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PREFACE

This book was written to provide a general application guide for students and
engineers of all disciplines who want to begin utilizing a Digital Signal Processor
(DSP) for the task of electromechanical motion control. While the act of learning to
program and use the DSP itself is not overly difficult, utilizing the DSP in
applications such as motor control can sometimes seem challenging to the first-time
user.

Full mastery of all the topics and concepts presented in this text would take
years of study and knowledge from many areas of engineering and science. For this
reason, we will attempt to survey each topic, giving readers a basic understanding of
each topic without going into great depth. We will thus leave it to the reader for in-
depth study of particular topics of interest.

So why would we choose to integrate a DSP into a motion control system?
Well, the advantages of such a design are numerous. DSP-based control gives us a
large degree of freedom in developing computationally extensive algorithms that
would otherwise be very difficult or impossible without a DSP. Advanced control
algorithms can sometimes drastically increase the performance and efficiency of the
electromechanical system being controlled.

For example, consider a typical Heating-Ventilation-and-Air-Conditioning
(HVAC) system. A standard HVAC system contains at least three electric motors:
compressor motor, condenser fan motor, and the air handler fan motor. Typically,
indoor temperature is controlled by simply cycling (turning on and off) the system.
This control method puts unnecessary wear on system components and is
inefficient. An advanced motor drive system incorporating DSP control could
continuously adjust both the air-conditioner compressor speed and indoor fan to
maintain the desired temperature and optimal system performance. This control
scheme would be much more energy efficient and could extend the operational
lifespan of the system.

We will start by visiting the LF2407 DSP processor. Device functionality,
integrated components, memory, and assembly programming will be covered.
Several laboratory exercises will help the reader practice the information presented
in each chapter. After several chapters are presented on the DSP, more advanced
topics are presented involving several real-world applications in the area of motion
control and motor drives.
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Chapter 1

INTRODUCTION TO THE TMSLF2407 DSP CONTROLLER

1.1 Introduction

The Texas Instruments TMS320LF2407 DSP Controller (referred to as the
LF2407 in this text) is a programmable digital controller with a C2xx DSP central
processing unit (CPU) as the core processor. The LF2407 contains the DSP core
processor and useful peripherals integrated onto a single piece of silicon. The
LF2407 combines the powerful CPU with on-chip memory and peripherals. With
the DSP core and control-oriented peripherals integrated into a single chip, users
can design very compact and cost-effective digital control systems.

The LF2407 DSP controller offers 40 million instructions per second (MIPS)
performance. This high processing speed of the C2xx CPU allows users to compute
parameters in real time rather than look up approximations from tables stored in
memory. This fast performance is well suited for processing control parameters in
applications such as notch filters or sensorless motor control algorithms where a
large amount of calculations must be computed quickly.

While the “brain” of the LF2407 DSP is the C2xx core, the LF2407 contains
several control-orientated peripherals onboard (see Fig. 1.1). The peripherals on the
LF2407 make virtually any digital control requirement possible. Their applications
range from analog to digital conversion to pulse width modulation (PWM)
generation. Communication peripherals make possible the communication with
external peripherals, personal computers, or other DSP processors. Below is a brief
listing of the different peripherals onboard the LF2407 followed by a graphical
layout depicted in Fig. 1.1.

The LF2407 peripheral set includes:

Two Event Managers (A and B)

General Purpose (GP) timers

PWM generators for digital motor control

Analog-to-digital converter

Controller Area Network (CAN) interface

Serial Peripheral Interface (SPI) — synchronous serial port

Serial Communications Interface (SCI) — asynchronous serial port
General-Purpose bi-directional digital /O (GPIO) pins

Watchdog Timer (“time-out” DSP reset device for system integrity)
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Introduction to the TMSLF2407 DSP controller 3

1.2 Brief Introduction to Peripherals

The following peripherals are those that are integrated onto the LF2407 chip.
Refer to Fig. 1.1 to view the pin-out associated with each peripheral.

Event Managers (EVA, EVB)

There are two Event Managers on the LF2407, the EVA and EVB. The Event
Manager is the most important peripheral in digital motor control. It contains the
necessary functions needed to control electromechanical devices. Each EV is
composed of functional “blocks” including timers, comparators, capture units for
triggering on an event, PWM logic circuits, quadrature-encoder—pulse (QEP)
circuits, and interrupt logic.

The Analog-to-Digital Converter (ADC)

The ADC on the LF2407 is used whenever an external analog signal needs to
be sampled and converted to a digital number. Examples of ADC applications
range from sampling a control signal for use in a digital notch filtering algorithm or
using the ADC in a control feedback loop to monitor motor performance.
Additionally, the ADC is useful in motor control applications because it allows for
current sensing using a shunt resistor instead of an expensive current sensor.

The Control Area Network (CAN) Module

While the CAN module will not be covered in this text, it is a useful peripheral
for specific applications of the LF2407. The CAN module is used for multi-master
serial communication between external hardware. The CAN bus has a high level of
data integrity and is ideal for operation in noisy environments such as in an
automobile, or industrial environments that require reliable communication and data
integrity.

Serial Peripheral Interface (SPI) and Serial Communications Interface (SCI)

The SPI is a high-speed synchronous communication port that is mainly used
for communicating between the DSP and external peripherals or another DSP
device. Typical uses of the SPI include communication with external shift registers,
display drivers, or ADCs.

The SCI is an asynchronous communication port that supports asynchronous
serial (UART) digital communication between the CPU and other asynchronous
peripherals that use the standard NRZ (non-return-to-zero) format. It is useful in
communication between external devices and the DSP. Since these communication
peripherals are not directly related to motion control applications, they will not be
discussed further in this text.
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4 Introduction to the TMSLEF2407 DSP controller

Watchdog Timer (WD)

The Watchdog timer (WD) peripheral monitors software and hardware
operations and asserts a system reset when its internal counter overflows. The WD
timer (when enabled) will count for a specific amount of time. It is necessary for
the user’s software to reset the WD timer periodically so that an unwanted reset
does not occur. If for some reason there is a CPU disruption, the watchdog will
generate a system reset. For example, if the software enters an endless loop or if the
CPU becomes temporarily disrupted, the WD timer will overflow and a DSP reset
will occur, which will cause the DSP program to branch to its initial starting point.
Most error conditions that temporarily disrupt chip operation and inhibit proper
CPU function can be cleared by the WD function. In this way, the WD increases the
reliability of the CPU, thus ensuring system integrity.

General Purpose Bi-Directional Digital 1/0 (GPIO) Pins

Since there are only a finite number of pins available on the LF2407 device,
many of the pins are multiplexed to either their primary function or the secondary
GPIO function. In most cases, a pin’s second function will be as a general-purpose
input/output pin. The GPIO capability of the LF2407 is very useful as a means of
controlling the functionality of pins and also provides another method to input or
output data to and from the device. Nine 16-bit control registers control all I/O and
shared pins. There are two types of these registers:

e [/O MUX Control Registers (MCRx) — Used to control the multiplexer
selection that chooses between the primary function of a pin or the general-
purpose I/O function.

e Data and Direction Control Registers (PXDATDIR) — Used to control the
data and data direction of bi-directional I/O pins.

Joint Test Action Group (JTAG) Port

The JTAG port provides a standard method of interfacing a personal computer
with the DSP controller for emulation and development. The XDS510PP or
equivalent emulator pod provides the connection between the JTAG module on the
LF2407 and the personal computer. The JTAG module allows the PC to take full
control over the DSP processor while Code Composer Studio™™ is running. Figure
1.2 shows the connection scheme from computer to the DSP board.

XDS510 PP TI LF2407

Computer Plus Evaluation
Parallel Port [ Emulator [ Module
Pod (EVM)

Figure 1.2 PC to DSP connection scheme.
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Introduction to the TMSLF2407 DSP controller 5

Phase Locked Loop (PLL) Clock Module

The phase locked loop (PLL) module is basically an input clock multiplier that
allows the user to control the input clocking frequency to the DSP core. External to
the LF2407, a clock reference (can oscillator/crystal) is generated. This signal is
fed into the LF2407 and is multiplied or divided by the PLL. This new (higher or
lower frequency) clock signal is then used to clock the DSP core. The LF2407’s
PLL allows the user to select a multiplication factor ranging from 0.5X to 4X that of
the external clock signal. The default value of the PLL is 4X.

Memory Allocation Spaces

The LF2407 DSP Controller has three different allocations of memory it can
use: Data, Program, and I/O memory space. Data space is used for program
calculations, look-up tables, and any other memory used by an algorithm. Data
memory can be in the form of the on-chip random access memory (RAM) or
external RAM. Program memory is the location of user’s program code. Program
memory on the LF2407 is either mapped to the off-chip RAM (MP/MC- pin =1) or
to the on-chip flash memory (MP/MC- = 0), depending on the logic value of the
MP/MC-pin.

I/O space is not really memory but a virtual memory address used to output
data to peripherals external to the LF2407. For example, the digital-to-analog
converter (DAC) on the Spectrum Digital™ evaluation module is accessed with I/O
memory. If one desires to output data to the DAC, the data is simply sent to the
configured address of I/O space with the “OUT” command. This process is similar
to writing to data memory except that the OUT command is used and the data is
copied to and outputted on the DAC instead of being stored in memory.

1.3  Types of Physical Memory
Random Access Memory (RAM)

The LF2407 has 544 words of 16 bits each in the on-chip DARAM. These
544 words are partitioned into three blocks: B0, B1, and B2. Blocks B1 and B2 are
allocated for use only as data memory. Memory block BO is different than B1 and
B2. This memory block is normally configured as Data Memory, and hence
primarily used to hold data, but in the case of the B0 block, it can also be configured
as Program Memory. B0 memory can be configured as program or data memory
depending on the value of the core level “CNF” bit.

e (CNF=0) maps B0 to data memory.
e (CNF=1) maps B0 to program memory.

The LF2407 also has 2K of single-access RAM (SARAM). The addresses

associated with the SARAM can be used for both data memory and program
memory, and are software configurable to the internal SARAM or external memory.
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6 Introduction to the TMSLEF2407 DSP controller

Non-Volatile Flash Memory

The LF2407 contains 32K of on-chip flash memory that can be mapped to
program space if the MP/MC-pin is made logic 0 (tied to ground). The flash
memory provides a permanent location to store code that is unaffected by cutting
power to the device. The flash memory can be electronically programmed and
erased many times to allow for code development. Usually, the external RAM on
the LF2407 Evaluation Module (EVM) board is used instead of the flash for code
development due to the fact that a separate “flash programming” routine must be
performed to flash code into the flash memory. The on-chip flash is normally used
in situations where the DSP program needs to be tested where a JTAG connection is
not practical or where the DSP needs to be tested as a “stand-alone” device. For
example, if a LF2407 was used to develop a DSP control solution to an automobile
braking system, it would be somewhat impractical to have a DSP/JTAG/PC
interface in a car that is undergoing performance testing.

1.4 Software Tools

Texas Instrument’s Code Composer Studio™ (CCS) is a user-friendly
Windows-based debugger for developing and debugging software for the LF2407.
CCS allows users to write and debug code in C or in TI assembly language. CCS
has many features that can aid in developing code. CCS features include:

User-friendly Windows environment

Ability to use code written in C and assembly

Memory displays and on-the-fly editing capability

Disassembly window for debugging

Source level debugging, which allows stepping through and setting
breakpoints in original source code

CPU register visibility and modification

e Real-time debugging with watch windows and continuous refresh

e  Various single step/step over/ step-into command icons

e  Ability to display data in graph formats

e General Extension Language (GEL) capability, allows the user to create
functions that extend the usefulness of CCS™

1.4.1  Becoming Aquatinted with Code Composer Studio (CCS)

This exercise will help you become familiar with the software and emulation
tools of the LF2407 DSP Controller. CCS™, the current emulation and debugging
software, is user-friendly and a powerful development tool.

The hardware required for this exercise and all others is the Spectrum Digital
TMS320LF2407 EVM package, which includes LF2407 EVM board and the
XDS510PP Plus JTAG emulator pole. You will also need a Windows-based

Copyright © 2004 CRC Press, LLC



Introduction to the TMSLF2407 DSP controller 7

personal computer with a parallel printer port. In this lab exercise you will learn
how to:

Open a program, build it, and load the program onto the DSP.
View the disassembly

View and edit memory locations

View and edit CPU registers

Open a Watch Window

Reset the DSP

Run the program in Real-time Mode

Set breakpoints

Single step through code

Save and load a workspace

Since some readers may not have connected their EVM to their PC, we will
start with the necessary PC to EVM connection and setup. Follow this procedure if
you are first connecting the LF2407 EVM to your PC.

e First, if you have not done so, configure the parallel port of your PC and
connect the emulator and target board according to the documentation that
came with the LF2407 EVM.

e Before you can start using CCS™, CCS needs to be configured for the
particular DSP emulator you are going to be using.

Run CC setup.exe, which should be an icon under Start/Programs/Code
Composer or at C:\tic2xx\cc\bin\cc_setup.exe. You should see a window appear
similar to that shown in Fig. 1.3.

g Code Composer Setup ;lglil

File Edt “ew Help

Swstern Configuration Awailable Board/Simulator Types

FCEx Simulator [Texas Instruments]
Systemn Meeds a Board. Click Here for Help | C 2w Emulator [T exas Instruments)

s CBx Emulator [T exas Instruments)
T2 Simulatar [Texas [nstruments)

|Drag a device driver to the left to add & board to the system, L

Figure 1.3 Code Composer setup window (from running Setup.exe).
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Once you have entered Code Composer Setup window, the proper
board/simulator needs to be added to the “System Configuration”.

a. Drag the appropriate icon from the “Available Board/Simulator Types” list

to the “System Configuration” list. To use the LF2407 DSP select, use the

sdgo2xx icon as shown in Fig. 1.4.

g Code Composer Setup

Fil= Edit “iew Help

=10l x|

Swstern Canfiguration

Avallable Board/Simulator Types

zdgods

. CRU

-------- @ Tao Add Another Eoard, Click Here Far Help

| CEw Simulator [Texas Instruments]
| T2 Erulator [Texas Instruments)
: Ch Ernulator [Texas [nstruments)
F Cwa Sirnulator [Tesas Instiuments)

|Drag a device driver to the left to add a board to the system.

Figure 1.4 Simulator types.

b. Once you drag the sdgo2xx icon into the “System Configuration” section, a
“Board Properties” box (shown in Fig. 1.5) should appear. Click on the
“Board Properties” tab and set the I/O port for 378.

Board Properties

Board Name & Data File  Board Properties | Processor Configuration

Froperty Walue

21

|Change property walue as necessary in the right column.

Mext = I Cancel

Figure 1.5 Port setting for Printer/Parallel Port.
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c. Click on the “Processor Configuration” tab and select the TMS320C2400
processor. Click on the “Add Single” button. You should the see “CPU_1”
under the “processors on the board” list.

d. Click on the “Finish” button located at the lower right corner of the “Board
Properties” box. The setup is now complete. Go to File/Save to save the
configuration. Close the Code Composer Setup window.

Now that everything is connected properly, we shall begin with the CCS
exercise:

1. Turn on the EVM. The green LED on the top right of the board will
confirm that there is power to the board.

2. Open Code Composer Studio by running cc_app.exe either from the
desktop icon, Start/Programs/Code Composer, or
C:\tic2xx\cc\bin\cc_app.exe.

3. Go to the “Project” menu, select “Open” as seen in Fig. 1.6. Open
realtime.mak, which is found under C:\tic2xx\c2000\tutorial\realtime. The
project file is the master file that “holds” the other files together to build a
working program.

Lok, jr: I i realtime j o £ B~

File name: IHeaItime Open I
Files of bype: I"_mak j Cancel |
4

Figure 1.6 Project open window.

4. Once you have the project opened, look at the frame on the left side of the
screen where “Files”, “GEL files”, and “Project” are listed. Expand
everything in the “Project” folder. When you are done, you should see the
“Include” files, “Libraries”, and “Source” files as shown in Fig. 1.7. The
project file (*.mak) is the master file that links the other necessary files
together as a common filename. When you want to create a program with
Code Composer, you will want to first create a new project, add a new
source file(s) (*.asm or *.c) to the project, add the linker command file
(*.cmd), and add “include” (*.i) or “header” (*.h) files.
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10 Introduction to the TMSLEF2407 DSP controller

As in other programming languages, “include” (*./)) and “header” (*.h)
files are user-defined files that are common to most programs.
Functionally *.k and *.i files are the same. Both types of files can define
constants, macros (user defined callable functions), or variables. In this
case, we want to run our program in real-time mode. Therefore, we need a
real-time monitor program (C200mntr.i in this program). The file X24x.h
contains variable names for data memory mapped control registers. The
code that is in the header (*.4) or include (*.i) file could be written in the
actual source code, but it is easier to just make general register definitions
as a header file that can be used with many projects.

The linker command file (*.cmd) is vital to the proper building of your
code. It specifies where in the program memory to place sections of the
program code, defines memory blocks, contains linker options, and names
input files for the linker, names the (.out) etc. The linker command file also
specifies memory allocations. Without a proper linker command file, CCS
will not build the program properly. In this case, the linker command file
is named realtime.cmd.

Source (*.c or *.asm) files contain the actual program that is to be run on
the DSP. You must have at least one source file, but may have source files
that call other source files. Be sure all relevant source files are added to the
project.

® /C2xx Simulator (T exas Instruments)/CPU - C2XX Code Composer [Simulator)- Realtime'mak (=]
Fie Edit Wiew Pioject Debug Frofler Option GEL Tools ‘window Help

I T E R[S | E [ e [EE] 4 A

E Files
B-[23 GEL files
b 5 init.gel
B[ Project
= Q Realtime.mak
=1 Include
' c200mnit.i

' 24uh
{17 Libraries
REALTIME.CMD
[=RERY - ouce!

B C200MNRT.ASM
LB MAINASM
RTVECTOR.ASM

AEDI8 Wanl-392 36|k (xe REE®

") File View [ABookmarks

[D5FHALTED [ For Help, press F1

Ln0000, Col000 | [NUM [SCRL 4

Figure 1.7 CCS window with opened project.
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5. Now that you have the project opened, go to Option/Program Load, and
check the “load program after build” box (Fig. 1.8). This will
automatically load the DSP compatible version of the program (*.out) file
into the DSP after the build is complete. Building the project causes Code
Composer to assemble and link your code. Basically, this creates a file
that the DSP can be loaded with and run. Loading the program can also be
done manually under the “File” menu.

Program Load Options il

v Perform verification after Program Load

¥ Load Program After Build

s I Cancel |

Figure 1.8 Program load options box.

6. Now go to Project/ Rebuild All. This will build and load the program into
the DSP. If the program is being loaded onto the DSP, the disassembly
window will open up automatically.

Note: It is good practice to ALWAYS RESET THE DSP each time you build or
rebuild the project. Do this by going to “Debug’” menu, then “Reset DSP”.

To view the disassembly window as in Fig. 1.9 if it is not already open, go
to View/Dis-Assembly. The disassembly window shows the assembly code
that is stored in program memory. It also has a highlighted line that serves
as the position marker when running the program.

{# Dis-Assembly =lolx
0125 0BAD RPT *+ ARG B
0126 0000 LAR ARO, Ok
0127 0BAD RPT *+ ARG
0128 0000 LAR ARO, Oh
0129 0BAD RPT *+ ARG _
012& 0000 LAR ARO, Oh
0128 OBAD RPT *+ ARG
012C 0000 LAR ARO, Ok
012D OBAD RPT *+ ARG
N8 A0in T.AR AR . Mh 2
1 4 4

Figure 1.9 Disassembly window.

Note: When Source Level Debugging is selected (we’ll get to this in a minute), a
position marker also appears in the appropriate source code window (if a program
is loaded into the DSP) (Fig. 1.10).
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O 15l x|
; Clear interrupt flags and enable interrupts: ﬂ
SPLE #OFFFFh,IFR ; Clear interrupt flagsg
CLRC INTM ; Enable interrupts
—
; Infinite loop:
LOOF
POINT_EO
. Main_counter
ADD #1
SACL Main_counter ; Main_counter = Main_ g
E LOOP
&l
141 | a7
Figure 1.10 Source level debugging.

7. The CPU registers and CPU status registers are very helpful in debugging
code. To view these registers, go to View/CPU Registers (both registers are
under this menu). Open both CPU registers. You should see the registers
appear in new frames on the screen.

8. The ability to view memory locations is also vital to debugging. To view
memory, go to View/Memory. You should see a box pop up which will
configure the memory window that is about to open (see Fig. 1.11). Enter
0x0300 for the start address.

B Memoy [Data: Hex - C S5kpl = |EI|5|
Oxz0000: Ox0000 OxODOOQ OxOOOO :J
Ox0003: O0O=x0000
Ox0004: IMRE
Ox0004: 0O=x0000
O0=0005: GREG

0=z0005: O0=x0000

0z0006: IFR

0xz0006: O0=x0000 Dxz000O0 Ox0000
0xz0009: O0x0000 O=zO000O Ox0000
Oz000C: O0x0000 O=z000O0 Ox0000
0xz000F: 0x0000 Oxz000O0 Ox0000
Ox0012: O0x0000 O=zO000O Ox0000
0xz0015: O0=x0000 D=z0000 Ox=0000
O=N018:  O=0000 N=0000 Q0000

Figure 1.11 Memory viewing window.
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You can also change the values for the CPU registers and memory
locations by double clicking on the register or memory location. A box
will pop up that will allow you to enter in a new value.

Double click on the 0x300 location in the memory window and change the
value to 0x0555. The new value will appear in red signifying that the
memory location has been changed.

Using the same technique, change a few registers in the CPU status and
CPU register frames. Observe how the values in the registers change to the
new value entered.

9. In MAIN.ASM scroll down until you see the line “.bss Main_counter,1”.
Highlight “Main_counter” and add that variable to the watch window.

A watch window allows us to view variables that we use in our code.
Open a watch window by going to View/Watch Window. You can add
variables to this window by highlighting the variable name in the source
code and then right clicking the mouse button and selecting “add to watch
window”. Now, let us edit the display format of this variable in the watch
window. Double click on the variable name in the watch window. When
the “edit variable” box appears, add the command “*(int*)” in front of the
variable name (see Fig. 1.12). This configures the variable in the watch
window to be displayed as an integer, thus ensuring that a decimal value is
displayed. Otherwise, a hex value will be displayed.

x
Warnable: I“[int"]M ain_counter
Walue: I 0
ITI Cancel | Help |
Figure 1.12 Editing a variable while in the watch window.

10. Rebuild the project (which should load the program as well) and reset the
DSP by going to Debug Menu/Reset DSP.

Note: If a source code window opens up as well as the disassembly window when
the project is built, Source Level Debugging is enabled. If not, enable Source Level
Debugging by going to Project/Options/Assembler Tab and check the “enable
source level debugging” (Fig. 1.13). Source level debugging lets you see where in
the source code the program is running instead of having to decipher the
disassembly window information. If you have just enabled Source Level
Debugging, you need to rebuild the project before it takes effect.
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Build Dptions ! =l

Compiler  Assembler | Linker I

[~ Suppress Banner [-q]

Target Proceszor Im
Include Search Path (4] |
v Enable Source Level Debugging [ver B.63 ar later) [-g]
Define Symbols [d] |
Inzert .copy File [-ha] |
It include File [ |
[~ Gernerate Listing Files [-]

[~ Generate Crozs-reference Tables [+]
[~ Make Symbols Case Insensitive [-c]
v Make All Symbals Global [-5]

[~ Detect Pipeline Conflicts [-w]

Port C2+ code to INone 'I

Introduction to the TMSLEF2407 DSP controller

0k I Cancel Help

Figure 1.13 Build options menu box.

11. Enable Real Time mode by performing the following steps:

a.

The DSP must have the program already loaded in order to enable
real-time mode. (While in real-time mode, programs cannot be
loaded to the DSP.)

Reset the DSP by going to Debug Menu / Reset DSP.

Open the Command Window by going to Tools Menu / Command
Window.

Type in the Command Window “go MON_GO”.

Put CCS in Real-time mode by going to Debug Menu / Real-time
Mode. When in real-time mode, you will se the word
“REALTIME” in the bottom of the code composer screen.

Reset the DSP again and the program is ready to RUN.
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Note: Real-time mode is a useful feature of CCS that allows you to see changes as
they happen but is not necessary for program debugging. When CCS is not in real
time mode, the values in all windows will update as soon as the program is halted
or a break point occurs.

Right click on the watch window and choose “Continuous Refresh”. This
will allow the values in the Watch window to change.

12. We are now ready to run the demonstration program. First make sure that
no breakpoints have been set or the DSP will stop when it reaches the
breakpoint.

Run the program by going to Debug/Run. Running and halting the DSP
can also be performed by hitting F5 to run and Shift-F5 to halt. Observe as
the value of “Main_counter” in the watch window changes.

13. Halt the DSP by going to Debug/Halt. In the disassembly or source
window you should see that the program is halted somewhere in the area of
code entitled “Loop” (hex address 0159-015D in the disassembly window
(program memory)). Left click on a line in the “Loop” section and toggle a
breakpoint by right clicking the mouse and selecting “toggle breakpoint”.
You should see a purple line appear where the breakpoint is set (Fig. 1.14).
Notice how the breakpoint appears in both the disassembly window and
the window containing the assembly source code.

SMamash N [=[ES

; Clear interrupt flags and enable interrupts:

SFLE #OFFFFh,IFR ; Clear interrupt flags

CLRC IHNTH ; Enable interrupts

: Infinite loop:

LOCOP
POINT EO
~ Main_counter
ADD #1
SACL Main_counter : Main_counter = Main_o
B LOOP
141 ] ay
Figure 1.14 Breakpoint is located at the highlighted line (source level debug).
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14. Run the program and watch as the DSP stops at the breakpoint each time it
passes through the “Loop” section. (You will need to “run” the DSP each
time after it hits a breakpoint because the breakpoint essentially “pauses”
the DSP.) Observe as the value of Main_counter increments by 1 in the
watch window each time the code is restarted after the breakpoint.
Remove the breakpoint by toggling it off.

Note: If you wish to single step through the code regardless of whether or not a
breakpoint is set, you can do this by choosing Debug/Step Into or pressing F§.

15. If you wish to save the screen configuration (position of windows, what
appears on the screen, etc.) go to File Menu/Workspace/save workspace
shown in Fig. 1.15.

Now, when you re-open CCS in the future, you will only have to load the
workspace, saving you the trouble of opening the memory, CPU, and
source code windows shown in Fig. 1.16. Saving a workspace not only
saves window configuration, but project configuration as well. If a
previously saved workspace is opened, the project that was open at the
time of the workspace save will also open. While saving a workspace
saves screen configuration, it does not save the contents of any files or the
project!

® JC2xx Simulator [Texas Instruments)/CPU - C2ZX Code Co

File Edit “iew Project Debug Profiler Option GEL Tools W

Hew L P ||
Open... Cte+0

[Elrse

HavE [Tl E
Savebe.

Sawe ol

Load Program...
Load Symbal ..
Reload Program
Load GEL...

it [EfrfE
Eritit Brexvien

Load Workspace. .

Recent Source Files 4
Recent Workspaces 4
Fiecent Program Files 3
E xit
Figure 1.15 Saving a workspace.
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PC = 0000 P = = 0000 opyright (¢) 1967-1999 Texcal |[TIH - o000
00000000 STO - - 0000 © - 0000

00000000 ST1 = OFFC ARZ = 0000 5 G o= 0000
- 2D = 0000

IMR = = 0000

= ARO IFR = DDDD ARS = 0000 000

I QrREG -'hl::i:-‘;-“ - l_li_l(_l[_l
Figure 1.16 Screenshot of typical CCS™ workspace.

The screenshot shown in Fig. 1.16 displays what a typical workspace might
contain. The workspace includes: several memory windows, watch window, CPU
register windows, source code, and project window.

This concludes the introduction of the most common features of Code
Composer Studio. There are many features not covered by this introduction that
may be useful to advanced users. Consult the program Help or the Code Composer
Users Guide for more information on Code Composer functions.
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Chapter 2

C2xx DSP CPU AND INSTRUCTION SET

2.1 Introduction to the C2xx DSP Core and Code Generation

The heart of the LF2407 DSP Controller is the C2xx DSP core. This core is a
16-bit fixed point processor, meaning that it works with 16-bit binary numbers.
One can think of the C2xx as the central processor in a personal computer. The
LF2407 DSP consists of the C2xx DSP core plus many peripherals such as Event
Managers, ADC, etc., all integrated onto one single chip. This chapter will discuss
the C2xx DSP core, subcomponents, and instruction set.

The C2xx core has its own native instruction set of assembly mnemonics or
commands. Through the use of CCS and the associated compiler, one has the
freedom of writing code in both C language and the native assembly language.
However, to write compact, fast executing programs, it is best to compose code in
assembly language. Due to this reason, programming in assembly will be the focus
of this book. However, we will also include an example of a software tool called
VisSim™, by Visual Solutions. VisSim allows users to simulate algorithms and
develop code in “block” form. More on VisSim will be presented in the Appendix.

2.2 The Components of the C2xx DSP Core

The DSP core (like all microprocessors) consists of several subcomponents
necessary to perform arithmetic operations on 16-bit binary numbers. The
following is a list of the multiple subcomponents found in the C2xx core which we
will discuss further:

A 32-bit central arithmetic logic unit (CALU)

A 32-bit accumulator (used frequently in programs)

Input and output data-scaling shifters for the CALU

A (16-bit by 16-bit) multiplier

A product-scaling shifter

Eight auxiliary registers (ARO — AR7) and an auxiliary register arithmetic
unit (ARAU)

Each of the above components is either accessed directly by the user code or is
indirectly used during the execution of an assembly command.

Central Arithmetic Logic Unit (CALU)

The C2xx performs 2s-complement arithmetic using the 32-bit CALU. The
CALU uses 16-bit words taken from data memory, derived from an immediate
instruction, or from the 32-bit multiplier result. In addition to arithmetic operations,
the CALU can perform Boolean operations. The CALU is somewhat transparent to

19
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20 C2xx DSP CPU and Instruction Set

the user. For example, if an arithmetic command is used, the user only needs to
write the command and later read the output from the appropriate register. In this
sense, the CALU is “transparent” in that it is not accessed directly by the user.

Accumulator

The accumulator stores the output from the CALU and also serves as another
input to the CALU (many arithmetic commands perform operations on numbers that
are currently stored in the accumulator; versus other memory locations). The
accumulator is 32 bits wide and is divided into two sections, each consisting of 16
bits. The high-order bits consist of bits 31 through 16, and the low-order bits are
made up of bits 15 through 0. Assembly language instructions are provided for
storing the high- and low-order accumulator words to data memory. In most cases,
the accumulator is written to and read from directly by the user code via assembly
commands. In some instances, the accumulator is also transparent to the user
(similar to the CALU operation in that it is accessed “behind the scenes™).

Scaling Shifters

The C2xx has three 32-bit shifters that allow for scaling, bit extraction,
extended arithmetic, and overflow-prevention operations. The scaling shifters make
possible commands that shift data left or right. Like the CALU, the operation of the
scaling shifters is “transparent” to the user. For example, the user needs only to use
a shift command, and observe the result. Any one of the three shifters could be used
by the C2xx depending on the specific instruction entered. The following is a
description of the three shifters:

e Input data-scaling shifter (input shifter): This shifter left-shifts 16-bit
input data by 0 to 16 bits to align the data to the 32-bit input of the CALU.
For example, when the user uses a command such as “ADD 300h, 57, the
input shifter is responsible for first shifting the data in memory address
“300h” to the left by five places before it is added to the contents of the
accumulator.

e  Output data-scaling shifter (output shifter): This shifter left-shifts data
from the accumulator by 0 to 7 bits before the output is stored to data
memory. The content of the accumulator remains unchanged. For
example, when the user uses a command such as “SACL 300h, 47, the
output shifter is responsible for first shifting the contents of the
accumulator to the left by four places before it is stored to the memory
address “300h”.

Copyright © 2004 CRC Press, LLC



C2xx DSP CPU and Instruction Set 21

e Product-scaling shifter (product shifter): The product register (PREG)
receives the output of the multiplier. The product shifter shifts the output
of the PREG before that output is sent to the input of the CALU. The
product shifter has four product shift modes (no shift, left shift by one bit,
left shift by four bits, and right shift by six bits), which are useful for
performing multiply/accumulate operations, fractional arithmetic, or
justifying fractional products.

Multiplier

The multiplier performs 16-bit, 2s-complement multiplication and creates a 32-
bit result. In conjunction with the multiplier, the C2xx uses the 16-bit temporary
register (TREG) and the 32-bit product register (PREG).

The operation of the multiplier is not as “transparent” as the CALU or shifters.
The TREG always needs to be loaded with one of the numbers that are to be
multiplied. Other than this prerequisite, the multiplication commands do not require
any more actions from the user code. The output of the multiply is stored in the
PREG, which can later be read by the user code.

Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

The ARAU generates data memory addresses when an instruction uses indirect
addressing to access data memory (more on indirect addressing will be covered later
along with assembly programming). Eight auxiliary registers (ARO through AR7)
support the ARAU, each of which can be loaded with a 16-bit value from data
memory or directly from an instruction. Each auxiliary register value can also be
stored in data memory. The auxiliary registers are mainly used as “pointers” to data
memory locations to more easily facilitate looping or repeating algorithms. They
are directly written to by the user code and are automatically incremented or
decremented by particular assembly instructions during a looping or repeating
operation. The auxiliary register pointer (ARP) embedded in status register STO
references the auxiliary register. The status registers (STO, ST1) are core level
registers where values such as the Data Page (DP) and ARP located. More on the
operation and use of auxiliary registers will be covered in subsequent chapters.

2.3  Mapping External Devices to the C2xx Core and the Peripheral
Interface

Since the LF2407 contains many peripherals that need to be accessed by the
C2xx core, the C2xx needs a way to read and write to the different peripherals. To
make this possible, peripherals are mapped to data memory (memory will be
covered shortly). Each peripheral is mapped to a corresponding block of data
memory addresses.  Where applicable, each corresponding block contains
configuration registers, input registers, output registers, and status registers. Each
peripheral is accessed by simply writing to the appropriate registers in data memory,
provided the peripheral clock is enabled (see System Configuration registers).
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22 C2xx DSP CPU and Instruction Set

The peripherals are linked to the internal memory interface of the CPU through
the PBUS interface shown in Fig. 2.1. All on-chip peripherals are accessed through
the Peripheral Bus (PBUS). All peripherals, excluding the WD timer counter, are
clocked by the CPU clock (which has a selectable frequency), and must be enabled
via the system configuration registers.

C2xx CPU + JTAG
+ 544 x 16 DARAM
Logic Flash/ROM
( StAgl.?Mm) I/F (up to 32K x 16)
up to 2K x
Mem I/F
l |
1 .
Synthesized ASIC gates
| P bus I/F |
T P bus
Event .
Managers SPI scI CAN WD c[(?r?trcol i:;zrt}zzs regli/s(t)ers
(EVA and EVB) P
ADC

Figure 2.1 Functional block diagram of the LF2407 DSP controller.

2.4  System Configuration Registers

The System Control and Status Registers (SCSR1, SCSR2) are used to
configure or display fundamental settings of the LF2407. For example, these
fundamental settings include the clock speed (clock pre-scale setting) of the
LF2407, which peripherals are enabled, microprocessor/microcontroller mode, etc.
Bits are controlled by writing to the corresponding data memory address or the logic
level on an external pin as with the microprocessor/microcontroller (MP/MC) select
bit. The bit descriptions of these two registers (mapped to data memory) are listed
below.

System Control and Status Register 1 (SCSR1) — Address 07018h

15 14 13 12 11 10 9 8
Reserved \ CLKSRC \ LPM1 \ LPMO \ CLK PS2 \ CLK PS1 \ CLK PSO \ Reserved
R-0 RW-0 RW-0 RW-0 RW-1 RW-1 RW-1 R-0
7 6 5 4 3 2 1 0
ADC scl SPI CAN EVB EVA Reserved | ILLADR

CLKEN CLKEN CLKEN CLKEN CLKEN CLKEN
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 R-0 RC-0

Note: R = read access, W = write access, C = clear, -0 = value after reset.
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Bit 15 Reserved

Bit 14 CLKSRC. CLKOUT pin source select

0 CLKOUT pin has CPU Clock (40 MHz on a 40-MHz device) as
the output
1 CLKOUT pin has Watchdog clock as the output

Bits 13—-12 LPM (1:0). Low-power mode select
These bits indicate which low-power mode is entered when the
CPU executes the IDLE instruction.

Description of the low-power modes:

LPM(1:0) Low-Power mode selected
00 IDLE1 (LPMO)
01 IDLE2. (LPM1)
1x HALT (LPM2)

Bits 11-9  PLL Clock prescale select. These bits select the PLL multiplication
factor for the input clock.

CLK CLK CLK System Clock Frequency
PS2 PS1 PS0

0 0 0 4 x Fip

0 0 1 2 x Fiy

0 1 0 1.33 x Fj,

0 1 1 1x Fip

1 0 0 0.8 x Fj,

1 0 1 0.66 x Fi,

1 1 0 0.57 x Fj,

1 1 1 0.5 x Fin

Note: Fj, is the input clock frequency.
Bit8 Reserved

Bit7 ADC CLKEN. ADC module clock enable control bit
0 Clock to module is disabled (i.e., shut down to conserve power)
1 Clock to module is enabled and running normally

Bit6  SCI CLKEN. SCI module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)
1 Clock to module is enabled and running normally
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Bit5  SPI CLKEN. SPI module clock enable control bit
0 Clock to module is disabled (i.e., shut down to conserve power)
1 Clock to module is enabled and running normally

Bit4 CAN CLKEN. CAN module clock enable control bit
0 Clock to module is disabled (i.e., shut down to conserve power)
1 Clock to module is enabled and running normally

Bit3 EVB CLKEN. EVB module clock enable control bit
0 Clock to module is disabled (i.e., shut down to conserve power)
1 Clock to module is enabled and running normally

Bit2 EVA CLKEN. EVA module clock enable control bit
0 Clock to module is disabled (i.e., shut down to conserve power)
1 Clock to module is enabled and running normally

Note: In order to modify/read the register contents of any peripheral, the clock to
that peripheral must be enabled by writing a 1 to the appropriate bit.

Bit 1 Reserved

Bit0 ILLADR. Illegal Address detect bit
If an illegal address has occurred, this bit will be set. It is up to
software to clear this bit following an illegal address detect. This
bit is cleared by writing a 1 to it and should be cleared as part of

the initialization sequence. Note: An illegal address will cause a
Non-Maskable Interrupt (NMI).

System Control and Status Register 2 (SCSR2) — Address 07019h

15-8
Reserved
RW-0
7 6 5 4 3 2 1 0
Reserved I/P QUAL WD XMIF HI-Z | BOOT EN MP/MC DON PON
OVERRIDE
RW-0 RC—1 RW-0 RW-BOOT RW- RW-1 RW-1
EN pin MP/MC pin

Note: R = read access, W = write access, C = clear, -0 = value after reset.

Bits 15-7 Reserved. Writes have no effect; reads are undefined
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Bit6 Input Qualifier Clocks.
An input-qualifier circuitry qualifies the input signal to the
CAP1-6, XINT1/2, ADCSOC, and PDPINTA/B pins in the
240xA devices. The I/O functions of these pins do not use the
input-qualifier circuitry. The state of the internal input signal will
change only after the pin is held high/low for 6 (or 12) clock
edges. This ensures that a glitch smaller than (or equal to) 5 (or
11) CLKOUT cycles wide will not change the internal pin input
state. The user must hold the pin high/low for 6 (or 12) cycles to
ensure that the device will see the level change. This bit
determines the width of the glitches (in number of internal clock
cycles) that will be blocked. Note that the internal clock is not the
same as CLKOUT, although its frequency is the same as

CLKOUT.

0 The input-qualifier circuitry blocks glitches up to 5 clock cycles
long

1 The input-qualifier circuitry blocks glitches up to 11 clock cycles
long

Note: This bit is applicable only for the 240xA devices, not for the 240x devices
because they lack an input-qualifier circuitry.

Bit5  Watchdog Override. (WD protect bit)
After RESET, this bit gives the user the ability to disable the WD
function through software (by setting the WDDIS bit = 1 in the
WDCR). This bit is a clear-only bit and defaults to a 1 after reset.

Note: This bit is cleared by writing a 1 to it.

0 Protects the WD from being disabled by software. This bit cannot
be set to 1 by software. It is a clear-only bit, cleared by writing a 1
1 This is the default reset value and allows the user to disable the

WD through the WDDIS bit in the WDCR. Once cleared,
however, this bit can no longer be set to 1 by software, thereby
protecting the integrity of the WD timer

Bit4 XMIF Hi-Z Control
This bit controls the state of the external memory interface
(XMIF) signals.

0 XMIF signals in normal driven mode; i.e., not Hi-Z (high
impedance)
1 All XMIF signals are forced to Hi-Z state
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Bit 3 Boot Enable
This bit reflects the state of the BOOT EN / XF pin at the time of
reset. After reset and device has “booted up”, this bit can be
changed in software to re-enable Flash memory visibility or return
to active Boot ROM.

0 Enable Boot ROM — Address space 0000 — OOFF is now
occupied by the on-chip Boot ROM Block. Flash memory is
totally disabled in this mode. Note: There is no on-chip boot
ROM in ROM devices (i.e., LC240xA)

1 Disable Boot ROM — Program address space 0000 — 7FFF is
mapped to on-chip Flash memory in the case of LF2407A and
LF2406A. In the case of LF2402A, addresses 0000 — 1FFF are
mapped

Bit2  Microprocessor/Microcontroller Select
This bit reflects the state of the MP/MC pin at time of reset. After
reset, this bit can be changed in software to allow dynamic
mapping of memory on and off chip.

0 Set to Microcontroller mode — Program Address range 0000 —
7FFF is mapped internally (i.e., Flash)
1 Set to Microprocessor mode — Program Address range 0000 —

7FFF is mapped externally (i.e., customer provides external
memory device.)

Bits 1-0  SARAM Program/Data Space Select

DON PON SARAM status
0 0 SARAM not mapped (disabled), address space allocated to
external memory
1 SARAM mapped internally to Program space
SARAM mapped internally to Data space
1 1 SARAM block mapped internally to both Data and
Program spaces. This is the default or reset value

—_— O

Note: See memory map for location of SARAM addresses

2.5 Memory

Memory is required to hold programs, perform operations, and execute
programming instructions. There are three main blocks of memory which are
present on the LF2407 chip: BO, B1, and B2. Additionally, there are two different
memory “spaces” (program, data) in which blocks are used. We will discuss
exactly what each memory “block” and memory “space” is, and what each is used
for.
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2.5.1  Memory Blocks and Types

A block of memory on the LF2407 is simply a specified range of memory
addresses (each address consists of a 16-bit word of memory). There are three main
memory blocks on the LF2407 that can be specified via the Linker Command File
(we will discuss the Linker Command File and other files types when we cover
programming).

The LF2407 has 544 16-bit words of on-chip Double Access Random Access
Memory (DARAM) that are divided into three main memory blocks named B0, B1,
and B2. In addition to the DARAM, there are also 2000 16-bit words of Single
Access Random Access Memory (SARAM). The main difference between
DARAM and SARAM is that DARAM memory can be accessed twice per clock
cycle and SARAM can only be accessed once per cycle. Thus, DARAM reads and
writes twice as fast as SARAM.

In addition to the RAM present on the LF2407, there is also non-volatile Flash
memory. Unlike RAM, the Flash memory does not lose its contents when the
LF2407 loses power. Flash memory can only be written to by “flashing” the
memory, which is a process that can only be done manually by a user. Therefore,
Flash memory on the LF2407 is used only to store a program that is to be run. As
stated in Chapter 1, it is only necessary to use the Flash memory if the DSP is to be
run independently from a PC and JTAG interface. Though we introduce Flash
memory, it will not be covered in this text. However, the reader is encouraged to
consult the Texas Instruments documentation on Flash memory. Flash memory can
prove to be a valuable code development tool when it comes time to test a LF2407
program where having a PC connected is impractical.

2.5.2  Memory Space and Allocation

There are two ways of using the physical memory on board the LF2407: storing
a program or storing data.

A program that is to be run must be stored in memory that is mapped to
program space. Likewise, only memory that is in data space may be used to store
data. Program memory is written to when a program is loaded into the LF2407.
Data memory is normally written to during the execution of a program, where the
program might use the data memory as temporary storage for calculation variables
and results.

Memory blocks Bl and B2 are configured as data memory. The BO block is
primarily intended to hold data, but can be configured to act as either program or
data memory, depending on the value of the CNF bit in Status Register ST1. CNF =
0 maps B0 in data memory, while CNF = 1 maps B0 in program memory.

The memory addresses associated with the SARAM can be configured for both
data memory and program memory, and are also software configurable to either
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access external memory or the internal SARAM. When configured for internal, the
SARAM can be used as data or program memory. However, when configured as
external, these addresses are used for off-chip program memory. SARAM is useful
if more memory is needed for data than the B0, B1, and B2 blocks can provide. The
SARAM addresses should be configured to either program or data space via the
Linker Command File.

The on-chip flash in the LF2407 is mapped to program memory space when the
external MP/MC-pin is pulled low. When the MP/MC-pin is pulled high, the
program memory is mapped to external memory addresses, access via memory that
is physically external to the LF2407. In the case of the Spectrum Digital EVM,
external memory is installed on the board and a jumper pulls the MP/MC pin high
or low.

2.5.3  Memory Maps

Program Memory

When a program is loaded into the LF2407, the code resides in and is run from
program memory space. In addition to storing the user code, the program memory
can also store immediate operands and table information. Figure 2.2 shows the
various program memory addresses (in hexadecimal) and how they are used.

0000h
Interrupt Reset 0000h-0001h
vectors
003Fh Interrupt level 1 0002h-0003h
0040h i
00d3h | P e Interrupt level 2 0004h-0005h
0044h
. Interrupt level 3 0006h-0007h
User code in
flash memory Interrupt level 4 0008h-0009h
7FFFh
8000h Interrupt level 5 000Ah-000Bh
External Interrupt level 6 000Ch-000Dh
FDFFh
FEOOh Reserved 000Eh-000Fh
Reserved
(CNF =1) i .
(External if CNF = 0) Software interrupts 0010h-0021h
TRAP 0022h-0023h
FEFFh
FF0Oh . NMI 0024h-0025h
On-chip
DARAM (B0
pae =(1) ) Reserved 0026h-0027h
rrpen | (External if CNF =0) Software interrupts 0028h-003Fh

32K on-chip flash (MP/MC = 0)
External (MP/MC = 1)

Figure 2.2 Program memory map for LF2407. (Courtesy of Texas Instruments)
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Two factors determine the configuration of program memory:

CNF bit:
The CNF bit determines if BO memory is in on-chip program space:
CNF = 0. The 256 words are mapped as external memory.
CNF = 1. The 256 words of DARAM B0 are configured for program use.
At reset, BO is mapped to data space (CNF = 0).

MP/MC pin:
The level on the MP/MC pin determines if program instructions
are read from on-chip Flash/ROM or external memory:
MP/MC = 0. The device is configured in microcontroller mode. The on-
chip flash EEPROM is accessible. The device fetches the reset
vector from on-chip memory.

MP/MC = 1. The device is configured in microprocessor mode. Program
memory is mapped to external memory.

Data Memory

For the execution of a program, it is necessary to store calculation results or
look up tables in memory. The memory allocated for this function is called data
memory. In order to store a value to a data memory address (dma), the
corresponding memory block must reside in data memory space. Blocks B1 and B2
discussed earlier permanently reside in data space, while block B0 and the SARAM
are configurable for either program or data.

Data memory space has the second functionality of providing an easy way to
access on-chip configuration registers and peripherals. Each user configurable
peripheral has associated registers in data memory addresses that may be written to
or read from as needed. For example, the control registers for the analog-to-digital
converter (ADC) are each located in the data memory range of 70A0h to 70BFh.
The internal data memory includes the memory-mapped registers, DARAM blocks,
and peripheral memory-mapped registers. The remaining 32K words of memory
(8000h to FFFFh) form part of the external data memory.
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Hex Hex
0000 0000
Memory-mapped registers ﬁi
and reserved i
005F s
On-chip DARAM B2
% . Interrupt flag register 0006
lllegal Ermulation registers 0007
00FF h and reserved
0100
Reserved A lllegal jmm
O1FF i
0200 / control registers 7010-701F
On-chip DARAMBO !
/ Watchdog timer registers 7020-702F
02FF /
0300 On-chip DARAMB1 lllegal | ~7030-703F
O03FF /
0400 ; SP 7040-704F
I’,
O4FF ,,: sc 7050-705F
0500 lllegel [ el 7ma7oe=
O7FF ki
! External-interrupt registers 7070-707F
0800 SARAM (2€) =
OFFF [ leg 08F
1000 ¥
Illegel Digital /0 cortrol registers 7090-709F
6FFF ‘
7000 1™ peripheral frame 1 (PF1) ADC control registers 70AD-70BF
% . llegal 70C0-70FF
Peripheral frame 2 .
743F 2 CAN control registers 7100-710E
7440 Illegal ‘1::\ lllegel T10F-71FF
e AN ;
7300 Peripherdl frarme 3 (PF3) IRUERNN CAN rrailbox T200-722F
T53F \ \“ \ \ lllegal T20-T3FF
7540 llegal L\
TIEF LAY . Eventmanager - EVA
$ Code security passwords \ “\‘ \ General-purpose timer registers | 74007408
\‘ “ “
v LAY au
T4 LAY Compers, PAM, 74117419
[N deadband registers
TIFF Reserved \ W
7800 [ANY Capture and GEP registers 7420-7429
TFFF llegel “. “\ “. Interrupt mask, vector, and
(O, i 742C7431
8000 \ R flag registers
Bxterral- N | llegel F432-743F
FFFF \ \
\ " Event manager - EVB
loge Indiicates that access to these " General-purpose tiimer registers | 75007508
addresses causes a nonmaskable in- Y
terrupt (NVI). \ Compare, PAM, and 75117519
v deadband registers
1}
Indicates addresses that are re- \ Capture and QEP registers 7520-7529
Reserved served for test. \ I —
y| et mask, vector, 7RCT53
\ flag registers
- Available in LF2407A only k | -
d Reserved P&sz

Figure 2.3 Data memory map for the LF2407. (Courtesy of Texas Instruments)
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Input/Output (I/0) Space

I/O space is solely used for accessing external peripherals such as the digital-to-
analog converter (DAC) on the LF2407 EVM. It is not to be confused with the 1I/0
functionality of pins. The assembly instruction “OUT” is used to write to an
address that is mapped to I/O space. Figure 2.4 depicts the basic memory map of
the I/O space on the LF2407.

0000h
External
FEFF
FFOO
Reserved
FFOE
FFOF Flash cor_]trol .
mode register
FF10
Reserved
FFFE
Wait-state generator
FFFF control register*

Figure 2.4 Memory map of I/O space. (Courtesy of Texas Instruments)

Within program, data, and /O space are addresses that are reserved for system
functionality and may not be written to. It is important that the user pay attention to
what memory ranges are used by the program and where the program is to be
loaded. It is important to make sure the Linker Command File is configured
properly and the correct Data Page (DP) is set to avoid inadvertently writing to an
undesired or reserved memory address.

Detailed information on the memory map is given in the Texas Instruments
TMS320LF/LC240xA DSP Controllers Reference Guide - System and Peripherals;
Literature Number: SPRU357A.

2.6 Memory Addressing Modes

There are three basic memory addressing modes used by the C2xx instruction
set. The three modes are:

e Immediate addressing mode (does not actually access memory)

e Direct addressing mode

e Indirect addressing mode
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2.6.1  Immediate Addressing Mode

In the immediate addressing mode, the instruction contains a constant to be
manipulated by the instruction. Even though the name “immediate addressing”
suggests that a memory location is accessed, immediate addressing is simply
dealing with a user-specified constant which is usually included in the assembly
command syntax. The “#” sign indicates that the value is an immediate address
(just a constant). The two types of immediate addressing modes are:

Short-immediate addressing. The instructions that use short-immediate addressing
have an 8-bit, 9-bit, or 13-bit constant as the operand.

For example, the instruction:
LACL #44h ;loads lower bits of accumulator with
;eight-bit constant (44h in this case)

Note: The LACL command will work only with a short 8-bit constant. If you want
to load a long 16-bit constant, then use the LACC command.

Long-immediate addressing. Instructions that use long-immediate addressing have
a 16-bit constant as an operand. This 16-bit value can be used as an absolute
constant or as a 2s-complement value.

For example, the instruction:
LACC #4444h ;loads accumulator with up to a 16-bit

;constant (4444h in this case)

If you need to use registers or access locations in data memory, you must use
either direct or indirect addressing.

2.6.2  Direct Addressing Mode

In direct addressing, data memory is first addressed in blocks of 128 words
called data pages. The entire 64K of data memory consists of 512 DPs labeled 0
through 511, as shown in the Fig. 2.5. The current DP is determined by the value in
the 9-bit DP pointer in status register STO. For example, if the DP value is “0 0000
00007, the current DP is 0. If the DP value is “0 0000 0010”, the current data page
is 2. The DP of a particular memory address can be found easily by dividing the
address (in hexadecimal) by 80h. For example:

For the data memory address 0300h, 300h/80h = 6h so the DP pointer is 6h.
Likewise, the DP pointer for 200h is 4h.
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DP Value Offset Data Memory
0000 0000 0 | 000 0000

. : Page 0: 0000h-007Fh
000000000 ' 111 1111
0000 0000 1 | 000 0000

: : Page 1: 0080h-00FFh
00000000 1 | 111 1111
0000 0001 0 | 000 0000

: . Page 2: 0100h-017Fh
000000010 | 111 1111

111111111 | 000 0000
: Page 511: FF80h-FFFFh

111111111 1111114

Figure 2.5 Data pages and corresponding memory ranges. (Courtesy of Texas

Instruments)

In addition to the DP, the DSP must know the particular word being referenced
on that page. This is determined by a 7-bit offset. The 7-bit offset is simply the 7
least significant bits (LSBs) of the memory address. The DP and the offset make up
the 16-bit memory address (see Fig. 2.6).

Data page pointer (DP) Instruction register (IR)
9 bits 8 MSBs 0 7 LSBs
All 9 bits from DP 7 LSBs from IR
Y A 4
Page (9 MSBs) Offset (7 LSBs)

16-bit data-memory address

Figure 2.6 Data page and offset make up a 16-bit memory address.

When you use direct addressing, the processor uses the 9 DP bits and the 7
LSBs of the instruction to obtain the true memory address. The following steps
should be followed when using direct addressing:
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1. Set the DP. Load the appropriate value (from 0 to 511 in decimal or 0-1FF
in hex) into the DP. The easiest way to do this is with the LDP instruction.
The LDP instruction loads the DP directly to the STO register without
affecting any other bits of the STO.

LDP #0E1lh ;sets the data page pointer to Elh
or
LDP #225 ;sets the data page pointer to 225 decimal

;which is E1 in hexadecimal

2. Specify the offset. For example, if you want the ADD instruction to use the
value at the second address of the current data page, you would write:
ADD 1h

If the data page points to 300h, then the above instruction will add the contents
of 301h to the accumulator

Note: You do not have to set the data page prior to every instruction that uses direct
addressing. If all the instructions in a block of code access the same data page, you
can simply load the DP before the block. However, if various data pages are being
accessed throughout the block of code, be sure the DP is changed accordingly.

2.6.3  Indirect Addressing Mode

Indirect addressing is a powerful way of addressing data memory. Indirect
addressing mode is not dependent on the current data page as is direct addressing.
Instead, when using indirect addressing you load the memory space that you would
like to access into one of the auxiliary registers (ARx). The current auxiliary
register acts as a pointer that points to a specific memory address.

The register pointed to by the ARP is referred to as the current auxiliary
register or current AR. To select a specific auxiliary register, load the 3-bit
auxiliary register pointer (ARP) with a value from 0 to 7. The ARP can be loaded
with the MAR instruction or by the LARP instruction. An ARP value can also be
loaded by using the ARx operand after any instruction that supports indirect
addressing as seen below.

