TWELVE

Design via State Space

SOLUTION TO CASE STUDY CHALLENGE

Antenna Control: Design of Controller and Observer

a. We first draw the signal-flow diagram of the plant using the physical variables of the system

as state variables.

1
18 Uopon 5 %3 g 5 €z g5 Zy nz

Writing the state equations for the physical variables shown in the signal-flow diagram, we

F

obtain
0 1 0 0

z=l0o -132 08 |z+]| o |u;y=[02 o0 0]z
0 0 -100 2000

The characteristic polynomial for this system is s> + 101.32s2 + 132s + 0. Hence, the A and B

matrices of the phase-variable form are

AX Bx
0 1 0 0
0 0 1 0
0 -132 -101.32 1

Writing the controllability matrices and their determinants for both systems yields
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CMz Controllability Matrix of z CMx Controllability Matrix of x
0 0 1600 0 0 1
0 1600 -162112 0 1 -101.32
2000 -200000 20000000 1 -101.32 10133.7424
Det(CMz) -5.12E+09 Det(CMx) -1

1600

where the system is controllable. Using Eq. (12.39), we find the transformation matrix and its

inverse to be

Transformation Matrix z=Px PINV
0 0 0.000625 0 0
1600 0 0 0.000625 0
2640 2000 0 -0.000825 0.0005

The characteristic polynomial of the phase-variable system with state feedback is

3+ (k3 + 101.32)s2 + (ko + 132)s + (k1 + 0)
For 15% overshoot, T = 2 seconds, and a third pole 10 times further from the imaginary axis than
the dominant poles, the characteristic polynomial is

(s +20)(s2 + 4s + 14.969) = s3 + 2452 + 94.969s + 299.38

Equating coefficients, the controller for the phase-variable system is

Kx Controller for x
299.38 -37.031 -77.32

Using Eq. (12.42), the controller for the original system is

Kz Controller for z
0.1871125 0.04064463 -0.03866

b. Using Kz, gain from 0, = - 0.1871125 (including gear train, pot, and operational amplifier); gain

from tachometer = - 0.04064463; and gain from power amplifier output = 0.03866.
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Tachometer
1 +10 %2 - F1
‘ 245 K
gain =1
=10 0. Fower 73 50y
arnp1, zl EU
=100
[(=+100)
T 250
3 M sec frad
-1 I:l n.2 Zl
1 turn %——h 250
— 0.6362Z3 +10
gain = 3.18

¢. Using the original system from part (a) and its characteristic polynomial, we find the observer

canonical form which has the following A and C matrices:

AX
-101.32 1 0
-132 0 1
0 0 0

Cx
1 0 0

Writing the observability matrices and their determinants for both systems yields

OMz Observability Matrix of z OMXx Observability Matrix of x
0.2 0 0 1 0 0
0 0.2 0 -101.32 1 0
0 -0.264 0.16 10133.7424 -101.32 1
Det(OMz) 0.0064 Det(OMXx) 1

where the system is observable. Using Eq. (12.89), we find the transformation matrix and its inverse to be

P Transformation Matrix z=Px PINV

5 0 0 0.20 0.00 0.00
-506.6 5 0 20.26 0.20 0.00
62500 -625 6.25 26.40 20.00 0.16

The characteristic polynomial of the dual phase-variable system with state feedback is
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s34+ (1] + 101.32)s2 + (Ip + 132)s + (13 + 0)

For 10% overshoot, p = 10n/14.969 = 38.69 rad/s, and a third pole 10 times further from the
imaginary axis than the dominant observer poles, the characteristic polynomial is

(s+228.72)(s2 + 45.743s + 1496.916) = s3 + 274.46s2 + 11959s + 3.4237x105

Equating coefficients, the observer for the observer canonical system is

Lx Observer for x
173.14

11827
342370

Using Eq. (12.92), the observer for the original system is

Lz Observer for z
865.7
-28577.724
5569187.5
d.
+10
1 turn
—D§ 2 K
Fower
amipl.
=100
(=+1000
| -1
|
4
.1 turn 250
gain=3 .18 ﬁ=l].3145
-1 +10 -
1
1

-28577.924

a569187.5
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e.

Program:

"Controller*

A=[0 1 0;0 -1.32 0.8;0 0 -100];

B=[0;0;2000];

C=[0.2 0 0];

D=0;

pos=input("Type desired %0S *);
Ts=input("Type desired settling time ");
z=(-10g(pos/100))/(sqgrt(pi~2+log(pos/100)72));

wn=4/(z*Ts); %Calculate required natural
%frequency.
[num,den]=ord2(wn,z); %Produce a second-order system that

%meets the transient response
%requirements.

r=roots(den); %Use denominator to specify dominant
%poles.

poles=[r(1) r(2) 10*real(r(1))];
%Specify pole placement for all
%poles.

K=acker(A,B,poles)

"Observer*

pos=input("Type desired %0S *);

z=(-1og(pos/100))/(sqgrt(pi~2+log(pos/100)"2));

wn=10*wn %Calculate required natural
%Frequency -
[num,den]=ord2(wn,z); %Produce a second-order system that

%meets the transient response
%requirements.

r=roots(den); %Use denominator to specify dominant
%poles.

poles=[r(1) r(2) 10*real(r(1))]1:%Specify pole placement for all
%poles.

I=acker(A",C",poles)”
Computer response:

ans =

Controller

Type desired %0S 15
Type desired settling time 2

K =
0.1871 0.0406 -0.0387
ans =
Observer
Type desired %0S 10
wn =
38.6899
1 =
1.0e+006 *
0.0009

-0.0286
5.5691
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ANSWERS TO REVIEW QUESTIONS

1. Both dominant and non-dominant poles can be specified with state-space design techniques.

2. Feedback all state variables to the plant's input through a variable gain for each. Decide upon a closed-
loop characteristic equation that has a pole configuration to yield a desired response. Write the
characteristic equation of the actual system. Match coefficients and solve for the values of the variable
gains.

3. Phase-variable form

4. The control signal developed by the controller must be able to affect every state variable.

5. If the signal-flow diagram is in the parallel form, which leads to a diagonal system matrix, controllability
can be determined by inspection by seeing that all state variables are fed by the control signal.

6. The system is controllable if the determinant of the controllability matrix is non-zero.

7. An observer is a system that estimates the state variables using information from the output of the actual
plant.

8. If the plant's state-variables are not accessible, or too expensive to monitor

9. An observer is a copy of the plant. The difference between the plant's output and the observer's output is
fed back to each of the derivatives of the observer's state variables through separate variable gains.

10. Dual phase-variable

11. The characteristic equation of the observer is derived and compared to a desired characteristic equation
whose roots are poles that represent the desired transient response. The variable gains of each feedback
path are evaluated to make the coefficients of the observer's characteristic equation equal the coefficients of
the desired characteristic equation.

12. Typically, the transient response of the observer is designed to be much faster than that of the
controller. Since the observer emulates the plant, we want the observer to estimate the plant's states rapidly.
13. Det[A-BK], where A is the system matrix, B is the input coupling matrix, and K is the controller.

14. Det[A-LC], where A is the system matrix, C is the output coupling matrix, and L is the observer.

15. The output signal of the system must be controlled by every state variable.

16. If the signal-flow diagram is in the parallel form, which leads to a diagonal system matrix, observability
can be determined by inspection by seeing that all state variables feed the output.

17. The system is observable if the determinant of the observability matrix is non-zero.
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SOLUTIONS TO PROBLEMS

1.
. _(s+3) 1 N
-G = (s+4)* s*+8s+16 (5+3)
a.
1
b.
C.
. 0 1 0
x:{ }x+{ }r ;y=[3 1]x
—(k, +16) —(k, +8) 1
d.

B S+3
s” +(k, +8)s+(k, +16)

T(s)
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X, = (20— 71.25k,)x, —71.25k,x, —71.25k,X, + 71.25r
X, =27.5K X, + (10X, +27.5K,)X, +27.5K,x, —27.5r

X, = —6.25K X, — 6.25K,%, —6.25k,X, + 6.25r

(=20-71.25k,) ~71.25k, ~71.25k, 71.25
A= 27.5k, (—10x,+27.5k,)  27.5k, |;B=|-275|;C=[1 1 1]
—6.25K, —6.25K, —6.25K, 6.25
200(s* +7s +25)

T(s)=
&=y (120 + 285k, — 110Kk, + 25k, )s> + (800 + 2850k, — 2200k, + 750K, )s -+ 5000K,

Part d. yields same result as i(d).

