

CAT#1918_TitlePage 7/21/03 2:34 PM Page 1

CRC PR ESS
Boca Raton London New York Washington, D.C.

DSP-BASED
ELECTROMECHANICAL

MOTION CONTROL

Hamid A. Toliyat
Steven Campbell

Texas A&M University
Department of Electrical Engineering

College Station, Texas

Copyright © 2004 CRC Press, LLC

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2004 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1918-8

Library of Congress Card Number 2003058462
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Toliyat, Hamid A.
DSP-Based electromechanical motion control / by Hamid A. Toliyat and Steven Campbell.

p. cm.-- (Power electronics and applications series)
Includes bibliographical references and index.
ISBN 0-8493-1918-8 (alk. paper)
1. Digital control systems. 2. Electromechanical devices. 3. Signal processing--Digital

techniques. I. Campbell, Steven (Steven Gerard), 1979- II. Title. III. Series.

TJ223.M53.T64 2003
629.8—dc22 2003058462

1918 disclaimer Page 1 Tuesday, August 19, 2003 12:15 PM

Copyright © 2004 CRC Press, LLC

http://www.crcpress.com

To my wife Mina, and my sons Amir and Mohammad for their love

and patience while this book was being prepared.

To my parents for their continuous support and encouragement.

 - H.T.

Copyright © 2004 CRC Press, LLC

PREFACE

This book was written to provide a general application guide for students and

engineers of all disciplines who want to begin utilizing a Digital Signal Processor
(DSP) for the task of electromechanical motion control. While the act of learning to
program and use the DSP itself is not overly difficult, utilizing the DSP in
applications such as motor control can sometimes seem challenging to the first-time
user.

Full mastery of all the topics and concepts presented in this text would take
years of study and knowledge from many areas of engineering and science. For this
reason, we will attempt to survey each topic, giving readers a basic understanding of
each topic without going into great depth. We will thus leave it to the reader for in-
depth study of particular topics of interest.

So why would we choose to integrate a DSP into a motion control system?
Well, the advantages of such a design are numerous. DSP-based control gives us a
large degree of freedom in developing computationally extensive algorithms that
would otherwise be very difficult or impossible without a DSP. Advanced control
algorithms can sometimes drastically increase the performance and efficiency of the
electromechanical system being controlled.

For example, consider a typical Heating-Ventilation-and-Air-Conditioning
(HVAC) system. A standard HVAC system contains at least three electric motors:
compressor motor, condenser fan motor, and the air handler fan motor. Typically,
indoor temperature is controlled by simply cycling (turning on and off) the system.
This control method puts unnecessary wear on system components and is
inefficient. An advanced motor drive system incorporating DSP control could
continuously adjust both the air-conditioner compressor speed and indoor fan to
maintain the desired temperature and optimal system performance. This control
scheme would be much more energy efficient and could extend the operational
lifespan of the system.

We will start by visiting the LF2407 DSP processor. Device functionality,
integrated components, memory, and assembly programming will be covered.
Several laboratory exercises will help the reader practice the information presented
in each chapter. After several chapters are presented on the DSP, more advanced
topics are presented involving several real-world applications in the area of motion
control and motor drives.

Copyright © 2004 CRC Press, LLC

ACKNOWLEDGMENTS

As most readers can imagine, creating a book is no trivial task. Besides the
authors listed on the cover of each book, there are usually many others who give
their time and knowledge. These contributions range from the writing of a chapter
to simply proofreading the book for mistakes. This book is no exception. There are
many people I would like to thank who made invaluable contributions to the
creation of this book.

During the past two years that this book was in development, the many
undergraduate students who took my “DSP-Based Electromechanical Motion
Control Devices” course in the Department of Electrical Engineering at Texas
A&M University provided invaluable feedback on the material. I am in debt to all
of them.

I would also like to extend my gratitude to Texas Instruments for permitting me
to use the materials in its manuals. I would also like to extend a special
acknowledgment to Gene Frantz and Christina Peterson from Texas Instruments,
whose help and support for materializing this book were fundamental.

Several individuals, including my past and present graduate students, have
contributed to this book. They are as follows: Sebastien Gay, Dr. Masoud
Hajiaghajni - Chapter 7; Dr. Lei Hao and Leila Parsa - Chapters 8, 9, and 12; Mehdi
Abolhassani - Chapter 10; Nasser Qahtani - Chapter 11; Peyman Niazi - Chapter 13;
Sang-shin Kwak - Chapter 15; and Baris Ozturk the Appendix.

Dr. Babak Fahimi of University of Missouri-Rolla wrote Chapter 14 and Dr.
Syed Madani of the University of Puerto Rico-Mayaguez contributed to Chapter 7.
Rebecca Morrison proofread several chapters.

I would also like to thank Nora Konopka, Helena Redshaw, Susan Fox of CRC
Press for their patience and support while this book was being prepared.

Hamid A. Toliyat
College Station, TX

Copyright © 2004 CRC Press, LLC

TABLE OF CONTENTS

Chapter 1 Introduction to the TMSLF2407 DSP Controller1

1.1 Introduction...1
1.2 Brief Introduction to Peripherals...3
1.3 Types of Physical Memory ...5
1.4 Software Tools..6

Chapter 2 C2xx DSP CPU and Instruction Set ..19

2.1 Introduction to the C2xx DSP Core and Code Generation19
2.2 The Components of the C2xx DSP Core ..19
2.3 Mapping External Devices to the C2xx Core and the Peripheral

Interface ...21
2.4 System Configuration Registers..22
2.5 Memory...26
2.6 Memory Addressing Modes..31
2.7 Assembly Programming Using the C2xx DSP Instruction Set36

Chapter 3 General Purpose Input/Output (GPIO) Functionality............................49

3.1 Pin Multiplexing (MUX) and General Purpose I/O Overview49
3.2 Multiplexing and General Purpose I/O Control Registers50
3.3 Using the General Purpose I/O Ports ..57
3.4 General Purpose I/O Exercise ...58

Chapter 4 Interrupts on the TMS320LF2407...61

4.1 Introduction to Interrupts ..61
4.2 Interrupt Hierarchy ...61
4.3 Interrupt Control Registers ...64
4.4 Initializing and Servicing Interrupts in Software70
4.5 Interrupt Usage Exercise...75

Chapter 5 The Analog-to-Digital Converter (ADC) ..77

5.1 ADC Overview ...77
5.2 Operation of the ADC...78
5.3 Analog to Digital Converter Usage Exercise98

Chapter 6 The Event Managers (EVA, EVB) ..101

6.1 Overview of the Event Manager (EV) ..101
6.2 Event Manager Interrupts ...102
6.3 General Purpose (GP) Timers ...115
6.4 Compare Units ..134
6.5 Capture Units and Quadrature Encoded Pulse (QEP) Circuitry....147
6.6 General Event Manager Information ..158
6.7 Exercise: PWM Signal Generation ...161

Copyright © 2004 CRC Press, LLC

Chapter 7 DSP-Based Implementation of DC-DC Buck-Boost Converters163
7.1 Introduction...163
7.1 Converter Structure...163
7.2 Continuous Conduction Mode ..164
7.3 Discontinuous Conduction Mode..165
7.4 Connecting the DSP to the Buck-Boost Converter165
7.5 Controlling the Buck-Boost Converter ...168
7.6 Main Assembly Section Code Description171
7.7 Interrupt Service Routine..173
7.8 The Regulation Code Sequences...175
7.9 Results...179

Chapter 8 DSP-Based Control of Stepper Motors ...183

8.1 Introduction...183
8.2 The Principle of Hybrid Stepper Motor ..183
8.3 The Basic Operation ...184
8.4 The Stepper Motor Drive System ...188
8.5 The Implementation of Stepper Motor Control System Using the

LF2407 DSP .. 190
8.6 The Subroutine of Speed Control Module191
 Reference ..192

Chapter 9 DSP-Based Control of Permanent Magnet Brushless DC Machines...193

9.1 Introduction...193
9.2 Principles of the BLDC Motor..195
9.3 Torque Generation ..195
9.4 BLDC Motor Control System...196
9.5 Implementation of the BLDC Motor Control System Using the

LF2407..200

Chapter 10 Clarke’s and Park’s Transformations ..209

10.1 Introduction...209
10.2 Clarke’s Transformation ...209
10.3 Park’s Transformation ..210
10.4 Transformations Between Reference Frames212
10.5 Field Oriented Control (FOC) Transformations............................213
10.6 Implementing Clarke’s and Park’s Transformations
 on the LF240X... 214
10.7 Conclusion ..222
 References...222

Chapter 11 Space Vector Pulse Width Modulation ...223

11.1 Introduction...223
11.2 Principle of Constant V/Hz Control for Induction Motors............223
11.3 Space Vector PWM Technique...224
11.4 DSP Implementation...232

Copyright © 2004 CRC Press, LLC

 References...240

Chapter 12 DSP-Based Control of Permanent Magnet Synchronous Machines..241

12.1 Introduction...241
12.2 The Principle of the PMSM ..241
12.3 PMSM Control System...244
12.4 Implementation of the PMSM System Using the LF2407............248

Chapter 13 DSP-Based Vector Control of Induction Motors...............................255

13.1 Introduction...255
13.2 Three-Phase Induction Motor Basic Theory255
13.3 Model of the Three-Phase Induction Motor in Simulink257
13.4 Reference Frame Theory...259
13.5 Induction Motor Model in the Arbitrary q-d-0 Reference Frame .260
13.6 Field Oriented Control ..261
13.7 DC Machine Torque Control ..262
13.8 Field Oriented Control, Direct and Indirect Approaches262
13.9 Simulation Results for the Induction Motor Control System........266
13.10 Induction Motor Speed Control System..266
13.11 System Components ...268
13.12 Implementation of Field-Oriented Speed Control of
 Induction Motor..270
13.13 Experimental Results ..287
13.14 Conclusion ..288
 References...288

Chapter 14 DSP-Based Control OF Switched Reluctance Motor Drives289

14.1 Introduction...289
14.2 Fundamentals of Operation...290
14.3 Fundamentals of Control in SRM Drives......................................292
14.4 Open Loop Control Strategy for Torque.......................................293
14.5 Closed Loop Torque Control of the SRM Drive...........................301
14.6 Closed Loop Speed Control of the SRM Drive304
14.7 Summary...305
14.8 Algorithm for Running SRM Drive using an Optical Encoder......305

Chapter 15 DSP-Based Control of Matrix Converters...307

15.1 Introduction...307
15.2 Topology and Characteristics..308
15.3 Control Algorithms ...309
15.4 Space Vector Modulation ...314
15.5 Bidirectional Switch..319
15.6 Current Commutation ...320
15.7 Overall Structure of Three-Phase Matrix Converter321
15.8 Implementation of the Venturini Algorithm using the LF2407322
 References...325

Copyright © 2004 CRC Press, LLC

Appendix A Development of Field-Oriented Control Induction Motor Using

VisSim™ ...327
A.1 Introduction...327
A.2 Overview of VisSim™ Placing and Wiring Blocks......................327
A.3 Computer Simulation of Vector Control of Three-Phase

Induction Motor Using VisSim™ ...329
A.4 Summary and Improvements ..341
 References...342

Copyright © 2004 CRC Press, LLC

Chapter 1

INTRODUCTION TO THE TMSLF2407 DSP CONTROLLER

1.1 Introduction

The Texas Instruments TMS320LF2407 DSP Controller (referred to as the
LF2407 in this text) is a programmable digital controller with a C2xx DSP central
processing unit (CPU) as the core processor. The LF2407 contains the DSP core
processor and useful peripherals integrated onto a single piece of silicon. The
LF2407 combines the powerful CPU with on-chip memory and peripherals. With
the DSP core and control-oriented peripherals integrated into a single chip, users
can design very compact and cost-effective digital control systems.

The LF2407 DSP controller offers 40 million instructions per second (MIPS)
performance. This high processing speed of the C2xx CPU allows users to compute
parameters in real time rather than look up approximations from tables stored in
memory. This fast performance is well suited for processing control parameters in
applications such as notch filters or sensorless motor control algorithms where a
large amount of calculations must be computed quickly.

While the “brain” of the LF2407 DSP is the C2xx core, the LF2407 contains
several control-orientated peripherals onboard (see Fig. 1.1). The peripherals on the
LF2407 make virtually any digital control requirement possible. Their applications
range from analog to digital conversion to pulse width modulation (PWM)
generation. Communication peripherals make possible the communication with
external peripherals, personal computers, or other DSP processors. Below is a brief
listing of the different peripherals onboard the LF2407 followed by a graphical
layout depicted in Fig. 1.1.

The LF2407 peripheral set includes:

• Two Event Managers (A and B)
• General Purpose (GP) timers
• PWM generators for digital motor control
• Analog-to-digital converter
• Controller Area Network (CAN) interface
• Serial Peripheral Interface (SPI) – synchronous serial port
• Serial Communications Interface (SCI) – asynchronous serial port
• General-Purpose bi-directional digital I/O (GPIO) pins
• Watchdog Timer (“time-out” DSP reset device for system integrity)

1

Copyright © 2004 CRC Press, LLC

 Introduction to the TMSLF2407 DSP controller 2

XTAL1/CLKIN
XTAL2

PLLVCCA

PLLF2

PLLF

VSSA

VREFHI

ADCIN08-ADCIN15
VCCA

ADCIN00-ADCIN07

SCIRXD/IOPA1
SPISIMO/IOPC2

XINT2/ADCSOC/IOPD0
SCITXD/IOPA0

VREFLO

Port A(0-7) IOPA[0:7]

SPICLK/IOPC4
SPISTE/IOPC5

SPISOMI/IOPC3

Port E(0-7) IOPE[0:7]
Port F(0-6) IOPF[0:6]

Port C(0-7) IOPC[0:7]
Port D(0) IOPD[0]
Port B(0-7) IOPB[0:7]

TDO

TDI

CANRX/IOPC7

TRST

CANTX/IOPC6

EMU1

PDPINTB

TCK

EMU0

TMS

CAP5/QEP4/IOPF0
CAP4/QEP3/IOPE7

PWM7/IOPE1
PWM8/IOPE2
CAP6/IOPF1

PWM10/IOPE4
PWM9/IOPE3
PWM11/IOPE5
PWM12/IOPE6
T4PWM/T4CMP/IOPF3
T3PWM/T3CMP/IOPF2
TDIRB/IOPF4
TCLKINB/IOPF5

DARAM (B0)
256 Words

DARAM (B1)
256 Words

DARAM (B2)
32 Words

C2xx
DSP
core

PLL clock

10-Bit ADC
(with twin

autosequencer)

RS
CLKOUT/IOPE0

XINT1/IOPA2

BIO /IOPC1
MP/ MC

W/ R / IOPC0

TMS2

A0-A15
D0-D15

TP1
TP2

BOOT EN /XF

READY
STRB

R/ W
RD

PS , DS , IS

VIS OE
ENA 144

WE

CAP3/IOPA5
PWM1/IOPA6

CAP1/QEP1/IOPA3
CAP2/QEP2/IOPA4

PDPINTA

PWM5/IOPB2
PWM6/IOPB3

PWM3/IOPB0
PWM4/IOPB1
PWM2/IOPA7

T2PWM/T2CMP/IOPB5
T1PWM/T1CMP/IOPB4

TCLKINA/IOPB7
TDIRA/IOPB6

V DD (3.3 V)
V SS

V CCP (5V)

SARAM (2K Words)

Flash/ROM
(32K Words:

4K/12K/12K/4K)

External memory interface

Event manager A
- 3 Capture Inputs
- 6 Compare/PWM Outputs
- 2 GP Timers/PWM

SCI

SPI

WD

Digital I/O
(shared with other pins)

CAN

JTAG port

Indicates optional modules in the 240x family. The memory size and peripheral selection of these modules
change for different 240xA devices

Event manager B
- 3 Capture Inputs
- 6 Compare/PWM Outputs
- 2 GP Timers/PWM

Figure 1.1 Graphical overview of DSP core and peripherals on the LF2407.

(Courtesy of Texas Instruments)

Copyright © 2004 CRC Press, LLC

Introduction to the TMSLF2407 DSP controller 3

1.2 Brief Introduction to Peripherals

The following peripherals are those that are integrated onto the LF2407 chip.
Refer to Fig. 1.1 to view the pin-out associated with each peripheral.

Event Managers (EVA, EVB)

There are two Event Managers on the LF2407, the EVA and EVB. The Event
Manager is the most important peripheral in digital motor control. It contains the
necessary functions needed to control electromechanical devices. Each EV is
composed of functional “blocks” including timers, comparators, capture units for
triggering on an event, PWM logic circuits, quadrature-encoder–pulse (QEP)
circuits, and interrupt logic.

The Analog-to-Digital Converter (ADC)

The ADC on the LF2407 is used whenever an external analog signal needs to
be sampled and converted to a digital number. Examples of ADC applications
range from sampling a control signal for use in a digital notch filtering algorithm or
using the ADC in a control feedback loop to monitor motor performance.
Additionally, the ADC is useful in motor control applications because it allows for
current sensing using a shunt resistor instead of an expensive current sensor.

The Control Area Network (CAN) Module

While the CAN module will not be covered in this text, it is a useful peripheral
for specific applications of the LF2407. The CAN module is used for multi-master
serial communication between external hardware. The CAN bus has a high level of
data integrity and is ideal for operation in noisy environments such as in an
automobile, or industrial environments that require reliable communication and data
integrity.

Serial Peripheral Interface (SPI) and Serial Communications Interface (SCI)

The SPI is a high-speed synchronous communication port that is mainly used
for communicating between the DSP and external peripherals or another DSP
device. Typical uses of the SPI include communication with external shift registers,
display drivers, or ADCs.

The SCI is an asynchronous communication port that supports asynchronous
serial (UART) digital communication between the CPU and other asynchronous
peripherals that use the standard NRZ (non-return-to-zero) format. It is useful in
communication between external devices and the DSP. Since these communication
peripherals are not directly related to motion control applications, they will not be
discussed further in this text.

Copyright © 2004 CRC Press, LLC

 Introduction to the TMSLF2407 DSP controller 4

Watchdog Timer (WD)

The Watchdog timer (WD) peripheral monitors software and hardware
operations and asserts a system reset when its internal counter overflows. The WD
timer (when enabled) will count for a specific amount of time. It is necessary for
the user’s software to reset the WD timer periodically so that an unwanted reset
does not occur. If for some reason there is a CPU disruption, the watchdog will
generate a system reset. For example, if the software enters an endless loop or if the
CPU becomes temporarily disrupted, the WD timer will overflow and a DSP reset
will occur, which will cause the DSP program to branch to its initial starting point.
Most error conditions that temporarily disrupt chip operation and inhibit proper
CPU function can be cleared by the WD function. In this way, the WD increases the
reliability of the CPU, thus ensuring system integrity.

General Purpose Bi-Directional Digital I/O (GPIO) Pins

Since there are only a finite number of pins available on the LF2407 device,
many of the pins are multiplexed to either their primary function or the secondary
GPIO function. In most cases, a pin’s second function will be as a general-purpose
input/output pin. The GPIO capability of the LF2407 is very useful as a means of
controlling the functionality of pins and also provides another method to input or
output data to and from the device. Nine 16-bit control registers control all I/O and
shared pins. There are two types of these registers:

• I/O MUX Control Registers (MCRx) – Used to control the multiplexer
selection that chooses between the primary function of a pin or the general-
purpose I/O function.

• Data and Direction Control Registers (PxDATDIR) – Used to control the
data and data direction of bi-directional I/O pins.

Joint Test Action Group (JTAG) Port

The JTAG port provides a standard method of interfacing a personal computer
with the DSP controller for emulation and development. The XDS510PP or
equivalent emulator pod provides the connection between the JTAG module on the
LF2407 and the personal computer. The JTAG module allows the PC to take full
control over the DSP processor while Code Composer StudioTM is running. Figure
1.2 shows the connection scheme from computer to the DSP board.

 XDS510 PP

Plus
Emulator

Pod

TI LF2407
Evaluation

Module
(EVM)

Computer
Parallel Port

Figure 1.2 PC to DSP connection scheme.

Copyright © 2004 CRC Press, LLC

Introduction to the TMSLF2407 DSP controller 5

Phase Locked Loop (PLL) Clock Module

The phase locked loop (PLL) module is basically an input clock multiplier that
allows the user to control the input clocking frequency to the DSP core. External to
the LF2407, a clock reference (can oscillator/crystal) is generated. This signal is
fed into the LF2407 and is multiplied or divided by the PLL. This new (higher or
lower frequency) clock signal is then used to clock the DSP core. The LF2407’s
PLL allows the user to select a multiplication factor ranging from 0.5X to 4X that of
the external clock signal. The default value of the PLL is 4X.

Memory Allocation Spaces

The LF2407 DSP Controller has three different allocations of memory it can
use: Data, Program, and I/O memory space. Data space is used for program
calculations, look-up tables, and any other memory used by an algorithm. Data
memory can be in the form of the on-chip random access memory (RAM) or
external RAM. Program memory is the location of user’s program code. Program
memory on the LF2407 is either mapped to the off-chip RAM (MP/MC- pin =1) or
to the on-chip flash memory (MP/MC- = 0), depending on the logic value of the
MP/MC-pin.

I/O space is not really memory but a virtual memory address used to output
data to peripherals external to the LF2407. For example, the digital-to-analog
converter (DAC) on the Spectrum DigitalTM evaluation module is accessed with I/O
memory. If one desires to output data to the DAC, the data is simply sent to the
configured address of I/O space with the “OUT” command. This process is similar
to writing to data memory except that the OUT command is used and the data is
copied to and outputted on the DAC instead of being stored in memory.

1.3 Types of Physical Memory

Random Access Memory (RAM)

The LF2407 has 544 words of 16 bits each in the on-chip DARAM. These
544 words are partitioned into three blocks: B0, B1, and B2. Blocks B1 and B2 are
allocated for use only as data memory. Memory block B0 is different than B1 and
B2. This memory block is normally configured as Data Memory, and hence
primarily used to hold data, but in the case of the B0 block, it can also be configured
as Program Memory. B0 memory can be configured as program or data memory
depending on the value of the core level “CNF” bit.

• (CNF=0) maps B0 to data memory.
• (CNF=1) maps B0 to program memory.

The LF2407 also has 2K of single-access RAM (SARAM). The addresses

associated with the SARAM can be used for both data memory and program
memory, and are software configurable to the internal SARAM or external memory.

Copyright © 2004 CRC Press, LLC

 Introduction to the TMSLF2407 DSP controller 6

Non-Volatile Flash Memory

The LF2407 contains 32K of on-chip flash memory that can be mapped to
program space if the MP/MC-pin is made logic 0 (tied to ground). The flash
memory provides a permanent location to store code that is unaffected by cutting
power to the device. The flash memory can be electronically programmed and
erased many times to allow for code development. Usually, the external RAM on
the LF2407 Evaluation Module (EVM) board is used instead of the flash for code
development due to the fact that a separate “flash programming” routine must be
performed to flash code into the flash memory. The on-chip flash is normally used
in situations where the DSP program needs to be tested where a JTAG connection is
not practical or where the DSP needs to be tested as a “stand-alone” device. For
example, if a LF2407 was used to develop a DSP control solution to an automobile
braking system, it would be somewhat impractical to have a DSP/JTAG/PC
interface in a car that is undergoing performance testing.

1.4 Software Tools

Texas Instrument’s Code Composer StudioTM (CCS) is a user-friendly
Windows-based debugger for developing and debugging software for the LF2407.
CCS allows users to write and debug code in C or in TI assembly language. CCS
has many features that can aid in developing code. CCS features include:

• User-friendly Windows environment
• Ability to use code written in C and assembly
• Memory displays and on-the-fly editing capability
• Disassembly window for debugging
• Source level debugging, which allows stepping through and setting

breakpoints in original source code
• CPU register visibility and modification
• Real-time debugging with watch windows and continuous refresh
• Various single step/step over/ step-into command icons
• Ability to display data in graph formats
• General Extension Language (GEL) capability, allows the user to create

functions that extend the usefulness of CCSTM

1.4.1 Becoming Aquatinted with Code Composer Studio (CCS)

This exercise will help you become familiar with the software and emulation
tools of the LF2407 DSP Controller. CCSTM, the current emulation and debugging
software, is user-friendly and a powerful development tool.

The hardware required for this exercise and all others is the Spectrum Digital
TMS320LF2407 EVM package, which includes LF2407 EVM board and the
XDS510PP Plus JTAG emulator pole. You will also need a Windows-based

Copyright © 2004 CRC Press, LLC

Introduction to the TMSLF2407 DSP controller 7

personal computer with a parallel printer port. In this lab exercise you will learn
how to:

• Open a program, build it, and load the program onto the DSP.
• View the disassembly
• View and edit memory locations
• View and edit CPU registers
• Open a Watch Window
• Reset the DSP
• Run the program in Real-time Mode
• Set breakpoints
• Single step through code
• Save and load a workspace

Since some readers may not have connected their EVM to their PC, we will

start with the necessary PC to EVM connection and setup. Follow this procedure if
you are first connecting the LF2407 EVM to your PC.

• First, if you have not done so, configure the parallel port of your PC and

connect the emulator and target board according to the documentation that
came with the LF2407 EVM.

• Before you can start using CCSTM, CCS needs to be configured for the
particular DSP emulator you are going to be using.

Run CC_setup.exe, which should be an icon under Start/Programs/Code

Composer or at C:\tic2xx\cc\bin\cc_setup.exe. You should see a window appear
similar to that shown in Fig. 1.3.

Figure 1.3 Code Composer setup window (from running Setup.exe).

Copyright © 2004 CRC Press, LLC

 Introduction to the TMSLF2407 DSP controller 8

Once you have entered Code Composer Setup window, the proper
board/simulator needs to be added to the “System Configuration”.

a. Drag the appropriate icon from the “Available Board/Simulator Types” list
to the “System Configuration” list. To use the LF2407 DSP select, use the
sdgo2xx icon as shown in Fig. 1.4.

Figure 1.4 Simulator types.

b. Once you drag the sdgo2xx icon into the “System Configuration” section, a

“Board Properties” box (shown in Fig. 1.5) should appear. Click on the
“Board Properties” tab and set the I/O port for 378.

Figure 1.5 Port setting for Printer/Parallel Port.

Copyright © 2004 CRC Press, LLC

Introduction to the TMSLF2407 DSP controller 9

c. Click on the “Processor Configuration” tab and select the TMS320C2400
processor. Click on the “Add Single” button. You should the see “CPU_1”
under the “processors on the board” list.

d. Click on the “Finish” button located at the lower right corner of the “Board

Properties” box. The setup is now complete. Go to File/Save to save the
configuration. Close the Code Composer Setup window.

Now that everything is connected properly, we shall begin with the CCS

exercise:

1. Turn on the EVM. The green LED on the top right of the board will
confirm that there is power to the board.

2. Open Code Composer Studio by running cc_app.exe either from the
desktop icon, Start/Programs/Code Composer, or
C:\tic2xx\cc\bin\cc_app.exe.

3. Go to the “Project” menu, select “Open” as seen in Fig. 1.6. Open
realtime.mak, which is found under C:\tic2xx\c2000\tutorial\realtime. The
project file is the master file that “holds” the other files together to build a
working program.

Figure 1.6 Project open window.

4. Once you have the project opened, look at the frame on the left side of the
screen where “Files”, “GEL files”, and “Project” are listed. Expand
everything in the “Project” folder. When you are done, you should see the
“Include” files, “Libraries”, and “Source” files as shown in Fig. 1.7. The
project file (*.mak) is the master file that links the other necessary files
together as a common filename. When you want to create a program with
Code Composer, you will want to first create a new project, add a new
source file(s) (*.asm or *.c) to the project, add the linker command file
(*.cmd), and add “include” (*.i) or “header” (*.h) files.

Copyright © 2004 CRC Press, LLC

 Introduction to the TMSLF2407 DSP controller 10

As in other programming languages, “include” (*.i) and “header” (*.h)
files are user-defined files that are common to most programs.
Functionally *.h and *.i files are the same. Both types of files can define
constants, macros (user defined callable functions), or variables. In this
case, we want to run our program in real-time mode. Therefore, we need a
real-time monitor program (C200mntr.i in this program). The file X24x.h
contains variable names for data memory mapped control registers. The
code that is in the header (*.h) or include (*.i) file could be written in the
actual source code, but it is easier to just make general register definitions
as a header file that can be used with many projects.

The linker command file (*.cmd) is vital to the proper building of your
code. It specifies where in the program memory to place sections of the
program code, defines memory blocks, contains linker options, and names
input files for the linker, names the (.out) etc. The linker command file also
specifies memory allocations. Without a proper linker command file, CCS
will not build the program properly. In this case, the linker command file
is named realtime.cmd.

Source (*.c or *.asm) files contain the actual program that is to be run on
the DSP. You must have at least one source file, but may have source files
that call other source files. Be sure all relevant source files are added to the
project.

Figure 1.7 CCS window with opened project.

Copyright © 2004 CRC Press, LLC

Introduction to the TMSLF2407 DSP controller 11

5. Now that you have the project opened, go to Option/Program Load, and
check the “load program after build” box (Fig. 1.8). This will
automatically load the DSP compatible version of the program (*.out) file
into the DSP after the build is complete. Building the project causes Code
Composer to assemble and link your code. Basically, this creates a file
that the DSP can be loaded with and run. Loading the program can also be
done manually under the “File” menu.

Figure 1.8 Program load options box.

6. Now go to Project/ Rebuild All. This will build and load the program into
the DSP. If the program is being loaded onto the DSP, the disassembly
window will open up automatically.

Note: It is good practice to ALWAYS RESET THE DSP each time you build or
rebuild the project. Do this by going to “Debug” menu, then “Reset DSP”.

To view the disassembly window as in Fig. 1.9 if it is not already open, go
to View/Dis-Assembly. The disassembly window shows the assembly code
that is stored in program memory. It also has a highlighted line that serves
as the position marker when running the program.

Figure 1.9 Disassembly window.

Note: When Source Level Debugging is selected (we’ll get to this in a minute), a
position marker also appears in the appropriate source code window (if a program
is loaded into the DSP) (Fig. 1.10).

Copyright © 2004 CRC Press, LLC

 Introduction to the TMSLF2407 DSP controller 12

Figure 1.10 Source level debugging.

7. The CPU registers and CPU status registers are very helpful in debugging

code. To view these registers, go to View/CPU Registers (both registers are
under this menu). Open both CPU registers. You should see the registers
appear in new frames on the screen.

8. The ability to view memory locations is also vital to debugging. To view

memory, go to View/Memory. You should see a box pop up which will
configure the memory window that is about to open (see Fig. 1.11). Enter
0x0300 for the start address.

Figure 1.11 Memory viewing window.

Copyright © 2004 CRC Press, LLC

Introduction to the TMSLF2407 DSP controller 13

You can also change the values for the CPU registers and memory
locations by double clicking on the register or memory location. A box
will pop up that will allow you to enter in a new value.

Double click on the 0x300 location in the memory window and change the
value to 0x0555. The new value will appear in red signifying that the
memory location has been changed.

Using the same technique, change a few registers in the CPU status and
CPU register frames. Observe how the values in the registers change to the
new value entered.

9. In MAIN.ASM scroll down until you see the line “.bss Main_counter,1”.

Highlight “Main_counter” and add that variable to the watch window.

A watch window allows us to view variables that we use in our code.
Open a watch window by going to View/Watch Window. You can add
variables to this window by highlighting the variable name in the source
code and then right clicking the mouse button and selecting “add to watch
window”. Now, let us edit the display format of this variable in the watch
window. Double click on the variable name in the watch window. When
the “edit variable” box appears, add the command “*(int*)” in front of the
variable name (see Fig. 1.12). This configures the variable in the watch
window to be displayed as an integer, thus ensuring that a decimal value is
displayed. Otherwise, a hex value will be displayed.

Figure 1.12 Editing a variable while in the watch window.

10. Rebuild the project (which should load the program as well) and reset the

DSP by going to Debug Menu/Reset DSP.

Note: If a source code window opens up as well as the disassembly window when
the project is built, Source Level Debugging is enabled. If not, enable Source Level
Debugging by going to Project/Options/Assembler Tab and check the “enable
source level debugging” (Fig. 1.13). Source level debugging lets you see where in
the source code the program is running instead of having to decipher the
disassembly window information. If you have just enabled Source Level
Debugging, you need to rebuild the project before it takes effect.

Copyright © 2004 CRC Press, LLC

 Introduction to the TMSLF2407 DSP controller 14

Figure 1.13 Build options menu box.

11. Enable Real Time mode by performing the following steps:

a. The DSP must have the program already loaded in order to enable
real-time mode. (While in real-time mode, programs cannot be
loaded to the DSP.)

b. Reset the DSP by going to Debug Menu / Reset DSP.
c. Open the Command Window by going to Tools Menu / Command

Window.
d. Type in the Command Window “go MON_GO”.
e. Put CCS in Real-time mode by going to Debug Menu / Real-time

Mode. When in real-time mode, you will se the word
“REALTIME” in the bottom of the code composer screen.

f. Reset the DSP again and the program is ready to RUN.

Copyright © 2004 CRC Press, LLC

Introduction to the TMSLF2407 DSP controller 15

Note: Real-time mode is a useful feature of CCS that allows you to see changes as
they happen but is not necessary for program debugging. When CCS is not in real
time mode, the values in all windows will update as soon as the program is halted
or a break point occurs.

Right click on the watch window and choose “Continuous Refresh”. This
will allow the values in the Watch window to change.

12. We are now ready to run the demonstration program. First make sure that

no breakpoints have been set or the DSP will stop when it reaches the
breakpoint.

Run the program by going to Debug/Run. Running and halting the DSP
can also be performed by hitting F5 to run and Shift-F5 to halt. Observe as
the value of “Main_counter” in the watch window changes.

13. Halt the DSP by going to Debug/Halt. In the disassembly or source

window you should see that the program is halted somewhere in the area of
code entitled “Loop” (hex address 0159-015D in the disassembly window
(program memory)). Left click on a line in the “Loop” section and toggle a
breakpoint by right clicking the mouse and selecting “toggle breakpoint”.
You should see a purple line appear where the breakpoint is set (Fig. 1.14).
Notice how the breakpoint appears in both the disassembly window and
the window containing the assembly source code.

Figure 1.14 Breakpoint is located at the highlighted line (source level debug).

Copyright © 2004 CRC Press, LLC

 Introduction to the TMSLF2407 DSP controller 16

14. Run the program and watch as the DSP stops at the breakpoint each time it
passes through the “Loop” section. (You will need to “run” the DSP each
time after it hits a breakpoint because the breakpoint essentially “pauses”
the DSP.) Observe as the value of Main_counter increments by 1 in the
watch window each time the code is restarted after the breakpoint.
Remove the breakpoint by toggling it off.

Note: If you wish to single step through the code regardless of whether or not a
breakpoint is set, you can do this by choosing Debug/Step Into or pressing F8.

15. If you wish to save the screen configuration (position of windows, what

appears on the screen, etc.) go to File Menu/Workspace/save workspace
shown in Fig. 1.15.

Now, when you re-open CCS in the future, you will only have to load the
workspace, saving you the trouble of opening the memory, CPU, and
source code windows shown in Fig. 1.16. Saving a workspace not only
saves window configuration, but project configuration as well. If a
previously saved workspace is opened, the project that was open at the
time of the workspace save will also open. While saving a workspace
saves screen configuration, it does not save the contents of any files or the
project!

Figure 1.15 Saving a workspace.

Copyright © 2004 CRC Press, LLC

Introduction to the TMSLF2407 DSP controller 17

Figure 1.16 Screenshot of typical CCSTM workspace.

The screenshot shown in Fig. 1.16 displays what a typical workspace might

contain. The workspace includes: several memory windows, watch window, CPU
register windows, source code, and project window.

This concludes the introduction of the most common features of Code
Composer Studio. There are many features not covered by this introduction that
may be useful to advanced users. Consult the program Help or the Code Composer
Users Guide for more information on Code Composer functions.

Copyright © 2004 CRC Press, LLC

Chapter 2

C2xx DSP CPU AND INSTRUCTION SET

2.1 Introduction to the C2xx DSP Core and Code Generation

The heart of the LF2407 DSP Controller is the C2xx DSP core. This core is a
16-bit fixed point processor, meaning that it works with 16-bit binary numbers.
One can think of the C2xx as the central processor in a personal computer. The
LF2407 DSP consists of the C2xx DSP core plus many peripherals such as Event
Managers, ADC, etc., all integrated onto one single chip. This chapter will discuss
the C2xx DSP core, subcomponents, and instruction set.

The C2xx core has its own native instruction set of assembly mnemonics or
commands. Through the use of CCS and the associated compiler, one has the
freedom of writing code in both C language and the native assembly language.
However, to write compact, fast executing programs, it is best to compose code in
assembly language. Due to this reason, programming in assembly will be the focus
of this book. However, we will also include an example of a software tool called
VisSimTM, by Visual Solutions. VisSim allows users to simulate algorithms and
develop code in “block” form. More on VisSim will be presented in the Appendix.

2.2 The Components of the C2xx DSP Core

The DSP core (like all microprocessors) consists of several subcomponents
necessary to perform arithmetic operations on 16-bit binary numbers. The
following is a list of the multiple subcomponents found in the C2xx core which we
will discuss further:

• A 32-bit central arithmetic logic unit (CALU)
• A 32-bit accumulator (used frequently in programs)
• Input and output data-scaling shifters for the CALU
• A (16-bit by 16-bit) multiplier
• A product-scaling shifter
• Eight auxiliary registers (AR0 – AR7) and an auxiliary register arithmetic

unit (ARAU)

Each of the above components is either accessed directly by the user code or is
indirectly used during the execution of an assembly command.

Central Arithmetic Logic Unit (CALU)

The C2xx performs 2s-complement arithmetic using the 32-bit CALU. The
CALU uses 16-bit words taken from data memory, derived from an immediate
instruction, or from the 32-bit multiplier result. In addition to arithmetic operations,
the CALU can perform Boolean operations. The CALU is somewhat transparent to

19

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 20

the user. For example, if an arithmetic command is used, the user only needs to
write the command and later read the output from the appropriate register. In this
sense, the CALU is “transparent” in that it is not accessed directly by the user.

Accumulator

The accumulator stores the output from the CALU and also serves as another
input to the CALU (many arithmetic commands perform operations on numbers that
are currently stored in the accumulator; versus other memory locations). The
accumulator is 32 bits wide and is divided into two sections, each consisting of 16
bits. The high-order bits consist of bits 31 through 16, and the low-order bits are
made up of bits 15 through 0. Assembly language instructions are provided for
storing the high- and low-order accumulator words to data memory. In most cases,
the accumulator is written to and read from directly by the user code via assembly
commands. In some instances, the accumulator is also transparent to the user
(similar to the CALU operation in that it is accessed “behind the scenes”).

Scaling Shifters

The C2xx has three 32-bit shifters that allow for scaling, bit extraction,
extended arithmetic, and overflow-prevention operations. The scaling shifters make
possible commands that shift data left or right. Like the CALU, the operation of the
scaling shifters is “transparent” to the user. For example, the user needs only to use
a shift command, and observe the result. Any one of the three shifters could be used
by the C2xx depending on the specific instruction entered. The following is a
description of the three shifters:

• Input data-scaling shifter (input shifter): This shifter left-shifts 16-bit

input data by 0 to 16 bits to align the data to the 32-bit input of the CALU.
For example, when the user uses a command such as “ADD 300h, 5”, the
input shifter is responsible for first shifting the data in memory address
“300h” to the left by five places before it is added to the contents of the
accumulator.

• Output data-scaling shifter (output shifter): This shifter left-shifts data

from the accumulator by 0 to 7 bits before the output is stored to data
memory. The content of the accumulator remains unchanged. For
example, when the user uses a command such as “SACL 300h, 4”, the
output shifter is responsible for first shifting the contents of the
accumulator to the left by four places before it is stored to the memory
address “300h”.

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 21

• Product-scaling shifter (product shifter): The product register (PREG)
receives the output of the multiplier. The product shifter shifts the output
of the PREG before that output is sent to the input of the CALU. The
product shifter has four product shift modes (no shift, left shift by one bit,
left shift by four bits, and right shift by six bits), which are useful for
performing multiply/accumulate operations, fractional arithmetic, or
justifying fractional products.

Multiplier

The multiplier performs 16-bit, 2s-complement multiplication and creates a 32-
bit result. In conjunction with the multiplier, the C2xx uses the 16-bit temporary
register (TREG) and the 32-bit product register (PREG).

The operation of the multiplier is not as “transparent” as the CALU or shifters.
The TREG always needs to be loaded with one of the numbers that are to be
multiplied. Other than this prerequisite, the multiplication commands do not require
any more actions from the user code. The output of the multiply is stored in the
PREG, which can later be read by the user code.

Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

The ARAU generates data memory addresses when an instruction uses indirect
addressing to access data memory (more on indirect addressing will be covered later
along with assembly programming). Eight auxiliary registers (AR0 through AR7)
support the ARAU, each of which can be loaded with a 16-bit value from data
memory or directly from an instruction. Each auxiliary register value can also be
stored in data memory. The auxiliary registers are mainly used as “pointers” to data
memory locations to more easily facilitate looping or repeating algorithms. They
are directly written to by the user code and are automatically incremented or
decremented by particular assembly instructions during a looping or repeating
operation. The auxiliary register pointer (ARP) embedded in status register ST0
references the auxiliary register. The status registers (ST0, ST1) are core level
registers where values such as the Data Page (DP) and ARP located. More on the
operation and use of auxiliary registers will be covered in subsequent chapters.

2.3 Mapping External Devices to the C2xx Core and the Peripheral

Interface

Since the LF2407 contains many peripherals that need to be accessed by the
C2xx core, the C2xx needs a way to read and write to the different peripherals. To
make this possible, peripherals are mapped to data memory (memory will be
covered shortly). Each peripheral is mapped to a corresponding block of data
memory addresses. Where applicable, each corresponding block contains
configuration registers, input registers, output registers, and status registers. Each
peripheral is accessed by simply writing to the appropriate registers in data memory,
provided the peripheral clock is enabled (see System Configuration registers).

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 22

The peripherals are linked to the internal memory interface of the CPU through
the PBUS interface shown in Fig. 2.1. All on-chip peripherals are accessed through
the Peripheral Bus (PBUS). All peripherals, excluding the WD timer counter, are
clocked by the CPU clock (which has a selectable frequency), and must be enabled
via the system configuration registers.

C2xx CPU + JTAG
+ 544 x 16 DARAM

Mem I/F

Logic
I/F

P bus I/F

I/O
registers

ADC
controlCAN WDSCI

ADC

P bus

Synthesized ASIC gates

Flash/ROM
(up to 32K × 16)

SPI
Event

Managers
(EVA and EVB)

Interrupts
reset, etc.

SARAM
(up to 2K × 16)

Figure 2.1 Functional block diagram of the LF2407 DSP controller.

2.4 System Configuration Registers

The System Control and Status Registers (SCSR1, SCSR2) are used to
configure or display fundamental settings of the LF2407. For example, these
fundamental settings include the clock speed (clock pre-scale setting) of the
LF2407, which peripherals are enabled, microprocessor/microcontroller mode, etc.
Bits are controlled by writing to the corresponding data memory address or the logic
level on an external pin as with the microprocessor/microcontroller (MP/MC) select
bit. The bit descriptions of these two registers (mapped to data memory) are listed
below.

System Control and Status Register 1 (SCSR1) — Address 07018h

15 14 13 12 11 10 9 8

Reserved CLKSRC LPM1 LPM0 CLK PS2 CLK PS1 CLK PS0 Reserved

R–0 RW–0 RW–0 RW–0 RW–1 RW–1 RW–1 R–0

7 6 5 4 3 2 1 0

ADC
CLKEN

SCI
CLKEN

SPI
CLKEN

CAN
CLKEN

EVB
CLKEN

EVA
CLKEN

Reserved ILLADR

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 R–0 RC–0

Note: R = read access, W = write access, C = clear, -0 = value after reset.

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 23

Bit 15 Reserved

Bit 14 CLKSRC. CLKOUT pin source select

0 CLKOUT pin has CPU Clock (40 MHz on a 40-MHz device) as
the output

1 CLKOUT pin has Watchdog clock as the output

Bits 13–12 LPM (1:0). Low-power mode select
These bits indicate which low-power mode is entered when the
CPU executes the IDLE instruction.

Description of the low-power modes:

LPM(1:0) Low-Power mode selected

00 IDLE1 (LPM0)

01 IDLE2. (LPM1)

1x HALT (LPM2)

Bits 11–9 PLL Clock prescale select. These bits select the PLL multiplication

factor for the input clock.

CLK
PS2

CLK
PS1

CLK
PS0

System Clock Frequency

0 0 0 4 x Fin
0 0 1 2 x Fin
0 1 0 1.33 x Fin
0 1 1 1 x Fin
1 0 0 0.8 x Fin
1 0 1 0.66 x Fin
1 1 0 0.57 x Fin
1 1 1 0.5 x Fin

Note: Fin is the input clock frequency.
Bit 8 Reserved

Bit 7 ADC CLKEN. ADC module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)
1 Clock to module is enabled and running normally

Bit 6 SCI CLKEN. SCI module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)
1 Clock to module is enabled and running normally

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 24

Bit 5 SPI CLKEN. SPI module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)
1 Clock to module is enabled and running normally

Bit 4 CAN CLKEN. CAN module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)
1 Clock to module is enabled and running normally

Bit 3 EVB CLKEN. EVB module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)
1 Clock to module is enabled and running normally

Bit 2 EVA CLKEN. EVA module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)
1 Clock to module is enabled and running normally

Note: In order to modify/read the register contents of any peripheral, the clock to
that peripheral must be enabled by writing a 1 to the appropriate bit.

Bit 1 Reserved

Bit 0 ILLADR. Illegal Address detect bit

If an illegal address has occurred, this bit will be set. It is up to
software to clear this bit following an illegal address detect. This
bit is cleared by writing a 1 to it and should be cleared as part of
the initialization sequence. Note: An illegal address will cause a
Non-Maskable Interrupt (NMI).

System Control and Status Register 2 (SCSR2) — Address 07019h

15-8

Reserved

RW–0

7 6 5 4 3 2 1 0

Reserved I/P QUAL WD
OVERRIDE

XMIF HI–Z BOOT EN MP/MC DON PON

 RW–0 RC–1 RW–0 RW–BOOT
EN pin

RW–
MP/MC pin

RW–1 RW–1

Note: R = read access, W = write access, C = clear, -0 = value after reset.

Bits 15–7 Reserved. Writes have no effect; reads are undefined

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 25

Bit 6 Input Qualifier Clocks.
An input-qualifier circuitry qualifies the input signal to the
CAP1–6, XINT1/2, ADCSOC, and PDPINTA/B pins in the
240xA devices. The I/O functions of these pins do not use the
input-qualifier circuitry. The state of the internal input signal will
change only after the pin is held high/low for 6 (or 12) clock
edges. This ensures that a glitch smaller than (or equal to) 5 (or
11) CLKOUT cycles wide will not change the internal pin input
state. The user must hold the pin high/low for 6 (or 12) cycles to
ensure that the device will see the level change. This bit
determines the width of the glitches (in number of internal clock
cycles) that will be blocked. Note that the internal clock is not the
same as CLKOUT, although its frequency is the same as
CLKOUT.

0 The input-qualifier circuitry blocks glitches up to 5 clock cycles

long
1 The input-qualifier circuitry blocks glitches up to 11 clock cycles

long
Note: This bit is applicable only for the 240xA devices, not for the 240x devices
because they lack an input-qualifier circuitry.

Bit 5 Watchdog Override. (WD protect bit)

After RESET, this bit gives the user the ability to disable the WD
function through software (by setting the WDDIS bit = 1 in the
WDCR). This bit is a clear-only bit and defaults to a 1 after reset.

Note: This bit is cleared by writing a 1 to it.

0 Protects the WD from being disabled by software. This bit cannot

be set to 1 by software. It is a clear-only bit, cleared by writing a 1
1 This is the default reset value and allows the user to disable the

WD through the WDDIS bit in the WDCR. Once cleared,
however, this bit can no longer be set to 1 by software, thereby
protecting the integrity of the WD timer

Bit 4 XMIF Hi-Z Control

This bit controls the state of the external memory interface
(XMIF) signals.

0 XMIF signals in normal driven mode; i.e., not Hi-Z (high
impedance)

1 All XMIF signals are forced to Hi-Z state

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 26

Bit 3 Boot Enable
This bit reflects the state of the BOOT_EN / XF pin at the time of
reset. After reset and device has “booted up”, this bit can be
changed in software to re-enable Flash memory visibility or return
to active Boot ROM.

0 Enable Boot ROM — Address space 0000 — 00FF is now
occupied by the on-chip Boot ROM Block. Flash memory is
totally disabled in this mode. Note: There is no on-chip boot
ROM in ROM devices (i.e., LC240xA)

1 Disable Boot ROM — Program address space 0000 — 7FFF is
mapped to on-chip Flash memory in the case of LF2407A and
LF2406A. In the case of LF2402A, addresses 0000 – 1FFF are
mapped

Bit 2 Microprocessor/Microcontroller Select

This bit reflects the state of the MP/MC pin at time of reset. After
reset, this bit can be changed in software to allow dynamic
mapping of memory on and off chip.

0 Set to Microcontroller mode — Program Address range 0000 —
7FFF is mapped internally (i.e., Flash)

1 Set to Microprocessor mode — Program Address range 0000 —
7FFF is mapped externally (i.e., customer provides external
memory device.)

Bits 1–0 SARAM Program/Data Space Select

DON PON SARAM status
0 0 SARAM not mapped (disabled), address space allocated to

external memory
0 1 SARAM mapped internally to Program space
1 0 SARAM mapped internally to Data space
1 1 SARAM block mapped internally to both Data and

Program spaces. This is the default or reset value

Note: See memory map for location of SARAM addresses

2.5 Memory

Memory is required to hold programs, perform operations, and execute
programming instructions. There are three main blocks of memory which are
present on the LF2407 chip: B0, B1, and B2. Additionally, there are two different
memory “spaces” (program, data) in which blocks are used. We will discuss
exactly what each memory “block” and memory “space” is, and what each is used
for.

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 27

2.5.1 Memory Blocks and Types

A block of memory on the LF2407 is simply a specified range of memory
addresses (each address consists of a 16-bit word of memory). There are three main
memory blocks on the LF2407 that can be specified via the Linker Command File
(we will discuss the Linker Command File and other files types when we cover
programming).

The LF2407 has 544 16-bit words of on-chip Double Access Random Access
Memory (DARAM) that are divided into three main memory blocks named B0, B1,
and B2. In addition to the DARAM, there are also 2000 16-bit words of Single
Access Random Access Memory (SARAM). The main difference between
DARAM and SARAM is that DARAM memory can be accessed twice per clock
cycle and SARAM can only be accessed once per cycle. Thus, DARAM reads and
writes twice as fast as SARAM.

In addition to the RAM present on the LF2407, there is also non-volatile Flash
memory. Unlike RAM, the Flash memory does not lose its contents when the
LF2407 loses power. Flash memory can only be written to by “flashing” the
memory, which is a process that can only be done manually by a user. Therefore,
Flash memory on the LF2407 is used only to store a program that is to be run. As
stated in Chapter 1, it is only necessary to use the Flash memory if the DSP is to be
run independently from a PC and JTAG interface. Though we introduce Flash
memory, it will not be covered in this text. However, the reader is encouraged to
consult the Texas Instruments documentation on Flash memory. Flash memory can
prove to be a valuable code development tool when it comes time to test a LF2407
program where having a PC connected is impractical.

2.5.2 Memory Space and Allocation

There are two ways of using the physical memory on board the LF2407: storing
a program or storing data.

A program that is to be run must be stored in memory that is mapped to
program space. Likewise, only memory that is in data space may be used to store
data. Program memory is written to when a program is loaded into the LF2407.
Data memory is normally written to during the execution of a program, where the
program might use the data memory as temporary storage for calculation variables
and results.

Memory blocks B1 and B2 are configured as data memory. The B0 block is
primarily intended to hold data, but can be configured to act as either program or
data memory, depending on the value of the CNF bit in Status Register ST1. CNF =
0 maps B0 in data memory, while CNF = 1 maps B0 in program memory.

The memory addresses associated with the SARAM can be configured for both
data memory and program memory, and are also software configurable to either

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 28

access external memory or the internal SARAM. When configured for internal, the
SARAM can be used as data or program memory. However, when configured as
external, these addresses are used for off-chip program memory. SARAM is useful
if more memory is needed for data than the B0, B1, and B2 blocks can provide. The
SARAM addresses should be configured to either program or data space via the
Linker Command File.

The on-chip flash in the LF2407 is mapped to program memory space when the
external MP/MC-pin is pulled low. When the MP/MC-pin is pulled high, the
program memory is mapped to external memory addresses, access via memory that
is physically external to the LF2407. In the case of the Spectrum Digital EVM,
external memory is installed on the board and a jumper pulls the MP/MC pin high
or low.

2.5.3 Memory Maps

Program Memory

When a program is loaded into the LF2407, the code resides in and is run from
program memory space. In addition to storing the user code, the program memory
can also store immediate operands and table information. Figure 2.2 shows the
various program memory addresses (in hexadecimal) and how they are used.

 0000h

003Fh
0040h

 FDFFh
FE00h

FFFFh

0000h-0001h
0002h-0003h
0004h-0005h
0006h-0007h
0008h-0009h
000Ah-000Bh
000Ch-000Dh
000Eh-000Fh

0022h-0023h
0024h-0025h

External

Reset

Interrupt level 1

Interrupt level 2

Interrupt level 3

Interrupt level 4

Interrupt level 5

Interrupt level 6

TRAP

NMI

0010h-0021h Software interrupts

Reserved

Reserved 0026h-0027h

 7FFFh
8000h

On-chip
FEFFh
FF00h

DARAM (B0)
(CNF = 1)

(External if CNF = 0)

32K on-chip flash (MP/MC = 0)
External (MP/MC = 1)

Software interrupts 0028h-003Fh

Reserved
(CNF = 1)

(External if CNF = 0)

User code in
flash memory

Interrupt
vectors

Code security passwords
0043h
0044h

Figure 2.2 Program memory map for LF2407. (Courtesy of Texas Instruments)

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 29

Two factors determine the configuration of program memory:

CNF bit:
The CNF bit determines if B0 memory is in on-chip program space:
CNF = 0. The 256 words are mapped as external memory.
CNF = 1. The 256 words of DARAM B0 are configured for program use.

At reset, B0 is mapped to data space (CNF = 0).

MP/MC pin:

The level on the MP/MC pin determines if program instructions
are read from on-chip Flash/ROM or external memory:

MP/MC = 0. The device is configured in microcontroller mode. The on-
chip flash EEPROM is accessible. The device fetches the reset
vector from on-chip memory.

MP/MC = 1. The device is configured in microprocessor mode. Program

memory is mapped to external memory.

Data Memory

For the execution of a program, it is necessary to store calculation results or
look up tables in memory. The memory allocated for this function is called data
memory. In order to store a value to a data memory address (dma), the
corresponding memory block must reside in data memory space. Blocks B1 and B2
discussed earlier permanently reside in data space, while block B0 and the SARAM
are configurable for either program or data.

Data memory space has the second functionality of providing an easy way to
access on-chip configuration registers and peripherals. Each user configurable
peripheral has associated registers in data memory addresses that may be written to
or read from as needed. For example, the control registers for the analog-to-digital
converter (ADC) are each located in the data memory range of 70A0h to 70BFh.
The internal data memory includes the memory-mapped registers, DARAM blocks,
and peripheral memory-mapped registers. The remaining 32K words of memory
(8000h to FFFFh) form part of the external data memory.

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 30

Reserved

Reserved

Reserved

70C0-70FF

General-purpose timer registers

flag registers
Interrupt mask, vector, and

Event manager - EVB

deadband registers
Compare, PWM, and

Capture and QEP registers

7500-7508
7511-7519
7520-7529
752C-7531
7532-753F

7432-743F
742C-7431
7420-7429
7411-7419
7400-7408

Illegal

Event manager - EVA

710F-71FF
7100-710E

70A0-70BF
7090-709F
7080-708F
7070-707F
7060-706F
7050-705F
7040-704F
7030-703F
7020-702F
7010-701F
7000-700F

CAN control registers

ADC control registers

Digital I/O control registers

External-interrupt registers

SCI

SPI

Watchdog timer registers

control registers
System configuration and

Hex Hex

005F
0007
0006
0005
0004
0003
0000

and reserved
Emulation registers

Interrupt flag register

Interrupt-mask register

FFFF

77F0 77EF
7540 753F
7500 74FF
7440 743F
7400 73FF
7000 6FFF
1000

07FF

0400 03FF
0300 02FF

0200 01FF

0080 007F
0060 005F

0000

External *

Peripheral frame 3 (PF3)

Peripheral frame 2 (PF2)

Peripheral frame 1 (PF1)

On-chip DARAM B1

On-chip DARAM B0

Reserved

On-chip DARAM B2

and reserved
Memory-mapped registers

Indicates that access to these
addresses causes a nonmaskable in-
terrupt (NMI).

Reserved Indicates addresses that are re-
served for test.

* Available in LF2407A only

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

0100 00FF

Reserved

Illegal0500 04FF

SARAM (2K)0800
0FFF

CAN mailbox

Illegal 7230-73FF
7200-722F

Reserved

Code security passwords

Illegal

77F3

7800
7FFF
8000

General-purpose timer registers

flag registers
Interrupt mask, vector, and

deadband registers
Compare, PWM, and

Capture and QEP registers

77F4
77FF

Figure 2.3 Data memory map for the LF2407. (Courtesy of Texas Instruments)

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 31

Input/Output (I/O) Space

I/O space is solely used for accessing external peripherals such as the digital-to-
analog converter (DAC) on the LF2407 EVM. It is not to be confused with the I/O
functionality of pins. The assembly instruction “OUT” is used to write to an
address that is mapped to I/O space. Figure 2.4 depicts the basic memory map of
the I/O space on the LF2407.

Wait-state generator
control register*

0000h

External

FEFF
FF00

FFFF

FF0E

FF0F

FF10

FFFE

Reserved

Reserved

Flash control
mode register*

Figure 2.4 Memory map of I/O space. (Courtesy of Texas Instruments)

Within program, data, and I/O space are addresses that are reserved for system

functionality and may not be written to. It is important that the user pay attention to
what memory ranges are used by the program and where the program is to be
loaded. It is important to make sure the Linker Command File is configured
properly and the correct Data Page (DP) is set to avoid inadvertently writing to an
undesired or reserved memory address.

Detailed information on the memory map is given in the Texas Instruments
TMS320LF/LC240xA DSP Controllers Reference Guide - System and Peripherals;
Literature Number: SPRU357A.

2.6 Memory Addressing Modes

There are three basic memory addressing modes used by the C2xx instruction
set. The three modes are:

• Immediate addressing mode (does not actually access memory)
• Direct addressing mode
• Indirect addressing mode

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 32

2.6.1 Immediate Addressing Mode

In the immediate addressing mode, the instruction contains a constant to be
manipulated by the instruction. Even though the name “immediate addressing”
suggests that a memory location is accessed, immediate addressing is simply
dealing with a user-specified constant which is usually included in the assembly
command syntax. The “#” sign indicates that the value is an immediate address
(just a constant). The two types of immediate addressing modes are:

Short-immediate addressing. The instructions that use short-immediate addressing
have an 8-bit, 9-bit, or 13-bit constant as the operand.

For example, the instruction:
LACL #44h ;loads lower bits of accumulator with

 ;eight-bit constant (44h in this case)

Note: The LACL command will work only with a short 8-bit constant. If you want
to load a long 16-bit constant, then use the LACC command.

Long-immediate addressing. Instructions that use long-immediate addressing have
a 16-bit constant as an operand. This 16-bit value can be used as an absolute
constant or as a 2s-complement value.

For example, the instruction:

LACC #4444h ;loads accumulator with up to a 16-bit

 ;constant (4444h in this case)

If you need to use registers or access locations in data memory, you must use

either direct or indirect addressing.

2.6.2 Direct Addressing Mode

In direct addressing, data memory is first addressed in blocks of 128 words
called data pages. The entire 64K of data memory consists of 512 DPs labeled 0
through 511, as shown in the Fig. 2.5. The current DP is determined by the value in
the 9-bit DP pointer in status register ST0. For example, if the DP value is “0 0000
0000”, the current DP is 0. If the DP value is “0 0000 0010”, the current data page
is 2. The DP of a particular memory address can be found easily by dividing the
address (in hexadecimal) by 80h. For example:

For the data memory address 0300h, 300h/80h = 6h so the DP pointer is 6h.
Likewise, the DP pointer for 200h is 4h.

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 33

1111 1111 1

0000 0000 1

0000 0001 0

0000 0001 0

0000 0000 0

Data Memory

Page 0: 0000h-007Fh

Page 1: 0080h-00FFh

Page 2: 0100h-017Fh

Page 511: FF80h-FFFFh

.

000 0000

OffsetDP Value

0000 0000 0

111 1111
0000 0000 1

1111 1111 1

000 0000

111 1111

000 0000

111 1111

000 0000

111 1111

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

. ..
.

..

.

..

.

..

. ..
.

Figure 2.5 Data pages and corresponding memory ranges. (Courtesy of Texas

Instruments)

In addition to the DP, the DSP must know the particular word being referenced

on that page. This is determined by a 7-bit offset. The 7-bit offset is simply the 7
least significant bits (LSBs) of the memory address. The DP and the offset make up
the 16-bit memory address (see Fig. 2.6).

7 LSBs from IR

16-bit data-memory address

All 9 bits from DP

Data page pointer (DP)

Page (9 MSBs) Offset (7 LSBs)

Instruction register (IR)

8 MSBs 7 LSBs9 bits 0

Figure 2.6 Data page and offset make up a 16-bit memory address.

When you use direct addressing, the processor uses the 9 DP bits and the 7
LSBs of the instruction to obtain the true memory address. The following steps
should be followed when using direct addressing:

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 34

1. Set the DP. Load the appropriate value (from 0 to 511 in decimal or 0-1FF
in hex) into the DP. The easiest way to do this is with the LDP instruction.
The LDP instruction loads the DP directly to the ST0 register without
affecting any other bits of the ST0.

LDP #0E1h ;sets the data page pointer to E1h

or
LDP #225 ;sets the data page pointer to 225 decimal

 ;which is E1 in hexadecimal

2. Specify the offset. For example, if you want the ADD instruction to use the

value at the second address of the current data page, you would write:
ADD 1h

If the data page points to 300h, then the above instruction will add the contents

of 301h to the accumulator

Note: You do not have to set the data page prior to every instruction that uses direct
addressing. If all the instructions in a block of code access the same data page, you
can simply load the DP before the block. However, if various data pages are being
accessed throughout the block of code, be sure the DP is changed accordingly.

2.6.3 Indirect Addressing Mode

Indirect addressing is a powerful way of addressing data memory. Indirect
addressing mode is not dependent on the current data page as is direct addressing.
Instead, when using indirect addressing you load the memory space that you would
like to access into one of the auxiliary registers (ARx). The current auxiliary
register acts as a pointer that points to a specific memory address.

The register pointed to by the ARP is referred to as the current auxiliary
register or current AR. To select a specific auxiliary register, load the 3-bit
auxiliary register pointer (ARP) with a value from 0 to 7. The ARP can be loaded
with the MAR instruction or by the LARP instruction. An ARP value can also be
loaded by using the ARx operand after any instruction that supports indirect
addressing as seen below.

Example of using MAR:

ADD * , AR1 ;Adds using current * , then makes AR1 the

 ;new current AR for future uses

Example of using LARP

LARP #2 ;this will make AR2 the current AR

The C2xx provides four types of indirect addressing options:

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 35

• No increment or decrement. The instruction uses the content of the
current auxiliary register as the data memory address but neither
increments nor decrements the content of the current auxiliary register.

• Increment or decrement by 1. The instruction uses the content of the
current auxiliary register as the data memory address and then increments
or decrements the content of the current auxiliary register by one.

• Increment or decrement by an index amount. The value in AR0 is the

index amount. The instruction uses the content of the current auxiliary
register as the data memory address and then increments or decrements the
content of the current auxiliary register by the index amount.

• Increment or decrement by an index amount using reverse carry. The

value in AR0 is the index amount. After the instruction uses the content of
the current auxiliary register as the data memory address, that content is
incremented or decremented by the index amount. The addition and
subtraction process is accomplished with the carry propagation reversed
and is useful in fast Fourier transforms algorithms.

Table 2.1 displays the various operands that are available for use with instructions
while using indirect addressing mode.

Table 2.1 Indirect addressing operands.

Operand Option Example

* No increment or decrement LT * loads the temporary register TREG with the content of
the data memory address referenced by the current AR.

*+ Increment by 1 LT *+ loads the TREG with the content of the data memory
address referenced by the current AR and then adds 1 to the
content of the current AR.

*- Decrement by 1 LT *- loads the TREG with the content of the data memory
address referenced by the current AR and then subtracts 1
from the content of the current AR.

*0+ Increment by index amount LT *0+ loads the TREG with the content of the data memory
address referenced by the current AR and then adds the
content of AR0 to the content of the current AR.

*0- Decrement by index amount LT *0- loads the TREG with the content of the data memory
address referenced by the current AR and then subtracts the
content of AR0 from the content of the current AR.

*BR0+ Increment by index amount,
adding with reverse carry

LT *BR0+ loads the TREG with the content of the data
memory address referenced by the current AR and then adds
the content of AR0 to the content of the current AR, adding
with reverse carry propagation.

*BR0- Decrement by index amount,
subtracting with reverse carry

LT *BR0- loads the TREG with the content of the data
memory address referenced by the current AR and then
subtracts the content of AR0 from the content of the current
AR, subtracting with bit reverse carry propagation.

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 36

2.7 Assembly Programming Using the C2xx DSP Instruction Set

This section is dedicated to developing code using the C2xx assembly
instruction set and Code Composer Studio (CCS). We will start by introducing the
basics of using the instruction set and provide examples of different options when
using an assembly instruction. Then we will cover code development in CCS
including an explanation of the main file types used to create and compile a working
assembly program. Finally, an exercise will be presented to allow the reader to
practice the new skills presented in this chapter.

2.7.1 Using the Assembly Instruction Set

The complete detailed instruction set for the C2xx DSP core can be found in
the Texas Instruments TMS320F/C24x DSP Controllers Reference Guide: CPU and
Instruction Set; Literature Number: SPRU160C. This reference guide contains a
complete descriptive listing on syntax, operands, binary opcode, instruction
execution order, status bits affected by the instruction, number of memory words
required to store the instruction, and clock-cycles used by the instruction. The
Texas Instruments documentation on the assembly instruction set is very well
written. Each assembly instruction has a complete explanation of the instruction, all
optional operands, and several examples of the instructions used. Since including
the instruction set and complete documentation would make this book excessively
long, we will assume the reader has access to the documentation referred to above.

We will therefore focus on developing code, not the instruction set itself. Each
command starts with the basic assembly instruction. Each command supports
specific addressing modes and options. For example, the ADD command will work
with direct, indirect, and immediate addressing. In addition to the basic command,
many instructions have additional options that may be used with the instruction.
For example, the ADD command supports left shifting of the data before it is added
to the accumulator.

The following is the instruction syntax for the ADD command:

ADD dma [, shift] ; Direct addressing

ADD dma, 16 ; Direct with left shift of 16
ADD ind [, shift [, ARn]] ; Indirect addressing
ADD ind, 16 [, ARn] ; Indirect with left shift of 16

ADD #k ; Short immediate addressing
ADD #lk [, shift] ; Long immediate addressing

The following is a list of the various notations used in C2xx syntax examples:

Italics Italic symbols in instruction syntax represent variables.

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 37

Example: LACC dma , you can use several way to address the dma (data
memory address).

LACC *

or
LACC 200h

or
LACC v ; where “v” is any variable assigned to data

memory

where *, 200h, and v are the data memory addresses

Boldface Characters Boldface characters must be included in the syntax.

Example: LAR dma, 16 ; direct addressing with left shift of 16

LAR AR1, 60h, 16 ; load auxiliary AR1 register with the

memory contents of 60h that was left shifted

16 bits

Example: LACC dma, [shift] ; optional left shift from 0, 15 ; defaults to 0

LACC main_counter, 8 ; shifts contents of the variable

“main_counter” data 8 places to the left

before loading accumulator

[] An optional operand may be placed in the placed here.