Example of using MAR:
ADD * , ARL ;Adds using current * , then makes ARl the
;new current AR for future uses
Example of using LARP
LARP #2 ;this will make AR2 the current AR

The C2xx provides four types of indirect addressing options:
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No increment or decrement. The instruction uses the content of the
current auxiliary register as the data memory address but neither
increments nor decrements the content of the current auxiliary register.
Increment or decrement by 1. The instruction uses the content of the
current auxiliary register as the data memory address and then increments
or decrements the content of the current auxiliary register by one.

Increment or decrement by an index amount. The value in ARO is the
index amount. The instruction uses the content of the current auxiliary
register as the data memory address and then increments or decrements the
content of the current auxiliary register by the index amount.

Increment or decrement by an index amount using reverse carry. The
value in ARO is the index amount. After the instruction uses the content of
the current auxiliary register as the data memory address, that content is
incremented or decremented by the index amount. The addition and
subtraction process is accomplished with the carry propagation reversed
and is useful in fast Fourier transforms algorithms.

Table 2.1 displays the various operands that are available for use with instructions
while using indirect addressing mode.

Table 2.1 Indirect addressing operands.

Operand Option Example

*

*+

0+

*0-

*BRO+

*BRO-

No increment or decrement LT * loads the temporary register TREG with the content of
the data memory address referenced by the current AR.

Increment by 1 LT *+ loads the TREG with the content of the data memory
address referenced by the current AR and then adds 1 to the
content of the current AR.

Decrement by 1 LT *- loads the TREG with the content of the data memory
address referenced by the current AR and then subtracts 1
from the content of the current AR.

Increment by index amount LT *0+ loads the TREG with the content of the data memory
address referenced by the current AR and then adds the
content of ARO to the content of the current AR.

Decrement by index amount LT *0- loads the TREG with the content of the data memory
address referenced by the current AR and then subtracts the
content of ARO from the content of the current AR.

Increment by index amount, LT *BRO+ loads the TREG with the content of the data

adding with reverse carry memory address referenced by the current AR and then adds
the content of ARO to the content of the current AR, adding
with reverse carry propagation.

Decrement by index amount, LT *BRO- loads the TREG with the content of the data

subtracting with reverse carry memory address referenced by the current AR and then
subtracts the content of ARO from the content of the current
AR, subtracting with bit reverse carry propagation.
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2.7  Assembly Programming Using the C2xx DSP Instruction Set

This section is dedicated to developing code using the C2xx assembly
instruction set and Code Composer Studio (CCS). We will start by introducing the
basics of using the instruction set and provide examples of different options when
using an assembly instruction. Then we will cover code development in CCS
including an explanation of the main file types used to create and compile a working
assembly program. Finally, an exercise will be presented to allow the reader to
practice the new skills presented in this chapter.

2.7.1  Using the Assembly Instruction Set

The complete detailed instruction set for the C2xx DSP core can be found in
the Texas Instruments TMS320F/C24x DSP Controllers Reference Guide: CPU and
Instruction Set; Literature Number: SPRUI60C. This reference guide contains a
complete descriptive listing on syntax, operands, binary opcode, instruction
execution order, status bits affected by the instruction, number of memory words
required to store the instruction, and clock-cycles used by the instruction. The
Texas Instruments documentation on the assembly instruction set is very well
written. Each assembly instruction has a complete explanation of the instruction, all
optional operands, and several examples of the instructions used. Since including
the instruction set and complete documentation would make this book excessively
long, we will assume the reader has access to the documentation referred to above.

We will therefore focus on developing code, not the instruction set itself. Each
command starts with the basic assembly instruction. Each command supports
specific addressing modes and options. For example, the ADD command will work
with direct, indirect, and immediate addressing. In addition to the basic command,
many instructions have additional options that may be used with the instruction.
For example, the ADD command supports left shifting of the data before it is added
to the accumulator.

The following is the instruction syntax for the ADD command:

ADD dma [, shift] ; Direct addressing

ADD dma, 16 ; Direct with left shift of 16
ADD ind [, shift [, ARn]] ; Indirect addressing

ADD ind, 16 [, ARn] ; Indirect with left shift of 16
ADD #x ; Short immediate addressing
ADD #1k [, shift] ; Long immediate addressing

The following is a list of the various notations used in C2xx syntax examples:

Italics Italic symbols in instruction syntax represent variables.
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Example: LACC dma , you can use several way to address the dma (data
memory address).
LACC  *
or
LACC  200h
or
LACC v ; where “w” is any variable assigned to data
memory

where *, 200h, and v are the data memory addresses
Boldface Characters Boldface characters must be included in the syntax.
Example: LAR dma, 16 ; direct addressing with left shift of 16

LAR AR1l, 60h, 16 ; load auxiliary ARl register with the
memory contents of 60h that was left shifted
16 bits

Example: LACC dma, [shift] ; optional left shift from 0, 15 ; defaults to 0

LACC main counter, 8 ; shifts contents of the variable
“main_counter” data 8 places to the left

before loading accumulator
[1 An optional operand may be placed in the placed here.

Example: LACC ind [, shift [, AR n]_] Indirect addressing

LACC * ;load Accum. w/contents of the memory
;location pointed to by the current AR.

LACC * ,5 ;load Accum. with the contents of the memory
;location pointed to by the current AR after
;the memory contents are left shifted by 5
;bits

LACC * ,0, AR3 ;load Accum. with the contents of the memory
;location pointed to by the current AR after
;the memory contents are left shifted by 5
;bits . Now you have the option of choosing
;a new AR. In this case, AR3 will become the

;new AR.

[ x1[,x2]] Operands x1 and x2 are optional, but you cannot
include x2 without also including x1.
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It is optional when using indirect addressing to modify the data. Once you
supply a left shift value from 0...15 (even a shift of 0), then you have the option of
changing to a new current auxiliary register (AR).

# The # sign is prefix that signifies that the number used is a constant as
opposed to memory location.
Example: RPT #15 ; this syntax is using short immediate addressing. It
will repeat the next instruction 15+1 times.

LACC #60h ;this will load the accumulator with the
;constant 60h
LACC 60h ;However, this instruction will load the

;accumulator with the contents in the data
;memory location 60h, not the constant #60h

We will now provide a few examples of using the instruction set. Example 2.1
performs a few arithmetic functions with the DSP core and illustrates the nature of
assembly programming. Programming with the assembly instruction set is
somewhat different than languages such as C. In a high-level language, to add two
numbers we might just code “c =a + b”. In assembly, the user must be sure to code
everything that needs to happen in order for a task to be executed. Take the
following example:

Example 2.1 - Add the two numbers “2” and “3”:

LDP #6h ;loads the proper DP for dma 300h

SPLK #2, 300h ;store the number “2” in memory address 300h

LACL #3 ;load the accumulator with the number “3”

ADD 300h ;adds contents of 300h (“2”) to the contents
;of the accumulator(“3”); accumulator = 5

Another way:

LDP #6h ;loads the proper DP for dma 300h

SPLK #2h, 300h ;store the number “2h” in memory address
;300h

SPLK #3h, 301lh ;stores the number “3h” into memory address
;301h

LACL 300h ;load the accumulator with the contents in
;memory location 300h

ADD 301lh ;adds contents of memory address 301h (“3h”)
;to the contents of the accumulator (“2h”)

jaccumulator = 5h
Looping algorithms are very common in all programming languages. In high-

level languages, the “For” and “While” loops can be used. However, in assembly,
we need a slightly different approach to perform a repeating algorithm. The
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following example is an algorithm that stores the value “1” to memory locations
300h, 301h, 302h, 303h, and 304h.

Example 2.2- Looping Algorithm Using the Auxiliary Register

LAR ARO, #4 ;load auxiliary register 0 with #4
LAR AR1, #300h ;this AR will be used as a memory pointer
LACL #1h ;loads “1” into the accumulator
LOOPER MAR *, ARl ;makes ARl the next current AR
SACL *+, ARO ;writes contents of accumulator to address

;pointed to by AR1, the “+” increments AR1
;by 1, next current AR is ARO

BANZ LOOPER ;branch to LOOPER while current AR is not 0
;decrements current AR by 1 and branches
;back to LOOPER

One might wonder if assembly language is so tedious to use, why not just
program in a high-level language all the time. When code written in a high level
language is compiled into assembly, the length of the code increases substantially.
For example, if an assembly program takes up 50 lines, the same program written in
C might take 150 lines after it is compiled. For this reason, code written in
assembly almost always executed faster and uses less memory than high-level
language code.

2.7.2  Code Generation in Code Composer Studio (CCS)

In order to develop a working program in CCS, one needs to understand the
main file types and structure of the code composer project file. The project file
(*mak) is the main file that links the other necessary sub-files together. The sub-
files mentioned include source files (*.asm for assembly), header (*./) files, include
(*.0) files, and linker command files (*.cmd).

During the “building” of a project, CCS “assembles” and “links” the source
file(s) and creates a DSP compatible (*.out) file that will ultimately be loaded onto
the DSP. The out file contains the user program and also information as to where in
program memory it will be placed. We will start the explanation of files with the
assembly source file.

The assembly source file contains the code that will be executed when the DSP
program runs. While there may be many source files in large projects, it is really
only necessary to have one source file. If many source files exist, the linking order
must be specified in CCS in order to ensure that the code will be operational. The
file that follows is template.asm. This template source file encompasses the basics
of a source file. The file template.asm contains many lines of assembly instructions
which include comments to explain their function.
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The Assembly Source File

Important Note: Only a comment ”;” or ” *” or label such as “KICK_DOG” may
be written starting on the first space of a line. ALL assembly commands must start
at least from the second space on a line!

;* Source File “template.asm” for 2407 DSP programs *
;* Target Hardware: 2407 DSP EVM *
include 240x.h ;this is the register definition file, MUST
; INCLUDE ! !

include vector.h ;this is the interrupt vector file that you
;must include ;if you are using interrupts,
;1f you are not using any interrupts, it

;doesn't hurt to include it anyway

KICK_DOG .macro ;Watchdog reset macro, resets watchdog
LDP #00EOh ;DP-->7000h-707Fh
SPLK #05555h, WDKEY
SPLK #0AAAAh, WDKEY

LDP #0h ;DP-->0000h-007Fh
.endm
jRx*FFFHFXFXEND KICK DOG MACRO* **
continued.....

continued from above ...
;* Variables declaration: these are commented out, and are not needed
unless you want to define a variable

; .bss varl,1
; .bss varz,1
; .bss var3,1
; .bss var_name, 1 ;you may continue as needed
.text ; this is the start of the actual program
;***General Initialization*****
START: LDP #0h ;Set DP=0
SETC INTM ;Disable interrupts
SPLK #0000h, IMR ;Mask all core interrupts
LACC IFR ;Read Interrupt flags
SACL IFR ;Clear all interrupt flags
LDP #00EOh ; (E0=224) (E0*80=7000)
SPLK #006Fh, WDCR ;Disable WD if VCCP=5V (706F)
SPLK #0000h, SCSR1 ;All peripheral clocks disabled,
;PLL= clock x 4
SPLK #00FCh, SCSR1 ;All peripheral clocks enabled, PLL
;= clock x 4
KICK_DOG ; run the KICK DOG macro
SPLK #0h, 60h ;Set wait state generator for: 0 wait states
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ouT 60h, WSGR ;Program Space, 0-7 wait states

;***General Initialization complete!!, START YOUR CODE ON NEXT LINE***
;****END YOUR CODE HERE, if interrupts are used, add interrupt service
;routine under GISRx, if no interrupts are used, leave following code

jas ig *xkkxx

PHANTOM KICK_DOG ;This dummy loop is just in case a wild
B PHANTOM ;interrupt happens, all non-used interrupts
;are set to branch to PHANTOM, this

jroutine just resets the watchdog timer.

GISR1l: RET ;Interrupt #1 service routine
GISR2: RET ;Interrupt #2 service routine
GISR3: RET ;Interrupt #3 service routine
GISR4: RET ;Interrupt #4 service routine
GISR5: RET ;Interrupt #5 service routine
GISR6: RET ;Interrupt #6 service routine
.end ;this tells the assembler that this is the
;end of the program, YOU MUST INCLUDE the
;" .end"

(32 34

Starting at the top of the file, we can see the comments indicated by the or
“”s. Some versions of CCS might not recognize “*” as a comment indicator.
Further down, the “.include” command tells CCS what header files will be included
in the assembling of the project. We will discuss the purpose of header files shortly.
After the header files, we see the KICK_DOG macro. The KICK DOG macro is a
subroutine that will run every time the line “KICK DOG” is written. Basically,
KICK DOG resets the watchdog timer on the LF2407. The watchdog timer, fed by
the system clock, counts up and will generate a general system reset if it reaches an
overflow. This ensures that if some event (software error) causes an inadvertent
system lock-up, then the DSP will be reset automatically. The basic idea is that
after the lock-up subsequent reset by the watchdog, the DSP will reinitialize itself
and start to function normally, thereby increasing system integrity (if the same event
does not occur again!). For our learning purposes, we will disable the watchdog
timer.

After the KICK DOG macro declaration, we see an optional variable
declaration section. The “.bss” command can be used to define variables, of which
the values will be stored in sequential order in the memory locations specified by
the “.bss” section in the linker command file. 1t is still necessary to set the data page
for the corresponding memory address when using a variable.

The “.text” line signifies the start of the program. This is followed by the
“START” label. Labels are the only syntax that may be placed on the first space of
any line. The next lines initialize the LF2407, disable the watchdog timer, and set
for zero wait states. Wait states introduce a delay into the external memory
interface for accessing slow external memory, but are not needed for our purposes.
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After these instructions are written, the functional part of the user code can be
considered.

Finally, we come to the interrupt vectors GISR1, GISR2, etc. The operation of
interrupts will be explained in Chapter 5. Because no interrupts are currently being
used, the interrupt vectors simply are set so that any hypothetical random interrupt
will cause the DSP to return to the program and do nothing. We must include the
(GISR1, GISR2,...) labels because they are referenced in the vector.h header file.

Header Files

Header files (*.h) like 240x.h and vector.h (both below) discussed previously
serve the purpose of providing definitions or other information that would otherwise
add a substantial amount of code lines to the source file. Although it is not
absolutely necessary to include a header file in the source file, header files allow the
user to avoid re-writing commonly used definitions from program to program. The
information contained in the file 240x.s consists of setting variables in the name of
actual registers to their respective data memory addresses. This allows the
programmer to simply type the name of the intended control register rather than
having to constantly look up the actual memory.

For example, the SCSR1 register is located at 7018h in data memory. In the
file 240x.h you can see how register names are set as variables with the memory
address as the value. The purpose for this is to provide for more user-friendly
programming. Instead of coding:

SPLK #00FCh, 7018h ;which would work Jjust fine for writing
;FCh to 7018h (the SCSR1 register)
we may write:

SPLK #00FCh, SCSR1 ;not only is this easier, but it aids in

;documentation as well

The file “240x.h” contains the control register definitions. A section of the file is
included below:

ek kkhk kA Ak A A A Ak Ak kA hkhkhkhkhk kA hkhkhkhk kA kA Ak hhhkhhhhkhkkhkhkk kA kA Ak hk kA kA Ak Ak Ak kkk ok ok ok k%

File name: 240x.h

;
7

; Description:240x register definitions, Bit codes for BIT instruction
,-~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k************************
;

240x CPU core registers

IMR .set 0004h ; Interrupt Mask Register
IFR .set 0006h ; Interrupt Flag Register

; System configuration and interrupt registers
SCSR1 .set 7018h ; System Control & Status register. 1
SCSR2 .set 701%h ; System Control & Status register. 2
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DINR .set 701Ch ; Device Identification Number register.
PIVR .set 701Eh ; Peripheral Interrupt Vector register.
PIRQRO .set 7010h ; Peripheral Interrupt Request register 0
PIRQR1 .set 7011h ; Peripheral Interrupt Request register 1
PIRQR2 .set 7012h ; Peripheral Interrupt Request register 2

The header file vector.h contains interrupt vector information. This file
specifies what section of source code the processor will branch to when an interrupt
occurs. By looking at the file, we can see that we have many branch statements.
When an interrupt occurs, the processor first branches to Oh in program memory.
It then sequentially checks each program memory address for an identifiable
interrupt label (INTx) that corresponds to the pending interrupt. When it finds a
match, it executes the instruction on that line, which in this case is a “B GISRx”
instruction. The branch instruction causes the DSP to branch to the GISRx label
(which is in the source code) under which the interrupt service routine is written.
The processor then starts executing the code under that section.

INT1 through INT6 are the corresponding labels for these interrupts in the
vector file. Notice the “B GISRx” command after each “INTx”. More on interrupts
will be covered later in Chapter 5.

The file “vector.h” contains the interrupt vectors for the LF2407. A section of this
file is shown below:

sk kkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhk ok ok ok ok ok ok ok ok ok ok ok k%
’

; File name: wvector.h

; Interrupt Vector declarations

; This section contains the vectors for various interrupts in the

; 240x. Unused interrupts are shown to branch to a "phantom" interrupt
; service routine which loops to itself. Users should replace the

; label PHANTOM with the label of their interrupt subroutines in case
; these interrupts are used.

ek kkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkk ok ok ok ok ok ok ok kkkk k%
’

.sect "vectors"

RSVECT B START ; Reset Vector

INT1 B GISR1 ; Interrupt Level 1

INT2 B GISR2 ; Interrupt Level 2

INT3 B GISR3 ; Interrupt Level 3

INT4 B GISR4 ; Interrupt Level 4

INTS B GISRS5 ; Interrupt Level 5

INT6 B GISR6 ; Interrupt Level 6

RESERVED B PHANTOM ; Reserved

SW_INT8 B PHANTOM ; Software Interrupt
SW_INT9 B PHANTOM ; Software Interrupt
SW_INT10 B PHANTOM ; Software Interrupt
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SW_INTI11 B PHANTOM ; Software Interrupt
SW_INT12 B PHANTOM ; Software Interrupt
SW_INT13 B PHANTOM ; Software Interrupt
SW_INT14 B PHANTOM ; Software Interrupt
SW_INT1S5 B PHANTOM ; Software Interrupt
SW_INT16 B PHANTOM ; Software Interrupt
TRAP B PHANTOM ; Trap vector

NMI B NMI ; Non-maskable Interrupt
EMU_TRAP B PHANTOM ; Emulator Trap
SW_INT20 B PHANTOM ; Software Interrupt
SW_INT21 B PHANTOM ; Software Interrupt
SW_INT22 B PHANTOM ; Software Interrupt

The linker command file (*.cmd) specifies to CCS where valid memory exists
in both program and data memory. It also specifies where the .zext, .sect, .bss, and
other sections will be placed in memory.

Looking at the linker command file, it is broken into three “pages”. Page 0
refers to program memory (memory where the user code actually resides). Page 1
refers to data memory that contains control registers and memory. Page 2 defines
memory that is reserved for I/O using external peripherals (you do not normally use
the I/O memory except for disabling the watchdog timer or writing to the DAC). In
each page, we can see the declarations of different memory ranges, their start
address, and their length.

NOTE: Memory that is not defined in the linker command file will not be recognized
by the program and cannot be used even if the memory physically exists.

The SECTIONS title lists assembler directives that are used to assign particular
parts of code or variables to certain sections in memory. For example:

The .text directive tells the linker to put this section of the code in program
memory starting at 0000h. The .bss directive tells the linker that all code written
under this title should be placed in the location defined in the linker command file
(in this case, the location BLK_ B2 which starts at 60h in data memory and is 20h in
length).

Each section is defined in either the source file or the header file. Near the top
of the vector.h file, the line “.sect” and “.vectors” relates to the 2407.cmd file
where the section “vectors” is defined. This tells CCS to place the following vector
code in the memory defined in the linker command file as “vectors”. In this case,
“vectors” is defined to start at Oh in program memory.
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NOTE: Both .text and .vectors sections are listed to start at Oh in program memory
in “2407 PM.cmd”. .vectors will be placed before the .text section in program
memory.

You are not necessarily required to use the above linker command file as
shown. For example, if you wanted to start BLK B1 at 301h instead of 300h, you
can modify the ORIGIN of BLK B1 to do so, but you would have to modify the
LENGTH definition to account for the new memory range.

The following file is the linker command file “2407_PM.cmd”.

MEMORY

{

PAGE O0: /* PROGRAM MEMORY */

PM :ORIGIN=0h, LENGTH=08000h /*On chip flash */

SARAM P :ORIGIN=08000h, LENGTH=0800h /*SARAM* / /*program
External RAM*/

EX1 PM :ORIGIN=08800h, LENGTH=07600h

BO_PM :ORIGIN=0FF00h, LENGTH=0100h /*On-chip*/ /*DARAM if
CNF=1, else external*/

/*B0_PM = FF00 to FFFF */

PAGE 1: /*DATA MEMORY */

REGS :ORIGIN=0h, LENGTH=60h /*Memory mapped*/
/*regs & reserved address */

BLK B2 :ORIGIN=60h, LENGTH=20h /*Block B2*/

BLK_BO :ORIGIN=200h , LENGTH=100h /*Block BO*/
/*On chip DARAM if CNF=0%*/

BLK Bl :ORIGIN=300h , LENGTH=100h /*Block B1*/

SARAM D :ORIGIN=0800h , LENGTH=0800h /*2K SARAM*/
/*in data*/

PERIPH :ORIGIN=7000h , LENGTH=1000h /*Peripheral regs*/

EX2 DM :ORIGIN=8000h , LENGTH=8000h /*External RAM*/

PAGE 2: /* I1/0 MEMORY */

I0 EX :ORIGIN=0000h , LENGTH=0FFFOh /*External I/0%/
/*mapped peripherals */

I0 IN :ORIGIN=0FFFOh, LENGTH=0Fh /* On chip I/0 */
/*mapped peripherals */

}

SECTIONS

{

vectors :{} > PM PAGE 0
.text :{} > PM PAGE O
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.bss :{} > BLK B2 PAGE 1
.data :{} > BLK Bl PAGE 1

}

2.7.3 Code Generation Exercise Using Code Composer

This exercise will help you to become familiar with using the instruction set of
the C2xx and the different modes of memory addressing. This exercise is intended
to be an introduction to programming the C2xx core.

1. Startup CCS.

Open a new project by going to Project/New. Enter “lab2” for the project
name.

3. You are now ready to start adding files to your project.

4. Create a new source file called “lab2.asm”. Do this by going to
File/New/Source in CCS. Be sure to use the .include directive to include
the 240x.h and vector.h header files as in template.asm.

5. Next add “lab2.asm” to the project. Go to Project/Add files to Project, and
add “lab2.asm” to the project. See Fig. 2.7.

File Edit Miew | Project Debug  Profiler Option GEL Toolz Window Help

E’*n|c' Mesw... j|£-&g

Open...

W &dd Files to Project...

v E‘l:l Gl Cloze

[Eammpie Eie
B-0 Build

Bebuild Al
i Bl

Show Dependencies
Scan Al Dependencies
Optionz...

Recent project files r

Figure 2.7 Adding files to a project.

6. Find the files “240x.h”, “vector.h”, and “2407 PM.cmd”. Copy the files to
the same directory in which your project is stored.

7. Add “2407 _PM.cmd” to the project in the same way as “lab2.asm”.

8. Now that the source file and linker command file are added to the project,
go to Project/Scan All Dependencies” (see Fig. 2.8). Notice how the files
now appear under the “Include” folder in the project window.
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""' fC2xx Simulator [Texas Instruments]/CPU - CZ2<< Code Composer [Simulator

File Edit “iew | Project Debug Profiler Option GEL Tool: Window Help

| New. 2l &

Open...
W &dd Files to Praject...
" E||:| Gl Claze

...... | gy
=-Ea P pyid
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Recent project files k

T
Figure 2.8 Scanning files for dependent sub-files.

9. Open “lab2.asm” by double-clicking on the file from the project menu.

10. In the “lab2.asm” source file, write a simple program that stores the
number “35” into data memory location “305h” and adds it to the number
“10” stored in data memory location “306h”. Store the result in the data
memory location “60h”.

Hint: The following commands might be useful: SPLK, LACL, LACC, SACL,
and ADD. Refer to the C2xx Instruction Set for more information about assembly
commands.

Always be sure to set the appropriate data page pointer for the memory
addresses. (Remember, this can be done by simply dividing the memory address (in
hexadecimal) by “80h™.)

If you get the build error “>> Warning: entry point symbol _c_int0 undefined” try
changing the C Initialization from “ROM Auto initialization” to “No Auto
initialization” by going to Project/Options/Linker tab/C Initialization.

11. Using indirect addressing and a looping routine, add another algorithm
which writes #0h to 300h, writes #1h to 301h, writes #3h to 303h etc... all
the way to 30Fh.

12. Add another routine to check memory 300h through 30Fh for the proper
data (Oh-Fh). If all the registers contain the proper data, your program
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should write “Ah” in memory location 310h. If even one memory location
has the incorrect data in it, write “DEADh” to 310h.

13. Write another algorithm to multiply the hex numbers in memory locations
300h through 30Fh by “#5h” and stores them in memory locations 320h
through 32Fh.

This laboratory exercise has now concluded.
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Chapter 3

GENERAL PURPOSE INPUT/OUTPUT (GPIO) FUNCTIONALITY

3.1  Pin Multiplexing (MUX) and General Purpose I/O Overview

Due to the limited number of physical pins on the LF2407 DSP, it is necessary
to multiplex two functions onto most of the pins. That is, each pin can be
programmed for either a primary or secondary (GPI/O) function (see Fig. 3.1).
Once the pins on the LF2407 are multiplexed, the effective pin-out of the device is
doubled. This provides enough effective pin-out for six General Purpose Input
Output (GPIO) ports to be configured as the secondary function on most pins. Each
Input/Output Port (IOP) consists of eight pins when they are configured to their

secondary function.
0P data bit "
(Read/Write) Primary
function

In Cut
1CF DIR bit
0 = Input
1 =0utput
0 4 MU control bit
Q F_ 0 = 10 function
1 = Primary function
Pullup
ar
Pulldown
Primary function ;
oriopin | Fin

Figure 3.1 Block diagram of the multiplexing of a single pin. (Courtesy of Texas
Instruments)

GPIO pins are grouped in sets of eight pins called ports. There are six ports
total, ports A through F. Even though the pins are grouped in ports, each pin can be
individually configured as primary or secondary (GPIO) functionality; and if GPIO,
then either input or output. The multiplexing of primary pin functions with
secondary GPIO functions provides a flexible method of controlling both the
dedicated and secondary pin functions.

Each multiplexed pin’s primary/secondary functionality is controlled by a
corresponding bit in the appropriate MUX control register. Additionally, when the
pin is in GPIO mode, there are port data and direction (PXDATDIR) control

49
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registers which control the direction (input or output) and data of the port/pin. If the
pin is configured as an output, then the data (voltage) on the pin is determined by
what value is written to the pin’s data bit. Inversely, if the pin is configured as an
input, then the voltage level applied to the pin determines the value of the pin’s
corresponding data bit.

If the pin is configured as an output pin, it can either be set to a logic high “1”
(3.3 Volts) or a logic low “0” (0 Volts) by writing to its corresponding data bit in
the corresponding PXDATDIR register. If the pin is configured as an input, the
pin’s corresponding bit in the appropriate PXDATDIR register will be “1” if 3.3
Volts or “0” if 0 Volts is applied to the pin. The data bits in the PxDATDIR can
then be read by the user code and the values used in the program. The input and
output ports provide a convenient way to input or output binary data (each pin = 1
bit). For example, a seven-segment display could be controlled by a GPIO port
configured as output.

Note: There is no relationship between the GPIO pins and the I/O space of the
LF2407.

3.2 Multiplexing and General Purpose I/O Control Registers

The three MUX control registers and six data/direction control registers are all
mapped to data memory (see Table 3.1). They control all dedicated and shared pin
functions:

e /O MUX Control Registers (MCRA, MCRB, MCRC): These 16-bit
registers determine whether a pin will operate in its primary function or
secondary GPIO function. Two ports are assigned to each MUX control
register. For example, the MCRA register controls ports A and B.

e Data and Direction Control registers (PXDATDIR): Once a pin is
configured in I/O mode by the appropriate MUX control register, the
appropriate PxDATDIR register is used to configure each pin as input or
output; and if output, whether the pin is high (3.3 Volts) or low (0 Volts).

Table 3.1 GPIO Control Register Summary
Data Memory Register Name Description
Address
7090h MCRA I/O0 MUX Control Register A
7092h MCRB I/0 MUX Control Register B
7094h MCRC I/0 MUX Control Register C
7098h PADATDIR I/O Port A Data and Direction Register
709Ah PBDATDIR I/0O Port B Data and Direction Register
709Ch PCDATDIR I/0O Port C Data and Direction Register
709Eh PDDATDIR I/O Port D Data and Direction Register
7095h PEDATDIR I/O Port E Data and Direction Register
7096h PFDATDIR I/O Port F Data and Direction Register
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3.2.1  I/O Multiplexing (MUX) Control Registers

I/0 MUX Control Register A (MCRA) Configuration

51

15 14 13 12 1 10 9 8
MCRA.15 ‘ MCRA.14 ‘ MCRA.13 ‘ MCRA.12 ‘ MCRA.11 ‘ MCRA.10 ‘ MCRA.9 ’ MCRA.8
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
MCRA.7 ‘ MCRA.6 ‘ MCRA.5 ‘ MCRA.4 ‘ MCRA.3 ‘ MCRA.2 ‘ MCRA.1 ‘ MCRA.0
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.

Pin Function Selected

Bit # Name.bit # (MCAn=1) (MCA.n=0)

(Primary) (Secondary)
0 MCRA.O SCITXD IOPAO
1 MCRA.1 SCIRXD IOPA1
2 MCRA.2 XINT1 IOPA2
3 MCRA.3 CAP1/QEP1 IOPA3
4 MCRA 4 CAP2/QEP2 IOPA4
5 MCRA.5 CAP3 IOPA5
6 MCRA.6 PWM1 IOPAGB
7 MCRA.7 PWM2 IOPA7
8 MCRA.8 PWM3 IOPBO
9 MCRA.9 PWM4 I0PB1
10 MCRA.10 PWM5 IOPB2
11 MCRA.11 PWM6 IOPB3
12 MCRA.12 T1PWM/T1CMP IOPB4
13 MCRA.13 T2PWM/T2CMP IOPB5
14 MCRA.14 TDIRA IOPB6
15 MCRA.15 TCLKINA IOPB7
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I/0 MUX Control Register B (MCRB) Configuration

15 14 13 12 1 10 9 8
I MCRB.15 ‘ MCRB.14 ‘ MCRB.13 ‘ MCRB.12 ‘ MCRB.11 ‘ MCRB.10 ‘ MCRB.9 ‘ MCRB.8 |
RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-0
7 6 5 4 3 2 1 0

I MCRB.7 ‘ MCRB.6 ‘ MCRB 5 ‘ MCRB.4 ‘ MCRB.3 ‘ MCRB.2 ‘ MCRB.1 ‘ MCRB.0 |

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-1 RW-1

Note: R = read access, W = write access, -0 = value after reset.

Pin Function Selected

Bit # Name.bit # (MCB.n =1) (MCB.n = 0)
(Primary) (Secondary)
0 MCRB.0 W/R IOPCO
1 MCRB.1 BIO IOPC1
2 MCRB.2 SPISIMO IOPC2
3 MCRB.3 SPISOMI IOPC3
4 MCRB.4 SPICLK IOPC4
5 MCRB.5 SPISTE IOPC5
6 MCRB.6 CANTX IOPC6
7 MCRB.7 CANRX IOPC7
8 MCRB.8 XINT2/ADCSOC IOPDO
9 MCRB.9 EMUO Reserved
10 MCRB.10 EMU1 Reserved
11 MCRB.11 TCK Reserved
12 MCRB.12 TDI Reserved
13 MCRB.13 TDO Reserved
14 MCRB.14 TMS Reserved
15 MCRB.15 TMS2 Reserved
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I/O MUX Control Register C (MCRC) Configuration
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15 14 13 12 11 10
Reserved ’ Reserved ‘ MCRC.13 ‘ MCRC.12 ’ MCRC.11 ‘ MCRC.10 ‘ MCRC.9 ‘ MCRC.8
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
7 5 4 2 0
MCRC.7 ’ MCRC.6 ‘ MCRC.5 ‘ MCRC.4 ’ MCRC.3 ‘ MCRC.2 ‘ MCRC.1 ‘ MCRC.0
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-1
Note: R = read access, W = write access, -0 = value after reset.
Pin Function Selected
it# Name.bit # (MCC.n=1) (MCC.n =0)
(Primary) (Secondary)
0 MCRC.0 CLKOUT IOPEO
1 MCRC.1 PWM7 IOPE1
2 MCRC.2 PWM8 IOPE2
3 MCRC.3 PWM9 IOPE3
4 MCRC.4 PWM10 IOPE4
5 MCRC.5 PWM11 IOPE5
6 MCRC.6 PWM12 IOPE6
7 MCRC.7 CAP4/QEP3 IOPE7
8 MCRC.8 CAP5/QEP4 IOPFO
9 MCRC.9 CAPG6 IOPF1
10 MCRC.10 T3PWM/T3CMP IOPF2
11 MCRC.11 T4PWM/T4CMP IOPF3
12 MCRC.12 TDIRB IOPF4
13 MCRC.13 TCLKINB IOPF5
14 MCRC.14 Reserved IOPF6
15 MCRC.15 Reserved Reserved
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3.2.2  Port Data and Direction Control Registers
Port A Data and Direction Control Register (PADATDIR)

15 14 13 12 11 10 9 8
A7DIR ‘ A6DIR ‘ A5DIR ‘ A4DIR ‘ A3DIR ‘ A2DIR ‘ A1DIR ‘ AODIR
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
IOPA7 ’ IOPA6 ‘ IOPA5 ‘ IOPA4 ’ IOPA3 ‘ IOPA2 ‘ IOPA1 ‘ IOPAQ
RW-! Rw- RW-! Rw-! Rw- RW-! Rw-! RW-!

1 The reset value of these bits depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset.

Bits 15-8 AnDIR — Direction Bits

0 Configure corresponding pin as an input
1 Configure corresponding pin as an output

Bits 7-0 IOPAn — Data Bits
If AnDIR = 0, then:

0 Corresponding 1/O pin is read as a low

1 Corresponding /O pin is read as a high
If AnDIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high

Port B Data and Direction Control Register (PADATDIR)

15 14 13 12 11 10 9 8
B7DIR ’ B6DIR ‘ B5DIR ‘ B4DIR ’ B3DIR ‘ B2DIR ‘ B1DIR ‘ BODIR
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
IOPB7 ‘ IOPB6 ‘ IOPB5 ‘ IOPB4 ‘ IOPB3 ‘ IOPB2 ‘ IOPB1 ‘ IOPBO
RW- RW-' RW- RW- RW-' RW-' RW- RW-!

T The reset value of these bits depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset.

Bits 15-8 BnDIR — Direction Bits

0 Configure corresponding pin as an input
1 Configure corresponding pin as an output
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Bits 7-0 IOPBn — Data Bits
If BnDIR = 0, then:

0 Corresponding 1/O pin is read as a low

1 Corresponding 1/O pin is read as a high
If BnDIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high

Port C Data and Direction Control Register (PCDATDIR)

15 14 13 12 11 10 9 8
C7DIR ’ C6DIR ‘ C5DIR ‘ C4DIR ’ C3DIR ‘ C2DIR ‘ C1DIR ‘ CODIR
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
IOPC7 ‘ IOPC6 ‘ IOPC5 ‘ IOPC4 ‘ IOPC3 ‘ IOPC2 ‘ IOPC1 ‘ IOPCO
RW- RW-' RW- RW- RW-' RW- RW- RW-x

T The reset value of these bits depends upon the state of the respective pins.
Note: R = read access, W = write access, -0 = value after reset, x = undefined.
Bits 15-8 CnDIR - Direction Bits

0 Configure corresponding pin as an input

1 Configure corresponding pin as an output

Bits 7-0 IOPCn — Data Bits
If CnDIR = 0, then:

0 Corresponding I/O pin is read as a low
1 Corresponding I/O pin is read as a high
If CnDIR = 1, then:
0 Set corresponding I/O pin low
1 Set corresponding I/O pin high
Port D Data and Direction Control Register (PDDATDIR)
15-9 8
Reserved DODIR
RW-0
7-1 0
Reserved 10PDO
RW-'

+ The reset value of this bit depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset.
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Bits 15-9 Reserved
Bit 8 DODIR — Direction Bits

0 Configure corresponding pin as an input
1 Configure corresponding pin as an output

Bits 7-1 Reserved

Bit 0 IOPDO — Data Bit
If DODIR = 0, then:

0 Corresponding I/O pin is read as a low

1 Corresponding I/O pin is read as a high
If DODIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high

Port E Data and Direction Control Register (PEDATDIR)

15 14 13 12 11 10 9 8
E7DIR ! E6DIR \ E5DIR \ E4DIR ! E3DIR \ E2DIR \ E1DIR \ EODIR
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
IOPE7 \ IOPE6 \ IOPE5 \ IOPE4 \ IOPE3 \ IOPE2 \ IOPE1 \ IOPEO
RW- RW-' RW-T RW-' RW-' RW-' RW-' RW-x

1 The reset value of these bits depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset, x = undefined.

Bits 15-8 EnDIR — Direction Bits
0 Configure corresponding pin as an input
1 Configure corresponding pin as an output

Bits 7-0 IOPEn — Data Bits
If EnDIR = 0, then:

0 Corresponding I/O pin is read as a low

1 Corresponding I/O pin is read as a high
If EnDIR = 1, then:

0 Set corresponding 1/O pin low

1 Set corresponding I/O pin high
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Port F Data and Direction Control Register (PFDATDIR)
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15 14 13 12 11 10 9 8
Reserved ’ F6DIR ‘ F5DIR ‘ F4DIR ’ F3DIR ‘ F2DIR ‘ F1DIR ‘ FODIR
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
Reserved ’ IOPF6 ‘ IOPF5 ‘ IOPF4 ’ IOPF3 ‘ IOPF2 ‘ IOPF1 ‘ IOPFO
RW-! RW-! RW-1 RW-! RW-1 RW-1 RW-t

1 The reset value of these bits depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset.
Bit 15 Reserved

Bits 14-8 FnDIR - Direction Bits
0 Configure corresponding pin as an input
1 Configure corresponding pin as an output
Bit 7 Reserved

Bits 6—0 IOPFn — Data Bits
If FnDIR = 0, then:

0 Corresponding 1/O pin is read as a low

1 Corresponding /O pin is read as a high
If FnDIR = 1, then:

0 Set corresponding I/O pin low

1 Set corresponding I/O pin high

33

Using the General Purpose I/O Ports

The GPIO functionality is relatively simple to use and provides a valuable way

of imputing and outputting data to and from the DSP.

To use the GPIO

functionality of a particular pin or groups of pins, the following steps must be
followed to configure the DSP:

1.

Set the bits in the appropriate MUX control register to configure the
desired pins for GPIO function. This can be done by writing a “0” to the
corresponding bits in the appropriate MUX. It may not be absolutely
necessary to do this due to the fact that upon a reset (power on) the pins in
the LF2407 are by default in their GPIO functionally. = However,
configuring the MUX register anyway is good programming practice.

Now that the desired pins are configured as GPIO, set the Port Data and
Direction (PxXDATDIR) register(s) that corresponds to the desired pins.
When configuring the PxDATDIR, the most significant bits control the
direction (input or output) and the lower bits determine (output) or display
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(input) the pin data. If an input pin is desired, only the direction bit needs
to be set since when the direction bit is set to input, writing to the data bit
has no effect. The corresponding data bit will be used to display the logic
value applied to that pin. If an output pin is required, both the direction
and data bits need to be configured because the data bit will determine
what logic value the pin will be set to.

3. The selected pins are now configured. The input data on pins can be
obtained by reading the entire PxDATDIR register and obtaining the data
for desired bits. For output, new values can be written to the pins by
writing to the corresponding entire PXDATDIR register.

Note: When a pin is configured as input, it is important to note whether the pin has
either a pull-up or pull-down resistor. If the input pin is not connected to anything,
the pin’s data bit will read “1” if a pull-up or “0” if a pull-down resistor exists.
The pullup/down resistor comes into play only when the pin is an input and not
connected. When the input pin is connected to either a logic “1” or logic “0”
voltage, the pull-up/down resistor is overridden and has no effect. The reason
behind the pullup/down resistor is that a digital input pin should never be
completely floating.

Example 3.1 illustrates configuring all the pins in a port for output and writing “1”
to each of the eight pins in the port.

Example 3.1 Display the binary number “00100010”b with the eight pins on
port A:

1. Configure the bits in MCRA so port A is [/O (“XXXXXXXX000000007).
The most significant bits in MCRA control port B; therefore, in this
example, we do not care what we write to them.

2. Set pins to output in PADATDIR by setting bits 15-8 as “11111111”, with
“00100010”b as the data (bits 7-0). “X” designates “don’t care” bits.

3.4  General Purpose I/O Exercise

This exercise allows the reader to become familiar with using the GPIO
functionality on the LF2407 DSP controller. Practical applications using the GPIO
functionality are very similar to the algorithms presented in this exercise. In
addition, this exercise helps the reader practice writing assembly programs.

The XF pin is introduced during this exercise. The XF pin on the LF2407 is a
general purpose output pin which is controlled by the XF bit in the C2xx DSP core.
Because it is core controlled, the XF bit can be set and cleared without having to
write to a register. The XF is easily set (made 3.3V) by the “SETC XF” command
or cleared (made 0V) by the CLRC XF command. This pin can be useful in testing
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code to see if your code ran to a certain point, where the code would set or clear the
XF bit. The level of the XF pin may be checked by either an oscilloscope or volt
meter. In order to assure a correct signal is read, be sure the ground lead of the
tester is connected to the digital ground of the LF2407 EVM.

1.

Startup CCS and create a new project titled “lab3” in the same manner as
the exercise in the previous chapter. Name the source file “lab3.asm” and
include the same header files as before.

Write a program that first stores a certain set of values into data memory
locations starting at memory address 300h. The values should be such that
they control the “up counting” of a seven-segment display from “0” to “F”.
The program should then read the memory locations and send the values
out on port A; displaying each value for a second or so.

Place a seven-segment LED display on a breadboard and connect the port
A pins to the display in the appropriate positions.

Run the program and watch as the seven-segment display “counts” from 0
to F.

When the display has finished counting a 1000-hertz square wave should
be produced by toggling the XF pin.

Connect the oscilloscope to the XF pin and digital ground of the LF2407
EVM. Use the oscilloscope to view the 1000-hertz waveform.

This exercise is now concluded.
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Chapter 4

INTERRUPTS ON THE TMS320LF2407

4.1 Introduction to Interrupts

The interrupts on the LF2407 allow the device hardware to trigger the CPU of
the LF2407 (CPU=C2xx DSP core) to break from the current task, branch to a new
section of code and start a new task, then return back to the initial task. The “new
task” referred to in the previous sentence is known as the Interrupt Service Routine
(ISR). The ISR is simply a separate user-written subroutine, which the core will
branch to every time a certain interrupt occurs.

For example, say the ADC is being used and we want the program to load the
conversion value into the accumulator every time the ADC finishes a conversion.
The ADC can be configured to generate an interrupt whenever a conversion is
finished. When the ADC generates its interrupt, the interrupt signal makes its way
through the interrupt hierarchy to the core and the core then branches to the
appropriate ISR.

In a more general sense, when an interrupt occurs, the core branches to the ISR
(GISR1, GISR2 etc... depending on the interrupt) where an interrupt service routine
is located. In the ISR, after the instructions are executed, the interrupt hierarchy is
“reset” to allow for future interrupts. This usually entails clearing the peripheral
level interrupt flag bit and clearing the INTM bit. These steps ensure that future
interrupts of the same origin will be able to pass through to the core. The final
instruction in the ISR is the RET command, which instructs the core to return to
where it was before the interrupt occurred.

4.2  Interrupt Hierarchy

This section will explain the different hierarchical levels and how an interrupt
request signal propagates through them. The different control registers and their
operations will be reviewed.

4.2.1  Interrupt Request Sequence

There are two levels of interrupt hierarchy in the LF2407 as seen in Fig. 4.1
below. There is an interrupt flag bit and an interrupt enable bit located in each
peripheral configuration register for each event that can generate an interrupt. The
peripheral interrupt flag bit is the first bit to be set when an interrupt generating
event occurs. The interrupt enable bit acts as a “gate”. If the interrupt enable bit is
not set, then the setting of the peripheral flag bit will not be able to generate an
interrupt signal. If the enable bit is set, then the peripheral flag bit will generate an
interrupt signal. That interrupt signal will then leave the peripheral level and go to
the next hierarchal level.
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Once an interrupt signal leaves the peripheral level, it is then multiplexed
through the Peripheral Interrupt Expansion (PIE) module. The PIE module takes
the many individual interrupts and groups them into six priority levels (INTI
through INT6). Once an interrupt reaches the PIE, a code identifying the individual
interrupt is loaded into the Peripheral Interrupt Vector Register (PIVR). This allows
the ISR to determine which interrupt was actually asserted when multiple interrupts
from the same level occur. After passing through the PIE module, the interrupt
request signal has now entered the upper level of hierarchy or the “CPU level”.

The six interrupt groupings from the PIE module feed into the CPU level. The
final stage of the CPU level is the CPU itself (C2xx core). From Fig. 4.1, we can
see the six interrupt levels and the many individual peripheral interrupts assigned to
priority level. Each of the six levels has a corresponding flag bit in the Interrupt
Flag Register (IFR). Additionally there is an Interrupt Mask Register (IMR) which
acts similar to the interrupt enable bits at the peripheral level. Each of the six bits in
the IMR behaves as a “gate” to each of the corresponding six bits in the IFR. If the
corresponding bits in both the IFR and IMR are both set, then the interrupt request
signal can continue through to the C2xx core itself.

Once the interrupt request signal has entered the CPU level and has passed
through the IFR/IMR, there is one more gateway the signal must pass through in
order to cause the core to service the interrupt. The Interrupt Mask (INTM) bit must
be cleared for the interrupt signal to reach the core. When the core acknowledges a
pending interrupt, the INTM bit is automatically set, thereby not allowing any more
interrupts from reaching the core while a current interrupt is being serviced.

When the core is finished with the current interrupt, only the flag bit in the IFR
is cleared automatically. The INTM bit and the peripheral level flag bit must be
cleared “manually” via software. When this is done, the core will acknowledge the
highest priority pending interrupt request signal.

Additionally, if an interrupt request signal occurs, but the signal never reaches
the core, all flag bits “downstream” of the point where the signal was halted will
still remain set until cleared by software. The IFR bits will be cleared if: (1) the
interrupt path to the core is opened, and the interrupt is acknowledged normally or
(2) the bit is cleared “manually” by software. If no interrupt request has occurred
but the peripheral level IF bit is set and the peripheral IE bit is later set without
clearing the IF bit, then an interrupt request signal will be asserted and the
corresponding IFR bit will be set.

Furthermore, in the event that two interrupts of different priority groupings
(INTx) occur at the same time, the highest priority interrupt will be acknowledged
first by the core.
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Figure 4.1 Interrupt hierarchy in the LF2407. (Courtesy of Texas Instruments)
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4.2.2  Reset and Non-Maskable Interrupts

There are two special interrupts on the LF2407 which have not been covered
thus far; the Reset (RS) and the Non-Maskable Interrupt (NMI). Both of these
interrupts bypass the usual interrupt hierarchy and feed straight to the DSP core. A
reset causes the core to branch to address 0000h in program memory. Resets are
activated during power on, when the external RESET pin is brought to logic “0” (O
Volts), or by the Watchdog Timer. If the Watchdog is not disabled, it will pull the
reset pin to “0” if not periodically reset.

When an illegal memory space is written to, the illegal address flag (ILLADR)
in System Control and Status Register 1 (SCSR1) will be set. When this flag is set,
a non-maskable interrupt (NMI) will be generated, causing the core to branch to
address 0024h in program memory. The illegal address flag (ILLADR) will remain
set following an illegal address condition until it is cleared by software or a DSP
reset.

4.3  Interrupt Control Registers

This section will review the interrupt control registers. The IFR, IMR, and
PIVR registers as well as the INTM bit discussed in the previous section will be
presented in more detail. We will not discuss peripheral level interrupt bits in this
chapter, as they will be discussed in each section dealing with the specific
peripherals.

There are three registers used at the CPU level, the Interrupt Flag Register
(IFR), the Interrupt Mask Register (IMR), and the Peripheral Interrupt Vector
Register (PIVR). The IFR and IMR control the interrupt signal at the beginning of
the CPU level. The PIVR register, while actually loaded in the PIE, provides
information about the specific interrupt that occurred at the peripheral level. This
information can be used by the ISR in determining the source of the interrupt signal.
In addition to these registers, the INTM bit at the CPU level provides the final
“gateway”’ that the interrupt signal must pass through to reach the core itself.

In addition to the peripheral interrupts, there are two External Interrupts
(XINT1, XINT2). Their interrupt request operation is exactly like the peripheral
interrupts. However, external interrupts are triggered by a logic edge transition on
their external pin. The external interrupt control registers will also be discussed.

4.3.1  Interrupt Flag Register (IFR)

The IFR is a 16-bit (only 6 bits are really used) register mapped to address
0006h in data memory. The IFR is used to identify and clear pending interrupts at
the CPU level and contains the interrupt flag bits for the maskable interrupt
priorities INT1-INT6.

A flag bit in the IFR is set to “1” when an individual interrupt request signal
makes its way out of the peripheral level and into the CPU level. The particular flag
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bit set depends on what priority the individual interrupt is grouped under. After the
interrupt is serviced, the IFR bit corresponding to the interrupt is automatically
cleared (to “0”) by the DSP.

In addition to triggering the CPU level during the standard interrupt process,
the IFR can also be read by software. If a desired situation occurred where the
INTM bit was set (meaning no interrupt signals make it to the core) and an interrupt
signal was generated at the below levels, the corresponding bit in the IFR would
still be set. In this situation, the IFR could be read by software to identify pending
interrupt requests.

If desired, to “manually” clear a bit in the IFR, software needs to write a “1” to
the appropriate bit (see IFR bit descriptions). The flag bits can be thought of as
“toggling” when a “1” is written to them. Loading the IFR into the accumulator,
then storing the contents of the IFR back into itself clears all bits in the IFR.
However, if the peripheral level interrupt flag bit is still set, the corresponding bit in
the IFR will immediately become set right after it is cleared.

Notes:

1. To clear an IFR bit, we must write a one to it, not a zero.

2. When an interrupt is acknowledged, only the IFR bit is cleared
automatically. The flag bit in the corresponding peripheral control
register is not automatically cleared. If an application requires that the
control register flag be cleared, the bit must be cleared by software.

3. IFR registers pertain to interrupts at the CPU level only. All peripherals
have their own interrupt mask and flag bits in their respective
control/configuration registers.

4. When an interrupt is requested by the INTR assembly instruction and the
corresponding IFR bit is set, the CPU does not clear the bit automatically.
If an application then requires that the IFR bit needs to be cleared, the bit
must be cleared by software.

Interrupt Flag Register (IFR) — Address 0006h

15-6 5 4 3 2 1 0
Reserved ‘ INT6 flag ‘ INTS5 flag ‘ INT4 flag ‘ INT3 flag ‘ INT2 flag ‘ INT1 flag
0 RW1C-0 RW1C-0 RW1C-0 RW1C-0 RW1C-0 RW1C-0

Note: 0 = always read as zeros, R = read access, W1C = write 1 to this bit to clear
it, -0 = value after reset.

Bits 15-6 Reserved. These bits are always read as zeros.
Bit5 INT6. Interrupt 6 flag. This bit is the flag for interrupts connected to

interrupt level INT6.
0 No INT6 interrupt is pending
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1 At least one INT6 interrupt is pending. Write a 1 to this bit to
clear it to 0 and clear the interrupt request

Bit4  INTS. Interrupt 5 flag. This bit is the flag for interrupts connected to

interrupt level INTS.
0 No INTS interrupt is pending
1 At least one INTS interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

Bit3  INT4. Interrupt 4 flag. This bit is the flag for interrupts connected to

interrupt level INT4.
0 No INT4 interrupt is pending
1 At least one INT4 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

Bit2  INTS3. Interrupt 3 flag. This bit is the flag for interrupts connected to
interrupt level INT3.
0 No INT3 interrupt is pending
1 At least one INT3 interrupt is pending. Write a 1 to this bit to
clear it to 0 and clear the interrupt request

Bit1  INT2. Interrupt 2 flag. This bit is the flag for interrupts connected to

interrupt level INT2.
0 No INT2 interrupt is pending
1 At least one INT2 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

Bit0  INTI1. Interrupt 1 flag. This bit is the flag for interrupts connected to
interrupt level INT1.
0 No INT1 interrupt is pending
1 At least one INT1 interrupt is pending. Write a 1 to this bit to
clear it to 0 and clear the interrupt request

4.3.2  Interrupt Mask Register (IMR)

The Interrupt Mask Register (IMR) is a 16-bit (only 6 bits are used) register
located at address 0004h in data memory. It contains a mask bits for each of the six
interrupt priority levels INT1-INT6. When an IMR bit is “0”, the corresponding
interrupt is “masked”. When an interrupt is masked, the interrupt will be halted at
the CPU level; the core will not be able to receive the interrupt request signal,
regardless of the INTM bit status. When the interrupt’s IMR bit is set to “1”, the
interrupt will be acknowledged if the corresponding IFR bit is “1”” and the INTM bit
is “0”. The IMR may also be read to identify which interrupts are masked or
unmasked.
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Interrupt Mask Register (IMR) — Address 0004h

15-6 5 4 3 2 1 0
Reserved ‘ INT6 mask ‘ INT5 mask ‘ INT4 mask ‘ INT3 mask ‘ INT2 mask ‘ INT1 mask
0 RW RW RW RW RW RW

Note: 0 = always read as zeros, R = read access, W = write access, bit values are
not affected by a device reset.

Bits 15-6  Reserved. These bits are always read as zeros.

Bit5  INT6. Interrupt 6 mask. This bit masks or unmasks interrupt level INT6.
0 Level INT6 is masked
1 Level INT6 is unmasked

Bit4  INTS. Interrupt 5 mask. This bit masks or unmasks interrupt level INTS.
0 Level INTS is masked
1 Level INTS5 is unmasked

Bit3  INT4. Interrupt 4 mask. This bit masks or unmasks interrupt level INT4.
0 Level INT4 is masked
1 Level INT4 is unmasked

Bit2  INT3. Interrupt 3 mask. This bit masks or unmasks interrupt level INT3.
0 Level INT3 is masked
1 Level INT3 is unmasked

Bit1  INT2. Interrupt 2 mask. This bit masks or unmasks interrupt level INT2.
0 Level INT?2 is masked
1 Level INT2 is unmasked

Bit0  INTI1. Interrupt 1 mask. This bit masks or unmasks interrupt level INT1.
0 Level INT1 is masked
1 Level INT1 is unmasked

Note: A device reset does not affect The IMR bits.

4.3.3  Peripheral Interrupt Vector Register (PIVR)

The Peripheral Interrupt Vector Register (PIVR) is a 16-bit read-only register
located at address 701Eh in data memory. Each interrupt has a unique code which
is loaded into the PIVR when in the PIE module. When a peripheral interrupt signal
is passed through the PIE module, the PIVR is loaded with the vector of the pending
interrupt which has the highest priority level. This assures that if two interrupts of
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different priorities happen simultaneously, the higher priority interrupt will be
serviced first.
Peripheral Interrupt Vector Register (PIVR) — Address 701Eh

15 14 13 12 11 10 9 8

| V15 | V14 | V13 | V12 | V1 | V10 | Vo | V8 |
R0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
7 6 5 4 3 2 1 0

| V7 | V6 | V5 | V4 | V3 | V2 | Vi | VO |
R0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = read access, -0 = value after reset.

Bits 15-0 V15-V0. Interrupt vector. This register contains the peripheral
interrupt vector of the most recently acknowledged peripheral interrupt.

External Interrupt Control Registers

The external interrupts (XINT1, XINT2) are controlled by the XINTICR and
XINT2CR control registers, respectively. If these interrupts are enabled in their
control registers, an interrupt will be generated when the XINT1 or XINT2 logic
transition occurs for at least 12 CPU clock cycles.

For example, if XINT1 was configured for generating an interrupt on a low (0
Volts) to high (3.3 Volts) transition and the XINT1 pin only went high for 6 clock
cycles, then back down to low, an interrupt request would not occur. However, if
the pin was brought high for 12 or more cycles, an interrupt request signal would be
generated.