S 1
(s+5)(s+7) s> +125+35

*

i. G(s) =
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. 0 1 0
x:{ }x+{ }r ;y=[0 1]x
~(k, +35) —(k,+12)|" |1

d.
S
T(s)=—=
s”+(k, +12)s+(k, +35)
€.
T(s)=Cel-Ay'B: A=| ° Poleo%cofo 1
OV =CEI=ABA= L v3s) —a+12) [ P [ =0 1]

which yields the same result as ii(d).

20s(s+7) 1

iii. G(s) = * (20s”+140s)

(5+3)(S+7)(5+9) S +19s” +111s+189
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0 1 0 0
X = 0 0 1 X+[0|r ; y=[0 140 20]x
—(k, +189) —(k, +111) —(k, +19) 1

d.

20s(s+7)

T(S): 3 2
s*+(k; +19)s” +(k, +111)s+(k, +189)

€.

0 1 0 0

T(s)=CGI-A)'B;A=| 0 0 1 ;B=|0[;C=[0 140 20]
—(k, +189) —(k,+111) —(k,+19) 1
which yields the same result as iii(d).
v, G(s) = —As+DE+) ] * (30s” +150s +180)
(s+4)(s+5)(s+6) s +155"+74s+120

a.
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b.
Y
C.
0 1 0 0
x=| 0 0 I |x+0|r; y=[180 150 30]x
—(k, +120) —(k,+74) —(k, +15) 1
d.
T(s) = 30522+1505+180
s”+(k, +15)s™ +(k, + 74)s + (k, +120)
e.
0 1 0 0
T(s)=C(sl-A)'B; A= 0 0 | ; B=10 ;C:[180 150 30]
—(k, +120) —(k,+74) —(k,+15) 1

which yields the same result as iv(d).

s’ +85+15 _ 1
(s +4s+10)(s* +3s+12)  s*+7s’ +34s° +78s+120

v. G(s) = * (s> +8s+15)
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0 1 0 0 0
0 0 1 0 0
X= X+ [r;y=[15 8 1 0]x
0 0 0 1 0
~(k, +120) —(k,+78) —(k,+34) —(k,+7)| |1

s +8s+15

T(s)= 2 3 2
ST+ (k, +7)s” + (ks +34)s” + (k, +78)s+ (k, +120)
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0 1 0 0 0
T(s)=C(sl-A)'B; A= 0 0 ! 0 :B= 0 ;C=[15 8 1 0]

0 0 0 1 0

—(k, +120) —(k, +78) —(k,+34) —(k,+7) 1

which yields the same result as v(d).

i
a. The output is

Since,
y =(30s” +270s +420)x, = 30%, +270%, +420x, = 30X, + 270X, + 420X,
=30(=5X, + X;) +270x, + 420x, = 420X, +120x, + 30X,

0 1 0
T(s)=CsI-A)'B;A=| 0 -5 1 |;B=|0|;C=[420 120 30]
&k, —(k+3) 1
30(s+2)(s+7)

TE)=3 ;
s'(k, +8)s” +(5k, +k, +15)s+k,
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fo0 1 o | [o]
Ts)=C(sl —AY'B; A=l 0 0 1 kB=lolc=[3 1 1]
|k -k, Gk, +2] L5

B 5(s* +3s+7)
5" +(5k, +4)s” + (10k, + k, + 14)s +(50k, +k , +20)

_50(s* +7s+25) 625 275 L7125
s(s+10)(s+20) s s+10 s+20

G(s)
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b. Writing the state equations:

X, = ~20x, +71.25u

X, =—-10x, —27.5u

X, = 6.25U

But, u = -k1x7 - koxp - k3x3 + r. Substituting into the state equations,

X, = (20— 71.25k )X, — 71.25k, %, — 71.25k X, +71.25r
X, = 27.5K X, +(=10%, +27.5k, )X, +27.5k,X, — 27.5¢

X, = —6.25K X, —6.25k,X, —6.25k,X, + 6.25¢

Therefore, T(s) = C(sl - A)"1B, where

(-20-71.25k,) -71.25k, —71.25k, 71.25
A= 27.5k, (—-10x, +27.5k,)  27.5k, |;B=|-27.5|;C=[1 1 1]
—6.25k, —6.25k, —6.25k, 6.25
Hence,
2
T(s) 200(s” +7s+25)

" 45° 1 (120+ 285k, — 110k, + 25k, )s” + (800 + 2850k, — 2200k, + 750k, s + 5000k,
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Gy -0+ 50300 300

= = - +
(S+5)(s+6)(s+7) s+5 s+6 s+7

b. Writing the state equations:

>21 =-5x,+50u
X, = -6, — 300U

X, =—7X, +300u

But,

u=-kx, —Kx, —kKx, +r

Substituting into the state equations, collecting terms, and converting to vector-matrix form yields

[ ~(5+k)) 50k,  —=50k,] [ 50 ]

x=| 300k (300k,—6) 300k, Ix+|-300I
|-(00k +7) 300k, 300k, | | 300 |
y=[1 1 1]

Therefore, T(s) = C(sl - A)"!B, or

T(e)= 50s” +1750s + (6900 — 88200k, )
 §° +(300k; — 300k, +k, + 11)s” + 2(1475k, — 750k, + 3k —7350k,k +7350k,k, + 15)s

+ 300k, (23 —294Kk,)
4.
The plant is given by
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~ 20 ~ 20
(s+1)(s+3)(s+7) s +11s*+31s+21

G(s)

The characteristic polynomial for the plant with phase-variable state feedback is
s+ (k, +11)s” +(k, +31)s+(k, +21)=0
The desired characteristic equation is

(s+53.33)(s” +10.67s +106.45) = s° + 645> + 675.485 + 5676.98

based upon 10% overshoot, Tg = 0.5 second, and a third pole ten times further from the imaginary
axis than the dominant poles. Comparing the two characteristic equations,

K, =5655.98, k, = 644.48,and k, =53.

a. The system in controller canonical form is:

“4h-1 T%p-2 —41 T3 1
A 1 0 e 0 0 B 0 c E ]
oo Poor o [PTleT B 2 93 %
0 0 1 0 0

The characteristic equation of the plant is:
sh+agqsh-l +. . +ajs+ag=0
Forming the closed-loop system by feeding back each state variable and the input to u forming
u=-Kx+r
where
K=[k; ky ... kq]

and substituting u into the state equation, we obtain

X = AX+Bu =(A— BK)X+ Br
Forming A - BK:

r_(an_1+ kl) _(an_2+k2) _(a1+kn—1) _(ao+ kn)—|
| 1 0 0 0 |
A-BK=| : : : : L
[ 0 0 1 0 J

The characteristic equation is:
"+ (a1 +ks™! + (apy T ko). ..+ (a] +knp)s + (ag + kp) =0
Assuming a desired characteristic equation,
sp+ dpst! +dyost 2+ . +dysZ+dys+dg =9

Equating coefficients,
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di=ajt+kpi;1=0,1,2,..n-1
from which
kni =di—aj 1)
b. The desired characteristic equation is
s* +15.95° +136.08s +413.1=0
the characteristic equation of the plant is
s +557+45+0=0
Using Eq. (1) above, ks = d; — a;. Therefore, ks =dy—a;=413.1-0=413.1; k, =d; —a; = 136.08 —
4=132.08;k;=d,—a,=15.9-5=10.9. Hence,
K= [10.9 132.08 413.1]

Using Egs. (4.39) and (4.34) to find £ = 0.5169 and o, = 7.3399, respectively. Factoring the
denominator of Eq. (4.22), the required poles are -3.7942 + j6.2832. We place the third pole at -2 to
cancel the open loop zero. Multiplying the three closed-loop pole terms yields the desired
characteristic equation:

100s2 + 2200s + 4000
$3+8s2+19s+12

s3 +9.5885s2 + 69.0516s + 107.7493 = 0. Since G(s) = , the controller

-8 -19 -12
canonical formis A=| 1 0 0 [;B=|0|;C=[100 2200 4000]. The first row of A
0 1 0 0

contains the coefficients of the characteristic equation. Thus comparing the first row of A to the

desired characteristic equation and using the results of Problem 5, k1 = -(9.5885 - 8) = 1.5885;
ky =-(69.0516 - 19) = 50.0516; and k3 = -(107.7493 - 12) = 95.7493.

