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Solutions to Skill-Assessment
Exercises

Chapter 2
2.1

The Laplace transform of tis é using Table 2.1, Item 3. Using Table 2.2, Item 4,

_ 1
(s+5?

F(s)

2.2.
Expanding F(s) by partial fractionsyields:
A B N C D

PO = 52 sr37 (543

where,

A= 10
(s+2)(s+3)’

dF(s)
D=(s+3)*—=* =
( ) ds .3 9

Taking the inverse Laplace transform yields,

10, s, 40 s
3 9

=-5C= =—,and
s(s+3)%ls. S(s+2)., 3

=gB: 10 _ e 10 10

S-0

_40

5 _
f(t)==-5e2 +
® 9

2.3.

Taking the Laplace transform of the differential equation assuming zero initial
conditionsyields:

S’C(S) + 35°C(s) + 7sC(s) + 5C(s) = SR(S) + 4sR(s) + 3R(9)

Collecting terms,

(s’ +35” + 7s+5)C(s) = (5° +4s+ 3)R(9)

Thus,



Solutions to Skill-Assessment Exercises

C(s) . S +4s+3
R(S) S*+35°+7s+5

2.4.
G(s) = C(s) _ 225+1

R(s) s +6s+2
Cross multiplying yields,
E + 6% 2c= 2ﬁ +r
dt? dt dt
2.5.
C9=R9GEe=2*—S =+ A, B, C

s (s+4)(s+8) s(s+4)(s+8) s (s+4) (s+98)
where
:; :iB: 1 :—i,andC: 1 :i
(s+4)(s+8)|,_, 32 S(s+8)|s_ 16 S(s+4)|,. 5 32
Thus,
C()—— ie4t+ie—8t
32 16 32
2.6.
Mesh Analysis
Transforming the network yields,
$
———_----
e 5O 2
N
v (1) ¥
=R AG
sy -~k

Now, writing the mesh equations,
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(s+D1y(s) —sl,(s) ~ 15(s) = V(9)
=9l,(s) +(2s+1)1,(s) — 15(s) =0
—1(8) ~1,(5) +(s+2)I3(5) =0

Solving the mesh equations for 1,(s),

(s+1) V(s -1
-S 0 -1
(9 = -1 0 (s+2) _(S+2s+1)V(s)
277 (s+)  -s -1 |7 g +55+2)
-s (2s+1) -1
-1 -1  (s+2)
But, V (s) =5l,(s)
Hence,
V,(9) = (s° J; 2s+1)V(s)
(s° +5s+2)
or

V (s) _s°+2s+1
V(s) s*+5s+2

Nodal Analysis
Writing the nodal equations,

C+2V,(9)- Vo9 = V(9
V() + (E+ DV (9 = 1V(s)

S S
Solving for V (s),

1
((+2 VO

1
V,(9) = 1_1 EV(S) :(524225+1)V(s)
(§+2) -1 (s°+5s+2)
-1 (§+1)
S
or

V (S) _s°+2s+1
V(s) s +5s+2
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2.7.

Inverting

G(s) = - Z,(s) _ —10:)000 __
Z(s) (10°/s)

Noninverting
10° 5
SN cACEEAC) I
Z,(s) 10
=)
S
2.8.

Writing the equations of motion,

(s* +3s+1)X,(s) — (Bs+ 1) X,(s) = F(s)
—(3s+1)X, () +(S° +4s+1)X,(s) =0
Solving for X,(s),

(° +3s+1) F(9)

(9= @D 0] _  @s+DF(
? (*+3s+1) —(38s+1) | s(s*+7s*+5s+1)
—(3s+1) (S +4s+1])
Hence,
Xy(9) _ (3s+1)
F(s) o(S+7s+5s+1)
2.9.

Writing the equations of motion,

(s* +s+1)8,(s) — (s+1)0,(s) = T(s)

-(s+1)6,(s) +(2s+2)6,(s) =0

where 8,(s) isthe angular displacement of the inertia.
Solving for 6,(s),
(*+s+1) T(9

_ [ (s+*) 0
9:() = (S +s+1) —(s+1)
~(s+1) (25+2)

__ (s+DF(s)
2% +35° +25+1

From which, after ssmplification,
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1

0,(S) = ———
2(9) 25’ +s+1

2.10.

Transforming the network to one without gears by reflecting the 4 N-m/rad spring

to the left and multiplying by (25/50)?, we obtain,

T(t)
81(t) IN-m-srad g

A0 =
) e =

1 N-m/rad

Writing the equations of motion,

(S +9)0,(5) —6,(9) = T(9)

—s6,(s) +(s+1)0,(s) =0

where 8,(s) isthe angular displacement of the 1-kg inertia

Solving for 6,(s),

(s°+9) T(s)

-S 0 sT(s)
6:(9)= ($+s) -s| S++s
-s (st)]
From which,
6,9 _ 1

T(s) s +s+1

But, 6,(s) = % 8,(s).

Thus,

6,(s) _ 1/2
T(s) S +s+1
2.11.

First find the mechanical constants.

3 =1, +JL(5* 1)2 :1+400(i) -

D, =D, +D(— —)2—5 800(—) 7
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Now find the electrical constants. From the torque-speed equation, set w,, = 0 to
find stall torque and set T, = 0 to find no-load speed. Hence,

Ty, =200
wno—load = 25
which,
K - Taw 2200 _,
R, E, 100
b = i = @ =4
wno—load 25

Substituting al valuesinto the motor transfer function,

KT
O(S) _ RJn _ 1
1 K;K 15
E.(9) S(S+Tm(Dm + ;{a b) s(s+5)
where 6..(s) isthe angular displacement of the armature.
Now 6, (s) = 2—10 6..(s). Thus,
6,(s) _ 1/20 )
E.(s) s(s+ g)
2
2.12.
L etting

6,(s)=w,(s)/s
6,(s) = w,(s)/'s
in Egs. 2.127, we obtain

(35+ D, +D)an(9 -~ (9 = T(9
09+ (35D, + (9
S S

From these equations we can draw both series and parallel analogs by considering
these to be mesh or nodal equations, respectively.
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Series analog
1
(AT Y £ o (1)
T —; st L, ]
Parallel analog
2.13.
Writing the nodal equation,
dv . :
C—+i —-2=Ii(t
il (t)
But,
c=1
V=V, +0ov

i = g =g’ =gt

Substituting these relationships into the differential equation,

e+ o) L gor _p2iry ()
at

We now linearize €".

The general formis

df

f(v) - f(vo)::d— ov

Vo

Substituting the function, f(v) =€", with v=v_ + dv yields,

g = de’
dv

Vv, +0v

e ov

Vo

Solving fore"*?%,
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eVo+§v — e\/0 + dev

ov=e" +e"dv

Substituting into Eq. (1)

%+e“° +e"dv-2=i(t) (2

V,

Setting i(t) = 0 and letting the circuit reach steady state, the capacitor acts like an
open circuit. Thus, v, =V, with i, =2. But, i, =€" or v, =Ini,.
Hence, v, = In2 = 0.693. Substituting this value of v, into Eq. (2) yields

OV osv=i)
dt

Taking the Laplace transform,
(s+2)ov(s)=1(s)

Solving for the transfer function, we obtain

S _ 1
[(s) Cs+2
or

vig)_ 1

——— about equilibrium.
I(s) s+2 ™
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3.1
| dentifying appropriate variables on the circuit yields

R

Ay
—

G
Fa
I\ |
— - :-"-'n 5 +
»;u}@) # L ¢ "2 %)
r r.;_'..

