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SOLUTION TO CASE STUDY CHALLENGE  
 

Antenna Control: Stability Design and Transient Performance 
First find the forward transfer function, G(s). 

Pot:  

K1 = 
10
π

   = 3.18 

Preamp: 

 K 

Power amp:  

G1(s) =  
100

s(s+100)  

Motor and load: 

J = 0.05 + 5 (
1
5 )2 = 0.25 ; D = 0.01 + 3 (

1
5 )2 = 0.13;  

Kt
Ra   = 

1
5  ; Kb = 1. 

Therefore,  

Gm(s) =  
θm(s)
Ea(s)    = 

Kt
RaJ

s(s+
1
J(D + 

KtKb
Ra

))
   = 

0.8
s(s+1.32)  . 

Gears: 

K2 = 
50

250   = 
1
5    

Therefore,  

G(s) = K1KG1(s)Gm(s)K2 = 
50.88K

s(s+1.32)(s+100)    

Plotting the Bode plots for K = 1,  
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a. Phase is 180o at ω = 11.5 rad/s. At this frequency the gain is - 48.41 dB, or K  = 263.36. Therefore, 

for stability, 0 < K < 263.36.  

b. If K = 3, the magnitude curve will be 9.54 dB higher and go through zero dB at ω = 0.94 rad/s. At 

this frequency, the phase response is -125.99o. Thus, the phase margin is 180o - 125.99o = 54.01o. 

Using Eq. (10.73), ζ = 0.528. Eq. (4.38) yields %OS = 14.18%. 

c.  

Program: 
numga=50.88; 
denga=poly([0 -1.32 -100]); 
'Ga(s)' 
Ga=tf(numga,denga); 
Gazpk=zpk(Ga) 
'(a)' 
bode(Ga) 
title('Bode Plot at Gain of 50.88') 
pause 
[Gm,Pm,Wcp,Wcg]=margin(Ga); 
'Gain for Stability' 
Gm 
pause 
'(b)' 
numgb=50.88*3; 
dengb=denga; 
'Gb(s)' 
Gb=tf(numgb,dengb); 
Gbzpk=zpk(Gb) 
bode(Gb) 
title('Bode Plot at Gain of 3*50.88') 
[Gm,Pm,Wcp,Wcg]=margin(Gb); 
'Phase Margin' 
Pm 
for z=0:.01:1 
Pme=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi); 
if Pm-Pme<=0; 
break 
end 
end 
z 
percent=exp(-z*pi/sqrt(1-z^2))*100 
 
 
 
Computer response: 
ans = 
 
Ga(s) 
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Zero/pole/gain: 
      50.88 
------------------ 
s (s+100) (s+1.32) 
  
ans = 
 
(a) 
 
ans = 
 
Gain for Stability 
 
Gm = 
 
  262.8585 
 
ans = 
 
(b) 
 
ans = 
 
Gb(s) 
 
Zero/pole/gain: 
      152.64 
------------------ 
s (s+100) (s+1.32) 
  
ans = 
 
Phase Margin 
 
Pm = 
 
   53.9644 
 
z = 
 
    0.5300 
 
percent = 
 
   14.0366 
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ANSWERS TO REVIEW QUESTIONS 
1. a. Transfer functions can be modeled easily from physical data; b. Steady-state error requirements can be 

considered easily along with the design for transient response; c. Settles ambiguities when sketching root 

locus; (d) Valuable tool for analysis and design of nonlinear systems. 

2. A sinusoidal input is applied to a system. The sinusoidal output's magnitude and phase angle is measured 

in the steady-state. The ratio of the output magnitude divided by the input magnitude is the magnitude 

response at the applied frequency. The difference between the output phase angle and the input phase angle 

is 
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the phase response at the applied frequency. If the magnitude and phase response are plotted over a range of 

different frequencies, the result would be the frequency response for the system. 

3. Separate magnitude and phase curves; polar plot 

4. If the transfer function of the system is G(s), let s=jω. The resulting complex number's magnitude is the 

magnitude response, while the resulting complex number's angle is the phase response. 

5. Bode plots are asymptotic approximations to the frequency response displayed as separate magnitude and 

phase plots, where the magnitude and frequency are plotted in dB.  

6. Negative 6 dB/octave which is the same as 20 dB/decade 

7. Negative 24 dB/octave or 80 dB/decade 

8. Negative 12 dB/octave or 40 dB/decade 

9. Zero degrees until 0.2; a negative slope of 45o/decade from a frequency of 0.2  until 20; a constant -90o 

phase from a frequency of 20 until ∞ 
10. Second-order systems require a correction near the natural frequency due to the peaking of the curve for 

different values of damping ratio. Without the correction the accuracy is in question. 

11. Each pole yields a maximum difference of 3.01 dB at the break frequency. Thus for a pole of 

multiplicity three, the difference would be 3x3.01 or 9.03 dB at the break frequency, - 4. 

12. Z = P - N, where Z = # of closed-loop poles in the right-half plane, P = # of open-loop poles in the right-

half plane, and N = # of counter-clockwise encirclements of -1 made by the mapping.  

