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Preface 

In order to become proficient in any branch of technology, the knowledge 
required will have certain building blocks in its foundation. For students 
aspiring to become knowledgeable in process control, one of the important 
blocks is mathematics. As such, any student who is striving for the certifi­
cation necessary to enter the process control field can expect to be sub­
jected to one or more courses in mathematics. 

Unfortunately, courses in mathematics tend to be taught by instructors 
whose mathematical minds are far above those of their students. The same 
applies to the authors of the textbooks which are dutifully purchased as an 
adjunct to the class room teaching. What this can mean then, is that 
courses in mathematics which are intended to lead to a knowledge of pro­
cess control, can instead become an obstacle to success. The math course 
has to be passed, after all. 

When I was striving to comprehend control theory, I had trouble with the 
math personally, not so much because it was to deep for me, but because 
of the way that it was presented. There were just too many gaps in the 
explanation. Consequently, in this text I have tried to present the mathe­
matical concepts in the way that I wish they had been laid out for me. 

In my own mind, I have an admiration and respect for mathematics, 
because mathematics is basically an exercise in thinking logically. Rules in 
mathematics are always hard and fast. From my personal observations of 
the way that many process control situations are dealt with in industry, it 
is unlikely that there is any branch of technology that is more in need of 
logical thinking. 

ix 
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I confess, at the outset, that I am in no way an authority on mathematics. 
My knowledge of mathematics really doesn't go one centimetre beyond 
what this book covers. In fact, if it were not for a wonderful stroke of luck 
in which I came into contact with Mrs. Florica Pascal, I would not have 
been able to complete this text. A superior mathematician in her own 
right, Mrs. Pascal reviewed chapters, corrected mistakes, and showed me 
how to solve problems which were beyond my humble capabilities. 

All of this means that this text on mathematics was written not by an 
expert, but by an engineer who has to see, and understand, each step in 
the development of a mathematical entity. The way the text is written 
more or less bears this out. An accomplished mathematician will likely 
find it trivial or boring. But to the student of process control who has to get 
through the math course which the curriculum requires, it may just prove 
to be helpful. And, if whatever help was provided carries on into the on-
the-job phase, so much the better. 

Bob Connell 
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1 
Trigonometry and 
Cyclic Functions 

Trigonometry is a branch of mathematics concerned with functions that 
describe angles. Although knowledge of trigonometry is valuable in sur­
veying and navigation, in control systems engineering its virtue lies in the 
fact that trigonometric functions can be used to describe the status of 
objects that exhibit repeatable behavior. This includes the motion of the 
planets, pendulums, a mass suspended on a spring, and perhaps most rel­
evant here, the oscillation of process variables under control. 

Units of Measurement 
The most common unit of measurement for angles is the degree, which is 
1/360 of a whole circle. 

A lesser used unit is the radian. Although the radian is not ordinarily used 
in angular measurement, it should be understood because when differen­
tial equations, which occur in control systems engineering, are solved, the 
angles emerge in radians. 

On the circumference of a circle, if an arc equal in length to the radius of 
the circle is marked off, then the arc will subtend, at the center of the circle, 
an angle of 1 radian. The angle θ (or POB) in Figure 1-1, illustrates this. 

In line with this definition of a radian, the relationship between radians 
and degrees can be worked out. The full circumference of the circle (length 
2π r) subtends an angle of 360° at the center of the circle. An arc of length r 
will subtend an angle of 

1 
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Figure 1-1. A radian defined. 

Therefore 1 radian = 180/π deg, or π radians = 180°. 

The actual value of a radian is 57°17'45", although this value is hardly ever 
required in control systems analysis. 

If the base line OB in Figure 1-1 remains fixed and the radius OP is 
allowed to rotate counterclockwise around the center O, then the angle 6 
(or POB) increases. If the starting point for OP is coincident with OB, and 
OP rotates one complete rotation (or cycle) until it is again coincident with 
OB, then the angle 6 will be 360°. From this it is evident that 1 cycle = 360° 
= 2n radians. 

Functions of Angles 
Let θ be any acute angle for which OB is the base, and P be any point on 
the inclined side of the angle, as in Figure 1-2. A perpendicular from P 
down to the base OB meets OB at point A. 

First, the ratio of any one of the three sides of the triangle POA, to either of 
the other sides, is a characteristic of the angle 0. In other words, if any of 
the ratios PA/OP, OA/OP, or PA/OA is known, then the angle θ can be 
determined from the appropriate tables. 

Note that the values of these three ratios do not depend on the position of 
P. As P moves out along the inclined side of the angle, OP increases, but 
PA and OA also increase in the same proportion. The values of the ratios 
depend on the size of the angle 0, but not on the location of P. 
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Figure 1-2. Functions of angles. 

Definitions 
In the triangle POA, the ratio of the length of the side opposite the angle θ 
to the length of the hypotenuse, or PA/OP, is called the sine of the angle θ. 
The abbreviation sin is generally used, that is, PA/OP = sin θ. 

The ratio of the side adjacent to the angle θ to the hypotenuse, or OA/OP, 
is called the cosine of the angle θ. This is usually abbreviated cos, that is, 
OA/OP = cos θ. 

The ratio of the opposite side to the adjacent side, or PA/OA, is called the 
tangent of the angle θ. This is abbreviated tan, so that PA/OA = tan θ. 

There are, in addition, some other less common functions of the angle θ. 
These are defined as follows. 

Quadrants 
The complete circle is divided into four equal parts (called quadrants) by 
horizontal and vertical axes that intersect at the center of the circle. These 
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quadrants are numbered 1 to 4, starting with the upper right quadrant and 
proceeding counterclockwise, as diagrammed in Figure 1-3. 

Figure 1-3. The quadrants. 

When θ is an acute angle, the radius OP lies in the first quadrant. As the 
radius rotates counterclockwise and 6 increases beyond 90°, OP lies in the 
second quadrant. For θ between 180° and 270°, OP is in the third quadrant. 
For θ between 270° and 360°, OP is in the fourth quadrant. 

By definition, the measurement of the radius OP is always positive. The 
measurement OA is defined to be positive when the point A is on the right 
side of the vertical axis, and negative when A is on the left side of the ver­
tical axis. The measurement PA is defined to be positive when P is above 
the horizontal axis, and negative when P is below the horizontal axis. 

This means that sin θ, cos θ, and tan θ can have positive or negative values 
depending on the quadrant in which OP lies, which in turn depends on 
the magnitude of the angle θ. The following values consequently prevail. 

When θ = 0°, PA = 0, and OA = OP. Therefore sin θ = 0, cos θ = 1, and tan θ 
= 0. 

When θ = 90°, PA = OP, and OA = 0. Therefore sin θ = 1, cos θ = 0, and tan 
θ becomes infinite. 

When θ = 180°, PA = 0, and OA = OP in magnitude, but OA is negative and 
consequently OA/OP = - 1 . Therefore sin θ = 0, cos θ = - 1 , and tan θ = 0. 
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When θ = 270°, PA = OP in magnitude, but PA is negative, so PA/OP = - 1 . 
Therefore, sin θ = - 1 , cos θ = 0, and tan θ becomes infinite in the negative 
direction. The following table summarizes these points. 

Table 1-1. Sine, Cosine and Tangent Functions 

Quadrant 

1 

2 
3 
4 

θ 
0° to 90° 

90° to 180° 
180° to 270° 

270° to 360° (= 0°) 

sin θ 

0 to 1 

1 to 0 
0 to -1 

-1 to 0 

cos θ 

1 to 0 
0 to -1 

-1 to 0 
0 to 1 

tan θ 

0 to ∞ 

-∞ to 0 
0 to ∞ 

-∞ to 0 

The values in the table above show that the sine, cosine, and tangent func­
tions repeat themselves with time and are therefore cyclic. Periodic is 
another term that is sometimes used. The sine and cosine functions both 
cycle between +1 and - 1 , while the tangent function cycles between +∞ 
and - ∞ . 

Therefore, sine and cosine functions are useful in describing the behavior 
of objects and systems that are cyclic. As an example, an object might be 
known to cycle between the limits of 0 and 10. Its behavior y could be 
described using the sine function, as 

y = 5 sin θ + 5 = 5 (sin θ + 1). 

In this relationship, when sin θ = 1, y = 10, and when sin θ = - 1 , y = 0. 

Frequency of Cycling 
If the motion of an object is linear, the distance traveled is equal to the 
average velocity of the object multiplied by the elapsed time. In symbol 
form, 

s = v t 

where s is in metres, v is in metres per second, and t is in seconds. 

The equivalent relation for rotational motion, as in the case of the radius 
rotating around the center of its circle, is that the angle swept through is 
equal to its angular velocity multiplied by the elapsed time, or in symbol 
form, 

θ = ωt 

where θ is in radians, ω (the Greek letter often used for angular velocity) is 
in radians per second, and t is in seconds. 
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Thus, the function sin cot rather than sin 6 may be used to describe the 
behavior of objects and systems that cycle on a time basis. These include 
the motion of the planets, pendulums, masses suspended on springs, and 
the variation with time of temperature, p, and other plant variables that 
are being controlled. 

It is a rule of mathematics that the argument of a sine or cosine function 
does not have units, or in mathematical terms, it is dimensionless. Conse­
quently if t, which has units of seconds, is in the argument, then the sec­
ond factor ω must have units that are the inverse of time to balance off the 
time units. In the basic form, these units will be radians per second. How­
ever, radians per second are not particularly appropriate for many cyclic 
applications. Cycles per second (Hertz, Hz), which are the units for fre­
quency, would be more practical. 

If the radius is rotating continuously around its circle, then one complete 
revolution from zero back to the starting point constitutes one cycle. Its 
rotational speed is ω radians per second, while its frequency of rotation 
will be f cycles per second, or Hz. 

However, it takes 2n radians to fill out one complete circle, or one cycle. 
Therefore, 

Therefore, it is possible to write sin θ = sin cot = sin 2π f t. In this way, the 
frequency of the cyclic behavior is identified within the sine function. 
Functions involving cyclic behavior with time will invariably have a sin cot 
or sin (2πf t) term or a cosine term with similar arguments. 

Figure 1-4. Trigonometric function relationships. 
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Interrelationships 

If any one of the trigonometric functions (the sine, cosine, or tangent) is 
known, then the angle is known. It follows that if any one of the functions 
is given, the others can be found from it. Consequently, relationships must 
exist between the various trigonometric functions. 

In Figure 1-4, 

2. Since OAP is a right angle triangle, it follows that, 

(OP)2 = (PA)2 + (OA)2 . 

Therefore, 

Thus, sin2θ + cos2θ = 1. 

One relationship that is not valid is that the sine of the sum of two angles is 
equal to the sum of the sines of the individual angles. In other words, if the 
angles are called X and Y, then sin (X + Y) is not equal to sin X + sin Y. The 
same is true for the cosine and tangent functions. 

Sine of the Sum of Two Angles 
In Figure 1-5, the angle POA is the sum of an angle X and another angle Y 
PC is a perpendicular from point P to the common side OC of the angles X 
and Y. CD is a perpendicular from point C to the side PA at D. CE is the 
perpendicular from point C to the extension of OA at point E. 

Developing this further, in triangles OFA and PFC, 

Angle OFA = angle PFC, 

Angle OAF = angle FCP = 90°. 

Therefore, angle FPC = angle FOA = angle X. 
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Figure 1-5. Sum of two angles. 
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Sine of a Difference Between Two Angles 

The sine of the difference between two angles can be determined in a sim­
ilar manner. 

Figure 1-6. Difference between two angles. 

In Figure 1-6, the angle POA is the difference between an angle X (COA) 
and another angle Y (COP). PC is the perpendicular from P to the common 
side OC of angles X and Y. CD is the perpendicular from C to OA. PE is the 
perpendicular from P to CD. 

Examining this further, 

Triangle ODC is a right angle triangle, therefore Angle COD + angle OCD 
= 90° = Angle OCD + angle ECP, from which Angle ECP = angle COD = X. 

CE/CP = cos (angle ECP) = cos X, and sin (X - Y) = sin X cos Y - cos X sin Y. 



Example 2: sin 2X - sin 2Y 

Show that (sin 2X - sin 2Y) = 2 cos (X + Y) sin (X - Y). 

Evaluating the right side of the equation: 

RS = 2[(cosXcosY - sinXsinY)(sinXcosY-cosXsinY)] 
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Cosine of a Difference 

In Figure 1-6, cos(X - Y) = cos(angle POA) = OA/OP. 

Potentially Useful Relationships 

The following three relationships often figure in the resolution of prob­
lems and, as such, are worth remembering. 

1. sin2 X + cos2 X = 1 (developed previously). 

2. sin 2X = sin (X + X) = sin X cos X + cos X sin X = 2 sin X cos X. 
A useful variation of this is 

sin X = 2 sin X/2 cos X/2. 

3. cos 2X = cos (X + X) = cos X cos X - sin X sin X = cos2 X - sin2 X. 

Example 1: Tan (X + Y) 

Evaluate tan (X + Y). 

tan (X + Y) sin (X + Y) = sin X cos Y + cos X sin Y 
cos(X + Y) cos X cos Y - sin X sin Y 
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= 2[(sinXcosX)(cos2Y + sin2Y)-(sinYcosY)(cos2X + sin2X)] 

= 2 sinXcosX - 2sinYcosY = sin2X - sin2Y. 

Example 3: Radius of the Earth 
Many people believe that the fact that the earth is round was first pro­
moted by Christopher Columbus, and that on the basis of this knowledge 
he sailed off westward to discover the new world. In reality, the credit 
should go to a Greek scholar, Erathosthenes, who lived in the third cen­
tury B.C. 

As the story goes, about 800 km from Alexandria, Egypt, a shaft had been 
dug that was exactly plumb. This shaft was used by astronomers as a 
check on the calendar, since there was just one day out of the entire year in 
which one could stand at the bottom of the shaft and see the sun. Erathos­
thenes knew about the shaft. 

On the specific day that the sun's rays lit the bottom of the shaft, Erathos­
thenes was in Alexandria and he noticed that a statue was casting a 
shadow. This was somewhat surprising because if the surface of the earth 
were flat, there should be no shadow at all. The only plausible explanation 
was that the earth's surface, or at least that portion of it between Alexan­
dria and the shaft, must be curved. 

Erathosthenes measured the height of the statue and the length of the 
shadow. Since these two measurements formed the tangent of the angle 
between the statue and the rays of the sun that fell upon it, he could then 
calculate the angle, which was 7°. 

From Figure 1-7 (out of proportion), it can be seen that the angle formed 
by the statue and the sun's rays is the same as the angle subtended by the 
two radii emanating from the center of the arc to the shaft and the statue. 
This would be dependent on the correctness of the assumption that the 
sun is so much larger than the earth that its rays are all parallel when they 
arrive at the earth, which is reasonable enough. 

It was then only a matter of applying the relation: a (arc) = r x θ (radians). 
The arc is 800 km. θ is 7° or 0.122 radians. From this, r = 6550 km. 



12 Basic Math for Process Control 

Figure 1-7. Erathosthenes' brilliant deduction. 

Using more sophisticated modern techniques, the mean radius of the earth 
has been computed to be 6371 km, so the error in Erathosthenes calcula­
tion was less than 3%. As an afterthought to the story, Columbus likely 
knew about this gem of knowledge, which was brought to light 17 centu­
ries previously by Erathosthenes. In fact, in the time of Columbus, it is 
probable that many educated people knew that the earth had to be round, 
not flat. 

Example 4: The Third Side 

In the triangle in Figure 1-8, the lengths of two of the sides, a and b, are 
known, as is the angle θ between them. What is required is to develop an 
expression involving a, b, and θ, from which the length of the third side, c, 
can be calculated. 

In the triangle, draw a perpendicular from the apex down to the base. This 
divides the base a into two segments, z1 and z2, so that z1 + z2 = a. The 
length of the perpendicular is z3. 

z1/b = cos θ, so that z1 = bcos θ. Similarly, z3 = bsin θ 

z2 = a - z1 = a - bcosθ 
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Figure 1-8. Third side problem. 

Example 5: Gain and Phase Lag 

This example is potentially useful in designing a computer program that 
will determine the gain and phase lag in a closed loop control system. In 
Figure 1-9, OA is a vector whose magnitude is G units and whose orienta­
tion with respect to the horizontal axis is the angle a. AB is a vector that is 
1 unit in length and has no phase angle. It always lies parallel to the hori­
zontal axis and points in the positive direction. 

OB is a vector that is the vector sum of the vector G and the unit vector. 
The objective is to develop two expressions that a computer can use to cal­
culate the magnitude G1 and phase angle a1 of the vector OB, if given the 
magnitude of G and its phase angle a. 

When writing a computer program of this type, it should be kept in mind 
that computer programs that do mathematics deal with angles in units of 
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Figure 1-9. Determining closed loop gain and phase lag. 

radians, not degrees. Thus, if angle a is specified in degrees, it must be 
multiplied by the factor 0.0174 5 (π/180). 

In the diagram, the angle OAC is equal to angle a. 

OC/G = sina 

Therefore, OC = G sin a. Similarly, CA = G cos a. 

CB = CA + 1 

Once again, when the computer calculates the value of the angle a1, the 
units of a1 will be radians not degrees. 



2 
Differential Calculus 

Mathematical relationships are constructed around variable quantities 
(called variables for short). The relationship shows the way that the value 
of one of the variables changes when the values of the other variables 
change. 

This implies that in each relationship there is one variable whose value is 
dependent on the values of the other variables. It is consequently called 
the dependent variable, while the other variables are called the independent 
variables. 

The way in which some mathematical relationships are structured often 
leaves doubt as to which of the variables is the dependent variable. The 
question becomes more difficult to answer as the number of variables in 
the relationship increases. 

In the control systems engineering field, however, many relationships con­
tain only two variables. Furthermore, one of the variables will be time 
(designated t). Since a unique characteristic of time is that it pursues its 
uniform and relentless course into eternity, unaffected by anything else, it 
is obvious that time cannot be dependent on any other physical variable. 
Consequently, in all control systems relationships that involve time, it 
must be the independent variable. 

The relationships that are most common in control systems engineering 
generally show how some dependent variable, which could be distance, 
temperature, pressure, and so on, varies with time. If the dependent vari­
able is represented by x, then it can be stated that "x is some function of 
time." In the shorthand of mathematics, this is written x = f (t). 

15 
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Notice that what this shorthand relationship is telling us is not only that 
the value of x is dependent on the value of t, but perhaps more important, 
that the value of x depends only on the value of t, and not on the value of 
any other variable, such as n, y, θ, etc., whatever these characters may rep­
resent in the real world. If a number of functions were involved, these 
might be distinguished by labeling them f1 (t), f2 (t), and so on. 

It will often be useful to plot the values of the dependent variable over a 
range of values of time. When making the plot, it is customary to plot the 
values of the independent variable (t) along the horizontal axis and the 
corresponding values of the dependent variable (x, θ, or whatever) along 
the vertical axis. Figure 2-1 is an example. If the resulting plot is a curve 
that has no breaks or gaps, then the function is said to be continuous. The 
relationships that arise in control systems engineering can generally be 
counted on to be single valued, meaning that for each value of t there is only 
one value of the dependent variable. 

Concept of Approaching a Limit 
When we are first introduced to mathematics, we get the impression that it 
is an exact science. The rules of mathematics have no exceptions. Every­
thing is based on the concept that something must be equal to something 
else. 

Later, our confidence is shaken when we learn that mathematicians are 
also concerned with not only what a particular variable is equal to, but 
also what value that variable may be approaching. This may occur when 
some other variable, on which the first variable is dependent, approaches 
its limiting value, which often proves to be zero. Sometimes this appar­
ently nebulous procedure is justified to get around certain complications, 
one of which might be division by zero. For example, suppose that 

x = f(t) = t2 - t - 6/t - 3. 

What will be value of x when t approaches 3? The function is undefined 
for t = 3 since division by zero does not compute. However, it turns out 
that if the denominator (t - 3) is divided into the numerator, the result is 
(t + 2). This being the case, the value of x approaches 5, not infinity, as 
t approaches 3. 

A small change (increment) in a variable such as t is usually called delta t 
and is written Δt. While Δt is a small change, it is nevertheless measurable, 
in whatever units are appropriate. As Δt is made smaller and smaller, a 
point is reached where we have to ask, "How much smaller can it get 
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without being zero?" In the mathematical sense, it is at this point where Δt 
becomes the differential of t, which is identified by dt. In mathematics 
shorthand, the limit of the ratio Δx/Δt as Δt approaches zero is written 

This limit, if it exists, becomes dx/dt , and it is termed the derivative of x 
with respect to t. The function x = f(t) is then said to be differentiable. The 
ability to differentiate the function f(t) will require not only that the func­
tion be continuous, but also that when it is plotted, there are no corners in 
the graph. 

When dealing with increments and with differentials in the determination 
of limiting values of variables and functions, there is a basic rule with 
which one need to be familiar. This rule says that in the determination of 
the limiting value of a derivative, as the value of the increment of the inde­
pendent variable approaches zero, products and powers of incrementals 
become insignificant and can be discounted. Specifically, if terms such as 
Δx2, Δt2, or (ΔxΔt) emerge, then they can be ignored. This rule must be on 
board as other derivative functions are developed. 

Figure 2-1 is a graph that shows the variation of a dependent variable x 
with values of the independent variable t. For any specified value of t 
within the range of the graph, there will be a corresponding value of x, as 
shown by point P in the graph. Suppose that the value of t increases a 
small amount. Once again in mathematical shorthand, this small change in 
t is generally designated Δt. The increase in t will cause a change in x, 
which will be designated Δx. Depending on the nature of the function f (t), 
Δx may be positive or negative. Point Q is the new point whose coordi­
nates are t + Δt, and x + Δx. 

From the graph it can be seen that the ratio Δx/Δt is the slope of a line that 
passes through the points P and Q. Furthermore, if Δt, and consequently 
Δx, were made smaller and smaller, then point Q will approach point P, 
and the slope of the line through points P and Q will approach the slope of 
the graph x = f (t) at point P. 

The slope of the graph x = f (t) at point P can actually be obtained by deter­
mining the value of the ratio Δx/Δt as Δt approaches zero. When Δt is 
made smaller and smaller, point Q will approach point P, and the slope of 
the line through points P and Q will approach the slope of the tangent line 
to the graph x = f(t) at point P. Ultimately, the slope of the graph x = f(t) at 
point P will be equal to the rate of change of the dependent variable x with 
t at point P. 
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Figure 2-1. A Differentiable Function. 

Example 1: f(t) = t2 

Suppose that x = f (t) = t2. 

Starting from any point t, x, as t changes by an amount Δt, x will change by 
an amount Δx, which produces a new point t + Δt, x + Δx. However, this 
new point is also on the graph x = t2. 

Therefore, (x + Δx) = (t + Δt)2. 

Expanding this, x + Δx = t2 + 2t Δt + (Δt)2. 

Since x = t2, these two items can be subtracted from the left and right sides, 
respectively, of the equation. 

Therefore, Δx = 2t Δt + (Δt)2, and dividing through by Δt, 

Δx/Δt = 2t + Δt. 

In the example above, as Δt approaches zero, the equation Δx/Δt = 2t + Δt 

consequently becomes dx/dt = 2t . 
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An important characteristic of the derivative expression is that it can iden­
tify the slope of the graph x = f (t) at any point established by a selected 
value of t. Therefore, the slope of the curve x = t2 will be equal to 2 t any­
where along the curve. 

Procedure for Determining a Derivative 
The general procedure for determining a derivative expression is to substi­
tute (x + Δx) and (t + Δt) in the relation x = f (t), evaluate the ratio Δx/Δt, 
and then determine the limiting value of Δx/Δt as Δt approaches zero. The 
limiting value thus determined will be dx/dt, the derivative of x with 
respect to t. 

Derivative of a Sum or Difference 

Suppose that x is the sum of two differentiable functions designated u and 
v, in which u = f1 (t), and v = f2 (t). Since x, u, and v are all functions of t, 
when t becomes (t + Δt), x becomes x + Δx, u becomes u + Δu, and v 
becomes v + Δ, so that (x + Δx) = (u + Δu) + (v + Δv). Since x = u + v, they 
will drop out of this equation leaving Δx = Δu + Δv. 

What this reveals is really a basic rule, namely, that the derivative of the 
sum of two functions is equal to the sum of the individual derivatives. 
This rule can be extended, without difficulty, to show that the derivative 
with respect to t (or any other independent variable) of the sum or differ­
ence of any number of functions of t, is equal to the sum or difference of 
the individual derivatives. 

Derivative of a Product 

Suppose that x = u x v, where x, u, and v are all differentiable functions of 
the independent variable t. With a small change in t, t becomes t + Δt. This 
results in incremental changes in x, u, and v, so that x + Δx = (u + Δu) (v + 
Δv) = uv + u Δv + v Δu + Δu Δv. 

Since x = uv, Δx = u Δv + Δu (v + Δv). 
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The function v = f1 (t) is differentiable, so that as Δt approaches zero, Δv 
approaches zero. Therefore, 

Derivative of a Quotient 

As before, x, u, and v are all differentiable functions of the independent 
variable t, and it is given that x = u/v . If t should change incrementally to 
t+At, x will become x + Δx, which will be equal to 

u + Δu 
v + Δv . 