Writing the derivative relations

dvCl .
Cg Tl
L%:VL 1
(1)
dv )
g e

Using Kirchhoff’s current and voltage laws,

L 1
le, =1L Tlg =1 +E(VL _ch)

Vi ="V, TV,
1
i, =ig = E(VL ‘ch)
Substituting these relationships into Egs. (1) and ssimplifying yields the state
eguations as
dve, 1 1. 1 1
= Ton Vot T o Ve, TV
dt RC, * C RC, » RC
i——iv +=V
d L= L
dve, _ 1 1 1
= 5~ Ve, T 5~V Vi
dt RC, * RC, ”RC,

where the output equation is
Vo =V,

(o]

Putting the equations in vector-matrix form,
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o1 1 10 0Ol1g
OrRCc C RGO OrcO
DRfl < RClD DRle
x=0-= 0 0 Ok+0— D¥(t)
O L O oL O
01 4 _ 1o oglp
H RG, RC,H ERCGH
y=[0 0 1x
3.2
Writing the equations of motion
(S +s+X(9) —SX,(9) =F(s)
— X (9) + (8" +s+ DX, (9) ~X(s)=0

- X,(9) + (S +s+1)X,(5) =0
Taking the inverse Laplace transform and simplifying,
X =X = X=X, + X
Xy = =Xg= X, + X,
Defining state variables, z;,
=X LT X T = X0 2 = Xl 2 = X 2 = X
Writing the state equations using the definition of the state variables and the

inverse transform of the differential equation,
222,

Z=X = X=X Xt =2, -7 47+ 1
2,=%=2

2 =X =X YXo= Xy F X =2, 2~ + Z

Z,=% =%

2‘6:>'<.3:—>23—x3+x2 ==z, -7+

The output is z,. Hence, y = z,. In vector-matrix form,
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M 1 0 0 0 O0qg

g _ O O

F1-10 1 0 oD %

2 20t S y=[0 0 0 0 1 dz
z=[ y=

0 1 -1 -1 1 oD %)

o o0 0 O 0 1d

EO 0O 1 0 -1 —1% %)E
3.3.
First derive the state equations for the transfer function without zeros.
X(s) _ 1

R(S) < +7s+9
Cross multiplying yields

(s* +7s+9)X(s) = R(s)
Taking the inverse Laplace transform assuming zero initial conditions, we get
X+TX+HOX =1

Defining the state variables as,

X =X

X, = X

Hence,

)22 =X = —TX-OX+r = “OX, - 7X, +r

Using the zeros of the transfer function, we find the output equation to be,
c=2;<+x=x1+2x2

Putting all equation in vector-matrix form yields,

10 Qg

i Erg -7 "HA
c=[1 2x
3.4.
The state equation is converted to atransfer function using
G(s)=C(s -A)"'B (D

where
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4 -150 20
A= B= d C=[15 0.625|.
B o BB pEadcsl )

Evaluating (sl —A) yields
+4 15
(s -A)=> -
H-4  s{
Taking the inverse we obtain

1 3 -150
& +4s+6H s+4H

Substituting al expressionsinto Eqg. (1) yields

(sl —A)*t=

3s+5
G(S)=————
) § +4s+6
3.5.
Writing the differential equation we obtain
d®x

F + 2X2 =10+ 5f (t) (1)

Letting x = x, + ox and substituting into Eq. (1) yields

2
% +2(x, +0x)* =10+ 0f (1) (2
Now, linearize x°.
2
(X, + %) = x,2 = d(dx ) o= 2X,0X
X

from which

(X, +OX)* =x>+2x.0x (3)

Substituting Eq. (3) into Eg. (1) and performing the indicated differentiation gives
us the linearized intermediate differential equation,

d*dx

dt?

+4x,0x = =22 +10+ Of (t) (4)

The force of the spring at equilibriumis 10 N. Thus, since F = 2x?,
10 = 2x,°
from which

X, =/5
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Substituting this value of x,into Eq. (4) gives usthe final linearized differential
eguation.

2
% +4/50x = &t (t)

Selecting the state variables,

X, = OX

X, = Ox

Writing the state and output equations

X =%,

X, = OX = —A+/Bx, + & (t)

y=X%

Converting to vector-matrix form yields the final result as

- o0 1g @
=Hals oo

y=[1 0]x
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Chapter 4
4.1.
For a step input
C(s) 0 10(s) 4)(s) 6) _A+ B N C N D N E

(s) D(s) 7)(s) 8)(s) 10) s s+1 s+7 s+8 s+10
Taking the inverse Laplace transform,

c(t)=A+Be"' +Ce" +De™ + Ee™

4.2.

Since a=50,T, =1 —i—O.OZS,TS _4_4 =0.08s;andT, _22_22
S0 a 50

4.3.

a. Since poles are at —6 + j19.08, c(t) = A+ Be™ cos(19.08t + ¢).

b. Since poles are at —78.54 and —11.46, c(t) = A+ Be > + Ce™ ™.

c. Since polesare double onthered axisat —15 c(t) = A+ Be™ + Cte ™.
d. Sincepolesareat +j25, c(t) = A+ Bcos(25t + ).

4.4,

a. w, =+400 =20 and 2{w, =12; U ¢ = 0.3 and system is underdamped.
b. w,=+900 =30 and 2{w, = 90; U { =15 and system is overdamped.

C. w, =v225=15and 2{w, = 30; [J { =1and systemis critically damped.

d. w, =+/625 =25 and 2{w, =0; 0 ¢ =0 and system is undamped.
4.5.
w, =~/361 =19 and 2{w, =16; 00 { =0.421
Now, T,= 2 =05sandT,=— " =0182s
T o, " w1-7
From Figure 4.16, w,T, =14998. Therefore, T, =0.079 s.

i
Finally, %o0s=e""¢" * 100 = 23.3%
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4.6.

a. The second-order approximation is valid, since the dominant poles have area part of
—2 and the higher-order poleis at —15, i.e. more than five-times further.

b. The second-order approximation is not valid, since the dominant poles have areal part
of —1 and the higher-order poleis at —4, i.e. not more than five-times further.

4.7.

a. Expanding G(s) by partial fractionsyields G(s) = 1,08%42 15018 0'3023.
s s+20 s+10 s+6.5

But —0.3023 is not an order of magnitude less than residues of second-order terms (term 2

and 3). Therefore, a second-order approximation is not valid.

b. Expanding G(s) by partial fractionsyields G(s) = 1,09782 19078 _0.0704
s s+20 s+10 s+6.5

But 0.0704 is an order of magnitude less than residues of second-order terms (term 2 and

3). Therefore, a second-order approximation isvalid.

4.8.

See Figure 4.31 in the textbook for the Simulink block diagram and the output responses.
4.9.

. 53 —<20 1 1 3+5 20
.S | —A = sl-A) " =—5——— Also,
& SInee s B s+5H( ) &+5s+6H-3 sH %
o 0 0O
BU(s) =
©O7H)(s+0H
1 2(s° +7s+7)0

The state vector is X(s) = (sl —A)7[x(0) + BU(s)] =

(s+1)(s+2)(s+3) B2 -4s-6 H

5°+2s-4 __05_12 175

The output is Y(s) =[1 3]X(S):(s+1)(s+2)(8+3)_ s+1 s+2 s+3

Taking the inverse Laplace transform yields y(t) = -0.5e™ —12e™ +17.5¢™.

b. The eigenvalues are given by theroots of |[sl — A|=s° +5s+ 6, or -2 and -3.
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4.10.

: 20 } 1 [3t5
a.S|nce(sI—A)=% 45 (sI—A)lzSz+

20
_ Taking the Laplace
55+4 H—Z SB J ®

transform of each term, the state transition matrix is given by

04 .« 1 4 2 + 2 40

Dge _ée ge ge |:|
d(t) =
W02 2 w0 1,40
H3° 73 3° T3°
Bfe-(t—r) _le-4(t—r) Ze—(t-r) _Ze—4(t—r) B 10 O
b. Since ®(t—1) = 3 3 3 and Bu(1) =
a2 2 1 4 O 21%
_e—(t—r) +_e—4(t—r) __e—(t—r) +_e—4(t—r)
H3 3 3 3 H
Dge—re—t _geZTE—At B

Ul
(D(t—T)Bu(T):D31 4 5 4,0
B——e e+ —e'e H

3 3

. [ﬂ-_oe—t e 4 o4t U

U3 3 U

Thus, x(t) = ®(t)x(0) +J’<D(t - T)Bu(n)dr = 5 . . 8.0
—e' +e“ +—¢

’ H3 3° H

c.y(t)=[2 1x=5e"-e™
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Chapter 5

5.1
Combine the parallel blocksin the forward path. Then, push é to the left past the
pickoff point.

S B ——

RS +.
— 4l — 1 =0 >
S S
S —————————

Combine the parallel feedback paths and get 2s. Then, apply the feedback
. s +1
formula, simplify, and get, T(S) = ———.
& SmPity get, T() 28" +5° +2s
5.2
G(s) _ 16

Find the closed-loop transfer function, T(s) = =— :
1+G(s)H(s) s +as+16

where G(s) = 16 and H(s) = 1. Thus, w, = 4 and 2{w, = a, from which
s(s+a)
0,

N —|n(1c/)°0) N
{ = —. But, for 5% overshoot, { = — =0.69. Since, { =—,

8 (%) 8

\ 100

a=5.52.
5.3.