External Interrupt 1 Control Register (XINT1CR) — Address 7070h

15 14-3 2 1 0
XINT1 flag Reserved ] XINT1 polarity [ XINT1 priority | XINT1 enable |
RC-0 R-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, C = clear by writing a 1, -0 = value after
reset.

Bit 15 XINT1 Flag
This bit indicates if the selected transition has been detected on
the XINT1 pin and is set whether or not the interrupt is enabled.
This bit is cleared by software writing a 1 (writing a 0 has no
effect), or by a device reset.
No transition detected
1 Transition detected
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Note: the description in the TI user guide can be misleading: this bit is not cleared
automatically during the interrupt acknowledge sequence.
Bits 14-3 Reserved. Reads return zero; writes have no effect.

Bit2  XINT1 Polarity
This read/write bit determines if interrupts are generated on the
rising edge or the falling edge of a signal on the pin.
0 Interrupt generated on a falling edge (high-to-low transition)
1 Interrupt generated on a rising edge (low-to-high transition)

Bit1  XINT1 Priority

This read/write bit determines which interrupt priority is
requested. The CPU interrupt priority levels corresponding to low
and high priority are coded into the peripheral interrupt expansion
controller. These priority levels are shown in Table 2-2, 240xA
Interrupt Source Priority and Vectors, in Chapter 2 on page 2-9.
High priority

1 Low priority

Bit0  XINT1 Enable
This read/write bit enables or disables external interrupt XINTI.
0 Disable interrupt
1 Enable interrupt

External Interrupt 2 Control Register (XINT2CR) — Address 7071h

15 14-3 2 1 0
XINT2 flag Reserved | XINT2 polarity | XINT2 priority | XINT2 enable |
RC-0 R-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, C = Clear by writing a 1, -0 = value after
reset.

Bit 15 XINT2 Flag
This bit indicates if the selected transition has been detected on
the  XINT2 pin and is set whether or not the interrupt is
enabled. This bit is cleared by software writing a 1 (writing a 0
has no effect), or by a device reset.
0 No transition detected
1 Transition detected

Note: the description in the TI user guide can be misleading: this bit is not cleared
automatically during the interrupt acknowledge sequence.
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Bits 14-3 Reserved. Reads return zero; writes have no effect.

Bit2  XINT2 Polarity
This read/write bit determines if interrupts are generated on the
rising edge or the falling edge of a signal on the pin.
0 Interrupt generated on a falling edge (high-to-low transition)
1 Interrupt generated on a rising edge (low-to-high transition)

Bit1  XINT2 Priority

This read/write bit determines which interrupt priority is
requested. The CPU interrupt priority levels corresponding to low
and high priority are coded into the peripheral interrupt expansion
controller. These priority levels are shown in Table 2-2, 240xA
Interrupt Source Priority and Vectors, in Chapter 2 on page 2-9.
High priority

1 Low priority

Bit0  XINT2 Enable
This read/write bit enables or disables the external interrupt
XINT2.
Disable interrupt
1 Enable interrupt

4.4  Initializing and Servicing Interrupts in Software

In order to utilize the interrupt functions of the LF2407, several steps should be
taken to initialize the DSP and interrupt related registers. This will assure that no
false interrupts are asserted. While it is unlikely that a false interrupt would be
generated, writing code that would ignore a false interrupt is good practice.

Servicing the interrupt requires that a few steps also be taken to “reset” the
interrupt so that future interrupts of the same origin can also occur.

4.4.1  Configuring the LF2407 for Interrupt Operation

Several steps should be performed via software to prepare the DSP and
interrupt system for use before any sort of algorithm is entered. The following
provides for a general procedure for initializing the DSP interrupts and peripherals:

1. The first instruction after the START label should be to set the INTM bit.
This assures that no interrupts can occur during initialization.

2. Once the INTM bit is set, then the second step is to mask each of the six
CPU level interrupts by writing “0” to the IMR.

3. Once all bits in the IMR are “0”, the IFR value should be loaded into the
accumulator, and then the accumulator should be written to the IFR. This
writes the IFR back into itself, thereby clearing all flag bits.
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4. Now is the time to disable the Watchdog timer by writing “6Fh” to the
WDCR (watchdog control register). Also, the DSP should be configured
by setting the System Control Registers (SCSR1,SCSR2) for desired
operation and the enabling the clock to desired peripherals.

5. [If applicable, set the reset bit in the selected peripheral control registers.
Configure peripheral for desired operation.

6. Configure the IMR to unmask only those interrupt levels which correspond
to the selected peripheral.

7. Clear the INTM bit to allow future interrupts to reach the CPU.

8. If applicable, bring the selected peripherals out of reset/enable operation
via peripheral control register.

Example 4.1 - The following block is a segment of code which provides an
example of interrupt initialization.

START:
LDP #0h ;set DP=0
SETC INTM ;Disable interrupts
SPLK #0000h, IMR ;Mask all core interrupts
LACC IFR ;Read Interrupt flags
SACL IFR ;Clear all interrupt flags
LDP #WDKEY >> 7h ;Peripheral page
SPLK #006Fh, WDCR ;Disable WD if VCCP=5V
SPLK #0000h, SCSR1 ;
KICK_DOG
SPLK #0h, GPRO ;Set wait state generator for:
ouT GPRO, WSGR ;Program Space, 0-7 wait states
LDP #0Elh
SPLK #00004h, MCRA ;Configure XINT pin for primary
LDP #0EOh
SPLK #5h, XINTICR ;Configures XINT1 pin for
;polarity(low to high) priority(high),
;and enable bit
LDP # Oh
SPLK #1, IMR ;XINT is INT1 so set IMR to “1”
CLRC INTM ;Enables interrupts to core
LOOP B LOOP ;loops here until interrupt occurs

The above code will enable the XINTI pin to generate an interrupt of INT1
when a “low to high” transition is detected on the pin.

4.4.2  Servicing Interrupts

Each of the interrupt priority levels INT1 through INT6 has a corresponding
memory address 0001h through 0006h in program memory to which the core will
branch upon receiving the interrupt. The header file vector.h assigns the labels
“INTI1, INT2, ...INT6” to addresses 0001h through 0006h. This header file also
instructs the core to branch to the corresponding General Interrupt Service Routines
(GISRI1 through GISR6) labels which are located in the assembly source file.

It is under the appropriate “GISRx” label in the source file where the interrupt
service routine (ISR) is written. In the ISR, a variety of algorithms may be used.
The ISR is simply an algorithm to which the core will execute whenever it
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encounters an interrupt. The first action in the ISR should be to perform a “context
save” by saving the value of the accumulator, status registers, and anything else that
could change as a result of the ISR, so that when the core exits from the interrupt, it
is essentially in the same state as when it entered.

If multiple peripheral interrupts in the same priority level are enabled, then each
of these interrupts would cause the core to branch to the same GISRx. In this case,
it would be necessary to first run a PIVR reading and selection algorithm under the
GISR which would determine what specific interrupt actually occurred. Then the
algorithm would then branch to a Specific Interrupt Service Routine (SISR).
Example 4.2 is pseudo-code which is an example of the selection algorithm
discussed previously.

Example 4.2 — Two peripheral interrupts (RXINT and TXINT) are both assigned to
priority level INT1. The following pseudo-code is a sample algorithm to determine
which interrupt occurred and service the interrupt.

GISR1 - GISRI corresponds to ONLY INTT1 interrupts
Read the PIVR
Does the PIVR contain the vector for RXINT ?
Yes — Branch to R_ISR
No — Continue to next instruction
Does the PIVR contain the vector for TXINT?
Yes — Branch to T ISR
No — Branch to ERROR
R ISR
This would be the first SISR, the name of the SISR does not matter
User defined algorithm plus reset interrupt for next occurrence and exit ISR

T ISR

This would be the second SISR, the name of the SISR does not matter

User defined algorithm plus reset interrupt for next occurrence and exit ISR
ERROR

User defined algorithm plus reset interrupt for next occurrence and exit ISR

Interrupt Vectors

Information on the different peripheral interrupts and their corresponding PIVR
codes can be found in Table 4.1, which lists the peripheral interrupt vector codes
that load into the PIVR. The vector is essentially an identification number for each
interrupt. Note that an interrupt may have a different overall priority and grouping
based on the (low or high) priority level that the interrupt is set to in its
corresponding peripheral control register. For example, XINT1 (high priority) is
assigned vector 0001h and is grouped INT1 with overall priority 7. XINT1 (low
priority) is still assigned vector 0001h but is grouped INT6 with overall priority 33.
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Table 4.1 Interrupt vectors. (Courtesy of Texas Instruments)
Overall Interrupt CPU Peripheral Maskable? Source Description
Priority Name Interrupt Interrupt Peripheral
Vector Vector
1 Reset RSN N/A N RS Pin, Reset from pin,
0000h Watchdog watchdog time out
2 Reserved - N/A N CPU Emulator trap
0026h
3 NMI NMI N/A N Nonmaskable Nonmaskable interrupt
0024h interrupt
(a) INT1 (level 1)
Overall Interrupt CPU Peripheral Maskable? Source Description
Priority Name Interrupt Interrupt Peripheral
Vector Vector
4 PDPINTA INT1 0020h Y EVA Power drive protection
0002h interrupt pin
5 PDPINTB INT1 0019h Y EVB Power drive protection
0002h interrupt pin
6 ADCINT INT1 0004h Y ADC ADC interrupt in high—
0002h priority mode
7 XINT1 INT1 0001h Y External External interrupt pin in
0002h interrupt logic  high—priority mode
8 XINT2 INT1 0011h Y External External interrupt pin in
0002h interrupt logic  high—priority mode
9 SPIINT INT1 0005h Y SPI SPl interrupt in high—
0002h priority mode
10 RXINT INT1 0006h Y SCI SCl receiver interrupt in
0002h high—priority mode
11 TXINT INT1 0007h Y ScClI SClI transmitter interrupt
0002h in high—priority mode
12 CANMBINT  INT1 0040h Y CAN CAN mailbox interrupt
0002h (high—priority mode)
13 CANERINT  INT1 0041h Y CAN CAN error interrupt
0002h (high—priority mode)
(b) INT2 (level 2)
Overall Interrupt CPU Peripheral Maskable? Source Description
Priority Name Interrupt Interrupt Peripheral
Vector Vector
14 CMP1INT INT2 0021h Y EVA Compare 1 interrupt
0004h
15 CMP2INT INT2 0022h Y EVA Compare 2 interrupt
0004h
16 CMP3INT INT2 0023h Y EVA Compare 3 interrupt
0004h
17 T1PINT INT2 0027h Y EVA Timer 1 period interrupt
0004h
18 T1CINT INT2 0028h Y EVA Timer 1 compare
0004h interrupt
19 T1UFINT INT2 002%h Y EVA Timer 1 underflow
0004h interrupt
20 T10FINT INT2 002Ah Y EVA Timer 1 overflow
0004h interrupt
21 CMP4INT INT2 0024h Y EVB Compare 4 interrupt
0004h
22 CMPS5INT INT2 0025h Y EVB Compare 5 interrupt
0004h
23 CMPBINT INT2 0026h Y EVB Compare 6 interrupt
0004h
24 T3PINT INT2 002Fh Y EVB Timer 3 period interrupt
0004h
25 T3CINT INT2 0030h Y EVB Timer 3 compare
0004h interrupt
26 T3UFINT INT2 0031h Y EVB Timer 3 underflow
0004h interrupt
27 T3OFINT INT2 0032h Y EVB Timer 3 overflow
0004h interrupt
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(c) INT3 (level 3)

Overall Interrupt CPU Peripheral Maskable? Source Description
Priority Name Interrupt Interrupt Peripheral
Vector Vector
28 T2PINT INT3 002Bh Y EVA Timer 2 period interrupt
0006h
29 T2CINT INT3 002Ch Y EVA Timer 2 compare
0006h interrupt
30 T2UFINT INT3 002Dh Y EVA Timer 2 underflow
0006h interrupt
31 T20FINT INT3 002Eh Y EVA Timer 2 overflow
0006h interrupt
32 T4PINT INT3 003%h Y EVB Timer 4 period interrupt
0006h
33 T4CINT INT3 003Ah Y EVB Timer 4 compare
0006h interrupt
34 T4UFINT INT3 003Bh Y EVB Timer 4 undeflow
0006h interrupt
35 T40FINT INT3 003Ch Y EVB Timer 4 overflow
0006h interrupt

(d) INT4 (level 4)

Overall Interrupt CPU Peripheral Maskable? Source Description
Priority Name Interrupt Interrupt Peripheral
Vector Vector
36 CAP1INT INT4 0033h Y EVA Capture 1 interrupt
0008h
37 CAP2INT INT4 0034h Y EVA Capture 2 interrupt
0008h
38 CAP3INT INT4 0035h Y EVA Capture 3 interrupt
0008h
39 CAP4INT INT4 0036h Y EVB Capture 4 interrupt
0008h
40 CAPSINT INT4 0037h Y EVB Capture 5 interrupt
0008h
41 CAPGINT INT4 0038h Y EVB Capture 6 interrupt
0008h

(e) INTS (level 5)

Overall Interrupt CPU Peripheral Maskable? Source Description
Priority Name Interrupt Interrupt Peripheral
Vector Vector
42 SPIINT INTS 0005h Y SPI SPI interrupt
000Ah (low priority)
43 RXINT INTS 0006h Y SCI SCl receiver interrupt
000Ah (low—priority mode)
44 TXNT INT5 0007h \% scl SCltransmitter
000Ah interrupt (low—priority
mode)
45 CANMBINT  INT5 0040h Y CAN CAN mailbox interrupt
000Ah (low—priority mode)
46 CANERINT  INT5 0041h Y CAN CAN error interrupt
000Ah (low—priority mode)

(f) INT6 (level 6)

Overall Interrupt CPU Peripheral Maskable? Source Description
Priority Name Interrupt Interrupt Peripheral
Vector Vector
47 ADCINT INT6 0004h Y ADC ADC interrupt
000Ch (low priority)
48 XINT1 INT6 0001h Y External External interrupt pins
000Ch interrupt logic ~ (low—priority mode)
49 XINT2 INT6 0011h Y External External interrupt pins
000Ch interrupt logic _ (low—priority mode)
Reserved 000Eh N/A Y CPU Analysis interrupt
N/A TRAP 0022h N/A N/A CPU TRAP instruction
N/A Phantom N/A 0000h N/A CPU Phantom interrupt
Interrupt vector
Vector
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4.5

Interrupt Usage Exercise

This exercise will help the reader become familiar with interrupt operation and
writing interrupt service routines in software. The skills practiced in this exercise
are extremely relevant in sequential chapters where interrupts must be understood
for peripheral use.

1.

2.

Create a new project and source file each named “lab4”. Add the same
header files as in previous exercises.

Create a program which first properly configures the LF2407 and XINT1
interrupt registers for operation on a low to high clock edge. On the
LF2407 EVM module, jumper the XF pin the XINT1. Configure the XF
pin to initially output logic “0”. The program should utilize a looping
algorithm and the XINT1 interrupt to perform the following tasks:

Start with the value “Oh” in the accumulator. Store the number in the
accumulator to the data memory address 300h. When this operation is
complete, set the XF pin to be “1” (logic high). This should trigger an
XINTI interrupt.

In the ISR, keep count of the number of interrupts generated in the address
“030Fh”. Start counting at “0” for the first interrupt generated. Reset the
XF pin to logic “0”. Re-enable the interrupt.

Keep repeating steps (a) and (b), but use the numbers “0001h” through
“000Ah” instead and store them to memory address 301h through 30Ah.

The program should store a total of 11 numbers (Oh to Ah) to memory
addresses 300h through 30Ah. There should be exactly 11 interrupts counted with
the number “Ah” stored in memory address 30Fh.

d.

After steps (a) through (c) are complete, perform the calculations “Ah”
multiplied by “3h”, “1h” multiplied by “5h”, and “11h” multiplied by “7h”
one after the other. Create a transition on the XF pin so an XINTI
interrupt will be generated after each calculation is complete. Count the
number of these interrupts and store them in data memory address 310h.

When the program is finished with the task, have it loop infinitely until halted
by the user. This exercise is now concluded.
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Chapter 5
THE ANALOG-TO-DIGITAL CONVERTER (ADC)

5.1 ADC Overview

The Analog-to-Digital Converter (ADC) on the LF2407 allows the DSP to
sample analog or “real-world” voltage signals. The output of the ADC is an integer
number which represents the voltage level sampled. The integer number may be
used for calculations in an algorithm. The resolution of the ADC is 10 bits,
meaning that the ADC will generate a 10-bit number for every conversion it
performs. However, the ADC stores the conversion results in registers that are 16
bits wide. The 10 most significant bits are the ADC result, while the least
significant bits (LSBs) are filled with “0”s. We usually want to truncate the useless
zeros, so the value in the result register is simply right shifted by six places.

If the ADC performs a conversion on a 3.3V signal, it will theoretically
generate “1111111111000000b” (or “FFCOh”) in the appropriate result register and
“Oh” if a OV signal is sampled. In actuality, the least significant of the 10 bits will
vary slightly; this is the result of random noise picked up by the ADC.

There are a total of 16 input channels to the single input ADC. The control
logic of the ADC consists of auto-sequencers, which control the sampling of the 16
input channels to the ADC. The auto-sequencers not only control which channels
(input channels) will be sampled by the ADC, but also the order of the channels that
the ADC performs conversions on. The two 8-conversion auto-sequencers can
operate independently or cascade together as a “virtual” 16-conversion ADC.

5.1.1  Summary of the LF2407 ADC

10-bit ADC with built-in Sample and Hold (S/H)

Fast conversion time of 500 ns

Sixteen (16) multiplexed analog inputs (ADCINO — ADCIN15)

Auto-sequencing capability — up to 16 “auto-conversions” in a single

session. Each conversion session can be programmed to select any one of

the 16 input channels

e Two independent 8-state sequencers (SEQ1 and SEQ2) that can be
operated individually in dual-sequencer mode or cascaded into one large
16-state sequencer (SEQ) in cascaded mode

e Four Sequencing Control Registers (CHSELSEQ1..4) that determine the
sequence of analog channels that are taken up for conversion in a given
sequencing mode

e Sixteen (individually addressable) result registers to store the converted
values (RESULTO — RESULT15)

e  Multiple trigger sources for start-of-conversion (SOC)

a. Software: Software start (using SOC SEQn bit)

b. EVA: Event manager A (multiple event sources within EVA)
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c¢. EVB: Event manager B (multiple event sources within EVB)
d. External: ADCSOC pin

e Interrupt control allows interrupt generation on every end-of-sequence
(EOS) or every other EOS

e Sequencer can operate in start/stop mode, allowing multiple time-
sequenced triggers to synchronize conversions

e EVA and EVB can independently trigger SEQ1 and SEQ2, respectively
(this is applicable for dual-sequencer mode only)

e Sample-and-hold acquisition time window has separate prescale control

e  Built-in calibration mode and built-in self-test mode

5.2  Operation of the ADC

Using the ADC on the LF2407 is relatively simple. The user first needs to
configure the ADC for the desired operation. Like all peripherals, all registers
relating to ADC operation have addresses in data memory space. The first step in
configuring the ADC should be to reset the ADC. After the ADC is reset, the next
step is to configure the main ADC control registers (ADCTRL1, ADCTRL2) for
desired ADC operation. Then, load the MAXCONV register with the desired
number of automatic conversions minus 1. For example, if seven auto-conversions
are desired, MAXCONYV would be loaded with “6”. The desired input channels and
their order of conversion need to be specified in the CHSELSEQn registers.
Finally, a SOC trigger will start the sampling process. A short example of the
assembly code performing the above listed steps is provided in Example 5.1.

Example 5.1- The following code gives an example of initializing the ADC, setting
up the CHSELSEQn registers and starting the conversion sequence:

LDP #0Elh
SPLK #0100000000000000b, ADCTRL1
NOP

SPLK #0011000000010000b, ADCTRL1
the following explains bits in ADCCTRLI1:

; 15 - RSVD | 14 - Reset(l) | 13,12 - Soft & Free
; 11,10,9,8 - Acg. prescalers | 7 - Clock prescaler
; 6 - Cont. run (1) | 5 - Int. priority (Hi.O)
; 4 - Seqg. casc (0-dual)
SPLK #15, MAXCONV ;Setup for 16 conversions
SPLK #03210h, CHSELSEQ1 ;Conv Ch 0,1,2,3
SPLK #07654h, CHSELSEQ2 ;Conv Ch 4,5,6,7
SPLK #0BA98h, CHSELSEQ3 ;Conv Ch 8,9,10,11
SPLK #0FEDCh, CHSELSEQ4 ;Conv Ch 12,13,14,15
SPLK #2000b, ADCTRL2 ;Start the conversions by bit 13

After the conversion process is complete, each 10-bit result can be read from
the result registers RESULTn. The conversion results are stored sequentially in
result registers RESULTO to RESULT15. The first result is stored in RESULTO, the
second result in RESULTI, and so on. For example, if ADC channel 1 is selected
for four consecutive conversions, the results will appear in registers RESULTO
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through RESULT3. There is no correlation between ADC Channel 1 and the
RESULT register 1 or Channel 2 and RESULT 2 etc.

We will discuss each of these steps in detail in the following sections, starting
with the different operating modes of the ADC. This will aid the reader in
configuring the ADC control registers by helping to determine what operating mode
is needed. After the reader is familiar with the ADC operating modes, we will
cover the MAXCONYV and CHSELSEQn registers. Various SOC trigger methods
will then be discussed. Finally, the ADC conversion result register reading will be
discussed.

5.2.1  Sequencer Configurations of the ADC

The first operating parameter the user needs to select is to configure the ADC
to operate as either one 16-conversion sequencer or two §-conversion sequencers.
The ADC sequencer consists of two independent 8-conversion sequencers (SEQI
and SEQ2) that can be cascaded together to form one 16-conversion sequencer

(SEQ).

When the ADC is configured to operate as one cascaded 16-convesion
sequencer, it may perform up to 16 conversions on any combination of the 16 input
channels. For example, it could be programmed to perform 14 conversions on
channel 1, or in another instance, 10 total conversions on a combination of channels
depending on what the CHSELSEQn registers are set for. The diagram Fig. 5.1
shows the configuration of the cascaded 16-conversion sequencer. When in
cascaded mode there is only one sequencer (SEQ) and the MAXCONV register is
programmed for the maximum number of conversions. The results are stored in
RESULTO through RESULT 15 depending on the number of conversions
performed.

If the ADC is configured as two 8-conversion sequencers, then each sequencer
operates independently. When the two sequencers are used independently, the
current active sequencer has priority over the inactive one. The start of conversion
request from the “inactive” sequencer will be taken as soon as the sequence initiated
by the “active” sequencer is completed. For example, if Sequencer 1 (SEQ1) is
currently performing a conversion and Sequencer 2 (SEQ2) requests a start of
conversion, the ADC will finish the conversion from SEQ1, and then start the SEQ2
conversion. See Fig. 5.2 for a diagram of the dual-sequencer configuration. In
dual-sequencer operation, the MAXCONYV register is “split” up so that the same
register contains data for the maximum number of conversions for both SEQ1 and
SEQ2. The 16 result registers are also split up so SEQI uses RESULTO through
RESULT7 and SEQ2 uses RESULTS through RESULT15. A summary of the
cascaded and dual-sequencer configurations is listed in Table 5.1.
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Result MUX

Analog MUX

RESULTO

ADCINO
ADCIN1
ADCIN2

10-bit, 375-ns" 10
S/H + AID
converter

A\ 4

ADCIN15 MUX soc 4 4 EOC

MAX CONV1
State

Ch Sel (state 0 pointer

ChSel (state 1) [
4 Ch Sel (state 2)

Ch Sel (state 3

select

Autosequencer
state machine

Note: Possible values are:
Channel select =0 to 15
MAXCONV =0 to 15

Ch Sel (state 15

Software
EVA Start—of-sequence trigger
EVB
External pin (ADCSOC)

" 425-ns for LC2402A

Figure 5.1 Block diagram of ADC in cascaded sequencer mode. (Courtesy of
Texas Instruments)
Table 5.1 Comparasion table of dual (SEQ1 and SEQ?2) versus cascaded
sequencer configuration
Feature Single 8-state Single 8-state Cascaded 16-state
sequencer #1 (SEQ1) sequencer #2 (SEQ2) sequencer (SEQ)

Start—of—conversion EVA, software, EVB, software EVA, EVB, software,
triggers external pin external pin
Maximum number of 8 8 16
autoconversions
(i.e., sequence length)
Autostop at end—of— Yes Yes Yes
sequence (EOS)
Arbitration priority High Low Not applicable
ADC conversion result Oto7 8to 15 0to 15
register locations
CHSELSEQn bit field CONV00 to CONV07 CONVO08 to CONV15 CONVO00 to CONV15

assignment
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Result MUX
RESULT
1 .
Analog MUX o
ADCINO —] 1 :
ADCIN1 —] Result RESULT
ADCIN2 —> select
_ | 10-bit, 375-ns’ 10 F
: > S/H + AID MU
. converter Result MUX
ApciNts —>  MUX A RESULT
select SOC y EOC ——
RESULT
4 ] .
Sequencer .
/ \ : arbiter .
1
v y = A A Result m
4 4 select
SOC Y EOC SOC Y EOC
MAX CONV1 MAX CONV2
State State
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Figure 5.2 Block diagram of ADC in dual sequencer mode. (Courtesy of Texas
Instruments)

5.2.2  Sequencer Operating Modes

Once the sequencer configuration has been chosen, it is necessary to determine
in what mode each sequencer will operate. The sequencer operation mode depends
on the continuous-run mode bit (CONT RUN) in ADCCTRL1. The ADC’s
interrupt flag is always set when the ADC completes the number of conversions
specified by (MAXCONYV + 1) regardless of the CONT RUN bit. The two ADC

operation modes which apply to both dual (SEQI1, SEQ2) and cascaded (SEQ)
sequencer modes are:

e  Start/Stop Auto-Sequencer Mode
e Continuous Auto-Sequencer Mode
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Start/Stop Auto-Sequencer Mode

If the CONT RUN bit is not set, upon receiving a trigger, the ADC performs all
conversions and halts at the last conversion state (CONVxx) in the corresponding
CHSELSEQn. To perform another batch of conversions, the ADC is normally reset
to its initial state via the RST SEQn bit in the ADCTRL2 register and reinitialized.
After being reinitialized, another trigger is given and the whole process starts over
again. Figure 5.3 is a flowchart of the operation of the ADC under start/stop mode.

Initialize the ADC registers

I

SOC trigger arrives

I

MAXCONYV value gets loaded
into AUTO_SEQ_SR register

Conversion begins. AUTO_SEQ_SR
register is decremented by one for every|
conversion

Current conversion complete. Digital
result is written into corresponding
RESULTn register

All Conversions
Complete?
(AUTO_SEQ_SR=07?)

Set INT FLAG SEQn
\

v
Note: Flow chart corresponds
to CONT RUN bit = 0.

Figure 5.3 Flowchart for Start/Stop Auto-Sequencer Mode (CONT RUN=0).

In the case when another trigger signal is given and the ADC has not been
reset, the ADC performs another specified number of conversions (MAXCONYV +
1) from the current conversion state and then halts. Another trigger signal will
simply restart the sequencer from the point where it halted. When the ADC is given
multiple triggers without being reset in between, this operation is referred to as
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multiple time-sequenced trigger operation. Example 5.2 illustrates a situation where
a multiple time-sequenced trigger operation might be used.

Example 5.2 — The following is a situation where a multiple time-sequenced trigger
operation might be used.

An application requires conversions on all 16 channels, but not all at once. The
application requires conversions on channels 0 through 3, perform a few
calculations, convert channels 4 through 7, do a few more calculations, convert
channels 8 through 11, etc. until conversions are performed on all 16 input channels.
The four CHSELSEQ registers would be loaded only once with all 16 channels in
the desired order. The MAXCONYV register would be loaded with the number “3”,
which configures the auto-sequencer for four conversions. Each time the sequencer
pauses, the algorithm would branch to the section of code that performs calculations
and retrigger the ADC. This “branching” could either occur as a result of an
interrupt or bit polling algorithm.

Continuous Auto-Sequencer Mode

The continuous-run mode bit is set to “1” for this mode of operation. When in
this mode, the ADC completes the number of conversions specified, resets itself to
the first conversion state (CONVO00), and then performs the whole operation over
again. This operation is similar to the start/stop mode except that the ADC is put in
a continuous “looping” operation.

Note: If the CONT RUN (continuous run) mode is selected, the user must be sure
that the result registers are read before the next conversion sequence begins. This
is because every time the ADC runs, the result registers will be overwritten with the
most current results.

5.2.3  Triggering Sources for the LF2407 ADC

In order to start the conversion sequence on the ADC, the sequencer must be
triggered. There are several different trigger sources on the LF2407. Triggers may
come from a SOC signal from EVA: external pin or software. A software trigger is
the trigger thus far used as an example. The software trigger is generated by setting
the SOC SEQI1 bit (cascaded mode) or SOC SEQI,2 bits (dual mode) in the
ADCTRL2 register. Other than software triggers, hardware in the form of an
external pin or on-chip peripheral can also trigger the ADC. Table 5.2 lists the
possible triggering sources which generate a SOC for the ADC. Each trigger input
can be enabled /disabled.
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Table 5.2 SOC Trigger Sources for the ADC
SEQ1 (sequencer 1) SEQ2 (sequencer 2) Cascaded SEQ
Software trigger (software SOC) Software trigger (software SOC) Software trigger (software SOC)
Event manager A (EVA SOC) Event manager B (EVB SOC) Event manager A (EVA SOC)
External SOC pin (ADC SOC) Event manager B (EVB SOC)

External SOC pin (ADC S0C)

The following conditions apply to trigger operation:

a.

A SOC trigger can initiate an auto-conversion sequence whenever a
sequencer is in an idle state. An idle state is either just after reset
(CONVO00), or any state where the sequencer has just finished a
conversion sequence, i.e., when SEQ CNTR has reached zero.

If a SOC trigger occurs while a current conversion sequence is
underway, it sets the SOC SEQn bit. If yet another SOC trigger
occurs, that trigger is ignored. This basically operates as a SOC
trigger “buffer” that will catch a trigger even though the ADC might
be currently performing a conversion.

Once triggered, the sequencer cannot be stopped/halted in mid
sequence. The program must either wait until an End-of-Sequence
(EOS) or initiate a sequencer reset, which brings the sequencer
immediately back to the idle start state (CONVOO for SEQI and
cascaded cases; CONVO08 for SEQ2).

When SEQ1 and SEQ?2 are used in cascaded mode, triggers going to
SEQ2 are ignored, while SEQI1 triggers are active. Cascaded mode
can be viewed as SEQ1 with 16 conversion states instead of 8.

524  The ADCTRLI and ADCTRL?2 Control Registers

ADC Control Register 1 (ADCTRL1) — Address 70A0h

15 14 13 12 11 10 9 8
Reserved RESET SOFT ‘ FREE ‘ ACQ PS3 ‘ ACQPS2 | ACQPS1 ACQ PSO
RS-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
7 6 5 4 3 2 1 0
CPS CONTRUN | INTPRI |SEQCASC | CALENA | BRGENA HI/LO STEST
ENA
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, S = set only, -0 = value after reset.

Bit 15 Reserved
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Bit 14 RESET. ADC module software reset. This bit causes a master reset on the
entire ADC module. All register bits and sequencer state machines are
reset to the initial state as occurs when the device reset pin is pulled low
(or after a power-on reset).

0 No effect
1 Resets entire ADC module (bit is then set back to 0 by ADC
logic)

Note: Using the RESET Bit in the ADCTRLI Register

The ADC module is reset during a system reset. If an ADC module reset is
desired at any other time, you can do so by writing a 1 to this bit. After a
NOP, you can then write the appropriate values to the ADCTRLI1 register

bits:
SPLK #01xxxxxxxxxxxxxxb,ADCTRLI ;Resets the ADC (RESET = 1)
NOP ;Provides the required delay between

; two writes to the ADCTRL1
SPLK #00xxxxxxxxxxxxxxb,ADCTRLI ;Takes ADC out of Reset(RESET= 0)

Note: The second SPLK is not required if the default/power-on configuration of the
ADC is sufficient.

Bits 13,12 SOFT and FREE. Soft and Free bits. These bits determine what
happens with the ADC when an emulation-suspend occurs (due to the
debugger hitting a breakpoint, for example). In free-run mode, the
peripheral can continue with whatever it is doing. In stop mode, the
peripheral can either stop immediately or stop when the current operation
(i.e., the current conversion) is complete.

Soft Free

0 0 Immediate stop on suspend

1 0 Complete current conversion before stopping

X 1 Free run, continue operation regardless of suspend

Bits 11-8 ACQ PS3 — ACQ PS0. Acquisition time window — pre-scale bits 3—0
These bits define the ADC clock pre-scale factor applied to the acquisition
portion of the conversion and determine over what time period each ADc
sample will take place. The pre-scale values are defined in the following
table.
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# | ACQ | ACQ | ACQ | ACQ PRE- Acquisition | Source Source
PS3 | PS2 | PS1 | PSO | SCALER Time Z V4
(div. by) Window | (CPS=0) | (CPS=1)
0 0 0 0 0 1 2 x Telk 67 385
1 0 0 0 1 2 4 x Tclk 385 1020
2 0 0 1 0 3 6 x Tclk 702 1655
3 0 0 1 1 4 8 x Tclk 1020 2290
4 0 1 0 0 5 10 x Tclk 1337 2925
5 0 1 0 1 6 12 x Tclk 1655 3560
6 0 1 1 0 7 14 x Tclk 1972 4194
7 0 1 1 1 8 16 x Tclk 2290 4829
8 1 0 0 0 9 18 x Tclk 2607 5464
9 1 0 0 1 10 20 x Tclk 2925 6099
A 1 0 1 0 11 22 x Tclk 3242 6734
B 1 0 1 1 12 24 x Tclk 3560 7369
C 1 1 0 0 13 26 x Tclk 3877 8004
D 1 1 0 1 14 28 x Tclk 4194 8639
E 1 1 1 0 15 30 x Tclk 4512 9274
F 1 1 1 1 16 32 x Tclk 4829 9909
Notes:
1) Period of Tclk is dependent on the “Conversion Clock Prescale” bit (Bit 7); i.e.,
CPS =0: Tclk = 1/CLK (example, for CLK = 30 MHz, Tclk = 33 ns)
CPS=1: Tclk = 2(1/CLK) (example, for CLK = 30 MHz, Tclk = 66 ns)

2) Source impedance Z is a design estimate only.

Bit7  CPS. Conversion clock prescale. This bit defines the ADC conversion
logic clock prescale

0
1

Felk = CLK/1
Felk = CLK/2

CLK = CPU clock frequency

Bit6 CONT RUN. Continuous run

This bit determines whether the sequencer operates in continuous
conversion mode or start-stop mode. This bit can be written while
a current conversion sequence is active. This bit will take effect at
the end of the current conversion sequence, i.e., software can
set/clear this bit until EOS has occurred for valid action to be
taken. In the continuous conversion mode, there is no need to
reset the sequencer; however, the sequencer must be reset in the
start-stop mode to put the converter in state CONV0O.

Start-stop mode. Sequencer stops after reaching EOS. This is

used for multiple time-sequenced triggers.

Continuous conversion mode. After reaching EOS, the sequencer
starts all over again from state CONVO0O (for SEQ1 and cascaded)
or CONVOS (for SEQ2).
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Bit5 INT PRI. ADC interrupt request priority
0 High priority
1 Low priority

Bit4 SEQ CASC. Cascaded sequencer operation. This bit determines whether
SEQ!1 and SEQ?2 operate as two 8-state sequencers or as a single 16-state

sequencer (SEQ).

0 Dual-sequencer mode. SEQ1 and SEQ?2 operate as two 8-state
sequencers.

1 Cascaded mode. SEQ1 and SEQ2 operate as a single 16-state
sequencer (SEQ).

Bit3 CAL ENA. Offset calibration enable
When set to 1, CAL ENA disables the input channel multiplexer,
and connects the calibration reference selected by the bits HI/LO
and BRG ENA to the ADC core inputs. The -calibration
conversion can then be started by setting bit 14 of ADCTRL2
register (STRT CAL) to 1. Note that CAL ENA should be set to 1
first before the STRT CAL bit can be used.

Note: This bit should not be set to 1 if STEST ENA = 1
0 Calibration mode disabled
1 Calibration mode enabled

Bit2 BRG ENA. Bridge enable
Together with the HI/LO bit, BRG ENA allows a reference
voltage to be converted in calibration mode. See the description of
the HI/LO bit for reference voltage selections during calibration.
0 Full reference voltage is applied to the ADC input
1 A reference midpoint voltage is applied to the ADC input

Bit1 HI/LO YREFHI''REFLO selection
When the fail self-test mode is enabled (STEST ENA = 1), HI/LO
defines the test voltage to be connected. In calibration mode,
HI/LO defines the reference source polarity; see Table 7-5. In
normal operating mode, HI/LO has no effect.
0 VREFLO is used as precharge value at ADC input
1 VREFHI is used as precharge value at ADC input
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Reference Bit Voltage Selection

BRG ENA HI/LO CALENA=1 STEST ENA =1
Reference voltage (V) Reference voltage (V)
0 0 VReFLO VReFLO
0 1 VREFHI VReFHI
1 0 |(VRerH! - VRerLO) / 2| VRerLO
1 1 [(VreFLO - VREFHI) / 2| VREFHI

Bit0 STEST ENA. Self-test function enable
0 Self-test mode disabled
1 Self-test mode enabled

ADC Control Register 2 (ADCTRL2) — Address 70A1h

15 14 13 12 11 10 9 8
EVB SOC RST SEQ1/ | SOC SEQ1 SEQ1BSY INT ENA INT ENA INT FLAG EVA SOC
SEQ STRT CAL SEQ1 SEQ1 SEQ1 SEQ1

(Mode 1) (Mode 0)

RW-0 RS-0 RW-0 R-0 RW-0 RW-0 RC-0 RW-0
7 6 5 4 3 2 1 0
EXT SOC RSTSEQ2 | SOCSEQ2 | SEQ2BSY INT ENA INT ENA INT FLAG EVB SOC
SEQ1 SEQ2 SEQ2 SEQ2 SEQ2

(Mode 1) (Mode 0)
RW-0 RS-0 RW-0 R-0 RW-0 RW-0 RC-0 RW-0

Note: R = read access, W = write access, S = set only, C = clear, -0 = value after
reset.

Bit 15 EVB SOC SEQ. EVB SOC enable for cascaded sequencer (Note: This bit
is active only in cascaded mode.)
0 No action
1 Setting this bit allows the cascaded sequencer to be started by an
Event Manager B signal. The Event Manager can be programmed
to start a conversion on various events. See Chapter 6 for details.

Bit 14 RST SEQ1 / STRT CAL. Reset Sequencerl/Start Calibration
Case: Calibration Disabled (Bit 3 of ADCTRL1) =0
Writing a 1 to this bit will reset the sequencer immediately to an
initial “pre-triggered” state, i.e., waiting for a trigger at CONVO00.
A currently active conversion sequence will be aborted.
No action
1 Immediately reset sequencer to state CONV00

Case: Calibration Enabled (Bit 3 of ADCTRL1)=1
Writing a 1 to this bit will begin the converter calibration process.

0 No action
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1 Immediately start calibration process

Bit 13 SOC SEQ1. SOC trigger for Sequencer 1 (SEQ1). This bit can be set by
the following triggers:

S/W — Software writing a 1 to this bit

EVA — Event Manager A

EVB — Event Manager B (only in cascaded mode)
EXT — External pin (i.e., the ADCSOC pin)

When a trigger occurs, there are three possibilities:

Case 1: SEQ! idle and SOC bit clear. SEQI starts immediately (under
arbiter control). This bit is set and cleared, allowing for any
“pending” trigger requests.

Case 2: SEQI busy and SOC bit clear. Bit is set signifying a trigger
request is pending. When SEQI! finally starts after completing
current conversion, this bit will be cleared.

Case 3: SEQ1 busy and SOC bit set. Any trigger occurring in this case
will be ignored (lost).

0 Clears a pending SOC trigger.

Note: If the sequencer has already started, this bit will automatically be cleared,
and, hence, writing a zero will have no effect; i.e., an already started sequencer
cannot be stopped by clearing this bit.

1 Software trigger — Start SEQ1 from currently stopped position
(i.e., idle mode)

Note: The RST SEQI (ADCTRL2.14) and the SOC SEQI (ADCTRL2.13) bits
should not be set in the same instruction. This will reset the sequencer, but will not
start the sequence. The correct sequence of operation is to set the RST SEQI bit
first, and the SOC SEQI bit in the following instruction. This ensures that the
sequencer is reset and a new sequence started. This sequence applies to the RST
SEQ2 (ADCTRL2.6) and SOC SEQ2 (ADCTRL2.5) bits also.

Bit 12 SEQI1 BSY. SEQ1 Busy
This bit is set to a 1 while the ADC auto-conversion sequence is
in progress. It is cleared when the conversion sequence is
complete.
Sequencer is idle (i.e., waiting for trigger)
1 Conversion sequence is in progress

Bits 11-10 INT ENA SEQL1. Interrupt-mode-enable control for SEQ1
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Bit 11 Bit 10 Operation Description

0 0 Interrupt is disabled

0 1 Interrupt Mode 1. Interrupt requested immediately when
INT FLAG SEQI flag is set

1 0 Interrupt Mode 2

Interrupt requested only if INT FLAG SEQI1 flag is
already set. If clear,” INT FLAG SEQI flag is set and INT
request is suppressed. (This mode allows interrupt
requests to be generated for every other EOS.)

1 1 Reserved

l This means that the last completed sequence is the first of the two
sequences needed to assert an interrupt.

Bit9 INT FLAG SEQI1. ADC interrupt flag bit for SEQ1
This bit indicates whether an interrupt event has occurred or not.
This bit must be cleared by the user writing a 1 to it.
No interrupt event
1 An interrupt event has occurred

Checking for ADC Peripheral Interrupt Flag

After a SOC is initiated, we can check the INT FLAG SEQn bit to see if the
results are in the result registers.

Example code:

ADC_LOOP1:
LDP #0Elh ;data page - ADCTRL2
SPLK #0100000000000000b, ADCTRL2 ;Reset for SEQ1
NOP
NOP
NOP
NOP
SPLK #0010000000000000b, ADCTRL2 ;SO0C for SEQL
CHK_INTFLAG:
BIT ADCTRL2, 6 ;Wait for INT Flag to set
BCND CHK_INTFLAG, NTC ;If TC=0, keep looping.

Bit8 EVA SOC SEQI1. Event Manager A SOC mask bit for SEQ1
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SEQI cannot be started by EVA trigger.

1 Allows SEQ1/SEQ to be started by Event Manager A trigger. The
Event Manager can be programmed to start a conversion on
various events. See Chapter 6 for details.

Bit7 EXT SOC SEQI1. External signal SOC bit for SEQ1
0 No action
1 Setting this bit enables an ADC auto-conversion sequence to be
started by a signal from the ADCSOC device pin.

Bit6  RST SEQ2. Reset SEQ2
0 No action
1 Immediately resets SEQ2 to an initial “pre-triggered” state, i.c.,
waiting for a trigger at CONVO08. A currently active conversion
sequence will be aborted.

Bit5 SOC SEQ2. SOC trigger for Sequencer 2 (SEQ?2)
(Only applicable in dual-sequencer mode; ignored in cascaded
mode.)

This bit can be set by the following triggers:
S/W — Software writing of 1 to this bit
EVB — Event Manager B

When a trigger occurs, there are three possibilities:
Case 1: SEQ2 idle and SOC bit clear
SEQ?2 starts immediately (under arbiter control) and the bit is
cleared, allowing for any pending trigger requests.

Case 2: SEQ2 busy and SOC bit clear
Bit is set signifying a trigger request is pending. When SEQ2
finally starts after completing current conversion, this bit will be
cleared.

Case 3: SEQ2 busy and SOC bit set
Any trigger occurring in this case will be ignored (lost).

0 Clears a pending SOC trigger.
Note: If the sequencer has already started, this bit will
automatically be cleared, and hence, writing a zero will have no
effect; i.e., an already started sequencer cannot be stopped by
clearing this bit.

1 Software trigger — Start SEQ2 from currently stopped position
(i.e., idle mode)
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Bit4 SEQ2 BSY. SEQ2 Busy
This bit is set to a 1 while the ADC auto-conversion sequence is
in progress. It is cleared when the conversion sequence is

complete.

Sequencer is idle (i.e., waiting for trigger).
1 Conversion sequence is in progress.

Bits 3-2 INT ENA SEQ2. Interrupt-mode-enable control for SEQ2

Bit3  Bit2 Operation Description

0 0 Interrupt is disabled

0 1 Interrupt Mode 1
Interrupt requested immediate on INT FLAG SEQ2 flag
set

1 0 Interrupt Mode 2

Interrupt requested only if INT FLAG SEQ2 flag is
already set. If clear,” INT FLAG SEQ?2 flag is set and INT
request is suppressed. (This mode allows interrupt requests
to be generated for every other EOS.)

1 1 Reserved

"This means that the last completed sequence is the first of the two sequences
needed to assert an interrupt.

Bit1 INT FLAG SEQ2. ADC interrupt flag bit for SEQ2
This bit indicates whether an interrupt event has occurred or not.
This bit must be cleared by the user writing a 1 to it.

0 No interrupt event.

1 An interrupt event has occurred.
Note: The bit polling algorithm discussed after the bit 9 description is also valid for
the INT FLAG SEQ? bit.
Bit0 EVB SOC SEQ2. Event Manager B SOC mask bit for SEQ2

0 SEQ2 cannot be started by EVB trigger.

1 Allows SEQ2 to be started by Event Manager B trigger. The

Event Manager can be programmed to start a conversion on
various events. See Chapter 6 for details.

This concludes the main operating modes of the ADC sequencers. Now that
the reader has a general idea of the basic modes of operation (necessary for the

Copyright © 2004 CRC Press, LLC



The Analog-to-Digital Converter (ADC) 93

initialization of registers ADCTRL1 and ADCTRL2), we will now discuss the
configuration of the other ADC registers.

5.2.5  Specifying the Maximum Number of Auto-Conversions

The MAXCONV register is used to specify the maximum number of
conversions that the ADC will automatically perform once triggered. The
MAXCONV register should be loaded with the maximum number of desired auto-
conversions minus 1. In this case, since 16 is the maximum number of conversions
that the ADC can perform, the maximum value that should be loaded in the
MAXCONV register is “OFh”.

When the ADC is in dual sequencer mode, the MAXCONYV register is “split”
and serves both SEQ1 and SEQ2. The lower half of the register serves SEQ1, while
the upper half serves SEQ2. See the bit description of MAXCONYV below.

Maximum Conversion Channels Register (MAXCONYV) — Address 70A2h

15-8
Reserved
R-x
7 6 5 4 3 2 1 0
Reserved MAX MAX MAX MAX MAX MAX MAX
CONV2_2 CONV2_1 CONV2_0 CONV1_3 CONV1_2 CONV1_1 CONV1_0
R—x RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, x = undefined, -0 = value after reset.

Bits 15-7 Reserved

Bits 6-0 MAX CONVn. MAX CONVn bit field defines the maximum number of
conversions executed in an auto-conversion session. The bit fields and
their operation vary according to the sequencer modes (dual/cascaded).

e For SEQI operation, bits MAX CONV1 2 — 0 are used.

o For SEQ2 operation, bits MAX CONV2 2 — 0 are used.

e For SEQ operation, bits MAX CONV1 3 — 0 are used.
An auto-conversion session always starts with the initial state and
continues sequentially until the end state if allowed. The result
registers are filled in a sequential order. Any number of

conversions between 1 and (MAX CONVn +1) can be
programmed for a session.
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Example: MAXCONYV Register Bit Programming

If only five conversions are required, then MAX CONVn is set to four.

Case 1: Dual mode SEQI1 and cascaded mode
Sequencer goes from CONVO00 to CONVO04, and the five
conversion results are stored in the registers Result 00 to Result
04 of the Conversion Result Buffer.

Case 2: Dual mode SEQ2
Sequencer goes from CONVO08 to CONVI12, and the five
conversion results are stored in the registers Result 08 to Result
12 of the Conversion Result Buffer.

MAX CONV1 Value >7 for Dual-Sequencer Mode

If a value for MAX CONV1, which is greater than 7, is chosen for
the dual-sequencer mode (i.e., two separate 8-state sequencers),
then SEQ CNTR n will continue counting past seven, causing the
sequencer to wrap around to CONV00 and continue counting.

5.2.6  Specifying ADC Input Channels and Conversion Order

The ADC input channels and conversion order are specified by the four
Channel Select and Sequencing registers (CHSELSEQ1 through CHSELSEQ4).
Each register selects four channels, which must be loaded in reverse order (from the
least significant hex number to the most significant).

The ADC will perform conversions on the 16 channels in the order that is
specified by the channel select sequence registers (CHSELSEQn). Channels must
be written to the CHSELSEQ registers in reverse order (see Example 5.1).

CHSELSEQ!I controls and specifies conversions CONVO00 through CONV03.
CHSELSEQ?2 controls and specifies conversions CONV04 through CONVO07.
CHSELSEQ3 controls and specifies conversions CONVO0S8 through CONV11.
CHSELSEQ4 controls and specifies conversions CONV12 through CONV15.

Example 5.1: We want to perform conversions on channels 2, 4, 1, 5,7, 1, and 4
in this order. We would load CHSELSEQI1 with “5142 h” and CHSELSEQ?2 with
“417 h”. Since 7 conversions are needed, we would load MAXCONYV with “6h”.

ADC Input Channel Select Sequencing Control Registers (CHSELSEQn)

Each of the 4-bit fields, CONVnn, selects one of the 16 multiplexed analog
input ADC channels for an auto-sequenced conversion.

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0
70A3h| CONVO03 \ CONV02 \ CONVO1 ! CONV00 |CHSELSEQ1
RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.
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Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0
70A4h | CONVO07 ‘ CONV06 ‘ CONV05 ‘ CONVO04 CHSELSEQ2
RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0
70A5h| CONV11 \ CONV10 \ CONV09 ’ CONV08 | CHSELSEQ3
RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0
70A6h | CONV15 ‘ CONV14 ‘ CONV13 ‘ CONV12 CHSELSEQ4
RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.

5.2.7  Results of the ADC Conversion

After the ADC has finished performing the number of conversions specified by
the MAXCONYV register, the RESULTn registers can be read. Each result register
contains a 10-bit conversion result in the 10 most significant bits (MSB) of the
register. There are 16 total result registers, RESULTO through RESULT15. These
registers contain the conversion results in the sequential order that the conversions
take place. For example, the result of the first conversion performed will be stored
in RESULTO, the second in RESULT1 etc.

It is usually desired to right shift the contents of the result register by six places
in order to truncate the extra zeros. This right shift can be performed easily by the
SFR command. Once the ADC result has been shifted, it may be used in
calculations or other purposes. The bit descriptions of the RESULT registers are
given below.

ADC Conversion Result Buffer Registers (RESULTn)

Note: In the cascaded sequencer mode, registers RESULTS through RESULT15
will hold the results of the ninth through sixteenth conversions.
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15 14 13 12 11 10 9 8

D9 ‘ D8 ‘ D7 ‘ D6 ‘ D5 ‘ D4 ‘ D3 ‘ D2

7 6 5 1 0

b | oo | o | | | | o | o
Notes:

1) Buffer addresses = 70A8h to 70B7h (i.e., 16 registers)
2) The 10-bit conversion result (D9-DO0) is left-justified

5.2.8  The Auto-Sequence Status Register

The Auto-Sequence Status Register contains information on the current state of
the sequencer when running conversions. Its bits can be polled (read) to determine,
for example, if the sequencer is near or closer to the end number of conversions.

Auto-sequence Status Register (AUTO_SEQ_SR) — Address 70A7h

15-12 11 10 9 8
Reserved SEQ SEQ SEQ SEQ
CNTR 3 CNTR 2 CNTR 1 CNTR O
R—x R-0 R-0 R-0 R-0
7 6 5 4 3 2 1 0
Reserved SEQ2- SEQ2- SEQ2- SEQ1- SEQ1- SEQ1- SEQ1-
State2 State1 State0 State3 State2 State1 State0
R—x R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = read access, x = undefined, -0 = value after reset.

Bits 15-12 Reserved

Bits 11-8§8  SEQ CNTR 3 — SEQ CNTR 0. Sequencing counter status bits

The SEQ CNTR n 4-bit status field is used by SEQ1, SEQ2, and
the cascaded sequencer. SEQ?2 is irrelevant in cascaded mode.

At the start of an auto-sequenced session, SEQ CNTR n is loaded with the
value from MAX CONVn. The SEQ CNTR n bits can be read at any time during
the countdown process to check the status of the sequencer. This value, together
with the SEQ1 and SEQ2 busy bits, uniquely identifies the progress or state of the
active sequencer at any point in time.
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SEQ CNTR n (read only) Number of conversions remaining
0000 1
0001 2
0010 3
0011 4
0100 5
0101 6
0110 7
0111 8
1000 9
1001 10
1010 11
1011 12
1100 13
1101 14
1110 15
1111 16

Bit 7 Reserved

Bits 64  SEQ2-State2 through SEQ2-State(
Reflects the state of SEQ2 sequencer at any point of time. If need
be, user can poll these bits to read interim results before an EOS.
SEQ?2 is irrelevant in cascaded mode.

Bits 3-0  SEQ1-State3 through SEQ1-State(

Reflects the state of SEQ1 sequencer at any point of time. If need
be, user can poll these bits to read interim results before an EOS.
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ADC Register Addresses Summary (Mapped in Data Memory)

Address Register Name

70A0h ADCTRL1 ADC control register 1

70A1h ADCTRL2 ADC control register 2

70A2h MAXCONV Maximum conversion channels register
70A3h CHSELSEQ1 Channel select sequencing control register 1
70A4h CHSELSEQ2 Channel select sequencing control register 2
70A5h CHSELSEQ3 Channel select sequencing control register 3
70A6h CHSELSEQ4 Channel select sequencing control register 4
70A7h AUTO_SEQ_SR Autosequence status register

70A8h RESULTO Conversion result buffer register 0

70A%h RESULT1 Conversion result buffer register 1

70AAh RESULT2 Conversion result buffer register 2

70ABh RESULT3 Conversion result buffer register 3

70ACh RESULT4 Conversion result buffer register 4

70ADh RESULTS Conversion result buffer register 5

70AEh RESULT6 Conversion result buffer register 6

70AFh RESULT7 Conversion result buffer register 7

70B0Oh RESULT8 Conversion result buffer register 8

70B1h RESULT9 Conversion result buffer register 9

70B2h RESULT10 Conversion result buffer register 10

70B3h RESULT11 Conversion result buffer register 11

70B4h RESULT12 Conversion result buffer register 12

70B5h RESULT13 Conversion result buffer register 13

70B6h RESULT14 Conversion result buffer register 14

70B7h RESULT15 Conversion result buffer register 15

70B8h CALIBRATION Calibration result, used to correct subsequent conversions

5.3  Analog to Digital Converter Usage Exercise

The purpose of this exercise is to familiarize the reader with the practical usage
of the ADC. As stated earlier, the ADC on the LF2407 produces a 10-bit binary
number which represents the voltage of the sampled analog signal.

This 10-bit number is stored in a 16-bit register “RESULTn” n=0..15. When
reading from the register, the least significant 6 bits (bits 0-5) need to be
disregarded because the 10 ADC result bits are bits 15-6. This can be done with the
repeat command and SFR command.

For example, after the initial value is loaded into the accumulator:
RPT #5 SFR ; the accumulator will be shifted right 6 (RPT+1) times
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Create an assembly source file and project file called “lab5”which:

a. Turns on the ADC clock in SCSR1 during the general initialization.

b. Puts the ADC in Reset.

c. Configures the ADC for Cascaded Mode; Continuous Mode = OFF;
brings ADC out of Reset mode.

d. Sets maximum conversions to one and selects channel 0 for

conversion.

Triggers a SOC via BIT 13 in ADCTRL2.

Checks if the ADC is finished via BIT 12 in ADCCTRL2.

If the ADC is finished with the conversion, the accumulator is loaded

with the value in RESULTO (the ADC conversion).

Continuously loops in an endless loop, i.e., does nothing.

