
 
 

 

N  I  N  E  
 
  Design via Root Locus 

 

SOLUTIONS TO CASE STUDIES CHALLENGES  

Antenna Control: Lag-Lead Compensation 
a. Uncompensated: From the Chapter 8 Case Study Challenge, G(s) = 

76.39K
s(s+150)(s+1.32)   = 

7194.23
s(s+150)(s+1.32)   with the dominant poles at - 0.5 ± j6.9. Hence, ζ = cos (tan-1 

6.9
0.5  ) = 0.0723, or 

%OS = 79.63% and Ts = 
4

ζωn
   = 

4
0.5  = 8 seconds.  Also, Kv = 

7194.23
150 x 1.32   = 36.33. 

 b. Lead-Compensated: Reducing the percent overshoot by a factor of 4 yields, %OS = 
79.63

4    = 

19.91%, or ζ = 0.457. Reducing the settling time by a factor of 2 yields, Ts = 
8
2  = 4. Improving 

Kv by 2 yields Kv = 72.66. Using Ts = 
4

ζωn
   = 4, ζωn = 1, from which ωn = 2.188 rad/s. Thus, the 

design point equals -ζωn + j ωn 1-ζ2  = -1 + j1.946. Using the system's original poles and 

assuming a lead compensator zero at -1.5, the summation of the system's poles and the lead 

compensator zero to the design point is -123.017o . Thus, the compensator pole must contribute 

123.017o-180o = -56.98o. Using the geometry below, 
1.946
pc - 1   = tan 56.98o, or pc = 2.26. 

 

 
 

Adding this pole to the system poles and the compensator zero yields 76.39K = 741.88 at -1+j1.946. 

Hence the lead-compensated open-loop transfer function is GLead-comp(s) =   
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741.88(s +1.5)
s(s +150)(s +1.32)(s + 2.26)

. Searching the real axis segments of the root locus yields higher-order 

poles at greater than -150 and at -1.55. The response should be simulated since there may not be 

pole/zero cancellation. The lead-compensated step response is shown below. 

 

 
 

Since the settling time and percent overshoot meet the transient requirements, proceed with the lag 

compensator. The lead-compensated system has Kv = 
741.88 x 1.5

150 x 1.32 x 2.26   = 2.487. Since we want Kv 

= 72.66, an improvement of 
72.66
2.487   = 29.22 is required. Select G(s)Lag = 

s+0.002922
s+0.0001    to improve the 

steady-state error by 29.22. A  simulation of the lag-lead compensated system,   

 

GLag-lead-comp(s) = 
741.88(s+1.5)(s+0.002922)

s(s+150)(s+1.32)(s+2.26)(s+0.0001)   is shown below. 
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UFSS Vehicle: Lead and Feedback Compensation 

Minor loop: Open-loop transfer function G(s)H(s) = 
0.25K2(s+0.437)

(s+2)(s+1.29)(s+0.193)   ; Closed-loop transfer  

function: TML (s) =
0.25K2 (s + 0.437)

s(s3 + ...)
. Searching along the 126.87o line (ζ = 0.6), find the 

dominant second-order poles at -1.554 ± j2.072 with 0.25K2 = 4.7. Thus K2 = 18.8. Searching the 

real axis segment of the root locus for a gain of 4.7 yields a 3rd pole at -0.379.  

 Major loop: The unity feedback, open-loop transfer function found by using the minor-loop closed-

loop poles is GML(s) = 
-0.25K1(s+0.437)

s(s+0.379)(s+1.554+j2.072)(s+1.554-j2.072)  . Searching along the 120o line 

(ζ = 0.5), find the dominant second-order poles at -1.069±j1.85 with 0.25K1 = 4.55. Thus K1 = 18.2. 

Searching the real axis segment of the root locus for a gain of 4.55 yields a 3rd pole at -0.53 and a 4th 

pole at -0.815.  

 
ANSWERS TO REVIEW QUESTIONS  

1. Chapter 8: Design via gain adjustment. Chapter 9: Design via cascaded or feedback filters 

2. A. Permits design for transient responses not on original root locus and unattainable through simple gain 

adjustments. B. Transient response and steady-state error specifications can be met separately and 

independently without the need for tradeoffs 

3. PI or lag compensation 

4. PD or lead compensation 

5. PID or lag-lead compensation 

6. A pole is placed on or near the origin to increase or nearly increase the system type, and the zero is 

placed near the pole in order not to change the transient response. 

7. The zero is placed closer to the imaginary axis than the pole. The total contribution of the pole and zero 

along with the previous poles and zeros must yield 1800 at the design point. Placing the zero closer to the 

imaginary axis tends to speed up a slow response. 

8. A PD controller yields a single zero, while a lead network yields a zero and a pole. The zero is closer to 

the imaginary axis. 

9. Further out along the same radial line drawn from the origin to the uncompensated poles 

10. The PI controller places a pole right at the origin, thus increasing the system type and driving the error 

to zero. A lag network places the pole only close to the origin yielding improvement but no zero error. 

11. The transient response is approximately the same as the uncompensated system, except after the 

original settling time has passed. A slow movement toward the new final value is noticed. 

12. 25 times; the improvement equals the ratio of the zero location to the pole location. 
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13. No; the feedback compensator's zero is not a zero of the closed-loop system. 

14. A. Response of inner loops can be separately designed; B. Faster responses possible; C. Amplification 

may not be necessary since signal goes from high amplitude to low. 

 

SOLUTIONS TO PROBLEMS 
 

1. 
Uncompensated system: Search along the ζ = 0.5 line and find the operating point is at -1.5356 ± 

j2.6598 with K = 73.09. Hence, %OS = e−ζπ / 1−ζ 2

x100 = 16.3%; Ts = 
4

1.5356
= 2.6 seconds; Kp 

= 
73.09

30
=2.44. A higher-order pole is located at -10.9285. 

Compensated: Add a pole at the origin and a zero at -0.1 to form a PI controller. Search along the ζ = 

0.5 line and find the operating point is at -1.5072 ± j2.6106 with K = 72.23. Hence, the estimated 

performance specifications for the compensated system are: %OS = e−ζπ / 1−ζ 2

x100 = 16.3%; Ts = 

4
1.5072

= 2.65 seconds; Kp = ∞. Higher-order poles are located at -0.0728 and -10.9125. The 

compensated system should be simulated to ensure effective pole/zero cancellation.  

2. 

a. Insert a cascade compensator, such as Gc (s) =
s + 0.01

s
. 

b.  
Program: 
K=1 
G1=zpk([],[0,-2,-5],K)  %G1=1/s(s+2)(s+5) 
Gc=zpk([-0.01],[0],1)   %Gc=(s+0.01)/s 
G=G1*Gc 
rlocus(G) 
T=feedback(G,1) 
T1=tf(1,[1,0])          %Form 1/s to integrate step input 
T2=T*T1 
t=0:0.1:200; 
step(T1,T2,t)           %Show input ramp and ramp response 
 
Computer response: 
K = 
 
     1 
 
  
Zero/pole/gain: 
      1 
------------- 
s (s+2) (s+5) 
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Zero/pole/gain: 
(s+0.01) 
-------- 
   s 
  
  
Zero/pole/gain: 
   (s+0.01) 
--------------- 
s^2 (s+2) (s+5) 
  
  
Zero/pole/gain: 
  
                 (s+0.01) 
------------------------------------------ 
(s+5.064) (s+1.829) (s+0.09593)            
                                           
                               (s+0.01126) 
                                           
  
  
Transfer function: 
1 
- 
s 
  
  
Zero/pole/gain: 
  
                 (s+0.01) 
------------------------------------------ 
s (s+5.064) (s+1.829) (s+0.09593)          
                                           
                               (s+0.01126) 

 

 
 
3.  

a. Searching along the 126.16o line (10% overshoot, ζ = 0.59), find the operating point at 

 



322   Chapter 9:   Design Via Root Locus 

 -1.4 + j1.92 with K = 20. Hence, Kp = 
20

1 x 5 x 3   = 1.333.  

b. A 3x improvement will yield Kp = 4. Use a lag compensator, Gc(s) = 
s+0.3
s+0.1   . 

c.  

 

 

 

4. 
a. Searching along the 126.16o line (10% overshoot, ζ = 0.59), find the operating point at 

 -1.009 + j1.381 with K = 17.5. Hence, Kv = 
17.5
5x3

= 1.1667.  

b. A 3.429x improvement will yield Kv = 4. Use a lag compensator, Gc(s)  = 
s + 0.3429

s + 0.1
. 

c.  

Program: 
K=17.5 
G=zpk([],[0,-3,-5],K)   
Gc=zpk([-0.3429],[-0.1],1)   
Ge=G*Gc; 
T1=feedback(G,1); 
T2=feedback(Ge,1); 
T3=tf(1,[1,0]);         %Form 1/s to integrate step input 
T4=T1*T3; 
T5=T2*T3; 
t=0:0.1:20; 
step(T3,T4,T5,t)        %Show input ramp and ramp responses 
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Computer response: 
K = 
 
   17.5000 
 
  
Zero/pole/gain: 
    17.5 
------------- 
s (s+3) (s+5) 
  
  
Zero/pole/gain: 
(s+0.3429) 
---------- 
 (s+0.1) 

 
5.  

a. Uncompensated: Searching along the 126.16o line (10% overshoot, ζ = 0.59), find the operating 

point at -2.03 + j2.77 with K = 45.72. Hence, Kp = 
45.72

2 x 4 x 6   = 0.9525. An improvement of 
20

0.9525   

= 20.1 is required. Let Gc(s) = 
0.201
0.01   . Compensated: Searching along the 126.16o line (10% 

overshoot, ζ = 0.59), find the operating point at - 1.99+j2.72 with K = 46.05. Hence, Kp = 

46.05 x 0.201
2 x 4 x 6 x 0.01   = 19.28. 
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b.  

 

  

 

c. From (b), about 28 seconds 

 
 6.  

Uncompensated: Searching along the 135o line (ζ = 0.707), find the operating point at  

-2.32 + j2.32 with K = 4.6045. Hence, Kp = 
4.6045

30
= 0.153; Ts = 

4
2.32

= 1.724 seconds; Tp = 

2.32
π

= 1.354 seconds; %OS = e−ζπ / 1−ζ 2

x100  = 4.33%;  

ωn = 22.32 2.32+ 2 = 3.28 rad/s; higher-order pole at -5.366.  

Compensated: To reduce the settling time by a factor of 2, the closed-loop poles should be – 4.64 ± 

j4.64. The summation of angles to this point is 119o . Hence, the contribution of the compensating 

zero should be 180o -119o =61o . Using the geometry shown below,  

4.64
4.64cz −

= tan (61o). Or, zc = 7.21. 
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After adding the compensator zero, the gain at -4.64+j4.64 is K = 4.77. Hence, 

4.77 6 7.21 6.88
2 3 5p

x xK
x x

= = . 
4= 0.

4.64sT = 86  second; = = 0.677
4.64pT π

 second;  

%OS = e−ζπ / 1−ζ 2

x100  = 4.33%; 2 2
n  = 4.64 4.64 = 6.56ω +  rad/s; higher-order pole at 

 -5.49. The problem with the design is that there is steady-state error, and no effective pole/zero 

cancellation. The design should be simulated to be sure the transient requirements are met. 