13. Whether a system is stable or not since the Nyquist criterion tells us how many rhp the system has 

14. A Nyquist diagram, typically, is a mapping, through a function, of a semicircle that encloses the right 

half plane. 

15. Part of the Nyquist diagram is a polar frequency response plot since the mapping includes the positive 

jω axis. 

16. The contour must bypass them with a small semicircle. 

17. We need only map the positive imaginary axis and then determine that the gain is less than unity when 

the phase angle is 180o.  

18. We need only map the positive imaginary axis and then determine that the gain is greater than unity 

when the phase angle is 180o.  

19. The amount of additional open-loop gain, expressed in dB and measured at 180o of phase shift, required 

to make a closed-loop system unstable. 

20. The phase margin is the amount of additional open-loop phase shift, ΦM, required at unity gain to make 

the closed-loop system unstable.  

21. Transient response can be obtained from (1) the closed-loop frequency response peak, (2) phase margin  

22. a. Find T(jω)=G(jω)/[1+G(jω)H(jω)] and plot in polar form or separate magnitude and phase plots. b. 

Superimpose G(jω)H(jω) over the M and N circles and plot. c. Superimpose G(jω)H(jω) over the Nichols 

chart and plot.  
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23. For Type zero: Kp = low frequency gain; For Type 1: Kv = frequency value at the intersection of the 

initial slope with the frequency axis; For Type 2: Ka = square root of the frequency value at the intersection 

of the initial slope with the frequency axis. 

24. No change at all 

25. A straight line of negative slope, ωT, where T is the time delay 

26. When the magnitude response is flat and the phase response is flat at 0o. 

 

SOLUTIONS TO PROBLEMS 
 

1.  
a.  

 ;  

 ;     

b. 

 ;  

;  

c. 

 ;  

 ;  
2.  

a. 
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b. 

 
c. 

 
3.  

a. 
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b. 
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c. 
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4.  

a. 
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b. 
 

 

c. 
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 5.  

a. System 1 
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b. System 2 

 

 
  
c. System 3 

  
d. 
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6. 
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7. 
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8. 

Program: 
numg=[1 5]; 
deng=conv([1 6 100],[1 4 25]); 
G=tf(numg,deng); 
'G(s)' 
Gzpk=zpk(G) 
nyquist(G) 
axis([-3e-3,4e-3,-5e-3,5e-3]) 
w=0:0.1:100; 
[re,im]=nyquist(G,w); 
for i=1:1:length(w) 
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M(i)=abs(re(i)+j*im(i)); 
A(i)=atan2(im(i),re(i))*(180/pi); 
if 180-abs(A(i))<=1; 
re(i); 
im(i); 
K=1/abs(re(i)); 
fprintf('\nw = %g',w(i)) 
fprintf(', Re = %g',re(i)) 
fprintf(', Im = %g',im(i)) 
fprintf(', M = %g',M(i)) 
fprintf(', Angle = %g',A(i)) 
fprintf(', K = %g',K) 
Gm=20*log10(1/M(i)); 
fprintf(', Gm = %g',Gm) 
break 
end 
end 
 

 
Computer response: 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
              (s+5) 
---------------------------------- 
(s^2  + 4s + 25) (s^2  + 6s + 100) 
  
 
w = 10.1, Re = -0.00213722, Im = 2.07242e-005, M = 0.00213732, Angle = 
179.444, K = 467.898, Gm = 53.4026 
 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
              (s+5) 
---------------------------------- 
(s^2  + 4s + 25) (s^2  + 6s + 100) 
  
 
w = 10.1, Re = -0.00213722, Im = 2.07242e-005, M = 0.00213732, Angle = 
179.444, K = 467.898, Gm = 53.4026 
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9.  
 a. Since the real-axis crossing is at -0.3086, P = 0, N = 0. Therefore Z = P - N = 0. System is stable. 

Derivation of real-axis crossing:  

( )
( )

2 2

4 3

50 9 1850( )
( 3)( 6) 81 18s j

j
G j

s s s ω

ω ω ω
ω

ω ω ω=

⎡ ⎤− − −⎣ ⎦= =
+ + + −

. 

Thus, the imaginary part = 0 at 18ω = .  Substituting this frequency into ( )G jω , the real part is 

evaluated to be -0.3086. 

 b. P = 0, N = -2. Therefore Z = P - N = 2. System is unstable. 

 c. P = 0, N = 0. Therefore Z = P - N = 0. System is stable 

 d. P = 0, N = -2. Therefore Z = P - N = 2. System is unstable.  

10.  
 System 1: For K = 1,  
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 The Nyquist diagram intersects the real axis at -0.0021. Thus K can be increased to 478.63 before 

there are encirclements of -1. There are no poles encircles by the contour. Thus P = 0. Hence, Z = P - 

N, Z = 0 + 0 if K <478.63; Z = 0 –(-2) if K > 478.63. Therefore stability if 0 < K < 478.63. 

 System 2: For K = 1,  

 
 The Nyquist diagram intersects the real axis at -0.720. Thus K can be increased to 1.39 before there 

are encirclements of -1. There are no poles encircles by the contour. Thus P = 0. Hence, Z = P - N, Z 

= 0 + 0 if K <1.39; Z = 0 – (-2) if K > 1.39. Therefore stability if 0 < K < 1.39. 