Example: LACC ind [, shift [, AR n]_] Indirect addressing

LACC * ;load Accum. w/contents of the memory

 ;location pointed to by the current AR.

LACC * ,5 ;load Accum. with the contents of the memory

 ;location pointed to by the current AR after

 ;the memory contents are left shifted by 5

 ;bits .

LACC * ,0, AR3 ;load Accum. with the contents of the memory

 ;location pointed to by the current AR after

 ;the memory contents are left shifted by 5

 ;bits . Now you have the option of choosing

 ;a new AR. In this case, AR3 will become the

 ;new AR.

[, x1 [, x2]] Operands x1 and x2 are optional, but you cannot

 include x2 without also including x1.

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 38

 It is optional when using indirect addressing to modify the data. Once you
supply a left shift value from 0…15 (even a shift of 0), then you have the option of
changing to a new current auxiliary register (AR).

The # sign is prefix that signifies that the number used is a constant as

opposed to memory location.
Example: RPT #15 ; this syntax is using short immediate addressing. It

 will repeat the next instruction 15+1 times.

LACC #60h ;this will load the accumulator with the

 ;constant 60h

LACC 60h ;However, this instruction will load the
 ;accumulator with the contents in the data

 ;memory location 60h, not the constant #60h

We will now provide a few examples of using the instruction set. Example 2.1

performs a few arithmetic functions with the DSP core and illustrates the nature of
assembly programming. Programming with the assembly instruction set is
somewhat different than languages such as C. In a high-level language, to add two
numbers we might just code “c = a + b”. In assembly, the user must be sure to code
everything that needs to happen in order for a task to be executed. Take the
following example:

Example 2.1 - Add the two numbers “2” and “3”:

LDP #6h ;loads the proper DP for dma 300h

SPLK #2, 300h ;store the number “2” in memory address 300h

LACL #3 ;load the accumulator with the number “3”

ADD 300h ;adds contents of 300h (“2”) to the contents

 ;of the accumulator(“3”); accumulator = 5

Another way:
LDP #6h ;loads the proper DP for dma 300h

SPLK #2h, 300h ;store the number “2h” in memory address

 ;300h

SPLK #3h, 301h ;stores the number “3h” into memory address

 ;301h

LACL 300h ;load the accumulator with the contents in

 ;memory location 300h

ADD 301h ;adds contents of memory address 301h (“3h”)

 ;to the contents of the accumulator (“2h”)

;accumulator = 5h

 Looping algorithms are very common in all programming languages. In high-

level languages, the “For” and “While” loops can be used. However, in assembly,
we need a slightly different approach to perform a repeating algorithm. The

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 39

following example is an algorithm that stores the value “1” to memory locations
300h, 301h, 302h, 303h, and 304h.

Example 2.2- Looping Algorithm Using the Auxiliary Register
LAR AR0, #4 ;load auxiliary register 0 with #4

LAR AR1, #300h ;this AR will be used as a memory pointer

LACL #1h ;loads “1” into the accumulator

LOOPER MAR *, AR1 ;makes AR1 the next current AR

SACL *+, AR0 ;writes contents of accumulator to address

;pointed to by AR1, the “+” increments AR1

 ;by 1, next current AR is AR0

BANZ LOOPER ;branch to LOOPER while current AR is not 0

;decrements current AR by 1 and branches

 ;back to LOOPER

One might wonder if assembly language is so tedious to use, why not just

program in a high-level language all the time. When code written in a high level
language is compiled into assembly, the length of the code increases substantially.
For example, if an assembly program takes up 50 lines, the same program written in
C might take 150 lines after it is compiled. For this reason, code written in
assembly almost always executed faster and uses less memory than high-level
language code.

2.7.2 Code Generation in Code Composer Studio (CCS)

In order to develop a working program in CCS, one needs to understand the
main file types and structure of the code composer project file. The project file
(*.mak) is the main file that links the other necessary sub-files together. The sub-
files mentioned include source files (*.asm for assembly), header (*.h) files, include
(*.i) files, and linker command files (*.cmd).

During the “building” of a project, CCS “assembles” and “links” the source
file(s) and creates a DSP compatible (*.out) file that will ultimately be loaded onto
the DSP. The out file contains the user program and also information as to where in
program memory it will be placed. We will start the explanation of files with the
assembly source file.

The assembly source file contains the code that will be executed when the DSP
program runs. While there may be many source files in large projects, it is really
only necessary to have one source file. If many source files exist, the linking order
must be specified in CCS in order to ensure that the code will be operational. The
file that follows is template.asm. This template source file encompasses the basics
of a source file. The file template.asm contains many lines of assembly instructions
which include comments to explain their function.

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 40

The Assembly Source File

Important Note: Only a comment ”;” or ” *” or label such as “KICK_DOG” may
be written starting on the first space of a line. ALL assembly commands must start
at least from the second space on a line!

;* Source File “template.asm” for 2407 DSP programs *
;* Target Hardware: 2407 DSP EVM *

. include 240x.h ;this is the register definition file, MUST

;INCLUDE!!

. include vector.h ;this is the interrupt vector file that you

 ;must include ;if you are using interrupts,

 ;if you are not using any interrupts, it

 ;doesn't hurt to include it anyway
 ;---
 ; M A C R O - Definition
 ;---

 KICK_DOG .macro ;Watchdog reset macro, resets watchdog

LDP #00E0h ;DP-->7000h-707Fh

SPLK #05555h, WDKEY

SPLK #0AAAAh, WDKEY

LDP #0h ;DP-->0000h-007Fh

.endm
 ;********END KICK_DOG MACRO***
continued……..
continued from above …………
;* Variables declaration: these are commented out, and are not needed
unless you want to define a variable
 ; .bss var1,1
 ; .bss var2,1
 ; .bss var3,1
 ; .bss var_name,1 ;you may continue as needed

 .text ; this is the start of the actual program
;***General Initialization*****

START: LDP #0h ;Set DP=0

SETC INTM ;Disable interrupts

SPLK #0000h, IMR ;Mask all core interrupts

LACC IFR ;Read Interrupt flags

SACL IFR ;Clear all interrupt flags

LDP #00E0h ;(E0=224)(E0*80=7000)

SPLK #006Fh, WDCR ;Disable WD if VCCP=5V (706F)

SPLK #0000h, SCSR1 ;All peripheral clocks disabled,

 ;PLL= clock x 4

SPLK #00FCh, SCSR1 ;All peripheral clocks enabled, PLL

 ;= clock x 4

KICK_DOG ; run the KICK_DOG macro

SPLK #0h, 60h ;Set wait state generator for: 0 wait states

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 41

OUT 60h, WSGR ;Program Space, 0-7 wait states

;***General Initialization complete!!, START YOUR CODE ON NEXT LINE***
;****END YOUR CODE HERE, if interrupts are used, add interrupt service
;routine under GISRx, if no interrupts are used, leave following code
;as is ******

PHANTOM KICK_DOG ;This dummy loop is just in case a wild

 B PHANTOM ;interrupt happens, all non-used interrupts

 ;are set to branch to PHANTOM, this

 ;routine just resets the watchdog timer.

GISR1: RET ;Interrupt #1 service routine

GISR2: RET ;Interrupt #2 service routine

GISR3: RET ;Interrupt #3 service routine

GISR4: RET ;Interrupt #4 service routine

GISR5: RET ;Interrupt #5 service routine

GISR6: RET ;Interrupt #6 service routine

 .end ;this tells the assembler that this is the

 ;end of the program, YOU MUST INCLUDE the

 ;".end"

Starting at the top of the file, we can see the comments indicated by the “*” or
“;”s. Some versions of CCS might not recognize “*” as a comment indicator.
Further down, the “.include” command tells CCS what header files will be included
in the assembling of the project. We will discuss the purpose of header files shortly.
After the header files, we see the KICK_DOG macro. The KICK_DOG macro is a
subroutine that will run every time the line “KICK_DOG” is written. Basically,
KICK_DOG resets the watchdog timer on the LF2407. The watchdog timer, fed by
the system clock, counts up and will generate a general system reset if it reaches an
overflow. This ensures that if some event (software error) causes an inadvertent
system lock-up, then the DSP will be reset automatically. The basic idea is that
after the lock-up subsequent reset by the watchdog, the DSP will reinitialize itself
and start to function normally, thereby increasing system integrity (if the same event
does not occur again!). For our learning purposes, we will disable the watchdog
timer.

After the KICK_DOG macro declaration, we see an optional variable
declaration section. The “.bss” command can be used to define variables, of which
the values will be stored in sequential order in the memory locations specified by
the “.bss” section in the linker command file. It is still necessary to set the data page
for the corresponding memory address when using a variable.

The “.text” line signifies the start of the program. This is followed by the
“START” label. Labels are the only syntax that may be placed on the first space of
any line. The next lines initialize the LF2407, disable the watchdog timer, and set
for zero wait states. Wait states introduce a delay into the external memory
interface for accessing slow external memory, but are not needed for our purposes.

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 42

After these instructions are written, the functional part of the user code can be
considered.

Finally, we come to the interrupt vectors GISR1, GISR2, etc. The operation of
interrupts will be explained in Chapter 5. Because no interrupts are currently being
used, the interrupt vectors simply are set so that any hypothetical random interrupt
will cause the DSP to return to the program and do nothing. We must include the
(GISR1, GISR2,…) labels because they are referenced in the vector.h header file.

Header Files

Header files (*.h) like 240x.h and vector.h (both below) discussed previously
serve the purpose of providing definitions or other information that would otherwise
add a substantial amount of code lines to the source file. Although it is not
absolutely necessary to include a header file in the source file, header files allow the
user to avoid re-writing commonly used definitions from program to program. The
information contained in the file 240x.h consists of setting variables in the name of
actual registers to their respective data memory addresses. This allows the
programmer to simply type the name of the intended control register rather than
having to constantly look up the actual memory.

For example, the SCSR1 register is located at 7018h in data memory. In the
file 240x.h you can see how register names are set as variables with the memory
address as the value. The purpose for this is to provide for more user-friendly
programming. Instead of coding:

SPLK #00FCh, 7018h ;which would work just fine for writing

 ;FCh to 7018h (the SCSR1 register)

we may write:

SPLK #00FCh, SCSR1 ;not only is this easier, but it aids in

;documentation as well

The file “240x.h” contains the control register definitions. A section of the file is
included below:

;***
; File name: 240x.h
; Description:240x register definitions, Bit codes for BIT instruction
;***
; 240x CPU core registers

IMR .set 0004h ; Interrupt Mask Register

IFR .set 0006h ; Interrupt Flag Register

; System configuration and interrupt registers

SCSR1 .set 7018h ; System Control & Status register. 1

SCSR2 .set 7019h ; System Control & Status register. 2

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 43

DINR .set 701Ch ; Device Identification Number register.

PIVR .set 701Eh ; Peripheral Interrupt Vector register.

PIRQR0 .set 7010h ; Peripheral Interrupt Request register 0

PIRQR1 .set 7011h ; Peripheral Interrupt Request register 1

PIRQR2 .set 7012h ; Peripheral Interrupt Request register 2

.

.

The header file vector.h contains interrupt vector information. This file

specifies what section of source code the processor will branch to when an interrupt
occurs. By looking at the file, we can see that we have many branch statements.
When an interrupt occurs, the processor first branches to 0h in program memory.
It then sequentially checks each program memory address for an identifiable
interrupt label (INTx) that corresponds to the pending interrupt. When it finds a
match, it executes the instruction on that line, which in this case is a “B GISRx”
instruction. The branch instruction causes the DSP to branch to the GISRx label
(which is in the source code) under which the interrupt service routine is written.
The processor then starts executing the code under that section.

INT1 through INT6 are the corresponding labels for these interrupts in the
vector file. Notice the “B GISRx” command after each “INTx”. More on interrupts
will be covered later in Chapter 5.

The file “vector.h” contains the interrupt vectors for the LF2407. A section of this
file is shown below:

;***
; File name: vector.h
; Interrupt Vector declarations
; This section contains the vectors for various interrupts in the
; 240x. Unused interrupts are shown to branch to a "phantom" interrupt
; service routine which loops to itself. Users should replace the
; label PHANTOM with the label of their interrupt subroutines in case
; these interrupts are used.
;***
 .sect "vectors"

RSVECT B START ; Reset Vector

INT1 B GISR1 ; Interrupt Level 1

INT2 B GISR2 ; Interrupt Level 2

INT3 B GISR3 ; Interrupt Level 3

INT4 B GISR4 ; Interrupt Level 4

INT5 B GISR5 ; Interrupt Level 5

INT6 B GISR6 ; Interrupt Level 6

RESERVED B PHANTOM ; Reserved

SW_INT8 B PHANTOM ; Software Interrupt

SW_INT9 B PHANTOM ; Software Interrupt

SW_INT10 B PHANTOM ; Software Interrupt

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 44

SW_INT11 B PHANTOM ; Software Interrupt

SW_INT12 B PHANTOM ; Software Interrupt

SW_INT13 B PHANTOM ; Software Interrupt

SW_INT14 B PHANTOM ; Software Interrupt

SW_INT15 B PHANTOM ; Software Interrupt

SW_INT16 B PHANTOM ; Software Interrupt

TRAP B PHANTOM ; Trap vector

NMI B NMI ; Non-maskable Interrupt

EMU_TRAP B PHANTOM ; Emulator Trap

SW_INT20 B PHANTOM ; Software Interrupt

SW_INT21 B PHANTOM ; Software Interrupt

SW_INT22 B PHANTOM ; Software Interrupt

.

.

The linker command file (*.cmd) specifies to CCS where valid memory exists

in both program and data memory. It also specifies where the .text, .sect, .bss, and
other sections will be placed in memory.

Looking at the linker command file, it is broken into three “pages”. Page 0
refers to program memory (memory where the user code actually resides). Page 1
refers to data memory that contains control registers and memory. Page 2 defines
memory that is reserved for I/O using external peripherals (you do not normally use
the I/O memory except for disabling the watchdog timer or writing to the DAC). In
each page, we can see the declarations of different memory ranges, their start
address, and their length.

NOTE: Memory that is not defined in the linker command file will not be recognized
by the program and cannot be used even if the memory physically exists.

The SECTIONS title lists assembler directives that are used to assign particular
parts of code or variables to certain sections in memory. For example:

The .text directive tells the linker to put this section of the code in program
memory starting at 0000h. The .bss directive tells the linker that all code written
under this title should be placed in the location defined in the linker command file
(in this case, the location BLK_B2 which starts at 60h in data memory and is 20h in
length).

Each section is defined in either the source file or the header file. Near the top
of the vector.h file, the line “.sect” and “.vectors” relates to the 2407.cmd file
where the section “vectors” is defined. This tells CCS to place the following vector
code in the memory defined in the linker command file as “vectors”. In this case,
“vectors” is defined to start at 0h in program memory.

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 45

NOTE: Both .text and .vectors sections are listed to start at 0h in program memory
in “2407_PM.cmd”. .vectors will be placed before the .text section in program
memory.

You are not necessarily required to use the above linker command file as
shown. For example, if you wanted to start BLK_B1 at 301h instead of 300h, you
can modify the ORIGIN of BLK_B1 to do so, but you would have to modify the
LENGTH definition to account for the new memory range.

The following file is the linker command file “2407_PM.cmd”.

MEMORY

{

PAGE 0: /* PROGRAM MEMORY */

PM :ORIGIN=0h, LENGTH=08000h /*On chip flash */

SARAM_P :ORIGIN=08000h, LENGTH=0800h /*SARAM*/ /*program

External RAM*/

EX1_PM :ORIGIN=08800h, LENGTH=07600h

B0_PM :ORIGIN=0FF00h, LENGTH=0100h /*On-chip*/ /*DARAM if

CNF=1, else external*/

 /*B0_PM = FF00 to FFFF */

PAGE 1: /*DATA MEMORY */

REGS :ORIGIN=0h, LENGTH=60h /*Memory mapped*/

 /*regs & reserved address */

BLK_B2 :ORIGIN=60h, LENGTH=20h /*Block B2*/

BLK_B0 :ORIGIN=200h , LENGTH=100h /*Block B0*/

 /*On chip DARAM if CNF=0*/

BLK_B1 :ORIGIN=300h , LENGTH=100h /*Block B1*/

SARAM_D :ORIGIN=0800h , LENGTH=0800h /*2K SARAM*/

 /*in data*/

PERIPH :ORIGIN=7000h , LENGTH=1000h /*Peripheral regs*/

EX2_DM :ORIGIN=8000h , LENGTH=8000h /*External RAM*/

PAGE 2: /* I/O MEMORY */

IO_EX :ORIGIN=0000h , LENGTH=0FFF0h /*External I/O*/

/*mapped peripherals */

IO_IN :ORIGIN=0FFF0h, LENGTH=0Fh /* On chip I/O */

 /*mapped peripherals */

}

SECTIONS

{

 vectors :{} > PM PAGE 0

 .text :{} > PM PAGE 0

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set 46

 .bss :{} > BLK_B2 PAGE 1

 .data :{} > BLK_B1 PAGE 1

}

2.7.3 Code Generation Exercise Using Code Composer

This exercise will help you to become familiar with using the instruction set of
the C2xx and the different modes of memory addressing. This exercise is intended
to be an introduction to programming the C2xx core.

1. Start up CCS.
2. Open a new project by going to Project/New. Enter “lab2” for the project

name.
3. You are now ready to start adding files to your project.
4. Create a new source file called “lab2.asm”. Do this by going to

File/New/Source in CCS. Be sure to use the .include directive to include
the 240x.h and vector.h header files as in template.asm.

5. Next add “lab2.asm” to the project. Go to Project/Add files to Project, and
add “lab2.asm” to the project. See Fig. 2.7.

Figure 2.7 Adding files to a project.

6. Find the files “240x.h”, “vector.h”, and “2407_PM.cmd”. Copy the files to
the same directory in which your project is stored.

7. Add “2407_PM.cmd” to the project in the same way as “lab2.asm”.
8. Now that the source file and linker command file are added to the project,

go to Project/Scan All Dependencies” (see Fig. 2.8). Notice how the files
now appear under the “Include” folder in the project window.

Copyright © 2004 CRC Press, LLC

C2xx DSP CPU and Instruction Set 47

Figure 2.8 Scanning files for dependent sub-files.

9. Open “lab2.asm” by double-clicking on the file from the project menu.

10. In the “lab2.asm” source file, write a simple program that stores the

number “35” into data memory location “305h” and adds it to the number
“10” stored in data memory location “306h”. Store the result in the data
memory location “60h”.

Hint: The following commands might be useful: SPLK, LACL, LACC, SACL,
and ADD. Refer to the C2xx Instruction Set for more information about assembly
commands.

Always be sure to set the appropriate data page pointer for the memory
addresses. (Remember, this can be done by simply dividing the memory address (in
hexadecimal) by “80h”.)

If you get the build error “>> Warning: entry point symbol _c_int0 undefined” try
changing the C Initialization from “ROM Auto initialization” to “No Auto
initialization” by going to Project/Options/Linker tab/C Initialization.

11. Using indirect addressing and a looping routine, add another algorithm
which writes #0h to 300h, writes #1h to 301h, writes #3h to 303h etc… all
the way to 30Fh.

12. Add another routine to check memory 300h through 30Fh for the proper
data (0h-Fh). If all the registers contain the proper data, your program

Copyright © 2004 CRC Press, LLC

 C2xx DSP CPU and Instruction Set

48

should write “Ah” in memory location 310h. If even one memory location
has the incorrect data in it, write “DEADh” to 310h.

13. Write another algorithm to multiply the hex numbers in memory locations
300h through 30Fh by “#5h” and stores them in memory locations 320h
through 32Fh.

This laboratory exercise has now concluded.

Copyright © 2004 CRC Press, LLC

Chapter 3

GENERAL PURPOSE INPUT/OUTPUT (GPIO) FUNCTIONALITY

3.1 Pin Multiplexing (MUX) and General Purpose I/O Overview

Due to the limited number of physical pins on the LF2407 DSP, it is necessary
to multiplex two functions onto most of the pins. That is, each pin can be
programmed for either a primary or secondary (GPI/O) function (see Fig. 3.1).
Once the pins on the LF2407 are multiplexed, the effective pin-out of the device is
doubled. This provides enough effective pin-out for six General Purpose Input
Output (GPIO) ports to be configured as the secondary function on most pins. Each
Input/Output Port (IOP) consists of eight pins when they are configured to their
secondary function.

Figure 3.1 Block diagram of the multiplexing of a single pin. (Courtesy of Texas

Instruments)

GPIO pins are grouped in sets of eight pins called ports. There are six ports
total, ports A through F. Even though the pins are grouped in ports, each pin can be
individually configured as primary or secondary (GPIO) functionality; and if GPIO,
then either input or output. The multiplexing of primary pin functions with
secondary GPIO functions provides a flexible method of controlling both the
dedicated and secondary pin functions.

Each multiplexed pin’s primary/secondary functionality is controlled by a
corresponding bit in the appropriate MUX control register. Additionally, when the
pin is in GPIO mode, there are port data and direction (PxDATDIR) control

49

Copyright © 2004 CRC Press, LLC

 General Purpose Input/Output (GPIO) Functionality 50

registers which control the direction (input or output) and data of the port/pin. If the
pin is configured as an output, then the data (voltage) on the pin is determined by
what value is written to the pin’s data bit. Inversely, if the pin is configured as an
input, then the voltage level applied to the pin determines the value of the pin’s
corresponding data bit.

If the pin is configured as an output pin, it can either be set to a logic high “1”
(3.3 Volts) or a logic low “0” (0 Volts) by writing to its corresponding data bit in
the corresponding PxDATDIR register. If the pin is configured as an input, the
pin’s corresponding bit in the appropriate PxDATDIR register will be “1” if 3.3
Volts or “0” if 0 Volts is applied to the pin. The data bits in the PxDATDIR can
then be read by the user code and the values used in the program. The input and
output ports provide a convenient way to input or output binary data (each pin = 1
bit). For example, a seven-segment display could be controlled by a GPIO port
configured as output.

Note: There is no relationship between the GPIO pins and the I/O space of the
LF2407.

3.2 Multiplexing and General Purpose I/O Control Registers

The three MUX control registers and six data/direction control registers are all
mapped to data memory (see Table 3.1). They control all dedicated and shared pin
functions:

• I/O MUX Control Registers (MCRA, MCRB, MCRC): These 16-bit

registers determine whether a pin will operate in its primary function or
secondary GPIO function. Two ports are assigned to each MUX control
register. For example, the MCRA register controls ports A and B.

• Data and Direction Control registers (PxDATDIR): Once a pin is

configured in I/O mode by the appropriate MUX control register, the
appropriate PxDATDIR register is used to configure each pin as input or
output; and if output, whether the pin is high (3.3 Volts) or low (0 Volts).

Table 3.1 GPIO Control Register Summary

Data Memory
Address

Register Name Description

7090h MCRA I/O MUX Control Register A
7092h MCRB I/O MUX Control Register B
7094h MCRC I/O MUX Control Register C
7098h PADATDIR I/O Port A Data and Direction Register
709Ah PBDATDIR I/O Port B Data and Direction Register
709Ch PCDATDIR I/O Port C Data and Direction Register
709Eh PDDATDIR I/O Port D Data and Direction Register
7095h PEDATDIR I/O Port E Data and Direction Register
7096h PFDATDIR I/O Port F Data and Direction Register

Copyright © 2004 CRC Press, LLC

General Purpose Input/Output (GPIO) Functionality 51

3.2.1 I/O Multiplexing (MUX) Control Registers

I/O MUX Control Register A (MCRA) Configuration

15 14 13 12 11 10 9 8

MCRA.15 MCRA.14 MCRA.13 MCRA.12 MCRA.11 MCRA.10 MCRA.9 MCRA.8

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

MCRA.7 MCRA.6 MCRA.5 MCRA.4 MCRA.3 MCRA.2 MCRA.1 MCRA.0

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -0 = value after reset.

 Pin Function Selected

Bit # Name.bit # (MCA.n = 1)
(Primary)

(MCA.n = 0)
(Secondary)

0 MCRA.0 SCITXD IOPA0

1 MCRA.1 SCIRXD IOPA1

2 MCRA.2 XINT1 IOPA2

3 MCRA.3 CAP1/QEP1 IOPA3

4 MCRA.4 CAP2/QEP2 IOPA4

5 MCRA.5 CAP3 IOPA5

6 MCRA.6 PWM1 IOPA6

7 MCRA.7 PWM2 IOPA7

8 MCRA.8 PWM3 IOPB0

9 MCRA.9 PWM4 IOPB1

10 MCRA.10 PWM5 IOPB2

11 MCRA.11 PWM6 IOPB3

12 MCRA.12 T1PWM/T1CMP IOPB4

13 MCRA.13 T2PWM/T2CMP IOPB5

14 MCRA.14 TDIRA IOPB6

15 MCRA.15 TCLKINA IOPB7

Copyright © 2004 CRC Press, LLC

 General Purpose Input/Output (GPIO) Functionality 52

I/O MUX Control Register B (MCRB) Configuration

Note: R = read access, W = write access, -0 = value after reset.

 Pin Function Selected

Bit # Name.bit # (MCB.n = 1)
(Primary)

(MCB.n = 0)
(Secondary)

0 MCRB.0 W/R IOPC0

1 MCRB.1 BIO IOPC1

2 MCRB.2 SPISIMO IOPC2

3 MCRB.3 SPISOMI IOPC3

4 MCRB.4 SPICLK IOPC4

5 MCRB.5 SPISTE IOPC5

6 MCRB.6 CANTX IOPC6

7 MCRB.7 CANRX IOPC7

8 MCRB.8 XINT2/ADCSOC IOPD0

9 MCRB.9 EMU0 Reserved

10 MCRB.10 EMU1 Reserved

11 MCRB.11 TCK Reserved

12 MCRB.12 TDI Reserved

13 MCRB.13 TDO Reserved

14 MCRB.14 TMS Reserved

15 MCRB.15 TMS2 Reserved

Copyright © 2004 CRC Press, LLC

General Purpose Input/Output (GPIO) Functionality 53

I/O MUX Control Register C (MCRC) Configuration

15 14 13 12 11 10 9 8

Reserved Reserved MCRC.13 MCRC.12 MCRC.11 MCRC.10 MCRC.9 MCRC.8

 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

MCRC.7 MCRC.6 MCRC.5 MCRC.4 MCRC.3 MCRC.2 MCRC.1 MCRC.0

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–1

Note: R = read access, W = write access, -0 = value after reset.

 Pin Function Selected

it # Name.bit # (MCC.n = 1)
(Primary)

(MCC.n = 0)
(Secondary)

0 MCRC.0 CLKOUT IOPE0

1 MCRC.1 PWM7 IOPE1

2 MCRC.2 PWM8 IOPE2

3 MCRC.3 PWM9 IOPE3

4 MCRC.4 PWM10 IOPE4

5 MCRC.5 PWM11 IOPE5

6 MCRC.6 PWM12 IOPE6

7 MCRC.7 CAP4/QEP3 IOPE7

8 MCRC.8 CAP5/QEP4 IOPF0

9 MCRC.9 CAP6 IOPF1

10 MCRC.10 T3PWM/T3CMP IOPF2

11 MCRC.11 T4PWM/T4CMP IOPF3

12 MCRC.12 TDIRB IOPF4

13 MCRC.13 TCLKINB IOPF5

14 MCRC.14 Reserved IOPF6

15 MCRC.15 Reserved Reserved

Copyright © 2004 CRC Press, LLC

 General Purpose Input/Output (GPIO) Functionality 54

3.2.2 Port Data and Direction Control Registers

Port A Data and Direction Control Register (PADATDIR)

15 14 13 12 11 10 9 8

A7DIR A6DIR A5DIR A4DIR A3DIR A2DIR A1DIR A0DIR

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

IOPA7 IOPA6 IOPA5 IOPA4 IOPA3 IOPA2 IOPA1 IOPA0

RW–† RW–† RW–† RW–† RW–† RW–† RW–† RW–†

† The reset value of these bits depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–8 AnDIR – Direction Bits

0 Configure corresponding pin as an input
1 Configure corresponding pin as an output

Bits 7–0 IOPAn – Data Bits
If AnDIR = 0, then:

0 Corresponding I/O pin is read as a low
1 Corresponding I/O pin is read as a high

If AnDIR = 1, then:

0 Set corresponding I/O pin low
1 Set corresponding I/O pin high

Port B Data and Direction Control Register (PADATDIR)

15 14 13 12 11 10 9 8

B7DIR B6DIR B5DIR B4DIR B3DIR B2DIR B1DIR B0DIR

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

IOPB7 IOPB6 IOPB5 IOPB4 IOPB3 IOPB2 IOPB1 IOPB0

RW–† RW–† RW–† RW–† RW–† RW–† RW–† RW–†

† The reset value of these bits depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–8 BnDIR – Direction Bits

0 Configure corresponding pin as an input
1 Configure corresponding pin as an output

Copyright © 2004 CRC Press, LLC

General Purpose Input/Output (GPIO) Functionality 55

Bits 7–0 IOPBn – Data Bits
If BnDIR = 0, then:

0 Corresponding I/O pin is read as a low
1 Corresponding I/O pin is read as a high

If BnDIR = 1, then:
0 Set corresponding I/O pin low
1 Set corresponding I/O pin high

Port C Data and Direction Control Register (PCDATDIR)

15 14 13 12 11 10 9 8

C7DIR C6DIR C5DIR C4DIR C3DIR C2DIR C1DIR C0DIR

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

IOPC7 IOPC6 IOPC5 IOPC4 IOPC3 IOPC2 IOPC1 IOPC0

RW–† RW–† RW–† RW–† RW–† RW–† RW–† RW–x

† The reset value of these bits depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset, x = undefined.

Bits 15–8 CnDIR – Direction Bits

0 Configure corresponding pin as an input
1 Configure corresponding pin as an output

Bits 7–0 IOPCn – Data Bits
If CnDIR = 0, then:

0 Corresponding I/O pin is read as a low
1 Corresponding I/O pin is read as a high

If CnDIR = 1, then:
0 Set corresponding I/O pin low
1 Set corresponding I/O pin high

Port D Data and Direction Control Register (PDDATDIR)

15-9 8

Reserved D0DIR

 RW–0

7-1 0

Reserved IOPD0

 RW–†

† The reset value of this bit depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset.

Copyright © 2004 CRC Press, LLC

 General Purpose Input/Output (GPIO) Functionality 56

Bits 15–9 Reserved

Bit 8 D0DIR – Direction Bits

0 Configure corresponding pin as an input
1 Configure corresponding pin as an output

Bits 7–1 Reserved

Bit 0 IOPD0 – Data Bit
If D0DIR = 0, then:

0 Corresponding I/O pin is read as a low
1 Corresponding I/O pin is read as a high

If D0DIR = 1, then:
0 Set corresponding I/O pin low
1 Set corresponding I/O pin high

Port E Data and Direction Control Register (PEDATDIR)

15 14 13 12 11 10 9 8

E7DIR E6DIR E5DIR E4DIR E3DIR E2DIR E1DIR E0DIR

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

IOPE7 IOPE6 IOPE5 IOPE4 IOPE3 IOPE2 IOPE1 IOPE0

RW–† RW–† RW–† RW–† RW–† RW–† RW–† RW–x

† The reset value of these bits depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset, x = undefined.

Bits 15–8 EnDIR – Direction Bits
0 Configure corresponding pin as an input
1 Configure corresponding pin as an output

Bits 7–0 IOPEn – Data Bits
If EnDIR = 0, then:

0 Corresponding I/O pin is read as a low
1 Corresponding I/O pin is read as a high

If EnDIR = 1, then:
0 Set corresponding I/O pin low
1 Set corresponding I/O pin high

Copyright © 2004 CRC Press, LLC

General Purpose Input/Output (GPIO) Functionality 57

Port F Data and Direction Control Register (PFDATDIR)

15 14 13 12 11 10 9 8

Reserved F6DIR F5DIR F4DIR F3DIR F2DIR F1DIR F0DIR

 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

Reserved IOPF6 IOPF5 IOPF4 IOPF3 IOPF2 IOPF1 IOPF0

 RW–† RW–† RW–† RW–† RW–† RW–† RW–†

† The reset value of these bits depends upon the state of the respective pins.

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 Reserved

Bits 14–8 FnDIR – Direction Bits

0 Configure corresponding pin as an input
1 Configure corresponding pin as an output

Bit 7 Reserved

Bits 6–0 IOPFn – Data Bits
If FnDIR = 0, then:

0 Corresponding I/O pin is read as a low
1 Corresponding I/O pin is read as a high

If FnDIR = 1, then:
0 Set corresponding I/O pin low
1 Set corresponding I/O pin high

3.3 Using the General Purpose I/O Ports

The GPIO functionality is relatively simple to use and provides a valuable way
of imputing and outputting data to and from the DSP. To use the GPIO
functionality of a particular pin or groups of pins, the following steps must be
followed to configure the DSP:

1. Set the bits in the appropriate MUX control register to configure the

desired pins for GPIO function. This can be done by writing a “0” to the
corresponding bits in the appropriate MUX. It may not be absolutely
necessary to do this due to the fact that upon a reset (power on) the pins in
the LF2407 are by default in their GPIO functionally. However,
configuring the MUX register anyway is good programming practice.

2. Now that the desired pins are configured as GPIO, set the Port Data and

Direction (PxDATDIR) register(s) that corresponds to the desired pins.
When configuring the PxDATDIR, the most significant bits control the
direction (input or output) and the lower bits determine (output) or display

Copyright © 2004 CRC Press, LLC

 General Purpose Input/Output (GPIO) Functionality 58

(input) the pin data. If an input pin is desired, only the direction bit needs
to be set since when the direction bit is set to input, writing to the data bit
has no effect. The corresponding data bit will be used to display the logic
value applied to that pin. If an output pin is required, both the direction
and data bits need to be configured because the data bit will determine
what logic value the pin will be set to.

3. The selected pins are now configured. The input data on pins can be

obtained by reading the entire PxDATDIR register and obtaining the data
for desired bits. For output, new values can be written to the pins by
writing to the corresponding entire PxDATDIR register.

Note: When a pin is configured as input, it is important to note whether the pin has
either a pull-up or pull-down resistor. If the input pin is not connected to anything,
the pin’s data bit will read “1” if a pull-up or “0” if a pull-down resistor exists.
The pullup/down resistor comes into play only when the pin is an input and not
connected. When the input pin is connected to either a logic “1” or logic “0”
voltage, the pull-up/down resistor is overridden and has no effect. The reason
behind the pullup/down resistor is that a digital input pin should never be
completely floating.

Example 3.1 illustrates configuring all the pins in a port for output and writing “1”
to each of the eight pins in the port.

Example 3.1 Display the binary number “00100010”b with the eight pins on
 port A:

1. Configure the bits in MCRA so port A is I/O (“XXXXXXXX00000000”).
The most significant bits in MCRA control port B; therefore, in this
example, we do not care what we write to them.

2. Set pins to output in PADATDIR by setting bits 15-8 as “11111111”, with

“00100010”b as the data (bits 7-0). “X” designates “don’t care” bits.

3.4 General Purpose I/O Exercise

This exercise allows the reader to become familiar with using the GPIO
functionality on the LF2407 DSP controller. Practical applications using the GPIO
functionality are very similar to the algorithms presented in this exercise. In
addition, this exercise helps the reader practice writing assembly programs.

The XF pin is introduced during this exercise. The XF pin on the LF2407 is a
general purpose output pin which is controlled by the XF bit in the C2xx DSP core.
Because it is core controlled, the XF bit can be set and cleared without having to
write to a register. The XF is easily set (made 3.3V) by the “SETC XF” command
or cleared (made 0V) by the CLRC XF command. This pin can be useful in testing

Copyright © 2004 CRC Press, LLC

General Purpose Input/Output (GPIO) Functionality 59

code to see if your code ran to a certain point, where the code would set or clear the
XF bit. The level of the XF pin may be checked by either an oscilloscope or volt
meter. In order to assure a correct signal is read, be sure the ground lead of the
tester is connected to the digital ground of the LF2407 EVM.

1. Startup CCS and create a new project titled “lab3” in the same manner as

the exercise in the previous chapter. Name the source file “lab3.asm” and
include the same header files as before.

2. Write a program that first stores a certain set of values into data memory

locations starting at memory address 300h. The values should be such that
they control the “up counting” of a seven-segment display from “0” to “F”.
The program should then read the memory locations and send the values
out on port A; displaying each value for a second or so.

3. Place a seven-segment LED display on a breadboard and connect the port

A pins to the display in the appropriate positions.

4. Run the program and watch as the seven-segment display “counts” from 0

to F.

5. When the display has finished counting a 1000-hertz square wave should

be produced by toggling the XF pin.

6. Connect the oscilloscope to the XF pin and digital ground of the LF2407

EVM. Use the oscilloscope to view the 1000-hertz waveform.

This exercise is now concluded.

Copyright © 2004 CRC Press, LLC

Chapter 4

INTERRUPTS ON THE TMS320LF2407

4.1 Introduction to Interrupts

The interrupts on the LF2407 allow the device hardware to trigger the CPU of
the LF2407 (CPU=C2xx DSP core) to break from the current task, branch to a new
section of code and start a new task, then return back to the initial task. The “new
task” referred to in the previous sentence is known as the Interrupt Service Routine
(ISR). The ISR is simply a separate user-written subroutine, which the core will
branch to every time a certain interrupt occurs.

For example, say the ADC is being used and we want the program to load the
conversion value into the accumulator every time the ADC finishes a conversion.
The ADC can be configured to generate an interrupt whenever a conversion is
finished. When the ADC generates its interrupt, the interrupt signal makes its way
through the interrupt hierarchy to the core and the core then branches to the
appropriate ISR.

In a more general sense, when an interrupt occurs, the core branches to the ISR
(GISR1, GISR2 etc… depending on the interrupt) where an interrupt service routine
is located. In the ISR, after the instructions are executed, the interrupt hierarchy is
“reset” to allow for future interrupts. This usually entails clearing the peripheral
level interrupt flag bit and clearing the INTM bit. These steps ensure that future
interrupts of the same origin will be able to pass through to the core. The final
instruction in the ISR is the RET command, which instructs the core to return to
where it was before the interrupt occurred.

4.2 Interrupt Hierarchy

This section will explain the different hierarchical levels and how an interrupt
request signal propagates through them. The different control registers and their
operations will be reviewed.

4.2.1 Interrupt Request Sequence

There are two levels of interrupt hierarchy in the LF2407 as seen in Fig. 4.1
below. There is an interrupt flag bit and an interrupt enable bit located in each
peripheral configuration register for each event that can generate an interrupt. The
peripheral interrupt flag bit is the first bit to be set when an interrupt generating
event occurs. The interrupt enable bit acts as a “gate”. If the interrupt enable bit is
not set, then the setting of the peripheral flag bit will not be able to generate an
interrupt signal. If the enable bit is set, then the peripheral flag bit will generate an
interrupt signal. That interrupt signal will then leave the peripheral level and go to
the next hierarchal level.

61

Copyright © 2004 CRC Press, LLC

62 Interrupts on the TMS320LF2407

Once an interrupt signal leaves the peripheral level, it is then multiplexed
through the Peripheral Interrupt Expansion (PIE) module. The PIE module takes
the many individual interrupts and groups them into six priority levels (INT1
through INT6). Once an interrupt reaches the PIE, a code identifying the individual
interrupt is loaded into the Peripheral Interrupt Vector Register (PIVR). This allows
the ISR to determine which interrupt was actually asserted when multiple interrupts
from the same level occur. After passing through the PIE module, the interrupt
request signal has now entered the upper level of hierarchy or the “CPU level”.

The six interrupt groupings from the PIE module feed into the CPU level. The
final stage of the CPU level is the CPU itself (C2xx core). From Fig. 4.1, we can
see the six interrupt levels and the many individual peripheral interrupts assigned to
priority level. Each of the six levels has a corresponding flag bit in the Interrupt
Flag Register (IFR). Additionally there is an Interrupt Mask Register (IMR) which
acts similar to the interrupt enable bits at the peripheral level. Each of the six bits in
the IMR behaves as a “gate” to each of the corresponding six bits in the IFR. If the
corresponding bits in both the IFR and IMR are both set, then the interrupt request
signal can continue through to the C2xx core itself.

Once the interrupt request signal has entered the CPU level and has passed
through the IFR/IMR, there is one more gateway the signal must pass through in
order to cause the core to service the interrupt. The Interrupt Mask (INTM) bit must
be cleared for the interrupt signal to reach the core. When the core acknowledges a
pending interrupt, the INTM bit is automatically set, thereby not allowing any more
interrupts from reaching the core while a current interrupt is being serviced.

When the core is finished with the current interrupt, only the flag bit in the IFR
is cleared automatically. The INTM bit and the peripheral level flag bit must be
cleared “manually” via software. When this is done, the core will acknowledge the
highest priority pending interrupt request signal.

Additionally, if an interrupt request signal occurs, but the signal never reaches
the core, all flag bits “downstream” of the point where the signal was halted will
still remain set until cleared by software. The IFR bits will be cleared if: (1) the
interrupt path to the core is opened, and the interrupt is acknowledged normally or
(2) the bit is cleared “manually” by software. If no interrupt request has occurred
but the peripheral level IF bit is set and the peripheral IE bit is later set without
clearing the IF bit, then an interrupt request signal will be asserted and the
corresponding IFR bit will be set.

Furthermore, in the event that two interrupts of different priority groupings
(INTx) occur at the same time, the highest priority interrupt will be acknowledged
first by the core.

Copyright © 2004 CRC Press, LLC

Interrupts on the TMS320LF2407 63

PIE

CPU

IACK

bus
Addr

bus
Data

PIRQR#
PIACKR#

PIVR#

IRQ GEN
Level 6

IRQ GEN
Level 5

IRQ GEN
Level 4

IRQ GEN
Level 2

IRQ GEN
Level 1

XINT2
XINT1

ADCINT

CANERINT
CANMBINT

TXINT
RXINT
SPIINT

CAP3INT
CAP2INT
CAP1INT

T2OFINT
T2UFINT

T2CINT
T2PINT

T1OFINT
T1UFINT

T1CINT
T1PINT

CMP3INT
CMP2INT
CMP1INT

CANERINT
CANMBINT

TXINT
RXINT
SPIINT
XINT2
XINT1

ADCINT

PDPINTA

IRQ GEN
Level 3

INT1

INT2

INT3

INT4

INT5

INT6

P
IR

Q
R

0
PI

R
Q

R
1

PDPINTB

T3OFINT
T3UFINT

T3CINT
T3PINT

CMP6INT
CMP5INT
CMP4INT

T4OFINT
T4UFINT

T4CINT
T4PINT

CAP6INT
CAP5INT
CAP4INT

Figure 4.1 Interrupt hierarchy in the LF2407. (Courtesy of Texas Instruments)

Copyright © 2004 CRC Press, LLC

64 Interrupts on the TMS320LF2407

4.2.2 Reset and Non-Maskable Interrupts

There are two special interrupts on the LF2407 which have not been covered
thus far; the Reset (RS) and the Non-Maskable Interrupt (NMI). Both of these
interrupts bypass the usual interrupt hierarchy and feed straight to the DSP core. A
reset causes the core to branch to address 0000h in program memory. Resets are
activated during power on, when the external RESET pin is brought to logic “0” (O
Volts), or by the Watchdog Timer. If the Watchdog is not disabled, it will pull the
reset pin to “0” if not periodically reset.

When an illegal memory space is written to, the illegal address flag (ILLADR)
in System Control and Status Register 1 (SCSR1) will be set. When this flag is set,
a non-maskable interrupt (NMI) will be generated, causing the core to branch to
address 0024h in program memory. The illegal address flag (ILLADR) will remain
set following an illegal address condition until it is cleared by software or a DSP
reset.

4.3 Interrupt Control Registers

This section will review the interrupt control registers. The IFR, IMR, and
PIVR registers as well as the INTM bit discussed in the previous section will be
presented in more detail. We will not discuss peripheral level interrupt bits in this
chapter, as they will be discussed in each section dealing with the specific
peripherals.

There are three registers used at the CPU level, the Interrupt Flag Register
(IFR), the Interrupt Mask Register (IMR), and the Peripheral Interrupt Vector
Register (PIVR). The IFR and IMR control the interrupt signal at the beginning of
the CPU level. The PIVR register, while actually loaded in the PIE, provides
information about the specific interrupt that occurred at the peripheral level. This
information can be used by the ISR in determining the source of the interrupt signal.
In addition to these registers, the INTM bit at the CPU level provides the final
“gateway” that the interrupt signal must pass through to reach the core itself.

In addition to the peripheral interrupts, there are two External Interrupts
(XINT1, XINT2). Their interrupt request operation is exactly like the peripheral
interrupts. However, external interrupts are triggered by a logic edge transition on
their external pin. The external interrupt control registers will also be discussed.

4.3.1 Interrupt Flag Register (IFR)

The IFR is a 16-bit (only 6 bits are really used) register mapped to address
0006h in data memory. The IFR is used to identify and clear pending interrupts at
the CPU level and contains the interrupt flag bits for the maskable interrupt
priorities INT1–INT6.

A flag bit in the IFR is set to “1” when an individual interrupt request signal
makes its way out of the peripheral level and into the CPU level. The particular flag

Copyright © 2004 CRC Press, LLC

Interrupts on the TMS320LF2407 65

bit set depends on what priority the individual interrupt is grouped under. After the
interrupt is serviced, the IFR bit corresponding to the interrupt is automatically
cleared (to “0”) by the DSP.

In addition to triggering the CPU level during the standard interrupt process,
the IFR can also be read by software. If a desired situation occurred where the
INTM bit was set (meaning no interrupt signals make it to the core) and an interrupt
signal was generated at the below levels, the corresponding bit in the IFR would
still be set. In this situation, the IFR could be read by software to identify pending
interrupt requests.

If desired, to “manually” clear a bit in the IFR, software needs to write a “1” to
the appropriate bit (see IFR bit descriptions). The flag bits can be thought of as
“toggling” when a “1” is written to them. Loading the IFR into the accumulator,
then storing the contents of the IFR back into itself clears all bits in the IFR.
However, if the peripheral level interrupt flag bit is still set, the corresponding bit in
the IFR will immediately become set right after it is cleared.

Notes:

1. To clear an IFR bit, we must write a one to it, not a zero.
2. When an interrupt is acknowledged, only the IFR bit is cleared

automatically. The flag bit in the corresponding peripheral control
register is not automatically cleared. If an application requires that the
control register flag be cleared, the bit must be cleared by software.

3. IFR registers pertain to interrupts at the CPU level only. All peripherals
have their own interrupt mask and flag bits in their respective
control/configuration registers.

4. When an interrupt is requested by the INTR assembly instruction and the
corresponding IFR bit is set, the CPU does not clear the bit automatically.
If an application then requires that the IFR bit needs to be cleared, the bit
must be cleared by software.

Interrupt Flag Register (IFR) — Address 0006h

15-6 5 4 3 2 1 0

Reserved INT6 flag INT5 flag INT4 flag INT3 flag INT2 flag INT1 flag

0 RW1C–0 RW1C–0 RW1C–0 RW1C–0 RW1C–0 RW1C–0

Note: 0 = always read as zeros, R = read access, W1C = write 1 to this bit to clear
it, -0 = value after reset.

Bits 15–6 Reserved. These bits are always read as zeros.

Bit 5 INT6. Interrupt 6 flag. This bit is the flag for interrupts connected to
interrupt level INT6.
0 No INT6 interrupt is pending

Copyright © 2004 CRC Press, LLC

66 Interrupts on the TMS320LF2407

1 At least one INT6 interrupt is pending. Write a 1 to this bit to
clear it to 0 and clear the interrupt request

Bit 4 INT5. Interrupt 5 flag. This bit is the flag for interrupts connected to
interrupt level INT5.
0 No INT5 interrupt is pending
1 At least one INT5 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

Bit 3 INT4. Interrupt 4 flag. This bit is the flag for interrupts connected to
interrupt level INT4.
0 No INT4 interrupt is pending
1 At least one INT4 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

Bit 2 INT3. Interrupt 3 flag. This bit is the flag for interrupts connected to
interrupt level INT3.
0 No INT3 interrupt is pending
1 At least one INT3 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

Bit 1 INT2. Interrupt 2 flag. This bit is the flag for interrupts connected to
interrupt level INT2.
0 No INT2 interrupt is pending
1 At least one INT2 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

Bit 0 INT1. Interrupt 1 flag. This bit is the flag for interrupts connected to
interrupt level INT1.
0 No INT1 interrupt is pending
1 At least one INT1 interrupt is pending. Write a 1 to this bit to

clear it to 0 and clear the interrupt request

4.3.2 Interrupt Mask Register (IMR)

The Interrupt Mask Register (IMR) is a 16-bit (only 6 bits are used) register
located at address 0004h in data memory. It contains a mask bits for each of the six
interrupt priority levels INT1–INT6. When an IMR bit is “0”, the corresponding
interrupt is “masked”. When an interrupt is masked, the interrupt will be halted at
the CPU level; the core will not be able to receive the interrupt request signal,
regardless of the INTM bit status. When the interrupt’s IMR bit is set to “1”, the
interrupt will be acknowledged if the corresponding IFR bit is “1” and the INTM bit
is “0”. The IMR may also be read to identify which interrupts are masked or
unmasked.

Copyright © 2004 CRC Press, LLC

Interrupts on the TMS320LF2407 67

Interrupt Mask Register (IMR) — Address 0004h

15-6 5 4 3 2 1 0

Reserved INT6 mask INT5 mask INT4 mask INT3 mask INT2 mask INT1 mask

0 RW RW RW RW RW RW

Note: 0 = always read as zeros, R = read access, W = write access, bit values are
not affected by a device reset.

Bits 15–6 Reserved. These bits are always read as zeros.

Bit 5 INT6. Interrupt 6 mask. This bit masks or unmasks interrupt level INT6.
0 Level INT6 is masked
1 Level INT6 is unmasked

Bit 4 INT5. Interrupt 5 mask. This bit masks or unmasks interrupt level INT5.
0 Level INT5 is masked
1 Level INT5 is unmasked

Bit 3 INT4. Interrupt 4 mask. This bit masks or unmasks interrupt level INT4.
0 Level INT4 is masked
1 Level INT4 is unmasked

Bit 2 INT3. Interrupt 3 mask. This bit masks or unmasks interrupt level INT3.
0 Level INT3 is masked
1 Level INT3 is unmasked

Bit 1 INT2. Interrupt 2 mask. This bit masks or unmasks interrupt level INT2.
0 Level INT2 is masked
1 Level INT2 is unmasked

Bit 0 INT1. Interrupt 1 mask. This bit masks or unmasks interrupt level INT1.
0 Level INT1 is masked
1 Level INT1 is unmasked

Note: A device reset does not affect The IMR bits.

4.3.3 Peripheral Interrupt Vector Register (PIVR)

The Peripheral Interrupt Vector Register (PIVR) is a 16-bit read-only register
located at address 701Eh in data memory. Each interrupt has a unique code which
is loaded into the PIVR when in the PIE module. When a peripheral interrupt signal
is passed through the PIE module, the PIVR is loaded with the vector of the pending
interrupt which has the highest priority level. This assures that if two interrupts of

Copyright © 2004 CRC Press, LLC

68 Interrupts on the TMS320LF2407

different priorities happen simultaneously, the higher priority interrupt will be
serviced first.

Peripheral Interrupt Vector Register (PIVR) — Address 701Eh

Note: R = read access, -0 = value after reset.

Bits 15–0 V15–V0. Interrupt vector. This register contains the peripheral
interrupt vector of the most recently acknowledged peripheral interrupt.

External Interrupt Control Registers

The external interrupts (XINT1, XINT2) are controlled by the XINT1CR and
XINT2CR control registers, respectively. If these interrupts are enabled in their
control registers, an interrupt will be generated when the XINT1 or XINT2 logic
transition occurs for at least 12 CPU clock cycles.

For example, if XINT1 was configured for generating an interrupt on a low (0
Volts) to high (3.3 Volts) transition and the XINT1 pin only went high for 6 clock
cycles, then back down to low, an interrupt request would not occur. However, if
the pin was brought high for 12 or more cycles, an interrupt request signal would be
generated.

External Interrupt 1 Control Register (XINT1CR) – Address 7070h

Note: R = read access, W = write access, C = clear by writing a 1, -0 = value after
reset.

Bit 15 XINT1 Flag
This bit indicates if the selected transition has been detected on
the XINT1 pin and is set whether or not the interrupt is enabled.
This bit is cleared by software writing a 1 (writing a 0 has no
effect), or by a device reset.

0 No transition detected
1 Transition detected

Copyright © 2004 CRC Press, LLC

Interrupts on the TMS320LF2407 69

Note: the description in the TI user guide can be misleading: this bit is not cleared
automatically during the interrupt acknowledge sequence.
Bits 14–3 Reserved. Reads return zero; writes have no effect.

Bit 2 XINT1 Polarity
This read/write bit determines if interrupts are generated on the
rising edge or the falling edge of a signal on the pin.

0 Interrupt generated on a falling edge (high-to-low transition)
1 Interrupt generated on a rising edge (low-to-high transition)

Bit 1 XINT1 Priority
This read/write bit determines which interrupt priority is
requested. The CPU interrupt priority levels corresponding to low
and high priority are coded into the peripheral interrupt expansion
controller. These priority levels are shown in Table 2–2, 240xA
Interrupt Source Priority and Vectors, in Chapter 2 on page 2-9.

0 High priority
1 Low priority

Bit 0 XINT1 Enable
This read/write bit enables or disables external interrupt XINT1.

0 Disable interrupt
1 Enable interrupt

External Interrupt 2 Control Register (XINT2CR) – Address 7071h

Note: R = read access, W = write access, C = Clear by writing a 1, -0 = value after
reset.

Bit 15 XINT2 Flag
This bit indicates if the selected transition has been detected on
the XINT2 pin and is set whether or not the interrupt is
enabled. This bit is cleared by software writing a 1 (writing a 0
has no effect), or by a device reset.

0 No transition detected
1 Transition detected

Note: the description in the TI user guide can be misleading: this bit is not cleared
automatically during the interrupt acknowledge sequence.

Copyright © 2004 CRC Press, LLC

70 Interrupts on the TMS320LF2407

Bits 14–3 Reserved. Reads return zero; writes have no effect.

Bit 2 XINT2 Polarity
 This read/write bit determines if interrupts are generated on the

rising edge or the falling edge of a signal on the pin.
0 Interrupt generated on a falling edge (high-to-low transition)
1 Interrupt generated on a rising edge (low-to-high transition)

Bit 1 XINT2 Priority
 This read/write bit determines which interrupt priority is

requested. The CPU interrupt priority levels corresponding to low
and high priority are coded into the peripheral interrupt expansion
controller. These priority levels are shown in Table 2–2, 240xA
Interrupt Source Priority and Vectors, in Chapter 2 on page 2-9.

0 High priority
1 Low priority

Bit 0 XINT2 Enable
 This read/write bit enables or disables the external interrupt

XINT2.
0 Disable interrupt
1 Enable interrupt

4.4 Initializing and Servicing Interrupts in Software

In order to utilize the interrupt functions of the LF2407, several steps should be
taken to initialize the DSP and interrupt related registers. This will assure that no
false interrupts are asserted. While it is unlikely that a false interrupt would be
generated, writing code that would ignore a false interrupt is good practice.

Servicing the interrupt requires that a few steps also be taken to “reset” the
interrupt so that future interrupts of the same origin can also occur.

4.4.1 Configuring the LF2407 for Interrupt Operation

Several steps should be performed via software to prepare the DSP and
interrupt system for use before any sort of algorithm is entered. The following
provides for a general procedure for initializing the DSP interrupts and peripherals:

1. The first instruction after the START label should be to set the INTM bit.
This assures that no interrupts can occur during initialization.

2. Once the INTM bit is set, then the second step is to mask each of the six
CPU level interrupts by writing “0” to the IMR.

3. Once all bits in the IMR are “0”, the IFR value should be loaded into the
accumulator, and then the accumulator should be written to the IFR. This
writes the IFR back into itself, thereby clearing all flag bits.

Copyright © 2004 CRC Press, LLC

Interrupts on the TMS320LF2407 71

4. Now is the time to disable the Watchdog timer by writing “6Fh” to the
WDCR (watchdog control register). Also, the DSP should be configured
by setting the System Control Registers (SCSR1,SCSR2) for desired
operation and the enabling the clock to desired peripherals.

5. If applicable, set the reset bit in the selected peripheral control registers.
Configure peripheral for desired operation.

6. Configure the IMR to unmask only those interrupt levels which correspond
to the selected peripheral.

7. Clear the INTM bit to allow future interrupts to reach the CPU.
8. If applicable, bring the selected peripherals out of reset/enable operation

via peripheral control register.

Example 4.1 - The following block is a segment of code which provides an
example of interrupt initialization.

START:
LDP #0h ;set DP=0
SETC INTM ;Disable interrupts
SPLK #0000h,IMR ;Mask all core interrupts
LACC IFR ;Read Interrupt flags
SACL IFR ;Clear all interrupt flags
LDP #WDKEY >> 7h ;Peripheral page
SPLK #006Fh, WDCR ;Disable WD if VCCP=5V
SPLK #0000h, SCSR1 ;

KICK_DOG
SPLK #0h,GPR0 ;Set wait state generator for:
OUT GPR0,WSGR ;Program Space, 0-7 wait states
LDP #0E1h
SPLK #00004h, MCRA ;Configure XINT pin for primary
LDP #0E0h
SPLK #5h, XINT1CR ;Configures XINT1 pin for

;polarity(low to high) priority(high),
;and enable bit

LDP # 0h
SPLK #1, IMR ;XINT is INT1 so set IMR to “1”
CLRC INTM ;Enables interrupts to core

LOOP B LOOP ;loops here until interrupt occurs

The above code will enable the XINT1 pin to generate an interrupt of INT1
when a “low to high” transition is detected on the pin.

4.4.2 Servicing Interrupts

Each of the interrupt priority levels INT1 through INT6 has a corresponding
memory address 0001h through 0006h in program memory to which the core will
branch upon receiving the interrupt. The header file vector.h assigns the labels
“INT1, INT2, …INT6” to addresses 0001h through 0006h. This header file also
instructs the core to branch to the corresponding General Interrupt Service Routines
(GISR1 through GISR6) labels which are located in the assembly source file.

It is under the appropriate “GISRx” label in the source file where the interrupt
service routine (ISR) is written. In the ISR, a variety of algorithms may be used.
The ISR is simply an algorithm to which the core will execute whenever it

Copyright © 2004 CRC Press, LLC

72 Interrupts on the TMS320LF2407

encounters an interrupt. The first action in the ISR should be to perform a “context
save” by saving the value of the accumulator, status registers, and anything else that
could change as a result of the ISR, so that when the core exits from the interrupt, it
is essentially in the same state as when it entered.

If multiple peripheral interrupts in the same priority level are enabled, then each
of these interrupts would cause the core to branch to the same GISRx. In this case,
it would be necessary to first run a PIVR reading and selection algorithm under the
GISR which would determine what specific interrupt actually occurred. Then the
algorithm would then branch to a Specific Interrupt Service Routine (SISR).
Example 4.2 is pseudo-code which is an example of the selection algorithm
discussed previously.

Example 4.2 – Two peripheral interrupts (RXINT and TXINT) are both assigned to
priority level INT1. The following pseudo-code is a sample algorithm to determine
which interrupt occurred and service the interrupt.

GISR1 - GISR1 corresponds to ONLY INT1 interrupts
 Read the PIVR
 Does the PIVR contain the vector for RXINT ?
 Yes – Branch to R_ISR
 No – Continue to next instruction
 Does the PIVR contain the vector for TXINT?
 Yes – Branch to T_ISR
 No – Branch to ERROR
 R_ISR
This would be the first SISR, the name of the SISR does not matter
User defined algorithm plus reset interrupt for next occurrence and exit ISR

T_ISR
This would be the second SISR, the name of the SISR does not matter
User defined algorithm plus reset interrupt for next occurrence and exit ISR
ERROR
User defined algorithm plus reset interrupt for next occurrence and exit ISR
--

Interrupt Vectors

Information on the different peripheral interrupts and their corresponding PIVR
codes can be found in Table 4.1, which lists the peripheral interrupt vector codes
that load into the PIVR. The vector is essentially an identification number for each
interrupt. Note that an interrupt may have a different overall priority and grouping
based on the (low or high) priority level that the interrupt is set to in its
corresponding peripheral control register. For example, XINT1 (high priority) is
assigned vector 0001h and is grouped INT1 with overall priority 7. XINT1 (low
priority) is still assigned vector 0001h but is grouped INT6 with overall priority 33.

Copyright © 2004 CRC Press, LLC

Interrupts on the TMS320LF2407 73

Table 4.1 Interrupt vectors. (Courtesy of Texas Instruments)
Overall
Priority

Interrupt
Name

CPU
Interrupt
Vector

Peripheral
Interrupt
Vector

Maskable? Source
Peripheral

Description

1 Reset RSN
0000h

N/A N RS Pin,
Watchdog

Reset from pin,
watchdog time out

2 Reserved -
0026h

N/A N CPU Emulator trap

3 NMI NMI
0024h

N/A N Nonmaskable
interrupt

Nonmaskable interrupt

(a) INT1 (level 1)

Overall
Priority

Interrupt
Name

CPU
Interrupt
Vector

Peripheral
Interrupt
Vector

Maskable? Source
Peripheral

Description

4 PDPINTA INT1
0002h

0020h Y EVA Power drive protection
interrupt pin

5 PDPINTB INT1
0002h

0019h Y EVB Power drive protection
interrupt pin

6 ADCINT INT1
0002h

0004h Y ADC ADC interrupt in high–
priority mode

7 XINT1 INT1
0002h

0001h Y External
interrupt logic

External interrupt pin in
high–priority mode

8 XINT2 INT1
0002h

0011h Y External
interrupt logic

External interrupt pin in
high–priority mode

9 SPIINT INT1
0002h

0005h Y SPI SPI interrupt in high–
priority mode

10 RXINT INT1
0002h

0006h Y SCI SCI receiver interrupt in
high–priority mode

11 TXINT INT1
0002h

0007h Y SCI SCI transmitter interrupt
in high–priority mode

12 CANMBINT INT1
0002h

0040h Y CAN CAN mailbox interrupt
(high–priority mode)

13 CANERINT INT1
0002h

0041h Y CAN CAN error interrupt
(high–priority mode)

(b) INT2 (level 2)

Overall
Priority

Interrupt
Name

CPU
Interrupt
Vector

Peripheral
Interrupt
Vector

Maskable? Source
Peripheral

Description

14 CMP1INT INT2
0004h

0021h Y EVA Compare 1 interrupt

15 CMP2INT INT2
0004h

0022h Y EVA Compare 2 interrupt

16 CMP3INT INT2
0004h

0023h Y EVA Compare 3 interrupt

17 T1PINT INT2
0004h

0027h Y EVA Timer 1 period interrupt

18 T1CINT INT2
0004h

0028h Y EVA Timer 1 compare
interrupt

19 T1UFINT INT2
0004h

0029h Y EVA Timer 1 underflow
interrupt

20 T1OFINT INT2
0004h

002Ah Y EVA Timer 1 overflow
interrupt

21 CMP4INT INT2
0004h

0024h Y EVB Compare 4 interrupt

22 CMP5INT INT2
0004h

0025h Y EVB Compare 5 interrupt

23 CMP6INT INT2
0004h

0026h Y EVB Compare 6 interrupt

24 T3PINT INT2
0004h

002Fh Y EVB Timer 3 period interrupt

25 T3CINT INT2
0004h

0030h Y EVB Timer 3 compare
interrupt

26 T3UFINT INT2
0004h

0031h Y EVB Timer 3 underflow
interrupt

27 T3OFINT INT2
0004h

0032h Y EVB Timer 3 overflow
interrupt

Copyright © 2004 CRC Press, LLC

74 Interrupts on the TMS320LF2407

(c) INT3 (level 3)

Overall
Priority

Interrupt
Name

CPU
Interrupt
Vector

Peripheral
Interrupt
Vector

Maskable? Source
Peripheral

Description

28 T2PINT INT3
0006h

002Bh Y EVA Timer 2 period interrupt

29 T2CINT INT3
0006h

002Ch Y EVA Timer 2 compare
interrupt

30 T2UFINT INT3
0006h

002Dh Y EVA Timer 2 underflow
interrupt

31 T2OFINT INT3
0006h

002Eh Y EVA Timer 2 overflow
interrupt

32 T4PINT INT3
0006h

0039h Y EVB Timer 4 period interrupt

33 T4CINT INT3
0006h

003Ah Y EVB Timer 4 compare
interrupt

34 T4UFINT INT3
0006h

003Bh Y EVB Timer 4 undeflow
interrupt

35 T4OFINT INT3
0006h

003Ch Y EVB Timer 4 overflow
interrupt

(d) INT4 (level 4)

Overall
Priority

Interrupt
Name

CPU
Interrupt
Vector

Peripheral
Interrupt
Vector

Maskable? Source
Peripheral

Description

36 CAP1INT INT4
0008h

0033h Y EVA Capture 1 interrupt

37 CAP2INT INT4
0008h

0034h Y EVA Capture 2 interrupt

38 CAP3INT INT4
0008h

0035h Y EVA Capture 3 interrupt

39 CAP4INT INT4
0008h

0036h Y EVB Capture 4 interrupt

40 CAP5INT INT4
0008h

0037h Y EVB Capture 5 interrupt

41 CAP6INT INT4
0008h

0038h Y EVB Capture 6 interrupt

(e) INT5 (level 5)

Overall
Priority

Interrupt
Name

CPU
Interrupt
Vector

Peripheral
Interrupt
Vector

Maskable? Source
Peripheral

Description

42 SPIINT INT5
000Ah

0005h Y SPI SPI interrupt
(low priority)

43 RXINT INT5
000Ah

0006h Y SCI SCI receiver interrupt
(low–priority mode)

44 TXINT INT5
000Ah

0007h Y SCI SCI transmitter
interrupt (low–priority
mode)

45 CANMBINT INT5
000Ah

0040h Y CAN CAN mailbox interrupt
(low–priority mode)

46 CANERINT INT5
000Ah

0041h Y CAN CAN error interrupt
(low–priority mode)

(f) INT6 (level 6)

Overall
Priority

Interrupt
Name

CPU
Interrupt
Vector

Peripheral
Interrupt
Vector

Maskable? Source
Peripheral

Description

47 ADCINT INT6
000Ch

0004h Y ADC ADC interrupt
(low priority)

48 XINT1 INT6
000Ch

0001h Y External
interrupt logic

External interrupt pins
(low–priority mode)

49 XINT2 INT6
000Ch

0011h Y External
interrupt logic

External interrupt pins
(low–priority mode)

 Reserved 000Eh N/A Y CPU Analysis interrupt

N/A TRAP 0022h N/A N/A CPU TRAP instruction

N/A Phantom
Interrupt
Vector

N/A 0000h N/A CPU Phantom interrupt
vector

Copyright © 2004 CRC Press, LLC

Interrupts on the TMS320LF2407 75

4.5 Interrupt Usage Exercise

This exercise will help the reader become familiar with interrupt operation and
writing interrupt service routines in software. The skills practiced in this exercise
are extremely relevant in sequential chapters where interrupts must be understood
for peripheral use.

1. Create a new project and source file each named “lab4”. Add the same
header files as in previous exercises.

2. Create a program which first properly configures the LF2407 and XINT1
interrupt registers for operation on a low to high clock edge. On the
LF2407 EVM module, jumper the XF pin the XINT1. Configure the XF
pin to initially output logic “0”. The program should utilize a looping
algorithm and the XINT1 interrupt to perform the following tasks:

a. Start with the value “0h” in the accumulator. Store the number in the
accumulator to the data memory address 300h. When this operation is
complete, set the XF pin to be “1” (logic high). This should trigger an
XINT1 interrupt.

b. In the ISR, keep count of the number of interrupts generated in the address
“030Fh”. Start counting at “0” for the first interrupt generated. Reset the
XF pin to logic “0”. Re-enable the interrupt.

c. Keep repeating steps (a) and (b), but use the numbers “0001h” through
“000Ah” instead and store them to memory address 301h through 30Ah.

The program should store a total of 11 numbers (0h to Ah) to memory
addresses 300h through 30Ah. There should be exactly 11 interrupts counted with
the number “Ah” stored in memory address 30Fh.

d. After steps (a) through (c) are complete, perform the calculations “Ah”
multiplied by “3h” , “1h” multiplied by “5h”, and “11h” multiplied by “7h”
one after the other. Create a transition on the XF pin so an XINT1
interrupt will be generated after each calculation is complete. Count the
number of these interrupts and store them in data memory address 310h.