7. 
Program: 
clf 
'Uncompensated System' 
numg=[1 6]; 
deng=poly([-2 -3 -5]); 
'G(s)' 
G=tf(numg,deng); 
Gzpk=zpk(G) 
rlocus(G,0:1:100) 
z=0.707; 
pos=exp(-pi*z/sqrt(1-z^2))*100; 
sgrid(z,0) 
title(['Uncompensated Root Locus with ' , num2str(z), ' Damping Ratio 
Line']) 
[K,p]=rlocfind(G);  %Allows input by selecting point on graphic 
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications' 
operatingpoint=p(i) 
gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kp=dcgain(K*G) 
'T(s)' 
T=feedback(K*G,1) 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
title(['Step Response for Uncompensated System with  ' , num2str(z),... 
' Damping Ratio']) 
'Press any key to go to PD compensation' 
pause 
'Compensated system' 
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done=1; 
while done>0 
a=input('Enter a Test PD Compensator, (s+a). a =     ') 
numc=[1 a]; 
'Gc(s)' 
GGc=tf(conv(numg,numc),deng); 
GGczpk=zpk(GGc) 
wn=4/[(estimated_settling_time/2)*z]; 
rlocus(GGc) 
sgrid(z,wn) 
title(['PD Compensated Root Locus with ' , num2str(z),...  
' Damping Ratio Line', 'PD Zero at ', num2str(a), ', and Required Wn']) 
done=input('Are you done? (y=0,n=1)  '); 
end 
[K,p]=rlocfind(GGc);  %Allows input by selecting point on graphic 
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications' 
operatingpoint=p(i) 
gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kp=dcgain(K*GGc) 
'T(s)' 
T=feedback(K*GGc,1) 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
title(['Step Response for Compensated System with  ' , num2str(z),...  
' Damping Ratio']) 
 
Computer response: 
ans = 
 
Uncompensated System 
 
 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
      (s+6) 
----------------- 
(s+5) (s+3) (s+2) 
  
Select a point in the graphics window 
 
selected_point = 
 
  -2.3104 + 2.2826i 
 
 
ans = 
 
Closed-loop poles =  
 
 
p = 
 
  -5.3603           
  -2.3199 + 2.2835i 
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  -2.3199 - 2.2835i 
 
Give pole number that is operating point   2 
 
ans = 
 
Summary of estimated specifications 
 
 
operatingpoint = 
 
  -2.3199 + 2.2835i 
 
 
gain = 
 
    4.4662 
 
 
estimated_settling_time = 
 
    1.7242 
 
 
estimated_peak_time = 
 
    1.3758 
 
 
estimated_percent_overshoot = 
 
    4.3255 
 
 
estimated_damping_ratio = 
 
    0.7070 
 
 
estimated_natural_frequency = 
 
    3.2552 
 
 
Kp = 
 
    0.8932 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
       4.466 s + 26.8 
----------------------------- 
s^3 + 10 s^2 + 35.47 s + 56.8 
  
 
ans = 
 
Press any key to continue and obtain the step response 
 
 
ans = 
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Press any key to go to PD compensation 
 
 
ans = 
 
Compensated system 
 
Enter a Test PD Compensator, (s+a). a =     6 
 
a = 
 
     6 
 
 
ans = 
 
Gc(s) 
 
  
Zero/pole/gain: 
     (s+6)^2 
----------------- 
(s+5) (s+3) (s+2) 
  
Are you done? (y=0,n=1)  1 
Enter a Test PD Compensator, (s+a). a =     7.1 
 
a = 
 
    7.1000 
 
 
ans = 
 
Gc(s) 
 
  
Zero/pole/gain: 
  (s+7.1) (s+6) 
----------------- 
(s+5) (s+3) (s+2) 
  
Are you done? (y=0,n=1)  0 
Select a point in the graphics window 
 
selected_point = 
 
  -4.6607 + 4.5423i 
 
 
ans = 
 
Closed-loop poles =  
 
 
p = 
 
  -4.6381 + 4.5755i 
  -4.6381 - 4.5755i 
  -5.4735           
 
Give pole number that is operating point   1 
 
ans = 
 
Summary of estimated specifications 
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operatingpoint = 
 
  -4.6381 + 4.5755i 
 
 
gain = 
 
    4.7496 
 
 
estimated_settling_time = 
 
    0.8624 
 
 
estimated_peak_time = 
 
    0.6866 
 
 
estimated_percent_overshoot = 
 
    4.3255 
 
 
estimated_damping_ratio = 
 
    0.7070 
 
 
estimated_natural_frequency = 
 
    6.5151 
 
 
Kp = 
 
    6.7444 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
   4.75 s^2 + 62.22 s + 202.3 
--------------------------------- 
s^3 + 14.75 s^2 + 93.22 s + 232.3 
  
 
ans = 
 
Press any key to continue and obtain the step response 
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8.  

The uncompensated system performance is summarized in Table 9.8 in the text. To improve settling 

time by 4, the dominant poles need to be at -7.236 ± j14.123. Summing the angles from the open-loop 

poles to the design point yields -277.326o. Thus, the zero must contribute 277.326o - 180o = 97.326o. 

Using the geometry below,  

s-plane

jω

σ

j14.123

-7.236 -zc

97.236o

 
 

14.123
7.236 - zc

   = tan(180-97.326). Thus, zc = 5.42. Adding the zero and evaluating the gain at the design 

point yields K = 256.819. Summarizing results: 
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9.  

a.  ζωn = 
4
Ts

   = 2.5;  ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.404. Thus, ωn = 6.188 rad/s and the operating 

point is - 2.5 ± j5.67. 

b. Summation of angles including the compensating zero is -150.06o. Therefore, the compensator 

pole must contribute 150.06o - 180o = -29.94o. 

c. Using the geometry shown below, 
5.67

pc - 2.5    = tan 29.94o. Thus, pc = 12.34. 
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d. Adding the compensator pole and using -2.5 + j5.67 as the test point, K = 357.09.  

e. Searching the real axis segments for K = 1049.41, we find higher-order poles at -15.15, and -1.186. 

f. Pole at -15.15 is more than 5 times further from the imaginary axis than the dominant poles. Pole at 

-1.186 may not cancel the zero at -1 

g. 

 
A simulation of the system shows a percent overshoot of 37.5% and a settling time of 2.12 seconds. 

Thus, the specifications were not met because pole-zero cancellation was not achieved. A redesign is 

required. 

 
10.  

a.  ζωn = 
4
Ts

   = 2.4;  ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.5. Thus, ωn = 4.799 rad/s and the operating point is 

-2.4 ± j4.16. 

b. Summation of angles including the compensating zero is -131.36o. Therefore, the compensator 

pole must contribute 180o - 131.36o = -48.64o. Using the geometry shown below, 
4.16

pc - 2.4    = 
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 tan 48.64o. Thus, pc = 6.06. 

 
 

c. Adding the compensator pole and using -2.4 + j4.16 as the test point, K = 29.117.  

d. Searching the real axis segments for K = 29.117, we find a higher-order pole at -1.263. 

e. Pole at -1.263 is near the zero at -1. Simulate to ensure accuracy of results. 

f. Ka = 
29.117

6.06    = 4.8 

g.  

 

From the plot, Ts = 1.4 seconds; Tp = 0.68 seconds; %OS = 35%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



336   Chapter 9:   Design Via Root Locus 

 
11.  

a. 

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

4

6

8

10

Real Axis

Im
ag

 A
xi

s

Uncompensated Root Locus with 0.8 Damping Line

 

 
b. and c. Searching along the ζ = 0.8 line (143.13o), find the operating point at  

–2.682 + j2.012 with K = 35.66. 

d. Since ζωn = 
4
Ts

  , the real part of the compensated dominant pole is -4. The imaginary part is  

4 tan (180o-143.13o) = 3. Using the uncompensated system's poles and zeros along with the 

compensator zero at - 4.5, the summation of angles to the design point, -4 + j3 is –158.71o. Thus, the 

contribution of the compensator pole must be 158.71o - 180o = -21.290. Using the following 

geometry, 
3

pc − 4
 = tan 21.290, or pc = 11.7.  

�
4

3

21.29

 

 
Adding the compensator pole and using – 4 + j3 as the test point, K = 172.92.  

e. Compensated: Searching the real axis segments for K = 172.92, we find higher-order poles at 

14.19, and approximately at –5.26 ± j0.553. Since there is no pole/zero cancellation with the zeros at 

-6 and –4.5, the system should be simulated to check the settling time. 



Solutions to Problems   337 

f.  

�
Time (sec.)

Am
pl

itu
de

Step Response

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

The graph shows about 2% overshoot and a 0.8 second settling time compared to a desired 1.52% 

overshoot and a settling time of 1 second. 

12.  
Program: 

clf 
numg=[1 6];                         
deng=poly([-2 -4 -7 -8]);           
'G(s)' 
G=tf(numg,deng); 
Gzpk=zpk(G) 
rlocus(G) 
z=0.8; 
pos=exp(-pi*z/sqrt(1-z^2))*100; 
sgrid(z,0) 
title(['Uncompensated Root Locus with ' , num2str(z), ' Damping Ratio Line']) 
[K,p]=rlocfind(G);  
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications' 
operatingpoint=p(i) 
gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kp=K*numg(max(size(numg)))/deng(max(size(deng))) 
'T(s)' 
T=feedback(K*G,1) 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
title(['Step Response for Uncompensated System with  ' , num2str(z),... 
' Damping Ratio']) 
'Press any key to go to Lead compensation' 
pause 
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'Compensated system' 
b=4.5; 
'Lead Zero at -4.5 ' 
done=1; 
while done>0 
a=input('Enter a Test Lead Compensator Pole, (s+a). a =     '); 
'Gc(s)' 
Gc=tf([1 b],[1 a]) 
GGc=G*Gc; 
[numggc,denggc]=tfdata(GGc,'v'); 
'G(s)Gc(s)' 
GGczpk=zpk(GGc) 
wn=4/((1)*z); 
rlocus(GGc); 
sgrid(z,wn) 
title(['Lead Compensated Root Locus with ' , num2str(z),... 
' Damping Ratio Line, Lead Pole at  ', num2str(-a), ', and Required Wn']) 
done=input('Are you done? (y=0,n=1)  '); 
end 
[K,p]=rlocfind(GGc);  %Allows input by selecting point on graphic 
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications' 
operatingpoint=p(i) 
gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kp=dcgain(K*GGc) 
'T(s)' 
T=feedback(K*GGc,1) 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
title(['Step Response for Compensated System with  ' , num2str(z),... 
' Damping Ratio']) 

 
Computer response: 

ans = 
 
G(s) 
 
  
Zero/pole/gain: 
         (s+6) 
----------------------- 
(s+8) (s+7) (s+4) (s+2) 
  
Select a point in the graphics window 
 
selected_point = 
 
  -2.7062 + 2.0053i 
 
 
ans = 
 
Closed-loop poles =  
 
 
p = 
 
  -9.3056           
  -6.3230           
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  -2.6857 + 2.0000i 
  -2.6857 - 2.0000i 
 
Give pole number that is operating point   3 
 
ans = 
 
Summary of estimated specifications 
 
 
operatingpoint = 
 
  -2.6857 + 2.0000i 
 
 
gain = 
 
   35.2956 
 
 
estimated_settling_time = 
 
    1.4894 
 
 
estimated_peak_time = 
 
    1.5708 
 
 
estimated_percent_overshoot = 
 
    1.5165 
 
 
estimated_damping_ratio = 
 
    0.8000 
 
 
estimated_natural_frequency = 
 
    3.3486 
 
 
Kp = 
 
    0.4727 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
             35.3 s + 211.8 
---------------------------------------- 
s^4 + 21 s^3 + 154 s^2 + 491.3 s + 659.8 
  
 
ans = 
 
Press any key to continue and obtain the step response 
 
 
ans = 
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Press any key to go to Lead compensation 
 
 
ans = 
 
Compensated system 
 
 
ans = 
 
Lead Zero at -4.5  
 
Enter a Test Lead Compensator Pole, (s+a). a =     10 
 
ans = 
 
Gc(s) 
 
