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Solutions to Skill-Assessment
Exercises

Chapter 2

2.1.

The Laplace transform of t is 
1
s2

 using Table 2.1, Item 3. Using Table 2.2, Item 4,

F(s) = 1
(s + 5)2 .

2.2.   

Expanding F(s) by partial fractions yields:

F(s) = A

s
+ B

s + 2
+ C

(s + 3)2 + D

(s + 3)

where,

A
s s S

=
+ +

=
→

10

2 3

5

92
0( )( )

 B = 10
s(s + 3)2

S→−2

= −5 C = 10
s(s + 2) S→−3

= 10
3

, and

D = (s + 3)2 dF(s)
ds s→−3

= 40
9

Taking the inverse Laplace transform yields,

f (t) = 5
9

− 5e−2t + 10
3

te−3t + 40
9

e−3t

2.3.   

Taking the Laplace transform of the differential equation assuming zero initial

conditions yields:

s3C(s) + 3s2C(s) + 7sC(s) + 5C(s) = s2R(s) + 4sR(s) + 3R(s)

Collecting terms,

(s3 + 3s2 + 7s + 5)C(s) = (s2 + 4s + 3)R(s)

Thus,
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C(s)
R(s)

= s2 + 4s + 3
s3 + 3s2 + 7s + 5

2.4.

G(s) = C(s)
R(s)

= 2s +1
s2 + 6s + 2

Cross multiplying yields,

d 2c

dt2 + 6
dc

dt
+ 2c = 2

dr

dt
+ r

2.5.

C(s) = R(s)G(s) = 1
s2 *

s

(s + 4)(s + 8)
= 1

s(s + 4)(s + 8)
= A

s
+ B

(s + 4)
+ C

(s + 8)

where

A = 1
(s + 4)(s + 8) S→0

= 1
32

B = 1
s(s + 8) S→−4

= − 1
16

, and C = 1
s(s + 4) S→−8

= 1
32

Thus,

c(t) = 1
32

− 1
16

e−4t + 1
32

e−8t

2.6.

Mesh Analysis

Transforming the network yields,

Now, writing the mesh equations,
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(s +1)I1(s) − sI2 (s) − I3(s) = V(s)

−sI1(s) + (2s +1)I2 (s) − I3(s) = 0

−I1(s) − I2 (s) + (s + 2)I3(s) = 0

Solving the mesh equations for I2(s),

I2 (s) =

(s +1) V(s) −1

−s 0 −1

−1 0 (s + 2)
(s +1) −s −1

−s (2s +1) −1

−1 −1 (s + 2)

= (s2 + 2s +1)V(s)
s(s2 + 5s + 2)

But, VL (s) = sI2 (s)

Hence,

VL (s) = (s2 + 2s +1)V(s)
(s2 + 5s + 2)

or

VL (s)
V(s)

= s2 + 2s +1
s2 + 5s + 2

Nodal Analysis

Writing the nodal equations,

(
1
s

+ 2)V1(s) − VL (s) = V(s)

−V1(s) + (
2
s

+1)VL (s) = 1
s

V(s)

Solving for VL (s),

VL (s) =

(
1
s

+ 2) V(s)

−1
1
s

V(s)

(
1
s

+ 2) −1

−1 (
2
s

+1)

= (s2 + 2s +1)V(s)
(s2 + 5s + 2)

or

VL (s)
V(s)

= s2 + 2s +1
s2 + 5s + 2
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2.7.

Inverting

G(s) = − Z2 (s)
Z1(s)

= −100000
(105 / s)

= −s

Noninverting

G(s) = [Z1(s) + Z2 (s)]
Z1(s)

=
(
105

s
+105 )

(
105

s
)

= s +1

2.8.

Writing the equations of motion,

(s2 + 3s +1)X1(s) − (3s +1)X2 (s) = F(s)

−(3s +1)X1(s) + (s2 + 4s +1)X2 (s) = 0

Solving for X2 (s),

X2 (s) =

(s2 + 3s +1) F(s)

−(3s +1) 0

(s2 + 3s +1) −(3s +1)

−(3s +1) (s2 + 4s +1)

= (3s +1)F(s)
s(s3 + 7s2 + 5s +1)

Hence,

X2 (s)
F(s)

= (3s +1)
s(s3 + 7s2 + 5s +1)

2.9.

Writing the equations of motion,

(s2 + s +1)θ1(s) − (s +1)θ2 (s) = T(s)

−(s +1)θ1(s) + (2s + 2)θ2 (s) = 0

where θ1(s) is the angular displacement of the inertia.

Solving for θ2 (s),

θ2 (s) =

(s2 + s +1) T(s)

−(s +1) 0

(s2 + s +1) −(s +1)

−(s +1) (2s + 2)

= (s +1)F(s)
2s3 + 3s2 + 2s +1

From which, after simplification,
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θ2 (s) = 1
2s2 + s +1

2.10.

Transforming the network to one without gears by reflecting the 4 N-m/rad spring

to the left and multiplying by (25/50)2, we obtain,

1 kg

1 N-m-s/rad

1 N-m/rad

T(t)

θa(t)θ1(t)

Writing the equations of motion,

(s2 + s)θ1(s) − sθa (s) = T(s)

−sθ1(s) + (s +1)θa (s) = 0

where θ1(s) is the angular displacement of the 1-kg inertia.

Solving for θa (s) ,

θa (s) =

(s2 + s) T(s)

−s 0

(s2 + s) −s

−s (s +1)

= sT(s)
s3 + s2 + s

From which,

θa (s)
T(s)

= 1
s2 + s +1

But, θ2 (s) = 1
2

θa (s).

Thus,

θ2 (s)
T(s)

= 1 / 2
s2 + s +1

2.11.

First find the mechanical constants.

Jm = Ja + JL (
1
5

*
1
4

)2 = 1 + 400(
1

400
) = 2

Dm = Da + DL (
1
5

*
1
4

)2 = 5 + 800(
1

400
) = 7
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Now find the electrical constants. From the torque-speed equation, set ωm = 0 to

find stall torque and set Tm = 0 to find no-load speed. Hence,

Tstall = 200

ωno−load = 25

 which,

Kt

Ra

= Tstall

Ea

= 200
100

= 2

Kb = Ea

ωno−load

= 100
25

= 4

Substituting all values into the motor transfer function,

θm (s)
Ea (s)

=

KT

Ra Jm

s(s + 1
Jm

(Dm + KT Kb

Ra

)
= 1

s(s + 15
2

)

where θm (s) is the angular displacement of the armature.

Now θL (s) = 1
20

θm (s) . Thus,

θL (s)
Ea (s)

= 1 / 20

s(s + 15
2

)
)

2.12.

Letting

θ1(s) = ω1(s) / s

θ2 (s) = ω2 (s) / s

in Eqs. 2.127, we obtain

(J1s + D1 + K

s
)ω1(s) − K

s
ω2 (s) = T(s)

− K

s
ω1(s) + (J2s + D2 + K

s
)ω2 (s)

From these equations we can draw both series and parallel analogs by considering

these to be mesh or nodal equations, respectively.
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                                     Series analog

                                       Parallel analog

2.13.

Writing the nodal equation,

C
dv

dt
+ ir − 2 = i(t)

But,

C = 1

v = vo + δv

ir = evr = ev = evo +δv

Substituting these relationships into the differential equation,

d(vo + δv)
dt

+ evo +δv − 2 = i(t)         (1)

We now linearize ev .

The general form is

f (v) − f (vo ) ≈ df

dv vo

δv

Substituting the function, f (v) = ev , with v = vo + δv  yields,

evo +δv − evo ≈ dev

dv vo

δv

Solving for evo +δv ,
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evo +δv = evo + dev

dv vo

δv = evo + evo δv

Substituting into Eq. (1)

dδv

dt
+ evo + evo δv − 2 = i(t)    (2)

Setting i(t) = 0 and letting the circuit reach steady state, the capacitor acts like an

open circuit. Thus, vo = vr  with ir = 2. But, ir = evr  or vr = ln ir .

Hence, vo = ln 2 = 0.693. Substituting this value of vo  into Eq. (2) yields

dδv

dt
+ 2δv = i(t)

Taking the Laplace transform,

(s + 2)δv(s) = I(s)

Solving for the transfer function, we obtain

δv(s)
I(s)

= 1
s + 2

or

V(s)
I(s)

= 1
s + 2

 about equilibrium.
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Chapter 3

3.1.

Identifying appropriate variables on the circuit yields

Writing the derivative relations

C1

dvC1

dt
= iC1

L
diL

dt
= vL

C2

dvC2

dt
= iC2

      (1)

Using Kirchhoff’s current and voltage laws,

iC1
= iL + iR = iL + 1

R
(vL − vC2

)

vL = −vC1
+ vi

iC2
= iR = 1

R
(vL − vC2

)

Substituting these relationships into Eqs. (1) and simplifying yields the state

equations as

dvC1

dt
= − 1

RC1

vC1
+ 1

C1

iL − 1
RC1

vC2
+ 1

RC1

vi

diL

dt
= − 1

L
vC1

+ 1
L

vi

dvC2

dt
= − 1

RC2

vC1
− 1

RC2

vC2

1
RC2

vi

where the output equation is

vo = vC2

Putting the equations in vector-matrix form,
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x
•

=

− 1
RC1

1
C1

− 1
RC1

− 1
L

0 0

− 1
RC2

0 − 1
RC2























x +

1
RC1

1
L
1

RC2























vi (t)

y = 0 0 1[ ]x
3.2.