The plant is given by

20(s+2) 20s+40
G(s)= =3 2
s(s+4)(s+6) s +10s"+24s+0

The characteristic polynomial for the plant with phase-variable state feedback is
s* +(k, +10)s* + (k, +24)s + (k; +0)
The desired characteristic equation is
(5+20)(s> +45+11.45) =’ +245% +91.455+ 229

based upon 10% overshoot, T =2 seconds, and a third pole ten times further from the imaginary axis
than the dominant poles. Comparing the two characteristic equations,

k =229, k, =67.45,and k, =14.
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Drawing the signal-flow diagram,

n |~

Writing the state equations yields the following A matrix:

1 1 0
d = 0 -4 1
-k —-ka —[2+k3]

|51 - &| = 5+ [kz+ Bl 52+ [dkz+ Ko+ Bl 5+ &y

from which,

The desired characteristic equation is (s + 80)(s2 + 16s + 183.137) = s3 + 96s2 + 1463.1s + 14651

based upon 10% overshoot, T = 0.5 second, and a third pole ten times further from the imaginary
axis than the dominant poles. Comparing the two characteristic equations, , k1 = 14651, ko = 1095.1,

and k3 =90.

Expand G(s) by partial fractions and obtain

B 20 —1'67+ 5 667
S(s+4)(s+6) S s+4 s+6

G(s)

Drawing the signal-flow diagram with state feedback
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Writing the state equations yields the following system matrix:

~1.67k, -1.67k,  -1.67Kk
A=| -5k -Gk, +4) =5k
6.67k,  6.67k,  (6.67k,—6)

Evaluating the characteristic polynomial yields,
|s1—A|=(—6.67k; + 5k, +1.67k, +10)s” +(26.68K, + 30k, +16.7k, +24)s +40.08K,

From Problem 7, the desired characteristic polynomial is
s’ +24s” +91.455+229.

Equating coefficients and solving simultaneously yields

k =5.71, k, =—4.58,and k, =—4.10.

10.
Writing the state equation and the controllability matrix for the system yields
b b, -5b +b
-5 1 1 1 1 2
x:[l 3]X+ b |UiCm[B ABI=T
o 2 2 172

The controllability matrix has a zero determinant if by = b;.

11.
The controllability matrix is given by Eq. (12.26) for each of the following solutions:
a.
2 0 0 0o 1 -5
A=lo0o 2 o01|:;B=]1]:; CM =11 2 4 |;det CM = 0 ; system is uncontrollable
o 0 -3 1 1 3 9
b.
2001 0 0 0 1 -4
A=10 -2 01];B=1]:; CM =11 -2 4 |;det CM =-1; system is controllable
0o -3 1 1 -3
C.
-4 0 0 0o 2 -7
A=l0 0 1 1|:;B=|2]: CM =2 1 3| det CM =7; system is controllable
o o0 -3 1 1 -3 9
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12.

d.
4 1 0
0 0 1
S5 0 3
e.

f.
4 0
0 -5 0
0 0 -6

-4 17
1 -8 | ; det CM = -5; system is controllable

8 44

-2
4 ] ; det CM =0; system is uncontrollable

0 0 |;det C M =0; system is uncontrollable
-6 36

This system can also be determined uncontrollable by inspection.

Program:
I(d).

A=[-4 1 0;0 0 1;-5 0 -3]

B=[1;0;1]
Cm=ctrb(A,B)

Rank=rank(Cm)

pause

“(H"

A=[-4 0 0;0 -5 0;0 0 -6]

B=[1;0;1]
Cm=ctrb(A,B)

Rank=rank(Cm)

Computer response:

ans =
()
A =
-4 1
0 0
-5 0
B =
1
0
1
Cm =
1 -4
0 1
1 -8
Rank =

WkrOo

17

44



13.

14,
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ans =
™
A =
-4 0 0
0 -5 0
0 0 -6
B =
1
0
1
Cm =
1 -4 16
0 0 0
1 -6 36
Rank =
2
-8 -17 -10 1
From Eq. (12.46) we write the controller canonical form: A, =| 1 0 0 |; Be=]0].
0 1 0 0

The controllability matrices are found using Eq. (12.35). For the original system of Eq. (12.44),

0 0 1 1 -8 47
Cmz=/0 1 =3]|. For the controller canonical form, Cpec =|0 1 —8|. The transformation
I -1 1 0 0 1
00
matrix is, P = CMzCMcc! = |0 1 5 |. Comparing the first row of Age with the desired
1 7 10

characteristic equation, Eq. (12.50), Kcc=[-2 -4 10]. Transforming back to the original system,

K;=KgPl=[20 10 -2].

Drawing the signal-flow diagram for the plant in cascade form yields
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0 -8 1 0
0 0 -10 1

Writing the A and B matrices for the x (phase-variable) system,

AX Bx
0 1 0 0
0 0 1 0 Phase-Variable Form
-240 -134 -21 1

From the phase variable from, the characteristic polynomial is s3 + 21s2 + 134s + 240.

Finding the controllability matrices and their determinants for the z and x systems shows that there is

controllability,
CMz Controllability Matrix of z CMx Controllability Matrix of x
0 1 0 0 1
1 -18 0 1 -21
-10 100 1 -21 307
Det(CMz) -1 Det(CMXx) -1

Using Eq. (12.39), the transformation matrix P and its inverse are found to be

P Transformation Matrix z=Px PINV

0 0 1.00 0.00 0.00
3 1 0 -3.00 1.00 0.00
24 11 1 9.00 -11.00 1.00

Using the given transient requirements, and placing the third closed-loop pole over the zero at -6
yields the following desired closed-loop characteristic polynomial:
(s2 + 8s +45.78)(s + 6) = s> + 14s2 + 93.78s + 274.68
Using the phase-variable system with state feedback the characteristic polynomial is
$3 + (k3 + 21)s2 + (ko + 134)s + (k1 + 240)

Equating the two characteristic polynomials yields the state feedback vector for the x system as

Kx Controller for x
34.68 -40.22 -7
Using Eq. (12.42),
Kz Controller for z
92.34 36.78 -7
15.
Program:
A=[-3 1 0;0 -8 1;0 0 -10]; %Generate system matrix A

B=[0;0;1]; %Generate input coupling matrix B



16.

C=[3 1 0];
D=0;
Po=10;
Ts=1;

Solutions to Problems

%Generate output coupling matrix C
%Generate matrix D

%Input desired percent overshoot
%Input desired settling time

z=(-1og(Po/100))/(sqrt(pi~2+log(Po/100)"2));

wn=4/(z*Ts);
[num,den]=ord2(wn,z);
r=roots(den);

poles=[r(1) r(2) -6];

K=acker(A,B,poles)

Anew=A-B*K;

Bnew=B;

Cnew=C;

Dnew=D;
[numt,dent]=ss2tf(Anew,Bnew,Chew,

“T(s)*

T=tf(numt,dent)
poles=pole(T)

Computer response:
K =
92.3531 36.7844 -7.0000
ans =
T(s)
Transfer function:
-3.553e-015 s™2 + s + 6
SM3 + 14 M2 + 93.78 s + 274.7
poles =
-4.0000 + 5.45751

-4.0000 - 5.4575i
-6.0000

Expanding by partial fractions,
(s+6)

%Calculate required damping ratio
%Calculate required natural
%frequency

%Produce a second-order system that
%meets transient requirements
%Use denominator to specify
%dominant poles

%Specify pole placement for all
%poles.

%A few tries at the the third-pole
%value shows T(s) with a closed-
%loop zero at -7.

%Thus, choose the third pole to
%cancel this zero.

%Calculate controller gains in z-
%system

%Form compensated A matrix

%Form compensated B matrix

%Form compensated C matrix

%Form compensated D matrix

Dnew);

%Form T(s)

%Display label

%Display T(s)

%Display poles of T(s)

~0.085714 0.2 0.28571

G(s) =
(s+3)(s+8)(s+

10)  (s+3) (s+8) (s+10)

Writing the A and B matrices for the z system with kj's set to zero,

Az

Bz
0 0.085714

545
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0 -8 0 0.2
0 0 -10 -0.28571

Writing the A and B matrices for the x (phase-variable) system,

AX Bx

0 1 0 0

0 0 1 0 Phase-Variable Form
-240 -134 -21 1

From the phase variable from, the characteristic polynomial is s3 + 21s2 + 134s + 240.

