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Foreword

Process systems constitute a key aspect of human activity that is closely
linked to the three pillars of sustainable development: Economic competi-
tiveness, Social importance (employment, quality of life) and Environmental
impact. The future economic strength of societies will depend on the ability
of production industries to produce goods and services by combining compet-
itiveness with quality of life and environmental awareness. In the combined
effort to minimize waste through process integration and to optimally oper-
ate the constructed processes nonlinear behaviours are being exploited. Thus
there will be an increasing need for nonlinear process theory to systemati-
cally deal with the relatively complex nonlinear issues that appear with the
increasing process systems complexity dictated by our technological capabil-
ity and the competitive demands.

This book serves as a most promising source that combines process sys-
tems engineering with nonlinear systems and control theory. This combina-
tion is carried through in the book by providing the reader with references
to linear time invariant control theory. The nonlinear passivity theory con-
stitutes a particularly promising contribution that is illustrated on problems
of relatively low dimensionality.

The successful establishment of the state-of-art in nonlinear process sys-
tems control in a concise textbook represents a laudable contribution to pro-
cess systems theory for the benefit of future graduate students and researchers
and hopefully also for the benefit of human activity.

Lyngby, July 2003

Professor Sten Bay Jørgensen
Director of CAPEC (Computer Aided Process Engineering Center)
Department of Chemical Engineering
Technical University of Denmark
Lyngby, Denmark
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Series Editors’ Foreword 

The topics of control engineering and signal processing continue to flourish 
and develop. In common with general scientific investigation, new ideas, 
concepts and interpretations emerge quite spontaneously and these are then 
discussed, used, discarded or subsumed into the prevailing subject paradigm. 
Sometimes these innovative concepts coalesce into a new sub-discipline 
within the broad subject tapestry of control and signal processing. This 
preliminary battle between old and new usually takes place at conferences, 
through the Internet and in the journals of the discipline. After a little more 
maturity has been acquired by the new concepts then archival publication as 
a scientific or engineering monograph may occur. 

A new concept in control and signal processing is known to have arrived 
when sufficient material has evolved for the topic to be taught as a 
specialised tutorial workshop or as a course to undergraduate, graduate or 
industrial engineers. Advanced Textbooks in Control and Signal Processing 
are designed as a vehicle for the systematic presentation of course material 
for both popular and innovative topics in the discipline. It is hoped that 
prospective authors will welcome the opportunity to publish a structured and 
systematic presentation of some of the newer emerging control and signal 
processing technologies in the textbook series.  

As most of the problems from linear control analysis have found solutions, 
advances in future control performance will come from accommodating the 
non-linear nature of many processes more directly. This is a challenge facing 
many areas of control engineering. In the process industries there is a fair 
amount of non-linear model information and the task is to find ways to 
exploit this knowledge base. On the other hand the analysis of non-linear 
systems per se is reasonably well developed but in many cases the move to 
more routine application of these techniques still remains to be taken. We 
believe it is only by having the utility and advantages of non-linear control 
demonstrated in practical applications that the non-linear control paradigm 
will begin to make a contribution to control engineering. 
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x Series Editors’ Foreword 

Process control is one area where there is the possibility of demonstrating 
a major advance through the use of non-linear control. Tackling this 
challenge we are pleased to have this textbook by Katalin Hangos, József 
Bokor, and Gábor Szederkényi on “Analysis and control of non-linear process 
systems” in the Advanced Textbooks in Control and Signal Processing series. 
It is a text based on past course experience and care has been taken to 
enhance the accessibility of the material with nice pedagogical features like 
special indexes, boxed important definitions and end-of-chapter exercises. The 
underlying rigour of the non-linear analysis has however been preserved. The 
book is suitable for graduate and postgraduate courses in process systems 
engineering and for self-study at that level. It is our hope that this textbook 
will contribute to the more widespread acceptance of non-linear control in 
applications. 

M.J. Grimble and M.A. Johnson 
Industrial Control Centre 
Glasgow, Scotland, U.K. 

Summer 2003 
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1. Introduction

Process control is a traditional area in process systems engineering which is
of great practical importance. Control usually involves other related fields,
like dynamic modeling, identification, diagnosis, etc.

The majority of practical control applications are mainly based on PID
loops; there are only a few advanced control systems, either for operating
units (equipment) with complex or unstable dynamic behavior, or plantwide
optimizing control.

It is widely known in process systems engineering that almost all
process systems are nonlinear in nature.

Therefore advanced process control should necessarily use nonlinear con-
trol techniques.

1.1 A Brief Overview of Nonlinear Process Control

Elementary or introductory control courses for both control (electrical) and
process engineers are almost entirely based on linear systems; this is what we
all start with. The reason for this is twofold. First of all, there are relatively
simple closed analytical solutions to many control problems (including LQR
and pole-placement controller design, Kalman-filtering, model parameter and
structure estimation, etc.), so the linear theory is nice, transparent and fea-
sible. On the other hand, practical applications are also based on linear or
linearized models in most cases and handle nonlinearities only when it is
absolutely unavoidable.

The common way of controlling process systems with strong nonlinear
character is to apply model-based predictive controllers where a detailed dy-
namic process model is used in an optimization framework. The popularity
of model-based predictive control is partially explained by the fact that it fits
so well into the “culture” of process systems engineering: it uses traditional
dynamic process models which are usually available for design and/or sim-
ulation purposes. At the same time, model-based predictive control is being
criticized by control engineers because of its lack or weakness of theoretical
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2 1. Introduction

background, having no guarantee of convergence, stability, robustness, etc.
in the general case.

Modern heuristic black-box-type control approaches, such as neural nets
and fuzzy controllers, have also appeared recently even in industrial practice.
At the same time, the results and approaches of modern nonlinear control the-
ory have not earned acceptance in the field of process control. There are two
reasons. Firstly, these techniques require an advanced mathematical back-
ground and skills, which are rarely taught to process engineers. Secondly,
modern nonlinear control methods are computationally hard, and are only
feasible for small-scale systems in the general case.

These problems with nonlinear control techniques applied in the gen-
eral case indicate that a solid knowledge of the special characteristics of the
nonlinear system in question may significantly help in developing nonlinear
controllers for process systems with reasonably realistic complexity. There-
fore, any work in the area of nonlinear process control should be based on
an interdisciplinary approach that integrates the results and techniques of
process systems engineering with nonlinear systems and control theory. The
interdisciplinary nature of this approach behooves us to present an overview
of the existing literature in both fields from a special integrating viewpoint.

There are excellent and widely used textbooks where the nonlinear anal-
ysis and control techniques are presented, such as:

1. H. Nijmeijer and A.J. Van der Schaft (1990) Nonlinear Dynamical Con-
trol Systems, Springer.

2. A. Isidori (1995) Nonlinear Control Systems I.-II. (Communication and
Control Engineering Series), Springer.

3. A.J. van der Schaft (1999) L2-Gain and Passivity Techniques in Nonlin-
ear Control (Communication and Control Engineering Series), Springer.

The above textbooks intend to cover a range of nonlinear analysis and con-
trol techniques in an abstract mathematical way, concentrating on the aspects
relevant for refining or developing further the techniques. Also, the intended
readers are graduate and postgraduate students specializing in control engi-
neering or in applied mathematics. Therefore these books do not meet the
needs of process engineering students interested in the application of these
methods for process systems.

There are also application oriented textbooks available on the market
dealing with nonlinear control, such as [10], [66] and [60]. These books cover
a wide range of application areas, therefore they cannot take the specialities of
process systems into account and do not build on the engineering knowledge
readily available in the field.
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1.2 Aims and Objectives 3

1.2 Aims and Objectives

This textbook has been written for graduate and postgraduate students with
a process engineering background. It aims to bridge the gap between process
systems engineering and advanced nonlinear control theory by:

• providing the necessary mathematical preliminaries for graduate and post-
graduate students with a process engineering background,

• presenting the relevant and promising theory and methods for analyzing
and controlling nonlinear process systems,

• emphasizing the importance and use of process knowledge, mainly process
models developed from first engineering principles, for obtaining feasible
and effective special cases of the general methods.

The textbook deals with the basic concepts and with the most promising
tools and techniques in nonlinear process analysis and control illustrated by
simple examples and tutorial material.

The notions and techniques are always introduced and illustrated in
the standard finite dimensional linear time-invariant continuous case, which
serves as a basis for an extension to the nonlinear case. This way, the neces-
sary links are also established with more widely known material, which makes
the understanding of the concepts and methods a lot easier.

The Level of the Text. The level corresponds to graduate or postgraduate
courses in process systems engineering.

The interdisciplinary and rapidly developing nature of the topic as well
as the broad and diverse background of the potential readers requires us
to restrict the prerequisite knowledge to a necessary minimum. Only basic
higher mathematics common in engineering courses, such as linear algebra
and elementary calculus are assumed. A solid knowledge of process modeling
and control are advisable.

The advanced mathematical tools and notions we build upon are summa-
rized in Appendix A of the textbook.

Learning Aids. This book is primarily a textbook. Therefore we provide
special learning tools in order to make its use more comfortable for both
lecturers and students of a course in analysis and control of nonlinear process
systems. These include:

• an Index containing the special terms, definitions, methods and other
important knowledge elements in the book,

• a List of Definitions, which is a special index for the most important
terms and notions in the book,

• simple worked in-text examples, which have the following format:
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4 1. Introduction

Example 1.2.1 (Example of examples)
A simple example

..........

• a List of Examples of the above which is another special index,
• learning aid sections, such as Summary, Questions and Application

Exercises at the end of each chapter,
• an additional learning aid section Further Reading at the end of each

non-introductory chapter (Chapters 5–12),
• a simple typographical scheme to distinguish important terms, definitions

and statements in the text in the form:

This is an important knowledge item.

1.3 The Road Map of the Book

The material is divided into three logical parts:

• Control-oriented modeling of concentrated parameter nonlinear systems
(Chapters 1-5).
The basic notions of systems and signals are presented first in Chapter 2.
Thereafter linear and nonlinear state-space models are discussed (Chapter
3). The construction and the special structure of dynamic process models
is described in Chapter 4. Chapter 5 is devoted to input–output models
important for some of the analysis and control techniques later on,

• Nonlinear system analysis methods and tools (Chapters 6–8).
The most important nonlinear analysis methods for controllability, observ-
ability and stability are described first (Chapters 6 and 7). Chapter 8 is
devoted to passivity analysis and the Hamiltonian description, which are
powerful concepts with an important physical basis in the case of process
systems,

• Nonlinear feedback control (Chapters 9–12).
An introductory chapter (Chapter 9) deals with the basic notions and tech-
niques for state feedback control, in particular pole-placement and LQR
control of linear time-invariant systems. Thereafter separate chapters deal
with the most important special techniques for nonlinear process control:
feedback and input–output linearization, passivation and stabilization and
loop-shaping based on the Hamiltonian view.

Finally, the necessary mathematical preliminaries not contained in a standard
process engineering curriculum, namely coordinate transformations, norms,
Lie-derivatives and -products, distributions as well as co-distributions are
summarized in Appendix A.
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1.3 The Road Map of the Book 5

The road map of the book, which shows using arrows the dependence of
the material presented in the chapters, is depicted in Figure 1.1. Directed
paths show how to proceed when taking a tour through the material: either
by giving/taking a course or by self-learning.

The dashed arrows connecting Chapter 4 “Dynamic process models” to
the other chapters indicate that each non-introductory chapter contains at
least one section where process system case studies are described.

3. State-
space models 4.  Dynamic

process
models

6. Controllabi-
l i ty and

observabil i ty

7. Stabil i ty,
Lyapunov

method

8. Passivity,
Hamil tonian

view

9. State
feedback

controllers

10. Feedback and
input output
l inearization

11. Passivation
by feedback

12. Stabil ization
and loop-
shaping

ANALYSIS

CONTROL

2. Basic notions
of systems and

signals

5. Input—
output models

MODELING

Figure 1.1. The road map of the book

The first draft version of this material was used for an intensive four-week
postgraduate course taught for process engineers in the CAPEC Center, De-
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6 1. Introduction

partment of Chemical Engineering, Technical University of Denmark (Lyn-
gby, Denmark) in 2000.

Part of the material has been used for an elective course entitled “Mod-
ern control methods” taught for information engineers at the University of
Veszprém, Hungary since 2003.
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2. Basic Notions of Systems and Signals

Signals and systems are basic notions of systems and control theory. There-
fore, we briefly summarize the most important concepts of the mathematical
description of signals and systems in this introductory chapter in the form
they are used later on.

The material in this chapter is presented in two sections:

• Signals
Not only the definition and classification of signals, operations on signals
and the notion of signal spaces are given but the most important special
signal types are also introduced.

• Systems
The most important system classes are defined based on the abstract no-
tion of systems together with the characterization of their input–output
stability.

2.1 Signals

Signals are the basic elements of mathematical systems theory, because the
notion of a system depends upon them.

2.1.1 What is a Signal?

Generally, a signal is defined as any physical quantity that varies with time,
space or any other independent variable(s). A signal can be a function of one
or more independent variables.

A longer and more application-oriented definition of signals taken from
[50] is the following: “Signals are used to communicate between humans and
between humans and machines; they are used to probe our environment to
uncover details of structure and state not easily observable; and they are used
to control energy and information.”
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8 2. Basic Notions of Systems and Signals

Example 2.1.1 (Simple signals)

The following examples describe different simple signals.

• Let us suppose that the temperature x of a vessel in a pro-
cess plant is changing with time (measured in seconds) in the
following way:

x : R
+
0 7→ R, x(t) = e−t

We can see that t is the independent variable (time) and x is
the dependent variable (see Figure 2.1 (/a)).

• Let us assume that we can observe the temperature x in the first
example only at integer time instants (seconds). Let us denote
the observed temperature by y, which therefore can be defined
as:

y : N
+
0 7→ R, y[n] = e−n

(see Figure 2.1 (/b)).

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

t

x(
t)

a)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

n

y[
n]

b)

Figure 2.1. (/a) Simple continuous time signal and (/b) its discrete time counter-
part
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2.1 Signals 9

• A complex-valued signal with a complex independent variable
is, e.g.

X : C 7→ C, X(s) =
1

s+ 1

which is actually the Laplace transform of the first signal x (see
Subsection 2.1.4).

• Let us denote the temperature of a point (x, y, z coordinates in
a Cartesian coordinate system) inside a room at a certain time
instant t by T (x, y, z, t). It’s easy to see that T is a real–valued
function of four independent variables and hence it maps from
R

4 to R.
• An example of a vector-valued signal with three independent

variables is the picture of a color TV where the intensity func-
tions of the red, green and blue colors (Ir, Ig and Ib) form the
vector

I(x, y, t) =



Ir(x, y, t)
Ig(x, y, t)
Ib(x, y, t)




i.e. I : R
3 7→ R

3. The independent variables in this case are the
screen coordinates (x and y) and time (t).

2.1.2 Classification of Signals

Signals are classified according to the properties of their independent and
dependent variables.

Dimensionality of the Independent Variable. The independent vari-
able can have one or more dimensions. The most common one-dimensional
case is when the independent variable is time.

Dimension of the Dependent Variable (Signal). The signal value eval-
uated at a certain point in its domain can also be one or more dimensional.

Real–valued and Complex–valued Signals. The value of a signal can
be either real or complex. The following question naturally arises: why do
we deal with complex signals? The answer is that the magnitude and angle
of a complex signal often has clear engineering meaning, which is sometimes
analytically simpler to deal with.

Continuous Time and Discrete Time Signals. In systems and control
theory, one usually has a one-dimensional independent variable set which is
called time and denoted by T in the general case.
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10 2. Basic Notions of Systems and Signals

Continuous time signals take real or complex (vector) values as a function
of an independent variable that ranges over the real numbers, therefore a
continuous time signal is a mapping from a subset of R to C

n, i.e. T ⊆ R.
Discrete time signals take real or complex (vector) values as a function of

an independent variable that ranges over the integers, hence a discrete time
signal makes a mapping from N to C

n, i.e. T ⊆ N.

Bounded and Unbounded Signals. A signal x : R 7→ C is bounded if
|x(t)| is finite for all t. A signal that does not have this property is unbounded.

Periodic and Aperiodic Signals. A time-dependent real-valued signal
x : R 7→ R is periodic with period T if x(t+ T ) = x(t) for all t. A signal that
does not have this property is aperiodic.

Even and Odd Signals. Even signals xe and odd signals xo are defined as

xe(t) = xe(−t)
xo(t) = −xo(−t)

Any signal is a sum of unique odd and even signals. Using x(t) = xe(t)+xo(t)
and x(−t) = xe(t)−xo(t) yields xe(t) = 1

2 (x(t)+x(−t)) and xo(t) = 1
2 (x(t)−

x(−t)).

2.1.3 Signals of Special Importance

Some signals are of theoretical and/or practical importance because they are
used as special test signals in dynamic systems analysis.

Definition 2.1.1 (Dirac-δ or unit impulse function)
The Dirac-δ or unit impulse function is not a function in the ordinary sense.
The simplest way it can be defined is by the integral relation

∫ ∞

−∞

f(t)δ(t)dt = f(0) (2.1)

where f : R
+
0 7→ R is an arbitrary smooth function.

The unit impulse is not defined in terms of its values, but by how it acts inside
an integral when multiplied by a smooth function f . To see that the area of
the unit impulse function is 1, we can choose f(t) = 1 in the definition.

The unit impulse function is widely used in science and engineering. The
following statements illustrate its role from an engineering point of view:

• impulse of current in time delivers a unit charge instantaneously to an
electric network,

• impulse of force in time gives an instantaneous momentum to a mechanical
system,

• impulse of temperature gives a unit energy, that of pressure gives a unit
mass and that of concentration delivers an impulse of component mass to
a process system,
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2.1 Signals 11

• impulse of mass density in space represents a mass-point,
• impulse of charge density in space represents a point charge.

Definition 2.1.2 (Unit step function)
Integration of the unit impulse gives the unit step function

η(t) =

∫ t

−∞

δ(τ)dτ (2.2)

which therefore reads as

η(t) =

{
0 if t < 0
1 if t ≥ 0

(2.3)

Example 2.1.2 (Unit impulse and unit step signals)
Unit impulse as the derivative of the unit step

As an example of a method for dealing with generalized functions,
consider the following function:

x(t) =
d

dt
η(t)

with η being the unit step function defined above. Since η is dis-
continuous, its derivative does not exist as an ordinary function,
but it exists as a generalized function. Let’s put x in an integral
with a smooth testing function f .

y(t) =

∫ ∞

−∞

f(t)
d

dt
η(t)dt

and calculate the integral using the integration-by-parts theorem

y(t) = f(t)η(t)|∞−∞ −
∫ ∞

−∞

η(t)
d

dt
f(t)dt

which gives

y(t) = f(∞) −
∫ ∞

0

d

dt
f(t)dt = f(0)

This results in
∫ ∞

−∞

f(t)
d

dt
η(t)dt = f(0)
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12 2. Basic Notions of Systems and Signals

which, from the defining Equation (2.1), implies that

δ(t) =
d

dt
η(t)

That is, the unit impulse is the derivative of the unit step in a
generalized function sense.

2.1.4 Operations on Signals

Operations on signals are used to derive (possibly more complex) signals from
elementary signals or to extract some of the important signal properties.

Elementary Operations. Let ν be an n-dimensional vector space with an
inner product < ·, · >ν , α ∈ R and x, y : R

+
0 7→ ν, i.e.

x(t) =



x1(t)

...
xn(t)


 , y(t) =



y1(t)

...
yn(t)




Sum of signals. The sum of x and y is defined point-wise, i.e.

(x+ y)(t) = x(t) + y(t), ∀t ∈ R
+
0 (2.4)

Multiplication by scalar.

(αx)(t) = αx(t), ∀t ∈ R
+
0 (2.5)

Inner product of signals. The inner product of x and y is defined as

〈x, y〉ν(t) = 〈x(t), y(t)〉ν , ∀t ∈ R
+
0 (2.6)

If the inner product on ν for a, b ∈ ν, a = [a1 . . . an]T , b = [b1, . . . bn]T

is defined as

〈a, b〉 =
n∑

i=1

aibi (2.7)

then (2.6) simply gives 〈x, y〉ν(t) = xT (t)y(t), which is a simple point-
wise product if dim(ν) = 1.

Time shifting. For a ∈ R, the time shifting of x is defined as

Tax(t) = x(t− a) (2.8)
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2.1 Signals 13

Causal time shifting. For a ∈ R, the causal time shifting differs from ordinary
time shifting in the fact that the value of the original signal before t = 0
is not taken into consideration, i.e.

Tc
ax(t) = η(t− a)x(t− a) (2.9)

where η is the unit step function defined in Equation (2.3).
Truncation. The value of a truncated signal after the truncation time T is

zero, i.e.

xT (t) =

{
x(t), 0 ≤ t < T
0, t ≥ T

(2.10)

Convolution. Convolution is a very important binary time-domain oper-
ation in linear systems theory as we will see later (e.g. it can be used for
computing the response of a linear system to a given input).

Definition 2.1.3 (Convolution of signals)
Let x, y : R

+
0 7→ R. The convolution of x and y denoted by x ∗ y is given by

(x ∗ y)(t) =

∫ t

0

x(τ)y(t− τ)dτ, ∀t ≥ 0 (2.11)

Example 2.1.3 (Convolution of simple signals)

Let us compute the convolution of the signals x, y : R
+
0 7→ R,

x(t) = 1, y(t) = e−t. According to the definition

(x ∗ y)(t) =

∫ t

0

1 · e−(t−τ)dτ = e−t [eτ ]
t
0 = 1 − e−t

The signals and their convolution are shown in Figure 2.2.

Laplace Transformation. The main use of Laplace transformation in lin-
ear systems theory is to transform linear differential equations into algebraic
ones. Moreover, the transformation allows us to interpret signals and linear
systems in the frequency domain.

Definition 2.1.4 (The domain of Laplace transformation)
The domain Λ of Laplace transformation is the set of integrable complex-
valued functions mapping from the set of real numbers whose absolute value
is not increasing faster than exponentially, i.e.

Λ = { f | f : R
+
0 7→ C, f is integrable on [0, a] ∀a > 0 and

∃Af ≥ 0, af ∈ R such that |f(x)| ≤ Afe
af x ∀x ≥ 0 } (2.12)
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Figure 2.2. Two signals (x(t) = 1, y(t) = e−t) and their convolution

Definition 2.1.5 (Laplace transformation)
With the domain defined above, the Laplace transformation of a signal f is
defined as

L{f}(s) =

∫ ∞

0

f(t)e−stdt, f ∈ Λ, s ∈ C (2.13)

The most important properties (among others) of Laplace transformation
that we will use later are the following:

Let f, g ∈ Λ. Then the following equalities hold

1. Linearity

L{c · f} = c · L{f}, c ∈ C (2.14)

L{f + g} = L{f} + L{g} (2.15)

2. Laplace transform of the derivative

L{f ′}(s) = s · L{f}(s) − f(0+) (2.16)

3. Convolution theorem

L{f ∗ g} = L{f} · L{g} (2.17)
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2.1 Signals 15

4. Time shifting

L{Tc
a(f)} = e−asL{f}(s), a ∈ R (2.18)

5. Modulation

L{eλf}(s) = L{s− λ} (2.19)

where λ ∈ C and eλ(t) = eλt.

2.1.5 Lq Signal Spaces and Signal Norms

Signals with similar mathematical properties belong to signal spaces which
are usually equipped by suitable signal norms. Lq spaces are the most fre-
quently used general signal spaces described below.

Definition 2.1.6 (Lq spaces, scalar case)
For q = 1, 2, . . . the signal space Lq[0,∞) contains the functions f : R

+
0 7→ R,

which are Lebesgue-measurable (i.e. their generalized integral exists in the
Lebesgue sense) and satisfy

∫ ∞

0

|f(t)|qdt ≤ ∞ (2.20)

The magnitude of functions in an Lq space is measured using norms (see
Section A.1 in the Appendix for the defining properties of norms).

Definition 2.1.7 (q-norm, scalar case)
Let f ∈ Lq[0,∞) for q = 1, 2, . . . . The q-norm of f denoted by ‖f‖q is
defined as

‖f‖q =

(∫ ∞

0

|f(t)|qdt
) 1

q

(2.21)

It is known that Lq[0,∞) are complete normed linear spaces (Banach spaces)
with respect to the q-norms.

Lq spaces can be extended further in the following way:

Definition 2.1.8 (Lqe spaces, scalar case)
For q = 1, 2, . . . the signal space Lqe consists of the functions f : R

+
0 7→ R,

which are Lebesgue-measurable and fT ∈ Lq for all T, 0 ≤ T <∞.

Note that the Lqe spaces are not normed spaces.
It is easy to see that Lq ⊂ Lqe. For this, consider a function f ∈  Lq.

Then for any 0 < T < ∞
∫∞

0
|fT (t)|qdt ≤ ∞ and therefore f ∈ Lqe. For the

opposite direction, consider the signal g(t) = 1
t+1 and q = 1. It’s clear that

for T <∞,
∫ T

0
|g(t)|dt = ln(T + 1)− ln(1), but the L1 norm of g is not finite

since limt→∞ ln(t) = ∞. Therefore g ∈  L1e but g /∈ L1.

For the treatment of multi-input–multi-output systems, we define Lq spaces,
q-norms and Lqe spaces for vector-valued signals, too. For this, consider a
finite dimensional normed linear space ν equipped with a norm ‖ · ‖ν .
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16 2. Basic Notions of Systems and Signals

Definition 2.1.9 (Lq spaces, vector case)
For q = 1, 2, . . . the signal space Lq(ν) contains the functions f : R

+
0 7→ ν,

which are Lebesgue-measurable and satisfy

∫ ∞

0

‖f(t)‖q
νdt <∞ (2.22)

Definition 2.1.10 (q-norm, vector case)
Let f ∈ Lq(ν) for q = 1, 2, . . . . The q-norm of f denoted by ‖f‖q is defined
as

‖f‖q =

(∫ ∞

0

‖f(t)‖q
νdt

) 1
q

(2.23)

Definition 2.1.11 (Lqe spaces, vector case)
For q = 1, 2, . . . the signal space Lqe(ν) consists of the functions f : R

+
0 7→ ν,

which are Lebesgue-measurable and fT ∈ Lq(ν) for all T, 0 ≤ T <∞.

Special Cases. Two important special cases for the q-norms are given below
(compare with Subsection A.1.2).

1. q = 2
For f ∈ L2

‖f‖2 =

(∫ ∞

0

f2(t)

) 1
2

(2.24)

which can be associated with the inner product

〈f, f〉 =

∫ ∞

0

f2(t)dt (2.25)

Similarly, in the case of f ∈ L2(ν)

‖f‖2 =

(∫ ∞

0

〈f(t), f(t)〉νdt
) 1

2

= 〈f, f〉 1
2 (2.26)

2. q = ∞
For f ∈ L∞

‖f‖∞ = sup
t∈R

+
0

|f(t)| (2.27)

and for f ∈ L∞(ν)

‖f‖∞ = sup
t∈R

+
0

‖f(t)‖ν (2.28)
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Example 2.1.4 (Signal spaces and their relations)

Besides the Lq-spaces, we can define many other signal spaces. A
few examples are given below.

F(T ) vector space: let V be the set of functions mapping from
a set T to the set of real or complex numbers, where the
operations are defined point-wise, i.e. for x, y ∈ V and α ∈ K

(x+ y)(t) = x(t) + y(t), ∀t ∈ T

(αx)(t) = α · x(t), ∀t ∈ T

The following vector spaces are the subspaces of F(T ):
B(T ) vector space: B(T ) is the set of bounded functions mapping

from T to the set of real or complex numbers.
C([a, b]) vector space: C([a, b]) is the set of functions which are

continuous on the closed interval [a, b].
C(k)([a, b]) vector space: let k ∈ N, k > 1. The set of functions

which are k times continuously differentiable on the interval
[a, b] is a vector space and is denoted by C(k)([a, b]). At the
endpoints of the interval a and b, the left and right derivatives
of the functions are considered respectively.

It is clear that the following relations hold in the above examples
in the case when T = [a, b]:

C(k)[a, b] ⊂ C[a, b] ⊂ B([a, b]) ⊂ F([a, b]) (2.29)

2.2 Systems

A system can be defined as a physical or logical device that performs an
operation on a signal. Therefore we can say that systems process input signals
to produce output signals.

A system is a set of objects linked by different interactions and rela-
tionships. The elements and boundaries of a system are determined by the
interactions and mutual relationships, that are taken into consideration.

The nature and outcome of the interactions in physical systems is gov-
erned by certain laws. These laws can be used as a priori information in
further examinations. The information about the system should be used in a
well-defined form.

A special group of information with major importance is the one that gives
the current state of the system. The state of a system is the collection of all
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U Y
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Figure 2.3. System mapping the elements of the input signal space to the output
signal space

the information that describes the relations between the different interactions
of the system at a given time instant (compare with Section 3.1 later). Two
important kinds of information must be known in order to determine the
state of the system: firstly, the structure of the system and secondly, the
parameters of the system. A system can be described structurally by defining
the system topology, the rules of interconnection of the elements and the
functional descriptions of the elements (constitutive relations).

Based on the above, a system can be considered as an abstract operator
mapping from the input signal space to the output signal space (see Figure
2.3). The notation of this is

y = S[u], u ∈ U , y ∈ Y (2.30)

where S is the system operator, u is the input, y is the output, and U and Y
denote the input and output signal spaces respectively.

2.2.1 Classification of Systems: Important System Properties

Causality. The “present” in a causal system does not depend on the “fu-
ture” but only on the past. This applies for every signal that belongs to the
system and to the system operator S as well.

Definition 2.2.1 (Causal system)
A system is called causal if y(t) does not depend on u(t+ τ), ∀t ≥ 0, τ > 0.

Physical systems where time is the independent variable are causal systems.
However, there are some systems that are not causal, e.g.

• some optical systems where the independent variables are the space coor-
dinates,

• many off-line signal processing filters when the whole signal to be processed
is previously recorded.

Linearity. A property of special interest is linearity.

Definition 2.2.2 (Linear system)
A system S is called linear if it responds to a linear combination of its possible
input functions with the same linear combination of the corresponding output
functions. Thus for the linear system we note that:

TLFeBook
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S[c1u1 + c2u2] = c1S[u1] + c2S[u2] (2.31)

with c1, c2 ∈ R, u1, u2 ∈ U , y1, y2 ∈ Y and S[u1] = y1, S[u2] = y2.

Continuous Time and Discrete Time Systems. We may classify sys-
tems according to the time variable t ∈ T we apply to their description
(see Subsection 2.1.2 for the definition of continuous and discrete time
signals). There are continuous time systems where time is an open inter-
val of the real line (T ⊆ R). Discrete time systems have an ordered set
T = {· · · , t0, t1, t2, · · · } as their time variable set.

SISO and MIMO Systems. Here the classification is determined by the
number of input and output variables. The input and output of a single
input–single output (SISO) system is a scalar value at each time instant,
while multi input–multi output (MIMO) systems process and produce vector-
valued signals.

Time-invariant and Time-varying Systems. The second interesting
class of systems are time-invariant systems. A system S is time-invariant if
its response to a given input is invariant under time shifting. Loosely speak-
ing, time-invariant systems do not change their system properties in time.
If we were to repeat an experiment under the same circumstances at some
later time we get the same response as originally observed. This situation is
depicted in Figure 2.4 below.

u(t) y(t) 

u(t) u(t+∆t) y(t) y(t+∆t) 

∆t ∆t 

S 

Figure 2.4. The notion of time invariance

The system parameters of a time-invariant system are constants, i.e. they
do not depend on time.

We can define the notion of time invariance in a rigorous mathematical
way using the shift operator defined in Equation (2.8).
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20 2. Basic Notions of Systems and Signals

Definition 2.2.3 (Time-invariant system)
A system is called time-invariant if its system operator commutes with the
time shift operator, i.e.

Ta ◦ S = S ◦ Ta, ∀a ∈ R (2.32)

2.2.2 Input–output Stability: Lq-stability and Lq-gain

As we will see later in Chapter 7, it is of interest from the viewpoint of
stability how a system operator changes the norm of the input signals. This
property is expressed in the Lq-stability and Lq-gain of a system.

For the following definitions, assume that U and Y are finite dimensional
linear spaces of the input and output signals respectively, and S is a system
operator mapping from Lqe(U) to Lqe(Y).

Definition 2.2.4 (Lq-stability)
S is called Lq-stable if

u ∈ Lq(U) ⇒ G(u) ∈ Lq(Y) (2.33)

Definition 2.2.5 (Finite Lq-gain)
S is said to have finite Lq-gain if there exist finite constants γq and bq such
that

‖(S[u])T ‖q ≤ γq‖uT ‖q + bq, ∀T ≥ 0, ∀u ∈ Lqe(U) (2.34)

It is said that S has finite Lq-gain with zero bias if bq can be zero in (2.34).

Definition 2.2.6 (Lq-gain)
Let S have finite Lq-gain. The Lq-gain of S is defined as

γq(S) = inf{γq |∃bq such that (2.34) holds} (2.35)

2.3 Summary

Systems are described as abstract operators acting on signal spaces in this
basic introductory chapter. The definition, classification and basic operations
on both signals and systems are summarized, which will be extensively used
throughout the whole book.

2.4 Questions and Exercises

Exercise 2.4.1. Give examples of signals of special importance. What is the
relationship between the unit impulse and the unit step signal?
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Exercise 2.4.2. What are the operations that are defined on signals? Char-
acterize the elementary- and integral-type operations. Compute the convolu-
tion of an arbitrary signal

x : R
+
0 7→ R

with the shifted Dirac-δ function δτ which has its singular point at t = τ .

Exercise 2.4.3. Give the most important system classes. Define the class of
continuous time linear time-invariant (LTI) systems.

Exercise 2.4.4. Give the definitions of Lq and Lqe spaces and their underly-
ing norms both in the scalar and vector case. Compare your definitions with
the special cases of signal norms in Section A.1.2 in the Appendix.

Exercise 2.4.5. Consider the following signal:

f : R
+
0 7→ R, f(t) = exp(−t2), t ≥ 0

1. Show that f ∈ L1 and f ∈ L∞.
2. Calculate the L1 and L∞ norm of f .

Exercise 2.4.6. The following two-dimensional signal is given:

g : R
+
0 7→ R

2, f(t) =

[
f1(t)
f2(t)

]
=

[
−1

3 · exp(−2t)

]
, t ≥ 0

1. Is g ∈ L2?
2. Is g ∈ L2e?
3. Let ‖ · ‖ν be the normal Euclidean norm on R

2. Calculate ‖g(t)‖ν for
t ≥ 0 and ‖g‖∞.

Exercise 2.4.7. Calculate the convolution of f1 and f2 in Exercise 2.4.6 and
check the convolution theorem for the Laplace transform of f1 and f2.
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3. State-space Models

State-space models are the natural form of system models for a process engi-
neer. The reason for this is that process engineering models originating from
first engineering principles can be transformed into state-space form in the
majority of practically important cases [32]. As a consequence, state variables
in a process system model possess a clear engineering meaning – they are the
canonical set of conserved extensive quantities in the process system.

Throughout the book we restrict ourselves to the class of finite
dimensional systems, that is, to systems with finite dimensional
state variables.
In process systems engineering terminology, such systems are as-
sumed to consist of a finite number of perfectly stirred (or mixed)
balance volumes and are called lumped systems [32].

This chapter introduces the fundamentals and basic notions of state-space
representations and the most important classes of state-space models in the
following sections:

• Basic notions
The concept of state is introduced.

• Linear time-invariant state-space models
A classical well-known state-space model class for which closed analytical
solutions exist for most of the analysis and control problems [9], [39].

• Linear time-varying and linear parameter-varying systems
Special system classes which are relatively easy-to-handle extensions of
the classical LTI case but are capable of describing some of the essentially
nonlinear system classes.

• Nonlinear concentrated parameter state-space models
The input-affine form [37] is the system class this book deals with. As we
shall see later in Chapter 4, majority of the lumped parameter index-1
process models can be written in this form.
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24 3. State-space Models

3.1 Basic Notions of State-space Representation

State-space models rely on the general concept of state. If we describe a
system as an operator mapping from the space of inputs to the space of
outputs (see Section 2.2 for details), then we may need the entire input–
output history of the system together with the planned input in order to
compute future output values. This is in good agreement with the abstract,
operator-based description of a system that is presented in Chapter 2.

Alternatively, we may use new information (which is called the state of
the system at t0) that contains all past information on the system up to time
t0 including the initial conditions for the outputs and its derivatives as well
as the past input history. Then, to compute y(t) for t ≥ t0 (all future values)
we only need u(t), t ≥ t0 and the state x(t) at t = t0.

The Concept of State. We may construct a signal, which is a time-
dependent function, from the values of the state x(t) at any given time t,
which is called the state signal x. Similarly to the input and output signals,
we abbreviate the state signal simply to “state”.

A description that uses the state signal is called a state-space de-
scription or state-space model.

State-space models for lumped (concentrated-parameter) systems consist
of two sets of equations:

1. State equations, which describe the evolution of the states as a function
of the input and state variables, being a set of time-dependent ordinary
differential equations.

2. Output equations, which relate the value of the output signals to the state
and the input signals, being algebraic equations.

We recall that any kind of system model is in fact a realization of the abstract
system operator S (see Chapter 2). Note that a realization of an operator
mapping from a space U to Y is obtained if one fixes a basis and there-
fore a coordinate system in U and Y, and describes the mapping in these
coordinates.

It is important to note that only a finite number of state equations and
the same number of state variables are needed to describe lumped systems,
therefore they are called finite dimensional systems. This corresponds to the
fact that there exists a finite dimensional basis in both the input space U and
the output space Y in this case.
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3.2 Finite Dimensional Linear Time-invariant (LTI) Systems 25

3.2 Finite Dimensional Linear Time-invariant (LTI)
Systems

The most simple and yet important system class is the class of finite di-
mensional linear time-invariant systems (abbreviated as FDLTI, or simply
LTI systems). These systems and the analysis and control techniques based
thereon are the subject of standard introductory courses on systems and
control based on a state-space approach. The majority of the well-known
and popular analysis and control techniques, such as controllability and ob-
servability analysis, Kalman filtering or LQR (Linear Quadratic Regulator)
theory, were developed and investigated for such systems and later on have
been extended to more complicated system classes.

Therefore, the LTI case will be used as a reference case throughout the
book. Most of the new techniques and approaches will build on these used
for LTI systems.

3.2.1 The General Form of State-space Models

For continuous time LTI systems the general form of state-space models is as
follows:

ẋ(t) = Ax(t) +Bu(t) (state equation)
y(t) = Cx(t) +Du(t) (output equation)

(3.1)

with given initial condition x(t0) = x(0) and

x(t) ∈ R
n, y(t) ∈ R

p, u(t) ∈ R
r

being the state, output and input vectors of finite dimensional spaces and

A ∈ R
n×n, B ∈ R

n×r, C ∈ R
p×n, D ∈ R

p×r

being matrices with constant (time-independent) elements.
It is important to note the above state-space model applies also for MIMO

systems when p > 1, r > 1.

Most often we suppress t denoting the time dependence from the
state, input and output signals and write simply x instead of x(t).

Definition 3.2.1 (LTI state-space representation)
The state-space representation (SSR) of LTI systems is the quadruplet of
constant matrices (A,B,C,D) in Equation (3.1). The dimension of an SSR
is the dimension of the state vector: dim x(t) = n. The state-space X is the
set of all states:

x(t) ∈ X , dim X = n
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26 3. State-space Models

Example 3.2.1 (LTI state-space model equation)

Let us consider the following state-space model:

ẋ =

[
− vc

Vc
− UA

cP cρcVc

UA
cP cρcVc

UA
cP hρhVh

− vh

Vh
− UA

cP hρhVh

]
x+

[ vc

Vc
0

0 vh

Vh

]
u (3.2)

y = x (3.3)

with x, u, y ∈ R2 being two-dimensional vectors. If all the model
parameters

vc, Vc, U, A, cPc, ρc, vh, Vh, cPh, ρh

are constants, then the above model is indeed linear and time-
invariant, with the state equation (3.2) and output equation (3.3)
and with the special output matrices ( C = I, D = 0 ).
Note that the above LTI state-space model describes a heat ex-
changer cell, the process system description of which is introduced
in detail later in Subsection 4.4.2.

3.2.2 Linear Transformation of States

State-space models are not unique: if we have a state-space representation
(A,B,C,D) for an LTI system, then we can easily find infinitely many other
ones with the same dimension.

Definition 3.2.2 (Equivalent state-space models)
Two state-space representations are equivalent if they have the same input–
output description.

Equivalent state-space models of LTI systems can be generated by applying
coordinate transformation on the state-space. Transforming the coordinates
in the state-space is often very useful in order to highlight some properties of
interest (e.g. reachability, observability, etc.), or to show how certain control
problems can be solved.

In the case of LTI state-space models, equivalent state-space representa-
tions can be obtained by linear coordinate transformation, which relates two
possible equivalent state-space models

ẋ(t) = Ax(t) +Bu(t), ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t), y(t) = Cx(t) +Du(t)

(3.4)

related by the transformation

T ∈ R
n×n, det T 6= 0
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i.e.

x = Tx ⇒ x = T−1x (3.5)

Observe that we do not transform the input and output signals because we
want to preserve the input–output behavior of the state representations to
have equivalent state-space models.

If we transform the first set of state equations in Equation (3.4) using the
transformation matrix T , we get

dim X = dim X = n (3.6)

and
T−1ẋ = AT−1x+Bu

so finally

ẋ = TAT−1x+ TBu, y = CT−1x+Du (3.7)

In this way, we can define infinitely many state variables for the same
system, and the realization matrices are related by

A = TAT−1, B = TB, C = CT−1, D = D (3.8)

3.2.3 Special Realization Forms of LTI Systems

Realizations of special forms play an important role in investigating the dy-
namic properties of an LTI system.

Diagonal Form Realization. Diagonal form realization is characterized by
a diagonal state matrix A that plays a role in analyzing asymptotic stability.
It is important to note that there are systems which cannot be transformed
into diagonal forms (it is known from linear algebra that the necessary and
sufficient condition for diagonalizing an n×n quadratic matrix is that it has
n linearly independent eigenvectors).

Definition 3.2.3 (Diagonal form realization of LTI systems)
A diagonal form realization is a realization with the matrices (A,B,C) in the
following special form:

A =




λ1 . . . 0
. . . . .
. . . . .
. . . . .
0 . . . λn



, B =




b1
.
.
.
bn



,

C =
[
c1 . . . cn

]

Note that the λi parameters present in the state matrix A of a diagonal
form realization are the eigenvalues of the matrix and the poles of the system.
A suitable transformation matrix T that brings a given realization (A,B,C)
into its diagonal form can be constructed from the eigenvectors of the state
matrix A.
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Controller Form Realization. This realization plays a role in assessing the
joint controllability and observability of an LTI system because it is always
controllable.

Definition 3.2.4 (Controller form realization of LTI systems)
The controller form realization of an LTI system is given by the state-space
model

ẋ(t) = Acx(t) +Bcu(t)
y(t) = Ccx(t)

(3.9)

with the matrices of the following special form:

Ac =




−a1 −a2 . . . −an

1 0 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . 1 0




with the coefficients of the polynomial a(s) = sn + a1s
n−1 + ...+ an−1s+ an

and

Bc =




1
0
.
.
.
0




Cc =
[
b1 b2 . . . bn

]

with the coefficients of the polynomial b(s) = b1s
n−1 + ...+ bn−1s+ bn where

the above polynomials appear in the transfer function H(s) = b(s)
a(s) (see later

in Definition 5.1.2 in Subsection 5.1.2).

3.3 Linear Time-varying (LTV) Parameter Systems

The simplest extension to the basic LTI case is the case of linear time-varying
parameter systems (abbreviated as LTV systems) in which we allow the pa-
rameters of an LTI system to be time-varying instead of being constant. In
this way we can describe certain disturbances acting as parameters in the
linear model if there is information on their time variation. In order to have
a linear state-space model with time-varying parameters one needs to assume
that the parameters enter into the model in a linear way.

It is easy to see that an LTV system is still a linear system but it is no
longer a time-invariant one.
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In the case where the system parameters in a linear system vary with
time we may generalize the state-space representation of LTI systems in the
following way:

ẋ(t) = A(t)x(t) +B(t)u(t) (state equation)
y(t) = C(t)x(t) +D(t)u(t) (output equation)

(3.10)

with the state, input and output vectors x, u and y and with the time-
dependent realization matrices (A(t), B(t), C(t), D(t)).

It is important to note that the nice properties of LTI systems are partially
lost or at least valid only locally for LTV systems.

Example 3.3.1 (LTV state-space model equation)

One can obtain an LTV state-space model from the simple LTI
state-space model in Example 3.2.1 by assuming that the model
parameters vc and vh vary with time. This assumption makes the
state and input matrices time-varying in the form:

A(t) =

[
− vc(t)

Vc
− a12 a12

a21 − vh(t)
Vh

− a21

]
, B(t) =

[
vc(t)
Vc

0

0 vh(t)
Vh

]

(3.11)

with the parameters ( a12, a21, Vc, Vh ) being constants and with
the special output matrices ( C = I, D = 0 ).
Note that this is a realistic case for the modeled heat exchanger cell
when we do not manipulate the flowrates vc and vh but consider
their naturally bounded slow variation with time.

3.4 Linear Parameter-varying (LPV) Systems

A further step in the generalization of LTI systems is the case where we
consider the state-space matrices of an LTI system to be fixed functions
of some vector of time-varying parameters θ(t) ∈ R

`. These systems are
called linear parameter-varying systems (abbreviated as LPV systems) and
are described by state-space equations of the form:

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t) (state equation)
y(t) = C(θ(t))x(t) +D(θ(t))u(t) (output equation)

(3.12)

It is clearly seen that an LTV system is a special case of an LPV system
when the vector of time-varying parameters equals time, i.e.
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θ(t) = t, ` = 1 .

From a practical point of view, LPV systems have at least two interesting
interpretations:

• they can be viewed as linear time-invariant (LTI) systems subject to time-
varying parametric uncertainty θ(t),

• they can be models of linear time-varying plants or models resulting from
linearization of nonlinear plants along trajectories of the parameter θ.

It is important to note that sometimes the whole parameter vector or some
of its entries are chosen to be some of the system’s signals, such as some
state variables being also time-varying quantities. With this approach we
can describe a truly nonlinear system as an LPV system, and this may have
advantages.

Of particular interest will be those LPV systems in which the system
matrices affinely depend on θ, that is

A(θ) = A0 + θ1A1 + · · · + θ`A`

B(θ) = B0 + θ1B1 + · · · + θ`B` (3.13)

C(θ) = C0 + θ1C1 + · · · + θ`C`

D(θ) = D0 + θ1D1 + · · · + θ`D`

In addition, we usually assume that the underlying time-varying parameter
θ varies in a convex matrix polytope Θ with corner-point vectors

{ω1, ω2, . . . , ω`}, ωi ∈ R
`

such that

θ(t) ∈ Θ := Co{ω1, ω2, . . . , ω`} := {
∑̀

i=1

αiωi : αi ≥ 0 ,
∑̀

i=1

αi = 1} (3.14)

This way, we construct the parameter θ as a convex linear combination of
the vectors {ω1, ω2, . . . , ω`}. This implies that every entry in the parameter
vector is bounded.

Again, special nonlinear systems, such as bilinear systems, can be de-
scribed as affine LPV systems by considering some of the state and/or input
signals as time-varying parameters.
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Example 3.4.1 (LPV state-space model equation)

One can obtain n LPV state-space model from the simple LTI
state-space model in Example 3.2.1 by assuming that the model
parameter U , the heat transfer coefficient, varies with time. This
assumption makes the state matrix A dependent on the time-
varying parameter θ(t) = U(t) in the form:

A(U(t)) =

[
− vc

Vc
− AU(t)

cP cρcVc

AU(t)
cP cρcVc

AU(t)
cP hρhVh

− vh

Vh
− AU(t)

cP hρhVh

]
(3.15)

The constant matrices A0 and A1 in the affine dependence equa-
tion (3.13)

A(U) = A0 + UA1

are as follows:

A0 =

[− vc

Vc
0

0 − vh

Vh

]
, A1 =

[
− A

cP cρcVc

A
cP cρcVc

A
cP hρhVh

− A
cP hρhVh

]
, (3.16)

assuming all the remaining parameters

vc, Vc, A, cPc, ρc, vh, Vh, cPh, ρh

to be constants.
The remaining three matrices in the state-space representation
are constant matrices, that is

B =

[ vc

Vc
0

0 vh

Vh

]
(3.17)

and the special output matrices are ( C = I, D = 0 ).
Note that this is a realistic case for the modeled heat exchanger cell
when we consider the natural deterioration of the heat exchanger
surface due to CaCO3 formation.

3.5 Nonlinear Systems

Nonlinear finite dimensional systems represent a wide class of nonlinear sys-
tems. Lumped process models derived from first engineering principles belong
to this class.

The general form of state-space models of finite dimensional nonlinear
systems is:
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ẋ(t) = f̃(x(t), u(t)) (state equation)

y(t) = h̃(x(t), u(t)) (output equation)
(3.18)

with the state, input and output vectors x, u and y and with the smooth
nonlinear mappings

f̃ : R
n × R

r 7→ R
n, h̃ : R

n × R
r 7→ R

p .

3.5.1 The General Form of State-space Models for Input-affine
Systems

If the nonlinear functions f̃ and h̃ above are in a special form, the so-called
input-affine form is obtained.

Definition 3.5.1 (Input-affine nonlinear state-space models)

ẋ(t) = f(x(t)) +
∑m

i=1 gi(x(t))ui(t) (state equation)
y(t) = h(x(t)) (output equation)

(3.19)

with the same state, input and output vectors x, u and y as above, and with
the smooth nonlinear mappings

f : R
n 7→ R

p, gi : R
n 7→ R, h : R

n 7→ R
p

It is important to observe that the input signals enter into the input-affine
nonlinear state-space model in a linear way, that is, the mapping f̃ in the
original general nonlinear state-space model (3.18) is linear with respect to
u.

3.5.2 Nonlinear Transformation of States

Transforming the coordinates in the state-space is also useful in the nonlinear
case, in order to investigate dynamic properties of interest (e.g. reachability,
observability, etc.) or to solve certain control problems. Of course, nonlin-
ear coordinate transformations are usually applied to nonlinear state-space
models.

Definition 3.5.2 (Nonlinear coordinate transformation)
A nonlinear change of coordinates is written as

z = Φ(x) (3.20)

where Φ represents an R
n-valued function of n variables, i.e.

Φ(x) =




φ1(x)
φ2(x)
. . .

φn(x)


 =




φ1(x1, . . . , xn)
φ2(x1, . . . , xn)

. . .
φn(x1, . . . , xn)


 (3.21)

with the following properties:
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1. Φ is invertible, i.e. there exists a function Φ−1 such that Φ−1(Φ(x)) = x
for all x in R

n.
2. Φ and Φ−1 are both smooth mappings, i.e. they have continuous partial

derivatives of any order.

A transformation of this type is called a global diffeomorphism on R
n.

Example 3.5.1 (A simple nonlinear state transformation)

Consider a simple nonlinear vector-vector function f

f(x1, x2) = f(x) =

[
x2

1 + x2
2

x3
1 + x3

2

]

and let the function Φ generating the coordinate transformation
be given as

z = Φ(x) =

[√
x1√
x2

]

which is invertible on the domain x1 ≥ 0, x2 ≥ 0. Its inverse
function is:

x = Φ−1(z) =

[
z2
1

z2
2

]

Therefore the original function f in the transformed coordinate
system will be:

f(z) = f(Φ−1(z)) =

[
z4
1 + z4

2

z6
1 + z6

2

]

Sometimes, a transformation having both of these properties and being de-
fined for all x is difficult to find. Thus, in most cases, one looks rather at
transformations defined only in a neighborhood of a given point the existence
of which is guaranteed by the inverse function theorem. A transformation of
this type is called a local diffeomorphism. In order to check whether a given
transformation is a local diffeomorphism or not, the following result is very
useful.

Suppose Φ is a smooth function defined on some subset U of R
n. Suppose

the Jacobian matrix of Φ is nonsingular at a point x = x0, then, on a suitable
open subset U0 of U , containing x0, Φ defines a local diffeomorphism.

3.5.3 Bilinear State-space Models

An important special case of general nonlinear state-space models (3.18) are
the so-called bilinear state-space models. In these models, the nonlinear func-
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tions f̃ and h̃ become

ẋ`(t) =
n∑

j=1

a
(0)
`j xj(t) +

m∑

j=1

b
(0)
`j uj(t)

+

m∑

j=1

n∑

i=1

b
(`)
ij xi(t)uj(t)

i = 1, . . . , n (state equations)

yk(t) =

n∑

j=1

c
(0)
kj xj(t) (3.22)

k = 1, . . . , p (output equation)

with the same state, input and output vectors x, u and y as above.
It is easy to see that bilinear state-space models are special cases of the

input-affine models, because the input signal enters into the model in a linear
way.

We shall see later in Section 4.3.1 that a wide class of process systems
models belong to the class of bilinear state-space models.

Example 3.5.2 (Bilinear state-space model equation)

Let us consider a modified version of the simple state-space model
in Equation 3.2 by changing the input variables to have

u = [ vc, vh ]T

and considering the elements of the old input vector

uO = [ uO1, uO2 ]T = [ TcIN , ThIN ]T

to be constants. The following bilinear state-space model is ob-
tained:
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ẋ =

[
− UA

cP cρcVc

UA
cP cρcVc

UA
cP hρhVh

− UA
cP hρhVh

]
x+

[
TcIN

Vc
0

0 ThIN

Vh

]
u

+

[− 1
Vc

0

0 0

]
u1 · x+

[
0 0
0 − 1

Vh

]
u2 · x (3.23)

y = x (3.24)

with x, u, y ∈ R2 being two-dimensional vectors.
If all the model parameters

TcIN , Vc, U, A, cPc, ρc, ThIN , Vh, cPh, ρh

are constants, then the above model is indeed bilinear and time-
invariant, with the state equation (3.23), with a trivial output
equation and with the special model matrices:

A(0) =

[
− UA

cP cρcVc

UA
cP cρcVc

UA
cP hρhVh

− UA
cP hρhVh

]
, B(0) =

[
TcIN

Vc
0

0 ThIN

Vh

]
, C(0) = I

B(1) =

[− 1
Vc

0

0 0

]
, B(2) =

[
0 0
0 − 1

Vh

]

All the remaining matrices are zero matrices.

3.6 Summary

The state-space representations of the most important finite dimensional
(lumped) system classes are briefly reviewed and described in this chapter.
They will be used in the rest of the book.

The linear time-invariant (LTI) state-space model is introduced first, since
it serves as a basic case for all extensions towards the nonlinear state-space
representation forms. The linear time-varying parameter (LTV) and linear
parameter-varying (LPV) systems are seen as intermediate cases between
the basic reference LTI and the general nonlinear cases.

The general and input-affine state-space models, introduced last, are the
basis of all the nonlinear analysis and control techniques described in this
book, are also introduced here.

The linear and nonlinear coordinate transformations, which generate
classes of equivalent linear and nonlinear state-space models, complement
the chapter.
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3.7 Questions and Exercises

Exercise 3.7.1. Show that (3.1) is indeed a linear and time-invariant model.

Exercise 3.7.2. Show that an LTV system is a linear system, but it is not
a time-invariant one.

Exercise 3.7.3. Prove that the state-space representations given by the ma-
trices

1. A, B, C
2. Ā = TAT−1, B̄ = TB, C̄ = CT−1

give the same transfer function.

Exercise 3.7.4. Show that the quantities

CAiB, i = 0, 1, ...

called Markov parameters of an LTI system with state-space representation
matrices (A,B,C) are invariant under linear state transformations.

Exercise 3.7.5. Consider the following functions and points in the state-
space

1. f(x) = x2 + 3, x1 = 0, x2 = 3
2. f(x) = (x− 4)3, x1 = 4, x2 = 0

Is there any open neighborhood of x1 and x2 where f is invertible?

Exercise 3.7.6. The following vector-field is given:

f(x, y) =

[
5x+ 3y
(x+ 2)2

]
(3.25)

Is there any open and dense subset of R
2 where f can be inverted? If yes,

give such a set and calculate the corresponding inverse function.

Exercise 3.7.7. Consider a simple nonlinear vector-vector function f

f(x1, x2) = f(x) =

[
x2

1 + x2
2

x4
1 − x4

2

]

and let the function Φ generating the nonlinear coordinate transformation be
given as

z = Φ(x) =

[
arcsinx1

arcsinx2

]

Apply the coordinate transformation to the function f above and give its
form in the transformed coordinates.
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Exercise 3.7.8. Consider the state equation of a simple two-dimensional
quasi-polynomial system

dx1

dt
= x

1/2
1 x

3/2
2 − x1x

3
2 + x

1/2
1 u1

dx2

dt
= 3x1x

1/2
2 − 2x2

1x2

Apply the following quasi-polynomial nonlinear coordinate transformation

z = Φ(x) =

[
x3

1x
1/3
2

x
1/4
1 x2

2

]

to the system.
Is the resulting system model quasi-polynomial again? Why?
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4. Dynamic Process Models

Dynamic process models and their properties form the background of any pro-
cess control activity including model analysis, model parameter and structure
estimation, diagnosis, regulation or optimal control. Therefore this chapter is
entirely devoted to dynamic process modeling for control purposes: the con-
struction and properties of lumped dynamic models. Process modeling is an
important and independent area in itself within process systems engineering
with good and available textbooks (see, e.g. [32] providing an overview and
introduction to the key concepts, methods and procedures). This chapter is
not intended to replace a process modeling textbook in a short form, but
rather focuses on the particular characteristics of a dynamic lumped param-
eter process model, which is seen as a finite dimensional system model given
in its state-space model form. The chapter is broken down into the following
sections.

• Process modeling for control
We start with a brief overview of the way process models are generally con-
structed together with a description of the ingredients of lumped dynamic
process models.

• State-space models of process systems
The special properties of finite dimensional state-space models derived from
conservation balances are then described together with their system vari-
ables. A decomposition of the state equations driven by the mechanisms
taking place in the process system is also given.

• Special nonlinear process systems
A separate section is devoted to special finite dimensional nonlinear pro-
cess systems, including bilinear systems with no source term in their con-
servation balance equations, and system models in differential-algebraic
equation (DAE) form.

• Examples
Finally three sets of simple process models giving rise to finite dimensional
nonlinear state-space models are given in separate sections: heat exchanger
models, continuously stirred tank reactor (CSTR) models and a model of
a gas turbine. These models will be used later in the book for illustrating
nonlinear analysis and control techniques.
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40 4. Dynamic Process Models

4.1 Process Modeling for Control Purposes

A modeling task is specified by giving the description of the process system
to be modeled together with the modeling goal, i.e. the intended use of the
model. The modeling goal largely determines the model, its variables, spa-
tial and time characteristics, as well as its resolution or level of detail and
precision. Process control as a modeling goal does not require very accurate
models, we only aim at about 5 percent precision in values, but process con-
trol requires dynamic models that capture the time characteristics (dead time
and time constants) of the model well. Moreover, we usually use lumped pa-
rameter dynamic process models for control purposes because the resulting
finite dimensional system models are much easier to handle. Therefore we
usually use some kind of lumping, most often the so-called “method of lines”
procedure (see, e.g. [32]) to obtain a lumped parameter approximation from
a distributed parameter system model.

Definition 4.1.1 (Balance volume)
Parts of a lumped process system which

• contain only one phase or pseudo-phase,
• can be assumed to be perfectly mixed,

will be termed balance volumes or lumps.