Therefore, 

Dividing both sides by Δt: 

As Δt approaches zero, Δv approaches zero. Consequently, 

Dimensions and Units 

A requirement of mathematics is that the argument of a trigonometric 
function, or the exponent of an exponential function, be dimensionless, 
that is, it should not have units. Specifically, in functions such as sin 8, cos 
θ, and eθ, the variable θ must not have units associated with it. 

This is why it is not appropriate to use the variable t as the argument or 
exponent in trigonometric or exponential functions because in control sys­
tems studies, t usually stands for time, and time has definite units of sec­
onds, minutes, or hours. If time does appear in the argument or exponent 
of functions of these types, then it has to be compensated for by coupling it 
with a second variable such as omega (ω). For the combination ωt to be 
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dimensionless, the units of ω must be the inverse of time. If the units of ω 
are radians per second or cycles per second, this will meet the requirement 
because angles in radians and cycles or revolutions have no units, and the 
"per second" dimension in the Ω compensates for the "seconds" in the t. 

Derivative of a Sine Function 

Given the function f (θ) = x = sin θ, as θ becomes (θ + Δθ), sin (θ + Aθ) 
causes x to become (x + Δx). Accordingly, 

x + Δx = sin (θ + Aθ) = sin θ cos Δθ + cos θ sin Δθ 

Δx = sin θ cos Δθ + cos θ sin Δθ - x = sin θ cos Δθ + cos θ sin Δθ - sin θ. 

It is a fact of mathematics that when the magnitude of an angle (θ) 
approaches zero, then the value of sin θ approaches the value of θ. The 
numbers in the table following bear this out. 

Table 2-1. Magnitude of an Angle (6) 

θ degrees 
10 
8 
6 
4 
2 

θ radians 
0.1745 
0.1396 
0.1047 
0.0698 
0.0349 

sin θ 
0.1736 
0.1392 
0.1045 
0.0698 
0.0349 

cos θ 
0.9848 
0.9903 
0.9945 
0.9976 
0.9994 

Also, as θ approaches zero, cos θ approaches 1. Therefore, as Δθ 
approaches zero, Δx approaches sin θ + cos θ (Δθ) - sin θ = cos θ(Δθ), and 
Δx/Δθ approaches cos θ. 

Thus the derivative d/dθ sin θ = cos θ. 

Binomial Theorem 

As a prerequisite to obtaining the expression for the derivative of the inde­
pendent variable raised to a power other than one, some familiarity with 
the binomial theorem and the expansion for the power of a sum is helpful. 
Some of the terms in this expansion contain factorial quantities. A factorial 
applies only to positive integers, and in mathematical shorthand, the fac­
torial operator consists of an exclamation mark (!) following the integer. 

The factorial of a number (positive integer) is equal to the number multi­
plied by all of the numbers less than itself, in sequence, down to the num­
ber one. Thus, factorial 5 would be 5! = 5 x 4 x 3 x 2 x 1 = 120. 
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In general, n! = n x (n - 1) x (n - 2) x ... x 3 x 2 x 1, assuming that in this 
statement, (n - 2) is a number larger than 3. 

The expansion for the expression (a + b)n using the binomial theorem is: 

The expansion ends with the term that has (a (n - n) = a0 = 1) x bn. 

As a test of the theorem, set n = 4. Then, 

which is the same result as would be obtained by multiplying (a + b) by 
(a + b) three times algebraically. 

Derivative of a Power 
Given that x = tn, if t changes to t + Δt, then x becomes x + Δx, and the 
new relation is (x + Δx) = (t + Δt)n. Using the binomial theorem to expand 
(t + Δt) n , 

Since x = tn, x can be removed from the left side, and tn from the right. 

Dividing by Δt, 

As Δt approaches zero, all of the terms on the right side except the first 
term approach zero because they are multiplied by some positive power of 
Δt. Therefore the limit condition is 
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Thus, if x = t3, then dx/dt = 3t2. 

This relationship is also valid if n is a fraction. Suppose that x = ? = t½. 
Then, 

In fact, n can be any real number. 

Derivative of an Exponential 
Given that x = ep , what will be the value of dx/dp? 

The easiest way to determine the derivative is to express e p in its power 
series form. (This is developed in Chapter 4.) 

Taking the derivative of the series, term by term, 

which is the original function. Consequently, 

d/dp ep = ep . 

The power series for sin θ and for cos θ are both developed in Chapter 4. 
By taking the derivative of the series for sin θ, term by term, it becomes the 
series for cos θ, which verifies that the derivative of sin θ is cos θ. If the 
derivative of the series for cos θ is taken, term by term, it becomes the 
series for sin θ, multiplied by (-1). Hence the derivative of cos θ is -sin θ. 

A table of derivatives of selected functions of t is on page 29. 

A Function Within a Function 
In working out derivative expressions, there is a trap into which an 
unwary student can fall, and it is associated with taking the derivative of a 
function that has a second function within it. 
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If x = sinθ, then dx/dθ = cosθ. But if x = sinθ2 , dx/dθ is not equal to cosθ2 . 

In the second case, θ2 is not θ but a function of θ within the sine function. 

Similarly, if x = ep, then dx/dp = ep; but if x = eap, dx/dp is not equal to eap. 

Even though a x p is the simplest possible function of p, it is nevertheless a 
function. 

The first step in dealing with the problem of the derivative of a function 
that has another function imbedded in it is to recognize that there is a com­
plication, avoiding the trap described. Then, the procedure is to introduce 
an intermediate variable (u or whatever) and set it equal to the function 
inside of the base function. The required derivative can then be worked 
out by using the relationship 

Given that x = sin θ2, what is the derivative? 

Designate the intermediate function u = θ2. Then, 

Example 2: Detecting a Maximum or Minimum 
One use of the derivative function is that it can often detect the presence of 
a maximum or minimum point within the original function. This is due to 
the fact that when the function passes through a maximum or minimum, 
the slope of the tangent to the curve is horizontal, and the value of the 
derivative is zero. Consider the function 
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Figure 2-2. Graph of the function y = ¼(6x - x2 - 1). 

This is a parabolic function in the variable x. As can be seen from Figure 
2-2, it peaks at x = 3. The peak value is y = 2. The peak point and its value 
can be calculated by taking the derivative with respect to x and equating it 
to zero. 

from which (6 - 2x) = 0, and x = 3. 

Substituting x = 3 into the original function, 

y = 1 8 - 9 - 1 / 4 = 2 . 

Example 3: Watering the Lawn 

In another example, suppose that you wish to water your lawn, but your 
garden hose will stretch only to the midpoint of the lawn. You know from 
experience that to get the water to reach farther, you need to tip the nozzle 
upward. Intuition tells you that the water will reach the farthest point pos­
sible in the horizontal direction if you tilt the nozzle upward at an angle of 
45°. At an angle less than 45°, the water jet falls short. If the angle is greater 
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than 45°, the jet travels upward rather than outward and again falls short. 
The optimum angle appears to be 45°, but can this be proven? 

In Figure 2-3, the nozzle is tilted upward at an angle θ to the horizontal. 
The water jets from the nozzle with a velocity w. The horizontal compo­
nent of the velocity is w cos θ. Thus the distance S the jet will travel out­
ward will be the product of its velocity and its time of travel, that is 
S = wcosθ x t. 

The value of t can be determined from the upward component of the 
velocity, which is w sinθ. The basic relation is v = u + at, where u is the ini­
tial velocity of the object, v is its final velocity, and a is its acceleration over 
the timed interval. Rearranging this, 

t = v - u/a. 

Figure 2-3. The optimum angle (© Washington Post Writers Group). 

For the jet of water, the initial velocity is w sinθ, assuming that velocities in 
the upward direction are positive. The acceleration due to gravity (-g) will 
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cause the velocity of the jet to decline to zero and then fall back to earth. Its 
velocity on returning will be the same as when it started out, but in the 
opposite direction, that is, - w sinθ. Accordingly, 

The required relationship between the horizontal distance the jet will 
travel, (S), and the angle θ of the nozzle, will be 

The derivative of S with respect to θ will be dS/dθ = w2/g x cos2 θ x 2. 

Since w, g, and the factor 2 are all constants, the derivative will be zero 
when cos 2θ is zero, which will be when 2θ is 90°. Therefore the distance S 
will be maximum when θ is 45°, which fortunately verifies the intuitive 
conclusion. 

Table 2-2. Some Common Derivatives 
Function F(t) 

a (constant) 
a t 
tn 

sin cot 
cos ωt 
tan cot 

e ω t 

e-ωt 

loget = |ln|t 

For u and v both functions of t: 
u + v 

u v 

u/v 

Derivative 
0 (zero) 

a 
n t ( n - 1 ) 

ωcos ωt 

- ω s i n ωt 

ω / c o s 2 ω t 

ωeωt 

-ωe-ωt 

1/t 

du/dt + dv/dt 

udv/dt + vdu/dt 

vdu/dt - udv/dt/v2 



3 
Integral Calculus 

Integral calculus has as its basis the mathematical operation of integration, 
which is generally considered to be the reverse of the operation of taking 
the derivative of a function. What this means is that in some problems, the 
derivative d x / d t is known, and the requirement is to determine the origi­
nal function f (t) for which dx /d t is the derivative. This can often, though 
not always, be done through integration. 

Integration is always performed on the differential of a variable. The 
quantities dt and dx are the differentials of the variables t and x, respec­
tively. If the relation x = f (t) is given, then the function of t, which is 
obtained by evaluating the derivative dx/dt , is customarily designated 
f'(t). That is, 

The relationship between the differentials of x and t, (dx and dt), is conse­
quently 

dx = f ' ( t)dt . 

Differentiation is the process of obtaining the differential of a function. Inte­
gration, the inverse operation, involves obtaining the original function 
from the differential. The integration operation is flagged by the ∫ integra­
tion sign. 

In mathematical symbology, dx = f'(t) dt identifies the differentiation oper­
ation, while Jf'(t) dt = f(t) - x identifies the operation of integration. 

29 



30 Basic Math for Process Control 

Problem Areas 

Integration differs from differentiation in one notable respect—while it is 
always possible to differentiate any function involving the independent 
variable, it is not possible to integrate all such functions. Certain functions 
cannot be integrated. This is because although every function has a deriva­
tive, not every function is the derivative of some other function. 

Unlike differentiation, integration is not a straightforward mechanical pro­
cedure. In fact, the basis of performing integration in most cases is having 
available a table of integration formulas, which has been prepared over 
time by inverting various formulas for differentiation. For example, the 
fact that 

is only known because it is known that 

If the function f'(t) dt is to be integrated, the problem is usually one of 
manipulating the function so that it is compatible with some formula in 
the table of integrals. 

Another complication is that any function that can be integrated will have 
more than one integral; in fact, it will have many integrals. It can been 
proven, fortunately, that if two separate functions are both integrals of 
another function, then these two functions can differ only by a constant. 
Since it is obligatory to state the solution to a problem of integration in its 
most general form, it is customary to add on an arbitrary constant to the 
function obtained by integrating. That is, 

Note that 

since the derivative of a constant is zero. 

In a specific problem, the constant C may have a particular value, which 
can be determined by applying initial conditions. 
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Practical Uses of Integration 

Integration has practical value in at least three areas. 

• If the rate of change of the dependent variable is known, integration 
over a specified range of the independent variable will yield the 
cumulative value of the dependent variable over the chosen range. 

• An offshoot of this is the ability to calculate the area under a 
specified section of a curve. This area, divided by the length of the 
base under the curve, will give the true average value of the 
dependent variable represented by the curve over the given range. 

• The solution of differential equations that describe the dynamic 
behavior of certain control system components requires the 
capability to do integration. 

A limited list of integration formulas is contained on page 50. 

Example 1: Powers and Constants 

The formulas in the table on page 50 show that integration is no problem if 
the expression to be integrated involves only constants and powers of the 
variable. 

Integrate the expression a + bx + cx2, where a, b, and c are constants. 

Example 2: sin3 x 

This example can clarify two important points regarding the integration 
process. First, the integration rule which applies to powers of the variable 
involved, does not apply to powers of functions of that variable. 

Specifically, 
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This is a trap into which many students have fallen. 

The second point concerns a maneuver that sometimes is needed to effect 
the integration. It involves forcing part of the function to be integrated 
past the differential sign, so that instead of integrating with respect to the 
variable involved, the integration is carried out with respect to a function 
of that variable. This sounds complicated, but the example will help to 
simplify the process. 

Note that ∫sin3 × d x = ∫sin2 x x sin x dx. By forcing the function sin x past 
the differential sign, sin x dx becomes d (-cos x). The expression inside the 
brackets is in fact ∫sin x dx. To confirm that this procedure is mathemati­
cally correct, 

d/dx(-cosx) = sin×, so that d(-cosx) = sinxdx. 
dx 

Since sin2 x + cos2 x = 1, then sin2 x - 1 - cos2 x. Therefore, 

The integration can now be done on a term by term basis. For conve­
nience, let cos x = u. On substituting, the expression becomes 

Therefore, 

To verify that the integration has been done correctly, the result should be 
differentiated. 
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Example 3: cos 2x 

This example illustrates still another trap to be avoided. The table of inte­
grals shows that ∫cos x dx = sin x + C. From this one could conclude that 
∫cos 2x dx = sin 2x + C, but this is not correct. 

Substitute u=2x. Then 

The fact that any differential will be a product of a function f' (x) multi­
plied by dx, and that these two expressions must be compatible when inte­
gration is performed, must be respected. Failure to do this is probably the 
biggest single cause of mistakes when working out integrals. For the dif­
ferential term d () , what is inside the brackets has to be correct. Cos 2x dx 
cannot be integrated as it stands. Cos 2x d(2x) is required to compute. 

Example 4: Substitution of Variables 

Success in integrating a function often depends on an artful substitution of 
variables, which in turn depends on experience. 

Example 5: Fractions 

If the expression to be integrated is a fraction, consideration should be 
given to trying to put the entire numerator under the differential sign. The 
method of solution may then become apparent from the new appearance 
of the expression. Bear in mind that a constant can be added or subtracted 
to a function under the differential sign d( ) without altering the mathe­
matical correctness. Specifically, dx = d (x + a) = d (x - a). 
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Example 6: Using Partial Fractions 

A fraction in which the numerator and the denominator both consist only 
of powers of the independent variable, is called a rational function. The 
expression that was integrated in Example 4 is in this category. If the 
numerator of the rational function is of a lower degree than the denomina­
tor, another approach to integrating the expression may be to break the 
expression into partial fractions. 

For example, it is required to integrate 

In this case the denominator will factor into (x - 3) and (x + 1). 

provided that values for P and Q can be determined. Then, 
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Comparing this numerator with the original numerator 10 x + 6, it is clear 
that (P + Q) = 10, and (P - 3Q) = 6. From these two equations, P = 9, and 
Q = 1. 

Consequently, 

which can be easily integrated. 

Example 7: Numerator Higher Order than Denominator 

If the numerator of the rational function is of a higher order than the 
denominator, then the approach is to divide the denominator into the 
numerator and integrate the results. 

Example 8: Changing to an Angular Mode 

If an expression contains factors such as x, a (a constant), and ?a2 - x2 , it 
might be useful to switch to a new variable θ, where θ is an acute angle in 
a right angle triangle for which 
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The ratio could be represented as the tangent of the angle θ in 

Figure 3-1. Consequently, let 

Example 9: sin2 x 

Evaluate ∫sin2 ×dx. 

A word of caution here that is worth repeating: The rule that governs inte­
grating powers of a variable does not apply to integrating powers of func­
tions of the variable. Specifically, while 

To integrate the function sin2 x, the function has to be converted into a 
more workable form, which turns out to be 
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In Chapter 1 on trigonometric functions, the expression for the cosine of a 
sum was developed. 

Example 10: Square Root of (a2 - x2) 

Sometimes the solution for one integral will provide a means of solving 
another. The integral 

looks as though it should be fairly simple to evaluate but proves to be oth­
erwise. The approach is to convert to the trigonometric mode. 
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Figure 3-2 is a right angled triangle with its hypotenuse equal to a, and the 
side opposite the angle 9 equal to x. 

?a2-x2. 
This makes the remaining side ?a2 - x2 . 

Figure 3-2. The trigonometric mode. 

In this triangle, 

However, the solution should be in terms of x and a, not 9 and a. 
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Integration Over a Specified Range 

So far, the integration process has resulted in integrals that are general in 
nature, in the sense that after integration has been performed, it is neces­
sary to add a constant to the integral. This recognizes the fact that if two 
functions of the same independent variable differ only by a constant, then 
they will have the same derivative. 

In some problems, however, the requirement is to integrate the expression 
over a specified range of the independent variable. In these cases, the con­
stant does not apply, but it is necessary to identify what the upper and 
lower limits of the integration are to be. These limits are specified mathe­
matically by placing them at the top and bottom of the integral sign. After 
the integral of the function has been determined, the final result will be the 
value of the integral at the upper limit of the independent variable, minus 
the value of the integral at the lower limit of the independent variable. The 
example below should help to illustrate this. 

Example 11: Tank Filling Case 

Figure 3-3 shows a 200 litre tank, which is being filled with a liquid by 
gravity from a large reservoir. The reservoir is large enough that drawing 
off 200 litre will not appreciably change its level. The driving force that 
moves the liquid is proportional to the difference in the levels of the tank 
and the reservoir. When the valve is opened, the initial flow rate is 2 l/s 
into the tank, but as the tank fills, this difference decreases, the driving 
force diminishes, and the rate of flow falls off. 

Figure 3-4 shows how the flow rate decreases over time, starting at 2 l/s at 
t = 0. The relationship shown by the graph is typical of situations in which 
the driving force that creates the change in the dependent variable is in 
proportion to the difference between the instantaneous value of the 
dependent variable and its ultimate value over time. As the dependent 
variable approaches its ultimate value, in this case zero flow, the driving 
force falls off, as does the rate of change of the dependent variable. 

If x is the liquid flow rate, the equation of the graph will be x = 2.0e-.005t. 
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Figure 3-3. Tank Filling. 

Figure 3-4. Flow into the tank decreases with time. 

In this relation, x is in litres per second and t is in seconds. The factor 0.005 
is set by the resistance to flow of the valve and piping and the cross sec­
tional area of the tank. 

If the flow rate into the tank were maintained at the initial rate of 2 l/s, 
then the tank would fill up in 100 s. A logical question might be how much 
liquid will actually be in the tank after 100 s, considering that the flow rate 
decreases as time goes on? To determine this, it is necessary to integrate 
the function x = f (t) over the range t = 0 to t = 100. The cumulative flow 
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value is actually represented graphically by the area under the curve from 
t = 0 to t = 100. It is this area value that the integration will hopefully 
reveal. 

The average flow rate over this time period would be 157 l in 100 s or 1.57 
l /s . 

The solution to this example is fraught with mathematical shorthand. To 
avoid possible misunderstanding, 

[ e
- . 0 0 5 t ] 0

1 0 0 means the value of e-.005t when t = 100, minus the value of 

e-.005t when t = 0. 

The next set of examples illustrates the principle of arriving at the desired 
solution by first setting up a differential increment of the entity to be 
determined, then integrating that increment over the relevant range to 
obtain the complete entity. 

Example 12: Area of a Circle 

The circumference of a circle is equal to 2n X the radius of the circle. Start­
ing with this basic fact, the area of a circle can be determined by integra­
tion without much difficulty. 

Figure 3-5 shows a circle with a radius r. Inside this circle is an elemental 
ring of width dx at a distance x from the center of the circle. The area 
inside the elemental ring will be the product of its length and width, that 
is, 2n x times dx. If this expression can be integrated from x = 0 to x = r, this 
will determine the area of the circle itself. 

This result, of course, is a revelation to no one. 

Example 13: Surface Area of a Sphere 

A similar procedure can be used to determine the surface area of a sphere. 
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Figure 3-5. Area of a circle. 

Figure 3-6 shows a sphere with a radius r. Distance on the surface of the 
sphere is represented by the variable a. In this case, a = arc PB. The ele­
mental surface is a ring around the outside of the sphere. Its width will be 
da. Its length will be 2Π times the distance AP. 

Figure 3-6. Area of a sphere 

If the radius vector makes an angle θ with the horizontal axis, then for an 
incremental change dθ in θ, 

da = r x dθ. 
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Consequently, the expression to be integrated is 2π x r cos θ x r dθ. The 
expression should be integrated between the limits θ = - 90 degrees to θ = 
+90 degrees. In radians, this means -π/2 to + π/2. 

Example 14: Volume of a Sphere 
The integration process can also be used to determine the volume of a 
sphere. 

Figure 3-7 shows a sphere with a radius r. The incremental element is a 
disc cut through the sphere at distance y from the origin. The radius of the 
disc is the distance AB, and its thickness is dy. 

Figure 3-7. Volume of a sphere. 
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Since the triangle OAB is right angled, 

(AB)2 + y2 = r2, and (AB)2 = r2 - y2 . 

The volume of the elemental disc will be π (AB)2 x dy = π (r2 - y2) dy. 

To arrive at the volume of the sphere, this expression must be integrated 
from the bottom of the sphere to its top, which means from - r to + r. 

Example 15: The Escape Velocity 

Determine the vertical velocity that a mass m would have to be given at 
the surface of the earth to break free from the gravitational pull of the 
earth and remain in orbit. This velocity is sometimes called the escape 
velocity. 

It is a fact of physics that work and energy are interchangeable. Accord­
ingly, the approach to this problem is to calculate the work that would 
have to be done in moving the mass from the earth's surface out into space 
where the gravitational pull of the earth is no longer effective. Then the 
kinetic energy that the mass must have as it starts out must equal the 
required amount of work. If the kinetic energy is known, then the velocity 
can be calculated. 

The relationship governing the gravitational force F between 2 masses is 

where 

m1 and m2 are the masses of the mutually attracted objects, in 
kilograms. If m1 is the mass of the earth, then 
m1 = 5.983 × 1024 kg. 

d is the distance between the centers of gravity of the objects, in 
metres. 

k is the gravitational constant (6.670 x 10-11). 
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With k at this value, the m's in kilograms, and d in metres, F will be in 
Newtons. 

Let the vertical elevation of the object be y, measured from the center of the 
earth. This puts the starting point of the object at the radius r of the earth, 
or y = 6.371 x 106 m. 

For a small change in elevation dy, the work done will be the force times 
the distance. 

To find the total work required, this function should be integrated from y 
= earth's radius ( r = 6.371 x 106 metres) to y = infinity. 

Therefore, the kinetic energy that must be given to the object will be 

Example 16: Area of a Segment of a Circle 

The problem in this example is to develop a formula for the area of a seg­
ment of a circle, as shown in Figure 3-8. 

In the circle shown, the segment of concern is that bounded by the chord 
AD, which is a distance d from the center of the circle, and the arc ACD. 
The formula that is derived should be in terms of the radius r of the circle 
and the distance d. 
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Figure 3-8. Area of a segment of a circle. 

From the figure, it is apparent that the area of the segment will be twice 
the area of the half segment described by the corners A, B, and C. Within 
that half segment is an elemental strip that is dx in width and y in height, 
so that its area is y dx. The task, therefore, will be to integrate the expres­
sion 2 v dx from x = d to x = r. 
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This equation looks weird for an area expression, but it can be tested. 

If d = 0, the chord that forms the segment will lie on the vertical (y) axis, 
and the segment will occupy half of the circle. With d = 0, 
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Table of Basic Integrals 

In this table, a, n, and C are constants, and x, u, and v are functions of t. 

1. The integral of a sum is the sum of the integrals. 

2. A constant multiplying the function to be integrated can be moved 
outside of the integral sign. 

Note 1: In mathematical notation, the natural logarithm of a number x, that is, its 
logarithm to the base e, is written ln | x |. 
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Infinite Series I 

It sometimes happens that a function f(t) of the variable t appears as the 
sum of a number of terms, each of which in itself is a function of t. One 
such example is 

f(t) = sin cot + 2 sin (cot)2 + 3 sin (cot)3 + etc. 

This type of function can become useful under the following circum­
stances. 

• There is no limit to the number of terms. 

• The format of the terms follows a discernible pattern. 

In other words, if n designates the number of an individual term in the 
function (n = 1, 2, 3, 4, etc.), then a formula for the general, or nth, term can 
be written. In the example above, the nth term is n sin (cot)n. 

If these two conditions are met, the function f(t) is called an infinite series. 

An infinite series will often prove productive if it is the type for which the 
sum of the terms never exceeds a certain finite limit, no matter how many 
terms are added on. A series of this type is said to be convergent. An infi­
nite series whose sum eventually becomes infinite as more and more 
terms are added is called divergent. 

For example, the infinite series 

f(t) = l + t + t2 + t3 + t 4+ . . . + tn + . . . 

49 
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may be convergent or divergent, depending on the value of t. If t = 1, then 
the sum goes to infinity as the number of terms becomes larger. If t < 1, 
however, the sum will be limited to a definite finite number, no matter 
how many terms are included. If t = 1/2, for instance, the sum will never 
be greater than 2. 

An allied characteristic of a series that is convergent is that as the number 
of terms (n) gets larger, the value of the n th term approaches zero. This is 
illustrated for the series above in Figure 4-1, with t = ½ and t = 2. When the 
nth term is becoming larger as n increases, it is an indication that the sum 
of the series is going to infinity. 

Figure 4-1. Effects of the value of t on the nth term. 