  
Transfer function: 
s + 4.5 
------- 
s + 10 
  
 
ans = 
 
G(s)Gc(s) 
 
  
Zero/pole/gain: 
        (s+6) (s+4.5) 
------------------------------ 
(s+10) (s+8) (s+7) (s+4) (s+2) 
  
Are you done? (y=0,n=1)  1 
Enter a Test Lead Compensator Pole, (s+a). a =     11.7 
 
ans = 
 
Gc(s) 
 
  
Transfer function: 
s + 4.5 
-------- 
s + 11.7 
  
 
ans = 
 
G(s)Gc(s) 
 
  
Zero/pole/gain: 
         (s+6) (s+4.5) 
-------------------------------- 
(s+11.7) (s+8) (s+7) (s+4) (s+2) 
  
Are you done? (y=0,n=1)  0 
Select a point in the graphics window 
 
selected_point = 
 
  -3.9885 + 3.0882i 
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ans = 
 
Closed-loop poles =  
 
 
p = 
 
 -14.2326           
  -3.9797 + 3.0860i 
  -3.9797 - 3.0860i 
  -5.2540 + 0.5076i 
  -5.2540 - 0.5076i 
 
Give pole number that is operating point   2 
 
ans = 
 
Summary of estimated specifications 
 
 
operatingpoint = 
 
  -3.9797 + 3.0860i 
 
 
gain = 
 
  178.3530 
 
 
estimated_settling_time = 
 
    1.0051 
 
 
estimated_peak_time = 
 
    1.0180 
 
 
estimated_percent_overshoot = 
 
    1.5165 
 
 
estimated_damping_ratio = 
 
    0.8000 
 
 
estimated_natural_frequency = 
 
    5.0360 
 
 
Kp = 
 
    0.9187 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
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        178.4 s^2 + 1873 s + 4816 
------------------------------------------ 
s^5 + 32.7 s^4 + 399.7 s^3 + 2436 s^2      
                                           
                      + 7656 s + 1.006e004 
                                           
  
 
ans = 
 
Press any key to continue and obtain the step 
response
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13.  

a. Searching along the 117.13o line (%OS = 20%; ζ = 0.456), find the operating point at  
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-6.39 + j12.47 with K = 9273. Searching along the real axis for K = 9273, we find a higher-order pole 

at –47.22. Thus, Ts =
4

ζωn

=
4

6.39
= 0.626  second. 

b. For the settling time to decrease by a factor of 2, Re = -ζωn = -6.39 x 2 = -12.78. The imaginary 

part is Im = -12.78 tan 117.13o  = 24.94. Hence, the compensated closed-loop poles are  

-12.78 ± j24.94. A settling time of 0.313 second would result.  

c. Assume a compensator zero at -20. Using the uncompensated system's poles along with the 

compensator zero, the summation of angles to the design point, -12.78 ± j24.94 is –159.63o. Thus, 

the contribution of the compensator pole must be 159.63o-180o = -20.37o. Using the following 

geometry, 
24.94

pc − 12.78
= tan 20.37o, or pc = 79.95.  

24.94

12.78

20.37

 
 
 Adding the compensator pole and using --12.78 ± j24.94 as the test point, K = 74130. 
 
 d. 

Time (sec.)

Am
pl

itu
de

Step Response

0 0.15 0.3 0.45 0.6 0.75
0

0.2

0.4

0.6

0.8

1

Uncompensated & Lead-Compensated System
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14.  
a. Searching along the 110.97o line (%OS = 30%; ζ= 0.358), find the operating point at  

-2.065 + j5.388 with K = 366.8. Searching along the real axis for K = 366.8, we find a higher-order 

pole at –16.87. Thus, Ts =
4

ζωn

=
4

2.065
= 1.937 seconds. For the settling time to decrease by a 

factor of 2, Re = -ζωn = -2.065 x 2 = - 4.13. The imaginary part is – 4.13 tan 110.970 = 10.77. Hence, 

the compensated dominant poles are – 4.13 ± j10.77. The compensator zero is at -7. Using the 

uncompensated system's poles along with the compensator zero, the summation of angles to the 

design point, – 4.13 ± j10.77 is –162.06o. Thus, the contribution of the compensator pole must be –

162.06o - 180o = -17.94o. Using the following geometry, 
10.77

pc − 4.13
= tan 17.94o, or pc = 37.4.  

10.77

-4.13

17.94

 
 

Adding the compensator pole and using – 4.13 ± j10.77 as the test point, K = 5443. 

b. Searching the real axis segments for K = 5443 yields higher-order poles at approximately –8.12 

and –42.02. The pole at –42.02 can be neglected since it is more than five times further from the 

imaginary axis than the dominant pair. The pole at –8.12 may not be canceling the zero at -7. Hence, 

simulate to be sure the requirements are met. 

c. 
Program: 
'Uncompensated System G1(s)'              
numg1=1;                              
deng1=poly([-15 (-3+2*j) (-3-2*j)]);             
G1=tf(numg1,deng1)                    
G1zpk=zpk(G1) 
K1=366.8 
'T1(s)' 
T1=feedback(K1*G1,1); 
T1zpk=zpk(T1) 
'Compensator Gc(s)' 
numc=[1 7];                        
denc=[1 37.4];                         
Gc=tf(numc,denc)                   
'Compensated System G2(s) = G1(s)Gc(s)'                          
K2=5443 
G2=G1*Gc;                              
G2zpk=zpk(G2) 
'T2(s)'                              
T2=feedback(K2*G2,1); 
T2zpk=zpk(T2) 
step(T1,T2)                                                                
title(['Uncompensated and Lead Compensated Systems'])  
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Computer response: 
ans = 
 
Uncompensated System G1(s) 
 
  
Transfer function: 
            1 
-------------------------- 
s^3 + 21 s^2 + 103 s + 195 
  
  
Zero/pole/gain: 
           1 
----------------------- 
(s+15) (s^2  + 6s + 13) 
  
 
K1 = 
 
  366.8000 
 
 
ans = 
 
T1(s) 
 
  
Zero/pole/gain: 
              366.8 
--------------------------------- 
(s+16.87) (s^2  + 4.132s + 33.31) 
  
 
ans = 
 
Compensator Gc(s) 
 
  
Transfer function: 
 s + 7 
-------- 
s + 37.4 
  
 
ans = 
 
Compensated System G2(s) = G1(s)Gc(s) 
 
 
K2 = 
 
        5443 
 
  
Zero/pole/gain: 
             (s+7) 
-------------------------------- 
(s+37.4) (s+15) (s^2  + 6s + 13) 
  
 
ans = 
 
T2(s) 
 
  
Zero/pole/gain: 
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                5443 (s+7) 
------------------------------------------- 
(s+42.02) (s+8.118) (s^2  + 8.261s + 133.1)  

 
15. 

a. Searching the 15% overshoot line (121.127o) for 180o yields -0.372 + j0.615. Hence, Ts = 
4

σd
   = 

4
0.372   = 10.75 seconds.  

b. For 7 seconds settling time, σd  = 
4
Ts

   = 
4
7   = 0.571.  ωd = 0.571 tan (180o - 121.127o) = 0.946. 

Therefore, the design point is -0.571 + j0.946. Summing the angles of the uncompensated system's 

poles as well as the compensator pole at -15 yields -213.493o. Therefore, the compensator zero must 

contribute (213.493o - 180o) = 33.493o. Using the geometry below,   

 

s-plane

jω

σ

j0.946

-0.571-zc

33.493o

 
 

0.946
zc - 0.571   = tan (33.493o) . Hence, zc = 2. The compensated open-loop transfer function is  
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K(s+2)
s(s+1)(s2+10s+26)(s+15)

  . Evaluating the gain for this function at the point, -0.571 + j0.946 yields K 

= 207.512. 

c.  
Program: 
numg= 207.512*[1 2]; 
r=roots([1,10,26]); 
deng=poly([0 ,-1, r(1),r(2),-15]); 
'G(s)' 
G=tf(numg,deng); 
Gzpk=zpk(G) 
T=feedback(G,1); 
step(T) 
title(['Step Response for Design of Ts = 7, %OS = 15']) 

Computer response: 
ans = 
 
G(s) 
 
Zero/pole/gain: 
                  207.512 (s+2) 
          ------------------------------- 
          s (s+15) (s+1) (s^2 + 10s + 26) 

 
16. 

a. From 20.5% overshoot evaluate 0.45ζ = . Also, since 
4 4

3n
sT

ζω = = , 2.963nω = . The 

compensated dominant poles are located at -ζωn ± jωn 1-ζ2  = - 1.3333 ± j2.6432. Assuming  

the compensator zero at -0.02, the contribution of open-loop poles and the compensator zero to the 

design point, - 1.3333 ± j2.6432 is -175.78o. Hence, the compensator pole must contribute  
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175.78o - 180o = -4.22o. Using the following geometry, o2.6432 = tan 4.22
1.3333cp −

, or pc = 37.16 

Adding the pole to the system, K = 4401.52 at the design point..   

 

 
 

  
b. Searching along the real axis segments of the root locus for K = 4401.52, we find higher-order 

poles at -0.0202, -13.46, and -37.02. There is pole/zero cancellation at -0.02. Also, the poles at , 

 -13.46, and -37.02 are at least 5 times the design point’s real part. Thus, the second-order 

approximation is valid. 

c. 
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From the plot, Ts = 2.81 seconds, and %OS = 20.8%. Thus, the requirements are met. 
17.  

a. ζωn = 
4
Ts

   = 
4

0.5   = 8. Since ζ = 0.4, ωn = 20. Therefore the compensated closed-loop poles are 

located at - ζωn ± jωn 1-ζ2  = -8 ± j18.33. 

 b. Using the system's poles along with the compensator's pole at -15, the sum of angles to the test 

point –8 ± j18.33 is -293.4o . Therefore, the compensator's zero must contribute 293.4o - 180o  = 

113.4o . Using the following geometry, 
18.33
8 - zc

   = tan 66.6o, or zc = 0.0679.   

 

 
 
 

c. Adding the compensator zero and using –8 ± j18.33 as the test point, K = 7297. 

d. Making a second-order assumption, the predicted performance is as follows:  

Uncompensated: Searching along the 133.58o line (ζ = 0.4), find the uncompensated closed-loop 

pole at -5.43 + j12.45 with K = 3353. Hence, Ts = 
4

ζωn
   = 0.74 seconds; %OS = e−ζπ / 1−ζ 2

x100 = 

25.38%; Kp = 
3353

101x20
= 1.66. Checking the second-order assumption by searching the real axis 

segments of the root locus for K = 3353, we find a higher-order pole at -29.13. Since this pole is 

more than five times further from the imaginary axis than the dominant pair, the second order 

assumption is reasonable. 