Label nodes.
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C(s)

R(s) + « o NP + o1
9 N (9) Np(9) Na(s) 7 Na(9 s
- 1
N5(s) K N6(s)
A -t
N (s)
Draw nodes.
RS) N (9 No(9  Ng(s) Ny(9 cC(9
(@) (0] @) (0] @] O
N5 (s) Ng(9)
o o]
N> (s)
o

Connect nodes and label subsystems.

5.4.

Forward-path gains areG,G,G, and GG,;.
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Loop gainsare -G G,H,, —-G,H,, and -G;H,.

Nontouching loops are [-G,G,H, ][-G,H,] = GG,G;H,H,

and [-G,H,][-G,H,] = G,G,H,H..

Also, A =1+ GG,H, + G,H, + G;H, + GG,G,H,H; + G,G;H,H,.
Finaly, A, =1and A, =1.

I . _C(s) _ :
Substituting these valuesinto T(s) = = yields

R(s) A
(9= G(9G; (91 + G,(5)]
[1+ G,(s)H,(s) + Gy(S)G,()H,(s)][1+ G5(s)H,(s)]
5.5.

The state equations are,

X = 72X X,
)&2:—3x2+x3

>23 =-3X, —4X, = 5%, +r
y=>%

Drawing the signal-flow diagram from the state equations yields

5.6.

100(s+5)
s’ +55+6
form and add the feedback.

From G(s) = we draw the signal-flow graph in controller canonical
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100

Writing the state equations from the signal-flow diagram, we obtain
+105 -506[7] (10

““H1 o BF'RE
y=[100 500|x
5.7,

From the transformation equations,

L. 3 -20
‘H -4

Taking the inverse,
0.4 -0.20

_Ebl -0.3H

Now,
-2m1 3094 -0.20 65 -85(

_lAP_Br —afs b1 -03F B5 -115H

—20_0-80
O e
CP=[1 4]Ebl _82@ [0.8 -14]

Therefore,
®.5 -850 130

2= 5 —115H T Hauf

y=[0.8 -14]z
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5.8.

First find the eigenval ues.
oo 1 3 /\—1 -3
Eb AH B4 6| 4 2r+6

From which the eigenvalues are -2 and —3.

Al -A|=

‘=A2+5/\ +6

Now use Ax; = Ax; for each eigenvalue, A . Thus,

30 D_ %0
H4 -6fH.H B
For A = -2,
3x +3x,=0
-4x, —4x, =0
Thus x, = -
For A =-3
4x, +3x,=0
-4x, -3X, =0
Thus x, = =X, and x, = -0.75x,; from which we |et
00.707 -0.60
“Ho.707 08H

Taking the inverseyields
[5.6577 4.2433[

s 5 H

Hence,

—l

o pipp (56577 42438T1 310707 -060 (2 0O
H 5 5 Hta -6Hf0.707 08H Ho -3

p-ig .6577 4.2433M10 (38390

"THs s B Heof
CP=[1 4]D0707 Py [-2121 2.6]

Ho707 o08H

21
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Finaly,
2 0[O [@8.390

=0y " Ha B

y=[-2121 26|z
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Chapter 6

6.1.

Make a Routh table.
g 3 6 7 2
& 9 4 8 6
S 4.666666667 4.333333333 0 0
s -4.35714286 8 6 0
s 12.90163934 6.426229508 0 0
3 10.17026684 6 0 0
st -1.18515742 0 0 0
g 6 0 0 0

Since there are four sign changes and no complete row of zeros, there are four
right half-plane poles and three left half-plane poles.

6.2.

Make a Routh table. We encounter arow of zeros on the s° row. The even
polynomial is contained in the previous row as —6s* + 0s + 6. Taking the
derivative yields —24s°® + 0s. Replacing the row of zeros with the coefficients of
the derivative yields the s* row. We also encounter a zero in the first column at
the s* row. We replace the zero with £ and continue the table. The final result is

shown now as

& 1 -6 -1 6
s 1 0 -1 0
s* -6 0 6 0
s? -24 0 0 0O|ROZ
s? € 6 0 0
st 144/¢ 0 0 0
s 6 0 0 0

There is one sign change below the even polynomial. Thus the even polynomial
(4™ order) has one right half-plane pole, one left half-plane pole, and 2 imaginary
axis poles. From the top of the table down to the even polynomial yields one sign

change. Thus, the rest of the polynomial has one right half-plane root, and one | eft
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half-plane root. The total for the system is two right half-plane poles, two left

half-plane poles, and 2 imaginary poles.

6.3.
Since G(s) = %’ = 1?2;8()3) T F 159 li((5612£;s+ 20K
Form the Routh table.

s 1| (6+K)

g 5 20K

s

30-15K
5
g 20K

From the s' row, K < 2. Fromthe s’ row, K > 0. Thus, for stability, 0< K < 2.
6.4.

First find
5 0002 1 10 [s-2 -1 -1

S -Al=|® s 03-g1 7 1j=| -1 (s-7) -1 |=5'-45-33s+51
M 0 s§g B3 4 -5 3 ~4  (s+5)

Now form the Routh table.

g 1 -33

g -4 51

st -20.25

S 51

There are two sign changes. Thus, there are two rhp poles and one |hp pole.
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Chapter 7
7.1
a. First check stability.
T(9) = G(s) _ 10s*+500s+6000 10(s +30)(s+ 20)

T 1+G(s) S +70s? +13755+6000 (S+ 26.03)(s+ 37.89)(s+ 6.085)
Poles are in the lhp. Therefore, the system is stable. Stability also could be

checked via Routh-Hurwitz using the denominator of T(s). Thus,

15 15
15u(t): e, ()= = =
M) () 1+1imG(s) 1+
: _ 15 15 B
15tu(t): o () = imsa(E = 10%20%30 = 2.1875
o0 25* 35
15 3 . 30
15t°u(t): e 0)=————=""=00, since L [15t°] ==
( ) parabola( ) |||TO]SZG(S) O [ ] S3
b. First check stability.
T(9) = G(s) _ 10s” + 500s + 6000
1+G(s) s +110s*+3875s° +4.37e04s? + 500s + 6000
10(s+ 30)(s+ 20)

- (s+50.01)(s+ 35)(s+ 25)(s* — 7.189e — 04s + 0.1372)
From the second-order term in the denominator, we see that the system is
unstable. Instability could also be determined using the Routh-Hurwitz criteriaon
the denominator of T(s). Since the system is unstable, cal culations about steady-

state error cannot be made.

7.2.
a. The systemis stable, since
T(s) = G(s) _ 1000(s + 8) _1000(s+8) and is of

T 1+G(s) (s+9)(s+7)+1000(s+8) < +1016s+8063
Type 0. Therefore,

*
K, =1imG(s) = 100078 =127, K, = limsG(s) = 0; and K, = lims*G(s) =0
s-0 7*9 s-0 s-0
D. €4, () = 1 1 =7.8e-03

1+Iin(‘)|G(s) T 1+127
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1 1

limsG(s) "0

Eamp(®) =

1 1

e =
pavota () ims’G(s) 0

7.3.
System is stable for positive K. System is Type 0. Therefore, for a step input
_ 1 _ . . Ca _ 12K |
Eyep(®) = 14K, =0.1. Solving for K yields K, =9= LIITJG(S) ~ 1218’ from
which we obtain K =189.
7.4.
: . _ _(st+2)
Systemis stable. Since G, (s) =1000, and G,(s) = (5+2)
1 1
& () = - =- = -9.98e- 04
lim_t + limGi(s) 2+1000
s-0 GZ(S) So
7.5.
System is stable. Create a unity-feedback system, where H,(s) = 1 -1= S :
s+1 s+1

The system is as follows:

RO E(9 100 C(9)

. s+4
=S
s+1 <
Thus,
100

G.(s) = G(s) _ (s+4) _ 100(s+1)

7 1+4G(9H(s) - 100s S -955+4

(s+1(s+4)

Hence, the system is Type 0. Evaluating K, yields
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K, = 100 _ 25
4
The steady-state error is given by
1 1
e = = = 3.846e - 02
()= 0 T 1e s
7.6.
SinceG(s) = M’ g(0) = 1 = 1 = 10 )
s’ +2s+10 1+K, 147K 10+7K
10
Calculating the sensitivity, we get
K de _ K (-10)7 _ 7K
Se:K - 10
edK O D(10+7K) 10+ 7K
(1o + 7k O
7.7.
Given

10 1D
A:H_3 —6% HEC [1 1] R(S)——
Using the final value theorem,

-1
estep(w):LimsR(s)[l—C(sl—A)"lB]zLipg[l—[l ]lg S+6E Ejﬁ
+6 10

= lim{1-[1 o8 s SH@E_“ s *+55+2_2

g +63+3H_ s-0g° +65+3_§

Using input substitution,

1000

sp(®) =1+CA'B=1-[1 J}Eros 60 B

76 -10

“14[1 q53 O%’E 1+]1 qmé; 2

27
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Chapter 8

8.1.

a.

