v1(n) and v2(n), modelled as

v1(n) = ξ(n) + c1ξ(n− 1) = (1 + c1z
−1)ξ(n)

v2(n) = ξ(n) + c−1
1 ξ(n− 1) = (1 + c−1

1 z−1)ξ(n)

where we have used the mixed notation of Sec. 6.4.1. Using Eq. 6.87, we obtain

Γv2v2(z) = (1 + c−1
1 z−1)(1 + c−1

1 z)

In a similar way, we obtain

Γv1v1(z) = (1 + c1z
−1)(1 + c1z)

Pulling out c1z
−1 and c1z, respectively, from the first and second terms on the

right-hand side, we obtain

Γv1v1(z) = c1z
−1(c−1

1 z + 1)c1z(c−1
1 z−1 + 1)

Comparing this with the expression for Γv2v2 , we obtain

Γv1v1(z) = c21Γv2v2(z)

It is clear that the ACFs of v1 and v2 are identical, i.e.,

ρv1v1(l) = ρv2v2(l), ∀l

because scaling results in the removal of constant factors – see the definition of
the ACF in Eq. 6.26 on page 167. As a result, given the ACF, it is not possible to
say whether the underlying noise process is v1 or v2.

In the above example, if c1 lies outside the unit circle, c−1
1 will lie inside it. Because

we cannot say which one has given rise to the ACF, by convention, we choose the
zeros that are inside the unit circle. Although this discussion used a first degree
polynomial C, it holds good even if the degree is higher. We illustrate these ideas
with a Matlab based example.

Example 6.14 The MA(2) process described by

v1(n) = ξ(n)− 3ξ(n− 1) + 1.25ξ(n− 2) = (1− 3z−1 + 1.25z−2)ξ(n)

= (1− 0.5z−1)(1− 2.5z−1)ξ(n)

is used to generate data as in M 6.7. The same code determines the model
parameters. We present the resulting model using the command present:

Discrete-time IDPOLY model: v(t) = C(q)e(t)
C(q) = 1 - 0.8923 (+-0.009942) q^-1 + 0.1926 (+-0.009935) q^-2
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The values within the brackets are the standard deviation for each parameter. The
identified model parameters are different from the ones used to generate the data.
Observe also that one of the zeros lies outside the unit circle. We repeat this
exercise with the process described by

v2(n) = ξ(n)− 0.9ξ(n− 1) + 0.2ξ(n− 2) = (1− 0.9z−1 + 0.2z−2)ξ(n)

= (1− 0.5z−1)(1− 0.4z−1)ξ(n)

Note that this process is identical to v1, but with the zero outside the unit circle
(2.5) being replaced by its reciprocal (0.4). M 6.7 generates data for this model
as well, and estimates the parameters. We obtain the following result:

Discrete-time IDPOLY model: v(t) = C(q)e(t)
C(q) = 1 - 0.8912 (+-0.009939) q^-1 + 0.1927 (+-0.009935) q^-2

Observe that Matlab estimates the parameters correctly this time. Although not
shown here, using M 6.7, one can see that the ACF plots of these two models
are identical. Similarly, the PACF plots, to be introduced in Sec. 6.4.5, are also
identical.

It is important to point out the sequence of calculations in the above discussed model
identification. From the data, one calculates the ACF, with which the parameters
are calculated. Recall from Sec. 5.4.2 that systems with zeros inside the unit circle
are known as minimum phase systems and those with all their zeros outside the unit
circle are known as maximum phase systems. Splitting the ACF into minimum and
maximum phase systems is known as spectral factorization, to be studied in more detail
in Sec. 13.1. As explained in this section, using spectral factorization, one identifies
minimum phase systems. We will make use of this fact while deriving prediction error
models, to be discussed in Sec. 6.6.1.

We take this opportunity to point out that every parameter estimated in the above
example comes with an uncertainty band. This can be helpful at times to decide on
the model order. We illustrate this with an example.

Example 6.15 Simulate the following MA(2) process,

v2(n) = (1− 0.9z−1 + 0.2z−2)ξ(n)

and estimate the model parameters assuming the data to have come first from an
MA(2) process and then from an MA(3) process.

This problem is solved in M 6.8. This system is simulated and the data thus
generated are used to estimate the model parameters. When a second order model
is fitted to these data, using the command present, we obtain the following model
parameters:

Discrete-time IDPOLY model: y(t) = C(q)e(t)
C(q) = 1 - 0.9045 (+-0.00313) q^-1 + 0.2063 (+-0.003131) q^-2

Estimated using ARMAX from data set v
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Loss function 0.00995515 and FPE 0.00995554
Sampling interval: 1
Created: 23-Nov-2006 22:38:31
Last modified: 23-Nov-2006 22:38:37

In this, the loss function refers to the sum of squares of residuals and FPE denotes
Akaike’s final prediction error criterion [32]. We note that the estimated parameters
are close to the actual values. Next, we fit the same data with an MA(3) model
and obtain the model parameters:

Discrete-time IDPOLY model: y(t) = C(q)e(t)
C(q) = 1 - 0.9046 (+-0.0032) q^-1 + 0.2068 (+-0.004267) q^-2

- 0.0003695 (+-0.003201) q^-3
Estimated using ARMAX from data set v
Loss function 0.00995514 and FPE 0.00995574
Sampling interval: 1

We make two observations:

1. The third parameter is estimated to be small, −0.0003695.

2. The uncertainty in the third parameter, namely 0.003201, is larger than the
estimate itself, suggesting that the third parameter is not trustworthy.

In this example, the uncertainty has turned out to be larger than the parameter
itself. Generally, if the uncertainty turns out to be comparable to the value of the
parameter being estimated, the validity of the coefficient is questionable. When
the estimate is good, however, the uncertainty is generally much smaller than the
parameter value.

From this section, we conclude that the ACF can be used as an effective tool
to determine the order of MA processes. We will now devote our attention to AR
processes.

6.4.5 Auto Regressive Processes

In this section, we will present a method to determine the order of AR processes. Let
us first explore whether it is possible to do this through the ACF. We will begin with
a simple example.

Example 6.16 Calculate the ACF of the AR(1) process

v(n) + a1v(n− 1) = ξ(n) (6.88)

Multiplying both sides of this equation successively by v(n − 1), v(n − 2), . . . ,
v(n− l) and taking the expectation, we obtain

γvv(1) + a1γvv(0) = 0
γvv(2) + a1γvv(1) = 0

...

γvv(l) + a1γvv(l − 1) = 0
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where the right-hand side of every equation is zero, because of the causality
condition, given by Eq. 6.32 on page 169. Starting from the last equation and
recursively working upwards, we obtain

γvv(l) = −a1γvv(l − 1) = −a1(−a1γvv(l − 2)) = a2
1γvv(l − 2)

= · · · = (−1)lal
1γvv(0)

Dividing both sides by γvv(0), we obtain

ρvv(l) = (−1)lal
1

Thus, the ACF never dies out and hence cannot be used for detecting the order of
an AR process.

Although there is no direct correlation between v(n) and v(n − l) for l > 1, it
appears to exist due to auto regression.

As the ACF is not useful to determine the order of AR processes, we take an
alternative approach. Given the AR process

v(n) + a1v(n− 1) + · · ·+ apv(n− p) = ξ(n)

we multiply both sides with v(n − l) for l = 0, . . . ,M and take the expectation to
obtain

γvv(0) + a1γvv(1) + · · ·+ apγvv(p) = σ2
ξ

γvv(1) + a1γvv(0) + · · ·+ apγvv(p− 1) = 0
...

γvv(M) + a1γvv(M − 1) + · · ·+ apγvv(p−M) = 0

At any lag l > p, we replace p− l with l− p since the ACF is symmetric, see Eq. 6.27
on page 167. We may solve the above set of equations simultaneously to obtain the
ACF.

We see that although the ACF does not work for an AR process, the process we
have described above involves an ACF-like approach. We explore this further and
compute the covariance between v(n) and v(n− l) by taking the simultaneous effects
of the intermediate lags. The lag after which the correlation between v(n) and v(n− l)
dies out is the order of the AR process. The correlation computed this way is known
as the partial autocorrelation function (PACF ) and is denoted by φvv(l).

We now summarize this approach. The procedure to determine the order p in
Eq. 6.73 is as follows:

1. Let j = 1.

2. Assume that the system is an AR(j) model:

v(n) + a1jv(n− 1) + · · ·+ ajjv(n− j) = ξ(n) (6.89)
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3. Multiplying this equation by v(n− k) and taking the expectation, we obtain

γvv(k) + a1jγvv(k − 1) + · · ·+ ajjγvv(k − j) = 0, ∀k ≥ 1 (6.90)

where the right-hand side is zero because of the causality relationship, see
Eq. 6.32 on page 169.

4. Writing down the above equation for k = 1 to j, we arrive at j equations. We
solve them and determine ajj .

5. If j < jmax, increment j by 1 and go to step 2 above.

Note that jmax should be chosen to be greater than the expected p. A plot of ajj vs. j
will have a cutoff from j = p+ 1 onwards. We now illustrate this procedure with an
example.

Example 6.17 Demonstrate the procedure discussed above for the system

v(n)− v(n− 1) + 0.5v(n− 2) = ξ(n) (6.91)

For j = 1, Eq. 6.90 becomes

γvv(k) + a11γvv(k − 1) = 0, ∀k ≥ 1

For k = 1, the above equation becomes

γvv(1) + a11γvv(0) = 0

a11 = −γvv(1)
γvv(0)

(6.92)

For j = 2, Eq. 6.90 becomes

γvv(k) + a12γvv(k − 1) + a22γvv(k − 2) = 0

for k ≥ 1. For k = 1, 2, this equation becomes[
γvv(0) γvv(1)
γvv(1) γvv(0)

] [
a12

a22

]
= −

[
γvv(1)
γvv(2)

]
(6.93)

For j = 3, Eq. 6.90 becomes

γvv(k) + a13γvv(k − 1) + a23γvv(k − 2) + a33γvv(k − 3) = 0

for all k ≥ 1. For k = 1, 2, 3, it becomesγvv(0) γvv(1) γvv(2)
γvv(1) γvv(0) γvv(1)
γvv(2) γvv(1) γvv(0)

a13

a23

a33

 = −
γvv(1)
γvv(2)
γvv(3)

 (6.94)
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If we have experimental data, we can calculate γvv(k), k = 0 to 3, using which,
ajj , j = 1, 2, 3 can be calculated. In this example, let us calculate these using
the method of theoretical prediction. Multiplying Eq. 6.91 by ξ(n) and taking the
expectation, we arrive at

γvξ(0) = γξξ(0) = σ2
ξ

We also use Eq. 6.90 from k = 0 onwards. For example, multiplying Eq. 6.91 by
v(n), v(n− 1) and v(n− 2), one at a time, and taking the expectation, we obtain 1 −1 0.5

−1 1.5 0
0.5 −1 1

γvv(0)
γvv(1)
γvv(2)

 = σ2
ξ

1
0
0


Solving this matrix equation, we obtainγvv(0)

γvv(1)
γvv(2)

 =

2.4
1.6
0.4

σ2
ξ (6.95)

Multiplying Eq. 6.91 by v(n− 3) and taking the expectation, we obtain

γvv(3)− γvv(2) + 0.5γvv(1) = 0

the solution of which is

γvv(3) = −0.4σ2
ξ (6.96)

We substitute Eq. 6.95–6.96 in Eq. 6.92–6.94 and determine aij , i ≤ j, j = 1, 2, 3.
We obtain

a11 = −0.67
a22 = 0.5
a33 = 0

As expected, for the AR(2) process, ajj = 0 for j > 2.

For large j values, we will have to solve large systems of equations, a tedious procedure
if we adopt manual methods. In the next example, we implement the calculations
through Matlab where we let j go up to 10.

Example 6.18 Simulate the process given in Eq. 6.91, calculate ajj defined in
Eq. 6.90 and compare with the results obtained in Example 6.17.

M 6.9 carries out this task. The identification toolbox is required to carry out these
calculations. The system is simulated for 100,000 time instants. First 500 instances
of {ξ(n)} and {v(n)} are shown in the left hand plot of Fig. 6.7. M 6.11 builds the
square matrices given in Eq. 6.93–6.94. A plot of ajj vs. j is shown in the right
hand plot of Fig. 6.7, for j values up to 10. Note that the PACF is defined from
lag 1 only. It is easy to see that the values reported in this figure are in agreement
with those calculated in Example 6.17.
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Figure 6.7: Input–output profiles (left) and the PACF (right) of the system described
by Eq. 6.91. M 6.9 is used to generate it.

Before concluding this section, we would like to discuss what the PACF plots of
MA processes look like. We can get a hint of this from the discussion in Sec. 3.3.6,
where we have used a Taylor series expansion to convert an infinite order MA process
into a finite order AR process. We can also do the reverse: convert a finite order MA
process into an infinite order AR process. In view of this, the PACF plots of MA
processes decay slowly, either monotonically or with oscillations. This is illustrated in
the next example.

Example 6.19 Calculate the ACF and the PACF of the process

v2(n) = (1− 0.9z−1 + 0.2z−2)ξ(n)

discussed in Example 6.15 on page 185.

M 6.12 implements these calculations. We obtain the ACF and the PACF plots,
as in Fig. 6.8. The ACF plot has only two nonzero coefficients, as expected. The
PACF, on the other hand, decays slowly.

The above trend is true in all MA systems: while the ACF will show a definite
cutoff, the PACF plot will decay slowly, either monotonically or with oscillations. In
the next section, we take up the case of ARMA processes.

6.4.6 Auto Regressive Moving Average Processes

In the previous sections, we have developed procedures to determine the order for
either AR or MA processes. Now we will consider the situation of both AR and MA
occurring simultaneously. In other words, we will now develop methods to determine
the orders p and q of an ARMA(p,q) process. We begin with a simple trial and error
procedure, which can be summarized as follows:

1. Plot the ACF and PACF to check if it is a pure AR, MA or a mixed process.



6.4. ARMA Processes 191

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
 

Lag

A
C

F

0 2 4 6 8 10 12
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Lag

P
A

C
F

Figure 6.8: ACF (left) and PACF (right) plots of MA(2) process discussed in
Example 6.19

2. For a mixed process, start with an ARMA(1,1) model (use the arma function in
Matlab).

3. Compute the residuals of this model (use the pe function in Matlab).

4. If the ACF of the residual shows a slow decay, increase the AR component.
If, on the other hand, the PACF has a slow decay, increase the MA component.
If both show a slow decay, increase the orders of both AR and MA components
by 1. Go to step 3.

Because most realistic processes can be modelled with ARMA processes of small AR
and MA orders, the above indicated method should converge. We now illustrate this
procedure with an example, taken from [56].

Example 6.20 Determine the order of the following ARMA(1,1) process, whose
transfer function is given by

H(z) =
1− 0.3z−1

1− 0.8z−1

This can, equivalently, be written as

v(n)− 0.8v(n− 1) = ξ(n)− 0.3ξ(n− 1)

We explore the trial and error procedure described above, through M 6.13. First
we define the transfer function through idpoly. We set up the noise input ξ and
simulate its effect through idsim. The ACF and PACF are calculated and plotted
in Fig. 6.9(a)–6.9(b).

Because both the ACF and PACF decay slowly, we could start with an ARMA(1,1)
process. But suppose that we start with an AR(1) process, because the ACF has
a much slower decay. We obtain the difference between this model prediction and
the actual data. We obtain the following Matlab report:

Discrete-time IDPOLY model: A(q)v(t) = e(t)
A(q) = 1 - 0.6567 (+-0.01685) q^-1
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Estimated using ARMAX from data set y
Loss function 1.01349 and FPE 1.01448
Sampling interval: 1

We determine the ACF and PACF of the residual. These are plotted in Fig. 6.9(c)–
6.9(d). The ACF plot has a small cutoff. If, instead, it has a slow decay, it would
have been indicative of additional AR components. Slow decay of PACF, on the
other hand, points to the possibility of an MA component. Because we have not
included any MA component so far, we add an MA component and arrive at an
ARMA(1,1) model. We obtain the following result from Matlab:

Discrete-time IDPOLY model: A(q)v(t) = C(q)e(t)
A(q) = 1 - 0.7999 (+-0.01976) q^-1
C(q) = 1 - 0.2625 (+-0.03186) q^-1

Estimated using ARMAX from data set y
Loss function 0.985375 and FPE 0.987304
Sampling interval: 1

We find the loss function to be smaller now. We calculate and plot the ACF and
the PACF of the residuals in Fig. 6.9(e)–6.9(f). We conclude that the residuals
obtained with the ARMA(1,1) are white and hence we have arrived at the following
model

v(n)− 0.7999v(n− 1) = ξ(n)− 0.2625ξ(n− 1)

which is close to the actual process used to generate the input–output data.

In practice, commonly occurring stochastic processes can be adequately repre-
sented using ARMA(2,2), or lower order, processes.

6.5 Nonparametric Models

Recall that we are developing tools to determine the transfer functions G(z) and H(z)
in Fig. 6.5 on page 177. In Sec. 6.4, we have explained in detail the tools available
for the determination of the noise model H(z). In this section, we will devote our
attention to the plant model G(z), restricting ourselves to nonparametric models (see
Sec. 3.3.6).

6.5.1 Covariance Between Signals of LTI Systems

Let us suppose that an LTI system with an impulse response {g(n)} is excited by an
input {u(n)} to produce the output {y(n)}. We obtain the relation for output as a
convolution of the impulse response and the input:

y(n) = g(n) ∗ u(n) + h(n) ∗ ξ(n) (6.97)
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(a) ACF of ARMA(1,1)
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(b) PACF of ARMA(1,1)
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(c) ACF of residual after AR(1) model
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Figure 6.9: ACF and PACF for different processes, explored in Example 6.20

Convolving both sides with u(−n) and making use of Eq. 6.62 and 6.63 on page 176,
we obtain

γyu(n) = g(n) ∗ γuu(n) (6.98)

where we have made use of the fact that u and ξ are uncorrelated, see Eq. 6.38 on
page 170. As it can be used to determine the impulse response, this is an important
relation. For example, if the input is chosen such that its auto correlation is a delta
function, i.e.,

γuu(n) = Kδ(n) (6.99)
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then

g(n) =
1
K
γyu(n) (6.100)

see Example 3.7 on page 49. One way to realize the impulse function is through pseudo
random binary sequence (PRBS ) that takes the value of either 1 or −1. The ACF of
the PRBS sequence behaves like an impulse [53].

We will now discuss the case when the input is not a delta function.

Example 6.21 Demonstrate the use of Eq. 6.98 to determine the impulse
response coefficients of an FIR system.

As an FIR system has only a finite number of coefficients, we arrive at

γyu(n) =
N∑

k=0

g(k)γuu(n− k)

Evaluating this equation for different n, we arrive at the following matrix equation:
γuu(0) · · · γuu(N)
γuu(−1) · · · γuu(N − 1)

...
γuu(−N) · · · γuu(0)



g(0)
g(1)

...
g(N)

 =


γyu(0)
γyu(1)

...
γyu(N)

 (6.101)

The invertibility of the matrix in this equation is known as the persistence of
excitation condition of u. If this condition is satisfied, one can calculate ruu and
ryu from the experimental data and, using the above equation, determine the
impulse response coefficients. Use of PRBS signals can help achieve persistent
excitation.

In the above example, we have used theoretical ACF. In reality, however, we only
have estimates of the ACF. In view of this, we can say that Eq. 6.19 on page 164 is
identical to Eq. 6.101 for N = 2.

Next, we would like to derive some more useful properties between the input to
and the output from a linear system. For this purpose, we write Eq. 6.97 for −n:

y(−n) = g(−n) ∗ u(−n) + h(−n) ∗ ξ(−n) (6.102)

Convolving this with u(n), and making use of Eq. 6.62 on page 176, we arrive at

γyu(−n) = g(−n) ∗ γuu(n)

where we have once again used the fact that u and ξ are uncorrelated. As γyu(−n) =
γuy(n), we obtain

γuy(n) = g(−n) ∗ γuu(n) (6.103)

We can also get a useful relation for the ACF of the output signal. For this purpose,
we first convolve Eq. 6.97 with Eq. 6.102 to obtain

y(n) ∗ y(−n) = g(n) ∗ u(n) ∗ g(−n) ∗ u(−n) + h(n) ∗ ξ(n) ∗ h(−n) ∗ ξ(−n)
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where once again, the cross terms are zero as u and ξ are uncorrelated. Now we make
use of Eq. 6.62 on page 176 to obtain

γyy(n) = g(n) ∗ g(−n) ∗ γuu(n) + h(n) ∗ h(−n) ∗ γξξ(n) (6.104)

where we have made use of the fact that convolution is commutative.

6.5.2 Frequency Response of LTI Systems Excited by White
Noise

Consider an LTI I/O system with impulse response {g(n)}, input {u(n)} and output
{y(n)}, with corresponding Z-transforms G(z), U(z) and Y (z), respectively. Let
{γyu(n)} be the cross covariance between y and u and Γyu(z) be its Z-transform. Let
also {γuu(n)} be the auto covariance of u and Γuu(z) be its Z-transform. We would
like to take the Z-transform of Eq. 6.104. For this purpose, we take the Z-transform
of Eq. 6.64 on page 176, use the results of Sec. 4.2.8, and obtain

Γuu(z) =
1

2N
U(z)U(z−1) (6.105)

In a similar way, the Z-transform of Eq. 6.98 gives rise to

Γyu(z) = G(z)Γuu(z) (6.106)

Taking the Z-transform of Eq. 6.104 and cancelling the common divisor 2N , we obtain

Γyy(z) = G(z)G(z−1)Γuu(z) +H(z)H(z−1)Γξξ(z) (6.107)

We would like to visualize the above parameters as a function of frequency.
Invoking the definition of Fourier transform as evaluation at z = ejω , Eq. 6.105
becomes

Γuu(ejω) =
1

2N
U(ejω)U∗(ejω) =

1
2N
|U(ejω)|2 (6.108)

Substituting this in Eq. 5.51 on page 131, we obtain an expression for the energy of
u as

Eu =
1

2π

∫ π

−π

|U(ejω)|2dω =
1

2π

∫ π

−π

2N Γuu(ejω)dω (6.109)

We see that Γuu(ejω) = |U(ejω)|2/(2N) represents the distribution of power as a
function of frequency and hence is called the power density spectrum of u(n). When
Γuu(ejω) is a constant, it is easy to see that

Eu = |U(ejω)|2 = 2N Γuu(ejω) (6.110)

Now it is easy to see why white noise is so called. Recall from Sec. 6.3.2 that
Γξξ

(
ejω

)
= σ2

ξ , which says that the power is constant at all frequencies, the property
of white light.
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It is possible to make use of the relations derived above for identification. When
Eq. 6.107 is evaluated at z = ejω , we obtain

Γyy(ejω) =
∣∣G(ejω)

∣∣2 Γuu(ejω) +
∣∣H(ejω)

∣∣2 Γξξ(ejω) (6.111)

Similarly, Eq. 6.106 becomes

Γyu(ejω) = G(ejω)Γuu(ejω) (6.112)

Recall that this expression does not change even if ξ is present as an input, so long as
it is uncorrelated with u. If |Γuu(ejω)| = K, a constant, the above equation becomes

G(ejω) =
1
K

Γyu(ejω) (6.113)

This method of estimating the impulse response reduces the noise, because covariance
calculation is a smoothing operation, see Sec. 6.3.3.

In order that the estimated transfer function fits the plant well at the select
frequency range, we have to use an input that does not have constant energy at
all frequencies, to be discussed in Example 6.34 on page 223. The ACF of such an
input u is not an impulse function. As a result, we cannot determine the model
parameters with ease. To recover this desirable property, we use a pre-whitening filter.
This involves use of the ideas of Sec. 6.4, expressing u as a filtered version of the white
noise ξ and inverting it to obtain aW , such that Wu = ξ. We callW the pre-whitening
filter. How is this useful? Let us apply W to the input u and the plant output y. That
is, let uF = Wu and yF = Wy. Applying the same filtering operation to y = Gu
we obtain Wy = WGu = GWu, which is the same as uF = GyF . In other words,
the relation between u and y remains unchanged if we use filtered data uF and yF

in their places, respectively. Now, the ACF of uF is an impulse function and hence
using Eq. 6.100, we obtain

g(n) =
1
K
γyF uF (n)

which makes the calculation of g(n) an easy affair. The identification toolbox uses the
concept of pre-whitening factor extensively.

6.6 Prediction Error Models

In Sec. 6.5, we have presented the topic of identification of nonparametric models. In
this section, we will discuss parametric models.

In Example 6.1 on page 161, we have constructed a linear model for LSE of a
general FIR model. Nevertheless, we have not presented any rigorous argument why
we should follow that method and why we could not use something else. This question
becomes important in more difficult models, such as ARMAX, to be discussed in
Sec. 6.6.4. Indeed, we would like to extend the approach that we have developed for
FIR system to general systems. We will demonstrate in this section that by minimizing
the error that results from a one step ahead prediction error, we can arrive at the
required linear model.
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6.6.1 One Step Ahead Prediction Error Model

In this section, we build the one step ahead prediction error model for a general system,
with a schematic as in Fig. 6.5 on page 177. Recall the mathematical representation
of this system, given in Eq. 6.69, reproduced here for convenience:

y(n) = G(z)u(n) +H(z)ξ(n) (6.114)

The variables u, y and ξ refer to input, output and white noise, respectively. The
input u(n) can be taken to be known, because it is under the user’s control. On the
other hand, ξ(n) is unknown, as it is a random variable. Because of the presence of
ξ(n), the output y(n) is also nondeterministic. We make the following assumptions
about G and H :

1. G(z) is strictly proper, which means that g(n) = 0 for n ≤ 0.

2. H(z) is stable and minimum phase, which follows from the way we identify the
noise models, see Sec. 6.4.4. Equivalently, the poles and the zeros of H can be
taken to be inside the unit circle.

3. H(z) is monic, which means that h(0) = 1. This not a restriction, because if
the gain is different from 1, it can be incorporated in the variance of ξ.

Through minimization of the error in estimating y(n), we can construct a one step
ahead prediction error model. Consistent with Fig. 6.5 on page 177, we define a variable
v(n),

v(n) = H(z)ξ(n) = h(n) ∗ ξ(n) =
∞∑
l=0

h(l)ξ(n− l) (6.115)

so that Eq. 6.114 becomes

y(n) = G(z)u(n) + v(n) (6.116)

Suppose that the current time is denoted by n. In the above equation, we know y(j)
and u(j) for j = n− 1, n− 2, . . . . We can calculate v as follows:

v(l) = y(l)−G(z)u(l) (6.117)

From this, it is clear that v(l) can be calculated if y(l) and u(l) are known. Because for
l = n− 1, n− 2, . . . , y(l) and u(l) would have been measured, v(l) can be calculated
for past values. What we will not know, however, is the noise for the current time
instant, so we estimate it; call it v̂(n|n − 1). With this, the output y can also be
estimated; call it ŷ(n|n − 1). Because G(z) is strictly proper, y(n) does not depend
on the current value of input, namely u(n), but only on the previous values, namely
u(n− 1), u(n− 2), etc. Substituting these estimates in Eq. 6.116, we obtain

ŷ(n|n− 1) = G(z)u(n) + v̂(n|n− 1) (6.118)
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This is known as the one step ahead prediction model of y. Using the condition that
h(0) = 1, the noise model given by Eq. 6.115 can be written in the time domain as

v(n) = ξ(n) +
∞∑
l=1

h(l)ξ(n− l) (6.119)

The best prediction of v(n) is given by its expectation and hence we obtain

v̂(n|n− 1) = E [v(n)] = E [ξ(n)] + E

[ ∞∑
l=1

h(l)ξ(n− l)
]

(6.120)

As ξ is a zero mean white noise, its expectation is zero. The second term is
deterministic as it involves only the measurements in the previous time. Thus we
obtain

v̂(n|n− 1) =
∞∑
l=1

h(l)ξ(n− l) (6.121)

Using Eq. 6.119, we see that v̂(n|n− 1) = v(n)− ξ(n) and from Eq. 6.115 we obtain

v̂(n|n− 1) = h(n) ∗ ξ(n)− ξ(n) (6.122)

In the mixed notation of Sec. 6.4.1, this can be written as

v̂(n|n− 1) = H(z)ξ(n)− ξ(n) = (H(z)− 1)ξ(n) (6.123)

Substituting for ξ(n) from Eq. 6.115, we obtain

v̂(n|n− 1) = (H(z)− 1)H−1(z)v(n) = (1−H−1(z))v(n) (6.124)

where H−1(z) is stable, owing to the assumption that H(z) is minimum phase.
Substituting this expression for v̂(n|n− 1) in Eq. 6.118, we obtain

ŷ(n|n− 1) = G(z)u(n) + (1−H−1(z))v(n) (6.125)

Substituting for v(n) from Eq. 6.117, we obtain

ŷ(n|n− 1) = G(z)u(n) + [1−H−1(z)][y(n)−G(z)u(n)] (6.126)

which can be rewritten as

ŷ(n|n− 1) = H−1(z)G(z)u(n) + [1−H−1(z)]y(n) (6.127)

This is the one step ahead predictor for the general model given by Eq. 6.114. From
this, the prediction error can be written as

ε̂(n|n− 1) = y(n)− ŷ(n|n− 1) = H−1(z) [y(n)−G(z)u(n)] (6.128)
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We will apply this approach to a general model of the following form:

A(z)y(n) =
B(z)
F (z)

u(n) +
C(z)
D(z)

ξ(n) (6.129)

where A(z), B(z), C(z), D(z) and F (z) are polynomials in z−1 defined as

A(z) = 1+a1z
−1 + a2z

−2 + · · ·+ adAz
−dA (6.130)

B(z) = b1z
−1 + b2z

−2 + · · ·+ bdBz
−dB (6.131)

C(z) = 1+c1z−1 + c2z
−2 + · · ·+ cdCz

−dC (6.132)

D(z) = 1+d1z
−1 + d2z

−2 + · · ·+ ddDz
−dD (6.133)

F (z) = 1+f1z−1 + f2z
−2 + · · ·+ fdF z

−dF (6.134)

where d denotes the degree, see Footnote 3 on page 68. Also, recall the notation
on using z as the argument even for polynomials in powers of z−1, as mentioned in
Footnote 5 on page 100. Notice the structure of B in the above: the constant term
is zero. This means that the transfer function is strictly rational or that the input u
does not affect the output immediately, i.e., there is at least one sample delay before
the input affects the output, see Problem 4.17. Note also that the constant term of
all other variables is 1. From Eq. 6.114 and 6.129, we obtain

G(z) =
B(z)

A(z)F (z)
(6.135)

H(z) =
C(z)

A(z)D(z)
(6.136)

By specializing this, we obtain different models, which we will study in detail in
subsequent sections. We begin with the popular FIR model.

6.6.2 Finite Impulse Response Model

By letting A = C = D = F = 1 and B(z) be an arbitrary polynomial, we obtain from
Eq. 6.129,

y(n) = B(z)u(n) + ξ(n) (6.137)

Comparing this equation with Eq. 6.114, we obtain

G(z) = B(z) (6.138)
H(z) = 1 (6.139)

Eq. 6.137 is known as the FIR model, as it can be written in the form

y(n) = b(n) ∗ u(n) + ξ(n) (6.140)

and the convolution involves a finite number of terms. Because the constant term is
zero in B, see Eq. 6.131, only the previous inputs affect the current output. We will
now derive the one step ahead predictor for FIR processes: using Eq. 6.138 and 6.139
in Eq. 6.127, we obtain

ŷ(n|n− 1) = B(z)u(n) (6.141)
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Eq. 6.140–6.141 are, respectively, in the form of Eq. 6.6 and Eq. 6.7 on page 162,
the equations we derived while discussing the least squares approach. The details
of the linear prediction equation for this FIR model have already been presented in
Example 6.1 on page 161. We now illustrate a procedure to estimate the FIR model
using Matlab. For the time being, we will assume that the model order is known and
determine the parameters. We will take up the issue of order determination in a later
section.

Example 6.22 Generate input u(n), white noise ξ(n) and the corresponding
output y(n) of the following model:

y(n) =
0.6− 0.2z−1

1− 0.5z−1
u(n− 1) + ξ(n)

From the input–output data, determine the underlying FIR model.

Expanding the model in power series,

y(n) = (0.6− 0.2z−1)(1 + 0.5z−1 + 0.25z−2 + · · · )u(n− 1) + ξ(n)

= (0.6 + 0.1z−1 + 0.05z−2 + 0.025z−3 + · · · )u(n− 1) + ξ(n)

As this is a fast decaying sequence, it can be approximated well by a FIR model.
M 6.14 shows a way to solve this problem. The routine idpoly is used to generate
the model under study. As in the previous examples, a random number sequence
is used to approximate the white noise. We choose the deterministic input u to
be PRBS. We have seen the utility of this in Sec. 6.5. We have used the function
idinput to generate the PRBS sequence. Plots of the inputs and the corresponding
output, generated using sim, are presented in the plot on the left-hand side of
Fig. 6.10.

The FIR parameters are calculated using the command cra, which essentially
establishes the linear model as in Example 6.1 and solves it using the least squares
procedure. The result of cra is compared with the actual plot on the right-hand
side of Fig. 6.10. It is easy to see that the calculated values are in close agreement
with the actual values.

FIR models turn out to be unbiased, to be discussed in Sec. 6.7. Because of
this reason, FIR models are useful, even though they may have a large number of
parameters, as compared to the parametric models. The parametric models are also
useful, because they require only a few parameters. In the next section, we present
several parametric models.

6.6.3 Auto Regressive, Exogeneous (ARX) Input, Model

In this section, we will study the ARX model, in which the current output y is a
function of previous outputs, previous inputs u and a random noise ξ. The following
is the general form of an ARX model:

A(z)y(n) = B(z)u(n) + ξ(n) (6.142)
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Figure 6.10: Simulated output of the FIR model, discussed in Example 6.22, with
PRBS and noise inputs (left) and calculated and estimated FIR parameters (right).
M 6.14 is used to generate these plots.
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Figure 6.11: ARX structure. The output y is a sum of past inputs (Bu) and white
noise (ξ), filtered through 1/A.

Fig. 6.11 shows a schematic of this model structure. Because it can be written as

y(n) =
1

A(z)
(B(z)u(n) + ξ(n))

we see that the noise enters the model through an equation. In view of this, this is
known as an equation error model. Using the standard notation, as in Eq. 6.129, we
see that Eq. 6.142 satisfies C = D = F = 1. Comparing this equation with Eq. 6.114,
we obtain

G(z) =
B(z)
A(z)

(6.143)

H(z) =
1

A(z)
(6.144)

Substituting these in Eq. 6.127, we obtain the prediction model as

ŷ(n|n− 1) = B(z)u(n) + [1−A(z)]y(n) (6.145)

Recall from Eq. 6.130 that the leading coefficient of A is 1. As a result, the right-
hand side of the above equation has only past values of y(n). Because B has at least



202 6. Identification

one delay, u(n) does not affect ŷ(n|n− 1). Substituting the values of A and B using
Eq. 6.130–6.131, we obtain the linear model in the form of Eq. 6.7 on page 162. Thus
we see that the use of the one step prediction error method automatically results in
the linear model for estimation. Now we illustrate these ideas with a simple example.

Example 6.23 From the prediction error model, develop the linear model for
the ARX system

y(n) = −a1y(n− 1) +
N∑

l=1

blu(n− l) + ξ(n) (6.146)

where the output is assumed to depend also on the previous output.

As in Example 6.1 on page 161, writing the equations for y(n), y(n− 1), . . . and
stacking them one below the other, we obtain




y(n)
y(n − 1)

...


 =



−y(n − 1) u(n − 1) · · · u(n − N)
−y(n − 2) u(n − 2) · · · u(n − N − 1)

...







a1

b1

...
bN


+




ξ(n)
ξ(n − 1)

...




This is in the form of Eq. 6.6 with

Z(n) =

 y(n)
y(n− 1)

...

 , θ =


a1

b1
...
bN

 , Ξ(n) =

 ξ(n)
ξ(n− 1)

...

 ,

Φ(n) =

−y(n− 1) u(n− 1) · · · u(n−N)
−y(n− 2) u(n− 2) · · · u(n−N − 1)

...



The general ARX case is considered in Problem 6.9. We now illustrate with an example
the equivalence between the correlation and the LSE methods.

Example 6.24 Establish the linear equations required to determine the param-
eters in the following model:

y(i) = −a1y(i − 1) − a2y(i − 2) + b1u(i − 1) + b2u(i − 2), 1 ≤ i ≤ n (6.147)

Using the least squares approach, we arrive at


−y(n − 1)
−y(n − 2)
u(n − 1)
u(n − 2)



[−y(n − 1) −y(n − 2) u(n − 1) u(n − 2)

]



a1

a2

b1

b2




=



−y(n − 1)
−y(n − 2)
u(n − 1)
u(n − 2)


 y(n) (6.148)
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By solving this equation, we can determine the impulse response coefficients,
provided the coefficient matrix is nonsingular. It is easy to verify that the above
system is equivalent to (see Problem 6.10)

ryy(0) ryy(1) −ryu(0) −ryu(1)
ryy(1) ryy(0) −ryu(−1) −ryu(0)
−ryu(0) −ryu(−1) ruu(0) ruu(1)
−ryu(1) −ryu(0) ruu(1) ruu(0)



a1

a2

b1
b2

 =


−ryy(1)
−ryy(2)
ryu(1)
ryu(2)

 ,
(6.149)

establishing the equivalence between LSE and correlation methods for ARX systems
as well.

We will now present an example that illustrates how to determine the ARX parameters
using Matlab.

Example 6.25 Generate input u(n), white noise ξ(n) and the corresponding
output y(n) of the ARX model

y(n)− 0.5y(n− 1) = 0.6u(n− 2)− 0.2u(n− 3) + ξ(n)

From the input–output data, determine the underlying ARX model.

M 6.15 shows a way to solve this problem. As in Example 6.22, input u, noise
ξ and the output y are generated. Using the cra function, the impulse response
coefficients are calculated and displayed in the right-hand side plot of Fig. 6.12. It
is easy to see from this plot that a delay of two sampling intervals is present.

Next, we assume the order of this system and determine the model parameters
using the function call arx. Using the function call present, we see that the
model parameters are

Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + e(t)
A(q) = 1 - 0.4878 (+-0.01567) q^-1
B(q) = 0.604 (+-0.00763) q^-2 - 0.1887 (+-0.01416) q^-3

Estimated using ARX from data set zd
Loss function 0.0529887 and FPE 0.0531133
Sampling interval: 1

We see that the estimated values are close to the actual values. A check on the
validity is made with the command resid. The result is a plot of the ACF of
the residual, and the cross covariance of the residual with the input, shown on
the right-hand side of Fig. 6.12. If the residuals are white, the ACF should be an
impulse function and the CCF should be zero. From this figure, we see that both
conditions are satisfied. Thus the identified model can be taken to be correct.
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Figure 6.12: Impulse response coefficients (left) and ACF of residuals and CCF of
residuals with input (right) for the ARX model discussed in Example 6.25. M 6.15 is
used to generate these plots.
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Figure 6.13: ARMAX Structure. The output y is a sum of past inputs (Bu) and
current and past white noise (Cξ), filtered through 1/A

6.6.4 Auto Regressive Moving Average, Exogeneous
(ARMAX) Input, Model

In the ARMAX model, the current output is a function of previous outputs (auto
regressive part), past inputs (exogeneous part) and current and previous noise terms
(moving average part). A general ARMAX model can be written as

A(z)y(n) = B(z)u(n) + C(z)ξ(n) (6.150)

A schematic of the model structure is given in Fig. 6.13. As in the case of the ARX
model, the noise enters the model through an equation. In view of this, the ARMAX
model is said to belong to the family of equation error models.

While for FIR and ARX models the LSE scheme can be written down simply by
observation, this is not the case for the ARMAX model. The reason is that now we
have a weighted sum of previous noise signals. The method of one step prediction
error comes to our rescue.
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Comparing Eq. 6.150 with the general expression given by Eq. 6.129, we obtain
F = D = 1. First we rewrite Eq. 6.150 as

y(n) =
B(z)
A(z)

u(n) +
C(z)
A(z)

ξ(n) (6.151)

Comparing this equation with Eq. 6.114, we obtain

G(z) =
B(z)
A(z)

(6.152)

H(z) =
C(z)
A(z)

(6.153)

for the ARMAX model. Substituting these in Eq. 6.127, we obtain the prediction
model to be

ŷ(n|n− 1) =
B(z)
C(z)

u(n) +
[
1− A(z)

C(z)

]
y(n) (6.154)

Multiplying it by C(z) and adding [1− C(z)]ŷ(n|n− 1) to both sides, we obtain

ŷ(n|n− 1) = B(z)u(n) + [1−A(z)]y(n) + [C(z)− 1][y(n)− ŷ(n|n− 1)]
(6.155)

Defining the prediction error to be

ε(n|θ) = y(n)− ŷ(n|n− 1) (6.156)

where we have included θ to indicate that ε is a function of model parameters,
Eq. 6.155 becomes

ŷ(n|n− 1) = B(z)u(n) + [1−A(z)]y(n) + [C(z)− 1]ε(n|θ) (6.157)

Recall from Eq. 6.130–6.132 that the leading coefficients of A and C are unity. As a
result, the right-hand side of the above equation does not involve the current terms
of y and the residual ε. Nevertheless, as ε is a function of θ, which can be calculated
only when ε is known, we see that we will not obtain a linear model of the form given
in Eq. 6.6 on page 162. In other words, the regression matrix Φ is itself a function of
the unknown parameters θ. As a result, ŷ is not a linear function of θ. In view of this,
the ARMAX prediction model is called a pseudo linear model.

With A(z) and B(z) as given in Eq. 6.130– 6.131 on page 199, we can arrive at
the linear model of the form given in Problem 6.11. The solution begins by guessing
C(z). A good initial guess for C is 1. That is, we start with an ARX model. We then
calculate θ, and then, using Eq. 6.156, determine ε. Now, using Eq. 6.157, we calculate
θ once again and repeat this procedure. Because we solve a least squares problem at
every step, this approach is known as pseudo linear regression, which is implemented
in the Matlab System Identification Toolbox, using the command armax. We now
illustrate its use with a simple example.
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Example 6.26 Find the prediction error model for the following system:

y(n) + ay(n− 1) = bu(n− 1) + ξ(n) + cξ(n− 1) (6.158)

We write this as

(1 + az−1)y(n) = bz−1u(n) + (1 + cz−1)ξ(n)

We have

A(z) = 1 + az−1

B(z) = bz−1

C(z) = 1 + cz−1

Using Eq. 6.157, we obtain the prediction model as

ŷ(n|n− 1) = bz−1u(n)− az−1y(n) + cz−1ε(n)

Note that the right-hand side involves only the past terms. The prediction error
ε requires model output ŷ, which requires knowledge of θ, not available until the
above equation is solved. We have to resort to a trial and error procedure to solve
this equation.

We will now present an example that illustrates how to use Matlab to determine the
ARMAX parameters.

Example 6.27 Generate input u(n), white noise ξ(n) and the corresponding
output y(n) of the ARMAX model

y(n)− 0.5y(n− 1) = 0.6u(n− 2)− 0.2u(n− 3) + ξ(n)− 0.3ξ(n− 1)

From the input–output data, determine the model.

We generate input u, noise ξ and output y, as in Example 6.25, to solve this
problem. The details are in M 6.16.

As far as calculation of impulse response by the function cra is concerned, it
does not matter whether the system is ARX or ARMAX, so long as the input u
is uncorrelated with the noise ξ. The impulse response coefficients are calculated
and displayed in the left-hand side plot of Fig. 6.14. It is easy to see from this plot
that a delay of two sampling intervals is present in this system.

We assume the order of this system and determine the model parameters using
the function call armax. Using the function call present, we see that the model
parameters are

Estimated using ARMAX from data set zd
Loss function 0.0504576 and FPE 0.0506161
Sampling interval: 1

Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + C(q)e(t)
A(q) = 1 - 0.4636 (+-0.0286) q^-1
B(q) = 0.5779 (+-0.007621) q^-2 - 0.1517 (+-0.02408) q^-3
C(q) = 1 - 0.2377 (+-0.03594) q^-1
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Figure 6.14: Impulse response coefficients of ARMAX model (left) and ACF of
residuals and CCF of residuals with input for the ARMAX model (right), as discussed
in Example 6.27. M 6.16 is used to generate these plots.

We see that the estimated values are close to the actual values. A check on the
validity is made with the command resid. The result is a plot of the ACF of
the residual, and the cross covariance of the residual with the input, shown on
the right-hand side of Fig. 6.14. If the residuals are white, the ACF should be an
impulse function and the CCF should be zero. From this figure, we see that both
conditions are satisfied. Thus the identified model can be taken to be correct.

6.6.5 Auto Regressive Integrated Moving Average,
Exogeneous (ARIMAX) Input, Model

Often the noise enters the ARMAX model in an integrated form. In view of this, we
will refer to these as ARIMAX models. Such an integrated noise manifests itself in
the form of drifts. A general form of the ARIMAX model is

A(z)y(n) = B(z)u(n) +
C(z)
∆(z)

ξ(n) (6.159)

where ∆ = 1 − z−1. The only difference between Eq. 6.150 and Eq. 6.159 is that, in
the latter, there is an extra ∆ term. One of the common ways of handling this model
is to multiply this equation throughout by ∆:

A(z)∆y(n) = B(z)∆u(n) + C(z)ξ(n) (6.160)

Comparing with Eq. 6.150, we see that the methods of ARMAX can be applied to
Eq. 6.160. As ∆y(n) is equal to y(n)− y(n− 1), and similarly for input u, Eq. 6.160
suggests applying ARMAX techniques to differenced input and output data sets.
It should be clear, however, that the above approach is applicable only when the
input and the output do not have much high frequency information. We will see an
application of this model in Sec. 6.6.8.
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Figure 6.15: Output error Structure. The output y is a combination of an undisturbed
output w(n), which is directly corrupted by white noise

6.6.6 Output Error Model

The next popular model of interest is the output error (OE) model, which is also
known as the transfer function model. In this, the noise affects the output of the
transfer function directly. It can be modelled as

y(n) =
B(z)
F (z)

u(n) + ξ(n) (6.161)

and can be represented as in Fig. 6.15. This can be written as

F (z)w(n) = B(z)u(n) (6.162)
y(n) = w(n) + ξ(n) (6.163)

Comparing this with Eq. 6.114 on page 197, we obtain

G(z) =
B(z)
F (z)

H(z) = 1
(6.164)

Using Eq. 6.127, the prediction model is obtained as

ŷ(n) =
B(z)
F (z)

u(n) (6.165)

which, in view of Eq. 6.162, becomes

ŷ(n) = w(n|θ) (6.166)

Although we do not measure w, we can calculate it using Eq. 6.162. We arrive at the
following linear model:

ŷ(n) = w(n|θ) = φT (n|θ)θ (6.167)

where

φ(n|θ) = [u(n− 1) · · · u(n− dB)

−w(n− 1|θ) · · · − w(n− dF |θ)]T
θ =

[
b1 · · · bdB f1 · · · fdF

] (6.168)
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Because w needs to be calculated using Eq. 6.162, it implies knowledge of model
parameters θ. As a result, we see that this is also a pseudo linear model. We will now
explain how to use Matlab to determine the OE model parameters.

Example 6.28 Generate input u(n), white noise ξ(n) and the corresponding
output y(n) of the OE model

y(n) =
0.6− 0.2z−1

1− 0.5z−1
u(n− 2) + ξ(n)

From the input–output data, determine the underlying OE model.

The procedure to be followed is similar to the one given in M 6.16. It has been
implemented in M 6.17. As in Example 6.27, input u, noise ξ and the output y
are generated.

As in Example 6.27, using the cra function, the impulse response coefficients are
calculated and plotted in the left-hand side of Fig. 6.16. It is easy to see from this
plot that a delay of two sampling intervals is present in this system.

We assume that we know the order of this system and determine the model
parameters using the function call oe. Using the function call present, we see
that the model parameters are

Discrete-time IDPOLY model: y(t) = [B(q)/F(q)]u(t) + e(t)
B(q) = 0.5908 (+-0.006944) q^-2 - 0.1841 (+-0.0238) q^-3
F(q) = 1 - 0.4897 (+-0.02685) q^-1

Estimated using OE from data set zd
Loss function 0.0497585 and FPE 0.0498757
Sampling interval: 1

We see that the estimated values are close to the actual values. A check on the
validity is made with the command resid. The result is a plot of the ACF of
the residual, and the cross covariance of the residual with the input, shown on
the right-hand side of Fig. 6.16. If the residuals are white, the ACF should be an
impulse function and the CCF should be zero. From this figure, we see that both
conditions are satisfied. Thus the identified model can be taken to be correct.

6.6.7 Box–Jenkins Model

Recall that in Eq. 6.129 on page 199, reproduced here for convenience, we introduced
a general model structure:

A(z)y(n) =
B(z)
F (z)

u(n) +
C(z)
D(z)

ξ(n)

When A = 1, we obtain the Box–Jenkins (BJ) model, a schematic of which is given
in Fig. 6.17. The prediction model for this general structure is a little involved. The
interested reader is referred to [32].

We restrict our attention to illustrating how to use Matlab to determine the BJ
parameters through a simple example.
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Figure 6.16: Impulse response coefficients of OE model (left), and ACF of residuals
and CCF of residuals with input (right), for the OE model discussed in Example 6.28.
M 6.17 is used to generate these plots.
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Figure 6.17: Box–Jenkins structure, which generalizes the OE structure

Example 6.29 Generate input u(n), white noise ξ(n) and the corresponding
output y(n) of the BJ model

y(n) =
0.6− 0.2z−1

1− 0.7z−1
u(n− 2) +

1− 0.3z−1

1− 0.5z−1
ξ(n)

From the input–output data, determine the underlying BJ model.

The procedure to be followed is similar to the one given in Example 6.28. M 6.18
shows the details of the calculations, starting from the generation of u, y and ξ.

Using the cra function, the impulse response coefficients are calculated and
displayed in the left-hand side plot of Fig. 6.18. It is easy to see from this plot that
a delay of two sampling intervals is present in this system.

We assume that we know the order of this system and determine the model
parameters using the function call armax. Using the function call present, we
see that the model parameters are

Discrete-time IDPOLY model:
y(t) = [B(q)/F(q)]u(t) + [C(q)/D(q)]e(t)
B(q) = 0.6006 (+-0.007073) q^-2 - 0.1993 (+-0.01177) q^-3
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Figure 6.18: Impulse response coefficients of BJ model (left) and the ACF of residuals
and CCF of residuals with input for the BJ model (right), discussed in Example 6.29.
M 6.18 is used to generate these plots.

C(q) = 1 - 0.3108 (+-0.0695) q^-1
D(q) = 1 - 0.5083 (+-0.0605) q^-1
F(q) = 1 - 0.6953 (+-0.006909) q^-1

Estimated using BJ from data set zd
Loss function 0.048982 and FPE 0.0491745
Sampling interval: 1

We see that the estimated values are close to the actual values. A check on the
validity is made with the command resid. The result is a plot of the ACF of
the residual, and the cross covariance of the residual with the input, shown on
the right-hand side of Fig. 6.18. If the residuals are white, the ACF should be an
impulse function and the CCF should be identically zero. From this figure, we see
that both conditions are satisfied. Thus the identified model can be taken to be
correct.

We will conclude the section on prediction error models with a summary.
By assigning the values as in Table 6.3, we can obtain the different models we
presented earlier.

6.6.8 Case Study: Drifting Noise Model

In this section, we will illustrate how to use the theory presented so far to identify
unknown plants. We will use a simulated case study for this purpose.

Let us explore the problem of determining the model from the data generated
using

y(n) =
1.2z−1 + 0.1z−2

1− z−1 + 0.2275z−2
u(n) +

1
1− 0.94z−1

ξ(n) (6.169)
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Figure 6.19: Simulink code to simulate the plant in Sec. 6.6.8 and to generate
output data. The code is available at HOME/ident/matlab/drift ex1.mdl, where
HOME denotes http://www.moudgalya.org/dc/

Unlike the previous example, we will pretend that we do not know the order of the
model. It has been implemented through M 6.20. Note that after creating the input
data in M 6.20 (line 3), the Simulink code, given in Fig. 6.19, has to be executed to
generate the output data. After this, the rest of M 6.20 has to be executed.

We now describe the effect of executing the above mentioned routines. Using the
function cra, the impulse response coefficients are found and plotted in Fig. 6.20(a).
We see that there is one sample delay in the process. The step response has been
independently found using the function step in the identification toolbox and plotted
in Fig. 6.20(b). We observe that this system is stable, indicated by a steady state. Since
there is a drift at steady state, we guess the presence of, possibly, an integrated noise.

As a first step, we assume that the noise model is white and attempt to fit the
data with an OE model. We first explore the possibility of using the following model:

y(n) =
b1

1 + f1z−1
u(n− 1) + ξ(n) (6.170)

Note that this model has one unknown in each of the B and F polynomials. We have
selected these as they are amongst the smallest number of coefficients required to
model an OE system. We have included one sample delay as suggested by the impulse
response plot. The command oe gives rise to the following model parameters:

Discrete-time IDPOLY model: y(t) = [B(q)/F(q)]u(t) + e(t)
B(q) = 1.441 (+-0.02501) q^-1
F(q) = 1 - 0.7136 (+-0.006516) q^-1

Table 6.3: Values to be assigned in Eq. 6.129 on page 199 to arrive at different models

Model Polynomial values

FIR A(z) = F (z) = C(z) = D(z) = 1
ARX F (z) = C(z) = D(z) = 1
ARMAX F (z) = D(z) = 1
ARIMAX F (z) = 1, D(z) = ∆
OE A(z) = C(z) = D(z) = 1
BJ A(z) = 1
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Figure 6.20: Impulse response coefficients in the drifting noise case study, obtained
using cra and step response, obtained using step, both from the identification
toolbox. Impulse response indicates one sample delay and step response indicates
the presence of drifting noise.
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Figure 6.21: Analysis of the residuals between the plant data and that predicted by
Eq. 6.170: ACF of the residuals (left top), CCF of the residuals and input u (left
bottom), PACF of the residuals (right)

Estimated using OE from data set datatrain
Loss function 0.523117 and FPE 0.52522
Sampling interval: 1

We now try to validate the assumption of whiteness of noise. For this purpose,
we compute the difference between the data and the value predicted by this model
and refer to it as the residual. We next determine the ACF of this residual and plot
it on the left-hand side of Fig. 6.21. Since it is not an impulse function, we conclude
that the residuals are not white. Because of the exponential decay, we see the need
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Figure 6.22: ACF of the difference between the AR(1) process and the residuals
obtained by modelling the original data with the OE process, modelled with Eq. 6.170.
ACF is an impulse function, indicating the sufficiency of modelling the residuals as
an AR(1) process.

to model the residual, possibly, as an AR process. The CCF of the residual and the
input suggests that the input u and the residuals are uncorrelated, an easier condition
to meet. These computations have been carried out using the command resid.

To conform to the need to use an AR process, we compute the PACF of the
residuals and plot in on the right-hand side of Fig. 6.21. We see a nonzero value at
a lag of 1 and zero values for most other lags. This strongly suggests that an AR(1)
process may be used to model the residuals.

As suggested by the above observations, we next model the residuals with an
AR(1) process, using the command ar. The values are computed as follows:

Discrete-time IDPOLY model: A(q)y(t) = e(t)
A(q) = 1 - 0.8771 (+-0.01519) q^-1

Estimated using AR (’fb’/’now’)
Loss function 0.120275 and FPE 0.120516
Sampling interval: 1

The ACF of the difference between the residuals under consideration and the AR(1)
model of it is plotted in Fig. 6.22. Note that the ACF is an impulse function. This
suggests that the above calculated difference is white. In other words, the residuals
obtained with the OE model of Eq. 6.170 and the original data can be modelled as
an AR(1) process. As the pole of this AR(1) process is near 1, the effect is close to
integration, as guessed from the step response, earlier.

Combining the OE model and the AR(1) model of the resulting residuals, we
obtain the following estimate of the process

y(n) =
1.441

1− 0.7136z−1
u(n− 1) +

1
1− 0.8771z−1

ξ(n) (6.171)

whose actual model is given in Eq. 6.169.
One problem with the above estimate is that the plant model G(z) and the noise

modelH(z) have been computed in two steps, possibly resulting in some inconsistency.
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In view of this, we now try to re-estimate the model parameters simultaneously,
assuming the above structure to be correct. We do this through the command bj, as
the above structure is a BJ model. We obtain the following model parameters:

Discrete-time IDPOLY model: y(t) = [B(q)/F(q)]u(t) + [1/D(q)]e(t)
B(q) = 1.341 (+-0.01788) q^-1
D(q) = 1 - 0.8906 (+-0.01486) q^-1
F(q) = 1 - 0.7395 (+-0.005) q^-1

Estimated using BJ from data set datatrain
Loss function 0.115904 and FPE 0.116604
Sampling interval: 1

Let us refer to this as the BJ1 model. Now we calculate the residuals between the
original data and that predicted by BJ1 model. We plot the ACF of the residuals and
the CCF between these residuals and the input, using the resid command, as on the
left-hand side of Fig. 6.23. Although the ACF is an impulse, because the CCF is not
zero we conclude that the residuals are not white. We next explore whether a larger
order BJ model can overcome this shortcoming.

Because the effect of the input is not fully captured, we increase the order of F
by one and re-estimate the model parameters by BJ. We obtain the following model
parameters:

Discrete-time IDPOLY model: y(t) = [B(q)/F(q)]u(t) + [1/D(q)]e(t)
B(q) = 1.206 (+-0.021) q^-1
D(q) = 1 - 0.8927 (+-0.01442) q^-1
F(q) = 1 - 0.9156 (+-0.01734) q^-1 + 0.1624 (+-0.01533) q^-2

Estimated using BJ from data set datatrain
Loss function 0.105265 and FPE 0.106115
Sampling interval: 1

Let us refer to this as the BJ2 model. We notice that the BJ2 model has smaller
residuals than those of the BJ1 model. As a result, we expect the BJ2 model to be
somewhat better than the BJ1 model. To confirm the adequacy of this new model,
we first calculate residuals between the original data and that predicted by the BJ2
model. We calculate the ACF of the residuals and the CCF between the residuals and
the input using resid as on the right-hand side of Fig. 6.23. Unlike the BJ1 model,
the BJ2 model shows that it is sufficient: the ACF is an impulse and the CCF is zero.
We have arrived at the following model:

y(n) =
1.206z−1

1− 0.9156z−1 + 0.1624z−2
u(n) +

1
1− 0.8927z−1

ξ(n) (6.172)

We can stop the identification procedure at this point.
As an alternative approach, we would like to see if we can use the fact that there

is an integrated noise process right from the beginning. We proceed once again, trying
to model the system with an ARIMAX structure, as explained in Sec. 6.6.5.

We determine the successive difference between the input values and we do the
same with the output values. We will refer to these as the differenced data. We
first attempt to model the differenced data with a simple OE model. We obtain the
following parameters:
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Figure 6.23: Left: ACF of the residuals between original data and the BJ1 model
and CCF of input and the residuals. Although ACF is an impulse, because CCF is
not zero we conclude that the residuals are not white. Right: ACF of the residuals
between original data and BJ2 model and CCF of input and the residuals. Residuals
are white, confirming the sufficiency of the BJ2 model.

Discrete-time IDPOLY model: y(t) = [B(q)/F(q)]u(t) + e(t)
B(q) = 1.333 (+-0.0177) q^-1
F(q) = 1 - 0.7422 (+-0.005223) q^-1

Estimated using OE from data set datadifftrain
Loss function 0.127381 and FPE 0.127893
Sampling interval: 1

We will refer to this as the OE-D1 model. To check the sufficiency of this model, we
calculate the residual between its prediction and the differenced data and plot the
ACF and CCF on the left-hand side of Fig. 6.24. From these plots, we see that the
residuals are not white, confirming the inadequacy of the model.

We would like to see if the shortcomings of the previous model can be overcome
through a higher order OE model. We obtain the following model:

Discrete-time IDPOLY model: y(t) = [B(q)/F(q)]u(t) + e(t)
B(q) = 1.2 (+-0.02035) q^-1
F(q) = 1 - 0.9157 (+-0.0169) q^-1 + 0.163 (+-0.01496) q^-2

Estimated using OE from data set datadifftrain
Loss function 0.115816 and FPE 0.116517
Sampling interval: 1

We will refer to this as the OE-D2 model. We see that the resulting residuals are
smaller than that obtained with OE-D1 model. To confirm the adequacy, using resid,
we calculate and plot ACF and CCF on the right-hand side of Fig. 6.24. The OE-D2
model that we have obtained above can be written as

∆y(n) =
1.2z−1

1− 0.9157z−1 + 0.163z−2
∆u(n) + ξ(n) (6.173)
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Figure 6.24: Left: ACF of the residuals between differenced data and OE-D1 model
and the CCF of input and the residuals. While the ACF is an impulse, the CCF is not
zero, confirming the residuals to be coloured. Right: ACF of the residuals between
differenced data and OE-D2 model and the CCF of input and the residuals. The
residuals are white, confirming the adequacy of the model.

or, equivalently,

y(n) =
1.2z−1

1− 0.9157z−1 + 0.163z−2
u(n) +

1
∆
ξ(n) (6.174)

where ∆ = 1− z−1. Compare this model with the BJ2 model given in Eq. 6.172 and
the actual model, given in Eq. 6.169.

We conclude this section with the remark that the identification toolbox of Matlab
has a program selstruc that helps determine the model order. This toolbox uses
subspace identification methods to determine the initial model order. These topics
are beyond the scope of this book. The interested reader is referred to [32].

6.7 Revisiting Least Squares Estimation

We have discussed in great detail different models and the LSE approach to estimate
the model parameters. Next, we would like to find out how close the estimated
parameters are to the real parameters. Even if the model parameters are deterministic,
because of the possible presence of noise, the estimate will be random. In view of this,
the closeness is judged by a statistical test to be presented in this section.

6.7.1 Statistical Properties of Least Squares Estimate

We would like to begin this section by addressing the question whether the estimate
of a statistical quantity is a fair estimate or whether it is biased. The estimate θ̂(n)
is an unbiased estimate of θ if

E (θ̂(n)) = θ, ∀n (6.175)



218 6. Identification

where we have taken θ to be deterministic. Consider the linear model that we have
been using for parameter determination, namely that given by Eq. 6.6, reproduced
here for convenience. We will drop the dependence on n for notational simplicity.

Y = Φθ + Ξ (6.176)

We would like to arrive at the conditions that the estimation model of the form given
by Eq. 6.7 on page 162 have to satisfy so that it is unbiased. To start with, we restrict
our attention to the case of deterministic Φ. In order to arrive at a general result, we
consider a linear estimation model of the form

θ̂ = ΨY (6.177)

where Ψ also is deterministic. Substituting for Y from Eq. 6.176 we arrive at

θ̂ = ΨΦθ + ΨΞ (6.178)

Taking expectation on both sides, we obtain

E (θ̂) = ΨΦθ (6.179)

where we have used the fact that Ψ and Φ are deterministic and that the mean of
the noise term is zero. The above equation is reduced to the unbiasedness condition,
namely Eq. 6.175, when

ΨΦ = I (6.180)

Example 6.30 Verify whether θ̂WLS given by Eq. 6.17 on page 164 is an
unbiased estimate of θ characterized by Eq. 6.6 when Φ is deterministic and Ξ
is of zero mean.

Eq. 6.177 and Eq. 6.17 on page 164 give expressions for θ̂WLS. Comparing the
right-hand sides of these equations, we obtain

Ψ = [ΦTWΦ]−1ΦTW (6.181)

Postmultiplying both sides by Φ, we see that Eq. 6.180 is satisfied. As Ψ is also
deterministic, we see that θ̂WLS is unbiased.

Typically, a large number of parameters are required to describe a system if the FIR
model is used. FIR is an all zero model. If, on the other hand, poles are also used, the
required number of parameters will be much smaller. This is the same as representing
an infinite number of impulse response coefficients with a finite number of poles and
zeros, see Sec. 3.3.6. In view of the parsimony in the number of model parameters, we
would typically like to explore the possibility of incorporating a pole. This is nothing
but the use of the ARX model. We would like to know whether the ARX model is
unbiased. The next example explores this possibility.
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Example 6.31 Determine if the least square technique can give unbiased
estimates of the model parameters a1, g(0), . . . , g(N), discussed in Example 6.23
on page 202.

The output y is nondeterministic because of the presence of the noise terms in
Eq. 6.146 on page 202. As a result, the matrix Φ(n) is no longer deterministic.
In view of this, the condition for unbiasedness, namely Eq. 6.180, is no longer
applicable. As a result, we are not in a position to say whether the estimate is
unbiased.

As seen in the above example, it is too restrictive to demand that Φ be
deterministic for the estimate to be unbiased. We will now explore the condition
required for an unbiased estimate when Φ is not deterministic. Substituting for Y
from Eq. 6.6 on page 162 into Eq. 6.17, we obtain

θ̂ = [ΦTWΦ]−1ΦTW [Φθ + Ξ] = θ + [ΦTWΦ]−1ΦTWΞ

If we assume that Ξ and Φ are independent, on taking the expectation, we obtain

E [θ̂] = θ + E
{

[ΦTWΦ]−1ΦTW
}

E (Ξ) (6.182)

If we further assume that Ξ is of zero mean, we obtain

E [θ̂] = θ (6.183)

This is nothing but Eq. 6.175.

Example 6.32 Determine whether the least squares technique can give un-
biased estimates of the model parameters a1, g(0), . . . , g(N − 1), discussed in
Example 6.23.

The matrix Φ has y(n− 1) as an entry. By specializing Eq. 6.146 on page 202 for
n− 1, we arrive at

y(n− 1) = −a1y(n− 2) +
N−1∑
l=0

g(l)u(n− 1− l) + ξ(n− 1)

We see that y(n−1) depends on ξ(n−1). Multiplying both sides by ξ(n−1) and
taking the expectation, we obtain

γyξ(0) = σ2
ξ

because of the assumption of causality and the fact that u and ξ are uncorrelated.
Unfortunately, however, the above equation says that y, an element of Φ, and ξ,
an element of Ξ, are correlated. Thus, Eq. 6.183 is no longer valid. In view of this,
we cannot guarantee the unbiasedness of the estimate.
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Example 6.33 Examine whether the LSE of the FIR model, given in Eq. 6.2
on page 160 and discussed in Example 6.1, is unbiased.

Φ consists of only the inputs. If the inputs are deterministic, the result is unbiased.
Even if the input consists of some random components, in an open loop, it is
reasonable to assume that it is uncorrelated with the noise vector Ξ. In view of
this, use of the least squares procedure gives an unbiased estimate of the impulse
response coefficients g.

We have discussed the conditions that ensured the mean of the estimated
parameters would be close to the actual parameter. It is clear that it is not enough if
the mean is the same; we would like the variance also to be small. In view of this, we
define the concept of efficiency .

An unbiased estimator θ̂ is said to be more efficient than any other estimator θ̆
of θ if

E
{

[θ − θ̂][θ − θ̂]T
}
≤ E

{
[θ − θ̆][θ − θ̆]T

}
(6.184)

Thus the most efficient estimator has the smallest error covariance amongst all
unbiased estimators.

Suppose that Φ is deterministic and V is of zero mean with positive definite
covariance matrix R. It is easy to show that if we choose

W = R−1 (6.185)

the estimate given by Eq. 6.17 is both unbiased and of smallest error covariance [36].
For this reason, the least squares method with Eq. 6.185 is known as the best linear
unbiased estimator (BLUE).

Solving the normal equation repeatedly could involve a lot of effort, especially for
online applications. In such a situation, we use the recursive least squares approach
to reduce the calculations. The next section is devoted to this topic.

6.7.2 Recursive Least Squares

Suppose that we have found θ̂WLS(n), an estimate of parameters, using the data
available until the time instant n. We would like to know whether it is possible to
update it with the data set obtained at time instant n+ 1, so as to get θ̂WLS(n+ 1).
Let

Φ(n+ 1) =
[
φT

Φ

]
, Y (n+ 1) =

[
y
Y

]
, W (n+ 1) =

[
w 0
0 W

]
(6.186)

where we have used the convention that Φ, Y andW , which have been written without
any arguments, correspond to matrix/vector values obtained at time instant n. The
small letters correspond to the values obtained at time instant n+ 1. At time instant
n+ 1, the solution given by Eq. 6.17 on page 164 becomes

θ̂WLS(n+ 1) = [ΦT (n+ 1)W (n+ 1)Φ(n+ 1)]−1

× ΦT (n+ 1)W (n+ 1)Y (n+ 1)
(6.187)
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Using the identity

ΦT (n+ 1)W (n+ 1)Y (n+ 1) =
[
φ ΦT

] [w 0
0 W

] [
y
Y

]
= φwy + ΦTWY

(6.188)

θ̂WLS(n+ 1) becomes

θ̂WLS(n+ 1) = [ΦT (n+ 1)W (n+ 1)Φ(n+ 1)]−1[φwy + ΦTWY ] (6.189)

With the definition

P (n+ 1)
�
= [ΦT (n+ 1)W (n+ 1)Φ(n+ 1)]−1 (6.190)

Eq. 6.16 on page 163 is reduced to

ΦTWY = ΦTWΦθ̂WLS = P−1θ̂WLS (6.191)

Substituting this in Eq. 6.189 and making use of Eq. 6.190, we obtain

θ̂WLS(n+ 1) = P (n+ 1)[P−1θ̂WLS + φwy] (6.192)

It is easy to verify that

P−1 = P−1(n+ 1)− φwφT (6.193)

Substituting in Eq. 6.192, we obtain

θ̂WLS(n+ 1) = P (n+ 1)[(P−1(n+ 1)− φwφT )θ̂WLS + φwy]

which can be simplified to

θ̂WLS(n+ 1) = θ̂WLS + P (n+ 1)φw[y − φT θ̂WLS] (6.194)

This shows how to get an update to the parameter vector at the (n + 1)st instant,
given its value at the nth. The second term in Eq. 6.194 can be thought of as a
correction factor that helps achieve this.

It is easy to see that the recursive form of θ̂WLS also is unbiased, using the result
in Problem 6.14. Substituting for A(n+ 1) from Eq. 6.216 into Eq. 6.212, we obtain

θ̂WLS(n+ 1) = [I − bφT ]θ̂WLS(n) + b(n+ 1)y(n+ 1)

= θ̂WLS(n) + b(n+ 1)[y(n+ 1)− φT (n+ 1)θ̂WLS(n)]

which is in the same form as Eq. 6.194.
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6.8 Weight Selection for Iterative Calculations

Frequency considerations are extremely important in identification. For example, we
often characterize our plants in a certain, often low, frequency range. In contrast,
the influence of noise is felt generally at high frequencies. In view of this, it is not
surprising that we get useful tips on estimation procedures in the frequency domain.
In this section, we arrive at a weighting strategy for estimation through frequency
domain analysis.

Let us consider the problem of choosing the model parameters by minimizing the
prediction error given by Eq. 6.128 on page 198, reproduced here for convenience:

ε̂(n|n− 1) = y(n)− ŷ(n|n− 1) = H−1(z) [y(n)−G(z)u(n)]

Suppose that the real process is given by y(n) = G0(z)u(n)+v(n). The above equation
becomes

ε(n, θ) = Ĥ−1(z, θ)
[
(G0(z)− Ĝ(z, θ))u(n) + v(n)

]
(6.195)

where we have not shown the dependence on n− 1, but indicated the dependence on
model parameters with θ. Finally, in view of the fact that G and H are estimated,
we have put a hat over them. Suppose that we determine θ by minimizing the sum of
squares of ε, i.e.,

∑
n ε

2(n, θ). For zero mean signals, this is achieved by minimizing
γεε at zero lag, namely γεε(0, θ), see Eq. 6.24–6.25 on page 167. Thus the objective
function to minimize becomes

J(θ) = γεε(0, θ) (6.196)

We express γεε(0, θ) in terms of its inverse Fourier transform, Γεε(ejω , θ) using Eq. 5.39
on page 125. We obtain

J(θ) =
1

2π

∫ π

−π

Γεε(ejω , θ)dω (6.197)

Using a procedure similar to the one used to arrive at Eq. 6.111 on page 196, we
obtain Γεε as

Γεε =
|G0(ejω)− Ĝ(ejω , θ)|2Γuu(ejω) + Γvv(ejω)

|Ĥ(ejω , θ)|2 (6.198)

with the assumption that u and v are independent. Substituting this in Eq. 6.197, we
obtain

J(θ) =
1

2π

∫ π

−π

|G0(ejω)− Ĝ(ejω , θ)|2Γuu(ejω) + Γvv(ejω)
|Ĥ(ejω , θ)|2 dω (6.199)

Suppose that the noise model v is not a function of the model parameters θ. The
objective function to minimize then becomes

J(θ) =
1

2π

∫ π

−π

|G0(ejω)− Ĝ(ejω , θ)|2 Γuu(ejω)
|Ĥ(ejω , θ)|2 dω (6.200)
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The above integral has the error between the actual transfer function and its estimate,
weighted by the signal to noise ratio, SNR,

SNR =
Γuu(ejω)
|Ĥ(ejω , θ)|2 (6.201)

We make SNR large in the frequency range where we want the error between the
transfer function and its estimate to be small. This is achieved by making the input
have frequency components in the required frequency range.

We can specialize the objective function defined in Eq. 6.200 for different
parametric models. For FIR models, the objective function becomes

J∞(θ) =
1

2π

∫ π

−π

|G0(ejω)− Ĝ(ejω , θ)|2Γuu(ejω)dω (6.202)

see Eq. 6.139 on page 199. For ARX models, the objective function will include the
noise term as well, because the noise model is no longer independent of θ. For the
current discussion, however, we need only the first term that involves the plant–model
mismatch. For ARX models, H = 1/A (see Eq. 6.144 on page 201) and, as a result,
Eq. 6.200 becomes

J∞(θ) =
1

2π

∫ π

−π

|G0(ejω)− Ĝ(ejω , θ)|2Γuu(ejω)|A(ejω , θ)|2dω (6.203)

Normally, 1/A is low pass and hence A is high pass. As a result, the prediction error
model with ARX structure is expected to produce a model that is valid at high
frequencies. The fit may not be good at the low frequencies, however. Unfortunately,
however, we generally need a good fit at low frequencies. In view of this, it is made
to consist of only low frequency components by sending the input through a low pass
filter. An ideal choice is 1/A. But unfortunately, A is not known a priori. Nevertheless,
it is possible to guess A and then iterate. The procedure to carry out this filtering is
similar to the pre-whitening operation, explained in Sec. 6.5.2.

We will conclude this section with an example [51] to illustrate the fact that the
predicted model will approximate well the actual plant in the frequency range of the
input signal.

Example 6.34 Suppose that the plant model is given by the following equation:

y(n)− 0.9y(n− 1) + 0.8y(n− 2) = 0.1u(n− 1) + 0.1u(n− 2) + ξ(n)
(6.204)

Perturb this system with the input u at a certain frequency, identify using the
input–output data, and compare the prediction with the actual model through
the Nyquist plot. Repeat this exercise for input that has strength at different
frequencies. M 6.19 implements this problem.

First Eq. 6.204 is excited by u2 that has frequency components at all frequencies.
As π is the maximum possible frequency for discrete time signals, the frequency
range is 0 to π, which is the same as Nyquist frequency, ωN . In other words,
u2 has components in the range of [0, 1ωN ]. This input and the corresponding
plant output y are shown in Fig. 6.25(a). The input (u3), output profiles for the
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Figure 6.25: Output of the system for input in two different ranges in Example 6.34.
M 6.19 is used to generate it.
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Figure 6.26: Output of the system for input in the range [0, 0.05ωN ] in Example 6.34.
M 6.19 is used to generate it.

frequency range [0, 0.2ωN ] are shown in Fig. 6.25(b). Similarly, input (u4), output
curves for [0, 0.05ωN ] are shown in Fig. 6.26.

For each of these data sets, a model of the following form is identified:

y(n) + a1y(n− 1) = u(n− 1) + b1u(n− 2) + ξ(n)

The Nyquist plots of the three models corresponding to the above presented three
input–output data sets (dashed lines) are compared with the original model (solid
line) in Fig. 6.27.

As an ARX model is used in this example, the discussion corresponding to Eq. 6.203
is applicable. In particular, the match is best at high frequencies when the input
also has components at high frequencies. As it has all components, u1 naturally



6.9. Matlab Code 225

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Im
ag

 A
xi

s

Real Axis

Nyquist Plot From u1 to y1

Figure 6.27: Comparison of Nyquist plots of actual system (solid line) with models
obtained with input (u2) in frequency range [0, 1ωN ] (dashed line), input (u3) in range
[0, 0.2ωN ] (star), input (u4) in range [0, 0.05ωN ] (dash dot). These, respectively, fit
the original model best at high, intermediate and low frequencies.

has components at the highest frequency as well. Note that in Fig. 6.27, the model
identified with u2, shown by dashes, fits best at the highest frequency. As the input
u3 has intermediate frequency components, the model matches the actual system
at this range (star). Finally, u4 has only low frequency components. Naturally, as
predicted by Eq. 6.203, the fit is best (dash dot) at the lowest frequency.

We summarize the findings by saying that the selection of an appropriate frequency
range is important in identification.

The topic of identification is vast and hence only a glimpse of it can be given in
this book. Interested readers are encouraged to read the standard books [32, 53] in
this area to further their understanding.