Balance volumes are the elementary dynamic units of a lumped process sys-
tem for which dynamic balances can be constructed and assumptions can be
made.

4.1.1 General Modeling Assumptions

We restrict ourselves to the following class of systems and system models
throughout the book:

1. Only lumped process models that result in a model in ordinary
differential-algebraic equation (DAE) form are considered.

2. We only treat initial value problems.
3. All physical properties in each phase are assumed to be func-

tions of the thermodynamic state variables (temperature,
pressure and compositions) of that phase only.

These general assumptions ensure that we always have an index 1 model
with the possibility of substituting the algebraic constitutive equations into
the differential ones. This is always possible if we choose the free variables
and parameters of the model, the so-called specification, in a proper way.

In order to get relatively simple models where the algebraic equations
can all be substituted into the differential ones, we use the following two
additional general assumptions in the majority of our examples:
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4. Constant pressure is assumed in the whole process system.
5. All physical properties in each phase are assumed to be con-

stant.

Note that the last general assumption overrides assumption 3 by stating
that all physical properties do not depend on any other variable, but that
they are constant.

4.1.2 The Principal Mechanisms in Process Systems

Mechanisms in a process system describe different means of material or en-
ergy transport or transformation. Therefore we encounter a great variety of
possible mechanisms in a process system. In order to complete the steps of
constructing a mathematical model of a process system (see Section 4.1.4
for more details) we need to analyze the modeling problem statement and
decide which mechanisms should be included in the model. For lumped pa-
rameter process systems these mechanisms include, but are not limited to,
the following:

1. Convection:
A material and energy transport mechanism in which the conserved

extensive quantities (overall mass, component masses and energy) are
carried by the transport of the overall mass, i.e. by flows. The inflows
and outflows of the balance volumes can be regarded as convection in
lumped process systems.

2. Transfer:
A component mass or energy transport mechanism between two phases

in contact when there are no convective flows involved. The driving force
for transfer is the difference between the thermodynamical state variables
(temperature, pressure and compositions) in the two phases.

3. Chemical reaction:
A component mass transformation mechanism, which generates the

products of a chemical reaction from the reactants. It usually also in-
volves enthalpy (energy) transformation: generation or consumption.

4. Phase changes:
A phase transformation mechanism, such as evaporation, condensation,

melting, boiling, crystallization, etc. where the chemical composition re-
mains unchanged. It also involves enthalpy (energy) transformation.

A basic property of the mechanisms of a process system is that they are
assumed to be strictly additive, that is, they give rise to additive terms in the
conservation balance equations of a process system.
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4.1.3 The Basic Ingredients of Lumped Process Models

The equations of a particular model satisfying the general modeling assump-
tions” in Section 4.1.1 are of two types:

• differential equations (explicit first-order nonlinear ODEs with initial con-
ditions),

• algebraic equations.

The differential equations originate from conservation balances, therefore
they can be termed conservation balance equations. The algebraic equations
are usually of mixed origin: they will be called constitutive equations. Along
with the above equations we have other model elements associated with them
such as:

• modeling assumptions,
• variables and parameters,
• initial conditions,
• data (specification) of model parameters and constants.

Variables are time-varying or time-dependent quantities in process model
equations. They are also called signals in system theoretical terminology. A
variable x is called differential if its time derivative ( dx

dt ) is explicitly present
in the DAE model. A variable is termed algebraic if it is not differential.

Parameters, on the other hand, are quantities which are either constant
or are regarded to be constant in a particular process model.

4.1.4 The Model Construction Procedure

In order to construct a process model satisfying a given modeling goal, the
problem statement of the modeling, that is, the process system description
together with the goal, should be carefully analyzed first to find the relevant
mechanisms together with a suitable level of detail. These drive the construc-
tion of the process model equations, which is carried out in steps forming the
model construction procedure. Good modeling practice requires a systematic
way of developing the model equations of a process system for a given purpose.
Although this procedure is usually cyclic, in which one often returns back to
a previous step, the systematic procedure can be regarded as a sequence of
modeling steps as follows:

Step 0. System and subsystem boundary and balance volume definitions
The outcome of this step is the set of balance volumes for mass, energy and
momentum. These are the conserved extensive quantities normally considered
in process systems. Moreover, the number of components is also fixed for each
mass balance volume.
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Step 1. Establish the balance equations
Here we set up conservation balances for mass, energy and momentum for
each balance volume.

Step 2. Transfer and reaction rate specifications
The transfer rate expressions between different balance volumes in the conser-
vation balances are specified here usually as functions of intensive quantities.
The reaction rates within balance volumes are also specified.

Step 3. Property relation specifications
Mostly algebraic relationships expressing thermodynamic knowledge, such
as equations of state and the dependence of physico-chemical properties on
thermodynamic state variables, are considered here.

Step 4. Balance volume relation specifications
Equipment with a fixed physical volume is often divided into several balance
volumes if multiple phases are present. A balance volume relation describes
a relation between balance volumes and physical volumes.

Step 5. Equipment and control constraint specifications
There is inevitably the need to define constraints on process systems. These
are typically in the form of equipment-operating constraints (in terms of tem-
peratures, pressures, etc.) and in terms of control constraints, which define
relations between manipulated and controlled variables in the system.

Step 6. Selection of design variables
The selection of design variables is highly dependent on the application area
or problem and is not necessarily process- specific. The process itself only
provides constraints on which variables are potentially relevant. The selection
of design variables may greatly influence the mathematical properties of the
model equations, such as the differential index.

4.1.5 Conserved Extensive and Intensive Potential Variables

Any variable characterizing a process system can be classified as either exten-
sive or intensive depending on how this variable behaves when joining two
process systems together.

Definition 4.1.2 (Extensive variable)
A variable which is proportional to the overall mass of the system, that is,
which is strictly additive when joining two process systems, is termed an
extensive variable.

Dictated by the basic principles of thermodynamics, there is a canonical set
of extensive variables which is necessary and sufficient to describe uniquely a
single phase process system. This set includes overall mass, component masses
and energy for a perfectly stirred (lumped) balance volume. It is important
to note that these extensive variables are conserved, therefore conservation
balances can be constructed for each of them (see later in Section 4.1.6).
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Potentials or intensive quantities are related to any of the above extensive
conserved quantities.

Definition 4.1.3 (Intensive variable (potential))
Intensive variable (or potential) difference (both in space and between phases
in mutual contact) causes transport (transfer or diffusion depending on the
circumstances) of the related extensive quantity.

The following intensive variable (potential) – extensive variable pairs are
normally considered in process systems:

• temperature to internal energy or enthalpy,
• chemical potential, or simply concentration, to mass of a component,
• pressure to overall mass (not relevant for our case due to the constant

pressure general assumption in Section 4.1.1).

4.1.6 Conservation Balances

Conservation balances can be set up for any conserved extensive variable
in any balance volume of a process system. Recall that overall mass, compo-
nent masses and internal energy form the canonical set of conserved extensive
quantities. If we consider an open balance volume with in- and outflows (con-
vection), transport (an inter-phase mechanism) and other intra-phase trans-
formation mechanisms, the verbal form of a conservation balance equation is
as follows:

{
net change in
ext. quantity

}
=

{
in-

flows

}
−
{

out-
flows

}
+

{
generation
consumption

}
(4.1)

Note that there is no source term for the overall mass balance because of the
mass conservation principle. Chemical reaction appears in the generation-
consumption term of the component mass and the energy balances, while
phase transition gives rise to a generation-consumption term in the energy
balance. Inter-phase transfer also appears in the generation-consumption
term of both the component mass and energy balance equations. There is
no overall mass transfer between the phases because of the constant pressure
assumption.

The basic equation which drives all the other conservation balances is the
overall mass balance of the perfectly stirred balance volume j:

dm(j)

dt
= v

(j)
in − v

(j)
out (4.2)

where v
(j)
in and v

(j)
out are the mass in- and outflow rates respectively.

Under the above conditions the general form of a differential balance
equation of a conserved extensive quantity φ for a perfectly stirred balance
volume j takes the form:
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dφ(j)

dt
= v

(j)
in φ

(j)
in − v

(j)
outφ

(j)
out + q

(j)
φ,transfer + q

(j)
φ,source (4.3)

Observe that the overall mass balance (4.2) is a special case of the general
balance equation (4.3) with

q
(j)
m,transfer = 0, q(j)m,source = 0 (4.4)

Note that the conserved extensive quantity φ(j) of balance volume j can be
any variable from the following set:

φ ∈ {E, (mk, k = 1, . . . ,K)} (4.5)

where E is the energy, mk is the component mass of the k-th component,
with K being the number of components in the balance volume. The related
intensive variable (potential) is taken from the set:

Φ ∈ {T, (ck, k = 1, . . . ,K)} (4.6)

where T is the temperature and ck is the concentration of the k-th component.

4.1.7 Constitutive Equations

Some of the terms in the general conservation balance equations (4.3) above
call for additional algebraic equations to complete the model in order to have
it in a closed solvable form. These complementary algebraic equations are
called constitutive equations. Constitutive equations describe

• extensive–intensive relationships,
• transfer rate equations for mass transfer and heat/energy transfer,
• reaction rates,
• property relations: thermodynamical constraints and relations, such as the

dependence of thermodynamical properties on the thermodynamical state
variables (temperature, pressure and compositions), equilibrium relations
and state equations,

• balance volume relations: relationships between the defined mass and en-
ergy balance volumes,

• equipment and control constraints.

Extensive–intensive Relationships. Recall that potentials, being inten-
sive variables, are related to their extensive variable counterparts through
algebraic equations. These involve physico-chemical properties, which may
depend on other potentials or on the differential variables, because the ther-
modynamical state variables, temperature, pressure and concentrations are
intensive quantities. An example is the well-known intensive–extensive rela-
tionship of the U–T pair
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U = mcV T

where U is the internal energy, m is the total mass, T is the temperature
and cV is the specific heat capacity (a physico-chemical property) of the
material in a balance volume. Note that because of the above properties of the
intensive quantities and their relation to the extensive conserved quantities,
the potential form of the model equations is usually derived by additional
assumptions on the physical properties. In the above example

cV = cV(T, P, (ci, i = 1, ...,K))

but because of the “general modeling assumptions” in Section 4.1.1
cV = const is assumed.

Transfer Rate Equations. These are used to describe the algebraic form

of the transfer term q
(j)
φ,transfer in the general balance equation (4.3). Dictated

by the Onsager relationship from non-equilibrium thermodynamics, this term
has the following general linear form:

q
(j)
φ,transfer = K

(j,k)
φ,transfer

(
Φ(j) − Φ(k)

)
(4.7)

Here the transfer coefficients K
(j,k)
φ,transfer are generally assumed to be con-

stants and the driving force for the transfer between balance volumes j and
k is the difference of the potential variables Φ(j) and Φ(k).

4.2 State-space Models of Process Systems

The state-space model of a lumped process system obeying the “general mod-
eling assumptions” in Section 4.1.1 can be obtained by substituting the al-
gebraic constitutive equations into the conservation balance equations. This
fact is used in this section to highlight the special structural properties which
characterize a nonlinear state-space model derived from conservation balance
equations.

4.2.1 System Variables

A possible state vector x̂ for the nonlinear state-space model is:

x̂ = [
(
E(j), (m

(j)
k , k = 1, . . . ,K)

)
, j = 1, . . . , C]T (4.8)

dim(x̂) = n = (K + 1) · C
with K being the number of components and C being the number of balance
volumes. Note that the linear relationship
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m(j) =

K∑

k=1

m
(j)
k (4.9)

enables us to choose the complete set of component masses to be present in
the state vector.

The potential input variables (including both manipulable input variables
and disturbances) are also fixed by the state equations (4.3). They are the
time-dependent variables (signals) appearing on the right-hand side of the
equations, and not being state variables, that is

û = [(v(j), φ
(j)
in v

(j)), j = 1, . . . , C]T (4.10)

Note that we have formed a composite input vector (φ
(j)
in v

(j)) from two sig-
nals so that the corresponding term in the balance equation (4.3) has a ho-

mogeneous form. Any external signal present in the source relations q
(j)
φ,source

should also be included in the set of potential input variables.

4.2.2 State Equations in Input-affine Form

In order to transform the general form of conservation balance equations
into canonical nonlinear state equation form, the state and input variables
above need to be centered using an arbitrary steady state as reference. Note
that this step is not needed if there is no source term or if all sources are
homogeneous functions. There can be process systems with no steady state at
all, such as batch or fed-batch processes. Their variables cannot be centered,
therefore their conservation balance equations cannot be transformed into a
nonlinear state-space model in input-affine form.

For the reference input–state pair (x∗, u∗) the left-hand sides of
the balance equations (4.3) are zero.

Definition 4.2.1 (Centered variable)
A centered variable is then the difference between its actual and reference
value, that is

ϕ = ϕ− ϕ∗

The centered state variables and the centered input variables are then as
follows:

x = [
(
E

(j)
, (m

(j)
k , k = 1, . . . ,K)

)
, j = 1, . . . , C]T , |x| = n = (K + 1) ∗ C

(4.11)

u = [(v(j), φ
(j)
in v

(j)), j = 1, . . . , C]T (4.12)
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With the centered state (4.11) and input vectors (4.12) the general form
of lumped dynamic models of process systems can be transformed into the
standard input-affine form of nonlinear concentrated parameter state-space
equations:

ẋ = f(x) +

m∑

i=1

gi(x)ui, u ∈ R
m, f(0) = 0 (4.13)

where x = [x1, . . . , xn]T are local coordinates of a state-space manifold M.
It is important to note that the state equations of process systems are always
in an input-affine form above, because of the structure of the general state
equation (4.3), if the system possesses a steady state.

4.2.3 Decomposition of the State Equations Driven by
Mechanisms

The state equations in a nonlinear input-affine state-space model of a process
system are derived from the general conservation balance equation (4.3).
This equation has four terms in its right-hand side, corresponding to the
four principal mechanisms we take into account when constructing process
models:

• input convection (inflow term),
• output convection (outflow term),
• (inter-phase) transfer,
• sources including both generation and consumption.

In addition, the concrete mathematical form of the state equations depends
on the selection of the actual input variables from the set of potential ones.
Let us assume that:

1. The flow rates v(j) (and the conserved extensive quantities at the inlet)
are the input variables (manipulable input variables or disturbances).

2. There are no external sources to the system to be included in the set of
potential input variables, that is

q
(j)
φ,source = Q

(j)
φ (T (j), c

(j)
1 , . . . , c

(j)
K−1) (4.14)

where Q
(j)
φ is a given nonlinear function.

It can be shown that, under the above conditions, one can decompose the
nonlinear vector–vector functions f(x) and g(x) in the nonlinear state equa-
tion (4.13) into structurally different additive parts with clear engineering
meaning:

ẋ = Atransferx+Qφ(x) +

m∑

i=1

Nixui +Bconvu (4.15)
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The first term in the above equation originates from the transfer, the sec-
ond from the sources, while the last two correspond to the output and in-
put convection respectively. The coefficient matrices Atransfer, Bconv and
(Ni, i = 1, . . . ,m) are constant matrices, with Atransfer depending on the

non-negative transfer coefficients K
(j,k)
φ,transfer in Equation (4.7), while Ni is a

matrix with non-negative elements that depends on the connections between
the balance volumes.

It is important to note that Ni is a matrix where only its i-th column is
different from zero. More on the connection matrix Ni will follow in Section
4.2.4.

It is easy to see from relation (4.7) that the linear constant (i.e. time-
invariant) state matrix Atransfer is always negative semi-definite and also
has zero eigenvalues. Moreover, the nonlinear source function Qφ(x) is of
block diagonal form with the blocks joining the state variables belonging to
the same balance volume.

Thus, the decomposed state equation contains a linear state term
for the transfer, a general nonlinear state term for the sources, a
bilinear input term for the output, and a linear input term for the
input convection respectively.

4.2.4 Balance Volumes Coupled by Convection

Until now we have only taken into account that the balance volumes are
coupled by the transfer terms (4.7), giving rise to the linear constant (i.e.
time-invariant) state matrix Atransfer. Now we consider the effect of convec-
tive flows joining balance volumes to find the form of the input and output
convection matrices (Ni, i = 1, . . . ,m) and Bconv. In order to describe the
general case let us assume that the outlet flow of the balance volume j is
divided into parts and fed into other balance volumes, giving rise to the
equation:

C∑

`=0

α
(j)
` = 1, j = 0, . . . , C (4.16)

where α
(`)
j is the fraction of the total outlet flow v(`) of balance volume `

that flows into balance volume j. The mass inflow of balance volume j then
consists of the outflows from all the connected balance volumes, including
the balance volume itself, together with a flow from the environment which
is described as a pseudo-balance volume with index 0:

v
(j)
in =

C∑

`=0

α
(`)
j v

(`)
out , j = 0, . . . , C (4.17)
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Finally we collect the ratios above into a convection matrix Cconv as
follows:

Cconv =



−(1 − α

(1)
1 ) α

(2)
1 ... α

(C)
1

... ... ... ...

α
(1)
C α

(2)
C ... −(1 − α

(C)
C )


 (4.18)

Observe that only the ratios belonging to the internal (that is not environ-
mental) flows are collected in the matrix above. It is important to note that
because of Equation (4.16) the convection matrix Cconv is a column conserva-
tion matrix and therefore it is a stability matrix (see Section 7.4.2 in Chapter
7).

From theoretical and practical viewpoints there are two cases of special in-
terest:

• free output convection,
• passive (controlled) mass convection.

These are described below and will be used throughout the book.

Free Mass Convection Network. The first special case of interest is when
the output mass flow of any of the balance volumes is proportional to the
overall mass in the balance volume, that is

v
(j)
out = κ(j)m(j), κ(j) > 0 (4.19)

The inlet mass flow of the balance volume j can then be written as

v
(j)
in =

C∑

`=1

α
(`)
j κ(`)m(`) + α

(0)
j v

(0)
out, j = 0, . . . , C (4.20)

where α
(0)
j v

(0)
out = v

(j)
IN is the mass inflow of the balance volume from the

environment, that is, the real inflow. With the free convection equation above,
the overall mass balance of the balance volume j (4.2) takes the following
form:

dm(j)

dt
=

C∑

`=1

α
(`)
j κ(`)m(`) − κ(j)m(j) + v

(j)
IN , j = 0, . . . , C (4.21)

Let us collect the overall mass and the real inlet mass flow of every balance
volume into vectors M and VIN respectively:

M = [ m(1) . . . m(C)]T , VIN = [ v
(1)
IN . . . v

(C)
IN ]T

Equations (4.21) then can be written in the following matrix-vector form:

dM

dt
= CconvKM + VIN (4.22)

where K = diag[κ(j) | j = 1, . . . , C] is a diagonal matrix with positive ele-
ments.
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Passive Mass Convection Network. We can generalize the above free
convection case to obtain a convection network which is asymptotically stable,
that is, passive in itself, as follows. Let us collect the mass in- and outflows
of every balance volume into the vectors:

Vout = [ v
(1)
out . . . v

(C)
out]

T , Vin = [ v
(1)
in . . . v

(C)
in ]T

and write Equation (4.17) as

Vin = (Cconv + I)Vout + VIN (4.23)

where I is the unit matrix. In order to make the overall mass subsystem
stable, let us apply a full state feedback stabilizing controller (see Chapter 9)
in the form of

Vout = KM (4.24)

with a positive definite square state feedback matrix K. By substituting Equa-
tions (4.23) and (4.24) into the overall mass balance equations in Equations
(4.21), a linear time-invariant state equation results, which has exactly the
same form as Equation (4.22).

Definition 4.2.2 (Passive mass convection network)
An overall mass subsystem with the linear time-invariant state equation
(4.22) and with a positive definite square state feedback matrix K is called
a passive mass convection network.

4.3 Special Nonlinear Process Systems

The previous section shows that the state-space model of lumped process
systems indeed exhibits a number of special and potentially useful properties.
This section is devoted to two interesting special cases within the class of
lumped process systems, which are as follows:

• lumped process systems with no source terms, resulting in state equations
in bilinear form,

• lumped process systems not obeying the “general modeling assumptions”,
giving rise to non-standard DAE system models.

4.3.1 Bilinear Process Systems

We have seen in the previous section that lumped process models obeying
the “general modeling assumptions” can be transformed into an input-affine
nonlinear state-space model form. Moreover, a decomposition of the state
equation of lumped process systems has been introduced in Section 4.2.3 in
the form of Equation (4.15). There, it was assumed that the flow rates v(j)
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(and the conserved extensive quantities at the inlet) were the input variables
(manipulable input variables or disturbances).

This decomposition shows that the input function g in the input-affine
state equation ẋ = f(x) + g(x)u is always a linear function of the state
vector x because of the properties of the convective terms from which it
originates. The nonlinear state function f(x) is broken down into a linear
term originating from transfer and a general nonlinear term caused by the
sources (other generation and consumption terms, including chemical reac-
tions, phase changes, etc.). These observations together result in the condi-
tions for a lumped process system model to be in a bilinear form.

Lumped process models with no source term and obeying the “gen-
eral modeling assumptions” can be transformed into a bilinear
state-space model form, assuming that the flow rates (and pos-
sibly the conserved extensive quantities at the inlet) are the input
variables (manipulable input variables or disturbances).

4.3.2 Process Models in DAE Form

In this subsection we temporarily relax the constant pressure and constant
physico-chemical properties assumptions in the set of “general modeling as-
sumptions” in Section 4.1.1 in order to investigate their effect on the set of
model equations. It is shown below in the example of a simple evaporator
that the presence of the state equation (think of the ideal gas equation as
an example), together with the dependence of specific heat capacity on the
temperature and pressure, results in a model where the algebraic constitutive
equations cannot be substituted into the differential ones. This means that
one cannot transform the lumped process model into a canonical nonlinear
state-space model form. It remains inherently in its original DAE form.

Example 4.3.1 (A simple evaporator model)

Consider a simple single component phase equilibrium system
where vapor and liquid phases are present [31]. This is shown
in Figure 4.1. Vapor (denoted by subscript V ) and liquid (L) are
taken from the vessel, whilst energy is supplied via a heater. Inside
the vessel we have two phases with respective hold-ups MV , ML

and temperatures TV , TL. A feed (with mass flow rate F ) enters
the system. In this model representation, we consider two distinct
balance volumes: one for vapor, the other for liquid. From this de-
scription we can write the system equations in lumped parameter
form, which describes the dynamic behavior:
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1. Conservation balances
Mass:

dMV

dt
= E − V (4.25)

dML

dt
= F − E − L (4.26)

Energy:

dUV

dt
= EhLV − V hV +QE (4.27)

dUL

dt
= FhF − EhLV − LhL +Q−QE (4.28)

2. Transfer rate equations
Mass:

E = (kLV + kV L)A(P ∗ − P ) (4.29)

Energy:

QE = (uLV + uV L)A(TL − TV ) (4.30)

where the subscript LV means liquid to vapor and V L stands for
vapor to liquid in the mass and heat transfer coefficients ki and
ui. The coefficients for V L and LV are normally different.

3. Property relations

hV = hV(TV , P ) (4.31)

hL = hL(TL, P ) (4.32)

hLV = hLV(TL, P ) (4.33)

hF = hF(TF , P ) (4.34)

P ∗ = P∗(TL) (4.35)

PVV =
MV

mw
RTV (4.36)

UV = MV hV(TV , P ) (4.37)

UL = MLhL(TL, P ) (4.38)
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VL =
ML

ρL
(4.39)

kLV = kLV(TL, TV , P ) (4.40)

kV L = kVL(TL, TV , P ) (4.41)

uLV = uLV(TL, TV , P ) (4.42)

uV L = uVL(TL, TV , P ) (4.43)

ρL = ρL(TL, P ) (4.44)

4. Balance volume relations

VV = VT − VL (4.45)

where VT is the total volume occupied by the vapor and liquid
balance volumes. (In this case, it is the vessel volume.)

5. Equipment and control relations

L = f1(ML, P ) or L = f2(ML) (4.46)

6. Notation
Boldface variables denote thermodynamic property functions.
Other system variables are:

MV mass hold-up of vapor ML mass holdup of liquid
UV vapor phase internal energy UL liquid phase internal energy
F feed flow rate V vapor flow rate
L liquid flow rate E inter-phase mass flow rate
TV vapor phase temperature TL liquid phase temperature
Q energy input flow rate QE inter-phase energy flowrate
P system pressure P ∗ vapor pressure
A interfacial area R gas constant
VV vapor phase volume VT vessel volume
hV vapor specific enthalpy hL liquid specific enthalpy
hF feed specific enthalpy mw molecular weight
ρL liquid density hLV inter-phase vapor specific
VL liquid phase volume enthalpy
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F

L

V

E QE

Q

Figure 4.1. A simple evaporator

4.4 Heat Exchanger Examples

Heat exchangers are one of the simplest units in process industries – they
can be found in almost every plant. As their name suggests, heat exchangers
are used for energy exchange between at least two fluid phase (gas or liquid)
streams, a hot and a cold stream. Heat exchangers are usually distributed
parameter process systems, but we can build approximate lumped parameter
models of them using finite difference approximations of their spatial variables
(as in the method of lines approximation scheme). A heat exchanger can
then be seen as a composite lumped parameter process system consisting of
elementary dynamic units as is depicted in Figure 4.2.

4.4.1 Heat Exchanger Cells

A heat exchanger cell is a primitive dynamic unit which consists of two per-
fectly stirred (lumped) balance volumes (called lumps) connected by a heat
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T ci

T h o T hi

T coT 3 c T 2 cT n c

T 1 hT 2 hT (n-1)h...
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v c

v h

v c

v h

Figure 4.2. A cascade model of a heat exchanger

conducting wall. We shall call one of the lumps the hot (j = h) side and the
other one the cold (j = c) side. The lumps with their variables are shown in
Figure 4.2.(/a)

1. Modeling assumptions
In order to obtain a simple model with only two state equations, the following
simplifying modeling assumptions are used:

1. Constant volume and mass hold-up in both of the lumps j = c, h.
2. Constant physico-chemical properties, such as

• density: ρj

• specific heat: cPj

for both lumps, i.e. for j = c, h.
3. Constant heat transfer coefficient (U) and area (A).
4. Completely observable states, i.e. y(t) = x(t).

2. Conservation balances
The continuous time state equations of the heat exchanger cell above are the
following energy conservation balances:

Ṫco(t) =
vc(t)

Vc
(Tci(t) − Tco(t)) +

UA

cpcρcVc
(Tho(t) − Tco(t)) (4.47)

Ṫho(t) =
vh(t)

Vh
(Thi(t) − Tho(t)) +

UA

cphρhVh
(Tco(t) − Tho(t)) (4.48)

where Tji and Tjo are the inlet and outlet temperatures, Vj is the volume
and vj is the volumetric flow rate of the two sides (j = c, h) respectively.

3. System variables
The state vector is therefore composed of the two outlet temperatures:

x1 := Tco, x2 := Tho (4.49)

There are a number of possibly time-dependent variables on the right-hand
side of the above equations which may act as manipulable input variables or
disturbances, depending on the measurement and actuator settings and on
any additional modeling assumptions we may have. These are as follows:
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• the inlet temperatures: Tci and Thi,
• the volumetric flowrates: vc and vh.

The special cases of the heat exchanger cell models are obtained by specifying
assumptions on their variation in time. For every case, the output equation
is

y(t) = h(x(t)) =

[
x1(t)
x2(t)

]
(4.50)

4.4.2 LTI State-space Model of a Heat Exchanger Cell

4. Additional modeling assumptions
In order to obtain a finite dimensional linear time-invariant model in each of
the cases, the following additional assumptions are applied:

5. Constant volumetric flow rates.
6. Manipulable inlet temperatures.

5. State equations
With assumptions 5 and 6 above, Equations (4.47)–(4.48) become the follow-
ing finite dimensional LTI state equations:

ẋ =

[
− vc

Vc
− UA

cP cρcVc

UA
cP cρcVc

UA
cP hρhVh

− vh

Vh
− UA

cP hρhVh

]
x+

[ vc

Vc
0

0 vh

Vh

]
u (4.51)

with

u =

[
Tci

Thi

]
(4.52)

We may divide the state and input matrices in the above equations into
additive terms related to the underlying mechanisms as follows. The state
matrix term originating from energy transfer is

A(tr) =

[
− UA

cP cρcVc

UA
cP cρcVc

UA
cP hρhVh

− UA
cP hρhVh

]
(4.53)

The input and output convection to the lumps gives rise to the following
terms in the state and input matrices respectively:

A(oconv) = B(iconv) =

[ vc

Vc
0

0 vh

Vh

]
(4.54)

Using these matrices, we can write

A = A(tr) −A(oconv), B = B(iconv) (4.55)

TLFeBook



58 4. Dynamic Process Models

4.4.3 LTV State-space Model of a Heat Exchanger Cell

4. Additional modeling assumptions
Let us change the additional assumptions of the previous Subsection 4.4.2 to
have:

5. Time-varying volumetric flow rates as disturbances.
6. Manipulable inlet temperatures.

5. State equations
If one cannot assume constant volumetric flow rate, and only the inlet tem-
peratures are manipulable, then the flow rates vc(t) and vh(t) can be regarded
as time-varying parameters in the LTI model equations in Equation (4.51).
The transfer state matrix A(tr) in Equation (4.53) then remains unchanged,
but the convection state matrix and the input matrix change to

A(oconv)(t) = B(iconv)(t) =

[
vc(t)
Vc

0

0 vh(t)
Vh

]
(4.56)

The decomposition of the state-space model matrices does not change, but
we have to use the new convection matrices to get

A = A(tr) −A(oconv)(t), B = B(iconv)(t) (4.57)

Note that the state and input vectors are exactly the same as they were in
the case of the LTI model.

4.4.4 Nonlinear State-space Model of a Heat Exchanger Cell

In realistic cases, however, the assumptions leading to linear models are not
valid, and the flow rates are the manipulable input variables.

4. Additional modeling assumptions
In order to obtain the simplest possible model from this class, the following
additional assumptions are used:

5. Manipulable volumetric flow rates,
6. Constant input temperatures.

5. State equations
For the sake of simplicity let us introduce the following notation:

u1 := vc, u2 := vh (4.58)

k1 :=
UA

cpcρcVc
, k2 :=

UA

cphρhVh
(4.59)

Equations (4.47)–(4.48) can now be written as
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ẋ1(t) = −k1x1(t) + k1x2(t) +

(
Tci

Vc
− 1

Vc
x1(t)

)
u1(t) (4.60)

ẋ2(t) = k2x1(t) − k2x2(t) +

(
Thi

Vh
− 1

Vh
x2(t)

)
u2(t) (4.61)

The functions g0(x), g1(x), g2(x) are written (with the t-arguments sup-
pressed) as

g0(x) = f(x) =

[
−k1x1 + k1x2

k2x1 − k2x2

]
(4.62)

g1(x) =

[
Tci

Vc
− 1

Vc
x1

0

]
(4.63)

g2(x) =

[
0

Thi

Vh
− 1

Vh
x2

]
(4.64)

With the notation above we may write the state equations (4.60) and (4.61)
in the following more general form:

ẋ = A(tr)x+

2∑

i=1

Nixui +Bu (4.65)

6. Mechanisms in the state equations
In the above equation one can clearly see the origin of the terms on the
right-hand side:

• linear state transfer term A(tr) where

A(tr) =

[
− UA

cP cρcVc

UA
cP cρcVc

UA
cP hρhVh

− UA
cP hρhVh

]
=

[
−k1 k1

k2 −k2

]
(4.66)

is a negative semi-definite singular matrix with one zero eigenvalue,
• bilinear state convection term originating from the output convection with

N1 =

[− 1
Vc

0

0 0

]
, N2 =

[
0 0
0 − 1

Vh

]
, (4.67)

• linear input term originating from the input convection with

B =

[
Tci

Vc
0

0 Thi

Vh

]
(4.68)

7. Extensions
It is important to note that the form in Equation (4.65) of the bilinear state-
space model remains essentially the same if one considers the inlet tempera-
tures to be time-varying.
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• If their time variation is modeled via time-varying parameters, then the B
matrix above becomes time-varying.

• If they are regarded as additional manipulable input variables, then the
input vector u is extended with two new suitably transformed input vari-
ables:

u =




vc

vh

Tcivc

Thivh


 (4.69)

4.5 CSTR Examples

Continuously stirred tank reactors (CSTRs) are the simplest operating units
in process systems engineering, because they consist of only a single per-
fectly stirred balance volume. Therefore the engineering model of a CSTR
contains precisely (K + 1) differential equations, being the lumped conserva-
tion balances for the overall mass, energy and the K components respectively,
supplemented by suitable algebraic constitutive equations.

The state equations are then derived from dynamic conservation balances
of the overall mass and component masses, and energy if applicable, by sub-
stituting the algebraic equations into the differential ones, if it is possible.

This section contains two CSTR examples. The first one is a simple unsta-
ble process system with an autocatalytic chemical reaction. The other one is a
simple fermenter model, which we consider in both fed-batch and continuous
operation mode.

4.5.1 A Simple Unstable CSTR Example

Let us consider an isothermal CSTR with fixed mass hold-up m and constant
physico-chemical properties. A second-order autocatalytic reaction

2A+ S → T + 3A

takes place in the reactor, where the substrate S is present in great excess.
Assume that the inlet concentration of component A (cAin) is constant and
the inlet mass flow rate v is used as the input variable.

1. Conservation balance equation
The state equation is a single component mass conservation balance equation
for component A in the form:

dmA

dt
=
d(m · cA)

dt
= vcAin − vcA + k ·m · c2A (4.70)

where k is the reaction rate constant. Note that we only have a single balance
volume, therefore C = 1.
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In order to obtain a nonlinear state equation in its input-affine form, we
need to center the conservation balance equation above. For this purpose a
nominal steady-state is used as a reference state. The steady-state values of
the system variables are denoted by a superscript asterisk. A given steady-
state concentration c∗A with a nominal mass flow rate v∗ satisfies:

0 = v∗(cAin − c∗A) + k ·m (c∗A)
2

From this we can determine v∗ as

v∗ = −k ·m (c∗A)
2

cAin − c∗A

which should be non-negative, therefore cAin ≤ c∗A should hold. The given
steady-state concentration c∗A also determines the nominal value of the con-
served extensive quantity mA, being the component mass in this case:

m∗
A = m · c∗A

4.5.2 A Simple Fed-batch Fermenter

Fermenters are special bio-reactors of great practical importance. They are
mostly regarded as CSTRs in which special fermentation reactions take place.
Fermentation reaction rate expressions are usually quite complex and highly
nonlinear. They are often the main source of nonlinearity in dynamic fer-
menter models.

1. Modeling assumptions
The simplest dynamic model of a fed-batch fermenter consists of three con-
servation balances for the mass of the cells (e.g. yeast to be produced), that
of the substrate (e.g. sugar which is consumed by the cells) and for the overall
mass. Here we assume that the fermenter is operating under isothermal condi-
tions, so that no energy balance is needed. The cell growth rate is described
by a nonlinear static function µ. The particular nature of a fermentation
model appears in this so-called source function, which is highly nonlinear
and non-monotonous in nature.

Figure 4.3 shows the shape of the nonlinear reaction rate function. The
maximum type character of the curve, that is, the non-monotonous property,
is the one which makes the system difficult to control.

Initially a solution containing both substrate and cells is present in the
fermenter. During the operation we feed a solution of substrate with a given
feed concentration Sf to the reactor.

2. State equations
Under the above assumptions the nonlinear state-space model of the fermen-
tation process can be written in the following input-affine form [44]:
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Figure 4.3. The µ function

ẋ = f(x) + g(x)u (4.71)

where

x =



x1

x2

x3


 =



X
S
V


 , u = F (4.72)

f(x) =




µ(x2)x1

− 1
Y µ(x2)x1

0


 =




µmaxx2x1

k1+x2+k2x2
2

− µmaxx2x1

(k1+x2+k2x2
2)Y

0


 , g(x) =




−x1

x3
Sf−x2

x3

1


 (4.73)

and

µ(x2) =
µmaxx2

k1 + x2 + k2x2
2

(4.74)

3. System variables
The variables of the model and their units are the following:

x1 = X cell concentration (state) [g/l]
x2 = S substrate concentration (state) [g/l]
x3 = V volume (state) [l]
u = F feed flow rate (input) [l/h].
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4. Model parameters
A typical set of constant parameters and their values is as follows:

Y = 0.5 yield coefficient
µmax = 1 maximum growth rate [h−1]
k1 = 0.03 Monod constant [g/l]
k2 = 0.5 kinetic parameter [l/g]
Sf = 10 influent substrate concentration [g/l]
Xf = 0 influent cell concentration [g/l]
c1, c2 reaction enthalpy coefficients.

4.5.3 Simple Continuous Fermenter Models

For convenience, a relatively simple bio-reactor that is similar to the fed-batch
case is selected but is now operated in continuous mode.

Despite its simplicity, this model exhibits some of the key properties which
render bio-reactors difficult to operate, and therefore proper controller design
for bio-reactors is important.

1. Modeling assumptions
The continuous reactor is assumed to be perfectly stirred and an unstructured
biomass growth rate model with substrate inhibition kinetics is chosen.

The fermenter is considered to be isothermal with constant volume V and
constant physico-chemical properties.

2. Conservation balances
The dynamics of the process are given by the state-space model derived from
the conservation balances for the biomass with concentration X and substrate
mass with concentration S.

dX
dt = µ(S)X − XF

V (4.75)

dS
dt = −µ(S)X

Y + (SF −S)F
V (4.76)

where µ(S) = µmax
S

K2S2+S+K1
(4.77)

The first equation originates from the biomass component mass balance, while
the second is from the substrate component mass balance. They are coupled
by the nonlinear growth rate function µ(S)X, which is the main source of
nonlinearity and uncertainty in this simple model.

3. System variables and model parameters
The variables and parameters of the model together with their units and
parameter values are given in Table 4.1. The parameter values are taken
from [44].

4. State equations
The above model can easily be written in standard input-affine form with the
centered state vector
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Table 4.1. Variables and parameters of the fermentation process model

X biomass concentration [g/l]
S substrate concentration [g/l]
F feed flow rate [l/h]
V volume 4 [l]
SF substrate feed concentration 10 [g/l]
Y yield coefficient 0.5 -
µmax, maximal growth rate 1 [1/h]
K1 saturation parameter 0.03 [g/l]
K2 inhibition parameter 0.5 [l/g]

x = [X̄ S̄]T = [X −X0 S − S0]T

consisting of the centered biomass and substrate concentrations. The centered
input flow rate is chosen as manipulable input variable, i.e.

u = F̄ = F − F0

Then we have

ẋ = f(x) + g(x)u (4.78)

f(x) =

[
µ(S̄ + S0)(X̄ +X0) − (X̄+X0)F0

V

−µ(S̄+S0)(X̄+X0)
Y + (SF −(S̄+S0))F0

V

]

g(x) =

[
− (X̄+X0)

V
(SF −(S̄+S0))

V

]
(4.79)

with (X0, S0, F0) being a steady-state operating point.

5. Calculation of the optimal operating point
The maximal biomass productivity XF is selected as the desired optimal
operating point, i.e. the substrate cost is assumed to be negligible. This
equilibrium point can be calculated from the nonlinear model:

S0 =
1

2

−2K1 + 2
√
K2

1 + S2
FK1K2 + SFK1

SFK2 + 1
(4.80)

X0 = (SF − S0)Y (4.81)

and the corresponding inlet feed flow rate is

F0 = µ(S0)V (4.82)

Substituting the parameter values from Table 4.1 gives

S0 = 0.2187 g/l, X0 = 4.8907 g/l, F0 = 3.2029 l/h (4.83)
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6. Linearized model
In order to compare linear and nonlinear model analysis and control tech-
niques, the linearized version of the nonlinear model – state equations are in
Equations (4.78)–(4.79) – is presented here:

ẋ = Ax+Bu (4.84)

where

A =

[
∂f

∂x

]

x=0

=


 0 −µmaxX0(K2S2

0−K1)

(K2S2
0+S0+K1)2

− µmaxS0

(K2S2
0+S0+K1)Y

µmaxX0(K2S2
0−K1)

(K2S2
0+S0+K1)2

− F0

V


 (4.85)

B = g(0) =

[
−X0

V
SF −S0

V

]
(4.86)

The steady-state point (X0, S0, F0) has been used in the linearized version of
the model. The system matrices at the optimal operating point are:

A =

[
0 0.4011

−1.6045 1.2033

]
, B =

[
−1.227
2.4453

]
(4.87)

4.6 Case Study: Modeling a Gas Turbine

Gas turbines are important and widely used prime movers in transportation
systems such as aircraft and cars. They are also found in power systems,
where they are the main power generators, and in process plants as well.
The investigation of steady-state behavior and static characteristics of gas
turbines is a traditional area in engineering. This kind of model is based
upon the characteristics of the component parts of the engine. The static
characteristics can be given in the form of polynomials reflecting the results
of the preliminary calculations or the measurements.

This section is devoted to the model building of a low-power gas turbine
[1], which will be used later on in the book as a case study for nonlinear
analysis and control.

4.6.1 System Description

The main parts of a gas turbine include the compressor, the combustion
chamber and the turbine. For a jet engine, there is also the inlet duct and
the nozzle. The interactions between these components are fixed by the phys-
ical structure of the engine. The operation of these two types of gas turbine
is basically the same. The air is drawn into the engine by the compressor,
which compresses it and then delivers it to the combustion chamber. Within
the combustion chamber the air is mixed with fuel and the mixture is ignited,
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producing a rise in temperature and hence an expansion of the gases. These
gases are exhausted through the engine nozzle or the engine gas-deflector,
but first pass through the turbine, which is designed to extract sufficient
energy from them to keep the compressor rotating so that the engine is self-
sustaining. The main parts of the gas turbine are shown schematically in
Figure 4.4. In this section we analyze a low-power gas turbine, which is in-

1 2 3 4

Compressor Combustion chamber Turbine

Mload

Figure 4.4. The main parts of a gas turbine

stalled on a test-stand in the Technical University of Budapest, Department
of Aircraft and Ships.

Engineering intuition suggests that the gas turbine is inherently stable
because of its special dynamics. This is also confirmed by our measurements
and simulation results. The most important control aim could then be to keep
the number of revolutions constant, unaffected by the load and the ambient
conditions (pressure and temperature). The temperatures and the number of
revolution has to be limited, their values are bounded from above by their
maximum values.

4.6.2 Modeling Assumptions

In order to get a low order dynamic model suitable for control purposes, some
simplifying modeling assumptions should be made.

General assumptions that apply in every section of the gas turbine

1. Constant physico-chemical properties are assumed. These include the
specific heats at constant pressure and at constant volume, the specific
gas constant and adiabatic exponent.

2. Perfectly stirred balance volumes (lumps) are assumed in each main part
of the gas turbine. This means that a finite dimensional concentrated
parameter model is developed and the values of the variables within a
balance volume are equal to those at the outlet.
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Other assumptions

3. Efficiency of the combustion is constant.
4. In the compressor and in the turbine the mass flow rates are constant:

νCin = νCout = νC and νTin = νTout = νT

4.6.3 Conservation Balances

The nonlinear state equations are derived from first engineering principles.
Dynamic conservation balance equations are constructed for the overall mass
m and internal energy U for each of the three main parts of the turbine
system [32]. The notation list is given separately in Table 4.2.

Table 4.2. The variables and parameters of the gas turbine model

Variables Indices

m mass comb combustion chamber
U internal energy fuel refers to the fuel
T temperature C compressor
p pressure T turbine
n number of revolution in inlet
c specific heat out outlet
i enthalpy p refers to constant pressure
M moment v refers to constant volume
R specific gas constant comb refers to combustion
η efficiency mech mechanical
Θ inertial moment load loading
ν mass flow rate air refers to air

gas refers to gas

The development of the model equations is performed in the following
steps:

1. Conservation balance for total mass (applies to each section of the gas
turbine):

dm

dt
= νin − νout (4.88)

2. Conservation balance for total energy in each section of the gas turbine,
where the heat energy flows and work terms are also taken into account:

dU

dt
= νiniin − νoutiout +Q+W (4.89)
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We can transform the above energy conservation equation by considering
the dependence of the internal energy on the measurable temperature:

dU

dt
= cv

d

dt
(Tm) = cvT

dm

dt
+ cvm

dT

dt
(4.90)

From the two equations above we get a state equation for the tempera-
ture:

dT

dt
=
νiniin − νoutiout +Q+W − cvT (νin − νout)

cvm
(4.91)

3. The ideal gas equation is used as a constitutive equation together with
two balance equations above to develop an alternative state equation for
the pressure:

dp

dt
=
RT

V
(νin − νout)

+
p

T

(
νiniin − νoutiout +Q+W − cvT (νin − νout)

cvm

)
(4.92)

Note that both the extensive and the intensive forms of the model equations
are used later for model analysis.

4.6.4 Conservation Balances in Extensive Variable Form

The state equations in extensive variable form include the dynamic mass con-
servation balance for the combustion chamber, the internal energy balances
for all of the three main parts of the turbine and an overall energy balance for
the system originating from the mechanical part. The indices in the balance
equations and variables therein refer to the main parts of the turbine: to the
compressor (i = 2), to the combustion chamber (i = 3) and to the turbine
(i = 4), while the inlet variables are indexed by i = 1.

Thus five independent balance equations can be constructed, therefore
the gas turbine can be described by only five state variables.

Total mass balance

dmComb

dt
= νC + νfuel − νT (4.93)

Total energy balance

dU2

dt
= νCcpair(T1 − T2) + νT cpgas(T3 − T4)ηmech − 2Π

3

50
nMload (4.94)

dU3

dt
= νCcpairT2 − νT cpgasT3 +Qfηcombνfuel (4.95)

dU4

dt
= νT cpgas(T3 − T4) − νCcpair(T2 − T1)

ηmech
− 2Π

ηmech

3

50
nMload (4.96)

Mechanical dynamic equation

dPn

dt
= νT cpgas(T3 − T4)ηmech − νCcpair(T2 − T1) − 2Π

3

50
nMload (4.97)
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4.6.5 Model Equations in Intensive Variable Form

There are several alternatives for the model equations in intensive variable
form. We choose the set that includes the dynamic mass balance for the com-
bustion chamber (that is, Equation (4.93)), the pressure form of the state
equations derived from the energy balances and the intensive form of the
overall mechanical energy balance, expressed in terms of the number of rev-
olutions n.

dp2

dt
=

Rair

VCcvair
(νCcpair(T1 −

p2VC

mCRair
) + νT cpgas(

p3VComb

mCombRmed

− p4VT

mTRgas
)ηmech − 2Π

3

50
nMload) (4.98)

dp3

dt
=

p3

mComb
(νC + νfuel − νT ) +

+
Rmed

VCombcvmed
(νCcpair

p2VC

mCRair
− νT cpgas

p3VComb

mCombRmed

+Qfηcombνfuel − cvmed
p3VComb

mCombRmed
(νC + νfuel − νT )) (4.99)

dp4

dt
=

Rgas

VT cvgas
(νT cpgas(

p3VComb

mCombRmed

− p4VT

mTRgas
) −

νCcpair( p2VC

mCRair
− T1)

ηmech
− 2Π

ηmech

3

50
nMload) (4.100)

dn

dt
=

1

4Π2Θn
(νT cpgas(

p3VComb

mCombRmed
− p4VT

mTRgas
)ηmech

−νCcpair(
p2VC

mCRair
− T1) − 2Π

3

50
nMload) (4.101)

4.6.6 Constitutive Equations

Two types of constitutive equations are needed to complete the nonlinear gas
turbine model. The first is the ideal gas equation

T =
pV

mR

which has already been used before, and has been substituted into the state
equations to get alternative intensive forms.

The second type of constitutive equations describes the mass flow rate in
the compressor and in the turbine.

νC = const(1)q(λ1)
p1√
T1

(4.102)

TLFeBook



70 4. Dynamic Process Models

νT = const(2)q(λ3)
p3√
T3

(4.103)

In these equations q(λ1) and q(λ3) can be calculated as follows:

q(λ1) = f(
n√
T1

,
p2

p1
) (4.104)

q(λ3) = f(const(3)
n√

p3VComb

mCombRmed

,
p3

p4
) (4.105)

The parameters and constants of these functions can be determined using
measured data and the compressor and turbine characteristics.

4.6.7 Operation Domain and System Variables

The measurable intensive set of state variables for the gas turbine test stand
at the Technical University of Budapest is:

x = [ mComb p2 p3 p4 n ]
T

(4.106)

Experimental values of these variables are constrained to the following do-
main:

0.003 ≤ mComb ≤ 0.0067 [kg] 180000 ≤ p∗2 ≤ 280000 [Pa]
170000 ≤ p∗3 ≤ 270000 [Pa] 100000 ≤ p∗4 ≤ 140000 [Pa]
39000 ≤ n ≤ 51000 [1/min]

The value of the only input variable νfuel is also constrained by:

0.009 ≤ νfuel ≤ 0.017 [kg/sec]

The set of possible disturbances includes:

d = [ T1 p1 Mterh ]
T

(4.107)

where the domain of its elements is:

273 ≤ T1 ≤ 310 [K] 97000 ≤ p1 ≤ 103000 [Pa] 0 ≤Mterh ≤ 180 [Nm]

Finally we construct the set of output variables by noticing that all the pres-
sures p∗i and the number of revolutions n in the state vector above can be
measured, but the mass mComb cannot:

y = [ p2 p3 p4 n ] (4.108)
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4.7 Summary

The basic approach and a systematic methodology for constructing lumped
dynamic process models from first engineering principles is introduced in this
chapter. The most important mechanisms (convection, transfer and a source
term associated with chemical reactions) are also discussed in detail and their
effect on the algebraic form of the state equations is also described.

The modeling methodology is illustrated in several case studies of sim-
ple, yet practically important, process systems: heat exchangers, continuously
stirred tank reactors including bio-reactors, and a gas turbine. The nonlinear
state-space models developed here will be used for nonlinear model analysis
and control studies throughout the book.

4.8 Questions and Application Exercises

Exercise 4.8.1. Which are the canonical extensive variables and related po-
tentials of lumped process systems?

Exercise 4.8.2. What are the general expression for total mass balance in
a process system? Describe the significance of each term.

Exercise 4.8.3. What are the principal mechanisms in lumped process sys-
tems? How can we decompose the state equation of a lumped process system
driven by mechanisms?

Exercise 4.8.4. What are the most important classes of constitutive equa-
tions? Which ones of those play role in dynamic modeling for control?

Exercise 4.8.5. What are the general expressions for energy balance in a
process system? Describe the significance of each term.

Exercise 4.8.6. Develop a special case of the simple evaporator model de-
scribed in Example 4.3.1 assuming constant physico-chemical properties.
Construct the state equations of the system by substituting the algebraic
constitutive equations into the differential ones.

Exercise 4.8.7. Develop a special case of the simple fed-batch fermenter
model described in Subsection 4.5.2 assuming a more simple fermentation
kinetics:

µ(S) = µmax
S

K2S +K1

Construct the state equations of the system.

Exercise 4.8.8. Construct an LTI state-space model of the heat exchanger
cell described in Subsection 4.4.2 using centered variables. Compare the ob-
tained model with the one in Equations (4.51).
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Exercise 4.8.9. Construct a bilinear state-space model of the heat ex-
changer cell described in Subsection 4.4.4 using centered variables.

Exercise 4.8.10. Develop a linearized state-space model of the nonlinear
heat exchanger cell described in Section 4.4.4.
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5. Input–output Models and Realization
Theory

Basic notions of signals and systems (see Chapter 2) suggest that input–
output description is the natural description of dynamic systems represented
as an abstract operator S acting on the input space and producing a signal
from the output space. If we only use the input and output signals (possibly
together with disturbances) for the description, then we have an input–output
model or description of the system in question.

This chapter is devoted to the detailed elaboration of this concept of
input–output description both for continuous time finite–dimensional LTI
and nonlinear systems.

The material in this chapter is arranged in the following sections:

• Input–output models of LTI systems
The basic notions of both the time domain and frequency (operator) do-
main description are introduced.

• Input–output representation of nonlinear systems
The basic representation forms of LTI systems are generalized to cover
the general finite dimensional nonlinear case. Both the Fliess and Volterra
series representations are described.

• Realization theory
A brief introduction is given here on how to find state-space models for a
given input–output model in both the LTI and nonlinear case.

• Zero dynamics
The notion of zero dynamics is very useful when designing output feedback
controllers to a nonlinear system. It is introduced here and its computation
is illustrated for a simple process system example.

5.1 Input–output Models of LTI Systems

Usually we do not use the abstract system operator S when we want to de-
scribe a concrete system for the purpose of its analysis and control. Instead,
we use different other descriptions: system models or system representations
mainly in the form of differential and algebraic equations. The following sub-
sections deal with different input–output and state-space representations of
continuous time LTI systems.
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For the sake of simplicity we only deal with single-input– single-output
(SISO) systems here, but the different models can be easily generalized to
the MIMO case, as well. A SISO LTI system is usually described either in

• time domain, or in
• operator domain.

5.1.1 Time Domain Description

There are different alternative methods for the input–output description of
LTI systems in time domain: linear higher-order differential equations with
constant coefficients and the impulse-response function description.

Linear Differential Equations with Constant Coefficients. Let us de-
note the scalar output signal of the system by y and the scalar input by
u. Then the system model is in the form of a linear higher-order ordinary
differential equation:

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ ...+ a1

dy

dt
+ a0y = b0u+ b1

du

dt
+ ...+ bm

dmu

dtm
(5.1)

with given initial conditions

y(0) = y00,
dy

dt
(0) = y10, . . . ,

dn−1y

dtn−1
(0) = yn0

because the input function u and its derivatives are considered to be known
(given) for every time instant. Observe that we need n initial conditions for
this description.

The parameters of this system model are the constants

(a0, a1, . . . , an), (b0, b1, . . . , bm)

This system model is clearly

• linear, because the equation is linear, and
• time-invariant because the model parameters are constant (do not depend

on time).

Impulse-response Representation.

Definition 5.1.1 (Impulse-response function)
The impulse-response function is the response of a SISO LTI system to a
Dirac-δ input function with zero initial condition.

The concept of impulse-response representation is illustrated in Figure 5.1
below where

h(t): impulse-response function
δ(t): Dirac-δ function.
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u(t) = d(t) x(t)

S

y(t) = h(t)

d(t)

t t

h(t)

Figure 5.1. Notion of the impulse-response function

The output of S can be written as

y(t) =

∫ ∞

−∞

h(t− τ)u(τ)dτ =

∫ ∞

−∞

h(τ)u(t− τ)dτ (5.2)

The equation above describes the convolution of h(.) and u(.) in time domain.
We can develop two equivalent forms from the above defining equations

(5.2) as follows:

1. Because u(.) is a function R
+
0 → R, we start the integration at time 0.

The upper bound for the integration is t because the system is causal,
i.e.

y(t) =

∫ t

0

h(t− τ)u(τ)dτ (5.3)

The above integral formulation is only valid under the so-called “zero
initial condition” assumption, when {u(t) = 0 | t < 0}. This condition
will be reformulated later on for state-space representations.

2. We can observe that h(t) is also identically zero up to the time t =
0 because of the definition and the causality of the system. Therefore
Equation (5.2) specializes to

y(t) =

∫ ∞

0

h(τ)u(t− τ)dτ (5.4)

5.1.2 Operator Domain Description

In operator domain we work with the Laplace transform (denoted by L,
abbreviated by L-transform) of signals. The Laplace transform is defined in
Section 2.1.4.

The description of an LTI system in operator domain uses the transfer
function H(s) of the system.
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Definition 5.1.2 (Transfer function)
The transfer function of a SISO LTI system is a complex function which is
defined as follows:

Y (s) = H(s)U(s) (5.5)

assuming zero initial conditions with

Y (s) Laplace transform of the output signal
U(s) Laplace transform of the input signal

H(s) = b(s)
a(s) transfer function of the system

where a(s) and b(s) are polynomials and
degree b(s) = m
degree a(s) = n.

We can easily connect the time domain differential equation description (5.1)
of a continuous time SISO LTI system with the transfer function description
if we take the Laplace transform of Equation (5.1) with zero initial conditions
and compare the result with Equation (5.5).

Using property (3) of the Laplace transform and the defining equation
of the transfer function (5.2) it is easy to show that H(s) is the Laplace
transform of the impulse-response function h(t) of the system S:

H(s) = L{h(t)} (5.6)

Definition 5.1.3 (Proper transfer function)
Let the transfer function of a continuous time SISO LTI system be in the

form of H(s) = b(s)
a(s) with n = deg(a(s)),m = deg(b(s)) being the degrees of

the denominator and nominator polynomials respectively. If

m < n then H(s) is strictly proper
m = n proper
m > n improper.

It is important to note that realistic causal systems are strictly proper there-
fore it will be assumed from now on.

5.1.3 Input–output and State-space Representations of LTI
Systems

The concept of state-space models has already been introduced in Chapter 3.
It is of great importance to find connections between state-space and input–
output realizations of a given LTI system. Here we consider the problem of
constructing various forms of input–output models to a given LTI state-space
model or realization.
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Definition 5.1.4 (Equivalent realizations)
Equivalent state-space realizations (or models) are the ones which give rise
to the same input–output description, that is to the same transfer function
in the LTI case.

The general form of state-space models of LTI systems has been already
introduced in Section 3.2.1 in the form:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t) +Du(t)

which is characterized by the matrix quadruplet (A,B,C,D) where usually
D = 0 is assumed.

Construction of the Transfer Function from State-space Models.
Assuming that x(0)=0, we can easily derive the transfer function from the
state-space model equation above by computing the Laplace transform of
both equations and substituting X(s) from the transformed state equations
to the output equation:

X(s) = (sI −A)−1BU(s)
Y (s) = {C(sI −A)−1B +D}U(s)

(5.7)

The last equation gives the transfer function H(s) of the state-space repre-
sentation matrices (A,B,C,D):

H(s) = C(sI −A)−1B +D (5.8)

The above derivation shows that the transfer function can be computed from
the realization matrices (A,B,C,D) therefore their combination in Equation
(5.8) is realization-independent.

There are other more simple quantities which are realization-independent
in the case of LTI systems. The most important of them are the Markov
parameters defined below.

Definition 5.1.5 (Markov parameters)
The Markov parameters of a continuous time LTI system with state-space
realization (A,B,C) are defined as:

hi = CAi−1B, i = 1, 2, ... (5.9)

It can be shown that the Markov parameters are invariant under state trans-
formations, that is, they remain unchanged if one applies a state transforma-
tion using an invertible transformation matrix T .
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Construction of the Impulse-response Function from State-space
Models. We can relate the parameters of a given state-space model to the
impulse-response function in two ways. The first way is to use the solution
of the state equation and remember that the impulse-response function h(t)
of a LTI system is its output for the Dirac-δ (δ(t)) input and we obtain with
D = 0:

h(t) = CeAtB = CB + CABt+ CA2B
t2

2!
+ ... (5.10)

The same result is obtained by taking the inverse-Laplace transformation of
Equation (5.8) with D = 0.

Note that the Markov parameters are present in the time series expansion
of the impulse-response function h(t).

5.2 Input–output Representation of Nonlinear Systems

The input–output representation of finite dimensional nonlinear systems is
much more difficult than that of LTI systems. Besides the mathematical
difficulties present in the various representations, one has to cope with the
infinite series inherent in the various representations.

5.2.1 Fliess’s Functional Expansion

First, we summarize the necessary mathematical tools and definitions for the
input–output description of nonlinear systems based on [37].