F(-7+j9) = (—7+_j9+2)(—_7+j9+4)o._0339 _ (—.5+j9)(—.3+j9) |
(-7+j9)(-7+j9+3)(-7+j9+6) (-7+j9)(-4+j9)(-1+j9)

174~ _0,0339- j0.0899 = 0.096 < -110.7°
(944 — |378)

b. The arrangement of vectorsis shown as follows:

jw

s-plane

From the diagram,

F(7+jg = MM __ (B+j9(5+j9)
MM;Mg  (=1+ jO)(-4+j9)(-7+)9)
= (66=172) _ 4 0339~ j0.0899 = 0.096 < ~110.7
(944 - |378)
8.2.

a. First draw the vectors.



s-plane

NO)
\

-3

From the diagram,

a0 — -t T80 730 gm0 0 0
Zangles-lSO tan 010 tan DlD—lSO 108.43° +108.43

b. Since the angle is 180°, the point is on the root locus.

K = r polelengths: (
I zero lengths 1

=10

8.3.
First, find the asymptotes.

o = Zpoles-zzeros: (-2-4-6)-(0) -4

a

#poles-#zeros 3-0
6, =GNy ST
3 3 3

Next draw root locus following the rules for sketching.

Chapter 8

=180".

29
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Imag Axis

- Il Il Il Il Il Il Il 1 L L
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
Real Axis

8.4.
a.
jw
A
i3 \<
s-plane
e - O L
) 0 2

b. Using the Routh-Hurwitz criteria, we first find the closed-loop transfer

G(s) _ K(s+2)
1+G(s) 2 +(K-4)s+(2K +13)

Using the denominator of T(s), make a Routh table.

function. T(s) =
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s 1| 2K+13
s K-4 0
s 2K+13 0

We get arow of zeros for K = 4. From the s* row with K = 4, & + 21 = 0. From
which we evaluate the imaginary axis crossing at /21.

c. From part (b), K=4.

d. Searching for the minimum gain to the left of —2 on thereal axisyields—7 at a
gain of 18. Thusthe break-in pointisat —7.

e. First, draw vectorsto a point € close to the complex pole.

y

3 X

At the point € close to the complex pole, the angles must add up to zero. Hence,

angle from zero — angle from pole in 4™ quadrant — angle from pole in 1% quadrant

=180° or tan‘lggg— 90° — 8 =180°. Solving for the angle of departure, 6 = -

233.1.
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s-plane

~ 4
b. Search along the imaginary axis and find the 180° point at s = +j4.06.

c. For theresult in part (b), K = 1.

d. Searching between 2 and 4 on the real axis for the minimum gain yields the
break-inat s=2.89.

e. Searching along ¢ = 0.5 for the 180° point we find s= -2.42 + j4.18.

f. For the result in part (e), K = 0.108.

g. Using the result from part (c) and the root locus, K < 1.

8.6.

a.

jw
7=0591 y

s-plane
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b. Searching along the = 0.591 (10% overshoot) line for the 180° point yields

- 2.028+)2.768 with K = 45.55.

eT=2=% o797 =T =T 1135
Rd ~ 2.028 im| ~ 2.768

w, T, =18346 from the rise-time chart and graph in Chapter 4. Since w, isthe

radial distanceto the pole, w, =+/2.028% +2.768> =3.431. Thus, T, =0.53 s,
K 4555

sincethe systemis Type0, K = =0.949. Thus,
¥ yp P 2*x4*g 48

e (0)=—L =051

ep 17K .51.

p
d. Searching the real axisto the left of —6 for the point whose gain is 45.55, we
find —7.94. Comparing this value to the real part of the dominant pole, -2.028, we
find that it is not five times further. The second-order approximation is not valid.
8.7.
Find the closed-loop transfer function and put it the form that yields p as the root

locus variable. Thus,

100
_ G(s _ 100 _ 100 _ 2 +100
T(s) = == = =
1+G(s) s+ps+100 (s°+100)+ps ¢, PS
s* +100

Hence, KG(s)H(s) = pISOO' The following shows the root locus.

s +1
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jw

s-plane ﬁ
j10

-j10

8.8.
Following the rules for plotting the root locus of positive-feedback systems, we

obtain the following root locus:
jw
A

s-plane
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8.9.
K(s+1)
(K +2)s+K

The closed-loop transfer functionis T(s) = - . Differentiating the

denominator with respect toK yields

os os os
25— +(K+2) =~ +(s+D)=(2s+K+2)——+(s+1) =0
o FK+2 - (s+ D) =( )5 *(s+D
So|vingf0r§,wegetﬁ:ﬂ.-rhus, %leﬁ aS: -K(s+1) .
oK oK (2s+K +2) ' s oK g(2s+K+2)
- . -10(s+1)
Substituting K =20 yields §, = ————.
o Y R s(s+11)

Now find the closed-loop poles when K =20. From the denominator of T(s), s,
=-21.05, - 0.95, -when K = 20.
For the pole at —21.05,

0 -10(-2105+1)
21.05(-21.05 +11)

As= s(ssK)% = -2105 %).05= -0.9975.

For the pole at —0.95,

AK 0 -10(-0.95+1)
AS — L) — = —O 95
(S) ~0.95(-0.95+11)

%). 05=-0.0025.
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Chapter 9

9.1

a. Searching aong the 15% overshoot line, we find the point on the root locus at —3.5
+j5.8 at again of K = 45.84. Thus, for the uncompensated

system, K, = IirrolsG(s) =K/7=4584/7=6.55.

Hence, € amp__uncompensated () =1/K, =0.1527.

b. Compensator zero should be 20x further to the left than the compensator pole.

(s+0.2)
(s+0.01)°

c. Insert compensator and search along the 15% overshoot line and find the root locus
at
-3.4 +j5.63 withagain, K = 44.64. Thus, for the compensated

Arbitrarily select G,(s) =

44.64(0.2) 1
stem, K, =————==127.5 and =—=0.0078.
Sy v (7) (O Ol) eramp_compenwted (oo) KV
d. eramp_uncompen&ated — 01527 - 19 58

0.0078

Q’arrp_oorrpensated
9.2.
a. Searching along the 15% overshoot line, we find the point on the root locus at
-3.5+ 5.8 a aganof K=45.84. Thus, for the uncompensated system,

4 4 11438

*“Re 35
b. Thereal part of the design point must be three times larger than the
uncompensated pole’ sreal part. Thusthe design point is 3(-3.5) +j 3(5.8) =-10.5
+j17.4. The angular contribution of the plant’s poles and compensator zero at the
design point is 130.8°. Thus, the compensator pole must contribute 180° — 130.8°
= 49.2°. Using the following diagram,
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1'00

j17.4
s-plane
49.20
> g
“Pc -10.5
: 17.4 o . _ : . .
we find m =tan49.2°, from which, p, = 25.52. Adding this pole, we find

the gain at the design point to be K = 476.3. A higher-order closed-loop poleis
found to be at —11.54. This pole may not be close enough to the closed-loop zero
at —10. Thus, we should simulate the system to be sure the design requirements
have been met.

9.3.

a. Searching along the 20% overshoot line, we find the point on the root locus at

-3.5+6.83 at again of K =58.9. Thus, for the uncompensated system,

=4 -4 _qam3s
Re 35

b. For the uncompensated system, K, = IirrolsG(s) =K /7=589/7=841. Hence,

eramp_uncompen%lted (oo) = 1/ KV = 01189

c. In order to decrease the settling time by afactor of 2, the design point istwice
the uncompensated value, or —7 + j13.66. Adding the angles from the plant’s
poles and the compensator’s zero at —3 to the design point, we obtain —100.8°.
Thus, the compensator pole must contribute 180° — 100.8° = 79.2°. Using the

following diagram,
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jw
A
]13.66
s-plane
79.20
> g
_pC -7
. 1366 _ o . _ : . .
we find =tan79.2°, from which, p. = 9.61. Adding this pole, we find the

gain at the design point to be K = 204.9.
Evaluating K, for the lead-compensated system:
K, = Iirr01sG(s)(3ﬁead = K@) /[(7)(9.61)] =(204.9)(3) / [(7)(9.61)] = 9.138.