Compensated: Using the compensated dominant pole location, - 8 ± j18.33, Ts = 
4

ζωn
   = 0.5 

seconds; %OS = e−ζπ / 1−ζ 2

x100 = 25.38%; Kp = 
7297x0.0679
101x20x15

= 0.016. Checking the second-

order assumption by searching the real axis segments of the root locus for K = 7297, we find higher-

order poles at -2.086 and -36.91. The poles are not five times further from the imaginary axis nor do 

they yield pole/zero cancellation. The second-order assumption is not valid. 
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e.  

 
 

The uncompensated system exhibits a steady-state error of 0.38, a percent overshoot of 22.5%, and a 

settling time of 0.78 seconds.  

 

 
 

Since there is no pole/zero cancellation the closed-loop zero near the origin produces a large steady-

state error. The student should be asked to find a viable design solution to this problem by choosing 

the compensator zero further from the origin. For example, placing the compensator zero at -20 yields 

a compensator pole at -90.75 and a gain of 28730. This design yields a valid second-order 

approximation. 

18. 

 a. Since %OS = 1.5%, ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.8. Since Ts = 
4

ζωn
   = 

2
3  second, 

ωn = 7.49 rad/s. Hence, the location of the closed-loop poles must be -6±j4.49. The summation of 

angles from open-loop poles to -6±j4.49 is -226.3o. Therefore, the design point is not on the root 

locus. 
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b. A compensator whose angular contribution is 226.3o-180o = 46.3o is required. Assume a 

compensator zero at  -5 canceling the pole. Thus, the breakaway from the real axis will be at the 

required -6 if the compensator pole is at -9 as shown below.  

 

 
Adding the compensator pole and zero to the system poles, the gain at the design point is found to be 

29.16. Summarizing the results: Gc(s) = 
s+5
s+9   with K = 29.16. 

19. 
Lead compensator design: Searching along the 120o line (ζ = 0.5), find the operating point at 

-1.531 + j2.652 with K = 354.5. Thus, Ts = 
4

ζωn
   = 

4
1.531   = 2.61 seconds. For the settling time to 

decrease by 0.5 second, Ts = 2.11 seconds, or Re = -ζωn = - 
 4

2.11  = -1.9. The imaginary part is 

 -1.9 tan 60o = 3.29. Hence, the compensated dominant poles are -1.9 ± j3.29. The compensator zero 

is at -5. Using the uncompensated system's poles along with the compensator zero, the summation of 

angles to the design point, -1.9 ± j3.29 is -166.09o. Thus, the contribution of the compensator pole 

must be 166.09o - 180o = -13.91o. Using the following geometry, 
3.29

pc - 1.9   = tan 13.91o, or pc = 

15.18.  

 

 
 

Adding the compensator pole and using -1.9 ± j3.29 as the test point, K = 1417. 

Computer simulations yield the following: Uncompensated: Ts = 3 seconds, %OS = 14.6%. 
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Compensated: Ts = 2.3 seconds, %OS = 15.3%. 

Lag compensator design: The lead compensated open-loop transfer function is  

GLC(s) = 
1417(s + 5)

(s + 2)(s + 4)(s + 6)(s + 8)(s +15.18)
. The uncompensated  

Kp = 354.5/(2 x 4 x 6 x 8) = 0.923. Hence, the uncompensated steady-state error is 
1

1+Kp
   = 0.52. 

Since we want 30 times improvement, the lag-lead compensated system must have a steady-state 

error of 0.52/30 = 0.017. The lead compensated Kp = 1417*5/(2*4*6*8*15.18) = 1.215. Hence, the 

lead-compensated error is  
1

1+Kp
   = 0.451. Thus, the lag compensator must improve the lead-

compensated error by 0.451/0.017 = 26.529 times. Thus 0.451/ ( 
1

1+Kpllc
  ) = 26.529, where Kpllc =  

57.823 is the lead-lag compensated system's position constant. Thus, the improvement in Kp from the 

lead to the lag-lead compensated system is 57.823/1.215 = 47.59. Use a lag compensator, whose zero 

is 47.59 times farther than its pole, or Glag = 
(s + 0.04759)
(s + 0.001)

. Thus, the lead-lag compensated open-

loop transfer function is GLLC(s) =  
1417(s + 5)(s + 0.04759)

(s + 2)(s + 4)(s + 6)(s + 8)(s +15.18)(s + 0.001)
. 

20. 
Program: 
numg=1; 
deng=poly([-2 -4 -6 -8]); 
'G(s)' 
G=tf(numg,deng); 
Gzpk=zpk(G) 
rlocus(G,0:5:500) 
z=0.5; 
pos=exp(-pi*z/sqrt(1-z^2))*100; 
sgrid(z,0) 
title(['Uncompensated Root Locus with ' , num2str(z), ' Damping Ratio 
Line']) 
[K,p]=rlocfind(G);  %Allows input by selecting point on graphic 
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications for uncompensated system' 
operatingpoint=p(i) 
gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kpo=dcgain(K*G) 
T=feedback(K*G,1); 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
 
whitebg('w') 
title(['Step Response for Uncompensated System with  ' , num2str(z),...  
' Damping Ratio'],'color','black') 
'Press any key to go to Lead compensation' 
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pause 
'Compensated system' 
b=5; 
'Lead Zero at -b ' 
done=1; 
while done>0 
a=input('Enter a Test Lead Compensator Pole, (s+a). a =     '); 
numgglead=[1 b]; 
dengglead=conv([1 a],poly([-2 -4 -6 -8])); 
'G(s)Glead(s)' 
GGlead=tf(numgglead,dengglead); 
GGleadzpk=zpk(GGlead) 
wn=4/((estimated_settling_time-0.5)*z); 
clf 
rlocus(GGlead,0:10:2000) 
sgrid(z,wn) 
axis([-10 0 -5 5]) 
title(['Lead Compensated Root Locus with ' , num2str(z),...  
' Damping Ratio Line, Lead Pole at  ', num2str(-a), ', and Required Wn']) 
done=input('Are you done? (y=0,n=1)  '); 
end 
[K,p]=rlocfind(GGlead);  %Allows input by selecting point on graphic 
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications for lead-compensated system' 
operatingpoint=p(i) 
gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kplead=dcgain(K*GGlead) 
T=feedback(K*GGlead,1); 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
 
whitebg('w') 
title(['Step Response for Lead Compensated System with  ' , num2str(z),... 
' Damping Ratio'],'color','black') 
'Press any key to continue and design lag compensation' 
pause 
'Improvement in steady-state error with lead compensator is' 
error_improvement=(1+Kplead)/(1+Kpo) 
additional_error_improvement=30/error_improvement 
Kpnn=additional_error_improvement*(1+Kplead)-1 
pc=0.001 
zc=pc*(Kpnn/Kplead) 
numggleadlag=conv(numgglead,[1 zc]); 
denggleadlag=conv(dengglead,[1 pc]); 
'G(s)Glead(s)Glag(s)' 
GGleadGlag=tf(numggleadlag,denggleadlag); 
GGleadGlagzpk=zpk(GGleadGlag) 
rlocus(GGleadGlag,0:10:2000) 
z=0.5; 
pos=exp(-pi*z/sqrt(1-z^2))*100; 
sgrid(z,0) 
title(['Lag-Lead Compensated Root Locus with ' , num2str(z), ... 
' Damping Ratio Line and Lag Pole at ',num2str(-pc)]) 
[K,p]=rlocfind(GGleadGlag);  %Allows input by selecting point on graphic 
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications for lag-lead compensated system' 
operatingpoint=p(i) 
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gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kpleadlag=dcgain(K*GGleadGlag) 
T=feedback(K*GGleadGlag,1); 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
whitebg('w') 
title(['Step Response for Lag-Lead Compensated System with  ', 
num2str(z),... 
' Damping Ratio and Lag Pole at ',num2str(-pc)],'color','black') 
 
Computer response: 
ans = 

 

G(s) 

 

  

Zero/pole/gain: 

           1 

----------------------- 

(s+8) (s+6) (s+4) (s+2) 

  

Select a point in the graphics window 

 

selected_point = 

 

  -1.5036 + 2.6553i 

 

 

ans = 

 

Closed-loop poles =  

 

 

p = 

 

  -8.4807 + 2.6674i 

  -8.4807 - 2.6674i 

  -1.5193 + 2.6674i 

  -1.5193 - 2.6674i 

 

Give pole number that is operating point   3 

 

ans = 
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Summary of estimated specifications for uncompensated system 

 

 

operatingpoint = 

 

  -1.5193 + 2.6674i 

 

 

gain = 

 

  360.8014 

 

 

estimated_settling_time = 

 

    2.6328 

 

 

estimated_peak_time = 

 

    1.1778 

 

 

estimated_percent_overshoot = 

 

   16.3034 

 

 

estimated_damping_ratio = 

 

    0.5000 

 

 

estimated_natural_frequency = 

 

    3.0698 

 

 

Kpo = 

 

    0.9396 

 

 

ans = 
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Press any key to continue and obtain the step response 

 

 

ans = 

 

Press any key to go to Lead compensation 

 

 

ans = 

 

Compensated system 

 

 

ans = 

 

Lead Zero at -b  

 

Enter a Test Lead Compensator Pole, (s+a). a =     10 

 

ans = 

 

G(s)Glead(s) 

 

  

Zero/pole/gain: 

            (s+5) 

------------------------------ 

(s+10) (s+8) (s+6) (s+4) (s+2) 

  

Are you done? (y=0,n=1)  1 

Enter a Test Lead Compensator Pole, (s+a). a =     15 

 

ans = 

 

G(s)Glead(s) 

 

  

Zero/pole/gain: 

            (s+5) 

------------------------------ 

(s+15) (s+8) (s+6) (s+4) (s+2) 

  

Are you done? (y=0,n=1)  0 

Select a point in the graphics window 
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selected_point = 

 

  -1.9076 + 3.2453i 

 

 

ans = 

 

Closed-loop poles =  

 

 

p = 

 

 -13.0497 + 1.9313i 

 -13.0497 - 1.9313i 

  -5.0654           

  -1.9176 + 3.2514i 

  -1.9176 - 3.2514i 

 

Give pole number that is operating point   4 

 

ans = 

 

Summary of estimated specifications for lead-compensated system 

 

 

operatingpoint = 

 

  -1.9176 + 3.2514i 

 

 

gain = 

 

  1.3601e+003 

 

 

estimated_settling_time = 

 

    2.0860 

 

 

estimated_peak_time = 

 

    0.9662 
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estimated_percent_overshoot = 

 

   16.3034 

 

 

estimated_damping_ratio = 

 

    0.5000 

 

 

estimated_natural_frequency = 

 

    3.7747 

 

 

Kplead = 

 

    1.1806 

 

 

ans = 

 

Press any key to continue and obtain the step response 

 

 

ans = 

 

Press any key to continue and design lag compensation 

 

 

ans = 

 

Improvement in steady-state error with lead compensator is 

 

 

error_improvement = 

 

    1.1243 

 

 

additional_error_improvement = 

 

   26.6842 
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Kpnn = 

 

   57.1876 

 

 

pc = 

 

    0.0010 

 

 

zc = 

 

    0.0484 

 

 

ans = 

 

G(s)Glead(s)Glag(s) 

 

  

Zero/pole/gain: 

           (s+5) (s+0.04844) 

---------------------------------------- 

(s+15) (s+8) (s+6) (s+4) (s+2) (s+0.001) 

  

Select a point in the graphics window 

 

selected_point = 

 

  -1.8306 + 3.2919i 

 

 

ans = 

 

Closed-loop poles =  

 

 

p = 

 

 -13.0938 + 2.0650i 

 -13.0938 - 2.0650i 

  -5.0623           

  -1.8617 + 3.3112i 

  -1.8617 - 3.3112i 

  -0.0277           
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Give pole number that is operating point   4 

 

ans = 

 

Summary of estimated specifications for lag-lead compensated system 

 

 

operatingpoint = 

 

  -1.8617 + 3.3112i 

 

 

gain = 

 

  1.4428e+003 

 

 

estimated_settling_time = 

 

    2.1486 

 

 

estimated_peak_time = 

 

    0.9488 

 

 

estimated_percent_overshoot = 

 

   16.3034 

 

 

estimated_damping_ratio = 

 

    0.5000 

 

 

estimated_natural_frequency = 

 

    3.7987 

 

 

Kpleadlag = 
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   60.6673 

 

 

ans = 

 

Press any key to continue and obtain the step response 
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21.  

a.  For the settling time to be 2.86 seconds with 4.32% overshoot, the real part of the compensated 

dominant poles must be 
4
Ts

   = 
4

2.86   = 1.4. Hence the compensated dominant poles are -1.4 ± j1.4. 