Finding the controllability matrices and their determinants for the z and x systems shows that there is

controllability,
CMz Controllability Matrix of z CMx Controllability Matrix of x
0.085714 -0.257142 0.771426 0 0 1
0.2 -1.6 12.8 0 1 -21
-0.28571 2.8571 -28.571 1 -21 307
Det(CMz) 0.342850857 Det(CMXx) -1

Using Eq. (12.39), the transformation matrix P and its inverse are found to be

P Transformation Matrix z=Px PINV
6.85712 1.542852 0.085714 0.33 -0.50 -0.25
6 2.6 0.2 -1.00 4.00 2.50
-6.85704 -3.14281 -0.28571 3.00 -32.00 -25.00

Using the given transient requirements, and placing the third closed-loop pole over the zero at -6
yields the following desired closed-loop characteristic polynomial:
(s + 8s+45.78)(s + 6) = s> + 14s2 + 93.78s + 274.68
Using the phase-variable system with state feedback the characteristic polynomial is
3+ (k3 + 21)s2 + (kp + 134)s + (k1 + 240)

Equating the two characteristic polynomials yields the state feedback vector for the x system as

Kx Controller for x
34.7062 -40.2156 -7
Using Eq. (12.42),
Kz Controller for z

30.78443595 45.7845 65.78543678
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17.
Draw signal-flow diagram showing state variables, z, at the output of each subsystem and the state

variables, W, at the output of the integrators.

Recognizing that Z, = 6W, — 8W, +W; = —2W, + W,, we can write the state equations for w as

10 -2 17 [o]
w=l 0 -8 1 lw+lol

Lo o -3 [1]
y=[l 0 0w

Writing the relationship between z and W yileds

[1 0 0]
z=l0 2 1lw=P'w

o o 1]

1 0 0 |
P=l0 —05 05|

o o 1]

Converting the state equations in W to state equations in z, we use Eqgs. (5.87) and obtain the A matrix

Thus

and B vector as

Az Bz

-10 1 0 0
0 -8 3 1
0 0 -3 1

Writing the A and B matrices for the x (phase-variable) system,

AX Bx
0 1 0 0
0 0 1 0 Phase-Variable Form
-240 -134 -21 1

From the phase variable from, the characteristic polynomial is s3 + 2152 + 134s + 240

Finding the controllability matrices and their determinants for the z and x systems shows that there is
controllability,



548 Chapter 12: Design via State Space

CMz

M
0
1
1

Det(CMz)

60
80

18.

Controllability Matrix of z CMx Controllability Matrix of x
1 -15 0 0 1
-5 31 0 1 21
-3 9 1 -21 307
-8 Det(CMx) -1

Using Eq. (12.39), the transformation matrix P and its inverse are found to be

Transformation Matrix z=Px PINV
1 0 -0.25 -0.13 0.13
16 1 2.50 0.75 -0.75
18 1 -25.00 -3.50 4,50

Using the given transient requirements, and placing the third closed-loop pole over the zero at -6

yields the following desired closed-loop characteristic polynomial:
(s + 8s +45.78)(s + 6) = 3 + 14s2 + 93.78s + 274.68
Using the phase-variable system with state feedback the characteristic polynomial is
3+ (k3 + 21)s2 + (ko + 134)s + (k1 + 240)

Equating the two characteristic polynomials yields the state feedback vector for the x system as

Kx Controller for x
34.68 -40.22 -7
Using Eq. (12.42),
Kz Controller for z
65.78 -10 3

Using Egs. (4.39) and (4.34) to find { = 0.5169 and ®, = 18.3498 respectively. Factoring the

denominator of Eq. (4.22), the required poles are -9.4856 + j15.708. We place the third pole 10 times
further at -94.856. Multiplying the three closed-loop pole terms yields the desired characteristic

equation: s3 + 114s2 + 2136s + 31940 = 0. Representing the plant in parallel form:

[0 0 0] [3.125]
A =l0 -4 0|, Bpar=|—6-25|;cpar=[1 1 1]. Using Eq. (12.26),
lo 0o -s] [3.125

[3.125 0 0 ]

CMpar = | —-6.25 25 -100 | , which is controllable since the determinant is 7812.5. Since
[3.125 25 200
[-12 =32 0] .

100
3 3 , the controller canonical form is A = 1 0 0 |; Bee =0 |;
S +12s8" +32s L 0 o 0

G(s) =
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rl -12 1 12—|
C=[0 0 100 ]. Using Eq. (12.26), CMcc = | 0 1 -12 |, which is controllable since the
0 O 1

determinant is 1. The first row of A¢c contains the coefficients of the characteristic equation.

Comparing the first row of A to the desired characteristic equation and using the results of Problem

5, (12 + ky) = 114; (32 + kp)=2136; and (0 + k3)=31940. Hence K¢ =[31940 2104 102]. The
[100 37.5 3.125]

| 0 -50 -6.25 |.Transforming back to the
Lo 125 3.125

transformation matrix is, P = CMparCMcc'l =

original system, Kpar = KecP! =[319.396 251.5184 216.2255].

19.
1

Ts(s+3)(5+7) S +108’ +215+0

G(s)

Writing the A and C matrices for the observer canonical system,

Az
-10 1 0
-21 0 1
0 0 0
Cz
1 0 0

The characteristic polynomial is s3 + 10s2 + 21s + 0.

Now check observability by calculating the observability matrix and its determinant.

OMz Observability Matrix of z

1 0 0

-10 1 0

79 -10 1
Det(OMz) 1

Using the given transient requirements, and placing the third closed-loop pole 10 times further from

the imaginary axis than the dominant poles yields the following desired characteristic polynomial:
(s +300)(s* +60s + 5625) = S* +360s” + 236255+ 1687500
Equating this polynomial to Eq. (12.67), yields the observer gains as:

Lz Observer for z
350

23604

1687500
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20.
Using Egs. (4.39) and (4.34) to find { = 0.5912 and o, = 19.4753 respectively. Factoring the

denominator of Eq. (4.22), the required poles are -11.513 £j15.708. We place the third pole 20 times
further at —230.26. Multiplying the three closed-loop pole terms yields the desired characteristic

equation: s3 +253.2852 + 5681.19s + 87334.19 = 0.
[-20 1 O] (0]
Representing the plant in observer canonical form: Aoc = | —-108 0 1 |; BOC :| 0
[-144 0 o] l10]

Coc=[1 0 O0]. The first column of Agc contains the coefficients of the characteristic equation.

E

Comparing the first column of Ag¢ to the desired characteristic equation and using Eq. (12.67), 11 =
253.28 -20=1233.28; 15 = 5681.19 - 108 = 5573.19; and 13 = 87334.19 - 144 = §87190.19. Hence,
Loc =[233.28 5573.19 87190.19]T.

21.

The A, L, and C matrices for the phase-variable system are:

o 1 0]
A=lo o 1|
lo —21 -10]
c=[1 0 0]
[, ]
L=l1, |
N
Hence,
[A+1 -1 0 1
i-a-Lcy=| I, 4 -1 |
I, 21 A+10]
or

|2 —(A-LC) =2 +(10+1)£ +21+10l +1,)A + 21, +101, +1)
From Problem 19, the desired characteristic polynomial is A3 + 36012 + 23625 + 1687500.
Equating coefficients yields:
10 +1, =360; (21+101, +1,)=23625; (21l +101, +1,) =1687500

Solving successively,

|, =350; I, = 20104; I, = 1479110
22.
The A, L, and C matrices for the phase-variable system are:
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0 1
A=L45 _14};(3:[2 1];L={

Hence,

|/1—(A—LC)|=”+2|' | -1 ]

2L +45 L +A+14

or

2+ QL+, +14)4 + (21, — 171, +45)
From the problem statement, the desired characteristic polynomial is A2 + 144A + 14400.

Equating coefficients yields,

@1, +1, +14) =144; (21, — 171, +45) =14400
Solving simultaneously,

|, =—671.2; |, =1472.4

The A matrix for each part is given in the solution to Problem 11. Each observability matrix is

calculated from Eq. (12.79).

a.
a0 1 3 g g

d=|0 -2 0 |:C=[558 Om=|-10 —10 10 | |On| = 0. unobservable
oo =3 a0 oM

b.
-2 1 0 3 ] a

d=ln -2 0 |;c=mos;Oom=|-10 5 -15 J-|C',-rr| =125;u:u|:userval:u]e
0o 0 -3 m -0 45

C.
-4 1 0 1 0o 0

a-la o 1 |se=(Lom;om=|-41 0 |; l:'l'rrl = 1 - observable
0 0 -3 e -4 1

d.
-4 1 0 1 oo

a1 o 1 l;e=(loo;om=l-41 0 [; G.-rr| = 1 . observable
-5 0 -3 e -4 1

e.

o 1 - = . —f10% . =1

"1'[—6 _SJ,E {1,0},Gm_|:D1JJ|DM| 1: observable

-4 0 0 111

A= 0 -5 0 |- C=(LLI:0om=|-4 -5 -6 |;|Onm| =-2;ocbservable
o 0 -6 16 25 3§

Program:

“@" )

A=[-2 0 1;0 -2 0;0 0 -3] %Form compensated A matrix

C=[5 5 5] %Form compensated C matrix

Om=obsv(A,C) %Form observability matrix

Rank=rank(Om) %Find rank of observability

Y%matrix
I(f).