K, for the uncompensated system was 8.41. For a 10x improvement in steady-
state error, K, must be (8.41)(10) = 84.1. Since lead compensation gave usK, =
9.138, we need an improvement of 84.1/9.138 = 9.2.

Thus, the lag compensator zero should be 9.2x further to the left than the

(s+0.092)
(s+0.01)

Using all plant and compensator poles, we find the gain at the design point to be

compensator pole. Arbitrarily select G, (s) =

K = 205.4. Summarizing the forward path with plant, compensator, and gain
yields

G (9= 4(s +3)(s+0.092)

 g(s+7)(9.61)(s+0.01)
Higher-order poles are found at —0.928 and —2.6. It would be advisable to

simulate the system to see if there isindeed pole-zero cancellation.
9.4.

The configuration for the system is shown in the figure below.
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C(s)

R(S) + + 1
@ K _ §(s+7)(s +10)

Minor-Loop Design:

For the minor loop, G(s)H(s) = . Using the following diagram, we

f
(s+7)(s+10)
find that the minor-loop root locus intersects the 0.7 damping ratio line at 8.5 +

j8.67. Theimaginary part was found as follows: 8 = cos* { = 45.57°. Hence,
— =tan45.57°, from which Im = 8.67.

jw

N (85+867)

Thegain, K, isfound from the vector lengths as

K, = V15 +8.672\15° +8.672 = 77.42

Magjor-Loop Design:
Using the closed-loop poles of the minor loop, we have an equivaent forward-
path transfer function of
K _ K
S(s+85+ j8.67)(s+85-j8.67) S(s°+17s+147.4)°

G.(s) =
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Using the three poles of G,(s) as open-loop polesto plot aroot locus, we search

aong ¢ = 0.5 and find that the root locus intersects this damping ratio line at
—4.34+j7.51 a agan, K =626.3.

9.5.

a. An active PID controller must be used. We use the circuit shown in the
following figure:

Zy(s)

<*+—Is)
Vi(s) 416 Vi(s)

— Ta(s)

1i(s)

where the impedances are shown below as follows:

Gy
Ry Cy
R, AN
Z\(s) Z5(s)

Matching the given transfer function with the transfer function of the PID

controller yields

O
_(s+0.1)(s+5) _ s +51s+0.5 _ 05_ R CO

G.(s) = s = S =s+51+ s Rl+C2E+ RCs+
=

Equating coefficients

1 _

RC, =0.5 Q)

RC =1 2

O

R,.GH 513
HrR " c,H
In Eq. (2) we arbitrarily let C, =107. Thus, R, =10°. Using these values along
with Egs. (1) and (3) wefind C, =100 uF and R, = 20 kQ.
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b. The lag-lead compensator can be implemented with the following passive
network, since the ratio of the lead pole-to-zero isthe inverse of theratio of the

lag pole-to-zero:

Matching the given transfer function with the transfer function of the passive lag-

lead compensator yields
0,10, 10
 (s+01)(s+2) _ (s+00)(s+2) _ 5 rRcH T RCH
"~ (s+0.01)(s+20) $2+20.01s+0.2 , O1 1 1 0 1
s+ + + +
JRe, " RC, RGE RRGG,

G.(9)

Equating coefficients

1
—— =01 1
RC, @
1
RC, ? @

01 N 1 N 1 0_
"RC, RC, RGH
Substituting Egs. (1) and (2) in Eq. (3) yields

) (4)
RC,

20.01 (3)

Arbitrarily letting C, =100 uF in Eq. (1) yields R =100 kQ.
Substituting C, =100 uF into Eq. (4) yields R, =558 kQ.
Substituting R, =558 kQ into Eq. (2) yields C, =900 uF.



4

Chapter 10
10.1.

1

G(s) G(jw) = R

I S
C(s+2)(s+4)’
M(w) = /(8- w”)? +(6w)?

For w<~'8, ¢(w) = -tan32% 0

(8- w?U

FOf w > '\,"yg’ (p(w) = '@T"‘ tan—ll] 60)2 %
B-w
b.

Bode Diagrams

Phase (deg); Magnitude (dB)

-200 :
10* 10° o -

Frequency (rad/sec)
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C.
Nyquist Diagrams
T T T T T T
0.0B |- - ¢ - - o x s el ]
0.0B - 1 -l
0.04 |- - - - o r s L]
2 0.02 |- - 7= - o r s m el L]
<
el
£ o
&
£ :
-0.02 ;
-0.04 -
-0.06 |- -
0.08}F -:
-0.65 6 0.65 0.11 0.115 0f2
Real Axis
10.2.
Asymptotic
Ty~ -20dB/dec
-40 7 TR -40 dB/dec
60 Actud -20 dB/dec
s ~|
2 TN
S -80 -40 dB/dec| ]
-100 g
N
™
-120 s
0.1 1 10 100 1000
Frequency (rad/s)
40
\\4\5\/dec
— \\
g -s0 -909/dec
g \\-45°/dec
g -100 N-900/dec
& \>\-450/dec ’A/Ct“a'
150 T 459/ dec]|
Asymptotic i
-200 LI ‘ [T 1]
0.1 1 10 100 1000

Frequency (rad/s)
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10.3.
The frequency response is 1/8 at an angle of zero degreesat w = 0. Each pole
rotates 90° in going from w =0 to w = . Thus, the resultant rotates —180° while

its magnitude goes to zero. The result is shown below.

Im

f
wm/—\
O\v/
10.4.

a. The frequency response is 1/48 at an angle of zero degreesat w = 0. Each pole

w=0
1
8

P Re

rotates 90° in going from w =0 to w = . Thus, the resultant rotates —270° while

its magnitude goes to zero. The result is shown below.

Im

A

w=6.63

1 o a7
480 48

1 _ 1 and
(s+2)(s+4)(s+6) s*+125° +44s+48
(48-12w%) - j(44w - w°)
w® +56w" + 784w’ + 2304

b. Substituting jow into G(s) =

simplifying, we obtain G(jw) = . The Nyquist
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diagram crosses the real axis when the imaginary part of G(jw) iszero. Thus, the

Nyquist diagram crossesthereal axisat w® = 44, or w =+/44 = 6.63 rad/s. At

thisfrequency G(jw) = —4—20. Thus, the system is stable for K <480.

10.5.
If K =100, the Nyquist diagram will intersect the real axis at —100/480. Thus,

G, = 20Iog% =13.62 dB. From Skill-Assessment Exercise Solution 10.4, the

180° frequency is 6.63 rad/s.

10.6.
a.
-60
-80 =
—
-100
=
> -120
kel
& -140
-160
-180
1 10 100 1000
Frequency (rad/s)
O.\
-50 -
o -100
[]
o
2 -150
Z
% -200
T -250 — s
-300
1 10 100 1000

Frequency (rad/s)
b. The phase angle is 180° at afrequency of 36.74 rad/s. At thisfrequency the
gainis—99.67 dB. Therefore, 20logK =99.67, or K = 96,270. We conclude that
the system is stable for K < 96,270.
c. For K =10,000, the magnitude plot is moved up 2010g10,000 =80 dB.
Therefore, the gain margin is 99.67- 80 = 19.67 dB. The 180° frequency is 36.7
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rad/s. The gain curve crosses 0 dB at w = 7.74 rad/s, where the phase is 87.1°.
We calcul ate the phase margin to be 180° — 87.1° = 92.9°.
10.7.

-In(%/ 100)
\/ 72 +1n?(%/ 100)

overshoot. Using T, =2, @y, = _I_iz\(l— 20%)+1/40* - 47% +2 = 5.79rads.

Using { = , wefind ¢ =0.456, which corresponds to 20%

10.8.
For both parts find that

_ 160, (6750000 - 101250w?) + j1350(w® —1350)w
27 w® +2925w" + 1072500 + 25000000

valuesfor w, superimpose G(jw) onthea. M and N circles, and on the b.