6.9 Matlab Code

Matlab Code 6.1 Least squares solution of the simple problem discussed in
Example 6.4 on page 164. Available at HOME/ident/matlab/LS ex.m3

1 Mag = 10 ; V = 10 ; No pts = 100 ; theta = 2 ;
2 Phi = Mag ∗ (1−2∗rand ( [ No pts , 1 ] ) ) ;
3 E = V ∗ (1−2∗rand ( [ No pts , 1 ] ) ) ;
4 Z = Phi∗ theta + E;

3HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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5 LS = Phi \ Z
6 Max = max(Z . / Phi ) , Min = min(Z . / Phi )

Matlab Code 6.2 ACF calculation for the problem discussed in Example 6.5 on
page 167. Available at HOME/ident/matlab/ACF def.m

1 u = [ 1 2 ] ;
2 r = xcov (u) ;
3 rho = xcov (u , ’ c o e f f ’ ) ;

Matlab Code 6.3 To demonstrate the periodicity property of ACF as discussed in
Example 6.7 on page 173. Available at HOME/ident/matlab/acf ex.m

1 L = 500 ;
2 n = 1 :L ;
3 w = 0 . 1 ;
4 S = sin (w∗n) ;
5 m = 1 ;
6 x i = m∗randn(L , 1 ) ;
7 Spxi = S+xi ’ ;
8 axes ( ’ FontSize ’ ,18) ;
9 plot ( Spxi ) ;

10 l a b e l ( ’ ’ , 18 , ’ n ’ , ’ y ’ ,18 )
11 figure
12 p l o t a c f ( Spxi , 1 , L , 1 ) ;

Matlab Code 6.4 To demonstrate the maximum property of ACF at zero lag, as
discussed in Example 6.8 on page 175. Available at HOME/ident/matlab/max ex.m

1 S1 = [ 1 2 3 4 ] ;
2 S2 = [1 ,−2 ,3 ,−4] ;
3 S3 = [−1 ,−2 ,3 ,4 ] ;
4 l en = length ( S1 )−1;
5 xv = −l en : l en ;
6 m = 1 ;
7 x i = randn (4 , 1 ) ;
8 Spxi1 = S1 + m∗xi ’ ;
9 Spxi2 = S2 + m∗xi ’ ;

10 Spxi3 = S3 + m∗xi ’ ;
11 axes ( ’ FontSize ’ ,18) ;
12 n = 1 : length ( S1 ) ;
13 plot (n , Spxi1 , ’ o− ’ ,n , Spxi2 , ’ x−− ’ ,n , Spxi3 , ’ ∗ : ’ )
14 l a b e l ( ’ ’ , 18 , ’ n ’ , ’ y ’ ,18 )
15

16 ACF1 = xcov ( Spxi1 , ’ c o e f f ’ ) ;
17 ACF2 = xcov ( Spxi2 , ’ c o e f f ’ ) ;
18 ACF3 = xcov ( Spxi3 , ’ c o e f f ’ ) ;
19 figure
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20 axis ([− l en l en −1 1 ] )
21 axis o f f
22 axes ( ’ FontSize ’ ,18) ;
23 plot ( xv ,ACF1, ’ o− ’ , xv ,ACF2, ’x−− ’ , xv ,ACF3, ’ ∗ : ’ )
24 l a b e l ( ’ ’ , 18 , ’ Lag ’ , ’ACF ’ ,18)

Matlab Code 6.5 Determination of order of MA(q) as discussed in Example 6.11
on page 182. This requires the identification toolbox and the plotting routine in M 6.6.
This code is available at HOME/ident/matlab/ma.m

1 % D e f i n e t h e m o d e l

2 m = idpo ly ( 1 , [ ] , [ 1 , 1 , − 0 . 5 ] ) ;
3

4 % G e n e r a t e n o i s e a nd t h e r e s p o n s e

5 x i = 0 .1∗randn (100000 ,1 ) ;
6 v = sim (m, x i ) ; z = [ v x i ] ;
7

8 % P l o t n o i s e , p l a n t o u t p u t a nd ACF

9

10 subplot (2 , 1 , 1 ) , plot ( v ( 1 : 5 0 0 ) )
11 l a b e l ( ’ ’ , 18 , ’ ’ , ’ v ’ ,18 )
12 subplot (2 , 1 , 2 ) , plot ( x i ( 1 : 5 0 0 ) )
13 l a b e l ( ’ ’ , 18 , ’ n ’ , ’ x i ’ , 18 )
14 figure , p l o t a c f (v , 1 , 1 1 , 1 ) ;

Matlab Code 6.6 Procedure to plot the ACF, as discussed in Sec. 6.4.3. An example
usage is given in M 6.5. This code is available at
HOME/ident/matlab/plotacf.m

1 % PLOTACF . M P l o t s n o r m a l i z e d a u t o c o r r e l a t i o n f u n c t i o n

2 %

3 % [ a c f ]= p l o t a c f ( x , e r r l i m , l e n , p r i n t c o d e )

4 %

5 % a c f = a u t o c o r r e l a t i o n v a l u e s

6 % x = t i m e s e r i e s d a t a

7 % e r r l i m > 0 ; e r r o r l i m i t = 2 / s q r t ( d a t a l e n )

8 % l e n = l e n g t h o f a c f t h a t n e e d t o b e p l o t t e d

9 % NOTE : i f l e n =0 t h e n l e n = d a t a l e n g t h / 2 ;

10 % p r i n t c o d e = 0 ==> d o e s n o t p l o t OR ELSE p l o t s

11

12 function [ x]= p l o t a c f ( y , e r r l im , len , code )
13

14 x=xcov ( y ) ; l=length ( y ) ; x=x/x ( l ) ;
15 r=l : 2 ∗ ( l −1) ; l im=2/sqrt ( l ) ; r l =1: length ( r ) ;
16 N=length ( r l ) ; x=x ( r ) ;
17 i f l en>0 & len<N, r l =1: l en ; x=x( r l ) ; N=len ; end ;
18 axis ( [ 0 length ( r l ) min(min( x ) ,− l im −0.1) 1 . 1 ] )
19 axis o f f , axes ( ’ FontSize ’ ,18) ;
20 i f ( code > 0 )
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21 i f ( e r r l i m > 0 )
22 r l=r l −1;
23 plot ( r l , x , r l , x , ’ o ’ , r l , l im∗ ones (N, 1 ) , ’−− ’ , . . .
24 r l ,− l im∗ ones (N, 1 ) , ’−− ’ )
25 grid
26 else
27 plot ( r l , x )
28 end
29 end ;
30 l a b e l ( ’ ’ , 18 , ’ Lag ’ , ’ACF ’ ,18)

Matlab Code 6.7 Illustration of nonuniqueness in estimation of MA model param-
eters using ACF, discussed in Example 6.14 on page 184. This code is available at
HOME/ident/matlab/unique ma.m

1 x i = 0 .1∗randn (10000 ,1 ) ;
2

3 % S i m u l a t i o n an d e s t i m a t i o n o f f i r s t m o d e l

4 m1 = idpo ly ( 1 , [ ] , [ 1 , − 3 , 1 . 2 5 ] ) ;
5 v1 = sim (m1, x i ) ;
6 M1 = armax ( v1 , [ 0 2 ] ) ;
7 pre s en t (M1)
8

9 % S i m u l a t i o n an d e s t i m a t i o n o f s e c o n d m o d e l

10 m2 = idpo ly ( 1 , [ ] , [ 1 , − 0 . 9 , 0 . 2 ] ) ;
11 v2 = sim (m2, x i ) ;
12 M2 = armax ( v2 , [ 0 2 ] ) ;
13 pre s en t (M2)
14

15 % ACF and PACF o f b o t h m o d e l s

16 figure , p l o t a c f ( v1 , 1 , 1 1 , 1 ) ;
17 figure , p l o t a c f ( v2 , 1 , 1 1 , 1 ) ;
18 figure , pac f ( v1 , 1 1 ) ;
19 figure , pac f ( v2 , 1 1 ) ;

Matlab Code 6.8 Estimation with a larger order model results in large uncertainty,
as discussed in Example 6.15 on page 185. This code is available at
HOME/ident/matlab/ma larger.m

1 m = idpo ly ( 1 , [ ] , [ 1 −0.9 0 . 2 ] ) ;
2 x i = 0 .1∗randn (100000 ,1 ) ;
3 v = sim (m, x i ) ;
4 M1 = armax (v , [ 0 2 ] ) ;
5 pre s en t (M1)
6 M2 = armax (v , [ 0 3 ] ) ;
7 pre s en t (M2)
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Matlab Code 6.9 Determination of order of AR(p) process, as discussed in Exam-
ple 6.18 on page 189, using identification toolbox and the function given in M 6.10.
Available at HOME/ident/matlab/pacf ex.m

1 % D e f i n e m o d e l a n d g e n e r a t e d a t a

2 m = idpo ly ( [ 1 , − 1 , 0 . 5 ] , [ ] , 1 ) ;
3 x i = 0 .1∗randn (100000 ,1 ) ;
4 v = sim (m, x i ) ;
5

6 % P l o t n o i s e , p l a n t o u t p u t a nd PACF

7 subplot (2 , 1 , 1 ) , plot ( v ( 1 : 5 0 0 ) )
8 l a b e l ( ’ ’ , 18 , ’ ’ , ’ v ’ ,18 ) ;
9 subplot (2 , 1 , 2 ) , plot ( x i ( 1 : 5 0 0 ) )

10 l a b e l ( ’ ’ , 18 , ’ n ’ , ’ x i ’ , 18 ) ;
11 figure , pac f (v , 1 0 ) ;

Matlab Code 6.10 Determination of the PACF of AR(p) process, as explained in
Sec. 6.4.5. M 6.11 shows one usage of it. Available at HOME/ident/matlab/pacf.m

1 function [ a j j ] = pac f (v ,M)
2 rvv = xcorr (v , ’ c o e f f ’ ) ;
3 l en = length ( rvv ) ;
4 zero = ( l en +1) /2 ;
5 rvv0 = rvv ( zero ) ;
6 r v v o n e s i d e = rvv ( zero +1: l en ) ;
7 a j j = [ ] ;
8 for j = 1 :M,
9 a j j = [ a j j pacf mat ( rvv0 , r vv one s ide , j , 1 ) ] ;

10 end
11 p = 1 : length ( a j j ) ;
12 N = length (p ) ;
13 l im = 2/ sqrt ( length ( v ) ) ;
14

15 % P l o t t h e f i g u r e

16

17 axes ( ’ FontSize ’ ,18) ;
18 plot (p , a j j , p , a j j , ’ o ’ ,p , l im∗ ones (N, 1 ) , ’−− ’ , . . .
19 p,− l im∗ ones (N, 1 ) , ’−− ’ )
20 l a b e l ( ’ ’ , 18 , ’ Lag ’ , ’PACF ’ ,18)

Matlab Code 6.11 Construction of square matrix required to compute PACF ajj ,
useful for the calculations in Sec. 6.4.5. It is used in M 6.10. This code is available at
HOME/ident/matlab/pacf mat.m

1 function a j j = pacf mat ( rvv0 , r vv r e s t , p , k )
2 i f nargin == 3 ,
3 k = 1 ;
4 end
5 for i = 1 : p
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6 for j = 1 : p
7 index = ( k+i −1)−j ;
8 i f index == 0 ,
9 A( i , j ) = rvv0 ;

10 e l s e i f index < 0 ,
11 A( i , j ) = r v v r e s t (− index ) ;
12 else
13 A( i , j ) = r v v r e s t ( index ) ;
14 end
15 end
16 b( i ) = −r v v r e s t ( k+i −1) ;
17 end
18 a = A\b ’ ;
19 a j j = a (p) ;

Matlab Code 6.12 PACF plot of an MA process decays slowly, as discussed in
Example 6.19 on page 190. This code is available at HOME/ident/matlab/ma pacf.m

1 m = idpo ly ( 1 , [ ] , [ 1 , − 0 . 9 , 0 . 2 ] ) ;
2 x i = 0 .1∗randn (100000 ,1 ) ;
3 v = sim (m, x i ) ;
4 p l o t a c f (v , 1 , 1 1 , 1 ) ;
5 figure
6 pac f (v , 1 1 ) ;

Matlab Code 6.13 Implementation of trial and error procedure to determine
ARMA(1,1) process, presented in Example 6.20 on page 191. This requires the System
Identification Toolbox, M 6.6 and M 6.10. This code is available at
HOME/ident/matlab/arma ex.m

1 % S e t up t h e m o d e l f o r s i m u l a t i o n

2 arma mod = idpo ly ( 1 , 0 , [ 1 −0 .3 ] , [ 1 −0 .8 ] ,1 ,1 ) ;
3

4 % G e n e r a t e t h e i n p u t s f o r s i m u l a t i o n

5 % D e t e r m i n i s t i c I n p u t c a n b e a n y t h i n g

6 u = zeros (2048 ,1 ) ;
7 e = randn (2048 ,1 ) ;
8

9 % S i m u l a t e t h e m o d e l

10 v = sim ( [ u e ] , arma mod ) ;
11

12 % P l o t ACF and PACF f o r 1 0 l a g s

13 figure , p l o t a c f (v , 1 e−03 ,11 ,1) ;
14 figure , pac f (v , 1 0 ) ;
15

16 % E s t i m a t e AR ( 1 ) m o d e l a nd p r e s e n t i t

17 mod est1 = armax (v , [ 1 0 ] ) ; p r e s ent ( mod est1 )
18
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19 % c o m p u t e t h e r e s i d u a l s

20 err mod1 = pe ( mod est1 , v ) ;
21

22 % P l o t ACF and PACF f o r 1 0 l a g s

23 figure , p l o t a c f ( err mod1 , 1 e−03 ,11 ,1) ;
24 figure , pac f ( err mod1 , 1 0 ) ;
25

26 % C h e c k ACF and PACF o f r e s i d u a l s

27 mod est2 = armax (v , [ 1 1 ] ) ; p r e s ent ( mod est2 )
28 err mod2 = pe ( mod est2 , v ) ;
29

30 % P l o t ACF and PACF f o r 1 0 l a g s

31 figure , p l o t a c f ( err mod2 , 1 e−03 ,11 ,1) ;
32 figure , pac f ( err mod2 , 1 0 ) ;

Matlab Code 6.14 Determination of FIR parameters as described in Example 6.22
on page 200. This code is available at HOME/ident/matlab/fir cra ex1.m. This
requires the identification toolbox.

1 % C r e a t e t h e p l a n t a nd n o i s e m o d e l o b j e c t s

2 var = 0 . 0 5 ;
3 process mod = idpo ly ( 1 , [ 0 0 . 6 −0.2 ] , 1 , 1 , . . .
4 [ 1 −0.5 ] , ’ No i s eva r i ance ’ , var , ’Ts ’ , 1 ) ;
5

6 % C r e a t e i n p u t s e q u e n c e

7 u = id input (2555 , ’ prbs ’ , [ 0 0 . 2 ] , [ −1 1 ] ) ;
8 x i = randn (2555 ,1 ) ;
9

10 % S i m u l a t e t h e p r o c e s s

11 y = sim ( [ u x i ] , process mod ) ;
12

13 % P l o t y a s a f u n c t i o n o f u a nd x i

14 subplot (3 , 1 , 1 ) , plot ( y ( 1 : 5 0 0 ) ) ,
15 l a b e l ( ’ ’ , 18 , ’ ’ , ’ y ’ ,18 )
16 subplot (3 , 1 , 2 ) , plot (u ( 1 : 5 0 0 ) )
17 l a b e l ( ’ ’ , 18 , ’ ’ , ’ u ’ ,18 )
18 subplot (3 , 1 , 3 ) , plot ( var∗ x i ( 1 : 5 0 0 ) )
19 l a b e l ( ’ ’ , 18 , ’ n ’ , ’ x i ’ , 18 )
20

21 % B u i l d i d d a t a o b j e c t s

22 z = iddata (y , u , 1 ) ;
23

24 % Com pu t e i m p u l s e r e s p o n s e u s i n g

25 % CRA a f t e r r e m o v a l o f m e a n s

26 figure ; [ i r , r , c l ] = cra ( detrend ( z , ’ constant ’ ) ) ;
27 hold on
28

29 % C omp a r e t h e f i r s t 1 0 i m p u l s e r e s p o n s e

30 % c o m p u t e d f r o m G( q )
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31 i r a c t = f i l t e r ( [ 0 0 . 6 −0 .2 ] , [ 1 − 0 . 5 ] , . . .
32 [ 1 zeros (1 , 9 ) ] ) ;
33

34 % P l o t t h e a c t u a l IR

35 set (gca , ’XLim ’ , [ 0 9 ] ) ; grid on ;
36 h act = stem ( ( 0 : 9 ) , i r a c t , ’ ro ’ , ’ f i l l e d ’ ) ;
37

38 % Add l e g e n d

39 c h f = get ( gcf , ’ Chi ldren ’ ) ;
40 c h f 2 = get ( ch f , ’ Chi ldren ’ ) ;
41 legend ( [ c h f 2 (5 ) h act (1 ) ] , . . .
42 { ’ Estimated ’ ; ’ Actual ’ }) ;

Matlab Code 6.15 Determination of ARX parameters as described in Example 6.25
on page 203. This code is available at HOME/ident/matlab/arx est.m. This requires
the identification toolbox.

1 % C r e a t e t h e p l a n t a n d n o i s e m o d e l o b j e c t s

2 p r o c e s s a r x = idpo ly ( [ 1 −0 .5 ] , [ 0 0 0 . 6 − 0 . 2 ] , . . .
3 1 ,1 , 1 , ’ No i s eva r i ance ’ , 0 . 0 5 , ’Ts ’ , 1 ) ;
4

5 % C r e a t e i n p u t s e q u e n c e a n d s i m u l a t e

6 u = id input (2555 , ’ prbs ’ , [ 0 0 . 2 ] , [ −1 1 ] ) ;
7 x i = randn (2555 ,1 ) ;
8 y = sim ( [ u x i ] , p r o c e s s a r x ) ;
9

10 % B u i l d i d d a t a o b j e c t s a nd r e m o v e m e a n s

11 z = iddata (y , u , 1 ) ; zd = detrend ( z , ’ constant ’ ) ;
12

13 % Comp u t e IR f o r t i m e − d e l a y e s t i m a t i o n

14 figure ; [ i r , r , c l ] = cra ( zd ) ;
15

16 % Time − d e l a y = 2 s a m p l e s

17 % E s t i m a t e ARX m o d e l ( a s s u m e known o r d e r s )

18 na = 1 ; nb = 2 ; nk = 2 ;
19 the ta a rx = arx ( zd , [ na nb nk ] )
20

21 % P r e s e n t t h e m o d e l

22 pre s ent ( the ta a rx )
23

24 % C h e c k t h e r e s i d u a l p l o t

25 figure ; r e s i d ( theta arx , zd ) ;
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Matlab Code 6.16 Determination of ARMAX parameters as described in Exam-
ple 6.27 on page 206. This code is available at HOME/ident/matlab/armax est.m.
This requires the identification toolbox.

1 % C r e a t e t h e p l a n t a nd n o i s e m o d e l o b j e c t s

2 process armax = idpo ly ( [ 1 −0 .5 ] , [ 0 0 0 . 6 − 0 . 2 ] , . . .
3 [ 1 −0 .3 ] ,1 ,1 , ’ No i s eva r i ance ’ , 0 . 0 5 , ’Ts ’ , 1 ) ;
4

5 % C r e a t e i n p u t s e q u e n c e

6 u = id input (2555 , ’ prbs ’ , [ 0 0 . 2 ] , [ −1 1 ] ) ;
7 x i = randn (2555 ,1 ) ;
8

9 % S i m u l a t e t h e p r o c e s s

10 y = sim ( [ u x i ] , process armax ) ;
11

12 % B u i l d i d d a t a o b j e c t s a nd r e m o v e m e a n s

13 z = iddata (y , u , 1 ) ; zd = detrend ( z , ’ constant ’ ) ;
14

15 % Com pu t e IR f o r t i m e − d e l a y e s t i m a t i o n

16 figure ; [ i r , r , c l ] = cra ( zd ) ;
17

18 % Time − d e l a y = 2 s a m p l e s

19 % E s t i m a t e ARMAX m o d e l ( a s s u m e known o r d e r s )

20 na = 1 ; nb = 2 ; nc = 1 ; nk = 2 ;
21 theta armax = armax ( zd , [ na nb nc nk ] ) ;
22

23 % P r e s e n t t h e m o d e l

24 pre s en t ( theta armax )
25

26 % C h e c k t h e r e s i d u a l p l o t

27 figure ; r e s i d ( theta armax , zd ) ;

Matlab Code 6.17 Determination of OE parameters as described in Example 6.28
on page 209. This code is available at HOME/ident/matlab/oe est.m. This requires
the identification toolbox.

1 % C r e a t e t h e p l a n t a nd n o i s e m o d e l o b j e c t s

2 p r o c e s s o e = idpo ly ( 1 , [ 0 0 0 .6 −0 .2 ] , 1 , 1 , [ 1 − 0 . 5 ] , . . .
3 ’ No i s eva r i ance ’ , 0 . 0 5 , ’ Ts ’ , 1 ) ;
4

5 % C r e a t e i n p u t s e q u e n c e a nd s i m u l a t e

6 u = id input (2555 , ’ prbs ’ , [ 0 0 . 2 ] , [ −1 1 ] ) ;
7 x i = randn (2555 ,1 ) ;
8 y = sim ( [ u x i ] , p r o c e s s o e ) ;
9

10 % B u i l d i d d a t a o b j e c t s a nd r e m o v e m e a n s

11 z = iddata (y , u , 1 ) ; zd = detrend ( z , ’ constant ’ ) ;
12

13 % Com pu t e IR f o r t i m e − d e l a y e s t i m a t i o n
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14 figure ; [ i r , r , c l ] = cra ( zd ) ;
15

16 % Time − d e l a y = 2 s a m p l e s

17 % E s t i m a t e OE m o d e l ( a s s u m e known o r d e r s )

18 nb = 2 ; nf = 1 ; nk = 2 ;
19 the ta oe = oe ( zd , [ nb nf nk ] ) ;
20

21 % P r e s e n t t h e m o d e l

22 pre s ent ( the ta oe )
23

24 % C h e c k t h e r e s i d u a l p l o t

25 figure ; r e s i d ( theta oe , zd ) ;

Matlab Code 6.18 Determination of OE parameters as described in Example 6.29
on page 210. This code is available at HOME/ident/matlab/bj est.m. This requires
the identification toolbox.

1 % C r e a t e t h e p l a n t a n d n o i s e m o d e l o b j e c t s

2 p r o c e s s b j = idpo ly ( 1 , [ 0 0 0 .6 −0 .2 ] , [ 1 − 0 . 3 ] , . . .
3 [ 1 −0 .5 ] , [ 1 −0.7 ] , ’ No i s eva r i ance ’ , 0 . 0 5 , ’Ts ’ , 1 ) ;
4

5 % C r e a t e i n p u t s e q u e n c e a n d s i m u l a t e

6 u = id input (2555 , ’ prbs ’ , [ 0 0 . 2 ] , [ −1 1 ] ) ;
7 x i = randn (2555 ,1 ) ;
8 y = sim ( [ u x i ] , p r o c e s s b j ) ;
9

10 % B u i l d i d d a t a o b j e c t s a nd r e m o v e m e a n s

11 z = iddata (y , u , 1 ) ; zd = detrend ( z , ’ constant ’ ) ;
12

13 % Comp u t e IR f o r t i m e − d e l a y e s t i m a t i o n

14 figure ; [ i r , r , c l ] = cra ( zd ) ;
15

16 % Time − d e l a y = 2 s a m p l e s

17 % E s t i m a t e BJ m o d e l ( a s s u m e known o r d e r s )

18 nb = 2 ; nc = 1 ; nd = 1 ; nf = 1 ; nk = 2 ;
19 t h e t a b j = bj ( zd , [ nb nc nd nf nk ] )
20

21 % P r e s e n t t h e m o d e l

22 pre s en t ( t h e t a b j )
23

24 % C h e c k t h e r e s i d u a l p l o t

25 figure ; r e s i d ( the ta b j , zd ) ;

Matlab Code 6.19 Impact of frequency content of input on plant model mismatch,
as discussed in Example 6.34 on page 223. This code is available at
HOME/ident/matlab/input freq.m

1 m1 = idpo ly ( [ 1 −0.9 0 . 0 8 ] , [ 0 0 . 1 0 . 1 ] , 1 ) ;
2 u = id input (400 , ’ rbs ’ ) ;
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3 e = 0 .1∗randn (400 ,1 ) ; y=sim (m1 , [ u e ] ) ;
4 z2=[y u ] ; i d p l o t ( z2 ) , figure
5 m2=arx ( z2 , [ 1 , 1 , 2 ] ) ;
6 u = id input (400 , ’ rbs ’ , [ 0 0 . 2 ] ) ;
7 e = 0 .1∗randn (400 ,1 ) ; y=sim (m1 , [ u e ] ) ;
8 z3=[y u ] ; i d p l o t ( z3 ) , figure
9 m3=arx ( z3 , [ 1 , 1 , 2 ] ) ;

10 u4 = id input (400 , ’ rbs ’ , [ 0 0 . 0 5 ] ) ;
11 e = 0 .1∗randn (400 ,1 ) ; y=sim (m1 , [ u4 e ] ) ;
12 z4=[y u4 ] ; i d p l o t ( z4 ) , figure
13 m4=arx ( z4 , [ 1 , 1 , 2 ] ) ;
14 nyqui s t (m1, ’ k ’ ,m2, ’ r−− ’ ,m3, ’ g∗ ’ ,m4, ’b−. ’ ,{ 0 . 0 0 0 1 , 3 . 1 4 } ) ;

Matlab Code 6.20 Identifying a plant with a drifting noise model, discussed in
Sec. 6.6.8. This code is available at HOME/ident/matlab/case1.m

1 % G e n e r a t i n g t h e i n p u t s e q u e n c e

2 u = id input (2000 , ’ rbs ’ , [ 0 0 . 1 ] , [ −1 1 ] ) ;
3 s imin = [ ( 0 : 1 9 9 9 ) ’ u ( : ) ] ;
4 open system ( ’ d r i f t e x 1 . mdl ’ )
5 R = input ( ’Now execute d r i f t e x 1 . mdl and h i t the re turn key ’

) ;
6

7 % E x e c u t e s i m u l i n k c o d e a nd g e n e r a t e o u t p u t d a t a

8 dataexp = iddata ( simout ( : ) , s imin ( : , 2 ) , 1 ) ;
9 dataexp . Tstar t = 0 ;

10 da ta t r a in = dataexp (1 :1000 ) ;
11 da ta te s t = dataexp (1001 :2000) ;
12

13 % P l o t s

14 plot ( da ta t r a in ) , c ra ( da ta t r a in ) ; grid
15 figure (2 ) , s tep ( da ta t r a in ) ; grid
16

17 % E s t i m a t i n g t h e OE M o d e l

18 the ta oe1 = oe ( datatra in , [ 1 1 1 ] ) ;
19 pre s ent ( the ta oe1 ) ;
20 figure (3 ) , r e s i d ( theta oe1 , da ta t r a in ) ;
21 figure (4 ) , compare( theta oe1 , da ta t r a in ) ;
22 figure (5 ) ; compare( theta oe1 , da ta te s t ) ;
23

24 % E s t i m a t i n g t h e N o i s e M o d e l

25 e r r o e 1 = pe ( theta oe1 , da ta t r a in ) ;
26 figure (6 ) , p l o t a c f ( e r r o e 1 . y , 1 e−03 ,10 ,1) ;
27 figure (7 ) , pac f ( e r r o e 1 . y , 1 0 ) ;
28

29 theta n1 = ar ( e r r o e 1 . y , 1 ) ;
30 pre s en t ( theta n1 ) ;
31 e r r n1 = pe ( theta n1 , e r r o e 1 ) ;
32 figure (8 ) , p l o t a c f ( e r r n1 . y , 1 e−03 ,10 ,1) ;
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33

34 % B u i l d i n g t h e BJ M o d e l f r o m OE and N o i s e M o d e l s

35 B = the ta oe1 . b ; F = the ta oe1 . f ; D = theta n1 . a ;
36 g t o t a l = idpo ly (1 ,B, 1 ,D, F) ;
37 t h e t a b j 1 = bj ( datatra in , g t o t a l ) ;
38 pre s en t ( t h e t a b j 1 ) ;
39 figure (9 ) , r e s i d ( the ta b j1 , da ta t r a in ) ;
40

41 dB = length (B)−1; dD = length (D)−1; dF = length (F)−1+1;
42 t h e t a b j 2 = bj ( datatra in , [ dB 0 dD dF 1 ] ) ;
43 pre s en t ( t h e t a b j 2 ) ;
44 figure (10) , r e s i d ( the ta b j2 , da ta t r a in ) ;
45 roots ( t h e t a b j 2 . f ) ; % C a l c u l a t e P o l e s

46 figure (11) , compare( the ta b j2 , da ta t r a in ) ;
47 figure (12) , compare( the ta b j2 , da ta t e s t ) ;
48

49 % E s t i m a t i n g t h e OE m o d e l on d i f f e r e n c e d d a t a

50 d a t a d i f f t r a i n = iddata ( di f f ( da ta t r a in . y ) , di f f ( da ta t r a in . u) , 1 )
;

51 t h e t a o e d i f f = oe ( d a t a d i f f t r a i n , [ 1 1 1 ] ) ;
52 pre s en t ( t h e t a o e d i f f ) ;
53 figure (13) , r e s i d ( t h e t a o e d i f f , d a t a d i f f t r a i n ) ;
54

55 t h e t a o e d i f f = oe ( d a t a d i f f t r a i n , [ 1 2 1 ] ) ;
56 pre s en t ( t h e t a o e d i f f ) ;
57 figure (14) , r e s i d ( t h e t a o e d i f f , d a t a d i f f t r a i n ) ;
58

59 t h e t a o e d i f f = oe ( d a t a d i f f t r a i n , [ 2 2 1 ] ) ;
60 pre s en t ( t h e t a o e d i f f ) ;
61 figure (15) , r e s i d ( t h e t a o e d i f f , d a t a d i f f t r a i n ) ;
62

63 % P r e s e n t i n g t h e tw o m o d e l s

64 m oe = idpo ly (1 , t h e t a o e d i f f .B, 1 , [ 1 −1] , t h e t a o e d i f f .F) ;
65 pre s en t ( m oe ) ;
66 pre s en t ( t h e t a b j 2 ) ;
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6.10 Problems

6.1. An LTI system can be modelled using the following relationship:

y(n) = a2y(n− 2) + a1y(n− 1) + b3u(n− 3) + b5u(n− 5) + e(n)

where e(n) can be taken as white noise. Set up the data matrix Φ for the
least squares problem. Comment on the number of rows of Φ. Write down the
expression for the least squares estimate of the parameters. (Do not calculate.)

6.2. Run M 6.1 for M values of 1, 2, 5 and 10. How do the results compare with
those presented in Table 6.2?

6.3. Calculate the theoretical ACF {γyy(k)} for

y(n) = ξ(n)− 0.5ξ(n− 1) + 2ξ(n− 2) (6.205)

6.4. In this problem, we will illustrate another method to arrive at Eq. 6.59 on
page 175. Show that Eq. 6.57 is equivalent to[

a b
] [ruu(0) ruy(k)
ruy(k) ryy(0)

] [
a
b

]
≥ 0, hence

[
ruu(0) ruy(k)
ruy(k) ryy(0)

]
is positive definite. From this, arrive at Eq. 6.58 to Eq. 6.60.

6.5. This problem demonstrates that care should be taken while calculating the
means in the time delay detection problem.

(a) Using the xcov function of Matlab, determine the CCF, i.e., ruy(n),
between two signals {u(n)} = {1, 2} and the delayed signal {y(n)} =
{0, 1, 2}. Do these results agree with hand calculations? Explain.

(b) Repeat the above steps with {u(n)} = {−0.5, 0.5} and {y(n)} = {0,−0.5,
0.5}. What do you observe now? Why?

6.6. Although not useful computationally, Eq. 6.84 on page 182 helps identify the
unknowns and the equations required to solve them, in the case of MA(q).
Extend this approach to AR(p) problems. That is, identify the equations
required to solve the unknowns that arise in AR(p) processes, modelled by
Eq. 6.73 on page 179, repeated here for convenience:

v(n) + a1v(n− 1) + · · ·+ apv(n− p) = ξ(n)

Do not carry out the PACF calculations – the model order is given as p.

6.7. Using the method of theoretical prediction, determine the sequence of calcula-
tions required in the estimation of the parameters a1 and c1 in the following
ARMA model:

y1 + a1y(n− 1) = ξ(n) + c1ξ(n− 1)

6.8. Consider the system

y(n) + a1y(n− 1) = b1u(n− 1) + ξ(n) + c1ξ(n− 1) (6.206)

with γuu(l) = δ(l)σ2
u, γξξ(l) = δ(l)σ2

ξ with u and ξ uncorrelated.
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(a) Show that

γyξ(k) + a1γyξ(k − 1) = γξξ(k) + c1γξξ(k − 1)

γyξ(0) = σ2
ξ

γyξ(1) = (c1 − a1)σ2
ξ

γyu(k) + a1γyu(k − 1) = b1γuu(k − 1)
γyu(0) = 0 (6.207)

γyu(1) = b1σ
2
u (6.208)

γyy(k) + a1γyy(k − 1) = b1γyu(−k + 1) + γyξ(−k) + c1γyξ(−k + 1)

γyy(0) =
b21σ

2
u + (1 + c21 − 2a1c1)σ2

ξ

1− a2
1

(6.209)

γyy(1) =
−a1b

2
1σ

2
u + (c1 − a1)(1 − a1c1)σ2

ξ

1− a2
1

(6.210)

[Hint: Follow the method of Example 6.6 on page 170; derive the above
equations in the same order as given.]

(b) How would you experimentally determine a1, b1 and c1?

6.9. A simple ARX model was studied in Example 6.23 on page 202. Show that the
values of φ and θ in Eq. 6.6 on page 162 for the general ARX model are given
by

φ =
[−y(k − 1) −y(k − 2) · · · u(k − 1) u(k − 2) · · ·]

θ =
[
a1 a2 · · · b1 b2 · · ·]T

6.10. Arrive at Eq. 6.149 on page 203 using the following procedure. Show that the
(1,1) term of the left-hand side of Eq. 6.148 on page 202 is

1
N

N∑
k=1

y2(k − 1) = ryy(0) (6.211)

Similarly evaluate all entries of both sides of Eq. 6.148 to arrive at Eq. 6.149.

6.11. Show that the values of φ and θ in Eq. 6.6 on page 162 for the ARMAX model
are given by

φ = [−y(k − 1) − y(k − 2) · · · u(k − 1) u(k − 2) · · ·
ε(k − 1) ε(k − 2) · · · ]

θ =
[
a1 a2 · · · b1 b2 · · · c1 c2 · · ·]T

6.12. Explain how you would determine the parameters of the following ARMAX
model, using pseudolinear regression:

(1 + a1z
−1 + a2z

−2)y(n) = (b1z−1 + b2z
−2)u(n)

+ (1 + c1z
−1 + c2z

−2)ξ(n)
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6.13. Explain the steps required to determine the model parameters in the OE model,
given by Eq. 6.161 on page 208.

6.14. This problem shows the condition for a linear recursive estimator to be unbiased.

Let the recursive estimator be given by

θ̂(n+ 1) = A(n+ 1)θ̂(n) + b(n+ 1)y(n+ 1) (6.212)

for the model

y(n+ 1) = φ(n+ 1)T θ + ξ(n+ 1) (6.213)
E [ξ(n+ 1)] = 0 (6.214)

Show that when

E
[
θ̂(n+ 1)

]
= E

[
θ̂(n)

]
(6.215)

for any value of n, θ̂(n+ 1) given by Eq. 6.212 is an unbiased estimator of θ if

A(n+ 1) = I − b(n+ 1)φT (n+ 1) (6.216)

where A(n+ 1) and b(n+ 1) are deterministic [36].
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Chapter 7

Structures and Specifications

There are many reasons why we use controllers. The important ones are: to account
for model uncertainties, to negate the effect of disturbances and to improve the
performance of the plant. In this section, we will look at a few strategies that are
useful in this regard.

In this chapter, we present briefly the concepts of feedback and feed forward
controllers. We introduce popular controllers, such as proportional, integral, derivative
and lead–lag. We explain the concepts of internal stability and internal model
principle. We introduce the topic of limits of performance. We translate the
performance requirements into desired pole locations in the z plane.

7.1 Control Structures

We can classify the controllers into feedback and feed forward controllers. The
feedback controllers can be further classified into one degree of freedom (abbreviated
as 1-DOF) and two degree of freedom (2-DOF) controllers. This section is devoted to
a study of these control structures.

7.1.1 Feed Forward Controller

Consider a model of a plant, given in the mixed notation of Sec. 6.4.1:

y = Gu + v (7.1)

where u, y are, respectively, input and output signals. The variable v could denote
disturbance or noise; it could be deterministic or stochastic. A schematic of this model
is given on the left-hand side of Fig. 7.1. Compare this with Fig. 6.5 on page 177.
Suppose that we want to design a controller so as to keep the plant at the operating
point, known as the regulation or disturbance rejection problem. In other words, we
would like to choose u so as to compensate for the effects of v and to keep the deviation
variable y at zero.

The schematic on the right-hand side of Fig. 7.1 shows a feed forward control
structure in which we measure the disturbance before it can upset the plant. Note
that the negative of the disturbance v becomes the input to the controller block F .

Digital Control Kannan M. Moudgalya
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03143-8
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v(n)

G(z)

H(z)

y(n)u(n)

d(n)
d(n)

G(z)F (z)

−H(z)

H(z)

u(n)
y(n)

−v(n)

v(n)

Figure 7.1: Transfer function model of a typical plant (left) and control of it using a
feed forward technique (right)

r

−
G(z) =

B

A
Gc(z) =

Sc
Rc

ue y

v

Figure 7.2: Schematic of a one degree of freedom feedback controller

The output y is given by

y = −GFv + v (7.2)

We achieve the objective of regulation or y = 0, if F = G−1, which implies that we
should have a good knowledge of G. For this strategy to work, we also need to be able
to measure v. We observe the control strategy to be

u = −Fv (7.3)

If G is minimum phase, its inverse is stable and we can implement this controller.
Because this strategy has the capability to reject disturbances before they affect

the plant, one should use the feed forward controller, if possible. Unfortunately,
however, often we don’t have good knowledge of the plant. Even if we know the
plant, it may not be possible to get an exact inverse. All sampled data systems have
at least one delay and hence the inverse of the plant model would result in a noncausal
system. If G is nonminimum phase, the inverse would be unstable. It is possible to
get an approximate inverse of the plant that is causal and stable, to be discussed in
Sec. 10.2.1. Nevertheless, because of the restrictions posed by this scheme, the feed
forward controller is rarely used alone. In Sec. 7.1.3, we show how the feed forward
control action is possible in a feedback scheme.

7.1.2 One Degree of Freedom Feedback Controller

The feedback control strategy involves measurement, comparison with the required
value and employing a suitable correction. The simplest feedback control strategy for
the plant in Fig. 7.1 is given in Fig. 7.2, where Gc denotes the control block and r
stands for the reference or the setpoint signal.

If the actual output y is different from the required value r, the error signal,
e = r − y, acts on the controller to come up with an appropriate value of the control
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effort u. Exact knowledge of G and H is not required for this strategy to work and
this is the main attraction of feedback over feed forward control strategy, presented
in the previous section.

Through the algebraic method presented in Sec. 4.3.2, we obtain the following
expression for y:

y(n) =
G(z)Gc(z)

1 +G(z)Gc(z)
r(n) +

1
1 +G(z)Gc(z)

v(n) (7.4)

where we have once again used the mixed notation of Sec. 6.4.1. Recall the transfer
functions T and S, defined in Eq. 4.23 and Eq. 4.24 on page 84, respectively:

T (z) =
G(z)Gc(z)

1 + G(z)Gc(z)
(7.5)

S(z) =
1

1 + G(z)Gc(z)
(7.6)

Substituting these, Eq. 7.4 becomes

y(n) = T (z)r(n) + S(z)v(n) (7.7)

The feedback controller has to meet two requirements:

1. To make y(n) follow r(n) in an acceptable manner, explored further in Sec. 7.7.
As mentioned earlier, this is known as the tracking or servo control problem.

2. To remove the effect of v(n) on y(n). This is known as the regulatory or
disturbance rejection problem.

In order to address the above two issues independently, we should be able to modify
S and T to our liking. Unfortunately, however, S and T defined as above satisfy the
condition

S + T = 1 (7.8)

which is easy to verify by straightforward substitution. As a result, once S is specified,
T is fixed and vice versa. This is known as the one degree of freedom controller, which
is abbreviated as 1-DOF controller.

7.1.3 Two Degrees of Freedom Feedback Controller

We have seen in Sec. 7.1.2 that, using the 1-DOF controller, it is not possible to
simultaneously shape the responses to both reference and disturbance signals. The
two degrees of freedom (2-DOF ) control structure addresses this problem. There are
many different 2-DOF structures. We will discuss one of them in this section.

In the control structure of Fig. 7.3, Gb and Gf together constitute the controller.
Gb is in the feedback path, while Gf is in the forward path. All other variables are
as in Fig. 7.2. Gb is used to stabilize the system as well as to remove the effect of the
disturbance. Gf is used to help y track r. We will look for a control law of the form

Rc(z)u(n) = Tc(z)r(n)− Sc(z)y(n) (7.9)
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H

y

d

v

Gb

r u

−
Gf G

Figure 7.3: Two degrees of freedom feedback control structure

where Rc, Sc and Tc are polynomials in z−1, see Footnote 5 on page 100 for the
notation. It is easy to see that

Gf =
Tc

Rc

Gb =
Sc

Rc

(7.10)

We will now illustrate the use of this controller for a plant with the model

A(z)y(n) = z−kB(z)u(n) + v(n) (7.11)

A and B are also polynomials in powers of z−1. Substituting the controller defined in
Eq. 7.9 in the plant model given in Eq. 7.11, we obtain

Ay(n) = z−k B

Rc
[Tcr(n) − Scy(n)] + v(n)

Bringing the y terms to one side and simplifying, we obtain(
RcA+ z−kBSc

Rc

)
y(n) = z−kBTc

Rc
r(n) + v(n)

This can be written as

y(n) = z−kBTc

φcl
r(n) +

Rc

φcl
v(n) (7.12)

where φcl is the closed loop characteristic polynomial

φcl(z) = A(z)Rc(z) + z−kB(z)Sc(z) (7.13)

We see that the closed loop transfer function between y(n) and r(n) also has a delay
of k samples. We want:

1. The zeros of φcl to be inside the unit circle, so that the closed loop system is
stable.

2. Rc/φcl to be made small, so that we achieve disturbance rejection.

3. z−kBTc/φcl to be made close to 1, so that we achieve setpoint tracking.

We will use this approach in the subsequent chapters to design 2-DOF controllers.
Although the 2-DOF controller has more capabilities, the 1-DOF controller is simpler
to design, as it has fewer parameters. We now present the simplest 1-DOF controller.
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7.2 Proportional Control

A proportional controller is one in which the control action is proportional to an error
signal. The proportional controller is one of the most fundamental controllers.

Proportional control is the first strategy that a designer tries out while designing
controllers. If this does not work, the designer looks at other options. Even in this case,
the insights obtained while designing the proportional controller are extremely useful
in the design of more sophisticated controllers. Because of these reasons, the design of
proportional controllers becomes an extremely important approach in control system
design.

One way to design a controller is through shifting the poles of a system to a better
place. For example, if the plant to be controlled is unstable, we would like to move
its poles to within the unit circle. Performance requirements could restrict the pole
locations further, the topic of discussion of Sec. 7.7. We will illustrate these ideas with
a simple example.

Example 7.1 Suppose that a plant with a transfer function

G(z) =
1

z(z − 1)

is put in a closed loop with a proportional controller K. How do the closed loop
poles vary as K increases from 0?

The closed loop transfer function is

T =
KG

1 +KG
=

K

z2 − z +K

The characteristic polynomial is φcl(z) = z2−z+K and the characteristic equation
is φcl(z) = 0, the roots of which are the closed loop poles, denoted as λ. We have

λ1,2 =
1±√1− 4K

2
Notice that K = 0 gives λ1,2 = 0, 1, which are the same as the open loop poles.
As K increases, the discriminant becomes smaller. For K = 0.25, λ1,2 = 0.5, i.e.,
the two poles coincide. For K > 0.25, the poles become imaginary with the real
part being 0.5. A plot of the evolution of the roots for this example is given in
Fig. 7.4.

Note that for K = 1, the closed loop poles are at the unit circle, i.e., the system
is on the verge of instability. We refer to this as the ultimate gain and use the
symbol Ku to denote it. The concept of ultimate gain is used in the tuning of PID
controllers, in Sec. 8.3.2.

The plot of loci of the closed loop poles as the controller gain K is varied from
0 to ∞ is known as the root locus plot [16]. M 7.1 shows how to draw the root
locus plot in Matlab.

Proportional control is an important part of the popular PID controller, to be
discussed in Sec. 7.3 and Chapter 8. We will discuss the related problem of pole
placement in Chapters 9 and 14. The root locus method is a time domain technique.
We will present a frequency domain technique in the next section.
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xx
Re(z)

Im(z)

Figure 7.4: A plot of evolution of closed loop poles as K is varied from 0 to ∞ for
G(z) = 1/[z(z − 1)], see Example 7.1

7.2.1 Nyquist Plot for Control Design

We will begin this section with the application of Cauchy’s principle. Given a function
F (z), draw a closed contour C1 in the z plane so that no zeros or poles of F (z) lie on
C1. Let z zeros and p poles of F (z) lie within the closed contour. Let us evaluate F (z)
at all points on the curve C1 in the clockwise direction. Plot the evaluated values in
another plane, called the F plane, in which Im[F (z)] and Re[F (z)] form y and x axes,
respectively, see Footnote 2 on page 65. The new curve also will be a closed contour;
call it C2, see Fig. 7.5. Then Cauchy’s principle states that C2 will encircle the origin
of the F plane z − p times in the clockwise direction. This can be summarized as
follows:

N = z − p (7.14)

N = Number of encirclements of origin in clockwise direction by curve C2. N is
positive if the encirclement is in the clockwise direction. It is negative if the
encirclement is in the counterclockwise direction.

z = Number of zeros of F (z) that lie within the closed contour C1.

p = Number of poles of F (z) that lie within the closed contour C1.

Examples of N calculations in the F (z) plane are given in Fig. 7.6. The direction of
C1 is assumed to be clockwise.

We will now explain how this approach can be used to design proportional
controllers. Given G(z), the open loop transfer function, the closed loop transfer
function is given by T (z) = KG(z)/(1 +KG(z)), see Eq. 7.5. The closed loop system
is unstable if the poles of T (z) are outside the unit circle. That is, if the zeros of
1 +KG(z) are outside the unit circle.

We will choose C1 to be the unit circle, taken in the clockwise direction. Suppose
that 1 +KG(z) has n poles and n zeros, including those at infinity. Let

Z = number of zeros of 1 +KG(z) outside the unit circle C1

P = number of poles of 1 +KG(z) outside the unit circle C1

It follows that 1 +KG(z) will have n−Z zeros and n−P poles inside the unit circle.
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Im(F (z))

Re(z)

C1

C2

Re(F (z))

Im(z)

Figure 7.5: Evaluation of F (z) along a closed contour C1 (left) and plotting of
imaginary part of F (z) vs. real part of F (z) results in a closed contour C2 in the
F plane

C2

N = 2

N = 0

Re(F (z))

Im(F (z)) Im(F (z))

N = 0

Re(F (z))

Im(F (z))

Re(F (z))

C2

C2

Figure 7.6: Calculation of number of encirclements in Cauchy’s principle

Im(z)

C2

Im(F (z))

Re(F (z))

C1

Re(z)

Figure 7.7: An approach to generation of Nyquist plot. 1 +KG(z) is evaluated along
C1 and the imaginary part plotted vs. the real part, to produce C2.

Let us evaluate 1 +KG(z) along C1 and plot its imaginary part vs. the real part
and call it C2, see Fig. 7.7. Then using Cauchy’s principle, C2 will encircle the origin
of the 1 +KG plane

N = (n− Z)− (n− P ) = P − Z (7.15)
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C3 C2

Im(F (z))

Re(F (z))

Figure 7.8: C2 is a plot of 1 +KG(z) and C3 is a plot of KG(z). If the critical point
of C2 is (0, 0), that of C3 is (−1, 0).

times in the clockwise direction. Since

1 +KG(z) = 1 +K
b(z)
a(z)

=
a(z) +Kb(z)

a(z)

the poles of 1 + KG(z) = zeros of a(z) = poles of G(z). Thus we can interpret P as
the number of poles of G(z) outside C1, i.e., the number of open loop unstable poles.
From N = P − Z, since we want Z = 0, we arrive at the stability condition:

N = P (7.16)

We will refer to the origin of the F plane as the critical point.
The difficulty with the above approach is that we need to know K to draw the C2

curve. To overcome this difficulty, instead of plotting 1+KG(z), we plot 1+KG(z)−
1 = KG(z), and call the result the C3 curve, see Fig. 7.8. Since C3 is obtained by
subtracting one from every point of C2, the critical point also gets shifted by one to
the left. In other words, N is then determined by the encirclements of the (−1, 0)
point by the C3 curve.

As a further improvement, we can plot G(z), call it C4, and now the critical point
becomes (−1/K, 0). First we determine N required to satisfy the stability condition.
Then we choose K such that the (−1/K, 0) point is encircled the desired number (N)
of times. The curve C4 is known as the Nyquist plot.

We will summarize our findings now. For closed loop stability, the Nyquist plot
C4 should encircle the critical point P times, where P denotes the number of open
loop unstable poles. We now illustrate this approach with an example.

Example 7.2 Draw the Nyquist plot of

G(z) =
1

z(z − 1)
(7.17)

and find out for what values of K the system becomes unstable.

To use the Nyquist approach, C1 should not go through a pole or zero. So indent
it with a semicircle of radius→ 0 near z = 1, as shown in the left-hand side plot of
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Fig. 7.9. It is also possible to do this indentation so as to exclude the pole from the
unit circle, see Problem 7.2. The number of poles outside C1 is zero, i.e., P = 0.
First we evaluate b(z)/a(z) along the main C1 curve as follows. On substitution
of z = ejω , Eq. 7.17 becomes

G(ejω) =
1

ejω(ejω − 1)
=

1
ej3ω/2

(
ejω/2 − e−jω/2

)
=

e−j3ω/2

2j sinω/2
= − j (cos 3ω/2− j sin 3ω/2)

2 sinω/2

We write this in the standard form:

= − sin 3ω/2
2 sinω/2

− j cos 3ω/2
2 sinω/2

(7.18)

On C1, we mark A at ω = 180◦, B at ω = 120◦, D at ω = 60◦ and E at ω → 0
and evaluate G at these points. At point A, because ω = 180◦, from Eq. 7.18, we
obtain G = 0.5. For ω = 120◦ at point B, Eq. 7.18 gives

G = − sin 180◦

2 sin 60◦
− j cos 180◦

2 sin 60◦
= j0.5774

At point D, for ω = 60◦, Eq. 7.18 gives G = −1. At point E, with ω → 0, we
obtain

G = −0
0
− j∞

Because the real part is in 0/0 form, we apply L’Hospital’s rule to it. We obtain

G = − (3/2) cos (3/2)ω
cos (1/2)ω

− j∞ = −3
2
− j∞

These points have been marked in the Nyquist plot, shown on the right-hand side
of Fig. 7.9. We next evaluate G along the indentation next to the pole at 1. This
indentation is in the form of a semicircle with an equation z = 1 + εejφ with
ε→ 0. When G is evaluated along this semicircle, we obtain

G(1 + εejφ) =
1

(1 + εejφ)εejφ
=
∞e−jφ

1 + εejφ
=∞e−jφ

as ε→ 0. As φ starts at +90◦, goes to 0◦ and then to −90◦, G of radius∞ starts
at −90◦, goes to 0◦ and then to 90◦. This is shown as a semicircle of infinite radius
in the Nyquist plot of Fig. 7.9. M 7.2 shows the procedure to obtain the Nyquist
plot in Matlab.

Using this Nyquist plot, we proceed to determine the range of proportional control
gains for which the closed loop system is stable. Recall from Eq. 7.16 that the
condition for stability is N = P . Because there are no open loop unstable poles,
we have P = 0. As a result, we look for points that are not encircled by the Nyquist
plot.
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Figure 7.9: Contour C1 and the corresponding Nyquist plot C4, for the system studied
in Example 7.2

Now we explore where the critical point (−1/K, 0) has to be placed. If it is placed
between D and A in the Nyquist plot shown in Fig. 7.9, we will have N = −2.
This corresponds to the condition 0.5 > −1/K > −1. As we are interested in
positive values of K only, we take this as 0 > −1/K > −1, which is equivalent
to 0 < 1/K < 1 or K > 1. Thus for K > 1, the closed loop system is unstable.
Indeed, when K > 1, there will be two unstable poles in the closed loop: we
substitute N = −2 in Eq. 7.15 and obtain Z = 2, because P = 0. This is in
agreement with the results of Example 7.1.

If, on the other hand, the critical point (−1/K, 0) is placed to the left of D
in the Nyquist plot of Fig. 7.9, because there are no encirclements, we obtain
N = 0, satisfying the condition for closed loop stability, given in Eq. 7.16. This
corresponds to −∞ < −1/K < −1, or equivalently, for 0 < K < 1. This result
also is in agreement with that of Example 7.1.

Although the Nyquist approach can be used to design other kinds of controllers
also, we will not discuss this procedure any further. Using the Nyquist plot, it is
possible to explain the concept of stability margins, an important metric that a
controller should satisfy. We discuss this topic in the next section.

7.2.2 Stability Margins

Suppose that the plant is open loop stable. Then, the point (−1, 0) should not be
encircled by the Nyquist curve for stability. It is general practice to keep a good
distance between this point and the Nyquist curve. The idea is that if this distance is
large, it will act as a safety factor in case the transfer function and the Nyquist curve
of the plant change.

The transfer function of the plant can change for many reasons. For example,
wear and tear can change the behaviour of the system. We may not have a perfect
understanding of the plant and hence there could be differences between the actual
and the assumed transfer functions of the plant.

If the distance between the Nyquist curve and the point (−1, 0) is large, hopefully
the closed loop system will remain stable even if the transfer function is different from
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Figure 7.10: Definition of gain and phase margins. Margins act as a safety factor
against uncertainties in the model of the plant.

what is used in control design. This distance is characterized in terms of gain margin
and phase margin.

Consider the Nyquist curve of a stable plant, as in Fig. 7.10. Let B, A and O
be three points on the Nyquist curve. At point B, it cuts the unit circle, centred at
the origin. At point A, it cuts the real axis. If point A were to coincide with the
point (−1, 0), the system would become unstable. This will happen when the transfer
function is multiplied by the scalar 1/OA, where we have denoted the distance between
O and A by OA. This scalar is defined as the gain margin of the system. We obtain

gain margin =
1
OA

The Nyquist curve will go through the point (−1, 0) also when it is rotated in the
clockwise direction. This could happen when the plant has, for example, a larger delay
than assumed.

With clockwise rotation, the Nyquist plot, such as the one in Fig. 7.10, could
go through the critical point (−1, 0), making the system unstable. In other words,
unmodelled dynamics and delays could make the system unstable. It is to safeguard
against such difficulties, that the notion of phase margin has been introduced: it is
the angle through which the Nyquist plot can be rotated in the clockwise direction,
so as to just reach the point of instability. From the Nyquist curve drawn in Fig. 7.10,
we obtain

phase margin = ∠AOB

which is the same as 180◦ − ∠G(ejωc), where ωc is the crossover frequency, at which
the magnitude of G is 1.

A gain margin of ≥ 2 and a phase margin of ≥ 45◦ are generally considered as a
safe design. Nevertheless, in some situations even after satisfying these two conditions,
the Nyquist plot can get arbitrarily close to the critical point of (−1, 0). In view of this,
it is recommended that the Nyquist curve be drawn to ensure that these two margins
are a reasonable metric for the plant under consideration. The concept of stability
margins is not restricted to proportional controllers alone. In fact, any controller that
does not have good stability margins will not be of any use.
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7.3 Other Popular Controllers

In this section, we briefly discuss two other popular controllers, namely lead–lag and
PID controllers.

7.3.1 Lead–Lag Controller

When a proportional controller is inadequate, we consider more elaborate controllers.
The lead–lag controllers are more advanced than the proportional controllers. When
the phase margin is not sufficient, we may like to rotate the Nyquist curve in the
counterclockwise direction. In other words, we would like to increase the phase angle
of the system, thereby improving the stability margins of the closed loop system. The
lead controller does precisely this.

A lag controller, on the other hand, is used to decrease the phase of the system. A
lag controller is generally used to improve the performance properties at steady state.
A lead–lag controller has both of these modes. We will discuss lead controllers in detail
in this section. A more popular version of the lead–lag controller is the ubiquitous
PID controller.

It is extremely easy to construct lead controllers directly in the discrete time
domain [40]. Fig. 7.11 shows the Bode plot of two transfer functions, G1(z−1) =
1− 0.9z−1, plotted using solid lines and G2(z−1) = 1− 0.8z−1, plotted using dashed
lines. These have been obtained using M 7.3. The poles of both of these have been
chosen to lie in the same radial line from the centre of the circle [49]. Note that the
phase of G1 is greater than that of G2. This difference goes through a maximum. This
suggests that a filter of the form

G =
1− 0.9z−1

1− 0.8z−1
(7.19)

will have a positive phase angle. This is indeed true, as can be seen from Fig. 7.11,
where we have drawn a Bode plot of G.

We can generalize this result. Consider the transfer function

G(z−1) =
1− bz−1

1− az−1
=
B(z−1)
A(z−1)

(7.20)

with

1 > b > a > 0 (7.21)

Substituting ejω for z, we obtain B(ejω) = 1 − be−jω. Using Euler’s formula and
simplifying, B(ejω) = (1− b cosω) + jb sinω. We obtain the phase angle as

∠B(ejω) = tan−1 b sinω
1− b cosω

(7.22)

Similarly, we obtain

∠A(ejω) = tan−1 a sinω
1− a cosω

(7.23)
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(a) Bode plots of 1 − 0.9z−1 (solid lines) and
1 − 0.8z−1 (dashed lines)
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(b) Bode plot of G1 = (1 − 0.9z−1)/(1 − 0.8z−1)

Figure 7.11: The phase angle of G1 is positive and goes through a maximum,
confirming lead nature

and hence,

∠G(ejω) = ∠B(ejω)− ∠A(ejω) (7.24)

As b > a, we obtain for ω ∈ [0, π],

b sinω > a sinω (7.25)

from which it follows that

b sinω
1− b cosω

>
a sinω

1− a cosω
(7.26)

which can be verified by cross multiplication. We conclude that ∠G(ejω), defined in
Eq. 7.22–7.24, is positive.

The transfer functionG defined in Eq. 7.19 has a maximum phase of approximately
21◦ at 0.105 rad/s, as can be seen in Fig. 7.11. We next derive an expression for the
maximum phase reached by G, defined in Eq. 7.24. Differentiating Eq. 7.22 with
respect to ω, we obtain

d∠B(ejω)
dω

=
1

1 +
(

b sin ω
1−b cos ω

)2

(1− b cosω)b cosω − b2 sin2 ω

(1− b cosω)2

=
1− b2

1− 2b cosω + b2

Using a similar expression for d∠A(ejω)/dω and substituting in Eq. 7.24, we obtain
the condition for the maximum in ∠G as

1− b2
1− 2b cosωm + b2

− 1− a2

1− 2a cosωm + a2
= 0



256 7. Structures and Specifications

where ωm denotes that it corresponds to the maximum phase lead. Simplifying this,
we observe that

cosωm =
a+ b

ab+ 1
(7.27)

Next, we calculate the phase lead obtained at ωm. From the above equation, we obtain

sinωm =

√
(a2 − 1)(b2 − 1)

ab+ 1
(7.28)

Substituting these in Eq. 7.22–7.24, we obtain the phase lead at ωm as

∠G
(
ejωm

)
= tan−1 b

√
1− a2

1 − b2 − tan−1 a

√
1− b2
1− a2

(7.29)

Taking tan of both sides,

tan ∠G
(
ejωm

)
=

b− a√
(1− a2)(1 − b2)

(7.30)

Thus, we obtain the following expression for the maximum phase achieved as

∠G
(
ejωm

)
= tan−1 b− a√

(1− a2)(1 − b2)
(7.31)

Thus, the transfer function defined by Eq. 7.20–7.21 introduces a phase lead, as in
Eq. 7.31, at the frequency ωm defined as in Eq. 7.27.

The lead control problem typically involves a reverse procedure: what transfer
function should we use to achieve a specified lead ∠G at a given frequency ωm? There
are two unknowns, a and b, and two constraints, Eq. 7.27 and Eq. 7.31. We can solve
these and obtain values for a and b.

A graphical procedure to quickly arrive at approximate values of a and b is now
proposed. Let a be a fraction of b, as given by

a = fb, 0 < f < 1 (7.32)

Fig. 7.12 shows a plot of maximum frequency ωm and the zero location b as functions
of maximum lead ∠G(ejω), for different values of f . M 7.4 shows how to obtain one
set of curves corresponding to f = 0.9.

Suppose that we want to design a lead controller that introduces a maximum lead
of 45◦ at ω = 0.5 rad/sample (see Sec. 5.1.2 for a discussion on the units used for
discrete time sinusoids). We start in the top figure, with the ordinate value at 0.5
rad/sample. We choose the curve corresponding to f = 0.3, as it gives a maximum
phase lead of 45◦. From the bottom figure, we see that a maximum lead of 45◦ will be
achieved for the zero location b = 0.8 when f = 0.3. The arrows show the direction of
the calculation. Using the definition of f in Eq. 7.32, we obtain a = 0.24, and hence
arrive at the required controller as

G =
1− 0.8z−1

1− 0.24z−1
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Figure 7.13: Bode plot of (1− 0.8z−1)/(1 − 0.24z−1)

It is easy to verify that this controller indeed offers the required lead. Using M 7.5, we
obtain the Bode plot as in Fig. 7.13. We now demonstrate the utility of lead controllers
with an example.

Example 7.3 Recall the discrete time transfer function of the antenna control
system, obtained in Example 4.18, for a sampling time Ts = 0.2 s:

G(z) =
0.001987(z + 0.9931)
(z − 1)(z − 0.9802)

(7.33)
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Design a controller that will help meet the following requirements:

1. For a unit step change in the reference signal, rise time should be less than
2.3 s and overshoot less than 0.25.

2. The steady state tracking error to a unit ramp input should be less than 1.

Although the technique of pole placement, discussed in Chapter 9, is a more
appropriate method to solve this problem, we will now explore the usefulness of
lead controllers.

From a root locus plot of this example, it is easy to see that the closed loop poles
will lie between the poles at 1 and 0.9802, see Example 7.1 on page 247. These
poles, when stable, result in a sluggish response, see Fig. 5.1 on page 114. For a
faster response, the closed loop poles of the system should be closer to the origin.
Suppose that we use a lead controller of the form

Gc(z) =
1− β

1− 0.9802
z − 0.9802
z − β , 0 < β < 0.9802 (7.34)

which has a steady state gain of 1, i.e., Gc(1) = 1. The lead controller cancels the
pole of the plant at 0.9802 and replaces it with another pole at β, closer to the
origin. The loop transfer function becomes

G(z)Gc(z) = 0.001987
1− β

1− 0.9802
z + 0.9931

(z − 1)(z − β)
(7.35)

It is instructive to study this system also from the frequency domain perspective.
Fig. 7.14 shows a Bode plot of the antenna system with solid lines. It is easy to
see that this plant has a phase angle of 165◦ at a gain of 1, resulting in a phase
margin of about 15◦. When the above mentioned lead controller is used with an
arbitrarily chosen value of β as 0.8, we obtain the Bode plot, drawn with dashed
lines in the same figure. From this, we see that the phase margin has increased to
about 50◦. Moreover, the bandwidth also has increased.

We will now explore whether it is possible to use the above discussed lead
controller, possibly in series with a proportional controller, to meet the steady
state requirement. It is given that the steady state error to a unit ramp input
should be less than 1. The Z-transform of error to ramp is given by

E(z) =
1

1 +KG(z)Gc(z)
Tsz

(z − 1)2
(7.36)

We need to meet the requirement of e(∞) < 1. Applying the final value theorem,
we obtain

lim
z→1

Ts

(z − 1)[1 +KG(z)Gc(z)]
≤ 1

As G(1)Gc(1) =∞, the above inequality becomes

lim
z→1

Ts

(z − 1)[KG(z)Gc(z)]
≤ 1
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Figure 7.14: Bode plot of antenna tracking system, with (dashed lines) and without
(solid lines) the lead controller Gc
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On substituting for G from Eq. 7.33 and simplifying, we obtain KGc(1) ≥ 1. We
can take KGc(1) = 1. Because Gc(1) = 1, we have K = 1.

We have just seen that the lead controller that we selected earlier meets the steady
state error requirement. In addition, as mentioned earlier, this controller improves
the transient performance. We will now carry out simulations and check whether
this controller is adequate. The efficacy of this scheme is evaluated through M 7.6
and simulated using the Simulink code given in Fig. A.5. The resulting input–
output profiles for a step input are in Fig. 7.15.
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u(k)

n

u(n)

u(k − 1)

Figure 7.16: Graphical representation of discrete time integration

Now that we have given a detailed presentation of the lead controller, we will
explain the lag controllers briefly. A lag controller also is given by an expression
identical to Eq. 7.19 with the difference that now b < a. As a result, the phase is
negative – hence the name. Supposing that we are generally happy with the dynamic
response of the system but that we want to increase the controller gain so as to reduce
the steady state offset, we include the lag controller.

By a combination of a lead and a lag controller, it is possible to achieve both
requirements: improving dynamic performance and reducing the steady state gain.

The lead action is similar to the derivative action and the lag mode is similar to
the integral mode in the popular controller of the industry, namely the PID controller,
to be discussed briefly in the next section.

7.3.2 Proportional, Integral, Derivative Controller

The proportional, integral, derivative, or more popularly, the PID, is probably the
most popular controller in use today. It is popular because of the large installed base
and simplicity in its use: it has three parameters to be tuned, one corresponding to
each of the P, I and D modes. While the proportional controller is always used, one
has the option of choosing either one or both of the other two modes. As a result, one
has the option of using any combination of P, PI, PD or PID. All these are loosely
referred to as the PID controllers. We will discuss each of the modes separately in
this section.

Suppose that our process is an integrator. Let the input to the process be denoted
by u. Let the output, the integral of u with respect to time, be denoted by y. This
can be graphically represented as in Fig. 7.16. A discrete time way to integrate the
curve is through the trapezoidal scheme, as given below:

y(k) = shaded area with right slanting lines
+ shaded area with left slanting lines

y(k) = y(k − 1) + shaded area with left slanting lines

= y(k − 1) +
Ts

2
[u(k) + u(k − 1)] (7.37)
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×

Im(z)

Re(z)

Figure 7.17: Pole–zero location of the integral mode

Taking the Z-transform of both sides, we obtain

Y (z) = z−1Y (z) +
Ts

2
[
U(z) + z−1U(z)

]
Simplifying this, we obtain

Y (z) =
Ts

2
1 + z−1

1− z−1
U(z) (7.38)

If we denote the transfer function of the integrator by Gi, we see that it is given by

Gi(z) =
Ts

2
z + 1
z − 1

. (7.39)

This is known as the trapezoidal approximation or Tustin approximation or bilinear
approximation. The transfer function Gi is low pass as it has a pole at ω = 0 and a
zero at ω = π, see Fig. 7.17. Thus we see that integration, a smoothing operation, is
low pass. We explain the role of the integral mode with an example.

Example 7.4 Evaluate the effect of an integrating controller

Gi(z) =
z + 1
z − 1

when used with a nonoscillating plant given by

G(z) =
z

z − a
where a > 0. The closed loop transfer function becomes

T (z) =
z

z−a
z+1
z−1

1 + z
z−a

z+1
z−1

=
z(z + 1)

2z2 − az + a

The poles are at (a ± √a2 − 8a)/4. For all a < 8, the closed loop system is
oscillatory. When a PI controller of the following form is used

Gc(z) = K

(
1 +

1
τi

z + 1
z − 1

)
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the overall transfer function becomes

T (z) =
K
(

1 + 1
τi

z+1
z−1

)
z

z−a

1 +K
(

1 + 1
τi

z+1
z−1

)
z

z−a

The steady state output for a step input is given by limn→∞ y(n), which is equal
to limz→1 T (z) = 1, see Eq. 4.21 on page 83. This shows that there is no steady
state offset.

Because the reciprocal of integration is differentiation, we obtain the transfer
function of discrete time differentiation Gd as the reciprocal of Gi, given in Eq. 7.39.
We obtain

Gd(z) =
1

Gi(z)
=

2
Ts

z − 1
z + 1

(7.40)

This form, however, has a problem: Gd(z) has a pole at z = −1 and hence it produces,
in partial fraction expansion, a term of the form

z

z + 1
↔ (−1)n (7.41)

which results in a wildly oscillating control effort, see Sec. 5.1.1. Because of this,
we consider other ways of calculating the area given in Fig. 7.16. For example, we
approximate the area under the curve with the following backward difference formula:

y(k) = y(k − 1) + Tsu(k) (7.42)

Taking the Z-transform and simplifying it, we obtain

Y (z) = Ts
z

z − 1
U(z)

We arrive at the following transfer functions of the integrator and differentiator as

Gi(z) = Ts
z

z − 1

Gd(z) =
1
Ts

z − 1
z

(7.43)

It is also possible to use the forward difference approximation for integration

y(k) = y(k − 1) + Tsu(k − 1) (7.44)

This results in the following transfer functions of the integrator and differentiator as

Gi(z) =
Ts

z − 1

Gd(z) =
z − 1
Ts

(7.45)

It is easy to check that all the definitions of the differentiator given above are high
pass.
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Example 7.5 Examine the effect of using the derivative controller

Gd(z) = τd
z − 1
z

on the oscillating plant

G(z) =
z

z + a
, a > 0

As the pole is on the negative real axis, it has maximum number of oscillations.
The overall transfer function T is given by

T (z) =
G(z)Gd(z)

1 + G(z)Gd(z)
=

τd(z − 1)
(1 + τd)z + (a− τd)

which is less oscillatory than the plant G(z). We next see the effect of using a
proportional derivative controller on the steady state offset to a step input. Let
the proportional derivative controller be given by

Gd(z) = K

(
1 + τd

z − 1
z

)
The closed loop transfer function T (z) is given by

T (z) =
K
(
1 + τd

z−1
z

)
z

z+a

1 + K
(
1 + τd

z−1
z

)
z

z+a

If the input to this is a step function, The steady state value y(n) is given by the
final value theorem:

lim
n→∞ y(n) = lim

z→1
Y (z)

z − 1
z

= lim
z→1

T (z) =
K

1 + a+K

Note that the steady state value is the same as that in the case of the proportional
controller.

We now summarize the properties of the three modes of the PID controller. The
proportional mode is the most popular control mode. Increase in the proportional
mode generally results in decreased steady state offset and increased oscillations.
The integral mode is used to remove steady state offset. Increase in the integral
mode generally results in zero steady state offset and increased oscillations. The
derivative mode is mainly used for prediction purposes. Increase in the derivative
mode generally results in decreased oscillations and improved stability. The derivative
mode is sensitive to noise, however.

7.4 Internal Stability and Realizability

Recall that in Sec. 3.3.7, we have presented the concept of BIBO or external stability.
In this section, we show that unstable poles should not be cancelled with zeros at
the same location to achieve internal stability. We also show that internally stable
sampled data systems are realizable.
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Figure 7.18: Unstable pole–zero cancellation

7.4.1 Forbid Unstable Pole–Zero Cancellation

Cancellation of a pole and a zero, although it helps simplify a transfer function, could
lead to difficulties. By cancellation, essentially we ignore some dynamics due to the
initial conditions. As a result, if the dynamics cancelled away is unstable, we could
get into difficulties, see Problem 7.3. We now present an example to illustrate this
difficulty.

Example 7.6 Study the effects of stabilizing the following system

G(z) =
1

z + 2

with a controller that has a zero at z = −2, as shown in Fig. 7.18.

We will now derive the state space realization of this system without cancellation.
First we will do this for the first block:

U(z) =
z + 2
z + 0.5

E(z) =
(

1 +
1.5

z + 0.5

)
E(z)

X1(z)
�
=

1.5
z + 0.5

E(z)

U(z) = X1(z) + E(z)
x1(k + 1) = −0.5x1(k) + 1.5e(k)

u(k) = x1(k) + e(k)

For the second block, this becomes

X2(z)
�
=

1
z + 2

U(z)

x2(k + 1) = −2x2(k) + u(k)
y(k) = x2(k)

Substituting for u(k) from above

x2(k + 1) = −2x2(k) + x1(k) + e(k)

Writing these equations together in matrix form, we obtain[
x1(k + 1)
x2(k + 1)

]
=
[−0.5 0

1 −2

] [
x1(k)
x2(k)

]
+
[
1.5
1

]
e(k)

y(k) =
[
0 1

] [x1(k)
x2(k)

]
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These are of the form

x(k + 1) = Ax(k) + bu(k)
y(k) = Cx(k)

where

A =
[−0.5 0

1 −2

]
, b =

[
1.5
1

]
, C =

[
0 1

]
Using Eq. 3.46 on page 56, we find the solution to this system as

x(k) = Akx(0) +
k−1∑
i=0

Ak−(i+1)be(i) = Akx(0) +
k−1∑
m=0

Ambe(k −m− 1)

(7.46)

Using the diagonalization procedure of Sec. A.1.2, we obtain

A = SΛS−1

Ak = SΛkS−1

For this problem, we can calculate the following:

S =
[
1.5 0
1 1

]
, Λ =

[−0.5 0
0 −2

]
, S−1 =

1
1.5

[
1 0
−1 1.5

]
Then we can calculate Amb as SΛmS−1b. The calculations are a bit easier if we
calculate from right to left. In this case, we obtain

Amb = SΛmS−1b =
[
1.5
1

]
(−0.5)m

Substituting this in Eq. 7.46, we obtain

x(k) = Akx(0) +
[
1.5
1

] k−1∑
m=0

(−0.5)me(k −m− 1)

Because y = Cx, we obtain

y(k) = CAkx(0) + C

[
1.5
1

] k−1∑
m=0

(−0.5)me(k −m− 1) (7.47)

The first term is

CAkx(0) =
1

1.5
[
0 1

] [1.5 0
1 1

] [
(−0.5)k 0

0 (−2)k

] [
1 0
−1 1.5

] [
x1(0)
x2(0)

]
=

1
1.5

[
(−0.5)k (−2)k

] [ x1(0)
−x1(0) + 1.5x2(0)

]
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y(n)e(n) 1

z + 0.5

Figure 7.19: Same as Fig. 7.18, but after cancellation of pole and zero

If x(0) is not identically zero, this term grows unbounded. The second term in
Eq. 7.47 decays to zero. This term is identical to what we will obtain if we realize
the simplified transfer function obtained after cancellation, with block diagram as
shown in Fig. 7.19. Suppose that the state of this reduced system is indicated
by xs. Then we obtain

Xs(z)
�
=

1
z + 0.5

E(z)

xs(k + 1) = −0.5xs(k) + e(k)
ys(k) = xs(k)

Iteratively solving this equation, we obtain

ys(k) = xs(k) = (−0.5)mxs(0) +
k−1∑
m=0

(−0.5)me(k −m− 1) (7.48)

When the initial values are zero, the outputs are identical, as can be seen from
Eq. 7.47 and Eq. 7.48. In case, however, x(0) consists of small but nonzero entries,
like 10−15, the first element of Eq. 7.47 grows unbounded, while Eq. 7.48 is stable.
Such small but nonzero entries can very well be due to the way a computer system
stores zero or due to noise.

This example illustrates that an unstable pole and zero should not be cancelled.
That is, the adverse effect of an unstable pole cannot be wished away by placing a zero
at that exact location. We now look at the issue of unstable pole–zero cancellation in
a closed loop system.

7.4.2 Internal Stability

In the last section we showed that unless we have perfect zero initial condition,
cancellation of an unstable pole with a zero would result in instability. We say that a
closed loop system, in which the transfer function between any two points is stable, has
the property of internal stability. It is instructive to compare this with the property
of external or BIBO stability, defined in Sec. 3.3.7. In this section, using a feedback
loop, we show that if unstable pole–zero cancellation is permitted, some signals in the
loop will become unbounded. In other words, the system will not have the property
of internal stability.

Further discussion in this section will centre around the closed loop system, given
in Fig. 7.20. Let

G =
n1

d1
(7.49a)
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Figure 7.20: Internal stability

be the plant transfer function and let

Gc =
n2

d2
(7.49b)

be the controller transfer function. At first sight, it may seem that if the transfer
function between the output of the system and the reference signal is stable, everything
is fine. Unfortunately, however, this is insufficient. We claim that every signal in the
loop has to be bounded if stability is to be ensured. As any signal inside the loop may
be influenced by noise, we have the following requirement of stability: the transfer
function between any two points in the loop should be stable. Equivalently, for any
bounded signal injected at any part of the loop, all signals in the loop must also be
bounded. We obtain the following matrix relation.

[
e1
e2

]
=


1

1 + GGc
− G

1 +GGc

Gc

1 + GcG

1
1 +GcG

[r1r2
]

(7.50)

Substituting for G and Gc from Eq. 7.49, we obtain

[
e1
e2

]
=


d1d2

n1n2 + d1d2
− n1d2

n1n2 + d1d2

n2d1

n1n2 + d1d2

d1d2

n1n2 + d1d2

[r1r2
]

(7.51)

First we will illustrate the effect of pole–zero cancellation. Suppose that d1 and
n2 have a common factor (z + a). That is, let

d1 = (z + a)d′1 (7.52a)
n2 = (z + a)n′

2 (7.52b)

where d′1 and n′
2 are polynomials that do not have z + a as a factor. Thus we obtain

G(z) =
n1(z)

(z + a)d′1(z)

and

Gc(z) =
(z + a)n′

2(z)
d2(z)
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Figure 7.21: A feedback loop with unstable pole–zero cancellation

with |a| > 1. Let us suppose also that the transfer function between r1 and e1, namely
T = 1/(1 +GGc) = d′1d2/(d′1d2 + n′

1n2), is stable. By direct calculation, the transfer
function between r2 and y can be shown to be unstable. Let r1 = 0.

y

r2
=

G

1 +GGc
=

n1(z)d2(z)
(d′1(z)d2(z) + n1(z)n′

2(z))(z + a)

Thus this transfer function is unstable and a bounded signal injected at r2 will produce
an unbounded signal at y.

Because of the symmetric nature of the problem, the unstable pole–zero cancella-
tion is to be avoided – it does not matter whether the pole comes in G or in Gc:

1. Suppose G has an unstable pole cancelling a zero of Gc so that the zeros of
1 +GGc are inside the unit circle. We see that 1/(1 +GGc) and Gc/(1 +GGc)
are stable but not G/(1 + GGc).

2. Suppose now Gc has an unstable pole cancelling a zero of G such that the zeros
of 1 +GGc are inside the unit circle. We see that Gc/(1 +GcG) is unstable.

We will now present an example to explain this idea.

Example 7.7 Verify whether the feedback system given in Fig. 7.21, in which
a controller is designed with unstable pole–zero cancellation, is internally stable.

It is easy to see that the transfer function between r and y is 1/(z − 0.5). This
shows that for bounded changes in r, the changes in y will remain bounded. Let ξ
denote the actuator noise. The closed loop transfer function between ξ and y can
easily be calculated as (z−0.5)/[(z+0.5)(z−2)]. Thus if even an extremely small
noise is introduced in the actuator, the plant output y will become unbounded.
Thus this system is not internally stable.

We have seen that if there is an unstable pole–zero cancellation, the system is not
internally stable. We would now like to know the converse: if the transfer function
between r1 and e1 is stable and if unstable pole–zero cancellation does not take place,
will we have internal stability? The answer is yes and such a system is said to be
internally stable.
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7.4.3 Internal Stability Ensures Controller Realizability

The next question we have to address is whether the discrete time controller that
guarantees internal stability is realizable, i.e., whether it can be implemented. Suppose
that the controller given by Eq. 7.49b is written as a polynomial in z−1:

Gc =
n0 + n1z

−1 + · · ·
d0 + d1z−1 + · · ·

If d0 = 0 and d1 �= 1, Gc will have a factor of z−1 in the denominator and hence can
be written as

Gc =
G′

c

z−1
(7.53)

where G′
c is causal. Gc is not realizable as it is not causal. Next, note that all realistic

discrete time systems have at least one sample time delay.1 As a result, plant transfer
functions can in general be written as

G = z−d b1(z−1)
a1(z−1)

(7.54)

where b1 and a1 are polynomials in z−1 and d ≥ 1.
If a noncausal controller, as in Eq. 7.53, is obtained, it would imply that there

is a cancellation of z−1 in the denominator of Gc and that in the numerator of G,
in Eq. 7.54. This is equivalent to cancelling a factor with a root at z−1 = 0 or at
z =∞. It follows that the unrealizable controller of the form given in Eq. 7.53 could
result if unstable pole–zero cancellation is allowed. Conversely, if this cancellation
is disallowed, the controller Gc cannot have z−1 as a factor in its denominator and
hence will be realizable. A procedure to avoid unstable pole–zero cancellation during
controller design is discussed in Sec. 9.2.

7.4.4 Closed Loop Delay Specification and Realizability

In this section, we show that the delays in the closed loop system have to be at least
as large as that of the open loop system, if a controller is to be realizable. Suppose
that the open loop transfer function of a system is given by

G(z) = z−kB(z)
A(z)

= z−k b0 + b1z
−1 + · · ·

1 + a1z−1 + · · ·
with b0 �= 0. Suppose that we use a feedback controller of the form

Gc(z) = z−d S(z)
R(z)

= z−d s0 + s1z
−1 + · · ·

1 + r1z−1 + · · · (7.55)

with s0 �= 0. Note that d ≥ 0 for the controller to be realizable. Closing the loop, we
obtain the closed loop transfer function as

T =
GGc

1 +GGc
(7.56)

1The reader may wish to look at the examples presented in Sec. 8.2.2 at this juncture.
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Substituting the values, we obtain

T = z−k−d b0s0 + (b0s1 + b1s0)z−1 + · · ·
1 + (a1 + r1)z−1 + · · · (7.57)

Thus, the delay in the closed loop system is k + d, which is greater than k, the open
loop delay, for all d > 0. The only way to make k + d < k is to choose d < 0. But
this will make the controller unrealizable, see Eq. 7.55. We illustrate this idea with
an example.

Example 7.8 Suppose that

G = z−2 1
1− 0.5z−1

and that we want the closed loop transfer function as

T = z−1 1
1− az−1

Determine the controller that is required for this purpose.

Solving Eq. 7.56 for Gc, we obtain

Gc =
1
G

T

1− T
Substituting the values of T and G, and simplifying, we obtain

Gc =
1
z−1

1− 0.5z−1

1− (a+ 1)z−1

We see that this controller is unrealizable, no matter what a is.

We will see in the subsequent chapters that it is possible to improve the dynamic
response and stability, but not the delay. The delay of the closed loop system has to
be at least as large as that of the open loop system.

7.5 Internal Model Principle and System Type

We are interested in finding out the conditions to be satisfied to have the plant
output follow the reference trajectories and to reject disturbances. We will show that
the concept of internal model principle helps answer this question. We will also show
that the popular topic of system type is a consequence of this principle.

7.5.1 Internal Model Principle

Consider the problem of controlling a system with transfer functionG with a controller
Gc, as in the standard feedback loop of Fig. 7.22. The variables R, Y , U and V ,
respectively, refer to the Z-transforms of the reference, output, control input and
disturbance variables, respectively.
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Figure 7.22: Servo and regulation problem in a feedback loop

The objectives of the controller are two fold: stabilization of the feedback loop
and rejection of the effect of unbounded inputs. The first issue of stabilization of the
closed loop is the topic of discussion in the subsequent chapters. In the rest of this
discussion, we will assume that this requirement is fulfilled by a suitable controller.
We will now look at the condition that needs to be fulfilled to satisfy the second
requirement of rejecting the effect of unbounded inputs. We will consider two cases:

1. Make the output Y follow the reference signal R, or equivalently, make the error
E zero. When we study this, we take the disturbance variable V to be zero and
call it the servo problem, as mentioned earlier. Thus, we need to consider the
relation between E and R, given by

E(z) =
1

1 +GGc
R(z)

�
= S(z)R(z) (7.58)

where S(z) is 1/(1 +GGc). We need to make E(z) well behaved.

2. Eliminate the effect of the disturbance variable V on the output Y . When we
study this case, we take R to be zero and call it the regulation problem, as
mentioned earlier. We study the relation between Y and V , given by

Y (z) =
1

1 +GGc
V (z) = S(z)V (z) (7.59)

We need to make Y well behaved.

From Eq. 7.58 and 7.59, we see that both the requirements will be met if we can
make the transfer function 1/(1 + GGc) small. To study this, suppose that we have
the following functional relationship for R and V :

R(z) =
Nr

Drαr

V (z) =
Nv

Dvαv

(7.60)

The unstable poles of the reference and the disturbance signals have been grouped,
respectively, in αr and αv. For example, these could contain the factors:

• 1− z−1, if constant change is intended

• (1− z−1)2, if a ramp-like change is intended

• 1− 2 cosωz−1 + z−2, if sinusoidal change is present

• 1− z−N , if the change is periodic, with a period N
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Let α(z) be the least common multiple, abbreviated as LCM, of αr(z) and αv(z), i.e.,

α(z) = LCM(αr(z), αv(z)) (7.61)

Then, the internal model principle states that if the controller contains the factor
1/α, i.e., if the controller is of the form

Gc(z) =
Sc(z)

α(z)R1(z)
(7.62)

the effect of unbounded signals will be eliminated. Suppose that the plant transfer
function is given by

G(z) =
B(z)
A(z)

(7.63)

where B and A are polynomials in powers of z−1. In order to ensure internal stability,
there should not be any unstable pole–zero cancellation in G, Gc and between them.
The transfer functions of Eq. 7.58 and 7.59 are given by

S
�
=

1
1 +GGc

=
1

1 + B
A

Sc

αR1

=
AαR1

AαR1 +BSc
(7.64)

Substituting this relation and that for R(z) from Eq. 7.60 in Eq. 7.58, we obtain

E(z) =
AαR1

AαR1 +BSc

Nr

Drαr
(7.65)

Because of Eq. 7.61, α contains αr and hence the unbounded inputs, if any, are
rejected. Thus, the servo problem has been addressed by this α. Because the
requirement for the regulation problem is identical, see Eq. 7.58 and 7.59, the
unbounded inputs in the disturbance variable also are rejected. Recall that we have
assumed the closed loop system to be stable and hence AαR1 +BSc has zeros inside
the unit circle only.

We need to address the issue of unstable pole–zero cancellation once again. If such
a cancellation is to be forbidden, as explained in detail in Sec. 7.4.1, how can we
allow this in Eq. 7.64? The answer is that we have no option but to cancel them in
this case. To reduce the impact of the inherent difficulties in such a cancellation,
we need exact knowledge of the unstable nature of the external inputs. If there
is at all some uncertainty in the external inputs, which are taken as unbounded,
the uncertainty should be bounded. Moreover, the unstable pole–zero cancellation
indicated in Eq. 7.64 is between a signal and a system, whereas the one presented in
Sec. 7.4.1 is between two systems. The latter gives rise to other difficulties, such as
the one in Sec. 7.4.2.

We have shown that when the unstable parts of the external inputs explicitly
appear as a part of the loop, they are rejected. Hence, this is known as the internal
model principle.
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Example 7.9 If α = 1 − z−1, step changes in both R and V will be rejected
if the closed loop is stable. If, on the other hand, r is a step change, i.e., R =
1/(1− z−1), and v is a sine function, i.e.,

V =
z−1 sinω

1− 2 cosωz−1 + z−2

or a cosine function,

V =
1− z−1 cosω

1− 2 cosωz−1 + z−2

then α is given by

α = (1− z−1)(1− 2 cosωz−1 + z−2)

As before, we assume that the controller is designed so as to make the closed loop
system stable.

We now discuss the concept of type of a system, which is a direct consequence of
the internal model principle.

