xii

Preface

- circuits except in Chapters 11 and 12. The practical application of digital design will be en-

hanced by doing the suggested experiments in Chapter 11 while studying the theory present-
ed in the text.

Fach chapter has a list of references and a set of problems. Answers to selected problems
appeat in at the end of the book to aid the stadent and to help the independent reader. A solu-
tions manual is available for the instructor from the publisher. :

1 would like to thank Charles Kime for introducing me to Verilog. My greatest thanks go to
Jack Levine for guiding me anid checking the sections, examples, and problem solutions to all
Verilog HDL material. Thanks go to Tom Robbins for helping me decide to write the third edi-
tion and my editor Eric Frank for his patience throughout the revision. Appreciation goes to Gary
Covington and Donna Mitchell for providing the CD-ROM from SynaptiCad. Thanks also to
those who reviewed the third edition: Thomas G. Johnson, California Syate University; Umit
Uyar, City University of New York, Thomas L. Drake, Clemson University, and Richard Molyet,
University of Toledo. Finally, I am grateful to my wife Sandra for encouraging me fo pursue
this project.

M. MOoRRiS MANO

1-1

- Binary Systems

DIGITAL SYSTEMS

Digital systems have such a prominent role in everyday life that we refer to the present tech-
nological period as the digital age. Digital systems are used in communication, business trans-
actions, traffic control, space guidance, medical treatment, weather monitoring, the Internet, and
many other commercial, industrial, and scientific enterprises. We have digital telephones, dig-
ital television, digital versatile discs, digital cameras, and of course, digital computers. The
most striking property of the digital computer is its generality. It can follow a sequence of in-
structions, called a program, that operales on given data. The user can specify and change the
program or the data according to the specific need. Because of this flexibility, general-purpose
digital computers can perform a variety of information processing tasks that range over a wide
spectrum of applications. '

One characteristic of digital systems is their ability to manipulate discrete elements of in-
formation. Any set that is restricted to a finite number of elements contains discrete informa-
tion. Examples of discrete sets are the 10 decimal digits, the 26 letters of the alphabet, the 52
playing cards, and the 64 squares of a chessboard. Barly digital computers were used for nu-
meric computations. In this case, the discrete elemends used were the digits. From this appli-
cation, the term digital computer emerged. Discrete elements of information are represented
in a digital system by physical quantities called signals. Electrical signals such as voltages and
currents are the most common. Electronic devices called transistors predominate in the cir-
cuijtry that implements these signals. The signals in most present-day electronic digital sys-
tems use just two discrete values and are therefore said to be binary. A binary digit, called a
bit, has two values: 0 and 1. Discrete elements of information are represented with groups of
bits called binary codes. For example, the decimal digits 0 through 9 are represented in a dig-
ital system with a code of four bits. By using various techniques, groups of bits can be made

1

2

Chapter 1 Binary Systems

to represent discrete symbols, which are then used to develop the system in a digital format.
Thus, a digital system is a system that manipulates discrete elements of information that is
represented internally in binary form.

Discrete quantities of information either emerge from the nature of the data being processed
or may be quantized from a continuous process. For example, & payroll schedule is an inher-
ently discrete process that contains employee names, social security numbers, weekly salaries,
income taxes, and so on. An employee’s paycheck is processed using discrete data values such
as letters of the alphabet (names), digits (salary), and special symbols (such as $). On the other
hand, a research scientist may observe a continuous process, but record only specific quanti-
ties in tabular form. The scientist is thus quantizing his continuous data, making each number
in his table a discrete quantity. In many cases, the quantization of a process can be performed
automatically by an analog-to-digital converter.

The general-purpose digital computer is the best-known example of a digital system. The
major parts of a computer are a memory unit, a central processing unit, and input-output units.

- The memory unit stores programs as well as input, output, and intermediate data. The central

processing unit performs arithmetic and other data processing operations as specified by the pro-
gram. The program and data prepared by a user are transferred into memory by means of an
input device such as a keyboard: An output device, such as a printer, receives the results of the
computations and the printed results are presented to the user. A digital computer can accom-
modate many input and output devices. One very useful device is a communication unit that

- provides interaction with other users through the Internet. A digital computer is a powerful in-

strument and can perform not only arithmetic computations, but also logical operations. In ad-
dition, it can be programmed to make decisions based on internal and external conditions.
There are fundamental reasons why commercial products are made with digital circuits.
Like a digital computer, most digital devices are programmable. By changing the program in
a programmable device, the same underlying hardware can be used for many different appli-

- cations: Dramatic cost reductions in digital devices have come about because of the advances

in digital integrated circuit technology. As the number of transistors that can be put on a piece
of silicon increases to produce complex functions, the cost per unit decreases and digital de-
vices can be bought at an increasingly reduced price. Equipment built with digital integrated
circuits can perform at a speed of hundreds of millions of operations per second. Digital sys-
tems can be made to operate with extreme reliability by using error-correcting codes, An ex-

.. ample of this is the digital versatile disk (DVD) in which digital information representing video,

audio, and other data is recorded without a loss of a single item. Digital information on a DVD
is recorded in such a way that by examining the code in each digital sample before it is played
back, any error can be automatically identified and corrected.

A digital system is an interconnection of digital modules. To understand the operation of each
digital module, it is necessary to have a basic knowledge of digital circuits and their logical func-
tion. The first seven chapters of this book present the basic tools of digital design such as logic
gate structures, combinattonal and sequential circuits, and programmable logic devices. Chap-
ter § introduces digital design at the register transfer level (RTL). Chapters 9 and 10 deal with
asynchronous sequential circuits and the various integrated digital logic families. Chapters 11
and 12 introduce commercial integrated circuits and show how they can be connected in the
laboratory to perform experiments with digital circuits.

Section 1-2 Binary Numibers 3

An important trend in digital design is the use of hardware description language (HDL).
HDL resembles a programming language and is suitable for describing digital circuits in tex-
tnal form. Tt is used to simulate a digital system to verify its operation before hardware is built
in. It is also used in conjunction with logic synthesis tools to automate the design. HDL de-
scriptions of digital circuits are presented throughout the book.

As previously stated, digital systems manipulate discrete quantities of information that are
represented in binary form. Operands used for calculations may be expressed in the binary
number system. Other discrete elements, including the decimal digits, are represented in binary
codes. Data processing is carried out by means of binary logic elements using binary signals.
Quantities are stored in binary storage elements. The purpose of this chapter is to introduce the
various binary concepts as a frame of reference for further study in the succeeding chapters.

BINARY NUMBERS

A decimal number such as 7,392 represents a quantity equal to 7 thousands plus 3 hundreds,
plus 9 tens, plus 2 units. The thousands, hundreds, etc. are powers of 10 implied by the posi-
tion of the coefficients. To be more exact, 7,392 should be written as

TXIP +3X10°+ 9 x 10" + 2 x 10°

However, the convention is to write only the coefficients and from their position deduce the
necessary powers of 10. In general, a number with a decimal point is represented by a series
of coefficients as follows:

Asadsdydiy * A d_y a_z

The a; coefficients are any of the 10 digits (0, 1,2, ..., 9), and the subscript value j gives the
place value and, hence, the powér of 10 by which the coefficient must be multiplied. This can
be expressed as h

10%5 + 10%a, + 10%a; + 10%a, + 10'a; + 10%, + 107'a_ + 1020, + 10 %,

The decimal number system is said to be of base, or radix, 10 because it uses 10 digits and
the coefficients are multiplied by powers of 10. The binary system is a different number 5ys-
tem. The coefficients of the binary numbers system have only two possible values: 0 or 1. Each
coefficient a; is multiplied by 2/. For example, the decimal equivalent of the binary number
11010.11 is 26.75, as shown from the multiplication of the coefficients by powers of 2:

IX2+ I X2 +0X2+1X2+0x2°+1x27 +1x272=2675
In general, a number expressed in a base-r system has coefficients multiplied by powers of r:

-1 2 - - _
A A N S ST R tartatagrtta, ot ta, "

- The coefficients a; range in value from 0 to r — 1. To distinguish between numbers of differ-

ent bases, we enclose the coefficients in parentheses and write a subscript equal to the base used
(except sometimes for decimal numbers, where the content makes it obvious that it is deci-
mal). An example of a base-5 number is

1

Chapter 1 Binary Systems

(40212)s =4 X S+ 0 X P +2X 5 +1 X +2x5" = (5114),

The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system is a
base-8 system that has eight digits: 0, 1, 2,3, 4,5,6,7. An example of an octal number is
127.4. To determine its equivalent decimal value, we expand the number in a power series with
a base of 8:

(1274)g =1 X 8 +2 X 8 + 7 x 8 + 4 X 8" = (87.5);

Note that the digits 8 and 9 cannot appear in an octal number.

It is customary to borrow the needed r digits for the coefficients from the decimal system
when the base of the number is less than 10. The letters of the alphabet are used to supplement
the 10 decimal digits when the base of the number is greater than 10. For example, in the hexa-
decimal (base 16) number system, the first ten digits are borrowed from the decimal system,
The letters A, B, C, D, B, and F are used for digits 10, 11, 12, 13, 14, and 15, respectively. An
example of a hexadecimal number is - .

(B65F) = 11 X 16° + 6 X 16" + 5 X 16' + 15 X 16° = {46,687),

As noted before, the digits in a binary number are called bits. When abitis equal to (, it does
not contribute to the sum during the conversion. Therefore, the conversion from binary to dec-
imal can be obtained by adding the numbers with powers of two corresponding to the bits that

are equal to 1. For example,

(110101), = 32 + 16 + 4 + 1 = (53)y¢

- There are four I’s in the binary nur_nber.' The corresponding decimal number is the sum of the
" four powers of two nurbers. The first 24 numbers obtained from 2 to the power of n are list-

ed in Table 1-1. In computer work, 2'° is referred to as K(kilo), 2*° as M(mega), 230 as G{giga),

“ and 2°0 as T(tera). Thus 4K = 2'% = 4096 and 16M = 2** = 16,777,216. Computer capaci-

ty is usually given in bytes. A byre is equal to eight bits and can accommodate one keyboard
character. A computer hard disk with 4 gigabytes of storage has a capacity of 4G = 2% byles
(approximately 4 billion bytes). : : .

Arithmetic operations with numbers in base r follow the same rules as for decimal nambers.
When a base other than the familiar base 10 is used, one must be careful to use only the

Table 1-1

Powers of Two
n .2 n B n 2"
0 1 3 © 256 : 16 65,536
1 2 9 512) 17 131,072
2 4 10 1,024 i8 262,144
3 8 1L 2,048 19 524,288
4 16 12 4,096 20 1,048,576
5 32 13 8,192 21 2,097,152
6 64 14 o 16,384 22 4,194,304
7

128 15 32,768 23 8,388,608

Section 1-3 Number Base Conversions 5

r-allowable digits. Examples of addition, subtraction, and multiplication of two binary num-
hers are as follows:

augend: 101101 minuend: 101101 multiplicand: 1011
addend: +100111 subtrahend: 100111 multiplier: X 1
sum: 1010100 difference: 000110 1011
0000

1011
product: 110111

The sum of two binary numbers is calculated by the same rules as in decimal, except that
the digits of the sum in any significant position can be only 0 or 1. Any carry obtained in a given
significant position is used by the pair of digits one significant position higher. The subtraction
is slightly more complicated. The rules are still the same as in decimal, except that the borrow
in a given significant position adds 2 to a minuend digit. (A borrow in the decimal system adds
10 to a minuend digit.) Multiplication is very simple. The multiplier digits are always 1 or 0.
Therefore, the partial products are equal either to the multiplicand or to 0. o

NUMBER BASE CONVERSIONS

EXAMPLE 1-1

The conversion of a number in base r to decimal is done by expanding the number in a power
series and adding all the terms as shown previously. We now present a general procedure for
the reverse operation of converting a decimal number to a number in base 7 If the number in-
cludes a radix point, it is necessary to separate the number into an integer part and a fraction
part, since each part must be converted differently. The conversion of a decimal integer to a
number in base r is done by dividing the number and all successive quotients by r and accu-
mulating the remainders. This procedure is best illustrated by example.

Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20 and a
remainder of 4. The quotient is again divided by 2 to give a new quotient and remainder. This
process is continued until the integer quotient becomes 0. The coefficients of the desired bina-
ry number are obtained from the remainders as follows:

Integer :

Quotient Remainder Coefficient
41/2 = 20 + : ag =1
20/2 = 10 + 0 a =0
10/2 = 5 + 0 a, =0
5= 2 + 4 a, = 1
2/2 = 1 + 0 a; =0
1/2= 0 + 3 as =1

Therefore, the answer is (411, = (asaqaz0,0 ap), = (101001),

=

3 Chapter T Binary Systems Section 1-4 Octal and Hexadecima! Numbers 7
The arithmetic process can be manipulated more conveniently as follows: To convert a decimal fraction to a number expressed in base a similar procedure is used.
) Multiplication is by r instead of 2, and the coefficients found from the integers may range in
Integer Remainder value from O to » — 1 instead of 0 and 1.
41 N
20 1 ’
10 0 "EXAMPLE 1-4
5 .
. ? Convert (0.513),, to octal.
1 0 0.513 X 8 = 4,104
0 1 101001 = answer 0.104 X 8 = 0.832

The conversion from decimal integers to any base-r system is sirnilar to the example, except . 0.832 X 8 = 6.656
that division is done by r instead of 2. : 0.656 X 8 = 5.248

0248 X § = 1.984

Convert decimal 153 to octal. The required base 7 is 8. First, 153 is divided by 8 to give an in- 4 : The answer, to seven significant figures, is obtained from the integer part of the products

teger quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer quotient

of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a remainder of (05130 = (0406517)

2. This process can be conveniently manipulated as follows: The conversion of decimal numbers with both integer and fraction parts is done by con-
153 verting the integer and the fraction separately and then combining the two answers. Using the
19 1 results of Examples 1-1 and 1-3, we obtain

2 3 L |
: 41.6875), = (101001.1011
0 2 = {231)s (o = (011},
The conversion of a decimal fraction to binary is accomplished by a method similar to that
used for integers. However, multiplication is used instead of division, and integers are accu-
mulated instead of remainders. Again, the method is best explained by example.

From Examples 1-2 and 1-4, we have

|

1-4 OCTAL AND HEXADECIMAL NUMBERS

EXAMPLE 1-3

Convert (0.6875) o to binary. First, 0.6875 is multiplied by 2 to give an‘integer and a fraction.
The new fraction is multiplied by 2 to give a new integer and a new fraction. This process is
continued until the fraction becomes 0 or unti! the number of digits have sufficient accuxacy.
The coefficients of the binary number are obtained from the integers as follows:

The conversion from and to binary, octal, and hexadecimal plays an important role in digital
computers. Since 2° = 8 and 2* = 16, each octal digit corresponds to three binary digits and
each hexadecimal digit corresponds to four binary digits. The first 16 numbers in the decimal,
binary, octal, and hexadecimal number systems are listed in Table 1-2.

Integer Fraction Coefficient T-he conversion from bi_na.lry to octal is F:asily accompilished by partitioning the binary num-
0.6875 X 2 = 1 ' n 0.3750 . =1 ber into groups of three digits each, starting from the binary point and proceeding to the left
. S | and to the right. The corresponding octal digit is then assigned to each group. The following
03750 X 2 = 0 + 07500 ap =0 example illustrates the procedure: '
0.7500 X 2 = 1 + 0.5000 ag =1 .
05000 X2 = 1 g 0.0000 a, =1 (10 110 001 101 011 - 111 100 000 110); = (26153.7406),

Therefore, the answer is (0.6875), = (0.0 _ja a _sa 4)2 = (0.1011), 2 6 1 5 3 7 4 0 6

8

Chapter 1 - Binary Systems

Tabie 1-2
Numbers with Different Bases
Decimal Binary Octal Hexadecimal
(base 10) {base 2) (base 8) (base 16)
00 - 0000 00 ¢
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 010t 05 5
06 0110 06 6
07 0111 07 7
08 1000 i0 8
09 1o 1 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Conversion {from binary to hexadecimal is similar, except that the binary number is divided

into groups of four digits:

(10 1100 0110 1011 - 1111 0010), = (2C6B.F2)
2 C 6 B F 2
The corresponding hexadecimal (or octal) digit for each group of binary digits is easily re-
membered after studying the values listed in Table 1-2.

Conversion from octal or hexadecimal to binary is done by reversing the preceding procedure.
Each octal digit is converted to its three-digit binary equivalent. Similarly, each hexadecimal
digit is converted to its four-digit binary equivalent. This is illustrated in the following examples:

' (673.124), = (110 111 01l - 001 010 100),
: 6 T 3 [2 4

and

(306.D);s = (0011 0000 0110 - 1101),
3 0 6 D

Binary numbers are difficult to work with because they require three or four times as many

digits as their decimal equivalent. For example, the binary number 111111111111 is equiva-

lent to decimal 4095. However, digital computers use binary numbers and it is sometimes nec-
essary for the human operator or user to communicate directly with the machine by means of
binary numbers. One scheme that retains the binary system in the computer, but reduces the

Section 1-5° Complements 9

number of digits the human must consider, utilizes the relationship between the binary num-
ber system and the octal or hexadecimal system. By this method, the human thinks in terms of
octal or hexadecimal numbers and performs the required conversion by inspection when direct
communication with the machine is necessary. Thus the binary number 111111111111 has 12
digits and is expressed in octal as 7777 (four digits) or in hexadecimal as FFF (three digits).
During communication between people (about binary numbers in the computer), the octal or
hexadecimal representation is more desirable because it can be expressed more compactly with
a third or a quarter of the number of digits required for the equivalent binary number. Thus, most
computer manuals use either octal or hexadecimal numbers to specify binary quantities. The
choice between them is arbitrary, although hexadecimal tends to win out, since it can represent
a byte with two digits.

COMPLEMENTS

Complements are used in digital computers for simplifying the subtraction operation and for
logical manipulation. There are two types of complements for each base-r system: the radix
complement and the diminished radix complement. The first is referred to as the r's comple-
ment and the second as the (r — 1)’s complement. When the value of the base r is substitat-
ed in the name, the two types are referred to as the 2's complement and 1’s complement for
binary numbers, and the 10"s complement and 9’s complement for decimal numbers.

Diminished Radix Complement

Given a number N in base r having » digits, the (r — 1)’s complement of N is defined as
- 1) — N. For decimal numbers, r = 10and r — 1 = 9, 50 the 9's complement of N is
10" — 1) — N.In this case, 10" represents a number that consists of a single 1 followed by

n 0s. 10" — 1 is a number represented by n 9s. For example, if n = 4, we have 10° = 10,000

and 10* — 1 = 9999. It follows that the 9’s complement of a decimal number is obtained by

subtracting each digit from 9. Some numerical examples follow: '

The 9’s complement of 546700 is 999999 — 546700 = 453299,
The 9°s complement of 012398 is 999999 — (12398 = 987601,

For binary numbers, r = 2Zandr — 1 = 1, so the 1’s complement of & is (2” -]) — N.
Again, 2" is represented by a binary number that consists of a 1 followed byn0s.2" — lisa
binary number represented by n 1’s. For example, if n = 4, we have 2* = (10000}, and
2* — 1 = (1111),. Thus the 1's complement of a binary number is obtained by subtracting
each digit from 1. However, when subtracting binary digits from 1, we can have either
1 =0 =Torl - 1= 0, which causes the bit to change from 0 to 1 or from 1 to 0. Therefore,
the 1’s complement of a binary number is formed by changing 1’s to (s and 0’s to 1’s. The fol-
lowing are some numerical examples: ' :

The 1’s complement of 1011000 is 0100111.
The 1’s complement of 0101101 is 1010010,

Chapter 1 Binary Systems

The (r — 1)’s complement of octal or-hexadecimal numbers is obtained by subtracting each
digit from 7 or F (decimal 15), respectively.

adix Complement

The ’s complement of an n-digit number & in base r is defined as " — N, for N # (Q and 0
for N = (. Comparing with the (r — 1)’s complement, we note that the #'s complement is
obtained by adding 1 to the (r — 1)’s complement since r" — N = [{r" — 1} — N] + L.
Thus, the 10°s complement of decimal 2389 is 7610 + 1 = 7611 and is obtained by adding 1
to the 9’s-complement value. The 2’s complement of binary 101100 is 010011 + 1 = 010100
and is obtained by adding 1 to the 1’s-complement value.

Since 10" is a number represented by a 1 followed by »n 0’s, 10" — N, which is the 10’s
complement of N, can be formed also by leaving all least significant (’s unchanged, subtract-
ing the first nonzero least significant digit from 10, and subtracting all higher significant dig-
its from 9.

The 10°s complement of 012398 is 987602.
The 10’s complement of 246700 is 753300.

The 10’s complement of the first number is obtained by subtracting 8 from 10 in the least sig-
nificant position and subtracting all other digits from 9. The 10’s complement of the second num-
ber is obtained by leaving the two least significant 0’s unchanged, subtracting 7 from 10, and
subtracting the other three digits from 9.

Similarly, the 2’s complement can be formed by leaving all least significant 0’s and the first
1 unchanged, and replacing 1°s with 0°s and 0’s with 1’s in all other higher significant digits.

The 2’s complement of 1101100 is 0010100.
The 2’s complement of 0110111 is 1001001.

The 2’s complement of the first number is obtained by leaving the two least significant 0's and
the first T unchanged, and then replacing 1°s with 0’s and s with 1s in the other four most-
significant digits. The 2’s complement of the second number is obtained by leaving the least
significant 1 unchanged and complementing all other digits.

In the previous definitions, it was assumed that the numbers did not have a radix point. If the
original number N contains a radix point, the point should be removed temporarily in order
to form the #’s or {r — 1)’s complement. The radix point is then restored to the comple-
mented number in the same relative position. It is also worth mentioning that the complement
of the complement restores the number to its original value. The #’s complement of N is
" — N. The complement of the complement is r" — (r" - N) = N, and is equal to the
original number. ' :

ubtraction with Complements

The direct method of subtraction taught in elementary schools uses the borrow concept. In this
method, we borrow:a | from a higher significant position when the minuend digit is smaller
than the subtrahend digit. The method works well when people perform subtraction with paper
and pencil. However, when subiraction is implemented with digital hardware, the method is less
efficient than the method that uses complements.

"~ EXAMPLE 1-5

" EXAMPLE 1-6

Section 1-5 Complements 11

The subtraction of two r-digit unsigned numbers M — N in base r can be done as follows:

1. Add the minuend, M, to the r’s complement of the subtrahend, N. This performs
M+{(r"—N)=M—-N+r

2. If M = N, the sum will produce an end carry, r", which can be discarded; what is left is
the res!:llt M- N.

3. If M < N, the sum does not produce an end carry and is equal to " — (N — M), which
is the r’s complement of (N — M). To obtain the answer in a familiar form, take the r’s
complement of the sum and place a negative sign in front.

The following examples iltustrate the procedure:

Using 10’s complement, subtract 72532 — 3250.

M= 72532
10°s complement of N = + 96750
Sum = 169282

i

Discard end carry 10° = —100000
Answer = 69282
[|

Note that M has 5 digits and N has only 4 digits. Both numbers must have the same number
of digits, so we write N as 03250. Taking the 10’s complement of N produces a 9 in the most
significant position. The occurrence of the end carry signifies that M = N and that the result
is positive.

Using 10°s complement, subtract 3250 — 72532,

M= 03250
10’s complement of N = + 27468
Sum = 30718

There is no end carry.
Therefore, the answer is ~(10’s complement of 30718) = —69282
|

Note that since 3250 <t 72532, the result is negative. Since we are dealing with unsigned
numbers, there is really no way to get an unsigned result for this case. When subtracting with
complements, the negative answer is recognized from the absence of the end carry and the
complemented result. When working with paper and pencil, we can change the answer to a
signed negative number in order to put it in a familiar form.

AmpLE 17

Chapter 1 Binary Systems

Subtraction with complements is done with binary numbers in a similar manner using the

procedure outlined previously.

Given the two binary numbers X = 1010100 and ¥ = 1000011, perform the subtraction
(a) X — Y and (b} y — X using 2’s complements.
(a) X = 1010100
2's complement of ¥ = + 0111101
Sum = 10010001
Discard end carry 27 = —10000000
Answer: X — Y = 0010001

(b) Yy = 1000011
2°s complement of X = + 0101100
Sum = 1101111

There is no end carry.

Therefore, the answer is ¥ — X = —(2’s complement of 1101111) = —0010001

Subtraction of unsigned numbers can also be done by means of the (r — 1)’s complement.

Remember that the (r — 1)’s complement is one
btrahend produces a sum that

1t of adding the minuend to the complement of the su

this, the resu '
is 1 less than the correct difference when an end carry OCCULS. Removing the end carry and

adding 1 to the sum is referred to as an end-around carry.

1-6

Section 1-6 Signed Binary Numbers i3

Note that the negative result is obtained by taking the 1’s complement of the sum since this is
the type of complement used. The procedure with end-around carry is also applicable for sub-
tracting unsigned decimal pumbers with 9’s complement.

SIGNED BINARY NUMBERS

less than the r's complement. Because of

EXAMPLE 1-8

Repeat Example 1-7 using 1’s complement.

(a) X — Y = 1010100 ~ 1000011
' x = 1010100
1’s complement of ¥ = + 0111100

Sum = 10010000

End-around carry = + 1
Answer: X — Y = 0010001 .

(b) ¥ — X = 10QQi1 — 1010100

Yy = 1000011
1°s complement of X = + 0101011

Sum = 1101110

There is no end carry.
Therefore, the answeris ¥ — & = —(1’s complement of 1101110} = —0010001

Positive integers (including zero) can be represented as unsigned numbers, However, o rep-
resent negative integers, we need a notatjon for negative values. In ordinary arithmetic, a neg-
ative number is indicated by a minus sign and a positive number by a pus sign. Because of
hardware limitations, computers must represent everything with binary digits. It is customary
to represent the sign with a bit placed in the leftmost position of the number. The convention
is to make the sign bit 0 for positive and 1 for negative.

It is important to realize that both signed and unsigned binary numbers consist of a string of
bits when represented in a computer. The user determines whether the number is signed or un-
signed. If the binary number is signed, then the leftmost bit represents the sign and the rest of
the bits represent the number. Tf the binary number is assumed to be unsigned, then the leftmost
bit is the most significant bit of the number. For example, the string of bits 01001 can be con-
sidered as 9 (unsigned binary) or as +9 (signed binary) because the leftmost bit is 0. The string
of bits 11001 represent the binary equivalent of 25 when considered as an unsigned number or
as —9 when considered as a signed number. This is because the 1 that is in the leftmost position
designates a negative and the other four bits represent binary 9, Usually, there is no confusion
in identifying the bits if the type of representation for the number is known in advance.

The representation of the signed numbers in the last example is referred to as the signed-
magnitude convention. In this notation, the number consists of a magnitude and a symbol (+
or —) or a bit (0 or 1) indicating the sign. This is the representation of signed numbers used in

ordinary arithmetic. When arithmetic operations are implemented in a computer, it is more
convenient to use a different system for representing negative numbers, referred to as the signed-
complement system. In this system, a negative number is indicated by its complement. Where-
as the signed-magnitude system negates a number by changing its sign, the signed-complement
system negates a number by taking its complement. Since positive numbers always start with
0 (plus) in the left-most position, the complement will always start with a 1, indicating a neg-
ative number. The signed-complement system can use either the 1°s or the 2’s complement, but
the 2's complement is the most common.

As an example, consider the number 9 represenied in binary with eight bits, +9 is represented
with a sign bit of 0 in the Jefimost position, followed by the binary equivalent of 9, which gives
00001001, Note that all eight bits must have a value and, therefore, Os are inserted following
the sign bit up to the first 1. Although there is only one way 1o represent +9, there are three dif-
ferent ways to represent —9 with eight bits:

signed-magnitude representation: 10001001
signed-1’s-complement representation: 11110110
signed-2’s-complement representation: 111101 1

In signed-magnitude, —9 is obtained from +9 by c.hanging the sign bit in the leftmost posi-
tion from O to 1. In signed-1’s complement, —9 is obtained by complementing all the bits of

14 Chapter 1 Binary Systems Section 1-6 Signed Binary Numbers 15

Table 1-3] Arithmetic Addition
Signed Binary Numbers The addition of two numbers in the signed-magnitude system follows the rules of ordinary
Signed-2's Signed-1's Signed arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common
Decimal complement complement magnitude sign. If the signs are different, we subtract the smaller magnitude from the larger and give the
7 0111 oli1 0111 result the sign of the larger magnitude. For example, (+25) + (—37) = —(37 — 25) = —12
6 0110 0110 0110 and is done by subtracting the smaller magnitude 25 from the larger magnitude 37 and using
+5 0101 0101 0101 the sign of 37 for the sign of the result. This is a process that requires the comparison of the signs
+4 0100 0100 0100 and the magnitudes and then performing either addition or subtraction. The same procedure ap-
+3 0011 Q011 not1 plies to binary numbers in signed-magnitude representation. In contrast, the rule for adding
+2 0010 0010 0010 numbers in the signed-complement system does not require a comparison or subtraction, but
+1 0001 0001 0001 only addition. The procedure is very simple and can be stated as follows for binary numbers;:
+0 0000 0000 0000 The addition of two signed binary numbers with negative numbers represented in signed-
—0 — 1111 1000 2’s-complement form is obtained from the addition of the two numbers, including their sign bits.
-1 H11 1110 ig% A carry out of the sign-bit position is discarded.
_i 2(1)(1) . }i g(l) 1011 Numerical examples for addition follow:
- oo o e +6 00000110 ~ 6 11111010
-5 1010 1001 1110 +13 00001101 +13 00001101
-7 1001 1600 1111 +15 00010011 -+ 7 00000111
-8 1000 — —
+ 6 00000110 ' —6 11111010
—-13 11110011 —13 11110011
+9, including the sign bit. The signed-2’s-complement representation of —9 is obtained by tak-

ing the 2’s complement of the positive number, including the sign bit.
Table I-3 lists all possible 4-bit signed binary numbers in the three representations. The
equivalent decimal number is also shown for reference. Note that the positive numbers in all

- three representations are identical and have 0 in the leftmost position. The signed-2’s comple-

ment system has only one representation for G, which is always positive. The other two systems
have either a positive 0 or a negative 0, which is something not encountered in ordinary arith-
metic. Note that all negative numbers have a 1 in the leftmost bit position; this is the way we
distinguish them from the positive numbers. With four bits, we can represent 16 binary num-
bers. In the signed-magnitude and the 1°s complement representations, there are eight positive
numbers and eight negative numbers, including two zeros. In the 2’s complement representa-
tion, there are eight positive numbers, including one zero and eight negative numbers,

The signed-magnitude system is used in ordinary arithmetie, but is awkward when em-
ployed in computer arithmetic because of the separate handling of the sign and the magnitude.
Therefore, the signed-complement is normally used. The 1’s complement imposes some diffi-
culties and is seldom used for arithmetic operations. It is useful as a logical operation since the
change of 1 to 0 or 0 to 1 is equivalent to a logical complement operation, as will be shown in
the next chapter. The following discussion of signed binary arithmetic deals exclusively with
the signed-2’s-complement representation of negative numbers. The same procedures can be
applied to the signed-1’s-complement system by including the end-around carry as done with
unsigned numbers. :

— 7 11111001 —19 11101101

Note that negative numbers must be initially in 2’s complement and that if the sum obtained
after the addition is negative, it is in 2’s-complement form. o '

In each of the four cases, the operation performed is addition with the sign bit included.
Any carry out of the sign-bit position is discarded, and negative results are automaticaily in 2’s-
complement form. \

In order to obtain a correct answer, we must ensure that the result has a sufficient number
of bits to accommodate the sum. If we start with two #-bit numbers and the sum occupies
n + 1bits, we say that an overflow occurs. When one performs the addition with paper and pen-
cil, an overflow is not a problem, because we are not limited by the width of the page. We just
add another () to a positive number or another 1 to a negative number in the most-significant
position to extend them to # + 1 bits and then perform the addition. Overflow is a problem in
computers because the number of bits that hold a number is finite, and a result that exceeds the
finite value by 1 cannot be accommodated, . :

The complement form of representing negative numbers is unfamiliar to those used to the

signed-magnitude system. To determine the value of a negative number when in signed-2’s

complement, it is necessary to convert it to a positive number to place it in a more familiar
form. For example, the signed binary number 11111001 is negative because the leftmost bit is
L. Its 2’s complement is 00000111, which is the binary equivalent of +7. We therefore recog-
nize the original negative number to be equal to —7.

16

Chapter 1 . Binary Systems

Arithmetic Subtraction

1-7

Subtraction of two signed binary numbers when negative numbers are in 2’s-complement form
is very simple and can be stated as follows:

Take the 2’s complement of the subtrahend (including the sign bit) and add it to the minu-
end (including the sign bit). A carry out of the sign-bit position is discarded.

This procedure occurs because a subtraction operation can be changed to an addition opera-
tion if the sign of the subtrahend is changed. This is demonstrated by the following relationship:

(+A) — (+B) = (£A) + (—B);
(£4) — (=B) = (£A) + (+B)-

But changing a positive number to a negative number is easily done by taking its 2’s comple-
ment. The reverse is also trae because the complement of a negative number in complement form
produces the equivalent positive number. Consider the subtraction of {(~6) — (=13} = +7.In
binary with eight bits, this is written as (11111010 — 11110011). The subtraction is changed
to addition by taking the 2’s complement of the subtrahend (—13) to give {+13). In binary,
this is 11111010 + 00001101 = 100000111. Removing the end carry, we obtain the correct

~ answer: 00000111(+7).

It is worth noting that binary numbers in the signed-complement system are added and sub-
tracted by the same basic addition and subtraction rules as unsigned numbers. Therefore, com-
puters need only one common hardware circuit to handle both types of arithmetic. The user or

. programmer must interpret the resulis of such addition or subtraction differently, depending on

whether it is assumed that the numbers are signed or unsigned.

BINARY CODES

" Digital systems use signals that have two disiinet values and circuit elements that have two

stable states. There is a direct analogy among binary signals, binary circuit elements, and bi-
nary digits. A binary number of n digits, for example, may be represented by » binary circuit
elements, each having an output signal equivalent to 0 or 1. Digital systems represent and ma-
nipulate not only binary numbers, but also many other discrete elements of information. Any
discrete element of information distinct among a group of quantities can be represented with
a binary code. The codes must be in binary because computers can only hold 1°s and 0’s. It must
be realized that binary codes merely change the symbols, not the mearing of the elements of
information that they represent, If we inspect the bits of a computer at random, we will find that
most of the time they represent some type of coded information rather than binary numbers.
An n-bit binary code is a group of # bits that assume up to 2"distinct combinations of 1’s
and 0’s, with each combination representing one element of the set that is being coded. A set
of four elements can be coded with two bits, with each element assigned one of the following
bit combinations: 00, 01, 10, 11. A set of eight elements requires a 3-bit cede and a set of 10
elemnents requires a 4-bit code. The bit combination of an r-bit code is determined from the count
in binary from 0 to 2* — 1. Each element must be assigned a unique binary bit combination and
no two elements can have the same value; otherwise, the code assignment will be ambiguous.

BCD Code

Section 1-7 Binary Codes 17

Although the minimum number of bits required to code 2" distinct quantities is #, there is
no {naximum number of bits that may be used for a binary code. For example, the 10 decimal
digits can be coded with 10 bits, and each decimal digit can be assigned a bit combination of

nine (’s and a 1. In this particular binary code, the digit 6 is assigned the bit combination
0061000000,

Although the binary number system is the most natural system for a computer, most people are
more accustomed to the decimal system. One way to resolve this difference is to convert the
decimal numbers to binary, perform all arithmetic calculations in binary, and then convert the
binary results back to decimal. This method requires that we store the decimal numbers in the
computer so they can be converted to binary. Since the computer can accept only binary val-
ues, we must represent the decimal digits by means of a code that contains 1’s and (s, It is also
possible to perform the arithmetic operations directly with decimal numbers when they are
stored in the computer in coded form.

A binary code will have some unassigned bit combinations if the number of elements in
the set is not a multiple power of 2. The 10 decimal digits form such a set. A binary code that
distinguishes among 10 elements must contain at least four bits, but 6 out of the 16 possible
combinations remain unassigned. Different binary codes can be obtained by arranging four
bits in 10 distinct combinations. The code most commonly used for the decimal digits is the
straight binary assignment as listed in Table 1-4. This is called binary coded decimal and is com-
monly referred to as BCD. Other decimal codes are possible and a few of them are presented
later in this section.

Table 1-4 gives the 4-bit code for one decimal digit. A number with k decimal digits will re-
quire 4% bits in BCD. Decimal 396 is represented in BCD with 12 bits as 0011 1001 0110,
with each group of 4 bits representing one decimal digit. A decimal number in BCD is the same
as its equivalent binary number only when the number is between 0 and 9. A BCD number

Tabie 1-4
Binary Coded Decimal (BCD)
Decimal BCD
symbol digit
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

18

Chapter 1 Binary Systems

greater than 10 looks different than its equivalent binary number, even though both contain 1’s
and ('s. Moreover, the binary combinations 1010 through 1111 are not used and have no mean-
ing in the BCD code. Consider decimal 185 and its corresponding value in BCD and binary:

(185),0 = {0001 1000 0101)5cp = (10111001),

The BCD value has 12 bits, but the equivalent binary number needs only 8 bits. It is obvious
that a BCD number needs more bits than its equivalent binary value. However, there is an ad-
vantage in the use of decimal numbers because computer input and output data are generated
by people that use the decimal system.

It is important to realize that BCD numbers are decimal numbers and not binary numbers,
although they use bits in their representation. The only difference between a decimal number
and BCD is that decimals are written with the symbols 0, 1, 2,..., 9 and BCD numbers use the
binary code 0000, 0001, 0010, ..., 1001, The decimal value is exactly the same. Decimal 10
is represented in BCD with eight bits as 0001 0000 and decimal 15 as 0001 0101. The corre-
sponding binary values are 1010 and 1111 and have only four bits.

BCD Addition

Consider the addition of two decimal digits in BCD, together with a possible carry from a pre-
vious less significant pair of digits, Since each digit does not exceed 9, the sum cannot be
greater than 9 + 9 + 1 = 19, with the 1 in the sum being a previous carry. Suppose we add

‘the BCD digits as if they were binary numbers. The binary sum will produce a result in the range

from 0 to 19. In binary, this will be from 0000 to 10011, but in BCD, it is from 0000 to 1 1001;
the first I being a carry and the next four bits being the BCD digit sum. When the binary sum
is equal to or less than 1001 (without a carry), the corresponding BCD digit is correct. How-
ever, when the binary sum is greater than or equal to 1010, the result is an invalid BCD digit.

" The addition of 6 = (0110), to the binary sum converts it to the correct digit and also produces

a carry as required. This is because the difference between a carry in the most significant bit
position of the binary sum and a decimal carry differ by 16 — 10 = 6. Consider the following
three BCD additions:

4 0100 4 0100 8 1000
+5 +0I01 48 11000 49 1001

9 H01 12 - 1100 17 10001
+0110 +0110
10010 10111

In each case, the two BCD digits are added as if they were two binary numbers. If the binary
sum is greater or equal to 1010, we add 0110 to obtain the correct BCD digit sum and a carry.
In the first example, the sum is equal to ¢ and is the correct BCD digit sum. In the second ex-
ample, the binary sum produces an invalid BCD digit. The addition of 0110 produces the cor-
rect BCD digit sum 0010 (2) and a carry. In the third example, the binary sum produces a carry.

Section 1-7 Binary Codes 19

This condition occurs when the sum is greater than or equal to 16. Although the other four bits
are less than 1001, the binary sum requires a correction because of the carry. Adding 0110, we
obtain the required BCD digit sum 0111 (7) and a BCD carry.

The addition of two r-digit unsigned BCD numbers follows the same procedure. Consider
the addition of 184 + 576 = 760 in BCD:

BCD carry 1 1
(001 1000 0100 i84
+0101 0111 0110 +576
Binary sum O11Y 10000 1010
Add 6 0110 0110
BCD sum 0111 0110 0000 760

The first, least significant pair of BCD digits produces a BCD digit sum of 0000 and a carry
for the next pair of digits. The second pair of BCD digits plus a previous carry produces a digit
sum of 0110 and a carry for the next pair of digits. The third pair of digits plus a carry produces
a binary sum of 0111 and does not require a correction.

Decimal Arithmetic

The representation of signed decimal numbers in BCD is similar to the representation of signed
numbers in binary. We can use either the familiar sign and magnitude system or the signed-com-
plement system. The sign of a decimal number is usually represented with four bits to conform
to the 4-bit code of the decimal digits. It is customary to designate a plus with four 0°s and a
minus with the BCD equivalent of 9, which is 1001.

The signed-magnitude system is seldom used in computers. The signed-conplement system
can be either the 9's or the 10’s complement, but the 10’s complement is the one most often
used. To obtain the 10’s complement of a BCD number, we first take the 9’s complement and
then add one fo the least significant digit. The 9’s complement is calculated from the subtrac-
tion of each digit from 9. :

The procedures developed for the signed-2’s complement system in the previous section
apply also to the signed-10’s complement system for decimal numbers. Addition is done by
adding all digits, including the sign digit, and discarding the end carry. This assumes that afl
negative numbers are in 10’s complement form. Consider the addition (+375) + (—240) =
+135 done in the signed-complement system.

0 375
+95 760

0 135

The 9 in the leftmost position of the second number represents a minus and 9760 is the 10’s
complement of 0240, The two numbers are added and the end carry is discarded to obtain

20

Chapter 1 Binary Systems

-+135. Of course, the decimal numbers inside the computer must be in BCD, including the sign
digits. The addition is done with BCD digits as described previously.

The subtraction of decimal numbers either unsigned or in the signed-10’s complement sys-
tem is the same as in the binary case. Take the 10’s complement of the subtrahend and add it
to the minnend. Many computers have special hardware to perform arithmetic calculations di-
rectly with decimal numbers in BCD. The user of the computer can specify by programmed in-
structions to perform the arithmetic operation with decimal numbers directly without having
to convert them to binary.

Other Decimal Codes

Binary codes for decimal digits require a minimum of four bits per digit. Many different codes
can be formulated by arranging four bits in 10 distinct possible combinations. The BCD and
three other representative codes are shown in Table 1-5. Each code uses only 10 bit combina-
tions out of possible 16 combinations that can be arranged with four bits, The other six unused
combinations in each case have no meaning and should be avoided.

The BCD and the 2421 codes are examples of weighted codes. In a weighted code, each bit
position is assigned a weighting factor in such a way that each digit can be evaluated by adding
the weights of all the 1's in the coded combination. The BCD code has weights of 8, 4, 2, and
1, which correspond to the power of two values of each bit. The bit assignment 0110 for ex-
ample, is interpreted by the weights to represent decimal 6 because 8 X 0 + 4 X 1 + 2 X
1 + 1 x 0 = 6. The bit combination 1101 when weighted by the respective digits 2421 gives

Table 1-5
Four Different Binary Codes for the Decimal Digits
Decimal BCD
digit 8421 2421 Excess-3 8421
0 0000 0000 0011 0000
1 0001 0001 0100 0111
2 0010 0010 . 0101 0110
3 0011 0011 0110 0101
4 0100 0100 0111 0100
5 0101 1011 1000 1011
6 0110 1100 1001 1010
7 011l 1101 1010 1001
8 1000 1110 1011 L0000
g 1001 1111 1100 1111
1010 0101 0000 0001
Unused 1011 0110 0001 0010
bit 1100 0111 - 0010 0011
combi- 1101 1000 £101 1100
nations 1110 1001 1110 1101
1111 1010 1111 1110

Section 1-7 Binary Codes 21

the decimal equivalentof 2 X 1 +4 X 1 +2 X 0 + 1 X 1 = 7. Note that some digits can
be coded in two possible ways in the 2421 code. Decimal 4 can be assigned to bit combina-
tions 0100 or 1010 since both combinations add up to a total weight of four.

The 2421 and the excess-3 codes are examples of self-complementing codes. Such codes
have the property that the 9°s complement of a decimal number is obtained directly by chang-
ing 1’s to 0’s and 0’s to I’s in the code. For example, decimal 395 is represented in the excess-
3 code as 0110 1100 1000. The 9’s complement 604 is represented as 1001 0011 0111, which
is simply obtained by complementing each bit of the code (as with the 1°s complement of bi-
nary numbers).

. The excess-3 code has been used in some older computers because of its self-complement-
ing property. This is an unweighted code where each coded combination is obtained from the
corresponding binary value plus 3. Note that the BCD code is not self-complementing.

The §, 4, —2, 1 code is an example of assigning both positive and negative weights to a dec-
imal code. In this case, the bit combination 0110 is interpreted as a decimal 2 and is calculat-
edfrom8 X 0 +4 X { + (=2) X1+ (1) xX0=2.

Gray Code

- The output data of many physical systems produce quantities that are continuous. These data
must be converted into digital form before they are applied to a digital system. Continuous or
analog information is converted into digital form by means of an analog-to-digital converter.
It is sometimes convenient to use the Gray code shown in Table 1-6 to represent the digital
data when it is converted from analog data. The advantage of the Gray code over the straight

Table 1-6

Gray Code
Gray Decimal
code equivalent
0000 0
0001 1
0011 2
0010 3
0110 4
0t11 5
0101 6
0100 7
1100 8
1101 9
111¢ 10
1110 11
1010 12
1011 13
1001 14
1000 I5

22

Chapter 1 Binary Systems

binary number sequence is that only one bit in the code group changes when going from one
number to the next. For example, in going from 7 to 8, the Gray code changes from (0100 to
1100. Only the first bit changes from 0 to 1; the other three bits remain the same. When com-
paring this with binary numbers, the change from 7 to 8 will be from 0111 to 1000, which
causes all four bits to change values.

The Gray code is used in applications where the normal sequence of binary numbers may
produce an error or ambiguity during the transition from one number to the next. If binary
numbers are used, a change from 0111 to 1000 may produce an intermediate erroneous num-
ber 1001 if the rightmost bit takes longer to change in value than the other three bits. The Gray
code eliminates this problem since cnly one bit changes in value during any transition between
two numbers,

A typical application of the Gray code occurs when analog data are represented by contin-
uous change of a shaft position. The shaft is partitioned into segments, and each segment is as-
signed a number, If adjacent segments are made to corréspond with the Gray-code sequence,
ambiguity is eliminated when detection is sensed in the line that separates any two segments.

ASCIl Character Code

Many applications of digital computers require the handling of data not only of numbers, but
also of letters. For instance, an insurance company with thousands of policy holders will use
a computer to process its files. To represent the names and other pertinent information, it is nec-
essary to formulate a binary code for the letters of the alphabet. In addition, the same binary
code must represent numerals and special characters (such as $). An alphanumeric character
set is a set of elements that includes the 10 decimal digits, the 26 letters of the alphabet, and a
number of special characters. Such a set contains between 36 and 64 elements if only capital
letters are included, or between 64 and 128 elements if both. uppercase and lowercase letters
are included. In the first case, we need a hinary code of six bits, and in the second, we need a
binary code of seven bits. ’

The standard binary code for the alphanumeric characters is ASCI (American Standard
Code for Information Interchange). It uses seven bits to code 128 characters, as shown in
Table 1-7. The seven bits of the code are designated by b, through b7, with &, being the most-
significant bit. The letter A, for example, is represented in ASCII as 1000001 (cotumn 100,
row 0001). The ASCII code contains 94 graphic characters that can be printed and 34 non-
printing characters used for various control functions. The graphic characters consist of the 26
uppercase letters (A through Z}, the 26 lowercase letters (a'through z), the 10 numerals (0
through 9), and 32 special printable characters such as %, *, and §.

The 34 control characters are designated in the ASCII table with abbreviated names. They
are listed again below the table with their functional names. The control characters are used for
routing data and arranging the printed text into a prescribed format. There are three types of con-
trol characters: format effectors, information separators, and communication-control characters.
Format effectors are characters that control the layout of printing. They include the familiar
typewriter controls such as backspace (BS), horizontal tabulation (HT), and carriage return
(CR). Information separators are used to separate the data into divisions such as paragraphs and
pages. They include characters such as record separator (RS} and file separator (FS}. The com-
munication-control characters are useful during the transmission of text between remote ter-

Section 1-7 Binary Codes 23 -

Table 1-7
American Standard Code for Information Interchange (ASCH)
by bighs

byh: by by 000 001 010 o011 100 101 110 111
0000 NUL DLE SP ¢ @ P A P
0001 SOH DC1 ! 1 A Q a q
] STX DC2 ¥ 2 B R b r
0011 ETX DC3 # 3 C S ¢ 8
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 35 E u e u
0110 ACK SYN & 6 F v f v
0111 BEL ETB ‘ 7 ' G W g w
1000 BS CAN (8 H) X h X
1001 HT EM) 9 &f*’} Y i ¥
1010 LF SUB * : J Z j z
1011 VT ESC + : K f -k {
1100 FF FS , < L A 1 |
1101 CR GS - = M 1 m }
1110 SO RS . > N A n ~
1111 SI Us / ? 0] - 0 DEL

Conirol characters

NUL Null DLE Data-link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device conirol 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronous idle

BEL Bel ETB End-of-transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medinm

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

FF . Form feed ES File separator

CR Carriage return GS Group separator

50 Shift out RS Record separator

SI Shift in us Unit separator

SP Space DEL Delete

minals. Examples of communication-control characters are STX (start of text) and ETX (end

of text), which are used to frame a text message when transmitted through telephone wires.
ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a single unit

called a byre. Therefore, ASCH characters most often are stored one per byte. The extra bit is

e

s

Lo

i

En

24

Chapter 1 Binary Systems

sometimes used for other purposes, depending on the application. For example, some printers
recognize 8-bit ASCII characters with the most-significant bit set to 0. Additional 128 8-bit char-
acters with the most- SIgmﬁcant bit set to 1 are used for other symbols such as the Greek alphabet
or italic type font,

Error-Detecting Code

1-8

To detect errors in data communication and processing, an eighth bit is sometimes added to the
ASCII character to indicate its parity. A parity bit is an extra bit included with a message to make
the total number of 1's either even or odd. Consider the following two characters and their
even and odd parity:

 With even parity With odd parity
ASCITA = 1000001 01000001 - 11000001
ASCIIT = 1010100 11010100 01010100

In each case, we insert an extra bit in the leftrost position of the code to produce an even num-
ber of 1’s in the character for even parity or an odd number of 1’s in the character for odd
parity. In general, one or the other parity is adopted, with even parity being more common.

The parity bit is helpful in detecting errors during the transmission of information from one
location to another. This is handled by generating an even parity bit in the sending end for each
character, The 8-bit characters that include parity bits are transmitted to their destination. The
parity of each character is then checked in the receiving end. If the parity of the received char-
acter is not even, it means that at east one bit has changed value during the transmission. This
method detects one, three, or any odd combination of errors in each character that is transmit-
ted. An even combination of errors is undetected. Additional error detection codes may be
needed to take care of an even combination of errors.

What is done afiter an error is detected depends on the particular application. One possibil-
ity is to request retransmission of the message on the assumption that the error was random and
will not oceur again. Thus, if the receiver detects a parity error, it sends back the ASCII NAK
{negative acknowledge) control character consisting of an even parity eight bits 10010101. If
no error is detected, the receiver sends back an ACK (acknowledge) control character, 000001 10.
The sending end will respond to an NAK by transmitting the message again until the correct
parity is received. If, after a number of attempts, the transmission is still in error, a message can
be sent to the operator to check for malfunctions in the transmission path.

BINARY STORAGE AND REGISTERS

The binary information in a digital computer must have a physical existence in some infor-
mation-storage medium for storing individual bits. A binary cell is a device that possesses two
stable states and is capable of storing one bit of information. The input to the cell receives ex-
citation signals that set it to one of the two states. The output of the cell is a physical quantity
that distinguishes between theiwo states. The information stored in a cell is 1 when it is in one
stable state and O when in the other stable state.

Registers

Section 1-8 Binary Storage and Registers 25

A register 13 a group of binary cells. A register with » cells can store any discrete quantity of
information that contains » bits. The state of a register is an n-tuple number of 1°s and 0's, with
each bit designating the state of one cell in the register. The content of a register is a function
of the interpretation given to the information stored in it. Consider, for example, a 16-bit reg-
ister with the following content:

1100001111001001

A register with 16 cells can be in one of 2'° possible states. If one assumes that the content of
the register represents a binary integer, then the register can store any binary number from 0
to 2'° — 1. For the particular example shown, the content of the register is the binary equiva-
lent of the decimal number 50121. If it is assumed that the register stores alphanumeric char-
acters of an eight-bit code, the content of the register is any two meaningful characters, For the
ASCII code with an even parity placed in the eighth most-significant bit position, the register
contains the two characters C (left eight bits) and I (right eight bits). On the other hand., if one
interprets the content of the register to be four decimal digits represented by a four-bit code,
the content of the register is a four-digit decimal number. In the excess-3 code, the register
holds the decimal number 9096. The content of the register is meaningless in BCD because the
bit combination 1100 is not assigned to any decimal digit. From this example, it is clear that a
register can store discrete elements of information and that the same bit configuration may be
interpreted differently for different types of data.

Register Transfer

A digital system is characterized by ifs registers and the components that perform data pro-
cessing. A register transfer operation is a basic operation in digital systems. It consists of a trans-
fer of binary information from one set of registers into another set of registers. The transfer may
be direct from one register to another, or may pass through data processing circuits to perform
an operation. Figure 1-1 illustrates the transfer of the information among registers and demon-
strates pictorially the transfer of binary information from a keyboard into a register in the mem-
ory unit. The input unit is assumed to have a keyboard, a control circuit, and an input register.
Each time a key is struck, the control enters an equivalent eight-bit alphanumeric character
code into the input register. We shall assume that the code used is the ASCII code with an odd-
parity bit. The information from the input register is transferred into the eight least significant
cells of a processor register. After every transfer, the input register is cleared to enable the con-
trol to Insert a new eight-bit code when the keyboard is struck again. Each eight-bit character
transferred to the processor register is preceded by a shift of the previous character to the next
eight cells on its left. When a transfer of four characters is completed, the processor register is
full, and its contents are transferred into a memory register. The content stored in the memory
register shown in Fig. 1-1 came from the transfer of the characters “).” “0Q,” “H,” and “N” after
the four appropriate keys were struck. ‘

To process discrete quantities of information in binary form, a computer must be provided
with devices that hold the data to be processed and circuit elements that manipulate individ-
ual bits of information. The device most commonly used for holding data is a register.

26

Chapter 1- Binary Systems

MEMORY UNIT
J 0 H N

EMOTY

0100101001001 111100100011001110° Registor

PROCESSOR UNIT

| 8 cells |"—| B8 cells |<—| 8 cells |<—| 8 cells | g?gﬁgf:?r

INPUT UNIT Input

3 cells Register

CONTROL

Keyboard

S OIS)

FIGURE 1-1
Transfer of information with registers

Manipulation of binary variables is done by means of digital logic circuits. Figure 1-2 illustrates
the process of adding two 10-bit binary numbers. The memory unit, which normally consists
of millions of registers, is shown in the diagram with only three of its registers. The part of the
processor unit shown consists of three registers—R1, R2, and R3—together with digital logic
circuits that manipulate the bits of R1 and R2 and transfer into R3 a binary number equal to
their arithmetic sum. Memory registers store information and are incapable of processing the
two operands. However, the information stored in memory can be transferred to processor reg-
isters. Results obtained in processor registers can be transferred back into a memory register
for storage until needed again. The diagram shows the contents of two operands transferred from
two memory registers into R1 and R2. The digital logic circuits produce the sum, which is
transferred to register R3. The contents-of R3 can now be transferred back to one of the mem-
ory registers. :

The last two examples demonsirated the information-flow capabilities of a digital system in
a very simple manner. The registers of the system are the basic elements for storing and hold-
ing the binary information. Digital logic circuits process the binary information stored in the
registers. Digital logic circuits and registers are covered in Chapters 2 through 6. The memo-
ry unit is explained in Chapter 7. The register transfer level for descrlbmg and designing dig-
ital systems is covered in Chapter 8.

S

i3

Section 1-9 Binary Logic 27

MEMORY UNIT

0000000000 Sum
Operand 1

0011100001
Operand|2

00010G0010

> 10001000010 |R1

Y

Digital Logic

circuits for |— 0100100011 {R3

binary addition
A

0011100001 [R2

PROCESSOR UNIT

FIGURE 1-2
Example of binary information processing

BINARY LOGIC

Binary logic deals with variables that take on two discrete values and operations that assume
logical meaning. The two values the variables take may be called by different names (true and
Jalse, yes and no, etc.), but for our purpose, it is convenient to think in terms of bits and assign
the values of 1 and 0. The binary logic introduced in this section is equivalent to an algebra called
Boolean algebra. The formal presentation of Boolean algebra is covered in more detail in Chap-
ter 2. The purpose of this section is to introduce Boolean algebra in a heuristic manner and re-
late it to digital logic circuits and binary signals.

Definition of Binary Logic

Binary logic consists of binary variables and logical operations. The variables are designated by
letters of the alphabet such as A, B, C, x, v, z, etc., with each variable having two and only two
distinct possible values: I and 0. There are three basic logical operations: AND, OR, and NOT.

28

Chapter 1 Binary Systems

1. AND: This operation is represented by a dot or by the absence of an operator. For example,
x+y = zorxy = zisread “x AND v is equal to z.” The logical operation AND is inter-
preted to mean that z = Tifand only if x = 1 and y = 1; otherwise z = 0. (Remember
that x, y, and z are binary variables and can be equal either to 1 or 0, and nothing else.)

2. OR: This operation is represented by a plus sign. For example, x + y = z is read “x
OR yisequal to z,” meaning thatz = 1ifx = lorify = lorifbothx = landy = 1.
Ifbothx = Candy = 0, thenz = 0.

3. NOT: This operation is represented by a prime (sometimes by an overbar). For exam-
ple, x° = z(orx = z)isread “not xis equal to z,” meaning that z is what x i3 not. In other
words, if x = 1, thenz = 0;butif x = 0, then z = 1. The NOT operation is also referred
to as the complement operation, since it changesa 1 to 0and a O to 1.

Binary logic resembles binary arithmetic, and the operations AND and OR have similari-
ties to multiplication and addition, respectively, In fact, the symbols used for AND and OR are
the same as those used for muliiplication and addition. However, binary logic should not be con-
fused with binary arithmetic. One should realize that an arithmetic variable designates a num-
ber that may consist of many digits. A logic variable is always either 1 or 0. For example, in
binary arithmetic, we have 1 + 1 = 10 (read: “one plus one is equal to 2"}, whereas in bina-
ry logic, we have | -+ 1 = 1 (read: “one OR one is equal to one”).

For each combination of the values of x and y, there is a value of z specified by the deﬁm-
tion of the logical operation. These definitions may be listed in a compact form using truth fa-
bles. A truth table is a table of all possible combinations of the variables showing the relation
between the values that the variables may take and the result of the operation. The truth tables
for the operations AND and OR with variables x and y are obtained by listing all possible val-
ues that the variables may have when combined in pairs. The result of the operation for each
combination is then listed in a separate row. The truth tables for AND, OR, and NOT are list-
ed in Table 1-8. These tables clearly demonstrate the definition of the operations.

Logic Gates

Logic gates are electronic circuits that operate on one or more input signals to produce an out-
put signal. Electrical signals such as voltages or currents exist throughout a digital system in

Table 1-8
Truth Tables of Logical Operations

AND

Section 1-9 Binary Logic 29

either of two recognizable values. Voltage-operated circuits respond to two separate voltage lev-
els that represent a binary variable equal to logic 1 or logic 0. For example, a particular digi-
tal system may define logic 0 as a signal equal to 0 volt and logic 1 as a signal equal to 4 volts.
In practice, each voltage level has an acceptable range as shown in Fig. 1-3. The input termi-
nals of digital circuits accept binary signals within the allowable range and respond at the out-
put terminals with binary signals that fall within the specified range. The intermediate region
between the allowed regions is crossed only during state transition. Any desired information
for computing or control can be operated on by passing binary signals through various com-
binations of logic gates with each signal representing a particular binary variable.

The graphic symbols used to designate the three types of gates are shown in Fig. 1-4. The
gates arc blocks of hardware that produce the equivalent of logic 1 or logic 0 output signals if
input logic requirements are satisfied. The input signals x and y in the AND and OR gates may
exist in one of four possible states: 00, 10, 11, or 01. These input signals are shown in Fig. 1-5
together with the corresponding cutput signal for each gate. The timing diagrams illustrate the
response of cach gate to the four input signal combinations. The horizontal axis of the timing

Volis

Range
for logic-1
Transition occurs
between these limits
Range
for logic-0

FIGURE 1-3
Example of binary signals

T \e=xvy X:Dﬂ'y
X x'
y— _ y —DO_

(a) Two-input AND gate (b) Two-input OR gaic (c) NOT gate or inverter

FIGURE 1-4
Symbols for digital logic circuits

30

Chapter 1 Binary Systems

AND:x 'y 1] 0 1 0 0

OR:x +y 0 1 1 1 10

NOT: x 1 0 0 1 1

FIGURE 1-5 .
Input-output signals for gates

A— \F:ABC G=A+B+C+D

B
c—L _/
(a) Three-input AND gate (b) Four-input OR gate

FIGURE 1-6
Gates with multiple inputs

DO w e

diagram represents time and the vertical axis shows the signal as it changes between the two
possible voltage levels. The low level represents logic 0 and the high level represents logic 1.
The AND gate responds with a logic 1 output signal when both input signals are logic 1. The
OR gate responds with logic 1 output signal if any input signal is logic 1. The NOT gate is
commonly referred to as an inverter. The reason for this name is apparent from the signal re-
sponse in the timing diagram, where it is shown that the output signal inverts the logic sense
of the input signal.

AND and OR gates may have more than two inputs. An AND gate with three inputs and an
OR gate with four inputs are shown in Fig. 1-6. The three-input AND gate responds with logic
1 outpat if all three inputs are logic 1. The output produces logic 0 if any input is logic 0. The
four-input OR gate responds with logic 1 if any input is logic 1; its output becomes logic 0 only
when all inputs are logic 0.

PROBLEMS

- 1-1 List the octal and hexadecimal numbers from 16 to 32. Using A and B for the last two digits, list
the numbers from 10 to 26 in base 12,

+ 1-2 What is the exact number of bytes in a system that contains (a) 32K byte, (b} 64M bytes, and
(c) 6.4G byte?

1-3 What is the largest binary number that can be expressed with 12 bits? What is the equivalent dec-
imal and hexadecimal?

1-4 Convert the following numbers with the indicated bases to decimal; (4310);, and (198);,.

Problems 371

+1-5 Determine the base of the numbers in each case for the following operations to be correct:
— (a) 14/2 = 5;(b) 54/4 = 13, (c) 24 + 17 = 40, '

1-6 The solution to the quadratic equation x> — 1lx + 22 = Oisx = 3and x = 6. What is the base
of the numbers?

1.7 Express the following numbers in decimal: (10110.0101),, {16.5) 4, and (26.24),.

+1-8 Convert the following binary numbers to hexadecimal and to decimal: {a) 1.11010, (b) 1110.10.
Explain why the decimal answer in (b) is 8 times that of (a).

1-9 Convert the hexadecimal number 68BE to binary and then from binary convert it to octal.

1-10 Convert the decimal number 343 to binary in two ways: (a) convert directly to binary; (b) con-
vert first to hexadecimal, then from hexadecimal to binary. Which methed is faster?

T-T11 Do the following conversion problems:
(a) Convert decimat 34.4375 to binary.
(b} Calculate the binary equivalent of 1/3 gut to 8 places. Then convert from binary to decimal.
How close 1s the result to 1/3? .
(c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal. Is the
answer the same?

1-12 Add and multiply the following numbers without converting them to decimal.
(a} Binary numbers 1011 and 101.
(b) Hexadecimal numbers 2F and 34,

T-13 Perform the following division in binary: 1011111 + 101,

1-14 Find the 9's- and the 10°s-complement of the following decimal numbers:
. (a) 98127634 (b) 72049900 (c) 10000000 (d) 00000000.

1-15 (a) Find the 16’s-complement of AF3B.
(b) Convert AF3B to binary.
(c) Find the 2’s-complement of the result in (b). -
{d) Convert the answer in (c) to hexadecimal and compare with the answer in (a).

-1-16 Obtain the 1’s and 2’s complements of the following binary numbers:
(a) 11101010 (by 01111110 (c) 00000001 {dy 10000000 (e) 00000000,

1-17 Perform subtraction on the following unsigned numbers using the 10’s-complement of the sub-
trahend. Where the result should be negative, 10's complement it and affix a minus sign. Verify
YOUI answers.
(a) 7188 — 3049 (b} 150 — 2100 (c) 2997 — 7992 (d) 1321 — 375

. 1-18 Perform subtraction on the following unsigned binary numbers using the 2’s-complement of the
subtrahend. Where the result should be negative, 2’s complement it and affix a minus sign.
(a) 11011 — 1100 (by 110100 — 10101 (c) 1011 — 110000 (d) 101010 — 101011

1-19 The following decimal numbers are shown in sign-magnitude form: +9826 and +3801. Convert
them to signed 10"s-complement form and perform the following operations; (Note that the sum
is +10627 and requires six digits). _ :

{a) (+9826) + (+801) (b) (+9826) + (—801)
{c) (—9826) + (+801) (d) (—9826) + (—801)

T1-20 Convert decimal +61 and +27 to binary using the signed-2’s complement representation and

enough digits to accomodate the numbers. Then perform the binary equivalent of {(+27) + (—61),

{(—27) + (+61) and (—27) + (—61). Convert the answers back to decimal and verify that they
are correct. :

Ic Gates

and Log

S
-
0
O
Ao)
< .
-
S
S
o
O
a

BASIC DEFINITIONS

2-1

th a set of

i

may be defined w
A set of elements

2

cal system,

tive mathermati
and a number of unproved ax

ike any other deduc

1

]

Boolean algebra

elements

tulates
and x and v are cert

ioms or pos

ts hay

a set of operators

]

b-
t an el-

a1 o

il

is a set
and y ¢ § denotes that y

Ifs
S

Ing a common property.

ion of objec
then x € § denotes that x

is any collect

18 No

>

er of the set,

b
th a denumerable number of elements

18 a mem

]

jects

ed by braces

is specifi
and 4. A b
f elements from S a un

i

the elements of set A are the numbers 1

A set w
4}
defined on a set S of element

element from §

ement of §

nary operator

3-:

>

2

air o

>

, 1LE.,

133

2

A={,

ique

inary op-

to each p

igns

is a rule that ass
i
ing ¢

S

b
However,

isa

We say that =

b=rc
and also

[4)

ir (a,

ion
when the rule finds c e S

from the pa

der the relat

cons

(]

As an example
fies a rule for find

fa, b,ces.

i

)

b

t speci
inary opera

i

f

i

tab

erator

,bel§,

fa

i

The postulates of a mathemat

tor
bie to deduce the rules

18 o

15 pos-

it

ich

ons from wh
The most common postulates

ic assumpti
f the system

system form the bas

1

1ca

theorems

125 O

tructures are

and properti

C §i

il

3

81

algebrai

arious
Aset S

used to formulate v

r of elements

f, for every pai

inary operator i
ing a un

threspecttoab

i

losed w
Inary operator spec

IscC

Closure

1

. For exam-

lement of S

iquee
losed w

1n:

fies a rule for obtai

1

,theb
the set of natural numbers N

of §
ple

inary

th respéct to the b

i

is¢c

}

101

4,.
tic add.

=

(

DeN
*onasetS

737

2

£l

= {1

+) by the rules of a

>

b e N we obtain a

¥

ince for any a

8

3

iti

The set of natural numbers
) by the rules of

thme

+ 5
minns

ile (

inary operator

I1

(

N by the operat

operator plus

is not closed with
tic subtraction because

101 a

unique ¢ €

10

ithme

arlr

binary operator

respect to the

2-3=

, wh

JeN

il

dz2

0
ive law.

=)

ve whenever

1aty

d to be associ

ai

18 5

Ab

1

Associa

2

wz)forall x, y,z,e8

:x*(y

*y) %z

(x

33

ik

>

L

7
o
w
-
o

v

i

0
.

iz
W

.&M\M
.

A

=
i

e
T
o

5 NWM%&MW%\ a\%w\\,)
.

.

.
N@x\
@\%@m\&%
. o

.

%%&m .

ot

T
Wi m

L
.

.

&.WWVM%@ *Mr&nﬂtn s

«_\&\ .?hw 7 ..».Wm».u_ o ‘.W%A\N ;
.
m\% ?Q\«.‘m\@b.ﬂ_ e %w@um%ﬁwﬁ, :
el e
o o

.. @W{\a

7
i
] -
W\w%a“%.v

Chapter 2 Boolean Algebra and Logic Gates

3. Commutative law. A binary operator = on a set § is said to be commutative whenever
xxy=yxxforallx,yel§
4. Identity element. A set S is said to have an identity element with respect to a binary op-
eration = on S if there exists an element ¢ € § with the property
exx=xwe = xforeveryxe§
Example: The element 0 is an identity element with respect to the operation + on the set
of integers [= {...,—3,—2,-1,0,1,2,3,... }, since
x+0=0+x=xforanyxel

The set of natural numbers, N, has no identity element since 0 is excluded from the set.
5. Inverse. A set S having the identity element ¢ with respect to a binary operator is said
to have an inverse whenever, for every x e S, there exists an element y € § such that
xw¥y=¢
Example: In the set of integers, 1, with e = 0, the inverse of an element a is (—a)
since a + (—a) = 0.
6. Distributive law. If = and - are two binary operators on a set §, * is said to be distribu-
tive over - whenever

xu(y-z) = (xxy) (22
An example of an algebraic structure is a field. A field is a set of elements, together with two

binary operators, each having properties 1 through 5, and both operators combined to give
property 6. The set of real numbers, together with the binary operators -+ and -, form the field
of real numbers. The field of real numbers is the basis for arithmetic and ordinary algebra. The
operators and postulates have the following meanings:

The binary operator + defines addition.

The additive identity is 0.

The additive inverse defines subtraction.

The binary operator + defines multiplication.

The multiplicative identity is 1.

The multiplicative inverse of @ = 1/a defines division, ie.,a * 1 Ja=1.

The only distributive law applicable is that of - over +:

a(b+c)=1(a"b)+ (a-c)

AXIOMATIC DEFINITION
OF BOOLEAN ALGEBRA

In 1854 George Boole introduced a systematic treatment of logic and developed for this pur-
pose an algebraic system now called Boolean algebra. In 1938 C. E. Shannon introduced a
two-valued Boolean algebra called switching algebra, in which he demonstrated that the prop-

Section 2-2 Axiomatic Definition of Boolean Algebra 35

erties of bistable electrical switching circuits can be represented by this algebra. For the for-
mal definition of Boolean algebra, we shall employ the postulates formulated by E. V. Hunt-
ington in 1904. _

Boolean algebra is an algebraic structure defined by a set of elements, B, together with two
binary operators, + and -, provided that the following (Huntington) postulates are satisfied:

1. (a) Closure with respect to the operator +.
(b) Closure with respect to the operator -.

2. (a) An identity element with respect to +, designated by Qi x + 0 =0+ x = x.
{(b) An identity element with respect to », designatedby 1:x-1 =1-x = x.
3. (a) Commutative with respectto+:x +y = y + x.
(b) Commutative with respectio -1 x* v = y - x.
4. (a) -is distributive over +: x + {y + z) = (x-y) + {(x - z).
(b) +is distrbutiveover - :x + (y+z) = {x + ¥) - (x + 2).
5. For every element x € B, there exists an element x' e B (called the complement of x)
suchthat(a)x + ' = land (b) x - x" = O, '

6. There exists at least two elements x, y € B such that x # y.

Comparing Boolean algebra with arithmetic and ordinary.algebra (the field of real num-
bers), we note the following differences:

1. Huntington postulates do not include the associative law. However, this law holds for
~ Boolean algebra and can be derived (for both operators) from the other postulates.

2. The distributive law of + over -, ie, x + (y+z) = (x +y) - (x + z), is valid for
Boolean algebra, but not for ordinary algebra. ‘

3. Boolean algebra does not have additive or multiplicative inverses; therefore, there are
no subtraction or division operations.

4. Postulate 5 defines an operator called complement that is not available in ordinary algebra.

5. Ordinary algebra deals with the real numbers, which consitute an infinite set of elements.
Boolean algebra deals with the as yet undefined set of elements, B, but in the two-val-
ued Boolean algebra defined next (and of interest in our subsequent use of this algebra),
B is defined as a set with only two elements, 0 and 1.

Boolean algebra resembles ordinary algebra in some respects. The choice of symbols + and
+ is intentional to facilifaie Boolean algebraic manipulations by persons already familiar with
ordinary algebra. Although one can use some knowledge from ordinary algebra to deal with
Boolean algebra, the beginner must be careful not to substitute the rules of ordinary algebra
where they are not applicable. _

1t is important to distinguish between the elements of the set of an algebraic structure and
the variables of an algebraic system. For example, the elements of the field of real numbers are
numbers, whereas variables such as a, b, ¢, etc., used in ordinary algebra, are symbols that
stand for real numbers. Similariy, in Boolean algebra, one defines the elements of the set B, and
variables such as x, y, and z are merely symbols that represent the elements. At this point, it is
important to realize that in order to have a Boolean algebra, one must show:

36 Chapter 2 Boolean Algebra and Logic Gates

1. the elements of the set B,
2. the rules of operation for the two binary operators, and

3. that the set of elements, B, together with the two operators, satisfies the six Huntington
postulates.

One can formulate many Boolean algebras, depending on the choice of elements of B and
the rules of operation. In our subsequent work, we deal only with a two-valliled.BO()@ean alge-
bra, i.c., one with only two elements. Two-valued Boolean algebra has gpph‘catlons in slet t?e—
ory (the algebra of classes) and in propositional logic. Our interest here is with the application

of Boolean algebra to gate-type circuits.

‘Two-Valued Boolean Algebra

A two-valued Boolean algebra is defined on a set of two elements, B = {0, 1}, with rules for
the two binary operators -+ and + as shown in the following operator tables (the rule for the

complement operator is for verification of postulate 5):

L]
-
S
>

===
—_ 0 = O |

—_— 0 D
—_ O o O
—_—— oo
—_ e =
e
==

These rules are exactly the same as the AND, OR, and NOT operations, respectively, defined
in Table 1-8. We must now show that the Huntington postulates are valid for the set B = {0, 1}
and the two binary operators defined before.

1. Closure is obvious from the tables since the result of each operation is either 1 or 0

and 1,0 B.

2. From the tables, we see that
(& 0+0=20 0+1=1+0=1;
by 1-1=1 1-0=0-1=0

This establishes the two identity elements; 0 for + and 1 for -, as defined by postulate 2.
3. The commutative laws are obvious from the symmetry of the binary operator tables.

4. (a) The distributive law x - (y + z) = (x+y) + (x2) can be shown io hold true from
the operator tables by forming a truth table of all possible values of X, ¥, and z. For
each combination, we derive x - (y + z) and show that the value is the same as

(x-y) + {x-2z)

Section 2-3 Basic Theorems and Properties of Boolean Algebra 37
X y z ytz | x-(y+2) X'y | x-z (x-p+(x-2)
0o 0 0 0 0 0 0 ¢
0 0 1 1 0] 0 0 ¢
0 1 0O 1 ¢ 0 0 0
0 1 i 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

{(b) The distributive law of + over + can be shown to hold true by means of a truth table
stmilar to the one above.

5. From the complement table, it is easily shown that
@ax+x=1Lsince0+0=0+1=landl1 +1"=1+0=1.
(b) x-x"=0,8ince 0-0" =0+1=0and 1-1"=1-0 =0, which verifies postu-
late 5.

6. Postulate 6 is satistied because the two-valued Boolean algebra has two distinct ele-
ments, 1 and Q, with 1 # 0.

We have just established a two-valued Boolean algebra having a set of two elements, 1 and
0, two binary operators with operation rules equivalent to the AND and OR operations, and a
complement operator equivalent to the NOT operator. Thus, Boolean algebra has been defined
in a formal mathematical manner and has been shown to be equivalent to the binary logic pre-
sented heuristically in Section 1-9. The heuristic presentation is helpful in understanding the
application of Boolean algebra to gate-type circuits. The formal presentation is necessary for
developing the theorems and properties of the algebraic system. The two-valued Boolean al-
gebra defined in this section is also called “switching algebra” by engineers. To emphasize the
similarities between two-valued Boolean algebra and other binary systems, this algebra was
called “binary logic” in Section 1-9. From here on, we shall drop the adjective “two-valued”
from Boolean algebra in subsequent discussions.

2-3 BASIC THEOREMS AND PROPERTIES
OF BOOLEAN ALGEBRA

Duality

The Huntington postulates have been listed in pairs and designated by part () and part (b). One
part may be obtained from the other if the binary operators and the identity elements are in-
terchanged. This important property of Boolean algebra is called the duality principle. It states
that every algebraic expression deducible from the postulates of Boolean algebra remains valid
if the operators and identity elements are interchanged. In a two-valued Boolean algebra, the
identity elements and the elements of the set, B, are the same: 1 and 0. The duality principle

38

Chapter 2 Boolean Algebra and Logic Gates

has many applications. If the dual of an algebraic expression is desired, we simply interchange
OR and AND operators and replace 1°s by 0’s and 0’s by 1’s.

Basic Theorems

Table 2-1 lists six theorems of Boolean algebra and four of its postulates. The notation is sim-
plified by omitting the binary operator whenever this does not lead to confusion. The theorems
and postulates listed are the most basic relationships in Boolean algebra. The theorems, like the
postulates, are listed in pairs; each relation is the dual of the one paired with it. The postulates
are basic axioms of the algebraic structure and need no proof. The theorems must be proven
from the postulates. The proofs of the theorems with one variable are presented below. At the
right is listed the number of the postulae that justifies each step of the proof.

THEOREM 1(a): x + x = x.

x+x=(x+x)-1 by posiulate: 2(b)
= (x + x)(x + x) 5(a)
=x+ xx' 4(b)
=x+0 5(b)

R : 2(a)

THEOREM 1(b): x'x=x.

xrx=xx+0 by postulate: 2(a)
= xx + xx) 3(b)
= x(x + x) - 4@
=x-1 . 5(a)
=x 2(b)
Table 2-1
Postulates and Theorems of Boolean Algebra
Postulate2 (a) x+0=x o xel=x
Postulate 5 - (a) x+x¥ =1 (b) xxX=0
Theorem I ' (@ xtEx=x) X x=x
Theorem 2 (a) x+1=1 (b) x-0=0
Theorem 3, involution () =x
Postulate 3, commutative (a) x+y=y+tx . (b) Xy = yx
Theorem 4, associative (@ x++z)=(x+y +z {b) x(yz) = {xy)z
Postulate 4, distributive (a) x(y +z)=xy -+ x2 by x+yz=(x+¥)(x+2)
Theorem 5, DeMorgan (@) (x +y) =y (b) (xy) =x +%¥

Theorem 6, absorption (@ xtxy==x (0) x(x +y) = x

Section 2-3 Basic Theorems and Properties of Boolean Algebra 39

. t?o::je tl;at ftheore(rn) 1 lgb) is the dual of theorem 1(a) and that each step of the proof in part (b)
¢ dual of part (a}). Any dual t (imi i i

e pair-p y dual theorem can be similarly derived from the proof of its corre-

THEOREM 2(a): x + 1= 1.

x+I=1(x+1) by postulate: 2(b)
: ={x+x)(x+1) 5(a)
=x+x-1 d(b)
=x+ x 2(b)

=1 5(a)

THEOREM 2(b): x -0 = 0Oby duality.

THEOREM 3: (x'}' = x. From postulate 5, we have x + x' = land x - x’ = 0, which de-

fines the complement of x. The cor i i
: . mplement of x" is x and is also (x")". Therefore, si
plement is unique, we have that (x')’ = x.) sinee the comr

_ The theorems involving two or three variables may be proven algebraically from the postulates

and the theorems that have already been proven. Take, for example, the absorption theorem.

THEOREM 6(a): x + xy = x.

xtay=x-1+uxy by postulate: 2(b)
= x{1 + y) 4(a)
=x(y+1) - 3(a)
=x-1 2(a)
=x . 2(b)

THEOREM 6(b): x{x + y)} = x by duality.

t b;[‘he theorgms of Boolean aI gebra can be shown to hold true by means of truth tables. In truth
ables, both SL_des of.the relation are checked to yield identical results for all possible combi-
nations of variables involved. The following truth table verifies the first absorption theorem

X |y Xy | x+xy
0t 0 G 0
0 1 0 0
1 0 0 13
1 1 4 1

T e "’ — .

BOOLEAN FUNCTIONS

Chapter 2 Boolean Algebra and Logic Gates

The algebraic proofs of the associative law and DeMorgan’s theorem are long and will not be
shown here. However, their validity is easily shown with truth tables. For example, the truth table
for the first DeMorgan’s theorem (x +y) = x'y’ is shown below.

X y xty ‘ (x+y X |y Xy
0 0 0 1 1 1 1
0 1 1 0 1 {0 0
1 0 1 0 01 0
1 1 1 0 0 0 0

Operator Precedence

"The operator precedence for evaluating Boolean expressions is (1) parentheses, (2) NOT, (3)
AND, and (4) OR. In other words, the expression inside the parentheses must be evaluated be-
fore all other operations. The next operation that holds precedence is the complement, then fol-
lows the AND, and finally the OR. As an example, consider the truth table for DeMorgan’s
theorem. The left side of the expression is {x + y)'. Therefore, the expression inside the paren-
theses is evaluated first and the result then complemented, The right side of the expressionis x'y".
Therefore, the complement of x and the complement of y are both evatuated first and the result
is then ANDed. Note that in ordinary arithmetic, the same precedence holds (except for the com-
plement) when muliiplication and addition are replaced by AND and OR, respectively.

Boolean algebra is an algebra that deals with binary variables and logic operations. A Boolean
function described by an algebraic expression consists of binary variables, the constants 0 and

- 1, and the logic operation symbols. For a given value of the binary variables, the function can
be equal to either 1 or 0. Consider as an example the following Boolean function:

FF=x+Yz

The function F, is equal to 1 if x is equal to 1 or if both y' and z are equal to 1. F,isequalto 0
otherwise. The complement operation dictates that when ¥y = 1 theny = 0. Therefore, we
cansay that F; = 1ifx = L or ify=0andz = 1A Boolean function expresses the logical
relationship between binary variables. It is evaluated by determining the binary value of the ex-
pression for all possible values of the variables.

A Boolean function can be represented in a truth table. A truth table is a list of combinations
of 1’s and 0’s assigned to the binary variables and a column that shows the value of the func-
tion for each binary combination. The number of rows in the truth table is 27, where 7 is the
pumber of variables in the function. The binary combinations for the truth table are obtained
from the binary numbers by counting from O through 2% — 1. Table 2-2 shows the truth table

for the function F,. There are eight possible binary combinations for assigning bits to the three

variables x, y, and z. The column labeled F; contains either O or 1 for each of these combina-

Section 2-4 ~ Boolean Functions 41

Table 2-2

Truth Tables for F; and F,
X Y z F F,
¢ 0 0 0 0
0 0 1 1 1
0 1 0 0 0
0 i 1 0 1
1 0 0 1 1
1 0 1 1 1
1 1 1] 1 0
1 1 1 1 o

=
e

y :
z Dc)
FIGURE 2-1 |

Gate implementation of F; = x + y'z

ions. .
‘ioogsoﬂ’l;l;: ‘:11:;3 shows that the function is equal to 1 when x = 1 or when yz = 01. It is equal
A Boolean function can be transformed from an algebraic expression into a circuit diagram
composeq of logic gates. The fogic-circuit diagram for F, is shown in Fig. 2-1. There is a%l i
verter for input y to generate the complement. There is an AND gate for the; terrﬁ y'zand an (IJIIIQ
gate that cor.nbines the two terms. In logic-circuit diagrams, the variables of the function are
taken as tl‘le inputs of the circuit and the binary variable F; is taken as the output of the circuit
There is only one way that a Boolean function can be represented in a truth table Howev—.
er, when the ﬁ}nction is in algebraic form, it can be expressed in a variety of ways .The ar-
F1cular expression used to designate the function will also dictate the interconnectio;l of Fz)ltes
in the logic (-311'-01,111: diagram. By manipulating a Boolean expression according to Booleagn al-
gebra rules, it is sometimes possible to obtain a simpler expression for the same function and -

thus reduce the number of gates in the circui i
it and the number of inpuis to th i
for example the following Boolean function: ’ © gate. Consider

E, = xvz + x'yvz +‘xy'

The implementation of this function with logic gates is shown in Fig. 2-2(a). lnput variables x
and_y are complem.ented with inverters to obtain x* and y'. The three terms in the expression
are implemented with three AND gates. The OR gate forms the logical OR of the three terms
The truth table for F, is listed in Table 2-2. The function is equal to 1 when xyz = 001 or 011.

e
[—

(a}) Fy=x'y'z+x'yz+xy

—

Ju

L) FB=xy+xz

FIGURE 2-2 ‘
Implementation of Boolean function F, with gates

or when xy = 10 (irrespective of the value of 7); it is equal to 0 otherwise. This produces four

s and four 0’s for F;. ' _ - y
Now consider the possible simplification of the function by applying some of the identities

of Boolean algebra: '

F=xyz+xyz+xy=xz(y +y)+x= x'z + xy |
The function is reduced to only two terms and can be implemented W-'lth gates z;)s iﬁﬁnﬁ
Fig. 2-2(b). It is obvious that the circuit in (b) is simpler than the one in (a), y}ft to o Ir)esﬂ
ment the same function. It is possible to verify by means of a truth talile that ¢ (; WO 3 =
sions are equivalent. The simplified expression is f?qual to 1 when xz = Oldor wthen ;cryn . m!th
This produces the same four 1’s in the eruth table. Since bot_h expression produce et: 8 me it
table, they are said to be equivalent. Therefore, the.two circuits -have the sanﬁe output sforal
possible input binary combinations of the three variables. Each implement the ssfne{) i entica)
function but the one with fewer gates and less inputs to gates would be preferable bec
requires less wires and components.

Algebraic Manipulation

When a Boolean expression is implemented with logic gates, each term r.equires a gate anld
cach variable within the term designates an input to the gate. We de.ﬁne a lz‘remt tobea 31;15 e
yariable within a term that may be complemented or not. The function-of Fig. 2-2(a) has three

EXAMPLE 2-1

Section 2-4 Boolean Functions 43 -

terms and eight literals, the one in Fig. 2-2(b) has two terms and four literals. By reducing the
number of terms, the number of literals, or both in a Boolean expression, it is often possible to
obtain a simpler circuit. The manipulation of Boolean algebra consists mostly of reducing an
expression for the purpose of obtaining a simpler circuit. Functions of up to five variables can
be simplified by the map method described in the next chapter. For complex Boolean functions,
digital designers use computer minimization programs. The only manual méthod available is
a cut—and~try procedure employing the basic relations and other manipulations techniques that

become familiar with use. The following examples illustrate the algebraic manipulation of
Boolean algebra.

Sinﬁplify the following Boolean functions to & minimum number of literals.

Lx(x+y)=xx+xy=0+xy=xy
Zxtxy=x+)xty)=lx+y)=x+yw
Bx+y)x+y)=x+axytxy+y=x(1+y+y)=rx
4. xy + X'z + yz =xy + x'z + yz{x + ')

=xy + x'z+ xyz + x'yz

=xy(l+ 2} + Fz(1 +)

= xy + x'z
5. {x +y)(x" + z2)(y + z) = (x +)(x" + z) by duality from function 4.

Functions 1 and 2 are the dual of each other and use dual expressions in corresponding steps.
An easier way to simplify function 3 is by means of postulate 4(b) from Table 2-1:
(x + ¥)(x +y) = x -+ y¥ = x. The fourth function illustrates the fact that an increase in
the number of literals sometimes leads to a final simpler expression. Function 5 is not minimized
directly, but can be derived from the dual of the steps used to derive function 4. Functions 4
and 5 are known as the consensus theorem.

Complement of a Function

The complement of a function F is F” and is obtained from an interchange of 0’s for 1’s and
I's for 0’s in the value of F. The complement of a function may be derived algebraically through
DeMorgan’s theorem. This pair of theorems is listed in Table 2-1 for two variables. DeMorgan’s
theorems can be extended to three or more variables. The three-variable form of the first
DeMorgan’s theorem is derived as follows, using postulates and theorerms listed in Table 2-1:

(A+B+CY=(A+x) letB+ C =x
= A'x' by theorem 5(a) (DeMorgan)
= A(B+CY substitute B + € = x
= A(B'C") by theorem 5(a) (DeMorgan)

= A'B'C' by theorem 4(b) (associative).

4 Chapter 2 Boolean Algebra and Logic Gates

. . ar d
DeMorgan’s theorems for any number of variables resemble in form th.e two varlaZI.e cz;s;iz;na_
can be derived by successive substitutions similar to the method used in the preceding

tion. These theorems can be generalized as follows:
(A+B+C+D+...+ F) = ABCD ... F
(ABCD...F) = A"+ B+C+D+.. +F
es that the complement of a function is ob-

i f DeMorgan’s theorem stat :
T e anaing ¥ d complementing each literal.

tained by interchanging AND and OR operators an

= x'yz + x'y'zand B, = x(y'z' + yz). By apply-

Find the complement of the functipns F
ing DeMorgan’s theorem as many times a |
Fi= (x'yz + xyz) = (y2) (ayz) = (x4 z!)Ex +fy +7')
Fy = lxlyz +y)l = o + (7 +y2) =X+ () 02)
X+ (y+))

s necessary, the complements are obtained as follows: .

Il

A simpler procedure for deriving the complement of a funciion is to take the dual of the func-

tion and complement each Literal. This method follows from the generalized DeMor]%an sd tg;
orem. Remember that the dual of a function is obtained from the interchange of AND an

operators and 1’s and O0’s.

of Example 2-2 by taking their duals and com-

Find the complement of the functions £ and F,
plementing each literal.

1. F, = x'y7 + xyz
The dual of Fis (x' +y + 2)(x" + ¥ + Z). , ,
Complement each literal: (x + y* + Hx+y+)=Fu

2. By = x(¥'7 + yz)-
The dual of Fyis x + (v + &)y + 2)- ’
Complement each literal: x' + (y +2)(y +7) = Fa. a

2.5 CANONICAL AND STANDARD FORMS

Minterms and Maxterms |
s pormal form (x) or in its complement form (x"}. Now

A binary variable may appear either in it . . ' .
consiggr(two binary variabes x and y combined with an AND operatrxon. S'mce each van;iblfe ﬂr:;z
appear in either form, there are four possible combinations: X'y’, X'y, X¥', and xy. Each o

Section 2-5 Canonical and Standard Forms 45

Table 2-3
Minterms and Maxterms for Three Binary Variables
Minterms Maxterms

X ¥ z Term Designation Term Designation
0 0 0 Xy nly x+y+z M,
0 0 1 x'y'z m x+y+ 7 M,
0 1 0 x'yz' iy x+y +z M,
0 1] x'yz ms x+y +z M
1 0 U] xy'z M, X +y+z M,
1 0 1 xy'z My ¥ +y+ 7 M;
1 1 0 xyz’ g Xy 4z My
1 1 1 xyz e X +y 4+ M,

four AND terms is called a minterm, or a standard product. In a similar manner, » variables can
be combined to form 2" minterms. The 2" different minterms may be determined by a method
similar to the one shown in Table 2-3 for three variables. The binary numbers from 0 to 2" — 1

.are listed under the » variables. Each minterm is obtained from an AND term of the n variables,

with each variable being primed if the corresponding bit of the binary number is a 0 and un-
primed if a 1. A symbol for each minterm is also shown in the table and is of the form my,
where j denotes the decimal equivalent of the binary number of the minterm designated.

In a similar fashion, » variables forming an OR term, with each variable being primed or un-
priméd, provide 27 possible combinations, called maxterms, or standard sums. The ei ght max-
terms for three variables, together with their symbolic designation, are listed in Table 2-3. Any
2" maxterms for n variables may be determined similarly. Each maxterm is obtained from an
OR term of the » variables, with each variable being unprimed if the corresponding bit is a 0
and primed if a 1. Note that each maxterm is the complement of its corresponding minterm, and
vice versa.

A Boolean function can be expressed algebraically from a given truth table by forming a
minterm for each combination of the variables that produces a 1 in the function, and then tak-
ing the OR of all those terms. For example, the function f; in Table 2-4 is determined by ex-

Table 2-4

Functions of Three Variables
x y z Function f; Function £,
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 i 1

46

These examples demonstrate an important property
tion can be expressed as a sum of minterms (with “sum” meaning the ORing of terms).

Chapter 2 Boolean Algebra and Logic Gates

pressing the combinations 001, 100, and 111 as x'y'z, xy'z’, and xyz, respectively. Since each
one of these minterms results in f; = 1, we have

fi=xyz+xy7 +xyz=m +my + mty

Similarly, it may be easily verified that

fo = X'yz + xy'z + xyz’ + xyz = My + ms + mg + My
of Boolean algebra: Any Boolean func-

Now consider the complement of a Boolean function. It may be read from the truth table by
forming a minterm for each combination that produces a 0 in the function and then ORing

those terms. The complement of f; is read as
fi=xy7 + x'yz + x'yz + xy'z + xvz'
If we take the complement of f7, we obtain the function f) :
f}:(x+y+z)(x+y’+z)(x'+y+z’)(x’+y'+Z)
= Mg My~ My~ Ms - Mg
Similarly, it is possible to read the expression for f; from the table:
f2:(x+y+z)(x+y+z’)(x+y'+z)(x’-i—y-l—z)

- M()Mi Mz M4
y of Boolean algebra: Any Boolean function can

These examples demonstrate a second propert
be expressed as a product of maxterms (with “product” meaning the ANDing of terms), The

“procedure for obtaining the product of maxterms directly from the truth table is as follows.
Form a maxterm for each combination of the variables that produces a 0 in the function, and
then form the AND of all those maxterms. Boolean functions expressed as a sum of minterms
or product of maxterms are said to be in canonical form.

Sum of Minterms

1t was previously stated that for n binary variables, one can obtain 2" distinct minterms, and that
any Boolean function can be expressed as a sum of minterms. The minierms whose sum de-
fines the Boolean function are those that give the 1s of the function in a truth table, Since the
fanction can be either 1 or 0 for each minterm, and since there are 2" mpinterins, one can cal-
culate the possible functions that can be formed with » variables to be 2*". It is sometimes con-
venient to express the Boolean function in its sum of minterms form. If not in this form, it can
be made so by first expanding the expression into a sum of AND terms. Each term is then in-

spected to see if it contains all the variables. If it misses one or more variables, itis AN Ded with

an expression such as x + %', where x is one of the missing variables. The following example

clarifies this procedure.

Express the Boolean function F = A 4+ B'C in a.sum of minterms. The function has three
variables, A, B, and C. The first term A is missing two variables; therefore:

A=A(B + B)=AB + AB

Section 2-5 Canonical and Standard Forms 47

This function is still missing one variable:

1_4 =AB(C +C') + AB'(C +)

= ABC + ABC' + AB'C + AB'C’

The second term B'C is missing one variable:

BC = BC(A+ A') = AB'C + A'BC
Combining all terms, we have

F=A+PBC

ABC + ABC' + AB'C + AB'C' + A'B'C

BF:hAB C appears ‘twice, and according to theorem 1 (x + x = x), itis possible to remove one
of them. Rearranging the minterms in ascending order, we finally obtain

F=ABC+ AB'C + AB'C + ABC' + ABC
—m1+m4+m5+m6+m7

It is sometimes convenient t
. 0 express the Boolean function ini i
in the following short notation: when Imits som of minterms

F(A,B,C) = 3(1,4,5,6,7)

Eﬁtzgsmoafﬁtiz tﬁynﬂt)-ol ET hstz;nds for the ORing of terms; the numbers following it are the
unction. The letters in parentheses following F fi i i i
the order taken when the minterm is converted to an AND tefm o hs't ef the varisbles n
tabi:noz;l:}al];n?te ptrioceggre 1:10r deriving the minterms of a Boolean function is to obtain the truth
unction directly from the algebraic expression and i

_ then read th
the truth table. Consider the Boolean function given in Example 2-4: © minterms from

F=A4+BC

gnhe tguth t;ble? shown in Tablfi 2-5 can be derived directly from the algebraic expression by list-
g the eight binary combinations under variables A, B, and C and inserting 1’s under F for those

Table 2-5

Truth Tablefor F= A + B'C
A B ¢ F
0 0 1 1
1 0 0 1
1 1 -0 . i
1 1 1 1

Chapter 2 Boolean Algebra and Logic Gates

combinations where A = 1, and BC = 01. From the truth table, we can then read the five
minterms of the functiontobe 1, 4, 5, 6, and 7.

Product of Maxterms

Each of the 2" functions of n binary variables can be also expressed as a product of-maxterms.
To express the Boolean function as a product of maxterms, it must first be brought into a form
of OR terms. This may be done by using the distributive law, x + yz = (x + y)(x + z).
Then any missing variable x in each OR term is ORed with xx’. This procedure is clarified by

the following example.

EXAMPLE 2-5

Express the Boolean function F = xy + x'z in a produoct of maxterm form. First, convert the
function into OR terms using the distributive law:

F=xy+xz=(xy+ x) ay+2z)
(x + Xy + x)(x + 2y + 2)
= (& Hy)x)yt)

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore:

x’+y:x'+y+zz’ﬁ(x’+y+z)(f+y“5_“z')
xtz=x+z+yw =(xty+tx+y +2z)
y+z:y+z+xj.c‘=(x+y+z)(x'+y+z)
Combining all the terms and removing those that appear more than once, we finally obtain:
F=(x+y+)x+y+x +y+2)(x +y+27)
= MyM,M,M; .
A convenient way to express this function is as follows:
Flx,y,2) = T{0,2,4,5)

The product symbol, I1, denotes the ANDing of maxterms; the numbers are the maxterms of
the function,

Conversion between Canonical Forms

The complement of a function expressed as the sum of m-jn.tenns eql%als -the sum of minterms
missing from the original function. This is because the original functllon is expressed b.y those
minterms that make the function equal to 1, whereas its complement is a 1 for those minterms
that the function is a 0. As an example, consider the function ‘

F(A,B,C) = 2(1,4,5,6,7)
This has a complement that can be expressed as

F'(A,B,C)= 2(0,2,3) = my + my + 1y

Section 2-5 Canonical and Standard Forms 49\

Now, if we take the complement of F' by DeMorgan’s theorem, we obtain Fina different form:
F = (mO +omy + m3)' =my-my-my= MMM, = T](0,2,3)

The last conversion follows from the definition of minterms and maxterms as shown in

Table 2-3. From the table, it is clear that the following relation holds true:

L—
m; = M,

That is, the maxterm with subscript j is a complement of the minterm with the same subscript
J» and vice versa.

The last example demonstrates the conversion between a function expressed in sum of
minterms and its equivalent in product of maxterms. A similar argument will show that the
conversion between the product of maxterms and the sum of minterms is similar. We now state
a general conversion procedure. To convert from one canonical form to another, interchange the
symbols 2 and I and list those numbers missing from the original form. In order to find the
missing terms, one must realize that the total number of minterms or maxterms is 2%, where »
is the number of binary variables in the function.

A Boolean function can be converted from an algebraic expression to a product of max-
terms by using a truth table and the canonical conversion procedure. Consider, for example, the
Boolean expression

F=xy+ xz

First, we derive the truth table of the function, as shown in Table 2-6. The 1’s under F in the
table are determined from the combination of the variable where xy = 11 or xz = 01. The
minterms of the function are read from the truth table to be 1, 3, 6 and 7. The function ex-
pressed in sum of minterms is

Flx,y.2) = 3(1,3,6,7)

Since there are a total of eight minterms or maxterms in a function of three variable, we deter-
mine the missing terms to be 0, 2, 4, and 5. The function expressed int product of maxterm is

F(x,y,z) = 110, 2, 4, 5)

This is the same answer obtained in Example 2-3.