Definition 5.2.1 (Multi-index)
Let Ik denote the set of all sequences (ik . . . i1) of k elements ik, . . . , i1 of the
index set I. A multi-index is an element of Ik. The only element of I0 is the
empty sequence (i.e. a multi-index of length 0), denoted by ∅.
In the case of an input-affine nonlinear system with m inputs, the index set
is I = {0, 1, ...,m}. Furthermore, let us introduce the following notation:

I∗ =
⋃

k≥0

Ik (5.11)

Definition 5.2.2 (Formal power series)
A formal power series in m + 1 noncommutative indeterminates and coeffi-
cients in R is a mapping

c : I∗ → R (5.12)

The value of c at some element ik . . . i0 of I∗ is denoted by c(ik . . . i0).
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Definition 5.2.3 (Iterated integrals)
Let T be a fixed value of the time and suppose u1, . . . , um are real-valued piece-
wise continuous functions defined on [0, T ]. For each multi-index (ik . . . i0) the
corresponding iterated integral is a real-valued function of t

Eik...i1i0 =

∫ t

0

dξik
. . . dξi1dξi0

defined for 0 ≤ t ≤ T by recurrence on the length, setting

ξ0(t) = t

ξi(t) =

∫ t

0

ui(τ)dτ for 1 ≤ i ≤ m

and
∫ t

0

dξik
. . . dξi0 =

∫ t

0

dξik
(τ)

∫ τ

0

dξik−1
. . . dξi0

The iterated integral corresponding to the multi-index ∅ is the real number 1.

Example 5.2.1 (The first few iterated integrals)

The iterated integrals are computed in a recursive way following
the recursive structure of their definition.

ξ0(t) = t

ξi(t) =

∫ t

0

ui(τ)dτ for 1 ≤ i ≤ m

dξi =
dξi
dt

∫ t

0

dξ0 = t,

∫ t

0

dξ1 =

∫ t

0

u(τ)dτ

∫ t

0

dξ0dξ0 =
t2

2!
(5.13)

∫ t

0

dξ0dξ1 =

∫ t

0

∫ τ

0

u(θ)dθdτ

∫ t

0

dξ1dξ0 =

∫ t

0

u(τ)τdτ

∫ t

0

dξ1dξ1 =

∫ t

0

u(τ)

[∫ τ

0

u(θ)dθ

]
dτ

. . .
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The Fliess’s series expansion makes use of the iterated integrals above to
obtain an input–output representation of lumped nonlinear systems in the
form

y = S[u], u ∈ U , y ∈ Y (5.14)

where S is the system operator, u is the input, y is the output, and U and Y
denote the input and output signal spaces with dim(U) = m and dim(Y) = p
respectively.

Theorem 5.2.1 (Fliess’s series expansion of nonlinear systems). Sup-
pose the inputs u1, . . . , um of the nonlinear system (5.14) satisfy the con-
straint

max
0≤τ≤T

|ui(τ)| < 1

Then, if T is sufficiently small, the j-th output yj(t) of the system (5.14)
may be expanded in the following way:

yj(t) = hj(x0) +
∞∑

k=0

m∑

i0,...,ik=0

Lgi0
. . . Lgik

hj(x0)

∫ t

0

dξik
. . . dξi0 (5.15)

where g0 = f .

5.2.2 Volterra Series Representation

The convolution integral in (5.2) can be generalized and applied to a large
class of nonlinear systems. The result of this generalization is the so-called
Volterra-series description, where we describe the input–output behavior of
the system using a series of so-called generalized convolution integrals. The
linear case in Equation (5.4) is a special case of this representation.

For simpler notation, let us consider a nonlinear input-affine system model
with scalar output, i.e. Equation (3.19) being in the form of

ẋ(t) = f(x(t)) +
∑m

i=1 gi(x(t))ui(t)
y(t) = h(x(t))

with dim y = p = 1. The output of a system can be approximated with the
series

y(t) = w0(t) +
∞∑

k=1

∫ t

0

∫ τ1

0

. . .

∫ τk−1

0

wk(t, τ1, . . . , τk)u(τ1) . . . u(τk)dτk . . . dτ1 (5.16)

where wk(t, τ1, . . . , τk) is called the k-th order Volterra kernel.
Let us denote the flow of the vector field f in Equation (3.19) by f t (i.e.

f t(x) is the solution of the equation above at time t starting from x(0) = x
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with u = 0). It can be shown (see, e.g. [21]) that the Volterra kernels are
calculated as

w0(t) = h ◦ f t(x0)
wk(t, τ1, . . . , τk) =

Lg(. . . (Lg(Lg(h ◦ f t−τ1) ◦ fτ1−τ2) ◦ fτ2−τ3) ◦ · · · ◦ f τk−1−τk) ◦ fτk(x0)
k = 1, 2, . . .

(5.17)

The main result from the convergence of (5.17) is that if f , g and h are
analytic in a neighborhood of x0 then there exists T > 0 such that for each
input function satisfying |u(t)| < 1 on [0, T ], the series (5.17) is uniformly
absolutely convergent on [0, T ] (see, e.g. [21]).

5.2.3 Higher-order Nonlinear Differential Equations

Similarly to the time domain input–output description of LTI systems de-
scribed in Section 5.1.1, under some conditions the relation between the in-
puts and outputs of a nonlinear system (3.19) can also be represented using
a set of higher-order differential equations of the form

Fi

(
u, u̇, . . . , u(k), y, ẏ, . . . , y(k)

)
= 0, i = 1, . . . , p (5.18)

The conditions and the complete algorithm for rewriting the state-space
model (3.19) into the form (5.18) can be found in [21]. The following simple
example will illustrate the method without going too much into the details.

Example 5.2.2 (Nonlinear input–output model)
Rewriting a simple nonlinear state-space model into input–output
form

Consider a simple nonlinear process model describing the opera-
tion of a continuous fermenter which has been introduced in Sub-
section 4.5.3:

ẋ1 = µ(x2)x1 −
x1

V
u (5.19)

ẋ2 = −µ(x2)x1

Y
+
SF − x2

V
u (5.20)

y = x2 (5.21)

where µ(x2) = x2

K+x2
and Y , V and SF are constants.
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To express the direct relationship between u and y, x1 and ẋ1

should be eliminated from Equations (5.19)–(5.20). First, let us
express x1 from (5.20) using the output equation y = x2:

x1 =
Y

µ(y)

(
(SF − y)u

V
− ẏ

)
(5.22)

Taking the time derivative of (5.22) gives

ẋ1 =
−Y
y2V

(
KSF ẏu−KV ẏ2 + uy2ẏ −KSF yu̇

+Ky2u̇+KV yÿ − SF y
2u̇+ y3u̇+ V y2ÿ

)
(5.23)

Substituting (5.22) and (5.23) back into (5.19) gives the required
(and quite complicated) time domain input–output relation of the
model.

5.3 Realization Theory

The realization problem for a given input–output representation is to com-
pute and characterize the properties of state-space representations that cor-
respond to a specified linear or nonlinear system. In this sense, the realization
problem is the reverse of the problem described in Subsection 5.1.3.

5.3.1 Realization of LTI Systems

Firstly, the realization problem of an SISO system from a given transfer func-
tion H(s) is considered. The notations and the line followed in this subsection
are based on [57]. The form of linear state equations we want to obtain is

ẋ = Ax+Bu, x(0) = 0
y = Cx

(5.24)

where x ∈ R
n, A ∈ R

n×n, B ∈ R
n×1 and C ∈ R

1×n. Of course, the model
(5.24) must satisfy H(s) = C(SI−A)−1B. The unknowns in the problem are
the dimension of the state-space n and the matrices A, B and C. Of course,
we are interested in finding a state-space model with minimal state-space
dimension n. We know from Subsection 3.2.2 that state-space models are
not unique, therefore we cannot expect a unique solution of the realization
problem.

The term (sI −A)−1 can be expanded into a negative power series in the
following way:

(sI −A)−1 = Is−1 +As−2 +A2s−3 + . . .
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therefore

C(sI −A)−1B = CBs−1 + CABs−2 + CA2Bs−3 + . . .

where the coefficients hi = CAi−1B, i = 1, 2, . . . are the so-called Markov
parameters. From this, it’s clear that the realization problem for LTI systems
is to find a state-space representation of the transfer functions of the form

H(s) = h1s
−1 + h2s

−2 + h3s
−3 + . . .

To state the realization problem first in a more abstract way, let us define
three operators.

Let Z(s) be a negative power series of the form

Z(s) = k1s
−1 + k2s

−2 + k3s
−3 + . . . (5.25)

A shift operator S is defined as

SZ(s) = k2s
−1 + k3s

−2 + k4s
−3 + . . . (5.26)

i.e. S shifts the coefficients of a power series one position to the left, and the
left-most coefficient is dropped. The repeated (k-times) application of the
shift operator is denoted by Sk.

Using the shift operator and the transfer function H(s), we can specify a
linear space of negative power series over the real numbers as

U = span{H(s),SH(s),S2H(s), . . . } (5.27)

It can be seen that the shift operator is an operator on U , S : U 7→ U .
We define the initialization operator L : R 7→ U as

Lr = H(s)r (5.28)

The evaluation operator E : U 7→ R applied to a negative power series of
the form (5.25) is defined as

EZ(s) = k1 (5.29)

It is possible to show that the linear operators S, L and E form a so-called
abstract realization on the linear space U . This is often called the shift real-
ization and it is denoted by (S,L,E, U).

The composition of L, S and E gives the Markov parameters:

ES0L = EH(s) = h1

ESL = ESH(s) = h2

ES2L = ES2H(s) = h3

... (5.30)

The following theorem provides a necessary and sufficient condition for the
realizability of a linear time-invariant system in abstract terms.
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Theorem 5.3.1 (Realization of SISO LTI systems). A SISO LTI sys-
tem described by the transfer function H(s) is realizable in the form (5.24)
if and only if the vector space U is finite dimensional. Furthermore, if the
system is realizable, then (S,L,E,U) is a minimal linear realization.

Algorithm for Obtaining a Minimal Realization. The method for ob-
taining a minimal realization of the form (5.24) is the following. Suppose that
H(s) is linearly realizable and thus U has finite dimension n. Then it can be
shown that the abstract vectors

H(S),SH(s), . . . ,Sn−1H(s)

form a basis in U . Let us now identify these vectors with the standard basis
vectors ei ∈ R

n, i = 1, . . . , n

e1 = H(s), e2 = SH(s), . . . , en = Sn−1H(s) (5.31)

and write SnH(s) as a linear combination of the basis vectors:

SnH(s) =
n∑

i=1

riS
i−1H(s) (5.32)

Then the n× n matrix A represents the shift operator as follows:

A =




0 0 . . . 0 r1
1 0 . . . 0 r2
0 1 . . . 0 r3
...

...
...

...
...

0 0 . . . 1 rn




(5.33)

Since the initialization operator L maps from a one-dimensional vector space
to an n-dimensional space, it can be represented by an n × 1 vector. From
the definition of the operator it is clear that this vector is

B = e1 =




1
0
...
0


 (5.34)

The evaluation operator E maps from an n-dimensional space to a one-
dimensional space, therefore it can be represented by a 1 × n dimensional
vector. It can be seen from (5.30) that Eei = hi for i = 1, . . . , n− 1. Thus, E
can be given by

C =
[
h1 h2 . . . hn

]
(5.35)

In conclusion, we have generated a state-space representation in the form of
Equation (5.24) with the matrices (A,B,C) above.
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Realization using Hankel matrices. In Section 5.1.3 it was shown that
the Markov parameters of an LTI system model are realization-independent.
Another useful realization-independent structure composed of Markov pa-
rameters is the Hankel matrix of an LTI system.

Definition 5.3.1 (Hankel matrix, LTI case)
The Hankel matrix of an LTI system G is an infinite matrix of the form

HG =




h1 h2 h3 . . .
h2 h3 h4 . . .
h3 h4 h5 . . .
...

...
...


 (5.36)

Note that the Hankel matrix depends only on (A,B,C) in the form of the
coefficients of hi = CAi−1B.

Theorem 5.3.2 (Realization of SISO linear systems using Hankel
matrices). A linear system described by the transfer function H(s) is re-
alizable in the form (5.24) if and only if its Hankel matrix HG is of finite
rank. Furthermore, the rank of HG is the dimension of the minimal linear
realization of H(s).

Finally, we give another necessary and sufficient realizability condition that
corresponds to MIMO linear systems and which is the easiest to check in
practice. For this, consider the linear state-space model

ẋ = Ax+Bu
y = Cx, x(0) = 0

(5.37)

where x ∈ R
n, u ∈ R

r, y ∈ R
p and the matrices A, B and C are of appropriate

dimensions. The transfer function of (5.37) is the p× r matrix

H(s) = C(sI −A)−1B

Theorem 5.3.3 (Realization of MIMO linear systems). Consider a
linear system described by a p × r transfer function matrix H(s). Then the
system is realizable by a finite dimensional linear state equation of the form
(5.37) if and only if each element Hij(s) of H(s) is a strictly proper rational
function.

5.3.2 Realization Theory for Nonlinear Systems

The task of finding a state-space realization of a nonlinear system from its
input–output model is described by the following problem statement: given
a nonlinear input–output description of a system, determine a state-space
realization of the form (3.19):

ẋ(t) = f(x(t)) +
∑m

i=1 gi(x(t))ui(t)
y(t) = h(x(t))
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Definition 5.3.2 (Realization of a formal power series)
The set {g0, . . . , gm, h, x

0} with g0 = f is called a realization of a formal
power series c.

The Hankel matrix and Hankel Rank of Nonlinear Systems. The
Hankel matrix of a nonlinear system plays a central role in realization theory.
Its definition is a non-trivial extension of that of LTI systems as is described
in abstract terms below.

Definition 5.3.3 (Hankel matrix, nonlinear case)
Given a formal power series c as an input–output realization of a nonlin-
ear system. An infinite matrix Hc, in which each block of p-rows of index
(ir, . . . , i0) on the column of index (jk, . . . , j0) is exactly the coefficient

c(ir . . . i0 jk . . . j0)

of c, is called the Hankel matrix of the series c.

Definition 5.3.4 (Hankel rank)
The rank of the matrix Hc above is called the Hankel rank of the system.

Note that the Hankel rank is not necessarily finite because the Hankel matrix
is an infinite matrix.

Construction of the Hankel Matrix for Nonlinear Systems. Before
approaching the construction of Hankel matrices from a Fliess’s series expan-
sion, some useful notations are introduced.

In order to enumerate the elements of the nonlinear Hankel matrix in a
systematic way, we need to index its elements with the elements of I∗ as
follows:

1. An infinitely long column vector is indexed as:
index element
(0) a
(1) b
(00) c
(01) d
(10) e
(11) f
. . . . . .

a, b, c, d, e, f, ... ∈ R

2. An infinitely long block-column vector consisting of p-blocks, that is of
column vectors with p elements, is also indexed with the elements of I∗.
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index element
(0) a1

a2

. . .
ap

(1) b1
b2
. . .
bp

. . . . . .

a, b ∈ R
p

Now we can construct the Hankel matrix of a nonlinear system represented
by its Fliess’s series expansion (see Equation (5.2.1)) by indexing

• its columns with the elements of I∗, and
• its row-blocks of length p with the elements of I∗.

Then the construction rule applies to the following items:
row-block index: (ir . . . i0),
column index: (jk . . . j0),
matrix element : c(ir . . . i0jk . . . j0)

where c(ik . . . i0) = Lgi0
. . . Lgik

h(x0) and c(∅) = h(x0) are the coefficients of
the Fliess’s series expansion.

Let us consider a special case, a nonlinear system with one input and p
outputs. Then the first few columns of the Hankel matrix are as follows:

Columns ∅, (0), (1), (00)
∅ (0) (1) (00)

∅ h1(x0) Lfh1(x0) Lgh1(x0) L2
fh1(x0)

...
...

...
...

hp(x0) Lfhp(x0) Lghp(x0) L2
fhp(x0)

(0) Lfh1(x0) L2
fh1(x0) LgLfh1(x0) L3

fh1(x0)
...

...
...

...
Lfhp(x0) L2

fhp(x0) LgLfhp(x0) L3
fhp(x0)

(1) Lgh1(x0) LfLgh1(x0) L2
gh1(x0) L2

fLgh1(x0)
...

...
...

...
Lghp(x0) LfLghp(x0) L2

ghp(x0) L2
fLghp(x0)

(00) L2
fh1(x0) L3

fh1(x0) LgL2
fh1(x0) L4

fh1(x0)
...

...
...

...
L2

fhp(x0) L3
fhp(x0) LgL2

fhp(x0) L4
fhp(x0)

...
...

...
...

...
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Columns (01), (10), (11)
(01) (10) (11)

∅ LgLfh1(x0) LfLgh1(x0) L2
gh1(x0)

...
...

...
LgLfhp(x0) LfLghp(x0) L2

ghp(x0)
(0) . . . . . . . . .

...
...

...
. . . . . . . . .

(1) . . . . . . . . .
...

...
...

. . . . . . . . .
(00) . . . . . . . . .

...
...

...
. . . . . . . . .

...
...

...
...

5.3.3 Realization of Bilinear Systems

As we have already seen in Section 3.5.3, bilinear systems are special, easy-to-
handle types of nonlinear input-affine systems. This is also true in realization
theory: special strong results apply to bilinear systems which are the subject
of this subsection.

The following example shows the structure of a Hankel matrix of bilinear
systems.

Example 5.3.1 (Hankel matrix of a bilinear system)
Construction of the Hankel matrix for a simple SISO bilinear sys-
tem

Consider first a simple special SISO bilinear state-space model in
the form:

ẋ = Ax+Nxu, y = h(x) = Cx

and let us introduce the following notation: N0 = A, N1 = N .
Then the coefficients of the Fliess’s series expansion as an input–
output model of the system are in the following simple form:

c(∅) = Cx0

c(ik . . . i0) = CNik
. . . Ni0x0
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Finally, the Hankel matrix of the system is as follows:
∅ (0) (1) . . .

∅ Cx0 CAx0 CNx0 . . .
(0) CAx0 CA2x0 CANx0 . . .
(1) CNx0 CNAx0 CN2x0 . . .

...
...

...
...

...

The following theorem shows the importance of finite Hankel rank and bilin-
ear system representations at the same time.

Theorem 5.3.4 (Existence of bilinear realization). Let c be a formal
power series in m + 1 non-commutative indeterminates and coefficients in
R

p. There exists a bilinear realization of c if and only if the Hankel rank of c
is finite.

5.4 Hankel Matrix of a 2-input–2-output Bilinear Heat
Exchanger Cell model

As we have already seen in Section 4.4.4, the state-space model of a heat
exchanger cell derived from first engineering principles is bilinear. We use
this fact in this section to illustrate how to construct the Hankel matrix of a
bilinear process system from its state-space representation.

Consider the dynamic model of a simple heat exchanger:

dTco

dt
=
vc

Vc
(Tci − Tco) +

UA

cpcρcVc
(Tho − Tco) (5.38)

dTho

dt
=
vh

Vh
(Thi − Tho) +

UA

cphρhVh
(Tco − Tho) (5.39)

Let us introduce the following notations:

kc =
UA

cpcρcVc
, kh =

UA

cphρhVh
(5.40)

x1 = Tco, x2 = Tho, u1 = vc, u2 = vh (5.41)

x =

[
x1

x2

]
, u =

[
u1

u2

]
(5.42)

With the notations above, the model can be written in the standard form

ẋ = Ax+Bu+

2∑

i=1

Nixui (5.43)

where
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A =

[
−kc kc

kh −kh

]
(5.44)

B =

[
Tci

Vc
0

0 Thi

Vh

]
(5.45)

N1 =

[
−1
Vc

0

0 0

]
(5.46)

N2 =

[
0 0
0 −1

Vh

]
(5.47)

(5.48)

Furthermore, let us define the output of the system as

y =

[
y1
y2

]
= Cx =

[
1 0
0 1

] [
x1

x2

]
(5.49)

Let us denote the column vectors of B by b1 and b2, and the row vectors of
C by c1 and c2 respectively.

Based on the notation above, the scalar elements in the upper-left corner
of the Hankel matrix of the heat exchanger with the defined inputs and
outputs can be written as

∅ (0) (1) (2)
∅ c1x0 c1Ax0 c1(b1 +N1x0) c1(b2 +N2x0)

c2x0 c2Ax0 c2(b1 +N1x0) c2(b2 +N2x0)
(0) c1Ax0 c1A

2x0 c1A(b1 +N1x0) c1A(b2 +N2x0)
c2Ax0 c2A

2x0 c2A(b1 +N1x0) c2A(b2 +N2x0)
(1) c1(b1 +N1x0) c1N1Ax0 c1N1(b1 +N1x0) c1N1(b2 +N2x0)

c2(b1 +N1x0) c2N1Ax0 c2N1(b1 +N1x0) c2N1(b2 +N2x0)
(2) c1(b2 +N2x0) c1N2Ax0 c1N2(b1 +N1x0) c1N2(b2 +N2x0)

c2(b2 +N2x0) c2N2Ax0 c2N2(b1 +N1x0) c2N2(b2 +N2x0)

5.5 The Zero Dynamics

The zero dynamics is an important concept that plays a role exactly similar
to the zeros of the transfer function in a linear system. The notion of zero
dynamics was introduced by Byrnes and Isidori [17]. Its application to the
solution of critical problems of asymptotic stabilization was described in [18].

The abstract definition of zero dynamics for input-affine nonlinear systems
is as follows.

Definition 5.5.1 (Zero dynamics)
Consider the system (3.19) with constraints y = 0, that is

ẋ = f(x) +
∑m

i=1 gi(x)ui

0 = h(x)
(5.50)
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The constrained system (5.50) is called the zero-output constrained dynamics,
or briefly, the zero dynamics.

5.5.1 The Zero Dynamics of SISO Nonlinear Systems

Before we turn to analyzing the zero dynamics of SISO nonlinear systems,
we introduce the notion of relative degree below.

Definition 5.5.2 (Relative degree)
The single-input–single-output nonlinear system

ẋ = f(x) + g(x)u (5.51)

y = h(x) (5.52)

is said to have relative degree r at a point x0 if

1. LgL
k
fh(x) = 0 for all x in a neighborhood of x0 and all k < r − 1.

2. LgL
r−1
f h(x0) 6= 0.

The last condition is called a non-triviality condition. Note that there may
be points where a relative degree cannot be defined.

Note that the notion of relative degree will be extensively used later in Sec-
tion 10.1 for designing nonlinear controllers using state feedback and input–
output linearization.

After a suitable coordinates transformation (see, e.g. [37]) z = Φ(x) where
zi = φi(x) = Li−1

f h(x) for 1 ≤ i ≤ r and Lgφi(x) = 0 for r + 1 ≤ j ≤ n,
the state-space model (3.19) with m = 1, p = 1 and relative degree r can be
rewritten as

ż1 = z2

ż2 = z3

. . .

żr−1 = zr

żr = b(ξ, η) + a(ξ, η)u

η̇ = q(ξ, η) (5.53)

where ξ = [z1 . . . zr]T , η = [zr+1 . . . zn]T , a(ξ, η) = LgL
r−1
f h(Φ−1(ξ, η))

and b(ξ, η) = Lr
fh(Φ−1(ξ, η)).

Problem of Zeroing the Output. This problem is to find, if it exists,
pairs consisting of an initial state x∗ and input function u defined for all t
in a neighborhood of t = 0, such that the corresponding output y(t) of the
system is identically zero for all t in a neighborhood of t = 0. For any fixed
initial state x∗, the input function u can be determined as follows. Let us set
the output to be identically zero, then the system’s behavior is governed by
the differential equation
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η̇(t) = q(0, η(t)) (5.54)

The dynamics (5.54) describes the internal behavior of the system when the
output is forced to be zero. The initial state of the system must be set to a
value such that ξ(0) = 0, while η(0) = η0 can be chosen arbitrarily. Further-
more, the input must be set as

u(t) = − b(0, η(t))

a(0, η(t))
(5.55)

where η(t) denotes the solution of (5.54) with initial condition η(0) = η0.
The investigation of the zero dynamics can be extremely useful when

selecting the outputs to be controlled, since the stabilization of an output
with globally asymptotically stable zero dynamics implies the global asymptotic
stability of the closed-loop system.

Motivated by the notions of linear systems’ theory, nonlinear systems
with globally asymptotically stable zero dynamics are called minimum-phase
systems.

5.5.2 Example: The Zero Dynamics of Continuous Fermentation
Processes

The procedure of obtaining zero dynamics of a system will be illustrated
in the example of a bio-reactor here. In order to analyze zero dynamics as
is described in Section 5.5 before, we need to extend the original nonlinear
two-dimensional state equation in Equations (4.78)–(4.79) with a nonlinear
output equation

y = h(x) (5.56)

where y is the output variable and h is a given nonlinear function. Then the
zero dynamics of an input-affine nonlinear system containing two state vari-
ables can be analyzed using a suitable nonlinear coordinates transformation
z = Φ(x):

[
z1
z2

]
=

[
y

λ(x)

]
(5.57)

where λ(x) is a solution of the following partial differential equation (PDE):

Lgλ(x) = 0 (5.58)

where Lgλ(x) = ∂λ
∂xg(x), i.e.

∂λ

∂x1
g1 +

∂λ

∂x2
g2 = 0 (5.59)
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In the case of the simple fermenter model in Equations (4.78)–(4.79), we can
analytically solve the above equation to obtain

λ(x) = F

(
V (−Sf + x2 + S0)

x1 +X0

)
(5.60)

where F is an arbitrary continuously differentiable function. Then we can use
the simplest possible coordinates transformation z = Φ(x) in the following
form:

[
z1
z2

]
=

[
y

V (−Sf+x2+S0)
x1+X0

]
(5.61)

Selecting the Substrate Concentration as Output. If a linear function
of the substrate concentration is chosen as output, i.e.

z1 = y = ksx2 (5.62)

where ks is an arbitrary positive constant, then the inverse transformation
x = Φ−1(z) is given by

[
x1

x2

]
=

[
−z2X0ks−Sf V ks+V z1+S0V ks

z2ks
z1

ks

]
(5.63)

Thus the zero dynamics in the transformed coordinates can be computed as

ż2 = λ̇ = Lfλ(x) =
∂λ

∂x
ẋ (5.64)

which gives

ż2 = Lfλ(x) + Lgλ(x)u = Lfλ(x) = Lfλ(Φ−1(z)) (5.65)

since by construction Lgλ(x) = 0 (see Equation 5.59). The above equation is
constrained by y = ksx2 = z1 = 0. Then the zero dynamics of the system is
given by the differential equation

ż2 = Lfλ(Φ−1(0, z2)) = − (z2Y + V )S0µmax

Y (K2 + S2
0 + S0 +K1)

(5.66)

which is linear and globally stable. The equilibrium state of the zero dynamics
is at z2 = −V

Y , which together with z1 = 0 corresponds to the desired equi-
librium state x1 = 0, x2 = 0 in the original coordinates. The above analysis
shows that if we manage to stabilize the substrate concentration either by a
full state feedback or by an output feedback (partial state feedback) or even
by a dynamic controller (which does not belong to the scope of this chapter)
then the overall system will be stable.
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Selecting the Biomass Concentration as Output. The output in this
case is a linear function of the biomass concentration:

z1 = y = kxx1 (5.67)

The zero dynamics of the system is given by:

ż2 = − V µmax(z2
2Y X0 + z2(Y V Sf + V X0) + SfV

2))

(K2X2
0z

2
2 + z2(2K2X0SfV + V X0) + V 2(K2S2

f + Sf +K1))Y

(5.68)

which describes a nonlinear dynamics and is only locally stable around the
desired equilibrium state. The stability region can be determined by using
the parameters of the system.

The right-hand side of (5.68) is visible in Figure 5.2 using the parameter
values of Table 4.1. It can be seen that the zero dynamics has two equilibrium
points: the equilibrium point corresponding to the optimal operating point
(z2 = −V/Y = −8) is stable and the other one is unstable.

−8.15 −8.1 −8.05 −8 −7.95 −7.9 −7.85 −7.8
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

z
2

d/
dt

 z
2

Figure 5.2. The zero dynamics in the transformed coordinates: continuous bio-
reactor, input: inlet feed flow rate, output: biomass concentration

The results of the analysis of the zero dynamics show that the best choice
of output to be controlled is the substrate concentration and involving the
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biomass concentration into the output generally brings singular points into
the zero dynamics and makes the stability region narrower.

5.6 Further Reading

An excellent introduction to the theory of linear systems including realization
theory can be found in [20]. The Hankel matrix approach to linear systems
is emphasized in [56]. The realization problem of time-varying linear systems
is examined in, e.g. [62].

In [25], the Fliess series expansions are discussed in detail. The basic
reference for the Volterra series expansion of nonlinear systems is [45]. The
existence and the relationship between the minimal realizations of nonlinear
systems are investigated in [71]. The properties and input–output descrip-
tion of bilinear systems are studied in [16]. The theory of Hankel matrices
for nonlinear systems is worked out in [24]. The problem of obtaining the
time-domain input–output description of a nonlinear state- space model by
eliminating the state variables is discussed in [79].

5.7 Summary

The input–output representation forms of lumped parameter systems in both
the LTI and the nonlinear input-affine cases are described. The nonlinear
input–output models are introduced as generalizations of the LTI forms in the
form of formal power series and higher-order nonlinear differential equations.

The basic notions and main results of realization theory are also presented
in both the LTI and the nonlinear input-affine cases., where one has to find a
state-space model for a given input–output representation. Special emphasis
has been put on certain system invariants: to Markov parameters and to
Hankel matrices.

The notion of zero dynamics is also introduced in this chapter and it is
illustrated in the example of a continuous fermentation process.

5.8 Questions and Application Exercises

Exercise 5.8.1. A continuous time LTI system is given with the following
state-space representation:

ẋ =

[
−1 2
1 0

]
x+

[
1
0

]
u

y =
[

1 2
]
x

with the initial condition x(0) =

[
0
0

]
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1. Give the transfer function of the system. Is the transfer function unique?
2. Is the state-space representation unique?
3. Compute the impulse-response function of the system.
4. Compute the response of the system (y) for the unit step input.

Exercise 5.8.2. A system is described by the following input–output model:

ẏ2 = u3

ẏ3 + y1 = u2

ÿ3 + 2y1 − y3 = 8u2 − 2u1 + u3 + 4u4

2ẏ1 + ẏ3 + y2 = u4 − u1

1. Give a possible state-space representation of the system.
2. Is the system linear and time-invariant? Why?
3. How many inputs, outputs, states has the system?
4. Is this state-space representation unique? Why?

Exercise 5.8.3. Show that the nonlinear state-space model

ẋ1 = x3
1x2 + u

ẋ2 = −x1 + ln(x2)
y = x2, x2 > 0

is a realization of the input–output model

ẏ − yÿ = (ln(y) − ẏ)3y2 + uy, y > 0

Exercise 5.8.4. Examine the stability of the zero dynamics of the following
system:

ẋ1 = 2x1 − x2
2

ẋ2 = −x3
2 − x1

y = x1

Is any coordinates transformation needed for this?

Exercise 5.8.5. Calculate the terms in the Fliess series of the system in
Exercise 5.8.4 for x(0) = [0 0]T up to k = 2.

Exercise 5.8.6. Determine the upper 3×3 part of the Hankel matrix of the
system in Exercise 5.8.4 for x(0) = [0 0]T .
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6. Controllability and Observability

Controllability and observability play a fundamental role in designing con-
trollers for both linear and nonlinear systems. This chapter is devoted to the
basic as well as to the advanced material on controllability and observability
presented in the following sections:

• Controllability and observability of LTI systems
This section summarizes the basic notions of controllability and observ-
ability in the example of the most simple linear time-invariant system.

• Local controllability and observability of nonlinear systems
The controllability and observability notions are extended here to the case
of the input-affine nonlinear system.

• Controllability and observability of nonlinear process systems
The local controllability and observability analysis is specialized in this
section to the case of the nonlinear process system with no source.

• Process system examples and case studies
Complete case studies illustrate the use of linear and nonlinear controllabil-
ity and observability analysis methods on different heat exchanger models
and on continuous and fed-batch fermenter models.

6.1 Controllability and Observability of LTI Systems

This section is devoted to the basic reference case, to the controllability and
observability analysis of LTI systems, which will be extended to the nonlinear
case later in this chapter.

Given an LTI system with finite dimensional representations in the form

ẋ = Ax+Bu
y = Cx

(6.1)

It is important to observe that the above general form of the state-space rep-
resentation used for the controllability and observability analysis is a special
case of the one in Chapter 3 in Equation (3.1) with D = 0. The reason for
this simplification is that one always can transform the more general form in
Equation (3.1) into Equation (6.1) by appropriate re-scaling (centering) of
the input and output variables.
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98 6. Controllability and Observability

Thus a state-space representation will be characterized by the triplet
(A,B,C) in this section. The following dynamical properties of state-space
representations of LTI systems are described here:

1. Observability.
2. Controllability.

6.1.1 State Observability

In order to understand the problem statement of state observability, we need
to recall from Chapter 2 that only the input and output variables of a system
are directly observable (measurable) and not its state variables.

Definition 6.1.1 (State observability)
Given the inputs and the outputs of a system over a finite time interval. If
it is possible to determine the value of the states based on these values and a
state-space system model in such a way that we use functions of inputs and
outputs and their derivatives, then the system is called (state) observable.

In the case of LTI systems, the above general definition specializes to the one
below.

Definition 6.1.2 (LTI state observability)
Given a state-space model by its realization matrices (A,B,C) and the mea-
sured input and output signals

{ u(t), y(t) | t0 ≤ t ≤ tF }

The system is state observable if we can determine the state signal x at a
given time t0, i.e. x(t0).

The following theorem gives necessary and sufficient condition for a state-
space representation of an LTI system to be state observable:

Theorem 6.1.1 (LTI state observability). Given a state-space model of
a LTI system by its realization matrices (A,B,C). This state-space model is
state observable if and only if the observability matrix On is of full rank

On =




C
CA
.
.
.

CAn−1




where dim x = n, i.e. rank On = n.
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It is important to emphasize that the observability matrix depends on the
realization, and it may change if one applies state transformation to a state-
space representation (A,B,C). This holds because the observability matrix
On depends only on the pair (A,C) in a way that is not invariant under state
transformation. At the same time, the rank of the observability matrix On

remains unchanged.

6.1.2 State Controllability

As its name suggests, state controllability is a necessary dynamic property of
a system to be controllable in the entire state-space.

Definition 6.1.3 (State controllability)
A state-space model of a system is called state controllable if it is possible to
drive any state x(t1) to any other state x(t2) 6= x(t1) with an appropriate
input in finite t = t2 − t1 time.

In the LTI case, the above definition specializes to the one below.

Definition 6.1.4 (LTI state controllability)
A state-space model of an LTI system given by its realization matrices
(A,B,C) is called state controllable if it is possible to drive any state x(t1)
to any other state x(t2) 6= x(t1) with an appropriate input in finite t = t2− t1
time.

The following theorem establishes necessary and sufficient condition of an
LTI system to be state controllable in terms of its controllability matrix.

Theorem 6.1.2. A state-space model of an LTI system with realization ma-
trices (A,B,C) is state controllable if and only if the controllability matrix

Cn =
[
B AB A2B . . An−1B

]

is of full rank, that is rank Cn = n.

Again, it is important to emphasize that the controllability matrix depends
on the realization, and it may change if one applies state transformation to
a state-space representation (A,B,C). This holds because the controllability
matrix Cn depends only on the pair (A,B) in a way that is not invariant
under state transformation. However, the rank of the controllability matrix
Cn remains unchanged.

The following simple example illustrates the notions and tools introduced
above:
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Example 6.1.1 (LTI controllability and observability)
Observability and controllability of a simple LTI state-space model

Investigate the controllability and observability of the following
continuous time LTI MIMO system:

ẋ =

[
−5 −2
2 1

]
x+

[
3 2 −4
1 0 6

]
u

y =

[
4 1
−3 0

]
x

The MIMO system has the following controllability matrix:

C =
[
B AB

]
=

[
3 2 −4 −17 −10 8
1 0 6 7 4 −2

]
,

with rank C = 2 = n, therefore the system is controllable.
The observability matrix

O =

[
C
CA

]
=




4 1
−3 0
−18 −7
15 6




has rank O = 2 = n, so the system is observable.

6.1.3 Conditions for Joint Controllability and Observability

We recall that both the controllability and observability matrix changes if
we apply state transformation to a given realization. This section will show
that joint controllability and observability is a system property, that is, it is
realization-independent.

Equivalent necessary and sufficient conditions will be given for an LTI
system to be jointly controllable and observable. This will lead to the notion
of minimal realization that will play an important role for nonlinear systems
as well.

Joint Controllability and Observability is a System Property. The
main result in this subsection uses the notion and properties of Hankel ma-
trices introduced in Section 5.3.1.

The following lemma states that joint controllability and observability re-
mains unchanged if a state transformation is applied, therefore it is a
realization-independent property for LTI systems:

Lemma 6.1.1. If we have an n-th order realization (A,B,C) of an LTI sys-

tem with transfer function H(s) = b(s)
a(s) which is controllable and observable,

then all other n-th order realizations are controllable and observable.
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The proof uses the fact that one can construct a Hankel matrix from the
observability and controllability matrices

O(C,A) =




C
CA
.
.
.

CAn−1



, C(A,B) =

[
B AB A2B . . . An−1B

]

where O(C,A) is a column block-matrix and C(A,B) is a row block-matrix.
With the matrices above

H[1, n− 1] = O(C,A)C(A,B) (6.2)

The Irreducibility of the Transfer Function. An equivalent (that is
necessary and sufficient) condition for an LTI system to be jointly controllable
and observable is to have its transfer function to be irreducible.

Definition 6.1.5 (Irreducible transfer function)
The transfer function

H(s) =
b(s)

a(s)

is called irreducible if the polynomials a(s) and b(s) are relative primes, that
is, they have no common factors (no common roots).

Theorem 6.1.3. H(s) = b(s)
a(s) is irreducible if and only if all n-th order

realizations are jointly controllable and observable.

Minimal Realizations. The second equivalent condition to joint control-
lability and observability uses the notion of minimal realizations.

Definition 6.1.6 (Minimal realization)
A realization (A,B,C) of an LTI system of dimension dim x = n is minimal
if one cannot find another realization of dimension less than n.

With this notion we can state an equivalence between minimality of a real-
ization and irreducibility of the transfer function of the system.

Theorem 6.1.4. H(s) = b(s)
a(s) is irreducible if and only if any of its realiza-

tions (A,B,C) are minimal where

H(s) = C(sI −A)−1B

Using Theorem 6.1.3, we can now state the equivalence between minimality
of a realization and joint controllability and observability of a system.

Theorem 6.1.5. A realization (A,B,C) is minimal if and only if the system
is jointly controllable and observable.
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It is important to note that minimal realizations are not unique, that is, we
can find infinitely many minimal realizations which are related.

Lemma 6.1.2. Any two minimal realizations can be connected by a unique
similarity transformation (which is invertible).

Let the two minimal realizations be (A1, B1, C1) and (A2, B2, C2). Minimal
realizations are jointly controllable and observable, therefore the matrix

T = O−1(C1, A1)O(C2, A2) = C(A1, B1)C−1(A2, B2) (6.3)

exists and it is invertible.
Remember that any invertible similarity transformation T will produce

another realization (A,B,C) from the given realization (A,B,C) of the same
system with the same transfer function, thus T serves as the transformation
matrix between the two realizations.

The following simple example illustrates the investigation of joint control-
lability and observability of LTI systems:

Example 6.1.2 (LTI joint controllability and observability)
Joint controllability and observability of a simple LTI system

Let the simple LTI system be described by the following input–
output model:

2y′′′ + 8y′′ + 2y′ − 12y = 4u+ 2u′

Investigate joint controllability and observability of this system
and give a state-space realization.

Applying Laplace transformation, we get

(2s3 + 8s2 + 2s− 12)Y (s) = (4 + 2s)U(s)

• From this, the transfer function can be computed:

H(s) =
Y (s)

U(s)
=

2s+ 4

2s3 + 8s2 + 2s− 12
=

s+ 2

s3 + 4s2 + s− 6

• The root of the enumerator (s1 = −2) is also a root of the de-
nominator, so the transfer function is not irreducible. Therefore
the system is not jointly controllable and observable.
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• By using the controller form realization (see in Subsection
3.2.3), we can easily determine a state-space representation:

ẋ =



−4 −1 6
1 0 0
0 1 0


x+




1
0
0


u

y =
[

0 1 2
]
x

6.1.4 General Decomposition Theorem

If we have a representation (A,B,C), then we can always find an invert-
ible similarity transformation which moves the system to another realization
(A,B,C) with the partitioned state vector

x =
[
xco xco xco xco

]T

and partitioned matrices

A =




Aco 0 A13 0
A21 Aco A23 A24

0 0 Aco 0
0 0 A43 Aco


 B =




Bco

Bco

0
0




C =
[
Cco 0 Cco 0

]

(6.4)

The partitioning above defines subsystems of the original system which
are as follows:

Controllable and Observable Subsystem. The realization of the jointly
controllable and observable subsystem is given by the matrices Aco,Bco, Cco.
The realization (Aco, Bco, Cco) is minimal, i.e. n ≤ n and

C(sI −A)−1B = C(sI −A)−1B (6.5)

Controllable Subsystem. Its realization is

([
Aco 0
A21 Aco

]
,

[
Bco

Bco

]
,
[
Cco 0

])
(6.6)

Observable Subsystem. Its realization is

([
Aco A13

0 Aco

]
,

[
Bco

0

]
,
[
Cco Cco

])
(6.7)

TLFeBook



104 6. Controllability and Observability

Uncontrollable and Unobservable Subsystem. Its realization is

([Aco], [0], [0]) (6.8)

6.2 Local Controllability and Observability of Nonlinear
Systems

This section is devoted to the extension of controllability and observability
to the class of input-affine nonlinear systems given by a state-space represen-
tation in the form

ẋ = f(x) + g(x)u = f(x) +

m∑

i=1

gi(x)ui (6.9)

yj = hj(x), j = 1, . . . , p (6.10)

6.2.1 The Controllability Distribution, Controllable Nonlinear
Systems

In the case of nonlinear systems, the set of states that are reachable from a
given initial state are characterized using distributions (see Section A.4.1 in
the Appendix).

The first results presented here are generalizations of the General Decom-
position Theorem above. Their complete derivation can be found in [37].

Lemma 6.2.1. Let ∆ be a nonsingular involutive distribution of dimension
d and suppose that ∆ is invariant under the vector field f in Equation (6.9).
Then at each point x0 there exist a neighborhood U 0 of x0 and a coordi-
nates transformation z = Φ(x) defined on U 0, in which the vector field f is
represented by a vector of the form

f̄(z) =




f̄1(z1, . . . , zd, zd+1, . . . , zn)
. . .

f̄d(z1, . . . , zd, zd+1, . . . , zn)
f̄d+1(zd+1, . . . , zn)

. . .
f̄n(zd+1, . . . , zn)




(6.11)

It is not difficult to prove that the last n− d coordinate functions of the
local coordinates transformation z = Φ(x) in the neighborhood of x0 can be
calculated from the following equality:

span{dΦd+1, . . . , dΦn} = ∆⊥ (6.12)

while the first d coordinate functions should be chosen so that Φ is locally
invertible around x0 (i.e. the Jacobian of Φ evaluated at x0 should be non-
singular).

Now we can use the above Lemma to state the main result.
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Proposition 6.2.1. Let ∆ be a nonsingular involutive distribution of dimen-
sion d and assume that ∆ is invariant under the vector fields f, g1, . . . , gm

in Equation (6.9). Moreover, suppose that the distribution span{g1, . . . , gm}
is contained in ∆. Then, for each point x0 it is possible to find a neighbor-
hood U0 of x0 and a local coordinate transformation z = Φ(x) defined on U 0

such that, in the new coordinates, the system (6.9)–(6.10) is represented by
equations of the form

ζ̇1 = f1(ζ1, ζ2) +

m∑

i=1

g1i(ζ1, ζ2)ui (6.13)

ζ̇2 = f2(ζ2) (6.14)

yi = hi(ζ1, ζ2) (6.15)

where ζ1 = (z1, . . . , zd) and ζ2 = (zd+1, . . . , zn).

The above proposition (which presents a coordinate-dependent nonlinear ana-
log of the controllability part of the general decomposition theorem for LTI
systems) is very useful for understanding the input-state behavior of nonlin-
ear systems.

Supposing that the assumptions of Proposition 6.2.1 are satisfied, choose
a point x0 and set x(0) = x0. For small values of t, the state remains in
U0 and we can use Equations (6.13)–(6.15) to interpret the behavior of the
system. From these, we can see that the ζ2 coordinates of x(t) are not affected
by the input. If we denote by x0(T ) the point of U0 reached at time t = T
then it’s clear that the set of points that can be reached at time T , starting
from x0, is a set of points whose ζ2 coordinates are necessarily equal to the
ζ2 coordinates of x0(T ). Roughly speaking, if we can find an appropriate
∆ distribution and the local coordinates transformation z = Φ(x) then we
can clearly identify the part of the system that behaves independently of the
input in a neighborhood of x0.

It is also important to note that if the dimension of ∆ is equal to n then
the dimension of the vector ζ2 is 0, which means that the input affects all
the state variables in a neighborhood of x0 (the system is reachable in a
neighborhood of x0).

On the basis of Proposition 6.2.1 and the above explanation, the first
step towards the analysis of local reachability of nonlinear systems is to find
a distribution ∆c that characterizes the controllability (reachability) of an
input-affine nonlinear system.

Definition 6.2.1 (Controllability distribution)
A distribution ∆c is called the controllability distribution of an input-affine
nonlinear system if it possesses the following properties. It

1. is involutive, i.e.

∀(τ1, τ2 ∈ ∆c) => [τ1, τ2] ∈ ∆c
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2. is invariant under the vector fields (f = g0, (gi, i = 1, . . . ,m)), i.e.

∀(τ ∈ ∆c) => [gi, τ ] ∈ ∆c

3. contains the distribution span{g1, . . . , gm}

∆0 = span{g1, . . . , gm} ⊆ ∆c

4. is “minimal” (If D is a family of distributions on U , the smallest or
minimal element is defined as the member of D (if it exists) which is
contained in every other element of D) with the above properties.

Lemma 6.2.2. Let ∆ be a given smooth distribution and τ1, . . . , τq a given
set of vector fields. The family of all distributions which are invariant under
τ1, . . . , τq and contain ∆ has a minimal element, which is a smooth distribu-
tion.

One can use the nonlinear analogue of the A-invariant subspace algorithm to
construct the controllability distribution ∆c.

Let us introduce the following notation. The smallest distribution that
contains ∆ and is invariant under the vector fields g0, . . . , gm will be denoted
by 〈g0, . . . , gm|∆〉.

Isidori [37] proposes an algorithm for constructing the controllability dis-
tribution as follows:

Algorithm for Constructing the Controllability Distribution.

1. Starting point

∆0 = span{g1, . . . , gm} (6.16)

2. Development of the controllability distribution

∆k = ∆k−1 +

m∑

i=0

[gi,∆k−1] (6.17)

Note that one term in the last sum [gi,∆k−1] is computed by using the
functions (φ1, . . . , φ`) spanning the distribution ∆k−1:

[gi,∆k−1] = span{[gi, φ1], . . . , [gi, φ`]}

It is proved that ∆k has the property

∆k ⊂ 〈g0, . . . , gm|∆0〉

3. Stopping condition
If ∃k∗ such that ∆k∗ = ∆k∗+1, then

∆c = ∆k∗ = 〈g0, . . . , gm|∆0〉
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Properties of the Algorithm. The algorithm above exhibits some inter-
esting properties. It starts with the distribution spanned by the input func-
tions gi(x) of the original state equation. Thereafter it is necessary to compute
the Lie-brackets (i.e. [f(x), gi(x)]) of the functions f(x) and gi(x) respec-
tively. Then we expand the distribution obtained in the previous step by the
distribution spanned by the Lie-brackets, i.e. ([f(x), gi(x)], i = 1, . . . ,mk).

Simple Examples. We start with the example of computing the controlla-
bility distribution of LTI systems, which highlights the connection between
the A-invariant subspace algorithm and the algorithm for constructing the
nonlinear controllability distribution.

Example 6.2.1 (LTI controllability distribution)
Controllability distribution of LTI systems

The above concepts of constructing the controllability distribution
are complete analogues of the linear system concepts (infimal A-
invariant subspaces). To see this, consider the linear system:

ẋ = Ax+Bu, u ∈ R
m, x ∈ R

n (6.18)

y = Cx (6.19)

Let us construct the smallest A-invariant subspace over Im B.
Let

∆0 = Im B = span{b1, . . . , bm}
where bi is the i-th column of matrix B and

f(x) = g0(x) = Ax

at each x ∈ R
n. Any vector field of ∆0 can be expressed as

θ(x) =

m∑

i=1

ci(x)bi

Then the above algorithm for constructing the controllability dis-
tribution works as follows:

∆0 = span{b1, . . . , bm}

Using the algorithm for ∆k:

∆1 = ∆0 +

m∑

i=0

[gi,∆0] = span {b1, . . . , bm, [f, b1], . . . , [f, bm]}
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since
[gi, gj ] = [bi, bj ] = Lbi

bj − Lbj
bi = 0

Therefore with

[f, bi](x) = [Ax, bi] =
∂bi
∂xT

Ax− ∂(Ax)

∂xT
bi = −Abi, i = 1, . . . ,m

we obtain that

∆1 = Im
[
B AB

]

Similarly:

∆k = Im
[
B AB . . . AkB

]

The following simple example illustrates the computation of the controllabil-
ity distribution in a two-dimensional case.

Example 6.2.2 (Controllability distribution)
Controllability distribution of a simple two-dimensional system

Given a simple input-affine nonlinear system model in the form:

ẋ1 = −x1e
− 1

x1 + 3ex2 − x1u

ẋ2 = 5x1e
− 1

x1 − x2u (6.20)

y = −x2

First we extract the functions f and g from the system model
above:

f(x1, x2) =

(
−x1e

− 1
x1 + 3ex2

5x1e
− 1

x1

)
, g(x1, x2) =

(
−x1

−x2

)

There are only two steps needed for computing the controllability
distributions as follows:

∆0 = span{ g }, ∆1 = span{ g, [f, g] }
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where [f, g] is the Lie-product of f and g:

[f, g](x) =
∂g

∂x
f(x) − ∂f

∂x
g(x)

=

[
−1 0
0 −1

](
−x1e

− 1
x1 + 3ex2

5x1e
− 1

x1

)
−
[
−(x1+1

x1
)e−

1
x1 3ex2

5(x1+1
x1

)e−
1

x1 0

](
−x1

−x2

)

=

(
−e− 1

x1 + 3(x2 − 1)ex2

5x1e
− 1

x1

)

Thus the controllability distribution is

∆(x) = ∆1(x) = span

{(
−x1

−x2

)
,

(
−e− 1

x1 + 3(x2 − 1)ex2

5x1e
− 1

x1

)}

Obtaining the Transformed System. The locally transformed (decom-
posed) system (6.13)–(6.15) can be calculated by performing the so-called
total integration of the controllability distribution. The total integration basi-
cally means the solution of the set of quasi-linear partial differential equations
(see (6.12)).

dλj

dx

(
f1(x) . . . fd(x)

)
= 0 (6.21)

for obtaining the functions λj , j = 1, . . . , n − d, where the distribution to
be integrated is spanned by the vector fields f1, . . . , fd and fi : R

n 7→ R
n for

i = 1, . . . , n, d < n and the n− d λ functions are linearly independent.
According to the famous Frobenius theorem (see e.g. [37], Chapter 1), this

problem is solvable if and only if the nonsingular distribution to be integrated
is involutive. Note that the controllability distribution is always involutive by
construction.

After solving the n − d partial differential equations we can define the
local coordinates transformation Φ by using the solution λj , j = 1, . . . , n− d
as follows. Set the last n− d coordinate functions of Φ as

φd+1(x) = λ1(x), . . . , φn(x) = λn−d(x) (6.22)

Then, choose the first d coordinate functions from the coordinate functions
of the identical mapping

x1(x) = x1, x2(x) = x2, . . . , xn(x) = xn (6.23)

such that the Jacobian of Φ is nonsingular (i.e. it is at least locally invertible)
in the region of the state-space which is of interest.

An example of calculating the coordinate transformation Φ and totally
integrating the controllability distribution of a nonlinear process system can
be found later in Section 6.6.
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6.2.2 The Observability Co-distribution, Observable Nonlinear
Systems

Roughly speaking, the problem statement of observability in the nonlinear
case is the following. Under what conditions can we distinguish the initial
states of an input-affine nonlinear system described by Equations (6.9)–(6.10)
by observing its outputs? We will examine this property locally, similarly
to local controllability. For this, we need the definition of indistinguishable
states and observability. The notations and results presented in this section
are based on [21] and [37].

Let us denote the output of the system model (6.9)–(6.10) for input u and
initial state x(0) = x0 by y(t, 0, x0, u).

Definition 6.2.2 (Indistinguishable states, observable system)
Two states x1, x2 ∈ X are called indistinguishable (denoted by x1Ix2) for
(6.9)–(6.10) if for every admissible input function u the output functions
t 7→ y(t, 0, x1, u) and t 7→ y(t, 0, x2, u), t ≥ 0 are identical.

The system is called observable if x1Ix2 implies x1 = x2.

The local versions of the above properties are the following:

Definition 6.2.3 (V-indistinguishable states, local observability)
Let V ⊂ X be an open set and x1, x2 ∈ V . The states x1 and x2 are said to

be V-indistinguishable (denoted by x1I
V x2), if for every admissible constant

control u with the solutions x(t, 0, x1, u) and x(t, 0, x2, u) remaining in V for
t ≤ T , the output functions y(t, 0, x1, u) and y(t, 0, x2, u) are the same for
t ≤ T .

The system (3.19) is called locally observable at x0 if there exists a neigh-
borhood W of x0 such that for every neighborhood V ∈ W of x0 the relation
x0I

V x1 implies x1 = x0. If the system is locally observable at each x0 then it
is called locally observable.

Definition 6.2.4 (Observation space)
The observation space O of the system (3.19) is the linear space of functions
on X containing h1, . . . , hp and all repeated Lie-derivatives

Lτ1
Lτ2

. . . Lτk
hj , j = 1, . . . , p, k = 1, 2, . . . (6.24)

where τi ∈ {g0, g1, . . . , gm}, i = 1, . . . , k.

We remark that the observation space has the interpretation that it contains
the output functions and all of their derivatives along the system trajectories.

The following theorem gives a sufficient condition for local observability.

Theorem 6.2.1. Consider the system (3.19) with dimX = n and assume
that dim dO(x0) = n where

dO(x) = span{dH(x) | H ∈ O}, x ∈ X

Then the system is locally observable at x0.
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Based on this, it’s useful to define the so-called observability co-distribution.

Definition 6.2.5 (Observability co-distribution)
The observability co-distribution dO of an input-affine nonlinear system with
observation space O is defined as follows:

dO(x) = span{dH(x) | H ∈ O}, x ∈ X (6.25)

The rank of the observability co-distribution can be determined using the
dual version of the algorithm that was used for generating the controllability
distribution.

Let us denote the smallest co-distribution which contains

Ω = span{dh1, . . . , dhp}

and is invariant under g0, . . . , gm by 〈g0, . . . , gm|Ω〉.

Algorithm for Constructing the Observability Co-distribution.

1. Starting point
Ω0 = span{dh1, . . . , dhp}

2. Developing the observability co-distribution

Ωk = Ωk−1 +

m∑

i=0

Lgi
Ωk−1

3. Stopping criterion
If there exists an integer k∗ such that Ωk∗ = Ωk∗+1, then

Ωo = Ωk∗ = 〈g0, . . . , gm|Ω0〉

The dimension of the nonsingular co-distribution Ωk∗ at x0 is equal to the
dimension of the observability co-distribution at x0.

If the dimension of the observability co-distribution is strictly less than
n, then we can find a local coordinates transformation which shows the un-
observable nonlinear combinations of the state variables, as is stated by the
following proposition:

Proposition 6.2.2. Let ∆ be a nonsingular involutive distribution of dimen-
sion d and assume that ∆ is invariant under the vector fields f, g1, . . . , gm.
Moreover, suppose that the co-distribution span{dh1, . . . , dhp} is contained in
the co-distribution ∆⊥. Then, for each point x0 it is possible to find a neigh-
borhood U0 of x0 and a local coordinates transformation z = Φ(x) defined on
U0 such that the system (6.9)–(6.10) is represented as
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ζ̇1 = f1(ζ1, ζ2) +
m∑

i=1

g1i(ζ1, ζ2)ui (6.26)

ζ̇2 = f2(ζ2) +

m∑

i=1

g2i(ζ2)ui (6.27)

yi = hi(ζ2) (6.28)

where ζ1 = (z1, . . . , zd) and ζ2 = (zd+1, . . . , zn)

It is evident from Equations (6.26)–(6.28) that the output depends only on
ζ2, and ζ2 is independent of ζ1. Therefore, starting from a fixed initial value
of ζ2 and from arbitrary initial values of ζ1 and for arbitrary input u, the
system produces exactly the same output and therefore it cannot be locally
observable (see Definition 6.2.3).

It is important to note the duality and similarity between the algorithms
generating a controllability distribution and the observability co-distribution.

Simple Examples. The following example shows the use of the algorithm
of generating the observability co-distribution.

Example 6.2.3 (Observability co-distribution)

Consider again the system in Example 6.2.2 and let us calculate its
observability co-distribution. The starting point of the algorithm
is

Ω0(x) = span{dh(x)} = span{[0 − 1]} (6.29)

The Lie-product of ω = dh along f according to the definition is

Lfω(x) = fT (x)

(
∂ωT

ωx

)T

+ω(x)
∂f

∂x
=

[
−5

(
x1 + 1

x1

)
e

1
x1 0

]

(6.30)

and

Lgω(x) = [0 1] (6.31)
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Therefore the observability co-distribution after one step is given
by

Ω1(x) = span

{
[0 − 1],

[
−5

(
x1 + 1

x1

)
e

1
x1 0

]}
, (6.32)

from which we can see that the system satisfies local observability
conditions at almost all points of the state-space.

In order to highlight the connection between linear and nonlinear observabil-
ity, we construct the observability co-distribution of LTI systems in the next
example.

Example 6.2.4 (LTI observability co-distribution)
Observability co-distribution of LTI systems

Consider the linear system

ẋ = Ax

y = Cx

Then

Ω0(x) = span{c1, . . . , cp} (6.33)

τ(x) = Ax (6.34)

where c1, . . . , cp denote the rows of C. The first step of the algo-
rithm is

Ω1 = Ω0 + LτΩ0 = span{c1, . . . , cp, Lτ c1, . . . , Lτ cp} (6.35)

Since

Lτ ci(x) = LAxci = ci
∂(Ax)

∂x
= ciA (6.36)

we have

Ω1(x) = span{c1, . . . , cp, c1A, . . . , cpA} (6.37)

Continuing in the same way, we have, for any k ≥ 1,

Ωk(x) = span{c1, . . . , cp, c1A, . . . , cpA, . . . , c1Ak, . . . , cpA
k}

(6.38)

TLFeBook



114 6. Controllability and Observability

By duality, Ω⊥
n−1 is the largest distribution invariant under the

vector field Ax and contained in the distribution Ω⊥
0 . Note that

at each x ∈ R
n,

Ω⊥
0 (x) = ker(C) (6.39)

Ω⊥
n−1(x) = ker




C
CA
. . .

CAn−1


 (6.40)

We are interested in the dimension of Ω⊥
n−1(x) (which is indepen-

dent of x). If the observability matrix is of full rank (n), then the
dimension (d) of Ω⊥

n−1(x) is 0, which means that the system is
state observable.

6.2.3 The Minimal Realization of Nonlinear Systems

The solution to the problem of identifying the minimal realizations of a non-
linear system is similar to the linear case.