 System 3: For K = 1,  
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 Stable if 0<K<1. 

11.  
 Note: All results for this problem are based upon a non-asymptotic frequency response. 

 System 1: Plotting Bode plots for K = 1 yields the following Bode plot, 

 
 K = 1000: 

 For K = 1, phase response is 180o at ω = 6.63 rad/s. Magnitude response is -53.6 dB at this frequency.  

For K = 1000, magnitude curve is raised by 60 dB yielding  + 6.4 dB at 6.63 rad/s. Thus, the gain 

margin is  

- 6.4 dB. 
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 Phase margin: Raising the magnitude curve by 60 dB yields 0 dB at 9.07 rad/s, where the phase curve 

is 200.3o. Hence, the phase margin is 180o-200.3o = - 20.3o. 

 K = 100: 

 For K = 1, phase response is 180o at ω = 6.63 rad/s. Magnitude response is -53.6 dB at this frequency.  

For K = 100, magnitude curve is raised by 40 dB yielding – 13.6 dB at 6.63 rad/s. Thus, the gain 

margin is 13.6 dB. 

 Phase margin: Raising the magnitude curve by 40 dB yields 0 dB at 2.54 rad/s, where the phase curve 

is 107.3o. Hence, the phase margin is 180o-107.3o = 72.7o. 

 K = 0.1: 

 For K = 1, phase response is 180o at ω = 6.63 rad/s. Magnitude response is -53.6 dB at this frequency.  

For K = 0.1, magnitude curve is lowered by 20 dB yielding – 73.6 dB at 6.63 rad/s. Thus, the gain 

margin is 73.6 dB.. 

 System 2: Plotting Bode plots for K = 1 yields 

 

 
 K = 1000: 

 For K = 1, phase response is 180o at ω = 1.56 rad/s. Magnitude response is -2.85 dB at this frequency.  

For K = 1000, magnitude curve is raised by 60 dB yielding + 57.15 dB at 1.56 rad/s. Thus, the gain 
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margin is 

 – 57.15 dB. 

 Phase margin: Raising the magnitude curve by 54 dB yields 0 dB at 500 rad/s, where the phase curve 

is -91.03o. Hence, the phase margin is 180o-91.03o = 88.97o. 

 K = 100: 

 For K = 1, phase response is 180o at ω = 1.56 rad/s. Magnitude response is -2.85 dB at this frequency.  

For K = 100, magnitude curve is raised by 40 dB yielding + 37.15 dB at 1.56 rad/s. Thus, the gain 

margin is 

 – 37.15 dB. 

 Phase margin: Raising the magnitude curve by 40 dB yields 0 dB at 99.8 rad/s, where the phase curve 

is -84.3o. Hence, the phase margin is 180o-84.3o = 95.7o. 

 K = 0.1: 

 For K = 1, phase response is 180o at ω = 1.56 rad/s. Magnitude response is -2.85 dB at this frequency.  

For K = 0.1, magnitude curve is lowered by 20 dB yielding – 22.85 dB at 1.56 rad/s. Thus, the gain 

margin is 

 – 22.85 dB. 

 Phase margin: Lowering the magnitude curve by 20 dB yields 0 dB at 0.162 rad/s, where the phase 

curve is -99.8o. Hence, the phase margin is 180o-99.86o = 80.2o. 

 System 3: Plotting Bode plots for K = 1 yields 
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 K = 1000: 

 For K = 1, phase response is 180o at ω = 1.41 rad/s. Magnitude response is 0 dB at this frequency.  

For K = 1000, magnitude curve is raised by 60 dB yielding  60 dB at 1.41 rad/s. Thus, the gain 

margin is - 60 dB. 

 Phase margin: Raising the magnitude curve by 60 dB yields no frequency where the magnitude curve 

is 0 dB. Hence, the phase margin is infinite. 

 K = 100: 

 For K = 1, phase response is 180o at ω = 1.41 rad/s. Magnitude response is 0 dB at this frequency.  

For K = 100, magnitude curve is raised by 40 dB yielding  40 dB at 1.41 rad/s. Thus, the gain margin 

is - 40 dB. 

 Phase margin: Raising the magnitude curve by 40 dB yields no frequency where the magnitude curve 

is 0 dB. Hence, the phase margin is infinite. 

 

 K = 0.1: 

 For K = 1, phase response is 180o at ω = 1.41 rad/s. Magnitude response is 0 dB at this frequency.  

For K = 0.1, magnitude curve is lowered by 20 dB yielding  -20 dB at 1.41 rad/s. Thus, the gain 

margin is 20 dB. 