Table 2-6

Truth Table for F = xy + x'z
X y z F
0] 0 0 0
0 0 i 1
0 1 0 0
0 1 1 1
1 0 0 0
i 0 1 0
1 1 0 1
1 1 i 1

Logic Gat .
50 Chapter 2 Boolean Algebra and Logic Gates Section 2.6 Other Logic Operations “

Standard Forms e
The two canonical forms of Boolean algebra are basic forms that one obtains from reading a : . B _}

function from the truth table. These forms are very seldom the ones with the least number of
literals, because each minterm or maxterm must contain, by definition, all the variables either

complemented or uncomplemented.
Another way to express Boolean functions is in standard form. In this configuration, the

terms that form the function may contain one, two, or any number of literals. There are two types
(8) AB + C(D + E)

of standard forms: the sum of products and products of sums.
The sum of products is a Boolean expression containing AND terms, called product terms, FIGURE 2.4
of one or more literals each. The sum denotes the ORing of these terms. An example of a func- Three- and Two-Level implementation

tion expressed in sum of products is

(bYAB + CD + CE

F o=y + xy+ x'vz
- y y (5)11: OR gat;s for the sum.terms (except for a single literal) followed by an AND gate. This is
own in Fig. 2-3(b). This standard type of expression results in a two-level gating structure.

The expression has three product terms of one, two, and three literals. Their sum is 1n effect an
A Boolean function may be expressed in a nonstandard form. For example, the function

OR operation.

The logic diagram of a sum-of-products expression consists of a group of AND gates fol- _ Eoo 4

Jowed by a single OR gate. This configuration pattern is shown in Fig. 2-3(a). Each product term . 3= AB + C(D + E)

requires an AND gate except for a term with a single literal. The logic sum is formed with an ~ lsneit er in sum of products nor in product of sums. The implementation of thi ion i

OR gate whose inputs are the outputs of the AND gates and the single literal. It is assumed that ShOWI} n Flg. ?~4(a). This requires two AND gates and two OR gates. There ;Sr:)t(}?rr:zsllon iS

the input variables are directly available in their complement, S0 inverters are not inciuded in of gating in this circuit. It can be changed to a standard form by using the distributive 1 EVetS

the diagram. This circuit configuration is referred to as 2 two-level implementation. remove the parentheses: aw 1o
A product of sums is a Boolean expression containing OR terms, called sum terms. Each term ' _

P s : F,=AB+ C(D+ E)=AB + CD + CE

may have any number of literals. The product denotes the ANDing of these terms. An exam-

ple of a function expressed in product of sums is The sum-of-products expression is implemented in Fig. 2-4(b). In general, a two-level imple

_ mentation is preferred because it produces the least am '
" | | , : ount of del
F = x(y +) +yt2) the signal propagates from the inputs to the output, el through the gaics when

This expression has three sum terms of one, two, and three literals. The product is an AND op-
eration. The use of the words product and sum stems from the similarity of the AND operation
to the arithmetic product (multiplication) and the similarity of the OR operation to the arith-
metic sum (addition). The gate structure of the product of sums expression consists of a group

26 OTHER LOGIC OPERATIONS

‘When the binary o_perators AND and OR are placed between two variables, x and y, they form
th\:o B.oolefm fun.ctlons, Xy and x + y,tespectively. It was stated previously that t}’lere are 22"
ncqons i.or n binary variables. For two variables, n = 2, and the number of possible Boole
functions is 16. Therefore, the AND and OR functions are only two of a total of 16 possibgi:-:1

, functions formed wi i i i
, : with two binary variables. It would be instructi
| i ! j . . ve t
D—— By tions and investigate their properties. ° find the ofher 14 furc-

. b’Il'he truth tables for the 16 functions formed with two binary variables, x and v, are listed in
: al tﬁ 2-1. Eacl-l of the 16 columns, F; to F;, represents a truth table of one possible function
or the two variables, x and y. Note that the functions are determined from the 16 binary ¢

binations that can be assigned to F. The 16 functions can be expressed algebraicall bary ans
c‘»f Boolean functions. This is shown in the first column of Table 2-8. The Bool prossions
listed are simplified to their minimum number of literals. . >

Although. each function can be expressed in terms of the Boolean operators AND, OR, and
NOT, there is no reason one cannot assign special operator symbols for expressing’the c’)ther

(b) Product of Sums an expressions

(a) Sum of Products

FIGURE 2-3
Two-level implementation

52

Chapter 2 Boolean Algebra and Logic Gates

Table 2-7)]
Truth Tables for the 16 Functions of Two Binary Variables

Fq F
x Yy £ F R B F, 5 F F, Fo F5 Fo i Fiz Fi3s Fia his

0 0 o 0o 0o o o0 0 0o 0 1 1 1 111 i i
0 1 o 0o 0 o 1 1 t 1 0 0 0 0 1 (1) -
1 0 o 0 1 1L 0 0 1 1 0 0 1 1 0 Y
1 1 o 1 0 1 o 1 0 1 0 1 0 1 0

functions. Such operator symbols are listed in the second column of Tf':lble 2-8. Howezeraial}
the new symbols shown, except for the exclusive-OR symbol, @, are not in common use by d1g

ital designers. ' : .
1 Eachgof the functions in Table 2-8 is listed with an accompanying name and a comment that

ion i funct i bdivided into three categories:
explains the function in some way. The 16 functions listed can be su
1. Two tunctions that produce a constant 0 or 1.
2. Four functions with upary operations: complement and transfer.

3. Ten functions with binary operators that define eight diff.erenF operations: AND, OR,
' NAND, NOR, exclusive-OR, equivalence, inhibition, and implication.

.;?grai Esxpressions for the 16 Functions of Two Variables
Boolean functions Operator Name Comments)
symbol
Null Binary constant
gﬂ;gy x-y AND xandy |
F1 = xy x/y . Inhibition x, but not y
F2 =x Transfer x
F3 = x'y y/x Inhibition v, but not x
F4 =y . Transfer ¥
F5 =xy + x'y xBy Exclusive-OR x ory, but not both
Fi=x+y x+y OR);I(())L)(:)R
F=(x+y) x4ty NOI.{ .
=xy + 1y (x®y) Equivalence xequalsy

v 'iji ’ v Complement Not y
;:10 ; i + ¥ xCy Implication If y, then x
F11 _— x Complement Not x
FI . =x"+y xDy Implication Hx theny

y = ! xTy NAND Not-AND
?4) Identity Binary constant 1

157

2-7

Section 2-7 Digital Logic Gates 53 .

Constants for binary functions can be equal to only 1 or 0. The complement function pro-
duces the complement of each of the binary variables. A function that is equal to an input vari-
able has been given the name transfer, because the variable x or y is transferred through the gate
that forms the function without changing its value. Of the eight binary operators, two (inhibi-
tion and implication) are used by logicians but are seldom used in computer logic. The AND
and OR operators have been mentioned in conjunction with Boolean algebra. The other four
functions are extensively used in the design of digital systems.

'The NOR function is the complement of the OR function and its name is an abbreviation
of not-OR. Similarly, NAND is the complement of AND and is an abbreviation of not-AND.,
The exclusive-OR, abbreviated XOR, is similar to OR, but excludes the combination of both
x and y being equal to 1. The equivalence is a function that is 1 when the two binary variables
are equal, i.e., when both are 0 or both are 1. The exclusive-OR and equivalence functions are
the complements of each other. This can be easily verified by inspecting Table 2-7. The truth
table for the exclusive-OR is Fy and for the equivalence is F, and these two functions are the
complements of each other. For this reason, the equivalence function is called exclusive-NOR,
abbreviated XNOR. -

Boolean algebra, as defined in Section 2-2, has two binary operators, which we have called
AND and OR, and a unary operator, NOT (complement). From the definitions, we have deduced
a number of properties of these operators and now have defined other binary operators in terms
of them. There is nothing unique about this procedure. We could have just as well started with
the operator NOR (1), for example, and later define AND, OR, and NOT in terms of it. There
are, nevertheless, good reasons for introducing Boolean algebra in the way it has been intro-
duced. The concepts of “and,” “or,”” and “not” are familiar and are used by people to EXpress
everyday logical ideas. Moreover, the Huntington postulates reflect the dual nature of the al-
gebra, emphasizing the symmetry of + and - with respect to each other.

DIGITAL LOGIC GATES

Since Boolean functions are expressed in terms of AND, OR, and NOT operations, if is easi-
er to implement a Boolean function with these type of gates. The possibility of constructing gates
for the other logic operations is of practical interest. Factors to be weighed when considering
the construction of other types of logic gates are (1) the feasibility and economy of producing
the gate with physical components, (2) the possibility of extending the gate to more than two
inputs, (3) the basic properties of the binary operator, such as commutativity and associativi-

“ty, and (4) the ability of the gate to implement Boolean functions alone or in conjunction with

other gates.

Of the 16 functions defined in Table 2-8, two are equal to a constant and four are repeated
twice. There are only ten functions lefi to be considered as candidates for logic gates. Two—
inhibition and implication—are not commutative or associative and thus are impractical to use
as standard logic gates. The other eight: complement, transfer, AND, OR, NAND, NOR, ex-
clusive-OR, and equivalence, are used as standard gates in digital design.

The graphic symbols and truth tables of the eight gates are shown in Fig. 2-5. Each gate has
one or two binary input variables designated by x and y and one binary output variable

4 Chapter 2 Boolean Algebra and Logic Gates

Name Graphic
: symbol

A'lgebraic Truth
function table

y —_—
¥
Inverter X——DD——— F F=x
Buffer x——‘ >——F F=x
X B . ,
p——rF = (xy)
NAND y
x ‘ r
P F=(x+y)
— ¢ + ’
Exclusive-OR x F F = ?@ ; x'y
(XOR) ¥y _
Exclusive-NOR x . F=xy+ x.y.
o y = (xDy)
equivalence
FIGURE 2-5

Digital logic gates

Section 2-7 Digital Logic Gates 55

designated by F. The AND, OR, and inverter circuits were defined in Fi g. 1-6. The inverter cir-
cuit inverts the logic sense of a binary variable. It produces the NOT, or complement, function.
"The small circle in the output of the graphic symbol of an inverter (referred to as a bubble) des-
ignates the logic complement. The triangle symbol by itself designates a buffer circuit. A buffer
produces the fransfer function, but does not produce a logic operation, since the binary value
of the output is equal to the binary value of the input. This circuit is used for power amplifi-
cation of the signal and is equivalent to two inverters connected in cascade.

"The NAND function is the complement of the AND function, as indicated by a graphic sym-
bol that consists of an AND graphic symbol followed by a small circle. The NOR function is the
complement of the OR function and uses an OR graphic symbol followed by a small circle. The
NAND and NOR gates are extensively used as standard logic gates and are in fact far more pop-
ular than the AND and OR gates. This is because NAND and NOR gates are easily constructed
with transistor circuits and because digital circuits can be easily implemented with them.,

The exclusive-OR gate has a graphic symbol similar to that of the OR gate, except for the ad-
ditional curved line on the input side. The equivalence, or exclusive-NOR, gate is the complement
of the exclusive-OR, as mdlcated by the small circle on the output side of the graphic symbol.

Extension to Muitiple Inputs

The gates shown in Fig. 2-5—except for the inverter and buffer—can be extended to have more
than two inputs. A gate can be extended to have multiple inputs if the binary operation it rep-
resents is commutative and associative. The AND and OR operations, defined in Boolean al-
gebra, possess these two properties. For the OR function, we have

x+y=y+x (commutative)

and .
(x+y)+tz=x+(+z)=x+y+z (associative),

which indicates that the gate inputs can be interchanged and that the OR function can be ex-
tended to three or more variables.

The NAND and NOR functions are commutative, and their gates can be extended to have more
than two inputs, provided that the definition of the operation is slightly modified, The difficul-
ty is that the NAND and NOR operators are not associative [ie, (x { y) 4z # x| (y | 7)1, as
shown in Fig. 2-6 and the following equations:

i be=[(x+y) + 2] = (x +)2 = x2' + 32/
Al =[x+ G+ =20 +2) =xy+ a2

To overcome this difficuity, we define the multiple NOR (or NAND) gate as a complemented
OR (or AND} gate. Thus, by definition, we have

xiylz:(x+y+z)’
x Ty Tz= (xyz)

The graphic symbols for the 3-input gates are shown in Fig. 2-7. In writing cascaded NOR and
NAND operattons one must use the correct parentheses to signify the proper sequence of the

. Section 2-7 Digital Logic Gates 57
56 Chapter 2 Boolean Algebra and Logic Gates . .

X

F=xDydz

Eindz=+ye z

(a) Using 2-input gates

x
¥ F=x$PyDz
z
* D— sllg=x"+2 (b) 3-input gate (c) Truth table

= OO O =
P = DD = OO
O D e O = O N
OO o= o

FIGURE 2.8
y ::Do__ 3-input exclusive-OR gate
z
FIGURE 2-6 o . £ x byl z input variables have an odd number of 1°s. The construction of a 3-input exclusive-OR func-
Demonstrating the nonassociativity of the NOR operator; (x bnye =2 ti(fn is shown in Fig, 2-8. It is normally implemented by cascading 2-input gates, as shown in
(a). Graphically, it can be represented with a single 3-input gate, as shown in (b). The truth table
o oo ;j} (oyz)’ . in (¢) clearly indicates that the output F is equal to 1 if only one ipput isequal to 1 or if all three
y 3:)0‘ rty+z z — inputs are equal to 1, i.e., when the total number of 1’s in the input variables is odd. Fusther
(a) 3-input NOR gate (b) 3-input NAND gate discussion of exclusive-OR can be found in Section 3-8.
Positive and Negative Logic
‘éj}b ' The binary signal at the inputs and outputs of any gate has one of two values, except during tran-
C— 3_ F= [(ABCY - (DE)] = ABC + DE sition. One signal value represents logic-1 and the other logic-0. Since two signal values are
' assigned to two logic values, there exist two different assignments of signal level to logic value,
b _DD__I— ' ' as shown in Fig. 2-9. The higher signal level is designated by H and the Iower signal level by
E— L. Choosing the high-level # to represent logic-1 defines a positive logic system. Choosing the
(c) Cascaded NAND gates low-level L to represent logic-1 defines a negative logic system. The terms positive and nega-
tive are somewhat misleading since both signals may be positive or both may be negative. It is
FIGURE 2-7 i that determine the type of logic, but rather the assignment of logic
Multiple-input and cascated NOR and NAND gates . not the actual signal values tha ¥P gic, £ g

values to the relative amplitudes of the two signal levels.
Hardware digital gates are defined in terms of signal values such as H and L. It is up to the

. o ; ion for the L. . . A . .
consider the circuit of Fig. 2-7(c). The Boolean function for user to decide on a positive or negative logic polarity. Consider, for example, the electronic gate

gates. To demonstrate this,
circuit must be written as

F = [(ABCY(DE)| = ABC + DE

Logic Signal Logic Signal

! value uc value value
The second expression is obtained from DeMorgan’s theorem. It also s.hows j[hat afn gz[.l)f;;,)ss;)‘g él | v a;{ : :
in sum of products can be implemented with NAND gates. Further discussion o

in Section 3-6. o | —
No’llilg t;zlflzif:?(;f;u;rfd equivalence gates are both commutative a_nd associative and can be 0 . 1 o
extended to more than two inputs. However, multiple-input e)fclu.swe—OR gates are uiécor_rtlt—l o roste o (b—-) —
mon from the hardware standpoint. In fact, even a 2-input function 1$ usuallly constructed wi |
the definition of the function must be modified when extend- EIGURE 2.9

other types of gates. Moreover,

ed to more than two variables. The exclusive-OR is an odd function, i.e., it is equal to 1 if the ~ Signal assignment and logic polarity

Chapter 2 Boolean Algebra and Logic Gates

x ¥y F .
Digital z
L L L gate
L H | L y
H L L
H H H
(a) Truth table (b) Gate block diagram
with H and L
PR—) .
y—
(c) Truth table for (d) Posiiive logic AND gate

positive logic

T e
y

(<) Truth table for {f) Negative logic OR gate
negative logic

FIGURE 2-10 . .
Demonstration of positive and negative logic

shown in Fig. 2-10(b). The truth table for this gate is listed in Fig. 2-10(a). It sp-ec'iﬁes the phys-
ical behavior of the gate when H is 3 volts and L is 0 volts. The truth Jlab.le Et Fig. 2- 1(;(1(;) :[i—:
iti i i i = d L = 0. This truth table is the same as

mes positive logic assignment, with H fan h . : _
?;r thepAND operation. The graphic symbol for a positive logic AND gate is shown in
Fig. 2-10(d). ' ' . _

lgNOW copsider the negative logic assignment for the same physical gate with L = 1 Emd
H = 0. The result is the truth table of Fig. 2-10(c). This table rf:presen.ts the QR operation
even though the entries are reversed. The graphic symbol for the negz}tlve logic OR. ga.tedils
shown in Fig. 2-10(f). The small triangles in the inputs and outPut.deSLgnate a pa.lamy indi-
cator. The presence of this polarity indicator along a terminal s1gmﬁes that ng_gauve .log1c is
assun-led for the signal. Thus, the same physical gate can operate cither as a posmve logic AND

gate or as a negative logic OR gaie.

Section 2-7 Integrated Circuits 59 -

The conversion from positive logic to negative logic, and vice versa, is essentially an oper-
ation that changes 1’s to 0°s and 0’s to 1’s in both the inputs and the cutput of a gate. Since this
operation produces the dual of a function, the change of all terminals from one polarity to the
other results in taking the dual of the function. The result of this conversion is that all AND op-
erations are converted to OR operations (or graphic symbols) and vice versa. In addition, one
must not forget to include the polarity-indicator triangle in the graphic symbols when negative
logic is assumed. In this book, we will not use negative logic gates and will assume that all gates
operate with a positive logic assignment.

2-8 INTEGRATED CIRCUITS

An integrated circuit (abbreviated IC) is a silicon semiconductor crystal, called a chip, containing
the electronic components for constructing digital gates. The vartous gates are interconnected
inside the chip to form the required circuit. The chip is mounted in a ceramic or plastic con-
tainer, and connections are welded to external pins to form the integrated circuit. The number
of pins may range from 14 on a small IC package to several thousands on a larger package. Each
IC has a numeric designation printed on the surface of the package for identification. Vendors
provide data books, catalogs, and Internet websites that contain descriptions and information
about the ICs that they manufacture.

Levels of Integration

Digital ICs are often categorized according to their circuit complexity as measured by the
number of logic gates in a single package. The differentiation between those chips that have
a few internal gates and those having hundreds of thousands of gates is made by a customary
reference to a package as being either a small-, medium-, large-, or very large-scale integra-
tion device.

Smail-scale integration (SSI) devices contain several independent gates'in a single package.
The inputs and outputs of the gates are connected directly to the pins in the package. The num-
ber of gates is usually fewer than 10 and is limited by the number of pins available in the IC.

Medium-scale integration (MSI) devices have a complexity of approximately 10 to 1,000
gates in a single package. They usually perform specific elementary digital operations. MSI dig-
ital functions are introduced in Chapter 4 as decoders, adders, and multiplexers and in Chap-
ter & as registers and counters.

Large-scale integration (LSI) devices contain thousands of gates in a single package. They
include digital systems such as processors, memory chips, and programmable logic devices.
Some LSI components are presented in Chapter 7.

Very large-scale integration (VLSI) devices contain hundred of thousands of gates within
a single package. Examples are large memory arrays and complex microcomputer chips. Be-
cause of their small size and low cost, VLSI devices have revolutionized the computer system
design technology, giving the designer the capability to create structures that were previously
uneconomical to build.

60

Chapter 2 Boolean Algebra and Logic Gates

Digital Logic Families

Digital integrated circuits are classified not only by their complexity or logical operation, but
also by the specific circuit technology to which they belong. The circuit technology is referred
to as a digital logic family. Each logic family has its own basic electronic circuit upon which
more complex digital circuits and components are developed. The basic circuit in each tech-
nology is a NAND, NOR, or inverter gate. The electronic components employed in the con-
struction of the basic circuit are usually used to name the technology. Many different logic
families of digital integrated circuits have been introduced commercially. The following are the

most popular:

TTL transistor-transistor logic;

ECL emitter-coupled logic;

MOS metal-oxide semiconductor;

CMOS complementary metal-oxide semiconductor.

TTL is a logic family that has been in operation for a long time and is considered as stan-
dard. ECL has an advantage in systems requiring high-speed operation. MOS is suitable for cir-
cuits that need high component density, and CMOS is preferable in systems requiring low
power consumption. Low power consumption is essential for VLSI design, and therefore,
CMOS has become the dominant logic family, while TTL and ECL are declining in use. The
analysis of the basic electronic digital gate circuit in each logic family is presented in Chapter 10.

The characteristics of digital logic families are usually compared by analyzing the circuit
of the basic gate in each family. The most important parameters that are evaluated and com-
pared are discussed in Section 10-2. They are listed here for reference,

Fan-out specifies the number of standard loads that the output of a typical gate can drive with-
out impairing its normal operation. A standard load is usually defined as the amount of current
needed by an input of another similar gate of the same family.

Fuan-in is the number of inputs available in a gate.

Power dissipation is the power consumed by the gate that must be available from the
power supply.

Propagation delay is the average transition delay time for the signal to propagate from input
to output. The operating speed is inversely proportional to the propagation delay.

Noise margin is the maximum external noise voltage added to an input signal that does not
cause an undesirable change in the circuit output. o

Computer-Aided Design (CAD)

The design of digital systems with VL3I circuits containing millions of transistors is a formi-
dable task. Systems of this complexity are usually impossible to develop and verify without the
assistance of computer-aided design tools. CAD tools consist of software programs that support
computer-based representation and aid in the development of digital hardware by automating
the design process. Electronic design automation covers all phases of the design of integrated
circuits. A typical design flow for creating VLSI circuits consists of a sequence of steps begin-
ning with design eniry and culminating with the generation of the database that contains the pho-

Problems 61

tornask used to fabricate the IC. There are a variety of options available for creating the physi-
cal rfaali%ation of a digital circuit in silicon. The designer can choose between an application-
spe'clﬁc integrated circuit (ASIC), a field-programmable gate array (FPGA), a programmable
logic device (PLD), or a full-custom IC. With each of these devices comes a set of CAD tools
that provide the necessary software to facilitate the hardware fabrication of the unit.

Some CAD systems include an editing program for creating and modifying schematic dia-
grams on a computer screen, This process is called schematic capture or schematic entry. With
the aid of menus, keyboard commands, and the mouse, a schematic editor can draw circuit di-
agrams .of digital circuits in the computer screen. Components can be placed on the screen
froma 11.st in an internal library and can then be connected with lines that represent wires. The
schematlc entry software creates and manages a database containing the information created
with tl?e schematic. Primitive gates and functional blocks have associated models that allow the
behavior and {iming of the circuit to be verified. This verification is performed by applying in-
puts to .the circuit and using a logic simulator to determine the cutputs.)

An important development in the design of digital systems is the use of a hardware de-
scription language (HDL). HDL resembles a programming language, but is specifically oriented
to describe digital hardware. It represents logic diagrams and other di gital information in tex-
tual. f01tm. It is used to simulate the system before its construction to check the functionality and
verify its operation before it is submitted to fabrication. An important application is its logic
synthesi_s software, which automates the design of digital systems. HDL has become very im-
portant in recent years and is the best method available for the design of complex digital sys-
tems. HDL is introduced in Sec 3-9 and because of its importance, we include HDL deseriptions
of digital circuits, components, and design procedures throughout the entire book.

PROBLEMS

2.1 Demonstrate by means of truth tables the validity of the following identities:
{a) DeMorgan’s theorem for three variables: {x + y + z)' = x'y'z and (xyz) = 2’ + ¥ + 7
(b} The distributive law: x + yz = (x + y)(x + z)

2-2 Simplify the following Boolean expressions to a minimum number of literals:

(@) xy + xy' ® (x+y)(x+)y)

(©) xyz + x'y + xy7 (dy (A+ BY(A" + BY
2-3 Simplify.the following Boolean expressions to a minimum number of literals:

(8) ABC + A'B + ABC' ' (b) x'yz + xz

©@ (x +y)(+y) (d) xy + x(wz + wz')

(¢} (BC' + A'D)(AB' + CD')

2-4 Reduce the following Boolean expressions to the indicated number of literals:

(a) A'C" + ABC + AC’ to three literals.
b)) (xy +z) +z+xy+ wz to three literals
(c) A'B(D' + C'D) + B(A + A'CD) to one literal

(d) (A" +C)A + CYA+ B+ CD) to four literals

Section 3-1 The Map Method 65
Two-Variable Map

t'Il'lhe two-var_iafbie map is shown in Fig. 3-1(a). There are four minterms for two VaIiaBISS' hence
re;:a::?ap]i?n]ims of f(t);r squares, one for each minterm. The map is redrawn in (b) to 'SI',IOW the:
onship between the squares and the two variables x and i
; ‘ ¥.'The 0 and 1 marked in each

(a t e - L eV e I .jcmd colum dulas1g_nate the values of variables. Variable x appears primed in row 0 and unprirl;::awd
| | in rIc;W 1. Similarly, y appears primed in column O and unprimed in column 1.

. we mark the squares whose minterms belong to a given function, the two-variable map

I n I I Z a tl n Asc:?es anoihel; 1];5?'?1 way to represent any one of the 16 Boolean functions of two variables

example, the function xy is shown in Fig. 3-2(a). Since xy i i .

I l I ‘ ' As ‘ i . . vis equal 1o m., a 1 is placed

inside the square that belongs to m,. Similarly, the function x + y is represenzted n thE:: map

of Fig. 3-2(b) by three squares mark ith 1°
O)¢ q rked with 1's, These squares are found from the minterms

mot oy hms=xy+xy tay=x+y
'tll"]l;esglreedsquares (;:oulq ll:ave also been determined from the intersection of variable x in
ond row and variable y in the second i i
o ¥ nd column, which encloses the area belonging to

3-1 THE MAP METHOD

The complexity of the digital logic gates that implement a Boolean function is directly relat-
ed to the complexity of the algebraic expression from which the function is implemented. Al- ‘ ' , ¥
though the truth table representation of a function is unique, when expressed algebraically, it
can appear in many different forms. Boolean expressions may be simplified by algebraic means . my | my ol #y | xy
as discussed in Section 2-4. However, this procedure of minimization is awkward because it '
lacks specific rules to predict each succeeding step in the manipulative process. The map method my | oy il o
provides a simple straightforward procedure for minimizing Boolean functions. This method _
may be regarded as a pictorial form of a truth table. The map method is also known as the : : (@ ®
Karnaugh map or X-map. FIGURE 3-1

The map is a diagram made up of squares, with each square representing one minerm of g Two-variable Map
the function. Since any Boolean function can be expressed as a'sum of minterms, it follows that 1.

a Boolean function is recognized graphically in the map from the area enclosed by those squares ‘ 1
whose minterms are included in the function. In fact, the map presents a visual diagram of all E
possible ways a function may be expressed in standard form. By recognizing various patierns,
the user can derive alternative algebraic expressions for the same function, from which the
simplest can be selected. :

The simplified expressions produced by the map are always in one of the two standard
forms: sum of products or product of sums. It will be assumed that the simplest algebraic ex-
pression is one with a minimum number of terms and with the fewest possible number of lit-
erals in each term. This produces a circuit diagram with a minimum number of gates and the
minimum number of inputs to the gate. We will see subsequently that the simplest expression
is not unique. It is sometimes possible to find two or more expressions that satisfy the mini-
mization criteria. In that case, either solution would be satisfactory.

xy

(@) xy (h) x+y

FIGURE 3-2
Representation of Functions in the Map

64

66 Chapter 3 Gate-Level Minimization

Three-Vari

yz R

N00 01 1110
mg | my | omy | oma o|xy'z | ¥y xlyz | ¥y
iy mis niy Mg b1 o'z | xy'z | xyz | xyr

(a) (b

FIGURE 3-3
Three-variable Map

able Map

A three-variable map is shown in Fig. 3-3. There are eight minterms for three binary variables.
Therefore, the map consists of eight squares. Note that the minterms are not arranged in a bi-
nary sequence, but in a sequence similar to the Gray code (Table 1-6). The characteristic of this
sequence is that only one bit changes in value from one adjacent column to the next. The map
drawn in part (b) is marked with numbers in each row and each column to show the relation-
ship between the squares and the three variables. For example, the square assigned to ms cor-
responds to row 1 and column 01. When these two numbers are concatenated, they give the
hinary number 101, whose decimal equivalent is 5. Another way of looking at square ms = xy'z
is to consider it to be in the row marked x and the column belonging to y'z (column 01). Note
that there are four squares where each variable is equal to 1 and four-where each is equal to 0.
The variable appears unprimed in those four squares where itis equal to 1 and primed in those
squares where it is equal to 0. For convenience, we write the variable with its letter symbol under
the four squares where it is unprimed.

To understand the usefulness of the map for simplifying Boolean functions, we must rec-
ognize the basic property possessed by adjacent squates. Any two adjacent squares in the map
differ by only one variable, which is primed in one square and unprimed in the other. For ex-
ample, ms and m, lie in two adjacent squares. Variable y is primed in m; and unprimed in my,
whereas the other two variables are the same in both squares. From the postulates of Boolean
algebra, it follows that the sum of two minterms in adjacent squares can be simplified to a sin-
gle AND term consisting of only two literals. To clarify this, consider the sum of two adjacent
squares such as #zs and m;:

ms + my = xy'z + xyz = xz(y +y) = 5z

Here the two squares differ by the variable y, which can be removed when the sum of the two
minterms is formed. Thus, any two minterms in adjacent squares that are ORed together will
canse a removal of the different variable. The following examples explain the procedure for min-
imizing a Boolean function with a map. : :

Section 3-1 The Map Method 67

¥z S S
x 00 01 11 10

; Wil
i]

FIGURE 3-4
Map for Example 3-1; F(x, y, 2) = 2(2,3,4,5) = x'yv + xy

. EXAMPLE 3-1

Simplify the Boolean function

Flx,y,z) = 2(2,3,4,5)
First, a 1 is marked in each minterm that represents the function. This is shown in Fig. 3-4, where
the squares for minterms 010, 011, 100, and 101 are marked with 1's. The next step is to find
_ possible adjacent squares. These are indicated in the map by two rectangles, each enclosing two
1’s. The upper right rectangle represents the area enclosed closed by x'y. This is determined
by observing that the two-square area is in row 0, corresponding to x", and the last two columns,
corresponding to y. Similarly, the lower left rectangle represents the product term x)'. (The sec-

ond row represents x and the two left columns represent y'.) The logical sum of these two prod-
uct terms gives the simplified expression:

F=xy+xy
|- |

There are cases where two squares in the map are considered to be adjacent even though they
dol not touct} each other. In Fig. 3-3, m, is adjacent to m, and m, is adjacent to m, because the
minterms differ by one variable. This can be readily verified algebraically:

L

my + my = X'y + x'vg = XY+ yy= a7
my+omg = xy'7 + xy2 = xd b (Y b y) = x

Consequently, we must modify the definition of adjacent squares to include this and other sim-

ilar cases. This is done by considering the map as being drawn on a surface where the right and
left edges touch each other to form adjacent squares. '

© EXAMPLE 3-2 -

Simplify the Boolean function
F(x,y,2) = 2(3,4,6,7)

The map for this function is shown in Fig. 3-5. There are four squares marked with 1’s, one for
each minterm of the function. Two adjacent squares are combined in the third column to give

68 Chapter 3 Gate-Level Minimization

vz

x 00 01 10

L

Al

xll 1]

FIGURE 3-5
Map for Example 3-2; Fx,y,2)= £(3,4,6,7y=yz + xz

a two-literal term yz. The remaining two squares with Is are also adjacent by the new defini-
tion and are shown in the diagram with their values enclosed in half rectangles. These two
squares, when combined, give the two-literal term xz'. The simplified function becomes

F=yz+ xZ
H

_ Consider now any combination of four adjacent squares in the three-variable map. Any such
combination represents the logical sum of four minterms and results in an expression of only
one literal. As an example, the logical sum of the four adjacent minterms 0, 2, 4, and 6 reduces
{o a single literal term z":

my + my +omy +mg = x'yz + Xyz + xy's + oxyd
(Y + y) (YY)
=x7 +xf =7(x +x)=17

i

The number of adjacent squares that may be combined must always represent a number
that is a power of two such as 1, 2, 4, and 8. As a larger number of adjacent squares are com-
bined, we obtain a product term with fewer literals.

One square represents one minterm, giving a term of three literals.
Two adjacent squares represent a term of two literals.
Four adjacent squares represent a term of one literal.

Fight adjacent squares encompass the entire map and produce a function that is always
equal to 1.

© EXAMPLE 3-3
Simplify the Boolean function
F(x,y.2) = 2(0,2,4,5,6)

The map for F is shown in Fig. 3-6. First, we combine the four adjacent squares in the first and
last columns to give the single literal term 7. The remaining single square representing minterm
5 is combined with an adjacent square that has already been used once. This is not only

 EXAMPLE 3-4

Section 3-1 The Map Method 69

FIGURE 3-6
Map for Example 3-3; F(x, y, z) = >(0,2,4,5,6) = Z + xy

pel:missible, -but rather desirable, because the two adjacent squares give the two-literal term
xy" and the single square represents the three-literal minterm xy'z. The simplified function is

F =74+ xy

_ If a function is not expressed in sum of minterms, it is possible to use the map to obtain th:
minterms of the function and then simplify the function to an expression with a minimom num-
ber of terms. It is necessary to make sure that the algebraic expression is in sum of products
form. Each product term can be plotted in the map in one, two, or more squares. The minterms
of the function are then read directly from the map.

Given the Boolean function
F=AC+ AB+ ABC + BC
{a) express it in sum of minterms

{b) and find the minimal sum of products expression.

Three product terms in the expression have two literals and are represented in a three-variable
map by two squares each. The two squares corresponding to the first term, A'C, are found in
Fig. 3-7 from the coincidence of A’ (first row) and C (two middle columns) to give squares 001

BC B
A 00 01 11 - 10

—
0 111‘1‘

FIGURE 3-7
Map for Example 3-4; AC+ AB+ ABC+ BC=C+ AB

70

Chapter 3 Gate-Level Minimization

and 011. Note that when marking 1’s in the squares, it is possible to find a 1 already placed there
from a preceding term. This happens with the second term, A'B, which has 1’s in squares 011
and 010. Square 011 is common with the first term, A'C, though, so only one ! is marked in
it. Continuing in this fashion, we determine that the term AB'C belongs in square 101, corre-
sponding to minterm 5, and the term BC has two 1’s in squares 011 and 111. The function has
2 total of five minterms, as indicated by the five 1’s in the map of Fig. 3-7. The minterms are
read directly from the map to be 1, 2, 3, 5, and 7. The function can be expressed in sum of
minterms form:

F(A,B,C) = 2(1,2,3,57)

The sum of products expression as originally given has too many terms. It can be simplified,
as shown in the map, to an expression with only two terms:

F=C+ AR
|

FOUR-VARIABLE MAP.

The map for Boolean functions of four binary variables is shown in Fig. 3-8. In (a) are listed
the 16 minterms and the squares assigned to each. In (b) the map is redrawn to show the rela-
tionship with the four variables. The rows and columns are numbered in a Gray code sequence,
with only one digit changing value between two adjacent rows or columns. The minterm cor-
responding to each square can be obtained from the concatenation of the row number with the
column number. For example, the numbers of the third row (11) and the second column {01),
'when concatenated, give the binary number 1101, the binary equivalent of decimal 13. Thus,
the square in the third row and second column represents minterm #1,s.

¥z .y
wey 00 01 11 10
My my Ml Hiy 00 Yw'x'y' 2’ | wix'y'z] wix'yz | w'x'yz’
my msg my Mg 01 [wixy'z’ | wey'z | wixyz | wiayz'
x
fiyy | M3 ms Mg 11 | way'e' | wxy'z | wxyz wxyz'
w
Hig g mi M 10 |we'y’z’ [wx'y'z | wa'yz wx'yz'
(a) z
(b)
FIGURE 3-8

Four-variable Map

'EXAMPLE 3-5

Section 3-2 Four-Variable Map 71

. Thq map minimization of four-variable Boolean functions is similar to the method used to
minimize three-variable functions, Adjacent squares are defined to be squares next to each other.
In ac!dmon, the map is considered to lie on a surface with the top and bottom edges, as well as
the r1ghF and left edges, touching each other to form adjacent squares. For example, mg and #1,
form adjgcent- Squares, as do m and #1; | . The combination of adjacent squares that is useful dur-
ing the simplification process is easily determined from inspection of the four-variable map:

One square represents one minterm, giving a term of four literals.
Two adjacent squares represent a term of three literals.

Tour adjacent squares represent a term of two literals.

Eight adjacent squares represent a term of one literal.

Sixteen adjacent squares represent the function equal to 1.

No other combination of squares can simplify the function. The following two examples show
the procedure used to simplify four-variable Boolean functions. '

Simplity the Boolean function

Fw, x,y,z) = 2(0,1,2,4,5,6,8,9,12, 13, 14)

Since the function has four variables, a four-variable map must be used. The minterms listed
in the sum are marked by 1's in the map of Fig. 3-9. Eight adjacent squares marked with 1’s
can bc? combined to form the one literal term y'. The remaining three 1°s on the right cannot be
combined to give a simplified term. They must be combined as two or four adjacent squares

The larger the number of squares combined, the smaller the number of literals in the term., In.

¥z Y
00 01 11 10
wx
ool [1]] 1 1
01 _1_ 1-1 1 1
p
11 1 1 1
w i~
i0 1 1

FIGURE 3-9

Map for Example 3-5; F(w, x, ¥, 2) = 3(0,1,2,4,5,6,8,9,12, 13, 14)
=y +wz 4+ xz

__EXAMPLE 3-6

Chapter 3 Gate-Level Minimization

this example, the top two 1’s on the right are combined with the top two 1’s on the left to give
the term w'z’. Note that it is permissible to use the same square more than once. We greflzgljf
left with a square marked by 1 in the third row and fouth column (square. " 1.0). p;]stea o al:
ing this square alone (which will give a term of four literals), we combine it wit s%lgire:ows
ready used to form an area of four adjacent squares. Tpese squares mz‘ake up the two middle

and the two end columns, giving the term xz'. The simplified funciion is

F:y!_‘_'wlzf_!_le
[|

Simplify the Boolean function
F = ABC + BCD + ABCD' + AB'C’
The area in the map covered by this function consists of the squares marked with 1's m Fig. 3-}'0.
This function has four variables and, as expressed, consists of three terms, ;ach with three lit-
erals, and one term of four literals. Each term of three literals is represented in t'he map by t_wo
squares. For example, A'B'C’ is represented in squares 0000 and 0001, The 'fE]I;lCtIOI‘l can be sim-
plified in the map by taking the 1's in the four corners to give tl}e term B'DY. ?hls is possible
because these four squares are adjacent when the map is drawnin a suﬁace with top and bot-
tom or left and right edges touching one another. The two left-hand 1’s in the tc')p.row are COIS_
" bined with the two 1’s in the bottom row to give the term .B’C ’ The remaining 1 may be
combined in a two-square area to give the term A'CD'. The simplified function is
F =RBD + BC + ACD" -

cD
4p 00 01 11 10

00 QJ lFT
01 LU

11

of 1 T

D

A

FIGURE 3-10 - . o
Map for Example 3-6; AB'C' + BCD + ABCD + ABC = BD + BC + ACD

Section 3-2 Four-Variable Map 73

Prime Implicants

When choosing adjacent sguares in a map, we must ensure that all the minterms of the func-
tion are covered when combining the squares. At the same time, il is necessary to minimize the
number of terms in the expression and avoid any redundant terms whose minterms are already
covered by other terms. Sometimes there may be two or more expressions that satisfy the sim-
plification criteria. The procedure for combining squares in the map may be made more sys-
tematic if we understand the meaning of the terms referred to as prime implicant and essential
prime implicant. A prime implicant is a product term obtained by combining the maximum
possible number of adjacent squares in the map. If a minterm in a square is covered by only
one prime implicant, that prime implicant is said to be essential. .

The prime implicants of a function can be obtained from the map by combining all possi-
ble maximum numbers of squares, This means that a single 1 on a map represents a prime im-
plicant if it is not adjacent to any other 1’s. Two adjacent 1’s form a prime implicant, provided
that they are not within a group of four adjacent squares. Four adjacent 1’s form a prime im-
plicant if they are not within a group of eight adjacent squares, and so on. The essential prime
implicants are found by looking at each square marked with a | and checking the number of
prime implicants that cover it. The prime implicant is essential if it is the only prime implicant
that covers the minterm.

Consider the following four-variable Boolean function:

F(A,B,C,D) = 2(0,2,3,5,7,8,9,10,11, 13, 15)

The minterms of the function are marked with I’s in the maps of Fig. 3-11. Part (a) of the fig-

ure shows two essential prime implicants. One term is essential because there is only one way
to include minterms s, within four adjacent squares. These four squares define the term B'D'.
Similarly, there is only one way that minterm ms can be combined with four adjacent squares

cD C D C
4g 00 01 " 11 10 4 00 01 " 11 10
0o 1 1 | 1 | 1 | 1 ‘
01 1 1 a1 1 1
B B
11 1 1 11 i 1
A - : A I
10 1 1 10]]1 1 1 1 ‘ ‘
D D
{a) Essential prime implicants (b) Prime implicants CD, B'C
BD and B'D’ AD, and AB'
FIGURE 3-11

Simplification Using Prime Implicanis

74 Chapter 3 = Gate-Level Minimization
7 ‘Section 3-3 Five-Variable Map 75 °
and this gives the second term BD. The two essential prime implicants cover eight minterms.
.. . . A=10 .
The remaining three minterms, iy, iy, and m, |, must be considered next. A=1
Figure 3-11(b) shows ail possible ways that the three minterms can be covered with prime . DE D DE D
implicants. Minterm s can be covered with either prime implicant CD or B'C. Minterm my pc 00 01 11 10 e 00 01 1 0
can be covered with either AD or AB’. Minterm m; , is covered with any one of the four prime 00| o 1 3 2
| implicants. The simplified expression is obtained from the logical sum of the two essential 00| 16 17 19 18
; prime implicants and any two prime implicants that cover minterms s, iy, and m,,. There
‘ are four possible ways that the function can be expressed with four product terms of two lit- o) 4 3 7 6 or| 20 21 23 2
‘ erals each: _ C : c
F=BD+BD +CD+ AD . | Bopas | 1] s | 20 | 3 | a0
= BD + B'D' + CD + AP’ ol s 1o | uly B
= BD + BD' + BC + AD ’ 0] 24) 25 1 27) 26
BD + B'D' + BC + AP . E B
The previous example has demonstrated that the identification of the prime implicants in the map FIGURE 3-12
helps in determining the alternatives that are available for obtaining a simplified expression. Five-variable Map
The procedure for finding the simplified expression from the map requires that we first de-
termine all the essential prime implicants. The simplified expression is obtained from the log-
ical sum of all the essential prime implicants plus other prime implicants that may be needed computer programs specifically written to facilitate the simplification of B i
to cover any remaining minterms not covered by the essential prime implicants. Occasionally, with a large number of variables. oolean functions
there may be more than one way of combining squares and each combination may produce an From inspection, and taking into account the new definition of adjacent it i
equally simplified expression. sible to show that any 2* adjacent squares, for k = (0,1,2,..., n) in an Effﬁii‘?irﬁiﬁ il

.represent an area that gives a term of v — k literals. For the above statement to have any mean-
%I;g, n m;s;t be_: larger than £, When n = £, the entire area of the map is combined to give the
identity function, Table 3-1 shows the relationship between the number of adjacent squafes

and the mm‘lber of literals in the term. For example, eight adjacent squares combine an area in
the five-variable map to give a term of two literals.

3-3 FIVE-VARIABLE MAP

Maps for more than four variables are not as simple to use. A five-variable map needs 32
squares and a six-variable map needs 64 squares. When the number of variables becomes large,

the number of squares becomes excessively large and the geometry for combining adjacent Table 3.1
squares becomc?s more m\{olved. o - ' ' ‘ The Relationship Between the Number of Adjacent §
The five-variable map is shown in Fig. 3-12. It consists of 2 four-variable maps with vari- 3 and the Number of Literals In the Term yacent squares
ables A, B, C, D, and E. Variable A distinguishes between the two maps, as indicated on the
top of the diagram. The left-hand four-variable map represents the 16 squares where A = 0, Number
and the other four-variable map represents the squares where A = 1. Minterms 0 through 15 A di::ent N .
belong with A = 0 and minterms 16 through 31 with A = 1. Each four-variable map retaing Squares ina Terurr!ber of the_rals
 the previously defined adjacency when taken separately. In addition, each square inthe A = 0 ‘ m in an n-variable Map
map is adjacent to the corresponding square inthe A = 1 map. For exarple, mintegm 4 is ad- K 2* n=2 n=73 n=4 hn=3
jacent to minterm 20 and minterm 15 to 31. The best way to visualize this new rule for adja- 0 1 ' T
cent squares is to consider the two half maps as being one on top of the other. Any two squares 1 5] 5 j 5
that fall one over the other are considered adjacent. 2 4 | 5 ‘31
By following the procedure used for the five-variable map, it is possible to construct a six- 3 8 0 1 >
variable map with 4 four-variable maps to obtain the required 64 squares. Maps with six or more 4 16 0 1 K
variables need too many squares and are impractical to use. The alternative is to employ 5 32 0

76 Chapter 3 Gate-Level Minimization

A=0 A=1

pc 00 01 11 10 gc 00 01 11 10
oo 1 1 00
ol 1 1 o1 1 1
C C
11 1 11 U'ﬂ 1
B
10 1 10 _U

E E

FIGURE 3-13
Map for Example 3-7; F = ABE + BD'E + ACE

Simplify the Boolean function
F(A,B,C,D,E) = £(0,2,4,6,9,13,21, 23,25,29,31)

The five-variable map for this function is shown in Fig. 3-13. There are six minterms from 0

to 15 that belong to the part of the map with A = 0. The other five minterms belong with -

A = 1. Four adjacent squares in the A = (map are combined to give the three-literal term
A'B'E’. Note that it is necessary to include A’ with the term because all the squares are asso-
ciated with A = 0. The two squares in column 01 and the last two rows are common to both
parts of the map. Therefore, they constitute four adjacent squares and give the three-literal term
BI'E. Variable A is not included here becanse the adjacent squares belong to both A = Oand
A = 1. The term ACE is obtained from the four adjacent squares that are entirely within the
A = 1 map. The simplified function is the logical sum of the three terms:

F=ABE +BDE + ACE

3.4 PRODUCT OF SUMS SIMPLIFICATION

The minimized Boolean functions derived from the map in all previous examples were ex-
pressed in the sum of products form. With a minor modification, the product of sums form can
be obtained. ' '

The procedure for obtaining a minimized function in product of sums follows from the basic
properties of Boolean functions. The 1's placed in the squares of the map represent the minterms
of the function. The minterms not included in the function denote the complement of the

Section 3-4 Product of Sums Simplification 77

function. From this we see that the complement of a function is represented in the map by the
squares not marked by 1's. If we mark the empty squares by 0’s and combine them into valid
ac}J acent squares, we obtain a simplified expression of the complement of the function, i.e., of
F’. The complement of F” gives us back the function F. Because of the generalized DeM,ogg;n’s

theorem, the function so obtained is antomatically in the product of sums form. The best wa
to show this is by example. ’

. EXAMPLE 3.8
Simplify the following Boolean function in (a) sum of products and (b) product of sums:
F(A,B,C,D) = £(0,1,2,5,8,9, 10)

The I’s mgrkec? in the map of Fig. 3-14 represent all the minterms of the function. The squares
marked with (’s r.e;')resent the minterms not included in F and, therefore, denote the comple-
ment of F. Combining the squares with 1’s gives the simplified function in sum of products:
(a) F=BD + BC + ACD
It. the-squares marked with (’s are combined, as shown in the diagram, we obtain the
simplified complemented function:

"= AB+ CD + BD

Applying DeMprgan’s theorem (by taking the dual and complementing each literal as de-
. scribed in Section 2-4), we obtain the simplified functicn in product of sums:
(by F = (A’ + B'){(C' + D')(B + D)
B’

cD c
ap 00 01 11 . 10

ool t | 1 jlol| 1

0 0 1 0 0

uflo |l o 0 0

10| 1 1 0 1

D
FIGURE 3-14 :
Map for Example 3-8; F(A, B, C, D) = 3(0, 1, 2,5, 8,9, 10)
=BD + BC + ACD=(A + BYC + DVB + D)

T —

)
c—r_J

Chapter 3 Gate-Level Minimization

B A
. B —

(a) F=B'D'+ B'C'+ A'C'D

=P s >——— >+

(0) F= (A’ + B') (C' + D"} (B" + D)

FIGURE 3-15
Gate Implementation of the Function of Example 3-8

The implementation of the simplified expressions obtained in Example 3-8 is shown in
Fig. 3-15. The sum of products expression is implemented in (a) with a group of AND gates,
one for each AND term. The outputs of the AND gates are connected to the inputs of a single
OR gate. The same function is implemented in (b) in its product of sums form with a group of
OR gates, one for each OR term. The outputs of the OR gates are connected to the inputs of a
single AND gate. In each case, it is assumed that the input variables are directly available in
their complement, so inverters are not needed. The configuration pattern established in Fig. 3-15
is the general form by which any Boolean function is implemented when expressed in one of
the standard forms. AND gates are connected to a single OR gate when in sum of products; OR
gates are connected to a single AND gate when in product of suims. Either configuration forms
two levels of gates. Thus, the implementation of a function in a standard form is said to be a
two-level implementation.

Example 3-8 showed the procedure for obtaining the product of sums stmplification when
the function is originally expressed in the sum of minterms canonical form. The procedure is
also valid when the function is originally expressed in the product of maxterms canonical form.

Tabrle 3-2

Truth Table of Function F
X ¥ z F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
i 0 1 0
1 i t] 1
1 1 1 0

Section 3-4 Product of Sums Simplification 7.79

yz _ry
x 00 01 1 10

¢ 0O i 1 0

FIGURE 3-16
Map for the Function of Table 3-2

C(?nsider, for example, the truth table that defines the function F in Table 3-2. In sum of
minterms, this function is expressed as

Flx,y,z)
In product of maxterms, it is expressed as
F(x,y,2) = I1(0,2,5,7)

In other words, the 1’s of the function represent the minterms, and the 0’s represent the max-
terms. The map for this function is shown in Fig. 3-16. One can start simplifying this function
by first marking the 1’s for each minterm that the function is a4 1. The remaining squares are
marked by 0’s. If, on the other hand, the product of maxterms is initially givén, one can start
marking (s in those squares listed in the function; the remaining squares are then marked by
I’s. Once the 1’s and 0’s are marked, the function can be simplified in either one of the stan-
dard forms. For the sum of products, we combine the 1°s to obtain '

3(1.3,4,6)

F=xz+xz
For the product of sums, we combine the 0’s to obtain the simplified complemented function
Fr=xz+ %7

Which shows that the exclusive-OR function is the complement of the equivalence function (Sec-
tion 2-6). Taking the complement of F”, we obtain the simplified fonction in product of sums:

F={x+z2)x+z)

To enter a function expressed in product of sums in the map, take the complement of the func-
tion and from it find the squares to be marked by 0’s. For example, the function

F=(A+B+C)B+D)
can be entered in the map by first taking its complement,
F''= ABC + B'D

and then marking 0’s in the squares representing the minterms of F’. The remaining squares
are marked with 1’s. :

80

3-5

Chapter 3 Gate-Level Minimization

DON'T-CARE CONDITIONS

EXAMPLE 3-9

The logical sum of the minterms associated with a Boolean function specifies the conditions
under which the function is equal to 1. The function is equal to 0 for the rest of the minterms.
This assumes that all the combinations of the values for the variables of the function are valid.
In practice, there are some applications where the function is not specified for certain combi-
nations of the variables. As an example, the four-bit binary code for the decimal digits has six
combinations that are not used and consequently are considered as unspecified. Functions that
have unspecified outputs for some input combinations are called incompletely specified func-
tions. In most applications, we simply don’t care what value is assumed by the function for the
unspecified minterms. For this reason, it is customary to call the unspecified minterms of a
function don’t-care conditions. These don’t-care conditions can be used on a map to provide
further simplification of the Boolean expressiont.

It should be realized that a don’t-care minterm is 2 combination of variables whose logical
value is not specified. It cannot be marked with a 1 in the map because it would require that
the function always be a 1 for sach combination. Likewise, putting a 0 on the square requires
the function to be 0. To distinguish the don’t-care condition from 1’s and 0°s, an X is used.
Thus, an X inside a square in the map indicates that we don’t care whether the value oforl
is assigned to F for the particular minterm. -

When choosing adjacent squares 1o simplify the function in a map, the don’t-care minterms
may be assuined to be either 0 or 1. When simplifying the function, we can choose to include
each don’t-care minterm with either the 1’s or the 0’s, depending on which combination gives
the simplest expression.

Simplify the Boolean function
' Fw,x,,2) = 2(1,3,7,11,15)
which has the don’t-care conditions
d(w, x,5,2) = $(0,2,5)

The minterms of F .are the variable combinations that make the function equal to 1. The
minterms of d are the don’t-care mintering that may be assigned either O or 1. The map sim-
plification is shown in Fig. 3-17. The minterms of F are marked by Us, those of 4 are marked
by X’s, and the remaining squares are filled with 0’s. To get the simplified expression in sum
of products, we must include all five 1’s in the map, but we may or may not include any of the
X’s, depending on the way the function is simplified. The term yz covers the four minterms in
the third column. The remaining minterm s, can be combined with minterm m; to give the
three-literal term w'x’z. However, by including one or two adjacent X’s-we can combine four
adjacent squares to give a two-literal term. In part (a) of the diagram, don’t-care minterms 0
and 2 are included with the 1’s, which resulis in the simplified function

F=yz+ ' x

Section 3-5 Don’'t-Care Conditions a1 .

yz Y ' vz Y
We 00 01 11 10 e 00 01 1 10
00 [X 1 1 X ool Xx 1 {1} x
01| o X 1 0 01l o X 1 0

X X
11] 0O G 1 0 11| © 0 1 0
w w
0 o | o | L]]| 0 ' w| o | o |[1] o
Z Z
(a) F=yz + w'x' : (bYF=yz +w'z
FIGURE 3-17

. Example with don’t-care Conditions

In part (b), don’t-care minterm 5 is included with the 1's and the simpliﬁed.function now is
F=yz+ w2

Either one of the preceding two expressions satisfies the conditions stated for this example.

- The previous example has shown that the don’t-care minterms in the map are initially marked
with _X’s and are considered as being either O or 1. The choice between 0 and 1 is made de-
pend-m gon the way the incompletely specified function is simplified. Once the choice is made
the simplified function obtained will consist of a sum of minterms that includes those minterm;
that were initially unspecified and have been chosen to be included with the 1’s. Consider the
two simplified expressions obtained in Example 3-9: .

F(w,x,y,2) = yz + wx' = 2(0,1,2,3,7,11, 15)
F(w, x,y,z) =yz +wz= 2(1,3,57,11,15)

B0t13 express-ions include minterms 1, 3, 7, 11, and 15 that make the function I equal to 1. The
fion t-care minterms 0, 2, and 5 are treated differently in each expression. The first expre;:sion
1r.1c1udes minterms 0 and 2 with the 1°s and leaves minterm 5 with the 0’s. The second expres-
sion i-ncl}ldes minterm 5 with the 1’s and leaves minterms 0 and 2 with the 0’s. The two ex-
pressions represent two functions that are algebraically unequal. Both cover the specified
minterms of the fanction, but each covers different don’t-care minterms. As far as the incom-
pletely specified function is concerned, either expression is acceptable because the only dif-
ference is in the value of I for the don’t-care minterms.

82

3-6

Chapter 3 Gate-Level Minimization

It is also possible to obtain a simplified product of sams expression for th'e function of
Fig. 3-17. In this case, the only way to combine the 0's is to include don’t-care minterms 0 and
2 with the 0’s to give a simplified complemented function:

=7 +wy
Taking the complement of F’ gives the simplified expression in product of sums:
Flw, x,y,z) = z(w' +) = >(1,3,57,11,15)

For this case, we include minterms 0 and 2 with the 0’s and minterm 5 with the 1°s.

NAND AND NOR IMPLEMENTATION

Digital circuits are frequently constructed with NAND or NQR gates ratl.mr than with AND and
OR gates. NAND and NOR gates are easier to fabricate with e]ectromcl components and are
the basic gates used in all IC digital logic families, Because of the prominence of NAND and
NOR gates in the design of digital circuits, rules and procedures have been de.veloped for the
conversion from Boolean functions given in terms of AND, OR, and NOT into equivalent

NAND and NOR logic diagrams.

NAND Circuits

The NAND gate is said to be a universal gate because any digital system can be implemented
with it. To show that any Boolean function can be implemented with NAND gates,. we nt{ed
only show that the logical operations of AND, OR, and complgment can be ob.tamed with
NAND gates only. This is shown in Fig. 3-18. The complement operation 18 'obtamed' from a
one-input NAND gate that behaves exactly like an inverter. The AND operation requires two
NAND gates. The first produces the NAND operation and the seconc‘.l fnverts Fhe loglcal sense
of the signal. The OR operation is achieved through a NAND gate with additional 1nv_erters in

each input,

Inverter x —DO— x
AND W xy
¥

} xy)=x+ty

OR

FIGURE 3-18 _
Logic Operations with NAND Gates

Section 3-6 NAND and NOR Impiementation 83~

X — X
S Y Xy = (eyzy

(a) AND—invert (b) Invert-OR
FIGURE 3-19
Two Graphic Symbols for NAND Gate

A convenient way to implement a Boolean function with NAND gates is to obtain the sim-
plified Boolean function in terms of Boolean operators and then convert the function to NAND
logic. The conversion of an algebraic expression from AND, OR, and complement to NAND
can be done by simple circuit manipulation techniques that change AND-OR diagrams to
NAND diagrams. :

To facilitate the conversion to NAND logic, it is convenient to define an alternative graph-
ic symbol for the gate. Two equivalent graphic symbols for the NAND gate are shown in
Fig. 3-19. The AND-invert symbeol has been defined previously and consists of an AND graph-
ic symbol followed by a small circle negation indicator referred to as a bubble. Alternatively,
it is possible to represent a NAND gate by an OR graphic symbol that is preceded by a bubble
in each input. The invert-OR symbol for the NAND gate follows DeMorgan’s theorem and the
convention that the negation indicator denotes complementation. The two graphic symbols’
representations are useful in the analysis and design of NAND circuits. When both symbols are
mixed in the same diagram, the circuit is said to be in mixed notation. '

Two-Level Implementation

The implenentation of Boolean functions with NAND gates requires that the function be in sum
of products form. To see the relationship between a sum of product expression and its equiva-
lent NAND implementation, consider the logic diagrams drawn in Fig. 3-20. All three dia-
grams are equivalent and implement the function

F=AB+CD

The function is implemented in (a) with AND and OR gates. In (b), the AND gates are re-
placed by NAND gates and the OR gate is replaced by an NAND gate with an OR-invert graph-
ic symbol. Remember that a bubble denotes complementation and two bubbles along the same

. L
’ ¢ — —F c }'F
DDI

D — i —

(2) () ©
FIGURE 3-20
Three Ways to Implement F = AB + CD

84

" EXAMPLE 3-10

Chapter 3 Gate-Level Minimization

line represent double complementation s0 both can be removed. Rer}novin g the bubbles on the
gates of (b) produces the circuit of (a). Therefore, the two diagrams implement the same tunc-
tion and are equivalent. ‘ '

In Fig. 3-20(c), the output NAND gate is redrawn with the AND-mverF graphic symbol.
When drawing NAND logic diagrams, the circuit shown in either (b) or (c)_ is acceptable. The
one in (b) is in mixed notation and represents a More direct relationship w1t.h the Boolea_m ex-
pression it implements. The NAND implementation in Fig. 3-20(c) can be verified algebraica}ly.
The function it implements can be easily converted to a sum of products form by using

DeMorgan’s theorem:
F = ((ABy(CDY) = AB+ CD

Implement the following Boolean function with NAND gates:
F(x,5,2) = (1,2,3,45 7)

The first step is to simplify the function in sum of products. This is done by means of the map
of Fig. 3-21(a) from which the simplified function is obtained:

F=xy +xy+z

The two-level NAND jmplementation is shown in Fig. 3-21(b)in mixed notation. Note that input
z must have a one-input NAND gate (inverter) to compensate for the bubble in the second level

¥

¥z P

_bg 01 1 10
er IEHIE
xll\ 1 1

F=xy +xy+tz

(a)
x X
¥ r
xl F X F
y Y
z 7'
(b) ©

FIGURE 3-21
Solution to Example 3-10

Section 3-6 NAND and NOR Implementation 85

aate. An alternative way of drawing the logic diagram is shown in Fig. 3-21(c}). Here all the
NAND gates are drawn with the same graphic symbol. The inverter with input z has been re-
moved, but the input variable is complemented and denoted by Z'.

The procedure described in the previous example indicates that a Boolean function can be
implemented with two levels of NAND gates. The procedure for obtaining the logic diagram
from a Boolean function is as follows:

1. Simplify the function and express it in sum of products,

2. Draw a NAND gate for each product term of the expression that has at least two literals.
The inputs to each NAND gate are the literals of the term. This constitutes a group of first-
level gates. '

3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the second
fevel, with inputs coming from outputs of first level gates.
4. A term with a single literal requires an inverter in the first level. However, if the single

literal is complemented, it can be connected directly to an input of the second level
NAND gate.

Multilevel NAND Circuits

The standard form of expressing Boolean functions results in a two-level implementation.
There are occasions when the design of digital systems results in gating structures with three
or more levels, The most common procedure in the design of multilevel circuits is to express
the Boolean function in terms of AND, OR, and complement operations. The function can then
be implemented with AND and OR gates. Then, if necessary, it can be converted into an all-
NAND circuit. Consider for example the Boolean function:

F = A(CD + B) + BC

Although it is possible to remove the parentheses and reduce the expression into a standard sum
of products form, we choose to implement it as a multilevel circuit for illustration. The AND-
OR implementation is shown in Fig. 3.22(a). There are four levels of gating in the circuit. The
first evel has two AND gates. The second level has an OR gate followed by an AND gate in
the third level and an OR gate in the fourth level. A logic diagram with a pattern of alternate
fevels of AND and OR gates can be easily converted into a NAND circuit by using the mixed
notation. This is shown in Fig. 3-22(b). The procedure Is to change every AND gate to an AND-
invert graphic symbol and every OR gate t0 an invert-OR graphic symbol, The NAND circuit
performs the same logic as the AND-OR diagram as long as there are two bubbles along the
same line. The bubble associated with input B causes an extra complementation, which must
be compensated by changing the input literal to B'.

The general procedure for converting a multilevel AND-OR diagram into an all-NAND di-
agram using mixed notation is as follows:

1. Convert all AND gates to NAND gates with AND-invert graphic symbols.
2. Convert all OR gates to NAND gates with invert-OR graphic symbols.

86 Chapter 3 Gate-Level Minimization

= o2 wm TN

—)
o—1

{a) AND-OR gates

B—
— | >

FIGURE 3-22
implementing F = A(CD + B) + BC

(b) NAND gates

3. Check all the bubbles in the diagram. For every bubble that is not compensated by an-
other small circle along the same line, insert an inverter (one-input NAND gate) or com-
plement the input literal. :

As another example, consider the multilevel Boolean function
F = (AB" + A'B)(C + D)

The AND-OR implementation is shown in Fig. 3-23(a) with three levels of gating. The con-
version into NAND with mixed notation is presented in part (b) of the diagram. The two ad-
ditional bubbles associated with inputs C and 1) cause these two literals to be complemented
to C' and D. The bubble in the output NAND gate complements the output value, so we need
to insert an inverter gate at the output in order to complement the signal again and get the orig-
inal value. :

NOR Implementation

The NOR operation is the dual of the NAND operation. Therefore, all procedures and rules for
NOR logic are the dual of the corresponding procedures and rules developed for NAND logic.
The NOR gate is another universal gate that can be used to implement any Boolean function.
The implementation of the complement, OR, and AND operations with NOR gates is shown
in Fig. 3-24. The complement operation is obtained from a one-input NOR gate that behaves

Section 3-6 NAND and NOR Implementation 87

)

(a) AND-OR gates

{b) NAND gates

FIGURE 3-23
Implementing F = (AB' + A'B)(C + D)

Inverter x

—{>o—
ORiﬂ L >o——xty

AND (x' +y) =xy

FIGURE 3-24
Logic Operations with NOR Gates

exactly like an inverter, The OR operation requires two NOR gates and the AND operation is
obtained with a NOR gate that has inverters in each input.

The two graphic symbols for the mixed notation are shown in Fig. 3-25. The OR-invert
symbol defines the NOR operation as an OR followed by a complement. The invert-AND Sym-

"bol complements each input and then performs an AND operation. The two symbols designate

the same NOR operation and are logically identical because of DeMotgan’s theorem.

88 Chapter 3 Gate-Level Minimization .
Section 3-7 Other Two-Level Implementations 89
X x — B
yEDO—(X+y+Z)’ y— F——xy'? =ty sy AT =9
E4 7 ——0 B —d
(a) OR~invert (b) Invert-AND A —= —o} F
B —
FIGURE 3-25
Two Graphic Symbols for NOR Gate c
o >
FIGURE 3-27

=10

FIGURE 3-26
Implementing F = (A + B)(C + D)E

" A two-level implementation with NOR gates requires that the funciion be simplified in
product of sums. Remember that the simplified product of sums expression is obtained from
the map by combining the 0’s and complementing. A product of sums expression is imple-
mented with a first level of OR gates that produce the sum terms followed by a second level
AND gate to produce the product. The transformation from the OR-AND diagram to a NOR
diagram is achieved by changing the OR gates to NOR gates with OR-invert graphic symbols
and the AND gate to a NOR gate with an invert- AND graphic symbol. A single literal term going
into the second-level gate must be complemented. Fig. 3-26 shows the NOR implementation
of a function expressed in product of sums:

F=(A+ B)(C + D)E

The OR-AND pattern can be easily detected by the removal of the bubbles along the same
line. Variable E is complemented to compensate for the third bubble at the input of the second-
level gate.

The procedure for converting a multilevel AND-OR diagram to an all NOR diagram is sim-
ilar to the one presented for NAND gates. For the NOR case, we must convert each OR gate
to an OR- invert symbol and each AND gate to an invert-AND symbol. Any bubble that is not
compensated by another bubble along the same line needs an inverter or the complementation
of the input literal.

3-7

Implementing F = (AR + A'B)(C + D') with NOR Gates

OTHER TWO-LEVEL IMPLEMENTATIONS

The types of gates most often found in integrated circuits are NAND and NOR. For this rea-
son, NAND and NOR logic implementations are the most important from a practical point of
view. Some NAND or NOR gates (but not ail) allow the possibility of a wire connection be-
twieen the outputs of two gates to provide a specific logic function. This type of logic is called
wz.red logic. For example, open-collector TTL NAND gates, when tied together, perform the
W}red—AND logic. (The open-collector TTL gate is shown in Chapter 10 Fig.’ 10-11.) The
aned-AND logic performed with two NAND gates is depicted in Fig. 3-28&a). The AND gate
is drawn with the lines going through the center of the gate to distinguish it from a conventional
gate. The wired-AND gate is not a physical gate, but only a symbol to designate the function

obta.ined from the indicated wired connection. The logic function implemented by the circuit
of Fig. 3-28(a) is

F = (ABY - (CDY' = (AB + CDY

and is called an AND-OR-INVERT function.

_ Simﬂarly,'the NOR output of ECL gates can be tied together to perform a wired-OR func-
tion, The logic function implemented by the circuit of Fig. 3-28(b) is

F=(A+B)+(C+D)y=[(A+B)(C+D)]
and is called an OR-AND-INVERT function.

F=(AB + CDY

C

’21} o
)

The transformation of the AND-OR diagram of Fig. 3-23(a) into a NOR diagram is shown
in Fig. 3-27. The Boolean function for this circuit is

F = (AR + AB)(C + D)

D

[}F 4 +BY(C + DY

(a) Wired-AND in open-collector

hibiie s (b) Wired-OR in ECL gates

(AND-OR-INVERT)

FIGURE 3-28
Wired Logic

The equivalent AND-OR diagram can be recognized from the NOR diagram by removing all
the bubbles. To compensate for the bubbles in four inputs, it is necessary to complement the
corresponding input literals.

(OR-AND-INVERT)

90 Chapter 3 Gate-Level Minimization : Section 3-7 Qther Two-Level Implementations 91

A —]

A wired-logic gate does not produce a physical second-level gate since it is just a wire con- A —} A
B —

nection. Nevertheless, for discussion purposes, we will consider the circuits of Fig. 3-28 as B _‘
two-level implementations. The first level consists of NAND (or NOR) gates and the second
level has a single AND (or OR) gate. The wired connection in the graphic symbol will be omit-

. . . ¢ —
ted in subsequent discussions, F ¢ Ld C]
D—] F F
D R D —

Nondegenerate Forms

B —

It will be instructive from a theoretical point of view to find out how many two-level combi-

nations of gates are possible. We consider four types of gates: AND, OR, NAND, and NOR. (2) AND-NOR (b) AND-NOR

If we assign one type of gate for the first level and one type for the second level, we find that (¢) NAND-AND

there are 16 possible combinations of two-level forms. (The same type of gate can be in the first FIGURE 3-29

and second levels, as in NAND-NAND implementation.) Eight of these combinations are said AND-OR-INVERT Circuits; F = (AB + CD + Ey’

to be degenerate forms because they degenerate to a single operation. This can be seen from a

circuit with AND gates in the first level and an AND gate in the second level. The output of the removed provided input £ is complemented. The circuit of Fig. 3-29(c) is a NAND-AND form

circuit is merely the AND function of all input variables. The other eight nondegenerate forms and was shown in Fig. 3-28 to implement the AND- OR-INVERT function.

produce an implementation in sum of products or product of sums. The eight nondegenerate An AND-OR implementation requires an expression in sum of productsr. The AND-OR-

forms are as follows: INVERT: implementation is similar except for the inversion. Therefore, if the complement of
AND-OR OR-AND :?Eliugcitis;;ﬁ;ﬁpgﬁi?t;ﬂtiii;%31'8%11;2‘3 rt(té}f(_ sg;r}fbini?g thsv(%; 8 il‘lFt'he map), tilt will be pos-

- unction, en F' passes through the al-

NAND-NAND NOR-NOR ways present output inversion (the INVERT part), it will generate the ou{[?put Fof thegfuncfi:rll
NOR-OR NAND-AND An example for the AND-OR-INVERT implementation will be shown subsequent]y. ‘
OR-NAND AND-NOR

The first gate listed in each of the forms constitutes a first level in the implementation. The sec- OR-AND-INVERT Implementation

ond gate listed is a single gate placed in the second level. Note that any two forms listed in the
same line are the duals of each other. :

The AND-OR and OR-AND forms are the basic two-level forms discussed in Section 3-4.
The NAND-NAND and NOR-NOR forms were presented in Section 3-6. The remaining four
forms are investigated in this section. | F =[(A+ B)(C + D)E]

AND-OR-INVERT Implementation 2 4 :D7 A :DO*
. _ B B

The two forms NAND-AND and AND-NOR are equivalent forms and can be treated togeth- _
er. Both perform the AND-OR-INVERT function, as shown in Fig. 3-29. The AND-NOR form : c

resembles the AND-OR form with an inversion done by the bubble in the output of the NOR D }} F ¢ m;: ¢
gate. Tt implements the function ! : D D F

F=(AB+CD+EY

By using the alternate graphic symbol for the NOR gate, we obtain the diagram of e E E— E —[>0—
Fig. 3-29(b). Note that the single variable £ is rnot complemented because the only change :
made is in the graphic symbol of the NOR gate. Now we move the bubble from the input ter-
minal of the second-level gate to the output terminals of the first-level gates. An inverter is
needed for the single variable to compensate for the bubble. Alternatively, the inverter can be

’-I'he'OR-NAND and NOR-OR forms perform the OR-AND-INVERT function. This is shown
in Fig. 3-30. The OR-NAND form resembles the OR-AND form, except-for the inversion done
by the bubble in the NAND gate. Tt implements the function

(2) OR-NAND (6) OR-NAND (@ NOR-OR

FIGURE 3-30 ,
OR-AND-INVERT Circuits; F = [(A + B)(C + D))

92 Chapter 3 Gate-Level Minimization

Table 2-3
Implementation with Other Two-Level Forms
Equivalent implements Simplify To Get
Nondegenerate the F’ an Output
Form Function in of
(@} (b)”
AND-NOR NAND-AND AND-OR-INVERT Sum of products F
by combining 0's
in the map
OR-NAND NOR-OR OR-AND-INVERT Product of sums by F

combining §’s in
the map and then
complementing

#Form (b} requires an inverter for a single literal term.

By using the alternate graphic symbol for the NAND gate, we obtain the diagram of

Fig. 3-30(b). The circuit in (c) is obtained by moving the small circles from the inputs of the
second-level gate to the outputs of the first-level gates. The circuit of Fig, 3-30(c) is a NOR-
OR form and was shown in Fig. 3-28 to implement the OR-AND-INVERT function.

The OR-AND-INVERT implementation requires an expression in product of sums. If the
complement of the function is simplified in product of sums, we can implement F* with the OR-
AND part of the function. When F’ passes through the INVERT part, we obtain the comple-
ment of F', or F, in the output.

Tabular Summary and Example

Table 3-3 summarizes the procedures for implementing a Boolean function in any one of the
four two-level forms. Because of the INVERT part in each case, it is convenient to use the sim-
plification of F” (the complement) of the function. When ¥ " is implemented in one of these
forms, we obtain the complement of the function in the AND-OR or OR-AND form. The four
two-level forms invert this function, giving an output that is the complement of F”. This is the
normal output F. : '

- 'EXAMPLE 3-11

Implement the function of Fig. 3-31(a) with the four two-level forms listed in Table 3-3.
The complement of the function is simplified in sum of products by combining the 0’s in the map:

Fr=x'y+xy +z
The normal output for this function can be expressed as
F=(sy+xy+z)

which is in the AND-OR-INVERT form. The AND-NOR and NAND-AND implementations
are shown in Fig. 3-31(b). Note that a one-input NAND or inverter gate is needed in the NAND-

Section 3-7 Other Two-Level Implementations 93

¥z Y
00 01 11 10

0] 1 0 0] 0 F=x'y'z" + xyz’

F=xy+xy+z

z
(a) Map simplification in sum of products.

= T

AND-NOR NAND-AND
(by F=(x'y + xy" + 2}

D

OR-NAND NOR-OR
@F=[x+y+2) & +y +2)

FEGURE 3-31
Other Two-level Implementations

AND implementation, but not in the AND-NOR case. The inverter can be removed if we apply
the input variable 7' instead of z.

Tl}e QR—AND—INVERT forms require a simplified expression of the complement of the
function in product of sums. To obtain this expression, we first combine the 1°s in the map
F = x.'y.'zl‘ + xyzf
Then we take the complement of the function

F=x+y+ +y+2)

94 Chapter 3 Gate-tevel Minimization ' Section 3-8 Exclusive-OR Function 95

The normal output F can now be expressed in tﬁe form -
F=lx+y+@+y -3l

which is in the OR-AND-INVERT form. From this expression, we cail implement the function
in the OR-NAND and NOR-OR forms, as shown in Fig. 3-31(c).
|

EXCLUSIVE-OR FUNCTION

The exclusive-OR (XOR), denoted by the symbol &, is a logical operation that performs the
following Boolean operation:
| Dy =xy +x'y
It is equal to 1 if only x is equal to T'or if only y is equal to 1, but not when both are equal to
1. The exclusive-NOR, also known as equivalence, performs the following Boolean operation:
(x®y) = xy + XY
It is equal to 1 if both x and y are equal to 1 or if both are equal to 0. The exclusive-NOR can
be shown to be the complement of the exclusive-OR by means of a truth table or by algebraic
manipulation:
(x@®y) = (xy + X)) =@ +yE+y) =~ X'y
The following identities apply to the exclusive-OR operation:
xE&0 =
Dl =
xBx =
x®x =
x@y =By = (x9y)
Any of these identities can he proven by using a truth table or by replacing the & operation by

its equivalent Boolean expression. It can be shown also that the exclusive-OR operation is both
commutative and associative; that is,

= IR T

AGR=B®A
an'd _
(ADB)BC = AB(BOC) = ADBBC

This means that the two inputs to an exclusive-OR gate can be interchanged without affecting
the operation. It also means that we can evaluate a three-variable exclusive-OR operation in any
order and for this reason, three or more variables can be expressed without parentheses. This
would imply the possibility of using exclusive-OR gates with three or more inputs. However,
multiple-input exclusive-OR gates are difficult to fabricate with hardware: In fact, even a two-
input function is usually constructed with other types of gates. A two-input exclusive-OR func-

] O
) e
y — D_
(a) With AND-OR-NOT gates
T By
1 D

FIGURE 3-32
“Exclusive-OR Implementations

(b) With NAND gates

tion is constructed with conventional gates using two inverters, two AND gates, and an OR
gate, as shown in Fig. 3-32(a). Figure 3-32(b) shows the implementation of the exclusive-OR
with four NAND gates. The first NAND gate performs the operation {xy)" = (x' + y'). The
other two-level NAND circuit produces the sum of products of its inputs: '

(x + Y+ (¥ Yy =0 Ay = 1Sy

Only a limited number of Boolean functions can be expressed in terms of exclusive-OR op-
erations. Nevertheless, this function emerges quite often during the design of digital systems.
It is particularly useful in arithmetic operations and error-detection and correction circuits.

Odd Function

The exclusive-OR operation with three or more variables can be converted into an ordinary
Boolean function by replacing the & symbol with its equivalent Boolean expression. In par-
ticular, the three-variable case can be converted to a Boolean expression as follows:
ABBOC = (AB' + AB)C' + (AB + A'B)C
= AB'C' + A'BC' + ABC + A'B'C
= 3(1,2,4,7)

The Boolean expression clearly indicates that the three-variable exclusive-OR function is equal
to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Centrary to the two-

Chapter 3 Gate-Level Minimization

BC B BC B

A 00 01 11 14 A 00 01 11 10

0 1 1 al 1 1
Al 1 1 Aql 1 1

C C
(a) Odd function (a) Even function
F=AGB®C F=(AGBSC)
FIGURE 3-33

Map for a Three-variable Exclusive-OR Function

variable case, where only one variable must be equal to 1, in the three or more variable case,
the requirement is that an odd number of variables be equal to 1. As a consequence, the mul-
tiple-variable exclusive-OR operation is defined as an odd function.

The Boolean function derived from the three-variable exclusive-OR operation is expressed
as the logical sum of four minterms whose binary numerical values are 001, 010, 100, and 111.
Fach of these binary numbers has an odd number of 1’s. The other four minterms not includ-
ed in the function are 000, 011, 101, and 110, and they have an even number of 1’s in their bi-
nary numerical values. In general, an n-variable exclusive-OR function is an odd function
defined as the logical sum of the 2"/2 minterms whose binary numerical values have an odd
number of 1’s.

The definition of an odd function can be clarified by plotting it in a map. Figure 3-33(a)
shows the map for the thres-variable exclusive-OR function. The four minterms of the func-
tion are a unit distance apart from each other. The odd function is identified from the four
minterms whose binary values have an odd number of 1's. The complement of an odd function
is an even function. As shown in Fig. 3-33(b), the three-variable even function is equal to 1 when
an even namber of variables is equal to 1 (including the condition that none of the variables is
equal to 1).

The 3-input odd function is implemented by means of 2-input exclusive-OR gates, as shown
in Fig. 3-34(a). The complement of an odd function is obtained by replacing the output gate
with an exclusive-NOR gate, as shown in Fig. 3-34(b).

(a) 3-input odd function (b} 3-input even function

- FIGURE 3-34
Logic Diagram of Odd and Even Functions

Section 3-8 Exclusive-OR Function 97

cp ¢ o cD ¢
1
AB 00 0 1-1 10 AB 00 01 11 10
00 1 1 00 1 1
01 1 1 01 1 1
B B
11 1 1 11 1 1
A A
10 1 1 10 1 1
D D
(a) Odd function (b} Even function
F=A®&B&C8D ' F={A®B@®CDDY
FIGURE 3-35

Map for a Four-variable Exclusive-OR Function

Consider now the the four-variable exclusive-OR operation. By algebraic manipulation, we
can obtain the sum of minterms for this function:

A@BEBCEBD—(AB’+AB)€5‘(CD’+CD) _
(AB' + A'B)(CD + C'D') + (AB + AB)(CD' + C'D)
$(1,2,4,7,8,11,13, 14)

There are 16 minterms for a four-variable Boolean function. Half of the minterms have bi-
nary numerical values with an odd number of 1’s; the other half of the minterms have binary
numerical values with an even number of 1’s. When plotting the function in the map, the bi-
nary numerical value for a minterm is determined from the row and column nembers of the
square that represents the minterm. The map of Fig. 3-35(a) is a plot of the four-variable ex-
clusive-OR function. This is an odd function becanse the binary values of all the minterms
have an odd number of 1's. The complement of an odd fanction is an even function. As shown
in Fig. 3-35(b), the four-variable even function is equal to 1 when an even number of variables
is equal to 1.

Parity Generation and Checking

Exclusive-OR functions are very useful in systems requiring error-detection and correction
codes. As discussed in Section 1-7, a parity bit is used for the purpose of detecting errors dur-
ing transmission of binary information. A parity bit is an extra bit included with a binary mes-
sage to make the number of 1’s either odd or even. The message, including the parity bit, is
transmitted and then checked at the receiving end for errors. An error is detected if the checked
parity does not correspond with the one transmitted. The circuit that generates the parity bit in
the transmitter is called a parity generator. The circuit that checks the parity in the receiver is
called a parity checker. :

98

Chapter 3 Gate-Level Minimization

Table 3-4
Even-Parity-Generator Truth Table
Three-Bit Message Parity Bit
X Y z r
0 0 0 0
0 0 I 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

As an example, consider a 3-bit message to be transmitted together with an even parity bit.
Table 3-4 shows the truth table for the parity generator. The three bits—x, ¥, and z—-constitute
the message and are the inputs to the circuit. The parity bit P is the output. For even parity, the
bit P must be generated to make the total number of 1°s even (including P). From the truth table,
we see that P constitutes an odd function because it is equal to 1 for those minterms whose nu-
merical values have an odd number of 1’s. Therefore, P can be expressed as a three-variable
exclusive-OR function:

P=xdy®dz

The logic diagram for the parity generator is shown in Fig. 3-36(a).

The three bits in the message, together with the parity bit, are transmitted to their destina-
tion, where they are applied to a parity-checker circuit to check for possible errors in the trans-
mission. Since the information was transmitted with even parity, the four bits received must have
an even number of 1’s. An error occurs during the transmission if the four bits received have
an odd number of 1’s, indicating that one bit has changed in value during transmission. The out-
put of the parity checker, denoted by €, will be equal to 1 if an error occurs, that is, if the four
bits received have an odd number of 1’s. Table 3-3 is the truth table for the even-parity check-
er. From it we see that the function C consists of the eight minterms with binary numerical

R
-
=
O

&~

(a) 3-bit even parity generator (b) 4-bit even parity checker

FIGURE 3-36
Logic Diagram of a Parity Generator and Checker

Section 3-2 Hardware Description Language (HDL) 99

Table 3-5 o
Even-Parity-Checker Truth Table.
Four Bits . Parity Error
Received ' Check

x ¥ z P C
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 I 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0

1 0 1 0 0

1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 ¢ 1
1 1 1 1 0

values having an odd number of 1°s. This corresponds to the map of Fig. 3-35(a), which rep-
resents an odd function. The parity checker can be implemented with exclusive-OR gates:

C=xDyPzBP

The logic diagram of the parity checker is shown in Fig. 3-36(b).

It is worth nothing that the parity generator can be implemented with the circuit of
Fig. 3-36(b) if the input P is connected to logic-0 and the output is marked with P. This is be-
cause z B0 = z, causing the value of z to pass through the gate unchanged. The advantage of
this is that the same circuit can be used for both parity generation and checking.

It is obvious from the foregoing example that parity generation and checking circuits always
have an output function that includes half of the minferms whose namerical values have either
an odd or even number of 1’s. As a consequence, they can be implemented with exclusive-OR
gates. A function with an even number of 1°s is the complement of an odd function. It is im-
plemented with exclusive-OR gates, except that the gate associated with the output must be-an
exclusive-NOR to provide the required complementation,

HARDWARE DESCRIPTION LANGUAGE (HDL)

A hardware description language is a langoage that describes the hardware of digital systems
in a textual form. Ii resembles a programming language, but is specifically oriented to de-
scribing hardware structures and behavior. It can be used to represent logic diagrams, Boolean

100

Chapter 3 = Gate-Level Minimization

expressions, and other more complex digital circuits. As a documentation language, HDI. is used
to represent and document digital-systems in a form that can be read by both humans and com-
puters and is suitable as an exchange language between designers. The language content can
be stored and retrieved easily and processed by computer. software in an efficient manner. There
are two applications of HDL processing: simulation and synthesis.

Logic simulation is the representation of the structure and behavior of a digital logic system
through the use of a computer. A simulator interprets the HDL description and produces read-
able output, such as a timing diagram, that predicts how the hardware will behave before it is
actually fabricated. Simulation allows the detection of fanctional errors in a design without
having to physically create the circuit. Errors that are detected during the simulation can be cor-
rected by modifying the appropriate HDL statements. The stimulus that tests the functionali-
ty of the design is called a test bench. Thus, to simulate a digital system, the design is first
described in HDL and then verified by simulating the design and checking it with a test bench,
which is also written in HDL.

Logic synthesis is the process of deriving a list of components and their interconnections
(called a netlisi) from the model of a digital system described in HDL. The gate-level netlist can
be used to fabricate an integrated circuit or to lay out a printed circuit board. Logic synthesis is
similar to compiling a program in a conventional high-level language. The difference is that, in-
stead of producing an object code, logic synthesis produces a database with instructions on how
to fabricate a physical piece of digital hardware that implements the statements described by
the HDL code. Logic synthesis is based on formal exact procedures that implement digital cir-
cuits and consists of that part of a digital design that can be automated with computer software.

There are many proprietary HDLs in industry developed by companies that design, or
help in the design of integrated circuits. There are two standard HDLs that are supported by
IEEE (Institute of Electrical and Electronics Engineers): VDL and Verilog HDL. VHDL is
a Department of Defense-mandated language. (The V in VHDL stands for the first letter in
VHSIC, an acronym for Very High Speed Integrated Circuits.) Verilog began as a propri-
ctary HDL promoted by a company called Cadence Data Systems, but Cadence transferred
control of Verilog to a consortium of companies and universities known as Open Verilog In-
ternational (OVI). VHDL is a harder language to learn than Verilog. Because Verilog is an
easier langnage to learn and use, we have chosen it for this book. However, the Verilog HDL
descriptions listed throughout the book are not just about Verilog, but rather to introduce the
concept of computer-aided representation of digital systems by means of a typical hardware
description language. ‘

Module Representation

Veritog HDL has a syntax that describes precisely the legal constructs that can be used in the
language. In particular, Verilog uses about 100 keywords—predefined, lowercase, identifiers that
define the language constructs. Examples of keywords are module, endmodule, input, output,
wire, and, or, not, etc. Any text between two slashes (//) and the end of the line is interpreted
as a comment. Blank spaces are ignored and names are case sensitive, which means that up-
percase and lowercase letters are distinguishable. A module is the building block in Verilog. It

Section 3-9 Hardware Description Language (HDL) 101

is declared by the keyword module and is always terminated by the keyword eﬁdmodule. We
will show now a simple example to illustrate some aspects of the language.
The HDL description of the circuit of Fig. 3-37 is shown in HDL Example 3-1. The line with

two-slashes is a.comment that explains the function of the circuit. The second line declares the

module together with a name and a port list. The name (smpl_cireuit-in this case) is an
identifier that is used to reference the module. Identifiers are names given to variables so that
they can be referenced in the design. They are made up of alphanumeric characters and the un-
derscore {_) and are case sensitive. Identifiers must start with an alphabetic character or an un-
derscore. They cannot start with a number. The port list provides the interface by which the
module communicates with the environment. In this example, the ports are the inputs and out-
puts of the circuit. The port list is enclosed in parentheses and commas are used {0 separate el-
ements of a list. The statement is terminated with a semicolon (;). All keywords (which must
be in lowercase) are printed in bold for clarity, but this is not a requirement of the language.
Next, the input and ontput declarations define which of the ports are inputs and which are out-
puts. Internal connections are declared as wires. The circuit has one internal connection at ter-
minat e and is declared with the keyword wire. The structure of the circuit is specified with the
predefined primitive gates as keywords. Each gate declaration consists of an optional name
{such as g1, g2, etc.) followed by the gate output and inputs separated with commas and enclosed
in parentheses. The output is always listed first, followed by the inputs. For example, the OR
gate is named g3, has output x, and inputs e and y. The module description ends with the key-
word endmodule. Note that each statement is terminated with a‘semicolon, but there is no
semicolon after endmodule. : oo

HDE. Example 3-1

//Description of simple circuit Fig. 3-37
module smpl_circuit(a,B,C,x®,.¥):

input A,B,C;

output x,y;

wire e;

and gl{e,A,B);

not g2(y, C);

or g3(x.e,v}:

endmodule
A A—ﬁl e .
LT —
c l@c y

FIGURE 3-37
Circuit to Demonstrate HDL

102 Chapter 3 Gate-Level Minimization ' Section3-9 Hardware Description Language (HDL) 103

Gate Delays r‘Q s s _ HDL Example 3-3
When HDL is used during simulation, it is sometimes necessary to specify the amount of-delay

. . . . //8timulug for simple circuit
from the input to the output of gates. In Verilog, the delay is specified in terms of time units

module stimcrctr?Wha & e
and the symbol #. The association of a time unit with physical time is made using the ‘timesc:llle g, bt —\ xeg 1B, C; o 7 | K\Q»é
compiler directive. (Compiler directives start with the * {backquote) symbol.) Such a directive e oy wiTe X,y f_?\b;\\ &
is specified before a module declaration. An example of a timescale directive is: St circuit with delay cwd(a,B,C,%,v);
’ initial
“timescale 1ns/100ps beoin
The first nymbey specifies the unit of measurement for time delays. The second number spec- A = 1'b0; B = 1'b0; € = 1'b0;
ifies the pr%‘%i' #5n for which the delays are rourfided off, in this case to 0.1 ns. If no timescale #100

A =1'bhl; B
#100 $£finish;

L . - . — . 1'bl; C = 1'b1;
is specified, the simulator defaults to a certain time unit, usually 1 ns. (Ins = 10 ? sec). In this

ook, we will assume the default time unit.

HDL Example 3-2 repeats the description of the simple circuit with delays specifie.d for end:‘;:ule
each gate. The AND, OR, and NOT gates have a time delay of 30, 20, and 10 ns, respectively. \
If the circuit is simulated and the inputs change from 000 to 111, the cutputs change as shown) /Description of circuit with delay
in Table 3-6. The output of the inverter at y changes from 1 to 0 after a 10 ns delay. The out- module circuit with delay (A,B,C,x,v) ;
put of the AND gate at ¢ changes from 0 to 1 after a 30 ns delay. The output of the OR gate at . input a,3,C;
‘] output =, v;
W\\Vﬂk e . wire e;
AN \\O\T"{;_M__Q.,{% ‘g{)k{ HDL Example 3-2 and #(30) gl{e,A,B);
U or #(20) g3i{x,e,v);
: \ﬁ‘ //Description of circuit with delay . not #(10) g2{yv,C);
module circuit_with delay (A,B.C,x%x,v): Y " endmodule
input A,B,C; ’ \ .._—‘?
output x,v; i "';‘l
wire e; [o
and #(30) gl{e,A,B); J x changes from 1 to 0 at ¢+ = 30 ns, and then changes back to 1 att = 50 ns. In both cases, the
or #(20) g3(x,e.¥); 5 change in OR gate output results from a change in its inputs 20 ns earlier. It is clear from this
not #{10) g2(y,C); o) result that although output x eventually retwns to 1 after the input changes, the gate delays
endmodule - produce a 20 ns negative spike before that happens. .

o In order to simulate a circuit with HDL, it is necessary to apply inputs to the circuit f(‘)‘l—"t._hw% /{9‘@;,

simulator to generate an output response. An HDL description that provides the stimuluStoa =t
Table 3-6 _ design is called a fest bench. The writing of test benches is explatned at tf e‘nd of Section 4-11.
Qutput of Gates After Delay : Here we demonstrate the procedure with a simple example without dwellifig on too many de-
tails. HDL Example 3-3 shows a test bench for simulating the circuit with delay. Two modules
. i are included: a stimulus module and the circuit description module, The stimulus module
(ns) ABC yex s stimcrct has no ports. The inguts to the gircuit are declareMth a reg keyword and the out-
e puis with a wire keyword. The circuit_with delay isinstantiated with the name cwd.

Time Units Input Output

Initial .- 000 101 TThe mieraction-between the stimulus module and the circuit module is demonstrated in
Change - 111 101 Fig. 4-33.) The initial statement specifies the inputs between the keywords begin and end,
10 L1t 001 Initially, ABC = 000. (A, B, and C are each set to 1'b0,.which signifies one binary digit with

) 20 11 8 ? é a value of 0.) After 100 ns, the inputs change to ABC ="T11. After another 100 ns, the simu-

' ig ﬂ} 010 lation terminates. ($finish is a system task.) The timing diagram that results from the simula-

50 111 011 tion is shown in Figure 3-38. The total simulation takes 200 ns. The inputs A, B, and C change

from 0 to 1 after 100 ns.-Output y is unknown for the first 10 ns, and output x is unknown for

104 Chapter3 Gate-Level Minimization

Ons 20ns 40ns. 6(ns 80ns 100ns 120ns 140ns 160ns 180ns
Ll e bveve v e b v s b e P rr e el gl

stimerct. A /

stimerct. B /) 5o - :
stimeret,C /

stimeret.x ! {

stimcret.y \

FIGURE 3-38

Simulation O

utput of HDL Example 3-3

the first 30 ns. Qutput y goes from 1 to 0 at 110 ns. Output x goes from 1 to 0 at 130 ns and
back to 1 at 150 ns, just as we predicted in Table 3-6.

Boolean Expressions

Boolean expressions are specified in Verilog HDL with a continuous assignment statement
consisting of the keyword assign followed by a Buolean-expression. To dishinguish the arith-
metic plus from logical OR, Verilog HDL uses the symbols (&), QL and (=) for AND, OR,
and NOT (complement), respectively. Thus, to describe the simple circuit of Fig. 3-37 with a

Boolean expression we use the statement ‘

assign x = (A & B) | ~C;

HDL Example 3-4 shows the description of a circuit that is specified with the following two

Boolean expressions:
. x = A+ BC + B'D
y = B'C + BC'D'

HDL Example 3-4

//Cilrcuit specified with Boolecan expressions
module circult_bln (x,vy,A,B,C,D):
input A,B,C,D;

output x,v; . O
‘assign x = A | (B&C) | {~B & D); o
assign y = (~B & C) | (B & ~C & ~D}; .

 endmodule él

Section 3-9 Hardware Description Language (HDL) 105
The circuit has two outputs x and y and four inputs 4, B, C, and . The two assign statements
describe the Boolean equations.
We have shown that a digital circuit can be described with HDL staternents just as it can be
drawn in a circuit diagram, or specified with a Boolean expression. The advantage of HDL is
that it is suitable for processing with a computer.

User-Defined Primitives (UDP)

\ike

h\@éu\

The logic gates used in HDL descriptions with keywords and, or, etc., are defined by the sys-

* tem and are referred to as sysfem primifives. The user can create addifional primitives by defin-

ing them in a tabular form. These types of circuits are referred to as user-defined primitives.
One way of specifying a digital circuit in tabular form 18 by means of a truth table. UDP de-
scriptions do not use the keyword module. Instead they are declared with the keyword prim-
itive. The best way to demonstrate the primitive declarations 1s by means of an example. 4

HDL Example 3-5 defines a UDP with a truth table. It proceeds according to the following
general rales:

“« It is declared with the keyword primitive followed by a name and port list.

* There can be only one output and it must be listed first in the port list and declared with
an output keyword.

HDL Example 3-5

//User defined primitive (UDP) .
¢ Primitive cri\:p K,A,B,CS); S I O
output x; . P
input A,B,C; Y AT
//Truth table for x{(A,B,C)

A

=

3i0,2,4,6,7)
tabl e :\..ﬁ.________,_,_/
I&4 A B C X (Note that this is only a comment)
o0 0o 1; 0 : o
00 1 i o0 - N
R R sy MOV
Pl AN

1 O O 1; ’ 3 LR Y
1.0 1 0;
1 1 o0 1;
1z 1 1;.

endtable

endprimitive

//Instantiate primitive
module declare_crctp;

reg x,v,z;

wire w;

cretp (w,X,v,2);
endmodule

4B

I
4 f%
Sl

WS

106

Chapter 3 Gate-Level Minimization

» There can be any number of inputs. The order in which they are listed in the input dec-
laration must conform to the order in which they are given values in the table that follows.

+ The truth table is enclosed within the keywords table and endtable.

* The values of the inputs are listed in order ending with a colon (:). The output is always
the last entry in a row followed by a semicolon (;).

* It ends with the keyword endprimitive.

Note that the variables listed on top of the table are part of a comment and are shown only for
clarity. The system recognizes the variables by the order that they are listed in the input dec-
laration. A vser-defined primitive can be employed in the construction of other digital circuits
just as the system primitives are used. For example, the declaration

erctp (W, X,¥.27)
will produce a circuit that implemenis
w{x,y,z) = 2(0,2,4,6,7)

with inputs x, y, z and output .

Although Verilog HDL uses this kind of description for UDPs only, other proprietary HDLs
and computer-aided design (CAD) systems use other procedures to specify digital circuits in
tabular form. The tables can be processed by CAD software to derive an efficient gate struc-
ture of the design.

In this section, we introduced HDL and presented simple examples of structural modeling.
A more detailed presentation of Verilog HDL can be found in the next chapter. The reader fa-
miliar with combinational circuits can go directly to Sec. 4-11 to continue with this subject.