Theorem 6.2.2 (The minimal realization of nonlinear systems). A
realization {g0, g1, . . . , gm, h, x

0} of a formal power series c is minimal if
and only if the realization satisfies the controllability rank condition and the
observability rank condition at x0.

6.3 Controllability and Observability of Nonlinear
Process Systems

If one performs controllability analysis of process systems, the specialities of
process system models should be taken into account. For this purpose the
decomposed form of the general state equation (4.15) in Section 4.2.3 serves
as a starting point. The nonlinear functions on the right-hand side of the
input-affine state equations take the following special form:

f(x) = Atransferx+Q
(j)
φ (x) (6.41)

gi(x) = Nix+B(i)
conv (6.42)

where B
(i)
conv is the i-th column of the matrix Bconv.

We recall that the Lie-bracket is a multi-linear function of both of its argu-
ments, therefore any of the components of the algorithm for constructing the
controllability distribution has the following decomposition:
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∆0 = span{N1x+B
(1)
conv, . . . , Nmx+B

(m)
conv} (6.43)

∆1 = ∆0 +
∑m

i=1 span{(NiAtransfer −AtransferNi)x

−AtransferB
(i)
conv + [Q

(j)
φ (x), Nix] +

[
Q

(j)
φ (x), B

(i)
conv

]
}

+
∑m

i=1

∑m
k=1 span{(NkNi −NiNk)x−NiB

(k)
conv +NkB

(i)
conv}

The above decomposition shows that the controllability property is super-
additive with respect to the mechanisms present in the terms of the con-
servation balance such as input and output convection, transfer and sources
(including chemical reactions). This means that two mechanisms both lack-
ing controllability may interact to produce that property in the nonlinear case
[82].

6.3.1 Process Systems with no Source: the Linear-bilinear
Time-invariant Case

In this special but still interesting case, there are no sources present in the
system. Therefore the nonlinear functions of the general state equation in
Equation (4.15) take the following decomposed special form:

fL(x) = Atransferx (6.44)

gi(x) = Nix+B(i)
conv (6.45)

Observe that the state function is now linear and time-invariant and the input
function remains bilinear-linear and time-invariant.

In this case the algorithm described above in Equation (6.43) for con-
structing the controllability distribution ∆c is more simple because of the
lack of the general nonlinear term and goes as follows:

∆0 = span{N1x+B
(1)
conv, . . . , Nmx+B

(m)
conv} (6.46)

∆1 = ∆0

+
∑m

i=1 span{(NiAtransfer −AtransferNi)x−AtransferB
(i)
conv}

+
∑m

i=1

∑m
k=1 span{(NkNi −NiNk)x−NiB

(k)
conv +NkB

(i)
conv} (6.47)

One can easily recognize the presence of the Kalman controllability matrix
as an additive constant term in the vectors

Ak
transferB

(i), k = 1, . . . , n, i = 1, . . . ,m

6.4 Heat Exchanger Examples

As we have seen earlier in Section 4.4, heat exchangers are one of the most
simple yet important operating units in process systems. Depending on the
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modeling assumptions, heat exchangers may have LTI, LTV, LPV or input-
affine bilinear state-space models, and thus they are ideal simple examples to
carry out and compare linear and nonlinear controllability and observability
analysis.

6.4.1 Local Controllability and Observability of an LTI Heat
Exchanger Cell Model

As the most simple case, we start with the LTI state-space model of the heat
exchanger cell developed in Section 4.4.2. It is relatively easy to construct the
controllability distribution and the observability co-distribution of the heat
exchanger cell in this case as follows:

• Controllability distribution
The initial distribution

∆0 = span{g1, g2} = span{
[ vc

Vc

0

]
,

[
0
vh

Vh

]
} (6.48)

spans the whole R
2, since its elements are constant non-zero functions

that are linearly independent in any point. This means that the system is
controllable by inlet temperatures at any point of the state-space.

• Observability co-distribution
The initial co-distribution is given by the row vectors of the matrix C.

Ω0 = span{[1 0] , [0 1]} (6.49)

Its rank is always 2 so the system is observable at any point.

6.4.2 Local Controllability and Observability of a Nonlinear Heat
Exchanger Cell

Next we consider the bilinear (nonlinear) input-affine state-space model of
the heat exchanger cell developed in Section 4.4.4.

Now we need to use the algorithms above in Sections 6.2.1 and 6.2.2
for constructing the controllability distribution and the observability co-
distribution of the nonlinear heat exchanger cell.

• Controllability distribution
According to Equation (6.16) we can simply write the initial distribution
∆0 as

∆0(x) = span{g1(x), g2(x)} = span{
[

Tci

Vc
− 1

Vc
x1

0

]
,

[
0

Thi

Vh
− 1

Vh
x2

]
}

(6.50)
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We can see from (6.50) that the subspace spanned by the functions g1 and
g2 is two-dimensional for almost any x1, x2. The dimension only decreases
to zero when Tci = x1 and Thi = x2 (i.e. the corresponding input and
output temperatures are equal). This can happen if the cold and hot inlet
temperatures are equal for a long time and thus there is no heat exchange
in the operating unit, which is rarely the case in practice.
In the next step we compute the distribution ∆1.

∆1 = ∆0 + span{[f, g1] , [f, g2] , [g1, g2]} (6.51)

First, we have to determine [f, g1].

[f(x), g1(x)] =
∂g1
∂x

f(x) − ∂f

∂x
g1(x) (6.52)

∂g1
∂x

f(x) =

[
1
Vc

0

0 0

] [
−k1x1 + k1x2

k2x1 − k2x2

]
=

[− 1
Vc

(−k1x1 + k1x2)

0

]
(6.53)

∂f

∂x
g1(x) =

[
k1 k1

k2 −k2

] [
Tci

Vc
− 1

Vc
x1

0

]
=

[
−k1(Tci

Vc
− 1

Vc
x1)

k2(Tci

Vc
− 1

Vc
x2)

]
(6.54)

Thus

[f(x), g1(x)] =

[
− 1

Vc
(−k1x1 + k1x2) + k1(Tci

Vc
− 1

Vc
x1)

−k2(Tci

Vc
− 1

Vc
x2)

]
(6.55)

After performing the same calculations for f and g2 we get

[f(x), g2(x)] =

[
−k1(Thi

Vh
− 1

Vh
x2)

− 1
Vh

(−k2x1 + k2x2) + k2(Thi

Vh
− 1

Vh
x2)

]
(6.56)

It’s easy to compute that

[g1(x), g2(x)] =

[
0
0

]
(6.57)

Note that the above equation shows that the two input variables act on
disjoint sets of state variables.
With the above equations, we have for ∆1

∆1 = span{g1, g2, [f, g1] , [f, g2] , [g1, g2]} (6.58)

We can see from Equations (6.55) and (6.56) that the dimension of ∆1 is
still zero if the corresponding inlet and outlet temperatures and the hot
and cold side outlet temperatures are equal respectively. That is, we could
not improve ∆0 and the algorithm stops here.
In conclusion, we can say that the nonlinear heat exchanger cell model is
controllable with the exception of the singular point (x1 = Tci, x2 = Thi).
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• Observability co-distribution
Consider the nonlinear heat exchanger cell model (4.62)–(4.64) together
with the output equation y = x1. The observability co-distribution after
the first step of the algorithm is

span
{[

1 0
]
,
[
−k1 k1

]}

which is of rank 2 at any point of the state-space, therefore the nonlinear
heat exchanger cell with the above output selection is observable in the
nonlinear sense.

If we consider the engineering meaning of the non-controllability condition
above, that is the corresponding inlet and outlet temperatures and the hot
and cold side outlet temperatures are equal respectively, we can see that in
this case there is no heat transfer between the hot and cold sides because they
are at their equilibrium conditions. This means that the outlet temperatures
of the heat exchanger will not change whatever happens to the flow rates,
that is, the heat exchanger can’t be controlled via changing the flow rates,
which is in perfect agreement with the computations above.

6.4.3 Local Controllability of a Nonlinear 2-cell Heat Exchanger

Consider the bilinear (nonlinear) state-space model of the heat exchanger
cell developed in Subsection 4.4.4. We can construct a simple model of a
countercurrent heat exchanger by connecting two such cells. The nonlinear
functions f and g on the right-hand side of the input-affine state-space model
are now as follows:

f(x) = g0(x) =




−k1cx1 + k1cx2

k1hx1 − k1hx2

−k2cx3 + k2cx4

k2hx3 − k2hx4


 (6.59)

g1(x) =




V −1
1c (x3 − x1)

0
V −1

2c (Tci − x3)
0


 , g2(x) =




0
V −1

1h (Thi − x2)
0

V −1
2h (x2 − x4)


 (6.60)

Now we are in a position to compute the controllability distribution of the
2-cell heat exchanger system as follows:

∆0 = span{g1, g2} (6.61)

∆1 = span{g1, g2, [f, g1], [f, g2]} (6.62)

Similarly to the bilinear heat exchanger cell case, the necessary Lie-brackets
are computed as follows:
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∂f(x)

∂x
=




−k1c k1c 0 0
k1h −k1h 0 0
0 0 −k2c k2c

0 0 k2h −k2h


 (6.63)

∂g1(x)

∂x
=




−V −1
1c 0 V −1

1c 0
0 0 0 0
0 0 −V −1

2c 0
0 0 0 0


 ,

∂g2(x)

∂x
=




0 0 0 0
0 −V −1

1h 0 0
0 0 0 0
0 V −1

2h 0 −V −1
2h


 (6.64)

[g1, g2] (x) = − [g2, g1] (x) =




0
0
0
0


 (6.65)

[f, g1] (x) = ∂g1(x)
∂x f(x) − ∂f(x)

∂x g1(x)

=




−V −1
1c (−k1cx1 + k1cx2) + V −1

1c (−k2cx3 + k2cx4)
0

−V −1
2c (−k2cx3 + k2cx4)

0




−




−k1cV
−1
1c (x3 − x1)

k1hV
−1
1c (x3 − x1)

−k2cV
−1
2c (Tci − x3)

k2hV
−1
2c (Tci − x3)




=




k1cV
−1
1c (x3 − x2) + k2cV

−1
1c (x4 − x3)

−k1hV
−1
1c (x3 − x1)

k2cV
−1
2c (Tci − x4)

−k2hV
−1
2c (Tci − x3)


 (6.66)

[f, g2] (x) = ∂g2(x)
∂x f(x) − ∂f(x)

∂x g2(x)

=




0
−V −1

1h (k1hx1 − k1hx2) 0
V −1

2h (k1hx1 − k1hx2) − V −1
2h (k2hx3 − k2hx4)




−




k1cV
−1
1h (Thi − x2)

−k1hV
−1
1h (Thi − x2)

k2cV
−1
2h (x2 − x4)

−k2hV
−1
2h (x2 − x4)




=




−k1cV
−1
1h (Thi − x2)

k1hV
−1
1h (Thi − x1)

−k2cV
−1
2h (x2 − x4)

k1hV
−1
2h (x1 − x2) + k2hV

−1
2h (x2 − x3)


 (6.67)
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Controllability Analysis. We can see from Equations (6.61) and (6.60)
that the subspace spanned by the functions g1 and g2 is four-dimensional for
almost any x1, ..., x4. The computation of ∆1 shows that the dimension of
the distribution has not increased (it cannot in fact) therefore the bilinear
2-cell heat exchanger model is controllable everywhere with the exception of
the singular points.

Singular Points. The dimension only decreases when

Tci = x1 , x3 = x1 , Thi = x2 or x2 = x4

i.e. the corresponding input and output temperatures are equal in any of the
cells on the hot or cold side. Similarly to the single heat exchanger cell case,
this can only happen if the cold and hot inlet temperatures are equal for a
long time and thus there is no heat exchange in the operating unit, which is
rarely the case in practice.

6.5 Controllability of a Simple Continuous Fermentation
Process

In this section it is shown in the example of a simple continuous fermenter
described in Subsection 4.5.3 that nonlinear controllability analysis based on
the generation of controllability distributions is extremely helpful in identify-
ing the singular points of the state-space around which control of the system
is problematic or even impossible [76].

The nonlinear state-space model of the fermenter is given in Equations
(4.78)–(4.79). The variables and parameters of the fermentation process
model are collected in Table 4.1.

6.5.1 Local Controllability Analysis Using the Linearized Model

The linearized state-space model of the continuous fermenter is also devel-
oped in Subsection 4.5.3 and it is given in Equations (4.84)–(4.87). After
calculating the Kalman controllability matrix of the linearized model

O = [B AB] =

[
−1.2194 0
2.4388 −0.0031

]
(6.68)

we find that the system is controllable (in the linear sense) in the neighbor-
hood of the required operating point.

6.5.2 Nonlinear Controllability Analysis Using Controllability
Distributions

For this, we need to identify the vector fields f and g in Equations (4.79) in
Subsection 4.5.3. If we write them in the following general form
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ẋ = f(x) + g(x)u (6.69)

then it’s clear that

x =

[
x1

x2

]
=

[
X̄
S̄

]
, u = F̄ (6.70)

and

f(x) = f(X̄, S̄) =

[
µ(S̄ + S0)(X̄ +X0) − (X̄+X0)F0

V

−µ(S̄+S0)(X̄+X0)
Y + (SF −(S̄+S0))F0

V

]
(6.71)

g(x) = g(X̄, S̄) =

[
− (X̄+X0)

V
(SF −(S̄+S0))

V

]
(6.72)

We follow the algorithm described in Subsection 6.2.1 for calculating the local
controllability distribution of the model. The initial distribution is

∆0 = span{g} (6.73)

In the following step we add the Lie-bracket of f and g to the initial distri-
bution

∆1 = ∆0 + span{[f, g]} = span{g, [f, g]} (6.74)

where

[f, g] (x) =
∂g

∂x
f(x) − ∂f

∂x
g(x) (6.75)

The second step then gives the following:

∆2 = ∆1 + [f,∆1] + [g,∆1] = span{g, [f, g] , [f, [f, g]] , [g, [f, g]]} (6.76)

Singular Points. At the point

[
X̄ S̄

]T
= [−X0 SF − S0]

T
with X = 0

[g
l

]
, S = SF

all the elements of ∆2 (and, of course, all the elements of ∆0 and ∆1) are
equally zero. It means that the controllability distribution has rank 0 at
this point. Moreover, this singular point is a steady-state point in the state-
space. From this it follows that if the system reaches this (undesired) point,
it’s impossible to drive the process out of it by manipulating the input feed
flow rate.

∆2 has rank 1 if

X̄ = −X0 (X = 0
[g
l

]
) and S̄ 6= SF − S0 (i.e. S 6= SF )

From a practical point of view it means that if the biomass concentration
decreases to 0

[
g
l

]
then it can’t be increased by changing the input flow rate.

Stability analysis of these singular points show that both of them are
stable.
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Non-singular Points. At any other point in the state-space including the

desired operating point
[
X̄ S̄

]T
=[0 0]

T
, the controllability distribution has

rank 2, which means that the system is controllable in a neighborhood of these
points and we can apply state feedback controllers to stabilize the process.

6.6 Controllability (Reachability) of Fed-batch
Fermentation Processes

The controllability (reachability) of a simple nonlinear fed-batch fermentation
process model is investigated in this section. It is shown that the known
difficulties of controlling such processes are primarily caused by the fact that
the rank of the controllability distribution is always less than the number of
state variables.

Furthermore, a coordinates transformation is calculated analytically that
shows the nonlinear combination of the state variables which is independent of
the input. The results of the reachability analysis and that of the coordinates
transformation are independent of the source function in the system model.

The results are extended to the four state variable non-isotherm case, and
to nonlinear fed-batch chemical reactors with general reaction kinetics.

6.6.1 Problem Statement

Bio-processes in general and fermentation processes in particular are diffi-
cult to model and to control even in the simplest cases. Various difficulties
are reported in the literature, which include instability and controllability
problems for both continuous and fed-batch fermenters ([44], [43]).

The dynamic state-space model of a fermenter is derived from first en-
gineering principles which fixes certain structural elements in the model. As
we have already seen in Subsection 4.5.2, the state equations are derived
from dynamic conservation balances of the overall mass, component masses
and energy if applicable. The speciality of a fermentation model appears in
the so-called source function of these balances, which is highly nonlinear and
non-monotonous in nature.

The aim of this section is to use rigorous nonlinear analysis of a sim-
ple fed-batch fermenter model for analyzing its reachability (controllability)
properties and to relate them to the physico-chemical phenomena taking
place in the reactor [75].

6.6.2 Nonlinear State-space Model

The simplest dynamic model of a fed-batch fermenter has been developed in
Subsection 4.5.2, which can be written in the following input-affine form [44]:
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ẋ = f(x) + g(x)u (6.77)

where

x =



x1

x2

x3


 =



X
S
V


 , u = F (6.78)

f(x) =




µ(x2)x1

− 1
Y µ(x2)x1

0


 =




µmaxx2x1

K1+x2+K2x2
2

− µmaxx2x1

(K1+x2+K2x2
2)Y

0


 , g(x) =




−x1

x3
Sf−x2

x3

1


 (6.79)

and

µ(x2) =
µmaxx2

K1 + x2 +K2x2
2

(6.80)

Note that the above model is exactly the same as Equations (4.71)–(4.74)
and they are repeated here for convenience.

The variables of the model with their units and the constant parameters
with their typical values are also listed in Subsection 4.5.2.

6.6.3 Reachability Analysis

We construct the reachability distribution according to the algorithm de-
scribed in Subsection 6.2.1 as follows:

∆0 = span{g}

∆1 = ∆0 + [f,∆0] = span{g, [f, g]}
∆2 = ∆1 + [f,∆1] + [g,∆1] = span{g, [f, g] , [f, [f, g]] , [g, [f, g]]}

The calculation of the Lie-products in ∆1 and ∆2 is as follows:

[f, g] (x) =
∂g

∂x
f(x) − ∂f

∂x
g(x) (6.81)

Since

∂g

∂x
f(x) =



− 1

x3
0 x1

x2
3

0 − 1
x3

x2−Sf

x2
3

0 0 0







f1(x)
− 1

Y f1(x)
0


 =



− 1

x3
f1(x)

1
Y

1
x3
f1(x)

0


 (6.82)

and

∂f

∂x
g(x) =




µ(x2) ∂µ
∂x2

0

− 1
Y µ(x2) − 1

Y
∂µ
∂x2

0

0 0 0





g1(x)
g2(x)

0
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=




µ(x2)g1(x) + ∂µ
∂x2

g2(x)

− 1
Y (µ(x2)g1(x) + ∂µ

∂x2
g2(x))

0


 (6.83)

the Lie-product [f, g] has the form



[f, g]1
[f, g]2
[f, g]3


 =




[f, g]1
− 1

Y [f, g]1
0


 (6.84)

where [f, g]i denotes the i-th coordinate function of the vector field [f, g].
It follows from Equations (6.81)–(6.84) that the distributions [f, [f, g]]

and [g, [f, g]] will also have the same form as (6.84), i.e.

[f, [f, g]] =




[f, [f, g]]1
− 1

Y [f, [f, g]]1
0


 (6.85)

and

[g, [f, g]] =




[g, [f, g]]1
− 1

Y [g, [f, g]]1
0


 (6.86)

On the basis of the above we can denote the coordinate functions of the
vector fields spanning ∆2 at a given point x of the state-space as follows:

∆2(x) = span{



δ11(x) δ12(x) δ13(x) δ14(x)
δ21(x) δ22(x) δ23(x) δ24(x)
δ31(x) δ32(x) δ33(x) δ34(x)


} (6.87)

where

δ31 = 1, δ32(x) = δ33(x) = δ34(x) = 0 (6.88)

and

δ22(x) = − 1

Y
δ12(x) (6.89)

δ23(x) = − 1

Y
δ13(x) (6.90)

δ24(x) = − 1

Y
δ14(x) (6.91)

i.e.

∆2(x) = span{



δ11(x) δ12(x) δ13(x) δ14(x)
δ21(x) − 1

Y δ12(x) − 1
Y δ13(x) − 1

Y δ14(x)
1 0 0 0


} (6.92)

which means that we couldn’t increase the dimension of the reachability
distribution in the second step and the rank of ∆2 is at most 2 at any point
in the state-space.
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Singular Points. There are, however, points in the state-space where the
rank of the reachability distribution ∆2 is less than 2. Those points are char-
acterized by

x1 = 0

In this case, ∆2 is of dimension 1. This case means that there is no biomass
in the system and since the inlet flow contains only substrate, the biomass
concentration cannot be influenced by manipulating the input.

During the following analysis we will consider the open region of the state-
space where ∆1 is nonsingular and the value of state vector has real physical
meaning (the concentrations and the liquid volume are positive), i.e.

U = {x1, x2, x3|x1 > 0, x2 > 0, x3 > 0} (6.93)

6.6.4 Calculation of the Coordinate Transformation

Since the generation of the reachability distribution stopped in the second
step with

∆1 = span{g, [f, g]}

∆1 is the smallest distribution invariant under f, g and containing the vector
field g. This distribution is denoted by 〈f, g|span{g}〉. Since 〈f, g|span{g}〉 is
nonsingular on U and involutive we may use it to find a coordinates trans-
formation z = Ψ(x). The system in the new coordinates will be represented
by equations of the following form (see Theorem 6.2.1):

ζ̇1 = f̄1(ζ1, ζ2) + ḡ(ζ1, ζ2)u (6.94)

ζ̇2 = f̄2(ζ2) (6.95)

where ζ1 = [z1 z2] T and ζ2 = z3 in our case.
To calculate Φ, we have to integrate the distribution ∆1 first, that is, to

find a single (dim(x) – dim(∆1) = 3 – 2 = 1) real-valued function λ such that

span{dλ} = [〈f, g|span{g}〉]⊥, where the sign ⊥ denotes the annihilator of a
distribution. Since

[f, g] (x) =




−

(
µmaxx1

K1+x2+K2x2
2
−

µmaxx2x1(1+2K2x2)

(K1+x2+K2x2
2)

2

)
(Sf−x2)

x3

−

(
−

µmaxx1
(K1+x2+K2x2

2)Y
+

µmaxx2x1(1+2K2x2)

(K1+x2+K2x2
2)

2
Y

)
(Sf−x2)

x3

0




(6.96)

this amounts to solve the partial differential equations (PDEs)

[
∂λ
∂x1

∂λ
∂x2

∂λ
∂x3

]




−x1

x3
−

(
µmaxx1

K1+x2+K2x2
2
−

µmaxx2x1(1+2K2x2)

(K1+x2+K2x2
2)

2

)
(Sf−x2)

x3

Sf−x2

x3
−

(
−

µmaxx1
(K1+x2+K2x2

2)Y
+

µmaxx2x1(1+2K2x2)

(K1+x2+K2x2
2)

2
Y

)
(Sf−x2)

x3

1 0
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=
[

0 0
]

(6.97)

Solution by the Method of Characteristics. The method of characteris-
tics (see, e.g. [12], [8] or [53]) is used for solving the above resultant first-order
linear homogeneous partial differential equation in the following general form:

n∑

i=1

φi(x)∂iλ(x) = 0, ∂iλ =
∂λ

∂xi
(6.98)

or briefly

φ(x)λ′(x) = 0, (6.99)

where T ⊂ R
n is a domain, x ∈ T , φi, i = 1 . . . n are known functions and λ

is the unknown. The characteristic equation system of (6.99) is the following
set of ordinary differential equations:

ξ̇ = φ(ξ) (6.100)

We call the ξ : R → R
n solutions of (6.100) characteristic curves. A λ ∈ C1(T )

function is called the first integral of (6.100) if t→ λ(ξ(t)) is constant along
any characteristic curve. In order to solve (6.99) we have to find (n−1) linearly
independent solutions (λ1, λ2, . . . , λn−1) of it. Then the general solution of
(6.99) will be in the form λ = Φ(λ1, λ2, . . . , λn−1), where Φ ∈ C1(Rn−1)
is an arbitrary function. We know that a first integral of (6.100) satisfies
(6.99), therefore we have to find (n − 1) linearly independent first integrals
to obtain the general solution. This can be done without solving (6.100), as
is illustrated below in our case.

To solve the first PDE, namely

∂λ

∂x1

(
−x1

x3

)
+

∂λ

∂x2

(
Sf − x2

x3

)
+

∂λ

∂x2
= 0 (6.101)

we start from the following set of ordinary differential equations:

ẋ1 = −x1

x3

ẋ2 =
Sf − x2

x3

ẋ3 = 1

It’s easy to observe that

ẋ1x3 = −x1

and

ẋ1x3 + ẋ3x1 = (x1x3)′ = 0
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since ẋ3 = 1. Therefore x1x3 = const. Moreover,

ẋ2x3 = Sf − x2

and

ẋ2x3 + x2ẋ3 − Sf ẋ3 = (x2x3)′ − Sf ẋ3 = 0

from which it follows that

x2x3 − Sfx3 = const.

We can see from the above that the solution of (6.101) will be in the form

λ(x1, x2, x3) = Φ(x1x3, x2x3 − Sfx3)

with an arbitrary C1 function Φ.

To solve the second PDE we first remember that in the reachability dis-
tribution

δ22 = − 1

Y
δ12 and δ32 = 0

and then it’s enough to write the PDE as

∂λ

∂x1
δ12(x) +

∂λ

∂x2

(
− 1

Y
δ12(x)

)
= 0 (6.102)

The characteristic equations are written as

ẋ1 = δ12(x)

ẋ2 = − 1

Y
δ12(x)

ẋ3 = 0

It’s easy to see that

− 1

Y
ẋ1 − ẋ2 = 0

and

ẋ3 = 0

Therefore the solution of (6.102) is in the form

λ(x1, x2, x3) = Φ∗(− 1

Y
x1 − x2, x3) (6.103)

with an arbitrary C1 function Φ∗. To give a common solution for both (6.101)
and (6.102) we propose the function
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λ(x1, x2, x3) = x3(− 1

Y
x1 − x2 + Sf ) = − 1

Y
x1x3 − (x2x3 − Sfx3) (6.104)

from which we can see that it indeed satisfies both PDEs. With the help
of λ we can define the local (and luckily global) coordinates transformation
Ψ : R

n → R
n



z1
z2
z3


 = Ψ(x1, x2, x3) =




x1

x2

− 1
Y x1x3 − x2x3 + Sfx3


 (6.105)

Since

x3 =
z3

− 1
Y z1 − z2 + Sf

and

ż3 = (− 1

Y
x1x3 − x2x3 + Sfx3)′

= − 1

Y
(ẋ1x3 + x1ẋ3) − (ẋ2x3 + x2ẋ3) + Sf ẋ3

= − 1

Y
(µ(x2)x1x3 − x1 + x1) − (− 1

Y
µ(x2)x1x3 + Sf − x2 + x2) + Sf = 0

the transformed form of the model (6.77)–(6.79) can be written as

ż = f̄(z) + ḡ(z)u (6.106)

where

f̄(z) =




µmaxz2z1

K1+z2+K2z2
2

− µmaxz2z1

(K1+z2+K2z2
2)Y

0


 , ḡ(z) =




− z1

z3
(− 1

Y z1 − z2 + Sf )
Sf−z2

z3
(− 1

Y z1 − z2 + Sf )

0


 (6.107)

and z3 6= 0.

6.6.5 Generalizations

The aim of this section is to show the reasons present in the original state-
space model which led to the reachability and state transformation above.
This analysis enables us to find other models of similar form with the same
properties.

Physical Analysis of the Model and the Solutions. The first important
thing to observe is that the results of the reachability analysis and that of the
coordinates transformation do not depend on the actual form of the function
µ in Equation (6.80). The results utilized the following specialities of the
original state-space model in Equations (6.77)–(6.79).
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1. The constant coefficients in the third state equation, i.e.

f3 = 0, g3 = 1

where fi and gi are the i-th entry of the vector functions f and g in
the state-space model. This property always holds for the overall mass
balance of fed-batch reactors.

2. The relation between the first and the second state equation, namely

f2 = − 1

Y
f1 = Cff1

where Cf is a constant. Such a relationship exists if the two related
state variables, x1 and x2, are concentrations of components related by
a chemical reaction in the form 1

Y S → X [32].

Further, we may notice that the quantity λ in Equation (6.104) – which is
conserved independently of the input – consists of two parts corresponding
to the substrate mass and cell mass of the system as follows:

λ(x1, x2, x3) = V (Sf − S) +
1

Y
V (Xf −X) (6.108)

with Xf = 0 because the feed does not contain any cells. The above two
terms originate from the (weighted) convective terms in the component mass
conservation balances respectively, that is, such terms which are only caused
by the feed as inflow.

Generalized State-space Models. We can generalize the original model
in Equations (6.77)– (6.79) in two steps if we want to preserve the special
dynamic properties of the model.

1. General reaction rate function
As the results do not depend on the function µ in Equation (6.80), we
can replace the fermentation reaction by a general chemical reaction of
the form

1

Y
S −→ X

where the reaction rate (source) function is µ∗(x2)x1 with µ∗ as an un-
specified possibly nonlinear function.

2. Non-isotherm case
If we further release the assumption that the fermenter is operating under
isothermal conditions, then we should include the energy conservation
balance to the original model. Then a four state model is obtained [32]
in the following input-affine form:

ẋ = f∗(x) + g∗(x)u (6.109)

where
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x =




x1

x2

x3

x4


 =




X
S
T
V


 , u = F (6.110)

with T being the temperature in the fermenter. Then the nonlinear func-
tions f∗ and g∗ are

f∗(x) =




µ∗(x2, x3)x1

c1µ
∗(x2, x3)x1

c2µ
∗(x2, x3)x1

0


 , g∗(x) =




−x1

x4
Sf−x2

x4
Tf−x3

x4

1


 (6.111)

with c1 = − 1
Y and with the following additional constant parameters:

c2 reaction enthalpy coefficient [m3K/J]
Tf = 293 influent temperature [K]

Observe that now the reaction rate function µ∗ depends also on the tem-
perature x3 = T , giving rise to the source function µ∗(x2, x3)x1.

Furthermore, the required structural properties 1. and 2. are present in the
generalized model. The property 1. now holds for the entries f ∗

4 and g∗4 , which
is the overall mass balance. There are two independent pairs, (f ∗

1 , f
∗
2 ) (the

two component mass balances) and (f ∗
1 , f

∗
3 ) (a mass and an energy balance)

which possess property 2. with different constants.

Analysis of the Generalized Models. In the above four state variable
case the final reachability distribution after four steps would be the following:

∆ = span{g∗, [f∗, g∗] , [f∗, [f∗, g∗]] , [g∗, [f∗, g∗]] ,

[f∗, [f∗, [f∗, g∗]]] , [g∗, [f∗, [f∗, g∗]]] ,

[f∗, [g∗, [f∗, g∗]]] , [g∗, [g∗, [f∗, g∗]]]}
If we calculate the Lie-products [f∗, g∗], [f∗, [f∗, g∗]] and [g∗, [f∗, g∗]], we find
that

[f∗, g∗] =




[f∗, g∗]1
c1 [f∗, g∗]1
c2 [f∗, g∗]1

0


 , [f∗, [f∗, g∗]] =




[f∗, [f∗, g∗]]1
c1 [f∗, [f∗, g∗]]1
c2 [f∗, [f∗, g∗]]1

0


 (6.112)

and also

[g∗, [f∗, g∗]] =




[g∗, [f∗, g∗]]1
c1 [g∗, [f∗, g∗]]1
c2 [g∗, [f∗, g∗]]1

0


 (6.113)

Therefore the calculation of the reachability distribution stops here and it
turns out that the dimension of the distribution is 2 in this case, too.
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To find the decomposed system similar to (6.107), we have to find two inde-
pendent real-valued functions λ1 and λ2 such that

[
∂λ1

∂x1

∂λ1

∂x2

∂λ1

∂x3

∂λ1

∂x4
∂λ2

∂x1

∂λ2

∂x2

∂λ2

∂x3

∂λ2

∂x4

]



g∗1(x) [f∗, g∗]1 (x)
g∗2(x) c1 [f∗, g∗]1 (x)
g∗3(x) c2 [f∗, g∗]1 (x)

1 0


 =

[
0 0
0 0

]
(6.114)

It’s easy to check that the two independent functions

λ1(x) = x4(c1x1 − x2 + Sf ) (6.115)

λ2(x) = x4(c2x1 − x3 + Tf ) (6.116)

satisfy the PDEs in Equation (6.114). Therefore the new coordinate vector z
is given by the function Ψ∗ : R

4 → R
4




z1
z2
z3
z4


 = Ψ∗(x) =




x1

x2

x4(c1x1 − x2 + Sf )
x4(c2x1 − x3 + Tf )


 (6.117)

and the system (6.109)–(6.111) in the new coordinates is written as

ż = f̄∗(z) + ḡ∗(z)u (6.118)

where

f̄∗(z) =




µ̄∗(z1, z2, z3, z4)z1
c1µ̄

∗(z1, z2, z3, z4)z1
0
0


 , ḡ∗(z) =




− z1(c1z1−z2+Sf )
z3

(Sf−z2)(c1z1−z2+Sf )
z3

0
0


 (6.119)

and

µ̄∗(z1, z2, z3, z4) = µ∗

(
z2, c2z1 + Tf − z4(c1z1 − z2 + Sf )

z3

)
(6.120)

with the condition z3 6= 0.

6.6.6 Engineering Interpretation

The invariance of λ in Equation (6.104) expresses the fact that the state vari-
ables of the fed-batch fermenter model can only move on a smooth hypersur-
face in the state-space. The shape of this hypersurface obviously depends on
the choice of the initial values of the state variables. It means that the ini-
tial concentrations and liquid volume (that are set by the control engineer)
uniquely determine the set of points in the state-space that are reachable
during the process.
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Figures 6.1 and 6.2 illustrate the effect of the initial liquid volume on
the reachability hypersurface when the concentrations are fixed. It is shown
that if the initial volume is too small then the possibilities of controlling the
biomass concentration x1 are dramatically worsening. Similarly, the effect of
the initial concentrations can also be easily examined, since λ in Equation
(6.104) is a quite simple function of the state variables.

With the help of λ controller design becomes easier. If the desired final
point of the fermentation is given (in the state-space) then the initial condi-
tions can be set in such a way that the desired point is reachable.

x3

4

3

2

1

0 x2

2

1.5

1

0.5

0

x1

5
4

3
2

1
0

Page 1

Figure 6.1. The reachability hypersurface of the fed-batch fermenter for initial
conditions x1(0) = 2 g

l
, x2(0) = 0.5 g

l
,x3(0) = 0.5 g

l

6.6.7 Comments on Observability

Due to space limitations we cannot go into detail concerning the observability
of fed-batch fermentation processes, we can only briefly describe the most
interesting aspect of the relation between reachability and observability. The
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Figure 6.2. The reachability hypersurface of the fed-batch fermenter for initial
conditions x1(0) = 2 g

l
, x2(0) = 0.5 g

l
,x3(0) = 0.1 g

l

rough problem statement of observability is the following: is it possible to
determine the values of the state variables of the system if we measure the
inputs and the outputs?

Obviously, the observability property of linear and nonlinear systems
largely depends on the selection of the output function y = h(x). Let us
suppose that the output of the system (6.77)–(6.79) is chosen to be λ in
Equation (6.104). Without complicated calculations it is clear, that the sys-
tem won’t be observable because λ is constant in time independently of the
input u and therefore it does not provide any information about the internal
“movement” of the system. It’s value only identifies the reachable hypersur-
face (manifold).
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6.6.8 The Minimal Realization of Fed-batch Fermentation
Processes

Using the calculated λ function, it’s not difficult to give a minimal state-
space realization of fed-batch fermentation processes in the temperature-
independent case.

Since the reachability hypersurface defined by λ and shown in Figures
6.1 and 6.2 is two-dimensional, the minimal realization will contain two state
variables (i.e. the input-to-state behavior of the system can be described by
two differential equations). Since λ is constant in time, it’s clear that

λ(x(t)) = − 1

Y
x1(t)x3(t) − (x2(t)x3(t) − Sfx3(t)) (6.121)

= − 1

Y
x1(0)x3(0) − (x2(0)x3(0) − Sfx3(0)) = λ(x(0))

Therefore we can express, e.g. the volume x3 from the above equation in the
following way:

x3 =
λ(x(0))

− 1
Y x1 + Sf − x2

, − 1

Y
x1 + Sf − x2 6= 0 (6.122)

and the minimal state-space model reads

ẋ = fmin(x) + gmin(x)u

where

x =

[
x1

x2

]
, fmin(x) =

[
µmaxx2x1

K1+x2+K2x2
2

− µmaxx2x1

(K1+x2+K2x2
2)Y

]

gmin(x) =




1
Y

x2
1+x1(x2−Sf )

λ(x(0))
(− 1

Y
x1+Sf−x2)(Sf−x2)

λ(x(0))


 (6.123)

It’s well-known from system theory that state-space realizations are not
unique and it’s easy to see that instead of x3 any one of the other two state
variables could be expressed from Equation (6.121). Therefore one can select
those two state variables that are important from a certain point of view (e.g.
a control problem) and express the third one from Equation (6.121).

It’s also important to remark that the model (6.123) has a special struc-
ture, since it contains the initial values of the original model (6.77)–(6.79) in
the input vector field gmin (but luckily not in the vector field fmin).

6.7 Further Reading

The controllability and observability of linear systems is covered in several
good textbooks, e.g. in [39], [20] or [13], to mention just a few. Although [7]
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is mainly devoted to linear systems, it discusses important connections to
nonlinear systems.

Additional results about the controllability of nonlinear systems can be
found in [70] and [73]. The observability and the problem of identifying the
initial state in a single-input nonlinear system is studied in [72]. The reach-
ability and observability of bilinear systems are discussed in [14].

6.8 Summary

Based on the controllability and observability notions and analysis tools de-
veloped for LTI systems, the basic concepts and algorithms for analyzing
state controllability and observability of input-affine nonlinear systems are
described in this section.

The nonlinear notions and methods are illustrated using case studies of
process systems of practical importance: heat exchangers and fermenters of
various type. Their controllability and observability analysis is based upon
the special nonlinear structure of process systems and on their input-affine
nonlinear state-space model developed in Chapter 4.

6.9 Questions and Application Exercises

Exercise 6.9.1. Compare the notions and tools related to linear and non-
linear controllability analysis. Comment on the obtained analysis results and
on the computational resources needed.

Exercise 6.9.2. Compare the notions and tools related to linear and non-
linear observability analysis. Comment on the obtained analysis results and
on the computational resources needed.

Exercise 6.9.3. Perform linear controllability and observability analysis of
the nonlinear heat exchanger cell described in Section 4.4.4 using its linearized
state-space model developed in Exercise 4.8.10.

Exercise 6.9.4. Consider the following two-dimensional nonlinear system
model in its input-affine state-space form:

dx1

dt
= x

1/2
1 x

3/2
2 − x1x

3
2 + x

1/2
1 u1

dx2

dt
= 3x1x

1/2
2 − 2x2

1x2

y = x3
1x

2/3
2 − x

1/2
1 x2

2

Compute the controllability distribution ∆c for this system and determine
if it is controllable or not.
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Exercise 6.9.5. Consider the following two-dimensional nonlinear system
model in its input-affine state-space form:

dx1

dt
= − x1

x2
2 + 2x1 + 3

− x1u1

dx2

dt
= 4

x1

x2
2 + 2x1 + 3

− x2u1 −
x1

x2
u2

y =
x1

x2

Compute the controllability distribution ∆c for this system and determine
its rank.

Exercise 6.9.6. The following two-dimensional nonlinear system model is
given:

dx1

dt
= −x1e

−x2 − x1u1

dx2

dt
= 2x1e

−x2 − x2u1 + x2u2

y = ex1

Determine the controllability of the system using its controllability dis-
tribution ∆c.
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7. Stability and The Lyapunov Method

Stability is a basic dynamic system property. It characterizes the behavior
of a system if that is subject to disturbances. In general everyday terms,
a system is regarded to be “stable” if it is not disturbed too much by the
external disturbances, but rather it dampens their effect.

There are various but related notions in systems and control theory to
characterize the stability of a system. Internal or asymptotic stability focuses
on the effect of the disturbance on the state of the system in a long time
horizon, while external or bounded-input–bounded-output (BIBO) stability
deals only with the effect seen in the system outputs.

The Lyapunov method for checking asymptotic stability is the technique
which is applicable for nonlinear systems. Therefore we summarize the no-
tions of stability and the Lyapunov method here in this chapter together with
checking stability for both linear and nonlinear systems.

The material is arranged in the following sections:

• Stability notions
Here we describe both the bounded-input–bounded-output (BIBO) and
the asymptotic stability case. First, the general notions are given, then we
illustrate them in the LTI case by stating necessary and sufficient condi-
tions.

• Local stability of nonlinear systems
Thereafter, the local stability of the nonlinear case is discussed together
with the description of local linearization techniques.

• Lyapunov’s theorem and Lyapunov functions
We start with the notion of the Lyapunov function as a generalized energy
function. Thereafter Lyapunov’s theorem on asymptotic stability is stated.
As an illustration the Lyapunov conditions for the LTI case are also given.

• Stability of process systems
Besides the analytical techniques for analyzing stability, the notion of struc-
tural stability and an algebraic method for its analysis is introduced.

• Examples and a case study
The stability analysis techniques are illustrated using simple well-known
process examples (heat exchanger cells, mass convection network and a
binary distillation tray) and on a simple continuous fermenter.
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7.1 Stability Notions

There are two different but related notions of stability:

1. Bounded-input–bounded output (BIBO) stability, which describes the be-
havior of the system if it is subject to bounded but permanent distur-
bances.

2. Asymptotic stability when the disturbance acts as an impulse (over an
infinitesimally short time interval) and then the system behavior is ana-
lyzed when time goes to infinity.

7.1.1 External or BIBO (Bounded-input–bounded-output)
Stability

In order to define BIBO stability, we need to recall the notions of vector and
signal norms which are summarized in Appendix A in Section A.1.

Definition 7.1.1 (BIBO stability)
A system is external or BIBO-stable if for any bounded input it responds with
a bounded output

{||u(t)|| ≤M1 <∞ | 0 ≤ t ≤ ∞} ⇒ {||y(t)|| ≤M2 <∞ | 0 ≤ t ≤ ∞}
(7.1)

where ||.|| is a vector norm.

Observe that the definition above says nothing about the states but uses
the concept of input–output representation of the system S. If we denote
the signal norm of the input by ||u|| and that of the output by ||u|| then
the defining equation (7.1) can be interpreted as a condition for the system
operator S:

||S|| <∞ (7.2)

where ||S|| is the induced operator norm by the signal norms for the input
and output signals.

7.1.2 BIBO Stability Conditions for LTI Systems

Recall from Chapter 5 that the impulse-response function h or the transfer
function H is used to describe the abstract system operator S of LTI systems.
Therefore it is natural to look for conditions of their BIBO stability in terms
of the properties of their impulse-response or transfer function.

The theorem below gives a simple example of such results for the case of
single-input–single-output LTI systems.
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Theorem 7.1.1 (BIBO stability of SISO LTI system). A single-input–
single-output (SISO) LTI system is (externally or) BIBO-stable if and only
if

∫ ∞

0

|h(t)|dt ≤M <∞ (7.3)

where M is a constant and h(t) is the impulse-response function of the system.

7.1.3 L2-gain of Linear and Nonlinear Systems

The concept of L2-gain (see Subsection 2.2.2) of an LTI system plays a central
role in the investigation of stability and performance of control systems. In
this section we extend and refine this concept to a class of nonlinear systems,
too.

In order to define the L2-gain of a linear system we go back to the original
definition of BIBO stability given by Equation (7.1) and develop a special
case of it.

Definition 7.1.2 (L2-gain for linear systems)
A linear system with input u and output y has L2-gain less than or equal to
γ, if

∫ ∞

0

‖y‖2dt ≤ γ2

∫ ∞

0

‖u‖2dt (7.4)

Observe that the integrals in the above inequality are the 2-norms of the
signals u and y, that is ∫ ∞

0

‖y‖2dt = ||y||22

We assume that the squared 2-norm
∫∞

0
‖u‖2 is finite in Equation (7.4).

In this case the BIBO stability of the system implies that there exists a finite
γ2 such that it holds.

It is known that finite L2-gain implies BIBO stability of a linear
system.

In the theory of nonlinear systems, however, the notion of L2-gain has a
slight difference when compared to the defining Equation (7.4).

Consider a nonlinear system given by an input-affine nonlinear state-space
model:

ẋ = f(x) + g(x)u u ∈ R
m, f(0) = 0

y = h(x) y ∈ R
p, h(0) = 0

(7.5)

where x = (x1, . . . , xn) are locale coordinates for a e.g. Ck (k times continu-
ously differentiable functions, k ≥ 1) state-space manifold M.

The L2-gain concept can be carried over to the system described in Equa-
tion (7.5) in the following form:
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Definition 7.1.3 (L2-gain for nonlinear systems)
The nonlinear system (7.5) has L2-gain less than or equal to γ, if for all
x ∈ M, ∃K(x), 0 ≤ K(x) <∞, K(0) = 0, such that for every T > 0:

∫ T

0

‖y‖2dt ≤ γ2

∫ T

0

‖u‖2dt+K(x(T )) (7.6)

Observe that the function K(.) gives the “remaining part” of the integrals in
Equation (7.4) from T up to ∞ and therefore it should be taken at the point
x(T ). Furthermore, it is clear that the function K(.) is not unique.

The function K(x) in the above definition gives rise to the notion of the
available storage, which leads to the storage function of the system (see later
in Chapter 8).

7.1.4 The Small-gain Theorem

For closed-loop systems the celebrated small-gain theorem can be used to
investigate BIBO stability. The small-gain theorem is based on the operator
description of a composite system consisting of two interconnected subsys-
tems. The notations and results presented in this subsection are based on
[80], where the complete proof of the theorem can be found.

For the general statement of the small-gain theorem it is necessary to
define the notion of Lq-stability and finite Lq-gain of relations instead of
maps.

Definition 7.1.4 (Lq-stability and finite Lq-gain of relations)
• R ⊂ Lqe(U) × Lqe(Y ) is Lq-stable if for all

(u, y) ∈ R, u ∈ Lq(U) ⇒ y ∈ Lq(Y ),
• R ⊂ Lqe(U) × Lqe(Y ) has finite Lq-gain if ∃γq, bq ∈ R

such that for all T ≥ 0
(u, y) ∈ R, u ∈ Lqe(U) ⇒ ‖yT ‖q ≤ γq‖uT ‖q + bq.

General Feedback Configuration. The general feedback configuration
consists of two interconnected subsystems with their system operators G1

and G2, and is shown in Figure 7.1.
The signals appearing in the closed-loop system Σf

G1,G2
are as follows:

u1(t), y2(t), e1(t) ∈ E1, ∀t ≥ 0 (7.7)

u2(t), y1(t), e2(t) ∈ E2, ∀t ≥ 0 (7.8)

where dim(E1)=m and dim(E2)=n.

The subsystems forming Σf
G1,G2

are

G1 : Lqe(E1) 7→ Lqe(E2), G2 : Lqe(E2) 7→ Lqe(E1) (7.9)

Furthermore, we assume that e1 ∈ Lqe(E1) and e2 ∈ Lqe(E2).
It’s clear from Figure 7.1 that
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G 1

G 2

e 1 u 1

u 2y 2

y 1

+

+
e 2

+

-

Figure 7.1. General feedback configuration

u1 = e1 − y2, u2 = e2 + y1
y1 = G(u1), y2 = G2(u2)

(7.10)

Let us use the following notations

u =

[
u1

u2

]
, y =

[
y1
y2

]
, e =

[
e1
e2

]
(7.11)

Then the feedback connection of the two subsystems is described as

y = G(u) and u = e− Fy (7.12)

where

G =

[
G1 0
0 G2

]
(operator matrix), F =

[
0 Im1

−Im2
0

]
(real matrix) (7.13)

Then the overall input and output signals are expressed as

y = G(e− Fy) (7.14)

u = e− FG(u) (7.15)

The closed-loop system defines two relations:

Reu = {(e, u) ∈ Lqe(E1 × E2) × Lqe(E1 × E2) | u+ FG(u) = e} (7.16)

Rey = {(e, y) ∈ Lqe(E1 × E2) × Lqe(E2 × E1) | y = G(e− Fy)} (7.17)

The most important properties of the closed-loop system are the following:

• Reu is Lq-stable ⇔ Rey is Lq-stable,
• Reu has finite Lq-gain ⇔ Rey has finiteLq-gain,
• let G1 and G2 be causal I–O mappings corresponding to causal systems

(see Section 2.2.1). Then Σf
G1,G2

is also causal in the following sense:
1. uT depends only on eT for all (e, u) ∈ Reu and T ≥ 0.
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2. yT depends only on eT for all (e, y) ∈ Rey and T ≥ 0.

Now we can state the small-gain theorem in its most general form as follows:

Theorem 7.1.2 (Small-gain theorem). Consider the closed-loop system

Σf
G1,G2

and let q ∈ {1, 2, . . . ,∞}. Suppose that G1 and G2 have Lq-gains
γq(G1) and γq(G2) respectively. The closed-loop system has finite Lq-gain if

γq(G1) · γq(G2) < 1

7.1.5 Asymptotic or Internal Stability of Nonlinear Systems

Asymptotic stability corresponds to a situation where the effect of an impulse-
type disturbance moves out the state of the system from its non-perturbed
(nominal) value over an infinitesimally short time interval and then the per-
turbed state evolution is compared to the nominal one. As we are interested
in the time evolution of the state variable(s), we need to have a state-space
model of the system for analyzing asymptotic stability. Also, the focus is on
the behavior of the state variables, these being internal signals of the system:
it explains why asymptotic stability is also called internal stability.

Because of the above situation, we consider identically zero inputs, i.e.
u(t) ≡ 0 in the state-space model of the system when analyzing asymptotic
stability.

Definition 7.1.5 (Truncated state equation)
A state equation with identically zero inputs is called a truncated state equa-
tion.

In order to give a rigorous mathematical definition of asymptotic stability in
the general nonlinear case, let us have a truncated nonlinear state equation
(with u(t) ≡ 0) as follows:

dx

dt
= f(x, t) (7.18)

and let it have two solutions:

• x0(t) for x0(t0) as the ordinary solution, and
• x(t) for x(t0) which is a “perturbed solution”.

Definition 7.1.6 (Stability of a solution)
The solution x0(t) of Equation (7.18) is stable if for any given ε > 0 there
exists a δ(ε, t0) such that all solutions with ||x(t0)−x0(t0)|| < δ fulfill ||x(t)−
x0(t)|| < ε for all t ≥ t0 where ||.|| is a suitable vector norm.

The above stability notion is used to state the definition of asymptotic sta-
bility.
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Definition 7.1.7 (Asymptotic stability, weak)
The solution x0(t) of Equation (7.18) is asymptotically stable if it is stable
and ||x(t) − x0(t)|| → 0 when t→ ∞ provided that ||x(t0) − x0(t0)|| is small
enough.

The above definitions have a very special property as compared to the notion
of BIBO stability.

Asymptotic stability is a property of a solution for nonlinear sys-
tems.

Asymptotic Stability of Input-affine Nonlinear Systems. In the case
of input-affine nonlinear systems, we assume that f(x, t) = f(x) and f(0) = 0.
Then Equation (7.18) has a stationary solution x0(t) ≡ 0 for x0(t0) = 0. In
this case, the notion of asymptotic stability is used in a more strict sense as
follows:

Definition 7.1.8 (Asymptotic stability, strong)
Equation (7.18) is asymptotically stable if ||x(t)|| → 0 when t→ ∞ provided
that ||x(t0)|| is small enough.

7.1.6 Asymptotic Stability of LTI Systems

In order to investigate the similarities and differences of asymptotic stabil-
ity for nonlinear and linear systems, we start with the usual definition of
asymptotic stability special to LTI systems.

Definition 7.1.9 (Asymptotic stability of LTI systems)
An LTI system with realization (A,B,C) is (internally) stable if the solution
x(t) of the equation

ẋ(t) = Ax(t), x(t0) = x0 6= 0, t > t0 (7.19)

fulfills
lim

t→∞
x(t) = 0

The condition above is similar to asymptotic stability of linear ordinary dif-
ferential equations. Moreover, this notion is exactly the same as the strong
asymptotic stability but there is no need for ||x(t0)|| to be “small enough”.
The reason for this difference is explained later.

In order to develop necessary and sufficient conditions for an LTI system
to be asymptotically stable, the following definition will be useful:

Definition 7.1.10 (Stability matrix)
A square matrix A ∈ R

nxn is said to be a stability matrix if all of its eigen-
values λi(A) have strictly negative real parts, i.e.

Re{λi(A)} < 0,∀i
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The following proposition shows the effect of state transformations on the
stability matrix property.

Proposition 7.1.1. The eigenvalues of a square A ∈ R
nxn matrix remain

unchanged after a similarity transformation on A, i.e. with

Ā = TAT−1

we have the same eigenvalues for both A and Ā.

Now we are in a position to state the necessary and sufficient condition
for an LTI system to be asymptotically stable.

Theorem 7.1.3 (Asymptotic stability of LTI systems). An LTI system
is asymptotically (internally) stable if and only if its state matrix A is a
stability matrix.

The above proposition and theorem together show that the stability prop-
erty of a system remains unchanged under similarity transformation, that is,
asymptotic stability is realization-independent.

It is important to emphasize that stability is a system property:

• This is true by construction for BIBO stability.
• The above Proposition 7.1.1 and Theorem 7.1.3 proves it for the

asymptotic stability of LTI systems.

7.1.7 Relationship Between Asymptotic and BIBO Stability

Generally speaking, asymptotic stability is a “stronger” notion than BIBO
stability. This is because it is intuitively clear that a bounded state signal
produces a bounded output signal through a smooth and bounded output
function y = h(x). Therefore we expect that asymptotic stability implies
BIBO stability under relatively mild conditions.

The following theorem shows the relationship between BIBO and asymp-
totic stability in the case of LTI systems.

Theorem 7.1.4 (Asymptotic and BIBO stability of LTI systems).
Asymptotic stability implies BIBO stability for LTI systems but the reverse
statement does not hold.

The following two simple examples show that a BIBO stable system is indeed
not necessarily asymptotically stable.
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Example 7.1.1 (Asymptotic and BIBO stability 1)
A BIBO-stable but not asymptotically stable LTI system

Consider a LTI system with the state-space representation

ẋ =

[
−2 0
0 3

]
x+

[
2
1

]
u (7.20)

y =
[

1 0
]

(7.21)

The system above is not asymptotically stable since one of the
eigenvalues of the state matrix is positive, but it is BIBO-stable
because the “unstable state” does not appear in the output.
The above system is called non-detectable, since the unstable state
is clearly non-observable.

Example 7.1.2 (Asymptotic and BIBO stability 2)
Another BIBO-stable but not asymptotically stable LTI system

Consider an LTI system with the truncated state equation

ẋ =

[
0 −2
2 0

]
x (7.22)

The eigenvalue analysis shows that

λ1,2 = +i

that is, the poles of the system are on the stability boundary. This
system is a pure oscillator.

7.2 Local Stability of Nonlinear Systems

One of the most widespread approach for analyzing local asymptotic stability
of a nonlinear system in the neighborhood of a steady-state operating point
is to linearize the system model around the operating point and then perform
linear stability analysis. This approach is the subject of this section, where
we discuss how to linearize nonlinear state-space models, how to relate local
and global analysis results and how local stability depends on the system
parameters.

TLFeBook



146 7. Stability and The Lyapunov Method

7.2.1 Local Linearization of Nonlinear State-space Models

In order to linearize a state or output equation in a nonlinear state-space
model, we first need to find a steady-state operating or reference point to
linearize around and then proceed with the linearization.

The Reference Point. The reference point (u0, x0, y0) for the linearization
is found by specifying a reference input u0 for a nonlinear state-space model
in its general form:

ẋ = f(x, u), y = h(x, u) (7.23)

and computing the reference value of the state and output signals from the
above equations by specifying ẋ = 0 to have a steady-state operating point:

f̃(x0, u0) = 0, y0 = h̃(x0, u0) (7.24)

In the special case of input-affine state-space models, we have:

f(x0) +
m∑

i=1

gi(x0)ui0) = 0, y0 = h(x0) (7.25)

from the state-space model

ẋ(t) = f(x(t)) +

m∑

i=1

gi(x(t))ui(t)

y(t) = h(x(t)) (7.26)

Thereafter, centered variables are introduced for all variables to have

x̃ = u− u0, x̃ = x− x0, ỹ = y − y0 (7.27)

The Principle of Linearization. The linearization is based on a Taylor-
series expansion of a smooth nonlinear function f around a steady-state ref-
erence point x0.

In the case of a univariate (i.e. when x is scalar) scalar-valued function
y = f(x), the following Taylor series expansion is obtained:

f(x) = f(x0) +
df

dx

∣∣∣∣
x0

(x− x0) +
d2f

dx2

∣∣∣∣
x0

(x− x0)
2

2!
+ . . . (7.28)

where x0 is the reference point and dif
dxi denotes the i-th partial derivative of

the function f with respect to x.
The linear approximation is then obtained by neglecting the higher-order

terms, which gives:
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f(x) ' f(x0) +
df

dx

∣∣∣∣
x0

(x− x0) (7.29)

This way, we obtain a linear approximation of the original nonlinear equation
y = f(x) in the form:

y = f(x0) +
df

dx

∣∣∣∣
x0

(x− x0) (7.30)

The above equation can be simplified to obtain

(ỹ + y0) = f (x0, t) +
df

dx

∣∣∣∣
x0

(x− x0) (7.31)

because

y0 = f(x0) and ỹ = y − y0 (7.32)

Finally we obtain

ỹ =
df

dx

∣∣∣∣
x0

x̃ (7.33)

which is the final linearized form expressed in terms of the centered variable
x̃.

It is easy to extend the above formulae (7.33) for the case of a multivariate
vector-valued function y = f(x1, . . . , xn, t) to obtain

ỹ = Jf,x
∣∣
x0

· x̃ (7.34)

where Jf,x is the so-called Jacobian matrix of the function f containing the
partial derivatives of the function with respect to the variable x evaluated at
the steady-state reference point

Jf,x
ji

∣∣∣
0

=
∂fj

∂xi

∣∣∣∣
x0

(7.35)

The Linearized Form of the State-space Model. Now we can apply
the principle of linearization to the case of nonlinear state-space models. To
do this, the nonlinear functions f̃ and h̃ in the general state-space model
in Equation (7.23) or the nonlinear functions f , g and h in Equation (7.26)
can be linearized separately around the same steady-state reference point
(u0, x0, y0).

The linearized model can then be expressed in terms of centered variables
in an LTI form:

˙̃x = Ãx̃+ B̃ũ

ỹ = C̃x̃+ D̃ũ (7.36)
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where in the general nonlinear state-space model case the matrices can be
computed as

Ã = J f̃ ,x
∣∣∣
0
, B̃ = J f̃ ,u

∣∣∣
0
, C̃ = J h̃,x

∣∣∣
0
, D̃ = J h̃,u

∣∣∣
0

(7.37)

while in the input-affine case they are in the form:

Ã = Jf,x
∣∣
0

+ Jg,x|0 u0, B̃ = g(x0), C̃ = Jh,x
∣∣
0
, D̃ = 0 (7.38)

7.2.2 Relationship Between Local and Global Stability of
Nonlinear Systems

The relationship between local and global stability is far from being trivial. It
is intuitively clear that global stability is a stronger notion, that is, a locally
stable steady-state point may not be globally stable. This is the case when
more than one steady-state point exists for a nonlinear system.

There is a related but important question concerning local stability of
nonlinear systems: how and when can we draw conclusions on the local sta-
bility of a steady-state point of a nonlinear system from the eigenvalues of
its locally linearized state matrix? The following theorems provide answers
to this question.

Theorem 7.2.1 (Theorem for proving local asymptotic stability).