B @omo

1. Run the code on the LF2407 EVM with a 1.5V battery connected to
channel 0 of the ADC and analog ground.

2. Record the value from the accumulator (the accumulator has been loaded
with the value from the first ADC RESULT register). The value should be
approximately half of the full voltage value Ox3FFF or approximately
“1FF” = (1.5V).

3. Modify the program to output the result data from address 60h to DAC
channel 1 on the LF2407 EVM. The DAC onboard is a 12-bit DAC, so in
order to get the correct voltage output, left shift the accumulator (ADC
data) two places to account for the extra two least significant bits. Also,
the EVM DAC has a voltage reference of 5V rather then 3.3V like the
ADC. This will cause a voltage slightly higher than what the ADC
sampled to be outputted on the DAC channel. For this academic exercise,
this can be ignored because the voltage difference is somewhat small.
When writing to the DAC Channel 1, the data must first be written to 10
space address 0000h. Then, in order for the data to actually be “sent out”
on the DAC, the IO space address 0004h must be written to. It does not
matter what value is written to IO address 0004h, just as long as it is
written to.

4. The data will then be sent from the buffers to the DAC outputs. (See the
OUT command and the Spectrum Digital LF2407 EVM manual for more
information on programming the on-board DAC.)

5. Rebuild the project, reset the DSP, and run the new code.

6. Measure the voltage output of the DAC. It should reflect the ADC input
voltage.

7. Modify the program to have the ADC continuously sample and
continuously output the sampled data on the DAC.

8. Rebuild the program, reset, and run the DSP.

This concludes the ADC usage exercise.
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Chapter 6

THE EVENT MANAGERS (EVA, EVB)

This chapter explains the features and operation of the LF2407 Event Managers
(EV1, EV2). There are two identical event managers on board the LF2407 DSP.
All control orientated features of the LF2407 are centered in the EV. The event
manager peripheral is made up of components such as timers and pulse width
modulation (PWM) generators. We start with a brief overview of the EV without
getting into too much detail. Since the EV consists of several sub-components, we
discuss in detail the operation and functionality of each sub-component separately
in subsequent sections.

6.1  Overview of the Event Manager (EV)

We start with the EV by reviewing the multiple functional modules of the
peripheral. The two EVs (EVA/B) are identical to one another in terms of
functionality and register/bit definition, but have different register names and
addresses. Since both EV1 and EV2 are identical, only the functionality of EV1
will be explained.

Each EV module in the LF2407 contains the following sub-components:

Interrupt logic

Two general-purpose (GP) timers

Three compare units

PWM circuits that include space vector PWM circuits, dead-band
generation units, and output logic

Three Capture Units

e Quadrature encoder pulse (QEP) circuit

Figure 6.1 shows a block diagram of the EVA module. Similarly, Fig. 6.2
illustrates the block diagram of EVB.

Like all peripherals, the EV registers occupy a range of 16-bit memory
addresses in data memory space. Most of these registers are programmable control
and data registers, but read-only status registers are also present. EVA registers are
located in the data memory range 7400h to 7431h. EVB registers are located in the
range of 7500h to 7531h. Some of the EV memory allocation range is for use by
the DSP only. These undefined registers and undefined bits of EV registers will just
read zero when read by user software. Writes also have no effect on these registers.
As a general rule, one should not write to reserved or illegal addresses in order to
avoid an illegal address non-maskable interrupt (NMI) from occurring.

101
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Data 240xA DSP core
IS ADDR bus Reset INT1.2.34 Clock
7 § 16 A
16 16 ¥ v
‘—_l EV control registers | » ADC start of
and control logic | conversion
16 GP timer 1 Output » TICMP/T
compare logic 1PWM
S
TDIRA
16 <
GP timer 1 * P TCLKINA
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< —4— cLKouT

16 +

T1CON[4,5] T1CON[8,9,10]
A 4
I P 3 | SVPWM 3| Dead 3 —» PWM1
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[ < TDIRA
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QEP CAPCONA[14,13]
circuit
2
2 2 CAP1/QEP1
< CAP2/QEP2
Capture units < CAP3

Figure 6.1 Event Manager A (EVA) block diagram. (Courtesy of Texas
Instruments)

6.2  Event Manager Interrupts

The interrupt system in the EV will be discussed first because each of the sub-
modules of the EVs have interrupt flags. The EV interrupt sub-system is slightly
different from that of the main interrupt system. Each EV has its own “local”
interrupt sub-system which includes its own interrupt mask and flag registers. After
the EV interrupts pass through the sub-system, they flow into the PIE just like any
other interrupt on the LF2407. The EV interrupts are arranged into three groups
(A, B, C). Each group (A,B,C) has its own mask and flag register and is assigned to

Copyright © 2004 CRC Press, LLC



The Event Managers (EVA, EVB) 103

a particular CPU interrupt priority level at the PIE. EV interrupts happen to be only
at the INT2, INT3, and INT4 CPU priority levels.

Data 240xA DSP core
1S ADDR bus Reset INT1.2.34 Clock

A 16 7 §
16 L \

16
EV control registers | » ADC start of
and control logic conversion
16 GP timer 3 Out
put » T3CMP/
compare logic T3PWM
Yy
TDIRB
16 < I
GP timer 3 < p TCLKINB
rescale
< —4— CLKOUT

16 +

T3CONI4,5] T3CONI8,9,10]
A 4
l_ 3 |svPwMm 3| Dead 3 —» PWM7
16 > Full compare state > band s Output :
machine units logic | PWM12
GP timer 4 Output » T4CMP/
com are logic T4PWM
16 < Prescale TCLKINB
: GP timer 4 < —4— CLKOUT
« I
T4CON[4,5] T4CONI[8,9,10]
< TDIRB
<
DIR Clock
A 4
QEP CAPCONB[14,13]
circuit
2
2 2 CAP4/IQEP3
< CAP5/QEP4
Capture units < CAP6

Figure 6.2 Event Manager B (EVB) block diagram. (Courtesy of Texas
Instruments)

The following are the sequential steps for interrupt response within the EV:

1. Interrupt source. When an EV interrupt condition occurs, the respective
flag bits in registers EVXIFRA, EVXIFRB, or EVXIFRC (x = A or B) are
set. As with other peripheral level flags, once set, these flags remain set
until explicitly cleared by the software. In other words, you must clear
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theses flags “manually” through your software in order for future interrupts
to be recognized.

2. Interrupt enable. The EV interrupts can be individually enabled or
disabled by the EV interrupt mask registers EVXIMRA, EVXIMRB, and
EVXIMRC (x being either EV = A or B ). To enable (unmask) an interrupt,
the user must set the corresponding bit to “1”. To disable (mask) the
interrupt, clear the corresponding bit to “0”. From now on, the interrupt is
handled like other peripheral interrupts as discussed earlier in the text.

3. PIE request. 1f both interrupt flag bits and interrupt mask bits are set, then
the interrupt request is passed to the PIE module. As with any other
peripheral interrupts, the PIE module will send the CPU a request for a
CPU level interrupt of the appropriate priority level based on the priority of
the received interrupts.

4. CPU response. On receiving a CPU level interrupt request, the respective
bit in the CPU interrupt flag register (IFR) will be set. If the corresponding
interrupt mask register (IMR) bit is set and INTM bit is cleared, then the
CPU recognizes the interrupt and issues an acknowledgement to the PIE
module. Following this, the CPU finishes executing the current instruction
and branches to the interrupt service routine via the interrupt vector. At
this time, the respective IFR bit will be cleared and the INTM bit will be
set disabling further interrupt recognition. The interrupt vector contains a
branch instruction for the interrupt service routine. From here, the user
software controls the interrupt servicing.

5. Interrupt software. The interrupt software can include two levels of
response.

a. GISR: The General Interrupt Service Routine (GISR) should do any
context save and read the PIVR register to decide which specific
interrupt  occurred. Information on PIVR values and their
corresponding interrupts can be found in Tables 6.1 and 6.2. Since the
PIVR value for each interrupt is unique, it can be used to branch to the
interrupt service routine specific to this interrupt condition.

b. SISR: The Specific Interrupt Service Routine (SISR) level will
normally reside as a sub-section of the GISR. After executing the
interrupt specific service code, the routine should clear the interrupt
flag in the EVXIFRA, EVXIFRB, or EVXIFRC that caused the serviced
interrupt. Code will return the CPU to the pre-interrupt task after
enabling the CPU’s global interrupt bit INTM (clear INTM bit).
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EVA Interrupts
Table 6.1 EVA Interrupts and Corresponding PIVR Values
Group Interrupt Priority within Vector Description/Source INT
group (ID)
PDPINTA 1 (highest) 0020h Power Drive Protection Interrupt A 1
A CMPIINT 2 0021h Compare Unit 1 compare interrupt 2
CMP2INT 3 0022h Compare Unit 2 compare interrupt 2
CMP3INT 4 0023h Compare Unit 3 compare interrupt 2
TIPINT 5 0027h GP Timer 1 period interrupt 2
T1CINT 6 0028h GP Timer 1 compare interrupt 2
T1UFINT 7 002%h GP Timer | underflow interrupt 2
TIOFINT 8 (lowest) 002Ah GP Timer 1 overflow interrupt 2
B T2PINT 1 (highest) 002Bh GP Timer 2 period interrupt 3
T2CINT 2 002Ch GP Timer 2 compare interrupt 3
T2UFINT 3 002Dh GP Timer 2 underflow interrupt 3
T20FINT 4 002Eh GP Timer 2 overflow interrupt 3
C CAPIINT 1 (highest) 0033h Capture Unit 1 interrupt 4
CAP2INT 2 0034h Capture Unit 2 interrupt 4
CAP3INT 3 0035h Capture Unit 3 interrupt 4
EVB Interrupts
Table 6.2 EVB Interrupts and Corresponding PIVR Values
Group Interrupt Priority within  Vector Description/Source INT
group (ID)
PDPINTB 1 (highest) 0019h Power Drive Protection Interrupt B 1
A CMP4INT 2 0024h Compare Unit 4 compare interrupt 2
CMPSINT 3 0025h Compare Unit 5 compare interrupt 2
CMPOINT 4 0026h Compare Unit 6 compare interrupt 2
T3PINT 5 002Fh GP Timer 3 period interrupt 2
T3CINT 6 0030h GP Timer 3 compare interrupt 2
T3UFINT 7 0031h GP Timer 3 underflow interrupt 2
T30OFINT 8 (lowest)  0032h GP Timer 3 overflow interrupt 2
B T4PINT 1 (highest)  0039h GP Timer 4 period interrupt 3
T4CINT 2 003Ah GP Timer 4 compare interrupt 3
TAUFINT 3 003Bh GP Timer 4 underflow interrupt 3
T4OFINT 4 003Ch GP Timer 4 overflow interrupt 3
C CAP4INT 1 (highest) 0036h Capture Unit 4 interrupt 4
CAPSINT 2 0037h Capture Unit 5 interrupt 4
CAPGINT 3 0038h Capture Unit 6 interrupt 4
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EVA Interrupt Flag Register A (EVAIFRA) — Address 742Fh
15-11 10 9 8
Reserved T1OFINT | TIUFINT | TICINT
FLAG FLAG FLAG
R-0 RWI1C-0 RWI1C-0 RW1C-0
7 6-4 3 2 1 0
TIPINT Reserved CMP3INT | CMP2INT | CMP1INT | PDPINTA
FLAG FLAG FLAG FLAG FLAG
RW1C-0 R-0 RWI1C-0 RWI1C0 RWIC-0 RW1IC-0

Note: R = read access, WIC = write 1 to clear, -0 = value after reset.

Bits 15-11 Reserved. Reads return zero; writes have no effect.

Bit 10 TI1OFINT FLAG. GP Timer 1 overflow interrupt.

Read: O
1
Write: 0
1
Bit 9
Read: O
1
Write: 0
1
Bit 8
Read: O
1
Write: 0
1
Bit 7
Read: 0
1
Write: 0
1

Flag is reset
Flag is set
No effect
Resets flag

T1UFINT FLAG. GP Timer 1 underflow interrupt.

Flag is reset
Flag is set
No effect
Resets flag

T1CINT FLAG. GP Timer 1 compare interrupt.

Flag is reset
Flag is set
No effect
Resets flag

T1PINT FLAG. GP Timer 1 period interrupt.

Flag is reset
Flag is set
No effect
Resets flag

Bits 6—4 Reserved. Reads return zero; writes have no effect.

Bit 3
Read: 0
1
Write: 0
1
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Bit2 CMP2INT FLAG. Compare 2 interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
Bit1 CMPIINT FLAG. Compare 1 interrupt.
Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
Bit0 PDPINTA FLAG. Power drive protection interrupt.
Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag

EVA Interrupt Flag Register B (EVAIFRB) — Address 7430h

15-4 3 2 1 0
Reserved T20FINT T2UFINT T2CINT T2PINT
FLAG FLAG FLAG FLAG
R-0 RW1C-0 RW1C-0 RW1C-0 RW1C-0

Note: R = read access, WIC = write 1 to clear, -0 = value after reset.

Bits 15-4  Reserved. Reads return zero; writes have no effect.

Bit3  T2OFINT FLAG. GP Timer 2 overflow interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
Bit2 T2UFINT FLAG. GP Timer 2 underflow interrupt.
Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
Bit1 T2CINT FLAG. GP Timer 2 compare interrupt.
Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
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Bit0  T2PINT FLAG. GP Timer 2 period interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag

EVA Interrupt Flag Register C (EVAIFRC) — Address 7431h

15-3 2 1 0
Reserved CAP3INT CAP2INT CAP1INT
FLAG FLAG FLAG
R-0 RW1C-0 RW1C-0 RW1C-0

Note: R = read access, WIC = write 1 to clear, -0 = value after reset.

Bits 15-3 Reserved. Reads return zero; writes have no effect.

Bit2 CAP3INT FLAG. Capture 3 interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
Bit1 CAP2INT FLAG. Capture 2 interrupt.
Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
Bit0 CAPI1INT FLAG. Capture | interrupt.
Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
EVA Interrupt Mask Register A (EVAIMRA) — Address 742Ch
15-11 10 9 8
Reserved TAOFINT | TIUFINT | TICINT
ENABLE | ENABLE | ENABLE
R-0 RW-0 RW-0 RW-0
7 6-4 3 2 1 0
TAPINT Reserved CMP3INT | CMP2INT | CMP1INT | PDPINTA
ENABLE ENABLE | ENABLE | ENABLE | ENABLE
RW-0 R-0 RW-0 RW-0 RW-0 RW—1

Note: R = read access, W = write access, value following dash (—) = value after

reset.
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Bits 15-11 Reserved. Reads return zero; writes have no effect.

Bit 10 T1OFINT ENABLE

0 Disable

1 Enable
Bit9 TI1UFINT ENABLE

0 Disable

1 Enable
Bit8 TI1CINT ENABLE

0 Disable

1 Enable
Bit7 TI1PINT ENABLE

0 Disable

1 Enable

Bits 6—4 Reserved. Reads return zero; writes have no effect.

Bit3 CMP3INT ENABLE

0 Disable
1 Enable
Bit2 CMP2INT ENABLE
0 Disable
1 Enable

Bit1 CMPI1INT ENABLE
0 Disable
1 Enable

Bit0 PDPINTA ENABLE. This is enabled (set to 1) following reset.

0 Disable
1 Enable

EVA Interrupt Mask Register B (EVAIMRB) — Address 742Dh

15-4 3 2 1 0
Reserved T20FINT T2UFINT T2CINT T2PINT
ENABLE ENABLE ENABLE ENABLE
R-0 RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15-4  Reserved. Reads return zero; writes have no effect.

Bit3 T2OFINT ENABLE
0 Disable
1 Enable
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Bit2 T2UFINT ENABLE
0 Disable
1 Enable

Bit1l T2CINT ENABLE
0 Disable
1 Enable

Bit0 T2PINT ENABLE
0 Disable
1 Enable

EVA Interrupt Mask Register C (EVAIMRC) — Address 742Eh

15-3 2 1 0
Reserved CAP3INT CAP2INT CAP1INT
ENABLE ENABLE ENABLE
R-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.
Bits 15-3  Reserved. Reads return zero; writes have no effect.

Bit2 CAP3INT ENABLE
0 Disable
1 Enable

Bit1l CAP2INT ENABLE
0 Disable
1 Enable

Bit0 CAPI1INT ENABLE
0 Disable
1 Enable

EVB Interrupt Flag Register A (EVBIFRA) — Address 752Fh

15-11 10 9 8
Reserved T3OFINT T3UFINT T3CINT
FLAG FLAG FLAG
R-0 RW1C-0 RW1C-0 RW1C-0
7 6-4 3 2 1 0
T3PINT Reserved CMPGINT | CMPSINT | CMP4INT | PDPINTB
FLAG FLAG FLAG FLAG FLAG
RW1C-0 R-0 RW1C-0 RW1C-0 RW1C-0 RW1C-0

Note: R = read access, WIC = write 1 to clear, -0 = value after reset.
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Bits 15-11 Reserved. Reads return zero; writes have no effect.

Bit 10 T3OFINT FLAG. GP Timer 3 overflow interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
Bit9  T3UFINT FLAG. GP Timer 3 underflow interrupt.
Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag

Bit8 T3CINT FLAG. GP Timer 3 compare interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
Bit7  T3PINT FLAG. GP Timer 3 period interrupt.
Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag

Bits 6—4 Reserved. Reads return zero; writes have no effect.

Bit3 CMP6INT FLAG. Compare 6 interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag

Bit2 CMPSINT FLAG. Compare 5 interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
Bit1 CMP4INT FLAG. Compare 4 interrupt.
Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
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Bit0 PDPINTB FLAG. Power drive protection interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag

EVB Interrupt Flag Register B (EVBIFRB) — Address 7530h

15-4 3 2 1 0
Reserved T4OFINT TAUFINT T4ACINT T4PINT
FLAG FLAG FLAG FLAG
R-0 RW1C-0 RW1C-0 RW1C-0 RW1C-0

Note: R = read access, WIC = write [ to clear, -0 = value after reset.

Bits 154 Reserved. Reads return zero; writes have no effect.

Bit3  T4OFINT FLAG. GP Timer 4 overflow interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag

Bit2 T4UFINT FLAG. GP Timer 4 underflow interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag

Bit1 T4CINT FLAG. GP Timer 4 compare interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag

Bit0  T4PINT FLAG. GP Timer 4 period interrupt.

Read: 0 Flag is reset
1 Flag is set
Write: 0 No effect
1 Resets flag
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EVB Interrupt Flag Register C (EVBIFRC) — Address 7531h

15-3 2 1 0
Reserved CAPGINT CAPSINT CAP4INT
FLAG FLAG FLAG
R-0 RW1C-0 RW1C-0 RW1C-0

Note: R = read access, WIC = write 1 to clear, -0 = value after reset.

Bits 15-3  Reserved. Reads return zero; writes have no effect.

Bit2 CAP6INT FLAG. Capture 6 interrupt.

Read: O
1
Write: 0
1

Flag is reset

Resets flag

Bit1 CAPSINT FLAG. Capture 5 interrupt.

Read: 0
1
Write: 0
1

Flag is reset
Flag is set

Resets flag

Bit0 CAP4INT FLAG. Capture 4 interrupt.

Read: O
1
Write: 0
1

Flag is reset
Flag is set

Resets flag

EVB Interrupt Mask Register A (EVBIMRA) — Address 752Ch

113

15-11

10

9

8

Reserved T3OFINT T3UFINT T3CINT
ENABLE ENABLE ENABLE
R-0 RW-0 RW-0 RW-0
7 6-4 3 2 1 0
T3PINT Reserved CMPGINT | CMPSINT | CMP4INT | PDPINTB
ENABLE ENABLE ENABLE ENABLE ENABLE
RW-0 R-0 RW-0 RW-0 RW-0 RW-1

Note: R = read access, W = write access, -n = value after reset.

Bits 15-11 Reserved. Reads return zero; writes have no effect.
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Bit 10 T3OFINT ENABLE
0 Disable
1 Enable

Bit9 T3UFINT ENABLE
0 Disable
1 Enable

Bit8 T3CINT ENABLE
0 Disable
1 Enable

Bit7 T3PINT ENABLE
0 Disable
1 Enable

Bits 6—4 Reserved. Reads return zero; writes have no effect.

Bit3 CMP6INT ENABLE
0 Disable
1 Enable

Bit2 CMP5INT ENABLE
0 Disable
1 Enable

Bit1 CMP4INT ENABLE
0 Disable
1 Enable

Bit0 PDPINTB ENABLE. This is enabled (set to 1) following reset.

0 Disable
1 Enable

EVB Interrupt Mask Register B(EVBIMRB) — Address 752Dh

15-4 3 2 1 0
Reserved T4OFINT TAUFINT T4ACINT T4PINT
ENABLE ENABLE ENABLE ENABLE
R-0 RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.
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Bits 15-4 Reserved. Reads return zero; writes have no effect.

Bit3 T4OFINT ENABLE
0 Disable
1 Enable

Bit2 T4UFINT ENABLE
0 Disable
1 Enable

Bit1l T4CINT ENABLE
0 Disable
1 Enable

Bit0 T4PINT ENABLE
0 Disable
1 Enable

EVB Interrupt Mask Register C (EVBIMRC) — Address 752Eh

15-3 2 1 0
Reserved CAPGINT CAPSINT CAP4INT
ENABLE ENABLE ENABLE
R-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.
Bits 15-3  Reserved. Reads return zero; writes have no effect.

Bit2 CAPG6INT ENABLE
0 Disable
1 Enable

Bit1l CAPSINT ENABLE
0 Disable
1 Enable

Bit0 CAP4INT ENABLE
0 Disable
1 Enable

6.3  General Purpose (GP) Timers

A General Purpose (GP) timer is simply a 16-bit counter, which may be
configured to count up, down, or continuously up and down. There are two GP
Timers in each EV: Timer] and Timer2 for EVA and Timer3 and Timer4 for EVB.
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All timers use the CPU clock as a general timing reference, but each individual
timer may use a “pre-scaled” or frequency reduced time base which is specified in
each timer’s control register.

A GP Timer may also be configured to generate an interrupt or trigger another
peripheral on certain events such as a timer overflow (timer reached period value),
underflow (timer reached zero), or compare (timer value reached compare value).
Some examples of uses for the GP Timers include: setting the sampling period for
the ADC by triggering the start of conversion; or providing the switching period for
the generation of a PWM signal.

Figure 6.3 shows a block diagram of a GP Timer. There are two cases that

apply to Fig. 6.3:

1. When “x”=2, “y”=1and “n” =
2. When “x” =4, “y” =3 and “n” =
TxPR . .
: . TyPR period register
p?gf:d:fvss;sf (shadoved
GPTCONA/B
GP timer
control
TnCON[O] register
TxCMPR
_— ] Symm/asym
compare Compare waveform > OUtPUt ——»TxPWM
register logic generator logic
(shadowed)
‘ Interrupt flags
TxCNT GP
timer counter
ADC start of
conversion
Internal Control
CPU clock— ] logic 4 TCLKINA/B
[4¢—TDIRAB
TxCON GPTx

control register

Figure 6.3 General purpose timer configuration diagram.
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Each GP Timer consists of the following components:

e  One readable and writeable (RW) 16-bit up and up/down counter register
TxCNT (x = 1, 2, 3, 4). This register holds the current count value and
increments or decrements depending on the direction of counting

16-bit timer compare register, TXCMPR (x =1, 2, 3, 4)

16-bit timer period register, TxPR (x =1, 2, 3, 4)

16-bit individual timer control register, TXxCON (x =1, 2, 3, 4)
Programmable input clock divider (pre-scaler) applicable to both internal
and external clock inputs

One GP Timer compare output pin, TXCMP (x =1, 2, 3, 4)

e Interrupt logic

6.3.1 GP Timer Inputs and Outputs
Each GP Timer has the following inputs:

e Clock Reference Inputs: (1) The internal device (CPU) clock and (2)
external clock, TCLKINA/B, that has a maximum frequency of one-fourth
that of the device clock

e Direction input, TDIRA/B, when a GP Timer is in directional up/down-
counting mode

e Reset signal, RESET

The source of the GP Timer clock can be the internal CPU clock signal or the

external clock input, TCLKINA/B. The frequency of the external clock must be less
than or equal to one-fourth of that of the device clock. GP Timer 2 (EVA) and GP
Timer 4 (EVB) can be used with the QEP circuits in directional up-/down-counting
mode. In this case, the QEP circuits provide both the clock and direction inputs to
the timer. A wide range of prescale factors are provided for the clock input to each
GP Timer.

The QEP circuit, when selected, can generate the input clock and counting
direction for GP Timer 2/4 in the directional up-/down-counting mode. A QEP
signal may come from a rotary encoder which is attached to a motor shaft to provide
speed/direction feedback. Via the QEP circuitry, it controls the clock input and
direction of Timer 2/4. From this, the speed of the motor can be determined from
the counting speed; the direction of count reflects the rotation direction. The QEP
input clock cannot be scaled by GP Timer prescaler circuits (the prescaler of the
selected GP Timer has no effect if the QEP circuit is selected as the clock source).
Furthermore, the frequency of the clock generated by the QEP circuits is four times
that of the frequency of each QEP input channel because the rising and falling edges
of both QEP input channels are counted by the selected timer. In other words, the
frequency of the incoming QEP signal must be less than or equal to one-fourth of
that of the CPU clock.

Now that the inputs to the GP Timers have been discussed, we will next discuss
the outputs associated with each GP Timer. Outputs are either connected to a data
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memory mapped register, another peripheral, or an external pin of the LF2407.
Each GP Timer has the following outputs:

e GP Timer compare outputs TXCMP, x = 1, 2, 3, 4 (external pins on the
LF2407)

e ADC start-of-conversion signal (connected to the ADC module)

e  Underflow, overflow, compare match, and period match signals to its own
compare logic and to the compare units (connected to the compare units of
the EV)

e Counting direction indication bits (in the GPTCONA/B registers mapped
to data memory)

The General Purpose Timer Control Register (GPTCONA/B), configures the
action to be taken by the timers on different timer events, and indicates the counting
directions of the GP Timers. GPTCONA/B is readable and writeable, although
writing to the status bits in this register has no effect.

6.3.2  GP Counting Operation
GP Timers have four possible modes of counting operation:

1. Stop/Hold mode

2. Continuous Up-Counting mode

3. Directional Up/Down-Counting mode

4. Continuous Up/Down-Counting mode

Each timer is configured for desired counting mode in its corresponding Timer
Control register (TXCON). Each GP Timer is enabled by setting the Timer Enable
bit each timer’s control register. When the timer is enabled, the timer counts
according to the counting mode specified by the bits in the TXCON. The counting
direction of the GP Timers are reflected by their respective bit in GPTCONA/B.
When the timer is disabled (enable bit=0), counting is disabled and the prescaler of
that timer is reset to the default value of “x/1”.

Stop/Hold mode is like the “pause” button for the timer. In stop/hold mode the
GP Timer stops and holds at its current state. The timer counter, the compare
output, and the pre-scale select all remain unchanged.

Continuous Up-Counting Mode:

The continuous up-counting mode is useful in creating asymmetric PWM
signals. In the continuous up-count mode the following events occur:

1. The GP Timer in this mode counts up in sync with the pre-scaled input
clock until the value of the timer counter matches that of the period
register.

2. On the next rising edge of the input clock after the match, the GP Timer
resets to zero and starts counting up again.

3. The period interrupt flag of the timer is set one clock cycle after the match
between the timer counter and period register. If the flag is not masked, a
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peripheral interrupt request is generated. An ADC start is sent to the ADC
module at the same time the flag is set if the period interrupt of this timer
has been selected by the appropriate bits in GPTCONA/B to start the ADC.

4. One clock cycle after the GP Timer becomes 00001, the underflow

interrupt flag of the timer is set. A peripheral interrupt request is generated
by the flag if it is unmasked. An ADC start is sent to the ADC module at
the same time if the underflow interrupt flag of this timer has been selected
by the appropriate bits in the GPTCONA/B to start the ADC.

The duration of the timer period is (TxPR) + 1 cycles of the scaled clock input
except for the first period. The duration of the first period is the same if the timer
counter is zero when counting starts. The initial value of the GP Timer can be any
value from Oh to FFFFh. When the initial value is greater than the value in the
period register, the timer counts up to FFFFh, resets to zero, and continues the
operation as if the initial value was zero. The overflow interrupt flag is set one
clock cycle after the value in TXCNT matches FFFFh. A peripheral interrupt request
is generated by the flag if it is unmasked.

When the initial value in the timer counter is the same as that of the period
register, the timer sets the period interrupt flag, resets to zero, sets the underflow
interrupt flag, and then continues the operation again as if the initial value was zero.
If the initial value of the timer is between zero and the contents of the period
register, the timer counts up to the period value and continues to finish the period as
if the initial counter value was the same as that of the period register.

The counting direction indication bit in GPTCONA/B is “1” for the timer in
this mode. Either the external or internal device clock can be selected as the input
clock to the timer. The TDIRA/B input is ignored by the GP Timer in this mode
since we are in an up-count only mode. The continuous up-count mode of the GP
Timer is particularly useful for the generation of edge-triggered or asynchronous
PWM waveforms and sampling periods in many motor and motion control systems.
Figure 6.4 shows the continuous up-counting mode of the GP Timer.

TxPR=4-1=3 TxPR=3-1=2

3 3

Timer value 2 2 2

TXCON[6]

Tmerclocl{l|||||||||||||||||||||||

Figure 6.4 Operation of continuous up-counting mode (TxPR = 3 or 2).
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Directional Up/Down-Counting Mode:

A GP Timer in directional up/down-counting mode counts either up or down
according to the pre-scaled clock and TDIRA/B inputs. The input pin TDIRA/B
determines the direction of counting when the GP Timer is in directional up/down-
counting mode. When TDIRA/B is high, upward counting is specified; when
TDIRA/B is low, downward counting is specified.

When the TDIRA/B pin is held high, the GP Timer will count up until it
reaches the value of the period register. When the timer value equals that of its
period register the timer will reset to zero and start counting up to the period again.
The initial value of the timer can be any value between 0000h to FFFFh. In the case
that the initial value of the timer counter is greater than that of the period register,
the timer would count up to FFFFh before resetting itself to zero and continuing the
counting operation. When TDIRA/B pin is held low, the GP Timer will count down
from whatever initial value the counter was at until its count value becomes zero.
When its count value becomes zero, the value of the period register is automatically
loaded into the count value register and the timer begins counting down to zero.

In the directional up/down mode, the period, underflow, and overflow interrupt
flags, interrupts, and associated actions are generated on respective events in the
same manner as they are generated in the continuous up-counting mode. The
direction of counting is indicated for the timer in this mode by the corresponding
direction indication bit in GPTCONA/B: 1 means counting up; 0 means counting
down. Either the external clock from the TCLKINA/B pin or the internal device
clock can be used as the input clock for the timer in this mode. Figure 6.5 shows
the directional up-/down-counting mode of the GP Timers.

65535
65534 4+ —— TyPR=3 —>
*| — 65533 >

Timer
value

oIrRae |

TXCON[6 _|

Tmer [ L

Figure 6.5 GP timer directional up/down-counting mode: prescale factor 1 and

TxPR =3A.

Additionally, the directional up-/down-counting mode of GP Timer 2 and 4 can
also be used with the Quadrature Encoder Pulse (QEP) circuits in the EV module.
While the QEP circuits are active, they provide both the counting clock and
direction for GP Timers 2 or 4.
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Continuous Up/Down-Counting Mode

The continuous up/down-counting mode is useful in generating symmetric
PWM waveforms. This mode of operation is the same as the directional up-/down-
counting mode, except for the fact that the TDIRA/B pin has no effect on the
counting direction. The counting direction changes from up to down when the timer
reaches the period value. The timer direction changes from down to up when the
timer reaches zero. Continuous up/down-counting mode is particularly useful in
generating centered or symmetric PWM waveforms.

The initial value of the GP Timer counter can be any value from Oh to FFFFh.
When the initial value is greater than that of the period register (TxPR), the timer
counts up to FFFFh, resets to zero, and continues the operation as if the initial value
were zero. If the initial value of the timer counter is the same as that of the period
register, the timer counts down to zero and continues again as if the initial value
were zero. If the initial value of the timer is between zero and the contents of the
period register, the timer will count up to the period value and continue to finish the
period as if the initial counter value were the same as that of the period register.

The counting direction indication bit in the GPTCONA/B indicates “1” when
the timer counts upward and “0” when the timer is counting downward. Either an
external clock reference from the TCLKINA/B pin or the internal CPU clock can be
selected as the input clock. Since the change of count direction is automatic in this
mode, the TDIRA/B pin has no effect. The period, underflow, and overflow
interrupt flags, interrupts, and associated actions are generated on the respective
events in the same manner as they are generated in other counting modes. Figure
6.6 shows the continuous up-/down-counting mode of the GP Timer.

TxPR=3 TxPR=2
Timer period ! Ti
2x(TxPR | imer
( 3 ) "! period |

Timer value

Figure 6.6 Continuous up/down counting mode (timer period register = 3 or 2).

Note: The period of the timer in this mode is 2*(TxPR) cycles of the scaled clock
input, except for the first period.
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6.3.3
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Control Registers Associated with the General Purpose Timers

Individual Timer Control Registers (TxCON), where x=1,2,3,4

The operational mode of each GP Timer is controlled by the timer’s
corresponding control register (TXCON). The bits in the TxXCON configure:

1.

Nownk

What counting mode the timer is set for

Whether the internal (CPU) or an external clock is to be used for the clock
reference

Which of the eight input clock pre-scale factors (ranging from 1/1 to
1/128) is used

When (on which condition) the timer compare register is reloaded

Whether the timer is enabled or disabled

Whether the timer compare operation is enabled or disabled

Which period register is used by timer 2 (its own, or timer 1’s period
register (EVA))

Which period register is used by timer 4 (its own, or timer 3’s period
register (EVB))

In EVA, GP Timer 2 can be synchronized with GP Timer 1. Additionally, in
EVB, GP Timer 4 can be synchronized with GP Timer 3 by configuring T2CON
and T4CON, respectively, in the following ways:

EVA:
1.

EVB:

Set the T2SWT1 bit in T2CON to start GP Timer 2 counting with the
TENABLE bit in TICON (both timer counters start simultaneously)
Initialize the timer counter in GP Timers 1 and 2 with different values
before starting synchronized operation

Specify that GP Timer 2 uses the period register of GP Timer 1 as its
period register (ignoring its own period register) by setting SELT1PR in
T2CON

Set the T4SWT3 bit in T4ACON to start GP Timer 4 counting with the
TENABLE bit in T3CON (thus, both timer counters start simultaneously)
Initialize the timer counters in GP Timers 3 and 4 with different values
before starting synchronized operation

Specify that GP Timer 4 uses the period register of GP Timer 3 as its
period register (ignoring its own period register) by setting SELT3PR in
T4CON

This allows the desired synchronization between GP Timer events. Since each
GP Timer starts the counting operation from its current value in the counter register,
one GP Timer can be programmed to start with a known delay after the other GP

Timer.
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Timer x Control Register Bit Descriptions (TxCON; x =1, 2, 3, or 4) —
Addresses: 7404h (T1CON), 7408h (T2CON), 7504h (T3CON), and 7508h
(T4CON)
15 14 13 12 1 10 9 8
Free ‘ Soft ‘ Reserved ‘ TMODE1 ‘ TMODEQ ‘ TPS2 ‘ TPS1 ‘ TPSO
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
7 6 5 4 3 2 1 0
T2SWT1/ | TENABLE | TCLKS1 | TCLKSO | TCLD1 TCLDO | TECMPR | SELTIPR/
T4SWT3! SELT3PR!
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
1 Reserved in TICON andT3CON
Note: R = read access, W = write access, -0 = value after reset.
Bits 15-14 Free, Soft. Emulation control bits.
00 Stop immediately on emulation suspend
01 Stop after current timer period is complete on emulation suspend
10 Operation is not affected by emulation suspend
11 Operation is not affected by emulation suspend

Bit 13 Reserved. Reads return zero, writes have no effect.

Bits 12-11 TMODE1-TMODEO(. Count Mode Selection.

00 Stop/Hold

01 Continuous-Up/-Down Count Mode
10 Continuous-Up Count Mode
11 Directional-Up/-Down Count Mode

Bits 10-8 TPS2-TPS0.

Bit 7

Input Clock Prescaler.
000=x/1, 001=x/2, 010=x/4, 011=x/8, 100=x/16, 101=x/32,110=x/64
111=x/128 ; x =device (CPU) clock frequency

T2SWT1. In the case of EVA, this bit is T2SWT1. (GP Timer 2 start with
GP Timer 1.) Start GP Timer 2 with GP Timer 1’s timer enable bit. This
bit is reserved in TICON.
T4SWT3. In the case of EVB, this bit is T4SWT3. (GP Timer 4 start with
GP Timer 3.) Start GP Timer 4 with GP Timer 3’s timer enable bit. This
bit is reserved in T3CON.

0 Use own TENABLE bit

1 Use TENABLE bit of TICON (in case of EVA) or T3CON (in
case of EVB) to enable and disable operation ignoring own
TENABLE bit

Copyright © 2004 CRC Press, LLC



124 The Event Managers (EVA, EVB)

Bit 6 TENABLE. Timer enable.

0 Disable timer operation (the timer is put in hold and the prescaler
counter is reset)
1 Enable timer operations

Bits 5-4 TCLKS1, TCLKSO. Clock Source Select.

5 4 Source
0 0 Internal
0 1 External
1 0 Reserved
1 1 QEP Circuit' (in case of Timer 2/Timer 4) Reserved (in
case of Timer 1/Timer 3)
i This option is valid only if SELT1PR =0
Bits 3-2 TCLD1, TCLDO. Timer Compare Register Reload Condition.
00 When counter is 0
01 When counter value is 0 or equals period register value
10 Immediately
11 Reserved

Bit1 TECMPR. Timer compare enable.
0 Disable timer compare operation
1 Enable timer compare operation

Bit0 SELTI1PR. In the case of EVA, this bit is SELTIPR (Period register

select).
When set to 1 in T2CON, the period register of Timer 1 is chosen
for Timer 2 also, ignoring the period register of Timer 2. This bit
is a reserved bit in TICON. SELT3PR. In the case of EVB, this
bit is SELT3PR (Period register select). When set to 1 in T4CON,
the period register of Timer 3 is chosen for Timer 4 also, ignoring
the period register of Timer 4. This bit is a reserved bit in
T3CON.
Use own period register

1 Use T1PR (in case of EVA) or T3PR (in case of EVB) as period
register ignoring own period register

Overall GP Timer Control Registers (GPTCONA/B)

The control register GPTCONA/B specifies the action to be taken by the timers
on different timer events. This register also has timer direction status bits that
display the current direction of the timers. Also, the polarity of the GP Timer
compare outputs is configured here. Bits in GPTCONA/B can also configure
specific timers to trigger an ADC start signal when an underflow, compare match,
or period match occurs. This feature requires that the ADC also be configured to

Copyright © 2004 CRC Press, LLC



The Event Managers (EVA, EVB) 125

accept the start of conversion signal from the GP Timer. Having the GP Timer

trigger provides for automatic synchronization between the GP Timer event and the
ADC.

GP Timer Control Register A (GPTCONA) Bit Descriptions — Address 7400h

15 14 13 12-11 10-9 8-7
Reserved | T2STAT ‘ TISTAT ‘ Reserved ‘ T2TOADC T1TOADC
RW-0 R-1 R-1 RW-0 RW-0 RW-0

6 5-4 3-2 1-0
TCOMPOE \ Reserved T2PIN \ T1PIN
RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -n = value after reset.
Bit 15 Reserved. Reads return zero; writes have no effect.

Bit 14 T2STAT. GP Timer 2 Status. Read only.
0 Counting downward
1 Counting upward

Bit 13 TISTAT. GP Timer 1 Status. Read only.
0 Counting downward
1 Counting upward

Bits 12—-11 Reserved. Reads return zero; writes have no effect.

Bits 10-9 T2TOADC. Start ADC with timer 2 event.
00 No event starts ADC

01 Setting of underflow interrupt flag starts ADC
10 Setting of period interrupt flag starts ADC
11 Setting of compare interrupt flag starts ADC

Bits 8-7 TITOADC. Start ADC with timer 1 event.
00 No event starts ADC

01 Setting of underflow interrupt flag starts ADC
10 Setting of period interrupt flag starts ADC
11 Setting of compare interrupt flag starts ADC

Bit6 TCOMPOE. Compare output enable. If PDPINTX is active this bit is set

to zero.

0 Disable all GP Timer compare outputs (all compare outputs are
put in the high-impedance state)

1 Enable all GP Timer compare outputs
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Bits 5—4 Reserved. Reads return zero; writes have no effect.

Bits 3-2 T2PIN. Polarity of GP Timer 2 compare output.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 1-0 T1PIN. Polarity of GP Timer 1 compare output.
00 Forced low
01 Active low
10 Active high
11 Forced high

GP Timer Control Register B (GPTCONB) Bit Descriptions — Address 7500h

15 14 13 12-11 10-9 8-7
Reserved ‘ T4STAT ‘ T3STAT ‘ Reserved ‘ TATOADC ‘TSTOADC
RW-0 R-1 R-1 RW-0 RW-0 RW-0
6 5-4 3-2 1-0
TCOMPOE \ Reserved T4PIN \ T3PIN
RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -n = value after reset.

Bit 15 Reserved. Reads return zero; writes have no effect.

Bit 14 T4STAT. GP Timer 4 Status. Read only.
0 Counting downward
1 Counting upward

Bit 13 T3STAT. GP Timer 3 Status. Read only.
0 Counting downward
1 Counting upward

Bits 12—-11 Reserved. Reads return zero; writes have no effect.

Bits 10-9 T4TOADC. Start ADC with timer 4 event.

00 No event starts ADC

01 Setting of underflow interrupt flag starts ADC
10 Setting of period interrupt flag starts ADC

11 Setting of compare interrupt flag starts ADC

Bits 8-7 T3TOADC. Start ADC with timer 3 event.
00 No event starts ADC
01 Setting of underflow interrupt flag starts ADC
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10 Setting of period interrupt flag starts ADC
11 Setting of compare interrupt flag starts ADC
Bit66 TCOMPOE. Compare output enable. If PDPINTX is active this bit is set
to zero.
0 Disable all GP Timer compare outputs (all compare outputs are
put in the high-impedance state)
1 Enable all GP Timer compare outputs

Bits 5—4 Reserved. Reads return zero; writes have no effect.

Bits 3-2 T4PIN. Polarity of GP Timer 4 compare output.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 1-0 T3PIN. Polarity of GP Timer 3 compare output.
00 Forced low
01 Active low
10 Active high
11 Forced high

GP Timer Compare Registers (TxCMPR), x=1,2,3,4 — User Specified Value
Addresses 7402h (T1CMPR), 7406h (T2CMPR), 7502h (T3CMPR), 7506h
(T4CMPR)

The compare register associated with each GP Timer stores the value that will
be constantly compared with the current value of the GP Timer. When a compare
match occurs, the following events also occur:

1. A transition occurs on the associated compare output according to the bit
pattern in GPTCONA/B

2. The corresponding interrupt flag is set

3. A peripheral interrupt request is generated if the interrupt is unmasked

4. The compare operation of a GP Timer can be enabled or disabled by the
appropriate bit in TxCON

5. The compare operation and outputs can be enabled in any of the timer
counting modes, including the QEP circuit

GP Timer Period Registers (TxPR) — User Specified Value
Addresses 7403h (T1PR), 7407h (T2PR), 7503h (T3PR), 7507h (T4PR)

The period register determines the rate at which the timer resets itself or
changes direction (the period of the timer). This register in combination with the
input clock frequency (and clock pre-scale factor) determines the frequency of a
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PWM signal created by the compare output pin. The corresponding timer either
resets to “0”, or starts counting downward (depending on the operating mode) when
a match occurs between the period register and the timer counter (TXCNT).

CAUTION: The period register of a GP Timer needs to be initialized before its
counter is set to a non-zero value. Otherwise, the value of the period register will
remain unchanged until the next underflow!

Both the compare and period registers of the GP Timers are shadowed or
double-buffered. This means that when either the period registers or compare
registers are written to, the value is automatically stored first into a buffer register
and then automatically written to the real register. The reason for this is to prevent
the unacceptable situation such as a timer period register being written to and read
from at the same time. Because of the register shadowing, a new value can be
written to any of these registers at any time. The double buffering feature of the
period and compare registers allows the user program to update the period and
compare registers at any time in order to change the future timer period. Register
shadowing is virtually transparent to the user. However, when configuring a
compare unit, it is necessary to specify on what condition the actual compare
register is reloaded from the buffer register. For the compare register, the content in
the buffer register is loaded into the working (active) register only when the certain
timer event specified by TXxCON occurs. A compare register would be reloaded
automatically either immediately after the shadow register is written, on underflow
(GP Timer counter value equals ’0”), on an underflow, or on period register match.
In the case that the associated compare operation is disabled, any value written to
the compare register is immediately loaded into the active register. The period
register will be reloaded with the value in its buffer register only when the value of
the counter register (TXCNT) becomes equal to “0”. Except for the compare
register reload condition, the user need not worry about register shadowing on the
LF2407.

6.3.4  GP Timer Interrupts

There are 16 combined interrupt flags in the EVAIFRA, EVAIFRB, EVBIFRA,
and EVBIFRB registers for the GP Timers. Each of the four GP Timers has the
capability to generate up to four interrupts on the events listed in Table 6.3.

Table 6.3  General purpose timer interrupts

Interrupt Event Interrupt Name (x=1,2,3,4) Condition For Generation
Underflow TxUFINT When the counter reaches 0000h
Overflow TxOFINT When the counter reaches FFFFh
Compare Match TxCINT When the counter register contents match that
of the compare register
Period Match ~ TxPINT When the counter register contents match that

of the period register
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A timer compare “event” or match happens when the current count value of a
GP Timer counter equals the value of the timer’s compare register. The
corresponding compare interrupt flag is set one clock cycle after the match if the
compare operation is enabled. An overflow event occurs when the value of the
timer counter reaches FFFFh. An underflow event occurs when the timer counter
reaches 0000h. Similarly, a period event happens when the value of the timer
counter is the same as that of the period register. The overflow, underflow, and
period interrupt flags of the timer are set one clock cycle after the occurrence of
each individual event. Note that these definitions of overflow and underflow are
different from the conventional definitions the reader might be used to.

6.3.5 PWM Output and General Purpose Timer Compare Operation

A PWM waveform is a sequence of pulses with fixed frequency but varying
pulse widths. The width of the pulse might vary from 0% to 100% of the fixed
period. The pulse widths are modulated by another signal called the modulation
signal. In order to generate a PWM signal digitally, a timer is set to continuously
repeat a counting period. This period is known as the PWM carrier period. The
inverse of the carrier period is called the carrier frequency.

The counting pattern of the timer will either be a “saw-tooth” (asymmetric) or
“triangle” (symmetric) wave depending on what counting mode the timer has been
configured for. As always, the compare value is constantly being compared with
the value of the timer counter. When a match occurs, the output toggles High to
Low, or Low to High. When the timer period value is reached or a second match
occurs, the output toggles again. The on and off time of the pulse is directly
dependent on the value loaded into the timer’s compare register. By varying the
number in the compare register by the modulation signal (usually a sinusoid), a
PWM signal that represents the modulating signal can be produced.

The “output” discussed above refers to each GP Timer’s associated PWM
output pin (TxPWM). The logic level of the PWM output pin is determined
automatically by hardware. This level is based on the value of the associated
compare register and timer count value (see Fig. 6.7, note the compare match points
and the output change at these points). If the compare operation is enabled in
TxCON, the following events occur on a compare match:

1. The compare interrupt flag of the timer is set one clock cycle after the
match.

2. A transition occurs on the associated PWM output pin one device clock
cycle after the match according to the bit configuration in GPTCONA/B.

3. If the compare interrupt flag has been selected by the appropriate
GPTCONA/B bits to start the ADC, an ADC start signal is generated at the
same time the compare interrupt flag is set.

4. A peripheral interrupt request is generated by the compare interrupt flag if
it is unmasked.
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Timer
je— Pwm) —-|
period 1

Compare
match

Timer value

TxPWM/TxCMP Active
active low

| Inactive
TXPWM/TxCMP
active high

Active

+4 Compare matches

Figure 6.7 Timer compare match and associated change on TxPWM pin.

The polarity of the compare output (see diagram in Fig. 6.6) of a GP Timer can
be specified active high, active low, forced high, or forced low. This polarity is
determined by setting the bits in the GPTCONA/B register. If active low, the output
changes from high to low on the first compare match. It then goes from low to high
on the second compare match if the GP Timer is in an up/down-counting mode, or
on period match if the GP Timer is in up-counting mode. If active high, the output
changes from low to high on the first compare match. It then goes from high to low
on the second compare match if the GP Timer is in an up-/down counting mode, or
on period match if the GP Timer is in up-count mode. If forced low, the timer
compare output becomes low immediately when it is specified. If forced high, the
timer compare output becomes high immediately when it is specified.

By default (after a reset or power-on) all GP Timer PWM output pins are put in
a high-impedance (HI-Z) state. The PWM output must be made active by
configuring the GPTCONA/B registers. At anytime the PWM outputs will be made
HI-Z whenever the power drive protection pin PDPINTx is active and is pulled
low. Additionally, the corresponding PWM pin will be made HI-Z when bit 1 of
the TxCON register is zeroed by software.

The transition on the PWM output pin is controlled by the asymmetric or
symmetric timer waveform and the associated output logic. For an asymmetric
wave form, the timer is set up in continuous up-count mode. To generate a
symmetric waveform, the timer needs to be configured to continuous up/down
counting.
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Example 6.1 - Generation of an Asymmetric Waveform: The asymmetric
waveform in Fig. 6.8 is generated when the GP Timer is in continuous up-counting
mode. When in this mode the output changes in the following:

1. Output pin at “inactive level” before the counting operation starts
2. Output pin remains at “inactive level” until the compare match happens
3. Output toggles to “active level” on the compare match
4. Output remains unchanged at “active level” until the end of the period
5. At end of period, output resets to “inactive level”; that is if the new
compare value is not zero
Timer . ' Timer :
[ (Pwm) —H — (pwm) —¥
period 1 l | period 2 !
i i !
Compare { |
match
Timer value
New comp
— value greater
than period
TXPWM/TXCMP Active
active low | | I
Inactive,
TXPWM/TXCMP ‘—m I | |
active high Active

+Compare matches

Figure 6.8 Asymmetric timer waveform generated by a GP timer in continuous

up-count mode.

If the compare value is zero at the very beginning of the period, then a compare
match is made at the very beginning and, consequently, the output is the active level
for the period. If the output is “active” for the whole period and the new compare
value for the next period is zero, then the output will stay at the active level so as
not to cause a glitch. If the value in the compare register is greater than the value in
the period register, then a compare match will never be made and consequently the
output will be at the inactive level through the whole period.

The above allows the duty cycle of the PWM to range from 0 to 100% without
glitches being present. If the compare value is the same as the period value, which
causes a compare match, then the output pin will be at the active level for exactly
one pre-scaled clock cycle.

Example 6.2 - Symmetric Waveform Generation: When the GP Timer is
configured in continuous up/down-counting mode, a symmetric waveform is
generated as in Fig. 6.9. The output changes in the following sequence:

1. “inactive level” before the counting operation starts
2. remains at “inactive level” until the compare match
3. toggles to “active level” on the first compare match
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4. remains unchanged at “active level” until the second compare match

toggles to “inactive level” on the second compare match

6. remains unchanged at “inactive level” until the end of the period and
remains unchanged until next compare match

w

. Timer : Timer |
! (PWM) —¥ — (Pwm) —
| period 1 : period 2 |
Compare | |
) match i ‘
Timer value | i Reloaded
. comp value
D greater than
. period
TXPWM/TXCMP Active
active low |nactive L |

Y v igh [ L T L |

+Compare matches

Figure 6.9 Symmetric timer waveform from continuous up/down count mode.

If the compare value is zero at the beginning of the period, the output is set to
the active level at the beginning of a period and remains unchanged until the second
compare match. After the first transition, the output remains at the active level until
the end of the period if the compare value becomes zero for the second half of the
period. When this happens, the output does not reset to zero if the new compare
value for the following period is still zero.

This is done again to assure the generation of PWM pulses of 0% to 100% duty
cycle without any glitches. The first transition does not happen if the compare value
is greater than or equal to that of the period register for the first half of the period.
However, the output still toggles when a compare match happens in the second half
of the period. This error in output transition, often as a result of calculation error in
the application routine, is corrected at the end of the period because the output
resets to zero, unless the new compare value for the following period is zero. In this
case, the output remains one, which again puts the output of the waveform generator
in the correct state.

Calculations for Active and Inactive Time Periods

In order to utilize the GP Timer PWM outputs, it is sometimes necessary to
calculate the active and inactive pulse times for the PWM output pins. We can find
the active and inactive times for both the asymmetrical (Continuous Up-Count
Mode) and symmetrical (Continuous Up/Down Count Mode). The calculation
criteria for these times are as follows:
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Continuous Up-Count Mode:

Active Output Pulse Time = [(TxPR) — (TxCMPR) + 1] cycles of the scaled
input clock.

Inactive Output Pulse Time = (period of the scaled input clock) * (value of
TxCMPR)

e When the value in TxCMPR is zero, the GP Timer compare output is
active for the whole period.

e  When TxCMPR is > TxPR, the length of the active phase (the output pulse
width) is zero.

Continuous Up/Down Counting Mode:

For the continuous up-/down-counting mode, the compare register can have
different values while counting down and while counting up.

Active Output Pulse Time = [(TxPR) — (TxCMPR)up + (TxPR) -
(TxCMPR)dn]** cycles of the scaled input clock

e If (TXCMPR) up is zero, the compare output is active at the beginning of
the period. If (TXxCMPR)dn is also zero, then output remains active until
the end of the period.

e  When (TXxCMPR)up is > (TxPR), the first transition is lost. Similarly, the
second transition is lost when (TxCMPR)dn is > (TxPR).

e Ifboth (TXCMPR)up and TxCMPR)dn are greater than or equal to (TxPR),
then the GP Timer compare output is inactive for the entire period.

**where (TxCMPR)up is the compare value on the timer’s way up and
(TxCMPR)dn is the compare value on the way down.

GP Timer PWM Generation -Practical Steps

To generate a PWM output signal on the GP Timer PWM outputs, make sure
the following are configured to allow for PWM generation (also see Example 6.3):

1. Note what the PLL module is set to. The PLL provides the clock signal to
the DSP and hence to the EV. In the timer control registers we have the
option of pre-scaling (dividing) the clock signal to choose a time base for
the GP Timers.

2. The corresponding EV pins need to be configured for their primary

function in the appropriate MCRXx register.

Initialize TXCNT (we usually set the count vale to zero)

4. Set TxPR according to the desired PWM (carrier) period. The TxPR value
is calculated by the following formulas:

Asymmetric PWM:

W

TxPR Value =

desired PWM period 1} ©.1)

GP Timer prescaled clk period -
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Symmetric PWM:
TxPR Value desired PWM period 6.2)
2% (GP Timer prescaled clk period)
5. Initialize TxCMPR to first desired compare value

6. To create a PWM signal, the registers GPTCONA/B and TxCON need to
be configured for TXCMP enabled, desired counting mode etc.

7. To create an asymmetric PWM signal, the timer is set to the Continuous-
Up Count Mode. If a symmetric PWM signal is desired, then the Timer
should be set to the Continuous-Up/Down Mode.

8. During run time, the GP Timer compare register (TxCMPR) will need to
be periodically updated with new compare values corresponding to the
modulation signal or new duty cycle. This can be done during an interrupt
service routine.

Example 6.3 - Fixed Duty Cycle PWM

The following block of code is an example of generating a simple fixed-duty
cycle PWM signal by using the GP Timer Compare function. The PLL needs to be
set to CLKIN x 4, the watchdog needs to be disabled, and the wait state generator
(WSGR) set for zero wait states.