Writing the equations of motion

(s2 + s +1)X1(s)               − sX2 (s)                            = F(s)

           − sX1(s) + (s2 + s +1)X2 (s)                − X3(s) = 0

                                         − X2 (s) + (s2 + s +1)X3(s) = 0

Taking the inverse Laplace transform and simplifying,

x1

••
= −x1

•
− x1 + x2

•
+ f

x2

••
= x1

•
− x2

•
− x2 + x3

x3

••
= −x3

•
− x3 + x2

Defining state variables, zi,

z1 = x1;  z2 = x1

•
;  z3 = x2 ;  z4 = x2

•
;  z5 = x3;  z6 = x3

•

Writing the state equations using the definition of the state variables and the

inverse transform of the differential equation,

z1

•
= z2

z2

•
= x1

••
= −x1

•
− x1 + x2

•
+ f = −z2 − z1 + z4 + f

z3

•
= x2

•
= z4

z4

•
= x2

••
= x1

•
− x2

•
− x2 + x3 = z2 − z4 − z3 + z5

z5

•
= x3

•
= z6

z6

•
= x3

••
= −x3

•
− x3 + x2 = −z6 − z5 + z3

The output is z5. Hence, y = z5 . In vector-matrix form,



Chapter 3       11

z
•

=

0 1 0 0 0 0

−1 −1 0 1 0 0

0 0 0 1 0 0

0 1 −1 −1 1 0

0 0 0 0 0 1

0 0 1 0 −1 −1

























z +

0

1

0

0

0

0

























f (t);  y = 0 0 0 0 1 0[ ]z

3.3.

First derive the state equations for the transfer function without zeros.

X(s)
R(s)

= 1
s2 + 7s + 9

Cross multiplying yields

(s2 + 7s + 9)X(s) = R(s)

Taking the inverse Laplace transform assuming zero initial conditions, we get

x
••

+ 7 x
•
+ 9x = r

Defining the state variables as,

x1 = x

x2 = x
•

Hence,

x1

•
= x2

x2

•
= x

••
= −7 x

•
− 9x + r = −9x1 − 7x2 + r

Using the zeros of the transfer function, we find the output equation to be,

c = 2 x
•
+ x = x1 + 2x2

Putting all equation in vector-matrix form yields,

x
•

=
0 1

−9 −7





x +

0

1





r

c = 1 2[ ]x
3.4.

The state equation is converted to a transfer function using

G(s) = C(sI − A)−1 B     (1)

where
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A =
−4 −1.5

4 0






, B =
2

0





, and C = 1.5 0.625[ ] .

Evaluating (sI − A)  yields

(sI − A) =
s + 4 1.5

−4 s






Taking the inverse we obtain

(sI − A)−1 = 1
s2 + 4s + 6

s −1.5

4 s + 4






Substituting all expressions into Eq. (1) yields

G(s) = 3s + 5
s2 + 4s + 6

3.5.

Writing the differential equation we obtain

d 2x

dt2 + 2x2 = 10 + δf (t)     (1)

Letting x = xo + δx  and substituting into Eq. (1) yields

d 2 (xo + δx)
dt2 + 2(xo + δx)2 = 10 + δf (t)     (2)

Now, linearize x2.

(xo + δx)2 − xo
2 = d(x2 )

dx xo

δx = 2xoδx

from which

(xo + δx)2 = xo
2 + 2xoδx       (3)

Substituting Eq. (3) into Eq. (1) and performing the indicated differentiation gives

us the linearized intermediate differential equation,

d 2δx

dt2 + 4xoδx = −2xo
2 +10 + δf (t)   (4)

The force of the spring at equilibrium is 10 N. Thus, since F = 2x2,

10 = 2xo
2

from which

xo = 5
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Substituting this value of xo into Eq. (4) gives us the final linearized differential

equation.

d 2δx

dt2 + 4 5δx = δf (t)

Selecting the state variables,

x1 = δx

x2 = δx
•

Writing the state and output equations

x1

•
= x2

x2

•
= δx

••
= −4 5x1 + δf (t)

y = x1

Converting to vector-matrix form yields the final result as

x
•

=
0 1

−4 5 0





x +

0

1





δf (t)

y = 1 0[ ]x
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Chapter 4

4.1.

For a step input

C(s)  10(s ) 4)(s ) 6)
s(s ) 1)(s ) 7)(s ) 8)(s ) 10)

= A

s
+ B

s +1
+ C

s + 7
+ D

s + 8
+ E

s +10

Taking the inverse Laplace transform,

c(t) = A + Be−t + Ce−7t + De−8t + Ee−10t

4.2.

Since a = 50 , Tc = 1
a

= 1
50

= 0.02s; Ts = 4
a

= 4
50

= 0.08 s; and Tr = 2.2
a

= 2.2
50

= 0.044 s.

4.3.

a. Since poles are at –6 ± j19.08, c(t) = A + Be−6t cos(19.08t + φ).

b. Since poles are at –78.54 and –11.46, c(t) = A + Be−78.54t + Ce−11.4t .

c.  Since poles are double on the real axis at –15 c(t) = A + Be−15t + Cte−15t .

d.  Since poles are at ±j25, c(t) = A + Bcos(25t + φ).

4.4.

a. ωn = 400 = 20 and 2ζωn = 12; ∴ ζ = 0.3 and system is underdamped.  

b. ωn = 900 = 30 and 2ζωn = 90; ∴ ζ = 1.5 and system is overdamped.  

c. ωn = 225 = 15 and 2ζωn = 30; ∴ ζ = 1 and system is critically damped.  

d. ωn = 625 = 25 and 2ζωn = 0; ∴ ζ = 0 and system is undamped.  

4.5.

ωn = 361 = 19 and 2ζωn = 16; ∴ ζ = 0.421.

Now, Ts = 4
ζωn

= 0.5 s and Tp = π
ωn 1 − ζ 2

= 0.182 s.

From Figure 4.16, ωnTr = 1.4998. Therefore, Tr = 0.079 s.

Finally, %os = e
-ζπ
1−ζ 2

*100 = 23.3%
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4.6.

a. The second-order approximation is valid, since the dominant poles have a real part of

–2 and the higher-order pole is at –15, i.e. more than five-times further.

b. The second-order approximation is not valid, since the dominant poles have a real part

of –1 and the higher-order pole is at –4, i.e. not more than five-times further.

4.7.

a. Expanding G(s) by partial fractions yields G(s) = 1
s

+ 0.8942
s + 20

− 1.5918
s +10

− 0.3023
s + 6.5

.

But –0.3023 is not an order of magnitude less than residues of second-order terms (term 2

and 3). Therefore, a second-order approximation is not valid.

b. Expanding G(s) by partial fractions yields G(s) = 1
s

+ 0.9782
s + 20

− 1.9078
s +10

− 0.0704
s + 6.5

.

But 0.0704 is an order of magnitude less than residues of second-order terms (term 2 and

3). Therefore, a second-order approximation is valid.

4.8.

See Figure 4.31 in the textbook for the Simulink block diagram and the output responses.

4.9.

a. Since sI − A =
s −2

3 s + 5





, (sI − A)−1 = 1

s2 + 5s + 6

s + 5 2

−3 s






. Also,

BU(s) =
0

1 / (s +1)






.

The state vector is X(s) = (sI − A)−1[x(0) + BU(s)] = 1
(s +1)(s + 2)(s + 3)

2(s2 + 7s + 7)

s2 − 4s − 6









 .

The output is Y(s) = 1 3[ ]X(s) = 5s2 + 2s − 4
(s +1)(s + 2)(s + 3)

= − 0.5
s +1

− 12
s + 2

+ 17.5
s + 3

.

Taking the inverse Laplace transform yields y(t) = −0.5e−t −12e−2t +17.5e−3t .

b. The eigenvalues are given by the roots of sI − A = s2 + 5s + 6, or –2 and –3.
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4.10.

a. Since (sI − A) =
s −2

2 s + 5





, (sI − A)−1 = 1

s2 + 5s + 4

s + 5 2

−2 s





. Taking the Laplace

transform of each term, the state transition matrix is given by

Φ(t) =

4
3

e−t − 1
3

e−4t 2
3

e−t − 2
3

e−4t

− 2
3

e−t + 2
3

e−4t − 1
3

e−t + 4
3

e−4t
















.

b. Since Φ(t − τ ) =

4
3

e−(t −τ ) − 1
3

e−4(t −τ ) 2
3

e−(t −τ ) − 2
3

e−4(t −τ )

− 2
3

e−(t −τ ) + 2
3

e−4(t −τ ) − 1
3

e−(t −τ ) + 4
3

e−4(t −τ )

















 and Bu(τ ) =
0

e−2τ






,

Φ(t − τ )Bu(τ ) =

2
3

e−τe−t − 2
3

e2τe−4t

− 1
3

e−τe−t + 4
3

e2τe−4t
















.