In the graphs in Figure 4-1, it should be noted that a curve joining the tips 
of the vertical bars representing the values of the terms has no signifi­
cance. This is because n is an integer. No intermediate values lie between 
the whole numbers. 

Power Series 

A power series is a special form of infinite series, in which the terms are 
ascending powers of the variable, multiplied by a constant coefficient. The 
general form of a power series is 

f(t) = a0 + a1t + a2t
2 + a3t

3 + + antn + etc. 

The nth Term 

If the first few terms of an infinite series are given, it may be possible to 
develop the formula for the n th term. There is at least one reason for doing 
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this, namely, the test for the convergence of the series (described later) 
requires the expression for the n th term. 

Usually the expression (formula) can be deduced from inspecting the 
terms progressively. Arranging the various factors in a table will be help­
ful. In a power series, it is necessary to establish three things: (1) the 
power, (2) the coefficient, and (3) the sign, in order to define the n th term 
completely. An example will help to illustrate the method. 

Evaluate the n term of the series 

The exclamation mark (!) here is the factorial symbol. 

The factors tabulate as follows: 

Table 4-1. nth Term Factors 

Term 

1 

2 

3 

4 

5 

n 

Power of t 

1 

3 

5 

7 

9 

2 n - 1 

Coefficient 

1 

1/3! 

1/5! 

1/7! 

1/9! 

1 
( 2 n - l ) ! 

Sign 

+ 

-

+ 

-

+ 

( -1 ) ( n + 1 ) 

The n th term of this series is consequently 

Test for Convergence 

There are three established tests for convergence of an infinite series. Only 
one of these, the ratio test, will be mentioned here. It is based on determin­
ing the ratio of the (n + l) t h term to the nth term. These two terms are, of 
course, consecutive terms. The ratio test is prescribed in the following 
way. 

An infinite series f(t) = u1 + u2 + u3 + ... is convergent if the ratio 
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u(n + 1)/un 

is numerically <1 as n approaches infinity, and divergent if the ratio is > or 
= 1 as n approaches infinity. 

Example 1: Convergence Test 1 

Test the series f(t) = 1 + - + - + - + etc. for convergence. 

The nth term in this series is 

1/2(n - 1). 

Substituting (n + 1) for n in the expression for the n th term, gives 

1/2n 

which is the (n + 1)th term. The ratio of the (n + 1)th term to the nth term is 

which simplifies to - . Since the result turns out to be <1, the series con­
verges. 

Example 2: Convergence Test 2 

Taking the general case of Example 1, for the series 

f(t) = l + t + t2 + t 3 + t4 +e tc , 

the n th term is t(n - 1), and the (n + 1)th term is tn. The required ratio is 

This is <1 for values of t < 1. Therefore, if t < 1, the series converges. If 
t > 1, it diverges. 



Chapter 4 - Infinite Series 53 

Example 3: Convergence Test 3 

Test the series f (t) = t t3/3! + t5/5! + t7/7! + t9/9! - etc. for convergence. 

As was previously deduced, the nth term of this series is 

The (n + 1)th term, which is obtained by replacing n with (n + 1), is conse­
quently, 

When determining the ratio, the magnitude only is relevant. The sign has 
no influence on whether or not the series converges. 

The ratio of consecutive terms is t(2n + 1 ) / ( 2 n + l ) ! ÷ t(2n - 1 ) / ( 2 n - l ) ! 

As n approaches infinity, this ratio approaches zero, a quantity obviously 
<1, provided that t is not infinite. Therefore the series 

f (t) = t t3/3! + t5/5! - t7/7! + ... is convergent for all finite values of t. 

When determining the (n + 1)th term, it is important to realize that the cor­
rect procedure is to substitute "(n + 1)" for "n" in the expression for the nth 

term. This is not the same thing as adding 1 to the expression that involves 
the factor n. The fact that this second procedure sometimes yields the same 
answer is deceiving. 

Example 4: The (n+1)th Term 

It was previously determined that the nth term of the series 

f(t) = t - t3/3! + t5/5! - t7/7! + ... is (-1)(n + 1) 1/(2n - 1)!(2n - 1). 
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To obtain the (n + 1)th term, n is replaced by (n + 1) at each place where n 
appears. That is, the (n + 1)th term will be 

Notice that this is not the same as adding 1 in each expression in which n 
appears. The (n + 1)th term is not 

Maclaurin's Series 

Some mathematical functions can be represented by an infinite series, pro­
vided that the function is to be evaluated for values of the variable quan­
tity in the series which will cause the series to converge. In the language of 
mathematicians, this is referred to as being "within the region of conver­
gence" of the series. 

Suppose that f(t) = aO + a1 t + a2 t
2 + a3 t

3 + ..., and that the values of t are 
restricted to those that cause the series to converge. The problem is to find 
the values of the various constant coefficients a0, a1, a2, a3, ... . Since the 
function f(t) = a0 + a1 t + a2 t

2 + a3 t
3 ... holds for any value of t that pro­

duces convergence, the coefficients can be determined by taking succes­
sive derivatives with respect to t for both sides of the equation, and then 
substituting t = 0 in the result. (t = 0 is a value within the region of conver­
gence.) 

This process can be illustrated as follows. 

Suppose that f(t) is sin t = a0 + a1 t + a2 t
2 + a3 t

3 + a4 t
4 + ... Taking the deriv­

ative with respect to t for both side results in: 
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In each of these equations in t, substitute t = 0. 

For f(t), sin (0) = 0 = aO, and all of the terms following aO will be zero 
because they contain t to some power. Thus aO = 0 

From the pattern of the values of the coefficients, the conclusion is that 

The general case can now be developed. Designate f(t) = F. 
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Substituting t = 0 in each of these relations, results in 

The general expression for f(t) (= F) is consequently 

This expansion is called Maclaurin's series. 

Example 5: e ωt 

Expand f (t) = e and determine the region of convergence. 

For convenience, designate f(t) = F. 
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Accordingly, 

The region of convergence can be determined from the table of successive 
terms, and the form of the n th term. 

Term 
1 
2 
3 

4 

5 

n 

Power 
0 
1 
2 

3 

4 

(n - 1) 

Coefficient 
1 
ω 

1/2!ω2 

1/3!ω3 

1/4!ω4 

1/(n - 1)!ω (n - 1)) 

Sign 
+ 
+ 
+ 

+ 

+ 

+ 

The nth term is consequently 

The (n + 1)th term will be 

The ratio of consecutive terms is 
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As n approaches infinity, the limit of 

ωt/n 

approaches zero for all finite values of ω and t. Therefore, the expansion 
for eωt is valid for all finite values of ω and t. 

Practical Disadvantage of Maclaurin's Series 

The value of the function f(t) can be evaluated by expanding it in a 
Maclaurin's series provided that the value of t is fairly small so that the t2, 
t3, t4, etc. terms diminish rapidly. Thus, the value for f(t) would be obtain­
able to the desired degree of accuracy without having to calculate very 
many terms. On the other hand, if t were close to the maximum value it 
could assume without causing the series to diverge, then the values of a 
great many terms would have to be calculated to obtain the value of f(t) to 
the desired accuracy. 

Taylor's Series 
To get around the problem with the Maclaurin's series, one approach 
could be to develop a different series, not in powers of t, but as a series of 
powers of (t - a), where a is a constant. That is, 

f(t) = F = aO + a1 (t - a) + a2 (t - a)2 + a3 (t - a)3 + a4 (t - a)4 + ... 

Successively taking the derivative with respect to t, gives 

Setting t = a in all of these expressions, so that (t - a) = 0 gives, 
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Therefore, 

In this expression, F(a) is the value of f(t) when t = a. dF/dt(a) is the value of 

the first derivative of f(t) when t = a. The higher derivatives follow in the 
same manner. 

This expansion is Taylor's series. To apply it, it is necessary to know the 
value of f(t) and all of its relevant derivatives at t = a. Furthermore, if t = b 
is the value at which f(t) is to be evaluated, then the value of a should be 
selected as close as possible to the value of b so that the (b - a)2, (b - a)3, 
etc. terms will diminish quickly, and fewer terms will be required to calcu­
late the value of f(t) to the desired accuracy. 

The Taylor series is an expansion of the function f(t) using the value t = a 
as the origin or starting point, rather than zero. Comparing the Taylor 
series with the Maclaurin series shows that the Maclaurin series is the par­
ticular case of the Taylor series in which a = zero. 

Example 6: Value of a Sine Function Using Taylor's Series 

Determine the value of sin 32° to three decimal places. This could best be 
done by developing a Taylor series using a = 30° as the origin, since this 
value is close to the desired value, and the values of sin 30° and cos 30° are 
known to be 

1/2 and ?/2, respectively. 

For the calculations to be correct, the values of the angles involved must be 
expressed in their fundamental units of radians, rather than degrees. Thus 
a = 30° = 0.524 rad. For f(t) = F = sin t, 

F(0.524) = sin 0.524 = 0.500 
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Therefore, 

sin t = 0.500 + 0.866(t - 0.524) - 0.500/2!(t - 0.524)2 - 0.866/3!(t - 0.524)3 + ... 

Calculating for t = 32° = 0.559 rad, 

The first term is + 0.500. 

The second term is + 0.866 x (0.559 - 0.524) = 0.030. 

The third term is - 0.500/2(0.559 - 0.524)2 = - 0.00031. 

There is no merit to calculating additional terms since they are not large 
enough to have any bearing on the value of sin 32° to three decimal places. 

Accordingly, sin 32° = 0.500 + 0.030 = 0.530. 



5 
Complex 

Quantities 

Background 

A quadratic equation involving the variable "x" can be written in its gen­
eral form and can then be solved using an algebraic procedure. The gen­
eral form of the quadratic equation in x, is 

a x2 + b x + c = 0. 

Because of the quadratic (second power) nature of the equation, two val­
ues of x will satisfy it. These values of x are called, in mathematical par­
lance, the "roots of the equation." They can be designated m1 and m2, and 
their values are 

The solution for any quadratic equation can consequently be found by 
applying this formula for m1 and m2. For example, given that 

x2 + x - 6 = 0 (i.e., a = 1, b = 1, c = -6), 

Therefore, x = 2 and x = - 3 are the solutions for x2 + x - 6 = 0. 
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The determination of the roots of a quadratic equation is straightforward, 
provided that the quantity under the square root sign (b2 - 4ac) does not 
turn out to be negative, as it would if the equation to be solved were 

x2 - 6 x + 13 = 0. 

In this case, 

The term ? can be simplified one step further by taking the factor 4 
outside of the square root sign, leaving only the factor (-1). That is, 
? = 4 ?. The roots of the equation then become 

This introduces the concept of a "number" whose value is ?-1 • This num­
ber will be identified by the letter j , that is, j = ?-1. Since ?-1 cannot be 
evaluated, or from another viewpoint, it is not possible to draw a line that 
is ?-1 units long, the quantity j must be imaginary. 

It is important to understand, however, that as far as mathematics is con­
cerned, stating that a number is imaginary is entirely different from stating 
that there is no such number. The quantity j is imaginary because it cannot 
be observed in nature, but it definitely exists because x = (3 + 2 j) and x = 
(3 - 2 j) are values that satisfy the equation (x2 - 6 x + 13) = 0. This can be 
proven by substituting the value x = (3 + 2 j) into the original equation, 
bearing in mind that j 2 = - 1 . 

x2 = 9 + 12j + 4 j 2 = 9 + 12 j - 4 = 5 + 12 j 

- 6 x = - 1 8 - 1 2 j 

+ 13 = 13 

x2 - 6 x + 13 = 5 + 12 j - 18 - 12 j + 13 = 0 

The numbers (3 + 2 j) and ( 3 - 2 j), which in this case are the roots of 
(x2 - 6 x + 13) = 0, are called complex numbers. The characteristic of a 
complex number is that it contains an imaginary part, that is, a part that 
contains the number j . A complex number usually contains a real part as 
well, as it does in the case of the complex number (3 + 2 j). In this instance, 
the real part is 3 and the imaginary part is 2 j . 
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Figure 5-1. Graphical Representation of Complex Numbers. 

The real part of a complex number may be zero, leaving only the imagi­
nary part. If the imaginary part were zero, however, only the real part 
would remain, and the number would be a real number rather than a com­
plex number. 

Graphical Representation 

A complex number can be represented graphically by plotting it on a com­
plex plane, in which the axis for the real part is horizontal, while the axis 
for the imaginary part is vertical. In Figure 5-1, the point P1 represents the 
complex number (3 + 2 j), while P2 represents (3 - 2 j). 

When the roots of a quadratic equation with real coefficients are complex 
numbers, they will always occur in pairs, called conjugate pairs. This means 
that the roots are of the form (a + jb) and (a - jb). In any conjugate pair, the 
real parts of both numbers are the same, while the imaginary parts differ 
in sign only. 
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The Complex Variable 

Variables, as well as numbers, can be complex, which means they can have 
an imaginary part. If z is a complex variable, then it may have a real part, 
but it will have an imaginary part. The real and imaginary parts can be 
designated by x and y, respectively, so that z = (x + j y). 

Figure 5-2 is the graphical representation of a complex variable in both rec­
tilinear and polar coordinates. In rectilinear coordinates, the x component 
is shown measured along the horizontal (real) axis, while the y component 
is measured along the vertical (imaginary or j) axis. The sum of x horizon­
tally and jy vertically, which is z, creates a vector, which starts at the origin 
O and ends at P. 

Since z has not only the quality of length but also the quality of direction, 
depending on the values of the real and imaginary parts x and y, the vec­
tor z is designated OP. The bar over the letters is the shorthand symbol 
that indicates that OP is a vector. 

Figure 5-2. z = x + j y in Rectilinear and Polar Coordinates. 

The length, or magnitude, of the vector OP is equal to the distance OP and 
is customarily identified by | z |. In mathematics terminology, | z | is 
called the modulus of the complex number z. From the triangle OAP, 
| z |2 = x2 + y2. Therefore, 

The vector OP is vector the sum of x + j y in a graphical representation 
using rectilinear coordinates. Certain problems may be dealt with more 
conveniently by representing a complex number in a system of polar coor-
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dinates. In the polar system, the modulus of z is equal to r. The direction of 
the vector OP is shown by the angle 0, which is the angle formed by OP 
and the horizontal or real axis. This angle is defined by the relation 

tan θ = y/x, or θ = tan -1y/x (the angle whose tangent is y/x). 

The angle 0 is called the argument of the vector z, or arg z for short. 

These two diagrams show that x = r cos θ, and y = r sin θ. 

Trigonometric and Exponential Functions 
If the MacLaurin series expansion is used to develop an infinite series 
expression for ejθ (bearing in mind that j 2 = -1), the result is 

The expression in first set of brackets is the MacLaurin series for cos 0, 
while the expression in the second set of brackets is the series for sin 0. 
Consequently 

ejθ = cos 0 + j sin 0. 

By using the same technique, it can be shown that e -jθ = cos 0 - j sin 0. 

If these expressions are added, ejθ + e-jθ = 2 cos θ, and 

If the second expression is subtracted from the first, 

These relationships frequently come in handy in the solution of differen­
tial equations. 
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Sum of Two Complex Quantities 
If z1 = x1 + j y1, and z2 = x2 + j y2, then 

z1 + z2 = x1 + j y1 + x2 + j y2 = (x1 + x2) + j (y1 + y2). 

This indicates that to find the sum of two complex quantities, the real and 
imaginary parts should be added separately. Figure 5-3 illustrates this. 

Figure 5-3. Graphical Representation of the Sum of Two Complex Quantities. 

Product of Two Complex Quantities 
Figure 5-4 is a graphical illustration of the product of two complex quanti­
ties. 

The product of two complex quantities z1 = x1+ j y1 and z2 = x2 + j y2 is 
most easily determined by converting to the polar form. 

If z1 = r1ejθ1 and z2 = r 2 e j θ 2 , then 

z1 × z 2 = r1ejθ1 × r 2e j θ 2 

= r1r2ej(θ1 + θ2) 

= |z1||z2|e 
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Figure 5-4. Multiplication (z1 x z2). 

This verifies that the product of two complex quantities is obtained by 
multiplying the magnitudes and adding the arguments. 

Separating the Real and Imaginary Parts 

It is often necessary to rearrange the terms of a complex quantity to deter­
mine the magnitude and the argument. This is done by collecting the 
terms that are not multiplied by j into one group, and the terms that are 
multiplied by j into another. For example, suppose z = (a + jb) (c + jd). Mul­
tiplying this yields 

z = ac + jad + jbc - bd. 

The real part is (ac - bd), while the imaginary part is (ad + be). 



68 Basic Math for Process Control 

Separation of the complex quantity into its real and imaginary parts is 
straightforward, except in cases where the complex quantity is a fraction. 
When this happens, the algebraic relation (a - b) (a + b) = (a2 - b2) is used. 

Notice that if b were an imaginary number, ( = jc), the imaginary part 
would disappear when the product is taken. That is, 

(a + jc)(a - jc) = (a2 - j2 c2) = (a2 + c2). 

In this way the denominator of the fraction can be cleared of imaginary 
numbers, and the fraction can be separated in real and imaginary parts 
using the procedure 

Example 1: Magnitude and Argument of a Complex Expression 
Determine the modulus and argument of the complex quantity 

To clear the denominator of the imaginary number, multiply the numera­
tor and denominator by (jωt - 1). 
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6 
Differential 
Equations 

Introduction 

There is an area of mathematics that deals with equations that contain 
derivatives of a variable with respect to another variable, or variables. 
These equations are called differential equations. The following are exam­
ples. 

The solution of a differential equation requires that an equation be 
obtained that has the variables in their natural form, that is, free of all 
derivatives. In the case of the first example above, the solution is: 
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This solution can be verified. If it is actually the original relation between x 
and t, then taking the derivative with respect to t of both sides gives 

Then the left side of the differential equation equals 

which is the right side of the equation. 

Philosophy 

In many cases, a set procedure cannot be established for the solution of a 
particular differential equation. In fact, many differential equations, prin­
cipally those that lack a certain degree of symmetry or orderliness, are 
incapable of solution. Solving differential equations is often as much an art 
as it is a science. Mathematical intuition and experience are valuable 
assets. 

Solvable differential equations tend to fall into patterns, so that part of the 
skill required to solve a differential equation lies in being able to spot the 
pattern and in knowing the right procedure for dealing with it. 

As an example, the motion of a mass suspended from a spring and caused 
to bounce up and down can be described by the differential equation in 
Example (2). Observing the motion of the mass reveals, first of all, that the 
solution must contain a cyclic factor such as sin cot, which describes the up 
and down movement, and another factor e-at, which describes the gradual 
dying out of the oscillations over a period of time. In dealing with this dif­
ferential equation, it is helpful to know at the outset that the solution must 
look something like y = Ce-at sin cot. 

Definitions 

An ordinary differential equation is one with just one independent vari­
able. The independent variable is nearly always the variable that appears 
in the denominator of the derivative term. Only total derivatives are 
present; there are no partial derivatives. 

Examples 1 through 5 are ordinary differential equations, while Example 6 
is a partial differential equation with two independent variables. 
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The order of a differential equation is the order (the number of times the 
derivative has been taken) of the highest order derivative in the equation. 

Examples 1 and 5 are consequently differential equations of the first order. 
Examples 2,4, and 6 are of the second order. Example 3 is of the third 
order. 

The degree of the differential equation is the degree (power) to which the 
highest order derivative in the equation has been raised. Note that the 
degree of the equation is not necessarily established by the highest power 
term that appears in the equation. 

Examples 1, 2, 5, and 6 are differential equations of the first degree. Exam­
ple 3 is also a first degree equation because, although one of the derivative 
terms is raised to the second power, this derivative is not the highest order 
derivative in the equation. The highest order derivative, 

dt 3 

is raised to the first power only. Example 4, however, is a second degree 
equation. 

A differential equation is linear if the coefficients multiplying the various 
derivative terms are constants, or at worst, functions of the independent 
variable. In addition, the power of each of the derivative terms can be no 
higher than one. This means that a linear differential equation must be of 
the first degree. 

Examples 1, 2, and 6 are all linear differential equations. Examples 3 and 4 
are nonlinear because of the derivative terms which are squared. Example 
5 is nonlinear because of the factor x2 (a function of the dependent vari­
able), which multiplies the first term. 

A linear differential equation has a general form, which is 
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Application 

Control systems engineering pertains to the study of the dynamics of the 
components of control systems, including both the process being con­
trolled and the items of control hardware, for the purpose of obtaining sat­
isfactory overall dynamics when these components are combined into a 
control system. A control system that has good dynamic behavior will 
recover quickly from upsets and will generally result in close automatic 
control. 

Dynamics is a descriptive term, which characterizes the reaction of control 
system components, or complete systems, to impulses that vary with time. 
The dynamic behavior of many control system components and systems 
can be described by differential equations in which the independent vari­
able is time. A knowledge of how to resolve these differential equations is 
consequently valuable in control systems engineering analysis. 

Fortunately, the less complicated types of differential equations are fre­
quently the ones that are involved with control system analysis. The most 
commonly encountered equation is likely the linear differential equation 
with constant coefficients. In its most general form, this equation would 
appear as 

In this equation the a's are constants. 

Differential Equations of the First Order and First Degree 

The general form of this type of differential equation is 

where P and Q are both functions of t and x. 

Consequently, this type of equation, in its general form, is not necessarily 
linear. 

It is not possible to solve the general form of this equation and arrive at a 
formula that will give an automatic answer for any particular problem. 
When the problem is specifically known, however, the solution (assuming 
this is possible) will usually be obtainable because the equation belongs in 
one of four categories. 
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Category 1: Exact Differentials 

This means that the expression 

is actually the derivative of some other expression R, where R is a function 
of t, x, or both. In other words, 

The solution is R = C, where C is a constant. 

This method of arriving at the solution to the differential equation is not 
particularly useful except for full time mathematicians who have the expe­
rience to spot the exact differential. Furthermore, it turns out that equa­
tions that are exact differentials can also be solved by other means, 
whether or not it is recognized that they actually are exact differentials. 

Category 2: Variables Separable 

It may be possible, through a rearrangement of the terms, to get all of the x 
(dependent variable) terms on the left side of the equals sign and all of the 
t (independent variable) terms on the right side. The variables are then 
separated, and the problem is reduced to integrating the expressions on 
either side of the equation. 

Accordingly, a logical starting point in the solution of a first degree, first 
order, differential equation, is to determine if it is possible to separate the 
variables. 

The first example in the set of examples on page 73 describes the output 
behavior of a control system component whose reaction, designated by x, 
goes from x = 0 to x = X as a result of an impulse which has been applied to 
it. The output change from 0 to X is not instantaneous, however. The rate 
of change of x at any time t is proportional to the difference between the 
value of x at that instant and its ultimate value X. Since as time goes on the 
difference (X - x) is diminishing, the rate of change of x will fall off accord­
ingly. Components with this type of dynamic behavior are quite common 
in control systems and are generally referred to as time constants. 

dx This differential equation can be rearranged a s — = k ( X - x ) . 

In this equation the variables can be separated. 
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Integrating both sides yields, 

-loge(X - x) = kt + logeC 

The constant of integration is required here. Since C is a constant, then loge 

C will also be a constant. Inasmuch as there is already a logarithm in the 
equation, the log form of the constant will make it easier to manipulate the 
equation into its final form. 

loge C + loge (X - x) = - k t = loge {C x (X - x)} 

C(X - x) = e - k t and x = X - 1/Ce-k t . 

If x = 0 when t = 0, then 0 = X - 1/C and 1/C = X. Therefore, 

x = X - Xe - k t = X(1 - e - k t ) . 

Category 3: Homogeneous Equations 

When a differential equation has the form 

dx/dt = f(x/t), 
it is termed a homogeneous differential equation, for reasons that are pre­
sumably obvious to qualified mathematicians, but not to the average math 
student. 

The test for a homogeneous equation is to substitute the product vt for x in 
the right side of the equation. Since vt = x, then the new variable v = x/t . If 
the right side expression is actually a function of x/t , then after substitut­
ing vt = x in this expression, the t's will cancel out, leaving an expression 
containing v only. 

2dx 2 2 
For example, given the differential equation 2t 2dx/dt - x2 = t 2 , which in 
rearranged form is 

dx t2 + x2 

dt = 2t2 . 
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In this equation, the variables cannot be separated. However, replacing x 
with vt in the expression on the right side gives 

dx = t2 + v2t2 = 1 + v2 

dt 2t2 2 . 

Since the t terms cancel out completely, leaving only the v terms, the equa­
tion is homogeneous. 

The substitution vt = x, which is used as the test for homogeneity, is also 
worth trying as a solution for the differential equation. If x is made equal 
to vt, then, 

dx/dt = d/dt(vt) = v + t dv/dt. 

Substituting vt for x in both sides of the equation accordingly gives 

v + t dv/dt = 1 + v2/2, 

in which the variables can be separated. 

t dv/dt = 1 + v2/2 - v = 1 + v2 - 2v/2 = (1 - v)2/2, so that 

Performing the integration, with C as the constant of integration, 
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Category 4: Linear Differential Equations 

A differential equation of the first order and first degree, which is linear in 
addition, would have the general form 

dx/dt + Px = Q 

where P and Q are constants or functions of t but not of x. In this case, it is 
possible to obtain a general solution by the following method. 