Suppose that each eigenvalue of the matrix Ã in Equation (7.36) has a neg-
ative real part. Then x0 is a locally asymptotically stable equilibrium of the
original system (7.26).

The following theorem shows how one can relate the eigenvalues of a locally
linearized state matrix to the unstable nature of the equilibrium point.

Theorem 7.2.2 (Theorem for proving instability). Suppose that the

matrix Ã in (7.36) has at least one eigenvalue with a positive real part. Then
x0 is an unstable equilibrium of the original system (7.26).

The following simple examples illustrate the application of the above results
to simple systems.

Example 7.2.1 (Global and local asymptotic stability 1)

We show that Theorem 7.2.1 is only true in one direction. For this
purpose, consider the one-dimensional autonomous system
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ẋ = −x3 (7.39)

The only steady-state equilibrium of this system is x0 = 0.
The Jacobian matrix is now a constant Jf,x = −3x2 evaluated at
x0 = 0, which is again 0.
It’s easy to check that for any initial condition x(0)

x(t) =
x(0)√

2tx(0)2 + 1
(7.40)

From this, it follows that

|x(t)| ≤ |x(0)|, ∀t ≥ 0 (7.41)

and obviously

lim
t→∞

x(t) = 0 (7.42)

Therefore 0 is a globally asymptotically stable equilibrium of the
system (7.39).

Example 7.2.2 (Global and local asymptotic stability 2 )

In this simple example we show that only stability of the linearized
system is not enough even for the stability of the original nonlinear
system. For this, consider the one-dimensional autonomous system

ẋ = −x2 (7.43)

It’s easy to see that the linearized system (around the equilibrium
state x0 = 0) reads

˙̃x = 0 (7.44)

which is stable (but not asymptotically stable). It can be checked
that the solution of Equation (7.43) for the initial state x(0) is
given by
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x(t) =
x(0)

tx(0) + 1
, ∀t ≥ 0 (7.45)

This means that 0 is an unstable equilibrium state of (7.43) since
the solution is not even defined for all t ≥ 0 if x(0) < 0.

Example 7.2.3 (Asymptotic stability, nonlinear case)

Consider the following two-dimensional model (which is the model
of a mathematical pendulum with rod length l and gravity con-
stant g)

ẋ1 = x2 (7.46)

ẋ2 = −g
l

sin(x1) (7.47)

It’s easy to see that this system has exactly two equilibrium points,
namely x01 = [0 0]T and x02 = [π 0]T . The system matrix of the
linear approximation in x02 is given by

Ã =

[
0 1
g
l 0

]
(7.48)

which has an eigenvalue with a positive real part, therefore x02

is an unstable equilibrium of the system according to Theorem
7.2.2. We can’t say anything about the stability of x01 based on
the linear approximation. However, it’s not difficult to prove with
other methods that x01 is a locally stable but not asymptotically
stable equilibrium state.

7.2.3 Dependence of Local Stability on System Parameters:
Bifurcation Analysis

Roughly speaking, bifurcations represent the sudden appearance of a quali-
tatively different solution for a nonlinear system as some parameter varies.
We speak about a bifurcation when the topological structure of the phase
portrait of a dynamical system changes when a parameter value is slightly
changed.

Definition 7.2.1 (Topological equivalence)
Let f : M 7→ R

n and g : N 7→ R
n be class Cr mappings where M,N ⊂ R

n

are open sets, and consider the autonomous systems

TLFeBook



7.2 Local Stability of Nonlinear Systems 151

ẋ = f(x) (7.49)

ẋ = g(x) (7.50)

with flows existing for all t ∈ R. The two differential equations (7.49) and
(7.50) are topologically equivalent if there exists a homeomorphism
h : M 7→ N that transforms the trajectories of Equation (7.49) into the
trajectories of Equation (7.50) keeping the direction.

If Equation (7.49) and Equation (7.50) are topologically equivalent, then h
maps equilibrium points onto equilibrium points and periodic trajectories
onto periodic trajectories (by possibly changing the period).

In order to define bifurcation values, consider a parameter-dependent un-
forced nonlinear system

ẋ = f(x, ε), x ∈M, ε ∈ V (7.51)

where M ⊂ R
n and V ⊂ R

l are open sets and f : M × V 7→ R
n is a class

Cr function. Notice that Equation (7.51) can be also be interpreted as a
parameter-independent system ẋ = f(x, ε), ε̇ = 0. We assume that (7.51) has
a solution on the entire set R, and f(0, 0) = 0.

Definition 7.2.2 (Bifurcation value)
The parameter ε = 0 ∈ V is called a bifurcation value if in any neighborhood
of 0 there exist ε ∈ V parameter values such that the two autonomous systems
ẋ = f(x, 0) and ẋ = f(x, ε) are not topologically equivalent.

Besides characterizing bifurcation points, Theorem 7.2.3 below can also be
used for investigating local stability based on the eigenvalues of the linearized
state matrix with multiple zero eigenvalues.

Let λ1, . . . λs be those eigenvalues of the linearized system matrix Ã that
have zero real parts, where

Ã = Dxf(0, 0) =

[
∂fi

∂xj
(0, 0)

]n

i,j=1

(7.52)

Furthermore, let Ã have exactly m eigenvalues with negative real parts and
k = n− s−m eigenvalues with positive real parts.

Theorem 7.2.3 (Center manifold theorem). In a neighborhood of 0 with
ε of a sufficiently small norm, the system (7.51) is topologically equivalent
with the following system:

ẋ = F (x, ε) := Hx+ g(x, ε)

ẏ = −y (7.53)

ż = z (7.54)

where x(t) ∈ R
s, y(t) ∈ R

m, z(t) ∈ R
k and H is a quadratic matrix of size

s with eigenvalues λ1 . . . λs. Furthermore, g is a class Cr function for which
g(0, 0) = 0 and Dxg(0, 0) = 0.
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From the construction of Equation (7.53), it follows that in a neighborhood
of 0, the bifurcations of Equation (7.51) can be described using only the
equation

ẋ = F (x, ε) (7.55)

Equation (7.55) is called the reduced differential equation of Equation (7.53)
on the local center manifold M c

loc = {(x, y, z)|y = 0, z = 0}.
Often, Equation (7.55) can be transformed into a simpler (e.g. polyno-

mial) form using a nonlinear parameter-dependent coordinate transformation
which does not alter the topological structure of the phase portrait in a neigh-
borhood of the investigated equilibrium point. This transformed form is called
a normal form. The normal form is not unique, different normal forms can
describe the same bifurcation equivalently.

Definition 7.2.3 (Fold bifurcation)
Let f : R × R be a one-parameter C2 class map satisfying

f(0, 0) = 0 (7.56)[
∂f

∂x

]

ε=0,x=0

= 0 (7.57)

[
∂2f

∂x2

]

ε=0,x=0

> 0 (7.58)

[
∂f

∂ε

]

ε=0,x=0

> 0 (7.59)

there then exist intervals (ε1, 0), (0, ε2) and µ > 0 such that:

• if ε ∈ (ε1, 0), then f(·, ε) has two equilibrium points in (−µ, µ) with the
positive one being unstable and the negative one stable, and

• if ε ∈ (0, ε2), then f(·, ε) has no equilibrium points in (−µ, µ).

This type of bifurcation is known as a fold bifurcation (also called a saddle-
node bifurcation or tangent bifurcation).

7.3 Lyapunov Function, Lyapunov Theorem

The Lyapunov theorem and the Lyapunov function, the existence of which
is the condition of the theorem, play a central role in analyzing asymptotic
stability of nonlinear systems. This is the most widespread and almost the
only generally applicable technique for this case.

7.3.1 Lyapunov Function and Lyapunov Criterion

The concept of a Lyapunov function originates from theoretical mechanics.
Here we see that in stable conservative systems “energy” is a positive definite
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scalar function which should decrease with time. Using this analogy, we can
define a generalized energy as a Lyapunov function to analyze stability for
any nonlinear system.

Definition 7.3.1 (Lyapunov function)
A generalized energy or Lyapunov function V [x] to an autonomous system
with a truncated state equation ẋ = f(x) is a scaler-valued function with the
following properties:

1. scalar function
V : R

n → R

2. positive definiteness
V [x(t)] > 0

3. dissipativity
d

dt
V [x(t)] =

∂V

∂x

d[x(t)]

dt
< 0

Note that the system dynamics is buried in the inequalities above, because
both the positive definiteness and dissipativity is required along every possible
trajectory in the state-space.

Theorem 7.3.1 (Lyapunov). A system S is asymptotically stable (in the
strong sense) if there exists a Lyapunov function with the above properties.

Note that the Lyapunov criterion above is not constructive: it is the task of
the user to find an appropriate Lyapunov function to show stability. More-
over, the reverse of the statement is not true.

Converse Lyapunov Theorem. While there is no general method of con-
structing Lyapunov functions for nonlinear systems, the existence of Lya-
punov functions for asymptotically stable systems is theoretically guaranteed
by the following well-known theorem.

Theorem 7.3.2 (Converse Lyapunov theorem). Consider the following
autonomous system

ẋ = f(x) (7.60)

where x ∈ R
n, f(0) = 0, f is a smooth function on R

n\{0} and continuous at
x = 0. If the equilibrium x = 0 of the system is globally asymptotically stable,
then there exists a positive definite and proper smooth function V : R

n 7→ R
+

such that

∂V

∂x
f(x) < 0, ∀x 6= 0 (7.61)

Note that if the stability of the equilibrium is not global, then the above
theorem can still be applied to an appropriate neighborhood of x = 0.
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7.3.2 Lyapunov Criterion for LTI Systems

The Lyapunov criterion is in a special “if-and-only-if” form for LTI system
as follows:

Theorem 7.3.3 (Lyapunov for LTI systems). The state matrix A of
an LTI system is a stability matrix, i.e. Re{λi(A)} < 0 if and only if for
any given positive definite symmetric matrix Q there exists a positive definite
symmetric matrix P such that

ATP + PA = −Q (7.62)

Note that Q can be positive semi-definite if the system is observable.

Proof. In order to show that the condition (7.62) is necessary, we define the
generalized energy function of the system with realization (A,B,C) as

V [x(t)] = xTPx > 0 (7.63)

with P being positive definite.
It is now enough to show that the second Lyapunov property holds by

computing the derivative

d

dt
V [x(t)] =

d

dt
(xTPx) = ẋTPx+ xTPẋ

If we substitute the system equation ẋ = Ax for (A, 0, 0) in the equation
above with ẋT = (Ax)T = xTAT , we get

xTATPx+ xTPAx = xT (ATP + PA)x = xT (−Q)x

ATP + PA is negative definite if and only if Q is positive definite. For ob-
servable systems we can choose Q = CTC.

The proof of the reverse direction is done by showing that if A is a stability
matrix then

P =

∫ ∞

0

eAT tQeAtdt (7.64)

where Q is the given positive definite symmetric matrix, will satisfy ATP +
PA = −Q.

The following example illustrates the above theorem for a simple LTI
system:
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Example 7.3.1 (Lyapunov theorem for an LTI system)
Lyapunov theorem for a simple LTI system

Consider the following matrix:

A =

[
−3 1
0 −1

]

If possible, compute P from Equation (7.62) with

Q =

[
12 2
2 4

]

Since A is a stability matrix (λ1 = −3, λ2 = −1, Re(λi) < 0) and
Q is positive definite (has positive eigenvalues), there is a positive
definite symmetric matrix P to fulfill Equation (7.62). Searching
for P in the form

P =

[
p11 p12

p21 p22

]

using the fact that p12 = p21, we need to solve a linear set of
equations to obtain the solution for P :

P =

[
2 1
1 3

]

Quadratically Stabilizable Systems. Note that we can try to apply the
quadratic Lyapunov function (7.63) to any nonlinear system. For some non-
linear systems one can find a quadratic Lyapunov function V (x) = xTQx
with a suitably chosen Q. This gives rise to the definition below.

Definition 7.3.2 (Quadratically stabilizable systems)
A system is called quadratically stabilizable if there exists a static state feed-
back such that the closed-loop system is asymptotically stable with a quadratic
Lyapunov function.

7.3.3 Lyapunov Criteria for LPV System Models

LPV system models have been introduced in Section 3.4 as mild extensions
of LTI systems with varying parameters. The truncated version of an LPV
state equation (see Equation (3.12)) used for asymptotic stability analysis is
as follows:

ẋ(t) = A(θ(t))x(t) (7.65)
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where the state matrix A(θ) is a function of a real-valued (possibly time-
varying) parameter θ = [θ1, . . . , θk]T from a bounded domain θ ∈ Θ.

If we look at LPV systems as being linear systems then we can expect
them to be quadratically stabilizable with a suitable quadratic Lyapunov
function

V (x) = xTKx

where K = KT > 0 is a symmetric positive definite matrix.

Definition 7.3.3 (Quadratic stability of LPV systems)
An LPV system with the truncated state equation (7.65) is said to be quadrat-

ically stable for perturbations Θ if there exists a matrix K = KT > 0 such
that

A(θ)TK +KA(θ) < 0

for all perturbations θ ∈ Θ.

If we further assume that the state matrix A(θ) of the LPV system varies in
a convex matrix polytope with corner-point matrices

{A1, A2, . . . , Ak}
such that

A(θ(t)) ∈ = Co{A1, A2, . . . , Ak} := {
k∑

i=1

αiAi : αi ≥ 0 ,

k∑

i=1

αi = 1}

then a necessary and sufficient condition can be given for such a polytopic
LPV system to be quadratically stable.

Theorem 7.3.4 (Quadratic stability of polytopic LPV systems). If
the LPV system (7.65) is a polytopic parameter-dependent model where
A(θ) ∈ Co{A1, . . . , Ak} for all θ ∈ Θ, then it is quadratically stable if and
only if there exists KT = K > I such that

AT
i K +KAi < 0

for all i = 1, . . . , k.

7.4 Stability of Process Systems

The asymptotic stability of process systems can be analyzed in three princi-
pally different ways depending on the process system in question:

• local asymptotic stability analysis can be performed after local linearization
by investigating the eigenvalues of the resulting LTI state matrix A,

• structural stability analysis can be performed using the method of conser-
vation matrices (later in Section 7.4.2),

• global nonlinear stability analysis can also be performed applying the Lya-
punov theorem based on passivity analysis (see later in Section 8.5).
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7.4.1 Structural Stability

The notion of structural dynamic properties relies on the concept of structure
matrices of a dynamic state-space model.

Definition 7.4.1 (Structure matrix)
A structure matrix [Y ] of a real matrix Y is a matrix with structural zeros
(denoted by 0) and structural non-zeros (denoted by ×) in its elements such
that

[Y ]ij =

{
0 if Yij = 0
× otherwise

We may need to have the sign of the elements in the structure matrices, too.
Signed structure matrices defined below serve this purpose.

Definition 7.4.2 (Signed structure matrix)
A signed structure matrix {Y } of a real matrix Y is a matrix with structural
zeros (denoted by 0) and signs (denoted by − and +) in its elements such
that

{Y }ij =





0 if Yij = 0
+ if Yij > 0
− if Yij < 0

The concept of structure matrices gives rise to recognition of classes of process
models with the same structure and therefore similar dynamic properties.

Definition 7.4.3 (Structurally equivalent state-space models)
Two linear or linearized LTI systems with state-space representation matrices
(A,B,C) and (A′, B′, C ′) are structurally equivalent if they give rise to the
same set of signed structure matrices, i.e.

{A} = {A′}, {B} = {B′}, {C} = {C ′}

With the notion of structurally equivalent state-space models we can say that
a structural property holds for a class of structurally equivalent state-space
models if it holds for almost every member of the class (with the exception
of a zero-measure sub-class). This way we can define structural stability as
follows:

Definition 7.4.4 (Structural stability)
A class of structurally equivalent state-space models is structurally asymp-
totically stable if almost every member in the class (with the exception of a
zero-measure sub-class) is asymptotically stable.

The following example illustrates the notion of structural stability of a class
in relationship to the stability of the members in the class.
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Example 7.4.1 (Structural stability)
A simple structurally stable class

Let us consider the following state structure matrix {A} defining
a structurally equivalent LTI state-space model class:

{A} =

[
− 0
0 −

]
(7.66)

The following two matrices are different numerical realizations of
the above structure matrix:

A1 =

[
−2 0
0 −3

]
, A2 =

[
−0.05 0

0 −1000

]

It is easy to see that both A1 and A2 are stability matrices, there-
fore the LTI systems they belong to are asymptotically stable.
On the other hand, every diagonal matrix with negative elements
in its main diagonal is a stability matrix, because such matri-
ces contain their real negative eigenvalues in their main diagonal.
Therefore the whole LTI state-space model class defined by {A}
is structurally asymptotically stable.

7.4.2 Conservation Matrices

Conservation matrices are special stability matrices often obtained as state
matrices for dynamic process models. Their stability property is used for
proving structural stability of a class of process systems where the class mem-
bers have a locally linearized state matrix with conservation matrix property
irrespectively of the system parameters.

Definition 7.4.5 (Conservation matrix)
A real square matrix F = {fij}n

i,j=1 of order n is said to be a column conser-
vation matrix (or a row conservation matrix) if it is a matrix with dominant
main diagonal with respect columns (or rows), i.e.

|fii| ≥
∑

j 6=i

|fij | = Ri, i = 1, 2, ..., n (7.67)

or

|fii| ≥
∑

j 6=i

|fji| = Ci, i = 1, 2, ..., n (7.68)

and its elements have the following sign pattern:

fii ≤ 0, fij ≥ 0 , i 6= j (7.69)
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In the case of proper inequality for every inequality in either Equation (7.67)
or (7.68), F is said to be a a strict column conservation matrix or a strict
row conservation matrix.

Conservation matrices are nonsingular and stable matrices [77], i.e. the real
part of their eigenvalues is strictly negative for strict conservation matrices
or non-positive otherwise.

7.5 Process System Examples

This section is devoted to showing how asymptotic stability analysis and
structural stability analysis can be applied to process systems.

7.5.1 Stability Analysis of the Free Mass Convection Network

In this subsection we analyze the asymptotic stability of the free mass con-
vection network described in Section 4.2.4 using the method of conservation
matrices. The analysis is performed in two steps as follows:

1. First, we show that the convection matrix Cconv given by Equation (4.18)
is a column conservation matrix.

2. Then we prove that the matrix product CconvK in the state equation
(4.22) is also a column conservation matrix with

K = diag[ κ(j) | j = 1, . . . , C ]

being a diagonal matrix with positive elements.

With the program above, the analysis results are as follows:

1. We check the properties of conservation matrices for this case starting
with the sign-pattern property and then investigating the dominant main
diagonal property.
• The sign pattern of the convection matrix Cconv given by Equation

(4.18) is easy to check. As α
(j)
i is a ratio for which 0 ≤ α

(j)
i ≤ 1 holds,

the convection matrix possesses the required sign property, that is,

[Cconv]ii = −(1 − α
(i)
i ) < 0

[Cconv]ij = α
(j)
i ≥ 0

• The column-wise dominant main diagonal property is shown by using
the defining Equation (4.16) for the flow ratios written in the form for
the j-th column:
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C∑

i=1, i6=j

α
(j)
i + α

(j)
j + α

(j)
0 = 1

Rearranging the equation and leaving out the non-negative term α
(j)
0 ,

we get
C∑

i=1, i6=j

α
(j)
i ≤ (1 − α

(j)
j )

which is exactly the inequality we wish to have.
2. Let us compute first the elements of the matrix CconvK from their defi-

nitions to obtain

CconvK =



−(1 − α

(1)
1 )κ(1) α

(2)
1 κ(2) ... α

(C)
1 κ(C)

... ... ... ...

α
(1)
C κ(1) α

(2)
C κ(2) ... −(1 − α

(C)
C )κ(C)


 (7.70)

It can be seen that the matrix product CconvK is obtained from Cconv in
such a way that each of the columns of index j is multiplied by a positive
constant κ(j) different for each column. Therefore both the sign property
and the dominant main diagonal property remains unchanged, that is,
the matrix CconvK is also a column conservation matrix and as such is a
stability matrix.

7.5.2 Lyapunov Function of the Free Mass Convection Network

As another technique for asymptotic stability analysis, we now construct
a Lyapunov function for the LTI state-space model of the free convection
network given in Equation (4.22).

First, we observe that the free mass convection network is a linear time-
invariant system based on the state equation (4.22) with the following state
and input variable vectors:

xFC = M, uFC = VIN

and state matrix
AFC = CconvK

Therefore any function of the form

VFC [xFC(t)] = xT
FCPxFC

with P being a positive definite symmetric matrix, which is a solution of the
equation

AT
FCP + PAFC = −Q

with Q being a positive definite symmetric matrix, is a Lyapunov function
for the free mass convection network as is stated by Theorem 7.3.3.

Let us choose the simplest case when Q = I then

P = −(AT
FC +AFC)−1
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7.5.3 Structural Stability Analysis of Heat Exchanger Networks

We construct the dynamic process model of a heat exchanger network from
sub-models of heat exchanger cells. Heat exchanger cells have been already
introduced with their lumped process model developed in Section 4.4 before.

Engineering Model of a Heat Exchanger Cell in the Network. Recall,
that a heat exchanger cell is a pair of regions connected by a heat-conducting
wall. Assuming constant mass and constant physico-chemical properties in
each balance volume, the engineering model of the j-th balance volume con-
nected to the `-th one forming jointly a heat exchanger cell is the potential
form of the energy conservation balance equation for the temperature T (j) of
the balance volume:

dT (j)

dt
= −γ(j)v(j)T (j) + γ(j)v(j)T

(j)
B +K

(j,`)
transfer(T (`) − T (j)) (7.71)

where K
(j,`)
transfer > 0 is a constant transfer coefficient. Notice that only con-

vective transport and a transfer term are present in the equation above, which
can be seen as a generalized form of the intensive form conservation balances
in Equations (4.47)–(4.48) with

γ(j) =
1

V (j)
, K

(j,`)
transfer =

U (j,`)A(j,`)

V (j)

State Matrix of the Heat Exchanger Network. The set of state vari-
ables of the overall heat exchanger network is the set of temperatures in the
cells, i.e.

X =
⋃

j∈C

T (j) (7.72)

where the number of the balance volumes is C = 2N , and N is the total
number of heat exchanger cells in the heat exchanger network.

Let us rearrange the indices of the balance volumes forming the overall
heat exchanger network so that the pair forming a heat exchanger cell are
assigned indices next to each other, i.e. ` = j+1. Moreover, let us assume gen-
eral connections between the cells described by Equations (4.17) and (4.16) in
Section 4.2.4. Then the convective transport AEconv and transfer AEtransfer

state matrices forming the linearized state matrix A by

A = AEconv +AEtransfer (7.73)

are in the following form:

AEtransfer =




−K(1,2)
transfer K

(1,2)
transfer ... 0 0

K
(1,2)
transfer −K(1,2)

transfer 0 ... 0

... ... ... ... ...

0 ... 0 −K(2N−1,2N)
transfer K

(2N−1,2N)
transfer

0 ... 0 K
(2N−1,2N)
transfer −K(2N−1,2N)

transfer
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AEconv =




A
(1)
D A

(1,2)
OD ... A

(1,N)
OD

A
(2,1)
OD A

(2)
D ... A

(2,N)
OD

... ... ... ...

A
(N,1)
OD A

(N,2)
OD ... A

(N)
D


 (7.74)

where the diagonal blocks in the convective matrix term are

A
(j)
D =

[
−γ(j)v(j)(1 − α

(j)
j ) γ(j)v(j)α

(j)
j+1

γ(j+1)v(j+1)α
(j+1)
j −γ(j+1)v(j+1)(1 − α

(j+1)
j )

]
(7.75)

Note that the diagonal blocks above are usually diagonal matrices because
the convective connection between the cold and hot side of the same heat
exchanger cell is a rare exception. Furthermore, the off-diagonal blocks A

(i,j)
OD

have elements being equal either to 0 or to a connection term γ(j)v(j)α
(j)
`

where ` = i or ` = i+ 1.
It is easy to see from the equations and matrices above that the convective

transport state matrix AEconv is a row conservation matrix while the transfer
state matrix AEtransfer is a diagonal matrix with negative entries, therefore
the overall state matrix is also a row conservation matrix acting as a stabil-
ity matrix. It implies that heat exchanger networks with constant mass and
constant physico-chemical properties in each balance volume are structurally
asymptotically stable [34].

7.5.4 Structural Stability Analysis of a Binary Distillation
Column with Constant Molar Flow and Vapor–liquid Equilibrium

The elementary engineering unit of a distillation column is a real or theo-
retical distillation tray which is a two-phase perfectly mixed subsystem with
vapor and liquid phases. In the case of binary distillation, the composition of
the binary mixture can be characterized by one mole fraction (e.g. the mole
fraction of the more volatile component) in both the liquid (ξ) and the vapor
(η) phases. The simple evaporator shown in Figure 4.1 in Section 4.3.2 can
be regarded as a simple distillation tray.

Constant molar flows F for the liquid and V for the vapor phase are
assumed with HL being the liquid phase and HV is the vapor phase molar
hold-up – both of them are constants – on the tray.

Engineering Model of a Distillation Tray. If vapor–liquid equilibrium
can be assumed on each tray and the vapor phase hold-up is negligible com-
pared to the liquid phase hold-up, then the liquid and vapor phases of a tray
form a balance volume in the dynamic model of the column with the liq-
uid phase as the dynamic one. Moreover, because of the constant molar flow
conditions, only the component conservation balance equation for the mole
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fraction of the more volatile component need be considered together with
the equilibrium relationship. Therefore the original DAE model equations
(4.25)–(4.45) specialize to the following set of differential equations:

HL
dξ(j)

dt
= L(ξ(j+1) − ξ(j)) + V (η(j−1) − η(j)) (7.76)

η(j) = V(ξ(j)) (7.77)

where

Γ (j) =
∂V(ξ(j))

∂ξ(j)
> 0 (7.78)

for the j-th tray, i.e. for the j-th balance volume.

State Matrix of the Distillation Column. The set of state variables of
the binary distillation column with constant molar flows is the set of liquid
phase mole fractions on the trays, i.e.

X =
⋃

j∈C

ξ(j) (7.79)

where the number of the balance volumes is C = N , and N is the number of
the trays.

Substituting Equation (7.77) into the conservation balance equation
(7.76) and linearizing the equations around the steady-state equilibrium
points on the trays, the following state matrices result:

AEconv =




− L
HL

L
HL

0 ... 0

0 − L
HL

L
HL

... 0

0 ... ... ... 0
... ... 0 − L

HL

L
HL

0 ... ... 0 − L
HL




(7.80)

AEtransfer =




− V
HL

Γ (1) 0 0 ... 0
V

HL
Γ (2) − V

HL
Γ (2) 0 ... 0

0 ... ... ... 0
... ... V

HL
Γ (N−1) − V

HL
Γ (N−1) 0

0 ... ... V
HL

Γ (N) − V
HL

Γ (N)




(7.81)

It can be seen from the matrices above that they are both row conser-
vation matrices, therefore the binary distillation column with vapor–liquid
equilibrium is structurally locally asymptotically stable [34].
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7.5.5 Structural Stability of a Binary Distillation Column with
Constant Molar Flows in the Non-equilibrium Case

If equilibrium on the trays cannot be assumed, then another dynamic equa-
tion describing the component transport in the vapor phase should be con-
sidered instead of the equilibrium relationship (7.77). Therefore two balance
volumes are needed to describe the behavior of a tray, one for the liquid and
one for the vapor phase. The transfer between the phases is described by
transfer rate expressions.

Engineering Model of the Distillation Tray. Because of the molar flow
conditions, only the component transport equations for the mole fraction of
the more volatile component in both phases have to be considered together
with the equilibrium relationship

HL
dξ(j)

dt
= L(ξ(j+1) − ξ(j)) + k

(j)
Ltransfer(ξ

(j)
∗ − ξ(j)) (7.82)

HV
dη(`)

dt
= V (η(`−1) − η(`)) + k

(`)
V transfer(η

(`)
∗ − η(`)) (7.83)

η
(`)
∗ = V(ξ

(j)
∗ ) (7.84)

with the usual non-negativity condition (7.78) for the j-th liquid phase and
for the `-th vapor phase balance volumes on the tray and with

Ψ
(j)
transfer = k

(j)
Ltransfer(ξ

(j)
∗ − ξ(j)) = −k(`)

V transfer(η
(`)
∗ − η(`)) = −Ψ (`)

transfer

(7.85)

State Matrix of the Distillation Column. The set of state variables of
the distillation column is the set of mole fractions in the liquid and vapor
phase of the trays, i.e.

X = (
⋃

j∈N

ξ(j))
⋃

(
⋃

j∈N

η(j)) (7.86)

where the number of balance volumes is C = 2N , and N is the total number
of trays in the column.

Let us rearrange the indices of the balance volumes forming the distillation
column so that the pair forming a tray is assigned neighboring indices, i.e.
` = j+1. Moreover, let us assume that the mixture forms no binary azeotrope,
therefore

k
(j,`)
transfer = k

(j)
Ltransfer, k

(`,j)
transfer = k

(`)
V transfer, Γ (j,`) = Γ (j) (7.87)

Substituting Equation (7.84) into the conservation balances in Equations
(7.82) and (7.83) and linearizing the equations around the steady-state equi-
librium points on the trays, the following state matrices result:
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AEconv =




− L
HL

0 L
HL

0 ... 0 0

0 − V
HV

0 0 ... 0 0

0 0 ... ... ... 0 0
0 ... ... 0 0 − L

HL
0

0 ... ... 0 V
HV

0 − V
HV




(7.88)

AEtransfer =




Φ
(1,2)
1 Φ

(1,2)
2 0 ... 0

Φ
(2,1)
1 Φ

(2,1)
2 0 ... 0

0 ... ... ... 0

... ... 0 Φ
(2N−1,2N)
2N−1 Φ

(2N−1,2N)
2N

0 ... ... Φ
(2N,2N−1)
2N−1 Φ

(2N,2N−1)
2N




(7.89)

It can be seen from the matrices above that they both are row conserva-
tion matrices, therefore the binary distillation column with no azeotropes is
structurally locally asymptotically stable [34].

7.6 Stability Analysis of a Simple Continuous Fermenter

The example of a simple continuous fermenter described in Section 4.5.3 is
used here to show how stability analysis methods can be used to determine
local stability near an optimal steady-state operating point and how the
stability region can be determined [76].

The nonlinear state-space model of the fermenter is given in Equations
(4.78)–(4.79). The variables and parameters of the fermentation process
model are collected in Table 4.1.

7.6.1 Local Stability Analysis

The linearized state-space model of the continuous fermenter is also developed
in Section 4.5.3 and is given in Equations (4.84)–(4.87).

A local stability analysis shows that the system is stable, within a neigh-
borhood of the desired operating point, but because the point is very close
to the fold bifurcation point

(X∗, S∗, F ∗) = (4.8775, 0.2449, 3.2128)

this stability region is very small. This is illustrated in Figure 7.2, which
shows that the system moves to the undesired wash-out steady state when it
is started from close neighborhood of the desired operating point

X(0) = 4.7907
g

l
, S(0) = 0.2187

g

l
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Figure 7.2. Open-loop behavior of the system

7.6.2 Stability Analysis Based on Local Linearization

The stability of the fermenter around the operating point depends upon the
eigenvalues of the linearized state matrix A in Equations (4.84)–(4.87). These
eigenvalues form a complex conjugated pair, in our case:

λ12 = −0.6017 ± 0.5306i (7.90)

We can see that the process is indeed locally stable around the operating
point but the linear analysis does not provide any information on the extent
of the stability region.

7.6.3 Nonlinear Stability Analysis

The nonlinear stability analysis is based on a Lyapunov technique which aims
to find a positive definite scalar valued generalized energy function V (x)
which has a negative definite time derivative within the whole operating
region. Most often a general quadratic Lyapunov function candidate is used
in the form of

V (x) = xTQx

with Q being a positive definite symmetric quadratic matrix, which is usually
diagonal. This function is scalar-valued and positive definite everywhere. The
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stability region of an autonomous nonlinear system is then determined by the
negative definiteness of its time derivative:

dV

dt
=
∂V

∂x
ẋ =

∂V

∂x
f̄(x)

where f̄(x) = f(x) in the open loop-case (assuming zero input) and f̄(x) =
f(x) + g(x)C(x) in the closed-loop case where C(x) is the static linear or
nonlinear feedback law.

The diagonal weighting matrix Q in the quadratic Lyapunov function is
selected in a heuristic way: a state variable which does not produce over-
shoots during the simulation experiments gets a larger weight than another
state variable with overshooting behavior. In the new norm defined by this
weighting, a more accurate estimate of the stability region can be obtained.

With this analysis we cannot calculate the exact stability region but the re-
sults provide valuable information for selecting the controller type and tuning
its parameters. The nonlinear stability analysis results in the time derivative
of the quadratic Lyapunov function as a function of the state variables, which
is a two-variable function in our case as seen in Figure 7.3. The stability re-
gion of the open-loop system is the region on the (x1, x2) plane over which
the function is negative.

7.6.4 Stability Analysis based on an LPV Model

In order to show how the extension of the Lyapunov technique for linear
parameter-varying (LPV) systems can be applied to a nonlinear system, we
consider again the simple continuous fermenter model developed in Section
4.5.3 but we change the control input of the system to be the substrate feed
concentration SF .

The state-space model of the system is then given by the following equa-
tions:

Ẋ = −F
V
X + µ(S)X (7.91)

Ṡ = −F
V
S − 1

Y
µ(S)X +

F

V
SF (7.92)

This can be written in LPV form as:

d

dt

[
X
S

]
=

[
δ − F

V 0
− 1

Y δ −F
V

] [
X
S

]
+

[
0
F
V

]
SF (7.93)

where δ = µ(S) is now considered as a time-varying parameter of the system.
Now we construct a quadratic Lyapunov function candidate in the form

of V (x) = xTPx and choose the positive definite matrix P such that it fulfills
the conditions in Theorem 7.3.4.

Assume that δ is bounded, i.e. it takes its values in a compact interval:

δ ∈ [0, µmax] (7.94)
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Figure 7.3. Time derivative of the Lyapunov function of the open-loop system
with Q = I

The Lyapunov function of the simple continuous fermenter system model
above has to fulfill the following linear matrix inequality (LMI) for any δ:

[
δ − F

V − 1
Y δ

0 −F
V

]
P + P

[
δ − F

V 0
− 1

Y δ −F
V

]
< 0 (7.95)

where “<” means “negative definite”.
Since the LPV model is affine in δ, it is enough to investigate its stability

at the end points of the interval [58]:
[
−F

V 0
0 −F

V

]
P + P

[
−F

V 0
0 −F

V

]
= −2

F

V
P < 0 (7.96)

[
µmax − F

V − 1
Y µmax

0 −F
V

]
P + P

[
µmax − F

V 0
− 1

Y µmax −F
V

]
< 0 (7.97)

Assume that

µmax <
F

V
(7.98)

Then P will be searched in diagonal form:
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P =

[
p1 0
0 p2

]
(7.99)

where p1, p2 > 0.
Since P is positive definite, the first inequality in Equation (7.96) is always

fulfilled. The second one in Equation (7.97) is in the following form:
[

2(µmax − F
V )p1 − 1

Y µmaxp2

− 1
Y µmaxp2 −2 F

V p2

]
< 0 (7.100)

This inequality is fulfilled if and only if its elements fulfill the following con-
ditions:

det(M11) = 2(µmax − F

V
)p1 < 0 (7.101)

det(M) = −4(µmax − F

V
)
F

V
p1p2 − (

1

Y
µmaxp2)2 > 0 (7.102)

The first condition is always fulfilled if (7.98) holds, since p1 > 0. The second
condition is fulfilled if p1 and p2 are chosen as:

0 < p2 <
4Y 2F

µ2
maxV

(
F

V
− µmax

)
p1 = c p1 (7.103)

where c is positive according to the inequality in Equation (7.98).
The above derivation shows that the function

V (X,S) = p1X
2 + p2S

2 (7.104)

is a Lyapunov function of the LPV system (7.93), if the conditions in Equa-
tions (7.98) and (7.103) are fulfilled.

7.7 Further Reading

The stability of linear systems is discussed in detail, e.g. in the excellent book
[8]. [59] is a classical introductory book into the theory of Lyapunov’s direct
method. For the more mathematically oriented readers, [54] contains a wide
arsenal of stability investigation methods and examples as well as a large
number of further references.

7.8 Summary

Based on the stability notions and analysis tools developed for LTI systems,
the basic concepts and algorithms for analyzing local and global stability of
input-affine nonlinear systems are described in this section.

Besides the techniques that are based on linearized models and are suit-
able for investigating local stability near a steady-state operating point, the
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Lyapunov method as the main global stability analysis tool is introduced
here.

Structural stability analysis based on conservation matrices is also de-
scribed in details.

The stability analysis methods are illustrated using case studies of process
systems of practical importance: heat exchangers, distillation columns and
continuous fermenters. Their stability analysis is based upon their input-
affine nonlinear state-space model developed in Chapter 4.

7.9 Questions and Application Exercises

Exercise 7.9.1. Compare the local and global asymptotic stability analysis
methods and the results of the analysis. Comment on the similarities and
differences.

Exercise 7.9.2. What are the advantages and disadvantages of the method
of conservation matrices in analyzing asymptotic stability of process systems?

Exercise 7.9.3. Consider the following two-dimensional nonlinear system
model in its input-affine state-space form (the same as in Exercise 6.9.4):

dx1

dt
= x

1/2
1 x

3/2
2 − x1x

3
2 + x

1/2
1 u1

dx2

dt
= 3x1x

1/2
2 − 2x2

1x2

y = x3
1x

2/3
2 − x

1/2
1 x2

2

Linearize the system model around a steady-state operating point.

Exercise 7.9.4. Consider the two-dimensional nonlinear system model above
in Exercise 7.9.3.

Perform local stability analysis of the system using the state matrix A of
the linearized system model around a steady-state operating point. (Use the
result of Exercise 7.9.3.)

Exercise 7.9.5. Consider the following simple nonlinear truncated system
model

ẋ = x(λ+ ax)

on the open domain x > 0 with parameters a > 0, λ > 0.
Show that the function

V (x) = c
(
x− x∗ − x∗ ln

( x
x∗

))

is a Lyapunov function of the system with any c > 0 and c∗ > 0 being the
steady-state reference point of the system.
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Exercise 7.9.6. Perform linear stability analysis of the nonlinear heat ex-
changer cell described in Section 4.4.4 using its linearized state-space model
developed in Exercise 4.8.10.

Exercise 7.9.7. Perform structural stability analysis of the passive mass
convection network described in Section 4.2.4.

Exercise 7.9.8. Analyze global stability of the passive mass convection net-
work described in Section 4.2.4 using the Lyapunov function technique.
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8. Passivity and the Hamiltonian View

Passivity and the Hamiltonian view on nonlinear systems were originally
developed for mechanical systems and have proved to be useful in analyzing
stability and designing stabilizing controllers. It is, however, possible and
useful to extend these notions to other systems including process systems,
and this is the subject of this chapter.

Passivity theory and the Hamiltonian view on nonlinear input-affine sys-
tems in general and on nonlinear process systems in particular are described
here in the following sections:

• The storage function and its properties
This section contains the mathematical definition and properties of the
storage function together with its connection to the stability notions.

• Passivity conditions and asymptotic stability
The definition of passive systems and the relation of passivity with Lya-
punov’s theorem on asymptotic stability is given here.

• The Hamiltonian view
The Hamiltonian function is introduced as a general energy function using
a mechanical analogy. The Euler-Lagrange equations are also developed
and a relation between state and co-state variables are given.

• Affine and simple Hamiltonian systems
An important special class of Hamiltonian systems, the so-called simple
Hamiltonian systems, is introduced here for later use.

• Passivity theory for process systems
The passivity theory is extended here for process systems. The storage
function of process systems is given with its thermodynamical interpreta-
tion. Using the notion of passivity, a class of passive process systems is
identified.

• The Hamiltonian view on process systems
The Hamiltonian function is introduced for process systems and the ther-
modynamical meaning of the state and co-state variables is given based on
the mechanical analogy.

• Comparing passivity-based and Hamiltonian description
The two approaches available for describing nonlinear process systems are
compared with respect to the modeling assumptions they require and the
possibilities they offer for dynamic analysis.
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• Process system examples
Simple process system examples including a heat exchanger cell, a pas-
sive mass convection network and a simple unstable CSTR are given to
illustrate the use of the tools and techniques introduced in this chapter.

8.1 The Storage Function and its Properties

The notion of L2-gain of nonlinear systems introduced in Subsection 7.1.3
gives rise to the notion of available storage and then to the storage function.
We recall that the notion of L2-gain is related to BIBO stability and it is
an extension of the finite gain concept for LTI systems. For the purpose of
defining the storage function of a system, Equation (7.6) will be rearranged
as follows:

Definition 8.1.1 (Available storage)
For all x ∈ M, define the available storage Va : M → R

+ as:

Va(x(T )) = sup
u

1

2

∫ T

0

(
−‖y‖2 + γ2‖u‖2

)
dt, u ∈ L2[0, T ] , T > 0 (8.1)

given x(0) = x0 and γ ∈ R.

Observe that the defining equation above originates from Equation (7.6),
which is regarded as the extension of the finite gain property to nonlinear
systems with γ2 being the static gain. In this context, Va(.) is seen as a
supremum of the non-unique functions K(.) given γ2 > 0.

Definition 8.1.2 (Storage function)
The function V : M → R

+ is called a storage function if the integral dissi-
pation inequality is satisfied for any t > t0:

V (x(t)) − V (x(t0)) ≤ 1

2

∫ t

t0

(
γ2‖u‖2 − ‖y‖2

)
dτ, V (0) = 0 (8.2)

for all t > t0 and u ∈ L2[t0, t] with initial condition x(t0) and fixed t0.

Note that the storage function is not unique for a given system. Moreover,
V (.) depends on the constant γ and on the choice of the input function u.

The integral on the right-hand side of inequality (8.2) represents the net
“energy” feed into the system, that is, the difference between the feed at the
input and the loss at the output. If we regard V (x(t)) as the energy content
of the system at any time t, then its change over the interval [t1, t2] is less
than or equal to the net “energy” fed to the system if there is no internal
energy source.
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8.2 Passivity Conditions and Asymptotic Stability

This section shows how the above introduced storage function relates to
asymptotic stability of a nonlinear system.

Definition 8.2.1 (Dissipative (passive) system)
The system is called dissipative (passive), with respect to the supply rate
1
2 (γ2‖u‖2 − ‖y‖2), if the above storage function in Definition 8.1.2 exists.

Again, the definition above clearly depends on the constant γ and on the
choice of the input function u.

Using the above concepts, we can easily arrive at the famous Hamilton-
Jacobi inequality. First, we differentiate Equation (8.2) with respect to t and
use the fact that we have a nonlinear system in input-affine form with
ẋ = f(x) + g(x)u:

Vx(x)f(x) + Vx(x)g(x)u ≤ 1

2
γ2‖u‖2 − 1

2
‖y‖2, V (0) = 0 (8.3)

for all u ∈ R
m. Here Vx = grad V is regarded as a row vector. Observe that

the right-hand side of the above inequality is in the form:

1

2
γ2‖u‖2 − 1

2
‖y‖2 =

1

2
uTu− 1

2
yT y

We then substitute the output equation y = h(x) into Equation (8.3) and
perform the “completion of the squares” to get

Vx(x)f(x) − 1

2
γ2(u− 1

γ2
gT (x)V T

x (x))T (u− 1

γ2
gT (x)V T

x (x))

+
1

2

1

γ2
Vx(x)g(x)gT (x)V T

x (x) +
1

2
hT (x)h(x) ≤ 0 (8.4)

The above equation shows that the maximizing input is equal to

u∗ =
1

γ2
gT (x)V T

x (8.5)

which permits us to obtain the supremum of the inequality (8.3). It is impor-
tant to note that the maximizing input u∗ is in the form of a static nonlinear
full state feedback (see later in Chapter 9).

Finally, we substitute the maximizing input to Equation (8.4) and obtain
the final form of the Hamilton-Jacobi inequality:

Vx(x)f(x) +
1

2

1

γ2
Vx(x)g(x)gT (x)V T

x (x) +
1

2
hT (x)h(x) ≤ 0 (8.6)

V (0) = 0, x ∈ M
Observe that the above equation relates the time derivative of the storage
function with the gain condition under closed-loop conditions where we gen-
erate the maximizing input by a full, generally nonlinear, state feedback in
Equation (8.5).
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It follows from the definition of dissipative systems that the Hamilton-
Jacobi inequality holds for dissipative systems controlled by the maximizing
input. This means that we can check the dissipativity condition by checking
the Hamilton-Jacobi inequality by using a candidate storage function V (x).
Also, we may try to use the inequality to construct a storage function for a
given nonlinear system by solving it for Vx.

8.2.1 Lyapunov Functions and Storage Functions

There is a close connection between asymptotic (internal) stability of an
input-affine nonlinear system described by the state-space model in Equation
(7.5) in the form

ẋ = f(x) + g(x)u u ∈ R
m, f(0) = 0

y = h(x) y ∈ R
p, h(0) = 0

and the finiteness of L2-gain. To see this we recall that for passive systems

d

dt
V (x) ≤ 1

2
(γ2||u||22 − ||y||22)

This means that the nonlinear system has a finite gain locally at each x, i.e.
every time. As the supply rate is related to the local finite gain, this implies
that the time derivative of the storage function is negative every time.

The storage function can then serve as a Lyapunov function [35]. The
definition of the storage function implies that the storage function is positive
definite and its time derivative is negative definite assuming that the supply
rate is always non-negative (see Equation (8.2)).

8.3 The Hamiltonian View

The notion of Lagrangian and Hamiltonian systems (see, e.g. [80]) has been
abstracted from the principles of theoretical mechanics when it has become
clear that the underlying physics determines a strong special nonlinear struc-
ture which can be utilized effectively in nonlinear systems and control theory.

This section introduces the basic notions of the Hamiltonian description of
nonlinear systems. The Hamiltonian view on both open-loop and closed-loop
systems gives a relation between optimality, state and co-state variables. The
relationship between the Hamiltonian description and the other tools and
techniques applicable for input-affine nonlinear systems is also discussed.

8.3.1 Storage Function and the Hamiltonian View

It is possible to relate the above storage function concept in Section 8.1 to
the Hamiltonian view. Equation (8.3) can be written as
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Kγ

(
x, V T

x (x), u
)
≤ 0, V (0) = 0 for all u (8.7)

where Kγ is defined as

Kγ(x, p, u) = pT f(x) + pT g(x)u− 1

2
γ2‖u‖2 +

1

2
hT (x)h(x) (8.8)

where pT = (p1, . . . , pn) = Vx denotes the so-called co-state variable. The
following equivalent form

Kγ(x, p, u) = pT ẋ− 1

2
(γ2uTu− yT y) =

dV (x)

dt
− 1

2
(γ2uTu− yT y) (8.9)

shows that the function Kγ at any time t gives the difference between the
differential stored energy (the first term) and the supply rate.

The function Kγ will serve as the Hamiltonian for both open-loop and
closed-loop systems. Observe that Kγ depends on the gain γ2 and the choice
of the input, too. It is also important (see Equation (8.7)) that the Hamilto-
nian is negative definite for dissipative (passive) systems.

First, we examine the case of the supremum of the above function. Sub-
stituting the maximizing input

u∗ =
1

γ2
gT (x)p (8.10)

into Equation (8.8), we get the supremum of the Hamiltonian with a given
gain γ2 denoted by Hγ(x, p) = Kγ(x, p, u∗):

Hγ(x, p) = pT f(x) +
1

2

1

γ2
pT g(x)gT (x)p+

1

2
hT (x)h(x) (8.11)

8.3.2 The Hamiltonian Formulation in Classical Mechanics

In classical theoretical mechanics, energy is considered to be in two forms:
potential energy V , which only depends on the position of the object (V (q)),
and kinetic energy T , which depends on the velocity as well, i.e. T (q, q̇). Then
the following equations of motion can be used:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Fi, i = 1, . . . , n (8.12)

where dim q = n, q is the vector of generalized coordinates, q̇ is the generalized
velocity, T (q, q̇) is the total kinetic energy, and Fi are the forces. The forces
acting on the system can be external forces and internal forces derived from
a potential V (q):

Fi = −∂V
∂qi

(q) + F e
i
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Lagrangian Formulation. Define the Lagrangian function as

L0(q, q̇) = T (q, q̇) − V (q) (8.13)

where V (q) is the potential energy. The Lagrangian function is used as a kind
of “effect-function” where any motion is considered to take place according to
the “minimal effect”, i.e. in such a way that the trajectory {q(t), t0 ≤ t ≤ t1}
with t0, t1, q(t0) given is determined by

arg min
q(t)

∫ t1

t0

L0(q, q̇)dt

Substituting everything into the equations of motion, we arrive at the
celebrated Euler-Lagrange equations :

d

dt

(
∂L0

∂q̇i

)
− ∂L0

∂qi
= F e

i , i = 1, . . . , n (8.14)

Control system equations are obtained from the above equations if the exter-
nal forces are interpreted as control variables ui, i = 1, . . . , n:

d

dt

(
∂L0

∂q̇i

)
− ∂L0

∂qi
= ui, i = 1, . . . , n (8.15)

The usual equations of motion can be derived from Equation (8.15) consid-
ering that

T (q, q̇) =
1

2
q̇TM(q)q̇

with M(q) being a positive definite matrix:

M(q)
d2q

dt2
+ C(q, q̇) + k(q) = Bu (8.16)

where

ki(q) =
∂V

∂qi
(q), B =

[
Im
0

]

The above equation can be represented in a standard state-space model form
as:

d

dt

[
q
q̇

]
=

[
q̇

M−1(q)(C(q, q̇) + k(q))

]
+

[
0

M−1(q)B

]
u (8.17)

Observe that the state vector of the system contains both the position and
the velocity of the objects, i.e.

x =

[
q
q̇

]
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Definition 8.3.1 (Lagrangian for mechanical systems)
For a mechanical system with n degrees of freedom, in general, one can define
a Lagrangian L(q, q̇, u) directly depending on the input u, and the equation of
motion (8.15) becomes

d

dt

(
∂L(q, q̇, u)

∂q̇i

)
− ∂L(q, q̇, u)

∂qi
= 0, i = 1, . . . , n (8.18)

A direct comparison to (8.15) results in the relation:

L(q, q̇, u) = L0(q, q̇) +

m∑

i=1

qiui (8.19)

where m is the number of inputs.

The resulted Lagrangian consists of two parts: the internal Lagrangian
L0(q, q̇) and the coupling part describing the effect of the external forces.

A system described by Equation (8.18) is usually called a Lagrangian
control system in the literature.

Hamiltonian Formulation. We can now move on to the Hamiltonian for-
mulation. Define the generalized moments as

pi =
∂L(q, q̇, u)

∂q̇i
, i = 1, . . . , n (8.20)

It can be shown that pi, i = 1, . . . , n are independent functions if the matrix
{∂2L/∂q̇i∂q̇j} is nonsingular everywhere.

Definition 8.3.2 (Hamiltonian for mechanical systems)
The Hamiltonian function can be defined as the so-called Legendre transform
of L:

H(p, q, u) =
n∑

i=1

piq̇i − L(q, q̇, u) (8.21)

It is simple to deduce that

q̇i =
∂H(p, q, u)

∂pi
, i = 1, . . . , n (8.22)

ṗi = −∂H(p, q, u)

∂qi
, i = 1, . . . , n (8.23)

The first equation holds by construction and the second one follows by sub-
stituting Equation (8.20) into Equation (8.18). The second equation is then
the equation of motion in a Hamiltonian formulation.

Note that the variables pi, i = 1, . . . , n, being the moments of the system,
are called co-state variables. Unlike the original state variables qi, i = 1, . . . , n
being co-ordinates, the co-state variables are extensive quantities which are
conserved.

The system described by (8.22)–(8.23) is called a Hamiltonian control
system in the literature.
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Hamiltonian Function as the Total Energy. There is another interpre-
tation of the Hamiltonian function. If L(q, q̇, u) is defined by Equation (8.19),
then it follows that

H(q, p, u) = H0(q, p) −
m∑

i=1

qiui (8.24)

where H0 is the Legendre transform of L0. Observe that the Hamiltonian
function contains two parts: the internal Hamiltonian H0(q, p) and the cou-
pling part.

For mechanical systems, L0 is given as L0 = T (q, q̇) − V (q), where

T (q, q̇) =
1

2
q̇TM(q)q̇ and p = ∂L/∂q̇

Therefore

p = M(q)q̇ (8.25)

holds, with M(q) being a positive definite matrix. Then it follows that

H0(q, p) =
1

2
pTM−1(q)p+ V (q) (8.26)

that is, the internal energy of the system contains a kinetic and a potential
energy part, respectively.

The following simple mechanical example illustrates the above:

Example 8.3.1 (Hamiltonian model of a spring)
Harmonic oscillation

Let us have an ideal spring with spring constant k connected to a
mass point m. Describe the motion around its steady-state point
at x = 0.

The Lagrange function is in the form:

L = T − V =
1

2
mẋ2 − 1

2
kx2

Therefore the co-state variable is

p =
∂L

∂ẋ
= mẋ
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Then the Hamiltonian is in the form of

H = T + V =
p2

2m
+
kx2

2

and the canonical equations of motion are

(
∂H

∂p
=

)
ẋ =

p

m
,

(
∂H

∂x
=

)
ṗ = −kx

8.4 Affine and Simple Hamiltonian Systems

The notion of Hamiltonian systems has been introduced already in Section
8.3. Two special cases of Hamiltonian systems are introduced here for later
use.

8.4.1 Affine Hamiltonian Input–output Systems

We remember that a system described by Equations (8.22)–(8.23) is called a
Hamiltonian system in the literature. In some of the cases, the Hamiltonian
function is in a special, input-affine form

H(q, p, u) = H0(q, p) −
m∑

j=1

Hj(q, p)uj (8.27)

where H0 is the internal Hamiltonian and Hj(q, p), j = 1, . . . ,m are the
interaction or coupling Hamiltonians, q is the state and p is the co-state
variable.

Note that the above Hamiltonian is an extension to the one introduced
in theoretical mechanics in such a way that the original interaction terms∑m

j=1 qjuj have been extended to
∑m

j=1Hj(p, q)uj .

Furthermore, we may associate natural outputs to the system as follows:

yj = − ∂H

∂uj
(q, p, u) = Hj(q, p), j = 1, . . . ,m (8.28)

Notice that in the original definition of the Hamiltonian control system there
were no output variables present. The natural outputs are artificially defined
new output variables to the system, even their number is made equal to the
number of input variables m.

With the above definitions, the nonlinear state-space model of an affine
Hamiltonian input–output system is in the form:
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q̇i =
∂H0

∂pi
(q, p) −

m∑

j=1

∂Hj

∂pi
(q, p) uj , i = 1, . . . , n (8.29)

ṗi = −∂H0

∂qi
(q, p) +

m∑

j=1

∂Hj

∂qi
(q, p) uj , i = 1, . . . , n (8.30)

yj = Hj(q, p), j = 1, . . . ,m (8.31)

Note again that these definitions are extensions of the original mechanically
motivated ones.

8.4.2 Simple Hamiltonian Systems

We may further specialize the above definition to obtain the notion of simple
Hamiltonian systems.

Definition 8.4.1 (Simple Hamiltonian system)
A simple Hamiltonian system is an affine Hamiltonian system where the func-
tions H0, H1, . . . , Hm are of the following special form:

H0(q, p) =
1

2
pTG(q)p+ V (q) (8.32)

with G(q) being a positive definite symmetric n× n matrix for every q, and

Hj(q, p) = Hj(q), j = 1, . . . ,m (8.33)

With the above requirements for the internal and coupling Hamiltonian, the
nonlinear state-space model of an affine Hamiltonian input–output system
specializes to the form:

q̇i =
∂H0

∂pi
(q, p) = G(q)p, i = 1, . . . , n (8.34)

ṗi = −∂H0

∂qi
(q, p) +

m∑

j=1

∂Hj

∂qi
(q) uj (8.35)

yj = Hj(q), j = 1, . . . ,m (8.36)

The above simple Hamiltonian systems are special cases of the original, me-
chanically motivated ones in two main points:

• H0(p, q)
is in a special form suitable for both mechanical and process systems.

• Hj(q)
is again special depending only on the co-state variable.

The following simple mechanical example, a modified version of the system
introduced in Example 8.3.1, illustrates the above.
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Example 8.4.1 (Hamiltonian model of a forced spring)
Simple Hamiltonian description of a harmonic oscillation with
external force

Let us have an ideal spring with spring constant k connected to a
mass point m and let us have an external force F e acting on the
mass. Give the simple Hamiltonian description of the system.

We describe the motion around its steady-state point at q0 = 0
and regard the external force as the input

u = F e

The Lagrange function is in the form:

L = T − V + uq =
1

2
mq̇2 − 1

2
kq2 + uq

Therefore the co-state variable is

p =
∂L

∂q̇
= mq̇

Then the Hamiltonian is in the form of

H = H0 −H1u = T + V −H1u =
p2

2m
+
kq2

2
− qu (8.37)

and the canonical equations of motion are

(
∂H

∂p
=

)
q̇ =

p

m
,

(
−∂H
∂q

=

)
ṗ = −kq + u (8.38)

It follows from the state equations (8.38) and from the Hamilto-
nian (8.37) that the natural output to the system is

y = H1(q) = q (8.39)

that is, the spring system with an external force as its input is a
simple Hamiltonian system.

If we consider friction in the example above, which acts as a damping factor,
then we can still obtain a simple Hamiltonian model of the system as is shown
in the next example.
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Example 8.4.2 (Hamiltonian model of a damped spring)
Simple Hamiltonian description of damped harmonic oscillation
with external force

Develop the Hamiltonian description of the ideal spring with a
mass point and with friction as a dissipation external force
F e = µmg. Use the description of the ideal case in Example 8.3.1.

The state variable q of this system is the distance from the equi-
librium point at q0 = 0. The Lagrangian is in the form:

L = T − V =
1

2
mq̇2 − 1

2
kq2 + µmgq

Therefore the co-state variable is

p =
∂L

∂q̇
= mq̇

Then the Hamiltonian is in the form:

H = T + V =
p2

2m
+
kq2

2
− µmgq (8.40)

and the canonical equations of motion are

(
∂H

∂p
=

)
q̇ =

p

m
,

(
−∂H
∂q

=

)
ṗ = −kq + µmg (8.41)

8.5 Passivity Theory for Process Systems: a Lagrangian
Description

Passivity analysis of a nonlinear system requires us to have a storage func-
tion. This section is devoted to show how a suitable storage function can be
developed based on thermodynamical principles.

The system variables and the general form of state-space models of process
systems introduced in Section 4.2 is the starting point of the analysis. We
recall that the state equations originate from conservation balances for the
canonical set of conserved extensive quantities (mass, component masses and
energy) in each balance volume.
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8.5.1 System Variables

In order to get a compact description, we use a notation for the conserved
extensive quantities in the balance volume j, assuming that they have been
arranged into a vector:

φ(j) = [ m
(j)
1 . . . m

(j)
K E(j) ]T (8.42)

Then the vector of the corresponding thermodynamical potentials for the
j-th region is defined as

PT (j) =
∂S(j)

∂φ(j)
(8.43)

and is in the form

P (j) = [ − µ
(j)
1

T (j)
. . . − µ

(j)
K

T (j)

1

T (j)
]T (8.44)

where µ
(j)
k is the chemical potential for the component k and T (j) is the

temperature in region j.