PROBLEMS

3-1 Simplify the following Boolean functions, using three-variable maps:
(&) Flx,y,z) = 2{0,2,6,7) (by F(A,B,C) = %(0,2,3,4,6)
(©) Fla,b,c) =2(0,1,2,3,7) (@ Flx,y, 2} = 2(3,56,7)

3-2 Simplify the following Boolean functions, using three-variable maps:
@ Flx,yz)=2(01,57}) Fleyz) = 2(1,2,3,6,7)

3-3 Simplify the following Boolean expressions, using three-variable maps: '
(@ xy+ xyz + x'yZ (b) x'y + vz + x'yz
() A'B + BC' + B'C'
3-4 Simplify the following Boolean functions, using x maps:
(@) Flx,y,2) = 2(2,3,6,7) (b) F(A;B,C,D) = 2(4,6,7,15)
(¢) F(A, B,C,D) =3 (3,7,11,13,14,15) (d) F(w, x,y,z) = 2(2,3,12,13, 14,15)

3-5 Simplify the following Boolean functions, using four-variable maps:
(@) Flw,x,y,2z)= 2(1,4,56,12,14,15)
{b) F(A,B,C,D) = %(0,1,2,4,57,11,13)
() Flw,x,y,2) = 2(2,3,10,11,12,13,14,15)
(d) F(A,B,C,D) = 3(0,2,4,5,6,7,8,10,13, 15)

3-7

3-8

() wxy -+ x'7 + waz

3-10

3-11

3-12

3-13

3-14

3-15

3-16

3-17

3-18

Problems 107 7

Simplity the following Boolean expressions, using four-variable maps:

(@) A'B'C'D' + AC'D' + BCD' + A'BCD + BC'D

(b) x'z + wxy + w(x'y + xy')

Simplify the following Boolean expressions, nsing four-variable maps:

(@) wz+ xz + x'y + wx'z (by B D+ A'BC' + AB'C + ARC'

() AB'C + B'C'D' + BCD + ACD' + A'B'C + A'BC'D

(d) wxy + yz + xy'z -+ x'y

Find the minterms of the following Boolean expressions by first plotting each function in a map:
(@) xy + yz + xv'z (by C'D + ABC' + ABD' + A'B'D

Find all the prime implicants for the following Boolean functions, and determine which are essential:
(@) F(w,x,y,z) = 2(0,2,4,5,6,7.8,10, 13,15)

(b F(4,B,C,D) = X(0,2,3,5,7,8,10, 11, 14, 15)

(c) F(A,B,C,D)y = 3(1,3,4,5,10,11, 12, 13, 14, 15)

Simplify the following Boolean functions by first finding the essential prime implicants:
@ Flw,x,yz)= 2(0,2,4,56,7,8,10,13, 15)

(b) F{A,B,C,D) = 3(0,2,3,57,8,10, 11, 14, 15)

() F(A,B,C,D) = X(1,3,4,5,10,11, 12, 13, 14, I5)

Simplify the following Boolean functions, using five-variable maps:

() F(A, B,C,D,E)= 3%(0,1,4,5,16,17,21, 25, 29)

(by F=ABCE + ABC'D' + BD'E' + B'CD' + CDE" + BDE'

Simplify the following Boolean functions in product of sums: 7 '

(@) Flw,xy.2) =2(0,2,56,7,8,10) (b} F(4 B,C,D)=TI(1,3,5713,15)

- . : . . . s . o
Simplify the following expressions in (1} sum of products and (2) products of sums:

(& x'7 +y7 + vz + xy (b) AC' + B'D + A'CD + ABCD
© (A+B+D)A+B +C)A+B+D)B+C +D)

Give three possible ways to express the following Boolean function with e ght or féwer literals:
F=ABD + ABCD' + A'BD + ABC'D

Simplify the following Boolean function F, together with the don’t-care conditions d, and then
express the simplified function in sum of minterms:”))
(@) F(x,y,2) = % (0,1,2,4,5) () F(A,B,C.D) = 2(0,6,8,13, 14)
dlx,y,z) = 2(3,6,7) d(A, B,C.D) = Z(2,4,10)
(@ F(ABC D)= %(1,3,51,915)
d(A,B.C,D)y= %(4,6,12,13)

Simplify the following expressions, and implement them with—‘.m.io—Eeve] NAND gate circuits:
(a) AB' + ABD + ABD' + AC'D' + A'BC’ '
(b) BD + BCD' + AB'C'D'

Draw a NAND logic diagram that implements the complement of the following function:
_ F(A,B,C,D)= 2(0,1,2,3,4,8,9,12)
Draw a logic diagram using only two-input NAND gates to implement the following expression:

{AB + A'BY(CD' + C'D)

T

110 Chapter 3 Gate-Level Minimization

3. IEEE Standard Hardware Description Language Based on the Verilog Hardware Descn'ptz’@ Lan-
guege (IEEE Std 1364-19953). 1995. New York: The Institute of Electrical and Electronics Engineers.

4, KarNaUGH, M. A Map Method for Synthesis of Combinational Logic Circuits. Transactions of
AIEE, Communication and Electronics. 72, part I (Nov. 1953); 593-99,

5. KoHavi, Z. 1978, Switching and Automata Theory, 2nd ed. New York; McGraw-Hill

6. Mano, M. M. and C. R. KimE. 2000. Logic and Computer Design Fundamentals, 2nd ed. Upper
Saddle River, NJ: Prentice Fall. 4

7. McCruskey, E. 1. 1986. Logic Design Principles. Englewood Cliffs, NJ: Prentice-Hall.

8. PALNITKAR, S. 1996, Verilég HDL: A Guide to Digital Design and Synthesis. SunSoft Press (A |
Prentice Hall Title).

." [;_.?;f_;/{j‘ﬁ‘?%‘ﬂxf‘!

“Combinational
Logic

41 COMBINATIONAL CIRCUITS

S\

Logic circuits for digital systems may be combinational or seq%ér?tial. A combinational circuyit
consists of logic gates whose outpuis at any time are determined from the present combination
of inputs. A combinational circuit performs an operation that can be specified logically by a set
of Boolean functions. Sequential circuits employ storage elements in addition to logic gates.
Their outputs are a function of the inputs and the state of the storage elements. The state of stor-
age elements, in turn, is a function of previous inputs, As a consequence, the outputs of a
L sequential circuit depend not only on present values of inputs, but also on past inputs, and the
; circuit behavior must be specified by a time sequence of inputs and internal states. Sequential
circuits are discussed in Chapter 5 and 9. ‘

.) A combinational circuit consists of input variables, logic gates, and output variables. The
f logic gates accept signais from the inputs and generate signals to the outputs. This process
i transforms binary information from the given inpui data to required output data, A block
_ diagram of a combinational circuit is shown in Fig. 4-1. The » input binary variables come
] from an external source; the m output variables go to an external destination, Each input and

ﬁl—).
— Combinational
. ombinationa >
inputs - circuit - m outputs
:

FIGURE 4-1
Block Diagram of Combinational Circuit

111

112

Chapter 4 Combinational Logic

output variable exists physically as a binary signal that gepresents ogic 1 and logic 0. In many
applications, the source and destination are storage regisiers. If the registers are included with

the combinational gates, then the total circuit must be considered as a sequential circuit.

. For.n input variables, there are 2" possible binary input combinations. For each possible
input combination, there is one possible output value. Thus, a combinational circuit can be
specified with a truth table that lists the output values for each combination of input variables.
A combinational circuit also can be described by m Boolean functions, one for each output
variable. Each output function is expressed in terms of the » input variables.

In Chapter 1, we learned about binary numbers and binary codes that represent discrete
quantities of information. The binary variables are represented physically by electric voltages
or some other type of signal. The signals can be manipulated in digital logic gates to perform
required functions. In Chapter 2, we introduced Boolean algebra as a way to express logic
functions algebraically. In Chapter 3, we learned how to simplify Boolean functions to achieve
economical gate implementations. The purpose of this chapter is to use the knowledge acquired
in previous chapters and formulate systematic analysis and design procedures of combinational
circuits. The solution of some typical examples will provide a useful catalog of elementary
functions important for the understanding of digital systems.

There are several combinational circuits that are employed extensively in the design of dig-
ital systems. These circuits are available in integrated circuits and are classified as standard
components. They perform specific digital functions commonly needed in the design of digi-
tal systems. In this chapter, we introduce the most important standard combinational circuits
such as adders, subtractors, comparators, decoders, encoders, and multiplexers. These com-
ponents are available in integrated circuits as MSI (medium scale integration) circuits. They are
also used as standard cells in complex VLSI circuits such as application specific integrated
circuits (ASIC). The standard cell functions are interconnected within the VLSI circuit in the
same way as they are used in multiple-IC MSI design.

CRUNRAY

4-2 ANALYSIS PROCEDURE~-

The analysis of a combinational circuit requires that we determine the function that the circuit
implements. This starts with a given logic diagram and culminates with a set of Boolean func-
tions, a truth table, or a possible explanation of the circuit operation. If the logic diagram to be
analyzed is accompanied by a function name or an explanation of what it is assumed to
accomplish, then the analysis problem reduces to a verifi?:é}':ft"i(‘_m of the stated function. The
analysis can be performed manually by finding the Boolean functions or truth table, or by using
a computer simulation program. ISYSNY o .

The first step in the analysis is to make sure that the given circuit is combinational and not
sequential. The diagram of a combinational circuit has logic gates with nﬁecéﬁﬁcl(paths or
memory elements. A feedback path is a connection from the output of one gate to the input of
a second gate that forms part of the input to the first gate. Feedback paths in a digital circuit
define a sequential circuit and must be analyzed according to procedures outlined in Chapter 9.

Once the logic diagram is verified as a combinational circuit, one can proceed to obtain the _

output Boolean functions or the truth table. If the function of the circuit is under investigation;’ 4
then it is necessary to interpret the operation of the circuit from the derived Boolean functions g

Section 4-2 Analysis Procedure 113

or truth table. The success of such investigation is enhariced if one has previous experience
and familiarity with a wide variety of digital circuits.

To obtain the output Boolean functions from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary symbols.
Determine the Boelean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled gates with
other arbitrary symbols. Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.
4. By repeated substitution of previously defined functions, obtain the output Boolean func-
tions in terms of input variables.

The analysis of the combinational circuit of Fig. 4-2 iflustrates the proposed procedure. We
note that the circuit has three binary inputs—A, B, and C—and two binary outputs—F, and £,
The outputs of various gates are labeled with intermediate symbols. The outputs of gates that -
are a function of input variables only are 7} and 7. Output F, can be easily derived from the
input variables. The Boclean functions for these three outputs are:

F, = AB + AC + BC
T,=A+B+C
T, = ABC

\3\@\

A —
B —]

C —

B—
C—

-
A—D N
-

FIGURE 4-2
Logic Diagram for Analysis Example

114

Chapter 4 Combinational Logic

Next, we consider outputs of gates that are a function of already defined syrmbols:
T; = Fol
F 1= T3 + T2
To 6btain F, as a function of A, B,and C, form a series of substitutions as follows:
F1:T3+T2=F’2T1+ABC=(AB+AC+BC)’(A+B+C)+ABC
= (A + BYA + CYB +CYA+BT C) + ABC
= (A" + B'C'Y(AB' + AC" + BC' + B'C) + ABC
= A'BC' + A'B'C + AB'C' + ABC
If we want to pursue the investigation and determine the information-iransformation task
achieved by this circuit, we can draw the circuit from the derived Boolean expresstons aqd try
to recognize a familiar operation. The Boolean functions for F, and F, implement the cireuit
shown in Fig. 4-7 (Section 4-4) and is equivalent to a full adder circuit.
The derivation of the truth table for the circuit is a straightforward process once the output

Boolean functions are known. To obtain the truth table directly from the logic diagram with-
out going through the derivations of the Boolean functions, proceed as follows:

1. Determine the number of input variables in the circuit. For » inputs, form the 2" possi-
ble input combinations and Jist the binary numbers from 0 0 2" — 1 in a table.
2. Label the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates that are a function of the input vari-
ables only.

4. Proceed to obtain the truth table for the outpuis of those gates that are a functien- of pre-
viously defined values until the columns for all outputs are determined.

This process is illustrated using the circuit of Fig. 4-2. Tn Table 4-1, we form the eight pos-

" gible combinations for the three input variables. The truth table for £ is determined directly

Tabie 4-1

Truth Table for the Logic Diagram of Fig. 4-2
A B C ks P T T, Ta Fi
0 0 0 0 1 0 0 6 0
o 0 1 0 1 1 0 1 1
0 1 0 0 1 i 0 1 1

0 i 1 1 0 1 0 0 0
1. 0 0 0 1 1 0 1 -1
i 0 1 1 0 1 o 0 0.
1 1 0 - 1 0 1 0 0 0
1 1 1 1 0 1 1 0 1

4-3

Section 4-3 Design Procedure 115

from the values of A, B, and C, with £, equal to 1 for any combination that has two or three
inputs equal to 1. The truth table for F) is the complement of Fy. The truth tables for T) and T,
are the OR and AND functions of the input variables, respectively. The values for T; are derived
from T, and Fj: Ty is equal to 1 when both 7 and F are equal to 1, and T3 is equal to 0 other-
wise. Finally, F; is equal to 1 for those combinations in which either 7, or T; or both are equal
to 1. Inspection of the truth table combinations for A, B, C, F, and F, shows that it is identi-
cal to the truth table of the full adder given in Section 4-4 for x, ¥, z, S$, and C, respectively.

Another way of analyzing a combinational circuit'is by means of logic simulation. In
Sec. 4-11 we demonstrate the logic simulation and verification of the circuit of Fig. 4-2 using
Verilog HDL. (See HDL Example 4-10.)

DESIGN PROCEDURE

The design of combinational circuits starts from the specification of the problem and culmi-
nates in a logic circuit diagram or a set of Boolean functions from which the logic diagram can
be obtained. The procedure involves the following steps:

1. From the specifications of the circuit, determine the required number of inputs and out-
puts and assign a symbol to gach.

3. Derive the truth table that defines the required relationship between inputs and outputs.
3. Obtain the simplified Boolean functions for each outputas a function of the input variables.

4. Draw the logic diagram and verify the correctness of the design.

A truth table for a combinational circuit consists of input columns and output columns. The
input columns are obtained from the 2" binary numbers for the # input variables. The binary
values for the outputs are determined from the stated specifications. The output functions spec-
ified in the truth table give the exact definition of the combinational circuit. It is important that
the verbal specifications be interpreted correctly in the truth table. Word specifications are
often incomplete and any wrong interpretation may result in an incorrect truth table.

The output binary functions listed in the truth table are simplified by any available method
such as algebraic manipulation, the map method, or by means of computer-based simplifica-
tion program. Frequently, there s a yariety of simplified expressions from which to choose.
In a particular application, certain criteria will serve as a gu.;gl\e\%rﬂhe process of choosing an
implementation. A practical design must consider such constiaints as the number of gates,
number of inputs to a gate, propagation time of the signal through the gates, number of
interconnections, limitations of the driving capability of each gate, and various other criteria
that must be taken into consideration when designing with integrated circuits. Since the
importance of each constraint is dictated by the particular application, it is difficult to make
a general statement about what constitutes an acceptable implementation. In most cases the
simplification begins by satisfying an elementary objective, such as producing the simplified
Boolean functions in a standard form, and then proceed with further steps to meet other
performance criteria.

116 Chapter 4 Combinational Logic

Section 4-3 Design Procedure 117

Code Conversion Example
The availability of a large variety of codes for the same discrete elements of information Ag 00 01 11 10 AR 00 01 11 10
results in the use of different codes by different digital systems. It is sometimes necessary) B — J— —
to use the output of one system as the input to another. A conversion circuit must be insert- 00 1 1 0t 1
ed between the two systems if each uses different codes for the same information. Thus, a '
code converter is a circuit that makes the two systems compatible even though each uses a \\101 1 1 01y |1 1
different binary code.
To convert from binary code A to binary code B, the input lines must supply the bit combi- 1| x X x x allx ¥ X x
nation of elements as specified by code A and the output lines must generate the corresponding A ' A
bit combination of code B. A combinational circuit performs this transformation by means of 10l 1 x x ol
logic gates. The design procedure will be illustrated by an example that converts the binary | L~ XX
coded decimal (BCD) to the excess-3 code for the decimal digits. _ D
The bit combinations assigned to the BCD and excess-3 codes are listed in Table 1-5 (Sec- =D b
tion 1-7). Since each code uses four bits fo represent a decimal digit, there must be four input y=CD+CD
variables and four output variables. Designate the four input binary variables by the symbols
A, B, C, D, and the four output variables by w, x, y, and z. The truth table relating the input _
and output variables is shown in Table 4-2. The bit combinations for the inputs and their cor- cD c oD ¢
responding outputs are obtained directly from Section 1-7. Note that four binary variables may © 4 00 01 T 11 10 00 o1
have 16 bit combinations, but only 10 are listed in the truth table. The 6 bit combinations not AB H 10
listed for the input variables are don’t-care combinations. T hese values have no meaning in a0 ‘ 1 u 1 ‘ 00
BCD and we assume that they will never occur. Therefore, we are at liberty to assign to the out- —
put variables either a 1 or a 0, whichever gives a simpler circuit. a1 H 01 1 t 1
The maps in Fig. 4-3 are plotted to obtain simplified Boolean functions for the outputs.
Each one of the four maps represents one of the four outputs of the circuit as a function of the H X
four input variables. The 1°s marked inside the squares are obtained from the minterms that make H X X ny X X X X
pu . q A A
10 ‘ 1 J x|l x | 0] 1 1 x | x
Table 4-2) D T
Truth Table for Code-Conversion Example “ x=B'C+BD+BCD weA+RC+BD
Input BCD Output Excess-3 Cade FIGURE 4-3
A 5 C D w N y 5 Maps for BCD to Excess-3 Code Converter
C 0 0 0 ¢ 0 0 1 L
Yo 0o 0 1 o &t 0 %
2 o .
3 (()) g 1 ? g } ? (1{ gfeczfglt]it rﬁgu;loto 1. Thf} I's tgre obtained from the truth table by going over the output columns
o 0 1 0 0 0 1 1 ™ fve I h'b T eXample, the column und.er output g l}as five 1’s; therefore, the map for z has
50 1 0 i 1 0 0 ’ 8, €ac . eing in a square corresponding to the minierm that makes z equal to 1, The six
70 | 1 0 1 0 0 @ dpn t-_care minterms 10 through 15 are marked with an X. One possible way to simplify the func-
20 1 i i 1 0 i 7 tions in sum of products is listed under the map of each vartable.
¢ 1 0 0 0 1 0 ; L) A two-level logic diagram may be obtained direcﬂy trom the Boolean expressions derived
41 0 0 i 1 i 0 0 by_the maps. There are various other possibilities for a logic diagram that implements this cir-
cuit. The expressions obtained in Fig. 4-3 may be manipulated algebraically for the purpose

118

Chapter 4 Combinational Logic

of using common gates for two or more outputs. This manipulation, shown next, illustrates the
flexibility obtained with multiple-output systems when implemented with three or more lev-

els of gates: N
z=D
y=Cb+CD =CD+(C+D) PR
.= BC+ BD+ BCD =B(C+D)+BCD

= B(C + D) + B(C+ D)
\e_~w=A+BC+BD=A+B(C+D)

The logic diagram that implements these expressions is show‘n in Fig. 4-4. Note that the OR
gate whose oufput is C + D has been used to implement partially each of thn'ac outputs.

Not counting input inverters, the implementation in sum of Products recuires seven AND
gates and three OR gates. The implementation of Fig. 4.4 requites four AND gates, four QR
gates, and one inverter. If only the normal inputs are available, the ﬁrst‘ 1mp1em§ntayon will
require inverters for variables B, C, and D, and the second implementation requires inverters

for variables B and D.

D' z

(C+DY

B
x
w
A
FIGURE 4-4

Logic Diagram for BCD to Excess-3 Code Converter

4-4

Section 4-4 Binary Adder Subtractor 119

BINARY ADDER-SUBTRACTOR

Digital computers perform a variety of information processing tasks. Among the functions
encountered are the various arithmetic operations. The most basic arithmetic operation is the
addition of two binary digits. This simplé addition consists of four possible elementary operations:
0+0=00+1=11+0=1landl +1=10The first three operations produce a sum
of one digit, but when both augend and addend bits are equal to 1, the binary sum consists of
two digits. The higher significant bit of this result is called a carry. When the augend and ad-
dend numbers contain more significant digits, the carry obtained from the addition of two bits
is added to the next higher order pair of significant bits. A combinational circuit that performs
the addition of two bits is called a half adder. One that performs the addition of three bits (two
significant bits and a previous carry) is a full adder. The names of the circuits stem from the
fact that two half adders can be employed to implement a full adder. $B

A binary adder-subtractor is a combinational circuit that performs the arithmetic operations
of addition and subiraction with binary numbers. We will develop this circuit by means of a

Juils ¢, 3 hierarchical design. The half adder desien is carried out first, from which we develop the ful]
g

adder. Connecting n full adders in cascade produces a binary adder for two n-bit numbers. The
subtraction circuit is included by providing a complementing circuit.

Half Adder

From the verbal explanation of a half adder, we find that this circuit needs two binary inputs and
two binary outputs. The input variables designate the augend and addend bits; the output variables
produce the sum and carry. We assign symbols x and v to the two inputs and § (for sum) and C
(for carry) to the outputs. The truth table for the half adder is listed in Table 4-3. The C output is
1 only when both inputs are 1. The § output represents the least significant bit of the sum.

The simplified Boolean functions for the two outputs can be obtained directly from the truth
table. The simplified sum of products expressions are

S=xy+ xy
C = xy
The logic diagram of the half adder implemented in sum of products is shown in Fig. 4-5(a).

Tt can be also implemented with an exclusive-OR and an AND gate as shown in Fig. 4-5(b).
This form is used to show that two half adders can be used o construct a full adder.

Table 4-3

Half Adder
X ¥ C 5
0 0 0 0
0 1 0 1
1 0 0]
1 1 _1 0

120 Chapter 4 Combinational Logic

Full-Adder

)
—)

() S=xy +x'y b)yS=xDy
C=xy C=xy
FIGURE 4-5
Implementation of Half-Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three bits. It consists
of three inputs and two outputs. Two of the input variables, denoted by x and y, represent the
two significant bits to be added. The third input, z, represents the carry from the previous lower
significant position. Two outputs are necessary because the arithmetic sum of three binary dig-
its ranges in value from 0 to 3, and binary 2 or 3 needs two digits. The two outputs are desig-
nated by the symbols S for sum and C for carry. The binary variable § gives the value of the
least significant bit of the sum. The binary variable C gives the output carry. The truth table of
the full adder is listed in Table 4-4. The eight rows under the input variables designate all pos-
sible combinations of the three variables. The output variables are determined from the arith-
metic sum of the input bits. When all input bits are 0, the output is 0. The S ouiput is equal to
1 when only one input is equal to 1 or when all three inputs are equal to 1. The C output has a
catry of 1 if two or three inputs are equal to 1.

The input and output bits of the combinational circuit have different interpretations at var-
jous stages of the problem. Physically, the binary signals of the inputs are considered binary
digits to be added arithmetically to form a two-digit sum at the output. On the other hand, the
same binary values are considered as variables of Boolean functions when expressed in the

Table 4-4

Full Adder
X % z C s
0 0 0 0 0
0 0] 1 0 1
0 1 0 0 1
1] i 1 1 0
1 0] 0 0 1
1 0 i 1 t)
1 1 0 1 0
i 1 i 1 1

Section 4-4 Binary Adder Subtractor 121

yz ' y ¥z y
. 00 01 11 10 . 00 01 11 10
1 1 1
x11| 1 1 x|1 1 1 1
z z
S=x'y'z+xyz'+xy'z +xyz C=xy+txz+yz

= xy+xy'z+xyz
FIGURE 4-6
Maps for Full Adder

truth table or when the circuit is implemented with logic gates. The maps for the outputs of the
full adder are shown in Fig. 4-6. The simplified expressions are

S = xryrz + xlyzl + xylzr -+ xyz

C=xy+xz+yz

The logic diagram for the full adder implemented in sum of products is shown in Fig. 4-7. Tt can

. bealso implemented with two half adders and one OR gate, as shown in Fig. 4-8. The § output from

the second half adder is the exclusive-OR of z and the output of the first half adder, giving
S=z8(xDy)

Z(xy + x'y) + z(xy + x'y)

Z(xy" + 2y} o+ 2(xy + x'y)

=xy'g + 2y + xyz + ¥z

The carry output is
C=z(xy +xy)+xy=xyz+ x'yz + xy
x’ —
¥ —
<
D—
. ,
¥, — .
Z — .
1
x — ’ 7
z')
D
. 'z
EnE
7
FIGURE 4-7

Implementation of Full Adder in Sum of Products

Chapter 4 Combinational Logic

X

4

FIGURE 4-8
implementation of Full Adder with Two Half Adders and an OR Gate

Binary Adder

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers: It
can be constructed with full adders connected in cascade, with the output carry from each fufl
adder connected to the input carry of the next full adder in the chain, Figure 4-9 shows the
interconnection of four full adder (FA) circuits to provide a 4-bit binary ripple carry adder.
The augend bits of A and the addend bits of B are designated by subscript numbers from rig.ht
to left, with subscript 0 denoting the least significant bit. The carries are connected in a chain
through the full adders. The input carry to the adder is C, and it ripples throg gh the full aFlders
to the output carry C};. The S outputs generate the required sum bits, An n-bit adder requires i
full adders with each output carry connected to the input carry of the next higher-order fuil adder.

To demonstrate with a specific example, consider the two binary numbers, A = 1011 and
B = 0011. Their sum § = 1110 is formed with the four-bit adder as follows:

Subscript i: 3 2 1 o
Input carry 0 1 1 0 C;
Augend { 1 0 1 1 A; E l /
Addend , ¢ 0 1 1 B, -
Sum 11 1 0 g 2 Vol
Output carry 0 0 1 1 Cin #
R
By A, B, A, B, A By A i
C
FA G FA & FA ! FA fe— ¢,
Cy 83 5 51 So

FIGURE 4-9
4-Bit Adder

Section 4-4 Binary Adder Subtractor 123

The bits are added with full adders, starting from the least si gnificant position (subscript 0), to
form the sum bit and carry bit. The input carry C, in the least significant position must be 0,
The value of C;,; in a given significant position is the output carry of the fufl adder. This value
is transferred into the input carry of the full adder that adds the bits one higher significant
position to the left. The sum bits are thus generated starting from the rightmost position and
are available as soon as the corresponding previous carry bit is generated. All the carries must
be generated for the correct sum bits to appear at the outputs.

The 4-bit adder is a typical example of a standard component, It can be used in many
applications involving arithmetic operations. Qbserve that the design of this circuit by the clas-
sical method would require a truth table with 2% = 512 entries, since there are nine inputs to
the circuit. By using an iterative method of cascading a standard function, it is possible to obtain
a simple and straightforward implementation,

Carry Propagation

The addition of two binary numbers in parallel implies that all the bits of the angend and ad-
dend are available for computation at the same time. As in any combinational circuit, the sig-
nal must propagate through the gates before the correct output sum is available in the output
terminals. The total propagation time is equal to the propagation delay of a typical gate times

sider output $; in Fig. 4-9, Inpuis A, and B; are available as soon as input signals are applied
to the adder, However, nput carry C; does not settle to its final value until C, is available from
the previous stage. Similarly, C, has to wait for C; and so on down to Cy- Thus, only after the
carry propagates and ripples through all stages will the last output §; and carry C; settle to
their final correct value, o

The number of gate levels for the catty propagation can be found from the circuit of the full
adder. The circuit is redrawn in Fig. 4-10 for convenience. The input and output variables use
the subscript i to denote a typical stage in the adder, The signals at B, and G, settle to their

G

FIGURE 4-10
Fulb Adder with P and ¢ Shown

124

Chapter 4 Combinational Logic

steady state values after they propagate through their respective gates. These two signals are
common to all full adders and depend only on the input augend and addend bits. The signal from
the input carry C; to the output carry C;,,, propagates through an AND gate and an OR gate,
which constitute two gate levels. 1f there are four full adders in the adder, the cutput carry C,
would have 2 X 4 = 8 gate levels from C, to C,. For an n-bit adder, there are 2n gate levels
for the carry to propagate from input to output.

The carry propagation time is a limiting factor on the speed with which two numbers are
added. Although the adder, or any combinational circuit, will always have some value at its
output terminals, the outputs will not be correct unless the signals are given enough time to
propagate through the gates connected from the inputs to the outputs. Since all other arith-
metic operations are implemented by successive additions, the time consumed during the
addition process is very critical. An obvious solution for reducing the carry propagation
delay time is to employ faster gates with reduced delays. However, physical circuits have a
limit to their capability. Another solution is to increase the equipment complexity in such a
way that the carry delay time is reduced. There are several techniques for reducing the carry
propagation time in a parallel adder. The most widely used technique employs the principle
of carry lookahead.

Consider the circuit of the full adder shown in Fig, 4-10. B we define two new binary variables

P = A, © B,
G, = AB;

the output sum and carry can be expressed as

S, =P&C
Ciy1 = G, + PC,

G, is called a carry generate and it produces a carry of 1 when both A; and B; are 1, regardless
of the input carry C;. P is called a carry propagate because it is the term associated with the
propagation of the carry from C; to Cpy .

We now write the Boolean functions for the carry outputs of each stage and subsntute for
each C, its value from the previous equations:

C, = input carry
C] = Go' + P()CD
CZ:GI+1D1C1'_=_G1+P1(GU+P0CU)=G1+P1G0+P1P0CD

Since the Boolean function for each output carry is expressed in sum of products, each func-

tion can be implemented with one level of AND gates followed by an OR gate (or by two-level
NAND). The three Boelean functions for C;, C,, and C; are implemented in the carry looka-

Section 4-4 Binary Adder Subtractor 125

Ak

Ly

FIGURE 4-11
Logic Diagram of Carry Lookahead Generator

head generator shown in Fig. 4-11. Note that C; does not have to wait for , and C, to propa-
gate; in fact, C, is propagated at the same time as C; and C,,

The construction of a 4-bit adder with a carry lookahead scheme is shown in Fig. 4-12.
Each sum output requires two exclusive-OR gates. The output of the first exclusive-OR gate
generates the F; variable, and the AND gate generates the G, variable. The carries are prop-
agated through the carry lookahead generator (similar to that in Fig. 4-11) and applied as
inputs to the second exclusive-OR gate. All output carries are generated after a delay through
two levels of gates. Thus, outputs §; through S; have equal propagation delay times. The
two-level circuit for the output carry C, is not shown. This circuit can be easily derived by
the equation-substitution method. :

126

Chapter 4 Combinational Logic

Cy Cy
B
3 P
As E} Py S
] c; —:)j > :
)— Gs
B, ‘j‘)
A ” P, 2
h ’:) D>
L Cy 2
2 Carry
Look ahead
generator

EE
-

P, s
o 1

HJ

n
o <
e

i

CD C()

FIGURE 4-12
4-Bit Adder with Carry Lockahead

" Each sum output requires two exclusive-OR gates. The output of the first exclusive-OR gate -

generates the P; variable, and the AND gate generates the G, variable. The carries are prop-
agated through the carry lookahead generator (similar to that in Fig. 4-11) and applied as
inputs to the second exclusive-OR gate. All output carries are generated after a delay through
two levels of gates. Thus, outputs §; through S; have equal propagation delay times. The
two-level circuit for the output carry C, is not shown. This circuit can be easily derived by
the equation-substitution method.

Section 4-4 Binary Adder Subtractor 127

By Aj B, A, B A4 By Ay

FA. FA . FA « FA

: S5 Sy Sy So
—C
T :

FIGURE 4-13
4-Bit Adder Subtractor

Overflow

this gives A — Bif A = B or the 2’s complement of (B — A) if A < B. For signed numbers,

theresultis A — B, prowded that there is no overflow. (See Section 1-6.)

“The addition and subtraction operations can be combined into one circuit with one common
binary adder. This is done by including an exclusive-OR gate with each full adder. A 4-bit
adder—subtractor circuit is shown in Fig. 4-13. The mode input M controls the operation. When

= 0, the circuit is an adder, and when M. = 1, the circuit becomes a subtractor. Each
exclusive—OR gate receives input M and one of the inputs of B. When M = 0, we have
B®0 = B.The full adders receive the value of B, the input carry is 0, and the circuit performs
Aplus B. When M = 1, wehave B® 1 = B’ and C; = 1. The B inputs are all complemented
and a 1 is added through the input carry. The circuit performs the operation A plus the 2’s
complement of B. (The exclusive-OR with output Vis for detecting an overflow.)

It is worth noting that binary numbers in the signed-complement system are added and sub-
tracted by the same basic addition and subiraction rules as unsigned numbers. Therefore, com-
puters need only one common hardware circuit to handle both types of arithmetic. The user or
programmer must interpret the results of such addition or subtraction differently, depending on
whether it is assumed that the numbers are signed or unsigned

When two numbers of n digits each are added and the sum occupies n -+ 1 digits, we say that an
overflow occurred. This is true for binary or decimal numbers whether signed or unsigned. When
the addition is performed with paper and pencil, an overflow is not a problem, since there is 1o
limit by the width of the page to write down the sum. Overtlow is a problem in digital computers

Section 4-4 Binary Adder Subtractor 127

By Aa By Ay B A By Ag

FA -« FA FA FA

FIGURE 4-13
4-Bit Adder Subtractor

Overflow

this gives A — Bif A = Bor the 2’s complement of (B — A) if A < B. For signed numbers,

_the'result is A — B, provided that there is no overflow. (See Section 1-6.)

* The addition and subtraction operations can be combined into one circuit with one common
binary adder. This is done by including an exclusive-OR gate with each full adder. A 4-bit
adder-subtractor circuit is shown in Fig. 4-13. The mode input M controls the operation. When-
M = 0, the circuit is an adder, and when M = 1, the circuit becomes a subtractor. Each
exchusive-OR gate receives input M and one of the inputs of B. When M = 0, we have
B @0 = B. The full adders receive the value of B, the input carry is 0, and the circuit performs
Aplus B. When M = 1, wehave B&1 = B'and C, = 1, The B inputs are all complemented
and a'l is added through the input carry. The circuit performs the operation A plus the 2°s
complement of B. (The exclusive-OR with cutput V is for detecting an overflow.)

It is worth noting that binary mumbers in the signed-complement system are added and sub-
tracted by the same basic addition and subtraction rules as unsigned numbers. Therefore, com-
puters need only one common hardware circuit to handle both types of arithmetic. The user or
programmer must interpret the resuits of such addition or subtraction differently, depending on
whether it is assumed that the numbers are signed or unsigned

‘When two numbers of » digits each are added and the sum occupies n + 1 digits, we say that an
overflow occurred. This is true for binary or decimal numbers whether signed or unsigned, When

- the addition is performed with paper and pencil, an overflow is not a problem, since there is no

limit by the width of the page to write down the sum. Overflow is a problem in digital computers

4-5

DECIMAL ADDER

Computers or calculators that perform arithmetic operations directly in the decimal number
system represent decimal numbers in binary coded form. An adder for such a computer must
employ arithmetic circuits that accept coded decimal numbers and present results in the same
code. For binary addition, it is sufficient to congider a pair of significant bits together with a
previous carry. A decimal adder requires a minirmum of nine inputs and five outputs, since four
bits are required to code each decimal digit and the circuit must have an input and output carry.
There is a wide variety of possible decimal adder circuits, depending upon the code used to rep-
resent the decimal digits. Here we consider a decimal adder for the BCD code. (See Section 1-7.)

BCD Adder

Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from
a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than
9+ 9+ 1 =19, the 1 in the sum being an input carry. Suppose we apply two BCD digits to
a 4-bit binary adder. The adder will form the sum in binary and produce a result that ranges from
0 through 19. These binary numbers are listed in Table 4-5 and are labeled by symbols X, Zg,
Zy, 7y, and Z;. K is the carry, and the subscripts under the letter Z represent the weights 8, 4,
2, and 1 that can be assigned to the four bits in the BCD code. The columns under the binary
sum list the binary value that appears in the outputs of the 4-bit binary adder. The output sum

Table 4-5
Derivation of BCD Adder
Binary Sum BCD Sum " Decimal

K Zg Zs Z, Z, C Ss Sa 5> 5

0 0 0 0 0 0 0 0 0 . 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 1 0 0 0 8
0 i 0 0 1 0 1 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 1 0 1 1 1 0 0 0 1 11
0 1 i 0 0 1 0 0 1 0 12
0 1 1 -0 1 1 0. 0 1 1 13
0 1 1 1 0 1 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
1 0 0 0 1 1 0 1 1 1 17
1 0 0 1 0 1 1 0 0 0 18
0 0 1 1 1 1 00 1 19

adder to produce the binary sum. When,t’rfe output carry is equal to zero, nothing is added to
the binary sum, When it is equal to one, binary 0110 is added to the binary sum through the
botiom 4-bit adder. The output carry generated from the bottom adder can be ignored, since it
supplies information already available at the output carry terminal. A decimal parallel adder that
adds »# decimal digits needs » BCD adder stages. The output carry from one stage must be con-
nected io the input carry of the next higher-order stage.

46 BINARY MULTIPLIER

Multiplication of binary numbers is performed in the same way as in decimal numbers. The mul-
tiplicand is multiplied by each bit of the multiplier starting from the least significant bit. Each
such multiplication forms a partial product. Successive partial products are shified one posi-
tion to the left. The final product is obtained from the sum of the partial products.

To see how a binary multiplier can be implemented with a combinational circuit, consider
the multiplication of two 2-bit numbers as shown in Fig. 4-15. The multiplicand bits are B and
By, the multiplier bits are A| and A, and the product is C; C, C; Cy. The first partial product is
formed by multiplying A, by B, B,. The multiplication of two bits such as A, and B, produces
a 1 if both bits are 1; otherwise, it produces a 0. This is identical to an AND operation. There-
fore, the partial product can be implemented with AND gates as shown in the diagram. The sec-
ond partial product is formed by multiplying A, by B, By and shifted one position to the left.
The two partial products are added with two half adder (HA) circuits. Usually there are more
bits in the partial products and it is necessary to use full adders to produce the sum of the par-
tial products. Note that the least significant bit of the product does not have to go through an
adder since it is formed by the output of the first AND gate.

Bl BO AD B B
1 0
Ay Aq 1 |
AB, AB]
¢, C c C Ay
3 2 1 0 B, By
HA HA
Cy Gy G Co

FIGURE 4-15
2-Bit by 2-Bit Binary Multiplier

TemmE oTa IWIGTHAMUS Loinparator 13>

47 MAGNITUDE COMPARATOR

The comparison of two numbers is an operation that determines if one number is greater than,
fess than, or equal to the other number. A magnimde comparator is a combinational circuit that
compares two numbers, A and B, and determines their relative magnitudes, The outcome of the
comparison is specified by three binary variables that indicate whether A > B,A'="B,or4 < B.

The circuit for comparing two 5-bit numbers has 22" entries in the truith table and becomes oo
cumbersome even with n = 3. On the other hand, as one may suspect, a comparator circuit pos-
sess a certain amount of regularity. Digital functions that possess an inherent well-defined regu-
larity can usually be designed by means of an algorithmic procedure. An algorithm is a procedure
that specifies a finite set of steps that, if followed, give the solution to a problem, We iliustrate this
method here by deriving an algorithm for the des; gn of a 4-bit magnitude comparator,

The algorithm is a direct application of the procedure a person uses to compare the relfative
magnitudes of twe numbers. Consider two numbers, A and B, with four digits each. Write the
coetficients of the numbers with descending significance

A = AsALA A,

B = B, BzBlBo .
Each subscripted letter represents one of the digits in the number. The two numbers are equal
if all pairs of significant digits are equal: A; = B, and A, = B, and A, = B, and 4, = B,.
When the numbers are binary, the digits are either 1 or 0, and the eg'_‘ualitg_rj;latib{l_, of each pair -

qf b_i_t_§ can be expressed logically with an exc]usive{NQR}mctioni‘i” e

= it

X = A;B; + AlB! fori =0,1,2,3 -
where x; = 1 only if the pair of bits in positiox{z_'—flre equal (i.e., if both are 1 or both are 0).
The equality of the two numbers, A and B, is displayed in a combinatic nal circuit by an out-
put binary variable that we designate by the symbol (A = B). This binary variable is equal to
1 if the input numbers, A and B, are equal, and’it is equal to O otherwise. For the equélity con-
ditien to exist, all x; variables must be equal to 1.'This dictates an AND operation of ail variables:

>

{AZ B) = X3X5X, Xg
The binary variable (A = B) is equal to 1 only if all pairs of digits of the two numbers are equal,
To determine if A is greater than or less than B, we inspect the relative magnitudes of pairs
of significant digits starting from the most significant position. If the two digits are equal, we
compare the next lower significant pair of digits. This comparison continues unfil a pair of
unequal digits is reached. If the corresponding digit of A is'1 and that of B is 0, we conclude
that A > B. If the corresponding digit of A is 0 and that of B is 1, we have that A < B, The
sequential comparison can be expressed logically by the two Boolean functions

v)= AuByF X A0By + x0,A B+ xyxyn AgB)

- AéB} +\ 15314:532 + .xstAiBl + X3X2X]AE)BD."
The symbols (A > B) and (A < B) are binary output variables that are equal to 1 when
A>BorA<B, respectively, :

The gate implementation of the three output variables just derived is simpler than it seems
because it involves a certain amount of repetition. The unequal outputs can nse the same gates

|
y

s == g S
- = _—
S — 2=

Y L
J_:ID\ Dy=x'yz

—

Ds=xy'z

. 25 -

D= xyz'

L —
' L/

D3 =xyz

I

FIGURE 4-18
3-to-8-Line Decoder

The decoders presented here are called n-to-m-line decoders, where m = 2% Their purpose
is to generate the 2" (or fewer) minterms of 7 input variables. The name decoder is also used
in conjunction with other code converters such as a BCD-to-seven-segment decoder.

As an exarple, consider the 3-to-8-line decoder circuit of Fig. 4-18. The three inpuis are
decoded into ei ght ontputs, each representin g one of the minterms of the three input variables,
The three inverters provide the complement of the mputs, and each one of the eight AND gates
generates one of the minterms. A particular application of this decoder is binary-to-octal con-
version, The input variables represent a binary number, and the outputs represent the eight dig-
its in the octal number system. However, a 3-to-8-line decoder can be used for decoding any
3-bit code to provide eight outputs, one for each element of the code,

136

Chapter 4 Combinational Logic

Table 4-6
Truth Table of a 3-to-8-Line Decoder
Inputs Outputs
X Yy Dy D, D, D, Dy Ds Dy Dy

»—A»—\)—-IMOOOD
—_ O D OO
—_ O e Q=D O
o e I - T e e Y i [e B
S oo oo —o
SO C
[T e B e B e B o B o B
SO =0 OO0 0
OO = o000 Oo O
D=0 o oo D
[o= R R v -) e Y i

Some decoders are constructed with NAND gates. Since a NAND gate produces the AND
operation with an inverted output, it becomes more economical to generate the decoder
minterms in their complemented form. Furthermore, decoders include one or more enable
inputs to control the circnit operation. A 2-to-4-line decoder with an enable input constructed
with NAND gates is shown in Fig. 4-19. The circuit operates with complemented cutputs and
a complement enable input. The decoder is enabled when E is equal to 0. As indicated by the
truth table, only one output can be equal to 0 at any given time, all other outputs are‘equal
to 1. The output whose value is equal to O represents the minterm selected by inputs A and
B..The circuit is disabled when E is equal to 1, regardless of the values of the other two

Bl
i : W(\CI‘ fﬁ,« &A"’g‘,\?
: E A B D, b, D, B
A D ,:} o] 1 2 3
K] i 1 X X7 1 1 1 1
A 0 0 0 p 1 i 1
. N 0 0 1 1 o 1 1
By } D, 0 1 0 i1 0 1
i I: F—-— n 0 1 1 11 1 0
B —
? l*:\) —— : D3
E Dc
(a) Logic diagram . (b) Truth table

FIGURE 4-19
2-to-4-Line Decoder with Enable Input

134 Chapter 4 Combinational Logic

As

IS\

¢ s

=] D<o

¥

UQ

v

(4 =B)

FIGURE 4-17
4-Bit Magnitude Comparator

. that are needed to generate the equal output. The logic diagram of the 4-bit magnitude com-
it parator is shown in Fig. 4-17. The four x outputs are generated w1th exc1u51ve+NOR_ -\-iﬁcmts and
) applied to an AND gate to give the output bi binary variable (A = B).The other “tWo outputs use
‘ i~ the x variables to generate the Boolean funstions 11 ted previdusly. This is a multilevel imple-
; mentation and has a regular pattern. The procedure For obtaining magnitude comparator circuits
for binary numbers with more than four bits is ob\iglaf_irom thls example

1
oy
4.8 %ZECODERS Gaed Lo
B . LA
W ~= Discrete quantities of information are represented in digital systems by binary codes. A bina-
ry code of n bits is capable of representing up to 2" distinct elements of coded irffd?ﬁmation. A
decoder is a combinational circuit that converts binary iriformation from » input linesito a max-

imum of 2" unique output lines. If the a-bit coded information has unused combmatlons the
decoder may have fewer than 2" outputs.

- 132 Chapter 4 Combinational Logic

b2

A combinational circuit binary multipHer with more bits can be constructed in a similar
fashion. A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels
as there are bits in the multiplier. The binary output in each level of AND gates is added with

- the partial product of the previous level to form a new partial product. The last level produces
the product. For J multiplier bits and X multiplicand bits we need {J X K} AND gates and

(J — 1) K-bit adders to produce a product of J + X bits.

As a second example, consider a multiplier circuit that multiplies a binary number of four
bits by a number of three bits. Let the multiplicand be represented by By B, B, B, and the mul-
tiplier by A,A;Ay. Since K = 4 and J = 3, we need 12 AND gates and two 4-bit adders to pro-
duce a product of seven bits. The logic diagram of the multiplier is shown in Fig, 4-16,

4q
B By By By
By B, By By
0
Addend . Augend”
4-bit adder
. Sum and output carry
Ay
By By By By
Y Y Y
Addend ' Augend
_ 4bitadder _
- Sum and output carry
Cs Cs 4 G & &1 Co
FIGURE 4-16

-4-Bit by 3-Bit Binary Muitiplier

130

Chapter 4 Combinational Logic

of two decimal digits must be represented in BCD and should appear in the form listed in the
columns under BCD sum. The problem is to find a rule by which the binary sum is be converted
to the correct BCD digit representation of the number in the BCD sum.

- Inexamining the contents of the table, it is apparent that when the binary sum is equal to or
less than 1001, the corresponding BCD number is identical, and therefore no conversion is
needed. When the binary sum is greater than 1001, we obtain a non-valid BCD representation.
The addition of binary 6 (0110) to the binary sum converts it to the correct BCD representa-
tion and also produces an output carry as required. ‘ .

- - The logic circuit that detecis the necessary correction can be derived from the table entries.
It is obvious that a correction is needed when the binary sum has an output carry K = 1. The
other six combinations from 1010 through 1111 that need a correction have a 1 in position Z;.
To distinguish them from binary 1000 and 1001, which also have a 1 in position Z;, we spec-
ify further that either Z, or Z, must have a 1. The condition for a correction and an output carry
can be expressed by the Boolean function

C=K+Z%Z + 77,

When C = [,'itis necessary to add 0110 to the binary sum and provide an output carry for the
next stage.

A BCD adder that adds two BCD digits and produces a sum digit in BCD is shown in
Fig. 4-14. The two decimal digits, together with the input carry, are first added in the top 4-bit

Addend Augend
Carry ey Carry
out K 4- bit binary adder T i
Zy 2y Z I
Cutput
carry]
0

! \
4- bit binary adder

Ss 5 5 8.

FIGURE 4-14

Block Diagram of a BCD Adder

128 Chapter 4 Combinational Logic

Sl

because the number of bits that hold the number is ﬁni;e and a resuit that contains # + 1 bits can-

_ notbe accommodated. For this reaéon, many computers detect the occurrence of an overflow, and

when it occurs, a corresponding flip-flop is set that can then be checked by the user.

The detection of an overflow after the addition of two binary numbers depends on whether
the numbers are considered to be signed or unsigned. When two unsi gned numbers are added,
an overflow is detected from the end carry out of the most significant position. In the case of
signed numbers, the leftmost bit always represents the sign and negative rumbers are in 2’s com-
plement form. When two sigried numbers are added, the sign bit is treated as part of the num-
ber and the end carry does not indicate an overflow.

B \s) Anoverflow cannot occur after an addition if one number is positive and the other is nega-
— et

tive, since adding a positive number to a negative number produces a result which is smaller
than the larger of the two original numbers. An overfiow may occur if the two numbers added
are both positive or both negative. To see how this can happen, consider the following exam-
ple. Two signed binary numbers, +70 and +80, are stored in two 8-bit registers. The range of
numbers that each register can accommodate is from binary +127 to binary —128. Since the
sum of the two numbers is +150; it exceeds the capacity of an 8-bit register. This is true if the
nurmbers are both positive or both negative. The two additions in binary are shown next, together
with the last two carries;

carries: 0 1 carries: 1 0

+70 0 1000110 -70 1 @
+80 0 1010000 —80 1 jﬂ(mj
150 1 0010110 ~150 0 (101010

Note that the 8-bit result that should have been positive has a negative sign bit and the 8-bit result
that should have been negative has a positive sign bit. If, however, the carry out of the sign bit po-
sition is taken as the sign bit of the result, then the 9-bit answer so obtained will be correct. Since
the answer cannot be accommodated within 8-bits, we say that an overflow has occurred.

An overfiow condition can be detected by observing the carry into the sign bit position and
the carry out of the sign bit position. If these two carries are not equal, an cverflow has occurred.
This is indicated in the examples where the two carries are explicitly shown, If the two carries
are applied to an exclusive-OR gate, an overflow is detected when the output of the gate is
equal to 1. For this method to work correctly the 2’s complement must be computed by taking
the 1’s complement and adding one. This takes care of the condition when the maximum neg-
ative number is complemented,

The binary adder-subtractor circuit with outputs C and V is shown in Fig. 4-13. If the two
binary numbers are considered to be unsigned, then the C bit detects a carry after addition or
a borrow after subtraction. If the numbers are considered to be signed, then the V bit detects
an overflow. If V = () after an addition or subtraction, it indicates that no overflow occurred
and the n-bit result is correct, If V' = 1, then the result of the operation contains n + 1 bits, but
only the rightmost # bits of the number fit in the space available, so an overflow has occurred.
The-(n + 1)ih bit is the actual sign and has been shifted out of position.

136 Chapter 4 Combinational Logic

Table 4-6
Truth Table of a 3-to-8-Line Decoder

Inputs
Y

>
N
&
A
A

&
&

N

e i = i ==
OO == OO
R = L~
Coooooo =
cCooooo~o
CcCoooco oo

e i R R e =)

CooR o oo o

[e B e B e B e N o T
(S = i el o N = O o}

—o o COo o oo

(a) Logic diagram

FIGURE 4-19
2-to-4-Line Decoder with Enable Input

Whd et

Some decoders are constructed with NAND gates. Since a NAND gate produces the AND
operation with an inverted output, it becomes more economical to generate the decoder
minterms in their complemented form. Furthermore, decoders include one or more enable
inputs to control the circuit operation. A 2-to-4-line decoder with an enable input constructed
with NAND gates is shown in Fig. 4-19. The circuit operates with complemented outputs and
a compiement enable input. The decoder is enabled when E is equal to 0. As indicated by the
truth table, only one output can be equal to 0 at any given time, all other outputs are'equal
to 1. The output whose value is equal to 0 represents the minterm selected by inputs A and
B. The circuit is disabled when E is equal to 1, regardless of the values of the other two

E A B Dy D, D, Dy
o
1 % X/ ' 1 1 1 i
0 1 0 L1 oo 1
0 1 1 I 1-1 0
(b) Truth table

137

-t 2 S one of the outputs gre equal to 0 and none of the

n']_int M R e
erms areselected In general, a decoder ' wi np

MAay operate with compl'(?ﬁﬁ“ﬁfé—&—?)?ﬁhcomple-
or with a 1 signaJ, Some decoders

o Cimm‘t: satisfy a given logic condition in order to enable

a decoder/ demultiplexer.
. Decoders with enable inputs can be conpec
“lgure 4-20 shows W0 3-t0-8-line decoders wi
Iine decoder. When w = 0, the top dec 1
decoder Outputs are ali 0’s, ang the top eight o

w =

FIGURE 4.2¢

4 x

th enable inputs connected
‘ to form a 4-t0-76.
Vo.der 1s enabled and the other is disabled. The bc‘):)tt16

L] axs
.. decoder

[

16 Decoder Constructed with Two 3 x 8 Deco

ders

138

Chapter 4 Combinational Logic

Combinational Logic Implementation

A decoder provides the 2" minterms of » input variables. Since any Boolean function can be
expressed in sum of minterms, one can use a decoder to generate the minterms and an exter-
nal OR gate to form the logical sum. In this way, any combinational circuit with # inputs and
m outputs can be implemented with an n-to-2"-line decoder and m OR gates.
" The procedure for implementing a combinational circuit by means of a decoder and OR
gates requires that the Boolean function for the circuit is expressed in sum of minterms. A
decoder is then chosen that generates all the minterms of the input variables: The inputs to
each OR gate are selected from the decoder outputs according to the list of minterm of each
function. This procedure will be illustrated by an example that implements a full adder circuit.
From the truth table of the full adder (see Table 4-4), we obtain the functions for the com-

binational circuit in sum of minterms:
S(x,y,z) = 2(1,2,4, 7)
C(x,y,2) = 2(3,5,6,7)

Since there are three inputs and a total of eight minterms, we need a 3.to-8-line decoder. The
implementation is shown in Fig. 4-21. The decoder generates the eight minterms for x, y, z. The

OR gate for output S forms the logical sum of minterms 1, 2, 4, and 7. The OR gate for output
¢ forms the logical sum of minterms 3, 5, 6, and 7.

A function with a long list of minterms requires an OR gate with a large number of inputs.

A function having a list of k minterms can be expressed in its complemented form F ' with
2" — k minterms. If the number of minterms in a function is greater than 2" /2, then F' can be
expressed with fewer minterms. In such a case, it is advantageous to use a NOR gate to sum
the minterms of F'. The output of the NOR gate complements this sum and generates the nor-
mal output F. If NAND gates are used for the decoder as in Fig. 4-19, then the external gates
must be NAND gates instead of OR gates. This is because a two-level NAND gate circuit im-
plements a sum of minterms function and is equivalent to a two-level AND-OR circuit.

ol— .
) .
] ~:—D75

x — 22 2 .

gl 38 3

2 decoder 4

R =D
6
7

FIGURE 4-21

Implementation of a Full Adder with a Decoder

4-9

e W_ﬂb Nﬁv)‘f ; j")} Py \0 ‘ Section 4-9 Encoders o139
ENCODERS ' :

An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder
has 27 ((?r fewer) input lines and output lines. The output lines generate the binary code cor-
responding to the input value. An example of an encoder is the octal-to-binary encoder whose
truth table is given in Table 4-7. It has eight inputs (one for each of the octal digits) and three
outputs that generate the corresponding binary number. It is assumed that only one input has
a value of 1 at any given time.

The encoder can be implemented with OR gates whose inputs are determined directly from
the trutp Ifable. Output z is equal to 1 when the input octal digitis 1, 3, 3, or 7. Qutput y is 1 for
octal digits 2, 3, 6, or 7 and output x is 1 for digits 4, 5, 6, or 7. These conditions can be
expressed by the following output Boolean functions:

z=D+D,+D;+D, " 3,54
y=D,+Dy+ D+ D, Lib by
x=D4+D5+D6+D7 i.«‘e;}

"The encoder can be implemented with three OR gates,

. The'encoder defined in Table 4-7 has the limitation that only one input can be active at any
given time. If two inputs are active simultaneously, the output produces an undefined combi-
nation. For example, if D; and Dy are 1 simultaneously, the output of the éncoder will be 111
because all three outputs are equal to 1. This does not represent gigjqf binary 3 or binary 6. To
'resolvle this ambiguity, encoder circuits must establish an input prio%itgi to ensure that only .one
%nput is encoded. If we establish a higher priority for inputs withi litgher subscript numbers, and
if both D5 and Dﬁ_are 1 at the same time, the output will be 110 because D has higher ri;)rit
than D, : ’ ’

Another anmbiguity in the octal-to-binary encoder is that an output with a]l 0’s is generated
when all the inputs are 0; this output is the same as when D, is equal to-1 T dié&fepancy can
be resolved by providing one more output to indicate that at least one input is equal to 1.

Table 4-7
Truth Table of Octal-to-Binary Encoder

Inputs Outputs

o

D, D
0

>

OO OO0 O m
cCo0oC 0O —
cocococ~ocoy
cooc—ocooaol
ComOoOOOO S
oc~oocoooocol
—o o0 oo ool
—_m e O D OO R
==l e R ==
L= I =

.

cooor~roscol

140

Chapter 4 Combinational Logic

Table 4-8
Truth Table of a Priority Encoder
Inputs . Outputs

Dﬂ D-| Dz Dg X y v
0 0 0 0 X X 0
1 0 0 0 0 0 1
X 1 0 0 0 i 1
X X 1 0 1 0 i
X X X 1 1 1 3

Priority Encoder

A priority encoder is an encoder circuit that includes the priority function. The operation of the

. priority encoder is such that if two or more inputs are equal fo 1 at the same tme, the input hav-

ing the highésf priority will take precedence. The truth table .of a.fom-input. priority encoc?er 1st g(llvc;n
inmmum x and y, the ciroujt has a4 d output des1g;11‘la o ty
V; this is a valid bM@W_\'ﬂ\w&i If 1}111pu 5
are 0, there is no valid input and V'is equal to 0. The other two outputs a’re. not mspecttlad when
equals 0 and are specified as don’t-care conditions. Note that whereas X’s in outpl_lt co umrllls r?i—
resent don’t-care conditions, the X's in the input columns are useiful for representing a trath ta ;(:
in condensed form. Instead of listing all 16 minterms of four vanal?les, the truth tab;e] ullf}%s an
to represent either 1 or (. For example, X100 represents the two rglntenns OIQO an o - -
According to Table 4-8, the higher the subscript number, the higher tl}e pnorlt}lfl 0 thjc it f u{
Input Dy has the highest priority, so regardless of the vall.Jes- of the other inputs, W f(;l'f g 1 =p X
is 1, the output for xy is 11 (binary 3). D, has the next priority level, The f)ut.put. is 101 Thé .
provided that D; = 0, regardless of the values of the other two lower priority ll’lpi‘ltS.- The ont
put for D, is generated only if higher priority inputs are 0, s}nd S0 on down‘the pno; ythzv:,wc;
The maps for simplifying outputs x and y are shown in Fig. 4-22. The minierms orh oo
functions are derived from Table 4-8. Although the table has only five rows, wher eac in

D2 DZ
00 01 11 10 00 01 11 10

to| X 1 1 -1 ’ . 00 1 i

X
01 1 1 1 01 1 1 , 1
DI : Di’
E

11 1 1 1 11
DO DO
10 1 1 1 10 1 1
D; Dj
x=Dy+ Dy y=D3+ DDy
FIGURE 422

. Maps for a Priority Encoder

4-10

Section 4-10 Multiplexers 141

Dy
D2 DO——‘ y
Dy —
> .
— N y
2 1
FIGURE 4-23

4-Input Priority Encoder

row is replaced first by 0 and then by 1, we obtain all 16 possible input combinations. For
example, the fourth row in the table with X210 represents the four minterms 0010, 0110, 1010,
and 1110. The simplified Boolean expressions for the priority encoder are obtained from the
maps. The condition for output V is an OR function of all the input variables. The priority
encoder is implemented in Fig. 4-23 according to the following Boolean functions:

x=D, + Dy
y=D3+D1DE'Z
V=Dy+ D+ D+ D o

MULTIPLEXERS 557 o

A multiplexer is a combinational circuit that selects binary information from one of many input
lines and directs it to a single ontput line. The selection of a particular input line is controlled
by a set of selection lines. Normally, there are 2" input lines and # selection lines whose bit com-
binations determine which input is selected.

A 2-to-1-line multiplexer connects one of two 1-bit sources to a common destination as
shown in Fig. 4-24. The circuit has two data input lines, one output line, and one selection line
S. When § = 0, the upper AND gate is enabled and [, has a path to the output. When § = I,
the lower AND gate is enabled and I; has a path to the output. The multipiexer acts like an
electronic switch that selects one of two sources. The block diagram of a multiplexer is some-
times depicted using a wedge-shaped symbol as shown in Fig 4-24(b). It suggests visnally how

a selected one of multiple data sources is directed into a single destination. The multiplexer is
often labeled as MUX in block diagrams.

A 4-to-1-line multiplexer 1s shown in Fig. 4-23. Each of the four inputs, I, through I3, is ap-
plied to one input of an AND gate. Selection lines S, and S, are decoded to select a particular
AND gate. The outputs of the AND gates are applied to a'single OR gate that provides the
1-line output. The function table lists the input that is passed to the output for each combina-
tion of the binary selection values. To demonstrate the circuit operation, consider the case when
8155=10. The AND gate associated with input I, has two of its inputs equal to I and the third
input connected to I,. The other three AND gates have at least one input-equal to 0, which

142

Chapter 4 - Combinational Logic

Iy

b

—

I
’—— 0 MUX Y

> s

(a) Logic diagram () Block diagram
FIGURE 4-24
2-to-1-Line Multiplexer
'IU s & Y
[¢ o] &
0o 1y 4
1 0| L
h 1 1] L
(b) Function table
I
2 —
I

(a) Logic diagram

FIGURE 4-25
4-to-1-Line Multiplexer

akes their outputs equal to 0. The OR gate output is now equal to the value of I, provic,:ling
znpath from the selected input to the output. A multiplexer is also called a data selector, since

it selects one of many inputs and steers the binary information to the output line.

AND i ircuit and, indeed, they
i i in the multiplexer resemble a decoder circuit and, ,
o e e ot new, | § 1-line multiplexer is constructed from an

decode the selection input lines. In general, a 2"to-

Section 4-10 - Multiplexers 143

n-to-2" decoder by adding to it 2" input lines, one to each AND gate. The outputs of the AND
gates are applied to a single OR gate. The size of a multiplexer is specified by the number 2*
of its data input lines and the single output line. The » selection lines are implied from the 27
data lines. As in decoders, multiplexers may have an enable input to control the operation of
the unit. When the enable input is in the inactive state, the outputs are disabled, and when it is
in the active state, the circuit functions as a normal multiplexer,, 1=/ ¢ <[110
Multiplexer circuits can be combined with common sélection inputs to provide multiple-
bit selection logic. As an illustration, a quadruple 2-to-1-line multiplexers are shown in
Fig. 4-26. The circuit has four multiplexers, each capabie of selecting one of two input lines.

B

Ay "
[/ ';:):>7Y0
A — o)
LT] D
- A2
A R
— mp
B, —
_/ Function table
B = E §|Output¥
1 v / 1 X|all0's
0 0 !select A
0 1 |selectB
-

O 0
(seiéjc;)—LDO_‘ ‘DO_—‘
LN {:

(enfble)

FIGURE 4-26
Quadruple 2-to-1-Line Multiplexer

144

Output ¥ °r inp
the Ealue? of A; or By, and so on. Input selection line S selects one of th

Chapter 4 Combinational Logic

i input A, or By. Similarly, output ¥; may have
can be selected to come from either inp 0 o P e
four multiplexers. The enable input E must be active for normal opera‘tion.' fxlthoz %i]tlt: tc;;;
i : i i ¢ more likely to view it as a
cuit contains four 2-to-1-line multiplexers, we ar ' / s e e
i i As shown in the function table, the u
selects one of two 4-bit sets of data lines. unisls enab &
its = i have a path to the four outputs.
E = 0. Then, if § = 0, the four A inputs :
:il:c;l if § = 1, the four B inputs are applied to the outputs. The outputs have all 0’s when

E = 1, regardless of the valuel of §.

Boolean Function Implementation

It was shown in Sec. 4-8 that a decoder can be used to implemefnt Bolfa}elzan fu:;t;glr;sﬂ?i
' o1 inati ic di tiplexer
i An examination of the logic diagram of a mu.
employing external OR gates. . Zic | O e e
it 1 i i OR gate within the unit. The
it is essentiafly a decoder that includes the : . e iom o, The
io i i by the circuit associated with the sele i T
o e e b selocuad i This provides a method of implementing
individual minterms can be selected by the data inputs. This p cthor ;
?dBlzgjllz;ln function of n variables with a multiplexer that has » selection inputs and 2" data
inputs, one for each minterm. - . .)
IHP%]Z will now show a more efficient method for 1mplement1;1g a Boollean fugf;o; (t)lf1 :f\:lz;ré_
i i - lection inputs. The first n — 1 varial -
ables with a multiplexer that has » — 1 selectis ‘ ! variables of tie e
i ion i f the multiplexer. The remaining sing ‘
tion are connected to the selection inputs O : ‘ ‘ e
ion 1 i le varizble is denoted by z, each data 1ap!
tion is used for the data inputs. If the sing : :
t(?fetlfll;nlimltiplexer will be z, 7/, 1, or 0. To demonstrate this procedure, consider the Boolean

function of three variables:
F(x,v.2z) = 2(1,2,6,7)

The function can be implemented with a 4-to-1-line multiplexer as Vs'hown nFH ﬁ 4-?{;’ . ghc: ;\\:3
variables x and y are applied to the selection lines in that order; x is connected to the .5, mp

4 x 1 MUX
y —%
x Sl
xy z|F
00 0|0 H_, 2 o F
1 1
1 z' 1
01 0|1l _
01 1 0 0 2
T 000 __]
10 1,0 F70) s
1 1 011
11 11 F=1 |
. . "
(a) Truth table (b) Multiplexer implementation

FIGURE 4-27

Implementing a Boolean Function with a Multiplexer

Section 4-10- Multiplexers 145

and y to the S, input. The values for the data input lines are determined from the truth table of
the function. When xy = 00, output F is equal to z because ¥ = O when z = Qand ¥ = 1
when z = 1. This requires that variable z be applied to data input 0. The operation of the mul-
tiplexer is such that when xy = 00, data input O has a path to the output and that makes F
equal to z. In a similar fashion we can determine the required input to data lines 1, 2, and 3 from
the value of F when xy = 01, 10, and 11, respectively. This particular example shows all four
possibilities that can be obtained for the data inputs,

The general procedure for implementing any Boolean function of 7 variables with a multi-
plexer with n — 1 selection inputs and 2" ! data inputs follows from the previous example,
The Boolean function is first listed in a truth table. The first n — 1 variables in the table are
applied to the selection inputs of the multiplexer. For each combination of the selection vari-
ables, we evaluate the output as a function of the last variable. This function can be 0, 1, the
variable, or the complement of the variable. These values are then applied to the data inputs in

the proper order. As a second example, consider the implementation of the Boolean function
—_— —

F(A,B,C,D) = 3(1,3,4,11, 12, 13, 14, 15), -

This function is implemented with a multiplexer with three selection inputs as shown in
Fig. 4-28. Note that the f{irst variable A muost be connected to selection input §, so that A, B,
and C correspond to selection inputs 3, S, S, respectively. The values for the data inputs are
determined from the truth table listed in the figure. The corresponding data line number is
determined from the binary combination of ABC. For example, when ABC = 101 the table

- shows that F = D, so the input variable D is applied to data input 5. The binary constants 0

and 1 correspond to two fixed signal values. When integrated circuits are used, logic 0 corre-
sponds to signal ground and logic 1 is equivalent to the power signal—uswally 5 volts.

| 8 x 1 MUX
A B CD|F
000 00 ,_, c S
0°0 0 1|1 B s,
00 1T 0[]0 .- 4 5
0 01 1|1 F=P
01 0 01 - .
0 10 1|9 F=P D 0
0 1 1 00 oo i
011 1|9 ¥7¢] D) ;
1T 0 0 0f 0
= 0 - 13
1 0 0 1]g F=0 —
1 0 1 00 P
1 01 11 77 s
T 170 01 ..) i .
1 190 1|1 F=1 °
7T T 0T 7 L
111 111 F=
FIGURE 4-28

Implementing a 4-Input Function with a Multiplexer

146

Chapter 4 Combinational Logic

) =AfC=1
input A j >—— Output ¥ = A C
Nom-lal e High-impedance if C =0

Control input C

FIGURE 4-29
Graphic Symbol for a Three-State Buffer

Three-State Gates

Select

A multiplexer can be constructed with three-state gates. A three-state gate is 3 c(:l)1g1tilrl1 ??;rg
that exhibits three states. Two of the states are signals equwal.ent 'to logic 1 an t }?Shaves o
ventional gate. The third state is a high-impedance state. The ﬁxgh-xmpecz’iancs st,;a e(:: irzuﬁ e ke
an open circuit, which means that the output appears to be disconnected and the

. . .
logic significance. Three-state gates may perform any conventional logic such as AND o

the one most commonly used is the buffer gate. o

NA’II“\L]Z glj;?}’]: esrgirnbol of a three-state buffer gate if?‘ shown in Fig, 4-29. It is dlsnr{i;m%;i
from a normal buffer by an input control line entepng the bottom (')f the gate tsyn}f thé e
buffer bas a normal input, an output, and a conatrol .mput that determines the hsta e (fike oo
put. When the contro} input is equal to 1, the output 1s e'nabled and the gate be 121\.168 o con
ventional buffer, with the cutput equal to the normal input. When the contrF thmpume3 '1;1 e
output is disabled and the gate goes to-a high-impedance state, rege?rdless o -elvfae ue in e
normal input. The high-impedance state of a three-state gate provides a spec1? cature ot
available in other gates. Because of this feature, a 1?rge number of Fhree«statte ga f;a ot P
be connected with wires to form a common line without en@angenng:_loadmg BF‘CC : 20, Pact

The construction of multiplexers with three—statc? buffers. is demor}strated in 1g.t t— b];ffers
(a) of the figure shows the construction of a 2-to-1-line multiplexer with two three-state

e . L
I
™
A ¥ I
3
Select s 2% 4
B 0 decoder
Enable — EN

-to-1 line mux
{a) 2-to-1- line mux (b) 4 o.]

. FIGURE 4-30
Multiplexers with Three-State Gates

Section 4-11 HDL for Combinational Circuits 147

and an inverter. The two outputs are connected together to form a single output line (It must
be realized that this type of connection cannot be done with gates that do not have three-state
outputs). When the select input is 0, the upper buffer is enabled by its control input, and the lower
buffer is disabled. Output ¥ is then equal to input A. When the select input is 1, the lower buffer
is enabled and ¥ is equal to B.

The construction of a 4-to-1-line multiplexer is shown in Fig. 4-30(b). The outputs of four
three-state buffers are connected together to form a single output line. The control inputs to the
buffers determine which one of the four normal inputs I, through I, will be connected to the
output line. No more than one buffer may be in the active state at any given time. The connected
buffers must be controlled so that only one three-state buffer has access to the output, while all
other buffers are maintained in a high-impedance state. One way to ensure that no more than
one control input is active at any given time is to use a decoder as shown in the diagram. When
the enable input of the decoder is 0, all of its four outputs are 0, and the bus line is in a high-
impedance state because all four buffers are disabled. When the enable input is active, one
of the three-state buffers will be active depending on the binary value in the select inputs of

the decoder. Careful investigation will reveal that this circuit is another way of constructing a
4-to-1-line multiplexer..

411 _HDL FOR COMBINATIONAL CIRCUITS

The Verilog hardware description language (HDL) was introdaced in Section 3-9. In this sec-

a0 OB, WE Present; the-alternatives available for describing combinational circuits in HDL,.
Sequential circuits are presented in the next chapter. As mentioned previously, the module is
the basic building block of Verilog HDL. A module can be described in any one (or a combi-
nation) of the following modeling techniques:

* Gate-level modeling using instantiation of primitive gates and user-defined modules.
* Dataflow modeling using continuous assignment statements with keyword assign.

-» Behavioral modeling using procedural assignment statements with keyword always.

Gate-level modelinig describes the circuit by specifying the gates and how they are connected
with each other. Dataflow modeling is mostly used for describing combinational circuits.
Behavioral modeling is used to describe digital systems at a higher level of abstraction. There
is one other modeling style called switch-level modeling. This type of modeling provides the
ability to design at the MOS transistor level and is considered in section 10-10.

Gate-Level Modeling

Gate-level modeling was introduced in Section 3-9 with a simple example, In this type of repre-
sentation, a cirquit is.specified by its logic gates and their interconnection. It provides a textual
description oﬁg%é%’ngtic diagram, Verilog recognizes 12 basic gates as predefined primitives.
Four primitive gates are of the three-state type. The other eight are the same as the ones listed in
Section 2-7. They are declared with the lowercase keywords: and, nand, or, nor, xor, Xnor, not,
buf. When the gates are simulated, the system assigns a four-valued logic set to each gate. In

148

Chapter 4 Combinational Logic

Y

P
3 j\}fjo

Table 4-9
Truth Table for Predefined Primitive Gates
and [0 1 x Z or 0-1 x =z
00 0 00 010 1 x X
1 (0 1 x x 1 1 1 1 1
x |0 x x % X x 1 x x
z [0 x x x Z x 1 x X
xor |0 1 x =z not | input output
WY A 0o 1 x x 0 1
% ﬁ; x‘/ 111 0 x x I 0
x X X X X X X
Z X X X X Z x

addition to the two logic values of 0-and 1, there are two other values: unknown and high im-
pedance. An unknown value is denoted by X and a high impedance by z. Ap unknown value is
assigned during simulation for the case when an input oroutput is ambipaBns, for instance if it
has not yet been assigned a value of O or 1. A high—imoﬁegda%oce condition occurs in the output of
three-state gates or if a wire is Liﬁﬁ@l‘?é?t‘é‘ﬁﬁ left unconnected. The truth table for the and, o,

" xor, and not are shown in Table 4-9. The truth table tor the Gther four gates is the same except

that the outputs are complemented. Note that for the and gate, the output is 1 only when both
inputs are 1, the output is 0 if any input is 0. Otherwise, if one Input is X o1 7, the output is X.
The output of the or gate is 0 if both inputs are 0.5 Tif any i0pUCis 1, and 1s X otherwise. o

When a primitive gate is incgfﬁo’fﬁed into a module, we say it is instantiated in the module.
In general, component instantiations are statements that reference lower-level components in the
design, essentially creating unigue copies (or instances) of those components in the higher-level
module. Thus, a module that uses a gate in its description is said to instantiate the gate.

We now present two examples of gate-level modeling. Both examples use multiple bit widths

called vectors. A vector is specified within square brackets and two numbers separated with a

colon. The following code specifies two vectors:

output {0:3]1D;
wire [7:0]SUM;

The first declares an outpat vector D with four bits 0 through 3. The second declares a wire vec-
tor SUM with eight bits numbered 7 through 0. The first number listed is the most significant
bit of the vector. The individual bits are specified within square brackets, thus D [2] specifies
bit 2 of D. It is also possible to address parts of vectors. For example, SUM [2: 0] specifies the
three least significant bits of vector SUM.

HDL Example 4-1 shows the gate-level description of a 2-to-4-line decoder. It has two data
inputs A and B and an enable input . The four outputs are specified with the vector D, The wire
declaration is for internal connections. Three not gates produce the complement of the inputs
and four nand gates provide the outputs for D). Remember that the output is always listed first in
a gate list, followed by the inputs. This example describes the decoder of Fig. 4-19 and follows

the procedures established in Sec. 3-9. Note that the keywords not and nand are written only once

e e e

Section 4-11 HDL for Combinaticnal Circuits ‘149

HDL Example 4-1

//Gate_—level description of a 2—t0*4—1ine decoder
//Figure 4-19 NS e
module decoder_gl (A,B,E,D):

input A,B,E; \) 0 'O\] “'L J\)%

output [0:3]D;

wire Anot,_Bnot,Enot;?’? .

not . \Cw\p@@ : “\J _. 4—-\
7 en” Dlodug et &1
n3 (Enot,E); \“D\}'—\WS

nand
nd (D[0],Anot, Bnot, Enot},
nb (D[l],Anot,&Enot),
né (D[2],A,Bnot, Enot), Bt s
n7 (D[3],A,B,Enot) ; (el 1 F

endmodule i éf\j

g sl g

b

and dol not have to be repeated for each gate, but commas must be inserted at the end of each of
the series of gates except for the last statement, which must be terminated with a semicolon
Two or more modules can be combined to build a hierarchical descripﬁon of a design T}-lere
are two k_)as1c types of design methodologies: top-down and bottom-up. In a fop-down c.iesi i}
.the tqp—lbv‘el block is defined and then the sub-blocks necessary to build the'top-level block ire:
1d§nnﬁed. In a bottom-up design, the building blocks are first identified and then combined to
build the top-levei block. Take for example the binary adder of Fig. 4-9. It can be considerad
as a top-block component built with four full adder blocks, while each full adder is built with
two half addfar blocks. In a top-down design, the 4-bit adder is defined first, and then the two
adders described. In a bottom-up design, the half adder is defined, then the’full adder is
structed and then the 4-bit adder is built from the full adders. ’ .
A bottqm—up hierarchical description of a 4-bit adder is shown in HDL Example 4-2. Th.
ha].f adder. is defined by instantiating primitive gates. The next module describes the full a;ddei
by instantiating two half adders. The third module describes the 4-bit adder by instantiating fou
full adders. (Note that identifiers cannot start with a number but can start with an undergécor;
s0 the modu%e name is: _4bitadder.) The instantiation is done by using the name of the.
module that is instantiated with a new (or the same) set of port names. For example, the half.
adder HA1 inside the full adder module is instantiated with ports S1, D1, x, y. This , rod
a half adder with outputs §1, D1, and inputs x, y. B PR
Nc?te_ that in Verilog, one module definition cannot be placed within another module
description. In other words, a module cannot be inserted within the moduale and endmodule
keywords of an(?ther module. The only way one module definition can-be incorporated in
another mf)dule is by instantiating it. Thus, modules are instantiated within other modules to
create a hierarchical description of a design. Also, note that names must be specified when
defined modules areimsTatEd (like FAO for the first full adder in the third module), but using

a name is optional when instantiating primitive gates.

150

Chapter 4 Combinational LOgIC

. N
HDL Example 4-2 ,\\“\% Q\S ON W\\@T L

//Gate-level hierarchical description eof 4-bit adder
// Description of half adder (see Fig 4-5b)
module halfadder (S,C.x,¥);
input x,v;
ocutput 5,C;
//Instantiate primitive gates
xor (S,X.¥);
and (C,x,Vv);
. -andmodule

//Degcription of full adder (see Fig 4-8)
module fulladder (S.C,X,v.2Z):
input x,v.2;
output 2,C;
wire S1,D1.D2; //0utputs of first XOR and two AND gates
//Instantiate the halfadder
halfadder EAL (S1,D1i,x,¥).
HA2 {5,D2,581,z);
or gl{C,D2,D1l};

Three State Gates

endmodule _ %(
. E”Q\\
//Description of 4-bit adder {(see Fig 4-93) t§>
module _4bit_adder (S,C4,A,B,C0);
input [3:0] A,B;
input CO;
output [3:01 S;
output C4;
wire C1,C2,C3; //Intermediate carries
//Instantiate the fulladder
fulladder FAQ (S101,C1,A[01,B[0],C0),
FAl (S[11,C2,A[13.B[1],C1),
FAZ (S[2]1,C3,A[2]1,B[2],C2),
FA3 (S[3],C4,A[3]1,B[3],C3);
endmodule
As mentioned i ion 4-10, three-state gates have a control input that can place the gate

into a high-frapedance state. The high-impedance state is symbolized by z in HDL. There are
four types of three-state gates as shown in Fig. 4-31. The bufifl gate behaves like a normal buffer
if control = 1. The output goes to a high-impedance state z when control = 0. The bufif0 gate
behaves in a similar fashion except that the high-impedance state occurs when control = 1. The

)5’%‘\}?’} \
"’ i N
o2 i

Section 4-11 * HDI. for Combinational Circuits 151

in out in out
conirol ~ conirol
bufifl bufifl
in out in ——— out
control control

notift o notifd
FIGURE 4-31 '
Three-State Gates

two not gates operate in a similar manner except that the output is the complement of the input
when the gate is not in a high-impedance state. The gates are instantiated with the statement

gate name (output, input, control);

The gate name can be any one of the four three-state gates. The output can result in 0,1, orz.
Two examples of gate instantiation are

bufifli (0UT,2,control);
notif0 (Y,B,enable);

In the first example, input A is transferred to OUT when control = 1. QUT goes to z when
control = Q. In the second example, output ¥ = z When enable = 1 and output ¥ = B’
when enable = 0,

The outputs of three-state gates can be connected together to form a common output Hne.
To identify such a connection, HDL uses the keyword tri (for tristate) to indicate that the out-

put has multiple drivers. As an example, conmder the 2-to-1-line multiplexer with three—state
gates shown in Fig. 4-32.

out

7
B |

: . select
FIGURE 4-32 ‘
2-to-1-Line Multiplexer with Three-State Buffers

152

Chapter 4 Combinational Logic

The HDL description must use a tri data type for the output.

module muxtri (A,B,select,OUT);:

input A,B,select;
output OUT;

tri OUT;

bufifl (QUT,A,select);
bufifd (QUT,B,select};

endmodule C
The two three-state buffers have the same output. In order to show that they have a common
connection, it is necessary to declare OUT with the keyword tri.

Keywords wire and tri are examples of net data type. Nets represent connectjons between
hardware elements. Their value is continuously driven by the output of the device that they
represent. The word net is not a keyword, but represents a class of data types such as wire,
wor, wand, tri, supply1, and supply0. The wire declaration is used most frequently. The net wor
models the hardware implementation of the wired-OR configuration. The wand models the wired-
AND configuration.(See Fig. 3-28). The nets supplyl and supply0 represent power supply and
ground. They are used in the description of switch-level modeling (see Section 10-10).

Dataflow Modeling

Dataflow modeling uses a number of operators that act on operands to produce desired results. Ver-
ilog HDL provides about 30 operator types. Table 4-10 lists some of these operators, their sym-
bols, and the operation that they perform. (A complete list of operators can be found in Table 3-1,
Section 8-2.) Tt is necessary to distinguish between arithmetic and logic operations, so different
symbols are used for each. The plus symbol {+) is used for arithmetic addition and logic AND
uses the symbol &. There are special symbols for OR, NOT, and XOR. The equality symbol uses
two equal signs (without spaces between them) to distinguish it from the equal sign nsed with the
‘assign statement. The concatenation operator provides a mechanism for appending multiple
operands. For example, two operands with two bits each can be concatenated to form an operand
with four bits. The conditional operator is explained later in conjunction with HDL Example 4-6.

Table 4-10
Verilog HDL Operators
Symbol Operation
+ binary addition
— binary subtraction
& bit-wise AND
| bit-wise OR
A bit-wise XOR
~ bit-wise NOT
== equality
> greater than
< iess than
{3 concatenation

7 conditional

Section 4-11 HDL for Combinational Circuits 153

HDL Example 4-3

//Dataflow description of a 2-to-4-1line decoder
//See Fig. 4-19
module decoder_df (A,B,E,D);

input A,RB,E;

output [0:3] D;

asgign DI0] ~(~A & ~B & ~R},

[H

D[1] = ~{~A & B & ~E),
_ DI[2] = ~{A & ~B & ~E),
D[3] = ~{(A & B & ~E};

endmodule

].)ataﬂow. modeling uses continuous assignments and the keyword assign. A continuous
assignment 1s a statement that assigns a value to a net. The data type net is used in Verilog
HDL to represent a physical connection between circuit elements. A net defines a gate output
declareq by an output or wire statement. The value assigned to the net is specified by an
expression that uses operands and operators, As an example, assuming that the variables were

decla.red, a 2_!-to—1- line multiplexer with data inputs A and B, select input §, and output Y is
described with the continuous assignment

assignyY = (A & S} | (B & ~8);

It starts with the keyword assign followed by the target output Y and an equal sign. Following

the equal sign is a Boolean expression. In hardware terms, thi i i
the oot ot the OB (1 gatepto sion. 5, th]S‘WOLﬂd be equivalent to connecting
The next two examples show the dataflow models of the two previous gate-level exam-
plles. _Tl_le dataflow description of a 2-to-4-line decoder is shown in HDL Example 4-3. The
circuit is defined with four continuous assignment statements using Boolean express'ions
one for each output. The dataflow description of the 4-bit adder is shown in HDL’
Exa_n.lple 4-4. The addition logic is described by a single statement using the operators of
addltlop and concatenation. The plus symbol (+) specifies the binary addition of the four bits
of A with the four bits of B and the one bit of Cin. The target output is the concatenation of

HDL Example 4-4

//Dataflow description of 4-bit adder
module binary_adder (A,B,Cin,SUM,Cout);
input [3:0] A,B;
input Cin;
output [3:0] SUM;
output Cout;
.. .agsign {Cout,SUM} = A + B + Cin;
endmodule

154

Chapter 4 Combinational Logic

HDL Example 4-5

//Dataflow description of a 4-bit comparator.
module magcomp (A,B,ALSB, AGTB, AEQB) ;
input [3:0] A,B;
output ALTB,AGTE, AEQB;
assign ALTB=(A < B),
AGTB (A > B).,
AEQB {A == B);

endmodule

the output carry Cour and the four bits of SUM. Concatenation of operands is expressed
within braces and a commna separating the operands. Thus, {Cout, SUM} represents the
five-bit result of the addition operation. o _
Dataflow modeling provides the means of describing combinationa!l c'lrcmts by their fupc—
tion rather than by their gate structure. To show how datafiow descriptions facilitate digital
design, consider the 4-bit magnitude comparator described in HDL Example 4—.5. Tt.le mpdule
specifies two 4-bit inputs A and B and three outpuis. One output (ALTB).lS logic 1if A is les.s
than B, a second output (AGTB) is logic 1 if A is greater than B, an'd a third output (AEQB) if
A is equal to B. (Note that equality is symbolized with t\.m) equal 51g1.13.) A Verilog HDL syn-
thesis compiler can accept as input this module description and provide an output netlist of a
circuit equivalent to Fig. 4-17. - -
The next example uses the conditional operator (7 :). This operator takes three operands.

condition ? true-expression : false-expression ;

The condition is evaluated. If the result is logic 1, the true expression iS: evaluated. ﬁlthe result
is logic 0, the false expression is evaluated. This is equivalent to an if-else C.O.Ildltlon. HDL
Exafnple 4-6 shows the description of a 2-to-1-line multiplexer using the conditional operator.

The continuous assignment
assign OUT = select? A : B ;

specifies the condition that OUT = A if select = 1, else OUT = Bif select = 0.

HDL. Example 4-6

//Dataflow description of 2-to-1-line multiplexer
module mux2xi_df {&,B,select,OUT);

input 2,B,select;

output CUT;

assign OUT = select ? A : B;
endmodule

Section 4-11 HDL for Combinational Circuits 155"

HDL Example 4-7

//Behavioral descripticon of 2-to-l1-line multiplexer
module mukal_bh(A,B,select,OUT);
input A,B,select;
output OUT;
reg OUT;
always @ (select or A or B)
i1f (select == 1) OUT = A;
else OUT = B;
endmodule

ioral Modeling

Behavioral modeling represents digital circuits at a functional and algorithmic level. It is used

- mostly to describe sequential circuits, but can be used also to describe combinational circuits.

Here we present two simple combinational circuit examples to introduce the subject. Behav-
1oral modeling is presented in more detail in Section 5-5 after the study of sequential circuits.
Behavioral descriptions use the keyword always followed by a list of procedural assign-
ment statements. The target output of procedural assignment statements must be of the reg
data type. Contrary to the wire data type, where the target output of an assignment may be
continuously updated, a reg data type retains its value until a new value is assigned.
. HDL Example 4-7 shows the behavioral description of a 2-to-1-line muliiplexer (compare
it with HDL Example 4-6). Since variable OUT is a target output, it must be declared as reg
data (in addition to the output declaration). The procedural assignment statements inside the
always block are executed every lime there is a change in any of the variables listed after the
@ symbol. (Note that there is no (;) at the end of the always statement.) In this case, they are
the input variables A, B, and select. Note that the keyword or is used between variables instead
of the logical OR operator “|”. The conditional statement if-else provides a decision based upon
the value of the select input. The if statement can be written without the equality symbol;

if (gelect) OUT = A ;

The statement impiies that select is checked for logic 1.

HDL Example 4-8 describes the function of a 4-to-1-line multiplexer. The select input is
defined as a 2-bit vector and ouiput y is declared as reg data. The always statement has a
sequential block enclosed between the keywords case and endcase. The block is executed
whenever any of the inputs listed after the @ symbol changes in value. The case statement is
a multiway conditional branch condition, The case expression (select) is evalnated and com-
pared with the values in the list of statements that follow. The first value that matches the true
condition is executed. Since select is a 2-bit number, it can be equal to 00, 01, 10, or 11, Bi-
nary numbers are specified with the letter b preceded by a prime. The size of the number is writ-
ten first and then its value. Thus, 2'b01 specifies a two-digit binary number whose value is (1.
Numbers can be specified also in decimal, octal, or hexadecimal with the letters ’d, "o, and 'h,
respectively. If the base of the number is not specified, it defaults to decimal. If the size of the
number is not specified, the system assumes that the size of the number is 32 bits.

156

Chapter 4 Combinational Logic

HDL Example 4-8

//Behavioral description of 4-to-1- line multiplexer
//Describes the function table of Fig. 4-25(b).
module muxdxl_bh {i0,i1,12,13,select,y);

input i0,11,1i2,1i3;

input [1:0]} seleck;

output vy;

reg v;

always @ (i0 or 11 or iZ2 or i3 or select)

case (select)

2'1H00: vy = i0;

2'b0i: v = il;

2'bl0: vy = 12;

2'b11: v = 13;
endcase

endmodule

We have shown here stinple examples of behavioral descriptions of combinational circm.ts.
Behavioral modeling and procedural assignment statements require knowledge of sequential
circuits and are covered in more detail in Section 5-5.

Writing A Simple Test Bench

A test bench is an HDL program used for applying stimulus to an HD.L design in order to test
it and observe its response during simulation. Test benches can be quite complex apd lengthy
and may take longer to develop than the design that is testeFl. How'ever_, the ones cons:dere.c'l here
are relatively simple, since all we want to test is combinational circuits. The examples are pre-
sented to demonstrate typical descriptions of HDL stimulus modufes. _ _

In addition to the always statement, test benches use the initial staterpent to prov1de: sfu:n—
ulus to the circuit under test. The always statement executes repeatedly in a lot?p. Tha. initial
statement executes only once starting from simulation time=0 anfi may continue with any
operations that are delayed by a given number of time units as specified by the symbol #. For
example, consider the initial block

initial
begin
A = 0; B= 0;
#10 A = 1;
#20 A = 0; B=1;
end

The block is enclosed between the keywords begin and end. At time = 0 A and B are set to
(). 10 time units later, A is changed to 1. 20 time units later (at t = 30) A is changed to 0 and
B to 1. Inputs to a 3-bit truth table can be generated with the initial block:

Section 411 HDL for Combinational Circuits ‘1'57

initial
begin
D = 3'b000;
'repeat {7)
#10 D = D + 3'p001;
end

The 3-bit vector D is initialized to 000 at time = 0. The keyword repeat specifies a looping
statement: one is added to D seven times, once every 10 time units. The result is a sequence of
binary numbers from 000 to 111.

A stimulus module is an HDL. program that has the following form:
module iestname.
Declare iocal reg and wire identifiers.
Instantiate the design module under test.
Generate stimulus using initial and always statements.
Display the output response.
endmodule

A test module typically has no inputs or outputs. The signals that are applied as inputs to the
design module for simulation are declared in the stimulus module as local reg data type. The
outputs of the design module thar are displayed for testing are declared in the stimulus mod-
ule as local wire data type. The module under test is then instantiated using the local identi-

- fiers. Figure 4-33 clarifies this relationship. The stimulus module generates inputs for the design

module by declaring identifiers TA and T B as reg type, and checks the output of the design unit
with the wire identifier 7'C. The local identifiers are then used to instantiate the design mod-
ule under test, .

The response to the stimnlus generated by the initial and always blocks will appear at the
output of the simulator as timing diagrams. It is also possible to display numerical outputs

Stimulus module Design moduile

module tesicircuit module circuit (A, B, C);
reg TA, TB; |——— input A, B;
wire TC

;e output C;

circuit cr (TA, TB, TC);

FIGURE 4-33
Stimulus and Design Modules Interaction

158

Chapter 4 Combinational Logic

using Verilog system tasks. These are built in system functions that are recognized by key-
words that begin with the symbol $. Some of the system tasks useful for display are
$display—display one-time value of variables or strings with end-of-line return,
$write— same as $display but without going to next line,
$monitor—displays variables whenever a value changes during simulation rum,
$time—displays simulation time,
$finish—terminates the simulation.
The syntax for $display, $write, and $monitor is of the form

Task-name (format specification, argument List);

The format specification includes the radix of the numbers that are displayed using the sym-
bol (%) and may have a string enclosed in quotes (). The base may be binary, decimal, hexa-
decimal, or octal, identified with the symbols %b, %d, %h, and %o, respectively. For example,
the statement

$digplay (%4 %b %b, C,A,B);

specifies the display of C in decimal, and of A and B in binary. Note that there are no commas

in the format specification, that the format specification and argument list are separated by a

comma, and that the argument list has commas between the variables. An example that speci-
fies a string enclosed in quotes may look like the statement

$display ("time = %0dA = %bB = %b", $time,A,B);
and will produce the display
time =3 A =10 B =1

where (time =), (A =), and (B =) are part of the string to be displayed. The format
%0d, %b, and %b specify the base for $time, A, and B, respectively. When displaying time val-
ues, it is better to use the format %0d instead of %d. This provides a display of the significant dig-
its without the leading spaces that %d will include. (%d will display about 10 leading spaces
because time is calculated as a 32-bit number.)

An example of-a stimulus module is shown in HDL Example 4-9. The circuit to be tested is
the 2 X 1 multiplexer described in Example 4-6. The testmux module has no ports. The inputs
for the mux are declared with a reg keyword and the outputs with a wire keyword. The mux is
instantiated with the local variables. The initial block specifies a sequence of binary values to
be applied during the simulation. The output reésponse is checked with the $monitor system task.

* Every time a variable changes value, the simulator displays the inputs, output, and time. The re-

sult of the simulation is Tisted under the simulation log in the example. It shows that OUT = A
when S = 1 and OUT = B when S = 0, verifying the operation of the multiplexer.

Logic simulation is a fast, accurate method of analyzing combinational circuits to verify
that they operate properly. There are two types of verification: functional and timing. In func-
tional verification, we study the circuit logical operation independent of timing considerations.
This can be done by deriving the truth table of the combinational circuit. In timing verification,
we study the circuit operation by including the effect of delays through the gates. This can be
done by observing the waveforms at the outputs of the gates when they respond to a given input.

Section 4-11 HDL for Combinational Circuits 159.

HDL Example 4-9

//S8timulus for mux2xl_df.
module testmux;
reg TA,TB,TS; //inputs for mux

wire ¥; //output from mux
mux2xl_df mx (TA,TB,TS,Y); // instantiate mux
initial
begin
S = 1; TA = 0; T8 = 1;
#10 TA = 1; TB = 0;
#10 TS = 0;
#10 TA = 0; TR = 1;
end
initial

$monitor ("select = %$b A = %b B = %b OUT = %b time = %0d4",
TS, TA, TB, ¥, $time);
endmodule

//Dataflow description of 2-to-l-line multiplexer
//from Example 4-6
module muxixi_df (A,B,select,0UT);
input A,B,select;
output OUT;
asgsign OQUT = gelect ? A : B;
endmodule

Simulaticn log:

select = 1 A =0383=10UT =0 time = 0

select =1 A =18B=00UT =1 time = 10
gselect = 0 A =18B=200UT =0 time = 20
select = 0 A =0RB=10UT =1 time = 30

An example of a circuit with gate delays was presented in Section 3-9 with HDL Example 3-3.
We now show an IIDL example that produces the truth table of a combinational circuit.

The analysis of combinational circuits was covered in Section 4-2, A multilevel circuit of a
full adder was analyzed and its truth table was derived by inspection. The gate-level descrip-
tion qf this cireuit is shown in HDL Example 4-10. The circuit has three inputs, two outputs
and nine gates. The description of the circuit follows the interconnections between the gates
according to the schematic diagram of Fig. 4-2, The stimulus for the circuit is listed in the sec-
9nd m_odule. The inputs for simulating the circuit are specified with & 3-bit reg vector D. D[2]
18 equivalent to input A, D[1] to input B, and D[{] to input C. The outputs of the circnit F| and
F, are declared as wire. This procedure follows the steps outlined in Fig. 4-33. The repeat
loop provides the seven binary nurnbers after 000 for the truth table. The result of the simula-

tion generates the output truth table displayed with the example. The listed truth table shows
that the circuit is a full adder. :

160

Chapter 4 Combinational Logic

HDI. Example 4-10

//Gate-level description of circuit of Fig. 4-2
module analysis {(A,B,C,Fl,F2);

input
output Fl1,F2;

wir
or

and
and
and
and
or

not
and
or

a
gl
g2
g3
gd
a5
gb
g’
g8
g9

endmodule

A,B,C;

T1,T2,7T3,F2not,E1,E2,B3;
{T1,4,B,C);

{T2,A,B,C):

{E1,A,B);

(R2,A,C);

{E3,B,C);

(F2,El1,E2,E3);

(F2not ,F2};

(T3,7T1,F2not) ;

(F1,T2,73);

//8timulus te analyze the circuit
module test_circuit;

[2:0]D;

wire Fl,F2;

analysis fig42(D[2],D[1],D{0],F1,F2);
initial

r

eqg

begin

D = 3'b000;
repeat (7)

#10

end
initial

gmonitor ("ABC = %b F1 = %b F2 =%b ",D, F1,
endmodule

D =D+ 1'bl;

Simulation log:

ABC
ABC
ABC
ABC
ABC
ARBC
ABC
ABC

000
001
010
011
100
101
110
111

F1 = 0 F2 =0
F1 = 1 F2 =0
Fl=1 F2 =0
F1 = 0 F2 =1
F1 = 1 F2 =0
Fl1 = 0 F2 =1
F1L = 0 F2 =1
Fl = 1 F2 =1

F2);:

Problems 161
PROBLEMS

%/ Consider the combinational circuit shown in Fig, P4-1.

(a) Derive the Boolean expressions for T, through T;. Evaluate the outputs F; and F, as a func-
tion of the four inputs.

(b} List the truth table with 16 binary combinations of the four input variables. Then list the
binary values for 7 through 7, and outputs £ and F; in the table.

(c} Plot the output Boolean functions obtained in part (b) on maps and show that the simplified
Boolean expressions are equivalent to the ones obtained in part (a).

. oo ﬁ T,
¢ | — >

Ty
j > Fy

. 4-2 Obtain the simplified Boolean expressions for otput F and G in terms of the input variables in

the circuit of Fig. P4-2.
T 1

FIGURE P4-1

c—-1_ /

» D,

FIGURE P4-2

4-3 For the circuit shown in Fig. 4-26 (Section 4-10),
() Write the Boolean functions for the four outputs in terms of the input variables.
(b} If the circnit is listed in a truth table, how many rows and columns would there be in the table?

4-4 Design a combinational circuit with three inputs and one output. The output is 1 when the binary
alue of the inputs js less than 3. The output is 0 otherwise.

4 Design a combinational circuit with thres inputs, x, ¥, and z, and three outputs, A, B, and C.
When the binary input is 0, 1, 2, or 3, the binary output is one greater than the input. When the
binary inputis 4, 5, 6, or 7, the binary output is one less than the input.

166 Chapter 4 Combinational Logic

REFERENCES

1. DIETMEYER, D. L. 1988. Logic Design of Digital Systems, 31d ed. Boston: Allyn Bacon.

2. Garsks, D. D. 1997. Principles of Digital Design. Upper Saddle River, NJ: Prentice Hall.

3. Havss, I. P. 1993. Introduction to Digital Logic Design. Reading, MA: Addison—Wesley.

4, Karz, R. H. 1994. Conteporary Logic Design. Upper Saddle River, NI: Prentice Hall.

5. ManNo, M. M. and C. R. KiME. 2000. Logic and Computer Design Fundamentals, 2nd ed. Upper
Saddle River, NI: Prentice Hali. ,)

6. NeLson V. P, H. T. NAGL;_, } D ﬁﬁwm, and B. D. CarrOLL. 1995. Digital Logic Circuit Analy-
sis and Design. Upper Saddle River, NI: Prentice Hall.