7.5.2 System Type

Consider a plant G with a controller Gc in our standard 1-DOF feedback control
configuration, Fig. 7.22. The system is said to be of type N if GGc has N integrators
at z = 1. That is, if

G(z)Gc(z) =
1

(z − 1)N

Gn(z)
Gd(z)

(7.66)

where Gn and Gd, polynomials in z, don’t have any zero at z = 1.
From the internal model principle presented in the previous section, this system

is capable of completely rejecting the effect of exogeneous signals, whose Z-transform
could have (z − 1)N in the denominator. What happens if the order of the poles at
z = 1 in the exogeneous signal is different from that of GGc? In other words, let the
loop transfer function GGc be given by

GGc =
1
α

BSc

AR1
, α = (z − 1)N (7.67)

where we have used Eq. 7.62 and 7.63, with α = (z − 1)N and N , a nonnegative
integer. Let the reference signal be given by

R =
Nr

Drαr
, αr = (z − 1)M (7.68)

see Eq. 7.60. Using Eq. 7.65, E(z) becomes

E(z) =
A(z − 1)NR1

A(z − 1)NR1 +BSc

Nr

Dr(z − 1)M
(7.69)
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Table 7.1: Value of error e(∞) for different M and N values in Eq. 7.70

Condition on M and N e(∞)

M = N 0

M = N + 1, N = 0
AR1

AR1 + BSc

Nr

Dr

∣∣∣∣
z=1

M = N + 1, N > 0
AR1

BSc

Nr

Dr

∣∣∣∣
z=1

M > N + 1 ∞
M < N 0

Table 7.2: Values of e(∞), given in Table 7.1, for popular systems and signals

Step, 1(n) Ramp, nTs1(n) Parabola, 1
2
n2T 2

s 1(n)

z

z − 1
, M = 1

zTs

(z − 1)2
, M = 2

(z2 + z)T 2
s

(z − 1)3
, M = 3

Type 0, N = 0
AR1

AR1 + BSc

∣∣∣∣
z=1

∞ ∞

Type 1, N = 1 0 Ts
AR1

BSc

∣∣∣∣
z=1

∞

Type 2, N = 2 0 0 T 2
s

AR1

BSc

∣∣∣∣
z=1

Under the assumption that the closed loop system is stable, we can apply the final
value theorem:

lim
n→∞ e(n) = lim

z→1

z − 1
z

E(z)

Substituting for E(z) from Eq. 7.69, we obtain

lim
n→∞ e(n) = lim

z→1

A(z − 1)N+1R1

A(z − 1)NR1 +BSc

Nr

Dr(z − 1)M
(7.70)

By substituting different values for M and N , we obtain the values given in Table 7.1
for e(∞). For N values of 0, 1 and 2, the system is known as type 0, type 1 and type 2,
respectively. These systems give rise to different errors for step, ramp and parabola
signals, with corresponding models 1(n), nTs1(n) and 1

2n
2T 2

s 1(n), respectively. The
matrix of error values is given in Table 7.2.

It is customary to obtain the diagonal values in Table 7.2 in terms of the values
of GGc. It is easy to show that the (1, 1) entry becomes

AR1

AR1 +BSc

∣∣∣∣
z=1

=
1

1 +Kp
(7.71)
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where

Kp
�
=

BSc

AR1

∣∣∣∣
z=1

(7.72)

is known as the position constant. The (2, 2) entry becomes

Ts
AR1

BSc

∣∣∣∣
z=1

=
1
Kv

(7.73)

where

Kv
�
= lim

z→1
(z − 1)

GGc

Ts
(7.74)

is known as the velocity constant. Finally, the (3, 3) entry in Table 7.2 becomes

T 2
s

AR1

BSc

∣∣∣∣
z=1

=
1
Ka

(7.75)

where

Ka
�
= lim

z→1
(z − 1)2

GGc

T 2
s

(7.76)

is known as the acceleration constant. It is also customary to state the performance
specifications in terms of the constants defined above. We will now explain these ideas
with an example.

Example 7.10 Illustrate the ideas of this section with the plant

G(z) =
z−1

1− z−1
=

1
z − 1

Rejecting step inputs: Suppose that we want to reject step inputs. Because
the plant already has an integral term, we do not need to include it in the controller.
Note that a precondition for discussing steady state errors is the closed loop
stability. Suppose that we want the closed loop characteristic polynomial to be

φcl = z − 0.5 (7.77)

The controller Gc = 1/2 helps achieve this requirement. A procedure to design
such a controller will be discussed in detail in Example 9.14 on page 351. M 7.7
implements this control design procedure.

Note that this controller results in a Type 1 system, because it results in GGc of
the form given by Eq. 7.66, with N = 1. This should reject step inputs and give a
constant steady state error to ramps. To verify these observations, we determine
the closed loop transfer function between the input and the error, given by Eq. 7.64.
We obtain

S =
1

1 +GGc
=

z − 1
z − 0.5

(7.78)
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The closed loop characteristic polynomial agrees with our requirement, stated by
Eq. 7.77. The steady state error is given by the final value theorem.

lim
n→∞ e(n) = lim

z→1

z − 1
z

E(z) (7.79)

Expressing E(z) as a product of reference signal and the error transfer function S,

lim
n→∞ e(n) = lim

z→1

z − 1
z

S(z)R(z) (7.80)

where R(z) is the reference signal. For step inputs, R(z) = z/(z−1). Substituting
this and the expression for S from Eq. 7.78 in the above equation, we obtain

lim
n→∞ e(n) = lim

z→1

z − 1
z

z − 1
z − 0.5

z

z − 1
= 0 (7.81)

Thus, the steady state error to step inputs is zero.

How does this controller handle ramp inputs? To evaluate this, we take R(z) =
z/(z − 1)2, where we have taken the sampling time to be unity. Substituting this
and the expression for S from Eq. 7.78 in Eq. 7.80, we obtain

lim
n→∞ e(n) = lim

z→1

z − 1
z

z − 1
z − 0.5

z

(z − 1)2
= 2

These results can be verified by executing M 7.7 and the Simulink program, given
in Fig. A.1. To calculate the controller, we assign a value of 0 to the variable
reject ramps in Line 8 of M 7.7. By double clicking the manual switch in the
Simulink program of Fig. A.1, one can toggle between step and ramp inputs.
From the response in Simulink, one can see that this controller rejects step inputs.
A ramp input, on the other hand, produces a steady state error of 2. For example,
at n = 10, y(n) = 8, while r(n) = 10.

Rejecting ramp inputs: Suppose that now we want to reject ramp inputs as
well. Because the plant already has one integral term, we need to include just one
more in the controller. A procedure for designing the controller will be given in
Chapter 9. Using M 7.7, we obtain the controller

Gc =
1.5− z−1

1− z−1
=

1.5z − 1
z − 1

(7.82)

From Eq. 7.66, it is easy to see that this is a Type 2 system. Substituting this
controller and the plant expression in Eq. 7.64, we obtain

S =
1

1 +GGc
=

(z − 1)2

z(z − 0.5)
(7.83)

Substituting this in Eq. 7.80 with R(z) = z/(z − 1), we obtain the steady state
error to steps:

lim
n→∞ e(n) = lim

z→1

z − 1
z

(z − 1)2

z(z − 0.5)
z

z − 1
= 0 (7.84)
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Figure 7.23: 1-DOF feedback control configuration

Substituting the expression for S from Eq. 7.83 in Eq. 7.80 with R(z) = z/(z−1)2,
we obtain the steady state error to ramp inputs:

lim
n→∞ e(n) = lim

z→1

z − 1
z

(z − 1)2

z(z − 0.5)
z

(z − 1)2
= 0 (7.85)

These results can be verified by executing M 7.7 once again, but with reject
ramps in Line 8 of M 7.7 assigned as 1. The closed loop response to steps and
ramps may be verified with the help of the Simulinkprogram, given in Fig. A.1.
Before leaving this example, let us point out that there will be a nonzero offset to a
parabola input. We find that the findings of this example are in perfect agreement
with the observations made earlier in this section.

In the next section, we present the important concept of performance limits.

7.6 Introduction to Limits of Performance

Is it possible to achieve a given performance for any given plant? One clue is already
available in Sec. 7.4.4: closed loop delay should be at least as large as that of the open
loop. In this section, we will present a few other limits on the achievable performance.
We will begin the discussion with time domain limits.

7.6.1 Time Domain Limits

In this section, we discuss some limits on achievable time domain performance [20].
Consider the 1-DOF control feedback given in Fig. 7.23. Let us suppose that the
closed loop system is stable. Let us also suppose that GGc has a pole at z = 1 and
hence y follows step changes in r without offset, as discussed in Sec. 7.5. For the
same reason, step changes in disturbance are also rejected. We will examine how the
transient responses in y and e depend on pole–zero locations of G.

Suppose that we introduce a unit step change in r. We obtain the Z-transform of
e as

E(z) =
1

1 +G(z)Gc(z)
z

z − 1
(7.86)



278 7. Structures and Specifications

Evaluating this at z0, the zero of G, we obtain

E(z0) =
z0

z0 − 1
=

1
1− z−1

0

(7.87)

Suppose that z0 ∈ ROC, see Footnote 1 on page 64. Using the definition of the
Z-transform, we obtain

∞∑
k=0

e(k)z−k
0 = E(z0) =

1
1− z−1

0

(7.88)

Suppose that, in addition, z0 is real and less than 1. For all causal systems, the ROC
is outside a circle of some radius a, see Sec. 4.1.5. In other words, we have a < z0 < 1.
Using this value of z0 in the above equation, we obtain

∞∑
k=0

e(k)z−k
0 < 0 (7.89)

From e(k) = r(k) − y(k) we obtain e(0) = 1 − 0 = 1. As a result, e(k) has to be
negative for some k ≥ 1, so as to satisfy Eq. 7.89. Because e(k) = 1 − y(k), this
implies an overshoot in y(k), for k ≥ 1. We also see that as z0 approaches the unit
circle (i.e., z0 → 1),

∑∞
k=0 e(k)z−k

0 becomes a large negative number, see Eq. 7.88.
In other words, as z0 approaches the unit circle, the overshoot becomes larger. We will
now illustrate this with an example.

Example 7.11 Design controllers for two plant transfer functions

G1 = z−1 1− 0.85z−1

1− 0.8z−1
, G2 = z−1 1− 0.9z−1

1− 0.8z−1

with integral mode such that the closed loop characteristic polynomial in both
cases is equal to (1−0.7z−1)2. Calculate the step responses and verify the validity
of the observations made in this section.

Because of the presence of the integral mode, the controller is of the form

Gc(z) =
S(z)

∆(z)R(z)
(7.90)

where ∆ = 1−z−1 and S and R are polynomials in z−1. Let the plant be denoted
by

G(z) = z−kB(z)
A(z)

(7.91)

The characteristic equation of the closed loop is given by 1 + G(z)Gc(z) = 0.
Substituting for Gc and G from Eq. 7.90–7.91, we obtain

A∆R + z−kBS = φ
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Figure 7.24: Output and input profiles of the closed loop system with G1 (thin line)
and G2 (thick line), as discussed in Example 7.11. Presence of slow open loop zeros
has resulted in overshoots of the output. Overshoot of G2 is larger than that of G1.

where φ is the desired characteristic polynomial, which we require to be (1 −
0.7z−1)2. For the first plant, we need to solve

(1− 0.8z−1)(1 − z−1)R + z−1(1− 0.85z−1)S = 1− 1.4z−1 + 0.49z−2

A procedure to solve such equations will be outlined in Sec. 7.8. It is easy to verify
that R = 1 − 3.4z−1 and S = 3.8 − 3.2z−1 satisfy this equation and hence the
controller for the first plant is given by

Gc1 =
3.8− 3.2z−1

(1− z−1)(1 − 3.4z−1)

In a similar way, the controller to the second plant can be verified as

Gc2 =
4.9− 4z−1

(1− z−1)(1 − 4.5z−1)

Thus, we have two plants with different zeros but the same closed loop pole
positions. The step responses of these two are shown in Fig. 7.24. Observe that
both responses have overshoot, as predicted. Also notice that the response of the
second plant has a larger overshoot compared to the first. This agrees with the
observation that zeros close to the unit circle result in a large overshoot. From
the accompanying plot of the control effort u, we see that larger overshoot is
accompanied by larger initial control effort.

Conclusions similar to the ones obtained in this section can be arrived at for the
pole locations of G. Let p0 be a real pole of G, such that p0 < a. Recall that a defines
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Figure 7.25: Output and input profiles of the closed loop system with G3 (thin line)
and G4 (thick line) of Eq. 7.93. Presence of slow open loop poles has resulted in
overshoots of the output. Overshoot of G4 is larger than that of G3.

ROC. Evaluating Eq. 7.86 at p0, we obtain E(z = p0) = 0. Using the definition of the
Z-transform of E(z), we conclude that

∞∑
k=0

e(k)p−k
0 = 0 (7.92)

This shows once again that the error to a unit step change in r has to become negative
for k ≥ 1, because e(0) = 1. Note that this conclusion is true also when p0 > 1. If
p0 becomes larger, the weighting on e(k) in Eq. 7.92 is smaller and hence e(k) should
attain a larger negative value, or equivalently, y should assume a larger overshoot.

To verify these, Example 7.11 is repeated for two transfer functions

G3 = z−1 1− 0.85z−1

1− 1.1z−1
, G4 = z−1 1− 0.85z−1

1− 1.2z−1
(7.93)

The controllers are once again designed with the same φ. The resulting input–output
profiles are shown in Fig. 7.25. From these plots, we can observe that the outputs
have overshoots. We also see that the overshoot corresponding to G4 is larger than
that of G3, as predicted above.

We conclude this section with a study of nonminimum phase zeros of G. Let y(n)
be the plant response for a unit step change in r. We obtain

Y =
GGc

1 +GGc

z

z − 1
(7.94)

where Y is the Z-transform of y. From the definition of Y , we also have

Y =
∞∑

k=0

y(k)z−k, ∀z ∈ ROC (7.95)
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Figure 7.26: Output and input profiles of the closed loop system with G5 =
z−1(1 − 1.1z−1)/(1 − 0.8z−1). Presence of nonminimum phase zero has resulted in
an undershoot of the output.

where ROC is the region of convergence, see Footnote 1 on page 64. Let G have a
real zero z0 with z0 > 1. Thus, z0 ∈ ROC. Evaluating Eq. 7.94 at z = z0, we obtain
Y (z0) = 0. Comparing with Eq. 7.95, we arrive at

∞∑
k=0

y(k)z−k
0 = 0 (7.96)

Because z0 is positive and y(k) will eventually reach a value of 1, y(k) should
assume a negative value for some k if the above equality is to be satisfied. This
is demonstrated in Fig. 7.26, where we have shown the input–output profiles for
G5 = z−1(1 − 1.1z−1)/(1 − 0.8z−1), when controlled in the same manner as in
Example 7.11, so that the closed loop poles are at 0.7. This study shows that if
the open loop system is nonminimum phase, there will be overshoots in the negative
direction for a positive step change, known as inverse response.

In this section, we have studied in detail what happens when the closed loop
poles are chosen smaller than the open loop poles and zeros in magnitude. When a
pole is chosen close to the origin, the signals change quickly. For example, ak goes
to zero quickly as k increases when a is small. Thus, when we make the closed loop
system faster than the open loop poles, there is a penalty we have to pay through
overshoots, etc.

7.6.2 Sensitivity Functions

One of the main objectives of using feedback controllers is to cope with the problem
of not knowing the plant exactly. Suppose that the plant transfer function is G and
that the closed loop transfer function is denoted by T . Suppose also that when G
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Figure 7.27: A simple feedback control loop with reference, disturbance and
measurement noise signals as external inputs

changes by ∆G, T changes by ∆T . If the relative change, given by

∆T/T
∆G/G

=
∆T
∆G

G

T
(7.97)

is small, we say that the closed loop is not sensitive to perturbations in plant
parameters. When the changes are infinitesimal, this ratio, denoted by S, becomes

S =
∂T

∂G

G

T
(7.98)

S is known as the sensitivity function. We will now apply this formula to the closed
loop system presented in the previous section. Let us evaluate the fractional change
in T , defined in Eq. 7.5 on page 245, to that in G:

S =
∂T

∂G

G

T
=

(1 +GGc)Gc −GG2
c

(1 +GGc)2
G(1 +GGc)

GGc

Simplifying, we obtain

S =
1

1 +GGc

which turns out to be identical to the expression in Eq. 7.6. Thus, if 1/(1 + GGc) is
made small, the plant becomes less sensitive to perturbations in the plant. Observe
from Eq. 7.4 and 7.6 that this fraction is also the transfer function between v(n) and
y(n). Thus, by making S small, the effect of v on y also is reduced.

In view of the fact that S + T = 1 (see Eq. 7.8 on page 245), T is known
as the complementary sensitivity function. This constraint restricts the achievable
performance, as we will see in the next section.

7.6.3 Frequency Domain Limits

In this section, we will look at the achievable performance from a frequency domain
perspective. For this discussion, we will refer to Fig. 7.27. Notice that measurement
noise has been included in this, as compared to Fig. 7.23. Using straightforward
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algebra and Eq. 7.6 and 7.5 on page 245, we arrive at the following equations:

y =
GGc

1 +GGc
(r − n) +

1
1 +GGc

v = T (r − n) + Sv (7.99)

e = r − y − n =
1

1 +GGc
(r − v − n) = S(r − v − n) (7.100)

u =
Gc

1 +GGc
(r − v − n) (7.101)

We assume that the system is internally stable. We will look at the restrictions on S
and T for tracking, disturbance rejection and noise suppression.

In tracking or servo control, the objective is to make e small while assuming v and
n to be zero. To make e small at any frequency ω, we obtain from Eq. 7.99,

max |S(ejω)| � 1 (7.102)

Another condition that is of interest in control applications is that the disturbance
v should not greatly affect y, known as the disturbance rejection problem. For this to
happen, we see from Eq. 7.99 that |S| has to be small, i.e., the above equation has to
be satisfied.

From these conditions, one may be tempted to keep S(ejω) close to zero and T (ejω)
close to one at all frequencies. Unfortunately, there are problems in implementing this.
One of them is due to the mismatch between the model G and the actual plant it
represents. Suppose that the exact model of the plant, indicated by GL(ejω) at a
frequency ω, is given by

GL(ejω) =
[
1 + L(ejω)

]
G(ejω) (7.103)

with

max |L(ejω)| < l(ω) (7.104)

Generally the uncertainty is large at high frequencies and, as a result, l is large at
high frequencies and small at low frequencies. In other words, the mismatch between
the model and the actual plant is generally large at high frequencies.

Suppose that we design a controller Gc, assuming the plant transfer function is G.
If the actual transfer function is GL, the following condition has to be satisfied for
stability [1]:

max |T (ejω)| < 1
l(ω)

(7.105)

This implies that |T (ejω)| should be small at high frequencies. In other words, the
bandwidth of T should be only as large as the frequency range over which we have good
knowledge of the plant. Thus, we revise the condition on S and T : keep |S(ejω)| � 0
and |T (ejω)| � 1 in the range 0 ≤ ω < ωk and |S(ejω)| � 1 and |T (ejω)| � 0 in the
range ωk ≤ ω < π, where ωk is the frequency until which we have good knowledge of
the plant. Thus, the robustness condition restricts the range of frequencies over which
|S| can be made small.



284 7. Structures and Specifications

The magnitude of control effort u also poses a restriction on S. When |S| is small,
|1/S| = |1 + GGc| is large. This implies |GGc| � 1 and hence from Eq. 7.101, we
obtain the following approximate expression:

u � Gc

GGc
(r − n− u) = G−1(r − n− u) (7.106)

If |G| is small in this frequency range, the control effort u will become large and the
actuator may saturate. It follows that S can be made small only in the frequency
range corresponding to the bandwidth of G.

We end this discussion by looking at the requirement for noise suppression from
Eq. 7.101. The condition

|T (ejω)| � 1 (7.107)

has to be satisfied if the effect of n is not to be felt on y. Hopefully, the measurement
noise n is large only at high frequencies. Thus, we need to satisfy the above inequality
only at high frequencies.

Gathering all the requirements stated above, we can summarize that |S(ejω)| could
be made small only over the smallest of the following frequency ranges:

1. The frequency range in which we have good knowledge of the plant.

2. The bandwidth of the plant is large.

3. The frequency range in which clean measurements are available.

We conclude this section by briefly presenting the so called water-bed effect. The
following restriction on the sensitivity function can be proved [20]:

1
π

∫ π

0

ln |S(ejω)|dω =
q∑

i=1

ln |pi| (7.108)

where pi, q ≥ i ≥ 1, refer to the unstable poles of G. At frequencies where |S| � 1,
the contribution to the integral is negative. If the integral has to be greater than or
equal to zero (will be equal to zero for stable G), it is clear that S has to become large
at some other frequencies. In other words, if we want a good performance at some
frequency ω0 (i.e., |S(ω0)| � 1), we have no option but to accept a poor performance
at some other frequency ωL (i.e., |S(ωL)| is large). This poor performance becomes
worse if the plant under consideration is open loop unstable.

7.7 Well Behaved Signals

The objective of a controller is to make a plant behave better, both from transient and
from steady state viewpoints. There are two ways of specifying this requirement. One
approach is to specify the closed loop transfer function and to look for a controller
that will help achieve this. The second approach is to specify the requirements on the
plant response to some reference signal, such as a step signal. In this section, we will
follow the second approach. It turns out that this objective may be met by placing
the poles of the transfer function in some locations. This approach is well known for
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Figure 7.28: Typical y(n) (left) and e(n) (right) profiles

continuous time systems [16]. In this section, we will be concerned with discrete time
systems.

Let us first look at the transient response to a unit step change in r. We would
want y to have:

1. Small rise time. This is an indication of how fast the system responds to a
stimulus. For oscillatory or underdamped systems, it is the time when the
response reaches the final value, at the first instance. For overdamped systems,
it is the time required for the response to go from 10% to 90% of the final value.

2. Small overshoot. This is the amount by which the response exceeds the
final value. It is usually specified as a fraction and it is applicable only for
underdamped systems.

3. Small settling time. From this time onwards, the response comes within a small
band of the final value and stays within it. Some of the typical values of the
band are ±5% and ±2%.

If, instead, we specify the requirements in terms of the error e(n) between the reference
signal r(n) and the actual response y(n), the problem becomes easier to handle. A
plot of a step response y(n) and the error e(n) are shown in Fig. 7.28.

We first address the issue of using a suitable functional form for the error e(n).
The following expression

e(n) = ρn cosωn, 0 < ρ < 1 (7.109)

is a suitable and a convenient form for error, as its initial error is one, it oscillates
about zero with decaying amplitude and its steady state value is zero. Translating
the requirements on the response y(n) in terms of the error, it is easy to see that the
error should meet the following requirements: it should have a small fall time, a small
undershoot and a large decay ratio.

The first step in designing the controller Gc is to determine suitable ρ and ω
values from the step response requirements. This will be the topic of discussion in
this section. In Chapter 9, we will explain a method to design the controller, given ρ
and ω.

7.7.1 Small Rise Time in Response

We will first determine the values of ρ and ω that satisfy the rise time requirement.
From Eq. 7.109, we see that when ωn = π/2, e(n) = 0 for the first time, the condition
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Figure 7.29: Desired location of poles for small fall time is shown shaded

for rise time. That is, this happens at the sampling instant given by

n =
π

2ω

Suppose that we want the rise time to be less than a specified value. If we divide this
specification in time units by the sampling time, we get it as the number of samples
in one rise time, which we will denote by the symbol Nr. It is clear that n should be
less than Nr. In other words,

π

2ω
< Nr

Rewriting this, we obtain the expression for small rise time in the response or small
fall time in error as

ω >
π

2Nr
(7.110)

The desired region is shown shaded in Fig. 7.29. All points in this region satisfy the
condition given by Eq. 7.110. Note that there is no strict requirement that Nr should
be an integer.

7.7.2 Small Overshoot in Response

In this section, we will derive an expression for the maximum overshoot in y(n).
Because y is not a continuous function of n, we will not take the differentiation route.

Suppose that the maximum undershoot occurs approximately when ωn = π.
Substituting this in Eq. 7.109, we obtain

e(n)|ωn=π = ρn cosωn|ωn=π = −ρn|ωn=π = −ρπ/ω

This is the value of the first undershoot in e(n), which occurs at n = π/ω. This has
to be less than the user specified overshoot of ε. That is, ρπ/ω < ε. Simplifying, we
obtain the condition for small overshoot in response or small undershoot in error as

ρ < εω/π (7.111)

The values of ρ and ω satisfying the above requirement for different values of ε are
listed in Table 7.3. The desired region is shown shaded in Fig. 7.30.
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Table 7.3: Values of ρ and ω satisfying the small fall requirement

ε 15 30 45 60 75 90 105 120 135 150 165 180

0.05 0.78 0.61 0.47 0.37 0.28 0.22 0.17 0.14 0.11 0.08 0.06 0.05
0.1 0.83 0.68 0.56 0.46 0.38 0.32 0.26 0.22 0.18 0.15 0.12 0.1

Im(z)

Re(z)

Figure 7.30: Desired location of poles for small undershoot is shown shaded

Although we have referred to the expression given by Eq. 7.111 as approximate,
it turns out to be exact, as can be seen in examples of Chapter 9, starting from 9.3
on page 331. This is because ρn is a decaying function.

7.7.3 Large Decay Ratio

The time that it takes for a step response of a system to come within a specified band
is known as the settling time. One of the objectives of control design is to achieve a
small settling time. This will be achieved if the ratio of two successive peaks or troughs
in a step response is small. In control parlance, this ratio is known as the decay ratio.
In this section, we consider the ratio of a peak and the immediate trough; the reason
will become clear shortly.

Suppose that we make the approximation that the first undershoot in e(n) occurs
at ωn = π and that the second overshoot occurs at ωn = 2π. Then we would want
|e(n)|ωn=2π |/|e(n)|ωn=π| to be small. In other words, we would want

ρn|ωn=2π

ρn|ωn=π
< δ

where δ = 0.5 and 0.25 roughly work out to one-quarter and one-eighth decay,
approximately. Simplifying, we obtain

ρ < δω/π

This is in the same form as the condition for small undershoot. Normally, as ε < δ,
the small undershoot condition is sufficient to take care of small decay as well.

We now summarize the procedure to select the desired area where the closed loop
poles should lie. Choose the angle of the pole location ω, satisfying ω > π/2Nr, as
given in Eq. 7.110. Here Nr is the rise time in number of samples. This is indicated by
the shaded region in Fig. 7.29. Choose the distance of the pole location from the origin,
ρ, satisfying ρ = εω/π, as given in Eq. 7.111. Here, ε is the overshoot specified as the
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Figure 7.31: Desired location of poles is shown shaded. The poles in the shaded area
would result in small rise time, small overshoot, and small settling time.

fraction of the setpoint change. This is indicated by the shaded region in Fig. 7.30.
This is likely to satisfy the settling time requirement as well. The intersection of these
two shaded regions, as indicated in Fig. 7.31, satisfies all the three requirements stated
on page 285.

Using the above approach, we obtain the closed loop characteristic polynomial as

φcl(z−1) = (1− ρejωz−1)(1 − ρe−jωz−1) = 1− ρz−1(ejω + e−jω) + ρ2z−2

Using Euler’s formula, this can be simplified as

φcl(z−1) = 1− 2ρ cosω z−1 + ρ2z−2 (7.112)

How do we use this approach to design controllers? Given the procedure detailed
above, we can first find ρ and ω and then obtain the expression for error to a step
input as e(n) = ρn cosωn. It is possible to back-calculate the desired transfer function
between r and y to be in the form of z−1ψ(z−1)/φcl(z−1). Unfortunately, however,
there are a few difficulties in implementing this approach. First of all, there are some
restrictions imposed by the nonminimum phase zeros of the plant, to be discussed
in detail in Sec. 9.2. In the presence of nonminimum phase zeros of the plant, the
zeros introduced by ψ could cause undesirable overshoots, as discussed in Sec. 7.6.1.
Finally, we have made approximations to arrive at the desired region. In view of
these observations, we will use only the closed loop characteristic polynomial, φcl, to
design controllers. A methodology based on this procedure is explained in detail in
Chapter 9.

7.8 Solving Aryabhatta’s Identity2

In several control applications, there is a need to solve polynomial equations. A
standard software package for this purpose is available [28]. In this section, we present
the approach we have adopted to solve them. We begin with Euclid’s algorithm.

7.8.1 Euclid’s Algorithm for GCD of Two Polynomials

We will now present Euclid’s well known algorithm to compute the greatest common
divisor (GCD) of two polynomials. Let the two polynomials be denoted by D(z)

2This section may be skipped during a first reading.
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and N(z). Without loss of generality, let

dD > dN (7.113)

Recall from Footnote 3 on page 68 the notation to refer to the degree of polynomials.
Carry out the following steps. Divide D(z) by N(z) and call the reminder R1(z).
Divide N(z) by R1(z) and obtain R2(z) as the reminder. Divide R1(z) by R2(z)
and obtain R3(z) as the reminder. As we continue this procedure, the degree of
the reminder keeps decreasing, eventually going to zero. We arrive at the following
relations:

D(z) = Q1(z)N(z) +R1(z) (7.114a)
N(z) = Q2(z)R1(z) +R2(z) (7.114b)
R1(z) = Q3(z)R2(z) +R3(z) (7.114c)

...
Rk−3(z) = Qk−1(z)Rk−2(z) +Rk−1(z) (7.114d)
Rk−2(z) = Qk(z)Rk−1(z) +Rk(z) (7.114e)
Rk−1(z) = Qk+1(z)Rk(z) (7.114f)

Note that in the last step, the reminder is taken as zero. We will show in two steps
that Rk(z) in Eq. 7.114f is the GCD of D(z) and N(z):

1. We first show that Rk divides both D and N . For this, we start from the bottom.

• The last equation shows that Rk(z) divides Rk−1(z).

• When this fact is applied to the second last equation, we see that Rk(z)
divides Rk−2(z).

• As it divides Rk−1(z) and Rk−2(z), from the third last equation, we see
that Rk(z) divides Rk−3(z).

• Continuing upwards, we see that Rk(z) divides both D(z) and N(z).

2. Next we show that the Rk(z) computed above is the GCD. Suppose that there
exists another divisor of N(z) and D(z); call it S(z).

• From the first equation, we see that S divides R1, denoted as S|R1.

• As it divides N and R1, S2|R2 – see the second equation.

• Continuing downwards, we see that S|Rk.

• As an arbitrary divisor S(z) of D(z) and N(z) divides it, Rk(z) is indeed
the GCD of D(z) and N(z).

The GCD is unique up to a constant. If we demand that it be chosen monic, i.e., the
coefficient of the constant term is one, then the GCD becomes unique.

Now, we will state an important result. If R(z) is the GCD of D(z) and N(z), it
is possible to find polynomials X(z) and Y (z) such that

X(z)D(z) + Y (z)N(z) = R(z) (7.115)
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If dD(z) and dN(z) > 0, we can take it that

dX(z) < dN(z) (7.116)
dY (z) < dD(z) (7.117)

We will prove this claim now. It is given that R(z) is the same as Rk(z) of Eq. 7.114f.
From Eq. 7.114e, we obtain

R(z) = Rk−2(z)−QkRk−1(z)

Substituting for Rk−1(z) in terms of Rk−2(z) and Rk−3(z) using Eq. 7.114d, we arrive
at

R(z) = (1−QkQk−1)Rk−2(z)−Qk(z)Rk−3(z)

Continuing this procedure upwards, we arrive at Eq. 7.115. The degree condition can
be proved easily, as shown in Sec. 7.8.2.

Two polynomials are said to be coprime if they do not have a polynomial of degree
one or higher as a common factor. From the above result, it is easy to see that if the
polynomials D(z) and N(z) are coprime, there exist polynomials X(z) and Y (z) that
satisfy

X(z)D(z) + Y (z)N(z) = 1 (7.118)

7.8.2 Aryabhatta’s Identity

In many control problems, we will be interested in solving the polynomial equation

X(z)D(z) + Y (z)N(z) = C(z) (7.119)

for X and Y , with D, N and C specified. This equation is variously known as the
Bezout identity, Diophantine equation [24] and Aryabhatta’s identity [59]. In this book,
we will refer to it as Aryabhatta’s identity. In this section, we will first present the
condition under which there is a solution to Eq. 7.119. Aryabhatta’s identity, given
by Eq. 7.119, has a solution if and only if the GCD of D(z) and N(z) divides C(z).

We will first prove the only if part. Let the GCD of D(z) and N(z) be R(z) and

D(z) = D0(z)R(z)
N(z) = N0(z)R(z)

Substituting the above in Eq. 7.119, we obtain

X(z)D0(z)R(z) + Y (z)N0(z)R(z) = C(z)

or

(XD0 + Y N0)R = C

Thus, we see that R|C.
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Next, we will show the if part. Let the GCD of D(z) and N(z) be R(z) and that
R|C; that is, C0(z)R(z) = C(z). Multiplying Eq. 7.115 by C0(z), we obtain

C0(z)X(z)D(z) + C0(z)Y (z)N(z) = C0(z)R(z) = C(z)

Comparing with Eq. 7.119, we see that C0(z)X(z), C0(z)Y (z) is the required solution.
There are infinitely many solutions to Aryabhatta’s identity, given by Eq. 7.119.

But we can obtain a unique solution under special conditions, as we see now. Suppose
that D and N are coprime with respective degrees dD > 0 and dN > 0. If the degree
of C satisfies

0 ≤ dC < dD + dN (7.120)

Eq. 7.119 has a unique least degree solution given by

dX(z) < dN(z)
dY (z) < dD(z)

(7.121)

Note that this implies that dX is at least one less than the degree of the known
quantity, in this case N , in the other term, in this case Y N . The second inequality
in Eq. 7.121 may also be interpreted in a similar way. We will refer to this as the
degree condition of unique minimum degree solution. Suppose that, as per Eq. 7.118,
we determine polynomials a(z) and b(z) satisfying

a(z)D(z) + b(z)N(z) = 1 (7.122)

We multiply throughout by C(z). If we substitute X(z) and Y (z), respectively for
a(z)C(z) and b(z)C(z), we arrive at Eq. 7.119. We will now show the degree condition.
Suppose that we solve for X and Y satisfying Eq. 7.119 with dX ≥ dN . We divide
X by N to obtain

X(z) = Q(z)N(z) +R(z), dR(z) < dN (7.123)

whereQ is the quotient andR is the remainder. Substituting in Eq. 7.119 and dropping
the dependence on z, we obtain

(QN +R)D + Y N = C

We rearrange the terms to arrive at

RD + (Q+ Y )N = C

We see that d(Q+ Y ) < dD, because dC < dN + dD.

7.8.3 Algorithm to Solve Aryabhatta’s Identity

In this section, we will present an outline of the approach we have taken to solve
Aryabhatta’s identity, Eq. 7.119. We will illustrate our approach with the following
specific example:

X(z)(1− 5z−1 + 4z−2) + Y (z)(z−1 + z−2) = 1− z−1 + 0.5z−2 (7.124)
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Eq. 7.119 is equivalent to solving[
X(z) Y (z)

] [D(z)
N(z)

]
= C(z) (7.125)

We solve this equation by comparing the coefficients of powers of z−1. Let

V (z) =
[
X(z) Y (z)

]
(7.126)

F (z) =
[
D(z)
N(z)

]
(7.127)

Let V (z) be of the form

V (z) = V0 + V1z
−1 + · · ·+ Vvz

−v (7.128)

where v is the order of the polynomial V , an unknown at this point. We need to
determine v, as well as the coefficients Vk, v ≥ k ≥ 0. Let F and C be of the form

F (z) = F0 + F1z
−1 + · · ·+ FdF z

−dF (7.129)

C(z) = C0 + C1z
−1 + · · ·+ CdCz

−dC (7.130)

Thus, Eq. 7.125 becomes

[V0 + V1 + · · ·+ Vvz
−v][F0 + F1 + · · ·+ FdF z

−dF ]

= C0 + C1z
−1 + · · ·+ CdCz

−dC
(7.131)

The resulting equations, in powers of z−1, can be arranged in the following matrix
form:

[
V0 V1 · · · Vv

]

F0 F1 · · · FdF 0 · · · 0
0 F0 F1 · · · FdF · · · 0
...
0 · · · 0 F0 F1 · · · FdF


=
[
C0 C1 · · · CdC

]
(7.132)

For example, multiplying these out, the first two equations are obtained as

V0F0 = C0

V0F1 + V1F0 = C1

which agree with Eq. 7.131. The matrix consisting of the elements of Fk has v rows, to
be consistent with the matrix of elements of Vl. Thus, solving Aryabhatta’s identity
boils down to determining v and the elements Vl, v ≥ l ≥ 0. We write Eq. 7.132 as

V F = C (7.133)

where the new symbols are defined in an obvious way. If F is right invertible, we can
find the solution to Eq. 7.133 as

V = CF−1 (7.134)
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For the inverse F−1 to exist, the rows of F have to be linearly independent. We
choose v to be the largest possible integer, satisfying this requirement. Once V is
known, V (z) and then X(z), Y (z) can be determined. We outline this approach with
an example.

Example 7.12 Explain the steps involved in solving Aryabhatta’s identity,
Eq. 7.124.

Comparing Eq. 7.124 with Eq. 7.119, we obtain

D(z) = 1− 5z−1 + 4z−2

N(z) = z−1 + z−2
(7.135)

and hence, using Eq. 7.127,

F (z) =
[
1− 5z−1 + 4z−2

z−1 + z−2

]
=
[
1
0

]
+
[−5

1

]
z−1 +

[
4
1

]
z−2 (7.136)

which is of the form F0 +F1z
−1 +F2z

−2. First we explore the possibility of v = 1.
We obtain

F =
[
F0 F1 F2

]
=
[
1 −5 4
0 1 1

]
(7.137)

Although the rows of F are linearly independent, v is not the largest integer. In
view of this, we explore v = 2. We obtain

F =
[
F0 F1 F2 0
0 F0 F1 F2

]
=


1 −5 4 0
0 1 1 0
0 1 −5 4
0 0 1 1


As these rows are independent, we observe that v is still not the maximum. We
explore the possibility of v = 3 and verify once again. We obtain

F =

F0 F1 F2 0 0
0 F0 F1 F2 0
0 0 F0 F1 F2

 =


1 −5 4 0 0
0 1 1 0 0
0 1 −5 4 0
0 0 1 1 0
0 0 1 −5 4
0 0 0 1 1

 (7.138)

These rows are no longer independent. As a matter of fact, we can verify

bF = 0 (7.139)

where b can be chosen as

b =
[
0 0.25 −0.25 −1.25 −0.25 1

]
(7.140)
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We can also see that while all the rows of F in Eq. 7.138 form a dependent set,
the first five rows are independent. Thus, Eq. 7.134 becomes

V =
[
1 −1 0.5 0 0

]


1 −5 4 0 0
0 1 1 0 0
0 1 −5 4 0
0 0 1 1 0
0 0 1 −5 4


−1

From the above, we see that V is a 1× 5 vector. To account for the row removed
from F , we add a zero to V . We obtain

V =
[
1 3.25 | 0.75 −3 | 0 0

]
where we have separated coefficients of powers of z−1 with vertical lines. That is,
we have V0 =

[
1 3.25

]
and V1 =

[
0.75 −3

]
. Using Eq. 7.128 and Eq. 7.126,

we obtain

X(z) = 1 + 0.75z−1

Y (z) = 3.25− 3z−1
(7.141)

These form the solution to Aryabhatta’s identity, given in Eq. 7.124, which can
be verified by substitution. M 7.8 shows how to solve this problem using Matlab.
This code calculates a few other variables as well, which will be explained next.

Eq. 7.139 is equivalent to

E(z)F (z) = 0 (7.142)

which can be written as

[−B(z) A(z)
] [D(z)
N(z)

]
= 0 (7.143)

which is equivalent to B(z)D(z) = A(z)N(z) or

A−1(z)B(z) = N(z)D−1(z) (7.144)

Comparing Eq. 7.139, Eq. 7.140, Eq. 7.142 and Eq. 7.124, we obtain

B(z) = 0.25z−1 + 0.25z−2

A(z) = 0.25z−1 − 1.25z−1 + z−2
(7.145)

It is easy to verify that the values of A, B given above and N(z), D(z) given in
Eq. 7.135 satisfy Eq. 7.144. Of course, when N and D are scalars, it is trivial to
obtain A and B. The proposed approach works also when N and D are matrices. The
algorithm given above can be used solve a matrix version of Aryabhatta’s identity as
well, which we will encounter in Chapter 13.
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The way we have chosen b in Eq. 7.140 ensures that the coefficients of highest
powers of A form a nonsingular matrix, which ensures that A is invertible. Construc-
tion of the maximal independent row set out of F involves a little more book-keeping.
These topics are beyond the scope of this book. The interested reader is referred to
[24], [9], [8] and [39]. The reader can also go through the Matlab code available with
this book for solving polynomial equations.

Recall that there is a unique least degree solution to Aryabhatta’s identity when
Eq. 7.120 is satisfied. In case this condition is violated, there is no longer a unique
solution. Nevertheless, depending on the implementation, it may be possible to find
some solution. We have seen an occurrence of this situation in Example 9.9 on
page 341.

The solver for Aryabhatta’s identity is available at HOME/matlab/xdync.m, see
Footnote 3 on the following page. In this implementation, we have used Kwakernaak’s
[27] convention of writing the coefficient matrices in ascending powers of z−1. This
convention is nothing but storing a polynomial matrix, given in Eq. 7.136, with its
constant matrix equivalent of Eq. 7.137. We conclude this section with two matrix
versions of examples.

Example 7.13 Starting with a left factorization N and D given below, find a
right coprime factorization satisfying Eq. 7.144.

N(z) =

1 0 0
0 1 0
0 0 1

 , D(z) =

 1 0 0
z−1 1 0
z−1 z−1 1

 (7.146)

M 7.9 carries out the indicated operations. Notice that there are only four input
arguments to the function-call left prm: the polynomial and the degree, for both
D and N . With the help of this code, we obtain left coprime factorization B and
A satisfying Eq. 7.144:

B(z) =

 1 0 0
−z−1 1 0

z−1 − z−2 z−1 −1

 , A(z) =

1 0 0
0 1 0
0 0 −1



Example 7.14 Solve Aryabhatta’s identity, Eq. 7.119, when

N =
[

0 4 + z−1

−1 3 + 3z−1

]
, D =

[
z−1 4z−1 + z−2

−z−1 0

]
C =

[
1 + z−1 z−1

0 2 + z−1

]
This is solved by invoking M 7.10. We obtain the following result:

Y =
[

2 −1− 0.5z−1

0.5 −0.125z−1

]
, X =

[
1.5 1

0.375 0.5

]
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7.9 Matlab Code

Matlab Code 7.1 Procedure to draw root locus in Matlab for the problem discussed
in Example 7.1 on page 247. This code is available at
HOME/specs/matlab/rlocus ex1.m3

1 H = t f ( 1 , [ 1 −1 0] ,−1) ;
2 r l o c u s (H)

Matlab Code 7.2 Procedure to draw the Nyquist plot, as discussed in Example 7.2
on page 250. This code is available at HOME/specs/matlab/nyquist ex1.m

1 H = t f ( 1 , [ 1 −1 0] ,−1) ;
2 nyqui s t (H)

Matlab Code 7.3 Procedure to draw Bode plots in Fig. 7.11 on page 255. This code
is available at HOME/freq/matlab/lead exp.m

1 pol1 = [ 1 −0 .9 ] ; po l2 = [ 1 −0 .8 ] ;
2 G1 = t f ( pol1 , [ 1 0] ,−1) ;
3 G2 = t f ( pol2 , [ 1 0] ,−1) ;
4 w = l inspace ( 0 . 0 0 1 , pi , 1 000 ) ;
5 bode (G1, ’− ’ ,G2 , ’−− ’ ,w) , grid
6 figure
7 G = t f ( pol1 , pol2 ,−1) ;
8 bode (G,w) , grid

Matlab Code 7.4 A procedure to design lead controllers, as explained in Fig. 7.12
on page 257. This code is available at HOME/freq/matlab/lead lag.m

1 w = l inspace ( 0 . 0 0 1 , pi , 1 000 ) ;
2 a = l inspace ( 0 . 0 0 1 , 0 . 9 9 9 , 1 0 0 ) ;
3 l ena = length ( a ) ;
4 omega = [ ] ; l ead = [ ] ;
5 for i = 1 : lena ,
6 zero = a ( i ) ;
7 po le = 0 .9∗ zero ;
8 sys = t f ( [ 1 −zero ] , [ 1 −po le ] ,−1) ;
9 [ mag , phase ] = bode ( sys ,w) ;

10 [ y , j ] = max( phase ) ;
11 omega = [ omega w( j ) ] ;
12 l ead = [ lead y ] ;
13 comega = ( po le+zero ) /( po le ∗ zero +1) ;
14 c l ead = zero−po le ;
15 c l ead1 = sqrt ((1− zero ˆ2)∗(1− po le ˆ2) ) ;
16 c l ead = c l ead / c lead1 ;
17 % [ w ( j ) a c o s ( c o m e g a ) y a t a n ( c l e a d ) ∗ 1 8 0 / p i ]

3HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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18 end
19 subplot (2 , 1 , 1 ) , plot ( lead , omega)
20 ylabel ( ’ Frequency , in r ad ians ’ ) , grid
21 pause
22 subplot (2 , 1 , 2 ) , plot ( lead , a )
23 ylabel ( ’ Zero l o c a t i o n ’ )
24 xlabel ( ’ Lead generated , in deg r e e s ’ ) , grid

Matlab Code 7.5 Bode plot of a lead controller, as shown in Fig. 7.13 on page 257.
This code is available at HOME/freq/matlab/lead vfy.m

1 w = l inspace ( 0 . 0 0 1 , pi , 1 000 ) ;
2 G = t f ( [ 1 −0 .8 ] , [ 1 −0.24] ,−1) ;
3 bode (G,w) , grid

Matlab Code 7.6 Verification of performance of lead controller on antenna system,
as discussed in Example 7.3. This code is available at HOME/specs/matlab/ant lead.m

1 % c o n t i n u o u s t i m e a n t e n n a m o d e l

2 a = 0 . 1 ;
3 F = [ 0 1 ;0 −a ] ; g = [ 0 ; a ] ; c = [ 1 0 ] ; d = 0 ;
4 Ga = ss (F , g , c , d) ; [ num, den ] = t fda ta (Ga , ’ v ’ ) ;
5 Ts = 0 . 2 ;
6 G = c2d (Ga, Ts ) ;
7

8 % l e a d c o n t r o l l e r

9 beta = 0 . 8 ;
10 N = [ 1 −0.9802]∗(1−beta ) /(1−0.9802) ; Rc = [ 1 −beta ] ;
11

12 % s i m u l a t i o n p a r a m e t e r s u s i n g g s c l 2 . md l

13 gamma = 1 ; Sc = 1 ; Tc = 1 ; C = 0 ; D = 1 ;
14 s t = 1 ; s t1 = 0 ;
15 t i n i t = 0 ; t f i n a l = 20 ;

Matlab Code 7.7 Illustration of system type, as explained in Example 7.10 on
page 275. This code is available at HOME/specs/matlab/type test.m

1 % P l a n t

2 B = 1 ; A = [ 1 −1]; zk = [ 0 1 ] ; Ts = 1 ;
3

4 % S p e c i f y c l o s e d l o o p c h a r a c t e r i s t i c p o l y n o m i a l

5 phi = [ 1 −0 .5 ] ;
6

7 % D e s i g n t h e c o n t r o l l e r

8 r e j e c t r amps = 1 ;
9 i f r e j e c t r amps == 1 ,

10 Delta = [ 1 −1]; % t o r e j e c t r a m p s a n o t h e r D e l t a

11 else
12 Delta = 1 ; % s t e p s c a n b e r e j e c t e d by p l a n t i t s e l f
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13 end
14 [ Rc , Sc ] = pp pid (B,A, k , phi , Delta ) ;
15

16 % p a r a m e t e r s f o r s i m u l a t i o n u s i n g s t b d i s c . md l

17 Tc = Sc ; gamma = 1 ; N = 1 ;
18 C = 0 ; D = 1 ; N var = 0 ;
19 s t = 1 ; t i n i t = 0 ; t f i n a l = 20 ;
20 open system ( ’ s t b d i s c . mdl ’ )

Matlab Code 7.8 Solution to Aryabhatta’s identity, presented in Example 7.12 on
page 293. This code is available at HOME/specs/matlab/abex.m

1 N = conv ( [ 0 1 ] , [ 1 1 ] ) ;
2 D = conv ( [ 1 −4] , [1 −1]) ;
3 dN = 2 ; dD = 2 ;
4 C = [ 1 −1 0 . 5 ] ;
5 dC = 2 ;
6 [Y,dY,X, dX,B, dB ,A,dA] = xdync (N,dN,D,dD,C,dC)

Matlab Code 7.9 Left coprime factorization, as discussed in Example 7.13 on
page 295. This code is available at HOME/specs/matlab/data01.m

1 D = [
2 1 0 0 0 0 0
3 0 1 0 1 0 0
4 0 0 1 1 1 0 ]
5 N = [
6 1 0 0
7 0 1 0
8 0 0 1 ]
9 dD = 1

10 dN = 0
11 [B, dB ,A,dA] = le f t p rm (N,dN,D,dD)

Matlab Code 7.10 Solution to polynomial equation, as discussed in Example 7.14
on page 295. This code is available at HOME/specs/matlab/data05.m

1 N = [ 0 4 0 1
2 −1 8 0 3 ]
3 dN = 1
4 D = [ 0 0 1 4 0 1
5 0 0 −1 0 0 0 ]
6 dD = 2
7 C = [ 1 0 1 1
8 0 2 0 1 ]
9 dC = 1

10 [Y,dY,X, dX,B, dB ,A,dA] = xdync (N,dN,D,dD,C,dC)
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7.10 Problems

7.1. If the system of Example 7.1 on page 247 is operated in a closed loop, with a
proportional controller of gain of Ku, what will be the frequency of oscillation
for impulse and step inputs?

7.2. In Example 7.2 on page 250, we designed a proportional controller for the plant
H = 1/[z(z − 1)] using a particular contour C1 that encircled both the poles.
In this problem you indent the contour in such a way that the pole at 1 is
excluded, as in Fig. 7.32. Using the Nyquist plot for this C1, determine the

Re(z)

Im(z)

Figure 7.32: An alternative contour C1

range of proportional controller for which the closed loop system is stable.

7.3. Is it acceptable to cancel the factor z − a when the following system is
Z-transformed?

x(k + 1)− ax(k) = u(k + 1)− au(k)
y(k) = x(k)

[Hint: Show that the solution to this system is given by y(k) = akx(0) + u(k).]

7.4. This problem is concerned with the demonstration that internal stability of the
closed loop system shown below can be expressed in terms of a few conditions
on the sensitivity function (to be described below).

(a) Write down the 2× 2 transfer function between
[
r d

]T (treated as input)

and
[
e u

]T (treated as output) in the following figure. [Hint: See Eq. 7.50
on page 267 in the text.]

+−

+
r

Gc

d

G
e u y+

(b) State the internal stability condition, in terms of the stability of the entries
of the 2× 2 transfer function matrix, obtained in part (a).
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(c) State the internal stability condition in terms of the unstable pole–zero
cancellation and external stability of the closed loop system.

(d) Let the sensitivity function S be defined as

S =
1

1 +GGc

Show that the unstable poles of G will not be cancelled by the zeros of Gc,
if S(pi) = 0, n ≥ i ≥ 1, where pi are the unstable poles of G.

(e) Show that the nonminimum phase zeros of G(z) will not be cancelled by
the unstable poles of Gc, if S(zj) = 1, m ≥ j ≥ 1, where zj are the
nonminimum phase zeros of G.

(f) State the internal stability condition in terms of conditions on S, derived
in (d) and (e), and stability of S.

By the way, (f) is known as the interpolation condition on the sensitivity
function, the use of which allows controllers to be designed [15].

7.5. Consider a closed loop system that includes a controller so that the error to a
unit step change in the reference signal behaves as in Eq. 7.109 on page 285.
Show that if the steady state error of this system to a ramp of unit slope has to
be less than a small value, say µ, the following relation should be satisfied:

Ts
1− ρ cosω

1− 2ρ cosω + ρ2
< µ (7.147)

7.6. Find the minimum degree polynomials x and y in the following equation:

xD + yN = C

where

D = 1− z−1 + 2z−2

N = 1 + z−1 + z−2

C = 2 + 2z−1 − 3z−2 + 4z−3

by the following two methods:

(a) Using the routine xdync.m.

(b) Multiplying the polynomials, comparing the coefficients and solving the
resulting system of equations by a linear solver – you can use the one
available in Matlab, if you wish.



Chapter 8

Proportional, Integral,
Derivative Controllers

Proportional, integral and derivative controllers are the most popular in industrial
practice. In Sec. 7.3.2, we looked at the effect of using each of the three modes present
in these controllers. But we did not discuss how much of each of these modes should
be present in the implementation. This is decided by the tuning rule of the PID
controllers. There are many rules to tune the PID controllers. All the tuning rules,
however, are based on continuous time analysis. In view of this, to understand this
chapter, a background on analog control is required.

Because all the PID tuning rules are in the continuous time domain and because
this is the most popular controller, the PID implementations are achieved by
discretizing the analog counterpart. In view of this, we revisit the topic of sampling
rate selection. In Sec. 2.5, we presented the procedure to arrive at the ZOH equivalent
discrete time system. In this chapter, we present a few other discretization techniques.

We present different ways of implementing the PID controllers. We also present
discretized versions of the PID controllers. We eschew the topic of tuning the
continuous time PID controllers and present only one popular technique of tuning
them.

8.1 Sampling Revisited

In Sec. 5.3, we determined the minimum rate at which continuous time functions have
to be sampled so as to not lose any information. The minimum rate should be greater
than twice the highest frequency component present in the continuous time signal.
Unfortunately, this sampling rate is not useful in real time applications, because the
reconstruction procedure is not causal.

In reality, we need to sample much faster than the minimum rate suggested by
the sampling theorem. In Sec. 5.3.3, we have seen that the reconstruction procedure
using ZOH gets better if we increase the sampling rate. Unfortunately, however, we
don’t know the sampling rate that should be used. As a matter of fact, there is no
rigorous answer to this question.

If we use a small sampling rate, we may lose some crucial information. If we use
a large sampling rate, we will end up increasing the computational load. Based on

Digital Control Kannan M. Moudgalya
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the experience, many different ad hoc rules have been proposed for sampling rate
selection. We list them now:

• Use ten times the rate suggested by Shannon’s sampling theorem.

• Make sure that there are four to ten samples per rise time of the closed loop
system.

• Make sure that there are 15 to 45 samples per period of the oscillating closed
loop system.

• Sampling frequency should be 10 to 30 times the bandwidth.

• Choose ωcTs to be 0.15 to 0.5, where ωc is the crossover frequency and Ts is the
sampling time.

• Choose the sampling time in such a manner that the decrease in phase margin
of the discretized system is not more than 5◦ to 15◦ degrees of the margin in
the continuous time system.

Whatever sampling rate is used, it has to be validated through simulations. The
efficacy of the discrete time controller with ZOH should be tested on the continuous
time model of the plant. Note that validation of the controller on the discrete time
model of the plant is not sufficient in sampled data systems.

8.2 Discretization Techniques

We presented the method of ZOH equivalent discretization in Sec. 2.5.2. This approach
gives discrete time models that are exact at sampling instants. We also presented a
simple approximation technique in Sec. 2.5.3. These methods gave rise to discrete
time state space models. There are also methods for converting the continuous time
transfer functions into discrete time equivalents. We present some of these techniques
in this section. This section assumes prior knowledge of Laplace transforms. These
approximation methods can be classified into three broad categories: area based
approximation, equivalence in response to inputs, such as step and ramp, and pole–
zero mapping. We restrict ourselves to area based approximation and step response
equivalent techniques.

8.2.1 Area Based Approximation

Recall that we derived the transfer function of the discrete time integrator in Eq. 7.39
on page 261. As the output y is the integral of the input u, and as 1/s is the transfer
function in the Laplace domain, we obtain the following correspondence between the
Laplace domain variable s and the Z-domain variable z:

1
s
↔ Ts

2
z + 1
z − 1

=
Ts

2
1 + z−1

1− z−1
(8.1)
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This result says that one way to discretize a continuous transfer function is to replace
all occurrences of 1/s by the right-hand side of Eq. 8.1. In Sec. 7.3.2, we explained
why we need to consider other mapping approaches. Using the backward difference
approximation of Eq. 7.43 on page 262, we obtain

1
s
↔ Ts

z

z − 1
=

Ts

1− z−1
(8.2)

Using the forward difference approximation of Eq. 7.45 on page 262, we obtain

1
s
↔ Ts

z − 1
= Ts

z−1

1− z−1
(8.3)

8.2.2 Step Response Equivalence Approximation

We will now present a four step method to determine the ZOH equivalent Z-transform
transfer function of a Laplace domain transfer function of a continuous system:

1. Determine the step response of the continuous transfer function ys(t).

2. Discretize the step response to arrive at ys(nTs).

3. Z-transform the step response to obtain Ys(z).

4. Divide the function obtained in the above step by the Z-transform of a step
input, namely z/(z − 1).

To summarize, if G(s) is the continuous domain transfer function of a system, its
discrete time transfer function G(z) is given by

G(z) =
z − 1
z

Z

[
L−1G(s)

s

]
(8.4)

We will now present a few examples to illustrate this idea.

Example 8.1 Find the ZOH equivalent of 1/s.

The step response of 1/s is given by 1/s2. In the time domain, it is given by

ys(t) = L−1 1
s2

= t

Sampling it with a period of Ts, ys(nTs) = nTs. Taking Z-transforms and using
Problem 4.9,

Ys(z) =
Tsz

(z − 1)2

Dividing by z/(z−1), we obtain the ZOH equivalent discrete time transfer function
G(z) as

G(z) =
Ts

z − 1
= Ts

z−1

1− z−1

When written as a function of z−1, the presence of delay in the transfer function
becomes clear. This fact has been used to arrive at the realizability condition in
Sec. 7.4.3.
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Example 8.2 Find the ZOH equivalent of 1/s2.

The step response of 1/s2 is given by 1/s3. In the time domain, it is given by

ys(t) = L−1 1
s3

=
1
2
t2

Sampling it with a period of Ts,

ys(nTs) =
1
2
n2T 2

s

It is easy to check (see Problem 4.9) that

Ys(z) =
T 2

s z(z + 1)
2(z − 1)3

Dividing by z/(z − 1), we obtain

G(z) =
T 2

s (z + 1)
2(z − 1)2

=
T 2

s

2
(1 + z−1)z−1

(1− z−1)2

This example also shows that there is a delay that is introduced due to sampling.

Example 8.3 Find the ZOH equivalent of K/(τs+ 1).

Ys(s) =
1
s

K

τs+ 1
= K

[
1
s
− 1
s+ 1

τ

]
Inverting this,

ys(t) = K
[
1− e−t/τ

]
, t > 0

Sampling this, we obtain

ys(n) = K
[
1− e−nTs/τ

]
1(n) = K

[
1(n)− e−nTs/τ1(n)

]
The Z-transform of 1(n) is z/(z − 1). Using Example 4.5 on page 71, we obtain

Ys(z) = K

[
z

z − 1
− z

z − e−Ts/τ

]
=

Kz(1− e−Ts/τ )
(z − 1)(z − e−Ts/τ )

Dividing by z/(z − 1), we obtain

G(z) =
K(1− e−Ts/τ )
z − e−Ts/τ
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Matlab can be used to find the ZOH equivalent transfer functions. We illustrate
this with an example.

Example 8.4 Find the ZOH equivalent transfer function of 10/(5s+1) obtained
with sampling period Ts = 0.5 s.

Using M 8.1, we see that

G(z) =
0.9546

z − 0.9048
=

10(1− e−0.1)
z − e−0.1

which is in agreement with the above example.

Example 8.5 Calculate the step response discrete time equivalent of the
Laplace domain transfer function

G(s) =
e−Ds

τs+ 1
(8.5)

where 0 < D < Ts and Ts is the sampling time.

We cannot work with the above form directly because

e−Ds =
1
eDs

=
1

1 +Ds+Ds2 + · · ·

will contribute to an infinite number of poles, making the problem difficult. In view
of this, we first write G(s) = e−TssG1(s), where

G1(s) =
e(Ts−D)s

τs+ 1

We apply a continuous unit step input to G1(s) and write down the partial fraction
expansion of the resulting output, call it Y1(s), to arrive at

Y1(s) =
e(Ts−D)s

τs+ 1
1
s

=
A

s
+

B

τs+ 1

Multiplying by s and letting s = 0, we obtain A = 1. Multiplying by τs + 1 and
letting s = −1/τ , we obtain

B =
e(Ts−D)s

s

∣∣∣∣
s=−1/τ

= −τe−(Ts−D)/τ

Thus we arrive at the partial fraction expansion for Y1(s) as

Y1(s) =
1
s
− e−(Ts−D)/τ

s+ 1/τ
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Inverting this, we obtain

y1(t) =
(

1− e−(Ts−D)/τe−t/τ
)

1(t)

where 1(t) is the continuous time unit step function. Discretizing it, we obtain

y1(nTs) =
(

1− e−(Ts−D)/τe−nTs/τ
)

1(n)

Z-transforming it, we obtain

Y1(z) =
z

z − 1
− e−(Ts−D)/τ z

z − e−Ts/τ

= z
z
[
1− e−(Ts−D)/τ

]
+
[
e−(Ts−D)/τ − e−Ts/τ

]
(z − 1)(z − e−Ts/τ )

As this is the response due to a unit step function, we divide by z/(z−1) to arrive
at the transfer function

G1(z) =
z
[
1− e−(Ts−D)/τ

]
+
[
e−(Ts−D)/τ − e−Ts/τ

]
z − e−Ts/τ

To account for the e−Tss that we pulled out, we need to multiply G1(z) by z−1

to obtain

G(z) =
G1(z)
z

=
z
[
1− e−(Ts−D)/τ

]
+
[
e−(Ts−D)/τ − e−Ts/τ

]
z(z − e−Ts/τ )

(8.6)

In the above example, we had assumed D to be less than Ts. For a general D, i.e.,
D = kTs +D′, where k is an integer, k > 0, the discrete time equivalent of Eq. 8.5 is

G(z) =
z
[
1− e−(Ts−D′)/τ

]
+
[
e−(Ts−D′)/τ − e−Ts/τ

]
zk+1(z − e−Ts/τ )

(8.7)

We will next solve the problem discussed in Example 8.5 through state space
techniques.

Example 8.6 Using the state space approach, discretize the following transfer
function

G(s) =
e−Ds

τs+ 1

where 0 < D < Ts and Ts is the sampling time.

It is easy to check that the following state space equations result:

ẋ(t) = −1
τ
x(t) +

1
τ
u(t−D)

y(t) = x(t)
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The discrete time equivalent of the state equation has been obtained in Exam-
ple 2.5. In particular, we arrive at

x(n+ 1) = Ax(n) +Bu(n)
y(n) = Cx(n) +Du(n)

with

A =
[
Φ B1

0 0

]
, B =

[
B0

1

]
, C =

[
1 0

]
, D = 0

Taking the Z-transform, we obtain the transfer function as

G(z) =
B0z +B1

z(z − Φ)

Substituting the values of Φ, B0 and B1 from Eq. 2.54 on page 28, we once again
obtain Eq. 8.7. Thus both the transfer function and state space approaches give
rise to identical results.

We have seen several approximations to continuous time transfer functions: step
response or ZOH equivalent, trapezoidal or Tustin or bilinear equivalent, forward
difference approximation and backward difference approximation. There are several
other ways to approximate the continuous time transfer functions, the popular ones
being impulse response approximation and ramp response approximation, with the
former being popular in DSP. There is no theory that categorically states the preferred
order of these approximations. In control applications, the ZOH or step response and
Tustin approximations are most preferred, although backward and forward difference
approximations are also used to approximate continuous time transfer functions.

In this section, we discretized several continuous time transfer functions. The
inverse problem of determining the continuous time transfer functions from discrete
time transfer functions is a more difficult one. Only under special conditions is it
possible to obtain a unique solution to this problem. Problem 8.3 presents one such
instance. This inverse problem is beyond the scope of this book and hence will not be
considered further.

8.3 Discretization of PID Controllers

As mentioned earlier, PID controllers are the most popular form of controllers used in
industry. These controllers have proportional, integral and derivative modes. Arriving
at the extent of presence of these modes by trial and error is known as tuning. Most
tuning techniques for PID controllers are in the continuous time domain. In this
section, we discuss a few tuning methods and structures of PID controllers, and some
implementation issues.
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8.3.1 Basic Design

Let the input to the controller be e(t) and the output from it be u(t). The PID
controller in continuous time is given by

u(t) = K

[
e(t) +

1
τi

∫ t

0

e(t)dt+ τd
de(t)
dt

]
(8.8)

where K is the gain, τi is the integral time and τd is the derivative time or lead time.
On taking Laplace transforms, we obtain the continuous controller to be

u(t) = K

(
1 +

1
τis

+ τds

)
e(t) (8.9)

where we have used the mixed notation, as in the discrete time control. The above
equation can be written as

u(t) =
Sc(s)
Rc(s)

e(t) (8.10)

where

Sc(s) = τis+ 1 + τiτds
2

Rc(s) = τis
(8.11)

From the above equation, we arrive at the important property of controllers with
integral modes:

Rc(0) = 0 (8.12)

In the above equations, the derivative mode is difficult to implement. It is made
implementable by converting into a lead term. The modified PID control law is given
by

u(t) = K

(
1 +

1
τis

+
τds

1 + τds/N

)
e(t) (8.13)

where N is a large number, of the order of 100. It is easy to see that at low frequencies,
the last term behaves like a derivative, becoming equal to N at large frequencies.
For all practical purposes, the number of tuning parameters goes up to four with the
introduction of N . It is important to note that if this controller is written in fractional
form Sc/Rc, as above, Eq. 8.12 will still be satisfied. It is easy to verify that Eq. 8.13
reduces to Eq. 8.9 in the limiting case of N →∞. This PID control law is said to be
in filtered form.

8.3.2 Ziegler–Nichols Method of Tuning

There are a large number of methods of tuning a PID controller. The most popular
ones amongst them are the reaction curve method and instability method. Both are
referred to as the Ziegler–Nichols tuning method.
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R = K/τ

L τ

K

Figure 8.1: Reaction curve method of Ziegler–Nichols tuning

Table 8.1: Ziegler–Nichols settings using reaction curve method

K τi τd

P 1/RL
PI 0.9/RL 3L
PID 1.2/RL 2L 0.5L

Table 8.2: Ziegler–Nichols settings using instability method

K τi τd

P 0.5Ku

PI 0.45Ku Pu/1.2
PID 0.6Ku Pu/2 Pu/8

We will first present the reaction curve method. Give a unit step input to a stable
system (see Fig. 8.1) and obtain the time lag after which the system starts responding
(L), the steady state gain (K) and the time the output takes to reach the steady state,
after it starts responding (τ). This method is known as the transient response method
or reaction curve method.

We will now summarize the instability Ziegler–Nichols tuning method. Put the
system in a feedback loop with a proportional controller, whose gain is increased until
the closed loop system becomes unstable. At the verge of instability, note down the
gain of the controller (Ku) and the period of oscillation (Pu). Then the PID settings
are as given in Table 8.2. This is known as the instability method of Ziegler–Nichols.

These tuning methods are based on the specifications imposed on model transfer
functions. The reader may refer to [45, p. 683] for more details.

Ziegler–Nichols methods are the most popular tuning methods. Although there
are several other conventional methods of tuning the PID controllers, we will not
devote any more time to this topic. Nevertheless, several tuning methods that have
their origin in the discrete time domain will be presented throughout this book.

8.3.3 2-DOF Controller with Integral Action at Steady State

We have seen the advantages of the 2-DOF control structure in Sec. 7.1.3. In view of
this, PID controllers are often implemented in the 2-DOF framework. There are many
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yTc

Rc
G =

B

A

Sc

Rc

r u

−

Figure 8.2: A 2-DOF feedback control structure. B includes time delay.

different 2-DOF implementations of PID controllers, some of which will be presented
in this chapter. A necessary condition that these implementations have to satisfy is
derived in this section. The presentation is general in the sense that this development
is applicable to any controller with an integral action.

Consider the 2-DOF control structure presented in Fig. 8.2. The controller transfer
functions Sc/Rc and Tc/Rc are assumed to have the integral mode. Because this
structure is applicable to both continuous time and discrete time systems, the
dependence on s or z is omitted. The term B in this figure includes time delay.
The control law implemented in Fig. 8.2 is

u =
Tc

Rc
r − Sc

Rc
y (8.14)

It is easy to arrive at the following relation between r and y:

y =
Tc

Rc

B/A

1 +BSc/ARc
r =

BTc

ARc +BSc
r

The error between the reference signal and the actual value is given by

e = r − y =
(

1− BTc

ARc +BSc

)
r

Simplifying, we arrive at

e =
ARc +BSc −BTc

ARc +BSc
r (8.15)

We will now use this expression to arrive at a necessary condition that the 2-DOF
controllers have to satisfy at steady state. We restrict our attention to step inputs in
the reference signal, r.

Continuous time systems: The continuous time form of the error expression in
Eq. 8.15 is given by

E(s) =
A(s)Rc(s) +B(s)Sc(s)−B(s)Tc(s)

A(s)Rc(s) +B(s)Sc(s)
R(s) (8.16)

where E(s) and R(s) are, respectively, the Laplace transforms of e(t) and r(t). Using
the final value theorem for continuous time systems, we obtain

lim
t→∞ e(t) = lim

s→0
sE(s) (8.17)
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Substituting the expression for E(s) from Eq. 8.16, the above equation becomes

lim
t→∞ e(t) = lim

s→0
s
A(s)Rc(s) +B(s)Sc(s)−B(s)Tc(s)

A(s)Rc(s) +B(s)Sc(s)
1
s

where we have made use of the fact that R(s) is the transfer function of unit step.
Because the controller has an integral action, Rc(0) = 0, as in Eq. 8.12. Using this,
the above equation reduces to

e(∞) =
Sc(s)− Tc(s)

Sc(s)

∣∣∣∣
s=0

=
Sc(0)− Tc(0)

Sc(0)
(8.18)

The above condition can be satisfied if one of the following conditions is met:

Tc = Sc

Tc = Sc(0)
Tc(0) = Sc(0)

(8.19)

We have assumed that Sc(0) is nonzero while arriving at the above conditions. We will
make use of these to arrive at 2-DOF continuous time PID controllers in subsequent
sections.

Discrete time systems: The discrete time form of the error expression in Eq. 8.15
is given by

E(z) =
A(z)Rc(z) +B(z)Sc(z)−B(z)Tc(z)

A(z)Rc(z) +B(z)Sc(z)
R(z) (8.20)

where E(z) and R(z) are, respectively, the Z-transforms of e(n) and r(n). Using the
final value theorem for discrete time systems, we obtain

lim
n→∞ e(n) = lim

z→1

z − 1
z

E(z) (8.21)

Substituting the expression for E(z) from Eq. 8.20, the above equation becomes

lim
n→∞ e(n) = lim

z→1

z − 1
z

A(z)Rc(z) +B(z)Sc(z)−B(z)Tc(z)
A(z)Rc(z) +B(z)Sc(z)

z

z − 1

where we have made use of the fact that R(z) is the transfer function of unit step.
Because the controller has an integral action, Rc(1) = 0. Using this, the above
equation reduces to

e(∞) =
Sc(z)− Tc(z)

Sc(z)

∣∣∣∣
z=1

=
Sc(1)− Tc(1)

Sc(1)
(8.22)

The above condition can be satisfied if one of the following conditions is met:

Sc = Tc

Sc = Tc(1)
Sc(1) = Tc(1)

(8.23)
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We have assumed that Sc(1) is nonzero. If any of these conditions is satisfied, Fig. 8.2
is reduced, at steady state, to a 1-DOF control structure, as in Fig. 7.2 on page 244.
Because Rc has an integral term, by the internal model principle, steps in the reference
signal are rejected, verifying the offset free tracking condition derived above.

It should be remembered that although we have used the same symbols, the actual
functional forms of Rc, Sc and Tc above will be different from those in the continuous
time case. This is explained in detail in the subsequent sections.

8.3.4 Bumpless PID Controller with Tc = Sc

Using the relations given by Eq. 8.1 and Eq. 8.2, we can map the controller given by
Eq. 8.9 to the discrete time domain:

u(n) = K

[
1 +

1
τi

Ts

2
z + 1
z − 1

+
τd
Ts

z − 1
z

]
e(n) (8.24)

where we have used the trapezoidal approximation for the integral mode and backward
difference formula for the derivative mode. On cross multiplying, we obtain

(
z2 − z)u(n) = K

[(
z2 − z)+

Ts

2τi

(
z2 + z

)
+
τd
Ts

(z − 1)2
]
e(n)

We divide by z2 and invert, to obtain

u(n)− u(n− 1) = K

[
e(n)− e(n− 1) +

Ts

2τi
{e(n) + e(n− 1)}

+
τd
Ts
{e(n)− 2e(n− 1) + e(n− 2)}

] (8.25)

This formula can also be derived starting from the continuous version of the PID
controller given by Eq. 8.8. Let us approximate this expression by discretization:

u(n) = K

[
e(n) +

1
τi

{
Ts
e(0) + e(1)

2
+ · · ·+ Ts

e(n− 1) + e(n)
2

}
+ τD

e(n)− e(n− 1)
Ts

]
One can easily check that by writing u(n−1) using the above and finding the difference
between these two expressions, the PID expression given above is once again obtained.
The PID expression is usually written as

u(n)− u(n− 1) = s0e(n) + s1e(n− 1) + s2e(n− 2) (8.26)

where

s0 = K

[
1 +

Ts

2τi
+
τd
Ts

]
s1 = K

[
−1 +

Ts

2τi
− 2

τd
Ts

]
s2 = K

τd
Ts

(8.27)
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Although the continuous time formulation is not implementable, because of the
presence of the derivative term, its discrete time equivalent does not have this
difficulty.

The control law, as given by Eq. 8.26, is in the difference or incremental
formulation: the control law at the current instant is the control law at the previous
time instant plus an increment based on the error signals. This formulation helps
while switching a plant from the manual or open loop mode to automatic or closed
loop mode even when the control level used in the manual mode is not exactly known
to the controller. If, on the other hand, the controller specifies only the total control
action to be implemented, there could be problems if the previous open loop state of
the plant is not known exactly. In this case, the mismatch in the control levels at the
previous and the current time instants could result in the plant experiencing a bump.
For this reason, Eq. 8.26 is supposed to implement a bumpless control law. We will
refer to this controller as PID-1.

Example 8.7 Determine the discrete time PID controller if we have the
following continuous time PID settings: K = 2, τd = 2.5 s, τi = 40 s and Ts = 1 s.

Substituting these values in Eq. 8.27, we obtain s0 = 7.03, s1 = −11.98, s2 = 5.
Thus,

u(t) = 2
[
e(t) +

1
40

∫ t

0

e(τ)dτ + 2.5
de(t)
dt

]
is approximated as

u(n) = u(n− 1) + 7.03e(n)− 11.98e(n− 1) + 5e(n− 2)

We see that the control action is an increment over the previous control action,
as explained above.

We will now write the controller obtained in this section in standard notation.
Writing Eq. 8.26 in the following form,

(1− z−1)u(n) = (s0 + s1z
−1 + s2z

−2)e(n) (8.28)

and substituting for e(n) using e(n) = r(n) − y(n), we obtain the controller in the
form of Eq. 7.9 on page 245 with

Rc = 1− z−1

Sc = s0 + s1z
−1 + s2z

−2

Tc = Sc

(8.29)

8.3.5 PID Controller with Filtering and Tc = Sc

In this section, we will discretize the control law of Eq. 8.13 with the backward
difference formula of Eq. 8.2 on page 303 for all occurrences of s. The derivative term
becomes

1
1 + τds/N

↔ −NTs

τd

r1
1 + r1z−1

(8.30)
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where

r1 = − τd/N

τd/N + Ts
(8.31)

Using the same rule for approximating integration as well, Eq. 8.13 becomes

Sc

Rc
= K

[
1 +

Ts

τi

1
1− z−1

− Nr1(1− z−1)
1 + r1z−1

]
(8.32)

Simplifying, we obtain

Sc

Rc
= K

(1 − z−1)(1 + r1z
−1) + Ts/τi(1 + r1z

−1)−Nr1(1 − z−1)2

(1− z−1)(1 + r1z−1)

On comparing the denominator and the numerator, we obtain

Rc(z) = (1− z−1)(1 + r1z
−1) (8.33)

Sc(z) = s0 + s1z
−1 + s2z

−2 (8.34)

where

s0 = K

(
1 +

Ts

τi
−Nr1

)
s1 = K

[
r1

(
1 +

Ts

τi
+ 2N

)
− 1

]
s2 = −Kr1(1 +N)

(8.35)

Thus, we obtain the control law,

(1− z−1)(1 + r1z
−1)u(n) = (s0 + s1z

−1 + s2z
−2)e(n) (8.36)

We will refer to this controller as PID-2.
We observe that on introduction of the filtering action in the derivative mode, we

lose the useful property of bumpless control action.
Recall that the filtering action was introduced to make the derivative mode

implementable. We will now point out another advantage in using this action. The
closed loop characteristic polynomial is given by ARc +BSc, see Eq. 8.20. We could
equate this to the desired polynomial and determine Rc and Sc.1 Comparing Eq. 8.33
with Eq. 8.29, we find that filtering increases the degree of Rc. The larger degree of
Rc allows plants of larger degree to be accommodated by this procedure, because of
the condition dB = dRc + 1.

Example 8.8 Using the discretization method presented in this section,
determine the polynomial coefficients that correspond to the continuous time PID
controller presented in Example 8.7. The filter constant N may be taken as 10.

1This procedure is illustrated in Sec. 9.2.
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Using Eq. 8.31, we obtain

r1 = − 0.25
0.25 + 1

= −0.2

Using Eq. 8.35, we obtain

s0 = 2(1 + 1/40 + 2) = 6.05
s1 = 2[−0.2(1 + 1/40 + 20)− 1] = −10.41
s2 = 2× 0.2(11) = 4.4

Using Eq. 8.36, the control law is given by

(1− z−1)(1 − 0.2z−1)u(n) = (6.05− 10.41z−1 + 4.4z−2)e(n)

As mentioned above, the control action is not in incremental form.

There are instances when one may not want to use the integral mode of control.
For example, if the plant already has an integrator, one may not wish to introduce
an integral mode through the controller. That is, one may want to implement a
proportional, derivative (PD) controller. This is achieved by setting the second term
of Eq. 8.13 and Eq. 8.32 equal to zero to obtain continuous time and discrete time
PD controllers, respectively. The discrete time PD controller is

Sc

Rc
= K

[
1− Nr1(1− z−1)

1 + r1z−1

]
= K

(1−Nr1) + r1(1 +N)z−1

1 + r1z−1
(8.37)

In other words, the discrete time PD control law is given by

(1 + r1z
−1)u(n) = (s0 + s1z

−1)e(n) (8.38)

where

s0 = K(1−Nr1)
s1 = Kr1(1 +N)

(8.39)

Compare this control law with that of Eq. 8.36. This control law also is not in
incremental form. We will refer to this as PID-3.

Example 8.9 Using the discretization method presented above, determine the
polynomial coefficients that correspond to the continuous time PID controller with
K = 2, τd = 2.5, N = 10, and compare with the values in Example 8.7.

It is easy to see that r1 remains as −0.2. Using Eq. 8.39, we calculate s0 and s1:

s0 = K(1−Nr1) = 2(1 + 2) = 6
s1 = Kr1(1 +N) = −2× 0.2(11) = −4.4

The control law is given by

(1− 0.2z−1)u(n) = (6− 4.4z−1)e(n)
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Figure 8.3: A 2-DOF PID control structure without proportional and derivative
actions on a reference signal. It satisfies second condition of Eq. 8.19 for tracking
step changes without offset.

8.3.6 2-DOF PID Controller with Tc = Sc(1)

In this section, we present a control structure that satisfies the second condition in
Eq. 8.19.

The control effort given by Eq. 8.8 has the following shortcoming: if there is
a sudden change in the setpoint, both the proportional and the derivative modes
will introduce large jumps in the control effort, known as setpoint kick. The large
change introduced by the derivative mode is known as derivative kick. Although the
proportional mode may introduce a smaller change than the derivative mode, it may
still give rise to a larger than acceptable control effort, known as proportional kick.
Both derivative and proportional kicks are generally not acceptable. The control law
implemented in Fig. 8.3 addresses these difficulties [30]. Note that the feed forward
path also has the low pass filter from the derivative term. The control law can be
expressed as

u(t) =
K

τis
(
1 + τds

N

) (r(t) − y(t))−K
[
1 +

τds

1 + τds
N

]
y(t) (8.40)

Grouping the terms involving y(t), we obtain

u(t) =
K

τis
(
1 + τds

N

) r(t) −K [
1 +

τds

1 + τds
N

+
1

τis
(
1 + τds

N

)] y(t)

which can be simplified as

u =
K

τis(1 + τds/N)
r −K

[
1 +

τiτds
2 + 1

τis(1 + τds/N)

]
y (8.41)

Comparing this with Eq. 8.14, we see that the first term is Tc r/Rc and the second
term is Sc y/Rc. It is easy to see that this equation implies Tc = Sc(s = 0) = K, the
continuous time condition for offset free tracking of step inputs, as given by Eq. 8.19.
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We proceed to discretize Eq. 8.41. Because the second term is Sc y/Rc, we can
write it as follows:

Sc

Rc
= K

[
1 +

τiτds
2 + 1
τis

1
1 + τds/N

]
Using Eq. 8.30 and the backward difference rule, the discrete approximation of this
expression is

Sc

Rc
= K

[
1− τiτd(1− z−1)2/T 2

s + 1
τi(1 − z−1)/Ts

NTs

τd

r1
1 + r1z−1

]
which can be simplified as

Sc

Rc
= K

[
1− (1 − z−1)2 + T 2

s /(τiτd)
1− z−1

Nr1
1 + r1z−1

]
On equating the terms in the numerator and denominator, we obtain

Rc = (1 − z−1)(1 + r1z
−1) (8.42)

and

Sc = K

[
(1 − z−1)(1 + r1z

−1)−
(

1− 2z−1 + z−2 +
T 2

s

τiτd

)
Nr1

]
Simplifying, we obtain

Sc = K

[
1−Nr1 − Nr1T

2
s

τiτd
+ (r1 − 1 + 2Nr1)z−1 − (r1 +Nr1)z−2

]
which is equivalent to the following:

Sc(z) = s0 + s1z
−1 + s2z

−2

s0 = K

[
1−Nr1 − Nr1T

2
s

τiτd

]
s1 = K[r1(1 + 2N)− 1]
s2 = −Kr1(1 +N)

(8.43)

with r1 given by Eq. 8.31. Following the same procedure as above, the first term in
Eq. 8.41 becomes

Tc

Rc
= − KNT 2

s r1/(τiτd)
(1− z−1)(1 + r1z−1)

(8.44)

Comparing the numerator and the denominator, we obtain

Tc = −KNT
2
s r1

τiτd
(8.45)
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and Rc is as in Eq. 8.42. We will refer to this controller as PID-4. Substituting from
Eq. 8.43, and simplifying, we obtain

Sc(1) = s0 + s1 + s2 = −KNT
2
s r1

τiτd
(8.46)

We see that Tc = Sc(1), the discrete time condition for offset free tracking of step
changes in the reference signal r(n), see Eq. 8.23. Of course, this is only expected
because the continuous time version of this controller has this property.

Example 8.10 Using the 2-DOF formulation given in this section, determine
the discrete time PID controller for the continuous controller parameters as in
Example 8.8.

