
 
 

 

O  N  E 
 
Introduction 

 

ANSWERS TO REVIEW QUESTIONS  
1. Guided missiles, automatic gain control in radio receivers, satellite tracking antenna 

2. Yes - power gain, remote control, parameter conversion; No - Expense, complexity 

3. Motor, low pass filter, inertia supported between two bearings 

4. Closed-loop systems compensate for disturbances by measuring the response, comparing it to 

the input response (the desired output), and then correcting the output response. 

5. Under the condition that the feedback element is other than unity 

6. Actuating signal 

7. Multiple subsystems can time share the controller. Any adjustments to the controller can be 

implemented with simply software changes. 

8. Stability, transient response, and steady-state error 

9. Steady-state, transient 

10. It follows a growing transient response until the steady-state response is no longer visible. The 

system will either destroy itself, reach an equilibrium state because of saturation in driving 

amplifiers, or hit limit stops. 

11. Transient response 

12. True 

13. Transfer function, state-space, differential equations 

14. Transfer function - the Laplace transform of the differential equation 

State-space - representation of an nth order differential equation as n simultaneous first-order 

differential equations 

Differential equation - Modeling a system with its differential equation 

 
SOLUTIONS TO PROBLEMS  

1. Five turns yields 50 v. Therefore K = 
50 volts

5 x 2π rad
= 1.59 
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6. 
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8.  

a. 
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9. 
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10. 
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-
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11. 

  
+

-
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12. 

 
+

-
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13.  

a. L
di
dt

+ Ri = u(t) 
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b. Assume a steady-state solution iss = B. Substituting this into the differential equation yields RB = 

1,  

from which B = 
1
R

. The characteristic equation is LM + R = 0, from which M = -
R
L

. Thus, the total 

solution is i(t)  =  Ae-(R/L)t +
1
R

. Solving for the arbitrary constants, i(0) = A + 
1
R

 =  0. Thus, A  =  

- 
1
R

. The final solution is i(t) = 
1
R

 -- 
1
R

e-(R/L)t = 
1
R

(1 − e−( R / L) t ) . 

 c. 

 

14. 

a. Writing the loop equation, Ri + L
di
dt

+
1
C

idt + vC (0)∫ = v(t)  

b. Differentiating and substituting values, 
d2i
dt 2 + 2

di
dt

+ 30i = 0  

Writing the characteristic equation and factoring, 

 M2 + 2 M + 30 = M + 1 + 29 i M + 1 - 29 i . 

The general form of the solution and its derivative is  

 i = e-t cos 29 t A + B sin 29 t e- t
 

 

= - A + 29 B e-t cos 29 t - 29 A + B e- t sin 29 tdi 
dt  

Using i(0) = 0;
di
dt

(0) =
vL(0)

L
=

1
L

= 2  

i 0 A= =0 
di
dt

(0) = −A + 29B =2 

Thus,  and A = 0 B =
2
29

.  

The solution is 
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 i =
2
29

29 e- t sin 29 t
 

c. 
i

t
 

15.  
a. Assume a particular solution of  

 

Substitute into the differential equation and obtain 

 

Equating like coefficients,  

  

 
From which, C =  

35
53    and D = 

10
53  . 

The characteristic polynomial is  

 

Thus, the total solution is  

                               
Solving for the arbitrary constants, x(0) = A +

35
53   = 0. Therefore, A = - 

35
53  . The final solution is 

 

b. Assume a particular solution of  

xp = Asin3t + Bcos3t 
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Substitute into the differential equation and obtain 

(18A − B)cos(3t) − (A +18B)sin(3t) = 5sin(3t) 

Therefore, 18A – B = 0 and –(A + 18B) = 5. Solving for A and B we obtain 

xp = (-1/65)sin3t + (-18/65)cos3t 

The characteristic polynomial is  

 M2 + 6 M + 8 = M + 4 M + 2  

Thus, the total solution is  
 x = C e- 4 t + D e- 2 t + -

18
65

cos 3 t -
1
65

sin 3 t
 

Solving for the arbitrary constants, x(0) = C + D −
18
65

= 0 .  