Gibbs-Duhem Relationship. The above entries of P (j) are the conse-
quence of the Gibbs-Duhem relationship, which is valid under the standard
assumption of local thermodynamical equilibrium [27] applied everywhere in
each balance volume j. The Gibbs-Duhem relationship for open systems out
of equilibrium is of the form

S(j) = PT (j)φ(j) +
( p
T

)(j)

V (j) (8.45)

where p is the pressure. From homogenity of the entropy as a function of
the other extensive variables (φ(j), V (j)), Equation (8.45) can be written in
differential form as follows:

dS(j) =

(
1

T

)(j)

dE(j) +
( p
T

)(j)

dV (j) −
K∑

k=1

(µk

T

)(j)

dm
(j)
k (8.46)

where the operator d stands for total derivative. Note that the second term
is equal to zero, because dV (j) = 0 caused by the “general modeling assump-
tions” in Section 4.1.1.
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The Reference Point. The notion of centered variables

ϕ = ϕ− ϕ∗

with ϕ∗ being the reference point of the variable ϕ introduced in Section 4.2.2,
plays an important role in the following. It is important to note that the refer-
ence point for the conserved extensive quantities should be a thermodynamical
equilibrium point in the general case. This implies that the reference point for
the input variables should then be chosen in such a way that the right-hand
side of the general conservation balances (4.3) gives zero in their reference
point.

There are a number of consequences of the requirement above on the
selection of the reference points:

1. If there is no source term in the general conservation balances then the
requirement specializes to

u∗ = 0

2. If we have no transfer term then we can select u∗ arbitrarily. Then it
is reasonable to choose q∗ such that it is equal to its setpoint value for
control and then choose u∗ to satisfy the requirement.

3. In the general case we find a thermodynamical equilibrium point close to
the reference points and then choose u∗ from it.

Extensive-intensive Relationship. It is important to note that there is
a simple linear relationship between conserved extensive quantities and their
potentials in the form

P
(j)

= Q(j)φ(j) (8.47)

where Q(j) is a negative definite square matrix for which the following rela-
tionship holds:

Q
(j)
k` =

∂2S(j)

∂φ
(j)
k ∂φ

(j)
`

(8.48)

The above relationship is a consequence of the concave nature of the system
entropy S(j) of the j-th region and of the fact that the system entropy is a
first-order homogeneous function of the conserved extensive quantities.

8.5.2 Thermodynamical Storage Function

The storage function proposed in [29] originates from the overall system en-
tropy of the following general form:
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V =

C∑

j=1

(
−S(j)

+

K+1∑

k=1

Pk(φ
∗(j)
k )φ

(j)

k

)
=

C∑

j=1

(
PT (φ∗(j))φ

(j) − S
(j)
)

(8.49)

where S(j) is the entropy and P T (j) is the vector of thermodynamical poten-
tials for the conserved extensive quantities φ(j) in balance volume j.

It can be shown that the above function is convex and positive semi-
definite, taking its minimum at the reference equilibrium (steady-state) point.

We can transform V to a more suitable form, taking into account the
infinite series expansion of the entropy S(j) around its equilibrium value S∗(j):

S(j) = S∗(j) + PT (φ∗(j))φ
(j)

+ φ
T (j)

Q(j)φ
(j)

+ O(φ
(j)3

) (8.50)

with Q(j) being a negative definite symmetric matrix (the Hessian matrix of
the entropy function)

Q
(j)
k` =

∂2S(j)

∂φ
(j)
k ∂φ

(j)
`

(8.51)

to get

V =

C∑

j=1

(
−φT (j)

Q(j)φ
(j) − V̂ (j)(P

(j)
)
)

(8.52)

where V̂ (.) is a nonlinear function.
It is important to observe that we can get the extensive–intensive rela-

tionship in Equation (8.47) from the Taylor series expansion of the defining
relationship of the thermodynamical potentials P in Equation (8.43) around
the equilibrium (steady-state) point with the same matrix Q(j) as in Equation
(8.51):

P (j)(φ(j)) = P (j)(φ∗(j)) +
∂P (j)

∂φ(j)

∣∣∣∣
∗

(
φ(j) − φ∗(j)

)
+ O(φ

(j)2
)

taking into account only the first-order (linear) terms. For this, we observe
that

∂P (j)

∂φ(j)

∣∣∣∣
∗

= Q(j)

is the Hessian matrix of the entropy function, the same as defined in Equation
(8.51).

8.5.3 Transfer Terms

The difference between the thermodynamical potentials as driving force vari-
ables induces transfer flows between regions in mutual contact. It is assumed
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that the transfer term of any of the regions can be decomposed into pair-wise
transfers, which are additive:

q
(j)
φ,transfer =

C∑

`=1

ψ
(j,`)
q,transfer

Onsager Relationship. The celebrated Onsager relationship of the irre-

versible thermodynamics connects the transfer fluxes ψ
(j,`)
φ,transfer with the

potentials in the form

q
(j,`)
φ,transfer = L(j,`)

(
P (j) − P (`)

)
(8.53)

where the matrix L(j,`) is positive definite and symmetric [27], [42].

It is important to note that usually the difference of the engineering driv-
ing forces (Φ(j) − Φ(`)) is considered on the right-hand side of the transfer
term (8.53). It can be shown, however, that the positive definiteness and
symmetricity of the coefficient matrix cannot be guaranteed in this case,
therefore we shall always use the thermodynamically correct expression in
Equation (8.53) instead. The following table shows the relation between con-
served extensive, engineering and thermodynamical driving force variables.

Table 8.1. Relation between thermodynamical variables

Case Conserved Engineering Thermodynamical
extensive driving force driving force

general φ Φ P

(P = Qφ)

energy energy temperature rec. temperature
(E = cP mT ) E T 1

T

comp. mass comp. mass concentration rel. chem. potential
(µk = RT ln ck) mk ck −µk

T

If we further choose the thermodynamical equilibrium point as a reference
value for the thermodynamical potentials where

P ∗(j) = P ∗(`) (8.54)

then we can develop the normalized version of the Onsager relation in the
form of

q
(j,`)
φ,transfer = L(j,`)

(
P

(j) − P
(`)
)
, L(j,`) > 0 ,

(
L(j,`)

)T

= L(j,`) (8.55)
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8.5.4 Decomposition of the Time Derivative of the Storage
Function

The time derivative of the storage function above in Equation (8.49) is in the
form

dV
dt

= −
C∑

j=1

K+1∑

i=1

P
(j)

i

dφ
(j)

i

dt
= −

C∑

j=1

P
T (j) dφ

(j)

dt
(8.56)

Observe that the equation above contains the left-hand side of the normalized
general conservation balance equation (4.3).

With the above observation, the time derivative of the storage function
can be decomposed in exactly the same way as for the right-hand side of the
conservation balances

dV
dt

= Vtransfer
t + Viconv

t + Voconv
t + Vsource

t (8.57)

where the terms have the following special form:

1. The convective and transfer terms of the balance equation (8.57) above
is in the form of

Voconv
t + Vtransfer

t = xTRXXx (8.58)

with RXX being a negative definite matrix in the case of Kirchoff or
passive convection between the balance volumes.

2. The inflow term is in the form

Viconv
t = −

C∑

j=1

v(j)α
(j)
0 P

T (j)
φ

(j)

in (8.59)

where α
(j)
0 is the ratio of the system inflow to the overall input flow rate

of the j-th region.

8.5.5 Passivity Analysis

The passivity analysis is performed by using the decomposition of the time
derivative of the storage function in Equation (8.57), assuming that the con-
served extensive quantities at the inlet are chosen as input variables:

uj = φ
(j)

in

If every term on its right-hand side is negative definite then the system itself
is passive, that is, asymptotically stable.

The special form of the convective and transfer terms in Equation (8.58)
shows that the transfer and convective mechanisms (assuming Kirchhoff or
passive convection) are passive in every process system.
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In the case of open-loop systems, we assume that the inlet inflow terms in
any of the regions are kept constant, that is,

φ
(j)

in = 0

This implies that the inlet inflow term V iconv
t is identically zero, that is, it

gives no addition to the time derivative and is therefore “neutral” from the
viewpoint of the passivity of the system.

Finally, the source term Vsource
t is indefinite (neither positive nor negative

definite) in the general case. This means that:

1. An open-loop process system with no source and only Kirchhoff or passive
convection is always passive, that is, asymptotically stable [29].

2. A suitable nonlinear feedback can be designed to make the sum of the
terms V iconv

t and Vsource
t always negative definite (see later in Chapter

12).

8.6 The Hamiltonian View on Process Systems

In order to find the Hamiltonian function of a process system, we use the
mechanical analog described in Section 8.3 and extend it to process systems
using the storage function (8.49) [30].

First, we notice that the Hamiltonian for mechanical systems is the overall
energy of the system and therefore it can serve as a storage function for their
passivity analysis. In process systems the direction of the “movement” of the
system, that is, its time evolution in the state-space is driven by entropy:
closed systems are in equilibrium when their overall entropy is maximum.

8.6.1 State, Co-state and Input Variables

Following the mechanical analog, the following state and co-state variables
are identified for the Hamiltonian description of process systems:

p = [φ
T (1)

. . . φ
T (C)

]T (8.60)

q = [P
T (1)

. . . P
T (C)

]T (8.61)

This means that the generalized moments are the normalized conserved ex-
tensive variables and the generalized co-ordinates are the normalized ther-
modynamical driving forces.
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Static Relationship between States and Co-states. In addition to the
state-space model equations, there is a linear static (i.e. time-invariant) re-
lationship originating from Equation (8.48) between the state and co-state
variables of a process system in the form

q = Qp (8.62)

where Q is a negative definite symmetric block-diagonal matrix of the form

Q =




Q(1) 0 . . . 0
0 Q(2) 0 . . . 0
. . . . . . . . . . . .
0 0 . . . Q(C)


 (8.63)

The above equations are the consequence of the definitions of the state and
co-state variables in Equations (8.60) and (8.61), and of the concavity of the
entropy function near an equilibrium (steady-state) point.

Onsager Relationship. There is another relationship between the state
and co-state variables of a process system which can be derived from the form
of the Onsager relationship in Equation (8.55), which gives an expression for
the transfer rate of conserved extensive quantities as a function of the related
thermodynamical potentials as driving forces:

ṗtransfer = ψφ,transfer = L q, L > 0 , LT = L (8.64)

where the matrix L is positive definite and symmetric in the following form:

L =
1

2

C∑

j=1

C∑

`=1

(
I(j,`) ⊗ L(j,`)

)

Observe that the matrix L in (8.64) is the same as the transfer matrix
Atransfer in the decomposed state equation (4.15).

8.6.2 Input Variables for the Hamiltonian System Model

In order to have a Hamiltonian description of process systems, we have to
assume that only the mass flow rates form the set of input variables, with
the inlet engineering driving force variables being constant. Then the set of
normalized input variables is the same as in Equation (4.12):

u = [(v(j)), j = 1, . . . , C]T
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8.6.3 The Hamiltonian Function

Following the mechanical analog, the Hamiltonian function of process systems
should describe the direction of changes taking place in an open-loop system.
The mechanical analog and the general defining properties (8.32)–(8.36) of
simple Hamiltonian systems will be used for the construction of the simple
Hamiltonian model of process systems by using the Onsager relationship
(8.64) and the conservation balances (4.3) together with the relationships
between the state and co-state variables (8.62).

Construction of the Hamiltonian. The Hamiltonian function is then con-
structed in two sequential steps as follows:

1. The kinetic term
The kinetic term is constructed from the Onsager relationship (8.64) by
transforming it into the form in Equation (8.34) by using the relationship
between the state and co-state variables in Equation (8.62) to obtain

q̇ = (QLQ) p = Gp (8.65)

where G is a positive semi-definite symmetric matrix that does not depend
on q. Symmetricity follows from the identity

(QLQ)
T

= QLQ with QT = Q, LT = L

and positive semi-definiteness is a simple consequence of the positive
semi-definiteness of L

xT (QLQ)x = (Qx)
T L (Qx) = yTLy ≥ 0 ∀ x

The kinetic term T (p) in the Hamiltonian function will be constructed
to satisfy Equation (8.34), i.e.

T (p) =
1

2
pTGp (8.66)

2. The potential term and the coupling Hamiltonians
The potential term and the coupling Hamiltonians are derived by match-
ing the terms in the special form of the defining Hamiltonian property
(8.35), taking into account that now G does not depend on q

ṗi = −∂H0

∂qi
(q, p) +

m∑

j=1

∂Hj

∂qi
(q) uj = −∂V (q)

∂qi
+

m∑

j=1

∂Hj

∂qi
(q) uj (8.67)

with the terms in the decomposed general conservation balances (4.15)
with the flow rates as input variables:
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ṗ = (Lq +Qφ(q)) +
m∑

j=1

(
NjQ

−1quj +Bj,convuj

)
(8.68)

= f(q) +

m∑

j=1

gj(q)uj

where Bj,conv is the j-th column of the input convection matrix Bconv.
From this correspondence the potential energy term V (q) and the cou-
pling Hamiltonians Hj(q) should satisfy

fi(q) = −∂V (q)

∂qi
, gij(q) =

∂Hj

∂qi
(q) (8.69)

With the above ingredients the Hamiltonian function of a process systems is
written in the form

H(p, q, u) = T (p) + V (q) −
m∑

j=1

Hj(q) uj (8.70)

satisfying all the required properties in Equations (8.34)–(8.36).
We may further specialize the form of the Hamiltonian function above

by using the decomposition of the state function f(q) in Equation (8.68)
according to the mechanisms (transfer and source) to get a decomposition of
the potential term V (q) to satisfy (8.69):

V (q) = Vtransfer(q) + VQ(q)

Vtransfer(q) = −1

2
qTLq, ∂VQ(q)

∂q
= −Qφ(q) (8.71)

Substituting the above decomposed potential term to the Hamiltonian func-
tion (8.70) above, we obtain

H(p, q, u) = VQ(q) −
m∑

j=1

Hj(q) uj (8.72)

It can be seen that there is no kinetic term in the equation above because

T (p) = −Vtransfer(q)

but the internal Hamiltonian does only contain the potential term originating
from the sources.

The above constructive derivation gives rise to the following theorem, which
summarizes the main result:

Theorem 8.6.1. Given a process system with the input variables (4.12) as
the flow rates, the state and co-state variables (8.60) and (8.61) enables us to
construct a simple Hamiltonian system model with the Hamiltonian function
(8.72) and with the underlying relationships in Equations (8.65), (8.68) and
(8.62), (8.69).
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Remarks. There are important remarks to the above as follows:

• The supply rate
As has been mentioned before, the internal Hamiltonian function is a stor-
age function of the system with respect to the supply rate

∑m
j=1Hj(q) uj .

Recall that the so-called natural output variables have been defined to be
equal to the coupling Hamiltonians, that is, yj = Hj(q). Therefore the
supply rate of the system can be written in the form of

a = yTu

• The internal Hamiltonian
It is important to note that the internal Hamiltonian above is a storage
function for process systems which gives the total entropy power (entropy
produced in unit time). This can be checked by computing the units in
the Hamiltonian function. Therefore the storage function derived from the
simple Hamiltonian description is entirely different from the entropy-based
storage function in Equation (8.49). This is explained by the known fact
that the storage function of a nonlinear system is not unique.

• The time derivative of the Hamiltonian storage function
For stability analysis the time derivative of the storage function is impor-
tant, which is in a special form in this case:

dH0(q, p)

dt
=

n∑

i=1

(
∂H0

∂pi

dpi

dt
+
∂H0

∂qi

dqi
dt

)

=
n∑

i=1

(
∂H0

∂pi

∂H0

∂qi
− ∂H0

∂qi

∂H0

∂pi

)
= 0

where the defining Equations (8.34) and (8.35) have been used for the
derivation with u = 0.

8.7 Comparing the Hamiltonian and Lagrangian
Description for Process Systems

The process systems’ engineering conditions that enable us to construct a
Lagrangian or a Hamiltonian description are compared in Table 8.2 below.
It is shown that process systems with constant mass hold-ups in each bal-
ance volume, constant physico-chemical properties and no source enable both
conditions if the input variables are suitably chosen.

8.8 Simple Process Examples

Simple process examples serve to illustrate the notions and tools described
in this chapter. The heat exchanger cell, the free mass convection network
and a simple unstable CSTR model developed in Chapter 4 is used.
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Table 8.2. Comparison of the Hamiltonian and Lagrangian system models

Lagrangian Hamiltonian

Input inlet intensive mass flow rates
quantities

Internal mechanism transfer, (source) transfer, (source)
convection

Special condition Hamiltonian source

8.8.1 Storage Function of the Heat Exchanger Cell

The storage function of the nonlinear heat exchanger cell model developed in
Section 4.4 is constructed from its state-space model by identifying its state
and input variables.

System Variables. The vector of conserved extensive quantities of the non-
linear state-space model Equations (4.47)–(4.48) is composed of the vector
of internal energies Eh and Ec for the two balance volumes in question:

φ = [Eh, Ec]T , n = 2 (8.73)

that is, the regions j = h, c of the hot and cold sides respectively.
Note that with our modeling assumptions, the following relation holds

between the volume-specific energy and the temperature of a balance volume:

Ej = cPjρjVjTj + E0 (8.74)

with E0 being an arbitrary reference.

Centered Variables and their Relationships. Let us consider a reference
state E∗

h, E
∗
c defined as a stationary (equilibrium) state with the correspond-

ing driving forces 1
T∗

h

, 1
T∗

c
and let us denote the difference from the reference

state by overlining, i.e.
Ej = Ej − E∗

j .

The special form of the Onsager relation between the volume-specific energy
and the reciprocal temperatures as driving forces can be derived from the
relation in Equation (8.74) by expanding 1

T (j) into a Taylor series to obtain

1

Tj
= M

′

jEj , M
′

j = − 1

cPjρjVj

(
T ∗

j

)2 (8.75)

with M
′

j < 0 being a constant in this case.
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Storage Function. The storage function V(φ(j)) for the j-th region of the
simple heat exchanger can be defined as follows:

V(Ej) =

(
−Sj +

1

T ∗
j

Ej

)
(8.76)

where Sj is the difference between the entropy of the balance volume char-
acterized by the thermodynamical state Ej and the reference entropy for
j = h, c.

With the relation between the potential and conserved extensive variables
in Equation (8.75), the storage function takes the form:

V(Ej) =

(
−Sj +

1

T ∗
j

1

M
′

j

1

Tj

)
(8.77)

The storage function of the overall heat exchanger composed of the two
(j = h, c) regions is simply the sum of the individual storage functions (8.77)
above:

V(φ) =
∑

j=h,c

V(Ej) (8.78)

depending on the non-normalized vector φ of conserved extensive quantities
in Equation (8.73) of the overall system.

8.8.2 Hamiltonian Description of the Heat Exchanger Cell

The Hamiltonian system model of the heat exchanger cell is again developed
from its state-space model described in Section 4.4 by identifying its state,
co-state and input variables.

The continuous time state equations of the heat exchanger cell are derived
from the following energy conservation balances:

dEc(t)

dt
= vc(t)cPc(Tci(t) − Tc(t)) + UA(Th(t) − Tc(t)) (8.79)

dEh(t)

dt
= vh(t)cPh(Thi(t) − Th(t)) + UA(Tc(t) − Th(t)) (8.80)

where Tji and Tj are the inlet and outlet temperature and vj is the mass
flow rate of the two sides (j = c, h) respectively. Note that we have now two
regions, that is, C = 2. Observe that the model equations above contain an
input and output convection and a transfer term expressed in engineering
driving forces, but there is no source term.
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System Variables. The vector of conserved extensive quantities consists of
the internal energies for the two regions:

φ = [Eh, Ec]T , n = 2

Let us choose the volumetric flow rates vc and vh as input variables.

Extensive–intensive Relationship. Let us choose a reference thermody-
namical equilibrium state for the heat exchanger cell such that

T ∗
h = T ∗

c = T ∗ (8.81)

The energy–temperature relations are known from elementary thermodynam-
ics:

Ej = cPjmjTj + E0, Ej = Ej − E∗
j (8.82)

where mj is the constant overall mass of region j = h, c. From Equations
(8.82), we obtain by expanding 1

T (j) into the Taylor series that

T j = −(T ∗)2
1

Tj

1

Tj
= Q(j)Ej , Q(j) = − 1

cPjmj(T ∗)2

with Q(j) < 0 being a constant in this case. Therefore

Q =

[
− 1

cP hmh(T∗)2 0

0 − 1
cP cmc(T∗)2

]

Centered System Variables. With the reference equilibrium state (8.81),
we can easily define the centered state and thermodynamical potential (driv-
ing force) variables as

q = [
1

Th
,

1

Tc
]T

p = [ Eh , Ec ]T

From the conservation balance equations (i.e. Equations (8.79)–(8.80)), it
follows that now the reference point for the input variables is the zero vector,
therefore

u = [ vh, vc ]T
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Decomposed State Equation in Input-affine Form. With the above
defined centered system variables the conservation balance equations, which
are Equations (8.79)–(8.80), can be written in the following canonical form:

dp

dt
= Atransferq +B1cu+

2∑

i=1

Niui (8.83)

with

Atransfer = (T ∗)
2

[
UA −UA
−UA UA

]
, B1c =

[
cPhThi 0

0 cPcT ci

]
(8.84)

N1(T h) =

[
−cPhTh

0

]
, N2(T c) =

[
0

−cPcT c

]

where Atransfer and B1c are constant matrices and N1 and N2 are linear
functions of the centered engineering driving force variables. Observe that
now the transfer function matrix L(c,h) is just a constant UA (a 1×1 matrix)
and

I(c,h) =

[
1 −1
−1 1

]

Hamiltonian System Model. Let us now develop the Hamiltonian de-
scription of the nonlinear heat exchanger cell model.

The internal Hamiltonian of the heat exchanger cell system is easily con-
structed from the special form of the Hamiltonian developed for process sys-
tems in Equation (8.72), taking into account that there is no source term in
the conservation balance equations, i.e. VQ(q) = 0

H0(q, p) = 0 (8.85)

Now we need to identify the coupling Hamiltonians H1(q) and H2(q) from
the co-state equation (8.83) for the input variables

u = [ vh, vc ]T

The coupling Hamiltonians can be reconstructed from the vector functions
g1(q) and g2(q) respectively, which are the gradient vectors of the correspond-
ing coupling Hamiltonians:

∂H1

∂q
= g1(q),

∂H2

∂q
= g2(q)

Observe that the gradients are naturally given in terms of the engineering
driving force variables Φ but we need to transform them into the form de-
pending on the state variables q. In the heat exchanger cell case, we have
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g1(Th) =

[
−cPhTh + cPhThi

0

]
=

[
cPh (T ∗)

2
q1 + cPhThi

0

]
= g1(q)

g2(Th) =

[
0

cPcT c + cPcT ci

]
=

[
0

−cPc (T ∗)
2
q2 + cPcT ci

]
= g2(q)

By partial integration, we obtain

H1(q) =
1

2
cPh (T ∗)

2
q21 + cPhThiq1 (8.86)

H2(q) =
1

2
cPc (T ∗)

2
q22 + cPcT ciq2 (8.87)

From the passivity analysis we know that the system is inherently passive
but it has a pole at the stability boundary because there is no source term
and VQ(q) = 0. Therefore we can perform stabilization by a derivative feed-
back and loop-shaping by a static feedback using PD controllers (see later in
Subsection 12.1.3).

8.8.3 Hamiltonian Description of the Free Mass Convection
Network

The engineering dynamic model of the free mass convection network (see
in Section 4.2.4) originates from the conservation balance equations of the
overall mass given in Equation (4.22).

The linear state-space model (4.22) is transformed into its Hamiltonian
canonical form by considering the following set of state, co-state and input
variables:

q = [ ρgh
(1)

, . . . , ρgh
(C)

]T

p = [ V
(1)

, . . . , V
(C)

]T

u = [ v
(1)
IN , . . . , v

(C)
IN ]T

where h
(j)

is the centered level of the liquid in balance volume j where con-
stant cross-section A and liquid density ρ is assumed in each balance volume
and the gravitation constant is denoted by g. There are simple static rela-
tionships between the level h(j) and volume V (j) of the j-th balance volume

V (j) = Ah(j) .

Then the balance equations written for the co-state variables become

dp

dt
= CconvKp−

1

ρ
VIN = CconvKQ−1q − 1

ρ
VIN (8.88)

Now the matrix Q is in the form of
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Q =




ρg
A 0 . . . 0
0 ρg

A . . . 0
. . . . . . . . . . . .
0 0 . . . ρg

A




Finally, the internal Hamiltonian of the passive mass convection system is

H0(q, p) = T (p) + V (q) = qT (CconvKQ−1)q (8.89)

which only has a kinetic term.

8.8.4 Hamiltonian Description of a Simple Unstable CSTR

Let us have an isotherm CSTR with fixed mass hold-up m and constant
physico-chemical properties where a second-order

2A+ S → T + 3A

autocatalytic reaction takes place. The engineering model of the reactor is
developed in Section 4.5.1 from the conservation balance for the component
mass of component A.

Assume that the inlet concentration of component A (cAin) is constant
and the inlet mass flow rate v is used as an input variable. We develop the
Hamiltonian description of the system around its steady-state point deter-
mined as the setpoint for passivation and loop-shaping. This description is
then used later in Section 12.4 for a nonlinear proportional feedback controller
to stabilize the system.

Conservation Balance Equation and System Variables. The state
equation is a single component mass conservation balance equation for com-
ponent A in the form

dmA

dt
=
d(m · cA)

dt
= vcAin − vcA + k ·m · c2A (8.90)

where mA is the component mass, m is the constant overall mass and k is
the reaction rate constant. Note that we only have a single balance volume,
therefore C = 1.

The given steady-state concentration c∗A with a nominal mass flow rate
v∗ satisfies

0 = v∗(cAin − c∗A) + k ·m (c∗A)
2

From this, we can determine v∗ as

v∗ = −k ·m (c∗A)
2

cAin − c∗A
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which should be non-negative, therefore cAin ≤ c∗A should hold. The given
steady-state concentration c∗A also determines the nominal value of the con-
served extensive quantity mA, the component mass in this case being:

m∗
A = m · c∗A

The engineering driving force variable to the component mass mA is the
concentration cA and the thermodynamical potential (driving force) variable
is

P = −R′µA = −R′′ln cA ∼= −RcA
with R being a constant under isotherm conditions and assuming ideal mix-
tures.

Hamiltonian System Model. It follows from the above that the centered
system variables for the Hamiltonian description of the simple unstable CSTR
are as follows:

p = mA = mA −m∗
A, q = −(cA − c∗A), u = v − v∗ (8.91)

Observe that the constant R has been omitted from the definition of the co-
state variable q as compared to the thermodynamical driving force q above.
From the variable definitions above we see that the matrix Q specializes to

Q = − 1

m

From the conservation balance equation in Equation (8.90), it is seen that
there is only a single balance volume present in the system and there is no
transfer term. Therefore the transfer coefficient matrix L = 0. This implies
that now the reference point for the state and co-state variables can be chosen
arbitrarily. However, the source term Qφ is now present as a second-order
term originating from the autocatalytic second-order reaction.

If we substitute the centered variables in Equation (8.91) to the conser-
vation balance equation (8.90), the following normalized state equation is
obtained:

dp

dt
=
(
k ·m · q2 − (2k ·m · c∗A + v∗) · q

)
+ (cAin + q)u (8.92)

From the equation above we can identify the elements of the Hamiltonian
description to be

∂VQ

∂q
(q) = −

(
k ·m · q2 − (2k ·m · c∗A + v∗) · q

)
,

∂H1

∂q
(q) = (cAin + q)

By partial integration we obtain

VQ(q) = −1

3
k ·m · q3 +

1

2
(v∗ + 2k ·m · c∗A) · q2 (8.93)

H1(q) =
1

2
q2 + cAinq (8.94)

TLFeBook



202 8. Passivity and the Hamiltonian View

Passivity Analysis of the Unstable CSTR. The passivity analysis is
performed by using the internal Hamiltonian of the system

H0(q, p) = VQ(q) = −1

3
k ·m · q3 +

1

2
(v∗ + 2k ·m · c∗A) · q2

We can see that the above function is of no definite sign because of the
presence of the second- and third-order terms of different constant coefficients
and different signs. This means that the system fails to be passive in the
general case.

8.9 Further Reading

The idea of using physical knowledge to construct storage functions for pas-
sivity analysis is not new: it is worth reading the early papers and books,
such as [80] and [19].

The traditional and still main application area of Lagrangian and Hamil-
tonian system models and their physics-based control is in mechatronics
(robots): see [65] for a simple introductory paper. A good early survey of
Hamiltonian system models in mechatronics is found in [52].

Process Systems. There is a wide and growing literature in the field of
making connections between thermodynamics, variational calculus and the
theory of Hamiltonian systems. Ydstie [83] offers a recent survey of related
papers. The papers in this area can be classified according to the system
models they use for dynamic analysis and controller design.

• Lagrangian process system models
The idea of investigating dissipation and passivity of process systems based
on thermodynamical principles was introduced in the 1990’s [55], [84], [23],
where its implications of controller design have also been explored. The ap-
proach is applied to networks of process systems, i.e. to composite process
systems with several balance volumes in [28].

• Hamiltonian process system models
The principles of constructing a Hamiltonian system model can be found
in [30].

8.10 Summary

Lagrangian and Hamiltonian system models are special, extended model
forms for input-affine nonlinear systems. Besides the usual elements of non-
linear input-affine state-space models, they have an additional structure in
their set of system variables. Moreover, they are equipped with an additional

TLFeBook



8.11 Questions and Application Exercises 203

storage function which enables us to carry out passivity analysis in a straight-
forward way.

It is shown that process systems with constant mass hold-ups in each
balance volume, constant physico-chemical properties and no source enable
both Lagrangian and Hamiltonian system models if the input variables are
suitably chosen. The selection of the input variables changes the effect of
convection from an internal mechanism in the Lagrangian case to a coupling
one in the Hamiltonian case. Besides the special input selection, an additional
source condition should hold for Hamiltonian process systems.

8.11 Questions and Application Exercises

Exercise 8.11.1. What is the relationship between passivity and asymp-
totic stability of nonlinear systems? Comment also on the relationship be-
tween Lyapunov functions and storage functions.

Exercise 8.11.2. What are the ingredients (elements) of a simple Hamil-
tonian system model? Comment on the relationship between a usual input-
affine state-space model and a Hamiltonian system model. What are the
common and additional elements in a Hamiltonian model?

Exercise 8.11.3. Give the elements of a Lagrangian system model of a pro-
cess system. Comment on the relationship between a usual input-affine state-
space model and a Lagrangian process system model. What is the engineering
meaning of the additional model element in a Lagrangian systems model?

Exercise 8.11.4. What are the elements of a Hamiltonian system model of a
process system? Give the relationship between a usual input-affine state-space
model and a Hamiltonian process system model. What is the engineering
meaning of the additional model elements in a Hamiltonian systems model
of a process system?

Exercise 8.11.5. Compare the elements of the Lagrangian and Hamiltonian
system models in the example of the heat exchanger cell which is described
in Section 8.8.1 with a Lagrangian and in Section 8.8.2 with a Hamiltonian
system model.

Exercise 8.11.6. Construct a Lagrangian system model of the simple unsta-
ble CSTR model developed in Subsection 4.5.1 using the inlet concentration
cAin of component A as the input variable. Compare the resulting model with
the Hamiltonian one developed in Subsection 8.8.4.

Exercise 8.11.7. Consider a simple unstable CSTR model developed in
Subsection 4.5.1 but with the reaction rate expression

r = k ·m · c4A
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Construct a Hamiltonian system model of the CSTR following the derivation
in Subsection 8.8.4.

Exercise 8.11.8. Consider the input-affine nonlinear state-space model of
a simple continuous fermenter that is developed in Section 4.5.3 and given
in Equations (4.78)–(4.79). Construct a simple Hamiltonian model for this
system.
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This chapter summarizes the basic notions and techniques for the control of
nonlinear systems. The material is mainly a revised summary of the control
of LTI systems ([39], [9] ) with a view to extending them for the nonlinear
case.

The material in the chapter is broken down into the following sections:

• The notion of control and feedback
We start with the notion of control and the tasks we need to perform for
control. The general notion of feedback together with that of output and
state feedback is also given here, and the notion of full state feedback and
linear and nonlinear static feedback is introduced.

• Pole-placement controller for LTI systems
One of the basic types of full state feedback controllers is the pole-
placement controller, which is described here for LTI systems.

• LQR for LTI systems
The linear quadratic regulator (LQR) is a widely applied and theoreti-
cally important controller. It is introduced here for LTI systems and its
properties are shown.

• Hamiltonian view on controlled systems
Here we connect the optimization-type formulation of controller design
with a Hamiltonian system description in order to facilitate the under-
standing and analysis of the properties of controlled systems.

• Case study: linear control of a continuous fermentation process
In the example of a simple continuous fermentation process, this section
shows the common way of controlling nonlinear process systems using linear
controllers and indicates possible problems associated with this approach.

9.1 Control and Feedback

Until now, we investigated process systems as they are: we have learned about
various mathematical descriptions of systems (representation of systems) and
analyzed dynamical properties like stability, controllability and observability
(system analysis). We did this with a purpose: the main aim of system rep-
resentation and analysis is to influence the behavior of systems (that is, to
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control them) and to make decisions based on their expected behavior (to
perform a diagnosis on them).

9.1.1 Control and Optimization

When we manipulate the input signals of a system in order to achieve some
goal concerning its behavior then we “control” it. From this description, it
follows that we should have a goal or control aim in mind when approaching
a system with the intention of controlling it.

A suitable or the best input signal can then be selected by a simple “gen-
erate and test” method: we try an input signal, evaluate it from the viewpoint
of the goal and then try another one, possibly by improving the previous one.
The way we figure out a suitable or the best input signal to achieve our goal
is usually performed by optimization.

Aim. Control methods can be classified according to the control aim, or in
other words, the goal function. The most common goals are as follows:

1. We want to keep a prescribed value of the output signals as close as
possible against disturbances which cause them to change. This control
task is called regulation. Linear Quadratic Regulators (LQRs) perform
control according to this type of goal function.

2. We may want to move the state variables of the system from one pre-
scribed initial state to a given final state as quickly as possible. This con-
trol task is called time-optimal control and it is quite common in process
systems.

3. We might try to stabilize unstable systems or improve their dynamic be-
havior. This is done by stabilizing control, for example by pole-placement
control.

Process Models as Constraints for Control. The control goals are for-
mulated in terms of a desired output behavior (e.g. constant output) or a
system property (like stability), which should be achieved by manipulating
the outputs not directly but indirectly via the input signals and through the
dynamics of the system. The dynamic nature of the system, which is encoded
in the system model, gives a natural constraint on what we can achieve. This
fact is reflected in the control aim sentences above, i.e. “as close as possible”,
“as quick as possible”, and so on.

9.1.2 Feedback

The Role of Feedback. Feedback is a central notion in control theory. Most
of the controllers, but not all of them, apply either state or output feedback
to compute the control action, that is, the input value which is needed to
achieve the control aim.
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Consider the general input–output relation y = S[u] introduced in Chap-
ter 2. The most common control objective is to select the input u such that
the system output follows a given reference r, i.e.

r = S[u] (9.1)

This can be solved theoretically if we manage to express u from (9.1). How-
ever, generally, we cannot solve this problem. In many cases, it is possible
to approximate the solution, but this approach usually does not work well
in practice because there are usually unknown disturbances that affect the
process and the plant dynamics is rarely known completely, i.e. there are
model uncertainties.

As we will see soon, feedback is able to change some of the key dynamic
properties of the system completely, while other properties might be invariant
to feedback. One reason for applying feedback is that a well-chosen feedback
is able to reduce the effect of uncertainty. That is why controllers designed
for rough linear models may work reasonably well with the original nonlinear
system. On the other hand, feedback is the only tool that stabilizes unstable
systems.

9.1.3 Different Kinds of Feedback

In the next few paragraphs, we define the different kinds of feedback that are
most often applied to a nonlinear system of the form (3.19), i.e.

ẋ(t) = f(x(t)) +
∑m

i=1 gi(x(t))ui(t)
y(t) = h(x(t))

Static feedbacks make instant relations between the output (or state) and in-
put variables, while dynamic feedbacks bring additional dynamics (i.e. new
state variables) into the control loop. Output feedbacks use only output in-
formation to generate input, while state feedbacks process the whole state
vector.

Output feedback has been applied from the very beginning of the exis-
tence of controllers. The commonly used PID controller can also be seen as
a controller for single-input–single-output systems based on dynamic output
feedback with constant parameters. It is important to know, however, that
output feedback cannot stabilize even a linear time-invariant system in every
case, that is why state feedback is used in advanced control schemes.

As one would naturally expect, generally control goals are easier to achieve
when applying state feedback, since the controller can process more informa-
tion than in the output feedback case. Note that a state feedback is a special
case of output feedback, with the output y being the whole state vector x.

Static feedbacks are classified further, according to whether a new refer-
ence input is introduced into the closed-loop system or not. The various
forms of static feedbacks are defined formally below.
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Definition 9.1.1 (Static state feedback)
A static state feedback for the system (3.19) is defined as

u = α(x) (9.2)

where α : X 7→ R
m is a smooth function.

Definition 9.1.2 (Static state feedback with new input)
A static state feedback with new input v is of the form

u = α(x) + β(x)v (9.3)

where α : X 7→ R
m and β : X 7→ R

m×m are smooth mappings. Furthermore,
β(x) is invertible for all x and v ∈ R

m is a new vector of control variables.

Definition 9.1.3 (Static output feedback)
A static output feedback for the system (3.19) is defined as

u = α(y) (9.4)

where α : R
p 7→ R

m is a smooth mapping.

Definition 9.1.4 (Static output feedback with new input)
A static output feedback with new input v is a feedback of the form

u = α(y) + β(y)v (9.5)

where α : R
p 7→ R

m and β : R
p 7→ R

m×m are smooth mappings. Fur-
thermore, β(x) is invertible for all y and v ∈ R

m is a new vector of control
variables.

Figure 9.1 illustrates the definition of static output feedback with new input
by a signal flow diagram. Note that Definitions 9.1.1, 9.1.2 and 9.1.3 are all
special cases of Definition 9.1.4.

. --

6

- -

�

6

uv y

α(y)

β(y)
ẋ = f(x) + g(x)u

y = h(x)

Figure 9.1. Static output feedback with new input

In the case of a dynamic feedback of any type, one usually considers a new
input. Therefore the definitions of dynamic state and output feedbacks are
given in only one version.
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Definition 9.1.5 (Dynamic state feedback)
A dynamic state feedback is defined as

ż = η(z, x) + θ(z, x)v
u = α(z, x) + β(z, x)v

(9.6)

where z ∈ R
l, η : R

l × X 7→ R
l, θ : R

l × X 7→ R
l×m, α : R

l × X 7→ R
m

and β : R
l ×X 7→ R

m×m are smooth mappings and v ∈ R
m is the new input

vector.

Definition 9.1.6 (Dynamic output feedback)
A dynamic output feedback is defined as

ż = η(z, y) + θ(z, y)v
u = α(z, y) + β(z, y)v

(9.7)

where z ∈ R
l, η : R

l × R
p 7→ R

l, θ : R
l × R

p 7→ R
l×m, α : R

l × R
p 7→ R

m

and β : R
l×R

p 7→ R
m×m are smooth mappings and v ∈ R

m is the new input
vector.

Figure 9.2 shows the signal flow diagram of a system controlled by a dynamic
output feedback.

y = h(x)

-

-

-

ż = η(z, y) + θ(z, y)v

u = α(z, y) + β(z, y)v

v

y

ẋ = f(x) + g(x)u
u

Figure 9.2. Dynamic output feedback

In any type of feedbacks above, we can speak about:

• Linear feedback
When the functions α and β in the feedback equations are linear.

• Full feedback
When every entry of the signal used in the feedback (state or output) is
taken into account when computing the input signal.

9.1.4 Linear Static Full State Feedback Applied to SISO LTI
Systems

In the example of single-input–single-output (SISO) linear time-invariant
(LTI) systems, we show how a full static feedback can be used to change
the stability properties of the system.
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Let us have a state-space realization (A,B,C) of a single-input–single-output
(SISO) LTI system S:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)
y(t), u(t) ∈ R, x(t) ∈ R

n

A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n

(9.8)

with transfer function

H(s) =
b(s)

a(s)
=

b1s
n−1 + ...+ bn

sn + a1sn−1 + ...+ an
(9.9)

Let us modify S by a linear static full state feedback, i.e.

v = u+ kx
k =

[
k1 k2 . . . kn

]

k ∈ R
1×n (row vector)

(9.10)

to get a new desired characteristic polynomial α(s) with

deg α(s) = n

The state-space description of the closed-loop system Sc is

ẋ(t) = (A−Bk)x(t) +Bv(t)
y(t) = Cx(t)

(9.11)

with the closed-loop polynomial ac(s)

ac(s) = det (sI −A+Bk) := α(s) (9.12)

while the polynomial a(s) for the open-loop system is

a(s) = det (sI −A)

Observe that the applied linear static full state feedback influences the sta-
bility of the system as the state matrix of the closed-loop system has changed
to be Acl = (A−Bk).

9.2 Pole-placement Controller for SISO LTI Systems

Pole-placement controllers are the most simple controllers which can be ap-
plied only to SISO LTI systems. Although their direct importance of control-
ling nonlinear systems is not at all great, their design and properties teach
us some important lessons.
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9.2.1 Problem Statement

Given a finite dimensional LTI system with realization (A,B,C) where the
poles of the system are determined by the polynomial a(s). Influence the poles
by linear static full state feedback to get a specified (desired) polynomial α(s)
such that

deg a(s) = deg α(s) = n

A sub-problem of this problem statement is to find a feedback that stabilizes
the system.

The pole-placement controller design is a simple but not very advanced
design method to achieve the above goal. Notice that there is no explicit loss
function expressing the control aim. This means that this type of controller
is not an optimizing one.

9.2.2 Solution for the SISO Case

We use the following notations:

C = [ B AB A2B ... An−1B ], TT
` =




1 a1 a2 . . . an−1

0 1 a1 . . . an−2

0 0 1 . . . an−3

. . . . . . .
0 0 0 . . 0 1




where C is the controllability matrix and T T
` is a Toeplitz matrix containing

the coefficients ai of the open-loop characteristic polynomial α(s).
With the above matrices, the state feedback parameters k resulting in a

desired characteristic polynomial α(s) can be computed as

k = (α− a)T−T
` C−1 (9.13)

where α and a are vectors composed of the coefficients of the characteristic
polynomials α(s) and β(s).

As the Toeplitz matrix T T
` is always nonsingular, the right-hand side of

the equation below is nonsingular if and only if C is nonsingular, i.e. (A,B)
is a controllable pair.

This shows that a static full state feedback can arbitrarily relocate the
eigenvalues of a system with realization (A,B,C) if and only if (A,B) is
controllable.

It is important to note that the feedback gain k depends on the realization
(A,B,C) because the controllability matrix C depends on it.

The software package MATLABr has a simple procedure call (place) to
compute the feedback gain vector from the state-space representation matri-
ces of the open-loop system and from the desired poles.
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Example 9.2.1 (LTI pole-placement controller)
Pole-placement controller design for a simple LTI system

Consider a simple single-input–single-output LTI system in the
form of Equation (9.8) with the matrices

A =

[
3 4
5 6

]
, B =

[
7
8

]
, C = [ 1 0 ] (9.14)

Let the desired poles of the closed-loop system be −1 and −3. It
is easy to check that the eigenvalues of the state matrix above are
λ1 = 7.5 , λ2 = 2.5, that is, the system is unstable.
Then the pole-placement controller design procedure checks the
full rank of the controllability matrix and gives the following feed-
back gain vector:

k = [ 0.5455 1.2727 ] (9.15)

9.3 LQR Applied to LTI Systems

The Linear Quadratic Regulator (LQR) is one of the most commonly used
and powerful ways of controlling linear systems. Its extensions are available
for stochastic or discrete time systems, as well as for the servo case. Nonlinear
systems are also often controlled by LQRs.

9.3.1 Problem Statement

Given a multiple-input–multiple-output (MIMO) LTI system in the following
state-space representation form:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t)
(9.16)

Define the functional J(x, u) as follows:

J(x, u) =
1

2

∫ T

0

[xT (t)Qx(t) + uT (t)Ru(t)]dt (9.17)

with the positive semi-definite state weighting matrix Q and the positive
definite control weighting matrix R. Note that the first term in the integrand
above measures the derivation of the state from the reference state xd = 0
and the second term measures the control energy.
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It is important to note that both terms in Equation (9.17) are quadratic
forms in the form of xTQx =

∑n
i,j=1 xiQijxj , which is a scalar-valued positive

function for any x if the matrix Q is positive definite.
The control problem is to find a control input {u(t), t ∈ [0, T ]} that

minimizes J subject to Equation (9.16) (constraint on the state variables).

9.3.2 The Solution Method: Calculus of Variations

The solution of the LQR control problem as an optimization problem is based
on the calculus of variations.

Our previous problem can be generalized to the following mathematical
problem:

Minimize

J(x, u) =

∫ T

0

F (x, u, t)dt (9.18)

with respect to u subject to ẋ = f(x, u, t).
Adjoin the constraint f(x, u, t) − ẋ = 0 to the cost J(x, u) using a vector

Lagrange multiplier λ(.) to obtain

J(x, ẋ, u) =

∫ T

0

[F (x, u, t) + λT (t)(f(x, u, t) − ẋ)]dt (9.19)

which will be minimized with respect to u(t). Further define

H = F + λT f

as the Hamiltonian function to the optimal control problem.
Integrating Equation (9.19) by part and substituting H, we obtain

J =

∫ T

0

[H + λ̇Tx]dt− [λTx]T0

If a minimizing u were found, then an arbitrary δu in u should produce
δJ = 0:

δJ = −λT δx|T0 +

∫ T

0

[
(
∂H

∂x
+ λ̇T )δx+

∂H

∂u
δu

]
dt

The variation δJ above is equal to 0 if and only if the two variations in the
integrand above are equal to 0.

Euler-Lagrange Equations. The above condition on minimality of δJ re-
sults in the so-called Euler-Lagrange equations

∂H

∂x
+ λ̇T = 0,

∂H

∂u
= 0 (9.20)
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The Euler-Lagrange equations for the LTI case are in the following form
using

∂

∂x
(xTQx) = 2xTQ

λ̇T + xTQ+ λTA = 0, λ(T ) = 0 (9.21)

u = −R−1BTλ (9.22)

with the system model

ẋ = Ax(t) +Bu(t), x(0) = x0 (9.23)

From the equations above, we get

[
ẋ(t)

λ̇(t)

]
=

[
A −BR−1BT

−Q −AT

][
x(t)
λ(t)

]
,

x(0) = x0

λ(T ) = 0
(9.24)

Note that the first equation in the vector differential equation above describes
the system dynamics and the second one is the so-called Hammerstein co-
state differential equation.

The above formalism adjoins a co-state variable λ to the original state
variable x for which the following basic lemma holds:

Lemma 9.3.1. If (A,B) is controllable and (C,A) is observable, then

λ(t) = K(t)x(t) (9.25)

where matrix K(t) ∈ Rn×n

Having the above important lemma, we can substitute Equation (9.25) into
Equation (9.21) to obtain

K̇x+Kẋ = −ATKx−Qx

If we substitute further Equation (9.23) into ẋ in the equation above, we get

K̇x+K[A−BR−1BTK]x+ATKx+Qx = 0

for any x(t). Therefore the following Matrix Ricatti Differential Equation
holds for K(t) as an independent variable:

K̇ +KA+ATK −KBR−1BTK +Q = 0 (9.26)
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Special Case: Stationary Solution. Let us take the special case T → ∞,
which is called the stationary solution when

J =

∫ ∞

0

(xTQx+ uTRu)dt

One can prove that in this case

lim
t→∞

K(t) = K i.e. K̇ = 0

where K is a constant matrix.
Then Equation (9.26) specializes to the following equation called the Con-

trol Algebraic Ricatti Equation (CARE):

KA+ATK −KBR−1BTK +Q = 0 (9.27)

It is easy to see that by taking the transpose of the equation above that K
is symmetric.

Let us choose Q = CTC. Then

J(x, u) =

∫ ∞

0

(xTCTCx+ uTRu)dt =

∫ ∞

0

(yT y + uTRu)dt (9.28)

Theorem 9.3.1. (Due to R. Kalman). If (C,A) is observable and (A,B) is
controllable then CARE has a unique positive definite symmetric solution K.

9.3.3 LQR as a Full-state Feedback Controller

With this optimal solution, the optimal feedback is a full state feedback (from
Equations (9.25) and (9.22)) in the form

u0(t) = −R−1BTKx(t) = −Gx(t) (9.29)

where G = R−1BTK.
With the optimal feedback above, the closed-loop system equations are as

follows:

ẋ = Ax−BR−1BTKx = (A−BG)x, x(0) = x0

y = Cx
(9.30)

Properties of the Closed-loop System. The closed-loop LTI system con-
trolled by an LQR has the following remarkable properties:

• The closed-loop system is asymptotically stable, i.e.

Re λi(A−BG) < 0, i = 1, 2, ..., n

• Stability of the closed-loop system is guaranteed by LQR no matter what
the values of A,B,C,R and Q are.
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• With A,B given, the specific location of the closed-loop poles depend on
the choice of Q and R (i.e. Q and R are the design parameters).

The software package MATLABr has a simple procedure call (lqr) to com-
pute the feedback gain vector from the state-space representation matrices of
the open-loop system and from the weighting matrices in the loss functional.

Example 9.3.1 (LQR for an LTI system)
LQR design for a simple LTI system introduced in Example 9.2.1

Consider a simple single-input–single-output LTI system in the
form of Equation (9.8) with the matrices in Equation (9.14).
Let the weighting matrices in the loss function (9.17) be as follows:

Q =

[
1 0
0 1

]
, R =

[
0.5
]

(9.31)

This means that we weight the error in the state as being much
higher than the energy put in for changing the input.
Then the LQR design procedure in MATLABr gives the following
feedback gain vector:

k = [ 0.9898 0.8803 ] (9.32)

The poles of the closed-loop system

[ − 15.2021 − 8.7690 ]

have indeed negative real parts, which means that the closed-loop
system is stable.

9.4 Hamiltonian View on Controlled Systems

In this section it is shown how the Hamiltonian view can be applied to de-
riving controllers by constructing a Hamiltonian description of controlled
systems.

The direct relationship with classical mechanics described in Section 8.3
will be used here in the context of LTI systems where a quadratic Lyapunov
function can always be constructed (see Theorem 7.3.3 in Chapter 7). There
is also a relationship with the well-known formulation of designing LQR con-
trollers for LTI systems.
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Hamiltonian Formulation of Input Design. Let us choose the Hamil-
tonian function of a concentrated parameter system in the following form:

H(x, u, λ, t)
∆
= F (x, u, t) + λT (t)f(x, u, t), λ(t)

∆
= p(t) (9.33)

where the state equation of the system is

ẋ = f(x, u, t), x(0) = x0 (9.34)

We aim at finding an input u such that the functional

J(x, u) =

∫ T

0

F (x, u, t)dt→ min
u∈L2[0,T ]

. (9.35)

is minimized. Here F (x, u, t) is a given optimality criterion, the analog for
potential energy, while λT (t)f(x, u, t) corresponds to the kinetic energy.

Let us investigate the relationship of the Hamiltonian Kγ in Equation (8.8)
of Section 8.3 derived from the storage function and the definition of H in
Equation (9.33) with the special case of input-affine nonlinear state-space
models, when f(x, u, t) = f(x) + g(x)u. Comparing the equations, we find
that

λ = p = V T
x (9.36)

F (x, u, t) = −1

2
[γ2||u||2 − hT (x)h(x)] (9.37)

Observe that F (x, u, t) is the supply rate and the co-state variable plays the
same role as before, joining the right-hand side of the state equation to the
Hamiltonian.

From the above, it follows that if we manage to choose the optimality
criterion for a controller such that a storage function can be derived from
it in the same way as (9.37), then the controller will stabilize the original
system.

The LTI Case. This is exactly the case of LQR for LTI systems as was seen
in Section 9.3 before. In this case

F (x, u, t) = xTQx+ uTRu

which is in good agreement with the open-loop natural Lyapunov (storage)
function

V (x) = xTPx

With the Hamiltonian view on controlled systems, we can derive the so-
called Hamiltonian equations in the following way. We adjoin the constraint
f(x, u, t) − ẋ = 0 to the cost J(x, u) by using a vector Lagrange multiplier
λ(.) to obtain
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J(x, ẋ, u) =

∫ T

0

[F (x, u, t) + λT (t)(f(x, u, t) − ẋ)]dt (9.38)

which will be minimized with respect to u(t). Integrating Equation (9.38) by
part and substituting H, we obtain

J =

∫ T

0

[H + λ̇Tx]dt− [λTx]T0

If a minimizing u were found, then an arbitrary δu in u should produce
δJ = 0:

δJ = −λT δx|T0 +

∫ T

0

[
(
∂H

∂x
+ λ̇T )δx+

∂H

∂u
δu

]
dt

The variation δJ above is equal to 0 if and only if the two variations in the
integrand above are equal to 0.

The Hamiltonian equations relate the state and co-state variables as fol-
lows:

ẋ =
∂H(x, p, u)

∂p
(9.39)

ṗ = −∂H(x, p, u)

∂x
(9.40)

where λ̇ = ṗ.
The necessary condition for the optimality of control u∗(t), t ∈ [0, T ] is:

∂H(x, p, u)

∂u
= 0 (9.41)

The Euler–Lagrange equations can be derived from (9.40) and (9.41) and
from the defining Equation (9.33):

∂F

∂x
+
∂fT

∂x
λ+ λ̇ = 0 (9.42)

∂F

∂u
+
∂fT

∂u
λ = 0 (9.43)

It is important to note that now we have arrived at the same equations
as before in Equations (9.20) in Section 9.3 where they have been obtained
by solving a control optimization problem using calculus of variations.

The solution of the Euler-Lagrange equations above is performed for LTI
systems in Section 9.3 before assuming that

λ(t) = K(t)x(t) (9.44)

where K is a suitable time-dependent square and symmetric matrix.
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9.5 Case Study: Linear Full-state Feedback Control of a
Continuous Fermenter

The usual way of approaching a nonlinear system to be controlled is to start
with a robust linear full-state feedback controller which is designed by using
a linearized model of the system around a nominal operating point. Then
the stability region of the closed-loop controlled system can be estimated by
using quadratic Lyapunov functions (see Subsection 7.3.2 for details).

The aim of this section is to show the possible difficulties which can be
met using this linearized approach [76].

The simple continuous fermenter is used here for this purpose. The input-
affine nonlinear state-space model of the fermenter is developed in Subsection
4.5.3 and is given in Equations (4.78)–(4.79). The variables and parameters
of the fermentation process model are collected in Table 4.1.

The linearized state-space model of the continuous fermenter is also de-
veloped in Equations (4.84)–(4.87).

9.5.1 Pole-placement Controller

The purpose of this section is:

• to provide a simple controller design approach for later comparison,
• to examine the possibilities of stabilizing the system by partial feedback

(preferably by feeding back the substrate concentration only).

Pole-placement by Full State Feedback. First, a full state feedback is
designed such that the poles of the linearized model of the closed-loop system
are at [−1 − 1.5]

T
. The necessary full state feedback gain is

Kpp = [−0.3747 0.3429] (9.45)

A simulation run is shown in Figure 9.3 starting from the initial state X(0) =
0.1 g

l and S(0) = 0.5 g
l . It is clearly seen that the closed-loop nonlinear system

has an additional undesirable stable equilibrium point and the controller
drives and stabilizes the system towards this point. This stable undesired
operating point can be easily calculated from the state equations and the
parameters of the closed-loop system: X = 3.2152 g

l , S = 3.5696 g
l . The time

derivative of the Lyapunov function is shown in Figure 9.4. The appearance of
the undesired stable operating point warns us not to apply linear controllers
based on locally linear models for a nonlinear system without careful prior
investigation.

Partial Linear Feedback. Motivated by the fact that the zero dynamics
of the fermenter (see Subsection 5.5.2 for details) is globally asymptotically
stable when the substrate concentration is the output, let us consider the
following static partial state feedback:
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Figure 9.3. Centered state variables and input, full state feedback pole-placement
controller, X(0) = 0.1 g

l
, S(0) = 0.5 g

l

u = Kx

where K = [0 k], i.e. we only use the substrate concentration for feedback.

The stability region of the closed-loop system is investigated by using the
time derivative of the quadratic Lyapunov function. Figure 9.5 shows that
the stability region of the closed-loop system is quite wide. Furthermore, it
can be easily shown that for, e.g. k = 1, the only stable equilibrium point of
the closed-loop system (except for the wash-out steady state) is the desired
operating point. The eigenvalues of the closed-loop system with k = 1 are
−0.9741 and −2.6746.

9.5.2 LQ Control

Usually the well-known LQ-controller is used as a reference controller for com-
parison and tuning the nonlinear controllers. LQ-controllers are popular and
widely used for process systems. They are known to stabilize any stabilizable
linear time-invariant system globally, that is, over the entire state-space. This
type of controller is designed for the locally linearized model of the process
and minimizes the cost function
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Figure 9.4. Time derivative of the Lyapunov function as a function of centered
state variables q1 = 1, q2 = 0.1, pole-placement controller, Kpp = [−0.3747 0.3429]

J(x(t), u(t)) =

∫ ∞

0

(
xT (t)Rxx(t) + uT (t)Ruu(t)

)
dt (9.46)

where Rx and Ru (the design parameters) are positive definite weighting ma-
trices of appropriate dimensions. The optimal input that minimizes the above
functional is in the form of a linear full state feedback controller u = −Kx.
The results for two different weighting matrix selections are investigated.

Cheap Control. In this case, the design parameters Rx and Ru are selected
to be Rx = I2×2 and Ru = 1. The resulting full state feedback gain is K =
[−0.6549 0.5899].

Expensive Control. The weighting matrices in this case are Rx = 10 ·
I2×2 and Ru = 1. There are no significant differences in terms of controller
performance compared to the previous case. The full state feedback gain in
this case is K = [−1.5635 2.5571].

The stability region is again investigated using the time derivative of
a quadratic Lyapunov function. The time-derivative function as a function
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Figure 9.5. Time derivative of the Lyapunov function as a function of centered
state variables q1 = 1, q2 = 0.1, partial linear feedback, k = 1

of the centered state variables for cheap and expensive control is seen in
Figures 9.6 and 9.7 respectively. Unlike the linear case where LQR always
stabilizes the system, it is seen that the stability region does not cover the
entire operating region. Indeed, a simulation run in Figure 9.8 starting with
an “unfortunate” initial state exhibits unstable behavior for the nonlinear
fermenter.

Note that an LQ-controller is structurally the same as a linear pole-placement
controller (i.e. a static linear full state feedback). Therefore undesired stable
steady states may also appear depending on the LQ-design.

9.6 Further Reading

[64] discusses multivariable controller design methods for linear systems with
several process system case studies. One of the most popular books of the
recent decade on linear controller design is [48]. The first papers of great
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Figure 9.6. Time derivative of the Lyapunov function as a function of centered
state variables q1 = 1, q2 = 1, LQ-controller, cheap control

influence on optimal control were [40] and [41]. The LQR problem is covered
in great detail in, e.g. [6].

Classical control-related problems for LPV systems are solved in [78], [74]
and [69] using a geometric approach.

9.7 Summary

The basic notions of controller design, including feedback of different types,
control design by optimization and the Hamiltonian view on controlled sys-
tems, are described in this chapter.

The most simple linear controllers, the pole-placement controller and the
linear quadratic regulator (LQR) are also introduced here as applied to LTI
systems.