A=[-4 0 0;0 -5 0;0 0 -6] %Form compensated A matrix
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25.

C=[1 1 1]
Om=obsv(A,C)
Rank=rank(0Om)

Computer response:

ans =
@
A =
-2 0 1
0 -2 0
0 0 -3
C =
5 5 5
Om =
5 5 5
-10 -10 -10
20 20 20
Rank =
1
ans =
™
A =
-4 0 0
0 -5 0
0 0 -6
C =
1 1 1
Om =
1 1 1
-4 -5 -6
16 25 36
Rank =
3

Representing the system in state space yields

. 0 1
x = X +
[_1 -2]

Using Eq. (12.79),

C C
1 2

Om

-C

%Form compensated C matrix
%Form observability matrix
%Find rank of observability

2 2
= - =+
and det OM c1 2C1C c2

2

) (c1-2<:2)_

Thus, the system is unobservable if ¢ = c3.
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26.
The A and C matrices for the system represented in cascade form is
Az
-20 1 0
0 -13 1
0 0 -5
Cz
1 0 0
The characteristic polynomial found from the transfer function of the plant is
s3 +38s2 + 425s + 1300
From this characteristic polynomial, we can write observer canonical form of the state equations. The
A and C matrices of the observer canonical form are given below as
AX
-38 1 0
-425 0 1
-1300 0 0
Cx
1 0 0
To test observability, we write the observability matrices for both systems and show that both
observability matrices have non zero determinants. Using Eq. (12.79),
OMz Observability Matrix of z OMx Observability Matrix of x
1 0 0 1 0 0
-20 1 0 -38 1 0
400 -33 1 1019 -38 1
Det(OMz) 1 Det(OMx) 1
Using Eq. (12.89), we obtain the transformation matrix, P, and its inverse as
P Transformation Matrix z=Px PINV
1 0 0 1.00 0.00 0.00
-18 1 0 18.00 1.00 0.00
25 -5 1 65.00 5.00 1.00

Using the characteristic polynomial given in the problem statement, the plant’s characteristic
equation, and Eq. (12.67), the observer for the observer canonical system is

Lx Observer for x
562
39575
1498700
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27.

Using Eq. (12.92), the observer for the cascade system is found to be

Lz Observer for z
562
29459
1314875
Program:
A=[-20 1 0;0 -13 1;0 0 -5]
B=[0;0;1]
C=[1 0 0]
D=0

poles=roots([1 600 40000 1500000])
L=acker (A" ,C",poles);

L

L-

Computer response:
A -

-20 1
0 -13
0 0 -

R o

LR OO

0
poles =
1.0e+002 *
-5.2985

-0.3508 + 0.40011i
-0.3508 - 0.4001i

ans

ans =
1.0e+006 *
0.0006

0.0295
1.3149
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28.
Expanding the plant by partial fractions, we obtain

1 _ 0.008333  0.017857 N 0.0095238
(S+5)(s+13)(s+20) B (s+95) (s+13) (s+20)

G(s)=

The A and C matrices for the system represented in parallel form is

Az

-5 0 0

0 -13 0

0 0 -20
Cz

1 1 1

The characteristic polynomial found from the transfer function of the plant is
s3 + 3852 + 425s + 1300
From this characteristic polynomial, we can write the observer canonical form of the state equations.

The A and C matrices of the observer canonical form are given below as

AX
-38 1 0
-425 0 1
-1300 0 0
Cx
1 0 0

To test observability, we write the observability matrices for both systems and show that both

observability matrices have non zero determinants. Using Eq. (12.79),

OMz Observability Matrix of z OMx Observability Matrix of x
1 1 1 1 0 0
-5 -13 -20 -38 1 0
25 169 400 1019 -38 1
Det(OMz) -840 Det(OMx) 1
Using Eq. (12.89), we obtain the transformation matrix, P, and its inverse as
P Transformation Matrix z=Px PINV
0.2083333 -0.04166667 0.008333333 1.00 1.00 1.00
-3.017857 0.232142857 -0.01785714 33.00 25.00 18.00
3.8095238 -0.19047619 0.00952381 260.00 100.00 65.00

Using the characteristic polynomial given in the problem statement, the plant’s characteristic

equation, and Eq. (12.67), the observer for the observer canonical system is

Lx Observer for x
562
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39575
1498700

Using Eq. (12.92), the observer for the parallel system is found to be

Lz Observer for z
10957.29167
-19271.4821
8876.190476
29.
Use Eqgs. (4.39) and (4.42) to find { = 0.5912 and o, = 135.328 respectively. Factoring the

denominator of Eq. (4.22), the required poles are -80 +j109.15. We place the third pole 10 times
further at -800. Multiplying the three closed-loop pole terms yields the desired characteristic
equation:

$3 +960s2 + 146313.746s + 14650996.915 = 0.

-18 1 0
. _ 50 . . . B )
Since G(s) = 3118521995 1 162 ° the plant in observer canonical form is: A, =| =99 0 1 |;
-162 0 0
1 0 0
Boc=| 0 |;Coc=[1 0 O0].Using Eq. (12.79), Opmoc =|—18 1 0|, which is observable since
50 225 —18 1
the determinant is 1. Since G(s) = 20 the phase-variable form is
' §3+ 1852 +99s + 162 7 PHASEY
0 1 0 0
Ap = 0 0 1 [;Bp=[0;C=[50 0 0].UsingEq. (12.79),
-162 -99 -18 1
50 0 O
Ompv=|0 50 0 |, whichis observable since the determinant is 125000. The first column of
0 0 50

Agc contains the negatives values of the coefficients of the characteristic equation. Comparing the
first column of Ag to the desired characteristic equation and using Eq. (12.67), 11 = 960-18 = 942; I
=146313.746-99 = 146214.746; and 13 = 14650996.915-162= 14650834.915. Hence,

Loc=1[942 146214.746 14650834.915]. The transformation matrix is,

0.02 0 0
P =Ompv1OmMoc=|-0.36 0.02 0
45 -0.36 0.02

Transforming back to the original system, Lpy = PLoc = [18.84 2585.175 244618.39]T.
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s+2

The open-loop transfer function of the plant is T(s) = C(sl-A)"1B = 20

Using Egs. (12.115), the closed-loop state equations with integral control is

1 -1 1 0 A7 o A1
B = -k1 -R2+2 0 Re || w2 +[D]r" ¥ =[1 L0 =2
AN -1 -1 0 aw | o1 e

The characteristic polynomial is
3+ (ko-1)s2 + (kp + k1 + ke - 2)s + 2ke
The desired characteristic polynomial is calculated from the desired transient response stated in the
problem. Also, the third pole will be placed to cancel the zero at -2. Hence, the desired characteristic
polynomial is
(s +2)(s2+ 165+ 183.137) =53 + 1852 + 215.14s + 366.27
Equating coefficients of the characteristic polynomials yields,
ke = 183.135, k2 =19, k1 = 15.005

31.
s+3

_ . . _ _ _1 2 7
The open-loop transfer function of the plant is T(s) = C(sI-A)™'B 2175110 °

Using Egs. (12.115), the closed-loop state equations with integral control is

%1 —a 1 0 A7 o x1
g | = -k1 -[5+k2] ke %3 +[III]:-" oy =L 10 =2
AN -1 -1 0 aw | o1 e

The characteristic polynomial is
3+ (kg + 7)s2 + (2kp + k| + ke + 10)s + 3ke
The desired characteristic polynomial is calculated from the desired transient response stated in the
problem. Also, the third pole will be placed to cancel the zero at -3. Hence, the desired characteristic
polynomial is
[z+ F) (52 + 165+ 183.14) = 57 + 1952+ 231,14 5+ 549,41

Equating coefficients of the characteristic polynomials yields,

ke = 183.137, ko = 12, k| = 14.003
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SOLUTIONS TO DESIGN PROBLEMS

32.

33.

Writing the A and B matrices for (G(s) represented in phase-variables form,

A B

0 1 0 0

0 0 1 0
1.30E+06 4551 -286 10

From the phase-variable from, the characteristic polynomial is s3 + 286s2 - 4551s - 1301586.