. For arange of

G(jw)

Nichols chart.
a.
Im
3
G-plane
o = 20°
2 M=1.3
M=10 25
0
1.4
[e)
15 40 M=0.7
. 0
1 1.6 R
1.8 70 0.6
2) 05
4
! | > Re
.
-10 o
-1 o
50
_/40
430 9 .
_./ ~25
2 20 ©




Open-Loop Gain (dB)
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Nichols Charts

100F -

-150f

200k

T Tozs as T o
rrrrrr L D "
898 B3 dB
. 6 dB

—240 dB

-200 -150 -100 -50 0

Open-Loop Phase (deg)

Plotting the closed-1oop frequency response from a. or b. yields the following

plot:
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20 log M
&
o

-120
10 100

Frequency (rad/s)

1000

Phase (degrees)
AN
)

-300
1 10 100

Frequency (rad/s)

10.9.
The open-loop frequency response is shown in the following figure:

1000
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Bode Diagrams

Phase (deg); Magnitude (dB)

00 T T EEETEEET . A

D20 e N R EEEEEEEER PR ]

CLAQ - N L LT TP RO ]

160» rrrrrrrrrrrrrrrrrrrrrrrrrrr NG R
1 1

10t 10° 10! 10?

Frequency (rad/sec)

The open-loop frequency responseis—7 at w =14.5 rad/s. Thus, the estimated
bandwidth is w,; =14.5 rad/s. The open-loop frequency response plot goes

through zero dB at afrequency of 9.4 rad/s, where the phase is 151.98°. Hence,
the phase margin is 180° — 151.98° = 28.02°. This phase margin corresponds to

—(Zn/ V“1—52)

{ =0.25. Therefore, %00S=-¢e x100 = 44.4%,

T, =

4 a-20%)+ 40" - 4> +2 =164 s and
wWe{

B

T a2+ Jagt-ag v2 =055

Way\1-

10.10.
Theinitial slope is40 dB/dec. Therefore, the system is Type 2. Theinitial slope
intersects 0 dB at w = 9.5 rad/s. Thus, K, =9.5° =90.25and K, =K, = c.

49
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10.11.

. .10 = 10 —, from which the zero dB
jo(jw+]l) w(-w+j)

10
wV o +1

a. Without delay, G(jw) =

frequency isfound asfollows. M = =1. Solving for w,

w o +1 =10, or after squaring both sides and rearranging, w* + w® —100 = 0.
Solving for the roots, w? = -10.51, 9.51. Taking the square root of the positive
root, we find the O dB frequency to be 3.08 rad/s. At this frequency, the phase
angle, p=-0(-w+ j) =-0(-3.08 + j) = =162°. Therefore the phase marginis
180° - 162° = 18°.

b. With adelay of 3 s,

p=-0(-w+j)- T =-0(-3.08+j)-(3.08)(3) =-162°—9.24° = 171 24".
Therefore the phase margin is 180° — 171.24° = 8.76°.

c. Withadelay of 7's,

@=-0(-w+j)-wl =-0(-3.08+ j) —(3.08)(7) = -162° - 21.56° = -183.56".
Therefore the phase margin is 180° — 183.56° = -3.56°. Thus, the system is
unstable.

10.12.

Drawing judicialy selected slopes on the magnitude and phase plot as shown
below yields afirst estimate.
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Experimental

Gain(dB)
5
/
/
/

o)
a1
/

Phase(deg)
4
o
/

o
S
//

/
7

1 2 3 4567810 20 304050 70 100 200 300 500 1000

Frequency (rad/sec)

We see an initial slope on the magnitude plot of —20 dB/dec. We aso see afina
—20 dB/dec slope with a break frequency around 21 rad/s. Thus, an initial estimate

is GI(S) :@.

Subtracting G, (s)from the original frequency response yields the frequency

response shown below.
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Experimental Minus 1/s(s+21)
90

80 .

70

Gain(dB)

50 o=

40

100

80 e

\

60

Phase(deg)
\
\
\\

40 P

/

20

1 2 3 4567810 20 30 4050 70 100 200 300 500 1000
Frequency (rad/sec)

Drawing judicialy selected slopes on the magnitude and phase plot as shown
yields afinal estimate. We see first-order zero behavior on the magnitude and
phase plots with a break frequency of about 5.7 rad/s and a dc gain of about 44 dB
= 20l0g(5.7K), or K =27.8. Thus, we estimate G,(s) = 27.8(s+ 7). Thus,
27.8(s+5.7)
s(s+21)

problem was developed from G(s) =

G(s) = G,(9)G,(s) = . It isinteresting to note that the original

30(s+5)
s(s+20)
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11.1.
The Bode plot for K = 1 is shown below.

Bode Diagrams
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\/ 9 DooD

implies a phase margin of 48.10, which is obtained whenthe =-1800 + 48.10 =

-log

A 20% overshoot requires { = =0.456. Thisdamping ratio

131.9°. This phase angle occurs at w = 27.6rad/s. The magnitude at this

frequency is5.15 x 10°. Since the magnitude must be

1

unity K = ————
y 5.15x10°°

=194,200.
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11.2.
To meet the steady-state error requirement, K = 1,942,000. The Bode plot for this

gain is shown below.

Bode Diagrams

D00 - e e TR D R R R .

Phase (deg); Magnitude (dB)

ABOF S L ]

S200 - e N .

7 | TSN ]

10°
Frequency (rad/sec)
0% O

% O
2 +log? B2
\/ 9 DooD

implies a phase margin of 48.1°. Adding 10° to compensate for the phase angle

A 20% overshoot requires { = =0.456. Thisdamping ratio

contribution of the lag, we use 58.1°. Thus, we look for a phase angle of —180° +
58.1° = -129.9°. The frequency at which this phase occursis 20.4 rad/s. At this
frequency the magnitude plot must go through zero dB. Presently, the magnitude
plot is 23.2 dB. Therefore draw the high frequency asymptote of the lag
compensator at —23.2 dB. Insert abreak at 0.1(20.4) = 2.04 rad/s. At this
frequency, draw —20 dB/dec slope until it intersects 0 dB. The frequency of
intersection will be the low frequency break or 0.141 rad/s. Hence the
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(s+2.04)

compensator isG,(s) = K,
(s+0.141)

, Wherethe gain is chosen to yield 0 dB at

low frequencies, or K, = 0.141/2.04 = 0.0691. In summary,

(5+2.04) o= 42000
(s+0.141) S(s+50)(s +120)

G,(s) = 0.0691

11.3.

0% 0
[hooU

% O
2 +log? B2
\/ 9 DooD

-log

A 20% overshoot requires ¢ = =0.456. Therequired

bandwidth is then calculated as oy, = Tiz\/(l— 20%)+1/4* 477 +2 =57.9
K
(50)(120) ’
we calculate K =300,000. The uncompensated Bode plot for this gain is shown
below.

rad/s. In order to meet the steady-state error requirement of K, =50 =

Bode Plot for K = 300000

“100f T R R

Phase (deg); Magnitude (dB)

=T S e . P N

200 TR EEETE N

250 L e

10"t 10° 10 10? 10°

Frequency (rad/sec)



56

Solutions to Skill-Assessment Exercises

The uncompensated system'’ s phase margin measurement is taken where the
magnitude plot crosses 0 dB. We find that when the magnitude plot crosses 0 dB,
the phase angle is -144.8°. Therefore, the uncompensated system’ s phase margin is
-180° + 144.8° = 35.2°. The required phase margin based on the required damping

ratiois ®,, =tan™ — %

‘ =48.1°. Adding a 10° correction factor, the
\—20% + 1+ 4Z*

required phase margin is 58.1°. Hence, the compensator must contribute ¢, =
58.1°- 3520 = 229 Using @ =sin" =B, g=2"9N%u _ g 44 The
1+B' " 1+sng,,

compensator’s peak magnitudeis calculated asM_, = . 151. Now find the

VB

frequency at which the uncompensated system has a magnitude 1/ M

or -3.58

max ?

dB. From the Bode plot, this magnitude occurs at w,,,, = 50 rad/s. The

compensator's zeroisat z, = % But, w,, = % Therefore, z, =33.2. The

compensator'spoleisat p, = % % 75.4. The compensator gain is chosen to
yield unity gain at dc. Hence, K, = 75.4/33.2=2.27. Summarizing,
Gu(9) = 22787332 oy (g = 200000
(s+75.4) s(s+50)(s+120)
11.4.
0
i 'OgEtL(;OoB

A 10% overshoot requires{ = — = 0.591. The required bandwidth

\/n2 +log? 0% 0

LiooU

isthen calculated as @, = ZZ |(A-20%)+42* - 47% +2 = 7.53 radls
In order to meet the steady-state error requirement of K, =10 = (8)I(<3O) , we

calculate K =2400. The uncompensated Bode plot for this gain is shown below.
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Bode Diagrams
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Let us select anew phase-margin frequency at 0.8wy,, = 6.02 rad/s. The required
phase margin based on the required damping ratio
is®,, =tan™— % =58.6°. Adding a 5° correction factor, the

J —20% + \W
required phase margin is 63.6°. At 6.02 rad/s, the new phase-margin frequency,
thephaseangleis—  which represents a phase margin of 180° — 138.3° = 41.7°.