It was shown previously that a differential equation to be solved will 
sometimes turn out to be an exact differential. To obtain a solution for the 
general equation 

dx/dt + Px = Q, 

the approach is to find a factor R, which is a function of t (only), such that 
when each of the terms of the equation is multiplied by R, the left side of 
the equation becomes an exact differential. Accordingly, 

is to be an exact differential. Notice the similarity between 

This suggests that the exact differential required is d/dt (Rx), provided that 

dR/dt is equal to RP. 

The complete solution is d/dt (Rx) = RQ, 
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Example 1: Time Constant 

The differential equation that has already been examined is that in which 
the dependent variable y, as a result of a step change impulse, is changing 
from its starting point y = 0 so as to eventually attain a new value Y. How­
ever, the rate of change of y is proportional to (Y - y), so that it is con­
stantly diminishing as y approaches Y. The differential equation is 

where k is the proportional constant. Rearranging this, 

Thus, in this relation, P = k, and Q = kY. 

Therefore, applying the formula, 

where C is the constant of integration. 

Since it is known that y = 0 when t = 0, the value of C can be found by sub­
stituting these values in the equation for y. 

0 = Y(1 + kC/1) 

from which C = -1/k. 
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Therefore, the final solution is 

Linear Differential Equations with Constant Coefficients 

A first order equation of this type would have the form 

dx/dt + a0x = f(t) (a0 is a constant). 

The situation in which f(t) = 0 will be considered first. 

dx The equation dx/dt + a0x = 0 can be solved by separating the variables. 

logex = - a0t + logeC (where C is the constant of integration) 

logeX/C = - a 0 t 

X/C = e - a 0 t and x = Ce - a 0 t 

Second Order Linear Differential Equation with Constant 
Coefficients 

A second order linear differential equation with constant coefficients 
would have the form 

This differential equation actually describes systems in the real world that 
can oscillate. In closed loop control systems, part of the output of the pro­
cess is fed back to the input of the system as a measurement signal. This 
sets up the conditions that are conducive to oscillation. 

In control systems studies, however, it is generally considered that oscilla­
tions in the system are triggered by a single transient input at time zero. 
Everything that happens from then on depends on the nature of the sys-
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tern itself, not on any further external influences. The net result is that in 
the differential equation, f(t) can be considered to be zero. 

Furthermore, if f(t) = 0, then all of the terms on the left side can be divided 
by the constant a2, which reduces the number of constants from 3 to 2. The 
two new constants will be A (replacing a1/a2) and B, (replacing a0/a2). 

A solution will consequently be sought for 

At this point the procedure becomes less orderly and more abstract, in that 
the will of the wisp of mathematical intuition gets involved. In fact, it fre­
quently turns out that the solution to a particular differential equation is 
found because someone with the right mathematical background is able to 
guess at the answer, and then verify that he or she was right. In this case, it 
was already shown that the solution for the first order equation with 
f(t) = 0 was 

x = Ce-a0t 

This suggests that x = Cemt, with the value of m to be determined, may be 
a solution for the second order equation as well. 

If this trial solution is valid, then 

x = C e m t , dx/dt = m C e m t , and d2x/dt2 = m 2 C e m t . 

Inserting these values in the original equation yields 

m 2 C e m t + A m C e m t + B C e m t = 0, which reduces to 

m2 + Am + B = 0. 

This means that the trial solution could be a solution, provided that it is 
possible to find a value for m that satisfies the algebraic equation 
m2 + Am + B = 0. As it turns out, there are actually two values of m (to be 
designated m1 and m2), which will satisfy this requirement. These are 
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A complete solution for 

will then be x = C1e
m1t + C 2em 2 t . 

Realistically, this should be verified. 

Inserting these expressions in the original equation results in 

which is equal to 

C1em1t (m1
2 + A1 m1 + B ) + C2 em2t (m2

2 + Am2 + B ) 

= (C1 e
m1t x 0) + (C2 e

m2t x 0) 

= zero = right side of the equation. 

Inasmuch as the solution of a second order differential equation will 
involve two integrations, the general solution should contain two arbi­
trary constants. 

The solution x = C1e
m1t + C2em 2 t satisfies this requirement. It can there­

fore be considered to be the general solution. 

The equation m2 + A m + B = 0, from which the values of m1 and m2 are 
determined, is called the auxiliary equation. The dynamic behavior that is 
described by the differential equation depends on what the values of m1 

and m2 turn out to be. As has been shown, these values are 
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If A2 is greater than 4B, then m1 and m2 will be real numbers, although 
either, or both, could be negative. In any event, the solution would be the 
sum of two expressions in t, which are changing exponentially with time. 
The absence of a sine or cosine function is an indication that the system 
does not oscillate. 

There is also the possibility that A2 = 4B, in which case m1 and m2 are 
equal. The solution then is 

x = (C1 + C2 )emt 

where m is the common value of m1 and m2. Here again the system 
behaves in exponential fashion and does not oscillate. Consequently, nei­
ther of these solutions is of great interest to students of automatic control 
systems. 

The Oscillatory Case 
The final possibility is the situation in which A2 is less than 4B. In this case, 
the square root of a negative number is involved, and both roots of the 
auxiliary equation are complex numbers, namely, 

In addition to being complex, the roots m1 and m2 occur in conjugate pairs; 
that is, they are of the form m1 = α +jω and m2 = α - jω, where 

It will be easier to work with m1 = α + jω and m2 = α - jω until the final 
answer is reached, and then replace α and ω with the original factors A 
and B. 

Proceeding with the solution: 

x = C1 em1t + C2 em2t = C1 e
( α + j ω ) t + C2 e(α - jω) t 

= C1eα t ejωt + C2 eα t e - jωt = eαt (C1 ejωt + C2 e - j ω t) . 
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In general, e j ωt = cos ωt + j sin ωt, and e -jωt = cos ωt - j sin ωt. Using these 
relationships, 

x = eα t [C1 (cos ωt + j sin ω t )+ C2 (cos ωt - jsin ωt)] 

= eα t [(C1 + C2)cos ωt + j(C1 - C2)sin ωt ] . 

The Constant of Integration 
The solution for a differential equation sooner or later requires the integra­
tion of some expression. For the integration to produce a general result, 
the result has to include a constant of integration. This is because mathe­
matical expressions that differ only by a constant will all have the same 
derivative. The appropriate value for the constant (or constants, as in this 
case) is usually determined in the final step by applying initial conditions. 

The fact that the integral must include the constant does not mean, how­
ever, that the constant has to be an ordinary number. Any form of the con­
stant is valid, provided that the form itself is basically a constant. This 
simply means that if C is a constant, then so are (- C), C2, the square root of 
C, e C, loge C, sin C, and so on. It is also possible for C to be a complex 
number. 

One edge that accomplished mathematicians have is the ability to visual­
ize the format that the constant should take, so that the final solution of 
the differential equation will be in its most useful form. 

In the problem at hand, it would be desirable to have the expression inside 
of the box brackets in the form (sin cos ωt + cos sin ωt), since this is 
equal to sin (ωt + ). This would be possible if the constants C1 and C2 
were replaced in the solution by two new parameters X and , such that 
C1 + C2 = X sin , and j (C1 - C2) = X cos . 

What now needs to be shown is that given the expressions (C1 + C2) and 
j (C1 - C2) above, C1 and C2 each has its own value, separate from the other. 
This can be verified if sin and cos are converted to their exponential 
form. 
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From(l) X e j - X e - j = 2jC1 + 2jC 2 

From(2) Xej + Xe-j = 2 jC1 - 2jC 2 

Adding these expressions: 2Xe J = 4 jC 1 , and C1 = Xej /2j. 

Subtracting, - 2 X e - j φ = 4 j C 2 , and C2 = -Xe -jφ/2 j. 

Once it has been verified that C1 and C2 have their own values, even 
though the values may be complex numbers, then the solution for the 
original differential equation becomes 

x = e αt[(C1 + C2)cosωt + j(C1 - C2)sin ωt] 

= X e α t (sin ) cos ωt + cos sin ωt) 

= X e α t sin (ωt+ ) . 

Commentary on the Result 
The expression x = X eαt (sin ωt) is the oscillatory solution for the differen­
tial equation 

In the real world, x may represent a temperature, pressure, or voltage dis­
placement of an object, or some other variable whose value must be 
tracked. The sine function in the result says that the value of x will oscil­
late up and down. The fact that the right side of the original differential 
equation is zero says that after the original disturbance that starts the oscil­
lations takes place, the system is allowed to oscillate on its own. It is not 
driven or further disturbed by any external force or influence. 
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The values of the parameters α and ω are established by the constants A 
and B in the original equation. Their values are 

ω is the frequency at which the system will oscillate. If time is measured in 
seconds, the units of ω will be radians per second. 

a is the modifier that determines whether the oscillations get bigger or 
smaller. If a is >1, the oscillations increase. If a is <1, but not zero, the oscil­
lations decrease and eventually die out. This is the situation that is sought 
in control systems. 

If α = 0, then the e α t term becomes 1 and the oscillations go on forever. 
Since a depends only on the constant A, this also implies that A is zero, 
and the original differential equation has the form 

d2x/dt2 + B x = 0. 

The X and terms will be determined by the initial conditions, that is, the 
conditions that exist at t = 0. X is the amplitude of the first oscillation, to be 
modified subsequently by the value of a. 

Finally, is the phase displacement of the oscillations on the time scale. 
The value of (|) establishes the point where the oscillations will be, at maxi­
mum, minimum, zero, or whatever, when t is zero. 

Example 2: The Spring/Mass System 

Figure 6-1 portrays a spring that is fastened at its top end, and with a mass 
attached to its lower end. Under this arrangement the mass is free to oscil­
late up and down. However, attached to the mass is a dashpot, which 
imposes some resistance to the movement of the mass, with the result that 
the oscillations will eventually die out. The following data are known. 

• The mass of the moving mass is m kg. 
• The constant of the spring is k Newtons per metre. 
• The resistance coefficient of the dashpot is r Newtons per metre per 

second. 
• The elevation of the mass at any instant is y metres with respect to 

the y = 0 base line. 
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Figure 6-1. The Spring/Mass System. 

The requirement is to find an expression of the form y = f(t), which will 
pinpoint the position of the mass at any time t. 

At the outset, it will be specified that elevations above the base line and 
upward forces are positive, while elevations below the base line and 
downward forces are negative. 

When the mass is at rest, y = 0, there are only two forces affecting it. These 
are the gravitational force (mg) downward and the upward spring force, 
which is equal to the spring constant (k) multiplied by the initial stretching 
of the spring (y0). Since the system is in equilibrium at this time, these two 
forces will be equal and opposite. Thus mg = ky0. 

Now consider the moment when the mass is below the base line at dis­
tance y but moving upward. 

• The gravitational force is downward and equals (-mg). 

• The initial (steady state) force exerted by the spring will be upward 
and equal to (+ k y0). 

• The spring force due to the additional stretch y will be upward and 
equal to (-ky). At first, it would appear that the negative sign is an 
error. However, at the selected point in the motion of the mass, y 
has a negative value, so that the product of y and k would indicate a 
negative (downward) force, which would be incorrect. The negative 
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sign in front of the product ky is required to compensate for the 
negative value of y 

• The force applied by the dashpot is always opposite in direction to 
the motion. If it were not, there would be no braking action. Since 
the mass is moving upward, the resistance force will be downward, 
and equal to 

-r dy/dt. 

All of these forces in combination produce the acceleration of the mass. 
Therefore, 

Since mg and ky0 are equal, the differential equation becomes 

This differential equation describes the motion of a mass suspended from 
a spring, with damping present. In DC electrical circuitry, there is an 
equivalent differential equation 

where L, R, and C are the inductance, resistance, and capacitance of the 
circuit, respectively, and q is the electrical charge. 

If the differential equation is written 

then referring back to the general solution already worked out, 

A = r/m, and B = k/m. 

Then, α = -A/2 = -1 r/2 m, and 
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The end result is 

What the solution reveals is that the initiating disturbance would cause a 
displacement Y of the mass. The following displacement y is then modi­
fied over a period of time by the cyclic sine function and the damping 
exponential function. The <J) term identifies where the mass is in its cycle 
when t = 0. For the oscillations to begin, the mass must be given an initial 
displacement downward. If y = -Y when t = 0, substituting these values in 
the expression for y results in 

- Y = Y x 1 x sin (0 + ). 

Thus, sin = -1 and = 3π/2 (the low point in the oscillation). 

Figure 6 - 2 on the following page is a plot of the mass position y with time 
for 

r/m = o.4, k/m = 12.6, Y = 1.5, and = 3π/2 . 

Units 
It is advisable to verify that the units of the factors in the expression have 
turned out to be correct, bearing in mind that the exponent and argument 
of the exponential and the sine function are required to be dimensionless. 
In both cases, the exponent and argument are factors multiplied by t, 
which has units of seconds. Therefore, these factors should have units of 
frequency, or the inverse of seconds (per second). 

The units of mass are kg. (Note: Within the units the character m stands for 
metres). 

The units of k are force per unit displacement or kgm/s2 1/m = kg/s2. 
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Figure 6-2. Time Displacement of a Mass on a Spring with Damping. 

The units of r are force per unit velocity or kgm/s2 1/m/s = kg/s. 

The exponent of e is -r/2m. The units are kg/s 1/kg = 1/s, which is correct. 

The units of r/m are also correct for the argument of the sine function. 

While (r/m)2 is involved, it is under the square root sign. 

The other expression under the square root sign is k/m, which will have 

units of kg/s2 1/kg or 1/s2, which is correct considering the square root function. 

A final observation is that if the oscillations of the spring were not 
damped, then r would be zero. The differential equation would be 
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d2y/dt2 + k/my = 0 

and the solution would be 

Partial Differential Equations 

The differential equations analyzed so far have been of the type that have 
only one dependent variable and one independent variable (usually time). 
Equations of this degree of complexity are generally adequate for describ­
ing the oscillatory behavior which occurs in control systems. 

In the real world, however, there are systems in which a single dependent 
variable may be influenced by more than one independent variable. These 
systems have to be described by partial differential equations. They may 
very well apply in operating plants since, for example, analyzing how heat 
is transferred often requires the use of partial differential equations. 

A prominent phenomenon in physics is wave motion. Wave motion in an 
outward direction occurs when a stone is dropped into a pond. Sound 
waves travel outward when a bell is truck. Electromagnetic waves travel 
outward from a radio antenna. 

The magnitude of the wave, which is the dependent variable, depends on 
the point of observation relative to the source of the wave, the direction 
having three components, and time. The wave equation, familiar to physi­
cists, has the form 

In this equation, u is the dependent variable, that is, the local magnitude of 
the wave in whatever form it exists; x, y and z are the positions outward 
along each of the axes of a 3 dimensional system; c is a constant with units 
of velocity; and t is time. 

A partial derivative, u/ t for example, means that when the derivative of u 

with respect to t is determined, all of the other independent variables 
involved (in this case x, y, and z) are considered to be constants. 
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We will likely agree that the solution of the ordinary differential equation, 
which approximates the behavior of a control system reasonably well, can 
be sufficiently tedious mathematically without having to resort to the res­
olution of partial differential equations. 



7 
Laplace Transforms 

History 

The origin of Laplace transforms dates back to the era of a British civil 
engineer named Oliver Heaviside, who lived from 1850 to 1925. An 
accomplished mathematician, Heaviside was experimenting with what 
came to be called mathematical operators. In operational calculus, for 
example, the letter p might replace the operation of taking a derivative, so 
that if x = f(t), then px was equivalent to 

dx/dt. 

Oliver Heaviside's contemporaries ridiculed his work, not so much 
because of the operators themselves, but because he actually moved oper­
ators around in algebraic expressions as if they were ordinary terms. This 
did not deter him, however, because as far as he was concerned, the 
method worked. 

Eventually, results prevailed, and from Oliver Heaviside's beginnings, 
mathematicians developed a set of operational transforms that came to be 
known as the Laplace transforms. Just as the use of logarithms can reduce 
multiplication and division to addition and subtraction, Laplace trans­
forms, where they can be applied, can reduce the problem of solving a dif­
ferential equation to one of solving an algebraic equation. 

In the analysis of control systems, process variables vary with time. The 
observed behavior may be described by a differential equation, which has 
time as the independent variable. In such cases, what is required is an 
expression x = f(t), which describes the behavior of the dependent variable 
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on a time basis, and which is clear of any derivatives. Laplace transforms 
is a mathematical technique through which this may be achieved. 

In Laplace transforms, time is replaced as the independent variable by a 
new variable, which has been designated s. This has been done by multi­
plying the function f(t) by e - s t , and then integrating the product between 
the lower and upper limits of zero and infinity. The resulting integral 
appears as 

The values that s can acquire must necessarily be limited to those that will 
cause the integral to assume some finite value. The types of differential 
equations with which this text deals are essentially linear, which means 
that s will have a real value and will be greater than zero. Most functions 
f(t) that occur in control systems engineering are Laplace transformable, 
since with s real and positive, e-st decreases rapidly as t approaches infin­
ity, which more than compensates for an increasing value of f(t). 

Inasmuch as the domain of the integral is from zero to infinity, all activity 
starts at t = 0 and proceeds in the positive direction. Negative values of t 
have no meaning. 

There are two further restrictions on the application of Laplace transforms. 

1. The function f(t) must be single valued, that is, any value of t 
greater than zero produces only one value of the dependent 
variable. 

2. More must be known about the relation x = f(t) than just its 
differential equation. Specifically, the value of f(t) at t = 0 must be 
known if the differential equation is of the first order. If the 
differential equation is of the second order, then the value of the 
first derivative of f(t), that is, the rate of change of the dependent 
variable must be known at t = 0 as well. 

The Laplace transform of a function f(t), denoted L {f(t)} in mathematical 
shorthand, is defined as 

L{f(t)} = ∫∞
0 f(t)e-st dt and is generally denoted F(s). 

If these conditions are satisfied, then the function f(t) is Laplace transform­
able. 
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Example 1: Step Change 

It is worthwhile to work out the Laplace transform for one particular func­
tion f(t), since this function becomes important in the study of transfer 
functions. Fortunately, it is the easiest one to evaluate. 

In the process of testing control system components to determine their 
static and dynamic properties, the input that is used most often is a step 
input, that is, a sudden jump at t equals zero from a zero signal to a con­
stant signal of finite value. Note that this conforms to the requirement that 
the initial value of the function be zero. If the input signal suddenly 
assumes a finite value C at t = 0, then f(t) = C is the function to be trans­
formed. The Laplace transform for the step change will then be, 

Transforms of Derivatives 

The following shorthand symbols are generally used when working with 
Laplace transforms. 

The finite value that x = f(t) assumes at t = 0 is designated x0. In other 
words, x0 = f(0). 

The value of dx/dt at t = 0 is designated (dx/dt)0. 

Without going through the mathematical chores involved, we have the fol­
lowing relationships. 

1. The Laplace transform of the function f(t) is designated F(s). 

2. The Laplace transform of the first derivative dx/dt will be sF(s) - x0. 

3. The Laplace transform of the second derivative d2x/dt2 will be 

S
2 F(s) - sx0 - (dx/dt)0. 

These facts will be required for the solution of differential equations using 
Laplace transforms. 
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Example 2: Time Constant 
Figure 7-1 describes the type of dynamic response that is typical of many 
elements that appear in control systems. The primary characteristic of this 
component is that at any point on its response curve, the rate of change of 
the dependent variable with time is proportional to the distance remaining 
for it to attain its ultimate value. In this case, the dependent variable is y, 
and in response to a step change input, y begins to change from zero to 
eventually reach a new value Y. 

Figure 7-1. Behavior of a Time Constant Element. 

At any point in the response of the variable y, the distance remaining is 
(Y - y). Describing the behavior as a differential equation, 

dy/dt α(Y - y), or dy/dt = 1/T(Y - y) 

where T is a constant. In this expression, the units turn out to be more 
realistic if 1/T is chosen as the constant rather than T. 

Rearranging, T dy/dt + y = Y. 
Then, applying the Laplace transformation term by term, 

T{sF(s) - y0}+F(s) = Y/s. 
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Since y0 = 0, the expression becomes 

A table of Laplace transforms reveals that the transform 

F(s) = 1/s(Ts+1) 

originates from 

-1/T t 
f(t) = 1 - e . 

Accordingly, the solution to the differential equation, 

Since the exponent of e must be dimensionless, and t is in time units, T 
must also be in units of time. T is, in fact, the time constant of the compo­
nent. 

Example 3: Pendulum 
Figure 7-2 shows a pendulum of length L, which oscillates about its fixed 
center O. At any time t, the angle that the shaft of the pendulum makes 
with the vertical is 6. Once the free end of the pendulum has been raised 
so that the pendulum starts from a position θ0, the pendulum will begin to 
swing under the influence of gravity. 

If we can assume that the mass of the pendulum is m, and that the mass is 
mainly concentrated at the center of gravity of the bob at the free end of 
the pendulum, then the force of gravity will be mg downward from its 
center of gravity. 

The path BP is perpendicular to the shaft of the pendulum and is the 
instantaneous path along which the bob is moving. The angle APB is actu­
ally equal to the angle 6. Therefore the component of mg in the direction 
BP is equal to 

mg x the cosine of the angle that BP makes with the vertical 

= mg x cos (90 - θ) = mg (cos 90 cos θ + sin 90 sin θ) 

= mg ( 0 + sin θ ) = mg sin θ. 
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Figure 7-2. A Simple Pendulum. 

If the pendulum is made to swing so that the angle 0 is kept small, then the 
value of sin 9 becomes virtually the same as the value of 6. Consequently, 
the component of the gravitational force mg in the direction of motion of 
the bob will have a magnitude mg0. However, if we agree that values of 
the angle 9, and of forces, are positive to the right side of the vertical and 
negative to the left, then the tangential force exerted on the bob will be 
(-mgθ). 

The force -mg9 will be equal to the mass m of the bob multiplied by its 
acceleration along the path BP. If distances along the arc are denoted by 
the variable z, then 

- mgθ = m d2 z/dt2. 
However, we are not so much interested in the position of the weight in its 
track, with time, as we are in the angle that the shaft makes with the verti­
cal. 
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The basic relation (arc) z = (radius) L x 9 can be differentiated twice, which 
gives 

What remains now is the solution of this differential equation using 
Laplace transforms. 

Inasmuch as there is a second order derivative involved, it is necessary to 
d0 know the starting (t = 0) values of 8 and of — . 

Since the motion of the pendulum is cyclical, the starting point can be cho­
sen at any point in the cycle. From the viewpoint of knowing the required 
starting point values, the best point from which to start is shown in Figure 
7-2. With the pendulum in this position, the initial value of 0 will be what­
ever angle is given to the pendulum to start it off. This will be the eventual 
amplitude of the pendulum and can be designated θ0. 

d9 The angular velocity of the pendulum, — , will be zero at this point. 

Applying the Laplace transformations term by term, 

The table of Laplace transforms shows that the transform s/s2 + ω2 

originates from the function f(t) = cos ωt. In this case, ω2 = g/L 

and the function sought is consequently 
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This result is not really as relevant as the period of oscillation of the pen­
dulum. The ω term in the cosine expression has to have units of seconds-1 

so that the argument cot is dimensionless. The ω term is actually the angu­
lar velocity of the shaft, with units in radians per second. 

Example 4: Second Order Linear Differential Equations with Constant 
Coefficients 

Example 2 in Chapter 6 (Differential Equations) dealt with the oscillations 
of a weight suspended on a spring. The resulting differential equation was 

d2 y/dt2 + A dy/dt + B y = 0 
where A and B are constants. 

In the spring/mass problem worked as Example 2 in Chapter 6, A stood 
for r /m , while B stood for k /m. The k term was the constant of the spring, 
which induces the oscillations. The r term was the damping effect, which 
tends to reduce or eliminate the oscillations, while the m term was the 
mass of the weight. 

However, it is desirable that the differential equation represents more real 
world systems than simply that of a weight dangling on a spring. Conse­
quently, the B term in the equation will now be regarded as the "driving 
force" behind the oscillations, and the A term as the "damping effect." 
What these two parameters stand for should be kept in mind. The relative 
magnitudes of the parameters A and B will have a significant impact on 
the behavior of the system. 

The differential equation is linear with constant coefficients, and further­
more, the right side is zero. Accordingly, the resolution of this equation by 
standard techniques is relatively straightforward, as was shown in Chap­
ter 6. What should now be attempted is the resolution of this differential 
equation by using Laplace transforms. 

Applying the Laplace transforms term by term, 
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To continue, it is necessary to declare the initial conditions. Since there is 
no way of knowing what the velocity of the weight will be when the 
weight is moving, we are obliged to designate t = 0 at some point where 
the velocity of the weight is zero. This means at one end or the other of its 
travel. If the weight is oscillating up and down across the y = 0 base line, 
then we can specify that it starts out at t = 0 with zero velocity from a posi­
tion Y below the base line. 

With these initial conditions, the transform equation becomes 

{s2F(s) - sY - 0} + {AsF(s) - AY} + BF(s) = 0. 

Collecting F(s) and Y terms: F(s)[s2 + As + B] - Y[s + A] = 0 

The procedure now calls for consulting a table of Laplace transforms to 
obtain the function f(t), which has the expression F(s) determined above as 
its transform. Unfortunately, the transform 

s +A/s2 + A s + B 

does not appear anywhere in the table. Is the conclusion, therefore, that 
this problem cannot be resolved using the Laplace transform technique? 