Assume the compensator zero to be at -1 canceling the system pole at -1. The summation of angles to 

the design point at -1.4 ± j1.4 is -176.19o. Thus the contribution of the compensator pole is  

176.19o - 180o = 3.81o. Using the geometry below, 
1.4

pc - 1.4   = tan 3.81o, or pc = 22.42. 

 

 
 

 Adding the compensator pole and using -1.4 ± j1.4 as the test point, K = 88.68. 

 b. Uncompensated: Search the 135o line (4.32% overshoot) and find the uncompensated dominant 

pole at - 0.419 + j0.419 with K = 1.11. Thus Kv = 
1.11

3    = 0.37.  Hence, Ts = 
4

ζωn
   = 

4
0.419   = 9.55 
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seconds and %OS = 4.32%. Compensated: Kv = 
88.68

22.42 x 3   = 1.32 (Note: steady-state error 

improvement is greater than 2). Ts = 
4

ζωn
   = 

4
1.4   = 2.86 seconds and %OS = 4.32%. 

c. Uncompensated: K = 1.11; Compensated: K = 88.68. 

d. Uncompensated: Searching the real axis segments for K = 1.11 yields a higher-order pole at -3.16 

which is more than five times the real part of the uncompensated dominant poles. Thus the second-

order approximation for the uncompensated system is valid. 

Compensated: Searching the real axis segments for K = 88.68 yields a higher-order pole at -22.62 

which is more than five times the real part of the compensated dominant poles' real part. Thus the 

second order approximation is valid. 

e. 
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22.  

a. Searching the 30% overshoot line (ζ = 0.358; 110.97o) for 180o yields -1.464 + j3.818 with a gain, 

K = 218.6. 

b. Tp = 
π

ωd
  = 

π
3.818

= 0.823 second. Kv = 
218.6
(5)(11)

= 3.975. 

c. Lead design: From the requirements, the percent overshoot is 15% and the peak time is 0.4115 

second. Thus, ζ = 
-ln(%/100)

π2+ln2(%/100)
  = 0.517; ωd = 

π
Tp

  = 7.634 = ωn 1-ζ2  . Hence, ωn = 8.919. The 

design point is located at -ζωn + jωn 1-ζ2   = -4.61 + j7.634. Assume a lead compensator zero at -5. 

Summing the angles of the uncompensated system's poles as well as the compensator zero at -5 yields 

–171.2o. Therefore, the compensator pole must contribute (171.2o - 180o) = -8.8o. Using the 

geometry below,   

 

s-plane

jω

σ

j7.634

-4.61-pc

8.8o
X
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7.634
pc − 4.61

= tan (8.8o) . Hence, pc = 53.92. The compensated open-loop transfer function is 

K
s(s +11)(s + 53.92)

. Evaluating the gain for this function at the point, -4.61 + j7.634 yields  

K = 4430.  

Lag design: The uncompensated K v =
218.6
(5)(11)

= 3.975. The required Kv is 30*3.975 = 119.25. 

The lead compensated Kv = 
4430

(11)(53.92)
= 7.469. Thus, we need an improvement over the lead 

compensated system of 119.25/7.469 = 15.97. Thus, use a lag compensator  
 

Glag(s) = 
s + 0.01597

s + 0.001
. The final open-loop function is 

4430(s + 0.01597)
s(s +11)(s + 53.92)(s + 0.001)

. 

23. 
a. Searching along the 10% overshoot line (ζ = 0.591) the operating point is found to be  

–1.85 + j2.53 with K = 21.27. A third pole is at –10.29. Thus, the estimated performance before 

compensation is: 10% overshoot, Ts =
4

1.85
= 2.16 seconds, and Kp =

21.27
(8)(10)

= 0.266 . 

b. Lead design: Place compensator zero at –3. The desired operating point is found from the desired 

specifications. ζωn =
4
Ts

=
4
1

= 4 and ωn =
4
ζ

=
4

0.591
= 6.768. Thus, 

Im = ωn 1 −ζ 2 = 6.768 1− 0.5912 = 5.46 . Hence the design point is –4 +j5.46. The angular 

contribution of the system poles and compensator zero at the design point is –166.960. Thus, the 

compensator pole must contribute –1800 + 166.960 = -13.040. Using the geometry below,   

 

s-plane

jω

σ

j5.46

-4-pc

13.04o
X

 
 

5.46
pc − 4

= tan (13.04o) . Hence, pc = 27.57. The compensated open-loop transfer function is 

K(s + 3)
(s 2 + 4s + 8)(s +10)(s + 27.57)

. Evaluating the gain for this function at the point 

 -4 + j5.46 yields K = 1092 with higher-order poles at –4.055 and –29.52. 



Solutions to Problems   371 

Lag design: For the lead-compensated system, Kp = 1.485. Thus, we need an improvement of  
 

10
1.485

= 6.734  times. Hence, Glag(s) =
(s + 0.06734)

(s + 0.01)
. Finally, the equivalent forward-path 

transfer function is Ge (s) =
1092(s + 3)(s + 0.06734)

(s 2 + 4s + 8)(s +10)(s + 27.57)(s + 0.01)
. 

c. 
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24.  
a. Uncompensated: Search the 135o line (4.32% overshoot) for 180o and find the dominant pole at  

–3 + j3 with K = 10. 

Lag Compensated: Search the 135o line (4.32% overshoot) for 180o and find the dominant pole at -

2.88 + j2.88 with K = 9.95. 

b. Uncompensated: Kp = 
10

2 x 4   = 1.25 

Lag compensated: Kp = 
9.95 x 0.5
2 x 4 x 0.1   = 6.22 

c. %OS = 4.32% both cases;  

Uncompensated Ts = 
4

ζωn
   = 

4
3   1.33 seconds; Compensated Ts = 

4
2.88   = 1.39 seconds 

d. Uncompensated: Exact second-order system; approximation OK 

Compensated: Search real axis segments of the root locus and find a higher-order pole at -0.3. System 

should be simulated to see if there is effective pole/zero cancellation with zero at - 0.5. 

e. 
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The compensated system's response takes a while to approach the final value. 

f.  We will design a lead compensator to speed up the system by a factor of 5. The lead-compensated 

dominant poles will thus be placed at –15 ± j15. Assume a compensator zero at - 4 that cancels the 

open-loop pole at - 4. Using the system's poles and the compensator's zero, the sum of angles to the 

design point, -15±j15 is 131.69o. Thus, the angular contribution of the compensator pole must be 

131.69o - 180o = - 48.31o. Using the geometry below, pc = 28.36.  

 

 
Using the compensated open-loop transfer function, Ge(s) = 

K(s+0.5)(s+4)
(s+2)(s+4)(s+0.1)(s+28.36)   and using 

the design point –15 ± j15, K = 404.1.The time response of the lag-lead compensated system is 

shown below. 
 

 
 

25.  

Since Tp = 1.047, the imaginary part of the compensated closed-loop poles will be 
π

1.047   = 3.  

Since 
Im
Re   = tan (cos-1ζ), the magnitude of the real part will be 

Im
tan(cos-1ζ)

   = 4. Hence, the design 

point is – 4 + j3. Assume an PI controller, Gc(s) =  
s+0.1

s   , to reduce the steady-state error to zero.  
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Using the system's poles and the pole and zero of the ideal integral compensator, the summation of 

angles to the design point is -225.7o. Hence, the ideal derivative compensator must contribute 225.7o-

180o = 45.7o . Using the geometry below, zc = 6.93. 

 
 

The PID controller is thus 
(s+6.93)(s+0.1)

s   . Using all poles and zeros of the system and PID 

controller, the gain at the design point is K = 3.08. Searching the real axis segment, a higher-order 

pole is found at - 0.085. A simulation of the system shows the requirements are met. 

 
26. 

a. The desired operating point is found from the desired specifications. ζωn =
4
Ts

=
4
2

= 2 and  

2 2 4.954
0.4037nω

ζ
= = = . Thus, 2 2Im 1 4.954 1 0.4037 4.5324nω ζ= − = − = . Hence 

the design point is –2 +j4.5324. Now, add a pole at the origin to increase system type and drive error 

to zero for step inputs.  

Now design a PD controller. The angular contribution to the design point of the system poles and 

pole at the origin is 101.90. Thus, the compensator zero must contribute 1800 – 101.90 =78.10. Using 

the geometry below,   

  

 
 

0

c

4.5324 tan(78.1 )
z 2

=
−

 . Hence, zc = 2.955. The compensated open-loop transfer function with PD 

compensation is 
( 2.955)

( 4)( 6)( 10)
K s

s s s s
+

+ + +
. Adding the compensator zero to the system and 
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evaluating the gain for this at the point –2 + j4.5324  yields K = 294.51 with a higher-order pole at  

-2.66 and -13.34. 