 Phase margin: Lowering the magnitude curve by 20 dB yields no frequency where the magnitude 

curve is 0 dB. Hence, the phase margin is infinite. 
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12. 
Program: 
%Enter G(s)************************ 
numg=1; 
deng=poly([0 -3 -12]); 
'G(s)' 
G=tf(numg,deng) 
w=0.01:0.1:100; 
%Enter K ************************** 
K=input('Type gain, K '); 
bode(K*G,w) 
pause 
[M,P]=bode(K*G,w); 
%Calculate Gain Margin************** 
for i=1:1:length(P); 
if P(i)<=-180; 
fprintf('\nGain K = %g',K) 
fprintf(', Frequency(180 deg) = %g',w(i)) 
fprintf(', Magnitude = %g',M(i)) 
fprintf(', Magnitude (dB) = %g',20*log10(M(i))) 
fprintf(', Phase = %g',P(i)) 
Gm=20*log10(1/M(i)); 
fprintf(', Gain Margin (dB) = %g',Gm) 
break 
end 
end 
%Calculate Phase Margin************** 
for i=1:1:length(M); 
if M(i)<=1; 
fprintf('\nGain K = %g',K) 
fprintf(', Frequency (0 dB) = %g',w(i)) 
fprintf(', Magnitude = %g',M(i)) 
fprintf(', Magnitude (dB) = %g',20*log10(M(i))) 
fprintf(', Phase = %g',P(i)) 
Pm=180+P(i);; 
fprintf(', Phase Margin = %g',Pm) 
break 
end 
end 
 
'Alternate program using MATLAB margin function:' 
 
clear 
clf 
%Bode Plot and Find Points 
%Enter G(s)************************ 
numg=1; 
deng=poly([0 -3 -12]); 
'G(s)' 
G=tf(numg,deng) 
w=0.01:0.1:100; 
%Enter K ************************** 
K=input('Type gain, K '); 
bode(K*G,w) 
[Gm,Pm,Wcp,Wcg]=margin(K*G) 
'Gm(dB)' 
20*log10(Gm) 
 
 
 
 
 
 
 
 
Computer response: 
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ans = 
 
G(s) 
 
  
Transfer function: 
         1 
------------------- 
s^3 + 15 s^2 + 36 s 
  
Type gain, K 40 
 
Gain K = 40, Frequency(180 deg) = 6.01, Magnitude = 0.0738277, Magnitude 
(dB) = -22.6356, Phase = -180.076, Gain Margin (dB) = 22.6356 
Gain K = 40, Frequency (0 dB) = 1.11, Magnitude = 0.93481, Magnitude (dB) = 
-0.585534, Phase = -115.589, Phase Margin = 64.4107 

 
 

Alternate program using MATLAB margin function: 
 
 
ans = 
 
G(s) 
 
  
Transfer function: 
         1 
------------------- 
s^3 + 15 s^2 + 36 s 
  
Type gain, K 40 
 
Gm = 
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   13.5000 
 
 
Pm = 
 
   65.8119 
 
 
Wcp = 
 
     6 
 
 
Wcg = 
 
    1.0453 
 
 
ans = 
 
Gm(dB) 
 
 
ans = 
 
   22.6067 

 
13. 

Program: 
numg=10000; 
deng=poly([-5 -18 -30]); 
G=tf(numg,deng) 
Ltiview 
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Computer response: 
 
ans = 
 
10.4N 
 
Transfer function: 
           10000 
--------------------------- 
s^3 + 53 s^2 + 780 s + 2700 
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14.  

Squaring Eq. (10.51) and setting it equal to 
1
2

⎛ 
⎝ 

⎞ 
⎠ 

2

 yields 

ωn4

(ωn2 - ω2)2 + 4ζ2ωn2ω2   = 
1
2   

 Simplifying,  

ω 4 + 2ωn2(2ζ2 - 1)ω2 - ωn4  = 0 

 Solving for ω2  using the quadratic formula and simplifying yields,  

ω2  =  ωn2 [ ] - (2ζ2 - 1) ± 4ζ4 - 4ζ2 + 2   

 Taking the square root and selecting the positive term,  

ω  =  ωn  (1 - 2ζ2)  + 4ζ4 - 4ζ2 + 2   

15. 
a. Using Eq. (10.55), ωBW = 10.06 rad/s.  

b. Using Eq. (10.56), ωBW = 1.613 rad/s. 
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c. First find ζ. Since Ts = 
4

ζωn
   and Tp = 

π
ωn 1-ζ2   , 

Tp
Ts

   = 
ζπ

4 1 - ζ2   .  Solving for ζ with  
Tp
Ts

   = 

0.5 yields ζ = 0.537. Using either Eq. (10.55) or (10.56) yields ωBW = 2.29 rad/s. 

d. Using ζ = 0.3,ωnTr = 1.76ζ 3 − 0.417ζ 2 +1.039ζ + 1 =1.3217 . Hence,  

 

ωn = 
1.3217

Tr

=
1.3217

4
= 0.3304  rad/s. Using Eq. (10.54) yields ωBW = 0.4803 rad/s. 

16.  
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a. 
 

 
 b. 
 

 
 c. 
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17.  
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18. 
 a. The polar plot is approximately tangent to M = 5. Using Figure 10.40, the student would estimate 

72% overshoot. However, notice that the polar plot intersects the negative real axis at a magnitude 

greater than unity. Hence, the system is actually unstable and the estimated percent overshoot is not 

correct. 

b. The polar plot is approximately tangent to M = 3. Using Figure 10.40, we estimate 58% overshoot. 

c. The polar plot is approximately tangent to M = 2.5. Using Figure 10.40, we estimate 52% overshoot. 