7. Roty, C. H. 1992. Fundamentals of Logic Design, 4th ed. St. Paul: West.

8. WAKERLY, J. F. 2000. Digital Design: Principles and_ Practices, 3rd ed. Upper Saddle River, NJ:
Prentice Hall.

9, BHASKER, J. 1997. A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.

10. BrASKER,]. 1998. Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press.

11. Cuerr, M. D. 1999. Modeling, Synthesis, and Rapid Prototyping with Verilog HDL. Upper Sad-
dle River, NJ: Prentice Hall.

12. PaLNITKAR, S. 1996. Verilog HDL: A Guide to Digital Design and Synthesis. SunSoft Press (A
Prentice Hall Title), .

13. . Tuomas, D.E., and P. R. MooreyY. 1998. The Verilog Hardware Description Language 4th ed.

Boston: Kluwer Academic Publishers.

b_s@“—l Qﬂlm

" Synchronous

Sequential Logic

5-1/ SEQUENTIAL CIRCUITS

The digital circuits considered thus far have been combinational, where the outputs are entirely

- dependent on the current inputs, Although evefy'digital system is likely to have combinational

circuits, most systems encountered in practice also include storage elements, which require
that the system be described in terms of sequential logic.

A block diagram of a sequential circuit is shown in Fig, 5-1. {t consists of a combinational
circuit to which storage elements are connected to form a%ecdback path. The storage elements
are devices capable of storing binary information. The binary information stored in these ele-
ments at any given time defines the state of the sequential circuit at that time. The sequential
circuit receives binary information from external mputs. These inputs, together with the pres-
ent state of the storage elements, determine the binary value of the ontputs.-They also deter-
mine the condition for changing the state in the storage elements. The block diagram
demonstrates that the outputs'in a sequential circuit are a function not only of the inputs, but
also of the present state of the storage elements. The next state of the storage elements is also

"

Inputs ——— 1 . — Outputs
P Combinational P

circujt,

Memory
-elements

FIGURE 5-1
Block Diagram of Sequential Circuit

167

168 Chapter 5 Synchronous Sequential Logic

a function of external inputs and the present state. Thus, a sequential circuit is specified by a
time sequence of inputs, outputs, and internal states.
There are two main types of sequential circuits and their classification depends on the timing

. of their signals. A synchronous sequential circuit is a system whose behavior can be defined from

the knowledge of its signals at discrete instants of time. The behavior of an asynchronous sequential
circuit depends upon the input signals at any instant of time and the order I which the inputs
change. The storage elements commonly used.in asynchronous sequential circuits are time-delay

devices. Thé storage capability of a time-delay device s due to the time it takes for the signal to
bropagate through the device} In practice, the internal propagation delay of logic gates is of suf-
ficient duration to produce the needed delay so that actual delay uniis may not be necessary. In
gate-type asynchronous systems, the storage elements consist of logic gates whose propagation
delay provides the required storage. Thus, an asynchronous sequential circuit may be regarded
as a combinational circuit with feedback, Because of the feedback among logic gates, an asyn-
chronous sequential circuit may become unstable at times. The instability problem imposes many
difficulties on the designer. Asynchronous sequential circuits are presented in Chapter 9.

A synchronous sequential circuit employs signals that affect the storage elements only at dis-
crete instants of time. Synchronization is achieved by a timing device called § clock generatof
S_

that provides a periodic train o ¢ The clock pulses are distributed throughot
tern in such a way that storage elements are affected only with the arrival of each pulse. In prac-
tice, the clock pulses are applied with other signals that specify the required change in the storage
elements.‘Synchronous sequential circuits that useiclock pulsesin the inputs of storage elements
are called clicked sequential ciréuits} Clocked sequential circuits are the type most frequently
encountered in practice. They Se1dom manifest instability problems and their timing is eastly bro-
ken down into independent discrete steps, each of which can be considered separafc :
The storage elements used in clocked sequential circuits are calle.
a binary storage device capable of storing one bit of information. A sequential cirCuitTiay-use

many flip-flops to store as many bits as necessary. The block diagram of a synchronous clocked
sequential circuit is shown in Fig. 5-2. The outputs can come either from the-combinational ¢ir-

1§ ———— O t
Inputs Combinational . utputs
circuit
Flip-flops
Clock pulses I
(a) Block diagram

(b) Timing diagram of clock pulses

FIGURE 5-2
Synchronous Clocked Sequential Circuit

Section 5-2 Latches 169

cpit or from the flip-flops or both. The flip-flops receive their inputs from the combinational
?ucuit .and also from a clock signal with pulses that occur at fixed intervals of time as shown
in the timing diagram. The state of the flip-flops can change only during a clock pulse transi-
tion. When a clock pulse is not active, the feedback loop is broken because the flip-flop out-
Puts MWMWW&I circuit driving their inputs change
in value. Thus, the tfafisifion from dNE STATE 10 the Text-occurs only at predetermined time

intervals dictated by the clock pulses.

'L;Z/LATCHES

SR Latch

J%ﬁ b paked o

A . p—ﬂ(_)p clrcuit can maintain a binary state indefinitely (as long as power is delivered to the cir-
cuit) until directed by an input signal to switchistates. The major differences among various types
of ﬂip-ﬂops are in the number of inputs the§ posséss and in the manner in which the inputs affect
the binary state. The most basic types of flip-flops operate with signal levels and are referred to
as latches. The latches introduced here are the basic circuits from which all flip-flops are con-
strocted. Although latches are useful for storing binary information and for the design of asyn-
chron_ous sequential circuits (see Sec. 9-3), they are not practical for use in synchronous sequential
circuits. The types of ﬂip—ﬂops employed in sequential circuits are presented in the next section,

The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates
It has two inputs labeled S for set and R for reset. The SR latch constructed with two cross—cou-.
pled NOF{ gates is shown in Fig. 5-3. The latch has two useful states. When output Q = 1 and
Q' = 0, it is said to be in the ser state. When @ = O and @' = 1, it is in the reset state. Oul-
put @ and Q' are normally the complement of each other. However, when both inputs are equal
to 1 at the same time, an undefined state with both outputs equal to 0 occurs.

Under normal conditions, both inputs of the latch remain at 0 unless the state has to be
changs.ad. The application of a momentary 1 to the S input causes the latch to go to the set state.
The § input must go back to 0 before any other changes to avoid the occurrence of the undefined
state. As shown in the function table of Fig. 5-3(b), two input conditions cause the circuit to

1
0 JR—
(after §=1, R = 0)
1
(after S=0,R = 1)
o :
{a) Logic diagram 4 -0 (b)Function table
FIGURE 5-3

SR Latch with NOR Gates

2

Chapter 5 Synchronous Sequential Logic

be in the set state. The first condition (S = 1, R = 0) is the action that must be taken by input
'S to bring the circuit to the set state. Removing the active input from S leaves the circuit in the
same state. After both inputs return to 0, it is then possible to shift to the reset state by momentary
applying a 1 .to the R input. The 1 can then be removed from R and the circuit remains in the
reset state. Thus, when both inputs S and R are equal to 0, the latch can be in either the set or
the reset state, depending on which input was most recently a 1.

_Ifalisapplied to both the S and R inputs of the latch, both outputs go to 0. This produces an
undefined state because it results in an unpredictable next state when both inputs return to 0. It
also violates the requirement that outputs be the complement of each other. In normal operation
this condition is avoided by making sure that 1’s are not applied to both inputs simultaneously.

The SR latch with two cross-coupled NAND gates is shown in Fig. 5-4. It operates with both
inputs normally at 1 unless the state of the latch has to be changed. The application of 0 to the S
input causes output O to go to 1, putting the latch in the set state. When the S input goes back to
1, the circuit remains in the set state. After both inputs go back to 1, we are allowed to change the
state of the Iatch by placing a 0 in the R input. This causes the circuit to go to the reset state and
stay there even after both inputs return to 1. The condition that is undefined for the NAND latch
is when both inputs are equal to O at the same time, an input combination that shoutd be avoided.

Comparing the NAND with the NOR latch note that the input signals for the NAND require
the complement of those values used for the NOR latch. Because the NAND latch requires a 0 sig-
nal to change its state, it is sometimes referred to as an §'-R' latch. The primes (or bars over the
letters) designate the fact that the inputs must be in their complement form to activate the circuit.

The operation of the basic SR latch can be modified by providing an additional control input
that determines when the state of the latch can be changed. An SR latch with a control input is
shown in Fig. 5-5. It consists of the basic SR latch and two additional NAND gates. The con-
trol input C acts as an enable signal for the other two inputs. The output of the NAND gates
stay at the logic 1 level as long as the control input remains at-0. This is the quiescent condi-
tion for the SR latch. When the control input goes to 1, information from the S or R input is al-
lowed to affect the SR latch. The set state is reached with § = 1, R = 0,and C =. 1. To change
to the reset state, the inputs must be S = 0, R = 1, and € = 1. In either case, when C retarns
to 0, the circuit remains in its current state. Control input disables the circuit by applying 0 to
C, so that the state of the output does not change regardless of the values of § and R. Moreover,

1— — A
0 S (set) ’ o S RIQOQ
1001
1 1101 (afterS=1,R=0)
N — 0 1]1 0
FH S U111 golafterS=0,R=1)
0 R (reset) 3 2 U : U 11
(a) Logic diagram . {b) Function table
FIGURE 5-4

SR Latch with NAND Gates e

2

:
=
b
B

257

7

G

2

-

S

o

Section 5-2 Latches 171

f Next state of Q

R
X| No change

0 _(Nochange o
1| O =T Resetsiate |
U070 = 1:set state~
1 1 1| Indeterminate

(a) Logic diagram

(b) Function table
FIGURE 5-5
5R Latch-with Controf Input

when C' = 1 and both the § and R inputs are equal to 0, the state of the circuit does not change

These f:onditions are listed in the function table accompanying the diagram. g‘ -

’ An indeterminate condition occurs when all three inputs are equal to 1. This condition places

0s Qn both inputs of the basic SR latch, which places it in the undefined state. When the con-

trol input goes back to 0, one cannot conclusively determine the next state as it depends on

whether the § or R inputﬁ??gs to O furst. This indeterminate condition makes this circuit cllfﬁ
0

cult to manage and it is seldom used in practice. Nevertheless, it is an Important circuit because
other latches and flip-flops are constructed from it

D Latch

One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to ensure
th.at inputs S and R are never equal to 1 at the same time. This is done in the D latch shown in
Fllg. 5-6. Tms latch has only two inputs: D (data) and C (conirol). The D input goes directly to the
S input and its complement is applied to the R input. As long as the control input is at 0, the cross-
coupled SR latch has both inputs at the 1 level and the circuit cannot change state reéardless of
the v.alue. qf D. The D input is sampled when C = 1.If D = 1, the Q output goes to 1, placing
the circuit in the set state. If D = 0, output ¢ goes to (), placing the circuit in the reset s’tate‘

I Next statc of ¢

No change
2 = {); Reset state
Q = 1; Set state

=o Iy
[l =22 k]

e —

(a) Logic diagram
FIGURE 5-6
D Latch

{b) Function table

A

172

Chapter 5 Synchronous Sequential Logic

™~
/o

—s — —F — ——D —
——R o——— —R o-—— —cC o———
SR SR D

FIGURE 5-7

Graphic Symbols for Latches

hpdy
\D The D latch receives the designation from its ability to hold data in its internal storage. It is

suited for use as a temporary storage for binary information between a unit and its environment.
The binary information present at the data input of the D latch is transferred to the Q output
when the control input is enabled. The output follows changes in the data input as long as the
control input is enabled. This situation provides a path from input D to the output and for this
reason, the circuit is often called a fransparent latch. When the control input is disabled, the
binary information that was present at the data input at the time the transition occurred is
retained at the ¢ output until the control input is enabled again.

The graphic symbols for the various latches are shown in Fig. 5-7. A latch is designated by a
rectangular block with inputs on the left and outputs on the right. One output designates the nor-
mal output, and the other (with the bubble designation) designates the complement output. The
graphic symbol for the SR latch has inputs S and R indicted inside the block. In the case of a
NAND gate latch, bubbles are added to the inputs to indicate that setting and resetting occur with
logic O signal. The graphic symbol for the D latch has inputs D and C indicated inside the block.

.. / f'>
576/FLIP-FL0PS P

.

The state of a lz;tﬁl‘} or flip-flop is switched by a change in the control input. This momentary
change is called™a trigger and the transition it causes is said to trigger the flip- flop. The D
latch with pulses in its control input is essentially a flip-flop that is triggered every time the pulse
goes to the logic 1 level. As long as the pulse input remains in this level, any changes in the data
input wilt change the output and the state of the latch.

As seen from the block diagram of Fig. 5-2, a sequential circuit has a feedback path from
the outputs of the flip-flops to the input of the combinational circuit. Consequently, the inputs of
the flip-flops are derived in part from the outputs of the same and other flip-flops. When Iatches
start as soon as the clock pulse changes to the logic 1 level. The new s¥ate of a [atch appears at
the output while the pulse is still active. This output is connected to the inputs of the latches
through the combinational circuit. If the inputs applied to the latches change while the clock

pulse is still in the logic 1 level, the latches will respond to new values and a new output state
may occur. The result is an unpredictable situation since the state of latches may keep chang-

ing for as long as the clock pulse stays in the active level. Because of this unreliable operation,

Edge-Triggered D Flip-Flop

Section 5-3 Flip-Flops 173

S N N B

(a)} Response to positive level

(b) Positive-edge response

{c) Negative-edge response

FIGURE 5-8
Clock Response in Latch and Flip-Flop

the output of a latch cannot be applied directly or through combinational logic to the input of
the same or another latch when all the laiches are triggered by a common clock source.,

Flip-flop circuits are constructed in such a way as to make them operate properly when they are
part of a sequential circuit that employs a common clock, The problem with the latch is that it
responds to a change in the level of a clock pulse. As shown in Fig. 5-8(a) a positive level response
in the control input allows changes, in the output when the D input changes while the clock pulse
stays at logie 1-The key to the proper operation of a flip-flop is to trigger it only during a signal
transition. A clock pulse goes through two transitions from 0 to [and the return from 1 to 0. As
shown in Fig. 5-8, the positive transition is defined as the positive-edge and the negative transition
as the negative-edge. There are two ways that a tatch can be modified to form a flip-flop. One way
is to employ two latches in a special configuration that isolates the output of the flip-flop from being
affected while its input is changing. Another way is to produce a flip-flop that triggers only dur-
ing a signal transition (from 0 to 1 or from 1 to 0), and is disabled during the rest of the clock pulse
Suration. We will now proceed to show the implementation of both types of flip-flops.

0

v

S4ad

The construction of a D flip-flop with two [latches and an inverter is shown in Fig. 5-9. The first
latch is called the master and the second the slave, The circuit samples the D input and changes
its output 2 only at the negative-edge of the c(o;;l;;l‘l'ing clock (designated as CLK). When the clock
is 0, the output of the inverter is 1. The slave latch is enabled and its output Q is equal to the mas-
ter output Y. The master latch is disabled because CLK = 0. When the input pulse changes to
the logic | level, the data from the extérnal [7 input is transferred to the master, The slave, however,

AN E S

174

Chapter 5 Synchronous Sequential Logic

Y B
D D’ . D
D latch : D latch
) {master) (slave)
N ¢
;
CLK . DO it
FIGURE 5-9

Master-Slave D Flip-Flop

is disabled as long as the clock remains in the | level because its C input is equal to 0. Any change
in the input changes the master output at ¥, but cannot affect the slave output. When the pulse
returns to (3, the master is disabled and is isofated from the D input. At the same time, the slave
is enabled and the value of ¥ is transferred to the output of the flip flop at (. Thus, the output of
the flip-flop can change only during the transition of the clock from 1 to 0.

The behavior of the master-slave flip-flop just described dictates that the output may change
only during the negative edge of the clock. It is also possible to design the circuit so that the flip-

flop output changes on the positive edge of the clock. This happens in a flip-flop that has an

additional inverter between the CLK terminal and the junction between the other inverter and input
C of the master latch. Such flip-flop is triggered with a negative pulse, so that the negative edge
of the clock affects the master and the positive edge affects the slave and the output terminal.
Another more efficient construction of an edge-triggered D flip-flop uses three SR latches
as shown in Fig. 5-10. Two latches respond to the external D (data) and CLK (clock) inputs.

-
S

D-Type Positive-Edge-Triggered Flip-Flop

Section 5-3 Flip-Flops 175

The third latch provides the outputs for the flip-flop. The S and R inputs of the output latch are
maintained at logic'1 level when CLK .= 0. This causes the output to remain in its present
state. Input D may be equal to 0 or I. H D = 0 when CLK becomes 1, R changes to 0. This
causes the flip-flop to go to the reset state, making @ = 0. If there is a change in the D input
while CLK = 1, terminal R remains at 0. Thus, the flip-flop is locked out and is unresponsive
to further changes in the input. When the clock returns to 0, R goes to 1, placing the output latch
in the quiescent condition without changing the output. Similarly, if D = 1 when CLK goes
from 0 to 1, § changes to 0. This causes the circuit to go to the set state making Q = 1. Any
change in > while CLK = 1 does not affect the output.

In summary, when the input clock in the positive-edge-triggered flip-flop makes a positive
transition, the value of D is transferred to 0. A negative transition from 1 to 0 does not affect
the output, nor does it when CLK is in the steady logic 1 level or the logic ¢ level. Hence, this
type of flip-flop responds to the transition from 0 to 1 and nothing else.

The timing of the response of a flip-flop to input data and clock must be taken into consid-
eration when using edge-triggered flip-flops. There is a minimum time, called setup fime, for
which the D input must be maintained at a constant value prior to the occurrence of the clock
transition. Similarly, there is a minimum time, called the hold time, for which the D input must
not change after the application of the positive transition of the clock. The propagation delay
time of the flip-flop is defined as the time interval between the trigger edge and the stabiliza-
tion of the output to a new state. These and other parameters are specified in manufacturer’s
data books for specific logic families.

The graphic symbol for the edge-triggered D flip-flop is shown in Fig. 5-11. It is similar to the
symbol used for the 7 latch except for the arrowhead-like symbol in front of the letter C designating
a dynamic input. The dynamic indicator denotes the fact that the flip-flop responds to the edge tran-
sition of the clock. A bubble outside the block adjacént to the dynamic indicator designates a neg-
ative edge for triggering the circuit. The absence of a bubble designates a positive-edge response.

Other Flip-Flops

Very large scale integration circuits contain thousands of gates within one package. Circuits are
constructed by interconnecting the various gates to provide a digital system. Each flip-flop is
constructed from an interconnection of gates. The most economical and efficient flip-flop con-
structed in this manner is the edge-triggered D flip-flop because it requires the smallest number

—>C —— —a>C o—
(a) Positive-edge {a) Negative-edge

FIGURE 5-11
Graphic Symbol for Edge-Triggered D Flip-Flop

176 Chapter 5 Synchronous Sequential Logic

JU

> ke -
—>C
k—>o g
CLK —1> C o 10y —K for—
(a) Circuit diagram . (b) Graphic symbol
FIGURE 5-12
JK Flip-Flop

of gates. Other types of flip-flops can be constructed by using the D flip-flop and external
logic. Two flip-flops widely used in the design of digital systems are the JK and T flip-flops.

There are three operations that can be performed with a flip-flop: set it to 1, reset it to
0, or complement its output. The JK flip-flop performs all three operations. The circuit
diagram of a JK flip-flop constructed with a D flip-flop and gates is shown in Fig. 5-12(a).
The J input sets the flip-flop to 1, the K input resets it to 0, and when both inputs are enabled,
the output is complemented. This can be verified by investigating the circuit applied to the
D input:

D=JQ +K'Q

Whent = land K = 0, D = @' + Q = 1, so the next clock edge sets the output to 1. When
J =0and K = 1, D = 0, so the next clock edge resets the output to 0. Whenboth J = K =1,
D = (', the next clock edge complements the output. When both J = K = 0, D = (), the
clock edge leaves the output unchanged. The graphic symbol for the JX flip-flop is shown in
Fig. 5-12(b). It is similar to the graphic symbol of the D flip-flop, except that now the inputs
are marked J and K,

The T (toggle) flip-flop is a complementing flip-flop and can be obtained from & JX flip-
flop When inputs J and K are tied together. This is shown in Fig. 5- 13(a) When T = 0
(J = K = 0) aclock edge does not change the output. When7 = 1 (J = K = 1) aclock edge
complements the output. The complementing flip-flop is nseful for desi gning binary counters.

The T flip-flop can be construcied with a D flip-flop and an exclusive-OR gate as shown in
‘Fig. 5-13(h). The expression for the D input is-

D=T®Q=TQ +TQ

When T = 0, then D = (2, and there is no change in the output. When T = 1, then D = @'
and the output complements. The graphic symbol for this flip-flop has a T symbo} in the input.

- Section 5-3 Flip-Flops 177

S e e
D
K o— —>'C o
.—> C —
{a) From JK flip-flop (b) From D flip-flop {(c) Graphic symbol
FIGURE 5-13
T Flip-Flop

Characteristic Tables

A characteristic table defines the logical properties of a flip-flop by describing its operation in
tabular form. The characteristic tables of three types of flip-flops are presented in Table 5-1.
They define the next state as a function of the inputs and present state. Q(¢) refers to the pres-
ent state prior to the application of a clock edge. Q(r + 1) is the next state one clock period
later. Note that the clock edge input is not included in the characteristic table, but is implied to
occur between time zand ¢t + 1.

The characteristic table for the JK flip-flop shows that the next state is eqﬁal to the present
state when inputs J and K are both equal to 0. This can be expressed as ot + 1) = Q(1),
indicating that the clock produces no change of state. When X = 1 and J = 0, the Clock resets

Table 5-1
Flip-Flop Characteristic Tables
JK Flip-Flop
I K | ot+1)
0 0 Q) No change
== 1 0 Reset
i 0 1 Set
1 1 Q') Complement
D Flip-Flop ' T Flip-Flop
D [g{r+1) T ot + 1)
0 Reset 0 Q(r) No change
1]1 Set i o'(1) Complement

178 Chapter 5 Synchronous Sequential Logic

the flip-flopand Q(¢ + 1) = 0. With J = 1and K = 0, the flip-flop sets and Q(z + 1) = 1.
When both J and K are equal to 1, the next state changes to the complement of the present
state, which can be expressed as Q(r + 1) = Q'(1).

The next state of a D flip-flop is dependent only on the I input and independent of the pres-
ent state. This can be expressed as Q{¢ -+ 1) = D. It means that the next-state value is equal
1o the value of D. Note.that the D flip-flop does not have a “no-change” condition. This con-
dition can be accomplished either by disabling the clock or by leaving the clock and connect-
ing the output back into the D input when the state of the flip-flop must remain the same.

The characteristic table of the T flip-flop has only two conditions. When T" = 0, the clock edge
does not change the state. When T = 1, the clock edge complements the state of the flip-flop.

Characteristic Equations

The logical properties of a flip-flop as described in the characteristic table can be expressed
also algebraically with a characteristic equation. For the D flip-flop, we have the characteris-
tic equation

Ootr+1)=D

It states that the next state of the output will be equal to the value of input D in the present state.
The characteristic equation for the JX flip-flop can be derived from the characteristic table or
from the circuit of Fig. 5-12. We obtain

o+ 1) =JQ +K'Q

where (O is the value of the flip-flop output prior to the application of a clock edge. The char-
acteristic equation for the T flip-flop is obtained from the circuit of Fig, 5-13:

Ot +1)=T®Q =TQ + T'Q

Direct Inputs

Some flip-flops have asynchronous inputs that are used to force the flip-flop to a particular
state independent of the clock. The input that sets the flip-flop to 1 is called preset or direct set.
The input that clears the flip-flop to 0 is called clear or direct reset. When power is turned on
in a digital system, the state of the flip-flops is unknown. The direct inputs are useful for bring-
ing all flip-flops in the system to a known starting state prior to the clocked operation.

A positive-edge-triggered D flip-ftop with asynchronous reset is shown in Fig. 5-14. The cir-
cuit diagram is the same as the one of Fig. 5-10, except for the additional reset input connec-
tions to three NAND gates. When the reset input is 0, it forces output Q' to stay at 1, which, in
turn, clears output O to 0, thus resetting the flip-flop. Two other connections from the reset input
ensure that the S input of the third SR latch stays at logic'l while the reset input is at 0 regardiess
of the values of D and CLK.

The graphic symbol for the D flip-flop with a direct reset has an additional input marked with
R. The bubble along the input indicates that the reset is active at the logic 0 level. Flip-flops
with a direct set use the symbol § for the asynchronous setinput. -

Section 5-3 Flip-Flops 179

“CLK —%
D
Reset
(a) Circuit diagram
Data D 20
CLK > C RCDloo
o———
R 0 X X0 1
ST 1T 0|0 1
Ressi —— 1
..e_s.g 1T 1|t o
g3 (b) Graphic symbol {b) Function table
FIGURE 5-14

D Flip-Flop with Asynchronous Reset

The function table specifies the operation of the circuit. When R = 0, the output is reset to
0. This state is independent of the values of D or C. Normal clock operation can proceed only

_ after the reset input goes to logic 1. The clock at C is shown with an upward arrow to indicate

th?t the flip-flop triggers on the positive-edge of the clock. The value in D is transferred to Q
with every positive-edge clock signal, provided that R = 1.

J
/

"” - "
180/ Chapter 5 Synchronous Sequential Logic Section 5-4 Analysis of Clocked Sequential Circuits 181
locked Seque

o
. TT———

Sf4 ANALYSIS OF CLOCKED SEQUENTIAL A

CIRCUITS '
- AN

The behavior of a clocked sequential cireuit is determined from the inputs, the outputs, and the
state of its flip-flops. The outputs and the next state are both a function of the inputs and the

resent state. The analysis of a sequential circuit consists of obtaining a table or a diagram for
the time sequence of inputs, outputs, and internal states. [t is also possible to write Boolean ex-
pressions that describe the behavior of the sequential circuit. These expressions must include
the necessary time sequence, either directly or indirectly: ——

A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops with
clock inputs. The flip-flops may be of any type and the logic diagram may or may not include
combinational circuit gates. In this section, we introduce an algebraic representation for spec-
ifying the next-state condition in terms of the present state and inputs. A state table and state
diagram are then presented to describe the behavior of the sequential circuit. Another algebraic
representation is presented for specifying the logic diagram of sequential circuits. Specific
examples are used to illustrate the various procedures.

State Equations

The behavior of a clocked sequential circuit can be described algebraically by means of state equa-
tions. A state equation (also called fransifion equation) specities the next state as a function of
the present state and inputs. Consider the sequential circuit shown in Fig. 5-15. It consists of two
D flip-flops A and B, an input x and an output y. Since the D input of a flip-flop determines the
value of the next state, it is possible to write a set of state equations for the circuit:

At + 1) = A(n)x(#) + B(r)x(1)

Bt + 1) = A'(#)x(1)
A state equation is an algebraic expression that specifies the condition for a flip-flop state tran-
sition. The left side of the equation with (¢ + 1) denotes the next state of the flip-flop one
clock edge later. The right side of the equation is a Boolean expression that specifies the pres-
ent state and input conditions that make the next state equal to 1. Since all the variables in the
Boolean expressions are a function of the present state, we can omit the designation (¢} after
each variable for convenience and can express the state equations in the more compact form:

A(t +1) = Ax + Bx

B{r +1)=A'x
The Boolean eXpressions for the state equations can be derived directly from the gates that
form the combinational circuit part of the sequential circuit, since the /3 values of the combi-

national circuit determine the next state. Similarly, the present state value of the output can be
expressed algebraically as

() = [A(r) + B(n)]x'(r)
By removing the symbol {¢) for the present state, we obtain the output Boolean equation:

y= (A + B)x'

o>

FIGURE 5-15
Example of Sequential Circuit

State Table

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state fable
{sometimes called transition table). The state table for the circuit of Fig. 5-15 is shown in
Table 5-2. The table consists of four sections labeled present state, inpus, next state, and oui-
put. The present state section shows the states of flip-flops A and B at any given time 7. The input
section gives a value of x for each possible present state. The next-state section shows the states
of the flip-flops one clock cycle later at time t+1. The output section gives the value of yat
time ¢ for each present state and input condition.

The derivation of a state table requires listing all possible binary combinations of present
state and inputs. In this case, we have eight binary combinations from 000 to 11}. The next-
state values are then determined from the logic diagram or from the state equations. The next
state of flip-flop A must satisfy the state equation

A(t+1)=Ax+Bx

The next-state section in the state table under column A has three 1°s where the present state
and input value satisfy the conditions that the present state of A and input x are both equal to

Chapter 5 Synchronous Sequential Logic

Table 5-2
State Table for the Circuit of Fig. 5-15 ¢\
Present ' Next /
State Input State Output
A B X A B y
0o 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0o 1 B 1 1 0
1 0 0 0 0 L
r o 1 1 0 0
1 1 0 0 o 1
1 1 1 L0 o

1 or the present state of B and input x are both equal to 1. Similarly, the next state of flip-flop
B is derived from the staie equation

B(t+1)=Ax
and is equal to 1 when the present state of A is 0 and input x is equal to 1. The output column
is derived from the output equation
- y= A+ BY
The state table of a sequential circuit with D-type flip-flops is obtained by the same proce-
dure outlined in the previous example. In general, a sequential circuit with m flip-flops and »
inputs needs 2" rows in the state table. The binary numbers from 0 through 2™ — 1 are list-
ed under the present-state and input columns. The next-state section has m columns, one for
each flip-flop. The binary values for the next state are derived directly from the state equa-
tions. The output section has as many columns as there are cutput variables. Its binary value
is derived from the circuit or from the Boolean function in the same manner as in a truth table.
It is sometimes convenient to express the state table in a slightly different form. In the other
configuration, the state /table has only three sections: present state, next state, and output. The
input conditions are enumerated under the next-state and output sections. The state table of
Table 5-2 is repeated in in Table 3-3 using the second form. For each present state, there are two
possible next states and outputs, depending on the value of the input. One form may be prefer-
able over the other, depending on the application.

Tabie 5-3
Second Form of the State Table

Present .
State Next State Output ﬂ _
' x=0 x=1 x=0 x= 4 '

/
AB AB AB ¥ ¥
00 00 01 w/\ \{— o 0
01 00 11 = | 0
10 00 10 1 0
1 0

11 00 10

Section 5-4 Analysis of Clocked Sequential Circuits 183

State Diagram

The information available in a state table can be represented graphically in the form of a state dia-
gram. In this type of diagram, a state is represented by a circle, and the transitions between states
are indicated by directed lines connecting the circles. The state diagram of the sequential circuit of
Fig. 5-15 is shown in Fig. 5-16. The state diagram provides the same information as the state table
and is obtained directly fromi Table 5-2 or 5-3. The binary number inside each circle identifies the
state of the {lip-flops. The directed lines are labeled with two binary numbers separated by a slash.
The input value during the present state is labeled first and the number after the slash gives the out-
put during the present state with the given mput (It is. 1mportant to remember that the b1t value llsted

g nothmg to do with the transition to the néxt state.) For example the directed line from state 00 to

01 islabeled 1- /0, meaning that when the sequential c1rcu1t is in the present state 00 and 'the i input is
1, the output is 0. After the next clock cycle, the circuit goes to the next state, O1. If the input changes -
to 0, then the cutput becomes 1, but if the input remains at 1, the output stays at 0. This information
is obtained from the state diagram along the two directed lines emanating from the circle with state
O1. A directed line connecting a circle with itself indicates that no change of state occurs.

There is no difference between a state table and a state diagram except in the manner of
representation. The state table is easier to derive from a given logic diagram and the state equa-
tion. The state diagram follows directly from the state table. The state diagram gives a picto-
rial view of state transitions and is the form more suitable for human interpretation of the circuit
operation. For example, the state diagram of Fig. 5-16 clearly shows that, starting from state
00, the output is 0 as long as the input stays at 1. The first O input after a string of 1’s gives an
output of 1 and transfers the circuit back to the initial state 00.

Flip-Flop Input Equations

The logic diagram of a sequential circuit consists of flip-flops and gates. The interconnections
among the gates form a combinational circnit and may be specified algebraically with Boolean
expressions. The knowledge of the type of flip-flops and a list of the Boolean expressions of the
combinational circuit provide the information needed to draw the logic diagram of the sequential
circuit. The part of the combinational circuit that generates external outputs is described alge-
braically by a set of Boolean functions called owspur equations. The part of the circuit that gen-
erates the inputs to flip-flops is described algebraically by a set of Boolean functions calted flip-flop

FIGURE 5-16
State Diagram of the Circuit of Fig. 5-15

184

Chapter 5 Synchronous Sequential Logic

input equations (sometimes called excitation equations). We will adopt the convention of using
the flip-flop input symbol to denote the input equation variable and a subscript to designate the
name of the flip-flop output. For example, the following input equation specifies an OR gate with
inputs x and y connected to the D input of a flip-flop whose output is labeled with the symbol O:

Dy=x+y
Q
The sequential circuit of Fig. 5-15 consists of two D flip-flops A and B, an input x, and an

output y. The logic diagram of the circuit can be expressed algebraically with two flip-flop
input equations and an output equation:

D, = Ax + Bx

D s~ A’x

y=(A+ B)x

The three equations provide the necessary information for drawing the logic diagram of the
sequential circuit. The symbol D, specifies a D flip-flop labeled A. Dy specifies a second D flip-

flop labeled B. The Boolean expressions associated with these two variables and the expres-
sion for output y specify the combinational circuit part of the sequential circuit.

The flip-flop input equations constitute a convenient algebraic form for specifying the logic -

diagram of a sequential circuit. They imply the type of flip-flop from the letter symbol, and they
fully specify the combinational circuit that drives the flip-flops. Note that the expression for the
input equation for a D flip-flop is identical to the expression for the corresponding state equa-
tion. This is because of the characteristic equation that equates the next staie to the value of the
Dinput: Q(z + 1) = D,,.

Analysis with D Flip-Flops

We will summarize the procedure for analyzing a clocked sequential circuit with D ﬂip-ﬂops by
means of a simple example. The circuit we want to analyze is described by the input equation

D,=AdxDy

The D 4 symbol implies a D flip-flop with output A. The x and y variables are the inputs to the

circuit. No output eguations are given, so the output is implied to come from the output of the
flip-flop. The logic diagram is obtained from the input equation and is drawn in Fig. 5-17(a).

The state table has one column for the present state for flip-flop A, two columns for the two
inputs and one column for the next state of A. The binary numbers under Axy are listed from 000
through 111 as shown in Fig. 5-17(b). The next state values are obtained from the state equation

At + 1) =ASxDy

The expression specifies an odd function and is equal to 1 when only one variable is 1 or when
all three variables are 1. This is indicated in the column of the next state of A.

The circuit has one flip-flop and two states. The state diagram consists of two circles—one
for each state as shown in Fig. 5-17(c). The present state and the cutput can be either O or 1 as
indicated in the number inside the circles, A slash on the directed lines is not needed because
there is no output from a combinational circuit. The two inputs can have four possible combi-
nations for each state. Two input combinations during each state transition are separated by a
comma to simplify the notation.

Section 5-4 Analysis of Clocked Sequential Circuits 185

Present Next
state Inputs state

b
»
<
b

0 g9 0
X D A 0 01 1
y 0 10 1
0 11 0
C
> 1 00 1
1 01 0
1 10 0
CLK 111 1
(a} Circnit diagram (b) State table

01,10

(c) State diagram

FIGURE 5-17
Sequential Circuit with D Flip-Flop

Analysis with JK Flip-Flops

A state table consists of four sections: present state, inputs, next state, and outputs. The first two
are obtained by listing all binary combinations. The output section is determined from the out-
put equations. The next-state values are evaluated from the state equations. For a I type flip-
flop, the state equation is the same as the input equation. When other than the D type of flip-flop
is used, such as JK or 7, it is necessary to refer to the corresponding characteristic table or char-
acteristic equation to obtain the next state values. We will illustrate the procedure first by using
the characteristic table and again by using the characteristic equation.

The next-state values of a sequential circuit that uses flip-flops such as JK or T type can be
derived using the following procedure:

1. Determine the flip-flop input equations in terms of the present state and input variables.
2. List the binary values of each input equation.

3. Use the corresponding flip-flop characteristic table to determine the next state values in
the state table.

As an example, consider the sequential circuit with two JX flip-flops A and B and one input
x, as shown in Fig. 5-18. The circuit has no outputs and, therefore, the state table does not need
an output column, (The outputs of the flip-flops may be considered as the outputs in this case.)

i

186

Chaptér 5 Synchronous Sequential Logic

i A
> C
x [>o N «
S B
> C
4“_) K

CLK

FIGURE 5-18
Sequential Circuit with JK Flip-Flop

The circuit can be specified by the flip-flop input equations
‘IA =B KA = Bx,
Jg=x' Kp=Ax+ Ax' = A x

The state table of the sequential circuit is shown in Table 5-4. The present-state and input
columns list the eight binary combinations. The binary values listed under the columns labeled
flip-flop inputs are not part of the state table, but they are needed for the purpose of evaluating
the next state ass—pemﬁed in step 2 of the - procedure. These binary values are obtained directly
from the four input equations in a manner similar to that for obtaining a truth table from a
Boolean expression. The next state of each flip-flop is evaluated from the corresponding J and
K inputs and the characteristic table of the JK flip-flop listed in Table 5-1. There are four cases

to consider. When J = 1and K = 0, the next state is 1. When J = Oand K = 1, the next state

Table 5-4 _
State Table for Sequential Circuit with JK Flip-Flops
Present Next Flip-Flop
State Input State Inputs
A B X A B I Ke Js o Ks
s
0 0- 0 0 1 T 0. 1 0
0 0 1 0. 0 /07 0 0 1
001 0 11 S U S 0
01 1 oo L1 6 o 1
1o 0 11 Voo 1
1 0 1 170 L0 0 0 0
b 0 0.0 a1 1 1
1 1 1 1 1 1 0 0 0

e S R

Section 5-4 Analysis of Clocked Sequential Circuits 187

is0. WhenJ = K = 0, there is no change of state and the next-state value is the same as the
présent state. When J = K = 1 _the next-state bit is the complement of the present-state bit.
Examples of the last two cases oceur in the table when the present state AB is 10 and input x
is 0. JA and KA are bothequal to 0 and the present state of A i is 1. Therefore, the next state of
A remains the same and is equal to 1. Tn the same row of the table JB and KB are both equal
to 1. Since the present state of B is 0, the next state of B is complemented and changes to 1.

The next-state values can be obtained also by evaluating the state equations from the char-
acteristic equatlon This is done by using the following procedure:

1. Determine the flip-flop input equations in terms of the present state and input variables,

2. Substitute the input equanons into the flip-flop characteristic equation to obtain the
state equations.

3. Use the corresponding state equations to determine the next state values in the state table.

The input equations for the two JK- flip-flops of Fig. 5-18 are listed on the previous page. The
characteristic equations for the flip-flops are obtamed by substituting A or B for the name of the flip-
flop instead of Q W -

/ : o
Alt + 1) = JAYF K'A
Bt + 1) = JB' + K'B
Substituting the values of J, and K4 from the input equations, we obtain the state equation for A:
‘ A(r+1)=BA + (BX)A= AB + AB + Ax

The state equation provides the bit values for the column under next state of A in the state table.

Similarly, the state equation for flip-flop B can be derived from the characteristic equation by
substituting the values of J; and K,
B(r+1) = xB + (AGBx)'B = B'x" + ABx + A'Bx'

The state equation provides the bit values for the column under next state of B in the state table. Note
that the columns in Table 5—4 under flip-flop inputs are not needed ‘when statg equations are used.

The state dlagram of the sequentlal circuit is shown in Fig. 5-19. Note that since the circuit
has ne outputs, the directed lines out of the circles are marked with one binary number only to
designate the value of input x.

FIGURE 5-19
State Diagram of the Circuit of Fig. 5-18

188

Chapter 5 Synchronous Sequential Logic

Analysis With T Flip-Flops

The analysis of a sequential circuit with 7 flip-flops follows the same procedure outlined for
JK flip-flops. The next state values in the state table can be obtained either by using the char-
acteristic table listed in Table 5-1 or the characteristic equation

O +1)=T&QO=TQ0+TQ

Consider the sequential circuit shown in Fig. 5-20. Tt has two flip-flops A and B, one input x, and
one output y. It can be described algebraically by two input equations and an output equation:

T, = Bx
Tp==x
y = AB

The state table for the circuit is listed in Table 5-5. The values for y are obtained from the out-
put equation. The values for the next state can be derived from the state equations by substi-
tuting T, and T} in the characteristic equations, yielding

A(t + 1) = (Bx)A + (Bx)A' = AB' + Ax" + A'Bx

B{r +1)=x®8B
The next state vaiues for A and B in the state table are obtained from the expressions of the two
state equations.

: O

|

CLK Reset

(a) Circuit diagrgm . (b) State diagram

FIGURE 5-20
Sequential Circuit with T Flip-Flops

g

J“-’f’i
L
&
:}\%%
::f'\g
|

aF

Section 5-4 Analysis of Clocked Sequential Circuits - 189

Table 5-5

State Table for Sequential Circuit with T Flip-Flops
Present Next
State Input State Output
A B X A B ¥
o 0 0 0 0 0
o 0 i 0 1 U]
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 0
1 6 1 P 1 0
It 0 I 1 1
1 1 0 0 1

The state diagram of the circuit is shown in Fig, 5-20(b). As long as input x is equal to 1,
the circuit behaves as a binary counter with a sequence of states 00, 01, 10, 11, and back to 00.
When x = 0, the circuit remains in the same state. Output y is equal to 1 when the present
state is 11. Here the output depends on the present state only and is independent of the input.
The two values inside each circle separated by a slash are for the present state and output.

Mealy and Moore Models

The most general model of a sequential circuit has inputs, outputs, and internal states. It is cus-
tomary to distinguish between two models of sequential circuits: the Mealy model and the
Moore model. They differ in the way the output is generated. In the Mealy model, the ontput
is a function of both the present state and input. In the Moore model, the output is a function
of the present state only. When dealing with the two models, some books and other technical
sources refer to a sequential circuit as a finite state machine abbreviated FSM. The Mealy
model of a sequential circuit is referred to as a Mealy FSM or Mealy machine. The Moore
model is refereed to as a Moore FSM or Moore machine.

An example of a Mealy model is shown in Fig. 5-15. Qutput y is a function of both input x
and the present state of A and B. The corresponding state diagram in Fig, 5-16 shows both the
input and output values separated by a slash along the directed lines between the states.

An example of a Moore model is shown in Fig. 5-18. Here the output is a function of the pres-
ent state only. The corresponding state diagram in Fig. 5-19 has only inputs marked along the
directed lines. The outputs are the flip-flop states marked inside the circles. Another example of a
Moore model is the sequential circuit of Fig. 5-20. The output depends only on flip-flop values and
that makes it a function of the present state only. The input value in the state diagram is labeled along
the directed line, but the output value is indicated inside the circle together with the present state.

In a Moore modei, the outputs of the sequential circuit are synchronized with the clock
because they depend on only flip-flop outputs that are synchronized with the clock. In a Mealy
model, the outputs may change if the inputs change during the clock cycle. Moreover, the out-
puts may have momentary false values because of the delay encountered from the time that the

190 Chapter 5 Synchronous Sequential Logic
inputs change and the time that the flip-flop outputs change. In order to synchronize a Mealy

type circuit, the inputs of the sequential circuit must be synchronized with the clock and the
outputs must be sampled only during the clock edge.

5-5 HDL FOR SEQUENTIAL CIRCUITS

The Veritog hardware description language (HDL) is introduced in Section 3-9. The descrip-
tion of combinaticnal circuits and an introduction to behavioral modeling is presented in Sec-
tion 4-11. In this section, we continue the discussion of the behavioral modeling and present
description examples of flip-flops and sequential circuits.

Behavioral Modeling

There are two kinds of behavioral statements in Verilog HDL: initial and always. The initial be-
havior executes once beginning at time = 0. The always behavior executes repeatedly and re-
executes until the simuolation terminates. A behavior is declared within a module by using the
keywords initial or always, followed by a statement or a block of statements enclosed by the
keywords begin and end. A module may contain an arbitrary number of initial or always state-
ments. These statements execute concurrently with respect to each other starting at time 0.

An initial statement executes only once. It begins its execution at the start of simulation
and ends after all the statements have completed execution. As mentioned at the end of Sec-
tion 4-11, the initial statement is usefol for generating input signals to strnnlate a design. In sim-
ulating a sequential circuit, it is necessary to generate a clock source for triggering the flip-flops.
The following are two possible ways to provide a free-running clock:

fjmm

initial initial
begin begin
clock = 1'b0 ; clock = 1'b0;
repeat (30) #300 &£finish;
#10 clock = ~ clock; end
end always

#10 clock = ~clock;

In the first version, the initial block is enclosed within the begin and end keywords. Clock is
setto O attime = 0. Clock is complemented every 10 time units and is repeated 30 times. This
produces 15 clock cycles, each with a cycle time of 20 time units. In the second version, the
initial block sets clock to 0 at time = 0. After 10 time units, the always statement repeatedty
complements clock every 10 time units, providing a clock with a cycle time of 20 time units.
The simulation terminates in response to the $finish system task at time 300,

The always statement can be controlled by delays that wait for a certain time or by certain
conditions to become true or by events to occur. Here we will explain only the event control
condition. This type of statement is of the form

always @ {event control expression)

Procedural assignment statements.

The event control expression specifies the condition that must occur to activate the execution
of the procedural assignment statements. The variables in the left-hand side of the procedural

Section 5-5 HDL For Sequential Circuits 191

statements must be of the reg data type and must be declared as such. The right-hand side can
be any expression that produces a value using Verilog-defined operators.

The event control expression (also called the sensitivity list) specifies the events that must
ocecur to initiate the execution of the procedural statements in the always block. Statements
within the block execute sequentially and the execution suspends after the last statement has
executed. Then, the always statement waits again for an event to occur. We will consider here
two kinds of events: level-sensitive and edge-triggered events. Level-sensitive events occur in
combinational circuits and in latches. For example, the statement

always @ (A or B or Reset)

will cause the execution of the procedural statements in the always block if a change occurs in
A or B or Reset. In synchronous sequential circuits, changes in flip-flops must occur only in

© response to a transition of a clock pulse. The transition may be either a positive-edge or a

negative-edge trigger. Verilog HDL takes care of these conditions by providing two keywords:
posedge and negedge. For example, '

always @ {posedge clock or negedge reset)

will cause the execution of the procedural statements only if the clock goes throngh a positive
transition or if reset goes through a negative transition.

A procedural assignment is an assignment within an initial or always statement. This is in
contrast to a continuous assignment discussed in Sec. 4-11 with dataflow modeling where the
statement is continuously evaluated. There are two kinds of procedural assignments: blocking

~and non-blocking. The two are distinguished by the symbols that they use, Blocking assignments

use the symbol (=) as the assignment operator and non-blocking assignments use the (<=) as
the operator, Blocking assignment statements are executed sequentially in the order they are
listed in a sequential block. Non-blocking assignments evaluate the expressions on the right-
hand side, but do not make the assignment to the left-hand side until all expressions are eval-
uated. The two types of assignments may be better understood by means of an illustration.
Consider these two procedural blocking assignments:

B = A
C=8B+1

The first statement transfers A into B. The second statement increments the new value of B and
transfers it to C. At the completion, C contains the value of A + 1.
Now consider the two statements as non-blocking assignments:

B<=A
C<=B+1

When the statements are executed, the right-hand side expressions are evaluated and stored in
a temporary location. The value of A is kept in one storage location and the value of B + 11in
another. After all the expressions in the sequential block are evaluated and stored, the assign-
ment to the left-hand-side targets is made. In this case, C will contain the original valae of B
plus one. Most of the examples in this and the next chapter can use blocking assignments. Non-
blocking assignments are imperative when dealing with register transfer level design as shown
in Chapter 8. J ,

Lo

192

Chapter 5 Synchronous Sequential Logic

Flip-Flops and Latches

HDL Examples 5-1 through 5-4 show descriptions of various flip-flops and a D latch. The D
latch is transparent and responds to a change in data input with a change in output as long as
the control input is enabled. The module description of a D latch is shown in HDL Exam-
ple 5-1. It has two inputs, D and control, and one output Q. Since (is evaluated in a proce-
dural statement, it must be declared as reg type. Latches respond to input signal levels so the
two inputs are listed without edge qualifiers in the event control expression following the @
symbol in the always statement. There is only one blocking procedural assignment statement
and it specifies the transfer of input D to output @ if contrel is true (logic 1), Note that this state-
ment is executed every time there is a change in D if control is 1.

HDL Example 5-2 describes two positive-edge D flip-flops in two modules, The first responds
only to the clock, the second includes an asynchronous reset input. Output @ must be declared as a
reg data type in addition to being listed as an output. This is because it is a target output in a proce-
dural assignment statement. The keyword posedge ensures that the transfer of input D into © cccurs
only during the positive-edge transition of CLK. A change in [at any other time does not change Q.

HDL Example 5-1

//Description of D latch (See Fig. 5-6)
module D_latch (Q,D,control};
output 0Q;
input D, control;
reg Q;
always @ {(control or D)
if (control) Q = D;

//Same as: if (contrel == 1)
endmodule .

HDL Example 5-2

//D flip-flop
module D_FF ((Q,D,CLK);
output Q;
input D, CLK;
reg Q;
always @ {posedge CLK)
Q= D;
endmodule

//D flip-flop with asynchronous reset,
module DFF (Q,D,CLK,RST);

output Q;
input D,CLEK,RST;
reg Q;

always @{posedge CLK or negedge RST)
if (~RST) Q = 1'b0; // Same as: if (RST == ()
else QO = D;
endmedule

Section 5-5 HDL For Sequential Circuits 193

The second module includes an asynchronous reset input in addition to the synchronous
clock. A special form of if statement is used to generate such a flip-flop. The event expression
after the @ symbol in the always statement may have any number of edge events, either posedge
or negedge. One of the events must be a clock event. The remaining specify conditions under
which asynchironous logic is to be executed. Each if or else if statement in the procedural
assignment statements correspond to an asynchronous event. The last else statement corre-
sponds to the clock event. There are two edge events in the second module of Example 5-2. The
negedge RST (reset) event is asynchronous since it matches the if (~RST) statement. As long
as R8T is 0, O is cleared to 0. If CLK has a positive transition, its effect is blocked. Only if
RST = 1, can the posedge clock event synchronously transfer D into Q.

It is usually necessary that flip-flops include a reset (or preset) input signal, otherwise, the
initial state of the sequential circuit cannot be determined, A sequential circuit cannot be tested
with HDL simulation unless an initial state can be assigned with an input signal.

HD1. Example 5-3 describes the construction of a T or JX flip-flop from a D flip-flop and
gates. The circuit is described by using the characteristic equations of the flip-flops:

O +1)=08T for a T flip-fiop
(it +1)=JQ' + K'Q for a JX flip-flop

HDL Example 5-3

//T flip-flop from D flip-flop and gates
medule TFF {(Q,T,CLK,RST);
output Q;
input T,CLK,RST;
wire DT;
asgign DT = Q ~ T ;
//Instantiate the D flip-flop
DFF TF1 {(Q,DT,CLK,RST};
endmodule

//0K flip-flop from D L[lip-flop and gates
module JKFF (Q,J,K,CLK,RST);

output Q;

input J,X,CLK,RST;

wire JX;

assign JK = (J & ~Q) | {~K & Q):

//Instantiate D flipflop
DFF JK1 {(Q,JK,CLK,RST):;
endmodule

//D flip-flop
module DFF (Q,D,CLK,RST);
output Q;
input D,CLX,RS8T;
reg (;
always @ (posedge CLK or negedge RST)
if (~RST) Q@ = 1'b0;
else Q = D;
endmodule

194

Chapter 5 Synchronous Sequential Logic

HDL Example 5-4

// Functional description of JK flip-flop
module JK_FF (J.K,CL¥,Q,Qnot) ;

ocutput Q, Onot;

input J,X,CLK;

reg Q;

assign Qnot = ~ Q ;

always @ (posedge CLK)

case ({J,K})

2'bC0: @ = Q;

2'b01: Q = 1'bo;

2'Dl0: ¢ = 1'bl;

2'bll: Q = ~ Q;
endcase

endmodule

The first module TFF describes a T'flip-flop by instantiating DFF (instantiation is explained in
Sec. 4-11). The wire declaration DT is assigned the exclusive-OR of Q and 7, as required for
converting a D flip-flop to a T flip-flop. The instantiation with the value of DT replacing the D
in module DFF produces the required 7 flip-flop. The JK flip-flop is specified in a similar man-
ner by using its characteristic equation to define a replacement for D in the instantiated DFF.

HDL Example 5-4 shows another way to describe a JX flip-flop. Here we choose to describe
the flip-flop using the characteristic table rather than the characteristic equation. The case mul-
tiway branch condition checks the 2-bit number obtained by concatenating the bits of J and &,
The case value ({1,K1) is evaluated and compared with the values in the list of statements that
follow. The first value that matches the trie condition is executed. Since the concatenation of
Jand K produces a two-bit number, it can be equal to 00, 01, 10, or 11. The first bit gives the
value of J and the second the value of K. The four possible conditions specify the value of the
next state of O after the application of a positive-edge clock.

State Diagram

The operation of sequential circuits is described in HDL in the same format as a state diagram, A
Mealy model state diagram is presented in HDL Example 5-5. The input, output, clock, and reset
are declared in the usual manner. The state of the flip-flops is declared with identifiers Pretate
and Nxtstate. These variables hold the state value of the sequential circuit. The state binary
assignment is done by using a parameter statement. (Verilog allows constants to be defined in a
module by the keyword parameter). The four states S0 through $3 are assigned binary 00 through
11. The notation $2 = 2'b10is preferable to the alternative $2 = 2. The former uses two bits to
store the constant. The second notation results in a binary number with 32 (or 64) bits.

'The HDL description uses three always blocks that execute concurrently and interact through
common variables. The first always statement resets the circuit to the initial state SO = 00 and
specifies the synchronous clocked operation. The statement Prstate = Nxtstate is
executed only in response to a positive-edge transition of the clock. This means that any change

Section 5-5 HDL For Sequential Circuits 195

HDL Example 5-5

//Mealy state diagram (Fig. 5-18)
module Mealy mdl (x,y,CLK,RST);
input %X,CLK, RST;
cutput v;
reg v;
reg [1:0] Prstate, Nxtstate; .
barameter S0 = 2'b00, S1 = 2'b01, 82 = 2'b10, 83 = 2'bll;
always @ (posedge CLK or negedge RST)
if (~RST) Prstate = §0; //Initialize to state S0
else Prstate = Nxtstate; //Clock operations
always @ (Prstate or x) //Deternine next state
case (Prstate)
S0: if (x) Nxtstate = 31;
else Nxtstate = S0;
Sl: if [x) Nxtstate = S3;
else Nxtstate = 50;
52: if (~X)Nxtstate = g0;
else Nxtstate = S2;
83: if (%) Nxtstate = §52;
else Nxtstate = 80;
endcase
always € (Prstate or x) //Evaluate output
case (Prstate) :
S0: v = 0;
Sl: if (x) v 1'b0; else vy = 1'bl;
S82: if (x) vy 1'L0; else y = 1'b1;
83: if (X} v = 1'b0; else v = 1'bl;
endcasze
endmodule

[H

that occurs in the Nxtstate value in the second always block is transferred to Prstate as
aresuit of a posedge event. The second always block determines the next state transition as a
function of the present state and input. The multiway branch condition follows the sequence
specified in the state diagram of Fig. 5-16. The third always block evaluates the output as a func-
tion of the present state and input. Although it is listed separately for clarity, it could be com-
bined with the second block. Note that the value of output y may change if the value of input
x changes while the circuit is at any given state.

An example of a Moore model state diagram is described in HDL Example 5-6. This example
shows that it is possible to specify the state transitions with only one always block. The pres-
ent state of the circuit is identified by the variable state. The state transitions occur with the
posedge CLK according to the conditions listed in the case statements. The output of the cir-
cuit is independent of the input and is taken directly from the outputs of the tlip-flops. The 2-bit
output AB is specified with an assign statement and is equal to the value of the present state.

E——

Section 5-5 HDL For Sequential Circuits 197

TR,

17 i 196 Chapter 5 Synchronous Sequential Logic

HDL Example 5-¢
//Moore state diagram (Fig. 5-19;

module Moore_mdl (x,AB,CLK,RST);
input x,CLK,RST;
output [1:0]aB;
reg [1:0] State;
barameter SO = 2'b00, 81 = 2'b01, 52 = 2'bi0, 83 = 2'bl11;
always @ {posedge CLK or negedge RST)
if (~RST) state = 50; //Initialize to state gp
else
case (state)
S80: if (~x} state = 51; else state = 50;
S1: if (x) State = 82; elge state = g3.
S2: if (~x) state = $3; elge state = g2;
83: if (~x} stare = 80; else state = S53;

HDL Example 5-7

//Structural description of Sequential circuit
//See Fig. 5-20(a)
module Tcircuit (x,y,A,B,CLK,RST);
input x,CLK, RST:
output Y,A,B;
wire Ta,TR;
//Flip-flop input equatiens
assign TR = X,
TA = x & B;
//0utput equation
assign vy = a g B;
//Instantiate T flip-flops
T_FF BF (B,TB,CLK,RST);
T _FF AF (A,TA,CLK,RST);
endmodule

endcase %
end;szifz AB = state; //Output of flip-flops %’ /D Flip-flop
g\;;eg* module T FF (Q,T,CLK,RST) H
= output Q;
% input T,CLK,RST;
Structural Description reg Q;
always @ {posedge CLX or negedge RST)
Combinational circuits can be described in HDL by using gate-level or dataflow statements, if (~RST) @ = 1'po.
Sequential circuits use behavioral statements to describe the flip-flop operation. Since a sequential - else 0 = g ~ T
circuit is made up of flip-flops and gates, its Structure can be described by a combination of endmodule
dataflow and behavioral statements. The fip-flops are described with an always statement. The .) } : .
combinational part can be described with assign statements and Boolean equations. The sepa- ;éiﬁizui:: tisli:rzjisﬁng seauential circuic
rate modules can be combined by instantiation. reg x,CLK,RST; / inputs for cireuit
The structural description of a sequential circuit is shown in HDL Example 5-7. There are two mod- _ wire v, a,R; //output from cireuit
ules in the exatnple. The first deseribes the cireuit of Fig. 5-20(a). The second describes g Tﬂip-ﬂop. : Telrcuit me (x, v.&,B,CLKE,RST); // instantiate circuit
Another moduyle provides a stimulus for testing the circyit Operation. The sequential cireyit is a2-hit initial
binary counter controlled by input x. Qutput yis enabled when the count reaches binary 11. Flip-flops \ begin
A and B are included as cuiputs in order (o check their operation. The flip-flop tnput equations and - - RST = 0;
the output equation are evalnated with assign statements having the corresponding Boolean expres- CLE = 0;
sions. The 77 flip-flop is then instantiated using TA and TB defined by the input equations #3 RST = c . (16)
The second module describes the T flip-flop. The RST input resets the flip-flop to 0 with a . ;E;e: ~CLK;
negative signal. The operation of the flip-flop is specified by its characteristic equation end
QU+ 1)=0®T. s initial
The stimulus module provides inputs to the circuit to check the output response. The first begin
initial block provides eight clock eycles with period of 10 ns. The second initial block speci- x = 0;
fies an alternate change of input x that occurs at the negative edge transition of the clock. The % : #15 x = 1;
result of the simulation is shown in Fig. 5-21. Output A and 80 through the binary sequence repeat (g)
00,01, 10, 11, and back to 00. The change in the count occurs during a positive edge of the clock : : ' ezﬁo rEx

provided x = 1. 1f y = 0, the count does not change. Output vy is equal to 1 when both A and

A : i > _ endmodule '
B are equal to 1. Thig verifies the operation of the cIrcuit. o \

17t

198 Chapter 5 Synchronous Sequential Logic
Ons 10ns 20ns 30ns 40ns 5005 |60ns 70ns B0ns 90ns
I T T O A T IR] I O I A I
testTeircuit.x m—/—\
testTeircuit. RST \ l
testTeircuit.y /—\—
testcircuit. A h / \
testcircuit.B f } / \
FIGURE 5-21
Simulation Output of HDL Example 5-7
56 STATE REDUCTION AND ASSIGNMENT

The analysis of sequential circuits starts from a circuit diagram and culminates in a state table
or diagram. The design of a sequential circuit starts from a set of specifications and colminates
in a logic diagram. Design procedures are presented starting from Section 5-7. This section
discusses certain properties of sequential circuits that may be used to reduce the number of
gates and flip-flops during the design.

State Reduction

The reduction of the number of flip-flops in 2 sequential circuit is referred to as the state-
reduction problem. State-reduction algorithms are concerned with procedures for reducing the
number of states in a state table, while keeping the external input—output requirements
unchanged. Since m flip-flops produce 2™ states, a reduction in the number of states may
(or may not) result in a reduction in the number of flip-flops. An unpredictable effect in reducing
the number of flip-flops is that sometimes the equivalent circuit (with fewer flip- flops) may
require more combinational gates.

We will illnstrate the state reduction procedure with an example. We start with a sequential
circuit whose specification is given in the state diagram of Fig. 5-22. In this example, only the
input-output sequences are important; the internal states are used merely to provide the required
sequences. For this reason, the states marked inside the circles are denoted by letter symbols
instead of their binary values. This is in contrast to a binary counter, where the binary value
sequence of the states themselves is taken as the outputs. -

There are an infinite number of input sequences that may be applied to the circuit; each
results in a unique output sequence. As an example, consider the input sequence
01010110100 starting from the initial state a. Each input of O or | produces an output of O
or 1 and causes the circuit to go to the next state. From the state diagram, we obtain the out-
put and state sequence for the given input sequence as follows ™ With the circuit in initial state

Section 5-6 State Reduction-and Assignment 199

o)

0/0

FIGURE 5-22
State Diagram

a, an input of 0 produces an output of O and the circuit remains in state 4. With present state

“thie output is 0 and next state 1s ¢. Continuing thlS process we find the complete sequence
to be as follows

input 0 I 0 1 0 1
output 0 0 0 0 0 1

<
—
<
<

state a a b ¢ d e Ff g f g a
1
1

In each column, we have the present state, input yalue, and output value. The next state is writ-
ten on top of the next column. It is important to realize that in this circuit, the states themselves
are of secondary importance because we are interested only in output sequences caused by
input sequences.

Now let us assume that we have found a sequential circuit whose state diagram has less
than seven states and we wish to compare-it with the circuit whose state diagram is given by
Fi g 5-22.1f idenitical input sequences aré applied to the two circuits and identical outputs occur
for all mput sequences, then the two circuits are said to be equivalerit {as far as the input—output
is, concerned) and one may be replaced by the other. The problem of state reduction is to find
ways of reducing the number of states in a sequential circuit without altering the input-output
relationships. :

We now proceed to reduce the number of states for this example. First, we need the state
table; it is more convenient to apply procedures for state reduction using a table rather than a
diagram. The state table of the circuit is listed in Table 5-6 and is obtained directly from the
state diagram.

17

200

Chapter 5 Synchronous Sequential Logic

Table 5-6
State Table
Next State Output
Present State x=0 x=1 x=0 x=1

a b 0 0
b c d 0] 0
c d 0] 0
d P S il
e @ f 0 1
f BB

— g @ f 0 1

An algorithm for the state reduction of a completely specified state table is given here with-
out proof: “TwLatWMﬂw
ive exactly the same ou to an equivalent
‘state When two states are equivalent, one of them can be removed without altering the
mput—output relationships.
Now apply this algorithm to Table 5-6. Going through the state table, we look for two pres-
ent states that go to the same next state and have the same output for both mput combinations.

Lo

fof x = 0 andx = 1, i‘espectwely Therefore, states g and e are equivalent and one of these
states can be removed. The procedure of removing a state and replacmg it by its equwaIent is
demonstrated in Table 5-7, The row with present state gis removed al d and state g is replaced by
state e eag:_h time it occurs in the next-state. columns.

Present state [now has next states e and fand outputs Q and 1 for x = 0 and x = 1,
respectively. The same next states and outputs appear in the row with present state 4. There-
fore, states f and d are equivalent and state f can be removed and replaced by d. The final re-
duced table is shown in Table 5-8. The state diagram for the reduced table consists of only five

Table 5-7

Reducing the State Table

. Next State Output

Present State x=0 x=1 x=0 x=1

a a b 0 0
b ¢ d 0 0
c a d 0 0
d e f 0 1
e a f 0 1
f e f 0 1

Section 5-6 State Reduction and Assignment 201

Table 5-8
Reduced State Table
Next State Output
Present State x=0 x=1 x=0 x=1
a a b 0 0
b ¢ d 0 (0]
¢ a d 0 0
d e d 0 1
e a d 0 1

states and is shown in Fig. 5-23. This state diagram satisfies the original input-output specifi-
cations and will produce the required output sequence for any given input sequence. The fol-
lowing list derived from the state diagram of Fig. 5-23 is for the input sequence used previously
(note that the same output sequence results, although the state sequence is different):

state . a a b c d e d d e d e a
input 0 1 0 1 0 1 1 0 1 0 0
output ¢ 0 0 0 0 1 i 0 1 ¢ 0

In fact, this sequence is exactly the same as that obtained for Fig. 5-21, if we replace g by ¢
and fby d.

Checking each pair of states for possible equivalency can be done systematically by means
of a procedure that employs an implication table. The implication table consists of squares,
one for every suspected pair of possible equivalent states. By judicious use of the table, it is pos-
sible to determine all pairs of equivalent states in a state table. The use of the implication table
for reducing the number of states in a state table is demonstrated in Section 9-5.

0/0

170

171

FIGURE 5-23
Reduced State Diagram

Chapter 5 Synchronous Sequential Logic

The sequential circuit of this example was reduced from seven to five states. In general,
reducing the number of states in a state table may result in a circuit with less equipment. How-
ever, the fact that a state table has been reduced to fewer states does not guarantee a saving in
the mumber of flip-flops or the number of gates.

State Assignment

In order to design a sequential circuit with physical components, it is necessary to assign coded
binary values fo the states. For a circuit with m states, the codes must contain » bits where
2" = =m. For example, with three bits it is possible to assign codes to eight states denoted
by hinary numbers 000 through 111. If the state table of Table 5-6 is used, we must assign
binary values to seven states; the remaining state is unused. If the state table of Table 3-8 is used,
only five states need binary assignment, and we are left with three unused states. Unused states
are treated as don’t-care conditions during the design. Since don’t-care conditions usually help
in obtaining a simpler circuit, it is more likely that the circuit with five states will require fewer
combinational gates than the one with seven states.

The simplest way to code five states is to use the first five integers in binary counting order,
as shown in the first assignment of Table 5-9. Another similar assignment is the Gray code
shown in assignment 2. Here only one bit' in the code group changes when going from one
number to the next. This code makes it easier for the Boolean functions to be placed in the
map for simplification. Another possible assignment ofien used in control design is the one-hot
assignment. This configuration uses as many bits as there are states in the circuit. At any given
time, only one bit is equal to 1 while all others are kept at 0. This type of assignment uses one
flip-flop per state. '

Table 5-10 is the reduced state table with binary assignment 1 substitated for the letter sym-
bols of the states. A different assignment will result in a state table with different binary val-
ues for the states. The binary form of the state table is used to derive the combinational circuit
part of the sequential circuit. The complexity of the combinational circuit depends on the binary
state assignment chosen.

Sometimes, the name transition table is used for a state table with a binary assignment,
This distinguishes it from a state table with symbolic names for the states. In this book, we use
the same name for both types of state tables.

Table 5-9
Three Possible Binary State Assignments

State Assignment 1 Assignment 2 Assignment 3
Binary Gray code One-hot
a 000 {00 _ 00001
b 001 001 00010
¢ 010 011 00100
d 011 010 01000
e 100 110 10000

SO e e

5.

Section 5-7 Design Procedure 203

Table 5-10
Reduced State Table with Binary Assignment 1
Next State Output
- Present State x=0 x=1 x=0 x=1
000 000 001 0 0
001 010 011 0 0
010 000 ol 0 0
011 100 011 0] 1
100 000 011 0 1

DESIGN PROCEDURE

The design of a clocked sequential circuit starts from a set of specifications and culminates in
a logic diagram or a list of Boolean functions from which the logic diagram can be obtained.
In contrast to a combinational circuit, which is fully specified by a truth table, a sequential cir-
cuit requires a state table for its specification. The first step in the design of sequential circuits
is to obtain a state table or an equivalent representation, such as a state diagram,

A synchronous sequential circuit is made up of flip-flops and combinational gates. The
design of the circuit consists of choosing the flip-flops and then finding a combinational gate
structure that, together with the flip-flops, produces a cirenit that fulfills the stated specifica-

- tions. The number of flip-flops is determined from the number of states i Ircuit.

The combinational circuit is derived from the state table by evaluating the flip-flop input equa-
tions and output equations. In fact, once the type and number of flip-flops are determined, the
design process involves a transformation from a sequential circuit problem into a combinational
circuit problem. In this way, the techniques of combinational circuit design can be applied.

The procedure for designing synchronous sequential circuits can be summarized by a list of
recommended steps.

1. From the word description and specifications of the desired operation, derive a state

diagram for the circuit. ’

2. Reduce the number of states if necessary.

3. Assign binary values to the states,

4. Obtain the binary-coded state table.

5. Choose the type of flip-flops to be used.

6. Derive the simplified flip-flop input equations and output equations.

7. Draw the logic diagram.

The word specification of the circuit behavior usually assumes that the reader is familiar with
digital logic terminology. It is necessary that the designer use intuition and experience to arrive at
the correct interpretation of the circuit specifications, because word descriptions may be incom-
plete and inexact. Once such a specification has been set down and the state diagram obtained, it

is possible to use known synthesis procedures to complete the design. Although there are formal
procedures for state reduction and assignment, they are seldom used by experienced designers.

17¢

204 Chapter 5 Synchronous Sequential Logic

FIGURE 5-24
State Diagram for Sequence Detector

Steps 4 through 7 in the design can be implemented by exact algorithms and therefore can be
automated. The part of the design that follows a well-defined procedure is refered to as, gm

The first step is the most challenging part of the design. We will show here oné simple
example to demonstrate how a state diagram is obtained from the word specification.

We wish to design a circuit that detects three or more consecutive 1's 1 in a string of bits com-
ing through an input line. The state diagram for the circuit is shown in Flg 5-24. 1t is derived
by starting with state Sy. If the input is 0, the circuit stays in the same state, but if the input is
1, it goes to state S, to indicate that a 1 was detected If the next mput is 1, the change is to state
S, to indicate the arrival of two consecutive 1’s, but if the input is 0, we g0 back to state S,. The
third consecutive 1 sends the circuit to state 3. If more 1’s are detected, the circuit tays at Ss.
Any 0 input sends the circuit back to §,. In this way, the circuit stays at S, as long as there are
three or more consecutive 1’s received. This is a Moore model sequential circuit since the out-
put is 1 when the circuit is in state S and 0, otherwise.

Synthesis Using D Flip-Flops

Once the state diagram has been derived, the rest of the design follows a straightforward syn-
thesis procedure. In fact, we can design the circuit by using an HDL description of the state
diagram and the proper HDL synthesis tools to obtain a synthesized net list. (The HDL de-
scription of the state diagram will be similar to HDL Example 5-6 in Section 5-5.) To design
the circuit by hand, we need to assign binary codes to the states and list the state table. This is
done in Table 5-11. The table is derived from the state diagram of Fig. 5-24 with a straight
binary assignment. We choose two D flip-flops to represent the four states and label their out-
puts A and B. There is one input x and one output y. The characteristic equation of the D flip-
flopis O(r + 1) = D, which means that the next-state values in the state table specify the D
input condition for the flip-flop. The flip-flop input equations can be obtained directly from the
next-state columns of A and B and expressed in sum of minterms as

At +1) = Dy(A, B, x) = 2(3,57)
B(t + 1) = Dg(A, B, x) = 2(1,5,7)
y(A, B, x)= 2(67)

Section 5-7 Design Procedure 205

Table 5-11
State Table for Sequence Detector
Present Next
State Input State Output
A B X A B Y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 0 0 0}
l 0 1 1 1 0
1 1 0 0 0 1
1 1 1 1 1 1

where A and B are the present-state values of flip-flops A and B, x is the input, and D, and Dy
are the input equations. The minterms for output y are obtained from the output column in the
state table.

The Boolean equations are simplified by means of the maps plotted in Fig. 5-25. The sim-
plified equations are

D, = Ax + Bx
DB:A)C+B’X
y = ARB

The logic diagram of the sequential circuit is drawn in Fig, 5-26.

Excitation Tables

The design of a sequential circuit with flip-flops other than the D type is complicated by the
fact that the input equations for the circuit must be derived indirectly from the state table.
When-D type flip-flops are employed, the input equations are obtained directly from the next

Bx B
00 01 11 10
A — —
1 1
Al [L 1] 1 1 1 1
X
D,y = Ax + Bx Dp=Ax+ B'x y=AR
FIGURE 5-25

Maps for Sequence Detector

S 206 Chapter 5 Synchronous Sequential Logic Section 5-7 Design Procedure :207
170

T Table 5-12
Flip-Flop Excitation Tables

:D‘ - 1 Qe+ 1 J

K Qn Qt+m | T

D A 0 . .0 0 X 0 ¢ 0

0 1 1 X 0) 1 1.

|'—~>C 1 0 X 1 1 0 1

x T 1 1 X 0 i [0
(a}JK BT

both present state and next state are 1, the K input must remain at 0, while the J input can be
Ooor i. If the flip-flop is to have a transition from the 0-state to the I-state, J must be equal to
1, since the J inpgg_sqt__sﬂ’gl}gfl,ip,—_ﬂop. However, input X may beeither Oora 1. If K = 0, the
J =1 condition sets the flip-flop as required; if K = 1 and J = 1, the flip-flop is comple-
mented and goes from the O-state to the I-state as required. Therefore the K input is marked
with a don’t-care condition for the 0-to-] transition. For a transition from the 1-state to the
O-state, we must have K = 1, since the X input clears the flip-flop, However, the J input may
be either 0 or 1, since J = 0 has no effect, and 7 = 1 together with K = | complements the
tlip-fiop with a resultant transition from the 1-state to the O-state,

The excitation table for the T flip-flop is shown in part (b). From the ghagaqteﬂsiig__table,,we find
that when input T = 1, the state of the flip-flop is complemented; when T = 0, the state of the flip-
flop remains tinchanged. Therefore, when the state of the flip-flop must remain the same, the

. Tequirement is that 7 = (). When the state of the flip-flop has to be complemented, 7" must equal 1.

CLK

L,
} 3 ' y
FIGURE 5-26

Logic Diagram of Sequenée Detector

Synthesis Using JK Flip-Flops

The synthesis procedure for sequential circuits with JK flip-flops is the same as with D flip-
flops, except that the input equations must be evaluated from the present-state to next- state
transition derived from the excitation table, To illusirate the procedure, we will synthesize the
sequential circuit specified by Table 3-13. In addition to having columns for the present state,
input, and next state as in a conventional state table, the table aiso shows the flip-flop input
conditions from which the input equations are derived. These flip-flop inputs are derived from
the state table in conjunction with the excitation table for.the J & lip-flop. For example, in the
first row of Table 5-13 we have a transition for flip-flop A from 0 in the present state to 0 in the
next state. In Table 5-12 for the JK flip-flop, we find that a transition of states from present state
0 to next state 0 requires that input ./ be 0 and input X be a don’t-care. So 0.and X are entered
in the first row under J 4 and K 4. Since the first row also shows a transition for flip-flop B from
0 in the present state to 0 in the next state, 0 and X are inserted in the first row under Jp and K.
The second row of the table shows a transition for flip-flop B from 0 in the present state to 1 in
the next state. From the excitation table, wé find that a transition from O to | requires that J be
land Kbea don’t-care, so 1 and X are copied in the second row under J g and K. This process
is continued for each row in the tabie and for each flip-flop, with the input conditions from the
excitation table copied into the proper row of the particnlar flip-flop being considered.

The flip-flop inputs in Table 5-13 specify the truth table for the input equations as a func-
tion of present state A and A and input x. The input equations are simplified in the maps of
Fig. 5-27. The next-state values are not used during the simplification since the input equations

state. This is not the case for the JK and T types of flip-flops. In order to determine the input
equations for these flip-flops, it is necessary to derive a functional relationship between the state
table and the input equations.

The flip-flop characteristic tables presented in Table 5-1 provide the value of the next state
when the inputs and present state are known. These tables are useful for the analysis of sequential
circuits and for defining the operation of the flip-flops. During the design process we usually
know the transition from present state to next state and wish to find the tlip-flop input condi-
tions that will cause the required transition. For this reason, we need a table that lists the required
inputs for a given change of state. Such a table is called an excitation table.

Table 5-12 presents the excitation tables for the two flip-flops. Each table has a colump for
the present state Q(z), the next state Q(t + 1), and a column for each input to show how the
required transition is achieved. There are four possible transitions from present state to next state,
The required input conditions for each of the four transitions are derived from the information
available in the characteristic table. The symbol X in the tables represents a don’t-care condi-
tion, which means that it does not matter whether the input is 1 or 0. :

The excitation table for the JX flip-flop is shown in part (a). When both present state and
next state are 0, the J input must remain at 0 and the & nput can be either 0 or |, Similarly, when

208 Chapter 5 Synchronous Sequential Logic

Table 5-13
State Table and JK Flip-Flop Inputs
Present Next
State input State Flip-Flop Inputs
A B X A B Is K s Kg
0, 0 0 0 0 ¢ X 0 X
0 0 1 ¢ 3 0 X 1 X
0 1 0 1 0 1 X X 1
0.-1 1 - -0 1 0 X X 0
1 0 0 1 0 X 0 6 X
1.0 1 1 1 X 0 1 X
1 1 ¢ 1 1 X 0 X 0
1 1 1 ¢ 0 X 1 X 1

are a function of the present state and input only. Note the advantage of using JK type flip-flops
when designing sequential circuits. The fact that there are so many don’t care entries indicates
that the combinational circuit for the input equations are likely to be simpler, because don’t-
care minterms usually help in obtaining simpler expressions. If there are unused states in the
state table, there will be additional don’t-care conditions in the map.

Bx B Bx
00 01 11 10 00 01 11 10

A A

1 X X X X
0 .0
All] X X X H A

X x
J}j‘tBJCJ KA=BI
Bx B Bx . B
00 0t 11 10 00 01 11 10
A A —
1 X X X X 1
0 0
Al 1 X X A1l x X 1
X X
Ja=x Kp=(A®x)

FIGURE 5-27
Maps for j and K Input Equations

i B e

353

Synthesis

Section 5-7- Design Procedure 209

> C

UL(J

T B
> C
“ Yo— K b———— B’

CLK

FIGURE 5-28 _
Logic Diagram for Sequential Circuit with JK Flip-Flops

The four input equations for the two JK flip-flops are listed under the maps of Fig. 5-27.
The logic.diagram of the sequential circuit is drawn in Fig, 5-28.

Jsing 7 Flip-Flops

The synthesis using T flip-flops will be demonstrated by designing a binary counter. An n-bit
binary counter consists of # flip-flops that can count in binary from 0 to 2° — 1..The state
diagram of a 3-bit counter is shown in Fig. 5-29. As seen from the binary states indicated in-
side the circles, the flip-flop outputs repeat the binary count sequence with a return to 000 after
111. The directed lines between circles are not marked with input and output values as in other
state diagrams. Remember that state transitions in clocked sequential circuits occur during a
clock edge; the flip-flops remain in their present states if no clock is applied. For this reason,
the clock does not appear explicitly as an input variable in a state diagram or state table. From

FIGURE 5-29
State Diagram of 3-Bit Binary Counter

170

210 Chapter 5 Synchronous Sequential Logic

Table 5-14
State Table for 3-Bit Counter

Present State Next State Flip-Flop Inputs
AZ A'I AO AZ A AD TA 2 TA 1 TA 0
0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 1

0 1 0 0 1 1 0 0 1

0 1 i 1 0 0 1 1 1

1 0 0 1 0 1 0 0 1

1 0 1 1 1 G 0 1 i

1 1 0 1 1 H 0 1 1

1 1 1 0 0 0 1 1 1

this point of view, the state diagram of a counter does not have to show input and output val-
ues along the directed lines. The only input to the circuit is the clock, and the outputs are spec-
ified by the present staie of the flip-flops. The next state of a counter depends entirely on its
present state, and the state transition occurs every time the clock goes through a transition.

Table 5-14 is the state table for the 3-bit binary counter. The three flip-flops are symbolized
by As, A,, and Ay. Binary counters are most efficiently constructed with 7" flip-flops because
of their complement property. The flip-flop excitation for the T inputs is derived from the
excitation table of the T flip-flop and from inspection of the state transition of the present state
to the next state. As an illustration, consider the flip-flop input entries for row 001. The pres-
ent state here is 001 and the next state is 010, which is the next count in the sequence. Com-
paring these two counts, we note that A, goes from 0 to 0; so T, is marked with O because
flip-flop A, must not change when a clock occurs. A, goes from 0 to 1; so T, is marked with
a 1 because this flip-flop must be complemented in the next clock edge. Similarty, A, goes
from 1 to 0, indicating that it must be complemented; so T is marked with 1. The last row with
present state 111 is compared with the first count 000, which is its next state. Going from ail
1’s to all O’s requires that all three flip-flops be complemented.

The flip-flop input equations are simplified in the maps of Fig. 5-30. Note that T, has 1's
in all eight minterms because the least significant bit of the counter is complemented with

Ay
1 1 1 1 1 1 1
1 1 1 1 1 1 1
Ay
Taz=A140 Tyu=4 _ Tyo=1
FIGURE 5-30

Maps for 3-Bit Bin.ary Counter

Problems 211

Ay A Ay
C C C
A T JaN r A T
- o
FIGURE 5-31

Logic Diagram of 3-Bit Binary Counter

each count. A Boolean function that includes all minterms defines a constant value of 1. The
input equations listed under each map specify the combinational part of the counter. Including

these functions with the three flip-flops, we obtain the logic diagram of the counter, as shown
in Fig. 5-31.

PROBLEMS

5-1 The D laich of Fig. 5-6 is constructed with four NAND gates and an inverter. Consider the fol-

lowing three other ways for obtaining a D latch. In each case, draw the logic diagram and verify
the circuit operation.

(2) Use NOR gates for the SR latch part and AND gates for the other two. An inverter may be needed.
{b) Use NOR gates for all four gates. Inverters may be nceded.

(¢} Use four NAND gates only (without an inverter). This can bé done by connecting the output

of the upper gate in Fig. 5-6 (that goes to the SR latch) to the input of the lower gate (instead
of the inverter output).

5-2 Construct a JK flip-flop using a D flip-flip, a 2-to-1-line multiplexer and an inverter.
5-3 Show that the characteristic equation for the complement output of a JX flip-flop is
ot +1)=7Q + KQ

5-4 A PN flip-flop has four operations: clear to 0, no change, complement, and set to 1, when inputs
P and N are 00, 01, 10, and 11, respectively.
(a) Tabulate the characteristic table.
(c} Tabulate the excitation table.

(b) Derive the characteristic equation.

(d) Show how the PN flip-flop can be
converted to a D flip-flop.

5-5 Explain the differences among a truth table, a state table, a characteristic table, and an excitation
table. Also explain the difference among a Boolean equation, a state equation, a characteristic
equation, and a flip-flop input equation.

=i t-napter 5 Synchronouys Sequential Logic

REFERENCES

1. Haves, 1. P. 1993, Introduction 1o Digital Logic Design. Reading, MA: Addison-Wesley.

2. WARERLY, T, F. 2000, Digital Design- Principles and Practices, 3rd ed, Upper Saddle River, NJ:
Prentice Hall.

Registers
and Counters

Saddle River, NJ- Prentice Hall.

3. NesoNV.P H T NAGLE, J. D. Irwiv, and B. 1y, CARROLL. 1995, Digital Logic Cireyiy Analy-
5is and Design, Upper Saddie River, NJ: Prentice Hall,

6. DiETMEYER, D, I 1988. Logic Design of Digitar Systems, 3rd ed, Boston: Allyn Bacon,
7 Garsk, D. D. 1997, Principles of Digital Design, Upper Saddie River, NJ: Prentice Hall.,
8 RomcH 1992, Fundamentgls of Logic Design, 4th eq, 3. Panl; West.

11. Crerm, M. D. 1999, Modeling, Synthesis, and Rapid Prototyping with VeriLog HDf., Upper Sad- . 6-1 REG ISTE RS

12, PALNITKAR, S. 1996, Verilog HDL: A Guide 10 Digital Design angd Synthesis. SunSoft Press 7

13, Teomas, D, E and P. R, Mooray 1998 The VeriLog Hardware Description Language 4th od :‘,E - cuit reduces to a purely combinationa] cirenit (provided there is no feedback antong the
- Boston- Kluwer Academi ¢ Publishers. ' - gates). A circnit with flip-flops is considered 5 sequential circuit even in the absence of com-

binational gates. Circuits that include flip-flops are usually classified by the function they
perform rather thag by the name of the Sequential circuit, Two such circuits are registers
and counters.

A register is a group of flip-flops. Each flip—flop is capable of storing one bit of informa-
tion. An n-hjt register consists of g group of » flip-fiops capable of storing » bits of binary
information, In addition to the Hlip-flops, a register may have combinational gates that perform
certain data Processing tasks, In its broadest definition, a register consists of g group of flip-
flops and gates that effect their transition. The flip-flops hold the binary information and the
gates determine how the information js transferred into the register,

A counter js essentially a register that goes through a predetermined sequence of states, The

them by giving them a different name,

Various types of registers are available commercially. The simplest register is oge that con-
sists of only flip-flops without any gates. Fig. 6-1 shows such a Tegister constructed with four
D-type flip-flops. The common clock input triggers all fiip-flops on the positive edge of each
pulse and the binary data availabje at the four inputs are transferred into the 4-bit register, The
four outputs can be sampled at any time to obtain the binary information stored in the register.
The clear input goes to the R (reset) input of aJ| four flip-flops. When this input goes to 0, all

217

218 Chapter 6 Registers and Counters

Iy

Ag

Az

Clock Clear

FIGURE 6-1
4-Bit Register

flip-flops are reset asynchronously. The clear input is useful for clearing the register to all 0’s
prior to its clocked operation. The R inputs must be maintained at lo gic 1 during normal clocked
operation. Note that either clear or reset can be used to indicate the transfer of the register to

an all O's state.

R

SRR

Section 6-2 Shift Registers 219

Register with Parallel Load

Synchronous digital systems have a master clock generator that supplies a continnous train of
clock pulses. The clock pulses are applied to all flip-flops and registers in the system, The mas-
ter clock acts like a pump that supplies a constant beat (o all parts of the system. A separaie corn-
trol signal must be used to decide which specific clock pulse will have an effect on a particular
register. The transfer of new information into a register is referred to as loading the register. If
all the bits of the register are loaded simultaneously with a common clock pulse, we say that
the loading is done in parallel. A clock edge applied to the C inputs of the register of Fig. 6-1
will load all four inputs in paraliel. In this configuration, the clock must be inhibited from the
circuit if the content of the register must be left unchanged. The clock can be inhibited from
reaching the register by controlling the clock input signal with an enabling gate. However,
inserting gates in the clock path means that logic is performed with clock pulses. The insertion
of logic gates produces uneven propagation delays between the master clock and the inputs of
flip-flops. To fully synchronize the system, we must ensure that all clock pulses arrive at the
same time anywhere in the system so that all flip-flops wigger simultaneousty. Performing
logic with clock pulses inserts variable delays and may cause the system to go oul of syn-
chronism. For this reason, it is advisable to control the operation of the register with the D
inputs rather than controlling the clock in the € inputs of the flip-flops.

A 4-bit register with a Joad control input that is directed through gates and into the D inputs
of the flip-flops is shown in Fig. 6-2. The load input to the register determines the action to be
taken with each clock pulse. When the load input is 1, the data in the four inputs are trans-
ferred into the register with the next positive edge of the clock. When the load input is 0, the
outputs of the flip-flops are connected to their respective inputs. The feedback connection from
output to input is necessary because the D flip-flop does not have a “no change” condition. With
each clock edge, the D input determines the next state of the register. To leave the output
unchanged, it is necessary to make the D input equal to the present value of the output.

The clock pulses are applied to the C inputs at all times. The load input determines whether
the next pulse will accept new information or leave the information in the register intact. The
transfer of information from the data inputs or the outputs of the register is done simultaneously
with all four bits in response to a clock edge.

6-2 SHIFT REGISTERS

A register capable of shifting its binary information in one or both directions is called a shiff
register. The logical configuration of a shift register consists of a chain of fiip-flops in cascade,
with the output of one flip-flop connected to thie input of the next flip-fiop. All flip-flops receive
common clock pulses, which activate the shift from one stage to the next.

The simplest possible shift register is one that uses only flip-flops, as shown in Fig. 6-3. The
output of a given flip-flop is connecied to the D input of the flip-flop at its right. Each clock

- pulse shifis the contents of the register one bit position to the right. The serial input determines

what goes into the leftmost flip-flop during the shift. The serial output is taken from the out-
put of the rightmost flip-flop. Sometimes it is necessary to control the shift so that it occurs only
with certain pulses, but not with others. This can be done by inhibiting the clock from the input

220 Chapter 6 Registers and Counters Section 6-2 Shift Registers 221

Load >C >c of the register to prevent it from shifting. It will be shown later that the shift operation can be

controlled through the D inputs of the flip-flops rather than through the clock input. If however
the shift register of Fig. 6-3 is used, the shift can be controlled by connecting the clock through
an AND gate with an input that controls the shift.

—>C Serial Transfer

A digital system is said to operate in a serial mode when information is transferred and
manipulated one bit at a time. Information is transferred one bit at a time by shifting the bits

out of the source register into the destination register, This in contrast to parallel transfer where
all the bits of the register are transferred at the same time.
D Ay The serial transfer of information from register A to register B is done with shift registers,
I z as shown in the biock diagram of Fig. 6-4(a}. The serial output (§0O) of register A is connected
—>C : to the serial input (S} of register B. To prevent the loss of information stored in the source

register, the information in register A is made to circulate by connecting the serial output to its
serial input, The initial content of register B is shifted out through its serial output and is lost
unless it is transferred to a third shift register. The shift control input determines when and
how many times the registers are shifted. This is done with an AND gate that allows clock
pulses to pass into the CLK terminals only when the shift control is active,

S P ameesy

o

|
NV
a

S SO ST S0
Shift register A Shift register B —

¥

CLK CLK

Clock — N
Shift — J

control

(a) Block diagram

Clock

FIGURE 6-2
4-Bit Register with Parallel Load

Clock

Serial SI b b D D S0 Serial cgrt;tiff)l
input output
LU
r> c ’7> C ’7> c ’—‘> c CLK . T, T, T,
CLK ' y y (b) Timing diagram
FIGURE 6-3 FIGURE 6-4
4-Bit Shift Register Serial Transfer from Register A to register B

222

Chapter 6 ~ Registers and Counters

Table 6-1
Serial-Transfer Example

Timing Pulse Shift Register A Shift Register B

Initiai value 1ro1 1. 0010
After T 1101 . 1001
After T, 111 0- sl 100
After T) 011 I 0110
After T, 1011 1011

Suppose the shift registers have four bits each. The control unit that supervises the transfer
must be designed in such a way that it enables the shift registers, through the shift control sig-
nal, for a fixed time of four clock pulses. This is shown in the timing diagram of Fig. 6-4(b).
The shift control signal is synchronized with the clock and changes value just after the nega-
tive edge of the clock. The next four clock pulses find the shift control signal in the active state,
s0 that the output of the AND gate connected to the CLK inputs produces four pulses, 77, T,
T;, and T;. Each rising edge of the pulse causes a shift in both registers. The fourth pulse
changes the shift control to () and the shift registers are disabled.

Assume that the binary content of A before the shift is 1011 and that of B is 0010, The serial
transfer from A to B occurs in four steps, as shown in Table 6-1. With the first pulse 7}, the right-
most bit of A is shifted into the leftmost bit of B and is also circulated into the leftmost posi-
tion of A. At the sarne time, all bits of A and B are shifted one position to the right. The previous
serial output from B in the rightmost position is lost and its value changes from O to 1. The next
three pulses perform identical operations, shifting the bits of A into B, one at a time. After the
fourth shift, the shift control goes to 0 and both registers A and B have the value 1011, Thus,
the content of A is transferred into B, while the content of A remains unchanged.

The difference between serial and parallel modes of operation should be apparent from this
example. In the parallel mode, information is available from all bits of a register and all bits
can be transferred simultaneously during one clock pulse. In the serial mode, the registers have
a single serial input and a single serial output. The information is transferred one bit at a time
while the registers are shifted in the same direction,

Serial Addition

Operations in digital computers are usually done in parallel because this is a faster mode of
operation. Serial operations are slower, but have the advantage of requiring less equipment. To
demonstrate the serial mode of operation, we present here the design of a serial adder, The par-
allel counterpart was presented in Section 4-4.

- The two binary nambers to be added serially are stored in two shift registers. Bits are added
one pair at a time through a single full adder (FA) circuit, as shown in Fig. 6-5. The carry out

of the full adder is transferred to a D flip-flop. The output of this flip-flop is then used as the -

carry input for the next pair of significant bits. The sum bit from the § output of the full adder
could be transferred into a third shift register. By shifting the sum into A while thé bits of A are
shifted out, it is possible to use one register for storing both the augend and the sum bits. The

R T,

?%

Section 6-2 Shift Registers 223

Shift SI> SO
control - Shift register A
CLK
x
S f—
»y FA
Serial Si so z
input »| Shift register B
o
D
C <
Clear —T
FIGURE 6-5
Serial Adder

serial input of register B can be used to transfer a new binary number while the addend bits are
shifted out during the addition.

The operation of the serial adder is as follows. Initially register A holds the augend, regis-
ter B holds the addend, and the carry flip-flop is cleared to 0. The outputs (SO) of A and B pro-
vide a pair of significant bits for the full adder at x and y. Output Q of the flip-flop provides
the input carry at z. The shift control enables both registers and the carry flip-flop, so at the next
clock pulse, both registers are shifted once to the right, the sum bit from § enters the leftmost
flip-flop of A, and the output carry is transferred into flip-flop Q. The shift control enables the
registers for a number of clock pulses equal to the number of bits in the registers. For each
succeeding clock pulse, a new sum bit is transferred to A, a new carry is transferred to @, and
both registers are shifted once to the right. This process continues until the shift control is dis-
abled. Thus, the addition is accomplished by passing each pair of bits together with the previ-
ous carry through a single full adder circuit and transferring the sum, one bit at a time, into
register A.

Initiatly, register A and the carry flip-flop are cleared to 0 and then the first number is added
from B. While B is shifted through the full adder, a second number is transferred to it through
its serial input. The second number is then added to the content of register A while a third num-
ber is transferred serially into register B. This can be repeated to form the addition of two,
three, or more numbers and accumulate their sum in register A.

Comparing the serial adder with the parallel adder described in Section 4-4, we note several
differences. The parallel adder uses registers with parallel load, whereas the serial adder uses

224

Chapter 6 Registers and Counters

shift registers. The number of full adder circuits in the parallel adder is equal to the number of
bits in the binary numbers, whereas the serial adder requires only one full adder circuit and a
carry flip-flop. Excluding the registers, the parallel adder is a combinational circuit, whereas
the serial adder is a sequential circuit. The sequential circuit in the serial adder consists of a full
adder and a flip-flop that stores the cutput carry. This is typical in serial operations because the
result of a bit-time operation may depend not only on the present inputs, but also on previous
inputs that must be stored in flip-flops.

To show that serial operations can be designed by means of sequential circuit procedure, we
will redesign the serial adder using a state table. First, we assume that two shift registers are
available to store the binary numbers to be added serially. The serial outputs from the registers
are designated by x and y. The sequential circuit to be designed will not include the shift
registers, but they will be inserted later to show the complete circuit. The sequential circuit
proper has the two inputs, x and y, that provide a pair of significant bits, an output § that gen-
erates the sum bit, and flip-flop Q for storing the carry. The state table that spectfies the
sequential circuit is listed in Table 6-2. The present state of (is the present value of the carry.
The present carry in @ is added together with inputs x and y to produce the sum bit in output
S. The next state of Q is equal to the output carry. Note that the state table entries are identical
to the entries in a full adder truth table, except that the input carry is now the present state of
¢ and the cutput carry is now the next state of 0.

If a D flip-flop is used for O, the circuit reduces to the one shown in Fig. 6-5. If a JK {lip-
flop is used for Q, it is necessary to determine the values of inputs J and K by referring to
the excitation table (Table 5-12). This is done in the last two columns of Table 6-2. The
two flip-flop input equations and the output equation can be simplified by means of maps
to obtain

Io = xy
Kog=xy =(x+y)
S=xBydQ
Table 6-2
State Table for Serial Adder
Present Next Flip-Flop
State : Inputs State Output Inputs
Q X y Q 5 Jo Kq
0 0 0 0 0 0 X
0 0 1 0 1 0 X
0 1 0 0 1 0 X
0 1 1 1 0 1 X
1 0 0 0 1 X 1
1 0 1 1 0 X 0
1 1 0 1 0 X 0
1 1 1 1 1 X 0

Section 6-:2 Shift Registers 225

ST

Shift >~ =
control »| Shift register A S0 =x

CLK

Serial 81 +)

; > $O = F

mput »1 Shift register B ’

> —1>C
Epant
C Clear J

FIGURE 6-6

Second form of Serial Adder

* The circuit diagram is shown in Fig. 6-6. The circuit consists of three gates and a JK flip-flop.

The two shift registers are included in the diagram to show the complete serial adder. Note that
output § is a function not only of x and y, but also of the present state of . The next state of
Q is a function of the present state of @ and the values of x and y that come out of the serial
outputs of the shift registers.

Universal Shift Regi‘ster

If the flip-flop outputs of a shift register are accessible, then information entered serially by shift-
ing can be taken out in parallel from the outputs of the flip-flops. If a parallel load capability
is added to a shift register, then data entered in parallel can be taken out in serial fashion by shift-
ing the data stored in the register.

Some shift registers provide the necessary input and output terminals for parallel transfer.
They may also have both shift right and shift left capabilities. The most general shift register
has the following capabilities:

1. A clear control to clear the register to 0.

2. A clock input to synchronize the operations.

3. A shift-right control to enable the shift right operatlon and the serzal input and output lines
associated with the shift right.

4, A shifi-left control to enable the shift left operation and the serial input and output lines
associated with the shift left.

5. A parallel-load control to enable a parallel transfer and the » input lines associated with
the paralle] transfer.

6. n paraliel ontput lines.

7. A control state that leaves the information in the register unchanged in the presence of
the clock.

e S

226

Clear

CLK

Chapter 6 Registers and Counters

Parallel outputs

Ay Ay Ay Ay
—)
C C C C
N D A D A D A D
§] ——» '
4x1 4x1 4 %1 4x1
5 MEX MUX MUX MUX
32140 3210 32140 32140
Serial .
inP i ‘Eor ins;s)?.lrt1 é2)1'
shift-right shift-left
I L I &
Parailel ihputs
FEGURE 6-7

4-Bit Universal Shift Register

Other shift registers may have only some of the preceding functions, with at least one shift
operation, :

A register capable of shifting in one direction only is a unidirectional shift register. One
that can shift in both directions is a bidirectional shift register. If the register has both shifts and
parallel load capabilities, it is referred to as a universal shif register.