Finding the controllability matrix and it’s determinant shows that there is controllability,

CM
0 0 10
0 10 -2860
10 -2860 863470
Det(CM) -1000

Using the given transient requirements, and arbitrarily placing the third closed-loop pole more than 5
times further than the dominant pair at -50 yields the following desired closed-loop characteristic
polynomial:

(s2 + 165 + 134.384)(s + 50) = s3 + 6652 + 934.4s + 6719.2

Using the phase-variable system with state feedback the characteristic polynomial is

s3 + (k3 + 286)s2 + (kp - 4551)s + (ki - 1301586)
Equating the two characteristic polynomials yields the state feedback vector for the phase-variable
system as

K
1308305.2 5485.4 -220

Controller design:

The transfer function for the plant is

5 5
G0 = (570.4)(5H0.8)(515) ~ 534625246325+ 1.6

The characteristic polynomial for the plant with phase-variable state feedback is
$3+ (6.2 +k3)s2 + (6.32 + ko)s + (1.6 + kp)
Using the given transient response of 5% overshoot and Tg = 10 minutes, and placing the third pole

ten times further from the imaginary axis than the dominant pair, the desired characteristic equation is
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(s+4)(s2+0.8s +0.336) = s3 + 4.852 + 3.536s + 1.344.
Comparing the two characteristic equations, k; = - 0.256, ky =-2.784, and k3 = -1.4.

Observer design:

The A and C matrices for the system represented in phase-variable form is

Az
0 1 0
0 0 1
-1.6 -6.32 -6.2
Cz
| 5 | 0 I 0 |

The characteristic polynomial found from the transfer function of the plant is
s34+ 6252+ 6325+ 1.6
From this characteristic polynomial, we can write the dual phase-variable form of the state equations.

The A and C matrices of the dual phase-variable form are given below as

AX
-6.2 1 0
-6.32 0 1
-1.6 0 0

Cx

1 0 0

To test observability, we write the observability matrices for both systems and show that both

observability matrices have nonzero determinants. Using Eq. (12.79),

OMz Observability Matrix of z OMx Observability Matrix of x
5 0 0 1 0 0
0 5 0 -6.2 1 0
0 0 5 32.12 -6.2 1
Det(OMz) 125 Det(OMx) 1

Using Eq. (12.89), we obtain the transformation matrix, P, and its inverse as

P Transformation Matrix z=Px PINV

0.2 0 0 5.00 0.00 0.00
-1.24 0.2 0 31.00 5.00 0.00
6.424 -1.24 0.2 31.60 31.00 5.00

Using the characteristic polynomial given in the problem statement, the observer for the dual phase-

variable system is
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34.

Lx
41.8
347.28
1342.4

Using Eq. (12.92), the observer for the cascade system is found to be

Lz
8.36
17.624
106.376
a. Using the following signal-flow graph,
-1 L L
800 s X3 20000 s x2 1 s X1

u y

the plant is represented in state space with

0 1 0 0
A={0 -100 20000|;B=| 0 [;andC=[1 0 O]
0 0 -800 800
Using Eq. (12.26),
0 0 L.L6EO7

Cuw=| 0 L6E07 -1.44EI10
800 —6.4E05 5.12E08
The system is controllable since the determinant of Cpg = -2.04e!l7. Use Eqgs. (4.39) and (4.42) to find
€= 0.5912 and o, = 135.3283 respectively. Factoring the denominator of Eq. (4.22), the required
poles are -80 +j109.15. Place the third pole 10 times farther at = 800. Multiplying the three closed-
loop pole terms yields the desired characteristic equation
s3 +960s2 + 1.463E05s + 1.4651E07 = 0.

Since the plant's characteristic equation is s> + 900s2 + 80000s, we write the plant in controller

canonical form as

~900 —80000 0 1
Ae=| 1 0 0|;Bg=|0[;andCcc=[0 0 1.6E07]
0 10 0

The controllability matrix for controllable canonical form is

1 -900 730000
Cwvee=|0 1 =900
0 0 1
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Comparing the first row of A to the desired characteristic equation and using the results of Problem
5,k1 =-(900 - 960) = 60; ko = -(80000 - 1.463E05) = 66300; and k3 = -(0 - 1.465E07) = 1.465E07.
Hence.

Kee =[60 66300 1.465E07]
The transformation matrix is,

0 150 1.6E07
P=CMCmcc!=| 0 L6E0O7 0
800 8E04 0

Transforming back to the original system,
K = KccP! =[9.1569E-01 3.7696E-03 7.5E-02]

The controller compensated system is

0 1 0 0
A-BK= 0 -100  20000|;B=| 0 |;C=[1 0 0]
—732.55 -3.0157 -860 800

b. To evaluate the steady-state error, use Eq. (7.89) where

0 1 0
A-BK= 0 -100 20000
—732.55 -3.0157 860

is the system matrix. Thus,

(s1-[A-BK] =

s 21960 s +1.4631 x105 s +860 20000
S > 1 - — 14651040 $ 24860 s 20000 s
§°+960s “+1.4631x107 s +14651040 | _73355 5 —73255 ~3.0157 s —732.55 $2+100 s

The steady-state error is given by
sRES)[1-C (s 1 -[A -B K])"!BJass>0
For a step input, R(s) = 1/s. Since

1-C(s1-[A-BK]!'B=1- 1 -16000000
$34960s 2+1.4631x10° s + 14651040

for a step input e(o0) = -0.092073. Using Eqgs. 12.115, the system with integral control is:

0 1 0 0
0
Al - 0 -100 20000 0 B, |0 |
—800 K 1 —800 K  —800 K 3—800 800 K ¢ 0
-1 0 0 0 1
c =(1,0,0,0)

Assume the following desired characteristic equation:
(s3 +960s2 + 1.463E05s + 1.4651E07)(s + 1000) =
s 4419605 3+1.1063x10°s 2+ 1.6096x108 s +1.4651x1010 =,
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which is the desired characteristic equation from part (a) plus an additional pole at -1000. But the

integral controlled system characteristic equation is

sl - Ajl=s4+100 (8K 3+9)s 3+80000 (K 3+200 K 5+1)s 2+16000000 K 1 s + 16000000 K ¢
Equating coefficients to the desired characteristic equation

100 (8 K 3+9) = 1960; 80000 (K 3+200K 5+1) = 1.1063x10°; 16000000K | = 1.6096x108;
16000000 K ¢ = 1.4651x1010

Solving for the controller gains: K ¢ =915.69; K | =10.06; K 2 =0.05752; and K 3 =1.325.

Substituting into A| yields the integral controlled system.

0 1 0 0 .
N ~100 20000 O B =]%fcy =(1.000)
-8048.2 ~46.016 1860  7.3255 x10° (1)
-1 0 0 0

Finding the characteristic equation as a check yields

s 4+19605 3+1.1063x10% s 2+1.6096x108 s +1.4651x1010
which checks with the desired characteristic equation. Now check the steady-state error using
Eq. (7.89) using the integral controlled system. We find the error is zero.

c
Program:
"Controller Compensated*®
A=[0 1 0;0 -100 20000;-732.55 -3.0157 -860];
B=[0;0;800];
C=[1 0 01;
D=0;
S=ss(A,B,C,D)
step(S)
title("Controller Compensated®)
pause
"Integral Controller-
A=[0 1 0 0;0 -100 20000 0;-8048.2 -46.016 -1860 7.3255e05;-1 0 0 0];
B=[0;0;0;1];
C=[1 0 0 0];
D=0;
S=ss(A,B,C,D)
step(S)
title("Integral Controller®)

Computer response:
ans =

Controller Compensated

a=
x1 x2 X3
x1 0 1 0
x2 0 -100 2et+004
x3 -732.5 -3.016 -860



ul
xl O
x2 0
x3 800

C:
x1 x2 x3
yl 1 00

d=
ul
yl 0
Continuous-time model.

ans =

Integral Controller

x1 x2

x1 0 1
x2 0 -100
x3 -8048  -46.02
x4 -1 0
b=

ul
x1 O
x2 0
x3 0
x4 1
c=

x1 x2 x3 x4
yl. 1000
d=

ul
yl 0

Continuous-time model.

x3 x4
0 0
2e+004 0

0

-1860 7.326e+005
0
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Controller Compensated
1 4 T T T T T T

4]
=
=
&
0 1 | 1 | | |
1] 0.0 0.0z 0.03 0.04 0.05 0.06 0.07
Time [zec)
Irtegral Contraller
1 4 T T T T T T
121 —
L1k}
=
=
g
|:| 1 1 1 1 1 1
1 0.m .oz 0.0z 0.04 0.05 0.08 0.07