In fact, Laplace transforms can produce the answer, but here again, the dif­
ference between success and failure is the required mathematical experi­
ence. The denominator of the transform can be rearranged to complete the 
square of the first two terms. 

There are now three possibilities to be considered. The first is the case in 
which 

A2 

— = B. 
4 

This would imply that the driving force and the damping effect balance 
each other off. With 

B - A2/4 = 0 
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the transform becomes 

which can be rearranged as 

An important fact of mathematics, one which is not disclosed in many 
texts on Laplace transforms, now emerges: If a Laplace transform, which can­
not be inverted as it stands, can be expressed as the sum of two parts, each of 
which is capable of being inverted, then the solution will be the sum of the 
inverted parts. 

From the table of Laplace transforms, the inverse transforms (in mathe­
matics shorthand, L-1) for this problem are 

Since the solution does not contain either a sine or cosine function, the sys­
tem is not going to oscillate. Furthermore, this system had as its basis that 

A2/4 = B. 

Note that if A2/4 were greater than B, then the damping effect that A repre­
sents would be even more dominant. 



Chapter 7 - Laplace Transforms 103 

Consequently, for any value of A2/4 that is equal to or greater than B, the 
system will not oscillate. 

The Oscillatory Case 
The remaining possibility therefore is the one in which B is greater than 

A2/4, and the driving force is dominant over the damping effect. 

To simplify the various expressions, let A / 2 = a, and let 

Since B is greater than A2 /4, ω2 will be a positive quantity. Later it will be 
seen that using ω2 instead of ω will make it easier to invert the transform. 
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From the table of Laplace transforms: 

Consistency of Results 
An astute observer would notice that the solution obtained through the 
use of Laplace transforms is not the same as that obtained in Chapter 6 for 
the second order linear differential equation with constant coefficients, 
which was 

x = X e α t sin (ω t + ?)) ( where a was substituted for -A/2) . 

In this expression, x is a general variable, not necessarily the displacement 
of a mass on a spring. X will be the original amplitude of the oscillations, 
whereas M, where it appears, is the value of x at t = 0. 

When the differential equation was solved using the Laplace transforms, it 
was necessary to specify two initial conditions, and this fact must be rec­
ognized when comparing the two apparently different results. Specifically, 
this means that the initial conditions, which were specified when using the 
Laplace transforms, should be applied to the solution obtained in 
Chapter 6. 

The initial conditions were: 

1. When t = 0, x = M. 

2. When t = 0, dx/dt = 0. 

Applying the initial condition (1) to the solution x = X e α t sin (ωt + ?): 

M = X x 1 x sin(0 + ?), from which X = M/sin ?. 
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To apply initial conditions (2), it will be necessary to take the derivative of 
x with respect to t for f(t) = X eα t sin (ωt + ?). The rules for taking the 
derivative of a product, and of a function within a function, are needed 
(refer to Chapter 2). 

which is the solution obtained through the use of Laplace transforms. 
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Table of Laplace Transforms 

A table containing some of the more common Laplace transforms is con­
tained in Table 7-1. 

Table 7-1. Short Table of Laplace Transforms 

Function x = f(t) Laplace Transform F(s) = L {f(t)} 
( t>0 ) 

C (cons tan t) 

t 

t2 

tn 

e-ωt 

1/T e -t/T 

l - e -t/T 

f ( t - L ) 

sin ωt 

cos ωt 

e-α t sin ωt 

e-α t cos ωt 

dx /d t 

d2x/dt2 

C/s 

1/t2 

2/s3 

n!/sn+1 

1/s + ω 

1/Ts + 1 

1/s(Ts + 1) 

e - L s F (s) 

ω/s2 + ω2 

s/s2 + ω2 

ω/(s + α)2 + ω2 

s + a/(s + a)2 + ω2 

s F(s) - x0 

s2 F(s) - s x0 - (dx/dt)0 

x0 and (dx/dt)0 are the values of x and dx /d t when t = 0. 



8 
Frequency 

Response Analysis 

Background 

Our primary objective in studying control systems is to understand how 
they behave. Then through understanding their behavior, hopefully we 
can exert some influence to cause them to perform in a manner that will be 
beneficial. 

Just observing behavior is not quite enough, however. It is necessary to 
have definite criteria of behavior, and the criteria must be measurable so 
that comparisons can be made. Frequency response analysis is one method 
of meeting these needs. 

A frequency response test of a control system component (or even of a 
whole control system) is conducted by forcing a test signal which varies in 
sine wave fashion into the input of the component. At the same time, the 
output of the component is tracked so that the input and the output can be 
compared. The unique property of the sine wave input is that it is the only 
type of input that produces an output of the identical form. The output 
will also have the sine wave shape, and its frequency of oscillation will be 
the same as that of the input. Hence the name, frequency response. This is 
where the similarity ends, however. 

Figure 8-1 is a graph of the frequency response input and output of a com­
ponent under test. Comparing the output wave with the input, two factors 
are significant. First, the inherent gain of the component has modified the 
magnitude of the output wave. In this case it emerges smaller in magni­
tude than that of the input wave. Second, on the time scale, the output 
wave is out of phase with the input wave. It actually lags behind the input 

107 
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Figure 8-1. Input and output waves in a frequency response test. 

wave. This is caused by the component's inherent reaction time. The 
slower the reaction of the component, the greater will be the time lag. 

The ratio of the magnitude of the output wave to that of the input wave is 
called the magnitude ratio. It is measured by the ratio of m 2 / m 1 in Figure 8-
1. The phase (time) lag of the output wave is measured in degrees. If the 
output wave trailed the input by one whole cycle, then the phase lag 
would be 360°. The phase lag shown would be about 1/4 cycle or 90°. 

The graph shows the magnitude and the phase lag at only one frequency. 
In a complete analysis, the component would be subjected to a sine wave 
input over a whole range of frequencies, with the magnitude ratio and 
phase lag being measured at each one. The variation of the magnitude 
ratio and the phase lag over the relevant range of frequencies are the two 
performance criteria that frequency response analysis yields. 

The Bode Diagram 

Once the magnitude ratio and phase lag data have been accumulated for 
the range of frequencies of interest, it is customary to plot both of these 
data on a base of frequency. The graph in Figure 8-2 is an example. Graphs 
with the frequency response data made visible in this form are often called 
Bode diagramsgain, after H.W. Bode, who was a noted pioneer in the 
development of the theory of feedback amplifiers. While process control 
systems function at considerably lower frequencies than those with which 
Bode would have been dealing, his manner of presenting the data is nev­
ertheless applicable. 
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In the Bode diagram, the magnitude ratio of the output to the input is gen­
erally abbreviated as gain. The frequency and gain scales in the diagram 
are logarithmic, so they can cover a range of two or more decades in a rea­
sonable space. Setting out the scales linearly would spread the diagram 
out to the point where it would be unwieldy. 

Frequencies are measured in cycles per minute (cpm); the practical unit 
considering the slow rate of the oscillations. A commonly used scale is 
from 0.01 to 1 cpm, as shown in Figure 8-2. In process control, frequency 
rates are so low that control theorists usually talk in terms of the period of 
oscillation, which is the time required to make one cycle, rather than fre­
quency. The period of oscillation will be 1/frequency. 

Frequency Response of a Time Constant Element 

The frequency response data in Figure 8-2 is for an element that occurs in 
all process control systems, namely, a time constant. The value of the time 
constant in this case is 2 minutes. This element also has a steady state gain 
of 5.0. In frequency response analysis, steady state is equivalent to zero 
frequency. Logarithmic scales, by their nature, cannot go down to zero, but 
a value of 0.01 cpm is usually low enough to reveal the steady state gain of 
the component under test. 

The steady state gain of 5.0 means that at very low frequencies the ampli­
tude of the output wave will be 5 times that of the amplitude of the input 
wave. The gain graph shows that even with a time constant of 2 minutes, 
which implies a relatively slow reaction to any input, at the very low fre­
quencies the output of the element still tracks the input, and the gain of 5 
is maintained. As the frequency increases, however, a point is reached 
where the output wave is not completed before a new wave arrives at the 
input of the element. From then on, the amplitude of the output wave 
decreases until at a frequency of 1 cpm, the gain has dropped to 0.4. 

The phase lag graph shows that even at the minimum frequency of 0.01 
cpm, the output wave lags slightly behind the input wave. From then on, 
the phase lag increases with the frequency. Interestingly, even at a theoret­
ical infinite frequency, the phase lag never exceeds -90°. This is a unique 
property of a time constant element. 

Frequency Response of a Dead Time Element 

A frequency response plot for a dead time element is shown in Figure 8-3. 
Graphs are shown for three different levels of dead time: 0.2, 0.5, and 1 
minute. In process control studies, dead time elements are considered to 
contribute phase lag to the system but no gain. Thus the gain graph for_ 
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Figure 8-2. Frequency response data for a single time constant. 

each of the three dead time elements is 1.0 across the whole range of fre­
quencies. 

The damage that dead time creates in feedback control systems is shown 
in the rapid way in which dead time increases phase lag as the frequency 
increases. This can have a harmful effect on the time required for the con­
trol system to recover after it is disturbed. Further discussion of this 
important point will follow later. 
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Figure 8-3. Frequency response data for assorted dead time elements. 

Notice that at a frequency of 0.25 cpm, the phase lag contributed by a 
1 minute dead time element is -90°. For the 0.2 and 0.5 minute dead time 
elements it is -18° and -45°, respectively, at the same frequency. This 
shows clearly that the phase lag created is in direct proportion to the dead 
time that is present. 

Combinations of Components 

If the frequency response data for the individual components are avail­
able, then the frequency response characteristics that two or more compo-
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nents in tandem would have can be easily computed. It is only necessary 
to multiply the individual gain values, and add the individual phase lag val­
ues, taken at the selected frequency. The rule: gains multiply, phase lags 
add. 

Suppose that a system consisted of a 0.5 minute dead time, followed by a 
2 minute time constant. The gain and phase lag of the combination can be 
determined at any frequency from the graphs in Figure 8-2 and 8-3. From 
Figure 8-2, at a frequency of 0.5 cpm, the gain for the time constant is 0.78, 
and the phase lag is -81°. From Figure 8-3, at the same frequency, the gain 
for the 0.5 minute dead time element is 1.0, and the phase lag is -90°. 
Accordingly, at a frequency of 0.5 cpm, the gain of the time constant and 
dead time together will be 0.78 x 1.0 = 0.78, and the phase lag will be -81° + 
(-90°) = -171°. 

It follows that if the frequency response characteristics of the automatic 
controller, the control valve, the process, and the measurement sensor, 
which are the essential components of the control system, were available, 
then the frequency response characteristics of the whole system could be 
computed, and from that, the ultimate performance of the control system 
on control predicted. During the 1960s, there was a definite impetus to 
predict control system performance in this way. Unfortunately, the proce­
dure requires that the characteristics of all of the components be known, 
and while it was not difficult to obtain this data for the controller, the con­
trol valve, and the sensor, the data for the dominant component—the pro­
cess that was to be controlled—was always lacking. 

Since there was no telling theoretically what mixture of dynamic elements 
the process might have in it, the only alternative was to obtain the data by 
making an actual field test. This would involve using a special signal gen­
erator to disturb the process in sinusoidal fashion, over a whole range of 
frequencies, and recording what resulted at the process's output. No pro­
cess operator in his right mind who was in charge of a boiler, a fraction­
ation column, or a reactor, would allow such a test to be made. 

This obstacle would have brought about the demise of frequency response 
analysis as it applies to process control systems, had it not been for the 
contribution of J.G. Ziegler, who developed another more realistic method 
of determining the characteristics of a process. This is discussed in Chap­
ter 10. 

Period of Oscillation 

When part of the output of any system is fed back into its input, then a 
closed loop is created, which effectively sets the stage for oscillations to 
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occur. Anyone who has pointed a microphone at a loudspeaker knows 
this. Of the various performance criteria that apply to control systems, the 
time required to make one oscillation has the greatest impact. This time 
value is called the period of oscillation. It is actually the inverse of the fre­
quency of oscillation that is the basis for plotting gain and phase lag in fre­
quency response diagrams. 

The period of oscillation of a control system is an inherent property of the 
system. It is created by the dynamic characteristics of all of the compo­
nents in the system in combination. As such, in real life process control 
systems the period of oscillation cannot be appreciably altered. We have to 
live with it. 

If a feedback control system is disturbed, the automatic controller usually 
does not recognize the upset in the process and its effect on the controlled 
variable until the measurement sensor has actually measured a change in 
the controlled variable and has fed this information back to the controller. 
Owing to the response times of the process and the sensor, corrective 
action by the controller does not take place until some time after the dis­
turbance has occurred; in other words, it happens too late. This means that 
after each disturbance, the control system has to go through an interval of 
upset and recovery before it can get back on control. 

When the controller is correctly tuned to provide the right amount of cor­
rective action and to apply it no faster than the process can absorb it, the 
pattern of the recovery will be a sine wave with each peak smaller than the. 
peak that preceded it, until the oscillations die out altogether. Figure 8-4 
illustrates this. 

Adjusting the controller for a good recovery in a feedback control system 
is a compromise between minimizing the height of the first peak, as that is 
when the controlled variable deviates farthest from the desired value, and 
minimizing the recovery time, which is the time required to get back on 
control. Most control experts agree that this compromise is best achieved if 
the recovery curve exhibits oscillations of decreasing amplitude, with the 
amplitude of each peak being about 1 / 4 of the amplitude of the peak that 
preceded it, as shown in Figure 8-4. The important feature that Figure 8-4 
illustrates is that if the control system recovers in the optimum manner, 
then following a disturbance it usually takes two or three oscillations to 
get back on control. This being so, then the time required to make one 
oscillation, that is, the period of oscillation, becomes all important. 
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Figure 8-4. Control system recovery at an amplitude ratio of ¼. 

Summary 

It may well be, therefore, that the most valuable item of information that 
the frequency response diagram can give us is the value of the period of 
oscillation created by the composite of components which comprise the 
control system. 

If conditions are favorable, or in another sense, unfavorable, a feedback 
control system can go into a state of continuous oscillations. Chapter 9 
describes the conditions that must prevail to cause this. Chapter 9 also. 
explains the fact that when a control system oscillates, it will do so at the 
frequency at which the cumulative phase lag of all the components of the 
system becomes -180°. 

Thus, if the frequency response gain and phase lag can be plotted for the 
complete system of components, then the frequency at which the phase 
lag curve crosses -180° will be the frequency at which the control system is 
going to oscillate. The period of oscillation will be the inverse of this fre­
quency, and the recovery time of the control system following a distur­
bance will be two or three times the period of oscillation. It is necessary to 
settle for a ballpark factor of two or three times, rather than a definite 
number, since the recovery time will also depend on the size of the distur­
bance. A more severe disturbance may result in a greater number of oscil­
lations before the control system settles down. 

Frequency response analysis proves, among other things, that the bad con­
trol system components are those that contribute excessive phase lag and, 
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consequently, cause the phase lag curve to cross the -180° line at lower fre­
quencies. Lower frequencies mean longer periods of oscillation and longer 
control system recovery times. 



9 
Transfer Functions 

and Block Diagrams 

Background 

Feedback control systems are made up of components that are reactive by 
nature. This means that each one has an input (sometimes more than one) 
and the means to generate an output. The inputs and outputs have a vari­
ety of forms, but in process control the most common are process variables 
and instrument signals. 

To be usable, the output of a component must exhibit a consistent relation­
ship to its input. Output relationships are not necessarily neat and tidy, 
but the same input must consistently produce the same output; otherwise 
the component is unacceptable. 

Control systems experts need techniques to determine and describe how 
the components of a control system will perform. If the behavior of the 
individual components that make up the system can be identified, then 
the behavior of the overall system can be evaluated. 

This leads to the question: What kind of behavior are we interested in? 
There are two factors: 

1. The gain of the component. If the input to the component is 
changed a known amount, how much does its output change? The 
gain factor will be the ratio of the change in output to the change in 
the input that created it. The output change is measured as it goes 
from the initial steady state value to the final steady state value. 
Time is not a factor. The output is permitted all the time that is 
necessary to assume its new value. 

117 
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A further consideration is whether or not the gain of the compo­
nent remains the same over the whole range of operation of the 
component. If it doesn't, then this factor has to be allowed for in 
the control system design. 

2. The dynamic response of the component. This does not mean how 
much the output of the component responds, but how quickly and 
on what pattern it assumes its new steady state output after its 
input is changed. Components that react quickly make for better 
overall control system performance. 

Transfer Functions 

While frequency response analysis uses a graphical method to describe the 
gain and dynamic response of components, transfer functions do the same 
thing using mathematical expressions. By using transfer functions, it is 
often possible to describe both the gain and the dynamic response of a 
component in a single mathematical function. 

In general, the transfer function of a component is the ratio of the change 
in its output to the change in its input, but herein lies a problem. While the 
gain of the component can be identified by a simple number, the dynamic 
character (how it varies with time) of both the input and output can be 
described only by differential equations in which time is the independent 
variable, and then only if the input or output function is continuous, 
which it may not be. Obviously, a transfer function that consisted of the 
ratio of two differential equations would be of little practical use. The situ­
ation can be made workable, however, not by using the differential equa­
tions of the input and output, but by using their Laplace transforms. 

The bottom line is that in feedback control systems, the transfer function of 
a component is defined as the ratio of the Laplace transform of its output 
to the Laplace transform of its input. What is now required are some 
examples of transfer functions, and then a study of just what performance 
information can be gained from them. 

The Step Input Function 

Frequency response analysis of a component or system is based on a sine 
wave input signal. A sine wave input results in a sine wave output. It is 
obvious, however, that if the input were anything other than a sine wave, 
then the output would be different, even though it emerged from the same 
component. For transfer functions to have practical value, therefore, it was 
necessary to standardize the form of the input signal. 
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In field test work, the most practical test signal is a step change from one 
input level to another, for at least two reasons. First, it is an easy test signal 
to devise, and second, the output that results from this relatively simple 
input change will yield all of the dynamic information that is of any real 
value. It is not surprising, therefore, that the step change was selected as 
the standard input for transfer functions. A further refinement was that 
the step input should have a unit value. 

In the chapter on Laplace transforms, it was shown that the transfer func­
tion F(s), which results from a step change from zero to a value of C, is 
F (s) = C/s . If C = 1, then F(s) becomes 1/s. The simplicity of this function 
is another plus for an input consisting of a unit step change. 

In real life process control systems, two particular components, time con­
stants and dead time, predominate over all others. The transfer functions 
for these two components should now be worked out. 

Time Constants 

In Chapter 6 (Differential Equations), Example 1 described a component 
whose rate of change, in response to a step change input, is proportional to 
the distance remaining for the output to attain its ultimate value. The out­
put in this case is the variable x. In the simplest case, the input and the out­
put have the same value at t = 0, and the gain of the component is 1. Then 
the equation x = f(t) for the output is: 

x = ( 1 - e - k t ) . 

The exponent of the exponential e is required to be dimensionless, and the 
units of t are time units. Accordingly, it is more realistic to set k = 1 /T. T 
will now be in time units. T is, in fact, the time constant of the component. 
The differential equation thus becomes 

x = (1 - e-1/Tt). 

The table of Laplace transforms shows that the function 

f(t) = (1 - e-1/Tt) 

has the transform 

F(s) = 1/s(Ts + 1). 
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Consequently, the transfer function for a time constant element will be 

Dead Time 
If a component has dead time, then the output function will duplicate the 
input function f(t), but only after a delay of L time units. L is usually 
referred to as the dead time. The output function will consequently be 
f (t - L). The initial value of t must be zero (a Laplace transforms require­
ment), after which t increases positively. 

The table of Laplace transforms shows that the transform for f (t - L) is 
e -Ls F(s), where F(s) is the transform for f(t). Thus, for whatever form f(t) 
may have, the transfer function for a dead time element will be 

Transform of the output/Transform of the input F(s) = e-Ls F(s)/F(s) = e-Ls. 

The Value of the Transfer Function 
The goal in developing transfer functions was to devise a mathematical 
expression that would incorporate both the steady state gain and dynamic 
characteristics of a control system component. It now remains to be shown 
that this goal has been achieved. 

A useful attribute of the transfer function is that by applying the appropri­
ate procedure, the transfer function will yield the frequency response data 
of its component. More specifically, from the transfer function, other func­
tions will evolve from which the frequency response magnitude ratio and 
phase angle can be determined at any desired frequency. The procedure is 
as follows: 

1. In the transfer function, replace the operator s with jω, where j is 
the imaginary quantity ?, and ω is the angular velocity 
(radians per second). 
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2. Using the standard techniques for complex numbers, separate the 
resulting expression into its real part (RP) and imaginary part (IP). 
This will lead to the expressions for the frequency response 
magnitude ratio (MR) and the frequency response phase angle (ω ). 
These expressions will be functions of the angular velocity ω, 
which is directly related to the frequency by the relation ω = 2π f. 

3. The magnitude ratio at the specified value of ω will then be 

4. The phase angle at the specified value of ω will be 

= angle whose tangent is IP/RP, that is, = tan -1(IP/RP). 

Example 1: Time Constant 
The transfer function for a time constant component is 

1/Ts+ 1. 

Converting to the frequency response domain, this expression becomes 

1/jωT+ 1. 

To separate the real and imaginary parts: 
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It should be noted that in the development of the magnitude ratio and 
phase relationships above, the transfer function for the time constant was 

1/Ts + 1. 

This would indicate a steady state gain of 1, which is not necessarily the 
case. If the time constant component contributes a steady state gain (mag­
nitude k), as well as dynamics, then the transfer function would be 

k1/Ts + 1 

and the magnitude ratio would be 

Example 2: Dead Time 
The transfer function for a dead time element is F(s) = e-Ls. In the fre­
quency response domain, this becomes e-jωL. Applying the work done in 
Chapter 5 (Complex Quantities), e-jωL = cos ωL - j sin ωL. 

Therefore, RP = cos ωL, and IP = -sin ωL. 

The magnitude ratio will be ?cos2 ωL + sin2 ωL = ? = 1. 

In control system analysis, it is considered that there is only one dead time 
element, if any. If dead time is present in more than one place in a control 
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system, all of the dead times can be summed together to form a single 
dead time component, without any loss of accuracy in the analysis. 

The expression for the magnitude ratio shows that since the magnitude 
ratio is 1, dead time does not contribute any gain or attenuation to the con­
trol system, irrespective of the frequency. Increases or decreases in the 
overall system gain will be contributed by components of some other type, 
most likely by time constants. 

The phase angle will be = tan-1 ( - sin ωL/cos ωL) = tan-1 (- tan ωL) = - ΩL. 

Block Diagrams 
A fact of life that sometimes eludes control system theorists is that process 
control earns its keep in industry, not in the lab. Furthermore, the brand of 
process control that is dominant in industry, and which will continue to 
dominate, is feedback control. There are two reasons for this. 

First, feedback control requires the minimum investment. All that is 
required is a controlling device (analog or digital), a sensor from which the 
controller can get information about the variable it is supposed to control, 
and a final device, such as a control valve, which can manipulate some 
other variable whose value affects the value of the variable under control. 

Second, to create a feedback control system, there is no requirement for 
any extensive engineering study. As far as the process to be controlled is 
concerned, it is only necessary to know that the same input to the process 
consistently produces the same reaction from the process. 

It helps in the study of what goes on in a feedback control system if the 
system is diagrammed in block form, with each of the major components 
in the system represented by one block. The major components in a feed­
back system are the process, the controller, the sensor from which the con­
troller gets its measurement information about what it is controlling, and 
the final device, which the controller uses to effect appropriate changes in 
the controlled variable. In a block diagram, a feedback control system 
appears in Figure 9-1. 

The first (circular) block is the comparison block, in which the measured 
value of the controlled variable c is compared with the desired value r. The 
difference, ε, is equal to c - r. If the control system is on control, then ε = 0. 
If ε is not zero, corrective action by the controller is required. The compari­
son block is actually built into the controller but is shown separately in the 
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Figure 9-1. The Feedback Control System Block Diagram. 

block diagram so that the location of the variables r, c, and ε can be identi­
fied. 

The block diagram shows how the output of one block becomes the input 
of the next. Each block may contain one or more time constants, dead time, 
or other behavioral characteristics. The input to every block will be modi­
fied by whatever gain and dynamics the previous component contributes 
to the system. 

The output of the process is the variable that is being controlled. In real life 
it is more likely to be a process operating condition such as pressure or 
temperature, rather than an actual product. 

The diagram also shows the measured value of the controlled variable 
being fed back to the input of the controller. Hence the name feedback con­
trol. In addition, having the feedback path means that the system com­
prises a closed loop. Accordingly, the term closed loop control is also used 
for systems of this kind. 

In any system, when some or all of the output of the system is fed back as 
an input to the system, this creates conditions under which the system can 
oscillate. Oscillations do occur in process control systems, and as such, are 
an important characteristic of the system. 

The overall behavior of the control system can be determined if the charac­
teristics of each of the components represented by its block can be estab­
lished. This may be achieved in either of two ways. 

1. If the output of the component in response to a step change input 
can be expressed as a differential equation, then a transfer function 
for the component can be written, and the frequency response 
magnitude ratio and phase angle data can be worked out. 
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2. The steady state and dynamic characteristics of the component can 
be determined by conducting an appropriate test. This is the 
method that usually has to be used to determine the characteristic 
of real processes. 