The diagram of a 4-bit universal shift register that has all the capabilities listed above is
shown in Fig. 6-7. It consists of four D flip-flops and four multiplexers. The four multi-
plexers have two common selection inputs s, and 59, Input 0 in each multiplexer is selected
when s;5, = 00, input 1 is selected when 5,5, = 01, and similarly for the other two inputs.
The selection inputs control the mode of operation of the register according to the function
entries in Table 6-3. When 5,5, = 00, the present value of the register is applied to the D
inputs of the flip-flops. This condition forms a path from the output of each flip-flop into the
input of the same flip-flop. The next clock edge transfers into each flip-flop the binary value
it held previously, and no change of state occurs. When 5,55 = 01, terminal 1 of the multi-

RS

%
g

Section 6-3 Ripple Counters 227 .

Table 6-3
Function Table for the Register of Fig. 6-7

Mode Control

5 S Register Operation
0 0 No change

0 1 Shift right

1 0 Shift left

i 1 Parallel load

plexer inputs has a path to the D inputs of the flip-flops. This causes a shift-right operation,
with the serial input transferred into flip-flop A,. When 5,5, = 10, a shift-left operation re-
sults, with the other serial input going into flip-flop A, . Finally, when 5,5, = 11, the binary
information on the parallel input lines is transferred into the register simultaneously during
the next clock edge.

Shift registers are often used to interface digital systems situated remotely from each other.
For example, suppose it is necessary to transmit an r-bit quantity between two points. If the
distance is far, it will be expensive to use n lines to transmit the #» bits in parallel. It is more eco-
nomical to use a single line and transmit the information serially, one bit at a time. The trans-
mitter accepts the #-bit data in parallel into a shift register and then transmits the data serially
along the common line. The receiver accepts the data serially into a shift register. When all n
bits are received, they can be taken from the outputs of the register in parallel. Thus the trans-
mitter performs a parallel-to-serial conversion of data and the receiver does a serial-to-parallel
conversion. :

RIPPLE COUNTERS

A register that goes through a prescribed sequence of states upon the application of input pulses
is called a counter. The input pulses may be clock pulses or they may originate from some
external source and may occur at a fixed interval of time or at random. The sequence of states
may follow the binary number sequence or any other sequence of states. A counter that follows
the binary number sequence is called a binary counter. An a-bit binary counter consists of # flip-
flops and can count in binary from 0 through 2" — 1.

Counters are available in two categories: ripple counters and synchronous counters. In a
ripple counter, the flip-flop output transition serves as a source for triggering other flip- flops.
In other words, the C input of some or all flip-flops are triggered not by the common clock
pulses, but rather by the transition that occurs in other flip-flop cutputs. In a synchronous count-
er, the C inputs of all flip-flops receive the common clock. Synchronous counters are presented
in the next two sections. Here we present the binary and BCD ripple counters and explain their
operation.

PN

- e R
- A

LLO

Chapter 6 Registers and Counters

Binary Ripple Counter

permanent logic-1, Thig makes each flip-flop complement if the sig- -

s through a negative transition, The bubble in front of the dynamic
to C'indicates that the flip-flops respond to the negative-edge (ransi-
tion of the input. The negative transition ocenrs w

hen the output of the previous flip-flop to
which € is connected goes from 1 o (),

- To understand the operation of the 4-hit binary ripple counter, refer to the firgt
numbers listed in Table 6-

4. The count starts with binary 0 and increments by one with each
count pulse input. After the count of 15, the counter goes back to () to tepeat the count. The Jeast

significant bit Ay is complemented with each count pulse inpu. Every time that Ay goes from
100, it complements A, Every time that 4 1 80es from 1 to (), jt complements A, Every time
that A, goes from 1to0,it complements A, and s on for any other higher ordey bits of a

tipple counter. For examp count 0011 to 0100, Ay is comple-

le, consider the transition from
mented with_thﬁe___c_ogm;pygg Since Ay goes from 1 to 0, it_pj_igger's A and complements it, Ag
2; changing it from 0 o L A; does

nal in its ¢ input goe
indicator symbol next

nine binary

aresult, A) goes from | to 0, which in tum complgﬂl—\emﬂéi
. - .. . =1 .

not trigger A, becauge A, produces g POSINVE transition gmﬁ the flip-fiop responds only to neg-
ative transitions, Thus, the'count from ooir 10 0100 is achieved by changing the bits one ata
lime, so the count goes from 0011 to OO]___Q, then to QO'OO, and finally to 0100, The flip-flops
change one at a fime in sticcession and the signal Propagates through the counter in; 5 ripple fashion
from one stage to the next.

Abinary counter with a reve

{a) With T flip-flops
FIGURE 6-8
4-Bit Binary Ripple Counter

EEEE———

Section 6-3 Ripple Counters 229

.D I Ay

o =

Reset

(b) With D flip-flops

FIGURE 6-10
BCD Ripple Counter

230 Chapter 6 Registers and Counters Section 6-3 - Ripple Countérs 237
Table 6-4
Binary Count Sequence —1’ &
A, Az Ay Ay ’ Count —88M8M8M—ag>C
I R -
0 0 0 1 K
0 0 1 0
0 0 1 1
0 i 0 0
0 1 0 1
0 1 1 0 7 Q5
0 1 1 1
1 0 0 0 I>C
BCD Ripple Counter K
A decimal counter follows a sequence of ten states and returns to 0 after the count of 9. Such
a counter must have at least four flip-flops to represent each decimal digit, since a decimal
digit is represented by a binary code with at least four bits. The sequence of states in a dec-
imal counter is dictated by the binary code used to represent a decimal digit. If BCD is —i7 U
used, the sequence of states is as shown in the state diagram of Fig. 6-9. This is similar to
a binary counter, except that the state after 1001 (code for decimal digit 9) is 0000 (code P> C
for decimal digit 0).
The logic diagram of a BCD ripple counnter using JK flip-flops is shown in Fig. 6-10. ik
The four outputs are designated by the letter symbol Q with a numeric subscript equal to
the binary weight of the corresponding bit in the BCD-code. Note that the output of (, is
applied to the C inputs of both @, and Qg and the output of (, is applied to the C input of
: Q4. The J and K inputs are connected either to a permanent 1 signal or to outputs of other -
‘ flip-flops. } - J s
A ripple counter is an asynchronous sequential circuit. Signals that affect the flip-flop tran- : 1
B sition depend on the way they change from 1 to 0. The operation of the counter can be explained > C
: by a list of conditions for flip-flop transitions. These conditions are derived from the logic
3; diagram and from knowledge of how a JX flip-flop operates. Remember that when the C input Tk

goes from 1 to 0, the flip-flop is set if J = 1, is cleared if X = 1, is complemented if
J = K = 1, and 1s left unchanged if / = K = 0.

To verify that these conditions result in the sequence required by a BCD ripple counter, it is
necessary to verify that the flip-flop transitions indeed follow a sequence of states as specified by

(@)~ —G—n)

State Diagram of a Decimal BCD-Counter

232

Chapter 6 Registers and Counters

Qg Oy O0 O Qy Oy O O Og Q4 &2 Oy
BCD BCD BCD Count
Counter Counter Counter pulses
10% digit 10! digit 107 digit
FIGURE 6-11

Block Diagram of a Three-Decade Decimal BCD Counter

the state diagram of Fig. 6-9. 0, changes state after each clock pulse. 3, complements every time
@, goes from 1 to 0 as long as Qg = 0. When Qg becomes 1, 0, remains at 0. Q, complements
every time (, goes from 1 to 0. O, remains at 0 as long as Q, or Q, is 0. When both @, and
become 1, (J; complements when @ goes from 1 to 0. Qg is cleared on the next transition of @, .
The BCD counter of Fig, 6-10 is a decade counter, since it counts from 0 to 9. To count in dec-
imal from 0 to 99, we need a two-decade counter. To count from 0 to 999, we need a three-decade
counter. Multiple decade counters can be constructed by connecting BCD counters in cascade,
one for each decade. A three-decade counter is shown in Fig. 6-11, The inputs to the second and
third decades come from Qg of the previous decade. When (J; in one decade goes from 1 to 0, it
triggers the count for the next higher-order decade while its own decade goes from 9 to 0,

6-4/4NCHRONOUS COUNTERS

v

Synchronous counters are different from ripple counters in that clock pulses are applied to the
inputs of all flip-flops. A common clock triggers all flip-flops simultaneously rather than one
at a time in succession as in a ripple counter. The decision whether a flip-flop is to be com-
plemented or not is determined from the values of the data inputs such as 7 or J and X at the
time of the clock edge. f T = Oor J = K = 0, the flip-flop does not change state. If 7 = 1
orJ = K = 1, the flip-flop complements.

The design procedure for synchronous counters was presented in Section 5-7 and the design
of & 3-bit binary counter was carried out in conjunction with Fig. 5-31. In this section, we pres-
ent some typical synchronous counters and explain their operation,

Binary Counter

The design of a synchronous binary counter is so simple that there is no need to go through a
sequential logic design process. In a synchronous binary counter, the flip-flop in the least sig-
nificant position is complemented with every pulse. A flip-flop in any other position is com-
plemented when all the bits in the lower significant positions are equal to 1. For example, if the
present state of a 4-bit counter is A;A,A; 4, = 0011, the next count is 0100, A, is always com-
plemented. A, is complemented because the present state of Ay = 1. A, is complemented
because the present state of A;A; = 11. However, A; is not complemented because the present
state of A;A,A; = 011, which does not give an all-1’s condition,

Section 6-4 -Synchronous Counters 233 -

Synchronous binary counters have a regular pattern and can be constructed with comple-
menting flip-flops and gates. The regular pattern can be seen from the 4-bit counter depicted
in Fig. 6-12. The C inputs of all flip-flops are connected to a common clock. The counter is
enabled with the count enable input. If the enable input is 0, all 7 and X inputs are equal to 0

J Ay

> C

Count enable K

>

> C

>

FM To next stage

CLK

FIGURE 6-12
4-Bit Synchronous Binary Counter

234

Chapter 6 Registers and Counters

and the clock does not change the state of the counter, The first stage A, has its J and K equal
to 1 if the counter is enabled. The other J and K inputs are equal to 1 if all previous least sig-
nificant stages are equal to 1 and the count is enabled. The chain of AND gates generates the
required logic for the J and K inputs in each stage. The counter can be extended to any num-
ber of stages, with each stage having an additional flip-flop and an AND gate that gives an
output of 1 if all previous flip-flop outputs are 1,

Note that the flip-flops trigger on the positive edge of the clock. The polarity of the clock
is not essential here as is with the ripple counter. The synchromnous counter can be triggered with
either the positive or the negative clock edge. The complementing flip-flops in a binary counter
can be either of the JK-type or the T-type or the D-type with XOR gates. The equivalency of
the three types is indicated in Fig. 5-13.

Up-Down Binary Counter

A synchronous count down binary counter goes through the binary states in reverse order from
1111 down to 0000 and back to 1111 to repeat the count. It is possible to design a count-down
counter in the usual manner, but the result is predictable from inspection of the downward
binary count. The bit in the least significant position is complemented with each pulse. A bit
in any other position is complemented if all lower significant bits are equal to 0. For example,
the next state after the present state of 0100 is 0011. The least significant bit is always com-
plemented. The second significant bit is complemented because the first bit is 0. The third sig-
nificant bit is complemented because the first two bits are equal to 0. But the fourth bit does
not change because not all lower significant bits are equal to 0.

A count-down binary counter can be constructed as shown in Fig. 6-12, except that the
inputs to the AND gates must come from the complement outputs instead of the normal out-
puts of the previous flip-flops. The two operations can be comtbined in one circuit to form a
counter capable of counting either up or down. The circuit of an up-down binary counter using
T flip-flops is shown in Fig. 6-13. It has an up control input and a down control input. When
the up input is 1, the circuit counts up, since the T inputs receive their signals from the values
of the previous normal outputs of the flip-flops. When the down input is 1 and the up input is
0, the circuit counts down, since the complemented outputs of the previous flip-flops are applied
to the T"inputs. When the up and down inputs are both (), the circuit does not change state and
remains in the same count. When the up and down inputs are both 1, the circuit counts up. This
ensures that only one operation is performed at any given time.,

BCD Counter

A BCD counter counts in binary-coded decimal from 0000 to 1001 and back to 0000. Because
of the return to O after a count of 9, a BCD counter does not have a regular pattern as in a
straight binary count. To derive the circuit of a BCD synchronous counter, it is necessary to go
through a sequential circuit design procedure.

The state table of a BCD counter is listed in Table 6-5. The flip-flop input conditions for the
T'1lip-flops are obtained from the present and next state conditions. An output y is also shown
in the table. This output is equal to 1 when the present state is 1001. In this way, y can enable

Up

Down

Section 6-4 Synchronous Counters

2357

>C

.

L

|
)
TS

> C

UL

Ay

|
J
—D>F

>C

>

CLK

FIGURE 6-13
4-Bit Up-Down Binary Counter

236 Chapter 6 Registers and Counters

Table 6-5
State Table for BCD Counter

Present State Next State Output Flip-Flop Inputs
QG U & ¢ QG Q4 G ¥ TQs TQ, TQ TQ4
0 0 0 0 0 0] 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 1 1
0 0 1 0 0 0 1 I 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 0 11 0 0 0 0 1
0] 1 0 1 0 1 1 0 0 0 ¢] 1 1
0 1 1 0 0 1 1 1 0 0 0 0 1
0 1 1 1 1 0 0) 0 1 1 1 1
1 0 0 0 1 0 0 1 0 0 0 0 L
1 0 0 1 0 0 0 0 1 1 0 0 1

the count of the next-higher significant decade while the same pulse switches the present decade
from 1001 to 0000,

The flip-flop input equations can be simplified by means of maps. The unused states for
minterms 10 to 15 are taken as don’t-care terms. The simplified functions are

To =1

ng = i

T = e

TQS = + QG0
y =

The circuit can be easily drawn with four 7 flip-flops, five AND gates, and one OR gate. Syn-
chronous BCD counters can be cascaded to form a counter for decimal numbers of any length.
The cascading is done as in Fig. 6-11, except that output y must be connected to the count
input of the next-higher significant decade.

Binary Counter with Parallel Load

Counters employed in digital systems quite often require a parallel load capability for trans-
ferring an initial binary number into the counter prior to the count operation. Fig. 6-14 shows
the logic diagram of a 4-bit register that has a parallel load capability and can operate as a
counter. The input load control when equal to 1 disables the count operation and causes a trans-
fer of data from the four data inputs into the four {lip-flops. If both control inputs are 0, clock
pulses do not change the state of the register. :

Count

Load

Clear

CLK

Section 6-4 Synchronous Counters 237 -

S
1 L/ D J Ag
T\ > C
NS amm
It
t '_D ‘_\ J Ay
c
n—ﬂ/ l_/ K
> | v
! '_D ‘_\ J Ay
> C
L So—— J | =3
' HD T I A
— > C
1) Lo Tk
D Carry-ouiput

FIGURE 6-14 ,
4-Bit Binary Counter with Parallel Load

N

P

238

Chapter 6 Registers and Counters

Table 6-6
Function Table for the Counter of Fig. 6-14
Clear (LK Load Count Function
0 X X X Clear to 0
i t 1 X Load inputs
1 T 0 1 Count next binary state
1 T 0 0 No change

The carry output becomes a 1 if all the flip-flops are equal to 1 while the count input is
enabled. This is the condition for complementing the flip-flop that holds the next significant
bit. The carry output is useful for expanding the counter to more than four bits. The speed of
the counter is increased when the carry is generated directly from the outputs of all four flip-
flops because of the reduced delay for generating the carry. In geing from state 1111 to 0000,
only one gate delay occurs; whereas, four gate delays occur in the AND gate chain shown in
Fig. 6-12. Similarly, each flip-flop is associated with an AND gate that receives all previous flip-
flop outputs directly instead of connecting the AND gates in a chain.

The operation of the counter is summarized in Table 6-6. The four control inputs: clear,
CLK, load, and count determine the next state. The clear input is asynchronous and, when
equal to 0, causes the counter to be cleared regardless of the presence of clock pulses or other
inputs. This is indicated in the table by the X entries, which symbolize don’t-care conditions
for the other inputs. The clear input must be at the I state for all other operations. With the load
and count inputs both at 0, the outputs do not change, even when clock pulses are applied. A
load input of 1 causes a transfer from inputs f-Z; into the register during a positive edge of the
clock. The input data are loaded into the register regardless of the value of the count input,
because the count input is inhibited when the load input is enabled. The load input must be 0
for the count input to conirol the operation of the counter.

A counter with parallel load can be used to generate any desired count sequence. Fig. 6-15
shows two ways in which a counter with parallel load is used to generate the BCD count. In
each case, the count control is set to 1 to enable the count through the CLK input. Also,
remember that the load control inhibits the count and that the clear operation is independent
of other control inputs.

The AND gate in Fig. 6-15(a) detects the occurrence of state 1001. The counter is initially
cleared to 0 and then the clear and count inputs are set to 1 so the counter is active at all times.
As long as the output of the AND gate is 0, each positive-edge clock increments the counter
by one. When the output reaches the count of 1001, both A, and A, become 1, making the out-

- put of the AND gate equal to 1. This condition activates the load input; therefore, on the next

clock edge the register does not count, but is loaded from its four inputs. Since all four inputs
are connected to logic 0, an all (s value is loaded into the register following the count of 1001.
Thus, the circuit goes through the count from 0000 through 1001 and back to 0000 as required
in a BCD counter. :

In Fig. 6-15(b), the NAND gate detects the count of 1010, but as soon as this count occurs,
the register is cleared. The count 1010 has no chance of staying on for any appreciable time
because the register goes immediately to 0. A momentary spike occurs in output A, as the count

Section 6-5 Other Counters 239:

Ay Ay Ay Ay Ay Ay A Ag
Load _ ~— Count = 1 Clear le«— Count = 1
Counter Counter
. -— = —
of Fig.6-14 Clear =1 of Fig614 [Lead=0
«— CLK <— CLK

pusm0—L L 1] R

Inputs have no effect
(a) Using the load input (b} Using the clear input
FIGURE 6-15
Two ways to Achieve a BCD Counter Using a Counter with Parallel Load

goes from 1010 to 1011 and immediately to 0000. This momentary spike may be undesirable,
and for this reason, this configuration is not recommended. If the counter has a synchronous
clear input, it would be possible to clear the counter with the clock after an occurrence of the
1001 count.

6-5 OTHER COUNTERS

Counters can be designed to generate any desired sequence of states. A divide-by-N counter
(also known as modulo-N counter) is a counter that goes through a repeated sequence of N
states. The sequence may follow the binary count or may be any other arbitrary sequence.
Counters are used to generate timing signals to control the sequence of operations in a digital
systern. Counters can be constructed also by means of shift registers. In this section, we pres-
ent a few examples of non binary counters.

Counter with Unused States

A circuit with # flip-flops has 2" binary states. There are occasions when a sequential circuit
uses less than this maximum possible number of states. States that are not used in specify-
ing the sequential circuit are not listed in the state table. When simplifying the input equa-
tions, the unused states may be treated as don’t-care conditions or may be assigned specific
next states. Once the circuit is designed and constructed, cutside interference may cause the
circuit to enter one of the unused states. In that case, it is necessary to ensure that the circuit
eventually goes into one of the valid states so it can resume normal operation. Otherwise, if
the sequential circuit circulates among unused states, there will be no way to bring it back
to its intended sequence of state transitions. If the unused states are treated as don’t-care
conditions, then once the circuit is designed, it must be investigated to determine the effect

240

Chapter 6 Registers and Counters

Table 6-7
State Table for Counter
Present Next
State State Flip-Flop Inputs

A B C A B C h K Js Ks Jo K
0 0 0 0 0 1 0 X 0 X 1 X
0 0 1 o0 1 0 0 X 1 X X 1
0 1 0 1 ¢ 0 I X X 1 0 X
1 0 0 1 0 1 X 0 0 X 1 X
1 0 1 1 1 0 X 0 1 X X 1
i 1 0 0 0 0 X 1 X 1 0 X

of the unused states. The next state from an unused state can be determined from the analy-
sis of the circuit after it is designed.

As an illustration, consider the counter specified in Table 6-7. The count has a repeated
sequence of six states, with flip-flops B and C repeating the binary count 00, 01, 10, and flip-
flop A alternating between 0 and 1 every three counts. The count sequence of the counter is
not straight binary and two states, 011 and 111, are not included in the count, The choice of
JK flip-flops results in the flip-flop input conditions listed in the table. Inputs K and K. have
only 1's and X’s in their columns, so these inputs are always equal to 1. The other flip-flop
input equations can be simplified using minterms 3 and 7 as don’t-care conditions. The sim-
plified equations are

JTAzB KA:B
JB:C KB=1
JCZB, KC=1

The logic diagram of the counter is shown in Fig. 6-16(a). Since there are two unused states,
we analyze the circuit to determine their effect. If the circuit happens to be in state 011 becanse
of an error signal, the circuit goes to state 100 after the application of a clock pulse. This is
determined from inspection of the logic diagram by noting that when B = 1, the next clock edge
complements A and clears C to 0, and when C = 1, the next clock edge complements B. In a

" similar manner, we can evaluate the next state from present state 111 to be 000.

The state diagram including the effect of the unused states is shown in Fig. 6-16(b). If the
circuit ever goes to one of the unused states because of an outside interference, the next
count pulse transfers it to one of the valid states and the circuit continues to count correctly.
Thus, the counter is self-correcting. A self correcting counter is one that if it happens to be
in one of the unused states, eventually reaches the normal count sequence after one or more
clock pulses.

Section 6-5 Other Counters 241

J s—C @ O

b (@) (19

Logic1 K | @
Clock @

(a) Logic diagram (b) State diagram

FIGURE 6-16
Counter with Unused States

Ring Counter

Timing signais that control the sequence of operations in a digital system can be generated
with a shift register or a counter with a decoder. A ring counter is a circular shifi register with
only one flip-flop being set at any particular time, all others are cleared. The single bit is shifted
from one flip-flop to the next to produce the sequence of timing signals. Fig. 6-17(a) shows a
4-bit shift register connected as a ring counter. The initial value of the register is 1000. The sin-
gle bit is shifted right with every clock pulse and circulates back from 75 to 7. Each flip-flop
isin the 1 state once every four clock cycles and produces one of the four timing signals shown
in Fig. 6-17(c). Each output becomes a 1 after the negative-edge transition of a clock pulse
and remains 1 during the next clock cycle.

The timing signals can be generated also by a 2-bit counter that goes through four distinct
states. The decoder shown in Fig. 6-17(b) decodes the four states of the counter and generates
the required sequence of timing signals.

242

Chapter 6 Registers and Counters

L1

Shift
right " T“lT1 l Tzlrﬂ

(a) Ring-counter (initial value = 1000)

o 1 To Ts

2x4
decoder

Count

2-bit counter
enable

(b} Counter and decoder

N —

" —

(c) Sequence of four timing signals

FIGURE 6-17
Generation of Timing Signals

To generaie 2" iming signals, we need either a shift register with 2" flip-flops or an n-bit
binary counter together with an r-to-2"-line decoder. For example, 16 timing signals can be gen-
erated with a 16-bit shiff register connected as a ring counter or with 2 4-bit binary counter and
2 4-to-16-line decoder. In the first case, we need 16 flip-flops. In the second, we need four flip-

Section 6-5 < Other Counters 243

flops and 16 4-input AND gates for the decoder. Tt is also possible to generate the timing sig-
nals with a combination of a shift register and a decoder. In this way, the number of flip-flops
is less than a ring counter, and the decoder requires only 2-input gates. This combination is called
a Johnson counter.

Johnson Counter

A k-bit ring counter circulates a single bit among the flip-flops to provide & distinguishable
states. The number of states can be doubled if the shift register is connected as a switch-tail ring
counter, A switch-tail ring counter is a circular shift register with the complement output of the
last flip-flop connected to the input of the first flip-flop. Fig. 6-18(a) shows such a shift regis-
ter. The circular connection is made from ihe complement output of the rightmost flip-flop to
the input of the leftmost flip-flop. The register shifts its contents once to the right with every
clock pulse, and at the same time, the complement value of the £ flip-flop is transferred into
the A flip-flop. Starting from a cleared state, the switch-tail Ting counter g0es through a sequence
of eight states, as listed in Fig. 6-18(b). In general, a k-bit switch-tail ring counter will go
through a sequence of 2k states. Starting from all 0’s, each shift operation inserts 1’s from the
left until the register is filled with all 1’s. In the following sequences, 0’s are inserted from the
left until the register is again filled with all 0’s.

A b
[D D D ¢ D E

CLK — .
(a) Four-stage switch-tail ring counter
Sequence Flip-flop outputs AND gate required
number A B ¢ E for output
1] 0 0 0 A'F’
2 1 0 0 0 AB’
3 1 1 0 0 BC'
4 1 1 1 0 CE'
5 1 1 1 i AE
6 0 1 1 1 A'B
7 0 0 i 1 B'C
8 i 0 0 1 C'E
(b) Count sequence and required decoding
FIGURE 6-18

Construction of a Johnson Counter

!
!

1

x

244

6-6

Chapter 6 Registers and Counters

A Johnson counter is a k-bit switch-tail ring counter with 2% decoding gates to provide
outputs for 2k timing signals. The decoding gates are not shown in Fig. 6-18, but are speci-
fied in the last column of the table. The eight AND gates listed in the table, when connected
to the circuit, will complete the construction of the Johnson counter. Since each gate is enabled
during one particular state sequence, the owtputs of the gates generate eight timing signals in
succession.

The decoding of a k-bit switch-tail ring counter to obtain 2k timing signals follows a regu-
lar pattern. The all-0’s state is decoded by taking the complement of the two extreme flip-flop
outputs. The all-1’s state is decoded by taking the normal outputs of the two extreme flip-flops.
All other states are decoded from an adjacent 1, 0 or 0, 1 pattern in the sequence. For exam-
ple, sequence 7 has an adjacent 0, 1 pattern in flip-flops B and C. The decoded output is then
obtained by taking the complement of B and the normal output of C, or B'C.

One disadvantage of the circuit in Fig. 6-18(a) is that if it finds itself in an unused state, it
will persist in moving from one invalid state to another and never find its way to a valid state.
This difficulty can be corrected by modifying the circuit to avoid this undesirable condition.
One correcting procedure is to disconnect the output from flip-flop B that goes to the) input
of flip-flop C, and instead enable the input of flip-flop C by the function

D-={A+ C)B

where D is the flip-flop input equation for the D input of flip-flop C,

Johnson counters can be constructed for any number of timing sequences. The number of
flip-flops needed is one-half the number of timing signals. The number of decoding gates is
equal to the number of timing signals and only 2-input gates are needed.

HDL FOR REGISTERS AND COUNTERS

Registers and counters can be described in HDL at either the behavioral or the siructural level.
In the behavioral level, the register is specified by a description of the various operations that
it performs similar to a function table. A structural level description shows the circuit in terms
of a collection of components such as gates, flip-flops, and multiplexers. The various compo-
nents are instantiated to form a hierarchical description of the design similar to a representa-
tion of a logic diagram. We will use three circuits from this chapter to illustrate the two types
of descriptions.

Shift Register

The universal shift register presented in Section 6-2 is a bidirectional shift register with paral-
lel load. The four clocked operations. that are performed with the register are specified in
Table 6-6. The register alsc can be cleared asynchronously. The behavioral description of a

4-bit universal shift register is shown in HDL Example 6-1. There are two selection inputs,

two serial inputs, a 4-bit parallel input, and a 4-bit parallel output. The always block describes
the five operations that can be performed with the register. The Clr input cleats the register

Section 6-6 HDL for Registers and Counters 245 -

HDI., Example 6-1

//Behavioral description of

//Universal shift register

// Fig. 6-7 and Table 6-3

module shftreg (sl,s0,Pin,1fin,rtin,A,CLK,Clr);
input sl1,s0; //Select inputs
input 1fin, rtin; //Serial inputs
input CLK,Clr; //Clock and Clear
input [3:0] Pin; //Parallel input
ocutput [3:0] A; //Register output
reg [3:0] A;
always @ (posedge CLK or negedge Clr)

if {(~Clr) A = 4'b0000;

else

casge ({sl1,=0})
2'b00: A = A; //No change
2'p01: A = {rtin,A[3:11}; //Shift right
2'010: A = {A[2:0],1fin}; //Shift left
2'R1ll: A = Pinj; . //Parallel load input

endcase

endmodule

asynchronously with a negative signal. Clr must be high for the register to respond to the pos-

“itive edge of the clock. The four clocked operations of the register are determined from the

values of the two select inputs in the case statement (s1 and s0 are concatenated into a 2-bit vec-
tor after the case keyword). The shifting is specified by the concatenation of the serial input and
three flip-flops. For example, the statement

A = {rtin, A{3:11}
specifies a concatenation of the serial input for right shift (rtin) with flip-flops A3, A2, and
Al to form a 4-bit number, which is transferred to A [3:0]. This produces a shift right oper-
ation. Note that only the function of the circuit has been described irrespective of any par-
ticular hardware.

The structure of the register can be described by referring to the logic diagram of Fig. 6-7.
The diagram shows that the register is constructed with four multiplexers and four D flip-flops.
The structural description of the register is shown in HDL Example 6-2. There are two mod-
ules in the example. The first module declares the inputs, outputs, and then instantiates the
stages of the register. The four instantiations specify the interconnections between the four
stages and provide the detail constriiction of the register as specified in the logic diagram. The
second module has two always blocks. The first always block describes the multiplexer and the
second describes the flip-flop. Together they define one stage of the register.

246 Chapter 6 Registers and Counters

HDL Example 6-2

//Structural description of
//Universal shift register(see Fig. 6-7)
module SHFTREG (I,select,lfin,rtin,’,CL¥,Clr}:
input [3:0] I; //Parallel input
input [1:0] select; //Mode select
input 1fin,rtin,CLK,Clr; //Serial inputs,clock,clear
output [3:0] A; //Parallel output
//Instantiate the four stages
stage STO (&[01,4011,1fin,I[0]1,A[0],select,CLK,ClT);
stage 8T1 (A[1],A[2]1,A[0],%(1]1,Al1],select,CLK,ClY);
stage ST2 (A[2],A[3],2{11,%[21,A[2],select,CLK,Clr);
stage ST3 (A[3],rtin,A[2],I[3]1,A[3],select,CLK,Clr);
endmodule

//0ne stage of shift register
module stage{il,il,12,1i3,Q,select,CLK,Clr);
input i0,1i1,i2,13,CLK,Clr;
input [1:0] select;
output Q;
reg Q;
reg D;
//4x1 multiplexer
always € {i0 or il or i2 or i3 or select)
case (select)
2'p00: D = 10;

2'b01l: D = ilk:

2'h10: D = i2;

2'bll: D = 13;
endcase

//D Llip-flop
always @ (posedge CLK or negedge Clr)
if (~Clr) Q = 1°'b0;
else Q = D;
endmodule

Synchronous Counter

HDL Example 6-3 describes the synchronous counter with parallel load from Fig. 6-14. Count,
Load, CLK, and Clr are inputs that determine the operation of the register according to the
function specified in Table 6-6. The counter has four data inputs, four data outputs, and a carry
output. The carry output CO is generated by a combinational circuit and is specified with an
assign statement. CO = 1 when the count reaches 15 and the counter is in the count state.

fre

e

Section 6-6 HDL for Registers and Counters 247

HDL Example 6-3

//Binary counter with parallel load
//See Figure 6-14 and Table 6-6
module counter (Count,Load,IN,CLK,Clxr,A,CO);
input Count, Load,CLX,Clr;
input [3:0] IN;
output CO;
output [3:0] A;
reg [3:0] A;
assign CO = Count & ~Load & (A == 4'h1111);
always @ (posedge CLK or negedge Clr}
if (~Clr) & = 4'b0000;
else if (Load) A = IN;
else if {Count) 2 = A + 1'bi;
else A = A;
endmodule

//Data input
//output carry
//Data output

Thus, CO = 1if Count = 1,1Load = 0,and A = 1111; otherwise CO = 0, The always block
specifies the operation to be performed in the register depending on the values of Clr, Load, and
Count. A negative signal in Clr resets A to 0. Otherwise, if Clr = 1, one out of three operations
is executed during the positive edge of the clock. The if, else if, and else statements make the
decisions as follows:

if Clr =10 Clear A to 0

I

else 1T {(Clr =1 and) Load =1 Load inputs to 4

else if {(Clr

1 and Load = 0 and) Count =1 Increment A

else {(Clr =1 and Load = 0 and Count = 0) No change in A

The hierarchy implied in the if-else statements complies with the precedence specified in
Table 6-6.

Ripple Counter

The structural description of a ripple counter is shown in HDL Example 6-4. The first module
instantiates four complementing flip-flops defined in the second module as CF
(Q,CLK, Reset) , The cleck (input C}) of the first flip-flop is connected to the external Count
input (Count replaces CLK in F0). The clock input of the second flip-flop is connected to the
output of the first (A0 replaces CLK in F1). Sirnilarly, the clock of each of the other flip-flops
is connected to the output of the previous flip-flop. In this way, the flip-flops are chained
together to create a ripple counter as shown in Fig. 6-8(b).

The second module describes a complementing flip-flop with delay. The circuit of a com-
plementing flip-flop is constructed by connecting the complement output to the D input. A reset

248

Chapter 6 Registers and Counters

HDL Example 6-4

//Ripple counter {(See Fig. 6-8(h))
module ripplecounter (A0,Al,A2,A3,Count,Resel);
output AO,A1,A2,A3;
input Count,Reset;
//Instantiate complementing flip-flop
CF FO (AD,Count,Reset);
CF Fl1 (Al,20,Reset);
CF F2 (AZ,Al,Reset);
CF F3 (A3,AZ, Reset);
endmodule

//Complementing flip-flop with delay
//Input to D flip-flop = Q'
module CF {Q,CLK,Reset}:

output Q;
input CLX,Reset;
reg Q;

always @ (negedge CLX or posedge Reset)
if (Reset) Q = 1'D0; .
elgse Q = #2 (~0Q): // Delay of 2 time units
endmodule

//8timulus for testing ripple counter
module testcounter;
reg Count;
reg Reset;
wire AQ,A1,A2,A3;
//Instantiate ripple counter
ripplecounter RC (a0,Al1,a2,A3,Count,Reset};
always
#5 Count = ~Count;
initiai
begin
Count = 1'b0;
Reset = 1'bL;
#4 Reset = 1'b0;
#165 $finish;
end
endmodule

input is included with the flip-flop in order to be able to initialize the counter. HDL _simul‘ators
canmot provide output values uniess they are initialized to some value. The flip-flop is assigned
a delay of 2 time units from the time that the clock is applied to the tirne that the flip-flop com-
pléments. This is specified by the statement O = #2 (~().

Section 6-6 HDL for Registers and Counters 249

The third module in Example 6-4 provides stimulus for simulating and testing the ripple
counter. The always statement generates a clock with a cycle of 10 time units. The flip-flops
trigger on the negative edge of the clock, which occurs att = 10, 20, 30, and every 10 time units.
The waveforms obtained from this simulation are shown in Fig. 6-19. The Count goes nega-
tive every 10 ns. AQ is complemented with each negative edge of Count but is delayed by 2 ns.
Each flip-flop is complemented when its previous flip-flop goes from 1 to 0. After # = 80 ns,
all four flip-flops complement because the counter goes from 0111 to 1000. Each output is
delayed by 2 ns and because of that, A3 goes from O to 1 at # = 88 ns and from 1 to 0 at 168 ns.

Ons 20ns 40ns 60ns B0ns 100ns ‘120ns 140ns 160ns
T T T T A I I I I AN IR A I RO S I I B B A A

testcounter. Reset 7_\

testcounter. Al m

testcounter. A2 / \ {

testcounter. A3 /

{a) From 0 to 170 ns

T2ns T4ns 76ns 73ns S0ns 82ns Bdns 86ns 88ns 90ns r9
0 S Y I A O B A T B Y

testcounter. Count { \ / \‘

testcounter.Reset

testcounter Al _/ \ /_

testeounter. Al \

testcounter. A2 . \

testcounter. A3 /

(b) From 70 to 92 ng

FIGURE 6-19
Simulation Output of HDL Example 6-4

254 Chapter 6 Registers and Counters

REFERENCES
1. Mano,M. M. and C. R. Kinig, 2 '
, M. M. - K. KiME. 2000, Lo d i
Soddly Riven Prentioe pit gic and Computer Design Fundamentals, 2nd ed, Upper
2. NESONV.P,H. T Nag
' P, H T LE, J. D. IRwm, and B. D. CarroLL, 1995. Digi ¢ Circui
sis and Design. Upper Saddle River, NI: Prentice Hall, HgtelLogic Ciraut Analy-
i. Haygs, 1. P 1993, Introduction ro Digital Logic Design. Reading, MA: Addison-Wesley.
. WAKERLY, I. F. 2000. Digital Desion: Princ:] .
Proner !) esign: Principles and Practices, 3rd ed, Upper Saddle River, NT-
5.]]
DrerMEYER, D). L. 1988, Logic Design of Digital Systems, 3rd ed, Boston: Allyn Bacon.
6. Gajski, D. B, 1997. Principles of Digital Design. Upper Saddle River, NJ: Prentice Hall
7. Rory, C. H. 1992, Fundamentals of Logic Design, 4th ed. St. Paut: West
8. ; |
. Karz, R, H. 1994. Contemporary Logic Design, Upper Saddle River, NJ: Prentice Hall.
. CILETTI, M. D. 1999. Modelin]]]
. 8, Synthesis, and Rapid]]
dle River, NJ. P odet; and Rapid Profotyping with Verilog HDJ. Upper Sad-
10. Buasker, 7. 1997, 4 Verilog HDL Primer. Allentown, PA: Star Galaxy Press
11, Tuomas, D. E and P R. M .
, D. E., - R. Moorby. 1998. The Vers ipti
Boston: Klumes pr N ¢ VeriLlog Hardware Description Language 4th ed,
12. Brasker, J. 1998, Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press
13. |

PALNITKAR, S. 1996. Verilog HDI.- - i : ,
Prentice Hall Tley, ¢ 10 Pisital Design and Symthesis. SunSoft Press (A

Memory and
Programmable Logic

7-1 INTRODUCTION

A memory unit is a device to which binary information is transferred for storage and from
which information is available when needed for processing. When data processing takes place,
information from the memory is transferred to selected registers in the processing unit. Inter-
mediate and final resuits obtained in the processing unit are transferred back to be stored in mem-
ory. Binary information received from an input device is stored in memory and information
transferred to an output device is taken from memory. A memory unit is a collection of cells
capable of storing a large quantity of binary information.

There are two types of memories that are used in digital systems: random-access Memory
(RAM) and read-only memory (ROM). Random-access memory accepts new information for
storage to be available later for use. The process of storing new information into memory is
referred to as a memory write operation. The process of transferring the stored information
out of memory is referred to as a memory read operation. Random-access memory can perform
both the write and read operations. Read-only memory can perform only the read operation.
This means that a suitable binary information is already stored inside the memory, which can
be retrieved or read at any time. However, the existing information cannot be altered by writing
because the read-only memory can only read; it cannot write.

'The read-only memory is a programmable logic device. The binary information that is stored
within a programmable logic device is specified in some fashion and then embedded within the
hardware. This process is referred to as programming the device. The word “programming” here
refers to a hardware procedure that specifies the bits that are inserted into the hardware con-
figuration of the device.

The read-only memory (ROM) is one example of a programmabile logic device (PLD). Other
such units are the programmable logic array (PLA), the programmable array logic (PAL), and

255

256

Chapter 7 Memory and Programmable Logic

= I

(a) Conventional symbol (b) Array logic symbol

FIGURE 7-1
Conventional and Array Logic Diagrams for OR Gate

the field-programmable gate array (FPGA). A pro grammable logic device is an integrated cir-
cuit with internal logic gates that are connected through electronic paths that behave similar to
fuses. In the original state of the device, all the fuses are intact. Programming the device involves
blowing those fuses along the paths that must be removed in order to obtain the particular con-
figuration of the desired Jogic function. In this chapter, we introduce the configuration of pro-
grammable logic devices and indicate procedures for their use in the design of digital systems.

A typical programmable logic device may have hundreds to milkions of gates intexconnected
through hundreds to thousands of internal paths. In: order to show the internal logic diagram in a
concise form, it is necessary to employ a special gate symbology applicable to array logic. Fig. 7-1
shows the conventional and array symbols for a multiple input OR gate. Instead of having mul-
tiple input lines into the gate, we draw a single line along the gate. The input lines are drawn per-
pendicular to this single line and are conpected to the gate through internal fuses. In a similar
fashion, we can draw the array logic for an AND gate. This type of graphical representation for
the inputs of gates will be used throughout this chapter when drawing array logic diagrams.

RANDOM-ACCESS MEMORY

A memory unit is a collection of storage cells together with associated cireuits needed to transfer
information in and out of the device. The time it takes to transfer information to or from any desired
random location is always the same, hence, the name random-access memory abbreviated RAM.

A memory unit stores binary information in groups of bits called words. A word in memory
is an entity of bits that move in and out of storage as a unit. A memory word is a group of 1’s
and 0’s and may represent a number, an instruction, one or more alphanumeric characters, or
any other binary-coded information. A group of eight bits is called a byte. Most computer
memories use words that are multiples of eight bits in length. Thus, a 16-bit word contains two
bytes, and a 32-bit word is made up of four bytes. The capacity of a memory unit is usually stated
as the total number of bytes that it can store.

The communication between a memory and its environment is achieved through data input
and oufput lines, address selection lines, and control lines that specify the direction of trans-
fer. A block diagram of the memory unit is shown in Fig. 7-2. The # data inpot lines provide
the information to be stored in memory and the n data output lines supply the information com-
ing out of memory. The k address lines specify the particular word chosen among the mary avail-
able. The two control inputs specify the direction of transfer desired: The write input causes
binary data to be transferred into the memory, and the read input causes binary data to be trans-
ferred out of memory.

Section 7-2 Random-Access Memory 257

l n data input lines

k address lines ———
Memory unit
Read —— 2% words

Wit n bit per word
Tite ———

ln data output lines

FIGURE 7-2
Block Diagram of a Memory Unit

The memory unit is specified by the number of words it contains and the number of bits in each
word, The address lines select one particular word. Each word in memory is assigned an identi-
fication number, called an address, starting from 0 up to 2k — 1, where k is the number of address
lines. The selection of a specific word inside memory is done by applying the k-bit address to the

address lines. A decoder accepts this address and opens the paths needed to select the waord spec-

ified, Memories vary greatly in size and may range from 1,024 words, requiring an address of 10
bits, to 232 words, requiring 32 address bits. It is customary to refer to the number of words {or
bytes) in a memory with one of the letters K (kilo), M (mega), or G (giga). K is equal to 2', M
is equal to 2%°, and G is equal to 2*°. Thus, 64K = 216 oM = 221 and 4G = 2%

Consider, for example, the memory unit with a capacity of 1K words of 16 bits each. Since
1K = 1,024 = 2" and 16 bits constitute two bytes, we can say that the memory can accommo-
date 2,048 = 2K bytes. Fig. 7-3 shows the possible content of the first three and the last three

Memory address
Binary decimal Memory content
0000000000 0 1011010101011101
0000000001 1 1010101110001001
0000000010 2 00001 10101000110
1111111101 1021 1001110100010100
1111111110 1022 000011010001111¢
1111111111 1023 1101111000100101

FIGURE 7-3
Content of a 1024 X 16 Memory

258

Chapter 7 Memory and Programmable Logic

words of this memory. Each word contains 16 bits that can be divided into two bytes. The words
are recognized by their decimal address from 0 to 1,023, The equivalent binary address consists
of 10 bits. The first address is specified with ten s, and the last address is specified with ten 1’s.
This is because 1,023 in binary is equal to 1111111111. A word in memory is selected by its
binary address. When a word is read or written, the memory operates on all 16 bits as a single unit.

The 1K X 16 memory of Fig. 7-3 has 10 bits in the address and 16 bits in each word. As
another example, a 64K X 10 memory will have 16 bits in the address (since 64K = 26y and
each word will consist of 10 bits. The number of address bits needed in a memory is depend-
ent on the total number of words that can be stored in the memory and is independent of the
number of bits in each word. The number of bits in the address is determined from the
relationship 2% = m. where m is the total number of words, and k is the number of address bits
needed to satisfy the relationship.

Write and Read Operations

The two operations that a random-access memory can perform are the write and read opera-
tions. The writé signal specifies a transfer-in operation and the read signal specifies a transfer-
out operation. On accepting one of these control signals, the internal circuits inside the memory
provide the desired operation.

The steps that must be taken for the purpose of transferring a new word to be stored into
memory are as follows:)

1. Apply the binary address of the desired word to the address lines.
2. Apply the data bits that must be stored in memory to the data input lines.
3. Activate the write input.

The memory unit will then take the bits from the input data lines and store them in the word
specified by the address lines. :

The steps that must be taken for the purpose of transferring a stored word out of memory
are as follows:

1. Apply the binary address of the desired word to the address lines.
2. Activate the read input.

The memory unit will then take the bits from the word that has been selected by the address
and apply them to the output data lines. The content of the selected word does not change
after reading.

Commercial memory components available in integrated-circuit chips sometimes provide
the two control inputs for reading and writing in a somewhat different configuration. Instead
of having separate read and write inputs to control the two operations, most integrated circuits
provide two other control inputs: one input selects the unit and the other determines the oper-
ation. The memory operations that result from these control inputs are specified in Table 7-1.

The memory enable (sometimes called the chip select) is used to enable the particular mem-
ory chip in a multichip implementation of a large memory. When the memory enable is inac-
tive, the memory chip is not selected and no operation is performed. When the memory enabie
input is active, the read/write input determines the operation to be performed.

Section 7-:2 Random-Access Memory 259

Table 7-1

Control inputs to Memory Chip

Memory Enable Read/Write Memory Operation
0 X None
1 0 Write to selected word
1 1 Read from selected word

Memory Description in HDL

Memory is modeled in Verilog HDL by an array of registers. It is declared with a reg keyword
using a two-dimensional array. The first number in the array specifies the number of bits in a
word and the second gives the number of words in memory. For example, a memory of 1,024
words with 16 bits per word is declared as

reg([1l5:0] memword[0:1023];

This describes a two-dimensional array of 1,024 registers, each containing 16 bits. The num-
ber in memwaord specifies the total number of words in memory and is equivalent to the address
of the memory. For example, memword [512] refers to the 16-bit memory word at address 512.

The operation of a memory unit is iflustrated in HDL Example 7-1. The memory has 64
words of four bits each. There are two control inputs: Enable and ReadWrite. The Dataln and
DataQut lines have four bits each. The input Address must have six bits (since 2° = 64). The
memory is declared as a two-dimensional array of registers with Mem specifying the address

i

HDL Example 7-1

//Read and write operations of memory.
//Memory size is 64 words of 4 bits each.
module memory {(Enable,ReadWrite,Address,Dataln,DataOut);
input Enable,ReadWrite;
input [3:0] Dataln;
input [5:0] Address;
output [3:0] DataOut:
reg [3:0] DataOut;

reg [3:0] Mem [0:63]; /764 x 4 memory
always € (Enable or ReadWrite)
if (Enable)
if (ReadWrite)
Dataldut = Mem[Addressl:; //Read
elze
Mem[Address] = Dataln; / /Write
else DataOut = 4'bz; //High impedance state
endmodule

260 Chapter 7 Memory and Programmable Logic

of the 64 words. A memory operation occurs when the Enable input is active. The ReadWrite
input determines the type of operation. If ReadWrite is 1, the memory performs a read opera-
tion symbolized by the statement

DataQut < Mem [Address};

This causes a transfer of four bits from the selected memory word specified by the Address into
the DataOut lines. If ReadWrite is 0, the memory performs a write operation symbolized by
the statement

Mem [Address] « Dataln;

This causes a transfer from the 4-bit Dataln lines into the memory word selected by the Address.
When Enable is equal to 0, the memory is disabled and the outputs are assumed to be in a high
impedance state. This is symbolized by the keyword z, indicating that the memory has three-
state outputs,

Timing Waveforms

The operation of the memory unit is controlled by an external device such as a central processing
unit (CPU). The CPU is usually synchronized by its own clock. The memory, however, does
not employ an internal clock. Instead, its read and write operations are specified by control
inputs. The access time of a memory is the time required to select a word and read it. The cycle
time of a memory is the time required to complete a write operation. The CPU must provide
the memory control signals-in such a way as to synchronize its internal clocked operations
with the read and write operations of memory. This means that the access time and cycle time
of the memory must be within a time equal to a fixed number of CPU clock cycles.

Assume as an example that a CPU operates with a clock frequency of 50 MHz, giving a
peried for one clock cyele of 20 ns. Suppose now that the CPU communicates with a memo-
ry whose access time and cycle time does not exceed 50 ns. That means that the write cycle ter-
minates the storage of the selected word within a 50-ns interval and that the read cycle provides
the output data of the selected word within 50 ns or less. (The two numbers are not always the
same.) Since the period of the CPU cycle is 20 ns, it will be necessary to devote at least two
and a half, and possibly three, clock cycles for each memory request.

The memory timing shown in Fig. 7-4 is for a CPU with 50 MHz clock and a memory with
50 ns maximum cycle time. The write cycle in part (a) shows three 20 ns cycles—T71, T2, and
T3. For a write operation, the CPU must provide the address and input data to the memory. This
is done at the beginning of T'1. (The two lines that cross each other in the address and data
waveforms designate a possible change in value of the muitiple lines.) The memory enable
and the read/write signals must be activated after the signals in the address lines are stable to
avoid destroying data in other memory words. The memory enable signal switches to the high
level and the read/write signal swilches to the low level to indicate a write operation. The two
control signals must stay active for at least 50 ns. The address and data signals must remain sta-
ble for a short time after the control signals are deactivated. At the completion of the third
clock cycle, the memory write operation is completed and the CPU can access the memory again
with the next T'1 cycle.

Section 7-2 Random-Access Memory 261

-—— 20nsec —

T ' T2
Clock : L Tl

Memory :>< Address vatid

address

X
Memory / \
/—

enable

Read/ \
Write

Data :>< Data valid
input

(a) Write cycle

- S0npsec ——mm
Clock
Memory Address valid >C
address g
Memory _/ \

enable

Read/
Write

Data :
output >< Data valid ><:

(b) Read cycle

FIGURE 7-4
Memaory Cycle Timing Waveforms

The read cycle shown in Fig. 7-4(b) has an address for the memory provided by the CPU,
The memory enable and read/write signals must be in their high level for a read operation. The
memory places the data of the word selected by the address into the output data lines within a
50 ns interval (or less) from the time that the memory enable is activated. The CPU can trans-
fer the data into one of its internal registers during the negative transition of 7'3. The next T'1
cycle is available for another memory request.

Vi

Lotk e Y

)
E]

-
K.

262

Chapter 7 Memory and Programmable Logic

Types of Memories

7-3

- The mode of access of a memory system is determined by the type of components used. In a

random-access memory, the word locations may be thought of as being separated in space, with
each word occupying one particular location. In a sequential-access memaory, the information
stored in some medium is not immediately accessible, but is available only at certain intervals of
time. A magnetic disk or tape unit is of this type. Each memory location passes the read and write
heads in turn, but information is read out only when the requested word has been reached. In a
random-access memory, the access time is always the same regardless of the particular location
of the word. In a sequential-access memory, the time it takes to access a word depends on the
position of the word with respect to the reading head position; therefore, the access time is variable.

Integrated circuit RAM units are available in two possible operating modes, static and dynamic.
The static RAM (SRAM) consists essentially of internal latches that store the binary information,
The stored information remains valid as long as power is applied to the unit. The dynamic RAM
{(DRAM) stores the binary information in the form of electric charges on capacitors. The capaci-
tors are provided inside the chip by MOS transistors. The stored charge on the capacitors tends o
discharge with time and the capacitors must be periedically recharged by refreshing the dynamic
memory. Refreshing is done by cycling through the words every few milliseconds to restore the
decaying charge. DRAM offers reduced power consumption and larger storage capacity in asingle
memory chip. SRAM is easier to use and has shorter read and write cycles.

Memory units that lose stored information when power is turned off are said to be volarile.
Integrated circuit RAMSs, both static and dynamic, are of this category since the binary cells need
external power to maintain the stored information. In contrast, a nonvolatile memory, such as

‘magnetic disk, retains its stored information after removal of power. This is becanse the data

stored on magnetic components is represented by the direction of magnetization, which is
retained after power is turned off, Another nonvolatile memaory is the read-only memory (ROM).
A nonvolatile property is needed in digital computers to store programs that are needed after
the computer is turned off. Programs and data that cannot be altered are stored in ROM. Other
large programs are maintained on magnetic disks. When power is turned on, the computer can
use the programs from ROM. The other programs residing on a magnetic disk are then trans-
ferred into the computer RAM as needed. Before turning the power off, the binary information
from the computer RAM is transferred into the disk for the information to be retained.

MEMORY DECODING

In addition to the storage components in a memory unit, there is a need for decoding circuits
to select the memory word specified by the input address. In this section, we present the internal
construction of a random-access memory and demonstrate the operation of the decoder. To be
able to include the entire memory in one diagram, the memory unit presented here has a small
capacity of 16 bits arranged in four words of 4 bits each. An example-of a two-dimensional
coincident decoding arrangement is presented to show a more efficient decoding scheme that
is used in large memories. We then show an example of address multiplexing commonly used
in DRAM integrated circuits.

Tnput

Section 7-3 Memory Decoding 263

Select
l Select
. Y
} s D— Qutput Input BC Qutput
| e
Read/Write
ﬁ0<} Read/Write

(a) Logic diagram

FIGURE 7-5
Memory Cell

{b) Block diagram

Internal Construction

The internal construction of a random-access memory of m words and n bits per word consists
of m X n binary storage cells and associated decoding circuits for selecting individual words.
The binary storage cell is the basic building block of a memory unit, The equivalent logic of a
binary cell that stores one bit of information is shown in Fig. 7-5. The storage part of the cell
ts modeled by an SR latch with associated gates. Actually, the cell is an electronic circuit with
four to six transistors. Nevertheless, it is possible and convenient to model it using logic sym-
bols. A binary storage cell must be very small in order to be able to pack as many cells as pos-
sible in the small area available in the integrated circuit chip. The binary cell stores one bit in
its internal latch. The select input enables the cell for reading or writing and the read/write
input determines the cell operation when it is selected. A 1 in the read/write input provides the
read operation by forming -a path from the latch to the output terminal. A 0 in the read/write
input provides the write operation by forming a path from the input terminal to the latch,

The logical construction of a small RAM is shown in Fig. 7-6. It consists of four words of
four bits each and has a total of 16 binary cells. The small blocks labeled BC represent the
binary cell with its three inputs and one output as specified in Fig. 7-5(b). A memory with four
words needs two address lines. The two address inputs go throngh a 2 X 4 decoder to select
one of the four words. The decoder is enabled with the memory enable input. When the mem-
ory enable is 0, all outputs of the decoder are 0 and none of the memory words are selected.
With the memory select at 1, one of the four words is selected, dictated by the value in the two
address lines. Once a word has been selected, the read/write input determines the operation. Dur-
ing the read operation, the four bits of the selected word go through OR gates to the output ter-
minals. (Note that the OR gates are drawn according to the array logic established in Fig. 7-1.)
During the write operation, the data available in the input lines are transferred into the four
binary cells of the selected word. The binary cells that are not selected are disabled and their
previous binary values remain unchanged. When the memory select input that goes into the
decoder is equal to 0, none of the words are selected and the contents of all cells remain
unchanged regardiess of the value of the read/write input.

264 Chapter 7 Memory and Programmable Logic

Input data
Word 0 ; ; ; ,}
BC —j b»| BC o= BC | > BC [
i : t +
Address Word 1 . .
inputs
2% 4 - BC - BC [> BC [b BC
decoder i i i J
Word 2 + % + +
L > BC | BC || &> BC p»{ #> BC
Memory EN — . i
enable
Word 3 * % + +
L BC 1 Lyl BC | L» BC —- BC
. 3 3 4 4
Read/Write
Qutput data
FIGURE 7-6

Diagram of a 4 X 4 RAM

Commercial random-access memories may have a capacity of thousands of words and each
word may range from 1 to 64 bits. The logical construction of a large capacity memory '.would
be a direct extension of the configuration shown here. A memory with 2k words of n bits per
word requires k address lines that go into a k X 2% decoder. Bach one of the decoder outputs
selects one word of n bits for reading or writing.

Coincident Decoding

A decoder with k inputs and 2* outputs requires 2° AND gates with k inputs per gate. The total
number of gates and the number of inputs per gate can be reduced by employing two c'ieco-ders
in a two-dimensional selection scheme. The basic idea in two-dimensional decoding is to
arrange the memory cells in an array that is close as possible to square. In this configuration,
- two k /2-input decoders are used instead of one k-input decoder. One decoder perforrqs the row
selection and the other the column selection in a two-dimensional matrix configuration.
The two-dimensional selection pattern is demonstrated in Fig. 7-7 for a 1K-word Iemory.
Instead of using a single 10 X 1,024 decoder, we use two 5 X 32 decoders. With the single

Section 7-3 Memory Decoding 265 -

I

5 X 32 decoder

01 2. .., .20 ... 3

5 .
—_ . - binary address
¥ FxX32 ; 01100 - 10100
decoder
— 12 X Y

31

FIGURE 7-7
Two-Dimensional Decoding Structure for a 1K-Word Memory

decoder we would need 1,024 AND gates with 10 inputs in each. In the two-decoder case, we
need 64 AND gates with five inpuis in each. The five most significant bits of the address go to
input X and the five least significant bits go to input ¥. Each word within the memory array is
selected by the coincidence of one X line and one ¥ line. Thus, each word in memory is selected
by the coincidence between 1 of 32 rows and 1 of 32 columns for a total of 1,024 words. Note
that each intersection represents a word that may have any number of bits,

Ag an example, consider the word whose address is 404. The 10-bit binary equivalent of 404
is 01100 10100. This makes X = 01100 (binary 12) and ¥ = 10100 (binary 20)). The n-bit word
that is selected lies in the X decoder output number 12 and the ¥ decoder output number 20.
All the bits of the word are selected for reading or writing,

Address Multiplexing

The SRAM memory cell modeled in Fig. 7-5 typically contains six transistors. In order to build
memories with higher density it is necessary to reduce the number of transistors in a cell. The
DRAM cell contains a MOS transistor and a capacitor. The stored charge on the capacitor dis-
charges with time and the memory cells must be periodically recharged by refreshing the memory.
Because of their simple cell structure, DRAMS typically have four times the density of SRAM. This
allows four times as much memory capacity to be placed on a given size chip. The cost per bit of
DRAM storage is three to four times less than SRAM. A further cost savings is realized because

266

Chapter 7 Memory and Programmable Logic

of the lower power requirement of DRAM cells. These advantages make DRAM tbe preferred tech-
nology for large memories. DRAM chips are available in capacity of 64K to 256M bits. Most DRAMs
have a 1-bit word size, so several chips have to be combined to produce a larger word size.

Because of their large capacity, the address decoding of DRAMs is arranged in two.-dm.lensmnal
array and larger memories often have multiple arrays. To reduce the numper of pins in the IC
package, designers utilize address multiplexing whereby one set of addr§ss mp}.lt pins accommo-
dates the address components. In a two-dimensional array, the address is applied in two parts at
different times, with the row address first and the column address second. Since the same set of
pins is used for both parts of the address, the size of the package is decreased signiﬂcantly.

We will use a 64K-word memory to illustrate the address multiplexing idea. A diagram of the
decoding configuration is shown in Fig. 7-8. The memory consists of two-dimensional array of

r
CAS i o 8-bit column
register
d 8 % 256
decoder
RAS '
. ; 256 X 256
8-bit | &bl | 8x256 > memor L Read/Write
" address row decoder Y
.) register cell array
Data Data
. in out
FIGURE 7-8 . i

Address Multiplexing for a 64K DRA/

Section 7-4 Error Detection and Correction 267

cells arranged as 256 rows by 256 columns for a total of 2% X 28 = 216 = 64K words. There is
a single data input line, a single data output line, and a Read/Write control. There is an 8-bit
address input and two address strobes. The address strobes are included for enabling the row and
colurnn address into their respective registers, The row address strobe RAS enables the 8-bit row
register, and the column address strobe CAS enables the 8-bit column register. The bar on top of
the strobe symbol name indicates that the registers are enabled on the zero-level of the signal.

The 16-bit address is applied to the DRAM in two steps using RAS and CAS. Initially both
strobes are in the 1 state. The 8-bit row address is applied to the address inputs and RAS is
changed to 0. This loads the row address into the row address register. RAS also enables the
row decoder 50 it can decode the row address and select one row of the array. After a time
equivalent (o the settling time of the row selection, RAS goes back to the 1 level. The 8-bit col-
umn address is then applied to the address inputs and CAS is driven to the 0 state, This trans-
fers the column address into the column register and enables the column decoder. At this point,
the two parts of the address are in their respective registers, the decoders have decoded them
to select the one cell corresponding to the row and column address, and a read or write opera-
tion can be performed on that cell. CAS must go back to the 1 level before initiating another
memory operation.

/-4 ERROR DETECTION AND CORRECTION

The complexity level of a memory array may cause occasional errors in storing and retrieving
the binary information. The reliability of a memory unit may be improved by employing error-
detecting and correcting codes. The most common error-detection scheme is the parity bit.
(See Section 3-8.) A parity bit is generated and stored along with the data word in memory. The
parity of the word is checked after reading it from memory. The data word is accepted if the
parity of the bits read out is correct. If the parity checked results in an inversion, an error is
detected, but it cannot be corrected.

An error-correcting code generates multiple parity check hits that are stored with the data
word in memory. Each check bit is a parity over a group of bits in the data word. When the word
is read back from memory, the associated parity bits are also read from memory and compared
with a new set of check bits generated from the read data. If the check bits are correct, it sig-
nifies that no error has occurred. If the check bits do not compare with the stored parity, they
generate a unique pattern, called a syndrome, that can be used to identify the bit in error. A sin-
gle error occurs when a bit changes in value from 1 to 0 or from 0 to 1 during the write and
read operation. If the specific bit in error is identified, then the error can be corrected by com-
plementing the erroneous bit.

Hamming Code

One of the most common error-correcting codes used in random-access memories was devised
by R. W. Hamming. In the Hamming code, & parity bits are added to an #-bit data word, form-
ing a new word of n + [bits. The bit positions are numbered in sequence from 1 to n + k.
Those positions numbered as a power of 2 are reserved for the parity bits. The remaining bits

Chapter 7 Memory and Programmable Logic

are the data bits. The code can be used with words of any length. Before giving the general char-
acteristics of the code, we will illustrate its operation with a data word of eight bits.

Consider, for example, the 8-bit data word 11000100. We include four parity bits with the
8-bit word and arrange the 12 bits as follows:

Bitposition: 1 2 3 4 5 6 7 8 9 10 11 12
p B 1 P 1 0 0 B O 1 0 0

The 4 parity bits, P, P, P;, and Fy, are in positions 1, 2, 4, and 8, respectively. The 8 bits of
the data word are in the remaining positions. Each parity bit is calculated as follows:
P, = XOR of bits (3,5,7,9, 1) = 181008020 =0
P, = XOR of bits (3,6,7,10,11) = 1 $0D0S1H0 =0
P, = XOR of bits (5,6,7,12) = 190©050 =1
P, = XOR of bits (9, 10,11, 12) = 0 1S 0D 0 = 1
Remember that the exclusive-OR operation performs the odd function. It is equal to 1 i:'(n_‘ an odd
number of 1’s in the variables and to 0 for an even number of 1’s. Thus, each parity bit is set so
that the total number of 1’s in the checked positions, including the parity bit, is always even.
The 8-bit data word is stored in memory together with the 4 parity bits as a 12—lbit COmPos-
ite word. Substituting the four P bits in their proper positions, we obtain the 12-bit composite
word stored in memory
0o 0 1 i 1 0 0 1 0 1 0 0
Bit position: 1 2 3 4 5 6 7 8 9 10 11 12
When the 12 bits are read from memory, they are checked again for possible errors. The parity
is checked over the same combination of bits including the parity bit. The 4 check bits are eval-
uated as follows:
C, = XOR of bits (1,3,5,7,9,11)
C, = XOR of bits (2, 3, 6,7, 10, 11)
C, = XOR of bits (4, 5,6,7,12)
C; = XOR of bits (8, 9, 10, 11, 12)
A 0 check bit designates an even parity over the checked bits and a 1 designates an gdd parity.
Since the bits were stored with even parity, the result, C = C3C,C;C; = 0000, indicates that

no error has occurred. However, if C # 0, then the 4-bit binary number formed by the check
bits gives the position of the erroneous bit. For example, consider the following three cases:

Bit position: 1 2 3 4 5 6 7 8 9 10 11 12

g o0 1 1 1 0 0 1 0 1 0 0. Noegor
1 0 1 1 1 0 0 1 O 1 0 O GErmorinbitl
0 0 1 1 0 0 0o 1 0 1 0 O Erorinbits

Section 7-4 Error Detection and Correction 269

In the first case, there is no error in the 12-bit word. In the second case, there is an error in bit
position number 1 because it changed from 0 to 1. The third case shows an error in bit posi-

tion 5 with a change from 1 to 0. Evaluating the XOR of the corresponding bits, we determine
the four check bits to be as follows:

For no error: 0 0 0 0
With error in bit 1: 0 0 0
With error in bit 5; . 0 1 0 1

Thus, for no error, we have C = 0000; with an error in bit 1, we obtain C = 0001; and with
an error in bit 5, we get C = 0101. The binary number of C, when it is not equal to 0000, gives
the position of the bit in error. The error can be corrected by complementing the corresponding
bit. Note that an error can occur in the data word or in one of the parity bits.

The Hamming code can be used for data words of any length. In general, the Hamming code
conststs of k check bits and » data bits for a total of n + k bits. The syndrome value C consists
of k bits and has a range of 2¢ values between 0 and 2 — 1. One of these valtues, usually zero,
is used to indicate that no error was detected, leaving 2% — 1 values to indicate which of the
n -+ k bits was in error. Each of these 2° ~ 1 values can be used to uniquely describe a bit in
error. Therefore, the range of k must be equal to or greater than n + k, giving the relationship

—1=n+k
Solving for n in terms of k, we obtain
2l —k=n

This relationship gives a formula for establishing the number of data bits that can be used in
conjunction with k£ check bits. For example, when k = 3, the number of data bits that can be
usedisn = (2 =1 —3) = 4. Fork =4, wehave 2 — [— 4 = 11, giving n = 11. The
data word may be less than 11 bits, but must have at least 5 bits, otherwise, only 3 check bits
will be needed. This justifies the use of 4 check bits for the 8 data bits in the previous exam-
ple. Ranges of » for various values of k are listed in Table 7-2.

The grouping of bits for parity generation and checking can be determined from a list of the
binary numbers from O through 2* — 1. The least significant bit is a 1 in the binary numbers

Table 7-2
Range of Data Bits for k Check Bits
Number of Range of
Check Bits, k Data Bits, n
3 2-4
4 5-11
5 12-26
6 27-57
7 58-120

270

Chapter 7 Memory and Programmable Logic

1,3, 5, 7, and so on. The second significant bit is a 1 in the binary numbers 2, 3, 6, 7, and 50
on. Comparing these numbers with the bit positions used in generating and checking parity
bits in the Hamming code, we note the relationship between the bit groupings in the code and
the position of the 1-bits in the binary count sequence. Note that each group of bits starts with
a number that is a power of 2 such as 1, 2, 4, 8, 16, etc. These numbers are also the position
numbers for the parity bits.

Single-Error Correction, Double-Error Detection

7-3

The Hamming code can detect and correct only a single error. Multiple errors are not detected.
By adding another parity bit to the coded word, the Hamming code can be used to correct a
single error and detect double errors. If we include this additional parity bit, then the previous
12-hit coded word becomes 001110010100P,,, where P is evaluated from the exclusive-OR
of the other 12 bits. This produces the 13-bit word 0011100101001 (even parity). When the
13-bit word is read from memory, the check bits are evaluated and also the parity P over the
entire 13 bits. If P = {, the parity is correct (even parity), but if 7 = 1, then the parity over
the 13 bits is incorrect {odd parity}. The following four cases can occur:

If C = 0and P = 0, no error occurred

If C # 0and P = 1, a single error occurred that can be corrected

IfC # 0and P = 0, a double error occurred that is detected but that cannot be corrected
IfC = 0and P = 1 An error occurred in the P; bit

This scheme may detect more than two errors, but is not gnaranteed to detect alt such errors.

Integrated circuits use a modified Hamming code to generate and check parity bits for a
single-error correction, double-error detection. The modified Hamming code uses a more
efficient parity configuration that balances the number of bits used to calculate the XOR op-
eration. A typical IC that uses an 8-bit data word and a 5-bit check word is IC type 74637.
Other integrated circuits are available for data words of 16 and 32 bits. These circuits can be
used in conjunction with a memory unit to correct a single error or detect double errors during
the write and read operations.

READ-ONLY MEMORY

A read-only memory (ROM) is essentially a memory device in which permanent binary
information is stored. The binary information must be specified by the designer and is then
embedded in the unit to form the required interconnection pattern. Once the pattern is estab-
lished, it stays within the unit even when power is turned off and on again.

A block diagram of a ROM is shown in Fig. 7-9. It consists of & inputs and n outputs. The
inputs provide the address for the memory and the outputs give the data bits of the stored word
which is selected by the address. The number of words in a ROM is determined from the fact
that k address input lines are needed to specify 2% words. Note that ROM does not have data

Section 7-5 Read-Only Memory 271

. k
k inputs (address) —| %5(1\;1 —— 1 outputs (data)

FIGURE 7-9
ROM Block Diagram

inputs because it does not have a write operation. Integrated circuit ROM chips have one or more
enable inputs and sometimes come with three-state outputs to facilitate the construction of
large arrays of ROM.

Consider for example a 32 X 8 ROM. The unit consists of 32 words of 8 bits each. There
are five input lines that form the binary numbers from 0 through 31 for the address. Fig. 7-10
shows the internal logic construction of the ROM. The five inputs are decoded into 32 distinct
outputs by means of a 5 X 32 decoder. Each output of the decoder represents a memory address.
The 32 outputs of the decoder are connected to each of the eight OR gates. The diagram shows
the array logic convention used in complex circuits (see Fig. 6-1). Each OR gate must be con-
sidered as having 32 inputs. Each output of the decoder is connected to one of the inputs of each
OR gate. Since each OR gate has 32 input connections and there are 8 OR gates, the ROM
contains 32 X 8 = 256 internal connections. In general, 2 2F X 1 ROM will have an internal
k % 2% decoder and 7 OR gates, Each OR gate has 2° inputs, which are connected to each of
the cutputs of the decoder. '

0
1
I
v 2
I 3
P 5%x32
2
decoder
& 28
I 29
30
31
A, As As Ay Ay Ay AL A
FIGURE 7-10

Internal Logic of a 32 X 8 ROM

272 Chapter 7 Memory and Programmable Logic . .
Section 7-5 Read-Only Memory 273

Table 7-3
ROM Truth Table (Partial)
Inputs Outputs

4 13 12 11 10 A7 A6 A5 A4 A3 A2 Al AD
o 0o 0 0 O 1 0 1 1 0 1 1 0
0 0 0 0 1 0 0 0 1 1 1 0 1
0 0 0 1 0 1 1 0 0 0 i 0 |
0o 0 0 1 1 1 0 1 1 0 0 1 0
i1 1 0 0 0 0 0 0 1 0 0 1
1 1 1 0 1 1 1 1 0 0 0 1 0
1 11 1 0 0 i 0 0 1 0 1 0
1 1 ¢t 1 1 0 0 1 3 0 0 1 1

The 256 intersections in Fig. 7-10 are programmable. A programmable connection between
two lines is logically equivalent to a switch that can be altered to either be close {meaning that
the two lines are connected) or open (meaning that the two lines are disconnected). The pro-
grammable intersection between two lines is sometimes called a crosspoint, Various physical
devices are used to implement crosspoint switches. One of the simplest technologies employs
a fuse that normally connects the two points, but is opened or “blown” by applying a high-
voltage pulse into the fuse. :

The internal binary storage of a ROM is specified by a truth table that shows the word con-
tent in each address. For example, the content of a 32 X 8 ROM may be specified with a truth
table similar to the one shown in Table 7-3. The truth table shows the five inputs under which
are listed all 32 addresses. At each address, there is stored a word of 8 bits, which is listed
under the outputs columns, The table shows only the first four and the jast four words in the
ROM. The complete table must include the list of all 32 words.

The hardware procedure that programs the ROM results in blowing fuse links according to
a given truth table. For example, programming the ROM according to the truth table given by
Table 7-3 results in the configuration shown in Fig. 7-11. Every 0 listed in the truth table spec-
ifies a no connection and every 1 listed specifies a path that is obtained by a connection. For
example, the table specifies the 8-bit word 10110010 for permanent storage at address 3. The
four 0"s in the word are programmed by blowing the fuse links between output 3 of the decoder
and the inputs of the OR gates associated with outputs Ag, As. A,, and Aq. The four 1’s in the
word are marked in the diagram with a X to denote a connection in place of a dot used for per-
manent connection in logic diagrams. When the input of the ROM is 00011, all the ouiputs of
the decoder are 0 except for output 3, which is at logic 1. The signal equivalent to logic 1 at
decoder output 3 propagates through the connections to the OR gate outputs of A;, As, Ay, and
A,. The other four outputs remain at 0. The result is that the stored word 10110010 is applied
to the eight data outputs.

0 5

2
I —— 3
L 5%x32 ’

decoder

I 28
I 29

30

31

Ay As A5 AL Ay Ay A A

FIGURE 7-11

Programming the ROM According to Table 7-3

Combinational Circuit Implementation

It was shpwn in Section 4-8 that a decoder generates the 2* minterms of the k input variables
By .msertmg OR gates to sum the minterms of Boolean functions; we were able to generaie an .
desired combinational circuit. The ROM is essentially a device that includes both the decode);
f«md the QR gates within a single device. By choosing connections for those minterms that are
1pcluded in the function, the ROM outputs can be programmed to represent the Boolean func-
tions of the output variables in a combinational circuit.

The internal (?peration of a ROM can be interpreted in two ways. The first interpretation is that
of a memory unit that contains a fixed pattern of stored words. The second interpretation is of a
u'mt that implements a combinational circuit. From this point of view, each output terminal is con-
sidered separately as the output of a Boolean function expressed as a sum of minterms. For example
the RQM of Fig. 7-11 may be considered as a combinational circuit with eight outputs, each belijn ’
a function of the five input variables. Output A, can be expressed in sum of mjnterms,as :

AL L0) = 2(0,2,3,...,29)

(Thff three dots represent minterms 4 through 27, which are not specified in the figure.) A con-
nection marked with X in the figure produces a minterm for the sum. All other crossl;oint are
not connected and are not included in the sum.

In practice, when a combinational circuit is designed by means of a ROM, it is not neces-
sary to design the logic or to show the internal gate connections inside the u’nit. All that the
designer has to do is specify the particular ROM by its IC number and provide the ROM truth

te.tble. Thfe truth table gives all the information for programming the ROM. No internal logic
diagram is needed to accompany the truth table.

274

- EXAMPLE 7-1

Chapter 7 Memory and Programmable Logic

Design a combinational circuit using a ROM. The circuit accepis a 3-bit number and generates
an output binary number equal to the square of the input number. o

The first step is to derive the truth table of the combinational circuit. In most cases this is
all that is needed. In other cases, we can use a partial truth table for the ROM by utilizing cer-
tain properties in the output variables. Table 7-4 is the truth table for the combinational circuit.
Three inputs and six outputs are needed to accommodate all possible binary numbers. We r|10te
that output B, is always equal to input A,; so there is no need to generate By with a ROM since
it is equal to an input variable. Moreover, output B, is always 0, so this output is a known con-
stant. We actually need to generate only four outputs with the ROM; the other two are readily
obtained. The minimum size ROM needed must have three inputs and four outputs. Three
inputs specify eight words, so the ROM must be of size 8 X 4. The ROM implementation -is
shown in Fig. 7-12. The three inpuis specify eight words of four bits each. The truth t.able in
Fig. 7-12(b) specifies the information needed for programming the ROM. The block diagram
of Fig. 7-12(a) shows the required connections of the combinational circuit.

]
Table 7-4
Truth Table for Circuit of Example 7-1
Inputs ' Outputs
A, A A B;, B, B, B, B B Decimal
0 0 0 0 0 o 0 0o 0 0
000 1 0 0 0 0 0 1 1
0 1 0 0 0 0 1 0 0 4
0 L 1 0 0 1 0 0 1 9
1 0 0 0 1] 0 0 0 16
i 0 1 0 i 1 0 0 1 25
1 1 0 1 0 0 1 0 0 36
1 1 1 1 1 0 0 0 1 49
By Ay Ay Ag|Bs By B; By
0— By 0 0 0|0 0 0 0
00 1/0 0 0 0
B, D1 0j0 0 0 1
Ao B 0 1 1]0 ¢ 1 0
3 L 0 0|0 1 0 O
M §x4ROM B 0 1|0 1 1 0
A N 11 01 0 0 1
' Bs 11 11 1 0 0
(a) Block diagram : . ~ (b) ROM truth table
FIGURE 7-12

ROM Implementation of Example 7-1

Section 7-5 Read-Only Memory 275

Types of ROMs

The required paths in a ROM may be programmed in four different ways. The first is called mask
programming and is done by the semiconductor company during the last fabrication process
of the unit. The procedure for fabricating a ROM requires that the customer fill out the truth
table he wishes the ROM to satisfy. The truth table may be submitted in a special form provided
by the manufacturer or in a specified format on a computer output medium. The manufacturer
makes the corresponding mask for the paths to produce the 1’s and 0°s according to the cus-
tomer’s truth table. This procedure is costly because the vendor charges the customer a special
fee for custom masking the particular ROM. For this reason, mask programming is economical
only if a large quantity of the same ROM configuration is to be ordered.

For small quantities, it is more economical to use a second type of ROM called program-
mable read-only memory or PROM., When ordered, PROM units contain all the fuses intact giv-
ing all I’s in the bits of the stored words. The fuses in the PROM are blown by application of
a high-voltage pulse to the device through a special pin. A blown fuse defines a binary 0 state
and an intact fuse gives a binary 1 state. This allows the user to program the PROM in the lab-
oratory (o achieve the desired relationship between input addresses and stored words. Special
instruments called PROM programmers are available commercially to facilitate this procedure.
In any case, all procedures for programming ROMs are hardware procedures even though the
word programming is used. .

‘The hardware procedure for programming ROMSs or PROM is irreversible and, once pro-
grammed, the fixed pattern is permanent and cannot be altered. Once a bit pattern has been
established, the unit must be discarded if the bit pattern is to be changed. A-third type of ROM

is the erasable PROM or EPROM. The EPROM can be restructured to the initial state even

though it has been programmed previously. When the EPROM is placed under a special uitra-
violet light for a given period of time, the short wave radiation discharges the internal floating
gates that serve as the programmed connections. After erasure, the EPROM returns to its ini-
tial state and can be reprogrammed to a new set of values.

The fourth type of ROM is the electrically-crasable PROM (EEPROM or E?PROM). It is
like the EPROM except that the previously programmed connections can be erased with an
electrical signal instead of ultraviolet lght. The advantage is that the device can be erased with-
out removing it from its socket.

Combinational PLDs

'The PROM is a combinational programmable logic device (PLD). A combinational PLD is an
integrated circuit with programmable gates divided into an AND array and an OR array to pro-
vide an AND-OR sum of product implementation. There are three major types of combinational
PLDs and they differ in the placement of the programmable connections in the AND-OR array.
Fig. 7-13 shows the configuration of the three PLDs. The programmable read-only memory
(PROM) has a fixed AND array constructed as a decoder and programmable OR array. The pro-
grammable OR gates implement the Boolean functions in sum of minterms. The programma-
ble array logic (PAL) has a programmable AND array and a fixed OR array. The AND gates
are programmed to provide the product terms for the Boolean functions, which are logically
summed in each OR gate. The most flexible PLD is the programmable logic array (PLA),

276 Chapter 7 Memory and Programmabie Logic
Fixed nabl
Inputs ———— | AND array >} Programmabié . Ouiputs
OR array
(decoder)
{a) Programmable read-only memory (PROM)
programmable . Fixed
Inputs AND array OR asray > Outputs
(b) Programmable array logic (PAL)
programmable > programmable
Tnputs AND array OR array Qutputs
(¢) Programmable logic array (PLA}
FIGURE 7-13
Basic Configuration of Three PLDs
where both the AND and OR arrays can be programmed. The product terms in the AND array
may be shared by any OR gate to provide the required sum of products implementation. The
* names PAL and PLA emerged from different vendors during the development of programma-
ble logic devices. The implementation of combinational circuits with PROM was demonstrat-
ed in this section. The design of combinational circuits with PLA and PAL is presented in the
next two sections. '
76 PROGRAMMABLE LOGIC ARRAY

The programmable logic array (PLA) is similar to the PROM in concept except that the PLA
does not provide full decoding of the variables and does not generate all the minterms. The
decoder is replaced by an array of AND gates that can be programmed to generate any product
term of the input variables. The product terms are then connected to OR gates to provide the
sum of products for the required Boolean functions.

The internal logic of a PLA with three inputs and two outputs is shown in Fig. 7-14. Such
a circuit is too small to be available commercially, but is presented here to demonstrate the
typical logic configuration of a PLA. The diagram uses the array logic graphic symbols for
complex circuits. Each input goes through a buffer and an inverter shown in the diagram with
a composite graphic symbol, which has both the true and complement outputs. Each input and
its complement are connected to the inputs of each AND gate as indicated by the intersections
between the vertical and horizontal lines. The outputs of the AND gates are connected to the
inputs of each OR gate. The output of the OR gate goes to an XOR gate where the other input

Section 7-6 Programmable Logic Array 277 -

AB’

A'BC

sjelole

C ¢ B B A A 0

a
S

FIGURE 7-14
PLA with 3 Inputs, 4 Product Terms, and 2 Qutputs

can be programmed to receive a signal equal to either logic 1 or 0. The output is inverted when
the XOR input is connected to 1 (since x® 1 = x’). The output does not change when the
XOR input is connected to 0 (since x @ 0 = x). The particular Boolean functions implemented
in the PLA of Fig. 7-14 are

F, = AR’ + AC + A'BC'
F, = (AC + BCY'

T_he product terms generated in each ANID gate are listed along the output of the gate in the
diagram. The product term is determined from the inputs whose crosspoints are connected and
marked with a.X. The output of an OR gale gives the logic sum of the selected product terms.
'The output may be complemented or left in its true form depending on the connection for one
of the XOR gate inputs. _

The fuse map of a PLA can be specified in a tabular form. For example, the programming
table that specifies the PLLA of Fig. 7-14 is listed in Table 7-5. The PL.A programming table con-
sists of three sections. The first section lists the product terms numerically. The second section

278

Chapter 7 Memory and Programmable Logic

Table 7-5
PLA Programming Table
Ouiputs
Inputs (m ©
Product Term A B C F;, F;
AB’ 1 1 0 - 1 -
AC 2 1 - 1 1 3
BC 3 - 1 1 - 1
A'BC 4 0 1 0 1 -

specifies the required paths between inputs and AND gates. The third section specifies the
paths between the AND and OR gates. For each output variable, we may have a T (for true) or
C (for complement) for programming the XOR gate. The product terms listed on the left are
not part of the table; they are included for reference only. For each product term, the inputs are
marked with 1, 0, or - (dash). If a variable in the product term appears in its true form, the cor-
responding input variable is marked with a 1. If it appears complemented, the corresponding

input variable is marked with a 0. If the variable is absent in the product term, it is marked

with a dash.

The paths between the inputs and the AND gates are specified under the column heading
inputs in the programming table. A 1 in the input column specifies a connection from the input
variable to the AND gate. A 0 in the input column specifies a connection from the comple-
ment of the variable to the input of the AND gate. A dash specifies a blown fuse in both the input
variable and its complement. It is assumed that an open terminal in the input of an AND gate
behaves like a 1.

The paths between the AND and OR gates are specified under the column heading outputs.
The output variables are marked with 1’s for those product terms that are included in the func-
tion. Bach product term that has a 1 in the output column requires a path from the output of the
AND gate to the input of the OR gate. Those marked with a dash specify a blown fuse. It is
assumed that an open terminal in the input of an OR gate behaves like a 0. Finally,a T (true)
output dictates that the other input of the corresponding XOR gate be connected to 0, and a C
(complement) specifies a connection to 1.

The size of a PLA is specified by the number of inputs, the number of product terms, and
the number of outputs. A typical integrated circuit PLA may have 16 inputs, 48 product terms,
and 8 outputs. For r inputs, k product terms, and r outputs the internal Jogic of the PLA con-

. sists of n buffer-inverter gates, k AND gates, m OR gates, and s XOR gates. There are 2n X k

connections between the inputs and the AND array, k X m connections beiween the AND and
OR arrays, and m connections associated with the XOR gates. ‘

When designing a digital system with a PLA, there is no need to show the internal connec-
tions of the unit.as was done in Fig, 7-14. All that is needed is a PLA programming table from
which the PLA can be programmed to supply the required logic. As with a ROM, the PLA

Section 7-6 Programmable Logic Array 279 -

may be mask programmable or field programmable. With mask programming, the customer sub-
mits a PLA program table to the manufacturer. This table is used by the vendor to produce a
custom-made PLA that has the required internal logic specified by the customer. A second type
of PLA available is called a field programmable logic array or FPLA. The FPLA can be pro-
grammed by the user by means of a commercial hardware programmer unit.

When implementing a combinational circuit with a PLA, careful investigation must be
undertaken in order to reduce the number of distinet product terms, since a PLA has a finite num-
ber of AND gates. This can be done by simplifying each Boolean function to a minimum
number of terms. The number of literals in a term is not important since ail the input variables
are available anyway. Both the true and complement of each function should be simplified to
see which one can be expressed with fewer product terms and which one provides product
terms that are cornmon to other functions.

EXAMPLE 7-2

Implement the following two Boolean functions with a PLA:
F(A,B,C) = X(0,1,2,4)
F(A,B,C) = 2(0,5,6,7)

The two functions are simptified in the maps of Fig. 7-15. Both the true and complement of the
functions are simplified in sum of products. The combination that gives a minimum number of
product terms is

F, = (AB + AC + BCY'

and
F, = AB + AC + A'B'C'

This gives four distinct product terms: AB, AC, BC, and A’B'C’. The PLA programming table
for this combination is shown in the figure. Note that output F, is the true output even though
a Cis marked over it in the table. This is because F is generated with an AND-OR circuit and
is available at the output of the OR gate. The XOR gate complements the function to produce
the true F| output.

The combinational circuit used in Example 7-2 is too simple for implementing with a PLA.
It was presented merely for illustration purposes. A typical PLA has a large number of inputs
and product terms. The simplification of Boolean functions with so many variables should be
carried out by means of computer-assisted simplification procedures. The computer-aided
design program simplifies each function and its complement to a minimum number of terms.
The program then selects a minimum number of product terms that cover all functions in their
true or complement form. The PLA programming table is then generated, and the required fuse
-map is obtained. The fuse map is applied to an FPLA programmer that goes through the hard-
ware procedure of blowing the internal fuses in the integrated circuit.

280

7-7

Chapter 7 Memory and Programmable Logic

BC B BC B
oo 01 11 10 00 01 11 10
A A
1 1 0 1 i 0 0 0
0 0
At 1 0 0 0 A1l 0 1 1 1
C C

Fi=AB + A'C'+ B'C’
F,= (AB + AC + BC)'

Fo=AB+AC+ A'B'C”
E=(A'C+A'B+ AB'C')

PLA programming table

Outputs

Product Inputs < M
term 4 pcCc F R

AB 1 11 - 1 i
AC 2 I -1 1 1
BC 3 -1 1 1 ~
A'B'C 4 000 - 1

FIGURE 7-15
Solution to Example 7-2

PROGRAMMABLE ARRAY LOGIC

The programmable array logic (PAL) is a programmable logic device with a fixed OR array and
a programmable AND array. Because only the AND gates are programmable, the PAL is eas-
ier to program, but is not as flexible as the PLA. Fig. 7-16 shows the logic configuration of a
typical PAL. Tt has four inputs and four outputs. Each input has a buffer-inverter gate and each
output is generated by a fixed OR gate. There are four sections in the unit, each being composed
of a three-wide AND-OR array. This is the term vsed to indicate that there are three program-
mable AND gates in each section and one fixed OR gate. Each AND gate has 10 programma-
ble input connections. This is shown in the diagram by 10 vertical lines intersecting each
horizontal line. The horizontal line symbolizes the multiple-input configuration of the AND gate.
One of the outputs is connected to a buffer-inverter gate and then fed back into two inputs of
the AND gates. :

Commercial PAL devices contain more gates than the one shown in Fig. 7-16. A typical
PAL integrated circuit may have eight inputs, eight outputs, and eight sections, each consist-
ing of an eight-wide AND-OR array. The output terminals are sometimes driven by three-state
buffers or inverters.

When designing with a PAL, the Boolean functions must be simplified to fit into each
section. Unlike the PLA, a product term cannot be shared among two or more OR gates.

Section 7-7 Programmable Array Logic

AND gates inputs
Product 12 3 4 5 6 7 8 9 10

281 -

10

11

12

3

. 1 2 3 4 5 6 7 8 9 10
FIGURE 7-16
PAL with Four Inputs, Four Outputs, and Three-Wide AND-OR Structure

i ol

£y

F3

A E Frrr g]

i

Chapter 7 Memory and Programmable Logic

Therefore, each function can be simplified by itself without regard to common pro_duct terms.
The number of product terms in each section is fixed, and if the number of terms in the fl..ll'lC-
tion is too large, it may be necessary to use two sections to implement one Boolean functlgn.
As an example of using a PAL in the design of a combinational circuit, consider the following

Boolean functions, given in sum of minterms:

w(A, B, C, D) = 2(2,12,13)

x(A,B,C,D) = 2(7,8,9,10,11,12,13, 14, 15)

v(A,B,C,D) = 2(0,2,3,4,5,6,7,8,10,11, 15)

z(A,B,C, D) = 2(1,2,8,12,13)
Simplifying the four functions to a minimum number of terms results in the following
Boolean functions:

ABC' + A'B'CD"

A+ BCD

= A'B + CD + B'D

= ABC' + A'B'CD' + AC'D' + AB'C'D

=w + AC'D' + A'B'C'D

Note that the function for z has four product terms. The logical sum of two of these terms is

equal to w. By using w, it is possible to reduce the number of terms for z from four to three.
The PAL programming table is similar to the one used for the PLA except that only the

inputs of the AND gates need to be programmed. Table 7-6 lists the PAL programming table
for the Tour Boolean functions. The table is divided into four sections with three product terms

w
X
y
4

Table 7-6
PAL Programming Table
AND Inputs
Product Term A B c D W Outputs
1 i | 0 - - w = ARC’
2 0 1 0 - + A'B'CD’
3 - - - B -
4 1 - - = - x=A
3 - 1 1 1 - + BCD
6 _ _ — - _
7 0 1 - - - y=AB
- - 1 1 - +CD
9 - v - 0 - : + B'DY
10 - - - - 1 z =W
11 : 1 - 0 0 - + AC'D'
12 0 0 0 1 - + A'B'C'D

Section 7-8 = Sequential Programmable Devices 283

in each to conform with the PAL of Fig. 7-16. The first two sections need only two product terms
to implement the Boolean function. The last section for output z needs four product terms.
Using the output from w, we can reduce the Function to three terms.

The fuse map for the PAL as specified in the programming table is shown in Fig. 7-17. For
each 1 or 0 in the table, we mark the corresponding intersection in the diagram with the sym-
bol for an intact fuse. For each dash, we mark the diagram with blown fuses in both the true
and complement inputs. If the AND gate is not used, we leave all its input fuses intact. Since
the corresponding input receives both the true and complement of each input variable, we have
AA" = 0 and the output of the AND gate is always 0.

As with all PLDs, the design with PALS is facilitated by using computer-aided design tech-

niques. The blowing of internal fuses is a hardware procedure done with the help of special elec-
tronic instruments,.

7-8 SEQUENTIAL PROGRAMMABLE DEVICES

Digital systems are designed using flip-flops and gates. Since the combinational PLD consists
of only gates, it is necessary to include external flip-flops when they are used in the design.
Sequential programmable devices include both gates and flip-flops. In this way, the device can
be programmed to perform a variety of sequential-circuit functions. There are several types of
sequential programmable devices available commercially and each device has vendor-specific
varjant within each type. The internal logic of these devices is too complex to be shown here.
Therefore, we will describe three major types without going into their detailed construction:

1. Sequential (or simple) programmable logic device (SPLD)
2. Complex programmable logic device (CPLD)
3. Field programmable gate array (FPGA)

The sequential PLD is sometimes referred to as a simple PLD to differentiate it from the com-
plex PLD. SPLD includes flip-flops within the integrated circuit chip in addition to the AND-OR
array. The result is a sequential circuit as shown in Fig. 7-18. A PAL or PLA is modified by in-
cluding a number of flip-flops connected to form a register. The circuit outputs can be taken
from the OR gates or from the outputs of the flip-flops. Additional programmable connections
are available to include the flip-flop outputs in the product terms formed with the AND array.
The flip-flops may be of the D or the JK type.

The first programmable device developed to support sequential circuit implementation is the
field-programmable logic sequencer (FPLS). A typical FPLS is organized around a2 PLA with
several outputs driving flip-flops. The flip-flops are flexible in that they can be programmed
to operate as either JK or D type. The FPLS did not succeed commerciaily because it has too
many programmable connections. The configuration mostly used for SPLD is the combinational
PAL together with D flip-flops. A PAL that includes flip-flops is referred to as a registered
PAL to signify that the device contains flip-flops in addition to the AND-OR array. Each sec-
tion of an SPLD is called a macrocell. A macrocell is a circuit that contains a sum-of-products
combinational logic function and an optional flip-flop. We will assume an AND-OR sum of
products but in practice, it can be any one of the two-level implementation presented in Sec. 3-7.

B e

et

284

Chapter 7 Memory and Programmable Logic

AND gates inputs
Product A A B B C C DD w w
term
1 :)_‘—r\
? L
) [A j
: D_Lr\
: L/
6
[All fuses intact
B ——L6T_ {always = 0}
7
8 ¥
9]
" }Lr\
11 / :
12
D —D X Fuse intact
+ Fuse blown
A A B B C C D D w w
FIGURE 7-17

Fuse Map for PAL as Specified in Table 7-6

Section 7-8 Sequential Programmable Devices 285+

Inputs ‘ -
AND-OR array
(PAL or PLA)

Qutputs

Flip-fiops

FIGURE 7-18
Sequential Programmable Logic Device

Fig. 7-19 shows the legic of a basic macrocell. The AND-OR array is the same as in the
combinational PAL shown in Fig. 7-16. The output is driven by an edge-triggered D flip-flop.
The flip-flop is connected to a common clock input and changes state on a clock edge. The
output of the flip-flop is connected to a three-state buffer (or inverter controlled by an cutpui-
enable signal marked in the diagram as OE. The output of the flip-flop is fed back into one of
the inputs of the programmable AND gates to provide the present-state condition for the
sequential circuit. A typical SPLD has from 8 to 10 macrocells within one IC package. All the
flip-flops are connected to the common CLK input and all three-state buffers are controlled by
the EO input,

In addition to programming the AND array, a macrocell may have other programming fea-
tures. Typical programming options include the ability to either use or bypass the flip-flop,
selection of clock edge polarity, selection of preset and clear for the register, and selection of

CLK OFE

U
-

FIGURE 7-19
Basic Macrocell Logic

oo e

oy

286 Chapter 7 Memeory and Programmable Logic
PLD PLD PL.D PLD
A A
0 v v v ile
~« Programmable switch matrix R
block 1 1 A block
Y Y Y
PLD PLD PLD PLD
FIGURE 7-20

General CPLD Configuration

the true or complement of an output. An XOR gate is used to program a true/complement
condition. Multiplexers are used to select between two or four distinct paths by programming
the selection inputs.

The design of a digital system using PLD often requires the connection of several devices
to produce the complete specification. For this type of application, it is more economical to use
a complex programmable logic device (CPLD). A CPLD is a collection of individual PLDs on
a single integrated circuit. A programmable interconnection structure allows the PLDs to be con-
nected to each other in the same way that can be done with individual PLDs.

Fig. 7-20 shows a general configuration of a CPLD. It consists of multiple PLDs intercon-
nected through a programmable switch matrix. The input/output (1/0) blocks provide the con-
nections to the IC pins. Each I/O pin is driven by a three-state buffer and can be programmed
to act as input or output. The switch matrix receives inputs from the IO block and directs it to
the individual macrocells. Similarly, selected outputs from macrocells are sent to the outputs
as needed. Each PLD typically contains from & to 16 macrocells. The macrocells within each
PLD are usually fully connected. If a macrocell has unused product terms they can be used by
other nearby macrocells. In some cases the macrocell flip-flop is programmed to act as a D, JK,
or T flip-flop.

Different manufacturers have taken different approaches to the general architecture of CPLDs.
Areas in which they differ include the individual PLDs (sometimes called function blocks), the
type of macrocells, The I/0 blocks, and the programmable interconnection structure. The best
way to investigate a vendor-specific device is to look at the manufacturer’s literature.

The basic component used in VLSI design is the gate array. A gate array consists of a pat-
tern of gates fabricated in an area of silicon that is repeated thousands of times until the entire
chip is covered with the gates. Arrays of one thousand to hundred thousand gates are fabric-
ated within a single IC chip depending on the technology used. The design with gate arrays

Problems 287 -

requires that the customer provide the manufacturer the desired interconnection pattern. The
first few levels of fabrication process are common and independent of the final logic function,
Additional fabrication steps are required to interconnect the gates according to the specifica-
tions given by the designer.

A field programmable gate array (FPGA} is a VLSI circuit that can be programmed in the
user’s location. A typical FPGA consists of an array of hundreds or thousands of logic blocks,
surrounded by programmable input and output blocks and connected together via program-
mable interconnections. There is a wide variety of internal configurations within this group of
devices. The performance of each device type depends on the circuit contained in their logic
blocks and the efficiency of their programmied interconnections.

A typical FPGA logic block consists of look-up tables, multiplexers, gates, and flip-flops.
The lock-up table is a truth table stored in a SRAM and provides the combinational circuit
functions for the logic block. These functions are realized from the truth table stored in the
SRAM, similar to the manner that combinational circuit functions are implemented with ROM,
as described in Sec. 7-5. For example, a 16 X 2 SRAM can store the truth table of a combi-
national circuit that has four inputs and two outputs. The combinational logic section along with
a number of programmable multiplexers are used to configure the input equations for the flip-
flop and the output of the logic block.

The advantage of using RAM instead of ROM to store the truth table is that the table can
be programmed by writing into memeory, The disadvantage is that the memory is volatile and
presents the need for the look-up table content to be reloaded in the event that power is dis-
rupted. The program can be downloaded either from a host computer or from an on-board
PROM. The program remains in SRAM until the FPGA is reprogrammed or the power is
turned off. The device must be reprogrammed every time power is turned on. The ability to
reprogram the FPGA can serve a variety of applications by using different logic implementa-
tions in the program.

The design with PLD, CPLD, or FPGA requires extensive computer-aided design (CAD)
tools to facilitate the synthesis procedure. A variety of tools are available such as schematic entry
package and hardware description languages (HDL) such as ABEL, VHDL, and Verilog. Syn-
thesis tools are available that allocate, configure, and connect logic blocks to match a high-level

_design description written in HDL.

PROBLEMS

7-1 The following memory units are specified by the number of words times the number of bits per
word. How many address lines and input-output data lines are needed in each case? (2) 4K X 16,
(b)2G X 8, (c) 16M X 32, (d) 256K X 64.

7-2 Give the number of bytes stored in the memories listed in Problem 7-1.