Time (sec)
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Program:

%Enter G(s)

numg=0.072*conv([1 23],[1 0.05 0.04]);
deng=conv([1 0.08 0.04],poly([0.7 -1.71));
IG(S) -

G=tf(numg,deng)

"Plant Zeros~

plantzeros=roots(numg)

%Input transient response specifications
Po=input("Type %0S *);

Ts=input("Type settling time ")

%Determine pole location
z=(-log(Po/100))/(sqrt(pi~2+log(Po/100)"2));
wn=4/(z*Ts);

%wn=pi/(Tp*sqrt(1-z"2));
[num,den]=ord2(wn,z);

r=roots(den);

poles=[r(1) r(2) plantzeros(2) plantzeros(3)]
characteristiceqdesired=poly(poles)

%Find controller canonical form of state-space representation of G(s)
"Controller Canonical Form®
[Ac Bc Cc Dc]=tf2ss(numg,deng)

%Design controller gains

Kc=acker (Ac,Bc,poles)

Acnew=Ac-Bc*Kc

Bcnew=Bc

Ccnew=Cc

Dcnew=Dc
characteristiceqcontroller=poly(eig(Acnew))

%Transform to phase-variable form
P=[0 00 1;0010;0100;100 0];
"Phase-variable form*®
Ap=inv(P)*Ac*P

Bp=inv(P)*Bc

Cp=Cc*P

Dp=Dc

Kp=acker (Ap,Bp,poles)
Apnew=Ap-Bp*Kp

Bpnew=Bp

Cpnew=Cp

Dpnew=Dp
characteristiceqphase=poly(eig(Apnew))
[numt,dent]=ss2tf(Apnew,Bpnew,Cpnew,Dpnew) ;
T=tf(numt,dent);

"T(s)"

T=minreal (T)

step(T)

IT(S) -

Tzpk=zpk(T)

"Poles of T(s)"

p=pole(T

Computer response:
ans =
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G(s)

Transfer function:
0.072 s™"3 + 1.66 s™2 + 0.08568 s + 0.06624

s + 1.08 s”"3 - 1.07 s”2 - 0.0552 s - 0.0476

ans =

Plant Zeros

plantzeros =
-23.0000
-0.0250 + 0.1984i
-0.0250 - 0.1984i

Type %0S 10
Type settling time 0.5

poles =

-8.0000 +10.9150i -8.0000 -10.9150i -0.0250 + 0.1984i -0.0250 -
0.19841
characteristiceqdesired =

1.0000 16.0500 183.9775 9.7969 7.3255

ans =

Controller Canonical Form

Ac =
-1.0800 1.0700 0.0552 0.0476
1.0000 0 0 0
0 1.0000 0 0
0 0 1.0000 0
Bc =
1
0
0
0
Cc =
0.0720 1.6596 0.0857 0.0662
Dc =



14.9700 185.0475 9.8521
Acnew =
-16.0500 -183.9775 -9.7969
1.0000 0 0
0 1.0000 0
0 0 1.0000
Bcnew =
1
0
0
0
Ccnew =
0.0720 1.6596 0.0857
Dcnew =
0

characteristiceqcontroller =

1.0000 16.0500 183.9775

ans =

Phase-variable form

Ap =
0 1.0000 0
0 0 1.0000
0 0 0
0.0476 0.0552 1.0700
Bp =
0
0
0
1
Cp =
0.0662 0.0857 1.6596
Dp =
0

Kp

7.3731

-7.3255

0.0662

9.7969

1.0000
-1.0800

0.0720

Solutions to Design Problems 567
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7.3731 9.8521 185.0475 14.9700

Apnew =
0 1.0000 0 0
0 0 1.0000 0]
0] 0] 0] 1.0000
-7.3255 -9.7969 -183.9775 -16.0500
Bpnew =
0
0
0]
1
Cpnew =

0.0662 0.0857 1.6596 0.0720

Dpnew =

characteristiceqphase =

1.0000 16.0500 183.9775 9.7969 7.3255

ans =

T(s)

Transfer function:
0.072 s + 1.656

sN"2 + 16 s + 183.1

ans =

T(s)

Zero/pole/gain:
0.072 (s+23)

(s"2 + 16s + 183.1)

ans =

Poles of T(s)

p:

-8.0000 +10.91501
-8.0000 -10.9150i
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Step Response
ooz T T T T T T

0.m

0.00s

0006

Amplitude

0004

.00z

0 1 1 1 1 1 1
0 0 nz 03 0.4 0.5 05 0.y

Time (zec)

Program:

%Enter G(s)

numg=0.072*conv([1 23],[1 0.05 0.04]);
deng=conv([1 0.08 0.04],poly([0.7 -1.7]));
"Uncompensated Plant Transfer Function*
IG(S) -

G=tf(numg,deng)

"Uncompensated Plant Zeros”
plantzeros=roots(numg)

%Input transient response specifications
Po=input("Type %0S *);

Ts=input("Type settling time ");

%Determine pole location
z=(-1og(Po/100))/(sqrt(pi~2+log(Po/100)"2));
wn=4/(z*Ts);

Ywn=pi/(Tp*sqrt(1-z"2));

[num,den]=ord2(wn,z);

r=roots(den);

"Desired Observer Poles”

poles=[r(1) r(2) plantzeros(2) plantzeros(3)]"
"Desired Characteristic Equation of Observer”

poly(poles)

%Find phase variable form of state-space representation of Estimated Plant
%Find controller canonical form
[Ac Bc Cc Dc]=tf2ss(numg,deng);

%Transform to phase-variable form of Uncompensated Plant
P=[0 00 1;001 0;0100;1000];

"Phase-variable form of Estimated Plant”

Ap=inv(P)*Ac*P
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Bp=inv(P)*Bc
Cp=Cc*P
Dp=Dc

%Design observer gains for phase variables
"Observer gains*
Lp=acker(Ap*®,Cp~",poles)*
"Error System Matrix®
Aep=Ap-Lp*Cp
"Error System Eigenvalues®

eig(Aep)
"Error Characteristic Polynomial*

poly(eig(Aep))

Computer response:
ans =

Uncompensated Plant Transfer Function

ans =

G(s)

Transfer function:
0.072 s™3 + 1.66 s™2 + 0.08568 s + 0.06624

s + 1.08 s”"3 - 1.07 s”2 - 0.0552 s - 0.0476

ans =

Uncompensated Plant Zeros

plantzeros =
-23.0000
-0.0250 + 0.1984i
-0.0250 - 0.1984i

Type %0S 10
Type settling time 0.5/15

ans =

Desired Observer Poles

poles =
1.0e+002 *
-1.2000 - 1.6373i
-1.2000 + 1.63731
-0.0003 - 0.0020i
-0.0003 + 0.0020i
ans =

Desired Characteristic Equation of Observer
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ans =
1.0e+004 *

0.0001 0.0240 4.1218 0.2070 0.1648

ans =

Phase-variable form of Estimated Plant

Ap =
0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000
0.0476 0.0552 1.0700 -1.0800
Bp =
0
0
0
1
Cp =

0.0662 0.0857 1.6596 0.0720

ans =

Observer gains

Lp =
1.0e+004 *

-0.0002

Error System Matrix

Aep =
1.0e+004 *

0.0000 0.0001 0.0003 0.0000
-0.0003 -0.0004 -0.0071 -0.0003
0.0065 0.0084 0.1636 0.0072
-0.1722 -0.2227 -4.3139 -0.1873
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ans =

Error System Eigenvalues

ans =
1.0e+002 *
-1.2000 + 1.6373i
-1.2000 - 1.6373i
-0.0003 + 0.00201%
-0.0003 - 0.0020i
ans =

Error Characteristic Polynomial

ans =
1.0e+004 *

0.0001 0.0240 4.1218 0.2070 0.1648

37.
a. Using Eqs. (12.115), the system with integral control is:

0 1 0 0 0

0 0 1 0 0 8]
Ay = 0 0 0 1 0 By =|of;
“K [ +0.0476 —K 2+0.0552 —K3+1.07 K 4-1.08 K e (1)
—0.06624 —0.08568 ~1.6596 ~0.072 0