When the program is finished with the task, have it loop infinitely until halted
by the user. This exercise is now concluded.

Copyright © 2004 CRC Press, LLC

Chapter 5

THE ANALOG-TO-DIGITAL CONVERTER (ADC)

5.1 ADC Overview

The Analog-to-Digital Converter (ADC) on the LF2407 allows the DSP to
sample analog or “real-world” voltage signals. The output of the ADC is an integer
number which represents the voltage level sampled. The integer number may be
used for calculations in an algorithm. The resolution of the ADC is 10 bits,
meaning that the ADC will generate a 10-bit number for every conversion it
performs. However, the ADC stores the conversion results in registers that are 16
bits wide. The 10 most significant bits are the ADC result, while the least
significant bits (LSBs) are filled with “0”s. We usually want to truncate the useless
zeros, so the value in the result register is simply right shifted by six places.

If the ADC performs a conversion on a 3.3V signal, it will theoretically
generate “1111111111000000b” (or “FFC0h”) in the appropriate result register and
“0h” if a 0V signal is sampled. In actuality, the least significant of the 10 bits will
vary slightly; this is the result of random noise picked up by the ADC.

There are a total of 16 input channels to the single input ADC. The control
logic of the ADC consists of auto-sequencers, which control the sampling of the 16
input channels to the ADC. The auto-sequencers not only control which channels
(input channels) will be sampled by the ADC, but also the order of the channels that
the ADC performs conversions on. The two 8-conversion auto-sequencers can
operate independently or cascade together as a “virtual” 16-conversion ADC.

5.1.1 Summary of the LF2407 ADC

10-bit ADC with built-in Sample and Hold (S/H)
Fast conversion time of 500 ns
Sixteen (16) multiplexed analog inputs (ADCIN0 – ADCIN15)
Auto-sequencing capability – up to 16 “auto-conversions” in a single
session. Each conversion session can be programmed to select any one of
the 16 input channels
Two independent 8-state sequencers (SEQ1 and SEQ2) that can be
operated individually in dual-sequencer mode or cascaded into one large
16-state sequencer (SEQ) in cascaded mode
Four Sequencing Control Registers (CHSELSEQ1..4) that determine the
sequence of analog channels that are taken up for conversion in a given
sequencing mode
Sixteen (individually addressable) result registers to store the converted
values (RESULT0 – RESULT15)
Multiple trigger sources for start-of-conversion (SOC)
a. Software: Software start (using SOC SEQn bit)
b. EVA: Event manager A (multiple event sources within EVA)

77

Copyright © 2004 CRC Press, LLC

 The Analog-to-Digital Converter (ADC)78

c. EVB: Event manager B (multiple event sources within EVB)
d. External: ADCSOC pin
Interrupt control allows interrupt generation on every end-of-sequence
(EOS) or every other EOS
Sequencer can operate in start/stop mode, allowing multiple time-
sequenced triggers to synchronize conversions
EVA and EVB can independently trigger SEQ1 and SEQ2, respectively
(this is applicable for dual-sequencer mode only)
Sample-and-hold acquisition time window has separate prescale control
Built-in calibration mode and built-in self-test mode

5.2 Operation of the ADC

Using the ADC on the LF2407 is relatively simple. The user first needs to
configure the ADC for the desired operation. Like all peripherals, all registers
relating to ADC operation have addresses in data memory space. The first step in
configuring the ADC should be to reset the ADC. After the ADC is reset, the next
step is to configure the main ADC control registers (ADCTRL1, ADCTRL2) for
desired ADC operation. Then, load the MAXCONV register with the desired
number of automatic conversions minus 1. For example, if seven auto-conversions
are desired, MAXCONV would be loaded with “6”. The desired input channels and
their order of conversion need to be specified in the CHSELSEQn registers.
Finally, a SOC trigger will start the sampling process. A short example of the
assembly code performing the above listed steps is provided in Example 5.1.

Example 5.1- The following code gives an example of initializing the ADC, setting
up the CHSELSEQn registers and starting the conversion sequence:

LDP #0E1h
SPLK #0100000000000000b,ADCTRL1
NOP
SPLK #0011000000010000b,ADCTRL1

; the following explains bits in ADCCTRL1:
; 15 - RSVD | 14 - Reset(1) | 13,12 - Soft & Free
; 11,10,9,8 - Acq. prescalers | 7 - Clock prescaler
; 6 - Cont. run (1) | 5 - Int. priority (Hi.0)
; 4 - Seq. casc (0-dual)

SPLK #15, MAXCONV ;Setup for 16 conversions
SPLK #03210h, CHSELSEQ1 ;Conv Ch 0,1,2,3
SPLK #07654h, CHSELSEQ2 ;Conv Ch 4,5,6,7
SPLK #0BA98h, CHSELSEQ3 ;Conv Ch 8,9,10,11
SPLK #0FEDCh, CHSELSEQ4 ;Conv Ch 12,13,14,15
SPLK #2000b, ADCTRL2 ;Start the conversions by bit 13

After the conversion process is complete, each 10-bit result can be read from
the result registers RESULTn. The conversion results are stored sequentially in
result registers RESULT0 to RESULT15. The first result is stored in RESULT0, the
second result in RESULT1, and so on. For example, if ADC channel 1 is selected
for four consecutive conversions, the results will appear in registers RESULT0

Copyright © 2004 CRC Press, LLC

The Analog-to-Digital Converter (ADC) 79

through RESULT3. There is no correlation between ADC Channel 1 and the
RESULT register 1 or Channel 2 and RESULT 2 etc.

We will discuss each of these steps in detail in the following sections, starting
with the different operating modes of the ADC. This will aid the reader in
configuring the ADC control registers by helping to determine what operating mode
is needed. After the reader is familiar with the ADC operating modes, we will
cover the MAXCONV and CHSELSEQn registers. Various SOC trigger methods
will then be discussed. Finally, the ADC conversion result register reading will be
discussed.

5.2.1 Sequencer Configurations of the ADC

The first operating parameter the user needs to select is to configure the ADC
to operate as either one 16-conversion sequencer or two 8-conversion sequencers.
The ADC sequencer consists of two independent 8-conversion sequencers (SEQ1
and SEQ2) that can be cascaded together to form one 16-conversion sequencer
(SEQ).

When the ADC is configured to operate as one cascaded 16-convesion
sequencer, it may perform up to 16 conversions on any combination of the 16 input
channels. For example, it could be programmed to perform 14 conversions on
channel 1, or in another instance, 10 total conversions on a combination of channels
depending on what the CHSELSEQn registers are set for. The diagram Fig. 5.1
shows the configuration of the cascaded 16-conversion sequencer. When in
cascaded mode there is only one sequencer (SEQ) and the MAXCONV register is
programmed for the maximum number of conversions. The results are stored in
RESULT0 through RESULT 15 depending on the number of conversions
performed.

If the ADC is configured as two 8-conversion sequencers, then each sequencer
operates independently. When the two sequencers are used independently, the
current active sequencer has priority over the inactive one. The start of conversion
request from the “inactive” sequencer will be taken as soon as the sequence initiated
by the “active” sequencer is completed. For example, if Sequencer 1 (SEQ1) is
currently performing a conversion and Sequencer 2 (SEQ2) requests a start of
conversion, the ADC will finish the conversion from SEQ1, and then start the SEQ2
conversion. See Fig. 5.2 for a diagram of the dual-sequencer configuration. In
dual-sequencer operation, the MAXCONV register is “split” up so that the same
register contains data for the maximum number of conversions for both SEQ1 and
SEQ2. The 16 result registers are also split up so SEQ1 uses RESULT0 through
RESULT7 and SEQ2 uses RESULT8 through RESULT15. A summary of the
cascaded and dual-sequencer configurations is listed in Table 5.1.

Copyright © 2004 CRC Press, LLC

 The Analog-to-Digital Converter (ADC)80

ADCIN0
ADCIN1
ADCIN2

ADCIN15

MAX CONV1

Ch Sel (state 0)
Ch Sel (state 1)

Ch Sel (state 3)
Ch Sel (state 2)

Ch Sel (state 15)

State
pointer

10–bit, 375–ns†

 S/H + A/D
converter

4

SOC EOC

4

10

Analog MUX Result MUX

Result
select

10

RESULT0

Autosequencer
state machine

Start–of–sequence trigger
Software

EVA
EVB

External pin (ADCSOC)

MUX
select

Note: Possible values are:
Channel select = 0 to 15
MAXCONV = 0 to 15

RESULT1

RESULT2

RESULT15

† 425–ns for LC2402A

Figure 5.1 Block diagram of ADC in cascaded sequencer mode. (Courtesy of

Texas Instruments)

Table 5.1 Comparasion table of dual (SEQ1 and SEQ2) versus cascaded

sequencer configuration

Feature Single 8–state
sequencer #1 (SEQ1)

Single 8–state
sequencer #2 (SEQ2)

Cascaded 16–state
sequencer (SEQ)

Start–of–conversion
triggers

EVA, software,
external pin

EVB, software EVA, EVB, software,
external pin

Maximum number of
autoconversions
(i.e., sequence length)

8 8 16

Autostop at end–of–
sequence (EOS)

Yes Yes Yes

Arbitration priority High Low Not applicable

ADC conversion result
register locations

0 to 7 8 to 15 0 to 15

CHSELSEQn bit field
assignment

CONV00 to CONV07 CONV08 to CONV15 CONV00 to CONV15

Copyright © 2004 CRC Press, LLC

The Analog-to-Digital Converter (ADC) 81

ADCIN0
ADCIN1
ADCIN2

ADCIN15

MAX CONV1

Ch Sel (state 0)
Ch Sel (state 1)

Ch Sel (state 3)
Ch Sel (state 2)

Ch Sel (state 7)

State
pointer

10–bit, 375–ns†

S/H + A/D
converter

SOC EOC

10

Analog MUX

Result MUX

Result
select

1

RESULT

RESULT

RESULT

SEQ

Software
EV

External pin (ADCSOC)

MUX
select

Note: Possible values:
Channel select = 0 to 15
MAX CONV1 = 0 to 7

Sequencer
arbiter

SOC EOC

4 4

4

MU

Ch Sel (state 15)

Ch Sel (state 8)
Ch Sel (state 9)

Ch Sel (state 11)
Ch Sel (state 10)

EVB

MAX CONV2

SOC EOC

4

Software

SEQ

Start–of–
sequence trigger

Result
select

RESULT1
1

Result MUX

RESULT

RESULT

1

1

MAX CONV2 = 8 to 15

State
pointer

Start–of–
sequence trigger

† 425–ns for LC2402A

Figure 5.2 Block diagram of ADC in dual sequencer mode. (Courtesy of Texas
Instruments)

5.2.2 Sequencer Operating Modes

Once the sequencer configuration has been chosen, it is necessary to determine
in what mode each sequencer will operate. The sequencer operation mode depends
on the continuous-run mode bit (CONT RUN) in ADCCTRL1. The ADC’s
interrupt flag is always set when the ADC completes the number of conversions
specified by (MAXCONV + 1) regardless of the CONT RUN bit. The two ADC
operation modes which apply to both dual (SEQ1, SEQ2) and cascaded (SEQ)
sequencer modes are:

Start/Stop Auto-Sequencer Mode
Continuous Auto-Sequencer Mode

Copyright © 2004 CRC Press, LLC

 The Analog-to-Digital Converter (ADC)82

Start/Stop Auto-Sequencer Mode

If the CONT RUN bit is not set, upon receiving a trigger, the ADC performs all
conversions and halts at the last conversion state (CONVxx) in the corresponding
CHSELSEQn. To perform another batch of conversions, the ADC is normally reset
to its initial state via the RST SEQn bit in the ADCTRL2 register and reinitialized.
After being reinitialized, another trigger is given and the whole process starts over
again. Figure 5.3 is a flowchart of the operation of the ADC under start/stop mode.

Current conversion complete. Digital
result is written into corresponding

RESULTn register

Conversion begins. AUTO_SEQ_SR
register is decremented by one for every

conversion

MAXCONV value gets loaded
into AUTO_SEQ_SR register

SOC trigger arrives

Initialize the ADC registers

All Conversions
Complete?

(AUTO_SEQ_SR = 0 ?)

Set INT FLAG SEQn

No

Yes

Note: Flow chart corresponds
 to CONT RUN bit = 0.

Figure 5.3 Flowchart for Start/Stop Auto-Sequencer Mode (CONT RUN=0).

In the case when another trigger signal is given and the ADC has not been
reset, the ADC performs another specified number of conversions (MAXCONV +
1) from the current conversion state and then halts. Another trigger signal will
simply restart the sequencer from the point where it halted. When the ADC is given
multiple triggers without being reset in between, this operation is referred to as

Copyright © 2004 CRC Press, LLC

The Analog-to-Digital Converter (ADC) 83

multiple time-sequenced trigger operation. Example 5.2 illustrates a situation where
a multiple time-sequenced trigger operation might be used.

Example 5.2 – The following is a situation where a multiple time-sequenced trigger
operation might be used.

An application requires conversions on all 16 channels, but not all at once. The
application requires conversions on channels 0 through 3, perform a few
calculations, convert channels 4 through 7, do a few more calculations, convert
channels 8 through 11, etc. until conversions are performed on all 16 input channels.
The four CHSELSEQ registers would be loaded only once with all 16 channels in
the desired order. The MAXCONV register would be loaded with the number “3”,
which configures the auto-sequencer for four conversions. Each time the sequencer
pauses, the algorithm would branch to the section of code that performs calculations
and retrigger the ADC. This “branching” could either occur as a result of an
interrupt or bit polling algorithm.

Continuous Auto-Sequencer Mode

The continuous-run mode bit is set to “1” for this mode of operation. When in
this mode, the ADC completes the number of conversions specified, resets itself to
the first conversion state (CONV00), and then performs the whole operation over
again. This operation is similar to the start/stop mode except that the ADC is put in
a continuous “looping” operation.

Note: If the CONT RUN (continuous run) mode is selected, the user must be sure
that the result registers are read before the next conversion sequence begins. This
is because every time the ADC runs, the result registers will be overwritten with the
most current results.

5.2.3 Triggering Sources for the LF2407 ADC

In order to start the conversion sequence on the ADC, the sequencer must be
triggered. There are several different trigger sources on the LF2407. Triggers may
come from a SOC signal from EVA: external pin or software. A software trigger is
the trigger thus far used as an example. The software trigger is generated by setting
the SOC SEQ1 bit (cascaded mode) or SOC SEQ1,2 bits (dual mode) in the
ADCTRL2 register. Other than software triggers, hardware in the form of an
external pin or on-chip peripheral can also trigger the ADC. Table 5.2 lists the
possible triggering sources which generate a SOC for the ADC. Each trigger input
can be enabled /disabled.

Copyright © 2004 CRC Press, LLC

 The Analog-to-Digital Converter (ADC)84

Table 5.2 SOC Trigger Sources for the ADC

The following conditions apply to trigger operation:

a. A SOC trigger can initiate an auto-conversion sequence whenever a
sequencer is in an idle state. An idle state is either just after reset
(CONV00), or any state where the sequencer has just finished a
conversion sequence, i.e., when SEQ CNTR has reached zero.

b. If a SOC trigger occurs while a current conversion sequence is
underway, it sets the SOC SEQn bit. If yet another SOC trigger
occurs, that trigger is ignored. This basically operates as a SOC
trigger “buffer” that will catch a trigger even though the ADC might
be currently performing a conversion.

c. Once triggered, the sequencer cannot be stopped/halted in mid
sequence. The program must either wait until an End-of-Sequence
(EOS) or initiate a sequencer reset, which brings the sequencer
immediately back to the idle start state (CONV00 for SEQ1 and
cascaded cases; CONV08 for SEQ2).

d. When SEQ1 and SEQ2 are used in cascaded mode, triggers going to
SEQ2 are ignored, while SEQ1 triggers are active. Cascaded mode
can be viewed as SEQ1 with 16 conversion states instead of 8.

5.2.4 The ADCTRL1 and ADCTRL2 Control Registers

ADC Control Register 1 (ADCTRL1) — Address 70A0h

15 14 13 12 11 10 9 8

Reserved RESET SOFT FREE ACQ PS3 ACQ PS2 ACQ PS1 ACQ PS0

RS–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

CPS CONT RUN INT PRI SEQ CASC CAL ENA BRG ENA HI/LO STEST
ENA

RW–0 RW–0 RW–0 RW–0 RW-0 RW-0 RW-0 RW-0

Note: R = read access, W = write access, S = set only, -0 = value after reset.

Bit 15 Reserved

Copyright © 2004 CRC Press, LLC

The Analog-to-Digital Converter (ADC) 85

Bit 14 RESET. ADC module software reset. This bit causes a master reset on the
entire ADC module. All register bits and sequencer state machines are
reset to the initial state as occurs when the device reset pin is pulled low
(or after a power-on reset).
0 No effect
1 Resets entire ADC module (bit is then set back to 0 by ADC

logic)

Note: Using the RESET Bit in the ADCTRL1 Register

The ADC module is reset during a system reset. If an ADC module reset is
desired at any other time, you can do so by writing a 1 to this bit. After a
NOP, you can then write the appropriate values to the ADCTRL1 register

 bits:
SPLK #01xxxxxxxxxxxxxxb,ADCTRL1 ;Resets the ADC (RESET = 1)
NOP ;Provides the required delay between

; two writes to the ADCTRL1
SPLK #00xxxxxxxxxxxxxxb,ADCTRL1 ;Takes ADC out of Reset(RESET= 0)

Note: The second SPLK is not required if the default/power-on configuration of the
ADC is sufficient.

Bits 13, 12 SOFT and FREE. Soft and Free bits. These bits determine what
happens with the ADC when an emulation-suspend occurs (due to the
debugger hitting a breakpoint, for example). In free-run mode, the
peripheral can continue with whatever it is doing. In stop mode, the
peripheral can either stop immediately or stop when the current operation
(i.e., the current conversion) is complete.
Soft Free
0 0 Immediate stop on suspend
1 0 Complete current conversion before stopping
X 1 Free run, continue operation regardless of suspend

Bits 11–8 ACQ PS3 – ACQ PS0. Acquisition time window – pre-scale bits 3–0
These bits define the ADC clock pre-scale factor applied to the acquisition
portion of the conversion and determine over what time period each ADc
sample will take place. The pre-scale values are defined in the following
table.

Copyright © 2004 CRC Press, LLC

 The Analog-to-Digital Converter (ADC)86

Notes:

ACQ
PS3

ACQ
PS2

ACQ
PS1

ACQ
PS0

PRE-
SCALER
(div. by)

Acquisition
Time

Window

Source
Z

(CPS=0)

Source
Z

(CPS=1)
0 0 0 0 0 1 2 x Tclk 67 385
1 0 0 0 1 2 4 x Tclk 385 1020
2 0 0 1 0 3 6 x Tclk 702 1655
3 0 0 1 1 4 8 x Tclk 1020 2290
4 0 1 0 0 5 10 x Tclk 1337 2925
5 0 1 0 1 6 12 x Tclk 1655 3560
6 0 1 1 0 7 14 x Tclk 1972 4194
7 0 1 1 1 8 16 x Tclk 2290 4829
8 1 0 0 0 9 18 x Tclk 2607 5464
9 1 0 0 1 10 20 x Tclk 2925 6099
A 1 0 1 0 11 22 x Tclk 3242 6734
B 1 0 1 1 12 24 x Tclk 3560 7369
C 1 1 0 0 13 26 x Tclk 3877 8004
D 1 1 0 1 14 28 x Tclk 4194 8639
E 1 1 1 0 15 30 x Tclk 4512 9274
F 1 1 1 1 16 32 x Tclk 4829 9909

1) Period of Tclk is dependent on the “Conversion Clock Prescale” bit (Bit 7); i.e.,
CPS = 0: Tclk = 1/CLK (example, for CLK = 30 MHz, Tclk = 33 ns)
CPS = 1: Tclk = 2(1/CLK) (example, for CLK = 30 MHz, Tclk = 66 ns)
2) Source impedance Z is a design estimate only.

Bit 7 CPS. Conversion clock prescale. This bit defines the ADC conversion
logic clock prescale
0 Fclk = CLK/1
1 Fclk = CLK/2
CLK = CPU clock frequency

Bit 6 CONT RUN. Continuous run
This bit determines whether the sequencer operates in continuous
conversion mode or start-stop mode. This bit can be written while
a current conversion sequence is active. This bit will take effect at
the end of the current conversion sequence, i.e., software can
set/clear this bit until EOS has occurred for valid action to be
taken. In the continuous conversion mode, there is no need to
reset the sequencer; however, the sequencer must be reset in the
start-stop mode to put the converter in state CONV00.

0 Start-stop mode. Sequencer stops after reaching EOS. This is
used for multiple time-sequenced triggers.

1 Continuous conversion mode. After reaching EOS, the sequencer
starts all over again from state CONV00 (for SEQ1 and cascaded)
or CONV08 (for SEQ2).

Copyright © 2004 CRC Press, LLC

The Analog-to-Digital Converter (ADC) 87

Bit 5 INT PRI. ADC interrupt request priority
0 High priority
1 Low priority

Bit 4 SEQ CASC. Cascaded sequencer operation. This bit determines whether
SEQ1 and SEQ2 operate as two 8-state sequencers or as a single 16-state
sequencer (SEQ).
0 Dual-sequencer mode. SEQ1 and SEQ2 operate as two 8-state
 sequencers.
1 Cascaded mode. SEQ1 and SEQ2 operate as a single 16-state
 sequencer (SEQ).

Bit 3 CAL ENA. Offset calibration enable
When set to 1, CAL ENA disables the input channel multiplexer,
and connects the calibration reference selected by the bits HI/LO
and BRG ENA to the ADC core inputs. The calibration
conversion can then be started by setting bit 14 of ADCTRL2
register (STRT CAL) to 1. Note that CAL ENA should be set to 1
first before the STRT CAL bit can be used.

Note: This bit should not be set to 1 if STEST ENA = 1
0 Calibration mode disabled
1 Calibration mode enabled

Bit 2 BRG ENA. Bridge enable
Together with the HI/LO bit, BRG ENA allows a reference
voltage to be converted in calibration mode. See the description of
the HI/LO bit for reference voltage selections during calibration.

0 Full reference voltage is applied to the ADC input
1 A reference midpoint voltage is applied to the ADC input

Bit 1 HI/LO. VREFHI/VREFLO selection
When the fail self-test mode is enabled (STEST ENA = 1), HI/LO
defines the test voltage to be connected. In calibration mode,
HI/LO defines the reference source polarity; see Table 7–5. In
normal operating mode, HI/LO has no effect.

0 VREFLO is used as precharge value at ADC input
1 VREFHI is used as precharge value at ADC input

Copyright © 2004 CRC Press, LLC

 The Analog-to-Digital Converter (ADC)88

Reference Bit Voltage Selection

BRG ENA HI/LO CAL ENA = 1
Reference voltage (V)

STEST ENA = 1
Reference voltage (V)

0 0 VREFLO VREFLO

0 1 VREFHI VREFHI

1 0 |(VREFHI - VREFLO) / 2| VREFLO

1 1 |(VREFLO - VREFHI) / 2| VREFHI

Bit 0 STEST ENA. Self-test function enable
0 Self-test mode disabled
1 Self-test mode enabled

ADC Control Register 2 (ADCTRL2) — Address 70A1h

15 14 13 12 11 10 9 8

EVB SOC
SEQ

RST SEQ1/
STRT CAL

SOC SEQ1 SEQ1 BSY INT ENA
SEQ1

(Mode 1)

INT ENA
SEQ1

(Mode 0)

INT FLAG
SEQ1

EVA SOC
SEQ1

RW–0 RS–0 RW–0 R–0 RW–0 RW–0 RC–0 RW–0

7 6 5 4 3 2 1 0

EXT SOC
SEQ1

RST SEQ2 SOC SEQ2 SEQ2 BSY INT ENA
SEQ2

(Mode 1)

INT ENA
SEQ2

(Mode 0)

INT FLAG
SEQ2

EVB SOC
SEQ2

RW–0 RS–0 RW–0 R–0 RW–0 RW–0 RC–0 RW–0

Note: R = read access, W = write access, S = set only, C = clear, -0 = value after
reset.

Bit 15 EVB SOC SEQ. EVB SOC enable for cascaded sequencer (Note: This bit
is active only in cascaded mode.)
0 No action
1 Setting this bit allows the cascaded sequencer to be started by an

Event Manager B signal. The Event Manager can be programmed
to start a conversion on various events. See Chapter 6 for details.

Bit 14 RST SEQ1 / STRT CAL. Reset Sequencer1/Start Calibration
Case: Calibration Disabled (Bit 3 of ADCTRL1) = 0
Writing a 1 to this bit will reset the sequencer immediately to an
initial “pre-triggered” state, i.e., waiting for a trigger at CONV00.
A currently active conversion sequence will be aborted.

0 No action
1 Immediately reset sequencer to state CONV00

Case: Calibration Enabled (Bit 3 of ADCTRL1) = 1
Writing a 1 to this bit will begin the converter calibration process.

0 No action

Copyright © 2004 CRC Press, LLC

The Analog-to-Digital Converter (ADC) 89

1 Immediately start calibration process

Bit 13 SOC SEQ1. SOC trigger for Sequencer 1 (SEQ1). This bit can be set by
the following triggers:

S/W – Software writing a 1 to this bit
EVA – Event Manager A
EVB – Event Manager B (only in cascaded mode)
EXT – External pin (i.e., the ADCSOC pin)

When a trigger occurs, there are three possibilities:

Case 1: SEQ1 idle and SOC bit clear. SEQ1 starts immediately (under
arbiter control). This bit is set and cleared, allowing for any
“pending” trigger requests.

Case 2: SEQ1 busy and SOC bit clear. Bit is set signifying a trigger
request is pending. When SEQ1 finally starts after completing
current conversion, this bit will be cleared.

Case 3: SEQ1 busy and SOC bit set. Any trigger occurring in this case
will be ignored (lost).

0 Clears a pending SOC trigger.

Note: If the sequencer has already started, this bit will automatically be cleared,
and, hence, writing a zero will have no effect; i.e., an already started sequencer
cannot be stopped by clearing this bit.

1 Software trigger – Start SEQ1 from currently stopped position
(i.e., idle mode)

Note: The RST SEQ1 (ADCTRL2.14) and the SOC SEQ1 (ADCTRL2.13) bits
should not be set in the same instruction. This will reset the sequencer, but will not
start the sequence. The correct sequence of operation is to set the RST SEQ1 bit
first, and the SOC SEQ1 bit in the following instruction. This ensures that the
sequencer is reset and a new sequence started. This sequence applies to the RST
SEQ2 (ADCTRL2.6) and SOC SEQ2 (ADCTRL2.5) bits also.

Bit 12 SEQ1 BSY. SEQ1 Busy
This bit is set to a 1 while the ADC auto-conversion sequence is
in progress. It is cleared when the conversion sequence is
complete.

0 Sequencer is idle (i.e., waiting for trigger)
1 Conversion sequence is in progress

Bits 11–10 INT ENA SEQ1. Interrupt-mode-enable control for SEQ1

Copyright © 2004 CRC Press, LLC

 The Analog-to-Digital Converter (ADC)90

Bit 11 Bit 10 Operation Description

0 0 Interrupt is disabled
0 1 Interrupt Mode 1. Interrupt requested immediately when

INT FLAG SEQ1 flag is set
1 0 Interrupt Mode 2

Interrupt requested only if INT FLAG SEQ1 flag is
already set. If clear,† INT FLAG SEQ1 flag is set and INT
request is suppressed. (This mode allows interrupt
requests to be generated for every other EOS.)

1 1 Reserved

† This means that the last completed sequence is the first of the two
sequences needed to assert an interrupt.

Bit 9 INT FLAG SEQ1. ADC interrupt flag bit for SEQ1
This bit indicates whether an interrupt event has occurred or not.
This bit must be cleared by the user writing a 1 to it.

0 No interrupt event
1 An interrupt event has occurred

Checking for ADC Peripheral Interrupt Flag

After a SOC is initiated, we can check the INT FLAG SEQn bit to see if the
results are in the result registers.

Example code:

ADC_LOOP1:

LDP #0E1h ;data page - ADCTRL2

SPLK #0100000000000000b,ADCTRL2 ;Reset for SEQ1

NOP

NOP

NOP

NOP

SPLK #0010000000000000b,ADCTRL2 ;SOC for SEQ1

CHK_INTFLAG:

BIT ADCTRL2, 6 ;Wait for INT Flag to set

BCND CHK_INTFLAG, NTC ;If TC=0, keep looping.

Bit 8 EVA SOC SEQ1. Event Manager A SOC mask bit for SEQ1

Copyright © 2004 CRC Press, LLC

The Analog-to-Digital Converter (ADC) 91

0 SEQ1 cannot be started by EVA trigger.
1 Allows SEQ1/SEQ to be started by Event Manager A trigger. The

Event Manager can be programmed to start a conversion on
various events. See Chapter 6 for details.

Bit 7 EXT SOC SEQ1. External signal SOC bit for SEQ1
0 No action
1 Setting this bit enables an ADC auto-conversion sequence to be

started by a signal from the ADCSOC device pin.

Bit 6 RST SEQ2. Reset SEQ2
0 No action
1 Immediately resets SEQ2 to an initial “pre-triggered” state, i.e.,

waiting for a trigger at CONV08. A currently active conversion
sequence will be aborted.

Bit 5 SOC SEQ2. SOC trigger for Sequencer 2 (SEQ2)
(Only applicable in dual-sequencer mode; ignored in cascaded
mode.)

This bit can be set by the following triggers:
S/W – Software writing of 1 to this bit
EVB – Event Manager B

When a trigger occurs, there are three possibilities:
Case 1: SEQ2 idle and SOC bit clear

SEQ2 starts immediately (under arbiter control) and the bit is
cleared, allowing for any pending trigger requests.

Case 2: SEQ2 busy and SOC bit clear
Bit is set signifying a trigger request is pending. When SEQ2
finally starts after completing current conversion, this bit will be
cleared.

Case 3: SEQ2 busy and SOC bit set
Any trigger occurring in this case will be ignored (lost).

0 Clears a pending SOC trigger.
Note: If the sequencer has already started, this bit will
automatically be cleared, and hence, writing a zero will have no
effect; i.e., an already started sequencer cannot be stopped by
clearing this bit.

1 Software trigger – Start SEQ2 from currently stopped position
(i.e., idle mode)

Copyright © 2004 CRC Press, LLC

 The Analog-to-Digital Converter (ADC)92

Bit 4 SEQ2 BSY. SEQ2 Busy

This bit is set to a 1 while the ADC auto-conversion sequence is
in progress. It is cleared when the conversion sequence is
complete.

0 Sequencer is idle (i.e., waiting for trigger).
1 Conversion sequence is in progress.

Bits 3–2 INT ENA SEQ2. Interrupt-mode-enable control for SEQ2

Bit 3 Bit 2 Operation Description

0 0 Interrupt is disabled
0 1 Interrupt Mode 1

Interrupt requested immediate on INT FLAG SEQ2 flag
set

1 0 Interrupt Mode 2
Interrupt requested only if INT FLAG SEQ2 flag is
already set. If clear,† INT FLAG SEQ2 flag is set and INT
request is suppressed. (This mode allows interrupt requests
to be generated for every other EOS.)

1 1 Reserved

†This means that the last completed sequence is the first of the two sequences
needed to assert an interrupt.

Bit 1 INT FLAG SEQ2. ADC interrupt flag bit for SEQ2
This bit indicates whether an interrupt event has occurred or not.
This bit must be cleared by the user writing a 1 to it.

0 No interrupt event.
1 An interrupt event has occurred.

Note: The bit polling algorithm discussed after the bit 9 description is also valid for
the INT FLAG SEQ2 bit.

Bit 0 EVB SOC SEQ2. Event Manager B SOC mask bit for SEQ2
0 SEQ2 cannot be started by EVB trigger.
1 Allows SEQ2 to be started by Event Manager B trigger. The

Event Manager can be programmed to start a conversion on
various events. See Chapter 6 for details.

This concludes the main operating modes of the ADC sequencers. Now that
the reader has a general idea of the basic modes of operation (necessary for the

Copyright © 2004 CRC Press, LLC

The Analog-to-Digital Converter (ADC) 93

initialization of registers ADCTRL1 and ADCTRL2), we will now discuss the
configuration of the other ADC registers.

5.2.5 Specifying the Maximum Number of Auto-Conversions

The MAXCONV register is used to specify the maximum number of
conversions that the ADC will automatically perform once triggered. The
MAXCONV register should be loaded with the maximum number of desired auto-
conversions minus 1. In this case, since 16 is the maximum number of conversions
that the ADC can perform, the maximum value that should be loaded in the
MAXCONV register is “0Fh”.

When the ADC is in dual sequencer mode, the MAXCONV register is “split”
and serves both SEQ1 and SEQ2. The lower half of the register serves SEQ1, while
the upper half serves SEQ2. See the bit description of MAXCONV below.

Maximum Conversion Channels Register (MAXCONV) — Address 70A2h

15-8

Reserved

R–x

7 6 5 4 3 2 1 0

Reserved MAX
CONV2_2

MAX
CONV2_1

MAX
CONV2_0

MAX
CONV1_3

MAX
CONV1_2

MAX
CONV1_1

MAX
CONV1_0

R–x RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, x = undefined, -0 = value after reset.

Bits 15–7 Reserved

Bits 6–0 MAX CONVn. MAX CONVn bit field defines the maximum number of
conversions executed in an auto-conversion session. The bit fields and
their operation vary according to the sequencer modes (dual/cascaded).

For SEQ1 operation, bits MAX CONV1_2 – 0 are used.

For SEQ2 operation, bits MAX CONV2_2 – 0 are used.

For SEQ operation, bits MAX CONV1_3 – 0 are used.

An auto-conversion session always starts with the initial state and
continues sequentially until the end state if allowed. The result
registers are filled in a sequential order. Any number of
conversions between 1 and (MAX CONVn +1) can be
programmed for a session.

Copyright © 2004 CRC Press, LLC

 The Analog-to-Digital Converter (ADC)94

Example: MAXCONV Register Bit Programming

If only five conversions are required, then MAX CONVn is set to four.
Case 1: Dual mode SEQ1 and cascaded mode

Sequencer goes from CONV00 to CONV04, and the five
conversion results are stored in the registers Result 00 to Result
04 of the Conversion Result Buffer.

Case 2: Dual mode SEQ2
Sequencer goes from CONV08 to CONV12, and the five
conversion results are stored in the registers Result 08 to Result
12 of the Conversion Result Buffer.

MAX CONV1 Value >7 for Dual-Sequencer Mode

If a value for MAX CONV1, which is greater than 7, is chosen for
the dual-sequencer mode (i.e., two separate 8-state sequencers),
then SEQ CNTR n will continue counting past seven, causing the
sequencer to wrap around to CONV00 and continue counting.

5.2.6 Specifying ADC Input Channels and Conversion Order

The ADC input channels and conversion order are specified by the four
Channel Select and Sequencing registers (CHSELSEQ1 through CHSELSEQ4).
Each register selects four channels, which must be loaded in reverse order (from the
least significant hex number to the most significant).

The ADC will perform conversions on the 16 channels in the order that is
specified by the channel select sequence registers (CHSELSEQn). Channels must
be written to the CHSELSEQ registers in reverse order (see Example 5.1).

CHSELSEQ1 controls and specifies conversions CONV00 through CONV03.
CHSELSEQ2 controls and specifies conversions CONV04 through CONV07.
CHSELSEQ3 controls and specifies conversions CONV08 through CONV11.
CHSELSEQ4 controls and specifies conversions CONV12 through CONV15.

Example 5.1: We want to perform conversions on channels 2, 4, 1, 5, 7, 1, and 4
in this order. We would load CHSELSEQ1 with “5142 h” and CHSELSEQ2 with
“417 h”. Since 7 conversions are needed, we would load MAXCONV with “6h”.

ADC Input Channel Select Sequencing Control Registers (CHSELSEQn)

Each of the 4-bit fields, CONVnn, selects one of the 16 multiplexed analog
input ADC channels for an auto-sequenced conversion.

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0

70A3h CONV03 CONV02 CONV01 CONV00 CHSELSEQ1

RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -0 = value after reset.

Copyright © 2004 CRC Press, LLC

The Analog-to-Digital Converter (ADC) 95

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0

70A4h CONV07 CONV06 CONV05 CONV04 CHSELSEQ2

RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0

70A5h CONV11 CONV10 CONV09 CONV08 CHSELSEQ3

RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0

70A6h CONV15 CONV14 CONV13 CONV12 CHSELSEQ4

RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -0 = value after reset.

5.2.7 Results of the ADC Conversion

After the ADC has finished performing the number of conversions specified by
the MAXCONV register, the RESULTn registers can be read. Each result register
contains a 10-bit conversion result in the 10 most significant bits (MSB) of the
register. There are 16 total result registers, RESULT0 through RESULT15. These
registers contain the conversion results in the sequential order that the conversions
take place. For example, the result of the first conversion performed will be stored
in RESULT0, the second in RESULT1 etc.

It is usually desired to right shift the contents of the result register by six places
in order to truncate the extra zeros. This right shift can be performed easily by the
SFR command. Once the ADC result has been shifted, it may be used in
calculations or other purposes. The bit descriptions of the RESULT registers are
given below.

ADC Conversion Result Buffer Registers (RESULTn)

Note: In the cascaded sequencer mode, registers RESULT8 through RESULT15
will hold the results of the ninth through sixteenth conversions.

Copyright © 2004 CRC Press, LLC

 The Analog-to-Digital Converter (ADC)96

15 14 13 12 11 10 9 8

D9 D8 D7 D6 D5 D4 D3 D2

7 6 5 4 3 2 1 0

D1 D0 0 0 0 0 0 0

Notes:
1) Buffer addresses = 70A8h to 70B7h (i.e., 16 registers)
2) The 10-bit conversion result (D9–D0) is left-justified

5.2.8 The Auto-Sequence Status Register

The Auto-Sequence Status Register contains information on the current state of
the sequencer when running conversions. Its bits can be polled (read) to determine,
for example, if the sequencer is near or closer to the end number of conversions.

Auto-sequence Status Register (AUTO_SEQ_SR) — Address 70A7h

15-12 11 10 9 8

Reserved SEQ
CNTR 3

SEQ
CNTR 2

SEQ
CNTR 1

SEQ
CNTR 0

R–x R–0 R–0 R–0 R–0

7 6 5 4 3 2 1 0

Reserved SEQ2–
State2

SEQ2–
State1

SEQ2–
State0

SEQ1–
State3

SEQ1–
State2

SEQ1–
State1

SEQ1–
State0

R–x R–0 R–0 R–0 R–0 R–0 R–0 R–0

Note: R = read access, x = undefined, -0 = value after reset.

Bits 15–12 Reserved

Bits 11–8 SEQ CNTR 3 – SEQ CNTR 0. Sequencing counter status bits

The SEQ CNTR n 4-bit status field is used by SEQ1, SEQ2, and
the cascaded sequencer. SEQ2 is irrelevant in cascaded mode.

At the start of an auto-sequenced session, SEQ CNTR n is loaded with the
value from MAX CONVn. The SEQ CNTR n bits can be read at any time during
the countdown process to check the status of the sequencer. This value, together
with the SEQ1 and SEQ2 busy bits, uniquely identifies the progress or state of the
active sequencer at any point in time.

Copyright © 2004 CRC Press, LLC

The Analog-to-Digital Converter (ADC) 97

SEQ CNTR n (read only) Number of conversions remaining

0000 1

0001 2

0010 3

0011 4

0100 5

0101 6

0110 7

0111 8

1000 9

1001 10

1010 11

1011 12

1100 13

1101 14

1110 15

1111 16

Bit 7 Reserved

Bits 6–4 SEQ2-State2 through SEQ2-State0

Reflects the state of SEQ2 sequencer at any point of time. If need
be, user can poll these bits to read interim results before an EOS.
SEQ2 is irrelevant in cascaded mode.

Bits 3–0 SEQ1-State3 through SEQ1-State0

Reflects the state of SEQ1 sequencer at any point of time. If need
be, user can poll these bits to read interim results before an EOS.

Copyright © 2004 CRC Press, LLC

 The Analog-to-Digital Converter (ADC)98

ADC Register Addresses Summary (Mapped in Data Memory)

Address Register Name

70A0h ADCTRL1 ADC control register 1

70A1h ADCTRL2 ADC control register 2

70A2h MAXCONV Maximum conversion channels register

70A3h CHSELSEQ1 Channel select sequencing control register 1

70A4h CHSELSEQ2 Channel select sequencing control register 2

70A5h CHSELSEQ3 Channel select sequencing control register 3

70A6h CHSELSEQ4 Channel select sequencing control register 4

70A7h AUTO_SEQ_SR Autosequence status register

70A8h RESULT0 Conversion result buffer register 0

70A9h RESULT1 Conversion result buffer register 1

70AAh RESULT2 Conversion result buffer register 2

70ABh RESULT3 Conversion result buffer register 3

70ACh RESULT4 Conversion result buffer register 4

70ADh RESULT5 Conversion result buffer register 5

70AEh RESULT6 Conversion result buffer register 6

70AFh RESULT7 Conversion result buffer register 7

70B0h RESULT8 Conversion result buffer register 8

70B1h RESULT9 Conversion result buffer register 9

70B2h RESULT10 Conversion result buffer register 10

70B3h RESULT11 Conversion result buffer register 11

70B4h RESULT12 Conversion result buffer register 12

70B5h RESULT13 Conversion result buffer register 13

70B6h RESULT14 Conversion result buffer register 14

70B7h RESULT15 Conversion result buffer register 15

70B8h CALIBRATION Calibration result, used to correct subsequent conversions

5.3 Analog to Digital Converter Usage Exercise

The purpose of this exercise is to familiarize the reader with the practical usage
of the ADC. As stated earlier, the ADC on the LF2407 produces a 10-bit binary
number which represents the voltage of the sampled analog signal.

This 10-bit number is stored in a 16-bit register “RESULTn” n=0..15. When
reading from the register, the least significant 6 bits (bits 0-5) need to be
disregarded because the 10 ADC result bits are bits 15-6. This can be done with the
repeat command and SFR command.

For example, after the initial value is loaded into the accumulator:
RPT #5 SFR ; the accumulator will be shifted right 6 (RPT+1) times

Copyright © 2004 CRC Press, LLC

The Analog-to-Digital Converter (ADC) 99

Create an assembly source file and project file called “lab5”which:

a. Turns on the ADC clock in SCSR1 during the general initialization.
b. Puts the ADC in Reset.
c. Configures the ADC for Cascaded Mode; Continuous Mode = OFF;

brings ADC out of Reset mode.
d. Sets maximum conversions to one and selects channel 0 for

conversion.
e. Triggers a SOC via BIT 13 in ADCTRL2.
f. Checks if the ADC is finished via BIT 12 in ADCCTRL2.
g. If the ADC is finished with the conversion, the accumulator is loaded

with the value in RESULT0 (the ADC conversion).
h. Continuously loops in an endless loop, i.e., does nothing.

1. Run the code on the LF2407 EVM with a 1.5V battery connected to
channel 0 of the ADC and analog ground.

2. Record the value from the accumulator (the accumulator has been loaded
with the value from the first ADC RESULT register). The value should be
approximately half of the full voltage value 0x3FFF or approximately
“1FF” = (1.5V).

3. Modify the program to output the result data from address 60h to DAC
channel 1 on the LF2407 EVM. The DAC onboard is a 12-bit DAC, so in
order to get the correct voltage output, left shift the accumulator (ADC
data) two places to account for the extra two least significant bits. Also,
the EVM DAC has a voltage reference of 5V rather then 3.3V like the
ADC. This will cause a voltage slightly higher than what the ADC
sampled to be outputted on the DAC channel. For this academic exercise,
this can be ignored because the voltage difference is somewhat small.
When writing to the DAC Channel 1, the data must first be written to IO
space address 0000h. Then, in order for the data to actually be “sent out”
on the DAC, the IO space address 0004h must be written to. It does not
matter what value is written to IO address 0004h, just as long as it is
written to.

4. The data will then be sent from the buffers to the DAC outputs. (See the
OUT command and the Spectrum Digital LF2407 EVM manual for more
information on programming the on-board DAC.)

5. Rebuild the project, reset the DSP, and run the new code.
6. Measure the voltage output of the DAC. It should reflect the ADC input

voltage.
7. Modify the program to have the ADC continuously sample and

continuously output the sampled data on the DAC.
8. Rebuild the program, reset, and run the DSP.

This concludes the ADC usage exercise.

Copyright © 2004 CRC Press, LLC

Chapter 6

THE EVENT MANAGERS (EVA, EVB)

This chapter explains the features and operation of the LF2407 Event Managers
(EV1, EV2). There are two identical event managers on board the LF2407 DSP.
All control orientated features of the LF2407 are centered in the EV. The event
manager peripheral is made up of components such as timers and pulse width
modulation (PWM) generators. We start with a brief overview of the EV without
getting into too much detail. Since the EV consists of several sub-components, we
discuss in detail the operation and functionality of each sub-component separately
in subsequent sections.

6.1 Overview of the Event Manager (EV)

We start with the EV by reviewing the multiple functional modules of the
peripheral. The two EVs (EVA/B) are identical to one another in terms of
functionality and register/bit definition, but have different register names and
addresses. Since both EV1 and EV2 are identical, only the functionality of EV1
will be explained.

Each EV module in the LF2407 contains the following sub-components:

 Interrupt logic
 Two general-purpose (GP) timers
 Three compare units
 PWM circuits that include space vector PWM circuits, dead-band

generation units, and output logic
 Three Capture Units
 Quadrature encoder pulse (QEP) circuit

Figure 6.1 shows a block diagram of the EVA module. Similarly, Fig. 6.2
illustrates the block diagram of EVB.

Like all peripherals, the EV registers occupy a range of 16-bit memory
addresses in data memory space. Most of these registers are programmable control
and data registers, but read-only status registers are also present. EVA registers are
located in the data memory range 7400h to 7431h. EVB registers are located in the
range of 7500h to 7531h. Some of the EV memory allocation range is for use by
the DSP only. These undefined registers and undefined bits of EV registers will just
read zero when read by user software. Writes also have no effect on these registers.
As a general rule, one should not write to reserved or illegal addresses in order to
avoid an illegal address non-maskable interrupt (NMI) from occurring.

101

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)102

Output
logic

PWM1

PWM6

T2CMP/
T2PWM

T1CMP/T
1PWM

16
16

16

16

16

16

16

16

16

16

16

3 3 3

ADC start of
conversion

QEP
circuit

ClockDIR

16

16

2 CAP1/QEP1
CAP2/QEP2
CAP3

TDIRA

TCLKINA

CLKOUT

T1CON[8,9,10]T1CON[4,5]

T2CON[8,9,10]T2CON[4,5]

CLKOUT
TCLKINA

TDIRA

Output
logic

Dead
band
units

SVPWM
state

machine

2
2

CAPCONA[14,13]

Capture units

GP timer 1

Full compare
units

GP timer 2
compare

GP timer 2

EV control registers
and control logic

GP timer 1
compare

Output
logic

Data
bus ADDR bus Reset INT1,2,3,4 Clock

240xA DSP core

MUX

Prescaler

Prescaler

Figure 6.1 Event Manager A (EVA) block diagram. (Courtesy of Texas
Instruments)

6.2 Event Manager Interrupts

The interrupt system in the EV will be discussed first because each of the sub-
modules of the EVs have interrupt flags. The EV interrupt sub-system is slightly
different from that of the main interrupt system. Each EV has its own “local”
interrupt sub-system which includes its own interrupt mask and flag registers. After
the EV interrupts pass through the sub-system, they flow into the PIE just like any
other interrupt on the LF2407. The EV interrupts are arranged into three groups
(A, B, C). Each group (A,B,C) has its own mask and flag register and is assigned to

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 103

a particular CPU interrupt priority level at the PIE. EV interrupts happen to be only
at the INT2, INT3, and INT4 CPU priority levels.

Output
logic

PWM7

PWM12

T4CMP/
T4PWM

T3CMP/
T3PWM

16
16

16

16

16

16

16

16

16

16

16

3 3 3

ADC start of
conversion

QEP
circuit

ClockDIR

16

16

2 CAP4/QEP3
CAP5/QEP4
CAP6

TDIRB

TCLKINB

CLKOUT

T3CON[8,9,10]T3CON[4,5]

T4CON[8,9,10]T4CON[4,5]

CLKOUT
TCLKINB

TDIRB

Output
logic

Dead
band
units

SVPWM
state

machine

2
2

CAPCONB[14,13]

Capture units

GP timer 3

Full compare
units

GP timer 4
compare

GP timer 4

EV control registers
and control logic

GP timer 3
compare

Output
logic

Data
bus ADDR bus Reset INT1,2,3,4 Clock

240xA DSP core

MUX

Prescaler

Prescaler

Figure 6.2 Event Manager B (EVB) block diagram. (Courtesy of Texas
Instruments)

The following are the sequential steps for interrupt response within the EV:

1. Interrupt source. When an EV interrupt condition occurs, the respective
flag bits in registers EVxIFRA, EVxIFRB, or EVxIFRC (x = A or B) are
set. As with other peripheral level flags, once set, these flags remain set
until explicitly cleared by the software. In other words, you must clear

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)104

theses flags “manually” through your software in order for future interrupts
to be recognized.

2. Interrupt enable. The EV interrupts can be individually enabled or
disabled by the EV interrupt mask registers EVxIMRA, EVxIMRB, and
EVxIMRC (x being either EV = A or B). To enable (unmask) an interrupt,
the user must set the corresponding bit to “1”. To disable (mask) the
interrupt, clear the corresponding bit to “0”. From now on, the interrupt is
handled like other peripheral interrupts as discussed earlier in the text.

3. PIE request. If both interrupt flag bits and interrupt mask bits are set, then
the interrupt request is passed to the PIE module. As with any other
peripheral interrupts, the PIE module will send the CPU a request for a
CPU level interrupt of the appropriate priority level based on the priority of
the received interrupts.

4. CPU response. On receiving a CPU level interrupt request, the respective
bit in the CPU interrupt flag register (IFR) will be set. If the corresponding
interrupt mask register (IMR) bit is set and INTM bit is cleared, then the
CPU recognizes the interrupt and issues an acknowledgement to the PIE
module. Following this, the CPU finishes executing the current instruction
and branches to the interrupt service routine via the interrupt vector. At
this time, the respective IFR bit will be cleared and the INTM bit will be
set disabling further interrupt recognition. The interrupt vector contains a
branch instruction for the interrupt service routine. From here, the user
software controls the interrupt servicing.

5. Interrupt software. The interrupt software can include two levels of
response.

a. GISR: The General Interrupt Service Routine (GISR) should do any
context save and read the PIVR register to decide which specific
interrupt occurred. Information on PIVR values and their
corresponding interrupts can be found in Tables 6.1 and 6.2. Since the
PIVR value for each interrupt is unique, it can be used to branch to the
interrupt service routine specific to this interrupt condition.

b. SISR: The Specific Interrupt Service Routine (SISR) level will
normally reside as a sub-section of the GISR. After executing the
interrupt specific service code, the routine should clear the interrupt
flag in the EVxIFRA, EVxIFRB, or EVxIFRC that caused the serviced
interrupt. Code will return the CPU to the pre-interrupt task after
enabling the CPU’s global interrupt bit INTM (clear INTM bit).

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 105

EVA Interrupts

Table 6.1 EVA Interrupts and Corresponding PIVR Values

Group Interrupt Priority within
group

Vector
(ID)

Description/Source INT

PDPINTA 1 (highest) 0020h Power Drive Protection Interrupt A 1
A CMP1INT 2 0021h Compare Unit 1 compare interrupt 2

CMP2INT 3 0022h Compare Unit 2 compare interrupt 2
CMP3INT 4 0023h Compare Unit 3 compare interrupt 2
T1PINT 5 0027h GP Timer 1 period interrupt 2
T1CINT 6 0028h GP Timer 1 compare interrupt 2
T1UFINT 7 0029h GP Timer 1 underflow interrupt 2
T1OFINT 8 (lowest) 002Ah GP Timer 1 overflow interrupt 2

B T2PINT 1 (highest) 002Bh GP Timer 2 period interrupt 3
T2CINT 2 002Ch GP Timer 2 compare interrupt 3
T2UFINT 3 002Dh GP Timer 2 underflow interrupt 3
T2OFINT 4 002Eh GP Timer 2 overflow interrupt 3

C CAP1INT 1 (highest) 0033h Capture Unit 1 interrupt 4
CAP2INT 2 0034h Capture Unit 2 interrupt 4
CAP3INT 3 0035h Capture Unit 3 interrupt 4

EVB Interrupts

Table 6.2 EVB Interrupts and Corresponding PIVR Values

Group Interrupt Priority within
group

Vector
(ID)

Description/Source INT

PDPINTB 1 (highest) 0019h Power Drive Protection Interrupt B 1
A CMP4INT 2 0024h Compare Unit 4 compare interrupt 2

CMP5INT 3 0025h Compare Unit 5 compare interrupt 2
CMP6INT 4 0026h Compare Unit 6 compare interrupt 2
T3PINT 5 002Fh GP Timer 3 period interrupt 2
T3CINT 6 0030h GP Timer 3 compare interrupt 2
T3UFINT 7 0031h GP Timer 3 underflow interrupt 2
T3OFINT 8 (lowest) 0032h GP Timer 3 overflow interrupt 2

B T4PINT 1 (highest) 0039h GP Timer 4 period interrupt 3
T4CINT 2 003Ah GP Timer 4 compare interrupt 3
T4UFINT 3 003Bh GP Timer 4 underflow interrupt 3
T4OFINT 4 003Ch GP Timer 4 overflow interrupt 3

C CAP4INT 1 (highest) 0036h Capture Unit 4 interrupt 4
CAP5INT 2 0037h Capture Unit 5 interrupt 4
CAP6INT 3 0038h Capture Unit 6 interrupt 4

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)106

EVA Interrupt Flag Register A (EVAIFRA) — Address 742Fh

15-11 10 9 8

Reserved T1OFINT
FLAG

T1UFINT
FLAG

T1CINT
FLAG

 R–0 RW1C–0 RW1C–0 RW1C–0

7 6-4 3 2 1 0

T1PINT
FLAG

Reserved CMP3INT
FLAG

CMP2INT
FLAG

CMP1INT
FLAG

PDPINTA
FLAG

RW1C–0 R–0 RW1C–0 RW1C–0 RW1C–0 RW1C–0

Note: R = read access, W1C = write 1 to clear, -0 = value after reset.

Bits 15–11 Reserved. Reads return zero; writes have no effect.

Bit 10 T1OFINT FLAG. GP Timer 1 overflow interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 9 T1UFINT FLAG. GP Timer 1 underflow interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 8 T1CINT FLAG. GP Timer 1 compare interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 7 T1PINT FLAG. GP Timer 1 period interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bits 6–4 Reserved. Reads return zero; writes have no effect.

Bit 3 CMP3INT FLAG. Compare 3 interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 107

Bit 2 CMP2INT FLAG. Compare 2 interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 1 CMP1INT FLAG. Compare 1 interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 0 PDPINTA FLAG. Power drive protection interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

EVA Interrupt Flag Register B (EVAIFRB) — Address 7430h

15-4 3 2 1 0

Reserved T2OFINT
FLAG

T2UFINT
FLAG

T2CINT
FLAG

T2PINT
FLAG

R–0 RW1C–0 RW1C–0 RW1C–0 RW1C–0

Note: R = read access, W1C = write 1 to clear, -0 = value after reset.

Bits 15–4 Reserved. Reads return zero; writes have no effect.

Bit 3 T2OFINT FLAG. GP Timer 2 overflow interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 2 T2UFINT FLAG. GP Timer 2 underflow interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 1 T2CINT FLAG. GP Timer 2 compare interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)108

Bit 0 T2PINT FLAG. GP Timer 2 period interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

EVA Interrupt Flag Register C (EVAIFRC) — Address 7431h

15-3 2 1 0

Reserved CAP3INT
FLAG

CAP2INT
FLAG

CAP1INT
FLAG

R–0 RW1C–0 RW1C–0 RW1C–0

Note: R = read access, W1C = write 1 to clear, -0 = value after reset.

Bits 15–3 Reserved. Reads return zero; writes have no effect.

Bit 2 CAP3INT FLAG. Capture 3 interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 1 CAP2INT FLAG. Capture 2 interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 0 CAP1INT FLAG. Capture 1 interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

EVA Interrupt Mask Register A (EVAIMRA) — Address 742Ch

15-11 10 9 8

Reserved T1OFINT
ENABLE

T1UFINT
ENABLE

T1CINT
ENABLE

 R–0 RW–0 RW–0 RW–0

7 6-4 3 2 1 0

T1PINT
ENABLE

Reserved CMP3INT
ENABLE

CMP2INT
ENABLE

CMP1INT
ENABLE

PDPINTA
ENABLE

RW–0 R–0 RW–0 RW–0 RW–0 RW–1

Note: R = read access, W = write access, value following dash (–) = value after
reset.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 109

Bits 15–11 Reserved. Reads return zero; writes have no effect.

Bit 10 T1OFINT ENABLE
0 Disable
1 Enable

Bit 9 T1UFINT ENABLE
0 Disable
1 Enable

Bit 8 T1CINT ENABLE
0 Disable
1 Enable

Bit 7 T1PINT ENABLE
0 Disable
1 Enable

Bits 6–4 Reserved. Reads return zero; writes have no effect.

Bit 3 CMP3INT ENABLE
0 Disable
1 Enable

Bit 2 CMP2INT ENABLE
0 Disable
1 Enable

Bit 1 CMP1INT ENABLE
0 Disable
1 Enable

Bit 0 PDPINTA ENABLE. This is enabled (set to 1) following reset.
0 Disable
1 Enable

EVA Interrupt Mask Register B (EVAIMRB) — Address 742Dh

15-4 3 2 1 0

Reserved T2OFINT
ENABLE

T2UFINT
ENABLE

T2CINT
ENABLE

T2PINT
ENABLE

R–0 RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–4 Reserved. Reads return zero; writes have no effect.

Bit 3 T2OFINT ENABLE
0 Disable
1 Enable

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)110

Bit 2 T2UFINT ENABLE
0 Disable
1 Enable

Bit 1 T2CINT ENABLE
0 Disable
1 Enable

Bit 0 T2PINT ENABLE
0 Disable
1 Enable

EVA Interrupt Mask Register C (EVAIMRC) — Address 742Eh

15-3 2 1 0

Reserved CAP3INT
ENABLE

CAP2INT
ENABLE

CAP1INT
ENABLE

R–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -0 = value after reset.
Bits 15–3 Reserved. Reads return zero; writes have no effect.

Bit 2 CAP3INT ENABLE
0 Disable
1 Enable

Bit 1 CAP2INT ENABLE
0 Disable
1 Enable

Bit 0 CAP1INT ENABLE
0 Disable
1 Enable

EVB Interrupt Flag Register A (EVBIFRA) — Address 752Fh

15-11 10 9 8

Reserved T3OFINT
FLAG

T3UFINT
FLAG

T3CINT
FLAG

R–0 RW1C–0 RW1C–0 RW1C–0

7 6-4 3 2 1 0

T3PINT
FLAG

Reserved CMP6INT
FLAG

CMP5INT
FLAG

CMP4INT
FLAG

PDPINTB
FLAG

RW1C–0 R–0 RW1C–0 RW1C–0 RW1C–0 RW1C–0

Note: R = read access, W1C = write 1 to clear, -0 = value after reset.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 111

Bits 15–11 Reserved. Reads return zero; writes have no effect.

Bit 10 T3OFINT FLAG. GP Timer 3 overflow interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 9 T3UFINT FLAG. GP Timer 3 underflow interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 8 T3CINT FLAG. GP Timer 3 compare interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag
Bit 7 T3PINT FLAG. GP Timer 3 period interrupt.

Read: 0 Flag is reset
1 Flag is set

Write: 0 No effect
1 Resets flag

Bits 6–4 Reserved. Reads return zero; writes have no effect.

Bit 3 CMP6INT FLAG. Compare 6 interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 2 CMP5INT FLAG. Compare 5 interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 1 CMP4INT FLAG. Compare 4 interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)112

Bit 0 PDPINTB FLAG. Power drive protection interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

EVB Interrupt Flag Register B (EVBIFRB) — Address 7530h

15-4 3 2 1 0

Reserved T4OFINT
FLAG

T4UFINT
FLAG

T4CINT
FLAG

T4PINT
FLAG

R–0 RW1C–0 RW1C–0 RW1C–0 RW1C–0

Note: R = read access, W1C = write 1 to clear, -0 = value after reset.

Bits 15–4 Reserved. Reads return zero; writes have no effect.

Bit 3 T4OFINT FLAG. GP Timer 4 overflow interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 2 T4UFINT FLAG. GP Timer 4 underflow interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 1 T4CINT FLAG. GP Timer 4 compare interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 0 T4PINT FLAG. GP Timer 4 period interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 113

EVB Interrupt Flag Register C (EVBIFRC) — Address 7531h

15-3 2 1 0

Reserved CAP6INT
FLAG

CAP5INT
FLAG

CAP4INT
FLAG

R–0 RW1C–0 RW1C–0 RW1C–0

Note: R = read access, W1C = write 1 to clear, -0 = value after reset.

Bits 15–3 Reserved. Reads return zero; writes have no effect.

Bit 2 CAP6INT FLAG. Capture 6 interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 1 CAP5INT FLAG. Capture 5 interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

Bit 0 CAP4INT FLAG. Capture 4 interrupt.
Read: 0 Flag is reset

1 Flag is set
Write: 0 No effect

1 Resets flag

EVB Interrupt Mask Register A (EVBIMRA) — Address 752Ch

15-11 10 9 8

Reserved T3OFINT
ENABLE

T3UFINT
ENABLE

T3CINT
ENABLE

R–0 RW–0 RW–0 RW–0

7 6-4 3 2 1 0

T3PINT
ENABLE

Reserved CMP6INT
ENABLE

CMP5INT
ENABLE

CMP4INT
ENABLE

PDPINTB
ENABLE

RW–0 R–0 RW–0 RW–0 RW–0 RW–1

Note: R = read access, W = write access, -n = value after reset.

Bits 15–11 Reserved. Reads return zero; writes have no effect.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)114

Bit 10 T3OFINT ENABLE
0 Disable
1 Enable

Bit 9 T3UFINT ENABLE
0 Disable
1 Enable

Bit 8 T3CINT ENABLE
0 Disable
1 Enable

Bit 7 T3PINT ENABLE
0 Disable
1 Enable

Bits 6–4 Reserved. Reads return zero; writes have no effect.

Bit 3 CMP6INT ENABLE
0 Disable
1 Enable

Bit 2 CMP5INT ENABLE
0 Disable
1 Enable

Bit 1 CMP4INT ENABLE
0 Disable
1 Enable

Bit 0 PDPINTB ENABLE. This is enabled (set to 1) following reset.
0 Disable
1 Enable

EVB Interrupt Mask Register B (EVBIMRB) — Address 752Dh

15-4 3 2 1 0

Reserved T4OFINT
ENABLE

T4UFINT
ENABLE

T4CINT
ENABLE

T4PINT
ENABLE

R–0 RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -0 = value after reset.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 115

Bits 15–4 Reserved. Reads return zero; writes have no effect.

Bit 3 T4OFINT ENABLE
0 Disable
1 Enable

Bit 2 T4UFINT ENABLE
0 Disable
1 Enable

Bit 1 T4CINT ENABLE
0 Disable
1 Enable

Bit 0 T4PINT ENABLE
0 Disable
1 Enable

EVB Interrupt Mask Register C (EVBIMRC) — Address 752Eh

15-3 2 1 0

Reserved CAP6INT
ENABLE

CAP5INT
ENABLE

CAP4INT
ENABLE

R–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–3 Reserved. Reads return zero; writes have no effect.

Bit 2 CAP6INT ENABLE
0 Disable
1 Enable

Bit 1 CAP5INT ENABLE
0 Disable
1 Enable

Bit 0 CAP4INT ENABLE
0 Disable
1 Enable

6.3 General Purpose (GP) Timers

A General Purpose (GP) timer is simply a 16-bit counter, which may be
configured to count up, down, or continuously up and down. There are two GP
Timers in each EV: Timer1 and Timer2 for EVA and Timer3 and Timer4 for EVB.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)116

All timers use the CPU clock as a general timing reference, but each individual
timer may use a “pre-scaled” or frequency reduced time base which is specified in
each timer’s control register.

A GP Timer may also be configured to generate an interrupt or trigger another
peripheral on certain events such as a timer overflow (timer reached period value),
underflow (timer reached zero), or compare (timer value reached compare value).
Some examples of uses for the GP Timers include: setting the sampling period for
the ADC by triggering the start of conversion; or providing the switching period for
the generation of a PWM signal.

Figure 6.3 shows a block diagram of a GP Timer. There are two cases that
apply to Fig. 6.3:

1. When “x” = 2, “y” = 1 and “n” = 2
2. When “x” = 4, “y” = 3 and “n” = 4

TxPR
period register

(shadowed)

TyPR period register
(shadowed)

TxCMPR
compare
register

(shadowed)

Compare
logic

MUX

Symm/asym
waveform
generator

GPTCONA/B
GP timer
control
register

Output
logic

TxCNT GP
timer counter

Control
logic

TxCON GPTx
control register

Interrupt flags

TxPWM

ADC start of
conversion

TCLKINA/B
TDIRA/B

Internal
CPU clock

TnCON[0]

Figure 6.3 General purpose timer configuration diagram.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 117

Each GP Timer consists of the following components:

One readable and writeable (RW) 16-bit up and up/down counter register
TxCNT (x = 1, 2, 3, 4). This register holds the current count value and
increments or decrements depending on the direction of counting
16-bit timer compare register, TxCMPR (x = 1, 2, 3, 4)
16-bit timer period register, TxPR (x = 1, 2, 3, 4)
16-bit individual timer control register, TxCON (x = 1, 2, 3, 4)
Programmable input clock divider (pre-scaler) applicable to both internal
and external clock inputs
One GP Timer compare output pin, TxCMP (x = 1, 2, 3, 4)
Interrupt logic

6.3.1 GP Timer Inputs and Outputs

Each GP Timer has the following inputs:

Clock Reference Inputs: (1) The internal device (CPU) clock and (2)
external clock, TCLKINA/B, that has a maximum frequency of one-fourth
that of the device clock
Direction input, TDIRA/B, when a GP Timer is in directional up/down-
counting mode
Reset signal, RESET

The source of the GP Timer clock can be the internal CPU clock signal or the
external clock input, TCLKINA/B. The frequency of the external clock must be less
than or equal to one-fourth of that of the device clock. GP Timer 2 (EVA) and GP
Timer 4 (EVB) can be used with the QEP circuits in directional up-/down-counting
mode. In this case, the QEP circuits provide both the clock and direction inputs to
the timer. A wide range of prescale factors are provided for the clock input to each
GP Timer.

The QEP circuit, when selected, can generate the input clock and counting
direction for GP Timer 2/4 in the directional up-/down-counting mode. A QEP
signal may come from a rotary encoder which is attached to a motor shaft to provide
speed/direction feedback. Via the QEP circuitry, it controls the clock input and
direction of Timer 2/4. From this, the speed of the motor can be determined from
the counting speed; the direction of count reflects the rotation direction. The QEP
input clock cannot be scaled by GP Timer prescaler circuits (the prescaler of the
selected GP Timer has no effect if the QEP circuit is selected as the clock source).
Furthermore, the frequency of the clock generated by the QEP circuits is four times
that of the frequency of each QEP input channel because the rising and falling edges
of both QEP input channels are counted by the selected timer. In other words, the
frequency of the incoming QEP signal must be less than or equal to one-fourth of
that of the CPU clock.