7-3 Word number 723 in the memory shown in Fig. 7-3 contains the binary equlvalent of 3,451. List
the 10-bit address and the 16-bit memory content of the word.

7-4 Show the memory cycle timing waveforms for the write and read operations. Assume a CPU
clock of 25 MHz and a memory cycle time of 60 ns. '

ez f

-]

ay l

290

Chapter 7 Memory and Programmable Logic

7-24 The following is a truth table of a 3-input, 4-output combinational circuit. Tabulate the PAL pro-
gramming table for the circuit and mark the fuse map in a PAL diagram similar to the one shown

in Fig. 7-17.
Inputs Qutputs
x y z A E C D
0 0 4 0 1 0 0
0 0 1 1 1 1 1
0 1 [} 1 0 1 1
Q 1 1 Q 1 ¢] 1
1 0 0 L 0 1 0
1 0 1 ¢ 0 0 1
1 1 0 1 1 1 0
{ 1 1 0 1 1 1

7-25 Using the registered macrocell of Fig. 7-19, show the fuse map for a sequential circuit with two
inputs x, y and one flip-flop A described by the input equation

D,=xBydA

7-26 Modify the PAL diagram of Fig. 7-16 by including three clocked D-type flip-flops between the
OR gates and outputs as in Fig. 7-19. The diagram should conform with the block diagram of a
sequential circuit. This will require three additional buffer-inverter gates and six vertical lines for
the flip-flop outputs to be connected to the AND array through programmable connections. Using
the modified registered PAL diagram, show the fuse map that will implement a 3-bit binary counter
with an output carry.

REFERENCES

1. Tocer, R.J. and N. S, WIDMER, 2001. Digital Systems Principles and Applications, 8th ed. Upper
Saddle River, NJ: Prentice Hall.

2, Kirson, B. 1984. Programmable Array Logic Handbook. Sunnyvale, CA: Advanced Micro Devices.

3. WAKERLY, J. F. 2000. Digiral Design: Principles and Pracrices, 3rd ed. Upper Saddle River, NJ:
Prentice Hall.

4, NELson, V. P., H. T. NAGLE, I. D. IrwiN, and B. D. CARROLL. 1993, Digital Logic Circuit Analysis
and Design. Upper Saddle River, NJ: Prentice Hall.

Hamming, R. W. 1950, Error Detecting and Error Correcting Codes. Bell Syst. Tech. J. 29: 147-160.

L, S., and D. J. CostELLO, J R. 1983, Error Control Coding. Englewood Cliffs, NJ: Prentice-Hall.
1988. Progranumable Logic Data Book. Dallas: Texas Instruments. .

TRIMBERGER, S. M. 1994, Field Programmable Gate Array Technology. Boston: Kluwer Academic Pub.
. 1994, The Programmable Logic Data Book, 2nd ed. San Jose, CA: Xilinx, Inc.

0. 1986. Memory Components Handbook. Santa Clara, CA: Iniel.

= 0 ® N & W

Register
Transfer Level

REGISTER TRANSFER LEVEL
(RTL) NOTATION

- A digital system is a sequential logic system constructed with flip-flops and gates. Sequential

circuits can be specified by means of state tables as shown in Chapter 5. To specify a large
digital system with a state table is very difficult, if not impossible, because the number of states
would be prohibitively large. To overcome this difficulty, digital systems are designed using a
modular approach. 'The system is partitioned into modular subsystems, each of which performs
some functional task. The modules are constructed from such digital devices as registers, de-
coders, multiplexers, arithmetic elements, and control logic. The various modules are inter-
connected with common data and control paths to form a digital system.

Digital modules are best defined by a set of registers and the operations that are performed
on the binary information stored in them. Examples of register operations are shift, count, clear,
and load. The registers are assumed to be the basic components of the digital system. The in-
formation flow and processing perform on the data stored in the registers is referred to as reg-
ister transfer operations. A digital system is represented at the register transfer level (RTL)
when it is specified by the following three components:

1. The set of registers in the system.

2. The operations that are performed on the data stored in the registers.

3. The control that supervises the sequence of operations in the system.
A register is a group of flip-flops that stores binary information and has the capability of per-
forming one or more elementary operations. A register can load new information or shift the

information to the right or the left. A counter is considered a register that increments a nurm-
ber by one. A flip-flop standing alone is considered as a 1-bit register that can be set, cleared,

291

Section 8-2 Register Transfer Level in HDL 293

The addition is done with a binary parallel adder, the incrementing with a counter, and the shift
with a shift register. The type of operations most often encountered in digital systems can be
classified into four categories:

1. Transfer operations that transfer data from one register to another.

2. Arithmetic operations that perform arithmetic on data in registers.

3. Logic operations that perform bit manipulation of non-numeric data in registers.

4. Shift operations that shift data in registers.
The transfer operation does not change the information content of the data being moved from the
source register to the destination register. The other three types change the information content
during the transfer. The register transfer notation and the symbols used to represent the various
register transfer operations are not standardized. Here we employ two types of notation. The no-

tation introduced in this section will be used informally to specify and explain digital systems at
the register transfer level. The next section introduces the RTL symbols used in Verilog HDL.

REGISTER TRANSFER LEVEL IN HDL

Digital systems can be described at the register transfer level by means of a hardware descrip-
tion language. In Verilog HDL., RTL descriptions use a combination of behavioral and dataflow
constructs. Register transfers are specified by means of procedural assignment statements.
Combinational circuit functions are specified by means of continuous assignment or proce-
dural assignment statements. The symbol used to designate a transfer is either an equal sign or
an arrow. Synchronization with the clock is achieved by using an always statement with an
event controf of posedge or negedge. The following examples show the possible ways that are
available to specify a transfer in Verilog HDL:

assign S = A + B; Continuous assignment
always @ (A or R) Procedural assignment (without a clock)
5 = A + B;

always_@ {posedge clock) Blocking procedural assignment

begin

RA = RA + RRB;
RD = RA;

end

always @ (negedge clock) Non-blocking procedural assignment

begin

RA <= RA + RE;
RD <= RA;

end

Continuous assignments are used to specify combinational circuits. The preceding assign state-
ment describes a binary adder with inputs A and B and output S. The target operand in an assign
statement (S in this case) cannot be a register. Outputs of combinational circuits can be transferred

r

e e e e

-)

m

294

Chapter 8 Register Transfer Level

to a register by means of a clocked procedural assignment. The non-clocked procedural assign-
ment in the second example shows an alternate way of specifying a combinational circuit.

There are two kinds of procedural assignments: blocking and non-blocking. The two are
distinguished by the symbols that they use. Blocking assignments use the symbol (=) as the
transfer operator and non-blocking assignments use the (<=) as the operator. Blocking as-
signment statements are executed sequentially in the order they are listed in a sequential block.
Non-blocking assignments evaluate the expressions on the right-hand side, but do not make the
assignment to the left-hand side until all expressions are evaluated. Consider the two examples
shown above. In the blocking procedural assignment, the first statement transfers the sum to
R A and the second statement transfers the new value of RA into RD. At the completion, both RA
and RD have the same value. In the non-blocking procedural assignment, the two operations
are performed concurrently so that RD receives the original value of RA.

To ensure synchronous operations in RTL design, it is necessary that non-blocking proce-
dural assignments be used for variables that follow an always-clocked statement. This is to
prevent any possibility of functional mismatch between the design model and the HDL de-
scription. The non-blocking assignment that appears in an always-clocked statement accurately
models the behavior of a synchronous sequential circuit.

HDL Operators

The Verilog HDL operators and their symbols used in RTL design are listed in Table 8-1. The
arithmetic, logic, and shift operators are required for describing register transfer operations. The
logical and relational operators are useful for specifying control conditions. The arithmetic op-
erations are done with binary numbers. Negative numbers are represented in 2°s complement.
The modulus operator produces the remainder from the division of two numbers. For example,
14 % 3 evaluates to 2. :

There are two Lypes of logic operators: bit-wise and reduction. Bit-wise operators perform
a bit-by-bit logic operation on two operands. They take each bit in one operand and per-
form the operation with the corresponding bit in the other operand. The reduction operators perform
the logic operation on a single operand. They perform the operation bit by bit from right to left and
yield a I-bit result. For example, the reduction NOR (~ |) results in 0 with operand 00101
and in 1 with operand 00000, Negation is not used as a reduction operator. Truth tables for the
bit-wise operators are listed in Table 4-9 in Section 4-11.

The logical and relational operators can take variables or expressions as operands. They are
basically used for determining true or false conditions. They evaluate to 1 if the condition is
true, and to 0 if the condition is false. If the condition is ambiguous, they evaluate to X. When
the operand is a number, it evaluates to 0 if the number is equal to zero and to 1 if the number
is not equal io zero, For example, if A = 1010 and B = 0000, then A is taken as 1 (the num-
ber is not equal to 0) and B is taken as 0. Results of other operations with these values are:

A && B =0

al||l B=1
1A = 0
B =1
(A > B} =1
(b == B)=0

Section 8-2 Register Transfer Level in HDL 295

Talle 8-1
Verilog HDL Operators

Operator Type Symbol Operation Performed

Arithmetic + addition
- subtraction
* multiplication

division

o0

modulus

Logic -~ negation {complement)
(bit-wise & AND
or OR

reduction) Exclusive-OR (XOR)

>

Logicai ! negation
&& AND
|] OR

Shift > shift right
<< shift left

{ .1} concatenation

Relational > greater than
< less than
== equality
1= inequality
>= greater than or equal

<= less than or equal

- The shift operators shift a vector operand to the right or the left by a specified number of
bits. The vacant bit positions are filled with zeros. For example, if R = 11010, the statement

R =R »» 1;

shifts R to the right one position. The new value of R is 01101. The concatenation operator pro-
vides a mechanism for appending multipte operands. It can be used to specify a shift includ-

ing the bits transferred into the vacant positions. This was shown in HDL Example 6-1 for the
shift register.

Loop Statements

Verilog HDL has four types of loops that allow procedural statements to be executed repeat-

edly: repeat, forever, while, and for. All looping statements must appear inside an initial or
always block.

296 Chapter 8 Register Transfer Level

The repeat loop executes the associated statements a specified number of times. The fol-
fowing is an example that was used previously:

initial
begin
clock = 1'b0;
repeat (16}
#5 clock = ~ clock;
end

This produces eight clock cycles with a cycle time of 10 time units.
The forever loop causes a continuous repetitive execution of the procedural statement. For

example, the following loop produces a continuous clock:

initial
begin
clock = 1'h0;
forever
clock = ~ clock;
end

The while loop execuies a staterment or block of statements repe;atedly while an express%on
is true. If the expression is false to begin with, the statement is never executed. The following

example iflustrates the use of the while loop:

integer count;
initial
begin
count = 0;
while (count < 64)
#5 count = count + 1;
end

The value of count is incremented from 0 to 63. The loop exits at the coupt of 64.

In dealing with looping statements, it is sometimes convenien.t to use integer c_lata type f(?r
manipulating quantities. Integers are declared with the keyword mtgger as .dc.me in the previ-
ous example. Although it is possible to use the reg keyword for variables, it is more conven-
ient to declare an integer variable for counting purposes. Variables declared as da.ta type reg
are stored as unsigned numbers. Those declared as data type intgger are store as mgn;d num-
bers in 2’s complement format. The default width of an integer is a minimum of 32 bits.

The for loop contains three parts separated by two semicolons:

* An initial condition.
+ An expression to check for the terminating condition.

_-* An assignment to change the control variable.

Section 8-2 Register Transfer Level in-HDL 297

HDL Example 8-1

//description of 2x4 decoder
//fusing for loop statement
module decoder (IN, V)

input [1:0] IN; //Two binary inputs

output [3:0] Y; //Four binary outputs

reg [3:0] Y;

integer I; //control variable for loop

always @ (IN)
for (I =0; T <=3; 1
if {IN == I) Y[I] =
else Y[I] = 0; °
endmodule

=TI+ 1)
1;

The following is an example of a for loop:

for(i = 0; i < 8; 1 =1 + 1)

procedural statements
The loop statement repeats the execution of the procedural statements ei ght times. The control
variable is 7, the initial condition is i = 0, the loop is repeated as long as i is less than 8. Every
time the loop is executed, § is incremented by 1.

The description of a 2-to-4-line decoder using a for loop is shown in HDL Example 8-1.
Since output ¥ is evalvated in a procedural statement, it must be declared as reg type. The con-
trol variable for the loop is the integer I. When the loop s expanded, we get the following four
conditions (/N and ¥ are in binary, the index for ¥ is in decitnal): o

if IN =00then¥(0) =1 else¥(0) =20
if IN =0lthen¥(1) =1 else¥(1) =0
if IN=10then¥(2) =1 else¥(2) =0
if IN=1lthen¥(3) =1 else¥(3) =0

il

Logic Synthesis

Logic synthesis is the automatic process of transforming a high-level language description
such as HDL into an optimized netlist of gates that perform the operations specified by the
source code. There are various target technologies that implement the synthesized design.
Effective use of an HDL description requires that designers adopt a vendor-specific style snitable
for the particular synthesis tools. The type of ICs that implement the design may be an
application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a field-
programmable gate array (FPGA).

Logic synthesis tools are programs that interpret the source code of the hardware descrip-
tion language and translates it into a gate structure. Designs written in HDL for the purpose of
logic synthesis tend to be at the register transfer level. This is because HDL constructs used in
RTL description can be converted into a gate-level description in a straightforward manner.

298

Chapter 8 Register Transfer Level

The foliowing examples show how a logic synthesizer can interpret a HDL construct and con-
vert it into a gate structure.

The assign statement is used to describe combinational circuits. An assign statement with
Boolean equations is interpreted into the correspending gate circuit. A statement with a plus
(+) is interpreted as a binary adder with full adder circuits. A statement with a minus (—) is con-
verted into a subtractor consisting of full adders and exclusive-OR gates (Fig. 4-13). A state-
ment with the conditional operator such as

agsgign ¥ = & ? I1 : 10;

translates into a 2-to-1-line multiplexer with control input S and data inputs I1 and I0. A state-
ment with multiple conditional operators specifies a larger multiplexer.

The always statement may imply a combinational or sequential circuit. For sequential cir-
cuits, the event control must be posedge or negedge of a clock, otherwise the procedural state-
ment specify a combinational circuit. For example,

always @ (I1 or I0 or 8)
if (8) Y = I1;
else ¥ = I0;

translates into a 2-to-1-line multiplexer. The case statement may be used to imply large
multiplexers. :

The always @ posedge or negedge clock specifies clocked sequential circuits. The corre-
sponding circuits consists of D flip-flops and the gates that implement the register transfer op-
erations. Examples of such circuits are registers and counters. A sequential circuit description
with a case statement translates into a control circuit with D flip-flops and gates. Thus, each
statement in an RTL description is interpreted by the synthesizer and assigned to a correspon-
ding gate and flip-flop circuit. ,

A simplified flow chart of the design process is shown in Fig. 8-1. The RTL description of
the HDL design is simulated and checked for proper operation. The test bench provides the stim-
ulus signals to the simulator. If the result of the simulation is not satisfactory, the HDL de-
scription is corrected and checked again. When the result of the simulation shows a valid design,
the RTL description is applied to the logic synthesizer. The synthesis tools generate a netlist
equivalent to a gate-level description of the design. The gate-level circuit is simulated with the
same set of stimuli used to check the RTL design. If any corrections are needed, the process is
repeated until a satisfactory simulation is achieved. The results of the two simulations are com-
pared to see if they match. If they don’t match, the designer goes back and changes the RTL
description to correct any faulis in the design. Then the description is again read into the logic
synthesizer to generate a new gate-level description. Once the designer is satisfied with the re-
sults of all simulation tests, the circuit can be fabricated with an integrated circuit.

Laogic synthesis provides several advantages to the designer. It takes less time to write an HDL
description and synthesize a gate-level realization than it does to develop the circuit by man-
ual entry from schematic diagrams. The ease of changing the description facilitates the explo-
ration of design alternatives. It is easier to check the validity of the design by simulation rather
than produce a hardware prototype for evaluation. The database for fabricating the integrated
circuit can be generated automatically by the synthesis tools.

Section 8-3 Algorithmic State Machines (ASM) 299 -

Y

HDI. description Valid Synthesis | Netli
) of design design tools atlist
Y i
Simulate Test bench Simulate
RTL design gate-level
design
Result - Result
Good Good
Needs Needs
correction correction
Y
Compare Fabricate
No match Match IC
FIGURE 8-1

Process of HDL Simulation and Synthesis

ALGORITHMIC STATE MACHINES (ASM)

The binary information stored in a digital system can be classified as either data or control in-
formation. Data are discrete elements of information that are manipulated to perform arith-
metic, logic, shift, and other similar data processing tasks. These operations are implemented
with digital components such as adders, decoders, multiplexers, counters, and shift registers,
Control information provides command signals that supervise the various operations in the
data section in order to accomplish the desired data processing tasks. The logic design of a
digital system can be divided into two distinct parts. One part is concerned with the design of
the digital circuits that perform the data processing operations. The other part is concerned
with the design of the control circuits that determines the sequence in which the various actions
are performed.

The relationship between the control logic and the data processessing in a digital system is
shown in Fig. 8-2. The data processessing path, commonly referred to as the datapath, ma-
nipulates data in registers according to the systemn’s requirements. The control logic initiates a
sequence of commands to the datapath. The control logic uses status conditions from the data-
path to serve as decision variables for determining the sequence of control signals.

The control logic that generates the signals for sequencing the operations in the datapath is
a sequential circuit whose internal states dictate the control commands for the system. At any

300 Chapter 8 Register Transfer Level
P 9 Section 8-3 Algorithmic State Machines (ASM) 301

Status conditions

Binary
Name code

T3

l 011

Commands .)
Register operation ReD
Control or output START
. Datapath
logic
E'xtemal Input Output l l
inputs data data
(a) General description b ifi
FIGURE 8-2 FCL P {b) Specific example
Control and Datapath Interaction RE 8-3
State Box

given time, the state of the sequential control initiates a prescribed set of commands. Depend-
ing on status conditions and other external inputs, the sequential control goes to the next state
to initiate other operations. The digital circuits that act as the control logic provide a time se-
guence of signals for initiating the operations in the datapath and also determine the next state
of the control subsystem itself.

The control sequence and datapath tasks of a digital system are specified by means of a
hardware algorithm. An algorithm consists of a finite number of procedural steps that specify
how to obtain a solution to a problem. A hardware algorithm is a procedure for implementing
the problem with a given piece of equipment. The most challenging and creative part of digi-
tal design is the formulation of hardware algorithms for achieving required objectives.

A flowchart is a convenient way to specify the sequence of procedural steps and decision
paths for an algorithm. A flowchart for a hardware algorithm translates the word statement
to an information diagram that enumerates the sequence of operations together with the
conditions necessary for their execution. A special flowchart that has been developed specif-
ically to define digital hardware algorithms is called an algorithmic state machine (ASM)
chart. A state machine is another term for a sequential circuit, which is the basic structure
of a digital system.

The ASM chart resembles a conventional flowchart, but is interpreted somewhat different-
ly. A conventional flowchart describes the sequence of procedural steps and decision paths for
an algorithm in a sequential manner without taking into consideration their time relationship.
The ASM chart describes the sequence of events as well as the timing relationship between the
states of a sequential controller and the events that occur while going from one state to the
next. It is specifically adapted to specify accurately the control sequence and datapath opera-
tions in a digital system, taking into consideration the constraints of digital hardware.

fs given a symbolic name, which is placed at the upper left corner of the box. The binary code
assigned to the state is placed at the upper right corner, Fig. 8-3(b) shows a specific example
of a state box. The state has the symbolic name 73, and the binary code assigned to it is 011
Inside the box is written the register operation R <— 0, which indicates that register R is to be'
cleared to 0 when the system is in state ;. The START name inside the box may indicate, for
example, an output signal that starts a certain operation. ,
The decision box describes the effect of an input on the control subsystern. It has a diamond-
§hap§d box with two or more exit paths, as shown in Fig. 8-4. The input condition to be tested
is wr.it'ten .insicle the box. One exit path is taken if the condition is true and another when the
g;;cf;%znllz If?llf)e When an input condition is assigned a binary value, the two paths are indi-
The state and decision boxes are familiar from vse in conventional flowcharts. The third el-
c'a-ment, the conditional box, is unique to the ASM chart, The oval shape of the conditional box
is shown.in Fig. 8-5. The rounded corners differentiate it from the state box. The input path to
the fzondltional box must come from one of the exit paths of a decision box. The register op-
eI.'atIOIlS or outputs listed inside the conditional box are generated during a given state, pro-
vided that the input condition is satisfied. Fig. 8-5(b) shows an example with a condil;ignaf
box. The control generates a START output signal when in state T,. While in state 7}, the con-

trol checks th_e status of input . If E = 1, then R is cleared to 0; otherwise, R remains un-
changed. In either case, the next state is 7.

ASM Chart 0 .
The ASM chart is a special type of flowchart suitable for describing the sequential operations
of a digital system. The chart is composed of three basic elements: the state box, the decision
box, and the conditional box. A state in the control sequence is indicated by a state box, as Exit path Exit path

shown in Fig. 8-3. The shape of the state box is a rectangle within which are written register
operations or output signal names that the control generates while being in this state. The state

FIGURE 8-4
Decision Box

P B ik Aol)

=0 23

Section 8-3 Algorithmic State Machines (ASM) 303

FIGURE 8-7
State Diagram Equivalent to the ASM Chart of Fig. 8-6

T, are two decision boxes and one conditional box. The diagram distinguishes the block with
dashed lines around the entire structure, but this is not usually done, since the ASM chart
uniquely defines each block from its structure. A state box without any decision or condition-
al boxes constitutes a simple block. '

Each block in the ASM chart describes the state of the system during one clock-pulse in-
terval. The operations within the state and conditional boxes in Fig. 8-6 are executed with a com-
mon clock pulse while the system is in state T,. The same clock pulse also transfers the system
controller to one of the next states—75, 7}, or T,—as dictated by the binary values of E and F.

The ASM chart is very similar to a state diagram. Each state block is equivalent to a state in
a sequential circuit. The decision box is equivalent to the binary information written along the
directed lines that connect two states in a state diagram, As a consequence, it is sometimes con-
venient to convert the chart into a state diagram and then use sequential circuit procedures to de-
sign the control logic. As an illustration, the ASM chart of Fig. 8-6 is drawn as a state diagram
in Fig. 8-7. The three states are symbolized by circles, with their binary values written inside the
circles. The directed lines indicate the conditions that determine the next state, The unconditional
and conditional operations that must be performed are not indicated in the state diagram.

ing Considerations

The timing for all registers and flip-flops in a di gital system is controlled by a master-clock gen-
erator. The clock pulses are applied not only to the registers of the datapath, but also to all the
flip-flops in the control logic. Inputs are also synchronized with the clock because they are
normally generated as outputs of another circuit that uses the same clock signals. If the input
signal changes at an arbitrary time independent of the clock, we call it an asynchronous input.
Asynchronous inputs may cause a variety of problems, as discussed in Chapter 9. To simplify
the design, we will assume that all inputs are synchronized with the clock and change state in
response to an edge transition.

The major difference between a conventional flow chart and an ASM chart is in interpret-
ing the time relationship among the various operations. For example, if Fig. 8-6 were a con-
ventional flowchart, then the listed operations would be considered to follow one after another
in time sequence: Register A is first incremented and only then is E evaluated, If E = 1, then
register R is cleared and control goes to state 7,. Otherwise, if £ = 0, the next step is to eval-
uate F and go to state 7, or 7. In contrast, an ASM chart considers the entire block as one unit.

304

8-4

Chapter 8 Register Transfer Level

Clock

[<— Presentstate T) — > Nextstate —
(Tz or T3 or T4)

Positive edge of clock —

FIGURE 8-8
Transition Between States

All the operations that are specified within the block must occur in synchronism during the edge
transition of the same clock pulse while the system changes from 7, to the next state. This 1s
presented pictorially in Fig. 8-8. We assume positive-edge triggering of all flip-flops. The first
positive transition of the clock transfers the control circuit into state 7. While in state 7}, the
control circuits check inputs E and F and generate appropriate signals accordingly. The following
operations occur simultaneously during the next positive edge of the clock:

1. Register A is incremented.
2. If E = 1, register R is cleared.
3. Control transfers to the next state as specified in Fig. 8-7.

Note that the two operations in the datapath and the change of state in the control logic occur
at the same time.

DESIGN EXAMPLE

We will now demonstrate the components of the ASM chart and the register transfer repre-
sentation by going over a specific design example. We start from the initial specifications and
proceed with the development of an appropriate ASM chart from which the digital hardware
is then designed.

We wish to design a digital system with two flip-flops, E and F, and one 4-bit binary count-
er A. The individual flip-flops in A are denoted by A,, A3, A,, A, with A, holding the most sig-
nificant bit of the count. A start signal S initiates the system operation by clearing the counter
A and flip-flop F. The counter is then incremented by one starting from the next clock pulse
and continues to increment until the operations stop. Counter bits A, and A, determine the se-
quence of operations:

If A; = 0, E is cleared to 0 and the count continues.

IfA, = 1, Eis setto 1; then if A, = 0, the count continues, but if 4, = 1, Fissettol
on the next clock pulse and the system stops counting.

Then if $ = 0, the system remains in the initial state, but if § = 1, the operation
cycle repeats.

Section 8-4 Design Example 305
ASM Chart

The ASM chart is shown in Fig. 8-9. When no operations are performed, the system is in the
initial state 7y, waiting for the start signal S. When input § is equal to 1, counter A and flip-flo
r ar.e.cleared to) and the controller goes to state T;. Note the conditional box that folimlzzs thg
decision box for §. This means that the counter and flip-flop will be cleared during ThHif § = 1
and at the same time, control transfers to state 1. ’ ’
The block associated with state T} has two decision boxes and two conditional boxes, The

qounter is incre'mented with every clock pulse. At the same time, one of three possible opera-
tions occur during the same clock edge:

Either E is cleared and controi stays in state T (A3 = 0); or
£ is set and control stays in state T} (A3A4 = 10); or
£ is set and control goes to state T, (A3A4 = 11).

Ty
| Initial state

0

—\S
1
«—0Q
« 0
T ' '
A—Ad+1
0

A

E«0

FIGURE 8-9
ASM Chart for Design Example

]

e

3 T

L -

'

Section 8-4 Design Example 307

Table 8-2
Sequence of Operations for Design Example
Counter Flip-Flops
Ay Ay A E F Conditions State

Ay =0,4, = 0 T,

o
— 0 — O

clcocoo |a
cooo

Ay=14,=0

— e e
_—= DO
—_— 0 = o
Ll =) e R I e SN

>
l
=]
=
Fs
i
—

S oo

e m
oo o
o— DO
=D O
L=l B RS

[
<o
o
i
i
z
I

SIoloec oo SCoo o o oo

-
-
o @
-
-
>

._
—_
o
—
—
—

&

the control generate the signals for all the operations specified in the present block prior 1o the
arrival of the next clock puise. The next clock edge executes all the Operations in the registers
and flip-flops, including the flip-flops in the controller that determine the next state,

‘apath Design

The ASM chart gives all the information necessary to design the digital system. The require-
ments for the design of the datapath are specified inside the state and conditional boxes. The
control logic is determined from the decision boxes and the required state transitions. A dia-

ent. The other two conditional operations use two other AND gates for setting or clearing flip-
flop E. Flip-flop F is set unconditionally during state T;. Note that all flip-flops and registers
including the flip-flops in the control use a common clock,

308 Chapter 8 Register Transfer Level

Start s T _/
A4 Control i
— A, Ty |
Clock
T F—v - E
—TI>C
[} K
> S
J —F
K
Ag | As Ay | A4,
Count
4-bit counter with - CLK Clock
synchrenous clear Clear—A -
FIGURE 8-10

Datapath for Design Example

Register Transfer Representation

A digital system is represented in the register transfer level by specifying the registers in the systt?m,
the operations performed, and the control sequence. The register operations and control information
can be specified with an ASM chart. It is sometimes convenient to separate the control logic and the
register operations for the datapath. The control information and register transfer operations can be
represented separately as shown in Fig. 8-11. The state diagram specifies the control sequence and

the register operations are symbolized with the notation introduced in Section 8-1. This representa-

tion is an alternative to the representation of the system described in the ASM chart of Fig. 8-9. The
information for the state diagram is taken directly from the ASM chart. The state names are speci-
fied in each state box. The conditions that cause a change of state are specified inside the diamond-
shaped decision boxes. The directed lines between states and the condition associated with each
follow the same path as in the ASM chart. The register transfer operations for each of the three states
are listed following the name of the state and a colon(:). They are taken from the corresponding rec-
tangular-shaped state boxes and the oval-shaped conditional boxes in the ASM chart.

Section 8-4 Design Example 309

Ty if (S =1)then A < 0, F 0
TiAeA+1

if(A;=1)thenE &1

if{A;=0}then E 0

AsAg= 10 Ty Fel
(a) State diagram for contral (b) Register transfer operations
FIGURE 8-11

Register Transfer Level Description of Design Example

State Table

The state diagram can be converted into a state table from which the sequential circuit of the
controller can be designed. First, we must assign binary values to each state in the ASM chart.
For » flip-flops in the control sequentiat circuit, the ASM chart can accommodate up to 2"
states. A chart with three or four states requires a sequential circuit with two flip-flops, With
five to eight states, there is a need for three flip-flops. Each combination of flip-flop values rep-
resents a binary number for one of the states.

A state table for a controller is a list of present states and inputs and their corresponding next
states and outputs. In most cases, there are many don’t-care input conditions that must be includ-
ed, so it is advisable to arrange the state table to take this into consideration. We assign the fol-
lowing binary values to the three states: 7, = 00, T; = 01, 7, = 11. Binary state 10 is not used
and will be treated a don’t-care condition. The state table corresponding to the state diagram is
shown in Table 8-3. Two flip-flops are needed, and they are labeled G, and (,. There are three
inputs and three outputs. The inputs are taken from the conditions in the decision boxes. The out-
puts are equivalent to the present state of the conirol. Note that there is a row in the table for each

Table 8-3
State Table for Control of Fig. 8-10
Present Next
State Inputs State _ Outputs
Present-State err— _—
Symbol G G 5 A A G Gy o Th T3

Ty 0 0 0 X X 0 0 1 0 0
T 0 0 1 X X 0 1 1 0 0
T 0 1 X 0 X 0 1 6 L 0
T, 0 1 X 1 0 0 1 0 1 0
T, 0 1 X 1 1 11 0 1 0
T, 11 X X X 0 0 0 0 1

R

330 Chapter 8 Register Transfer Level Section 89 Design with Multiplexers 331

HDL Example 8-6 HDL Example §-7
//Testing binary multiplier //Behavioral description of multiplier (n = 8)
module test_mltp; module Mult (A,B,Q):
//Inputs for multiplier input [7:0] B,Q;
reg S,CLK,Clr; output [15:0] a;
reg [4:0] Binput,Qinput; reg [15:0] A;
//Data for display always @ (B or Q)
wire C; A =B * Q;
wire [4:0] A,Q; endmodule

wire [2:0] PB;
//Instantiate multiplier
mltp mp(S,CLK,Clr,Binput,Qinput,C,A,Q,P);

initial
8=0; CLK=0; Clr=(; T v[0o "

begin
#5 8=1; Clr=1;
Binput = 5’'b101131;

Qinput = 5’'b10011; {
#15 8 = 0;
end Q
initial J
begin !

repeat (26}
#5 CLK = ~CLK;
end
//Display computations and compare with Table 8-4
always @ (negedge CLK)
§strobe ("'C=%b A-%b (=%b P=%b time=%0d4",C,A,0,P,%time);
endmodule

Ty 1 01

Simulation log:

C=x A=xxxxxX Q=XxXxxX P=xxx time=10
C=0 A=00000 0=10011 P=101 time=20
C=0 A=10111 0=10011 P=100 time=30
C=0 A=01011 0=11001 P-100 time=40
c=1 A=00010 Q=11001 P=011 time=50
C=0 A=10001 0=01100 P=011 time=60
€=0 A=10001 Q=01100 P=010 time=70
C=0 A=01000 0=10110 P=010 Lime=80
C=C A=01000 0-10110 P=001 time=90
C=0 A=00100 ©=010i1 P=001 time=100
Cc=0 A=11011 ©0=010i1 P=000 time=110
c=0 2=01101 0=10101 P=000 time=120
C=0 A=01101 0=10101 P=000 time=130 FIGURE 8-19

Example of ASM Chart with Four Control inputs

Chapter 8 Register Transfer Level

: G,
0—0 b
1—1 —>C
MUX1 >
y—2
' O |
Z 51 5o TO
2% 4 T
MUX select decoder | T
— 13
s, 8 Ga
" 1 0 D
— 0
x' —— 1 ——
MUX2 P> C
e
7 —
y'—3
CLK
FIGURE 8-20

Control Implementation with Multiplexers

implementation is shown in Fig. 8-20. Tt consists of two multiplexers, MUX1 and MUX2; a reg-
ister with two flip-flops, ; and Gy; and a decoder with four outputs. Tlfe outputs of the register
are applied to the decoder inputs and also to the select inputs of the muitlpleysers. In this way, the
present state of the register is used to select one of the inputs from each multiplexer. The (?utputs
of the multiplexers are then applied to the D inputs of G, and Gy, Thz_e purpose of each multiplexer
is to produce an input to its corresponding flip-flop equal to t.h‘? binary value of the next 's.tate.
The inputs of the multiplexers are determined from the decision boxes and s_tate transitions
given in the ASM chart. For example, state 00 stays at 00 or goes to Ql, depem_im gonthe va}lue
of input w. Since the next state of &, is 0 in either case, we‘place a s1g1?al equivalent to logic-0
in MUX1 input 0. The next state of Gyis 0if w = Oand l if w = 1._Smce the_ next state of Gy
is equal to w, we apply control input w to MUX2 input 0. What this means is that w.hen the
select inputs of the multiplexers are equal to present state 00', the outputs of the multiplexers
provide the binary value that is transferred to the register during the next clogk puls§.

To facilitate the evaluation of the multiplexer inputs, we prepare a tszl.e showm_g the input con-
ditions for each possible transition in the ASM chart. Table 8-7 gives this information fqr_the ASM
chart of Fig. 8-19. There are two transitions from present state 00 or 01 and three ‘transmons.f‘rom
present state 10 or 11. These are separated by horizontal lines across the table. The input copdmons
listed in the table are obtained from the decision boxes in the ASM chart. For ejia-rnple, from Fig. §-19,
we note that present state 01 will go to next state [0if x = 1 or to next state 11 if x i 0. [n the tab.]e,
we mark these input conditions as x and x', respectively. The two columns under “multiplexer ig-
puts” in the table specify the input values that must be applied to M.UXI and MUX2. The m; }tll-
plexer input for each present state is determined from the input COHdlthI-‘lS when the next statf: Dd ‘ih e
flip-flop is equal to 1. Thus, after present state 01, the next state of G is always equal to 1 and the

Section 8-9 Design with Multiplexers 333

Table 8-7
Multiplexer Input Conditions
Present Next

State State inputs

S Input

G G G G Conditions MuUxi MUX2
0 0 0 0 w’
0 0 0 1 w 0 W
¢ 1 1 ¢ X
0 1 1 1 x' 1 x'
1 0 0 0 y
t 0 1 0 yi' yZ' tyz=y ¥z
1 ¢ 1 1 7
1 1 0 1 Yz
1 1 i 0 ¥
I 1 1 1 le y + ylZl‘ = y + ZJ yfz + yle —_ yi’

next state of (7; is equal to the complement value of x, Therefore, the input of MUX 1 is made equal
to 1 and that of MUX2 to x’ when the present state of the register is 01. As another example, after
present state 10, the next state of G, must be equal to 1 if the input conditions are vz’ or yz. When
these two Boolean terms are ORed together and then simplified, we obtain the single binary vari-
able y, as indicated in the table. The next state of Gyis equal to 1 if the input conditions are yz = 11,
If the next state of G, remains at 0 after a given present stale, we place a 0 in the multiplexer input
as shown in present state 00 for MUX1. If the next state of G, is always 1, we place a 1 in the mul-
tiplexer input as shown in present state 01 for MUX 1. The other entries for MUX! and MUX?2 are
derived in a similar manner. The multiplexer inputs from the table are then used in the control im-
plementation of Fig. 8-20. Note that if the next state of a flip-flop is a function of two or more con-
trol variables, the multiplexer may require one or more gates in its input. Otherwise, the multiplexer
input is equal to the control variable, or the complement of the control variable, or 0, or 1.

Design Example-Count the Number of Ones in a Register

We will demonstrate the multiplexer control implementation by means of a design example. The
example will also demonstrate the formulation of the ASM chart and the implementation of the
datapath subsystem.

The digital system to be designed consists of two registers, R1 and 82, and a flip-flop, E.
The system counts the number of 1's in the number loaded into register R1 and sets register R?
to that number, For example, if the binary number loaded into R1 is 101 110061, the circuit
counts the five I's in R1 and sets register R2 to the binary count 101. This is done by shifting
each bit from register R1 one at a time into flip-flop £. The value in E is checked by the con-
trol, and each time it is equal to 1, register B2 is incremented by 1.

The control uses one external input § to start the operation and two status inputs E and Z from
the datapath. E is the output of the flip-flop. Z is the output of a circuit that checks the contents
of register R1 for all 0°s. The circuit produces an output Z = 1 when R1 is equal to 0.

The ASM chart for the circuit is shown in Fig. 8-21. The binary number is loaded into R1, and
register R2 is set to an all-1’s value. Note that a number with all 1°s in a register when incremented

334

Chapter 8 Register Transfer Level

Ty y 00

Initial state

Rt « Input
R2 e Alll's

FIGURE 8-21 .
ASM Chart for Count-of-Ones Circuit

produces a number with all 0’s. In state Ty, register R2 is incremented and thP: content -of tﬁl Is ex-
amined. If the content is zero, then Z = 1, and it signjﬁes that there ar‘e no 1’s stored 1; -\3 6egxsc1
ter; so the operation terminates with R2 equal to 0. If the content of 1'21 is npt zero, thext1 : I ft;nan)
it indicates that there are some 1°s stored in the register. The num_ber in Rlis sthteq and its leftmos
bit transferred into E. This is done as many times as necessary untila 1is tr?nsferred mtc: Eﬁor eve.:r};
1 detected in E, register R2 is incremented and register R1 is checked again for more 1s. ‘etmaJ o_
loop is repeated until all the 1°s in R1 are counted. Note tl.1a.t the state box of 73 has no re%lzs er 01;1
erations, but the block associated with it contains the decision box for E . Also note t}la_t e I;Tn
input to shift register R1 must be equal to 0 because we don’t want to shift external 1’s into R1.

Section 8-9 Design with Multiplexers 335

Start M Ty }

T
E Control T,
[————{ 7 T3 I
Z=1if
Rl1=9
Check for

ZEeIo

Parailel output

Serial input= 0

Shift left
Shift register R1 it ie
£ D Load input

C <] T

Input data

Qutput count
CLK

Count

Counter R2

Loead input

Inputs = All 1's
FIGURE 8-22
Block Diagram for Count-of-Ones

The block diagram of the circuit is shown in Fig. 8-22. The control has three inputs and four
outputs. Only three outputs are used by the datapath. Register R1 is a shift register, Register R2
is a counter with parallel load. In order not to complicate the diagram, the clock is not shown,
but it must be applied to the two registers, the E flip-flop, and the flip-flops in the control.

The multiplexer input conditions for the control are determined from Table 8-8. The input con-
ditions are obtained from the ASM chart for each possible binary state transition. The four states
are assigned binary values 00 through 11. The transition from present state 00 depends on S. The
transition from present state 01 depends on Z, and the transition from present state 11 on E. Pre-
sent state 10 goes to next state 11 unconditionally. The values under MUX1 and MUX? in the

table are determined from the input Boolean conditions for the next state of G, and G,, respectively.

336 Chapter 8 Register Transfer Level

Table 8-8)
Multiplexer input Conditions for Design Example
Present Next M;:Itipl:xer
nputs
State State Input p
G Gy G G Conditions MUX1 MUX2
0 0 0 0 s . S
0 | 0 1
0 1 0 0 z ,
0 1 0 z A 0
1 0 I 1 None 1 1
1 1 1 0 E ’
1 1 i E E E

The control implementation of the design example is shpwp in Fig. 8-23. Tlils ils a thre;;ie;sl
implementation with the multiplexers in the first level. The inputs to the multiplexers

tained from Table 8-8.

0-—0
G
(— 1
Z MUX1 D
1—72
__> C
E'—13 < 5
i 0
I T(]
2%4 — 0
MUX select decoder A
— T3
Sl SU
§-—0
G
0—i1 L
MUX2 b
1—2
E—13 o—w> C
CLK
FIGURE 8-23

Control Implementation for Count-of-Ones Circuit

PROBLEMS

Problems 337

8-1

8-7

89

8-10

Bxplain in words the operations specified by the following register transfer notation:

() R2Z<— R2+ 1,Rl « R?

(b) R3«<— R3 -1

(©) M (T, = 1) then (RO < R1) else if (7, = 1) then (RO «- R2)

Draw the portion of an ASM chart starting from an initial state. There are iwo control signals x

and y. If xy = 10, register R is incremented by one and control goes to a second state. If xy = 01,

register R is cleared to zero and control goes from the initial state to a third state. Otherwise, con-
trol stays in the initial state.

Draw the ASM charts for the following state transitions:

(a) Hx = 0,control goes from state T tostate Ty; if x = 1, generate a conditional operation and
gofrom T, to T,.

(b) I x = 1, conirol goes from T to T, and then to T;; if x = (), control goes from T, to 7.

(¢) Start from state 7;; then: if xy = (0, goto Ty ifxy = 01, goto Ty; if xy = 10, goto T;; oth-
erwise, go to 7.

Show the eight exit paths in an ASM block emanating from the decision boxes that check the
eight possible binary values of three control variables X, y,and z.

Explain how the ASM chart differs from a conventional flow chart. Using Fig. 8-5 as an illustra-
tion, show the difference in interpretation,

Consiruct an ASM chart for a digital system that counts the number of people in a room. People
enler the room from one door with a photocell that changes a signal x from 1 to 0 when the light
is interrupted. They leave the room from a second door with a similar photocell that changes a sig-
nal y from 1 to O when the light is interrupted. The circuit consists of an up-down counter with
a display that shows how many people are in the room.

Draw an ASM chart for a circuit with two 8-bit registers RA and RB that receive two unsigned
binary numbers and performs the subtraction operation:

RA <« RA — RB

Use the method for subtraction described in Section 1-5 and set a borrow flip-flop to 1 if the
answer i3 negative,

Design a digital circuit with three 16-bii registers AR, BR, and CR to perform the following
operations:

(a) Transfer two 16-bii signed numbers (in 2’s complement representation) o AR and BR.

(b) If the number in AR is negative, divide the number in AR by two and transfer the resuit to
register CR,

(c) If the number in AR is positive but nonzero, multiply the number in BR by two and transfer
the result to register CR.

(d) If the number in AR is Zero, clear register CR to 0.

Design the control whose state diagram is given by Fig. 8-11{(a) using one flip-flop per state (one-
hot assignment).

The state diagram of a control unit is shown in F g. F8-10. It has four states and two inputs x and
. Draw the equivalent ASM chart, leaving the state boxes empty.

9-1

Asynchronous
Sequential Logic

INTRODUCTION

342

A sequential circuit is specified by a time sequence of inputs, outputs, and internal states. In
synchronous sequential circuits, the change of internal state occurs in response to the syn-

chronized clock pulses. Asynchronous sequential circuits do not use clock pulses. The change

of internal state occurs when there is a change in the input variables. The memory elements in

synchronous sequential circuits are clocked flip-flops. The memory elements in asynchronous
are either unclocked flip-flops or time-delay elements. The memory capa-
nite time it takes for the signal to propagate through

circuit quite often resembles a combinational cir-

sequential circuits
bility of a time-delay device is due to the fi
digital gates. An asynchronous sequential

cuit with feedback.

The design of asynchronous sequential circuits is more difficult than that of synchronous cir-

* cuits because of the timing problems involved in the feedback path. In a properly designed

synchronous system, timing problems are eliminated by triggering all flip—flops with the pulse
edge. The change from one state o the next occurs during the short time of the pulse transi-
tion. Since the asynchronous circuit does not use a clock, the state of the system is allowed to
change immediately after the input changes. Care must be taken to ensure that each new state
keeps the circuit in a stable condition even though a feedback path exists.

Asynchronous sequential circuits are useful in a variety of applications. They are used when
speed of operation is important, especially in those cases where the digital system must re-

spond quickly without having to wait for a clock pulse. They are more economical to use in small
w components, as it may not be practical to go to the

independent systems that require only a fe
expense of providing a circuit for generating clock pulses. Asynchronous circuits are useful in

applications where the input signals to the system may change at any time, independently of
" an internal clock. The communicati

on between: two units, with each unit having its own

Section 9-1 Introd uction 343

X ———
> 2]
ninput Y2 ——
variables . T &2
. . i output
. . variables
Xy ——— * ;
ZI?!
Combinational
circut
k second <
ondary ¥;
variables .
(present k excitation
state) variables
{next state)

FIGURE 9.1

o S
ynchronous sequential circuit. It consists of a com-

delay ﬁleHleIltS C()DHECIEd tO 10[11] feedback IOOPS IheIe are n llllet vari-
.

344 Chapter 9 Asynchronous Sequential Logic

generaled for the next state. These values propagate through the delay elements and become
the new present state for the secondary variables. Note the distinction betwen the y’s and the
¥’s. In the steady-state condition, they are the same, but during transition they are not. For a
given value of input variables, the system is stable if the circuit reaches a steady-state condi-
tion with y; = ¥, fori = 1, 2,..., k. Otherwise, the circuit is in a continuous transition and is
said to be unstable. It is important to realize that a transition from one stable state to another
occurs only in response to a change in an input variable. This is in contrast to synchronous
systems, where the state transitions occur in response to the application of a clock pulse.

To ensure proper operation, asynchronous sequential circuits must be allowed to attain a
stable state before the input is changed to a new value. Because of delays in the wires and the
gate circuits, it is impossible to have two or more input variables change at exactly the same
instant of time without an uncertainty as to which one changes first. Therefore, simultaneouns
changes of two or more variables are usually prohibited. This restriction means that only one
input variable can change at any one time and the time between two input changes must be
longer than the time it takes the circuit to reach a stable state. This type of operation is defined
as fundamental mode. Fundamental-mode operation assumes that the input signals change one
at a time and only when the circuit is in a stable condition.

9-2 ANALYSIS PROCEDURE

Transition

The analysis of asynchronous sequential circuits consists of obtaining a table or a diagram that
describes the sequence of internal states and outputs as a function of changes in the input vari-
ables. A logic diagram manifests an asynchronous-sequential-circuit behavior if it has one or
more feedback loops or if it includes unclocked flip-flops. In this section, we will investigate
the behavior of asynchronous sequential circuits that have feedback paths without employing
flip-flops. Unclocked flip-tflops are called latches, and their use in asynchronous sequential
circuits will be explained in the next section. '

The analysis procedure will be presented by means of three specific examples. The first ex-
ample introduces the transition table. The second example defines the flow table. The third
example investigates the stability of asynchronous sequential circuits.

Table

An example of an asynchronous sequential circuit with only gates is shownin Fig. 9-2. The di-
agram clearly shows two feedback loops from the OR gate outputs back to the AND-gate in-
puts. The circuit consists of one input variable x and two internal states. The internal states have
two excitation variables, ¥, and Y;, and two secondary variables, y, and y,. The delay associ-
ated with each feedback loop is obtained from the propagaticon delay between each y input and
its corresponding ¥ output. Each logic gate in the path introduces a propagation delay of about
2 to 10 ns. The wires that conduct electrical signals introduce an approximately one-nanosecond
delay for each foot of wire, Thus, no additional external delay elements are necessary when the
combinational circuit and the wires in the feedback path provide sufficient delay.

" The analysis of the circuit starts by considering the excitation variables as outputs and the
secondary variables as inputs. We then derive the Boolean expressions for the excitation

-able is used to designate the columns,

i

Section 9-2 Analysis Procedure 345

Y

Y2

-

FIGURE 9-2
Example of an Asynchronous Sequential Circuit

variables as a function of the in

put and secondary variables. readi i
from the Togie o y vanables. These can be readily obtained

ho=xy + X'y
L= xy + 2’y

The next step is to plot the ¥, and ¥, functions in a map,

: as shown in Fig. 9-3
encoded binary values of the y variables are used for Iab o the s oobe

o eling the rows, and the input x vari-
1s configuration results in a slightly different th

' : - ree-
variable map from the one used in previous chapters. However, it is still a valid map, and this

type of configuration is more convenient when dealing with asynchronous sequential circuits

Note that the variabies belongin i
g to the appropriate squares are not m, i
the map as done in previous chapters. ! prked slong thesides of

Y12 Y132 Y1¥a

6ol o 0 af o 1 00 01
01 1 0 01 1 1 01 11

11 1 1 11 1 0 11 10
10 0 1 10 0 0 10 00
(a) Map for (b} Map for (c) Transition table

Yi=xy +x'y, Yy=xy'r+x'y,
FIGURE 9-3 '
Maps and Transition Table for the Circuit of Fig. 9-2

346

Chapter 9 Asynchronous Sequential Logic

The transition table shown in Fig. 9-3(c) is obtained from the maps by combining the binary
values in corresponding squares. The transition table shows the value of ¥ = 1| ¥, inside each
square, The first bit of ¥ is obtained from the value of ¥,, and the second bit is obtained from
the value of ¥, in the same square position. For a state to be stable, the value of ¥ must be the
same as that of y = y,v,. Those entries in the transition table where ¥ = y are circled to in-
dicate a stable condition. An uncircled entry represents an unstable state.

Now consider the effect of a change in the input variable. The square for x = Jandy = 00
in the transition table shows that ¥ = 00, Since Y represents the next value of y, this is a sta-
ble condition. If x changes from 0 to 1 while y = 00, the circuit changes the value of ¥ to O1.
This represents a temporary unstable condition because ¥ is not equal to the present value of
v. What happens next is that as soon as the signal propagates to make ¥ = 01, the feedback path
in the circuit causes a change in y to 01. This is manifested in the transition table by a transi-
tion from the first row (y = 00) to the second row, where y = OL. Now that y = Y, the cir-
cuit reaches a stabie condition with an input of x = 1, In general, if a change in the input takes
the circnit to an unstable state, the value of y will change (while x remains the same) until it
reaches a stable (circled) state. Using this type of analysis for the remaining squares of the
transition table, we find that the circuit repeats the sequence of states 00, 01, 11, 10 when the
input repeatedly alternates between 0 and 1.

Note the difference between a synchronous and an asynchronous sequential circuit. In a syn-
chronous system, the present state is totally specified by the flip-flop values and does not change
if the input changes while the clock pulse is inactive. In an asynchronous circuit, the internal
state can change immediately after a change in the input. Because of this, it is sometimes con-
venient to combine the internal state with the input value together and call it the total state of
the circuit. The circuit whose transition table is shown in Fig. 9-3(c) has four stable total states—
yi¥.x = 000,011, 110, and 101—and four unstable total states—001, 010, 111, and 100.

The transition table of asynchronous sequential circuits is similar to the state table used for
synchronous circuits. If we regard the secondary variables as the present state and the excita-
tion variables as the next state, we obtain the state table, as shown in Table 9-1. This table pro-
vides the same information as the transition table. There is one restriction that applies to the
asynchronous case, but not the synchronous case. In the asynchronous transition table, there
usually is at least one next state entry that is the same as the present-state value in each row.
Otherwise, all the total states in that row will be unstable.

Table 9-1

State Table for the Circuit of Fig.9-2

Present Next State
State x=0 x=1
0 0 0 o0 0 1
0 1 1 0 1
1 0 0 0 1 0
1 1 I 1 1 0

Section 9-2 Analysis Procedure 347

The procedure for obtaining a transition table from

proc the circuit diagram o
sequential circuit is as follows: ¢ Fen seynchronous

1. Determine all feedback loops in the circuit.

2. Designate the output of each feedback loop

with y, fori = 1,2,.. with variable ¥; and its corresponding input

! -» k, where k is the number of feedback loops in the circuit,
3. Derive the Boolean functions of all ¥’

4. Plot each ¥ function in a map,
for the columns.

§ as a function of the external inputs and the y’s.
using the y variabies for the rows and the external inputs

5. Combine all the maps into one table showin

square, g the value of ¥ = ¥, %---¥, inside each

6. Circle those values of ¥ in each s

uare that are e .
the same row. 1 qual to the value of Y= e

-y v il’l
Once the transition table is available, the b

‘ ehavior of the circuit can be i
the state transition as a function of change enelysedby observing

s in the input variables.

Flow Table

During the design of asynchronous sequential circuits,
by Tetter symbols without making specific reference to
a flow table. A flow table is similar to a transition tabl
bolized with letters rather than binary numbers. The
of the circuit for each stable state,

i Etx;(lin;p]es of flow tables are shown in Fig. 9-4. The one in Fig. 9-4(a) has four states des-
gnated by the letters g, b, ¢, and 4. It reduces to the transition table of Fig. 9-3(c) if we assign

itis more convenient to name the states
their binary values. Such a table is called
¢ except that the internal states are Sym-
flow table also includes the output values

4 b X142
00 01 11 10

bl @ a [@0]|@.0|@.0] 5,0
. @ d bla.0]a,0(@, 1,0

4 . (b) Two states with two
Inputs and one cutput

() Four states with
one input

FIGURE 9-4
Examples of Flow Tables

348

Chapter 9 Asynchronous Sequential Logic

the following binary values to the states: a = 00, b = 0l,¢ = 1l,and d = -10. The tabl;'ot
Fig. 9-4(a) is called a primitive flow table because it has only-one stable state in each row. Fig-
ure 9-4(b) shows a flow table with more than one stable‘state in the same row. It has .two st‘at:es,
a and b; two inputs, x; and x,; and one output, z. The binary value of the ountput variable is in-
dicated inside the square next to the state symbol and is separated by a comma. _From the flow
table, we observe the following behavior of the circuit. If x; = 0, the circuit is n} sta‘te a. If x,
goes to 1 while x, is 0, the circuit goes to state 5. With inputs x;x, = 11, the c1rc?u1t may be
either in state a or state ». If in state , the output is 0, and if in St‘ate b, the_outpqt is 1. State b
is maintained if the inputs change from 10 to 11. The circuit stays in st.ate a if the inputs change
from 01 to 11. Remember that in fundamental mode, tw.o input variables cannot change si-
multaneously, and therefore we do not allow a change of .mputs from 00 to 11_.

In order to obtain the circuit described by a flow table, it is necessary to assign to each state
a distinet binary value, This assignment converts the flow t.ablel into a transition table fron;
which we can derive the logic diagram. This is illustrated in Fig. 9-5 f_or the ﬂov_v .tableb?
Fig. 9-4(b). We assign binary 0 to state ¢ and binary 1 t_o state.b. The. result is the transition ta le
of Fig. 9-5(a). The output map shown in Fig. 9-5(b)} is obtained d1rect.1y from th\'.a outPut v?) -
ues-in the flow table. The excitation function ¥ and the output fl,.lnct%()[l z are simplified by
means of the two maps. The logic diagram of the circuit is showg in flg. 9-5(c). '

This example demonstrates the procedure for obtaining the logic diagram from a given fllow
table. This procedure is not always as simple as in this example. There are several difficulties

X1 X9 X X2
00 01 11 10 00 1 11 10
¥ ¥
el] o[] [
1 0 0 @ @ 1] 0 0 1 0
(a) Transition table (b) Map for output
Y=xx'+xy =00y

==

X

i

I

(c) Logic diagram

FIGURE 9-5 .
Derivation of a Circuit Specified by the Flow Table of Fig. 9-4(b)

Section 9-2 Analysis Procedure 349

associated with the binary state assigriment and with the output assigned to the unstable states.
These problems are discussed in detail in the following sections.

Race Conditions

A race condition is said to exist in an asynchronous sequential circuit when two or more bi-
nary state variables change value in response to a change in an input variable. When unequal
delays are encountered, a race condition may cause the state variables to change in an unpre-
dictable manner. For exanple, if the state variables must change from 00 to 11, the difference
in delays may cause the first variable to change faster than the second, with the result that the
state variables change in sequence from 00 to 10 and then to 11. If the second variable changes
faster than the first, the state variables will change from 00 to O 1 and then to 11. Thus, the order
by which the state variables change may not be known in advance. If the final stable state that
the circuit reaches does not depend on the order in which the state variables change, the race
is called a noncritical race. Tf it is possible to end up in two or more different stable states, de-
pending on the order in which the state variables change, then it is a critical race. For proper
operation, critical races must be avoided. . '

The two examples in Fig. 9-6 illustrate noneritical races. We start with the total stable state
¥1y2x = 000 and then change the input from 0 to 1. The state variables must change from 00 to
11, which defines a race condition. The listed transitions under each table show three possible
ways that the state variables may change. They can either change simultaneously from 00 to 11,
or they may change in sequence from 00 to 01 and then to 11, or they may change in sequence

- from 00 to 10 and then to 11. In all cases, the final stable state is the same, which results in anon-

critical race condition. In (a), the final total state is yi¥2x = 111, and in (b), it is 011.

0 1 0 1
yiy2 Y1¥a2

00 11 00 11
01 11 01
11 @ 11 01

10 11 1¢ It
(a) Possible transitions: (b) Possible transitions:
00 —11 00 —=t1-—>n1
00— 01—-11 00— 01

00— 10—11 00— 10—~ 11— 01

FIGURE 9-6
Examples of Noncritical Races

Chapter 9 Asynchronous Sequential Logic

x x
0 1 0 1
Y1¥2 Y2
00 11 00 i1
01 01 11
J el o ®
(a) Possible transitions: (b) Possible transitions:
00— 11 . 00—-11
0 — 01 00 —01—11
00— 10 00 —10

FIGURE 9-7
Examples of Critical Races

The transition tables of Fig. 9-7 illustrate critical races, Here again we start with the total
stable state y; v,x = 000 and then change the input from 0 to 1. The state variables must change
from 00 to 11. If they change simultanecusly, the final total stable state is 111. In the transi-
tion table of part (a), if ¥, changes to 1 before ¥, because of unequal propagation delay, then
the circuit goes to the total stable state 011 and remains there. On the other hand, if ¥; changes
first, the internal state becomes 10 and the circuit will remain in the stable total state 101.
Hence, the race is critical because the circuit goes to different stable states depending on the
order in which the state variables change. The transition table of Fig. 9-7(b) illustrates anoth-
er critical race, where two possible transitions result in one final total state, but the third pos-
sible transition goes to a different total state.

Races may be avoided by making a proper binary assignment to the state variables. The
state variables must be assigned binary numbers in such a way that only one state variable can
change at anry one time when a state transition occurs in the flow table. The subject of race-free
state assignment is discussed in Section 9-6.

Races can be avoided by directing the circuit through intermediate unstable states with a
unique state-variable change. When a circuit goes through a unique sequence of unstable states,
it is said to have a cycle. Fig. 9-8 illustrates the occurrence of cycles. Again we start with
¥1¥2 = 00 and then change the input from O to 1, The transition table of part (a) gives a unigue
sequence that terminates in a total stable state 101. The table in {b) shows that even though the
state variables change from 00 to 11, the cycle provides a unique transition from 00to 0 1 and
then to 11. Care must be taken when using a cycle that it terminates with a stable state. If a cycle
does not terminate with a stable state, the circuit will keep going from one unstable state to an-
other, making the entire circuit unstable. This is demonstrated in Fig, 3-8(c) and also in the fol-
lowing example. . :

Section 9-2 Analysis Procedure | 351

0 1 0 1)

Yiy2 Yy Y1) ; !
00 01 00 01 00 01
01 11 01 11 m 11

1 i0 11 @ 11 10
10 10 10 0

(a) State transition: (b) State transition: (c) Unstable
00-—01—11- 10 00— 01— 11 EOl“)Il"%lO:l
FIGURE 9-8

Examples of Cycles

Stability Considerations

]]:»ecallqlse of the feedback cognection that exists in asynchronous sequential circuits, care must
¢ taken to ensure that the circuit does not become unstable. An unstabie condition will cause

the cm?uit to os‘cillate between unstable states. The transition-table method of analysis can be
useful in detecting the occurrence of instability,

Consider, for example, the circuit of Fig. 9-9(a). The excitation function is

Y = (xly)'xz = (xi + y’)x2 = XXy + X,y

L |
:“HD —

(a) Logic diagram

X1 Xy
y 00 0i 11 10

@1 1@..
1 0@ 0 0

(b) Transition table

FIGURE 9-9
Example of an Unstable Circuit

Section 9-3 Circuits With Latches 353

R
Q
(After SR = 10)
(After SR = 01)
0
S
(a) Crossed-coupled circuit (b} Truth table
SR
¥Y=0
Y
Y=8R'+RYy
Y=84+ R'y when SR = ¢
(c) Circuit showing feedback (d) Transition table
FIGURE 9-1¢

SR Latch with NOR Gates

sure that 1's are gt applied to both the § and R inputs simultaneously. This condition can be
expressed by the Boolean function SR = 0, which states that the ANDing of § and g must al-

Coming back to the excitation function, we note that when we OR the Boolean expression
SR with SR, the resui is the single varigble S.
SR’+SR=S(R’+R) =5

From this, we deduce that SR = § when SR =9, "I“herefore, the excitation function derived
Dreviously,

Y=g8p 4 Ry
an be expressed ag
Y=S+R’y when SR =

354

Chapter 9 Asynchronous Sequential Logic

To analyze a circuit with an SR latch, we must first check that the Boolean condition SR = 0
holds at all times. We then use the reduced excitation function to analyze the circuit. Howev-
er, if it is found that both § and R can be equal to 1 at the same time, then it is necessary to use
the original excitation function.

"The analysis of the SR latch with NAND gates is carried out in Fig. 9-11. The NAND latch
operates with both inputs normally at 1 unless the state of the latch has to be changed. The ap-
plication of 0 to R causes the output & to go to 0, thus putting the latch in the reset state. After
the R input returns to 1, a change of § to 0 causes a change to the set state. The condition to be
avoided here is that both § and R not be 0 simultaneously. This condition is satisfied when
S’R' = (. The excitation function for the circuit is

Y = [S(Ry)] = 8" + Ry

Comparing it with the excitation function of the NOR latch, we note that S has been replaced
with §’ and R" with R. Hence, the input variables for the NAND latch require the comple-
mented values of those used in the NOR latch. For this reason, the NAND latch is sometimes
referred to as an §'R’ latch (or S—R latch).

Q.‘

(After SR = 10)

(After SR = 01)

R N N I
[R =0 §~°]
N -1 [

= = R

2 o

(a) Crossed-coupled circuit (b) Truth table

SR
01 10

:_ e LT 0
y|’2 | 10|00

Y=58+RywhenS'R' =0

I
(i)

0

(c) Circuit showing feedback {d) Transition table

FIGURE 9-11
SR Latch with NAND Gates

R T

Section 9-3 _Circuits With Latches 355

Analysis Example

Asynchronous sequential circuits can be constructed with the use of SR latches with or without ex-
tf_zrnal feedback paths. Of course, there is always a feedback loop within the latch itself. The analy-
sis of a circuit with latches will be demonstrated by means of a specific example. From this example
1t will be possible to generalize the procedural steps necessary to analyze other, similar circuits, ,

The circuit shown'in Fig, 9-12 has two SR latches with outputs ¥; and ¥,. There are two in-
puts, xy and x,, and two external feedback loops giving rise to the secondary variables, ¥, and
Y2 Note that this circuit resembles a conventional sequential circuit with latches behaving like
flip-flops without clock pulses. The analysis of the circuit requires that we first obtain the
Boolean functions for the § and R inputs in each latch,

$1 = x» Sy = X%
Ri=xix Ry = xy
We then check whether the condition SR = 0 s satisfied to ensure proper operation of the circuit:
SR = xipxixy =0
SRy = x 0055 = 0

The result is 0 because x, x| = Xpx5 = 0,

n jl>%

>

o

5

.

N

1

— R,
L/

5
X3

FIGURE 9-12
Example of a Circuit with SR Latches

0

356

Chapter 9 Asynchronous Sequential Logic

The next step is to derive the transition table of the circuit. Remember that the tr-ansition table
specifies the value of Y as a function of y and x. The excitation functions are derived from the

relationY = § + R'y,

h=8+Ry=xyn+ (-xl + 1) =yt an oy

Y, =8+ Ry = xix, + (a0 + y)y = xix00 + X0 + ¥

1 .

We now develop a composite map for ¥ = ¥, ¥,. The y variables are assigned to the rows in the
map, and the x variables are assigned to the columnns, as shown in Fig. 9-13. The Boolean .func—
tions of ¥} and ¥, as expressed above are used to plot the composite map for ¥. The entries of
Y in each row that have the same value as that given to ¥ are circled and represent stab_le stat-es.
From investigation of the transition table, we deduce that the circuit is stable. There is a criti-
cal race condition when the circuit is initially in total state v, y,x; 2, = 1191 and x, changes from
1 to 0. If ¥; changes to O before Y3, the circuit goes to total state 0100 1n.stead of OOQO. How-
ever, with approximately equal delays in the gates and latches, this undesirable situation is not

likely to occur. o
T{le procedure for analyzing an asynchronous sequential circuit with SR latches can be sum-

marized as follows:

1. Label each latch output with ¥; and its external feedback path (if any) with y; for

i=1,2,...,k

2. Derive the Boolean functions for the S; and R; inputs in each latch.
Check whether SR = 0 for each NOR latch or whether SR’ = 0 for- each NAND
latch. If this condition is not satisfied, there is a possibility that the circuit may not op-
erate properly.
. Bvaluate Y = § + R'y for ecach NOR latch or ¥.= 8" + Ry for each NAND latch.
» Construct a map with the y’s representing the rows and the x inputs representing the columns.

. Plot the value of ¥ = Y} ¥, ¥, in the map. N
. Circle all stable states where Y = y. The resulting map is then the transition table.

i

=1 & th A

XX
00 01 11 10

riyz

00 01
01 @ @ 11 11
1] a0 @ @ 10
10 00 11 -

FIGURE 9-13
Transition Table for the Circuit of Fig. 9-12

Section 9-3 Circuits With Latches 357

Latch Excitation Table

The transition table of the SR latch is useful for analysis and for defining the operation of the
latch. It specifies the excitation variable ¥ when the secondary variable y and the inputs § and
R are known. During the implementation process, the transition table of the circuit is available
and we wish to find the values of § and R. For this reason, we need a table that lists the required
inputs S and R for each of the possible transitions from y to ¥. Such a list is called an excita-
tion table.

The excitation table of the SR latch is shown in Fig. 9-14(b). The first two columns list the
four possible transitions from ¥ to Y. The next two columns specify the required input values
that will result in the specified transition. For example, in order to provide a transition from
y=0t0F =1,itis hecessary to ensure that input S = 1 and input R = 0. This is shown in
the second row of the transition tabie.

The required input conditions for each of the four transitions in the excitation table can be
derived directly from the latch transition table of Fig. 9-10(d) after removing the unstable con-
dition §R = 11. For example, in order to change from y = 01toY = 0, the transition table
shows that SR can be either 00 or 01, This means that § must be 1 and & may be either O or 1.
Therefore, the first row in the excitation table shows § = Qand R = X . where X is a don’t-
care condition signifying eithera O ora 1.

Implementation Example

The implementation of a sequential circuit with SR latches is a procedure for obtaining the
logic diagram from a given transition table. The procedure requires that we determine the
Boolean functions for the § and R inputs of each latch. The logic diagram is then obtained by
drawing the SR latches and the logic gates that implement the § and R functions. To demon-
strate the procedure, we will repeat the implementation example of Fig. 9-5. The output circuit
remains the same and will not be repeated again.

The transition tabie from Fig. 9-5(a} is duplicated in Fig. 9-14(a). From the information
given in the transition table and from the latch excitation table conditions in Fig. 9-14(b), we
can obtgin the maps for the S and R inputs of the latch, as shown in Fig. 9-14(c) and (d). For
example, the square in the second row and third column (VX Xy = 111) in Fig. 9-14(a) requires
a transition fromy = 1to¥ = 1. The excitation table specifies S = X, R = 0 for this change.
Therefore, the corresponding square in the S map is marked with an X and the one in the R map
with a 0. All other squares are filled with values in a similar manner, The maps are then used
to derive the simplified Boolean functions

§ = x x4 and R = x|

The logic diagram consists of an SR latch and the gates required to implement the § and R
Boolean functions. The circuit is as shown in Fig. 9-14(e) when a NOR latch is used. With a
NAND latch, we must use the complemented values for § and R.

S = (xleq_)' and R =x
This circuit is shown in Fig. 0-14(1).

358 Chapter 9 Asynchronous Sequential Logic

Rat7)
00 01 11 10 ¥ Y S R
7 0 0 0 X
O[O R
1 0 0 1
1 0 0 @ @ 1 1 X 1

(a) Transition table (b) Latch excitation table
Y=xx'a+x1y

XXy x1%2

a0 01 11 10 00 01 11 10
0 0 0 m 0 I X X X 0
1 0 g X @ 1 1 1 J 0 0

(c) Map for § = xx', (d)Mapfor R=x";

x|

:

o)

R

=
>
D

ircuit with NAND latch
(e) Circuit with NOR latch (f) Circuit w

FIGURE 9-14 B
Derivation of a Latch Circuit from a Transition Table

The general procedure for implementing a circuit with SR latches from a given transition
table can now be sumnmarized as follows: |
1. Given a transition table that specifies the excitation function ¥ = W, Y, d‘e.nve a pair
. of mapé for §;and R; foreach i = 1, 2,..., k. This is done by using the conditions spec-
ifted in the latch excitation table of Fig. 9-14(b). N
2, Dertve the simplified Boolean functions for each §; and R;. Care must be taken not to make
§; and R; equal to 1 in the same minterm square.

Debounce

Section 9-3 Circuits With Latches 359

3. Draw the logic diagram using k latches together with the gates required to generate the
§ and R Boolean functions. For NOR latches, use the § and R Boolean functions obtained
in step 2. For NAND latches, use the contplemented values of those obtained in step 2,

Another useful example of latch implementation can be found in Section 9-7 in conjunction
with Fig. 9-38.

Circuit

Input binary information in a digital system can be generated manually by means of mechan-
ical switches: One position of the switch provides a voltage equivalent to logic 1, and the other
position provides a second voltage equivalent to logic 0. Mechanical switches are also used to
start, stop, or reset the digital system. When testing digital circuits in the laboratory, the input
signals will normally come from switches. A common characteristic of a mechanical switch is
that when the arm is thrown from one position to the other, the switch contact vibrates or
bounces several times before coming to a final rest. In a typical switch, the contact bounce
may take several milliseconds to die out. This may cause the signal to oscillate between 1 and
0 because the switch contact is vibrating,

A debounce circuit is one that removes the series of pulses that result from a contact bounce
and produces a single smooth transition of the binary signal from 0 to 1 or from | to 0. One
such circuit consists of a single-pole double-throw switch connected to an SR latch, as shown
in Fig. 9-15. The center contact is connected to ground that provides a signal equivalent to
logic-0. When one of the two contacts, A or B, is not connected to ground through the switch,
it behaves like a logic-1 signal. A resistor is sometimes connected from each contact to a fixed
voltage to provide a firm logic-1 signal. When the switch is thrown from position 4 to posi-
tion B and back, the outputs of the latch produce a single pulse as shown, negative for (and
positive for Q'. The switch is usually a pushbutton whose contact rests in position A. When the
pushbuiton is depressed, it 8065 to position B and when released, it returns to position A.

The operation of the debounce circuit is as follows. When the switch rests in position A, we
have the condition § = OR=landQ=1,0" =0 (see Fig. 9-11(b)). When the switch is
moved to position B, the ground connection causes R to go to () while S becomes a 1 because

Groiund A B 4

FIGURE 9-15
Debounce Circuit

360

9.4

Chapter 9 Asynchronous Sequential Logic

contact A is open. This condition causes output) to go to 0 and Q' to go to 1. After the switch
makes an initial contact with B, it bounces several times, but for proper operation, we must as-
sume that it does not bounce back far enough to reach point A. The output of the latch will be
unaffected by the contact bounce because Q' remains 1 (and Q remains 0) whether R is equal
to 0 (contact with ground) or equal to 1 (no contact with ground). When the switch returns to
position A, S becomes 0 and @ returns to 1. The output again will exhibit a smooth transition
even if there is a contact bounce in position A.

DESIGN PROCEDURE

The design of an asynchronous sequential circuit starts from the statement of the problem and
culminates in a Jogic diagram. There are a number of design steps that must be carried out in
order to minimize the circuit complexity and to produce a stable circuit without critical races,
Briefly, the design steps are as follows. A primitive flow table is obtained from the design spec-
ifications. The flow table is reduced to a minimum number of states. The states are then given
a binary assignment from which we obtain the transition table. From the transition table, we de-
rive the logic diagram as a combinational circuit with feedback or as a circuit with §R latches,

The design process will be demonstrated by going through a specific example. Once this ex-
ample is mastered, it will be easier to understand the design steps that are enumerated at the
end of this section. Some of the steps require the application of formal procedures, and these
are discussed in greater detail in the following sections.

Design Example

It is necessary to design a gated latch circuit with two inputs, G (gate) and D (data), and one
output, {7. Binary information present at the I input is transferred to the Q output when G is
equal to 1. The O output will follow the D input as long as G = 1. When G goes to 0, the in-
formation that was present at the D) input at the time the transition occurred is retained at the
¢ output. The gated latch is a memory element that accepts the value of D when G = 1 and
retains this value after G goes to 0. Once G = 0, a change in D does not change the value of

the output 0.

Primitive Flow Table

As defined previously, a primitive flow table is a flow table with only one stable total state in
each row. Remember that a total state consists of the internal state combined with the input. The
derivation of the primitive flow table can be facilitated if we first form a table with all possi-
ble total states in the system. This is shown in Table 9-2 for the gated latch, Each row in the
table specifies a total state, which consists of a letter designation for the internal state and a pos-
sible input combination for D and G. The output @ is also shown for each total state. We start
with the two total states that have G = 1. From the design specifications, we know that @ = 0
if DG = 01 and @ = 1if DG = 11 because D must be equal to Q when G = 1. We assign
these conditions to states ¢ and b. When G goes to 0, the output depends on the last value of

' Section 9-4 Design Procedure 361

Table 9-2 '
Gated-Latch Total States
Inputs Output-
State D G Q Comments
;1 i) 1)] D = Obecause G = 1
’ 1 1 D = Qbecause G =]
° ¢ 0] 0 After state g or d
1 0 0 After state ¢
e 1 0 1. - After state b ar f
f 0 0 1 After state ¢

D, Thqs, if the transition of DG is from 01 to 00 to 10; then ¢ must remain 0 because Dis 0
at the time of- the tl'aIlISiIiOIl from 1 to 0 in G. If the transition of DG is from 11 to 10 to 00, then
Q mu§t remain 1. This information results in six different total states, as shown in the table ,N t
that simultaneous transitions of two input variables, such as from 01 to 10 or fx 11 o 00,
are not allowed in fundamental-mode operation. . om e %
The primitive flow table for the gated latch is shown in Fig. 9-16. It has one row for each
state- and one column for each input combination, First, we fill in one square in each ro bC
longing to the stable state in that row. These entries are determined from Table 9-2. For e‘;’arg:

- Ple, state a is stable and the output is 0 when the input is 01. This information is entered in the

ﬂoxy table in the first row and second column. Similarly, the other five stable s
their output are entered in the corresponding input eolumns.

tates together with

DG

00 01 11 10
a e, (@o]b,-|- -
bl-,-|a,- , 1] e, —
¢ WOl a,-[-,-|4d,-
d €,— - b,, ,0
ey fi-|~.-|b,— ()1
f)1 a,— i e,

FIGURE 9-16
Primitive Flow Table

362 Chapter 9 Asynchronous Sequential Logic

Reduction

Next we note that since both inputs are not allowed to change simultaneously, we can enter
dash marks in each row that differs in two or more variables from the input variables associ-
ated with the stable state. For example, the first row in the flow table shows a stable state with
an input of 01, Since only one input can change at any given time, it can change to 00 or 11,
but not to 10. Therefore, we enter two dashes in the 10 column of row a. This will eventually
result in a don’t care condition for the next state and output in this square. Following this pro-
cedure, we fill in a second square in each row of the primitive flow table.

Next it is necessary to find values for two more squares in each row. The comments listed
in Table 92 may help in deriving the necessary information. For example, state ¢ is associat-
ed with input 00 and is reached after an input change from state a or d. Therefore, an unstable
state ¢ is shown in column 00 and rows a and d in the flow table. The output is marked with a
dash to indicate a don't-care condition. The interpretation of this is that if the circuit is in sta-
ble state @ and the input changes from 01 to 00, the circuit first goes to an unstable next state
¢, which changes the present state vatue from « to ¢, causing a transition to the third row and
first column of the flow table. The unstable state values for the other squares are determined
in a similar manner. All outputs associated with unstable states are marked with a dash to in-
dicate don’t-care conditions. The assignment of actual values to the outputs is discussed fur-
ther after the design example is completed.

of the Primitive Flow Table

The primitive flow table has only one stable state in each row. The table can be reduced to a
smaller number of rows if two or more stable states are placed in the same row of the flow
table. The grouping of stable states from separate rows into one common row is called merg-
ing. Merging a number of stable states in the same row means that the binary state variable that
is ultimately assigned to the merged row will not change when the input variable changes. This
is because in a primitive flow table, the state variable changes every time the input changes, but
in a reduced flow table, a change of input will not cause a change in the state variable if the
next stable state is in the same row.

A formal procedure for reducing a flow table is given in the next section. In order to com-
plete the design example without going through the formal procedure, we will apply the merg-
ing process by using a simplified version of the merging rules. Two or more rows in the primitive
flow table can be merged into one row if there are non-conflicting states and outputs in each
of the columns. Whenever one state symbol and don’t-care entries are encountered in the same
columm, the state is listed in the merged row. Moreover, if the state is circled in one of the rows,
it is alse circled in the merged row. The output value is included with each stable state in the
merged row. ‘

We now apply these rules to the primitive flow table of Fig. 3-16. To see how this is done,
the primitive flow table is separated into two parts of three rows each, as shown in Fig. 9-17(a).
Each part shows three stable states that can be merged because there are no conflicting entries
in each of the four colummns. The first column shows state ¢ in all the rows and 0 or a dash for
the output. Since a dash represents a don’t-care condition, it can be associated with any state
or output. The two dashes in the first column can be taken as 0 output to make all three rows
identical to a stable state ¢ with a 0 output. The second column shows that the dashes can be

~-Section 9-4 Design Procedure 363

DG '
DG
00 01 11 10 00 01 11 10

ale-|@o|b,-[-, - bl-.=|a,~|@)1]e,-

dle-J-,~1b,- @0 1O a, -, e -

(a) States that are candidates for merging

DG
DG
00 01 11 10 00 01 11 10

aed |@Q0(@0]s,- ([@o| @ol@o(s,- @0
bef |D1la.- @11 AIONFIONIOY

(b) Reduced table (two alternatives)
FIGURE 9-17

Reduction of the Primitive Flow Table

3;51t1;gen;:;i “f;g (;;){'reslpon(.i tc; a:j stable state ¢ with-a O output. Note that if the state is circled in one
» 118 also circled in the merged row. Similarly, the third
: g g lumn can bhe d i
an unstable state b with a don’t-care o ' o ot stabe
~ ntput and the fourth column can b i
! 1 be merged into stable
state ¢ and a 0 output, Thus, the three rows, @, ¢, and d, can be merged inio one fow with three

first row of Fig. 9-17(b). The second row
» €, and fof the primitive flow table, There

tained to show the relationship between the reduc
ternative is to define a common letter symbol for al
s‘tates ¢ and d are replaced by state g,
tives are shown in Fig. 9-17(b).

ed and primitive flow tables. The other - .
I the stable states of the merged rows. Thus,
and states ¢ and fare replaced by state b. Both alterna-

Transition Table and Logic Diagram

In . - .
order to obtain the circuit described by the reduced flow table, it is necessary to assign to

ignment converts the flow table into a transiti
‘ : _ ition table.
In the general case, a binary state assignment must be made to ensure that the circuit will be

g:;soti; Zlgic‘;ailtzces: The s;a.te—;ssignment problem in asynchronous sequential circuits and
© thscussed in Section 9-6. Fortunately, there can b iti i

row flow table, and therefore, we can finj ien of 2ich prior 10 e
. \ \ nish the design of the gated tatch pri i

¢ ¢, a _ prior to stud Sec-

tion 9-6. Assigning 0 to state ¢ and 1 to state b in the reduced flow table of Fig 9—%7;’1(15) ;c;e

364

Chapter 9 Asynchronous Sequential Logic

DG DG
00 0L 11 10 00 ol 11 10
y y
o 0 1 0 ol o 0 1 0
1| 1 0 1 1 1| 1 0 1 1
(a)Y = DG + Gy o=V

FIGURE 9-18
Transition Table and Output Map for Gated Latch

obtain the transition table of Fig. 9-18(a). The transition table is, in effect, a map for the exci-
tation variable ¥. The simplified Boolean function for ¥ is then obtained from the map.

Y = DG + Gy

There are two don’t-care outputs in the final reduced flow table. If we assign values to the out-
put, as shown in Fig. 9-18(b), it is possible to make output () equal to the excitation function
Y. If we assign the other possible valoes to the don’t-care outputs, we can make output Q equal
to y. In either case, the logic diagram of the gated latch is as shown in Fig. 9-19.

The diagram can be implemented also by means of an SR latch. Using the procedure out-
lines in Section 9-3, we first obtain the Boolean functions for S and R, as shown in Fig. 9-20(a).
The logic diagram with NAND gates is shown in Fig. 9-20(b). Note that the gated latch is a level-
sensitive D-latch introduced in Section 5-2 and Fig. 5-6.

Assigning Outputs to Unstable States

The stable states in a flow table have specific output values associaied with thermn. The unsta-
ble states have unspecified output entries designated by a dash. The output values for the un-
stable states must be chosen so that no momentary false outputs occur when the circuit switches
between stable states, This means that if an cutput variable is not supposed to change as the re-
sult of a transition, then an unstable state that is a transient state between two stable states must

G >

n

FIGURE 9-19
Gated-Latch Logic Diagram

Section 9-4 Design Procedure 365

DG
DG
00 01 11 10 00 01 11 10

00@0 OXQOX

(a)$=DG R=DC
(a) Maps for § and R
: D
—- - 0
G
]
(b) Logic diagram
FIGURE 9-20

Circuit with SR Latch

h‘five the same output value as the stable states. Counsider, for example, the flow table of
F_lg. 9-21(a). A transition from stable state @ to stable state b goes through the unstable statez
If the output a§signed to the unstable bisa !, then a momentary short pulse will appear on the:
output as the circuit shifts from an output of 0 in state @ to an output of 1 for the unstable b and

a (®0]b,- 0 0
ble,- @0 x| o
|1 4a,- 1| 1
d|a-~[(@1 X | 1

(a) Flow table (b) Output assignment -

FIGURE 9-21
Assigning Output Values to Unstable States

366

Chapter ¢ Asynchronous Sequential Logic

back to 0 when the circuit reaches stable state b. Thus the output corresponding to unstable state
& must be specified as 0 to avoid a momentary false output.

If an output variable is to change value as a result of a state change, then this variable is
assigned a don’t-care condition. For example, the transition from stable state b to stable state
¢ in Fig. 9-21(a) changes the output from 0 to 1. If a 0 is entered as the ountput value for un-
stable ¢, then the change in the output variable will not take place until the end of the tran-
sition. If a 1 is entered, the change will take place at the start of the transition. Since it makes
no difference when the output change occurs, we place a don’t-care entry for the output as-
sociated with unstable state ¢. Fig. 9-21(b) shows the output assignment for the flow table.
It demonstrates the four possible combinations in output change that can occur. The proce-
dure for making the assignment to outpuis associated with unstable states can be summarized

as follows:

1. Assign a 0 to an output variable associated with an unstable state that is a transient state
between two stable states that have a 0 in the corresponding output variable.

2. Assigna 1 to an output variable associated with an unstable state that is a transient state
between two stable states that have a 1 in the corresponding output variable.

3. Assign a don’t-care condition to an output variable associated with an unstable state that
is a transient state between two stable states that have different values (0 and 1 or 1 and

() in the corresponding output variable.

Summary of Design Procedure

The design of asynchronous sequential circuits can be carried out by using the procedure il-
lustrated in the previous example. Some of the design steps need further elaboration and are

explained in the following sections. The procedural steps are as follows:

1. Obtain a primitive flow table from the given design specifications. This is the most dif-
ficult part of the design because it is necessary to use intuition and experience to arrive
at the correct interpretation of the problem specifications.

2. Reduce the flow table by merging rows in the primitive flow table. A formal procedure
for merging rows in the flow table is given in Section 9-5.

3. Assign Binary state variables to each row of the reduced flow table to obtain the transi-
tion table. The procedure of state assignment that eliminates any possible critical races
is given in Section 9-6.

4. Assign output values to the dashes associated with the unstable staies to obtain the out-
put maps. This procedure was explained previously.

5. Simplify the Boolean functions of the excitation and output variables and draw the logic
diagram, as shown in Section 9-2. The logic diagram can be drawn using S& latches, as
shown in Section 9-3 and also at the end of Section 9-7.

9-5

Section 9-5 Reduction of State and Flow Tables 367

REDUCTION OF STATE AND FLOW TABLES

rTelslz Ifll]‘;izeczﬁre for rzduci;g the number of internal states in an asynchronous sequential circuit
§ the procedure that s used for synchronous circui i
. 1ts. An algorithm for state reducti
of a completely specified state table 1s given in Section 5-6, We will review this algorithim ar?g

Implication Table

T R . . "
thl;c; ts\;a;z trae;;duc_:tlon tpra:)ceii)lllre for completely specified state tables is based on the algorithm
€5 In a state table can be combined into one if th b i
Two states are equivalent if for e ible in < exaetty the s oo valent
ach possible input, they give exactly th
to the same next states or to equi Table € WS a1 Cxomplo o e €0
quivalent next states. Table 6-6 shows 1 i
states that have the same next states and 1 0F i, Tt esent
: outputs for each combination of inputs. Th
casions when a pair of states do not have th Tess, 5010 cquinn.
€ same next states, but, nonethel i
lent next states. Consider, for ex o Tab The prosent staon
. L ample, the state table shown in Table 9-3. Th
: -J. Ihe present states
2;13 g t}1151\43 tEe same output for the same input. Their next states are ¢ and J f(l))r x = (and z
inda (or; = _1. If we can spow that the pair of states (¢, d) are equivalent, then the pair of
a, b) will also be equivalent because they will have the same or equivalent next states

.When this relationship exists, we say that (a, b) imply (c, d). Similarly, from the last two rows

;1; ;igi ?-;iuwe fm{j l;ltlat th.c pﬁir of states (¢, d) imply the pair of states (@, b). The charac-
' tvaient states is that if {a, &) imply (c, d) and (¢. d) impl 0, b .
pairs of states are equivalent; that is, ¢ and b are cayj , , i Ao, e both
: R quivalent as well as ¢ and d. A
the four rows of Table 9-3 can be reduced i) (0 090 state
tot i i
ol o T 973 WO TOws by combm}ng aand b ino one state and
o ;‘:tz Scilzﬁlimi of each pair of states for possible equivalence in a table with a large number
€ done systematically by means of an implication table. The implicati i

a chart that consists of squares, one for eve i i ot provide s e i
: onsis , 1y possible pair of states, that provide spaces for Ii

. . P ’) t-
ing any possible implied states. By judicious use of the table, it is possible to Setermjnel;ll

Table 9.3
State Table to Demonstrate Equivalent States
Present Next State Output
State x=0 x=1 x=0 x=1
a c b 0 i
b d a 0 1
c a d 1
0
d b d 1 0

368

Chapter 9 Asynchronous Sequential Logic

Table 9-4
State Table to Be Reduced
Next State Output
Present -
State x=0 x=1 x=0 x=

a d 6 0 0
b e a 0 (1)
c g b 0 .
d a d 1
e a d 1 0
f c b 0 0
g a € 1 0

pairs of equivalent states. The state table of Table 9-4 wi_ll be used to lllusFratle thl;fgﬁutfg
The implication table is shown in Fig. 9-22, On the left side along the VGI"th& aﬁe 4 al e
states defined in the state table except the first, and across Fhe botton} hopzont? ty arset listed al
the states except the last. The result is a display of all possible c:ombmatwnst0t v&:; states wit
a square placed in the intersection of a row and a column where the two states
forl?\%l::?;f;c;at are not equivalent are marked with a cross (X) in the corresponclilmg 33;1;;:;
whereas their equivalence is recorded with a check mark (\f).. Some of thfh squarei lal\iffa]ent s
of implied states that must be further investigated to detet:mme whether hey are cllace ent or
not, The step-by-step procedure of filling in the squares is as follows. Fl;j)t% we ll ace 2 cross
in any square corresponding to a pair of states whose outputs are not equal for every input.

b{d, eV

c X X

d X X X

e X X X v

Fledx|zgl x| x| x

-g x| x| x4, ed|d,ev| x
a b ¢ d e f

FIGURE 9-22
Implication Table

Section 9-5 Reduction of State and Flow Tables 369

this case, state ¢ has a different output than any other state, so a cross is placed in the two
squares of row ¢ and the four squares of colurnn ¢. There are nine other squares in this cate-
gory in the implication table.

Next, we enter in the remaining squares the pairs of states that are implied by the pair of states
representing the squares. We do that starting from the top square in the left column and going
down and then proceeding with the next column to the right. From the state tabie, we see that
pair (a, b) imply (d, e), so (d. e) is recorded in the square defined by column & and row .
We proceed in this manner until the entire table is completed. Note that states (d, e) are equiv-
alent because they go to the same next state and have the same output. Therefore, a check mark
is recorded in the square defined by column 4 and row e, indicating that the two states are
equivalent and independent of any implied pair.

The next step is to make successive passes through the table to determine whether any ad-
ditional squares should be marked with 2 cross. A square in the table is crossed out if it cop-
tains at least one implied pair that is not equivalent. For example, the square defined by a and

Jis marked with a cross next to ¢, d because the pait (¢, d) defines a square that contains a Cross.
This procedure is repeated until no additional squares can be crossed out. Finally, all the squares
that have no crosses are recorded with check marks. These squares define pairs of equivalent
states. In this example, the equivalent states are

(@.0) (de) (d.g) (eg)

We now combine pairs of states into larger groups of equivalent states. The last three pairs

. can be combined into a set of three equivalent states (d, e, g) because each one of the states

in the group is equivalent to the other two. The final partition of the states consists of the equiv-

alent states found from the implication table, together with all the remaining states in the state
table that are not equivalent to any other state.

(a.0) (c) (deg) (f)

This means that Table 9-4 can be reduced from seven states to four states, one for each mem-
ber of the above partition. The reduced tabie is obtained by replacing state b by g and states e
and g by d. The reduced state table is shown in Table 9-5.

Table 9-5

Reduced State Table

Present Next State OQutput

State x=0 x=1 x=0 x=1

a d a 0 0
c d f 0 1
d a d 1 0
f c a 0 0

370

Chapter 9 Asynchrenous Sequential Logic

Merging of the Flow Table

There are occasions when the state table for a sequential circuit is incompletely specified. This
happens when certain combinations of inputs or input sequences may never cceur because of
external or internal constraints. In such a case, the next states and outputs that should have oc-
curred if all inputs were possible are never attained and are regarded as don’t-care conditions.
Although synchronous sequential circuits may sometimes be represented by incompletely spec-
ified state tables, our interest here is with asynchronous sequential circuits where the primitive
flow table is always incompletely specified.

Incompletely specified states can be combined to reduce the number of states in the flow
table. Such states cannot be called equivalent, because the formal definition of equivalence re-
quires that all outputs and next states be specified for all inputs. Instead, two incompletely
specified states that can be combined are said to be comparible. Two states are compatible if
for each possible input they have the same output whenever specified and their next states are
compatible whenever they are specified. All don’t-care conditions marked with dashes have no
effect when searching for compatible states as they represent unspecified conditions.

The process that must be applied in order to find a snitable group of compatibles for the pur-
pose of merging a flow table can be divided into three procedural steps:

1. Determine all compatible pairs by vsing the implication table.
2. Find the maximal compatibles using a merger diagram.

3. Find a minimal collection of compatibles that covers all the states and is closed.

The minimal collection of compatibles is then used to merge the rows of the flow table. We will
now proceed to show and explain the three procedural steps using the primitive flow table from
the design example in the previous section. '

Compatible Pairs

The procedure for finding compatible pairs is illustrated in Fig. 9-23. The primitive flow table
in (a) is the same as Fig. 9-16. The entries in each square represent the next state and output.
The dashes represent the unspecified states or outputs. The implication table is used to find
compatible states just as it is used to find equivalent staies in the completely specified case. The
only difference is that when comparing rows, we are at liberty to adjust the dashes to fit any
desired condition.

Two states are compatible if in every column of the corresponding rows in the flow table,
there are identical or compatible states and if there is no conflict in the output values, For ex-
ample, rows a and b in the flow table are found to be compatible, but rows a and fwill be com-
patible only if ¢ and fare compatible. However, rows ¢ and f are not compatible because they
have different outputs in the first column. This information is recorded in the implication table.
A check mark designates a square whose pair of states are compatible. Those states that are not
compatible are marked with a cross. The remaining squares are recorded with the implied pairs
that need further investigation.

Section 9-5 Reduction of State and Flow Tables -371

00 01 11 10

a c,- ;O b:_ T
bl-,-la,- L, 1] e, ~ b V4
¢ :0 a,--,~ dl‘ c \/d’ex
d N
¢, e =@, 0 d J0dex| g
e | f,- v,—b~®1 e fo.f dyex
3 3 2P X !
4 €. fx X
F@fa,-|-, e, - 4
;) , e, fx s
. f v Xle, Fx v
{a) Primitive flow table ‘ ’ ‘ ‘)
{b) Implication table

FIGURE 9-23
Flow and Implication Tables

Wh(())mc-e th;:' ilcliitial impiication table has been filled, it is scanned again to cross out the squares
S& Implied states are not compatible. The remainin i

: ! . g squares that contain check -

fine the compatible pairs. In the example of Fig. 9-23, the compatible pairs are e de

(@.6) (a.c) (a,d) (be) (bf) (cd) (e.)
Maximal Compatibles

Having found all the compatible pairs, the next step is to find larger sets of states that are cog-

patible. The maximal compatible is a group of compatibles that contains all the possible com-

:?Siultt)ons Qf ?mpatible states. The mz.iximal compatible can be obtained from a merger diagram
dorm awC: dn:ﬂ olfé ?l—litl._’l‘ht:fnerger d1eflgram is a graph in which each state is represented by e;
' cicumterence of a circle. Lines are drawn between any t
. ‘ WO COIT -
:;ndgi dots thgt forma (-:ompanble pair. All possible compatibles can be obtajne{l from theiii?n—
o :él;];}d go ;)bservmg the geometrical patterns in which states are connected to each othfi
Tepresents a state that is not compatible to any’ i -
: . . te y other state. A line represent
Es;g;t;l::iz Pal:i] A triangle d;:onstltutes a compatible with three states. An n-state cogpatibﬁesi:
i the merger diagram by an n-sided polygon with all its di:
) . y ¢ ts diagonals connected.
thergﬁfpl]?jiﬁer dtlagfamfoé Fig. 9-24(a) is obtained from the list of compatible pairs derived from
on table of Fig. 9-23. There are seven straisht lines i
each compatible pair. The lines form a i : iSting of mwe o T
_ . geometrical pattern consisting of two triangl -
necting (a, ¢, d) and (b, e, f) and aline {a, b). The maximal compatibles are seeon

(a, b) (a,c,d) (b,e, f)

Section 9-5 Reduction of State and Flow Tables 373

Therefore, the primitive flow table can be merged into two rows, one for each of the compat-
ibles. The detailed construction of the reduced table for this particular example was done in the
previous section and is shown in Fig. 9-17(b). _

The second example is from a primitive flow table (not shown) whose implication table is
given in Fig. 9-25(a). The compatible pairs derived from the implication table are

(a,b) (a,d) (b,¢) (c,d) (c, e)(d,e)
From the merger diagram of Fig, 9-25 (b), we determine the maximal compatibles:
(a,8) (a.d) (b,c) (c,d,e)
If we choose the two compatibles
(a,b) (c.d,e)

then the set will cover all five states of the original table. The closure condition can be checked
by means of a closure table, as shown in Fig. 9-25(c). The implied pairs listed for each corn-
patible are taken directly from the implication table. The implied states for (a, b) are (b, ¢).
But (b, ¢) is not included in the chosen set of (a,b) (¢, d, e), so this set of compatibles is not
closed. A set of compatibles that will satisfy the closed covering condition is

{a,d) (b,c) (c,d,e)

[X d,e\/

e X X VI|b, e/

a b ¢ d
(2) Implication table ‘ (b} Merger diagram
Compatibles (a b) (a, d) (b c) (¢, d e)
Implied states (bc) b c) {d,e) {a.d,)
(bc)
(c) Closure table
FIGURE 9-25

Choosing a Set of Compatibles

374

9-6

Chapter 9 Asynchronous Sequential Logic

The set is covered because it contains all five states. Note that the same state can be repeated
more than once. The closure condition is satisfied because the implied states are (b,) (d, ¢) and
(@, d), which are included in the set. The original flow table (not shown here) can be reduced from
five rows to three rows by merging rows g and , b and ¢, and ¢, 4, and e. Note that an alterna-
tive satisfactory choice of closed-covered compatibles would be (a, b) (b, ¢) (d,). In general,
there may be more than one possible way of merging rows when reducing a primitive flow table.

RACE-FREE STATE ASSIGNMENT

Once a reduced flow table has been derived for an asynchronous sequential circuit, the next step
in the design is to assign binary variables to each stable state. This assignment results in the trans-
formation of the flow table into its equivalent transition table. The primary objective in choos-
ing a proper binary state assignment is the prevention of critical races. The problem of critical
races was demonstrated in Section 9-2 in conjunction with Fig, 9-7.

Critical races can be avoided by making a binary state assignment in such a way that only
one variable changes at any given time when a state transition occurs in the flow table. To ac-
complish this, it is necessary that states between which transitions occur be given adjacent as-
signments. Two binary values are said to be adjacent if they differ in only one variable. For
example, 010 and 011 are adjacent because they only differ in the third bit.

In order to ensure that a transition table has no critical races, it is necessary to test each pos-
sible transition between two stable states and verify that the binary state variables change one
at a time. This is a tedious process, especially when there are many rows and columns in the
table. To simplify matters, we will explain the procedure of binary state assignment by going
through examples with only three and four rows in the flow table. These examples will demon-
strate the general procedure that must be followed to ensure a race-free state assignment. The
procedure can then be applied to flow tables with any number of rows and columns.

Three-Row Flow-Table Example

The assignment of a single binary variable to a flow table with two rows does not impose crit-
ical race problemms. A flow table with three rows requires an assignment of two binary variables.
The assignment of binary values to the stable states may cause critical races if not done prop-
erly. Consider, for example, the reduced flow table of Fig. 9-26(a). The outputs have been omit-
ted from the table for simplicity. Inspection of row g reveals that there is a transition from state
a to state b in column 01 and from state a to state ¢ in column 11. This information is trans-
ferred into a transition diagram, as shown in Fig. 9-26(b). The directed lines from a to b and
from a to ¢ represent the two transitions just mentioned. Similarly, the transitions from the
other two rows are represented by directed lines in the transition diagram. The transition dia-
gram is a pictorial representation of all required transitions between rows.