Thus, x(t) = Φ(t)x(0) + Φ(t − τ )Bu(τ )
0

t

∫ dτ =

10
3

e−t − e−2t − 4
3

e−4t

− 5
3

e−t + e−2t + 8
3

e−4t
















.

c. y(t) = 2 1[ ]x = 5e−t − e−2t
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Chapter 5

5.1.

Combine the parallel blocks in the forward path. Then, push 
1
s

 to the left past the

pickoff point.

1

s

s

s

s 2 +
1

s

+
-

-

R( s)
C(s)

Combine the parallel feedback paths and get 2s. Then, apply the feedback

formula, simplify, and get, T s
s

s s s
( ) = +

+ +

3

4 2

1
2 2

.

5.2.

Find the closed-loop transfer function, T(s) = G(s)
1 + G(s)H(s)

= 16
s2 + as +16

,

where G(s) = 16
s(s + a)

 and H(s) = 1. Thus,ωn = 4 and 2ζωn = a , from which

ζ = a

8
. But, for 5% overshoot, ζ =

− ln(
%

100
)

π2 + ln2 (
%

100
)

 = 0.69. Since, ζ = a

8
,

a = 5.52.

5.3.

Label nodes.
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N1 (s) N2 ( s) N3(s ) N4 ( s)

N5 (s) N6 (s)

N7 (s)

Draw nodes.

R( s ) N1 (s) N2 (s) N3( s ) N4 ( s) C (s)

N5 ( s) N6 ( s)

N7 ( s)

Connect nodes and label subsystems.

R(s ) N2 ( s) N3( s) N4 ( s) C ( s)

N5 (s) N6 ( s)

N7 ( s)

1

1
s

s

−1

ss

1 1

−1

1
1
s

N1 ( s)

Eliminate unnecessary nodes.

R(s) C(s)1 s s 1
s

1
s

-s

-1

5.4.

Forward-path gains are G1G2G3 and G1G3.
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Loop gains are −G1G2H1, −G2H2 , and −G3H3.

Nontouching loops are [−G1G2H1][−G3H3] = G1G2G3H1H3

and [−G2H2 ][−G3H3] = G2G3H2H3.

Also, ∆ = 1 + G1G2H1 + G2H2 + G3H3 + G1G2G3H1H3 + G2G3H2H3.

Finally, ∆1 = 1 and ∆2 = 1.

Substituting these values into T(s) = C(s)
R(s)

=
Tk∆k

k
∑

∆
 yields

T(s) = G1(s)G3(s)[1 + G2 (s)]
[1 + G2 (s)H2 (s) + G1(s)G2 (s)H1(s)][1 + G3(s)H3(s)]

5.5.

The state equations are,

x1

•
= −2x1 + x2

x2

•
= −3x2 + x3

x3

•
= −3x1 − 4x2 − 5x3 + r

y = x2

Drawing the signal-flow diagram from the state equations yields

1
s

1
s

1
s1 1 1

1

-5

-4

-3 -2

-3

r x
1

x
2

x
3 y

5.6.

From G(s) = 100(s + 5)
s2 + 5s + 6

 we draw the signal-flow graph in controller canonical

form and add the feedback.
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1

-5

-6

100

500

-1

y

r

Writing the state equations from the signal-flow diagram, we obtain

x x

x

.

=
− −





+ 





= [ ]

105 506

1 0

1

0

100 500

r

y

5.7.

From the transformation equations,

P−1 =
3 −2

1 −4






Taking the inverse,

P =
0.4 −0.2

0.1 −0.3






Now,

P−1AP =
3 −2

1 −4






1 3

−4 −6






0.4 −0.2

0.1 −0.3






=
6.5 −8.5

9.5 −11.5






P−1B =
3 −2

1 −4






1

3






=
−3

−11






CP = 1 4[ ] 0.4 −0.2

0.1 −0.3






= 0.8 −1.4[ ]

Therefore,

z
•

=
6.5 −8.5

9.5 −11.5





z +

−3

−11





u

y = 0.8 −1.4[ ]z
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5.8.

First find the eigenvalues.

λI − A =
λ 0

0 λ






 −

1 3

−4 −6






=
λ −1 −3

4 λ + 6
= λ2 + 5λ + 6

From which the eigenvalues are –2 and –3.

Now use Axi = λxi  for each eigenvalue, λ . Thus,

1 3

−4 −6






x1

x2







= λ
x1

x2







For λ = −2,

3x1 + 3x2 = 0

−4x1 − 4x2 = 0

Thus x1 = −x2

For λ = −3

4x1 + 3x2 = 0

−4x1 − 3x2 = 0

Thus x1 = −x2  and x1 = −0.75x2 ; from which we let

P =
0.707 −0.6

−0.707 0.8






Taking the inverse yields

P−1 =
5.6577 4.2433

5 5






Hence,

D = P−1AP =
5.6577 4.2433

5 5






1 3

−4 −6






0.707 −0.6

−0.707 0.8






=
−2 0

0 −3






P−1B =
5.6577 4.2433

5 5






1

3






=
18.39

20






CP = 1 4[ ] 0.707 −0.6

−0.707 0.8






= −2.121 2.6[ ]
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Finally,

z
•

=
−2 0

0 −3





z +

18.39

20





u

y = −2.121 2.6[ ]z
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Chapter 6

6.1.

Make a Routh table.

s7 3 6 7 2
s6 9 4 8 6
s5 4.666666667 4.333333333 0 0
s4 -4.35714286 8 6 0
s3 12.90163934 6.426229508 0 0
s2 10.17026684 6 0 0
s1 -1.18515742 0 0 0
s0 6 0 0 0

Since there are four sign changes and no complete row of zeros, there are four

right half-plane poles and three left half-plane poles.

6.2.

Make a Routh table. We encounter a row of zeros on the s3 row. The even

polynomial is contained in the previous row as −6s4 + 0s2 + 6 . Taking the

derivative yields −24s3 + 0s. Replacing the row of zeros with the coefficients of

the derivative yields the s3 row. We also encounter a zero in the first column at

the s2  row. We replace the zero with ε and continue the table. The final result is

shown now as

s6 1 -6 -1 6

s5 1 0 -1 0

s 4 -6 0 6 0
s 3 -24 0 0 0 ROZ
s 2 ε 6 0 0

s 1 144/ε 0 0 0

s 0 6 0 0 0

There is one sign change below the even polynomial. Thus the even polynomial

(4th order) has one right half-plane pole, one left half-plane pole, and 2 imaginary

axis poles. From the top of the table down to the even polynomial yields one sign

change. Thus, the rest of the polynomial has one right half-plane root, and one left



24       Solutions to Skill-Assessment Exercises

half-plane root. The total for the system is two right half-plane poles, two left

half-plane poles, and 2 imaginary poles.

6.3.

Since G(s) = K(s + 20)
s(s + 2)(s + 3)

, T(s) = G(s)
1 + G(s)

= K(s + 20)
s3 + 5s2 + (6 + K)s + 20K

Form the Routh table.

s3 1 (6 + K)

s2 5 20K

s1

30 −15K

5

s0 20K

From the s1 row, K < 2. From the s0 row, K > 0. Thus, for stability, 0 < K < 2 .

6.4.

First find

sI − A =
s 0 0

0 s 0

0 0 s

















−
2 1 1

1 7 1

−3 4 −5

















=
(s − 2) −1 −1

−1 (s − 7) −1

3 −4 (s + 5)

= s3 − 4s2 − 33s + 51

Now form the Routh table.

s3 1 -33

s2 -4 51

S1 -20.25

S0 51

There are two sign changes. Thus, there are two rhp poles and one lhp pole.
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Chapter 7

7.1.

a. First check stability.

T(s) = G(s)
1 + G(s)

= 10s2 + 500s + 6000
s3 + 70s2 +1375s + 6000

= 10(s + 30)(s + 20)
(s + 26.03)(s + 37.89)(s + 6.085)

Poles are in the lhp. Therefore, the system is stable. Stability also could be

checked via Routh-Hurwitz using the denominator of T(s) . Thus,

15u(t):   estep(∞) = 15
1 + lim

s→0
G(s)

= 15
1 + ∞

= 0

15tu(t):   eramp(∞) = 15
lim
s→0

sG(s)
= 15

10 * 20 * 30
25* 35

= 2.1875

15t2u(t):   eparabola (∞) = 15
lim
s→0

s2G(s)
= 30

0
= ∞,  since LL [15t2 ] = 30

s3

b.  First check stability.