In some texts, the control valve and sensor blocks are lumped into the pro­
cess block, as in Figure 9-2. 

Figure 9-2. The Abbreviated Feedback Control System Block Diagram. 

Since the controller does not know how many components are down­
stream of it, only the results that come back to it, it is considered satisfac­
tory to show all three of these components as a single block. 

An apparent anomaly may be present if the expression for the control 
error ε is written as (ε = r - c). From the logical point of view, the control 
error should be positive if c is greater than r, but this expression says the 
opposite. This point requires clarification, which will be forthcoming after 
one further matter has been considered. 

Conditions for Continuous Oscillation 
The feedback nature of the control system makes it possible for oscillations 
to occur. This raises the question: What conditions are necessary if the 
oscillations in the system are to be self sustaining and therefore continu­
ous? Suppose that by using a signal generator or by some other artificial 
means, a sine wave input is introduced into the system via the r input. The 
oscillations would proceed around the loop and back to the comparator 
block as the c input. If the applied sine wave were then withdrawn, under 
what conditions would the oscillations continue on their own? Actually, 
two conditions would have to be met. 

1. The magnitude of the sine wave that returned via the c input 
would have to be as great as the magnitude of the sine wave that 
was applied at the r input. If the c input magnitude were less than 
that of the r input, then the oscillations would die out. 

2. The oscillations returning at the c input must be in phase with the 
sinusoidal r input. If the magnitude of the c sine wave input were 
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the same as that of the r input, but the two wave trains were out of 
phase, then the interference between the two out-of-phase waves 
would cause the oscillations to die out. 

In real process control systems, the output from the process block will 
inevitably emerge lagging behind the input, owing to the dynamic delays 
that are inherent in the control valve, the process, and the measurement 
sensor. Thus, for the returning wave at the c input to be in phase with the 
incoming wave r, the returning wave must actually be 360° or one com­
plete cycle out of phase with the input r. This effectively puts it back in 
phase with the r wave. 

In Chapter 8 (Frequency Response Analysis), it was shown that the phase 
lag will increase with increasing frequency of the oscillations. From this it 
might be deduced that continuous oscillations in the system can occur 
only at the frequency that causes a phase lag of 360° in the process block. 

However, at this point a second anomaly occurs. Control theory texts say 
that continuous oscillations occur at the frequency at which there will be 
180°, not 360°, of phase shift in the process. How can this be reconciled? 

The answer lies in the expression ε = r - c. We have already noted that this 
does not appear to be logical, but the difficulty lies in the fact that the 
expression has been abbreviated. The actual expression is 

ε = (-1) x (c - r). 

This clears up the two apparent inconsistencies. First, the difference term 
is really (c - r), not (r - c), so logic prevails. The second is that multiplying 
a sine wave by (-1) inverts the wave, which is equivalent to shifting the 
phase by 180°. This inversion occurs inside the circular block. Conse­
quently, 180° of phase lag in the process, plus the 180° contributed by the 
inversion factor - 1 , provides the overall 360° phase lag that is required to 
make continuous oscillations possible. The key factor to remember is that 
continuous oscillation in a feedback control system will occur at the frequency 
that causes 180° of phase lag in the process. 

It is theoretically possible that all of the dynamic elements in the process 
block, in combination, will not produce a phase lag of 180°, no matter how 
great the frequency. In this case, oscillations will not be sustained in the 
loop, irrespective of the steady state gain in the loop. Such a hypothetical 
control system would have to have zero dead time and no more than two 
time constants, even if they are small. Since in actual control systems there 
will be at least one time constant in each of the control valve, the process, 
and the sensor, a real process control system that cannot oscillate does not 
exist. 
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The Transfer Function of a Closed Loop 

The diagram below is the abbreviated closed loop diagram except for the 
different symbols. The transfer functions are identified by the letter G, so 
that Gc is the transfer function of the controller, and GP is the transfer func­
tion of the process. The input and output, which will be functions of time, 
are identified by the letter Z, with Zi being the input to the system, and Zo 

being the output. 

Figure 9-3. Block Diagram with Transfer Functions. 

For the two blocks, the input to the second block is the output from the 
first, so the transfer function for the two blocks in tandem will be the prod­
uct GcGp. At first glance, it seems that the ratio of the system output to the 
input should be 

Zo/Zi = Gc Gp. 

This would be the case if there were no feedback. However, the feedback 
path that directs the output back to the input of the loop, adds a complica­
tion. The input to the Gc block will not be Zi, but Zi - Zo. Consequently, 

Zo/Zi - Zo = Gc Gp. So, Zo = Gc Gp Zi - Gc Gp Zo 

Zo (1 + Gc Gp) = Gc Gp Zi and Zo/Zi = Gc Gp/1 + Gc Gp 

which is the transfer function for the closed loop. 

Evaluating the Closed Loop Transfer Function 

The frequency response gain and phase lag for the closed loop might be 
obtained through the rather onerous application of mathematics, but Peter 
Harriott, in his excellent text (Process Control, McGraw-Hill, New York 
City, 1964), suggests an easier approach. 
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Since any component represented by a transfer function has a gain and a 
phase lag at every frequency, these two characteristics can be represented 
by a vector, and the overall gain and phase lag can then be determined by 
adding vectors to produce the vector for the closed loop. 

To simplify matters, let the product GcGp be replaced by G, so that the 
closed loop transfer function becomes 

G / 1 + G . 

In Figure 9-4, the vector G has a length equivalent to the open loop gain, 
and it is orientated at an angle (a) equal to the open loop phase lag, at the 
selected frequency. 

Figure 9-4. Using Vectors to Determine the Closed Loop Gain and Phase 
Angle. 

The 1 vector, as a constant, has unit magnitude but no phase angle. Its 
direction is parallel to the horizontal axis and in the positive direction of 
the horizontal axis. The result of adding the G vector and the 1 vector dia-
grammatically is the vector representing G + 1. 

At a somewhat higher frequency than that represented by the quadrant 4 
diagram, the greater phase lag shifts the vector diagram into quadrant 3. 
The gain will likely be lower also, as indicated by the shorter G vector. 
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To find the closed loop gain and phase lag, it is necessary to divide the G 
vector by the G + 1 vector, since the form of the transfer function for the 
closed loop is a quotient. The procedure for dividing vectors of this type 
calls for dividing the magnitude of the vector in the numerator by the mag­
nitude of the vector in the denominator, and subtracting the phase angle of 
the vector in the denominator from the phase angle of the vector in the 
numerator. Following this procedure yields the closed loop gain and 
phase lag at the particular frequency at which the open loop gain and 
phase lag were determined. 

Specifically, this means that the closed loop gain will be equal to 

Magnitude of the G vector 

Magnitude of the (G +1) vector 

and the closed loop phase lag will be equal to (a - a1). 

Figure 9-5 appears confusing but it contains an important fact. It repre­
sents the case in which the open loop phase lag is -180°. At this particular 
frequency, it is quite possible that the open loop gain will have fallen off to 
a value less than 1, which is why the G vector in Figure 9-5 is shown con­
siderably shorter than in Figure 9-4. At a phase angle of -180°, all three 
vectors are going to lie on the horizontal axis. 

Figure 9-5. Both Vectors Have the Same Phase Lag at 180°. 

The G vector, which represent the open loop, will point in the negative 
direction, in accordance with the -180° phase lag. If the open loop gain is 
less than 1, then when the unit vector is added, the resultant G + 1 vector 
will end on the positive side of the vertical axis, pointing in the positive 
direction. This indicates a phase angle of zero. Thus, when the phase angle 
of the G + 1 vector is subtracted from the open loop phase angle, the 
closed loop phase angle turns out to be -180° - 0°, or -180°, the same as the 
open loop phase angle. 
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The all important point here is that the frequency that creates a phase lag 
of -180° in the open loop also creates a -180° phase lag in the closed loop, 
and this is the crucial frequency at which the closed loop is going to oscillate. No 
other frequency will cause an identical phase lag in both the open and 
closed loops. 



10 
The Z-N 

Approximation 

In Chapter 8, which deals with frequency response analysis, the point was 
made that attempting to obtain frequency response data on actual operat­
ing equipment was impractical. Process operators would not allow their 
equipment to be upset with sine wave disturbances over a lengthy time 
period, when their job was to ensure production and safe operations. 

Nonetheless, the dynamic behavior of most operating equipment cannot 
be predicted by sitting in front of one's computer and applying theory. 
Real life operating equipment often consists of multiple time constants, 
with some dead time thrown in. The only way to get at the dynamic char­
acteristics is with a field test. The question then becomes: Can a field test 
be devised that would be acceptable to plant operating people and would 
also yield the required information? 

J.G. Ziegler, during his career as a control systems engineer with the Taylor 
Instrument Companies, answered this question and made a significant 
contribution to control systems analysis. His method has come to be called 
the Ziegler-Nichols approximation, or for short, the Z-N approximation. 

Historical 

The events that led up to the Z-N approximation are interesting and 
deserve some space. During the late 1930s and early 1940s, there was no 
ISA—The Instrumentation, Systems, and Automation Society. In the 
United States, any technical work on control systems that was felt to be 
noteworthy was made public through accredited professional societies 
such as the American Society of Mechanical Engineers or the American 
Institute of Chemical Engineers, at their national or regional conferences 
or through their publications. Some work on control theory was being 
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done independently in the United States and England by individuals 
working in universities or manufacturing facilities, but the only organized 
group that had been officially formed up until that time was a Control Sys­
tems group, made up of several ASME members. As the one formal group 
that was recognized as such, the group members felt that they were in the 
forefront in the understanding of control systems theory. 

To broaden their studies, the ASME group felt they needed an analogous 
system that exhibited typical process control characteristics. An obvious 
feature of feedback control systems is that they oscillate, and on this basis, 
the ASME group selected a mass oscillating at the end of a spring, with 
damping added to cause the oscillations to eventually die out. Thus, any 
conclusions that the ASME group reached with regard to control systems 
behavior were based on their analysis of their damped spring mass sys­
tem. 

It was at that time that Ziegler came to the Taylor Instruments headquar­
ters at Rochester, N.Y., hoping to benefit from the knowledge of the resi­
dent control systems experts there. Much to his disappointment, he found 
that control theory, in their minds, was apparently limited to "capacity is 
good, and lags are bad." 

Since this hardly satisfied his inquiring mind, Ziegler spent much of his 
time in the Taylor research lab working with a rudimentary process simu­
lator. His technique consisted for the most part of sending a step change 
input into the simulator and watching what happened at its output. He 
collected numerous chart records of simulator outputs, and to these he 
gave the name process reaction curves. For our purposes, the term process 
reaction curve will mean the output response of a process, component, or 
whatever, to a step change in input. 

One thing Ziegler noticed almost immediately was when the dynamics in 
the simulator were any more complex than those of a single time constant, 
the process reaction curve assumed an S shape. This happened because 
the output response did not start out from t = 0 at its maximum rate of 
change, as it would do if there were only a single time constant involved. 
The S shape showed that the response would begin slowly and then 
would build up to its maximum rate of change only after a period of time. 
Therefore, if a step change input is applied to any process or control sys­
tem component, and the reaction curve that results shows the S shape, 
then the presence of something more than a single time constant, possibly 
multiple time constants or a time constant plus dead time, is indicated. 

Figure 10-1A is a process reaction curve made by a single time constant. In 
this case, the output starts out from zero at its maximum rate of change. 
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Figure 10-1. Response of a Single Time Constant (A) and Response of More than 
One Time Constant (B). 

Figure 10-1B is a reaction curve made by two time constants in series. The 
reaction curve now starts out relatively slowly and builds up to its maxi­
mum rate of change later, thus creating the S shape. 

Describing mathematically the reaction curve created by a single time con­
stant is not a problem. This was done in Chapter 6, which dealt with dif­
ferential equations. Describing the S shaped reaction curve in mathe­
matical terms, however, requires a knowledge of mathematics, which 
most engineering graduates do not possess. 

One person who did have this capability was N.B. Nichols, the Director of 
Research at Taylor Instruments while Ziegler was working in the research 
lab. Ziegler had a great admiration for Nichols' knowledge of mathemat­
ics and considered himself fortunate that he could call on Nichols when he 
needed help with the mathematics of control systems. In fact, Ziegler felt 
that the assistance he received from Nichols was valuable enough that he 
included Nichols' name as a co-author on some of the technical articles 
that Ziegler himself wrote. 

Real life processes, when subjected to a step change disturbance, will inev­
itably exhibit the S shaped reaction curve. Since analysis using mathemat­
ics was out of the question, Ziegler was led to investigate the possibility of 
using a graphical method. As part of his ongoing research, Ziegler not 
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only tested simulated processes by running process reaction curves, he 
also connected the processes to an automatic controller in an attempt to 
understand the pattern of controller settings which were required to have 
the simulated control system recover from a disturbance with the desired 
1/4 amplitude ratio. 

One point that particularly interested Ziegler was the controller gain set­
ting which was required for optimum control, and whether anything 
could be learned from the process reaction curve that would give him a 
clue to the correct controller gain value. As his work progressed, he 
became convinced that two properties of the reaction curve had a signifi­
cant effect on the correct gain setting. The first was the time interval at the 
start of the reaction curve during which the value of the curve hardly 
changed from the value at which it started out. The second was the maxi­
mum rate of change that the reaction curve eventually attained before it 
began to taper off to a new steady state value. To put numbers on these 
two properties, Ziegler drew a tangent to the reaction curve at the point of 
its steepest slope and extended the tangent downward until it reached the 
vertical t = 0 axis. This is illustrated in Figure 10-2. 

Figure 10-2. A Process Reaction Curve. 

In the diagram, R is the slope of the tangent. Its units will be units of the 
process output per minute. The tangent intersects the horizontal line that 
represents the initial (t = 0) value of the process output at point C. The dis­
tance OC along this line is a time quantity and is designated L minutes. 
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The tangent then extends downward to intersect the vertical axis at point 
B. In this way, the mathematically complicated S curve has been replaced 
by the line segment OC, which is L time units in length, and the tangent 
with slope R. 

If the controller gain setting depends on both R and L, then it is a reason­
able bet that it depends on the product of them both, or RL. Since R is the 
slope of the tangent, then R is equal to the tangent of the angle A and also 
to the tangent of the angle OCB, which is equal to angle A. The tangent of 
angle OCB is equal to 

OB/OC = OB/L = R, from which OB must be equal to RL. 

Ziegler's tests showed that if the quantity L, which is essentially dead 
time, increased, then a lower controller gain was required. The same 
applied if the slope R became greater. Could it be possible, therefore, that 
the required controller gain setting for a recovery with optimum stability 
depended on 1/RL? Numerous test runs that Ziegler conducted after 
developing this theory, proved that he was on the right track. 

During the course of his work, Ziegler had occasion to talk informally 
with other engineers who were interested in what he was doing, and at 
one point the suggestion was made that he should prepare a paper for pre­
sentation at the ASME national conference in 1941. While this was encour­
aging, Ziegler knew that a paper that dealt with gain settings alone would 
not satisfy the audience. The following comment would obviously be 
made: That is all well and good, but how do we set the other controller set­
tings, automatic reset, and derivative? 

Further investigation by Ziegler, along with frequent consultations with 
Nichols, led him to the conclusion that the optimum reset and derivative 
settings had to be dependent on the apparent dead time L alone. As a 
result of some work by Nichols, the optimum values for reset and deriva­
tive were arrived at as simple functions of L. Thus, all of the ingredients 
for the complete paper were present. 

The famous paper, Optimum Settings for Automatic Controllers (American 
Society of Mechanical Engineers, 1941) was then put together. Ziegler 
included their formulas for determining the optimum gain, reset, and 
derivative settings, based on first obtaining a process reaction curve. He 
also included a second approach, which involved finding the period of 
oscillation of the control system in the automatic mode, by turning up the 
gain of the controller until, in response to a disturbance, the system oscil­
lated continuously on its own. The paper was then submitted. 
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To ensure that some questions would be asked in the question period fol­
lowing the presentation of a paper, it was customary to send out a copy of 
each paper to selected individuals prior to the conference. It was at this 
point that the storm broke. When the ASME Control Systems group 
received their preprint of Ziegler's paper, they hit the roof. What shook 
them was Ziegler's assertion that a process control system could be made 
to oscillate continuously. On the basis of their observations of their spring 
mass model, they claimed continuous oscillations were impossible. 

As far as their model was concerned, they were right. A spring mass sys­
tem will act the same as a pure two time constant system. Figure 10-3 
shows the frequency response data for a system that contains two time 
constants and nothing more. The time constants are 2 minutes and 1 
minute. The diagram shows that the phase lag curve, even with a second 
time constant in place, is not going to reach -180°, except at a theoretical 
infinite frequency. Therefore, a two time constant system cannot be made 
to oscillate on its own. The result was that the Control Systems group 
assailed the conference program committee and demanded that Ziegler's 
paper be withdrawn. 

The fact that eluded these poor souls was that their model did not accu­
rately represent a real life process control system. There will always be a 
time constant in the control valve, one or more time constants in the pro­
cess, and at least one time constant in the measurement sensor, without 
counting any dead time that may have crept in as well. Any dynamic 
delay, no matter how small, that is present over and above the two time 
constants, will push the phase lag curve down below -180°, and make it 
possible for the control system to oscillate continuously on its own, given 
the correct amount of gain. 

In the end, over the objections of the ASME Control Systems group, 
Ziegler was allowed to present the paper. Today, Optimum Settings for 
Automatic Controllers by Ziegler and Nichols would likely get most peo­
ple's vote as the all time most significant article ever prepared on the sub­
ject of process control. Ziegler and Nichols both died in 1997, knowing 
that their article had received world wide acclaim. 

The Z-N Approximation 

Since most real life process reaction curves have the S shape and are com­
plicated mathematically as a result, a practical question would be: Could it 
be possible to replace the S shaped curve with another reaction curve, 
which had dynamic properties equivalent to those of the S curve, but 
which was manageable mathematically through the use of transfer func­
tions? 
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Figure 10-3. Frequency Response Data for Single and Two Time Constant Sys­
tems. 

Ziegler's response to this question was the proposition that a synthetic 
process reaction curve that consisted of a dead time interval followed by a 
single time constant could be substituted for the S curve, thus rendering it 
possible to analyze the behavior of the complete control system. The fre­
quency response data for dead time plus a single time constant in tandem 
can be easily derived. Unfortunately, in his paper, Optimum Settings for 
Automatic Controllers, Ziegler did not propose a method for determining 
the actual values that should be assigned to the dead time and time con­
stant. Since we can no longer call upon Ziegler for assistance, we have to 
improvise. 
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Whatever method is contrived, the prime requirement will be that the 
replacement curve must generate a phase lag of -180° at a frequency that is 
at least close to the frequency at which the original S curve produces a 
phase lag of -180°. With this stipulation, the plan will be to start with a 
model process reaction curve that is sufficiently complex to generate an 
S shaped reaction curve, but for which the components are accurately 
known, so that the overall frequency response data can be accurately 
determined. Then a second curve consisting of dead time and a single time 
constant can be fitted to it and tested to see if it meets the important crite­
rion. 

The model process reaction curve will be one created by three time con­
stants in series. The time constant values are 2.0,1.5, and 0.5 minutes, 
respectively. Figure 10-4 shows the S shaped process reaction curve cre­
ated by this combination. The phase lag curve for this synthetic process 
will cross the -180° line at a frequency of 0.26 cpm. The verification for this 
is not difficult. In general, the phase lag contributed by a time constant is 
equal to the angle whose tangent is -ωT, where ω is the frequency in radi­
ans per minute, and T is the time constant in minutes. 

ω = 2 π × f = 2 π x 0.26 = 1.634 rad/min 

For time constant 1, phase lag = tan"1 (-1.634 x 2.0) = tan"1 (-3.27) = -73.0° 

For time constant 2, phase lag = tan"1 (-1.634 x 1.5) = tan-1 (-2.45) = -67.8° 

For time constant 3, phase lag = tan-1 (-1.634 x 0.5) = tan-1 (-0.82) = -39.2° 

Total phase lag from all three time constants = -180.0°. 

In Figure 10-4, the scale for the process variable has been selected arbi­
trarily on a 0 to 4 basis to simplify the analysis. It could be in temperature, 
pressure, or other process units, with an appropriate factor. The process 
reaction curve for the three time constant system starts out at 0 time and 
0 on the vertical scale, proceeds through its S shape, and eventually 
reaches its ultimate value of 4 after a long time. 

The line AB is the tangent to the reaction curve at its steepest point on the 
curve. The tangent meets the horizontal (time) axis at 0.85 minutes. This is 
the time value of the quantity L, in this case. 

At first glance, it would appear that the search for the values for the dead 
time and the time constant of the replacement reaction curve has been suc­
cessful. The dead time should be 0.85 minutes. Therefore, it only remains 
to find the value for a time constant that, in combination with the 0.85 
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Figure 10-4. A Process Reaction Curve Created by Three Time Constants in 
Series. 

minute dead time, will produce a phase lag of -180° at a frequency of 0.26 
cpm. 

Alas, it won't be that easy. How much phase lag does 0.85 minutes of dead 
time create at a frequency of 0.26 cpm? 

0.26 cpm = 1.634 rad/min, as before. 

Phase lag = -ωL = -1.634 x 0.85 = -1.39 rad = -79.6° 

The graph in Figure 10-3 shows that the maximum phase lag that one time 
constant can produce is -90°. Therefore, no single time constant, in combi­
nation with a dead time of 0.85 minutes, can produce -180° of phase lag at 
0.26 cpm. L = 0.85 minute does not work. 

There is another problem. It is known that the three time constant process 
will oscillate at a frequency of 0.26 cpm because it is known that the time 
constants are 2.0, 1.5, and 0.5 minutes. In the case of a real life process reac­
tion curve, the dynamic elements involved are not known, so the fre­
quency at which the control system will oscillate can't be determined by 
that route. Conclusion? Back to the drafting board. 

The starting point in the search for the appropriate time constant is the 
three things that are known about it. 
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• In Figure 10-4, the time constant would start out from a point on the 
horizontal (time) axis, proceed upward in standard time constant 
fashion, and eventually reach a final value of x = 4. 

• The point from which it starts must be a time value >0.85 minutes. 

• The process variable y should track the path of the original three 
time constant reaction curve as closely as possible. One way that 
this could be achieved would be to have the single time constant 
curve intersect with the three time constant curve at its end point, at 
which t = 8, and the process variable x = 3.63. 

• The values of the dead time L and the time constant T must create a 
phase lag of -180° at some frequency that is reasonably close to 0.26 
cpm. 

The function f(t), which is consistent with these conditions, is 

The math will be easier to handle if 1/T is made equal to z. Then 

x = 4(1 - e - z ( t - L )). 

If t = 8 and x = 3.63 satisfy this expression, then 3.63 = 4(1 - e-z(8-L)). 

Reducing this, 

By using this relationship, it is possible to enter trial values for the dead 
time L and calculate the associated value of the time constant T, so that the 
time constant graph will begin at t = L and pass through the point t = 8, 
x = 3.63. This does not, however, yield the rest of the information that is 
really required, namely, the phase lags, which will be contributed by the 
dead time and the time constant, and their sum. The phase lag calculation 
cannot be done without knowing the frequency. 
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Estimating the Frequency of Oscillation 

Optimum Settings for Automatic Controllers contains a clue as to how the fre­
quency of oscillation can be estimated. Ziegler and Nichols concluded that 
the optimum controller reset rate and derivative settings depended on the 
dead time L alone. Accordingly, they included in the article the formulas 
for calculating the optimum settings for both procedures: finding the 
period of oscillation (Pu) or making a process reaction curve and finding 
the dead time L by drawing the tangent to the curve. The formulas they 
published were: 

Optimum derivative = Pu/8 = 0.5 L 
8 

Optimum reset rate - 2.0/Pu = 0.5/L. 

The constants that Ziegler and Nichols used in these relationships were 
based to some extent on the pneumatic controllers that Taylor Instruments 
were marketing in the 1940s, and on the internal pneumatic circuitry that 
these controllers used. Consequently, these formulas will not necessarily 
give the best values for the reset rate and derivative settings for the analog 
and digital electronic controllers in use today. However, the point here is 
not to be able to calculate reset and derivative settings. Rearranging either 
of these formulas, it is apparent that the period of oscillation Pu is equal to 
four times the dead time L and this does not depend on hardware. This is 
the information that is needed to make it possible to estimate the fre­
quency of oscillation from any process reaction curve. 

The tangent to the steepest point on the three time constant reaction curve 
meets the horizontal axis at 0.85 min. The period of oscillation is therefore 
estimated to be four times this, or 3.4 minutes, and the frequency of oscil­
lation will be the inverse of the period, or 0.294 cpm. The true value is 0.26 
cpm, so the value obtained by the estimation procedure is reasonably 
close. In the absence of any better method, this procedure will have to suf­
fice. 

Values for the Dead Time and Time Constant 

Completing the example will best illustrate the method. 

Starting with the relation 

T = 8 - L/2.38 
select a trial value for L. 
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A previous calculation showed that L = 0.85 is too small a value, so the 
first trial value will be L = 1.0. 

If L = 1.0, then T = 8 - 1/2.38 = 2.94 min. 