Now that the inputs to the GP Timers have been discussed, we will next discuss
the outputs associated with each GP Timer. Outputs are either connected to a data

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)118

memory mapped register, another peripheral, or an external pin of the LF2407.
Each GP Timer has the following outputs:

GP Timer compare outputs TxCMP, x = 1, 2, 3, 4 (external pins on the
LF2407)
ADC start-of-conversion signal (connected to the ADC module)
Underflow, overflow, compare match, and period match signals to its own
compare logic and to the compare units (connected to the compare units of
the EV)
Counting direction indication bits (in the GPTCONA/B registers mapped
to data memory)

The General Purpose Timer Control Register (GPTCONA/B), configures the
action to be taken by the timers on different timer events, and indicates the counting
directions of the GP Timers. GPTCONA/B is readable and writeable, although
writing to the status bits in this register has no effect.

6.3.2 GP Counting Operation

GP Timers have four possible modes of counting operation:

1. Stop/Hold mode
2. Continuous Up-Counting mode
3. Directional Up/Down-Counting mode
4. Continuous Up/Down-Counting mode
Each timer is configured for desired counting mode in its corresponding Timer

Control register (TxCON). Each GP Timer is enabled by setting the Timer Enable
bit each timer’s control register. When the timer is enabled, the timer counts
according to the counting mode specified by the bits in the TxCON. The counting
direction of the GP Timers are reflected by their respective bit in GPTCONA/B.
When the timer is disabled (enable bit=0), counting is disabled and the prescaler of
that timer is reset to the default value of “x/1”.

Stop/Hold mode is like the “pause” button for the timer. In stop/hold mode the
GP Timer stops and holds at its current state. The timer counter, the compare
output, and the pre-scale select all remain unchanged.

Continuous Up-Counting Mode:

The continuous up-counting mode is useful in creating asymmetric PWM
signals. In the continuous up-count mode the following events occur:

1. The GP Timer in this mode counts up in sync with the pre-scaled input
clock until the value of the timer counter matches that of the period
register.

2. On the next rising edge of the input clock after the match, the GP Timer
resets to zero and starts counting up again.

3. The period interrupt flag of the timer is set one clock cycle after the match
between the timer counter and period register. If the flag is not masked, a

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 119

peripheral interrupt request is generated. An ADC start is sent to the ADC
module at the same time the flag is set if the period interrupt of this timer
has been selected by the appropriate bits in GPTCONA/B to start the ADC.

4. One clock cycle after the GP Timer becomes 00001, the underflow
interrupt flag of the timer is set. A peripheral interrupt request is generated
by the flag if it is unmasked. An ADC start is sent to the ADC module at
the same time if the underflow interrupt flag of this timer has been selected
by the appropriate bits in the GPTCONA/B to start the ADC.

The duration of the timer period is (TxPR) + 1 cycles of the scaled clock input
except for the first period. The duration of the first period is the same if the timer
counter is zero when counting starts. The initial value of the GP Timer can be any
value from 0h to FFFFh. When the initial value is greater than the value in the
period register, the timer counts up to FFFFh, resets to zero, and continues the
operation as if the initial value was zero. The overflow interrupt flag is set one
clock cycle after the value in TxCNT matches FFFFh. A peripheral interrupt request
is generated by the flag if it is unmasked.

When the initial value in the timer counter is the same as that of the period
register, the timer sets the period interrupt flag, resets to zero, sets the underflow
interrupt flag, and then continues the operation again as if the initial value was zero.
If the initial value of the timer is between zero and the contents of the period
register, the timer counts up to the period value and continues to finish the period as
if the initial counter value was the same as that of the period register.

The counting direction indication bit in GPTCONA/B is “1” for the timer in
this mode. Either the external or internal device clock can be selected as the input
clock to the timer. The TDIRA/B input is ignored by the GP Timer in this mode
since we are in an up-count only mode. The continuous up-count mode of the GP
Timer is particularly useful for the generation of edge-triggered or asynchronous
PWM waveforms and sampling periods in many motor and motion control systems.
Figure 6.4 shows the continuous up-counting mode of the GP Timer.

TxPR=4-1=3 TxPR=3-1=2

3

2

1

0

3

2

1

0 0

2

1

0

Timer value

TxCON[6]

Timer clock

Figure 6.4 Operation of continuous up-counting mode (TxPR = 3 or 2).

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)120

Directional Up/Down-Counting Mode:

A GP Timer in directional up/down-counting mode counts either up or down
according to the pre-scaled clock and TDIRA/B inputs. The input pin TDIRA/B
determines the direction of counting when the GP Timer is in directional up/down-
counting mode. When TDIRA/B is high, upward counting is specified; when
TDIRA/B is low, downward counting is specified.

When the TDIRA/B pin is held high, the GP Timer will count up until it
reaches the value of the period register. When the timer value equals that of its
period register the timer will reset to zero and start counting up to the period again.
The initial value of the timer can be any value between 0000h to FFFFh. In the case
that the initial value of the timer counter is greater than that of the period register,
the timer would count up to FFFFh before resetting itself to zero and continuing the
counting operation. When TDIRA/B pin is held low, the GP Timer will count down
from whatever initial value the counter was at until its count value becomes zero.
When its count value becomes zero, the value of the period register is automatically
loaded into the count value register and the timer begins counting down to zero.

In the directional up/down mode, the period, underflow, and overflow interrupt
flags, interrupts, and associated actions are generated on respective events in the
same manner as they are generated in the continuous up-counting mode. The
direction of counting is indicated for the timer in this mode by the corresponding
direction indication bit in GPTCONA/B: 1 means counting up; 0 means counting
down. Either the external clock from the TCLKINA/B pin or the internal device
clock can be used as the input clock for the timer in this mode. Figure 6.5 shows
the directional up-/down-counting mode of the GP Timers.

CLK
Timer

TxCON[6

TDIRA/B

value
Timer

TxPR=3

1
2

3

0
1

2

3

2
1

0

3
2

1
0

65535
65534

65533

0

Figure 6.5 GP timer directional up/down-counting mode: prescale factor 1 and

TxPR = 3A.

Additionally, the directional up-/down-counting mode of GP Timer 2 and 4 can
also be used with the Quadrature Encoder Pulse (QEP) circuits in the EV module.
While the QEP circuits are active, they provide both the counting clock and
direction for GP Timers 2 or 4.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 121

Continuous Up/Down-Counting Mode

The continuous up/down-counting mode is useful in generating symmetric
PWM waveforms. This mode of operation is the same as the directional up-/down-
counting mode, except for the fact that the TDIRA/B pin has no effect on the
counting direction. The counting direction changes from up to down when the timer
reaches the period value. The timer direction changes from down to up when the
timer reaches zero. Continuous up/down-counting mode is particularly useful in
generating centered or symmetric PWM waveforms.

The initial value of the GP Timer counter can be any value from 0h to FFFFh.
When the initial value is greater than that of the period register (TxPR), the timer
counts up to FFFFh, resets to zero, and continues the operation as if the initial value
were zero. If the initial value of the timer counter is the same as that of the period
register, the timer counts down to zero and continues again as if the initial value
were zero. If the initial value of the timer is between zero and the contents of the
period register, the timer will count up to the period value and continue to finish the
period as if the initial counter value were the same as that of the period register.

The counting direction indication bit in the GPTCONA/B indicates “1” when
the timer counts upward and “0” when the timer is counting downward. Either an
external clock reference from the TCLKINA/B pin or the internal CPU clock can be
selected as the input clock. Since the change of count direction is automatic in this
mode, the TDIRA/B pin has no effect. The period, underflow, and overflow
interrupt flags, interrupts, and associated actions are generated on the respective
events in the same manner as they are generated in other counting modes. Figure
6.6 shows the continuous up-/down-counting mode of the GP Timer.

TxPR=3 TxPR=2

2

1

0

2

1

0

2

1

0

Timer value

TxCON[6]

Timer clock

2

1 1 1

0

Timer period
2x(TxPR)

3
Timer
period

Figure 6.6 Continuous up/down counting mode (timer period register = 3 or 2).

Note: The period of the timer in this mode is 2*(TxPR) cycles of the scaled clock
input, except for the first period.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)122

6.3.3 Control Registers Associated with the General Purpose Timers

Individual Timer Control Registers (TxCON), where x=1,2,3,4

The operational mode of each GP Timer is controlled by the timer’s
corresponding control register (TxCON). The bits in the TxCON configure:

1. What counting mode the timer is set for
2. Whether the internal (CPU) or an external clock is to be used for the clock

reference
3. Which of the eight input clock pre-scale factors (ranging from 1/1 to

1/128) is used
4. When (on which condition) the timer compare register is reloaded
5. Whether the timer is enabled or disabled
6. Whether the timer compare operation is enabled or disabled
7. Which period register is used by timer 2 (its own, or timer 1’s period

register (EVA))
8. Which period register is used by timer 4 (its own, or timer 3’s period

register (EVB))

In EVA, GP Timer 2 can be synchronized with GP Timer 1. Additionally, in
EVB, GP Timer 4 can be synchronized with GP Timer 3 by configuring T2CON
and T4CON, respectively, in the following ways:

EVA:

1. Set the T2SWT1 bit in T2CON to start GP Timer 2 counting with the
TENABLE bit in T1CON (both timer counters start simultaneously)

2. Initialize the timer counter in GP Timers 1 and 2 with different values
before starting synchronized operation

3. Specify that GP Timer 2 uses the period register of GP Timer 1 as its
period register (ignoring its own period register) by setting SELT1PR in
T2CON

EVB:

1. Set the T4SWT3 bit in T4CON to start GP Timer 4 counting with the
TENABLE bit in T3CON (thus, both timer counters start simultaneously)

2. Initialize the timer counters in GP Timers 3 and 4 with different values
before starting synchronized operation

3. Specify that GP Timer 4 uses the period register of GP Timer 3 as its
period register (ignoring its own period register) by setting SELT3PR in
T4CON

This allows the desired synchronization between GP Timer events. Since each
GP Timer starts the counting operation from its current value in the counter register,
one GP Timer can be programmed to start with a known delay after the other GP
Timer.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 123

Timer x Control Register Bit Descriptions (TxCON; x = 1, 2, 3, or 4) —

Addresses: 7404h (T1CON), 7408h (T2CON), 7504h (T3CON), and 7508h
(T4CON)

15 14 13 12 11 10 9 8

Free Soft Reserved TMODE1 TMODE0 TPS2 TPS1 TPS0

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

T2SWT1/
T4SWT3†

TENABLE TCLKS1 TCLKS0 TCLD1 TCLD0 TECMPR SELT1PR/
SELT3PR†

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

† Reserved in T1CON andT3CON

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–14 Free, Soft. Emulation control bits.
00 Stop immediately on emulation suspend
01 Stop after current timer period is complete on emulation suspend
10 Operation is not affected by emulation suspend
11 Operation is not affected by emulation suspend

Bit 13 Reserved. Reads return zero, writes have no effect.

Bits 12–11 TMODE1–TMODE0. Count Mode Selection.
00 Stop/Hold
01 Continuous-Up/-Down Count Mode
10 Continuous-Up Count Mode
11 Directional-Up/-Down Count Mode

Bits 10–8 TPS2–TPS0.
Input Clock Prescaler.
000=x/1 , 001=x/2, 010=x/4, 011=x/8, 100=x/16, 101=x/32,110=x/64
111=x/128 ; x = device (CPU) clock frequency

Bit 7 T2SWT1. In the case of EVA, this bit is T2SWT1. (GP Timer 2 start with
GP Timer 1.) Start GP Timer 2 with GP Timer 1’s timer enable bit. This
bit is reserved in T1CON.
T4SWT3. In the case of EVB, this bit is T4SWT3. (GP Timer 4 start with
GP Timer 3.) Start GP Timer 4 with GP Timer 3’s timer enable bit. This
bit is reserved in T3CON.
0 Use own TENABLE bit
1 Use TENABLE bit of T1CON (in case of EVA) or T3CON (in

case of EVB) to enable and disable operation ignoring own
TENABLE bit

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)124

Bit 6 TENABLE. Timer enable.
0 Disable timer operation (the timer is put in hold and the prescaler

counter is reset)
1 Enable timer operations

Bits 5–4 TCLKS1, TCLKS0. Clock Source Select.
5 4 Source
0 0 Internal
0 1 External
1 0 Reserved
1 1 QEP Circuit† (in case of Timer 2/Timer 4) Reserved (in

case of Timer 1/Timer 3)
† This option is valid only if SELT1PR = 0

Bits 3–2 TCLD1, TCLD0. Timer Compare Register Reload Condition.
00 When counter is 0
01 When counter value is 0 or equals period register value
10 Immediately
11 Reserved

Bit 1 TECMPR. Timer compare enable.
0 Disable timer compare operation
1 Enable timer compare operation

Bit 0 SELT1PR. In the case of EVA, this bit is SELT1PR (Period register
select).

When set to 1 in T2CON, the period register of Timer 1 is chosen
for Timer 2 also, ignoring the period register of Timer 2. This bit
is a reserved bit in T1CON. SELT3PR. In the case of EVB, this
bit is SELT3PR (Period register select). When set to 1 in T4CON,
the period register of Timer 3 is chosen for Timer 4 also, ignoring
the period register of Timer 4. This bit is a reserved bit in
T3CON.

0 Use own period register
1 Use T1PR (in case of EVA) or T3PR (in case of EVB) as period

register ignoring own period register

Overall GP Timer Control Registers (GPTCONA/B)

The control register GPTCONA/B specifies the action to be taken by the timers
on different timer events. This register also has timer direction status bits that
display the current direction of the timers. Also, the polarity of the GP Timer
compare outputs is configured here. Bits in GPTCONA/B can also configure
specific timers to trigger an ADC start signal when an underflow, compare match,
or period match occurs. This feature requires that the ADC also be configured to

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 125

accept the start of conversion signal from the GP Timer. Having the GP Timer
trigger provides for automatic synchronization between the GP Timer event and the
ADC.

GP Timer Control Register A (GPTCONA) Bit Descriptions — Address 7400h

15 14 13 12-11 10-9 8-7

Reserved T2STAT T1STAT Reserved T2TOADC T1TOADC

RW–0 R–1 R–1 RW–0 RW–0 RW–0

6 5-4 3-2 1-0

TCOMPOE Reserved T2PIN T1PIN

RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -n = value after reset.

Bit 15 Reserved. Reads return zero; writes have no effect.

Bit 14 T2STAT. GP Timer 2 Status. Read only.
0 Counting downward
1 Counting upward

Bit 13 T1STAT. GP Timer 1 Status. Read only.
0 Counting downward
1 Counting upward

Bits 12–11 Reserved. Reads return zero; writes have no effect.

Bits 10–9 T2TOADC. Start ADC with timer 2 event.
00 No event starts ADC
01 Setting of underflow interrupt flag starts ADC
10 Setting of period interrupt flag starts ADC
11 Setting of compare interrupt flag starts ADC

Bits 8–7 T1TOADC. Start ADC with timer 1 event.
00 No event starts ADC
01 Setting of underflow interrupt flag starts ADC
10 Setting of period interrupt flag starts ADC
11 Setting of compare interrupt flag starts ADC

Bit 6 TCOMPOE. Compare output enable. If PDPINTx is active this bit is set
to zero.

0 Disable all GP Timer compare outputs (all compare outputs are
put in the high-impedance state)

1 Enable all GP Timer compare outputs

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)126

Bits 5–4 Reserved. Reads return zero; writes have no effect.

Bits 3–2 T2PIN. Polarity of GP Timer 2 compare output.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 1–0 T1PIN. Polarity of GP Timer 1 compare output.
00 Forced low
01 Active low
10 Active high
11 Forced high

GP Timer Control Register B (GPTCONB) Bit Descriptions — Address 7500h

15 14 13 12-11 10-9 8-7

Reserved T4STAT T3STAT Reserved T4TOADC T3TOADC

RW–0 R–1 R–1 RW–0 RW–0 RW–0

6 5-4 3-2 1-0

TCOMPOE Reserved T4PIN T3PIN

RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -n = value after reset.

Bit 15 Reserved. Reads return zero; writes have no effect.

Bit 14 T4STAT. GP Timer 4 Status. Read only.
0 Counting downward
1 Counting upward

Bit 13 T3STAT. GP Timer 3 Status. Read only.
0 Counting downward
1 Counting upward

Bits 12–11 Reserved. Reads return zero; writes have no effect.

Bits 10–9 T4TOADC. Start ADC with timer 4 event.
00 No event starts ADC
01 Setting of underflow interrupt flag starts ADC
10 Setting of period interrupt flag starts ADC
11 Setting of compare interrupt flag starts ADC

Bits 8–7 T3TOADC. Start ADC with timer 3 event.
00 No event starts ADC
01 Setting of underflow interrupt flag starts ADC

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 127

10 Setting of period interrupt flag starts ADC
11 Setting of compare interrupt flag starts ADC

Bit 6 TCOMPOE. Compare output enable. If PDPINTx is active this bit is set
to zero.
0 Disable all GP Timer compare outputs (all compare outputs are

put in the high-impedance state)
1 Enable all GP Timer compare outputs

Bits 5–4 Reserved. Reads return zero; writes have no effect.

Bits 3–2 T4PIN. Polarity of GP Timer 4 compare output.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 1–0 T3PIN. Polarity of GP Timer 3 compare output.
00 Forced low
01 Active low
10 Active high
11 Forced high

GP Timer Compare Registers (TxCMPR), x=1,2,3,4 – User Specified Value

Addresses 7402h (T1CMPR), 7406h (T2CMPR), 7502h (T3CMPR), 7506h

(T4CMPR)

The compare register associated with each GP Timer stores the value that will
be constantly compared with the current value of the GP Timer. When a compare
match occurs, the following events also occur:

1. A transition occurs on the associated compare output according to the bit
pattern in GPTCONA/B

2. The corresponding interrupt flag is set
3. A peripheral interrupt request is generated if the interrupt is unmasked
4. The compare operation of a GP Timer can be enabled or disabled by the

appropriate bit in TxCON
5. The compare operation and outputs can be enabled in any of the timer

counting modes, including the QEP circuit

GP Timer Period Registers (TxPR) – User Specified Value

Addresses 7403h (T1PR), 7407h (T2PR), 7503h (T3PR), 7507h (T4PR)

The period register determines the rate at which the timer resets itself or
changes direction (the period of the timer). This register in combination with the
input clock frequency (and clock pre-scale factor) determines the frequency of a

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)128

PWM signal created by the compare output pin. The corresponding timer either
resets to “0”, or starts counting downward (depending on the operating mode) when
a match occurs between the period register and the timer counter (TxCNT).

CAUTION: The period register of a GP Timer needs to be initialized before its
counter is set to a non-zero value. Otherwise, the value of the period register will
remain unchanged until the next underflow!

Both the compare and period registers of the GP Timers are shadowed or
double-buffered. This means that when either the period registers or compare
registers are written to, the value is automatically stored first into a buffer register
and then automatically written to the real register. The reason for this is to prevent
the unacceptable situation such as a timer period register being written to and read
from at the same time. Because of the register shadowing, a new value can be
written to any of these registers at any time. The double buffering feature of the
period and compare registers allows the user program to update the period and
compare registers at any time in order to change the future timer period. Register
shadowing is virtually transparent to the user. However, when configuring a
compare unit, it is necessary to specify on what condition the actual compare
register is reloaded from the buffer register. For the compare register, the content in
the buffer register is loaded into the working (active) register only when the certain
timer event specified by TxCON occurs. A compare register would be reloaded
automatically either immediately after the shadow register is written, on underflow
(GP Timer counter value equals ”0”), on an underflow, or on period register match.
In the case that the associated compare operation is disabled, any value written to
the compare register is immediately loaded into the active register. The period
register will be reloaded with the value in its buffer register only when the value of
the counter register (TxCNT) becomes equal to “0”. Except for the compare
register reload condition, the user need not worry about register shadowing on the
LF2407.

6.3.4 GP Timer Interrupts

There are 16 combined interrupt flags in the EVAIFRA, EVAIFRB, EVBIFRA,
and EVBIFRB registers for the GP Timers. Each of the four GP Timers has the
capability to generate up to four interrupts on the events listed in Table 6.3.

Table 6.3 General purpose timer interrupts

Interrupt Event Interrupt Name (x=1,2,3,4) Condition For Generation
Underflow TxUFINT When the counter reaches 0000h
Overflow TxOFINT When the counter reaches FFFFh
Compare Match TxCINT When the counter register contents match that

of the compare register
Period Match TxPINT When the counter register contents match that

of the period register

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 129

A timer compare “event” or match happens when the current count value of a
GP Timer counter equals the value of the timer’s compare register. The
corresponding compare interrupt flag is set one clock cycle after the match if the
compare operation is enabled. An overflow event occurs when the value of the
timer counter reaches FFFFh. An underflow event occurs when the timer counter
reaches 0000h. Similarly, a period event happens when the value of the timer
counter is the same as that of the period register. The overflow, underflow, and
period interrupt flags of the timer are set one clock cycle after the occurrence of
each individual event. Note that these definitions of overflow and underflow are
different from the conventional definitions the reader might be used to.

6.3.5 PWM Output and General Purpose Timer Compare Operation

A PWM waveform is a sequence of pulses with fixed frequency but varying
pulse widths. The width of the pulse might vary from 0% to 100% of the fixed
period. The pulse widths are modulated by another signal called the modulation
signal. In order to generate a PWM signal digitally, a timer is set to continuously
repeat a counting period. This period is known as the PWM carrier period. The
inverse of the carrier period is called the carrier frequency.

The counting pattern of the timer will either be a “saw-tooth” (asymmetric) or
“triangle” (symmetric) wave depending on what counting mode the timer has been
configured for. As always, the compare value is constantly being compared with
the value of the timer counter. When a match occurs, the output toggles High to
Low, or Low to High. When the timer period value is reached or a second match
occurs, the output toggles again. The on and off time of the pulse is directly
dependent on the value loaded into the timer’s compare register. By varying the
number in the compare register by the modulation signal (usually a sinusoid), a
PWM signal that represents the modulating signal can be produced.

The “output” discussed above refers to each GP Timer’s associated PWM
output pin (TxPWM). The logic level of the PWM output pin is determined
automatically by hardware. This level is based on the value of the associated
compare register and timer count value (see Fig. 6.7, note the compare match points
and the output change at these points). If the compare operation is enabled in
TxCON, the following events occur on a compare match:

1. The compare interrupt flag of the timer is set one clock cycle after the
match.

2. A transition occurs on the associated PWM output pin one device clock
cycle after the match according to the bit configuration in GPTCONA/B.

3. If the compare interrupt flag has been selected by the appropriate
GPTCONA/B bits to start the ADC, an ADC start signal is generated at the
same time the compare interrupt flag is set.

4. A peripheral interrupt request is generated by the compare interrupt flag if
it is unmasked.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)130

Figure 6.7 Timer compare match and associated change on TxPWM pin.

The polarity of the compare output (see diagram in Fig. 6.6) of a GP Timer can
be specified active high, active low, forced high, or forced low. This polarity is
determined by setting the bits in the GPTCONA/B register. If active low, the output
changes from high to low on the first compare match. It then goes from low to high
on the second compare match if the GP Timer is in an up/down-counting mode, or
on period match if the GP Timer is in up-counting mode. If active high, the output
changes from low to high on the first compare match. It then goes from high to low
on the second compare match if the GP Timer is in an up-/down counting mode, or
on period match if the GP Timer is in up-count mode. If forced low, the timer
compare output becomes low immediately when it is specified. If forced high, the
timer compare output becomes high immediately when it is specified.

By default (after a reset or power-on) all GP Timer PWM output pins are put in
a high-impedance (HI-Z) state. The PWM output must be made active by
configuring the GPTCONA/B registers. At anytime the PWM outputs will be made
HI-Z whenever the power drive protection pin PDPINTx is active and is pulled
low. Additionally, the corresponding PWM pin will be made HI-Z when bit 1 of
the TxCON register is zeroed by software.

The transition on the PWM output pin is controlled by the asymmetric or
symmetric timer waveform and the associated output logic. For an asymmetric
wave form, the timer is set up in continuous up-count mode. To generate a
symmetric waveform, the timer needs to be configured to continuous up/down
counting.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 131

Example 6.1 - Generation of an Asymmetric Waveform: The asymmetric
waveform in Fig. 6.8 is generated when the GP Timer is in continuous up-counting
mode. When in this mode the output changes in the following:

1. Output pin at “inactive level” before the counting operation starts
2. Output pin remains at “inactive level” until the compare match happens
3. Output toggles to “active level” on the compare match
4. Output remains unchanged at “active level” until the end of the period
5. At end of period, output resets to “inactive level”; that is if the new

compare value is not zero

Timer
(PWM)
period 1

Timer
(PWM)
period 2

Compare
match

Active

InactiveInactive

Active

New comp
value greater

than period

Timer value

TxPWM/TxCMP
active low

TxPWM/TxCMP
active high

Compare matches

Figure 6.8 Asymmetric timer waveform generated by a GP timer in continuous

up-count mode.

If the compare value is zero at the very beginning of the period, then a compare
match is made at the very beginning and, consequently, the output is the active level
for the period. If the output is “active” for the whole period and the new compare
value for the next period is zero, then the output will stay at the active level so as
not to cause a glitch. If the value in the compare register is greater than the value in
the period register, then a compare match will never be made and consequently the
output will be at the inactive level through the whole period.

The above allows the duty cycle of the PWM to range from 0 to 100% without
glitches being present. If the compare value is the same as the period value, which
causes a compare match, then the output pin will be at the active level for exactly
one pre-scaled clock cycle.

Example 6.2 - Symmetric Waveform Generation: When the GP Timer is
configured in continuous up/down-counting mode, a symmetric waveform is
generated as in Fig. 6.9. The output changes in the following sequence:

1. “inactive level” before the counting operation starts
2. remains at “inactive level” until the compare match
3. toggles to “active level” on the first compare match

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)132

4. remains unchanged at “active level” until the second compare match
5. toggles to “inactive level” on the second compare match
6. remains unchanged at “inactive level” until the end of the period and

remains unchanged until next compare match

Timer
(PWM)
period 1

Timer
(PWM)
period 2

Active
Inactive

Reloaded
comp value
greater than

period

Timer value

TxPWM/TxCMP
active low

TxPWM/TxCMP
active high

Compare matches

Compare
match

Figure 6.9 Symmetric timer waveform from continuous up/down count mode.

If the compare value is zero at the beginning of the period, the output is set to
the active level at the beginning of a period and remains unchanged until the second
compare match. After the first transition, the output remains at the active level until
the end of the period if the compare value becomes zero for the second half of the
period. When this happens, the output does not reset to zero if the new compare
value for the following period is still zero.

This is done again to assure the generation of PWM pulses of 0% to 100% duty
cycle without any glitches. The first transition does not happen if the compare value
is greater than or equal to that of the period register for the first half of the period.
However, the output still toggles when a compare match happens in the second half
of the period. This error in output transition, often as a result of calculation error in
the application routine, is corrected at the end of the period because the output
resets to zero, unless the new compare value for the following period is zero. In this
case, the output remains one, which again puts the output of the waveform generator
in the correct state.

Calculations for Active and Inactive Time Periods

In order to utilize the GP Timer PWM outputs, it is sometimes necessary to
calculate the active and inactive pulse times for the PWM output pins. We can find
the active and inactive times for both the asymmetrical (Continuous Up-Count
Mode) and symmetrical (Continuous Up/Down Count Mode). The calculation
criteria for these times are as follows:

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 133

Continuous Up-Count Mode:

Active Output Pulse Time = [(TxPR) – (TxCMPR) + 1] cycles of the scaled
input clock.

Inactive Output Pulse Time = (period of the scaled input clock) * (value of
TxCMPR)

When the value in TxCMPR is zero, the GP Timer compare output is
active for the whole period.
When TxCMPR is TxPR, the length of the active phase (the output pulse
width) is zero.

Continuous Up/Down Counting Mode:

For the continuous up-/down-counting mode, the compare register can have
different values while counting down and while counting up.

Active Output Pulse Time = [(TxPR) – (TxCMPR)up + (TxPR) –
(TxCMPR)dn]** cycles of the scaled input clock

If (TxCMPR) up is zero, the compare output is active at the beginning of
the period. If (TxCMPR)dn is also zero, then output remains active until
the end of the period.
When (TxCMPR)up is (TxPR), the first transition is lost. Similarly, the
second transition is lost when (TxCMPR)dn is (TxPR).
If both (TxCMPR)up and TxCMPR)dn are greater than or equal to (TxPR),
then the GP Timer compare output is inactive for the entire period.

**where (TxCMPR)up is the compare value on the timer’s way up and
(TxCMPR)dn is the compare value on the way down.

GP Timer PWM Generation -Practical Steps

To generate a PWM output signal on the GP Timer PWM outputs, make sure
the following are configured to allow for PWM generation (also see Example 6.3):

1. Note what the PLL module is set to. The PLL provides the clock signal to
the DSP and hence to the EV. In the timer control registers we have the
option of pre-scaling (dividing) the clock signal to choose a time base for
the GP Timers.

2. The corresponding EV pins need to be configured for their primary
function in the appropriate MCRx register.

3. Initialize TxCNT (we usually set the count vale to zero)
4. Set TxPR according to the desired PWM (carrier) period. The TxPR value

is calculated by the following formulas:
Asymmetric PWM:

1ValueTxPR
periodclkprescaledTimerGP

periodPWMdesired (6.1)

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)134

Symmetric PWM:

periodclkprescaledTimerGP
periodPWMdesired

*2
ValueTxPR (6.2)

5. Initialize TxCMPR to first desired compare value
6. To create a PWM signal, the registers GPTCONA/B and TxCON need to

be configured for TxCMP enabled, desired counting mode etc.
7. To create an asymmetric PWM signal, the timer is set to the Continuous-

Up Count Mode. If a symmetric PWM signal is desired, then the Timer
should be set to the Continuous-Up/Down Mode.

8. During run time, the GP Timer compare register (TxCMPR) will need to
be periodically updated with new compare values corresponding to the
modulation signal or new duty cycle. This can be done during an interrupt
service routine.

Example 6.3 - Fixed Duty Cycle PWM

The following block of code is an example of generating a simple fixed-duty
cycle PWM signal by using the GP Timer Compare function. The PLL needs to be
set to CLKIN x 4, the watchdog needs to be disabled, and the wait state generator
(WSGR) set for zero wait states.

LDP #SCSR1>>7

SPLK #000Ch,SCSR1 ;EVA & EVB modules clock enable

LDP #0E1h ;Set Mux pins for

SPLK #0FFFFh,MCRA ;PWM function

SPLK #0FFFFh,MCRC ;EVA PWM output initialization

LDP #GPTCONA >> 7h ;Load EVA data-page

SPLK #00000h, T1CNT ;this just zeros the counter T1 the

;counters are auto zeroed after a DSP

;reset

SPLK #0FFFFh, T1PR ;the T1PR value sets the frequency in

;this case, it is 500 Hz cont up-cnt mod

SPLK #08000h, T1CMPR ;50 % duty cycle PWM bits---

SPLK #0000000001000010b, GPTCONA

SPLK #1001000001000010b, T1CON

LOOP2 B LOOP2 ;after the control registers are setup

;the program can loop endlessly while

;PWM is generated automatically

6.4 Compare Units

A PWM signal can also be generated using the compare unit (CMPRx). The
compare units (CMPRx) in the LF2407 function identically to the GP Timer
compare units (TxCMPR) discussed above. Unlike the GP Timer compare
function, each compare unit has two associated PWM outputs which both toggle on

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 135

the same compare match. The PWM outputs associated with the compare units
allow for the generation of six PWM outputs per EV.

As shown in Fig. 6.10 the Compare Units Include:

Three 16-bit compare registers (CMPR1, CMPR2, and CMPR3 for EVA;
and CMPR4, CMPR5, and CMPR6 for EVB), all double-buffered
One 16-bit compare control register (COMCONA for EVA, and COM-
CONB for EVB)
One 16-bit action control register (ACTRA for EVA, and ACTRB for
EVB), with an associated buffer register
Six PWM (3-state; Low, High, High Z) output (compare output) pins
(PWMy, y = 1, 2, 3, 4, 5, 6 for EVA and PWMz, z = 7, 8, 9, 10, 11, 12 for
EVB)

ACTR
full compare

action control register
(shadowed)

TzCNT
GPTz
counter

Compare
logic

CMPRx
full compare
register (shad

owed)
PWM circuits

Output
logic

PWMy,y+1

Figure 6.10 Compare unit block diagram.

For EVA: x = 1, 2, 3; y = 1, 3, 5; z = 1

For EVB: x = 4, 5, 6; y = 7, 9, 11; z = 3

6.4.1 Inputs and Outputs of the Compare Units

The inputs to a compare unit include:

Control signals from compare control registers
GP Timer 1/3 (T1CNT/T3CNT) count value, underflow, and period match
signals
System RESET
The time base (counter value) for the compare units in EVA (CMPR1,2 ,3)
is GP Timer 1, and for EVB (CMPR4, 5, 6) is GP Timer 3.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)136

When any reset event occurs, all register bits associated with the compare units
are reset to zero and all compare output pins are put in the high-impedance state.

The output of a compare unit is a compare match output, or in other words, a
PWM output. If the compare operation is enabled, a compare match signal sets the
corresponding interrupt flag and the two output pins associated with the compare
unit to toggle. Either of the two outputs can be configured as either active high or
active low, but will toggle upon the same event.

6.4.2 Operation of Compare Units

The sequence below is an example of the compare unit operation in EVA. For
EVB operation, GP Timer 3 and ACTRB are used instead:

1. The value of the GP Timer 1 counter is continuously compared with that of
the compare register.

2. When a compare match occurs, a transition appears on the two outputs of
the compare unit according to the bits in the action control register
(ACTRA). The bits in the ACTRA can individually specify each output to
toggle active high or toggle active-low (if not forced high or low) on a
compare match.

3. The compare interrupt flag associated with a compare unit is set when a
compare match is made between GP Timer 1 and the compare register of a
compare unit, if compare is enabled.

4. A peripheral interrupt request will then be generated if the interrupt is
unmasked. The timing of output transitions, setting of interrupt flags, and
the generation of interrupt requests are similar to the GP Timer compare
operation.

5. The outputs of the compare units in compare mode are subject to
modification by the output logic, dead band units, and the space vector
PWM logic.

Having two outputs controlled by the same compare unit is useful in
applications such as the control of a power inverter (see Fig. 6.11). With a power
inverter, PWM signals can be used to gate the power transistors for creating currents
through the legs of the inverter of any frequency or amplitude. This is useful in
controlling electric motors their operation depends on the current flowing through
the windings. By controlling the current flowing through motor windings, torque
and speed control of the motor can be accomplished.

In inverter circuits such as those shown in Fig. 6.11, two power transistors are
placed in series on each phase “leg” with the output being between them. This
allows the output of the leg to be connected either to the DC supply voltage (Vdc)
or ground. A potential hazard with these circuits is that if both transistors are turned
on at the same time, a short circuit condition will exist through the leg and power
transistors, causing the transistors to rapidly heat up and, in most cases, explode.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 137

The solution to this problem is to make sure that only one transistor in each leg
is on at a time. In theory, this is accomplished by feeding complementary PWM
gating signals to each of the two transistors in a leg. So when one transistor is on,
the other is off. In reality, all transistors turn on faster than they turn off.
Therefore, it is necessary to add a time delay (dead-band) between the PWM signals
to allow for the first transistor to fully turn off before the second one is turned on.

Udc

DTPHa

DTPHa_

GND

DTPHb

DTPHb_

DTPHc

DTPHc_

Q1

Q2

Q3

Q4

Q5

Q6

Va Vb Vc

Figure 6.11 Basic three-phase inverter circuit.

6.4.3 Dead Band Generation

Unlike the GP Timer Compare PWM generation, the compare unit PWM
outputs allow for a programmable dead band. Each EV on the LF2407 has its own
programmable dead-band unit. The dead-band generators generate the dead-band
delay between the toggling of the independent and dependent PWM outputs. Dead
band solves the problem of inverter leg shoot through (short circuits). Figure 6.12
shows the interconnection between the dead band units and the compare units.

COMCONA[11-13]

Sym/asym
waveform
generator

Compare
matches

GPT1 flags

SVPWM
state

machine

ACTRA[12-15]

COMCONA[12]

MUX
Dead
band
units

DBTCONA
dead–band
timer control

register

Output
logic

ACTRA
full compare
action control

register

COMCONA[9]

PWM1
PWM6

PHx
x=1,2,3

DTPHx
DTPHx_

Figure 6.12 Block diagram of PWM outputs showing dead-band units.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)138

Each programmable dead-band unit features:

One 16-bit dead-band control register, DBTCONx (RW)
One input clock prescaler: x/1, x/2, x/4, etc., to x/32
Device (CPU) clock input
Three 4-bit down-counting timers
Control logic

Figures 6.13 and 6.14 illustrate the addition of a dead-band in both asymmetric
and symmetric PWM outputs. The toggling sequence might go as follows: (1)
toggle first output, (2) delay for a certain “dead-band” of clock cycles, (3) toggle the
second output pin. This addition of a proper amount of dead-band prevents a short
circuit across an inverter leg.

Figure 6.13 Dead-band with an asymmetric PWM output.
Timer (PWM)

period 1

Timer value

PWMx (activelow)

Dead time

PWMx+1 (active high)

Compare matches

Figure 6.14 Dead-band with an asymmetric PWM output.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 139

Depending on the switching device used, more or less dead-band might be
needed. The use of dead-band should be experimented with when the inverter is
supplied at a very low power level. This will ensure that if the current dead-band
value is not sufficient, then the switching devices will not incur damage from the
limited shoot through.

Table 6.4 lists the amounts of dead-band generated by the different bit
combinations in DBTCONx. The values are based on a 25ns input clock signal. We
can calculate the dead-band generated by the following simple formula:

Dead Band (# of CPU clock cycles) =
valueprescaleclock

DBTCONxinbits]118[

Table 6.4 Dead-Band Values Generated by Bits [8 through 11] in
DBTCONx Register

(DBTCONx bits [4–2])
DBTCONx
bits [11–8]

110 and
1x1 (P=32)

100
(P=16)

011
 (P=8)

010
 (P=4)

001
 (P=2)

000
(P=1)

0 0 0 0 0 0 0
1 0.8 0.4 0.2 0.1 0.05 0.025
2 1.6 0.8 0.4 0.2 0.1 0.05
3 2.4 1.2 0.6 0.3 0.15 0.075
4 3.2 1.6 0.8 0.4 0.2 0.1
5 4 2 1 0.5 0.25 0.125
6 4.8 2.4 1.2 0.6 0.3 0.15
7 5.6 2.8 1.4 0.7 0.35 0.175
8 6.4 3.2 1.6 0.8 0.4 0.2
9 7.2 3.6 1.8 0.9 0.45 0.225
A 8 4 2 1 0.5 0.25
B 8.8 4.4 2.2 1.1 0.55 0.275
C 9.6 4.8 2.4 1.2 0.6 0.3
D 10.4 5.2 2.6 1.3 0.65 0.325
E 11.2 5.6 2.8 1.4 0.7 0.35
F 12 6 3 1.5 0.75 0.375

Note: Table values are given in µs.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)140

6.4.4 Register Setup for Compare Unit Operation

The following sequence should be used in setting up the Event Manager
(EVA/B) for compare (PWM generation) operation:

EVA:

1. Set the T1PR for the desired period.
2. Configure ACTRA to select compare actions.
3. Configure DBTCONA, if dead band is to be used.
4. Initialize CMPRx to the first compare value.
5. Configure COMCONA for desired operation.
6. Configure T1CON to produce the desired operation for the time base and

start the operation.
7. Load new compare values into CMPRx during program.

EVB:

1. Set the T3PR for the desired counting period.
2. Configure ACTRB to select compare actions.
3. Configure DBTCONA, if dead band is to be used.
4. Initialize CMPRx to the first compare value.
5. Configure COMCONB for desired operation.
6. Configure T3CON to produce the desired operation for the time base.
7. Load new compare values into CMPRx during program.

6.4.5 Compare Unit Interrupts

There is a maskable interrupt flag in EVIFRA and EVIFRC for each compare
unit. If a compare operation is enabled, the interrupt flag of a compare unit is set
one clock cycle after a compare match. A peripheral interrupt request will also be
generated by the flag bit if the flag is unmasked.

6.4.6 Data Memory Mapped Registers Associated with the Compare Units

There are six main registers that control the functionality of the compare units
on the LF2407: COMCONA/B, ACTRA/B, and DBTCONA/B. In addition to the
control registers described in this section, the GP Timer registers should be thought
of as being included because they provide the count value or time base in which the
compare units operate.

Compare Control Registers (COMCONA and COMCONB)

These registers (COMCONA and COMCONB) control the operation of the
compare units. They determine whether the compare operation is enabled, whether
the compare outputs are enabled, the condition on which the compare registers are
updated with the values in their buffer registers, and whether the Space Vector
PWM (SVPWM) mode is enabled.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 141

Compare Control Register A (COMCONA) — Address 7411h

15 14 13 12 11 10 9 8

CENABLE CLD1 CLD0 SVENABLE ACTRLD1 ACTRLD0 FCOMPOE PDPINTA
STATUS

RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 RW –0 R–
PDPINTA

PIN

7-0

Reserved

R–0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 CENABLE. Compare enable.
0 Disables compare operation. All shadowed registers (CMPRx,

ACTRA) become transparent
1 Enables compare operation

Bits14–13 CLD1, CLD0. Compare register CMPRx reload condition.
00 When T1CNT = 0 (that is, on underflow)
01 When T1CNT = 0 or T1CNT = T1PR (that is, on underflow or

period match)
10 Immediately
11 Reserved; result is unpredictable

Bit 12 SVENABLE. Space vector PWM mode enable.
0 Disables space vector PWM mode
1 Enables space vector PWM mode

Bits 11–10 ACTRLD1, ACTRLD0. Action control register reload condition.
00 When T1CNT = 0 (on underflow)
01 When T1CNT = 0 or T1CNT = T1PR (on underflow or period

match)
10 Immediately
11 Reserved

Bit 9 FCOMPOE. Compare output enable. Active PDPINTA clears this bit to
zero.
0 PWM output pins are in high-impedance state; that is, they are

disabled
1 PWM output pins are not in high-impedance state; that is, they are

enabled

Bit 8 PDPINTA STATUS. This bit reflects the current status of the PDPINTA
pin. (This bit is applicable to 240xA devices only — it is reserved on 240x
devices and returns a zero when read.)

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)142

Bits 7–0 Reserved. Read returns zero; writes have no effect.

Compare Control Register B (COMCONB) — Address 7511h

15 14 13 12 11 10 9 8

CENABLE CLD1 CLD0 SVENABLE ACTRLD1 ACTRLD0 FCOMPOE PDPINTB
STATUS

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 R–
PDPINTB

PIN

7-0

Reserved

R–0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 CENABLE. Compare enable.
0 Disable compare operation. All shadowed registers (CMPRx,

ACTRB) become transparent
1 Enable compare operation

Bits14–13 CLD1, CLD0. Compare register CMPRx reload condition.
00 When T3CNT = 0 (that is, on underflow)
01 When T3CNT = 0 or T3CNT = T3PR (that is, on underflow or

period match)
10 Immediately
11 Reserved; result is unpredictable

Bit 12 SVENABLE. Space vector PWM mode enable.
0 Disables space vector PWM mode
1 Enables space vector PWM mode

Bits 11–10 ACTRLD1, ACTRLD0. Action control register reload condition.
00 When T3CNT = 0 (on underflow)
01 When T3CNT = 0 or T3CNT = T3PR (on underflow or period

match)
10 Immediately
11 Reserved

Bit 9 FCOMPOE. Compare output enable. Active PDPINTB clears this bit to
zero.
0 PWM output pins are in high-impedance state; that is, they are

disabled
1 PWM output pins are not in high-impedance state; that is, they are

enabled

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 143

Bit 8 PDPINTB STATUS. This bit reflects the current status of the PDPINTB
pin. (This bit is applicable to 240xA devices only — it is reserved on 240x
devices and returns a zero when read.)

Bits 7–0 Reserved. Read returns zero; writes have no effect.

Compare Action Control Registers (ACTRA and ACTRB)

The double buffered, compare action control registers (ACTRA and ACTRB)
determine what action occurs on each of the six compare output pins when a
compare event occurs (if the compare operation is enabled by COMCONx[15]).
The compare output pins are PWMx, where x = 1–6 for ACTRA, and x = 7–12 for
ACTRB. The condition on which ACTRA and ACTRB are reloaded is defined by
the bits in COMCONx.

Compare Action Control Register A (ACTRA) — Address 7413h
15 14 13 12 11 10 9 8

SVRDIR D2 D1 D0 CMP6ACT1 CMP6ACT0 CMP5ACT1 CMP5ACT0

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0

CMP4ACT1 CMP4ACT0 CMP3ACT1 CMP3ACT0 CMP2ACT1 CMP2ACT0 CMP1ACT1 CMP1ACT0

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 SVRDIR. Space vector PWM rotation direction. Used only in space
vector PWM output generation.
0 Positive (CCW)
1 Negative (CW)

Bits 14–12 D2–D0. Basic space vector bits. Used only in space vector PWM
output generation.

Bits 11–10 CMP6ACT1–0. Action on compare output pin 6, CMP6.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 9–8 CMP5ACT1–0. Action on compare output pin 5, CMP5.
00 Forced low
01 Active low
10 Active high
11 Forced high

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)144

Bits 7–6 CMP4ACT1–0. Action on compare output pin 4, CMP4.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 5–4 CMP3ACT1–0. Action on compare output pin 3, CMP3.
00 Forced low
01 Active low
10 Active high

Bits 3–2 CMP2ACT1–0. Action on compare output pin 2, CMP2.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 1–0 CMP1ACT1–0. Action on compare output pin 1, CMP1.
00 Forced low
01 Active low
10 Active high
11 Forced high

Compare Action Control Register B (ACTRB) — Address 7513h
15 14 13 12 11 10 9 8

SVRDIR D2 D1 D0 CMP12ACT1 CMP12ACT0 CMP11ACT1 CMP11ACT0

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1 0
CMP10ACT1 CMP10ACT0 CMP9ACT1 CMP9ACT0 CMP8ACT1 CMP8ACT0 CMP7ACT1 CMP7ACT0

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 SVRDIR. Space vector PWM rotation direction. Used only in space
vector PWM output generation.
0 Positive (CCW)
1 Negative (CW)

Bits 14–12 D2–D0. Basic space vector bits. Used only in space vector PWM
output generation.

Bits 11–10 CMP12ACT1–0. Action on compare output pin 12, CMP12.
00 Forced low
01 Active low

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 145

10 Active high
11 Forced high

Bits 9–8 CMP11ACT1–0. Action on compare output pin 11, CMP11.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 7–6 CMP10ACT1–0. Action on compare output pin 10, CMP10.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 5–4 CMP9ACT1–0. Action on compare output pin 9, CMP9.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 3–2 CMP8ACT1–0. Action on compare output pin 8, CMP8.
00 Forced low
01 Active low
10 Active high
11 Forced high

Bits 1–0 CMP7ACT1–0. Action on compare output pin 7, CMP7.
00 Forced low
01 Active low
10 Active high
11 Forced high

Dead-Band Timer Control Register A (DBTCONA) — Address 7415h

15-12 11 10 9 8

Reserved DBT3 DBT2 DBT1 DBT0

R–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1-0

EDBT3 EDBT2 EDBT1 DBTPS2 DBTPS1 DBTPS0 Reserved

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 R–0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–12 Reserved. Reads return zero; writes have no effect.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)146

Bits 11–8 DBT3 (MSB)–DBT0 (LSB). Dead-band timer period. These bits define
the period value of the three 4-bit dead-band timers.

Bit 7 EDBT3. Dead-band timer 3 enable (for pins PWM5 and PWM6 of
Compare Unit 3).
0 Disable
1 Enable

Bit 6 EDBT2. Dead-band timer 2 enable (for pins PWM3 and PWM4 of
Compare Unit 2).
0 Disable
1 Enable

Bit 5 EDBT1. Dead-band timer 1 enable (for pins PWM1 and PWM2 of
Compare Unit 1).
0 Disable
1 Enable

Bits 4–2 DBTPS2 to DBTPS0. Dead-band timer prescaler.
000 x/1
001 x/2
010 x/4
011 x/8
100 x/16
101 x/32
110 x/32
111 x/32
x = Device (CPU) clock frequency

Bits 1–0 Reserved. Reads return zero; writes have no effect.

Dead-Band Timer Control Register B (DBTCONB) — Address 7515h

15-12 11 10 9 8

Reserved DBT3 DBT2 DBT1 DBT0

R–0 RW–0 RW–0 RW–0 RW–0

7 6 5 4 3 2 1-0

EDBT3 EDBT2 EDBT1 DBTPS2 DBTPS1 DBTPS0 Reserved

RW–0 RW–0 RW–0 RW–0 RW–0 RW–0 R–0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–12 Reserved. Reads return zero; writes have no effect.

Bits 11–8 DBT3 (MSB)–DBT0 (LSB). Dead-band timer period. These bits
define the period value of the three 4-bit dead-band timers.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 147

Bit 7 EDBT3. Dead-band timer 3 enable (for pins PWM11 and PWM12 of
Compare 6).
0 Disable
1 Enable

Bit 6 EDBT2. Dead-band timer 2 enable (for pins PWM9 and PWM10 of
Compare 5).
0 Disable
1 Enable

Bit 5 EDBT1. Dead-band timer 1 enable (for pins PWM7 and PWM8 of
Compare 4).
0 Disable
1 Enable

Bits 4–2 DBTPS2 to DBTPS0. Dead-band timer prescaler.
000 x/1
001 x/2
010 x/4
011 x/8
100 x/16
101 x/32
110 x/32
111 x/32
x = Device (CPU) clock frequency

Bits 1–0 Reserved. Reads return zero; writes have no effect.

6.5 Capture Units and Quadrature Encoded Pulse (QEP) Circuitry

The Capture Units on the LF2407 allow an event (rising/falling edge) on the
capture pin to be time stamped by a selected GP Timer. There are three Capture
Units in each EV, each with its own capture input pin (CAPx). Capture Units 1, 2,
and 3 are associated with EVA while Capture Units 4, 5, and 6 are associated with
EVB. Each EV module contains the following (shown in Figs. 6.14 and 6.15):

One 16 bit capture control register per EV (CAPCOMA for EVA,
CAPCOMB for EVB) is used for configuring the Capture Unit
functionality.
Three 16-bit, 2-level-deep First-In-First-Out (FIFO) stacks per EV
(CAPxFIFO); one FIFO stack for each Capture Unit; the “captured” timer
count value is stored here.
One 16-bit capture status register (CAPFIFOA for EVA, CAPFIFOB for
EVB); provides information on the number of timer captures in each
capture FIFO.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)148

Inputs of either GP Timer 1 or 2 (for EVA) and GP Timer 3 or 4 (for EVB)
as the time base.
One capture pin per Capture Unit with user-specified transition detection
(rising edge, falling edge, or both edges). CAP1 through CAP3 for EVA,
and CAP4 through CAP6 for EVB.
Six maskable interrupt flags, one for each Capture Unit.

T2CNT GP
timer 2
counter

T1CNT GP
timer 1
counter

MUX

Edge
detect

2–level
FIFO

stacks

Cap FIFO
status

ADC start

CAPCONA[15]

CAP1,2,3

CAPCONA[8]

2

16

16

8

6

6

3

CAPCONA[9,10] CAPCONA[12-14]

RS

clear

CAPCONA[2-7]

Edge
select

Capture unit 3
cap. event

CAPFIFOA[13-15]

RS

EN

Figure 6.15 EVA capture unit diagram. (Courtesy of Texas Instruments)

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 149

T2CNT GP
timer 4
counter

T1CNT GP
timer 3
counter

MUX

Edge
detect

2–level
FIFO

stacks

Cap FIFO
status

ADC start

CAPCONB[15]

CAP4,5,6

CAPCONB[8]

2

16

16

8

6

6

3

CAPCONB[9,10] CAPCONB[12-14]

RS

clear

CAPCONB[2-7]

Edge
select

Capture unit 6
cap. event

CAPFIFOB[13-15]

RS

EN

 Figure 6.16 EVB Capture unit diagram. (Courtesy of Texas Instruments)

The Capture Units are useful in applications where the time of an external
trigger needs to be “captured”. For example, if we want to measure the time
between the rising edges of two pulses, we would configure the appropriate
registers for capture operation on a specific capture pin. At each rising edge, the
Capture Unit would then store the corresponding timer values. The user program
could then subtract the second capture value from the first value and determine the
time between the pulses.

The Capture Units are accompanied by the Quadrature Encoded Pulse (QEP)
circuitry which uses the GP Timers to “decode” a QEP signal. When the QEP mode
is selected, pins CAP1 and CAP2 (CAP4 and CAP5 in case of EVB) are used as
QEP inputs. More on the QEP circuitry will be discussed shortly.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)150

6.5.1 Operation of the Capture Unit

When a Capture Unit is enabled, when either a rising or falling edge is detected
on the capture input pin (CAPx), the current value of the selected GP Timer counter
is copied and stored in the corresponding capture FIFO. In order for a transition to
be captured, the input must hold at its current level for the duration of at least two
CPU clock cycles. After the GP Timer value is recorded in the capture FIFO, an
interrupt could also be generated, and software may then read the FIFO value. The
value from the capture FIFO can then be used in an algorithm.

While we can think of the capture FIFO as being a two-level deep single
register, each capture FIFO stack actually consists of two registers, CAPxFIFO and
CAPxBOT (for EVA x=1,2,3; EVB x=4,5,6). When a new value is stored in the
FIFO during a capture, in reality it first goes to the bottom register. When the top
register of the FIFO stack is empty (either because this is the first capture, or the
FIFO was just read), the value in the bottom register is automatically shifted into the
top register (CAPxFIFO). Because of the above operation, when reading from the
FIFO, the FIFO will always return the oldest stored value first. When the FIFO
contains two values and is read, the oldest value will be read and removed from the
FIFO. On the next read, the next oldest value will be read and removed from the
FIFO. Usually, only read from the CAPxFIFO register, but the bottom register of
the stack (CAPxBOT) can also be read.

When no FIFO reads have been performed, after two captures the
corresponding capture FIFO will have two timer values stored in it and will be full.
In the case that the FIFO has still not been read from and a third capture is recorded,
the first capture value will be pushed out of the FIFO and lost.

The bits in the FIFO status registers indicate how many values are currently
stored in each FIFO. When a value is read from the CAPxFIFO (or bottom register,
CAPxBOT), the status bits will indicate one less value in the FIFO. The two status
bits corresponding to a particular FIFO should normally indicate “00”, “01”, and
“10”. If a third capture occurs and the previous two values have not been read from
the FIFO, the status bits will indicate “11”, indicating that the oldest value was lost.
In this case, after the next FIFO read, the status bits return to their usual values of
“00”, “01” or “10”.

The following steps should be taken to configure the Capture Units for
operation:

1. Initialize the CAPFIFOx and clear the appropriate status bits.
2. Set the selected GP Timer in the desired counting mode.
3. Set the associated GP Timer compare register or GP Timer period register,

if necessary.
4. Set up CAPCONA or CAPCONB as appropriate for desired operation.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 151

6.5.2 Capture Stack Interrupt Flag Operation:

Because the FIFO stack is two levels deep, the corresponding interrupt flag is
set as soon as there are two values in the stack (the FIFO is full). This means that if
there is one (or two) previous values in the FIFO (indicated by CAPxFIFO bits not
equal to zero) and another capture takes place, the interrupt flag will be set. Like all
interrupts, if the flag is unmasked, then an interrupt is generated. If interrupt
operation is not desired, either the interrupt flag or the status bits can be polled
continuously to determine if capture events have occurred.

6.5.3 Quadrature Encoded Pulse (QEP) Circuitry

QEPs are two sequences of pulses which have a variable frequency and are 90º
out of phase with one another (see Fig. 6.17). QEP signals are usually generated by
a position/speed sensing device such as a rotary optical encoder. When the encoder
is rotated, the direction of rotation can be determined by which sequence of pulses
leads the other. Rotational speed and position can be determined from the count
and frequency of the pulses.

Figure 6.17 A pair of quadrature encoded pulses.

Each EV module has a QEP circuit associated with the Capture Units (see Figs.
6.18 and 6.19). The QEP circuit, when enabled, decodes and counts the quadrature
encoded input pulses on the QEP input pins. The input pins consist of CAP1/QEP1
and CAP2/QEP2 for EVA or CAP4/QEP3 and CAP5/QEP4 for EVB. When the
QEP function is enabled, the compare function of the pins is disabled and the pins
are configured for QEP input.

2

CAPCONA[13,14]

2 2

2QEP
decoder

logic

GPT2 clock

GPT2 dir

T2CON[4,5]

TDIRA
CLK

DIR
CAP1/QEP1
CAP2/QEP2

GP timer 2 Prescaler

T2CON[8,9,10]

CLKOUT
CLKIN

M
U
X

2

Capture
unit 1,2

M
U
X

M
U
X

2

Figure 6.18 QEP circuit block for EVA. (Courtesy of Texas Instruments)

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)152

2

CAPCONB[13,14]

2 2

2QEP
decoder

logic

GPT4 clock

GPT4 dir

T4CON[4,5]

TDIRB
CLK

DIR
CAP4/QEP3
CAP5/QEP4

GP timer 4 Prescaler

T4CON[8,9,10]

CLKOUT
CLKIN

M
U
X

2

Capture
unit 4,5

M
U
X

M
U
X

2

Figure 6.19 QEP circuit for EVB. (Courtesy of Texas Instruments)

QEP Circuit Operation

The counter for the QEP circuit is provided by GP Timer 2 for EVA and GP
Timer 4 for EVB. The GP Timer must be configured for directional-up/down count
mode. When the QEP circuit is selected as the clock source, the timer ignores the
direction and clock (TDIRA/B and TCLKINA/B) input pins. The QEP circuit will
act as the clock reference and the direction input for the timer. The QEP circuit
determines which one of the sequences is the leading sequence. It then generates a
direction signal as the direction input to the GP Timer. The timer counts up if
CAP1/QEP1 (CAP4/QEP3 for EVB) input is the leading sequence, and counts
down if CAP2/QEP2 (CAP5/QEP4 for EVB) is the leading sequence. Both edges
of the pulses of the two quadrature encoded inputs are counted by the QEP circuit.
Therefore, the frequency of the clock generated by the QEP logic to GP Timer 2 (or
4) is four times that of each input sequence. This quadrature clock is connected to
the clock input of GP Timer 2 (or 4).

Note: Upon a DSP RESET, the QEP logic will miss the first QEP edge.

Configuring for QEP Operation:

EVA:

1. Load GP Timer 2’s counter, period, and compare registers if desired; for
simple QEP decoding, this is not required.

2. Configure T2CON to set GP Timer 2 in directional-up/down mode with
the QEP circuits as clock source, and enable the selected timer.

3. Configure CAPCONA to enable the QEP circuit.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 153

EVB:

1. Load GP Timer 4’s counter, period, and compare registers with desired
values; for simple QEP decoding, this is not required.

2. Configure T4CON to set GP Timer 4 in directional-up/down mode with
the QEP circuits as clock source, and enable the selected timer.

3. Configure CAPCONB to enable the QEP circuit.
Interrupt flags normally associated with the timer operation are still operational

with the QEP. Period, underflow, overflow, and compare interrupt flags for a GP
Timer with a QEP circuit clock are generated on respective matches. If the
respective interrupt flags are unmasked, timer interrupt requests will be generated.

6.5.4 Capture Unit / QEP Control Registers

Upon a RESET, all capture registers are cleared to zero. There are four 16-bit
registers that control the functionality of the Capture Units. These registers are
CAPCONA, CAPCONB, CAPFIFOA, and CAPFIFOB. In addition to these four
registers the individual timer control registers (TxCON, x = 1, 2, 3, or 4) control the
selected timer which acts as the time base for the Capture Unit. CAPCONA and
CAPCONB also control the QEP functionality.

Capture Control Register A (CAPCONA) — Address 7420h

15 14-13 12 11 10 9 8

CAPRES CAPQEPN CAP3EN Reserved CAP3TSEL CAP12TSEL CAP3TOAD
C

RW–0 RW–0 RW–0 R–0 RW–0 RW–0 RW–0

7-6 5-4 3-2 1-0

CAP1EDGE CAP2EDGE CAP3EDGE Reserved

RW–0 RW–0 RW–0 R–0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 CAPRES. Capture reset. Always reads zero.
Note: This bit is not implemented as a register bit. Writing a 0 simply

clears the capture registers.
0 Clear all registers of Capture Units and QEP circuit to 0
1 No action

Bits 14–13 CAPQEPN. Capture Units 1 and 2 control.
00 Disables Capture Units 1 and 2; FIFO stacks retain their contents
01 Enables Capture Units 1 and 2
10 Reserved
11 Reserved

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)154

Bit 12 CAP3EN. Capture Unit 3 control.
0 Disables Capture Unit 3; FIFO stack of Capture Unit 3 retains its

contents
1 Enable Capture Unit 3

Bit 11 Reserved. Reads return zero; writes have no effect.

Bit 10 CAP3TSEL. GP Timer selection for Capture Unit 3.
0 Selects GP Timer 2
1 Selects GP Timer 1

Bit 9 CAP12TSEL. GP Timer selection for Capture Units 1 and 2.
0 Selects GP Timer 2
1 Selects GP Timer 1

Bit 8 CAP3TOADC. Capture Unit 3 event starts ADC.
0 No action
1 Starts ADC when the CAP3INT flag is set

Bits 7–6 CAP1EDGE. Edge detection control for Capture Unit 1.
00 No detection
01 Detects rising edge
10 Detects falling edge
11 Detects both edges

Bits 5–4 CAP2EDGE. Edge detection control for Capture Unit 2.
00 No detection
01 Detects rising edge
10 Detects falling edge
11 Detects both edges

Bits 3–2 CAP3EDGE. Edge detection control for Capture Unit 3.
00 No detection
01 Detects rising edge
10 Detects falling edge
11 Detects both edges

Bits 1–0 Reserved. Reads return zero; writes have no effect.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 155

Capture Control Register B (CAPCONB) — Address 7520h

15 14-13 12 11 10 9 8

CAPRES CAPQEPN CAP6EN Reserved CAP6TSEL CAP45TSEL CAP6TOADC

RW–0 RW–0 RW–0 R–0 RW–0 RW–0 RW–0

7-6 5-4 3-2 1-0

CAP4EDGE CAP5EDGE CAP6EDGE Reserved

RW–0 RW–0 RW–0 RW–0

Note: R = read access, W = write access, -0 = value after reset.

Bit 15 CAPRES. Capture reset. Always reads zero.
Note: This bit is not implemented as a register bit. Writing a 0 simply

clears the capture registers.
0 Clears all registers of Capture Units and QEP circuit to 0
1 No action

Bits 14–13 CAPQEPN. Capture Units 4 and 5 and QEP circuit control.
00 Disables Capture Units 4 and 5 and QEP circuit. FIFO stacks

retain their contents
01 Enables Capture Units 4 and 5, disable QEP circuit
10 Reserved
11 Enables QEP circuit. Disable Capture Units 4 and 5; bits 4–7 and

9 are ignored

Bit 12 CAP6EN. Capture Unit 6 control.
0 Disables Capture Unit 6; FIFO stack of Capture Unit 6 retains its

contents
1 Enables Capture Unit 6

Bit 11 Reserved. Reads return zero; writes have no effect.

Bit 10 CAP6TSEL. GP Timer selection for Capture Unit 6.
0 Selects GP Timer 4
1 Selects GP Timer 3

Bit 9 CAP45TSEL. GP Timer selection for Capture Units 4 and 5.
0 Selects GP Timer 4
1 Selects GP Timer 3

Bit 8 CAP6TOADC. Capture Unit 6 event starts ADC.
0 No action
1 Starts ADC when the CAP6INT flag is set

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)156

Bits 7–6 CAP4EDGE. Edge detection control for Capture Unit 4.
00 No detection
01 Detects rising edge
10 Detects falling edge
11 Detects both edges

Bits 5–4 CAP5EDGE. Edge detection control for Capture Unit 5.
00 No detection
01 Detects rising edge
10 Detects falling edge
11 Detects both edges

Bits 3–2 CAP6EDGE. Edge detection control for Capture Unit 6.
00 No detection
01 Detects rising edge
10 Detects falling edge
11 Detects both edges

Bits 1–0 Reserved. Reads return zero; writes have no effect.

Capture Status Registers

The ability to write to the CAPFIFOx registers can be used as a programming
advantage. For example, if a “01” is written to the CAPnFIFO bits by user code, the
EV module is led to believe that there is already an entry in the FIFO. Subsequently,
every time the FIFO gets a new value, a capture interrupt will be generated. If a
write occurs to the CAPnFIFOA status bits at the same time as they are being
updated by hardware (because of a capture event), the user written data takes
precedence.

Capture FIFO Status Register A (CAPFIFOA) — Address 7422h

15-14 13-12 11-10 9-8

Reserved CAP3FIFO CAP2FIFO CAP1FIFO

R–0 RW –0 RW –0 RW –0

7-0

Reserved

R–0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–14 Reserved. Reads return zero; writes have no effect.

Bits 13–12 CAP3FIFO. CAP3FIFO Status
00 Empty
01 Has one entry
10 Has two entries

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 157

11 Had two entries and captured another one; first entry has been lost

Bits 11–10 CAP2FIFO. CAP2FIFO Status
00 Empty
01 Has one entry
10 Has two entries
11 Had two entries and captured another one; first entry has been lost

Bits 9–8 CAP1FIFO. CAP1FIFO Status
00 Empty
01 Has one entry
10 Has two entries
11 Had two entries and captured another one; first entry has been lost

Bits 7–0 Reserved. Reads return zero; writes have no effect.

Capture FIFO Status Register B (CAPFIFOB) — Address 7522h

15-14 13-12 11-10 9-8

Reserved CAP6FIFO CAP5FIFO CAP4FIFO

R–0 RW –0 RW –0 RW –0

7-0

Reserved

R–0

Note: R = read access, W = write access, -0 = value after reset.

Bits 15–14 Reserved. Reads return zero; writes have no effect.

Bits 13–12 CAP6FIFO. CAP6FIFO Status
00 Empty
01 Has one entry
10 Has two entries
11 Had two entries and captured another one; first entry has been lost

Bits 11–10 CAP5FIFO. CAP5FIFO Status
00 Empty
01 Has one entry
10 Has two entries
11 Had two entries and captured another one; first entry has been lost

Bits 9–8 CAP4FIFO. CAP4FIFO Status
00 Empty
01 Has one entry
10 Has two entries
11 Had two entries and captured another one; first entry has been lost

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)158

Bits 7–0 Reserved. Reads return zero; writes have no effect.

6.6 General Event Manager Information

Table 6.5 Event Manager A (EVA) Pins

Pin Name Description
CAP1/QEP1 Capture Unit 1 input, QEP circuit input 1
CAP2/QEP2 Capture Unit 2 input, QEP circuit input 2
CAP3 Capture Unit 3 input
PWM1 Compare Unit 1 output 1
PWM2 Compare Unit 1 output 2
PWM3 Compare Unit 2 output 1
PWM4 Compare Unit 2 output 2
PWM5 Compare Unit 3 output 1
PWM6 Compare Unit 3 output 2
T1CMP/T1PWM Timer 1 compare/PWM output
T2CMP/T2PWM Timer 2 compare/PWM output
TCLKINA External clock-in for timers in EVA (when

configured to operate from external clock)
TDIRA External timer direction input in EVA (when timer is

in directional up/down mode)

Table 6.6 Event Manager B (EVB) Pins

Pin Name Description
CAP4/QEP3 Capture Unit 4 input, QEP circuit input 3
CAP5/QEP4 Capture Unit 5 input, QEP circuit input 4
CAP6 Capture Unit 6 input
PWM7 Compare Unit 4 output 1
PWM8 Compare Unit 4 output 2
PWM9 Compare Unit 5 output 1
PWM10 Compare Unit 5 output 2
PWM11 Compare Unit 6 output 1
PWM12 Compare Unit 6 output 2
T3CMP/T3PWM Timer 3 compare/PWM output
T4CMP/T4PWM Timer 4 compare/PWM output
TCLKINB External clock-in for timers in EVB (when

configured to operate from external clock)
TDIRB External timer direction input in EVB (when timer is

in directional up/down mode)

NOTE: Most of the EV pins are mapped with a second function. In order to use the
EV, you must configure the appropriate pins to their EV function. For more
information on how pin sharing works and how to configure pins refer to Chapter 4.