T(s) = G(s)
1 + G(s)

= 10s2 + 500s + 6000
s5 +110s4 + 3875s3 + 4.37e04s2 + 500s + 6000

   = 10(s + 30)(s + 20)
(s + 50.01)(s + 35)(s + 25)(s2 − 7.189e − 04s + 0.1372)

From the second-order term in the denominator, we see that the system is

unstable. Instability could also be determined using the Routh-Hurwitz criteria on

the denominator of T(s) . Since the system is unstable, calculations about steady-

state error cannot be made.

7.2.

a.  The system is stable, since

T(s) = G(s)
1 + G(s)

= 1000(s + 8)
(s + 9)(s + 7) +1000(s + 8)

= 1000(s + 8)
s2 +1016s + 8063

 and is of

Type 0. Therefore,

Kp = lim
s→0

G(s) = 1000 * 8
7 * 9

= 127; Kv = lim
s→0

sG(s) = 0; and Ka = lim
s→0

s2G(s) = 0

b. estep(∞) = 1
1 + lim

s→0
G(s)

= 1
1 +127

= 7.8e − 03
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eramp(∞) = 1
lim
s→0

sG(s)
= 1

0
= ∞

eparabola (∞) = 1
lim
s→0

s2G(s)
= 1

0
= ∞

7.3.

System is stable for positive K. System is Type 0. Therefore, for a step input

estep(∞) = 1
1 + Kp

= 0.1. Solving for Kp  yields Kp = 9 = lim
s→0

G(s) = 12K

14 *18
; from

which we obtain K = 189 .

7.4.

System is stable. Since G1(s) = 1000,  and G2 (s) = (s + 2)
(s + 4)

,

eD(∞) = − 1

lim
s→0

1
G2 (s)

+ limG1(s)
s→0

= − 1
2 +1000

= −9.98e − 04

7.5.

System is stable. Create a unity-feedback system, where He (s) = 1
s +1

−1 = −s

s +1
.

The system is as follows:

+

-

R(s) Ea(s) C(s)100

s + 4
-

−s

s +1

Thus,

Ge (s) = G(s)
1 + G(S)He (s)

=

100
(s + 4)

1 − 100s

(s +1)(s + 4)

= 100(s +1)
S2 − 95s + 4

Hence, the system is Type 0. Evaluating Kp  yields
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Kp = 100
4

= 25

The steady-state error is given by

estep(∞) = 1
1 + KP

= 1
1 + 25

= 3.846e − 02

7.6.

Since G(s) = K(s + 7)
s2 + 2s +10

, e(∞) = 1
1 + Kp

= 1

1 + 7K

10

= 10
10 + 7K

.

Calculating the sensitivity, we get

Se:K = K

e

∂e

∂K
= K

10
10 + 7K







(−10)7
(10 + 7K)2 = − 7K

10 + 7K

7.7.

Given

A =
0 1

−3 −6





;  B =

0

1





;  C = 1 1[ ];  R(s) =

1
s

.

Using the final value theorem,

estep(∞) = lim
s→0

sR(s)[1 − C(sI − A)−1B] = lim
s→0

[1 − 1 1[ ] s −1

3 s + 6






−1 0

1





]

           = lim
s→0

[1 − 1 1[ ]

s + 6 1

−3 s






s2 + 6s + 3

0

1





] = lim

s→0

s2 + 5s + 2
s2 + 6s + 3

= 2
3

Using input substitution,

step(∞) = 1 + CA−1B = 1 − 1 1[ ] 0 1

−3 −6






−1 0

1






           = 1 + 1 1[ ]

−6 −1

3 0






3

0

1






= 1 + 1 1[ ] -
1
3
0













= 2
3
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Chapter 8

8.1.

a.

F(−7 + j9) = (−7 + j9 + 2)(−7 + j9 + 4)0.0339
(−7 + j9)(−7 + j9 + 3)(−7 + j9 + 6)

= (−5 + j9)(−3 + j9)
(−7 + j9)(−4 + j9)(−1 + j9)

= (−66 − j72)
(944 − j378)

= −0.0339 − j0.0899 = 0.096 < −110.7o

b.  The arrangement of vectors is shown as follows:

jω

σ

s-plane

X X
-2-4-6 -3 -1-5-7

X

M1 M2 M3 M4
M5

(-7+j9)

0

From the diagram,

F(−7 + j9) = M2M4

M1M3M5

= (−3 + j9)(−5 + j9)
(−1 + j9)(−4 + j9)(−7 + j9)

                   = (−66 − j72)
(944 − j378)

= −0.0339 − j0.0899 = 0.096 < −110.7o

8.2.

a. First draw the vectors.
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jω

σ

s-plane

X

X

-2-3 -1 0

j1

j2

j3

-j1

-j2

-j3

From the diagram,

angles = 180o − tan−1 −3
−1





 −∑ tan−1 −3

1




 = 180o −108.43o +108.43o = 180o .

b. Since the angle is 1800, the point is on the root locus.

c. K = Π pole lengths
Π zero lengths

=
12 + 32( ) 12 + 32( )

1
= 10

8.3.

First, find the asymptotes.

σa =
poles - zeros∑∑

# poles-# zeros
= (−2 − 4 − 6) − (0)

3 − 0
= −4

θa = (2k +1)π
3

= π
3

,  π,  
5π
3

Next draw root locus following the rules for sketching.
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-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
-5

-4

-3

-2

-1

0

1

2

3

4

5

Real Axis

Im
ag

 A
xi

s

8.4.

a.

j3

σ

jω

s-plane

X

X

O
-2 2

-j3

0

b. Using the Routh-Hurwitz criteria, we first find the closed-loop transfer

function. T(s) = G(s)
1 + G(s)

= K(s + 2)
s2 + (K − 4)s + (2K +13)

 Using the denominator of T(s), make a Routh table.
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s2 1 2K+13

s1 K-4 0

s0 2K+13 0

We get a row of zeros for K = 4. From the s2 row with K = 4, s2 + 21 = 0. From

which we evaluate the imaginary axis crossing at 21.

c.  From part (b), K = 4.

d. Searching for the minimum gain to the left of –2 on the real axis yields –7 at a

gain of 18. Thus the break-in point is at –7.

e.  First, draw vectors to a point ε close to the complex pole.

At the point ε close to the complex pole, the angles must add up to zero. Hence,

angle from zero – angle from pole in 4th quadrant – angle from pole in 1st quadrant

= 1800, or tan−1 3
4





 − 90o − θ = 180o . Solving for the angle of departure, θ = -

233.1.
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8.5.

a.

jω

4-3

X

X

s-plane

o
0

ζ = 0.5

j4

-j4

σ
2

o

b. Search along the imaginary axis and find the 1800 point at s = ± j4.06.

c. For the result in part (b), K  = 1.

d. Searching between 2 and 4 on the real axis for the minimum gain yields the

break-in at s = 2.89 .

e. Searching along ζ = 0.5 for the 1800 point we find s = −2.42 + j4.18.

f. For the result in part (e), K  = 0.108.

g. Using the result from part (c) and the root locus, K < 1.

8.6.

a.

    

σ

jω
ζ = 0.591

-2-4-6
XXX

0

s-plane
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b. Searching along the ζ = 0.591 (10% overshoot) line for the 1800 point yields

  - 2.028+j2.768 with K = 45.55.

c. Ts = 4
Re

= 4
2.028

= 1.97 s;  Tp = π
Im

= π
2.768

= 1.13 s;  

ωnTr = 1.8346  from the rise-time chart and graph in Chapter 4. Since ωn  is the

radial distance to the pole, ωn = 2.0282 + 2.7682 = 3.431. Thus, Tr = 0.53 s;

since the system is Type 0, Kp = K

2 * 4 * 6
= 45.55

48
= 0.949. Thus,

estep(∞) = 1
1 + Kp

= 0.51.

d. Searching the real axis to the left of –6 for the point whose gain is 45.55, we

find –7.94. Comparing this value to the real part of the dominant pole, -2.028, we

find that it is not five times further. The second-order approximation is not valid.

8.7.

Find the closed-loop transfer function and put it the form that yields pi  as the root

locus variable. Thus,

T(s) = G(s)
1 + G(s)

= 100
s2 + pis +100

= 100
(s2 +100) + pis

=

100
s2 +100

1 + pis

s2 +100

Hence, KG(s)H(s) = pis

s2 +100
. The following shows the root locus.
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σ

jω

j10

-j10X

X

O

s-plane

0

8.8.

Following the rules for plotting the root locus of positive-feedback systems, we

obtain the following root locus:

σ

jω

-2-3-4
X

s-plane

-1
XXo

0
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8.9.

The closed-loop transfer function is T(s) = K(s +1)
s2 + (K + 2)s + K

. Differentiating the

denominator with respect to K  yields

2s
∂s

∂K
+ (K + 2)

∂s

∂K
+ (s +1) = (2s + K + 2)

∂s

∂K
+ (s +1) = 0

Solving for 
∂s

∂K
, we get 

∂s

∂K
= −(s +1)

(2s + K + 2)
. Thus, Ss:K = K

s

∂s

∂K
= −K(s +1)

s(2s + K + 2)
.