A case study of a simple nonlinear continuous fermenter model is used
to illustrate how to design and use linear controllers to nonlinear process
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Figure 9.7. Time derivative of the Lyapunov function as a function of centered
state variables q1 = 1, q2 = 1, LQ controller, expensive control

systems and what the dangers are of applying them without careful prior
investigation.

9.8 Questions and Exercises

Exercise 9.8.1. Compare the pole-placement and LQR design for LTI sys-
tems using Examples 9.2.1 and 9.3.1. Comment on the similarities and dif-
ferences.

Exercise 9.8.2. Classify controllers according to their control aim. Give
simple example(s) to each of your class.

Exercise 9.8.3. Give the joint necessary condition of the applicability of
pole-placement controllers and LQR in the case of LTI systems.
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Exercise 9.8.4. Explain the significance and use of the Hamiltonian de-
scription in controller design for both the LTI and the nonlinear input-affine
case.

Exercise 9.8.5. The state-space model of a linear system is given by the
following matrices:

A =

[
1 0
0 2

]
B =

[
1
4

]
C =

[
1 0
0 1

]
(9.47)

Calculate the state feedback gain such that the poles of the closed-loop system
are at [−1 − 2]

T
.

Exercise 9.8.6. Consider a first-order process with the state-space realiza-
tion

ẋ(t) = x(t) + u(t), y(t) = x(t)

Calculate the optimal state feedback gain that minimizes the functional

J(x(t), u(t)) =

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t)dt (9.49)

for the following cases:
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• Q = 1, R = 1
• Q = 1, R = 10
• Q = 1, R = 0.1
• Q = 10, R = 1

Examine the poles of the closed-loop systems for the above four cases. Which
control is the cheapest if we consider the cost of input energy? Which one
provides the quickest response?

Exercise 9.8.7. Consider the state equation of the simple quasi-polynomial
system in Exercise 6.9.4 in the form of

dx1

dt
= x

1/2
1 x

3/2
2 − x1x

3
2 + x

1/2
1 u1

dx2

dt
= 3x1x

1/2
2 − 2x2

1x2

with the output equation y = x1.
Design a stabilizing pole-placement controller for the system in the fol-

lowing steps:

1. Apply the nonlinear coordinate transformation (see Definition 3.5.2)

Φ(x) =

[
ln(x1)
ln(x2)

]

to the state equation to get a LTI model in the new coordinates.
2. Design a pole-placement controller in the new coordinate system moving

the poles to [−1, − 1].
3. Express the resulted feedback in the original coordinates.

Characterize the feedback you have obtained.

Exercise 9.8.8. What is a joint necessary condition of the applicability of
pole-placement control and LQR in the case of LTI systems?
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10. Feedback and Input–output Linearization
of Nonlinear Systems

The aim of linearization is to apply a suitable nonlinear coordinate trans-
formation to a nonlinear system in order to obtain a linear one in the new
co-ordinates. As will be shown in this chapter, the coordinates transformation
must be supplemented by a static nonlinear feedback to achieve linearization.
Therefore it is a basic but limited technique for control of nonlinear systems.

The description in this chapter mainly follows the well-known book of
Isidori [37]. The material is broken down into the following sections:

• Relative degree
We start with the notion and computation of the relative degree of a SISO
nonlinear system, which is one of the basic properties of a nonlinear system.

• Exact linearization via state feedback
The exact linearization procedure is described in detail and illustrated with
examples.

• Input–output linearization
Input–output linearization is applied when exact linearization is not appli-
cable or not feasible, therefore it is of great practical importance.

• Process systems with maximal relative degree
The engineering conditions of process systems, being of maximal relative
degree, are investigated in this section. This property is required for the
application of the basic case of feedback linearization.

• Case study: feedback and input–output linearization of a continuous fer-
menter
The controller design techniques based on feedback and input–output lin-
earization of a simple continuous fermentation process are described and
compared here.

• Output selection for feedback linearization
This section deals with a controller structure selection problem on how to
select a suitable output from the possible ones for feedback linearization.

10.1 Relative Degree

The notion of relative degree plays a central role not only in the necessary
condition for performing exact linearization but also in other parts of nonlin-
ear control theory. This is the reason why the notion of relative degree has
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228 10. Feedback and Input–output Linearization of Nonlinear Systems

been introduced earlier by Definition 5.5.2 in Section 5.5, which is repeated
here for convenience.

The single-input–single-output nonlinear system

ẋ = f(x) + g(x)u

y = h(x)

is said to have relative degree r at a point x0 if

1. LgL
k
fh(x) = 0 for all x in a neighborhood of x0 and all k < r − 1.

2. LgL
r−1
f h(x0) 6= 0.

Here it is important to remember that the relative degree r is exactly equal
to the number of times one has to differentiate the output y(t) at time t = t0

in order to have the value u(t0) explicitly appearing.
To show this, we first observe that the function g(x) in Equation (5.51)

(repeated above) is vector-valued, that is

g(x) =



g1(x)
..

gn(x)




Then we compute the time derivative of the output equation several (k) times
as follows:

• k = 0: y = h(x)

dy

dt
=
∂h

∂x
ẋ =

∂h

∂x
(f(x) + g(x)u) = Lfh+ Lgh · u

• k = 1: assume Lgh = 0 (condition 1) then ẏ = Lfh, and

d2y

dt2
=
∂(Lfh)

∂x
(f(x) + g(x)u) = L2

fh+ LgLfh · u

If LgLfh 6= 0 then r = 2 (see condition 2), otherwise we continue the
procedure, and so on.

Note that for MIMO systems the relative degree can be defined pairwise for
all of the possible input–output pairs.

The following simple example shows how the concept of relative degree
applies for SISO LTI systems.
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10.1 Relative Degree 229

Example 10.1.1 (Relative degree of SISO LTI systems)
Relative Degree of Linear Time-invariant Systems

Let us consider the following SISO LTI system:

ẋ = Ax+Bu (10.1)

y = Cx (10.2)

It is easy to see that

Lk
fh(x) = CAkx (10.3)

and

LgL
k
fh(x) = CAkB (10.4)

Notice that the relative degree conditions depend on the Markov
parameters of an LTI SISO system.
Thus the relative degree r is given by

CAkB = 0 ∀k < r − 1 (10.5)

CAr−1B 6= 0 (10.6)

It is well known from linear systems theory that the integer
satisfying these conditions is exactly equal to the difference be-
tween the degree of the denominator polynomial (n) and the de-
gree of the numerator polynomial (m) of the transfer function
H(s) = C(sI −A)−1B, i.e. r = n−m ≥ 0.

The next example contains the calculation of relative degree for a simple
nonlinear system.

Example 10.1.2 (Relative degree of a nonlinear system)

Calculate the relative degree of the following system at the point
[1 1]

T
.

ẋ =

[
x2

2ωζ(1 − µx2
1)x2 − ω2x1

]
+

[
0
1

]
u (10.7)

y = h(x) = x1 (10.8)

where ω, ζ and µ are non-zero constants. If possible, find two
points in the state-space where the relative degree of the system
is different.
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230 10. Feedback and Input–output Linearization of Nonlinear Systems

We compute the necessary Lie-derivatives as follows:

Lgh(x) =
∂h

∂x
g(x) = [1 0]

[
0
1

]
= 0 (10.9)

Lfh(x) = x2 (10.10)

LgLfh(x) =
∂Lfh

∂x
g(x) = [0 1]

[
0
1

]
= 1 (10.11)

This means that the relative degree of the system is 2 in any point
of the state-space (including [1 1]

T
). Therefore there are no such

points in the state-space where the relative degree of the system
is different.

10.2 Exact Linearization via State Feedback

The aim of exact linearization is to apply a suitable nonlinear static state
feedback to a SISO nonlinear system in order to obtain a linear one in the
new coordinates and between the original output and the newly introduced
transformed input. Thereafter any controller design method, such as PID,
pole-placement or LQR, applicable for SISO LTI systems can be used to sta-
bilize the system or modify its dynamic properties (see Chapter 9 for state
feedback controllers for LTI systems).

Exact linearization via state feedback is a basic but limited technique for
control of nonlinear systems because it is only applicable for systems satisfying
a relative degree condition.

10.2.1 Nonlinear Coordinates Transformation and State Feedback

In a SISO system the most convenient structure for a static state feedback
control is when the input variable u is computed as

u = α(x) + β(x)v (10.12)

where v is the external reference input. The composition of this control with
a SISO nonlinear input-affine system of the form (5.51)–(5.52) gives

ẋ = f(x) + g(x)α(x) + g(x)β(x)v (10.13)

y = h(x) (10.14)

The application that will be discussed is the use of state feedback (and change
of coordinates in the state-space) with the purpose of transforming a given
nonlinear system into a linear and controllable one.
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10.2 Exact Linearization via State Feedback 231

Note that the above nonlinear state feedback is a direct extension of the
linear state feedback (see in Section 9.1.2) applied in the problem statement
of pole-placement controllers described in Section 9.2:

u = −kx+ v (LTI)

u = α(x) + β(x)v (nonlin)

The following lemma introduces a coordinate transformation that is applied
in bringing the system into a linear form in the new coordinates.

Lemma 10.2.1. Consider a nonlinear system having relative degree r = n
(i.e. exactly equal to the dimension of the state-space) at some point x = x0

and the following coordinates transformation:

Φ(x) =




φ1(x)
φ2(x)
. . .

φn(x)


 =




h(x)
Lfh(x)
. . .

Ln−1
f h(x)


 (10.15)

i.e. a transformation by the output function and its first (n − 1) deriva-
tives along f(x). Then there exists a nonlinear static feedback in the form
of (10.12) such that the closed-loop system in the new coordinates is linear
and controllable.

In the new coordinates

zi = φi(x) = Li−1
f h(x), 1 ≤ i ≤ n (10.16)

the system is given by

ż1 = z2 (10.17)

ż2 = z3 (10.18)

. . . (10.19)

żn−1 = zn (10.20)

żn = b(z) + a(z)u (10.21)

since

d

dt
Lk

fh(x) =
∂Lk

fh(x)

∂x
ẋ =

∂Lk
fh(x)

∂x
(f(x) + g(x)u)

= Lk+1
f h(x) + LgL

k
fh(x)u (10.22)

As the relative degree of the system is equal to n

LgL
k
fh(x) = 0, ∀k < n

the above Equation (10.22) specializes to
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d

dt
Lk

fh(x) = żk = Lk+1
f h(x) = zk+1, ∀k < n (10.23)

and the last equation is in the form

żn =
d

dt
Ln−1

f h(x) + LgL
n−1
f h(x) · u (10.24)

Suppose that the following state feedback control law is chosen:

u =
1

a(z)
(−b(z) + v) (10.25)

with

α(x) = − b(z)

a(z)
= −

Ln
fh(x)

LgL
n−1
f h(x)

, β(x) =
1

a(z)
=

1

LgL
n−1
f h(x)

as follows from Equation (10.24) above.
The resulting closed-loop system is then governed by the equations

ż1 = z2 (10.26)

ż2 = z3 (10.27)

. . . (10.28)

żn−1 = zn (10.29)

żn = v (10.30)

i.e. the closed-loop system is indeed linear and controllable.
It is important that the transformation consists of two basic ingredients:

1. A change of coordinates, defined locally around the point x0.
2. A state feedback, also defined locally around the point x0.

10.2.2 The State-space Exact Linearization Problem for SISO
Systems

A critical assumption in Lemma 10.2.1 is to have the relative degree of the
system to be equal to the number of state variables, i.e. r = n. If this is
not the case, i.e. when r < n, one may try to construct an artificial output
y = λ(x) (with λ(x) being a nonlinear function different from the original
h(x)) such that the relative system is of r = n. The idea is to use the basic
case given in Lemma 10.2.1 to find conditions for the existence and a way to
construct λ(x).

It is important to note, however, that λ(x) is not expected to be unique (if
it exists at all) because the nonlinear coordinates transformation Φ(x) is not
unique either. Therefore we would like to find a transformation Φ(x) which
is simple and invertible.
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Problem Statement. Consider an input-affine nonlinear system model
without the output equation

ẋ = f(x) + g(x)u (10.31)

and suppose the following problem is to be solved. Given a point x0 in the
state-space, find (if possible) a neighborhood U of x0, a feedback

u = α(x) + β(x)v (10.32)

defined on U , and a coordinates transformation z = Φ(x) also defined on U ,
such that the corresponding closed-loop system

ẋ = f(x) + g(x)α(x) + g(x)β(x)v (10.33)

in the new coordinates z = Φ(x) is linear and controllable, i.e.
[
∂Φ

∂x
(f(x) + g(x)α(x))

]

x=Φ−1(z)

= Az (10.34)

[
∂Φ

∂x
(g(x)β(x))

]

x=Φ−1(z)

= B (10.35)

for some suitable matrix A ∈ R
n×n and vector B ∈ R

n satisfying the condi-
tion

rank(B AB . . . An−1B) = n (10.36)

This problem is the SISO version of the so-called State-space Exact Lineariza-
tion Problem.

Existence of a Solution. The following lemma gives a necessary and suf-
ficient condition for the solvability of the above State-space Exact Lineariza-
tion Problem:

Lemma 10.2.2. The State-space Exact Linearization Problem is solvable if
and only if there exists a neighborhood U of x0 and a real-valued function λ,
defined on U , such that the system

ẋ = f(x) + g(x)u (10.37)

y = λ(x) (10.38)

has relative degree n at x0.

The problem of finding a function λ such that the relative degree of the
system at x0 is exactly n, i.e. a function such that

Lgλ(x) = LgLfλ(x) = · · · = LgL
n−2
f λ(x) = 0 for all x (10.39)

LgL
n−1
f λ(x0) 6= 0 (10.40)
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is apparently a problem involving the solution of a system of partial differ-
ential equations (PDEs).

In order to see this, we rewrite the first equation in (10.39) into PDE form
using the fact that λ(x) = λ(x1, . . . , xn) is a scalar-valued function:

Lgλ(x) =

n∑

i=1

∂λ

∂xi
(x) · gi(x) = 0

with gi(x) being a given function.
For the purpose of the solution we introduce a short notation

Ladf gλ =
∂λ

∂x
· [f, g] (10.41)

where adi
fg is recursively defined as follows:

ad0
fg(x) = g(x) (10.42)

adi
fg(x) = [f, adi−1

f g(x)] (10.43)

For example

ad1
fg(x) = adfg = [f, g], ad2

fg(x) = [f, [f, g]]

As a matter of fact, Equations (10.39) are then equivalent to

Lgλ(x) = Ladf gλ(x) = · · · = Ladn−2
f

gλ(x) = 0 (10.44)

and the non-triviality condition (10.40) is equivalent to

Ladn−1
f

gλ(x0) 6= 0 (10.45)

By this, we have arrived at a theorem that states the necessary and suf-
ficient conditions for the solvability of the State-space Exact Linearization
Problem:

Theorem 10.2.1. Suppose a system

ẋ = f(x) + g(x)u (10.46)

is given. The State-space Exact Linearization Problem is solvable near a point
x0 (i.e. there exists an “output” function λ for which the system has relative
degree n at x0) if and only if the following conditions are satisfied:

1. The matrix ∆c(x0) =
[
g(x0) adfg(x0) . . . adn−2

f g(x0) adn−1
f g(x0)

]
has

rank n.
2. The distribution D = span{g, adfg, . . . , ad

n−2
f } is involutive near x0.

The distribution D in condition 2 can also be written in the form

D = span{ g, [f, g], [f, [f, g]], . . . }
and its dimension is at most n − 1, i.e. dim D ≤ n − 1. The difficulty in
constructing D lies in the fact that it is difficult to have it involutive.
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Solution Procedure. On the basis of the previous discussion, the proce-
dure leading to the construction of a feedback u = α(x) + β(x)v and of a
coordinates transformation z = Φ(x) by solving the State-space Exact Lin-
earization problem consists of the following steps:

1. From f(x) and g(x), construct the vector fields

g(x), adfg(x), . . . , adn−2
f g(x), adn−1

f g(x)

and check conditions 1 and 2.
2. If both are satisfied, solve the partial differential equation (10.39) for
λ(x).

3. Calculate the feedback functions

α(x) =
−Ln

fλ(x)

LgL
n−1
f λ(x)

, β(x) =
1

LgL
n−1
f λ(x)

(10.47)

4. Calculate the coordinate transformation

Φ(x) = col(λ(x), Lfλ(x), . . . , Ln−1
f λ(x)) (10.48)

Definition 10.2.1 (Linearizing feedback and coordinates)
The feedback defined by the functions (10.47) is called the linearizing feedback
and the new coordinates given by (10.48) are called the linearizing coordi-
nates.

It is important to note that the feedback linearization of SISO nonlinear sys-
tems is not necessarily robust (sometimes even highly sensitive) with respect
to the parameter or structure mismatches, therefore it is of limited use in
process system applications.

10.2.3 Simple Examples for Feedback Linearization

Two simple examples shows the difficulties of feedback linearization using the
solution procedure of the State-space Exact Linearization Problem.

Linearization of a One-dimensional System

Problem Statement. Consider a nonlinear system that is given by the follow-
ing state equation

dx

dt
= −kx2 + xu (10.49)

where k is a non-zero constant. We aim to find a linearizing feedback and a
linearizing coordinate transformation for this system.

The solution proceeds by answering the following questions and solving
the simple sub-problems as detailed below.
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1. Is it possible to solve the State-space Exact Linearization Problem at any
point of the state-space?

2. Choose an appropriate point in the state-space and find a linearizing
feedback and linearizing coordinate transformation for the system. Write
the equations of the closed-loop system in the original coordinates and
also in the transformed coordinates. Examine the stability, controllability
and observability of the closed-loop system.

3. Is the above solution unique? If not, try to give another solution.

Solution. We solve the problem in the order of the steps above as follows:

1. If the function λ is chosen, for example, as

λ(x) = x (10.50)

then the State-space Exact Linearization Problem can be solved around
any point of the state-space except 0, since

Lgλ(x) = LgL
0
fλ(x) = x (10.51)

Lfλ(x) = −kx2 (10.52)

(10.53)

2. Thus the linearizing feedback around any point (except 0) is given by

α(x) =
kx2

x
= kx (10.54)

β(x) =
1

x
(10.55)

and the linearizing coordinate transformation is

z = φ(x) = x (10.56)

Since the above coordinate transformation is identical, the state equation
of the closed-loop system is the same in the original and the transformed
coordinate is in the form

ẋ = −kx2 + x(kx+
1

x
v) = v (10.57)

The closed-loop system is on the boundary of stability, and it is control-
lable and observable.

3. The above solution is not unique, we can find infinitely many suitable
transformations, e.g.

λ(x) = x2 + 1 (10.58)

Lgλ(x) = 2x2 (10.59)

Lfλ(x) = −2kx3 (10.60)

α(x) =
2kx3

2x2
= kx (10.61)

β(x) =
1

2x2
(10.62)
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Then the equations of the closed-loop system are

ẋ = −kx2 + x(kx+
1

2x2
v) =

1

2x
v (10.63)

z = φ(x) = x2 + 1 (10.64)

ż = 2xẋ = v (10.65)

Exact Linearization of a Two-dimensional System

Problem statement. The aim in this example is to exactly linearize the fol-
lowing simple two-dimensional system around its equilibrium point x0 = 0:

[
ẋ1

ẋ2

]
=

[
−x3

1 + x2

−x1x2

]
+

[
0
1

]
u (10.66)

Solution. First, let us find a function λ for which the system has relative
degree 2 at x0. For this, we would need Lgλ(x) = 0 in a neighbourhood of x0,
and LgLfλ(x0) 6= 0. It’s easy to see from g(x) in the model that a function
λ depending only on x1 meets the first requirement. Let us select λ as

λ(x) = x1

and thus Lgλ(x) = [1 0][0 1]T = 0. Now, calculate LgLfλ, which is written
as

LgLfλ(x) = [−3x2
1 1][0 1]T = 1

and which satisfies the second condition of having relative degree 2 at any
point of the state-space. The linearizing coordinates transformation Φ and
its inverse are given by

[
z1
z2

]
= Φ(x) =

[
x1

−x3
1 + x2

]

and
[
x1

x2

]
= Φ−1(z) =

[
z1
z2 + z3

1

]

The functions in the nonlinear linearizing feedback can be calculated as

α(x) =
−L2

fλ(x)

LgLfλ(x)
= 3x2

1(x3
1 − x2) − x1x2

and

β(x) =
1

LgLfλ(x)
= 1

The system with the feedback above in the original coordinates is
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ẋ1 = −x2
1 + x2

ẋ2 = −3x2
1(x3

1 − x2) + v

The derivatives of the transformed coordinates are calculated as

ż1 = −x2
1 + x2 = z2

ż2 = −3x2
1 · ẋ1 + ẋ2 = v

Therefore we can conclude that the system is linear and controllable in the
transformed coordinates with the calculated feedback.

10.3 Input–output Linearization

As we have seen in the previous section, the conditions of the solvability of the
State-space Exact Linearization Problem in Theorem 10.2.1 are strict and, in
general, the PDE (10.44) is difficult to solve analytically. Therefore the exact
linearization may not be applicable or may not be feasible in practical cases.
Input–output linearization is an alternative way of achieving linear behavior
of a system by nonlinear coordinate transformation.

Recall from Subsection 5.5.1 that any input-affine state-space system
model with relative degree r (with r ≤ n) can be transformed into normal
form described in Equations (5.53) where the first r transformed coordinates
form a linear and controllable subsystem. One can then calculate u such that
żr = v. This gives

u =
1

a(z)
(−b(z) + v) (10.67)

and

ż1 = z2
ż2 = z3
. . .

żr−1 = zr

żr = v
żr+1 = qr+1(z)

. . .
żn = qn(z)
y = z1

(10.68)

This feedback decomposes the system into two parts:

• a linear subsystem of order r which is influenced by the chosen input u,
and

• a nonlinear subsystem described by the zero dynamics.

This observation is stated in the theorem below.
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Theorem 10.3.1 (Input–output linearization). Consider a nonlinear
system having relative degree r at x0. The state feedback

u =
1

LgL
r−1
f h(x)

(−Lr
fh(x) + v) (10.69)

transforms this system into a system whose input–output behavior is identical
to that of a linear system having a transfer function

H(s) =
1

sr

It is important to observe that linearizing feedback of the input–output lin-
earization determined by Equation (10.69) is easy to compute and influences
only the r coordinates of the system. The rest, which is not influenced by the
feedback, is determined by the zero dynamics of the system (see in Subsection
5.5.1). Therefore, the main applicability condition of input–output lineariza-
tion is to have a stable zero dynamics in a wide domain of the state-space,
or even better, a globally stable zero dynamics.

Example 10.3.1 (Input–output linearization)

Consider again the system (10.66), but now with the predefined
output equation h(x) = x2. It’s easy to check that Lgh(x) = 1 in
each point of the state-space and thus the system has uniformly
relative degree 1 with respect to this output. The components of
the feedback for the input–output linearization are

α(x) =
−Lfh(x)

Lgh(x)
= x1x2, β(x) = 1

The state equations of the closed-loop system are

ẋ1 = −x3
1 + x2

ẋ2 = −x1x2 + x1x2 + v = v

10.4 Process Systems with Maximal Relative Degree

The following simple process example illustrates the technique of feedback
linearization and introduces the general statements on process systems with
maximal relative degree which follow thereafter.
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Example 10.4.1 (Feedback linearization of a tank)
Tank with outflow valve example

Let us have a simple tank with output convection driven by the
hydrostatic pressure at the bottom of the tank through a valve
with square root characteristics. Assume that the inflow to the
tank is the input variable. Develop the nonlinear state-space model
of the tank and apply feedback linearization.
The state equation of the tank is the overall mass balance over
the tank–valve system:

ρA
dh

dt
= ρvB − k∗

√
ρgh (10.70)

where ρ is the density, A is the uniform cross-section, h is the
level, vB is the volumetric inflow, g is the gravitation constant
and k∗ is the valve constant.
The above equation can be easily rewritten in the usual state
equation form by assuming x = h and u = vB :

dx

dt
= −k2

√
x+ k1u (10.71)

The solution of the State-space Exact Linearization Problem is
the following:

• g(x) = k1 is non-zero for any x ∈ R because it is a constant
function. The distribution span{g} is involutive since it is one-
dimensional.

• In this case we have to deal only with the non-triviality condi-
tion
Lgλ(x0) 6= 0. It is satisfied at any point of the state-space if we
choose λ, e.g. as follows

λ(x) = x (10.72)

since Lgλ(x) = k1. Note that this means that the State-space
Exact Linearization Problem can be solved in any point of the
state-space.

• Thus

α(x) =
−Lfλ(x)

Lgλ(x)
=
k2
√
x

k1
(10.73)

and

β(x) =
1

Lgλ(x)
=

1

k1
(10.74)
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10.4 Process Systems with Maximal Relative Degree 241

• The linearizing transformation is given by

z = Φ(x) = col(λ(x)) = x (10.75)

The state equation of the system after applying the linearizing
feedback is written as

ẋ = −k2

√
x+ k1(

k2
√
x

k1
+

1

k1
v) = v (10.76)

which is linear and controllable.

There are several characteristic process systems which exhibit the maximal
relative degree property r = n. In order to find them we use the notion of
the structure graph of a lumped system.

Definition 10.4.1 (Structure graph)
The structure graph of a lumped nonlinear system is a directed graph G =
(V,E) where

• the vertex set V is partitioned into three subsets

V = U ∪X ∪ Y U ∩X = X ∩ Y = U ∩ Y = ∅

with U being the set of inputs, X the set of state and Y the set of output
variables,

• the edge set E describes direct influences between the variables, i.e. a di-
rected edge (vi, vj) exists from vi to vj if the variable vi is present on the
right-hand side of the equation determining vj (in the case of output) or
v̇j (in the case of state).

Note that there is no inward directed edges for input and no outward directed
edges for output variables in the graph.

Note that there is a relationship between structure matrices introduced in
Subsection 7.4.1 and the structure graph above (see [33]).

A necessary (but not sufficient) structural condition for a SISO system to
have relative degree r = n is that the shortest path (or paths) from the input
to the output should traverse all the state variables.

The following cases with clear engineering meaning satisfy the condition
above.

1. Systems with only a single state variable (n = 1)
The conditions are trivially fulfilled but it is not a practically interesting
case (see Example 10.4.1).
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242 10. Feedback and Input–output Linearization of Nonlinear Systems

2. Cascade systems (lumped DPS systems or a sequence of CSTRs) with a
single balance in each lump and with special input and output
An example of this is a sequence of isothermal CSTRs with constant
overall mass and a simple r-th order reaction in each tank where the
component mass balances form the set of state equations:

dc
(i)
A

dt
=

v

V (i)
(c

(i−1)
A − c

(i)
A ) − kc

(i)r
A

If we then choose u = c
(0)
A as the inlet concentration and y = c

(n)
A as the

outlet concentration, then the structure of the input and output functions
is given by:

g(x) =




∗
0
. . .
0


 , hT (x) =




0
. . .
0
∗∗




where ∗ denotes a non-zero entry, and the system is of full relative degree.
3. Cascade systems with more than one balance but with a special selection

of input and output variables
An example is a heat exchanger cell where the cold side flow rate is
manipulated (u = vc) and the hot side outlet temperature is chosen as
the output variable y = Tho.

10.5 Exact and Input–output Linearization of a
Continuous Fermenter

In this section we illustrate the use of feedback and input–output linearization
in the example of a simple continuous fermenter described in Section 4.5.3
following [76].

The nonlinear state-space model of the fermenter is given in Equations
(4.78)–(4.79). The variables and parameters of the fermentation process
model are collected in Table 4.1.

A nonlinear technique, feedback linearization is applied to the nonlinear
state-space model for changing the system dynamics into a linear one. Then,
different linear controllers are employed in the linearized system.

10.5.1 Exact Linearization via State Feedback

In order to satisfy the conditions of exact linearization, first we have to find
an artificial output function λ(x) that is a solution of the PDE:

Lgλ(x) = 0 (10.77)

i.e.
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10.5 Exact and Input–output Linearization of a Continuous Fermenter 243

∂λ

∂x1
g1(x) +

∂λ

∂x2
g2(x) = 0 (10.78)

It’s easy to check that

Φ

(
V (−SF + x2 + S0)

x1 +X0

)
(10.79)

is a solution of (10.78) where Φ is an arbitrary continuously differentiable
(C1) function. Let us choose the simplest possible output function, i.e.

λ(x) =
V (−SF + x2 + S0)

x1 +X0
(10.80)

Then the components of state feedback u = α(x) + β(x)v for linearizing the
system are calculated as

α(x) =
−L2

fλ(x)

LgLfλ(x)
(10.81)

β(x) =
1

LgLfλ(x)
(10.82)

and the new coordinates are

z1 = λ(x) = V (−SF +x2+S0)
x1+X0

z2 = Lfλ(x)

=
µmaxV (S0X0+S0x1+X0x2+x1x2−Y SF S0−Y SF x2+Y S2

0+2Y x2S0+Y x2
2)

Y (x1+X0)(K2x2
2+2K2x2S0+K2S2

0+x2+S0+K1)

The state-space model of the system in the new coordinates is

ż1 = z2 (10.83)

ż2 = v (10.84)

which is linear and controllable.
The exactly linearized model may seem simple but if we have a look at

the new coordinates we can see that they are quite complicated functions of
x depending on both state variables. Moreover, the second new coordinate z2
depends on µ, which indicates that the coordinate transformation is sensitive
with respect to uncertainties in the reaction rate expression.

10.5.2 Input–output Linearization

Here we are looking for more simple and practically useful forms of lineariz-
ing the input–output behavior of the system. The static nonlinear full state
feedback for achieving this goal is calculated as

u = α(x) + β(x)v = −Lfh(x)

Lgh(x)
+

1

Lgh(x)
v (10.85)
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244 10. Feedback and Input–output Linearization of Nonlinear Systems

provided that the system has relative degree 1 in the neighborhood of the
operating point where v denotes the new reference input. As we will see,
the key point in designing such controllers is the selection of the output (h)
function where the original nonlinear state equation (4.78) is extended by a
nonlinear output equation y = h(x) where y is the output variable.

Controlling the Biomass Concentration. In this case

h(x) = X̄ = x1

and

α(x) = −Lfh(x)

Lgh(x)
=

V µmax(x2 + S0)

K2(x2 + S0)2 + x2 + S0 +K1
− F0 (10.86)

β(x) = − V

x1 +X0
(10.87)

The outer loop for stabilizing the system is the following:

v = −k · h(x) (10.88)

It was found that the stabilizing region of this controller is quite wide but
not global. The time derivative of the Lyapunov function is shown in Figure
10.1.

Controlling the Substrate Concentration. In this case, the chosen out-
put is

h(x) = S̄ = x2

The full state feedback is composed of the functions

α(x) = − V µmax(x2 + S0)(x1 +X0)

Y (K2(x2 + S0)2 + x2 + S0 +K1)(SF − x2 − S0)
+ F0 (10.89)

β(x) =
V

Sf − x2 − S0
(10.90)

In the outer loop, a negative feedback with gain k = 0.5 was applied, i.e.
v = −0.5x2. The time derivative of the Lyapunov function of the closed-loop
system as a function of X̄ and S̄ is shown in Figure 10.2.

Note that for this case it was proven (see the zero dynamics analysis of the
continuous fermenter in Subsection 5.5.2) that the closed-loop system is glob-
ally stable except for the singular points, where the biomass concentration is
zero.
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10.5 Exact and Input–output Linearization of a Continuous Fermenter 245

Figure 10.1. Time derivative of the Lyapunov function as a function of centered
state variables q1 = 1, q2 = 1, linearizing the biomass concentration, k = 0.5

Controlling the Linear Combination of the Biomass and the Sub-
strate Concentrations. In this case, the output of the system was chosen
as

h(x) = Kx (10.91)

where the row vector K is calculated as the result of the previously described
LQR cheap control design problem in Subsection 9.5.2. Then the functions
α and β are given as

α(x) = −Kf(x)

Kg(x)
(10.92)

β(x) =
1

Kg(x)
(10.93)

The value of K was [−0.6549 0.5899]
T

and in the outer loop a negative
feedback with gain k = 0.5 was applied. The time derivative of the Lyapunov
function of the closed-loop system is shown in Figure 10.3.
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246 10. Feedback and Input–output Linearization of Nonlinear Systems

Figure 10.2. Time derivative of the Lyapunov function as a function of centered
state variables q1 = 1, q2 = 1, linearizing the substrate concentration, k = 0.5

10.6 Output Selection for Feedback Linearization

The problem of output selection for nonlinear output feedback is a general
issue for all nonlinear systems (see, e.g. [81]). In several cases, an unstable
nonlinear system can be stabilized by appropriate controls provided that a
proper output is selected.

In Section 10.2 it was shown that exact linearization has two main disad-
vantages: first, partial differential equations have to be solved to calculate the
output function h, and second, if we manage to find an appropriate output
then it is (together with the coordinates transformation Φ) often a highly
nonlinear function of the state variables, which is hard to treat practically.
Therefore, it is of interest to select a linear output with advantageous prop-
erties from an engineering point of view.

In Section 5.5.2 we managed to show that controlling the substrate con-
centration is enough for the global stabilization of continuous fermentation
processes (i.e. we were able to select an output with globally asymptotically
stable zero dynamics). However, the analytical investigation of the stability
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10.6 Output Selection for Feedback Linearization 247

Figure 10.3. Time derivative of the Lyapunov function as a function of centered
state variables q1 = 1, q2 = 1, linearizing the linear combination of the biomass and
substrate concentrations, K = [−0.6549 0.5899]T , k = 0.5

of the zero dynamics is usually not possible in the higher dimensional cases.
Nevertheless, using the well-known results of optimal control and the theory
of nonlinear systems, a generally applicable linear output selection method
can be derived.

To establish a relation between linear systems and the zero dynamics
of nonlinear systems, let us consider a single-input linear system given in
standard state-space form:

ẋ = Ax+Bu (10.94)

where x ∈ R
n, u ∈ R, A and B are real matrices of appropriate dimensions.

Let us assume that all state variables are measurable. Furthermore, assume
that the pair (A,B) is controllable.

Consider a full state feedback u = −Kx (possibly resulting from a linear
controller design method, e.g. pole-placement or LQ-design) that asymptot-
ically stabilizes the system (10.94).
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248 10. Feedback and Input–output Linearization of Nonlinear Systems

The controlled closed-loop system can be interpreted in such a way that
the system (10.94) with the output equation

y = Kx (10.95)

is fed back with output feedback u = −y. Therefore the system (10.94) with
the special linear output equation (10.95) can be a minimum-phase system
(i.e. the real parts of the zeros of its transfer function are strictly negative).
In the linear case, the zero dynamics is a linear dynamics with eigenvalues
coinciding with the zeros of the transfer function of the system (see, e.g. [37]).
It is also true that the linear approximation at the equilibrium point of the
zero dynamics of a system (3.19) is the same as the zero dynamics of the
linear approximation of the system at the equilibrium point (see Chapter 4
in [37]). These facts allow us to search for linear outputs based on the locally
linearized system.

The resulting feedback gain vector KLQ of an LQ-design problem (see
Section 9.3) is generally a good candidate for linear output selection, since the
advantageous phase and gain margins of the LQ-loop are well-known (see, e.g.
[22] or [48]). In particular, the infinite gain margin guarantees that the system
(10.94) with output KLQ will be locally minimum-phase. The explanation of
this fact is the following: it is well-known from classical root-locus analysis
that as the feedback gain increases towards infinity, the closed-loop poles
migrate to the positions of open-loop zeros [64]. Thus the infinite-gain margin
in the linear case means that the closed-loop system remains stable if we
increase the loop-gain. It also means that the linear system (10.94) together
with the output equation

y = KLQ · x (10.96)

has stable zeros (i.e. asymptotically stable zero dynamics).
By applying the above-mentioned relation between the zero dynamics of

the locally linearized system and the locally linearized zero dynamics of the
original nonlinear system, we obtain that the original nonlinear model with
the same linear output (10.96) will have at least locally asymptotically stable
zero dynamics. Note that this property is not necessarily true in the case
of the output generated by any locally stabilizing linear controller, but it
is always fulfilled by the feedback gain of LQ-controllers. In summary, the
method has two main advantages:

• it can be applied directly to high-dimensional nonlinear systems without
complicated calculations,

• the closed-loop performance can be evaluated and set easily because the
output is linear.

Output Selection for the Continuous Fermenter. Now, let us check the
minimum-phase property of the linearized system for continuous fermentation
processes. Consider the linearized model in Equations (4.84)–(4.87) together
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with the output equation in Equation (10.96), where we examine two feedback
gains in Subsection 9.5.2, namely:

1. KLQ1
= [−0.6549 0.5899]

2. KLQ2
= [−1.5635 2.5571]

where the LQ-controller design parameters were Q = I2×2, R = 1 and Q =
10 · I2×2, R = 1 respectively.

The zeros of the corresponding transfer functions are:

1. z1 = −0.6590 and
2. z2 = −0.7083

which are stable. Thus both of the outputs generated by Equation (10.96)
can be applied to feedback linearization of the continuous fermenter.

10.7 Further Reading

The use of the normal form (5.53) was first proposed in [36]. The state-space
exact linearization problem was proposed and solved in [15] for single-input
systems and [38] for multi-input systems. The notion of zero dynamics is from
[17] and it was used for stabilization in [18].

10.8 Summary

Feedback linearization techniques, namely exact linearization and input–
output linearization have been introduced in this chapter together with the
related basic notion of relative degree. The existence of the solution and the
applicability conditions of both the exact and input–output linearization have
also been described and analyzed.

Engineering conditions of process systems that are of maximal relative
degree have also been discussed. The linearization techniques have been il-
lustrated in a case study of a simple continuous fermenter. Finally, a practical
way of output selection for feedback linearization has also been proposed.

10.9 Questions and Application Exercises

Exercise 10.9.1. Compare the exact linearization and input–output lin-
earization techniques for input-affine nonlinear systems. Comment on their
applicability conditions and their need for computational resources.

Exercise 10.9.2. Give engineering conditions for a process system to have
maximal relative degree.
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Exercise 10.9.3. Compute the relative degree of the input-affine nonlinear
state-space model of the simple fed-batch fermenter developed in Subsection
4.5.2 and given in Equations (4.71)–(4.74) with the output equation and input
variable:

y = x1 = X, u = Sf

Exercise 10.9.4. Consider the bilinear (nonlinear) input-affine state-space
model of the heat exchanger cell developed in Section 4.4.4 with the input
and output variables

u = vc, y = Th = x2

Check the applicability conditions and then perform exact linearization of
the system.

Exercise 10.9.5. Consider the bilinear (nonlinear) input-affine state-space
model of the heat exchanger cell developed in Section 4.4.4 with the input
and output variables

u = vc, y = Tc = x1

Check the applicability conditions and then perform input–output lineariza-
tion of the system.

Exercise 10.9.6. Consider a simple CSTR model developed in Subsection
4.5.1 with the input and output variables

u = cAin, y = cA

Compute the relative degree of the system and apply exact linearization if it
is possible.

Exercise 10.9.7. Consider the following two-dimensional nonlinear system
model (the same as in Exercise 6.9.4) in its input-affine state-space form:

dx1

dt
= x

1/2
1 x

3/2
2 − x1x

3
2 + x

1/2
1 u1

dx2

dt
= 3x1x

1/2
2 − 2x2

1x2

y = x2
2

Compute the relative degree of the system and apply exact linearization if it
is possible.

Exercise 10.9.8. Consider again the above two-dimensional nonlinear sys-
tem model (the same as in Exercise 6.9.4) but with another output in its
input-affine state-space form:

dx1

dt
= x

1/2
1 x

3/2
2 − x1x

3
2 + x

1/2
1 u1

dx2

dt
= 3x1x

1/2
2 − 2x2

1x2

y = x1
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Check the applicability conditions and then design an input–output lineariz-
ing feedback to the above system.
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11. Passivation by Feedback

A conceptually simple but yet powerful way of obtaining a passive system
from a non-passive one is to apply a nonlinear static feedback to make it
passive. This idea is the basis of passivation by feedback, which is the subject
of this chapter.

The material is presented in the following sections:

• The passivation problem and static feedback design
Here we describe the necessary and sufficient conditions that enable us to
construct a static feedback which makes a nonlinear input-affine system
passive.

• Stabilization using control Lyapunov functions
A special case of stabilizing static feedback design is when a suitable chosen
Lyapunov function is prescribed for the closed-loop system. This practically
important controller design method is the subject of this section.

• Direct passivation of a continuous fermenter
This simple case study illustrates the notions and tools of direct passivation
by feedback.

• Direct passivation of a gas turbine
This section presents a more detailed case study of practical importance
where the controller based on passivation is the key element of control
system design.

11.1 The Passivation Problem and Static Feedback
Design

In this section, we examine the conditions of transforming an input-affine non-
passive system by static nonlinear feedback of the form (9.3), into a system
which is passive with respect to the new input and the system’s output. The
material covered in the section is based on [19] and [80].

Consider the input-affine state-space model (3.19) in the form of

Σ :
ẋ(t) = f(x(t)) +

∑m
i=1 gi(x(t))ui(t)

y(t) = h(x(t))
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254 11. Passivation by Feedback

and let us denote it simply by Σ. With the static state feedback with external
input as defined in Definition 9.1.2 in the form

u = α(x) + β(x)v

the closed-loop system denoted by Σα,β is given by

Σα,β :
ẋ = [f(x) + g(x)α(x)] + g(x)β(x)v
y = h(x)

(11.1)

Definition 11.1.1 (Feedback equivalence)
Σ is said to be feedback-equivalent to Σα,β in Equation (11.1).

Now, we present the main line of the solution without going too much into
the details. First, suppose that we have achieved our goal, i.e. that Σα,β is
passive with a storage function S ≥ 0. Then

S(x(t1)) − S(x(t0)) ≤
∫ t1

t0

vT (t)y(t)dt, ∀t1 > t0 (11.2)

Now, examine the behavior of the closed-loop system when its output is
identically zero:

Σc
α,β :

ẋ = [f(x) + g(x)α(x)] + g(x)β(x)v
0 = h(x)

(11.3)

Then it is easy to see from (11.2) that

S(x(t1)) − S(x(t0)) ≤ 0, ∀t1 > t0 (11.4)

which means that the zero dynamics of the closed-loop system is stable.
Let us now return to the original open-loop system system with the con-

straint y = 0

Σc :
ẋ = f(x) + g(x)u
0 = h(x)

(11.5)

and assume that (x(t), u(t)) is a solution of Σc. Then, by expressing v from
the feedback law, it is clear that

x(t), v(t) = β−1(x(t))(u(t) − α(x(t))) (11.6)

is a solution of Σc
α,β , and (11.4) holds in this case, too. This way, we have

concluded that the stability of the zero dynamics is a necessary condition of
passivation.

Now, let us calculate the input which is necessary to keep the system’s
output at 0. If we consider the condition y = 0, then naturally ẏ = 0 and we
can write

ẏ = hx(x)f(x) + hx(x)g(x)u (11.7)

This gives the condition below for u as the stabilizing (or passivating) input.
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Definition 11.1.2 (Passivating feedback)
The static state feedback of the form

u∗(x) = −[hx(x)g(x)]−1hx(x)f(x) (11.8)

is called the passivating feedback. Note that hx(x)g(x) must be of full rank in
a neighborhood of 0 in order to calculate the inverse in (11.8).

Of course, the initial condition of the system must be in the set
Xc = {x ∈ X |h(x) = 0}.

To summarize the above, let us state the following theorem:

Theorem 11.1.1 (Necessary condition of passivation). Suppose Σ is
feedback-equivalent to a passive system with a C2 storage function S locally
about x = 0, for which S(0) = 0 and S(x) > 0, x 6= 0. Assume that hx(x)g(x)
has rank m in a neighborhood of 0. Then

Sx(x)[f(x) + g(x)u∗(x)] ≤ 0, x ∈ Xc (11.9)

with u∗(x) defined by (11.8).

The following sufficient condition is very similar to the previous one.

Theorem 11.1.2 (Sufficient condition for passivation). Consider the
system Σ. Suppose rank(hx(0)g(0)) = m, and let S ≥ 0 be such that S(0) = 0,
S(x) > 0, x 6= 0 and satisfies Sx(x)[f(x) + g(x)u∗(x)] ≤ 0, x ∈ Xc. Then
Σ is locally feedback-equivalent to a passive system with a storage function
which is positive definite at x = 0.

The complete proof can be found in [80]. The idea of the proof is to describe
the system as a standard feedback interconnection of two passive systems
using local coordinates transformations.

11.2 Stabilization Using Control Lyapunov Functions

In this section we investigate the possibilities of stabilizing a nonlinear system
using a pre-defined Lyapunov function. Consider an input-affine nonlinear
system (3.19) and the set of static feedbacks (without new input) introduced
in Definition 9.1.1. Assume that the system is stabilized by a smooth feed-
back u = α(x). Then, according to the converse Lyapunov theorem (see in
Theorem 7.3.2), there exists a proper Lyapunov function V : X 7→ R

+, which
is decreasing along the closed-loop system’s trajectories, i.e.

d

dt
V =

∂V

∂x
(f(x) + g(x)α(x)) = LfV (x) + α(x)LgV (x) < 0 (11.10)

It is visible from (11.10) that if LgV (x) is identically set to zero, then neces-
sarily LfV (x) < 0.

Motivated by this, let us define a special function that can be the Lya-
punov function of the closed-loop system.
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Definition 11.2.1 (Control Lyapunov function)
A control Lyapunov function of the system (3.19) is a proper function
V : X 7→ R

+ with the property

LgV (x) = 0 ⇒ LfV (x) < 0, ∀x 6= 0 (11.11)

The importance of control Lyapunov functions is that the existence of such
a function is also a sufficient condition for a stabilizing feedback law, as is
stated by the following theorem:

Theorem 11.2.1 (Artstein-Sontag’s theorem). Consider a nonlinear
input-affine system of the form (3.19) where f and g are smooth vector fields
and f(0) = 0. There exists a feedback law u = α(x) which is smooth on
R

n\{0}, continuous at x = 0 and globally asymptotically stabilizes the equi-
librium x = 0 if and only if there exists a function V : X 7→ R

+ with the
following properties:

1. V is a control Lyapunov function for the system (3.19).
2. When ∀ε > 0 there exists δ > 0 such that for ‖x‖ < δ, x 6= 0 there is

some u, |u| < ε such that

LfV (x) + LgV (x)u < 0

Property 2 is required for the continuity of the feedback law at 0.
The proof of this theorem is constructive (it can be found, e.g. in [37]) and

gives a possible stabilizing feedback law based on control Lyapunov functions
in the following form:

α(x) =

{
0 if LgV (x) = 0

−Lf V (x)+
√

(Lf V (x))2+(LgV (x))4

LgV (x) otherwise
(11.12)

Quadratic Lyapunov functions are popular and powerful Lyapunov func-
tion candidates when analyzing stability of nonlinear systems. The notion of
quadratically stabilizable systems given by Definition 7.3.2 reflects this fact
such that a special class of nonlinear systems is formed which enables us to
have a quadratic Lyapunov function.

The following example illustrates how to construct a quadratic Lyapunov
function for a simple nonlinear system:
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Example 11.2.1 (Quadratic control Lyapunov function)

The aim in this example is to find a control Lyapunov function
for the following input-affine system:



ẋ1

ẋ2

ẋ3


 =




2x1 + x2
2 + x3

x1x2 − 2x2

x2
1x3


+




1
0
0


u (11.13)

We seek the control Lyapunov function V in the following simple
form:

V (x) =
1

2
(q1x

2
1 + q2x

2
2 + q3x

2
3)

where q1, q2 and q3 are positive real parameters.
The gradient of V is then

Vx(x) =
[
q1x1 q2x2 q3x3

]

The condition LgV (x) = 0 now specializes to q1x1 = 0, which is
equivalent to x1 = 0.
Now, we calculate the sign of the derivative of the candidate Lya-
punov function along the system trajectories restricted to x1 = 0.

LfV (x) =
[
q1x1 q2x2 q3x3

]



2x1 + x2
2 + x3

x1x2 − 2x2

x2
1x3




= q1x1(2x1 + x2
2 + x3) + q2x2(x1x2 − 2x2) + q3x3(x2

1x3) = −2q2x
2
2

It is clear from the above that V is a control Lyapunov function
of the system for any q1, q2, q3 > 0.

11.3 Control Lyapunov Function of a Continuous
Fermenter

In this section we investigate a simple quadratic Lyapunov function, i.e.
whether it can be the control Lyapunov function of the continuous fermen-
tation process described in Subsection 4.5.3. The results of the forthcoming
calculations are based on the parameter values listed in Subsection 4.5.2 and
the operating point is the optimal one calculated in Subsection 4.5.3. We will
use the centered version of the state equations with f and g in (4.79) with
the following notations:
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x1 = X̄, x2 = S̄, x∗1 = X0, x
∗
2 = S0, u

∗ = F0

Let the control Lyapunov function candidate be given in the following simple
form:

Vc(x) =
1

2
(q1x

2
1 + q2x

2
2), q1, q2 > 0 (11.14)

It’s easy to see that the set LgVc0 := {x ∈ R
2 | LgVc(x) = 0} is an ellipse in

the state-space, since

LgVc(x) = − 1

V
(q1x

2
1 + q1x1x

∗
1 + q2x2(x∗2 − SF ) + q2x

2
2) (11.15)

Let us choose q1 = 1 and q2 = 1 in (11.14). Then (11.15) defines a circle in the
state-space as is shown in Figure 11.1. To check the sign of the derivative of

Figure 11.1. The set {x ∈ R
2 | LgVc(x) = 0} for q1 = 1 and q2 = 1.

the control Lyapunov function candidate, we first express the x1 coordinate
as a function of x2 from LgVc(x) = 0, i.e. we try to solve this equation for
x1. The solutions are

x
(1,2)
1 =

−x∗1 ±
√

(x∗1)2 − 4x2x∗2 + 4x2SF − 4x2
2

2
(11.16)

which define the upper and lower halves of the circle in Figure 11.1. Let us
first check the derivative of the control Lyapunov function candidate along
f . For this, first calculate LfV , which reads

LfVc(x) = x1f1(x) + x2f2(x) = x1

(
µ(x2 + x∗2)(x1 + x∗1) − (x1 + x∗1)u∗

V

)

+x2

(
−µ(x2 + x∗2)(x1 + x∗1)

Y
+

(SF − x2 − x∗2)u∗

V

)
(11.17)
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Now check the sign of LfVc first in the upper half-circle by substituting x
(1)
1

into (11.17); we then get a function with only one independent variable (x2).
Instead of algebraic derivation (in fact, this will be the reader’s exercise at
the end of the chapter), we only give the graph of this function in Figure 11.2.
It is visible that the sign of the Lie-derivative is negative in a neighborhood
of x2 for x2 6= 0. (It can be shown that the function is negative on the whole
half-circle for x2 6= 0. )

Figure 11.2. The derivative of the control Lyapunov candidate along f restricted
to the upper half-circle

Next let us examine the sign of LfVc in the lower half-circle. For this, we
substitute x2

1 into (11.17). Similarly to the previous case, we only present the
graph of the obtained function to illustrate the solution in Figure 11.3. As is
visible for x2 > 0, the sign of the function is positive, but this region would
correspond to an operating region where X < 0 (see also Figure 11.1 again),
which is practically not meaningful. Furthermore, it can be shown that the
sign of LfVc is again negative in the lower half-circle if X > 0.

Finally, we can conclude that the proposed simple quadratic candidate Vc

with q1 = q2 = 1 is a control Lyapunov function of the continuous bio-reactor
model in the physically meaningful operating region. Now, it is possible to
apply Theorem 11.2.1 to design a stabilizing feedback of the form (11.2).

11.4 Case Study: Direct Passivation of a Gas Turbine

As a case study, a simple nonlinear controller for a low-power gas turbine
based on direct passivation is introduced here [3]. It uses a nonlinear state-

TLFeBook



260 11. Passivation by Feedback

Figure 11.3. The derivative of the control Lyapunov candidate along f restricted
to the lower-half circle

space model of the gas turbine in input-affine form based on first engineering
principles, which is described in Section 4.6.

The proposed nonlinear controller is based on a prescribed quadratic con-
trol Lyapunov function and is able to solve the protection of the gas turbine.
The robustness of the closed-loop system with respect to the time-varying
parameters is also investigated.

11.4.1 Nonlinear State-space Model

The nonlinear state-space model in its input-affine form can be developed
from the model equations based on first engineering principles. For the gas
turbine we use the intensive form of the model equations (4.93), (4.98), (4.99),
(4.100) and (4.101) described in Section 4.6.5 with the constitutive equations
in Section 4.6.6.

System Variables. The state variables of the gas turbine model are then
as follows:

x = [ mComb p3 n ]
T

(11.18)

The value of the only input variable νfuel is also constrained by:

0.003669480223 ≤ νfuel ≤ 0.02701065149 [kg/sec]

The set of possible disturbances includes:

d = [ p1 T1 Mload ]
T

(11.19)
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It is important to observe that the state and disturbance variables can only
vary within a prescribed operating region described in Section 4.6.7.

Finally we construct the set of measurable output variables:

y = [ T4 p3 n ]
T

(11.20)

Model Equations. The dynamic equations with these vectors can be trans-
formed into input-affine form:

dx

dt
= f(x) + g(x)u (11.21)

y = h(x) (11.22)

with the following f , g and h functions:

f(x) =




f1(x1, x2, x3, d1, d2)
f2(x1, x2, x3, d1, d2)

f3(x1, x2, x3, d1, d2, d3)


 (11.23)

g(x) =




const
const

0


 (11.24)

h(x) =



h1(x1, x2, x3, d1)

x2

x3


 (11.25)

It is important to note that these functions do not depend on only the state
variables, but also on the disturbance vector. Further, observe that g(x) does
not depend on the state vector x. This means that the effect of the input is
linear to the time derivative of the state vector.

Open-loop Properties of the System. It is found by standard nonlinear
analysis ([37]) that the developed model is reachable and observable in the
whole application domain and stable in a small neighborhood of any admis-
sible operating point ([2]). Therefore the asymptotic stability of all operating
points can be guaranteed in the whole application domain.

The measurable time-varying parameters of the system are collected into
the disturbance vector. All elements of this vector are correctly measurable
and significantly change their values during the operation of the gas turbine.

There are also some unmeasurable time-varying parameters in the non-
linear model. The value of the parameters σI , σComb, σN and ηComb are not
constant, but they change their values only about ±2 percent.

Because of these properties, we have to achieve disturbance-rejection and
robustness of the closed-loop system as stated in the control aims before.
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11.4.2 Controller Design

Control Aims. The following control aims is set for our low-power gas
turbine:

• The number of revolutions has to follow the position of the throttle and
should not be affected by the load and the ambient circumstances (the
disturbance vector).

• The temperatures (basically the total temperature after the turbine) and
the number of revolutions has to be limited, their values are constrained
from above by their maximum values.

Protection of the Gas Turbine. The aim of the protection of the gas
turbine is twofold: to avoid too-high temperatures and too-high numbers of
revolutions.

1. The turbine outlet temperature y1 has a maximum value of 938.15 K.
If the setpoint for y1 is higher than its maximum value, then we can
increase the number of revolutions (the temperature will then decrease),
but the number of revolutions also has a maximum value: 833.33 sec−1.

2. If the position of the throttle specifies a higher value for the number of
revolutions x3 than its maximum, then we do not allow it; the value will
be its maximum.

Static Nonlinear Stabilizing Controller. In the first step, a static non-
linear full state feedback is designed to stabilize the system in the whole
operating region. For this, let us assume that the point x0 is an equilibrium
point for the system (i.e. f(x0) = 0) and define a positive definite storage
function

V (x) = (x− x0)TM(x− x0) (11.26)

where M is an n× n positive definite symmetric matrix. If we set the input
u as

u = vp + v + w (11.27)

where

vp = −LfV (x)

LgV (x)
(11.28)

and

v = −k · LgV (x), k > 0 (11.29)

then the closed-loop system will be passive with respect to the supply rate
s = wT y with storage function V where y = LgV (x) and w is the new
reference input ([19]). Note that the feedback law in Equation (11.28) has
singular points where LgV (x) = 0, therefore x0 has to be selected carefully to
be outside the real operating region. The new reference input w is calculated
from the linear shift between x0 and the setpoint.
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Achieving Robustness with a PI-Controller. In order to remove the
steady-state error in the number of revolutions caused by the change of the
unmeasurable time-varying parameters, a PI-controller (which is itself again
a passive system) is applied in the outer loop, i.e.

w(t) = kp(y3s − y3(t)) + ki ·
∫ t

t0

(y3s − y3(τ))dτ (11.30)

where y3s is the constant setpoint for the number of revolutions, y3(t) is the
number of revolutions as a function of time, kp and ki are the parameters of
the PI-controller.

11.4.3 Simulation Results

For the simulations a typical operating point has been selected:

x∗ = [ 0.00580436 197250.6068 700 ]
T

(11.31)

d∗ = [ 101325 288.15 10 ]
T

(11.32)

u∗ = 0.009252624089 (11.33)

Simulation of the Open-loop System. The properties of the open-loop
system are well demonstrated by the simulation results. Figure 11.4 shows a
case where the number of revolutions has been changed to 400 and the system
is not able to reach the setpoint, indicating that the open-loop system is not
globally asymptotically stable. Figure 11.5 shows that the open-loop system
is sensitive with respect to the change of the disturbances: if we change the
Mload from 10 to 30 then the engine shuts down.

Simulation of the Closed-loop System. In order to achieve appropriate
dynamics of the closed-loop system, we have to tune M to be positive definite
and symmetric; to select the positive constant k and the parameters of the
PI-controller ki and kp. The tuning of these parameters was carried out by a
trial and error method and the following values were obtained:

M =




10 0 0
0 1000 0
0 0 0.001


 (11.34)

and k = 0.0005, ki = 0.7, kp = 1.1.
Figure 11.6 shows the same case as in Figure 11.4 with our nonlinear con-

troller. It indicates that the controller indeed stabilizes the system globally.
Figure 11.7 shows that the closed-loop system is not sensitive to the elements
of the disturbance vector. If we increase the load, the number of revolutions
decreases, but the nonlinear controller is able to set the original operating
point.

Figure 11.8 shows a setpoint change and the robustness of the controller.
The position of the throttle has been changed from 700 sec−1 to 750 sec−1

and simultaneously one time-varying parameter has been raised by 2 percent.
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Figure 11.4. Response of the number of revolutions of the open-loop system (un-
stable)
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Figure 11.5. Response of the number of revolutions of the open-loop system (sen-
sitive)

Conclusion. The nonlinear controller described above for a low-power gas
turbine is able to guarantee the asymptotic stability of the closed-loop system
in every operating point of the application domain.

This controller keeps the number of revolutions in accordance with the
position of the throttle while the number of revolutions is not affected by the
load and ambient circumstances.

At the same, time the controller can protect the gas turbine against a
too-high temperature and too-high number of revolutions at a setpoint and
the closed-loop system is robust with respect to the time-varying parameters.
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Figure 11.6. Response of the number of revolutions of the closed-loop system
(stable)
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Figure 11.7. Response of the number of revolutions of the closed-loop system (not
sensitive)

11.5 Further Reading

The conditions for making a system passive through static nonlinear feed-
back were derived in [19]. Control Lyapunov functions are described in a
rigorous and detailed way in, e.g. [68]. The Artstein-Sontag’s Theorem for
the stabilization of nonlinear system was presented in [67].

Mechatronic systems, such as robots, are the traditional area of passivat-
ing control, see, e.g. [61] for a recent reference.

Process Systems. The idea of controlling process systems based on ther-
modynamical principles was introduced in the 1990’s [55], [84], [23]. Ydstie
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Figure 11.8. Response of the number of revolutions of the closed-loop system
(set-point change)

[83] offers a recent survey on passivity-based control of process systems via
the second law.