PI design: Use GPI (s) =
(s + 0.01)

s
. Hence, the equivalent open-loop transfer function is  

 

2

( 2.955)( 0.01)( )
( 4)( 6)( 10)e

K s sG s
s s s s

+ +
=

+ + +
  with K = 294.75. 

b. 
Program (Step Response): 
numg=[-2.995 -0.01]; 
deng=[0 0 -4 -6 -10]; 
K=294.75; 
G=zpk(numg,deng,K) 
T=feedback(G,1); 
step(T) 
 
Computer response: 
Zero/pole/gain: 
294.75 (s+2.995) (s+0.01) 
------------------------- 
 s^2 (s+4) (s+6) (s+10) 
 

 
Program (Ramp Response): 
numg=[-2.995 -0.01]; 
deng=[0 0 -4 -6 -10]; 
K=294.75; 
G=zpk(numg,deng,K) 
T=feedback(G,1); 
Ta=tf([1],[1 0]); 
step(T*Ta) 
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Computer response: 
Zero/pole/gain: 
294.75 (s+2.995) (s+0.01) 
------------------------- 
 s^2 (s+4) (s+6) (s+10) 
 

 
 
 

27. 
Program: 
numg=[]                      
deng=[-4 -6 -10]        
'G(s)'                       
G=zpk(numg,deng,1)         
pos=input('Type desired percent overshoot '); 
z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]^2);              
Ts=input('Type desired settling time '); 
zci=input(... 
'Type desired position of integral controller zero (absolute value) '); 
wn=4/(Ts*z); 
desired_pole=(-z*wn)+(wn*sqrt(1-z^2)*i) 
angle_at_desired_pole=(180/pi)*angle(evalfr(G,desired_pole)) 
PD_angle=180-angle_at_desired_pole; 
zcpd=((imag(desired_pole)/tan(PD_angle*pi/180))-real(desired_pole)); 
'PD Compensator'             
numcpd=[1 zcpd];                 
dencpd=[0 1];         
'Gcpd(s)' 
Gcpd=tf(numcpd,dencpd) 
Gcpi=zpk([-zci],[0],1) 
Ge=G*Gcpd*Gcpi 
rlocus(Ge) 
sgrid(z,0) 
title(['PID Compensated Root Locus with ' ,... 
      num2str(pos), '% Damping Ratio Line']) 
[K,p]=rlocfind(Ge);                      
'Closed-loop poles = ' 
p                           
f=input('Give pole number that is operating point   '); 
                           
'Summary of estimated specifications for selected point' 
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'on PID compensated root locus' 
                           
operatingpoint=p(f)          
gain=K                       
estimated_settling_time=4/abs(real(p(f))) 
                           
estimated_peak_time=pi/abs(imag(p(f))) 
                           
estimated_percent_overshoot=pos 
                           
estimated_damping_ratio=z 
                           
estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2) 
T=feedback(K*Ge,1); 
step(T) 
title(['Step Response for PID Compensated System with  ' ,... 
      num2str(pos),'% Damping Ratio Line']) 
pause 
one_over_s=tf(1,[1 0]); 
Tr=T*one_over_s; 
t=0:0.01:10; 
step(one_over_s,Tr) 
title('Ramp Response for PID Compensated System') 

 
 

 
Computer response: 
numg = 
 
     [] 
 
 
deng = 
 
     0    -4    -6   -10 
 
 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
         1 
-------------------- 
s (s+4) (s+6) (s+10) 
  
Type desired percent overshoot 25 
Type desired settling time 2 
Type desired position of integral controller zero (absolute value) 0.01 
 
desired_pole = 
 
  -2.0000 + 4.5324i 
 
 
angle_at_desired_pole = 
 
  101.8963 
 
 
ans = 
 
PD Compensator 
 
 
ans = 
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Gcpd(s) 
 
  
Transfer function: 
s + 2.955 
  
  
Zero/pole/gain: 
(s+0.01) 
-------- 
   s 
  
  
Zero/pole/gain: 
  (s+2.955) (s+0.01) 
---------------------- 
s^2 (s+4) (s+6) (s+10) 
  
Select a point in the graphics window 
 
selected_point = 
 
  -1.9931 + 4.5383i 
 
 
ans = 
 
Closed-loop poles =  
 
 
p = 
 
 -13.3485           
  -1.9920 + 4.5377i 
  -1.9920 - 4.5377i 
  -2.6575           
  -0.0100           
 
Give pole number that is operating point   2 
 
ans = 
 
Summary of estimated specifications for selected point 
 
 
ans = 
 
on PID compensated root locus 
 
 
operatingpoint = 
 
  -1.9920 + 4.5377i 
 
 
gain = 
 
  295.6542 
 
 
estimated_settling_time = 
 
    2.0081 
 
 
estimated_peak_time = 



Solutions to Problems   379 

 
    0.6923 
 
 
estimated_percent_overshoot = 
 
    25 
 
 
estimated_damping_ratio = 
 
    0.4037 
 
 
estimated_natural_frequency = 
 
 
 
   4.9557 
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 28.  

Open-loop poles are at -2, - 0.134, and -1.87. An open-loop zero is at -3. Searching the 121.13o line 

(ζ = 0.517), find the closed-loop dominant poles at -0.747 + j1.237 with K = 1.58. Searching the real 

axis segments locates a higher-order pole at -2.51. Since the open-loop zero is a zero of H(s), it is not 

a closed-loop zero. Thus, there are no closed-loop zeros. 

29. 
a. The damping ratio for 15% overshoot is 0.517. The desired operating point is found from the 

desired specifications. ζωn =
4
Ts

=
4
3

= 1.333 and ωn =
1.333

ζ
=

1.333
0.517

= 2.578. Thus, 
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Im = ωn 1 − ζ 2 = 2.578 1− 0.5172 = 2.207. Hence the design point is –1.333 + j2.207. The 

angular contribution of the system poles and compensator zero at the design point is 100.80. Thus, the 

compensator zero must contribute 1800 – 100.80 = 79.20. Using the geometry below,   

 

s-plane

jω

σ

j2.207

-1.333-zc

79.2o
X

 
 

2.207
zc − 1.333

= tan (79.2o) . Hence, zc = 1.754. The compensated open-loop transfer function with PD 

compensation is 
K(s +1.754)

s(s + 2)(s + 4)(s + 6)
. Evaluating the gain for this function at the point 

 –1.333 + j2.207 yields K = 47.28 with higher-order poles at –1.617 and –7.718. Following  

Figure 9.49(c) in the text, 
1
Kf

= 1.754 . Therefore, K f = 0.5701 . Also, using the notation of 

Figure 9.49(c), K1K f = 47.28 , from which K1 = 82.93. 

b.  
Program: 
K1=82.93; 
numg=K1;                     
deng=poly([0 -2 -4 -6]);        
'G(s)' 
G=tf(numg,deng); 
Gzpk=zpk(G) 
Kf=0.5701 
numh=Kf*[1 1.754]; 
denh=1 
'H(s)' 
H=tf(numh,denh); 
Hzpk=zpk(H) 
'T(s)' 
T=feedback(G,H); 
T=minreal(T) 
step(T) 
title('Step Response for Feedback Compensated System') 
 
 
Computer response: 
ans = 
 
G(s) 
 
Zero/pole/gain: 
       82.93 
------------------- 
s (s+6) (s+4) (s+2) 
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Kf = 
 
    0.5701 
 
denh = 
 
     1 
 
ans = 
 
H(s) 
 
Zero/pole/gain: 
0.5701 (s+1.754) 
  
ans = 
 
T(s) 
 
Transfer function: 
                 82.93 
--------------------------------------- 
s^4 + 12 s^3 + 44 s^2 + 95.28 s + 82.93 
 

 
 
 
30.  

a. σd = ζωn = 4/Ts = 4/1 = 4. 5% overshoot -> ζ = 0.69. Since ζωn = 4, ωn  = 5.8.  

ωd  = ωn 1-ζ2  = 4.195. Thus, the design point is –1 + j4.195. The sum of angles from the minor-

loop's open-loop poles to the design point is -263.634o. Thus, the minor-loop's open-loop zero must 
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contribute 83.634o to yield 180o  at the design point. Hence, 
4.195
zc - 4  = tan 83.634o, or zc = a = 4.468 

from the geometry below.  

s-plane

jω

σ

j4.195

-zc

83.634o

-4

83.634o

 
Adding the zero and calculating the gain at the design point yields K1 = 38.33. Therefore, the minor-

loop open-loop transfer function is K1G(s)H(s) = 
38.33(s+4.468)

s(s+4)(s+9)   . The equivalent minor-loop 

closed-loop transfer function is Gml(s) = 
K1G(s)

1+K1G(s)H(s)  = 
38.33

s3+13s2+74.33s+171.258
  . A simulation 

of the step response of the minor loop is shown below. 

Computer response: 
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0
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b. The major-loop open-loop transfer function is G e(s) =
38.33K

s3 +13s2 + 74.33s + 171.258
. 

Drawing the root locus using Ge(s) and searching along the 10% overshoot line (ζ = 0.591) for 180o 

yields the point -3.349 + j4.572 with a gain 38.33K = 31.131, or K = 0.812. 
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c.  
Program: 
numg=31.131; 
deng=[1 13 74.33 171.258]; 
'G(s)' 
G=tf(numg,deng) 
T=feedback(G,1); 
step(T) 
title('Major-loop Closed-Loop Response') 
 
Computer response: 
G(s) 
 
  
Transfer function: 
            31.13 
------------------------------ 
s^
  
3 + 13 s^2 + 74.33 s + 171.3 

 
 

d. Adding the PI compensator, Ge(s) =   
31.131(s+0.1)

s(s3+13s2+74.33s+171.258)
  . 

Program: 
numge=31.131*[1 0.1]; 
denge=[1 13 74.33 171.258 0]; 
'Ge(s)' 
Ge=tf(numge,denge) 
T=feedback(Ge,1); 
t=0:0.1:10; 
step(T,t) 
title('Major-loop Closed-Loop Response with PI Compensator') 
pause 
step(T) 
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title('Major-loop Closed-Loop Response with PI Compensator') 
 
Computer response: 
ans = 
 
Ge(s) 
 
Transfer function: 
         31.13 s + 3.113 
---------------------------------- 
s^4 + 13 s^3 + 74.33 s^2 + 171.3 s 
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31. 

a. PI controller: Using Table 9.10,   
R2
R1

 
s+

1
R2C
s    = 

s+0.01
s   , R2C = 100. Let C = 25 µF. Therefore, 

R2 = 4 MΩ. For unity gain, R1 = 4 MΩ. Compensate elsewhere in the loop for the compensator 

negative sign. 

b. PD controller: Using Table 9.10, R2C(s+
1

R1C )  = s+2. Hence,  R1C = 0.5. Let C = 1 µF. 

Therefore, R1 = 500 KΩ. For unity gain, R2C = 1, or R2 = 1 MΩ. Compensate elsewhere in the loop 

for the compensator negative sign. 

32. 

 a. Lag compensator: See Table 9.11.  

s +
1

R2C

s + 1
(R1 + R2)C

 = 
s + 0.1

s + 0.01
. Thus, R2C = 10, and 

 (R1 + R2)C = 100. Letting C = 10 µ F, we find R2 = 1 MΩ. Also R1C = 100 - R2C = 90, which 

yields R1 = 9 MΩ. The loop gain also must be multiplied by  
R1 + R2

R2

. 

b. Lead compensator: See Table 9.11.  
s + 

1
R1C

s + 
1

R1C + 
1

R2C
   = 

s+2
s+5   . Thus, R1C = 0.5, and  

1
R1C   + 

1
R2C   = 5. Letting C = 1 µF, R2  = 333 KΩ, and R1 = 500 KΩ.  

 c. Lag-lead compensation: See Table 9.11. 

(s + 
1

R1C1
)(s + 

1
R2C2

)

s2 + (
1

R1C1
 + 

1
R2C2

 + 
1

R2C1
)s + 

1
R1R2C1C2

   = 
(s+0.1)(s+1)

s2 + 10.01s + 0.1
   .  Thus, R1C1 = 1, and  

R2C2 = 10. Also, 
1

R1C1
  + 

1
R2C2

  + 
1

R2C1
   = 1 + 0.1 + 

1
R2C1

  = 10.01, or R2C1 = 0.112.  Letting C1 = 

10 µF, we find R1 = 10 MΩ , R2 = 1.12 MΩ, and  C2 = 8.9 µF. 

33.  

 a. Lag compensator: See Table 9.10 and Figure 9.58.  
s+0.1

s+0.01   = 
C1
C2

  
(s+

1
R1C1

)

(s+
1

R2C2
)
   . Therefore,  

 

 R1C1 = 10; R2C2  = 100. Letting C1 = C2 = 20 µF, we find  R1 = 500 KΩ and R2 = 5 MΩ. 

Compensate elsewhere in the loop for the compensator negative sign.  
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b. Lead compensator: See Table 9.10 and Figure 9.58.  
s+2
s+5   = 

C1
C2

  
(s+

1
R1C1

 )

(s+
1

R2C2
 )

  . Therefore,  

R1C1 = 0.5 and R2C2 = 0.2. Letting C1 = C2 = 20 µF, we find  R1 = 25 KΩ and R2 = 10 MΩ. 