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 159

Event Manager (EV) Register Addresses

Table 6.7 Addresses of EVA Timer Registers

Address Register Name
7400h GPTCONA GP Timer control register A
7401h T1CNT Timer 1 counter register Timer 1
7402h T1CMPR Timer 1 compare register

7403h T1PR Timer 1 period register
7404h T1CON Timer 1 control register
7405h T2CNT Timer 2 counter register
7406h T2CMPR Timer 2 compare register Timer 2
7407h T2PR Timer 2 period register
7408h T2CON Timer 2 control register

Table 6.8 Addresses of EVB Timer Registers

Address Register Name
7500h GPTCONB GP Timer control register B
7501h T3CNT Timer 3 counter register
7502h T3CMPR Timer 3 compare register Timer 3
7503h T3PR Timer 3 period register
7504h T3CON Timer 3 control register

7505h T4CNT Timer 4 counter register
7506h T4CMPR Timer 4 compare register Timer 4
7507h T4PR Timer 4 period register
7508h T4CON Timer 4 control register

Table 6.9 Addresses of EVA Compare Control Registers

Address Register Name
7411h COMCONA Compare control register
7413h ACTRA Compare action control register
7415h DBTCONA Dead-band timer control register
7417h CMPR1 Compare register 1
7418h CMPR2 Compare register 2
7419h CMPR3 Compare register 3

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB)160

Table 6.10 Addresses of EVB Compare Control Registers

Address Register Name
7511h COMCONB Compare control register
7513h ACTRB Compare action control register
7515h DBTCONB Dead-band timer control register
7517h CMPR4 Compare register 4
7518h CMPR5 Compare register 5
7519h CMPR6 Compare register 6

Table 6.11 Addresses of EVA Capture Registers

Address Register Name
7420h CAPCONA Capture control register
7422h CAPFIFOA Capture FIFO status register
7423h CAP1FIFO Two-level-deep capture FIFO stack 1
7424h CAP2FIFO Two-level-deep capture FIFO stack 2
7425h CAP3FIFO Two-level-deep capture FIFO stack 3
7427h CAP1FBOT Bottom registers of FIFO stacks;

allows most recent CAPTURE value
to be read

7428h CAP2FBOT

7429h CAP3FBOT

Table 6.12 Addresses of EVB Capture Registers

Address Register Name
7520h CAPCONB Capture control register
7522h CAPFIFOB Capture FIFO status register
7523h CAP4FIFO Two-level-deep capture FIFO stack 4
7524h CAP5FIFO Two-level-deep capture FIFO stack 5
7525h CAP6FIFO Two-level-deep capture FIFO stack 6
7527h CAP4FBOT Bottom registers of FIFO stacks,

allows most recent CAPTURE value
to be read

7528h CAP5FBOT

7529h CAP6FBOT

Copyright © 2004 CRC Press, LLC

The Event Managers (EVA, EVB) 161

Table 6.13 Addresses of EVA Interrupt Registers

Address Register Name
742Ch EVAIMRA Interrupt mask register A
742Dh EVAIMRB Interrupt mask register B
742Eh EVAIMRC Interrupt mask register C
742Fh EVAIFRA Interrupt flag register A
7430h EVAIFRB Interrupt flag register B
7431h EVAIFRC Interrupt flag register C

Table 6.14 Addresses of EVB Interrupt Registers

Address Register Name
752Ch EVBIMRA Interrupt mask register A
752Dh EVBIMRB Interrupt mask register B
752Eh EVBIMRC Interrupt mask register C
752Fh EVBIFRA Interrupt flag register A
7530h EVBIFRB Interrupt flag register B
7531h EVBIFRC Interrupt flag register C

6.7 Exercise: PWM Signal Generation

As discussed in the previous sections, there are two ways to generate a PWM
signal on the LF2407: through the GP Timer compare operation, or the Compare
Units. This exercise will allow you to use your knowledge of the LF2407 DSP to
write code that will generate PWM signals on both the GP Timer and Compare Unit
outputs.

Procedure:

1. Write a program that outputs a fixed duty cycle “PWM” on a GP Timer 2
compare pin. Create the program so that the period of the PWM signal is 1
kHz and the duty cycle (on time/period) is fixed at 75%. The information
on the GP Timer compare operation in the previous section will be very
useful in writing this code.

2. View the output (1 kHz fixed duty cycle signal) on the
T1PWM/T1CMP/IOPB4 pin. The Spectrum Digital LF2407 EVM
schematic will be helpful in determining the location of this pin connection
on the EVM.

3. If available, connect this fixed duty cycle signal to a dc voltage converter
and use it to control the speed of a dc motor by varying the duty cycle of
the waveform.

4. Modify the above program to now create a sinusoidally modulated PWM
signal on the GP Timer Compare pin. To do this, a sinusoidal look-up

Copyright © 2004 CRC Press, LLC

 The Event Managers (EVA, EVB) 162

table can be created separately and then included with the source code. To
modulate the signal, the timer compare register needs to be repeatedly
updated with the modulation signal at a desired rate for a particular
sinusoidal output frequency.

5. Write another program that creates the sinusoidal PWM, but instead uses
the Compare Units.

6. If available, connect the two PWM outputs of the compare unit to a power
inverter and run a single-phase induction motor. Vary the speed of the
motor by manually varying the magnitude and rate at which the compare
registers are updated with the modulation signal. Maintain a constant
voltage/frequency (V/Hz) ratio to the induction motor.

Copyright © 2004 CRC Press, LLC

Chapter 7

DSP-BASED IMPLEMENTATION OF DC-DC BUCK-BOOST

CONVERTERS

7.1 Introduction

In a large number of industrial applications, it is required to convert a dc
voltage to a different dc voltage level, often with a regulated output. To perform
this task, a dc-dc converter is needed. A dc-dc converter directly converts a dc
voltage of one level to another. It can be used to step-down (buck), or step-up
(boost) a dc voltage source. In this chapter, the DSP-based control of a buck-boost,
a specific type of dc-dc converter, is explained.

7.2 Converter Structure

The buck-boost converter has the structure shown in Fig. 7.1. The principle of
operation is that when the transistor T is turned on, the input voltage V is applied
across the inductor L and the current i in the inductor rises. Then the transistor is
turned off. The current in the inductor must continue to flow somehow, and
consequently finds its path through the load resistor R, and back to the inductor
through the diode D. This discharges the inductor, and the current through it
decreases. The capacitor filters the output voltage ripple. The description given
in the above is with the continuous conduction mode, meaning the inductor current
never goes discontinuous. The continuous mode will be discussed further in the
next section.

in
L

C

This converter has two dominant characteristics: the output voltage is always
negative with respect to the input voltage and the output voltage may be higher or
lower than the input voltage. This is why this converter may also be referred to as a
step-up/step-down converter.

T

D

CL R

Vin

Vout

Iout

Id

VL

IL

Figure 7.1 Buck-boost converter structure.

163

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters164

7.3 Continuous Conduction Mode

The input and output voltages are related by the following equation:

inout V
d

dV
1

 (7.1)

In this equation, d is the transistor or switch duty cycle. Figure 7.2 shows the
switching pattern command to turn on or off, which must be fed to the transistor for
proper operation of the buck-boost converter.

Transistor
State

ON OFF

0 d.Ts Ts

Figure 7.2 Transistor switching pattern.

Obviously, the duty cycle may vary only from 0 to 1. The resulting values for
the converter voltage gain are:

00
in

out
V

VGd (7.2)

in

out
V

VGd 1 (7.3)

The theoretical gain range achievable is potentially very large. Practically, it is
limited by the parasitic characteristics of the converter. In addition, it is often
desirable to keep the duty cycle between 0.1 (10%) and 0.9 (90%) for practical
engineering considerations. The relationship between the converter duty cycle and
its gain, shown in Fig. 7.3, is non-linear.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Converter duty cycle in %

C
on

ve
rte

r v
ol

ta
ge

 g
ai

n

Figure 7.3 Converter voltage gain versus converter duty cycle.

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters 165

7.4 Discontinuous Conduction Mode

The switching results in a cyclic current increase and decrease in the inductor.
This current ripple has a non-negligible influence on the operation of the converter.
If during the switching period T (shown in Fig. 7.2) the current never goes to zero,
then the converter is said to operate in continuous conduction mode.

s

However, if the current does go to zero at any time, then the conduction is said
to be discontinuous. In discontinuous conduction mode, the voltage gain of the
converter is not solely a function of the duty cycle, but also of the output current.
An example of a discontinuous conduction current waveform is shown in Fig. 7.4.

0 d.Ts T s Ts

IL

Io
 I

Figure 7.4 Discontinuous conduction mode current waveform.

7.5 Connecting the DSP to the Buck-Boost Converter

To fully control the buck-boost converter voltage and current with a DSP, one
digital output and two analog inputs are required from the DSP. Figure 7.5 shows a
conceptual connection diagram between the DSP and converter. The DSP will
output a PWM switching waveform to the converter. The DSP will also receive
information of the instantaneous current and voltage from the load via the analog to
digital converter inputs. The following subsections describe the circuits necessary
for interfacing the DSP to the dc-dc converter.

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters166

L C

D
T

RLOAD

DSP

PWM
PROGRAM

VLOAD

ILOAD

Figure 7.5 Physical implementation.

7.5.1 Gate Driver

The gate driver for this example is shown in Fig. 7.6 and is an integrated driver;
it includes an opto-isolator, NPN transistor, PNP transistor, and the necessary logic
to control them, all within an integrated package. Only the addition of two resistors
is required to complete the gate driver circuit. The transistor that is being driven
here is a MOSFET.

+15V

-15V

100W
PWM

SIGNAL

DSP
GND

1kW

IRF740HP3101

Figure 7.6 Gate driver circuit schematic.

7.5.2 Current Sensor

Current measurement can be performed using a shunt resistor in series with the
output. This solution is more adapted to sensing small currents than a Hall-effect
sensor and is also less expensive. The voltage across the 1 shunt resistor shown in
Fig. 7.7 is buffered by a non-inverting amplifier, which provides infinite input
impedance for the ADC input of the DSP. Due to the topology of the dc-dc
converter, the output voltage is negative and must therefore be inverted. Because the
shunt resistor is of a low value, the voltage across it will be small and must be
amplified. A variable gain inverting amplifier provides for both these needs. The
variable gain of the amplifier is used to adjust the gain of the sensed shunt resistor

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters 167

voltage signal. The output of the amplifier is connected to an opto-isolator, which
changes the signal path from electrical to optical, then back to an electrical signal.
The optical transmission provides the necessary galvanic insulation between the
power side of the converter and the DSP. This isolation is necessary because the
DSP is a very sensitive device, while the converter is a major source of voltage
surges and interferences. The operational amplifier feeds the input, or luminescent
diode, of the opto-isolator. The output of the opto-isolator feeds into the DSP
analog input. A variable collector resistor is used to set the offset voltage of the
ADC input.

+

-
+

-

DSP +3.3V

ADCIN1

DSP GND

1k
1k

1k

10k

1k

LM741
LM741

TLP550 4.7k

IOUTPUT

SHUNT
1W

IOUTPUT

Figure 7.7 Current sensor circuit schematic.

7.5.3 Voltage Sensor

The voltage sensor uses the same circuit as the current sensor, but with a few
differences. The output voltage of the converter is directly measurable and is
directly fed into the infinite impedance buffer. The inverting amplifier is also
slightly different in that it uses a 1k resistor instead of a 10k resistor. The
difference is that while the current signal has to be amplified, the voltage level of
the converter output must be attenuated to match the acceptable voltage range of the
ADC input.

+

-
+

-

DSP +3.3V

ADCIN0

DSP GND

VOUTPUT

1k
1k

1k

1k

1k

LM741
LM741

TLP550 4.7k

Figure 7.8 Voltage sensor circuit schematic.

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters168

7.6 Controlling the Buck-Boost Converter

The controller of a buck-boost converter usually has two objectives:

Controlling the output voltage to a predetermined value
Protecting the converter by limiting the output current to a predetermined
value

Obviously, simply regulating the output voltage is the normal mode for the
controller. If the load is such that the converter output voltage causes the current to
go beyond the limit, then the controller must also control the converter to prevent
the current from exceeding the maximum limit. Maintaining the current below the
maximum is necessary in order to keep the converter and load from overheating.
Because current regulation is necessary for safety, it must have the highest priority
over all the other tasks in the control system, including the voltage regulation. This
means that under any variation of the load, the current will be kept below its
maximum.

The proposed control scheme has the following properties:

The voltage will be regulated using a closed-loop PI regulator.

The current will be checked every switching cycle, and if its value is above
the limit, then the voltage regulation will be suspended. This will be
achieved by setting the error signal to zero, which will disable the
proportional action and disable the integration of the voltage error. The
integrator is decremented by 1 every cycle in order to smoothly bring the
voltage to a value, which will keep the current at its limit.

The current regulation is effective if the current is only slightly above the
limit. It is not effective against sudden surges such as a short circuit. If the
current is above two times the maximum, then the controller will reset the
PWM generation (thus shutting down the transfer of power from the source
to the load) and reset the integrator. This will cause the converter restart
from zero voltage in voltage regulation mode. Since the voltage is very
low, the current will be slightly beyond the current limit, thus causing the
controller to enter the current regulation mode. This is effective because
output filter capacitor will be quickly discharged by a short circuit, and
thus the output voltage will be zero. The voltage necessary for keeping the
current below the limit in a short circuit condition is very low (in the order
of a few mV), so the recovery from a short circuit should happen quickly.

Regulating the output voltage can be achieved easily by means of an integral
regulator in a negative feedback loop. The integral regulator outputs a command of
gain for the converter. For optimum performance, this command should be
linearized; that is, converted into a useful duty cycle using the following equation:

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters 169

1Gain
Gaind (7.4)

However, this is not mandatory because the negative feedback and the integral
regulator ultimately ensure the convergence of the output voltage toward the
reference. In addition, the DSP is very fast in reacting to variations in the system.
Equation (7.4) is theoretical and does not take into account the parasitic elements of
the system, which make the voltage gain a different function of the duty cycle. The
theoretical voltage gain as a function of the duty cycle and the actual gain are
plotted in Fig. 9. One sees that the two curves differ slightly. A look-up table would
be the most accurate and simplest way to linearize the function. The voltage
regulation is described using the block diagram shown in Fig. 7.10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4

PWM duty cycle

Th
eo

re
tic

al
 v

ol
ta

ge
 g

ai
n

(u
p)

 /
A

ct
ua

l v
ol

ta
ge

ga
in

 (b
ot

to
m

)

Figure 7.9 Divergence between theoretical and actual voltage gains.

+
-

V_REF

V_AVERAGED

P

VOUTPUT

AVERAGING

I
V_ERROR

PROBE

+
+

V_SAMPLE

ACTION

BUCK-BOOST
CONVERTER

Figure 7.10 Voltage regulation block diagram.

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters170

This block diagram will be calculated once every switching cycle, which is the
maximum speed at which parameters may be updated. Calculating the regulation
more often would be useless because the actuator, the PWM generator, would not
react until the next cycle.

The block diagram shown in Fig. 7.11 is implemented within the voltage
regulation code in two sequences: current regulation and regulation reset.

READ AVERAGED CURRENT

IS CURRENT > MAXIMUM ?

IS CURRENT > 2 * MAXIMUM ?

YES

NO

NO

YES

RESET DUTY CYCLE TO ZERO

RESET INTEGRATOR

RESET V_ERROR TO ZERO

DECREMENT INTEGRATOR BY 1

TO VOLTAGE
REGULATION PROGRAM

FROM
VOLTAGE

REGULATION PROGRAM

Figure 7.11 Current regulation algorithm.

Figure 7.12 illustrates the flow chart of the program developed in this chapter.
Notice that several loops are used in the program.

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters 171

YES

START

INITIALIZE
DSP

INITIALIZE
VARIABLES

INITIALIZE
ADC

INITIALIZE
PWM

GENERATION

INITIALIZE
SAMPLING

PERIOD
INTERRUPT

WAIT FOR
INTERRUPT

HAS AN
INTERRUPT
OCCURRED

?

NO

READ VOLTAGE
SENSOR

FORMAT
VOLTAGE
SAMPLE

READ CURRENT
SENSOR

FILTER ADC
MEASURES

TIME TO RUN
REGULATION ?

NO

YES

AVERAGE THE
MEASURES

CALCULATE
THE ERROR

CURRENT
REGULATION

IS CURRENT >
MAXIMUM ?

YES

NO

CALCULATE PI
REGULATOR

OUTPUT

IS CURRENT >
2 * MAXIMUM ?

YES

RESET
REGULATION

NO

OUTPUT ACTION
TO PWM

Figure 7.12 General program flow-chart.

7.7 Main Assembly Section Code Description

7.7.1 Variables Initialization

The block of code below initializes the defined variables with constants.

LDP #06h

SPLK #0900h, V_OFFSET ;Voltage probe offset * 2^6

SPLK #0880h, I_OFFSET ;Current probe offset * 2^6

SPLK #0000h, V_SAMPLE ;Voltage sample

SPLK #0000h, I_SAMPLE ;Current sample

SPLK #0000h, V_SUM ;Voltage sum

SPLK #0000h, I_SUM ;Current sum

SPLK #0000h, V_AVERAGED ;Voltage averaged

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters172

SPLK #0000h, I_AVERAGED ;Current averaged

SPLK #0138h, V_REF ;Voltage reference=5V=5000d/16d

SPLK #0000h, ACTION ;Action output by the regulator

SPLK #00FAh, I_LIMIT ;Current limit FAh = 250d= 25mA

SPLK #0000h, V_ERROR ;Error of voltage regulation

SPLK #0000h, INTEGRAL ;Regulation integrator

SPLK #0000h, INT_CNT ;Interrupt counter

7.7.2 Initialization of the ADC

This code initializes the Analog-to-Digital Converter hardware of the LF2407 that
performs the analog current and voltage sensing.

LDP #ADCTRL1>>7h ;Set data page corresponding to

;ADCcontrol registers

SPLK #0100000000000000b, ADCTRL1

;Reset ADC

SPLK #0011000000000000b, ADCTRL1

;Set ADC for Bit 6=0 start-stop

;mode

SPLK #0001h, MAXCONV ;Set for 2 conversions (2

;channels)

SPLK #0010h, CHSELSEQ1 ;Set for conversion on channel 1

;and 0

SPLK #0100000000000000b, ADCTRL2

;Reset sequencer

SPLK #0000000100000000b, ADCTRL2

;Enables ADC to be started by an

;event(timer 2 period here)

7.7.3 Initialization of GP Timer 1 for PWM Generation

This code sets the parameters of the PWM waveform generation. The period is
set for a 1kHz carrier frequency. The duty cycle is set to a near zero value.

LDP #0E1h ;Set data page corresponding to

;GPIO pin registers

SPLK #0FFFFh, MCRA ;Set GPIO pins for primary

;function (IO)

LDP #GPTCONA>>7h ;Set data page corresponding to

;general purpose timer control

;register

SPLK #00000h, T1CNT ;Reset timer 1 counter

SPLK #3FFFh, T1PR ;Set timer 1 period to ~= 1ms

SPLK #3FF0h, T1CMPR ;Set duty cycle

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters 173

7.7.4 Sampling Period Interrupt Initialization

This code initializes GP Timer 2 and the interrupt operation for the Timer 2
period interrupt.

SPLK #00000h, T2CNT ;Reset timer 2 counter

LACL T1PR ;Load timer 1 (PWM) period

;register

SACL T2PR, 4 ;Divide by 16 (right shift by 4

;bits) and store in timer 2

;period register

SPLK #0000010001000010b, GPTCONA

;Set general purpose timer

;control register for: Bit 10,9

;= 10 start ADC upon timer 2

;period occurrence, Bit 6=1

;enables timer 1 compare output

;for PWM generation, Bit 2,1=10

;sets output pin polarity high

SPLK #1000100001000010b, T1CON

;Sets timer 1 control register

;for: Bit 12,11 = 01 continuous

;up down count mode, Bit 6 = 1

;enables timer, Bit 1 = 1

;enables timer compare operation

SPLK #1000100001000000b, T2CON

;Sets timer 2 control register

;for: Bit 12,11=01 continuous up

;down count mode, Bit 6 = 1

;enables timer

SPLK #0000000000000001b, EVAIMRB

;Enables interrupt upon timer 2

;period occurrence

SPLK #0000000000000000b, EVAIFRB

;Reset corresponding interrupt

;flags

LDP #0h ;Set data page corresponding to

;registers

SPLK #0000000000000100b, IMR

;Enable level 3 (INT3)

;interrupts

CLRC INTM ;Enable interrupts

LOOP: B LOOP ;Program infinitely loops here

;while waiting for interrupts

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters174

7.8 Interrupt Service Routine

Once an interrupt has occurred, the algorithm will perform several tasks as
shown in Fig. 7.12. After the sensor voltage and current values are obtained, the
algorithm either returns to the main wait loop or branches to the regulation code.

The code sequence below is in charge of identifying what event caused the
interrupt. Reading the PIVR register obtains contains the identification number of
the occurring interrupt. If the PIVR number corresponds to the Timer 2 period
match interrupt (#002Bh), then the DSP branches to the regulation code. Otherwise,
it branches back to the wait loop (LOOP:) in the main code.

PERIOD:LDP #PIVR>>7h ;Set data page corresponding to

 ;PIVR register

LACL PIVR ;Load content of PIVR register

;to accumulator

SUB #002Bh ;Subtract number of timer 2

;period match interrupt

BCND REGULATION, EQ ;If content matches, then branch

;to regulation code

CLRC INTM ;Otherwise clear interrupt mask

;to re-enable interrupts

RET ;And return to wait loop in main

;code

7.8.1 Reading Voltage Sensors

This section of code contains protection against negative values that may occur
because of physical sensor drift. A negative value must be eliminated. The probe
offset is determined manually when physically connecting the DSP to the converter.
The block of code below reads in the voltage from the ADC result register.

LDP #RESULT0>>7h ;Set data page corresponding to

;ADC registers

LACL RESULT0 ;Load result register 1 content

;(i.e. current sample) to

;accumulator

LDP #06h ;Set data page corresponding to

;variables

SUB V_OFFSET ;Subtract voltage probe offset

BCND S1, GEQ ;If the result is positive or

;zero, then branch to proceed

;normally

LACL #0000h ;Otherwise, set result to zero

S1: SACL V_SAMPLE, 10 ;Right shift result by 10 bits

;and store it. The 6-bit shift

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters 175

;is because the 6 LSBs of the

;result register are

;insignificant. The 4-bit shift

;is for formatting purposes.

7.8.2 Formatting the Voltage Sample

The voltage sample read from the A/D converter needs to be multiplied by the
value 14d (=Eh) in order to change the value into the 16mV per digit format.

LDP #06h ;Set data page corresponding to

;variables

LT V_SAMPLE ;Load voltage sample to

;multiplier

MPY #00Eh ;Multiply by 14d

SPL V_SAMPLE ;Store 16 least significant bits

;of the result to V_SAMPLE

7.8.3 Reading the Current Sensors

This code is similar to the code that reads the voltage sensors, with the
exception of the channel read, which is channel 1 here instead of channel 0. As
with the voltage reading code, the code below reads the result register of the ADC
that contains the result from the current measurement.

LDP #RESULT1>>7h ;Set data page corresponding to

;ADC registers

LACL RESULT1 ;Load result register 1 content

;(i.e. current sample) to

;accumulator

LDP #06h ;Set data page corresponding to

;variables

SUB I_OFFSET ;Subtract current probe offset

BCND S2, GEQ ;If result is positive or zero

;then branch to proceed normally

LACL #0000h ;Otherwise, set result to zero

S2: SACL I_SAMPLE, 6 ;Right shift result by 6 bits

;and store it. Right shift is

;because the 6 LSBs are

;insignificant

7.8.4 Filtering the ADC Readings

This code accumulates the voltage and current samples from every interrupt in
order to calculate their averages once every PWM cycle.

LDP #06h ;Set data page corresponding to

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters176

;variables

LACL V_SUM ;Load voltage sample sum to

;accumulator

ADD V_SAMPLE ;Add voltage sample to

;accumulator

SACL V_SUM ;Store result as voltage sum

LACL I_SUM ;Load current sample sum to

;accumulator

ADD I_SAMPLE ;Add current sample to

;accumulator

SACL I_SUM ;Store result as current sum

7.9 The Regulation Code Sequences

The following sequences described in this section execute once every Timer 2
period interrupt. The Timer 2 period interrupt is set to occur at a frequency of 16
times that of the PWM switching frequency. This ensures that the regulation is
calculated only once every PWM cycle.

The code checks the counter of interrupt occurrence (INT_CNT). Every time
the four least significant bits are equal to 15 (every 16 interruptions), the DSP
branches to the regulation code. Otherwise, it returns directly from the interrupt
service routine.

LDP #06h ;Set data page corresponding to

;variables

LACL INT_CNT ;Load interrupt occurrence

;counter into accumulator

ADD #1h ;Increment by 1

SACL INT_CNT ;Store back as interrupt

;occurrence counter

AND #000Fh ;Discard all bits but 4 LSBs

XOR #000Fh ;Check for equality with 16d=Fh

BCND S_RET, NEQ ;If not, then branch to return

;from interrupt

7.9.1 Calculating the Voltage and Current Average Values

This sequence takes the sum of 16 voltage and current samples and divides it
by 16. The division is performed with a 4-bit right shift. The results are the
averaged values of the load voltage and current.

LDP #06h ;Set data page corresponding to

;variables

LACL V_SUM ;Load sum of voltage sample to

;accumulator

SACL V_AVERAGED, 4 ;Shift right by 4 bits and store

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters 177

;as the average load voltage

SPLK #0000h, V_SUM ;Reset sum of voltage samples

LACL I_SUM ;Load sum of current samples to

;accumulator

SACL I_AVERAGED, 4 ;Shift right by 4 bits and store

;as the average load current

SPLK #0000h, I_SUM ;Reset sum of current samples

7.9.2 Voltage Comparator

This code simply outputs the difference between the voltage reference
(V_REF) and the averaged load voltage (V_AVERAGED) as the error
(V_ERROR).

LDP #06h ;Set data page corresponding to

;variables

ACL V_REF ;Load voltage reference in the

;accumulator

SUB V_AVERAGED ;Subtract the averaged load

;voltage. The accumulator now

;contains the difference

SACL V_ERROR ;Store the result as V_ERROR

7.9.3 Current Regulation

This sequence checks the averaged load current versus the predefined limit and,
if necessary, stops the integration of the voltage error and decrements the integrator.

LDP #06h ;Set data page corresponding to

;variables

LACL I_LIMIT ;Load maximum current value to

;accumulator

SUB I_AVERAGED ;Subtract actual averaged

;current value

BCND S3, GEQ ;If actual current below maximum

;then branch to proceed normally

SPLK #0000h, V_ERROR ;Otherwise, stop integrating

;voltage error

LACL INTEGRAL :And load integral value

SUB #1h ;Decrement it by 1

SACL INTEGRAL ;Store it back as integral value

7.9.4 PI Regulator

The code below is actually only an integral regulator, which proved to be
sufficient for the application.

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters178

S3: LDP #06h ;Set data page corresponding to

;variables

LACL INTEGRAL ;Load integral value to

;accumulator

ADD V_ERROR ;Integrate the error

SACL INTEGRAL ;Store result as integral value

SACL ACTION, 3 ;Right shift by 3 bits for

;formatting purposes and output

;result as action

7.9.5 Short Circuit Protection

The protection algorithm is activated if the average current rises to twice the
limit. This sequence executes along with the rest of the regulation code. The
protection algorithm must immediately reset the PWM output and the integrator to
zero in order to protect the buck-boost converter and load against sudden surges of
current. It should be noted that in case of a short-circuit, this protection will be
activated only a few times. Once the filter capacitor is discharged, the load current
will drop to acceptable levels and the LF2407 will work in current regulation mode.

LDP #06h ;Set data page corresponding to

;variables

LACL I_LIMIT ;Load current limit to

;accumulator

SFL ;Multiply by 2

SUB I_AVERAGED ;Subtract the average load

;current value

BCND S_PWM, GEQ ;If the average load current is

;below the critical limit, then

;proceed normally to outputting

;the action to PWM

SPLK #0000h, ACTION ;Otherwise, reset the PWM

;output through the ACTION

;signal

SPLK #0000h, INTEGRAL ;And reset the PI regulator

;integrator. The proceed to

;outputting the action to the

;PWM hardware

7.9.6 Output Action to PWM

The action signal from the PI regulator should be linearized (i.e., transformed
into a corresponding duty cycle) for optimum dynamic performance. However,
dynamic performance is ensured by the processing speed of the DSP. In addition,
the actual relationship between the duty cycle and the voltage gain is dependent

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters 179

upon the load and converter characteristics and would therefore have to be
identified for each specific application. The duty cycle effectively output by the
PWM hardware as it is programmed here is the following function:

PRT
CMPRTPRTd

1
11 (7.5)

Therefore, the code must adapt the action signal from the PI regulator (ACTION)
into a value to be stored in the T1CMPR register. The equation used is

PRT
CMPRTPRT

PRT
ACTION

1
11

1
 (7.6)

which yields the simple transformation implemented in the code sequence below.

ACTIONPRTCMPRT 11 (7.7)

LDP #GPTCONA>>7h ;Set data page corresponding to

;PWM timer registers

LACL T1PR ;Load period timer value

LDP #06h ;Set data page corresponding to

;variables

SUB ACTION ;Subtract the action signal from

;the PI regulator. The result is

;the PWM timer compare value

LDP #GPTCONA>>7h ;Set data page corresponding to

;the PWM timer registers

SACL T1CMPR ;Store calculated compare value.

;It is now effectively the value

;that will be used by the PWM

;hardware for the next PWM cycle

7.9.7 Return to Main Code

This code clears the flag corresponding to the Timer 2 period match interrupt in
EVAIFRB and re-enables the interrupts. It branches back to where the program was
before the interrupt, i.e., the wait loop in the main code.

S_RET: LDP #EVAIFRB>>7h ;Set data page corresponding to

;event manager A registers

LACL EVAIFRB ;Load value of event manager A

;interrupt flags register

SACL EVAIFRB ;Store it back to the register.

;This effectively clears the

;interrupt flags

CLRC INTM ;Re-enable the interrupts

RET ;Return from interrupt

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters180

7.10 Results

The following waveforms were captured from a physical buck-boost converter
under the control of the DSP algorithm described in this chapter. The waveform of
the diode current is shown first in Fig. 7.13.

Figure 7.13 Diode current ripple.

The current waveform displays a ripple that emphasizes the need for an
averaging filter. The ripple observed has an amplitude of about 15mA, with an
average value of 17mA. The waveform also displays high frequency noise, which
further reduces the precision of the measurements, requiring the use of a filter.

The voltage waveform in Fig. 7.14 shows the ripple due to the charge of the
capacitor during the switch-off period and the discharge of the capacitor by the load
during the switch-on period. The amplitude of the ripple is only 10mV, but its high
frequency makes an output filter mandatory. Furthermore, the load used in these
waveforms is a low current load. A larger load would make the ripple much more
significant, thus also requiring an averaging filter.

The controlled buck-boost converter was tested in normal load conditions, with
an increased load, and in sudden short circuit. It held the voltage at the
predetermined reference value (5V) under normal load conditions (300). A current
limit was set at 25mA. When the load was decreased to 150 , the control entered
in current regulation mode. The current was held precisely at 25mA, resulting in a
voltage of 3.76V. When the output was suddenly short-circuited, the converter
reacted immediately and held the current to 28mA instead of 25mA. The reason for
this is that the output voltage was only a few mV, which is very close to the

Copyright © 2004 CRC Press, LLC

DSP-Based Implementation of DC-DC Buck-Boost Converters 181

3.224mV of the ADC. It is impossible for the controller to see the difference
between 25 and 28mA, and hence impossible to regulate the current to exactly
25mA.

Figure 7.14 Load voltage ripple.

Copyright © 2004 CRC Press, LLC

Chapter 8

DSP-BASED CONTROL OF STEPPER MOTORS

8.1 Introduction

A stepper motor is an electric machine that rotates in discrete angular
increments or steps. Stepper motors are operated by applying current pulses of a
specific frequency to the inputs of the motor. Each pulse applied to the motor causes
its shaft to move a certain angle of rotation, called a stepping angle. Since the input
signal is converted directly into a requested shaft position without any rotor position
sensors or feedback, the stepper motor has the following advantages:

 Rotational speed proportional to the frequency of input pulses
 Digital control of speed and position
 No need of feedback sensor for open loop control
 Excellent acceleration and deceleration responses to step commands

The stepper motor also possesses drawbacks such as the possibility of losing
synchronism, harmonic resonance, and small oscillations at the end of each step.
With the above parameters in mind, the stepper motor is used in applications such
as printers, plotters, X-Y tables, facsimile machines, barcode scanners, image
scanners, copiers, medical apparatus, and other devices.

The stepper motor has salient poles on both the stator and the rotor, and
normally only the stator poles hold the poly-phase windings called the control
windings. Usually stepper motors are classified as

 Active rotor (permanent magnet rotor)
 Reactive rotor (reluctance type)
 Hybrid motors (combining the operating principles of the permanent

magnet (PM) and reluctance stepper motor)

While each of these types of stepper motors has merit, hybrid stepper motors
are becoming more popular in industrial applications. In this chapter, we focus on
the principles and implementation of a hybrid stepper motor control system using
the LF2407 DSP controller.

8.2 The Principle of Hybrid Stepper Motor

8.2.1 The Structure of Hybrid Stepper Motor

Figure 8.1 shows a simplified construction of a unipolar hybrid stepper motor.
The rotor of this machine consists of two star-shaped milled steel pieces with three
teeth on each. A cylindrical, axially magnetized PM is placed between the milled
pieces making the end of each rotor either a north or a south pole. The teeth are
offset at the north and south ends as shown in Fig. 8.1. The stator has four poles,

183

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Stepper Motors184

each of which has a center-tapped winding. Since all the windings have the common
connection V+, only five wires, A, B, C, D, and V+, leave the motor. A winding is
excited by sending current into the V+ wire and out one of the other wires. The
windings are wound in the stator teeth in such a way so that the motor behaves in
the following way:

If winding A or C is excited, pole 1 or pole 3 is energized as south.
If winding B or D is excited, pole 2 or pole 4 is energized as north.

A

B

C

D

V+

V+

V+

V+

N

S

N

S

N

S

1

3

2 4

Figure 8.1 The four-phase, six-pole stepper motor.

Stepper motors are also classified with respect to the stator windings as being
either bipolar or unipolar. Bipolar stepper motors have two windings with an
opposing magnetizing effect in each pole, while unipolar stepper motors use only
one winding per pole.

8.3 The Basic Operation

The operation of the stepper motor relies on the simple principle of magnetic
attraction. This principle states that opposite magnetic poles attract while like poles
repel each other. If the windings are excited in the correct sequence, the rotor will
rotate following a certain direction. The basic operation of a stepper motor can be
classified generally as either full step mode or half step mode. These modes are

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Stepper Motors 185

discussed in detail in the following section using the simplified stepper motor
construction shown in Fig. 8.1.

8.3.1 Full-step Mode

If none of the stator windings are excited, an attraction between the stator poles
and rotor teeth still exists because the PM rotor is trying to minimize the reluctance
of the magnetic flux path from one end to the other. As a result, the rotor will tend
to rest at one of the rest equilibrium positions. From Fig. 8.1, a rest position exists
when a pair of rotor teeth are aligned with two of the stator poles. In the case of
Fig. 8.1, the rotor is aligned with pole 1 and pole 3 on the stator. There are a total of
12 possible equilibrium positions for a 4-phase, 6-pole stepper motor. The force or
torque that holds the rotor in one of these positions is called the detent torque. The
value of the detent torque is usually small because no current flows through the
stator windings.

Consider the case of the stator windings being excited according to Table 8.1.
Assume at the beginning we are in mode 1 and the rotor aligns with poles 1 and 3 as
shown in Fig. 8.2(a). When the excited sequences switch from mode 1 to mode 2,
the north and south stator poles become pole 2 and pole 4. When this happens, the
teeth of opposite polarity on the rotor will experience an attractive force, creating a
torque on the rotor. Since this torque is much greater than the detent torque, the
rotor will turn 300 counterclockwise, corresponding to one full step. Following the
sequence of modes 1, 2, 3, and 4, the stator field rotates 900, attracting the
corresponding rotor poles when the mode switches from one to the next. After
switching four times, the rotor has moved four steps (1200) and the rotor and stator
fields return back to the initial condition or mode 1. A complete revolution requires
12 steps. The clockwise direction will be obtained if the reverse excited sequence
of the stator winding is applied.

Table 8.1 Full step, single-phase excited sequence

Winding A Winding B Winding C Winding D Rotor Position

Mode 1 On Off Off Off 0

Mode 2 Off On Off Off

Mode 3 Off Off On Off 2

Mode 4 Off Off Off On 3

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Stepper Motors186

A

B

C

D

V+

V+

V+

V+

N

S

N

S

N

S

1

3

2 4

A

B

C

D

V+

V+

V+

V+

N

S N

SN

S

1

2

3

4

(a) Mode 1 (b) Mode 2

A

B

C

D

V+

V+

V+

V+

N

S

N

S

N

S

1

2

3

4

A

B

C

D

V+

V+

V+

V+

N

S N

SN

S

1

2

3

4

(c) Mode 3 (d) Mode 4

Figure 8.2 The principle of single-phase full-step mode.

For the full-step operation, greater torque can be produced if the two windings
are excited simultaneously. The excited sequence of the stator winding is given in
Table 8.2. During this operation, the rotor takes up an intermediate position because
it experiences an equal attraction to the two stator poles as shown in Fig. 8.3. As in
the single-phase full-step operation, a switch between two adjacent modes will
cause a 900 shifting of the stator field. This results in a 300 rotation of the rotor.
Twelve steps are required for a complete revolution in this mode as well. The
sequence in Table 8.2 will rotate the motor counterclockwise, while reversing the
sequence will run the motor clockwise.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Stepper Motors 187

Table 8.2 Full step, two-phase excited sequence

Winding A Winding B Winding C Winding D Rotor Position

Mode 1 On On Off Off /2

Mode 2 Off On On Off 3 /2

Mode 3 Off Off On On 5 /2

Mode 4 On Off Off On 7 /2

A

B

C

D

V+

V+

V+

V+

N

S

N

S

N

S

Figure 8.3 The rest equilibrium position of two-phase full-step mode.

8.3.2 Half-Step Mode

The stepper motor operation discussed rotates 300 per step. In the half step
mode, alternately exciting one winding, then exciting two windings, will cause the
rotor to move through only 15 degree per step. Though there is a slight loss of the
torque while the single winding is being excited, half-step operation allows for
smoother operation at lower speeds and less overshoot at the end of each step. The
excitation sequence of the stator windings in half-step mode is given in Table 8.3.

During this operation, each switch between the two nearest modes will cause a
450 shift of stator field which results in a 150 rotation of the rotor. A total of 24
steps are required for a complete revolution, double of what is required for full step
modes.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Stepper Motors188

Table 8.3 Half-step, two-phase excited sequence.

Winding A Winding B Winding C Winding D Rotor Position

Mode 1 On Off Off Off 0

Mode 2 On On Off Off /2

Mode 3 Off On Off Off

Mode 4 Off On On Off 3 /2

Mode 5 Off Off On Off 2

Mode 6 Off Off On On 5 /2

Mode7 Off Off Off On 3

Mode8 On Off Off On 7 /2

8.3.3 Micro-Step Mode

For the operating modes discussed previously, the same amount of current
flows through the energized stator windings. However, if the currents are not equal,
the rotor will be shifted toward the stator pole with the higher current. The amount
of deviation is proportionate to the values of the currents in each winding. This
principle is utilized in the micorstep mode. During this mode, each basic full mode
step can be divided into as many as 500 microsteps, providing the proper current
profile is applied.

8.4 The Stepper Motor Drive System

An open loop stepper motor control system is shown in Fig. 8.4. The total
control system consists of the power electronic drive circuit and controller. These
components will be discussed in detail in following sections.

Figure 8.4 The stepper motor speed control system.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Stepper Motors 189

8.4.1 Power Electronic Drive Circuit

The drive circuit of a stepper motor is displayed in Fig. 8.4. Wires A, B, C, and
D are connected to the power switch device T1, T2, T3, and T4. The V+ wire is
connected to a +12V power supply through a series resistor. When one of the
switches turns on, the corresponding winding is excited.

The windings in a stepper motor also have inductance. When the switch turns
on, the winding inductance will increase the amount of time it takes for the current
to reach its full value. Since the speed of the stepper motor is proportionate to the
switching frequency, this effect limits the maximum motor speed. A series
resistance (Rs), as shown in Fig. 8.4, is added to reduce this problem. Assuming the
winding’s inductance and resistance are L and R, when the switch turns on, the
winding current can be calculated by:

)1()(
t

e
RR

Vti L
RR

s

dc
s

(8.1)

From (8.1), it can be seen that the series resistance reduces the time constant so
that the current can increase faster. However, the resistance causes a voltage drop,
which requires a larger power supply to compensate for the resistor losses so that
the same current can be applied to the motor windings.

The winding inductance also leads to another problem when the switch turns
off. If no additional current path is provided to dissipate the energy stored in the
inductance, a voltage spike will be generated across the switching devices and may
damage them. To solve this problem, a freewheeling diode (D1-D2) parallel to the
winding is employed. In addition, a series resistor may also be added to the circuit
to limit the voltage spike.

8.4.2 Controller

The LF2407 DSP controller is used to implement the speed control of a stepper
motor drive system. The interface of the LF2407 is illustrated in Fig. 8.5. Since this
control scheme is an open-loop control system, no feedback information is required.
The four I/O ports on the DSP provide the gating signals to the transistors, which
provide current to the windings in the specified sequence. The speed rate at which
the switching sequence is applied determines the speed of the motor.

I/O B0- B3 Gate
DriveTMS320LF2407

Figure 8.5 DSP interface.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Stepper Motors190

8.5 The Implementation of Stepper Motor Control System Using the

LF2407 DSP

The assembly code associated with the LF2407 was developed to implement
the open loop speed control system discussed previously. The flowchart for the DSP
software is shown in Fig. 8.6.

NoYes

Start

Initialization procedure

Read commanded speed

Full step

Read full-step
sequence

Set I/O port

End

Output the program variables to DAC0~DAC3

Read half-step
sequence

Calculate the step Calculate the step

Figure 8.6 Flowchart of the stepper motor control algorithm.

It can be seen from Fig. 8.6 that the control algorithm of the stepper motor
drive system consists of one main routine and includes four subroutine modules:

Initialization procedure
Speed control module
Output signals via I/O port
DAC module

Only the speed control module is specific to the stepper motor control system
and will be dicussed in detail.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Stepper Motors 191

8.6 The Subroutine of Speed Control Module

The Timer 1 period interrupt is used for the speed control subroutine. This
subroutine performs the task of reading the commanded speed and then converting
it to a pulse output on the I/O ports. Hence, the motor speed is determined by the
time interval of this interrupt. The block of assembly code below shows the Timer 1
Interrupt Service Routine (ISR), which executes all subroutines upon every
interrupt.

T1_ISR: NOP
;------------------*
; Context Saving *
;------------------*
;Context save regs

MAR *, AR1 ;AR1 is stack pointer
MAR *+ ;skip one position
SST #1, *+ ;save ST1
SST #0, *+ ;save ST0
SACH *+ ;save acc high
SACL * ;save acc low
POINT_EV

SPLK #0FFFFh , EVIFRA

POINT_B0

RUN_MODE POINT_B0
CALL SPEED_PROFILE
CALL VTIMER_SEC
LACC STEP_FLG
BCND HALF_MODE,GT
CALL FULL_STEP
B END_MODE

HALF_MODE
CALL HALF_STEP

END_MODE
CALL DAC_VIEW_Q15I

;------------------------------*
;* Context restore and Return *
;------------------------------*
END_ISR:

MAR *, AR1 ;make stack pointer active
LACL *- ;Restore Acc low
ADDH *- ;Restore Acc high
LST #0, *- ;load ST0
LST #1, *- ;load ST1
POINT_PG0
CLRC INTM
RET

8.6.1 Full-Step Mode

Two-phase full-step mode described in Section 8.3.1 is implemented in the full-
step subroutine as shown in the code on the next page. The commanded speed is
converted first to a pulse with a certain frequency in this routine. According to
Table 8.2, the different sequence is read and then the corresponding I/O ports
(IOPB0, 1, 2, 3 – A, B, C D) are set high/low to control the turn on/off of the
switches.

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Stepper Motors 192

FULL_STEP: POINT_B0
…
…
POINT_B0
LACC #MODE_FUL
sub #3
BCND SET_MODE_FUL,NEQ
SPLK #0,MODE_CNTL_FUL
B FUL_EXIT
…
…
RET

8.6.2 Half-Step Mode

 Following the same procedure as described above, two-phase half-step mode
strategy described in Section 8.3.2 is implemented in the code block shown below.

HALF_STEP: POINT_B0
POINT_B0
…
…
POINT_B0
LACC MODE_CNTL_HLF
sub #7
BCND SET_MODE_HLF,NEQ
SPLK #0,MODE_CNTL_HLF
B HLF_EXIT
…
…
RET

Reference

1. Digital Signal Processing Control of Electric Machines and Drives Laboratory
Manual, Department of Electrical Engineering, The Ohio State University,
March 2002.

Copyright © 2004 CRC Press, LLC

Chapter 9

DSP-BASED CONTROL OF PERMANENT MAGNET BRUSHLESS DC

MACHINES

9.1 Introduction

Permanent magnet alternating current (PMAC) motors are synchronous motors

that have permanent magnets mounted on the rotor and poly-phase, usually three-

phase, armature windings located on the stator. Since the field is provided by the

permanent magnets, the PMAC motor has higher efficiency than induction or

switched reluctance motors. It also draws better power factor and has higher power

density. The advantages of PMAC motors, combined with a rapidly decreasing cost

of permanent magnets, have led to their widespread used in many variable-speed

drives such as robotic actuators, computer disk drives, domestic appliances,

automotive applications, and heating-ventilating-air conditioning (HVAC)

equipment.

In general, PMAC motors are categorized into two types. The first type of

motor is referred to as PM synchronous motor (PMSM). These motors produce a

sinusoidal back-EMF shown in Fig. 9.1(a), and should be supplied with sinusoidal

current/voltage. The PMSM’s electronic control and drive system uses continuous

rotor position feedback and pulse-width-modulation (PWM) to supply the motor

with the sinusoidal voltage or current. With this, constant torque is produced with

very little ripple. A detailed discussion of the PMSM drive system is given in

Chapter 12.

The second type of PMAC motor has a trapezoidal back-EMF and is referred to

as the brushless DC (BLDC) motor. The back-EMF of the BLDC motor is shown

in Fig. 9.1(b). The BLDC drive system is based on the feedback of rotor position,

which is not continuous as with the PMSM, but rather obtained at fixed points

typically every 60 electrical degrees for commutation of the phase currents. The

BLDC motor requires that quasi-rectangular shaped currents are fed into the

machine. Alternatively, the voltage may be applied to the motor every 1200, with a

current limit to hold the currents within the motor’s capabilities. Because the phase

currents are excited in synchronism with the constant part of the back-EMF,

constant torque is generated.

The objective of this chapter is to introduce the principles of the BLDC motor

control system, and then discuss the procedure of its implementation using the

LF2407 DSP.

193

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Brushless DC Machines194

0 20 40 60 80 100 120 140 160 180
-40

-30

-20

-10

0

10

20

30

40

Rotor Position (deg)

B
a

c
k
-E

M
F

 (
V

)
A B C

(a) Three-phase back-EMF of PMSM.

0 20 40 60 80 100 120 140 160 180
-50

-40

-30

-20

-10

0

10

20

30

40

50

Rotor Position (deg)

B
a
c
k
-E

M
F

 (
V

)

A B C

(b) Three-phase back-EMF of BLDC motors.

Figure 9.1 The back-EMF of PMAC motors.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Permanent Magnet Brushless DC Machines 195

9.2 Principles of the BLDC Motor

9.2.1 Mathematical Model

The phase variables are used to model the BLDC motor due to its non-

sinusoidal back-EMF and phase current. The terminal voltage equation of the

BLDC motor can be written as

 (9.1)

c

b

a

c

b

a

s

s

s

c

b

a

e

e

e

i

i

i

pLR

pLR

pLR

v

v

v

.

00

00

00

where a, b, c are the phase voltages, ia, ib, ic are the phase currents, ea, eb, ec are

the phase back-EMF voltages, R is the phase resistance, Ls is the synchronous

inductance per phase and includes both leakage and armature reaction inductances,

and representsp
dt

d . The electromagnetic torque is given by

mccbbaae ieieieT / (9.2)

where m is the mechanical speed of the rotor. The equation of motion is

JBTT
dt

d
mLem /)((9.3)

where TL is the load torque, B is the damping constant, and J is the moment of

inertia of the rotor shaft and the load.

9.3 Torque Generation

From (9.2), the electromagnetic torque of the BLDC motor is related to the

product of the phase back-EMF and current. The back-EMFs in each phase are

trapezoidal in shape and are displaced by 120 electrical degrees with respect to each

other in a three-phase machine. A rectangular current pulse is injected into each

phase so that current coincides with the crest of the back-EMF waveform, hence the

motor develops an almost constant torque. This strategy, commonly called six-step

current control, is illustrated by Fig. 9.2 and explained by (9.4). The amplitude of

each phase’s back-EMF is proportional to the rotor speed, and is given by

mkE (9.4)

where k is a constant and depends on the number of turns in each phase, is the

permanent magnet flux, and m is the mechanical speed. In Fig. 9.2, during any

1200 interval, the instantaneous power converted from electrical to mechanical is the

sum of the contributions from two phases in series, and is given by

EITP emo 2 (9.5)

where is the output torque andeT I is the amplitude of the phase current. From

(9.4) and (9.5), the expression for output torque can be written as

IkIkT te 2 (9.6)

where is the torque constant. Since the electromagnetic torque is only

proportional to the amplitude of the phase current in (9.6), torque control of the

BLDC motor is essentially accomplished by phase current control.

tk

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Brushless DC Machines196

t

t

t

t

t

t

t

t

t

E

Ec

ia

ib

ic

T1

T2

T3

T4

T5

T6

3

0

6

0
0

1

2
0

15

0

9

0

2

1
0

24

0

18

0

30

0

33

0

27

0

36

0

Ea

b

Torque

t

Power switches(T1-T6) turn on

Figure 9.2 The principle of the six-step current control algorithm.

T1-T6 are the gate signals, Ea , Eb , and Ec are the motor phase back-EMF, Ia, Ib, and

Ic are the motor phase currents.

9.4 BLDC Motor Control System

Based on the previously discussed concept, a BLDC motor drive system is

shown in Fig. 9.3. It can be seen that the total drive system consists of the BLDC

motor, power electronics converter, sensor, and controller. These components are

discussed in detail in the following sections.

9.4.1 BLDC Machine

BLDC motors are predominantly surface-magnet machines with wide magnet

pole-arcs. The stator windings are usually concentrated windings, which produce a

square waveform distribution of flux density around the air-gap. The design of the

BLDC motor is based on the crest of each half-cycle of the back-EMF waveform.

In order to obtain smooth output torque, the back-EMF waveform should be wider

than 120 electrical degrees. A typical BLDC motor with 12 stator slots and 4 poles

on the rotor is shown in Fig. 9.4.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Permanent Magnet Brushless DC Machines 197

D1

D2D4

D3

C

T1

T4

T3

T6

T5

T2

Ld

V

s

BLDC

motor

Hall sensor

signal

controller

current

to T1~T6

a
b

c

Figure 9.3 BLDC motor control system.

Magnet

Iron Core

Concentrated
Windings

Rotor

Figure 9.4 The 4-pole 12-slot BLDC motor.

9.4.2 Power Electronic Converter

As shown in Fig. 9.3, the power electronic converter in the BLDC motor drive

system consists of two parts: a front-end rectifier and a three-phase full-bridge

inverter. The front-end rectifier is usually a full-bridge diode rectifier unless a

switching rectifier is used to provide regeneration capability.

The inverter is usually responsible for the electronic commutation and current

regulation. For the six-step current control, if the motor windings are Y connected

without the neutral connection, only two of the three phase currents flow through

the inverter in series. This results in the amplitude of the DC link current always

being equal to that of the phase currents. As far as the inverter goes, there are only

two switches per leg, one upper and one lower switch which conduct at any

moment. PWM current controllers are typically used to regulate the actual machine

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Brushless DC Machines198

currents in order to match the rectangular current reference waveforms shown in

Fig. 9.2. For example, during one 60o interval when switches T1 and T6 are active,

phases A and B conduct. The lower switch T6 is always turned on and the upper

switch T1 is chopped on/off using either a hysteresis current controller with variable

switch frequency or a PI controller with fixed switch frequency. When T1 and T6

are conducting, current builds up in the path shown in the dashed line of Fig. 9.5(a).

When switch T1 is turned off, the current decays through diode D4 and switch T6 as

shown in the dashed line of Fig. 9.5(b). In the next interval, switch T2 is on, and T1

is chopped so that phase A and phase C conduct. During the commutation interval,

the phase B current rapidly decreases through the freewheeling diode D3 until it

becomes zero and the phase C current builds up.

From the above analysis, each of the upper switches is always chopped for one

1200 interval and the corresponding lower switch is always turned on per interval.

The freewheeling diodes provide the necessary paths for the currents to circulate

when the switches are turned off and during the commutation intervals.

9.4.3 Sensors

There are two types of sensors for the BLDC drive system: a current sensor and

a position sensor. Since the amplitude of the dc link current is always equal to that

of the motor phase current in six-step current control, the dc link current is

measured instead of the phase current. Thus, a shunt resistor, which is in series with

the inverter, is usually used as the current sensor. Hall-effect position sensors

typically provide the position information needed to synchronize the stator

excitation with rotor position in order to produce constant torque. Hall-effect

sensors detect the change in magnetic field. The rotor magnets are used as triggers

for the Hall sensor. A signal conditioning circuit integrated within the Hall switch

provides a TTL-compatible pulse with sharp edges and high noise immunity for

connection to the controller.

For the six-step current control algorithm, rotor position needs to be detected at

only six discrete points in each electrical cycle. The controller tracks these six

points so that the proper switches are turned on or off for the correct intervals.

Three Hall-effect sensors, spaced 120 electrical degrees apart, are mounted on the

stator frame. The digital signals from the Hall sensors are then used to determine

the rotor position and switch gating signals for the inverter switches.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Permanent Magnet Brushless DC Machines 199

C

T4 T6 T2

ra Lc Ea

rb Lc Eb

rc Lc Ec

T3 T5T1

D1 D3 D5

D2D6D4

(a)

C

T6 T2

ra Lc Ea

rb Lc Eb

rc Lc Ec

T1 T3 T5

T4

D1 D3 D5

D2D6D4

(b)

Figure 9.5 The current path when the switch T1 turns on and turns off.

9.4.4 Controller

The controller of BLDC drive systems reads the current and position feedback,

implements the speed or torque control algorithm, and finally generates the gate

signals. Either analog controllers or digital signal processors serve well as

controllers. In this chapter, the LF2407 DSP will be used as the controller.

The connectivity of the LF2407 in this application is illustrated in Fig. 9.6.

Three capture units in the LF2407 are used to detect both the rising and falling

edges of Hall-effect signals. Hence, every 60 electrical degrees of motor rotation,

one capture unit interrupt is generated which ultimately causes a change in the

gating signals and the motor to move to the next position. One input channel of the

10-bit Analog-to-Digital Converter reads the dc link current. The output pins

PWM1-PWM6 are used to supply the gating signals to the inverter.

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Brushless DC Machines200

Capture-1

Capture-2

PW M -1 & PW M -6

T M S320F2407

H 1

H 2

Idc AD CIN 0

Capture-2H 2

G ate

Drive

Figure 9.6 The interface of LF2407.

9.5 Implementation of the BLDC Motor Control System Using the LF2407

Since the LF2407 is used as the controller, much of the control algorithm is

implemented in software. A block diagram of the BLDC motor control system is

displayed in Fig. 9.7. The dashed line separates the software from the hardware

components introduced in the previous section. It is necessary to choose hardware

components carefully in order to ensure high processing speed and precision in the

overall control system.

BLDC

Firing

Circuit

 Rectifier
Voltage

Source
~120

V

Integrato

r

Current PI

Controller

Speed PI

Controller

PWM

Generator

Hall

Signal

Hall_drv
Hall_state

f

b
-

+

TMS320LF2407

Ire

f

I f

b

-

+

Speed Profile

re

f

Figure 9.7 The block diagram of BLDC motor control system.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Permanent Magnet Brushless DC Machines 201

The overall control algorithm of the BLDC motor consists of nine modules:

1. Initialization procedure

2. Detection of Hall effect signals

3. Speed control subroutine

4. Measurement of current

5. Speed profiling

6. Calculation of actual speed

7. PID regulation

8. PWM generation

9. DAC output

The flowchart of the overall control algorithm is illustrated in Fig. 9.8.

No

Yes

Start

Initialization procedure

Read DC link current
dcI ; Load Hall Effect signals

Execute

speed loop?

Read reference speed ref

Read Hall

sensor signal

End

Calculate the motor actual speed
r

Speed PI regulator

Calculate the commended torque

Calculate the command DC link current
*

dci using (12.6)

Current PI regulator

Generate the PWM using generator

End

Output the program variables to DAC0~DAC3

Figure 9.8 BLDC algorithm flowchart.

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Brushless DC Machines202

In the follwing sections, each block of the flow chart is dicussed in detail and

the corresponding assembly code is given.

9.5.1 Initialization Procedure

The initialization procedures include the initialization of registers, memory

allocations, and initializing constants and system variables. The TI website

(www.ti.com) provides the standard linker command file for memory allocation on

the LF2407. Readers can simply download it and then modify this file according to

their own needs.

The need for and the initialization of system variables vary according to the

application. The variables used in the BLDC control algorithm to generate the speed

profile are initialized below:

POINT_B0
SPLK #0, SPD_CNT
SPLK #0, VTS_SEC
SPLK #0, VTS_CNT
SPLK #0, STEP_1
SPLK #5, VTS_PRESCALE
SPLK

#PSTEP_1, PROFILE_STEP_PTR
SPLK #04D0H, SPD_SCALE
SPLK #0fffh, SPD DESIRED

For BLDC motor control, the register initializations include four parts: system

interrupt initialization, initialization of the ADC module, initialization of the Hall-

effect signal detected, and initialization of the Event Manager. The assembly code

for system interrupt initialization is given below:

;System Interrupt Init.
;Event Manager
POINT_EV

SPLK #0000001000000000b, EVIMRA
;Enable T1 Underflow Int (i.e. Period)

SPLK #0000000000000111b, EVIMRC
 ;Enable CAP1,2,3 ints
SPLK #0FFFFh, EVIFRA

;Clear all Group A interrupt flags
SPLK #0FFFFh, EVIFRB

;Clear all Group B interrupt flags
SPLK #0FFFFh,EVIFRC

;Clear all Group C interrupt flags
POINT_PG0

SPLK #0000000000001010b,IMR
;En Int lvl 2,4 (T2 & CAP ISR)

SPLK #0FFFFh, IFR
 ;Clear any pending Ints

9.5.2 The Detection of Hall-Effect Signals

Each edge of the Hall-effect sensor output signal generates a capture interrupt.

The CPU responds to this interrupt and branches to the interrupt service subroutine

to perform the following tasks: detect the Hall sensor sequences, decode the

sequence, define the six states of the inverter, and record the time interval between

Copyright © 2004 CRC Press, LLC

http://www.ti.com

DSP-Based Control of Permanent Magnet Brushless DC Machines 203

the two nearest Hall-effect edges. The time between edges is used to calculate the

rotor speed. The assembly code for the interrupt service subroutine is given below:

CAP_ISR:
;Context save regs

MAR *, AR1 ;AR1 is stack pointer
MAR *+ ;skip one position
SST #1, *+ ;save ST1
SST #0, *+ ;save ST0
SACH *+ ;save acc high
SACL * ;save acc low
CALL HALL3_DRV

;Restore Context
END_ISR:

MAR *, AR1 ;make stack pointer active
LACL *- ;Restore Acc low
ADDH *- ;Restore Acc high
LST #0, *- ;load ST0
LST #1, *- ;load ST1
CLRC INTM
RET

The following code determines which one of the six switching states is needed:

HALL3_DRV:
…
…

Map_States:
LDP #hall_vars
LACC hall_seq, 2 ;x4 for jump table
ADD #STATE_TABLE
BACC

STATE_TABLE: ;Map Hall connections and readings to
;BLDC_PWM_DRV's states based on it's

 ;state 0 alignment
SPLK #1, hall_state_next ;seq=0, BLDC_PWM_DRV next state 1
B HALL_END
SPLK #3, hall_state_next ;seq=1, BLDC_PWM_DRV next state 3
B HALL_END
SPLK #2, hall_state_next ;seq=2, BLDC_PWM_DRV next state 2
B HALL_END
SPLK #5, hall_state_next ;seq=3, BLDC_PWM_DRV next state 5
B HALL_END
SPLK #0, hall_state_next ;seq=4, BLDC_PWM_DRV next state 0
B HALL_END
SPLK #4, hall_state_next ;seq=5, BLDC_PWM_DRV next state 4

HALL_END: RET

9.5.3 The Subroutine of Speed Control Algorithm

The Timer 1 underflow interrupt is used for the speed control subroutine. The

speed control subroutine performs the task of reading the current, loading the

inverter state obtained from capture interrupt, generating the commanded speed

profile, calculating the actual motor speed, regulating speed and current, and finally

generating the PWM signals to drive the inverter. The PWM frequency is

determined by the time interval of this interrupt; the duty cycle is recalculated in

every interrupt. The speed control algorithm is implemented by the following

assembly code:

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Brushless DC Machines204

T1_PERIOD_ISR:
;Context save regs

MAR *, AR1 ;AR1 is stack pointer
MAR *+ ;skip one position
SST #1, *+ ;save ST1
SST #0, *+ ;save ST0
SACH *+ ;save acc high
SACL * ;save acc low
POINT_EV
SPLK #0FFFFh,EVIFRA ;Clear all Group A interrupt

flags (T1 ;ISR)
READ_HALL

LDP #hall_vars
Lacc hall_state_next
POINT_B0
sacl cmtn_ptr_bd ;Input to BLDC_PWM_DRV

CUR_READ
CALL AD_CONV
POINT_B0
LACC CL_SPD_FLG
BCND CURRENT_CNTL,GT ;speed-loop?

;speed control
SPEED_CNTL: POINT_B0

CALL SPEED_PROFILE
CALL VTIMER_SEC
CALL SPEED_CAL
CALL D_PID_spd
LACC D_spd_out
SACL I_ref

;current control
CURRENT_CNTL

CALL D_PID_cur
LACC D_cur_out
SACL D_func

PWM_GEN CALL BLDC_PWM_DRV
DA_CONV CALL DAC_VIEW_Q15I

;Restore Context
END_ISR:

MAR *, AR1 ;make stack pointer active
LACL *- ;Restore Acc low
ADDH *- ;Restore Acc high
LST #0, *- ;load ST0
LST #1, *- ;load ST1
CLRC INTM
RET

9.5.4 Measurement of the Current (ADC Module)

For the BLDC motor control algorithm, the ADC converter reads in the voltage

across the shunt resistor on ADCIN0. This voltage is proportional to the dc link

current because the resistor is in series with the flow of current. The code section

below reads the result register and obtains the ADC conversion result of the voltage

across the shunt resistor.

AD_CONV
LDP #ADCTRL1>>7
LACC ADC_RESULT0
SFR
AND #7FFFh
SACL Idc
….
….

AD_EXIT RET

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Permanent Magnet Brushless DC Machines 205

9.5.5 Profile of the Reference Speed

The reference speed profile is used to control the dynamic response and steady

state behavior of the motor. The speed profile is divided into different sections,

such as the acceleration interval, constant speed interval, and deceleration interval.

We can use the different intervals to make the rotor accelerate, run at constant

speed, or decelerate. One example of speed profile is shown in Fig. 9.8.

Speed-1

Speed-2

Speed-1

time

 1st Cycle 2nd Cycle

t3 t4 t5=Tp Tp+t2t2t1

Speed-2

Tp+t3 Tp+t4

Figure 9.8 Speed profile.

In the speed profile given in Fig. 9.8, the interval from time 0 to t1 represents a

soft-start period where reference speed is slowly increased from zero to speed-1.

For the time interval between t1 to t2, the speed reference is maintained constant at

its value, speed-1. During the time interval from t2 to t3, the reference speed is

slowly reduced to speed-2. The reference speed is then kept constant at speed-2 for

the time interval from t3 to t4. Finally, the speed is again increased to speed-1 over

the time interval t4 to t5. In our case, the sequence t2 to t5 is repeated continuously

unless disabled by another routine. A sample of the assembly code used for such a

speed profile is given below:

SPEED_PROFILE:
 ….
 ….
PSTEP_4 LACC #SPEED_4

AND #0fFFH
SACL speed_ref
LACC SPD_CNT
SUB #03fFH
BCND GO_STEP5,GT
LACC VTS_SEC
SUB #TLENGTH_4
BCND SPR_END,LT
SPLK #0,VTS_SEC ;RESET VIRTUAL TIMER
SPLK #0,VTS_CNT
LACC SPD_CNT
ADD #1
SACL SPD_CNT
B SPR_END

GO_STEP5 SPLK#0,VTS_SEC ;RESET VIRTUAL TIMER
SPLK #0,VTS_CNT
SPLK #01ffH,STEP_3
SPLK #0,SPD_CNT
LACC #PSTEP_5
SACL PROFILE_STEP_PTR
B SPR_END
…..

SPR_END RET

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Brushless DC Machines206

9.5.6 The Calculation of the Actual Motor Speed

This module uses the value of the variable Timestamp, which represents the

time interval between the two edges of the Hall-effect signal generated by the

position interface module, to calculate the motor shaft speed. With a 30 MHz

system clock as in the case of LF2407, Timestamp is related to the motor speed by

910332

60

prescalar
Timestamp

m

 (9.7)

m0.5906
6553632

_
Timestamp

calspeed (9.8)

where

m = shaft speed in rpm.

 prescalar = prescalar value for Timer-2 = 128

 tcpu = CPU period = 33 nsec

 speed_cal = calculated speed in rpm

The speed calculation routine measures the time between two consecutive edge

transitions of the position signal and cannot distinguish between the directions of

rotation. A portion of the assembly code of the speed calculation routine is given

below:

SPEED_CAL:
….
….
LT RES ;RES=1/Timestamp
MPY SPD_SCALE
PAC
SACH speed_cal, 4
RET

9.5.7 PID (Proportional, Integral, and Derivative) Regulation

PID controllers are used for both speed and current regulation. Both types of

controllers have the same structure. The rectangular (trapezoidal) method of

integration is used and depends upon the value of the parameters K1, K2, and K3.

Limits are set to limit the output of PI controller. This routine implements the

following PI equation:

)2()1()()2()(321 neKneKneKnUnU (9.9)

where

 is the current output of the PI controller (n)(nU th sample)

is the output of PI controller at (n-2))2(nU th sample

 is the error at n)(ne th sample

 is the error at (n-1))1(ne th sample

 is the error at (n-2))2(ne th sample

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Permanent Magnet Brushless DC Machines 207

The constants , , and for trapezoidal approximation are 1K 2K 3K

2
21

TK

T

K
KK id

p (9.10)

T

K
TKK d

i 42 (9.11)

T

TK
KKK i

pd23 (9.12)

and for rectangular approximation are

TK
T

K
KK i

d
p1 (9.13)

T

K
TKK d

i 22 (9.14)

p
d K

T

K
K3 (9.15)

In all of the above equations Kp, Kd, Ki are defined as in

dt

de
KdtKteKtu dip)()((9.16)

A portion of the assembly code implementing the PI controller is given below:

D_PID_spd:
….
….
LACC D_Un_H_0
SUB #MAX_POS_LIMIT
BCND D_PLUS_OK,LEQ ;If maxed out, saturate at max -ve
SPLK #MAX_POS_LIMIT,D_Un_H_0
SPLK #0,D_Un_L_0
B D_EXIT

D_PLUS_OK: LACC D_Un_H_0 ;else keep current value
SUB #MAX_NEG_LIMIT
BCND D_NEG_OK,GEQ ;if maxed out, saturate at max +ve
SPLK #MAX_NEG_LIMIT,D_Un_H_0 ;Saturation control
SPLK #0,D_Un_L_0

D_NEG_OK:
…..
…..
RET

9.5.8 PWM Generation

The Compare Units have been used to generate the PWM signals. The PWM

output signal is high when the output of current PI regulation matches the value of

T1CNT and is set to low when the timer underflow occurs. The switch states are

controlled by the ACTR register. As discussed earlier, in order to minimize the

switching loss, the lower switches are always kept on and the upper switches are

chopped on/off to regulate the phase current. From the implementation point of

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Brushless DC Machines 208

view, in using the LF2407, it is required that the ACTR register be reset for each

interval. In other words, PWM1, PWM3, and PWM5 which gate the upper switches

are set as active low/high and PWM2, PWM4, and PWM6 which trigger the lower

switches are set as force high. The sample of code below illustrates this

implementation.