Also,  the derivative of the solution is 
 

= -
3
65

cos 3 t +
54
65

sin 3 t - 4 C e- 4 t - 2 D e- 2 tdx 
dt  

 

Solving for the arbitrary constants, x
.
(0)  −

3
65

− 4C − 2D = 0 , or  C = −
3

10
and D = 

15
26

. 

The final solution is 
 x = -

18
65

cos 3 t -
1
65

sin 3 t -
3
10

e- 4 t +
15
26

e- 2 t

 

c. Assume a particular solution of  

xp = A 

Substitute into the differential equation and obtain 25A = 10, or A = 2/5. 

The characteristic polynomial is  

 M2 + 8 M + 25 = M + 4 + 3 i M + 4 - 3 i  

Thus, the total solution is  
 x =

2
5

+ e- 4 t B sin 3 t + C cos 3 t
 

Solving for the arbitrary constants, x(0) = C + 2/5 = 0. Therefore, C = -2/5. Also, the derivative of the 

solution is 

= 3 B -4 C cos 3 t - 4 B + 3 C sin 3 t e- 4 tdx 
dt  
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Solving for the arbitrary constants, x
.
(0)  = 3B – 4C = 0. Therefore, B = -8/15. The final solution is 

 

x(t) =
2
5

− e−4t 8
15

sin(3t) +
2
5

cos(3t )⎛ 
⎝ 

⎞ 
⎠  

16.  

a. Assume a particular solution of  

 

Substitute into the differential equation and obtain 

 

Equating like coefficients,  

  

 
From which, C = - 

1
5    and D = - 

1
10  . 

The characteristic polynomial is  

 

Thus, the total solution is  

 

Solving for the arbitrary constants, x(0) = A - 
1
5   = 2. Therefore, A = 

11
5

. Also, the derivative of the 

solution is 
dx 
dt  

Solving for the arbitrary constants, x
.
(0)  = - A  + B - 0.2 = -3. Therefore, B = −

3
5

. The final solution 

is 
 

x(t) = −
1
5

cos(2t) −
1

10
sin(2t) + e−t 11

5
cos(t) −

3
5

sin(t)⎛ 
⎝ 

⎞ 
⎠  

b. Assume a particular solution of  

xp = Ce-2t + Dt + E 

Substitute into the differential equation and obtain 
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Equating like coefficients, C = 5, D = 1, and 2D + E = 0. 

From which, C = 5, D = 1, and E = - 2. 

The characteristic polynomial is  

 

Thus, the total solution is  

  

Solving for the arbitrary constants, x(0) = A + 5 - 2 = 2 Therefore, A = -1. Also,  the derivative of the 

solution is 
dx
dt

= (−A + B)e− t − Bte −t −10e−2t +1 

Solving for the arbitrary constants, x
.
(0)  = B - 8 = 1. Therefore, B = 9. The final solution is 

 

c. Assume a particular solution of  

xp = Ct2 + Dt + E 

Substitute into the differential equation and obtain 

 
Equating like coefficients, C = 

1
4  , D = 0, and 2C + 4E = 0. 

From which, C = 
1
4  , D = 0, and E = - 

1
8 . 

The characteristic polynomial is  

 

Thus, the total solution is  

 
Solving for the arbitrary constants, x(0) = A - 

1
8   = 1 Therefore, A = 

9
8 . Also,  the derivative of the 

solution is 

dx 
dt  

Solving for the arbitrary constants, x
.
(0)  = 2B = 2. Therefore, B = 1. The final solution is 
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17. 

+

-

Input 
transducer

Desired 
force

Input 
voltage

Controller Actuator Pantograph 
dynamics Spring

Fup

Spring 
displacement

Fout

Sensor
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