Thus, the lead compensator must contribute ¢, = 63.6°—41.7°=21.9°. Using

) =sin‘11_ﬁ,ﬁzl_gn¢max = 0.456.
e 1+ 1+sing@,,,

We now design the lag compensator by first choosing its higher break frequency
one decade below the new phase-margin frequency, that is, z,, = 0.602 rad/s. The
lag compensator’s poleis p,, = Bz,, = 0.275. Finaly, the lag compensator’s gain

is K_. = =0.456.

lag
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Now we design the lead compensator. The lead zero is the product of the new

phase margin frequency and +/8, or 7, = 0.8, /B = 4.07. Also,

B = % =8.93. Finaly, K, = % =2.19. Summarizing,

G (9) = 0.4565+0.602) .

(s+0.275)’ Giea(9) =219

;and K =2400.
(s+8.93)
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12.1.
We first find the desired characteristic equation. A 5% overshoot

1005 _ 69, Also, W, =— " =14.47 rad/s. Thus, the

:0% O To1-¢
ChooU

characteristic equation iss”® + 2{w, s+ w,? = s> +19.97s+209.4. Adding a pole at —10

requires{ = —
\/n2 +log

to cancel the zero at —10 yields the desired characteristic equation,
(s* +19.97s+ 209.4)(s+10) = s> + 29.97s” + 409.1s + 2094. The compensated system

0o 1 0 O
matrix in phase-variable formisA - BK = B 0 0 1 gThe

Fk) —-(36+k) -(15+k;)H
characteristic equation for this system is
sl — (A —BK))| =5’ +(15+Kk,)s” + (36 +k,)s + (k). Equating coefficients of this
eguation with the coefficients of the desired characteristic equation yields the gains as
K=[k k k]=[2094 3731 14.97.

12.2.
@2 1 10
ThecontrollabilitymatrixisCM:[B AB AZB]:% 4 —QESince|CM|:80,
A -1 16f

C,, isfull rank, that is, rank 3. We conclude that the system is controllable.
12.3.
First check controllability. The controllability matrix is

M 0 10
C,.=[B AB A%B]=10 1 -17gSincelC,,,|=-1,C,,isfull rank, that is, rank
A -9 8lF

3. We conclude that the system is controllable.
We now find the desired characteristic equation. A 20% overshoot
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—Iog 0% 0
requires{ = Hi000 =0.456. Also, w, = 2 - 4.386 rad/s. Thus, the
\/nz oD% O {T,
Chool

characteristic equation is §° + 2{w, s+ w,? = s> + 4s+19.24. Adding apole at —6 to
cancel the zero at —6 yields the resulting desired characteristic equation,

(S* +4s+19.24)(s+6) = s* +10s° + 43.24s+115.45.
(s+6) _ S+6
(s+7)(s+8)(s+9) s*+245° +191s+504
0o 1 00O 00
_ 0 l _ AU —
variable representationas A, = 5 0 0 158B,= %)D C,=[6 1 0.
504 -191 -24F AR

The compensated system matrix in phase-variable formis

SinceG(s) = , We can write the phase-

O 0 1 0 O
A,-B)K, = B 0 0 1 E The characteristic equation for

(504 +k) -(191+k,) —-(24+k;)H
thissystemis ‘sl —-(A, - Bpr))‘ =5’ +(24+k,)s* + (191 +k,)s + (504 + k) . Equating
coefficients of this equation with the coefficients of the desired characteristic equation
yieldsthegainsasK , =[k, k, k]=[-38855 -147.76 -14].

We now develop the transformation matrix to transform back to the z-system.

™ 0 1[0
C..=[B, AB, AB]=10 1 -17gand
A -9 8lF
M O 10
_ _ 0
Cup=[B, AB, AB|=0 1 -247
A -24 3850
M 0 19l 24 10 01 0 0O
Therefore, P=C,,.C,,, ™ %) 1 -173p4 1 03=57 1 07

9 8l1FH1 O og @6 15 15

Hence,
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01 0 0O
K,=K,P'=[-38855 -147.76 -14]37 1 03=[-40.23 6224 -14].
@9 -15 1f

12.4.

O0-(24+1) 1 00
For the given system éx =(A-LC)e, = B—(191+ L) O 1%. The characteristic

H(504+1;) 0 OH
polynomial isgiven by [[sl —(A —LC)|=s*+(24 +1,)s’ +(191+1,)s+ (504 +1,). Now
we find the desired characteristic equation. The dominant poles from Skill-Assessment
Exercise 12.3 come from (s* + 4s+19.24). Factoring yields (-2 + j3.9) and (-2 - j3.9).
Increasing these poles by afactor of 10 and adding a third pole 10 timesthe real part
of the dominant second-order poles yields the desired characteristic polynomial,
(s+20+ j39)(s+ 20— j39)(s+200) = S + 2405’ + 9921s + 384200. Equating
coefficients of the desired characteristic equation to the system’ s characteristic

0216 [

equation yields L = 59730 %

3836960
12.5.

0C O o4 6 8 [

The observability matrix is O,, = ECA B: 5—64 -80 —78Er where

CA’H [B74 848 814{

@25 28 32
A% = B—? -4 —11% The matrix is of full rank, that is, rank 3, since |O,,| = ~1576.

7 95 94
Therefore the system is observable.
12.6.
The system is represented in cascade form by the following state and output equations:

) +7 1 00O OO
o o 1044

B0 0 -95 HH
y=[1 0 0]z
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The observability matrix is O,,, = BC A U-L7 1 oE where
£AH B9 -15 10

@9 -15 1 ([
A2=o 64 -17H SinceG(s) = 1 =— 5 1 , we
O O (s+7)(s+8)(s+9) °+24s* +191s+504
HO 0 814
can write the observable canonical form as
0-24 1 00 0O
0
x=191 0 1+ O
{504 0 0 HAAH
y=[1 0 O]x
OC, 0 01 0 0O
_ C_ 0O 0
The observability matrix for thisformis O, = C,A, = D24 1 ODWhere
FCLAZH BB8S -24 10

0385 -24 1]
= 54080 ~191 o%
2096 -504 OF

We next find the desired characteristic equation. A 10% overshoot
0% 0

1000 _ 501, Also, , = ZTi = 67.66 rad/s. Thus, the

‘ %o
72 +log? B2 s
\/ 9 Di000

characteristic equation iss” + 2w s+ w,> = s* + 80s + 4578.42. Adding apole at

—Iog

requires{ =

—400, or 10 times the real part of the dominant second-order poles, yields the resulting
desired characteristic equation,

(S* +80s+ 4578.42)(s + 400) = s* + 480s” + 36580s +1.831x10°.

For the system represented in observable canonical form

0-(24+1)) 1 OO
e =(A,-L.C)e = B—(191+ l,) O 1%. The characteristic polynomial isgiven
H(504+1;) 0 0H

by[[sl = (A, —L,C,)|=s>+(24+1,)s* + (191 +1,)s+ (504 +1,) . Equating coefficients
of the desired characteristic equation to the system’s characteristic equation yields
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0 456 [

_ O

L, = 0 36,389 0

H,830,496H
Now, develop the transformation matrix between the observer canonical and cascade

forms.

ol 0 ogml O oy Ol O Ooml O OO
P=0,,%0,, =27 1 02524 1 o=z 1 o024 1 oU

0 00 00 il 0
9 -15 10 B85 -24 10 06 15 1885 -24 1F
01 0 0O

:5—17 1 oD
A8l -9 1@

01 0 Om 45 0O 0O 45 [ O 45 [
- o 0O N 00O 00O 0
Finaly, L, =PL, =317 1 036,389 = 28,637 o= 28,640 g