Frequency of oscillation is estimated to be 0.294 cpm = 1.847 rad/min. 

Phase lag for L = 1.0 min. is - 1.847 x 1 = -1.847 rad. = -105.8°. 

Phase lag for T = 2.94 min. is tan-1 (-1.847 x 2.94) = tan 1 (-5.43) = -79.6°. 

Total phase lag = -105.8 + (-79.6) = -185.4°, which is 5.4° too much. 

At this point it is apparent that it would be easy to design a computer pro­
gram that would quickly calculate the values for the time constant T, the 
phase lags for the dead time and for the time constant, and the total phase 
lag, from trial values of L. By using such a program, the values sought turn 
out to be: 

Dead Time L = 0.95 min. Time Constant T = 2.96 min. 

Phase lag for L = 0.95 will be -1.847 x 0.95 = -1.755 rad. = -100.5°. 

Phase lag for T = 2.94 will be tan-1 (-1.847 x 2.94) = tan-1 (-5.47) = -79.6°. 

Total phase lag = -100.5 + (-79.6) = -180.2°. 

Just How Good Is the Approximation? 

It is now appropriate to investigate how well the dead time plus one time 
constant approximation matches the original three time constant process 
reaction curve. This should be done in two ways: 

• By overlaying the dead time plus one time constant reaction curve 
on the three time constant reaction curve (Figure 10-4). 

• By comparing the frequency response gain and phase data for both 
reaction curves. 

Figure 10-5 shows how the two reaction curves compare on a time basis. 
As planned, the curves intersect at t = 8, x = 3.63, although the dead time 
(L) values are 0.85 and 0.95 minutes, respectively. 

What is most significant, however, is the comparison of the two phase lag 
curves. Figure 10-6 shows that they track fairly well, including at the point 
where they reach -180°. The original process reaction curve consisting of 
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Figure 10-5. Process Reaction Curves for the Three Time Constant System 
and the Z-N Approximation. 

three time constants shows a frequency of oscillation of 0.26 cpm, while 
the approximation reaction curve, with dead time and a single time con­
stant, crosses -180° at a frequency of 0.29 cpm. The equivalent periods of 
oscillation are therefore 3.8 and 3.4 minutes. This is about the level of accu­
racy that is to be expected from the approximation. 

At the frequency of oscillation, the gain values are considerably different, 
of the order of 0.3 and 0.75. This is not a problem, however, because the 
adjustable gain in the automatic controller makes is possible to set up the 
overall control system gain, which includes the gain of the process, to the 
value that produces a recovery with a 1/4 amplitude ratio. 

Making a Process Reaction Curve 

The process reaction curve was given its name in Ziegler and Nichols orig­
inal 1941 article. Constructing a process reaction curve is really a dynamic 
test in which the input test signal is a step change. A test using this partic­
ular input pattern is a very useful one, in that it is easy to generate and it 
yields most, if not all, of the dynamic data needed to make a practical anal­
ysis of a process control system. 

A process reaction curve is made with the automatic controller on Manual 
control. The procedure: 
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Figure 10-6. Frequency Response Graphs for the Three Time Constant System 
and the Z-N Approximation. 

1. Set the controller on Manual and allow the control system and the 
controlled variable to stabilize. Record the manual output to the 
control valve. 

2. Step the manual output to the control valve quickly to a new value. 
The size of the step change must be great enough that the 
controlled variable, when plotted either manually or automatically, 
exhibits the familiar S shaped curve, as shown in Figure 10-7. If no 
better information is available, then a 5% change in output to the 
valve is a reasonable number to start with. Record the size of the 
step change, Am, in percent output signal to the control valve. 
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Once again, bear in mind that this test is being done on an operat­
ing plant. Consequently, it can be done only with the concurrence 
of the plant operator. One usually finds that if the operator can be 
convinced that running the test will ultimately lead to better con­
trol, he or she will usually agree to the test. On most processes the 
equivalent data will be obtained whether the step change drives 
the controlled variable up or down. Ask the operator which he or 
she would prefer. 

3. The test is begun when the step change in output to the control 
valve is made. Starting from this moment, record corresponding 
readings of time and the controlled variable; in Figure 10-7, it is the 
process temperature. Continue taking readings until it is obvious 
that the rate of change of the process variable is approaching its 
new steady state value. The readings should be spaced closely 
enough that they can be plotted later to produce a reasonably 
representative process reaction curve. 

4. When Step 3 is completed, set the output signal to the control 
valve, still on manual control, back to the original value recorded 
in Step 1. If this procedure is followed, the only disturbance that 
the process will see is a hump, upward or downward, in the 
controlled variable, as shown in Figure 10-7. 

Figure 10-7. A Process Reaction Curve Test from an Actual Process. 

Before describing what should be done with the data obtained, the follow­
ing points on technique for taking the data should be noted. Ordinarily, a 
team of two observers will be required. 

The documentation is made easier if the data sheet is set up beforehand. 
This is where another problem can be inadvertently created. It would 
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seem that a logical approach would be to concentrate on the independent 
variable, that is, the time values. When the data sheet is laid out, the times, 
usually at about 15 second intervals, are written in. Then when the test 
begins, it is up to the team member who is tracking the process variable to 
call out its values as his partner calls out the times. 

We now have the potential for a real confrontation. If the process variable 
is displayed on an analog indicator or recorder, and the value is in 
between two of the divisions, it may be difficult to decide quickly enough 
what the value of the controlled variable really is. In fact, it may happen 
that before the team member who has this job has figured out the value at 
one time point, his partner is calling for the next value. At this stage, there 
may be some pointed criticism about the capabilities of the harassed team 
member, with the result that he quits and goes back to the office or shop. 

This problem should not occur if it is recognized that the time device, stop 
watch or otherwise, is the easier instrument to read. Some timers even 
have a digital readout. Consequently, a better procedure is to set down 
even division and mid division values of the controlled variable, and as 
the test proceeds, record the time values at which the controlled variable 
attains these values. 

The ultimate arrangement, of course, would be to have a high speed 
recorder to record the values of the controlled variable on a time base over 
the course of the process reaction curve run. Unfortunately, not many 
engineering departments will have this equipment. However,one person 
with a cassette recorder might be able to do the job adequately. 

The measuring system of an automatic controller contributes its share to 
the overall dynamics of the control loop. Consequently, the readings of the 
process variable which are taken must come from the measuring system of 
the automatic controller, not from some other meter which may be mea­
suring the same process variable, and which may be easier to read. 

At this point, a word of caution is appropriate. The procedure just 
described works only for processes that exhibit self regulation. Self regula­
tion means that for each position of the control valve, as set on manual 
control, the controlled process variable will settle out at some reasonable 
value. Unfortunately, there are processes which are not self regulating. If a 
process lacking in self regulation is holding steady on manual control at 
t = 0, an unbalance which is subsequently caused by a step movement of 
the control valve will be integrated over time. The controlled variable will 
not settle at some new steady state value, but will drift up to maximum or 
down to zero. 
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The good news, however, is that most of the non self regulating processes 
have reasonably good dynamic behavior, are easier to control, and thus 
have no real need for obtaining dynamic data by making a process reac­
tion curve, or by any other test. Process reaction curves are generally 
reserved for the hard jobs. 

Example 1: Reaction of a Real Process 

Inasmuch as the process reaction curve shown in Figure 10-7 is from an 
actual process, it would be meaningful to determine the values of the dead 
time and the time constant, and complete the approximation. Figure 10-8 
shows the same process reaction curve with the trailing end, after the cut­
off point, deleted. The temperature scale has been replaced with an arbi­
trary scale that has its zero point at the level from which the reaction curve 
starts out. Since the two values being sought—the dead time and the time 
constant—are both time values, changing the scale of the dependent vari­
able will not affect the outcome. 

Figure 10-8. Process Reaction Curve from Figure 10-7. 

The equation for the time constant, as before, is, 

PV (Process Variable) = X [1-e-1/T(t - L)]. 
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In this equation, X is the difference between the start of test and end of test 
steady state values of the controlled variable, T is the time constant, and L 
is the dead time. 

The curve appears to show that the ultimate value X is 8.15 on the PV 
scale. The tangent to the curve at its steepest point crosses the base line at 
about 105 seconds. Thus, the estimated period of oscillation will be four 
times this value or 420 seconds. The frequency of oscillation will be 1/420 
Hz, and in radians per second, the frequency will be 

ω = 2Π x 1/420 = 0.0150 rad/s. 

A point near the end of the reaction curve is also needed. A logical ques­
tion would be: Why not use the point at the end of the curve where the PV 
is 8.15 (its ultimate value) and t = 550 s? This does not compute, however, 
because an inherent characteristic of any time constant is that it does not 
attain its ultimate value until t equals infinity. Therefore, some other point, 
near, but not at, the end of the curve, must be chosen. The curve appears to 
cross PV = 8 at t = 483 s, so this point will be used. 

Substituting these values in the equation for the time constant gives, 

Simplifying this and rearranging yields, 

T = 483-L/4.00. 

The procedure now calls for selecting values of the dead time L, determin­
ing the value of the time constant T from the relation above, and then cal­
culating the phase lag that the dead time and time constant in combination 
will create at a frequency of 0.0150 rad /s . This trial and error routine is to 
be repeated until the values of L and T that create a phase lag of -180° have 
been found. 

For this process reaction curve the values turn out to be L = 150 s and 
T = 83.3 s. The phase lag values are: 

Dead time phase lag = - ω L = - 0.0150 x 150 = -2.24 rad = -128.6°. 

Time constant phase lag = tan"1 (- ω T) = tan -1 (- 0.0150 x 83.3) = 
- 0.895 rad = - 51.3 deg. 
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Total phase lag = - 128.6 + (- 51.3) = - 179.9°. 

Figure 10-9 shows how closely the Z-N approximation matches the origi­
nal process reaction curve. 

Figure 10-9. The Original Process Reaction Curve and the Z-N Approximation. 



11 
Units, Best Values, 

Formulas, and Other 
Good Stuff 

True Value 

Statements about the accuracy of numbers imply that an accurate, or true 
value, is known. Measurements that are based essentially on counts, 
where the items counted are people, money, pulses in digital systems, and 
so on, can be considered accurate. A statement that a new computer costs 
$1499 means exactly 1499 dollars. 

On the other hand, for measurements of analog variables, and this 
includes nearly all process measurements, such as temperature and pres­
sure, the exact value is known only to the Great Creator. The value ulti­
mately obtained will only be the best approximation that we humans can 
make. Even if we are able to get the first 6 digits correct, it is still an 
approximation. A good quality temperature sensor might output a read­
ing of 68.5°C, but this does not mean that the temperature is exactly 
68.500 000 000... It simply means that the true temperature lies somewhere 
between 68.45° and 68.55°. Still, up until about 1960, engineering calcula­
tions were done on sliderules, which were capable of producing only 3 sig­
nificant figures, but this was good enough to design oil refineries that 
would produce products and airplanes that would fly. 

In industry, the true value of any process measurement is usually taken to 
be the value indicated by some standard measurement device. Unfortu­
nately, the majority of measurement standards are not rugged enough to 
tolerate the plant environment and have to be kept in a laboratory. The 
sensors that are used in the process operations are then calibrated against 
the standard. 

151 
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For this procedure to give satisfactory results, the accuracy of the standard 
must necessarily be two or three orders better than that of the plant sensor. 
A fact that helps the situation is that process measurements nearly always 
have a tolerance that is acceptable for the successful production of prod­
ucts. A temperature measurement that is within ±1 degree of the true 
value might well be sufficiently accurate for operating a plant. 

Errors 
It is customary to express the accuracy of a measurement in terms of the 
error that can be expected. The error is defined as the difference between 
the observed value of the measurement (OV) and the true or accurate 
value (TV). Thus, if the error is designated ε, then 

ε = OV - TV. 

An error can be expressed in actual units of measurement or as a fraction 
or percentage of the true value. An error can be positive or negative, 
depending on whether the observed value is greater or less than the true 
value. 

Sometimes statements about the accuracy of measurements tend to get 
sloppy. Such a statement might be "Orifice meters are 3% accurate." This 
statement could be interpreted incorrectly in either of two ways. First, the 
statement that the meter is 3% accurate implies that it could be 97% in 
error, which is unrealistic. Second is the implication that no matter what 
the reading of the meter might be, it will be in error by 3%. This is not real­
istic either because most industrial meters can usually be calibrated so that 
they are accurate at at least two points in their range of measurement. A 
proper statement of accuracy for the meter is "This meter is accurate to 
within 3% (of the true value)." The key word is "within." 

Errors in Combinations of Quantities 
Two quantities, whose true values are X and Y, are known to have possible 
errors of εx and εy If the two quantities are to be added, what will be the 
error in the sum? If X and Y are the true values, then the measured values 
will be X + εx and Y + εy bearing in mind that the errors could be positive 
or negative. 

(X + εx) + (Y + εy) = (X + Y) + (ε + εy) 

The conclusion drawn from this is that when quantities with known errors are 
added or subtracted, the actual errors are added. Note that errors are always 
added, never subtracted, even if the quantities to which the errors belong 
are subtracted. 
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If the two quantities X and Y are to be multiplied, then 

(X + εX) x (Y + εy) = XY + Yεx + Xεy + εxεy. 

Since εx and εy are hopefully small compared with X and Y, for the pur­
poses of this calculation, their product εxεy can be ignored, Then, 

XY + Yεx + Xεy = XY + XY [εx/X + εy/Y]. 

The two factors within the brackets are the fractional errors of X and Y 
Their sum is the fractional error in the product XY The sum of the frac­
tional errors multiplied by the product XY, as shown in the expression, 
will be the actual potential error in the product XY, in whatever units X 
and Y are measured. 

The development for the quotient of X over Y produces the same result. 
Accordingly, the rule is: The potential fractional error of the product or the 
quotient of quantities is the sum of the fractional errors of the individual quanti­
ties. 

Since percentage error is simply another form of fractional error, the 
words "percentage errors" could be substituted for fractional errors in the 
rule. 

Correction Factor 
A correction factor (CF) can be determined if the error is known. It is the 
quantity that should be added to the observed value in order to correct it 
to the true value. As a mathematical expression, 

OV + CF = TV. 

Rearranging this, OV - TV = - CF. 

Recalling that the expression for the error was ε = OV - TV, then the cor­
rection factor CF must be equal to the negative of the error. Thus, if there is 
a scale that is showing a weight of 0.5 kg when it should be reading zero, 
then the correction factor for any reading taken from this scale should be 
-0.5 kg. 

Significant Figures 
Simply put, significant figures are numbers that actually mean what they 
say. It is definitely possible for numbers that have no meaning or fact to 
them to emerge as a result of a calculation. This is particularly true today 
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when there are pocket calculators which will fill the whole viewing screen 
with numbers whether they have any meaning or not. 

Suppose that the following population data is available for the City of 
Edmonton; the City of Ft. McMurray 500 km to the north; and the village 
of Wandering River, which is halfway in between. 

City of Edmonton 941,000 

City of Ft. McMurray 43,900 

Village of Wandering River 63 

The total population of all three places calculates out to be 984,963 but 
obviously not all of the six figures have any real meaning. 

The figure given for the City of Edmonton really specifies that the popula­
tion is somewhere between 940 500 and 941 500. In other words, there will 
be a tolerance in the sum of ±500 persons. In view of this, the population 
figure for Wandering River has no meaning at all in the sum, while the 
hundreds digit for Ft. McMurray is relevant, in calculating the sum, only 
to the extent of bumping the thousands digit from 3 to 4. 

When due regard is given to the real significance of the figures, the total 
population of the three communities should be recorded as 985 000. 

The loss of meaning, or significance, always occurs in the trailing digits. 
The question then becomes: How many of the leading digits are signifi­
cant? In the case of a sum or difference, the last digit in the sum or difference 
that is significant, will be the same as the last significant digit in the greatest term 
in the summation. 

Until the 1960s, significant figures in products or quotients were not really 
a problem, since the calculations were done on sliderules, which could 
generate only three figure answers. Calculators that have come along since 
that time can create a false impression. Consider the operation of multiply­
ing 102.7 by 3.14. If this is plugged into a calculator, the answer comes out 
322.478, but how many of these figures are really significant? 

If the two numbers are measurements of some kind (the decimal places 
suggest that they are), then the number 102.7 says that the measurement it 
represents lies between 102.65 and 102.75. Similarly the measurement that 
has a value of 3.14 lies somewhere between 3.135 and 3.145. 

Multiplying the two lower values gives 102.65 x 3.135 = 321.808. 
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Multiplying the two higher values gives 102.75 x 1.345 = 323.149. 

Thus, all that is known for sure about the product of the two numbers is 
that it lies between 321.808 and 323.149. Consequently, in the number 
cranked out by the calculator, 322.478, the numbers following the decimal 
point are meaningless. The only significant digits are 322. 

The rule for the significant figures in a product or quotient is that the num­
ber of significant figures in the product or quotient can be no greater than the 
number of significant figures in the term that has the least number of significant 
figures. In the case of the example, the number 3.14 has the fewest signifi­
cant figures (three), therefore no more than the first three figures in the cal­
culated product will be significant. 

Special attention should be given to the matter of trailing zeros after the 
decimal point. The fact that the relationship between inches and centime­
tres is written 1 in. = 2.54 cm does not imply that all of the figures after the 
4 are zeros. However, it turns out that the next figure after the 4 is in fact a 
zero, so that the relationship should be recorded as 1 in. = 2.540 cm. This 
shows that the relationship is known to four significant figures, not three, 
and furthermore that the fourth significant figure is a zero. 

Conversion of Units 

Twice during the last few years, somewhat similar incidents were reported 
by the news media. An Air Canada jet liner ran out of fuel in mid air. For­
tunately, the captain was one of the very few who had the necessary skill 
to land the plane on zero power. The problem was attributed to a mix up 
between pounds and kilograms of fuel. 

Later, NASA crashed a space probe that was designed to land on Mars. 
The cost of the probe was some hundreds of millions of dollars, not count­
ing the salaries of the highly trained technical people who had to track and 
guide it through its months long journey from Earth. The cause was said 
to be a mix up between feet and metres in the rate of descent. 

Failure to convert correctly from one system of units to another can have 
serious consequences, enough so that some attention to a conversion pro­
cedure is justifiable. The process of converting measurements in one sys­
tem of units into another system is sometimes called scaling. There are 
likely numerous methods of performing conversions. The one that will be 
described here, however, is straightforward and virtually foolproof. The 
explanation will be clearest if an example is worked. 
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Your neighbor has come to you with a problem. He has bought some fertil­
izer for his lawn The directions on the bag say to apply it at a rate of 2 kg 
per 100 m2. He is in difficulty because he knows the area of his lawn is 
2 560 ft2. In addition, the only scale he has measures in pounds, not kilo­
grams. How much fertilizer should he put on his lawn? 

The first step is to convert 2 kg into pounds. Two statements are required, 
the first being any known correct relationship between pounds and kilo­
grams. You happen to know that 1 lb = 0.453 6 kg, so you use this as the 
first statement. The second statement is the relationship you need to know, 
using an x, or a ? for the unknown quantity The setup looks like this. 

1st statement 1 lb = 0.453 6 kg 

2nd statement ? = 2 kg. 

When these statements are written down as shown, it is vital to ensure that 
the same units in both statements are on the same side of the equals sign. 
In this case, pounds are on the left side of the equals sign, kilograms on the 
right, in both statements. It would make no difference if this were reversed 
(kilograms on the left, pounds on the right), as long as consistency 
between the two statements is maintained. 

With the two statements in place, mentally draw two diagonals across the 
four numbers. 

The unknown quantity, (?), will always be equal to the product of the two 
numbers that lie on the path that does not go through the (?), divided by 
the single number that is on the path that includes the (?). Therefore, 

? = 2 × 1/04536 = 4.41 lb. 
0.453 6 

Use the same procedure to convert 100 m2 into ft2. You recall that 1 ft = 
0.304 8 m. Therefore, 1 ft2 = 0.304 82 m2 = 0.092 9 m2. 

1st statement 1 ft2 = 0.092 9 m2 

2nd statement ? = 100 m2 
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Therefore, ? = 100 × 1/0.092 9 = 1 076 ft2. 
0.092 9 

The specified application rate of 2 kg per 100 m2 is therefore equivalent to 
4.41 lb per 1 076 ft2. For 2 560 ft2, 

4.41 lb = 1 076 ft2 

? = 2 560 ft2 

? = 2 560 × 4.41/1 076 = 10.5 lb 
When this method is used, it doesn't matter which units are on which side 
of the equals sign. In fact, it doesn't matter if the statement of the known 
relationship is the first statement or the second one. What does matter is 
that in both statements, consistency in the placement of the units with 
respect to the equals sign is maintained. If this is done then a correct con­
version will result. 

Converting Formulas to New Units 

It sometimes happens that a formula is needed to calculate some required 
quantity. Unfortunately, the available formula uses a system of units that 
is not convenient. The problem is to convert the available formula to the 
units that one wishes to use. 

Since a mistake in converting the formula's units will inevitably lead to 
calculating the wrong value for the required quantity, the procedure that is 
used should be logical and as error proof as possible. First of all, consider 
these two statements, both correct, which follow. 

1 lb = 0.453 6 kg Therefore, lb x 0.453 6 = kg 

It is the second of these two statements that is needed to convert a formula 
correctly. Specifically, conversion factors are needed that will convert the 
desired units into the units required by the formula. Correct conversion of 
the formula depends, therefore, on coming up with the right conversion 
factors. 

The recommended procedure is to set up the conversion statements, simi­
lar to the two above, with the desired units on the left side of the equals sign, 
and the units required by the formula on the right side of the equals sign. 
The whole process will be illustrated best by working an example. 
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If the inside diameter of a pipe, the velocity of the flowing stream, and the 
density of the stream are known, then the mass flow rate (W) of the stream 
in the pipe will be 

W kg / s = π/4 v d2 p = 0.785 4 v d2 p. 

In this expression, v is the velocity in per second, d is the inside diameter 
of the pipe in inches, and ρ is the density of the stream in kilograms per 
cubic metre. What is required is the equivalent expression with the veloc­
ity in feet per second, the inside diameter in inches, and the density in 
pounds per cubic foot. The starting point is to set up the conversion state­
ments, one at a time, with the desired units on the left and the required 
units on the right. 

For the velocity v, 1 fps = 0.304 8 m / s . Therefore fps x 0.3048 = m / s . 

For the diameter d, 1in. = — x 0.304 8m = 0.025 4m. 

Therefore in2 x 0.025 42 = m2. 

For the density ρ, 1 lb/ft3 = 0.453 6 kg/ft3 = 0.453 6 × 1/0.304 83 kg/m3 

= 16.02 kg/m3. 

Therefore, lb/ft3 x 16.02 = kg/m3 . 

If v1, d1, and ρ1 are the velocity in fps, the diameter in in., and the density 
in lb/ft3, then the formula converts to 

W = 0.785 4 (0.304 8 v1) (0.025 42 d1
2) (16.02 ρ1) 

= 0.002 474 v1 d1
2 ρ1. 

Obviously, this result needs to be tested with some actual numbers. Sup­
pose that in a 6 in. I.D. pipe, a fluid with a density of 50 lb/ft3 is flowing 
with a velocity of 5 fps. 

5 fps = 5 x 0.304 8 m / s = 1.52 4 m / s 

6 in. = 6 x 1/12 x 0.304 8 m = 0.152 4 m 
12 
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50 lb/ft3 = 50 x 0.453 6 x 1/0.304 83 kg/m3 = 800.9 kg/m3 

0.304 83 

Applying the original formula using the metric units, 

W = 0.785 4 x 1.524 x 0.152 42 x 800.9 = 22.26 kg/s . 

If the formula has been correctly converted, it should produce the same 
number, using the fps units. 

W = 0.002 474 x 5 x 62 x 50 = 22.26 kg/s . 

While some satisfaction can be derived from this, it points out that the job 
of converting the formula is not yet finished. The new converted formula 
can accept the fps units and give the correct answer, but it still produces 
the answer in kg/s , whereas the result is required in pounds per hour. The 
final step, therefore, is to modify the numerical factor 0.002 474 so that 
lb /hr are the units of the result. 

1kg/s = 1/0453 6 lb/s = 1/0.453 6 × 3 600 lb/hr = 7937 lb/hr 

Therefore the numerical factor for the formula should be 

0.002 474 x 7 937 = 19.63. 

The final result is 

W (lb/hr) = 19.63 v d2 ρ, with v in ft/s, d in in., and ρ in lb/ft3. 

Example 1: Reynolds Number 
In the SI metric system, the basic relationship for computing the Reynolds 
number Re is 

µ 
In this relationship, 

v = the velocity of the stream in metres per second (m/s) 
d = the internal diameter of the pipe in metres (m) 
ρ = the density of the fluid in kilograms per cubic metre (kg/m3) 
µ = the absolute viscosity of the fluid in Pascal seconds (Pa.s) 

When the SI metric relationship is used, the constant multiplying the 
expression is 1.00. 
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Starting with the basic metric relationship, the assignment is to develop a 
formula for the Reynolds number having the form 

Re = C Qsg/dµ. 

where 

Q = the volume flow rate of the liquid in barrels per hour (bph) 
sg = the specific gravity of the liquid 
d = the internal diameter of the pipe in inches (in.) 
µ = the absolute viscosity of the liquid in centipoise (cps) 
C = the constant that is required to accommodate the new units (to be 

determined). 