Substituting K = 20  yields Ss:K = −10(s +1)
s(s +11)

.

Now find the closed-loop poles when K = 20 . From the denominator of T(s) , s1,2

= -21.05, - 0.95, -when K = 20 .

For the pole at –21.05,

∆s = s(Ss:K )
∆K

K
= −21.05

−10(−21.05 +1)
−21.05(−21.05 +11)







0.05 = −0.9975.

For the pole at –0.95,

∆s = s(Ss:K )
∆K

K
= −0.95

−10(−0.95 +1)
−0.95(−0.95 +11)







0.05 = −0.0025.
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Chapter 9

9.1.

a. Searching along the 15% overshoot line, we find the point on the root locus at –3.5

+ j5.8 at a gain of K = 45.84. Thus, for the uncompensated

system, Kv = lim
s→0

sG(s) = K / 7 = 45.84 / 7 = 6.55.

Hence, eramp_uncompensated (∞) = 1 / Kv = 0.1527.

b. Compensator zero should be 20x further to the left than the compensator pole.

Arbitrarily select Gc (s) = (s + 0.2)
(s + 0.01)

.

c. Insert compensator and search along the 15% overshoot line and find the root locus

at

–3.4 + j5.63 with a gain, K = 44.64. Thus, for the compensated

system, Kv = 44.64(0.2)
(7)(0.01)

= 127.5 and eramp_compensated (∞) = 1
Kv

= 0.0078.

d. 
eramp_uncompensated

eramp_compensated

= 0.1527
0.0078

= 19.58

9.2.

a. Searching along the 15% overshoot line, we find the point on the root locus at

–3.5 + j5.8 at a gain of K = 45.84. Thus, for the uncompensated system,

Ts = 4
Re

= 4
3.5

= 1.143 s.

b. The real part of the design point must be three times larger than the

uncompensated pole’s real part. Thus the design point is 3(-3.5) + j 3(5.8) = -10.5

+ j17.4. The angular contribution of the plant’s poles and compensator zero at the

design point is 130.80. Thus, the compensator pole must contribute 1800 – 130.80

= 49.20. Using the following diagram,



Chapter 9      37

-pc

σ

jω

s-plane

-10.5

j17.4

49.20

we find 
17.4

pc −10.5
= tan 49.2o , from which, pc = 25.52. Adding this pole, we find

the gain at the design point to be K = 476.3. A higher-order closed-loop pole is

found to be at –11.54. This pole may not be close enough to the closed-loop zero

at –10. Thus, we should simulate the system to be sure the design requirements

have been met.

9.3.

a. Searching along the 20% overshoot line, we find the point on the root locus at

–3.5 + 6.83 at a gain of K = 58.9. Thus, for the uncompensated system,

Ts = 4
Re

= 4
3.5

= 1.143 s.

b. For the uncompensated system, Kv = lim
s→0

sG(s) = K / 7 = 58.9 / 7 = 8.41. Hence,

eramp_uncompensated (∞) = 1 / Kv = 0.1189 .

c. In order to decrease the settling time by a factor of 2, the design point is twice

the uncompensated value, or –7 + j13.66. Adding the angles from the plant’s

poles and the compensator’s zero at –3 to the design point, we obtain –100.80.

Thus, the compensator pole must contribute 1800 – 100.80 = 79.20. Using the

following diagram,
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-pc

σ

jω

s-plane

79.20

-7

j13.66

we find
13.66
pc − 7

= tan 79.2o , from which, pc = 9.61. Adding this pole, we find the

gain at the design point to be K = 204.9.

Evaluating Kv  for the lead-compensated system:

Kv = lim
s→0

sG(s)Glead = K(3) / [(7)(9.61)] = (204.9)(3) / [(7)(9.61)] = 9.138.

Kv  for the uncompensated system was 8.41. For a 10x improvement in steady-

state error, Kv  must be (8.41)(10) = 84.1. Since lead compensation gave us Kv  =

9.138, we need an improvement of 84.1/9.138 = 9.2.

Thus, the lag compensator zero should be 9.2x further to the left than the

compensator pole. Arbitrarily select Gc (s) = (s + 0.092)
(s + 0.01)

.

Using all plant and compensator poles, we find the gain at the design point to be

K = 205.4. Summarizing the forward path with plant, compensator, and gain

yields

Ge (s) = 205.4(s + 3)(s + 0.092)
s(s + 7)(9.61)(s + 0.01)

.

Higher-order poles are found at –0.928 and –2.6. It would be advisable to

simulate the system to see if there is indeed pole-zero cancellation.

9.4.

The configuration for the system is shown in the figure below.
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1

s(s + 7)(s +10)

R(s) C(s)+

-

K
+

-

Kf s

Minor-Loop Design:

For the minor loop, G(s)H(s) =
K f

(s + 7)(s +10)
. Using the following diagram, we

find that the minor-loop root locus intersects the 0.7 damping ratio line at –8.5 +

j8.67. The imaginary part was found as follows: θ = cos-1 ζ = 45.570. Hence,

Im
8.5

= tan 45.570 , from which Im = 8.67.

σ

jω

s-plane

-7

ζ = 0.7

X X
−10 −8.5

(-8.5 + j8.67)

θ

Im

The gain, K f , is found from the vector lengths as

K f = 1.52 + 8.672 1.52 + 8.672 = 77.42

Major-Loop Design:

Using the closed-loop poles of the minor loop, we have an equivalent forward-

path transfer function of

Ge (s) = K

s(s + 8.5 + j8.67)(s + 8.5 − j8.67)
= K

s(s2 +17s +147.4)
.
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Using the three poles of Ge (s) as open-loop poles to plot a root locus, we search

along ζ = 0.5 and find that the root locus intersects this damping ratio line at

–4.34 + j7.51 at a gain, K = 626.3.

9.5.

a. An active PID controller must be used.  We use the circuit shown in the

following figure:

where the impedances are shown below as follows:

Matching the given transfer function with the transfer function of the PID

controller yields

Gc (s) = (s + 0.1)(s + 5)
s

= s2 + 5.1s + 0.5
s

= s + 5.1 + 0.5
s

= − R2

R1

+ C1

C2







+ R2C1s +

1
R1C2

s



















Equating coefficients

1
R1C2

= 0.5          (1)

R2C1 = 1               (2)

R2

R1

+ C1

C2







= 5.1  (3)

In Eq. (2) we arbitrarily let C1 = 10−5. Thus, R2 = 105. Using these values along

with Eqs. (1) and (3) we find C2 = 100 µF and R   1  = 20 kΩ .
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b. The lag-lead compensator can be implemented with the following passive

network, since the ratio of the lead pole-to-zero is the inverse of the ratio of the

lag pole-to-zero:

Matching the given transfer function with the transfer function of the passive lag-

lead compensator yields

Gc (s) = (s + 0.1)(s + 2)
(s + 0.01)(s + 20)

= (s + 0.1)(s + 2)
s2 + 20.01s + 0.2

=
s + 1

R1C1







s + 1
R2C2







s2 + 1
R1C1

+ 1
R2C2

+ 1
R2C1







s + 1
R1R2C1C2

Equating coefficients

1
R1C1

= 0.1                                   (1)

1
R2C2

= 2                                     (2)

1
R1C1

+ 1
R2C2

+ 1
R2C1







= 20.01   (3)

Substituting Eqs. (1) and (2) in Eq. (3) yields

1
R2C1

= 17.91                               (4)

Arbitrarily letting C1 = 100 µF in Eq. (1) yields R1 = 100 kΩ .

Substituting C1 = 100 µF into Eq. (4) yields R2 = 558 kΩ .

Substituting R2 = 558 kΩ  into Eq. (2) yields C2 = 900 µF.
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10.1.

a.

G(s) = 1
(s + 2)(s + 4)

; G(jω) =
1

(8 - ω2 ) + j6ω

M(ω) = (8 - ω2 )2 + (6ω)2

For ω < 8,  φ(ω) = -tan-1 6ω
8 - ω2





 .

For ω > 8,  φ(ω) = - π+ tan-1 6ω
8 - ω2













.

b.
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c.
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10.3.

The frequency response is 1/8 at an angle of zero degrees at ω = 0 . Each pole

rotates 900 in going from ω = 0  to ω = ∞. Thus, the resultant rotates –1800 while

its magnitude goes to zero. The result is shown below.

Re

Im

0 1

8

ω = ∞ ω = 0

10.4.

a. The frequency response is 1/48 at an angle of zero degrees at ω = 0 . Each pole

rotates 900 in going from ω = 0  to ω = ∞. Thus, the resultant rotates –2700 while

its magnitude goes to zero. The result is shown below.
Im

Re
1
48

ω = 0ω = ∞
0

ω = 6.63

1
480

-

b. Substituting jω  into G(s) = 1
(s + 2)(s + 4)(s + 6)

= 1
s3 +12s2 + 44s + 48

 and

simplifying, we obtain G( jω) = (48 −12ω2 ) − j(44ω − ω3 )
ω6 + 56ω4 + 784ω2 + 2304

. The Nyquist
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diagram crosses the real axis when the imaginary part of G( jω) is zero. Thus, the

Nyquist diagram crosses the real axis at ω2 = 44, or ω = 44 = 6.63 rad/s. At

this frequency G( jω) = − 1
480

. Thus, the system is stable for K < 480 .