19.  
Raise each curve in Problem 17 by (a) 9.54 dB, (b) 7.96 dB, and (c) 3.52 dB, respectively. 
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Systems (a) and (b) are both unstable since the open-loop magnitude is greater than unity when the 

open-loop phase is 180o. System (c) is tangent to approximately M = 3. Using Figure 10.40, we 

estimate 58% overshoot. 

20. 
Program: 
%Enter G(s)*********************** 
numg=[1 5]; 
deng=[1 4 25 0]; 
'G(s)' 
G=tf(numg,deng) 
%Enter K ************************* 
K=input('Type gain, K '); 
'T(s)' 
T=feedback(K*G,1) 
bode(T) 
title('Closed-loop Frequency Response') 
[M,P,w]=bode(T); 
[Mp i]=max(M); 
Mp 
MpdB=20*log10(Mp) 
wp=w(i) 
for i=1:1:length(M); 
if M(i)<=0.707; 
fprintf('Bandwidth = %g',w(i)) 
break 
end 
end 
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Computer response: 

ans = 

G(s) 

Transfer function: 

      s + 5 

------------------ 

s^3 + 4 s^2 + 25 s 

 

Type gain, K 40 

ans = 

T(s) 

Transfer function: 

       40 s + 200 

------------------------ 

s^3 + 4 s^2 + 65 s + 200 

 

Mp = 

    6.9745 

MpdB = 

   16.8702 

wp = 

    7.8822 

Bandwidth = 11.4655 
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21. 

Program: 
numg=[7 35]; 
deng=[1 4 10 0]; 
G=tf(numg,deng) 
bode(G)                             %Make a Bode plot. 
title('Open-Loop Frequency Response')    
                                    %Add a title to the Bode plot. 
[Gm,Pm,Wcp,Wcg]=margin(G);          %Find margins and margin  
                                    %frequencies. 
'Gain margin(dB); Phase margin(deg.); 0 dB freq. (r/s);'  
'180 deg. freq. (r/s)'              %Display label. 
margins=[20*log10(Gm),Pm,Wcg,Wcp]   %Display margin data. 
Ltiview 
 
Computer response: 
Transfer function: 
     7 s + 35 
------------------ 
s^3 + 4 s^2 + 10 s 
  
 
ans = 
 
Gain margin(dB); Phase margin(deg.); 0 dB freq. (r/s); 
 
 
ans = 
 
180 deg. freq. (r/s) 
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margins = 
 
   15.1403   31.0397    3.2252    7.0715 

 
 

 
22. 

Program: 
%Enter G(s)************************************ 
numg=7*[1 5]; 
deng=[1 4 10 0]; 
'Open-Loop System' 
'G(s)' 
G=tf(numg,deng) 
clf 
w=.10:1:10; 
nichols(G,w) 
ngrid 
title('Nichols Plot') 
[M,P]=nichols(G,w); 
for i=1:1:length(M); 
if M(i)<=0.45; 
BW=w(i); 
break 
end 
end 
pause 
MpdB=input('Enter Mp in dB from Nichols Plot  '); 
Mp=10^(MpdB/20); 
z2=roots([4,-4,(1/Mp^2)]);%Since Mp=1/sqrt(4z^2(1-z^2)) 
z1=sqrt(z2); 
z=min(z1); 
Pos=exp(-z*pi/(sqrt(1-z^2))); 
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Ts=(4/(BW*z))*sqrt((1-z^2)+sqrt(4*z^4-4*z^2+2)); 
Tp=(pi/(BW*sqrt(1-z^2)))*sqrt((1-z^2)+sqrt(4*z^4-4*z^2+2)); 
'Closed-Loop System' 
'T(s)' 
T=feedback(G,1) 
bode(T) 
title('Closed-Loop Frequency Resposne Plots') 
fprintf('\nDamping Ratio = %g',z) 
fprintf(', Percent Overshoot = %g',Pos*100) 
fprintf(', Bandwidth = %g',BW) 
fprintf(', Mp (dB) = %g',MpdB) 
fprintf(', Mp = %g',Mp) 
fprintf(', Settling Time = %g',Ts) 
fprintf(', Peak Time = %g',Tp) 
pause 
step(T) 
title('Closed-Loop Step Response') 
 
Computer response: 
ans = 
 
Open-Loop System 
 
ans = 
 
G(s) 
 
Transfer function: 
     7 s + 35 
------------------ 
s^3 + 4 s^2 + 10 s 
  
Enter Mp in dB from Nichols Plot  6 
 
ans = 
 
Closed-Loop System 
 
ans = 
 
T(s) 
 
  
Transfer function: 
       7 s + 35 
----------------------- 
s^3 + 4 s^2 + 17 s + 35 
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Damping Ratio = 0.259481, Percent Overshoot = 42.9946, Bandwidth = 5.1, Mp 
0.957852
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 23.  
System 1: Using non-asymptotic frequency response plots, the zero dB crossing is at 9.7 rad/s at a 

phase of –163.2o. Therefore the phase margin is 180o – 163.2o = 16.8o. |G(jω)| is down 7 dB at 14.75 

rad/s. Therefore the bandwidth is 14.75 rad/s. Using Eq. (10.73), ζ = 0.15. Using Eq. (4.38), %OS = 

62.09%. Eq. (10.55) yields Ts = 2.76 s, and Eq. (10.56) yields Tp = 0.329 s. 