As in the previous example, we obtain

r1 = −0.2

Using Eq. 8.43, we obtain

s0 = 2
[
1 + 10× 0.2 +

10× 0.2
40× 2.5

]
= 6.04

s1 = 2[−0.2(1 + 20)− 1] = −10.4
s2 = 2× 0.2× 11 = 4.4

Using the fact that Tc = Sc(1), we obtain

Tc = s0 + s1 + s2 = 0.04

The control law is given by

(1 − z−1)(1− 0.2z−1)u(n) = 0.04r(n)− (6.04− 10.4z−1 + 4.4z−2)e(n)

As mentioned above, the control action is not in the incremental form.

Several variations of the control law given in Eq. 8.40 are possible. Substituting
N →∞ in this equation, we obtain

u(t) = K

[
−y(t) +

1
τis

e(t)− τdsy(t)
]

(8.47)

where e(t) = r(t) − y(t). Equivalently, this can be obtained also from Eq. 8.9 on
page 308 by replacing e(t) with −y(t) in proportional and derivative modes. In other
words, r(t) has been replaced with zero in these modes. The usual implementations
with a large proportional gain result in large control actions for step changes in the
reference signal. The current formulation of not sending the reference signal through
the derivative mode addresses this problem. Nevertheless, setpoint tracking is not
affected by this change, because the integral term is unchanged: so long as there is a
nonzero error, the integral term will try to correct it. Because only the integral term
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takes care of offset free tracking, it cannot be made zero. In other words, proportional
or proportional derivative controllers cannot be used in this configuration.

We conclude the discussion in this section with another discretization. Using the
backward difference formula, given by Eq. 8.2, we obtain the discrete time equivalent
of this control law:

u(n) = K

[
−y(n) +

Ts

τi∆
e(n)− τd ∆

Ts
y(n)

]

where ∆ = 1 − z−1. Multiplying throughout by ∆ and rearranging the terms, we
obtain

∆u(n) =
KTs

τi
e(n)−K

[
∆ +

τd
Ts

∆2

]
y(n) (8.48)

Substituting for ∆ as 1− z−1 on the right-hand side, this equation becomes

∆u(n) =
KTs

τi
(r(n) − y(n))−K

[
(1− z−1) +

τd
Ts

(1 − 2z−1 + z−2)
]
y(n)

Rearranging the terms, this becomes

∆u(n) =
KTs

τi
r(n) −K

[(
1 +

Ts

τi
+
τd
Ts

)
−
(

1 + 2
τd
Ts

)
z−1 +

τd
Ts
z−2

]
y(n)

(8.49)

Defining

L(z) = K

[(
1 +

Ts

τi
+
τd
Ts

)
−
(

1 + 2
τd
Ts

)
z−1 +

τd
Ts
z−2

]
, (8.50)

Eq. 8.49 becomes

∆u(n) = L(1)r(n)− L(z)y(n) (8.51)

This is in the form of Eq. 8.14 with Sc(z) = L(z) and Tc(z) = L(1). We see that the
second condition in Eq. 8.23 on page 311 is satisfied. The controller is once again in
incremental form, useful for bumpless implementation. We will refer to this controller
as PID-5.

Example 8.11 Using the relations obtained above, repeat Example 8.10
without the filtering action.

Let us evaluate L using Eq. 8.50:

L(z) = 2
[(

1 +
1
40

+ 2.5
)
− (1 + 2× 2.5)z−1 + 2.5z−2

]
= 7.05− 12z−1 + 5z−2
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Substituting z as 1, we obtain L(1) = 0.05. Thus, the control law given by Eq. 8.51
becomes

∆u(n) = 0.05r(n)− (7.05− 12z−1 + 5z−2)e(n)

It is easy to check that this controller satisfies the offset free tracking condition,
Tc = Sc(1), each of which is equal to 0.05.

8.3.7 2-DOF PID Controller with Tc(1) = Sc(1)

The 2-DOF PID controller presented in the previous section does not have dynamic
elements in Tc. Moreover, because only the integral mode acts on the measurement
y(t), the system could be sluggish in tracking the reference signal. The response can
be made faster by feeding back a fraction of y through the proportional mode. We
modify Eq. 8.13 on page 308 to arrive at the following control law [2]:

u(t) = K

[
br(t)− y(t) +

1
sτi

(r(t) − y(t))− sτd
1 + sτd

N

y(t)
]

(8.52)

where we have substituted for e(t) using r(t) − y(t) and b is selected to be in the
range of zero to one, i.e., 0 < b < 1. Many different ways of discretizing the continuous
controller of Eq. 8.52 exist. To compare with the result of [2], however, we use forward
difference approximation of Eq. 8.3 to discretize the integral mode and backward
difference approximation of Eq. 8.2 to approximate the derivative mode. Recall
that there is no hard and fast rule about which approximation of continuous time
transfer function is the best. The above choice illustrates that there are many ways
of approximating continuous time transfer functions. Because there is no difference in
the proportional mode between the continuous and discrete time domains, Eq. 8.52
becomes the following:

u(n) = K

[
br(n)− y(n) +

1
τi

Ts

z − 1
(r(n) − y(n))−

z−1
zTs

τd

1 + z−1
zTs

τd

N

y(n)

]
(8.53)

Simplifying and dropping the explicit dependence on n, we obtain

u = K

[
br − y +

Ts

τi

1
z − 1

(r − y)− Nτd
NTs + τd

z − 1
z − τd

NTs+τd

y

]

With ad defined as follows

ad =
τd

NTs + τd
(8.54)

the above equation becomes

u = K

[
br − y +

Ts

τi

1
z − 1

(r − y)− Nad(z − 1)
z − ad

y

]
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After multiplying by (z − 1)(z − ad) on both sides, we arrive at

(z − 1)(z − ad)u = K(br − y)(z − 1)(z − ad)

+Kbi(r − y)(z − ad)−Kbd(z − 1)2y
(8.55)

where

bi =
Ts

τi

bd = Nad

(8.56)

Dividing by z2 and rearranging, we arrive at the following controller expression:

(1− z−1)(1− adz
−1)u = K[b+ (bi − b(1 + ad))z−1 + (bad − biad)z−2]r

−K[(1 + bd) + (bi − 2bd − (1 + ad))z−1 + (ad − biad + bd)z−2]y (8.57)

This is of the form

Rcu(n) = Tcr(n)− Scy(n)

where the definition of these variables follows from the previous equation. It is easy
to check that

Tc(1) = Sc(1) = Kbi(1− ad)

satisfying the requirement for offset free tracking of step change in R, namely Eq. 8.23
on page 311. We will refer to this controller as PID-6.

The use of PID controllers will be a continuing theme in this book. The next
occurrence of this will be in Sec. 9.8, where we will take up the implementation issues
of PID controllers.

8.4 Matlab Code

Matlab Code 8.1 Continuous to discrete time transfer function. Available at
HOME/Z-trans/matlab/disc2.m2

1 sys = t f ( 1 0 , [ 5 1 ] ) ;
2 sysd = c2d ( sys , 0 . 5 ) ;

2HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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8.5 Problems

8.1. This problem presents a state space approach to Example 8.3 on page 304. Show
that the state space equivalent of this problem is

ẋ = −1
τ
x+

K

τ
u

y = x

Show that this can be written in the standard discrete time state space
formulation of Eq. 2.2 on page 6, with

A = e−Ts/τ , B = K
[
1− e−Ts/τ

]
Show that this discrete time state space system has a transfer function identical
to the one presented in Example 8.3.

8.2. This problem is concerned with the determination of where the stable region in
the s plane gets mapped to the z plane under the trapezoidal approximation.

(a) Show that the trapezoidal or the Tustin approximation, given by Eq. 8.3
on page 303, is equivalent to

z =
1 + sTs/2
1− sTc/2

(b) Find out where the left half of the s plane will be mapped in the z plane
using the above transformation [Hint: Substitute s = a + jb in the above
equation for a < 0 and find out what z you get. Repeat this for a = 0.]
Does this agree with the notion of the z domain stability region discussed
earlier?

8.3. Consider the following discrete time transfer function

G(z) =
z−1

1− 0.9z−1
(8.58)

obtained by sampling a continuous system with a period Ts = 0.1 s. If the
discrete time transfer function is obtained by the ZOH equivalent approximation
of a first order system, determine the continuous transfer function.

8.4. Find the ZOH equivalent of Ga(s) = 1/s3 in the following manner.

(a) Show that

F =

0 1 0
0 0 1
0 0 0

 , G =

0
0
1

 , C =
[
1 0 0

]
, D = 0

is a state space realization of 1/s3.
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(b) Show that the discrete time state space matrices are

A =

1 Ts T 2
s /2

0 1 Ts

0 0 1

 , B =

T 3
s /3!
T 2

s /2!
Ts


(c) Using[

A− zI B
C D

]
=
[
A− zI 0
C I

] [
I (A− zI)−1B
0 D + C(zI −A)−1B

]
show that the required discrete time transfer function Gd(z) is given by

Gd(z) = det
[
A− zI B
C D

]
/ det (A− zI)

= (−1)3
T 3

s

3!
1 + 4z + z2

(1− z)3

(d) Check that Gd(z) is a nonminimum phase transfer function, even though
Ga(s) = 1/s3 is not [10].

8.5. With the derivative mode controller

D(z) = τd
z − 1
z + 1

in a feedback loop with the oscillating plant

H(z) =
z

z + a
, a > 0

show that the closed loop transfer function is given by

T (z) =
τdz(z − 1)

(τd + 1)z2 + (a+ 1− τd)z + a

With a = 1, show that the closed loop poles are at the following locations:

(a) −0.25± j0.6614 = 0.707e±j111◦
when τd = 1

(b) ± 1√
3
j when τd = 2

(c) 0.565 or 0.161 when τd = 10

Justify that the effect of this derivative mode is to reduce the oscillations.

8.6. When the plant in the above problem is put in a feedback loop with the following
PD controller,

D = K

(
1 + τd

z − 1
z + 1

)
show that the steady state value of the output is given by

lim
n→∞ y(n) =

K

1 + a+K
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8.7. Using the root locus technique, or any other method, determine the proportional
controller (Ku) that will bring the open loop transfer function

G(z) =
1

z(z − 1)

to the verge of instability. If the Ziegler–Nichols settings for a PI controller are
Kp = 0.45Ku and τI = Pu/1.2, determine Kp and τI . A sampling time of 0.1
second is used to arrive at this transfer function.

8.8. This question is concerned with discretization of the PID controller given in
Eq. 8.52 using the trapezoidal approximation, with 0 < b < 1, and N is of the
order of 10 [2]. As usual, R, Y and U , respectively, refer to setpoint, output and
input.

(a) Use the trapezoidal approximation for both derivative and integral terms,
i.e., substitute for s as

s↔ 2
Ts

z − 1
z + 1

and arrive at the following result:

U(z) = K

[
b+ bi

z + 1
z − 1

]
R(z)−K

[
1 + bi

z + 1
z − 1

+
(z − 1)bd
z − ad

]
Y (z)

where

bi =
Ts

2τi
, bd =

2Nτd
2τd +NTs

, ad =
2τd −NTs

2τd +NTs

(b) Simplify the above expressions to arrive at a controller in the usual Rc, Sc,
Tc form with Sc �= Tc:

(1− z−1)(1− adz
−1)U(z) = [t0 + t1z

−1 + t2z
−2]R(z)

− [s0 + s1z
−1 + s2z

−2]Y (z)

where

t0 = K(b+ bi)
t1 = −K(b(1 + ad)− bi(1− ad))
t2 = Kad(b− bi)
s0 = K(1 + bi + bd)
s1 = −K(1 + ad + 2bd − bi(1− ad))
s2 = K(ad + bd − biad)

We will refer to this controller as PID-7.

(c) Check that Tc(1) = Sc(1) = 2Kbi(1 − ad) and hence that this controller
satisfies the condition required for the plant output to track the setpoint,
namely Eq. 8.23 on page 311.
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8.9. In this problem, we study the 2-DOF PID controller.

(a) Argue that the PID controller of Fig. 8.3 on page 316 can be redrawn as
in the following figure:

R

−

K

K

τis
G

Y

−

when N =∞, τd = 0 and disturbance = 0. Show that this is equivalent to
the following block diagram:

R Y

−
K

(
1 +

1

τis

)
GTc

for a specific Tc. Determine Tc.

(b) Suppose that the normal 1-DOF PI controller has a control saturation
(input saturation) problem. Will the 2-DOF PI controller discussed in this
problem be able to reject disturbances better, perhaps for different tuning
parameters? If so, explain what you will do. If not, explain why not.

(c) If the normal 1-DOF PI controller configuration does not have a saturation
problem, will the response to a step change in R be faster than that in the
2-DOF PI controller, discussed here? Make suitable assumptions.



Chapter 9

Pole Placement Controllers

Pole placement controllers can be considered as the mother of all controllers in the
sense that all controllers can be thought of as belonging to this category in one way
or another. In this chapter, we will present mainly two approaches: one that uses a
model system and one that is based on performance specification. The first section is
based on a first order model as a target system. The remaining sections are devoted
to treating the closed loop as a second order system. This forms the major part of
this chapter.

9.1 Dead-Beat and Dahlin Control

In this section, we first design a dead-beat control, which is essentially a zero order
system with possibly a time delay. We also explain Dahlin control, whose objective is
to produce a first order overall system.

One of the advantages in working with discrete time systems is that digital
controllers can be designed through direct techniques, as we show in this section.
First we present dead-beat control, then Dahlin control. Consider the feedback system
presented in Fig. 4.6.

Supposing we want the transfer function between the setpoint and the output to
be Gm(z), we have

GD(z)G(z)
1 +GD(z)G(z)

= Gm(z)

the solution of which is

GD(z) =
Gm(z)

[1−Gm(z)]G(z)

In dead-beat control, an effort is made to reach the setpoint as quickly as possible
and stay there. The minimum time required to reach the setpoint, however, is the
dead time of the system. As a result, we get the condition

Gm(z) = z−k, k ≥ 1

Digital Control Kannan M. Moudgalya
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03143-8
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where k = D/Ts, D is the system dead time and Ts the sampling time. The resulting
dead-beat controller is given by

GD(z) =
z−k

(1− z−k)G(z)

Example 9.1 Design a dead-beat controller for

G(z) =
z−2

1− z−1

Using the above formula, we get the dead-beat controller to be

GD(z) =
z−2

(1 − z−2)z−2/(1− z−1)
=

1− z−1

1− z−2

The Dahlin controller is similar to the dead-beat controller in the sense that the
desired closed loop transfer function Gm(z) is specified, from which the discrete time
controller is found using the formula given above. The only difference is that now the
desired transfer function is no longer dead-beat, but a first order transfer function
with a time delay.

Example 9.2 For the open loop transfer function in the continuous domain

G(s) =
10e−s

5s+ 1

a choice of a desired closed loop transfer function is

Gm(s) =
10e−s

2s+ 1

Note that the closed loop transfer function has the same dead time, but a smaller
time constant, indicating a faster response.

9.2 Pole Placement Controller with Performance
Specifications

In this section, we explore the possibility of making the closed loop system a second
order system, with possibly a time delay. In this setting, one can naturally specify
requirements, such as rise time, overshoot and settling time, in addition to ensuring
internal stability. After introducing a basic design, we present a design that has an
internal model of the disturbance in the loop. We also explain the steps to be taken
to prevent oscillations in the loop. We will work exclusively with the 2-DOF control
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y
γ

Tc(z)

Rc(z)
G = z−k B(z)

A(z)

Sc(z)

Rc(z)

r u

−

Figure 9.1: Schematic of 2-DOF pole placement controller

structure presented in Sec. 7.1.3. Although we ignore the effects of noise for now, we
study them in detail from Chapter 11 onwards. Let us begin with the plant

Y (z) = G(z)U(z) (9.1)

with transfer function

G(z) = z−kB(z)
A(z)

(9.2)

where B(z) and A(z) are coprime. Recall that this means that A and B do not have
a common factor. We would like to design a controller such that the plant output y
is related to the setpoint or command signal r in the following manner:

Ym(z) = γz−kBr

φcl
R(z) (9.3)

where φcl is the characteristic polynomial obtained by the desired location analysis
and

γ =
φcl(1)
Br(1)

(9.4)

so that at steady state Y = R. Towards this end, we look for a controller of the form

Rc(z)U(z) = γTc(z)R(z)− Sc(z)Y (z) (9.5)

where Rc(z), Sc(z) and Tc(z) are polynomials in z−1, to be determined, see Fig. 9.1.
Note that this structure is identical to the one in Eq. 7.9 on page 245, but for the
introduction of γ now. The controller has two components:

1. A feedback component Sc/Rc that helps ensure internal stability and reject
disturbances.

2. A feed forward component Tc/Rc that helps Y track R.

Because of these two objectives, as mentioned earlier, it is known as the 2-DOF
controller.

Simplifying the block diagram given in Fig. 9.1, or equivalently, substituting for
Y (z) from Eq. 9.1 and Eq. 9.2 in Eq. 9.5, and dropping the argument z for convenience,
we obtain

Y = γz−k TcB

ARc + z−kBSc
R (9.6)
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We equate this Y to the variable Ym in Eq. 9.3, and cancel common terms to arrive
at

BTc

ARc + z−kBSc
=
Br

φcl
(9.7)

In general,

deg Br < deg B (9.8)

so that the desired closed loop transfer function is of lower order than that ofBTc. This
is achieved by cancelling common terms between the numerator and denominator. But
we know that such cancellations, if any, should be between factors that have zeros
inside the unit circle, or in our notation, between good factors only. In view of this,
we factorize B as good and bad factors:

B = BgBb (9.9)

Similarly, we factorize A into good and bad factors to arrive at

A = AgAb (9.10)

If we let

Rc = BgR1 (9.11a)
Sc = AgS1 (9.11b)
Tc = AgT1 (9.11c)

Eq. 9.7 becomes

BgBbAgT1

AgAbBgR1 + z−kBgBbAgS1
=
Br

φcl

which can be simplified by cancelling the good common factors. We obtain

BbT1

AbR1 + z−kBbS1
=
Br

φcl
(9.12)

We can equate the numerator and denominator parts. On equating the numerator,
we obtain

Br = BbT1 (9.13)

and equating the denominator results in the following Aryabhatta’s identity

AbR1 + z−kBbS1 = φcl (9.14)

which can be solved for R1 and S1. There are many options to choose T1. We can
shape the transfer function between the reference signal and the plant output by a
suitable choice of T1 [30]. By choosing T1 to be equal to S1, the 2-DOF controller is
reduced to the 1-DOF configuration. Another simple choice is to make T1 equal to
one. We compare the last two choices in Sec. 9.6. For most of this chapter, however,
we will make the following choice:

T1 = 1 (9.15)
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In view of Eq. 9.13 and 9.15, the expression for γ obtained in Eq. 9.4 becomes

γ =
φcl(1)
Bb(1)

(9.16)

and the closed loop transfer function, as desired in Eq. 9.3, is now obtained as

GY = γz−kB
b

φcl
(9.17)

We see that the bad factors in the numerator of the original transfer function appear
in the closed loop transfer function as well. In other words, the bad zeros of the
original transfer function cannot be changed by feedback.

Systems with zeros outside the unit circle are known as nonminimum phase
systems, see the discussion in Sec. 5.4.2. Recall that the zeros outside the unit circle
are known as the nonminimum phase zeros. Because these zeros cannot be altered by
feedback control, the performance of a controller will be lower than that achievable
with the corresponding minimum phase systems.

Example 9.3 Let us control the magnetically suspended ball presented in detail
in Sec. 2.2.1. Let the distance between the ball and the armature h be the only
measured variable. That is, the output is modelled as

y = Cx

with

C =
[
1 0 0

]
The controller should help track step changes in the reference signal, with the
following specifications:

Steady state error ≤ 2%
Overshoot = ε ≤ 5%

Settling time ≤ 0.5 s

The Matlab code in M 9.1 carries out controller design, as we now explain:

1. The continuous time transfer function can be obtained as

G(s) =
−280.14

s3 + 100s2 − 981s− 98100

which has poles at 31.32, −31.32 and −100 and hence is unstable. Sample
at

Ts = 0.01 s

Using myc2d.m listed in M 9.2, obtain

G(z) = z−1 (−3.7209× 10−5 − 1.1873× 10−4z−1 − 2.2597× 10−5z−2)
1− 2.4668z−1 + 1.7721z−2− 0.3679z−3

= z−1−3.7209× 10−5(1 + 2.9877z−1)(1 + 0.2033z−1)
(1 − 1.3678z−1)(1− 0.7311z−1)(1 − 0.3679z−1)

= z−kB

A
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where k = 1. We factor A and B into good and bad parts:

A = AgAb

Ag = (1− 0.7311z−1)(1 − 0.3679z−1)

Ab = (1− 1.3678z−1)

B = BgBb

Bg = −3.7209× 10−5(1 + 0.2033z−1)

Bb = (1 + 2.9877z−1)

This is carried out using the function given in M 9.3.

2. Next, we proceed to determine ρ and ω required to satisfy the transient
conditions, using the method presented in Sec. 7.7. As the rise time is not
specified, we guess it to be about one third of the settling time. Thus the
rise time has to be 0.15 s. Let us choose the sampling time to be 0.01 s. Let
us first apply the rise time constraint:

Nr ≤ rise time/Ts = 15
Choose Nr = 15

ω =
π

2Nr
=

π

30
= 0.1047

Overshoot constraint:

ρ ≤ εω/π = 0.050.1047/π = 0.905
Choose ρ = 0.905

Desired closed loop poles:

z = ρe±jω

3. We calculate the desired closed loop polynomials as

φcl(z) = 1− 2z−1ρ cosω + ρ2z−2 = 1− 1.8z−1 + 0.819z−2

M 9.4 carries out these calculations.

4. Next, solve Eq. 9.14. That is, solve

(1− 1.3678z−1)R1 + z−1(1 + 2.9877z−1)S1

= 1 − 1.8z−1 + 0.819z−2 (9.18)

Using xdync.m, we obtain

S1 = 0.0523

R1 = 1− 0.4845z−1
(9.19)
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Figure 9.2: Output and input profiles for ball suspension example obtained by
executing the Simulink block diagram in Fig. A.8. The controller used is CTRL-1,
derived in Example 9.3. The overshoot and the settling time constraints of y(n) have
been met. The auxiliary constraint in rise time is not met, however.

5. Using Eq. 9.11, we calculate the control parameters:

Rc = −3.7209× 10−5(1− 0.2812z−1− 0.0985z−2)

Sc = 0.0523− 0.0575z−1 + 0.0141z−2

Tc = Ag = (1 − 0.7311z−1)(1− 0.3679z−1)

These calculations are carried out in M 9.5. We will refer to this controller
as CTRL-1.

6. The function in M 9.1 calculates the 2-DOF controller, discussed above. After
that, simulation is carried out using the Simulink program in Fig. A.8. The
resulting profiles are shown in Fig. 9.2. Note that the output y is measured
in m. The equilibrium value is 1 cm or 0.01 m. The simulations have been
carried out for 1% change in that value.

It is easy to see from the above profiles that while the overshoot and settling time
requirements are met, the auxiliary condition of rise time constraint is not met.

The controller designed above (CTRL-1) works well, but for the auxiliary condition
of rise time. What if the rise time requirement also has to be fulfilled? It is possible
to use Nr as a tuning parameter to meet this requirement, as we show in the next
example.

Example 9.4 Use the rise time Nr as a tuning parameter and achieve the
required rise time.

The rise time achieved is about one and a half times the specified rise time. In
view of this, we carry out the control design procedure outlined in Example 9.3
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Figure 9.3: Output and input profiles for ball suspension example obtained by
executing the Simulink block diagram in Fig. A.8 with T1 = 1. The controller used
is CTRL-2, derived in Example 9.4. All specifications on y(n) have been met. The
tradeoff is that now the control effort is larger than that in Fig. 9.2.

with rise time = 0.1 s or equivalently, Nr = 10. With this reduced rise time, we
obtain the following:

ρ = 0.8609
ω = 0.1571

φcl = 1− 1.7006z−1 + 0.7411z−2

γ = 0.0102

R1 = 1− 0.3984z−1

S1 = 0.0657

Rc = −3.7209× 10−5(1 − 0.1952z−1− 0.081z−2)

Sc = 0.0657− 0.0722z−1 + 0.0177z−2

Tc = 1− 1.099z−1 + 0.269z−2

We will refer to this controller as CTRL-2. As before, the Simulink code in Fig. A.8
is executed to evaluate the efficacy of CTRL-2. The resulting y(n) and u(n) profiles
are shown in Fig. 9.3. With this controller, it is easy to see that we also satisfy the
auxiliary condition of rise time. The price we have to pay for this is the slightly
increased control effort at initial time, as compared to the one achieved using
CTRL-1, see Fig. 9.2.
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Figure 9.4: 2-DOF pole placement controller in factored form

9.3 Implementation of Unstable Controllers

In this section, we present a case that requires the denominator of the controller,
namely Rc, to be taken inside the loop.

Let us begin by calculating the closed loop transfer function for the system with
a pole placement controller. Let us first redraw the closed loop block diagram given
in Fig. 9.1 with Eq. 9.11 substituted. The resulting diagram is given in Fig. 9.4. The
closed loop transfer function is given by

T = γ
AgT1

BgR1

z−kB
gBb

AgAb

1 + z−k
BgBb

AgAb

AgS1

BgR1

= γ
T1

R1

z−kB
b

Ab

1 + z−k
BbS1

AbR1

Simplifying, we obtain

T = γ
T1

R1

z−kBbR1

AbR1 + z−kBbS1
(9.20)

Cancelling common factors, we obtain

= γ
z−kBbT1

AbR1 + z−kBbS1
= γz−k Bb

φcl
(9.21)

First observe that the closed loop transfer function, given by Eq. 9.21, is in the desired
form, specified by Eq. 9.3 on page 329.

It is important to note that this desired form is obtained by cancelling R1 in
Eq. 9.20. On re-examining Fig. 9.4, we see that R1 in the denominator is from the feed
forward term while that in the numerator comes from the feedback loop calculation.
Recall that R1 is calculated by solving Aryabhatta’s identity given by Eq. 9.14 on
page 330. There is no constraint that R1 has to be stable. In case R1 is unstable, and
if there are differences between the numerically obtained R1 in the feedback loop and
that in the feed forward term, the closed loop system will become unstable.

We will now illustrate this with an example, in which Rc has a zero outside the
unit circle.

Example 9.5 Design a 2-DOF pole placement controller for the plant with
transfer function

G(z) = z−1 1− 3z−1

(1− 2z−1)(1 + 4z−1)
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such that the following transient requirements are met:

1. Rise time should be less than or equal to ten samples (i.e., N = 10).

2. Overshoot should be less than or equal to 10% (i.e., ε = 0.1).

We have

Bb = 1− 3z−1

Ab = (1− 2z−1)(1 + 4z−1) = 1 + 2z−1 − 8z−2

Ag = 1, Bg = 1

Let us first consider the rise time condition:

ω ≥ π

2N
=

π

2× 10
= 0.1571

We will choose ω = 0.1571. Let us next consider the overshoot condition:

ρ ≤ εω/π = 0.1π/20/π = 0.10.05 = 0.8913

We will let ρ = 0.8913. The characteristic polynomial is obtained as

φcl = 1− 2z−1ρ cosω + ρ2z−2 = 1− 1.7607z−1 + 0.7944z−2

We obtain the following Aryabhatta’s identity:

AbR1 + z−1BbS1 = φcl

Solving this, we obtain

S1 = −2.6945 + 2.8431z−1

R1 = 1− 1.0662z−1

M 9.7 may be used to design this controller. Implementation of this controller as
in Fig. 9.4 makes this system unstable. Depending on the accuracy with which the
implementation is carried out, it could take more or less time. For example, the
above mentioned closed loop becomes unstable after about 1,000 time steps when
simulated using Simulink code, given in Fig. A.3. In real implementations, it could
become unstable a lot sooner.

The problem associated with the implementation as in Fig. 9.1 on page 329 or as
in Fig. 9.4 is that there is unstable pole–zero cancellation between the feed forward
element and the closed loop transfer function. The obvious solution to this problem
is to shift Rc inside the loop, as in Fig. 9.5. Note that it is easy to shift Rc inside
the loop as we are using z−1 as the independent variable. If, instead, we work with
polynomials in powers of z, some extra work is required.
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Figure 9.5: 2-DOF pole placement controller with unstable Rc taken inside the
feedback loop
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Figure 9.6: Output and input profiles for closed loop system with unstable controller,
discussed in Example 9.6

Example 9.6 Solve Example 9.5 once again, with Rc taken inside the loop.

Note that there is no change in the control design procedure. The only change is
in simulation: now, it has to be carried out as in Fig. 9.5. M 9.7, in addition to
designing the controller, sets up parameters for simulation using Simulink code,
given in Fig. A.1 as well.

The system remains stable even after 10,000 steps of iteration. The output and
input profiles have been plotted in Fig. 9.6.

Because of the limitations introduced by the nonminimum phase zeros, the
controller does not perform as well as the design specifications.

9.4 Internal Model Principle for Robustness

We would like to evaluate the efficacy of CTRL-2 designed in Example 9.4 for handling
any mismatches between the model and reality for the magnetically suspended ball
problem. This is the topic of discussion in the next example.
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Example 9.7 Study the robustness of the controller CTRL-2 to perturbations
in initial conditions and in open loop parameters, such as gain.

We will first study the effect of perturbing the initial conditions. The procedure is
as follows:

1. Calculate CTRL-2 using the procedure discussed in Example 9.4.

2. Invoke Simulink code presented in Fig. A.8.

3. Perturb the initial conditions using the vector xInitial in Matlab work
space.

4. Carry out the simulation.

Recall that x1 denotes the distance between the ball and armature and x3 denotes
the current through the circuit. We perturbed the initial conditions in these two
variables in the following range: x1(0) = ±0.005 m and x3(0) = ±1 A, one at a
time. Note that the order of magnitude of these perturbations is comparable to
the equilibrium values. We can assume that the initial velocity of the ball is zero
and, hence, x2(0) is not perturbed. In all simulations, the steady state offset is
nil. Thus the controller CTRL-2 is able to handle the perturbations in the initial
conditions.

We study the effect of perturbing the gain of the plant through the procedure
given next:

1. The controller (CTRL-2) is designed with a nominal value of c =
[
1 0 0

]
.

2. After the design is completed, the value of c is perturbed to
[
1.1 0 0

]
and[

0.9 0 0
]

in Matlab work space.

3. For each perturbation, simulation is carried out through the Simulink block
diagram given in Fig. A.8.

The resulting profiles are plotted, respectively, as solid and dotted lines, in Fig. 9.7.

It is clear that there is a big offset in y for both perturbations.

It is easy to explain the reason for the offset in the above example: output following
is proposed to be achieved by choosing γ as the reciprocal of steady state gain. If the
gain of the plant used in simulation is different from that used for controller design,
naturally γ will be calculated wrongly. We can conclude that the above procedure has
a shortcoming whenever there is uncertainty in the steady state gain. We will next
describe a method that overcomes this difficulty.

We know from Sec. 7.5 that if an internal model of a step is present in the loop, step
disturbances can be rejected. One way to realize this is to ensure that the denominator
Rc has this component, see Eq. 7.62 on page 272. If we denote the denominator of
the step input as ∆, i.e.,

∆ = 1− z−1 (9.22)

Eq. 9.11a will have to be replaced by

Rc = Bg∆R1 (9.23)
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Figure 9.7: Output y(n) and input u(n) profiles for perturbations in plant gain, as
discussed in Example 9.7 using the controller designed in Example 9.4 (CTRL-2).
Solid lines correspond to increasing the gain (c = [1.1 0 0]) and dotted lines denote
decrease of gain (c = [0.9 0 0]). There is steady state offset in y for both perturbations.

As ∆ has a root on the unit circle, it has to be treated as the bad part and not
cancelled. This implies that all earlier occurrences of R1 have to be replaced by ∆R1.
For example, we now have to solve the following Aryabhatta’s identity, as opposed to
the one in Eq. 9.14 on page 330:

Ab∆R1 + z−kBbS1 = φcl (9.24)

Comparing Eq. 9.5 on page 329 with Fig. 8.2 on page 310, we see that we have an
extra factor of γ in Tc now. In view of the condition for offset free tracking of step
inputs derived in Eq. 8.23 on page 311, we see that a sufficient condition for offset
free tracking is now obtained as

Sc(1) = γTc(1) (9.25)

Using Eq. 9.11 on page 330, we see that this condition is equivalent to S1(1) = γT1(1).
Because of Eq. 9.15, this condition becomes

S1(1) = γ (9.26)

Fig. 9.8 shows a schematic of this approach. We now illustrate this procedure and its
efficacy with a simple example.

Example 9.8 Explore the effect of incorporating the internal model of a step
in the closed loop of the suspended ball problem.

The calculation begins as in Example 9.3 on page 331. Nevertheless, as there is
now an extra factor of ∆, Eq. 9.14 on page 330 has to be changed. Recall that
we require rise time = 0.15 s, overshoot = 0.05 and settling time = 0.5 s. This is
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Figure 9.8: Modification of pole placement controller of Fig. 9.1 on page 329 to include
an internal model of a step

achieved by the following specifications: rise time = 0.1 s and ε = 0.05. Eq. 9.24
becomes

(1 − 1.3678z−1)(1− z−1)R1 + z−1(1 + 2.9877z−1)S1 =

1− 1.7006z−1 + 0.7411z−2
(9.27)

Solving this equation for R1 and S1 using xdync.m, we obtain

R1 = 1 + 0.4507z−1

S1 = 0.2165− 0.2063z−1
(9.28)

Using Eq. 9.11,

Rc = −3.7209× 10−5(1 + 0.654z−1 + 0.0916z−2)(1 − z−1)

Sc = 0.2165− 0.4443z−1 + 0.285z−2 − 0.0555z−3

Tc = Ag = 1− 1.099z−1 + 0.269z−2

Using Eq. 9.16 on page 331, we obtain γ = 0.0102, which can be shown to be
equal to S1(1), satisfying the offset free tracking condition of Eq. 9.26. We will
refer to this controller as CTRL-3.

By incorporating the following changes, M 9.8 generalizes M 9.5:

1. There is now one more input parameter. The polynomial, whose internal
model has to be introduced in the loop, has to be passed through the
argument Delta. For example, if Delta is set as [1 -1], an internal model of
∆ = 1 − z−1 is introduced in the loop. Note that if no internal model is to
be introduced, ∆ has to be chosen as 1.

2. The call to xdync.m is now changed: we now pass Ab∆ in place of Ab.

The controller described above, namely CTRL-3, is obtained by setting rise=0.1,
Delta=[1 -1] in M 9.9, which also sets up the simulation parameters for the
magnetically suspended ball problem. If instead we let rise=0.15, Delta=1, we
obtain CTRL-1, discussed in Example 9.3.

After execution of M 9.9, Simulink code given in Fig. A.8 is executed. The resulting
profiles for nominal as well as positive and negative perturbations in c are reported
in Fig. 9.9. It is easy to see that the presence of an internal model of the step in
the control loop has removed the offsets seen in Fig. 9.7.
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Figure 9.9: Output y(n) and input u(n) profiles for perturbations in plant gain, as
discussed in Example 9.7 using the controller designed in Example 9.8 (CTRL-4).
Solid lines correspond to increasing the gain (c = [1.1 0 0]), dense dotted lines denote
decrease of gain (c = [0.9 0 0]) and sparse dotted lines correspond to nominal state.
Offsets seen in Fig. 9.7 have been eliminated.

Although the steady state offsets in y have been removed, the transient require-
ments are no longer met. This is because the internal model principle provides
relief only at steady state, see Sec. 7.5. The control efforts required for perturbed
conditions are different from that of the nominal model.

Simulations have shown that CTRL-3 can reject the perturbations in initial
conditions as well.

Note that the code presented in this example can generate and evaluate the
performance of all controllers derived so far, namely CTRL-1 to CTRL-3.

We conclude this section with an example that has to do with the control of an
IBM Lotus Domino server. Through this example, we illustrate another utility of the
integral mode.

Example 9.9 Determine a 2-DOF pole placement control for an IBM Lotus
Domino server [22] with the transfer function

G(z) =
0.47z−1

1− 0.43z−1

such that the following transient specifications in tracking a step input are met:
rise time ≤ 10 and overshoot condition, ε ≤ 0.01.
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We obtain the following factors:

Ag = 1− 0.43z−1

Ab = 1
Bg = 0.47

Bb = 1
k = 1

In all these naturally discrete time problems, Ts can be taken as 1 without loss of
generality. We obtain

Nr = 10
ω = 0.1571
ρ = 0.7943

φcl = 1− 1.5691z−1 + 0.6310z−2

Because step signals are to be followed, we will assume an internal model of steps
in the loop. We need to solve Aryabhatta’s identity, given by Eq. 9.14, reproduced
here for convenience:

Ab∆R1 + z−kBbS1 = φcl

For the current problem, the above equation becomes

(1 − z−1)R1 + z−1S1 = 1− 1.5692z−1 + 0.6310z−2

Because the condition on C, namely Eq. 7.120 on page 291, is not satisfied, there
is no unique least degree solution. Nevertheless, our implementation of this solver
gives the following solution,

R1 = 1− 0.6310z−1

S1 = 0.0619

the correctness of which can be easily verified. The 2-DOF pole placement
controller is given by

Rc = 0.47− 0.7665z−1 + 0.2965z−2

Sc = 0.0619− 0.0266z−1

Tc = 1− 0.43z−1

γ = 0.0619

M 9.10 implements this solution. The resulting output and input profiles are shown
in Fig. 9.10. As in the previous examples, all requirements, except the rise time, are
met. The rise time requirement can also be met by specifying a tighter requirement.

We will take this up example once again in Example 9.16 on page 357 to discuss
performance in the presence of input limits.
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Figure 9.10: Step response of the IBM Lotus Domino server, discussed in Example 9.9

9.5 Redefining Good and Bad Polynomials

In the previous section, we had taken the polynomial with roots inside the unit circle
to be good. In this section, through an example, we illustrate that we need to redefine
the concept of what is meant by good and bad polynomials.

Example 9.10 We will now design a controller for a DC motor described by [2].
The system is described by the following state space equations:

d

dt

[
x1

x2

]
=
[−1 0

1 0

] [
x1

x2

]
+
[
1
0

]
u

y =
[
0 1

] [x1

x2

]
The objective of this exercise is to design a pole placement controller that has a
rise time of 3 seconds and overshoot of not more than 0.05 for a step change in
the command signal.

The sampling time Ts is chosen as 0.25 s. The transfer function of the system is

G(z) = z−1 0.0288 + 0.0265z−1

1− 1.7788z−1 + 0.7788z−2

We obtain the following factorizations:

Ag = 1− 0.7788z−1

Ab = 1− z−1

Bg = 0.0288 + 0.0265z−1 = 0.0288(1 + 0.9201z−1)

Bb = 1

The controller design proceeds as in the ball system, explained in Example 9.3.
The transient specifications result in the following relations, leading to the desired
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Figure 9.11: Output (left) and input (right) profiles for the motor example obtained
with T1 = 1. Control effort u(n) is oscillatory and, hence, not acceptable. The rise
time constraint is not met in y(n).

closed loop characteristic polynomial:

N = 12
ω = 0.1309
ρ = 0.8827

φcl = 1− 1.7502z−1 + 0.7791z−2

Note that as A has 1 − z−1 as a factor, an internal model of the step is already
present. By solving Aryabhatta’s identity, of the form in Eq. 9.14, we obtain the
following control parameters:

R1 = 1− 0.7791z−1

S1 = 0.0289

Rc = 0.0288 + 0.0041z−1− 0.0206z−2

Sc = 0.0289− 0.0225z−1

Tc = 1− 0.7788z−1

M 9.11 carries out these calculations.

The efficacy of this controller is checked by simulation through Simulink code in
Fig. A.8. The resulting profiles are shown in Fig. 9.11.

The control effort is highly oscillatory. In view of this, this controller is rejected.
As in the ball problem (see Example 9.3), while the overshoot and the settling
time constraints have been met, the rise time is larger than what is specified.
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It is easy to explain why the control effort is oscillatory. Substituting the expressions
for Rc, Sc and Tc from Eq. 9.11 on page 330 into the control law given by Eq. 9.5, we
obtain

u(n) = γ
AgT1

BgR1
r(n) − AgS1

BgR1
y(n)

Because Bg has a zero at −0.9201, the control variable u is oscillatory. Recall from
Fig. 5.1 on page 114 that poles on the negative real axis result in oscillations. Recall
also that the very definition of good factors has been introduced earlier in this chapter
to effect cancellations. And recall from Sec. 7.4.2 that the pole–zero cancellation
effected between the plant and the controller appears in other transfer functions. When
such a cancellation occurs, the output also oscillates in every sampling interval, even
though it may appear to be nonoscillatory if one observes it at the sampling instants
only. These are known as hidden oscillations.

One way to prevent this from happening in the current design is to define the factor
with a root in the left half of the plane as a bad one, whether or not it lies within the
unit circle. As a matter of fact, we can make use of the desired region analysis carried
out earlier. For example, we could say that the entire area outside the shaded region
in Fig. 7.31 is bad. Unfortunately, however, it is not easy to calculate this region.
As a way out, we can take a root whose real part is negative to be bad. We can take
this opportunity to define also as bad the factors that are inside the unit circle, but
close to it. The reason is that if the factors close to the unit circle are cancelled, this
would show up as poles of the controller transfer function and make the control action
sluggish. In view of this, we would define the stable poles inside the unit circle also
as bad and thus ensure that they don’t get cancelled. These two changes have been
implemented in M 9.12. Compare this with M 9.3 that defines all the factors inside
the unit circle to be good.

We will now apply this new definition of good and bad polynomials to the motor
control problem and check whether the oscillations are removed.

Example 9.11 Redo Example 9.10 with good and bad factors defined as in
M 9.12.

In Lines 7 and 8 in M 9.8, let the function polsplit3 be called instead of
polsplit2. B is factored as

Bg = 0.0288

Bb = 1 + 0.9201z−1

while the factoring of A is same as that in Example 9.10. As the transient
specifications have not changed, we obtain the old φcl, namely

φcl = 1− 1.7502z−1 + 0.7791z−2

Solving

(1− z−1)R1 + z−1(1 + 0.9201z−1)S1 = 1− 1.7502z−1 + 0.7791z−2

using xdync.m, we obtain

R1 = 1− 0.7652z−1

S1 = 0.015
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Figure 9.12: Output and input profiles for the motor problem using the new
cancellation rule. Oscillations in the control effort have been removed. The rise time
constraint is not met in y(n).

Using Eq. 9.11 on page 330,

Rc = 0.0288− 0.022z−1

Sc = 0.015− 0.0117z−1

Tc = Ag = 1− 0.7788z−1

The performance of this controller is checked with the Simulink code given in
Fig. A.8. We obtain the profiles as in Fig. 9.12. Observe that the oscillations
have been completely removed. In addition, the initial control effort is smaller.
Unfortunately, however, the rise time condition is not met.

As in the ball suspension problem, the best control effort is achieved by making
the required rise time less than that required. Fig. 9.13 shows the profiles obtained
with rise time specified as 2 s. The required conditions of rise time = 3 s and
overshoot = 0.05 have been met simultaneously. The controller parameters are

φcl = 1− 1.6266z−1 + 0.6877z−2

R1 = 1− 0.6584z−1

S1 = 0.0318

As before, using Eq. 9.11, we obtain

Rc = 0.0288− 0.019z−1

Sc = 0.0318− 0.0248z−1

Tc = Ag
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Figure 9.13: The profiles in Fig. 9.12 are improved by requiring the rise time to be
less than required. With rise time specified as 2 s, we meet the required conditions of
rise time = 3 s and overshoot = 0.05, simultaneously with a reasonable control effort.

Because the plant has ∆ as a factor, the controller is capable of handling setpoint
changes even if there are some changes in the model parameters. This controller
is found to track the perturbations in the initial conditions as well. M 9.13 helps
design this controller.

We illustrate the efficacy of the proposed method [40] with a difficult control
problem, presented by [52, p. 47].

Example 9.12 Suppose that we have a system with plant (G(s)) and distur-
bance (H(s)) transfer functions, as given below,

G(s) =
200

10s+ 1
1

(0.05s+ 1)2

H(s) =
100

10s+ 1

with time in seconds. Design a 2-DOF pole placement controller, so as to satisfy
the following requirements:

1. The 90% rise time to a step change in r should be less than 0.3 s and the
overshoot should be less than 5%.

2. The output in response to a unit step disturbance should remain within
[−1, 1]. It should satisfy y(t) < 0.1 after 3 s.

3. u(t) should remain within [−1, 1] at all times.
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Figure 9.14: Schematic of 2-DOF pole placement controller

A schematic of this system with a 2-DOF pole placement controller is given in
Fig. 9.14. The zero order hold equivalent of this system with sampling period
Ts = 0.025 s yields

G(z) =
0.0163(1 + 2.9256z−1)(1 + 0.2071z−1)z−1

(1− 0.9975z−1)(1− 1.2131z−1 + 0.3679z−2)

H(z) =
0.2497z−1

1− 0.9975z−1

where we have used the same symbols G and H . If we define only the roots outside
the unit circle as bad, the transfer function between d and y will have a sluggish
pole at 0.9975. In view of this, we define this factor as bad. In order to avoid
oscillations in the control effort, we take the factor 1 − 0.2071z−1, which has a
negative zero, as in Example 9.11, also as bad. We obtain

Bg = 0.0163

Bb = (1 + 2.9256z−1)(1 + 0.2071z−1)

Ag = 1− 1.2131z−1 + 0.3679z−2

Ab = 1− 0.9975z−1

The controller designed with rise time as 0.3 s and overshoot as 0.05 results in
the first condition being violated: we obtain a rise time of 0.37 s. The is because
of the presence of Br = Bb, the nonminimum phase part of the plant numerator.
We handle this by overspecifying the rise time requirement. With the required rise
time as 0.24 s, we obtain the following:

φcl = 1− 1.6882z−1 + 0.7319z−2

R = 0.0163(1 + 0.2357z−1 + 0.0391z−2)(1 − z−1)

S = 0.0736(1− 2.0877z−1 + 1.4288z−2− 0.3218z−3)

T = 1− 1.2131z−1 + 0.3679z−2

M 9.14 implements these designs. By choosing st = 1 and st1 = 0 in Lines 31
and 32 of this code, we can simulate the tracking problem. If instead we choose
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Figure 9.15: Profiles for tracking problem

st = 0 and st1 = 1, we can verify the efficacy of the controller in rejecting the
unit step disturbance.

The plots of the output y and the control effort u for the tracking problem are
given in Fig. 9.15. One can see that all the tracking requirements are fulfilled.
The corresponding plots for the regulation problem are given in Fig. 9.16. The
response y returns to within 0.1 in 0.4 s itself, as opposed to the requirement
to do this within 3 s. On the flip side, the control effort exceeds the maximum
permissible value by 12%. M 9.14 calculates also the gain and phase margins
as Gm = 4.7 and Pm = 46◦, respectively. We see that the simple 2-DOF pole
placement technique has been able to provide a reasonable controller for a difficult
plant, characterized by two time constants that vary by two orders of magnitude.
Considering that the transient requirements are also quite stiff, we see the efficacy
of the proposed control technique.

We have used two tuning parameters in this design: sampling time and rise time.
We note that the sampling time Ts has to be smaller than the smallest time
constant of the plant, which is 0.05 s. A smaller Ts, of the order of 0.01 s, results
in large control efforts. We could quickly arrive at a value of 0.025 s. Tuning of
the rise time specification also is straightforward: we have made it small enough
so that the required rise time of 0.3 s is met.

Thus, we see that a fairly simple control design technique, posed entirely in the
discrete time domain, has been able to provide a reasonably good controller for a
difficult problem.

In the next example, we will present the original controller, designed entirely in the
continuous time domain, and discuss the implementation issues.
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Figure 9.16: Profiles for regulation problem

Example 9.13 For the plant studied in Example 9.12, the controller has been
designed by [52, p. 52], in the form of two control blocks:

Ky(s) = 0.5
s+ 2
s

0.05s+ 1
0.005s+ 1

Kr(s) =
0.5s+ 1
0.65s+ 1

1
0.03s+ 1

Discuss the efficacy of this controller.

Because continuous time domain techniques have been used to arrive at this
controller, we do not present them here. The interested reader is referred to
the original reference for details. We would, however, like to focus on the
implementation issues of this controller.

M 9.15 sets up the plant and the controller blocks. The Simulink block diagram,
given in Fig. A.6, carries out the simulations entirely in the continuous time
domain. Through execution of these programs, one can easily see that the problem
specifications are achieved. M 9.15 calculates also the gain and phase margins as
Gm = 19.7 and Pm = 51◦, respectively.

Unfortunately, however, it requires some more work to implement this controller,
the reason being that one has to discretize the controller first. M 9.15 can be
used to study these issues as well. The Simulink block diagram, given in Fig. A.7,
may be used to carry out the indicated simulations. If Ts is chosen to be equal to
0.025 s, as in Example 9.12, the controller performs extremely poorly in meeting
the setpoint tracking requirements. The degradation in performance is expected
because the sampling time used is larger than the time constants of the controller.

The performance of the controller gets better as the sampling time is made smaller.
If Ts is chosen to be equal to 0.01 s, the performance becomes comparable to
that of the discrete time controller, designed in Example 9.12. In the setpoint
tracking problem, the initial control effort exceeds the specified limits of [−1, 1]
by about 10%. The gain and phase margins for this implementation are Gm = 6.7
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and Pm = 68◦, respectively. Indeed, to achieve the continuous time domain
performance, sampling periods smaller than 0.001 s are required, as can be verified
using the programs mentioned.

In summary, if small sampling times are difficult to achieve, one may consider using
the discrete time controller, presented in Example 9.12. If smaller sampling times
are permissible, the continuous time controller presented in this example is more
suitable.

We would like to conclude this example with a few comments on the design of the
continuous time controller. It is not obvious how to arrive at some of the transfer
functions in the above expressions. The number of tuning parameters also is large.
It is safe to say that the time required to tune the continuous time controller would
be at least one order of magnitude more than that required for the discrete time
controller of Example 9.12.

9.6 Comparing 1-DOF and 2-DOF Controllers

The main benefit of the 2-DOF controller is that we can shape the response to
reference and disturbance signals independently. We have seen in Sec. 8.3.6 that
the PID controllers may be implemented in a 2-DOF configuration to overcome the
derivative kick. This allows tight tuning for disturbance rejection, without worrying
about input saturation, see Problem 8.9. The 2-DOF pole placement controller
generalizes these ideas. Although we have chosen T1 to be unity in Eq. 9.15 on
page 330, it is possible to assign a suitable value so as to shape the response to
reference signals [30].

In this section, we show that in 2-DOF controllers, the system type is dependent
on the type of signal – reference, as opposed to disturbance signal. The reason is
that Sc, which is present in the loop, helps achieve the desired system type for the
disturbance signal. Because Tc is not in the loop, it does not have to satisfy any
special condition. Because Tc could be different from Sc, the type of the system could
be different from the reference signal. We illustrate these ideas with an example.

Example 9.14 For the system given in Example 7.10, design 1-DOF and
2-DOF controllers, with and without an additional integral term, and evaluate
the system type.

In Example 7.10, for a closed loop characteristic polynomial of φcl = 1− 0.5z−1,
we have designed two controllers for the 1-DOF controller, for two cases: with and
without an additional integral term. Let us refer to them as Gc1 and Gc2. That is,

Gc1 =
1
2
, Gc2 =

1.5z − 1
z − 1

These controllers have been designed with the following two changes from the
2-DOF control design techniques. The first step is to take the entire A and B as
bad. That is, we do not cancel the good parts. We end up solving Aryabhatta’s
identity,

ARc + z−kBSc = φcl (9.29)
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If the controller includes one integral term, we choose Rc = ∆R1, as explained in
Sec. 9.4, and solve the following Aryabhatta’s identity:

A∆R1 + z−kBSc = φcl (9.30)

The second step is to take γTc = Sc, irrespective of whether or not we include
the integral term. We have implemented these calculations through M 7.7 in
Example 7.10 on page 275 and seen that Gc1 and Gc2 give rise to Type 1 and
Type 2 systems, respectively.

We will now calculate the 2-DOF controller for the same φcl. By choosing Delta
to be 1 in Line 4, we design a controller with no additional integral term. We will
refer to the resulting controller as Gc3. It is given by

Rc = 1, Sc = 0.5, Tc = 1, γ = 0.5

By choosing Delta to be [1 -1] in Line 4, we design a controller with an additional
integral term. We will refer to the resulting controller as Gc4. It is given by

Rc = 1− z−1, Sc = 1.5− z−1, Tc = 1, γ = 0.5

The transfer function between the reference signal r and the output signal y is
given by Eq. 9.21. Because γ = 0.5 for both cases, we obtain the following transfer
function T between the reference signal and the output signal:

T =
0.5

z − 0.5

Thus, the sensitivity transfer function S is given by

S = 1− T =
z − 1
z − 0.5

for both controllers. It follows that the system type is the same for both the
controllers. In other words, we obtain the same system type, whether or not the
controller includes an additional integral term. Let us calculate the steady state
offsets for a step signal first. Substituting the above S and R = z/(z − 1) in
Eq. 7.80, we obtain the steady state error to step inputs as

lim
n→∞ e(n) = lim

z→1

z − 1
z

z − 1
z − 0.5

z

z − 1
= 0

Thus, both controllers reject step changes completely. Now, let us see what
happens to step inputs to ramps. Using the same procedure as above, the following
steady state error results:

lim
n→∞ e(n) = lim

z→1

z − 1
z

z − 1
z − 0.5

z

(z − 1)2
= 2

This can be verified by executing the Simulink program stb disc.mdl of Fig. A.1
on page 525, followed by M 9.16.

Although Gc4 introduces an extra integral term, the system is only Type 1 with
respect to the reference signal. It is easy to check that the system is of Type 2
with respect to the disturbance signal.
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In this example, we have taken φcl as 1− 0.5z−1. Instead, we could have arrived at it
through performance specifications, as in Sec. 7.7.

Now we address the question of cancellation of good factors. Why should we even
cancel them? Why can’t we just solve Eq. 9.29 to design a 1-DOF controller? The
2-DOF control design ensures that at least some part of the controller is good, see
for example Eq. 9.11 on page 330. If, on the other hand, Rc and Sc are obtained
by solving only Eq. 9.29, there is no guarantee that Rc and Sc have good factors.
Of course, if we don’t cancel the good factors, we also end up solving a higher degree
Aryabhatta’s identity. We illustrate these ideas with an example.

Example 9.15 Design a pole placement controller that places the poles of the
plant

G =
z−1(1 + 0.9z−1)(1− 0.8z−1)

(1− z−1)(1− 0.5z−1)

so as to give rise to a closed loop characteristic polynomial φcl = 1−z−1 +0.5z−2

and to have nonzero offset to step inputs.

Let us first design the 2-DOF controller. M 9.17 may be used for this purpose with
the variable control in Line 10 assigned as 2. We obtain

Bg = 1− 0.8z−1, Bb = 1 + 0.9z−1, k = 1

Ag = 1− 0.5z−1, Ab = 1− z−1

Because the plant has an integral term, we need to solve Eq. 9.14 on page 330,
which is

(1− z−1)R1 + z−1(1 + 0.9z−1)Sc = 1− z−1 + 0.5z−2

Solving this, we obtain R1 = 1 − 0.2632z−1, S1 = 0.2632. Notice that the zero
of R1 is in a good location. Using Eq. 9.11 and Eq. 9.16 on page 331, we obtain

Rc = 1− 1.0632z−1 + 0.2105z−2, Sc = 0.2632− 0.1316z−1

Tc = 1− 0.5z−1, γ = 0.2632

We now calculate a 1-DOF pole placement controller, by assigning a value of 1 to
the variable control in Line 10 of M 9.17. We now solve Eq. 9.29, which is

(1− z−1)(1 − 0.5z−1)Rc + z−1(1 + 0.9z−1)(1 − 0.8z−1)Sc = φcl

with φcl unchanged. The solution is obtained as

Rc = 1− 2.4292z−1 − 2.3233z−2, Sc = 2.9292

The roots of Rc are 3.1636 and −0.7344. We see that this controller is unstable.
Notice also that it has a negative pole, which should result in oscillatory control
effort, see the discussion in Sec. 9.5. In contrast, the previous controller has only
good poles. Our observations may be verified by executing Simulink code given
in Fig. A.1. We obtain the plots given in Fig. 9.17. Note that, as expected, the
controller obtained after cancellation of good factors is performing a lot better.
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Figure 9.17: Comparison of pole placement controllers with cancellation (thick
lines) and without cancellation (thin lines) of good factors, as discussed in
Example 9.15

This example shows the benefits of cancelling good factors. Is it possible to cancel
the good factors in the 1-DOF controller design so as to overcome the difficulties
explained in the above example? We invite the reader to explore this option in the
above example, as well as in Problem 9.5.

We now summarize the pole placement controller design:
1: Specify the constraints on rise time, overshoot and decay ratio, and determine φcl.
2: if 2-DOF controller then
3: Split A and B into good and bad factors: A = AgAb and B = BgBb.
4: Solve Eq. 9.14 on page 330 or Eq. 9.24 on page 339 for R1 and S1. Assign a

suitable value for T1; a possible choice is 1.
5: Rc, Sc and Tc given by Eq. 9.11. In case the internal model of a step is used,

Rc has to be calculated using Eq. 9.23 on page 338. In this case, check the
calculations using Eq. 9.25 or Eq. 9.26.

6: else if 1-DOF controller then
7: Solve Eq. 9.29 for Rc and Sc. Let Tc = Sc and choose appropriate γ.
8: end if
9: The controller is given by Eq. 9.5 on page 329.

10: Use the configuration of Fig. 9.5 on page 337 for implementation.

9.7 Anti Windup Controller

Sometimes there are limits put on the control action. This may be done from a safety
point of view. This could also happen when the actuator saturates. A schematic
of a 2-DOF controller with a limiter is shown in Fig. 9.18. It is clear that if the
controller is not allowed to work freely, the performance could deteriorate. There
could be additional difficulties, as we now explain.

If the output of a control block with integral mode is constrained by a limiter,
the controller should be informed about it. If not, the controller would have no idea
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Figure 9.18: 2-DOF controller with limits on control effort. Up to some value, the
controller output u is the same as the plant input usat. Beyond this, usat is different
from u.

about the saturation and hence would increase its output further. This situation is
known as integrator windup, an illustration of which is given in Example 9.16.

The problem with integrator windup is that, if not corrected, the controller output
u could be quite different from the actual effort usat that goes into the plant. Now
suppose that the sign of the control effort has to be changed. Because the magnitude
of u is much larger than usat, it could take a lot of time to change the sign, as required.
As a result, usat would continue to be at the wrong maximum value.

Note that the reduced performance due to the presence of limiters and the
integrator windup are two different issues. The former is inevitable, as the performance
in the presence of limits cannot be the same as the one without any limits. On the
other hand, the integrator windup is an avoidable problem. An ideal situation is that
u should not increase beyond usat. This will allow u to change sign quickly, as and
when required.

The most obvious way to handle the integrator windup is to compare u and usat

and when a difference occurs, hold u at usat. We now present a feedback approach
[50] to solve this problem in our familiar 2-DOF controller framework. In particular,
we will show that the control scheme presented in Fig. 9.19 can negate the effects of
the saturating element, where we have introduced new polynomials P , E and F . Note
that we use a positive feedback around the limiter.

First we will show that it is possible to choose E and F that will reduce Fig. 9.19
to Fig. 9.18 when the control effort stays within the limits. Because the gain of the
limiting block is one under this assumption, the inner loop can be replaced by the
transfer function 1/(1 − E/F ) = F/(F − E). As a result, the schematic of Fig. 9.19
can be reduced to that in Fig. 9.20. Note that if we choose

F = E + PRc (9.31)

where P is stable, Fig. 9.20 reduces to Fig. 9.18. Thus, we have shown that when
the control effort is within limits, the scheme of Fig. 9.19 implements the standard
2-DOF pole placement control.

We will next show that when the control effort exceeds the limits, its impact on
y is eliminated, at least asymptotically. Thus, there will be a difference between the
computed control effort u and the one actually used, usat. We will model the impact
of this through a variable δ acting at the location of the nonlinear element, as in
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Figure 9.19: 2-DOF controller with feedback loop around the limiter. The controller
output u is modified by comparing it with the actual control effort usat used.
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Figure 9.20: 2-DOF controller with feedback around limiter is reduced to 2-DOF
controller without limiter when F = E + PRc and P is stable

z−k B

A

E

F

u yusat

δ

PSc

−
γPTc

r 1

F

Figure 9.21: Modelling the mismatch between u and usat by an exogeneous variable δ

Fig. 9.21, where we have taken v to be zero as the focus is on δ. It is easy to see that
Fig. 9.21 can be redrawn as in Fig. 9.22. Because the two feedback elements are in
parallel, they can be added to give PSc − EzkA/B in the negative feedback path.
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Figure 9.22: Simplified version of Fig. 9.21

The transfer function between δ and y is given by

Tδy =
z−k B

A

1 + z−k B
A

(
PSc − Ezk A

B

)
1
F

=
z−kBF

FA+ (z−kBPSc − EA)

Using Eq. 9.31 in the denominator, we obtain

Tδy =
z−kBF

PRcA+ z−kBPSc
(9.32)

Note that RcA+ z−kBSc is the closed loop characteristic polynomial; an expression
for it can be obtained as φclA

gBg, by multiplying both sides of Eq. 9.14 on page 330
with AgBg. If we choose

F = ARc + z−kBSc = φclA
gBg (9.33)

Eq. 9.32 becomes

Tδy = z−kB

P
(9.34)

If P is stable and well behaved, the effect of Tδy will diminish with time. Many choices
have been proposed in the literature for P . A popular choice is

P = A (9.35)

if A is stable. If any factor of A is not stable, we replace this factor with its stable
reflection. We illustrate this approach with an example.

Example 9.16 Explain the steps discussed in this section with the problem of
control of an IBM Lotus Domino server, discussed in Example 9.9.

The transfer function of this system is given by

G(z) =
0.47z−1

1− 0.43z−1
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Figure 9.23: Anti windup control (AWC) in the 2-DOF framework. The Simulink
code is available at HOME/matlab/stb disc sat.mdl, see Footnote 1 on page 367.
Parameters for simulation may be established by executing a program, such as the
one in M 9.18.

From Example 9.9, we obtain Ag = 1− 0.43z−1, Ab = 1, Bg = 0.47, Bb = 1 and
k = 1. We calculate the desired characteristic polynomial now:

φcl = 1− 1.5691z−1 + 0.6310z−2

Rc = 0.47− 0.7665z−1 + 0.2965z−2

Sc = 0.0619− 0.0266z−1

Tc = 1− 0.43z−1

γ = 0.0619

From Eq. 9.32–9.34, we obtain

F = 0.47− 0.9396z−1 + 0.6137z−2 − 0.1275z−3

P = Ag = 1− 0.43z−1

Using M 9.18, and the Simulink code in Fig. 9.23, we design the anti windup
controller and carry out the following different simulations. In each of them, we
give a reference signal of +1 at the zeroth instant and −1 at the 500th instant.
The resulting plots are shown in Fig. 9.24.

1. The first simulation is carried out assuming that there are no actuator
constraints. No anti windup controller is used in this simulation. The resulting
u, usat and y profiles are plotted with thick dotted lines in Fig. 9.24. Because
there are no limits on the control effort, the output of the plant tracks the
reference signal without any difficulty. Note that the magnitude of the control
signal is greater than one. Also note that u and usat are identical, as there
are no constraints.

When M 9.18 is executed, three options come in a menu. The first option is
to be selected for this design, followed by execution of the Simulink program
in Fig. 9.23.
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Figure 9.24: Controller output u, plant input usat and the plant output y for the IBM
Lotus Domino server problem, discussed in Example 9.16: thick dotted lines, limits
not imposed and AWC not used; thick continuous lines, limits imposed but AWC not
used; thin continuous lines, limits imposed and AWC used; sparse continuous lines,
limits not imposed but AWC used

2. The second simulation is carried out with actuator constraints of ±1.
The resulting profiles are plotted with thick continuous lines. Because the
magnitude of the required control effort is larger than one and because the
maximum allowable value is one, there is a difference between u and usat.
As mentioned earlier, u goes on increasing, see Fig. 9.24(b). As a matter of
fact, because the value of u for this run are a lot larger than that in other
runs, it has been shown in a separate figure. The plots corresponding to this
run are shown with thick lines.

When the sign of r changes at k = 500, the required value of u is
negative. But because of the integral windup, u is approximately 20, a large
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positive number. It takes quite a bit of time for this value to decrease and to
become negative. This delay affects the control input used by the plant usat,
and consequently, the plant output y: both of them are delayed by about 50
samples. This delay in following the changes in the reference signals could be
unacceptable. Such delays could actually result in catastrophic consequences.

The user may execute M 9.18 and choose the second option in the menu for
this design, followed by the Simulink program in Fig. 9.23.

3. The third simulation is carried out with actuator constraints of ±1. The
resulting profiles are plotted with thin continuous lines. The above mentioned
bad effects of saturation are reduced by the introduction of the anti windup
controller. The profiles for this run are plotted with thin continuous lines.
From Fig. 9.24(a), it is easy to see that the controller output u is reduced to
a small value the moment saturation takes place. As a result, the controller
is able to track the changes in the reference signal quickly. Thus, there is no
delay in following the sign changes in the reference signal.

It is important to note that the plant output exhibits an offset for both step
changes. This is inevitable, as the required control effort is not permitted.
We cannot escape from this problem of performance deterioration. What
AWC has achieved is to get rid of the delays in following the changes in the
reference signal.

The user may execute M 9.18 and choose the third option in the menu for
this design, followed by the Simulink program in Fig. 9.23.

4. The fourth and final simulation is carried out without actuator constraints,
but the in presence of AWC. The resulting profiles are shown with thin dotted
lines. The profiles of usat and y are identical to those obtained in the first
run. The profile of u, however, is different: the value of u is close to zero,
except when step changes occur.

We conclude this example with the observation that the plant runs in open loop so
long as there is a violation of the actuator limits, whether the anti windup controller
is used or not. For example, in the above runs, the control input to the plant, usat,
is constant at ±1 during most of the simulation. If this open loop operation is not
permissible, there is no option but to change the operational procedures or the
actuator itself.

In this section, we discussed in detail a possible way to incorporate anti windup
controllers. A related issue is that of bumpless transfer. It was mentioned in Sec. 8.3.4
that if the control input is in difference form, switching from manual mode to
automatic mode is somewhat easier than if we have the absolute control effort. There is
a requirement for a bumpless transfer in other situations as well. It could be because
of a change in the plant’s operating region or substitution of an analog controller
with a digital controller or switching to another controller simply to take care of
maintenance.

The similarities between bumpless operation and AWC are striking. It is possible
to think of a switch between two controllers of the former, as equivalent to the
introduction of an extra disturbance (possibly nonlinear), as in Fig. 9.22. In this sense,
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the anti windup controller discussed in this section could help achieve bumpless
transfer as well.

9.8 PID Tuning Through Pole Placement Control

PID controllers are extremely popular in industry. One of the difficulties associated
with the use of these controllers, however, is the task of tuning: it can be time
consuming, to say the least. Often the guidelines are inadequate and a lot of trial and
error is required in tuning. In view of this, practitioners welcome any realistic method
of tuning these controllers. In recent years, there has been a move to come up with
initial tuning parameters through model based control techniques. This procedure
involves design of a model based controller and then implementing it through a PID
controller. In this section, we will concentrate on tuning the PID controllers through
pole placement techniques.

In Sec. 8.3, we presented several methods of discretizing the PID controllers. We
also showed how they can be presented in RST format. In this section, we will reverse
the procedure: we will first solve Aryabhatta’s identity for polynomials Rc and Sc and
then back calculate the PID tuning parameters. As the PID framework allows only
four parameters, including the filter constant N , the maximum number of polynomial
coefficients we can work with is also four. Because the degrees of Rc and Sc depend
on that of A and B, it is clear that this introduces a constraint on the type of plants
for which this is possible. In the latter part of this section, we will discuss this topic
in detail.

In continuous time PID controllers, we will not even think of assigning negative
values to the parameters. Nevertheless, when they are assigned by solving simultane-
ous equations, there is no guarantee that the resulting solution will be positive all the
time. We will now show that there could be advantages in assigning negative values
to the PID parameters.

Recalling Eq. 8.31 on page 314, we see that r1 has to be negative if both τd and N
are to be positive. Unfortunately, as r1 is obtained by solving Aryabhatta’s identity,
there is no guarantee of r1 remaining negative.

We demonstrate this with an example.

Example 9.17 Design a PID control law for the plant with continuous time
transfer function

G(s) =
1

2s+ 1
e−0.5s

sampled at Ts = 0.5. Let the overshoot ε be 0.05. Solve Aryabhatta’s identity for
the rise time in the range of 4 to 9 s and determine the corresponding r1, defined
in Eq. 8.31– 8.33 on page 314.

We first calculate φcl for the given ε and a rise time in the given range. Eq. 9.37 is
then solved for R1 and Sc. R1 is of the form 1 + r1z

−1. M 9.19 carries out these
calculations by invoking M 9.20. Closed loop simulations can be carried out using
the Simulink code in Fig. A.4.

First we list r1 as a function of rise time in Table 9.1. It is easy to see that if
we demand a rise time of 6 seconds or less, r1 is positive. From Eq. 8.31 on
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Table 9.1: Parameter r1 as a function of rise time

Rise time r1

4 0.1522
5 0.0782
6 0.0286
7 −0.0070
8 −0.0337
9 −0.0545
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Figure 9.25: Output and input profiles for rise times of 5 (thick line) and 7 (thin
line), in Example 9.17. The faster response is realized through a PID controller with
negative tuning parameters.

page 314, we see that either τd or N has to be negative if we wish to implement
this controller through the PID framework. In other words, the PID controller with
positive parameters achieves only a slow response. If we wish to speed it up, we
may have no option but to use negative values in the PID parameters. The output
and the input profiles achieved with rise time specifications of 5 and 7 are shown
using thin and thick lines, respectively, in Fig. 9.25. Actual rise times achieved are
worse than what is designed for, as explained earlier.

If we worked with analog PID controllers, we would not even think about using
negative tuning parameters. The digital controller, on the other hand, could
actually promote such usage. In view of this, we remark that it may be possible to
get better performance with digital controllers than with analog controllers.

Having argued for the flexibility of assigning negative values to the PID parame-
ters, we will proceed to derive explicit expressions for them and also the conditions
on the plant.

The main reason for splitting the PID action into forward and backward paths
was presented in Sec. 8.3.6 and 8.3.7. Here we approach this problem purely from
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the point of view of solvability of polynomial equations. Suppose that we wish to
place the closed loop poles of the system at the roots of φcl, the desired closed loop
characteristic polynomial. From Eq. 7.13, we have

A(z)Rc(z) +B(z)Sc(z) = φcl(z) (9.36)

This equation assumes that B includes time delays. If we wish to express the delay
explicitly and if R has an integral action, i.e., Rc = ∆R1, where ∆ = 1 − z−1, the
above equation becomes, after dropping the explicit dependence on z−1,

A∆R1 + z−kBSc = φcl (9.37)

Comparing this with Eq. 9.24, we see that this is equivalent to setting Ab and Bb

as A and B, respectively. That is, we don’t cancel any factor of A or B to arrive at
the control law. We now invoke the degree condition of the solution of Aryabhatta’s
identity, as in Eq. 7.121 on page 291. For a unique minimum degree solution, we see
that dR1 has to be less than dz−kB, the degree of the known quantity, in the other
term. As a result, we can equate dR1 to one less than dz−kB, with the possibility
that some coefficients of R1 are zero. Using a similar logic for the other unknown Sc,
we obtain

dR1 = dB + k − 1
dSc = dA+ 1− 1 = dA

(9.38)

where we have taken B to be a polynomial in z−1, see Footnote 5 on page 100. Thus,
we see that

dB ≤ dR1 − k + 1
dA ≤ dSc

(9.39)

Suppose that we use the control law given in Eq. 8.33– 8.35 on page 314. Because
dR1 = 1 and dSc = 2, we obtain

dB ≤ 2− k
dA ≤ 2

(9.40)

When the plant satisfies these conditions, it is possible to assign values to the four
PID parameters, namely K, τi, τd and N from r1, s0, s1 and s2. We will now state
the tuning rules for this PID structure [30]. From Eq. 8.31, it is easy to derive the
following relation:

τd
N

= −Ts
r1

1 + r1
(9.41)

In the following, we will use Eq. 8.35 for s0, s1 and s2. By straightforward calculation,
it is easy to show that s0r1 − s1 − (2 + r1)s2 = K(1 + r1)2. From this, we obtain

K =
s0r1 − s1 − (2 + r1)s2

(1 + r1)2
(9.42)
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By direct substitution, we can also obtain s0r21 − s1r1 + s2 = −KNr1(1 + r1)2. Then,
using Eq. 9.41, we obtain

τd = Ts
s0r

2
1 − s1r1 + s2
K(1 + r1)3

(9.43)

By straightforward addition, we obtain s0 + s1 + s2 = K(1 + r1)Ts/τi, from which we
obtain

τi = Ts
K(1 + r1)
s0 + s1 + s2

(9.44)

It is easy to verify that if we substitute r1, s0, s1 and s2 values, respectively, as −0.2,
6.05, −10.41 and 4.4, in the above expressions, we obtain K = 2, τd = 2.5, τi = 40
and N = 10, consistent with Example 8.8.

We will next consider the control law that does not have an integral action, i.e.,
PD controllers. It immediately follows that we cannot use the 2-DOF configuration
presented in Sec. 8.3.6, in which only the integral mode is fed back. It is possible to
use the configuration given in Sec. 8.3.7, in which a fraction of the reference signal
goes through the proportional mode. In this configuration, even if the integral mode
is excluded, fractional proportional feedback is available.

We will now demonstrate how to use the PD controller described in Sec. 8.3.5 to
arrive at the tuning parameters. First, we will begin with the standard polynomial
equation

ARc + z−kBSc = φcl (9.45)

where Rc does not have ∆ as a factor. Compare this with Eq. 9.37. The condition for
unique minimum degree solution is

dRc = dB + k − 1
dSc = dA− 1

(9.46)

or

dB ≤ dRc − k + 1
dA ≤ dSc + 1

(9.47)

The control law presented in Eq. 8.37– 8.39 on page 315 has dRc = 1 and dSc = 1
and the above equations become

dB ≤ 2− k
dA ≤ 2

(9.48)

We are now in a position to derive the tuning parameters for this PD control law.
The expression for τd/N is the same as in Eq. 9.41. From Eq. 8.39, we obtain

K =
s0 + s1
1 + r1

N =
s1 − s0r1
r1(s0 + s1)

(9.49)
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It is easy to verify that if we substitute −0.2, 6 and −4.4, for r1, s0 and s1, respectively,
we obtain K = 2, τd = 2.5 and N = 10, consistent with Example 8.9. We will present
another example.

Example 9.18 Explore the possibility of arriving at a PID controller to achieve
the performance specifications posed in Example 9.10 in the control of a DC motor.

This system has B = 0.0288+0.0265z−1, A = 1−1.7788z−1+0.7788z−2, k = 1,
dA = 2 and dB = 1. Thus, the conditions of Eq. 9.48 are satisfied. We conclude
that it is possible to tune a PD controller using the pole placement approach. From
Example 9.10, we see the characteristic polynomial as

φcl = 1− 1.7502z−1 + 0.7791z−2

Solving Eq. 9.45 for Rc and Sc, we obtain

Rc = 1 + 0.0073z−1

Sc = 0.7379− 0.2158z−1

which is equivalent to

r1 = 0.0073
s0 = 0.7379
s1 = −0.2158

We next calculate the PD controller parameters. Using Eq. 9.49, we obtain

K = 0.5183
N = −57.7038

Using Eq. 9.41, we obtain

τd = 0.1052

M 9.21 implements these calculations. Observe that N has turned out to be
negative.

Simulink block diagrams shown in Fig. A.5–A.6 on page 527 have been used to
validate the performance of these controllers. The efficacy of the RST controller
is demonstrated using thin lines in Fig. 9.26. Both the output variable y and the
control effort u are shown.

In the same figure, the performance of the controller, implemented in the
continuous time PD framework, is drawn using thick lines. The continuous time
controller is of the form given in Eq. 8.13, with τi taken as infinity. The other
tuning parameters are assigned the values given above.

It is clear from this figure that the control performance is better with the
discrete time controller, although with a larger initial control effort. This is not
surprising, because the specifications and the controller design have been carried
out completely in the discrete time domain and there is no guarantee that
implementation in the continuous time domain will give the same performance.
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Figure 9.26: Output and input profiles of the DC motor control problem using discrete
time (thin lines) and continuous time controllers, as explained in Example 9.18

We will conclude this section with a discussion on tuning the 2-DOF PID controller
presented in Sec. 8.3.6. Because the controller has an integral mode, Eq. 9.37–9.39 are
applicable now also. As the degree of R1 is one and that of Sc is two, Eq. 9.40 also
is applicable. For plants that satisfy these degree conditions, we can once again use
the four parameters r1, s0, s1 and s2, to assign the values for K, τi, τd and N . The
expression for r1 is identical to the one in Eq. 9.41, reproduced here for convenience:

τd
N

= −Ts
r1

1 + r1
(9.50)

As the expressions for Sc are now different, the PID parameters also will be different,
however. In the following, we will use the expressions for s0, s1 and s2 from Eq. 8.43.
By evaluating s1 + 2s2, it is easy to arrive at

K = −s1 + 2s2
1 + r1

(9.51)

By straightforward calculation, we can show r1s1 + (r1− 1)s2 = KNr1(1 + r1). Using
the above expressions for K and τd/N , it is easy to arrive at

τd = Ts
r1s1 + (r1 − 1)s2
(1 + r1)(s1 + 2s2)

(9.52)

Making use of Eq. 8.46 for s0 + s1 + s2, Eq. 9.50–9.51 for τd/N and K, it is easy to
arrive at the following expression for τi:

τi = −Ts
s1 + 2s2

s0 + s1 + s2
(9.53)

The tuning of PID controllers using model based controllers will be a continuing
theme throughout this book. We will take up this topic again in Sec. 10.2.3.
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9.9 Matlab Code

Matlab Code 9.1 Pole placement controller for magnetically suspended ball prob-
lem, discussed in Example 9.3 on page 331. Available at
HOME/place/matlab/ball basic.m1

1 % M a g n e t i c a l l y s u s p e n d e d b a l l p r o b l e m

2 % O p e r a t i n g c o n d i t i o n s

3 M = 0 . 0 5 ; L = 0 . 0 1 ; R = 1 ; K = 0 . 0 0 0 1 ; g = 9 . 8 1 ;
4 %

5 % E q u i l i b r i u m c o n d i t i o n s

6 hs = 0 . 0 1 ; i s = sqrt (M∗g∗hs/K) ;
7 %

8 % S t a t e s p a c e m a t r i c e s

9 a21 = K∗ i s ˆ2/M/hs ˆ2 ; a23 = − 2∗K∗ i s /M/hs ; a33 = − R/L ;
10 b3 = 1/L ;
11 a = [ 0 1 0 ; a21 0 a23 ; 0 0 a33 ] ;
12 b = [ 0 ; 0 ; b3 ] ; c = [ 1 0 0 ] ; d = 0 ;
13

14 % T r a n s f e r f u n c t i o n s

15 G = ss ( a , b , c , d ) ; Ts = 0 . 0 1 ; [B,A, k ] = myc2d(G, Ts ) ;
16 [ num, den ] = t fda ta (G, ’ v ’ ) ;
17

18 % T r a n s i e n t s p e c i f i c a t i o n s

19 r i s e = 0 . 1 5 ; e p s i l o n = 0 . 0 5 ;
20 phi = d e s i r e d (Ts , r i s e , e p s i l o n ) ;
21

22 % C o n t r o l l e r d e s i g n

23 [ Rc , Sc , Tc ,gamma] = pp bas i c (B,A, k , phi ) ;
24

25 % S e t t i n g up s i m u l a t i o n p a r a m e t e r s f o r b a s i c . md l

26 s t = 0 . 0 0 0 1 ; % d e s i r e d c h a n g e i n h , i n m .

27 t i n i t = 0 ; % s i m u l a t i o n s t a r t t i m e

28 t f i n a l = 0 . 5 ; % s i m u l a t i o n e n d t i m e

29

30 % S e t t i n g up s i m u l a t i o n p a r a m e t e r s f o r c s s c l

31 N var = 0 ; x I n i t i a l = [ 0 0 0 ] ; N = 1 ; C = 0 ; D = 1 ;

Matlab Code 9.2 Discretization of continuous transfer function. The result is
numerator and denominator in powers of z−1 and the delay term k. For an example
of how to use it, see M 9.1. This code is available at HOME/matlab/myc2d.m

1 % f u n c t i o n [ B , A , k ] = myc 2d (G , Ts )

2 % P r o d u c e s n u m e r a t o r a n d d e n o m i n a t o r o f d i s c r e t e t r a n s f e r

3 % f u n c t i o n i n p o w e r s o f z ˆ{ −1}
4 % G i s c o n t i n u o u s t r a n s f e r f u n c t i o n , i t c a n h a v e t i m e d e l a y s

5 % Ts i s t h e s a m p l i n g t i m e , a l l i n c o n s i s t e n t t i m e u n i t s

1HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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6

7 function [B,A, k ] = myc2d(G, Ts )
8 H = c2d (G, Ts , ’ zoh ’ ) ;
9 [ num,A] = t fda ta (H, ’ v ’ ) ;

10 nonzero = find (num) ;
11 f i r s t n z = nonzero (1 ) ;
12 k = f i r s t n z −1 + H. ioDelay ;
13 B = num( f i r s t n z : length (num) ) ;

Matlab Code 9.3 Procedure to split a polynomial into good and bad factors, as
discussed in Sec. 9.2. For an example of the usage, see M 9.1. This code is available
at HOME/matlab/polsplit2.m

1 % f u n c t i o n [ g o o d p o l y , b a d p o l y ] = p o l s p l i t 2 ( f a c , a )

2 % S p l i t s a s c a l a r p o l y n o m i a l o f z ˆ{ −1} i n t o g o o d a nd ba d

3 % f a c t o r s .

4 % I n p u t i s a p o l y n o m i a l i n i n c r e a s i n g d e g r e e o f z ˆ{ −1}
5 % O p t i o n a l i n p u t i s a , w h e r e a <= 1 .

6 % F a c t o r t h a t h a s r o o t s o f z ˆ{ −1} o u t s i d e a i s c a l l e d

7 % g o o d an d t h e r e s t b ad .