Compensate elsewhere in the loop for the compensator negative sign. 

c. Lag-lead compensator: See Table 9.10 and Figure 9.58. For lag portion, use (a). For lead:  

s+1
s+10   = 

C1
C2

  
(s+

1
R1C1

 )

(s+
1

R2C2
 )

  . Therefore, R1C1 = 1 and R2C2 = 0.1. Letting C1 = C2 = 10 µF, we find   

R1 = 100 KΩ and R2 = 10 KΩ. The following circuit can be used to implement the design.  

 

 
 

SOLUTIONS TO DESIGN PROBLEMS 
 

34.  

 a. 
θm(s)
Ea(s)    = 

Kt
RaJ

s(s+
1
J(D + 

KtKb
Ra

))
   

 Kb = 
Ea
ω    = 

5
60000

2π
 x 

1
60 x 2π

   = 0.005; Jeq = 5 (
4

10  x 
1
4 )2 = 0.05; Deq = 1 (

1
10  )2 = 0.01; 

  
Kt
Ra

   = 
Ts
Ea

   = 
0.5
5   = 0.1. Therefore,  

θm(s)
Ea(s)    = 

2
s(s+0.21)  . 

 b. The block diagram of the system is shown below. 
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 Forming an equivalent unity feedback system,  

 

 

 

 Now, T(s) = 
1000

s2 + (0.21 + 0.2Kt)s + 1000
   . Thus, ωn = 1000  ; 2ζωn = 0.21 + 0.2Kt. Since ζ = 0.5, 

Kt = 157.06. 

 c. Uncompensated: Kt = 0; T(s) =  
1000

s2 + 0.21s + 1000
   ; ωn = 31.62 rad/s; ζ = 3.32 x 10-3;  

%OS = e−ζπ / 1−ζ 2

x100  = 98.96%; Ts = 
4

ζωn
   = 38.09 seconds;  

 Tp = 
π

ωn 1-ζ2   = 9.93 x 10-2 second; Kv = 
1000
0.21   = 4761.9. 

 Compensated: Kt = 157.06; T(s) =  
1000

s2 + 31.62s + 1000
   ; ωn = 31.62 rad/s; ζ = 0.5;  

%OS = e−ζπ / 1−ζ 2

x100 = 16.3%; Ts = 
4

ζωn
   = 0.253 second; Tp = 

π
ωn 1-ζ2   = 0.115 second;  

Kv = 
1000
31.62  = 31.63. 

35.  

 a. T(s) = 
25

s2 + s + 25
   ; Therefore, ωn = 5; 2ζωn = 1; ζ = 0.1;  

 %OS = e−ζπ / 1−ζ 2

x100  = 73%; Ts = 
4

ζωn
   = 8 seconds. 
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 b. From Figure P9.6(b), T(s) = 
25K1

s2 + (1 + 25Kf )s + 25K1

. Thus,  

 ωn = 25K1  ; 2ζωn = 1 + 25Kf. For 25% overshoot, ζ = 0.404. For Ts = 0.2 = 
4

ζωn
  , ζωn = 20. 

Therefore 1 + 25Kf = 2ζωn = 40, or Kf = 1.56. Also, ωn = 
20
ζ    = 49.5.  

 Hence K1 = 
ωn2

25    = 
49.52

25    = 98.01. 

 c. Uncompensated: G(s) = 
25

s(s+1)  ; Therefore, Kv = 25, and e(∞) = 
1

Kv
   = 0.04.  

 Compensated: G(s) =
25K1

s(s +1 + 25K f )
; Therefore, Kv = 

25 x 98.01
1+25 x 1.56   = 61.26, and  

 e(∞) = 
1

Kv
   = 0.0163. 

36. 
  a. The transfer functions of the subsystems are as follows:  

 Pot: Gp(s) = 
5π

10π
   = 

1
2  ; Amplifier: Ga(s) = 

K1
s+20  ; Motor and load: Since the time to rise to 63% of 

the final value is 0.5 second, the pole is at -2. Thus, the motor transfer function is of the form, Gm(s) 

= 
K

s(s+2)  . But, from the problem statement, 
K
2    = 

100
10    , or K = 20. The block diagram of the system 

is shown below. 
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 Using the equivalent system, search along the 117.126o line (20% overshoot) and find the dominant 

second-order pole at - 0.89 + j1.74 with K = 10K1 = 77.4. Hence, K1 = 7.74.  

 b. Kv = 
77.4

2 x 20   = 1.935. Therefore, e(∞) = 
1

Kv
   = 0.517. 

 c. %OS = 20%; ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

    = 0.456; ωn = 0.892 + 1.742    = 1.95 rad/s;  

Ts = 
4

ζωn
   = 4.49 seconds; Tp = 

π
ωn 1-ζ2   = 1.81 seconds. 

 d. The block diagram of the minor loop is shown below. 

 

 
 

 The transfer function of the minor loop is GML(s) = 
20

s(s+2+20Kf)  . Hence, the block diagram of the 

equivalent system is 

 

 

 where a = 2 + 20Kf. The design point is now found. Since %OS = 20%, ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 

0.456. Also, since Ts = 
4

ζωn
   = 2 seconds, ωn = 4.386 rad/s. Hence, the design point is –2 + j3.9. 



Solutions to Design Problems   391 

Using just the open-loop poles at the origin and at -20, the summation of angles to the design point is 

-129.37o. The pole at -a must then be contributing 129.37o - 180o = -50.63o. Using the geometry 

below, a = 5.2, or Kf = 0.16.  

 

 
 

Adding the pole at -5.2 and using the design point, we find 10K1 = 407.23, or K1 = 40.723. 

Summarizing the compensated transient characteristics: ζ = 0.456; ωn = 4.386; %OS = 20%; Ts = 

4
ζωn

   = 2 seconds; Tp = 
π

ωn 1-ζ2   = 0.81 seconds; Kv = 
407.23

20 x 5.2   = 3.92. 

37. 
Block diagram 

Preamplifier/Power amplifier: 
K1

(s+40)  ; Pots: 
20π  volts
5(2π) rad.  = 2. 

Torque-speed curve:  

T (N-m)

ω (rad/sec)
15050

75

25

50 v

 
 

where 1432.35 
rev
min  x 

1
60 

min
sec   x 2π 

rad
rev  = 150 rad/sec; 477.45 

rev
min  x 

1
60 

min
sec   x 2π 

rad
rev  = 50 rad/sec. 

The slope of the line is - 
50

100  = - 0.5. Thus, its equation is y = -0.5x + b. Substituting one of the 

points, find b = 100. Thus Tstall = 100, and ωno load = 200. 
Kt
Ra

  = 
Tstall

ea
  = 

100
50   = 2; Kb = 

ea
ωno load  

 = 

50
200  = 0.25. 
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Motor: 
θm(s)
Ea(s)   = 

Kt/(RaJ)

s(s+
1
J(D+

KtKb
Ra

))
   = 

0.02
s(s+0.505)  , where J = 100, D = 50. 

Gears: 0.1 

Drawing block diagram: 

 

40s + 40

2

K1

(s + 40)2
θc(s)

0.1
0.02

s(s + 0.505)

+

-

θL(s)

 

 
θc(s) θL(s)

K1
+

-

0.004
s(s + 0.505)(s + 40)

 

 
b. Compensator design - Lead 

10% overshoot and Ts = 1 sec yield a design point of - 4 + j5.458. Sum of angles of uncompensated 

system poles to this point is -257.491o. If we place the lead compensator zero over the 

uncompensated system pole at -0.505, the angle at the design point is  -134.858o. Thus, the lead 

compensator pole must contribute 134.858o - 180o = -45.142o. Using the geometry below 

5.458
pc - 4  = tan(45.142o), or pc = 9.431. 

X

-p
c -4

j5.458

45.142o

 

 
Using the uncompensated poles and the lead compensator, the gain at the design point is  

0.004K1 = 1897.125. 
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Compensator design - Lag 

With lead compensation, Kv = 
1897.125

(40)(9.431)  = 5.0295.029. Since we want Kv = 1000, 
zlag
plag

  = 
1000
5.029  = 

198.85. Use plag = 0.001. Hence zlag = 0.1988. The lag compensated  

 

Ge(s) = 
1897.125(s+0.1988)

s(s+40)(s+9.431)(s+0.001)  . 

c. Compensator schematic 

lag:  
1

R2C  = 0.1988. Let C = 100 µF. Then R2 = 50.3 kΩ. Now,  
1

(R1+R2)C   = 0.001.  

Thus, R1 = 9.95 MΩ. Buffer gain = reciprocal of lag compensator's 
R2

R1 + R2
  . Hence buffer  

gain =  
R1 + R2

R2
   = 198.8. 

lead:  
1

R1C  = 0.505. Let C = 10 µF. Then R1 = 198 kΩ. Now,  
1

R1C   +  
1

R2C   = 9.431.  

Thus, R2 = 11.2 k�Ω.  

 

 
 

d.  
Program: 
numg= 1897.125*[1 0.1988]; 
deng=poly([0 -40 -9.431 -.001]); 
'G(s)' 
G=tf(numg,deng); 
Gzpk=zpk(G) 
rlocus(G) 
pos=10 
z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]^2) 
sgrid(z,0) 
title(['Root Locus with ' , num2str(pos), ' Percent Overshoot Line']) 
[K,p]=rlocfind(G)  %Allows input by selecting point on graphic 
pause 
T=feedback(K*G,1); 
step(T) 
title(['Step Response for Design of ' , num2str(pos), ' Percent']) 
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Computer response: 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
    1897.125 (s+0.1988) 
---------------------------- 
s (s+40) (s+9.431) (s+0.001) 
pos = 
 
    10 
 
 
z = 
 
    0.5912 
 
Select a point in the graphics window 
 
selected_point = 
 
  -3.3649 + 4.8447i 
 
 
K = 
 
    0.9090 
 
 
p = 
 
 -41.3037           
  -3.9602 + 4.9225i 
  -3.9602 - 4.9225i 
  -0.2080 
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38.  
 Consider only the minor loop. Searching along the 143.13o line (ζ = 0.8), locate the minor-loop 

dominant poles at -3.36 ± j2.52 with Kf = 8.53. Searching the real axis segments for Kf = 8.53 locates 

a higher-order pole at - 0.28. Using the minor-loop poles as the open-loop poles for the entire system, 

search along the 120o line (ζ = 0.5) and find the dominant second-order poles at -1.39 + j2.41 with K 

= 27.79. Searching the real axis segment locates a higher-order pole at - 4.2. 

39.  
Consider only the minor loop. Searching along the 143.13o line (ζ = 0.8), locate the minor-loop 

dominant poles at -7.74 ± j5.8 with Kf = 36.71. Searching the real axis segments for Kf = 36.71 

locates a higher-order pole at  - 0.535. Using the minor-loop poles at -7.74  ±  j5.8 and - 0.535 as the 

open-loop poles (the open-loop zero at the origin is not a closed-loop zero) for the entire system, 

search along the 135o line (ζ = 0.707; 4.32% overshoot) and find the dominant second-order poles at  

- 4.38 + j4 .38 with K = 227.91. Searching the real axis segment locates a higher-order pole at -7.26.  