System 2: Using non-asymptotic frequency response plots, the zero dB crossing is at 6.44 rad/s at a 

phase of -150.73o. Therefore the phase margin is 180o - 150.73o = 29.27o. |G(jω)| is down 7 dB at 

10.1 rad/s. Therefore the bandwidth is 10.1 rad/s. Using Eq. (10.73), ζ = 0.262. Using Eq. (4.38), 

%OS = 42.62%. Eq. (10.55) yields Ts = 2.23 s, and Eq. (10.56) yields Tp = 0.476 s. 

24. 
a.  
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b. Zero dB frequency = 7.8023; Looking at the phase diagram at this frequency, the phase margin is 

8.777 degrees. Using Eq. (10.73) or Figure 10.48, ζ = 0.08. Thus, %OS = 77.7. 

c. 
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25. 
From the Bode plots: Gain margin = 14.96 dB; phase margin = 49.570; 0 dB frequency = 2.152 rad/s; 

1800 frequency = 6.325 rad/s; bandwidth(@-7 dB point) = 3.8 rad/s. From Eq. (10.73) ζ = 0.48; from 

Eq. (4.38) %OS = 17.93; from Eq. (10.55) Ts = 2.84 s; from Eq. (10.56) Tp = 1.22 s. 

26. 

Program: 
G=zpk([-2],[0 -1 -4],100) 
%G=zpk([-3 -5],[0 -2 -4 -6],50) 
G=tf(G) 
bode(G) 
title('System 1') 
%title('System 2') 
pause 
%Find Phase Margin 
[Gm,Pm,Wcg,Wcp]=margin(G); 
w=1:.01:20; 
[M,P,w]=bode(G,w); 
%Find Bandwidth 
for k=1:1:length(M); 
 if 20*log10(M(k))+7<=0; 
 'Mag' 
 20*log10(M(k)) 
 'BW' 
 wBW=w(k) 
 break 
end 
end 
%Find Damping Ratio,Percent Overshoot, Settling Time, and Peak Time 
for z= 0:.01:10 
Pt=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi); 
if (Pm-Pt)<=0 
 z; 
 Po=exp(-z*pi/sqrt(1-z^2)); 
 Ts=(4/(wBW*z))*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2)); 
 Tp=(pi/(wBW*sqrt(1-z^2)))*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2)); 
fprintf('Bandwidth = %g ',wBW) 
fprintf('Phase Margin = %g',Pm) 
fprintf(', Damping Ratio = %g',z) 
fprintf(', Percent Overshoot = %g',Po*100) 
fprintf(',Settling Time = %g',Ts) 
fprintf(', Peak Time = %g',Tp) 
 break 
end 
end 
T=feedback(G,1); 
step(T) 
title('Step Response System 1') 
%title('Step Response System 2') 
 
Computer response: 
Zero/pole/gain: 
  100 (s+2) 
------------- 
s (s+1) (s+4) 
  
  
Transfer function: 
   100 s + 200 
----------------- 
s^3 + 5 s^2 + 4 s 
  
 
ans = 
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Mag 
 
 
ans = 
 
   -7.0007 
 
 
ans = 
 
BW 
 
 
wBW = 
 
   14.7500 
 
Bandwidth = 14.75 Phase Margin = 16.6617, Damping Ratio = 0.15, Percent 
Overshoot = 62.0871,Settling Time = 2.76425, Peak Time = 0.329382 
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Zero/pole/gain: 

  50 (s+3) (s+5) 

------------------- 

s (s+2) (s+4) (s+6) 

Transfer function: 

    50 s^2 + 400 s + 750 

---------------------------- 

s^4 + 12 s^3 + 44 s^2 + 48 s 

ans = 

Mag 

ans = 

   -7.0026 

ans = 
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BW 

wBW = 

   10.1100 

Bandwidth = 10.11 Phase Margin = 29.2756, Damping Ratio = 0.27, Percent Overshoot 

= 41.439,Settling Time = 2.1583, Peak Time = 

0.475337
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 27.  

The phase margin of the given system is 20o. Using Eq. (10.73), ζ = 0.176. Eq. (4.38) yields 57% 

overshoot. The system is Type 1 since the initial slope is - 20 dB/dec. Continuing the initial slope 

down to the 0 dB line yields Kv = 4. Thus, steady-state error for a unit step input is zero; steady state 

error for a unit ramp input is 
1

K v

 = 0.25; steady-state error for a parabolic input is infinite. 

 28.  
The magnitude response is the same for all time delays and crosses zero dB at 0.5 rad/s. The 

following is a plot of the magnitude and phase responses for the given time delays: 
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a. 