8 % I f a i s n o t s p e c i f i e d , i t w i l l b e a s s u m e d a s 1 − 1 . 0 e −5

9

10 function [ goodpoly , badpoly ] = p o l s p l i t 2 ( fac , a )
11 i f nargin == 1 , a = 1−1.0e−5; end
12 i f a>1 error ( ’ good polynomial i s unstab le ’ ) ; end
13 r t s = roots ( f a c ) ;
14 %

15 % e x t r a c t g o o d a nd b a d r o o t s

16 badindex = find (abs ( r t s )>=a ) ;
17 badpoly = poly ( r t s ( badindex ) ) ;
18 goodindex = find (abs ( r t s )<a ) ;
19 goodpoly = poly ( r t s ( goodindex ) ) ;
20 %

21 % s c a l e by e q u a t i n g t h e l a r g e s t t e r m s

22 [m, index ] = max(abs ( f a c ) ) ;
23 goodbad = conv ( goodpoly , badpoly ) ;
24 f a c t o r = fa c ( index ) /goodbad( index ) ;
25 goodpoly = goodpoly ∗ f a c t o r ;

Matlab Code 9.4 Calculation of desired closed loop characteristic polynomial, as
discussed in Sec. 7.7. This code is available at HOME/matlab/desired.m

1 % f u n c t i o n [ p h i , d p h i ] = d e s i r e d ( Ts , r i s e , e p s i l o n )

2 % B a s e d on t r a n s i e n t r e q u i r e m e n t s ,

3 % c a l c u l a t e s c l o s e d l o o p c h a r a c t e r i s t i c p o l y n o m i a l

4 %

5 function [ phi , dphi ] = d e s i r e d (Ts , r i s e , e p s i l o n )
6
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7 Nr = r i s e /Ts ; omega = pi /2/Nr ; rho = e p s i l o n ˆ(omega/pi ) ;
8 phi = [ 1 −2∗rho∗cos ( omega ) rho ˆ 2 ] ; dphi = length ( phi )−1;

Matlab Code 9.5 Design of 2-DOF pole placement controller, as discussed in
Sec. 9.2. For an example of the usage, see M 9.1. This code is available at
HOME/matlab/pp basic.m

1 % f u n c t i o n [ Rc , Sc , Tc , gamma ] = p p b a s i c ( B , A , k , p h i )

2 % c a l c u l a t e s p o l e p l a c e m e n t c o n t r o l l e r

3

4 function [ Rc , Sc , Tc ,gamma] = pp bas i c (B,A, k , phi )
5

6 % S e t t i n g up a nd s o l v i n g A r y a b h a t t a i d e n t i t y

7 [ Ag ,Ab ] = p o l s p l i t 2 (A) ; dAb = length (Ab) − 1 ;
8 [ Bg , Bb ] = p o l s p l i t 2 (B) ; dBb = length (Bb) − 1 ;
9 [ zk , dzk ] = zpowk ( k ) ;

10 [N,dN] = polmul (Bb, dBb , zk , dzk ) ;
11 dphi = length ( phi ) − 1 ;
12 [ S1 , dS1 , R1 , dR1 ] = xdync (N,dN,Ab, dAb , phi , dphi ) ;
13

14 % D e t e r m i n a t i o n o f c o n t r o l l a w

15 Rc = conv (Bg , R1) ; Sc = conv (Ag , S1 ) ;
16 Tc = Ag ; gamma = sum( phi ) /sum(Bb) ;

Matlab Code 9.6 Evaluates z−k. This code is available at HOME/matlab/zpowk.m

1 function [ zk , dzk ] = zpowk ( k )
2 zk = zeros (1 , k+1) ; zk (1 , k+1) = 1 ;
3 dzk = k ;

Matlab Code 9.7 Simulation of closed loop system with an unstable controller, as
discussed in Example 9.5 on page 335. This code is available at
HOME/place/matlab/unstb.m

1 Ts = 1 ; B = [ 1 −3]; A = [ 1 2 −8]; k = 1 ;
2 [ zk , dzk ] = zpowk ( k ) ; i n t = 0 ;
3

4 % T r a n s i e n t s p e c i f i c a t i o n s

5 r i s e = 10 ; e p s i l o n = 0 . 1 ;
6 phi = d e s i r e d (Ts , r i s e , e p s i l o n ) ;
7

8 % C o n t r o l l e r d e s i g n

9 [ Rc , Sc , Tc ,gamma] = pp bas i c (B,A, k , phi ) ;
10

11 % s i m u l a t i o n p a r a m e t e r s f o r b a s i c d i s c . md l

12 s t = 1 . 0 ; % d e s i r e d c h a n g e i n s e t p o i n t

13 t i n i t = 0 ; % s i m u l a t i o n s t a r t t i m e

14 t f i n a l = 1000 ; % s i m u l a t i o n e n d t i m e

15
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16 % s i m u l a t i o n p a r a m e t e r s f o r s t b d i s c . md l

17 N var = 0 ; C = 0 ; D = 1 ; N = 1 ;

Matlab Code 9.8 Pole placement controller using internal model principle, as
discussed in Sec. 9.4. It generalizes M 9.5. For an example of the usage, see M 9.9.
This code is available at HOME/matlab/pp im.m

1 % f u n c t i o n [ Rc , Sc , Tc , gamma , p h i t ] = p p i m ( B , A , k , p h i , D e l t a )

2 % C a l c u l a t e s 2−DOF p o l e p l a c e m e n t c o n t r o l l e r .

3

4 function [ Rc , Sc , Tc ,gamma] = pp im (B,A, k , phi , Delta )
5

6 % S e t t i n g up an d s o l v i n g A r y a b h a t t a i d e n t i t y

7 [ Ag ,Ab] = p o l s p l i t 3 (A) ; dAb = length (Ab) − 1 ;
8 [ Bg , Bb ] = p o l s p l i t 3 (B) ; dBb = length (Bb) − 1 ;
9 [ zk , dzk ] = zpowk ( k ) ;

10 [N,dN] = polmul (Bb, dBb , zk , dzk ) ;
11 dDelta = length ( Delta )−1;
12 [D,dD] = polmul (Ab, dAb , Delta , dDelta ) ;
13 dphi = length ( phi )−1;
14 [ S1 , dS1 , R1 , dR1 ] = xdync (N,dN,D,dD, phi , dphi ) ;
15

16 % D e t e r m i n a t i o n o f c o n t r o l l a w

17 Rc = conv (Bg , conv (R1 , Delta ) ) ; Sc = conv (Ag , S1 ) ;
18 Tc = Ag ; gamma = sum( phi ) /sum(Bb) ;

Matlab Code 9.9 Pole placement controller, with internal model of a step, for the
magnetically suspended ball problem, as discussed in Example 9.8 on page 339.
This code is available at HOME/place/matlab/ball im.m After executing this code,
simulation can be carried out using the Simulink block diagram in Fig. A.8 on
page 528. By choosing rise=0.15, delta=0, CTRL-1 of Example 9.3 on page 331 is
realized. By choosing rise=0.1, delta=1, CTRL-3 of Example 9.8 is achieved.

1 % PP c o n t r o l w i t h i n t e r n a l m o d e l f o r b a l l p r o b l e m

2 % O p e r a t i n g c o n d i t i o n s

3 M = 0 . 0 5 ; L = 0 . 0 1 ; R = 1 ; K = 0 . 0 0 0 1 ; g = 9 . 8 1 ;
4

5 % E q u i l i b r i u m c o n d i t i o n s

6 hs = 0 . 0 1 ; i s = sqrt (M∗g∗hs/K) ;
7

8 % S t a t e s p a c e m a t r i c e s

9 a21 = K∗ i s ˆ2/M/hs ˆ2 ; a23 = − 2∗K∗ i s /M/hs ; a33 = − R/L ;
10 b3 = 1/L ;
11 a = [ 0 1 0 ; a21 0 a23 ; 0 0 a33 ] ;
12 b = [ 0 ; 0 ; b3 ] ; c = [ 1 0 0 ] ; d = 0 ;
13

14 % T r a n s f e r f u n c t i o n s

15 G = ss ( a , b , c , d) ; Ts = 0 . 0 1 ; [B,A, k ] = myc2d(G, Ts ) ;
16
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17 % T r a n s i e n t s p e c i f i c a t i o n s

18 r i s e = 0 . 1 ; e p s i l o n = 0 . 0 5 ;
19 phi = d e s i r e d (Ts , r i s e , e p s i l o n ) ;
20

21 % C o n t r o l l e r d e s i g n

22 Delta = [ 1 −1]; % i n t e r n a l m o d e l o f s t e p u s e d

23 [ Rc , Sc , Tc ,gamma] = pp im (B,A, k , phi , Delta ) ;
24

25 % s i m u l a t i o n p a r a m e t e r s f o r c s s c l . md l

26 s t = 0 . 0 0 0 1 ; % d e s i r e d c h a n g e i n h , i n m .

27 t i n i t = 0 ; % s i m u l a t i o n s t a r t t i m e

28 t f i n a l = 0 . 5 ; % s i m u l a t i o n e n d t i m e

29 x I n i t i a l = [ 0 0 0 ] ;
30 N = 1 ; C = 0 ; D = 1 ; N var = 0 ;

Matlab Code 9.10 Pole placement controller IBM Lotus Domino server, discussed
in Example 9.9 on page 341. This code is available at HOME/place/matlab/ibm pp.m

1 % C o n t r o l o f IBM l o t u s d o m i n o s e r v e r

2 % T r a n s f e r f u n c t i o n

3 B = 0 . 4 7 ; A = [ 1 −0 .43 ] ; k = 1 ;
4 [ zk , dzk ] = zpowk ( k ) ;
5

6 % T r a n s i e n t s p e c i f i c a t i o n s

7 r i s e = 10 ; e p s i l o n = 0 . 0 1 ; Ts = 1 ;
8 phi = d e s i r e d (Ts , r i s e , e p s i l o n ) ;
9

10 % C o n t r o l l e r d e s i g n

11 Delta = [ 1 −1]; % i n t e r n a l m o d e l o f s t e p u s e d

12 [ Rc , Sc , Tc ,gamma] = pp im (B,A, k , phi , Delta ) ;
13

14 % S i m u l a t i o n p a r a m e t e r s f o r s t b d i s c

15 s t = 1 ; % d e s i r e d c h a n g e

16 t i n i t = 0 ; % s i m u l a t i o n s t a r t t i m e

17 t f i n a l = 40 ; % s i m u l a t i o n e n d t i m e

18 C = 0 ; D = 1 ; N var = 0 ;

Matlab Code 9.11 Pole placement controller for motor problem, discussed in
Example 9.10 on page 343. This code is available at HOME/place/matlab/motor.m

1 % M o t o r c o n t r o l p r o b l e m

2 % T r a n s f e r f u n c t i o n

3 a = [−1 0 ; 1 0 ] ; b = [ 1 ; 0 ] ; c = [ 0 1 ] ; d = 0 ;
4 G = ss ( a , b , c , d ) ; Ts = 0 . 2 5 ; [B,A, k ] = myc2d(G, Ts ) ;
5

6 % T r a n s i e n t s p e c i f i c a t i o n s

7 r i s e = 3 ; e p s i l o n = 0 . 0 5 ;
8 phi = d e s i r e d (Ts , r i s e , e p s i l o n ) ;
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9

10 % C o n t r o l l e r d e s i g n

11 Delta = 1 ; % No i n t e r n a l m o d e l o f s t e p u s e d

12 [ Rc , Sc , Tc ,gamma] = pp im (B,A, k , phi , Delta ) ;
13

14 % s i m u l a t i o n p a r a m e t e r s f o r c s s c l . md l

15 s t = 1 ; % d e s i r e d c h a n g e i n p o s i t i o n

16 t i n i t = 0 ; % s i m u l a t i o n s t a r t t i m e

17 t f i n a l = 10 ; % s i m u l a t i o n e n d t i m e

18 x I n i t i a l = [ 0 0 ] ; % i n i t i a l c o n d i t i o n s

19 N = 1 ; C = 0 ; D = 1 ; N var = 0 ;

Matlab Code 9.12 Procedure to split a polynomial into good and bad factors, as
discussed in Sec. 9.5. The factors that have roots outside unit circle or with negative
real parts are defined as bad. This code is available at HOME/matlab/polsplit3.m

1 % f u n c t i o n [ g o o d p o l y , b a d p o l y ] = p o l s p l i t 3 ( f a c , a )

2 % S p l i t s a s c a l a r p o l y n o m i a l o f z ˆ{ −1} i n t o g o o d a nd ba d

3 % f a c t o r s . I n p u t i s a p o l y n o m i a l i n i n c r e a s i n g d e g r e e o f

4 % z ˆ { − 1 } . O p t i o n a l i n p u t i s a , w h e r e a <= 1 .

5 % F a c t o r s t h a t h a v e r o o t s o u t s i d e a c i r c l e o f r a d i u s a o r

6 % w i t h n e g a t i v e r o o t s w i l l b e c a l l e d b a d a n d t h e r e s t

7 % g o o d . I f a i s n o t s p e c i f i e d , i t w i l l b e a s s u m e d a s 1 .

8

9 function [ goodpoly , badpoly ] = p o l s p l i t 3 ( fac , a )
10 i f nargin == 1 , a = 1 ; end
11 i f a>1 error ( ’ good polynomial a l s o i s unstab le ’ ) ; end
12 r t s = roots ( f a c ) ;
13

14 % e x t r a c t g o o d a nd b a d r o o t s

15 badindex = find ( ( abs ( r t s )>=a−1.0e−5) | ( real ( r t s )<−0.05) ) ;
16 badpoly = poly ( r t s ( badindex ) ) ;
17 goodindex = find ( ( abs ( r t s )<a−1.0e−5)&(real ( r t s )>=−0.05)) ;
18 goodpoly = poly ( r t s ( goodindex ) ) ;
19

20 % s c a l e by e q u a t i n g t h e l a r g e s t t e r m s

21 [m, index ] = max(abs ( f a c ) ) ;
22 goodbad = conv ( goodpoly , badpoly ) ;
23 f a c t o r = fa c ( index ) /goodbad( index ) ;
24 goodpoly = goodpoly ∗ f a c t o r ;

Matlab Code 9.13 Pole placement controller without intra sample oscillations, as
discussed in Sec. 9.5. For an example of the usage, see M 9.14. This code is available
at HOME/matlab/pp im2.m

1 % f u n c t i o n [ Rc , Sc , Tc , gamma , p h i t ] = p p i m 2 ( B , A , k , p h i , D e l t a , a )

2 % 2−DOF PP c o n t r o l l e r w i t h i n t e r n a l m o d e l o f D e l t a a n d

w i t h o u t

3 % h i d d e n o s c i l l a t i o n s
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4

5 function [ Rc , Sc , Tc ,gamma, ph i t ] = pp im2 (B,A, k , phi , Delta , a )
6

7 i f nargin == 5 , a = 1 ; end
8 dphi = length ( phi )−1;
9

10 % S e t t i n g up a nd s o l v i n g A r y a b h a t t a i d e n t i t y

11 [ Ag ,Ab ] = p o l s p l i t 3 (A, a ) ; dAb = length (Ab) − 1 ;
12 [ Bg , Bb ] = p o l s p l i t 3 (B, a ) ; dBb = length (Bb) − 1 ;
13 [ zk , dzk ] = zpowk ( k ) ;
14 [N,dN] = polmul (Bb, dBb , zk , dzk ) ;
15 dDelta = length ( Delta )−1;
16 [D,dD] = polmul (Ab, dAb , Delta , dDelta ) ;
17 [ S1 , dS1 , R1 , dR1 ] = xdync (N,dN,D,dD, phi , dphi ) ;
18

19 % D e t e r m i n a t i o n o f c o n t r o l l a w

20 Rc = conv (Bg , conv (R1 , Delta ) ) ; Sc = conv (Ag , S1 ) ;
21 Tc = Ag ; gamma = sum( phi ) /sum(Bb) ;
22

23 % T o t a l c h a r a c t e r i s t i c p o l y n o m i a l

24 phit = conv ( phi , conv(Ag , Bg) ) ;

Matlab Code 9.14 Controller design for the case study presented in Example 9.12
on page 347. This code is available at HOME/place/matlab/sigurd.m

1 clear
2 num = 200 ;
3 den = conv ( [ 0 . 0 5 1 ] , [ 0 . 0 5 1 ] ) ;
4 den = conv ( [ 1 0 1 ] , den ) ;
5 G = t f (num, den ) ; Ts = 0 . 0 2 5 ;
6 [B,A, k ] = myc2d(G, Ts ) ;
7 [ zk , dzk ] = zpowk ( k ) ; i n t = 0 ;
8

9 % T r a n s i e n t s p e c i f i c a t i o n s

10 a = 0 . 9 ; r i s e = 0 . 2 4 ; e p s i l o n = 0 . 0 5 ;
11 phi = d e s i r e d (Ts , r i s e , e p s i l o n ) ;
12

13 % C o n t r o l l e r d e s i g n

14 Delta = [ 1 −1]; % i n t e r n a l m o d e l o f s t e p i s p r e s e n t

15 [ Rc , Sc , Tc ,gamma] = pp im2 (B,A, k , phi , Delta , a ) ;
16

17 % m a r g i n c a l c u l a t i o n

18 Lnum = conv ( Sc , conv (B, zk ) ) ;
19 Lden = conv (Rc ,A) ;
20 L = t f (Lnum, Lden , Ts ) ;
21 [Gm,Pm] = margin (L) ;
22

23 num1 = 100 ; den1 = [10 1 ] ;
24 Gd = t f (num1 , den1 ) ;
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25 [C,D, k1 ] = myc2d(Gd, Ts ) ;
26 [ zk , dzk ] = zpowk ( k ) ;
27 C = conv(C, zk ) ;
28

29 % s i m u l a t i o n p a r a m e t e r s g s c l 2 . md l

30 N = 1 ;
31 s t = 1 ; % d e s i r e d c h a n g e i n s e t p o i n t

32 s t1 = 0 ; % m a g n i t u d e o f d i s t u r b a n c e

33 t i n i t = 0 ; % s i m u l a t i o n s t a r t t i m e

34 t f i n a l = 1 . 5 ; % s i m u l a t i o n e n d t i m e

Matlab Code 9.15 Evaluation of continuous time controller for the case study
presented in Example 9.13 on page 349. This code is available at
HOME/place/matlab/sigurd his.m

1 clear
2 num = 200 ;
3 den = conv ( [ 0 . 0 5 1 ] , [ 0 . 0 5 1 ] ) ;
4 den = conv ( [ 1 0 1 ] , den ) ;
5 G = t f (num, den ) ; Ts = 0 . 0 0 5 ;
6 [B,A, k ] = myc2d(G, Ts ) ;
7 [ zk , dzk ] = zpowk ( k ) ; i n t = 0 ;
8

9 % S i g u r d ’ s f e e d b a c k c o n t r o l l e r ’

10 numb = 0.5∗conv ( [ 1 2 ] , [ 0 . 0 5 1 ] ) ;
11 denb = conv ( [ 1 0 ] , [ 0 . 0 0 5 1 ] ) ;
12 Gb = t f (numb, denb ) ;
13 [ Sb , Rb, kb ] = myc2d(Gb, Ts ) ;
14 [ zkb , dzkb ] = zpowk ( kb ) ;
15 Sb = conv (Sb , zkb ) ;
16

17 % S i g u r d ’ s f e e d f o r w a r d c o n t r o l l e r ’

18 numf = [ 0 . 5 1 ] ;
19 denf = conv ( [ 0 . 6 5 1 ] , [ 0 . 0 3 1 ] ) ;
20 Gf = t f (numf , denf ) ;
21 [ Sf , Rf , k f ] = myc2d(Gf , Ts ) ;
22 [ zkf , dzkf ] = zpowk ( k f ) ;
23 Sf = conv ( Sf , zk f ) ;
24

25 % M a r g i n s

26 L = s e r i e s (G,Gb) ;
27 [Gm,Pm] = margin (L) ;
28 Lnum = conv (Sb , conv( zk ,B) ) ;
29 Lden = conv (Rb,A) ;
30 L = t f (Lnum, Lden , Ts ) ;
31 [DGm,DPm] = margin (L) ;
32

33 % N o i s e

34 num1 = 100 ; den1 = [10 1 ] ;
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35 % s i m u l a t i o n p a r a m e t e r s f o r

36 % e n t i r e l y c o n t i n u o u s s i m u l a t i o n : g s c l 3 . md l

37 % h y b r i d s i m u l a t i o n : g s c l 6 . md l

38 s t = 1 ; % d e s i r e d c h a n g e i n s e t p o i n t

39 s t1 = 0 ;
40 t i n i t = 0 ; % s i m u l a t i o n s t a r t t i m e

41 t f i n a l = 5 ; % s i m u l a t i o n e n d t i m e

Matlab Code 9.16 System type with 2-DOF controller. It is used to arrive at the
results of Example 9.14. This code is available at
HOME/place/matlab/type 2DOF.m

1 B = 1 ; A = [ 1 −1]; k = 1 ; zk = zpowk ( k ) ; Ts = 1 ;
2 phi = [ 1 −0 .5 ] ;
3

4 Delta = 1 ; % C h o i c e o f i n t e r n a l m o d e l o f s t e p

5 [ Rc , Sc , Tc ,gamma] = pp im (B,A, k , phi , Delta ) ;
6 %

7 % s i m u l a t i o n p a r a m e t e r s f o r s t b d i s c . md l

8 s t = 1 ; % d e s i r e d s t e p c h a n g e

9 t i n i t = 0 ; % s i m u l a t i o n s t a r t t i m e

10 t f i n a l = 20 ; % s i m u l a t i o n e n d t i m e

11 x I n i t i a l = [ 0 0 ] ;
12 C = 0 ; D = 1 ; N var = 0 ;
13 open system ( ’ s t b d i s c . mdl ’ )

Matlab Code 9.17 Illustrating the benefits of cancellation. It is used to arrive at
the results of Example 9.15. This code is available at
HOME/place/matlab/dof choice.m

1 % t e s t p r o b l e m t o d e m o n s t r a t e b e n e f i t s o f 2 d o f

2 % Ts = 1 ; B = [ 1 0 . 9 ] ; A = c o n v ( [ 1 − 1 ] , [ 1 − 0 . 8 ] ) ; k = 1 ;

3 Ts = 1 ; k = 1 ;
4 B = conv ( [ 1 0 . 9 ] , [ 1 −0.8 ]) ; A = conv ( [ 1 −1] , [1 −0.5 ]) ;
5 %

6 % c l o s e d l o o p c h a r a c t e r i s t i c p o l y n o m i a l

7 phi = [ 1 −1 0 . 5 ] ;
8

9 Delta = 1 ; % C h o i c e o f i n t e r n a l m o d e l o f s t e p

10 c o n t r o l = 1 ;
11 i f c o n t r o l == 1 , % 1−DOF w i t h no c a n c e l l a t i o n

12 [ Rc , Sc ] = pp pid (B,A, k , phi , Delta ) ;
13 Tc = Sc ; gamma = 1 ;
14 else % 2−DOF

15 [ Rc , Sc , Tc ,gamma] = pp im (B,A, k , phi , Delta ) ;
16 end
17 %

18 % s i m u l a t i o n p a r a m e t e r s f o r s t b d i s c . md l

19 [ zk , dzk ] = zpowk ( k ) ;
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20 s t = 1 ; % d e s i r e d s t e p c h a n g e

21 t i n i t = 0 ; % s i m u l a t i o n s t a r t t i m e

22 t f i n a l = 20 ; % s i m u l a t i o n e n d t i m e

23 x I n i t i a l = [ 0 0 ] ;
24 C = 0 ; D = 1 ; N var = 0 ;
25 open system ( ’ s t b d i s c . mdl ’ )

Matlab Code 9.18 Anti windup control (AWC) of IBM Lotus Domino server,
studied in Example 9.16 on page 357. It can be used for the following situations:
with and without saturation, and with and without AWC. This code is available at
HOME/place/matlab/ibm pp sat.m

1 % T r a n s f e r f u n c t i o n

2 B = 0 . 4 7 ; A = [ 1 −0 .43 ] ; k = 1 ;
3 [ zk , dzk ] = zpowk ( k ) ;
4

5 % T r a n s i e n t s p e c i f i c a t i o n s

6 r i s e = 10 ; e p s i l o n = 0 . 0 1 ; Ts = 1 ;
7 phi = d e s i r e d (Ts , r i s e , e p s i l o n ) ;
8

9 % C o n t r o l l e r d e s i g n

10 d e l t a = [ 1 −1]; % i n t e r n a l m o d e l o f s t e p u s e d

11 [ Rc , Sc , Tc ,gamma,F ] = pp im2 (B,A, k , phi , d e l t a ) ;
12

13 % S t u d y o f A n t i w i n d u p C o n t r o l l e r

14

15 key = menu( ’ P lease choose one o f the f o l l o w i n g ’ , . . .
16 ’ S imulate without any s a t u r a t i o n l i m i t s ’ , . . .
17 ’ S imulate s a tura t i on , but do not use AWC’ , . . .
18 ’ S imulate s a t u r a t i o n with AWC in p la ce ’ , . . .
19 ’ S imulate without any s a t u r a t i o n l i m i t s , but with

AWC’ ) ;
20

21 i f key == 1
22 U = 2 ; L = −2; P = 1 ; F = Rc ; E = 0 ; PSc = Sc ; PTc = Tc ;
23 e l s e i f key == 2
24 U = 1 ; L = −1; P = 1 ; F = Rc ; E = 0 ; PSc = Sc ; PTc = Tc ;
25 else
26 i f key == 3 % A n t i w i n d u p c o n t r o l l e r a nd w i t h s a t u r a t i o n

27 U = 1 ; L = −1;
28 e l s e i f key == 4 % A n t i w i n d u p c o n t r o l l e r , b u t n o s a t u r a t i o n

29 U = 2 ; L = −2;
30 end
31 P = A;
32 dF = length (F) − 1 ;
33 PRc = conv (P, Rc) ; dPRc = length (PRc) − 1 ;
34 [E , dE ] = poladd (F , dF,−PRc , dPRc) ;
35 PSc = conv (P, Sc ) ; PTc = conv (P, Tc) ;
36 end
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37 % S e t t i n g up s i m u l a t i o n p a r a m e t e r s f o r s t b d i s c s a t

38 t i n i t = 0 ; % f i r s t s t e p b e g i n s

39 s t = 1 ; % h e i g h t o f f i r s t s t e p

40 t i n i t 2 = 500 ; % s e c o n d s t e p b e g i n s

41 s t2 = −2; % h e i g h t o f s e c o n d s t e p

42 t f i n a l = 1000 ; % s i m u l a t i o n e n d t i m e

43 s t1 = 0 ; % no d i s t u r b a n c e i n p u t

44 C = 0 ; D = 1 ; N var = 0 ;

Matlab Code 9.19 Demonstration of usefulness of negative PID parameters, dis-
cussed in Example 9.17 on page 361. This code is available at
HOME/place/matlab/pid neg.m

1 % D i s c r e t i z e t h e c o n t i n u o u s p l a n t

2 num = 1 ; den = [ 2 1 ] ; tau = 0 . 5 ;
3 G = t f (num, den ) ;
4 G. ioDelay = tau ;
5 Ts = 0 . 5 ;
6 [B,A, k ] = myc2d(G, Ts ) ;
7

8 % S p e c i f y t r a n s i e n t r e q u i r e m e n t s

9 e p s i l o n = 0 . 0 5 ; r i s e = 5 ;
10 phi = d e s i r e d (Ts , r i s e , e p s i l o n ) ;
11

12 % D e s i g n t h e c o n t r o l l e r

13 Delta = [ 1 −1];
14 [ Rc , Sc ] = pp pid (B,A, k , phi , Delta ) ;
15 %

16 % p a r a m e t e r s f o r s i m u l a t i o n u s i n g g s c l

17 Tc = Sc ; gamma = 1 ; N = 1 ;
18 C = 0 ; D = 1 ; N var = 0 ;
19 s t = 1 ; t i n i t = 0 ; t f i n a l = 20 ;

Matlab Code 9.20 Solution to Aryabhatta’s identity arising in PID controller
design, namely Eq. 9.37 on page 363. For an example of the usage, see M 9.19. This
code is available at HOME/matlab/pp pid.m

1 function [ Rc , Sc ] = pp pid (B,A, k , phi , Delta )
2

3 % S e t t i n g up a nd s o l v i n g A r y a b h a t t a i d e n t i t y

4 dB = length (B) − 1 ; dA = length (A) − 1 ;
5 [ zk , dzk ] = zpowk ( k ) ;
6 [N,dN] = polmul (B, dB, zk , dzk ) ;
7 dDelta = length ( Delta )−1;
8 [D,dD] = polmul (A,dA, Delta , dDelta ) ;
9 dphi = length ( phi )−1;

10 [ Sc , dSc ,R,dR ] = xdync (N,dN,D,dD, phi , dphi ) ;
11 Rc = conv (R, Delta ) ;
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Matlab Code 9.21 DC motor with PID control, tuned through pole placement
technique, as in Example 9.18 on page 365. This code is available at
HOME/place/matlab/motor pd.m

1 % M o t o r c o n t r o l p r o b l e m

2 % T r a n s f e r f u n c t i o n

3 a = [−1 0 ; 1 0 ] ; b = [ 1 ; 0 ] ; c = [ 0 1 ] ; d = 0 ;
4 G = ss ( a , b , c , d) ; Ts = 0 . 2 5 ; [B,A, k ] = myc2d(G, Ts ) ;
5 [ num, den ] = t fda ta (G, ’ v ’ ) ;
6

7 % T r a n s i e n t s p e c i f i c a t i o n s

8 r i s e = 3 ; e p s i l o n = 0 . 0 5 ;
9 phi = d e s i r e d (Ts , r i s e , e p s i l o n ) ;

10

11 % C o n t r o l l e r d e s i g n

12 Delta = 1 ; % No i n t e r n a l m o d e l o f s t e p u s e d

13 [ Rc , Sc ] = pp pid (B,A, k , phi , Delta ) ;
14

15 % c o n t i n u o u s t i m e c o n t r o l l e r

16 [K, taud ,N] = pd (Rc , Sc , Ts ) ;
17 numb = K∗ [ 1 taud∗(1+1/N) ] ; denb = [ 1 taud/N ] ;
18 numf = 1 ; denf = 1 ;
19

20 % s i m u l a t i o n p a r a m e t e r s

21 s t = 1 ; % d e s i r e d c h a n g e i n p o s i t i o n

22 t i n i t = 0 ; % s i m u l a t i o n s t a r t t i m e

23 t f i n a l = 20 ; % s i m u l a t i o n e n d t i m e

24 s t1 = 0 ;
25

26 % c o n t i n u o u s c o n t r o l l e r s i m u l a t i o n : g s c l 3 . md l

27 num1 = 0 ; den1 = 1 ;
28

29 % d i s c r e t e c o n t r o l l e r s i m u l a t i o n : g s c l 2 . md l

30 C = 0 ; D = 1 ; N = 1 ; gamma = 1 ; Tc = Sc ;

Matlab Code 9.22 PD control law from polynomial coefficients, as explained in
Sec. 9.8. For an example of the usage, see M 9.21. This code is available at
HOME/place/matlab/pd.m

1 function [K, taud ,N] = pd(Rc , Sc , Ts )
2 % B o t h Rc a nd S c h a v e t o b e d e g r e e o n e p o l y n o m i a l s

3

4 s0 = Sc (1 ) ; s1 = Sc (2 ) ;
5 r1 = Rc(2 ) ;
6 K = ( s0+s1 ) /(1+r1 ) ;
7 N = ( s1−s0 ∗ r1 ) / r1 /( s0+s1 ) ;
8 taudbyN = −Ts∗ r1/(1+r1 ) ;
9 taud = taudbyN ∗ N;
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9.10 Problems

9.1. Obtain a 2-DOF pole placement controller for the plant

G(z) =
z + 2

z2 + z + 1

so as to have a rise time of 5 samples, i.e., Nr = 5, and overshoot of 10%. The
controller should track step changes in the reference signal, even if the plant
parameters change.

9.2. The objective of this problem is to design a 2-DOF pole placement controller
for a plant with open loop transfer function given by

G(s) =
s− 1

(s− 3)(s+ 2)

(a) Design a 2-DOF pole placement controller that satisfies the following
transient specifications for a unit step input:

i. Rise time should be less than or equal to 2 seconds.
ii. Overshoot should be less than or equal to 10%.

A suggested sampling time is Ts = 0.1.
(b) Propose an appropriate feedback configuration so that the closed loop

system is stable. Simulate the closed loop system using each of Fig. A.1–
A.4 on page 527.

9.3. Determine a pole placement controller for the nonminimum phase oscillator with
the following transfer function:

y(t) =
−1 + 2z−1

1− 1.7z−1 + z−2
z−2u(t)

The controller should satisfy the following requirements:

(a) The closed loop characteristic polynomial φcl(z−1) = 1− 0.6z−1.
(b) There should be an integral term, namely 1/(1− z−1), present in the loop.

9.4. It is proposed to control a plant with the following transfer function:

G(z) = z−kB(z)
A(z)

b(z)

Here, A and B are known polynomials in z−1 and k is a known positive integer.
Unfortunately, nothing is known about b(z). In view of this, the control designer
assumes b = 1 and, using our procedure, arrives at the following 2-DOF pole
placement controller to achieve offset free tracking of step inputs:

Y

Sc(z)

Rc(z)

U+

−
R

γ
Tc(z)

Rc(z)
z−k B(z)

A(z)
b(z)

1

∆
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(a) For what types of b(z−1) is the above mentioned tracking property
maintained?

(b) Is this controller effective in rejecting the disturbance, denoted by V in
Fig. 7.22 on page 271, for example, when b is unknown?

(c) What assumption is implicit in your answer to the above questions?

9.5. In Example 7.3 on page 257, we have presented a lead controller to meet the
requirements of an antenna control system. Now design 1-DOF and 2-DOF pole
placement controllers to meet the same performance specifications. Complete
the following table for a unit step input:

1-DOF 2-DOF

1 − z−1 (1 − z−1)2 1 − z−1 (1 − z−1)2

Initial control effort
Actual rise time
Overshoot

and the following table for a ramp signal of unit slope:

1-DOF 2-DOF

1 − z−1 (1 − z−1)2 1 − z−1 (1 − z−1)2

Initial control effort
Steady state error

For the 1-DOF controller, carry out the calculations with and without cancel-
lation of good factors.

[Hint: The 2-DOF controller designed with the following specifications may help
meet the requirements: rise time = 1.8 s, overshoot = 0.25, Ts = 0.2 s. Matlab
code pp im.m, given in M 9.16, may be useful. For the 1-DOF controller without
cancellation of good factors, Matlab code pp pid.m, given in M 9.20, may be
useful.]

9.6. Design a pole placement controller (PPC) for the open loop transfer function

G(z) =
z−1

1− 0.9z−1

(a) Design a PPC for the system such that

i. the closed loop poles are at −0.5± 0.5j,
ii. there is no offset to a step input.

(b) Can you implement this PPC with a PID controller? If so, what are the P,
I, D settings? If not, explain why not.



Chapter 10

Special Cases of Pole
Placement Control

Many controllers can be analysed from the pole placement viewpoint. In this
chapter, we present the Smith predictor and internal model controller, popular design
techniques in chemical engineering.

10.1 Smith Predictor

The presence of large delays reduces the achievable control performance. For example,
consider our standard plant model in the mixed notation of Sec. 6.4.1:

y(n) = z−kB(z)
A(z)

u(n) (10.1)

In all real life systems, k will at least be one, because all meaningful systems take a
nonzero amount of time to respond to external stimuli. If there is a transport delay in
implementing the control effort, k will be larger than one. Such a situation arises also
when the plants are inherently sluggish and they take some time respond to control
efforts. Chemical processes often have this shortcoming. In chemical engineering
terminology, the time to respond to external inputs is known as the dead time. In
all these cases, k could be a large number.

The presence of a large delay k implies that the control action will be delayed by
the same extent. This can be see by writing Eq. 10.1 as

y(n) =
B(z)
A(z)

u(n− k)

It is clear that the larger the delay, the worse the control performance will be. We will
illustrate this with a discrete time model of a paper machine system, studied by [2].

Example 10.1 The discrete time model of a paper machine is given by

y(n) =
0.63z−3

1− 0.37z−1
u(n)

Digital Control Kannan M. Moudgalya
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03143-8
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Compare the performance of a 2-DOF pole placement controller, with and without
the delay.

To design a 2-DOF pole placement controller, we need to solve Aryabhatta’s
identity, given by Eq. 9.24 on page 339, and reproduced here for convenience:

Ab∆R1 + z−kBbS1 = φcl

Suppose that we desire the closed loop characteristic polynomial to be 1− 0.5z−1

and that we want an internal model of steps in the loop. Because Ab = Bb = 1
for this system, Aryabhatta’s identity of Eq. 9.24 on page 339 becomes

(1 − z−1)R1 + z−3S1 = 1− 0.5z−1

The solution is given by

S1 = 0.5

R1 = 1 + 0.5z−1 + 0.5z−2

The controller parameters, obtained using Eq. 9.11b on page 330 and Eq. 9.23 on
page 338, are

Sc = 0.5(1− 0.37)

Rc = 0.63(1− 0.5z−1 − 0.5z−3)

Because S1 is a constant, we also obtain γTc = Sc. As a result, we have the
property of offset free tracking of steps. M 10.1 carries out these calculations.
Fig. 10.1 shows a plot, using thick lines, of the resulting y and u profiles, which
have been obtained using the Simulink code given in Fig. A.1 on page 525.

Let us now examine the performance of the controller if the plant delay is reduced
from the given value of three to the minimum possible value of one. We arrive at
the following Aryabhatta’s identity and controller parameters:

(1 − z−1)R1 + z−1S1 = 1− 0.5z−1

S1 = 0.5
R1 = 1
S0 = 0.5(1− 0.37)

R0 = 0.63(1− z−1)
γT0 = Sc

where we have denoted Rc, Sc and Tc, respectively, by R0, S0 and T0, to indicate
the fact that these have been obtained when the delay is reduced to the minimum
possible value.

Once again, these calculations are carried out using M 10.1, simulated using
Fig. A.1 and plotted using thin lines in Fig. 10.1. From this figure, it is easy
to see that the control effort u(n) is identical in both cases. The plant output
y(n) is faster when the delay is reduced.
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Figure 10.1: Output and input profiles for k = 3 (thick line) and k = 1 (thin line), in
Example 10.1. The control effort for both cases is identical. The output is faster for
smaller delay.

Because of the adverse effects of long delays in the plant, we would like to account
for them. If the delay is completely compensated, however, an algebraic loop is created
in the feedback loop, causing difficulties during simulation. This difficulty does not
arise in the presence of noise or plant–model mismatch. The shortest possible delay
in all real life applications is one. In this section, we propose to remove the effects of
any delay larger than one, through a strategy known as the Smith predictor. In view
of this, we will assume that in the plant model given by Eq. 10.1, k ≥ 2. Recall that
the numerator polynomial B(z) has the form

B(z) = b0 + b1z
−1 + · · ·+ bdBz

−dB (10.2)

with b0 �= 0. Defining

Bd(z) = z−1B(z) (10.3)

Eq. 10.1 becomes

G(z) = z−(k−1)Bd(z)
A(z)

(10.4)

We have defined Bd such that it includes one delay, the minimum we expect in real
applications. Now we look for ways to get rid of the adverse effects of the delay term
z−(k−1). Towards this end, consider the following equation:

yp(n) = z−(k−1)Bd(z)
A(z)

u(n) +
[
1− z(km−1)

] Bdm(z)
Am(z)

u(n) (10.5)
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ŷ

S0

z−(k−1) Bd

A

++

y+

−
r

γT0

u1

R0

1− z−(km−1)Bdm

Am

Figure 10.2: A schematic of Smith predictor

where km, Bdm and Am can be thought of as estimates of k, Bd and A, respectively.
When we have good knowledge of the plant, the estimates become exact and Eq. 10.5
becomes

yp(n) =
Bd(z)
A(z)

u(n) (10.6)

thereby getting rid of the adverse effects of z−(k−1) in Eq. 10.4, see Problem 10.1.
We can treat this as the equivalent model of the original plant given by Eq. 10.1 and
design a controller. Fig. 10.2 shows a schematic of this idea, where we have proposed
a 2-DOF pole placement controller. We have used the symbols R0, S0 and T0 in the
place of Rc, Sc and Tc, respectively, to indicate the fact that this controller is designed
for the delay free plant.

With the addition of the extra path in the control scheme, we feed back ŷ, as
opposed to y. The expression for ŷ is given by

ŷ =
Bdm

Am
(1− z−(km−1))u+ y =

Bdm(1− z−(km−1))u+Amy

Am
(10.7)

The control law for this configuration is given by

S0u = γT0r −R0ŷ (10.8)

Substituting in the above equation the expression for ŷ from Eq. 10.7, and simplifying,
we obtain

u =
AmγT0r −AmR0y

AmS0 +BdmR0(1− z−(km−1))
(10.9)

Using Eq. 10.4, the plant model can be written as

y = z−(k−1)Bd

A
u (10.10)

Substituting into this equation the expression for u from Eq. 10.9, and simplifying,
we obtain

φcl = z−(k−1)BdAmγT0r (10.11)
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where

φcl = A(AmS0 +BdmR0(1− z−(km−1))) + z−(k−1)BdAmR0 (10.12)

Suppose that we have good knowledge of the plant. As a result, the model parameters
will be identical to those of the plant. That is, Am = A, Bdm = Bd and km = k. The
above equation can be simplified as

φcl = A(AS0 +BdR0) (10.13)

We see that the denominator of the plant transfer function, A, is a part of the closed
loop characteristic polynomial. As a result, this method can be used only when the
plant G is stable. Also, when the expression for φcl is substituted into Eq. 10.12, A
cancels Am as these are assumed equal. This leaves behind φ0 = AS0 +BdR0, which is
identical to the characteristic polynomial of the system in Fig. 10.2, when the blocks
inside the box are replaced by their equivalent transfer function of Bd/A. The name
Smith predictor refers mainly to the configuration inside the box.

We will now illustrate this procedure with an example.

Example 10.2 Apply the procedure of the Smith predictor to the paper
machine problem, presented in Example 10.1.

We once again assume the presence of an internal model of a step. For comparison
purposes, we take the reduced characteristic polynomial AS0 + BdR0 to be 1 −
0.5z−1. We obtain the following expressions using the procedure outlined in this
section:

Bd = 0.63z−1

S0 = 0.5(1− 0.37)

R0 = 0.63(1− z−1)

which are identical to the values obtained in Example 10.1 for k = 1. The control
effort u(n) is also the same as before. As expected, ŷ and y values are identical
to the y values of Example 10.1 corresponding to k = 1 and k = 3, respectively.
M 10.2 is used to design this controller. Fig. 10.3 shows the Simulink code used
to carry out the simulation.

We need good knowledge of the delay for the Smith predictor to be effective. The
above approach works only for stable plants. Problem 10.2 addresses unstable plants.
Sec. 11.1.3 explains that the prediction error model of Sec. 11.1 plays the role of the
Smith predictor when noise is present.

10.2 Internal Model Control

In this section, we will develop the internal model controller, a popular technique
in the chemical engineering field. The name comes from the fact that the controller
has an explicit model of the plant as its part. In this framework, if the open loop
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Figure 10.3: Simulink block diagram to simulate Smith predictor, used in
Example 10.2. The code is available at HOME/imc/matlab/smith disc.mdl, see
Footnote 1 on page 397.
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Figure 10.4: IMC feedback configuration

transfer function is stable and if the controller is stable, the closed loop system can
be shown to be stable. This reduces the effort required in searching for controllers.
This controller, abbreviated as IMC, can be thought of as a special case of the pole
placement controller. Although it is possible to extend this idea for unstable plants,
the IMC has been used mainly for stable plants. We will also focus our attention on
IMC design of stable plants only.

Let the transfer function of the stable plant be denoted by Gp(z). Suppose that
its model is denoted by G(z) or, equivalently, by

y(n) = G(z)u(n) + ξ(n) (10.14)

where y(n), u(n) and ξ(n) are plant output, input and noise, respectively. We assume
that all the delays of the plant are factored in z−k. Note that we use the argument z,
even though the numerator and the denominator could be polynomials in powers of
z−1, see Footnote 5 on page 100. One popular method to control such stable plants
is given in the block diagram in Fig. 10.4, which implements the well known internal
model control. In this, G is a model of the plant and GQ is a special type of controller.
Let us consider the problem of regulation or noise rejection with ysp = 0. We see that

ξ̃ = y − ỹ = Gpu+ ξ −Gu = ξ (10.15)
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Figure 10.5: Injection of extra inputs to determine the conditions for internal stability
in the IMC configuration

if G = Gp. If G �= Gp, this mismatch gets added to the signal that is fed back. This is
in agreement with our intuition that we need the feedback for stable systems mainly
for noise rejection and plant–model mismatch. If in addition

GQ = G−1
p (10.16)

then the plant output in the noise rejection problem, for which we can take the
reference signal r to be zero, is given by

Gpu = −GpGQξ̃ = −ξ (10.17)

which will cancel the noise, resulting in y = 0. Thus, if GQ = G−1
p , and G = Gp,

the noise will be rejected completely. This is one advantage of this special type of
feedback connection. The additional advantage will be explained next.

A system is internally stable if and only if the transfer function between any two
points in the feedback loop is stable, see Sec. 7.4.2. To evaluate internal stability, we
construct the feedback diagram with extra inputs, as in Fig. 10.5. We arrive at the
following transfer function matrix, assuming, G = Gp:yu

ỹ

 =

GGQ G (1−GGQ)G
GQ −GGQ 0
GGQ −G2GQ G

 ru1

u2

 (10.18)

The system is internally stable if and only if every entry in the above matrix is stable.
As G is stable, internal stability is equivalent to GQ being stable. Thus, control design
is reduced to looking for any stable GQ. This is an easier problem compared to the
design of the controller in the standard configuration, Gc.

From the discussion earlier, we would want GQ = G−1. Combining these two
requirements, we look for a stable GQ that is an approximate inverse of G. We will
refer to GQ as the Q form of the IMC.

Indeed, any controller in a standard configuration for a stable plant can also be
represented in this special arrangement, because of the above mentioned appealing
property of the IMC. This is illustrated in Fig. 10.6, which has an extra signal through
G̃ added and subtracted. One can verify that this is equivalent to the standard
configuration. The block diagram in this figure is identical to that in Fig. 10.4 if
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Figure 10.7: Equivalence of standard control configuration with IMC

the entries within the dashed lines are replaced with GQ; that is, if

GQ =
Gc

1 +GGc
(10.19)

Suppose that on the other hand we want the controller in the standard configuration,
starting from Fig. 10.4. It is easy to check that this figure is identical to Fig. 10.7 if
the block within the dashed lines is equal to Gc; that is,

Gc =
GQ

1−GGQ
(10.20)

Thus, knowing one form of the controller, we can easily get the other. As the controller
has a model of the plant explicitly, it is known as the internal model controller.

10.2.1 IMC Design for Stable Plants

Next, we give the procedure to obtain a realizableGQ that is stable and approximately
an inverse of G.

1. Invert the delay free plant model so that GQ is realizable. For example, if G =
z−kB/A, then (B/A)−1 = A/B is a candidate for GQ.

2. If the plant is of nonminimum phase, i.e., if B has zeros outside the unit circle,
replace these factors with reciprocal polynomials so that GQ is stable. For
example, if

G = z−k 1− 2z−1

A
(10.21)
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then a candidate for GQ is

A

z−1 − 2
=

A

−2 + z−1
(10.22)

Notice that the zero of the plant is at 2 and that the pole of GQ is at 1/2 = 0.5.
The reciprocal polynomial of an unstable polynomial, with its zeros strictly
outside the unit circle, is guaranteed to be stable.

3. If the plant zero has negative real part, replace that factor with the steady state
equivalent. For example, if

G = z−k 1 + 0.5z−1

A
(10.23)

then a candidate for GQ is

A

1 + 0.5z−1|z=1

=
A

1.5
(10.24)

Recall the discussion in Sec. 9.5 why we do not use controllers with negative
poles.

4. The noise and model–mismatch have mainly high frequency components. To
account for these, a low pass filter of the form

Gf
�
=
Bf

Af
=

1− α
1− αz−1

(10.25)

where 1 > α > 0, is added in series.

We will now summarize this procedure. Let the plant transfer function be factored as

G = z−kB
gB−Bnm+

A
(10.26)

where Bg is the factor of B with roots inside the unit circle and with positive real
parts. B− is the factor of B with roots that have negative real parts. Note that
these roots can be inside, on, or outside the unit circle. Bnm+ refers to that part of
B containing nonminimum zeros of B with positive real parts. Fig. 10.8 explains
this diagrammatically. We will now apply this to the transfer function given in
Eq. 10.21, Bnm+ = 1 − 2z−1 and Bg = B− = 1. In Eq. 10.23, B− = 1 + 0.5z−1 and
Bg = Bnm+ = 1. Note that this notation is different from the conventional meaning
of using + and − as superscripts. Such a factorization is not considered for the
denominator polynomial A because we are dealing with stable systems only and
because poles with negative parts are uncommon in sampled systems.

For the stable system factored as in Eq. 10.26, the internal model controller is
given by

GQ = G†Gf (10.27)

Here

G† =
A

BgB−
s B

nm+
r

(10.28)
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Bg

B−

Bnm+

Figure 10.8: Dividing z plane region into good, bad and nonminimum phase parts

where B−
s is the steady state equivalent of B−,

B−
s = B−∣∣

steady state
(10.29)

and Bnm+
r is Bnm+ with reversed coefficients,

Bnm+
r = Bnm+

∣∣
reversed coefficients

(10.30)

For example, in Eq. 10.22, B−
s = B−|z=1 = 1 + 0.5z−1

∣∣
z=1

= 1.5 and in Eq. 10.24,
Bnm+

r = z−1−2. The function in M 10.3 carries out the above mentioned split. Using
Eq. 10.28 and Eq. 10.25 in Eq. 10.27, the IMC becomes

GQ =
A

BgB−
s B

nm+
r

1− α
1− αz−1

(10.31)

Note that the steady state value of GQ is the inverse of that of the model of the plant,
i.e.,

GQ|ss = [Gss]
−1 (10.32)

The function in M 10.4 implements this control design. We will now illustrate this
procedure with examples.

Example 10.3 Design an IMC for the viscosity control problem [34] with the
open loop transfer function

G = z−1 0.51 + 1.21z−1

1− 0.44z−1

Comparing with Eq. 10.26, we obtain A = 1 − 0.44z−1, Bg = Bnm+ = 1,
B− = 0.51 + 1.21z−1. It is easy to see that B−

s = 1.72 and Bnm+
r = 1. Using

Eq. 10.27, Eq. 10.28 and the low pass filter as in Eq. 10.25, we obtain

GQ =
1− 0.44z−1

1.72
1− α

1− αz−1
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Figure 10.9: Simulink block diagram for simulating a stable system with IMC, in
Q form. Code is available at HOME/imc/matlab/imc Q c.mdl, see Footnote 1 on
page 397.

Matlab code M 10.6 implements this control design. The Simulink program in
Fig. 10.9 shows how this system can be simulated. Note that the plant numerator
Bp and denominatorAp can be made different from the assumed models, B and A,
and robustness studies can be carried out.

Next we present an IMC for the van de Vusse reactor, presented in Sec. 2.2.5.

Example 10.4 Design an IMC for the open loop transfer function

G(s) =
−1.117s+ 3.1472

s2 + 4.6429s+ 5.3821

where the time unit is minutes. Sampling this with Ts = 0.1 minute, we arrive at

G(z) =
−0.075061z−1(1− 1.334z−1)

(1− 0.7995z−1)(1− 0.7863z−1)

Comparing with Eq. 10.26, we find that

A = (1− 0.7995z−1)(1 − 0.7863z−1)

Bnm+ = 1− 1.334z−1

Bg = −0.075061

B− = 1

We will first evaluate Bnm+
r as

Bnm+
r = z−1 − 1.334

Using Eq. 10.27, Eq. 10.28 and the low pass filter as in Eq. 10.25, we obtain

GQ =
(1− 0.7995z−1)(1− 0.7863z−1)
−0.075061(z−1− 1.334)

Gf

=
(1− 0.7995z−1)(1− 0.7863z−1)

0.1001(1− 0.7496z−1)
1− α

1− αz−1
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Figure 10.10: Output y(n) and input u(n) profiles in the van de Vusse reactor, as
discussed in Example 10.4. Solid lines correspond to α = 0.5 and dotted lines denote
α = 0.9.

This is identical to the controller obtained by [3]. The script in M 10.7 implements
this control design. Fig. 10.9, with the delay block deleted, is used to simulate the
efficacy of this controller. Fig. 10.10 presents the output and input profiles for α
values of 0.5 and 0.9. It can be seen that the performance for α = 0.9 is more
sluggish than that for α = 0.5. While both of them show an inverse response, it is
less for α = 0.9.

We will illustrate the IMC control technique with another example.

Example 10.5 Design an IMC for the continuous transfer function

G(s) =
1

(10s+ 1)(25s+ 1)

sampled with Ts = 3.

We obtain

G(z) =
0.0157z−1(1 + 0.8649z−1)

(1 − 0.8869z−1)(1− 0.7408z−1)

Comparing with Eq. 10.26, we obtain

A = (1− 0.8869z−1)(1− 0.7408z−1)
Bg = 0.0157

B− = 1 + 0.8649z−1

Bnm+ = 1
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Figure 10.11: Output y(n) and input u(n) profiles for the problem discussed in
Example 10.5. Solid lines correspond to α = 0.5 and dotted lines denote α = 0.9.

We will first evaluate B−
s as

B−
s = 1.8649

Using Eq. 10.27, Eq. 10.28 and the low pass filter as in Eq. 10.25, we obtain

GQ(z) =
(1− 0.8869z−1)(1 − 0.7408z−1)

0.0157× 1.8649
1− α

1− αz−1

The script in M 10.8 implements this control design. Fig. 10.9, with the delay block
deleted, is used to simulate the efficacy of this controller. Fig. 10.11 presents the
output and input profiles for α values of 0.5 and 0.9. It can be seen that the
performance for α = 0.9 is more sluggish than that for α = 0.5.

In order to compare with other controllers, we need to express the IMC in
conventional form. The next section addresses this issue.

10.2.2 IMC in Conventional Form for Stable Plants

In the last section, we have seen the benefits of the IMC structure and a way to design
controllers. In this section, we will show how to obtain an equivalent controller in the
conventional form. We can use either Eq. 10.20 or Fig. 10.12, which is an equivalent
of Fig. 10.4 or Fig. 10.7. The IMC equivalent conventional feedback controller is
given by

Gc =

Bf

Af

A

BgBnm+
r B−

s

1− Bf

Af

A

BgBnm+
r B−

s

BgBnm+B−

A
z−k
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G =
BgB−Bnm+

A

−

GQ =
A

BgB−
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Af

ξ

−

y
r

Gp

u

Figure 10.12: IMC closed loop configuration. It can be used to derive conventional
control configuration

Simplifying, we arrive at

Gc =
BfA

Bg(AfB
nm+
r B−

s −BfBnm+B−z−k)
�
=
Sc

Rc
(10.33)

The controller is in the form

Rc(z)u = Tc(z)r − Sc(z)y (10.34)

where

Tc(z) = Sc(z) (10.35)

If the filter is chosen as in Eq. 10.25, using Eq. 10.32 and Eq. 10.20, we see that

Rc(1) = 0 (10.36)

implying integral control. The function in M 10.9 is an augmented version of M 10.4:
it determines Gc, given GQ. We now illustrate this approach with a few examples.

Example 10.6 Design an IMC for the first order system G(s) = 1/(s+1) when
sampled with Ts = 1 s and express it in the conventional form.

The discrete time transfer function is given by

G(z) =
0.6321z−1

1− 0.3679z−1

The Q form of the IMC is given by

GQ =
1− 0.3679z−1

0.6321

Suppose that the filter is chosen to be 1. Using Eq. 10.20, we obtain the controller
in the conventional form as

Gc =
1− 0.3679z−1

0.6321

[
1− 0.6321z−1

1− 0.3679z−1

1− 0.3679z−1

0.6321

]−1

=
1− 0.3679z−1

0.6321(1− z−1)
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Example 10.7 Determine the IMC equivalent conventional controller for the
system presented in Example 10.3.

Using Eq. 10.33, we find that

Rc = 1.72(1− αz−1)− z−1(1− α)(0.51 + 1.21z−1)

= 1.72− [1.72α+ (1− α)0.51]z−1 − 1.21(1− α)z−2

= 1.72− (0.51 + 1.21α)z−1 − 1.21(1− α)z−2

= [1.72 + 1.21(1− α)z−1](1− z−1)

Sc = BfA = (1− α)(1 − 0.44z−1)

The controller is given by Eq. 10.34. It has one tuning factor, α, the filter time
constant. It is easy to check that for all α, Rc(1) = 0.

Example 10.8 Determine the IMC equivalent conventional controller for the
system presented in Example 10.4.

Using Eq. 10.33, we find that

Rc = −0.075061[(1− αz−1)(−1.334 + z−1)− (1 − α)(1 − 1.334z−1)z−1]

= −0.075061(−1.334 + 2.334αz−1 + (1.334− 2.334α)z−2)

= 0.1001(1− 1.75αz−1 − (1− 1.75α)z−2)

= 0.1001(1− z−1)[1 + (1− 1.75α)z−1]

It is easy to check that Rc(1) = 0 for all α. If we assume a filter constant α = 0.5,
this simplifies to

Rc = 0.1001(1− z−1)(1 + 0.875z−1) = 0.1001− 0.0876z−1 − 0.0125z−2

The corresponding expression for Sc is

Sc = (1− α)A(1 − 0.7995z−1)(1− 0.7863z−1)

= 0.5− 0.7929z−1 + 0.3143z−2

A program to compute the coefficients is given in M 10.10.

Example 10.9 Determine the IMC equivalent conventional controller for the
system presented in Example 10.5.

Using Eq. 10.33, we find that

Rc = 0.0157[(1− αz−1)1.8649− (1− α)(1 + 0.8649z−1)z−1]

With α = 0.5, this simplifies to Rc = 0.0293 − 0.0225z−1 − 0.0068z−2. The
corresponding expression for Sc is Sc = 0.5 − 0.8139z−1 + 0.3285z−2. It is easy
to check that Rc(1) = 0.
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10.2.3 PID Tuning Through IMC

In Sec. 9.8, we have presented a method to tune PID controllers using the pole
placement approach. We will now use the IMC to obtain PID tuning parameters.
Looking at the examples in Sec. 10.2.2, we see that the IMC generated controllers
have the property of Sc(z) = Rc(z) and the degree of Rc(z) = dRc = 2, where the
controller is given by Eq. 10.34,

Rc(z)u = Tc(z)r − Sc(z)y (10.37)

We see that the PID controllers presented in Sec. 8.3.5 and 8.3.6 are not suitable
because, they have degree of Rc as 1. On the other hand, the PID controller presented
in Sec. 8.3.7 is possibly suitable because it has dRc = 2, see Eq. 8.55 on page 321. This
PID controller, however, has to be modified so that Sc = Tc, which is the required
form for the IMC. This can be carried out by subjecting r also to the same treatment
as y. Thus, the controller given by Eq. 8.53 becomes

U(z) = K

[
1 +

1
τi

Ts

2
z + 1
z − 1

+
z−1
zTs

τd

1 + z−1
zTs

τd

N

]
(R(z)− Y (z)) (10.38)

where we have used the trapezoidal rule for integration. Simplifying, we obtain

(1− z−1)(1 − adz
−1)U(z)

= K

[
(1− z−1)(1 − adz

−1) +
Ts

2τi
(1 + z−1)(1− adz

−1) +Nad(1− z−1)2
]

× (R(z)− Y (z)) (10.39)

This is in the standard controller form as given by Eq. 10.37 with

Rc(z) = (1− z−1)(1− adz
−1)

Sc(z) = K

[(
1 +

Ts

2τi
+Nad

)
+
(
−(ad + 1) +

Ts

2τi
(1− ad)− 2Nad

)
z−1

+
(
ad − Ts

2τi
ad + Nad

)
z−2

]
Tc(z) = Sc(z)

(10.40)

Comparing this with the IMC parameters given by Eq. 10.33, one can determine the
PID parameters. We will illustrate this approach with an example.

Example 10.10 Determine the tuning parameters so that the resulting PID
controller is equivalent to the IMC derived in Example 10.8.

Comparing Rc(z) in Eq. 10.40 with that in the example under discussion, we find
that

ad = 1.75α− 1

Equating Sc(z) of Example 10.8 with the form in Eq. 10.40, we obtain three
equations, which can be solved for three unknowns, K, τi and N . From the
expression for ad, one can determine τd.



10.3. Matlab Code 397

In this section, we have given a brief overview of tuning PID parameters through the
IMC, a model based controller. We will return to this topic in Sec. 11.3.3.

10.3 Matlab Code

Matlab Code 10.1 Effect of delay in control performance. Implements the steps
discussed in Example 10.1 on page 381. This code is available at
HOME/imc/matlab/delay.m1

1 Ts = 1 ; B = 0 . 6 3 ; A = [ 1 −0 .37 ] ;
2 k = input ( ’ Enter the de lay as an i n t e g e r : ’ ) ;
3 i f k<=0, k = 1 ; end
4 [ zk , dzk ] = zpowk ( k ) ;
5

6 % D e s i r e d t r a n s f e r f u n c t i o n

7 phi = [ 1 −0 .5 ] ;
8 d e l t a = 1 ; % i n t e r n a l m o d e l o f s t e p i n t r o d u c e d

9

10 % C o n t r o l l e r d e s i g n

11 [ Rc , Sc , Tc ,gamma] = pp im (B,A, k , phi , d e l t a ) ;
12

13 % s i m u l a t i o n p a r a m e t e r s f o r s t b d i s c . md l

14 s t = 1 . 0 ; % d e s i r e d c h a n g e i n s e t p o i n t

15 t i n i t = 0 ; % s i m u l a t i o n s t a r t t i m e

16 t f i n a l = 20 ; % s i m u l a t i o n e n d t i m e

17

18 % s i m u l a t i o n p a r a m e t e r s f o r s t b d i s c . md l

19 N var = 0 ; C = 0 ; D = 1 ; N = 1 ;

Matlab Code 10.2 Smith predictor for paper machine control, presented in Exam-
ple 10.2 on page 385. This code is available at HOME/imc/matlab/smith.m

1 Ts = 1 ; B = 0 . 6 3 ; A = [ 1 −0 .37 ] ; k = 3 ;
2 Bd = conv (B, [ 0 1 ] ) ;
3 kd = k − 1 ;
4 [ zkd , dzkd ] = zpowk ( kd ) ;
5 [ mzkd , dmzkd ] = poladd (1 ,0 ,− zkd , dzkd ) ;
6

7 % D e s i r e d t r a n s f e r f u n c t i o n

8 phi = [ 1 −0 .5 ] ; d e l t a = 1 ;
9

10 % C o n t r o l l e r d e s i g n

11 [ Rc , Sc , Tc ,gamma] = pp im (B,A, 1 , phi , d e l t a ) ;
12

13 % s i m u l a t i o n p a r a m e t e r s f o r s m i t h d i s c . md l

14 s t = 1 . 0 ; % d e s i r e d c h a n g e i n s e t p o i n t

1HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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15 t i n i t = 0 ; % s i m u l a t i o n s t a r t t i m e

16 t f i n a l = 20 ; % s i m u l a t i o n e n d t i m e

17

18 % s i m u l a t i o n p a r a m e t e r s f o r s m i t h d i s c . md l

19 N var = 0 ; C = 0 ; D = 1 ; N = 1 ;

Matlab Code 10.3 Splitting a polynomial B(z) into Bg, B− and Bnm+, as
discussed in Sec. 10.2.1. An example of the usage is given in M 10.4. This code is
available at HOME/imc/matlab/imcsplit.m

1 % S p l i t s a p o l y n o m i a l B i n t o g o od , n on m in imu m w i t h p o s i t i v e

2 % r e a l & w i t h n e g a t i v e r e a l p a r t s . A l l a r e r e t u r n e d i n

3 % p o l y n o m i a l f o r m . G a i n i s r e t u r n e d i n Kp a nd d e l a y i n k .

4

5 function [Kp, k , Bg ,Bnmp,Bm] = i m c s p l i t (B, polynomial )
6 k = 0 ;
7 Kp = 1 ;
8 i f ( polynomial )
9 r t s = roots (B) ;

10 Kp = sum(B) /sum(poly ( r t s ) ) ;
11 else
12 r t s = B;
13 end
14 Bg = 1 ; Bnmp = 1 ; Bm = 1 ;
15 for i = 1 : length ( r t s ) ,
16 r t = r t s ( i ) ;
17 i f r t == 0 ,
18 k = k+1;
19 e l s e i f (abs ( r t )<1 & real ( r t )>=0)
20 Bg = conv (Bg , [ 1 −r t ] ) ;
21 e l s e i f (abs ( r t )>=1 & real ( r t )>=0)
22 Bnmp = conv (Bnmp, [ 1 −r t ] ) ;
23 else
24 Bm = conv (Bm, [ 1 −r t ] ) ;
25 end
26 end

Matlab Code 10.4 Design of internal model controller,GQ, discussed in Sec. 10.2.1.
An example of the usage is given in M 10.6. This code is available at
HOME/imc/matlab/imc stable1.m

1 % D e s i g n s D i s c r e t e I n t e r n a l M o d e l C o n t r o l l e r

2 % f o r t r a n s f e r f u n c t i o n z ˆ{− k }B ( z ˆ { − 1 } ) /A ( z ˆ { − 1 } )

3 % N u m e r a t o r a nd D e n o m i n a t o r o f IMC HQ a r e o u t p u t s

4 % C o n t r o l l e r i s a l s o g i v e n i n R , S f o r m

5 %

6 function [ k , HiN , HiD ] = imc s tab l e1 (B,A, k , alpha )
7

8 [Kp, d , Bg ,Bnmp,Bm] = i m c s p l i t (B, l o g i c a l (1 ) ) ;
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9 Bg = Kp ∗ Bg ;
10 Bnmpr = f l i p (Bnmp) ;
11 Bms = sum(Bm) ;
12 HiN = A;
13 HiD = Bms ∗ conv (Bg , Bnmpr) ;
14 k = k+d ;

Matlab Code 10.5 Flipping a vector. This code is available at
HOME/matlab/flip.m

1 function b = f l i p ( a )
2 b = a ( length ( a ) :−1:1) ;

Matlab Code 10.6 IMC design for viscosity control problem, as discussed in
Example 10.3 on page 390. This code is available at HOME/imc/matlab/visc imc1.m

1 B = [ 0 . 5 1 1 . 2 1 ] ;
2 A = [ 1 −0 .44 ] ;
3 k = 1 ;
4 alpha = 0 . 5 ;
5 [ k , GiN , GiD ] = imc s tab l e1 (B,A, k , alpha ) ;
6 [ zk , dzk ] = zpowk ( k ) ;
7 Bp = B; Ap = A;
8 Ts = 0 . 1 ; t0 = 0 ; t f = 20 ; Nvar = 0 . 0 1 ;

Matlab Code 10.7 IMC design for the control of van de Vusse reactor, as discussed
in Example 10.4. This code is available at HOME/imc/matlab/vande imc1.m

1 num = [−1.117 3 . 1 4 7 2 ] ; den = [ 1 4 .6429 5 . 3 8 2 1 ] ;
2 G = t f (num, den ) ;
3 Ts = 0 . 1 ;
4 [B,A, k ] = myc2d(G, Ts ) ;
5 alpha = 0 . 9 ;
6 [ k , GiN , GiD ] = imc s tab l e1 (B,A, k , alpha ) ;
7 [ zk , dzk ] = zpowk ( k ) ;
8 Bp = B; Ap = A;
9 t0 = 0 ; t f = 10 ; s t = 1 ; Nvar = 0 ;

10

11 % s i m u l i n k e x e c u t e d w i t h d e l a y b l o c k d e l e t e d

Matlab Code 10.8 IMC design for Lewin’s example, as discussed in Example 10.5
on page 392. This code is available at HOME/imc/matlab/lewin imc1.m

1 num = 1 ; den = [250 35 1 ] ; Ts = 3 ;
2 G = t f (num, den ) ;
3 [B,A, k ] = myc2d(G, Ts ) ;
4 alpha = 0 . 9 ;
5 [ k , GiN , GiD ] = imc s tab l e1 (B,A, k , alpha ) ;
6 [ zk , dzk ] = zpowk ( k ) ;
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7 Bp = B; Ap = A;
8 t0 = 0 ; t f = 100 ; s t = 1 ; Nvar = 0 ;
9

10 % s i m u l i n k e x e c u t e d w i t h d e l a y b l o c k d e l e t e d

Matlab Code 10.9 Design of conventional controller GD which is an equivalent of
internal model controller, GQ, as discussed in Sec. 10.2.2. This code is available at
HOME/imc/matlab/imc stable.m

1 % D e s i g n s D i s c r e t e I n t e r n a l M o d e l C o n t r o l l e r

2 % f o r t r a n s f e r f u n c t i o n z ˆ{− k }B ( z ˆ { − 1 } ) /A ( z ˆ { − 1 } )

3 % N u m e r a t o r a nd D e n o m i n a t o r o f IMC HQ a r e o u t p u t s

4 % C o n t r o l l e r i s a l s o g i v e n i n R , S f o r m

5 %

6 function [ k , HiN , HiD ,R, S ,mu] = imc s tab l e (B,A, k , alpha )
7

8 [Kp, d , Bg ,Bnmp,Bm] = i m c s p l i t (B, l o g i c a l (1 ) ) ;
9 Bg = Kp ∗ Bg ;

10 Bnmpr = f l i p (Bnmp) ;
11 Bms = sum(Bm) ;
12 HiN = A;
13 HiD = Bms ∗ conv (Bg , Bnmpr) ;
14 k = k+d ;
15 [ zk , dzk ] = zpowk ( k ) ;
16 Bf = (1−alpha ) ;
17 Af = [ 1 −alpha ] ;
18 S = conv( Bf ,A) ;
19 R1 = conv ( Af , conv (Bnmpr ,Bms) ) ;
20 R2 = conv ( zk , conv ( Bf , conv (Bnmp,Bm) ) ) ;
21 [R,dR ] = poladd (R1 , length (R1)−1,−R2 , length (R2)−1) ;
22 R = conv(Bg ,R) ;

Matlab Code 10.10 Design of conventional controller GD for van de Vusse reactor
problem, as discussed in Example 10.7 on page 395. This code is available at
HOME/imc/matlab/vande imc.m

1 num = [−1.117 3 . 1 4 7 2 ] ; den = [ 1 4 .6429 5 . 3 8 2 1 ] ;
2 G = t f (num, den ) ;
3 Ts = 0 . 1 ;
4 [B,A, k ] = myc2d(G, Ts ) ;
5 alpha = 0 . 5 ;
6 [ k , HiN , HiD ,R, S ] = imc s tab l e (B,A, k , alpha ) ;
7 [ zk , dzk ] = zpowk ( k ) ;
8 Bp = B; Ap = A;
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10.4 Problems

10.1. Consider the control of a process with a large inbuilt time delay (also known as
dead time). Control using a delayed signal, as shown in the first figure below,
is undesirable. Ideally we would like to have the configuration as in the middle
figure. But we cannot poke into the process to obtain the measurement. An
alternative is to go for the bottom configuration, if the time delay n is known.
Show that the middle and bottom figures are equivalent. This is known as the
Smith predictor. Assume that G(z) includes one delay.

Controller
Process

Process
Controller

Process
Controller

z−n
R(z)

−

Gc(z) G(z) z−n
R(z)

−

Gc(z) G(z) z−n
R(z)

−

(1− z−n)G(z)

Gc(z) G(z)

10.2. The approach presented in Sec. 10.1 works only for stable plants. In this problem,
we will present a general method for Smith predictors [31]. For the system model
presented in Sec. 10.1, the Smith predictor is given by the following equations:

R0(z)u(n) = γT0(z)r(n)− S0(z)ŷ(n+ d|n) (10.41)
φp(z)ŷ(n+ d|n) = F (z)y(n) +Bd(z)E(z)u(n) (10.42)

where S0 and R0 are the solutions of

A(z)R0(z) +Bd(z)S0(z) = φ0(z) (10.43)

and F (z) and E(z) are the solutions of

A(z)E(z) + z−dF (z) = φp(z) (10.44)

with d = k − 1.

[Hint: Eliminate ŷ from Eq. 10.41– 10.42 and obtain the following:

(φpR0 +BS0E)u(n) = γT0φpr(n) − S0Fy(n) (10.45)
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Substitute this expression for u into y = z−dBu/A, simplify, and obtain

y(n) =
z−dBdφpγT0

A(φpR0 + S0BdE) + z−dBdS0F
(10.46)

Using Eq. 10.43–10.44, show that the denominator of Eq. 10.46 can be written
as φpφ0. φp can be thought of as the characteristic polynomial of the predictor.
φ0 is the characteristic polynomial when d = 0.]

10.3. Design an IMC, GQ, for the open loop transfer function given in Eq. 8.58 on
page 322 with the value of the filter constant unspecified.

(a) What is the conventional controller Gc that is equivalent to the above GQ?

(b) If you have to implement the above Gc with a PID controller, what are the
P, I, D settings?



Chapter 11

Minimum Variance Control

Minimum variance control is concerned with the design of controllers so as to minimize
the variance of the error in plant output. This controller does not worry about
the control effort required to achieve the result. Minimum variance control is used
as a benchmark, against which the performance of other controllers is compared.
The output of minimum variance controllers could be unbounded. The generalized
minimum variance control technique is one way to overcome this problem. In this
chapter, we present these two families of controllers. We begin with prediction error
models, which help design these controllers in the presence of noise.

11.1 j-Step Ahead Prediction Error Model

If only white noise enters the system as a disturbance, nothing can be done since
white noise cannot be modelled. If, on the other hand, white noise enters through a
filter, we should try to estimate it so as to take corrective action. Prediction error
models are required for this purpose.

We have seen one step ahead prediction error models in Sec. 6.6. For control
purposes, however, the one step ahead prediction error model is not sufficient. We
look for a j step ahead prediction error model. Once we can predict how the plant
will behave j steps into the future, we can design a controller that will help improve
the performance of the plant over a time horizon.

In this section, we present prediction error models for systems described by noise
models, such as ARMAX and ARIMAX.

11.1.1 Control Objective for ARMAX Systems

Let u(t) be the input to and y(t) be the output from a process that needs to be
controlled. Let ξ(t) be a white noise signal that affects the output. Consider an
ARMAX model, described by Eq. 6.150 on page 204, reproduced here for convenience:

A(z)y(n) = z−kB(z)u(n) + C(z)ξ(n) (11.1)

Digital Control Kannan M. Moudgalya
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03143-8
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Here, A, B and C are polynomials, defined in Eq. 6.130– 6.132 on page 199, reproduced
once again:

A(z) = 1 + a1z
−1 + · · ·+ adAz

−dA

B(z) = b0 + b1z
−1 + · · ·+ bdBz

−dB

C(z) = 1 + c1z
−1 + · · ·+ cdCz

−dC

(11.2)

where we have used the mixed notation of Sec. 6.4.1. The effect of delay is completely
factored in k so that the leading term of B is a nonzero constant. Also note that the
polynomials A and C are monic, because their leading term is one. Recall that dA,
dB and dC are the corresponding polynomials. The above equation can be written as

y(n) =
B(z)
A(z)

u(n− k) +
C(z)
A(z)

ξ(n) (11.3)

or

y(n+ k) =
B(z)
A(z)

u(n) +
C(z)
A(z)

ξ(n+ k) (11.4)

As this process has a delay of k samples, any change in u will affect y only after k
time instants. As a result, we cannot hope to modify the plant output at any time
earlier than n + k. In contrast, as there is no delay between them, the noise signal
ξ(n) starts affecting y(n) immediately. The best we can do is to predict the output at
n+ j, j ≥ k, so as to take corrective action. In the minimum variance and generalized
minimum variance controller, to be discussed in this chapter, we choose j to be equal
to k. In the generalized predictive controller, to be discussed in the next chapter, we
choose j > k.

Suppose that we want to determine the input u(n) that makes y(n + k)
approximately zero. In Eq. 11.4, because of the presence of terms containing powers
of z−1, the noise element ξ could have past and future terms. If we can split these two
effects, it is easy to determine the condition to minimize y(t + k). We demonstrate
this in the next section.

11.1.2 Prediction Error Model Through Noise Splitting

If we can split the noise term in Eq. 11.4 into past and future terms, we can zero the
latter and obtain the best prediction error model. This model can then be used to
determine the control law. If C/A = 1 in Eq. 11.4, the best prediction error model of
y(n+ k) estimated at the current time n is

ŷ(n+ k|n) =
B

A
u(n) (11.5)

as the future noise terms are white with their best estimate being zero. The |n in ŷ
says that we have used all available information until now. What do we do if C is not
equal to A? We will show that we can easily handle this case by splitting C/A into
Ej and Fj as follows:

C

A
= Ej + z−j Fj

A
(11.6)
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where

Ej = ej,0 + ej,1z
−1 + · · ·+ ej,j−1z

−(j−1)

Fj = fj,0 + fj,1z
−1 + · · ·+ fj,dA−1z

−(dA−1)
(11.7)

We show in Sec. 11.1.4 how to arrive at Eq. 11.6. For the time being, we would only
like to point out that the degree of Ej is j − 1. Moreover, every term in Fj will be
multiplied by z−j, because of the presence of the latter in Eq. 11.6. We multiply
Eq. 11.6 by A to obtain

C = EjA+ z−jFj (11.8)

Multiplying Eq. 11.3 by zjEjA we obtain

zjEjAy(n) = zjEjBu(n− k) + zjEjCξ(n)

where the dependence on z is omitted for convenience. Substituting for EjA from
Eq. 11.8 we obtain

zj(C − z−jFj)y(n) = zjEjBu(n− k) + zjEjCξ(n)

From this, we obtain zjCy(n) = Fjy(n) + zjEjBu(n− k) + zjEjCξ(n). Dividing by
C, we obtain

y(n+ j) =
EjBu(n+ j − k) + Fjy(n)

C
+ Ejξ(n+ j) (11.9)

Recall that the objective of the prediction error model is to estimate the output y at
a future time n+ j. The last term in the above equation has the noise terms at future
time instants only, as the degree of E is j−1, see Eq. 11.7. As we cannot estimate the
future noise, which is supposed to be random, the best estimate of the output for the
model in Eq. 11.9 is an identical one without the noise term. That is, the estimate of
y(n+ j) is ŷ(n+ j|n), given by

ŷ(n+ j|n) =
EjBu(n+ j − k) + Fjy(n)

C
(11.10)

We define a new variable Gj as follows:

Gj = Ej(z)B(z) (11.11)

Eq. 11.10 becomes

Cŷ(n+ j|n) = Gju(n+ j − k) + Fjy(n) (11.12)

As this model can be used to predict the relationship between u(n) and y(n+ j) so
as to reduce the effect of noise, it is known as the prediction error model. Comparing
Eq. 11.9 and Eq. 11.10, we obtain

y(n+ j) = ŷ(n+ j|n) + ỹ(n+ j|n) (11.13)

where ỹ(n+ j|n) is the error in this prediction and it is given by

ỹ(n+ j|n) = Ejξ(n+ j) (11.14)

When the context is clear, we will write ŷ(n+ j|n) simply as ŷ(n+ j).



406 11. Minimum Variance Control

y

EkB

C

Fk
C
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Figure 11.1: An interpretation of the prediction error model

11.1.3 Interpretation of the Prediction Error Model

In Sec. 10.1, we have shown that the Smith predictor can help overcome the adverse
effects of time delays in the plant. Unfortunately, however, the Smith predictor does
not work when noise is present. We will demonstrate in this section that the prediction
error model plays the role of Smith predictor when noise is present [18]. For this
purpose, we make use of the k step ahead prediction error model, with which we will
derive two popular control strategies in the latter part of this chapter.

We will study the prediction error model of the ARMAX model in detail in this
section. First, let us recall the ARMAX model of Eq. 11.1 and reproduce it:

y = z−kB

A
u+

C

A
ξ (11.15)

If we substitute k in place of j in Eq. 11.10, we obtain the following k step ahead
prediction error model:

ŷ(n+ k|n) =
EkB

C
u(n) +

Fk

C
y(n)

A schematic of this model is given in Fig. 11.1. We denote the predicted output as y∗

in this figure. We have

y∗ =
EkB

C
u+

Fk

C
y

We now substitute for y using Eq. 11.15 and simplify. We obtain

y∗ =
EkB

C
+
Fk

C

[
z−kB

A
u+

C

A
ξ

]
=
EkB

C
u+ z−kBFk

AC
u+

Fk

A
ξ =

B

C

(
Ek + z−kFk

A

)
u+

Fk

A
ξ

We now make use of Eq. 11.8, with k in place of j, to obtain

y∗ =
B

C

C

A
u+

Fk

A
ξ =

B

A
u+

Fk

A
ξ
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Comparing this with Eq. 11.15, we see that the first term appears without k, while
the C/A term has been replaced by Fk/A. Let us now try to understand what this
means. Substituting for C/A using Eq. 11.6 in Eq. 11.15, we obtain

y = z−kB

A
u+ Ekξ +

Fk

A
z−kξ

The prediction error model is obtained by zeroing future noise terms. We obtain

ŷ = z−kB

A
u+

Fk

A
z−kξ =

(
B

A
u+

Fk

A
ξ

)
z−k

Thus, y∗ is the k step ahead predictor of ŷ. In other words, the predictor y∗ =
ŷ(n+ k|n) takes care of the task that cannot be handled by the Smith predictor.

An important technique that we have used to arrive at the prediction error model
is the splitting of C/A into past and future contributions, using Eq. 11.6. In the next
section, we present a few methods to carry out this calculation.

11.1.4 Splitting Noise into Past and Future Terms

We have arrived at the prediction error model using the relation given in Eq. 11.6.
In this section, we show how Ej and Fj can be calculated, given j. We begin with an
example.

Example 11.1 Divide the noise term arising out of

C(z) = 1 + 0.5z−1

A(z) = (1 + 0.2z−1)(1 − 0.8z−1) = 1− 0.6z−1 − 0.16z−2

into Ej and Fj , as in Eq. 11.6, for j = 2.

We carry out the following long division:

1 + 1.1z−1

1− 0.6z−1 − 0.16z−2 | 1 +0.5z−1

1 −0.6z−1 −0.16z−2

+1.1z−1 +0.16z−2

+1.1z−1 −0.66z−2 −0.176z−3

+0.82z−2 +0.176z−3

Thus we obtain

E2 = 1 + 1.1z−1

F2 = 0.82 + 0.176z−1
(11.16)

In other words

1 + 0.5z−1

1− 0.6z−1 − 0.16z−2
= (1 + 1.1z−1) + z−2 0.82 + 0.176z−1

1− 0.6z−1 − 0.16z−2
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From the above example, it is easy to see the following relations for the degrees of Ej

and Fj :

dEj = j − 1
dFj = max (dC − j, dA− 1)

(11.17)

We can also compute Ej and Fj recursively. First we illustrate this concept with
the problem considered in the above example.

Example 11.2 Recursively compute Ej and Fj for the system discussed in
Example 11.1.