To avoid critical races, we must find a binary state assignment such that only one binary vari-
able changes during each state transition. An attempt to find such assignment is shown in the
transition diagram. State « is assigned binary 00, and state ¢ is assigned binary 11. This as-
signment will cause a critical race during the transition from a to ¢ because there are two
changes in the binary state variables. Note that the transition from ¢ to « also causes a race con-
dition, but it is noncritical.

Section 9-6 Race-Free State Assignment 375

Xy x5
00 o1 11 10 azlo

Jol-T- o] *
RGIoR
ekl O

(a) Flow table (b) Transition diagram

=01

y o

FIGURE 9-26
Three-Row Flow-Table Example

A race-free assignment can be obtained if we add an extra row to the flow table. The use of
a fourth row does not increase the number of binary state variables, but it allows th;: formation
of cycles between two stable states. Consider the modified flow table in Fig. 9-27, The first three
TOwS represent the same conditions as the original three-row table. The fourth row, labeled 4
1s assigned the binary value 10, which is adjacent to both a and ¢. The transition %rom ato c,
must now go through d, with the result that the binary variables change from a = 0010 d = 10
to ¢ = 11, thus avoiding a critical race. This is accomplished by changing row a, column 11
to d and row d, column 11 to ¢. Similarty, the transition from ¢ to g is showr to g0 ,through un-

- stable state o even though column 00 constitutes a noncritical race.

Thfa transition table corresponding to the flow table with the indicated binary state assign-
ment. is shown in Fig. 9-28. The two dashes in row 4 represent unspecified states that can be
Fonadered don’t-care conditions. However, care must be taken not to assign 10 to these squares
mn ord_er to avoid the possibility of an unwanted stable state being established in the fourth row.

This example demonstrates the use of an extra row in the flow table for the purpose of achieviné

XiXy
G0 01 11 10

a@b d@ a=00. b =01
| O[]
|4 OO

d a - ¢ - d =10 c: 11
(2} Flow table (b) Transition diagram
FIGURE 9-27 |

Flow Table with an Extra Row

376

Chapter 9 Asynchronous Sequential Logic

XX
00 01 11 10

a=00 01 10
b=01| 00 11
11

c=11 10

FIGURE 9-28
Transition Table

a race-free assignment. The extra row is not assigned to any specific stable state, but instead is used
to convert a critical race into a cycle that goes through adjacent transitions between two stable states.
Sometimes, just one extra row may not be sufficient to prevent critical races, and it may be neces-
sary to add two or more exra rows in the flow table. This is demonstrated in the next example.

Four-Row Fiow-Table Example

A flow table with four rows requires a minimum of two state variables. Although race-free as-
signment is sometimes possible with only two binary state variables, in many cases, the re-
quirement of extra rows to avoid critical races will dictate the use of three binary state variables.
Consider, for example, the flow table and its corresponding transition diagram, shown in
Fig. 9-29. If there were no transitions in the diagonal direction (from b to d or from ¢ to a), it
would be possible to find an adjacent assignment for the remaining four transitions. With one
or two diagonal transitions, there is no way of assigning two binary variables that satisfy the
adjacency requirement. Therefore, at least three binary state variables are needed.

00 01 11 10

b @ d @ a, _ b
b @ d @ a
©

D@ - i ;

(a) Flow table (b) Transition diagram

FIGURE 9-29
Four-Row Flow-Table Example

Section 9-6 Race-Free State Assignment 377

Yi¥2

a =000 b =001
Y3 * > l

e =100 *

I 2=010
1 e d f
=)

—

() Binary assignment 4=101 f=1 ¢=011

FIGURE 9.30 (b) Transition diagram
Choosing Extra Rows for the Flow Table

;Flg. 9~?c;10 shows a Sti‘ltf-: assignment map that is suitable for any four-row flow table. States
a, b, c, a?n d are the original states, and e, J.and g are extra states. States placed in adjacent
squares in the map will have adjacent assignments. State b is assigned binary 001 and isJ adj

cent to the other three original states. The transition from a to d must be directed throu h 1;]1? :
extra stat.e_ ¢ to produce a cycle so that only one binary variable changes at a time Simgilarl .
the tra.msmon frqm ¢ to a is directed through g and the transition from d to ¢ goes-throu h }/
By using the assignment given by the map, the four-row table can be expanded to a seveng .
table that is free of critical races, as shown in Fig. 9-31. Note that although the flow table:lifw
seven rows, there are only four stable states. The uncircled states in the three extra rows are th .
merely to provide a race-free transition between the stable states. -

M 01 1 10

b @ ¢ @
001 = b @ d @ a
©

000=q

0ll=c g | » @
00=g e | - | -
110- R
11 =f € - - ¢
W=d | f @ @ f
o=¢ - - d -

FIGURE 9-31
State Assignment to Modified Flow Table

378

Chapter 9 Asynchronous Sequential Logic

This example demonstrates a possible way of selecting_ ex‘tra rows in a flow ta_ble in 09111335 to
achieve a race-free assignment. A state-assignment map similar to the one used in Fig. - (?)
can be helpful in most cases. Sometimes it is possible to take adv@tage of L.ms:peaﬁec.i F:I;Jmes in
the flow table. Instead of adding rows to the table, it may be posslblej to eliminate cntuf racf:st
by directing some of the state transitions through the dqn’t—care entries. The actual. E}ss11gnmen
is done by trial and error until a satisfactory assignment is found that resolves all critical races.

Multiple-Row Method

The method for making race-free state assignments by adding extra rows in the flow table, z;s
demonstrated in the previous two examples, is sometimes rgferred to as the shared-row lmetho .
There is a second method that is not as efficient, but is easier 'to apply, calleq the multiple-row
method. In the muttiple-row assignmet, each state in the original flow tabl_e is replaced by two
or more combinations of state variables. The state-assignment map of Fig. 9-32(a) shows a

Y2¥3
00 01 11 10

M
4] [} b-!_ cq dl

1] o d; | a by
{2) Binary assignment
00 01 11 10
00 =a, | b d,
11l =ua, | by dy
001 = b, dy]
110 = by dy a
Hl=¢ @ ay b; @
10 =1¢ @ ay by @
010 = d; Cy a
101 =4, Cy C2

{b) Flow table

FIGURE 9-32
Multiple-Row Assignment

Section 9-7 Hazards é?9

multiple-row assignment that can be used with anry four-row flow table. There are two binary
state variables for each stable state, each being the logical complement of each other. For ex-
ample, the original state @ is replaced with two equivalent states a; = 000 and g, = 111. The
output values, not shown here, must be the same in a, and a,. Note that q, is adjacent to by, s,
and 4, and a, is adjacent to ¢, by, and d,, and, simitarly, each state is adjacent to three states
of different letter designation. The behavior of the cireuit is the same whether the internal state
is a; or a,, and so on for the other states.

Fig. 9-32(b) shows the multiple-row assignment for the original flow table of Fig. 9-29(a).
The expanded table is formed by replacing each row of the original table with two rows. For
example, row b is replaced by rows b, and b, and stable state b is entered in columns 00 and
11 in both rows b, and b,. After all the stable states have been enteréd, the unstable states are
filled in by reference to the assignment specified in the map of part (a). When choosin g the next
state for a given present state, a state that is adjacent to the present state is selected from the
map. In the original table, the next states of b are @ and d for inputs 10 and 01, respectively. In
the expanded table, the next states for by are g, and d, because these are the states adjacent to
b;. Similarly, the next states for by are a; and d, because they are adjacent to b,.

In the multiple-row assignment, the change from one stable state to another will always
cause a change of only one binary state variable. Each stable state has two binary assignments
with exactly the same output, At any given time, only one of the assignments is in use. For ex-
ample, if we start with state a; and input 01 and then change the input to 11, 01, 00, and back
to 01, the sequence of internal states will be ay, dy, ¢y, and a,. Although the circuit starts in state
a, and terminates in state a,, as far as the input-output relationship is concerned, the two states,

- a; and ay, are equivalent to state g of the original flow table.

9-7 HAZARDS

When designing asynchronous sequential circuits, care must be taken to conform with certain
restrictions and precautions to ensure proper operation. The circuit must be operated in fun-
damental mode with only one input changing at any time and must be free of critical races. In
addition, there is one more phenomenon, called hazard, that may cause the circuit to mal-
function. Hazards are unwanted switching transients that may appear at the output of a circuit
because different paths exhibit different propagation delays. Hazards occur in combinational
circuits, where they may cause a temporary false-output value. When this condition occurs in
asynchronous sequential circuits, it may result in a transition to a wrong stable state. It is there-
fore necessary to check for possible hazards and determine whether they cause improper op-
erations. Steps must then be taken to eliminate their effect.

Hazards in Combinational Circuits

A hazard is a condition where a single variable change produces a momentary output change
when no ouput change should occur. The circuit of Fig. 9-33(a) demonstrates the occurrence
of a hazard. Assume that all three inputs are initially equal to 1. This causes the output of gate
1 to be I, that of gate 2 to be 0, and the output of the circuit to be equal to 1. Now consider a
change of x, from 1 to 0. The output of gate 1 changes to 0 and that of gate 2 changes to 1, leav-
ing the output at 1. However, the output may momentarily go to 0 if the propagation delay

Section 9-7 Hazards 381
380 Chapter 9 Asynchronous Sequential Logic

x =1 =1 ,

D P ry S0

X 1—0 1 X3 1—=0 1
. e 3 b—Y

0—1 0—>1

—_— T - I

=1 x3=1

(a) AND-OR circuit (b) NAND circuit

FIGURE 9-33
Circuits with Hazards

through the inverter is taken into consideration. The delay in the inverter may cause tl'le Outpu;
of gate 1 to change to 0 before the output of gate 2 changes to 1. In that case, both 1nput§ o
gate 3 are momentarily equal to 0, causing the output to 8o to 0 for the shqrt 1nterva}1 of' time
that the input signal from x, is delayed while it is propagating through the inverter circuit.
The circuit of Fig. 9-33(b} is a NAND implementation of the same Boolee‘m function. It has
a hazard for the same reason. Because gates 1 and 2 are NAND gates, their outputs are the
complement of the outputs of the corresponding AND gates. When x, changes from 1 to 0, bltl)th
inputs of gate 3 may be equal to |, causing the output to produce a momentary change to 0 when

it should have stayed at 1. o .
The two circuits shown in Fig, 9-33 implement the Boolean function in sum of products:

Y = xx; + x5x5

This type of implementation may cause the output to go to 0 when it should remain a 1. If the
circuit is implemented in product of sums (see Section 3-5), namely,

Y = (x + x)(x; + x3)

then the output may momentarily go to 1 when it should remain 0. The first case is referred to
as static I-hazard and the second case as static 0-hazard. A third type .Of hazard, known as dy-
namic hazard, canses the output to change three or more times when it should changg frqm_l
to 0 or from 0 to 1. Fig. 9-34 demonstrates the three types of hazards. When a circuit is

0 0 0
(a) Static I-hazard (b) Static 0-hazard (c) Dynamic hazard
FIGURE 9-34

Types of Hazards

XoX3 Xa%g

00 01 11 10 00 01 11 10
X 1

LU D] o] dop

(a) Y= X1 Xg -+ x'2x3) (b) ¥= X%y + x'2x3+xl X3

FIGURE 9-35
Maps Demonstrating a Hazard and its Removal

implemented in sum of products with AND-OR gates or with NAND gates, the removal of
static 1-hazard guarantees that no static 0-hazards or dynamic hazards will occur,

The occurrence of the hazard can be detected by inspecting the map of the particular circuit,
To illustrate, consider the map in Fig. 9-35(a), which is a plot of the function implemented in
Fig. 9-33. The change in x, from 1 to 0 moves the circuit from minterm 111 to minterm 101.
The hazard exists because the change of input results in a different product term covering the
two minterms. Minterm 111 is covered by the product term implemented in gate 1, and minterm
101 is covered by the product term implemented in gate 2 of Fig, 9-33. Whenever the circuit
must move from one product term to another, there is a possibility of a momentary interval when
neither term is equal to 1, giving rise to an undesirable 0 output.

The remedy for eliminating a hazard is to enclose the two minterms in question with another
product term that overlaps both groupings. This is shown in the map of Fig. 9-35(b}, where the
two minterms that cause the hazard are combined into one product term. The hazard-free cir-
cuit obtained by this configuration is shown in Fig. 9-36. The extra gate in the circnit gener-
ates the product term x,x,. In general, hazards in combinational circuits can be removed by
covering any two minterms that may produce a hazard with a product term common to both.
The removal of hazards requires the addition of redundant gates to the circuit.

: D
)

X3 1 S/ H_/

FIGURE 9-36
Hazard-Free Circuit

Chapter 9 Asynchronous Sequential Logic

Hazards in Sequential Circuits

In normal combinational-circuit design associated with synchronous sequential circuits, haz-
ards are not of concern, since momentary erroneous signals are not generally troublesome.
However, if a momentary incorrect signal is fed back in an asynchronous sequential circuit, it
may cause the circuit to go to the wrong stable state. This is illustrated in the example of
Fig. 9-37. If the circuit is in total stable state yx,x, = 111 and input x, changes from 1 to 0,
the next total stable state should be 110. However, because of the hazard, output ¥ may go to
0 momentarily. If this false signal feeds back into gate 2 before the output of the inverter goes
to 1, the output of gate 2 will remain at 0 and the circuit will switch to the incorrect total sta-
ble state 010. This malfunction can be eliminated by adding an extra gate, as done in Fig. 9-36.

Implementation with SR Latches

Another way to avoid static hazards in asynchronous sequential circuits is to implement the cir-
cuit with SR latches, A momentary O signal applied to the S or R inputs of a NOR latch will
have no effect on the state of the circuit. Similarly, a momentary 1 signal applied to the § and
R inputs of a NAND latch will have no effect on the state of the latch. In Fig. 9-33(b), we ob-
served that a two-level sum of product expression implemented with NAND gates may have a
static 1-hazard if both inputs of gate 3 go to 1, changing the output from 1 to 0 momentarily.
But if gate 3 is part of a latch, the momentary I signal will have no effect on the output because
4 third input to the gate will come from the complemented side of the latch that will be equal

*1
1
2 DC L
B

(a) Logic diagram

X%y R
00 01 11 10 00 1 11 10

el o] L 1N
O ol] BlLCK

(b) Transition table (¢c)Mapfor ¥

FIGURE 9-37
Hazard in an Asynchronous Sequential Circuit

“Section 9-7 Hazards 383

to 0 and thus maintain the output at I. To clari i
_ . arify what was just sai i
latch with the following Boolean functions for § and R: Justseld consider « NAND SR

S=AB+CD
R=AC
Since this is a NAND latch, we must apply the complemented values to the inputs:
§ = (AR + CDY = (ABY(CbDY
R = (A'CY

This implementation is shown in I i
g. 9-38(a). § is generated with t
AND gate. The Boolean function for output (7 is) 10 o NAND ates and one

Q= (QSy =[Q(4By(cD)]

B .

(a)

{b)
FIGURE 9-38
Latch Implementation

384 Chapter 9 Asynchronous Sequential Logic

This function is generated in Fig. 9-38(b) with two levels of NAND gates. If output @ is equal
to 1, then @' is equal to 0. i two of the three inputs go momentarily to 1, the NAND gate as-
sociated with output @ will remain at 1 because Q' is maintained at 0.

Figure 9-38(b) shows a typical circuit that can be used to construct asynchronous sequen-
tial circuits. The two NAND gates forming the latch normally have two inputs. However, if the
§ or R functions contain two or more product terms when expressed in sum of products, then
the corresponding NAND gate of the SR latch will have three or more inputs. Thus, the two
terms in the original sum of products expression for § are AB and CD and each is implement-
ed with a NAND gate whose output is applied to the input of the NAND latch. In this way, each
state variable requires a two-level circuit of NAND gates. The first level consists of NAND gates
that implement each product term in the original Boolean expression of S and R. The second
level forms the cross-coupled connection of the SR latch with inputs that come from the out-
puts of each NAND gate in the first level.

Essential Hazards

Thus far we have considered what are known as static and dynamic hazards. There is another
type of hazard that may occur in asynchronous sequential circuits, called essential hazard. An
essential hazard is caused by unequal delays along two or more paths that originate from the
same input. An excessive delay through an inverter circuit in comparison to the delay associ-
ated with the feedback path may cause such a hazard. Bssential hazards cannot be corrected by
adding redundant gates as in static hazards. The problem that they impose can be corrected by
adjusting the amount of delay in the affected path. To avoid essential hazards, each feedback
loop must be handled with individual care to ensure that the delay in the feedback path is long
enough compared to delays of other signals that originate from the input terminals. This prob-
lem tends to be specialized, as it depends on the particular circuit used and the amount of de-
lays that are encountered in its various paths.

98 DESIGN EXAMPLE

We are now in a position to examine a complete design example of an asynchronous sequen-
tial circuit. This example may serve as a reference for the design of other similar circuits. We
will demonstrate the method of design by following the recommended procedural steps that were
listed at the end of Section 9-4 and are repeated here:

1. State the design specifications.
Derive a primitive flow table.
Reduce the flow table by merging the rows.
. Make a race-free binary state assignment.

. Obtain the transition table and output map.

ERL I TS

. Obtain the logic diagram using SR latches.

Section 9-8 Design Example 385

Design Specifications

Itis necessary to design a negative-edge-triggered T flip-flop. The circuit has two inputs, T (tog-
gle} and C (clock), and one output, Q. The output state is complemented if 77 = 1 and tfle clock
C changes from 1 to 0 (negative-edge triggering). Otherwise, under any other input condition

the output Q remains unchanged. Althou gh this circuit can be used as a flip-flop in clocked se:

quential circuits, the internal design of the flip-flop (as is the case with all other fli i
an asynchronous problem. ’ ol other pflops)

Primitive Flow Table

The derivation of the primitive flow table can be facilitated if we first derive a table that
}1sts all the possible total states in the circuit. This is shown in Table 9-6. We start with the
input condition 7C = 11 and assign to it state . The circuit goes to state b and the out-
put ¢ complements from 0 to 1 when C changes from 1 to 0 while 7 remains a 1. Anoth-
er change in the output occurs when the circuit goes from state ¢ to state 4. In 'tlllis case
T = 13 C changes from 1 to 0, and the output Q complements from 1 to 0. The other fom,'
states in the table do not change the output, because 7 is equal to 0. If @ is initially 0, it
stays a-t 0, and if initially at 1, it stays at 1 even though the clock input changes. This 1n
formation results in six total states. Note that simultaneous transitions of two input vari-
ables, such as from 01 to 10, are not included, as they violate the condition for fundamental-
mode operation.

. The primitive flow table is shown in Fig. 9-39. The information for the flow table can be ob-
tained fhrectly from the conditions listed in Table 9-6. We first fill in one square in each row
belonging to the stable state in that row as listed in the table. Then we enter dashes in those
squares whose input differs by two variables from the input corresponding to the stable state.

The un‘stable conditions are then determined by utilizing the information listed under the corn-
ments in Table 9-6.

Table 9-6
Specification of Total States
Inputs Output

State T C Q Comments
a 1 1 0 Initial output is 0
b 1 0 1 After state a
¢ 1 1 1 Initjal cutput is 1 -
d 1 0 0 After state ¢
€ 0 0 0 After state d or f
F 0 1 0 After state e or g
g 0 ¢ 1 After states b or A
h 0 1 1 After states g or ¢

B

386 Chapter 2 Asynchronous Sequential Logic ‘Section 9-8 Design Example 387

TC
0 o1 1 10 P|eex
al—,—ff,- , 0 b, - ¢ X 1B, d x
s laloter 1 d |b,dx x|a,ex
2,2 %
cl--|h.-|@1]d.- Qpdxlp gL (fx] Y
e, e X{f.h X
dle~-|-.-|a-|@0 Pl aex|aex| V| v
g [fihx B ax| 8% x |5 €%
. ; b,d
e ,0 f)— T d,- = e
f.hx d,ex|e,gx
hldex v 4 c,fx|f.hx X v
fle,- 0 e, — | -,- |
a b ¢ d e f £
.1, , FIGURE 9-40
g (e e T Implication Table
hlg,— L1 e,— | ~.- .
FIGURE 9-39 y /7—\'5

Primitive Flow Table

Merging of the Flow Table

The rows in the primitive flow table are merged by first obtaining all compatible pairs of states.
This is done by means of the implication table shown in Fig. 9-40. The squares that contain
check marks define the compatible pairs:

(@.f) (bg) (Bh) (ch) (de) (d.f) (ef) (gh)

FIGURE 9-41
The maximal compatibles are obtained from the merger diagram shown in Fig. 9-41. The Merger Diagram
geometrical patterns that are recognized in the diagram consist of two triangles and two straight

lines. The maximal compatible set is

(a.f) (b.g.h) (c,h) {d.ef)

In this particular example, the minimal collection of compatibles is also the maximal compat-
ible set. Note that the closed condition is satisfied because the set includes all the original eight
states listed in the primitive flow table, although states £ and f are repeated. The covering con-
dition is also satisfied because all the compatible pairs have no implied states, as can be seen

TC c
00 01 11 10 00 01 11 10

afi e, — @,0 ,0 | b, - ald,- L0 L 0 _

beghl@ 11| - [(B)1 2@t (B | - |B)1

from the implication table. ohl et (D11 - Clb- (et (et | d,-
The reduced flow table is shown in Fig. 9-42. The one shown in part (&) of the figure retains
the original state symbeols but merges the corresponding rows. For example, states a and f are % f @ 0 @ 0fa,- ;0 d ,0 0| a, - , 0
compatible and are merged into one row that retains the original letter symbols of the states. _ :
Similarly, the other three compatible sets of states are used to merge the flow table into four (a) (b)
' ' FIGURE 9-42

Reduced Flow Table

Chapter 9 Asynchronous Sequential Logic

rows, retaining the eight original letter symbols. The other alternative for drawing the merged
flow table is shown in part (b) of the figure. Here we assign a common letter symbol to all the
stable states in each merged row. Thus, the symbol fis replaced by a, and g and A are replaced
by b, and similarly for the other two rows. The second alternative shows clearly a four-state flow
table with only four letter symbols for the states.

State Assignment and Transition Table

The next step in the design is to find a race-free binary assignment for the four stable states in the
reduced flow table. In order to find a suitable adjacent assignment, we draw the transition diagram,
as shown in Fig. 9-43. For this example, it is possible to obtain a suitable adjacent assignment with-
out the need of extra states. This is because there are no diagonal lines in the transition diagram.

Substituting the binary assignment indicated in the transition diagram into the reduced flow
table, we obtain the transition table shown in Fig. 9-44. The output map is obtained from the
reduced flow table. The dashes in the output section are assigned values according to the rules
established in Section 9-4.

a=200 b =101
A A
Y. Y
d=10 c=11
FIGURE 9-43
Transition Diagram
TC TC
00 01 11 10 00 o1 11 10
Yi¥2 Y1y
a=00} 10 01 00 0 0 0 X
01 1 1 1 1

@ 10 11 1 1 1 X
00 10 o 0 0 G

(2) Transition table (b) Output map & = y,

o
Il
o
=
—
—

FIGURE 9-44
Transition Table and Output Map

G

Section 9-8 Design Example 389

Logic Diagram

The c‘:ircgit to be designed has two state variables, Y and ¥,, and one output, Q. The output
map in F}g. 9-44 shows that Q is equal to the state variable ¥,. The irnplement:ation of the cir-
cuit requires two SR latches, one for each state variable, The maps for inputs § and R of the
two]-at-ches are shown in Fig. 9-45. The maps are obtained from the information given in the
tr.ansmon table by using the conditions specified in the latch excitation table shown in
Fig. 9-14(b). The simplified Boolean functions are listed under each map.

The logic diagram of the circuit is shown in Fig. 9-46. Here we use two NAND latches with
two or three inputs in each gate. This implementation is according to the pattern established in

Section 9-7 in conjunction with Fig. 9 i i ire si
g. 9-38(b). The § and R input functions
gaies for their implementation. ’ reauire S NARND

TC ' TC
vy, 01 1 10 Vo, 001 1 10

Oﬂu o 0 0 0y o X @ X

1| o oﬂo mmxox
110XL;_(JX 11U000

mfaxox 1ooomo

@S=pTC+y,TC R =y, TC + ¥ TC

e e

Yi¥a 00 01 11 10 . Y7 00 01 11 10

00| 0 0 0 m 00| X X X 0
01| X X X @ 01 0 0 0 0

n x| x| x 1 o 1_1000@
wh o | o o o 1OXXX@

&) 8=y TC () Ry =y, TC'

FIGURE 9-45
Maps for Latch Inputs

390 Chapter 9 Asynchronous Sequential Logic

Problems 391

r PROBLEMS
9-1 (a) Explain the difference between asynchronous and synchronous sequential circuits.
——A{>O—-— _ (b) Define fundamental-mode operation,
c j)_ (c) Explain the difference between stable and unstable states.
(d) What is the difference between an internal state and a total state?
): y 9-2 Derive the transition table for the asynchronous sequential circuit shown in Fig. P9-2. Determine the
DO 1 sequence of internal states 1, %, for the following sequence of inputs x, x,: 00, 10, 11,01, 11, 10, 00,
} 1 1I>&
vy Y1
> "
DJ —1
4>L_ : ¥
FIGURE P9.2
D}_ 9.3 Anasynchronous sequential circuit is described by the excitation and output functions
. —
} Y, Y= x5+ (x + x3)y
=y
(a) Draw the logic diagram of the circuit, (b) Derive the transition table and cutput map.
{c) Obtain a two-state flow table, {d) Describe in words the behavior of the circuit.
Y,
‘ | 9-4 An asynchronous sequential circuit has two internal states and one output. The excitation and
: } output functions describing the circuit are
| Y= Xy + xyp + Xy
b= Xt xyim + xy
FIGURE 9-46

. = x, +
Logic Diagram of Negative-Edge-Triggered T Flip-Flop LTI TR

(a) Draw the logic diagram of the circuit, (b) Derive the transition table and output map.
(¢) Obtain a flow table for the circuit.

This example demonstrates the compiexity involved in designing asynchron_ous 'sec!uentlal
circuits. It was necessary to go through ten diagrams in order to 9btmn the final circuit §1aigra?l;
Although most digital circuits are synchronous, there are occasions when one has;c; t eal n\g;r_ .
asynchronous behavior. The basic properties prgsented in this chapter are essential to u
stand fully the internal behavior of digital circuits.

9-5 Convert the flow table of Fig. P9-5 into a transition table by assigning the following binary val-
ues to the states: @ = 00, b = 11, and ¢ = 0L,

{(a) Assign values to the extra fourth state to avoid critical races,

(b) Assign outputs to the don’t-care states to avoid momentary false outputs,
(c) Derive the logic diagram of the circuit.

10-1

Digital
Integrated Circuits

INTRODUCTION

398

The integrated circuit (IC) and the digital logic families were intro.duced in Section 2-?3. This
chapter presents the electronic circuits in each IC digi.tal }oglc family and analyzes their elec-
trical operation. A basic knowledge of electrical circuits is assumed.
The IC digital logic families to be considered here are

RTL Resistor-transistor logic

DTL Diode-transistor logic

TTL Transistor-transistor logic

ECL. Emitter-coupled logic

MQOS Metal-oxide semiconductor

CMOS Complementary metal-oxide semiconductor

The first two, RTL and DTL., have only historical significance sim':e they are no longer used
in the design of digital systems. RTL was the first commercial fmly t_o have beenlu§ed e;l(-
tensively. It is included here because it represents a useful starting point for explaining _t e
basic operation of digital gates. DTL circuits have been replaf:ed by TTL. In fact, TTL is a
modification of the DTL gate. The operation of the TTL gate will be easier to ur.lder'stand aft?ﬁ
the DTL gate is analyzed. TTL, ECL, and CMOS have a large mamber of SSI circuits, as we

as MSI, LSI, and VLSI components.

The basic circuit in each IC digital logic family is either a NAND or NOR gate. This basic
circuit is the primary building block from which all other more {l:omplex di glta} compopent.s are
obtained. Bach IC logic family has available a data book that lists all the 1r.1tegrat.ed circuits in -
that family. The differences in the logic functions available from each logic family are not so

Section 10-1 Introduction 1399

Inputs Output

x oy z

v
L H H ¥ ‘

H L H

H H L

FIGURE 10-1
Positive Logic NAND Gate

much in the functions that they achieve as in the specific electrical characteristics of the basic
gate from which the circuit is constructed. .

NAND and NOR gates are usually defined by the Boolean functions that they implement
in terms of binary variables. When analyzing them as electronic circnits, it is necessary to in-
vestigate their input-output relationships in terms of two voltage levels; a high level designat-
ed by H and a low level designated by L. As mentioned in Section 2-8, the assignment of
binary 1 to H results in a positive logic system and the assignment of binary 1 to L results in
a negative logic system. The truth table in terms of H and I, of a positive logic NAND gate is
shown in Fig, 10-1. We notice that the output of the gate is high as long as one or more inputs
are low. The output is low only when both inputs are high. The behavior of a positive logic
NAND gate in terms of high and low signals can be stated as follows:

If any input of a NAND gate is low, the output its high.
It all inputs of a NAND gate are high, the output is low.
The corresponding truth table for a positive logic NOR gate is shown in Fig..10—2. The output

of the NOR gate is low when one or more inputs are high. The output is high when both inputs

are low. The behavior of a positive logic NOR gate in terms, of high and low signals can be stat-
ed as follows:

If any input of a NOR gate is high, the output is low.
If all inputs of a NOR gate are low, the output is high,

These statements for NAND and NOR gates must be remembered because they will be used
during the analysis of the electronic gates in this chapter.

Inputs Qutput

x oy z

L L H xﬁ‘z
L H L y

H L L

H I L

FIGURE 10-2
Positive Logic NOR Gate

400 Chapter 10 Digital Integrated Circuits

A bipolar junction transistor (BJT} can be either an npn or a pap junction transistor. In con-
trast, the field-effect transistor (FET) is said to be unipolar. The operation of a bipolar transis-
tor depends on the flow of two types of carriers: electrons and holes. A unipolar transistor
depends on the flow of only one type of majority carrier, which may be electrons (n-channel)
or holes (p-channel). The first four digital logic families listed—RTL, DTL, TTL, and ECL.—
use bipolar transistors. The last two families—MOS and CMOS—employ a type of unipolar
transistor called a metai-oxide-semiconductor field-effect transistor, abbreviated MOSFET or
MOS for short,

In this chapter, we first introduce the most common characteristics by which the digital
logic families are compared. We then describe the properties of the bipolar transistor and an-
alyze the basic gates in the bipolar logic families. We then explain the operation of the MOS
transistor and introduce the basic gates of its two logic families.

10-2 SPECIAL CHARACTERISTICS

Fan-Qut

The characteristics of IC digital logic families are usually compared by analyzing the circuit
of the basic gate in each family. The most important parameters that are evaluated and com-
pared are fan-out, power dissipation, propagation delay, and noise margin. We first explain the
properties of these parameters and then use them to compare the IC logic families.

The fan-out of a gate specifies the number of standard loads that can be connected to the out-
put of the gate without degrading its normal operation. A standard load is usually defined as
the amount of current needed by an input of another gate in the same logic family. Sometimes
the term Ioading is used instead of fan-out. This term is derived because the output of a gate
can supply a limited amount of current, above which it ceases to operate properly and is said
to be overloaded. The output of a gate is usually connected to the inputs of other gates. Each
input consumes a certain amount of current from the gate output, so that each additional
connection adds to the load of the gate. Loading rules are sometimes specified for a family
of digital circuits. These rules give the maximum amount of loading allowed for each out-
put of each circuit in the family. Exceeding the specified maximum load may cause a mal-
function because the circuit cannot supply the power demanded from it. The fan-out is the
maximum number of inputs that can be connected to the output of 2 gate, and is expressed
by a number.

The fan-out is calculated from the amount of current available in the output of a gate and
the amount of current needed in each input of a gate. Consider the connections shown in
Fig. 10-3. The output of one gate is connected to one or more inputs of other gates. The out-
put of the gate is in the high voltage level in Fig. 10-3(a). It provides a current source Iy to
all the gate inputs connected to it. Each gate input requires a current I, for proper operation.
Similarly, the output of the gate is in the low voltage level in Fig. 10-3(b}. It provides a current
sink [, for all the gate inputs connected to it. Each gate input supplies a current I, . The fan-out

1

Toy I
- =
B

Section 10-2 Special Characteristics 401

1
Ty f
L .
— -~
— —
I
1H I
= -—
= =
To ith ‘
or
inputs T&gﬂ: '
(a) High-level output (b)Low-level output -
FIGURE 10-3

Fan-Out Computation

of the gate is calculated from the ratio J /A i i
on/Tin or Ipy /Iy, whichever is smaller. For exampl
the standard TTL gates have the following values for the currents: o

loy = 400 A
Iy =40 uA
Ioy = 16 mA
I = 1.6 mA

The two ratios give the same number in this case:

400pA 16mA _
40uA 16mA

10

Therefore, the fan-out of standard TTL is 10. This means that the output of a TTL gate can be
connected to no more than ten inputs of other gates in the same logic family. Otherwise, the

ga.[e Il’lay not be ab]f.‘, EO dI].“e or SIIlk the ant f p are con-

Power Dissipation

Every electronic circuit requires a certain amount of

| require: power to operate. The power dissipation
15 a parameter expressed in milliwatts (mW) and represents the amount of power needed by the
gate. The number that represents this

parameter does not include the power delivered -
other gate; rather, it represents the : o

power delivered to the gate from the power sy
: : ; . pply. An IC
with four gates will require, from its power supply, four times the power dissipated inp::zch gate.

402 Chapter 10 Digital Integrated Circuits

Section 10-2 Special Characteristics 403

The amount of power that is dissipated in a gate is calm.ﬂated from the supply vol%e;lge Vcrc
and the current /. that is drawn by the circuit. The power is the product Vo X Ipe. :13; cu -
rent drain from the power supply depends on the loglc state_ of the gate. The. currentd 1Taw
from the power supply when the output of the gate is in .the high-voltage level is terir}e coH -
When the output is in the low-voltage level, the current is /., . The average current is

Jecy * lecr

leclavg) = 7

and is used to calculate the average power dissipation:
Pplavg) = Iec{avg) X Voo

For example, a standard TTL NAND gate uses a supply vpltage Ve of 5_ Vza;[lli hz};hzu;zr:
drains Iy = 1 mA and I, = 3 mA. The average current js {3 + 1)/2 = am .tes aver
age power dissipation is 5 X 2 = 10 mW. An IC that has lfour NAND gates cllsslllpa ol
of 10 X 4 = 40 mW. In a typical digital system therel W}ll t?e many 1Cs, an .t E powf:total
quired by each IC must be considered. The total power dissipation in the system is the sum
of the power dissipated in all ICs.

Propagation Delay

The propagation delay of a gate is the average transiti_on-delay time for the skllgnal }ioapcr;featgiz
from input to output when the binary signal changes in value. The SIgI'lal.S t rou}g . ﬁc o ke
a certain amount of time to propagate from the inpu.ts to the optput. This 1rl;terva 0 rndS o
fined as the propagation delay of the gate, Propagation delay is measured in nanosecon .
i ~ of a second. . .

: n’i";lse:(il;il? tligt travel from the inputs of a digital circuit to i?s outputs pass throfutih a irﬁ;::
of gates. The sum of the propagation delays through the gates is the total de%ay Z 1 e ;lerd thé
When speed of operation is important, each gate must have a Sl:lOI‘t propagation delay
digital circuit must have a minimum number of gates between inputs apd outpl(iits. e,

The average propagation delay time of a gate is calculated fr(?m the input an 01}.11tp Lwave
forms, as shown in Fig. 10-4. The signal-delay time between the 1‘np_ut and outputhw en eou
put changes from the high to the low level is referred. 10 as fpyyy - Similarly, when t e outgzt ‘feen
from the low to the high level, the delay is tp, 4. It is customary to measure thle time e
the 50 percent point on the input and output transitions. In general, the t'-wo (:13 1ays:u:eﬁni o the
same, and both will vary with loading conditions. The average propagation-delay tim

the average of the two delays.
Culi:(;r? ixampie, ttgle delays for a standard TTL gate are {4 L= 7 ns and t i = 1; f&ﬁﬁ?ﬁ:
quantities are given in the TTL data book and are measured wn‘th aload res1stallllce ;TL ones
and a load capacitance of 15 pF. The average propagation delay of the g
= O ns. .

(HU;dTel)‘/czertaii Irzonditions, it is more important to know the max'imum dc?lay time of a %iaot;'
rather than the average value. The TTL data book lists the following mammumfpropil“g;:J o
delays for a standard NAND gate: fpy; = 15 ns andi tpiy = 22 ns, When speed o op»&:rtion
critical, it is necessary fo take into account the maximum delay to ensure proper operation.

4 N
Input / \

——— Time

Output

—»l Lprr |-— —> Ipry e—

FIGURE 10-4
Measurement of Propagation Delay

The input signals in most digital circuits are applied simultaneously to more than one gate,
All the gates that are connected to external inputs constitute the first logic level of the circuit.
Gates that receive at least one input from an output of a first level gate are considered to be in
the second logic level, and similarly for the third and higher logic levels. The total propagation
delay of the circuit is equal to the propagation delay of a gate times the number of logic levels
in the circuit. Thus, a reduction in the number of ogic levels results in a reduction of signal delay
and faster circuits. The reduction of the propagation delay in circuits may be more important
than the reduction of the total number of gates if speed of operation is a major factor.

Noise Margin

Spurious electrical signals
ages on the connecting wi
noise. There are two types
levels of a signal. AC noise
noise is a term used to den
ating signal. Noise margin
cuit that does not cause a

from industrial and other similar sources can induce undesirable volt-
res between logic circuits. These unwanted signals are referred to as
of noise to be considered. DC noise is caused by a drift in the voltage
is a random pulse that may be created by other switching signals. Thus,
ote an undesirable signal that is superimposed upon the normal oper-
is the maximum noise voltage added to an input signal of a di gital cir-
n undesirable change in the circuit output. The ability of circnits to
operate reliably in a noise environment is important in many applications. Noise margin is ex-
pressed in volts and represents the maximum noise signal that can be tolerated by the gate.

The noise margin is calculated from knowledge of the voltage signal available in the output
of the gate and the voltage signal required in the input of the gate. Fig. 10-5 illustrates the sig-
nals for computing noise matygin. Part (a) shows the range of output voltages that can occur in 2
typical gate. Any voltage in the gate output between V. and V,,, is considered as the high-level
state and any voltage between 0 and Vor, in the gate output is considered as the low-level state.
Voltages between V), and Vpur are indeterminate and do not ap

pear under normal operating con-
itions except during transition between the two levels. The corr

esponding two voltage ranges that
are recognized by the input of the gate are indicated in Fig. 1

0-5(b). In order to compensate for
any noise signal, the circuit must be designed so that V;, is greater than Vor and Vi is less than
Vor - The noise margin is the difference V.

om — VigorV, — V,,, whichever is smaller.

404 Chapter 10 Digital Integrated Circuits
Veo Vee
Vou ‘l'
High-state
noisc margin Vi
i VH_.
Low-state
noise margin
Vor —T—
0 0
(a) Ouiput voltage range (b) Input voltage range
FIGURE 10-5 -
Signals for Evaluating Noise Margin
As illustrated in Fig. 10-5, ¥, is the maximum voltage that t-he output can be vx-fhen in tl}e
low-level state. The circuit can tolerate any noise signal that. is l-ess than the noise ma}rgm
(V - VOL) because the input will recognize the signal as being in the 10w-le\fel sta;]te.' dny
si;]al greater than V; plus the noise-margin figure will send the mputI Voltafgelllntoft ;-gl ez-1
i i in the output of the gate. In a similar fashion,
t nate range, which may cause an error in ! ‘ . : a
nzzﬁiive-voltellgge noise greater than V,; — Vi will send the input voltage into the indetermi
nate range. _
The sarameters for the noise margin in a standard TTL-NAND .gat'e are Vou - %i \\f;
Voo = 04V, V,, =2V, and V;; = 0.8 V. The high-state noise marginis 2.4 — 2 = 0.4V,
arolél the l‘ow—;taig noise margin is 0.8 — 0.4 = 0.4 V. In this case, both values are the same.
10-3 BIPOLAR-TRANSISTOR CHARACTERISTICS

This section is devoted to a review of the bipolar htans.istoF as applied to.chgltai c11jc1?tls_[;i '};1;155
information will be used for the analysis of the basic circuit in the four blpolartoc%fi ﬂ?er Wiﬂ-i
Bipolar transistors may be of the npn or-pnp type. MDI‘?OVE:I‘, they are construcde etber Wt
germanium or silicon semiconductor material. IC transistors, however, are made
: e npn type. ‘ ‘ .

andT?lr: ‘tl)l;sl,li?:]?a?; rilzzedéjd fgrp the analysis of digital cirguits may ble.obtamed f'rom mls;l;f;;lfig
of the typical characteristic curves of a comm(.)n—ermtter.npn silicon tran-zltitro% ;e own
Fig. 10-6. The circuit in (a) is a simple inverter with two resmtor.s and a transtll ﬂ.ows troueh
marked /. flows through resistor R and the collector of the transistor. Current Iz

L

Section 10-3 Bipolar-Transistor Characteristics 405

() Inverter circuit

IC
13) (mA)
(mA
Vee 08
E 0.5
0.4
0.4
Iz=02mA
' ' Ve (V . Ve (V
06 07 og =M , ce (V)

Vee
(b) Transistor-base characteristic

FIGURE 10-5
Silicon npn Transistor Characteristics

(c) Transistor-collector characteristic

resistor R; and the base of the transistor. The emitter is connected to ground and its current
Ip = I + Iy. The supply voltage is between V.. and ground. The input is between V; and
ground, and the output is between V, and ground.

We have assumed a positive direction for the currents as indicated. These are the directions
in which the currents normally flow in an npr transistor. Collector and base currents, I and £,
respectively, are positive when they flow into the transistor, Emitter current I is positive when
it flows out of the transistor, as indicated by the arrow in the emitter terminal. The symbol V.,
stands for the voltage drop from collector to emitter and is always positive. Correspondingly,
Vi is the voltage drop across the base-to-emitter junction. This Junction is forward hiaged
when Vy, is positive. It is reverse biased when Vze is negative,

The base-emitter graphical characteristic is shown in Fig. 10-6(b). This is a plot of Vi ver-
sus Ip. If the base-emitter voliage is less than 0.6 V, the transistor is said to be cut off and no

base current flows. When the base-emitter Jjunction is forward biased with a voltage greater than

0.6V, the transistor conducts and / g starts rising very fast whereas Vi changes very little. The

voltage Vi across a conducting transistor seldom exceeds 0.8 V.

406

Chapter 10 Digital Integrated Circuits

The graphical collector-emitter characteristics, together with the load line, are shown in
Fig. 10-6(c). When Vy is less than 0.6 V, the transistor is cut off with /; = 0 and a negligible
current flows in the collector. The collector-to-emitter circuit then behaves like an open circuit.
In the active region, collector voltage V-p may be anywhere from about 0.8 V up to V.. Col-
lector carrent I, in this region can be calculated to be approximately equal to /gher, where
hpp s a transistor parameter calted the de current gain. The maximum collector current depends
not on I, but rather on the external circuit connected to the collector. This is because V. is al-
ways positive and its lowest possible value is 0 V. For example, in the inverter shown, the max-
imum /. is obtained by making V- = 0 to obtain I, = V¢/R¢.

1t was stated that . = hyply in the active region. The parameter ;. varies widely over the
operating range of the transistor, but still it is useful to employ an average value for the pur-
pose of analysis. In a typical operating range, 4z is about 50, but under certain conditions, it
could be as low as 20. It must be realized that the base current /; may be increased to any de-
sirable value, but the collector current I is limited by external circuit parameters. As a conse-
quence, a situation can be reached where hy;/; is greater than /. If this condition exists, then
the transistor is said to be in the saturation region. Thus, the condition for sataration is deter-

mined from the relationship

= e
where I is the maximum collector current flowing during saturation. Vi-¢ is not exactly zero
in the saturation region, but is normally about 0.2 V.

The basic data needed for analyzing bipolar transistor digital circuits are listed in Table 10-1.
In the cutoff region, Vyz is less than 0.6 V, V. is considered as an open circuit, and both cur-
rents are negligible. In the active region, Vg is about 0.7 V, Vi may vary over a wide range,
and I, can be calculated as a function of ;. In the saturation region, Vgg hardly changes, but
V- drops to 0.2 V. The base current must be large enough to satisfy the inequality listed. To
simplify the analysis, we will assume that Vg = 0.7 V if the transistor is conducting, whether
in the active or saturation region.

The analysis of digital circuits may be undertaken using the following prescribed proce-
dure: For each transistor in the circuit, determine if its Vg is fess than 0.6 V. If so, then the tran-
sistor is cut off and the collector-to-enmitter circuit is considered an open circuit. If V¢ is greater
than 0.6V, the transistor may be in the active or saturation region. Calculate the base current,
assuming that Vzz = 0.7 V. Then calculate the maximum possible value of collector current
I, assuming Vg = 0.2 V. These calculations will be in terms of voltages applied and resistor

Table 10-1

Typical npn Silicon Transistor Parameters
Region Ve (V) Ve (V) Current Relationship
Cutoff < 0.6 Open circuit Ip=I=0
Active 0.6-0.7 > 0.8 I = heply
Saturation 0.7-0.8 0.2 Ip = Icsfhyy

Section 10-3 Bipolar-Transistor Characteristics 407

iVal‘ues}.1 Then, if ‘the basm? currc?nt is large enough that 7, = [/hrx, we deduce that the transistor

i in the saFuratlF)n Tegion W"l[h Ver = 0.2 V. However, if the base current is smaller and the
above relationship ‘15 not satisfied, the transistor is in the active region and we recalculate col-
lector current /. using the equation I = Appls.

To der nonstrate with an example consider the inv i i i
X 2 erter circuit of . 10-6 wi -
| ;) ; : it of | 12 (a) ith the fol

Re=1k0 Vee = 5V (voltage supply)
Ry = 22k0) H = 5V (high-level voltage)
heg = 50 L = 0.2V (low-level voltage)

With input voI.tage V, = 'L = 0.2V, we have that Vzz < 0.6 V and the transistor is cut off
The collector-emitter circuit behaves like an open circuit, so output voltage V, = 5V = H -
A .

With input voltage V; = H = 5V, we deduce that V., > i
? 0.6 V. =
we calculate the base m&rrent: BE esuming that Var o7

=Y 5207 o
Ry 2k U mA

The maximum collector current, assuming Vo, = 02V, is

7 :VCC_VCE:5—0v2_4
cs Re [~_ 48ma

We then check for saturation, using the condition

I
0.195 = [, = hﬂ = % = 0.096 mA
FE

gherf:upop we find that the inequality is satisfied, since 0.195 > 0.096. We conclude that the
a;lri;is:tg 11—s saturated and output voltage V, = V., = 02V = L. Thus, the circuit behaves as

The prc_)cedure just described will be used extensively during the analysis of the circuits in
Fhe following sections. This will be done by means of a qualitative analysis, i.e., without writ-
ing down the specific numerical equations. The quantitative analysis and sp,ecif;c calculations
will be left as exercises in the Problems section at the end of the chapter.

ThBI‘E: are .occasions where not only transistors but also diodes are used in digital circuits
AnliIC dlqde is usually constructed from a transistor with its collector connected to the base‘
as shqwn in Fig. 10-7(a). The graphic symbol employed for a diode is shown in Fig 10—7(b),
The c_ilqde behaves essentially like the base-emitter Jjunction of a transistor. Tts graphJ:cal char—.
acteristic, shown in Fig. 10-7(c), is similar to the base-emitter characteristic of a transistor, We
can then conclude that a diode is off and non-conducting when its forward voltage, V,,, is .less
than 0.6 V. When the diode conducts, current f,, flows in the direction shown in Fi,g DI,O-7(b)
fmd Vo stays‘ at about 0.7 V. One must always provide an external resistor to limit th-f: curren;
in a conducting diode, since its voltage remains fairly constant at a fraction of a volt,

408 Chapter 10 Digital Integrated Circuits

1o— (mA)

2

{(a) Transistor adapted for
use as a diode

i Vp (V)
In 06 07
L

(b) Diode graphic symbol (c) Diode characteristic

FIGURE 10-7
Silicon Diode Symbol and Characteristic

10-4 RTL AND DTL CIRCUITS

RTL Basic Gate
The basic circuit of the RTL digital logic family is the NOR gate shown in Fig.. 10-8. Eacl} input
is associated with one resistor and one transistor. The collectors of the transistors are tied to-
gether at the output. The voltage levels for the circuit are 0.2 V for the low level and from 1 to

3.6V for the high level., . o .
The analysis of the RTL gate is very simple and follows the procedure ountlined in the previous

section. If any input of the RTL gate is high, the corresponding transistor is driven into saturation.

V,.=36V
640 Q
—0¥Y=(A+B+ ()
450 ¢ 430 Q 450 &
A—"N— B o—ANA— C o—ANAN—
P N N

FIGURE 10-8
RTL Basic NOR Gate

Section 10-4 RTL and DTL Circuits 409

This causes the output to be low, regardless of the states of the other transistars. If all inputs are
low at 0.2 'V, all transistors are cut off becanse Vee << 0.6 V. This causes the output of the circuit
to be high, approaching the value of supply voltage Vi This confirms the conditions stated in
Fig. 10-2 for the NOR gate. Note that the noise margin for low signal inputis 0.6 — 0.2 = 04V,

The fan-out of the RTL gate is limited by the value of the output voltage when high. As the
output is loaded with inputs of other gates, more current is consumed by the load. This current
must flow through the 640-0) resistor. A simple calculation (see Problem 10-2) will show that
If /25 drops to 20, the output voltage drops to about 1 V when the fan-out is 5. Any voltage below
1V in the output may not drive the next transistor into saturation as required. The power dis-
sipation of the RTL gate is about 12 mW and the propagation delay averages 25 ns.

DTL Basic Gates

The basic circuit in the DTL digital logic family is the NAND gate shown in Fig. 10-9. Each
input is associated with one diode. The diodes and the 5-k€) resistor form an AND gate. The
transistor serves as a current amplifier while inverting the digital signal. The two voltage lev-
els are 0.2 V for the low level and between 4 and 5V for the high level.

The analysis of the DTL gate should conform to the conditions listed in Fig. 10-1 for the
NAND gate. If any input of the gate is low at 0.2 V, the corresponding input diode conducts cur-
rent through V... and the 5-k() resistor into the input node. The voltage at point P is equal to the
input voltage of 0.2 V plus a diode drop of 0.7 V, for a total of 0.9'V. In order for the transistor to
start conducting, the voltage at point P must overcome a potential of one V- drop in Q 1 plus two

. diode drops across D1 and D2,0r3 X 0.6 = 1.8V, Since the voltage at P is maintained at 0.9 V
by the input conducting diode, the transistor is cut off and the output voltage is high at 5V,

If all inputs of the gate are high, the transistor is driven into the saturation region. The voit-
age at P now is equal to Vi plus the two diode drops across D1 and D2, 0r0.7 X 3 = 2.1 V.
Since all inputs are high at 5 Vand V, = 2.1 V, the input diedes are reverse biased dnd off. The
base current is equal to the difference of currents flowing in the two 5-k{} resistors and is

V=35V

!

2k

Y = (ABCY

FIGURE 10-9
DTL Basic NAND Gate

410

10-5

Chapter 10 Digital Integrated Circuits

V=5V
o

1.6k
S2xa

oY = (ABC)'
A Q1 po
2

[vs]
Fo

5kQ

FIGURE 10-10
Modified DTL Gate

sufficient to drive the transistor into saturation. (See Problem 10-3.) With the transistor satu-
rated, the output drops to ¥z of 0.2 'V, which is the low level for the gate. '

The power dissipation of a DTL gate is about 12 mW and the propggaﬂon delay averages
30 ns. The noise margin is about 1 V and a fan-out as high as 8 is possible. The fan-out of the
DTL gate is limited by the maximum current that can flow in the collector of the saturated
transistor. (See Problem 10-4.) ' - ‘

The fan-out of a DTL gate may be increased by replacing one of the dlqdes in thg base cir-
cuit with a transistor, as shown in Fig. 10-10. Transistor Q1 is maintail}ed in the active region
when output transistor () 2 1s saturated. As a consequence, the modiﬁ.ed circuit can supply a larg-
er amount of base current to the output transistor. The output transistor can now draw a larger
amount of collector current before it goes out of saturation. Part of the collector (':urrent comes
from the conducting diodes in the loading gates when ()2 is saturated. Thus, an increase in ?11-
lowable collector saturated current allows more loads to be connected to the output, which in-
creases the fan-out capability of the gate.

TRANSISTOR-TRANSISTOR LOGIC (TTL)

The original basic TTL gate was a slight improvement over the DTL gate. As .the TTL tec.il-
nology progressed, additional improvements were added to the point whs?rfz this logl1c family
is widely used in the design of digital systems. There are sever.al subfaml_hes or series of the
TTL technology. The names and characteristics of eight TTL serles appear in Ta.ble 10-2. Com-
mercial TTL ICs have a number designation that starts with 74 and follows with a sufﬁx .that
identifies the series type. Examples are 7404, 74586, and 74ALS161. Fan-out, power d1ss1pa—
tion, and propagation delay were defined in Section 10-2. Thc_a speed-power product is an im-
portant parameter for comparing the various TTL series. This is the product of the pfopagatlon
delay and power dissipation and is measured in picojounles (pl). A low value for this parame-

ter is desirable, because it indicates that a given propagation delay can be achieved without .

excessive power dissipation, and vice versa.

Table 10-2

Section 10-5 Transistor-Transistor Logic (TTL) 411

TTL Series and Their Characteristics

TTL Series Name Prefix out

Fan- Power Propagation Speed-Power

Dissipation (mW) Delay (ns) Product (p))

Standard 74 10 10 9 90
Low-power 741 20 1 33 33
High-speed 74H 10 22 6 132
Schottky 748 10 19 3 57
Low-power Schottky 74LS 20 2 9.5 19
Advanced Schottky T4AS8 40 10 1.5 15
Advanced low-power Schottky T4ALS 20 1 4 4
Fast 74F 20 4 3 12

The standard TTL gate was the first version in the TTL family. This basic gate was then de-
signed with different resistor values to produce gates with Iower power dissipation or with
higher speed. The propagation delay of a transistor circuit that goes into saturation depends
mostly on two factors: storage time and RC time constants. Reducing the storage time de-
creases the propagation delay. Reducing resistor values in the circuit reduces the RC time con-
stants and decreases the propagation delay. Of course, the trade-off is hi gher power dissipation
because lower resistances draw more current from the power supply. The speed of the gate is
inversely proportional to the propagation delay. .

In the low-power TTL gate, the resistor values are higher than in the standard gate to re-
duce the power dissipation, but the propagation delay is increased. In the high-speed TTL
gate, resistor values are lowered to reduce the propagation delay, but the power dissipation is
increased. The Schottky TTL gate was the next improvement in the technology. The effect of
the Schottky transistor is to remove the storage time delay by preventing the transistor from
going into saturation. This series increases the speed of operation without an excessive increase
in power dissipation. The Tow-power Schottky TTL sacrifices some speed for reduced power
dissipation. It is equal to the standard TTL in propagation delay, but has only one-fifth the
power dissipation. Recent innovations have led to the development of the advanced Schottky
scries, It provides an improvement in propagation delay over the Schottky series and also
lowers the power dissipation. The ddvanced low-power Schottky has the lowest speed-power
product and is the most efficient series. The Fast TTL family is the best choice for high-speed
designs. '

All TTL series are available in SST and in more complex forms such as MST and LSI com-
ponents. The differences in the TTL series are not in the digital logic that they perform, but rather
in the internal construction of the basic NAND gale. In any case, TTL gates in all the available
series come in three different types of output configuration:

1. Open-coilector output
2. Totem-pole output
3. Three-state {or tristate) output

These three types of outputs will be considered in conjunction with the circuit description of
the basic TTL gate.

412

Chapter 10 Digital Integrated Circuits

FIGURE 10-11
Open-Collector TTL Gate

Open-Collector Quiput Gate

The basic TTL gate shown in Fig. 10-11 is a modified circuit of the DTL gate. The mult?ple
emitters in transistor 1 are connected to the inputs. These emitters bfehave -most of the time
like the input diodes in the DTL gate since they form a pn junction with their common basie.
The base-collector junction of 01 acts as another pr junction dioFle correspgndmg to D1in
the DTL gate (see Fig. 10-5). Transistor (2 replaces the second diode, PZ, in the DTL gate.
The output of the TTL gate is taken from the open collector of 3. A resistor Cfonnected 1o Ve
must be inserted externally to the 1C package for the output to “pull up” to the high voltgge level
when (O3 is off; otherwise, the output acts as an open circuit. The reason for not providing the
resistor internally will be discussed later.

The two voltage levels of the TTL gate are 0.2 V for the low level and from 2.4 tf) 5V for
the high level. The basic circuit is a NAND gate. If any input is low, the (-:orrespondmg pase—
emitter junction in @ 1 1s forward biased. The voltage at the base of 21 is equal. to the input
voltage of 0.2 V plus a Vy; drop of 0.7 or 0.9 V. In order for (3 to start conducting, .f:he p?lth
from @1 to @3 must overcome a potential of one diode drop in the base—collecto_r n J-unc-tlon
of Q1 and two Vyp dropsin @2 and 03, or 3 X 0.6 = 1.8'V. Since the basp of @1 is maintained
at 0.9 V by the input signal, the output transistor cannot conduct and is cut off. The output
level will be high if an external resistor is connected between the output and Vi (or an open
circuit if a resistor is not used). -

If all inputs are high, both Q2 and @3 conduct and saturate. The ban: voltage of O 1 is equal
to the voltage across its base-collector pr junction plus two Vi drops in 02 gnd Q3, or about
0.7 X 3 = 2,1V. Since all inputs are high and greater than 2.4 V, the base-emitter junctions of
() 1 are all reverse biased. When output transistor 3 saturates (provided it has a CLIITE:‘Ilt path),
the output voltage goes low to 0.2 V. This confirms the conditions of a NAND operation.

Section 10-5 Transistor-Transistor Logic (TTL) 413

In this analysis, we said that the base-collector Junction of @ 1 acts like a pn diode junc-
tion. This is true in the steady-state condition. However, during the turn-off transition, 01
does exhibit transistor action, resulting in a reduction in propagation delay. When all in-
puts are high and then one of the inputs is brought to a low level, both 02 and Q3 start
turning off. At this time, the collector junction of Q1 is reverse biased and the emitter is
forward biased: so transistor Q | goes momentarily into the active region. The collector cur-
rent of 0 1 comes from the base of 02 and quickly removes the excess charge stored in 92
during its previous saturation state. This causes a reduction in the storage time of the cir-
cuit as compared to the DTL type of input. The result is a reduction of the turn-off time
of the gate.

The open-collector TTL gate will operate without the external resistor when connected to
inputs of other TTL gates, aithough this is not recommended because of the low noise imny-
nity encountered. Without an external resistor, the output of the gate wiil be an open circuit when
(3 is off. An open circuit to an input of a TTL gate behaves as if it has a high-level input (but
a small amount of noise can change this to a low level). When O3 conducts, its collector will
have a current path suppiied by the input of the loading gate through V.-, the 4-k{) resistor, and
the forward-biased base—emitter Jjunction.

Open-collector gates are used in three major applications: driving a lamp or relay, per-
forming wired logic, and construction of 2 common-bus system. An open-collector output can
drive a lamp placed in its output through a limiting resistor. When the output is low, the satu-
rated transistor Q'3 forms a path for the current that turns the lamp on. When the output tran-
sistor is off, the lamp turns off because there is no path for the current.

If the outputs of several open-collector TTL gates are tied together with a single exter-
nal resistor, a wired-AND logic is performed. Remember that a positive-logic AND func-
tion gives a high level only if all variables are high; otherwise, the function is low. With
outputs of open-collector gates connected together, the common output is high only when
all output transistors are off (or high). If an output transistor conducts, it forces the output
to the low state,

The wired logic performed with open-collector TTL gates is depicted in Fig. [0-12. The phys-
tcal wiring in (a) shows how the outputs must be connected to a common resistor. The graphic

VCC
A — . A
B — % —° B | 0c -
|)v v
o =
oc .
D D

(a) Physical connection (b) Wired-logic graphic symbol
FIGURE 10-12
Wired-AND of two Open-Collector (oc) Gates, ¥ = (AB + CDy

412

FIGURE 10-11
Open-Collector TTL Gate

Open-Collector Output Gate

The basic TTL gate shown in Fig. 10-11 is a modified circuit qf the DTL gate. The mult}ple
emitters in transistor (1 are connected to the inputs. These. emlt.ters b.ehave 'most of the time
like the input diodes in the DTL gate since they form apn 4unct.10n with their co.nnnonDbz;s.e.
The base-collector junction of Q1 acts as another p» junction dloFIe corresppndmg 10 in
the DTL gate (see Fig. 10-5). Transistor Q2 replaces the second diode, DZ, in the DTL gate.
The output of the TTL gate is taken from the open collector of Q3. A’femstor clonnccted to Vai
must be inserted externally to the IC package for the output to “pull up” to the high volt'ag‘e le:r;:
when (23 is off; otherwise, the output acts as an open circuit. The reason for not providing the
i internally will be discussed later.
reS'IIS‘Itlc:tlx?ft)evoltgge levels of the TTL gate are 0.2V for ‘the lox.v level and from 2.4 t.O 5 \bf for
the high level. The basic circuit is a NAND gate. If any input is low, the ?orrespondmg ; ase;
emitter junction in Q1 is forward biased. The voltage at the base of Q1 is equall to tltl;: mpgl
voltage of 0.2V plus a Vi drop of 0.7 or 0.9 V. In order for QB to start conducting, the pa
from (71 to (J 3 must overcome a potential of one diode drop in the base-collecto.r pn J.unc.tlog
of 01 and two Vi drops in @2 and 903, 0r3 X 0.6 = 1.8 V. Since the bas:e of 1 is maintaine :
at 0.9 V by the input signal, the output transistor cannot conduct and is cut off. The outpu
level will be high if an external resistor is connected between the output and V- {or an open
ircuit i istor is not used). .
Clr(i?glifn‘zll;s: Sare high, both 52 and 03 conduct and saturate. The bass: voltage of 21 1s egua:
to the voltage across its base-collector pr junction plus two Vg drops in Q2 gnd Q 3, ora ouJf
0.7 X 3 = 2.1 V. Since all inputs are high and greater than 2.4V, the. basg-ermtter junctions o
Q1 are all reverse biased. When output transistor (3 3 saturate-s.(prowded ithasa currept path),
the output voltage goes low to 0.2 V. This confirms the conditions of a NAND operation.

Section 10-5 Transistor-Transistor Logic (TTL) 413

In this analysis, we said that the base-collector junction of O 1 acts like a pn diode junc-
tion, This is true in the steady-state condition. However, during the turn-off transition, ol
does exhibit transistor action, resulting in a reduction in propagation delay. When a]l in-
puts are high and then one of the inputs is brought to a low level, both 02 and Q3 start
turning off. At this time, the collector Jjunction of Q1 is reverse biased and the emitter is
forward biased; so transistor Q1 goes momentarily into the active region. The collector cur-
rent of Q 1 comnes from the base of Q2 and quickly removes the excess charge stored in 02
during its previous saturation state. This causes a reduction in the storage time of the cir-
cuit as compared to the DTL type of input. The result is a reduction of the turn-off time
of the gate.

The open-collector TTL gate will operate without the external resistor when connecied to
inputs of other TTL. gates, although this is not recommended because of the low noise immu-
nity encountered. Without an external resistor, the output of the gate will be an open circuit when
Q3 is off. An open circuit to an input of a TTL gate behaves as if it has a high-level input (but
a small amount of noise can change this to a low level). When Q3 conducts, its collector will
have a current path supplied by the input of the loading gate through V.., the 4-kQ resistor, and
the forward-biased base—emitter junction.

Open-collector gates are used in three major applications: driving a lamp or relay, per-
forming wired logic, and construction of a common-bus system. An open-collector output can
drive a lamp placed in its output through a limiting resistor. When the output is low, the satu-
rated transistor Q3 forms a path for the current that turns the lamp on. When the output tran-
sistor is off, the lamp turns off because there is no path for the current.

If the outputs of several open-collector TTL gates are tied together with a single exter-
nal resistor, a wired-AND logic is performed. Remember that a positive-logic AND func-
tion gives a high level only if all variables are high; otherwise, the function is low. With
outputs of open-collector gates connected together, the common output is high only when
all output transistors are off (or high). If an output transistor conducts, it forces the output
to the low state,

The wired logic performed with open-collector TTL gates is depicted in Fig. 10-12. The phys-
ical wiring in (a) shows how the outputs must be connected to a cornmon resistor. The graphic

v,

oc

D D
oC ac
B 5 —|
}Y
> b e =
Qc oc
D——F _ D —f

(a) Physical connection : .{b) Wired-logic graphic symbol
FIGURE 10-12
Wired-AND of two Open-Coilector (oc} Gates, ¥ = (AB + CDy

Chapter 10 Digital Integrated Circuits

symbol for such a connection is demonstrated in (b). The AND function formed by connect-
ing together the two outputs is called a wired-AND function. The AND gate is drawn with the
fines going through the center of the gate to distinguish it from a conventional gate. The wired-
AND gate is not a physical gate, but only a symbol to designate the function obtained from the
indicated connection. The Boolean function obtained from the circuit of Fig. 10-12 is the AND
operation between the outputs of the two NAND gates:

Y = (ABY + (CD) = (AB + CD)'

The second expression is preferred since it shows an operation commonly referred to as an
AND-OR-INVERT function (see Section 3-7).

Open-collector gates can be tied together to form a common bus. At any time, all gate out-
puts tied to the bus, except one, must be maintained in their high state. The selected gate may
be either in the high or low state, depending on whether we want to transmit a 1 or 0 on the bus.
Control circuits must be used to select the particular gate that drives the bus at any given time.

Fig. 10-13 demeonstrates the connection of four sources tied to a common bus line. Each of
the four inputs drives an open-collector inverter, and the outputs of the inverters are tied together
to form a single bus line. The figure shows that three of the inputs are 0, which produces a 1
or high level on the bus. The fourth input, I, can now transmit information through the com-
mon-bus line into inverter 5. Remember that an AND operation is performed in the wired logic.
If I, = 1, the output of gate 4 is 0 and the wired-AND operation produces a 0. If I, = 0, the
output of gate 4 is 1 and the wired-AND operation produces a 1. Thus, if all other outputs are
maintained at 1, the selected gate can transmit its value through the bus. The value transmitted
is the complement of I,, but inverter 5 in the receiving end can easily invert this signal again
tomakeY = I,.

=

1 0] el 1 |Bus line\ : v
L - oc-2 !
e Y oc-3 !
1 ——{13 oc-4 (1]

FIGURE 10-13
Open-Collector Gates Forming a Common Bus Line

Section 10-5 Transistor-Transistor Logic (TTL) 415

Totem-Pole Output

The output impedance of a gate is normally a resistive plus a capacitive load. The capacitive
load consists of the capacitance of the output transistor, the capacitance of the fan-out gates
and any stray wiring capacitance. When the output changes from the low to the high state the’
output transistor of the gate goes from saturation to cutoff and the total load capacitanf;e C
charges exponentially from the low to the high voltage level with a time constant equal to RC.
For the open-collector gate, R is the external resistor marked R .- For a typical operating value
of C = 1.5 pFand R, = 4 kQ), the propagation delay of a TTL open-collector gate during the
turn-off time is 35 ns. With an active pull-up circuit replacing the passive pull-up resistor R
the propagation delay is reduced to 10 ns, This configuration, shown in Fig. 10-14, is calIedLe;
totem-pole output because transistor Q4 “sits” upon Q3.

The TTL gate with the totem-pole output is the same as the open-collector gate, except for
the ou.tput ifransistor Q4 and the diode D 1. When the output ¥ is in the low state, Q2and 03
are driven into saturation as in the open-collector gate. The voltage in the collector of Q2 is
Vee(Q3) + Vep(@2) or 0.7 + 0.2 = 0.9 V. The output ¥ = Ver(©3) = 0.2 V. Transistor
Q24 is cutoff because its base must be one Vg, drop plus one diode drop, or 2 X 0.6 = 1.2V,
to stfirt conducting. Since the collector of Q2 is connected to the base of Q4, the latter’s volt:
age is F)nly 0.9 Vinstead of the required 1.2 V, and so Q4 is cut off. The reason for placing the
diode in the circuit is to provide a diode drop in the output path and thus ensure that 04 is cut
off when 03 is saturated.

When the output changes to the high state because one of the inputs drops to the low state
transistors Q2 and Q3 go into cutoff. However, the output remains mormentarily low because’

FIGURE 10-14
TTL Gate with Totem-Pole Output

10 Digital Integrateq Circuits Section 10-5 'Tl‘anSiStor-Transistor Logic (TTL) 417
~rapter g

is then 5 V, minus 5 Vir drop in 04, mj
BOeS into cutoff Very fast, but during th
4 peak carrent ig drawn from the power
power-suppjy disteibution system. Whe
spikes increase the Power-supply cirre

be high enough to move ghe Uansistor into the acti ion and Produce ap ouput voltage ip
the wired Connection gragter than 0.8 v, which is not 4 valid binary signal for TT], gates.

FIGURE 10-15
Schottky TTL Gate

TNging since they cop, Uct as soon ag the negative voltage ©Xceeds 0.4 v, When the Negative
€Xcursion ig limited, the Positive Swing is algq reduced, The clamp diodes haye been 5o gyc.
L L . m

The emittey Fesistor of ©2in Fig. 10-14 has beep replaced i Fig. 10-15 by a cireyjt con-

sisting of transisgor @6 and two Tesistors. The effect of this circuit is o reduce the furn-off cyy.
In addition ¢ using Schottky transistors ang lower resisgor values, the cireuit of Fig. 10-15

includes othey modifications pot available in the standard gate of Fig. 10-14. Ty new transistors,

418

Chapter 10 Digital Integrated Circuits

Three-State Gate

As mentioned earlier, the outputs of two TTL gates with totem-pole structures cannot be con-
nected together as in open-collector outputs. There is, however, a special type of totem-pole gate
that allows the wired connection of outputs for the purpose of forming a common-bus systerm.
‘When a totem-pole output TTL gate has this property, it is called a three-state {or tristate) gate.

A three-state gate exhibits three output states: (1) a low-level state when the lower transis-
tor in the totem-pole is on and the upper transistor is off, (2) a high-level state when the upper
transistor in the totem-pole is on and the lower transistor is off, and (3) a third state when both tran-
sistors in the totem-pole are off. The third state provides an open circuit or high-impedance state
that allows a direct wire connection of many outputs to a common line. Three-state gates elim-
inate the need for open-collector gates in bus configurations.

Fig. 10-16(a) shows the graphic symbol of a three-state buffer gate. When the control input
C is high, the gate is enabled and behaves like a normal buffer with the output equal to the
input binary value. When the control input is low, the output is an open circuit, which gives a
high impedance (the third state) regardless of the value of mput A. Some three-state gates pro-
duce a high-impedance state when the control input is high. This is shown symbolically in
Fig. 10-16(b). Here we have two small circles, one for the inverter output and the other to in-
dicate that the gate is enabled when C is low.

The circuit diagram of the three-state inverter is shown in Fig. 10-16(c). Transistors 06,
07, and Q8 associated with the control input form a circuit similar to the open-collecior gate.
Transistors Q 1-Q 3, associated with the data input, form a totem-pole TTL circuit. The two
circuits are connected together through diode D 1. As in an open-collector circuit, transistor o8
turns off when the control input at C is in the low-level state. This prevents diode D 1 from con-
ducting. In addition, the emitter in 01 connected to O 8 has no conduction path. Under this con-
dition, transistor Q8 has no effect on the operation of the gate and the output in Y depends
only on the data input at A.

When the control input is high, transistor Q8 turns on, and the current flowing from Ve through
diode D1 causes transistor Q8 to saturate. The voltage at the base of Q 5 is now equal to the volt-
age across the saturated transistor, O 8, plus one diode drop, or 0.9 V. This voltage turns off @5 and
(4 since it is less than two Vg drops. At the same time, the low input to one of the emitters of 01
forces transistor 03 (and 02} to turn off. Thus, both 03 and Q4 in the totem-pole are turned off
and the output of the circuit behaves like an open circuit with a very high output impedance.

A three-state bus is created by wiring several three-state outputs together. At any given time,
only one control input is enabled while all other outputs are in the high-impedance state. The sin-
gle gate not in a high-impedance state can transrriit binary information through the common bus.
Extreme care must be taken that all except one of the outputs are in the third state; otherwise, we
have the undesirable condition of having two active totem-pole outputs connected together. '

An important feature of most three-state gates is that the output enable delay is longer than
the output disable delay. If a control circuit enables one gate and disables another at the same
time, the disabled gate enters the high-impedance state before the other gate is enabled. This
climinates the situation of both gates being active at the same time.

There is a very small leakage current associated with the high-impedance condition ina
three-state gate, Nevertheless, this current is so small that as many as 100 three-state outputs
can be connected together to form a common-bus line.

Section 10-5 Transistor-Transistor Logic (TTL) 419

Y =Aif C = high Y=A'ifC=

- A = = low
A Y ¥ h1-gh impedance A ¥ high impedance
c if C = low if C = high

C

{(a) Three-state buffer gate (b) Three-state inverter gate

Vee

\ -~ 1o
Data AT ; ;Q ; [! Y
mput ! 2
\T
L

Control
input Co O 7

{c) Circuit diagram for the three-state inverter of (b)
FIGURE 10-16
Three-State TTL Gate

R e B T S s

420

10-6

Chapter 10 Digital Integrated Circuits

EMITTER-COUPLED LOGIC (ECL)

Emitter-coupled logic (ECLY} is a nonsaturated digital logic fami}y. Silttce tra!mstors dolnot sz::tuiatej
it is possible to achieve propagation delays as low as 1-2 ns. ThlS logic fa@ly has the owest;i p OIEES
agation delay of any family and is used mostly in systems fequiring very h1g'h-spe?i:'l ope:ra.losl.e
noise immunity and power dissipation, however, are the .wor'st of all the logic families aw_lél a boi[h

A typical basic circuit of the ECL family is shown in Fig. 10-17, The 01-1tpu.ts provide !
the OR and NOR functions, Each input is connected to the base of a transistor. The two‘vo j[
age levels are about —0.8 V for the high state and about —1.8 V for the tow gtate. The (;,(m:utl
consists of a differential amplifier, a temperature- and voltage-compen:sated bias networ han
an emitter-follower output. The emitter outputs require a pull-down resistor for current to low.
This is obtained from the input resistor R of another similar gate or from an external resistor

tive voltage supply.
Con’ll“l}?g tien(:eﬁzll::iiaerature- fnd vgga?;e-compensated bias circuit Sll.lpp].ieS a ref«.arenc‘e volFalgle
to the differential amplifier. Bias voltage Vi is set at —1.3 V, Whmh is the .m1dpolmt ('ﬁtL i
signal logic swing. The diodes in the voltage divider, together with 06, provide a circuit af
maintaing a constant Vg value despite changes in temperature or supply voltage. Any one od
the power supply inputs could be used as grou-nd. However, the use of the V. node as groun
-¢ 4t —5.2 V results in best noise immunity. .

andlfvgrfyaitnpjtzinvthe ECL gate is high, the corresponding transistor is turned on al:ld Q5 ;s ﬁurnecl
off. An input of —0.8 V causes the transistor to conduct and places —1.6'V on the emltterfs o 5a_ trzil-
sistors (Vy drop in ECL transistors is 0.8 V). Since Vg = —1.3 V, the base voltage of 05 is only

Internal
temperature

and voltage- '[El'llliitter—
. compensated) twar
Difterential input amplifier bias network outputs
Veez = GND Vg = GND
o]

Reo
2450 970

OR
output

Ry
2200

NOR

Q} | output
2 U T v
\l -13v
R, R, Re 10 § 498 kO
kQ SOKD 7790

[
Fm

I 1

R_u RP
S0kQ 50kQ

1 8 C D Vegg=—52V

FIGURE 10-17
ECL Basic Gate

Section 10-7 Emitter-Coupled Logic (ECL) 421

0.3 V more positive than its emitter. (5 is cut off because its Vi voltage needs at least 0.6 V to start
conducting. The current in resistor R flows into the base of 08 (provided there is a load resistor),
This current is so small that only a negligible voltage drop occurs across R, The OR output of the
gate is one Vi drop below ground, or —0.8 V, which is the high state, The current flowing through
Ry and the conducting transistor causes a drop of about 1 V below ground (see Problem 10-9). The
NOR output is one V,, drop below this level, or at —1.8 V, which is the low state.

If all inputs are at the low level, all input transistors turn off and @5 conducts. The voltage
in the common-emitter node is one Vie drop below Vi, or —2.1 V. Since the base of each input
is at a low level of —1.8 V. each base-emitter junction has only 0.3 V and all input transistors
are cut off. R, draws current through Q5 that results in a voltage drop of about 1 V, making
the OR output one V,,, drop below this, at —1.8 V or the low level. The current in R, is negli-
gible and the NOR output is one Vy,; drop below ground, at 0.8 V or the high level, This ver-
ifies the OR and NOR operations of the circuit.

The propagation delay of the ECL gate is 2 ns, and the power dissipation is 25 mW, This
gives a speed-power product of 50, which is about the same as for the Schottky TTL. The noise
margin is about 0.3 V and not as good as in the TTL gate. High fan-out is possible in the ECL,
gate because of the high input impedance of the differentiat amplifier and the low output im-
pedance of the emitter-follower. Because of the extreme high speed of the signals, external
wires act like transmission lines. Except for very short wires of a few centimeters, ECL out-
puts must use coaxial cables with a resistor termination to reduce line reflections,

‘The graphic symbol for the ECL gate is shown in Fig. 10-18(a). Two outputs are available:
one for the NOR function and the other for the OR function. The ountputs of two or more ECL
gates can be connected together to form wired logic. As shown in Fig. 10-18(b), an external
wired connection of two NOR outputs produces a wired-OR function. An inrernal wired con-
nection of two OR outputs is employed in some ECL ICs to produce a wired-AND (some-

times called dot-AND) logic. This property may be utilized when ECL gates are used to form
the OR-AND-INVERT and the OR-AND functions. '

METAL-OXIDE SEMICONDUCTOR (MOsS)

The field-effect transistor (FET) is a unipolar transistor, since its operation depends on the flow of
only one type of carrier. There are two types of field-effect transistors: the Junction field-effect tran-
sistor (JFET) and the metal-oxide semi-conductor (MOS). The former is used in linear circuits and
the latter in digital circuits. MOS transistors can be fabricated in less area than bipolar transistors,

4 L N\ (A+BY+(CtDy=

B (4 +BycC+ my
A (A + BY NOR
B (4 + B)OR
C
D -
ﬂ, (A +BYC+ D)
(a) Single gate (b) Wired combination of two gates

FIGURE 10-18
Graphic Symbols of ECL Gates

422

Chapter 10 Digital Integrated Circuits

gate (—) gate (+)

drain (—) source drair|1 {+)
| A- -

souree

(a) p-channel (b) n-channel

FIGURE 10-19
Basic Structure of MOS Transistor

The basic structure of the MOS transistor is shown in Fig. 10-19. The p—chann(-::l MOS con-
sists of a lightly doped substrate of r-type silicon material. TV.VO regions are heavily doped by
diffusion with p-type impurities to form the source and drain. The region between the I\f;o
p-type sections serves as the channel. The gate is a metal plate geparated from the channel by
an insulated dielectric of silicon dioxide. A negative voltage (with respect to the substrate') at
the gate terminal causes an induced electric field in the channel that att'racts p-type carriers
from the substrate. As the magnitude of the negative voltag§ on Fhe gate increases, the region
below the gate accumulates more positive carriers, the concliuct}wty increases, and current can gllow
from source to drain, provided a voltage difference is maintained between these two terminals.

There are four basic types of MOS structures. The channel can be a p-or n-type, depending on
whether the majority carriers are holes or electrons. The mode of operation can be enhange{nfa{lgl ?r
depletion, depending on the state of the channel region at zero gate voltage. Ifth_e channel is initi 1 ty
doped lightly with p-type impurity (diffused channel), a conducun-g channel exists at zero gneite V(t)h -
age and the device is said to operate in the depletion mode, In this mode3 current ﬂows u]:,ss ede
channel is depleted by an applied gate field. If the region beneath the gate is left initially unc arged,
a channel must be induced by the gate field before current can flf)w. Thus, the channel current is en-
hanced by the gate voltage and such a device is said to operate in the enhancement mode. o

The source is the terminal through which the majority carriers enter the bar. The drain is the
terminal through which the majority carriers leave the bar. 11-1 a p-c-hannel MOS,- the source
terminal is connected to the substrate and a negative voltage is applied to the dral‘n terminal.
‘When the gate voltage is above a threshold voltage V- (about —2 V), no current flovx.zs in the .charll—
nel and the drain-to-source path is like an open circuit. When the gate voltage is sqfﬁment \
negative below V7, a channel is formed and p-type carriers flow from source to q.ram. p-type
carriers are positive and correspond to a positive current flow from source to drain. N 1

In the n-channel MOS, the source terminal is connected t(? the substrate and a positive vo I;—
age is applied to the drain terminal. When the gate voltage is below th'e threshpld voltag‘e. T
{about 2 V), no current flows in the channel, When the gate voltage is sufficiently positive
above ¥ to form the channel, n-type carriers flow from source to drain. n-type carriers alrte
negative, which corresponds to a positive current ﬂ(_)w ifrom drain to Sté[urce. The thresheld volt-

ay vary from 1 to 4V, depending on the particular process used.
ageTI:e i;vrapl);ic symbols for thepMOS transistors are shovlvn in Fig. 10-20. The symbf)l ror tt}il'e
enhancement type is the one with the broken line connection between source and drau'l. n this
symbol, the substrate can be identified and is shown connected to the source._An alternative syg.l-
bol omits the substrate and instead, an arrow is placed in the source terminal to show the di-
rection of positive current flow (from source to drain in the p-channel and from drain to source
in the rn-channel).

Section 10-8 Metal-Oxide Semiconductor (MOS) 423

drain D

drain D
| g
gate —l ::{ substrate G —‘ gate —I }—;—‘ substrate G —’
source 8 source S

(a) p-channel

FIGURE 10-20
Symbuols for MOS Transistors

(b) n-channel

Because of the symmetrical construction of source and drain, the MOS transistor can be
operated as a hilateral device. Althou gh normally operated so that carriers flow from source to
drain, there are circumstances when it is convenient to allow carrier flow from drain to source
(see Problem 10-12). '

One advantage of the MOS device is that it can be used not only as a transistor, but as a re-
sistor as well. A resistor is obtained from the MOS by permanently biasing the gate terminal
for conduction. The ratio of the source-drain voltage to the channel current then determines the
value of the resistance. Different resistor values may be constructed during manufacturing by
fixing the channel length and width of the MOS device.

Three logic circuits using MOS devices are shown in Fig. 10-21. For an n-channel MOS,
supply voltage V,, is positive (about 5 V) to aliow positive current flow from drain to source.
The two voltage levels are a function of the threshold voltage V;. The low level is anywhere
from zero to Vg, and the high level ranges from ¥, to Vpp- The n-channel gates usually employ
positive logic. The p-channel MOS circuis use a negative voltage for V,,, to allow positive
current flow from source to drain. The two voltage levels are both negative above and below
the negative threshold voltage V;.. p-channel gates usually employ negative logic:

The inverter circuit shown in Fig. 10-21(a) uses two MOS devices, 01 acts as the load re-
sistor and Q2 as the active device. The load resistor MOS has its gate connected to Von, thus
maintaining it always in the conduction state. When the input voltage is low (below Vr), Q2 turns
off. Since Q1 is always on, the output voltage is at about Vj,,. When the input voltage is high
(above V;), 02 turns on. Current flows from Vpp through the load resistor 01 and into 2. The
geometry of the two MOS devices must be such that the resistance of 92, when conducting,
is much less than the resistance of (1 to maintain the output ¥ at a voltage below V5.

The NAND gate shown in Fig. 10-21(b) uses transistors in series. Inputs A and B must both
be high for all transistors to conduct and cause the output to go low. If either input is low, the
corresponding transistor is turned off and the output is high. Again, the series resistance formed
by the two active MOS devices must be much less than the resistance of the load-resistor MOS.
The NOR gate shown in Fig, 10-21(c) uses transistors in parallel. If either input is high, the cor-

responding transistor conducts and the output is low. If all inputs are low, all active transistors
are off and the output is high.

108 COMPLEMENTARY MOS (CMOS)

Complementary MOS circuits take advantage of the fact that both n-channel and p-channel de-
vices can be fabricated on the same substrate, CMOS circuits consist of both types of MOS devices
interconnected to form logic functions. The basic circuit is the inverter, which consists of one

P R RSP

424

Chapter 10 Digital Integrated Circuits

{a) Inverter {b) NAND gate

ul

Voo

—
— Voo

Y = (ABY

4_‘

AO—-—IE‘ Bo—|
L

(c) NOR gate

t—— ¥ =(A+BY

-

.”_?__+L_1j

FIGURE 10-21
n-channel MOS Logic Circuits

p-channel transistor and one #-channel transistor, as shown in Fig. 10-22(a). The source terminal
of the p-channel device is at V,, and the source terminal of the n-channel device is at ground.
The value of V,,;, may be anywhere from +3 to +18 V. The two voltage levels are 0 V for the
jow level and Vy,j, for the high level (typically, 5 V).

To understand the operation of the inverter, we must review the behavior of the MQOS tran-
sistor from the previous section:

1, The r-channel MOS conducts when its gate-to-source voltage is positive.
2. The p-channel MOS conducts when its gate-to-source voltage is negative.
3, Fither type of device is turned off if its gate-to-source voltage is zero.

Now consider the operation of the inverter. When the input is low, both gates are at zero po-
tential. The input is at —V,,, relative to the source of the p-channel device and at 0 V relative
to the source of the n-channel device. The result is that the p-channel device is turned on and
the #-channel device is turned off. Under these conditions, there is a low-impedance path from
Vpp to the output and a very high-impedance path from output to ground. Therefore, the output
voltage approaches the high level V;,; under normal loading conditions. When the input is high,
both gates are at V), and the situation is reversed: The p-channel device is off and the n-chan-
nel device is on. The result is that the output approaches the low level of 0 V.

Two other CMOS basic gates are shown in Fig. 10-22. A two-input NAND gate consists of
two p-type units in parallel and two n-type units in series, as shown in Fig. 10-22(b). If all in-
puts are high, both p-channel transistors turn off and both n-channel transistors turn on. The
output has a low impedance to ground and produces a low state. If any input is low, the asso-
ciated n-channel transistor is turned off and the associated p-channel transistor is turned on. The
output is coupled to V,,, and goes to the high state. Multiple-input NAND gates may be formed

by placing equal numbers of p-type and n-type transistors in parallel and series, respectively;

in an arrangement similar to that shown in Fig. 10-22(b).

Section 10-8 - Complementary MOS {CMOS) 425

I’/DD

A

..MEL[JJ_Q

(a) Inverter

Voo

—OY=(4B)

— ———0¥ = (A + BY

{b) NAND sgate

FIGURE 10-22
CMOS Logic Circuits

{c) NOR gate

A two-input NOR gate consists of two -t its i
. g -type units in paratl - its i
ries, as shown in Fig. 10-22(¢c). When all in B pchamel b ype urils in se-

puts are low, both p-ch its &

n.-channel units_ are off. The output is coupled to Vpp and goespto thinll:iegllius]tft;earﬁfzz a]illf b(t)t'h
high, the ass-omated p-channel transistor is turned off and the associated n-che-mne] I}:/r p'ut .
tums on. Thls-connects the output to ground, causing a low-level output e

MOS transistors can be considered as electronic switches that either conduct or are open. A

an example, the CMOS inverter can be visualized as congisting of two switches as shlz)w;l iS
Flg_. 10-23(a). Applying a low voltage to the input causes the upper switch (p) to close suppl inn
a high Voltage- to the output. Applying a high voltage to the input causes the lower‘switci? }Er?) tg
close connecting the output to ground. Thus, the output V,_, is the complement of the input VO

Commercial applications often use other graphic symbols for the MOS transistors to emphasize

the logical behavior of the switches. The arrows showing the direction of current flow are omitted

426 Chapter 10 Digital Integrated Circuits Section 10-9 CMOS Transmission Gate Circuits 427

y %Efs (Ilnl\;lfs tf}:ilbtrical;ion process is simpler than TTL and provides a greater packing densi
. ns that more circuits can be placed on a given area of sili ,
ndion, T o s can b giv ea of silicon at a reduced cost per
y, together with it low power dissipation ise i i
: . £ood noise immunity, and rea-
sonable propagation delay, makes CMOS the most popular standard as a digital logsi/c famriizj

VDD =5v VDD

Vin (; Vout A— Y
j '_‘{

(a) Switch model : (b) Logical model

FIGURE 10-23
CMOS inverter

10-9 CMOS TRANSMISSION GATE CIRCUITS

20856;(2?‘: (':rl\}/lleoi circu.it lihat is not available in the other digital logic families is the fransmis

: g ansmission gate is essentially an electronic swiich that i .

mput logic level. It is used for simplifying th i s digtal Commponents
‘ e co i igi

e Bl evel s teChHOIOgS ying nstruction of various digital components when

Fig. 10-24(a) shows the basic circui igsi
it of the transmission gate. It consi

ancrlr?lne p-channel MOS transistor connected in parallel. £ neists of one r-channel
y v?/ E;ht?]r;n;? sutlasFrate ;/S com;lected to ground and the p-channel substrate is connected to
Vop- gate 18 at Vpp, and the P gate is at ground, both transi

is a closed path between input X and out : i oo on i o there

put ¥. When the N gate is at ground and the P
. - t

Vpp, both transistors are off and there is an open circuit between X and Y. Fig. 10-24(b) %isvjst

Instead, the gate input of the p-channel transistor is drawn with an inversion bubble on the gate fer- the bi i
, ock diagram of the transmission i
gate. Note that the terminal of the 1
p-channe] gate is

minal to show that it is enabled with a low voltage. The imverter circuit is redrawn in Fig. 10-23(b)
using these symbols. A logic 0 in the input causes the upper transistor to conduct making the out-
put logic 1. A logic 1 in the input enables the lower transistor, making the output logic 0.

CMOS Characteristics

When a CMOS logic circuit is in a static state, its power dissipation is very low. This is because
there is always an off transistor in the path when the state of the circuit is not changing. As a
result, a typical CMOS gate has a static power dissipation on the order of 0.01 mW. However,
when the circuit is changing state at the rate of 1 MHz, the power dissipation increases to about
1 mW, and at 10 MHz to about 5 mW.

CMOS logic is usually specified for a single power supply operation over a voltage range
from 3 to 18 V with a typical Vp, value of 5 V. Operating CMOS at a larger power supply volt-
age reduces the propagation delay time and improves the noise margin, but the power dissipa-
tion is increased. The propagation delay time with Vpp = 5V ranges from 5 to 20 ns depending
on the type used. The noise margin is usually about 40 percent of the power supply voltage. The
fan-out of CMOS gates is about 30 when operated at a frequency of 1 MHz. The fan-out de-

41

(a) ®)

creases with increase in frequency of operation. Close switch o _
There are several series of the CMOS digital logic family. The 74C series are pin and fune- _ pen switch
tion compatible with TTL devices having the same number. For example, CMOS IC type 74C04 X — T vy Pe _—/A v
has six inverters with the same pin configuration as TTL type 7404. The high-speed CMOS j;:(l) N=0

P=1

74HC series is an improvement of the 74C series with a tenfold increase in switching speed.
The T4HCT series is electrically compatible with TTL ICs. This means that the circuit in this
series can be connected to inputs and outputs of TTL ICs without the need of additional inter-
facing circuits. Newer versions of CMOS are the high-speed series 74VHC and its TTL. com-
patible version 74VHCT.

(c)
FIGURE 10-24
Transmission Gate (TG)

428 Chapter 10 Digital Integrated Circuits

¢ > |

Section 109 CMOS Transmission Gate Circu.its 429

;I(i):tzd azldtmgfut Yis f:qual to input B. When input A is equal to 1, 7G 2 is closed and output
qual to the complement of input B. This results in th ive- indi
cated i the tabte o o n the exclusive-OR truth table, as indi-
1 -Another. circuit ‘that can be constructed with transmission gates is the muitiplexer. A 4-to-
—l.me ml?luPlexer 1mp_ler_nented with transmiission gates is shown in Fig. 10-27. The. TG cir-
cult.prowdes a .transmISsmn path between its horizontal input and output lines when the two
vertical control inputs have the value of | in the uncircled terminal and 0 in the circled terminal

5 7>F _’

FIGURE 10-25
Bilateral Switch

marked with the negation symbot. Fig. 10-24(c) demonstrates the behavior of the switch in terms
of positive-logic assignment with V;p equivalent to logic-1 and ground equivalent te logic-0.

The transmission gate is usually connected to an inverter, as shown in Fig. 10-25, This type
of atrangement is referred to as a bilateral switch. The control input C is connected directly to
the n-channel gate and its inverse to the p-channel gate. When C = 1, the switch is closed,
producing a path between X and Y. When C = 0, the switch is open, disconnecting the path
between X and ¥,

Various circuits can be constructed using the transmission gate. In order to demonstrate its
usefulness as a component in the CMOS family, we will show three circuit examples.

The exclusive-CR gate can be constructed with two transmission gates and two inverters,
as shown in Fig. 10-26. Input A controls the paths in the transmission gates and input B is con-
nected to output ¥ through the gates. When input A is equal to 0, transmission gate TG 1 is

A |

B TGl

Gl G2

b
v
=~

close open
close open
open close
open close

e
e ==

[R
O == O

—[>o— TG2

FIGURE 10-26
Exclusive-OR Constructed with Transmission Gates

FIGURE 10-27
Multiplexer with Transmission Gates

430

10-10

Chapter 10 Digital Integrated Circuits

C

TG Q

FIGURE 10-238
Gated D Latch with Transmission Gates

With an opposite polarity in the control inputs, the path disconnects and the circuit behaves like
an open switch. The two selection inputs, S, and S, control the transmission path in the TG
circuits. Inside each box is marked the condition for the transmission gate switch to be closed.
Thus, if §; = 0and §; = 0, there is a closed path from input /; to output ¥ through the two T'Gs
marked with §; = 0 and §; = 0. The other three inputs are disconnected from the output by
one of the other TG circuits.

The level-sensitive D flip-flop commonly referred to as gated D latch can be consiructed with
transmission gates, as shown in Fig. 10-28. The C input controls two transmission gates 7G.
When C = 1, the TG connected to input D has a closed path and the one connected to output
O has an open path. This produces an equivalent circuit from input D through two inverters to
output (. Thus, the output follows the data input as-long as C remains active. When C switch-
es to 0, the first TG disconnects input D {rom the circuit and the second TG produces a closed
path between the two inverters at the ouiput. Thus, the value that was present at input D at the
time that C went from 1 to 0 is retained at the O output.

A master-slave D flip-flop can be constructed with two circuits of the type shown in
Fig. 10-28. The first circuit 1s the master and the second is the slave. Thus, a master-slave D
flip-flop can be constructed with four transmission gates and six inverters.

SWITCH-LEVEL MODELING WITH HDL

CMOS 1s the dominant digital logic family used with integrated circuits. By definition, CMOS
is a complementary connection of an NMOS and a PMOS transistor. MOS transistors can be
considered as electronic switches that either conduct or are open. By specifying the connections
among MOS switches, the designer can describe a digital circuit constructed with CMOS. This
type of description is called switch-level modeling in Verilog HDL.

The two types of MOS switches are specified in Verilog HDL with the keywords nmos and
pmos. They are instantiated by specifying the three terminals of the transistor as shown in Fig. 10-20.

mmos {drain, source, gate);
pmos {drain, source, gate);

Section 10-10 Switch-Lever Modeling With HDL 431

Sw;t;hes are colnsidered as primitives so the use of an instance narme is optional
: .
irore Z;):rézzggisdtopa power dsource (VDD) and to ground must be specified when the MOS
- rower and ground are defined with the keywords
: _ su
They are specified with the following statements: g PPyl and supply0.
supplyl PFWR;
supply0 GRD;

Sources of type supplyl are equi
: quivalent to V,,;, and have a value of logic-1. So
suI;[;:yO are ?qylvalent to ground connection and have a value of]ogic~g0. Powees oftype
o e description of the CMOS inverter of Fig. 10-22(a) is shown in HDL Example 10-1. The
! lﬂm Cc));tﬂut, antd th’f*h tWo supply sources are first declared. The moduyie instantiates a PMOé and
ansistor. The output ¥ is common to both transistors at their drai i
: . . ain terminals. The i
is alsq common to both transistors at their gate terminals. The source terminal of the PMO; 1;5:
SISE?; 1s connected to PWl_l and the source terminal of the NMOS transistor is connected to GRD
Fig 1 (e) ;;((:g;-ldThmodule in Example 10-2 describes the 2-input CMOS NAND circuit of.
. 10- - there are two PMOS transistors connected in i i

parallel with their source termi-

nals connected to PWR. There are two NMOS transistors connected in series with a corjrrnlzln

telllllﬂal H’ 1. Th.e dI ain Of the ilrSt IJIVIOS 15 COIlIlCCfECl to the OIHPLIE aﬂd the source Of the sec-

HDL Example 10-1
//CMOS inverter Fig, 10-22 (a)
module inverter (Y,A);

input Aa;

output v;

supplyl PWR;

supply0 GRD;

pmos ({Y,PWR,A); /7 (Drain,source,gate)
mmos (Y,GRD,A); //{Drain
enameos ! . Source, gate)
HDL Example 10-2

//CMOS 2-input NAND Fig. 10-22(b)
module NAND2 (Y,A,B);

input A, B;

output ¥;

supplyl PuWR;

sSupply0 GRD;

wire Wil; //terminal between two nmos
pmos (Y,PWR,A) ; //source connected to vdd
pmos (Y, PWR,B) ; // parallel connection
nnos EYin,A); // serial connection
mmos (Wil , GRD, B} ; // sourc

cndmman e ; & commnected to ground

432

Chapter 10 Digital Integrated Circuits -

Transmission Gate

The transmission gate is instantiated in Verilog HDL with the keyword cmos. It has an output,
input, and two control signals as shown in Fig. 10-24. Tt is referred to as a emos switch. The

relevant code is as follows:

cmos (output, input, neontrol, pcontrol) ; //general description
emos (Y,¥X,N,P); //transmission gate of Fig. 10-24(b)

The ncontrol and peontrol are normally the complement of each other. "The cmos switch does not
need power sources since Vj,, and ground are connected to the substrates of the MOS transis-
tors. Transmission gates are useful for building multiplexers and flip-fiops with CMOS circuits.