 
 

For T = 0, ΦM = 93.3o; System is stable. 

 

 

For T = 0.1, ΦM = 55.1o; System is stable. 
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For T = 0.2, ΦM = 17o; System is stable.  

 

 

For T = 0.5, ΦM = -97o; System is unstable. 
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For T = 1, ΦM = 72.2o; System is unstable because the gain margin is -4.84 dB. 

b.  

For T = 0, the phase response reaches 180o at infinite frequency. Therefore the gain margin is infinite. 

The system is stable.  

For T = 0.1, the phase response is -180o at 11.4 rad/s. The magnitude response is -5.48 dB at 11.4 

rad/s. Therefore, the gain margin is 5.48 dB. The system is stable. 

For T = 0.2, the phase response is -180o at 7.55 rad/s. The magnitude response is -1.09 dB at 7.55 

rad/s. Therefore, the gain margin is 1.09 dB and the system is stable. 

For T = .5, the phase response is -180o at 4.12 rad/s. The magnitude response is +3.09 dB at 4.12 

rad/s. Therefore, the gain margin is – 3.09 dB and the system is unstable. 

For T = 1, the phase response is -180o at 2.45 rad/s. The magnitude response is +4.84 dB at 2.45 

rad/s. Therefore, the gain margin is -4.84 dB and the system is unstable. 

c.  
T = 0; T = 0.1; T = 0.2 
 
d.  
T = 0.5, -3.09 dB; T = 1, - 4.84 dB;  

29. 
The Bode plots for K = 1 and 0.5 second delay is: 
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The phase is -180o  at 2.12 rad/s. At this frequency, the gain is -34.76 dB. Thus the gain can be raised 

by 34.76 dB = 54.71. Hence for stability, 0<K<54.71. 

30. 
The Bode plots for K = 40 and a delay of 0.5 second is shown below. 
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The magnitude curve crosses zero dB at a frequency of 1.0447 rad/s. At this frequency, the phase plot 

shows a phase margin of 35.74 degrees. Using Eq. (10.73) or Figure 10.48, ζ = 0.33. Thus, %OS = 

33.3. 

 
31. 

Program: 
%Enter G(s)************************ 
numg1=1; 
deng1=poly([0 -3 -12]); 
'G1(s)' 
G1=tf(numg1,deng1) 
[numg2,deng2]=pade(0.5,5); 
'G2(s) (delay)' 
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G2=tf(numg2,deng2) 
'G(s)=G1(s)G2(s)' 
G=G1*G2 
%Enter K ************************** 
K=input('Type gain, K '); 
T=feedback(K*G,1); 
step(T) 
title(['Step Response for K = ',num2str(K)]) 
 
Computer response: 

ans = 

G1(s) 

Transfer function: 

         1 

------------------- 

s^3 + 15 s^2 + 36 s 

ans = 

G2(s) (delay) 

Transfer function: 

-s^5 + 60 s^4 - 1680 s^3 + 2.688e004 s^2 - 2.419e005 s + 9.677e005 

------------------------------------------------------------------ 

s^5 + 60 s^4 + 1680 s^3 + 2.688e004 s^2 + 2.419e005 s + 9.677e005 

ans = 

G(s)=G1(s)G2(s) 

Transfer function: 

    -s^5 + 60 s^4 - 1680 s^3 + 2.688e004 s^2 - 2.419e005 s + 9.677e005 

-------------------------------------------------------------------------- 

s^8 + 75 s^7 + 2616 s^6 + 5.424e004 s^5 + 7.056e005 s^4 + 5.564e006 s^3    

                                             + 2.322e007 s^2 + 3.484e007 s 
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Type gain, K 40 

 
32. 
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Estimated K = 41 dB = 112. Therefore, final estimate is G(s) =
112

s(s + 5.3)
. 

33. 
Program: 
%Generate total system Bode plots - numg0,deng0 - M0,P0 
clf 
numg0=12*poly([-1 -20]); 
deng0=conv([1 7],[1 4 100]); 
G0=tf(numg0,deng0); 
w=0.1:0.1:100; 
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[M0,P0]=bode(G0,w); 
M0=M0(:,:); 
P0=P0(:,:); 
[20*log10(M0),P0,w]; 
bode(G0,w) 
pause 
%Subtract (s+1) [numg1,deng1] and generate Bode plot-M2,P2 
numg1=[1 1]; 
deng1=1; 
G1=tf(numg1,deng1); 
[M1,P1]=bode(G1,w); 
M1=M1(:,:); 
P1=P1(:,:); 
M2=20*log10(M0)-20*log10(M1); 
P2=P0-P1; 
clf 
subplot(2,1,1) 
semilogx(w,M2) 
grid 
subplot(2,1,2) 
semilogx(w,P2) 
grid 
pause 
%Subtract10^2/(s^2+2*0.3*10s+10^2) [numg2,deng2] and generate Bode plot-
M4,P4 
numg2=100; 
deng2=[1 2*0.3*10 10^2]; 
G2=tf(numg2,deng2); 
[M3,P3]=bode(G2,w); 
M3=M3(:,:); 
P3=P3(:,:); 
M4=M2-20*log10(M3); 
P4=P2-P3; 
clf 
subplot(2,1,1) 
semilogx(w,M4) 
grid 
subplot(2,1,2) 
semilogx(w,P4) 
grid 
pause 
%Subtract(8.5/23)(s+23)/(s+8.5) [numg3,deng3] and generate Bode plot-M6,P6 
numg3=(8.5/23)*[1 23]; 
deng3=[1 8.5]; 
G3=tf(numg3,deng3); 
[M5,P5]=bode(G3,w); 
M5=M5(:,:); 
P5=P5(:,:); 
M6=M4-20*log10(M5); 
P6=P4-P5; 
clf 
subplot(211) 
semilogx(w,M6) 
grid 
subplot(212) 
semilogx(w,P6) 
grid 
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Computer responses and analysis: 
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Original data showing estimate of a component, (s+1) 
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Original data minus (s+1) showing estimate of (102/(s2+2*0.3*10s+102)) 
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Thus the final estimate is G(s) *= (s +1)
100