81 -9 1FA,830,4965 [,539,9315 H,540,0008

12.7.
We first find the desired characteristic equation. A 10% overshoot requires

0% O
~1095 060

‘ %o
72 +log? B2
\/ 9 Chool

Also, w, = # =1.948 rad/s. Thus, the characteristic equation is

Tp\“‘sl_ 4

§ +2{w,s+w,”> =5 +2.3s+3.79. Adding a pole at —4, which corresponds to the

(= =0.591

origina system’s zero location, yields the resulting desired characteristic equation,
(s*+2.35+3.79)(s+4) =s° +6.35° +13s+15.16.
Oy O A -BK) BK_Mx O

Now. 0 =0 ¢ o i, T mov=le dg

where
10 10 Oo0g g O 1

10 @ 0
A—BK=B_7 _Q%B@lﬁ kz]:Eﬂ oH b kH Fa+k) -(9+k2)H
c=[4 4
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0 0
B = 1k =
]

g O 0 1 0mxO

X, O
N o, 00, _ O
Thus, O 0= [(7+k) -(9+k,) ke%(ZDJ“EiEI’y'H 1 0 g
D g -4 -1 OEH EN=
Finding the characteristic equation of this system yields
s 0 OO O O 1 0
(A -BK) BK.0_ 0 0
‘sl— 0 %_%) s 05-F(7+k) —(9+k) k
M 0 sg g -4 -1 0
O s -1 0

=|{7+k) s+(9+k) -k =S +(9+k)S +(T+k +k)s+ 4k,
g 4 1 S

Equating this polynomial to the desired characteristic equation,

S*+6.35° +13s+15.16 =5* +(9+Kk,)s” + (7 +k +k )s+ 4k,

Solving for thek’s,

K=[221 -2.7] and k,=3.79.
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13.1.

00

f(t) = sin(akT); £ (t) = ; SiN(aKT)S(t — KT);

=0

65

. 0 LY (ejod(T _e—jakT)e—kTS 12 _ )
F (S) — ,(Zs'n(akT)e—kTS — Z : — _z (eT(S—Jw))—k _ (eT(S+Jw)—k
= =) 2j 2] &
But, § x = =
= 1-x
Thus,
F(9) = 1g 1 _ 1 010 e e —g g lYT O
2] Hog 1o 1_gT6Ho) H 2] B__ (e e —g e i) + e—szH
_ gD sin(wT) 0 z'sin(wT)
H-e™2 cos(wT) +e2™ H 1-2z¢ cos(wT) +z72
13.2.
F(2) = z(z+1(z+2)
(z-0.5)(z-0.7)(z-0.9
F@) _  (z+D(z+2)
z (z-0.5(z-0.7)(z-0.9
=46.875 1 -114.75 L +68.875 L
z-05 z-0.7 z-09
F(2) = 46.875—%— -114.75—% _ +68.875 ,
z-05 z-0.7 z-0.9
f (KT) = 46.875(0.5)¢ —114.75(0.7)* + 68.875(0.9)"
13.3.
Since G(s) = (1- e‘Ts)L
S(s+4)’
a0 8 O z-1 B z-1 2
G(2)=(1-z"Yz = zﬁé+ ﬁ: ZEE+ ﬁ
(2)=( ) Es(s+4)% z S st+4 z s st+4
Let G,(s) = % + ST24 Therefore, g,(t) =2-2e™, or g,(KT)=2-2e™,
_ aAT
Hence, G, () = 2z 2z _ 2z(1-e7)

z-1 z-e*7 (z-1)(z-¢€*T)
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_ _ AT
Therefore, G(z) = Z—1Gz(z) = 2(1—(:T)-
Z (z-€)
For T =£ 5,G(2) = ﬂ
4 z-0.3679

13.4.
Add phantom samplers to the input, feedback after H(s), and to the output. Push

G,(9)G,(s), along with its input sampler, to the right past the pickoff point and
obtain the block diagram shown below.

R Cra
£ t GG [ —=

S HA GG -

Hence, T(2) = _GG(2) :
1+ HGG,(2)
13.5.

Let 6(8) =22 LetG(g=C0-_20 _4_ 4
s+5 s(s+5) s s+5

. Taking theinverse

Laplace transform and letting t = KT, g,(KT) = 4 - 4", Taking the z-transform

_ 4z 4z 4z(1-€>")
eds G,(z) = - = -
yl S Z(Z) 7 - 1 y e—5T (Z _ 1)(2 _ e—ST)
_ 5T —eoT
Now,G(2) = 2-26,(2) = 226 ) Finally, T(2) = )= HL=€ )
z (z-€") 1+G(z) z-5e> +4

The pole of the closed-loop systemisat 5e" — 4. Substituting valuesof T, we
find that the pole is greater than 1 if T >0.1022 s. Hence, the system is stable for
0<T<0.1022 s.

13.6.

Substituting z = 2;1 into D(z) = z° - z° - 0.5z + 0.3, we obtain

D(s) = s* - 85” — 27s- 6. The Routh table for this polynomial is shown below.
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s 1 -27
s -8 -6
s -27.75 |0
s -6 0

Since there is one sign change, we conclude that the system has one pole outside
the unit circle and two polesinside the unit circle. The table did not produce arow
of zeros and thus, there are no jw poles. The system is unstable because of the
pole outside the unit circle.

13.7.

Defining G(s) as G,(s) in cascade with a zero-order-hold,

oo\ (53 O w\B/20 1/4  2/50
6O =200 )y e T T s T ee s (svmE

Taking the z-transform yields

[(3/20)z+(1/4)z (2/5z0_ 3+ 5(z- 1) _8(z- 1)

G(z)=20(1-z"
@) ( )Qzl z-e€ T z-eH 7 z-e¥ z-€3

Hencefor T =0.1 second, K, = Iirr;G(z) =3, K, = %Iin’ll(z-l)G(z) =0,ad

K, = T—lzlin;(z-l)zG(z) = 0. Checking for stability, we find that the system is

G(2) _ 15z-1109
1+G(z) Z*+0.222z-0.703
inside the unit circle at —0.957 and +0.735.

Again, checking for stability, we find that the system isunstable for T = 0.5

G(z) _  302z-0.6383
1+G(z) 22 +2.802z-0.6272

stable for T = 0.1 second, since T(z) = has poles

second, since T(z2) =

has polesinside and outside

the unit circle at +0.208 and —3.01, respectively.
13.8.
Draw the root locus superimposed over the { = 0.5 curve shown below. Searching

along a54.3° line, which intersects the root locus and the ¢ = 0.5 curve, we find

the point 0.587054.3° = (0.348+j0.468) and K = 0.31.
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z-Plane Root Locus
I I I

15F B

05

Imag Axis
o

-0.5F

-15F B

| | | | | | | | |
-3 -2.5 -2 -15 -1 -0.5 0 0.5 1 15 2
Real Axis

13.9.

Let

G,(S) = G()G,(s) = 100K 2.38(s+25.3) _  342720(s+25.3)

S(s+36)(s+100) (s+60.2) S(s+36)(s+100)(s+60.2)

The following shows the frequency response of G,(jw).



Chapter 13 69

Bode Diagrams

A00f T

Phase (deg); Magnitude (dB)
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250F e T

Frequency (rad/sec)

Wefind that the zero dB frequency, w,, , for G,(jw)is39 rad/s. Using Astrom’s
guideline the value of T should bein therange, 0.15/ w,, = 0.0038 second to
0.5/ w, =0.0128 second. Let ususe T = 0.001 second.

Now find the Tustin transformation for the compensator. Substituting s = %
into G,(s) = Mwith T = 0.001 second yields
(s+60.2)
G,(2) = 594 (270.975)
(z—-0.9416)
13.10.

X(z) _ 18997° — 3761z + 1861
E(z) z*-1908z+0.9075

(z° —1.908z + 0.9075) X(z) = (1899z° — 3761z + 1861) E(z) . Solve for the highest
power of z operating on the output, X(z), and obtain

7°X(z) = (1899z° — 3761z + 1861) E(z) — (—1.908z + 0.9075) X(z) . Solving for

G.(2) = . Cross-multiply and obtain
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X(z) on the left-hand side yields
X(z) = (1899 — 3761z +1861z°)E(z) - (19082 + 0.9075z?) X(2). Finally, we

implement this last equation with the following flow chart:

e*(t) x*(t)
\ 1899 »
\ 4 \ 4
Delay Delay
0.1 second 0.1 second
+
*(+_ *(t-
ef(t-0.) | 761 [a g )—><g)<— 1008 |0
+ -
y A 'Y
Delay Delay
0.1 second 0.1 second
e*(t-0.2 x*(t-0.2)
( ) 1861 0.9075 ——
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