Rewrite the division results obtained in Example 11.1 as follows:

1 + 0.5z−1

1− 0.6z−1 − 0.16z−2

= 1 +
0.5z−1 − (−0.6z−1 − 0.16z−2)1

1− 0.6z−1 − 0.16z−2

= 1 +
1.1z−1 + 0.16z−2

1− 0.6z−1 − 0.16z−2

= 1 + 1.1z−1 +
0.16z−2 − (−0.6z−1 − 0.16z−2)1.1z−1

1− 0.6z−1 − 0.16z−2

= 1 + 1.1z−1 +
0.82z−2 + 0.176z−3

1− 0.6z−1 − 0.16z−2

= 1 + 1.1z−1 + 0.82z−2 +
0.176z−3 − (−0.6z−1 − 0.16z−2)0.82z−2

1− 0.6z−1 − 0.16z−2

= 1 + 1.1z−1 + 0.82z−2 +
0.668z−3 + 0.1312z−4

1− 0.6z−1 − 0.16z−2

We observe the following:

F0 = C

E1 = 1

The leading coefficients of both C and A are both equal to one:

F1z
−1 = 0.5z−1 − (−0.6z−1 − 0.16z−2) = (1.1 + 0.16z−1)z−1

= F 0 −AF0,0

F 0 is equal to all of F0, except its leading term. In the above calculations, for
F0 = C = 1 + 0.5z−1, we obtain F 0 = 0.5z−1. Similarly, A is all of A, except its
leading term. With A = 1−0.6z−1−0.16z−2, we obtain A = −0.16z−1−0.16z−2.
F0,0 denotes the leading term of F0, which is one. We proceed with the above
type of calculations:

E2 = 1 + 1.1z−1 = E1 + F1,0z
−1
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Notice that F1,0 is the leading term of F1, which is 1.1. We obtain

F2z
−2 = 0.16z−2 − (−0.6z−1 − 0.16z−2)1.1z−1 = (0.82 + 0.176z−1)z−2

= F 1 −AF1,0

E3 = 1 + 1.1z−1 + 0.82z−2 = E2 + F2,0z
−2

F3z
−3 = 0.176z−3 − (−0.6z−1 − 0.16z−2)0.82

= (0.668 + 0.1312z−1)z−3

= F 2 −AF2,0

M 11.2 demonstrates how to implement these calculations in Matlab.

The above procedure to compute Ej and Fj through recursive means can be
summarized by the following algorithm:

F0 = C
E1 = 1
for all j < k do
Fj = F j−1 −AFj−1,0z

−(j−1)

Ej+1 = Ej + Fj,0z
−j

end for
Fk = F k−1 −AFk−1,0z

−(k−1)

where the bar denotes the variable with the constant term removed and ,0 denotes
the constant term of the variable.

We can also find Ej and Fj by solving Aryabhatta’s identity, given in Eq. 11.8. In
the next example, we demonstrate how to obtain Ej and Fj for the problem discussed
in Eq. 11.1 with the use of the code xdync.m described by Moudgalya [39], which is
a Matlab implementation of the algorithm described by Chang and Pearson [8].

Example 11.3 Solve the problem discussed in Example 11.1 with the use of
the Matlab code xdync.m.

C = 1 + 0.5z−1, dC = 1

A = 1− 0.6z−1 − 1.6z−2, dA = 2

We invoke the commands in M 11.3 to arrive at, as before,

E2 = 1 + 1.1z−1

F2 = 0.82 + 0.176z−1

In the previous sections, we have seen how to obtain the j-step ahead prediction
error model for the system presented in Eq. 11.1. In some industries, noise enters the
system through an integral term. We consider such models in the next two sections.
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11.1.5 ARIX Prediction Error Model

To simplify the controller design procedure, we often use simple noise models. It turns
out that models of the following form

A(z)y(n) = z−kB(z)u(n) +
1
∆
ξ(n) (11.18)

are often adequate to describe chemical processes, where the noise occasionally comes
in the form of random steps. Here, ∆ is the backward shift operator

∆(z) = 1− z−1 (11.19)

and A and B are as defined in Eq. 11.2. Comparing this with Sec. 6.6.5, we refer to
it as autoregressive integrated exogeneous (ARIX ) input model. As ξ(n) stands for
a random signal, ξ/∆ denotes random steps. As before, we would like to obtain an
estimate of the plant output at t+ j, j ≥ k. We multiply Eq. 11.18 by ∆ to arrive at

∆A(z)y(n) = z−kB(z)∆u(n) + ξ(n) (11.20)

In the previous section, we separated the coefficient of ξ (namely, C) divided by that
of y (namely, A) into Ej and Fj . We do the same in this section, i.e., divide 1 by ∆A.
Let

1
∆A(z)

= Ej(z) + z−j Fj(z)
∆A(z)

(11.21)

As before, Ej is of degree j − 1 while the degree of Fj is one less than that of ∆A.
That is,

dFj = dA (11.22)

Because C = 1, the degree condition of Fj , given in Eq. 11.17, is simplified to the
above. Cross multiplying Eq. 11.21, we obtain

1 = Ej∆A+ z−jFj (11.23)

We use this relation to obtain the prediction error model. Multiplying Eq. 11.20
by zjEj , we obtain

zjEj∆Ay(n) = zjEjB∆u(n− k) + zjEjξ(n) (11.24)

Substituting for Ej∆A from Eq. 11.23,

zj(1− z−jFj)y(n) = EjB∆u(n+ j − k) + Ejξ(n+ j) (11.25)

Simplifying this we arrive at

y(n+ j) = Gj∆u(n+ j − k) + Fjy(n) + Ejξ(n+ j) (11.26)
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where Gj is as defined in Eq. 11.11. As the degree of Ej is j − 1, Ejξ(n+ j) has only
terms of the form ξ(n + i), i > 0, i.e., only the future noise values. As a result, we
arrive at the following optimal prediction error model:

ŷ(n+ j) = Gj∆u(n+ j − k) + Fjy(n) (11.27)

The prediction error is once again given by Eq. 11.14. We will now generalize the
model studied in this section.

11.1.6 ARIMAX Prediction Error Model

The noise model of the previous section included only random steps. We generalize
the treatment in this section. Consider a system with the model

A(z)y(n) = z−kB(z)u(n) +
C(z)

∆
ξ(n) (11.28)

where as before, u is the input, y is the output, ξ is white noise and ∆ is the backward
difference operator 1− z−1. If we follow the approach of the previous section, because
of the presence of C, the last term in Eq. 11.26 will have past and future terms,
making the prediction error model not so obvious as in Eq. 11.27. As a result, we
proceed as follows. First we solve the following Aryabhatta’s identity for Ej and Fj :

C = Ej∆A+ z−jFj (11.29)

The degrees of Ej and Fj are

dEj = j − 1
dFj = d∆A− 1 = dA

(11.30)

which is the same as in Eq. 11.22. Substituting for C from Eq. 11.29 in Eq. 11.28 and
multiplying by zj, we obtain

Ay(n+ j) = Bu(n+ j − k) + EjAξ(n+ j) +
Fj

∆
ξ(n) (11.31)

From Eq. 11.28, we see that

1
∆
ξ(n) = (Ay(n) −Bu(n− k))

1
C

(11.32)

Substituting this in Eq. 11.31, we obtain

Ay(n+ j) = Bu(n+ j − k)− FjB

C
u(n− k) +

FjA

C
y(n) + EjAξ(n+ j)

which can be simplified as

Ay(n+ j) =
[
1− z−j Fj

C

]
Bu(n+ j − k) +

FjA

C
y(n) + EjAξ(n+ j) (11.33)
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In view of Eq. 11.29, this becomes

y(n+ j) =
EjB

C
∆u(n+ j − k) +

Fj

C
y(n) + Ejξ(n+ j) (11.34)

As dEj = j − 1, the noise term has only future values. As a result, the prediction
error model of y(n+ j) is the above equation without the noise term:

Cŷ(n+ j) = EjB∆u(n+ j − k) + Fjy(n) (11.35)

Recall that in Sec. 11.1.1, we motivated the need to study prediction error models so
as to design controllers. We now return to the task of designing controllers.

11.2 Minimum Variance Controller

As mentioned earlier, the minimum variance controller tries to minimize the variance
of the error in plant output. This controller is used as a benchmark, against which
other controllers are compared. We will design a minimum variance control law for
different types of disturbance.

11.2.1 Minimum Variance Controller for ARMAX Systems

The objective of the minimum variance controller is to minimize the variance of the
output of the system presented in Eq. 11.1. As discussed in the previous section, n+k
is the earliest time at which the current control action will have any effect on y. So
we would like to minimize the following performance index by suitably choosing u(n):

J = E
[
y2(n+ k)

]
(11.36)

Substituting for y(n+ k) from Eq. 11.9, noting that ξ(n+ k) is independent of u(n)
and y(n), we obtain

E
[
y2(n+ k)

]
= E

[(
Gku(n) + Fky(n)

C

)2
]

+ E
[
(Ekξ(n+ k))2

]
(11.37)

The second term on the right-hand side does not depend on u(n) and hence its value
cannot be changed. The first term, on the other hand, can be modified by u(n). Indeed,
by a proper choice of u(n), it can be made zero as our objective is to minimize the
variance:

Gku(n) + Fky(n) = 0 (11.38)

which is equivalent to ŷ(n + k|n) = 0 from Eq. 11.10. That is, the smallest possible
value for the variance of the output is achieved by making the output of the prediction
model at n + k to be zero; we cannot minimize the index any further. Solving this
equation for u, we obtain

u(n) = − Fk

Gk
y(n) (11.39)
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or, using Eq. 11.11,

u(n) = − Fk(z)
Ek(z)B(z)

y(n) (11.40)

where Fk and Ek are the solutions of Aryabhatta’s identity,

C = EkA+ z−kFk (11.41)

obtained by substituting j = k in Eq. 11.8. The law in Eq. 11.40 is known as the
minimum variance control law. As ŷ(n + k|t) = 0, from Eq. 11.9, we obtain the
following:

y(n+ k) = Ekξ(n+ k) (11.42)

E
[
y2(n+ k)

]
= E

[
(Ekξ(n+ k))2

]
(11.43)

Using the form of Ek defined in Eq. 11.7, we obtain

E
[
y2(n+ k)

]
= E

[
(ek,0ξ(n+ k) + · · ·+ ek,k−1ξ(n+ 1))2

]
As ξ is white, recalling its properties from Sec. 6.3.2, we obtain

E
[
y2(n+ k)

]
= E

[
(ek,0ξ(n+ k))2 + · · ·+ (ek,k−1ξ(n+ 1))2

]
As the variance of ξ is σ2

ξ , we obtain

E
[
y2(n+ k)

]
= σ2

ξ

[
e2k,0 + · · ·+ e2k,k−1

]
(11.44)

The expression given by Eq. 11.44 is the smallest variance of y and it cannot be
reduced any further. As a result, the control law that helps achieve this, namely
Eq. 11.40, is known as the minimum variance control law.

Example 11.4 We now discuss an example presented by MacGregor [34]. We
will refer to this as MacGregor’s first control problem. Find the minimum variance
control for the system

y(n) =
1− a

1− az−1
u(n− 1) +

1
1− cz−1

ξ(n)

where a = 0.5, c = 0.9 and ξ(n) is white noise.

Substituting these values, the model becomes

y(n) =
0.5

1− 0.5z−1
u(n− 1) +

1
1− 0.9z−1

ξ(n) (11.45)

If this plant is operated in open loop, it is equivalent to keeping u at a constant
value. The variation in y is due to ξ only. In Example 11.5, we will explain how to
carry out these calculations. The same example shows how the Matlab function
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covar can be used for this purpose. The output variance σ2
y is found to be 5.26,

for ξ(n) of unit variance.

We may use M 11.4 to design the minimum variance controller for this problem.
The above equation for y is in the form of Eq. 11.3 on page 404 with

A = (1 − 0.5z−1)(1 − 0.9z−1) = 1− 1.4z−1 + 0.45z−2

B = 0.5(1− 0.9z−1)

C = (1 − 0.5z−1)
k = 1

Recall that in minimum variance control we zero the predicted output at n + k.
That is, we choose j as k. Thus Eq. 11.8 becomes for j = k = 1,

1− 0.5z−1 = E1(1− 1.4z−1 + 0.45z−2) + z−1F1

Solving this equation, we obtain the following result:

E1 = 1

F1 = 0.9− 0.45z−1

G1 = E1B = 0.5(1− 0.9z−1)

The control law is given by

u(n) = − 0.9− 0.45z−1

0.5(1− 0.9z−1)
y(n) = −0.9

2− z−1

1− 0.9z−1
y(n) (11.46)

As Ek = 1, using Eq. 11.44, we find the variance of the error to be σ2. Closing
of the loop is equivalent to substituting the above expression for u, in terms of y,
into Eq. 11.45 and getting an expression for y in terms of ξ. It is easy to see that
we arrive at the expression y(n) = ξ(n). As a result, we find the variance of y also
to be one in the closed loop.

If we substitute the expression for y(n) in terms of ξ(n) into the control law, we
will obtain u(n) also as a function ξ(n). In this example, because y(n) = ξ(n),
Eq. 11.46 becomes

u(n) = −0.9
2− z−1

1− 0.9z−1
ξ(n)

Observe that this is the relation between the control input and white noise in the
closed loop. Using the procedure to be explained in Sec. 11.2.2, the variance of u
can also be calculated, see Problem 11.2 to obtain a value of 5.97. In other words,
in order to bring the variance of y from 5.26 to 1, the variance of the input has to
go up from 0 to 5.97.

M 11.4 implements the calculations indicated above. It calls M 11.5, which
designs the controller, and M 11.6 to determine the closed loop transfer functions.
The last code calls M 11.7 to cancel common terms and to determine the
covariances.

Comparison of the variance is one way to compare different control design techniques.
In view of this, it is important to discuss how to calculate the variance. We take up
this topic in the next section.
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11.2.2 Expression for Sum of Squares

In this section, we will present a method to calculate the variance of the filtered white
noise process, of the form

v(n) = H(z)ξ(n)

where ξ(n) is white noise. Recall from the mixed notation of Sec. 6.4.1 that this stands
for

v(n) = h(n) ∗ ξ(n)

where h(n) is the inverse Z-transform of H(z). Using Eq. 6.86 and Eq. 6.87 on
page 183, we obtain

Γvv(z) = H(z)H(z−1)

for a white noise process of variance 1. Let us invert this expression. Using Eq. 4.37
on page 91, we obtain

γvv(n) =
1

2πj

∮
C

H(z)H(z−1)zn−1dz

When we let n = 0 in this equation, we obtain the expression for variance that we
are looking for. For n = 0, we obtain the expression for σ2

v = γvv(0) as

σ2
v =

1
2πj

∮
C

H(z)H(z−1)
dz

z
(11.47)

Example 11.5 Find the variance of v(n), where v is given as the filtered white
noise:

v(n) =
1

1− 0.9z−1
ξ(n)

The transfer function H(z) is given by

H(z) =
1

1− 0.9z−1
=

z

z − 0.9

Hence, by replacing all the occurrences of z in H(z) with z−1, we obtain H(z−1):

H(z−1) =
z−1

z−1 − 0.9

We are now ready to make use of Eq. 11.47. We obtain

σ2
v =

1
2πj

∮
C

(
z

z − 0.9

)(
z−1

z−1 − 0.9

)
1
z
dz

=
1

2πj

∮
C

1
(z − 0.9)(1− 0.9z)

dz =
1

2πj

∮
C

f(z)
z − 0.9

dz
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where f(z) = 1/(1−0.9z), which does not have a pole inside the unit circle. Now
using the Cauchy residue theorem, given by Eq. 4.38 on page 91, we obtain

σ2
v =

1
1− 0.9z

∣∣∣∣
z=0.9

=
1

1− 0.81
= 5.2632

M 11.8 shows how to carry out this calculation in Matlab.

If the transfer function is a complicated one, evaluation of the integral in Eq. 11.47
could be cumbersome. Matlab function covar, used in the above example, implements
it using efficient techniques.

11.2.3 Control Law for Nonminimum Phase Systems

The control law given by Eq. 11.40 will produce unbounded values in u when the
plant is nonminimum phase, i.e., when B(z) has zeros outside the unit circle. This
will result in the saturation of control signals and damage to equipment. The solution
to this problem is involved and will be presented in Sec. 13.3. Here we just state
the solution. Let the numerator polynomial of B be decomposed into good and bad
factors,

B(z) = Bg(z)Bb(z) (11.48)

and let Bb
r(z) be the reciprocal polynomial, as discussed in Sec. 10.2.1. Let Rc and Sc

be the solutions of Aryabhatta’s identity:

A(z)Rc(z) + z−kB(z)Sc(z) = C(z)Bg(z)Bb
r(z). (11.49)

The control law is given by

u(n) = − Sc(z)
Rc(z)

y(n) (11.50)

M 11.9 implements this controller. We illustrate this with an example, taken from [2].

Example 11.6 Design the minimum variance control law for a system described
by an ARMAX model with

A(z) = (1− z−1)(1− 0.7z−1)

B(z) = 0.9 + z−1

C(z) = 1− 0.7z−1

k = 1

Splitting B into good and bad factors, we obtain

Bg = 1

Bb = 0.9 + z−1
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We obtain the reciprocal polynomial as

Bb
r = 1 + 0.9z−1

Substituting in Eq. 11.49, we obtain the polynomial equation

(1− z−1)(1 − 0.7z−1)Rc + z−1(0.9 + z−1)Sc = (1 + 0.9z−1)(1− 0.7z−1)

Solving this Aryabhatta’s identity, we obtain

Rc = 1 + z−1

Sc = 1− 0.7z−1

The control law is given by

u(n) = −1− 0.7z−1

1 + z−1
y(n)

M 11.10 implements this example. The variances σ2
y and σ2

u are given, respectively,
by yvar and uvar in this code. We obtain σ2

y = 1.0526 and σ2
u = 14.4737. The

minimum variance control law of Eq. 11.39, instead, would have given σ2
y = 1 with

an infinite σ2
u. Through the new procedure, the control variance has been made

finite, at the expense of only 5% increase in the output variance.

It is easy to see that the control law given in Eq. 11.49–11.50 reduces to that given
in Eq. 11.40–11.41 when the plant is minimum phase. When the plant is minimum
phase, we obtain Bg = B and Bb = Bb

r = 1. As a result, Eq. 11.49 becomes

ARc + z−kBSc = CB (11.51)

where we have dropped the dependence on z for convenience. As the second and the
third terms have B, the first term should also be divisible by it. Since A and B do
not have a common factor, Rc should be divisible by B. In view of this, we obtain

Rc = R1B (11.52)

Substituting this in Eq. 11.51, and cancelling the common factor B, we arrive at

AR1 + z−kSc = C (11.53)

Comparing this with Eq. 11.41, we identify R1 with Ek and Sc with Fk. It is now
straightforward to see that the control law given in Eq. 11.50 reduces to that in
Eq. 11.40, because Rc = R1B.

The reader is warned, however, not to use Eq. 11.51 when the plant is minimum
phase. The reason for this is illustrated in the next example.

Example 11.7 Examine the feasibility of using the polynomial equation given
in Eq. 11.49 to solve the problem of Example 11.4.
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As explained above, because this plant is minimum phase, we explore solving
Eq. 11.51. We obtain

(1 − 1.4z−1 + 0.45z−2)Rc + z−1(0.5− 0.45z−1)Sc =

(1 − 0.5z−1)(0.5− 0.45z−1)

This problem is solved through M 11.4, with a call to mv nm of M 11.9, as opposed
to calling mv. We obtain the solution as Rc = 0.5 and Sc = 0. Of course, in this
simple problem, the solution is obvious. Because this is equivalent to running the
system in open loop, this solution is unacceptable and it is different from the one
obtained in Example 11.4.

When does the difficulty experienced in the above example occur? Is this a chance
occurrence? To answer this, consider the output error model, a schematic of which
is given in Fig. 6.15 on page 208. Recall that because white noise ξ(n) directly adds
to the output w, it is called the output error model. Suppose that we represent this
model by the following equation:

y(n) = z−kB

A
u(n) + ξ(n)

Multiplying throughout by A, we obtain

Ay(n) = z−kBu(n) +Aξ(n)

Comparing this equation with the standard ARMAX model used in this section,
namely with Eq. 11.1 on page 403, we see that

C(z) = A(z)

In view of this fact, Eq. 11.53 becomes

AR1 + z−kSc = A

This equation always has the trivial solution R1 = 1, Sc = 0, which says that no
control action is required, as obtained in the above example. Thus, the difficulty
explained in the above example always occurs in output error models.

11.2.4 Minimum Variance Controller for ARIMAX Systems

We next derive the minimum variance control for the ARIX model given in Eq. 11.18.
By requiring that the prediction model output vanish at k, we obtain from Eq. 11.27

Gk∆u(n) = −Fky(n) (11.54)

or the required control effort as

∆u(n) = −Fk

Gk
y(n) (11.55)
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where Gk = EkB, as given by Eq. 11.11. Because ∆ = 1− z−1, we obtain

u(n) = u(n− 1)− Fk

Gk
y(n) (11.56)

As the predicted model output given by Eq. 11.27 is made zero, the plant output is

y(n+ k) = Ekξ(n+ k) (11.57)

from Eq. 11.26. This is identical to Eq. 11.42 and hence we obtain once again the
variance expression as in Eq. 11.44.

For ARMAX models, using Eq. 11.35 and using the condition ŷ(n + k|n), the
control law becomes

∆u(n) = − Fk

EkB
y(n) (11.58)

which is identical to Eq. 11.55 as Gk = EkB. So we obtain the same control expression
as in Eq. 11.56. From Eq. 11.34, we see once again that the output satisfies Eq. 11.57
and hence the variance is given by Eq. 11.44.

If the system is nonminimum phase, i.e., B(z) has its zeros outside the unit circle,
we have a situation similar to the one in Sec. 11.2.3. The control law is now given by

∆u(n) = − Sc(z)
R1(z)

y(n) (11.59)

where R1 and Sc are the solutions of Aryabhatta’s identity,

A(z)∆R1(z) + z−kB(z)Sc(z) = C(z)Bg(z)Bb
r(z) (11.60)

where ∆ = 1 − z−1. Note that we now have an extra ∆ in the above equations,
as compared to Eq. 11.49–11.50. The derivation of this control law is presented in
Sec. 13.3. M 11.9 shows how to calculate this controller. We illustrate this approach
with an example.

Example 11.8 Design the minimum variance control law for the viscosity
control problem, presented by [34]:

y(n) =
0.51 + 1.21z−1

1− 0.44z−1
u(n− 1) +

1
1− z−1

ξ(n)

We see that

A = 1− 0.44z−1

B = 0.51 + 1.21z−1

C = 1− 0.44z−1

k = 1

We obtain

Bg = 0.51

Bb = 1 + 2.3725z−1

Bb
r = 2.3725 + z−1
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Because this system is nonminimum phase, we solve Aryabhatta’s identity, given
by Eq. 11.60:

(1 − 0.44z−1)(1− z−1)R1 + z−1(0.51 + 1.21z−1)Sc =

0.51(1− 0.44z−1)(2.3725 + z−1)

The solution is obtained as

R1 = 1.21 + 1.21z−1

Sc = 1− 0.44z−1

with the controller given by Eq. 11.59. M 11.11 carries out the above mentioned
calculations. It is easy to check that this controller stabilizes the closed loop. The
transfer function between y and ξ, stored in Ny/Dy of this code, and that between
u and ξ, stored in Nu/Du, are obtained as

y(n) =
1 + z−1

1 + 0.4215z−1
ξ(n)

u(n) =
0.8264− 0.3636z−1

1 + 0.4215z−1
ξ(n)

We obtain the variance, stored in yvar and uvar of this code, as σ2
y = 1.4070 and

σ2
u = 1.2994, respectively. If we had used the control law of Eq. 11.40 instead, we

would have ended up with σ2
y = 1, with infinite variance in u.

11.3 Generalized Minimum Variance Controller

Unbounded control effort can result from minimum variance control. It is possible to
solve this problem by minimizing a weighted sum of the setpoint error and the control
effort. A rigorous solution to this problem yields LQG controller, to be discussed in
detail Chapter 13, and briefly in Chapter 14. In this section, we present an easier, but
approximate solution method to this problem and derive the generalized minimum
variance controller (GMVC ).

11.3.1 GMVC for ARMAX Model

When the system is nonminimum, the control law of Eq. 11.40 or Eq. 11.58 gives
rise to unbounded signals leading to saturation and damage to equipment. One way
to solve this problem has been outlined in Sec. 11.2.3. Nevertheless, owing to plant
uncertainties, it is not always possible to do this. In any case, keeping the control
effort minimum is not the objective of the minimum variance control law. A practical
approach is to constrain u by minimizing the following objective function:

J = E
[
y2(n+ k) + ρu2(n)

]
(11.61)
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with ρ > 0, instead of the performance index in Eq. 11.36. To simplify the discussion,
we present only the regulation or disturbance rejection problem in this section. A way
to accommodate the tracking problems is presented in Sec. 11.3.3. Substituting from
Eq. 11.9 for j = k, we obtain

J = E

[(
Gku(n) + Fky(n)

C
+ Ekξ(n+ k)

)2

+ ρu2(n)

]
(11.62)

As ξ(n+ k) is not correlated with u(n) and y(n), we obtain

J = E

[(
Gku(n) + Fky(n)

C

)2

+ (Ekξ(n+ k))2 + ρu2(n)

]
(11.63)

An approximate method to solve this problem is to differentiate the argument of the
expectation operator with respect to u(n) and to equate it to zero. This approach
is shown to be an approximation by MacGregor [34]. Nevertheless, as this method
has given rise to several useful controllers, we present this approximate method here.
Differentiating the argument of E by u(n) and equating to zero, we obtain

2
Gku(n) + Fky(n)

C
α0 + 2ρu(n) = 0 (11.64)

where

α0 = constant term of
Gk(z)
C(z)

(11.65)

Simplifying, we obtain

u(n) = − α0Fk(z)
α0Gk(z) + ρC(z)

y(n) (11.66)

where G(z) = Ek(z)B(z). Notice that by choosing ρ to be large, one can move the
poles away from the zeros of Gk. We can see that when ρ = 0, the above equation
reduces to the minimum variance control law given by Eq. 11.39. See M 11.12 for the
implementation of GMVC design.

Example 11.9 We now continue with MacGregor’s problem presented in
Example 11.4. We would like to find the generalized minimum variance control
law with ρ = 1. We have

C = 1− 0.5z−1

F1 = 0.9− 0.45z−1

G1 = 0.5(1− 0.9z−1)
k = 1

From Eq. 11.65,

α0 = constant value of
0.5(1− 0.9z−1)

1− 0.5z−1
= 0.5
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From Eq. 11.66, we obtain

u(n) = − 0.5(0.9− 0.45z−1)
0.5× 0.5(1− 0.9z−1) + (1− 0.5z−1)

y(n)

Simplifying, we obtain the expression

u(n) = −0.45− 0.225z−1

1.25− 0.725z−1
y(n) = −0.36(1− 0.5z−1)

1− 0.58z−1
y(n)

Refer to M 11.13 to find out how to do these calculations in Matlab.

11.3.2 GMVC for ARIMAX Model

As mentioned earlier, integrated noise models are common in process industries. We
will derive the GMVC for ARIMAX model, described by Eq. 11.28, also known as
the integrated coloured noise model. Then by substituting C = 1, we can obtain the
expression for the ARIX model.

For the plant model in Eq. 11.28, we would like to minimize a combination of the
input and output variances. As the noise is assumed to be in the form of random
steps, we cannot hope to control the absolute value of the control effort, but control
only changes in it. That is, the objective function that we want to minimize becomes

J = E
[
y2(n+ k) + ρ(∆u(n))2

]
(11.67)

We proceed as before. Substituting for y(n + k) from Eq. 11.34 on page 412, and
because of the fact that the future noise is not correlated with the current input and
output of the system, we obtain

J = E

[(
Gk∆u(n) + Fky(n)

C

)2

+ (Ekξ(n+ k))2 + ρ∆u2(n)

]
(11.68)

We now differentiate this expression with respect to ∆u and equate it with zero to
arrive at

2
Gk∆u(n) + Fky(n)

C
α0 + 2ρ∆u(n) = 0 (11.69)

Simplifying, we obtain the following expression for control effort:

∆u(n) = − α0Fk

α0Gk + ρC
y(n) (11.70)

It is interesting to note that the right-hand side of the above equation and that of
Eq. 11.66 are identical. We demonstrate this approach with the following example.
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Example 11.10 Design the generalized minimum variance control law for the
viscosity control problem presented in Example 11.8,

y(n) =
0.51 + 1.21z−1

1− 0.44z−1
u(n− 1) +

1
1− z−1

ξ(n)

by minimizing the objective function given in Eq. 11.67 with ρ = 1.

We have

A = 1− 0.44z−1

B = 0.51 + 1.21z−1

C = 1− 0.44z−1

Eq. 11.29 is next solved for E1 and F1:

E1 = 1

F1 = 1− 0.44z−1

Because Gj has been defined as EjB in Eq. 11.11 on page 405, G1 = B. Using
Eq. 11.65, we see that

α0 = constant value of
G

C
= 0.51

Using Eq. 11.70, we obtain

∆u(n) = − 0.51(1− 0.44z−1)
0.51(0.51 + 1.21z−1) + (1− 0.44z−1)

y(n)

which is simplified as

∆u(n) = − 0.51− 0.2244z−1

1.2601 + 0.1771z−1
y(n) = −0.4047(1− 0.44z−1)

1 + 0.1405z−1
y(n)

see M 11.14. Note that even though the noise term is assumed to have random
steps, the output will have finite variance so long as the closed loop is stable. This
can be seen by substituting the expression for ∆u(n) in Eq. 11.34. In the code
discussed above, Ny/Dy gives the transfer function between y and ξ, while Nu/Du
gives the transfer function between u and ξ, in the closed loop. We obtain

y(n) =
1 + 0.1405z−1

1− 0.6530z−1 + 0.3492z−2
ξ(n)

u(n) =
0.4047− 0.1781z−1

1− 0.6530z−1 + 0.3492z−2
ξ(n)

Once the closed loop transfer functions are obtained, we can determine the
variances. The variances of y and u, as given by yvar and uvar, respectively,
are given by σ2

y = 1.719 and σ2
u = 0.187. Comparing these values with those

of Example 11.8, we see that the variance of u is now made smaller, but at the
expense of the variance of y.
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11.3.3 PID Tuning Through GMVC

In Sec. 9.8, we have seen the procedure to tune PID controllers using pole placement
controllers. In Sec. 10.2.3, we have used the IMC for the same purpose. In this section,
we will use the GMVC for the same purpose. This method was proposed by [60]. We
will assume that the plant to be controlled can be described by the usual ARIX model,
namely

Ay(n) = Bu(n− k) +
1
∆
e(n) (11.71)

For such models, an index of the form given in Eq. 11.67 has to be minimized. We
propose to minimize the index

J = E [{P (z)y(n+ k) +Q(z)∆u(n)− P (1)r(n)}] (11.72)

The method to choose P and Q will be explained shortly. We require P and Q to be
of the following form:

P (z) = p0 + p1z
−1 + p2z

−2 (11.73)

Q(z) = q0 + q1z
−1 + · · ·+ qm−1z

−m+1 (11.74)

It is customary in the GMVC to minimize the instantaneous value of J given in
Eq. 11.72. This is obtained by letting the argument, after the use of the prediction
model, go to zero, i.e.,

P (z)y(n+ k) +Q(z)∆u(n)− P (1)r(n) = 0 (11.75)

Using the relation

P (z) = p0∆A(z)E(z) + z−kF (z) (11.76)

where

E(z) = 1 + e1z
−1 + · · ·+ ek−1z

−k+1 (11.77)

F (z) = f0 + f1z
−1 + f2z

−2 (11.78)

Eq. 11.75 becomes

F (z)y(n) + p0∆A(z)E(z)y(n+ k) +Q(z)∆u(n)− P (1)r(n) = 0 (11.79)

The prediction model for the ARIMAX model is

∆Aŷ(n+ k) = ∆Bu(n) (11.80)

Using this, Eq. 11.79 becomes

F (z)y(n) + (p0E(z)B(z) +Q(z))∆u(n)− P (1)r(n) = 0 (11.81)

We obtain the control law as

∆u(n) =
P (1)r(n) − Fy(n)

p0EB +Q
(11.82)
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Substituting this in Eq. 11.71, we obtain

A∆y(n) = z−kB
P (1)r(n)− Fy(n)

p0EB +Q
+ e(n)

p0EB +Q

z−kB
A∆y(n) = P (1)r(n) − Fy(n) +

p0EB +Q

z−kB
e(n)

Simple manipulation gives

(p0∆AE + z−kF )B +QA∆
z−kB

y(n) = P (1)r(n) +
p0EB +Q

z−kB
e(n)

Now using Eq. 11.76 and with the desired closed loop transfer function φcl split as

φcl = PB +QA∆ (11.83)

we obtain the following closed loop expression:

y(n) =
z−kBP (1)

φcl
r(n) +

p0EB +Q

φcl
e(n) (11.84)

If the coefficient of ∆u(n) were a constant in Eq. 11.81, we could divide the entire
equation by this coefficient and arrive at an equation similar to Eq. 8.51 on page 319.
In general, however, this will not be the case. If we approximate this coefficient by its
steady state value, then the GMVC relation is satisfied at least in the steady state.
In view of this, we let

ν = p0E(1)B(1) +Q(1) (11.85)

so that Eq. 11.81 can be written approximately as

F (z)
ν

y(n) + ∆u(n)− P (1)
ν

r(n) = 0 (11.86)

Comparing this equation with the PID control law given by Eq. 8.51 on page 319, we
arrive at the relation

L(z) =
F (z)
ν

(11.87a)

From the definition of L given in Eq. 8.50 and that of F in Eq. 11.78, we obtain

K

(
1 +

Ts

τi
+
τd
Ts

)
=
f0
ν

(11.87b)

K

(
1 +

2τd
Ts

)
= −f1

ν
(11.87c)

K
τd
Ts

=
f2
ν

(11.87d)
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Solving these equations, we obtain the PID parameters,

K = −1
ν

(f1 + 2f2) (11.88a)

τi = − f1 + 2f2
f0 + f1 + f2

Ts (11.88b)

τd = − f2
f1 + 2f2

Ts (11.88c)

We now summarize these steps:

1. Determine the desired closed loop characteristic polynomial, perhaps through
the approach presented in Sec. 7.7.

2. Solve Aryabhatta’s identity given in Eq. 11.83 for P and Q.

3. Solve Aryabhatta’s identity given in Eq. 11.76 for E and F , with F as defined
in Eq. 11.78.

4. Define ν as in Eq. 11.85.

5. The PID parameters are given by Eq. 11.88.

6. Implement the controller as in Eq. 8.48 on page 319.

We will illustrate this approach with an example, considered by [37].

Example 11.11 Consider the unstable system given by Eq. 11.71, with

A = 1− 1.95z−1 + 0.935z−2 (11.89)
B = −0.015 (11.90)
k = 1 (11.91)

Assume the sampling time to be Ts = 1 s. Design a PID controller with its
parameters tuned by the GMVC, such that the rise time to a step input is 15 s
and overshoot is ε = 0.1 [21].

The solution to this problem is implemented in M 11.15. Using the procedure
outlined in Sec. 7.7, we find the characteristic polynomial to be

φcl = 1− 1.8421z−1 + 0.8577z−2

M 11.17 calculates the GMVC equivalent PID parameters. We obtain

Kc = −10.4869
τi = 10.0802
τd = 5.9439

L = −73.8606 + 135.1536z−1− 62.3333z−2

Simulation is carried out using the Simulink program in Fig. 11.2. A unit step
change in the setpoint begins at 50 s and ends at 150 s. A disturbance in the form
of a step of height 0.1 appears at 300 s and ends at 400 s. The resulting output
(y) and the control effort (u) are plotted in Fig. 11.3. It is clear that the controller
helps track the setpoint change and to reject the disturbance.
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Figure 11.2: Simulink block diagram to demonstrate the efficacy of GMVC
tuned PID control law on example presented by [37]. The code is available at
HOME/pid/matlab/GMVC pid.mdl, see Footnote 1 on the next page. Inputs for the
simulation are established by first executing the script in M 11.15.
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Figure 11.3: Plant output (left) and control effort (right) with GMVC tuned PID
controller, as discussed in Example 11.11. The controller is designed for rise time =
15 s and overshoot = 0.1. It helps track the unit step change in the setpoint from 50
to 150 s and reject a step disturbance of magnitude 0.1 from 300 s to 400 s.

We observe in the above example that the disturbance produces a large change
of 0.4 units in the output. This is essentially because the control does not act fast
enough. We can achieve this by requiring the rise time and overshoot to be less. This
is discussed in the next example.

Example 11.12 Control the system discussed in Example 11.11 such that the
rise time to a step input is 5 s and overshoot is ε = 0.05.
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Figure 11.4: Plant output (left) and control effort (right) for a more aggressive
controller than that in Fig. 11.3. Now rise time = 5 s and overshoot = 0.05. While
the plant output is better, the control action is more aggressive.

We rerun M 11.15 with N=5, epsilon=0.05 in Line 6. We obtain

T = 1− 1.4097z−1 + 0.5493z−2

Kc = −31.048
τi = 3.3371
τd = 2.0076

L = −102.6852 + 155.7146z−1− 62.3333z−2

When this controller is simulated with the Simulink code in Fig. 11.2, we obtain
the profiles as in Fig. 11.4. It is easy to see that the performance of the output is
now better than that in Fig. 11.3. On the other hand, the control effort is more
aggressive.

11.4 Matlab Code

Matlab Code 11.1 Recursive computation of Ej and Fj , as discussed in Sec. 11.1.4.
An example of usage is in M 11.2. This code is available at
HOME/minv/matlab/recursion.m 1

1 % f u n c t i o n [ F j , dF j , E j , d E j ] = r e c u r s i o n ( A , dA , C , dC , j )

2 %

3 function [ Fj , dFj , Ej , dEj ] = r e c u r s i o n (A, dA,C,dC , j )

1HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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4 Fo = C; dFo = dC;
5 Eo = 1 ; dEo = 0 ;
6 A z = A( 2 :dA+1) ; dA z = dA−1;
7 z i = 1 ; dz i = 0 ;
8 for i = 1 : j−1
9 i f (dFo == 0)

10 Fn1 = 0 ;
11 else
12 Fn1 = Fo ( 2 : ( dFo+1)) ;
13 end
14 dFn1 = max(dFo−1 ,0) ;
15 Fn2 = −Fo (1 ) ∗A z ; dFn2 = dA−1;
16 [ Fn , dFn ] = poladd (Fn1 , dFn1 , Fn2 , dFn2 ) ;
17 z i = conv ( z i , [ 0 , 1 ] ) ; dz i = dz i + 1 ;
18 En2 = Fn(1 ) ∗ z i ; dEn2 = dz i ;
19 [ En , dEn ] = poladd (Eo , dEo , En2 , dEn2) ;
20 Eo = En ; Fo = Fn ;
21 dEo = dEn ; dFo = dFn ;
22 end
23 i f (dFo == 0)
24 Fn1 = 0 ;
25 else
26 Fn1 = Fo ( 2 : ( dFo+1)) ;
27 end
28 dFn1 = max(dFo−1 ,0) ;
29 Fn2 = −Fo (1 ) ∗A z ; dFn2 = dA−1;
30 [ Fn , dFn ] = poladd (Fn1 , dFn1 , Fn2 , dFn2 ) ;
31 Fj = Fn ; dFj = dFn ;
32 Ej = Eo ; dEj = dEo ;

Matlab Code 11.2 Recursive computation of Ej and Fj for the system presented
in Example 11.2 on page 408. This code is available at
HOME/minv/matlab/recursion ex1.m

1 C = [ 1 0 . 5 ] ; dC = 1 ;
2 A = [ 1 −0.6 −0 .16 ] ; dA = 2 ;
3 j = 2 ;
4 [ Fj , dFj , Ej , dEj ] = r e c u r s i o n (A, dA,C, dC, j )

Matlab Code 11.3 Solution of Aryabhatta’s identity Eq. 11.8, as discussed in
Example 11.3 on page 409. This code is available at HOME/minv/matlab/pm 10.m

1 C = [ 1 0 . 5 ] ; dC = 1 ;
2 A = [ 1 −0.6 −0 .16 ] ; dA = 2 ; j = 2 ;
3 z j = zeros (1 , j +1) ; z j ( j +1) = 1 ;
4 [ Fj , dFj , Ej , dEj ] = xdync ( zj , j ,A,dA,C, dC)

Matlab Code 11.4 MacGregor’s first control problem, discussed in Example 11.4
on page 413. This code is available at HOME/minv/matlab/mv mac1.m
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1 % M ac G r e g o r ’ s f i r s t c o n t r o l p r o b l e m

2 %

3 A = [ 1 −1.4 0 . 4 5 ] ; dA = 2 ; C = [ 1 −0 .5 ] ; dC = 1 ;
4 B = 0 . 5 ∗ [ 1 −0 .9 ] ; dB = 1 ; k = 1 ; i n t = 0 ;
5 [ Sc , dSc , Rc , dRc ] = mv(A, dA,B, dB,C,dC , k , i n t )
6 [Nu, dNu ,Du, dDu , Ny, dNy ,Dy, dDy , yvar , uvar ] = . . .
7 c l (A,dA,B, dB,C, dC, k , Sc , dSc , Rc , dRc , i n t ) ;
8

9 % S i m u l a t i o n p a r a m e t e r s f o r s t b d i s c . md l

10 Tc = Sc ; gamma = 1 ; [ zk , dzk ] = zpowk ( k ) ;
11 D = 1 ; N var = 0 . 1 ; Ts = 1 ; s t = 0 ;
12 t i n i t = 0 ; t f i n a l = 1000 ;
13

14 open system ( ’ s t b d i s c . mdl ’ )

Matlab Code 11.5 Minimum variance control law design, given by Eq. 11.40 on
page 413. This code is available at HOME/minv/matlab/mv.m

1 % f u n c t i o n [ Sc , dSc , Rc , dRc ] = mv ( A , dA , B , dB , C , dC , k , i n t )

2 % i m p l e m e n t s t h e m in imum v a r i a n c e c o n t r o l l e r

3 % i f i n t >=1 , i n t e g r a t e d n o i s e i s a s s u m e d ; o t h e r w i s e ,

4 % i t i s n o t i n t e g r a t e d n o i s e

5 %

6 function [ Sc , dSc , Rc , dRc ] = mv(A,dA,B, dB,C, dC, k , i n t )
7 zk = zeros (1 , k+1) ; zk ( k+1) = 1 ;
8 i f int >=1, [A,dA] = polmul ( [ 1 −1] ,1 ,A,dA) ; end
9 [ Fk , dFk , Ek , dEk ] = xdync ( zk , k ,A,dA,C,dC) ;

10 [Gk, dGk ] = polmul (Ek , dEk ,B,dB) ;
11 Sc = Fk ; dSc = dFk ; Rc = Gk ; dRc = dGk ;

Matlab Code 11.6 Calculation of closed loop transfer functions. For an example of
the usage, see M 11.4. This code is available at HOME/matlab/cl.m

1 % f u n c t i o n [ Nu , dNu , Du , dDu , Ny , dNy , Dy , dDy , y v a r , u v a r ] = . . .

2 % c l ( A , dA , B , dB , C , dC , k , Sc , dSc , Rc , dRc , i n t )

3 % i n t >=1 m e a n s i n t e g r a t e d n o i s e a nd c o n t r o l l a w :

4 % d e l t a u = − ( S c / Rc ) y

5 % E v a l u a t e s t h e c l o s e d l o o p t r a n s f e r f u n c t i o n a n d

6 % v a r i a n c e s o f i n p u t a nd o u t p u t

7 %

8 function [Nu, dNu ,Du, dDu , Ny , dNy , Dy, dDy , yvar , uvar ] = . . .
9 c l (A, dA,B, dB ,C, dC, k , Sc , dSc , Rc , dRc , i n t )

10 [ zk , dzk ] = zpowk ( k ) ;
11 [ BSc , dBSc ] = polmul (B, dB, Sc , dSc ) ;
12 [ zBSc , dzBSc ] = polmul ( zk , dzk , BSc , dBSc ) ;
13 [RcA, dRcA] = polmul (Rc , dRc ,A,dA) ;
14 i f int >=1, [RcA, dRcA] = polmul (RcA, dRcA , [ 1 −1] ,1) ; end
15 [D,dD] = poladd (RcA, dRcA, zBSc , dzBSc ) ;
16 [Ny , dNy ] = polmul (C, dC, Rc , dRc) ;
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17 [Nu, dNu ] = polmul (C, dC , Sc , dSc ) ;
18 [Nu, dNu ,Du, dDu , uvar ] = t f v a r (Nu, dNu ,D,dD) ;
19 [ Ny , dNy ,Dy, dDy , yvar ] = t f v a r (Ny , dNy ,D,dD) ;

Matlab Code 11.7 Cancellation of common factors and determination of covari-
ance. For an example of the usage, see M 11.6. This code is available at
HOME/matlab/tfvar.m

1 % f u n c t i o n [ N , dN , D , dD , y v a r ] = t f v a r ( N , dN , D , dD )

2 % N an d D p o l y n o m i a l s i n z ˆ{ −1} f o r m ; d i s c r e t e c a s e

3 %

4 function [N,dN,D,dD, yvar ] = t f v a r (N, dN,D,dD)
5 [N, dN,D,dD] = l 2 r (N, dN,D,dD) ;
6 N = N/D(1 ) ; D = D/D(1 ) ;
7 LN = length (N) ; LD = length (D) ;
8 D1 = D;
9 i f LD<LN, D1 = [D zeros (1 ,LN−LD) ] ; dD1 = dD+LN−LD; end

10 H = t f (N, D1 , 1 ) ;
11 yvar = covar (H, 1 ) ;

Matlab Code 11.8 Computing sum of squares, as presented in Example 11.5 on
page 415. This code is available at HOME/Z-trans/matlab/sumsq.m

1 Y = t f ( [ 1 0 ] , [ 1 −0.9] ,−1) ;
2 covar (Y, 1 )

Matlab Code 11.9 Minimum variance control for nonminimum phase systems,
given by Eq. 11.50 on page 416 and Eq. 11.59 on page 419. This code is available
at HOME/minv/matlab/mv nm.m

1 % f u n c t i o n [ Sc , dSc , Rc , dRc ] = mv nm ( A , dA , B , dB , C , dC , k , i n t )

2 % i m p l e m e n t s t h e m in imum v a r i a n c e c o n t r o l l e r

3 % i f i n t >=1 , i n t e g r a t e d n o i s e i s a s s u m e d ; o t h e r w i s e ,

4 % i t i s n o t i n t e g r a t e d n o i s e

5 %

6 function [ Sc , dSc , Rc , dRc ] = mv nm(A, dA,B, dB,C,dC, k , i n t )
7 i f int >=1, [A,dA] = polmul ( [ 1 −1] ,1 ,A,dA) ; end
8 [ zk , dzk ] = zpowk ( k ) ;
9 [ Bzk , dBzk ] = polmul (B, dB, zk , dzk ) ;

10 [ Bg , Bb ] = p o l s p l i t 3 (B) ; Bbr = f l i p (Bb) ;
11 RHS = conv (C, conv (Bg , Bbr ) ) ; dRHS = length (RHS)−1;
12 [ Sc , dSc , Rc , dRc ] = xdync (Bzk , dBzk ,A, dA,RHS,dRHS) ;

Matlab Code 11.10 Minimum variance control for nonminimum phase example of
Example 11.6 on page 416. This code is available at HOME/minv/matlab/ast 12p9.m

1 A = conv ( [ 1 −1] , [1 −0.7 ]) ; dA = 2 ;
2 B = [ 0 . 9 1 ] ; dB = 1 ; k = 1 ;
3 C = [ 1 −0 .7 ] ; dC = 1 ; i n t = 0 ;
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4 [ Sc , dSc , Rc , dRc ] = mv nm(A,dA,B, dB,C, dC, k , i n t )
5 [Nu, dNu ,Du, dDu , Ny, dNy ,Dy, dDy , yvar , uvar ] = . . .
6 c l (A,dA,B, dB,C, dC, k , Sc , dSc , Rc , dRc , i n t ) ;

Matlab Code 11.11 Minimum variance control of viscosity control problem, as
presented in Example 11.8 on page 419. This code is available at
HOME/minv/matlab/mv visc.m

1 % V i s c o s i t y c o n t r o l p r o b l e m o f M a c G r e g o r

2 %

3 A = [ 1 −0 .44 ] ; dA = 1 ; B = [ 0 . 5 1 1 . 2 1 ] ; dB = 1 ;
4 C = [ 1 −0 .44 ] ; dC = 1 ; k = 1 ; i n t = 1 ;
5 [ Sc , dSc , R1 , dR1 ] = mv nm(A,dA,B, dB,C, dC, k , i n t )
6 [Nu, dNu ,Du, dDu , Ny, dNy ,Dy, dDy , yvar , uvar ] = . . .
7 c l (A,dA,B, dB,C, dC, k , Sc , dSc , R1 , dR1 , i n t ) ;

Matlab Code 11.12 Generalized minimum variance controller design, as given by
Eq. 11.66 on page 421 and Eq. 11.70 on page 422. This code is available at
HOME/minv/matlab/gmv.m

1 % f u n c t i o n [ Sc , dSc , R , dR ] = gmv ( A , dA , B , dB , C , dC , k , r h o , i n t )

2 % i m p l e m e n t s t h e g e n e r a l i z e d m in imum v a r i a n c e c o n t r o l l e r

3 % i f i n t >=1 , i n t e g r a t e d n o i s e i s a s s u m e d ; o t h e r w i s e ,

4 % i t i s n o t i n t e g r a t e d n o i s e

5 %

6 function [ Sc , dSc ,R,dR ] = gmv(A,dA,B, dB,C, dC, k , rho , i n t )
7 zk = zeros (1 , k+1) ; zk ( k+1) = 1 ;
8 i f int >=1, [A,dA] = polmul ( [ 1 −1] ,1 ,A,dA) ; end
9 [ Fk , dFk , Ek , dEk ] = xdync ( zk , k ,A,dA,C,dC) ;

10 [Gk, dGk ] = polmul (Ek , dEk ,B,dB) ;
11 alpha0 = Gk(1 ) /C(1 ) ;
12 Sc = alpha0 ∗ Fk ; dSc = dFk ;
13 [R,dR ] = poladd ( alpha0 ∗Gk, dGk , rho∗C,dC) ;

Matlab Code 11.13 GMVC design of MacGregor’s first example, as discussed in
Example 11.9 on page 421. This code is available at HOME/minv/matlab/gmv mac1.m

1 % M ac G r e g o r ’ s f i r s t c o n t r o l p r o b l e m by gmv

2 %

3 A = [ 1 −1.4 0 . 4 5 ] ; dA = 2 ; C = [ 1 −0 .5 ] ; dC = 1 ;
4 B = 0 . 5 ∗ [ 1 −0 .9 ] ; dB = 1 ; k = 1 ; i n t = 0 ;
5 rho = 1 ;
6 [ Sc , dSc , Rc , dRc ] = gmv(A, dA,B, dB ,C, dC, k , rho , i n t )
7 [Nu, dNu ,Du, dDu , Ny, dNy ,Dy, dDy , yvar , uvar ] = . . .
8 c l (A, dA,B, dB,C, dC, k , Sc , dSc , Rc , dRc , i n t ) ;

Matlab Code 11.14 GMVC design of viscosity problem, as discussed in Exam-
ple 11.10 on page 423. This code is available at HOME/minv/matlab/gmv visc.m
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1 % M a c G r e g o r ’ s V i s c o s i t y c o n t r o l p r o b l e m by gmv

2 %

3 A = [ 1 −0 .44 ] ; dA = 1 ; B = [ 0 . 5 1 1 . 2 1 ] ; dB = 1 ;
4 C = [ 1 −0 .44 ] ; dC = 1 ; k = 1 ; i n t = 1 ;
5 rho = 1 ;
6 [ Sc , dSc , R1 , dR1 ] = gmv(A,dA,B, dB,C,dC, k , rho , i n t )
7 [Nu, dNu ,Du, dDu , Ny , dNy ,Dy, dDy , yvar , uvar ] = . . .
8 c l (A,dA,B, dB,C, dC, k , Sc , dSc , R1 , dR1 , i n t ) ;

Matlab Code 11.15 PID tuning through GMVC law, as discussed in Exam-
ple 11.11. This code is available at HOME/pid/matlab/miller.m

1 % GMVC PID t u n i n g o f e x a m p l e g i v e n by M i l l e r e t a l .

2 % M o d e l

3 A = [ 1 −1.95 0 . 9 3 5 ] ; B = −0.015; k = 1 ; Ts = 1 ;
4 %

5 % T r a n s i e n t s p e c i f i c a t i o n s

6 N = 15 ; e p s i l o n = 0 . 1 ; Ts = 1 ;
7 T = d e s i r e d (Ts ,N, e p s i l o n ) ;
8 %

9 % C o n t r o l l e r D e s i g n

10 [ Kc , ta u i , tau d , L ] = gmvc pid (A,B, k ,T, Ts ) ;
11 L1 = f i l t v a l (L , 1 ) ;
12 zk = zpowk ( k ) ;

Matlab Code 11.16 Value of polynomial p(x), evaluated at x. This code is available
at HOME/matlab/filtval.m

1 % f i n d s t h e v a l u e o f a p o l y n o m i a l i n p o w e r s o f z ˆ{ −1}
2 % f u n c t i o n Y = f i l t v a l ( P , z )

3

4 function Y = f i l t v a l (P, z )
5

6 N = length (P)−1;
7 Y = polyval (P, z ) /zˆN;

Matlab Code 11.17 PID tuning through GMVC law, as discussed in Sec. 11.3.3.
This code is available at HOME/pid/matlab/gmvc pid.m

1 % f u n c t i o n [ Kc , t a u i , t a u d , L ] = g m v c p i d ( A , B , k , T , Ts )

2 % D e t e r m i n e s p , i , d t u n i n g p a r a m e t e r s u s i n g GMVC

3 % P l a n t m o d e l : I n t e g r a t e d w h i t e n o i s e

4 % A , B i n d i s c r e t e t i m e f o r m

5

6 function [ Kc , ta u i , tau d , L ] = gmvc pid (A,B, k ,T, Ts )
7 dA = length (A)−1; dB = length (B)−1;
8 dT = length (T)−1;
9 i f dA > 2 ,

10 echo ( ’ degree o f A cannot be more than 2 ’ )
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11 e x i t
12 e l s e i f dB > 1 ,
13 echo ( ’ degree o f B cannot be more than 1 ’ )
14 e x i t
15 e l s e i f dT > 2 ,
16 echo ( ’ degree o f T cannot be more than 2 ’ )
17 e x i t
18 end
19 d e l t a = [ 1 −1]; dde l ta = 1 ;
20 [ Adelta , dAdelta ] = polmul (A,dA, de l ta , dde l ta ) ;
21 [Q,dQ,P, dP ] = . . .
22 xdync ( Adelta , dAdelta ,B, dB,T,dT) ;
23 PAdelta = P(1 ) ∗Adelta ;
24 [ zk , dzk ] = zpowk ( k ) ;
25 [E, degE , F , degF ] = . . .
26 xdync ( PAdelta , dAdelta , zk , dzk , P, dP) ;
27 nu = P(1 ) ∗E(1 ) ∗B(1 ) ;
28 Kc = −1/nu∗(F(2 )+2∗F(3 ) ) ;
29 t a u i = −(F(2 )+2∗F(3 ) ) /(F(1 )+F(2 )+F(3 ) )∗Ts ;
30 tau d = −F(3 ) /(F(2 )+2∗F(3 ) ) ∗Ts ;
31 L(1 ) = 1+Ts/ t a u i+tau d /Ts ;
32 L(2 ) = −(1+2∗tau d /Ts ) ;
33 L(3 ) = tau d /Ts ;
34 L = Kc ∗ L ;
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11.5 Problems

11.1. This problem is concerned with the design of the minimum variance controller
(MVC).

(a) For the open loop transfer function in Eq. 8.58 with integrated white noise,
i.e., for the following transfer function,

(1− 0.9z−1)y(t) = z−1u(t) +
1
∆
ξ(t) (11.92)

design an MVC that will express ∆u(t) as a function of y(t).

(b) If you have to implement this MVC with a PID controller, what are the P,
I, D settings?

11.2. Determine the variance of u(n), if it is related to white noise ξ(n) through the
following transfer function:

u(n) =
1.8− 0.9z−1

1− 0.9z−1
ξ(n)

[Hint: Using the method of Sec. 11.2.2, obtain the variance as

1
2πj

∮
C

(
1.8z − 0.9
z − 0.9

1.8− 0.9z
1− 0.9z

)
dz

z

which can be shown to be equal to the sum of the residue at z = 0.9, which is
4.17, and the residue at z = 0, which can also be shown to be equal to 1.8.]

11.3. Determine the variance of u(n), if it is related to white noise ξ(n) through the
following transfer function:

u(n) =
1

(1− 0.9z−1)(1− 0.8z−1)
ξ(n)



Chapter 12

Model Predictive Control

Model predictive control (MPC ) refers to a class of control techniques that are popular
in the chemical, petroleum and similar industries that are characterized by slow and
large dimensional systems. This approach involves model identification from plant
data, designing a sequence of control moves by minimizing a sum of squares between
the desired and estimated trajectories of the plant output and implementing the first
control move. The MPC approach allows one explicitly state the constraints on the
control effort.

Depending on the modelling strategy used to describe the plants under question,
one arrives at different MPC strategies. The literature on MPC is vast and hence
we can only present a glimpse of it in this book. In this chapter, we give a brief
introduction to the design of generalized predictive control and dynamic matrix
control. We will let GPC and DMC denote the generalized predictive control and
dynamic matrix control strategies, respectively, as well as the resulting controllers.
While the GPC makes use of the j-step ahead prediction error model described in
Sec. 11.1, the DMC makes use of step response models. We will begin the discussion
with GPC.

12.1 Generalized Predictive Control

Generalized predictive control was first proposed by Clarke et al. [11] as an effective
methodology to control industrial plants. This is based on minimizing a weighted sum
of the setpoint error and the control effort. It also allows plant models to be updated
frequently. We will describe the GPC design procedure in this section.

12.1.1 GPC for ARIX Model

In this section, we will develop a controller for plants with models in the form of
Eq. 11.18 on page 410, which is reproduced here for convenience:

A(z)y(n) = z−kB(z)u(n) +
1
∆
ξ(n) (12.1)

Digital Control Kannan M. Moudgalya
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We would like the plant output to follow a desired trajectory w. As the plant has a
delay of k, the earliest time when the current input u(n) can influence the output is
t + k. As a result, we would like the plant output to follow a reference trajectory w
from t+ k onwards. Thus we are interested in minimizing the index

[ŷ(n+ k)− r(n+ k)]2 + [ŷ(n+ k + 1)− r(n+ k + 1)]2 + · · · (12.2)

where ŷ refers to an estimate of y. But as this should not result in large control, we
would like to constrain u also. As the noise is assumed to have steps, we may not be
able to constrain the absolute value of u(n), but only changes in it. Thus, we would
like to add to the above index the terms

ρ(∆u(n))2 + ρ(∆u(n+ 1))2 + · · · (12.3)

where ρ > 0. As we would expect the plant output to become constant and close to
the setpoint after N intervals, we would like to have terms up to t + k + N only in
Eq. 12.2. As the output will be close to the setpoint, the input will become constant
or ∆u will become zero. Thus we need to have terms of ∆u only up to t + k + N
in Eq. 12.3. It is possible to have a different number of terms in these indexes, but
here we follow the simplified approach of [7]. The performance index that we wish to
minimize becomes

JGPC = [ŷ(n+ k)− r(n + k)]2 + · · ·
+ [ŷ(n+ k +N)− r(n + k +N)]2

+ ρ[∆u(n)]2 + · · ·+ ρ[∆u(n+N)]2 (12.4)

We now derive expressions for each of the terms in the above equation. The predictive
model for this plant is given by Eq. 11.27, which is reproduced here convenience:

ŷ(n+ j) = Gj∆u(n+ j − k) + Fjy(n) (12.5)

with Gj given by Eq. 11.11, which is reproduced below:

Gj = Ej(z)B(z) (12.6)

Ej and Fj are obtained by solving Aryabhatta’s identity, given by Eq. 11.23 on
page 410, reproduced next:

1 = Ej∆A+ z−jFj (12.7)

We next derive expressions for the terms in Eq. 12.4 so as to express the performance
index in terms of past values of y and u and future values of u. The first term in
Eq. 12.5 can be written as

Gj∆u(n+ j − k) = gj,0∆u(n+ j − k) + · · ·
+ gj,dGj ∆u(n+ j − k − dGj)

= gj,0∆u(n+ j − k) + · · ·
+ gj,dGj ∆u(n− k + 1− dB) (12.8)
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since

dGj = dEj + dB = j − 1 + dB (12.9)

In Eq. 12.8, gj,0, . . . are coefficients of the polynomial Gj(z). Substituting for j = k
to k+N in Eq. 12.8, and stacking them one below the other, we obtain the first term
of Eq. 12.5 as

gk,0 0 · · · 0
gk+1,1 gk+1,0 · · · 0

...
gk+N,N gk+N,N−1 · · · gk+N,0




∆u(n)
∆u(n+ 1)

...
∆u(n+N)



+


gk,1 · · · gk,dGk

gk+1,2 · · · gk+1,dGk+1

...
gk+N,N+1 · · · gk+N,dGk+N




∆u(n− 1)
∆u(n− 2)

...
∆u(n− k + 1− dB)


It is easy to see that the second term of Eq. 12.5 gives rise to

fk,0 · · · fk,dA

fk+1,0 · · · fk+1,dA

...
fk+N,0 · · · fk+N,dA




y(n)
y(n− 1)

...
y(n− dA)


Combining these two terms, Eq. 12.5 becomes

ŷ = Gu+H1uold +H2yold
(12.10)

where

ŷ =

 ŷ(n+ k)
...

ŷ(n+ k +N)

 , u =

 ∆u(n)
...

∆u(n+N)

 ,

uold =

 ∆u(n− 1)
...

∆u(n− k + 1− dB)

 , y
old

=

 y(n)
...

y(n− dA)


(12.11)

The definition of G, F1 and F2 should be clear from the above derivation. Repeated
solutions of Aryabhatta’s identity given by Eq. 12.7, for different values of j, are
implied in the above derivation. Fj and Gj can also be computed recursively, as
explained in Sec. 11.1.4. We will refer to this as the GPC model.

Example 12.1 Derive the GPC model for the system described by [7]

(1− 0.8z−1)y(n) = (0.4 + 0.6z−1)z−1u(n) +
1
∆
ξ(n)

for N = 3.
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The model has unit delay, i.e., k = 1. In Eq. 12.4, we have to obtain expressions
for ŷ(n+ 1) to ŷ(n+ 4). M 12.1 solves Aryabhatta’s identity given by Eq. 12.7 for
Ej and Fj ; computes Gj through Eq. 12.6 and stacks them all up to compute G,
H1 and H2 matrices of Eq. 12.10:

We obtain the following:

F1 = 1.8000− 0.8000z−1

F2 = 2.4400− 1.4400z−1

F3 = 2.9520− 1.9520z−1

F4 = 3.3616− 2.3616z−1

E1 = 1

E2 = 1 + 1.8z−1

E3 = 1 + 1.8z−1 + 2.44z−2

E4 = 1 + 1.8z−1 + 2.44z−2 + 2.9520z−3

G1 = 0.4 + 0.60z−1

G2 = 0.4 + 1.32z−1 + 1.0800z−2

G3 = 0.4 + 1.32z−1 + 2.0560z−2 + 1.4640z−3

G4 = 0.4 + 1.32z−1 + 2.0560z−2 + 2.6448z−3 + 1.7712z−4

Stacking these up, we arrive at the following G, H1 and H2 matrices:

G =


0.4000 0 0 0
1.3200 0.4000 0 0
2.0560 1.3200 0.4000 0
2.6448 2.0560 1.3200 0.4000



H2 =


1.8000 −0.8000
2.4400 −1.4400
2.9520 −1.9520
3.3616 −2.3616

 , H1 =


0.6000
1.0800
1.4640
1.7712


It is easy to verify these results using M 12.1.

Note that we are interested in minimizing errors of the form Eq. 12.2. Subtracting
r(n + j), k ≤ j ≤ k + N , from both sides of every equation of Eq. 12.10, we obtain
terms of the form ŷ(n+ k)− r(n+ k), ŷ(n+ k+ 1)− r(n+ k+ 1), . . .. Stacking these
as before, Eq. 12.10 becomes

ŷ − r = Gu +H1uold +H2yold
− r (12.12)

where r is a trajectory of reference signals:

r =
[
r(n+ k) · · · r(n + k +N)

]T (12.13)

To minimize sums of squares of components of ŷ − r, we could solve ŷ − r = 0 or

Gu = r −H2yold
−H1uold (12.14)
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in a least squares sense. The solution to this problem is

u = K1r −K1H2yold
−K1H1uold (12.15)

where

K1 = (GTG)−1GT (12.16)

To minimize the control effort as well, we could augment Eq. 12.14 with ρu = 0 to
arrive at[

G
ρI

]
u =

[
r −H2yold

−H1uold

0

]
(12.17)

The least squares solution to this problem is

u = Kr −KH2yold
−KH1uold (12.18)

where

K = (GTG+ ρ2I)−1GT (12.19)

M 12.2 carries out these calculations. We only implement the first row of the above
control law. From the definition of uold in Eq. 12.11, we can see that this corresponds
to ∆u(n).

Example 12.2 Derive the GPC law for Example 12.1.

After executing the Matlab commands given in Example 12.1, calculations
indicated by Eq. 12.18 are carried out. M 12.3 has a complete listing of the basic
GPC algorithm:

We obtain

K =


0.1334 0.2864 0.1496 −0.0022
−0.1538 −0.1968 0.1134 0.1496
−0.0285 −0.2155 −0.1968 0.2864
0.0004 −0.0285 −0.1538 0.1334



KH2 =


1.3732 −0.8060
0.0807 −0.1683
−0.1953 0.0409
−0.0744 0.0259

 , KH1 =


0.6045
0.1262
−0.0307
−0.0194


When these are substituted in Eq. 12.18, the first row is obtained as

∆(z)u(n) = 0.1334r(n+ 1) + 0.2864r(n+ 2) + 0.1496r(n+ 3)
− 0.0022r(n+ 4)
− 1.3732y(n) + 0.8060y(n− 1)− 0.6045∆u(n− 1)



442 12. Model Predictive Control

which can be expressed in the standard 2-DOF control configuration:

R1(z)∆(z)u(n) = Tc(z)r(n) − Sc(z)y(n)

where

Tc(z) = 0.1334 + 0.2864z−1 + 0.1496r(n+ 3)z−2 − 0.0022z−3

Sc(z) = 1.3732− 0.8060z−1, R1(z) = 1 + 0.6045z−1

It is easy to see that the entries of Tc and Sc are identical to those of the first
rows of K and KH2, respectively. But for a leading term of 1, the entry of R1 is
identical to that of KH1. By executing M 12.3, one can verify these results.

Until now, we have assumed that the error signal and the control effort are
weighted over the same length of time, see Eq. 12.4, in which both terms are weighted
over N + 1 intervals. In general, however, the control effort is usually weighted over
a shorter interval. This implies u becoming a constant sooner than k + N intervals
in Eq. 12.4. This is equivalent to ∆u becoming zero sooner than k +N intervals. We
generalize this situation by requiring that we minimize the error from n+ k +N1 to
n+ k +N2, N2 ≥ N1, and the control effort from n to n+Nu. That is, we now wish
to minimize

JGPC = [ŷ(n+ k +N1)− r(n + k +N1)]2 + · · ·
+ [ŷ(n+ k +N2)− r(n+ k +N2)]2

+ ρ[∆u(n)]2 + · · ·+ ρ[∆u(n+Nu)]2 (12.20)

As a result of this, ŷ and u of Eq. 12.11 become

ŷ =


ŷ(n+ k +N1)

ŷ(n+ k +N1 + 1)
...

ŷ(n+ k +N2)

 , u =


∆u(n)

∆u(n+ 1)
...

∆u(n+Nu)

 (12.21)

In general, because Nu < N2 − N1, the G matrix of Eq. 12.10 will not be square,
but tall. Instead of repeating the derivation, we will now illustrate this approach by
controlling the system discussed in Example 12.1 and Example 12.2 with different
parameters.

Example 12.3 Design the GPC law for the system

(1 − 0.8z−1)y(n) = (0.4 + 0.6z−1)z−1u(n) +
1
∆
ξ(n)

with N1 = 0, N2 = 3, Nu = 2 and ρ = 0.8.
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M 12.4 and M 12.5 are used for this purpose. We obtain

G =


0.4000 0 0
1.3200 0.4000 0
2.0560 1.3200 0.4000
2.6448 2.0560 1.3200



H2 =


1.8000 −0.8000
2.4400 −1.4400
2.9520 −1.9520
3.3616 −2.3616

 , H1 =


0.6000
1.0800
1.4640
1.7712


Compare this with the results of Example 12.1. Because u is weighted over one less
interval, the vector u is of length one less than that in Examples 12.1 and 12.2.
Correspondingly, the number of columns of G is now one less. Using the procedure
of Example 12.2, we obtain the following results:

K =

 0.1334 0.2864 0.1497 −0.0023
−0.1538 −0.1986 0.1037 0.1580
−0.0284 −0.2189 −0.2154 0.3025


KH2 =

 1.3733 −0.8060
0.0760 −0.1667
−0.2043 0.0440

 , KH1 =

 0.6045
0.1250
−0.0330


Tc = 0.1334 + 0.2864z−1 + 0.1497z−2− 0.0023z−3

Sc = 1.3733− 0.8060z−1, R1 = 1 + 0.6045z−1

How does one tune this controller? The tuning parameters are N1, N2, Nu and ρ.

• One typically chooses N1 to be zero. N2 is chosen approximately as the settling
time, divided by the sampling time. Large values of N2, of the order of about
100 are quite common in the chemical industry. The control action becomes
aggressive as N2 is made smaller, the reason being that the actual output should
reach the reference trajectory in a short time.

• Nu is generally taken to be about one-half to one-third of N2 − N1 for plants
that have large time constants, a common example being chemical processes.
The control action tends to become aggressive for largeNu, the reason being that
the effect of aggressive control action in one move is compensated by subsequent
moves. With a large number of control moves, it is possible to make large control
moves and to compensate their effects subsequently. Thus, if the control action
has to be less aggressive, we have to choose a smaller Nu.

• The control weighting parameter ρ is to be chosen large or small, depending
on whether we want less aggressive or more aggressive control action. This
parameter becomes especially useful in multi-input systems, where we may want
to apply different weightings to different control efforts.

The performance of the GPC is improved by the introduction of a better noise
model C, which is often tuned. In the next section, we show how to design the GPC
for this case.
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We conclude this section with a brief discussion on how to handle the constraints
in the control effort u. In this case, we could minimize the sum of squares of residuals
indicated by Eq. 12.12, subject to the constraints. These problems do not have explicit
solutions and hence one may have to invoke methods such as sequential quadratic
programming.

12.1.2 ARIMAX Model

The noise model of the previous section included only random steps. We generalize
this in this section. Consider a system with the model

A(z)y(n) = z−kB(z)u(n) +
C(z)

∆
ξ(n) (12.22)

where as before, u is the input, y is the output, ξ is white noise and ∆ is the
backward difference operator 1 − z−1. As mentioned earlier, C(z) is often used as
a tuning parameter. As before, we would like this plant output to follow a reference
trajectory w. We once again propose to achieve this by minimizing the performance
index Eq. 12.4. The predictive model for this case is given by Eq. 11.35 and it is
reproduced here for convenience:

Cŷ(n+ j) = EjB∆u(n+ j − k) + Fjy(n) (12.23)

with Ej and Fj obtained by solving Aryabhatta’s identity of Eq. 11.29, which is also
reproduced below:

C = Ej∆A+ z−jFj (12.24)

This predictive model has an expression for Cŷ, although we would like ŷ. In addition,
unlike before, now Cŷ(n+ j) could contain past values of output as well. As a result,
we split these by solving the following Aryabhatta’s identity for Mj and Nj :

1 = CMj + z−jNj (12.25)

We see that

dMj = j − 1
dNj = dC − 1

(12.26)

Multiplying Eq. 12.23 by Mj and substituting for CMj from Eq. 12.25, we obtain

(1− z−jNj)ŷ(n+ j) = MjEjB∆u(n+ j − k) +MjFjy(n) (12.27)

Simplifying, we obtain

ŷ(n+ j) = MjEjB∆u(n+ j − k) +MjFjy(n) +Nj ŷ(n) (12.28)

The last term does not contain future values, and as a result, we can use y(n) in the
place of ŷ(n) to arrive at

ŷ(n+ j) = MjEjB∆u(n+ j − k) + (MjFj +Nj)y(n) (12.29)
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We define

Gj(z) = Mj(z)Ej(z)B(z)
Pj(z) = Mj(z)Fj(z) +Nj(z)

(12.30)

to arrive at

ŷ(n+ j) = Gj∆u(n+ j − k) + Pjy(n) (12.31)

which is in the same form as Eq. 12.5. From Eq. 12.30, Eq. 12.26 and Eq. 11.30, we
see that

dGj = j − 1 + j − 1 + dB = 2j − 2 + dB
dPj = max (j − 1 + dA, dC − 1)

(12.32)

As in the previous section, substituting for j = k to k + N and stacking them one
below the other, the first term of Eq. 12.31 becomes

Gk,0

Gk+1,1 Gk+1,0

...
Gk+N,N Gk+N,N−1 · · · Gk+N,0




∆u(n)
∆u(n+ 1)

...
∆u(n+N)



+


Gk,1 · · · Gk,dGk

Gk+1,2 · · · Gk+1,dGk+1

...
Gk+N,N+1 · · · Gk+N,dGk+N




∆u(n− 1)
∆u(n− 2)

...
∆u(n−M)


where

M = 2k +N − 2 + dB (12.33)

The second term of Eq. 12.31 becomes
Pk,0 · · · Pk,dPk

Pk+1,0 · · · Pk+1,dPk+1

...
Pk+N,0 · · · Pk+N,dPk+N




y(n)
y(n− 1)

...
y(n− dPk+N )


We arrive at Eq. 12.10, reproduced here for convenience:

ŷ = Gu+H1uold +H2yold
(12.34)

where the definitions of ŷ and u are the same as in Eq. 12.11, but now

uold =

 ∆u(n− 1)
...

∆u(n−M)

 , y
old

=

 y(n)
...

y(n− dPk+N )

 (12.35)
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where M is given by Eq. 12.33. The definition of the G, H1 and H2 matrices should
be clear from the derivation. As before, the control law minimizing the performance
index Eq. 12.4 is obtained by minimizing the residuals defined by Eq. 12.12. The
solution is given by Eq. 12.18 and Eq. 12.19, reproduced here for convenience:

u = Kr −KH2yold
−KH1uold

K = (GTG+ ρ2I)−1GT
(12.36)

M 12.6 helps carry out these calculations.

Example 12.4 Solve the viscosity control problem, discussed in Example 11.10
on page 423, by the GPC method, with N = 2 and ρ = 1.

The listing in M 12.7 solves this problem. We obtain

F1 = 1.0000− 0.4400z−1

E1 = 1
M1 = 1
N1 = 0.4400

G1 = 0.5100 + 1.2100z−1

P1 = 1.4400− 0.4400z−1

F2 = 1.0000− 0.4400z−1

E2 = 1 + z−1

M2 = 1.0000 + 0.4400z−1

N2 = 0.1936

G2 = 0.5100 + 1.9444z−1 + 1.9668z−2 + 0.5324z−3

P2 = 1.1936− 0.1936z−2

F3 = 1− 0.4400z−1

E3 = 1 + z−1 + z−2

M3 = 1 + 0.4400z−1 + 0.1936z−2

N3 = 0.0852

G3 = 0.5100 + 1.9444z−1 + 2.5755z−2 + 2.2998z−3

+ 0.8654z−4 + 0.2343z−5

P4 = 1.0852− 0.0852z−3

The stacked variables are

G =

0.5100 0 0
1.9444 0.5100 0
2.5755 1.9444 0.5100

 , H1 =

1.2100 0 0
1.9668 0.5324 0
2.2998 0.8654 0.2343


H2 =

1.4400 −0.4400 0 0
1.1936 0 −0.1936 0
1.0852 0 0 −0.0852
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The variables that define the control law of Eq. 12.36 are given by

K =

 0.1129 0.2989 0.0543
−0.1316 −0.2286 0.2989
−0.0141 −0.1316 0.1129


KH2 =

 0.5783 −0.0497 −0.0579 −0.0046
−0.1381 0.0579 0.0443 −0.0255
−0.0549 0.0062 0.0255 −0.0096


KH1 =

 0.8494 0.2061 0.0127
0.0784 0.1369 0.0700
−0.0163 0.0276 0.0264


When these are substituted in Eq. 12.36, the first row is obtained as

∆u(n) = 0.1129r(n) + 0.2989r(n+ 1) + 0.0543r(n+ 2)
− 0.5783y(n) + 0.0497y(n− 1) + 0.0579y(n− 2) + 0.0046y(n− 3)
− 0.8494∆u(n− 1)− 0.2061∆u(n− 2)− 0.0127∆u(n− 3)

which can be expressed in the standard 2-DOF control configuration:

R1(z)∆(z)u(n) = Tc(z)r(n)− Sc(z)y(n)

where

Tc(z) = 0.1129 + 0.2989z−1 + 0.0543z−2

Sc(z) = 0.5783− 0.0497z−1 − 0.0579z−2− 0.0046z−3

R1(z) = 1 + 0.8494z−1 + 0.2061z−2 + 0.0127z−3

It is easy to see that the entries of Tc and Sc are identical to those of the first
rows of K and KH2, respectively. But for a leading term of 1, the entry of R1 is
identical to that of KH1. By executing M 12.7, one can verify these results.

As explained in Example 12.3, it is easy to accommodate the case of weighting u
and y over different time intervals, in order to minimize the index of Eq. 12.20.
For example, if Nu is made smaller by 2, the number of columns of G will also
come down by 2. M 12.8 and M 12.9 may be used for this purpose. For N1 = 0,
N2 = 0, Nu = 0 and ρ = 1, we obtain G as a column vector, with H1 and H2

unchanged. That is:

G =
[
0.51 1.9444 2.5755

]T
Tc = 0.0437 + 0.1666z−1 + 0.2206z−2

Sc = 0.5011− 0.0192z−1− 0.0322z−2 − 0.0188z−3

R1 = 1 + 0.8878z−1 + 0.2796z−2 + 0.0517z−3

Because the method described in this section generalizes the result of Sec. 12.1.1, it
is possible to use the algorithm of the current section for both. In other words, it is
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possible to solve the problem in Example 12.2 using M 12.6. All that one has to do is
to comment Lines 4–5 and uncomment Lines 6–7 in M 12.3.

GPC has been very successful in a lot of applications in industry. Naturally, there
have been several modifications and enhancements to it. We will look at one such
modification in the next section.

12.2 Steady State Weighted Generalized Predictive
Control (γ-GPC)

Practical experience suggests that it takes a large number of terms for the GPC to
work well. This results in a lot of computations. It has been found [37] that from the
inclusion of steady state weighting, the number of terms required in the controller can
be reduced. We will present one such approach in this section.

12.2.1 Model Derivation

Consider the model

A(z)y(n) = B(z)u(n− 1) +
C

∆
ξ(n) (12.37)

We divide C by A∆ and obtain a quotient Ej and the reminder Fj as per the following
relation:

C = EjA∆ + z−jFj (12.38)

The degrees of Ej and Fj are j − 1 and dA, respectively. Multiplying Eq. 12.37 by
Ejz

j∆ and substituting for EjA∆ from Eq. 12.38, we obtain

(C − z−jFj)y(n+ j) = EjB∆u(n+ j − 1) + Fjy(n) + EjCξ(n+ j) (12.39)

Dividing EjB by C we obtain a quotient Gj and the reminder Hj as per the following
relation:

EjB = GjC + z−jHj (12.40)

Using this, Eq. 12.39 becomes

y(n+ j) =
(
Gj + z−jHj

C

)
∆u(n+ j − 1) +

Fj

C
y(n) + Ejξ(n+ j) (12.41)

Defining filtered variables

uf =
u

C
, yf =

y

C
(12.42)

we arrive at the following relation:

y(n+ j) = Gj∆u(n+ j − 1) +Hj∆uf (n− 1)Fjyf(n) + Ejξ(n+ j) (12.43)
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As the last term has only future noise, we obtain the following prediction model:

ŷ(n+ j) = Gj∆u(n+ j − 1) +Hj∆uf (n− 1)Fjyf (n) (12.44)

Since Gj is a polynomial of degree j − 1, it can be written as

Gj = g0 + g1z
−1 + · · ·+ gj−1z

−j+1, j ≥ nu (12.45)

where nu is the number of control moves to be used. Substituting the above expression
for Gj in Eq. 12.44, we obtain

ŷ(n+ j) = gj−1∆u(n) + gj−2∆u(n+ 1) + · · ·+ gj−nu∆u(n+ nu − 1)
+ gj−nu−1∆u(n+ nu) + · · ·+ g0∆u(n+ j − 1)
+Hj∆uf (n− 1) + Fjyf (n) (12.46)

As only nu control moves are used, u becomes constant from (n+nu). In view of this,
the second line in the above equation becomes zero. Allowing j to vary from N1 to
N2 and stacking the resulting equations one below another, we obtain the following
vector equation:

ŷ(n+N1)
ŷ(n+N1 + 1)

...
ŷ(n+ nu)

ŷ(n+ nu+ 1)
...

ŷ(n+N2)


=



gN1−1 gN1−2 · · · g0 0 0 · · · 0
gN1 gN1−1 · · · g1 g0 0 · · · 0

...
gnu−1 gnu−2 · · · g0
gnu gnu−1 · · · g1

...
gN2−1 gN2−2 · · · gN2−nu


u

+


HN1

HN1+1

...
HN2

∆uf (n− 1) +


FN1

FN1+1

...
FN2

 yf (n) (12.47)

where

u =


∆u(n)

∆u(n+ 1)
...

∆u(n+ nu− 1)

 (12.48)

We arrive at the following vector relation:

y = Gu+H1∆uf(n− 1) +H2yf(n)
�
= Gu + f (12.49)

By taking limits as t→∞, we obtain
ŷ(s|n)

ŷ(s|n+ 1)
...

ŷ(s|n+ nu− 1)

 =


gs

gs gs

...
...

. . .
gs · · · · · · gs

u+


Hs

Hs

...
Hs

∆uf(n− 1) +


Fs

Fs

...
Fs

 yf (n)

(12.50)
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Thus, we arrive at the following vector equation:

rs = Gsu+H1s∆uf(n− 1) +H2syf (n)
�
= Gsu+ fs (12.51)

12.2.2 Optimization of Objective Function

As in GPC, we would like to arrive at the control action by minimizing an objective
function. We now have an additional term that takes into account steady state
weighting:

J =
N2∑

j=N1

γy(j)[ŷ(n+ j)− w(n+ j)]2

+
nu∑
j=1

λ(j)[∆u(n+ j − 1)]2 +
nu∑
j=1

γ(j)[ŷ(s|t+ j − 1)− w(s)]2 (12.52)

This can be written as

J = [y − r]T Γy[y − r] + uT Λu+ [ys − rs]T Γ[ys − rs] (12.53)

Substituting for y and y
s
, respectively, from Eq. 12.49 and Eq. 12.51,

J = [Gu + (f − r)]T Γy[Gu + (f − r)] + uT Λu

+ [Gsu+ (f
s
− rs)]T Γ[Gsu+ (f

s
− rs)]

Expanding and including only terms with u,

J = 2uTGT Γy(f − r) + uTGT ΓyGu+ uT Λu

+ 2uTGT
s Γ(f

s
− rs) + uTGT

s ΓGsu (12.54)

We would like to choose an optimal u that will minimize J . In view of this, we
differentiate J with respect to u and equate to zero:

∂J

∂u
= 2GT Γy(f − r) + 2GT ΓyGu+ 2Λu+ 2GT

s Γ(f
s
− rs) + 2GT

s ΓGsu = 0

Solving this for u, we obtain

u = [GT ΓyG+ Λ +GT
s ΓGs]−1[GT Γy(r − f) +GT

s Γ(rs − fs
)] (12.55)

Here, GT ΓyG and GT
s ΓGs are both matrices of dimension nu × nu. The dynamic

matrix G contains all the step response coefficients arranged in a lower triangular
structure. The term GT

s ΓGs is of full rank and helps ensure the existence of the
inverse in the above equation, even if GT ΓyG is ill conditioned due to large time
delays or too short an output prediction horizon.