C =(1,0,0,0,0)
Assume the following desired characteristic equation,

(s +8+10.915i ) (s +8-10.9151 ) (s +0.025+0.1984i ) (s +0.025-0.1984i ) (s +23) =
$°+39.055 4+553.135 3 +4241.35 2+232.65s +168.43

which is the desired characteristic equation from Problem 35 plus an additional pole at -23, the

closed-loop zero. But the integral controlled system characteristic equation is |sl - Aj| =

s 5+ (K 4+1.08) s 4+ (K 340072 K ¢ =1.07) s 3+ (K 2+1.6596 K ¢ —0.0552) s 2+ (K | +0.08568 K ¢ —0.0476)'s
+0.06624 K ¢
Equating coefficients to the desired characteristic equation
K 4+1.08 =39.05; K 3+0.072 K ¢ —1.07 =553.13; K 2 +1.6596 K ¢ —0.0552 =4241.3;
K 1+0.08568 K ¢ —0.0476 =232.65; and 0.06624 K o = 168.43
Solving for the controller gains
K1=14.829; K =21.328; K3 =371.12; K 4 =37.97 and K ¢ =2542.8

Substituting into A| yields the integral controlled system,
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0 1 0 0

0 0
0 0 | 0 0 0

Ay = 0 0 0 1 0 By =|o
_14781 —21272 —370.05 —39.05  2542.8 0
—0.06624 —0.08568 —1.6596 —0.072 0 1

C 1 =1(0.06624,0.08568,1.6596,0.072,0)

Finding the characteristic equation as a check yields

$9+39.055 4+553.135 3+4241.35 2+232.655 +168.43
which checks with the desired. Now check the steady-state error using Eq. (7.89) using the integral
controlled system. We find the error is zero.
b.

Program:
%Design with Integral Control

"State-Space Representation of System with Integral Control*
AIE[01 000;00100;00010;...

-14.781 -21.272 -370.05 -39.05 2542.8;...

-0.06624 -0.08568 -1.6596 -0.072 0]

BI=[0;0;0;0;1]

CI=[0.06624 0.08568 1.6596 0.072 0]

DI=0

%Convert to transfer function
[numt,dent]=ss2tf(Al,BI,Cl1,Dl);

"Integral Control Transfer Function®
“T(s)"

T=tf(numt,dent)

"Integral Control Transfer Function Zeros”
roots(numt)

"Integral Control Transfer Function Poles”
roots(dent)

step(T)

title("Step Response with Integral Controller®)

Computer response:
ans =

State-Space Representation of System with Integral Control

Al =
1.0e+003 *
0 0.0010 0 0 0
0 0 0.0010 0 0
0 0 0 0.0010 0
-0.0148 -0.0213 -0.3700 -0.0390 2.5428
-0.0001 -0.0001 -0.0017 -0.0001 0
Bl =

OO0 O0OOo
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1
Cl =
0.0662 0.0857 1.6596 0.0720 0
DI =
0
ans =

Integral Control Transfer Function

ans =

T(s)

Transfer function:
-1.421e-014 s™4 + 183.1 s™"3 + 4220 s™2 + 217.9 s + 168.4

sN5 + 39.05 s™4 + 553.1 s™"3 + 4241 sN2 + 232.6 s + 168.4

ans =

Integral Control Transfer Function Zeros

ans =
1.0e+016 *

1.2883
-0.0000
-0.0000 + 0.0000i
-0.0000 - 0.0000i

ans =

Integral Control Transfer Function Poles

ans =

-22.9998
-8.0001 +10.9151i
-8.0001 -10.9151i
-0.0250 + 0.19841i
-0.0250 - 0.1984i
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Step Response with Integral Contraller
1 4 T T T T T T

Amplitude

) 1 1 1 1 1 1
1] 04 0z 0.3 0.4 03 0.5 oy

Time (zec)

38.
a

The open-loop block diagram is

Yh-Ycat
Spring

displacement

Desired Input F, '

foree 1 voltage 1 up 0.7883 (s+53.85) Foul
l 100 ’ 1000 P> 52300 —’

(s +15.47s + 9283 )(S'+ 8.119 s+ 376 .3)

Input Actuator Pantograph Spring
transducer dvnamics

From Chapter 3, the state-space representation for [Ypn(s) — Ycad(8)]/Fup(s) is

[0 1 0 o 1 T ]
29353 -14286 76923 14286 | | |

0 0 0 1 KT oo
40698  7.5581 -406.98 -93023| [0.0581]

y=[0.94911 0 0 O0]x

0
0
f

up

4 |
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(Vi ]

1y, |

where y =y, - year and X = | |
Ye

i
Let v; represent the input voltage shown on the diagram. Thus,
fup = vi/1000.
Also, fou = 82300(y} - Year)-

Thus,
fou = 82300y

Substituting f,, and f,,; into the state-equations above yields

[0 1 0 o177 o ]
9353 -14.286 769.23 14.286 | | 0 |
0 0 0 T o I S

40698 7.5581 -406.98 -93023| |0.0581x10° ]

fue =[78,112 0 0 O]x

]
XY=

407 - 0.0000581 k1 , 7.56 - .0000581 k2 , -407 - 0.0000581 k3 , -9.30 - 0.0000581 k4]

Thus,
[ o 1 0 0
| 9353  -14.286 769.23 14.286 |
A=l 0 0 1|
L406.98 7.5581 -406.98 -9.3023J
U
sl 0
)
[ 0.0581x10° |
K=[k k k k]
Hence,
A-BK =
[0,1,0,0
[-9350,-14.3,769,14.3
[0,0,0,1
[
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and

| A-BK|=s" +(0.0000581 k4 + 23.60) s
+(0.00083083 k4 + 0.00083083 k2 + 9781.882 + 0.0000581 k3) s
+(0.00083083 k1 + 81141.36 + 0.543235 k4 + 0.00083083 k3 + 0.0446789 k2) s
+(0.0446789 k1 +0.3492467 107 + 0.543235 k3)
Input transient response specifications,
Po=20
Ts=1
yields poles at
-4.0000 + 7.80791, -4.0000 - 7.8079i, -53.8500, -50.0000
Thus, the desired characteristic equation is
s* + 1125’ +3600s” +29500s + 207000 = 0
We now equate the coefficients of |A-BK| to the coefficients of the desired characteristic equation.

For compactness we solve for the coefficients, K, using the form FK = G, where

F=
0 0 0 0.0000581
0 0.00083083 0.0000581 0.00083083
0.00083083 0.0446789 0.00083083 0.543235
0.0446789 0 0.543235 0
and
G=
88.4
—6181.882
-51641.36
-3285467
Solving for K using K = F'G
K=
-4.8225e8
-0.1131e8
0.3361e8
0.0152e8
b.
Integral Control Design
A=
1.0e+03 *
0 0.0010 0 0
-9.3530 -0.0143  0.7692 0.0143
0 0 0 0.0010
0.4070 0.0076  -0.4070 -0.0093
B=
1.0e-04 *
0
0
0

0.5810
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C=
78112 0 0 0
Aaug = A-BK =
[0,1.,0,0,0
[-9350.,-14.3,769.,14.3,0
[0,0,0,1.,0
[407. - 0.0000581 k1, 7.56 - 0.0000581 k2 , -407. - 0.0000581 k3 ,

-9.30 - 0.0000581 k4 , 0.0000581 Ke
[-78100.,0,0,0,0]
Desired poles
Po=20
Ts=1
Determine pole location

poles =-4.0000 + 7.80791, -4.0000 - 7.8079i, -53.85, -50,-50

Desired characteristic equation
s+ 162s* + 0.919e4s’ + 0.210e6s” + 0.168e7s + 0.104e8
System characteristic equation
[sl-Aaug| =
s> +(23.60 + 0.0000581 k4) s*
+(0.00083083 k4 + 0.00083083 k2 + 0.0000581 k3 + 9781.882) s°
+(0.00083083 k1 + 81141.36 + 0.0446789 k2 + 0.543235 k4 + 0.00083083 k3) s°
+(0.0446789 k1 + 64.887823 Ke + 0.543235 k3 + 0.3492467 10" ) s

+3489.42209 Ke

Solving for Coefficients, K, using FK = G as in (a), where

F

0 0 0 5.8100e-05 0

0
8.3083e-04
4.4679e-02

0

G=
1.3840e+02
-5.9188e+02
1.2886e+05
-1.8125e+06
1.0800e+07
Thus,
K=
-1.0157e+09
-8.6768e+06
7.9827e+07
2.3821e+06

8.3083¢-04
4.4679¢-02
0
0

5.8100e-05
8.3083e-04
5.4324e-01
0

8.3083e-04
5.4324e-01
0
0

0

0
6.4888e+01
3.4894e+03
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3.0951e+03

Step Response
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1.2

0.8

0.6

0.4

0.2

0.4 0.8

Time (sec.)

1.2
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