s2 + 6s +100
*

8.5
23

s + 23
s +8.5

* K. Since the original plot starts 

from -10 dB, 20 log K = -10, or K = 0.32.  

34. 
a. 
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From the Bode plot: Gain margin = 29 52 dB; phase margin = 157.50; 0 dB frequency = 1.63 rad/s; 

1800 frequency = 49.8 rad/s. 

b. System is stable since it has 1800 of phase with a magnitude less than 0 dB. 
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35. 
a.  
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From the Bode plot: Gain margin = 17.1 dB; phase margin = 57.220; 0 dB frequency = 45.29 rad/s; 

1800 frequency = 169.03 rad/s; bandwidth(@-7 dB open-loop) = 85.32 rad/s. 

b. From Eq. (10.73) ζ = 0.58; from Eq. (4.38) %OS = 10.68; from Eq. (10.55) Ts = 0.0949 s; from 

Eq. (10.56) Tp = 0.0531 s. 

c.  
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36. 

 
 

Resonance at 70 rad/s. 
 

37.  

G(s) = 
10

s(s+2)(s+10)  . Plotting the Bode plots,  

 

  
 

The gain is zero dB at 0.486 rad/s and the phase angle is -106.44. Thus, the phase margin is 180o - 

106.44o  = 73.56o . Using Eq. (10.73), ζ = 0.9. Using Eq. (4.38), %OS = 0.15%. 

38.  

G(s) = 
22.5

(s+4)(s2+0.9s+9)
   . Plotting the Bode plots,  

 

  

 The phase response is 180o at ω = 3.55 rad/s, where the gain is -1.17 dB. Thus, the gain margin is 

1.17 dB. Unity gain is at ω = 2.094 rad/s, where the phase is - 49.85o and at ω = 3.452 rad/s, where 

 



460   Chapter 10:   Frequency Response Methods  

the phase is -173.99o. Hence the phase margin is measured at ω = 3.452 rad/s and is 180o- 173.99o = 

6.01o. Using Eq. (10.73), ζ = 0.0525. Eq. (4.38) yields %OS = 84.78%. 

39.  
a.  
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The frequencies that will be reduced occur at the peaks of the magnitude plot. The frequencies at the 

peaks are 4.14 rad/s and 0.754 rad/s. 

b. Consider a system with a disturbance, Rd at the output of a system: 

G(s)
C(s)R(s) +

-

+
+

R  (s)d 

 

The transfer function relating C(s) to Rd(s) is 
C(s)
Rd (s

 = 
1

1 + G(s)
. Therefore,  

 

C(s) = 
1

1 + NG

DG

*
N Rd

D Rd

 = 
DG

DG + N G

*
N Rd

D Rd

 

Thus, if the poles of G(s) match the poles of Rd (DG = DRd) there will be cancellation and the 

dynamics of the disturbance will be reduced. Thus, if the dynamics of Rd is oscillation, add poles in 

cascade with G(s) that have the same dynamics. Since the poles yield large gain at these bending 

frequencies a zero is placed near the poles so that the filter will have minimal effect on the transient 



Solutions to Problems   461 

response (similar to placing a zero near a pole for a lag compensator). This arrangement of poles and 

zeros is called a dipole. Also note that a high gain at the bending frequency yields negative feedback 

for the output to subtract from Rd. Care should be exercised through analysis and simulation to be 

sure that the system's response to an input, other than the disturbance, is not adversely affected by the 

additional poles. 

40. 
a. From Chapter 8,  

                                0.6488K (s+53.85) 
             Ge(s) =    _________________________

                            (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283) 
 

Cascading the notch filter, 
                                 0.6488K (s+53.85)(s2 + 16s + 9200) 
             Get(s) =      _________________

                            (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283)(s+60)2 

Plotting the Bode plot,  

 
From the Bode plot: Gain margin = 96.74 dB; phase margin = ∞; 0 dB frequency = N/A; 1800 

frequency = 30.44 rad/s. 

b. K = 96.74 dB = 68732 

c.  In Chapter 6 K = 188444. The difference is due to the notch filter. 
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