When Γ is set to zero, Eq. 12.55 reduces to the basic GPC law. As a result, this
control law is referred to as GPC with γ weighting. As in the GPC law, we write the
first equation of Eq. 12.55:

∆u(n) = h(r − f) + hs(rs − fs) (12.56)
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where

h = first row of [GT ΓyG+ Λ +GT
s ΓGs]−1GT Γy

hs =
∑

first row of [GT ΓyG+ Λ +GT
s ΓGs]−1GT

s Γ
(12.57)

where hs is the sum of elements of the first row of the indicated matrix. Note that
r − f is a vector, while rs − fs is a scalar. Substituting the expressions for h and hs

from Eq. 12.57 and for r and f in Eq. 12.49 into Eq. 12.56, we obtain

∆u(n) =
∑

hj

(
rj − Fjy

C
− z−1Hj∆u

C

)
+ hs(rs − fs) (12.58)

Simplifying, we obtain(
1 + z−1

∑
hjHj

C

)
∆u(n) =

∑
hjrj + hs(rs − fs)−

∑
hj
Fjy

C
(12.59)

Substituting for fs now,(
1 + z−1

∑
hjHj

C

)
∆u(n) =

∑
hjrj + hsrs

− hs

(
z−1Hs

∆u
C

+
Fs

C
y

)
−
∑

hj
Fjy

C
(12.60)

Simplifying this further, we obtain(
C + z−1

(∑
hjHj + hsHs

))
∆u(n) = C

(∑
hjrj + hsrs

)
−
(∑

Fjhj + Fshs

)
y (12.61)

If r is a step, rj = rs = r, and the above equation simplifies to(
C + z−1

(∑
hjHj + hsHs

))
∆u(n) = C

(∑
hj + hs

)
r(n)

−
(∑

Fjhj + Fshs

)
y(n) (12.62)

which is in the standard controller form, given by Eq. 9.5 on page 329, reproduced
here for convenience:

Rc(z)u(n) = Tc(z)r(n)− Sc(z)y(n) (12.63)

where we have chosen the coefficient of Tc to be 1. Comparing coefficients, we obtain

Rc(z) =
(
C + z−1

(∑
hjHj + hsHs

))
∆

Tc(z) = C
(∑

hj + hs

)
Sc(z) =

(∑
Fjhj + Fshs

) (12.64)
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with the order of the polynomials being

dRc = max (dB, dC)
dTc = dC
dSc = dA

(12.65)

We will use this approach to tune PID controllers in the next section.

12.2.3 Predictive PID, Tuned with γ-GPC

In this section, we will present a method [37] to tune the PID controller using the
γ-GPC for a special kind of plant. Defining

KI =
KTs

τi

KD =
Kτd
Ts

(12.66)

Eq. 8.49 becomes

∆u(n) = KIr(n) − [(K +KI +KD)− (K + 2KD)z−1 +KDz
−2]y(n) (12.67)

When C = 1, A is a second degree polynomial and B is of zero degree. From Eq. 12.65,
we arrive at the following degree relations:

dR = 0
dT = 0
dS = 2

(12.68)

With these, Eq. 12.63 becomes

∆u(n) = r0r(n) − [s0 − s1z−1 + s2z
−2]y(n) (12.69)

Comparing the coefficients of the polynomial on the right-hand side with those in
Eq. 12.67, we arrive at the following relations:

KI = r0

KD = s2

K = −s1 − 2s2 = s0 − r0 − s2
(12.70)

where the last equation follows from the condition of no steady state offset, namely
S(1) = T (1), see Eq. 8.23 on page 311. This controller is known as the predictive PID
controller. We will illustrate this approach with the example presented by [37].

Example 12.5 Control the system discussed in Example 11.11 with N1 = 1,
N2 = 5, nu = 2, λ = 0.02, γ = 0.05, γy = 1 [21].
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We have A = 1− 1.95z−1 + 0.935z−2, B = −0.015. As this procedure assumes a
delay of one sample time, the condition of k = 1 is already taken care of. Solving
Eq. 12.38 for j = 1 to 5, we obtain

E1 = 1

F1 = 2.95− 2.885z−1 + 0.935z−2

E2 = 1 + 2.95z−1

F2 = 5.8175− 7.5757z−1 + 2.7582z−2

E3 = 1 + 2.95z−1 + 5.8175z−2

F3 = 9.5859− 14.0252z−1 + 5.4394z−2

E4 = 1 + 2.95z−1−2 + 5.8175z−2 + 9.5859z−3

F4 = 14.2531− 22.2159z−1 + 8.9628z−2

E5 = 1 + 2.95z−1−2 + 5.8175z−2 + 9.5859z−3 + 14.2531z−4

F5 = 19.8307− 32.1574z−1 + 13.3266z−2

Solving Eq. 12.40 for j = 1 to 5, we obtain

G1 = −0.015

G2 = −0.015− 0.0442z−1

G3 = −0.015− 0.0442z−1 − 0.0873z−2

G4 = −0.015− 0.0442z−1 − 0.0873z−2− 0.1438z−3

G5 = −0.015− 0.0442z−1 − 0.0873z−2− 0.1438z−3− 0.2138z−4

We also have Hj = 0, ∀j. Thus, we obtain the matrix G of Eq. 12.49 as

G =


−0.015 0
−0.0442 −0.015
−0.0873 −0.0442
−0.1438 −0.0873
−0.2138 −0.1438


We also obtain

es =
C(1)
A(1)

= −66.6667

gs =
B(1)
A(1)

= 1

Fs = esA = −66.6667 + 130z−1 − 62.3333z−2

Hs∆ = gsC − esB = 0

As a result, Hs = 0. Thus, Gs of Eq. 12.51 becomes

Gs =
[
1 0
1 1

]
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We also obtain h and hs of Eq. 12.56 as

h =
[−0.1486 −0.2937 −0.4376 −0.5828 −0.7311

]T
hs = 0.5084

Using Eq. 12.64, we obtain Rc = 1, Tc = −1.6854, Sc = −63.0387+111.338z−1−
49.9848z−2. Using Eq. 12.70, we obtain K = −11.3685, KI = −1.6854, KD =
−49.9842. These are in agreement with the findings of [37]. M 12.10 sets up this
problem, while M 12.11 solves it.

12.3 Dynamic Matrix Control

In this section, we will present dynamic matrix control (DMC ), another technique
of MPC. model predictive control. While in the previous section we have required
parametric models, in this section, we will work with a step response model, which is
a nonparametric model. Although DMC does not have extensive noise models, it is
simple and easily extendible to multivariable systems. In view of these reasons, DMC
is popular in the chemical industry. In this section, we will present a brief introduction
to DMC.

We start with the step response model given by Eq. 3.38 on page 53. We further
add a bias term, b, to account for the difference between the model prediction and the
actual output. Suppose that we start applying control effort u from time instant k
onwards. At the time instant k + 1, we obtain

ŷ(k + 1) = yx(k + 1) + s(1)∆u(k) + b(k)

where we have used the superposition principle, given by Eq. 3.10 on page 39. Note
that we have taken s(0) = 1. Similarly, at future time instants, we obtain

ŷ(k + 2) = yx(k + 2) + s(2)∆u(k) + s(1)∆u(k + 1) + b(k + 2)
...

ŷ(k +Nu + 1) = yx(k +Nu + 1) + s(Nu + 1)∆u(k) + · · ·
+ s(1)∆u(k +Nu) + b(k +Nu + 1)

where Nu determines the control horizon, i.e., we apply the control effort up to k+Nu

and keep it afterwards. In other words, ∆u(k + m) = 0, for all m > Nu. Thus, we
obtain

ŷ(k +Nu + 2) = yx(k +Nu + 2) + s(Nu + 2)∆u(k) + · · ·
+ s(2)∆u(k +Nu) + b(k +Nu + 2)

...
ŷ(k +N) = yx(k +N) + s(N)∆u(k) + s(N − 1)∆u(k + 1) + · · ·

+ s(N −Nu)∆u(k +Nu) + b(k +N)
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where N is the prediction horizon. As mentioned earlier, the prediction horizon is
as large as at least one settling time. Usually, N > Nu by a factor of two to three.
Stacking all of the above equations one below another, we obtain

ŷ(k + 1) = y
x
(k + 1) + s u(k) + b(k + 1)

where

ŷ(k + 1) =


ŷ(k + 1)
ŷ(k + 2)

...
ŷ(k +N)

 , y
x
(k + 1) =


yx(k + 1)
yx(k + 2)

...
yx(k +N)



s =



s(1) · · · 0
s(2) s(1) · · · 0

...
s(Nu) s(Nu − 1) s(Nu − 2) · · · 0

s(Nu + 1) s(Nu) s(Nu − 1) · · · s(2)
...

s(N) s(N − 1) s(N − 2) · · · s(N −Nu)


,

u(k) =


∆u(k)

∆u(k + 1)
...

∆u(k +Nu)

 , b(k + 1) =


b(k + 1)
b(k + 2)

...
b(k +N)


The variable s has N rows and Nu + 1 columns, N > Nu, and u has Nu + 1
rows. It is called the system’s dynamic matrix, consisting of the collective effect
of unmodelled disturbances. The argument k indicates the origin. The subscript x
indicates prediction in the absence of further control action. The objective is to
determine u(k), which consists of Nu +1 control moves over time, k, k+1, . . . , k+Nu,
to move the system to the desired trajectory, given by

r(k + 1) =
[
r(k + 1) r(k + 2) · · · r(k +N)

]T
Thus we get

y
x
(k + 1) + s u(k) + b(k + 1) = r(k + 1)

By rearranging the terms, we require

s u(k)−
[
r(k + 1)− y

x
(k + 1)− b(k + 1)

]
= 0

Defining the terms within the square brackets as e(k + 1), we want

s u(k)− e(k + 1) = 0

The second term is the predicted deviation of plant output from the desired setpoint
in the absence of further control action. We calculate u using the above equation,
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which has N equations in Nu + 1 unknowns, with N being two to three times Nu. As
a result, we cannot get an exact solution. The least squares solution to this problem
is given by

u(k) = (sT s)−1sT e(k + 1)

In order that excessive control action is not applied, the following method of control
action calculation is done:

u(k) =
[
sT s+ ρ2I

]−1
sT e(k + 1)

But for the bias term, the tuning procedure is similar to that of GPC, see the
discussion after Example 12.3 on page 442. We determine the current bias and
assume that it is constant for the rest of the control moves. In other words, we let
b(k + 1) = y(k)− ŷ(k), i = 1, 2, . . . , N , where y is the measured value of output.

12.4 Matlab Code

Matlab Code 12.1 Model derivation for GPC design in Example 12.1 on page 439.
This code is available at HOME/mpc/matlab/gpc ex11.m1

1 % Cama ch o a nd B o r d o n ’ s GPC e x a m p l e ; m o d e l f o r m a t i o n

2 %

3 A=[1 −0 .8 ] ; dA=1; B=[0.4 0 . 6 ] ; dB=1; N=3; k=1;
4 D=[1 −1]; dD=1; AD=conv (A,D) ; dAD=dA+1; Nu=N+1;
5 z j = 1 ; dz j = 0 ; G = zeros (Nu) ;
6 H1 = zeros (Nu, k−1+dB) ; H2 = zeros (Nu,dA+1) ;
7 for j = 1 :Nu,
8 z j = conv ( z j , [ 0 , 1 ] ) ; dz j = dz j + 1 ;
9 [ Fj , dFj , Ej , dEj ] = xdync ( zj , dzj ,AD,dAD, 1 , 0 ) ;

10 [ Gj , dGj ] = polmul (B, dB , Ej , dEj ) ;
11 G( j , 1 : dGj ) = f l i p ( Gj ( 1 : dGj ) ) ;
12 H1( j , 1 : k−1+dB) = Gj ( dGj+1:dGj+k−1+dB) ;
13 H2( j , 1 : dA+1) = Fj ;
14 end
15 G, H1 , H2

Matlab Code 12.2 Calculates the GPC law given by Eq. 12.19 on page 441. A sam-
ple usage is given in M 12.3. This code is available at HOME/mpc/matlab/gpc bas.m

1 function [K,KH1,KH2, Tc , dTc , Sc , dSc , R1 , dR1 ] = . . .
2 gpc bas (A,dA,B, dB,N, k , rho )
3 D=[1 −1]; dD=1; AD=conv (A,D) ; dAD=dA+1; Nu=N+1;
4 z j = 1 ; dz j = 0 ; G = zeros (Nu) ;
5 H1 = zeros (Nu, k−1+dB) ; H2 = zeros (Nu,dA+1) ;
6 for j = 1 :Nu,

1HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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7 z j = conv ( z j , [ 0 , 1 ] ) ; dz j = dz j + 1 ;
8 [ Fj , dFj , Ej , dEj ] = xdync ( zj , dzj ,AD,dAD, 1 , 0 ) ;
9 [ Gj , dGj ] = polmul (B, dB, Ej , dEj ) ;

10 G( j , 1 : dGj ) = f l i p ( Gj ( 1 : dGj ) ) ;
11 H1( j , 1 : k−1+dB) = Gj ( dGj+1:dGj+k−1+dB) ;
12 H2( j , 1 : dA+1) = Fj ;
13 end
14 K = inv (G’∗G+rho∗eye (Nu) ) ∗G’ ;
15 % N o t e : i n v e r s e n e e d n o t b e c a l c u l a t e d

16 KH1 = K ∗ H1 ; KH2 = K ∗ H2 ;
17 R1 = [ 1 KH1( 1 , : ) ] ; dR1 = length (R1)−1;
18 Sc = KH2( 1 , : ) ; dSc = length ( Sc )−1;
19 Tc = K( 1 , : ) ; dTc = length (Tc)−1;

Matlab Code 12.3 GPC design for the problem discussed in Example 12.2 on page
441. This code is available at HOME/mpc/matlab/gpc ex12.m

1 % Camacho a n d Bo r d o n ’ s GPC e x a m p l e ; C o n t r o l l a w

2 %

3 A=[1 −0 .8 ] ; dA=1; B=[0.4 0 . 6 ] ; dB=1; N=3; k=1; rho =0.8 ;
4 [K,KH1,KH2, Tc , dTc , Sc , dSc , R1 , dR1 ] = . . .
5 gpc bas (A,dA,B, dB ,N, k , rho )
6 % C =1 ; dC = 0 ; [ K , KH1 , KH2 , Tc , dTc , Sc , dSc , R1 , dR1 ] = . . .

7 % g p c c o l ( A , dA , B , dB , C , dC , N , k , r h o )

Matlab Code 12.4 GPC design for the problem discussed in Example 12.3. This
code is available at HOME/mpc/matlab/gpc wt.m

1 A=[1 −0 .8 ] ; dA=1; B=[0.4 0 . 6 ] ; dB=1;
2 rho = 0 . 8 ; k = 1 ;
3 N1 = 0 ; N2 = 3 ; Nu = 2 ;
4 [K,KH1,KH2, Tc , dTc , Sc , dSc , R1 , dR1 ] = . . .
5 gpc N (A,dA,B, dB, k , N1 , N2 ,Nu, rho )

Matlab Code 12.5 Calculates the GPC law given by Eq. 12.36 on page 446. A
sample usage is given in M 12.4. This code is available at HOME/mpc/matlab/gpc N.m

1 function [K,KH1,KH2, Tc , dTc , Sc , dSc , R1 , dR1 ] = . . .
2 gpc N (A,dA,B, dB, k , N1 , N2 ,Nu, rho )
3 D=[1 −1]; dD=1; AD=conv (A,D) ; dAD=dA+1;
4 z j = 1 ; dz j = 0 ;
5 for i = 1 :N1+k−1
6 z j = conv ( z j , [ 0 , 1 ] ) ; dz j = dz j + 1 ;
7 end
8 G = zeros (N2−N1+1,Nu+1) ;
9 H1 = zeros (N2−N1+1,k−1+dB) ; H2 = zeros (N2−N1+1,dA+1) ;

10 for j = k+N1 : k+N2
11 z j = conv ( z j , [ 0 , 1 ] ) ; dz j = dz j + 1 ;
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12 [ Fj , dFj , Ej , dEj ] = xdync ( zj , dzj ,AD,dAD, 1 , 0 ) ;
13 [ Gj , dGj ] = polmul (B, dB , Ej , dEj ) ;
14 i f ( j−k >= Nu)
15 G( j−(k+N1−1) , 1 :Nu+1) = f l i p ( Gj ( j−k−Nu+1: j−k+1)) ;
16 else
17 G( j−(k+N1−1) , 1 : j−k+1) = f l i p ( Gj ( 1 : j−k+1)) ;
18 end
19 H1( j−(k+N1−1) , 1 : k−1+dB) = Gj ( j−k+2: j+dB) ;
20 H2( j−(k+N1−1) , 1 :dA+1) = Fj ;
21 end
22 K = inv (G’∗G+rho∗eye (Nu+1)) ∗G’ ;
23 % N o t e : i n v e r s e n e e d n o t b e c a l c u l a t e d

24 KH1 = K ∗ H1 ; KH2 = K ∗ H2 ;
25 R1 = [ 1 KH1( 1 , : ) ] ; dR1 = length (R1)−1;
26 Sc = KH2( 1 , : ) ; dSc = length ( Sc )−1;
27 Tc = K( 1 , : ) ; dTc = length (Tc)−1;

Matlab Code 12.6 Calculates the GPC law given by Eq. 12.36 on page 446. A sam-
ple usage is given in M 12.7. This code is available at HOME/mpc/matlab/gpc col.m

1 function [K,KH1,KH2, Tc , dTc , Sc , dSc , R1 , dR1 ] = . . .
2 g p c c o l (A,dA,B, dB,C, dC,N, k , rho )
3 D=[1 −1]; dD = 0 ; AD=conv (A,D) ; dAD=dA+1; z j =1; dz j =0;
4 Nu = N+1; G=zeros (Nu) ; H1=zeros (Nu,2∗k+N−2+dB) ;
5 H2 = zeros (Nu, k+N+dA) ;
6 for j = 1 :Nu,
7 z j = conv ( z j , [ 0 , 1 ] ) ; dz j = dz j + 1 ;
8 [ Fj , dFj , Ej , dEj ] = . . .
9 xdync ( zj , dzj ,AD,dAD,C,dC) ;

10 [ Nj , dNj , Mj , dMj ] = . . .
11 xdync ( zj , dzj ,C, dC, 1 , 0 ) ;
12 [ Gj , dGj ] = polmul (Mj , dMj , Ej , dEj ) ;
13 [ Gj , dGj ] = polmul (Gj , dGj ,B, dB) ;
14 [ Pj , dPj ] = polmul (Mj , dMj , Fj , dFj ) ;
15 [ Pj , dPj ] = poladd ( Nj , dNj , Pj , dPj ) ;
16 j , Fj , Ej , Mj , Nj , Gj , Pj
17 G( j , 1 : j ) = f l i p ( Gj ( 1 : j ) ) ;
18 H1( j , 1 : dGj−j +1) = Gj ( j +1:dGj+1) ;
19 H2( j , 1 : dPj+1) = Pj ;
20 end
21 K = inv (G’∗G+rho∗eye (Nu) ) ∗G’
22 % N o t e : i n v e r s e n e e d n o t b e c a l c u l a t e d

23 KH1 = K ∗ H1 ; KH2 = K ∗ H2 ;
24 R1 = [ 1 KH1( 1 , : ) ] ; dR1 = length (R1)−1;
25 Sc = KH2( 1 , : ) ; dSc = length ( Sc )−1;
26 Tc = K( 1 , : ) ; dTc = length (Tc)−1;
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Matlab Code 12.7 GPC design for viscosity control in Example 12.4 on page 446.
This code is available at HOME/mpc/matlab/gpc ex2.m

1 % GPC c o n t r o l o f v i s c o s i t y p r o b l e m

2 %

3 A=[1 −0 .44 ] ; dA=1; B=[0.51 1 . 2 1 ] ; dB=1; N=2; k=1;
4 C = [ 1 −0 .44 ] ; dC = 1 ; rho = 1 ;
5

6 [K,KH1,KH2, Tc , dTc , Sc , dSc , R1 , dR1 ] = . . .
7 g p c c o l (A,dA,B, dB ,C, dC ,N, k , rho )

Matlab Code 12.8 GPC design for the problem discussed in Example 12.3. This
code is available at HOME/mpc/matlab/gpc wtc.m

1 A=[1 −0 .8 ] ; dA=1; B=[0.4 0 . 6 ] ; dB=1;
2 rho = 0 . 8 ; k = 1 ;
3 N1 = 0 ; N2 = 3 ; Nu = 2 ;
4 [K,KH1,KH2, Tc , dTc , Sc , dSc , R1 , dR1 ] = . . .
5 gpc N (A,dA,B, dB, k , N1 , N2 ,Nu, rho )

Matlab Code 12.9 Calculates the GPC law for different prediction and control
horizons. A sample usage is given in M 12.8. This code is available at
HOME/mpc/matlab/gpc Nc.m

1 function [K,KH1,KH2, Tc , dTc , Sc , dSc , R1 , dR1 ] = . . .
2 gpc Nc (A, dA,B, dB,C, dC , k , N1 , N2 , Nu, rho )
3 D=[1 −1]; dD=1; AD=conv (A,D) ; dAD=dA+1;
4 z j = 1 ; dz j = 0 ;
5 for i = 1 :N1+k−1
6 z j = conv ( z j , [ 0 , 1 ] ) ; dz j = dz j + 1 ;
7 end
8 M = 2∗k+N2−2+dB ; P = max( k+N2+dA−1,dC−1)
9 G = zeros (N2−N1+1,Nu+1) ; H1 = zeros (N2−N1+1,M) ;

10 H2 = zeros (N2−N1+1,P+1) ;
11 for j = k+N1 : k+N2
12 z j = conv ( z j , [ 0 , 1 ] ) ; dz j = dz j + 1 ;
13 [ Fj , dFj , Ej , dEj ] = xdync ( zj , dzj ,AD,dAD,C,dC) ;
14 [ Nj , dNj , Mj , dMj ] = xdync ( zj , dzj ,C, dC, 1 , 0 ) ;
15 [ Gj , dGj ] = polmul (Mj , dMj , Ej , dEj ) ;
16 [ Gj , dGj ] = polmul ( Gj , dGj ,B, dB) ;
17 [ Pj , dPj ] = polmul (Mj , dMj , Fj , dFj ) ;
18 [ Pj , dPj ] = poladd ( Nj , dNj , Pj , dPj ) ;
19 i f ( j−k >= Nu)
20 G( j−(k+N1−1) , 1 :Nu+1) = f l i p ( Gj ( j−k−Nu+1: j−k+1)) ;
21 else
22 G( j−(k+N1−1) , 1 : j−k+1) = f l i p ( Gj ( 1 : j−k+1)) ;
23 end
24 H1( j−(k+N1−1) , 1 : j+k−2+dB) = Gj ( j−k+2:2∗ j+dB−1) ;
25 dPj = max( j−1+dA, dC−1) ;
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26 H2( j−(k+N1−1) , 1 : dPj+1) = Pj ;
27 end
28 K = inv (G’∗G+rho∗eye (Nu+1)) ∗G’ ;
29 % N o t e : i n v e r s e n e e d n o t b e c a l c u l a t e d

30 KH1 = K ∗ H1 ; KH2 = K ∗ H2 ;
31 R1 = [ 1 KH1( 1 , : ) ] ; dR1 = length (R1)−1;
32 Sc = KH2( 1 , : ) ; dSc = length ( Sc )−1;
33 Tc = K( 1 , : ) ; dTc = length (Tc)−1;

Matlab Code 12.10 PID controller, tuned with GPC, as discussed in Example 12.5
on page 452. This code is available at HOME/pid/matlab/gpc pid test.m

1 clear
2 A = [ 1 −1.95 0 . 9 3 5 ] ;
3 B=−0.015;
4 C=1;
5 degA=2;
6 degB=0;
7 degC=0;
8 N1=1;
9 N2=5;

10 Nu=2;
11 gamma=0.05;
12 gamma y=1;
13 lambda =0.02;
14 [Kp, Ki ,Kd] = . . .
15 gpc pid (A, degA ,B, degB ,C, degC , N1 , N2 ,Nu, lambda ,gamma, gamma y)

Matlab Code 12.11 Predictive PID, tuned with GPC, as explained in Sec. 12.2.3.
This code is available at HOME/pid/matlab/gpc pid.m

1 function [Kp, Ki ,Kd] = . . .
2 gpc pid (A,dA,B, dB,C, dC, N1 , N2 , Nu, lambda ,gamma, gamma y)
3 Adelta=conv (A, [ 1 −1]) ; G= [ ] ;
4 for i=N1 : N2
5 z i=zpowk ( i ) ;
6 [E, dE , F , dF]=xdync ( Adelta ,dA+1, z i , i ,C,dC) ;
7 [ Gtilda , dGtilda , Gbar , dGbar ] = . . .
8 xdync (C, dC, z i , i ,E∗B, dE+dB) ;
9 for j = 1 : i , Gti lda1 ( j )=Gti lda ( i+1−j ) ; end

10 i f i<=Nu−1
11 G=[G; [ Gtilda1 , zeros (1 ,Nu−i ) ] ] ;
12 else
13 G=[G; Gti lda1 ( 1 :Nu) ] ;
14 end
15 end
16 es=sum(C) /sum(A) ; gs=sum(B) /sum(A) ; F s=es ∗A; G s = [ ] ;
17 for i =1:Nu
18 row=gs∗ ones (1 , i ) ; row=[row , zeros (Nu−i ) ] ;
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19 G s=[G s ; row ] ;
20 end
21 lambda mat=lambda ∗(diag ( ones (1 ,Nu) ) ) ;
22 gamma mat=gamma∗(diag ( ones (1 ,Nu) ) ) ;
23 gamma y mat=gamma y∗(diag ( ones (1 ,N2−N1+1)) ) ;
24 mat1=inv (G’∗ gamma y mat∗G+lambda mat+G s ’∗ gamma mat∗G s ) ;
25 % N o t e : i n v e r s e n e e d n o t b e c a l c u l a t e d

26 mat2=mat1∗(G’∗ gamma y mat ) ;
27 mat2 s=mat1∗( G s ’∗ gamma mat) ;
28 h s=sum( mat2 s ( 1 , : ) ) ; h=mat2 ( 1 , : ) ;
29 T=C; R=C∗(sum(h ( : ) )+h s ) ; S=0;
30 for i=N1 : N2
31 z i=zpowk ( i ) ;
32 [E , dE , F , dF]=xdync ( Adelta ,dA+1, z i , i ,C, dC) ;
33 [ Gtilda , dGtilda , Gbar , dGbar ] = . . .
34 xdync (C, dC, z i , i ,E∗B, dE+dB) ;
35 S=S+F∗h( i ) ;
36 end
37 S=S+F s∗ h s ;
38 i f length (A)==3
39 Kp=S (1 )−R−S (3 ) ; Ki=R; Kd=S (3 ) ;
40 else
41 Kp=S (1 )−R; Ki=R; Kd=0;
42 end
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12.5 Problems

12.1. Derive the GPC model (i.e., Eq. 12.10 on page 439) for the system described
by

(1 − 0.9z−1)y(t) = z−1u(t) +
1
∆
ξ(t)

for the two sets of conditions given below. (Here, y(t), u(t) and ξ(t) are,
respectively, output, input and white noise, and ∆ = 1− z−1.)

(a) Using predictive models for y(t+1) and y(t+2) (i.e., Ny = 1) and varying
∆u(t) and ∆u(t+ 1) (i.e., Nu = 1).

(b) Same as above, but now Nu = 0, i.e., only ∆u(t) is varied.

[Hint: Long division may be useful.]

12.2. For the system defined by Eq. 11.92, design a GPC using predictive models for
ŷ(t+1) and ŷ(t+2) (i.e., Ny = 1) by varying only ∆u(t) and making u(t+ j) =
constant for j ≥ 1 (i.e., Nu = 0). Assume ρ = 1 for the control weighting
parameter.

(a) Comment on implementing this controller with a PID controller.

(b) If Ny = 0 in part (a), what is the resulting controller known as? Note –
you don’t have to design this controller.

(c) If ∆ is replaced by 1 in the system model, how would you proceed to design
the controller required in part (a)? You don’t have to design the controller,
it is enough if you point out the differences. Is it possible implement this
controller through PID knobs?



Chapter 13

Linear Quadratic Gaussian
Control1

In this chapter, we present the important design technique of linear quadratic
Gaussian (LQG) control. In this method, one minimizes the expectation of the
weighted sum of regulation error and control effort. This is the correct method,
compared to the approximate approach used in GMVC design in Sec. 11.3 [34].

It is through the LQG technique that one can design the important minimum
variance controller for nonminimum phase systems, see Sec. 13.3. The LQG controller
may be used as a standard, against which other controllers can be compared, using
the performance curve, to be presented in Sec. 13.4. The reason is that as the control
weighting is reduced to zero, the performance of an LQG controller becomes that of the
minimum variance controller, while satisfying closed loop stability. In contrast, closed
loop systems with GMVC and GPC of Sec. 12.1 become unstable for nonminimum
phase systems when the control effort goes to zero.

Unlike the notation referred to in Footnote 5 on page 100, in the whole of this
chapter we will use the argument of z−1 to indicate polynomials in powers of z−1 and
the argument z to indicate polynomials in powers of z. The reason is that we need to
use both of these polynomials simultaneously.

We begin this chapter with a study of spectral factorization, one use of which has
been identified in Sec. 6.4.4. Using this approach, we will design the LQG controller.

13.1 Spectral Factorization

In this section, we will briefly discuss the topic of spectral factorization, by which we
can split a given polynomial into two factors, one with all zeros inside the unit circle
and the other with all zeros outside. Although good numerical methods are required
for spectral factorization, we will not discuss them. We will restrict our attention to
a qualitative discussion of spectral factorization only.

1This chapter may be skipped in a first reading.

Digital Control Kannan M. Moudgalya
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03143-8
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We start our discussion by explaining the concept of self-reciprocal polynomials.
To understand this concept, let us consider a polynomial in z−1 of the following form:

A(z−1) = a0 + a1z
−1 + · · ·+ anz

−n (13.1)

and the polynomial with reversed coefficients:

Ar(z−1) = a0z
−n + a1z

−n+1 + · · ·+ an (13.2)

We can derive a relation between Ar(z−1) and A(z) in powers of z. We can write
Eq. 13.2 as Ar(z−1) = z−n(a0 +a1z

1+ · · ·+anz
n). Thus we obtain the useful property

Ar(z−1) = z−nA(z) (13.3)

A polynomial ς(z−1) is self-reciprocal if

ς(z−1) = ςr(z−1) (13.4)

It is easy to see that A(z−1)Ar(z−1) is self-reciprocal. From

A(z−1)Ar(z−1) = (a0 + · · ·+ anz
−n)(a0z

−n + · · ·+ an) (13.5)

we obtain the coefficients of powers of z−1 as

z0 : a0an

z−1 : a0an−1 + a1an

...

Now we change the order of multiplication:

Ar(z−1)A(z−1) = (a0z
−n + · · ·+ an)(a0 + · · ·+ anz

−n)

and obtain the coefficients of powers of z−2n, z−2n+1, . . . as

z−2n : a0a1

z−2n+1 : a0an−1 + a1an

...

One can see that the coefficient of z−i equals the coefficient of z−2n+i. Thus, A(z−1)×
Ar(z−1) is of the form

α0z
−2n + α1z

−2n+1 + · · · + αn−1z
−n−1 + αnz−n + αn−1z

−n+1 + · · · + α1z
−1 + α0

which is a self-reciprocal polynomial. Note that the coefficients are symmetric about
z−n, where n is the degree of A(z−1).

Now suppose that B(z−1) is another polynomial with degree dB given by

dB = dA− k = n− k, n ≥ 0 (13.6)
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By the above logic, B(z−1)Br(z−1) will be a self-reciprocal polynomial with coef-
ficients symmetric about z−n+k. It follows that z−kB(z−1)Br(z−1) will be a self-
reciprocal polynomial with coefficients symmetric about z−n. It is easy to see that
ρA(z−1)Ar(z−1) + z−kB(z−1)Br(z−1) is self-reciprocal, where ρ ≥ 0 is an arbitrary
scalar.

Example 13.1 Carry out the above indicated calculations for the polynomials

A(z−1) = a0 + a1z
−1 + a2z

−2, n = 2

B(z−1) = b0 + b1z
−1, k = 2− 1 = 1

It is easy to see that in

A(z−1)Ar(z−1) = a0a2 + (a0a1 + a1a2)z−1 + (a2
0 + a2

1 + a2
2)z−2

+ (a0a1 + a1a2)z−3 + a0a2z
−4

the coefficients are symmetric about z−2. For B,

B(z−1)Br(z−1) = b0b1 + (b20 + b21)z−1 + b0b1z
−2

the coefficients are symmetric about z−1. In

z−1B(z−1)Br(z−1) = b0b1z
−1 + (b20 + b21)z−2 + b0b1z

−3

the coefficients are symmetric about z−2. As the coefficients are symmetric,
ρA(z−1)Ar(z−1) + z−1B(z−1)Br(z−1) is self-reciprocal.

The zeros of a self-reciprocal polynomial have an interesting property. Let ς(z−1) be
a self-reciprocal polynomial of degree 2n in z−1. Using Eq. 13.3, we obtain

ςr(z−1) = z−2nς(z) (13.7)

As ς(z−1) is self-reciprocal, using Eq. 13.4,

ς(z−1) = z−2nς(z) (13.8)

Thus if ς(z−1) can be factored as

ς(z−1) = (z−1 − ς1) · · · (z−1 − ς2n) (13.9)

ς(z) can be factored as

ς(z) = (z − ς1) · · · (z − ς2n) (13.10)

Using Eq. 13.8,

ς(z−1) = z−2n(z − ς1) · · · (z − ς2n) (13.11)
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From Eq. 13.9 and Eq. 13.11, we obtain the useful property that if ςi is a zero of
ς(z−1), 1/ςi also is a zero. It is also clear that if ςi is inside the unit circle, 1/ςi is
outside the unit circle. It follows from the above discussion that such a factorization
exists for the self-reciprocal polynomial ς:

ς(z−1) = ρA(z−1)Ar(z−1) + z−kB(z−1)Br(z−1) (13.12)

We illustrate this in the next example.

Example 13.2 For

A(z−1) = 0.9− 1.9z−1 + z−2

B(z−1) = 0.08 + 0.1z−1

carry out the above indicated factorization for ρ = 1.

We have

A(z−1)Ar(z−1) = 0.9− 3.61z−1 + 5.42z−2 − 3.61z−3 + 0.9z−4

z−1B(z−1)Br(z−1) = 0.008z−1 + 0.0164z−2 + 0.008z−3

ς(z−1) = A(z−1)Ar(z−1) + z−1B(z−1)Br(z−1)

= 0.09− 0.361z−1 + 0.542z−2 − 0.361z−3 + 0.09z−4

ς(z−1) has the following zeros:

1 : 1.4668 + 0.9031j
2 : 1.4668− 0.9031j
3 : 0.4944 + 0.3044j
4 : 0.4944− 0.3044

Observe the following:

1. The third zero is the reciprocal of the second and the fourth zero is the
reciprocal of the first.

2. The first two zeros are outside the unit circle, while the last two are inside
the unit circle.

3. As the coefficients of ς are real, the zeros occur in conjugate pairs, in case
any of the zeros is a complex number. Accordingly, there are two pairs of
complex conjugate pairs.

If ς is self-reciprocal with no zeros on the unit circle, it will have half the number
of zeros inside and an equal number outside the unit circle. Let the product of the
factors with zeros inside the unit circle be β and that of the rest βr. To make this
factorization unique, let β be monic, i.e., the constant in the polynomial β is one.
Thus, we arrive at the relation

ς = ρAAr + z−kBBr = rββr (13.13)

where r is the scale factor. This is known as spectral factorization. We now illustrate
this approach through an example.
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Example 13.3 Determine the spectral factorization for the system presented
in Example 11.4 on page 413.

We have

A = (1− 0.5z−1)(1− 0.9z−1) = 1− 1.4z−1 + 0.45z−2

B = 0.5(1− 0.9z−1)
ρ = 1

We obtain

ς = 0.45− 2.255z−1 + 3.615z−2 − 2.255z−3 + 0.45z−4

This polynomial has roots 2.618, 1.1111, 0.9 and 0.382. As the last two are inside
the unit circle, they make the polynomial β. With the condition that β is monic,
we obtain

β = 1− 1.282z−1 + 0.3438z−2

By reversing the coefficients, we obtain

βr = 0.3438− 1.282z−1 + z−2

The roots of β are 0.9 and 0.382. Using Eq. 13.13, we obtain

r = 1.309

The commands in M 13.1 show how to do these calculations in Matlab.

In this section, we have achieved spectral factorization through the brute force
method of factoring a polynomial into its zeros. Unfortunately, this is not a
numerically reliable method, especially for complicated problems. Although there exist
reliable methods, they are beyond the scope of this book.

Spectral factorization will play an important role in controller design, the topic of
the next section.

13.2 Controller Design

We will now present a transfer function approach to design the LQG controller [54, 26].
Consider a system of the form

A(z−1)y(n) = B(z−1)u(n− k) +
C(z−1)
F (z−1)

ξ(n) (13.14)

which is in the same form as Eq. 11.1 but for the presence of F in the denominator
of the noise term. As before, ξ(n) is the noise, u(n) the input to and y(n) the output
from the system. The reason for including F (z−1) now is that we allow F to have
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zeros on the unit circle, so that step disturbances can be handled. Thus F (z−1) can
have zeros inside or on the unit circle.

We would like to design a controller u(n) that minimizes the performance index

J = E
[(
V (z−1)y(n)

)2
+ ρ

(
W (z−1)F (z−1)u(n)

)2]
(13.15)

This is different from the performance index given in Eq. 11.61 on page 420 in that
it has polynomial matrices V (z−1), W (z−1) and F (z−1), as well. These are included
to provide flexibility and to make the problem solvable:

1. Suppose that we wish only the rate at which u(n) changes to be minimized. We
can then choose W (z−1) to be 1− z−1.

2. Suppose that the disturbance has steps in it, say F = 1 − z−1. Then it can be
controlled only if u(n) also is allowed to drift. In this case, we cannot constrain
the absolute value of u(n). The best we can do is to reduce the variations in
u(n). The factor F (z−1) is included precisely for this reason. Thus in this case,
the user is not completely free to choose the weighting matrices. This reasoning
is the same as the one used to include ∆ in Eq. 11.67 on page 422.

Thus in general, V and W are provided for the flexibility of the problem while F is
included to make the problem solvable.

We rewrite Eq. 13.15 in the following form without the z−1 argument:

J = E (V y(n))2 + ρE (WFu(n))2 (13.16)

We will use the variational method to minimize this objective function. Suppose that
there is a controller of the form

u(n) = − Sc(z−1)
Rc(z−1)

y(n) (13.17)

that minimizes the above performance index. The variational approach is to look for
a controller of the form

u(n) = − Sc(z−1)
Rc(z−1)

y(n) + Tξ(n) (13.18)

which is a variant of Eq. 13.17. We will try to find Rc, Sc and T in such a way that
the increase in performance index is zero.

Let us close the loop with this controller. That is, substitute for u(n) from Eq. 13.18
into Eq. 13.14 and simplify. Dropping the argument in z−1, we obtain

Ay(n) = z−kB

[
− Sc

Rc
y(n) + Tξ(n)

]
+
C

F
ξ(n) (13.19)

This can be simplified as

y(n) =
CRc

Fα
ξ(n) + z−kBRc

α
Tξ(n) (13.20)
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where

α = RcA+ z−kBSc (13.21)

Thus we see that α makes up the characteristic polynomial. Hence we would like to
have its zeros inside the unit circle. We write y(n) as

y(n) = y0(n) + δy(n) (13.22)

where

y0(n) =
CRc

Fα
ξ(n)

δy(n) = z−kBRc

α
Tξ(n)

(13.23)

Note that the variational term δy0 has the variation causing variable, namely T .
Substituting Eq. 13.22 and Eq. 13.23 in Eq. 13.18, we obtain

u(n) = − Sc

Rc

[
CRc

Fα
ξ(n) + z−kBRc

α
Tξ(n)

]
+ Tξ(n) (13.24)

This can be simplified as

u(n) = u0(n) + δu(n) (13.25)

where

u0(n) = −CSc

Fα
ξ(n)

δu(n) =
RcA

α
Tξ(n)

(13.26)

Let us now write Eq. 13.16 without arguments in z−1 and after substituting for y(n)
and u(n) from Eq. 13.22 and Eq. 13.25:

J = E (V (y0 + δy))2 + ρE (WF (u0 + δu))2

= E
(
V 2(y2

0 + 2y0δy + δy2)
)

+ ρE
(
W 2F 2(u2

0 + 2u0δu+ δu2)
)

(13.27)

This can be split as

J = J0 + 2J1 + J2 (13.28)

where

J0 = E (V y0)2 + ρE (WFu0)2

J1 = E (V y0)(V δy) + ρE (WFu0)(WFδu)

J2 = E (V δy)2 + ρE (WFδu)2
(13.29)
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As J0 and J2 are sums of squares, they cannot be made zero. On the other hand, as
it has cross terms, J1 can be made zero. Thus the condition for minimizing Eq. 13.16
can be expressed as

J1 = E (V y0)(V δy) + ρE (WFu0)(WFδu) = 0 (13.30)

Substituting for y0, δy0 and u0, δu0 from Eq. 13.23 and Eq. 13.26, we obtain

E

(
V CRc

Fα
ξ(n)

)(
z−k V BRc

α
Tξ(n)

)
+ ρE

(
−WFCSc

Fα
ξ(n)

)(
WFRcA

α
Tξ(n)

)
= 0 (13.31)

This can be written as∮ [
V CRc

Fα

zkV∗B∗Rc∗
α∗

T∗ − ρWFCSc

Fα

W∗F∗Rc∗A∗
α∗

T∗

]
dz

z
= 0 (13.32)

where the starred variables are functions of z, for example V∗ = V∗(z), while the
unstarred variables are functions of z−1, for example Sc = Sc(z−1). The above
equation becomes∮

zkV CRcV∗B∗ − ρWFCScW∗F∗A∗
zFαα∗

Rc∗T∗dz = 0 (13.33)

Note that as mentioned earlier, α, a part of the characteristic polynomial, will have
zeros inside the unit circle. Thus if zFα divides zkV CRcV∗B∗ − ρWFCScW∗F∗A∗,
there will be no residue term within the unit circle, and hence the above integral will
vanish. Thus we arrive at the equivalent condition

zkV CRcV∗B∗ − ρWFCScW∗F∗A∗ = zFαX∗ (13.34)

where X∗ is an unknown polynomial. Substituting for α from Eq. 13.21, we obtain

zkV CRcV∗B∗ − ρWFCScW∗F∗A∗ = zF (RcA+ z−kBSc)X∗ (13.35)

Arranging Rc and Sc terms separately, we obtain

Rc(zkCV V∗B∗ − zAFX∗) = (ρWW∗F∗A∗C + z−k+1BX∗)FSc (13.36)

As Rc and Sc are coprime, each of the two sides in the above equation should be equal
to RcScK∗, where K∗ is a polynomial in z, z−1. Thus we obtain

(ρWW∗F∗A∗C + z−k+1BX∗)F = K∗Rc (13.37)

zkCV V∗B∗ − zAFX∗ = K∗Sc (13.38)

Multiplying Eq. 13.37 by A and Eq. 13.38 by z−kB and adding, we obtain

C(ρAWFF∗W∗A∗ +BV V∗B∗) = K∗α (13.39)
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Next, we obtain spectral factorization of the left-hand side of the above equation:

rββ∗ = ρAWFF∗W∗A∗ +BV V∗B∗ (13.40)

where r is a positive scalar and β(z−1) is a stable monic polynomial. When ρ > 0,
stability of β is assured if BV and AFW have no common factors with zeros on the
unit circle. If ρ = 0, BV should have no zeros on the unit circle. Using this equation,
Eq. 13.39 becomes

Crββ∗ = K∗α (13.41)

As α is required to be stable and monic, we let

α = Cβ (13.42)
K∗ = rβ∗ (13.43)

In Eq. 13.37, F must be a factor of K∗Rc = rβ∗Rc. Since β∗ has no zeros on the unit
circle, F must be a factor of Rc. Thus, we set

Rc = R1F (13.44)

Substituting for K∗ from Eq. 13.43 and for Rc from Eq. 13.44 into Eq. 13.37 and
Eq. 13.38, we obtain

ρWW∗F∗A∗C + z−k+1BX∗ = rβ∗R1 (13.45a)

zkCV V∗B∗ − zAFX∗ = rβ∗Sc (13.45b)

We need to solve Eq. 13.40 and Eq. 13.45 for the unknowns R1, Sc and X .
Unfortunately, these relations involve polynomials in powers of z as well as z−1. So
we first convert them into polynomials in powers of z−1. Using Eq. 13.3, we can write
Eq. 13.40 as

zdβrββr = ρAFWrFrArz
dA+dF+dW +BV VrBrz

dV +dB

Generally, dA+ dF + dW ≥ dV + dB and, as a result, we will assume that

dβ = dA+ dF + dW (13.46)

Multiplying throughout by z−dβ, we obtain

rββr = ρAFWWrFrAr +BV VrBrz
−dβ+dV +dB (13.47)

All the variables in the above relation are polynomials in powers of z−1. In Eq. 13.45,
the degrees of polynomials are as follows:

dX = dβ + k − 1 (13.48)

Using Eq. 13.3 and Eq. 13.46, Eq. 13.45a becomes

zdβρWWrFrArC + z−k+1BXrz
dβ+k−1 = rβrR1z

dβ
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Simplifying and rearranging,

rβrR1 −BXr = ρWWrFrArC (13.49)

Similarly, Eq. 13.45b becomes

zkCV VrBrz
dV B − zAFXrz

dβ+k−1 = rβrScz
dβ

Simplifying and rearranging,

rβrScz
−k +AFXr = CV VrBrz

dV B−dβ (13.50)

Eq. 13.49 and Eq. 13.50 can be written in the following form:

[
R1 Sc

] [rβr 0
0 rβrz

−k

]
+Xr

[−B AF
]

=
[
ρWWrFrArC zdV B−dβCV VrBr

]
(13.51)

where
[
R1 Sc

]
and Xr are unknowns. This equation is in the form of the well

known Aryabhatta’s identity of Eq. 7.119 on page 290. Using the method discussed in
Sec. 7.8.3, we can solve this equation for

[
R1 Sc

]
and Xr, although we need only the

former for controller design. Using Eq. 13.17 and Eq. 13.44, we obtain the controller
as

u = − Sc

R1F
(13.52)

M 13.4 implements this controller.

Example 13.4 Let us now design an LQG controller for the system presented
in Example 11.4 on page 413. We have

A = (1 − 0.5z−1)(1 − 0.9z−1) = 1− 1.4z−1 + 0.45z−2

B = 0.5(1− 0.9z−1)

C = (1 − 0.5z−1)
k = 1, ρ = 1
V = W = F = 1

As V, W, F are 1, the spectral factorization is identical to the one obtained in
Example 13.3. So we find

ρWWfFfAfC = 0.45− 1.625z−1 + 1.7z−3 − 0.5z−4

z−1CV VfBf = −0.45z−1 + 0.725z−2 − 0.25z−3

rβf = 0.45− 1.6781z−1 + 1.309z−2

Substituting these in Eq. 13.51 and solving, we obtain

R1(z−1) = 1− 0.6439z−1

Sc(z−1) = 0.5239− 0.2619z−1

Xf (z−1) = 0.7619− 0.6857z−1
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Using Eq. 13.52, we obtain the controller to be

u = − Sc

R1F
y = −0.5239(1− 0.5z−1)

1− 0.6439z−1
y

M 13.5 implements this example.

The solution procedure for LQG control remains the same whether the system to
be controlled is minimum phase or nonminimum phase. We illustrate this with an
example.

Example 13.5 We now design an LQG controller for the viscosity problem [34]
presented in Example 11.10 on page 423. Note that in the current notation, ρ is a
scalar and, as a result, we use the following values:

ρ = 1

F = 1− z−1 = ∆

We also have

A = 1− 0.44z−1

B = (0.51 + 1.21z−1)(1− z−1)

C = 1− 0.44z−1

k = 1

M 13.6 carries out the control design. We obtain the following results:

AFW = 1− 1.44z−1 + 0.44z−2

AFWWfFfAf = 0.44− 2.0736z−1 + 3.2672z−2 − 2.0736z−3 + 0.44z−4

BV VfBf = 0.6171 + 1.7242z−1 + 0.6171z−2

rββf = 0.44− 1.4565z−1 + 4.9914z−2 − 1.4565z−3 + 0.44z−4

This polynomial has roots 1.5095±2.8443j and 0.1456±0.2743j. As the last two
are inside the unit circle, they make the polynomial β. We obtain

r = 4.5622

β = 1− 0.2912z−1 + 0.09645z−2

ρWWfFfAfC = 0.44− 1.6336z−1 + 1.6336z−2 − 0.44z−3

z−1CV VfBf = 1.21z−1 − 0.0224z−2− 0.2244z−3

rβf = 0.44− 1.3284z−1 + 4.5622z−2

Substituting these in Eq. 13.51 and solving, we obtain

R1(z−1) = 1 + 0.4701z−1

Sc(z−1) = 0.4682− 0.2060z−1

Xf (z−1) = 2.1359 + 1.004z−1
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The first two are obtained in Rc and Sc, respectively, in M 13.6. Note that the
variable Xf is not required for controller design. We obtain the controller to be

u = − Sc

Rc
y = − Sc

R1F
y

Because F = ∆ = 1− z−1, we obtain

∆u = −0.4682(1− 0.4400z−1)
1 + 0.4701z−1

y

After closing the loop, we obtain the following relations:

y(n) =
1 + 0.4701z−1

1− 0.2912z−1 + 0.0964z−2
ξ(n)

u(n) =
0.4682− 0.2060z−1

1− 0.2912z−1 + 0.0964z−2
ξ(n)

which are stored in Ny/Dy and Nu/Du, respectively, in M 13.6. The variance of y
and u, calculated and stored in yvar and uvar, respectively, are

σ2
y = 1.5970

σ2
u = 0.2285

It is instructive to compare these results with those of the minimum variance
controller, obtained in Example 11.8 on page 419. For a small increase (about
10%) in the variance of y, the variance of u has come down greatly, by about
85%.

It is also instructive to compare these results with those of the generalized minimum
variance controller, obtained in Example 11.10 on page 423, for the same value
of ρ. The LQG controller results in a smaller output variance, for a larger variance
in the input.

In the above example, we have made a comparison of the variance values obtained
with different controllers. We will develop this line further in Sec. 13.3.

The LQG control design technique that we developed in this section can easily
accommodate polynomial weighting in the sum minimized. We now demonstrate this
with an example taken from [54].

Example 13.6 Design the LQG feedback control for the following system:

(1 − 0.9z−1)y(n) = (0.1 + 0.08z−1)u(n− 2) + ξ(n)

with

V = 1, W = 1− z−1



13.3. Simplified LQG Control Design 475

Thus we would like to weight the differential input. We have

A = 1− 0.9z−1

B = 0.1 + 0.08z−1

k = 2
C = F = 1
ρ = 0.1

Invoking M 13.8, we obtain the following results:

AFW = 1− 1.9z−1 + 0.9z−2

AFWWfFfAf = 0.09− 0.361z−1 + 0.542z−2 − 0.361z−3 + 0.09z−4

BV VfBf = 0.008 + 0.0164z−1 + 0.008z−2

rββf = 0.09− 0.353z−1 + 0.5584z−2− 0.353z−3 + 0.09z−4

This polynomial has roots 1.4668± 0.903j and 0.4944± 0.3044j. As the last two
are inside the unit circle, they make the polynomial β. We obtain

r = 0.267

β = 1− 0.9887z−1 + 0.337z−2

ρWWfFfAfC = 0.09− 0.28z−1 + 0.29z−2 − 0.1z−3

z−1CV VfBf = 0.08z−1 + 0.1z−2

rβf = 0.09− 0.264z−1 + 0.267z−2

Substituting these in Eq. 13.51 and solving, we obtain

Rc(z−1) = 1− 0.08871z−1 + 0.121z−2

Sc(z−1) = 1.3617

Xf (z−1) = 0.404 + 0.04945z−1 + 0.08z−2

The controller is given by

u(n) = − Sc

Rc
y(n)

Recall once again that Xf is not required in the expression for the controller.

13.3 Simplified LQG Control Design

In this section, we will derive a simpler procedure to design LQG controllers. We will
also derive a procedure to design minimum variance controllers when the plant to be
controlled is nonminimum phase.
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Multiply Eq. 13.45a by AF and Eq. 13.45b by z−kB to arrive at

ρWW∗F∗A∗CAF + z−k+1BX∗AF = rβ∗R1AF

CV V∗B∗B − z−k+1BAFX∗ = rz−kBβ∗Sc

Adding the two equations, we obtain

ρWW∗F∗A∗CAF + CV V∗B∗B = rβ∗R1AF + rz−kBβ∗Sc

The left-hand side of the equation becomes rββ∗C using Eq. 13.40, and hence the
above equation becomes

rββ∗C = rβ∗R1AF + rz−kBβ∗Sc

Cancelling the common factor rβ∗, the above equation becomes

βC = R1AF + z−kBSc (13.53)

We may solve the above equation for R1 and Sc when A and B don’t have a common
factor. Note that the solution of the above equation is a lot simpler than that of
Eq. 13.51. We now illustrate this simplified approach with an example.

Example 13.7 Solve the viscosity control problem of Example 13.5 using the
simplified LQG control design method, derived above.

M 13.6 is once again invoked with the call to lqg being replaced with a call
to lqg simple. Everything else, including the argument list, remains the same.
M 13.7 is now used. We obtain results that are identical to the ones obtained in
Example 13.5.

Another utility of this simplified procedure is that it can be used to derive the
minimum variance control law when the plant to be controlled is nonminimum phase.
When ρ = 0, Eq. 13.40 becomes

ββ∗ = BB∗

where we assume that we do not carry out the normalization and hence take r as 1.
We have also taken V as 1, as per the convention in minimum variance control. In
terms of reciprocal polynomials, we obtain

ββr = BBr

Splitting B into good and bad factors, namely B = BgBb, the above equation becomes

ββr = BgBbBg
rB

b
r (13.54)

As β should have only stable factors, we extract the stable factors from the right-hand
side and obtain

β = BgBb
r
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Substituting this expression in Eq. 13.53, we obtain

BgBb
rC = AFR1 + z−kBSc (13.55)

and the control law is obtained as

u(n) = − Sc

R1F
(13.56)

which is the same as Eq. 13.52. This approach has been used in Sec. 11.2.3.
We have remarked earlier that when A and B do not have a common factor, we

may solve Eq. 13.53 for R1 and Sc. Let us see in the next example what happens
when there is a common factor between A and B.

Example 13.8 Try solving the problem presented in Example 13.4 using the
simplified LQG design procedure developed in this section.

We have

A = (1 − 0.5z−1)(1 − 0.9z−1)

B = 0.5(1− 0.9z−1)

C = (1 − 0.5z−1)
k = F = 1

Recall that we have calculated β for the same problem in Example 13.3 on
page 467:

β = 1− 1.282z−1 + 0.3438z−2 = (1− 0.9z−1)(1− 0.382z−1)

Thus, Eq. 13.53 becomes

(1− 0.9z−1)(1 − 0.382z−1)(1 − 0.5z−1)

= R1(1 − 0.5z−1)(1 − 0.9z−1) + z−10.5(1− 0.9z−1)Sc

We obtain the following solution:

R1 = 1− 0.382z−1

Sc = 0

From Eq. 13.52, we obtain the control law to be u = 0!.

This solution is unacceptable. Recall that we have faced a similar situation in
Example 11.7 on page 417.

13.4 Introduction to Performance Analysis of

Controllers

Now that we have seen a lot of control design techniques, the natural question that
comes to mind is, “Which controller is the best?” We now give a brief answer to this
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Table 13.1: Comparison of minimum variance, generalized minimum variance and
LQG controllers through variance of input and output signals in viscosity control
problem

LQG
GMVC

MVC ρ = 1 ρ = 1 ρ = 10 ρ = 2

σ2
y 1.4070 1.7190 1.5970 2.1107 1.7045

σ2
u 1.2994 0.1870 0.2285 0.0594 0.1523

Table 13.2: Comparison of minimum variance, generalized minimum variance and
LQG controllers through variance of input and output signals in MacGregor’s first
control problem

LQG
GMVC

MVC ρ = 1 ρ = 1 ρ = 2 ρ = 1.772

σ2
y 1 3.0301 2.3475 3.1765 3.0297

σ2
u 5.9684 0.5075 1.0250 0.4294 0.5075

question through examples. For details, the reader should consult more specialized
books, such as [23].

We designed minimum variance (Example 11.8 on page 419), generalized minimum
variance (Example 11.10 on page 423, ρ = 1) and LQG (Example 13.5) controllers
for the viscosity control problem and obtained the variances listed in Table 13.1. The
minimum variance controller may be acceptable if the large variance in u is acceptable.
It is not clear whether GMVC or LQG should be chosen. To resolve this, we try to
make σ2

y of LQG approximately equal to that of GMVC. With ρ = 10, σ2
y becomes

much larger. With ρ = 2, we obtain variances that are comparable.
In Table 13.1, we have listed the variances corresponding to controllers obtained

with ρ = 10 and 2. Comparing GMVC with LQG obtained with ρ = 2, we see that the
latter achieves a smaller σ2

y with a smaller σ2
u as well. This shows that LQG achieves

a smaller error simultaneously with a smaller control effort as compared to GMVC.
In view of this criterion, we would prefer LQG for the problem.

We carry out a similar comparison of these controllers for MacGregor’s first
control problem, presented in Example 11.4 on page 413, Example 11.9 on page 421
and Example 13.4. The resulting variances are now listed in Table 13.2. From this
table, it is clear that the performance of GMVC and LQG are comparable. When
the performances of the controllers are comparable for this problem, why is there a
difference in the viscosity control problem? One reason we can immediately think of is
that the viscosity control problem involves a nonminimum phase system. We discuss
this issue further shortly.

We will next discuss how a plot of the output variance vs. input variance can
be used to assess the performance of a control loop. For example, Fig. 13.1 shows
one such plot obtained by varying ρ from 0.1 to 10 for the viscosity control problem.
The control designer has the option of running the plant at any point on this curve.
The left extreme corresponds to large ρ values, as these weight the input heavily,
resulting in small input variance. Similarly, the right extreme of the plot corresponds
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σ2
uA

Aσ2
yA

σ2
yA0

σ2
uA0

ρ→ 0

ρ→∞

Figure 13.1: Variance of y (σ2
y) vs. variance of ∆u (σ2

u): LQG law for viscosity control
problem

to small ρ values, as these result in the input not being constrained, resulting in
large σ2

u. M 13.9 is one way to arrive at this plot, which will be referred to as the
performance curve [23].

Depending on the current performance level of the plant, one can decide whether
it can be improved. Suppose that the actual measured performance of this plant with
a particular controller (not necessarily LQG) is given by the point A = (σ2

uA, σ
2
yA).

From the plot, it is clear that one of the following is possible, by switching over to an
LQG controller:

1. One can obtain the same output variance (σyA) for a smaller control effort
(σ2

uA0).

2. For the same control effort, one can obtain smaller output variance (σ2
yA0).

The performance plots of different controllers can be compared. Fig. 13.2 shows
the performance curves of generalized minimum variance and LQG controllers for the
viscosity control problem.

In this figure, the performance curve of the GMVC is higher than that of LQG.
For large ρ values, the two curves coincide, but as ρ→ 0, the curve of GMVC moves
upwards. The reason for this is not difficult to see. As ρ → 0, GMVC approaches
the standard minimum variance controller, which results in unbounded control effort,
because the plant is nonminimum phase. In other words, GMVC does not gracefully
degrade to the stable minimum variance controller of Sec. 13.3.

Although not shown, the performance curve of the generalized predictive controller
is more or less similar to that of the GMVC. In fact, the former also cannot stabilize
the viscosity control problem when ρ→ 0. Amongst the controllers that we have seen,
the only one that guarantees this for a nonminimum phase is the LQG controller.
In view of this, the performance curve of the LQG controller is recommended as a
benchmark, against which other controllers can be compared.
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Figure 13.2: Comparison of performance curves for LQG (lower curve) and generalized
minimum variance (upper curve) control of the viscosity problem
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Figure 13.3: Performance curve for GMVC of MacGregor’s first example

There is not much difference between the performance curves for MacGregor’s first
control problem. M 13.10 shows the steps taken to arrive at the performance curve
using GMVC. A plot of this curve is shown in Fig. 13.3. Although not shown, the
performance curves obtained using GMVC and GPC look similar.
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13.5 Matlab Code

Matlab Code 13.1 Spectral factorization, as discussed in Example 13.3 on page 467.
This code is available at HOME/lqg/matlab/spec ex.m2

1 A = conv ( [−0.5 1 ] , [ −0 .9 1 ] ) ; dA = 2 ;
2 B = 0.5∗ [−0 .9 1 ] ; dB = 1 ; rho = 1 ;
3 [ r , beta , sigma ] = spec (A,dA,B, dB, rho )

Matlab Code 13.2 Function to implement spectral factorization, as discussed in
Sec. 13.1. For an example of the usage, see M 13.1. This code is available at
HOME/lqg/matlab/spec.m

1 function [ r , b , rbbr ] = spec (A,dA,B, dB, rho )
2 AA = rho ∗ conv(A, f l i p (A) ) ;
3 BB = conv (B, f l i p (B) ) ;
4 di f f = dA − dB ;
5 dBB = 2∗dB ;
6 for i = 1 : di f f
7 [BB,dBB] = polmul (BB,dBB, [ 0 1 ] , 1 ) ;
8 end
9 [ rbbr , drbbr ] = poladd (AA,2∗dA,BB,dBB) ;

10 r t s = roots ( rbbr ) ; % r o o t s i n d e s c e n d i n g o r d e r o f m a g n i t u d e

11 r t s i n = r t s (dA+1:2∗dA) ;
12 b = 1 ;
13 for i = 1 :dA,
14 b = conv (b , [ 1 −r t s i n ( i ) ] ) ;
15 end
16 br = f l i p (b) ;
17 bbr = conv (b , br ) ;
18 r = rbbr (1 ) / bbr (1 ) ;

Matlab Code 13.3 Spectral factorization, to solve Eq. 13.47 on page 471. For an
example of the usage, see M 13.4. This code is available at
HOME/lqg/matlab/specfac.m

1 % f u n c t i o n [ r , b , dAFW ] = . . .

2 % s p e c f a c ( A , dA , B , dB , r h o , V , dV ,W, dW , F , dF )

3 % I m p l e m e n t s t h e s p e c t r a l f a c t o r i z a t i o n f o r u s e w i t h LQG

4 % c o n t r o l by d e s i g n m e t h o d o f A h l e n a n d S t e r n a d

5

6 function [ r , b ,dAFW] = s p e c f a c (A,dA,B, dB , rho ,V, dV,W,dW, F, dF)
7 AFW = conv (A, conv (W, F) ) ;
8 dAFW = dA + dF + dW;
9 AFWWFA = rho ∗ conv (AFW, f l i p (AFW) ) ;

10 BV = conv (B,V) ;
11 dBV = dB + dV;

2HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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12 BVVB = conv (BV, f l i p (BV) ) ;
13 di f f = dAFW − dBV;
14 dBVVB = 2∗dBV;
15 for i = 1 : di f f
16 [BVVB,dBVVB] = polmul (BVVB,dBVVB, [ 0 1 ] , 1 ) ;
17 end
18 [ rbb , drbb ] = poladd (AFWWFA,2∗dAFW,BVVB,dBVVB) ;
19 r t s = roots ( rbb ) ;
20 r t s i n = r t s (dAFW+1:2∗dAFW) ;
21 b = 1 ;
22 for i = 1 :dAFW,
23 b = conv (b , [ 1 −r t s i n ( i ) ] ) ;
24 end
25 b = real (b ) ;
26 br = f l i p (b) ;
27 bbr = conv (b , br ) ;
28 r = rbb (1 ) / bbr (1 ) ;

Matlab Code 13.4 LQG control design by polynomial method, to solve Eq. 13.51
on page 472. This code is available at HOME/lqg/matlab/lqg.m

1 % LQG c o n t r o l l e r d e s i g n by m e t h o d o f A h l e n a nd S t e r n a d

2 % f u n c t i o n [ R1 , dR1 , Sc , d S c ] = . . .

3 % l q g ( A , dA , B , dB , C , dC , k , r h o , V , dV ,W, dW , F , dF )

4

5 function [ R1 , dR1 , Sc , dSc ] = . . .
6 lqg (A,dA,B, dB,C, dC, k , rho ,V,dV,W,dW, F , dF)
7 [ r , b , db ] = s p e c f a c (A,dA,B, dB, rho ,V,dV,W,dW, F, dF) ;
8 WFA = f l i p (conv (A, conv (F ,W) ) ) ;
9 dWFA = dW + dF + dA;

10 [ rhs1 , drhs1 ] = polmul (W,dW,WFA,dWFA) ;
11 [ rhs1 , drhs1 ] = polmul ( rhs1 , drhs1 ,C, dC) ;
12 rhs1 = rho ∗ rhs1 ;
13 rhs2 = conv (C, conv (V, f l i p (conv (B,V) ) ) ) ;
14 drhs2 = dC + 2∗dV + dB;
15 for i = 1 : db−dB−dV,
16 rhs2 = conv ( rhs2 , [ 0 , 1 ] ) ;
17 end
18 drhs2 = drhs2 + db−dB−dV;
19 C1 = zeros (1 , 2 ) ;
20 [ C1 , dC1 ] = putin (C1 , 0 , rhs1 , drhs1 , 1 , 1 ) ;
21 [ C1 , dC1 ] = putin (C1 , dC1 , rhs2 , drhs2 , 1 , 2 ) ;
22

23 rb f = r ∗ f l i p (b ) ;
24 D1 = zeros (2 ) ;
25 [ D1 , dD1 ] = putin (D1, 0 , rbf , db , 1 , 1 ) ;
26 for i = 1 : k ,
27 rb f = conv ( rbf , [ 0 1 ] ) ;
28 end
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29 [ D1 , dD1 ] = putin (D1 , dD1 , rbf , db+k , 2 , 2 ) ;
30 N = zeros (1 , 2 ) ;
31 [N,dN] = putin (N,0 ,−B, dB, 1 , 1 ) ;
32 [AF,dAF] = polmul (A, dA, F, dF) ;
33 [N,dN] = putin (N,dN,AF,dAF, 1 , 2 ) ;
34 [Y, dY,X,dX] = xdync (N,dN, D1 , dD1 , C1 , dC1) ;
35 [ R1 , dR1 ] = ext (X,dX, 1 , 1 ) ;
36 [ Sc , dSc ] = ext (X,dX, 1 , 2 ) ;
37 X = f l i p (Y) ;

Matlab Code 13.5 LQG design for the problem discussed in Example 13.4 on
page 472. This code is available at HOME/lqg/matlab/lqg mac1.m

1 % M a c G r e g o r ’ s f i r s t c o n t r o l p r o b l e m

2 clear
3 A = [ 1 −1.4 0 . 4 5 ] ; dA = 2 ; C = [ 1 −0 .5 ] ; dC = 1 ;
4 B = 0 . 5 ∗ [ 1 −0 .9 ] ; dB = 1 ; k = 1 ; i n t = 0 ; F = 1 ; dF = 0 ;
5 V = 1 ; W = 1 ; dV = 0 ; dW = 0 ;
6 rho = 1 ;
7 [ R1 , dR1 , Sc , dSc ] = lqg (A,dA,B, dB,C,dC, k , rho ,V,dV,W,dW, F, dF)
8 [Nu, dNu ,Du, dDu , Ny , dNy ,Dy, dDy , yvar , uvar ] = . . .
9 c l (A, dA,B, dB,C, dC, k , Sc , dSc , R1 , dR1 , i n t ) ;

Matlab Code 13.6 LQG control design for viscosity control problem discussed in
Example 13.5. This code is available at HOME/transfer/lqg/matlab/lqg visc.m

1 % V i s c o s i t y c o n t r o l p r o b l e m o f M a c G r e g o r

2 A = [ 1 −0 .44 ] ; dA = 1 ; B = [ 0 . 5 1 1 . 2 1 ] ; dB = 1 ;
3 C = [ 1 −0 .44 ] ; dC = 1 ; k = 1 ; i n t = 1 ; F = [ 1 −1]; dF = 1 ;
4 V = 1 ; W = 1 ; dV = 0 ; dW = 0 ;
5 rho = 1 ;
6 [ R1 , dR1 , Sc , dSc ]= lqg (A,dA,B, dB,C, dC, k , rho ,V,dV,W,dW,F , dF)
7 [Nu, dNu ,Du, dDu , Ny , dNy ,Dy, dDy , yvar , uvar ] = . . .
8 c l (A, dA,B, dB,C, dC, k , Sc , dSc , R1 , dR1 , i n t ) ;

Matlab Code 13.7 Simplified LQG control design, obtained by the solution of Eq.
13.53 on page 476. Calling procedure is identical to that of M 13.4. This code is
available at HOME/transfer/lqg/matlab/lqg simple

1 % LQG c o n t r o l l e r s i m p l e d e s i g n by m e t h o d o f A h l e n a nd S t e r n a d

2 % f u n c t i o n [ R1 , dR1 , Sc , d S c ] = . . .

3 % l q g s i m p l e ( A , dA , B , dB , C , dC , k , r h o , V , dV ,W, dW , F , dF )

4

5 function [ R1 , dR1 , Sc , dSc ] = . . .
6 l q g s i m p l e (A,dA,B, dB,C, dC, k , rho ,V,dV,W,dW, F, dF)
7 [ r , b , db ] = s p e c f a c (A,dA,B, dB , rho ,V, dV,W,dW, F, dF) ;
8 [D,dD] = polmul (A,dA, F , dF) ;
9 [ zk , dzk ] = zpowk ( k ) ;

10 [N,dN] = polmul ( zk , dzk ,B, dB) ;
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11 [RHS,dRHS] = polmul (C,dC , b , db ) ;
12 [ Sc , dSc , R1 , dR1 ] = xdync (N,dN,D,dD,RHS,dRHS) ;

Matlab Code 13.8 LQG control design for the problem discussed in Example 13.6
on page 474. This code is available at HOME/lqg/matlab/lqg as1.m

1 % S o l v e s E x a m p l e 3 . 1 o f A h l e n a n d S t e r n a d i n Hunt ’ s b o o k

2 A = [ 1 −0 .9 ] ; dA = 1 ; B = [ 0 . 1 0 . 0 8 ] ; dB = 1 ;
3 k = 2 ; rho = 0 . 1 ; C = 1 ; dC = 0 ;
4 V = 1 ; dV = 0 ; F = 1 ; dF = 0 ; W = [ 1 −1]; dW = 1 ;
5 [ R1 , dR1 , Sc , dSc ] = lqg (A, dA,B, dB ,C, dC , k , rho ,V, dV,W,dW, F, dF)

Matlab Code 13.9 Performance curve for LQG control design of viscosity problem,
as discussed in Sec. 13.4. This code is available at HOME/lqg/matlab/lqg visc loop.m

1 % M ac G r e g o r ’ s V i s c o s i t y c o n t r o l p r o b l e m

2 A = [ 1 −0 .44 ] ; dA = 1 ; B = [ 0 . 5 1 1 . 2 1 ] ; dB = 1 ;
3 C = [ 1 −0 .44 ] ; dC = 1 ; k = 1 ; i n t = 1 ; F = [ 1 −1]; dF = 1 ;
4 V = 1 ; W = 1 ; dV = 0 ; dW = 0 ;
5 u lqg = [ ] ; y lqg = [ ] ; uy lqg = [ ] ;
6 for rho = 0 . 0 0 1 : 0 . 1 : 3 ,
7 [ R1 , dR1 , Sc , dSc ] = lqg (A,dA,B, dB,C, dC, k , rho ,V,dV,W,dW, F, dF

) ;
8 [Nu, dNu ,Du, dDu , Ny , dNy ,Dy, dDy , yvar , uvar ] = . . .
9 c l (A, dA,B, dB,C, dC, k , Sc , dSc , R1 , dR1 , i n t ) ;

10 u lqg = [ u lqg uvar ] ; y l qg = [ y lqg yvar ] ;
11 uy lqg = [ uy lqg ; [ rho uvar yvar ] ] ;
12 end
13 plot ( u lqg , y lqg , ’ g ’ )
14 save −ASCII l q g v i s c . dat uy lqg

Matlab Code 13.10 Performance curve for GMVC design of MacGregor’s first
control problem, as discussed in Sec. 13.4. This code is available at
HOME/minv/matlab/gmv mac1 loop.m

1 % M ac G r e g o r ’ s f i r s t c o n t r o l p r o b l e m

2 clear
3 A = [ 1 −1.4 0 . 4 5 ] ; dA = 2 ; C = [ 1 −0 .5 ] ; dC = 1 ;
4 B = 0 . 5 ∗ [ 1 −0 .9 ] ; dB = 1 ; k = 1 ; i n t = 0 ;
5 u gmv = [ ] ; y gmv = [ ] ; uy gmv = [ ] ;
6 for rho = 0 : 0 . 1 : 1 0 ,
7 [ S , dS ,R,dR ] = gmv(A, dA,B, dB ,C, dC , k , rho , i n t ) ;
8 [Nu, dNu ,Du, dDu , Ny , dNy ,Dy, dDy , yvar , uvar ] = . . .
9 c l (A, dA,B, dB,C, dC, k , S , dS ,R, dR, i n t ) ;

10 u gmv = [ u gmv uvar ] ; y gmv = [ y gmv yvar ] ;
11 uy gmv = [ uy gmv ; [ rho uvar yvar ] ] ;
12 end
13 plot ( u gmv , y gmv , ’b ’ )
14 save −ASCII gmv mac1 . dat uy gmv
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13.6 Problems

13.1. Using the notation that we used to derive LQG controllers, carry out a spectral
factorization for the following set of values:

ρ = 1
V = 1
W = 1
F = 1

A = 1 + z−1 + z−2

B = 1− 0.5z−1

Write down the resulting r, β and β∗ values.
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Chapter 14

State Space Techniques in
Controller Design

An alternative to the transfer function approach to control system design is the state
space approach. The former depends on polynomial algorithms, which are slow to
emerge. In contrast, the linear algebraic tools that are required by the state space
techniques are a lot more advanced. As a result, many more control design techniques
are available in the state space approach. At the current state of development, the
state space techniques are preferred over the transfer function approach, especially for
multivariable systems. In this chapter, we briefly summarize the state space approach
to controller design. For details, we refer the reader to the standard books on this
topic, such as [29] and [1].

We begin with the design of pole placement controllers, assuming that all states are
measurable. Then we present the design of an observer that helps determine the states,
in case all of them are not measured. We combine the two to achieve a pole placement
controller when not all states are measured. The design input to pole placement
controllers is the location of closed loop poles. An alternative approach is to specify
an optimization index to be minimized. We present the concept of linear quadratic
regulator (LQR), obtained by minimizing a quadratic index. When the states required
for LQR are estimated by a Kalman filter, the estimator–regulator combination is
known as the linear quadratic Gaussian (LQG) controller. We conclude this chapter
with a brief introduction to LQG controller design by state space approach. Recall
the transfer function approach to LQG controller design in Chapter 13.

14.1 Pole Placement

Consider the state space model, given in Eq. 4.28 on page 85, reproduced here for
convenience:

x(k + 1) = Ax(k) +Bu(k) + δ(k + 1)x0 (14.1)

We will now restrict our attention to u being a scalar; that is, there is only one
manipulated variable. Thus B becomes a vector. To indicate this, we will use b in
place of B. Suppose that all the states are measured. Can we use a state feedback

Digital Control Kannan M. Moudgalya
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03143-8
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controller that gives the control law as a function of the state, to obtain a desired
closed loop characteristic polynomial? Before we answer this question, let us take the
Z-transform of Eq. 14.1 to arrive at

zX(z) = AX(z) + bU(z) + x0z

(zI −A)X(z) = bU(z) + x0z

X(z) = (zI −A)−1bU(z) + x0z

Evaluating the inverse, for x0 = 0, we obtain

X(z) =
adj(zI −A)
|zI −A| bU(z) (14.2)

where adj denotes the adjoint operator. Poles of the transfer function are given by the
roots of |zI − A| = 0. Let λ denote eigenvalues and v eigenvectors of A. We obtain
Av = λv and |λI − A| = 0. We see that the poles of the transfer function given in
Eq. 14.2 are the same as the eigenvalues of A.

Example 14.1 Discuss the stability of Eq. 14.1, if the system matrix is given
by

A =
[
1 2
0 3

]
Because A is upper triangular, the eigenvalues are given by the diagonal elements.
Thus, we see the eigenvalues to be 1 and 3. Because the poles are not inside the
unit circle, the system is unstable.

Next, we would like to ask whether with a state feedback controller of the form

u(k) = −Kx(k) + v(k) = − [K1 K2 · · · Kn

]

x1(k)
x2(k)

...
xn(k)

 + v(k) (14.3)

it is possible to change the closed loop characteristic polynomial. Here, we have
assumed that the state is an n-dimensional vector. Because all the states are used in
the control law, it is known as the state feedback controller. Note that Kj, 1 ≤ j ≤ n,
are scalars, to be determined. The variable v(k) may be thought of as some kind of
offset in the control law.

Let us assume that all the states are measured. Applying this feedback control is
equivalent to substituting the expression for u in Eq. 14.1. We obtain

x(k + 1) = Ax(k) + b[−Kx(k) + v(k)] + x0δ(k + 1)

Simplifying, we obtain

x(k + 1) = (A− bK)x(k) + bv(k) + x0δ(k + 1) (14.4)

It may be possible to find a K such that the above closed loop system is well behaved,
i.e., the eigenvalues of (A− bK) are in desirable locations.
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Example 14.2 Determine whether the system considered in Example 14.1 can

be improved by a suitable K, if b =
[
0 1

]T
.

The closed loop system is given by Eq. 14.4. Its system matrix is given by

A− bK =
[
1 2
0 3

]
−
[
0
1

] [
K1 K2

]
=
[
1 2
0 3

]
−
[

0 0
K1 K2

]
=
[

1 2
−K1 3−K2

]
Suppose that we choose K1 = 0.5, K2 = 3.5. We obtain

A− bK =
[

1 2
−0.5 −0.5

]
whose eigenvalues are 0.25± 0.6614j with the absolute value as 0.7071. Thus the
choice of this K has made the closed loop system stable.

In the above example, we have shown that the introduction of feedback control
could change the eigenvalues of the system matrix. We are actually interested in the
inverse problem: which K will give desired closed loop pole locations? To answer this,
we begin by taking the Z-transform of Eq. 14.4:

[zI − (A− bK)]X(z) = bV (z) + x0z

Simplifying this, we obtain

X(z) =
adj[zI − (A− bK)]
|zI − (A− bK)| (bV (z) + x0z)

|zI − (A − bK)| is the characteristic polynomial of the closed loop. We may want it
to be equal to a polynomial αc(z) of our choice, given by

αc(z) = zn + α1z
n−1 + · · ·+ αn−1z + αn

= (z − β1)(z − β2) · · · (z − βn) (14.5)

There is no rigorous theory for the choice of this polynomial. In Sec. 7.7, we have
presented a method to select second degree polynomials. We would like to restrict
ourselves to the selection of K, given such a polynomial. Can we equate the coefficients
and find K? Equating the two expressions results in a system of n nonlinear algebraic
equations. This is not an easy problem, especially when n is large. In fact, it may be
difficult even to determine whether these equations have a solution. In view of these
difficulties, we present an alternative approach now. We will show that if the pair
(A, b) is in controller canonical form, to be defined next, K can be easily determined.

The pair (A, b) is said to be in controller canonical form if A and b are as given
below:

A =



−a1 −a2 · · · −an−2 −an−1 −an

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


, b =



1
0
...
0
0
0


(14.6)
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It can be shown that when A is in this special form, its characteristic polynomial is
given by (see Problem 14.1)

|zI −A| = zn + a1z
n−1 + · · ·+ an (14.7)

Note that this characteristic polynomial can be written down, simply by observation.
The utility of this canonical form is that with K as in Eq. 14.3, it is possible to
determine the characteristic polynomial of A − bK, also by observation. By direct
calculation, we obtain

A− bK

=



−a1 −K1 −a2 −K2 · · · −an−2 −Kn−2 −an−1 −Kn−1 −an −Kn

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


A − bK is also in the same form as A and hence the closed loop characteristic
polynomial can be written by observation. Using Eq. 14.7, we obtain

|zI − (A− bK)| = zn + (a1 + K1)zn−1 + · · ·+ (an−1 +Kn−1)z + (an +Kn)

Equating the coefficients of powers of z in the above equation and that in Eq. 14.5,
we obtain the components of the control vector,

K1 = α1 − a1, . . . ,Kn = αn − an (14.8)

Thus, we see that the difficult problem of solving a system of n algebraic equations
has been greatly simplified by the introduction of the concept of canonical form.

14.1.1 Ackermann’s Formula

In this section, we will derive a closed form expression for the control law, given
by Eq. 14.8. This will be useful also in the general case of the system not being in
controller canonical form. Suppose that for now, A and b are in controller canonical
form. Then the characteristic equation of A is given by Eq. 14.7. As per the Cayley–
Hamilton theorem [55], a matrix satisfies its own characteristic equation:

An + a1A
n−1 + · · ·+ an−1A+ an = 0 (14.9)

Replacing z by A in Eq. 14.5, we obtain

αc(A) = An + α1A
n−1 + · · ·+ αn−1A+ αnI (14.10)

Solving for An from Eq. 14.9 and substituting in the above equation, we obtain

αc(A) = (α1 − a1)An−1 + · · ·+ (αn−1 − an−1)A+ (αn − an)I
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We will now explore whether we can obtain expressions for powers of A. Note that
the last row of A, given in Eq. 14.6, is the transpose of the (n−1)th unit vector. That
is,

eT
nA = eT

n−1

where ei is the ith unit vector. Continuing in this fashion, we obtain

eT
nA

2 = (eT
nA)A = eT

n−1A = eT
n−2

...

eT
nA

n−1 = eT
1

Although we want expressions for powers of A, we have obtained en times powers
of A. In view of this, we premultiply Eq. 14.10 by eT

n , and use the above expressions
to obtain

eT
nαc(A) = (α1 − a1)eT

1 + · · ·+ (αn−1 − an−1)eT
n−1 + (αn − an)eT

n

Using the fact that ei is the ith unit vector and that αi − ai = Ki from Eq. 14.8,
we see that the right-hand side is nothing but K. Thus the pole placing controller is
given by

K = eT
nαc(A) = last row of αc(A) (14.11)

where αc(z) is the desired characteristic polynomial, given by Eq. 14.5, for the pole
placement problem.