10.5.

If K = 100, the Nyquist diagram will intersect the real axis at –100/480. Thus,

GM = 20 log
480
100

= 13.62 dB. From Skill-Assessment Exercise Solution 10.4, the

1800 frequency is 6.63 rad/s.

10.6.

a.

Frequency (rad/s)

P
ha

se
 (

de
gr

ee
s)
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Frequency (rad/s)

20
 lo

g 
M

-60

0

b. The phase angle is 1800 at a frequency of 36.74 rad/s. At this frequency the

gain is –99.67 dB. Therefore, 20 log K = 99.67, or K = 96,270 . We conclude that

the system is stable for K < 96,270.

c. For K = 10,000 , the magnitude plot is moved up 20 log10,000 = 80 dB.

Therefore, the gain margin is 99.67- 80 = 19.67 dB. The 1800 frequency is 36.7
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rad/s. The gain curve crosses 0 dB at ω = 7.74 rad/s, where the phase is 87.10.

We calculate the phase margin to be 1800 – 87.10 = 92.90.

10.7.

Using ζ =
-ln(% / 100)

π2 + ln2 (% / 100)
, we find ζ = 0.456, which corresponds to 20%

overshoot. Using Ts = 2, ωBW = 4
Tsζ

(1 − 2ζ 2 ) + 4ζ 4 − 4ζ 2 + 2 = 5.79rad/s.

10.8.

For both parts find that

G( jω) = 160
27

*
(6750000 −101250ω2 ) + j1350(ω2 −1350)ω

ω6 + 2925ω4 +1072500ω2 + 25000000
. For a range of

values for ω , superimpose G( jω) on the a. M and N circles, and on the b.

Nichols chart.
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b.

Open-Loop Phase (deg)
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Plotting the closed-loop frequency response from a. or b. yields the following

plot:
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Frequency (rad/s)
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10.9.

The open-loop frequency response is shown in the following figure:
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The open-loop frequency response is –7 at ω = 14.5 rad/s. Thus, the estimated

bandwidth is ωWB = 14.5 rad/s. The open-loop frequency response plot goes

through zero dB at a frequency of 9.4 rad/s, where the phase is 151.980. Hence,

the phase margin is 1800 – 151.980 = 28.020. This phase margin corresponds to

ζ = 0.25.  Therefore, %OS = e
− ζπ / 1−ζ 2( )

x100 = 44.4%,

Ts = 4
ωBWζ

(1 − 2ζ 2 ) + 4ζ 4 − 4ζ 2 + 2 = 1.64 s and

Tp = π
ωBW 1 − ζ 2

(1 − 2ζ 2 ) + 4ζ 4 − 4ζ 2 + 2 = 0.33 s

10.10.

The initial slope is 40 dB/dec. Therefore, the system is Type 2. The initial slope

intersects 0 dB at ω = 9.5 rad/s. Thus, Ka = 9.52 = 90.25 and Kp = Kv = ∞ .
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10.11.

a. Without delay, G( jω) = 10
jω( jω +1)

= 10
ω(−ω + j)

, from which the zero dB

frequency is found as follows: M = 10

ω ω2 +1
= 1. Solving for ω ,

ω ω2 +1 = 10, or after squaring both sides and rearranging, ω4 + ω2 −100 = 0.

Solving for the roots, ω2 = −10.51,  9.51. Taking the square root of the positive

root, we find the 0 dB frequency to be 3.08 rad/s. At this frequency, the phase

angle, φ = -∠ (−ω + j) = -∠ (−3.08 + j) = −162o . Therefore the phase margin is

1800 – 1620 = 180.

b. With a delay of 3 s,

φ = -∠ (−ω + j) − ωT = -∠ (−3.08 + j) − (3.08)(3)   = −162o − 9.24o = −171.24o.

Therefore the phase margin is 1800 – 171.240 = 8.760.

c. With a delay of 7 s,

φ = -∠ (−ω + j) − ωT = -∠ (−3.08 + j) − (3.08)(7) = −162o − 21.56o = −183.56o.

Therefore the phase margin is 1800 – 183.560 = -3.560. Thus, the system is

unstable.

10.12.

Drawing judicially selected slopes on the magnitude and phase plot as shown

below yields a first estimate.
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We see an initial slope on the magnitude plot of –20 dB/dec. We also see a final

–20 dB/dec slope with a break frequency around 21 rad/s. Thus, an initial estimate

is G1(s) = 1
s(s + 21)

.

Subtracting G1(s)from the original frequency response yields the frequency

response shown below.
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Drawing judicially selected slopes on the magnitude and phase plot as shown

yields a final estimate. We see first-order zero behavior on the magnitude and

phase plots with a break frequency of about 5.7 rad/s and a dc gain of about 44 dB

= 20 log(5.7K) ,  or K = 27.8. Thus, we estimate G2 (s) = 27.8(s + 7). Thus,

G(s) = G1(s)G2 (s) = 27.8(s + 5.7)
s(s + 21)

. It is interesting to note that the original

problem was developed from G(s) = 30(s + 5)
s(s + 20)

.
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11.1.

The Bode plot for K = 1 is shown below.
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A 20% overshoot requires ζ =
− log

%
100







π2 + log2 %
100







= 0.456. This damping ratio

implies a phase margin of 48.10, which is obtained when the _ = -1800 + 48.10 =

131.90. This phase angle occurs at ω = 27.6rad/s. The magnitude at this

frequency is 5.15 x 10-6. Since the magnitude must be

unity K = 1
5.15x10−6 = 194,200.
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11.2.

To meet the steady-state error requirement, K = 1,942,000. The Bode plot for this

gain is shown below.
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A 20% overshoot requires ζ =
− log

%
100







π2 + log2 %
100







= 0.456. This damping ratio

implies a phase margin of 48.10. Adding 100 to compensate for the phase angle

contribution of the lag, we use 58.10. Thus, we look for a phase angle of –1800 +

58.10 = -129.90. The frequency at which this phase occurs is 20.4 rad/s. At this

frequency the magnitude plot must go through zero dB. Presently, the magnitude

plot is 23.2 dB. Therefore draw the high frequency asymptote of the lag

compensator at –23.2 dB. Insert a break at 0.1(20.4) = 2.04 rad/s. At this

frequency, draw –20 dB/dec slope until it intersects 0 dB.  The frequency of

intersection will be the low frequency break or 0.141 rad/s. Hence the
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compensator is Gc (s) = Kc

(s + 2.04)
(s + 0.141)

, where the gain is chosen to yield 0 dB at

low frequencies, or Kc = 0.141 / 2.04 = 0.0691. In summary,

Gc (s) = 0.0691
(s + 2.04)
(s + 0.141)

 and G(s) = 1,942,000
s(s + 50)(s +120)

.

11.3.

A 20% overshoot requires ζ =
− log

%
100







π2 + log2 %
100







= 0.456. The required

bandwidth is then calculated as ωBW = 4
Tsζ

(1 − 2ζ 2 ) + 4ζ 4 − 4ζ 2 + 2 = 57.9

rad/s. In order to meet the steady-state error requirement of Kv = 50 = K

(50)(120)
,

we calculate K = 300,000 . The uncompensated Bode plot for this gain is shown

below.
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The uncompensated system’s phase margin measurement is taken where the

magnitude plot crosses 0 dB. We find that when the magnitude plot crosses 0 dB,

the phase angle is -144.80. Therefore, the uncompensated system’s phase margin is

-1800 + 144.80 = 35.20. The required phase margin based on the required damping

ratio is ΦM = tan−1 2ζ

−2ζ 2 + 1 + 4ζ 4
= 48.1o. Adding a 100 correction factor, the

required phase margin is 58.10. Hence, the compensator must contribute φmax  =

58.10 - 35.20 = 22.90. Using φmax = sin−1 1 − β
1 + β

, β = 1 − sinφmax

1 + sinφmax

= 0.44 . The

compensator’s peak magnitude is calculated as Mmax = 1

β
= 1.51. Now find the

frequency at which the uncompensated system has a magnitude 1/ Mmax , or –3.58

dB. From the Bode plot, this magnitude occurs atωmax = 50  rad/s. The

compensator’s zero is at zc = 1
T

. But, ωmax = 1

T β
. Therefore, zc = 33.2 . The

compensator’s pole is at pc = 1
βT

= zc

β
= 75.4. The compensator gain is chosen to

yield unity gain at dc. Hence, Kc = 75.4 / 33.2 = 2.27.  Summarizing,

Gc (s) = 2.27
(s + 33.2)
(s + 75.4)

, and G(s) = 300,000
s(s + 50)(s +120)

.

11.4.