LDP #SCSR1>>7
SPLK #000Ch, SCSR1 ;EVA & EVB modules clock enable
LDP #0Elh ;Set Mux pins for
SPLK #0FFFFh, MCRA ;PWM function
SPLK #0FFFFh, MCRC ;EVA PWM output initialization
LDP #GPTCONA >> 7h ;Load EVA data-page

SPLK #00000h, TICNT ;this Jjust zeros the counter T1 the
jcounters are auto zeroed after a DSP
jreset

SPLK #0FFFFh, T1PR ;the TI1PR value sets the frequency in
;this case, it is 500 Hz cont up-cnt mod

SPLK #08000h, TICMPR ;50 % duty cycle PWM bits---

SPLK #0000000001000010b, GPTCONA

SPLK #1001000001000010b, T1CON

LOOP2 B LOOP2 ;after the control registers are setup
;the program can loop endlessly while
;PWM is generated automatically

6.4  Compare Units

A PWM signal can also be generated using the compare unit (CMPRx). The
compare units (CMPRx) in the LF2407 function identically to the GP Timer
compare units (TXCMPR) discussed above. Unlike the GP Timer compare
function, each compare unit has two associated PWM outputs which both toggle on
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the same compare match. The PWM outputs associated with the compare units
allow for the generation of six PWM outputs per EV.

As shown in Fig. 6.10 the Compare Units Include:

e Three 16-bit compare registers (CMPR1, CMPR2, and CMPR3 for EVA;
and CMPR4, CMPRS, and CMPR6 for EVB), all double-buffered

e One 16-bit compare control register (COMCONA for EVA, and COM-
CONB for EVB)

e One 16-bit action control register (ACTRA for EVA, and ACTRB for
EVB), with an associated buffer register

e Six PWM (3-state; Low, High, High Z) output (compare output) pins
(PWMy,y=1,2,3,4,5, 6 for EVA and PWMz,z=7, 8§, 9, 10, 11, 12 for

EVB)
TzCNT
GPTz
counter
ACTR
Compare full compare
logic action control register
TT (shadowed)
CMPRx L}
fuII_compare Output
register (shad PWM circuits —» logic ———»
owed) PWMy,y+1

Figure 6.10 Compare unit block diagram.
ForEVA:x=1,2,3;y=1,3,5; z=1
ForEVB:x=4,5,6;y=7,9,11;z=3

6.4.1  Inputs and Outputs of the Compare Units
The inputs to a compare unit include:

e Control signals from compare control registers

e  GP Timer 1/3 (TICNT/T3CNT) count value, underflow, and period match
signals

e System RESET

e The time base (counter value) for the compare units in EVA (CMPR1,2 ,3)
is GP Timer 1, and for EVB (CMPR4, 5, 6 ) is GP Timer 3.
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When any reset event occurs, all register bits associated with the compare units
are reset to zero and all compare output pins are put in the high-impedance state.

The output of a compare unit is a compare match output, or in other words, a
PWM output. If the compare operation is enabled, a compare match signal sets the
corresponding interrupt flag and the two output pins associated with the compare
unit to toggle. Either of the two outputs can be configured as either active high or
active low, but will toggle upon the same event.

6.4.2  Operation of Compare Units

The sequence below is an example of the compare unit operation in EVA. For
EVB operation, GP Timer 3 and ACTRB are used instead:

1. The value of the GP Timer 1 counter is continuously compared with that of
the compare register.

2. When a compare match occurs, a transition appears on the two outputs of
the compare unit according to the bits in the action control register
(ACTRA). The bits in the ACTRA can individually specify each output to
toggle active high or toggle active-low (if not forced high or low) on a
compare match.

3. The compare interrupt flag associated with a compare unit is set when a
compare match is made between GP Timer 1 and the compare register of a
compare unit, if compare is enabled.

4. A peripheral interrupt request will then be generated if the interrupt is
unmasked. The timing of output transitions, setting of interrupt flags, and
the generation of interrupt requests are similar to the GP Timer compare
operation.

5. The outputs of the compare units in compare mode are subject to
modification by the output logic, dead band units, and the space vector
PWM logic.

Having two outputs controlled by the same compare unit is useful in
applications such as the control of a power inverter (see Fig. 6.11). With a power
inverter, PWM signals can be used to gate the power transistors for creating currents
through the legs of the inverter of any frequency or amplitude. This is useful in
controlling electric motors their operation depends on the current flowing through
the windings. By controlling the current flowing through motor windings, torque
and speed control of the motor can be accomplished.

In inverter circuits such as those shown in Fig. 6.11, two power transistors are
placed in series on each phase “leg” with the output being between them. This
allows the output of the leg to be connected either to the DC supply voltage (Vdc)
or ground. A potential hazard with these circuits is that if both transistors are turned
on at the same time, a short circuit condition will exist through the leg and power
transistors, causing the transistors to rapidly heat up and, in most cases, explode.
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The solution to this problem is to make sure that only one transistor in each leg
is on at a time. In theory, this is accomplished by feeding complementary PWM
gating signals to each of the two transistors in a leg. So when one transistor is on,
the other is off. In reality, all transistors turn on faster than they turn off.
Therefore, it is necessary to add a time delay (dead-band) between the PWM signals
to allow for the first transistor to fully turn off before the second one is turned on.

Ud

DTPHa

DTPHa_

GN

Figure 6.11 Basic three-phase inverter circuit.

6.4.3  Dead Band Generation

Unlike the GP Timer Compare PWM generation, the compare unit PWM
outputs allow for a programmable dead band. Each EV on the LF2407 has its own
programmable dead-band unit. The dead-band generators generate the dead-band
delay between the toggling of the independent and dependent PWM outputs. Dead
band solves the problem of inverter leg shoot through (short circuits). Figure 6.12
shows the interconnection between the dead band units and the compare units.

COMCONA[11-13]

Sym/asym
P waveform | COMCONA[9]
generator
Compare PHx DTPHx
=1,2,3 Dead
matches > MUX x=1, 5 baer?d DTPH;(_ Output PWM1
GPT1 flags Bam units logic PWM6
SVPWM T T
> sete I DBTCONA ACTRA
macnine dead-band full compare
COMCONA[12] timer control action control
register register
ACTRA[12-15]
Figure 6.12 Block diagram of PWM outputs showing dead-band units.
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Each programmable dead-band unit features:

One 16-bit dead-band control register, DBTCONx (RW)
One input clock prescaler: x/1, x/2, x/4, etc., to x/32
Device (CPU) clock input

Three 4-bit down-counting timers

Control logic

Figures 6.13 and 6.14 illustrate the addition of a dead-band in both asymmetric
and symmetric PWM outputs. The toggling sequence might go as follows: (1)
toggle first output, (2) delay for a certain “dead-band” of clock cycles, (3) toggle the
second output pin. This addition of a proper amount of dead-band prevents a short
circuit across an inverter leg.

Timer Timer
r— (PWM) —» — (PWM) —ﬂ
period 1 period 1
Timer value |
| | | -
| | |
PWM,
(active high) ‘ | | r_
Dead band —M F—

PWMy 1~ | | |‘
(active low) | ‘ |

+ Compare matches

Figure 6.13 Dead-band with an asymmetric PWM output.

«— Timer (PWM) —»
? period 1

Timer value

PWMXx (activelow) ‘ | ‘

—» 4— Dead time

PWMx+1 (active high) l I

+ Compare matches

K

Figure 6.14 Dead-band with an asymmetric PWM output.
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Depending on the switching device used, more or less dead-band might be
needed. The use of dead-band should be experimented with when the inverter is
supplied at a very low power level. This will ensure that if the current dead-band
value is not sufficient, then the switching devices will not incur damage from the
limited shoot through.

Table 6.4 lists the amounts of dead-band generated by the different bit
combinations in DBTCONX. The values are based on a 25ns input clock signal. We
can calculate the dead-band generated by the following simple formula:

bits [8 — 11]in DBTCONx

Dead Band (# of CPU clock cycles) =
clock prescale value

Table 6.4 Dead-Band Values Generated by Bits [8 through 11] in
DBTCONXx Register

(DBTCONX bits [4-2])

DBTCONx 110 and 100 011 010 001 000

bits [11-8] 1x1 (P=32)  (P=16) (P=8)  (P=4) (P=2)  (P=1)
0 0 0 0 0 0 0
1 0.8 0.4 0.2 0.1 005  0.025
2 1.6 0.8 0.4 0.2 0.1 0.05
3 24 1.2 0.6 0.3 015  0.075
4 32 1.6 0.8 0.4 0.2 0.1
5 4 2 1 0.5 025  0.125
6 48 24 1.2 0.6 0.3 0.15
7 5.6 2.8 1.4 0.7 035  0.175
8 6.4 32 1.6 0.8 0.4 0.2
9 7.2 3.6 1.8 0.9 045 0225
A 8 4 2 1 0.5 0.25
B 8.8 4.4 22 1.1 055 0275
C 9.6 48 24 1.2 0.6 0.3
D 10.4 52 2.6 1.3 065 0325
E 11.2 5.6 2.8 1.4 0.7 0.35
F 12 6 3 1.5 075 0375

Note: Table values are given in us.
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6.4.4  Register Setup for Compare Unit Operation

The following sequence should be used in setting up the Event Manager
(EVA/B) for compare (PWM generation) operation:

EVA:
1. Set the TIPR for the desired period.
2. Configure ACTRA to select compare actions.
3. Configure DBTCONA, if dead band is to be used.
4. Initialize CMPRXx to the first compare value.
5. Configure COMCONA for desired operation.
6. Configure TICON to produce the desired operation for the time base and
start the operation.
7. Load new compare values into CMPRx during program.
EVB:
1. Set the T3PR for the desired counting period.
2. Configure ACTRB to select compare actions.
3. Configure DBTCONA, if dead band is to be used.
4. Initialize CMPRXx to the first compare value.
5. Configure COMCONB for desired operation.
6. Configure T3CON to produce the desired operation for the time base.
7. Load new compare values into CMPRx during program.

6.4.5  Compare Unit Interrupts

There is a maskable interrupt flag in EVIFRA and EVIFRC for each compare
unit. If a compare operation is enabled, the interrupt flag of a compare unit is set
one clock cycle after a compare match. A peripheral interrupt request will also be
generated by the flag bit if the flag is unmasked.

6.4.6  Data Memory Mapped Registers Associated with the Compare Units

There are six main registers that control the functionality of the compare units
on the LF2407: COMCONA/B, ACTRA/B, and DBTCONA/B. In addition to the
control registers described in this section, the GP Timer registers should be thought
of as being included because they provide the count value or time base in which the
compare units operate.

Compare Control Registers (COMCONA and COMCONB)

These registers (COMCONA and COMCONB) control the operation of the
compare units. They determine whether the compare operation is enabled, whether
the compare outputs are enabled, the condition on which the compare registers are
updated with the values in their buffer registers, and whether the Space Vector
PWM (SVPWM) mode is enabled.
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Compare Control Register A (COMCONA) — Address 7411h

15 14 13 12 11 10 9 8
CENABLE CLD1 CLDO SVENABLE | ACTRLD1 | ACTRLDO | FCOMPOE | PDPINTA
STATUS

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 R-
PDPINTA

PIN

7-0
Reserved
R-0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 CENABLE. Compare enable.

0 Disables compare operation. All shadowed registers (CMPRX,
ACTRA) become transparent
1 Enables compare operation

Bits14-13 CLD1, CLD0. Compare register CMPRx reload condition.
00 When T1CNT = 0 (that is, on underflow)

01 When TICNT = 0 or TICNT = T1PR (that is, on underflow or
period match)

10 Immediately

11 Reserved; result is unpredictable

Bit 12 SVENABLE. Space vector PWM mode enable.
0 Disables space vector PWM mode
1 Enables space vector PWM mode

Bits 11-10 ACTRLD1, ACTRLDO0. Action control register reload condition.
00 When T1CNT = 0 (on underflow)

01 When TICNT = 0 or TICNT = T1PR (on underflow or period
match)

10 Immediately

11 Reserved

Bit9 FCOMPOE. Compare output enable. Active PDPINTA clears this bit to

ZETo0.

0 PWM output pins are in high-impedance state; that is, they are
disabled

1 PWM output pins are not in high-impedance state; that is, they are
enabled

Bit8 PDPINTA STATUS. This bit reflects the current status of the PDPINTA
pin. (This bit is applicable to 240xA devices only — it is reserved on 240x
devices and returns a zero when read.)
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Bits 7-0  Reserved. Read returns zero; writes have no effect.
Compare Control Register B(COMCONB) — Address 7511h
15 14 13 12 11 10 9 8
CENABLE | CLD1 CLDO SVENABLE | ACTRLD1 | ACTRLDO | FCOMPOE | PDPINTB
STATUS
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 R-—
PDPINTB
PIN
7-0
Reserved
R-0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 CENABLE. Compare enable.

0

Bits14-13
00
01

10
11

Disable compare operation. All shadowed registers (CMPRX,
ACTRB) become transparent
Enable compare operation

CLD1, CLD0. Compare register CMPRx reload condition.

When T3CNT = 0 (that is, on underflow)

When T3CNT = 0 or T3CNT = T3PR (that is, on underflow or
period match)

Immediately

Reserved; result is unpredictable

Bit 12 SVENABLE. Space vector PWM mode enable.

0
1

Disables space vector PWM mode
Enables space vector PWM mode

Bits 11-10 ACTRLD1, ACTRLDO0. Action control register reload condition.

00
01

10
11

Bit 9
ZEero.
0
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When T3CNT = 0 (on underflow)

When T3CNT = 0 or T3CNT = T3PR (on underflow or period
match)

Immediately

Reserved

FCOMPOE. Compare output enable. Active PDPINTB clears this bit to

PWM output pins are in high-impedance state; that is, they are
disabled
PWM output pins are not in high-impedance state; that is, they are
enabled

LLC
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Bit8 PDPINTB STATUS. This bit reflects the current status of the PDPINTB
pin. (This bit is applicable to 240xA devices only — it is reserved on 240x
devices and returns a zero when read.)

Bits 7-0  Reserved. Read returns zero; writes have no effect.

Compare Action Control Registers (ACTRA and ACTRB)

The double buffered, compare action control registers (ACTRA and ACTRB)
determine what action occurs on each of the six compare output pins when a
compare event occurs (if the compare operation is enabled by COMCONX[15]).
The compare output pins are PWMx, where x = 1-6 for ACTRA, and x = 7-12 for
ACTRB. The condition on which ACTRA and ACTRB are reloaded is defined by

the bits in COMCONZX.
Compare Action Control Register A (ACTRA) — Address 7413h
15 14 13 12 1 10 9 8
SVRDIR ‘ D2 ‘ D1 ‘ DO ‘ CMPBACT1 ‘ CMPGACTO ‘ CMP5ACT1 ‘ CMP5ACTO
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
6 5 4 3 2 1

CMP4ACT1 ‘ CMP4ACTO ‘ CMP3ACT1 ‘ CMP3ACTO ‘ CMP2ACT1 ‘ CMP2ACTO ‘ CMP1ACT1 ‘ CMP1ACTO

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 SVRDIR. Space vector PWM rotation direction. Used only in space
vector PWM output generation.
0 Positive (CCW)
1 Negative (CW)

Bits 14-12 D2-D0. Basic space vector bits. Used only in space vector PWM
output generation.

Bits 11-10 CMP6ACT1-0. Action on compare output pin 6, CMP6.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 9-8 CMP5SACT1-0. Action on compare output pin 5, CMP5.
00 Forced low
01 Active low
10 Active high
11 Forced high
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Bits 7-6 CMP4ACT1-0. Action on compare output pin 4, CMP4.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 5-4 CMP3ACT1-0. Action on compare output pin 3, CMP3.
00 Forced low
01 Active low
10 Active high

Bits 3-2 CMP2ACT1-0. Action on compare output pin 2, CMP2.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 1-0 CMP1ACT1-0. Action on compare output pin 1, CMP1.
00 Forced low
01 Active low
10 Active high
11 Forced high

Compare Action Control Register B(ACTRB) — Address 7513h

15 14 13 12 11 10 9 8
SVRDIR ‘ D2 ‘ D1 ‘ DO ‘ CMP12ACT1 ‘ CMP12ACTO ‘ CMP11ACT1 ‘ CMP11ACTO
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

CMP10ACT1 ‘CMP1OACTO‘ CMP9ACT1 ‘ CMP9ACTO ‘ CMP8ACT1 ‘ CMP8ACTO ‘ CMP7ACT1 ‘ CMP7ACTO

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 SVRDIR. Space vector PWM rotation direction. Used only in space
vector PWM output generation.
0 Positive (CCW)
1 Negative (CW)

Bits 14-12 D2-D0. Basic space vector bits. Used only in space vector PWM
output generation.

Bits 11-10 CMP12ACT1-0. Action on compare output pin 12, CMP12.
00 Forced low
01 Active low
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10 Active high
11 Forced high
Bits 9-8 CMP11ACT1-0. Action on compare output pin 11, CMP11.
00 Forced low
01 Active low
10 Active high
11 Forced high
Bits 7-6 CMP10ACT1-0. Action on compare output pin 10, CMP10.
00 Forced low
01 Active low
10 Active high
11 Forced high
Bits 5-4 CMP9ACT1-0. Action on compare output pin 9, CMP9.
00 Forced low
01 Active low
10 Active high
11 Forced high
Bits 3-2 CMP8ACT1-0. Action on compare output pin 8§, CMPS.
00 Forced low
01 Active low
10 Active high
11 Forced high
Bits 1-0 CMP7ACT1-0. Action on compare output pin 7, CMP7.
00 Forced low
01 Active low
10 Active high
11 Forced high

Dead-Band Timer Control Register A (DBTCONA) — Address 7415h

15-12 1 10 9 8
Reserved \ DBT3 \ DBT2 \ DBT1 \ DBTO
R-0 RW-0 RW-0 RW-0 RW-0
7 6 5 4 3 2 1-0
EDBT3 \ EDBT2 \ EDBT1 \ DBTPS2 \ DBTPS1 \ DBTPS0 \ Reserved
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 R-0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15-12 Reserved. Reads return zero; writes have no effect.
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Bits 11-8 DBT3 (MSB)-DBT0 (LSB). Dead-band timer period. These bits define

Bit 7

Bit 6

Bit S

the period value of the three 4-bit dead-band timers.

EDBT3. Dead-band timer 3 enable (for pins PWMS5 and PWM6 of

Compare Unit 3).
0 Disable
1 Enable

EDBT2. Dead-band timer 2 enable (for pins PWM3 and PWM4 of

Compare Unit 2).
0 Disable
1 Enable

EDBT1. Dead-band timer 1 enable (for pins PWMI1 and PWM2 of
Compare Unit 1).
0 Disable
1 Enable

Bits 4-2 DBTPS2 to DBTPS0. Dead-band timer prescaler.

000 x/1

001 x/2

010 x/4

011 x/8

100 x/16

101 x/32

110 x/32

111 x/32

x = Device (CPU) clock frequency

Bits 1-0 Reserved. Reads return zero; writes have no effect.

Dead-Band Timer Control Register B (DBTCONB) — Address 7515h

15-12 11 10 9
Reserved ‘ DBT3 ‘ DBT2 ‘ DBT1
R-0 RW-0 RW-0 RW-0
7 6 5 4 3 2
EDBT3 ‘ EDBT2 ‘ EDBT1 ‘ DBTPS2 ‘ DBTPS1 ‘ DBTPS0 ‘ Reserved
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.
Bits 15-12 Reserved. Reads return zero; writes have no effect.

Bits 11-8
define the period value of the three 4-bit dead-band timers.
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Bit7 EDBT3. Dead-band timer 3 enable (for pins PWMI11 and PWMI12 of

Compare 6).
0 Disable
1 Enable

Bit6 EDBT2. Dead-band timer 2 enable (for pins PWM9 and PWMI10 of

Compare 5).
0 Disable
1 Enable

Bit5 EDBTI1. Dead-band timer 1 enable (for pins PWM7 and PWMS8 of

Compare 4).
0 Disable
1 Enable

Bits 4-2 DBTPS2 to DBTPS0. Dead-band timer prescaler.

000 x/1

001 x/2

010 x/4

011 x/8

100 x/16

101 x/32

110 x/32

111 x/32

x = Device (CPU) clock frequency

Bits 1-0 Reserved. Reads return zero; writes have no effect.

6.5  Capture Units and Quadrature Encoded Pulse (QEP) Circuitry

The Capture Units on the LF2407 allow an event (rising/falling edge) on the
capture pin to be time stamped by a selected GP Timer. There are three Capture
Units in each EV, each with its own capture input pin (CAPx). Capture Units 1, 2,
and 3 are associated with EVA while Capture Units 4, 5, and 6 are associated with
EVB. Each EV module contains the following (shown in Figs. 6.14 and 6.15):

e One 16 bit capture control register per EV (CAPCOMA for EVA,
CAPCOMB for EVB) is used for configuring the Capture Unit
functionality.

e Three 16-bit, 2-level-deep First-In-First-Out (FIFO) stacks per EV
(CAPxFIFO); one FIFO stack for each Capture Unit; the “captured” timer
count value is stored here.

e One 16-bit capture status register (CAPFIFOA for EVA, CAPFIFOB for
EVB); provides information on the number of timer captures in each
capture FIFO.
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e Inputs of either GP Timer 1 or 2 (for EVA) and GP Timer 3 or 4 (for EVB)
as the time base.

e  One capture pin per Capture Unit with user-specified transition detection
(rising edge, falling edge, or both edges). CAP1 through CAP3 for EVA,
and CAP4 through CAP6 for EVB.

e Six maskable interrupt flags, one for each Capture Unit.

T2CNT GP T1CNT GP
timer 2 timer 1
counter counter

1
| MUX

CAPCONA[9,10]=——

CAPCONA[12-14]

16
EN 3
i CAP1,2,3
Edge
detect Capture unit 3
16 RS ) cap. event
A
gEdge CAPCONA[8]
2—level select
FIFO Rq ¢
stacks CAPCONA[2-7]
ADC start
8 CAPCONA[15]
A\ 4
Cap FIFO
status
clear
Te
CAPFIFOA[13-15]
Figure 6.15 EVA capture unit diagram. (Courtesy of Texas Instruments)
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T2CNT GP T1CNT GP
timer 4 timer 3
counter counter
U U
CAPCONB[9,10]===P=1 MUX CAPCONB[12-14]
16
EN 3
&< CAP4,5,6
Edge
detect Capture unit 6
16 RS _ cap. event
! A
gEdge CAPCONBI8]
2—level select
FIFO rRq ¢
stacks CAPCONBJ2-7]
ADC start
8 CAPCONBJ15]
Y
Cap FIFO
status
clear
Ie
CAPFIFOB[13-15]
Figure 6.16 EVB Capture unit diagram. (Courtesy of Texas Instruments)

The Capture Units are useful in applications where the time of an external
trigger needs to be “captured”. For example, if we want to measure the time
between the rising edges of two pulses, we would configure the appropriate
registers for capture operation on a specific capture pin. At each rising edge, the
Capture Unit would then store the corresponding timer values. The user program
could then subtract the second capture value from the first value and determine the
time between the pulses.

The Capture Units are accompanied by the Quadrature Encoded Pulse (QEP)
circuitry which uses the GP Timers to “decode” a QEP signal. When the QEP mode
is selected, pins CAP1 and CAP2 (CAP4 and CAPS in case of EVB) are used as
QEP inputs. More on the QEP circuitry will be discussed shortly.
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6.5.1  Operation of the Capture Unit

When a Capture Unit is enabled, when either a rising or falling edge is detected
on the capture input pin (CAPx), the current value of the selected GP Timer counter
is copied and stored in the corresponding capture FIFO. In order for a transition to
be captured, the input must hold at its current level for the duration of at least two
CPU clock cycles. After the GP Timer value is recorded in the capture FIFO, an
interrupt could also be generated, and software may then read the FIFO value. The
value from the capture FIFO can then be used in an algorithm.

While we can think of the capture FIFO as being a two-level deep single
register, each capture FIFO stack actually consists of two registers, CAPXFIFO and
CAPxBOT (for EVA x=1,2,3; EVB x=4,5,6). When a new value is stored in the
FIFO during a capture, in reality it first goes to the bottom register. When the top
register of the FIFO stack is empty (either because this is the first capture, or the
FIFO was just read), the value in the bottom register is automatically shifted into the
top register (CAPXFIFO). Because of the above operation, when reading from the
FIFO, the FIFO will always return the oldest stored value first. When the FIFO
contains two values and is read, the oldest value will be read and removed from the
FIFO. On the next read, the next oldest value will be read and removed from the
FIFO. Usually, only read from the CAPXFIFO register, but the bottom register of
the stack (CAPxBOT) can also be read.

When no FIFO reads have been performed, after two captures the
corresponding capture FIFO will have two timer values stored in it and will be full.
In the case that the FIFO has still not been read from and a third capture is recorded,
the first capture value will be pushed out of the FIFO and lost.

The bits in the FIFO status registers indicate how many values are currently
stored in each FIFO. When a value is read from the CAPXFIFO (or bottom register,
CAPxBOT), the status bits will indicate one less value in the FIFO. The two status
bits corresponding to a particular FIFO should normally indicate “00”, “01”, and
“10”. If a third capture occurs and the previous two values have not been read from
the FIFO, the status bits will indicate “11”, indicating that the oldest value was lost.
In this case, after the next FIFO read, the status bits return to their usual values of
“00”, “01” or “10”.

The following steps should be taken to configure the Capture Units for
operation:

1. Initialize the CAPFIFOx and clear the appropriate status bits.
. Set the selected GP Timer in the desired counting mode.
3. Set the associated GP Timer compare register or GP Timer period register,
if necessary.
4. Setup CAPCONA or CAPCONB as appropriate for desired operation.
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6.5.2  Capture Stack Interrupt Flag Operation:

Because the FIFO stack is two levels deep, the corresponding interrupt flag is
set as soon as there are two values in the stack (the FIFO is full). This means that if
there is one (or two) previous values in the FIFO (indicated by CAPXFIFO bits not
equal to zero) and another capture takes place, the interrupt flag will be set. Like all
interrupts, if the flag is unmasked, then an interrupt is generated. If interrupt
operation is not desired, either the interrupt flag or the status bits can be polled
continuously to determine if capture events have occurred.

6.5.3  Quadrature Encoded Pulse (QEP) Circuitry

QEPs are two sequences of pulses which have a variable frequency and are 90°
out of phase with one another (see Fig. 6.17). QEP signals are usually generated by
a position/speed sensing device such as a rotary optical encoder. When the encoder
is rotated, the direction of rotation can be determined by which sequence of pulses
leads the other. Rotational speed and position can be determined from the count
and frequency of the pulses.

Figure 6.17 A pair of quadrature encoded pulses.

Each EV module has a QEP circuit associated with the Capture Units (see Figs.
6.18 and 6.19). The QEP circuit, when enabled, decodes and counts the quadrature
encoded input pulses on the QEP input pins. The input pins consist of CAP1/QEP1
and CAP2/QEP2 for EVA or CAP4/QEP3 and CAP5/QEP4 for EVB. When the
QEP function is enabled, the compare function of the pins is disabled and the pins
are configured for QEP input.

GPT2 clock [y [€— CLKIN
GP timer 2 u <—WCLKOUT

<
A +
2 T2CON[8,9,10]
T2CON[4,5] CAPCONA[13,14]
2 CLK
GPT2di o PRI QEP
’ D PR de,’ggidcer ‘ CAP1/QEP1

CAP2/QEP2

Capture |
unit 1,2

Figure 6.18 QEP circuit block for EVA. (Courtesy of Texas Instruments)
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GPT4 clock (‘m < CLKIN
GP timer 4 U j—w CLKOUT

X

A +

2 T4CON([8,9,10]
T4CON[4,5] CAPCONB[13,14]
2
TDIRB CLY
GPT4 dir " le—— DIR dQEZ’
< oo | CAP4/QEP3
ogte CAP5/QEP4
Capture |
unit 4,5
Figure 6.19 QEP circuit for EVB. (Courtesy of Texas Instruments)

QEP Circuit Operation

The counter for the QEP circuit is provided by GP Timer 2 for EVA and GP
Timer 4 for EVB. The GP Timer must be configured for directional-up/down count
mode. When the QEP circuit is selected as the clock source, the timer ignores the
direction and clock (TDIRA/B and TCLKINA/B) input pins. The QEP circuit will
act as the clock reference and the direction input for the timer. The QEP circuit
determines which one of the sequences is the leading sequence. It then generates a
direction signal as the direction input to the GP Timer. The timer counts up if
CAP1/QEP1 (CAP4/QEP3 for EVB) input is the leading sequence, and counts
down if CAP2/QEP2 (CAP5/QEP4 for EVB) is the leading sequence. Both edges
of the pulses of the two quadrature encoded inputs are counted by the QEP circuit.
Therefore, the frequency of the clock generated by the QEP logic to GP Timer 2 (or
4) is four times that of each input sequence. This quadrature clock is connected to
the clock input of GP Timer 2 (or 4).

Note: Upon a DSP RESET, the QEP logic will miss the first QEP edge.

Configuring for QEP Operation:

EVA:

1. Load GP Timer 2’s counter, period, and compare registers if desired; for
simple QEP decoding, this is not required.

2. Configure T2CON to set GP Timer 2 in directional-up/down mode with
the QEP circuits as clock source, and enable the selected timer.

3. Configure CAPCONA to enable the QEP circuit.
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EVB:
1.

2.

3.

153

Load GP Timer 4’s counter, period, and compare registers with desired
values; for simple QEP decoding, this is not required.

Configure T4CON to set GP Timer 4 in directional-up/down mode with
the QEP circuits as clock source, and enable the selected timer.

Configure CAPCONB to enable the QEP circuit.

Interrupt flags normally associated with the timer operation are still operational
with the QEP. Period, underflow, overflow, and compare interrupt flags for a GP

Timer

with a QEP circuit clock are generated on respective matches. If the

respective interrupt flags are unmasked, timer interrupt requests will be generated.

6.5.4

Capture Unit / QEP Control Registers

Upon a RESET, all capture registers are cleared to zero. There are four 16-bit

registers that control the functionality of the Capture Units.

These registers are

CAPCONA, CAPCONB, CAPFIFOA, and CAPFIFOB. In addition to these four
registers the individual timer control registers (TXCON, x = 1, 2, 3, or 4) control the
selected timer which acts as the time base for the Capture Unit. CAPCONA and
CAPCONB also control the QEP functionality.

Capture Control Register A (CAPCONA) — Address 7420h

15 14-13 12 11 10 9 8
CAPRES CAPQEPN CAP3EN | Reserved | CAP3TSEL | CAP12TSEL | CAP3TOAD
C
RW-0 RW-0 RW-0 R-0 RW-0 RW-0 RW-0
7-6 5-4 3-2 1-0
CAP1EDGE CAP2EDGE CAP3EDGE ‘ Reserved
RW-0 RW-0 RW-0 R-0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 CAPRES. Capture reset. Always reads zero.

Note: This bit is not implemented as a register bit. Writing a 0 simply

clears the capture registers.

0 Clear all registers of Capture Units and QEP circuit to 0

1 No action

Bits 14-13 CAPQEPN. Capture Units 1 and 2 control.

00 Disables Capture Units 1 and 2; FIFO stacks retain their contents
01 Enables Capture Units 1 and 2

10 Reserved

11 Reserved
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Bit 12 CAP3EN. Capture Unit 3 control.

0 Disables Capture Unit 3; FIFO stack of Capture Unit 3 retains its
contents
1 Enable Capture Unit 3

Bit 11 Reserved. Reads return zero; writes have no effect.

Bit 10 CAP3TSEL. GP Timer selection for Capture Unit 3.
0 Selects GP Timer 2
1 Selects GP Timer 1

Bit9 CAPI2TSEL. GP Timer selection for Capture Units 1 and 2.

0 Selects GP Timer 2
1 Selects GP Timer 1

Bit8 CAP3TOADC. Capture Unit 3 event starts ADC.
0 No action
1 Starts ADC when the CAP3INT flag is set

Bits 7-6 CAP1EDGE. Edge detection control for Capture Unit 1.

00 No detection

01 Detects rising edge

10 Detects falling edge

11 Detects both edges

Bits 54 CAP2EDGE. Edge detection control for Capture Unit 2.

00 No detection

01 Detects rising edge

10 Detects falling edge

11 Detects both edges

Bits 3-2 CAP3EDGE. Edge detection control for Capture Unit 3.

00 No detection

01 Detects rising edge
10 Detects falling edge
11 Detects both edges

Bits 1-0 Reserved. Reads return zero; writes have no effect.
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Capture Control Register B (CAPCONB) — Address 7520h

15 14-13 12 11 10 9 8
CAPRES ‘ CAPQEPN CAPGEN ‘ Reserved ‘ CAP6TSEL ‘ CAP45TSEL | CAP6TOADC
RW-0 RW-0 RW-0 R-0 RW-0 RW-0 RW-0
7-6 5-4 3-2 1-0
CAP4EDGE ‘ CAPS5EDGE ‘ CAPGEDGE ’ Reserved
RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 CAPRES. Capture reset. Always reads zero.
Note: This bit is not implemented as a register bit. Writing a 0 simply
clears the capture registers.
0 Clears all registers of Capture Units and QEP circuit to 0
1 No action

Bits 14-13 CAPQEPN. Capture Units 4 and 5 and QEP circuit control.
00 Disables Capture Units 4 and 5 and QEP circuit. FIFO stacks
retain their contents

01 Enables Capture Units 4 and 5, disable QEP circuit
10 Reserved
11 Enables QEP circuit. Disable Capture Units 4 and 5; bits 4-7 and

9 are ignored

Bit 12 CAPG6EN. Capture Unit 6 control.

0 Disables Capture Unit 6; FIFO stack of Capture Unit 6 retains its
contents
1 Enables Capture Unit 6

Bit 11 Reserved. Reads return zero; writes have no effect.

Bit 10 CAP6TSEL. GP Timer selection for Capture Unit 6.
0 Selects GP Timer 4
1 Selects GP Timer 3

Bit9 CAP45TSEL. GP Timer selection for Capture Units 4 and 5.
0 Selects GP Timer 4
1 Selects GP Timer 3

Bit8 CAP6TOADC. Capture Unit 6 event starts ADC.

0 No action
1 Starts ADC when the CAP6INT flag is set
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Bits 7-6 CAP4EDGE. Edge detection control for Capture Unit 4.

00 No detection

01 Detects rising edge

10 Detects falling edge
11 Detects both edges

Bits 5—4 CAPSEDGE. Edge detection control for Capture Unit 5.

00 No detection

01 Detects rising edge

10 Detects falling edge
11 Detects both edges

Bits 3-2 CAP6EDGE. Edge detection control for Capture Unit 6.

00 No detection

01 Detects rising edge

10 Detects falling edge
11 Detects both edges

Bits 1-0 Reserved. Reads return zero; writes have no effect.

Capture Status Registers

The ability to write to the CAPFIFOx registers can be used as a programming
advantage. For example, if a “01” is written to the CAPnFIFO bits by user code, the
EV module is led to believe that there is already an entry in the FIFO. Subsequently,
every time the FIFO gets a new value, a capture interrupt will be generated. If a
write occurs to the CAPnFIFOA status bits at the same time as they are being
updated by hardware (because of a capture event), the user written data takes
precedence.

Capture FIFO Status Register A (CAPFIFOA) — Address 7422h

15-14 13-12 11-10 9-8
Reserved ‘ CAP3FIFO ‘ CAP2FIFO [ CAP1FIFO
R-0 RW-0 RW-0 RW-0
7-0
Reserved
R-0

Note: R = read access, W = write access, -0 = value after reset.
Bits 15-14 Reserved. Reads return zero; writes have no effect.

Bits 13-12 CAP3FIFO. CAP3FIFO Status

00 Empty
01 Has one entry
10 Has two entries
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11 Had two entries and captured another one; first entry has been lost

Bits 11-10 CAP2FIFO. CAP2FIFO Status

00 Empty

01 Has one entry

10 Has two entries

11 Had two entries and captured another one; first entry has been lost

Bits 9-8  CAP1FIFO. CAPIFIFO Status

00 Empty

01 Has one entry

10 Has two entries

11 Had two entries and captured another one; first entry has been lost

Bits 7-0  Reserved. Reads return zero; writes have no effect.

Capture FIFO Status Register B (CAPFIFOB) — Address 7522h

15-14 13-12 11-10 9-8
Reserved ‘ CAPGFIFO ‘ CAPSFIFO [ CAP4FIFO
R-0 RW-0 RW-0 RW-0
7-0
Reserved
R-0

Note: R = read access, W = write access, -0 = value after reset.
Bits 15-14 Reserved. Reads return zero; writes have no effect.

Bits 13-12 CAP6FIFO. CAP6FIFO Status

00 Empty

01 Has one entry

10 Has two entries

11 Had two entries and captured another one; first entry has been lost

Bits 11-10 CAPSFIFO. CAPSFIFO Status

00 Empty

01 Has one entry

10 Has two entries

11 Had two entries and captured another one; first entry has been lost

Bits 9-8  CAP4FIFO. CAPA4FIFO Status

00 Empty

01 Has one entry

10 Has two entries

11 Had two entries and captured another one; first entry has been lost
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Bits 7-0  Reserved. Reads return zero; writes have no effect.

6.6  General Event Manager Information

Table 6.5 Event Manager A (EVA) Pins

Pin Name Description
CAP1/QEPI Capture Unit | input, QEP circuit input 1
CAP2/QEP2 Capture Unit 2 input, QEP circuit input 2
CAP3 Capture Unit 3 input
PWMI1 Compare Unit 1 output 1
PWM2 Compare Unit 1 output 2
PWM3 Compare Unit 2 output 1
PWM4 Compare Unit 2 output 2
PWMS5 Compare Unit 3 output 1
PWM6 Compare Unit 3 output 2
T1CMP/T1IPWM | Timer 1 compare/PWM output
T2CMP/T2PWM | Timer 2 compare/PWM output
TCLKINA External clock-in for timers in EVA ( when

configured to operate from external clock)
TDIRA External timer direction input in EVA ( when timer is
in directional up/down mode)

Table 6.6 Event Manager B (EVB) Pins

Pin Name Description
CAP4/QEP3 Capture Unit 4 input, QEP circuit input 3
CAP5/QEP4 Capture Unit 5 input, QEP circuit input 4
CAP6 Capture Unit 6 input
PWM7 Compare Unit 4 output 1
PWMS8 Compare Unit 4 output 2
PWM9 Compare Unit 5 output 1
PWMI10 Compare Unit 5 output 2
PWMI11 Compare Unit 6 output 1
PWM12 Compare Unit 6 output 2
T3CMP/T3PWM | Timer 3 compare/PWM output
T4CMP/T4PWM | Timer 4 compare/PWM output
TCLKINB External clock-in for timers in EVB (when

configured to operate from external clock)
TDIRB External timer direction input in EVB (when timer is
in directional up/down mode)

NOTE: Most of the EV pins are mapped with a second function. In order to use the
EV, you must configure the appropriate pins to their EV function. For more
information on how pin sharing works and how to configure pins refer to Chapter 4.
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Event Manager (EV) Register Addresses

Table 6.7 Addresses of EVA Timer Registers

Address Register Name
7400h  GPTCONA GP Timer control register A
7401h  TICNT } Timer 1 counter register Timer 1
7402h T1CMPR Timer 1 compare register
7403h TI1PR Timer 1 period register
7404h  T1CON Timer 1 control register
7405h  T2CNT Timer 2 counter register
7406h T2CMPR Timer 2 compare register ~ Timer 2
7407h  T2PR Timer 2 period register
7408h  T2CON Timer 2 control register
Table 6.8  Addresses of EVB Timer Registers
Address Register Name
7500h  GPTCONB?Y GP Timer control register B
7501h  T3CNT Timer 3 counter register
7502h  T3CMPR » Timer 3 compare register Timer 3
7503h  T3PR Timer 3 period register
7504h  T3CON Timer 3 control register
7505h  T4CNT Timer 4 counter register
7506h T4CMPR Timer 4 compare register Timer 4
7507h  T4PR Timer 4 period register
7508h  T4CON Timer 4 control register
Table 6.9  Addresses of EVA Compare Control Registers
Address Register Name
7411h COMCONA Compare control register
7413h ACTRA Compare action control register
7415h DBTCONA Dead-band timer control register
7417h CMPR1 Compare register 1
7418h CMPR2 Compare register 2
7419h CMPR3 Compare register 3
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Table 6.10 Addresses of EVB Compare Control Registers

Address Register Name
7511h COMCONB Compare control register
7513h ACTRB Compare action control register
7515h DBTCONB Dead-band timer control register
7517h CMPR4 Compare register 4
7518h CMPRS5 Compare register 5
7519h CMPR6 Compare register 6

Table 6.11 Addresses of EVA Capture Registers

Address Register Name

7420h CAPCONA Capture control register

7422h CAPFIFOA Capture FIFO status register

7423h CAPIFIFO Two-level-deep capture FIFO stack 1

7424h CAP2FIFO Two-level-deep capture FIFO stack 2

7425h CAP3FIFO Two-level-deep capture FIFO stack 3

7427h CAPIFBOT  Bottom registers of FIFO stacks;
allows most recent CAPTURE value
to be read

7428h CAP2FBOT

742%h CAP3FBOT

Table 6.12 Addresses of EVB Capture Registers

Address Register Name

7520h CAPCONB Capture control register

7522h CAPFIFOB Capture FIFO status register

7523h CAPA4FIFO Two-level-deep capture FIFO stack 4

7524h CAPSFIFO Two-level-deep capture FIFO stack 5

7525h CAPG6FIFO Two-level-deep capture FIFO stack 6

7527h CAP4FBOT  Bottom registers of FIFO stacks,
allows most recent CAPTURE value
to be read

7528h CAPSFBOT

7529h CAP6FBOT

Copyright © 2004 CRC Press, LLC



The Event Managers (EVA, EVB) 161

Table 6.13 Addresses of EVA Interrupt Registers

Address Register Name
742Ch EVAIMRA Interrupt mask register A
742Dh EVAIMRB Interrupt mask register B
742Eh EVAIMRC Interrupt mask register C
742Fh EVAIFRA Interrupt flag register A
7430h EVAIFRB Interrupt flag register B
7431h EVAIFRC Interrupt flag register C

Table 6.14 Addresses of EVB Interrupt Registers

Address Register Name
752Ch EVBIMRA Interrupt mask register A
752Dh EVBIMRB Interrupt mask register B
752Eh EVBIMRC Interrupt mask register C
752Fh EVBIFRA Interrupt flag register A
7530h EVBIFRB Interrupt flag register B
7531h EVBIFRC Interrupt flag register C

6.7  Exercise: PWM Signal Generation

As discussed in the previous sections, there are two ways to generate a PWM
signal on the LF2407: through the GP Timer compare operation, or the Compare
Units. This exercise will allow you to use your knowledge of the LF2407 DSP to
write code that will generate PWM signals on both the GP Timer and Compare Unit

outputs.

Procedure:

1.

Write a program that outputs a fixed duty cycle “PWM?” on a GP Timer 2
compare pin. Create the program so that the period of the PWM signal is 1
kHz and the duty cycle (on time/period) is fixed at 75%. The information
on the GP Timer compare operation in the previous section will be very
useful in writing this code.

View the output (1 kHz fixed duty cycle signal) on the
TIPWM/T1ICMP/IOPB4 pin. The Spectrum Digital LF2407 EVM
schematic will be helpful in determining the location of this pin connection
on the EVM.

If available, connect this fixed duty cycle signal to a dc voltage converter
and use it to control the speed of a dc motor by varying the duty cycle of
the waveform.

Modify the above program to now create a sinusoidally modulated PWM
signal on the GP Timer Compare pin. To do this, a sinusoidal look-up
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table can be created separately and then included with the source code. To
modulate the signal, the timer compare register needs to be repeatedly
updated with the modulation signal at a desired rate for a particular
sinusoidal output frequency.

5. Write another program that creates the sinusoidal PWM, but instead uses
the Compare Units.

6. If available, connect the two PWM outputs of the compare unit to a power
inverter and run a single-phase induction motor. Vary the speed of the
motor by manually varying the magnitude and rate at which the compare
registers are updated with the modulation signal. Maintain a constant
voltage/frequency (V/Hz) ratio to the induction motor.
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Chapter 7
DSP-BASED IMPLEMENTATION OF DC-DC BUCK-BOOST
CONVERTERS

7.1 Introduction

In a large number of industrial applications, it is required to convert a dc
voltage to a different dc voltage level, often with a regulated output. To perform
this task, a dc-dc converter is needed. A dc-dc converter directly converts a dc
voltage of one level to another. It can be used to step-down (buck), or step-up
(boost) a dc voltage source. In this chapter, the DSP-based control of a buck-boost,
a specific type of dc-dc converter, is explained.

7.2 Converter Structure

The buck-boost converter has the structure shown in Fig. 7.1. The principle of
operation is that when the transistor T is turned on, the input voltage V;, is applied
across the inductor L and the current i; in the inductor rises. Then the transistor is
turned off. The current in the inductor must continue to flow somehow, and
consequently finds its path through the load resistor R, and back to the inductor
through the diode D. This discharges the inductor, and the current through it
decreases. The capacitor C filters the output voltage ripple. The description given
in the above is with the continuous conduction mode, meaning the inductor current
never goes discontinuous. The continuous mode will be discussed further in the
next section.

This converter has two dominant characteristics: the output voltage is always
negative with respect to the input voltage and the output voltage may be higher or
lower than the input voltage. This is why this converter may also be referred to as a
step-up/step-down converter.

I

O

AAA
r
|
I\
o
<
A%
2

Figure 7.1 Buck-boost converter structure.
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7.3  Continuous Conduction Mode
The input and output voltages are related by the following equation:
d
Vout = _mXVin (7.1)

In this equation, d is the transistor or switch duty cycle. Figure 7.2 shows the
switching pattern command to turn on or off, which must be fed to the transistor for
proper operation of the buck-boost converter.

Transistor
State
A
ON OFF
-
0 d.T, T,
Figure 7.2 Transistor switching pattern.

Obviously, the duty cycle may vary only from 0 to 1. The resulting values for
the converter voltage gain are:

d=0=G="ouw _g (7.2)
in
Vout
d=1=G=—2 = (7.3)

The theoretical gain range achievable is potentially very large. Practically, it is
limited by the parasitic characteristics of the converter. In addition, it is often
desirable to keep the duty cycle between 0.1 (10%) and 0.9 (90%) for practical
engineering considerations. The relationship between the converter duty cycle and
its gain, shown in Fig. 7.3, is non-linear.
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Converter duty cycle in %

Figure 7.3 Converter voltage gain versus converter duty cycle.
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7.4 Discontinuous Conduction Mode

The switching results in a cyclic current increase and decrease in the inductor.
This current ripple has a non-negligible influence on the operation of the converter.
If during the switching period 7, (shown in Fig. 7.2) the current never goes to zero,
then the converter is said to operate in continuous conduction mode.

However, if the current does go to zero at any time, then the conduction is said
to be discontinuous. In discontinuous conduction mode, the voltage gain of the
converter is not solely a function of the duty cycle, but also of the output current.
An example of a discontinuous conduction current waveform is shown in Fig. 7.4.

Al
Lk N —_—_— — — — — —
| | l/>
0 d.T, B.T T,
Figure 7.4 Discontinuous conduction mode current waveform.

7.5  Connecting the DSP to the Buck-Boost Converter

To fully control the buck-boost converter voltage and current with a DSP, one
digital output and two analog inputs are required from the DSP. Figure 7.5 shows a
conceptual connection diagram between the DSP and converter. The DSP will
output a PWM switching waveform to the converter. The DSP will also receive
information of the instantaneous current and voltage from the load via the analog to
digital converter inputs. The following subsections describe the circuits necessary
for interfacing the DSP to the dc-dc converter.
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PROGRAM
PWM

I

1\. i
v

LITT

Figure 7.5 Physical implementation.
7.5.1  Gate Driver

The gate driver for this example is shown in Fig. 7.6 and is an integrated driver;
it includes an opto-isolator, NPN transistor, PNP transistor, and the necessary logic
to control them, all within an integrated package. Only the addition of two resistors
is required to complete the gate driver circuit. The transistor that is being driven

here is a MOSFET.
+15V
HP3101 IRF740
PWM —
SIGNAL }Z* 100W I
1kW
DSP
GND 15V
Figure 7.6 Gate driver circuit schematic.

7.5.2 Current Sensor

Current measurement can be performed using a shunt resistor in series with the
output. This solution is more adapted to sensing small currents than a Hall-effect
sensor and is also less expensive. The voltage across the 1Q shunt resistor shown in
Fig. 7.7 is buffered by a non-inverting amplifier, which provides infinite input
impedance for the ADC input of the DSP. Due to the topology of the dc-dc
converter, the output voltage is negative and must therefore be inverted. Because the
shunt resistor is of a low value, the voltage across it will be small and must be
amplified. A variable gain inverting amplifier provides for both these needs. The
variable gain of the amplifier is used to adjust the gain of the sensed shunt resistor
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voltage signal. The output of the amplifier is connected to an opto-isolator, which
changes the signal path from electrical to optical, then back to an electrical signal.
The optical transmission provides the necessary galvanic insulation between the
power side of the converter and the DSP. This isolation is necessary because the
DSP is a very sensitive device, while the converter is a major source of voltage
surges and interferences. The operational amplifier feeds the input, or luminescent
diode, of the opto-isolator. The output of the opto-isolator feeds into the DSP
analog input. A variable collector resistor is used to set the offset voltage of the
ADC input.

I 10k DSP +3.3V
OUTPUT

TLP550 4.7k

LM741 ADCINI1
: e

DSP GND

Figure 7.7 Current sensor circuit schematic.

7.5.3  Voltage Sensor

The voltage sensor uses the same circuit as the current sensor, but with a few
differences. The output voltage of the converter is directly measurable and is
directly fed into the infinite impedance buffer. The inverting amplifier is also
slightly different in that it uses a 1kQ resistor instead of a 10kQ resistor. The
difference is that while the current signal has to be amplified, the voltage level of
the converter output must be attenuated to match the acceptable voltage range of the
ADC input.

1k DSP +3.3V

Vourrur 1k
- TLP550 4.7k
LM741 ADCINO
+ Bl
1k

DSP GND

Figure 7.8 Voltage sensor circuit schematic.
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7.6  Controlling the Buck-Boost Converter

The controller of a buck-boost converter usually has two objectives:

e  Controlling the output voltage to a predetermined value
e Protecting the converter by limiting the output current to a predetermined
value

Obviously, simply regulating the output voltage is the normal mode for the
controller. If the load is such that the converter output voltage causes the current to
go beyond the limit, then the controller must also control the converter to prevent
the current from exceeding the maximum limit. Maintaining the current below the
maximum is necessary in order to keep the converter and load from overheating.
Because current regulation is necessary for safety, it must have the highest priority
over all the other tasks in the control system, including the voltage regulation. This
means that under any variation of the load, the current will be kept below its
maximum.

The proposed control scheme has the following properties:
e The voltage will be regulated using a closed-loop PI regulator.

e  The current will be checked every switching cycle, and if its value is above
the limit, then the voltage regulation will be suspended. This will be
achieved by setting the error signal to zero, which will disable the
proportional action and disable the integration of the voltage error. The
integrator is decremented by 1 every cycle in order to smoothly bring the
voltage to a value, which will keep the current at its limit.

e The current regulation is effective if the current is only slightly above the
limit. It is not effective against sudden surges such as a short circuit. If the
current is above two times the maximum, then the controller will reset the
PWM generation (thus shutting down the transfer of power from the source
to the load) and reset the integrator. This will cause the converter restart
from zero voltage in voltage regulation mode. Since the voltage is very
low, the current will be slightly beyond the current limit, thus causing the
controller to enter the current regulation mode. This is effective because
output filter capacitor will be quickly discharged by a short circuit, and
thus the output voltage will be zero. The voltage necessary for keeping the
current below the limit in a short circuit condition is very low (in the order
of a few mV), so the recovery from a short circuit should happen quickly.

Regulating the output voltage can be achieved easily by means of an integral
regulator in a negative feedback loop. The integral regulator outputs a command of
gain for the converter. For optimum performance, this command should be
linearized; that is, converted into a useful duty cycle using the following equation:
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d=_Gamn_ (7.4)
Gain +1

However, this is not mandatory because the negative feedback and the integral
regulator ultimately ensure the convergence of the output voltage toward the
reference. In addition, the DSP is very fast in reacting to variations in the system.
Equation (7.4) is theoretical and does not take into account the parasitic elements of
the system, which make the voltage gain a different function of the duty cycle. The
theoretical voltage gain as a function of the duty cycle and the actual gain are
plotted in Fig. 9. One sees that the two curves differ slightly. A look-up table would
be the most accurate and simplest way to linearize the function. The voltage
regulation is described using the block diagram shown in Fig. 7.10.

IS

™ w
) n 13 n
T T T T
Il 1 1 Il

n
T
I

\

Theoretical voltage gain (up) / Actual voltage gain (bottom)

0.5F 7/7// R
0 — 1 "/\/// | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
PWM duty cycle
Figure 7.9 Divergence between theoretical and actual voltage gains.
P
BUCK-BOOST
CONVERTER
V_REF, V_ERROR . . ACTION B OUTPUT
V_AVERAGED AVERAGING | V-SAMPLE PROBE
Figure 7.10 Voltage regulation block diagram.
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This block diagram will be calculated once every switching cycle, which is the
maximum speed at which parameters may be updated. Calculating the regulation
more often would be useless because the actuator, the PWM generator, would not
react until the next cycle.

The block diagram shown in Fig. 7.11 is implemented within the voltage
regulation code in two sequences: current regulation and regulation reset.

FROM
VOLTAGE
REGULATION PROGRAM

|

READ AVERAGED CURRENT

i

IS CURRENT > MAXIMUM ?

NO

NO

IS CURRENT > 2 * MAXIMUM ?

YES
Y
RESET DUTY CYCLE TO ZERO RESET V_ERROR TO ZERO
y A J
RESET INTEGRATOR DECREMENT INTEGRATOR BY 1
\J
TO VOLTAGE
REGULATION PROGRAM
Figure 7.11 Current regulation algorithm.

Figure 7.12 illustrates the flow chart of the program developed in this chapter.
Notice that several loops are used in the program.
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START
v \
INITIALIZE READ VOLTAGE
DSP SENSOR
INITIALIZE FORMAT
VARIABLES VOLTAGE
# SAMPLE
INITIALIZE READ CURRENT
ADC SENSOR
INITIALIZE FILTER ADC
PWM MEASURES
GENERATION
INITIALIZE TIME TO RUN VES
SAMPLING REGULATION 2
PERIOD
INTERRUPT
-l |-
A
WAIT FOR
INTERRUPT

HAS AN

INTERRUPT

OCCURRED
9

7.7
7.7.1

Figure 7.12
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Y

AVERAGE THE
MEASURES

Y

CALCULATE
THE ERROR

Y

IS CURRENT >
MAXIMUM ?

CURRENT
REGULATION

CALCULATE PI
REGULATOR
OUTPUT

IS CURRENT >
2 * MAXIMUM ?

RESET
REGULATION

OUTPUT ACTION
TO PWM

Main Assembly Section Code Description

Variables Initialization

General program flow-chart.

The block of code below initializes the defined variables with constants.

LDP

SPLK
SPLK
SPLK
SPLK
SPLK
SPLK
SPLK

#06h

#0900h,
#0880h,
#0000h,
#0000h,
#0000h,
#0000h,
#0000h,
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V_OFFSET ;Voltage
I_OFFSET ;Current
V_SAMPLE ;Voltage
I_SAMPLE ;Current
V_SUM ;Voltage
I_SUM ;Current
V_AVERAGED ;Voltage

probe offset * 276
probe offset * 276
sample

sample

sum

sum

averaged
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SPLK
SPLK
SPLK
SPLK
SPLK
SPLK
SPLK

DSP-Based Implementation of DC-DC Buck-Boost Converters

#0000h, I_AVERAGED
#0138h, V_REF
#0000h, ACTION
#00FAh, I_LIMIT
#0000h, V_ERROR
#0000h, INTEGRAL
#0000h, INT_CNT

7.7.2  Initialization of the ADC

This code initializes the Analog-to-Digital Converter hardware of the LF2407 that
performs the analog current and voltage sensing.