We have seen that we can obtain an explicit expression for K when the system is
in controller canonical form. We take up the general case in the next section.

14.1.2 Control Law when System is not in Canonical Form

The next natural question that we have to answer is what happens if A and b are not
in controller canonical form? We will address this question in this section.

We will first show that the characteristic polynomial is not changed by a similarity
transformation. Let the state x be given as

x = Mx (14.12)

where M is nonsingular and constant. We say that x and x are related by a similarity
transformation. We will shortly see that we don’t need to know the value of M , as it
will be eliminated during the course of these calculations. Substituting in Eq. 14.1,
we obtain

Mx(k + 1) = AMx(k) + bu(k)

x(k + 1) = M−1AMx(k) +M−1bu(k)

Defining new variables

A
�
= M−1AM, b

�
= M−1b (14.13)
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the transformed state space equation becomes

x(k + 1) = Ax(k) + bu(k) (14.14)

Now we consider using a state feedback controller of the form

u(k) = −Kx(k) + v(k) (14.15)

using the transformed variable x. To emphasize the fact that we are working with
transformed variables, we have a line over K as well. Using Eq. 14.12, this becomes

u(k) = −KM−1x(k) + v(k)

Comparing this with Eq. 14.3, we obtain

K = KM−1 (14.16)

Substituting the expression for the control law from Eq. 14.15 into Eq. 14.14, we
obtain

x(k + 1) = Ax(k)− bKx+ bv(k) = (A− bK)x(k) + bv(k)

The characteristic polynomial of the closed loop, in the transformed coordinates, is

φ(z) = |zI − (A− bK)|

Substituting for A, b and K from Eq. 14.13 and Eq. 14.16, we obtain

φ(z) =
∣∣zM−1M − (

M−1AM −M−1bKM
)∣∣

= det
{
M−1 [zI − (A− bK)]M

}
Using the fact that the determinant of the product of square matrices is the product
of the determinant of the corresponding matrices, we obtain

φ(z) = |zI − (A− bK)|

which is nothing but the characteristic polynomial in the original coordinates. Thus,
it is clear that the similarity transformation does not change the characteristic
polynomial of the closed loop system. The utility of the transformation matrix M
is that (A, b) can be chosen to be in controller canonical form, provided the matrix

C =
[
b Ab · · · An−1b

]
(14.17)

is nonsingular, which we will show next. The matrix C is known as the controllability
matrix of the system.
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There exists a nonsingular matrix M such that

M−1AM =



−a1 −a2 · · · −an−2 −an−1 −an

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


, M−1b =



1
0
...
0
0
0


(14.18)

if and only if Rank C = n. We show this fact as follows. Let the jth column of M be
denoted as mj , i.e.,

M =
[
m1 m2 · · · mn

]
(14.19)

Note that the following equations

A
[
m1 · · · mn

]
=
[
m1 · · · mn

]


−a1 −a2 · · · −an−2 −an−1 −an

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...
0 0 · · · 1 0 0
0 0 · · · 0 1 0



b =
[
m1 · · · mn

]


1
0
...
0
0
0


are equivalent to Eq. 14.18 if M is nonsingular. Equating the columns of the first
equation, we obtain

Am1 = −a1m1 +m2

Am2 = −a2m1 +m3

...
Amn−1 = −an−1m1 +mn

(14.20)

The reader may find the matrix manipulation techniques described in Sec. 1.4 of [55]
useful at this point. On equating the columns of the b equation, we obtain

m1 = b (14.21)
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On substituting this equation in Eq. 14.20, we obtain

m2 = Am1 + a1m1 = Ab+ a1b

m3 = Am2 + a2m1 = A2b+ a1Ab + a2b

...

mn = An−1b+ a1A
n−2b+ · · ·+ an−1b

(14.22)

Stacking the expressions for mj from Eq. 14.21 and Eq. 14.22 side by side, we obtain

[
m1 m2 · · · mn

]
=
[
b Ab · · · An−1b

]


1 a1 a2 · · · an−1

1 a1 · · · an−2

1 · · · an−3

. . .
1


which we can write as

M = CU (14.23)

where M and C are given by Eq. 14.17 and Eq. 14.19, respectively. As U is an upper
triangular matrix with ones on the diagonal, it is nonsingular. It follows that M is
nonsingular if and only if C is nonsingular.

The control law design involves the following steps. Transform the matrices to
arrive at the controller canonical form. Derive the control law K, in the transformed
coordinate system, using Ackermann’s formula, Eq. 14.11. Calculate the control law
in the original coordinate system, using Eq. 14.16.

This procedure involves a lot of calculations. We will now come up with a simplified
approach to address these issues. First, we will arrive at an expression for M . Using
Eq. 14.13, we obtain

Ab = M−1Ab

A
2
b = M−1A2b

...

A
n−1

b = M−1An−1b

(14.24)

We now define the controllability matrix in the transformed coordinate system:

C =
[
b Ab · · · A

n−1
b
]

(14.25)

Substituting for b from Eq. 14.13 and A
j
b from Eq. 14.24, we obtain

C = M−1
[
b Ab · · · An−1b

]
= M−1C (14.26)

Therefore, C has full rank, if and only if C is of full rank.
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We are now ready to arrive at an explicit expression forK that obviates the need to
follow the three step procedure outlined above. Because the transformed system is in
controller canonical form, the control law given by Eq. 14.11 becomes K = eT

nαc(A).
Using Eq. 14.16 in this equation, the controller in the original coordinates becomes
K = eT

nαc(A)M−1. By direct calculation, it is easy to verify the relation αc(A) =
M−1αc(A)M , using Eq. 14.13. With this, we obtain K = eT

nM
−1αc(A). Substituting

for M−1 from Eq. 14.26, this becomes K = eT
nCC−1αc(A). From Problem 14.2, eT

nC =
eT

n , because C refers to the transformed coordinate system. Using this, we finally
obtain

K = eT
nC−1αc(A) (14.27)

This is the explicit formula for computing the control law in the original coordinate
system. We now illustrate these ideas with an example.

Example 14.3 Using the controller formulation derived above, move the poles
of the system presented in Example 14.2 to 0.25± 0.6614j.

Let us begin the calculations with the controllability matrix:

C =
[
b Ab

]
=
[
0 2
1 3

]
The rank of this matrix is 2 and hence it is invertible. As a result, we can proceed
to determine the pole placement controller:

C−1 = −1
2

[
3 −2
−1 0

]
αc = (z − (0.25 + j0.6614))(z − (0.25− j0.6614)) = z2 − 0.5z + 0.5

We next evaluate αc(A) by substituting A in place of z:

αc(A) =
[
1 2
0 3

] [
1 2
0 3

]
− 0.5

[
1 2
0 3

]
+ 0.5

[
1 0
0 1

]
=
[
1 8
0 9

]
−
[
0.5 1
0 1.5

]
+
[
0.5 0
0 0.5

]
=
[
1 7
0 8

]
K = eT

nC−1αc(A)

= −1
2
[
0 1

] [ 3 −2
−1 0

] [
1 7
0 8

]
= −1

2
[−1 0

] [1 7
0 8

]
=

1
2
[
1 7

]
=
[
0.5 3.5

]
This result is in agreement with the K value used in Example 14.2.

Although Eq. 14.27 uses the inverse of C−1, one does not calculate it in large
problems. Instead, let eT

nC−1 = w. By solving Cw = eT
n , w is determined. On

substituting for eT
nC−1 in Eq. 14.27, one gets K = wαc(A), from which K can be

determined.
We have seen that to achieve arbitrary control objectives, the controllability matrix

C has to be nonsingular. We formalize this important concept in the next section.
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14.1.3 Controllability

The system given by Eq. 14.1 is said to be controllable if it is possible to find an input
sequence {u(m)} that moves the system from an arbitrary initial state x(0) = x0 to
an arbitrary final state x(j) = x1 for some finite j. We have shown in the previous
section that this is possible if the controllability matrix C is nonsingular.

The next question we would like to ask is whether there is a minimum number
of control moves that may have to be applied before we succeed in our objective of
reaching a desired state. Consider the problem of x1 being the origin, i.e., we would
like to drive the system to the origin in a finite number of moves. Let us start with
the control law, given by Eq. 14.4:

x(k + 1) = (A− bK)x(k) (14.28)

where we have omitted v and x0 for convenience. With the new variable Ac given by
Ac = A− bK, Eq. 14.28 becomes

x(k + 1) = Acx(k) (14.29)

which, when solved recursively, becomes

x(k) = Ak
cx(0) (14.30)

Note that we wish to move the system to the origin as fast as possible. The fastest way
to do this is by placing all the closed loop poles at the origin. As all the eigenvalues
are zero, the characteristic equation of Ac is

λn = 0 (14.31)

Using the Cayley–Hamilton theorem, we obtain An
c = 0. As we can multiply both

sides by Ac without changing the relation, we obtain

Ak
c = 0, k ≥ n (14.32)

As a result, from Eq. 14.30

x(k) = 0, k ≥ n (14.33)

irrespective of the starting value x(0). This control law is known as the dead-beat
control law, compare with the definition in Sec. 9.1. Assuming that the plant response
is not oscillatory in between sampling instants, the settling time of dead-beat control
is nTs.

Now we have an answer to the previous question: how small can j be? From the
above discussion, we know that in n steps, we can guarantee that the state can be
taken to any desired position.

We now present an example to control the inverted pendulum.

Example 14.4 Stabilize the inverted pendulum modelled by Eq. 2.19 on
page 12 through the pole placement technique.
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Zero Order
Hold

x’ = Ax+Bu
 y = Cx+Du

State Space Scope

1

Gain1

K*u
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Figure 14.1: Simulink model to simulate inverted pendulum. Code is available at
HOME/ss/matlab/pend ss c.mdl, see Footnote 1 on page 516.

As the only objective is to stabilize the system, we are free to choose the
parameters. Let us design a controller to satisfy the following: Ts = 0.01 s, rise
time = 0.05 s, ε = 0.1. Using the approach of the desired characteristic polynomial
developed in Sec. 7.7, we arrive at

N = 0.05/Ts = 5

ω =
π

2N
r = εω/π

The above approach places only two poles. As we have four poles, we select the
other two to be placed at 0.9r.

The Matlab program pend model.m, given in M 2.1, shows how the model of
the inverted pendulum is arrived at. Execution of the program pend.m, given in
M 14.1, in sequence, designs the controller. Fig. 14.1 shows the Simulink block
diagram used to simulate the system. Fig. 14.2 shows the response of the system
for the initial condition 0, 0.1, 0, 0.

To implement the controller in the above example, all four states are required. In
practice, however, only the first two states are measured in such systems. These are
the carriage position x1 and the angle of the pendulum x2, see Sec. 2.2.3. Calculation
of x3 and x4 through approximate discretization (see Sec. 2.5.3) gives acceptable
performance. We present more sophisticated methods of estimating the unmeasured
states in the next section.

14.2 Estimators

In the previous section, we have designed a state feedback controller, assuming that all
states are measured. We also know, however, that not all states can be measured, see
Sec. 2.4.3 for a detailed discussion on this topic. Does this mean that the state feedback
controllers cannot be implemented? The answer is that we can obtain a reasonably
equivalent state feedback controller through estimated state measurements.

A state estimator, or simply an estimator, is a mathematical construct that helps
estimate the states of a system. It can also be used to obtain smooth estimates of
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Figure 14.2: Stabilization of inverted pendulum. For initial conditions (0, 0.1, 0, 0),
system reaches zero state.

measurements that are corrupted by noise. In this section, we will consider estimators
that work with deterministic systems. These are also known as Luenberger observers.
Nevertheless, we will refer to them as estimators only, and follow the approach of
[17] in this section. We will obtain two types of estimates for the state measurement,
x(k): 1. Prediction estimate x(k) that uses measurements up to y(k − 1). 2. Current
estimate x̂(k) that uses measurements y(k) up to and including the kth instant.

14.2.1 Prediction Estimators

As mentioned above, prediction estimators make use of measurements taken up to
the sampling instant k − 1 to estimate the value of x(k). Given

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

(14.34)

where y(k) is a scalar, the obvious choice for the estimator is to explore whether the
plant model itself can be used for estimation. Thus, in the first instance, we explore
whether the following model can be used as an estimator of the states:

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

(14.35)

where A, B and u(k) are known. Note that if x(0) and x(0) are the same, then x(k)
will be the same as x(k) for all m > 0. Thus, knowing x(0) is equivalent to measuring
all the states. Because in this section we assume that the states are not measured, we
assume that we do not know x(0). Thus, there is a difference in the values of x and
its estimate x. We define this as the error in estimation, x̃, as

x̃ = x− x (14.36)
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Subtracting Eq. 14.35 from Eq. 14.34, we obtain

x̃(k + 1) = Ax̃(k) (14.37)

The solution to this equation is given by (see Eq. 3.46 on page 56)

x̃(k) = Akx̃(0) (14.38)

If we assume that we can diagonalize A, as in Sec. A.1.2, we obtain A = SΛS−1,
Ak = SΛkS−1, where Λ is a diagonal matrix, consisting of the eigenvalues of A.
Substituting this in Eq. 14.37, we arrive at the following solution to Eq. 14.37:

x̃(k) = SΛkS−1x̃(0) (14.39)

Recall that we have x(0) �= 0. We would like to know whether x̃(k) goes to zero, at
least, asymptotically. We see from the above equation that this will happen if and
only if all eigenvalues of A are inside the unit circle. If even one eigenvalue is on or
outside the unit circle, the error will not go to zero. In other words, if x̃(0) �= 0, the
error will never decrease to zero if the system is unstable or marginally stable. For
an asymptotically stable system, an initial error will decrease only because the plant
and the estimate will both approach zero.

The main problem with the estimator suggested above is that it is an open loop
system, see Eq. 14.38. We now explore what happens if we correct the estimate with
the difference between the estimated output and the measured output. This leads us
to explore the following:

x(k + 1) = Ax(k) +Bu(k) + Lp[y(k)− Cx(k)] (14.40)

where Lp is the feedback gain matrix of n× 1. We will now verify whether this is an
acceptable estimator. Subtracting Eq. 14.34 from the above, we obtain

x̃(k + 1) = Ax̃(k) + Lp[y(k)− Cx(k)]

From the definition of y and x̃, given in Eq. 14.34 and Eq. 14.36, respectively, we
obtain

x̃(k + 1) = (A− LpC)x̃(k) (14.41)

If this system is asymptotically stable, x̃(k) → 0 as m → ∞, thus x → x. We will
shortly see that it is generally possible to choose Lp so as to make the above error
dynamics well behaved: not only will the system be asymptotically stable, but it
will also respond with an acceptable speed. Thus, this estimator is better than the
previous one.

We will refer to this as the prediction estimator because the measurement at time
m results in an estimate of the state at time m+ 1, i.e., the estimate is predicted one
cycle in the future.

We will now explore the options for choosing the dynamics of the estimator,
decided by the eigenvalues of A−Lp, see Eq. 14.41. In other words, we would like to
choose Lp in such a way that the roots of the estimator characteristic polynomial

αe(z) = (z − β1)(z − β2) · · · (z − βn) (14.42)
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are in desired locations. Here, the β are the desired estimator root locations and
represent how fast the estimator state converges towards the plant state. We would
want this to be equal to |zI − A + LpC|. Equality results if the coefficient of each
power of z is the same in both expressions. Thus, once again, we find ourselves
in a situation of solving a system of n equations, where n is the dimension of
the state vector. As in the pole placement problem, we use a different strategy to
determine Lp.

Note that we want the eigenvalues of (A−LpC) to be in some desired locations. We
know how to assign the eigenvalues of (A−BK) by suitably choosingK. The difference
between these two problems is that the positions of Lp and K are interchanged. But
this problem is easily solved, because the eigenvalues of a square matrix and its
transpose are identical. If we take a transpose of (A−LpC), we obtain (AT −CTLT

p )
which is in the same form as (A−BK), with the unknown variables coming exactly
at the same place. Making appropriate changes in Eq. 14.27, we obtain

LT
p = eT

n

[
CT ATCT · · · AT n−1

CT
]−1

αe(AT )

Taking the transpose of both sides, we arrive at

Lp = αe(A)


C
CA

...
CAn−1


−1

en (14.43)

where we have used the fact (P−1)T = (PT )−1 and the transpose rule for the powers
of transposed matrices. For example,

(
AT 2)T

= (ATAT )T = AA = A2. Next, we will
illustrate these ideas with an example.

Example 14.5 Suppose that in the system presented in Example 14.2 and in
Example 14.3, only the first state is measured. Determine an estimator with poles
at 0.1± 0.1j.

We begin with the calculation of the observability matrix

O =
[
c
cA

]
=
[
1 0
1 2

]
As this matrix is invertible, we can proceed to determine the estimator

O−1 =
1
2

[
2 0
−1 1

]
αe(z) = (z − (0.1 + j0.1))(z − (0.1− j0.1)) = z2 − 0.2z + 0.02

We next evaluate αe(A) by substituting A in place of z:

αe(A) =
[
1 2
0 3

] [
1 2
0 3

]
− 0.2

[
1 2
0 3

]
+ 0.02

[
1 0
0 1

]
=
[
0.82 7.6

0 8.42

]
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Using the expression given in Eq. 14.43, we calculate Lp:

Lp =
[

3.8
4.21

]
The estimator is given by Eq. 14.40.

The concept of the matrix O being nonsingular is so important that we formalize
this idea in the next section.

14.2.2 Observability

We have seen in the previous section that if the matrix O is invertible, we can make
the estimate of the states converge to the actual value in a finite number of steps.
We will use this idea to formally define the concept of observability. Suppose that
not all states of a system are measured. The system is said to be observable if it is
possible to reconstruct the states in an arbitrarily finite number of sampling periods.
We formalize observability as follows:

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

is said to be observable if and only if the observability matrix

O =


C
CA

...
CAn−1


is invertible.

14.2.3 Current Estimators

The prediction estimator uses the measurements up to the previous time instant
to provide an estimate of the state at the current instant. This procedure should
be followed only if it takes one sample time to carry out the calculations involved in
estimation. Modern devices, however, can complete these computations in a negligibly
short time. In view of this, we explore the possibility of using the current measurement
as well to obtain an estimate of the state. Following the approach of [17], we define
the current estimate, denoted by x̂(k), as an update of the prediction estimate, x(k),
as follows:

x̂(k) = x(k) + Lc(y(k)− Cx(k)) (14.44)

Note that we update the prediction estimate x(k) by a constant (Lc) multiplied
by the latest error in output prediction. Shortly, we will present a methodology to
compute Lc. We propose that the prediction estimate x(k) be obtained from the state
equation of the plant, as stated next:

x(k) = Ax̂(k − 1) +Bu(k − 1) (14.45)
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Thus, the current estimate x̂(k) is obtained in two stages, starting from the previous
time instant, namely x̂(k − 1). Substituting Eq. 14.44 into Eq. 14.45, we obtain

x(k + 1) = A[x(k) + Lc(y(k)− Cx(k))] +Bu(k)

Using the measurement equation y(k) = Cx(k), we obtain

x(k + 1) = Ax(k) +Bu(k) +ALcC(x(k) − x(k)) (14.46)

Subtracting the state equation x(k+1) = Ax(k)+Bu(k) from the above and defining

x̃(k) = x(k)− x(k) (14.47)

as earlier, we obtain

x̃(k + 1) = (A−ALcC)x̃(k) (14.48)

Comparing this with Eq. 14.41, we find that

Lp = ALc (14.49)

Because it is equal to eFTs in sampled data systems, A is always invertible. We obtain

Lc = A−1Lp (14.50)

As mentioned earlier, the current estimate of x is obtained in two stages, using
Eq. 14.44–14.45. In order to start the calculations, we need x̂(0), which has to be
guessed as the initial state also is not available, as discussed in Sec. 14.2.1.

14.3 Regulator Design – Combined Control Law

and Estimator

In this section, we will combine the state feedback controller and the state estimator
to arrive at the overall controller design. First we state the separation principle. Using
this, we design the controller and the estimator, separately. We next combine them
and produce the overall controller, which we will refer to as the compensator. We
conclude this section with an example.

First we state the important result known as the separation principle. The state
feedback controller can work only if all the states are available. Thus, while designing
the controller, we assume that the states are estimated by an estimator. Next, we
look at the assumptions involved in the use of the estimator. It is possible to estimate
the states only if the states are bounded. Thus, we assume the stabilizing influence of
the controller to keep the states bounded. Thus, the controller assumes the existence
of the estimator and vice versa. This separation principle allows us to design the
controller and the estimator separately, obviating the need to design both of them
simultaneously. Without this result, state feedback controllers would have become a
lot more difficult to design.
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 Plant

EstimatorControl law

Sensor

x
−K

x(k + 1) = Ax(k) + Bu(k)

x(k) y(k)

C

+Lp[y(k)− Cx(k)]

u(k)

Figure 14.3: Block diagram of the state feedback controller and estimator combination.
The blocks within in the dashed lines constitute the compensator, which is similar to
the conventional output feedback controller.

The closed loop control configuration is as given in Fig. 14.3. The plant is described
by A and b, but not all the states are measured; only the output y is available. We
assume that a prediction estimator is used to estimate x. The input u that goes into
the plant is sent also to the estimator. The plant output becomes another input to the
estimator. Using these, the prediction estimator gives an estimate of the state vector,
denoted by x. The control law works on the basis of x and produces the control effort
u. Fig. 14.3 shows a schematic of this sequence.

In this figure, we have shown the blocks that implement the controller and the
estimator inside dashed lines. As mentioned above, we will refer to this combined
block as the compensator. Plant output y is an input to and control effort u is the
output from the compensator, which, from the input–output viewpoint, is similar to
the traditional output feedback controller. We now proceed to derive the transfer
function of this compensator.

Recall that in Eq. 14.3 we have proposed the use of the control law in the form
u = −Kx+ v. Taking v = 0 and using x in place of x, it becomes

u(k) = −Kx(k) (14.51)

Closing the feedback loop is equivalent to substituting for u in the state space equation

x(k + 1) = Ax(k) +Bu(k) (14.52)

Substituting for u as −Kx, we obtain

x(k + 1) = Ax(k) −BKx(k) (14.53)

Recall that we have defined the error between the estimated state and the actual state
as x̃:

x̃ = x− x (14.54)

Substituting the expression for x from this equation into Eq. 14.53, we obtain

x(k + 1) = Ax(k) −BK[x(k) + x̃(k)] (14.55)
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We have derived an expression for error dynamics in Eq. 14.41, which is reproduced
here for convenience:

x̃(k + 1) = (A− LpC)x̃(k) (14.56)

Stacking Eq. 14.55 below Eq. 14.56, we obtain[
x̃(k + 1)
x(k + 1)

]
=
[
A− LpC 0
−BK A−BK

] [
x̃(k)
x(k)

]
(14.57)

Thus, the system dynamics are now represented by 2n difference equations, where n
is the dimension of the state vector. This is clear from Fig. 14.3 as well. If we measure
all the states, however, we need to use only n difference equations to describe the
dynamics. Thus, one of the tradeoffs in not measuring the states of the system is that
we have to deal with a larger dimensional system.

Next, we will verify that the poles of this augmented system are indeed at the
locations we want them. The characteristic equation of Eq. 14.57 is∣∣∣∣zI −A+ LpC 0

BK zI −A+BK

∣∣∣∣ = 0

which, because of the zero matrix in the upper right, can be written as

|zI −A+ LpC||zI −A+BK| = 0 (14.58)

In Eq. 14.42 and in Eq. 14.4, we have defined these as αe(z) and αc(z), respectively.
We obtain

αe(z)αc(z) = 0 (14.59)

This shows that the poles of the 2n-dimensional dynamical equations that describe
the feedback system are at precisely the locations where we have placed our state
feedback controller and the estimator poles.

We now proceed to determine the transfer function of the compensator, given
within the dashed lines in Fig. 14.3. The states of the estimator are described by

x(k + 1) = Ax(k) +Bu(k) + Lp[y(k)− Cx(k)]

Substituting for the control law, from Eq. 14.51, we obtain

x(k + 1) = Ax(k)−BKx(k) + Lp[y(k)− Cx(k)]

Simplifying this, we obtain the state equation for the controller as

x(k + 1) = (A−BK − LpC)x(k) + Lpy(k) (14.60)

The input to this compensator is y and the output from it is the control effort, u.
The output equation is given by Eq. 14.51, reproduced here:

u(k) = −Kx(k)
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The transfer function of the compensator is given by

Gc(z) =
U(z)
Y (z)

= −K[zI −A+BK + LpC]−1Lp (14.61)

Next, we will discuss the stability of this compensator. The poles of the
compensator satisfy the equation

|zI −A+BK + LpC| = 0 (14.62)

Recall that we have designed the state feedback controller such that the roots of
|zI −A+BK| and |zI −A+LpC| are at the required locations. But now, we have a
different characteristic polynomial altogether: |zI − A + BK + LpC|. Where will its
roots lie? The answer is that there is no guarantee that these will lie inside the unit
circle, let alone the locations chosen for controller and estimator poles. In other words,
the compensator, by itself, could be unstable. This is another price we pay for not
measuring all the states. Note that the original state feedback controller is of constant
gain, K, which is stable. It should be emphasized that although the compensator,
by itself, could be unstable, the closed loop system is stable, as indicated by its
characteristic polynomial, given in Eq. 14.59.

We will now revert to the question of where we should choose the poles of the
regulator and the estimator. When measurement noise is not an issue, it is convenient
to pick the control roots to satisfy the performance specifications and actuator
limitations, and then to pick the estimator roots somewhat faster, say, by a factor of 2
to 4, indicated by the rise time, so that the total response is dominated by the response
due to the slower control poles. We will illustrate these ideas with an example.

Example 14.6 Determine the compensator for the system presented in Exam-
ple 14.5. Use the control law calculated in Example 14.3.

A =
[
1 2
0 3

]
, b =

[
0
1

]
, c =

[
1
0

]
K =

[
0.5 3.5

]
, Lp =

[
3.8
4.21

]
Substituting in the controller expression

Gc = −K[zI − (A− bK − Lpc)]−1Lp

A− bK − Lpc =
[ −2.8 2
−4.71 −0.5

]
[zI − (A− bK − Lpc)]−1 =

[
z + 2.8 −2

4.71 z + 0.5

]−1

= − 1
z2 + 3.3z + 10.82

[
z + 0.5 2
−4.71 z + 2.8

]
Gc = − 16.635z − 16.225

z2 + 3.3z + 10.82
What we have derived above is the transfer function of the compensator. Note
that its poles are outside the unit circle. M 14.2 shows some of the steps in the
calculation of the above.
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14.4 Linear Quadratic Regulator

One of the difficulties in designing the pole placement controllers is the selection of
closed loop pole locations, especially in a large dimensional state space system. An
alternative approach is to use an optimization based strategy to design the controller.
Minimization of the square of an error for a linear system results in a linear quadratic
regulator, abbreviated as LQR.

The LQR design approach involves the minimization of a weighted sum of
quadratic functions of the state and the control effort. Although it can handle tracking
problems, the LQR approach is generally applied mainly for disturbance rejection. In
view of this, the final objective of an LQR is to take the state vector to zero state.
Because the states are usually deviation variables with respect to a steady state,
driving the state to zero is equivalent to guiding the system to its steady state.

If we minimize a quadratic function of only the states, the control effort could
become unbounded. For example, we could come up with control strategies, such
as, input 1 million watts for 1 picosecond to raise the temperature of a beaker by a
small amount. Because there is no restriction on the control effort, the optimization
of states alone would result in such comic solutions. To overcome these difficulties,
we minimize a quadratic function of the control effort as well. We will discuss this
approach in detail in the next section.

14.4.1 Formulation of Optimal Control Problem

In this section, we formulate the optimal control problem. There are many approaches
to this problem. The most popular ones use dynamic programming [2] and the
Lagrange multiplier method [17]. We will make use of the latter in this section. Given
a discrete time plant

x(k + 1) = Ax(k) +Bu(k) (14.63)
x(0) = x0 (14.64)

we wish to find a control law u(k) so that a cost function

J =
1
2

N∑
k=0

[
xT (k)Q1x(k) + uT (k)Q2u(k)

]
(14.65)

is minimized. Q1 and Q2 are symmetric weighting matrices to be selected by the
designer. As some of the states may be allowed to be zero, we obtain the condition

xTQ1x ≥ 0, ∀x (14.66)

We obtain a different condition for Q2 as all control efforts have a cost associated
with them:

uTQ2u > 0, ∀u �= 0 (14.67)

We can restate the problem as: minimize J given by Eq. 14.65, subject to

−x(k + 1) +Ax(k) +Bu(k) = 0, k = 0, 1, . . . , N (14.68)
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which is the same as Eq. 14.63. We can solve this problem using the Lagrange
multiplier method. There will be one Lagrange multiplier vector, denoted by λ(k+1),
for every m. We arrive at the new optimal index:

J ′ =
1
2

N∑
k=0

[
xT (k)Q1x(k) + uT (k)Q2u(k)

+ λT (k + 1)[−x(k + 1) +Ax(k) +Bu(k)]
]

(14.69)

As J has to reach a minimum with respect to x(k), u(k) and λ(k), we obtain

∂J ′

∂u(k)
= uT (k)Q2 + λT (k + 1)B = 0 (control equation)

(14.70)
∂J ′

∂λ(k + 1)
= −x(k + 1) +Ax(k) +Bu(k) = 0 (state equation) (14.71)

∂J ′

∂x(k)
= xT (k)Q1 − λT (k) + λT (k + 1)A = 0 (adjoint equation)

(14.72)

Notice that although x(0) is given, λ(0) is not. As a result, it is not possible to
recursively solve the above equations forward. This forces us to look for alternative
means. Notice that we require

u(N) = 0 (14.73)

because, otherwise, optimal index J will not be zero in Eq. 14.65, as u(N) affects only
x(N + 1) but not x(N), see Eq. 14.63. If u(N) were to affect x(N), perhaps there
could be a way to cancel a nonzero u(N) with an appropriate x(N). Thus to make
J small, u(N) has to be zero. The following value for λ satisfies Eq. 14.70 when m
takes the value of N :

λ(N + 1) = 0 (14.74)

Substituting this in the adjoint equation, Eq. 14.72, we obtain the condition

λ(N) = Q1x(N) (14.75)

This gives a condition for λ, except that it is available only at m = N , but not at
m = 0. This results in a two point boundary value problem, the solution of which is
presented next.

14.4.2 Solution to Optimal Control Problem

In the previous section, we posed the optimal control problem as a two point boundary
value problem. We present a solution to this in this section. We conclude this section
by stating the steady state version of this solution.

Motivated by Eq. 14.75, where λ appears as a linear function of x at N , we explore
the possibility of linearity at all sampling instants [6]:

λ(k) = S(k)x(k) (14.76)
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so that the control equation, Eq. 14.70, becomes

Q2u(k) +BTλ(k + 1) = 0 (14.77)

Substituting for λ from Eq. 14.76, we obtain

Q2u(k) = −BTS(k + 1)x(k + 1)

Substituting for x(k + 1) from Eq. 14.63 and simplifying, we obtain the following
equations:

Q2u(k) = −BTS(k + 1)(Ax(k) +Bu(k))

[Q2 +BTS(k + 1)B]u(k) = −BTS(k + 1)Ax(k)

Thus, we arrive at the following expression for the control law:

u(k) = −[Q2 +BTS(k + 1)B]−1BTS(k + 1)Ax(k) (14.78)

Defining

R = Q2 +BTS(k + 1)B (14.79)

the above equation becomes

u(k) = −R−1BTS(k + 1)Ax(k) (14.80)

The adjoint equation, Eq. 14.72, can be rewritten as

λ(k) = ATλ(k + 1) +Q1x(k) (14.81)

which, on substitution of λ from Eq. 14.76 and simplification, becomes

S(k)x(k) = ATS(k + 1)x(k + 1) +Q1x(k)

Substituting for x(k + 1) from the state equation, we obtain

S(k)x(k) = ATS(k + 1)[Ax(k) +Bu(k)] +Q1x(k)

which, on substitution of u from Eq. 14.80, becomes

S(k)x(k) = ATS(k + 1)[Ax(k) −BR−1BTS(k + 1)Ax(k)] +Q1x(k)

Collecting terms to one side, we obtain[
S(k)−ATS(k + 1)A+ATS(k + 1)BR−1BTS(k + 1)A−Q1

]
x(k) = 0

As this must hold for all x(k), we obtain

S(k)−ATS(k + 1)A+ATS(k + 1)BR−1BTS(k + 1)A−Q1 = 0
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This can be rewritten as

S(k) = AT [S(k + 1)− S(k + 1)BR−1BTS(k + 1)]A+Q1 (14.82)

This is known as the discrete time Riccati equation. Defining

M(k + 1) = [S(k + 1)− S(k + 1)BR−1BTS(k + 1)] (14.83)

the above equation becomes

S(k) = ATM(k + 1)A+Q1 (14.84)

Using the expression for R from Eq. 14.79, the expression for M given in Eq. 14.83
becomes

M(k + 1) = [S(k + 1)− S(k + 1)B[Q2 +BTS(k + 1)B]−1BTS(k + 1)] (14.85)

From Eq. 14.75 and 14.76, we obtain

S(N) = Q1 (14.86)

We can calculate the controller backward in time:

u(k) = −K(k)x(k) (14.87)

where from Eq. 14.78, we obtain the following relation for K(k)

K(k) = −[Q2 +BTS(k + 1)B]−1BTS(k + 1)A (14.88)

We now summarize the control design procedure.

1: S(N) = Q1, K(N) = 0, m = N
2: repeat
3: M(k)← [S(k)− S(k)B[Q2 +BTS(k)B]−1BTS(k)]
4: K(k − 1)← −[Q2 +BTS(k)B]−1BTS(k)A
5: Store K(k − 1)
6: S(k − 1)← ATM(k)A+Q1

7: m← k − 1
8: until m = 1

This algorithm calculates controller gains K(k) for all m and stores them once
and for all. Using these previously calculated control moves, one recursively calculates
forward the state vector starting from Eq. 14.64, 14.63 and 14.87.

The optimal value of the objective function can be calculated easily. First
substitute in Eq. 14.69 the expression for λT (k + 1)A from the adjoint equation,
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Eq. 14.72, and for λT (k + 1)B from Eq. 14.70, to arrive at

J ′ =
1
2

N∑
k=0

[
xT (k)Q1x(k) + uT (k)Q2u(k)

− λT (k + 1)x(k + 1) + (λT (k)− xT (k)Q1)x(k)− uT (k)Q2u(k)
]

=
1
2

N∑
k=0

[λT (k)x(k)− λT (k + 1)x(k + 1)]

=
1
2
λT (0)x(0)− λT (N + 1)x(N + 1)

But as λ(N + 1) = 0 (see Eq. 14.74), we arrive at

J ′ = J =
1
2
λT (0)x(0) =

1
2
xT (0)S(0)x(0) (14.89)

This equation states that the best value for the optimization index to be minimized
is a quadratic function of the initial state vector.

14.4.3 Infinite Horizon Solution to LQR Design

The control law K presented in the last section is time varying. We will be interested
in a steady state solution, however. The reasons are that a constant solution is easier
to implement. Moreover, even in the time varying solution, the control law could be
constant during most of the time. When the objective function is a sum of an infinite
number of terms, known as the infinite time problem, the steady state solution is the
optimal solution.

Because we are interested in a steady state solution to the optimal control problem,
we look for a steady state solution to the Riccati equation, given in Eq. 14.82, and
reproduced here for convenience:

S(k) = AT [S(k + 1)− S(k + 1)BR−1BTS(k + 1)]A+Q1 (14.90)

Because we are interested in a steady state solution, let

S(k) = S(k + 1) = S∞ (14.91)

Substituting this in Eq. 14.90, we obtain

S∞ = AT [S∞ − S∞BR−1BTS∞]A+Q1 (14.92)

Although we can solve this by iteration, it is not an easy problem. But there is an
alternative, easier, approach to solve this equation. We will only state the solution
here. The interested reader can refer to [17] for details.

Construct the control Hamiltonian matrix, Hc, given by

Hc =
[
A+BQ−1

2 BTA−TQ1 −BQ−1
2 BTA−T

−A−TQ1 A−T

]
(14.93)
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Then, the steady state solution to the Riccati equation is given by

S∞ = ΛIX
−1
I (14.94)

where
[
XI ΛI

]T is the eigenvector of Hc corresponding to the stable eigenvalues.
The steady state control law is given by

u(k) = −K∞x(k) (14.95)

where

K∞ = (Q2 +BTS∞B)−1BTS∞A (14.96)

The performance index for the steady state control problem is

J∞ =
1
2
xT (0)S∞x(0) (14.97)

Notice that this control law K∞ can be calculated once and for all at the very
beginning.

14.5 Kalman Filter

In Sec. 14.2, we presented deterministic estimation techniques. In this section, we will
assume that the state and measurement equations are corrupted by noise. That is,
the model of the plant is now described by

x(k + 1) = Ax(k) +Bu(k) +B1w(k)
y(k) = Cx(k) + v(k)

(14.98)

where w(k) and v(k) denote noise sequences that affect the states and the measure-
ments, respectively. We will assume that w and v are zero mean white noise sequences,
satisfying the following:

E [w(k)] = 0
E [v(k)] = 0

E
[
w(j)w(k)T

]
= 0, if j �= k

E
[
v(j)v(k)T

]
= 0, if j �= k

(14.99)

Their covariances are assumed as follows:

E
[
w(k)w(k)T

]
= Rw

E
[
v(k)v(k)T

]
= Rv

(14.100)

Based on the reasoning given while explaining deterministic estimators, we look for a
current estimator of the following form (compare with Eq. 14.44–14.45):

x̂(k) = x(k) + L(y(k)− Cx(k))
x(k) = Ax̂(k − 1) +Bu(k − 1)

(14.101)
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Note that we have used L to denote the estimator gain, instead of Lc. This is because
we would like choose L so as to make x̂ optimal, in the sense that the error covariance,

Jx̃ = E
[
(x(k) − x̂(k))T (x(k)− x̂(k))

]
(14.102)

is minimized. The optimal estimator that satisfies these conditions is known as the
Kalman filter.

We will now state the procedure to compute the Kalman filter. We define the
covariance matrix P (k) as follows:

P (k) = E
[
(x(k) − x̂(k))(x(k) − x̂(k))T

]
(14.103)

First, we have to guess the value of x̂(0) and P (0) while designing the Kalman filter.
Next, we denote by M the propagated value of P , but before making use of the next
measurement, satisfying the following relation:

M(k + 1) = AP (k)AT +B1RwB
T
1 (14.104)

Note that we can calculate M(1) using this equation. Next, we calculate the prediction
estimate at the sampling instant m+ 1, as follows:

x(k + 1) = Ax̂(k) +Bu(k) (14.105)

Given x̂(0), we can calculate x(1) using this relation. Next, we update the error
covariance at the current instant:

P (k) = M(k)−M(k)CT
[
CM(k)CT +Rv

]−1
CM(k) (14.106)

Using this, we can calculate P (1). Finally, we determine the current estimator, the
measurement update, as follows:

x̂(k) = x(k) + P (k)CTR−1
v (y(k)− Cx(k)) (14.107)

Using this relation, we can calculate x̂(1). Note that we have used P (k)CTR−1
v in

place of L in Eq. 14.101, as these are equal. We have indicated how to update all
the values to the current time instant, given the values at the previous instant. Thus,
it is possible to march forward and calculate all the future values. This procedure is
summarized in Fig. 14.4.

As in the deterministic case, the steady state version of the Kalman filter is
popular. Just like the deterministic estimators presented in Sec. 14.2, the Kalman
filter also takes the plant input u(k) and the output y(k) to give an estimate of
x(k). In the former, because there is no noise, there is no question of filtering it. In
the stochastic case, however, the Kalman filter gives a filtered estimate of the state
vector.

We will end the discussion on the Kalman filter by presenting a simple example,
taken from [19].

Example 14.7 (Estimating a constant) Using a Kalman filter, obtain a
smooth estimate of a constant, whose measurement is corrupted by noise.
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x̂(n)Calculate
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v(n)

P (n)

x(n)

Figure 14.4: Kalman filter calculation at time instant n

This system can be represented by the following state space equations:

x(n+ 1) = x(n)
y(n) = x(n) + v(n)

We have A = 1, B = 0, C = 1, Rw = 0 in the notation of this section. We arrive
at the following equations:

x(n) = x̂(n− 1)
M(n+ 1) = P (n)
x(n+ 1) = x̂(n)

L(n) =
P (n)
Rv

x̂(n) = x(n) + L(n)(y(k)− Cx(n))

Execution of M 14.3 generates Fig. 14.5, in which the left hand diagram contains
the profiles of the response of the filter, the noisy measurement and the constant.
It can be seen that the estimate provided by the filter converges to the constant
value of 5, in the presence of a large noise. In the right hand diagram of Fig. 14.5,
it can be seen that the profile of E

[
(x̂(n)− x(n))2

]
converges to zero, confirming

the fact that the estimate is converging to the actual value of the state.

Recall from Sec. 14.3 the procedure for combining the state feedback controller and
the estimator to build the compensator. In a similar way, we can build a compensator
combining the LQR and the Kalman filter. This compensator is known as the linear
quadratic Gaussian (LQG) controller.
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Figure 14.5: Profiles of noisy measurement, filtered value and constant (left), and a
profile of error covariance P (n)

14.6 Matlab Code

Matlab Code 14.1 Pole placement controller for inverted pendulum, discussed in
Example 14.1 on page 490. M 2.1 should be executed before starting this code. This
code is available at HOME/ss/matlab/pend.m1

1 C = eye (4 ) ;
2 D = zeros (4 , 1 ) ;
3 Ts = 0 . 0 1 ;
4 G = ss (A,B,C,D) ;
5 H = c2d (G, Ts , ’ zoh ’ ) ;
6 [ a , b , c , d ] = ssdata (H) ;
7 r i s e = 5 ; e p s i l o n = 0 . 1 ;
8 N = r i s e /Ts ;
9 omega = pi /2/N;

10 r = e p s i l o n ˆ(omega/pi ) ;
11 r1 = r ; r2 = 0 .9∗ r ;
12 [ x1 , y1 ] = pol2cart (omega , r1 ) ;
13 [ x2 , y2 ] = pol2cart (omega , r2 ) ;
14 p1 = x1+j ∗y1 ;
15 p2 = x2+j ∗y2 ;
16 p3 = x1−j ∗y1 ;
17 p4 = x2−j ∗y2 ;
18 P = [ p1 ; p2 ; p3 ; p4 ] ;
19 K = pla ce ( a , b ,P)

Matlab Code 14.2 Compensator calculation for Example 14.6 on page 507. This
code is available at HOME/ss/matlab/ex comp.m

1 A = [ 1 2 ; 0 3 ] ; c = [ 1 0 ] ;

1HOME stands for http://www.moudgalya.org/dc/ – first see the software installation directions,
given in Appendix A.2.
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2 p = roots ( [ 1 −0.5 0 . 5 ] ) ;
3 b = [ 0 ; 1 ] ;
4 K = pla ce (A, b , p) ;
5

6 p1=0.1+0.1∗ j ; p2=0.1−0.1∗ j ;
7 phi = real (conv ( [ 1 −p1 ] , [ 1 −p2 ] ) ) ;
8 Obs = [ c ; c∗A ] ;
9 alphae = Aˆ2−0.2∗A+0.02∗eye (2 ) ;

10 Lp = alphae ∗ inv (Obs ) ∗ [ 0 ; 1 ] ;
11 Lp = pla ce ( [ 1 0 ; 2 3 ] , . . .
12 [ 1 ; 0 ] , [ 0 . 1 + 0 . 1∗ j 0 .1−0.1 j ] ) ;
13 Lp = Lp ’ ;
14

15 C = [ 1 0 0 .5 2 ; 0 1 −4.71 2 . 8 ] ;
16 dC = 1 ;
17 [HD,dHD] = polmul (K, 0 ,C,dC) ;
18 [HD,dHD] = polmul (HD,dHD, Lp , 0 ) ;

Matlab Code 14.3 Kalman filter example of estimating a constant, discussed in
Example 14.7. This code is available at HOME/ss/matlab/kalrun.m

1 x = 5 ; xhat = 2 ; P = 1 ; xvec = x ;
2 xhat vec = xhat ; Pvec = P; yvec = x ;
3 for i = 1 :200 ,
4 x l i n e = xhat ; M = P;
5 [ xhat ,P, y ] = ka l ex (x , x l ine ,M) ;
6 xvec = [ xvec ; x ] ;
7 xhat vec = [ xhat vec ; xhat ] ;
8 Pvec = [ Pvec ;P ] ; yvec = [ yvec ; y ] ;
9 end

10 n = 1 : 2 0 1 ;
11 plot ( Pvec ) ;
12 xlabel ( ’n ’ ) ;
13 pause
14 plot (n , xhat vec , n , yvec , n , xvec ) ;
15 xlabel ( ’n ’ ) ;

Matlab Code 14.4 Kalman filter example of estimating a constant. For a sample
call, see M 14.3. This code is available at HOME/ss/matlab/kal ex.m

1 function [ xhat ,P, y ] = ka l ex (x , x l ine ,M)
2 y = x + randn ;
3 Q = 0 ; R = 1 ;
4 xhat = x l i n e ;
5 P = M + Q;
6 K = P /( P +R) ;
7 P = (1−K) ∗P ;
8 xhat = xhat + K∗(y−xhat ) ;
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14.7 Problems

14.1. This problem addresses the calculation of the determinant of (zI −A) when A
is in controller canonical form. One of the ways of calculating the determinant
of the matrix

|zI −A| =



λ+ a1 a2 · · · an−2 an−1 an

−1 λ · · · 0 0 0
0 −1 · · · 0 0 0
...
0 0 · · · −1 λ 0
0 0 · · · 0 −1 λ


is given below.

(a) Divide the nth column by λ and add it to the (n− 1)th. The (n− 1)th will
then become (an−1 + an/λ, 0, . . . , 0, λ, 0). Note that the subdiagonal entry
is made zero by this process.

(b) Repeat this procedure, i.e., divide the (n − 1)th column by λ and add to
the (n−2)nd and so on. At the end of this procedure, the (−1) term in the
first column will be zeroed. Show that the matrix is upper triangular with
the diagonal vector being (λ + a1/λ+ a2/λ

2 + · · ·+ an/λ
n−1, λ, . . . , λ).

(c) Complete the arguments to show that the characteristic polynomial of the
A matrix of Eq. 14.6 is given by λn + a1λ

n−1 + · · ·+ an.

14.2. Verify that when (A,B) are in controller canonical form, (a) the controllability
matrix is upper triangular with ones on the diagonal and hence nonsingular, (b)
eT

nC = eT
n .

14.3. In Eq. 3.46 on page 56, let B be a vector and be denoted by b. Show that
Eq. 3.46 can be written as

x(n) −Anx(0) = C

u(n− 1)
...

u(0)


where C is the controllability matrix given by Eq. 14.17. Argue that one can find
the control effort {u(0), . . . , u(n− 1)} required to drive the system to any final
state x(n) starting from any starting state x(0) if and only if the controllability
matrix is nonsingular (equivalently, the system is controllable).

14.4. Place the closed loop poles of the system x(k + 1) = Ax(k) +Bu(k) with

A =
[
1 1
1 1

]
, B =

[
1
0

]
at 0 and 0.5 using a state feedback controller. Do this computation first by
direct matching and then using Ackermann’s formula.

14.5. Note that controllability has nothing to do with A being singular or nonsingular.
For example, in the above problem, A is singular yet the system is controllable.
Try repeating the above problem, but now with the (2, 1) term of A being 0.
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14.6. You have to control a plant with the following state space description:x1(k + 1)
x2(k + 1)
x3(k + 1)

 =

1 −1 1
0 1 1
0 0 1

x1(k)
x2(k)
x3(k)

 +

1 0
1 0
0 1

[u1(k)
u2(k)

]

You are given only one control valve using which either u1 or u2 (but not both)
can be changed. Explain which control variable you would manipulate and why.
You do not have to design the controller. You can assume that all the states are
available for measurement.

14.7. Consider a state space model given by x(k + 1) = Ax(k) +Bu(k) with

A =

−1 −2 0.5
1 0 0
0 1 0

 , b =

1
0
0


(a) Determine a state space controller that will place all the poles at the origin,

namely at (0,0).

(b) Recursively calculate the states of the closed loop system at k = 1, 2 and
3. You may take the initial state to be (1,1,1).

This controller is known as the dead-beat controller.

14.8. Consider the continuous time system given by

F =

0 1 0
0 −1 1
0 0 4

 , G =

0
0
1

 , c =
[
1 0 0

]
, d = 0

Design dead-beat controllers for Ts = 0.1 s and for Ts = 2/3 s. Check if the
controllers indeed work dead-beat. Comment on the magnitude of the control
effort produced by each of these controllers. What are the pros and cons of each
of them?

14.9. This problem is concerned with placement of poles of the system x(k + 1) =
Ax(k) + bu(k), y(k) = cx(k), with

A =
[
1 2
0 3

]
, b =

[
0
1

]
, c =

[
1 0

]
(a) Assuming that both the states are measured, determine the pole placement

controller K that will make the system dead-beat, i.e., both the closed loop
poles are placed at 0. Answer the following:

i. By substituting this control law, i.e., u = −Kx(k), check that the
eigenvalues of the closed loop system matrix are at 0.

ii. With the application of this control law, recursively calculate x(1),
x(2) and x(3), assuming the initial state to be x(0) =

[
x10 x20

]T ,
where x10 and x20 are arbitrary. Does x(k) become zero for any k?
Explain.
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(b) Now assume that not all states are measured. Determine the estimator Lp

that also has its eigenvalues placed at 0.

(c) Determine the compensator that is the combination of the controller K
obtained in part (a) and estimator Lp obtained in part (b).

14.10. It is desired to place the poles of the system[
x1(k + 1)
x2(k + 1)

]
=
[
1 Ts

0 1

] [
x1(k)
x2(k)

]
+
[
T 2

s /2
0.1

]
u(k)

y(k) =
[
1 0

] [x1(k)
x2(k)

]
where Ts = 0.1.

(a) Assuming that all the states are measurable, design a pole placing
controller that will result in a closed loop system with characteristic
equation z2 − 1.4z + 0.49 = 0.

(b) Design an estimator that will have the closed loop poles at 0.5± 0.5j.

(c) Combine the pole placement controller of part (a) with the estimator of
part (b) to arrive at an expression for the compensator.

14.11. It is desired to control a system having two states x1 and x2 using two control
variables u1 and u2. It is necessary to control the first state only. The second
state could take any value. The first control variable is ten times more expensive
than the second control variable. Pose this as an optimal control problem
familiar to you. You do not have to solve the problem.

14.12. Consider the unstable discrete time LTI system

x(k + 1) = Ax(k) +Bu(k)

with

A =
[
2 0
1 0

]
, B =

[
1
0

]
(a) Design a steady state LQR with weighting matrices

Q1 =
[
1 0
0 1

]
, Q2 = 1

[Hints. (1) The steady state matrix equation can be solved directly. (2) The
solution is a symmetric positive definite matrix.]

(b) Discuss the behaviour of the closed loop system with this controller.

(c) Repeat the above calculations but now with the following Q1:

Q1 =
[
1 0
0 0

]
How does the closed loop system behave now? Explain.



Appendix A

Supplementary Material

We provide two types of information in this Appendix. In the first section, we derive
a few useful mathematical relations. In the second section, we explain the procedure
to use the software that comes with this book.

A.1 Mathematical Relations

We need to differentiate quadratic forms in optimization problems. In this book, we
use it to solve the least squares estimation (LSE) problem. In this section, we explain
how to carry out this differentiation [13]. Diagonalization of square matrices is very
useful while solving systems of equations. We explain how we can diagonalize square
matrices.

A.1.1 Differentiation of a Quadratic Form

A quadratic form Q in n variables x1, x2, . . . , xn is a scalar of the following form

Q = xTAx (A.1)

where x is the vector of the above given n variables and A is an n× n matrix of the
following form

x =

x1

...
xn

 , A =

a11 · · · a1n

...
an1 · · · ann

 (A.2)

With this definition, Eq. A.1 becomes

Q =
[
x1 · · · xk · · · xn

]


a11 · · · a1k · · · a1n

...
ak1 · · · akk · · · akn

...
an1 · · · ank · · · ann





x1

...
xk

...
xn

 (A.3)
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On multiplying it, we obtain

Q =
[
x1 · · · xk · · · xn

]


a11x1 + · · ·+ a1kxk + · · ·+ a1nxn

...
ak1x1 + · · ·+ akkxk + · · ·+ aknxn

...
an1x1 + · · ·+ ankxk + · · ·+ annxn

 (A.4)

Suppose that we want to differentiate the above expression by xk. It is clear that only
the terms of the following type will be nonzero:

a1kxkx1

...
(ak1x1 + · · ·+ akkxk + · · ·+ aknxn)xk

...
ankxkxn

All other terms in the matrix are zero. As a result, it is easy to obtain the following
result:

∂Q

∂xk
= (Ax)k + (ATx)k, k = 1, 2, . . . , n (A.5)

where (Ax)k and (ATx)k are the kth rows of vectors Ax and ATx, respectively.
We have seen how to differentiate the quadratic form by a scalar. Now we will

explain how to differentiate with a vector. Suppose that we want to differentiate Q
given by Eq. A.1 with respect to x. Using Eq. A.5, we obtain

∇xQ
�
=

∂/∂x1

...
∂/∂xn

Q =

(Ax)1 + (ATx)1
...

(Ax)n + (ATx)n

 = Ax+ATx (A.6)

If A is symmetric,

∇xQ = 2Ax (A.7)

We also need to differentiate an asymmetric form, such as

R = xTBy =
[
x1 · · · xn

]b11 · · · b1m

...
bn1 · · · bnm


 y1...
ym

 (A.8)

with respect to vector x. If we write Eq. A.8 in the following form

R = x1

m∑
j=1

b1jyj + · · ·+ xk

m∑
j=1

bkjyj + · · ·+ xn

m∑
j=1

bnjyj (A.9)
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it is clear that

∂R

∂xk
=

n∑
j=1

bkjyj = kth row of By (A.10)

Thus we obtain

∇x(xTBy) =

1st row of By
...

nth row of By

 = By (A.11)

Notice that R is a scalar, see Eq. A.8. It is clear that its derivative with respect to a
vector will be a vector. Next we would like to differentiate Eq. A.8 with respect to y.
As xTBy is a scalar, it is equal to yTBTx and hence we obtain

∇y(xTBy) = ∇y(yTBTx) = BTx (A.12)

where to arrive at the last term, we have made use of Eq. A.11.

A.1.2 Diagonalization of Square Matrices

In this section, we will briefly describe a procedure to diagonalize square matrices. Let
λj , j = 1, . . . , n, and xj , j = 1, . . . , n, respectively, be eigenvalues and eigenvectors of
an n×n matrix A. Let us assume that the eigenvectors are linearly independent. We
obtain

Axj = λjxj , j = 1, . . . , n

Stacking these vector equations side by side, we obtain

A

 | |
x1 · · · xn

| |

 =

 | |
λ1x1 · · · λnxn

| |


where we have emphasized the fact that xj are vectors. The above equation can be
written as

A

 | |
x1 · · · xn

| |

 =

 | |
x1 · · · xn

| |


λ1 0

. . .
0 λn


where the last matrix is diagonal, denoted by the symbol Λ. Let us denote the matrix
of eigenvectors as S. We arrive at

AS = SΛ

Because of the assumption that the eigenvectors are linearly independent, it is possible
to invert S:

A = SΛS−1
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This approach has several benefits. It is easy to find the powers of A. For example,

A2 = SΛS−1SΛS−1 = SΛ2S−1

A3 = SΛ2S−1SΛS−1 = SΛ3S−1

We can generalize this result:

Ak = SΛkS−1, n ≥ k ≥ 1 (A.13)

This property also helps calculate polynomials of a matrix A. Suppose that we
want to calculate

α(A) = An + α1A
n−1 + · · ·+ αnI

Using Eq. A.13, we obtain

α(A) = S
[
Λn + α1Λn−1 + · · ·+ αnI

]
S−1

Because of the ease in evaluating Λk, it is straightforward to use the above equation.

A.2 Installation and Use of Software

We now explain the procedure to download and install the Matlab code presented
in this book. Before executing anything, the programs in HOME/matlab1 have to be
downloaded and made available through Matlab’s set path statement. After this
path is set, one can download the required programs and execute them. For example,
one can download ball basic.m, described in M 9.1, and execute it. It is easy to
see that this code requires pp basic.m. From the Index of Matlab Code, it is easy to
locate the details of pp basic.m on 369, including the downloading instructions.

Because of space constraints, the following Matlab programs have not been listed
in the book: ext.m, l2r.m, left prm.m, poladd.m, polmul.m, putin.m, xdync.m.
Nevertheless, these and the dependent programs are available from HOME. Some of
these programs have been taken from [27].

The above procedure explains how to download the programs as needed. An easier
way to access the programs is to download http://www.moudgalya.org/dc.tgz
which contains all the Matlab code listed in this book, and the routines named in
the previous paragraph. On uncompressing this archive, one will get all the programs
in the folder dc. The procedure to use this code is as follows:

1. Change the directory to dc.

2. Set Matlab path to matlab, which is a subdirectory of dc.

3. Go to a directory where the Matlab code resides and execute it. For example, if
one wants to run the pole placement programs, one would change the directory to
place/matlab (place is also a subdirectory of dc) and run the relevant program,
as explained above. Note that the web addresses of all programs required for
the pole placement chapter are given in the captions listed in Sec. 9.9.

1HOME stands for http://www.moudgalya.org/dc/.
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Figure A.1: Simulink block diagram for plants with z domain transfer function with 2-
DOF pole placement controller. The code is available at HOME/matlab/stb disc.mdl.
Inputs for simulation have to be established by first executing a controller program,
such as M 9.1.

One of the reliable and hence popular ways of checking the efficacy of a control
system is through simulation. In general, simulation is used to verify that the closed
loop system is stable and that the performance requirements are met. In sampled
data systems, there are additional issues, such as intrasample behaviour.

In this section, we present a set of Simulink programs that help carry out
simulation. The listing of the code ball basic.m says that the Simulink programs
basic.mdl and c ss cl.mdl can be used to verify the efficacy of the controller. From
the index of Matlab code, it is easy to see that details of the Simulink routines are
available on pages 526 and 528.

The controller has to be first designed before using the Simulink code. Simulation
parameters also have to be set. A common mistake in carrying out this kind of
simulation is not initializing the sampling period properly. It is advisable to use a
variable, such as Ts for this purpose and initialize it in the Matlab workspace. For
example, ball basic.m sets up all the variables required to execute either basic.mdl
or c ss cl.mdl. The result of simulation can be observed in the scopes. All important
variables are also stored in the Matlab workspace, for further processing by any other
software.

Simulation using this Simulink code can be used to verify that the design objectives
are met. In case there is a discrepancy between what the controller is designed
for and what is actually achieved, it could indicate errors in the design procedure,
the simulation procedure, etc. More importantly, this could point to a lack of
understanding of the design and simulation procedures. It is suggested that the control
designer uses this mode to ensure that they understand the theory well before going
ahead with implementation on a real plant.

The Simulink program in basic.mdl requires the plant to be in Laplace transfer
function form, while that in c ss cl.mdl expects it in state space form. A continuous
time version of the plant is used in both of these Simulink routines. Note that the
discrete time control action has to be sent through a zero order hold, indicated by
ZOH, before being sent out to the plant.
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Figure A.2: Simulink block diagram for plants described by s domain transfer
function with 2-DOF pole placement controller. The code is available at
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Figure A.3: Simulink block diagram for discrete time plants with 2-DOF pole
placement controller. The code is available at HOME/matlab/basic disc.mdl

All digital controllers designed for continuous systems have to be validated through
simulation using a program, such as the one being discussed. The reason is that
the controller validated using Fig. A.1 does not say anything about the intrasample
behaviour. For example, if proper care is not taken, there could be wild oscillations,
which cannot be detected through simulations with the discrete time plant. These
oscillations are known as intrasample ripple. Fortunately, however, such erratic
behaviour can be detected through simulations with the continuous plant, as described
above.

For those who deal only with discrete time plants, there is no need to use ZOH.
They have to pick a suitable Simulink routine, for example stb disc.mdl listed in
Fig. A.1 and use it. The utility of the other Simulink programs given in this section
is obvious.

All the routines reported in this book have been tested in versions 6.5 and 7 of
Matlab.
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function with 2-DOF pole placement controller. The code is available at
HOME/matlab/g s cl.mdl. Inputs for simulation have to be established by first
executing a controller program, such as M 9.1.
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executing a controller program, such as M 9.21.
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A.3 Problems

A.1. This problem is concerned with the Jordan canonical form.

(a) Show that the eigenvalues of a matrix A are −2, 4, 4, where

A =

 5 4 3
−1 0 −3

1 −2 1


(b) Calculate the eigenvectors corresponding to these eigen values.

(c) Can you diagonalize this system?

(d) Let q1 be the eigenvector corresponding to λ1 = −2 and q2 that
corresponding to λ2 = 4. The third independent vector q3 is calculated
so as to satisfy the following equation:

A[q1 q2 q3] = [q1 q2 q3]

 −2 0 0
0 4 1
0 0 4


(Notice the “1” in the offdiagonal of the far right matrix. This matrix is
known as the Jordan block and the above equation is known as the Jordan
canonical form.) Calculate q3. Notice that q3 is not unique. Any q3 that
satisfies the equation is OK.

(e) You have a discrete time system

x(k + 1) = Ax(k)

where

A =
[

3 −4
1 −1

]
Compute the Jordan canonical form of A satisfying

A[q1 q2] = [q1 q2]
[

1 1
0 1

]
Using the 100th power of the Jordan block, calculate x(100). The initial
value of x is (1, 1).
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Index

1-DOF, 245, 246, 273, 330, 351

2-DOF, 4, 245, 246, 307–321, 328–361,
442, 447, 524–528

A/D converter, 3, 17, 21, 29

absolute convergence, 64, 70, 126
acceleration constant, 275

ACF, 166, 182, 186, 213–216

auto correlation, 167

delay detection, 173
estimate, 167

noise rejection, 172

of AR(1) process, 186
of MA(q) process, 180

of MA(1) process, 180

of MA(2) process, 181, 184

of white noise, 169
periodicity, 171, 172

Ackermann’s formula, 492

adjoint, 490

algebraic loop, 383
alias, 118, 119

all pole system, 83, 177, 179

all zero system, 82, 154, 177, 179, 218

analog to digital, see A/D
analog variable, 17

antenna control, 10, 25, 86, 257, 297, 380

anti windup control, see AWC
AR, 178, 179, 187, 213, 214

ACF of, 186

order determination, 186, 187

PACF of, 187, 188
ARIMAX, 215, 411, 422, 444

ARIX, 410, 422, 437

ARMA, 178, 179

order determination, 190
ARMAX, 196, 205, 403, 406, 420

ARX, 200, 218, 223

Aryabhatta’s identity, 290, 382, 416, 417,
419, 472

auto correlation function, see ACF
auto covariance function, see ACF
auto regressive, see AR
auto regressive integrated, moving

average, exogeneous, see
ARIMAX

auto regressive moving average, see
ARMA

auto regressive moving average,
exogeneous, see ARMAX

auto regressive, exogeneous, see ARX
auto regressive, integrated, exogeneous,

see ARIX
average

statistical, 166, 169
time, 166, 169

AWC, 4, 354–361

backward difference, 262, 307, 319, 320
bad polynomial, 4, 330, 343
bandwidth, 258
best linear unbiased estimate, see BLUE
Bezout identity, 4, 290
bias, 456
BIBO stability, see stability
bilinear approximation, 261, 307
BJ, 209, 215
BLUE, 220
Bode plot, 129, 153, 254
bounded input bounded output stability,

see stability
Box–Jenkins, see BJ
bumpless control law, 313
bumpless transfer, 360

Cauchy integral theorem, 91
Cauchy residue theorem, 91, 92, 416
Cauchy’s principle, 248
causal sequence, 54, 85
causality, 41, 42, 53, 65, 74, 85, 93, 102,

168, 170, 180, 188, 219
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Cayley–Hamilton theorem, 492

CCF, 168, 181, 215, 216

causality, 168

correlated, 168

cross correlation, 169

estimate, 168

characteristic polynomial, see desired
characteristic polynomial

complementary sensitivity function, 282

conjugate pair, 99, 111, 113, 141, 466

controllability matrix, 494, 496–498

controllable, 498

controller

generalized minimum variance, see
GMVC

generalized predictive, see GPC

internal model, see IMC

linear quadratic, see LQR

linear quadratic Gaussian, see LQG

minimum variance, see minimum
variance

model predictive, see MPC

PID, see PID

pole placement, see pole placement

controller canonical form, 112, 491–494

convergence, 124

convolution, 35, 47, 61, 84

associativity, 50

commutativity, 50, 183

distributivity, 50

convolution sum, see convolution

coprime, 290, 291, 295, 329, 470

correlated, 168

critical point, 250

cross correlation function, see CCF

cross covariance function, see CCF

crossover frequency, 253

current estimator, 514

D/A converter, 3, 19, 21

Dahlin control, 327

DC motor, 10, 21, 24, 343, 345, 365, 371,
378

dead time, 27, 381

dead-beat control, 327, 498, 519

defined as, 28, 35, 53

degree condition, 291, 363

degree of, 68

delay, 27, 57, 381, 406

delay block, 104

derivative kick, 316, 351

desired characteristic polynomial, 246,
288, 332, 334, 336, 340, 342,
344, 346, 348, 358, 361, 365,
426, 469, 470, 493, 499

DFT, 147
diagonalization, 25, 32, 265, 501, 523
digital signal, 17
digital to analog converter, 19
Diophantine equation, 4, 290
discrete Fourier transform, see DFT
discrete time Fourier transform, see

Fourier transform
discrete time sequence

decomposition, 44
definition, 35
Fourier transform, 125
frequency response, 124
impulse, 43, 123
periodicity, 117
sinusoids, 116
step, 43

discretization, 3, 21
disturbance rejection, 243, 245, 246, 283
disturbance variable, 14
DMC, 4, 437, 454
drifting noise model, 211
dynamic matrix, 455
dynamic matrix controller, see DMC

eigenvalue, 25
eigenvector, 25
email server, see IBM lotus domino

server
energy, 125, 126
ergodic, 169
Euclid’s algorithm, 288
Euler’s formula, 288
even function, 127
expectation, 170, 463

fair estimate, 217
feed forward, 5, 243, 245
feedback, 5, 243, 245
filter

all pass, 145
band pass, 140
differencing, 143
high pass, 140
low pass, 140
maximum phase, 145, 185
minimum phase, 144, 185, 331
mixed phase, 145
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nonminimum phase, 144, 145, 185,
323, 331

notch, 140
pole–zero based design, 140

final value theorem, see Z-transform
finite impulse response, see FIR
FIR, 49, 54, 82, 164, 199, 200, 218
forward difference, 262, 307, 320
Fourier series, 120
Fourier transform, 120, 125

continuous time, 121
convergence condition, 126
discrete time, 124, 125
real valued signal, 126
symmetry of real signal, 127

FPE, 186
frequency response, 124
fundamental period, 117

gain margin, 253
GCD, 288
generalized minimum variance controller,

see GMVC
generalized predictive controller, see

GPC
GMVC, 4, 420, 474, 478, 484
good polynomial, 4, 330, 343
GPC, 4, 437, 456
GPC model, 439
greatest commond divisor, see GCD

Hamiltonian matrix, 512
hidden oscillations, 24, 345
hybrid system simulation, 29

I/O linear systems, 46
I/O linearity, 3, 46
I/O LTI, 43, 49, 51–53, 58, 61, 113, 124,

199
IBM lotus domino server, 15, 341, 357,

371
ideal interpolation formula, 136
identification, 3, 15, 159
iid, 169, 170
IIR, 49, 82
IMC, 4, 388
improper, 68
impulse response, 47, 51, 53, 123

complex poles, 113
real poles, 113

impulse response approximation, 307
impulse sequence, see discrete time

sequence

independent, 168
infinite impulse response, see IIR
initial rest, 41, 43, 53, 85
integral mode, 260, 278, 308, 309, 341,

355, 363, 364, 366
integrating factor, 21
integrator windup, 355
internal model, 339, 340, 342
internal model controller, see IMC
internal model principle, 272
internal stability, see stability
interpolation condition, 300
inverse response, 281, 392
inversion, 90
inverted pendulum, 11, 30, 498, 516

Jury’s stability, 87

Kalman filter, 489, 513

lag controller, 254
lead controller, 254
least squares estimate, see LSE
linear model, 196, 200, 202, 205, 208
linear phase, 154, 155
Linear quadratic Gaussian, see LQG
Linear quadratic regulator, see LQR
linear system, 36, 46
linear time invariant, see LTI
linearity, 3, 35–39, 74

function, 36
input–output, 45
state space example, 37
system, 36

liquid flow system, 13
Little’s law, 16
loss function, 186
LQG, 4, 420, 467, 473–475, 478, 489
LQR, 489

steady state, 520
LSE, 160, 161, 204

affine model, 162
efficiency, 220
formulation and solution, 162
linear model, 162, 164, 165
recursive, 220
statistical properties, 217
unbiased estimate, 218

LTI, 35, 47, 170
Luenberger observer, 500

MA, 178, 179
ACF of, 180, 181, 184
order determination, 181
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PACF of, 190
unique estimation, 183

MacGregor’s first control, 413, 417, 421,
429, 472, 477, 478, 480, 484

magnetically suspended ball, 7, 10, 331,
337, 339, 340, 367, 370

manipulated variable, 14
matrix exponential, 21

derivative, 22
maximum number of users, 15
mean, 166

estimate, 166
zero, 169, 171

mean square convergence, 126
minimum phase, 197, 244
minimum variance control, 4, 412, 463,

475
nonminimum phase, 416, 475

mixed notation, 178, 245
model predictive control, see MPC
monic, 197, 404
MPC, 437, 454

naturally discrete time model, 14
negative frequency, 116
noncausal, 41, 75, 244
nonminimum phase, 244, 280, 281, 288,

388, 419, 420, 463, 473, 475,
478, 479

nonparametric model, 54
normal equation, 163
normalized frequency, 117, 119
Nyquist plot, 250
Nyquist rate, see sampling

observability matrix, 502, 503
observable, 503
odd function, 127
ODE, 10
offset free tracking, 311, 382, 452, see

integral mode
one degree of freedom, see 1-DOF
operator notation, 178
order of pole, zero, 67
output equation, 6, 56
output error model, 418
overdamped, 285
overshoot, 285

PACF, 185, 187, 214
of AR(p) process, 187
of AR(2) process, 188
of MA process, 190

paper machine, 381, 397
parametric model, 54
Parseval’s theorem, 130
partial auto correlation function, see

PACF
pdf, 165
performance analysis, 477
performance curve, 463, 479
performance index, 468
periodicity, 117
persistently exciting, 163, 164, 194
phase margin, 253, 254, 258
PID, 4, 260, 263, 301, 452

bumpless, 312
continuous time, 308
discrete time, 308
filtered form, 308, 313
GMVC tuning, 424
GPC tuning, 452
IMC tuning, 396
integral mode, see integral mode
PID-1, 313
PID-2, 314
PID-3, 315
PID-4, 318
PID-5, 319
PID-6, 321
PID-7, 324
pole placement tuning, 361
Ziegler–Nichols tuning, 308, 324

plant–model mismatch, 223, 387
pole–zero cancellation, 264
poles, 67

at infinity, 67
position constant, 275
power density spectrum, 169, 195
PRBS, 194, 200, 201
pre-whitening filter, 196
prediction error model, 197, 198, 385,

409, 412
prediction horizon, 455
predictive PID, 452
proper, 68, 94, 197
proportional kick, 316
proportional, integral, derivative, see

PID
pseudo linear model, 205, 209
pseudo random binary sequence, see

PRBS

Q form, 387
quantization error, 18
quantized data, 6
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ramp response approximation, 307
realizability, 269, 303, 388
realization, 90, 103, 104, 111, 112
rectangular approximation, 26
reference signal, 1
region of convergence, see ROC
regulation, 243, 245, 271, 421, 463
relative frequency, 119
remote procedure call, 15, see RPC
residue, 91, 94
Riccati equation, 511
ripple, 526
rise time, 285, 286
ROC, 64, 65, 74

annulus, 100
causality, 69, 102
contour integral, 90, 93
rings, 68
stability, 69

root locus, 247
RPC, 15

sampling, 17, 118
delay, 303, 304
guidelines, 29
instant, 17, 23, 286
interval, 21
number, 24
Nyquist rate, 137
rate, 132
theorem, 29, 139
time, 2, 286
uniform, 18, 23, 118

self-reciprocal polynomial, 464–466
sensitivity function, 282
separation principle, 504
sequential quadratic programming, 444
servo, 245, 271, 283, see tracking
setpoint, 1
setpoint kick, 316
settling time, 285, 443
Shannon’s theorem, see sampling

theorem
shift invariance, 35
shifting theorem, see Z-transform
signal to noise ratio, see SNR
similarity transformation, 493, 494
simple pole, 68, 76, 94
simple zero, 68
Smith predictor, 4, 381, 383, 385, 397,

406, 407
schematic, 401

stable plant, 385

unstable plants, 401

SNR, 223

spectral factorization, 185, 466, 467, 471,
472

stability, 65

asymptotic, 54

asymptotic, at large, 54

BIBO, 54, 266

external, 54, 266

in the sense of Lyapunov, 54

internal, 263, 266, 267, 387

stability margins, 252, 254

staircase approximation, 19, 23

state estimator, 499

state feedback controller, 490

state space equation, 5, 7, 9, 10, 13

recursive solution, 56

Z-transform, 85

stationary, 165, 166

statistical average, see average

step, see discrete time sequence

step response, 51

approximation, 307

offset free tracking, see offset free
tracking

strictly proper, 68, 197

subspace identification, 217

superposition, 37, 39, 45, 47

symmetric coefficients, 465

system type, 270, 297

theoretical prediction, 171, 181

time average, see average

time constant, 10

time delay, 27

time invariance, 35, 39

time series, 165

tracking, 245, 246, 283, 421, see servo

tracking steps, 311, 339

transfer function

connected systems, 83

definition, 82

gain, 83

trapezoidal approximation, 261, 307

trapezoidal rule, 396

TTL, 2

tuning, 349, 443, 456, see PID

Tustin approximation, 261, 307, 322, 396

two degree of freedom, see 2-DOF

type 0-2, 274
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ultimate gain, 247
unbiased estimate, 217–219
uncorrelated, 168, 170
underdamped, 285
uniform sampling, see sampling
unique estimation, 183
unique solution, 291, 363
unit step, 306

van de Vusse reactor, 14, 391, 395, 399,
400

variance, 166, 415
estimate, 166
transfer function, 415

variational method, 468
velocity constant, 275
viscosity control, 390, 399, 419, 423, 432,

446, 459, 473, 476, 478, 479,
483, 484

water-bed effect, 284
white noise, 169

approximation, 170
Fourier transform of ACF, 169
power density spectrum, 169
uncorrelated, 169
Z-transform of ACF, 169

Z-transform
absolute convergence, 65
definition, 65
impulse, 70
inverse, 89

contour integration, 90
partial fraction, 94–101
power series, 101

motivation, 61
pair, 68, 77
position marker, 62
rational function, 67
realization, 103
state space, 85
step, 70
theorem

convolution, 77
damping, 75
differentiation, 79
final value, 75, 276
folded functions, 81
initial value, 75
linearity, 71
shifting, 73, 74, 104

unbounded sequence, 68
uniqueness, 63
white noise, see white noise

zero initial state, 46
zero mean, 219
zero order hold, see ZOH
zeros, 67

at infinity, 67, 248
maximum phase, 145
minimum phase, 144
nonminimum phase, 144, 331

Ziegler–Nichols tuning, see PID
ZOH, 19, 23, 29, 123, 137, 526

equivalent, 23, 307
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abs, 149, 150, 372, 398
angle, 149, 150
ar, 214, 235
arma, 191
armax, 205, 206, 210, 228, 230, 232
arx, 203, 232, 234
axes, 106, 226, 227, 229
axis, 149, 150, 227
bj, 215, 234, 235
bode, 296
c2d, 30, 106, 297, 368
ceil, 57
compare, 235
conv, 57, 107, 108, 298, 369, 370,

372–377, 397, 398, 400, 428,
431, 456–460, 481, 482

cos, 149, 368
covar, 414, 416, 431
cra, 200, 203, 206, 209, 210, 212, 231–235
detrend, 232
diag, 460
diff, 235
dimpulse, 87
exp, 150
expm, 30
eye, 456–459
figure, 226–228, 230, 232, 234, 296
filter, 102, 108, 231
find, 368, 372
get, 231
grid, 149, 227, 296
hold, 231
iddata, 231, 232, 234, 235
idinput, 200, 231–235
idplot, 234
idpoly, 191, 200, 228, 230–234
idsim, 191
impulse, 102, 108
input, 235
inv, 456–460
label, 231

legend, 231
length, 57, 105, 106, 227, 229, 296, 369,

370, 372, 376, 377, 398–400,
431, 433, 460

linspace, 149, 150, 296
loglog, 150
margin, 373, 374
max, 225, 296, 372, 428
menu, 376
min, 225, 227
nargin, 229, 372
norm, 57
nyquist, 234, 296
oe, 209, 212, 233, 235
ones, 227, 460
open system, 235, 297, 375
pause, 296
pe, 191, 230, 235
plot, 149, 150, 226, 227, 229, 235, 296
pol2cart, 516
poly, 372
polyval, 433
present, 185, 203, 206, 209, 210, 228, 230,

232–235
rand, 225
randn, 170, 226–228, 230–234
real, 372
resid, 203, 207, 209, 211, 214–216,

232–235
residue, 106
rlocus, 296
roots, 89, 372, 398, 481
save, 484
semilogx, 150
set, 105, 106
sim, 200, 228, 230–234
sin, 149, 226
size, 105
sqrt, 227, 229, 296, 367, 370
ss, 30, 106, 297, 367, 370, 371, 378
stem, 105, 149, 231
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step, 212
subplot, 149, 150, 228, 231, 296
sum, 369, 370, 372, 398, 400, 460
tf, 106, 108, 296, 373, 374, 377, 399, 400,

431
tfdata, 297, 367, 368, 378
xcorr, 57, 229
xcov, 226, 227, 237
xlabel, 149
ylabel, 149
zeros, 105, 108, 230, 429–432, 456–459,

482
zplane, 106

abex.m, 298
ACF def.m, 226
acf ex.m, 226
aconv1.m, 105
aconv2.m, 105
ant lead.m, 297
arma ex.m, 230
armax est.m, 232
arx est.m, 232
ast 12p9.m, 431

ball basic.m, 367, 524
ball im.m, 370
basic disc.mdl, 369, 526
basic.mdl, 367, 525, 526
bj est.m, 234

c ss cl.mdl, 367, 370, 371, 525, 528
case1.m, 235
cl.m, 429, 430, 431, 432, 483, 484
conv2.m, 57

data01.m, 298
data05.m, 298
delay.m, 397
derv bode.m, 150
desired.m, 367, 368, 369–371, 376–378,

433
disc1.m, 106
disc2.m, 321
division.m, 108
dof choice.m, 375

energy.m, 57
ex comp.m, 516
ext.m, 482, 524

filter1.m, 149
filtval.m, 433, 433

fir cra ex1.m, 231
flip.m, 398, 399, 400, 431, 456–459, 481,

482

g s cl.mdl, 377, 527
g s cl2.mdl, 297, 373, 378, 527
g s cl3.mdl, 374, 378, 527
g s cl6.mdl, 374, 528
gmv.m, 432, 432, 484
gmv mac1 loop.m, 484
gmv mac1.m, 432
gmv visc.m, 432
gmvc pid.m, 433, 433
gpc bas.m, 456, 457
gpc col.m, 457, 458, 458
gpc ex11.m, 456
gpc ex12.m, 457
gpc ex2.m, 458
gpc N.m, 457, 457
gpc Nc.m, 459, 459
gpc pid.m, 460, 460
gpc pid test.m, 460
gpc wt.m, 457
gpc wtc.m, 459

ibm pp.m, 371
ibm pp sat.m, 376
imc Q c.mdl, 391
imc stable.m, 400, 400
imc stable1.m, 398, 399
imcsplit.m, 398, 400
incr freq.m, 149
input freq.m, 234

kal ex.m, 517
kalrun.m, 517

l2r.m, 431, 524
label.m, 105, 106, 149, 150, 226–229
lead exp.m, 296
lead lag.m, 296
lead vfy.m, 297
left prm.m, 298, 524
lewin imc1.m, 399
lqg as1.m, 484
lqg.m, 482, 483, 484
lqg mac1.m, 483
lqg simple.m, 483
lqg visc loop.m, 484
lqg visc.m, 483
LS ex.m, 225

ma bode.m, 150
ma larger.m, 228
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ma.m, 227
ma pacf.m, 230
mat exp.m, 30
max ex.m, 226
miller.m, 433
motor.m, 371
motor pd.m, 378
mv.m, 429, 430
mv mac1.m, 429
mv nm.m, 431, 431, 432
mv visc.m, 432
myc2d.m, 331, 367, 367, 370, 371, 373,

374, 377, 378, 399, 400

nmp.m, 150
nyquist ex1.m, 296

oe est.m, 233

pacf ex.m, 228
pacf.m, 228, 229, 230, 235
pacf mat.m, 229, 229
pd.m, 378, 378
pend.m, 499, 516
pend model.m, 12, 30, 499
pend ss c.mdl, 499
pid neg.m, 377
plotacf.m, 226, 227, 228, 230, 235
pm 10.m, 429
poladd.m, 376, 397, 400, 428, 430, 432,

458, 481, 524
polmul.m, 369, 370, 372, 377, 430–433,

456–459, 481–483, 524
polsplit2.m, 368, 369, 370
polsplit3.m, 372, 372, 431
pp basic.m, 367, 369, 369, 524
pp im.m, 370, 371, 375, 380, 397
pp im2.m, 372, 376
pp pid, 297
pp pid.m, 375, 377, 377
putin.m, 482, 524
pz.m, 106

recursion ex1.m, 429
recursion.m, 428, 429
respol.m, 106, 106, 107, 108
respol1.m, 106
respol2.m, 107
respol3.m, 107
respol5.m, 108
respol6.m, 108
rlocus ex1.m, 296

selstruc, 217
sigurd his.m, 374
sigurd.m, 373
smith disc.mdl, 386, 397
smith.m, 397
spec ex.m, 481
spec.m, 481, 481
specfac.m, 481, 482, 483
stb disc.mdl, 352, 369, 371, 397, 525
stb disc sat.mdl, 358, 376
sumsq.m, 431

tfvar.m, 430, 431
type 2DOF.m, 375
type test.m, 297

unique ma.m, 228
unstb.m, 369

vande imc.m, 400
vande imc1.m, 399
visc imc1.m, 399

xdync.m, 298, 300, 332, 340, 369, 370,
372, 377, 409, 429–433,
456–460, 483, 524

ZOH1.m, 30
zpowk.m, 369, 369, 370–374, 376, 377,

397, 399, 400, 430, 431, 433,
460, 483