A 10% overshoot requiresζ =
− log

%
100







π2 + log2 %
100







= 0.591. The required bandwidth

is then calculated as ωBW = π
Tp 1 − ζ 2

(1 − 2ζ 2 ) + 4ζ 4 − 4ζ 2 + 2 = 7.53 rad/s.

In order to meet the steady-state error requirement of Kv = 10 = K

(8)(30)
, we

calculate K = 2400 . The uncompensated Bode plot for this gain is shown below.
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Let us select a new phase-margin frequency at 0.8ωBW = 6.02  rad/s. The required

phase margin based on the required damping ratio

is ΦM = tan−1 2ζ

−2ζ 2 + 1 + 4ζ 4
= 58.6o . Adding a 50 correction factor, the

required phase margin is 63.60. At 6.02 rad/s, the new phase-margin frequency,

the phase angle is –  which represents a phase margin of 1800 – 138.30 = 41.70.

Thus, the lead compensator must contribute φmax  = 63.60 – 41.70 = 21.90. Using

φmax = sin−1 1 − β
1 + β

,β = 1 − sinφmax

1 + sinφmax

= 0.456 .

We now design the lag compensator by first choosing its higher break frequency

one decade below the new phase-margin frequency, that is, zlag = 0.602 rad/s. The

lag compensator’s pole is plag = βzlag = 0.275. Finally, the lag compensator’s gain

is Klag = β = 0.456.
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Now we design the lead compensator. The lead zero is the product of the new

phase margin frequency and β , or zlead = 0.8ωBW β = 4.07. Also,

plead = zlead

β
= 8.93. Finally, Klead = 1

β
= 2.19. Summarizing,

Glag (s) = 0.456
(s + 0.602)
(s + 0.275)

; Glead (s) = 2.19
(s + 4.07)
(s + 8.93)

; and K = 2400 .
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Chapter 12

12.1.

We first find the desired characteristic equation. A 5% overshoot

requiresζ =
− log

%
100







π2 + log2 %
100







= 0.69. Also, ωn = π
Tp 1 − ζ 2

= 14.47 rad/s. Thus, the

characteristic equation is s2 + 2ζωns + ωn
2 = s2 +19.97s + 209.4 . Adding a pole at –10

to cancel the zero at –10 yields the desired characteristic equation,

(s2 +19.97s + 209.4)(s +10) = s3 + 29.97s2 + 409.1s + 2094. The compensated system

matrix in phase-variable form is A − BK =
0 1 0

0 0 1

−(k1) −(36 + k2 ) −(15 + k3 )

















. The

characteristic equation for this system is

sI − (A − BK)) = s3 + (15 + k3 )s2 + (36 + k2 )s + (k1). Equating coefficients of this

equation with the coefficients of the desired characteristic equation yields the gains as

K = k1 k2 k3[ ] = 2094 373.1 14.97[ ] .

12.2.

The controllability matrix is CM = B AB A2B[ ] =
2 1 1

1 4 −9

1 −1 16
















. Since CM = 80 ,

CM is full rank, that is, rank 3. We conclude that the system is controllable.

12.3.

First check controllability. The controllability matrix is

CMz = B AB A2B[ ] =
0 0 1

0 1 −17

1 −9 81
















. Since CMz = −1, CMz is full rank, that is, rank

3. We conclude that the system is controllable.

We now find the desired characteristic equation. A 20% overshoot
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requiresζ =
− log

%
100







π2 + log2 %
100







= 0.456. Also, ωn = 4
ζTs

= 4.386  rad/s. Thus, the

characteristic equation is s2 + 2ζωns + ωn
2 = s2 + 4s +19.24. Adding a pole at –6 to

cancel the zero at –6 yields the resulting desired characteristic equation,

(s2 + 4s +19.24)(s + 6) = s3 +10s2 + 43.24s +115.45.

Since G(s) = (s + 6)
(s + 7)(s + 8)(s + 9)

= s + 6
s3 + 24s2 +191s + 504

, we can write the phase-

variable representation as Ap =
0 1 0

0 0 1

−504 −191 −24

















; Bp =
0

0

1

















; Cp = 6 1 0[ ] .

The compensated system matrix in phase-variable form is

Ap − BpKp =
0 1 0

0 0 1

−(504 + k1) −(191 + k2 ) −(24 + k3 )
















. The characteristic equation for

this system is sI − (Ap − BpKp )) = s3 + (24 + k3 )s2 + (191 + k2 )s + (504 + k1) . Equating

coefficients of this equation with the coefficients of the desired characteristic equation

yields the gains as Kp = k1 k2 k3[ ] = −388.55 −147.76 −14[ ] .

We now develop the transformation matrix to transform back to the z-system.

CMz = Bz AzBz Az
2Bz[ ] =

0 0 1

0 1 −17

1 −9 81

















 and

CMp = Bp ApBp Ap
2Bp[ ] =

0 0 1

0 1 −24

1 −24 385

















.

Therefore, P = CMzCMx
−1 =

0 0 1

0 1 −17

1 −9 81

















191 24 1

24 1 0

1 0 0

















=
1 0 0

7 1 0

56 15 1

















Hence,
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Kz = KpP−1 = [−388.55 −147.76 −14]

1 0 0

−7 1 0

49 −15 1

















= −40.23 62.24 −14[ ] .

12.4.

For the given system ex

•
= (A − LC)ex =

−(24 + l1) 1 0

−(191 + l2 ) 0 1

−(504 + l3 ) 0 0
















ex . The characteristic

polynomial is given by [sI − (A − LC) = s3 + (24 + l1)s2 + (191 + l2 )s + (504 + l3 ) . Now

we find the desired characteristic equation. The dominant poles from Skill-Assessment

Exercise 12.3 come from (s2 + 4s +19.24). Factoring yields (-2 + j3.9) and (-2 - j3.9).

Increasing these poles by a factor of 10 and adding a third pole 10 times the real part

of the dominant second-order poles yields the desired characteristic polynomial,

(s + 20 + j39)(s + 20 − j39)(s + 200) = s3 + 240s2 + 9921s + 384200. Equating

coefficients of the desired characteristic equation to the system’s characteristic

equation yields L =
216

9730

383696
















.

12.5.

The observability matrix is OM =
C

CA

CA2

















=
4 6 8

−64 −80 −78

674 848 814

















, where

A2 =
25 28 32

−7 −4 −11

77 95 94
















. The matrix is of full rank, that is, rank 3, since OM = −1576.

Therefore the system is observable.

12.6.

The system is represented in cascade form by the following state and output equations:

z
•

=
−7 1 0

0 −8 1

0 0 −9
















z +

0

0

1
















u

y = 1 0 0[ ]z
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The observability matrix is OMz =
Cz

CzAz

CzAz
2

















=
1 0 0

−7 1 0

49 −15 1
















, where

Az
2 =

49 −15 1

0 64 −17

0 0 81
















. Since G(s) = 1

(s + 7)(s + 8)(s + 9)
= 1

s3 + 24s2 +191s + 504
, we

can write the observable canonical form as

x
•

=
−24 1 0

−191 0 1

−504 0 0
















x +

0

0

1
















u

y = 1 0 0[ ]x

The observability matrix for this form is OMx =
Cx

CxAx

CxAx
2

















=
1 0 0

−24 1 0

385 −24 1

















, where

Ax
2 =

385 −24 1

4080 −191 0

12096 −504 0
















.

We next find the desired characteristic equation. A 10% overshoot

requiresζ =
− log

%
100







π2 + log2 %
100







= 0.591. Also, ωn = 4
ζTs

= 67.66 rad/s. Thus, the

characteristic equation is s2 + 2ζωns + ωn
2 = s2 + 80s + 4578.42. Adding a pole at

–400, or 10 times the real part of the dominant second-order poles, yields the resulting

desired characteristic equation,

(s2 + 80s + 4578.42)(s + 400) = s3 + 480s2 + 36580s +1.831x106 .

For the system represented in observable canonical form

ex

•
= (Ax − LxCx )ex =

−(24 + l1) 1 0

−(191 + l2 ) 0 1

−(504 + l3 ) 0 0
















ex . The characteristic polynomial is given

by [sI − (Ax − LxCx ) = s3 + (24 + l1)s2 + (191 + l2 )s + (504 + l3 ) . Equating coefficients

of the desired characteristic equation to the system’s characteristic equation yields
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Lx =
456

36,389

1,830,496
















.

Now, develop the transformation matrix between the observer canonical and cascade

forms.

P = OMz
−1OMx =

1 0 0

−7 1 0

49 −15 1

















−1
1 0 0

−24 1 0

385 −24 1

















=
1 0 0

7 1 0

56 15 1

















1 0 0

−24 1 0

385 −24 1

















                      =
1 0 0

−17 1 0

81 −9 1

















.

Finally, Lz = PLx =
1 0 0

−17 1 0

81 −9 1

















456

36,389

1,830,496

















=
456

28,637

1,539,931

















≈
456

28,640

1,540,000
















.

12.7.