LDP

SPLK

SPLK

SPLK

SPLK

SPLK

SPLK

#ADCTRL1>>7h

#0100000000000000Db,

#0011000000000000Db,

#0001h, MAXCONV

#0010h, CHSELSEQ1L

#0100000000000000Db,

#0000000100000000Db,

;Current averaged

;Voltage reference=5v=5000d4/16d
;Action output by the regulator
;Current limit FAh = 250d= 25mA
;Error of voltage regulation
;Regulation integrator

;Interrupt counter

;Set data page corresponding to
;ADCcontrol registers

ADCTRL1
;Reset ADC

ADCTRL1
;Set ADC for Bit 6=0 start-stop
;mode
;Set for 2 conversions (2
;channels)
;Set for conversion on channel 1
;and 0

ADCTRL2
;Reset sequencer

ADCTRL2
;Enables ADC to be started by an

;event (timer 2 period here)

7.7.3  Initialization of GP Timer 1 for PWM Generation

This code sets the parameters of the PWM waveform generation. The period is
set for a 1kHz carrier frequency. The duty cycle is set to a near zero value.

LDP

SPLK

LDP

SPLK

SPLK
SPLK

#0Elh

#0FFFFh, MCRA

#GPTCONA>>7h

#00000h, TI1CNT

#3FFFh, T1PR
#3FFOh, T1CMPR
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;Set data page corresponding to
;GPIO pin registers

;Set GPIO pins for primary

; function (IO)

;Set data page corresponding to
;general purpose timer control
;register

;Reset timer 1 counter

;Set timer 1 period to ~= 1lms
;Set duty cycle
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7.7.4  Sampling Period Interrupt Initialization

This code initializes GP Timer 2 and the interrupt operation for the Timer 2

period interrupt.

SPLK
LACL

SACL

SPLK

SPLK

SPLK

SPLK

SPLK

LDP

SPLK

CLRC
LOOP: B

#00000h, T2CNT ;Reset timer 2 counter

T1PR ;Load timer 1 (PWM) period
;register

T2PR, 4 ;Divide by 16 (right shift by 4

;bits) and store in timer 2
;period register
#0000010001000010b, GPTCONA
;Set general purpose timer
;control register for: Bit 10,9
;= 10 start ADC upon timer 2
;period occurrence, Bit 6=1
;enables timer 1 compare output
;for PWM generation, Bit 2,1=10
;sets output pin polarity high
#1000100001000010b, T1CON
;Sets timer 1 control register
;for: Bit 12,11 = 01 continuous
;up down count mode, Bit 6 = 1
;enables timer, Bit 1 = 1
;enables timer compare operation
#1000100001000000b, T2CON
;Sets timer 2 control register
;for: Bit 12,11=01 continuous up
;down count mode, Bit 6 = 1
;enables timer
#0000000000000001b, EVAIMRB
;Enables interrupt upon timer 2
;period occurrence
#0000000000000000b, EVAIFRB
;Reset corresponding interrupt
;flags
#0h ;Set data page corresponding to
;registers
#0000000000000100b, IMR
;Enable level 3 (INT3)

;interrupts
INTM ;Enable interrupts
LOOP ;Program infinitely loops here

;while waiting for interrupts
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7.8  Interrupt Service Routine

Once an interrupt has occurred, the algorithm will perform several tasks as
shown in Fig. 7.12. After the sensor voltage and current values are obtained, the
algorithm either returns to the main wait loop or branches to the regulation code.

The code sequence below is in charge of identifying what event caused the
interrupt. Reading the PIVR register obtains contains the identification number of
the occurring interrupt. If the PIVR number corresponds to the Timer 2 period
match interrupt (#002Bh), then the DSP branches to the regulation code. Otherwise,
it branches back to the wait loop (LOOP:) in the main code.

PERIOD:LDP #PIVR>>7h ;Set data page corresponding to
;PIVR register
LACL PIVR ;Load content of PIVR register
;to accumulator
SUB #002Bh ;Subtract number of timer 2

;period match interrupt

BCND REGULATION, EQ ;If content matches, then branch
;to regulation code

CLRC INTM ;Otherwise clear interrupt mask
;to re-enable interrupts

RET ;And return to wait loop in main
;code

7.8.1  Reading Voltage Sensors

This section of code contains protection against negative values that may occur
because of physical sensor drift. A negative value must be eliminated. The probe
offset is determined manually when physically connecting the DSP to the converter.
The block of code below reads in the voltage from the ADC result register.

LDP #RESULTO0>>7h ;Set data page corresponding to
;ADC registers

LACL RESULTO ;Load result register 1 content
;(i.e. current sample) to
;jaccumulator

LDP #06h ;Set data page corresponding to
;variables

SUB V_OFFSET ;Subtract voltage probe offset

BCND S1, GEQ ;If the result is positive or
;zero, then branch to proceed
;normally

LACL #0000h ;Otherwise, set result to zero

S1: SACL V_SAMPLE, 10 ;Right shift result by 10 bits

;and store it. The 6-bit shift
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;1s because the 6 LSBs of the
;result register are
;insignificant. The 4-bit shift

;is for formatting purposes.

7.8.2  Formatting the Voltage Sample

The voltage sample read from the A/D converter needs to be multiplied by the
value 14d (=Eh) in order to change the value into the 16mV per digit format.

LDP #06h ;Set data page corresponding to
;variables

LT V_SAMPLE ;Load voltage sample to
;multiplier

MPY #00Eh ;Multiply by 14d

SPL V_SAMPLE ;Store 16 least significant bits

;of the result to V_SAMPLE

7.8.3  Reading the Current Sensors

This code is similar to the code that reads the voltage sensors, with the
exception of the channel read, which is channel 1 here instead of channel 0. As
with the voltage reading code, the code below reads the result register of the ADC
that contains the result from the current measurement.

LDP #RESULT1>>7h ;Set data page corresponding to
;ADC registers

LACL RESULT1 ;Load result register 1 content
;(i.e. current sample) to
;accumulator

LDP #06h ;Set data page corresponding to
;variables

SUB I_OFFSET ; Subtract current probe offset

BCND S2, GEQ ;If result is positive or zero
;then branch to proceed normally

LACL #0000h ;Otherwise, set result to zero

S2: SACL I_SAMPLE, 6 ;Right shift result by 6 bits

;and store it. Right shift is
;because the 6 LSBs are

;insignificant

7.8.4  Filtering the ADC Readings

This code accumulates the voltage and current samples from every interrupt in
order to calculate their averages once every PWM cycle.

LDP #06h ;Set data page corresponding to
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;variables

LACL V_SUM ;Load voltage sample sum to
;accumulator

ADD V_SAMPLE ;Add voltage sample to
;accumulator

SACL V_SUM ;Store result as voltage sum

LACL I_SUM ;Load current sample sum to
;accumulator

ADD I_SAMPLE ;Add current sample to
;accumulator

SACL I_SUM ;Store result as current sum

7.9  The Regulation Code Sequences

The following sequences described in this section execute once every Timer 2
period interrupt. The Timer 2 period interrupt is set to occur at a frequency of 16
times that of the PWM switching frequency. This ensures that the regulation is
calculated only once every PWM cycle.

The code checks the counter of interrupt occurrence (INT_CNT). Every time
the four least significant bits are equal to 15 (every 16 interruptions), the DSP
branches to the regulation code. Otherwise, it returns directly from the interrupt
service routine.

LDP #06h ;Set data page corresponding to
;variables

LACL INT_CNT ;Load interrupt occurrence
;counter into accumulator

ADD #1h ;Increment by 1

SACL INT_CNT ;Store back as interrupt
joccurrence counter

AND #000Fh ;Discard all bits but 4 LSBs

XOR #000Fh ;Check for equality with 16d=Fh

BCND S_RET, NEQ ;If not, then branch to return

;from interrupt

7.9.1  Calculating the Voltage and Current Average Values

This sequence takes the sum of 16 voltage and current samples and divides it
by 16. The division is performed with a 4-bit right shift. The results are the
averaged values of the load voltage and current.

LDP #06h ;Set data page corresponding to
;variables

LACL V_SUM ;Load sum of voltage sample to
jaccumulator

SACL V_AVERAGED, 4 ;Shift right by 4 bits and store
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SPLK
LACL

SACL

SPLK

#0000h, V_SUM
I_SuM

I_AVERAGED, 4

#0000h, I_SUM

7.9.2  Voltage Comparator

;as the average load voltage
;Reset sum of voltage samples
;Load sum of current samples to
;accumulator

;Shift right by 4 bits and store
;as the average load current

;Reset sum of current samples

This code simply outputs the difference between the voltage reference
(V_REF) and the averaged load voltage (V_AVERAGED) as the error

(V_ERROR).

LDP
ACL

SUB

SACL

#06h

V_REF

V_AVERAGED

V_ERROR

7.9.3  Current Regulation

;Set data page corresponding to
;variables

;Load voltage reference in the
;accumulator

;Subtract the averaged load
;voltage. The accumulator now
;contains the difference

;Store the result as V_ERROR

This sequence checks the averaged load current versus the predefined limit and,
if necessary, stops the integration of the voltage error and decrements the integrator.

LDP

LACL

SUB

BCND

SPLK

LACL

SUB
SACL

#06h ;Set data page corresponding to
;variables

I_LIMIT ;Load maximum current value to
;accumulator

I_AVERAGED ;Subtract actual averaged
;current value

S3, GEQ ;If actual current below maximum
;then branch to proceed normally

#0000h, V_ERROR ;Otherwise, stop integrating
;voltage error

INTEGRAL :And load integral value

#1h ;Decrement it by 1

INTEGRAL ;Store it back as integral value

7.9.4  PI Regulator

The code below is actually
sufficient for the application.
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S3: LDP #06h ;Set data page corresponding to
;variables
LACL INTEGRAL ;Load integral value to
;accumulator
ADD V_ERROR ;Integrate the error
SACL INTEGRAL ;Store result as integral value
SACL ACTION, 3 ;Right shift by 3 bits for

; formatting purposes and output

;result as action

7.9.5  Short Circuit Protection

The protection algorithm is activated if the average current rises to twice the
limit. This sequence executes along with the rest of the regulation code. The
protection algorithm must immediately reset the PWM output and the integrator to
zero in order to protect the buck-boost converter and load against sudden surges of
current. It should be noted that in case of a short-circuit, this protection will be
activated only a few times. Once the filter capacitor is discharged, the load current
will drop to acceptable levels and the LF2407 will work in current regulation mode.

LDP #06h ;Set data page corresponding to
;variables

LACL I_LIMIT ;Load current limit to
;accumulator

SFL ;Multiply by 2

SUB I_AVERAGED ;Subtract the average load

;current value

BCND S_PWM, GEQ ;If the average load current is

;below the critical limit, then
;proceed normally to outputting
;the action to PWM

SPLK #0000h, ACTION ;Otherwise, reset the PWM
;output through the ACTION
;signal

SPLK #0000h, INTEGRAL ;And reset the PI regulator
;integrator. The proceed to
;outputting the action to the
; PWM hardware

7.9.6  Output Action to PWM

The action signal from the PI regulator should be linearized (i.e., transformed
into a corresponding duty cycle) for optimum dynamic performance. However,
dynamic performance is ensured by the processing speed of the DSP. In addition,
the actual relationship between the duty cycle and the voltage gain is dependent
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upon the load and converter characteristics and would therefore have to be
identified for each specific application. The duty cycle effectively output by the
PWM hardware as it is programmed here is the following function:
_ T1PR-T1CMPR
T1PR
Therefore, the code must adapt the action signal from the PI regulator (ACTION)
into a value to be stored in the TICMPR register. The equation used is

(7.5)

ACTION  T1PR—-T1CMPR
T1PR T1PR

(7.6)

which yields the simple transformation implemented in the code sequence below.

T1CMPR =T1PR — ACTION 7.7

LDP #GPTCONA>>7h ;Set data page corresponding to
;PWM timer registers

LACL T1PR ;Load period timer value

LDP #06h ;Set data page corresponding to
;variables

SUB ACTION ;Subtract the action signal from

;the PI regulator. The result is
;the PWM timer compare value

LDP #GPTCONA>>7h ;Set data page corresponding to
;the PWM timer registers

SACL T1CMPR ;Store calculated compare value.
;It is now effectively the value
;that will be used by the PWM

;hardware for the next PWM cycle

7.9.7  Return to Main Code

This code clears the flag corresponding to the Timer 2 period match interrupt in
EVAIFRB and re-enables the interrupts. It branches back to where the program was
before the interrupt, i.e., the wait loop in the main code.

S_RET: LDP #EVAIFRB>>7h ;Set data page corresponding to

;event manager A registers

LACL EVAIFRB ;Load value of event manager A
;interrupt flags register

SACL EVAIFRB ;Store it back to the register.
;This effectively clears the
;interrupt flags

CLRC INTM ;Re-enable the interrupts

RET ;Return from interrupt
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7.10 Results

The following waveforms were captured from a physical buck-boost converter
under the control of the DSP algorithm described in this chapter. The waveform of
the diode current is shown first in Fig. 7.13.
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Figure 7.13 Diode current ripple.

The current waveform displays a ripple that emphasizes the need for an
averaging filter. The ripple observed has an amplitude of about 15mA, with an
average value of 17mA. The waveform also displays high frequency noise, which
further reduces the precision of the measurements, requiring the use of a filter.

The voltage waveform in Fig. 7.14 shows the ripple due to the charge of the
capacitor during the switch-off period and the discharge of the capacitor by the load
during the switch-on period. The amplitude of the ripple is only 10mV, but its high
frequency makes an output filter mandatory. Furthermore, the load used in these
waveforms is a low current load. A larger load would make the ripple much more
significant, thus also requiring an averaging filter.

The controlled buck-boost converter was tested in normal load conditions, with
an increased load, and in sudden short circuit. It held the voltage at the
predetermined reference value (5V) under normal load conditions (300Q2). A current
limit was set at 25mA. When the load was decreased to 150€2, the control entered
in current regulation mode. The current was held precisely at 25mA, resulting in a
voltage of 3.76V. When the output was suddenly short-circuited, the converter
reacted immediately and held the current to 28mA instead of 25mA. The reason for
this is that the output voltage was only a few mV, which is very close to the
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3.224mV of the ADC. It is impossible for the controller to see the difference
between 25 and 28mA, and hence impossible to regulate the current to exactly
25mA.
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Figure 7.14 Load voltage ripple.
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Chapter 8
DSP-BASED CONTROL OF STEPPER MOTORS

8.1 Introduction

A stepper motor is an electric machine that rotates in discrete angular
increments or steps. Stepper motors are operated by applying current pulses of a
specific frequency to the inputs of the motor. Each pulse applied to the motor causes
its shaft to move a certain angle of rotation, called a stepping angle. Since the input
signal is converted directly into a requested shaft position without any rotor position
sensors or feedback, the stepper motor has the following advantages:

Rotational speed proportional to the frequency of input pulses
Digital control of speed and position

No need of feedback sensor for open loop control

Excellent acceleration and deceleration responses to step commands

The stepper motor also possesses drawbacks such as the possibility of losing
synchronism, harmonic resonance, and small oscillations at the end of each step.
With the above parameters in mind, the stepper motor is used in applications such
as printers, plotters, X-Y tables, facsimile machines, barcode scanners, image
scanners, copiers, medical apparatus, and other devices.

The stepper motor has salient poles on both the stator and the rotor, and
normally only the stator poles hold the poly-phase windings called the control
windings. Usually stepper motors are classified as

e  Active rotor (permanent magnet rotor)

e Reactive rotor (reluctance type)

e Hybrid motors (combining the operating principles of the permanent
magnet (PM) and reluctance stepper motor)

While each of these types of stepper motors has merit, hybrid stepper motors
are becoming more popular in industrial applications. In this chapter, we focus on
the principles and implementation of a hybrid stepper motor control system using
the LF2407 DSP controller.

8.2  The Principle of Hybrid Stepper Motor

8.2.1  The Structure of Hybrid Stepper Motor

Figure 8.1 shows a simplified construction of a unipolar hybrid stepper motor.
The rotor of this machine consists of two star-shaped milled steel pieces with three
teeth on each. A cylindrical, axially magnetized PM is placed between the milled
pieces making the end of each rotor either a north or a south pole. The teeth are
offset at the north and south ends as shown in Fig. 8.1. The stator has four poles,
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each of which has a center-tapped winding. Since all the windings have the common
connection V+, only five wires, A, B, C, D, and V+, leave the motor. A winding is
excited by sending current into the V+ wire and out one of the other wires. The
windings are wound in the stator teeth in such a way so that the motor behaves in
the following way:

e Ifwinding A or C is excited, pole 1 or pole 3 is energized as south.
e Ifwinding B or D is excited, pole 2 or pole 4 is energized as north.

Figure 8.1 The four-phase, six-pole stepper motor.

Stepper motors are also classified with respect to the stator windings as being
either bipolar or unipolar. Bipolar stepper motors have two windings with an
opposing magnetizing effect in each pole, while unipolar stepper motors use only
one winding per pole.

8.3  The Basic Operation

The operation of the stepper motor relies on the simple principle of magnetic
attraction. This principle states that opposite magnetic poles attract while like poles
repel each other. If the windings are excited in the correct sequence, the rotor will
rotate following a certain direction. The basic operation of a stepper motor can be
classified generally as either full step mode or half step mode. These modes are
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discussed in detail in the following section using the simplified stepper motor
construction shown in Fig. 8.1.

8.3.1  Full-step Mode

If none of the stator windings are excited, an attraction between the stator poles
and rotor teeth still exists because the PM rotor is trying to minimize the reluctance
of the magnetic flux path from one end to the other. As a result, the rotor will tend
to rest at one of the rest equilibrium positions. From Fig. 8.1, a rest position exists
when a pair of rotor teeth are aligned with two of the stator poles. In the case of
Fig. 8.1, the rotor is aligned with pole 1 and pole 3 on the stator. There are a total of
12 possible equilibrium positions for a 4-phase, 6-pole stepper motor. The force or
torque that holds the rotor in one of these positions is called the detent torque. The
value of the detent torque is usually small because no current flows through the
stator windings.

Consider the case of the stator windings being excited according to Table 8.1.
Assume at the beginning we are in mode 1 and the rotor aligns with poles 1 and 3 as
shown in Fig. 8.2(a). When the excited sequences switch from mode 1 to mode 2,
the north and south stator poles become pole 2 and pole 4. When this happens, the
teeth of opposite polarity on the rotor will experience an attractive force, creating a
torque on the rotor. Since this torque is much greater than the detent torque, the
rotor will turn 30° counterclockwise, corresponding to one full step. Following the
sequence of modes 1, 2, 3, and 4, the stator field rotates 90°, attracting the
corresponding rotor poles when the mode switches from one to the next. After
switching four times, the rotor has moved four steps (120°) and the rotor and stator
fields return back to the initial condition or mode 1. A complete revolution requires
12 steps. The clockwise direction will be obtained if the reverse excited sequence
of the stator winding is applied.

Table 8.1  Full step, single-phase excited sequence

Winding A | Winding B | Winding C | Winding D | Rotor Position
Mode 1 On Off Off Off 0
Mode 2 Off On Off Off 0
Mode 3 Off Off On Off 20
Mode 4 Off Off Off On 30
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(a) Mode 1 (b) Mode 2
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(c) Mode 3 (d) Mode 4

Figure 8.2 The principle of single-phase full-step mode.

For the full-step operation, greater torque can be produced if the two windings
are excited simultaneously. The excited sequence of the stator winding is given in
Table 8.2. During this operation, the rotor takes up an intermediate position because
it experiences an equal attraction to the two stator poles as shown in Fig. 8.3. As in
the single-phase full-step operation, a switch between two adjacent modes will
cause a 90° shifting of the stator field. This results in a 30° rotation of the rotor.
Twelve steps are required for a complete revolution in this mode as well. The
sequence in Table 8.2 will rotate the motor counterclockwise, while reversing the
sequence will run the motor clockwise.
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Table 8.2 Full step, two-phase excited sequence

Winding A | Winding B | Winding C | Winding D | Rotor Position
Mode 1 On On Off Off 0/2
Mode 2 Off On On Off 30/2
Mode 3 Off Off On On 50/2
Mode 4 On Off Off On 760/2
Figure 8.3 The rest equilibrium position of two-phase full-step mode.

8.3.2  Half-Step Mode

The stepper motor operation discussed rotates 30° per step. In the half step
mode, alternately exciting one winding, then exciting two windings, will cause the
rotor to move through only 15 degree per step. Though there is a slight loss of the
torque while the single winding is being excited, half-step operation allows for
smoother operation at lower speeds and less overshoot at the end of each step. The
excitation sequence of the stator windings in half-step mode is given in Table 8.3.

During this operation, each switch between the two nearest modes will cause a
45° shift of stator field which results in a 15° rotation of the rotor. A total of 24
steps are required for a complete revolution, double of what is required for full step

modes.
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Table 8.3 Half-step, two-phase excited sequence.

Winding A | Winding B | Winding C | Winding D | Rotor Position
Mode 1 On Off Off Off 0
Mode 2 On On Off Off 0/2
Mode 3 Off On Off Off 0
Mode 4 Off On On Off 36/2
Mode 5 Off Off On Off 26
Mode 6 Off Off On On 56/2
Mode7 Off Off Off On 36
Mode8 On Off Off On 76/2

8.3.3  Micro-Step Mode

For the operating modes discussed previously, the same amount of current
flows through the energized stator windings. However, if the currents are not equal,
the rotor will be shifted toward the stator pole with the higher current. The amount
of deviation is proportionate to the values of the currents in each winding. This
principle is utilized in the micorstep mode. During this mode, each basic full mode
step can be divided into as many as 500 microsteps, providing the proper current
profile is applied.

8.4  The Stepper Motor Drive System

An open loop stepper motor control system is shown in Fig. 8.4. The total
control system consists of the power electronic drive circuit and controller. These
components will be discussed in detail in following sections.

Figure 8.4 The stepper motor speed control system.
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8.4.1 Power Electronic Drive Circuit

The drive circuit of a stepper motor is displayed in Fig. 8.4. Wires A, B, C, and
D are connected to the power switch device T,, T,, T3, and T4. The V+ wire is
connected to a +12V power supply through a series resistor. When one of the
switches turns on, the corresponding winding is excited.

The windings in a stepper motor also have inductance. When the switch turns
on, the winding inductance will increase the amount of time it takes for the current
to reach its full value. Since the speed of the stepper motor is proportionate to the
switching frequency, this effect limits the maximum motor speed. A series
resistance (R;), as shown in Fig. 8.4, is added to reduce this problem. Assuming the
winding’s inductance and resistance are L and R, when the switch turns on, the
winding current can be calculated by:

_R+RSt
(l—e L ) (8.1)

Vdc
R+ Ry
From (8.1), it can be seen that the series resistance reduces the time constant so
that the current can increase faster. However, the resistance causes a voltage drop,
which requires a larger power supply to compensate for the resistor losses so that
the same current can be applied to the motor windings.

i(t) =

The winding inductance also leads to another problem when the switch turns
off. If no additional current path is provided to dissipate the energy stored in the
inductance, a voltage spike will be generated across the switching devices and may
damage them. To solve this problem, a freewheeling diode (D;-D,) parallel to the
winding is employed. In addition, a series resistor may also be added to the circuit
to limit the voltage spike.

8.4.2 Controller

The LF2407 DSP controller is used to implement the speed control of a stepper
motor drive system. The interface of the LF2407 is illustrated in Fig. 8.5. Since this
control scheme is an open-loop control system, no feedback information is required.
The four I/O ports on the DSP provide the gating signals to the transistors, which
provide current to the windings in the specified sequence. The speed rate at which
the switching sequence is applied determines the speed of the motor.

Gate

TMS320LF2407 1/0B0- B3 Dri
\%§

Figure 8.5 DSP interface.
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8.5  The Implementation of Stepper Motor Control System Using the
LF2407 DSP

The assembly code associated with the LF2407 was developed to implement
the open loop speed control system discussed previously. The flowchart for the DSP

software is shown in Fig. 8.6.

| Initialization procedure |

'

| Read commanded speed |

A 4

Calculate the step Calculate the step
Read full-step Read half-step
sequence sequence

!

| Set I/O port |

v

| Output the program variables to DACO~DAC3 |

End

Figure 8.6 Flowchart of the stepper motor control algorithm.

It can be seen from Fig. 8.6 that the control algorithm of the stepper motor
drive system consists of one main routine and includes four subroutine modules:

e Initialization procedure

e  Speed control module

e  QOutput signals via I/O port

e DAC module

Only the speed control module is specific to the stepper motor control system
and will be dicussed in detail.
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8.6  The Subroutine of Speed Control Module

The Timer 1 period interrupt is used for the speed control subroutine. This
subroutine performs the task of reading the commanded speed and then converting
it to a pulse output on the I/O ports. Hence, the motor speed is determined by the
time interval of this interrupt. The block of assembly code below shows the Timer 1
Interrupt Service Routine (ISR), which executes all subroutines upon every

interrupt.

T1_TISR: NOP
___________________ *
; Context Saving *

;
;Context save regs

MAR *, AR1 ;AR1 is stack pointer
MAR *+ ;skip one position
SST #1, *+ ;save ST1
SST #0, 4 ;save STO
SACH 4+ ;save acc high
SACL * ;save acc low
POINT_EV

SPLK #0FFFFh , EVIFRA

POINT_BO

RUN_MODE POINT_BO
CALL SPEED_PROFILE
CALL VTIMER_SEC
LACC STEP_FLG
BCND HALF_MODE, GT

CALL FULL_STEP
B END_MODE
HALF_MODE

CALL HALF_STEP

END_MODE
CALL DAC_VIEW_Q15T

MAR *, AR1 ;make stack pointer active
LACL *e ;Restore Acc low

ADDH *— ;Restore Acc high

LST #0, *— ;load STO

LST #1, *— ;load ST1

POINT_PGO

CLRC INTM

RET

8.6.1  Full-Step Mode

Two-phase full-step mode described in Section 8.3.1 is implemented in the full-
step subroutine as shown in the code on the next page. The commanded speed is
converted first to a pulse with a certain frequency in this routine. According to
Table 8.2, the different sequence is read and then the corresponding 1I/O ports
(IOPBO, 1, 2, 3 — A, B, C D) are set high/low to control the turn on/off of the
switches.

Copyright © 2004 CRC Press, LLC



192 DSP-Based Control of Stepper Motors

FULL_STEP: POINT_BO
POINT_BO
LACC #MODE_FUL
sub #3

BCND SET_MODE_FUL, NEQ
SPLK #0,MODE_CNTL_FUL
B FUL_EXIT

RET

8.6.2  Half-Step Mode

Following the same procedure as described above, two-phase half-step mode
strategy described in Section 8.3.2 is implemented in the code block shown below.

HALF_STEP: POINT_BO
POINT_BO
POINT_BO
LACC MODE_CNTL_HLF
sub #7

BCND SET_MODE_HLF , NEQ
SPLK #0,MODE_CNTL_HLF
B HLF_EXIT

RET

Reference

1. Digital Signal Processing Control of Electric Machines and Drives Laboratory
Manual, Department of Electrical Engineering, The Ohio State University,
March 2002.
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Chapter 9
DSP-BASED CONTROL OF PERMANENT MAGNET BRUSHLESS DC
MACHINES

9.1 Introduction

Permanent magnet alternating current (PMAC) motors are synchronous motors
that have permanent magnets mounted on the rotor and poly-phase, usually three-
phase, armature windings located on the stator. Since the field is provided by the
permanent magnets, the PMAC motor has higher efficiency than induction or
switched reluctance motors. It also draws better power factor and has higher power
density. The advantages of PMAC motors, combined with a rapidly decreasing cost
of permanent magnets, have led to their widespread used in many variable-speed
drives such as robotic actuators, computer disk drives, domestic appliances,
automotive applications, and heating-ventilating-air conditioning (HVAC)
equipment.

In general, PMAC motors are categorized into two types. The first type of
motor is referred to as PM synchronous motor (PMSM). These motors produce a
sinusoidal back-EMF shown in Fig. 9.1(a), and should be supplied with sinusoidal
current/voltage. The PMSM’s electronic control and drive system uses continuous
rotor position feedback and pulse-width-modulation (PWM) to supply the motor
with the sinusoidal voltage or current. With this, constant torque is produced with
very little ripple. A detailed discussion of the PMSM drive system is given in
Chapter 12.

The second type of PMAC motor has a trapezoidal back-EMF and is referred to
as the brushless DC (BLDC) motor. The back-EMF of the BLDC motor is shown
in Fig. 9.1(b). The BLDC drive system is based on the feedback of rotor position,
which is not continuous as with the PMSM, but rather obtained at fixed points
typically every 60 electrical degrees for commutation of the phase currents. The
BLDC motor requires that quasi-rectangular shaped currents are fed into the
machine. Alternatively, the voltage may be applied to the motor every 120°, with a
current limit to hold the currents within the motor’s capabilities. Because the phase
currents are excited in synchronism with the constant part of the back-EMF,
constant torque is generated.

The objective of this chapter is to introduce the principles of the BLDC motor
control system, and then discuss the procedure of its implementation using the
LF2407 DSP.
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9.2  Principles of the BLDC Motor
9.2.1  Mathematical Model

The phase variables are used to model the BLDC motor due to its non-
sinusoidal back-EMF and phase current. The terminal voltage equation of the
BLDC motor can be written as

Vg R+ pLg 0 0 i, e,
Vp | = 0 R+ pLs 0 . ib +1|ep (91)
Ve 0 0 R+ pLg||i, e,

where v,, vy, V. are the phase voltages, i, i i. are the phase currents, e, e, e. are
the phase back-EMF voltages, R is the phase resistance, L, is the synchronous
inductance per phase and includes both leakage and armature reaction inductances,

and p represents %t' The electromagnetic torque is given by

T, = (egiy +epip +eci, )/ @, 9.2)
where @, is the mechanical speed of the rotor. The equation of motion is

d

Ewm:(Te_TL_me)/J 9.3)

where 7 is the load torque, B is the damping constant, and J is the moment of
inertia of the rotor shaft and the load.

9.3  Torque Generation

From (9.2), the electromagnetic torque of the BLDC motor is related to the
product of the phase back-EMF and current. The back-EMFs in each phase are
trapezoidal in shape and are displaced by 120 electrical degrees with respect to each
other in a three-phase machine. A rectangular current pulse is injected into each
phase so that current coincides with the crest of the back-EMF waveform, hence the
motor develops an almost constant torque. This strategy, commonly called six-step
current control, is illustrated by Fig. 9.2 and explained by (9.4). The amplitude of
each phase’s back-EMF is proportional to the rotor speed, and is given by

E =koo,, 9.4)
where k is a constant and depends on the number of turns in each phase, ¢ is the
permanent magnet flux, and @, is the mechanical speed. In Fig. 9.2, during any
120° interval, the instantaneous power converted from electrical to mechanical is the
sum of the contributions from two phases in series, and is given by

P, =w,T, =2EI 9.5)
where T, is the output torque and / is the amplitude of the phase current. From
(9.4) and (9.5), the expression for output torque can be written as

T, =2k¢l =k, (9.6)
where k; is the torque constant. Since the electromagnetic torque is only

proportional to the amplitude of the phase current in (9.6), torque control of the
BLDC motor is essentially accomplished by phase current control.

Copyright © 2004 CRC Press, LLC



196 DSP-Based Control of Permanent Magnet Brushless DC Machines

»

v
&

(

T ————————
WL e ] ;

I I I I | | | | ot
L] T 1 T T >,
! ! ! ! ! ! ‘#—l_,
Ta [ \ [ [ [ [ [ [ [ ot
Ts ! ! ! ! ! ! ! e s T
I I I I I I I I I [ I [ ot
T L \ |
6 \ \ \ \ | [ >
I I I I I I I I I I I I
Torque T 1 f 1 1 1 ' ; f :
I | I I I I I | | | I | o
‘ >
0 13 !¢ g ‘10 15 4g éo b4 b7 50 s ke ot
0 0 0 2 0 o 1 0 0 0 0 0

[ Power switches(T1-T6) turn on

Figure 9.2 The principle of the six-step current control algorithm.
T1-T6 are the gate signals, E, , Ey , and E, are the motor phase back-EMF, 1, I, and
I, are the motor phase currents.

9.4 BLDC Motor Control System

Based on the previously discussed concept, a BLDC motor drive system is
shown in Fig. 9.3. It can be seen that the total drive system consists of the BLDC
motor, power electronics converter, sensor, and controller. These components are
discussed in detail in the following sections.

9.4.1 BLDC Machine

BLDC motors are predominantly surface-magnet machines with wide magnet
pole-arcs. The stator windings are usually concentrated windings, which produce a
square waveform distribution of flux density around the air-gap. The design of the
BLDC motor is based on the crest of each half-cycle of the back-EMF waveform.
In order to obtain smooth output torque, the back-EMF waveform should be wider
than 120 electrical degrees. A typical BLDC motor with 12 stator slots and 4 poles
on the rotor is shown in Fig. 9.4.
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Figure 9.3 BLDC motor control system.
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Figure 9.4 The 4-pole 12-slot BLDC motor.

9.4.2 Power Electronic Converter

As shown in Fig. 9.3, the power electronic converter in the BLDC motor drive
system consists of two parts: a front-end rectifier and a three-phase full-bridge
inverter. The front-end rectifier is usually a full-bridge diode rectifier unless a
switching rectifier is used to provide regeneration capability.

The inverter is usually responsible for the electronic commutation and current
regulation. For the six-step current control, if the motor windings are Y connected
without the neutral connection, only two of the three phase currents flow through
the inverter in series. This results in the amplitude of the DC link current always
being equal to that of the phase currents. As far as the inverter goes, there are only
two switches per leg, one upper and one lower switch which conduct at any
moment. PWM current controllers are typically used to regulate the actual machine
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currents in order to match the rectangular current reference waveforms shown in
Fig. 9.2. For example, during one 60° interval when switches T, and Ty are active,
phases A and B conduct. The lower switch T4 is always turned on and the upper
switch T is chopped on/off using either a hysteresis current controller with variable
switch frequency or a PI controller with fixed switch frequency. When T; and Ty
are conducting, current builds up in the path shown in the dashed line of Fig. 9.5(a).
When switch T is turned off, the current decays through diode D, and switch Ty as
shown in the dashed line of Fig. 9.5(b). In the next interval, switch T, is on, and T,
is chopped so that phase A and phase C conduct. During the commutation interval,
the phase B current rapidly decreases through the freewheeling diode D; until it
becomes zero and the phase C current builds up.

From the above analysis, each of the upper switches is always chopped for one
120° interval and the corresponding lower switch is always turned on per interval.
The freewheeling diodes provide the necessary paths for the currents to circulate
when the switches are turned off and during the commutation intervals.

9.4.3 Sensors

There are two types of sensors for the BLDC drive system: a current sensor and
a position sensor. Since the amplitude of the dc link current is always equal to that
of the motor phase current in six-step current control, the dc link current is
measured instead of the phase current. Thus, a shunt resistor, which is in series with
the inverter, is usually used as the current sensor. Hall-effect position sensors
typically provide the position information needed to synchronize the stator
excitation with rotor position in order to produce constant torque. Hall-effect
sensors detect the change in magnetic field. The rotor magnets are used as triggers
for the Hall sensor. A signal conditioning circuit integrated within the Hall switch
provides a TTL-compatible pulse with sharp edges and high noise immunity for
connection to the controller.

For the six-step current control algorithm, rotor position needs to be detected at
only six discrete points in each electrical cycle. The controller tracks these six
points so that the proper switches are turned on or off for the correct intervals.
Three Hall-effect sensors, spaced 120 electrical degrees apart, are mounted on the
stator frame. The digital signals from the Hall sensors are then used to determine
the rotor position and switch gating signals for the inverter switches.
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Figure 9.5 The current path when the switch T, turns on and turns off.

9.4.4 Controller

The controller of BLDC drive systems reads the current and position feedback,
implements the speed or torque control algorithm, and finally generates the gate
signals.  Either analog controllers or digital signal processors serve well as
controllers. In this chapter, the LF2407 DSP will be used as the controller.

The connectivity of the LF2407 in this application is illustrated in Fig. 9.6.
Three capture units in the LF2407 are used to detect both the rising and falling
edges of Hall-effect signals. Hence, every 60 electrical degrees of motor rotation,
one capture unit interrupt is generated which ultimately causes a change in the
gating signals and the motor to move to the next position. One input channel of the
10-bit Analog-to-Digital Converter reads the dc link current. The output pins
PWMI1-PWMB6 are used to supply the gating signals to the inverter.
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Hl —— Capture-1
H2 —— Capture-2

H2 —— Capture-2

PWM-1 & PWM-6 »

Gate
Drive

TMS320F2407 ¢

Ide ——»{ ADCINO

Figure 9.6 The interface of LF2407.

9.5 Implementation of the BLDC Motor Control System Using the LF2407

Since the LF2407 is used as the controller, much of the control algorithm is
implemented in software. A block diagram of the BLDC motor control system is
displayed in Fig. 9.7. The dashed line separates the software from the hardware
components introduced in the previous section. It is necessary to choose hardware
components carefully in order to ensure high processing speed and precision in the
overall control system.

~120 Rectifi Voltage
v ectifier Source | 4‘ BLDC

AAAAAA
Firing
Circuit
AAAAAA

r——————fT———1 1-rrr{-———""""""""""""—— 'i
|

| PWM Hall_state |
: Generator :
| A |
| |
: Integrato :
| r :
: Ire ®f |
I 4‘_?_‘ / ‘i I
| + |
: - Speed PI :
| Current P Controller |
| Controller If |
| b :
|

L TMS320LF2407 |

Figure 9.7 The block diagram of BLDC motor control system.
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The overall control algorithm of the BLDC motor consists of nine modules:

1.

NN WN

9.
The flo

Initialization procedure
Detection of Hall effect signals
Speed control subroutine
Measurement of current

Speed profiling

Calculation of actual speed

PID regulation
PWM generation

DAC output

wchart of the overall control algorithm is illustrated in Fig. 9.8.

| Initialization procedure |

v

A

Read Hall

sensor signal

| Read DC link current / , ; Load Hall Effect signals

No
Execute
speed loop?

Read reference speed @,,,

v

Calculate the motor actual speed @ .

v

Speed PIregulator
Calculate the commended torque

v

Calculate the command DC link current i;c using (12.6)

<
<
A

Current PI regulator

v

Generate the PWM using A generator

v

Output the program variables to DACO~DAC3

End

Figure 9.8 BLDC algorithm flowchart.
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In the follwing sections, each block of the flow chart is dicussed in detail and
the corresponding assembly code is given.

9.5.1 Initialization Procedure

The initialization procedures include the initialization of registers, memory
allocations, and initializing constants and system variables. The TI website
(www.ti.com) provides the standard linker command file for memory allocation on
the LF2407. Readers can simply download it and then modify this file according to
their own needs.

The need for and the initialization of system variables vary according to the
application. The variables used in the BLDC control algorithm to generate the speed
profile are initialized below:

POINT_BO
SPLK #0, SPD_CNT
SPLK #0, VTS_SEC
SPLK #0, VTS_CNT
SPLK #0, STEP_1
SPLK #5, VTS_PRESCALE
SPLK

#PSTEP_1, PROFILE_STEP_PTR
SPLK #04D0H, SPD_SCALE
SPLK #0fffh, SPD DESIRED

For BLDC motor control, the register initializations include four parts: system
interrupt initialization, initialization of the ADC module, initialization of the Hall-
effect signal detected, and initialization of the Event Manager. The assembly code
for system interrupt initialization is given below:

;System Interrupt Init.
; Event Manager
POINT_EV
SPLK #0000001000000000b, EVIMRA
;Enable T1 Underflow Int (i.e. Period)
SPLK #0000000000000111b, EVIMRC
;Enable CAP1,2,3 ints
SPLK #0FFFFh, EVIFRA
;Clear all Group A interrupt flags
SPLK #0FFFFh, EVIFRB
;Clear all Group B interrupt flags
SPLK #0FFFFh, EVIFRC
;Clear all Group C interrupt flags
POINT_PGO
SPLK #0000000000001010b, IMR
;En Int 1vl 2,4 (T2 & CAP ISR)
SPLK #0FFFFh, IFR
;Clear any pending Ints

9.5.2  The Detection of Hall-Effect Signals

Each edge of the Hall-effect sensor output signal generates a capture interrupt.
The CPU responds to this interrupt and branches to the interrupt service subroutine
to perform the following tasks: detect the Hall sensor sequences, decode the
sequence, define the six states of the inverter, and record the time interval between
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the two nearest Hall-effect edges. The time between edges is used to calculate the
rotor speed. The assembly code for the interrupt service subroutine is given below:

CAP_ISR:

;Context save regs
MAR *, AR1 ;AR1 is stack pointer
MAR *+ ;skip one position
SST #1, *4 ;save ST1
SST #0, 4 ;save STO
SACH 4+ ;save acc high
SACL * ;save acc low

CALL HALL3_DRV
;Restore Context

END_ISR:
MAR *, AR1 ;make stack pointer active
LACL *— ;Restore Acc low
ADDH *— ;Restore Acc high
LST #0, *— ;load STO
LST #1, *— ;load ST1
CLRC INTM
RET

The following code determines which one of the six switching states is needed:

HALL3_DRV:

Map_States:

LDP #hall_vars
LACC hall_seq, 2 ;x4 for jump table
ADD #STATE_TABLE
BACC
STATE_TABLE: ;Map Hall connections and readings to

;BLDC_PWM_DRV's states based on it's
;state 0 alignment
SPLK #1, hall_state_next ;seg=0, BLDC_PWM_ DRV next state 1

B HALL_END
SPLK #3, hall_state_next ;seqg=1, BLDC_PWM_DRV next state 3
B HALL_END
SPLK #2, hall_state_next ;seqg=2, BLDC_PWM_DRV next state 2
B HALL_END
SPLK #5, hall_state_next ;seg=3, BLDC_PWM_DRV next state 5
B HALL_END
SPLK #0, hall_state_next ;seqg=4, BLDC_PWM_DRV next state 0
B HALL_END
SPLK #4, hall_state_next ;seqg=5, BLDC_PWM_DRV next state 4
HALL_END: RET

9.5.3  The Subroutine of Speed Control Algorithm

The Timer 1 underflow interrupt is used for the speed control subroutine. The
speed control subroutine performs the task of reading the current, loading the
inverter state obtained from capture interrupt, generating the commanded speed
profile, calculating the actual motor speed, regulating speed and current, and finally
generating the PWM signals to drive the inverter. The PWM frequency is
determined by the time interval of this interrupt; the duty cycle is recalculated in
every interrupt. The speed control algorithm is implemented by the following
assembly code:
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T1_PERIOD_ISR:
;Context save regs

MAR *, AR1 ;AR1 is stack pointer

MAR * 4 ;skip one position

SST #1, *+ ;save ST1

SST #0, 4 ;save STO

SACH *4 ;save acc high

SACL * ;save acc low

POINT_EV

SPLK #0FFFFh, EVIFRA ;Clear all Group A interrupt

flags (T1 ;ISR)

READ_HALL

LDP #hall_vars

Lacc hall state_next

POINT_BO

sacl cmtn_ptr_bd ; Input to BLDC_PWM_DRV
CUR_READ

CALL AD_CONV

POINT_BO

LACC CL_SPD_FLG

BCND CURRENT_CNTL, GT ; speed-loop?

; speed control

SPEED_CNTL: POINT_BO

CALL SPEED_PROFILE
CALL VTIMER_SEC
CALL SPEED_CAL
CALL D_PID_spd
LACC D_spd_out
SACL I_ref
;current control
CURRENT_CNTL
CALL D_PID_cur
LACC D_cur_out
SACL D_func

PWM_GEN CALL BLDC_PWM_DRV
DA_CONV CALL DAC_VIEW_ Q15T
;Restore Context
END_ISR:
MAR *, AR1 ;make stack pointer active
LACL *— ;Restore Acc low
ADDH *— ;Restore Acc high
LST #0, *— ;load STO
LST #1, *— ;load ST1
CLRC INTM
RET

954  Measurement of the Current (ADC Module)

For the BLDC motor control algorithm, the ADC converter reads in the voltage
across the shunt resistor on ADCINO. This voltage is proportional to the dc link
current because the resistor is in series with the flow of current. The code section
below reads the result register and obtains the ADC conversion result of the voltage
across the shunt resistor.

AD_CONV
LDP #ADCTRL1>>7
LACC ADC_RESULTO
SFR
AND #7FFFh

SACL Idc

AD_EXIT RET
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9.5.5 Profile of the Reference Speed

The reference speed profile is used to control the dynamic response and steady
state behavior of the motor. The speed profile is divided into different sections,
such as the acceleration interval, constant speed interval, and deceleration interval.
We can use the different intervals to make the rotor accelerate, run at constant
speed, or decelerate. One example of speed profile is shown in Fig. 9.8.

A

15t Cycle

|
Speed-1

Speed-2

‘| 2nd Cycle
> .

»
>

| |
|
Speed-1

| Speed-2
|

Figure 9.8

t

»
L

1
t5=Tp Tp+t2 Tp+t3 Tpttq time

Speed profile.

In the speed profile given in Fig. 9.8, the interval from time 0 to t; represents a
soft-start period where reference speed is slowly increased from zero to speed-1.
For the time interval between t; to t,, the speed reference is maintained constant at
its value, speed-1. During the time interval from t, to t;, the reference speed is
slowly reduced to speed-2. The reference speed is then kept constant at speed-2 for
the time interval from t; to t,. Finally, the speed is again increased to speed-1 over
the time interval t4 to ts. In our case, the sequence t, to ts is repeated continuously
unless disabled by another routine. A sample of the assembly code used for such a
speed profile is given below:

SPEED_PROFILE:

PSTEP_4 LACC #SPEED_4

AND
SACL
LACC
SUB
BCND
LACC
SUB
BCND
SPLK
SPLK
LACC
ADD
SACL
B
GO_STEP5

SPLK
SPLK
SPLK
LACC
SACL
B

SPR_END RET

#0fFFH
speed_ref
SPD_CNT
#03fFH
GO_STEPS5,GT
VTS_SEC
#TLENGTH_4
SPR_END, LT
#0,VTS_SEC
#0,VTS_CNT
SPD_CNT
#1
SPD_CNT
SPR_END
SPLK#0,VTS_SEC
#0,VTS_CNT
#01ffH, STEP_3
#0, SPD_CNT
#PSTEP_5
PROFILE_STEP_PTR
SPR_END
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9.5.6  The Calculation of the Actual Motor Speed

This module uses the value of the variable Timestamp, which represents the
time interval between the two edges of the Hall-effect signal generated by the
position interface module, to calculate the motor shaft speed. With a 30 MHz
system clock as in the case of LF2407, Timestamp is related to the motor speed by

Timestamp = 60 5 ©.7)
2xw,, x prescalar x33x10™~
speed cal = M =0.5906 o, 9.8)
Timestamp

where
O, = shaft speed in rpm.
prescalar = prescalar value for Timer-2 = 128
tepu = CPU period = 33 nsec
speed_cal = calculated speed in rpm

The speed calculation routine measures the time between two consecutive edge
transitions of the position signal and cannot distinguish between the directions of
rotation. A portion of the assembly code of the speed calculation routine is given

below:
SPEED_CAL:
LT RES ;RES=1/Timestamp
MPY SPD_SCALE
PAC
SACH speed_cal, 4
RET

9.5.7  PID (Proportional, Integral, and Derivative) Regulation

PID controllers are used for both speed and current regulation. Both types of
controllers have the same structure. The rectangular (trapezoidal) method of
integration is used and depends upon the value of the parameters K, K,, and Kj.
Limits are set to limit the output of PI controller. This routine implements the
following PI equation:

Umn)=Umn-2)+K; e(n)+K,y e(n—-1)+ K5 e(n—2) 9.9)
where
U(n) is the current output of the PI controller (n™ sample)

U(n —2) is the output of PI controller at (n-2)" sample
e(n) is the error at n™ sample

e(n—1) is the error at (n-1)" sample

e(n—2) is the error at (n-2)™ sample
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The constants Ky, K, , and K3 for trapezoidal approximation are

K, KT
K=K, +2—4%+—— 9.10
1 p T ( )

K2=KiT—4K—Td (9.11)

KT

K3 =2K;-K,+— (9.12)

and for rectangular approximation are
K
KI:Kp+Td+K,-T (9.13)
K, :KiT—2% (9.14)
K

K3:Td—Kp (9.15)

In all of the above equations K}, K, K;are defined as in
de
u(t) = K pe(t)+ K; ,[dHKa’E (9.16)

A portion of the assembly code implementing the PI controller is given below:

D_PID_spd:

LACC D_Un_H_O

SUB #MAX_POS_LIMIT

BCND D_PLUS_OK, LEQ ;If maxed out, saturate at max -ve
SPLK #MAX_POS_LIMIT,D_Un_H_0

SPLK #0,D_Un_L_0

B D_EXIT

D_PLUS_OK: LACC D_Un_H_O0 ;else keep current value
SUB #MAX_NEG_LIMIT
BCND D_NEG_OK, GEQ ;if maxed out, saturate at max +ve
SPLK #MAX_NEG_LIMIT,D_Un_H_O0 ;Saturation control
SPLK #0,D_Un_L_0O

D_NEG_OK:
RET

9.5.8 PWM Generation

The Compare Units have been used to generate the PWM signals. The PWM
output signal is high when the output of current PI regulation matches the value of
T1CNT and is set to low when the timer underflow occurs. The switch states are
controlled by the ACTR register. As discussed earlier, in order to minimize the
switching loss, the lower switches are always kept on and the upper switches are
chopped on/off to regulate the phase current. From the implementation point of
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view, in using the LF2407, it is required that the ACTR register be reset for each
interval. In other words, PWM1, PWM3, and PWMS5 which gate the upper switches
are set as active low/high and PWM2, PWM4, and PWM6 which trigger the lower
switches are set as force high. The sample of code below illustrates this
implementation.

BLDC_PWM_DRV

LACC #COMMUTATION_TBL
ADD cmtn_ptr_bd
TBLR GPRO
LACC GPRO

BACC
STATE_ANB ; Input current path, Phase A
POINT_EV ;Output current path, Phase B
SPLK #00C2H, ACTR ;Non fed phase, Phase C
B STATE_END

STATE_END
RET

9.5.9 DAC Module

The LF2407 evaluation board contains four channels DAC. In this application,
the DAC on the evaluation board is used to display various system variables to be
seen on an oscilloscope in real time. This feature is very useful during the
development stage for real time debugging and verification of the software. The
code below accepts the address pointers for four different system variables and then
automatically updates the DAC channels to reflect the change in these variables.

;Convert Q15 input value to an absolute Q0 output to DACO channel

POINT_BO

SPM 1

MAR *, ARG6

LAR AR6, DAC_IPTRO

LT *

MPY dac_hlf_rng ;Normalize to half range of DAC
PAC

ADDH dac_hlf_ rng ;offset by 1/2 DAC max value
SACH GPRO

ouT GPRO, PAO ;DACO o/p
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Chapter 10
CLARKE’S AND PARK’S TRANSFORMATIONS

10.1 Introduction

The performance of three-phase ac machines are described by their voltage
equations and inductances. It is well known that some machine inductances are
functions of rotor speed. The coefficients of the differential equations, which
describe the behavior of these machines, are time varying except when the rotor is
stalled. A change of variables is often used to reduce the complexity of these
differential equations. There are several different methods to transform variables.
In this chapter, the well-known Clarke and Park transformations are introduced,
modeled, and implemented on the LF2407 DSP. Using these transformations, many
properties of electric machines can be studied without complexities in the voltage
equations. These transformations make it possible for control algorithms to be
implemented on the DSP. By this approach, many of the basic concepts and
interpretations of this general transformation are concisely established.

10.2 Clarke’s Transformation

The transformation of stationary circuits to a stationary reference frame was
developed by E. Clarke [2]. The stationary two-phase variables of Clarke’s
transformation are denoted as o and 3. As shown in Fig. 10.1, a-axis and [-axis are
orthogonal.

B —axis

o —axis

C -axis

Figure 10.1 Clarke's transformation.

In order for the transformation to be invertible, a third variable, known as the
zero-sequence component, is added. The resulting transformation is

Upo)= Topolin] (10.1)
where

[faﬂO]: [fa I fo]T

and

Vael=lte 1 1.1

209
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where f represents voltage, current, flux linkages, or electric charge

and the transformation matrix, 7,4 , is given by

p o1
i3
2 3 3
T,30=—|0 — —— 10.2
ap0 =3 7 > (10.2)
rr 1
2 2 2
The inverse transformation is given by
-1
[fabc]: TaﬂO [faﬂo] (10.3)
where the inverse transformation matrix is presented by
1 \;)_ 1
1 1 3
T, =l-— — 1 10.4
a[BO 5 ) ( )
LB
L 2 2

10.3 Park’s Transformation

In the late 1920s, R.H. Park [1] introduced a new approach to electric machine
analysis. He formulated a change of variables which replaced variables such as
voltages, currents, and flux linkages associated with fictitious windings rotating
with the rotor. He referred the stator and rotor variables to a reference frame fixed
on the rotor. From the rotor point of view, all the variables can be observed as
constant values. Park’s transformation, a revolution in machine analysis, has the
unique property of eliminating all time varying inductances from the voltage
equations of three-phase ac machines due to the rotor spinning.

Although changes of variables are used in the analysis of ac machines to
eliminate time-varying inductances, changes of variables are also employed in the
analysis of various static and constant parameters in power system components.
Fortunately, all known real transformations for these components are also contained
in the transformation to the arbitrary reference frame. The same general
transformation used for the stator variables of ac machines serves the rotor variables
of induction machines. Park’s transformation is a well-known three-phase to two-
phase transformation in synchronous machine analysis. Park’s transformation is
presented in Fig. 10.2.
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B -axis
® .
q -axis
d » A -axis
C -axis d -axis
Figure 10.2 Park's transformation.

The transformation equation is of the form

[fqd()s ] = quo(e)[fabcs] (10.5)

where

[fquS]:[qu Jas fOs]r

and ([ ]=lf S fi]

and the dq0 transformation matrix is defined as

cos(f) cos(6— 277[) cos(6 + 277[)

T,405(6) =§ sin(9) sin(H—zT”) sin(c9+27”) (10.6)
L 1 1
2 2 2

0 is the angular displacement of Park’s reference frame and can be calculated by

0= j;w(g)d; +0(0) (10.7)

where C is the dummy variable of integration. It can be shown that for the inverse
transformation we can write

-1
[fabcs]:Tqa'O(e) '[fqus] (10.8)
where the inverse of Park’s transformation matrix is given by
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cos(d) sin(8) 1
quo(e)*l = cos(&—zTﬂ) sin(H—zTﬂ) 1 (10.9)

cos(@ + 277[) sin(@ + 2?”) 1

In the previous equations, the angular displacement 6 must be continuous, but
the angular velocity associated with the change of variables is unspecified. The
frame of reference may rotate at any constant, varying angular velocity, or it may
remain stationary. The angular velocity of the transformation can be chosen
arbitrarily to best fit the system equation solution or to satisfy the system
constraints. The change of variables may be applied to variables of any waveform
and time sequence; however, we will find that the transformation given above is
particularly appropriate for an a-b-c sequence.

10.4 Transformations Between Reference Frames

In order to reduce the complexity of some derivations, it is necessary to
transform the variables from one reference frame to another one. To establish this
transformation between any two reference frames, we can denote y as the new
reference frame and x as the old reference frame. Both new and old reference
frames are shown in Fig. 10.3.

q’ -axis )

dY -axis
d* -axis

Figure 10.3 Transformation between two reference frames.