BLDC_PWM_DRV
….

LACC #COMMUTATION_TBL
ADD cmtn_ptr_bd
TBLR GPR0
LACC GPR0
BACC
STATE_ANB ;Input current path, Phase A
POINT_EV ;Output current path, Phase B
SPLK #00C2H, ACTR ;Non fed phase, Phase C
B STATE_END
….

STATE_END
 ….
 RET

9.5.9 DAC Module

The LF2407 evaluation board contains four channels DAC. In this application,

the DAC on the evaluation board is used to display various system variables to be

seen on an oscilloscope in real time. This feature is very useful during the

development stage for real time debugging and verification of the software. The

code below accepts the address pointers for four different system variables and then

automatically updates the DAC channels to reflect the change in these variables.

;Convert Q15 input value to an absolute Q0 output to DAC0 channel
POINT_B0
SPM 1
MAR *, AR6
LAR AR6, DAC_IPTR0
LT *
MPY dac_hlf_rng ;Normalize to half range of DAC
PAC
ADDH dac_hlf_rng ;offset by 1/2 DAC max value
SACH GPR0
OUT GPR0, PA0 ;DAC0 o/p

Copyright © 2004 CRC Press, LLC

Chapter 10

CLARKE’S AND PARK’S TRANSFORMATIONS

10.1 Introduction

The performance of three-phase ac machines are described by their voltage
equations and inductances. It is well known that some machine inductances are
functions of rotor speed. The coefficients of the differential equations, which
describe the behavior of these machines, are time varying except when the rotor is
stalled. A change of variables is often used to reduce the complexity of these
differential equations. There are several different methods to transform variables.
In this chapter, the well-known Clarke and Park transformations are introduced,
modeled, and implemented on the LF2407 DSP. Using these transformations, many
properties of electric machines can be studied without complexities in the voltage
equations. These transformations make it possible for control algorithms to be
implemented on the DSP. By this approach, many of the basic concepts and
interpretations of this general transformation are concisely established.

10.2 Clarke’s Transformation

The transformation of stationary circuits to a stationary reference frame was
developed by E. Clarke [2]. The stationary two-phase variables of Clarke’s
transformation are denoted as α and β. As shown in Fig. 10.1, α-axis and β-axis are
orthogonal.

β -axis

α −axis

Α −axis

C -axis

Β −axis
ω =0

Figure 10.1 Clarke's transformation.

In order for the transformation to be invertible, a third variable, known as the
zero-sequence component, is added. The resulting transformation is

 (10.1) [] []abcfαβf Τ 00 =αβ

where

 [] [Tffff 00 βααβ =]
and

 [] []Tcbaabc ffff =

209

Copyright © 2004 CRC Press, LLC

 Clarke’s and Park’s Transformations 210

where represents voltage, current, flux linkages, or electric charge f
and the transformation matrix, , is given by 0αβT

−

−−

=

2
1

2
1

2
1

2
3

2
30

2
1

2
11

3
2

0αβT (10.2)

The inverse transformation is given by

 (10.3) [] []0
1

0 αβαβ fTfabc
−=

where the inverse transformation matrix is presented by

−−

−=−

1
2
3

2
1

1
2
3

2
1

101
1

0αβT (10.4)

10.3 Park’s Transformation

In the late 1920s, R.H. Park [1] introduced a new approach to electric machine
analysis. He formulated a change of variables which replaced variables such as
voltages, currents, and flux linkages associated with fictitious windings rotating
with the rotor. He referred the stator and rotor variables to a reference frame fixed
on the rotor. From the rotor point of view, all the variables can be observed as
constant values. Park’s transformation, a revolution in machine analysis, has the
unique property of eliminating all time varying inductances from the voltage
equations of three-phase ac machines due to the rotor spinning.

Although changes of variables are used in the analysis of ac machines to
eliminate time-varying inductances, changes of variables are also employed in the
analysis of various static and constant parameters in power system components.
Fortunately, all known real transformations for these components are also contained
in the transformation to the arbitrary reference frame. The same general
transformation used for the stator variables of ac machines serves the rotor variables
of induction machines. Park’s transformation is a well-known three-phase to two-
phase transformation in synchronous machine analysis. Park’s transformation is
presented in Fig. 10.2.

Copyright © 2004 CRC Press, LLC

Clarke’s and Park’s Transformations 211

A -axis

C -axis

B -axis
ω

q

q -axis

d -axis

Figure 10.2 Park's transformation.

The transformation equation is of the form

 [] []abcsqdsqd fTf)(00 θ= (10.5)
where

 [] []Tsdsqssqd ffff 00 =

and [] [T
csbsasabcs ffff =]

and the dq0 transformation matrix is defined as

+−

+−

=

2
1

2
1

2
1

)
3

2sin()
3

2sin()sin(

)
3

2cos()
3

2cos()cos(

3
2)(0

πθπθθ

πθπθθ

θsqdT (10.6)

θ is the angular displacement of Park’s reference frame and can be calculated by

 (10.7))0()(
0

θζζωθ += ∫
t

d

where ζ is the dummy variable of integration. It can be shown that for the inverse
transformation we can write

 [] []sqdqdabcs fTf 0
1

0)(⋅= −θ (10.8)
where the inverse of Park’s transformation matrix is given by

Copyright © 2004 CRC Press, LLC

 Clarke’s and Park’s Transformations 212

++

−−=−

1)
3

2sin()
3

2cos(

1)
3

2sin()
3

2cos(

1)sin()cos(

)(1
0

πθπθ

πθπθ

θθ

θqdT (10.9)

 In the previous equations, the angular displacement θ must be continuous, but
the angular velocity associated with the change of variables is unspecified. The
frame of reference may rotate at any constant, varying angular velocity, or it may
remain stationary. The angular velocity of the transformation can be chosen
arbitrarily to best fit the system equation solution or to satisfy the system
constraints. The change of variables may be applied to variables of any waveform
and time sequence; however, we will find that the transformation given above is
particularly appropriate for an a-b-c sequence.

10.4 Transformations Between Reference Frames

In order to reduce the complexity of some derivations, it is necessary to
transform the variables from one reference frame to another one. To establish this
transformation between any two reference frames, we can denote y as the new
reference frame and x as the old reference frame. Both new and old reference
frames are shown in Fig. 10.3.

ωy

θx

qy -axis

dy -axis

ωx

θy

qx -axis

dx -axis

Figure 10.3 Transformation between two reference frames.

It is assumed that the reference frame x is rotating with angular velocity ωx and
the reference frame y is spinning with the angular velocity ωy. θx and θy are angular
displacements of reference frames x and y, respectively. In this regard, we can
rewrite the transformation equation as

 [] []sqd
yx
sqd

y
sqd ff T 000 ⋅= → (10.10)

Copyright © 2004 CRC Press, LLC

Clarke’s and Park’s Transformations 213

But we have

 (10.11)

⋅=

 fTf abcs

x
sqd

x
sqd 00

If we substitute (10.11) in (10.10) we get

 (10.12)

⋅⋅=

 → fTTf abcs

x
sqd

yx
sqd

y
sqd 000

In another way, we can find out that

 (10.13)

⋅=

 fTf abcs

y
sqd

y
sqd 00

From (10.12) we obtain

 (10.14)
1

000
−→ ⋅= TTT x

sqd
y

sqd
yx
sqd

Then, the desired transformation can be expressed by the following matrix:

 (10.15)

−−
−−−

=→

111
0)cos()sin(
0)sin()cos(

0 θθθθ
θθθθ

xyxy
xyxy

T yx
sqd

10.5 Field Oriented Control (FOC) Transformations

In the case of FOC of electric machines, control methods are performed in a
two-phase reference frame fixed to the rotor (qr-dr) or fixed to the excitation
reference frame (qe-de). We want to transform all the variables from the three-phase
a-b-c system to the two-phase stationary reference frame and then retransform these
variables from the stationary reference frame to a rotary reference frame with
arbitrary angular velocity of ω. These transformations are usually cascaded. The
block diagram of this procedure is shown in Fig. 10.4.

cba −−

dq ss − ee dq −

Machine
Model in

ee dq −

eθcos eθsin

e
qf

e
df

Machine

af

bf

cf

dq ss −
s

qf

s
df

Figure 10.4 Machine side transformation in field oriented control.

Copyright © 2004 CRC Press, LLC

 Clarke’s and Park’s Transformations 214

In this figure, f denotes the currents or voltages and qe-de represents the
arbitrary rotating reference frame with angular velocity ωe and qs-ds represents the
stationary reference frame. In the vector control method, after applying field-
oriented control it is necessary to transform variables to stationary a-b-c system.
This can be achieved by taking the inverse transformation of variables from the
arbitrary rotating reference frame to the stationary reference frame and then to the a-
b-c system. The block diagram of this procedure is shown in Fig. 10.5. In this
block diagram, * is a representation of commanded or desired values of variables.

ee dq −

cba −−

eθcos eθsin

*e
qf

*e
df

Control

*s
qf

*s
df

f a
*

f b
*

f c
*

dq ss −

dq ss −

Figure 10.5 Variable transformation in the field oriented control.

10.6 Implementing Clarke’s and Park’s Transformations on the LF240X

10.6.1 Implementing Clarke’s Transformation

It is desired to transfer the three-phase stationary parameters , , and
from the

af bf cf
 a-b-c system to the two-phase stationary reference frame. It is assumed that

the system is balanced and we have

 (10.16) 0=++ cba fff
We can rewrite (10.1) as follows:

 cba ffff
3
1

3
1

3
2

−−=α (10.17)

)(
3

1
cb fff −=β (10.18)

Substituting cf from (10.16) into (10.17) and (10.18) results in

 (10.19) aff =α

Copyright © 2004 CRC Press, LLC

Clarke’s and Park’s Transformations 215

)2(
3

1
ba fff +=β (10.20)

10.6.1.1 Inputs and Outputs of Clarke’s Transformation Block

The inputs and outputs of Clarke’s transformation are shown in Fig. 10.6. As it
is shown in this figure, and are inputs and and are outputs of this
transformation.

af bf αf βf

CLARKE
TRANSFORMATION

fa

fb

fα

fβ

Q15 Format

Q15 Format

Q15 Format

Q15 Format
Figure 10.6 Clarke transformation.

To enjoy better resolution of the variables in fixed point DSP, we transfer all
variables to the Q15-based format. With this consideration, the maximum value of
inputs and outputs can be (215-1) or in hexadecimal, the format shall be 7FFFh. In
this base, the variables can vary in the range 8000h-7FFFh. This transformation
converts balanced three-phase quantities into balanced two-phase quadrature
quantities as shown in Fig. 10.7.

Figure 10.7 Quantities in Clarke's transformation. (Courtesy of Texas

Instruments)

As we previously noted, our calculations are based on the Q15 format . So all

the coeficients are present in this representation. Then 1/√3 is represented by
LDP #sqrt3inv ;sqrt3inv=(1/sqrt(3))
 ;=0.577350269
SPLK #018830,sqrt3inv ;1/sqrt(3) (Q15)

Copyright © 2004 CRC Press, LLC

 Clarke’s and Park’s Transformations 216

Clarke’s transformation is implemented as follows:
SETC SXM ;Sign extension mode on
LDP #clark_a ;clark_alfa = clark_a
LACC clark_a ;ACC = clark_a
SACL clark_alfa ;clark_d = clark_a
 ;clark_beta=(2*clark_b+clark_a)/
 ;sqrt(3)
SFR ;ACC = clark_a/2
ADD clark_b ;ACC = clark_a/2 + clark_b
SACL clk_temp ;clk_temp = clark_a/2 + clark_b
LT clk_temp ;TREG = clark_a/2 + clark_b
MPY sqrt3inv ;PREG=(clark_a/2+clark_b)*
 ;(1/sqrt(3))
PAC ;ACC=(clark_a/2+clark_b)*
 ;(1/sqrt(3))
SFL ;ACC=(clark_a+clark_b*2)*
 ;(1/sqrt(3))
SACH clark_beta ;clark_beta=(clark_a+clark_b*2
 ;(1/sqrt(3))
SPM 0 ;SPM reset
RET

10.6.2 Inverse Clarke’s Transformation

From (10.3), the inverse Clarke functions for a balanced system can be
obtained as

2
3

2
3

βα

βα

α

ff
f

ff
f

ff

c

b

a

∗−−
=

∗+−
=

=

 (10.21)

This transformation converts balanced two-phase quadrature quantities into
balanced three-phase quantities. The block diagram of the inverse Clarke
transformation is shown in Fig. 10.8.

Figure 10.8 Inverse Clark transformation block.

In this block diagram, αf and are inputs and , , and are outputs.

Inputs and outputs are represented in Q15 format. Variation of quantities in the
inverse Clark transformation is shown in Fig. 10.9.

βf af bf cf

Copyright © 2004 CRC Press, LLC

Clarke’s and Park’s Transformations 217

Figure 10.9 Quantities in inverse Clarke's transformation. (Courtesy of

Texas Instruments)

Implementation of the inverse Clarke transformation via assembly code is as
follows

I_CLARKE_INIT:
LDP #half_sqrt3 ;Variables data page
SPLK #28377,half_sqrt3 ;Set constant sqrt(3)*0.5 in Q15
 ;format

RET

I_CLARKE:
LDP #f_clark_alpha ;Variables data page
SPM 1 ;SPM set for Q15 multiplication
SETC SXM ;Sign extension mode on
LACC f_clark_alpha ;ACC = f_alpha
SACL f_clark_a ;f_a = f_alpha
LT f_clark_beta ;TREG = f_clark_beta
MPY half_sqrt3 ;PREG=f_clark_beta * half_sqrt3
PAC ;ACC= f_clark_beta * half_sqrt3

SUB f_clark_alpha,15 ;ACC=f_beta*half_sqrt3-f_alpha/2
SACH f_clark_b
PAC ;ACC high = f_beta*half_sqrt3
NEG ;ACC high = - f_beta*half_sqrt3
SUB f_clark_alpha,15 ;ACC high=-f_beta*half_sqrt3-
 ;f_alpha/2
SACH f_clark_c ;f_c = - f_beta * half_sqrt3 –
 ;f_alpha/2
SPM 0 ;SPM reset
CLRC SXM ;Sign extension mode off

RET

10.6.3 Calculation of Sine/Cosine with Fast Table Direct Look-Up and Linear

Interpolation

To implement the Park and the inverse Park transforms, the sine and cosine
functions need to be implemented. This method realizes the sine/cosine functions
with a look-up table of 256 values for 360° of sine and cosine functions. The

Copyright © 2004 CRC Press, LLC

 Clarke’s and Park’s Transformations 218

method includes linear interpolation with a fixed step table to provide a minimum
harmonic distortion. This table is loaded in program memory. The sine value is
presented in Q15 format with the range of -1<value<1. The first few rows of the
look-up sine table are presented as follows:

 ;SINVALUE ; Index Angle Sin(Angle)

 ---------------- -------- -------- ------------

SINTAB_360

 .word 0 ; 0 0 0.0000

 .word 804 ; 1 1.41 0.0245

 .word 1608 ; 2 2.81 0.0491

 .word 2410 ; 3 4.22 0.0736

 .word 3212 ; 4 5.63 0.0980

The following assembly code is written to read values of sine from the sine
Table in Q15 format:

LACC theta_p, 9 ;Input angle in Q15 format and
 ;left shifted by 15
SACH t_ptr ;Save high ACC to t_ptr (table
 ;pointer)
LACC #SINTAB_360
ADD t_ptr
TBLR sin_theta ;sin_theta = Sin(theta_p) in Q15

Note that 0 < theta_p < 7FFFh (i.e., equivalent to 0 < theta_p < 360 deg).
The TBLR instruction transfers a word from a location in program memory to a
data-memory location specified by the instruction. The program-memory address is
defined by the low-order 16 bits of the accumulator. For this operation, a read from
program memory is performed, followed by a write to data memory.

To calculate the cosine values from the sine Table in Q15 format, we write the
following code:

LACC theta_p
ADD #8192 ;add 90 deg, cos(A)=sin(A+900)
AND #07FFFh ;Force positive wrap-around
SACL GPR0_park ;here 90 deg = 7FFFh/4
LACC GPR0_park,9
SACH t_ptr
LACC #SINTAB_360

10.6.4 Implementation of Park’s Transformation on LF2407

As discussed in Section 10.5, with field-oriented control of motors, it is
necessary to transform variables, i.e., currents and voltages, from a-b-c system to
two-phase stationary reference frame, qs-ds, and from two-phase stationary
reference frame qs-ds to arbitrary rotating reference frame with angular velocity of
ω (q-d reference frame). The first transformation is dual to Clarke’s transformation

Copyright © 2004 CRC Press, LLC

Clarke’s and Park’s Transformations 219

but the qs axis is in the direction of α−axis, and ds axis is in negative direction of
β −axis. These two transformations are explained in the following sections.

10.6.4.1 Transformation from 3-phase to 2-phase Stationary Reference

Frame)()(ss dqcba −→−−

This transformation transfers the three-phase stationary parameters, fa, fb, and fc
from an a-b-c system to a two-phase orthogonal stationary reference frame. If we
substitute θ=0 in (10.6) and assuming that the system is balanced, we get:

 (10.23) a
s

q ff =

)2(
3

1
ab

s
d fff +−= (10.24)

qs-ds

TRANSFORMATION

fa

fb

Q15 Format

Q15 Format

Q15 Format

Q15 Format

fq
s

fd
s

Q15 Format
fc

Figure 10.11 Two-phase stationary transformation.

Both input and output are represented in Q15 format with a block diagram of

the transformation being shown in Fig. 10.11. The developed code is similar to
what was mentioned in Section 10.6.1.1.

10.6.4.2 Transformation from the Stationary Reference Frame to the

Arbitrary Rotary Reference Frame ()() dqdq ss −→−

 This transformation converts vectors in a balanced two-phase orthogonal
stationary system into an orthogonal rotary reference frame. The inputs are ,

, and θ, and the outputs are and . This is the transformation between the
stationary reference frame and the arbitrary reference frame rotating with the
angular velocity of ω. If we substitute

s
qf

s
df qf df

0=xθ and we obtain: θθ =y

 (10.25)
s

d
s

qd

s
d

s
qq

fff

fff

⋅+=

⋅−=

θθ

θθ

cos.sin

sin.cos

where θ is the angular displacement.

Copyright © 2004 CRC Press, LLC

 Clarke’s and Park’s Transformations 220

In this transformation, it is necessary to calculate θsin and θcos , where the
method to calculate them was presented in a previous section. In Fig. 10.12, the
input and output of the Park transformation block has been shown. All the input and
outputs are in the Q15 format and in the range of 8000h-7FFFh .

fq
s

θ

fq

fd

fd
s

Park’s
Transformation

Q15

Q15

Q15
Q15

Q15

Figure 10.12 Park transformation block.

The following code is written to implement Park’s transformation:

SPM 1 ;SPM set for Q15 multiplication
ZAC ;Reset accumulator
LT f_q_s ;TREG = f_q_s
MPY sin_theta ;PREG = f_q_s * sin(theta)
LTA f_d ;ACC = f_q_s * sin(theta) and
 ;TREG =f_q_s
MPY cos_theta ;PREG = f_d_s* cos_teta
MPYA sin_theta ;ACC=f_q_s*sin_teta+f_d_s*
 ;cos_teta andPREG=f_q_s*sin_teta
SACH park_D ;f_d =f_q_s * cos_teta + f_d_s*
 ;sin(theta)
LACC #0 ;Clear ACC
LT f_d_s ;TREG = f_d_s
MPYS cos_theta ;ACC=- f_d_s* *sin(theta) and
 ;PREG = f_q_s * cos(theta)
APAC ;ACC=- f_d_s*sin(theta) +f_q_s*
 ;cos(theta)
SACH f_q ;fq = -f_d_s*sin(theta) +f_q_s*
 ;cos(theta)
SPM 0 ;SPM reset

RET

10.6.5 Transformation of the Arbitrary Rotating Reference Frame to the

Stationary Reference Frame)()(ss dqdq −→−

This transformation projects vectors in an orthogonal rotating reference frame
into a two-phase orthogonal stationary frame. From (10.15) we get:

 (10.26)
dq

s
d

dq
s

q

dff

fff

⋅+⋅−=

⋅+⋅=

θθ

θθ

cossin

sincos

In this transformation, θ is the angular displacement. To transform variables to
Park’s reference frame, it is necessary to calculate sinθ and cosθ. Use the method
presented in the previous section. In Fig. 10.13, inputs and outputs of the inverse

Copyright © 2004 CRC Press, LLC

Clarke’s and Park’s Transformations 221

Park transformation block are shown. The inputs are , , and df qf θ , and the

outputs are and . All the inputs and outputs are in the Q15 format and in the
range of 8000

αf βf

h-7FFFh .

fq
s

fd
s

θ

fq

fd
Inverse Park’s
Transformation

Q15

Q15

Q15
Q15

Q15

Figure 10.13 Inverse Park’s transformation block.

The following code is written to implement this transformation:
SPM 1 ;SPM set for Q15 multiplication
 ZAC ;Reset accumulator
 LT f_q ;TREG = fq
 MPY cos_theta ;PREG = fq * cos(theta)
 LTA f_d ;ACC=fq*cos(theta) and TREG =fd
 MPY sin_theta ;PREG = fd * sin(theta)
 MPYA sin_theta ;ACC=fq*cos(theta)+fd*sin(theta)
 ;and PREG=fd*sin(theta)
 SACH f_q_s ;fd=fq*cos(theta)+fd*sin(theta)
 LACC #0 ;Clear ACC
 LT f_d ;TREG = fd
 MPYS cos_theta ;ACC = -fd*sin_theta and
 ;PREG = fd*cos_theta
 APAC
 SACH f_d_s
 SPM 0 ;SPM reset

 RET

10.6.6 The 2-Phase to 3-Phase Transformation ()() cbadq ss −−→−

This transformation transforms the variables from the stationary two-phase qs-
ds frame to the stationary a-b-c system. This system is also dual to the inverse
Clarke transformation where the qs-axis is in the direction of the α axis and the ds-
axis is in the negative direction of β−axis.

If we substitute θ=0 in (10.9) and assume a balanced system we get:

 s
qa ff =

2

3 s
d

s
q

b
ff

f
−−

= (10.27)

2

3 s
d

s
q

c
ff

f
−−

=

Copyright © 2004 CRC Press, LLC

 Clarke’s and Park’s Transformations

222

The implemented code is similar to the inverse Clarke transformation which
will not be repeated in here.

10.7 Conclusion

With FOC of synchronous and induction machines, it is desirable to reduce the
complexity of the electric machine voltage equations. The transformation of
machine variables to an orthogonal reference frame is beneficial for this purpose.
Park’s and Clarke’s transformations, two revolutions in the field of electrical
machines, were studied in depth in this chapter. These transformations and their
inverses were implemented on the fixed point LF2407 DSP.

References

1. R. H. Park, “Two-reaction theory of synchronous machines – Generalized
method of analysis- Part I,” AIEE Trans., Vol. 48, July 1929, pp.716-727

2. E. Clarke, Circuit Analysis of AC Power Systems, Vol. I- Symmetrical and
Related Components, John Wiley and Sons, New York, 1943.

3. P. Krause, O. Wasynczuk, S. D. Sudhoff, Analysis of Electric Machinery, IEEE
Press, New York, 1995.

4. C. Ong, Dynamic Simulation of Electric Machinery, Prentice Hall, Englewood
Cliffs, NJ, 1998.

5. H.C Stanley, “Analysis of the Induction Motor,” AIEE Trans., Vol. 57, 1938,
pp. 751-755.

Copyright © 2004 CRC Press, LLC

Chapter 11

SPACE VECTOR PULSE WIDTH MODULATION

11.1 Introduction

In this chapter, the concept of space vector pulse width modulation (SVPWM)
as applied to an induction motor will be introduced. An explanation of the DSP
assembly code is needed to implement the control algorithm. Several key
functional parts of the DSP code will be discussed.

Of all motors, the squirrel cage induction motor is the most widely used motor
in the industry. This leading position results mainly from certain excellent features
of the squirrel cage motor such as:

 Uncomplicated, rugged construction; this means low initial cost and high
reliability.

 Good efficiency coupled with low maintenance costs, resulting in low
overall operating costs.

Squirrel cage motors, like all induction machines, are asynchronous machines
with speed depending upon applied frequency, pole number, and load torque. In
order to use the poly-phase ac motor as an adjustable speed device, it is necessary to
control and adjust the frequency of the three-phase voltages applied to its terminals.
The operating speed of the motor is determined by the following relationship

)1(120 s
P

fN −
⋅

= (11.1)

where N is the shaft speed in rpm, f is the supplied frequency in Hz, P is the number
of poles, and s is the operating slip.

A switching power converter can be used to control both the supplied voltage
and frequency. Consequently, higher efficiency and performance can be achieved.
The most common control principle for induction motors is the constant volts per
hertz (V/Hz) principle, which will be explained in the next section.

11.2 Principle of Constant V/Hz Control for Induction Motors

For us to understand the V/Hz control, we will first assume that the voltage
applied to a three-phase ac induction motor is sinusoidal, and neglect the voltage
drop across the stator resistor. At steady state the machine terminal voltage is given
by

 (11.2) Λ≈ ˆˆ ϖjV
or

 Λ≈ ˆˆ ϖV

223

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 224

where and Λ are the phasors of stator voltage and stator flux, and V and Λ are
their respective magnitudes.

V̂ ˆ

f

VV
πϖ 2
1

=≈Λ (11.3)

It follows that if the ratio V/f remains constant with the change of f, then Λ also
remains constant and the torque is independent of the supply frequency.

In actual implementation, the ratio between the magnitude and frequency of the
stator voltage is usually based on the rated values of these variables, also known as
motor ratings. However, when the frequency and voltage are low, the voltage drop
across the stator resistance cannot be neglected. At frequencies higher than the
rated value, to avoid insulation break, the constant V/f principle has to be violated.
The realistic control limits that are placed on the applied voltage and frequency are
illustrated in Fig. 11.1.

 Voltage

Figure 11.1 V/f limits on frequency and voltage.

11.3 Space Vector PWM Technique

Space Vector PWM (SVPWM) refers to a special technique of determining the
switching sequence of the upper three power transistors of a three-phase voltage
source inverter (VSI). It has been shown to generate less harmonic distortion in the
output voltages or current in the windings of the motor load. SVPWM provides
more efficient use of the dc bus voltage, in comparison with the direct sinusoidal
modulation technique.

The structure of a typical three-phase voltage source inverter is shown in Fig.
11.2. The voltages, Va , Vb, and Vc are the output voltages applied to the windings
of a motor. Q1 through Q6 are the six power transistors which are controlled by a,
a’, b, b’, c and c’ gating signals and shape the output voltages. When an upper
transistor is switched on, i.e., when a, b, and c are 1, the corresponding lower
transistor is switched off, i.e., the corresponding a’, b’ or c’ is 0. The on and off

rf ated Frequency mi nf

miV n

rV ated

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 225

states of the upper transistors Q1, Q3, and Q5, or the states of a, b, and c are
sufficient to evaluate the output voltage.

IM

−

+

DV C

c V bV aV

'c

c

'b

b

' a

a

6 Q

5 Q

4Q

3Q

2Q

Q1

Figure 11.2 Three-phase power inverter supplying an induction motor.

11.3.1 Switching Patterns and the Basic Space Vectors

There are eight possible combinations of on and off states for the three upper
power transistors. The on and off states of the lower power transistors are opposite
to the upper ones, so they are determined once the states of the upper transistors are
known. The eight combinations are the derived output line-to-line and phase
voltages in terms of DC supply voltage, V , according to (11.4) and (11.5), which
are shown in Table 11.1.

dc

The relationship between the switching variable vector []Tcba ,, and the line-

to-line voltage vector is given by the following: [T
cabcab VVV ,,]

 (11.4)

−
−

−
=

c
b
a

V
V
V
V

dc

ca

bc

ab

101
110

011

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 226

In addition, phase (line-to-neutral) output voltage vector [] T
cba VVV ,, is given

by (11.5)

−−
−−
−−

=

c
b
a

V
V
V
V

dc

c

b

a

211
121
112

3
1 (11.5)

Table 11.1 Switching patterns and output voltages of a three-phase power inverter

a b c aV bV cV abV bcV caV

0 0 0 0 0 0 0 0 0
1 0 0 32 31− 31− 1 0 -1
1 1 0 31 31 32− 0 1 -1
0 1 0 31− 32 31− -1 1 0
0 1 1 32− 31 31 -1 0 1
0 0 1 31− 31− 32 0 -1 1
1 0 1 31 32− 31 1 -1 0
1 1 1 0 0 0 0 0 0

11.3.2 Expression of the Stator Voltages in the (d-q) Frame

Assuming q and d are the horizontal and vertical axes of the stator coordinate
frame, the d-q transformation given in (11.6) can transform a three-phase voltage
vector into a vector in the d-q coordinate frame. This vector represents the spatial
vector sum of the three-phase voltage. The phase voltages corresponding to the
eight combinations of switching patterns can be mapped into the d-q plane by the
same d-q transformation as shown in Table 11.2. This mapping results in 6 non-zero
vectors and 2 zero vectors. The non-zero vectors form the axes of a hexagonal as
shown in Fig. 11.3. The angle between any two adjacent non-zero vectors is 600.
The 2 zero vectors are positioned at the origin and apply zero voltage to a motor.
The group of the 8 vectors are referred to as the basic space vectors and are denoted
byV , through V . The d-q transformation can be applied to the reference a, b, and
c voltages to obtain the reference V in the d-q plane as shown in Fig. 11.3.

0 7

out

−

−−
=

c

b

a

d

q

V
V
V

V
V

2
3

3
30

2
1

2
11

3
2 (11.6)

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 227

Table 11.2 The eight switching states and corresponding d-q voltages.
a b c Vq Vd Vdq
0 0 0 0 0 00 =V

0 0 1 dcV3
1− dcV

3
1 dcVV 3

2
1 =

0 1 0 dcV3
1− dcV

3
1− dcVV 3

2
2 =

0 1 1 dcV3
2− 0 dcVV 3

2
3 =

1 0 0 dcV3
2 0 dcVV 3

2
4 =

1 0 1 dcV3
1 dcV

3
1 dcVV 3

2
5 =

1 1 0 dcV3
1 dcV

3
1− dcVV 3

2
6 =

1 1 1 0 0 07 =V

axisq −

axisd −

I

II

III

IV

V

)100(4V
r

)011(3V
r

)110(6V
r

)010(2V
r

)001(1V
r

)101(5V
r

)31,31(−)31,31(−−

)31,31(−)31,31(

)0,32()0,32(−
)000(0V
)111(7V

outV
6T

4T

0

Figure 11.3 Space vector diagram.

11.3.3 Approximation of Output with Basic Space Vectors

The objective of the space vector PWM technique is to approximate the
reference voltage vector V by a combination of the eight switching patterns.
One simple means of approximation is to require the average output voltage of the
inverter (in small period T) to be the same as the average of V in the same

out

out

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 228

period. This is shown in (11.7) for the output voltage in the Sector 0, where T and
 are the respective durations in time for which switching patterns are V and V .

4

6T 4 6

T
T ∫
1

n

nT∫
(

4T

PWMTT ≤6

0

dcV

TTwherenVTVT
T

dtVTn
nT out ≤+=+=+

646644
)1(,,2,1,0)(1

L (11.7)

Assuming the PWM period, T , is small and the change of V is relatively
slow, from (11.7), we obtain

pwm out

T
outPWMout TwherenVTVTVTdtVPWM

PWM
+=+==

+
46644

)1
,,2,1,0)(L

 (11.8)
Equation (11.8) shows that for every PWM period, the desired reference

voltage can be approximated by having the power inverter in a switching
pattern of V and V for T and T periods of time, respectively. Since the sum of

and is less than or equal to T , the inverter needs to have a 0 ((000) V or

(111)V) pattern for the rest of the period. Therefore, (11.8) will then become

outV

4

6T
6 4 6

pwm

7

)(7006644 VorVTVTVTVT outPWM ++= (11.9)
where

 . pwmTTTT =++ 021

The reference voltage vector V is obtained by mapping the desired three-
phase output voltages to the d-q plane through the d-q transform. When the desired
output voltages are in the form of three sinusoidal voltages with a 120

out

0 phase shift
between them, V becomes a vector rotating around the origin of the d-q plane
with a frequency corresponding to that of the desired three-phase voltages. The
envelope of the hexagon formed by the basic space vectors, as shown in Fig. 11.3, is
the locus of maximum V . Therefore, the magnitude of V must be limited to
the shortest radius of this envelope because V is a rotating vector. This gives a

maximum magnitude of

out

out out

out

2dcV for V . The maximum root mean square (rms)
values of the fundamental line-to-line and line-to-neutral output voltages are

out

2 and 6dcV . Notice that these values are 32 times higher than what a
standard sinusoidal PWM technique can generate.

An example of a symmetric space vector PWM waveform is shown in Fig.
11.4. It is assumed that the reference voltage V lies in Sector 0, which is
bordered by vectors V and V .

out

4 6

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 229

4oT 20T 4oT24T 26T24T26T

0V 0V111V4V
4V6V 6V

1PWM

2PWM

3PWM

CMPR3

CMPR2
CMPR1

T

Figure 11.4 A symmetric space vector PWM switching pattern.

11.3.4 Calculating the Time Periods of the Switching States

The output voltage V can be in any one of Sector 0 to Sector 5. Equation
(11.10) shows that for every PWM period, V is approximated by switching
between the two non-zero basic vectors that border the sector of the current output
voltageV . For instance, if V is in Sector 1, it can be approximated by
switching the inverter between states V and V for periods of time and T ,
respectively. Because the sum of and T should be less than or equal toT ,

the inverter should remain in or T for the rest of the period.

out

out

6

out out

2T

7

2 2T 6

pwm6

0T

From (11.10), we can calculate the time durations T and . 4 6T

 (11.10)

=

−

outd

outq

dd

qq
PWM V

V
VV
VV

T
T
T 1

64

64

6

4

or

=

outd

outq
PWM V

V
MT

T
T

0
6

4

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 230

where is the normalized decomposition matrix for sector 0. By substituting the
values of V , V , V , and V , we obtain

0M

q4 d4 q6 d6

−

=

 −

outd

outq
PWM V

V
T

T
T 1

6

4
310

3132
 (11.11)

The matrix inverse can be calculated before program execution for each sector
and then obtained via a look-up table during execution. Doing so ensures smooth
operation because the calculation load on the DSP is reduced. This approach is
useful when V is given in the form of the vector out []Toutdoutq VV . Table 11.3
shows the sector numbers and the associated normalized decomposition matrix.

Table 11.3 Normalized decomposition matrix vs. sector.

Sector Durations
Calculated

Decomposition Matrix

0

64 TandT

−
=

10
2123

0M

1 62 TandT

−
−−=

2133
2123

1M

2 32 TandT

−

−
=

2133
10

2M

3 31 TandT

−−

=
2133

10
2M

4 51 TandT

−=
2133
2123

4M

5 45 TandT

 −−=
10

2123
5M

11.3.5 Finding the Sector Number

It is necessary to know in which sector the output voltage is located to
determine the switching time periods and switching sequence. The following
algorithm can be used if the reference output voltage is in the a-b-c plane. If the
output voltage is given in the d-q plane, we must transform the vector to the a-b-c

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 231

plane before using the algorithm. In order to perform the transformation, first
calculate the values of A, B, and C by using the following equations:

)(
)(
)(

13

32

21

refrefsigC
refrefsigB
refrefsigA

−=
−=
−=

 (11.12)

where sig is the sign function, which is defined as

01
0
01)(

<−
=
>=

x
xundef
xxsig

and , , and are the output a, b, and c voltages. Then, find the value of
N from the following relationship

1ref 2ref 3ref

 CBAN 42 ++= (11.13)
Finally, we refer to Table 11.4 to map N to the sector of V . out

Table 11.4 N vs. sector

N 1 2 3 4 5 6
Sector 1 5 0 3 2 4

11.3.6 SVPWM Switching Pattern

The order of the non-zero vectors and the zero vectors in each PWM period
must be determined. Different switching orders result in different waveform
patterns. Figure 11.5 shows the waveform produced for each sector of a symmetric
switching scheme. Each waveform and sector has the following properties:

• Each PWM channel switches twice per PWM period except when the duty
cycle is 0 or 100%.

• There is a fixed switching order among the three PWM channels for each
sector.

• Every PWM period starts and ends with V . 0
• The amount of V inserted is the same as that of V in each PWM

period.
000 111

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 232

4oT 20T oT21T 21T22T22T

a

b

c

0V 0V111V4V
4V6V 6V

4oT 20T 4oT21T 21T22T22T

a

b

c

0V 0V111V2V 2V6V 6V

Vout in Sector 0

Vout in Sector 1

4oT 20T oT21T 21T22T22T

a

b

c

0V 0V111V2V 2V3V 3V

a

4oT 20T oT21T 21T22T22T

b

c

0V V111V1V 1V3V 3V

Vout in Sector 2

Vout in Sector 3

4oT 20T oT21T 21T22T22T

b

c

0V 0V111V1V 1V5V 5V

a

4oT 20T 4oT21T 21T22T22T

b

c

0V 0V111V4V 4V
5V 5V

a

Vout in Sector 4 Vout in Sector 5

Figure 11.5 A symmetric space vector PWM switching pattern.

11.4 DSP Implementation

In this section, the space vector switching scheme discussed previously is
implemented on a LF2407 DSP processor. The DSP-based algorithm is interrupt
driven, meaning that the functionality of the code depends on a hardware interrupt,
in this case the Timer 1 underflow interrupt. Figure 11.6 is a flowchart depicting
the algorithm implemented on the LF2407 DSP processor.

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 233

Figure 11.6 Space vector PWM algorithm flowchart.

The major features of this DSP implementation are:

• 32-Bit integration to obtain the phase of the reference voltage vector
• Quarter mapping to calculate sine and cosine functions
• Sector-based look-up table for the decomposition matrix

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 234

• Sector-based look-up table for the channel toggling order or Action
Control Register reload pattern

11.4.1 Algorithm Subroutines

As shown in Fig. 11.6, while the DSP algorithm waits for an interrupt to occur,
the DSP will continue to execute the code in the main_loop routine until a Timer 1
underflow interrupt is generated by the event manager. The task of main_loop is to
first obtain the magnitude of reference voltage vector Vout based on the constant
V/Hz profile. After the reference voltage vector is determined, the watchdog timer
is reset and the DSP is instructed to branch back to the beginning of main_loop,
repeating the above process, provided that an interrupt has not occurred yet. The
main_loop algorithm can be seen below.

;==
; Start of background loop
;---
main_loop LDP #4
 SPLK #debug_data,set_f ; Replace with debug data

f2omega LT set_f ; set f -> omega: D0
 MPY f_omega ; D0*D10=D(10+1)
 PAC ; product -> ACC: D11
 SACH omega,1 ; -> set angular speed: D10
 lacc omega
 sub #min_omega_ ; compare W with its lower limit
 BGZ winlimit ; continue if within limit
 splk #min_omega_,omega ; saturate if not winlimit

; Note the following implies constant v/f

omega2v LT omega ; set angular speed -> T: D10
 MPY omega_v ; D10*D-9=D(1+1)
 PAC ; product -> ACC: D2
 SACH set_v,1 ; -> mag of ref voltage and -> D1
 lacc set_v
 sub #max_v_ ; compare Uout w/ its upper limit
 BLEZ uinuplim ; continue if within limit
 splk #min_v_,set_v ; saturate if not
 B reset_wd

uinuplim LACC set_v
 SUB #min_v_ ; compare Uout with its lower limit
 BGEZ reset_wd ; continue if within limit
 splk #min_v_,set_v ; saturate if not

reset_wd LDP #WDKEY>>7 ; Reset WD timer
 SPLK #wd_rst_1,WDKEY ;
 SPLK #wd_rst_2,WDKEY
 SPLK #0000000001101111b,WDCR

 B main_loop ; End of background loop

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 235

When a Timer underflow interrupt occurs, the DSP finishes its current
instruction and branches to the interrupt service routine. In the interrupt service
routine, tasks 1 through 5 are performed. Each task along with the corresponding
code is shown below:

Obtain the phase (q) of Vout by integrating the command speed.
;---
; Generate revolving voltage vector Uout=trans(Ud Uq)
;---
 ldp #omega ; Integrate speed to get phase
 LT omega ; set W -> T: D10
 MPY t_sample ; D10*D-9=D(1+1)
 PAC ; product -> ACC: D2
 SFR ; -> D3
 ADDH theta_h ; D3+D3=D3 (32 bit)
 ADDS theta_l
 SACH theta_h ; save
 SACL theta_l

chk_lolim bcnd chk_uplim,GEQ ; check upper limit if positive
 ADDH theta_360 ; D3+D3=D3, rollover if not
 SACH theta_h ; save
 B rnd_theta

chk_uplim SUBH theta_360 ; D3-D3=D3 compare with 2*pi
 bcnd rest_theta,LEQ ; resume theta_h if within limit
 SACH theta_h ; rollover if not
 B rnd_theta

rest_theta ADDH theta_360 ; resume theta high
rnd_theta ADD #1,15 ; round up to upper 16 bits
 SACH theta_r
;---
; Quadrant mapping
;---
 LACC one ; assume theta (theta_h) is in
 SPLK #-1,SS ; quadrant 1
 SACL SC ; 1=>SC, sign of COS(theta)
 LACC theta_r
 SACL theta_m ; theta=>theta_m
 SUB theta_90
 BLEZ E_Q ; jump to end if 90>=theta

; assume theta (theta_h) is in quadrant 2
 SPLK #-1,SC ; -1=>SC
 LACC theta_180 ;
 SUB theta_r ; 180-theta
 SACL theta_m ; =>theta_m
 BGEZ E_Q ; jump to end if 180>=theta

; assume theta (theta_h) is in quadrant 3
 SPLK #1,SS ; -1=>SS
 LACC theta_r
 SUB theta_180 ; theta-180
 SACL theta_m ; =>theta_m
 LACC theta_270

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 236

 SUB theta_r
 BGEZ E_Q ; jump to end if 270>=theta

; theta (theta_h) is in quadrant 4
 SPLK #1,SC ; 1=>SC
 LACC theta_360
 SUB theta_r
 SACL theta_m ; 360-theta_h=>theta_m

Obtain the sine and cosine of q with quarter mapping and table look-up, and

calculate the d-q component of Vout.
;---
; sin(theta), cos(theta)
;---
E_Q LT theta_m ; D3. Find index
 MPY theta_i ; D3*D6=D(9+1)
 PAC ; D10
 SACH sin_indx ; D10
 LACC sin_indx,11 ; r/s 5 by l/s 11 -> integer (D15)
 SACH sin_indx ; right shift 5 bits => D15

 LACC sin_entry ; Look up sin
 ADD sin_indx
 TBLR sin_theta
 LACC sin_end
 SUB sin_indx
 TBLR cos_theta

 LT SS ; Look up cos
 MPY sin_theta ; modify sign: D15*D1=D(16+1)
 PAC
 SACL sin_theta ; left shift 16 bits and save: D1
 LT SC
 MPY cos_theta ; modify sin: D15*D1=D(16+1)
 PAC ;
 SACL cos_theta ; left shift 16 bits and save: D1
;---
; Calcualte Vd & Vq
;---
 LT set_v ; set v -> T: D1
 MPY cos_theta ; set v*cos(theta): D1*D1=D(2+1)
 PAC ; product -> ACC: D3
 SACH Ud,1 ; d component of ref Uout: D2
 MPY sin_theta ; set v*sin(theta): D1*D1=D(2+1)
 PAC ; product -> ACC: D3
 SACH Uq,1 ; q component of ref Uout: D2

Determine which sector Vout is in.
;---
; Determine sector
;---
 LT theta_r ; D3
 MPY theta_s ; D3*D0=D4
 PAC
 SACH sector
 LACC sector,5 ; r/s 11 by l/s 5 -> integer (D15)

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 237

 SACH sector ; right shift 11 bits

Decompose Vout to obtain T1, T2 and T0 as compare values.
;--
; Calculate T1&T2 based on: Tpwn Uout=V1*T1+V2*T2
;
; i.e. [T1 T2]=Tpwn*inverse[V1 V2]*Uout
; i.e. [0.5*T1 0.5*T2]=Tp*inverse[V1 V2]*Uout
; i.e. [0.5*C1 0.5*C2]=inverse[V1 V2]*Uout=M(sector)*Uout
;
; where C1=T1/Tp, C2=T2/Tp, are normalized wrt Tp
; M(sector)=inverse of [V1 V2] = decomposition matrix
; obtained through table lookup
; Uout=Transpose of [Ud Uq]
; Tp=Timer 1 period = 0.5*Tpwm
; Tpwm=PWM period Tpwm
;--
 LACC #dec_ms
 ADD sector,2
 SACL temp ; get the pointer
 LAR AR0,temp ; point to parameter table

; Calculate 0.5*C1 based on 0.5*C1=Ud*M(1,1)+Uq*M(1,2)
 LT Ud ; D2
 MPY *+ ; M(1,1) Ud: D2*D1=D(3+1)
 PAC ; D4
 LT Uq ; D4
 MPY *+ ; M(1,2) Uq: D2*D1=D(3+1)
 APAC ; 0.5*C1: D4+D4=D4
 BGEZ cmp1_big0 ; continue if bigger than zero
 ZAC ; set to 0 if less than 0

cmp1_big0
 SACH temp ; 0.5*C1: D4
 LT temp ; D4
 MPY t1_periods ; D4*D10 = D(14+1)
 PAC ; D15
 SACH cmp_1 ; 0.5*C1*Tp: D15

; Calculate 0.5*C2 based on 0.5*C2=Ud*M(2,1)+Uq*M(2,2)
 LT Ud ; D2
 MPY *+ ; M(2,1) Ud: D2*D1=D(3+1)
 PAC ; D4
 LT Uq ; D2
 MPY *+ ; M(2,2) Uq: D2*D1=D(3+1)
 APAC ; 0.5*C2: D4+D4=D4

 BGEZ cmp2_big0 ; continue if bigger than zero
 ZAC ; zero it if less than zero

cmp2_big0
 SACH temp ; 0.5*C2: D4
 LT temp ; D4
 MPY t1_periods ; D4*D10 = D(14+1)
 PAC ; D15
 SACH cmp_2 ; 0.5*C2*Tp: D15

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 238

; Calculate 0.5*C0 based on 0.5*C3*Tp=Tp*(1-0.5*C1-0.5*C2)
 LACC #t1_period_
 SUB cmp_1 ;
 SUB cmp_2 ; D15
 BGEZ cmp0_big0 ; continue if bigger than zero
 ZAC ; zero it if less than zero

cmp0_big0
 SACL cmp_0 ;
 LACC cmp_0,15 ; right shift 1b (by l/s 15b)
 SACH cmp_0 ; 0.25*C0*Tp

Determine the switching sequence and load the obtained compare values into
corresponding compare registers.
;---
; Determine channel toggling sequence and load compare registers
;---
 LACC #first_ ;
 ADD sector ; point to entry in look up table
 TBLR first_tog ; get 1st-to-toggle channel
 LAR AR0,first_tog ; point to the channel
 LACC cmp_0

 SACL * ; cmp_0 => the channel

 LACC #second_ ;
 ADD sector ; point to entry in look up table
 TBLR sec_tog ; get 2nd-to-toggle channel
 LAR AR0,sec_tog ; point to the channel
 LACC cmp_0 ;
 ADD cmp_1 ; cmp_0+cmp_1
 SACL * ; => the channel

 LACC #CMPR3
 SUB first_tog
 ADD #CMPR2
 SUB sec_tog
 ADD #CMPR1
 SACL temp ; get 3rd-to-toggle channel
 LAR AR0,temp ; point to the channel
 LACC cmp_0
 ADD cmp_1
 ADD cmp_2 ; cmp_0+cmp_1+cmp_2
 SACL * ; =>the channel

 RET ; return

The code shown above composes the functional parts of the LF2407 assembly
code which implements the SVPWM switching scheme.

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP 239

11.4.2 Verification of the SVPWM Algorithm and Conclusions

The space vector PWM algorithm can be verified by probing the filtered PWM
outputs of LF2407 using a very simple low-pass filter as shown in Fig. 11.7 and by
viewing the resultant signal on a oscilloscope.

LF2407

PWMn
Ω1000

Fµ1

To the Scope

Figure 11.7 Low pass filter for filtering the LF2407 PWM outputs.

The output of the low-pass filter is illustrated by the oscilloscope screenshot in

Fig. 11.8. It shows the three-phase voltages and the corresponding line-to-line
voltage for an 11Hz waveform. The fundamental frequency and the third harmonic,
which is inherently generated by the space vector method, are clearly shown. As
expected, the three-phase wave forms are shifted from one another by 120 degrees.

Figure 11.8 Top to bottom: the waveforms of filtered SVPWM outputs, phase
voltages and line-to-line voltage (frequency = 11Hz).

Copyright © 2004 CRC Press, LLC

Space Vector PWM Control for Induction Motors with the LF2407 DSP

240

This chapter presented the concept of constant V/Hz control of induction
motors using the SVPWM. The theory of both the V/Hz control and the space
vector PWM was discussed. The theoretical analysis first discussed has been
supported by the implementation of the SVPWM algorithm via the LF2407 DSP.
The output results verify the validity of both the theory and the DSP
implementation.

References

1. H.A. Toliyat, ELEN689 Class Notes, Spring 2002.
2. TI application note, “AC Induction Motor Control Using Constant V/Hz

Principle/Space Vector PWM- ‘C240 (Rev. A) (SPRA284A).

Copyright © 2004 CRC Press, LLC

Chapter 12

DSP-BASED CONTROL OF PERMANENT MAGNET SYNCHRONOUS

MACHINES

12.1 Introduction

As described in Chapter 9, the permanent magnet synchronous motor (PMSM)
is a PM motor with a sinusoidal back-EMF. Compared to the BLDC motor, it has
less torque ripple because the torque pulsations associated with current
commutation do not exist. A carefully designed machine in combination with a
good control technique can yield a very low level of torque ripple (<2% rated),
which is attractive for high-performance motor control applications such as machine
tool and servo applications.

In this chapter, following the same procedures used in Chapter 9, the principles
of the PMSM drive system will be introduced. Later, the control implementation
using the LF2407 DSP will be described in detail.

12.2 The Principle of the PMSM

12.2.1 Mathematical Model of PMSM in the abc Stationary Reference Frame

Figure 12.1 depicts a cross-section of the simplified three-phase surface
mounted PMSM motor for our discussion. The stator windings, as-as’, bs-bs’, and
cs-cs’, are shown as lumped windings for simplicity, but are actually distributed
about the stator. The rotor has two poles. Mechanical rotor speed and position are
denoted as rmω and rmθ , respectively. Electrical rotor speed and position, rω and

rθ , are defined as P/2 times the corresponding mechanical quantities, where P is the
number of poles.

Based on the above motor definition, the voltage equation in the abc stationary
reference frame is given by

 abcsabcssabcs dt
diRV λ+= (12.1)

where

 (12.2) T
csbsasabcs ffff][=

and the stator resistance matrix is given by

 (12.3)][ssss rrrdiagR =

241

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Synchronous Machines 242

as

as'

bscs

bs' cs'

a-axis

b-axis

c-axis

Wrm

N

S

d-axis

q-axis

Figure 12.1 The cross-section of PMSM.

The flux linkages equation can be expressed by

−

−+=

)
3

4sin(

)
3

2sin(

sin
'

πϑ

πϑ

ϑ

λλ

r

r

r

mabcssabcs iL (12.4)

where 'mλ denotes the amplitude of the flux linkages established by the permanent
magnet as viewed from the stator phase windings. Note that in (12.4) the back-
EMFs are sinusoidal waveforms that are 1200 apart from each other. The stator self
inductance matrix, , is given as sL

+−++−−+−−

+−−−−+−−−

+−−−−−−+

=

)3/2(2cos)(2cos
2
1)3/(2cos

2
1

)(2cos
2
1)3/2(2cos)3/(2cos

2
1

)3/(2cos
2
1)3/(2cos

2
12cos

πθπθπθ

πθπθπθ

πθπθθ

rBAlsrBArBA

rBArBAlsrBA

rBArBArBAls

s

LLLLLLL

LLLLLLL

LLLLLLL

L

 (12.5)
The electromagnetic torque may be written as

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Permanent Magnet Synchronous Machines 243

)(]}2cos)22(
2
32sin)2

2
1

2
1[(

3
]sin)(

2
3cos)

2
1

2
1[({

2

22

222'

rcogrcsasbsascsbsrcsbscsasbsas

csbsas
mqmd

rcsbsrcsbsasme

Tiiiiiiiiiiii

iii
LL

iiiiiPT

θθθ

ϑθλ

++−++−

−−−
−

+−−−−=

 (12.6)
In (12.6), represents the cogging torque and the d- and q-axes magnetizing
inductances are defined by

)(rcogT θ

)(
2
3

BAmd LLL −=

and

)(
2
3

BAmd LLL += (12.7)

The torque and speed are related by the electromechanical motion equation

 rmmLerm BTTP
dt
dJ ωω −−=)(

2
 (12.8)

where is the rotational inertia, is the approximated mechanical damping due
to friction, and T is the load torque.

J mB

L

12.2.2 Mathematical Model of PMSM in Rotor Reference Frame

The voltage and torque equations can be expressed in the rotor reference
frame in order to transform the time-varying variables into steady state constants.
Since the stator has two poles and the rotor has four poles, the transformation of the
three-phase variables in the stationary frame to the rotor reference frame is defined
as

 (12.9) abcsrrqd fKf =0

where

+−

+−

=

2
1

2
1

2
1

)
3

2sin()
3

2sin(sin

)
3

2cos()
3

2cos(cos

3
2 πθπθθ

πθπθθ

rrr

rrr

rK

If the applied stator voltages are given by

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Synchronous Machines 244

+=

−=

=

)
3

2cos(2

)
3

2cos(2

cos2

πθ

πθ

θ

evscs

evsbs

evsas

VV

VV

VV

 (12.10)

Then, applying (12.9) to (12.1), (12.4) and (12.10) yields

 r
qs

r
dsr

r
qss

r
qs dt

dirv λλω ++= (12.11)

 r
ds

r
qsr

r
dss

r
ds dt

dirv λλω +−= (12.12)

 (12.13) r
qsqs

r
qs iL=λ

 (12.14) r
m

r
dsds

r
ds iL `λλ +=

where the q- and d-axes self inductances are given by mqlsqs LLL += and

, respectively. mdlsds LLL +=

The electromagnetic torque can be written as

])([
22

3 '
dsqsqsds

r
qs

r
me iiLLiPT −+= λ (12.15)

From (12.15), it can be seen that torque is related only to the d- and q-axes
currents. Since (for surface mount PMSM, both of inductances are equal),
the second item contributes a negative torque if the flux weakening control has been
used. In order to achieve the maximum torque/current ratio, the d-axis current is set
to zero during the constant torque control so that the torque is proportional only to
q-axis current. Hence, this results in the control of q-axis current for regulating the
torque in rotor reference frame.

dq LL ≥

12.3 PMSM Control System

Based on the above analysis, a PMSM drive system is developed as shown in
Fig. 12.2. The total drive system looks similar to that of the BLDC motor and
consists of a PMSM, power electronics converter, sensors, and controller. These
components are discussed in detail in the following sections.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Permanent Magnet Synchronous Machines 245

D1

D
2D4

D3
C

T1

T2

T3

T4

T5

T6

Ld

Vs

controller

to T1~T6

PMSM

ias

ibs θ

resolver

Figure 12.2 The PMSM speed control system.

12.3.1 PMSM Machine

The design consideration of the PMSM is to first generate the sinusoidal back-
EMF. Unlike the BLDC, which needs concentrated windings to produce the
trapezoidal back-EMF, the stator windings of PMSM are distributed in as many
slots per pole as deemed practical to approximate a sinusoidal distribution. To
reduce the torque ripple, standard techniques such as skewing and chorded windings
are applied to the PMSM. With the sinusoidally excited stator, the rotor design of
the PMSM becomes more flexible than the BLDC motor where the surface mount
permanent magnet is a favorite choice. Besides the common surface mount non-
salient pole PM rotor, the salient pole rotor, like inset and buried magnet rotors, are
often used because they offer appealing performance characteristics during the flux
weakening region. A typical PMSM with 36 stator slots in stator and four poles on
the rotor is shown in Fig. 12.3.

Figure 12.3 A four-pole 24-slot PMSM.

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Synchronous Machines 246

12.3.2 Power Electronic Converter

The PMSM shares the same topology of the power electronics converter as the
BLDC motor drive system. The converter is the standard two-stage configuration
with a dc link capacitor between a front-end rectifier and a three-phase full-bridge
inverter as the output. The rectifier is either a full-bridge diode or power switch
rectifier.

Due to the sinusoidal nature of the PMSM, control algorithms such as V/f and
vector control, developed for other AC motors, can be directly applied to the PMSM
control system. If the motor windings are Y-connected without a neutral connection,
three phase currents can flow through the inverter at any moment. With respect to
the inverter switches, three switches, one upper and two lower in three different legs
conduct at any moment as shown in Fig. 12.4. PWM current control is still used to
regulate the actual machine current. Either a hysteresis current controller, a PI
controller with sine-triangle, or a SVPWM strategy is employed for this purpose.
Unlike the BLDC motor, the three switches are switched at any time.

C

T2 T4 T6

ra Lc Ea

rb Lc Eb

rc Lc Ec

T1 T3 T5

Figure 12.4 The current path when the three phases are chopped.

12.3.3 Sensors

There are two types of sensors used in the PMSM drive system: the current
sensor, which measures the phase currents, and the position sensor which is used to
sense the rotor position and speed. The resistances in series with the power switches
as shown in Fig. 12.2 are usually used as shunt resistor phase current sensors. Either
an encoder or resolver serves as the position sensor. Rotor position is needed in
order to synchronize the stator excitation of the PMSM with the rotor speed and
position.

Figure 12.5 shows the structure of an optical encoder. It consists of a light
source, slotted disk, and photo sensors. The disk rotates with the rotor. The two
photo sensors output a logic “1” when they detect light. When the light is blocked,
a logic “0” is generated by the sensors. When the light passes through the slots of

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Permanent Magnet Synchronous Machines 247

the disk and strikes the sensor, a logic “1” is produced. These logic signals are
shown in Fig. 12.5. By counting the number of pulses, the motor speed can be
calculated. The direction of rotation can be determined by detecting the leading
edge between signal A and signal B.

A
B

Light

ω

Sensors A

B

Figure 12.5 The structure of encoder.

A resolver is a rotary electromechanical transformer. It outputs to sinusoidal
signals such that one wave is a sinusoidal function of the rotor angle θ, while the
other signal is a cosinusoidal function of θ. The difference between these two
waveforms reveals the position of the rotor. Integrated circuits such as the AD2S80
can be used to decode the signals. The resolver output waveform and the
corresponding rotor position are given in Fig. 12.6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

sin(theta)

cos(theta)

Position

Figure 12.6 The resolver output and the corresponding rotor position.

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Synchronous Machines 248

12.3.4 Controller

The LF2407 is used as the controller to implement speed control of the PMSM
system. The interface of the LF2407 is illustrated in Fig. 12.7. Similar to the BLDC
motor control system, three input channels are selected to read the two phase
currents and resolver signal. Because a resolver is used in one case, the QEP inputs
are not used. QEP inputs work only with a QEP signal that a rotary encoder
supplies. The DSP output pins PWM1-PWM6 used to supply the gating signals to
the switches and form the output of the control part of the system.

Gate
Drive

ADCIN0

ADCIN1
PWM-1 & PWM-6

TMS320LF2407

ia

ib

ADCIN2 θ

Figure 12.7 The interface of LF2407.

12.4 Implementation of the PMSM System Using the LF2407

A block diagram of the PMSM drive system is displayed in Fig. 12.8. An
assembly code algorithm was written for the LF2407 to implement the control
system shown inside the dashed line in Fig. 12.8.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Permanent Magnet Synchronous Machines 249

Software
+

refω

-
-

-

-
∗

ecT

Vcs

Vbs
s

Sc

Sb

rω

SaVas

qsrv
dsrv

*
qsri

qsri
dsri

θ

ibs

ias

+

PWM
Inverter

d, q

a, b ,c
 PWM
Generator

PI

PI

d, q

a b,c

PM
SM

+

PI0* =dsri

-

Speed

calculator
Current

calculator

Figure 12.8 Block diagram of PMSM speed control system.

The flowchart of the developed software is shown in Fig. 12.9. The control

program of the PMSM has one main routine and includes four modules:

1. Initialization procedure
2. DAC module
3. ADC module
4. Speed control module

The first three items introduced in Chapter 9. Hence, in the following section,
only the speed control module is discussed in detail, with the corresponding
assembly code given.

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Synchronous Machines 250

No

Yes

Start

Initialization procedure

Read phase current ba ii , ; read the position signal;

Execute
speed loop?

Set reference speed refω and calculate the actual speed

Speed PI regulator used to calculate the commend torque

Calculate the command q-axis current *
qsi ; Set 0* =dsi

Current PI regulator used to calculate the qsds vv , in RRF

Transfer ba ii , to qsds ii , in Rotor Reference Frame (RRF)

Transfer qsds vv , in RRF to cba vvv ,,

Generate the PWM using sine-∆ generator

End

Output the program variables to DAC0~DAC3

Figure 12.9 The flow chart of PMSM control system.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Permanent Magnet Synchronous Machines 251

12.4.1 The Speed Control Algorithm

In the BLDC motor control system the Timer 1 underflow interrupt is used for
the subroutine of speed control. This routine performs the tasks of:

• Reading the current and position signal, then generating the commanded
speed profile.

• Calculating the actual motor speed, transferring the variables in the abc
model to the d-q model and reverse.

• Regulating the motor speed and currents using the vector control strategy.
• Generating the PWM signal based on the calculated motor phase voltages.

The PWM frequency is determined by the time interval of the interrupt, with
the controlled phase voltages being recalculated every interrupt. The modules of
this routine are detailed in the following section. The code below shows this routine.
T1_PERIOD_ISR:
;Context save regs

MAR *,AR1 ;AR1 is stack pointer
MAR *+ ;skip one position
SST #1, *+ ;save ST1
SST #0, *+ ;save ST0
SACH *+ ;save acc high
SACL * ;save acc low
POINT_EV
SPLK #0FFFFh,EVIFRA ;Clear all Group A interrupt
 ;flags (T1 ISR)

READ_SIG
CALL ADC_CONV
CALL CAL_TRIANGLE
CALL ADC_DQ
POINT_B0
LACC CL_SPD_FLG
BCND CURRENT_CNTL,GT ;speed-loop?

; speed control
SPEED_CNTL: POINT_B0

CALL SPEED_PROFILE
CALL VTIMER_SEC
CALL SPEED_CAL
CALL D_PID_spd
BLDD #D_PID_out ;iqsr
SPLK #0, idsr_ref

; current control
CURRENT_CNTL

CALL D_PID_cur
BLDD #D_out_iq, Vqr
BLDD #D_out_id, Vdr
CALL DQ_ABC
BLDD #a_out, Va
BLDD #b_out, Vb
BLDD #c_out, Vc

PWM_GEN CALL PWM_DRV
DA_CONV CALL DAC_VIEW_Q15I
;Restore Context
END_ISR:

MAR *, AR1 ;make stack pointer active

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Synchronous Machines 252

LACL *- ;Restore Acc low
ADDH *- ;Restore Acc high
LST #0, *- ;load ST0
LST #1, *- ;load ST1
CLRC INTM
RET

12.4.1.1 The Calculation of sinθ and cosθ

A lookup table is used to calculate the sine and cosine values of the rotor
position θ. The rotor electrical angle depends only on its sine value in lookup table.
The cosine value is calculated by shifting the sine value 90 degrees. The sine and
cosine values, which are used in the transformation, can be obtained by simply
knowing the rotor angle. The code below shows how to read the 1:1 look-up table
with the LF2407.
TRI_CAL

...
LACC TRI_INT ;load accumulator
AND #0ffh ;get lower bits
ADD #SINTAB ;table read
TBLR sine_a
...
RET

The block of code below shows a portion of the sine value lookup table.
;SINVAL Index Angle Sin(Angle)

SINTAB
....
.word 12539 ; 16 22.50 0.3827
.word 13279 ; 17 23.91 0.4052
.word 14010 ; 18 25.31 0.4276
.word 14732 ; 19 26.72 0.4496
.word 15446 ; 20 28.13 0.4714
.word 16151 ; 21 29.53 0.4929
.word 16846 ; 22 30.94 0.5141
.word 17530 ; 23 32.34 0.5350
.word 18204 ; 24 33.75 0.5556
....
RET

12.4.1.2 The abc-to-dq Transformation

The abc-to-dq transformation is defined in (12.9). It transfers the three-phase
stationary motor model to a two-phase rotational motor model. In other words,
under the restriction of the same motor performance, three phase stationary stator
windings with 1200 separation can be replaced by a two-phase rotational winding
with the q-phase 900 ahead of d-phase. The two-phase currents are related to the
three-phase currents as defined by the transformation in (12.9). After this
transformation, a significant simplification is achieved. The d and q-axis variables
are decoupled and independent with time and rotor position, which implies that
these variables become constant in steady state. It is possible to control the d and q

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Permanent Magnet Synchronous Machines 253

variables independently. Since the d-axis variables are associated with the field
variable and q-axis variables are related to the torque, this feature enables us to
control the ac motor similar to a dc motor. For more detailed information on this
topic we can refer to vector control theory. A portion of the abc-to-dq
transformation using the assembly code is given in the code below:
ABC_DQ:

...

...
LACC #0
LT ABC_ain
MPY sone_a
LTA ABC_bin
MPY sone_b
LTA ABC_cin
MPY sone_c
LTA ABC_ain
SACH ABC_D_out
...
...
RET

12.4.1.3 The d-q to a-b-c Transformation

After the commanded d and q-axes variables are calculated, these two variables
are transferred to the a-b-c stationary frame to drive the motor. This reverse
transform is defined as follows:

 (12.16) rqdrabcs fKf 0
'=

where

++

−−=

2
1)

3
2sin()

3
2cos(

2
1)

3
2sin()

3
2cos(

2
1sincos

'

πθπθ

πθπθ

θθ

rr

rrr

r

rK (12.17)

An example of the assembly code to implement the above equation is given in the
code below:
DQ_ABC

...

...
LACC #0
LT DQ_D_ref
MPY sone_a
LTa DQ_Q_ref
MPY cosone_a
MPYA cosone_b
SACH DQ_aout
...
...
RET

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Permanent Magnet Synchronous Machines

254

12.4.1.4 PWM Generation

The PWM circuits of the 2407 Event Manager are used to generate the gating
signals. Figure 12.10 displays the principle of this method. The control signal with
frequency f1 is constantly compared with a triangle signal which has a high-
frequency f2 (usually f2/f1>21). If the controlled signal is larger than the triangle
signal, a PWM output signal becomes a logic “1”. Otherwise, a “0” is given.

0.052 0.054 0.056 0.058 0.06 0.062 0.064 0.066
-2.5

-2

-1.5

-1

-0.5

0

0.5

1
Triangle signal Controlled signal

PWM signal

Figure 12.10 The principle of sine-triangle PWM generation.

The full-compare units have been used to generate the PWM outputs. The

PWM signal is high when the output of current PI regulation matches the value of
T1CNT and set low when the Timer underflow occurs. The switch states are
controlled by the ACTR register. As discussed in Section 3.2, the lower switches
should always be on and the upper switches should be chopped. From the point of
implementation on the LF2407, this requires that the ACTR register is reset for each
interval. Therefore, PWM1, PWM3, and PWM5, which trigger the upper switches,
are set as active low/high and PWM2, PWM4, and PWM6, which trigger the lower
switches are set as force high. The code below illustrates this implementation.
SINE_PWM:

....