Passivity-based control of nonlinear chemical processes has recently been
reported in [63]. The approach has been extended to distributed (i.e. infinite
dimensional) process systems in [4] and [5], too.

11.6 Summary

The methods for designing static feedback laws that stabilize (or passivate)
a nonlinear system are described in this chapter. The practically impor-
tant method of stabilizing state feedback design uses a prescribed, usually
quadratic control Lyapunov function.

Two case studies that illustrate the design and usefulness of stabilizing
feedback controllers are presented. The direct passivation of a simple con-
tinuous fermenter proposes a controller structure which stabilizes the system
globally. The passivation of a gas turbine represents a practically relevant
case, where the key element of the controller is the stabilizing loop.

11.7 Questions and Application Exercises

Exercise 11.7.1. Give the design parameters of the passivating and stabi-
lizing controller design. Comment on the effect of these parameters on the
properties of the closed-loop system.
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Exercise 11.7.2. Give the design parameters of the passivating and stabi-
lizing feedback controller design. Comment on the effect of these parameters
on the properties of the closed-loop system.

Exercise 11.7.3. Compare the design and properties of the passivating and
stabilizing feedback controllers. Comment on the applicability conditions,
the information and model they require and on the computational effort they
need.

Exercise 11.7.4. Consider the use of the LTI state-space model of the free
mass convection network in Equation (4.22) developed in Subsection 4.2.4.
Design a passivating and a stabilizing feedback controller for this simple
process system.

Exercise 11.7.5. Consider the LTI state-space model of the heat exchanger
cell developed in Subsection 4.4.2 of Section 4.4. Design a passivating and a
stabilizing feedback controller for this simple process system.

Exercise 11.7.6. Consider a simple CSTR model developed in Subsection
4.5.1. Construct a passivating feedback controller for to this system.

Exercise 11.7.7. Consider again a simple CSTR model developed in Sub-
section 4.5.1. Construct a stabilizing feedback controller for this system using
a quadratic control Lyapunov function.

Compare the controller with the passivating feedback one designed in
Exercise 11.7.6.

Exercise 11.7.8. Consider the bilinear (nonlinear) input-affine state-space
model of the heat exchanger cell developed in Subsection 4.4.4 with the input
and output variables

u := vc, y = Th = x2

Construct a stabilizing feedback controller for this system using a quadratic
control Lyapunov function.

Exercise 11.7.9. Consider the following two-dimensional nonlinear system
model (the same as in Exercise 6.9.4) but with another output in its input-
affine state-space form:

dx1

dt
= x

1/2
1 x

3/2
2 − x1x

3
2 + x

1/2
1 u1

dx2

dt
= 3x1x

1/2
2 − 2x2

1x2

y = x1

Check the applicability conditions and then design a stabilizing feedback
controller for the system.
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12. Stabilization and Loop-shaping

This chapter deals with stabilizing control and loop-shaping of Hamiltonian
systems. The basic notions and tools of the Hamiltonian system models to-
gether with process examples were given in Chapter 8.

In the first part of the chapter we follow [21]. Thereafter the methods and
results are extended to process systems.

The following sections contain the material of the chapter:

• Stabilization of Hamiltonian systems
The stabilization is done in two logical steps: stable systems are made
asymptotically stable by adding damping to the systems while unstable
systems are made stable by shaping their potential energy. This leads to a
nonlinear proportional-derivative (PD) output feedback controller.

• Stabilization and loop-shaping of nonlinear process systems
Using the specialities of the Hamiltonian system model of process systems,
the above tools and techniques are then applied to process systems.

• Simple process examples
A heat exchanger cell model and the model of the free mass convection net-
work are used to illustrate the design of the nonlinear PD output feedback
controller.

• Stabilization of a simple unstable CSTR
Besides the stabilizing property of the nonlinear PD output feedback con-
troller, the design parameters and the stability region of the controlled
system are also investigated in the example of a simple unstable CSTR.

• Hamiltonian control of a simple continuous fermenter
In this section, a complete case study is presented where various nonlinear
PD output feedback controller structures are applied to the system, and
their performance is compared.

12.1 Stabilization of Hamiltonian Systems

Let us consider a simple Hamiltonian system (see Definition 8.4.1 in Subsec-
tion 8.4.2) with an equilibrium point :

x0 = (q0, p0)
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It immediately follows from

q̇ =
∂H0

∂p
= G(q)p

that p0 = 0. Furthermore q0 satisfies grad V (q0) = 0, because it is an equi-
librium point.

12.1.1 Asymptotic Stabilization of BIBO-stable Systems

First, we show that an equilibrium point of a simple Hamiltonian system can
be stable without being asymptotically stable.

Lemma 12.1.1. Let (q0, 0) be an equilibrium point of the simple Hamilto-
nian system given by Equations (8.32)–(8.33). Suppose that V (q) − V (q0) is
a positive definite function in some neighborhood of q0. Then the system for
u = 0 is stable but not asymptotically stable.

Proof. We will show that

L(q, p) = H0(q, p) − V (q0) =
1

2
pTG(q)p+ V (q) − V (q0)

is a Lyapunov function for a system with u = 0. Indeed,

d

dt
L(q, p) =

d

dt
H0(q, p) =

n∑

i=1

(
∂H0

∂qi
q̇i +

∂H0

∂pi
ṗi

)
(q, p)

=

n∑

i=1

(
∂H0

∂qi

∂H0

∂pi
− ∂H0

∂pi

∂H0

∂qi

)
(q, p) = 0 (12.1)

Note that we have used the definitions and the state-space model form in
Equations (8.29)–(8.31) to derive the above result.

Furthermore, since G(q) > 0 and by assumption V (q) − V (q0) is positive
definite, it follows that L(p, q) is positive in some neighborhood of (q0, 0).
Since by Equation (12.1) d

dtL(q, p) = 0, it also follows that (q0, 0) cannot be
an asymptotically stable equilibrium.

Derivative Output Feedback. We can improve the situation, that is, to
make this stable equilibrium point asymptotically stable by introducing a
derivative output feedback to every input–output pair as follows:

ui = −ẏi = −dHi

dt
, i = 1, . . . ,m (12.2)

which physically means adding damping to the system.
Indeed, with this feedback we obtain (again using Equations (8.29)–(8.31)

with (12.1) and (12.2)):
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d

dt
L(q, p) =

n∑

i=1

(
∂H0

∂qi
q̇i +

∂H0

∂pi
ṗi

)

=

n∑

i=1


∂H0

∂qi

∂H0

∂pi
− ∂H0

∂pi


∂H0

∂qi
+

m∑

j=1

∂Hj

∂qi
uj






=

n∑

i=1

m∑

j=1

(
q̇i
∂Hj

∂qi

)
uj

which finally yields

d

dt
L(q, p) =

d

dt
H0(q, p) = −

m∑

i=1

ẏi
2 < 0 (12.3)

12.1.2 Stabilization by Shaping the Potential Energy

The main assumption in Lemma 12.1.1 was the positive definiteness of the
difference V (q)−V (q0) near an equilibrium point q0. If this assumption does
not hold, then let us apply a linear proportional static output feedback

ui = −kiyi + vi, i = 1, . . . ,m (12.4)

with vi being the new control inputs to the simple Hamiltonian system (8.32)–
(8.33).

The Closed-loop Hamiltonian System. The resulting system is again a
simple Hamiltonian system. In order to show this, we substitute the feedback
(12.4) into the defining equations to obtain:

H(q, p, v) =
1

2
pTG(q)p+ V (q) +

m∑

j=1

H2
j (q)kj −

m∑

j=1

Hj(q)vj

with the internal Hamiltonian

H0(q, p) =
1

2
pTG(q)p+ V (q) (12.5)

where V (q) is the new potential energy

V (q) = V (q) +

m∑

i=1

kiy
2
i (12.6)

and with the state-space model:

q̇i =
∂H0

∂pi
(q, p), i = 1, . . . , n

ṗi = −∂H0

∂qi
(q, p) +

m∑

j=1

∂Hj

∂qi
(q) vj , i = 1, . . . , n

yj = Hj(q), j = 1, . . . ,m
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Equation (12.6) shows that we have added a positive term to the “old” po-
tential energy.

By choosing sufficiently large feedback gains ki > 0, we may shape the poten-
tial energy in such a way that it becomes positive definite.

12.1.3 The Nonlinear PD-controller for Hamiltonian Systems

If we want to stabilize a simple Hamiltonian system, then we should compose
the two steps in the previous subsections:

• first, we make the system stable by suitable shaping the potential energy,
and

• then asymptotically stabilize the system by adding damping to the new
controls vi.

Definition 12.1.1 (PD output feedback controller)
The following proportional-derivative (PD) output feedback controller

ui = −kiyi − ciẏi, ki > 0 , ci > 0, i = 1, . . . ,m (12.7)

is applied to simple Hamiltonian system models.

The results in Subsections 12.1.1 and 12.1.2 show that the PD output feed-
back controller above can locally asymptotically stabilize a simple Hamilto-
nian system with sufficiently large ki. The additional freedom in the choice
of the gain parameters (ki, ci, i = 1, . . . ,m) can be used to ensure a satisfac-
tory transient behavior (analogously to the classical PD-controller case for a
linear second-order system).

Properties of the PD Output Feedback Controller

1. It is important to note that the nonlinear PD output feedback relates
“corresponding” ui − yi pairs where yi is the natural output to the input
ui. Analogously to the linear case, standard controllability and observ-
ability conditions should hold to ensure that we have “enough” inputs to
achieve stabilization as m ≤ n in the general case.

2. Observe that the feedback (12.7) is only seemingly an output feedback
because yi is the “natural” and not the real output of the system. Taking
into account the definition of the natural output of simple Hamiltonian
systems in Equations (8.33) and (8.31), it turns out that yi depends on
the state variables in a nonlinear way, therefore the feedback (12.7) is in
fact a nonlinear state feedback.
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12.1.4 Comparison of the Nonlinear PD-controller and Feedback
Linearization

If one compares the stabilization of a nonlinear system performed by feedback
linearization or by the nonlinear PD-controller, the following points can be
taken into account:

1. Applicability range
The applicability range of the two controllers is much different with little
overlap. Feedback linearization requires systems with relative degree r =
n or otherwise only approximative solutions may exist. The nonlinear
PD-controller is only applicable to simple Hamiltonian systems but they
include mechanical and process systems as well.

2. Robustness
Feedback linearization requires the exact knowledge of the nonlinear sys-
tem dynamics and it is known to be very sensitive with respect to mis-
modeling. The nonlinear PD-controller does only need the type of non-
linearity but it is not sensitive with respect to the parameters.

3. Computational resources
The design of a nonlinear PD-controller does not require any computa-
tional efforts while feedback linearization is rather demanding from the
viewpoint of the design computations.

12.2 Stabilization and Loop-shaping of Nonlinear
Process Systems

We have already seen how to develop the Hamiltonian system models of
process systems in Section 8.6, where the system variables and the elements
of the system Hamiltonian have been introduced. This Hamiltonian system
model serves as the basis of stabilization and loop-shaping of process systems.

12.2.1 Process Systems as Simple Hamiltonian Systems

The basis of the Hamiltonian description of a process system is the con-
struction described in Section 8.6. It has been shown that a process system
with the input variables (4.12) as the flow rates, the state variables (8.60)
as the conserved extensive quantities in each balance volume, and the co-
state variables (8.61) as the related thermodynamical potentials, enables us
to construct a simple Hamiltonian system model with the Hamiltonian func-
tion (8.72) and with the underlying relationships (8.65), (8.68) and (8.62),
(8.69).

The following special properties of the elements of the Hamiltonian de-
scription can be identified for process systems:
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1. Internal Hamiltonian
The internal Hamiltonian is related to the source term of the general
conservation balances only, such that:

H0(q, p) = VQ(q),
∂VQ(q)

∂q
= −Qφ(q)

Therefore H0(q, p) = 0 for process systems with no source.
2. Coupling Hamiltonians

Recall, that the Hamiltonian description assumes that the input variables
are the flow rates of the system, i.e. uj = v(j). Then it follows from the
general state equation (8.68) that

∂Hj

∂qi
(q) = (NjQ

−1q)ij +Bconv,ij

From this we see that the natural output is nonlinear and at most a
quadratic function of the state variables q.

12.2.2 Stabilization

The stabilization of a Hamiltonian process system is then a simple application
of the PD output feedback controller in Section 12.1.3, given in Equation
(12.7).

From this we can see that a process system can be stabilized by the
nonlinear PD output feedback controller in the form of (12.7) if the following
conditions hold:

1. The system possesses a passive mass convection network (see in Subsec-
tion 4.2.4).

2. All of the flow rates are used for the feedback as input variables.

12.3 Simple Process Examples

This section illustrates the design of stabilization and loop-shaping controllers
based on Hamiltonian system models using simple process examples intro-
duced earlier in Chapter 4. A nonlinear PD output feedback controller is
designed here for the bilinear heat exchanger cell and the free mass convec-
tion network.

12.3.1 Hamiltonian Control of the Heat Exchanger Cell

The basic Hamiltonian description of the nonlinear heat exchanger cell model
has already been developed in Subsection 8.8.2 from its state-space model
described in Section 4.4, where the state and co-state variables have been
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identified and the internal Hamiltonian H0(q, p) has been derived in Equation
(8.85). We only need to identify the coupling Hamiltonians H1(q) and H2(q)
from the co-state equation (8.83) for the input variables

u = [ vh − v∗h , vc − v∗c ]T

The coupling Hamiltonians can be reconstructed from the vector functions
g1(p) and g2(p) respectively, which are the gradient vectors of the correspond-
ing coupling Hamiltonians:

∂H1

∂q
= g1(q),

∂H2

∂q
= g2(q)

By partial integration, we have already obtained in Equations (8.86) and
(8.87) that

H1(q) =
1

2
cPh (T ∗)

2
q21 + cPhThiq1

H2(q) =
1

2
cPc (T ∗)

2
q22 + cPcT ciq2

From passivity analysis we know that the system is inherently passive but
that it has a pole at the stability boundary. Therefore we can perform stabi-
lization by derivative feedback and loop-shaping by static feedback by using
two nonlinear PD output feedback controllers as follows:

(loop 1)

u1 = −k1y1 − c1ẏ1, k1 > 0 , c1 > 0 (12.8)

y1 =
1

2
c
(h)
P (T ∗)

2
q21 + c

(h)
P Thiq1

(loop 2)

u2 = −k2y2 − c2ẏ2, k2 > 0 , c2 > 0 (12.9)

y2 =
1

2
c
(h)
P (T ∗)

2
q21 + c

(h)
P Thiq1

12.3.2 Loop-shaping Control of the Free Mass Convection
Network

Loop-shaping control of the free convection network described in Section
4.2.4 is developed here. The simple Hamiltonian system model is the basis
of the controller design which is described in Subsection 8.8.3 using the LTI
state-space model of the free mass convection network in Equation (4.22).

The state and co-state variables, which are the volume and the hydrostatic
pressure in each balance volume,

q = [ ρgh
(1)

, . . . , ρgh
(C)

]T
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p = [ V
(1)

, . . . , V
(C)

]T

have been identified and the internal Hamiltonian H0(q, p) has been derived
in Equation (8.89).

The coupling Hamiltonians can be derived from the co-state equations
(8.88), taking into account that the input functions are the gradient vectors of
the corresponding coupling Hamiltonians. We observe that an input variable

uj = v
(j)
IN acts only on its state variable qj = ρgh

(j)
, therefore

Hj(qj) = −1

ρ
qj = −χjh(j)

From passivity analysis we know that the system is inherently passive with
no poles at the stability boundary. Therefore we need not perform stabiliza-
tion by a derivative output feedback but can perform loop-shaping by static
feedback by using C pieces of P-controllers as follows:

(loop j)

uj = −kjyj , kj > 0, yj = χjh(j) , χj > 0 (12.10)

The above separate static linear output feedback controllers perform pole-
placement in a similar way to what we have seen in the case of pole-placement
controllers (see Section 9.2) but now in the context of a MIMO setting as a
non-optimal LQR (see Section 9.3).

12.4 Stabilization of a Simple Unstable CSTR

Consider the same unstable CSTR as in Section 8.8.4. There we described an
isotherm CSTR with fixed mass hold-up m and constant physico-chemical
properties. A second-order

2A+ S → T + 3A

autocatalytic reaction takes place in the reactor where the substrate S is
present in great excess. Assume that the inlet concentration of component
A (cAin) is constant and that the inlet mass flow rate v is used as an input
variable. The Hamiltonian description of the system has been given around
its steady-state point determined as the setpoint for passivation and loop-
shaping in Section 8.8.4.

Now we develop a loop-shaping controller based on the Hamiltonian sys-
tem model [30].
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12.4.1 System Parameters and Open-loop Response

Let us introduce the normalized concentration variables c̄A = cA − c∗A and
c̄Ain = cAin − c∗A. The conservation balance equation (4.70) then takes the
form

dc̄A
dt

= k · c̄2A + (2k · c∗A − v∗

m
) · c̄A +

c̄Ain − c̄A
m

· u (12.11)

The parameter values used in the simulations are shown in Table 12.1.

Table 12.1. Parameter values of the simulated CSTR

Variable Value Unit

m 1800 kg

k 5 · 10−4 m3

kmol·s

cAin 0.4 kmol

m3

c∗A 2.3 kmol

m3

v∗ 2.5058 kg

s

kc 10 -

There were two initial concentration values (cA(0)) given for the simula-
tions:

• 1 kmol
m3 and

• 2.8 kmol
m3

respectively.
It is easily seen from the data that c∗A is an unstable equilibrium for the

system as it is illustrated in both of the sub-figures in Figure 12.1.

12.4.2 Nonlinear Proportional Feedback Controller

Let us apply the following nonlinear proportional output feedback controller

u = kcy1 + w = kc · (
1

2
c̄2A − c̄Ain · c̄A) + w (12.12)

where kc is an appropriately chosen controller gain and w is the new reference
signal. The new reference w was set to 0 for the simulations. The chosen
value of the controller gain is shown in Table 12.1 together with the system
parameters.

The closed-loop simulation results in Figure 12.2 show that the proposed
control method indeed stabilizes the equilibrium c∗A = 2.3 kmol

m3 . Here again,
the simulation was performed using two different initial conditions as above
as shown in the two sub-figures of Figure 12.2.

TLFeBook



278 12. Stabilization and Loop-shaping

0 200 400 600 800 1000
0.7

0.75

0.8

0.85

0.9

0.95

1

time [s]

ou
tle

t c
on

ce
nt

ra
tio

n 
[k

m
ol

/m
3 ]

0 200 400 600 800 1000
2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

time [s]

ou
tle

t c
on

ce
nt

ra
tio

n 
[k

m
ol

/m
3 ]

Figure 12.1. Open-loop simulation results

12.4.3 Stability Region

It is an important question for a nonlinear controller to determine its stability
region as a function of the state variables with its parameter(s) fixed. For this
very simple case this problem can be solved analytically.

Let us consider the nonlinear proportional feedback controller above with
its gain fixed at kc = 10. In fact, it is easy to show that the resulting closed-
loop system with the parameters described above is passive with respect to
the supply rate w · y if

c̄A > −1.9088
kmol

m3
i.e. cA > 0.3912

where y = c̄A.
In order to show this, let us take the simple storage function V (c̄A) = 1

2 c̄
2
A.

It can be calculated that

∂V

∂c̄A
· ˙̄cA =

∂V

∂c̄A
· f(c̄A) ≤ 0 if c̄A > −1.9088 (12.13)

and equality holds only if c̄A = 0. Since g(c̄A) = 1 in the closed-loop state-
space model we can deduce that
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Figure 12.2. Closed-loop simulation results

y = LgV (c̄A) =
∂V

∂c̄A
· g(c̄A) = c̄A (12.14)

where Lg is the Lie-derivative of the simple storage function with respect to
the function g. Therefore it follows that the closed-loop system is passive in
the given interval.

The time derivative of the storage function (as a function of c̄A) is depicted
in Figure 12.3.

12.5 Hamiltonian Control of a Simple Continuous
Fermenter

The simple continuous fermenter is used as a case study for designing a
nonlinear PD output feedback controller for a process system. The input-
affine nonlinear state-space model of the fermenter is developed in Section
4.5.3 and it is given in Equations (4.78)–(4.79). The variables and parameters
of the fermentation process model are collected in Table 4.1.
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Figure 12.3. Time derivative of the storage function as a function of c̄A

12.5.1 Hamiltonian Model of the Fermentation Process

Based on the input-affine state-space model, it is fairly easy to obtain the
Hamiltonian system model of the fermentation process. For this, let us intro-
duce the following variables:

p =

[
p1

p2

]
=

[
mX −mX0

mS −mS0

]
=

[
m̄X

m̄S

]
(12.15)

q =

[
q1
q2

]
= −

[
X̄
S̄

]
(12.16)

where p = −V q denotes the centered component masses. The Hamiltonian
form of the model is written as

ṗ1 = −V (X0 − q1)µ(S0 − q2) + (X0 − q1)F0 + (X0 − q1)F̄

ṗ2 =
V (X0 − q1)µ(S0 − q2)

Y
− (SF − (S0 − q2))F0 − (SF − (S0 − q2))F̄

Then the coupling Hamiltonian (natural output) used for feedback is calcu-
lated by simple integration. Since

TLFeBook



12.5 Hamiltonian Control of a Simple Continuous Fermenter 281

∂H1

∂q1
= X0 − q1,

∂H1

∂q2
= −(SF − (S0 − q2)) (12.17)

the natural output of the system is written as

y1 = H1(q) = X0q1 −
1

2
q21 − (SF q2 − (S0q2 −

1

2
q22)) (12.18)

Note that the above natural output for feedback defines a nonlinear static
full state feedback which is a quadratic function of both state variables.

12.5.2 Full State Feedback Using the Whole Natural Output

In this case, the feedback consists of the entire calculated natural output

F̄ = −k1y1 = −k1(X0q1 −
1

2
q21 − SF q2 + S0q2 −

1

2
q22) (12.19)

where k1 is an appropriately chosen positive constant. Again, we emphasize
that both of the biomass and the substrate concentration is needed to realize
the nonlinear static feedback above. This calls for the application of a possibly
nonlinear state filter to determine the biomass concentration X which is
hardly measurable.

The simulation results corresponding to k1 = 0.5 are visible in Figure
12.4.

12.5.3 State Feedback Using Only a Part of the Natural Output

It is known from the theory of Hamiltonian systems that the definiteness of
the time derivative of the storage function (i.e. the stability of the closed-
loop system) may be influenced by using only some part of the natural output
for feedback. Since the biomass concentration is quite difficult to measure in
practice, we choose the substrate concentration for feedback, i.e.

F̄ = −k2 · −(SF q2 − (S0q2 −
1

2
q22)) (12.20)

The simulation results for k2 = 1 can be seen in Figure 12.5. As can be seen,
the application of only one state variable is enough to stabilize the system
in this case. Moreover, the quality of the control remains much the same as
compared to the full state feedback case seen in Figure 12.4.

12.5.4 Controller Tuning and Stability Analysis of the
Closed-loop System

A simple graphical method can be used for tuning the Hamiltonian controllers
and investigating the stability region around a given operating point. The
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Figure 12.4. Typical result of Hamiltonian control using the entire natural output:
state variables and input
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Figure 12.5. Typical result of Hamiltonian control using the substrate concentra-
tion only: state variables and input
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method is applicable for systems where only one input variable with a scalar
feedback gain k is applied.

For the purpose of the analysis, the state-space form of the closed-loop
system will be denoted by

ẋ = f̄(x) (12.21)

where

f̄(x) = f(x) + g(x)(−k1 · y1(x)) (12.22)

First, we construct a simple quadratic storage function

V (x) =
1

2
xTx (12.23)

and examine the sign of its time derivative around the desired operating
point. This storage function is clearly positive definite and it is a candidate
for being a Lyapunov function of the system.

The time derivative of the storage function is given by

V̇ (x) =
d

dt
V (x) = xT · ẋ = xT f̄(x) (12.24)

where f̄ is the right-hand side of the state-space model of the closed-loop
system, which depends on the feedback gain k1. Then the idea is to choose
the feedback gain in such a way that the above time derivative is negative
definite over a wide operating region in the state-space.

Hamiltonian Control with Full State Feedback. The time derivatives
of the quadratic storage function as functions of the state variables X and
S corresponding to the feedback gain k1 = 0.5 and k1 = 5 are shown in
Figures 12.6. (a) and (b) respectively. It can be easily calculated that the

desired operating point (x0 = [0, 0]
T

) is a local maximum of V̇ at V̇ (x0) = 0.
Therefore the proposed full state Hamiltonian feedback locally asymptotically
stabilizes the desired operating point. If we have a look at Figure 12.6 again,
we can see that the stability region is fairly wide around the operating point
in both cases, since the sign of V̇ is negative everywhere except the close
neighborhood of the singularity points [X = 0, S = SF ]T and [X = 0, S 6=
SF ]T .

Hamiltonian Control with Partial State Feedback. If we apply the
same storage function for stability analysis as in the previous case, we can
again plot V̇ as a function of the biomass and substrate concentrations. This
can be seen in Figures 12.7. (a) and (b) corresponding to the feedback gains
k1 = 0.5 and k1 = 5 respectively.

As can be seen, the system is again stable in a reasonable wide neigh-
borhood of the operating point in these cases. This is in good agreement
with what we expected from the simulation results, i.e. that using only the
substrate concentration for nonlinear feedback is sufficient for stabilizing the
system.
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a b

Figure 12.6. Time derivative of the quadratic Lyapunov function as a function of
X and S, Hamiltonian full state feedback, (a) k1 = 0.5, (b) k1 = 5

a b

Figure 12.7. Time derivative of the quadratic Lyapunov function as a function of
X and S, Hamiltonian partial state feedback, (a) k1 = 5, (b) k1 = 5

12.5.5 Discussion

From the above cases, we can clearly see that the stabilizability region and
the value of the feedback gain are closely related, therefore they should be
investigated/designed jointly. The above proposed graphical method can be
used for simultaneous feedback control gain selection and stabilization region
determination.

12.6 Further Reading

The traditional and still main application area of Hamiltonian system mod-
els and their physics-based control is in mechatronics (robots): see [65] for a
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simple introductory paper. A good early survey of control based on Hamil-
tonian system models in mechatronics is found in [52], while a recent paper
on port-controlled Hamiltonian system is [51].

Process Systems. There is emerging literature in the field of making con-
nections between thermodynamics and the theory of Hamiltonian systems for
process control purposes.

The principles of constructing a Hamiltonian control of process systems
can be found in [30].

A survey of related papers is offered by Ydstie [83].

12.7 Summary

A powerful robust method for stabilization and loop-shaping is presented in
this chapter for nonlinear input-affine systems which enable a Hamiltonian
system model. The stabilizing and loop-shaping controller is a proportional-
derivative (PD) output feedback controller, which requires to feed back the
artificial output related to each input. This controller in fact is a nonlinear
static feedback controller, because both the artificial output and its time
derivative are nonlinear static functions of the state variables.

Process systems of different complexity, a heat exchanger cell, free mass
convection networks, a simple unstable CSTR and a simple continuous fer-
menter are used to demonstrate the use of the proposed PD output feedback
controller on process systems.

12.8 Questions and Application Exercises

Exercise 12.8.1. Give the design parameters of the nonlinear PD output
feedback controller design. Comment on the effect of these parameters on the
properties of the closed-loop system.

Exercise 12.8.2. What is the role of the proportional and the derivative
part of the nonlinear PD output feedback controller? Give process system
examples, when one of the parts is not needed.

Exercise 12.8.3. Compare passivation by static feedback design described
in Chapter 11 and stabilization and loop-shaping based on Hamiltonian sys-
tem models. What are the similarities and the differences?

Exercise 12.8.4. Characterize the nonlinearities that can occur in the non-
linear PD output feedback controller when controlling process systems. What
is the physical reason of this nonlinearity type?
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Exercise 12.8.5. Compare the properties of the direct passivation controller
presented in Section 11.3 and the Hamiltonian control of the same system
in Section 12.5. Comment on the tuning parameters, computational require-
ments and on the stability region.

Exercise 12.8.6. Construct a nonlinear PD output feedback controller for
the ideal spring model developed in Example 8.3.1.

Exercise 12.8.7. Consider a simple CSTR model developed in Subsection
4.5.1 but with the reaction rate expression

r = k ·m · c4A

Construct a nonlinear PD output feedback controller for this CSTR follow-
ing the way for the stabilization of the simple unstable CSTR described in
Subsection 12.4.
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A.1 Vector and Signal Norms

If we have objects of non-scalar nature, for example vectors, matrices, func-
tions or signals, we measure their magnitude by using norms. Norms are the
extensions of a length of a vector applied to other objects of non-scalar nature
forming a so called vector space.

Definition A.1.1 (Vector space)
The set of elements X with the operation addition and multiplication by scalar
is called a vector space if

• if x1, x2 ∈ X then x∗ = (x1 + x2) ∈ X
• if x1 ∈ X then x∗ = ax1 ∈ X for any a ∈ R

• there is a zero element x0 ∈ X for which x1 + x0 = x1 holds for every
x1 ∈ X

Definition A.1.2 (Norm on vector space)
A scalar-valued function ρ(.) : X → R is a norm on a vector space X if

• ρ(x) ≥ 0 , ∀x ∈ X
• ρ(x) = 0 ⇔ x = 0 ∈ X
• ρ(x+ y) ≤ ρ(x) + ρ(y) (triangular inequality)

A.1.1 Vector Norms

n-dimensional vectors with real-valued entries x = [x1, x2, · · · , xn] form a
vector space called R

n. There are different known and useful norms defined
over the vector space R

n which are as follows.

Definition A.1.3 (Vector norms)
1. p-norm

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

, p = 1, 2, . . . (A.1)
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2. Euclidean norm or 2-norm (p = 2)

||x||2 =

√√√√
n∑

i=1

x2
i (A.2)

3. maximum norm or ∞-norm (p→ ∞)

||x||∞ = max
i

(|xi|) (A.3)

A.1.2 Signal Norms

Systems are usually described by differential equations which contain signals
f from a signal space L (compare with Section 2.1) A signal my be scalar-
valued or vector-valued, i.e. :

f(t) ∈ R , F (t) ∈ Rµ

for any fixed time instant t. We shall use two types of norms of a signal : the
infinity norm and the 2-norm.

Definition A.1.4 (Signal norms)
• p-norm

‖f‖p =

(∫ ∞

0

|f(t)|p
)1/p

(A.4)

• 2-norm (p = 2)

||f ||22 =

∫ ∞

−∞

f2(t) , ||F ||22 =

∫ ∞

−∞

||F (t)||22 (A.5)

• infinity norm (p→ ∞)

||f ||∞ = sup
t

|f(t)| , ||F ||∞ = sup
t

||F (k)||∞ (A.6)

A.2 Matrix and Operator Norms

Definition A.2.1 (Induced operator norm)
The induced norm of an operator q on the vector space X induced by a norm
||.|| on the same space is defined as

||q|| = sup
||x||=1

||q(x)||
||x|| (A.7)
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Matrices can be seen as linear operators transforming vectors from a vec-
tor space like R

n to another vector space which can be the same or a different
one like R

m. For rectangular matrices when m 6= n and T ∈ R
m×n we have

different vector spaces and for square matrices when n = m they are the
same vector space.

The ”magnitude” of a matrix is also characterized by its norm. Similarly
to the case of vectors and matrices there are various norms applicable for
matrices. The most important ones are the so called induced norms where
the matrix norm is derived using an already defined vector norm.

Definition A.2.2 (Matrix norm, induced)
The induced N-norm of a square matrix T ∈ Rn×n is defined as:

||T ||N = sup
x∈Rn

||Tx||N
||x||N

(A.8)

where ||.||N is a vector norm.

A.3 Lie-derivative, Lie-product

The notion of Lie-derivative and Lie-product play central role in the geometric
approach of nonlinear system analysis and control.

A.3.1 Lie-derivative

Definition A.3.1 (Lie-derivative)
Let us given a nonlinear scalar-valued function λ ∈ R

n 7→ R and a vector
field f ∈ R

n 7→ R
n on a common domain U =dom(λ) =dom(f) ⊆ R

n open
and let λ be continuously differentiable, i.e. λ ∈ C1 on U

The derivative of λ along f is defined as

Lfλ(x) =
∂λ(x)

∂x
f(x) =

n∑

i=1

∂λ(x)

∂xi
fi(x) =< dλ(x), f(x) > (A.9)

Observe that the vector field f in any point defines a direction along which
we compute the derivative (gradient) of λ.

It is important to note that Lfλ ∈ R
n 7→ R. The repeated Lie derivation is

defined recursively:

Lk
fλ(x) =

∂(Lk−1
f λ(x))

∂x
f(x) (A.10)

with L0
fλ = λ.
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Example A.3.1 (Simple Lie-derivatives)

Two simple examples illustrate the above definition.

1. one-dimensional example, i.e. x ∈ R

λ(x) = x2 , f(x) =
√
x

Now we can compute both Lfλ and Lλf as follows:

Lfλ(x) = 2x · √x , Lλf(x) =
1

2
√
x
· x2

2. two-dimensional example, x ∈ R
2

λ(x1, x2) = x2
1, f(x1, x2) = f(x) =

[
x2

1 + x2
2

x3
1 + x3

2

]

and

Lfλ(x1, x2) = 2x1(x2
1 + x2

2).

A.3.2 Lie-product

Lie-product is defined for two vector fields f, g ∈ R
n 7→ R

n defined on a
joint open domain U = dom(f) = dom(g) ⊆ R

n where both f and g are
continuously differentiable (C1 on U)

Definition A.3.2 (Lie-product (Lie-bracket))
The Lie-product of f and g is defined as:

[f, g](x) =
∂g(x)

∂x
f(x) − ∂f(x)

∂x
g(x) (A.11)

where

∂g(x)

∂x
=




∂g1(x)
∂x1

∂g1(x)
∂x2

. . . ∂g1(x)
∂xn

∂g2(x)
∂x1

∂g2(x)
∂x2

. . . ∂g2(x)
∂xn

...
...

. . .
...

∂gn(x)
∂x1

∂gn(x)
∂x2

. . . ∂gn(x)
∂xn




(A.12)

is the Jacobian matrix of the function g with respect to its independent vari-
able x.

Naturally, [f, g](x) ∈ R
n which enables to apply the Lie-bracket operation

repeatedly.
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Important Properties of Lie-bracket.

• Bilinearity over R

f1, f2, g1, g2 ∈ R
n 7→ R

n, r1, r2 ∈ R

[r1f1 + r2f2, g1] = r1[f1, g1] + r2[f2, g2] (A.13)

[f1, r1g1 + r2g2] = r1[f1, g1] + r2[f1, g2] (A.14)

• Skew commutativity f, g ∈ R
2 7→ R

n

[f, g] = −[g, f ] (A.15)

• Jacobi identity

[f, [g, p]] + [g, [p, f ]] + [p, [f, g]] = 0 (A.16)

The following simple examples show further important properties of Lie-
bracket which are useful in process system applications.

Example A.3.2 (Simple Lie-products)

The following simple two-dimensional (x ∈ R
2) examples illustrate

the definition of Lie-products.

1. Two general vector fields f and g

f(x) =

[
x2

1 + x2
2

x3
1 + x3

2

]
, g(x) =

[
−x1

x2

]

gives the following Lie-product

[f, g](x) =

[
−1 0
0 1

]
·
[
x2

1 + x2
2

x3
1 + x3

2

]
−
[

2x1 2x2

3x2
1 3x2

2

]
·
[
−x1

x2

]

2. A constant vector field f with a general vector field g

f(x) =

[
3
2

]
, g(x) =

[
−x1

x2

]

gives the following Lie-product

[f, g](x) =

[
−3
2

]

where only the first term ∂g
∂xf is present.
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3. Two constant vector fields f and g

f(x) =

[
3
2

]
, g(x) =

[
4
5

]

gives the following Lie-product

[f, g](x) =

[
0
0

]

because both ∂g
∂x and ∂f

∂x are zero matrices.

A.4 Distributions, Co-distributions

Distributions and co-distributions are important basic notions in the geomet-
ric approach to analyzing dynamic properties of nonlinear systems, such as
controllability and observability.

A.4.1 Distributions

Definition A.4.1 (Distribution)
Consider a set of functions f1, . . . , fd ∈ R

n → R
n with joint domain U in

R
n:

U = dom(f1) =, . . . ,= dom(fd) ⊆ R
n

The distribution ∆ spanned by the functions f1, . . . , fd

∆(x) = span{f1(x), . . . , fd(x)} (A.17)

assigns a vector space to each point x0 of U .
In notation we omit the independent variables and write:

∆ = span{f1, . . . , fd} (A.18)

Definition A.4.2 (Dimension of a distribution)
The dimension of a distribution ∆ at x is the dimension of the vector space
spanned by ∆ in x.

Operations on Distributions. The following set-like operations are de-
fined on distributions:

(∆1 +∆2)(x) = ∆1(x) +∆2(x) (A.19)

(∆1 ∩∆2)(x) = ∆1(x) ∩∆2(x) (A.20)
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Obviously, if the distributions ∆1 and ∆2 are spanned by the functions
(f1, . . . , fn) and (g1, . . . , gm) respectively, then the distribution (∆1 + ∆2)
is spanned by

(f1, . . . , fn, g1, . . . , gm)

.

Distributions and their Properties. There are some notions and special
distribution types which are important from practical point of view.

• Nonsingular distribution ∆ defined on U
∆ is a nonsingular distribution if ∃d ∈ N such that

dim(∆(x)) = d ∀x ∈ U (A.21)

• Regular point of a distribution ∆
x0 is a regular point of distribution ∆ if there exists a neighborhood U 0

of x0 such that ∆ is nonsingular on U 0.
• Point of singularity
xS is a point of singularity if it is not a regular point.

• f belongs to the distribution ∆ (f ∈ ∆) when

f(x) ∈ ∆(x) ∀x (A.22)

• Distribution ∆1 contains a distribution ∆2 (∆1 ⊃ ∆2) if

∆1(x) ⊃ ∆2(x) ∀x (A.23)

• Distribution ∆ is involutive
A distribution ∆ is called involutive if

τ1 ∈ ∆, τ2 ∈ ∆⇒ [τ1, τ2] ∈ ∆ (A.24)

• Distribution ∆ is invariant under the vector field f when

τ ∈ ∆⇒ [f, τ ] ∈ ∆ (A.25)

The following simple examples show how to work with distributions.
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Example A.4.1 (Simple distribution)

Consider a set of functions fi : R
n → R

n such that

fi =




0
. . .
0
xi

0
. . .
0




where only the ith entry is non-zero for i = 1, . . . , n.
The dimension of the distribution

∆(x) = span{f1, . . . , fn}

depends on the point x as follows.

• dim(∆(x)) = n when xi 6= 0, i = 1, . . . , n
• dim(∆(x)) = d < n when at least one of the entries of x is zero,

i.e. ∃i, xi = 0
• dim(∆(x)) = 0 if x = 0, i.e. in the origin of the space X
Therefore ∆ is nonsingular everywhere except

Dsing = {x | ∃i, xi = 0, i = 1, . . . , n}

The above set Dsing contains all singular points of distribution ∆.

A.4.2 Co-distributions

Co-distributions are defined using the notions of dual space and co-vector
fields which are as follows.

Definition A.4.3 (Dual space of a vector space)
Dual space V ∗ of a vector space V ⊂ R

n is the set of all linear real-valued
functions defined on V . Formally defined as

f(x) = f(x1, x2, . . . , xn) = a1x1 + a2x2 + · · · + anxn

ai ∈ R, i = 1, . . . , n
(A.26)

i.e. f(x) = ax where
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a = [a1 a2 . . . an] x =




x1

x2

...
xn


 (A.27)

Note that f is given by the row vector a.

Definition A.4.4 (Co-vector field)
A mapping from R

n×1 to R
1×n is called a co-vector field. It can be represented

row vector valued function.

f(x) = f(x1, x2, . . . , xn) = [f1(x) f2(x) . . . fn(x)] (A.28)

Example A.4.2 (Gradient, a special co-vector field)

Let us define a co-vector field dλ associated to a vector field λ ∈
R

n → R as follows:

dλ(x) =

[
∂λ(x)

∂x1

∂λ(x)

∂x2
. . .

∂λ(x)

∂xn

]
(A.29)

dλ is called the gradient of λ.

Definition A.4.5 (Co-distribution)
Let ω1, . . . , ωn be smooth co-vector fields. Then Ω is a co-distribution spanned
by the co-vectors:

Ω(x) = span{ω1(x), . . . , ωd(x)} (A.30)

At any point x0 co-distributions are subspaces of (Rn)∗.
We usually omit the argument of the co-vector fields and the co-distribution

and write:

Ω = span{ω1, . . . , ωd} (A.31)

Operations on Co-distributions and their Properties. Operations,
such as addition, intersection, inclusion are defined in an analogue way
to that of distributions. Likewise, the notion of the dimension of a co-
distribution at a point, regular point, point of singularity are applied to
co-distributions in an analogous way.
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Special Co-distributions and their Properties.

• Annihilator of a distribution ∆ (∆⊥)
The set of all co-vectors which annihilates all vectors in ∆(x).

∆⊥(x) = {w∗ ∈ (Rn)∗| < w∗, v >= 0 ∀v ∈ ∆(x)}. (A.32)

is called the annihilator of the distribution ∆.
The annihilator of a distribution is a co-distribution. The annihilator of a
smooth distribution is not necessarily smooth.

• Annihilator of a co-distribution Ω (Ω⊥)

Ω⊥(x) = {v ∈ R
n| < w∗, v >= 0 ∀w∗ ∈ Ω(x)}. (A.33)

is the annihilator of a co-distribution Ω.
The annihilator of a co-distribution is a distribution.

• Co-distribution invariant under the vector field f :
The co-distribution Ω is invariant under the vector field f if and only if

ω ∈ Ω ⇒ Lfω ∈ Ω (A.34)

where (Lfω)(x) = ω(x)∂f(x)
∂x .

• Sum of dimensions of a distribution and its annihilator

dim(∆) + dim(∆⊥) = n (A.35)

• Inclusion properties

∆1 ⊃ ∆2 ⇐⇒ ∆⊥
1 ⊂ ∆⊥

2 (A.36)

• Annihilator of an intersection

(∆1 ∩∆2)⊥ = ∆⊥
1 +∆⊥

2 (A.37)

• Compatibility of the dimension of a distribution
If a distribution ∆ is spanned by the columns of a matrix F , the dimension
of ∆ at a point x0 is equal to the rank of F (x0). If the entries of F are
smooth functions of x then the annihilator of ∆ is identified at each x ∈ U
by the set of row vectors w∗ satisfying the condition w∗F (x) = 0.

• Compatibility of the dimension of a co-distribution
If a co-distribution Ω is spanned by the rows of a matrix W , whose entries
are smooth functions of x, its annihilator is identified at each x by the set
of vectors v satisfying W (x) = 0, i.e.

Ω⊥(x) = ker(W (x)) .

• Compatibility of the invariant property of annihilators
If a smooth distribution ∆ is invariant under the vector field f , then the
co-distribution Ω = ∆⊥ is also invariant under f .
If a smooth co-distribution Ω is invariant under the vector field f , then
the distribution ∆ = Ω⊥ is also invariant under f .
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• Condition of involutivity
A smooth distribution ∆ = span{f1, . . . , fd} is involutive if and only if

[fi, fj ] ∈ ∆ ∀ 1 ≤ i, j ≤ d. (A.38)
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2. P. Ailer, G. Szederkényi and K.M. Hangos. Modeling and nonlinear analysis
of a low-power gas turbine. Scl-1/2001, Computer and Automation Research
Institute, 2001.
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L2-gain, 20, 139

– and storage function, 174
– of linear systems, 139
– of nonlinear systems, 139
Lq spaces, 15
Lq-gain, 20
Lq-stability, 20
q-norm, 15
2-cell heat exchanger
– bilinear, controllability, 118

affine Hamiltonian system model, 181
annihilator
– of a co-distribution, 296
– of a distribution, 296
asymptotic stability, see stability,

asymptotic

balance volume, 40
BIBO stability, see stability, BIBO
bifurcation analysis, 150

bifurcation value, 151
bilinear systems, 33

– realization, 88
– state-space model, 33
binary distillation column CMO
– model construction, 163, 164
– stability analysis, conservation

matrix, 163, 164
binary distillation tray CMO
– model construction, 162
bounded-input–bounded-output

stability, see stability, BIBO

CARE, see control algebraic Ricatti
equation

case studies
– 2-cell heat exchanger, 118
– binary distillation column CMO, 163,

164
– binary distillation tray CMO, 162

– continuous fermenter, 63, 92, 120,
165, 219, 220, 242, 248, 257, 279

– fed-batch fermenter, 61, 122
– free mass convection network, 50,

159, 160, 199, 275
– gas turbine, 65, 259
– heat exchanger cell, 55, 116, 161,

195, 196, 274
– heat exchanger network, 161
– passive mass convection network, 51

– simple evaporator, 52

– unstable CSTR, 60, 200, 276
causal system, 18
centered variable, 47, 146, 185
closed-loop system
– zero dynamics, 254
co-distribution, 294

– annihilator of, 296
– annihilator of a distribution, 296
– invariant under a vector field, 296
– observability, 111
co-state variable, 177, 179

– Hamiltonian equations, 218
– LTI systems, 214
– mechanical systems, 179
– process systems, 190
column conservation matrix, see

conservation matrix
conservation balances, 42, 44

conservation matrix, 158

– binary distillation column CMO, 163,
164

– convection matrix, 50
– free mass convection network, 159
conserved extensive quantities, 42, 185,

188, 190
– moments, 179
constant molar overflow, see CMO,

binary distillation tray and column
constitutive equations, 42, 45
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– extensive–intensive relationship, 45,
186

– transfer rate equation, 46
– transfer terms, 187
continuous and discrete time systems,

19
continuous fermenter, 63

– controllability analysis, 120
– exact linearization, 242
– input–output linearization, 243
– input–output model, 81
– linearized model, 65
– LPV stability analysis, 167
– LQR, 220
– model construction, 63
– optimal operating point, 64
– output selection for feedback

linearization, 248
– PD output feedback controller, 279
– pole-placement controller, 219
– stability analysis, 165
– stabilizing feedback controller, 257
– zero dynamics, 92
control aim, 206
control algebraic Ricatti equation

(CARE), 215
control Lyapunov function, 255

controllability, 99

– input-affine nonlinear systems, 104
– LTI systems, 99
controllability analysis
– bilinear 2-cell heat exchanger, 118
– bilinear heat exchanger cell, 116
– continuous fermenter, 120
– fed-batch fermenter, 122
– LTI heat exchanger cell, 116
controllability distribution, 105

– algorithm for constructing, 106
– total integration, 109
controlled systems
– Hamiltonian system model, 216
controller
– feedback linearization, 273
– LQR, 212
– PD output feedback, 272, 273
– pole-placement, 210
– stabilizing feedback, 256
– state feedback, 210, 215, 230
controller form realization of LTI

systems, 28
convection matrix, 50
convolution
– of signals, 13

coordinate transformation
– linear, 26
– linear, effect on state matrix, 144
– nonlinear, 32, 104, 125, 230
coordinates
– linearizing, 235

DAE model, 40
diagonal form realization of LTI

systems, 27
diffeomorphism
– global, 33
– local, 33
Dirac-δ or unit impulse function, 10
dissipative systems, see passive systems
distribution, 292
– annihilator of, 296
– annihilator of a co-distribution, 296
– invariant under a vector field, 293
– involutive, 293
– nonsingular, 293
– regular point, 293
dual space, 294

engineering driving forces, 188
equivalent realizations, 76
equivalent state-space models, 26
Euler-Lagrange equations, 178, 213,

218
– LTI systems, 213
exact linearization, 230, 232
– continuous fermenter, 242
– output selection, 246
– solution procedure, 234
extensive variable, 43
extensive–intensive relationship, see

constitutive equations
external stability, see stability, BIBO

fed-batch fermenter, 61
– controllability analysis, 122
– minimal realization, 134
– model construction, 61
– nonlinear coordinate transformation,

125
feedback, 206
– derivative output, 270
– full, 207
– general configuration, 140
– linear, 207
– linearizing, 235
– output, 207
– passivating, see passivating feedback
– stabilizing, see stabilizing feedback
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– state, 207
– static, 207
– static proportional output, 271
– static state, 254
feedback equivalence, 254
finite dimensional systems, 24
Fliess’s series expansion, 80
formal power series, 78
free mass convection network, 50
– Hamiltonian system model, 199
– model construction, 50
– PD output feedback controller, 275
– stability analysis, conservation

matrix, 159
– stability analysis, Lyapunov function,

160

gas turbine, 65
– model construction, 65
– stabilizing feedback controller, 259
general decomposition theorem, 103
general modeling assumptions, 40
Gibbs-Duhem relationship, 185

Hamilton-Jacobi inequality, 175
Hamiltonian, 177, 180
– internal, 180
– internal and coupling, 180
– mechanical systems, 180
– nonlinear systems, 217
– process systems, 192
Hamiltonian control system, 179
Hamiltonian description, see Hamilto-

nian system model
Hamiltonian equations, 218
Hamiltonian function, see Hamiltonian
Hamiltonian system model, 176
– affine, 181
– co-state variable, 177, 179
– controlled systems, 216
– free mass convection network, 199
– heat exchanger cell, 196
– mechanical systems, 177
– process systems, 190
– simple, 182, 269
– unstable CSTR, 200
Hammerstein co-state differential

equation, 214
Hankel matrix
– construction for nonlinear systems,

86
– LTI case, 85
– nonlinear systems, 86

heat exchanger cell, 55
– 2-cell heat exchanger, 118
– bilinear, controllability, 116
– bilinear, observability, 117
– Hamiltonian system model, 196
– Hankel matrix of the bilinear model,

89
– LTI model, 57
– LTI, controllability, 116
– LTI, observability, 116
– LTV model, 58
– model construction, 55
– nonlinear model, 58
– PD output feedback controller, 274
– storage function, 195
heat exchanger network
– model construction, 161
– structural stability analysis, 162
higher-order nonlinear differential

equations representation, 81

impulse- response function, 74
impulse-response function, 75
indistinguishable states, see observabil-

ity
inner product
– of signals, 12
input–output linearization, 238
– continuous fermenter, 243
– output selection, 246
input–output model, 73
– continuous fermenter, 81
– LTI systems, 73
input-affine nonlinear systems, 32
– asymptotic stability, 143
– controllability, 104
– controllability form realization, 104
– observability, 110
– state-space model, 32
intensive variable, 43
internal stability, see stability,

asymptotic
irreducible transfer function, 101
iterated integrals, 78

joint controllability and observability
– LTI systems, 100

Lagrangian, 178
Lagrangian control system, 179
Lagrangian function, see Lagrangian
Legendre transform, 179, 180
Lie-derivative, 289
Lie-product (Lie-bracket), 290
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linear parameter-varying systems, see
LPV systems

Linear Quadratic Regulator, see LQR
linear system, 19

linear systems
– L2-gain, 139
linear time-varying parameter systems,

see LTV systems
linearization
– exact linearization, 232
– input–output linearization, 238
– of nonlinear state-space models,

local, 146
linearizing coordinates, 235
linearizing feedback, 235
LPV systems, 29

– affine, 30
– asymptotic stability, 155
– polytopic, 30
– stability of a continuous fermenter,

167
LQR, 212

– continuous fermenter, 220
– LTI systems, 212
LTI systems, 19, 25
– asymptotic stability, 143
– BIBO stability, 138
– co-state variable, 214
– controllability, 99
– controller form realization, 28
– diagonal form realization, 27
– Euler-Lagrange equations, 213
– general decomposition theorem, 103
– impulse-response function, 74
– input–output model, 73
– joint controllability and observability,

100
– linear differential equation model, 74
– LQR, 212
– Lyapunov theorem, 154
– minimal realization, 101
– observability, 98
– pole-placement controller, 210
– realization theory, 82
– relationship between BIBO and

asymptotic stability, 144
– relative degree, 229
– state-space model, 25
– structural equivalence, 157
– transfer function, 28, 75
LTV systems, 28
lump, see balance volume

Lyapunov criterion, see Lyapunov
theorem

– LPV systems, 167
Lyapunov function, 153
– as storage function, 176
– control, 255
– dissipativity, 153
– free mass convection network, 160
Lyapunov theorem, 153
– LPV systems, 155
– LTI systems, 154

Markov parameters, 36, 77, 83
matrix norm, induced, 289
mechanical systems
– co-state variables, 179
– conserved quantities, 179
– equation of motion in Hamiltonian

formulation, 179
– equations of motion, 177
– Hamiltonian, 180
– Hamiltonian system model, 177
– state-space model, 178
mechanisms, 41
– chemical reaction, 41
– convection, 41
– phase changes, 41
– transfer, 41
MIMO systems, 19
minimal realization
– fed-batch fermenter, 134
– LTI systems, 101
– nonlinear systems, 114
minimum-phase nonlinear systems, 92
model construction
– binary distillation column CMO, 163,

164
– binary distillation tray CMO, 162
– continuous fermenter, 63
– fed-batch fermenter, 61
– free mass convection network, 50
– gas turbine, 65
– heat exchanger cell, 55
– heat exchanger network, 161
– passive mass convection network, 51
– simple evaporator, 52
– unstable CSTR, 60
multi-index, 78

nonlinear systems, 31
– L2-gain, 139
– asymptotic stability, 142
– bilinear, 33, 88
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– finite dimensional, 31
– Fliess’s series expansion, 80
– Hamiltonian, 217
– Hamiltonian system model, 176
– Hankel matrix, 86
– higher-order nonlinear differential

equations representation, 81
– input–output representation, 78
– input-affine, 32
– linearization, 146
– minimal realization, 114
– minimum-phase, 92
– quadratically stabilizable, 155
– realization theory, 85
– total integration, 109
– Volterra series representation, 80
norm
– of matrices, induced, 289
– of operators, induced, 288
– of signals, 288
– of vectors, 287
– on vector space, 287

observability, 98
– indistinguishable states, 110
– input-affine nonlinear systems, 110
– LTI systems, 98
– nonlinear, local, 110
– observation space, 110
observability co-distribution, 111
– algorithm for constructing, 111
observation space, see observability
Onsager relationship, 188
operator norm, induced, 288
output equation, 24
output feedback, 207
– derivative, 270
– proportional-derivative (PD), 272
– static, proportional, 271

passivating feedback, 254
passivation, 253
– passivating feedback, 254
passive mass convection network, 51
– model construction, 51
passive systems, 175
– process systems, 189
PD output feedback controller, 272
– continuous fermenter, 279
– free mass convection network, 275
– heat exchanger cell, 274
– unstable CSTR, 276
pole-placement controller, 210, 276

– continuous fermenter, 219
process systems
– bilinear, 51
– co-state variables, 190
– decomposed state equation, 48
– Gibbs-Duhem relationship, 185
– Hamiltonian, 192
– Hamiltonian system model, 190
– maximal relative degree, 239
– passivity analysis, 189
– potential input variables, 47
– state vector, 46
– storage function, 186
– system variables, 185, 190

quadratically stabilizable systems, 155

reachability, see controllability
realization, 82
– LTI systems, 82
– nonlinear systems, 85
relationship between transfer function

and impulse-response function, 76
relative degree, 91, 227
– of LTI systems, 229
Ricatti equation
– control algebraic, CARE, 215
– matrix differential, MARE, 214
row conservation matrix, see conserva-

tion matrix

signal norms, 288
signals, 7
– bounded, 10
– convolution, 13
– Dirac-δ function, 10
– discrete time, continuous time, 9
– elementary operations, 12
– inner product, 12
– real valued, complex valued, 9
– time shifting, 12
– truncation, 13
– unit step function, 11
signed structure matrix, 157
simple evaporator, 52
– model construction, 52
simple Hamiltonian system model, 182,

269
SISO systems, 19
small-gain theorem, 140
stability
– L2-gain, 139
– asymptotic, 142
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– asymptotic, input-affine nonlinear
systems, 143

– asymptotic, LTI systems, 143
– asymptotic, nonlinear systems, 142
– BIBO, 138
– binary distillation column CMO,

structural, 163, 164
– continuous fermenter, 165
– heat exchanger network, structural,

162
– LTI BIBO, 138
– Lyapunov theorem, general, 153
– Lyapunov theorem, LTI systems, 154
– quadratically stabilizable systems,

155
– relationship between BIBO and

asymptotic, 144
– structural, 157
stability matrix, 143
– conservation matrix, 158
stabilizing feedback controller, 256
– continuous fermenter, 257
– gas turbine, 259
state, 24
state controllability, see controllability
state equation, 24
– of process systems, 48
– truncated, 142
state feedback, 207
– linear, 210, 215
– nonlinear, 230
state observability, see observability
state-space exact linearization problem,

see exact linearization
state-space model, 24
– LPV systems, 29
– LTI systems, 25
– LTV systems, 28
– nonlinear input-affine systems, 32
– structurally equivalent, 157
state-space models related by state

transformation
– LTI systems, 26
state-space representation, see

state-space model
steady-state reference point, 146
storage function, 140, 174

– and L2-gain, 174
– as Lyapunov function, 176
– available storage, 174
– Hamiltonian system model, 176
– heat exchanger cell, 195
– process systems, 186
structural stability, 157
structure matrix, 157
– signed, 157
systems, 17
– Lq-stability and Lq-gain, 20
– causal, 18
– continuous and discrete time, 19
– linear, 19
– SISO and MIMO, 19
– time-invariant, 19

thermodynamical potentials, 185, 188,
190

time shifting
– of signals, 12
time-invariant system, 19
Toeplitz matrix, 211
topological equivalence, 150
total integration of nonlinear systems,

109
transfer function, 28, 75
transfer rate equation, see constitutive

equations
truncated state equation, 142
truncation
– of signals, 13

unit step function, 11
unstable CSTR, 60
– Hamiltonian system model, 200
– model construction, 60
– PD output feedback controller, 276

vector norms, 287
vector space, 287
– dual space, 294
Volterra series representation, 80

zero dynamics, 90, 238
– closed-loop system, 254
– continuous fermenter, 92

TLFeBook


	Foreword
	Contents
	List of Definitions
	List of Examples
	Acknowledgements
	1. Introduction
	1.1 A Brief Overview of Nonlinear Process Control
	1.2 Aims and Objectives
	1.3 The Road Map of the Book

	2. Basic Notions of Systems and Signals
	2.1 Signals
	2.2 Systems
	2.3 Summary
	2.4 Questions and Exercises

	3. State-space Models
	3.1 Basic Notions of State-space Representation
	3.2 Finite Dimensional Linear Time-invariant (LTI) Systems
	3.3 Linear Time-varying (LTV) Parameter Systems
	3.4 Linear Parameter-varying (LPV) Systems
	3.5 Nonlinear Systems
	3.6 Summary
	3.7 Questions and Exercises

	4. Dynamic Process Models
	4.1 Process Modeling for Control Purposes
	4.2 State-space Models of Process Systems
	4.3 Special Nonlinear Process Systems
	4.4 Heat Exchanger Examples
	4.5 CSTR Examples
	4.6 Case Study: Modeling a Gas Turbine
	4.7 Summary
	4.8 Questions and Application Exercises

	5. Input-output Models and Realization Theory
	5.1 Input-output Models of LTI Systems
	5.2 Input-output Representation of Nonlinear Systems
	5.3 Realization Theory
	5.4 Hankel Matrix of a 2-input--2-output Bilinear Heat
	Exchanger Cell model

	important.pdf
	Local Disk
	articlopedia.gigcities.com


	1.pdf
	Local Disk
	All the helpful information you will need is here!