It is assumed that the reference frame x is rotating with angular velocity w, and
the reference frame y is spinning with the angular velocity w,. 0y and 0, are angular
displacements of reference frames x and y, respectively. In this regard, we can
rewrite the transformation equation as

lfq}iJOSJ:T;d—()).)S‘}'[fquS] (10.10)
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But we have

S _

_fqdos_ = T;dos'[fabcs_ (10.11)
If we substitute (10.11) in (10.10) we get

C 1 _

|/ gaos | =T ga0n - Taaos” _f abes} (10.12)
In another way, we can find out that

[y oy ]

|/ qdOs | _quOS |:fabcs_ (10.13)

From (10.12) we obtain
-1
Tga0s = Traos” Tgaos (10.14)

Then, the desired transformation can be expressed by the following matrix:

cos(ey -6y) - sin(ey -0y 0
To0s =| sin(@,=6y)  cos(8,-6y) 0 (10.15)
1 1 1

10.5 Field Oriented Control (FOC) Transformations

In the case of FOC of electric machines, control methods are performed in a
two-phase reference frame fixed to the rotor (¢'-d") or fixed to the excitation
reference frame (¢°-d°). We want to transform all the variables from the three-phase
a-b-c system to the two-phase stationary reference frame and then retransform these
variables from the stationary reference frame to a rotary reference frame with
arbitrary angular velocity of . These transformations are usually cascaded. The
block diagram of this procedure is shown in Fig. 10.4.

| |
I‘ Machine N
| |
o) .
if a-b-c Jq 7 —d° 1y . i
| |
J h Machine !
[N fs e Model in :
Lf Jd fa |
1/ > g¢-d° ||
s
| r e e |
| |
| |
| I
| [ { |
| |
| cosf, sind, :
Figure 10.4 Machine side transformation in field oriented control.
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In this figure, f denotes the currents or voltages and ¢°-d° represents the
arbitrary rotating reference frame with angular velocity . and ¢'-d" represents the
stationary reference frame. In the vector control method, after applying field-
oriented control it is necessary to transform variables to stationary a-b-c system.
This can be achieved by taking the inverse transformation of variables from the
arbitrary rotating reference frame to the stationary reference frame and then to the a-
b-c system. The block diagram of this procedure is shown in Fig. 10.5. In this
block diagram, * is a representation of commanded or desired values of variables.

| |
P Control !
h g
| |
: fg* f s* s f* :
e d e ) - _ g8 f.
: q q q »| 4 d : i
I Sy
LS Jd S
[ s > |
| q —d* a—b-( |
I I
| |
I I
| I
| |
| cosf, sind, |
Figure 10.5 Variable transformation in the field oriented control.

10.6 Implementing Clarke’s and Park’s Transformations on the LF240X
10.6.1 Implementing Clarke’s Transformation

It is desired to transfer the three-phase stationary parameters f,, fj,, and f,

from the a-b-c system to the two-phase stationary reference frame. It is assumed that
the system is balanced and we have

Ja+t o+ /=0 (10.16)
We can rewrite (10.1) as follows:
2 1 1
A S 10.17
fa 3 fa 3 fb 3 fc ( )
1
=—(fp — 10.18
Substituting f,. from (10.16) into (10.17) and (10.18) results in
Ja=Ta (10.19)

Copyright © 2004 CRC Press, LLC



Clarke’s and Park’s Transformations 215

15 =%(fa +21y) (10.20)

10.6.1.1 Inputs and Outputs of Clarke’s Transformation Block

The inputs and outputs of Clarke’s transformation are shown in Fig. 10.6. As it
is shown in this figure, f, and f, are inputs and f, and fjz are outputs of this

transformation.
b Ja
—_— —
Q15 Format CLARKE Q15 Format
£ TRANSFORMATION f
—_— >
Q15 Format Q15 Format

Figure 10.6 Clarke transformation.

To enjoy better resolution of the variables in fixed point DSP, we transfer all
variables to the Q15-based format. With this consideration, the maximum value of
inputs and outputs can be (2'°-1) or in hexadecimal, the format shall be 7FFF,. In
this base, the variables can vary in the range 8000,-7FFF;. This transformation
converts balanced three-phase quantities into balanced two-phase quadrature
quantities as shown in Fig. 10.7.

3-phase Cuadrature: 2-phase
7FFFh 7FFFh
la Id
_ — —
0 b | CLARKE |
8000R 8000h
Figure 10.7 Quantities in Clarke's transformation. (Courtesy of Texas
Instruments)

As we previously noted, our calculations are based on the Q15 format . So all
the coeficients are present in this representation. Then 1/\3 is represented by

LDP #sqgrt3inv ;sqrt3inv=(1/sqrt(3))
;=0.577350269
SPLK #018830, sgrt3inv ;1/sqrt(3) (Q15)
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Clarke’s transformation is implemented as follows:

SETC SXM ;Sign extension mode on
LDP #clark_a ;clark alfa = clark a
LACC clark_a ;ACC = clark_a
SACL clark_alfa ;jclark d = clark_a
;clark beta=(2*clark b+clark a)/
;sqrt (3)
SFR ;ACC = clark a/2
ADD clark b ;ACC = clark a/2 + clark b
SACL clk_temp ;clk temp = clark a/2 + clark b
LT clk temp ;TREG = clark a/2 + clark b
MPY sgrt3inv ;PREG= (clark a/2+clark b)*
i (1/sqrt(3))
PAC ;ACC=(clark a/2+clark b)*
7 (1/sqrt(3))
SFL ;ACC=(clark at+clark b*2)*
7 (1/sqrt(3))
SACH clark beta ;clark beta=(clark atclark b*2
7 (1/sqrt(3))
SPM 0 ;SPM reset
RET

10.6.2 Inverse Clarke’s Transformation

From (10.3), the inverse Clarke functions for a balanced system can be
obtained as

f; :.f&

fb:w (10.21)
_f, =3

1= S : W

This transformation converts balanced two-phase quadrature quantities into
balanced three-phase quantities. The block diagram of the inverse Clarke
transformation is shown in Fig. 10.8.

- >
> -
Figure 10.8 Inverse Clark transformation block.

In this block diagram, f,, and fp are inputs and f,, f;,and f. are outputs.

Inputs and outputs are represented in Q15 format. Variation of quantities in the
inverse Clark transformation is shown in Fig. 10.9.
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Cuadrature; 2-phase 3-phase
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TFFFh TFFFh
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—» b
0 g | -CLARKE f— ©
—p] I
s —
:
T .
&000oh 2000h
Figure 10.9 Quantities in inverse Clarke's transformation. (Courtesy of

Texas Instruments)

Implementation of the inverse Clarke transformation via assembly code is as
follows

I CLARKE INIT:

LDP #half sqrt3 ;Variables data page
SPLK #28377,half sqrt3 ;Set constant sqrt(3)*0.5 in Q15
; format
RET
I_CLARKE:
LDP #f clark alpha ;Variables data page
SPM 1 ;SPM set for Q15 multiplication
SETC SXM ;Sign extension mode on
LACC f clark alpha ;ACC = f alpha
SACL f clark_a ;f a = f alpha
LT f clark beta ;TREG = f clark beta
MPY half sqgrt3 ;PREG=f clark beta * half sqrt3
PAC ;ACC= f clark beta * half sqrt3
SUB f clark alpha, 15 ;ACC=f beta*half sqrt3-f alpha/2
SACH f clark b
PAC ;ACC high = f beta*half sqgrt3
NEG ;ACC high = - f beta*half sqrt3
SUB f clark alpha, 15 ;ACC high=-f beta*half sqrt3-
;£ alpha/2
SACH f clark c ;f ¢ = - f beta * half sqrt3 -
;£ alpha/2
SPM 0 ;SPM reset
CLRC SXM ;Sign extension mode off
RET

10.6.3 Calculation of Sine/Cosine with Fast Table Direct Look-Up and Linear
Interpolation

To implement the Park and the inverse Park transforms, the sine and cosine
functions need to be implemented. This method realizes the sine/cosine functions
with a look-up table of 256 values for 360° of sine and cosine functions. The
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method includes linear interpolation with a fixed step table to provide a minimum
harmonic distortion. This table is loaded in program memory. The sine value is
presented in Q15 format with the range of -1<value<l. The first few rows of the
look-up sine table are presented as follows:

; SINVALUE ; Index Angle Sin (Angle)
SINTAB 360

.word 0 ; 0 0 0.0000

.word 804 ; 1 1.41 0.0245

.word 1608 ; 2 2.81 0.0491

.word 2410 ; 3 4.22 0.0736

.word 3212 ; 4 5.63 0.0980

The following assembly code is written to read values of sine from the sine
Table in Q15 format:

LACC theta p, 9 ;Input angle in Q15 format and
;left shifted by 15

SACH t ptr ;Save high ACC to t ptr (table
;pointer)

LACC #SINTAB 360

ADD t _ptr

TBLR sin_theta ;sin_theta = Sin(theta p) in Q15

Note that 0 < theta p < 7FFFh (i.e., equivalent to 0 < theta p < 360 deg).
The TBLR instruction transfers a word from a location in program memory to a
data-memory location specified by the instruction. The program-memory address is
defined by the low-order 16 bits of the accumulator. For this operation, a read from
program memory is performed, followed by a write to data memory.

To calculate the cosine values from the sine Table in Q15 format, we write the
following code:

LACC theta p

ADD #8192 ;add 90 deg, cos (A)=sin (A+90°%)
AND #07FFFh ;Force positive wrap-around
SACL GPRO_park ;here 90 deg = 7FFFh/4

LACC GPRO_park, 9
SACH t_ptr
LACC #SINTAB_360

10.6.4 Implementation of Park’s Transformation on LF2407

As discussed in Section 10.5, with field-oriented control of motors, it is
necessary to transform variables, i.e., currents and voltages, from a-b-c system to
two-phase stationary reference frame, ¢’-d, and from two-phase stationary
reference frame ¢’-d to arbitrary rotating reference frame with angular velocity of
o (g-d reference frame). The first transformation is dual to Clarke’s transformation
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but the ¢° axis is in the direction of a—axis, and d" axis is in negative direction of
B —axis. These two transformations are explained in the following sections.

10.6.4.1 Transformation from 3-phase to 2-phase Stationary Reference
Frame (a—b—c) = (¢° —d*)

This transformation transfers the three-phase stationary parameters, f,, f5, and f.
from an a-b-c system to a two-phase orthogonal stationary reference frame. If we
substitute 6=0 in (10.6) and assuming that the system is balanced, we get:

qu =1, (10.23)
1
fi=—7=QCf+ 1) (10.24)
d \/§ b a
o s >
Q15 Format G-t Q15 Format
—
Ty Q15 Format TRANSFORMATION
f —— —
¢ Q15 Format Q15 Format
Figure 10.11 Two-phase stationary transformation.

Both input and output are represented in Q15 format with a block diagram of
the transformation being shown in Fig. 10.11. The developed code is similar to
what was mentioned in Section 10.6.1.1.

10.6.4.2 Transformation from the Stationary Reference Frame to the
Arbitrary Rotary Reference Frame (¢° —d*) — (¢—d)

This transformation converts vectors in a balanced two-phase orthogonal

stationary system into an orthogonal rotary reference frame. The inputs are qu ,

f., and 6, and the outputs are Jq and f;. This is the transformation between the

stationary reference frame and the arbitrary reference frame rotating with the
angular velocity of ®. If we substitute 6, =0 and 6, =6 we obtain:

fy=cosb.f; —sinb- f;
fa =sinb.f; +cos- f;

where 0 is the angular displacement.

(10.25)
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In this transformation, it is necessary to calculate sin@ and cosé, where the
method to calculate them was presented in a previous section. In Fig. 10.12, the
input and output of the Park transformation block has been shown. All the input and
outputs are in the Q15 format and in the range of 8000,-7FFF), .

A f
— ™ QIS5 q
s Q5 p——»
Ta Qls Park’s
Transformation fd
15———»
Figure 10.12 Park transformation block.

The following code is written to implement Park’s transformation:

SPM 1 ;SPM set for Q15 multiplication

ZAC ;Reset accumulator

LT f g s ;TREG = £ g_s

MPY sin_theta ;PREG = £ g s * sin(theta)

LTA fd JACC = £ g s * sin(theta) and
;TREG =f_g_s

MPY cos_theta ;PREG = £ d s* cos_ teta

MPYA sin_theta ;ACC=f g s*sin teta+f d s*
;cos_teta andPREG=f g s*sin_teta

SACH park D ;£ d=f gs * cos teta + £ d s*
;sin(theta)

LACC #0 ;Clear ACC

LT f ds ;TREG = £ d_s

MPYS cos_theta ;ACC=- f d s* *sin(theta) and
;PREG = £ g s * cos(theta)

APAC ;ACC=- f d s*sin(theta) +f g s*

;cos (theta)

SACH f q ;fqg = -f d s*sin(theta) +f g s*
;cos (theta)

SPM 0 ;SPM reset

RET

10.6.5 Transformation of the Arbitrary Rotating Reference Frame to the
Stationary Reference Frame (¢ —d) — (¢° —d*)

This transformation projects vectors in an orthogonal rotating reference frame
into a two-phase orthogonal stationary frame. From (10.15) we get:

fq =cos@-f, +sinb- f,

fd =—sin@- f, +cosf-dy
In this transformation, @ is the angular displacement. To transform variables to

Park’s reference frame, it is necessary to calculate sind and cosé. Use the method
presented in the previous section. In Fig. 10.13, inputs and outputs of the inverse

(10.26)
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Park transformation block are shown. The inputs are f;, fq, and @, and the

outputs are f, and fz. All the inputs and outputs are in the Q15 format and in the

range of 8000,-7FFF,,.

f, ———»{QI5
Ji——*QI5
g——— | QI5

Figure 10.13

Inverse Park’s
Transformation

QIs|———»/,

QA5 |— w5

Inverse Park’s transformation block.

The following code is written to implement this transformation:

SPM 1
ZAC
LT
MPY
LTA
MPY
MPYA

SACH
LACC
LT

MPYS

APAC
SACH
SPM

RET

fq
cos_theta
fd

sin_theta
sin_theta

f gs

#0

f d
cos_theta

;SPM set for Q15 multiplication
;Reset accumulator

;TREG = fq

;PREG = fg * cos(theta)
;ACC=fg*cos (theta) and TREG =fd
;PREG = fd * sin(theta)
;ACC=fg*cos (theta) +fd*sin (theta)
;and PREG=fd*sin (theta)
;fd=fg*cos (theta)+fd*sin(theta)
;Clear ACC

;TREG = fd

;ACC = -fd*sin theta and

;PREG = fd*cos_theta

;SPM reset

10.6.6 The 2-Phase to 3-Phase Transformation (¢° —d*) = (a—b-c¢)

This transformation transforms the variables from the stationary two-phase ¢'-
d’ frame to the stationary a-b-c system. This system is also dual to the inverse
Clarke transformation where the ¢’-axis is in the direction of the a axis and the d’-

axis is in the negative direction of B—axis.

If we substitute 6=0 in (10.9) and assume a balanced system we get:

Ja=14
N e EYr
(.
_ s__\ﬁg s
]; _ jb . fb
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The implemented code is similar to the inverse Clarke transformation which
will not be repeated in here.

10.7 Conclusion

With FOC of synchronous and induction machines, it is desirable to reduce the
complexity of the electric machine voltage equations. The transformation of
machine variables to an orthogonal reference frame is beneficial for this purpose.
Park’s and Clarke’s transformations, two revolutions in the field of electrical
machines, were studied in depth in this chapter. These transformations and their
inverses were implemented on the fixed point LF2407 DSP.

References

1. R. H. Park, “Two-reaction theory of synchronous machines — Generalized
method of analysis- Part 1,” AIEE Trans., Vol. 48, July 1929, pp.716-727

2. E. Clarke, Circuit Analysis of AC Power Systems, Vol. I- Symmetrical and
Related Components, John Wiley and Sons, New York, 1943.

3. P.Krause, O. Wasynczuk, S. D. Sudhoff, Analysis of Electric Machinery, IEEE
Press, New York, 1995.

4. C. Ong, Dynamic Simulation of Electric Machinery, Prentice Hall, Englewood
Cliffs, NJ, 1998.

5. H.C Stanley, “Analysis of the Induction Motor,” AIEE Trans., Vol. 57, 1938,
pp. 751-755.

Copyright © 2004 CRC Press, LLC



Chapter 11

SPACE VECTOR PULSE WIDTH MODULATION

11.1 Introduction

In this chapter, the concept of space vector pulse width modulation (SVPWM)
as applied to an induction motor will be introduced. An explanation of the DSP
assembly code is needed to implement the control algorithm. Several key
functional parts of the DSP code will be discussed.

Of all motors, the squirrel cage induction motor is the most widely used motor
in the industry. This leading position results mainly from certain excellent features
of the squirrel cage motor such as:

= Uncomplicated, rugged construction; this means low initial cost and high
reliability.

= Good efficiency coupled with low maintenance costs, resulting in low
overall operating costs.

Squirrel cage motors, like all induction machines, are asynchronous machines
with speed depending upon applied frequency, pole number, and load torque. In
order to use the poly-phase ac motor as an adjustable speed device, it is necessary to
control and adjust the frequency of the three-phase voltages applied to its terminals.
The operating speed of the motor is determined by the following relationship

120- f
7 (1-s) (11.1)
where N is the shaft speed in rpm, fis the supplied frequency in Hz, P is the number

of poles, and s is the operating slip.

A switching power converter can be used to control both the supplied voltage
and frequency. Consequently, higher efficiency and performance can be achieved.
The most common control principle for induction motors is the constant volts per
hertz (V/Hz) principle, which will be explained in the next section.

N =

11.2  Principle of Constant V/Hz Control for Induction Motors

For us to understand the V/Hz control, we will first assume that the voltage
applied to a three-phase ac induction motor is sinusoidal, and neglect the voltage
drop across the stator resistor. At steady state the machine terminal voltage is given
by

V~ joh (11.2)
or

223
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where ¥ and A are the phasors of stator voltage and stator flux, and /" and A are
their respective magnitudes.
v 17

Av—=— 11.3
@ 2rf (11.3)

It follows that if the ratio V/f remains constant with the change of f, then A also
remains constant and the torque is independent of the supply frequency.

In actual implementation, the ratio between the magnitude and frequency of the
stator voltage is usually based on the rated values of these variables, also known as
motor ratings. However, when the frequency and voltage are low, the voltage drop
across the stator resistance cannot be neglected. At frequencies higher than the
rated value, to avoid insulation break, the constant V/f principle has to be violated.
The realistic control limits that are placed on the applied voltage and frequency are
illustrated in Fig. 11.1.

A
Voltage
V rated
T
Jmin Srated Frequency
Figure 11.1 V/f limits on frequency and voltage.

11.3 Space Vector PWM Technique

Space Vector PWM (SVPWM) refers to a special technique of determining the
switching sequence of the upper three power transistors of a three-phase voltage
source inverter (VSI). It has been shown to generate less harmonic distortion in the
output voltages or current in the windings of the motor load. SVPWM provides
more efficient use of the dc bus voltage, in comparison with the direct sinusoidal
modulation technique.

The structure of a typical three-phase voltage source inverter is shown in Fig.
11.2. The voltages, V, , Vi, and V. are the output voltages applied to the windings
of a motor. Q1 through Q6 are the six power transistors which are controlled by a,
a’, b, b’, c and ¢’ gating signals and shape the output voltages. When an upper
transistor is switched on, i.e., when a, b, and c are 1, the corresponding lower
transistor is switched off, i.e., the corresponding a’, b’ or ¢’ is 0. The on and off
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states of the upper transistors Q1, Q3, and QS5, or the states of a, b, and ¢ are
sufficient to evaluate the output voltage.

Ve A~
&L Re | Q) he| ADDa
Va 2 Ve
IM
Figure 11.2 Three-phase power inverter supplying an induction motor.

11.3.1 Switching Patterns and the Basic Space Vectors

There are eight possible combinations of on and off states for the three upper
power transistors. The on and off states of the lower power transistors are opposite
to the upper ones, so they are determined once the states of the upper transistors are
known. The eight combinations are the derived output line-to-line and phase

voltages in terms of DC supply voltage, V., according to (11.4) and (11.5), which
are shown in Table 11.1.

The relationship between the switching variable vector [a, b, c]T and the line-

to-line voltage vector [Vab, Vie Vca] Tis given by the following:

Vo 1 -1 0a
Vie |=Vael 0 1 =1]|b (11.4)
V., -1 0 1|ec
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In addition, phase (line-to-neutral) output voltage vector [Va, Vs, VC] T'is given

by (11.5)
R
Vo |=3Va| -1 2 -1|[b (11.5)
v, -1 -1 2|¢

c

Table 11.1 Switching patterns and output voltages of a three-phase power inverter

a b ¢ Va Vp Ve Vab Ve Vea
0 0 0 0 0 0 0 0
1 0 0 2/3 -3 | -3 0 -1
1 1 0 1/3 1/3 -2/3 0 1 -1
0 1 0 -1/3 2/3 -1/3 -1 1 0
0 1 1 —2/3 1/3 1/3 -1 0 1
0o o 1 —1/3 | -1/3 2/3 0 -1 1
1 0 1 1/3 ~2/3 1/3 1 -1 0
1 1 1 0 0 0 0 0 0

11.3.2  Expression of the Stator Voltages in the (d-q) Frame

Assuming g and d are the horizontal and vertical axes of the stator coordinate
frame, the d-g transformation given in (11.6) can transform a three-phase voltage
vector into a vector in the d-q coordinate frame. This vector represents the spatial
vector sum of the three-phase voltage. The phase voltages corresponding to the
eight combinations of switching patterns can be mapped into the d-g plane by the
same d-q transformation as shown in Table 11.2. This mapping results in 6 non-zero
vectors and 2 zero vectors. The non-zero vectors form the axes of a hexagonal as
shown in Fig. 11.3. The angle between any two adjacent non-zero vectors is 60°.
The 2 zero vectors are positioned at the origin and apply zero voltage to a motor.
The group of the 8 vectors are referred to as the basic space vectors and are denoted
by Vy , through V5. The d-q transformation can be applied to the reference a, b, and

¢ voltages to obtain the reference V,,, in the d-g plane as shown in Fig. 11.3.

AT 1
11== 4 11.6
{VJ3 NEIE R (1o
0 = -y,
3 2 |Lre
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Table 11.2 The eight switching states and corresponding d-q voltages.

a b c V, V4 Vg

0 0 0 0 0 Vo=0

0 0 1 7 Ve V=2V,
0 1 0 —%Vdc _%Vdc V) = %Vdc
0 1 1 2V 0 V3 =2V
1 0 0 Ve 0 Va=3Vae
1 0 1 e Ve Vs =3V
1 1 0 Ve - % Vae Ve =%V
1 1 1 0 0 V=0

(—1/3,—1/«5)

, (010) Ve (110)

.(1/3,—1/«5)

1

¥, (000)
v, (111)

—(72/3,0){4—173(011) v, (100)—‘/'):—(2/3,0)—» q — axis

/s

v,
¥, (001) 7, (101) ’
(-1/3,1/43) (1/3.1/43)
Y
d — axis
Figure 11.3 Space vector diagram.

11.3.3  Approximation of Output with Basic Space Vectors

The objective of the space vector PWM technique is to approximate the
reference voltage vector V,,, by a combination of the eight switching patterns.

One simple means of approximation is to require the average output voltage of the
inverter (in small period 7) to be the same as the average of V,,; in the same
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period. This is shown in (11.7) for the output voltage in the Sector 0, where 7, and

T are the respective durations in time for which switching patterns are ;4 and V.

nT out

%J‘(nﬂ)TV dt:%(T4V4 +T5Vs) n=0,1,2,---,where Ty+T¢<T (11.7)
Assuming the PWM period, T), is small and the change of V,,; is relatively

wm >

slow, from (11.7), we obtain

(n+D)Tppy
j Vout dt = TPWMVOMZ = (T4V4 +T6V6) n= 0,1, 2,"', where T4 +T6 < TPWM

nTpyy
(11.8)
Equation (11.8) shows that for every PWM period, the desired reference
voltage V,,, can be approximated by having the power inverter in a switching
pattern of V4 and Vg for T, and Ty periods of time, respectively. Since the sum of

Ty and Tgis less than or equal to T, the inverter needs to have a 0 ((000) V}, or

wm >

(111) V7)) pattern for the rest of the period. Therefore, (11.8) will then become

TPWMVout :T4V4 +T6V6 +T0(VO or V7) (119)
where

T]+T2+T0=prm.

The reference voltage vector V,,,

is obtained by mapping the desired three-

phase output voltages to the d-q plane through the d-q transform. When the desired
output voltages are in the form of three sinusoidal voltages with a 120° phase shift
between them, V,,,, becomes a vector rotating around the origin of the d-g plane
with a frequency corresponding to that of the desired three-phase voltages. The
envelope of the hexagon formed by the basic space vectors, as shown in Fig. 11.3, is

the locus of maximum V,,, . Therefore, the magnitude of V,,, must be limited to

the shortest radius of this envelope because V,,;

is a rotating vector. This gives a
maximum magnitude of V. / V2 for Vous - The maximum root mean square (rms)
values of the fundamental line-to-line and line-to-neutral output voltages are
Ve / V2 and Ve / V6 . Notice that these values are 2/ 3 times higher than what a

standard sinusoidal PWM technique can generate.

An example of a symmetric space vector PWM waveform is shown in Fig.
11.4. It is assumed that the reference voltage V,,, lies in Sector 0, which is

bordered by vectors V4 and V.
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- T >
CMPR3 / \
CMPR2
CMPRI1
PWM1
PWM?2
PWM3
T,/4l T,/2 iT/2) T,/2 T/20 1,02 |T,/4
VO V4 V6 V111 V6 V4 Vo
Figure 11.4 A symmetric space vector PWM switching pattern.

11.3.4 Calculating the Time Periods of the Switching States

The output voltage V,,; can be in any one of Sector 0 to Sector 5. Equation

(11.10) shows that for every PWM period, V,,,is approximated by switching

between the two non-zero basic vectors that border the sector of the current output
voltageV,,; . For instance, if V,, is in Sector 1, it can be approximated by

switching the inverter between states V, and Vg for periods of time 7, and Ty,
respectively. Because the sum of 7, and T should be less than or equal t07,,,,, ,

the inverter should remain in 7jy or 75 for the rest of the period.

From (11.10), we can calculate the time durations 7 and 7.

F -1
T, V, V V
T4 _ TPWM[ 4q 6q:| |:V0utq:| (11.10)
1 76 | Vaa  Vea outd
or
(7, ] Vout
= TPWMM0|: . q}
_TG_ Voutd
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where M is the normalized decomposition matrix for sector 0. By substituting the

values of Vy,, Vg, Ve, and Ve, , we obtain

Ty _ 2/3 1/3 - Voulq
{T6j|—TPWM|: 0 _1/\/5:| |:Voutd (11.11)

The matrix inverse can be calculated before program execution for each sector
and then obtained via a look-up table during execution. Doing so ensures smooth
operation because the calculation load on the DSP is reduced. This approach is

useful when V,,, is given in the form of the vector [Vomq Vomd]T. Table 11.3

shows the sector numbers and the associated normalized decomposition matrix.

Table 11.3 Normalized decomposition matrix vs. sector.
Sector Durations Decomposition Matrix
Calculated
0 T4 andT6 MOI \/5/2 1/2
0 -1
1 T, and Ty M, = =32 172
B3 -2
2 Ty and T M o 1
an =
2 3 27133 12
3 T, and T: M 0 !
an =
1 3 271 _ 3~

4 Ty and Ts My= t/?/é 2 5 j

5 Ts and T, M- =
5 4 SI:O 1

~\3/2 —1/2}

11.3.5 Finding the Sector Number

It is necessary to know in which sector the output voltage is located to
determine the switching time periods and switching sequence. The following
algorithm can be used if the reference output voltage is in the a-b-¢ plane. If the
output voltage is given in the d-¢g plane, we must transform the vector to the a-b-c
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plane before using the algorithm. In order to perform the transformation, first
calculate the values of A, B, and C by using the following equations:

A =sig(ref) —ref>)
B =sig(ref, —ref3) (11.12)

C =sig(ref5 —ref})
where sig is the sign function, which is defined as

sig(x)=1 x>0
undef x=0
-1 x<0

and ref|, ref,, and ref; are the output a, b, and c voltages. Then, find the value of
N from the following relationship

N =|4+2B+4(]| (11.13)
Finally, we refer to Table 11.4 to map N to the sector of V,; .

Table 11.4 N vs. sector

(V)]
(@)

N 1 2 3 4

Sector 1 5 0 3 2 4

11.3.6 SVPWM Switching Pattern

The order of the non-zero vectors and the zero vectors in each PWM period
must be determined. Different switching orders result in different waveform
patterns. Figure 11.5 shows the waveform produced for each sector of a symmetric
switching scheme. Each waveform and sector has the following properties:

e Each PWM channel switches twice per PWM period except when the duty
cycle is 0 or 100%.

e There is a fixed switching order among the three PWM channels for each
sector.

e Every PWM period starts and ends with V.

e The amount of Vg, inserted is the same as that of }j;;in each PWM

period.
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T,/A{ T/2 ({L/20 T,/2 iL/2iT/2 iT, T,/4{ /2 iL/2} /2 {L,/2{T,/2 {L,/
a
b
C
Vo v Ve M Ve vV, v 4 i iV Vin Vs i W
Vut in Sector 0 Vot in Sector 1
T,/A4{ T/2 {L,/20 T,/2 (L/2{L/2 iT,, iT,/4iT/2 iL,/2i T,/2 {L/2iT/2 {T,
a
b
C
Vo Vv, V3 M 8 V, i b Vo 14 vy Mu 8 Vi 4
Vout in Sector 2 Vou In Sector 3
T,/4{ T/2 in/2{ T,/2 iL,/2{ /2 iT,/ T,/4i /2 iL/2¢ T,)2 {L/2{T,/2 iT,/
a
b
C
Yo ¢ Vs Min Vs " Vi Yo Vy Vs Vin Vs v, Vo

Figure 11.5

Vout in Sector 4

11.4 DSP Implementation

Vou 10 Sector 5

A symmetric space vector PWM switching pattern.

In this section, the space vector switching scheme discussed previously is
implemented on a LF2407 DSP processor. The DSP-based algorithm is interrupt
driven, meaning that the functionality of the code depends on a hardware interrupt,
in this case the Timer 1 underflow interrupt. Figure 11.6 is a flowchart depicting
the algorithm implemented on the LF2407 DSP processor.
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C PWM ISR )
¥

C=

Integrate speed to get
* phase THETA of U_ .
System configuration l
‘ Determine quadrant
of U, and perform
Initialize peripherals: quarter mapping
11O pins
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PWM

Obtain SIN(THETA)
and COS(THETA)

v !

Int control

Initialize variables Calculate d-q
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‘ U-Jut
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Enable GP Timer U,
Calculate
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Background tasks: (as comp values)
Update set F l
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Update display Determine toggling

* sequence
Load compare
Reset watchdog registers

Enable interrupt
Return

Figure 11.6 Space vector PWM algorithm flowchart.

The major features of this DSP implementation are:

e 32-Bit integration to obtain the phase of the reference voltage vector
e  Quarter mapping to calculate sine and cosine functions
e  Sector-based look-up table for the decomposition matrix
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e Sector-based look-up table for the channel toggling order or Action
Control Register reload pattern

11.4.1 Algorithm Subroutines

As shown in Fig. 11.6, while the DSP algorithm waits for an interrupt to occur,
the DSP will continue to execute the code in the main_loop routine until a Timer 1
underflow interrupt is generated by the event manager. The task of main_loop is to
first obtain the magnitude of reference voltage vector Vout based on the constant
V/Hz profile. After the reference voltage vector is determined, the watchdog timer
is reset and the DSP is instructed to branch back to the beginning of main_loop,
repeating the above process, provided that an interrupt has not occurred yet. The
main_loop algorithm can be seen below.

; Start of background loop

main _loop LDP #4
SPLK #debug_data,set f ; Replace with debug data

f2omega LT set f ; set f -> omega: DO
MPY f omega ; DO*D10=D(10+1)
PAC ; product -> ACC: D11
SACH omega,l ; > set angular speed: D10
lacc omega
sub #min_omega ; compare W with its lower limit
BGZ winlimit ; continue if within limit
splk #min_omega ,omega ; saturate if not winlimit

; Note the following implies constant v/f

omega2v LT omega ; set angular speed -> T: D10
MPY omega_v ; D10*¥D-9=D(1+1)
PAC ; product -> ACC: D2
SACH set v,1 ; -> mag of ref voltage and -> D1
lacc set_ v
sub #max_v_ ; compare Uout w/ its upper limit
BLEZ uinuplim ; continue if within limit
splk #min_v_,set v ; saturate if not
B reset_wd

uinuplim LACC set_ v

SUB #min_v_ ; compare Uout with its lower limit
BGEZ reset_ wd ; continue if within limit
splk #min_v_,set v ; saturate if not
reset wd LDP #WDKEY>>7 ; Reset WD timer
SPLK #wd_rst_ 1, WDKEY ;
SPLK #wd_rst_2, WDKEY
SPLK #0000000001101111b,WDCR
B main_loop ; End of background loop
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When a Timer underflow interrupt occurs, the DSP finishes its current
instruction and branches to the interrupt service routine. In the interrupt service
routine, tasks 1 through 5 are performed. Each task along with the corresponding
code is shown below:

Obtain the phase (q) of Vout by integrating the command speed.

5

; Generate revolving voltage vector Uout=trans(Ud Uq)

5

1dp #omega ; Integrate speed to get phase
LT omega ;set W->T:DI10
MPY t sample ; D10*D-9=D(1+1)
PAC ; product -> ACC: D2
SFR ;->D3
ADDH theta_h ; D3+D3=D3 (32 bit)
ADDS theta 1
SACH theta_h ; save
SACL theta 1
chk lolim bend chk uplim,GEQ ; check upper limit if positive
ADDH theta 360 ; D3+D3=D3, rollover if not
SACH theta h ; save
B md theta
chk_uplim SUBH theta 360 ; D3-D3=D3 compare with 2*pi
bend rest_theta, LEQ ; resume theta_h if within limit
SACH theta_h ; rollover if not
B md_theta
rest_theta ADDH theta_360 ; resume theta high
rnd_theta ADD #1,15 ; round up to upper 16 bits
SACH theta r
; Quadrant mapping
LACC one ; assume theta (theta_h) is in
SPLK #-1,SS ; quadrant 1
SACL SC ; 1=>SC, sign of COS(theta)
LACC theta_r
SACL theta_ m ; theta=>theta_m
SUB theta 90
BLEZ E Q ; jump to end if 90>=theta
; assume theta (theta_h) is in quadrant 2
SPLK #-1,SC ;-1=>8C
LACC theta 180 ;
SUB theta_r ; 180-theta
SACL theta_m ; =>theta_m
BGEZ E Q ; jump to end if 180>=theta
; assume theta (theta_h) is in quadrant 3
SPLK #1,SS ;-1=>8S
LACC theta r
SUB theta_180 ; theta-180
SACL theta_m ; =>theta_m
LACC theta 270
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SUB theta_r

BGEZ E Q ; jump to end if 270>=theta
; theta (theta_h) is in quadrant 4

SPLK #1,SC ; 1=>SC

LACC theta_360

SUB theta r

SACL theta_m ; 360-theta_h=>theta m

Obtain the sine and cosine of q with quarter mapping and table look-up, and

calculate the d-q component of Vout.

; sin(theta), cos(theta)

EQ LT theta m ; D3. Find index
MPY theta_i ; D3*D6=D(9+1)
PAC ; D10
SACH sin_indx ;D10
LACC sin_indx, 11 ;1/s 5 by I/s 11 -> integer (D15)
SACH sin_indx ; right shift 5 bits => D15
LACC sin_entry ; Look up sin
ADD sin_indx
TBLR sin_theta
LACC sin_end
SUB sin_indx
TBLR cos_theta
LT SS ; Look up cos
MPY sin_theta ; modify sign: D15*D1=D(16+1)
PAC
SACL sin_theta ; left shift 16 bits and save: D1
LT SC
MPY cos_theta ; modify sin: D15*D1=D(16+1)
PAC ;
SACL cos_theta ; left shift 16 bits and save: D1
; Calcualte Vd & Vq
LT set_v ;setv->T: DI
MPY cos_theta ; set v¥cos(theta): D1*D1=D(2+1)
PAC ; product -> ACC: D3
SACH Ud,1 ; d component of ref Uout: D2
MPY sin_theta ; set v¥sin(theta): D1*D1=D(2+1)
PAC ; product -> ACC: D3
SACH Uq,l1 ; q component of ref Uout: D2

Determine which sector Vout is in.

5
; Determine sector

B

LT theta r ; D3

MPY theta_s ; D3*D0=D4

PAC

SACH sector

LACC sector,5 ;1/s 11 by I/s 5 > integer (D15)
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SACH sector

; right shift 11 bits

Decompose Vout to obtain T1, T2 and T0 as compare values.

; Calculate TI&T2 based on: ~ Tpwn Uout=V1*T1+V2*T2

5

;e [T1 T2]=Tpwn*inverse[V1 V2]*Uout
;l.e. [0.5*%T1 0.5*T2]=Tp*inverse[V1 V2]*Uout
;Le. [0.5*C1 0.5*C2]=inverse[ V1 V2]*Uout=M(sector)*Uout

5

;where  C1=T1/Tp, C2=T2/Tp, are normalized wrt Tp
; M(sector)=inverse of [V1 V2] = decomposition matrix
; obtained through table lookup

; Uout=Transpose of [Ud Uq]

; Tp=Timer 1 period = 0.5*Tpwm

; Tpwm=PWM period Tpwm

LACC #dec_ms

; get the pointer
; point to parameter table

; Calculate 0.5*C1 based on 0.5*C1=Ud*M(1,1)+Uq*M(1,2)

ADD sector,2
SACL temp
LAR ARO,temp
LT Ud
MPY *4
PAC
LT Uq
MPY *4
APAC
BGEZ cmpl_big0
ZAC

cmpl_big0
SACH temp
LT temp
MPY tl_periods
PAC

SACH cmp_1

;D2

; M(1,1) Ud: D2*D1=D(3+1)
; D4

;D4

; M(1,2) Ugq: D2*D1=D(3+1)
; 0.5*%C1: D4+D4=D4

; continue if bigger than zero
; set to 0 if less than O

;0.5*C1: D4

; D4

; D4*D10 = D(14+1)
; D15

; 0.5*%C1*Tp: DIS

; Calculate 0.5*%C2 based on 0.5*C2=Ud*M(2,1)+Uq*M(2,2)

LT ud
MPY *4
PAC
LT Uq
MPY *4
APAC
BGEZ cmp2_big0
ZAC
cmp2_big0
SACH temp
LT temp
MPY tl_periods
PAC

SACH cmp_2
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; D2

; M(2,1) Ud: D2*D1=D(3+1)
; D4

; D2

; M(2,2) Uq: D2*D1=D(3+1)
; 0.5*%C2: D4+D4=D4

; continue if bigger than zero
; zero it if less than zero

; 0.5%C2: D4

; D4

; D4*D10 = D(14+1)
; D15

; 0.5*%C2*Tp: DIS
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; Calculate 0.5*CO0 based on 0.5*C3*Tp=Tp*(1-0.5*C1-0.5*C2)
LACC #tl_period

SUB cmp 1 ;

SUB cmp_2 ; D15

BGEZ cmp0_big0 ; continue if bigger than zero

ZAC ; zero it if less than zero
cmp0_big0

SACL cmp 0 ;

LACC cmp_ 0,15 ; right shift 1b (by /s 15b)

SACH cmp_0 ; 0.25*CO*Tp

Determine the switching sequence and load the obtained compare values into

corresponding compare registers.

>

; Determine channel toggling sequence and load compare registers

s

LACC #first ;

ADD sector ; point to entry in look up table
TBLR first tog ; get 1st-to-toggle channel
LAR ARO,first tog ; point to the channel
LACC cmp 0

SACL * ; cmp_0 => the channel
LACC #second ;

ADD sector ; point to entry in look up table
TBLR sec_tog ; get 2nd-to-toggle channel
LAR ARO,sec_tog ; point to the channel
LACC cmp_0 ;

ADD cmp_1 ;emp O+emp 1

SACL * ; => the channel

LACC #CMPR3

SUB first_tog

ADD #CMPR2

SUB sec_tog

ADD #CMPR1

SACL temp ; get 3rd-to-toggle channel
LAR ARO,temp ; point to the channel
LACC cmp_0

ADD cmp_1

ADD cmp_2 ;emp O+emp 1+cmp 2
SACL * ; =>the channel

RET ; return

The code shown above composes the functional parts of the LF2407 assembly

code which implements the SVPWM switching scheme.
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11.4.2  Verification of the SVPWM Algorithm and Conclusions

The space vector PWM algorithm can be verified by probing the filtered PWM
outputs of LF2407 using a very simple low-pass filter as shown in Fig. 11.7 and by
viewing the resultant signal on a oscilloscope.

1000Q2

%\/\/\/7% To the Scope

LF2407

- TN

Figure 11.7 Low pass filter for filtering the LF2407 PWM outputs.

The output of the low-pass filter is illustrated by the oscilloscope screenshot in
Fig. 11.8. It shows the three-phase voltages and the corresponding line-to-line
voltage for an 11Hz waveform. The fundamental frequency and the third harmonic,
which is inherently generated by the space vector method, are clearly shown. As
expected, the three-phase wave forms are shifted from one another by 120 degrees.

)
(

T
At -80.1 ms  Lg -11.22 Hz
Figure 11.8 Top to bottom: the waveforms of filtered SVPWM outputs, phase

voltages and line-to-line voltage (frequency = 11Hz).
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This chapter presented the concept of constant V/Hz control of induction
motors using the SVPWM. The theory of both the V/Hz control and the space
vector PWM was discussed. The theoretical analysis first discussed has been
supported by the implementation of the SVPWM algorithm via the LF2407 DSP.
The output results verify the validity of both the theory and the DSP
implementation.
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Chapter 12
DSP-BASED CONTROL OF PERMANENT MAGNET SYNCHRONOUS

MACHINES

12.1 Introduction

As described in Chapter 9, the permanent magnet synchronous motor (PMSM)
is a PM motor with a sinusoidal back-EMF. Compared to the BLDC motor, it has
less torque ripple because the torque pulsations associated with current
commutation do not exist. A carefully designed machine in combination with a
good control technique can yield a very low level of torque ripple (<2% rated),
which is attractive for high-performance motor control applications such as machine
tool and servo applications.

In this chapter, following the same procedures used in Chapter 9, the principles
of the PMSM drive system will be introduced. Later, the control implementation
using the LF2407 DSP will be described in detail.

12.2 The Principle of the PMSM
12.2.1 Mathematical Model of PMSM in the abc Stationary Reference Frame

Figure 12.1 depicts a cross-section of the simplified three-phase surface
mounted PMSM motor for our discussion. The stator windings, as-as’, bs-bs’, and
cs-cs’, are shown as lumped windings for simplicity, but are actually distributed
about the stator. The rotor has two poles. Mechanical rotor speed and position are
denoted as ,,, and 8,,, , respectively. Electrical rotor speed and position, @, and
0, , are defined as P/2 times the corresponding mechanical quantities, where P is the
number of poles.

Based on the above motor definition, the voltage equation in the abc stationary
reference frame is given by

. d
Vabes = Rslapes + E ﬂ’abcs (12.1)
where
T
Jabes =fas  Jos  fes] (12.2)
and the stator resistance matrix is given by

R =diaglry 1y 1] (12.3)

241
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b-axis as

‘\ Wrm
bs

a-axis
g-axis
cs'
c-axis as
d-axis
Figure 12.1 The cross-section of PMSM.
The flux linkages equation can be expressed by
sin g,
. ol 2
Aabes = Lglapes + Am| sin(I, _?) (12.4)

sin(9, — 47”)

where 4,," denotes the amplitude of the flux linkages established by the permanent
magnet as viewed from the stator phase windings. Note that in (12.4) the back-
EMFs are sinusoidal waveforms that are 120° apart from each other. The stator self

inductance matrix, L, , is given as

Li+L,—Lgcos26, —%LA—LB cos2(0, —x/3) —%LA—LB cos2(6, +r/3)
L= —%LA—LBCOS2(6’,—7I/3) Li+L,—Lgcos2(8,-2rx/3) —%LA—LB cos2(6, + 1)
—%LA—LB cos2(0, +7/3) —%LA—LB cos2(0, + 1) Lig+L,s—Lpcos2(8, +2x/3)
(12.5)

The electromagnetic torque may be written as
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P . 1
T, :E{lm[(las _5

)

Lmd _Lmq ) | )
+ [(las _Elbs _Elcs -

y V3o
Ips —EICS)COSQ,, _T(st —igs)sing, ] 3

2

Lgslps —lasles T 2’bs les )Sln 2gr + 7 (lbslcs - 2’aslhs + 21as les ) cos 26r ] } + Tcog (Hr)

(12.6)
In (12.6), T,q (6, ) represents the cogging torque and the d- and g-axes magnetizing

inductances are defined by

3
Lypg = E(LA —-Lp)

and
3
Lya :E(LA +Lg) (12.7)
The torque and speed are related by the electromechanical motion equation
d P
‘]Ewrm :?(Te_TL)_Bmwrm (12.8)

where J is the rotational inertia, B,, is the approximated mechanical damping due
to friction, and 7} is the load torque.

12.2.2  Mathematical Model of PMSM in Rotor Reference Frame

The voltage and torque equations can be expressed in the rotor reference
frame in order to transform the time-varying variables into steady state constants.
Since the stator has two poles and the rotor has four poles, the transformation of the
three-phase variables in the stationary frame to the rotor reference frame is defined
as

fqur :Krfabcs (12.9)

where

cosd,. cos(b, —2%) cos(6, +2Tﬂ)

K, =2 sing, sin@,-2%) sin@, +25)
3 3 3

1 1 1

| 2 2 2

If the applied stator voltages are given by
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Vs = x/EVS cosd,,
Fie =2V, cos(0y 22 (12.10)
Ve = \/EVS cos(0,, + 277[)

Then, applying (12.9) to (12.1), (12.4) and (12.10) yields

V;s = rsi;s + a)rﬂvgs +%lgs (12.11)
‘ d

Vi = gy — 0 A +E’1;’S (12.12)

Mg = Lyt (12.13)

A = Lagilys + A, (12.14)

where the - and d-axes self inductances are given by Ly =Ly +L,, and

Lyg = Lig + L4 , respectively.
The electromagnetic torque can be written as

3P

T, :53[2';1153 +(Lygy _qu)iqsids] (12.15)

From (12.15), it can be seen that torque is related only to the d- and g-axes
currents. Since L, > Ly (for surface mount PMSM, both of inductances are equal),

the second item contributes a negative torque if the flux weakening control has been
used. In order to achieve the maximum torque/current ratio, the d-axis current is set
to zero during the constant torque control so that the torque is proportional only to
g-axis current. Hence, this results in the control of g-axis current for regulating the
torque in rotor reference frame.

12.3 PMSM Control System

Based on the above analysis, a PMSM drive system is developed as shown in
Fig. 12.2. The total drive system looks similar to that of the BLDC motor and
consists of a PMSM, power electronics converter, sensors, and controller. These
components are discussed in detail in the following sections.
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Figure 12.2 The PMSM speed control system.

12.3.1 PMSM Machine

The design consideration of the PMSM is to first generate the sinusoidal back-
EMF. Unlike the BLDC, which needs concentrated windings to produce the
trapezoidal back-EMF, the stator windings of PMSM are distributed in as many
slots per pole as deemed practical to approximate a sinusoidal distribution. To
reduce the torque ripple, standard techniques such as skewing and chorded windings
are applied to the PMSM. With the sinusoidally excited stator, the rotor design of
the PMSM becomes more flexible than the BLDC motor where the surface mount
permanent magnet is a favorite choice. Besides the common surface mount non-
salient pole PM rotor, the salient pole rotor, like inset and buried magnet rotors, are
often used because they offer appealing performance characteristics during the flux
weakening region. A typical PMSM with 36 stator slots in stator and four poles on
the rotor is shown in Fig. 12.3.

Figure 12.3 A four-pole 24-slot PMSM.
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12.3.2  Power Electronic Converter

The PMSM shares the same topology of the power electronics converter as the
BLDC motor drive system. The converter is the standard two-stage configuration
with a dc link capacitor between a front-end rectifier and a three-phase full-bridge
inverter as the output. The rectifier is either a full-bridge diode or power switch
rectifier.

Due to the sinusoidal nature of the PMSM, control algorithms such as V/f and
vector control, developed for other AC motors, can be directly applied to the PMSM
control system. If the motor windings are Y-connected without a neutral connection,
three phase currents can flow through the inverter at any moment. With respect to
the inverter switches, three switches, one upper and two lower in three different legs
conduct at any moment as shown in Fig. 12.4. PWM current control is still used to
regulate the actual machine current. Either a hysteresis current controller, a PI
controller with sine-triangle, or a SVPWM strategy is employed for this purpose.
Unlike the BLDC motor, the three switches are switched at any time.

—_—— —— —

Cc

N |

N + |
4= I
: : : TT 9 | \_Jc_43__&_4
2 4 6
G A Ay
N S ) <«f-
Figure 12.4 The current path when the three phases are chopped.

12.3.3  Sensors

There are two types of sensors used in the PMSM drive system: the current
sensor, which measures the phase currents, and the position sensor which is used to
sense the rotor position and speed. The resistances in series with the power switches
as shown in Fig. 12.2 are usually used as shunt resistor phase current sensors. Either
an encoder or resolver serves as the position sensor. Rotor position is needed in
order to synchronize the stator excitation of the PMSM with the rotor speed and
position.

Figure 12.5 shows the structure of an optical encoder. It consists of a light
source, slotted disk, and photo sensors. The disk rotates with the rotor. The two
photo sensors output a logic “1” when they detect light. When the light is blocked,
a logic “0” is generated by the sensors. When the light passes through the slots of
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the disk and strikes the sensor, a logic “1” is produced. These logic signals are
shown in Fig. 12.5. By counting the number of pulses, the motor speed can be
calculated. The direction of rotation can be determined by detecting the leading
edge between signal A and signal B.

Sensors

[ I R A

Light

Figure 12.5 The structure of encoder.

A resolver is a rotary electromechanical transformer. It outputs to sinusoidal
signals such that one wave is a sinusoidal function of the rotor angle 0, while the
other signal is a cosinusoidal function of 6. The difference between these two
waveforms reveals the position of the rotor. Integrated circuits such as the AD2S80
can be used to decode the signals. The resolver output waveform and the
corresponding rotor position are given in Fig. 12.6.

12

10

Figure 12.6 The resolver output and the corresponding rotor position.
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12.3.4 Controller

The LF2407 is used as the controller to implement speed control of the PMSM
system. The interface of the LF2407 is illustrated in Fig. 12.7. Similar to the BLDC
motor control system, three input channels are selected to read the two phase
currents and resolver signal. Because a resolver is used in one case, the QEP inputs
are not used. QEP inputs work only with a QEP signal that a rotary encoder
supplies. The DSP output pins PWMI1-PWMG6 used to supply the gating signals to
the switches and form the output of the control part of the system.

ia —— ADCINO
ib ——»| ADCINI >
1 PWM-1 & PWM-6 | Gate
Drive
0 —>» ADCIN2 >
TMS320LF2407
Figure 12.7 The interface of LF2407.

12.4 Implementation of the PMSM System Using the LF2407

A block diagram of the PMSM drive system is displayed in Fig. 12.8. An
assembly code algorithm was written for the LF2407 to implement the control
system shown inside the dashed line in Fig. 12.8.
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Figure 12.8 Block diagram of PMSM speed control system.
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The flowchart of the developed software is shown in Fig. 12.9. The control

program of the PMSM has one main routine and includes four modules:

BN =

Initialization procedure

DAC module
ADC module

Speed control module

The first three items introduced in Chapter 9. Hence, in the following section,
only the speed control module is discussed in detail, with the corresponding
assembly code given.
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( Start )

A

Initialization procedure

A

Read phase currenti, , I, ; read the position signal;

No
Execute
speed loop?

Yes

Set reference speed @, and calculate the actual speed

A
Speed PI regulator used to calculate the commend torque

A
S 3
Calculate the command g-axis current 7, ; Set i, =0
d
A 4

Transfer 1,1, to I,,I, in Rotor Reference Frame (RRF)

qs 1

\ 4

Current PI regulator used to calculate the V.,V in RRF

A

Transfer V,,V,, nRRFto v, ,V,,V,

\ 4
Generate the PWM using sine-A generator

y
Output the program variables to DACO~DAC3

A 4
End

Figure 12.9 The flow chart of PMSM control system.
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12.4.1 The Speed Control Algorithm

In the BLDC motor control system the Timer 1 underflow interrupt is used for
the subroutine of speed control. This routine performs the tasks of:

e Reading the current and position signal, then generating the commanded
speed profile.

e Calculating the actual motor speed, transferring the variables in the abc
model to the d-g model and reverse.

e Regulating the motor speed and currents using the vector control strategy.

e  Generating the PWM signal based on the calculated motor phase voltages.

The PWM frequency is determined by the time interval of the interrupt, with
the controlled phase voltages being recalculated every interrupt. The modules of
this routine are detailed in the following section. The code below shows this routine.

Tl PERIOD ISR:
;Context save regs

MAR *,AR1 ;AR1 is stack pointer

MAR *+ ;skip one position

SST #1, *+ ;save ST1

SST #0, *+ ;save STO

SACH *+ ;save acc high

SACL * ;save acc low

POINT EV

SPLK #0FFFFh, EVIFRA ;Clear all Group A interrupt

;flags (Tl ISR)

READ SIG

CALL ADC_CONV

CALL CAL_TRIANGLE

CALL ADC DQ

POINT BO

LACC CL_SPD_FLG

BCND CURRENT CNTL, GT ; speed-loop?
; speed control
SPEED CNTL: POINT BO

CALL SPEED_ PROFILE

CALL VTIMER SEC

CALL SPEED CAL

CALL D PID spd

BLDD #D_PID out ;igsr

SPLK #0, idsr ref

; current control
CURRENT_CNTL
CALL  D_PID cur
BLDD #D_out_iq, Var
BLDD #D out_id, Vdr
CALL DQ ABC
BLDD #a_out, Va
BLDD  #b out, Vb
BLDD #c_out, Vc

PWM_ GEN CALL PWM DRV
DA _CONV CALL DAC_VIEW Q15I
;Restore Context
END_ ISR:
MAR *, AR1 ;make stack pointer active
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LACL *— ;Restore Acc low
ADDH *— ;Restore Acc high
LST #0, *- ;load STO

LST #1, *- ;load ST1

CLRC INTM

RET

12.4.1.1 The Calculation of sin® and cos0

A lookup table is used to calculate the sine and cosine values of the rotor
position 0. The rotor electrical angle depends only on its sine value in lookup table.
The cosine value is calculated by shifting the sine value 90 degrees. The sine and
cosine values, which are used in the transformation, can be obtained by simply
knowing the rotor angle. The code below shows how to read the 1:1 look-up table

with the LF2407.

TRI_CAL
LACC TRI_INT ;load accumulator
AND #0ffh ;get lower bits
ADD #SINTAB ;table read
TBLR sine a
RET

The block of code below shows a portion of the sine value lookup table.

; SINVAL Index Angle Sin (Angle)
SINTAB

.word 12539 H 16 22.50 0.3827
.word 13279 ; 17 23.91 0.4052
.word 14010 ; 18 25.31 0.4276
.word 14732 ; 19 26.72 0.4496
.word 15446 ; 20 28.13 0.4714
.word 16151 H 21 29.53 0.4929
.word 16846 H 22 30.94 0.5141
.word 17530 ; 23 32.34 0.5350
.word 18204 ; 24 33.75 0.5556
RET

12.4.1.2 The abc-to-dq Transformation

The abc-to-dq transformation is defined in (12.9). It transfers the three-phase
stationary motor model to a two-phase rotational motor model. In other words,
under the restriction of the same motor performance, three phase stationary stator
windings with 120° separation can be replaced by a two-phase rotational winding
with the q-phase 90° ahead of d-phase. The two-phase currents are related to the
three-phase currents as defined by the transformation in (12.9). After this
transformation, a significant simplification is achieved. The d and g-axis variables
are decoupled and independent with time and rotor position, which implies that
these variables become constant in steady state. It is possible to control the d and q
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variables independently. Since the d-axis variables are associated with the field
variable and g-axis variables are related to the torque, this feature enables us to
control the ac motor similar to a dc motor. For more detailed information on this
topic we can refer to vector control theory. A portion of the abc-to-dq
transformation using the assembly code is given in the code below:

ABC DQ:

LACC #0

LT ABC ain
MPY sone_a
LTA ABC bin
MPY sone b
LTA ABC cin
MPY sone cC
LTA ABC ain

SACH  ABC D out
RET
12.4.1.3 The d-q to a-b-c Transformation

After the commanded d and g-axes variables are calculated, these two variables
are transferred to the a-b-c stationary frame to drive the motor. This reverse
transform is defined as follows:

Jabes = Krfqur

(12.16)
where
cosd, sind %
K. =|cos@, -5, sino, -2y L (12.17)
3 372
1
2

cos(0, +2?”) sin(@), +2?”)