 Uncompensated system performance: Setting Kf = 0 and searching along the 135o line (4.32% 

overshoot) yields -2.39 + j2.39 as the point on the root locus with K = 78.05. Searching the real axis 

segments of the root locus for K = 78.05 locates a higher-order pole at -11.2. The following table 

compares the predicted uncompensated characteristics with the predicted compensated 

characteristics. 

      Uncompensated          Compensated 

 G(s) = 
78.05

(s+1)(s+5)(s+10)  G(s) = 
227.91

s3+16s2+101.71s+50
  

 Dominant poles: -2.39 + j2.39 Dominant poles: - 4.38 + j4 .38 

 ζ = 0.707 ζ = 0.707 

 %OS = e−ζπ / 1−ζ 2

x100 = 4.32% %OS = e−ζπ / 1−ζ 2

x100 = 4.32% 

 ωn = 2.392+2.392   = 3.38 rad/s ωn = 4.382+4.382   = 6.19 rad/s 

 Ts = 
4

ζωn
   = 1.67 seconds Ts = 

4
ζωn

   = 0.91 second 

 Tp = 
π

ωn 1-ζ2   = 1.31 seconds Tp = 
π

ωn 1-ζ2   = 0.72 second 

 Kp = 
78.05

1 x 5 x 10   = 1.56 Kp = 
227.91

50    = 4.56 

 Higher-order pole: -11.22 Higher-order pole: -7.26 

 Second-order approximation OK Higher-order pole not 5x further from

 imaginary axis than dominant poles.  

                                                               Simulate to be sure of the performance. 

40.  
In Problem 46, Chapter 8 , the dominant poles, - 40 ± j57.25, yielded Ts = 0.1 second and 11.14% 

overshoot. The unity feedback system consisted of a gain adjusted forward transfer function of  
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G(s) = 
20000K

s(s+100)(s+500)(s+800)  , where K = 102,300. To reduce the settling time by a factor of 2 to 

0.05 seconds and keep the percent overshoot the same, we double the coordinates of the dominant 

poles to –80 ± j114.5. Assume a lead compensator with a zero at -100 that cancels the plant's pole at  

-100. The summation of angles of the remaining plant poles to the design point is 149.23o. Thus, the 

angular contribution of the compensator pole must be 149.23o - 180o = 30.77o. Using the  

geometry below, 
114.5
pc - 80   = tan 30.77o, or pc = 272.3. 

 

 
 

Adding this pole to the poles at the origin, -500, and -800 yields K = 9.92 x 109 at the design point, 

 -80 ± j114.5. Any higher-order poles will have a real part greater than 5 times that of the dominant 

pair. Thus, the second-order approximation is OK. 

41.  

Uncompensated: G(s)H(s) = 
0.35K

(s+0.4)(s+0.5)(s+0.163)(s+1.537)   . Searching the 133.639o line  

(%OS = 5%), find the dominant poles at - 0.187 ± j0.196 with gain, 0.35K = 2.88 x 10-2. Hence, the 

estimated values are: %OS = 5%; Ts = 
4

ζωn
   = 

4
0.187   = 21.39 seconds; Tp = 

π
ωn 1-ζ2    = 

π
0.196   = 

16.03 seconds; Kp  = 0.575. 

PD compensated: Design for 8 seconds peak time and 5% overshoot.  

ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.69. Since Tp = 
π

ωn 1-ζ2   = 8 seconds and ωn 1-ζ2  = 0.393,   

ωn = 0.5426. Hence, ζωn = 0.374. Thus, the design point is - 0.374 + j0.393. The summation of 

angles from the system's poles to the design point is -295.34o. Thus, the angular contribution of the 

controller zero must be 295.34o-180o = 115.34o. Using the geometry below,  
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0.393

0.374 - zc
   = tan (180o - 115.34o), from which zc = 0.19. Adding this zero to the system's poles and 

using the design point, - 0.374 + j0.393, the gain, 0.35K = 0.205. 

 PID compensated: Assume the integral controller, Gc(s) =  
s+0.01

s   . The total open-loop transfer 

function is GPID(s)H(s) = 
0.35K(s+0.19)(s+0.01)

s(s+0.4)(s+0.5)(s+0.163)(s+1.537)  .  

 Check: The PID compensated system yields a very slow rise time due to the lag zero at 0.01. The rise 

time can be sped up by moving the zero further from the imaginary axis with resultant changes in the 

transient response. The plots below show the step response with the PI zero at - 0.24.  

 

 
 

 The response compares favorably with a two-pole system step response that yields 5% overshoot and 

a peak time of 8 seconds as shown below. 
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42.  
a. PD compensator design: Pushing the gain, 10, to the right past the summing junction, the system 

can be represented as an equivalent unity feedback system with G e(s) =
106

(s2 − 4551)(s + 286)
. 

This system is unstable at any gain. For 1% overshoot and Ts = 0.1, the design point is –40 + j27.29. 

The summation of angles from the poles of Ge(s) to this point is -216.903o. Therefore, the 

compensator zero must contribute 216.903o - 180o = 36.903o. Using the following geometry: 

 

X

-zc -40

j27.29

36.903 o

 
 

27.29
zc - 40  = tan (36.903). Thus, zc = 76.34. Adding this zero to the poles of Ge(s), the gain at the design 

point is 106K = 23377. The PD compensated response is shown below. 
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b. PI compensator design: To reduce the steady-state error to zero, we add a PI controller of the 

form 
s+1

s   . The PID compensated step response is shown below.  
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PID Compensated Step Response for zero at -76.34 and 1% overshoot

 
 



Solutions to Design Problems   401 

We can see the 1% overshoot at about 0.1 second as in the PD compensated system above. But the 

system now corrects to zero error. 

43.  
a. Root locus sketch yields;  

-50 -40 -30 -20 -10 0
-25

-20

-15

-10

-5

0

5

10

15

20

25

Real Axis

Im
ag
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xi
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Root locus sketch near imaginary axis yields; 

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Real Axis

Im
ag

 A
xi

s

Close-Up Root Locus to Determine Stability
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Searching imaginary axis for 180o yields: j0.083 at a gain of 0.072K = 0.0528 and j0.188 at a gain of 

0.072K = 0.081. Also, the gain at the origin is 0.0517. Thus, the system is stable for 0.0517 < 0.072K 

< 0.0528; 0.072K > 0.081. Equivalently, for 0.7181 < K < 0.7333; 0.072K > 1.125. 

b. See (a) 

c. Uncompensated system: Searching the 20% overshoot line, we find the operating point at  

-8.987 + j17.4542 = 19.71∠117.126o at 0.072K = 16.94 for the uncompensated system. Simulating 

the response at this gain yields, 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

0.2
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A
m
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de

Step Response for Uncompensated System

 
 

For 20% overshoot and Ts = 0.05 s, a design point of –80 + j156.159 is required. The sum of angles 

to the design point is -123.897o. To meet the requirements at the design point, a zero would have to 

contribute +303.897o, which is too high for a single zero. Let us first add the pole at the origin to 

drive the steady-state error to zero to reduce the angle required from the zero. Summing angles with 

this pole at the origin yields -241.023. Thus a zero contributing 61.023o is required.  Using the 

geometry below with 
156.159
zc - 80   = tan (61.023), zc = 166.478. 

X

-zc -80

j156.159

61.023o

 
 
The gain at the design point is 0.072K = 181.55. 
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d. 
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Step Response for Ccompensated System

 
 
The settling time requirement has been met, but the percent overshoot has not. Repeating the design 

for 1% overshoot and a Ts = 0.05 s yields a design point of –80 + j54.575. The compensator zero is 

found to be at -47.855 at a gain 0.072K = 180.107. 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (secs)

A
m

pl
itu

de

Step Response for Redesigned System
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44. 

ζωn = 
4
Ts

   = 2.667;  ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.591. Thus, ωn = 4.512 rad/s. 

Im = ωn 1 − ζ 2 = 4.512 1− 0.5912 = 3.64 . Thus, and the operating point is -2.667 ± j3.64. 

Summation of angles, assuming the compensating zero is at –5 (to cancel the open-loop pole at –5, is 

–170.88o. Therefore, the compensator pole must contribute 180o – 170.88o = -9.12o. Using the 

geometry shown below,  

 

3.64

-2.667

9.12o

 
 

3.64
pc − 2.667

= tan 9.12o. Thus, pc = 25.34. Adding the compensator pole and using -2.667 ± j3.64 as 

the test point, 50K = 2504, or K = 50.08. Thus the compensated open-loop transfer function is  

G e(s) =
2504(s + 5)

s(s + 5)(s2 + 10s + 50)(s + 25.34)
. Higher-order pole are at –25.12, -5, and-4.898. The 

pole at –5 is cancelled by the closed-loop zero at -5. The pole at –4.898 is not far enough away from 

the dominant second-order pair. Thus, the system should be simulated to determine if the response 

meets the requirements. 

Program: 
syms s 
numg=2504; 
deng=expand(s*(s^2+10*s+50)*(s+25.34)); 
deng=sym2poly(deng); 
G=tf(numg,deng); 
Gzpk=zpk(G) 
T=feedback(G,1); 
step(T) 
 
Computer response: 
Zero/pole/gain: 
            2504 
---------------------------- 
s (s+25.34) (s^2 + 10s + 50) 
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45. 

a. From Chapter 8,  
 
                                         0.6488K (s+53.85) 
             Ge(s) =      ______ 
                            (s2 + 8.119s + 376.3) (s2 + 15.47s + 9283) 
 
 
 
 
 
Cascading the notch filter, 
      
                                  0.6488K (s+53.85)(s2 + 16s + 9200) 
             Get(s) =       
                            (s2 + 8.119s + 376.3) (s2 + 15.47s + 9283)(s+60)2 

Arbitrarily design for %OS = 30% (ζ = 0.358)  and Ts = 0.3 s. This places desired poles at  

–13.33 ± j34.79.  At the design point, the sum of the angles without the PD controller is 107.190. 

Thus,  
34.79

zc −13.33
= tan 72.81 
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-zc
-13.33

j34.79

72.810

 

From which,  zc = 24.09. Putting this into the forward path,  
 
                              0.6488K (s+53.85)(s2 + 16s + 9200)(s+24.09) 
             Get(s) =       
                            (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283)(s+60)2 

Using root locus, the gain 0.6488K = 1637, or K =  2523. 

b.  Add a PI controller 

GPI (s) =
(s + 0.1)

s
 

Thus, 
 
                         0.6488K (s+53.85)(s2 + 16s + 9200)(s+24.09)(s+0.1) 
             Get(s) =     _____ 
                          s (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283)(s+60)2 

 

Using root locus, the gain 0.6488K = 1740, or K =  2682. 
c.  
Program: 
syms s 
numg=1637*(s+53.85)*(s^2+16*s+9200)*(s+24.09)*(s+0.1); 
deng=s*(s^2+15.47*s+9283)*(s^2+8.119*s+376.3)*(s+60)^2; 
numg=sym2poly(numg); 
deng=sym2poly(deng); 
G=tf(numg,deng); 
Gzpk=zpk(G) 
T=feedback(G,1); 
step(T,0:0.01:1) 
title(['With PD, Notch, and PI']) 
pause 
step(T) 
title(['With PD, Notch, and PI']) 
 
Computer response: 
Zero/pole/gain: 
  1637 (s+53.85) (s+24.09) (s+0.1) (s^2 + 16s + 9200) 
------------------------------------------------------- 
s (s+60)^2 (s^2 + 8.119s + 376.3) (s^2 + 15.47s + 9283) 
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