....
POINT_B0

MPY Ub
PAC
ADD PERIOD,15
POINT_EV
SACH CMPR2
....
RET

Copyright © 2004 CRC Press, LLC

Chapter 13

DSP-BASED VECTOR CONTROL OF INDUCTION MOTORS

13.1 Introduction

For many years, induction motors have been preferred for a variety of industrial
applications because of their robust and rugged construction. Until a few years ago,
the induction motor could either be plugged directly into the grid (uncontrolled) or
controlled by means of the well-known scalar volts per Hertz (V/f) method. In
variable speed drives, both methods have serious drawbacks in the areas of
efficiency, reliability, and electromagnetic interference (EMI). With the
uncontrolled method, even a simple change in the reference speed is not possible.
Additionally, its system integration depends highly on the motor design (i.e.,
starting torque vs. maximum torque, torque vs. inertia, number of pole pairs, etc).

The scalar V/f method is able to provide speed variation, but this method
cannot provide real-time control. In other words, the system response is only
satisfactory at steady state and not during transient conditions. This results in
excessive current and over-heating, which necessitate the drive to be oversized.
This over-design no longer makes the motor cost effective due to the high cost of
the drive circuitry. By using real-time processors such as the LF2407 DSP
controller, and with an accurate induction motor model, the development of highly
reliable and accurate variable speed motor drives becomes possible.

With the advent of field-oriented control (FOC) schemes, induction motors can
be made to operate similar to separately excited dc motors. The indirect field
oriented controls, or vector control, for speed and torque controlled AC drives are
becoming the industry standard in order to obtain high dynamic motor performance.

The control algorithm explained in this chapter is a rotor flux field-orientated
control strategy. In this chapter, we will go through not only the implementation of
the control software, but also the theoretical and practical aspects of the vector
control. In the end, the reader will be familiar with the different parts of the FOC
strategy of the induction motor as well as the developmental steps involved. The
reader should also be able to apply this induction motor drive solution to other
desired systems. This chapter deals with the structure of an induction motor and
develops its model followed by its FOC schemes. Finally, hardware and software
development procedures covered.

13.2 Three-Phase Induction Motor Basic Theory

13.2.1 Three-Phase Induction Motor

Three-phase induction machines are asynchronous machines that operate below
the synchronous speed when motoring and above the synchronous speed when
generating. They are the most popular machine used in industry today and are

255

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors256

rugged and require very little maintenance. Compared to dc motors, induction
motors are not as easy to control. They typically draw large starting currents, about
six to eight times their full load values, and operate with lagging power factor when
loaded. However, with the advent of the vector control concept for motor control, it
is possible to decouple the torque and the flux, thus making the control of the
induction motor very similar to that of the dc motor.

13.2.2 Induction Motor Construction

The dc motor can be called a conduction motor because the electric power is
conducted directly to the armature through the brushes and commutator. In the case
of induction motors, the rotor receives power by induction; the same way a
secondary of a two-winding transformer receives power from the primary. This is
why the induction motor can be treated as a rotating transformer, where the primary
winding is stationary, but the secondary is free to rotate. We use this concept to
develop the equivalent circuit for induction motors.

The most popular type of induction motor used is the squirrel cage induction
motor shown in Fig. 13.1. The rotor consists of a laminated core with parallel slots
for carrying the rotor conductors, which are usually heavy bars of copper,
aluminum, or alloys. One bar is placed in each slot; or rather, the bars are inserted
from the end when the semi-closed slots are used. The rotor bars are brazed,
electrically welded, or bolted to two heavy and stout short-circuiting end-rings, thus
completing the squirrel cage construction. The rotor bars are permanently short-
circuited on themselves. The rotor slots are usually not parallel to the shaft, but are
given a slight angle, called a skew, which increases the rotor resistance due to
increased length of rotor bars and an increase in the slip for a given torque. The
skew is also advantageous because it reduces the magnetic hum while the motor is
operating and reduces the locking tendency, or cogging, of the rotor teeth.

Figure 13.1 Short-circuited rotor bars of the squirrel cage induction motor.

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 257

13.2.3 Operation

When the three-phase stator windings are fed by a three-phase supply, a
magnetic flux of a constant magnitude rotating at synchronous speed is created
inside the motor. Due to the relative speed between the rotating flux and the
stationary conductors, an electromagnetic force (EMF) is induced in the rotor in
accordance with Faraday’s laws of electromagnetic induction. The frequency of the
induced EMF is the same as the supply frequency, and the magnitude is
proportional to the relative velocity between the flux and the conductors. The
direction of this EMF is given by Fleming’s right-hand rule. Since the rotor bars
form a closed path as shown in Fig. 13.1, a rotor current is produced which,
according to Lenz’s law, is opposite to that of the relative velocity between the
rotating flux and the conductors. Therefore, the rotor current develops in the same
direction as the flux and tries to catch up with the rotating flux.

13.2.4 Slip

The difference between the synchronous speed e and the actual speed r of
the motor is called the slip.

e

res (13.1)

13.3 Model of the Three-Phase Induction Motor in Simulink

13.3.1 Voltage Equations of the Idealized Motor Model

The idealized circuit model of the three-phase induction machine is shown in
Fig. 13.2:

r

r

as

bs cs

as

br
ar

cr

bscs
ar

br

cr

as axis

Figure 13.2 Idealized circuit model of the three-phase induction motor.

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors258

Stator voltage equations:

t

as
assas d

d
irv (13.2)

t

bs
bssbs d

d
irv (13.3)

t

cs
csscs d

d
irv (13.4)

Rotor voltage equations:

t

ar
rarar d

d
riv ' (13.5)

t

br
rbrbr d

d
riv ' (13.6)

t

cr
rcrcr d

driv ' (13.7)

Flux linkage equations:

 (13.8)
abc
r

abc
s

abc
rr

abc
rs

abc
sr

abc
ss

abc
r

abc
s

i

i

LL

LL

where:

, , , i (13.9)

cs

bs

as
abc
s

cr

br

ar
abc
r

cs

bs

as
abc
s

i
i
i

i

cr

br

ar
abc
r

i
i
i

The stator-to-stator and rotor-to-rotor winding inductances are:

,

sslssmsm

smsslssm

smsmssls
abc
ss

LLLL
LLLL
LLLL

L

 (13.10)

rrlrrmrm

rmrrlrrm

rmrmrrlr
abc
rr

LLLL
LLLL
LLLL

L

The stator-to-rotor mutual inductances are dependent on the rotor angle:

rrr

rrr

rrr

sr
Tabc

rs
abc
sr LLL

cos)32cos()32cos(
)32cos(cos)32cos(
)32cos()32cos(cos

 (13.11)

where:

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 259

 = Stator winding leakage inductance per phasesL
 = Self inductance of stator windingssL
 = Peak value of stator to rotor mutual inductance smL

 = Peak value of stator to rotor mutual inductance srL
If

 Pg = air-gap permeance,
then

, , ,gsss PNL 2
grssr PNNL)3/2(2 CosPNL gssm

, (13.12)
)3/2(2 CosPNL grrm grrr PNL 2

We can see that the idealized machine is described by six first-order differential
equations; one for each winding. These differential equations are coupled to one
another by the mutual inductances between the windings. The stator-to-rotor
coupling terms are a function of the rotor position, so when the rotor rotates, the
coupling terms change with time. To solve this problem, induction motor equations
are transferred to the quadrature rotating reference frame such that the mutual
inductances are not time dependent.

13.4 Reference Frame Theory

Reference frame theory is an integral part of electric drives. Reference frames
are powerful tools for the analysis and application of sophisticated control
techniques, particularly in the case of the three-phase induction and synchronous
machines. Using reference frame theory, it is possible to transform the machine
phase variables to another reference frame. By judicious choice of the reference
frames, it is possible to considerably reduce the complexity of the model machine.
Reference frame theory has become especially important for digital motor control
where the need for accurate but simple motor models is essential. Though the theory
can be extended to any arbitrary reference frame, the two most commonly used
reference frames are the Stationary Reference Frame and the Synchronous
Reference Frame. The Clarke and Park transformations are used to transfer the
induction motor equations to these frames. The transformations are discussed in
Chapter 10 in detail and are repeated here for reference. Clarke’s transformation is
given by

 (13.12)

cs

bs

as

s
s

s
ds

s
qs

f
f
f

T

f

f

f

)0(

0

where

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors260

2/12/12/1
2/32/30
2/12/11

3/2)0(T (13.13)

Park’s Transformation is represented by

 (13.14)
s

ds

s
qs

e
ds

e
qs

f
f

f

f
cossin
sincos

where the rotor position is given by

 (13.15)dte

13.5 Induction Motor Model in the Arbitrary q-d-0 Reference Frame

As mentioned previously, the two most common reference frames chosen to
represent the induction motor are the stationary and the synchronous reference
frames. The stationary reference frame has the q-d-0 variables of the machine in the
same frame as those normally used for the supply network. This choice of network
is usually made when the supply network is large or complex. In the case of the
synchronously rotating reference frame, the q-d-0 variables are constants at steady
state.

Assuming that the induction motor is rotating at speed in the direction of
rotor rotation, the machine equations in the stationary reference frame can be
obtained by setting = 0. Likewise, the equations in the synchronous reference
frame are obtained by setting = e. Applying transformation to the stator
windings a-b-c voltages, the stator winding q-d-0 voltages in the arbitrary reference
frame are obtained.

 (13.16)s
qds

s
qd

s
qd

s
qd irpv 0000

000
001
010

where dt
dp . Applying the transformation to the rotor voltage equation, we get

(13.17)r
qdr

r
qd

r
qdr

r
qd irpv 0000

000
001
010

)(

Stator and rotor flux linkage equations are given by

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 261

(13.18)

'
0

'

'
0

'

'

'

'
0

'

'
0

0
0
0
0
0

0

0
0

0

0
0

0
0
0

0

0

0
0

000
000

00

r

dr

qr

s

ds

qs

lr

mlr

m

mlr

m

m

ls

mls

mmls

r

dr

qr

s

ds

qs

i

i

i
i
i
i

L
LL

L

LL
L

L
L

LL
LLL

where the primed values are referred values to the stator side according to the
following relationships:

qr
r

s
qr N

N' (13.19)

dr
r

s
dr N

N' (13.20)

qr
r

s
qr i

N
Ni ' (13.21)

dr
r

s
dr i

N
Ni ' (13.22)

lr
r

slr L
N
NL

2
' (13.23)

Magnetizing inductance on the stator side is given by

rr
r

s
sr

r

s
ssm L

N
N

L
N
N

LL
2
3

2
3

2
3 (13.24)

The electromagnetic torque equation is given by

))(()(
22

3 ''''
drqrqrdrrdsqsqsds

r
em iiiiPT

dsqrqsdrm

dsqsqsds

qrdrdrqr

iiiiLP

iiP

iiP

''

''''

22
3

22
3

22
3

(13.25)

13.6 Field Oriented Control

The term “vector” control refers to the control technique that controls both the
amplitude and the phase of ac excitation voltage. Vector control therefore controls
the spatial orientation of the electromagnetic fields in the machine. This has led to
the coining of the term field oriented control (FOC), which is used for controllers

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors262

that maintain a 90 spatial orientation between the critical field components. The
term “field angle control” refers to the control strategy where the system is not at
90 of spatial orientation. In order to properly comprehend vector control, we must
understand the principle of dc machine torque control on which FOC is based.

13.7 DC Machine Torque Control

The required 90 of spatial orientation between key field components can be
compared to the dc motor, where the armature winding magnetic field and the filed
winding magnetic filed are always in quadrature. The objective is to force the
control of the induction machine to be similar to the control of a dc motor, i.e.,
torque control. In dc machines, the field and the armature winding axes are
orthogonal to one another, making the MMFs established orthogonal. If the iron
saturation is ignored, then the orthogonal fields can be considered to be completely
decoupled.

For dc machines, the developed torque is

 (13.26)afaem IIKT)(
where

= Constantak
= Field flux)(fI

= Armature currentaI
Since the torque angle is always 90 , the flux and the torque can be controlled

independently. The torque is controlled by adjusting the field current If, and the flux
is directly controlled by adjusting the armature current Ia.

It is important to maintain a constant field flux for good torque control. It is
also important to maintain an independently controlled armature current in order to
overcome the effects of the resistance of the armature winding, leakage inductance,
and the induced voltage is needed. A spatial angle of 90 between the flux and
MMF axes has to be maintained in order to limit interaction between the MMF and
the flux. If these conditions are met at every instant of time, the torque will always
follow the current. In the case of dc machines, there is constant field flux and 90
torque angle due to the commutator and the separate field excitation system. In ac
machines, these conditions have to be attained by using external controls, making
the system more complex and difficult to understand.

13.8 Field Oriented Control, Direct and Indirect Approaches

With vector control, the mechanically robust induction motors can be used in
high performance applications where dc motors were previously used. The key
feature of the control scheme is the orientation of the synchronously rotating q-d-0
frame to the rotor flux vector. The d-axis component is aligned with the rotor flux

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 263

vector and regarded as the flux-producing current component. On the other hand,
the q-axis current, which is perpendicular to the d-axis, is solely responsible for
torque production.

In order to apply a rotor flux field orientation condition, the rotor flux linkage is

aligned with the d-axis so and . By manipulating (13.16) and

(13.17) in the rotating reference frame,

0e
qr r

e
dr ˆ

r , we can obtain the field oriented
condition.

mL

e
dre

dsistatesteadye
dsimL

rL
rre

dr
rL
rre

drp 0 (13.27)

rr

e
qsimLe

qs)i
rL
mL

(
r

rr
slip ˆ (13.28)

e
qsid

rL
mLP

eT

e
qsi

lrLmL
mLe

qri

ˆ
22

3
(13.29)

We can find out that in this case i controls the rotor flux linkage and

controls the electromagnetic torque. The reference currents of the q-d-0 axis

 are converted to the reference phase voltages (v as the

commanded voltages for the control loop. Given the position of the rotor flux and
two-phase currents, this generic algorithm implements the instantaneous direct
torque and flux control by means of coordinate transformations and PI regulators,
thereby achieving accurate and efficient motor control.

e
ds

e
qsi

e*
qs(i)e*

ds,i)e*
qs,ve*

ds

In asynchronous drives, the mechanical rotor angular speed is not, by
definition, equal to the rotor flux angular speed. This implies that the necessary
rotor flux position cannot be detected directly by the mechanical position sensor
provided with the asynchronous motor explained here.

It is clear that for implementing vector control we have to determine the rotor
flux position. Two basic approaches to determine the rotor flux position angle have
evolved. The direct scheme shown in Fig. 13.3(a), electrically determines the rotor
flux position from measurements using field angle sensors. The indirect scheme
illustrated in Fig. 13.3(b), measures the rotor position and utilizes the slip relation to
compute the angle of the rotor flux relative to the rotor axis. From the feasibility
point of view, implementation of the direct method is difficult if not sometimes
impossible. Therefore, in this chapter, the indirect method is considered as a
solution for implementing FOC.

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors264

Field
Oriented

Controller
Inverter

Flux
Compensator

FS

IM

Te
*

lqdr
*

iabcs

Flux
Sensor

Induction
Motor

lqdr

lqdm

(a) Direct flux sensing method.

Field
Oriented

Controller
Inverter

Flux
Calculator

IM Induction
Motor

PG Speed
Sensor

w r

lqdr

Te
*

lqdr
*

iabcs

(b) Indirect flux sensing method.

Figure 13.3 Two generic types of induction motor vector control.

The indirect method is based on the calculation of the slip speed ,
required for correct field orientation. Equations (13.27) and (13.28) show that we
can control torque and field by and i in the excitation frame. However, in the

implementation of field-oriented control, we need to know i and in the
stationary reference frame. So, we have to know the angular position of the rotor
flux to transform and i from the excitation frame to the stationary frame. By

using , which is shown in (13.28) and using actual rotor speed, the rotor flux
position is obtained.

slip

dsi qs

ds qsi

dsi qs

slip

 (13.30)(t)dtdt r
t

re
t

slip
00

or

 (13.31)(t)(t)dt rre
t

slip
0

In literature, the algorithm of finding rotor flux position using the calculated
 and measured or is called the Current Model Method. The Current

Model takes and as inputs as well as the rotor mechanical speed and gives
slip re

qsi
re

dsi

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 265

the rotor flux position as an output. Figure 13.4 shows the block diagram of the
vector control strategy in which speed regulation is possible using a control loop.

The absence of the field angle sensors, along with the ease of operation at low
speeds, has increased the popularity of the indirect vector control strategy. While
the direct method is inherently the most desirable scheme, it suffers from the
unreliability in measuring the flux. Although the indirect method can approach the
performance of the direct measurement scheme, its major weakness is the accuracy
of the control gain, which heavily depends on the motor parameters.

Flux
Controller

PI PI

PI

SV
PWM

3-phase
Inverter

Induction

motor

 abc

Current
Model

- i -

-

Vdc

Clarke
Transformation

Park
Transformation

Inv. Park
Transformation

r

+ +

+

Mechanical Speed of rotor

ds
e*

iqs
e* v qs

e*

v ds
e*

v qs
s*

v ds
s*

ids
s

iqs
s

ids
e

iqs
e

dqs
s

dqs
e

dq s
e

dqs
s

dqs
s

ref

rm

Figure 13.4 Vector control scheme for induction motor.

As shown in Fig. 13.4, two-phase current feeds the Clarke transformation
block. These projection outputs are indicated as i and . These two
components of the current provide the inputs to Park’s transformation, which gives
the currents in the excitation reference frame. The and i components,
which are outputs of the Park transformation block, are compared to their reference
values , the flux reference, and , the torque reference. The torque command,

, comes from the output of the speed controller. The flux command, i , is the
output of the flux controller which indicates the right rotor flux command for every
speed reference. For i we can use the fact that the magnetizing current is usually
between 40 and 60% of the nominal current. For operating in speeds above the
nominal speed, a field weakening section should be used in the flux controller

s
ds

i

s
qsi

e
qs

eqds

e*
ds

e
ds

e*
dsi e*

qsi
e*
qsi e*

ds

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors266

section. The current regulator outputs, and , are applied to the inverse Park

transformation. The outputs of this projection are and v , which are the

components of the stator voltage vector in the orthogonal reference frame.
They form the inputs of the SVPWM block. The outputs of this block are the signals
that drive the inverter.

e*
dsv e*

qsv

dqs

s
ds

s
dsv

s

s
qs

Note that both the Park and the inverse Park transformations require the exact
rotor flux position, which is given by the current model block. This block needs the
rotor resistance or rotor time constant as a parameter. Accurate knowledge of the
rotor resistance is essential to achieve the highest possible efficiency from the
control structure. Lack of this knowledge results in the detuning of the FOC. In
Fig. 13.4, a SVPWM has been used to emulate v and in order to implement
current regulation. The reader can find more information about SVPWM in Chapter
11.

s
qsv

13.9 Simulation Results for the Induction Motor Control System

The drive system with the proposed control strategy has been simulated prior to
laboratory experimentation. For simulation purposes, software packages such as
Matlab/SimulinkTM and Advanced Continuous Simulation Language (ACSL)TM can
be used. In this section, SimulinkTM has been used to model the induction motor,
the vector control, and the SVPWM. The induction motor has been simulated with
the dynamic q-d-0 model using the nominal parameters as given in Table 13.1. The
dc link voltage in the simulation is equal to 100V. Maximum phase current has
been limited to the rated value. Initially, the magnetizing current is set at 60% of the
rated current. The simulation results of the control system to a command speed are
shown in Fig. 13.5.

13.10 Induction Motor Speed Control System

Based on the previous analysis, an induction motor speed control system is
developed as shown in Fig. 13.6. The total control system consists of the induction
motor, the power electronics converter, the sensor, and the controller. These
components are discussed in detail in the following section.

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 267

0 1 2
-150

0

150

(a
)

0 1 2
-150

0

150

(b
)

0 1 2
-5

5

15

(c
)

0 1 2
-20

0

20

(d
)

0 1 2
40

50

60

(e
)

0 1 2
-5

5

15

(f)

0 1 2
-75

0

75

(g
)

Time (sec.)

Figure 13.5 (a) reference speed, (b) actual speed, (c) load torque, (d)
electromagnetic torque, (e) stator d-axis current in the rotating reference frame, (f)

stator q-axis current in the rotating reference frame, (g) phase-A current.

Controller

D1

D
2D4

D3
C

T1

T2

T3

T4

T5

T6

Vs

to T1~T6

IM

ias

ibs

Encoder

QEP-A

QEP-B

Figure 13.6 Induction motor speed control system.

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors268

13.11 System Components

13.11.1 Power Electronic Converter

As shown in Fig. 13.9, the power electronics converter in induction motor
control system consists of two parts: a front-end rectifier and a three-phase full-
bridge inverter in the right-hand side. The rectifier usually is a full-bridge diode. In
case of a regenerative system, a power switch rectifier is used.

The inverter is usually responsible for both the electronic commutation and
current regulation. Pulse-width-modulated current controllers are typically used to
regulate the actual machine currents to match the sinusoidal current reference
waveforms.

The power hardware used to implement and test the induction motor drive
system can support an input voltage of 1200 V and a maximum current of 50 A. The
hardware is based on six power IGBTs (SKM 50GB 123D), driven by the DSP
controller via the integrated driver SKHI22. The power and the control components
are insolated from one another by the use of opto-couplers in the gate drive signal
path.

Table 13.1 Induction motor parameters

Motor Parameters Value
Rated power 3.0 hp
Rated Voltage 230/460 Volt
Rated Current 7.6/3.8 Amp
Rated Speed 1760 rpm
Pole pairs 2
Rated frequency 60 Hz
Nominal efficiency 87.5%
Base impedance 23.64631
Stator resistance 0.044225
Magnetizing impedance 1.1178
Stator leakage impedance 0.05956
Rotor leakage impedance 0.05956
Rotor resistance 0.03078

13.11.2 Sensors

Two types of sensors for the induction motor control system are used. One is a
current sensor and the other is a position sensor. The phase current sensing is
performed via two current sensors supplied with 15 V. Their maximum input
currents can be changed by the number of turns in the primary winding, and the
output is a bipolar voltage.

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 269

Encoders or resolvers serve as the position sensor because every point of the
rotor position is needed to synchronize the rotor with the stator excitation. Figure
13.7 shows the structure of an optical encoder. It consists of a light source, a
radially slotted disk and photoelectric sensors. The disk rotates with the rotor. The
two photo sensors detect the light passing through the slots in the disk. When the
light is hidden, a logic “0” is generated by the sensors. When the light passes
through the slots of the disk, a logic “1” is produced. These logic signals are shown
in Fig. 13.7. By counting the number of pulses, the motor speed can be calculated.
The direction of rotation can be determined by detecting the leading signal between
signal A and signal B.

A
B

Light
Sensors A

B

Figure 13.7 The structure of an encoder.

13.11.3 Controller

The controller of the induction motor control system is used to read the
feedback current and position signals, to implement the speed or torque control
algorithm, and to generate the gate signals based on the control signal. Analog
controllers or digital signal processors can perform this task. We have used the
LF2407 as a controller.

The interface of the LF2407 is illustrated in Fig. 13.8. Two quadrature
counters detect the rising and falling edges of the encoder signals. Two input
channels related to the 10-bit Analog-to-Digital Converter (ADC) are selected to
read the two-phase currents. The pins PWM1 to PWM6 output the gating signals to
the gate drive circuitry.

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors270

Q EP-1

Q EP-2

PW M -1 & PW M -6
G ate
D rive

T M S320F2407

En A

AD CIN -1

AD CIN -0Ia

Ib

En B

Figure 13.8 The interface of LF2407.

13.12 Implementation of Field-Oriented Speed Control of Induction Motor

Some practical aspects of implementing the block diagram of Fig. 13.8 are
discussed in this section and subsections. The software organization, the utilization
of different variables, and the handling of the DSP controller resources are
described. In addition, the control structure for the per-unit model is presented.
Next, some numerical considerations have been made in order to address the
problems inherent within fixed-point calculation. As described, current model is
one of the most important blocks in the block diagram depicted in Fig. 13.4. The
inputs of this block are the currents and mechanical speed of rotor. Two sections of
this chapter deal with technical points that should be considered during current and
speed measurement, as well as their scaling. Also, there are some points to be noted
during development of the current model in software; therefore, one section is
dedicated to current model implementation. A PI controller is used in the field-
oriented speed control of the induction motor as a regulator for current and speed
control. The PI structure and block diagram are presented in another section.

13.12.1 Software Organization

The body of the software consists of two main modules: the initialization
module and the PWM Interrupt Service Routine (ISR) module. The initialization
model is executed only once at startup. The PWM ISR module interrupts the
waiting infinite loop when the timer underflows. When the underflow interrupt flag
is set, the corresponding ISR is served. Figure 13.9 shows the general structure of
the software. The complete FOC algorithm is executed within the PWM ISR so that
it runs at the same frequency as the switching frequency or at a fraction of it. The
wait loop could be easily replaced with a user interface [1].

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 271

Hardware
Initialization

Start

Variable
Initialization

Inf. Loop PWM
I.S.R

Figure 13.9 General structure of software.

13.12.2 Base Values and Per-Unit Model

It is often convenient to express machine parameters and variables of per-unit
quantities. Moreover, the LF2407 is a fixed point DSP, so using a normalized per-
unit model of the induction motor is easier than using real parameters. In this
model, all quantities refer to the base values. Base power and base voltage are
selected, and all parameters and variables are normalized using these base
quantities. Although one might violate this convention from time to time when
dealing with instantaneous quantities, the rms values of the rated phase voltage and
current are generally selected as the base voltage for the a-b-c variables while the
peak value is generally selected as the base voltage for d-q variables. The base
values are determined from the nominal values by using (13.31), where , V ,
are the nominal phase current, the nominal phase to neutral voltage, and the nominal
frequency in a star-connected induction motor, respectively. The base value
definitions are as follows:

nI n nf

b

b
b

nb

nb

nb

V
f
VV

II

2
2

2

 (13.31)

bI and V are the maximum values of the nominal phase current and voltage,
is the electrical nominal rotor flux speed, and is the base flux.

b b

b

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors272

13.12.3 Numerical Considerations

The per-unit model has been developed so that the software representation of
speed, current, and flux is equal to 1.0 when the motor has reached its nominal
speed under nominal load and magnetizing current. During transients, the current
might reach higher values than the nominal current in order to achieve a short
response time. Also, the motor speed might exceed the nominal speed (), and
then every per-unit value might be greater than 1.0. This fact necessitates foreseeing
these situations and determines the most suitable numerical format used for the
software.

bI

b

13.12.4 The Numerical Format Determination

The numerical format used in the major part of this chapter is as follows: four
bits are dedicated to the integer part, and twelve bits are dedicated to the fractional
part. This numeric format is denoted by Q4.12. The resolution for this format is
given by

00024414.0
2
1
12

With the sign extension mode of the LF2407 set, the link between the real
quantity and its Q4.12 format representation is illustrated in Fig. 13.10.

24.4e-5

32767

-32767

-8

7.99975586

Figure 13.10 Representation of Q4.12 format.

The reason for this particular format is that the drive control quantities are, for
the most part, not usually greater than four times their nominal values. In other
words, not greater than four when the per-unit model is considered. Where this is
not the case, a different format will be chosen. The selection of a range of [-8,8]
ensures that the software values can handle each drive control quantity, not only
during steady state operation but also during transient operation.

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 273

The Qx.y numeric format uses x bits for the integer part and y bits for the
fractional part, so the resolution is . If z is the per-unit value to implement, then
its software value is

y2
yz 2 in Qx.y format. Care must be taken when performing

operations with a generic Qx.y format. Adding two Qx.y formatted numbers may
result in numerical representation overflow. To avoid this kind of problem, one
possible solution is to perform the addition in the high side of the Accumulator and
set the saturation bit. Another option is to assume that the result will not be out of
the maximum range.

The second solution can be used in this implementation if we know that the
control quantities do not exceed half of the maximum value in the Q4.12 format.
The result can still be represented in the Q4.12 format and directly considered as
Q4.12 format, thereby allowing for a higher level of precision. As far as the
multiplication is concerned, the result (in the 32-bit Accumulator) must either be
shifted x positions to the left and the least significant word stored or be shifted y
positions to the right with the last significant word being stored. The stored result is
in Qx.y format. Figure 13.11 shows two Qx.y formatted 16-bit variables that are
multiplied by one another.

The result of this multiplication in Qx.y format is represented in gray in the 32-
bit Accumulator. Both solutions are depicted in Fig. 13.11.

yx

yx

MSB LSB MSB LSB

yx

*

yx

yx

High Word Low Word

1

2

Figure 13.11 (1) Left shift and store high accumulator, (2) Right shift and store

low accumulator.

Note that in this section there are also constants that cannot be represented by
the Q4.12 format. Operations requiring different formats follow exactly the same
process as that explained above.

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors274

13.12.5 Current Measurement

The field-oriented control structure requires two-phase current as inputs. Here,
current transducers sense these two currents. The current sensor output therefore
needs to be rearranged and scaled so that it may be used by the control software in
Q4.12 format value. The complete process of acquiring the current is depicted in
Fig. 13.12.

Signal
Conditioner A/D

10-bit
Range

adjustment
or offset

Current
Gain

Iabc 1023
:
0

512
:

-512

i abc

Figure 13.12 Current measurement block diagram.

The output signal of current transducer can be either positive or negative. This
signal must be adjusted by the analog interface into a range of (0,3.3V) to allow the
ADC module to read both positive and negative values. Figure 13.13 shows the
inside of the signal conditioner.

CT

1.65v offset

To A/D
1.65v

:
-1.65v

Iabc

Figure 13.13 Current signal conditioner block diagram.

The amplifier gain is chosen such that sensing maxIIabc results in the
absolute value of the amplifier output to be equal to 1.65V. Note that
represents the maximum measurable current, which is not necessarily equal to the
maximum phase current. This information is useful at the point where current
scaling becomes necessary. The ADC input voltage is now converted into a 10-bit
digital value. The 1.65V analog offset is digitally subtracted from the converted
result, thereby giving a signed integer value of the sensed current. The result of this
process is shown in Fig. 13.14.

maxI

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 275

512

-512

i

max

max

-i Sensed
Current

Prescaled
 Value

Figure 13.14 Sensed current values before scaling.

Because the variable format is Q4.12, the sensed phase currents must now be
expressed with the per-unit model and then be converted into the Q4.12 format.
Notice that the per-unit representation of the current is defined as the ratio between
the measured current and the base current, and the maximum current handled by the
hardware is represented by the value 512. The per-unit current conversion into the
Q4.12 format is achieved by multiplying the sensed current by the following
constant:

max

512
4096

I
I

K
b

cu (13.32)

In one single calculation, this constant performs not only the per-unit modeling
but also the numerical conversion into Q4.12 format. When nominal current flows
in a motor running at nominal speed, the current sensing and scaling block output is
1000h (equivalent to 1 per-unit).

The reader may change the numerical format by amending the numerator value
and may adapt this constant to its own current sensing range by recalculating
with its own value. In this control system, maximum measurable current and
base current are = 12A and = 10.7A, respectively. The constant value is:

cuK

maxI
Imax bI

Q8.8808978

12
710512

4096 hF.
.

Kcu

Note that is outside the Q4.12 format range. The most appropriate format
to accommodate this constant is the Q8.8 format, which has a resolution of

cuK

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors276

00390625.0
2
1
8

and the following correspondence to Fig. 13.15.

39.06e-4

32767

-32767

-128

127.996

Figure 13.15 Representation of Q8.8 format.

The currents of two phases can be sampled by means of the DSP controller
using two channels of the ADC module. The block of assembly code below reads
and scales the current of phase A.

; Reading and scaling current value of phase A
LDP #RESULT2>>7
LACL RESULT2 ;Reading A/D result register
RPT #5 ;Shift to right 6 times
SFR
AND #0000001111111111b
SUB #512 ;Subtracting offset value
LDP #IA
SACL IA
LAR AR0, #Kcur
LT IA
MPY * ;Multiplying by coefficient to scale the
 ;current value
PAC
SFL
SACH IA,7 ;Save current value in proper variable

13.12.6 Speed Measurement

As previously mentioned, for finding rotor flux position, it is necessary to
measure the rotor mechanical speed. Usually an incremental encoder is used as a
speed sensor. A 64 pulse per revolution incremental encoder is used to measure the
motor speed. The software speed resolution is thus based on
increments per revolution. This sensor has two outputs and produces two pulse
trains that are 90

256644

0 out of phase with respect to each other. The periods of the pulses

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 277

proportionally to the rotor speed. The two output channels A and B of speed sensor
can be wired directly to the QEP input pins of the LF2407.

Because a low count encoder is used in the control system, and because this
encoder does not have enough resolution at low speeds, the control system uses two
methods in order to estimate the induction motor speed. One method has enough
accuracy in the high speed region, above 200 rpm, and the other has appropriate
resolution in the low speed region under 200 rpm. The first method, which is
utilized during high speed, is based on counting the number of encoder pulses in a
specific time interval. However, the second method is based on the measurement of
time between two encoder pulses. Based on the motor speed, the developed program
can utilize the advantages of both methods and switch between the two methods
based on the actual speed of the motor.

13.12.7 Speed Estimation during High-Speed Region

As previously mentioned, this method is based on counting the number of
encoder pulses in a specified time interval. The QEP assigned timer counts the
number of pulses and records it in the timer counter register (TxCNT). As the
mechanical time constant is much slower than the electrical one, the speed
regulation loop frequency might be lower than the current loop frequency. The
speed regulation loop frequency is obtained in this program by means of a software
counter. This counter accepts the PWM interrupt as input clock and its period is the
software variable called SPEEDSTEP. The counter variable is named speedstep.
When speedstep is equal to SPEEDSTEP, the number of pulses counted is stored in
another variable called and thus the speed can be calculated. The scheme
depicted in Fig. 13.16 shows the structure of the speed feedback generator.

pn

Counter
QEP

speedstep is equal
 to SPEEDSTEP?

K

w m

speed

No

yes

Do nothing

From
Encoder

Figure 13.16 Block diagram of speed feedback calculator.

Assuming that is the number of encoder pulses in one SPEEDSTEP period

when the rotor turns at the nominal speed, a software constant should be
chosen as follows:

pn

speedK

pspeed .nKh01000

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors278

The speed feedback can then be transformed into a Q4.12 format, which can be
used in the control software. In the proposed control system, the nominal speed is
1800 rpm and SPEEDSTEP is set to 125. can be calculated as follows: pn

288
60

4641800
pp TSPEEDSTEPn (13.33)

where 41033

pwm
p f

T (PWM frequency is 10 kHz but the program is

running at 3333 Hz) and hence is given by:speedK

883802214
288

4096 .QhE.Kspeed

Note that is out of the Q4.12 format range. The most appropriate
format to handle this constant is the Q8.8 format. The speed feedback in Q4.12
format is then obtained from the encoder by multiplying by . The flow
chart of speed measurement is presented in Fig. 13.17. A portion of the assembly
code that measures and scales the rotor speed is given below.

speedK

pn speedK

; Start of speed calculation in high speed region
LDP #T2CON>>7
LACC T2CNT ;Read counter register of encoder pulse
 ;counter
SPLK #7FFFh, T2CNT ;Set counter value to 7FFFh
SUB #7FFFh ;Subtract 7FFFh from counter read value
 ;to omit ;offset
LDP #Speedtmp ;Save this value in Speedtmp
SACL Speedtmp
LAR AR0, #Kspeed
LT Speedtmp ;Multiply Speedtmp by Kspeed to find out
 ;scaled speed value
MPY *
PAC
SACH N,4 ;Save speed value in proper variable in
 ;Q4.12 format

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 279

w = Kspeed*np

speedstep = speedstep-1

speedstep = 0

speedstep = SPEEDSTEP

np = TxCNT

Yes

No

TxCNT=0

Figure 13.17 Complete flowchart of speed measurement block during high-

speed region.

13.12.8 Speed Measurement during Low-Speed Region

To detect the edges of two successive encoder pulses, the developed program
can use either the QEP counter or the capture unit input pins. The program has to
measure the time between two successive pulses, so therefore it must utilize another
GP timer. In this program, Timer 3 has been dedicated to the time measurement.
During the interrupt service routine of the capture unit or counter QEP, speed can be
calculated. To obtain the actual speed of the motor, the appropriate number is
divided by the value in the count register of Timer 3.

As it can be inferred, at very low speeds an overflow may occur in Timer 3.
The counter would then reset itself to zero and start counting up again. This event
results in a large error in speed measurement. To avoid this event, Timer 3 will be
disabled in the overflow interrupt service routine. However, this timer is enabled in
the capture unit (counter QEP) interrupt.

The prescalar of Timer 3 is set to x/128, giving the input clock a 234375 Hz
frequency. To obtain the speed value in Q4.12 format, 431238 (a constant
number) is loaded in the accumulator. This number will be divided by the counter

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors280

register of Timer 3. The flow-chart of this implementation is presented in Fig.
13.18.

Temp=T3CNT

T3CNT=0

ACC=31238*32

w=np/8

Enable Timer3

np=ACC / Temp

Start of Capture unit or
Counter QEP ISR

End of Capture unit or
Counter QEP ISR

T3CNT=FFFFh

Timer 3
Disable

Start of Timer 3
Overflow ISR

End of Timer 3
Overflow ISR

Figure 13.18 Flowchart of speed measurement at low speed.

13.12.9 The Current Model

In indirect FOC, the Current Model is used to find the rotor flux position. This
module takes and i as inputs plus the rotor electrical speed and then
calculates the rotor flux position. The current model is based on (13.27) and
(13.28). Equation (13.27) can be written as follows, in transient case:

dsi qs

ds
m

drdr

mr

r i
Ldt

d
Lr

L (13.34)

Assume m
m

dr i
L

 where i is the magnetizing current, therefore (13.34) can be

written as follows:

m

dsmmr iii
dt
dT (13.35)

In order to find the rotor flux speed, we use (13.36) which has been inferred
from (13.28) and (13.30) in a per-unit system.

bmr

qs
re

b
s iT

i
dt
df 1 (13.36)

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 281

where is the rotor flux position and
r

r
r r

LT and re are the rotor time constant

and rotor electrical speed, respectively. The rotor time constant is critical to the
correct functionality of the Current Model. This system outputs the rotor flux
speed, which in turn will be integrated to get the rotor flux position. Assuming that

, (13.35) and (13.36) can be discretized as follows:
)()1(kk qsqs ii

)1(

)(
)1()1(

)()()()1(

1

k

k
Kk

kkkk

mr

qs

br
s

mrds
r

p
mrmr

i

i

T
nf

ii
T
T

ii

 (13.37)

For example, let the constants
r

p

T
T

 and
brT

1 be renamed to and ,

respectively. Here ,

tK rK

mHLr 8.73 73.0rr , and Hzfn 60 . So for and
 we have:

tK

rK

12.400610237.26
37710232.30

11

12.400010967.2
1009.101
3/10000

3
3

3
3

1

QBh
T

K

QCh
T
T

K

br
t

r

p
r

By knowing the rotor flux speed (), the rotor flux position (sf cm) is computed by
the integration formula in the per-unit system.

Tf
kkk sbcmcm ..

)()()1(
 (13.38)

As the rotor flux position range is [0, 2], 16-bit integer values have been used
to achieve the maximum resolution. Figure 13.19 illustrates the relationship
between the flux position and its numerical representation:

65535

9.58e-5

(rad)

Figure 13.19 Relation between rotor flux position and its numerical

representation.

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors282

In (13.38), let Tfsb be called inc . This variable is the rotor angle variation
within one sampling period. At nominal operation (in other words when , the

mechanical speed is 1800 rpm),

1sf

inc is equal to rad11309.0
3/10000

602 . In one

mechanical revolution performed at nominal speed, there are 56
.0 11309

2

increments of the rotor flux position. Let K be defined as the constant, which
converts the [0, 2] range into the [0, 65535] range. K is calculated as follows:

15.104921170
56

65536 QhK

Note that here we choose the Q1.15 format for this constant because the
maximum value of which is 65535, represents 1 per-unit and the value of
cannot be greater than 1 per-unit (2). With the help of this constant, the rotor flux
position computation and its formatting becomes:

)()()1(kkk scmcm Kf

Thus, the Current Model is a block, as depicted in Fig. 13.20, with three input
variables , ,dsi dsi re (represented in Q4.12 format) and one output, which is the
rotor flux position cm represented as a 16-bit integer value. The code block below
shows a portion of the assembly algorithm that determines the rotor flux position.

Current
Model

Ids

Iqs

re

cm

Figure 13.20 Inputs and output of the Current Model block.

;start of calculation rotor flux position
LDP #IDS_R ;start of calculation magnetizing
 ;current
LACC IDS_R
SUB Imr
SACL temp1
MAR *, AR0
LAR AR0, #Kr
LT temp1
MPY *
PAC
SACH temp1,4
LACC temp1
ADD Imr
SACL Imr

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 283

BCND Imr_Neqz, NEQ
LACC #0
SACL temp1
B IQS_Rp

Imr_Neqz: ;if Imr != 0 then start of slip
 ;frequency calculation

LACC Imr
SACL temp2
LACC IQS_R
ABS
SACL temp1
LACC temp1,12
RPT #15
SUBC temp2
SACL temp1
LACC IQS_R
BCND IQS_Rp, GT ;if IQS is negative then change sign of
 ;IQS/Imr
LACC temp1
NEG
SACL temp1

IQS_Rp:

LAR AR0, #Kt
LT temp1
MPY *
PAC
SACH temp1,4
LACC temp1
ADD N ;add rotor speed to slip frequency
SACL fs ;find rotor flux speed

;end of calculation of rotating flux speed
;Start of finding Rotor Flux position by using integral of fs

LACC fs
ABS
SACL temp1
LAR AR0, #Kfs ;multiplying fs bu Kfs, a constant value

;to find increment or decrement in rotor
 ;flux position
LT temp1
MPY *
PAC
SACH teta_inc,4
bit fs,0
BCND fs_neg, TC ;go to fs_neg if teta_inc is negative
LACL teta_inc
ADDS TETA
SACL TETA ;find new rotor flux position if
 ;teta_inc is negative
B fs_pos

fs_neg
LACL TETA
SUBS teta_inc
SACL TETA ;find new roto flux position if teta_inc
 ;is positive

fs_pos
; end of finding Rotor flux position

13.12.10 The PI regulator

An electrical drive based on the Field Orientated Control needs two constants
as control parameters: the torque component reference and the flux component*e

qsi

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors284

reference . The classical PI regulator is well suited to regulate the torque and
flux feedback to the desired values. This is because it is able to reach constant
references by correctly setting both the proportional term () and the integral

term (), which are, respectively, responsible for the error sensibility and for the
steady state error. The numerical expression of the PI regulator is as follows:

*e
dsi

)(kY

pK

iK

(13.39)
1

0
)()()(

k

n
nkikp eeKeK

which is represented in Fig. 13.21.

Kp

Ki

1/Z

Uref

Ufbk

ek

xi

Yk

Figure 13.21 Classical PI regulator structure in discrete domain.

The limiting point is that during normal operation, large reference value
variations or disturbances may occur, resulting in the saturation and overflow of the
regulator variables and output. If they are not controlled, this non-linearity
detriments the dynamic performance of the system. To solve this problem, one
solution is to add to the previous structure a correction of the integral component as
depicted in Fig. 13.22 [2].

Kp

Ki

1/Z

Uref

Ufbk

ek

xi

Yk Y1k

Kcor

-

+

Figure 13.22 Numerical PI regulator with correction of the integral term.

The PI regulators are implemented with output saturation and integral
component correction. The constants Kpi, Ki, Kcor, proportional, integral, and
integral correction components, are selected based on the sampling period and on
the motor parameters. These values should be changed based on the motor speed.
These changes can be done automatically within a dummy loop in the program. To

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 285

show the routine of the PI controller in assembly, the following section of code is
given:

LDP #N_ref ;Start of PI procedure
LACC N_ref ;Load reference speed
SUB N ;subtract motor speed from reference

;speed to find error
SACL err_N ;put error in err_N
LACC xi_N,12 ;load previous value of PI output
 ;controller
LAR AR0, #Kp_N ;start of multiplication Kp*error
LT err_N
MPY *
APAC ;Add previous output of controller with
 ;new value Y(p)=Y(p-1)+Kp*error
SACH Upi_N,4
LACC Upi_N ;start of positive saturation value <
 ;(max)
ABS
SUB IQS_Rmax
BCND N_sat, GT ;if value is less than (max) go to
 ;negative saturation
LACL Upi_N
B N_LIMIT

N_sat
BIT Upi_N, 0 ;start of negative saturation (min)<
 ;value
BCND Upi_Ngz, NTC ;if Upi_N is positive, then go to
 ;Upi_Ngz
LACL IQS_Rmin
SACL Upi_N
BN_LIMIT

Upi_Ngz
LACL IQS_Rmax
SACL Upi_N

N_LIMIT
SACL IQS_R ;start of correction procedure
LAR AR0, #Ki_N
LT err_N
MPY *
PAC
ADD xi_N, 12
SACH xi_N,4
LACC xi_N ;start of saturation on integrator
 ;output
ABS
SUB IQS_Rmax
BCND x_sat, GT
LACL xi_N
B x_LIMIT

x_sat
BIT xi_N, 0
BCND xi_Ngz, NTC ;if xi_N is positive, then go to xi_Ngz
LACL IQS_Rmin
SACL xi_N
B x_LIMIT

xi_Ngz
LACL IQS_Rmax
SACL xi_N

x_LIMIT
SACL xi_N

; end of PI procedure

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors286

13.12.11 Calculation of Sine and Cosine Functions

In order to generate the sine and the cosine of an angle, a sine table and indirect
addressing mode by auxiliary register AR has been used. This algorithm and code
examples are presented in Chapter 11. The flow chart of the field-oriented speed
control of induction motor is presented in Fig. 13.23. This routine is placed inside
the PWM interrupt service routine.

Reading Ia and Ib

Iabc Idqs

Clark Trans.

Regulate
speed?

Calculate speed

Start of PWM ISR

s

Speed PI regulator,
Calculate Iqs

s*

High speed?

Idqs Idqs

Current Model

Ids and Iqs

to PI regulator
 and calculate
 Vds and Vqs

(Vdqs) (Vdqs)New .r

SV PWM

end of PWM ISR

s e

ee

e e

e s

Calculate SIN and
 COS of qr

Yes

No

Yes

No

Figure 13.23 Flow chart of FOC software.

Copyright © 2004 CRC Press, LLC

DSP-Based Vector Control of Induction Motors 287

13.13 Experimental Results

In our experience, the motor has been coupled to a DC generator. The
generator can be loaded with an adjustable resistor providing a variables load. As
explained in the previous sections, the flux reference (i) in the normal speed
range has been set at 0.4 per-unit. To avoid the maximum phase current being

greater than 1 per-unit (

*e
ds

2*2* e
qs

e
dsabc iii), may not be higher than 0.8 per-

unit. This torque reference limitation is integrated into the control software using
the IQS_ref_max constant, which is set to 0CCDh (4.12 format). The following
scope captures show the transient and steady state operations. Figure 13.24 shows
the load torque, reference speed, motor speed, and phase current of the motor during
transient operation. Before a change of the reference speed, a magnetizing current
is applied to the motor to build the magnetizing flux. By increasing the load, a
breaking torque is applied to the motor. In this figure, the reference speed is 100
rpm and the load torque is 45.5 (lb-in).

*e
qsi

Figure 13.24 Start up, no-load condition, (1) load torque, (2) reference speed

100 rpm, (3) motor speed, (4) phase current.

Copyright © 2004 CRC Press, LLC

 DSP-Based Vector Control of Induction Motors 288

13.14 Conclusion

In this chapter, the theory of field-oriented control of induction motors was
described. The structure and organization of software written for the LF2407 DSP
controller was also presented. Some technical points and tools were presented to
assist in developing a working model for an induction motor drive. The modular
structure of this presentation and guidelines allow the reader to quickly grasp the
aspects of FOC, thereby assisting the reader in developing software for specific
needs.

References

1. Texas Instruments, Implementation of a Speed Field Orientated Control of
Three Phase AC Induction Motor using TMS320LF240, Literature Number:
BPRA076, March 1998.

2. Texas Instruments, Field Orientated Control of Three Phase AC-motors,
Literature Number: BPRA073, December 1997.

Copyright © 2004 CRC Press, LLC

Chapter 14

 DSP-BASED CONTROL OF SWITCHED RELUCTANCE MOTOR

DRIVES

14.1 Introduction

Switched Reluctance Motor (SRM) drives are relatively new entities in the
perpetually growing market of Adjustable Speed Motor Drives (ASMD). A rugged,
modular structure and a relatively simple geometry are among the advantages of the
SRM drive. In addition, the absence of magnetic sources, i.e., windings or
permanent magnets on the rotor shown in Fig. 14.1, makes SRM relatively easy to
cool and insensitive to high temperatures. The latter is of prime interest in
applications that demand operation under harsh conditions such as automotive
starter or alternator.

Figure 14.1 Rotor and stator of an 8/6 SRM.

As a singly excited synchronous machine, SRM generates its electromagnetic
torque solely on the principle of reluctance. In most electric machines, an attraction
and repletion force between the magnetic fields caused by the armature and field
windings forms the dominant part of the torque. In a SRM, the tendency of a
polarized rotor pole to align with an excited stator pole is the only source of torque.
It must be noted that optimal performance is achieved by proper positioning of the
current pulse with respect to the magnetic status of the machine. Therefore, the
sensing of the rotor position becomes an integral part of the control in a SRM drive.

A unipolar power inverter is usually used to supply the SRM. The generation of
the targeted current profile is performed using a hysteresis or PWM type current
controller. Although a square-shaped current pulse is commonly used for excitation
in a SRM, different optimal current profiles are sometimes used to mitigate the
undesirable effects of excessive torque undulation and audible noise. In fact, SRM
drives serve as an outstanding example of advanced motor drive systems where the
focus is not on the complicated geometries of the motor, but on the development of
a sophisticated control algorithm. The development of complex control algorithms

289

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Switched Reluctance Motor Drives

290

is facilitated by the recent development of high-performance, cost-effective DSP-
based controllers.

Optimal torque control is the major differentiating factor among various arts of
electric drives. A detailed explanation of the torque generation process and optimal
torque control in the four quadrants of operation of a SRM is given. Later, the
development of speed controllers will be discussed.

14.2 Fundamentals of Operation

Switched reluctance machines can operate as either a motor or a generator. To
explain the torque generation process, we investigate the mechanism of
electromechanical energy conversion. As shown in Fig. 14.2, in order to establish a
reluctance torque, a stator phase is excited at unaligned position displayed by a in
the figure, viz., the position at which a pair of stator and rotor poles exhibits its
largest air gap length. By magnetizing the stator pole, the closest rotor pole will be
magnetically polarized and will experience an attractive force. The tangential
component of this force substantiates an electromagnetic torque in the direction
which reduces the air gap length. The shape of the current is usually controlled
such that a maximum torque per ampere is generated. As the rotor approaches the
aligned position, shown by u in the figure, the radial component of the attraction
force becomes dominant and the tangential component reduces to zero. Therefore,
it makes economic sense to remove the current before the aligned position. The
shaded area in Fig. 14.2 depicts the magnetic energy converted into mechanical
form, whereas the area denoted by “R” demonstrates the magnetic energy that has
not been converted into useful work. Notably, the ratio between mechanical work
and total converted energy into magnetic form is an indication of power quality in
SRM drives. In Fig. 14.2, ψ and θ represent the flux linkages and rotor position,
respectively.

Figure 14.2 Electromechanical energy conversion in SRM.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Switched Reluctance Motor Drives 291

 In order to obtain motoring action, a stator phase is excited when the rotor is
moving from the unaligned position toward the aligned position. Similarly, by
exciting a stator phase when the rotor is moving from aligned toward unaligned
position, a generating action will be achieved. By sequential excitation of the stator
phases, a continuous rotation can be achieved. Figure 14.3 shows the distribution of
the magnetic field during commutations in an 8/6 SRM drive. Notably, the direction
of the rotation is opposite that of the stator excitation. A short flux path in the back-
iron of the motor occurs in each electrical cycle. This, in turn, may cause
asymmetry in the torque production process.

Figure 14.3 Illustration of short vs. long flux paths for a 8/6 SRM.

Proper synchronization of the stator excitation with the rotor position is a key
step in the development of an optimal control strategy in SRM drives. Because the
magnetic characteristics of the SRM, such as phase inductance or phase flux
linkage, portray a one-to-one correspondence with the rotor position, they may be
directly used for control purposes. In either case, direct or indirect detection of the
rotor position forms an integral part of the control in the SRM drives.

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Switched Reluctance Motor Drives

292

The asymmetric bridge shown in Fig. 14.4 is the most commonly used power
electronics inverter for a SRM drive. This topology features a unipolar architecture
that allows for satisfactory operation in SRM drives. If both switches are closed,
the available dc link voltage is applied to the winding. By opening the switches, the
negative dc link voltage will be applied to the winding and freewheeling diodes
guarantee a continuous current in the windings. Obviously, by keeping one of the
switches closed while the other one is open, the respective freewheeling diode will
provide a short-circuited path for the current. This topology can be used effectively
to implement PWM-based or hysteresis-based current regulation as demanded by
the control system. However, one should notice that at high speeds the induced
EMF in the winding is dominant and does not allow effective control of the current
waveform. Therefore, current regulation is an issue related only to the low speed
mode of operation. During generation, the mechanical energy supplied by the prime
mover will be converted into an electrical form manifested by the induced EMF.
Unlike the motoring mode of operation, this voltage acts as a voltage source that
increases the current in the stator phase, thereby resulting in the generation of
electricity.

Figure 14.4 An asymmetric bridge with the front end rectifier for a 3-φ SRM drive.

14.3 Fundamentals of Control in SRM Drives
The control of electromagnetic torque is the main differentiating factor between

various types of adjustable speed motor drives. In switched reluctance motor drives,
tuning the commutation instant and profile of the phase current controls
electromagnetic torque. Figure 14.5 depicts the basics of commutation in SRM
drives. It can be seen that by properly positioning the current pulse, one can obtain
positive (motoring) or negative (generating) modes of operation.

The induced EMF and electromagnetic torque generated by the SRM drive can
be expressed in terms of co-energy as follows:

 ω
θ
θω

θ
i

d
dL

i
WE c)(2

≈
∂∂

∂
=

 2)(
2
1 i

d
dLWT c
θ
θ

θ
≈

∂
∂

= (14.1)

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Switched Reluctance Motor Drives 293

where iLWc ,,, θ , and ω stand for co-energy, phase inductance, rotor position,
phase current, and angular speed, respectively.

It must be noted that the nonlinear effects of magnetic saturation are neglected
here. It is evident that a positive torque is achieved only if the current pulse is
positioned in a region with an increasing inductance profile. Similarly, a generating
mode of operation is achieved when the excitation is positioned in a region with a
decreasing inductance profile. In order to enhance the productivity of the SRM
drive, the commutation instants, (i.e., onθ ,) need to be tuned as a function of
the angular speed and phase current. To fulfill this goal, the optimization of torque
per Ampere is a meaningful objective. Therefore, exciting the motor phase when
the inductance has a flat shape should be avoided. At the same time, the phase
current needs to be removed well before the aligned position to avoid the generation
of negative torque.

offθ

Figure 14.5 Commutation in SRM drives.

14.4 Open Loop Control Strategy for Torque

By the proper selection of the control variables, commutation instants, and
reference current, an open loop control strategy for SRM drive can be designed.
The open loop control strategy is comprised of the following steps:

• Detection of the initial rotor position.
• Computation of the commutation thresholds in accordance with the sign of

torque, current level, and speed.

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Switched Reluctance Motor Drives

294

• Monitoring of the rotor position and selection of the active phases.
• A control strategy for regulation of the phase current at low speeds.

Each step is explained in detail in the subsequent sections.

14.4.1 Detection of the Initial Rotor Position

The main task at rotor standstill is to detect the most proper phase for initial
excitation. Once this is established, according to the direction of rotation, a
sequence of stator phase excitation will be put in place. The major difficulty in
using commercially available encoders is that they do not provide a position
reference. Therefore, the easiest way to find rotor position for motor startup is to
align one of the stator phases with the rotor. This can be achieved by exciting an
arbitrary stator phase with an adequate current for a short period of time. Once the
rotor is in an aligned position, a reference initial position can then be established.
This method requires an initial movement by the rotor, which may not be acceptable
in some applications. In these cases, the incorporation of a sensorless scheme at
standstill is sought out. Although the explanation of sensorless control strategies for
rotor position detection is beyond the extent of this chapter, due to its critical role,
the detection of rotor position at standstill is explained here.

To detect rotor position at standstill, a series of voltage pulses with fixed and
sufficiently short duration are applied to all phases. By consequent comparison
between the magnitudes of the resulting peak currents, the most appropriate phase
for conduction is selected. Figure 14.6 shows a set of normalized inductance
profiles for a 12/8 SRM drive.

Figure 14.6 Assignment of various regions according to inductances in a 12/8

SRM drive.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Switched Reluctance Motor Drives 295

A full electrical period is divided into six separate regions according to the
magnitudes of the inductances. Due to the absence of the induced voltage and small
amplitude of currents, one can prove that the following relationship will hold for the
magnitudes of measured currents:

ABC

Bus
ABC L

TVI ∆
= (14.2)

where ∆T, VBus, and LABC stand for duration of pulses, dc link voltage, and phase
inductances, respectively. Table I summarizes the detection process for a 12/8 SRM
drive. Once the range of position is detected, the proper phase for starting can be
easily determined. Furthermore, in each region there exists a phase that offers a
linear inductance characteristic. This phase can be used for the computation of rotor
position using (14.2).

Table I Detection of best phase to excite at standstill

Region Condition Rotor angle [mech]

I CBA III << 0* 5.70 << θ

II CAB III << 0*0 155.7 << θ

III ACB III << 0*0 5.2215 <<θ

IV ABC III << 0*0 305.22 <<θ

V BAC III << 0*0 5.3730 <<θ

VI BCA III << 0*0 455.37 <<θ

The flowchart shown in Fig. 14.7 summarizes the detection process at standstill.

Figure 14.7 Detection of rotor position at standstill.

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Switched Reluctance Motor Drives

296

14.4.2 Computation of the Commutation Thresholds

In the next step, the commutation angles for each phase should be computed
and stored in memory. If the commutation angles are fixed, computing the
thresholds is relatively straightforward. It must be noted that within each electrical
cycle, every phase should be excited only once. In addition, in a symmetric
machine, phases are shifted by

s

rs
N
NN 0360)(−

=∆θ (14.3)

where and stand for the number of rotor and stator poles. Given a
reference for rotor position such as the aligned rotor position with phase-A, one can
compute and store the commutation instants for each phase. The commutation
thresholds are usually converted into a proper scale so they can be compared with
the value of a counter which tracks the number of incoming pulses from the position
sensor. If a particular encoder can generate N pulses per mechanical revolution,
then every mechanical degree corresponds to

sN rN

360
.4 N pulses received by the QEP

counter of the LF2407. The quadrature input of the LF2407 is designed for
commercially available encoders with quadrature output. Notably, this component
can increase the resolution of the sensed position by a factor of four.

If optimal performance of the machine is targeted, the effects of rotational
speed and current must be taken into account. Figure 14.8 shows a typical current
pulse for SRM drive. To achieve optimal control, the delay angles during the turn-
on and turn-off process need to be taken into account. By neglecting the effects of
motional back-EMF in the neighborhood of commutation, which is a valid
assumption as turn-on and turn-off instants occur close to unaligned and aligned
position, respectively, one can calculate the delay angles as

−

=−
max

ln
rIV
V

r
Lu

delayon
ωθ

≈ −−

u

a
delayondelayoff L

IL maxθθ (14.4)

where VLL au ,,, ω , and r denote unaligned inductance, aligned inductance, angular
speed, bus voltage, and stator phase resistance, respectively. The dependency of the
aligned position inductance upon maximum phase current is an indication of the
nonlinear effects of saturation that need to be taken into account. As the speed and
level of current increases, one needs to adopt the commutation angles using (14.4).
As can be seen, the dependency of commutation angle upon the angular speed is
linear while its dependency upon the maximum phase current has a very nonlinear
relationship.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Switched Reluctance Motor Drives 297

14.4.3 Monitoring of the Rotor Position and Selection of the Active Phases

Once the previous steps are done, one can start with the main control tasks,
namely, enforcing the conduction band and regulating the current. The block
diagram depicted in Fig. 14.9 shows the structure used in a typical algorithm, which
forms the basic control strategy of the SRM drive. Monitoring the rotor position is a
relatively easy task with a LF2407. By properly initializing the second timer in the
event manager, it can be programmed to act as a counter for QEP encoder input.
The content of this counter can be accessed at any stage of the program. This makes
the monitoring of the rotor position an easy task. For the first task in the interrupt
service routine, the current value of the rotor position will be compared against the
commutation thresholds, and phases that should be on will be identified. In the next
step, the current in active phases where an active phase is referred to as a phase that
is turned on will be regulated.

14.4.4 A Control Strategy for Regulation of the Phase Current at Low Speeds

At low speeds where the induced EMF is small, a method for control of the
phase current is necessary. In the absence of such routines, the phase current will
increase exponentially, possibly damaging the semiconductor devices or motor
windings. Hysteresis and PWM control strategies are commonly used for regulating
the phase current at low speeds. At higher speeds, the presence of a significantly
larger back-EMF limits the growth of the phase current and there is no need for
such regulation schemes. The profile of the regulated current depends on the
control objective. In most applications, a flat-topped or square shaped current pulse
will be used. Figure 14.10 shows a regulated current waveform along with the gate
pulse that is recorded at low speed region.

Figure 14.8 A typical current pulse at low speeds.

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Switched Reluctance Motor Drives

298

Figure 14.9 Block diagram of the basic control in SRM drives

Figure 14.10 Phase current waveform and the gating signal without optimization
Reference current = 5.5 A; conduction angle = 180°(electrical)

(operating speed = 980 RPM; output power = 120 W)

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Switched Reluctance Motor Drives 299

In order to conduct hysteresis control, the currents in active phases need to be
sensed. Once the phase current is sampled, it needs to be converted into digital
form. This can be done using the on-chip analog-to-digital converter of the LF2407.
The control rules for a classic two switch per phase inverter shown in Fig. 14.4 are
given by:

• If , then both switches are on. This results in applying the bus
voltage across the coil terminals.

II ≥min

• If , then both switches are turned off. This results in applying the
negative bus voltage across the coil terminals.

II ≤max

• If , there is no need to make any changes in the status of
the switches (i.e., if the switches are on they remain on and if they are off
they remain off).

maxmin III ≤≤

By simple comparison between the sampled current and current limits, one can
develop a hysteresis control strategy. Since the current is sampled during each
interrupt service routine, the time period of the interrupt should be sufficiently small
to allow for a tight regulation. Because in most practical cases only two phases
conduct simultaneously, and given the speed of 30 MIPS (millions of instructions
per seconds) in LF2407 (or 40MIPS for LF2407A) the interrupt service time should
be very small.

PWM technique can also be used in control of the phase current in SRM drive.
The LF2407 offers a fully controllable set of PWM signals via the Compare Units.
The frequency and duty cycle of these PWM pulses can be adjusted at any stage of
the program by the setting of two peripheral registers. This valuable feature can
easily accommodate the control needs of a three-phase SRM drive system. In the
case of a four-phase SRM drive, the fourth PWM signal can be generated by using
one of the timer compare outputs. The block diagram depicted in Fig. 14.11 shows a
typical PWM regulator as used for the control of the phase current in a SRM drive.
It must be noted that due to the variable time constant of the stator windings, a fixed
set of gains in the controller will not be sufficient, and a gain scheduling technique
should be added. One practical way to achieve this is to obtain the gains
corresponding to the aligned and unaligned rotor time constants, and then use a
linear interpolation method to find the controller gains at the intermediate positions.

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Switched Reluctance Motor Drives

300

Figure 14.11 Block diagram of the PWM current control in SRM drive.

The block diagram in Fig. 14.12 summarizes the various steps along with the

peripherals used in the LF2407. The main inputs to the program consist of
commutation angles and the current profile. The quadrature outputs of an encoder
have been used to determine the rotor position and angular speed of the drive. The
phase currents have been sampled and converted into digital form to be used in
current control. The output gates have been chosen from the general purpose
input/output (GPIO) pins. The interface, conditioning circuit, and buffers are not
shown in this picture. The control routine, used for the detection of active phases
and hysteresis/PWM control of the phase currents, is combined in the software to
form the final gating signal.

Figure 14.12 Block diagram of the basic control in SRM drive system.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Switched Reluctance Motor Drives 301

Once the basic operation of the SRM drive is established, one can design and
develop closed loop forms of the control. In the following sections, closed loop
torque and speed control routines in the SRM drive are discussed, including four-
quadrant operation of the drive.

14.5 Closed Loop Torque Control of the SRM Drive

As SRM technology begins to emerge in the form of a viable candidate for
industrial applications, the significance of reliable operation under closed-loop
torque, speed, and position control increases. Figure 14.13 depicts a typical
cascaded control configuration for SRM drives. The main control block is
responsible for generating the gate signals for the power switches. It also performs
current regulation and phase commutation functions. In order to perform these
tasks, it requires reference current, commutation instants, and a sequence of
excitation. The torque controller provides the reference current, while the
information regarding the commutation is obtained from a separate block that
coordinates motoring, generating, and direction of rotation, as demanded by the
various types of control. The various feedback information is generated using either
estimators or transducers.

Figure 14.13 Cascaded control configuration for a SRM drive system.

Depending on the application, an adjustable speed motor drive may operate in
various quadrants of the torque/speed plane. For instance, in a water pump
application, where control of the output pressure is targeted, torque control in one
quadrant is sufficient, whereas in an integrated starter/alternator, four-quadrant
operation is necessary. Figure 14.14 shows the minimum requirement of an
adjustable speed motor drive for performing torque, speed, and position control
tasks. A speed controller may issue positive (motoring) or negative (generating)
torque commands to regulate the speed. In a similar way, a position controller will
ask for positive (clockwise) and negative (counter clockwise) speed commands. The
accommodation of such commands will span all four quadrants of operation in the

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Switched Reluctance Motor Drives

302

torque/speed plane. As a result, four-quadrant operation is a necessity for many
applications in which positioning the rotor is an objective. In order to achieve four-
quadrant operation in SRM drives, the direction of rotation in the air gap field needs
to be altered. In addition, to generate negative torque during generation mode, the
conduction band of the phase should be located in a region with negative inductance
slope.

Figure 14.15 depicts a general block diagram of the closed loop torque control
system. The main modules in this figure are:

• An estimator for the average/instantaneous electromagnetic torque.
• A feed-forward function for fast and convergent tracking of the

commanded torque.
• A computational block to determine commutation instants according to the

sign of demanded torque and magnitude of the phase current.

Figure 14.14 Minimum requirement of an adjustable speed drive for performing

torque, speed, and position control.

The estimator for average/instantaneous electromagnetic torque is designed
based on (14.1). The design also incorporates an analytical model of the phase
inductance/flux linkage as shown below:

 () () () ())2(cos)(cos, 210 θθθ rr NiLNiLiLiL ++= (14.5)
where L0, L1, and L2 represent polynomials, that reflect the nonlinear effects of
saturation. Moreover, the inverse mapping of the torque estimator is used to form a
feed-forward function. In the absence of the torque sensor/estimator, this feed-
forward function can be used effectively to perform open loop control of the torque.
The use of a feed-forward controller accelerates the convergence of the overall
torque tracking. The partial mismatch between reference and estimated torque is
then compensated via a PI controller. It must be noted that the introduction of the
measured torque into the control system requires an additional analog-to-digital
conversion. Figure 14.16 shows a comparison between the estimated and measured
torque in a 12/8 SRM drive at steady state when responding to a periodic ramp
function in closed loop control. The average torque estimator shows good accuracy.
The existence of a 0.4 Nm averaging error is due to the fact that iron and stray

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Switched Reluctance Motor Drives 303

losses are not included in the torque estimator. In order to perform this test, a
permanent magnet drive acting as an active load was set in a speed control loop
running in the same direction at 800 rpm.