The first step is to convert the metric formula so that it is in terms of 
volume flow rate and specific gravity instead of velocity and density. 
Volume flow rate is the product of the stream velocity and the cross 
sectional area of the pipe. In appropriate units, 

Q = µ/4d2 v, from which d v = 4Q/π d. 

The specific gravity sg = ρ/ρs 

where ρs is the density of water at 15°C. 

Thus, ρ = sg × 999.1 kg/m3 . Inserting these values in the original formula, 

Re = 4Q/πd × 999.1sg × 1/π = 1 272 Qsg/dµ, all in metric units. 
The next step is to convert the individual terms, bearing in mind that the 
procedure calls for keeping the desired units on the left side of the equals 
sign. 

1 bbl = 159.0 dm3 = 0.159 m3 

1 bph = 0.159 x 1/3 6 0 0 m 3 / s = 0.000 044 17 m3/s 3 600 

? bph x 0.000 044 17 = m 3 / s 

1 in. = 1/12-ft = 1/12 × 0.304 8 m = 0.025 4 m 
12 12 
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? in. x 0.025 4 = m 

1 cps = 1 mPa.s = 0.001 Pa.s 

? cps x 0.001 = Pa.s 

Substituting these values into the metric relationship for Re, 

Re = 1 272 × 0.000 044 17 Q x sg/0.025 4 d × 0.001µ = 2 212Q sg/dµ, in the desired units. 

This result should be tested with some actual data. In the test application, 
a liquid stream with a specific gravity of 0.80 and a viscosity of 0.70 cps is 
flowing through a pipe with an internal diameter of 6 in. at a rate of 500 
bph. The Reynolds number computes to be, 

Re = 2 212 x 500 x 0.80/6.0 x 0.70 = 211000 

Verifying this value for Re, 

Flow rate Q = 500 x 0.000 044 17 = 0.022 09 m 3 / s 

Density ρ = 0.80 x 999.1 = 799.3 kg /m 3 

Viscosity µ = 0.70 cps = 0.70 mPa.s = 0.000 70 Pa.s 

Diameter d = 6 x 0.0254 = 0.152 4 m 

Velocity = Q/Area = 0.022 09/π/4 × 0.152 42 = 1.211m/s 

Inserting these values in the original metric formula, 

Re = 1.211 × 0.152 4 x 799.3/0.000 70 = 211 000 
Example 2: Pressure of a Column of Liquid 

One situation that comes up frequently concerns the pressure built up by a 
head of liquid. When a textbook formula is found, it usually does not 
employ the most convenient units. The basic relationship in the SI system 
is 

p = ρ g h. 

The pressure is in Pascals when ρ is in kg/m3 , g is in m/s 2 , and h is in m. 
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The formula desired is one that gives the pressure (p) in psi, with the den­
sity expressed as specific gravity (sg), and the head of liquid (h) in feet. 

By definition, 

specific gravity = Density of the liquid (kg/m3)/Density of water at 15° C (kg / m3) = ρ/999.1. 

?ρ = 999.1 x sg 

Also, in the SI system, g = 9.812 m/s 2 , and p (kPa) = p (Pa) ÷ 1000. 

Substituting these facts into the basic formula gives, 

ρ (kPa) = (999.1 xsg )x 9.812 xh/1000 

= 9.803 x sg x h (m). 

The formula is required to accept h in feet. Following the procedure: 

1 ft = 0.304 8 m. ? ft x 0.304 8 = m 

9.803 x sg x h (m) = 9.803 x sg x 0.304 8 x h (ft) = 2.988 sg h (ft). 

For the resulting pressure to be in psi, not kPa: 

1 psi = 6.895 kPa 

? = 2.988 sg h kPa 

? = 1x 2.988 sgh/6.895 = 0.433 sg h psi. 

Finally, p (psi) = 0.433 sg h (ft). 

The Most Representative Value (MRV) 
Sometimes a number of measurements of the same entity are made, possi­
bly at different times. This leads to the question: What one value could be 
chosen as being the most representative value for the entity of concern? 

The daily price of gasoline, in cents per litre, over a 15 day period, was 
noted to be: 

62.5 
61.5 
68.5 

64.5 
62.5 
68.5 

65.5 
66.5 
66.5 

66.5 
67.5 
65.5 

61.5 
67.5 
63.5 
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Which value would be most representative of the price of gasoline over 
the 15 day period? There are actually four possibilities. 

Average Value 

The average value, or what the statisticians call the arithmetic mean, is 
probably the most familiar. To calculate the average, the 15 readings are 
summed, and the sum is divided by the number of readings, i.e. 15. For 
this example, the average turns out to be 65.2¢/l. 

Although the average value is often used as the most representative value, 
there is obviously a problem in this case because the value 65.2 does not 
appear anywhere in the list of readings. This raises some doubt as to its 
appropriateness as the representative value. 

Weighted Average 

When a number of readings are taken, it may happen that some readings 
will be more relevant than others. At the beginning of the year, one might 
be attempting to estimate how much of one's income will go into paying 
for natural gas. The cost of gas for each of the last five years is available. 

A simple average may not be as accurate as a weighted average. It would 
be more practical to assume that the cost of gas in more recent years 
should be given greater influence than the cost in earlier years. If G5, G4, 
G3, G2, and G1 were the yearly natural gas costs for each of the last five 
years, C1 being the cost for the year just ended, then the weights might 
logically be assigned as follows. 

G5 x 1 G4 x 2 G3 x 3 G2 x 4 G1 x 5 

In this weighting, the cost of gas for the year just ended would receive five 
times the emphasis as the cost five years ago. Giving one of the readings a 
weight of five is equivalent to putting that reading into the sum five times 
rather than once, and this fact must be taken into account in the denomi­
nator of the expression. Consequently, the mathematical expression for the 
weighted average will be: 

Weighted Average = G5 x 1 + G4 x 2 + G3 x 3 + G2 x 4 + G1 x 5/1+2+3+4+5 

For the gasoline prices, it may be considered that the latest five readings 
should receive twice the weight of the first five, and the second group of 
five readings should have 1.5 times the weight of the first five readings. 

The sum of the first five readings is 320.5. 



164 Basic Math for Process Control 

The sum of the second five readings is 325.5. 

The sum of the last five readings is 332.5. 

The weighted average equals 

320.5 x 1 + 325.5 x 1.5 + 332.5 x 2/5x1+5x1.5 + 5 x 2 = 1 473.75/22.5 = 65.5. 

The fact that the digit after the decimal place turned out to be a 5, the same 
as for the individual readings, is just a coincidence. If any of the 15 read­
ings had had a different value, then the third digit in the weighted average 
would have been something other than a 5. 

Mode 

The mode is the reading that appears most often in the set of readings. In 
the case of the gasoline prices, the reading 66.5 appears the most times (3), 
and is accordingly the mode. In this situation, a case could be made for 
promoting 66.5¢/l as the most representative value. 

Median 

The median is the central value in the set of readings. To find the median, 
first set down the readings in descending order of magnitude. Then cross 
off the highest and lowest readings, then the next highest and next lowest, 
and so on, until there is only one reading left. That reading will be the 
median. Its significance is that there will be as many readings that are 
greater than the median, as there are less than the median. 

For the set of 15 gasoline prices, the median turns out to be 65.5¢/l. 

One data assembling situation in which the median is often used is in the 
recording of salaries. If a person is earning the median salary, then half of 
the people reporting are earning less than he or she is, and the other half 
are earning more. The compilers of the data will sometimes list the salaries 
reported in descending order of magnitude, and then divide the list into 
10 equal groups. When this is done the groups are called deciles. The desir­
able situation, of course, is for one to be in the upper decile. If the same list 
is divided into 4 groups instead of 10, then the groups are called quartiles. 

In general, there are no hard and fast rules that decide which of the four 
possibilities should be chosen as the most representative value. The partic­
ular situation itself governs. 
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Predicting Future Values 

Sometimes the purpose of determining the most representative value is to 
estimate what that value will be at some future time. Preparing a budget is 
a prime example of this task. For example, suppose that a car owner has 
the following data for what he has spent on gasoline over the last five 
years. 

Table 11-1. History Data for Predicting Future Values 

Years Ago 

5 

4 

3 

2 

1 

$ Spent for Gasoline 

850 

680 

810 

1070 

1060 

Based on these numbers, how much should be budgeted for gasoline this 
year? 

From the appearance of the numbers, the best and easiest way out of the 
dilemma would be to determine the weighted average, which turns out to 
be $950. However, to get some idea of any trend that may be developing, it 
is necessary to plot the values on a time base, as in Figure 11-1. In this 
graph, the negative signs indicate years in the past. 

Figure 11-1. Estimating the Cost of Gasoline for the Coming Year. 



166 Basic Math for Process Control 

Unfortunately, the way the points are dispersed makes it difficult to eye­
ball in the best straight line, but help is on the way by virtue of a mathe­
matical procedure that involves the use of calculus, but which we need not 
go into here. The equation of the best line will have the form y = a + bx. 
The procedure assumes that as far as the various points are concerned, the 
x values are correct (no error), but the y values deviate from their logical 
values represented by the best line. Expressions can then be devised for 
the constants a and b based on minimizing the sum of the squares of all of 
the y deviations. 

These expressions turn out to be: 

where n is the number of points, and Σ is the summation sign. 

This theory should be applied to the data on gasoline costs. From the five 
data points obtained: 

Table 11-2. Predicting Future Values Example 

Σ 

X 

-5 
-4 

-3 
-2 
-1 
-15 

y 
850 
680 
810 
1 070 
1 060 
4 470 

xy 
-4 250 
-2 720 
-2 430 
-2 140 
-1 060 
-12 600 

X2 

25 
16 
9 
4 
1 
55 

The equation for the best line is consequently y = 1 137 + 81 x. 

The purpose of obtaining the equation for the best line was to estimate the 
value of y, the cost of gasoline, at x = 0, which corresponds to the current 
year. When x = 0, y is equal to $1 137, although judging from the original 
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data from which the line was determined, four significant figures are 
hardly justified. 

In summary, using the data on the cost of gasoline over the previous five 
years was useful for demonstrating the procedure for establishing the best 
straight line through a collection of points. However, as a means of esti­
mating how much gasoline is going to cost in the current year, it is obvi­
ously a less reliable method than say, determining the weighted average. 
The best straight line method using least squares is better applied to col­
lections of points that the laws of nature say should lie on a straight line, 
but do not, due to inaccuracies in the data. 

If the best line procedure is used, one should take care to distinguish 
between Σ x2 and (Σ x)2. 

How Much Confidence in the Most Representative Value? 
It often happens that the most representative value (MRV) for a particular 
entity has to be determined from a number of measurement readings, with 
the added complication that not all of the readings are the same. Differ­
ences in the readings can occur for a number of reasons. 

• The entity varies from time to time, as in the case of gasoline prices, 
or the outdoor temperature, but one reading has to be selected for 
the MRV to make cost or other projections. 

• Not all of the readings are taken by the same person, and there is a 
question of skill involved. 

• Not all of the readings are taken using the same type or quality of 
equipment, and there is a question of the potential error or the 
reliability. 

The result is that when one number is designated to be the MRV out of a 
group of readings representing the same entity, the question then arises: 
How much assurance can one have in the accuracy of the MRV? 

A possible answer lies in determining how closely the various readings 
are grouped around the MRV, or conversely, how badly they are scattered. 
In this procedure, the MRV is, by definition, the arithmetic mean (AM) or 
average. For the set of gasoline prices (P1 to P15), the AM is 65.2¢/l. The 
deviations of the individual readings are designated D1, D2,...D15, where 

D1 = P1 - AM, D2 = P2 - AM... D15 = P15 - AM. 

All deviations (D1 to D15) are considered to be positive even if the AM is 
greater than an individual price reading. The next step is to calculate the 
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average deviation, which is the sum of all the deviations divided by the 
number of readings. For the gasoline price example, the average deviation 

AD = 2.7 + 0.7+0.3 + 1.3+3.7 + 3.7 + 2.7 + 1.3 + 2.3 + 2.3+3.3+3.3 + 1.3 + 0.3 + 1.7/15 

= 2.1. 

The average deviation, in itself, is a fairly good indicator of the confidence 
one can place in the arithmetic mean as the MRV. If the price of gasoline is 
stated to be 65.2 ± 2.1¢/l, it implies that the price posted on any particular 
day has a 50% chance of being in the bracket 63.1 to 67.3¢/l. 

The Standard Deviation 

The standard deviation is a number developed by statisticians to indicate 
the extent of the dispersion of the readings around the arithmetic mean. 
The standard deviation is not the same as the average deviation, although 
the average deviation is involved in the calculation of the standard devia­
tion. 

Assuming that the average deviation AD has been determined as 
described already, then the standard deviation SD is equal to 

This is the abbreviated version, in which Σ is the summation operator, D 
stands for the deviations of the individual readings from the AM, AD is 
the average deviation, and n is the number of readings. In the long form, 

For the gasoline price situation, the standard deviation computes to be 1.7. 

Statistically, all of the readings that were involved in the calculation 
should be not more than three times the standard deviation different from 
the arithmetic mean. If any individual reading has a deviation greater than 
this from the AM, it is assumed to be invalid and it is scrubbed from the 
list. The calculation is then redone, from the start, using the remaining 
readings. This will generate a new value for the standard deviation and 
will require a second check of the validity of the readings. For the exam­
ple, all 15 readings were within 3 x 1.7 = 5.1¢/l of the AM, 65.2¢/l, and are 
accordingly accepted as valid. 

http://65.1t/l
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The statistical significance of the standard deviation is that of all of the 
readings that were taken, or which will subsequently be taken, 68% of the 
readings will lie within the bracket AM plus or minus the standard devia­
tion, 95% will be in the bracket AM plus or minus twice the standard devi­
ation, and 99% will be in the bracket AM plus or minus three times the 
standard deviation. 

Stated in another way, if the standard deviation can be determined from a 
set of readings, then it can be expected that 99% of the time, future read­
ings will be within three times the standard deviation of the AM, 95% of 
the time they will be within twice the standard deviation of the AM, and 
68% of the time they will be within the bracket AM plus or minus the stan­
dard deviation. This implies a certain level of assurance. 

When the MRV for an entity is stated, it is usually important to know the 
confidence level that should be given to the statement. If, for example, the 
price of gasoline is said to be 65.2¢/l at the 99% confidence level, it will 
mean that the potential error should be considered to be plus or minus 
three times the standard deviation. 

The validity of this statistical theory depends heavily on the number of 
readings on which the calculations are based. Generally, the more, the bet­
ter, although a point of diminishing returns can be reached. Fewer than 10 
readings in most cases are inadequate. 

Curve Fitting 
It sometimes happens that a computer needs to know the relationship 
between two variables, but the relationship unfortunately does not follow 
any particular mathematical law. That is, the relationship is not parabolic, 
hyperbolic, sinusoidal, exponential, logarithmic, or whatever. Physical 
properties of naturally occurring substances often fall into this category. 
Enough data are available that the dependent variable can be plotted 
against the independent variable, but unfortunately, computers are not 
very good at reading graphs. 

The graph in Figure 11-2 shows the variation of the vapor pressure of 
water with temperature. The problem is, given any temperature between 0 
and 100°C, to have a computer come up with the correct value of the vapor 
pressure. 

This can be done through the use of a curve fitting program. The general 
equation for the curve fit has the form 

y = f (z) = I0 + I1 z + I2 z
2 + I3 z

3 + I4 z
4 
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Figure 11-2. Variation of the Vapor Pressure of Water with Temperature. 

where the I's are appropriate constants to be determined, and z is an inter­
mediate variable, which will be clarified shortly. 

The procedure is as follows. 

1. Divide the range of the independent variable (x) into four equal 
sectors. The division points are identified as x0 (the starting point), 
x1, x2, x3, and x4 (the end point). If each sector is w units wide, in 
units of the independent variable, then 

w = x4 — x0/4 

2. Record the values of the independent variable (y), which 
correspond to x0, x1, x2, x3, and x4 Call these y0, y1, y2, y3, and y4 The 
required values of the constants I0, I1, I2, I3, and I4 will then be: 

I4 = y4 - 4y3 + 6y2 - 4y, + y0/24 

I4 = y3 - 3y2 + 3y1 - y0/6 -6I4 
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I2 = 6y2 - 9y1 + 4y0 - y3/6 - 2 I3 - I4 

I1 = y1 - y0 - I2 - I 3 - I 4 

I0 = y 0 . 

3. The intermediate variable 

z = x - x0/w 

where x is the value of the independent variable at which the value 
of the dependent variable y is to be calculated. Then, 

y = I0 + Ia z + I2 z
2 + I3 z

3 + I4 z
4. 

Table 11-3 shows how well the curve fit values compare with the actual 
vapor pressure values. The curve fit graph has not been plotted in Figure 
11-2, since except for a small region around 10°C, it coincides almost 
exactly with the real vapor pressure curve. 

Note that the curve fit values are dead accurate at the 0, 25, 50, 75, and 
100% points. This is an inherent characteristic of the curve fit program and 
will apply any time it is used. If greater accuracy is required, the graph can 
be divided into two sections and a curve fit equation developed for each 
section. The combination will then be exactly accurate at nine points along 
the graph instead of five. 

The curve fit program can be applied to graphs that change direction, such 
as process reaction curves, which have the characteristic S shape. The 
accuracy of the fit in these cases is usually quite good. 

An important word of caution: The curve fit equation should never be 
extrapolated outside of the specified lower and upper limits (x0 and x4). 
The accuracy falls off rapidly outside of these limits. 
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Table 11-3. The Curve Fit Program 

Temperature (x) 
Deg C 

0 

10 

20 

25 

30 

40 

50 

60 

70 

75 

80 

90 

100 

Vapor Pressure 
kPa 

0.60 

1.22 

2.33 

3.16 

4.23 

7.35 

12.29 

19.85 

31.06 

38.43 

47.20 

69.89 

101.03 

Curve Fit Value (y) 

0.60 

1.13 

2.30 

3.16 

4.26 

7.38 

12.29 

19.82 

31.04 

38.43 

47.25 

70.00 

101.03 
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acceleration 88 

accuracy 143 

Alexandria, Egypt 11 

amplitude 

of a pendulum 97 

of oscillations (see oscillations) 

angle 7 

angular velocity. See velocity 

approximation 142 

arc 11 

area 

of the surface of a sphere 42 

arithmetic mean (AM). See value, average 

automatic controller. See controller 

auxiliary equation 82-83 

average value. See value 

axis 13 

behavior 

dynamic 31 74-75 82 131 

of a control system component 120 

best straight line. See equation 

block 

comparison 123 

control valve 125 

sensor 125 

boiler 112 

budget 165 

calculators 154 

calculus 166 

integral 46 

capacity 132 

center(s) of gravity. See gravity 

City of Edmonton 154 

closed loop diagram 127 

coefficient(s) 

constant 91 

of a term or terms 50 54-55 

complex numbers. See numbers 
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component 

initial value 120 

computer(s) 

program(s) 142 

conjugate pairs. See pairs 

constant(s) 48 

of Integration 84 

control 

(See also control system) 

closed loop 124 

theorists 109 

control system experts (or theorists) 109 113 117 

control system(s) 

automatic 74 

behavior 107 

component(s) 93 

engineer 131 

mathematics of 133 

process 95 

control valve 144 

signal to 144 

controlled variable. See variable 

controller (automatic) 123 134 

analog 146 

digital 146 

tuning 113 

controlling device 123 

converge(s) 51 

See also Series 

convergent. See series 

conversion factor(s) 157 

converting 

formulas 157 

measurements 155 

correction factor 153 

corrective action 123 

cosecant 3 

cosine (or cos) 7-8 10 



175 
Index Term Links 

 

of a function 102 

of a sum of 2 angles 9 36 

cotangent 3 

criteria 

of control system behavior 107 

curve fitting 169 

program 171 

cycle(s) 

per minute 109 

damping effect 100-102 

degrees 14 108 

denominator 129 

derivative 

as a term in an equation 71 

of a term in a series 58 

second order 104 

deviation(s) 

standard 

differential 

exact (see exact differential) 

of a variable 29 

dispersion 168 

displacement of a mass. See mass 

divergent. See series 

dynamic behavior 31 74-75 82 131 

Egypt, Alexandria 11 

element(al) 

ring 33 

equation(s) 

auxiliary (see auxiliary equation) 

differential (see differential equation) 

for a curve fit 169 

of the best straight line 166-167 

Erathosthenes 11-12 

error 

fractional 153 

percentage 153 

escape velocity. See velocity 

168
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exact differential 75 78 

exponential 

behavior 83 

expression 58 

See also formula 

feedback 

See also control and control system 

feedback control. See control 

feet 155 

field test. See test 

final device 123 

finite number. See numbers 

flow 

mass 158 

force 39 44-45 87-88 97-98 100 

gravitational pull 39 

formula 30-31 45 51 74 135

 141 151 157 159-162 

frequency response 

analysis 107 

characteristics 111 

data 136 

gain 142 

test 107 

frequency(ies) 136-137 

infinite 109 

Ft. McMurray, city of 154 

function(s) 36 

mathematical 118 

of a variable 31 

gain 

frequency response 127 

of a control system component 107 109 117-118 123 

open loop 128 

output to input 109 

setting, for optimum control 134 

steady state 109 

gain. See gain 
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gravitational pull. See force 

gravity 26 39 44 97 

head of liquid 161 

heat transfer 91 

increment of a variable 17 

indicator 146 

infinite series. See series 

infinity 148 

input 

See also signal 

signal 118 

to a closed loop diagram 127 

to a control system component 107 114 

integral 37 

integration(s), Integrating 

over a specified range 31 

ISA 131 

kilograms 155 

laboratory 151 

Laplace transforms 118 

table of 99 101-102 104 106 

lawn 156 

laws of nature 167 

limit(s) 

finite 58 

limits 39 43 94 

linear scales. See scales 

logarithmic scales. See scales 

loudspeaker 113 

Maclaurin's series. See series 

magnitude 

of a parameter 100 

of a term in a series 53 

of a vector 13 64 129 

of a wave 91 

of the output wave 107 

ratio 108 120-123 

mass 
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of a pendulum 97 

suspended on a spring 72 86-88 

mass flow rate. See flow 

mathematics, mathematical 

law 169 

measurement(s) 

range of 170 

readings (see readings) 

numbers 50 62-64 68 83 85

 121 134 153 

numerator 16 129 

of time 21 

on control 123 

open loop 128 

operator (plant, process) 131 

optimum settings. See controller 

orifice metres 152 

oscillate, oscillation(s), oscillatory 

first peak 

amplitude of 113 

of a weight on a spring 100 

out of phase 107 

output 

of a closed loop diagram 124 

of a control system component 107 117 

pairs 63 83 

parabolic. See function 

part(s) (of a complex number) 

separating the... 67 

pattern 55 

peak. See oscillation 

pendulum(s) 

amplitude of 104 

performance criteria. See control systems 

period of. See period of oscillation 

Peter Harriott 127 

phase 

angle 
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Index Term Links 
 

of a vector 13 

phase lag 

frequency response 127 

of a control system component 120 

physical properties. See properties 

population 154 

pounds 155 

power(s) 

of a term in a series 50 55 58 61 

of a variable 31 

pressure 138 151 

process control system. See control system 

process reaction curve(s) 

dynamic properties 136 

S shape 132-133 136 171 

process(es) 

non self regulating 147 

variable(s) (see variales) 

quadrant 128 

quantities 

complex 66 

radian 11 14 

radius 11-12 

range of measurement. See measurement 

ratio 

of terms in a series 52-53 

rational. See function 

reaction 

time (see time) 

to an input 109 

readings 163-164 167-169 

recorder 146 

recovery time. See time 

recovery. See control system 

representative value 

true. See true value 

unit 119 

response 
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Index Term Links 
 

dynamics 122 

reynolds number (re) 159 

roots of an equation. See equation 

scales 

logarithmic 109 

scaling 155 

secant 3 

self regulating 146 

sensor. See measurement 

series 

convergent 53 

infinite 65 

MacLaurin's series 65 

power 58 

shorthand. See mathematics 

sign 

of a term 51 53 

signal 95 107 118-119 125 143

 145 

input 

sine or sin 

of a sum of 2 angles 7 

slope 

of a graph 17 

of a tangent 24 

spring 

constant 91 

standard deviation. See deviation 

steady state 134 

student 83 

substitution (substituting) 

of terms 52 

of variables 77 

table 

of common derivatives 27 

of Laplace transforms 106 

tangent or tan 

of a phase angle 121 

80 
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Index Term Links 
 

of an angle 3-5 7 36 65 

slope of 134 

Taylor Instrument Companies 131 

Taylor's series. See series 

term(s) 

consecutive 57 

of a series 50 

test 

Frequency Response 107 

of a control system component 107 

signal 107 

time 

base 165 

interval 134 

of recovery 113-114 

triangle 7 9 

right angled 7 

true value 141 151-153 

tuning. See automatic controller 

value(s) 

average 41 

desired 113 

most representative. See most 

vapor pressure (of water) 169-170 

variable(s) 

complex 

component of 64 

dependent 21 

process 95 

vector 128 

(See also magnitude) 

velocity 

of escape 44 

wandering river, village of 154 

weighted average. See value, weighted average 

Ziegler-Nichols approximation 131 136 
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