We first find the desired characteristic equation. A 10% overshoot requires

ζ =
− log

%
100







π2 + log2 %
100







= 0.591

.

Also,  ωn = π
Tp 1 − ζ 2

= 1.948 rad/s. Thus, the characteristic equation is

s2 + 2ζωns + ωn
2 = s2 + 2.3s + 3.79 . Adding a pole at –4, which corresponds to the

original system’s zero location, yields the resulting desired characteristic equation,

(s2 + 2.3s + 3.79)(s + 4) = s3 + 6.3s2 +13s +15.16.

Now, x
•

xN

•













=
(A − BK) BKe

−C 0






x

xN







+
0

1





r;  and y = C 0[ ]

x

xN






,

where

A − BK =
0 1

−7 −9






−
0

1






k1 k2[ ] =
0 1

−7 −9






−
0 0

k1 k2







=
0 1

−(7 + k1) −(9 + k2 )






C = 4 1[ ]
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Bke =
0

1





ke =

0

ke







Thus, 

x1

•

x2

•

xN

•



















=
0 1 0

−(7 + k1) −(9 + k2 ) ke

−4 −1 0

















x1

x2

xN

















+
0

1





r ; y = 4 1 0[ ]

x1

x2

xN
















.

Finding the characteristic equation of this system yields

sI −
(A − BK) BKe

−C 0






=
s 0 0

0 s 0

0 0 s

















−
0 1 0

−(7 + k1) −(9 + k2 ) ke

−4 −1 0

















=
s −1 0

(7 + k1) s + (9 + k2 ) −ke

4 1 s

















= s3 + (9 + k2 )s2 + (7 + k1 + ke )s + 4ke

Equating this polynomial to the desired characteristic equation,

s3 + 6.3s2 +13s +15.16 = s3 + (9 + k2 )s2 + (7 + k1 + ke )s + 4ke

Solving for the k’s,

K = 2.21 −2.7[ ]   and ke = 3.79.
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Chapter 13

13.1.

f (t) = sin(ωkT);  f *(t) = sin(ωkT)
k =0

∞

∑ δ(t − kT);

F*(s) = sin(ωkT)
k =0

∞

∑ e−kTs = (e jωkT − e− jωkT )e−kTs

2 jk =0

∞

∑ = 1
2 j

(eT (s− jω) )−k − (eT (s+ jω )−k

k =0

∞

∑

But, x−k

k =0

∞

∑ = 1
1 − x−1

Thus,

F*(s) = 1
2 j

1
1 − e−T (s− jω) − 1

1 − e−T (s+ jω)






= 1
2 j

e−Tse jωT − e−Tse− jωT

1 − (e−Tse jωT − e−Tse− jωT ) + e−2Ts







          = e−Ts sin(ωT )
1 − e−Ts 2cos(ωT ) + e−2Ts







= z−1 sin(ωT )
1 − 2z−1 cos(ωT ) + z−2

13.2.

F(z) = z(z +1)(z + 2)
(z − 0.5)(z − 0.7)(z − 0.9)

F(z)
z

= (z +1)(z + 2)
(z − 0.5)(z − 0.7)(z − 0.9)

         = 46.875
1

z − 0.5
−114.75

1
z − 0.7

+ 68.875
1

z − 0.9

F(z) = 46.875
z

z − 0.5
−114.75

z
z − 0.7

+ 68.875
z

z − 0.9
,

f (kT) = 46.875(0.5)k −114.75(0.7)k + 68.875(0.9)k

13.3.

Since G(s) = (1 − e−Ts )
8

s(s + 4)
,

G(z) = (1 − z−1)z
8

s(s + 4)








= z −1
z

z
A

s
+ B

s + 4



= z −1

z
z

2
s

+ 2
s + 4




.

Let G2 (s) = 2
s

+ 2
s + 4

. Therefore, g2 (t) = 2 − 2e−4t , or g2 (kT) = 2 − 2e−4kT .

Hence, G2 (z) = 2z
z −1

− 2z
z − e−4T = 2z(1 − e−4T )

(z −1)(z − e−4T )
.
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Therefore, G(z) = z −1
z

G2 (z) = 2(1 − e−4T )
(z − e−4T )

.

For T = 1
4

 s, G(z) = 1.264
z − 0.3679

.

13.4.

Add phantom samplers to the input, feedback after H(s), and to the output. Push

G1(s)G2 (s), along with its input sampler, to the right past the pickoff point and

obtain the block diagram shown below.

Hence, T(z) = G1G2 (z)
1 + HG1G2 (z)

.

13.5.

Let G(s) = 20
s + 5

. Let G2 (s) = G(s)
s

= 20
s(s + 5)

= 4
s

− 4
s + 5

. Taking the inverse

Laplace transform and letting t = kT , g2 (kT) = 4 − 4e−5kT . Taking the z-transform

yields G2 (z) = 4z
z −1

− 4z
z − e−5T = 4z(1 − e−5T )

(z −1)(z − e−5T )
.

Now, G(z) = z −1
z

G2 (z) = 4(1 − e−5T )
(z − e−5T )

. Finally, T(z) = G(z)
1 + G(z)

= 4(1 − e−5T )
z − 5e−5T + 4

.

The pole of the closed-loop system is at 5e−5T − 4. Substituting values of T , we

find that the pole is greater than 1 if T > 0.1022 s. Hence, the system is stable for

0 < T < 0.1022 s.

13.6.

Substituting z = s +1
s −1

 into D(z) = z3 − z2 − 0.5z + 0.3, we obtain

D(s) = s3 − 8s2 − 27s − 6 . The Routh table for this polynomial is shown below.
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s3 1 -27

s2 -8 -6

s1 -27.75 0

s0 -6 0

Since there is one sign change, we conclude that the system has one pole outside

the unit circle and two poles inside the unit circle. The table did not produce a row

of zeros and thus, there are no jω  poles. The system is unstable because of the

pole outside the unit circle.

13.7.

Defining G(s) as G1(s)  in cascade with a zero-order-hold,

G(s) = 20 1 − e−Ts( ) (s + 3)
s(s + 4)(s + 5)







= 20 1 − e−Ts( ) 3 / 20
s

+ 1 / 4
(s + 4)

− 2 / 5
(s + 5)







.

Taking the z-transform yields

G(z) = 20 1 − z−1( ) (3 / 20)z
z -1

+ (1 / 4)z
z - e−4T − (2 / 5)z

z - e−5T






= 3 + 5(z -1)
z - e−4T − 8(z -1)

z - e−5T .

Hence for T = 0.1 second, Kp = lim
z→1

G(z) = 3, Kv = 1
T

lim
z→1

(z -1)G(z) = 0, and

Ka = 1
T 2 lim

z→1
(z -1)2 G(z) = 0. Checking for stability, we find that the system is

stable for T = 0.1 second, since T(z) = G(z)
1 + G(z)

= 1.5z −1.109
z2 + 0.222z − 0.703

 has poles

inside the unit circle at –0.957 and +0.735.

Again, checking for stability, we find that the system is unstable for T = 0.5

second, since T(z) = G(z)
1 + G(z)

= 3.02z − 0.6383
z2 + 2.802z − 0.6272

 has poles inside and outside

the unit circle at +0.208 and –3.01, respectively.

13.8.

Draw the root locus superimposed over the ζ = 0.5 curve shown below. Searching

along a 54.30 line, which intersects the root locus and the ζ = 0.5 curve, we find

the point 0.587∠ 54.3o = (0.348+j0.468) and K = 0.31.
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13.9.

Let

Ge (s) = G(s)Gc (s) = 100K

s(s + 36)(s +100)
2.38(s + 25.3)

(s + 60.2)
= 342720(s + 25.3)

s(s + 36)(s +100)(s + 60.2)
.

The following shows the frequency response of Ge ( jω) .
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We find that the zero dB frequency, ωΦM
, for Ge ( jω)is 39 rad/s. Using Astrom’s

guideline the value of T should be in the range, 0.15 / ωΦM
= 0.0038 second to

0.5 / ωΦM
= 0.0128 second. Let us use T = 0.001 second.

Now find the Tustin transformation for the compensator. Substituting s = 2(z −1)
T(z +1)

into Gc (s) = 2.38(s + 25.3)
(s + 60.2)

with T = 0.001 second yields

Gc (z) = 2.34
(z − 0.975)

(z − 0.9416)
.

13.10.

Gc (z) = X(z)
E(z)

= 1899z2 − 3761z +1861
z2 −1.908z + 0.9075

. Cross-multiply and obtain

(z2 −1.908z + 0.9075)X(z) = (1899z2 − 3761z +1861)E(z). Solve for the highest

power of z operating on the output, X(z), and obtain

z2 X(z) = (1899z2 − 3761z +1861)E(z) − (−1.908z + 0.9075)X(z) . Solving for
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X(z) on the left-hand side yields

X(z) = (1899 − 3761z-1 +1861z−2 )E(z) − (−1.908z-1 + 0.9075z−2 )X(z). Finally, we

implement this last equation with the following flow chart:
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