As mentioned earlier, operation in all four quadrants of the torque vs. speed
plane is a requirement for many applications. Given the symmetric shape of the
inductance profile with respect to the aligned rotor position, one can expect that for
a given conduction band at a constant speed, current waveforms during motoring
and generating should be a mirror image of each other. However, one should note
that the back-EMF during generation acts as a voltage source resulting in an
increase of phase current even after a phase is shut down. This may cause some
complications in terms of stability at high speeds. In order to alter the direction of
rotation, the only necessary step is to change the sequence of excitation. Notably
the sequence of excitation among stator phases is opposite of the direction of
rotation. The transition between two modes needs to be quick and smooth. Upon
the receipt of a command requesting a change in direction, the excited phase needs
to be turned off to avoid generating additional torque. Regenerative braking should
be performed simultaneously. This requires the detection of a phase in which the
inductance profile has a negative slope. The operation in generation mode continues
until the speed decays to zero or a tolerable near zero speed. At this time, all the
phases will be cleared and a new sequence of excitation can be implemented. Speed
reversal during generating is not a usual case because the direction of rotation is
dictated by the prime mover. In the case that the speed reversal is initiated by the
prime mover, the SRM controller needs to be notified. Otherwise, a mechanism for
the detection of rotation direction should be in place. Such a mechanism would
detect any unexpected change of mode, i.e., motoring to generating.

Figure 14.15 General block diagram of the torque control system.

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Switched Reluctance Motor Drives

304

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 5 10 15 20 25

time[sec]

To
rq

ue
[N

-m
]

(a) Estimated average torque.

-1

0

1

2

3

4

5

6

0 5 10 15 20 25

time[sec]

To
rq

ue
[N

-m
]

(b) Measured torque.

Figure 14.16 Comparison between measured and estimated torque.

14.6 Closed Loop Speed Control of the SRM Drive

As it is the next step in developing a high performance SRM drive, speed
control is explained. As shown in Fig. 14.17, a cascaded type of control can be used
to perform closed loop speed control. The speed can be sensed using the position
information that is already provided by the encoder. Because the SRM is a
synchronous machine, one may choose the electrical frequency of excitation for
control purposes. The relationship between mechanical and electrical speeds is
given by

 mre N ωω = (14.6)
where is the number of rotor poles. Ultimately, success in performing tightly
regulated speed control depends upon the performance of the inner torque control
system as depicted in Fig. 14.17. It is recommended that a feed-forward function be
used to mitigate the initial transients in issuing commands to the torque control
system.

rN

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Switched Reluctance Motor Drives 305

Figure 14.17 Closed loop speed control of SRM drive.

14.7 Summary

SRM drives are making their entry into the adjustable speed motor drive
market. To take full advantage of their capacities, the development of high-
performance control strategies has turned into a necessity. The advent of cost-
effective DSP-based controllers provides an opportunity to engineer for this need in
an effective way. A successful implementation of these methodologies demands a
good understanding of the torque generation process. Basic control methods for the
SRM drive have been discussed. These include the principles of design for closed
loop control strategies. More advanced technologies, such as position sensorless
and adaptive control, are also being investigated by many researchers across the
globe, and there have been great advances in these areas as well. It is expected that
developments in better efficiency, fault tolerance, and compactness will come about
as a result of these efforts in years to come.

14.8 Algorithm for Running the SRM Drive using an Optical Encoder

A simple algorithm for running a four-phase SRM drive using a LF2407 DSP
controller is shown in this section. One may change t-on and t-off to adjust the
commutation angles. In order to adjust the current magnitude, HLIMIT and LLIMIT
should be tuned. A level-three interrupt has been used to perform the control of the
conduction band and phase current in an encoder-based architecture. By aligning
one phase, a reference for rotor position is provided. Next, the commutation
instants for each phase have been computed and the interrupt routine has been
invoked. Because there is no control on the current during the aligning process, a
current limiting algorithm is required. To obtain a better understanding of the
algorithm, the following flow chart is prepared

Copyright © 2004 CRC Press, LLC

 DSP-Based Control of Switched Reluctance Motor Drives

306

Figure 14.18 Flow chart of the overall SRM drive.

Copyright © 2004 CRC Press, LLC

Chapter 15

DSP-BASED CONTROL OF MATRIX CONVERTERS

15.1 Introduction

Traditionally, ac voltages and currents having variable amplitude and frequency
are generated in PWM modulated voltage-source inverters (PWM-VSI). These
inverters need dc power, which is usually supplied by a diode bridge rectifier or a
PWM active rectifier. This can be considered indirect power conversion because
the topology is based on two types of power conversions via a dc link (capacitor).
Indirect power converters perform the ac/ac power conversion by converting ac to
dc through a rectifier, and then converting dc back to ac via an inverter. This
operation is illustrated in Fig. 15.1.

DCAC Input
Utility

Energy
Storage

Output
Load ACDC

(a) indirect power conversion

ACInput
Utility

Output
Load AC

(b) direct power conversion

Figure 15.1 Two power conversion schemes.

An alternative to indirect power converters is the direct power converter such
as a cycloconverter or a forced-commutated cycloconverter (FCC). Since both of
these converters perform true direct ac/ac power conversion, they need no
intermediate power converting process. Cycloconverters, using thyristors, are
typically utilized for power applications in the megawatt-range. However, the
inability of the thyristors to control turn off limits the output frequency to half the
input frequency.

The FCC, otherwise known as a matrix converter, has no limit on output
frequency due to the fact that it uses semiconductor switches with controlled turn-
off capability. Examples of these semiconductor switches include the IGBT,
MOSFET, and MCT. Since being introduced in 1976, the matrix converter has
received an increased amount of interest because it lacks the dc link and posses the
capability of bi-directional power flow control. The matrix converter has been
studied intensely as an alternative to indirect power converter systems.

307

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters

308

15.2 Topology and Characteristics

The matrix converter is a single-stage converter, and has an array of m by n bi-
directional switches which directly connect an m-phase voltage source to an n-phase
load. The number of input phases must be at least three, and the number of output
phases can be chosen from one to theoretically infinity. Figure 15.2 shows a
schematic representation of the most plausible application in which a matrix
converter connects a three-phase voltage source to a three-phase load. The matrix
converter is characterized by its ability to connect any input phase, a, b, or c to any
output phase A, B, or C at any instant. This allows bi-directional power flow and
sinusoidal input currents by directly interconnecting the input and output voltage
system via bi-directional switches. The advantages and disadvantages of the matrix
converter, when compared with conventional indirect power conversion, can be
listed as follows:

A. Advantages

• No dc link capacitor or inductor
• Sinusoidal input and output currents
• Possible power factor control
• Four-quadrant operation
• Compact and simple design
• Regeneration capability

B. Disadvantages

• Reduced maximum voltage transfer ratio (0.866)
• Many bi-directional switches needed
• Increased complexity of control
• Sensitivity to input voltage disturbances
• Complex commutation method

Although the matrix converter has several disadvantages, these drawbacks have
been mostly overcome. For example, the reduced voltage transfer ratio problem has
been worked around by designing motors that reach maximum flux at the reduced
matrix converter output voltage. The problem of physical space needed by the
increased number of switches has been overcome by the development of power
electronic building blocks such as the Eupec ECONOMACTM matrix module, or by
modifying the matrix converter topologies to use a fewer number of switches. The
complexity of control and sensitivity to input voltage disturbances has also been
solved by the development of different control algorithms. In all, the progress of the
matrix converter has significantly improved its performance, rendering it an
acceptable choice for compact and integrated converter-motor drives.

Because the matrix converter is fed by an input voltage source and connected to
an inductive load, the following two basic rules must be always followed.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters 309

• Any two input phase voltages must not be connected to the same output
line to avoid a short-circuit condition.

• Any output phase cannot be opened to avoid the interruption of inductive
loads.

By defining the switching functions of each bidirectional switch as

 where,

=
openS

closedS
ts

ij

ij
ij ,0

,1
)({ } { }CBAjcba ,,,,,i ∈∈ (15.1)

the above two constraints can be expressed by

 { }CBAjsss cjbjaj ,,,1 ∈=++ (15.2)
With these constraints, the 3 by 3 matrix converter can allow only 27 possible

switching states among the possible 512 switching combinations.

Va

IMVb

Vc

ia

ib

ic

LF

CF

iA

iB

iC

VAB

VBC

A

B

C

a

b

c

SaA

SbA

ScA

SaB

SbB

ScB

SaC

SbC

ScC

Bi-directional Switch

Motor

Input Filter

Matrix Converter
Figure 15.2 The three-phase matrix converter topology.

15.3 Control Algorithms

Two control schemes, the Venturini method and the space vector modulation
method (SVM), provide independent control of the magnitude and the frequency of
the output voltages.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters

310

15.3.1 Venturini Method

In 1980, Venturini and Alesina proposed a PWM modulation method for the
matrix converter, known to as the “Venturini method”. The Venturini method can
be summarized as follows: for a given set of three-phase input voltages, a desired
set of three-phase output voltages can be synthesized by sequential piecewise
sampling of the input waveforms. The duration of each sample is derived
mathematically to ensure that the average value of the actual output waveform
within each sampling cycle tracks the required output waveforms. This method is
also used to control the three-phase input currents.

If the input and output voltage vectors are defined by

=

=

)(
)(
)(

,
)(
)(
)(

tV
tV
tV

V
tV
tV
tV

V

C

B

A

out

c

b

a

in (15.3)

the relationship between them can be written as

 inout VMV ⋅=

=

)(
)(
)(

)()()(
)()()(
)()()(

)(
)(
)(

333231

232221

131211

tV
tV
tV

M

tmtmtm
tmtmtm
tmtmtm

tV
tV
tV

c

b

a

C

B

A

44444 34444 21

 (15.4)

where M is the instantaneous transfer function matrix. From the input-output
power balance (Pin=Pout), the following relationships are valid for the input and
output currents:

 out
T

in iM ⋅=i

3214444 34444 21321

out

C

B

A

T
in

c

b

a

i

ti
ti
ti

M

tmtmtm
tmtmtm
tmtmtm

i

ti
ti
ti

=

)(
)(
)(

)()()(
)()()(
)()()(

)(
)(
)(

332313

322212

312111
 (15.5)

where
T

M is the transpose of matrix M .

Each entity of the instantaneous transfer function matrix, mij(t) (i,j=1,2,3),
represents the duty cycle function of a bi-directional switch within one switching
period. The duty cycle functions are limited by the existence constraint

)3,2,1,(1)(0 =≤≤ jitmij (15.6)
and the restriction imposed on the matrix converter switches by (15.2)

 ∑m (15.7))3,2,1(1)(
3

1
==

=
it

j
ij

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters 311

The maximum voltage transfer ratio of input to output voltage was limited by
0.5 in the initial approach of the Venturini method. Later, this method was further
modified in order to increase the maximum voltage transfer ratio to 0.866.

15.3.2 The Initial Approach

We first find the transfer function matrix M , which consists of the duty cycle
functions of the nine bi-directional switches. For a set of three-phase input supply
voltages

 (15.8)

+
−=

=
)3/2cos(
)3/2cos(

)cos(

)(
)(
)(

)]([
πω
πω

ω

tiimV
tiimV

tiimV

tcV
tbV
taV

tiV

where Vim is the amplitude of the input voltage and ωi is the input angular
frequency. The output voltages are generated as average values of the piecewise
sampling of the input supply waveforms by three switching sequences within
sampling time Ts.

The three output phase voltages are related to the input supply voltages with the
transfer function matrix given by

 (15.9)

++
−+
+

=

=
)3/2cos(
)3/2cos(

)cos(

)(
)(
)(

)]([
πθω
πθω

θω

otoomV
otoomV

otoomV

tCV
tBV
tAV

toV

where

 (15.10)

=

)(
)(
)(

)()()(
)()()(
)()()(

)(
)(
)(

213

132

321

tV
tV
tV

tmtmtm
tmtmtm
tmtmtm

tV
tV
tV

c

b

a

C

B

A

By solving (15.10), mathematical expressions of the switch duty cycles can be
obtained.

)
3

2)cos((
3
2

3
1)(

)
3

2)cos((
3
2

3
1)(

)cos(
3
2

3
1)(

3
3

2
2

1
1

πωω

πωω

ωω

+−+==

−−+==

−+==

tq
T
Ttm

tq
T
Ttm

tq
T
Ttm

io
s

io
s

io
s

 (15.11)

where q is the voltage transfer ratio (imom VVq =). These modulation functions
are used to control the matrix converter switches in order to obtain sinusoidal input
as well as sinusoidal output currents.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters

312

For complete generation of the output voltage waveforms with any output
frequency, the desired output voltages must be entirely contained within the
continuous envelope formed by the input voltages. It is clear that this constraint
limits the available maximum voltage transfer ratio to 0.5 as shown in Fig. 15.3.

Vi=Vimcoswit

Vo=0.5Vimcoswit

Figure 15.3 Envelope of the three-phase input voltages and output voltage of
maximum amplitude 0.5Vim.

15.3.3 The Enhanced Approach

The output voltage is limited to half of the input voltage with the previously
discussed control scheme. In enhanced control scheme, the voltage transfer ratio is
raised to 0.866. In this new scheme, the common-mode third-harmonic of the input
frequency is subtracted from the input-phase voltages in order to extend the output
voltage limitation. The optimum amplitude of the third-harmonic of the input
frequency was found to be Vim/4, which allows for a 0.75 maximum voltage transfer
ratio by enlarging the area within the input voltage envelope. Note that this
subtraction is equivalent to adding the third-harmonic of the input frequency to the
output phase voltage, which is shown graphically in Fig. 15.4.

Further increasing the voltage transfer ratio can be obtained by subtracting the
third harmonic of the output frequency from the desired output phase voltage. By
decreasing the peak-to-peak value of the output phase voltage, a voltage transfer
ratio of 0.866 can be obtained, which is the maximum voltage gain a matrix
converter can generate. The optimum amplitude of the third-harmonic of the input
frequency was found to be Vom/6. Fig. 15.5 shows how third-harmonic injection can
enlarge the maximum value of the output voltage. Third-harmonic injection of the
input and output frequencies into the target output voltages has no effect on
isolated-neutral three-phase loads due to third harmonic cancellation in these
systems.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters 313

Vi=Vim{cos(wit)-0.25cos(3wit)}

Vo=0.75Vimcosωot

Figure 15.4 Envelope of the third-harmonic injected input voltages and output

voltages with 0.75Vim maximum value.

Vi=Vim{cos(wit)-0.25cos(3wit)}

Vo=0.866Vim {cosωot-cos(3ωot)/6}

Figure 15.5 Envelope of the third-harmonic injected input voltages and third-

harmonic injected output voltages with 0.866Vim maximum value.

The two-step third-harmonic injection described above results in the desired output
voltage expression.

+

−

+
−=

)3cos(
)3cos(
)3cos(

4
)3cos(
)3cos(
)3cos(

6
)32cos(
)32cos(

)cos(

)(
)(
)(

t
t
t

V

t
t
t

V

tV
tV

tV

tV
tV
tV

i

i

i
im

o

o

o
om

oom

oom

oom

C

B

A

ω
ω
ω

ω
ω
ω

πω
πω

ω

 (15.12)

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters

314

=

)(
)(
)(

)()()(
)()()(
)()()(

333231

232221

131211

tV
tV
tV

tmtmtm
tmtmtm
tmtmtm

c

b

a

By a mathematical approach, the switching functions required to obtain the target
output voltages expressed in (15.12) can be found by

)
3

)1(2cos(
3
2

3
1)(πω −−+= jtqtm iij

)}3cos(
32

1)3cos(
6
1)

3
)1(2{cos(ttit ioo ωωπω +−−−⋅

)}
3

)1(22cos()
3

)1(24{cos(
39

2 πωπω −+−−−− jtjtq ii (15.13)

15.4 Space Vector Modulation

In 1989, Huber presented a SVM algorithm for the matrix converter. The first
version of the SVM technique focused on only output sinusoidal voltage generation
by applying the SVM technique to output stage. Later Huber presented the full
version of SVM using the space vector techniques in the input stage as well as the
output stage, which can simultaneously achieve sinusoidal input and output
currents. This algorithm has given a significant impact by enabling the SVM used
in the conventional PWM-VSI to be applied to the matrix converter. While the
Venturini method is inherently less flexible because of its mathematical approach,
the SVM algorithm allows the matrix converter to use a variety of control methods.

The SVM technique is derived from the fact that the matrix converter has
exactly the same operation of its equivalent indirect counterpart. The matrix
converter is essentially a rectifier stage and inverter stage with a fictitious dc link.
Figure 15.6 shows the equivalent circuit of the matrix converter consisting of bi-
directional switches. It is clear that the matrix converter has the same input and
output voltages and currents as its equivalent circuit shown in Fig. 15.7. The ac/ac
power conversion is now independently performed in the rectifier stage and the
inverter stage via the fictitious dc link. The fictitious dc link voltage is built by
chops of the input voltages through the rectifier stage. Applying the inversion
algorithm to the fictitious dc link voltage as in a conventional PWM-VSI generates
the output voltages.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters 315

iB

iC

VA

VBB

a

b

VC

iA
A

Ccic

ib

ia

Sap Sbp Scp

San Sbn Scn

SAP SBP SCP

SAN SBN SCN

Vpn

Rectifier Stage Inverter Stage

o

Vc

Vb

Va

Idc

Figure 15.6 The equivalent circuit of the matrix converter used in a derivation of

the SVM.

In the inverter stage, the output voltage space vector is defined in terms of the
line-to-line voltages by

)(
3
2)(120120 °−° ⋅+⋅+= j

CA
j

BCABo eVeVVtV (1 5.14)

In the complex plane,)(toV is a vector rotating at an angular output frequency

ωo with a constant length (omV3). This output voltage vector is synthesized by
time averaging using the six active vectors and two zero vectors. Figure 15.8 shows
an example of how the output voltage vector could be synthesized when it lies in
Sector І.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters

316

iA

iB

iC

VA

VB

A

B

C

a

b
c

SaA

SbA

ScA

SaB

SbB

ScB

SaC

SbC

ScC
VC

Va

Vb

Vc

ia

ib

ic

o

(a) matrix converter

iB

iC

VA

VB
B

a

b

VC

iA
A

Ccic

ib

ia

Sap Sbp Scp

San Sbn Scn

SAP SBP SCP

SAN SBN SCN

Vpn

Rectifier Stage Inverter Stage

o

Vc

Vb

Va

(b) equivalent circuit

Figure 15.7 Equivalent operation of the matrix converter and its equivalent
circuit.

The duty cycles of the active and zero vectors are found by

)60sin(svv
s

m
T
Td θαα −°⋅==

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters 317

)sin(svv
s

m
T
T

d θβ
β ⋅== (15.15)

 βα dd
T
Td

s

ov
ov −−== 1

The modulation index, mv in the inverter stage is defined as

 10,3
≤≤= v

pn

om
v m

V
Vm (15.16)

The main objective of the rectifier stage is to draw sinusoidal input currents
with a controllable displacement angle as well as maintain a dc voltage in the
fictitious dc link. Since the input currents are sinusoidal, the output of the rectifier
stage can be considered as a dc current source, Idc. The SVM of the input current
vector is completely analogous to the SVM of the inverter stage. Figure 15.9 shows
the input current vector and the current switching hexagon.

V1(p,n,n)

V6(p,n,p)

V5(n,n,p)

V4(n,p,p)

V3(n,p,n)

V2(p,p,n)

θsv

Vo

L

dαV6

dβV1

VAB

VBC

VCA

Im

Re

sector 1

sector 2

sector 3

sector 4

sector 6

sector 5

V0(p,p,p)
(n,n,n)

Figure 15.8 Output voltage space vectors and example of output voltage
vector synthesis.

The duty ratios of the rectifier stage are

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters

318

)60sin(scc
s

m
T
T

d θµ
µ −°⋅==

)sin(scc
s

m
T
T

d θυυ ⋅== (15.17)

 υµ dd
T
T

d
s

c
c −−== 10

0

The modulation index, mc in the rectifier stage is defined as

 10, ≤≤ c
dc

im
c m

I
=

I
m (15.18)

I1(a,c)

I6(a,b)

I5(c,b)

I4(c,a)

I3(b,a)

I2(b,c)

θscdµI6

dυI1

ia

ib

ic

Im

Re

I0(a,a)
 (b,b)
 (c,c)

Ii

sector 1

sector 2

sector 3

sector 4

sector 6

sector 5

Figure 15.9 Input current space vectors and example of input current vector
synthesis

Two space vectors, input current and output voltage, are independently applied
to the rectifier and inverter stages to obtain sinusoidal input currents and sinusoidal
output voltages. The two modulations are finally combined to control the matrix
converter.

)60sin()60sin(/ scsvs mddTTd θθµααµαµ −°⋅−°⋅=⋅==
)60sin()sin(/ scsvs mddTTd θθµββµβµ −°⋅⋅=⋅==

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters 319

)sin()60sin(/ scsvs mddTTd θθυααυαυ ⋅−°⋅=⋅==
)sin()sin(/ scsvs mddTTd θθυββυβυ ⋅⋅=⋅== (15.19)

The voltage transfer ratio, m, of the matrix converter is proportional to the
product of the two modulation indexes, mc and mv.

 0 = 1≤⋅≤ vc mmm (15.20)

15.5 Bidirectional Switch

The matrix converter requires bidirectional switches capable of conducting
current and blocking voltage in both directions. Since there is no such device
currently available, it is constructed by a combination of diodes and unidirectional
switches such as the IGBT.

Figure 15.10(a) shows the diode bridge bidirectional switch cell configuration
used in the earlier versions of the matrix converter. The main advantage is that the
current conduction is carried by only one IGBT, thus, one gate driver is needed per
switch cell. However, device losses are relatively high because there are three
devices in each conduction path. The current direction through the switch cell
cannot be controlled. This is a disadvantage because most commutation
technologies require the independent control of each IGBT in a cell.

The common emitter (or collector) bidirectional switch arrangement consists of
two diodes and two IGBTs connected in parallel as shown in Fig. 15.10(b) and (c).
Each IGBT can independently control the direction of the current from source to
load, or load to source. Conduction losses are also reduced because only two
devices carry the current. The common collector bidirectional switch cell
arrangement also requires less isolated gate drive power than the common emitter
bidirectional switch cell.

Sp

Sn

 (a) diode bridge type (b) common collector type

Sp

Sn

(c) common emitter type

Figure 15.10 Bidirectional switch cell.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters

320

15.6 Current Commutation

Reliable current commutation between switches in the matrix converter is more
difficult to achieve than conventional PWM inverters because there are no natural
freewheeling paths provided by the diodes in inverters. Therefore, commutation has
to be actively controlled at all times. No two bi-directional switches are switched
on at any instant, as it would result in line-to-line short circuits and the destruction
of the converter. Also, the bi-directional switches for one output phase should not
all be turned off at any instant, as it would result in the absence of a path for the
inductive load current, causing large over-voltages. These two considerations cause
a conflict because semiconductor devices cannot be switched instantaneously due to
propagation delays and finite switching times.

A common method of current commutation uses a four-step commutation
strategy in which it is necessary to know the direction of the output current through
the switches. Figure 15.11 shows a schematic condition to commutate an output
phase current from bi-directional switch S1 from S2. Before the commutation, both
IGBTs (S1c and S1nc) in the switch cell S1 are gated to allow both directions of
current flow. Assume that the load current is in the direction shown in Fig. 15.11.
When a commutation from S1 to S2 is required, the current direction information is
used to determine which unidirectional switch in S1 is not conducting. This
unidirectional switch is turned off first. In this case, the unidirectional switch S1nc is
turned off. Then, the next conducting switch in the incoming switch cell S2 is gated
(S2c in this example). The load current transfers to the incoming switch either at this
point or when the outgoing switch (S1c) is turned off according to amplitude of input
voltages. The remaining unidirectional switch in the incoming device (S2nc) is
turned on to allow for current reversal. This process is shown in a timing diagram
in Fig. 15.12. The delay between each switching event is determined by the device
characteristics in order to allow enough switching time for the device.

iL

ib

ia

VbVa

S2nc

S2c

S1nc

S1c

outgoing bidirectional switch S 1

incoming bidirectional switch S 2

Figure 15.11 Schematic condition to commutate an output phase current from

a switch S1 from S2.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters 321

S1

S2

td

S1c

S1nc

S2c

S2nc

t1 t2 t3 t4

On Off

Off On

Figure 15.12 Switching diagram of four-step commutation.

15.7 Overall Structure of Three-Phase Matrix Converter

15.7.1 Controller

A powerful DSP such as the LF2407 is a necessity for controlling matrix
converters due to their complex switching operation. Either the Venturini or SVM
algorithm explained previously can be implemented on the DSP. In general, the
DSP output ports cannot provide the required 18 PWM signals. Therefore, nine
switching signals are generated by the DSP and fed to a Programmable Logic
Device (PLD) such as an FPGA or PAL.

15.7.2 Interface Parts

Four-step commutation as explained above, is implemented via an interface
board using a PLD. Input signals of the PLD are nine switching signals for nine bi-
directional switches, which are provided from the DSP, and information of three
output line-current directions, which is provided through current sensors and simple
voltage comparators. Output signals of the PLD are sent to 18 gate drives that turn
the individual unidirectional switches on or off.

15.7.3 Power Circuits

A matrix converter can be implemented by a matrix module (Eupec
ECONOMAC) which consists of 18 IGBTs. Several additional power circuits are
required to guarantee and protect the matrix converter and controller operation.
Input filters should be used at the input of the matrix converter to reduce the
switching harmonics present in the input current. The requirements for the input

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters

322

filter includes a cutoff frequency lower than the switching frequency of the matrix
converter, minimal reactive power at the grid frequency, minimal volume and
weight, and minimal input filter inductance voltage drop at rated current in order to
avoid a reduction in the voltage transfer ratio. Careful design of the input filter is
required because a bad filter design can affect the output currents as well as the
input currents of the converter.

A clamp circuit is also required to protect the matrix converter from over-
voltages in the input or output side. Over-voltages could appear on the input side
due to input line perturbations. Over-voltages can also appear from the output side if
an over-current fault exists. In these situations, a clamp circuit can protect the
matrix converter by the charging of a DC capacitor through diodes. The clamping
circuit uses 12 fast-recovery diodes to connect the capacitor to the input and output
terminals. The complete matrix converter as discussed above is shown in Fig.
15.13.

Matrix Converter

Supply

Clamp
Protection

Circuit

Current
Transducer

LEM

Gate Drivers
DSP

TMS320F240

Motor

Sign Detection

Input Filter

Programmable Logic
Device(PLD)1

2

9

1

18

1

18

PC HOST

user

Interface parts Power CircuitsController

Figure 15.13 Overall structure of three-phase matrix converter implementation.

15.8 Implementation of the Venturini Algorithm using the LF2407

Since matrix converters require the control of 18 unidirectional switches, DSP-
based implementation is essential. The matrix converter algorithms are
computationally intensive and require real-time calculation of the switch duty
cycles. The requirements for generating PWM control signals for matrix converters
in real-time include the fast computation of the switch duty cycles (within only one
switching period) and the generation of the control pulses. The DSP-based
implementation of PWM techniques is important in making the matrix converters

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters 323

practicable. In this section, the implementation of the first version of the Venturini
algorithm using a LF2407 Evaluation Module (EVM) is introduced.

The Venturini algorithm is totally different from conventional PWM algorithms
such as the SPWM (sinusoidal PWM) or SVPWM algorithm for inverters. It cannot
be implemented using the standard PWM modules on the LF2407 without external
logic circuitry. Therefore, an implementation method will be introduced that does
not require the use of external logic circuits.

DSP implementation of the Venturini algorithm discussed above includes two
main procedures:

• Calculation of the switch duty cycle (T1, T2, and T3) based on the input and
output voltage waveforms using (15.5)-(15.7) within one switching period.

• Generation of the switch control pulses with the predefined pattern
according to the duty cycles.

The calculations should be performed for every switching period. The sample
period and duty cycles calculated during one period are used as control variables for
the next set of calculations. To do this, calculation results can be stored first to
memory and subsequently loaded into the timer period register. Once the timer
period is loaded, the switching pulses are then generated for nine switches. These
procedures are performed using the timer operation as shown Fig. 15.14.

Timer1

T1PR T1 T2 T3 T1 T2 T3

T1PINT T1PINT T1PINT T1PINT T1PINT T1PINT

Ts Ts

Figure 15.14 Operation of the timer counter and the period interrupt.

At the first instant of a switching period, a timer period register is loaded with
the duty cycle T1 calculated in the previous period. The predefined control pulses
corresponding to T1 are sent to switches S1, S6, and S8. The timer then starts the
continuous up-counting operation. As soon as the value in its counter is equal to
that of the period register, the period interrupt T1PINT occurs. The timer operation
is disabled in the interrupt service routine and the timer counter resets to 0. At the
same time, the duty cycle for T2 is loaded into the period register, and the
corresponding gating pulses are generated for switches S2, S4, and S9. Therefore,
commutation can take place from S1 to S2, S6 to S4, and S8 to S9. The timer restarts

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters

324

the continuous up-counting operation again and the same procedure is repeated for
the duty cycle T3.

The calculation of the duty cycles is performed while the gating signals are
being generated, and is therefore completed within Ts. The three resulting duty
cycles are used for the ‘ON’ durations of nine switches in the next sampling period.
Real-time calculation of the duty cycles is achieved without affecting the generation
of the pulse signals. The gating signals produced are shown in Fig. 15.15.

T2T1 T3 T2T1 T3 T2T1 T3

Ts Ts Ts

Gate signal of S 1 , S6 , S8

Gate signal of S 2 , S4 , S9

Gate signal of S 3 , S5 , S7

Figure 15.15 DSP output signals.

Note that only one timer is needed in generating the gating pulses because the
same commutation sequence is used for three bidirectional switches in three output
legs. If different commutation sequences are desired, then each sequence will need
its own timer. Using different commutating sequences will result in the same
performance of the converter except that the harmonic components of the output
currents will vary.

Figure 15.16 shows flow charts of the main algorithm and the period interrupt
service routine used with DSP implementation.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters 325

start

Initialize EVM
Define constants and variables

Set up interrupts

Calculate duty cycles(T1, T2, T3)
for 9 switches

Output predefined switching
patterns for T1 (T2 or T3)

Store T1(T2 or T3) into
the peroid register (T1PER)

Reset the timer counter

Enable timer1 operation

Halt until the timer1 period
interrupt

Curent sample: T3 ?

Update modulation index q and
frequency increment ω it, ωot

Yes

No

Use initial value of modulation
index q and frequency ωit, ωot

Disable interrupts

Disable timer1 operation

Restore DSP register

Enable interrupts

Return to DSP main program

Save current DSP registers

Period interrupt occurrence
by the equal timer counter

with the duty cycle

 (a) main program (b) period interrupt

Figure 15.16 Flow chart of the Venturini-based DSP program.

References

1. L. Gyugyi and B. Pelly, Static Frequency Changers. New York: Wiley 1976.
2. M. Venturini, "A new sine wave in, sine wave out conversion technique

eliminates reactive elements," Proceedings of Powercon 7, vol. E, pp. E3-1-E3-
15, 1980.

Copyright © 2004 CRC Press, LLC

DSP-Based Control of Matrix Converters

326

3. A. Alesina and M. Venturini, "Analysis and design of optimum-amplitude nine-
switch direct AC-AC converters," IEEE Transactions on Power Electronics,
vol. 4, no. 1, pp. 101-112, Jan. 1989.

4. L. Huber and D. Borojevic, "Space vector modulator for forced commutated
cycloconverter," IEEE Industry Applications Society Annual Meeting, vol. 1
pp. 871-876, 1989.

5. L. Huber, and D. Borojevic, "Space vector modulated three-phase to three-
phase matrix converter with input power factor correction," IEEE Transactions
on Industry Applications, vol. 31, no. 6, pp. 1234-1246, 1995.

6. L. Zhang, C. Watthanasarn and W. Spepherd, "Control of ac-ac matrix
converters for unbalanced and/or distorted supply voltage," in Proc. PESC’01,
vol. 2, pp. 1108-1113.

7. P. W. Wheeler, J. Rodriguez, J.C. Clare, L. Empringham and A. Weinstein,
“Matrix converters: A technology review,” IEEE Transactions on Industry
Electronics, vol. 49, no. 2, pp. 276-288, 2002.

8. C. Watthanasarn, Optimal control and application of ac-ac matrix converters,
Ph.D. thesis, University of Bradford, UK, 1997.

9. TMS320F/C240 DSP Controllers, Peripheral Library and Specific Devices,
Texas Instruments, 1999.

10. TMS320F/C240 DSP Controllers, CPU and Instruction Set, Texas Instruments,
1999.

11. P. Nielsen, F. Blaabjerg, and J. Pedersen, “Novel solutions for protection of the
matrix converter to three-phase induction machine” in Conf. Rec. IEEE-IAS
Annual Meeting, pp. 1447-1454, 1997.

Copyright © 2004 CRC Press, LLC

Appendix A

DEVELOPMENT OF FIELD-ORIENTED CONTROL INDUCTION

MOTOR USING VISSIM™

A.1 Introduction

VisSim™ software by Visual Solutions is a graphical user interface (GUI) that
allows the user to develop and simulate control algorithms without having to write
lines of code. Developing control algorithms is done by interconnecting discrete
graphical or functional blocks to make a block diagram. Several individual blocks
may be combined to form a compound block as seen in the “VHz + SVGEN /
MF…” block of Fig. A.1. Once an algorithm is developed, it can be simulated on
the personal computer (PC), jointly run by the PC and LF2407, or run totally on the
LF2407 DSP.

Figure A.1 A VisSim™ block diagram.

A.2 Overview of VisSim™ Placing and Wiring Blocks

Functional blocks can be placed and wired to implement the desired algorithm.
All previously made blocks within a schematic can be found and are organized with
respect to their associated groupings by going to the Blocks menu shown in Fig.
A.2. VisSim contains a number of standard discrete functional blocks for linear,
nonlinear, continuous, discrete-time, time varying, and hybrid system design such
as:

- Animation - Matrix Operations
- Annotation - Nonlinear
- Arithmetic - Optimization
- Boolean - Random Generator

327

Copyright © 2004 CRC Press, LLC

328 Development of Field-Oriented Control Induction Motor Using VisSim™

- DDE - Signal Consumer
- Integration - Signal Producer
- Linear Systems - Time Delay
- MatLab Interface - Transcendental

Figure A.2 View of the many block categories under the Blocks menu.

In addition to the many general purpose functional blocks, there are blocks
written exclusively for the LF2407 DSP. These DSP blocks are hand-written
assembly routines developed by Texas Instruments. Since these blocks are hand-
coded and already optimized, they execute quicker when running on the LF2407
than a user-created compound block of equivalent functionality. The special DSP
functional blocks are useful when fast execution is critical on the LF2407.

A.2.1 Developing a Control Algorithm in VisSim™

To become successful in developing DSP-based control algorithms in
VisSimTM, one should follow a specific design flow. First, a block diagram should
be developed and simulated on the computer. At this stage the design may be
verified and tested mathematically. All efforts should be made to use integer
numbers whenever possible because the LF2407 is a fixed-point DSP. Doing so
will aid in transitioning the block design from the computer to the DSP if desired.

The next step of the development process is to run selected portions of the
design on the LF2407 and the rest of the design on the computer. For example, if a
space vector block is being used, the appropriate LF2407 DSP functional block can
replace the simulation only space vector block. This will allow the space vector
block to run on the LF2407 with the rest of the algorithm running on the computer.

Copyright © 2004 CRC Press, LLC

Development of Field-Oriented Control Induction Motor Using VisSim™ 329

The third and final step in the design process is to convert the whole design to
run solely on the DSP. This ensures the whole design is DSP compatible. To
accomplish this, the following inversions must be done. First, all floating point
values must be converted to fixed point. Second, all non-DSP compatible blocks
must be substituted. Third, the algorithm should incorporate DSP-specific blocks
wherever possible. Finally, the block design should be entirely encapsulated to
form a compound block. These steps will help the design to run as smoothly as
possible on the DSP.

Once a design has been converted for DSP execution, VisSimTM works with
Code Composer Studio to compile and build a DSP executable program. VisSimTM

contains many DSP options which must be configured according to the desired
operation before compiling the design. According to the configuration options
specified by the user, VisSimTM first converts the various functional blocks into C
code. Next, Code Composer compiles the C code into native C2xx assembly. Once
the assembly file has been created, it automatically creates the *.out file which will
be executed on the DSP. These conversions, from the functional block to C to
assembly code are performed automatically by VisSimTM and Code Composer. All
the user needs to do is configure the design and VisSimTM for the desired operation.

A.3 Computer Simulation of Vector Control of Three-Phase Induction

Motor Using VisSim™

The VisSimTM design featured in this section simulates the Field Oriented
Control (FOC) method of controlling an induction motor shown in Fig. A.3. All
parameters, processes, and variables are modeled mathematically. The VisSim™
block connections shown below represent their respective mathematical formulas.

PI
FOC SVPWM

PI

PI
IM

1/S1/S

dqdq*

abdq

+

-
+

-

+

+

+

-
rm re

re
slip

slip

*
emT

*e
dsi

*e
qsi

*s
dsi

*s
qsi

*e
dsv

*e
qsv

*s
dsV

*s
qsV

ai

bi

..SP

ref

e
qsi

dqdq* e
dsi

p/2

Figure A.3 Full block diagram of the FOC of an induction motor.

In this design, the speed of the rotor is used to determine the desired rotor flux
which will be induced in the air-gap of the induction motor. To accomplish this,
lamda_r* is set to the constant value of 0.4 for this design. For rotor speeds less

Copyright © 2004 CRC Press, LLC

330 Development of Field-Oriented Control Induction Motor Using VisSim™

than the base (rated) speed, the rotor flux command is set equal to 0.4. For speeds
above the base speed, the rotor flux needs to be decreased in an inverse, non-linear
fashion. We need to develop a control strategy that varies the frequency and
voltage of the signal applied to the windings of the induction motor, while also
controlling the flux created in the air-gap.

This design contains many compound blocks which are groupings of discrete
functional blocks. The first compound block we will discuss is the mathematical
model of the induction motor (IM).

A.3.1 Induction Motor (IM) Dynamic Model

Our objective is to simulate a three-phase, four-pole IM in the stationary
reference frame. Properly modeling an IM is a difficult task. This is due to
unpredictable parameter variations such as temperature and magnetic flux
saturation. In spite of all this, we can obtain decent results and a good general feel
for how the motor operates.

For small dynamic stability analysis, a rotating reference frame yields steady-
state values of steady-state voltages under balanced conditions. A model that
includes the stator and rotor flux reference along the d-q axes is needed. This is
because these values are used to calculate the voltages induced in the rotor.

The IM will be used by the algorithm to derive the FOC method. Once again,
calculations are greatly simplified when all quantities are referenced along the d-q
reference frame; however, in this case, the d-q reference frame is stationary. An
additional advantage is that transforming to the d-q-0 coordinate system in any
reference frame removes the time-varying inductances associated with the IM. The
IM used in this simulation has the following electrical parameters:

P = Pole pairs, 4
rs = stator resistance, 0.531
rr = rotor resistance, 0.408
Ls = stator inductance, 10.99 mH
Lr = rotor inductance, 10.99 mH
Lm = magnetizing inductance, 8.47 mH
J = rotor of inertia, 0.1 × 10-3 kg.m2

We will first explore the equations used to create the mathematical model of the
IM. After the relevant equations are listed, the corresponding block diagrams will
be displayed when combined together. These combined together compose the IM
block in Fig. A.3. Equations (A.1) and (A.2) specify the stator d-q voltages and flux
linkages.

Copyright © 2004 CRC Press, LLC

Development of Field-Oriented Control Induction Motor Using VisSim™ 331

qsdssdsds

qsdssds
ds

qs
ds

dssds

irv

irv
dt

d
dt

dirv

 (A.1)

dsqssqsqs

dsqssqs
qs

ds
qs

qssqs

irv

irv
dt

d
dt

d
irv

 (A.2)

Equation (A.3) specifies the rotor d-q voltages and flux linkages.

qrrdrrdr

qrrdrdrrdr

)(ir

)(pirv 0
(A.3)

drrqrrqr

drrqrqrrqr

)(ir

)(pirv 0
 (A.4)

The above equations in matrix form are given by

 (A.5)

qr

dr

qs

ds

The block diagram in Fig. A.4 is used to model the stator and rotor flux
linkages for the induction motor.

rs *

*

+
+

Vds Lamdads
w_frame
Lamdaqs

ids

1/S
+
-

+
+

*

*rs

Vqs Lamdaqs

iqs

Lamdads
w_frame

+
- 1/S

Copyright © 2004 CRC Press, LLC

332 Development of Field-Oriented Control Induction Motor Using VisSim™

*rr

+
-

*

-
+

1/S Lamdadr
Lamdaqr

wre
w_frame

idr

+
+

*

+
-

rr * -X 1/S Lamdaqr
iqr

w_frame
wre

Lamdadr

S->V

2,1

3,1

4,1

Lamda

Lamdads
Lamdaqs
Lamdadr
Lamdaqr

Figure A.4 VisSim™ block diagram of d-q axis stator / rotor flux linkages

and matrix.

Now that the flux linkages have been modeled, we can specify our inductance
values for our mathematical IM. We can put these values in matrix form and
specify the inductance as

(A.6)

rm

rm

ms

ms

LL
LL

LL
LL

L

00
00

00
00

To create the VisSimTM block diagram of this matrix, see Fig. A.5.

Copyright © 2004 CRC Press, LLC

Development of Field-Oriented Control Induction Motor Using VisSim™ 333

S->V

1,2

1,3

1,4

2,1

2,2

2,3

2,4

3,1

3,2

3,3

3,4

4,1

4,2

4,3

4,4

0

0

0

0
0

0

Ls

Lm
Lm

Lr

Lm

Lr

[] -1 inv_L

Ls
0
Lm
0

L

Figure A.5 VisSim™ block diagram of stator, rotor, and mutual inductances

in matrix form.

Now that we have defined our flux linkages and inductances, we can define the
electrical torque and rotor speed equations as follows:

 (A.7)

qs

dr

qs

ds

rm

rm

m

ms

qs

dr

qs

ds

i
i
i
i

LL
LL

LLs
LL

*

00
00

00
00

qsdsdsqse iiPT
2

3 (A.8)

Lere TT
J

Pd
2

 (A.9)

P

P
re

rm

rerm

60

2

min/

/

rev

srad
 (A.10)

We also need to specify the motor parameters listed in the beginning of this
section. The block diagram in Fig. A.6 shows the motor parameters and other
constants used with the simulation of the IM.

Copyright © 2004 CRC Press, LLC

334 Development of Field-Oriented Control Induction Motor Using VisSim™

.531

.408

.00252

.00252

.00847

.01099

rs
rr
Lls
Llr
Lm
Ls
Lr.01099
J
P

.1
4

0 Tload

3.14159265358979 pi

.4 lamda_r*

Vdc250

.001 Ts

Figure A.6 Motor parameters and other constants used in simulation.

We can now model the electromechanical torque and speed of the motor in our
simulation. The block diagram in Fig. A.7 models the torque and speed of the IM
with respect to the other parameters modeled.

[]X[]

w_frame

idr
iqr

Lamdadr1
Lamdaqr1

*

*

+
-

*P

Tload
+
- *

P /
l
r

J

.5 dwre

*wre
0

Lamdads1
Lamdaqs1

.75

Lamda

Lamda

inv_L

V->S

2,1

3,1

4,1

V->S

2

3

4

idse
iqse

S->V

2,1
idqs

TE

dwre 1/S wre 60 /
l
r

P /
l
r wrm

pi

Figure A.7 Block diagram of the stator and rotor flux linkages, electromechanical

torque, and speed.

Copyright © 2004 CRC Press, LLC

Development of Field-Oriented Control Induction Motor Using VisSim™ 335

A.3.2 Field Oriented Control (FOC) Block

We will now discuss the details of the FOC block sub-system region of Fig.
A.3. Like the IM block discussed previously the FOC is composed of many discrete
functional blocks made into a compound block. This compound block is then
connected with other discrete blocks to form the control sub-system shown in Fig.
A.8.

Rotor_FO_Controller

wre.

S->V

2,1
idqse*

wrm

+
- 1

5s+50

s
wref

P/2

PI Controller

Tem*

Figure A.8 The rotor field oriented control (FOC) sub-system.

There are two inputs to the FOC sub-system: wre and Tem*. The respective
outputs of the FOC sub-system are the command values, iqse* and idse*. These are
in the field-oriented rotor reference frame. The fundamental intention of this design
is that the FOC will cause the rotor to generate a speed profile that follows the
commanded speed input, wref. To do this, the commanded speed signal is first fed
into the system where it is subtracted from the measured speed of the rotor. The
error generated is then fed into a torque controller block. The torque control is done
by the PI controller that generates the torque command Tem*. This torque
command is used to set the electromagnetic torque induced within the induction
motor by calculating an appropriate iqse* command based on the generated Tem*,
along with the user defined parameters lamda_r*, and theta_r (the integral of the
speed of the rotor). These values are then fed into the Rotor_FO_controller
compound block. The insides of the Rotor_FO_Controller block are shown in Fig.
A.9.

Copyright © 2004 CRC Press, LLC

336 Development of Field-Oriented Control Induction Motor Using VisSim™

lamda_r*

*Lm
Ls

*Lr

/
l
r idse*

1/XLr
Ls 1/X -X

+
+

lamda_r idr*

T*

P .75

Lm
Lr /

l
r

lamda_r*

/
l
r iqse*

iqse*

-XLm
*

/
l
rLr iqr*

lamda_r*
rr /

l
r

iqse*

/
l
rLr

Lm
*

*

Wslip*

Wslip* 1/S

e_wre 1/S
+
+ rho

theta_r

theta_slip

Figure A.9 Inside the Rotor_FO_Controller compound block.

The Rotor_FO_Controller block mathematically calculates the values of iqse*,
idse*, the angle rho which is sum of the slip angle, theta_slip, and the rotor angle
theta_r. These are the outputs of this block and are the inputs for the next blocks.
The Rotor_FO_controller and the other blocks shown above regulate the sinusoidal
currents applied to the current controllers according to the commanded
electromagnetic torque, Tem*, and the constant rotor flux, lamda_r*. The next
block utilizes the inverse Clarke and Park transformations. These methods are used
to transform values referenced along the rotating reference frame into values
referenced in the stationary frame. Isd and isq are then used to set the magnitude of
the current sinusoidal values.

Copyright © 2004 CRC Press, LLC

Development of Field-Oriented Control Induction Motor Using VisSim™ 337

A.3.3 The dq* dq Sub-System

The dq* dq sub-system in Fig. A.3 consists of the dq* dq block and the two
PI controllers which feed the block. The two PI controllers shown in Fig. A.10
output the desired command values for the dq-axis stator voltages (Vdse* and
Vqse*).

idqss*

idqse* +
-

5
s+.5

sV->S

2,1

5
s+.5

s

Vdse*

Vqse*

PI Controllers

Figure A.10 PI blocks after FOC compound block output.

The command values for the dq-axis stator voltages (Vdse* and Vqse*) are then
used in (A.11) to determine Vqss* and Vdss*. Equation (A.12) is implemented via
the dq* dq block. The insides of the dq* dq block are also shown in Fig. A.11.

cossin

sincos

e
ds

e
qs

s
ds

e
ds

e
qs

s
qs

vvv

vvv
 (A.11)

rho cos

sin

Vdse*
Vqse*

-X

S->V

2,1

S->V

2,1

*

*

+
+

Vdss*V->S

2,1 Vqss*

Figure A.11 Command values for dq-axis stator voltages (dq* dq block).

A.3.4 The Space Vector PWM (SVPWM) Sub-System

The SVPWM subsystem is the SVPWM block shown in Fig. A.3. This sub-
system generates the a-b-c stator voltages and then converts them into the d-q
reference frame voltages for use by the induction motor model. The block diagram
in Fig. A.12 contains the SVPWM block.

Copyright © 2004 CRC Press, LLC

338 Development of Field-Oriented Control Induction Motor Using VisSim™

SVPWM

c1

c2

c3

Vdss*

Vqss*

sw11

sw22

sw33

Figure A.12 Voltage-fed six-step space-vector PWM inverter.

+
+
+

-X
-X

2c1
c2
c3

*Vdc /
l
r3 Va1

Vb13 /
l
rVdc *

c3
c1
c2 2

-X
-X

+
+
+

Vc13 /
l
rVdc *

c1
c2
c3 2

-X
-X

+
+
+

Figure A.13 Generation of a-b-c motor stator voltages from SVPWM.

Because the induction motor model equations use the d-q voltages, it is
necessary to translate the a-b-c voltages (which would normally be fed into a real
motor) into the d-q frame. This task is done by the block diagram in Fig. A.14.

Vabc->Vdqs

1/Sw_frame

Va1
Vb1
Vc1

Figure A.14 Transformation block of a-b-c voltages to d-q reference frame

voltages for induction motor.

Copyright © 2004 CRC Press, LLC

Development of Field-Oriented Control Induction Motor Using VisSim™ 339

The inside of the Vabc Vdqs compound block is shown in Fig. A.15.

sin

+
+

*

-2.09439510239320

+
+

sin * +
+

.66666666666

* Vds

theta
Va

Vbtheta

theta Vc *sin2.09439510239320
+
+

+
+2.09439510239320

*Vctheta

theta Vb

Va
theta

Vqs*

.66666666666

+
+

*

+
+

-2.09439510239320

*

+
+

cos

cos

cos

Figure A.15 Inside of the Vabcs Vdqs block in Fig. A.14.

A.3.5 Feedback Sub-System

The feedback sub-system consists of both the dq ab block and dq* dq
blocks. Stator current transformation from dqe to dqs is given in the block diagram
below. Equation (A.12) models the idss* and iqss* variables. The equations are
implemented in the block diagram shown in Fig. A.16.

(A.12)
cossin

sincos
*

*

e
ds

e
qs

s
ds

e
ds

e
qs

s
qs

iii

iii

idqss*
+
+

*

*

S->V

2,1

S->V

2,1

-X

iqse
idse

sin

cosrho

Figure A.16 Command values for the dq-axis stator currents (dq_dq* block).

Copyright © 2004 CRC Press, LLC

340 Development of Field-Oriented Control Induction Motor Using VisSim™

A.3.6 Simulation Results

Speed Response Analysis
The speed response of our designed control system is of the utmost significance

to this section of the design. By feeding an input speed command into the system,
we observe the speed developed by the rotor of the induction machine over time.
The two major criteria that we are trying to fulfill are:

1. the system develops a speed response that closely resembles the input
speed command

2. the system is stable because stability is the most important design
specification for any control system [2]

Once these two criteria are met, we would also like to achieve a quick transient
response, i.e., quick acceleration and a response that is smooth.

Analysis of the Field-Orientated Section of the Design

To increase the speed of the rotor we have to increase the voltage and
frequency by the same proportion. This ensures that we maintain a constant
magnetic flux in the air-gap of the induction motor. In this section of the design,
through the use of scopes placed on nodes of interest, we see that FOC applies this
principle of speed operation. FOC transforms the commanded dc signals applied by
the user and the feedback signals into sinusoidal signals required by the IM.

FOC is also referred to as vector control because it controls both the magnitude
and phase of the voltage signal applied to the stator windings of the IM. The
manner in which the phase changes over time for the cos_rho and sin_rho signals is
very similar to the way the phase voltage signal develops over time. The phase
voltage signal has a similar profile. Thus, the cos_rho and sin_rho signals control
the phase, while the iqs and ids signals control the magnitude. It is through these
signals, all of which are produced in the Rotor_FO_controller block, that FOC
achieves vector control. Furthermore, the speed is linearly increased when the
frequency and amplitude of the phase voltage signal is increased by the same
proportion.

The principle of increasing the voltage magnitude and the frequency by the
same proportion in order to maintain a constant rotor flux is the basis for applying
scalar volts per hertz speed control method. However, the equations used to execute
FOC consider the parameters of the motor. Therefore, we achieve better control
over torque variations. FOC also has the advantage of extending the speed range of
operation through field weakening. Finally, FOC is a torque control method. This
suits the requirements of the induction motor control design. Figure A.17 shows the
electromagnetic torque developed for a ramp speed command. The actual speed is
depicted in Fig. A.18.

Copyright © 2004 CRC Press, LLC

Development of Field-Oriented Control Induction Motor Using VisSim™ 341

Electromagnetic Torque

Time (sec)
0 .25 .5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

To
rq

ue
 (N

m
)

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-.5

0

.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Figure A.17 Electromagnetic torque result from VisSim™ simulation.

Rotor Speed (wre)

Time (sec)
0 .25 .5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

R
ot

or
 S

pe
ed

 (r
ad

/s
)

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

Figure A.18 Rotor speed result from VisSim™ simulation.

A.4 Summary and Improvements

In this appendix, the simulation of a field-oriented IM using VisSim™ was
presented. The electromagnetic torque and rotor speed were given. We presented
the concept of FOC to be the control technique because it produced controlled
results that had better dynamic response to torque variations in a wider speed range
compared to other scalar methods. It was shown through the VisSim™ analysis that

Copyright © 2004 CRC Press, LLC

342 Development of Field-Oriented Control Induction Motor Using VisSim™

FOC is an effective means of driving an induction motor. Also, a speed profile with
an adequate transient response and steady-state error was generated.

By simulating the control system, we obtained an acceptable speed response
and found there was adequate stability. It is also worthy to note that increasing the
proportional gain of the torque controller introduced or amplified noise and
harmonics. This affected the short-term and long-term performance of the induction
machine. Also, by increasing the proportional gain of the torque controller, the
system approached unstable regions of operation.

An improvement on the system could include the implementation of a self-
tuning FOC module. In the self-tuning scheme, any change in resistance of the
stator and rotor windings due to heat could be accounted for.

References

1. P. Vas, Vector Control of ac Machines, Oxford University Press, New York,
1990.

2. D.W. Novotny and T.A. Lipo, Vector Control and Dynamics of AC Drives,
Oxford University Press, New York, 1996.

3. N. Mohan, T.M. Undeland, and W.P. Robbins, Power Electronics: Circuits,
Devices, and Applications - 2nd ed., John Wiley & Sons, New York, 1995.

4. B. K. Bose, Adjustable Speed ac Drive Systems, IEEE Press, New York, 1987.
5. C-M. Ong, Dynamic Simulation of Electric Machinery using MATLAB

/SIMULINK, Prentice Hall, New Jersey, 1998.
6. Texas Instruments Inc., Field Orientated Control of 3-Phase AC-Motors,

www.ti.com, Texas Instruments Literature number BPRA073, Europe, 1998.
7. Texas Instruments Inc., Clarke and Park Transforms on the TMS320C2xx,

www.ti.com, Texas Instruments Literature number BPRA048, Europe, 1998.
8. Texas Instruments Inc., Digital Signal Processing Solution for AC Induction

Motor, www.ti.com, Texas Instruments Literature number BPRA043, Europe,
1997.

9. Texas Instruments Inc., Implementation of a Speed Field Orientated Control of
a Three-Phase AC Induction Motor, www.ti.com, Texas Instruments Literature
number BPRA076, Europe, 2000.

10. Visual Solutions, Inc., VisSim™ 4.5g Fixed-Point Datasheet.
11. Visual Solutions, Inc., VisSim™ 4.5/TI C2000 Rapid Prototyper Datasheet.

Copyright © 2004 CRC Press, LLC

http://www.ti.com

	41AJNE69PBL._SS500_
	Binder1
	1918_fm
	DSP-Based Electromechanical Motion Control
	Preface
	Acknowledgements
	Table of Contents

	1918_ch01
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 1: Introduction to the TMSLF2407 DSP Controller
	1.1 Introduction
	1.2 Brief Introduction to Peripherals
	1.3 Types of Physical Memory
	1.4 Software Tools
	1.4.1 Becoming Aquatinted with Code Composer Studio (CCS)

	1918_ch02
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 2: C2xx DSP CPU and Instruction Set
	2.1 Introduction to the C2xx DSP Core and Code Generation
	2.2 The Components of the C2xx DSP Core
	2.3 Mapping External Devices to the C2xx Core and the Peripheral Interface
	2.4 System Configuration Registers
	2.5 Memory
	2.5.1 Memory Blocks and Types
	2.5.2 Memory Space and Allocation
	2.5.3 Memory Maps

	2.6 Memory Addressing Modes
	2.6.1 Immediate Addressing Mode
	2.6.2 Direct Addressing Mode
	2.6.3 Indirect Addressing Mode

	2.7 Assembly Programming Using the C2xx DSP Instruction Set
	2.7.1 Using the Assembly Instruction Set
	2.7.2 Code Generation in Code Composer Studio (CCS)
	2.7.3 Code Generation Exercise Using Code Composer

	1918_ch03
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 3: General Purpose Input/Output (GPIO) Functionality
	3.1 Pin Multiplexing (MUX) and General Purpose I/O Overview
	3.2 Multiplexing and General Purpose I/O Control Registers
	3.2.1 I/O Multiplexing (MUX) Control Registers
	3.2.2 Port Data and Direction Control Registers

	3.3 Using the General Purpose I/O Ports
	3.4 General Purpose I/O Exercise

	1918_ch04
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 4: Interrupts on the TMS320LF2407
	4.1 Introduction to Interrupts
	4.2 Interrupt Hierarchy
	4.2.1 Interrupt Request Sequence
	4.2.2 Reset and Non-Maskable Interrupts

	4.3 Interrupt Control Registers
	4.3.1 Interrupt Flag Register (IFR)
	4.3.2 Interrupt Mask Register (IMR)
	4.3.3 Peripheral Interrupt Vector Register (PIVR)

	4.4 Initializing and Servicing Interrupts in Software
	4.4.1 Configuring the LF2407 for Interrupt Operation
	4.4.2 Servicing Interrupts

	4.5 Interrupt Usage Exercise

	1918_ch05
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 5: The Analog-To-Digital Converter (ADC)
	5.1 ADC Overview
	5.1.1 Summary of the LF2407 ADC

	5.2 Operation of the ADC
	5.2.1 Sequencer Configurations of the ADC
	5.2.2 Sequencer Operating Modes
	5.2.3 Triggering Sources for the LF2407 ADC
	5.2.4 The ADCTRL1 and ADCTRL2 Control Registers
	5.2.5 Specifying the Maximum Number of Auto-Conversions
	5.2.6 Specifying ADC Input Channels and Conversion Order
	5.2.7 Results of the ADC Conversion
	5.2.8 The Auto-Sequence Status Register

	5.3 Analog to Digital Converter Usage Exercise

	1918_ch06
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 6: The Event Managers (EVA,EVB)
	6.1 Overview of the Event Manager (EV)
	6.2 Event Manager Interrupts
	6.3 General Purpose (GP) Timers
	6.3.1 GP Timer Inputs and Outputs
	6.3.2 GP Counting Operation
	6.3.3 Control Registers Associated with the General Purpose Timers
	6.3.4 GP Timer Interrupts
	6.3.5 PWM Output and General Purpose Timer Compare Operation

	6.4 Compare Units
	6.4.1 Inputs and Outputs of the Compare Units
	6.4.2 Operation of Compare Units
	6.4.3 Dead Band Generation
	6.4.5 Compare Unit Interrupts
	6.4.6 Data Memory Mapped Registers Associated with the Compare Units

	6.5 Capture Units and Quadrature Encoded Pulse (QEP) Circuitry
	6.5.1 Operation of the Capture Unit
	6.5.2 Capture Stack Interrupt Flag Operation:
	6.5.3 Quadrature Encoded Pulse (QEP) Circuitry
	6.5.4 Capture Unit / QEP Control Registers

	6.6 General Event Manager Information
	6.7 Exercise: PWM Signal Generation

	1918_ch07
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 7: DSP-Based Implementation of DC-DC Buck-Boost Converters
	7.1 Introduction
	7.2 Converter Structure
	7.3 Continuous Conduction Mode
	7.4 Discontinuous Conduction Mode
	7.5 Connecting the DSP to the Buck-Boost Converter
	7.5.1 Gate Driver
	7.5.2 Current Sensor
	7.5.3 Voltage Sensor

	7.6 Controlling the Buck-Boost Converter
	7.7 Main Assembly Section Code Description
	7.7.1 Variables Initialization
	7.7.2 Initialization of the ADC
	7.7.3 Initialization of GP Timer 1 for PWM Generation
	7.7.4 Sampling Period Interrupt Initialization

	7.8 Interrupt Service Routine
	7.8.1 Reading Voltage Sensors
	7.8.2 Formatting the Voltage Sample
	7.8.3 Reading the Current Sensors
	7.8.4 Filtering the ADC Readings

	7.9 The Regulation Code Sequences
	7.9.1 Calculating the Voltage and Current Average Values
	7.9.2 Voltage Comparator
	7.9.3 Current Regulation
	7.9.4 PI Regulator
	7.9.5 Short Circuit Protection
	7.9.6 Output Action to PWM
	7.9.7 Return to Main Code

	7.10 Results

	1918_ch08
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 8: DSP-Based on Control of Stepper Motors
	8.1 Introduction
	8.2 The Principle of Hybrid Stepper Motor
	8.2.1 The Structure of Hybrid Stepper Motor

	8.3 The Basic Operation
	8.3.1 Full-step Mode
	8.3.2 Half-Step Mode
	8.3.3 Micro-Step Mode

	8.4 The Stepper Motor Drive System
	8.4.1 Power Electronic Drive Circuit
	8.4.2 Controller

	8.5 The Implementation of Stepper Motor Control System Using the LF2407 DSP
	8.6 The Subroutine of Speed Control Module
	8.6.1 Full-Step Mode
	8.6.2 Half-Step Mode

	Reference

	1918_ch09
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 9: DSP-Based Control of Permanent Magnet Brushless DC Machines
	9.1 Introduction
	9.2 Principles of the BLDC Motor
	9.2.1 Mathematical Model

	9.3 Torque Generation
	9.4 BLDC Motor Control System
	9.4.1 BLDC Machine
	9.4.2 Power Electronic Converter
	9.4.3 Sensors
	9.4.4 Controller

	9.5 Implementation of the BLDC Motor Control System Using the LF2407
	9.5.1 Initialization Procedure
	9.5.2 The Detection of Hall-Effect Signals
	9.5.3 The Subroutine of Speed Control Algorithm
	9.5.4 Measurement of the Current (ADC Module)
	9.5.5 Profile of the Reference Speed
	9.5.6 The Calculation of the Actual Motor Speed
	9.5.7 PID (Proportional, Integral, and Derivative) Regulation
	9.5.8 PWM Generation
	9.5.9 DAC Module

	1918_ch10
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 10: Clarke's and Park's Transformations
	10.1 Introduction
	10.2 Clarke’s Transformation
	10.3 Park’s Transformation
	10.4 Between Reference Frames
	10.5 Field Oriented Control (FOC) Transformations
	10.6 Implementing Clarke’s and Park’s Transformations
	10.6.1 Implementing Clarke’s Transformation
	10.6.1.1 Inputs and Outputs of Clarke’s Transformation Block

	10.6.2 Inverse Clarke’s Transformation
	10.6.3 Calculation of Sine/Cosine with Fast Table Direct Look-Up and Linear Interpolation
	10.6.4 Implementation of Park’s Transformation on LF2407
	10.6.4.1 Transformation from 3-phase to 2-phase Stationary Reference Frame
	10.6.4.2 Transformation from the Stationary Reference Frame to the Arbitrary Rotary Reference Frame

	10.6.5 Transformation of the Arbitrary Rotating Reference Frame to the Stationary Reference Frame
	10.6.6 The 2-Phase to 3-Phase Transformation

	10.7 Conclusion
	References

	1918_ch11
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 11: Space Vector Pulse Width Modulation
	11.1 Introduction
	11.2 Principle of Constant V/Hz Control for Induction Motors
	11.3 Space Vector PWM Technique
	11.3.1 Switching Patterns and the Basic Space Vectors
	11.3.2 Expression of the Stator Voltages in the (d-q) Frame
	11.3.3 Approximation of Output with Basic Space Vectors
	11.3.4 Calculating the Time Periods of the Switching States
	11.3.5 Finding the Sector Number
	11.3.6 SVPWM Switching Pattern

	11.4 DSP Implementation
	11.4.1 Algorithm Subroutines
	11.4.2 Verification of the SVPWM Algorithm and Conclusions

	References

	1918_ch12
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 12: DSP-Based Control of Permanent Magnet Synchronous Machines
	12.1 Introduction
	12.2 The Principle of the PMSM
	12.2.1 Mathematical Model of PMSM in the abc Stationary Reference Frame
	12.2.2 Mathematical Model of PMSM in Rotor Reference Frame

	12.3 PMSM Control System
	12.3.1 PMSM Machine
	12.3.2 Power Electronic Converter
	12.3.3 Sensors
	12.3.4 Controller

	12.4 Implementation of the PMSM System Using the LF2407
	12.4.1 The Speed Control Algorithm
	12.4.1.1 The Calculation of sin0 and cos0
	12.4.1.2 The abc-to-dq Transformation
	12.4.1.3 The d-q to a-b-c Transformation
	12.4.1.4 PWM Generation

	1918_ch13
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 13: DSP-Based Vector Control of Induction Motors
	13.1 Introduction
	13.2 Three-Phase Induction Motor Basic Theory
	13.2.1 Three-Phase Induction Motor
	13.2.2 Induction Motor Construction
	13.2.3 Operation
	13.2.4 Slip

	13.3 Model of the Three-Phase Induction Motor in Simulink
	13.3.1 Voltage Equations of the Idealized Motor Model

	13.4 Reference Frame Theory
	13.5 Induction Motor Model in the Arbitrary q-d-0 Reference Frame
	13.6 Field Oriented Control
	13.7 DC Machine Torque Control
	13.8 Field Oriented Control, Direct and Indirect Approaches
	13.9 Simulation Results for the Induction Motor Control System
	13.10 Induction Motor Speed Control System
	13.11 System Components
	13.11.1 Power Electronic Converter
	13.11.2 Sensors
	13.11.3 Controller

	13.12 Implementation of Field-Oriented Speed Control of Induction Motor
	13.12.1 Software Organization
	13.12.2 Base Values and Per-Unit Model
	13.12.3 Numerical Considerations
	13.12.4 The Numerical Format Determination
	13.12.5 Current Measurement
	13.12.6 Speed Measurement
	13.12.7 Speed Estimation during High-Speed Region
	13.12.8 Speed Measurement during Low-Speed Region
	13.12.9 The Current Model
	13.12.10 The PI regulator
	13.12.11 Calculation of Sine and Cosine Functions

	13.13 Experimental Results
	13.14 Conclusion
	References

	1918_ch14
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 14: DSP-Based Control of Switched Reluctance Motor Drives
	14.1 Introduction
	14.2 Fundamentals of Operation
	14.3 Fundamentals of Control in SRM Drives
	14.4 Open Loop Control Strategy for Torque
	14.4.1 Detection of the Initial Rotor Position
	14.4.2 Computation of the Commutation Thresholds
	14.4.3 Monitoring of the Rotor Position and Selection of the Active Phases
	14.4.4 A Control Strategy for Regulation of the Phase Current at Low Speeds

	14.5 Closed Loop Torque Control of the SRM Drive
	14.6 Closed Loop Speed Control of the SRM Drive
	14.7 Summary
	14.8 Algorithm for Running the SRM Drive using an Optical Encoder

	1918_ch15
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Chapter 15: DSP-Based Control of Matrix Converters
	15.1 Introduction
	15.2 Topology and Characteristics
	15.3 Control Algorithms
	15.3.1 Venturini Method
	15.3.2 The Initial Approach
	15.3.3 The Enhanced Approach

	15.4 Space Vector Modulation
	15.5 Bidirectional Switch
	15.6 Current Commutation
	15.7 Overall Structure of Three-Phase Matrix Converter
	15.7.1 Controller
	15.7.2 Interface Parts
	15.7.3 Power Circuits

	15.8 Implementation of the Venturini Algorithm using the LF2407
	References

	1918_ap01
	DSP-Based Electromechanical Motion Control
	Table of Contents
	Appendix A: Development of Field-Oriented Control Induction Motor Using Vissim
	A.1 Introduction
	A.2 Overview of VisSim™ Placing and Wiring Blocks
	A.2.1 Developing a Control Algorithm in VisSim™

	A.3 Computer Simulation of Vector Control of Three-Phase Induction Motor Using VisSim™
	A.3.1 Induction Motor (IM) Dynamic Model
	A.3.2 Field Oriented Control (FOC) Block
	A.3.3 The dq* dq Sub-System
	A.3.4 The Space Vector PWM (SVPWM) Sub-System
	A.3.5 Feedback Sub-System
	A.3.6 Simulation Results

	A.4 Summary and Improvements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF004300520043002000730065007400740069006e0067>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