An example of the assembly code to implement the above equation is given in the

code below:

DQ ABC
LACC #0
LT DQ D ref
MPY sone_ a
LTa DO_Q ref
MPY cosone_a

MPYA cosone_b
SACH DQ aout

RET
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12.4.1.4 PWM Generation

The PWM circuits of the 2407 Event Manager are used to generate the gating
signals. Figure 12.10 displays the principle of this method. The control signal with
frequency fl is constantly compared with a triangle signal which has a high-
frequency 2 (usually f2/f1>21). If the controlled signal is larger than the triangle
signal, a PWM output signal becomes a logic “1”. Otherwise, a “0” is given.

it Trlanéle S|gnai ‘ ControI;ed S|gna‘l |
0.5
ol |
-0.5¢ b
Tr PWM signal |
1.5
2
2.5k . . . . . . ) o

0.052 0.054 0.056 0.058 0.06 0.062 0.064 0.066

Figure 12.10 The principle of sine-triangle PWM generation.

The full-compare units have been used to generate the PWM outputs. The
PWM signal is high when the output of current PI regulation matches the value of
TICNT and set low when the Timer underflow occurs. The switch states are
controlled by the ACTR register. As discussed in Section 3.2, the lower switches
should always be on and the upper switches should be chopped. From the point of
implementation on the LF2407, this requires that the ACTR register is reset for each
interval. Therefore, PWMI1, PWM3, and PWMS, which trigger the upper switches,
are set as active low/high and PWM2, PWM4, and PWM6, which trigger the lower
switches are set as force high. The code below illustrates this implementation.

SINE PWM:
POINT BO
MPY Ub
PAC
ADD PERIOD, 15
POINT EV

SACH CMPR2

RET
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Chapter 13

DSP-BASED VECTOR CONTROL OF INDUCTION MOTORS

13.1 Introduction

For many years, induction motors have been preferred for a variety of industrial
applications because of their robust and rugged construction. Until a few years ago,
the induction motor could either be plugged directly into the grid (uncontrolled) or
controlled by means of the well-known scalar volts per Hertz (V/f) method. In
variable speed drives, both methods have serious drawbacks in the areas of
efficiency, reliability, and electromagnetic interference (EMI). With the
uncontrolled method, even a simple change in the reference speed is not possible.
Additionally, its system integration depends highly on the motor design (i.e.,
starting torque vs. maximum torque, torque vs. inertia, number of pole pairs, etc).

The scalar V/f method is able to provide speed variation, but this method
cannot provide real-time control. In other words, the system response is only
satisfactory at steady state and not during transient conditions. This results in
excessive current and over-heating, which necessitate the drive to be oversized.
This over-design no longer makes the motor cost effective due to the high cost of
the drive circuitry. By using real-time processors such as the LF2407 DSP
controller, and with an accurate induction motor model, the development of highly
reliable and accurate variable speed motor drives becomes possible.

With the advent of field-oriented control (FOC) schemes, induction motors can
be made to operate similar to separately excited dc motors. The indirect field
oriented controls, or vector control, for speed and torque controlled AC drives are
becoming the industry standard in order to obtain high dynamic motor performance.

The control algorithm explained in this chapter is a rotor flux field-orientated
control strategy. In this chapter, we will go through not only the implementation of
the control software, but also the theoretical and practical aspects of the vector
control. In the end, the reader will be familiar with the different parts of the FOC
strategy of the induction motor as well as the developmental steps involved. The
reader should also be able to apply this induction motor drive solution to other
desired systems. This chapter deals with the structure of an induction motor and
develops its model followed by its FOC schemes. Finally, hardware and software
development procedures covered.

13.2 Three-Phase Induction Motor Basic Theory
13.2.1 Three-Phase Induction Motor

Three-phase induction machines are asynchronous machines that operate below
the synchronous speed when motoring and above the synchronous speed when
generating. They are the most popular machine used in industry today and are
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rugged and require very little maintenance. Compared to dc motors, induction
motors are not as easy to control. They typically draw large starting currents, about
six to eight times their full load values, and operate with lagging power factor when
loaded. However, with the advent of the vector control concept for motor control, it
is possible to decouple the torque and the flux, thus making the control of the
induction motor very similar to that of the dc motor.

13.2.2  Induction Motor Construction

The dc motor can be called a conduction motor because the electric power is
conducted directly to the armature through the brushes and commutator. In the case
of induction motors, the rotor receives power by induction, the same way a
secondary of a two-winding transformer receives power from the primary. This is
why the induction motor can be treated as a rotating transformer, where the primary
winding is stationary, but the secondary is free to rotate. We use this concept to
develop the equivalent circuit for induction motors.

The most popular type of induction motor used is the squirrel cage induction
motor shown in Fig. 13.1. The rotor consists of a laminated core with parallel slots
for carrying the rotor conductors, which are usually heavy bars of copper,
aluminum, or alloys. One bar is placed in each slot; or rather, the bars are inserted
from the end when the semi-closed slots are used. The rotor bars are brazed,
electrically welded, or bolted to two heavy and stout short-circuiting end-rings, thus
completing the squirrel cage construction. The rotor bars are permanently short-
circuited on themselves. The rotor slots are usually not parallel to the shaft, but are
given a slight angle, called a skew, which increases the rotor resistance due to
increased length of rotor bars and an increase in the slip for a given torque. The
skew is also advantageous because it reduces the magnetic hum while the motor is
operating and reduces the locking tendency, or cogging, of the rotor teeth.

Figure 13.1 Short-circuited rotor bars of the squirrel cage induction motor.
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13.2.3  Operation

When the three-phase stator windings are fed by a three-phase supply, a
magnetic flux of a constant magnitude rotating at synchronous speed is created
inside the motor. Due to the relative speed between the rotating flux and the
stationary conductors, an electromagnetic force (EMF) is induced in the rotor in
accordance with Faraday’s laws of electromagnetic induction. The frequency of the
induced EMF is the same as the supply frequency, and the magnitude is
proportional to the relative velocity between the flux and the conductors. The
direction of this EMF is given by Fleming’s right-hand rule. Since the rotor bars
form a closed path as shown in Fig. 13.1, a rotor current is produced which,
according to Lenz’s law, is opposite to that of the relative velocity between the
rotating flux and the conductors. Therefore, the rotor current develops in the same
direction as the flux and tries to catch up with the rotating flux.

13.2.4 Slip

The difference between the synchronous speed @, and the actual speed @, of
the motor is called the slip.

g=Pe"Pr (13.1)

W,

13.3 Model of the Three-Phase Induction Motor in Simulink
13.3.1 Voltage Equations of the Idealized Motor Model

The idealized circuit model of the three-phase induction machine is shown in
Fig. 13.2:

P

as axis

—as

Figure 13.2 Idealized circuit model of the three-phase induction motor.
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Stator voltage equations:

) dA
Vas = Tslas das (13.2)
t
dAp
Vps = Tslps + bs (13.3)
t
dA,
Ves = Fsles + dcs (13.4)
t
Rotor voltage equations:
vdA,
Var =gty +—2 (13.5)
d,
vdA,
Vi = it +—28 (13.6)
d
v dA,,
Vep =gyl + dc’ (13.7)
t

Flux linkage equations:

abc abc abe’| [ .abe
ﬂ’s _ Ly Ly, s (13.8)
labc Labc Labc -abc ’
r s rr

where:
ﬂ’as ﬂ’ar ias iar
abc abc .ab. . -abc .
As = Abs 5 Ar = lbr 5 l;l €= Ips | e =\ 1lpr (139)
_/Ics _/Icr ics icr

The stator-to-stator and rotor-to-rotor winding inductances are:

_Lls +Lss Lsm Lsm 1
ngc = Ly Ljg +Lgg Ly >
L Lsm Lsm Lls +Lss_
_Llr +er er er 1
L= Ly Lp+l, Ly, (13.10)
L er er Llr +er_
The stator-to-rotor mutual inductances are dependent on the rotor angle:
cos 6, cos(6, +2x/3) cos(6, —2x/3)
19 = [Lﬁ?"]T =L, | cos(6, —27/3) cos 6, cos(6, +2x/3)| (13.11)

cos(6, +2x/3) cos(6, —27/3) cos 6,

where:
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L, = Stator winding leakage inductance per phase
L, = Self inductance of stator winding
L

Ly, = Peak value of stator to rotor mutual inductance

«m = Peak value of stator to rotor mutual inductance

If
P, = air-gap permeance,
then
Ly =N P, Ly, =NN,.P, Ly = N;*P,Cos(27/3)
2 2
Ly =N, PyCos(27/3) L, =N,P, (13.12)

We can see that the idealized machine is described by six first-order differential
equations; one for each winding. These differential equations are coupled to one
another by the mutual inductances between the windings. The stator-to-rotor
coupling terms are a function of the rotor position, so when the rotor rotates, the
coupling terms change with time. To solve this problem, induction motor equations
are transferred to the quadrature rotating reference frame such that the mutual
inductances are not time dependent.

13.4 Reference Frame Theory

Reference frame theory is an integral part of electric drives. Reference frames
are powerful tools for the analysis and application of sophisticated control
techniques, particularly in the case of the three-phase induction and synchronous
machines. Using reference frame theory, it is possible to transform the machine
phase variables to another reference frame. By judicious choice of the reference
frames, it is possible to considerably reduce the complexity of the model machine.
Reference frame theory has become especially important for digital motor control
where the need for accurate but simple motor models is essential. Though the theory
can be extended to any arbitrary reference frame, the two most commonly used
reference frames are the Stationary Reference Frame and the Synchronous
Reference Frame. The Clarke and Park transformations are used to transfer the
induction motor equations to these frames. The transformations are discussed in
Chapter 10 in detail and are repeated here for reference. Clarke’s transformation is

given by
N
qu fas
Sas |=T0)] fis (13.12)
fOSS fcs
where
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1 —1/2 -1/2
T0)=2/3 0 —+3/2 +3/2 (13.13)
/2 12 1/2

Park’s Transformation is represented by

Sas _|cosp —sinp | fo
1 sinp cosp £
A

where the rotor position is given by

(13.14)
p = |wdt (13.15)

13.5 Induction Motor Model in the Arbitrary q-d-0 Reference Frame

As mentioned previously, the two most common reference frames chosen to
represent the induction motor are the stationary and the synchronous reference
frames. The stationary reference frame has the q-d-0 variables of the machine in the
same frame as those normally used for the supply network. This choice of network
is usually made when the supply network is large or complex. In the case of the
synchronously rotating reference frame, the g-d-0 variables are constants at steady
state.

Assuming that the induction motor is rotating at speed ® in the direction of
rotor rotation, the machine equations in the stationary reference frame can be
obtained by setting ® = 0. Likewise, the equations in the synchronous reference
frame are obtained by setting ® = ®.. Applying transformation to the stator
windings a-b-c voltages, the stator winding q-d-0 voltages in the arbitrary reference
frame are obtained.

0 1 0
V;do =w/-1 0 0 ﬂ‘f]d() +pﬂ’i[d0 +I’Sl';d0 (1316)
0 0 0

where p = % z Applying the transformation to the rotor voltage equation, we get

0 1 0
V;do = (a)—a)r) -1 0 O ;Lgd() +p/12d0 +rri;d0 (1317)
0 0 0

Stator and rotor flux linkage equations are given by
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lqs _Lls +Lm 0 0 Lm 0 0 1 lqs
Ads 0  Ly+L, 0 0 L, 0|
Aos 0 0 L, 0 o o ||
1= : o 0 |l [(13.18)
qr L, 0 0 L,+L, ' qr
Zdr 0 Lm 0 0 Ly + Ly (? i;lr
' 0 L '
| L0 0 0 0 i, |

where the primed values are referred values to the stator side according to the
following relationships:

' Ny
Agr :N—Sﬂqr (13.19)
r
v N
Agr = N—jxid, (13.20)
o Ny
lgr = N—slq,, (13.21)
r
ig iy (13.22)
r
2
' N
Ly = [—“J L (13.23)
N, ) "
Magnetizing inductance on the stator side is given by
3 _3N _ 3N
L, ==L —= 13.24
"N TN, Y 2N, (13.24)
The electromagnetic torque equation is given by
3 p [ ) ) . _—
em = Eg w(ldslqs - ﬂ’qslds) +(w— @y )(ﬂ“drlqr - ﬂqudr)
r
3P[0 -
= __[ﬂqudr - ﬂ’drlqr]
_3p .
b [j’ds Lgs ﬂ’qslds] (13.25)

3P [ o ]
EZL Lart qc_lquds

13.6 Field Oriented Control

The term “vector” control refers to the control technique that controls both the
amplitude and the phase of ac excitation voltage. Vector control therefore controls
the spatial orientation of the electromagnetic fields in the machine. This has led to
the coining of the term field oriented control (FOC), which is used for controllers
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that maintain a 90° spatial orientation between the critical field components. The
term “field angle control” refers to the control strategy where the system is not at
90° of spatial orientation. In order to properly comprehend vector control, we must
understand the principle of dc machine torque control on which FOC is based.

13.7 DC Machine Torque Control

The required 90° of spatial orientation between key field components can be
compared to the dc motor, where the armature winding magnetic field and the filed
winding magnetic filed are always in quadrature. The objective is to force the
control of the induction machine to be similar to the control of a dc motor, i.e.,
torque control. In dc machines, the field and the armature winding axes are
orthogonal to one another, making the MMFs established orthogonal. If the iron
saturation is ignored, then the orthogonal fields can be considered to be completely

decoupled.
For dc machines, the developed torque is
Tem :Ka¢(lf)[a (13.26)

where

k,= Constant
#(1 p)= Field flux

1, = Armature current

Since the torque angle is always 90°, the flux and the torque can be controlled
independently. The torque is controlled by adjusting the field current /; and the flux
is directly controlled by adjusting the armature current /,,

It is important to maintain a constant field flux for good torque control. It is
also important to maintain an independently controlled armature current in order to
overcome the effects of the resistance of the armature winding, leakage inductance,
and the induced voltage is needed. A spatial angle of 90° between the flux and
MMF axes has to be maintained in order to limit interaction between the MMF and
the flux. If these conditions are met at every instant of time, the torque will always
follow the current. In the case of dc machines, there is constant field flux and 90°
torque angle due to the commutator and the separate field excitation system. In ac
machines, these conditions have to be attained by using external controls, making
the system more complex and difficult to understand.

13.8 Field Oriented Control, Direct and Indirect Approaches

With vector control, the mechanically robust induction motors can be used in
high performance applications where dc motors were previously used. The key
feature of the control scheme is the orientation of the synchronously rotating q-d-0
frame to the rotor flux vector. The d-axis component is aligned with the rotor flux
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vector and regarded as the flux-producing current component. On the other hand,
the g-axis current, which is perpendicular to the d-axis, is solely responsible for
torque production.

In order to apply a rotor flux field orientation condition, the rotor flux linkage is
aligned with the d-axis so igr =0 and /157, = ’{r . By manipulating (13.16) and

(13.17) in the rotating reference frame, w =w, , we can obtain the field oriented

condition.
e . r e _Ir e steady state e 121,,
p}udr +L—}~dr _L_Lmlds =0 —> ldS :_L (1327)
r r m
L i€
r. L. e m'qs
Oglin =75 (5 Jigg = (13.28)
o). L ¢ 12,
€ =_ Lm e
r S
T Ity (13.29)
_3 PLm To.e
fe=357, “dlas

We can find out that in this case lgs controls the rotor flux linkage and

i;s controls the electromagnetic torque. The reference currents of the q-d-0 axis
e* e* e* o
(i gs ' ds ) are converted to the reference phase voltages (Vds’vqs ) as the

commanded voltages for the control loop. Given the position of the rotor flux and
two-phase currents, this generic algorithm implements the instantaneous direct
torque and flux control by means of coordinate transformations and PI regulators,
thereby achieving accurate and efficient motor control.

In asynchronous drives, the mechanical rotor angular speed is not, by
definition, equal to the rotor flux angular speed. This implies that the necessary
rotor flux position cannot be detected directly by the mechanical position sensor
provided with the asynchronous motor explained here.

It is clear that for implementing vector control we have to determine the rotor
flux position. Two basic approaches to determine the rotor flux position angle have
evolved. The direct scheme shown in Fig. 13.3(a), electrically determines the rotor
flux position from measurements using field angle sensors. The indirect scheme
illustrated in Fig. 13.3(b), measures the rotor position and utilizes the slip relation to
compute the angle of the rotor flux relative to the rotor axis. From the feasibility
point of view, implementation of the direct method is difficult if not sometimes
impossible. Therefore, in this chapter, the indirect method is considered as a
solution for implementing FOC.
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(a) Direct flux sensing method.
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w r
(b) Indirect flux sensing method.
Figure 13.3 Two generic types of induction motor vector control.

The indirect method is based on the calculation of the slip speed wg;, ,
required for correct field orientation. Equations (13.27) and (13.28) show that we
can control torque and field by iy, and i, in the excitation frame. However, in the
implementation of field-oriented control, we need to know iy and i, in the

stationary reference frame. So, we have to know the angular position of the rotor
flux to transform iy, and iy, from the excitation frame to the stationary frame. By

using @, , which is shown in (13.28) and using actual rotor speed, the rotor flux

position is obtained.

t t
[ogipdt+ [w,.dt =0,(1) (13.30)
0 0

or
t
J.wslipdt +0,,(1) = 0,.(1) (13.31)
0

In literature, the algorithm of finding rotor flux position using the calculated
@y, and measured w,, or 0, is called the Current Model Method. The Current

Model takes iy and i, as inputs as well as the rotor mechanical speed and gives

Copyright © 2004 CRC Press, LLC



DSP-Based Vector Control of Induction Motors 265

the rotor flux position as an output. Figure 13.4 shows the block diagram of the
vector control strategy in which speed regulation is possible using a control loop.

The absence of the field angle sensors, along with the ease of operation at low
speeds, has increased the popularity of the indirect vector control strategy. While
the direct method is inherently the most desirable scheme, it suffers from the
unreliability in measuring the flux. Although the indirect method can approach the
performance of the direct measurement scheme, its major weakness is the accuracy
of the control gain, which heavily depends on the motor parameters.

Inv. Park
Transformation l Vdc
£ *
mrcf + ia: + Veqs dq® vzs |
e : e B
i o i o o SV || 3-phase
T o e ) ds - Vs Vdas | PWM Inverter
s >
- A
0,
e 4 .
- lqs e lqs
- dqs Bl dq:
Current <o
e s
Model P 14 dqs P 1ds abc [
Bl s &
A Park Clarke
T Ti ion
[ Induction
Mechanical Speed of rotor
Figure 13.4 Vector control scheme for induction motor.

As shown in Fig. 13.4, two-phase current feeds the Clarke transformation

block. These projection outputs are indicated as iy, and i, These two

qs *
components of the current provide the inputs to Park’s transformation, which gives
the currents in the gds® excitation reference frame. The i, and iss components,

which are outputs of the Park transformation block, are compared to their reference

.e*

*
values igq , the flux reference, and iy, , the torque reference. The torque command,

i;: , comes from the output of the speed controller. The flux command, i;j: , is the

output of the flux controller which indicates the right rotor flux command for every

speed reference. For ij: we can use the fact that the magnetizing current is usually

between 40 and 60% of the nominal current. For operating in speeds above the
nominal speed, a field weakening section should be used in the flux controller
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e*

. *
section. The current regulator outputs, vy, and Vgs >

are applied to the inverse Park

N

s » Which are the

transformation. The outputs of this projection are vj, and v,

components of the stator voltage vector in the dgs® orthogonal reference frame.

They form the inputs of the SVPWM block. The outputs of this block are the signals
that drive the inverter.

Note that both the Park and the inverse Park transformations require the exact
rotor flux position, which is given by the current model block. This block needs the
rotor resistance or rotor time constant as a parameter. Accurate knowledge of the
rotor resistance is essential to achieve the highest possible efficiency from the
control structure. Lack of this knowledge results in the detuning of the FOC. In

Fig. 13.4, a SVPWM has been used to emulate v}, and v;;S in order to implement

current regulation. The reader can find more information about SVPWM in Chapter
11.

13.9 Simulation Results for the Induction Motor Control System

The drive system with the proposed control strategy has been simulated prior to
laboratory experimentation. For simulation purposes, software packages such as
Matlab/Simulink™ and Advanced Continuous Simulation Language (ACSL)™ can
be used. In this section, Simulink™ has been used to model the induction motor,
the vector control, and the SVPWM. The induction motor has been simulated with
the dynamic gq-d-0 model using the nominal parameters as given in Table 13.1. The
dc link voltage in the simulation is equal to 100V. Maximum phase current has
been limited to the rated value. Initially, the magnetizing current is set at 60% of the
rated current. The simulation results of the control system to a command speed are
shown in Fig. 13.5.

13.10 Induction Motor Speed Control System

Based on the previous analysis, an induction motor speed control system is
developed as shown in Fig. 13.6. The total control system consists of the induction
motor, the power electronics converter, the sensor, and the controller. These
components are discussed in detail in the following section.
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Time (sec.)

Figure 13.5 (a) reference speed, (b) actual speed, (c) load torque, (d)
electromagnetic torque, (e) stator d-axis current in the rotating reference frame, (f)
stator g-axis current in the rotating reference frame, (g) phase-A current.
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Figure 13.6 Induction motor speed control system.
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13.11 System Components
13.11.1 Power Electronic Converter

As shown in Fig. 13.9, the power electronics converter in induction motor
control system consists of two parts: a front-end rectifier and a three-phase full-
bridge inverter in the right-hand side. The rectifier usually is a full-bridge diode. In
case of a regenerative system, a power switch rectifier is used.

The inverter is usually responsible for both the electronic commutation and
current regulation. Pulse-width-modulated current controllers are typically used to
regulate the actual machine currents to match the sinusoidal current reference
waveforms.

The power hardware used to implement and test the induction motor drive
system can support an input voltage of 1200 V and a maximum current of 50 A. The
hardware is based on six power IGBTs (SKM 50GB 123D), driven by the DSP
controller via the integrated driver SKHI22. The power and the control components
are insolated from one another by the use of opto-couplers in the gate drive signal

path.
Table 13.1 Induction motor parameters

Motor Parameters Value
Rated power 3.0 hp
Rated Voltage 230/460 Volt
Rated Current 7.6/3.8 Amp
Rated Speed 1760 rpm
Pole pairs 2
Rated frequency 60 Hz
Nominal efficiency 87.5%
Base impedance 23.64631 Q
Stator resistance 0.044225 Q
Magnetizing impedance 1.1178 Q
Stator leakage impedance 0.05956 Q
Rotor leakage impedance 0.05956 Q
Rotor resistance 0.03078 Q

13.11.2 Sensors

Two types of sensors for the induction motor control system are used. One is a
current sensor and the other is a position sensor. The phase current sensing is
performed via two current sensors supplied with £15V. Their maximum input
currents can be changed by the number of turns in the primary winding, and the
output is a bipolar voltage.
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Encoders or resolvers serve as the position sensor because every point of the
rotor position is needed to synchronize the rotor with the stator excitation. Figure
13.7 shows the structure of an optical encoder. It consists of a light source, a
radially slotted disk and photoelectric sensors. The disk rotates with the rotor. The
two photo sensors detect the light passing through the slots in the disk. When the
light is hidden, a logic “0” is generated by the sensors. When the light passes
through the slots of the disk, a logic “1” is produced. These logic signals are shown
in Fig. 13.7. By counting the number of pulses, the motor speed can be calculated.
The direction of rotation can be determined by detecting the leading signal between

signal A and signal B.
Light = o L L A
N I A -

Figure 13.7 The structure of an encoder.

13.11.3 Controller

The controller of the induction motor control system is used to read the
feedback current and position signals, to implement the speed or torque control
algorithm, and to generate the gate signals based on the control signal. Analog
controllers or digital signal processors can perform this task. We have used the
LF2407 as a controller.

The interface of the LF2407 is illustrated in Fig. 13.8. Two quadrature
counters detect the rising and falling edges of the encoder signals. Two input
channels related to the 10-bit Analog-to-Digital Converter (ADC) are selected to
read the two-phase currents. The pins PWMI1 to PWMG6 output the gating signals to
the gate drive circuitry.
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En A— | QEP-1
En B—p| QEP-2

Gate

PWM-1 & PWM-6 Drive

TMS320F2407
la — | ADCIN-0
Ib — | ADCIN-I

Figure 13.8 The interface of LF2407.

13.12 Implementation of Field-Oriented Speed Control of Induction Motor

Some practical aspects of implementing the block diagram of Fig. 13.8 are
discussed in this section and subsections. The software organization, the utilization
of different variables, and the handling of the DSP controller resources are
described. In addition, the control structure for the per-unit model is presented.
Next, some numerical considerations have been made in order to address the
problems inherent within fixed-point calculation. As described, current model is
one of the most important blocks in the block diagram depicted in Fig. 13.4. The
inputs of this block are the currents and mechanical speed of rotor. Two sections of
this chapter deal with technical points that should be considered during current and
speed measurement, as well as their scaling. Also, there are some points to be noted
during development of the current model in software; therefore, one section is
dedicated to current model implementation. A PI controller is used in the field-
oriented speed control of the induction motor as a regulator for current and speed
control. The PI structure and block diagram are presented in another section.

13.12.1 Software Organization

The body of the software consists of two main modules: the initialization
module and the PWM Interrupt Service Routine (ISR) module. The initialization
model is executed only once at startup. The PWM ISR module interrupts the
waiting infinite loop when the timer underflows. When the underflow interrupt flag
is set, the corresponding ISR is served. Figure 13.9 shows the general structure of
the software. The complete FOC algorithm is executed within the PWM ISR so that
it runs at the same frequency as the switching frequency or at a fraction of it. The
wait loop could be easily replaced with a user interface [1].
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Hardware
Initialization

v

Variable
Initialization

Figure 13.9 General structure of software.

13.12.2 Base Values and Per-Unit Model

It is often convenient to express machine parameters and variables of per-unit
quantities. Moreover, the LF2407 is a fixed point DSP, so using a normalized per-
unit model of the induction motor is easier than using real parameters. In this
model, all quantities refer to the base values. Base power and base voltage are
selected, and all parameters and variables are normalized using these base
quantities. Although one might violate this convention from time to time when
dealing with instantaneous quantities, the rms values of the rated phase voltage and
current are generally selected as the base voltage for the a-b-c variables while the
peak value is generally selected as the base voltage for d-q variables. The base
values are determined from the nominal values by using (13.31), where 1,,, V,,, f,

are the nominal phase current, the nominal phase to neutral voltage, and the nominal
frequency in a star-connected induction motor, respectively. The base value
definitions are as follows:

[b :\/Eln

V= \/EVn

wp =21f,, (13.31)
y

Yp =L
Wp

I, and V}, are the maximum values of the nominal phase current and voltage, @)

is the electrical nominal rotor flux speed, and y, is the base flux.
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13.12.3 Numerical Considerations

The per-unit model has been developed so that the software representation of
speed, current, and flux is equal to 1.0 when the motor has reached its nominal
speed under nominal load and magnetizing current. During transients, the current
might reach higher values than the nominal current /; in order to achieve a short

response time. Also, the motor speed might exceed the nominal speed (wy ), and

then every per-unit value might be greater than 1.0. This fact necessitates foreseeing
these situations and determines the most suitable numerical format used for the
software.

13.12.4 The Numerical Format Determination

The numerical format used in the major part of this chapter is as follows: four
bits are dedicated to the integer part, and twelve bits are dedicated to the fractional
part. This numeric format is denoted by Q4.12. The resolution for this format is
given by

1 =0.00024414
212

With the sign extension mode of the LF2407 set, the link between the real
quantity and its Q4.12 format representation is illustrated in Fig. 13.10.

A

32767

-
? 7.99975586
24 4e-5

-32767

Figure 13.10 Representation of Q4.12 format.

The reason for this particular format is that the drive control quantities are, for
the most part, not usually greater than four times their nominal values. In other
words, not greater than four when the per-unit model is considered. Where this is
not the case, a different format will be chosen. The selection of a range of [-8,8]
ensures that the software values can handle each drive control quantity, not only
during steady state operation but also during transient operation.
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The Qx.y numeric format uses x bits for the integer part and y bits for the
fractional part, so the resolution is 27 . If z is the per-unit value to implement, then

its software value is zx2” in Qx.y format. Care must be taken when performing
operations with a generic Qx.y format. Adding two Qx.y formatted numbers may
result in numerical representation overflow. To avoid this kind of problem, one
possible solution is to perform the addition in the high side of the Accumulator and
set the saturation bit. Another option is to assume that the result will not be out of
the maximum range.

The second solution can be used in this implementation if we know that the
control quantities do not exceed half of the maximum value in the Q4.12 format.
The result can still be represented in the Q4.12 format and directly considered as
Q4.12 format, thereby allowing for a higher level of precision. As far as the
multiplication is concerned, the result (in the 32-bit Accumulator) must either be
shifted x positions to the left and the least significant word stored or be shifted y
positions to the right with the last significant word being stored. The stored result is
in Qx.y format. Figure 13.11 shows two Qx.y formatted 16-bit variables that are
multiplied by one another.

The result of this multiplication in Qx.y format is represented in gray in the 32-
bit Accumulator. Both solutions are depicted in Fig. 13.11.

MSB LSB MSB LSB
~—, e
v
/X\/y\
T T T T T TTTTTTTT1]
1/X\/y\||||||||||||||||
T TTTTTTT T
/X\/y\
2 I

<+— HighWord ——»<%— LowWord —»

Figure 13.11 (1) Left shift and store high accumulator, (2) Right shift and store

low accumulator.

Note that in this section there are also constants that cannot be represented by
the Q4.12 format. Operations requiring different formats follow exactly the same
process as that explained above.

Copyright © 2004 CRC Press, LLC



274 DSP-Based Vector Control of Induction Motors

13.12.5 Current Measurement

The field-oriented control structure requires two-phase current as inputs. Here,
current transducers sense these two currents. The current sensor output therefore
needs to be rearranged and scaled so that it may be used by the control software in
Q4.12 format value. The complete process of acquiring the current is depicted in

Fig. 13.12.
Iabc 10-bit 10.23 5?2 ; abo
® i 0 Range y
Signal 0 Rang 51
Conditioner A/D adjustment 4 —»
or offset
Figure 13.12 Current measurement block diagram.

The output signal of current transducer can be either positive or negative. This
signal must be adjusted by the analog interface into a range of (0,3.3V) to allow the
ADC module to read both positive and negative values. Figure 13.13 shows the
inside of the signal conditioner.

[abe 1.65v offset
P I+
o CT| O—>»ToAD
ﬁ 1.65v
= -1.65v
Figure 13.13 Current signal conditioner block diagram.

The amplifier gain is chosen such that sensing /. =/, results in the
absolute value of the amplifier output to be equal to 1.65V. Note that [,

represents the maximum measurable current, which is not necessarily equal to the
maximum phase current. This information is useful at the point where current
scaling becomes necessary. The ADC input voltage is now converted into a 10-bit
digital value. The 1.65V analog offset is digitally subtracted from the converted
result, thereby giving a signed integer value of the sensed current. The result of this
process is shown in Fig. 13.14.

Copyright © 2004 CRC Press, LLC



DSP-Based Vector Control of Induction Motors 275

Prescaled
A Value
512

“imex Sensed
) > Current
|max

-512
Figure 13.14 Sensed current values before scaling.

Because the variable format is Q4.12, the sensed phase currents must now be
expressed with the per-unit model and then be converted into the Q4.12 format.
Notice that the per-unit representation of the current is defined as the ratio between
the measured current and the base current, and the maximum current handled by the
hardware is represented by the value 512. The per-unit current conversion into the
Q4.12 format is achieved by multiplying the sensed current by the following
constant:

:ﬂ (13.32)

“ (512x1b]
Imax

In one single calculation, this constant performs not only the per-unit modeling
but also the numerical conversion into Q4.12 format. When nominal current flows
in a motor running at nominal speed, the current sensing and scaling block output is
1000h (equivalent to 1 per-unit).

The reader may change the numerical format by amending the numerator value
and may adapt this constant to its own current sensing range by recalculating K,
with its own I,,,, value. In this control system, maximum measurable current and

base current are [, = 12A and [, = 10.7A, respectively. The constant value is:

___ 4996 597 o 08FsH Q88

o 512x10.7
12

Note that K, is outside the Q4.12 format range. The most appropriate format
to accommodate this constant is the Q8.8 format, which has a resolution of
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1. 0.00390625
28
and the following correspondence to Fig. 13.15.

A

32767

-128 i

-
? 127.996
39.06e-4

-32767

Figure 13.15 Representation of Q8.8 format.

The currents of two phases can be sampled by means of the DSP controller
using two channels of the ADC module. The block of assembly code below reads
and scales the current of phase A.

; Reading and scaling current value of phase A
LDP #RESULT2>>7

LACL RESULT2 ;Reading A/D result register

RPT #5 ;Shift to right 6 times

SFR

AND #0000001111111111b

SUB #512 ;Subtracting offset value

LDP #IA

SACL IA

LAR ARO, #Kcur

LT IA

MPY * ;Multiplying by coefficient to scale the
;current value

PAC

SFL

SACH IA,7 ;Save current value in proper variable

13.12.6 Speed Measurement

As previously mentioned, for finding rotor flux position, it is necessary to
measure the rotor mechanical speed. Usually an incremental encoder is used as a
speed sensor. A 64 pulse per revolution incremental encoder is used to measure the
motor speed. The software speed resolution is thus based on 4x64 =256
increments per revolution. This sensor has two outputs and produces two pulse
trains that are 90° out of phase with respect to each other. The periods of the pulses
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proportionally to the rotor speed. The two output channels A and B of speed sensor
can be wired directly to the QEP input pins of the LF2407.

Because a low count encoder is used in the control system, and because this
encoder does not have enough resolution at low speeds, the control system uses two
methods in order to estimate the induction motor speed. One method has enough
accuracy in the high speed region, above 200 rpm, and the other has appropriate
resolution in the low speed region under 200 rpm. The first method, which is
utilized during high speed, is based on counting the number of encoder pulses in a
specific time interval. However, the second method is based on the measurement of
time between two encoder pulses. Based on the motor speed, the developed program
can utilize the advantages of both methods and switch between the two methods
based on the actual speed of the motor.

13.12.7 Speed Estimation during High-Speed Region

As previously mentioned, this method is based on counting the number of
encoder pulses in a specified time interval. The QEP assigned timer counts the
number of pulses and records it in the timer counter register (TXCNT). As the
mechanical time constant is much slower than the electrical one, the speed
regulation loop frequency might be lower than the current loop frequency. The
speed regulation loop frequency is obtained in this program by means of a software
counter. This counter accepts the PWM interrupt as input clock and its period is the
software variable called SPEEDSTEP. The counter variable is named speedstep.
When speedstep is equal to SPEEDSTEP, the number of pulses counted is stored in

another variable called n, and thus the speed can be calculated. The scheme

depicted in Fig. 13.16 shows the structure of the speed feedback generator.

Kspeed

X—>m

From —p Counter
Encoder — QEP

Speedstep is equal
to SPEEDSTEP?,

Do nothing

Figure 13.16 Block diagram of speed feedback calculator.

Assuming that 7, is the number of encoder pulses in one SPEEDSTEP period
when the rotor turns at the nominal speed, a software constant K,..; should be

chosen as follows:

01000k = K gpoeq-n
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The speed feedback can then be transformed into a Q4.12 format, which can be
used in the control software. In the proposed control system, the nominal speed is
1800 rpm and SPEEDSTEP is set to 125. n,, can be calculated as follows:

_ 1800x 64 x4

n, %0 x SPEEDSTEP x T, =288 (13.33)

where T, = =3x107* (PWM frequency is 10 kHz but the program is

pwm
running at 3333 Hz) and hence K. ; is given by:
4096

Kopeea =~gq =1422 & 0E38h 088

Note that Kg,..; is out of the Q4.12 format range. The most appropriate

format to handle this constant is the Q8.8 format. The speed feedback in Q4.12
format is then obtained from the encoder by multiplying 7, by K,e.q - The flow

chart of speed measurement is presented in Fig. 13.17. A portion of the assembly
code that measures and scales the rotor speed is given below.

; Start of speed calculation in high speed region
LDP #T2CON>>7

LACC T2CNT ;Read counter register of encoder pulse
;counter

SPLK #7FFFh, T2CNT ;Set counter value to 7FFFh

SUB #7FFFh ;Subtract 7FFFh from counter read value
;to omit ;offset

LDP #Speedtmp ;Save this value in Speedtmp

SACL Speedtmp

LAR ARO, #Kspeed

LT Speedtmp ;Multiply Speedtmp by Kspeed to find out
;scaled speed value

MPY *

PAC

SACH N, 4 ;Save speed value in proper variable in
;04.12 format
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np = TxCNT

'

speedstep = speedstep-1

Yes

speedstep = 0 w = Kspeed*np

No !

speedstep = SPEEDSTEP

v

TxCNT=0
< |
y
Figure 13.17 Complete flowchart of speed measurement block during high-

speed region.

13.12.8 Speed Measurement during Low-Speed Region

To detect the edges of two successive encoder pulses, the developed program
can use either the QEP counter or the capture unit input pins. The program has to
measure the time between two successive pulses, so therefore it must utilize another
GP timer. In this program, Timer 3 has been dedicated to the time measurement.
During the interrupt service routine of the capture unit or counter QEP, speed can be
calculated. To obtain the actual speed of the motor, the appropriate number is
divided by the value in the count register of Timer 3.

As it can be inferred, at very low speeds an overflow may occur in Timer 3.
The counter would then reset itself to zero and start counting up again. This event
results in a large error in speed measurement. To avoid this event, Timer 3 will be
disabled in the overflow interrupt service routine. However, this timer is enabled in
the capture unit (counter QEP) interrupt.

The prescalar of Timer 3 is set to x/128, giving the input clock a 234375 Hz
frequency. To obtain the speed value in Q4.12 format, 31238 x4 (a constant
number) is loaded in the accumulator. This number will be divided by the counter
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register of Timer 3. The flow-chart of this implementation is presented in Fig.
13.18.

Start of Capture unit or
Counter QEP ISR

Temp=T3CNT

ACC=31238*32

Start of Timer 3
Overflow ISR
T3CNT=FFFFh

- Timer 3
Enable T;

End of Capture unit or End of Timer 3
Counter QEP ISR Overflow ISR

Figure 13.18 Flowchart of speed measurement at low speed.

np=ACC / Temp

13.12.9 The Current Model

In indirect FOC, the Current Model is used to find the rotor flux position. This

module takes iy and i, as inputs plus the rotor electrical speed and then

calculates the rotor flux position. The current model is based on (13.27) and
(13.28). Equation (13.27) can be written as follows, in transient case:

Lr dﬂ’dr + A’dr

L a1, =iy (13.34)
Assume @: i,, where i, is the magnetizing current, therefore (13.34) can be
written as f:)nllows:
Triim iy =g (13.35)
dt

In order to find the rotor flux speed, we use (13.36) which has been inferred
from (13.28) and (13.30) in a per-unit system.

1 dé g
fs__ =

=——=0,, + 13.36
wy, dt re T,ima)b ( )
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. . L .
where 6 is the rotor flux position and 7, =—- and @,, are the rotor time constant

Ty

and rotor electrical speed, respectively. The rotor time constant is critical to the
correct functionality of the Current Model. This system outputs the rotor flux
speed, which in turn will be integrated to get the rotor flux position. Assuming that

iqs(,m) ~ iqs(k) , (13.35) and (13.36) can be discretized as follows:

, : Ty ( . )
lmr(k+1) :lmr(k) +T_r lds(k) _lmr(k)
L (13.37)
_ k)
fs(m) _n(K+1) + T ;
r@p lmr(kH)
Ty
For example, let the constants —— and be renamed to K; and K,,
Tr T,a)b
respectively. Here L. =73.8mH, r.=0.73Q, and f, =60Hz. So for K; and
K, we have:
T 1 -1
K, :—p:(OL/a)3:2.967x1073 < 000Ch 04.12
T, 101.09x10™
1 1

K; = =26.237x1072 < 006Bh 04.12

T,0p  30.232x107 x377
By knowing the rotor flux speed ( f; ), the rotor flux position (4,,, ) is computed by
the integration formula in the per-unit system.

Qcm(kﬂ) = ch(k) + a)b.fs(k) T (13.38)
As the rotor flux position range is [0, 27 ], 16-bit integer values have been used

to achieve the maximum resolution. Figure 13.19 illustrates the relationship
between the flux position and its numerical representation:

A
65535
o » 0 (rad)
T n
9.58e-5
Figure 13.19 Relation between rotor flux position and its numerical

representation.
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In (13.38), let @y, f,T be called 6;,.. This variable is the rotor angle variation
within one sampling period. At nominal operation (in other words when f, =1, the
27 x 60

mechanical speed is 1800 rpm), &;,. is equal to ————=0.113097ad . In one
p pm), G is eq 1000073
mechanical revolution performed at nominal speed, there are ﬁz%

increments of the rotor flux position. Let K be defined as the constant, which
converts the [0, 27 | range into the [0, 65535] range. K is calculated as follows:

K:%:1170<:>0492h Ol1.15

Note that here we choose the QI1.15 format for this constant because the
maximum value of 6 which is 65535, represents 1 per-unit and the value of &
cannot be greater than 1 per-unit (27 ). With the help of this constant, the rotor flux
position computation and its formatting becomes:

Oemqiary = Oemy + Kl
Thus, the Current Model is a block, as depicted in Fig. 13.20, with three input
variables iy, iz, @, (represented in Q4.12 format) and one output, which is the
rotor flux position 6, represented as a 16-bit integer value. The code block below
shows a portion of the assembly algorithm that determines the rotor flux position.

| PR
I Current 0

* Model o
Ore —— ]

Figure 13.20 Inputs and output of the Current Model block.

;start of calculation rotor flux position
LDP #IDS_R ;start of calculation magnetizing
;current
LACC IDS_R
SUB Imr
SACL templ
MAR *, ARO
LAR ARO, #Kr
LT templ
MPY *
PAC
SACH templ, 4
LACC templ
ADD Imr
SACL Imr
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BCND Imr_Neqgz, NEQ
LACC #0

SACL templ

B IQS_Rp

Imr_Neqz: ;if Imr != 0 then start of slip
; frequency calculation
LACC Imr
SACL temp2
LACC IQS_R
ABS
SACL templ
LACC templ, 12
RPT #15
SUBC temp2
SACL templ
LACC IQS_R
BCND IQS_Rp, GT ;1f IQS is negative then change sign of
;I0S/Imr
LACC templ
NEG
SACL templ
IQS_Rp:

LAR ARO, #Kt
LT templ
MPY *
PAC
SACH templ, 4
LACC templ
ADD N ;add rotor speed to slip frequency
SACL fs ;find rotor flux speed
;end of calculation of rotating flux speed
;Start of finding Rotor Flux position by using integral of fs

LACC fs

ABS

SACL templ

LAR ARO, #Kfs ;multiplying fs bu Kfs, a constant value
;to find increment or decrement in rotor
;flux position

LT templ

MPY *

PAC

SACH teta_inc,4

bit fs,0

BCND fs_neg, TC ;g0 to fs_neg if teta_inc is negative

LACL teta_inc

ADDS TETA

SACL TETA ;find new rotor flux position if
;teta_inc is negative

B fs_pos

fs_neg

LACL TETA

SUBS teta_inc

SACL TETA ;find new roto flux position if teta_inc
;1s positive

fs_pos

; end of finding Rotor flux position

13.12.10 The PI regulator

An electrical drive based on the Field Orientated Control needs two constants

.e*

as control parameters: the torque component reference iy and the flux component
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reference 15: The classical PI regulator is well suited to regulate the torque and
flux feedback to the desired values. This is because it is able to reach constant
references by correctly setting both the proportional term (X, ) and the integral

term ( K; ), which are, respectively, responsible for the error sensibility and for the
steady state error. The numerical expression of the PI regulator is as follows:

k-1
Yoy = K pew) + Kiegry + Zoe<n) (13.39)
n=

which is represented in Fig. 13.21.

Figure 13.21 Classical PI regulator structure in discrete domain.

The limiting point is that during normal operation, large reference value
variations or disturbances may occur, resulting in the saturation and overflow of the
regulator variables and output. If they are not controlled, this non-linearity
detriments the dynamic performance of the system. To solve this problem, one
solution is to add to the previous structure a correction of the integral component as
depicted in Fig. 13.22 [2].

Ufbk
-Ki

Yi Yi
L
Figure 13.22 Numerical PI regulator with correction of the integral term.

The PI regulators are implemented with output saturation and integral
component correction. The constants Kpi, Ki, Kcor, proportional, integral, and
integral correction components, are selected based on the sampling period and on
the motor parameters. These values should be changed based on the motor speed.
These changes can be done automatically within a dummy loop in the program. To
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show the routine of the PI controller in assembly, the following section of code is

given:
LDP #N_ref ;Start of PI procedure
LACC N_ref ;Load reference speed
SUB N ;subtract motor speed from reference
;speed to find error
SACL err_N ;put error in err_N
LACC xi_N,12 ;load previous value of PI output
;jcontroller
LAR ARO, #Kp_N ;start of multiplication Kp*error
LT err_N
MPY *
APAC ;Add previous output of controller with
;new value Y (p)=Y(p-1)+Kp*error
SACH Upi_N, 4
LACC Upi_N ;start of positive saturation value <
; (max)
ABS
SUB IQS_Rmax
BCND N_sat, GT ;if value is less than (max) go to
;negative saturation
LACL Upi_N
B N_LIMIT
N_sat
BIT Upi_N, O ;start of negative saturation (min)<
;value
BCND Upi_Ngz, NTC ;1f Upi_N is positive, then go to
;Upi_Ngz
LACL IQS_Rmin
SACL Upi_N
BN_LIMIT
Upi_Ngz
LACL IQS_Rmax
SACL Upi_N
N_LIMIT
SACL IQS_R ;start of correction procedure
LAR ARO, #Ki_N
LT err_N
MPY *
PAC
ADD xi_N, 12
SACH xi_N,4
LACC xi_N ;start of saturation on integrator
;output
ABS
SUB IQS_Rmax
BCND x_sat, GT
LACL xi_N
B x LIMIT
X_sat
BIT xi_N, O
BCND xi_Ngz, NTC ;1f xi_N is positive, then go to xi_Ngz
LACL IQS_Rmin
SACL xi_N
B x LIMIT
xi_Ngz
LACL IQS_Rmax
SACL xi_N
x_ LIMIT
SACL xi_N

; end of PI procedure
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13.12.11 Calculation of Sine and Cosine Functions

In order to generate the sine and the cosine of an angle, a sine table and indirect
addressing mode by auxiliary register AR has been used. This algorithm and code
examples are presented in Chapter 11. The flow chart of the field-oriented speed
control of induction motor is presented in Fig. 13.23. This routine is placed inside
the PWM interrupt service routine.

Start of PWM ISR

Reading Ia and Ib

Tabe = Tdas
Clark Trans.

Regulate
speed?

Yes

High speed?
No Calculate speed
No
Speed PI regulator,
Calculate Iqs
Calculate SIN and
COS of qr

S G
Current Model

fas and Tqs
to PI regulator
and calculate
Vs and Vs

New 0. H (Vaas)=>(Vias) |

end of PWM ISR

Figure 13.23 Flow chart of FOC software.
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13.13 Experimental Results

In our experience, the motor has been coupled to a DC generator. The
generator can be loaded with an adjustable resistor providing a variables load. As

explained in the previous sections, the flux reference (ij:) in the normal speed
range has been set at 0.4 per-unit. To avoid the maximum phase current being
greater than 1 per-unit (|iabc| = ifl:z + if;:z , if[;k may not be higher than 0.8 per-
unit. This torque reference limitation is integrated into the control software using
the I0S ref max constant, which is set to 0CCDh (4.12 format). The following
scope captures show the transient and steady state operations. Figure 13.24 shows
the load torque, reference speed, motor speed, and phase current of the motor during
transient operation. Before a change of the reference speed, a magnetizing current
is applied to the motor to build the magnetizing flux. By increasing the load, a
breaking torque is applied to the motor. In this figure, the reference speed is 100
rpm and the load torque is 45.5 (Ib-in).
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1s i 1
p.ho v T

215 o 1./; :‘F; | f LI 2
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e /' ]

b I
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TR

50 my DC 5

50 my  DC 3 5 kS/s
I I 4 060200

[ 18.8 ns < pulse O STOPPED
Figure 13.24 Start up, no-load condition, (1) load torque, (2) reference speed

100 rpm, (3) motor speed, (4) phase current.
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13.14 Conclusion

In this chapter, the theory of field-oriented control of induction motors was
described. The structure and organization of software written for the LF2407 DSP
controller was also presented. Some technical points and tools were presented to
assist in developing a working model for an induction motor drive. The modular
structure of this presentation and guidelines allow the reader to quickly grasp the
aspects of FOC, thereby assisting the reader in developing software for specific
needs.
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Chapter 14
DSP-BASED CONTROL OF SWITCHED RELUCTANCE MOTOR

DRIVES

14.1 Introduction

Switched Reluctance Motor (SRM) drives are relatively new entities in the
perpetually growing market of Adjustable Speed Motor Drives (ASMD). A rugged,
modular structure and a relatively simple geometry are among the advantages of the
SRM drive. In addition, the absence of magnetic sources, i.e., windings or
permanent magnets on the rotor shown in Fig. 14.1, makes SRM relatively easy to
cool and insensitive to high temperatures. The latter is of prime interest in
applications that demand operation under harsh conditions such as automotive
starter or alternator.

Figure 14.1 Rotor and stator of an 8/6 SRM.

As a singly excited synchronous machine, SRM generates its electromagnetic
torque solely on the principle of reluctance. In most electric machines, an attraction
and repletion force between the magnetic fields caused by the armature and field
windings forms the dominant part of the torque. In a SRM, the tendency of a
polarized rotor pole to align with an excited stator pole is the only source of torque.
It must be noted that optimal performance is achieved by proper positioning of the
current pulse with respect to the magnetic status of the machine. Therefore, the
sensing of the rotor position becomes an integral part of the control in a SRM drive.

A unipolar power inverter is usually used to supply the SRM. The generation of
the targeted current profile is performed using a hysteresis or PWM type current
controller. Although a square-shaped current pulse is commonly used for excitation
in a SRM, different optimal current profiles are sometimes used to mitigate the
undesirable effects of excessive torque undulation and audible noise. In fact, SRM
drives serve as an outstanding example of advanced motor drive systems where the
focus is not on the complicated geometries of the motor, but on the development of
a sophisticated control algorithm. The development of complex control algorithms
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is facilitated by the recent development of high-performance, cost-effective DSP-
based controllers.

Optimal torque control is the major differentiating factor among various arts of
electric drives. A detailed explanation of the torque generation process and optimal
torque control in the four quadrants of operation of a SRM is given. Later, the
development of speed controllers will be discussed.

14.2 Fundamentals of Operation

Switched reluctance machines can operate as either a motor or a generator. To
explain the torque generation process, we investigate the mechanism of
electromechanical energy conversion. As shown in Fig. 14.2, in order to establish a
reluctance torque, a stator phase is excited at unaligned position displayed by a in
the figure, viz., the position at which a pair of stator and rotor poles exhibits its
largest air gap length. By magnetizing the stator pole, the closest rotor pole will be
magnetically polarized and will experience an attractive force. The tangential
component of this force substantiates an electromagnetic torque in the direction
which reduces the air gap length. The shape of the current is usually controlled
such that a maximum torque per ampere is generated. As the rotor approaches the
aligned position, shown by u in the figure, the radial component of the attraction
force becomes dominant and the tangential component reduces to zero. Therefore,
it makes economic sense to remove the current before the aligned position. The
shaded area in Fig. 14.2 depicts the magnetic energy converted into mechanical
form, whereas the area denoted by “R” demonstrates the magnetic energy that has
not been converted into useful work. Notably, the ratio between mechanical work
and total converted energy into magnetic form is an indication of power quality in
SRM drives. In Fig. 14.2, w and @represent the flux linkages and rotor position,

respectively.

Figure 14.2 Electromechanical energy conversion in SRM.
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In order to obtain motoring action, a stator phase is excited when the rotor is
moving from the unaligned position toward the aligned position. Similarly, by
exciting a stator phase when the rotor is moving from aligned toward unaligned
position, a generating action will be achieved. By sequential excitation of the stator
phases, a continuous rotation can be achieved. Figure 14.3 shows the distribution of
the magnetic field during commutations in an 8/6 SRM drive. Notably, the direction
of the rotation is opposite that of the stator excitation. A short flux path in the back-
iron of the motor occurs in each electrical cycle. This, in turn, may cause
asymmetry in the torque production process.

Figure 14.3 Illustration of short vs. long flux paths for a 8/6 SRM.

Proper synchronization of the stator excitation with the rotor position is a key
step in the development of an optimal control strategy in SRM drives. Because the
magnetic characteristics of the SRM, such as phase inductance or phase flux
linkage, portray a one-to-one correspondence with the rotor position, they may be
directly used for control purposes. In either case, direct or indirect detection of the
rotor position forms an integral part of the control in the SRM drives.
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The asymmetric bridge shown in Fig. 14.4 is the most commonly used power
electronics inverter for a SRM drive. This topology features a unipolar architecture
that allows for satisfactory operation in SRM drives. If both switches are closed,
the available dc link voltage is applied to the winding. By opening the switches, the
negative dc link voltage will be applied to the winding and freewheeling diodes
guarantee a continuous current in the windings. Obviously, by keeping one of the
switches closed while the other one is open, the respective freewheeling diode will
provide a short-circuited path for the current. This topology can be used effectively
to implement PWM-based or hysteresis-based current regulation as demanded by
the control system. However, one should notice that at high speeds the induced
EMF in the winding is dominant and does not allow effective control of the current
waveform. Therefore, current regulation is an issue related only to the low speed
mode of operation. During generation, the mechanical energy supplied by the prime
mover will be converted into an electrical form manifested by the induced EMF.
Unlike the motoring mode of operation, this voltage acts as a voltage source that
increases the current in the stator phase, thereby resulting in the generation of
electricity.

i
|
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Figure 14.4 An asymmetric bridge with the front end rectifier for a 3-¢ SRM drive.

14.3 Fundamentals of Control in SRM Drives

The control of electromagnetic torque is the main differentiating factor between
various types of adjustable speed motor drives. In switched reluctance motor drives,
tuning the commutation instant and profile of the phase current controls
electromagnetic torque. Figure 14.5 depicts the basics of commutation in SRM
drives. It can be seen that by properly positioning the current pulse, one can obtain
positive (motoring) or negative (generating) modes of operation.

The induced EMF and electromagnetic torque generated by the SRM drive can
be expressed in terms of co-energy as follows:

2

00 0i de
T:%zlwﬂ (14.1)
00 2 db
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where W,.,L,0,i, and @ stand for co-energy, phase inductance, rotor position,
phase current, and angular speed, respectively.

It must be noted that the nonlinear effects of magnetic saturation are neglected
here. It is evident that a positive torque is achieved only if the current pulse is
positioned in a region with an increasing inductance profile. Similarly, a generating
mode of operation is achieved when the excitation is positioned in a region with a
decreasing inductance profile. In order to enhance the productivity of the SRM
drive, the commutation instants, (i.e., 6,,, Qoﬁr) need to be tuned as a function of

the angular speed and phase current. To fulfill this goal, the optimization of torque
per Ampere is a meaningful objective. Therefore, exciting the motor phase when
the inductance has a flat shape should be avoided. At the same time, the phase
current needs to be removed well before the aligned position to avoid the generation
of negative torque.

-T

Figure 14.5 Commutation in SRM drives.

14.4 Open Loop Control Strategy for Torque

By the proper selection of the control variables, commutation instants, and
reference current, an open loop control strategy for SRM drive can be designed.
The open loop control strategy is comprised of the following steps:

e Detection of the initial rotor position.
e Computation of the commutation thresholds in accordance with the sign of
torque, current level, and speed.
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e  Monitoring of the rotor position and selection of the active phases.
e A control strategy for regulation of the phase current at low speeds.

Each step is explained in detail in the subsequent sections.

14.4.1 Detection of the Initial Rotor Position

The main task at rotor standstill is to detect the most proper phase for initial
excitation. Once this is established, according to the direction of rotation, a
sequence of stator phase excitation will be put in place. The major difficulty in
using commercially available encoders is that they do not provide a position
reference. Therefore, the easiest way to find rotor position for motor startup is to
align one of the stator phases with the rotor. This can be achieved by exciting an
arbitrary stator phase with an adequate current for a short period of time. Once the
rotor is in an aligned position, a reference initial position can then be established.
This method requires an initial movement by the rotor, which may not be acceptable
in some applications. In these cases, the incorporati