HDL example 10-3 demonstrates the description of a circuit with cmos switches. The
exclusive-OR circuit of Fig. 10-26 has two transmission gates and two inverters. The two
inverters are instantiated with the module of a CMOS inverter. The two cmos switches are
instantiated without an instance name since they are considered as primitives. A test module
is included to test the circuit operation. Applying all possible combinations of the two inputs,
the result of the simulator verifies the operation of the exclusive-OR circuit. The output of the

simulation is as follows:

A=0 B=290 Yy=20
A=10 B=1 Y =1
A=1 B=0 y=1
A=1 B=1 Y =20

Section 10-10 Switch-Lever Modeling With HDL

HDL Example 10-3

//XOR with CMOS switchs Fig. 10-25
module SXOR (A,B,Y);
input A,B;
output Y;
wire Anot, Bnot;
//instantiate inverter
inverter vl (Anot,A);
inverter v2 (Bnot,B);
//instantiate cmos switch
cmos (Y,B,Anot,A);
cmos (Y,EBnot, A, Anot) ;
endmodule

//(output,input,ncontrol,pcontrol)

//CMOS inverter Fig. 10-22(a)
module inverter (Y,A);
input A:
cutput Y
supplvl PWR;
supply0 GRD;
pmos (Y, PWR,A);
mmos (Y,GRD,A}:
endmodul e

//(Drain,source,gate)
//{Drain, source, gate)

//8timulus to test SXOR
module test_SXOR:
reg A,B;
wire V;
//Instantiate SXOR
SXOR X1 {A,B,Y);
//Apply truth table
initial
begin
A=1'b0; B=1'k0;
#5 A=1'b0; B=1'bl;
#5 A=1'b1; B=1'b0;
#5 A=1'Db1; B=1'b1;
end
//display results
initial
$monitor ("A = = =%b"
cndmoon ("A =%b B= %b Y =%b JA,B,Y) ;

~433

436 Chapter 10 Digital Integrated Circuits

REFERENCES

1. Tocer, R. I and N, §, WiDMER. 2001, Digital Systems Frinciples and Applications, §th ed. Upper
Saddle River, Ni: Prentice Hall.

2. WESTE, N. E. and K. Esuracrian. 1993, FPrinciples of CMOS VLST design: A System Perspective,
2nd ed. Reading, MA: Addison-Wesley.

3. - WakerLy, J. F. 2000. Digital Design: Frinciples and Practices, 3rd ed. Upper Saddle River, NJ-
Prentice Hall.

4, Honces, I, A, and H. G, JACKsON, 1088, Analysis and Design of Digital Integrated Circuirs,
2nd ed. New York: MeGraw-Hill,
1988. The TTL Logic Data Book. Dallas: Texas Instruments.

. 1994. CMOS Logic Data Book. Dallas: Texas Intruments.
7. CILeTTL M. D. 1999, Modeling, Synthesis, and Rapid Prototyping with Verilog HDI. Upper Sad-

dle River, NJ: Prentice Hall.

Laboratory
Experiments

-emitting diode) indicator latnps.
2. Toggle switches to provide logic-1 and -0 signals,
3. Pulsers with pushbuttons and debonnce circuits to generate single pulses,

4. A clock-pulse generator with at least two frequencies—a low frequency of ahout one
pulse per second to observe slow changes in digital signals and » higher frequency for
observing waveforms in an oscilloscope.

3. A power supply of 5V,

438 Chapter 11 Laboratory Experiments

Additional equipment required are a duai-trace oscilloscope (for Experiments 1, 2, 8, and
15), alogic probe to be used for debugging, and a number of ICs. The ICs re
periments are of the TTL or CMOS series 7400.

The integrated circuits to be used in the experiments can be classified as small-scale integra-
tion (SSI) or medium-scale integration (MSI) circuits. SSI cireuits contain individual gates or
flip-tlops, and MSI circujts perform specific digital functions, The eight SST gate ICs needed for
the experiments are shown in Fig. 11-1. They include two-input NAND, NOR, AND, OR, and
XOR gates, inverters, and three-input and four-i nput NAND gates. The pin assignment for the gates
is indicated in the diagram. The pins are numbered from 1 to 14. Pin number 14 is marked V..,
and pin number 7 is marked GND (ground). These are the supply terminals, which must be cop-
nected to a power supply of 5V for proper operation. Each [C is recognized by its identiticarion
number; for example, the two-input NAND gates are found inside the IC whose number is 7400,

Detailed descriptions of the MS] circuits can be found in data books published by the many.-
facturers. The best way o acquire experience with commercial MSI circuits is to study their de-

scription in a data book that provides complete information on the internal, external, and electrical
characteristics of the integrated circuits. Various semiconductor companies publish data books for
the 7400 series. The MSI circuits that are needed for the experiments are introduced and ex-
plained when they are used for the first time. The operation of the circuit is explained by refer-

quired for the ex-

2-input NOR
7400 7402

The information about the 7493 IC that is found in a data book is shown in Figs. 11-2(a) and
(b). Part (a) shows « diagram of the interna) logic circuit and its connection to external pins. All
inputs and outputs are given symbolic letters and assigned to pin numbers, Part (b) shows the phys-
ical layout of the IC with its 14-pin assignment to signal names. Some of the pins are not used
by the circuit and are marked as NC (no connection). The IC is inserted into g socket, and wires
arc connected to the varions pins through the socket terminals. When drawing schematic dia-
grams in this chapter, we will show the IC in a block diagraim form as in Fig. 11-2(c). The IC num-
ber 7493 is written inside the block. All input terminals are placed on the left of the block and all

7420
output terminals on the right. The letter symbols of the signals, such as A, R, and QA, are writ-

be placed on the top or the bottom of the block for convenience,

‘The operation of the circuit is similar to the ripple counter shown in Fig, 6-8(a) with an asyn-
chronous clear to each flip-flop. When inputs R1 or R2 or both are equal to logic O (ground), all
asynchronous clears are equal to 1 and are disabled. To clear all four flip-flops to 0, the output of
the NAND gate must be equal to 0. This s accomplished by having both inputs R and R2 at logic-1

i GND .
2 m%:%tzOR Zifiput XOR . GND
7486

FIGURE 111

Digital Gates in |¢ Packages with Identification Numbers and pin Assignments

A20

440 Chapter 11 Laboratory Experiments Section 11-0 Introduction to Experiments . 441

A NC QA QD GND QB (QC grounded. Pins 5 and 10 must be connected toa 5V power supply. The input pulses must be

; ol el sl el el s 3 applied to input A at pin 14;, and the four flip-flop outputs of the counter are taken from QA,
InputA 14 eA QB,QC, and OD, at pins 12, 9, 8, and 11, respectively, with QA being the least significant bit.
> C Figure 11-2(c) demonstrates the way that all MSI circuits will be symbolized graphically in
this chapter. Only a block diagram similar to the one shown in this figure will be shown for each
K oerr IC. The leiter symbols for the inputs and outputs in the IC block diagram will be according to
T 7493 the symbols used in the data book. The operation of the circuit will be explained with reference
to logic diagrams from previous chapters. The operation of the circuit will be specified by
' 9 means of a truth table or a function tabie,
J 0 0B Other possible graphic symbols for the ICs are presented in Chapter 12. These are standard
Input 5 1 1 2 3 3 5 6 7 graphic symbols approved by the Institute of Electrical and Electronics Engineers and are given
' o? ¢ B " R NC VYee NC NC in IEEE standard 91-1984. The standard graphic symbols for SSI gates have rectangular shapes,
%)) as shown in Fig, 12-1. The standard graphic symbol for the 7493 IC is shown in Fig. 12-13. This
CLR (b) Physieal Iayout (NC: no connection) symbol can be substitated in place of the one shown in Fig. 11-2(c). The standard graphic sym-
bols of the other ICs that are needed to run the experiments are presented in Chapter 12. They can
' be used for drawing schematic diagrams of the logic circuits if the standard symbols are preferred.
5 Table 11-1 tists the ICs that are needed for the experiments together with the figure num-
bers where they are presented in this chapter. In addition, the table lists the figure numbers in
J 0 8 oc 14 Vee 12 Chapter 12 where the equivalent standard graphic symbols are drawn.
—4 QA —— The rest of the chapter contains 19 sections. The first 18 sections present 18 hardware ex-
> ¢ L 9 periments requiring the use of digital integrated circuits. Section 11-19 outlines HDL simula-
« —B QB —— tion experiments requiring a Verilog HDL compiler and simulator.
CLR 7493
2 Rl oc °
) Table 11-1
3 11 Integrated Circuits Required for the Experiments
" e GND or Graphic Symbol
! e abD 10 .
S c IC Number Description In Chap. 11 in Chap. 12
(c} Schematic diagram Various gates Fig. 11-1 Fig. 1241
K CLR 7447 BCD-to-seven-segment decoder Fig. 11-8
3 T 7474 Dual D-type flip-flops Flg 11-13 Fig. 12-9(b)
R1—)D 7476 Dual JK-type flip-flops Fig. 11-12 Fig. 12-9(a)
R2— 7483 4-bit binary adder Fig. 11-10 Fig. 12-2
. 7493 4-bit ripple counter Fig. 11-2 Fig. 12-13
{a) Internal circuit diagram 74151 8 X 1 multiplexer Fig. 11-9 Fig. 12-7(a)
74155 3 X § decoder Fig. 11-7 Fig. 12-6
FIGURE 11-2 74157 Quadruple 2 X 1 multiplexers Fig. 11-17 Fig. 12-7(b)
IC Type 7493 Ripple Counter 74161 4-bit synchronous counter Fig. 11-15 Fig. 12-14
74189 16 X 4 random-access memory Fig. 11-18 Fig. 12-15
. 74194 Bidirectional shift register Fig. 11-19 Fig. 12-12
The 7493 IC can operate as a three-bit counter using input B and flip-flops 0B, 0C, and Qb. 74195 4-bit shift register & Fig. 11-16 Pig. 1211
It can operate as a four-bit counter using input A if cutput (JA is connected to input B. ThC_Ie— 7730 Seven-segment LED display Fig, 11-8
fore, to operate the circuit as a four-bit counter, it is necessary to have an extemal connectrgn 72555 Timer (same as 555) Fig. 1121
between pin 12 and pin 1. The reset inputs, R1 and R2, at pins 2 and 3, respectively, must be

442

11-1

Chapter 11 Laboratory Experiments

BINARY AND DECIMAL NUMBERS

This experiment demonstrates the count sequence of l?inary numbers and the bnllar%-clotéed
decimal (BCD) representation. It serves as an introductlgn to the breadboard used ‘m tf ela ﬂ(l)—
ratory and acquaints the student with the cathode-ray osc1110§cope. Reference mgtenai -roml 26
text that may be useful to know while performing the experiment can be found in Section 1-2,
on binary numbers, and Section 1-7, on BCD numbers.

Binary Count

IC type 7493 consists of four flip-flops, as shown in Fig, ‘1 1—‘2. They can be conr_le_cted to count
in binary or in BCD. Connect the IC to operate as a 4-bit b.mary csmnter by.wu'mg the extj—
nal terminals, as shown in Fig. 11-3. This is done by connecting a wire fr.om pin 12 (output %1)
to pin 1 (input B). Input A at pin 14 is connected to a pulser that provides smgle .pulsei. e
two reset inputs, R1 and R2, are connected to ground, The four Outp}lts goto f‘our. indicator angas
with the low-order bit of the counter from QA connected .to the rightmost 1nd1ca.tor lamp. Do
not forget to supply 5 V and ground to the IC. All connections should be made with the power
i osition. ‘ _
Sup%?rl; I:l:: ;ggeli on and observe the four indicator lamps. The 4-bit number in the outpul is
incremented by one for every pulse generated in the push-button pul?,er. The count go;:s to E
nary 15 and then back to 0. Disconnect the input of the counter at pin 14 from the pulser an

-connect it to a clock generator that produces a train of pulses at a low frequency of about one

pulse per second. This will provide an automatic binary count. Note that the binary counter ‘wﬂl
be used in subsequent experiments to provide the input binary signals for testing combina-
ticnal circuits.

E
14 Vee 12
A QA
Push-button 0
pulser or 1 B C D
clock B Q
5 7493 oc 8 6 i)
Rl 11
3 QD (Ei)
R2 Indicator
GND lamps
10
FIGURE 11-3

Binary Counter

Section 11-1 Binary and Decimal Numbers 443

Oscilloscope Display

Increase the frequency of the clock to 10 kHz or higher and connect its output to an oscillo-
scope. Observe the clock output on the oscilloscope and sketch its waveform, Using a dual-trace
oscilloscope, connect the output of QA to one channel and the output of the clock to the sec-
ond channel. Note that the output of JA is complemented every time the clock pulse goes
through a negative transition from 1 to 0. Also, note that the clock frequency at the output of
the first flip-flop is one-half that of the input clock frequency. Each flip-flop in turn divides its
incoming frequency by 2. The four-bit counter divides the incoming frequency by 16 at out-
put @D. Obtain a timing diagram showing the time relationship of the clock and the four outputs
of the counter. Make sure that you inciude at least 16 clock cycles. The way to proceed with a
dual-trace oscilloscope is as follows. First, observe the clock pulses and QA and record their
timing waveforms. Then repeat by observing and recording the waveforms of QA to gether with
OB, followed by the waveforms of OB with QC and then OC with @D, Your final result shouid
be a diagram showing the time relationship of the clock and the four outputs in one composite
diagram having at least 16 clock cycles

BCD Count

The BCD representation uses the binary numbers from 0000 to 1001 to represent the coded dec-
imal digits from 0 to 9. IC type 7493 can be operated as a BCD counter by making the exter-
nal connections shown in Fig. 11-4. Outputs QB and QD are connected to the two reset inputs,
R1 and R2. When both R1 and R2 are equal to 1, all four cells in the counter clear to 0 irre-
spective of the input pulse. The counter starts from 0, and every input pulse increments it byt

5
14 Vee
Input 12
pulses A oA
1 9
B OB
7493 8
2 _ QC
R 1
3 oD
R2
GND
10

FIGURE 11-4
BCD Counter

444

Chapter 11 Laboratory Experiments

until it reaches the count of 1001. The next pulse changes the ouput to 1010, making @B and
QD equal to 1. This momentary output cannot be sustained, because the four cells immediately
clear to 0, with the result that the output goes to 0000. Thus, the pulse after the count of 1001
changes the output to 0000, producing a BCD count.

Connect the IC to operate as a BCD counter. Connect the input to a pulser and the four out-
puts to indicator lamps. Verify that the count goes from 0000 to 1001,

Disconnect the input from the pulser and connect it to a clock generator. Observe the clock
waveform and the four outputs on the oscilloscope. Obtain an accurate timing diagram show-
ing the time relationship between the clock and the four outputs. Make sure to include at least
ten clock cycles in the oscilloscope display and in the composite timing diagram.

Output Pattern

When the count pulses into the BCD counter are continuous, the counter keeps repeating the
sequence from 0000 to 1001 and back to (000. This means that each bit in the four ontputs pro-
duces a fixed pattern of 1's and 0's, which is repeated every 10 pulses. These patterns can be
predicted from the list of the binary numbers from 0000 to 1001. The list will show that out-
put A, being the least significant bit, produces a pattern of alternate 1’s and 0’s. Output £D,
being the most significant bit, praduces a pattern of eight (s followed by two 1°s. Obtain the
pattern for the other two outputs and then check all four patterns on the oscilloscope. This is
done with a dual-trace oscilloscope by displaying the clock pulses in one channel and one of
the output waveforms in the other channel. The pattern of 1’s and 0’s for the corresponding out-
put is obtained by observing the output levels at the vertical positions where the pulses change
from 1 to 0.

Other Counts

IC type 7493 can be connected to count from O to a variety of final counts. This is done by con-
necting one or two outputs to the reset inputs, R1 and R2. Thus, if R1 is connected to @A in-
stead of @B in Fig. 11-4, the resulting count will be from 0000 to 1000, which is 1 less than
1001 (@D = 1 and QA = 1).

Utilizing your knowledge of how R1 and R2 affect the final count, connect the 7493 IC to
count from 0000 to the following final counts:

(a) 0101
(b) 0111
(c) 1011
Connect each circuit and verify its count sequence by applying pulses from the pulser and

observing the output count in the indicator lamps. If the initial count starts with a value greater
than the final count, keep applying input pulses until the output clears to 0.

Section 11-2 Digital Logic Gates 445
11-2 DIGITAL LOGIC GATES

In this experiment, you will investigate the logic behavior of various IC gates:
“7400 Quadruple 2-input NAND gates
7402 Quadruple 2-input NOR gates
7404 Hex inverters .
7408 Quadruple 2-input AND gates ' ;
7432 Quadruple 2-input OR gates
7486 Quadruple 2-input XOR gates

The pin assignmer-lts to the various gates are shown in Fig, 11-1. “Quadruple” means that
there are four gates within the package. The digital logic gates and their characteristics are dis-
cussed in Section 2-8. NAND implementation is discussed in Section 3-6.

Truth Tables

Use one gate from each IC listed above and obtain the truth table of the gate. The truth table

is obtained by connecting the inputs of the gate to switches and the output to an indicator lamp.
Compare your results with the truth tables listed in Fi g.2-5.

Waveforlhs

For each gate listed above, obtain the input-output waveform relationship of the gate. The
waveforms are to be observed in the oscilloscope. Use the two low-order outputs of a b;na
counter (Fig. 11-3) to provide the inputs to the gate. As an example, the circuit and wavefonnrz
for the NAND gate are illustrated in Fig. 11-5. The oscilloscope display will repeat this wave-
form, but you should record only the non-repetitive portion.

Input A 0 _ 1 B
puines A 04 __} . Q 0 |1

0B—

Fig. 113)
{counter) QB 0 0 1 1

FIGURE 11-5
Waveforms for NAND Gate

446

Chapter 11 Laboratory Experiments

Propagation Delay

Connect all six inverters inside the 7404 IC in cascade. The output will be the same as the input
except that it will be delayed by the time it takes the signal to propagate through all six in-
verters. Apply clock pulses to the input of the first inverter. Using the oscilloscope, determine
the delay from the input to the output of the sixth inverter during the upswing and again dur-
ing the downswing of the pulse. This is done with a dual-trace oscilloscope by applying the input
clock pulses to one of the channels and the output of the sixth inverter to the second channel.
Set the time-base knob to the lowest time-per-division setting. The rise or fall time of the two
pulses should appear on the screen. Divide the total delay by 6 to obtain an average propaga-

tion delay per inverter,

Universal NAND Gate

Using a single 7400 IC, connect a circuit that produces

(a) aninverter

(b} a 2-input AND

{c) a2-input OR

(d) a 2-input NOR

(e) a2-input XOR (See Fig. 3-32)

In each case, verify your circuit by checking its truth table.

NAND Circuit

11-3

Using a single 7400 IC, construct a circuit with NAND gates that implements the Boolean function
F=AB+CD

. Draw the circuit diagram.

Obtain the truth table for F as a function of the four inputs.

. Connect the circuit and verify the truth table,

. Record the patterns of 1’s and 0’s for F as inputs A, B, C, and D go from binary 0
to binary 15.

5. Connect the four outputs of the binary counter shown in Fig. 11-3 to the four inputs of

the NAND circuit. Connect the input clock pulses from the counter to one channel and

output F to the other channel of a dual-trace oscilloscope. Observe and record the 1's and

0’s pattern of F after each clock pulse and compare it to the pattern recorded in Step 4.

B W e

SIMPLIFICATION OF BOOLEAN FUNCTIONS

This experiment demonstrates the relationship between a Boolean function and the corre-
sponding logic diagram. The Boolean functions are simplified by using the map method, as dis-
cussed in Chapter 3. The logic diagrams are to be drawn using NAND gates, as explained in

Section 3-6.

Section 11-3 Simplification of Boolean Functions 447

] he gate I(:S [',0 be llSed fOI the l() 1C dla ams mu t be t] 105¢ fIOI“ E 12, 1 1' I t at C()]"a the
g T)

7400 2-input NAND
7404 Inverter (1-input NAND);
7410 3-input NAND
7420 4-input NAND
If an input to a NAND gate is not used, it should not be left open, but, instead, should be

connected to another input that is used. For example, if the circuit needs an inverter and there

is an extra two-input gate available in a 7400 IC, then both in
i ;) puts of the gate are to be ¢
together to form a single input for an inverter. ; onmected

Logic Diagram

T-hls part o-f the experiment starts with a given logic diagram from which we proceed to appl
sxmpht?catmn procedures to reduce the number of gates and possibly the number of ICs IzIPhZ
logl-c diagram shown in Fig. 11-6 requires two ICs, a 7400 and a 7410. Note that the invelrters
for inputs x, y, and 7 are obtained from the remaining three gates in the 7400 IC. If the invert-
ers “{ere taken from a 7404 IC, the circuit would have required three TCs Als;) note that in
drawing SST circuits, the gates are not enclosed in blocks as is done with MSI circuits.

x B

DD

—1
FIGURE 11-6 '

Logic Diagram for Experiment 3

i
Prd
B

S e

Chapter 11 Laboratory Experiments

Assign pin numbers to al} inputs and outputs of the gates and connect the circuit with the
x, y, and z inputs going to three switches and the output F to an indicator lamp. Test the cir-
cuit by obtaining its truth table.

Obtain the Boolean function of the circuit and simplify it using the map method. Construct
the simplified circuit without disconnecting the original circuit. Test both circuits by applying
identical inpats to both and observing the separate outputs. Show that for each of the eight
possible input combinations, the two circuits have identical outputs. This will prove that the sim-

plified circuit behaves exactly as the original circuit.

Boolean Functions

Given the two Boolean functions in sum of minierms:

F(A, B,C,D) = (0,1,4,5,8,9,10, 12, 13)
F(A, B, C,D) = (3,5,7,8,10,11,13,15)

simplify the two functions by means of maps. Obtain a composite logic diagram with four in-
puts, A, B, C, and D, and two outputs, F| and £;. Implement the two functions together using
a minimum number of NAND ICs. Do not duplicate the same gate if the corresponding term
is needed for both functions. Use any extra gates in existing ICs for inverters when possible.
Connect the circuit and check its operation. The truth table for F; and F; obtained from the cir-

cuit should conform with the minterms listed.

Complement

Plot the following Boolean function in a map:
F =AD+ BD + BC + AB'D

Combine the 17s in the map to obtain the simplified function for F in sum of products. Then
combine the s in the map to obtain the simplified function for F* also in sum of products. Im-
plement both F and F’ using NAND gates and connect the two circuits to the same input switch-
es, but to separate output indicator lamps. Obtain the truth table of each circuit in the laboratory

and show that they are the complements of each other.

11-4 COMBINATIONAL CIRCUITS

In this experiment, you will design, construct, and test four combinational logic circuits. The
first two circuits are to be constructed with NAND gates, the third with XOR gates, and the
fourth with a decoder and NAND gates. Reference to a parity generator can be found in Sec-
tion 3-8. Implementation with a decoder is discussed in Section 4-8.

Section 11-4 Combinational Circuits 449

Design Example

Design a combinational circuit with four inputs—A, B, C, and D——and one output, F. F is to
be equal to 1 when A = 1 provided that B = 0, or when B = 1 provided that eithe,r C orDis
also equal to 1. Otherwise, the output is to be equal to 0.

1. Obtain the truth table of the circuit.

2, Simplify the output function.

3. Draw the logic diagram of the circuit using NAND gates with a minimum number of ICs
4. Construct the circuit and test it for proper operation by verifying the given conditions.

Majority Logic

11’-&’ majority logi.c isa digit:.il circuit whose output is equal to 1 if the majority of the inputs are
. The (‘)u.tput is O atherwise. Design and testa three-input majority circuit using NAND gates
with a minimum number of ICs, :

Parity Generator

geos;{gn, construc.t, and test a circuit that generates an even parity bit from four message bits. Use
gates. Adding one more XOR gate, expand the circuit so it generates an odd parity bit also.

Decoder Implementation

A combinational circuit has three in '
\ com puts—zx, y, and z—and three outputs—-F,, F,
simplified Boolean functions for the circuit are ’ e i The

F=xz + xy7
F,=xy+ xy?
Fy=xy + x'yz

g:tgfment and test the combinational circuit using a 74155 decoder IC and external NAND
The block diagram of the decoder and its truth table are shown in Fig. 11-7. The 74155 ¢

be (.:onne_cted as adual 2 X 4 decoder or as a single 3 X 8 decoder. When a 3. X 8 decoderai[;
Fiesned, inputs C1 and C2 must be connected together as well as inputs G1 and 72, as sho

in the block‘ diagram. The function of the circuit is similar to the one shown in Fig ’4—18 GW:;
th.e enable input and must be equal to 0 for proper operation. The eight outputs :‘:H'B lai)eled
with symbols given in the data book. The 74155 uses NAND gates, with the result that the se
lected output goes to ¢ while all other outputs remain at 1. The implementation with the de:

coder is as shown in Fig. 4-21, except that the OR gates m i
. , ust b AND
gates when the 74155 is used.) ; rePlaced vihexemal

Section 11-5 Code Converters 451
450 Chapter 11 Laboratory Experiments .

9’s Complementer

16 Design a combinational circuit with four input lines that represent a decimal digit in BCD and
Vec . four output lines that generate the 9’s complement of the input digit. Provide a fifth output that
1 2%0 detects an error in the input BCD nomber. This output should be equal to logic-1 when the
1 - 10 four inputs have one of the unused combinations of the BCD code. Use any of the gates listed
15 1 in Fig. 11-1, but minimize the total number of ICs used.
¢ ¢ 2v2
3 12 R
B———1p 2¥3 Seven-Segment Display
13 74155 7
4 A 1Y0 p A seven-segment indicator is used for displaying any one of the decimal digits O through 9. Usnally,
5 171 the decimal digit is available in BCD. A BCD-to-seven-segment decoder accepts a decimal digit in
Gl 5 BCD and generates the corres onding seven-segment code. This is shown pictorially in Problem 4-9,
172 p Y
14 4 Fig. 11-8 shows the connections necessary between the decoder and the display. The 7447
G Gz 17¥3 IC is a BCD-to-seven-segment decoder/driver. It has four inputs for the BCD digit. Input D is
GND the most significant and input A the least significant. The 4-bit BCD digit is converted to a
8 seven-segment code with outputs g through & The outputs of the 7447 are applied to the in-
puts of the 7730 (or equivalent) seven-segment display. This IC contains the seven LED (light-
emitting diode) segments on top of the package. The input at pin 14 is the common anode (CA)
Truth table for all the LEDs. A 47-Q resistor to Voo s needed in order to supply the proper current to the
Outputs selected LED segments. Other equivalent seven-segment display ICs may have additional anode
Inputs 0 1 1y 1va terminals and may require different resistor values,
G ¢ B A Y0 2rl 22 213 AW Construct the circuit shown in Fig. 11-8. Apply the 4-bit BCD digits through four switches and
1 1 1 1 1 1 observe the decimal display from 0 to 9. Inputs 1010 through 1111 have no meaning in BCD.
XX X 51 111 11
ol o o 0 o 1 1 1
1 1 0 1 1 1 1 1 -
g 8 ? 0 1 1 0 1 1 1 1 1 V=5V
0 0 1 1 1 1 1 0 1 1 1 1
0 1 0 1 1 1 1 1 1 0 1 1
o 1 1 0 S 16
o | 1 1 1 11t 1 1 1 1 470
FIGURE 11-7 e i 1, . oal 14
IC Type 74155 Connected as a 3 X 8 Decoder 9 "
) A R 0] g
3 .
11-5 CODE CONVERTERS n L T P
o . . C 9 7 —_—
The conversion from one binary code to another is common in digital systems. In this experi- 6] e e d
ment, you will design and construct three combinational-circuit converters. Code conversion D f 15 z ¥
A _ 7730
is discussed in Section 4-3. . 4 .
GND
Gray Code to Binary 8
Design a combinational circuit with four inputs and four outputs that converts a fOlJ:l“-bl? Gr.ii
code number (Table 1-6) into the equivalent four-bit binary namber. Imple.mel'llt the circuit .Wl FIGURE 11-8
exclusive-OR gates. (This can be done with one 7486 IC.) Connect the circuit to four switch- BCD-to-Seven-Segment Decoder (7447) and Seven-Segment Display (7730)
es and four indicator lamps and check for proper operation, '

Chapter 11 Laboratory Experiments Section 11-7 Adders and Subtractors 453
452 apter:

Depending on the decoder, these values may cause either a blank or a meaningless pattern to be

except that there are eight inputs instead of four, The eight inputs are designated D0 through
displayed. Observe and record the output displayed patterns of the six unused input combinations.

D7. The three selection lines—(, B, and A—select the particular input to be multiplexed and o
applied to the output. A strobe control § acts as an enable signal. The function table specifies
the value of output ¥ as a function of the selection lines. Output W is the complement of Y. For
proper operation, the strobe input S must be connected to ground. : :

11-6 DESIGN WITH MULTIPLEXERS

In this experiment, you will design a combinational circuit and implement it with multiple)_{-
ers, as explained in Section 4-10. The multiplexer to be used is IC type 74151, shown in

; - Design Specifications
Fig. 11-9. The internal construction of the 74151 is stmilar to the diagram shown in Fig. 4-25 gn Sp

A small corporation has 10 shares of stock, and each share entitles its owner to one vote at a

| stockholder’s meeting. The 10 shares of stock are owned by four people as follows:
16 8
=N Mr. W: 1 share
Vee
Strobe e Mr. X: 2 shares
4 D0 Mr. Y 3 shares
3 b1 Mrs. Z: 4 shares
2 D2 Y Each of these persons has a switch to close when voting yes and to open when voting no for
1 , Y Output his or her shares.)
Data ——‘15 p3 74151 W e It is necessary to design a circuit that displays the total number of shares that vote yes for
Inputs D4 each measure, Use a seven-scgment display and a decoder, as shown in Fig. 11-8, to display
14 the required number, If all shares vote no for a measure, the display should be blank. {(Note that
13|25 binary input 15 into the 7447 blanks all seven segments.) If 10 shares vote yes for a Imeasure,
BT 2 the display should show 0. Otherwise, the display shows a decimal number equal to the num-
D7 ber of shares that vote yes. Use four 74151 multiplexers to design the combinational circuit that
B 4 converts the inputs from the stock owners’ switches into the BCD digit for the 7447. Do not
9 ‘ 10 ‘ 11 ’ use 3V for logic-1. Use the output of an inverter whose input is grounded.
Select inputs
11-7 ADDERS AND SUBTRACTORS
Function table In this experiment, you will construct and test various adder and subtractor circuits. The sub- :
Strobe Saloct Output tractor circuit is then used for comparing the relative magnitude of two numbers, Adders are :
s c B A Y discussed in Section 4-3. Subtraction with 2’s complement is explained in Section 1-6. A 4-bit
¥ o parallel adder-subtractor is shown in Fig. 4-13, and the comparison of two numbers is ex-
! I Do plained in Section 4-7. '
0 0 0 1 D1
o 0 1 0 D2 .
0 0 1 (13 gi " Half-Adder
0 1 0
0 1 0 1 Dg Design, construct, and test a half-adder circuit using one XOR gate and two NAND gates.
0 1 1 0 D
0 1 1 1 D7 .
Full-Adder
FIGURE 11-9 . Design, construct, and test a full-adder circuit using two ICs, 7486, and 7400.
1C Type 74151 8 X 1 Multiplexer

454 Chapter 11 Laboratory Experiments

Parallel Adder

1C type 7483 is a 4-bit binary parallel adder. The pin assignment is shown in Fig. 11-10. The
two 4-bit input binary numbers are Al through A4 and Bl through B4. The 4-bit sum is obtained
from §1 through S4. C0 is the input carry and C4 the output carry.

Test the 4-bit binary adder 7483 by connecting the power supply and ground terminals.
Then connect the four A inputs to a fixed binary number such as 1001 and the B inputs and the
input carry to five toggle switches. The five outputs are applied to indicator lamps. Perform the
addition of a few binary numbers and check that the output sum and output carry give the prop-
er values. Show that when the input carry is equal to 1, it adds 1 to the cutput sum.

Adder-Subtractor

The subtraction of two binary numbers can be done by taking the 2’s complement of the sub-
trahend and adding it to the minuend. The 2’s complement can be obtained by taking the 1’s
complement and adding 1. To perform A — B, we complement the four bits of B, add them
to the four bits of A, and add 1 through the input carry. This is done as shown in Fig. 11-11.
The four XOR gates complement the bits of B when the mode select M = 1 (because
x @1 = x'y and leave the bits of B unchanged when M = 0 (because x @ 0 = x). Thus,
when the mode select M is equal to 1, the input carry CO is equal to I and the sum output
is A plus the 2°s complement of B. When M is equal to 0, the input carry is equal to 0 and
the sum generates A + B.

3
16 Vee y
: B4 -
Ad 15
4
B3 S4
3
2
A3
. 53
B2 7483 6
8
A2 52
11
Bl 51 2
10
Al
13
0
GND
12

FIGURE 11-10
IC Type 7483 4-Bit Binary Adder

Section 11-7 Adders and Subtractors 455

(1 ec
Ad 14
3 4 Output carry
Data input 8 A3
A A2
10 Al 15
54
16
[B4 53 2
7483 Data output
6 Ny
s .
Data input ! i
s _ S1
— 7
mepLr
! : C0 GND
Mode select M ‘13 ‘ .
M = { for add

M = 1 for subtract

FIGURE 11-17
4-Bit Adder-Subtractor

Connect the ajdder-subtractor circuit and test it for proper operation, Connect the four A in-
putstoa fixed binary number 1001 and the B inputs to switches. Perform the following oper-
aflons and record the values of the output sum and the output carry C4:

9+5 9-3
949 9-9
3+15 9—15

tE‘l;lhovv that during addition, the putput carry is equal to 1 when the sum exceeds 15. Also show
at wélzn. A= JIB the subtraction operation gives the correct answer, A — B, and the output

carry (e s equat to 1. But when A < B, the subtraction gives the 2 , -

and the output carry is equal to 0.) S omplementor 5 = 4

Magnitude Comparator

The comparison of two numbers is an operation that determines whether one number is greater
than, qual 10, or less than the other number. Two numbers, A and B, can be compared by first
subtracting A — B as done in Fig. 11-11. If the output in § is equal to zero, we know that
A= B: The output carry from C4 determines the relative magnitude; when C4 = 1, we have
A = B;when C4 = 0, we have 4 < B; and when C4 = 1 and § # 0, we have A ; B.

456 Chapter 11 Laboratory Experiments

It is necessary to supplement the subtractor circuit of Fig. 11-11 to provide the comparison

Jogic, This is done with a combinational circuit that has five inputs, 51 through 54 and C'4, and

three outputs designated by x, v, and z, 3o that

x=1 ifA =B (S = 0000)
y=1 ifA < B (C4 = 0)
=1 ifA> B (C4 = Land § # 0000)

The combinational circuit can be implemented with the two 1Cs, 7404 and 7408.
Construct the comparator circuit and test its operation. Use at least two sets of numbers for

A and B to check each of the outputs x, y, and z.

11-8 FLIP-FLOPS

SR Latch

D Latch

In this experiment, you will construct, test and investigate the operation of various latches and
flip-flops. The internal construction of latches and flip-flops can be found in Sections 5-2 and 5-3.

Construct an SR latch with two cross-coupled NAND gates. Connect the two inputs to switch-
es and the two outputs to indicator lamps. Set the two switches to logic-1, and then momen-
tarily turn each switch separately to the logic-0 position and back to 1. Obtain the function

table of the circuit.

Construct a D latch with four NAND gates (only one 7400 IC) and verify its function table.

Master-Slave Flip-Flop

Connect a master—slave D flip-flop using two D latches and an inverter. Connect the I input
to a switch and the clock input to a pulser. Connect the output of the master latch to one indi-
cator lamp and the output of the slave latch to another indicator lamp. Set the value of the input
to the complement value of the output. Press the pushbutton in the pulser and then release it to
produce a single pulse. Observe that the master changes when the pulse goes positive and the
slave follows the change when the pulse goes negative. Repeat a few times while observing the
two indicator lamps. Explain the transfer sequence from input to master and from master to slave.

Disconnect the clock input from the pulser and connect it to a clock generator, Connect the
complement output of the flip-flop to the D input. This causes the flip-flop to complement
with each clock pulse. Using a dual-trace oscilloscope, observe the waveforms of the clock
and the master and slave outputs. Verify that the delay between the master and the slave out-
puts is equal to the positive half of the clock cycle. Obtain a timing diagram showing the rela-
tionship between the clock waveform and the master and slave ouiputs.

Section 11-8 Flip-Flops 457

Edge-Triggered Flip-Flop

ﬁ;llllittr;x;t ;uig};ﬁ p?)si.tive—tedge-uiggered flip-flop déing six NAND gates. Connect the clock
- I L2 Iput 1o a toggle switch, and the output Q to an indi
s cator lamp. Set th
:a(l)ue of Dto the comple-rr'lent value of Q. Show that the flip-flop output changes OIIl)ly in refj
ﬂ[l)e r:je E gpostlt‘lvcla transition of the clock pulse. Verify that the output does not change when
OCK Input is logic-1, when the clock goes throu i iti

© . _ . gh a negative transition, or when it i
]c)ggi;)é c()?ontlrtniﬁ cl?anglnfg the Iy input to correspond to the complement of the Q) output at all til;elss
ANCCt the Input from the pulser and connect it to the clock .

: . ! tor. Connect the com-

plement output O to the D input, This causes th o v
el ut. € output to complement with each positiy
transition of the clock pulse. Using a dual-trace oscilloscope, observe and record the tinI:ing r(:

tIOIlShip be‘ Wween the mpw c Ck t[ut !2 Il W i A tlle ()[l[l)l] cha 0)
. . h 4 h IlgeS n I'eSp 1se tO

IC Flip-Flops

ii‘ltipfe 7476hcf(;psi§ts of two JK master-slave flip-fiops with preset and clear, The pin assign

or each thip-flop is shown in Fig. 11-12. The function table i he circui)
! 158 -11-12. specifies the circuit opera-
tion. The first three entries in the table specify the operation of the asynchronous preset andfélear

[[

4 PR 15
; ol 9 7 PR 0 11
1
- 6>CK V.. =pin$5
16 |14 12 10 e
K Q| K |
CLR CLR
Ta o Ts
Function table
Inputs Outputs
Preset . Clear. Clock J K Q [}
t] 1 X X X 1 0
1 0 X X X [} 1
0 X X X 1 1
1 1)} 0 No
change
1 1 I 1 0 1 0 %
1 1 |] 1 0
1 1 I 1 1 Toggle

FIGURE 11-12
IC Type 7476 Dual JK Master—Slave Flip-Flops

Section 11-9 Sequential Circuits 459

458 Chapter 11 Laboratory Experiments
14 llo

Up-Down Counter with Enable

Design, construct, and test a 2-bit counter that counts up or down. An enable input E detetmines

12 PR 9 whether the counter is on or off. If E = 0, the counter is disabled and remains at its present
2 n PR 9] 3 D Q count even though clock pulses are applied to the flip-flops. If E = 1, the counter is enabled
5 1 V.. =pinl4 and a second inpwt, x, determines the count direction. If x = 1, the circuit counts up with the
> CK > CK GND = pin 7 sequence 00, 01, 10, 11, and the count repeats. If x = 0, the circuit counts down with the se-
16 o 8 quence 11, 10, 01, 00, and the count repeats. Do not use E to disable the clock. Design the se-

CLR CLR

quential circuit with £ and x as inputs,

State Diagram

Function table

Design, construct and test a sequential circuit whose state diagram is shown in Fig. 11-14.

Inputs Outputs Designate the two flip-flops as A and B, the input as x, and the output as y.
Connect the output of the least significant flip-flop B to the input x and predict the sequence

Preset Clear Clock D | Q o of states and output that will occur with the application of clock pulses, Verify the state tran-

0 . X x| 1 0 sition and output by testing the circuit.

1] X X |0 1

0 0 X Xx|1 1

)) " o { Design of Counter

1 1 g)1(N] chang(l Design, construct, and test a counter that goes through the followin g sequence of binary states:

1 1 °

- 0.1,2,3,6,7, 10, 11, 12, 13, 14, 15, and back to 0 to repeat. Note that binary states 4, 5, 8,
and 9 are not used. The counter must be self-starting; that is, if the circuit starts from any one
of the four invalid states, the count pulses must transfer the circnit to one of the valid states to
continue the count correctly. .

Check the circuit operation for the required count sequence. Verify that the counter is self-
starting. This is done by injtializing the circuit to each unused state by means of the preset and
clear inputs and then applying puises to see whether the counter reaches one of the valid states.

FIGURE 11-13 .
IC Type 7474 Dual D Positive-Edge-Triggered Flip-Flops

inputs. These inputs behave like a NAND SR laich and are independeflt th the cflock.or tth; li
and K inputs (the X’s indicate don’t-care conditions). Th_e last fou? en!:nes in the- uilc%c]m ;1 N
specify the clock operation with both the preset and clelar inputs maintained at logic-1. The ¢ ;‘C
value is shown as a single pulse. The positive transition of the pulse changes the m;ste}r IPt_
flop, and the negative transition changes the slave ﬂip—ﬂop as well as the output of the c1rc11]11 .
With / = K = 0, the output does not change. The flip-flop toggl_es or comp.lements when
J = K = 1. Investigate the operation of one 7476 flip-flop ‘and venfy‘ its functlondta;)le. The
IC type 7474 consists of two D positive-edge—tfiggered ﬂlp—ﬂops with preset Ell; ;: erir(.) ne
pin assignment is shown in Fig. 11-13. The function t.able specifies the prese.t and cle " tPt -
ations and the clock operation. The clock is shown with an upward arrow to.mdlcate t 51 1 s
a positive-edge-triggered flip-flop. Investigate the operation of one of the flip-flops and veri

171

0/0 @ 01
0/1

1/0
fy its function table. 10 o 11
11-9 SEQUENTIAL CIRCUITS ~

In this experiment, you will design, construct, and test three synchronous sequen.tial cfir_cui.ts.
Use IC type 7476 (Fig. 11-12) or 7474 (Fig. 11-13). Choose any g-atej type that)mll m}nm;lz;
the total number of ICs. The design of synchronous sequential circuits is covered in Sectmn -1

FIGURE 11-14
State Diagram for Experiment 9

460 Chapter 11 Laboratory Experiments

11-10 COUNTERS

In this experiment, you will construct and test various ripple and synchronous counter cir-
cuits. Ripple counters are discussed in Section 6-3 and synchronous counters are covered in
Section 6-4.

Ripple Counter

Construct a 4-bit binary ripple counter using two 7476 ICs (Fig. 11-12). Connect all asyn-
chronous clear and preset inputs to logic-1. Connect the count-pulse input to a pulser and check
the counter for proper operation.

Modify the counter so it will count down instead of up, Check that each input pulse decre-
ments the counter by 1.

Synchronous Counter

Construct a synchronous 4-bit binary counter and check its operation. Use two 7476 ICs and
one 7408 IC.

Decimal Counter

Design a synchronous BCD counter that counts from 0000 to 1001. Use two 7476 ICs and one
7408 IC. Test the counter for the proper sequence. Determine whether it is self-starting. This
is done by initializing the counter to each of the six unused states by means of the preset and
clear inputs. The application of pulses must transfer the counter to one of the valid states if the
counter is self-starting.

Binary Counter with Parallel Load

IC type 74161 is a 4-bit synchronous binary counter with parallel load and asynchronous clear.
The internal logic is similar to the circuit shown in Fig. 6-14. The pin assignment to the inputs
and outputs is shown in Fig. 11-15. When the load signal is enabled, the four data inputs are
transferred into four internal flip-flops, QA through @D, with QI being the most significant
bit. There are two count-enable inputs called P and 7. Both must be equal to 1 for the count-
er to operate. The function table is similar to Table 6-6 with one exception: the load input in
the 74161 is enabled when equal to 0. To load the input data, the clear input must be equal to
1 and the load input must be equal to 0. The two count mputs have don’t-care conditions and
may be equal to either 1 or 0. The internal flip-flops trigger on the positive transition of the clock
pulse. The circuit functions as a counter when the load input is equal to 1 and both count in-
puts £ and T are eqnal to 1. If either P or T’ goes to {, the output does not change. The carry-
out output is equal to 1 when all four data outputs are equal to 1. Perform an experiment to verify
the operation of the 74161 IC according to the function table.

Show how the 74161 1C together with a 2-input NAND gate can be made to operate as a syn-
chronous BCD counter that counts from 0000 to 1001. Do not use the clear input. Use the NAND
gate to detect the count of 1001, which then causes all 0’s to be loaded into the counter.

Section T1-11 . Shift Registers 461

16
3 VCC
A 14
4 Q4
Data B i3
nputs 5 . R » Data
outputs
6 ec ’
D 11
0 0D —— |
Load L 74161
7 15
P cour Carry out
Count __I:l(] T
Clock S—1 CK
Clear S CLR
GND
/s
Function table
Clear Clock Load Count | Function
? gr(X X Clear outputs to 0
h : 0 X Load input data
h ; i (1) Count to next binary value

No change in output

FIGURE 11-15
IC Type 74161 Binary Counter with Parallel Load

SHIFT REGISTERS

In this exPerimn?nt, you will investigate the operation of shift registers. The IC to be used is the
74195 shift register with parallel load. Shift registers are explained in Section 6-2.

IC Shift Register

IC type 74195 is a 4-bit shift register with parallel load and asynchronous clear. The pin as-
signment tg the inputs and outputs is shown in Fig. 11-16. The single control.line libeled
SH/LD (sh.lftfload) determines the synchronous operation of the register. When SH /LD =0
the con?rol mput is in the load mode and the four data inputs are transferred into the four in—,
!:ernal ﬂlp'-ﬂo'ps, OA through QD). When §H /LD = 1, the control inputis in the shift mode and the
information in the register is shifted right from QA toward QD. The seiial input into QA during

Chapter 11 Laboratory Experiments

16
1 VCC
Clear CLR
k CK
Cloc . 15
Shift/load SH/LD QA "
2
[B
Serial Y g 13]ll])tatlellts
inputs e 74195 QC outp
) 4 12
A oD
> B oD 1 Complement of @D
Data
inputs 6o
7 D
GND
8
Function table
Shift/ S'erial -
Clear load Clock J input Function

Asynchronous clear

No change in output

Load input data

Shift from QA toward D, QA =0
Shift from QA toward QD, QA =1

K
X
X
X
0
1

[]
=R
S oM
= OB
O b

FIGURE 11-16
IC Type 74195 Shift Register with Parallel Load

the shift is determined from the J and K inputs. The two inputs behave' like the J a'nd the com-
plement of K of a JX flip-flop. When both J and K are equal to 0, fhg-flop QA is cleared to
0 after the shift. If both inputs are equal to 1, QA is set to 1 after t.he shift. The othe'r two 601;
ditions for the J and K inputs provide a complement or no change in the output of flip-flop Q
ift. ‘
aft?;}::‘}széttion table for the 74195 shows the mode of operation of t.he rf':glster. ‘When dtfcl)f;
" clear input goes to 0, the four flip-flops clear to 0 asyn.c.hronousi.x, that is, without thelnefl o
a clock. Synchroncus operations are affected by a p9§1t1ve transition of th'e.clock. To loa e
input data, the SH /LD must be equal to 0 and a positive clock-pulse transition must occur.

Section 11-11 Shift Registers 463

shift right, the SH /LD must be equal to 1. The J and K inputs must be connected together to
form the serial input.
Perform an experiment that will verify the operation of the 74195 IC. Show that it performs

all the operations listed in the function table. Include in your function table the two conditions
for JK = 01 and 10.

Ring Counter

A ring counter is a circular shift register with the signal from the serial output Q1) going into
the serial input. Connect the J and K input together to form the serial input. Use the load con-
dition to preset the ting counter to an initial value of 1000. Rotate the single bit with the shift
condition and check the state of the register after each clock pulse.

A switch-tail ring counter uses the complement output of QD for the serial input. Preset the
switch-tail ring counter to 0000 and predict the sequence of states that will result from shift-
ing. Verify your prediction by observing the state sequence after each shift.

Feedback Shift Register

A feedback shift register is a shift register whose serial input is connected to some function of
selected register outputs. Connect a feedback shift register whose serial input is the exclusive-
OR of outputs OC and OD. Predict the sequence of states of the register starting from state 1000.
Verity your prediction by observing the state sequence after each clock pulse.

Bidirectional Shift Register

The 74195 IC can shift only right from QA toward OD. It is possible to convert the register to
a bidirectional shift register by using the load mode to obtain a shift left operation (from QD
toward QA). This is accomplished by commecting the ontput of each flip-flop to the input of the
flip-flop on its left and using the load mode of the SH /LD input as a shift-left control. Input
D becomes the serial input for the shift-left operation,

Cormect the 74195 as a bidirectional shift register (without parallel load). Connect the se-
rial input for shift right to a toggle switch. Construct the shift left as a ring counter by connecting
the serial output QA to the serial input D. Clear the register and then check its operation by shift-
ing a single 1 from the seria! input switch. Shift right three more times and insert 0’s from the

serial input switch, Then rotate left with the shift-left {load) control. The single 1 should remain
visible while shifting.

Bidirectional Shift Register with Parallel Load

The 74195 IC can be converted to a bidirectional shift regiéter with parallel load in conjunc-
tion with a multiplexer circuit. We will use IC type 74157 for this purpose. This is a quadru-
ple 2-to-1-line multiplexers whose internal logic is shown in Fig. 4-26. The pin assignment to

the inputs and outputs of the 74157 is shown in Fig. 11-17. Note that the enable input is called
a strobe in the 74157,

Section 11-13 Memory Unit = 465

464 Chapter 1T Laboratory Experiments
11-12 SERIAL ADDITION

16
In this experiment, you will construct and test aserial adder-subtractor circuit. Serial addition of two
) " Vee binary numbers can be done by means of shift registers and a full adder, as explained in Section 6-2.
Data 242 Serial Adder
inputs L 4 Starting from the diagram of Fig. 6-6, design and construct a 4-bit serial adder using the fol-
A 14 ¥1 lowing ICs: 74195 (two), 7408, 7486, and 7476, Provide a facility for register B to accept par-
A4 ¥ ’ Data alle] data from four toggle switches and connect its serial input to ground so that 0’s are shifted
9 outputs into register B during the addition, Provide a toggle switch to clear the registers and the flip-
3 81 3 2 flop. Another switch will be needed to specify whether register B is to accept parailel data or
6 74157 Y4 is to be shifted during the addition.
Data B2 .
inputs 10] 44 Testing the Adder .
B 135, To test your serial adder, perform the binary addition 5 + 6 + 15 = 26. This is done by first
clearing the registers and the carty flip-flop. Parallel load the binary value 0101 into register
1 B. Apply four pulses to add B to A serially and check that the result in 4 is 0101. (Note that
Select SEL clock pulses for the 7476 must be as shown in Fig. 11-12.) Parallel load 0110 into B and add
Strobe Bl erg itto A serially. Check that A has the proper sum. Paralle] load 1111 into B and add to A. Check
GND that the value in A is 1010 and that the carry flip-flop is set.
8 Clear the registers and flip-flop and try a few other numbers to verify that your serial adder
is functioning properly.
Serial Adder-Subtractor
Function table If we follow the procedure used in Section 6-2 for the design of a serial subtractor (that sub-
Strobe Select Data outputs ¥ tracis A — B), we will find that the output difference is the same as the output sun, but that
s X Al O's the input to the J and & of the borrow flip-flop needs the complement of @D (available in the
0 0 Select data inputs A 74195). Using the other two XOR gates from the 7486, convert the serial adder to a serial
0 1 Select data inputs B

adder—subtractor with a mode control M. When M = 0, the circuit adds A + B.WhenM = |,
the circuit subtracts A — B and the flip-flop holds the borrow instead of the carry.

Test the adder part of the circuit by repeating the operations recommended above to ensure
that the modification did not change the operation. Test the serial subtractor part by perform-
ing the operations 15 — 4 — 5 — {3 = —7. Binary 15 can be transferred to register A by first
clearing it to 0 and adding 15 from B. Check the intermediate results during the subtraction,
Note that —7 will appear as the 2’s complement of 7 with a borrow of 1 in the flip-flop.

FIGURE 11-17 ‘
IC Type 74157 Quadruple 2 X 1 Multiplexers

Construct a bidirectional shift register with parallel load using t%le 74195 .regis-ter and the
74157 multiplexer. The circuit should be able to perform the following operations:

1. Asynchronous clear

2. Shift right

3. Shift left

4. Parallel load -

5. Synchronous clear.

11-13 MEMORY UNIT

In this experiment, you will investi gate the behavior of a random-access memory (RAM) unit
and its storage capability. The RAM will be used to simulate a read-only memory (ROM). The
ROM simulator will then be used to impiement combinational circuits, as explained in Sec-
tion 7-5. The memory unit is discussed in Sections 7-2 and 7-3. '

Derive a table for the five operations as a function of the clear, c_lock-, and SH [LD mpuit:z Oftt_i];f; 7;&19:
and the strobe and select inputs of the 74157, Connect t.he circuit a?nd verify your ttl?c erial ot
Use the parallel-load condition to provide an initial value irito th.e register and c.onne(}:]ﬂ zﬁﬁing
puts to the serial inputs of both shifts in order not to lose the binary information while :

" ICRAM

IC type 74189 is a 16 X 4 random-access memory. The internal logic is similar to the circuit
- shown in Fig. 7-6 for a4 X 4 RAM. The pin assignment to the inputs and outputs is shown in

466 Chapter 11 Laboratory Experiments

‘Section 11-14 Lamp Handbail 467

1 four 7404 inverters. Provide four indicator lamps for the address and four more for the out-
puts of the inverters, Connect input CS to ground and WE to a toggle switch (or a pulser that
4 Ve 5 provides a negative pulse). Store a few words into the memory and then read them to verify
Dt S1 - that the write and read Operations are functioning properly. You must be carefu] when using
Data 6 D2 52 Data the WE switch Always leave the WE input in the read mode, unless You want to write into
inputs 10 D3 P outputs memory. The proper way to write is first to set the address in the counter and the inputs in the
12 11 four toggle switches. To store the word in memory, flip the WE switch to the write position
L D4 54 and then return it to the read position. Be careful not to change the address or the inputs when
WE s in the write mode.
1
P T ROM Simulator
‘?SS:::S 14 a A ROM simulator is obtained from a RAM when operated in the read mode only. The pattern of
5 4 I’s and 0’s is first entered into the simulating RAM by placing the unit momentarily in the write
Ay mode. Simulation is achieved by placing the unit in the read mode and taking the address lines
as inputs for the ROM. The ROM can then be used to implement any combinational circuit,
Chip select 2lcs Fmplement a combinationa! circuit using the ROM simulator that converts a 4-bit binary
Write enable 3lwe number io its equivalent Gray code as defined in Tabie 1-6. This is done as follows. Obtain the
GND truth table of the code converter. Store the truth table into the 74189 memory by setting the ad-
" dress inputs to the binary value and the data inputs to the corresponding Gray code value. After
all 16 entries of the table are written in memory, the ROM simulator is set by connecting the
WE line to logic-1 permanently, Check the code converter by applying the inputs to the address
lines and verifying the correct outputs in the data output lines.
Function table Memory Expansion
cs WE | Operation Data outputs)) .
Expand the memory unittoa 32 X 4 RAM using two 74189 ICs, Use the €S mputs to select be-
0 0 Write High ilf“Pf;i"i‘:ffeselecw dword tween the two ICs. Note that since the data outputs are three-stated you can tie pairs of terminals
(1))1{ gie:;i]e g?;ﬂ;;dance together to obtain a logic OR operation between the two ICs. Test your circuit by using it as a ROM

simulator that adds a 3-bit number to a 2-bit number to produce a 4-bit sum. For example, if the
input of the ROM is 10110, then the outputis calculated to be 101 + 10 = 0111, (The first three
bits of the input represent 5, the last two bits represent 2, and the output surm is binary 7.) Use the
counter to provide four bits of the address and a switch for the fifth bit of the address,

FIGURE 11-18
IC Type 74189 16 X 4 RAM

Fig. 11-18. The four address inputs select one of 16 words in the mc(egi;;y. Thf le‘?;:»tt s;g;ﬁ;a?;
it - i igni is A;. The chip select input m
bit of the address is A and the most significant is A4 chip e stbe cqual 1o
i the memory is disabled and all four outp are.
0 to enable the memory. If C.S is equal to 1, . d 1 all four oatpus are in &
igh i i ble (WE) input determines the type of op
high impedance state, The write ena (WE yPo of operation as indical
i i i rformed when WE = 0. Thisisa
ed in the function table. The write operaticn is pel / . This s transier of (e
i i g peration is p
i from the data inputs into the selected word in memory.” .
Ifjcl)?;rgdn\l:fﬁlfrf %/ié')ri 1. This trfnsfers the complement value stored in the selected -word into the
' output data lines. The memory has three-state outputs to facilitate memory expansion.

11-14 LAMP HANDBALL

In this experiment, you will construct an electronic game of handball using a single light to sim-
ulate the moving ball. This project demonstrates the application of a bidirectional shift regis-

Testing the RAM | -
Since the outputs of the 74189 produce the complement vla:/llues, v];fe tnettaddtsﬂl:rsirlt altf;gr ;;116
i alue. The RAM can be teste
rters to change the outputs to their normal v . ; o
I:(fllowing conr%ections: Connect the address inputs to a bmar.y counter usmc% the 7:1?1?8 -
(shown in Fig. 11-3). Connect the four data inputs to toggle switches and the data outp

IC Type 74194

This is a 4-bit bidirectional shift register with parallel load. The internal logic is similar to
Fig. 6-7. The pin assignment to the inputs and outputs is shown in Fig. 11-19. The two mode-
control inputs determine the type of operation as specified in the function tabie.

468 Chapter 11 Laboratory Experiments

Serial input
for shift right) 16
V
3 SIR Vee 15
A oA ——
4 14
B QB
Parallel data 5 13 Data
inputs [E— I octH——— ouputs
6 12
D oDf——
10 74194
r 51
Mode conirol 9
inputs L S0
11
Clock ——— CK
1
Clear ———j CLR
SIL GND
Serial input 7 8
for shift left
Function table
Mode
Clear Clock 51 S0 Function
0 X X X Clear outputs to 0
1 T 0 0 No change in output
1 T 0 1 Shift right in the direction from
QA to QD. SIR to QA
1 T i Shift left in the direction from
0D to QA. SILto 0D
1) 1 1 Parellel-load input data

FIGURE 11-19
IC Type 74194 Bidirectional Shift Register with Parallel Load

Logic Diagram

The logic diagram of the elecironic lamp handball is shown in Fig. 11-20. It consists of two
74194 1Cs, a dual D flip-flop 7474 IC, and three gate ICs: 7400, 7404, and 7408. The ball is
simulated by a moving light that is shifted left or right through the bidirectional shift register.
The rate at which the light moves is determined by the frequency of the clock. The circuit is
first initialized with the reser switch, The start switch starts the game by placing the ball {(an
indicator lamp) at the extreme right. The player must press the pulser push button to start the

@A QB 0C Qb

SIL
—| 518 74194

CK A B C D 8§51 S0

| |

CLRI—tY—CLR

Indic;ator lamps

CA OB QC 0D

SIR
74194 SIL

S1 S0 A B C D CK

—
CLK
D PR 0 . PR R —
4 Pk Yy
= CK <] Pulser
Q' —-y

o
CLR
|
Bl

Reset

[+

FIGURE 11-20
Lamp Handball Logic Diagram

: Start

469

dl

Chapter 11 Laboratory Experiments

ball moving to the left. The single light shifts to the left until it reaches. the .leftmost‘position
(the wall), at which time the ball returns to the player by reversing the direction of shift of the
moving light. When the light is again at the rightmost position, the player must press the pulser
again to reverse the direction of shift. If the player presses the pulser [Of) s00n or too le}te, the
ball disappears and the light goes off. The game can be restarted by turning the start switch on
and then off. The start switch must be open (logic-1) during the game.

Circuit Analysis

Prior to connecting the circuit, analyze the logic diagram to ensure that you understand how
the circuit operates. In particular, try to answer the following questions:

1. What is the function of the reset switch?

2. Explain how the light in the rightmost position comes on when. the staf‘t_ switch is
grounded. Why is it necessary to place the start switch in the logic-1 position before
the game starts?

3. What happens to the two mode-control inputs, $1 and 50, once the ball is set in motion?

4. What happens to the mode-control inputs and to the ball if the pulser is pressed while the
ball is moving to the left? What happens if it is moving to the right but has not reached
the rightmost position yet?

5. Suppose that the ball returned to the rightmost position_, but the pul_ser has not been
pressed yet; what is the state of the mode-control inputs if the pulser is pressed? What
happens if it is not pressed?

Playing the Game

Wire the circuit of Fig. 11-20. Test the circuit for proper operation by playing the game. Note
that the pulser must provide a positive-edge transition and that both the reset and start sw1t(?h—
es must be open (be in the logic-1 state) during the game. Start with a low clock rate and in-
crease the clock frequency to make the handball game more challenging.

Counting the Number of Losses

Design a circuit that keeps score of the number of times the playf:r loses .Whi.lc playing t?le
game. Use a BCD-to-seven-segment decoder and a seven-segment display as in Flg. 11-8 to dis-
play the count from O through 9. Counting is done with a decimal counter using ellther the 7493
as a ripple decimal counter or the 74161 and a NAND gate as a synchronous. decimal counter.
The display should show 0 when the circuit is reset. Every time the b?.ll disappears and the
light goes off, the display should increase by 1. If the light stays on during the play‘/, the.nuql—
ber in the display should not change. The final design should be an automatic scoring C]I‘(fl.llt,
with the decimal display incremented automatically each time the player loses when the light
disappears.

Section 11-15 Cfock-PuI'se Generator 471

Lamp Ping-Pong TM

11-15

Modify the circuit of Fig. 11-20 so as to obtain a lamp Ping-Pong game. Two players can par-
ticipate in this game, with each player having his own pulser. The player with the right pulser
returns the ball when in the extrerne right position, and the player with the left pulser returns
the ball when in the extreme left position. The only modification required for the Ping-Pong
game is a second pulser and a change of few wires,

With a second start circuit, the game can be made to start (serve) by either one of the two
players. This addition is optional.

CLOCK-PULSE GENERATOR

IC Timer

In this experiment, you will use an IC timer unit and connect it to produce clock pulses at a
given frequency. The circuit requires the connection of two external resistors and two exter-

nal capacitors. The cathode-ray oscilloscope is used to observe the waveforms and measure
the frequency.

IC type 72555 (or 555) is a precision timer circuit whose internal logic is shown in Fig. 11-21.
(The resistors, R, and R, and the two capacitors are not part of the IC.) It consists of two voli-

© age comparators, a flip-flop, and an internal transistor, The voltage division from V. = 5V

through the three internai resistors to ground produce 2 and} of Vee (3.3V and 1.7 V) into the
fixed inputs of the comparators. When the threshold input at pin 6 goes above 3.3V, the upper
comparator resets the flip-flop and the output goes low to about 0 V. When the trigger input at
pin 2 goes below 1.7 V, the lower comparator sets the flip-flop and the output goes high to
about 5 V. When the output is low, ' is high and the base-emitter junction of the transistor is
forward-biased. When the output is high, ¢ is low and the transistor is cut off (see Section 10-2).
The timer circuit is capable of producing accurate time delays controlled by an external RC
circuit. In this experiment the IC timer will be operated in the astable mode to produce clock
pulses.

Circuit Operation

Fig. 11-21 shows the external connections for the astable operation. The capacitor C charges
through resistors R, and R, when the transistor is cut off and discharges through R, when the
transistor is forward-biased and conducting. When the charging \voltage across capacitor €
reaches 3.3 V, the threshold input at pin 6 canses the flip-flop to reset and the transistor tarns
on. When the discharging voltage reaches 1.7V, the trigger input at pin 2 causes the flip-flop
to set and the transistor turns off. Thus, the output continually alternates between two voltage
levels at the output of the flip-flop. The output remains high for a duration equal to the charge
time. This duration is determined from the equation

ty = 0.693(R, + Rp)C

Section 11-16 Parallel Adder and Accumulator 473

—)-,J-«—ﬂ 1ps ' '
10us

472 Chapter 11 Labcratory Experiments

5V

Q.01 ue
FIGURE 11-22
Output Waveform for Clock Generator

-
1

Reset (4

Observe the output across the capacitor C and record its two levels to verify that they are
between the trigger and threshold values, ‘

Observe the waveform in the collector of the transistor at pin 7 and record all pertinent in-
formation. Explain the waveform by analyzing the circuit action.

Connect a variable resistor (potentiorneter) in series with R, to produce a variable-frequency
pulse generator. The low-level duration remains at ! us. The frequency should range from 20
to 100 kilz. ‘

Change the low-level pulses to high-level pulses with a 7404 inverter. This will produce
positive pulses of 1 us with a variable-frequency range.

Threshold

Compare R o

§ 5 o 3 Output

Compare
Trigger 2 g _K 7 Discharge
72555 Timer

11-16 PARALLEL ADDER AND ACCUMULATOR

In this experiment, you will construct a d-bit parallel adder whose sum can be loaded into a reg-
ister. The numbers to be added will be stored in a random-access memory. A set of binary num-
bers will be selected from memory and their sum will be accumulated in the register.

GND| 1

Block Diagram

Use the RAM circuit from the memory experiment of Section 11-13, a 4-bit paralle]l adder, a
4-bit shift register with parailel load, a carry flip-flop, and a muitiplexer to construct the cir-
cuit. The block diagram and the ICs to be used are shown in Fig. 11-23, Information can be writ-
ten into RAM from data in four switches or from the 4-bit data available in the outputs of the
register. The selection is done by means of a multiplexer. The data in RAM can be added (o the
contents of the register and the sum transferred back to the register,

FIGURE 11-21
IC Type 72555 Timer Connected as a Clock-Pulse Generator

: Lo : Control of Register
The output remains low for a duration equal to the discharge time. This duration is determined _

oy " Provide toggle switches to control the 74194 register and the 7476 carry flip-flop as follows:
from the equation
= 0.69R.C (a) A LOAD condition to transfer the sum to the register and the output catry to the flip-flop

L ' 5 upon application of a clock pulse.
(b} A SHIFT condition to shift the register right with the carry from the carry flip-flop trans-
ferred into the leftmost position of the register upon application of a clock pulse. The value

in the carry flip-flop should not change during the shift,

(¢} ANO-CHANGE condition that leaves the contents of the register and tlip-flop unchanged
even when clock pulses are applied.

Clock-Puise Generator

Starﬁng with a capacitor C of 0.001 uF, calculate values for R 4 and Rp tlo .produce.clock plflris—
es, as shown in Fig. 11-22. The pulse width is 1 us in the low level, and it is repeating at'a he’
ql;ency rate of 100 kHz (every 10 ws). Connect the circuit and check the output in the

osciiloscope.

474 Chapter 11 Laboratory Experiments Section 11-17 Binary Multiplier 475

Circuit Operation

Y

Clear the register and the carry flip-flop to zero and store the following 4-bit numbers in RAM

Count Address RAM MUX Select in the indicated addresses:
oun counter > 74189) (74157) {switch)
(pulser) (7493) (Address Content
L
0 0110
Y 4 switches 3 1110
Tnverters 6 1101
(7404) 9 0101
12 0011

Now perform the following four operations:

1. Add the contents of address 0 to the contents of the register using the LOAD condition,

2. Store the sum from the register into RAM at address 1.
Qutput carr 3
i Y 4']?1} 4?3‘;3‘” 3. Shift right the contents of the register and carry with the SHIFT condition.
4. Store the shifted contents of the register at address 2 of RAM.
Sum Check that the contents of the first three locations in RAM are as follows:
Carry Register Address Content
(7476) (74194)
0 0110
1 0110
2 0011

FIGURE 11-23

Repeat the above four operations for each of the other four binary numbers stored in RAM.
Block Diagram of a Parallel Adder for Experiment 16

Use addresses 4, 7, 10, and 13 to store the sum from the register in step 2. Use addresses 5, 8,
11, and 14 to store the shifted value from the register in step 4. Predict what the contents of RAM
Carry Clrcuit at addresses 0 through 14 would be and check to verify your results.
In order to conform with the above specifications, it is necessary to provide a circuit between
the output carry from the adder and the .J and K inputs of the 7476 flip-flop so that the output
carry is transferred into the flip-flop (whether it is equal to 0 or 1) 'only when the LOAP comn-
dition is activated and a pulse is applied to the clock input of the ﬂlp—ﬂoi-)._The‘ carry flip-flop
should not change if the LOAD condition is disabled or the SHIFT condition is enabled.

11-17 BINARY MULTIPLIER

In this experiment, you will design and construct a circuit that multiplies two 4-bit unsigned
numbers to produce an 8-bit product. An algorithm for multiplying two binary numbers is pre-
Detailed Circuit sented in Section 8-6.
Draw a detailed diagram showing afl the wiring between the ICs. Connect the circuit and pro- :
vide indicator lamps for the outputs of the register and carry flip-flop and for the address and

output data of the RAM. Block Diagram

The block diagram of the binary multiplier with the recommended ICs to be used is shown in
Fig. 11-24(a). The multipticand B is available from four switches instead of a register. The
multiplier @ is obtained from another set of four switches, The product is displayed with eight
indicator tamps. Counter P is initialized to 0 and then incremented after each partial product
is formed. When the counter reaches the count of four, output . becomes I and the multipli-
cation operation terminates.

Checking the Circuit _
Store the following numbers in RAM and then add them to the regisier one a‘t a time. Start
with a cleared register and flip-flop. Predict the values in the output of the register and carry
after each addition and verify your results:

0110 + 1110 + 1101 + 0101 + 0011

Section 11-17 Binary Muitiplier 477

476 Chapter 11 Laboratory Experiments

each state are listed in Fig, 11-24(b). 7,0, is generated with an AND gate whose inputs are T,
and Q. Note that carry flip-flop C can be cleared to 0 with every clock pulse, except when the
output carry is transferred to it,

Multiplicand B
(4 switches} Pc=1oncountof 4

l l l l Counter P
(74161)

Cour Parallel adder
(7483)

Multiplication Example

Before connecting the circuit, make sure that you understand the oOperation of the multiplier.
To do this, construct a table similar to the one shown in Table 8-4, but with B = 1111 for the
multiplicand and Q = 1011 for the multiplier. Along each comment listed on the left side of
the table, specify which one of the state variables—T, or T, or T:—is enabled in each case:
(The states should start with T and then repeat 7, and 75 four times,)

Multiplier O
(4 switches)

‘, RN

: , Datapath Design
Register A Register ¢ ') i : i]
74%4 (74194) (74194) Draw a detailed diagram of the datapath part of the multiplier, showing all IC pin connections.
(7474) : Generate the control signals—T;, 7, and To— with three switches and use them to provide the
required control operations for the various registers. Connect the circuit and check that each
N component is functioning properly. With the three control variables at 0, set the multiplicand
' switches to 1111 and the multiplier switches to 1011. Sequence the control variables manyal-

ly by means of the control switches as specified by the state diagram of Fig. 11-24(b). Apply
a single pulse while in each control state and observe the outputs of registers A and Q) and the
values in C and P, Compare with the numbers in your numerical example to verify that the cir-
cuit is functioning properly. Note that IC type 74161 has master—slave {lip-flops. To operate it
manually, it is necessary that the single clock pulse be a negative pulse.

I

{a) Datapath block program

Design of Control

Design the control circuit specified by the state diagram. You can use any method of controi
implementation discussed in Section 8-7.

Choose the method that minimizes the number of ICs. Verify the operation of the control cir-
cuit prior to its connection to the data processor.

Ty A«0,C«0, P« 0, O« Multiplier
Ty PeP+1

Q¢ A—A+B CeC,

Ty Shift right CAQ,C« 0

‘Checking the Multiplier

Connect the outputs of the control circuit {o the data processor and verify the total circuit op-
eration by repeating the steps of multiplying 1111 by 1011. The single clock pulses should
now sequence the control states as well (remove the manual swilches). The start signal $ can
be generated with a switch that is on while the control is in state 7.

Generate the start signal § with a pulser or any other short pulse and operate the multiplier
with continuous clock pulses from a clock generator. Pressing the S pulser should initiate the
multiplication operation and upon completion, the product should be displayed in the A and O
registers. Note that the multiplication will be repeated as long as signal S is enabled. Make
sure that § goes back to 0, then set the switches to two other four-bit numbers and press §
again. The new product should appear at the outputs, Repeat the multiplication of a few num-
bers to verify the operation of the circuit. :

-(b) Control state diagram

FIGURE 11-24
Binary Multiplier Circuit

Control of Registers | o,
The ASM chart for the binary multiplier in Fig. 8-14 shows th.at_ the three r(;gl.stersl ?}il ; ; ;
carry flip-flop are controlled with signals 7}, 7, and 75. An ad(‘htlona‘tl contr((): sxgnizsl e
pends on (I, loads the sum into register A and tl?e output carry into ﬂ1P-ﬂop b. Q(; 15 the leo®
significant bit of register Q. The control-state diagram and the operations to be p

478 Chapter 11 Laboratory Experiments

11-18 ASYNCHRONOUS SEQUENTIAL CIRCUITS

In this experiment, you will analyze and design asynchronous sequential circuits. These type
of circuits are presented in Chapter 9.

Analysis Example

The analysis of asynchronous sequential circuits with SR latches is outlined in Section 9-3. Analyze
the circuit of Fig, P9-9 (shown with Problem 9-9) by deriving the transition table and output map of the
circuit, From the transition table and output map, determine: {a) what happens to output £ when input
x; is a 1 irrespective of the value of input x,; (b) what happens to output € when input x; isa 1 and
x, is equal to 0 and {¢) what happens to output Q when both inputs go back to 07

Connect the circuit and show that it operates according to the way you analyzed it.

Design Example

The circuit of a positive-edge-triggered D-type flip-flop is shown in Fig, 5-10. The circuit of
a negative-edge T-type flip-flop is shown in Fig. 9-46. Using the six-step procedure recom-
mended in Section 9-8, design, construct, and test a D-type flip-flop that triggers on both the
positive and negative transitions of the clock. The circuit has two inputs—£ and C—and a
single output, Q. The value of D ai the time C changes from 0 to 1 becomes the flip-flop out-
put, Q. The output remains unchanged irrespective of the value of D as long as C remains at 1.
On the next clock transition, the output is again updated to the value of D when C changes
from 1 to 0. The output then remains unchanged as long as C remains at 0.

11-19 VERILOG HDL SIMULATION EXPERIMENTS

Some of the hardware experiments outlined in this chapter can be supplemented by a corre-
sponding software procedure using the Verilog Hardware Description Language (HDL). A
Verilog compiler and simulator is necessary for this supplement. The following are sugges-
tions for simulating and testing some of the circuits used in the laboratory experiments.

Supplement to Experiment 2 (Section 11-2)

The various logic gaies and their propagation delays were introduced in the hardware experi-
ment. In Section 3-9, a simple circuit with gate delays was investigated. As an introduction to
the laboratory Verilog program, compile the circuit described in HDL Example 3-3 and then
run the simulator to verify the waveforms shown in Fig. 3-38.

Assign the following delays to the Exclusive-OR circuit shown in Fig. 3-32(a): 10 ns for an
inverter, 20 ns for an AND gate, and 30 ns for an OR gate. The input of the circuit goes from
xy = 00 to xy = 01.

(a) Determine the signals at the output of each gate from¢ = O tof = 50 ns.

(b) Write the HDL description of the circuit including the delays.

(e} Write a stimulus module (similar to HDL Example 3-3) and simulate the circuit to ver-
ify the answer in part (a).

Section 11-19 VeriLog HDL Simulation Experimen-t.s 47

supplement to Experiment 4 (Section 11-4)

Suppiement to Experiment 5 (Section 11-5)

This experiment deals with code conver.

. sion. A BCD-to- i i
Section 4-3. Use the result of the design o HDL sy designed i

to check it with an HDL simulator.
(a} Write an HDI, gate-level description of the circuit shown in Fig. 4-4

(b) Write a dataftow description using the Boolean expressions listed in Fig. 4-3

(¢} Write an HDI, behavioral description of a BCD-to-excess-3 converter.

(d) Write a test bench to simula
te and test the BCD-to-excess-3 con ircuit i
. - \Y
verify the truth table. Check all three circuits, ierchrentinorderto

Supplement to Experiment 7 (Section 11-7)

A 4-bit adder-subtractor is develop

ed in this experi ircoit i
doveloped 1 Saactor periment. An adder-subtractor circuit is also

(a) Write the HDI. behavioral description of the 7483 4-bit adder.

(b) Write a behaviora] description of the adder-subtractor circuit shown iﬁ Fig. 11-11

(©) Write tPe HDL hierarchical description of the 4-bit adder-
(m.cludlgg V). This can be done by instantiating a modifie
scribed in HDL Example 4-2 {Section 4-11).

(d) Write an HDL test bench to si i
mulate and test the ¢ it i
the values that cause an overflow with V = |. reits ofpart (© ChBCk' and verty

subtractor shown in Fig. 4-13
d version of the 4-bit adder de-

Supplement to Experiment 8 (Section 1 1-8)

The edge-triggered D flip-

tlop 7474 is sh in Fi - i
et o s D 1s shown in Fig. 11-13. The flip-flop has asynchronous pre-

(a} Write an HDL behavioral description of the 7474 D flip
(Note that when Preset = 0, Q goes 1o 1, and when Pres
to 0. Thus, Preset takes precedence over Clear.)

(b} Write an HDL behavioral description of the 7474 D flip-fiop using both outputs. Label

the second output @ nor and note that this ;
o this is not always the
Preset = Clear = 0, both Qand Q notgoto 1.) ¢ co-mplemem o (When

-flop using only the 0 output,
et = 1 and Clear = 0, 0 goes

480 Chapter 11 Laboratory Experiments

Supplement to Experiment 9 (Section 11-9)

In the hardware experiment, you are asked to design and test a sequential circuit whose state
diagram is given by Fig. 11-14. This is a Mealy model sequential circuit similar to the one de-

scribed in HDL Example 5-5 (Section 5-3).

(a) Write the HDL description of the state diagram of Fig. 11-14.

(b) Write the HDL structural description of the sequential circuit obtained from the design
(This is similar to HDL Example 5-7, in Section 5-5).

(¢) Fig. 11-24(b) (Section 11-17) shows a control state diagram. Write the HDL description
of the state diagram using the one-hot binary assignment (see Table 5-9 in Section 5-6)
and three outputs, 7y, 75, and Ts.

Supplement to Experiment 10 (Section 11-10)

The synchronous counter with parallel load IC type 74161 is shown in Fig. 11-15. This is sim-
ilar to the one described in HDL Example 6-3 (Section 6-6) with two exceptions. The load
input is enabled when equal to 0, and there are two inputs (P and T) that control the count, Write
the HDL description of the 74161 IC.

Supplement to Experiment 11 (Section 11-11)

A bidirectional shift register with parallel load is designed in the experiment by using the 74195
and 74157 IC types.

(a) Write the HDL description of the 74195 shift register. Assume that inputs J and K (bar)
are connected together to form the serial input,
(b) Witite the HDL description of the 74157 multiplexer.

(¢) Obtain the HDL description of the 4-bit bidirectional shift register that has been designed
in this experiment. (1) Write the structural description by instantiating the two ICs and
specitying their interconnection, and (2) write the behavioral description of the circuit
using the function table that is derived in this design experiment.

Supplement to Experiment 13 (Section 11-13)
This experiment investigates the operation of a random-access memory (RAM). The way a
memory is described in HDL is explained in Section 7-2 in conjunction with HDL Example 7-1.
(a) Write the HDL description of IC type 74189 RAM shown in Fig. 11-18.

{b} Test the operation of the memory by writing a stimulus program that stores binary 3 in
address 0 and binary 1 in address 14. Then read the stored numbers from the two addresses

to check if the numbers were stored correctly.

Section 11-19 VeriLog HDL Simulation Experiments 481

Supplement to Experiment 14 (Section 11-14)

Write the HDL. behavioral descripti g . .)
load shown in Fig, 11.19, escription of the 74194 bidirectional shift register with parallel

Supplement to Experiment 16 (Section 11-16)

A pz?rallel adder with an accumulator register and a memory unit is shown in fhc block dia

of Fig. 11-23, Write the structural description of the circuit specified by the block dia ramngalin
HDL structyral description of this circuit can be obtained by instantiating the Variofs cor.n ;
nent's. An exarpple of a structural description of a design can be found in HDL Exampie 8-"? n
Section 8-5. First, it is necessary to write the behavioral description of each com oﬁent U111
counter 74161 instead of 7493, and substitute the 1 flip-flop 7474 instead of the ?K fii -—ﬂ .
7476. The block diagram of the various components can be found from the list in Tablepl 1~01p

Supplement to Experiment 17 (Section 11-17)

The bllock.diagram of a 4-bit binary multiplier is shown in Fig. 11-24. The muitiplier can be
described in tvifo ways: (1} using the register transfer level statements listed in pall?t (b) of th
fjlgu.re or (2} using the block diagram shown in part (a) of the figure. The description of the m le
tlphef‘ In terms of the register transfer level (RTL) format is carried out in HDL, Example SuS_
(SCCIIOI.I 8-7). In this experiment we will use the integrated circuit components speciﬁeg in tl;'
block. dl_agra_lm to write the HDL structural description of the binary multiplier. The structy e1
df?SCrlpthl’l is obtained by using the module description of each componént ana then inst 1;3
ating ‘tht?m to show how they are interconnected. {See Section 8-5 for an example.) The ;11){
descqptlons (?f the components may be available from t e solutions to previous e;(eriment
7483 is described with a solution to Experiment 7(a), 7474 with Experiment 8(a) 7131161 Witsf;

E]

] Tl }- [}
] : eriment]“ ;4] 94 Wit () e Illellt 4 alld the deSCl 1 UOH Oi the C()l‘l[I()l 18 a\‘allable fI’OI]l

12-1

Standard
Graphic Symbols

RECTANGULAR-SHAPE SYMBOLS

482

Digital components such as gates, decoders, multiplexers, and registers are available com-
mercially in integrated circuits and are classifted as SST or MSI circuits. Standard graphic sym-
bols have been developed for these and other components so that the user can recognize each
function from the unigue graphic symbol assigned to it. This standard, known as ANST/IEEE
Std. 91-1984, has been approved by industry, government, and professional organizations and
Is consistent with international standards.

The standard uses a rectangular-shape outline to Tepresent each particular logic function.
Within the outline, there is a general qualifying symbol denoting the logical operation per-
formed by the unit. For example, the general qualifying symbol for a multiplexer is MUX. The
size of the outlipe is arbitrary and can be either a Square or a rectangular shape with an arbj-
trary length-width ratio. Input Tines are placed on the left and output lines are placed on the rj ght.
If the direction of signal flow is reversed, it must be indicated by arrows.

The rectangular-shape graphic symbols for SST gates are shown in Fig. 12-1. The qualify-
ing symbol for the AND gate is the ampersand (&). The OR gate has the qualifying symbol that
designates greater than or equal fo 1, indicating that at least one in put must be active for the out-

the standard also recognizes the distinctive-shape symbols for the gates shown in Fig, 2-5.
An example of an MSI standard graphic symbol is the 4-bit parallel adder shown in Fig, 12-2.

The qualifying symbol for an adder is the Greek letter 3. The preferred letters for the arithmetic _

operands are P and . The bit-grouping symbols in the two types of inputs and the sum output

Section 12-1 Rectangular-Shape Symbols 483

|] \I\

AND OR Buffer XOR .

| I \l

NAND NOR Inverter XNOR
FIGURE 12-1

Rectangular-Shape Graphic Symbols for Gates

FIGURE 122

484

Chapter 12 Standard Graphic Symbols

Before introducing the graphic symbols of other components, it is necessary to review some
terminology. As mentioned in Section 2-7, a positive-logic system defines the more positive of
two signal levels (designated by H) as logic-1 and the more negative signal level (designated
by L) as logic-0. Negative logic assumes the opposite assignment. A third alternative is to em-
ploy a mixed-logic convention, where the signals are considered entirely in terms of their H
and L values. At any point in the circuit, the user is allowed to define the logic polarity by as-
signing logic-1 to either the A or L signal. The mixed-logic notation uses a small right-angle-
triangle graphic symbol to designate a negative-logic polarity at any input or output terminal.
(See Fig. 2-10(f).)

Integrated-circnit manufacturers specify the operation of integrated circuits in terms of H
and L signals. When an input or output is considered in terms of positive logic, it is defined as
active-high. When it is considered in terms of negative logic, it is defined as active-low,
Active-low inputs or outputs are recognized by the presence of the small-triangle polarity-
indicator symbol. When positive logic is used exclusively throughout the entire system, the
small-triangle polarity symbol is equivalent to the small circle that designates negation. In this
book, we have assumed positive logic throughout and employed the small circle when draw-
ing logic diagrams. When an input or output line does not include the small circle, we define
it to be active if it is logic-1. An input or output that includes the small-circle symbol is con-
sidered active if it 13 in the logic-0 state. However, we will use the small-triangle polarity sym-
bol to indicate active-low assignment in all drawings that represent standard diagrams. This will
conform with integrated-circuit data books, where the polarity symbol is usually employed. Note
that the bottom four gates in Fig. 12-1 could have been drawn with a small triangle in the out-
put lines instead of a small circle.

Another example of a graphic symbol for an MSI circuit is shown in Fig. 12-3. This is a
2-to-4-line decoder representing one-half of IC type 74155. Inputs are on the left and outputs
on the right. The identifying symbol X /Y indicates that the circuit converts from code X to code
Y. Data inputs A and B are assigned binary weights 1 and 2 equivalent to 2% and 2', respectively.
The outputs are assigned numbers from 0 to 3, corresponding to outputs Dy through I, re-
spectively. The decoder has one active-low input E; and one active-high input £, These two
inputs go through an internal AND gate to enable the decoder. The output of the AND gate is
fabeled EN {enable) and is activated when F, is at a low-level state and E, at a high-level state.

13 XY
A 1 7
3) OL—D(]
6
]_L.___D]
5
Y T
1 & EN 3L4_._D3
E?

FIGURE 12-3
Standard Graphic Symbol for a 2-to-4-Line Decoder (one-half of IC type 74155)

12-2

Section 12-2 Qualifying Symbols 485
QUALIFYING SYMBOLS

The IEEE standard graphic symbols for logic functions provides a list of qualitying symbols

to be used in conjunction with the outline. A qualifying symbol is added to the basic outli t
f:lt:Slgnate the overall logic characteristics of the element or the physical characteristics (I)lf? N
Input or output. Table 12-1 lists some of the general qualifying symbols specified 1'1.'1 the st n
dard. A genergl qualifyix}g symbol defines the basic function periormed by the device re 2;2:
sented in the dlagrar}q. It is placed near the top center position of the rectangular-shape outlEi)ne
The general qualifying symbols for the gates, decoder, and adder were shown in previous di-‘

agrams. The other symbols are self-explanator i in di
: v and will be used lat
ing the corresponding digital elements o disgraims represent-

Table 12-1
General Qualifying Symbols
Symbol Description
& AND gate or function
=1 OR gate or function
i Buifer gate or inverter
=1 Exclusive-OR gate or function
2k Even function or even parity element
2k + 1 Odd function or odd parity element
XY Codet, decoder, or code converter
MUX Multiplexer
DMUX Demultiplexer
by Adder
II Multiplier
coMp Magnitude comparator
ALU Arithmetic logic unit
SRG Shift register
CTR Counter
RCTR Ripple counter
ROM Read-only memory
RAM Random-access memory

Some of the qualifying symbols associated with inputs and ouiputs are shown in Fig. 12-4
Symbols a.ssociated with inputs are placed on the left side of the column labeled symbj. S .
bols associated with outputs are placed on the right side of the column. The active-low i1.1 u?(r)l;
qutput symbol- Iq the polarity indicator. As mentioned previously, it is equivalent to the Io iclile a-
tion wlhen-posmve logic is assumed. The dynamic input is assoctated with the clock in ugt n ﬂf
flop circuits. It indicates that the input is active on a transition from a low-to-high—lesel si nzlljl-
'I.'he t-hrfee—state output has a third high-impedance state, which has no logic significance Whei thy -
circuit 18 enabled, the output is in the normal 0 or 1 logic state, but when the circuit ié disablede
the three-state output is in a high-impedance state. This state is equivalent to an open circuit ,

The open-collector output has one state that exhibits a hi gh-impedance condition. An .ex-
ternally connected resistor is sometimes required in order to produce the proper logic level

486

Chapter 12 Standard Graphic Symbols

Symbol Description

Logic negation input or output

—= } Active-low input or output

Dynamic indicator input

[V]

Three-state output (see Fig. 10-16)

I‘TI

Open-collector output (see Fig. 10-12)

— Output with special amplification

[V ITI

Enable input

Data input to a storage clement -

|17]

KRS oT . Flip-flop inputs

|
|1

Shift right
Shift left
Countup

Countdown

T = 15]7 Contents of register equals bianry 15

FIGURE 124
Qualifying Symbols Associated with Inputs and Qutputs

muinieniy

Section 12-3 Dependency Notation 487

The diamond-shape symbol may have a bar on top (for high type) or on the bottom (for low
type). The high or low type specifies the logic level when the output is not in the high-
impedance state. For example, TTL-type integrated circuits have special outputs called open-
collector putputs. These outputs are recognized by a diamond-shape symbol with a bar under
it. This indicates that the output can be either in a high-impedance state or in a low-level
state. When used as part of a distribution function, two or more open-coliector NAND gates
when connected to a common resistor perform a positive-logic AND function or a negative-
logic OR function.

The output with special amplification is used in gates that provide special driving capabil-
ities. Such gates are employed in components such as clock drivers or bus-oriented transmit-
ters. The EN symbol designates an enable input. It has the effect of enabling all outputs when
it is active. When the input marked with EN is inactive, all outputs are disabled. The symbois
for flip-fiop inputs have the usual meaning. The D input is also associated with other storage
elements such as MEmory input.

The symbols for shift right and shift left are arrows pointing to the right or the left, respec-
tively. The symbols for count-up and count-down counters are the plus and minus symbols, re-
spectively. An output designated by CT = 15 will be active when the contents of the register
reach the binary count of 15. When nonstandard information is shown inside the outline, it is
enclosed in square brackets [like this],

DEPENDENCY NOTATION

The most important aspect of the standard logic symbols is the dependency notation. Depen-
dency notation is used to provide the means of denoting the relationship between different in-
Puis or outputs without actually showing all the elements and interconnections between them.
We will first demonstrate the dependency notation with an example of the AND dependency
and then define all the other symbols associated with this notation.

The AND dependency is represented with the letter G followed by a number. Any input or
output in a diagram that is labeled with the number associated with G is considered to be
ANDed with it. For example, if one input in the diagram has the label G 1 and another input is
labeled with the number 1, then the two inputs labeled G 1 and 1 are considered to be ANDed
together internally.

Anexaimple of AND dependency is shown in Fig. 12-5.n (a), we have a portion of a graph-
ic symbol with two AND dependency labels, G'1 and G 2. There are two inputs labeled with
the number 1 and one input labeled with the number 2. The equivalent interpretation is shown
in part (b) of the figure. Input X associated with G 1 is considered to be ANDed with inputs A
and B, which are labeled with a 1. Similarly, input ¥ is ANDed with input C to conform with
the dependency between G2 and 2.

The standard defines 10 other dependencies. Fach dependency is denoted by a letter sym-
bol (except EN). The letter appears at the input or output and is followed by a number. Each

488 Chapter 12 Standard Graphic Symbols Section 124 Symbols For Combinational Elements 489

The contro} dependency is used to identify a clock inputin a Sequential element and 1o in-
dicate which input is controlled by it. The set § and teset R dependencies are used to specify in-
ternal logic states of an SR flip-flop, The C.S and R dependencies are explained in Section 12-5
in conjunction with the flip-flop cirenit, The mode M dependency is used to identify inputs that
select the mode of Operation of the upit. The mode dependency is presented in Section 12-6 in
conjunciion with Tegisters and counters. The address A dependency isused to identify the address
input of g memory. It is introduced jn Section 12-8 in conjunction with the memory umnit.

The Z dependency is used to indjcate Interconnections ingjde the unit. It signifies the exjg-

(a) Block with 1 and G2

(b) Equivaten; interpretation

FIGURE 12.5
Example of ¢ (AND) Dependency

ouiputs are af) active-low, The inputs are assigned binary weights 1, 2, and 4, equivalent 1o 20
2'and 22 Tespectively. The outputs are assigned numbers from) 1o 7. The sum of the weights
of the inputs determines the output that is active, Thus, if the two input lines with weights i
and 4 are activated, the totqj weightis1 + 4 = 5 and output 5 is actj

input or output affected by that dependency is labeled with that same number. The 11 de-
pendencies and theijr corresponding letier designation are as follows:

G Denotes an AND (gate) relationship
V' Denotes an OR relationship

N Denotes a negate (exclusive—OR) relationship
EN Speciﬁes an enable action

€ Identifies a controj dependency

§ Specifies a setting action

R Specifies a resetting action

M Identifies a mode clependency

A Identifies an address dependency

Z Indicates an internal interconnection
X Indicates a controlled transmissjon

The V and N dependencies are used to denote the Boolean relationships of OR and exclu-
stve-OR sirmilar to the G that denotes the Boolean AND., The 7 N dependency is similar to the

qualifying symbo} £ except that a number follows it (for example, EN 2), Only the outputs
marked with that pumber are disabled when the input associated with EW is active.

FIGURE 12.5
IC Type 74155 Connected as a 3 x 8 Decoder

490 Chapter 12 Standard Graphic Symbolis

Section 12-5 Symbols For Flip-Flops 491

The decoder is a special case of a more general component referred 10 85 a coder. A coder is a

of the standard notation, but the symbols marked outside are user-defined symbols. The func-
device that receives an input binary code on anumber of inpus and Produces a different binary code tion table of the 741 551 IC

can be found in Fig. 11-9. The AND dependency is marked with

on a number of outputs. Instead of using the qualify g symbol X /¥, the coder can be specified by G7 and is associated with the inputs enclosed in brackets. Thege inputs have weights of), 1,
the code name, For example, the 3-to-8-Jipe decoder of Fig. 12-6 can be symbolized with the name and 2. They are actually what we have called the selection inputs. The eight data mputs are
BIN/OCT since the circyit COMVerts 4 3-bit binary number into 8 octat values, 0 through 7, marked with numbers from o to 7. The net weight of the active inputs associated wigh the G
Before showing the graphic symbol for the multiplexer, it jg fecessary to show a variation symbol specifies the number jn the data input that is active, For example, if selectiop inputs :
of the AND dependency. The AND dependency is sometimes . “presented by a shorthand no. CBA = 110, then nputs 1 and 2 associated with G are active. This gives a numerica] valye for
tation like G%). This symbol stands for eight AND dependency symbols from 0 to 7 ¢ follows: the AND dependency of 22 + 2! =g, which makes G ¢ active, Since G 6 is ANDed with data |
G0,G1,G2, ¢ 3,64,G5.G 6.G7 l'I.lleI number 6, it makes this ingut active. Thus, the output will be equal to data input Dy pro-
vided that the enabje input is active.
At any given time, only one out of the eight AND gates can be active. The active AND gate is Fig. 12-7(b) represents the quadruple 2 x | multiplexer IC type 74157 whose function table
determined from the mnputs associated with the ¢ symbol. These mputs are marked with weights is listed in Fig. 11-17. The enable and selection mputs are common to all fonr multiplexers, This
equal to the powers of 2. For he cight AND gates just listed, the weights are 0, 1. and 2, cor- is indicated in the standard Rotation by the indented box a the top of the diagram, which repre-
responding to the numbers 2% 2! ang 22, respectively. The AND gate that is active gt any given SCts a common controf block. The inputs to a conunon control hlock control all lower sections
time is determined from the sum of the weights of the active inputs. Thuos, if inputs 0 and 2 are of the diagram. The common enable input £4 is active when in the low-level state. The AND
active, then the AND gate that is active has the numpey 20 4+ 2* = 5. This makes G § active and dependency, G'1, determines which input is active in eqch multiplexer section. When] = 0,
the other seven AND gates inactive, : the A inputs marked with I are active, When G1 = 1, the inputs marked with] are active. The
The standard graphic symbol fora § x | multiplexer is shown in Fig. 12-7(a). The quati- active inputs are applied to the cortesponding outputs if £ is active, Note that the input Sym-
fying syrabol MUX identifies the device as a multiplexer, The symbols inside the block are part bols T and 1 are marked in the upper section only instead of repeating them in each section,

Strobe

125 SYMBoOLS FOR FLIP-FLOPS

Select

The standard graphic symbols for different types of flip-flops are shown in Fig. 12-8. A flip-
flop is represented by a rectan gular-shaped block with mputs on the left and Ouiputs on the righy,
One output designates the normal state of the flip-flop and the other output with 5 small-circle
negation symbol (or polarity indicator) designates the complement output. The graphic Sym-
bols distinguish between three types of flip-flops: the p latch, whose internal construction is
shown in Fig. 6-5 ; the master-glave flip-flop, shown in Fig. 6-9; and the edge-triggered lip-flop,
introduced in Fig. 6-12. The 8raphic symbol for the p latch or b flip-flop has inputs I and ¢
indicated inside the block. The graphic symbol for the JK flip-flop has inputs J, X, and ¢ in-

Al
b1

A2
B2

The D latch has no other symbolg besides the 1 D and C1inputs. The edge-triggered flip-
flop has an arrowhead-shaped symbol in front of the contro] dependency C1 to designate a
dynatnic input, The dynamic indicator symbol denotes that the flip-flop responds to the posi-
tive-edge transition of the input clock pulses. A small circle cutside the bloek along the dynamic
indicator designates hegative-edge transition for triggering the tHp-flop. The master—slave js
considered to be g pulse-triggered flip-flop and is indicated as such with an upside-down L
symbol in front of the outputs. This is to show that the output signal changes on the falling edge
of the pulse. Note that the master—slaye flip-flop is drawn without the dynamic indicator,

Flip-flops available in integrated-cirenit packages provide special inputs for setting and re-
setting the flip-flop as ynchronously. Thege inputs are usually called direct set and direct reset.

A3
B3

Ad
B4

{a) IC type 74151 8 x 1 MUX

(b) IC type 74157 quadruple 2 x | MUX

FIGURE 12.7
Graphic Symbols for Muitiplexers

Standard Graphic Symbol Section 12-6 Symbols For Registers 493
Chapter 12 Standard Graphic Symbols

The notations C1, 17, and 1 K represent control dependency, showing that the clock input at

1D 1D C1lcontrolsinputs 1 Jand 1 K. § and R have no 1 in front of the letters and, therefore,‘they are
_ not controlled by the clock at C1. The § and R inputs have a small circle along the input lines
cl L ——I>c to indicate that they are active when in the logic-0 level. The function table for the 7476 flip-
flop is shown in Fig. 11-12, P
o— p—— The graphic symboi for a positive-edge-triggered D flip-flop with direct set and reset is ?
shown in Fig. 12-9(b). The positive-edge transition of the clock at input C'1 controls input 1 D,
D latch Pogsitive-edge-triggered The § and R inputs are independent of the clock. This is IC type 7474, whose function table is
D flip-flop listed in Fig. 11-13.
N — 1 — 126 SYMBOLS FOR REGISTERS
—>C1 . — P The standard graphic symbol for a register is equivalent to the symbol used for a group of fip-
1K tlops with a common clock input. Fig. 12-10 shows the standard graphic symbol of IC type
159 74175, consisting of four D flip-flops with common clock and clear inputs, The clock input C'1
p-tlop p P
- ' ive-cdee-trisgered and the clear input R appear in the common control block. The inputs to the common control
Posnn};eﬂcl_gef-]trlggered Negat?;-gi sjaf-lt)r;ggew block are connected to each of the elements in the lower sections of the diagram. The notation
PP ' C'1 is the control dependency that controls all the 1 D inputs. Thus, each flip-flop is triggered
— | S— —10 .
Clear —— I™j p
_ —C1 ;
Cl E Clock 2 > C1
——jik p—— = _]
Master-slave JX flip-flop Master-slave D flip-flop 2
4 ——— ¢
FIGURE 12-8 1D 3
Standard Graphic Symbols for Flip-Flops >~ ° o
-
p |
~ 6
2
— S 4 10
4 S — 9 5 2 1
— i 2 |, I
16 14
1K ap— 1 15
3 — 4R 13
(a) One-half 7476 JK flip-flop (b} One-half 7474 D flip-flop FIGURE 12-10
FIGURE 12-9

Graphic Symbol for a 4-Bit Register, IC Type 74175
1C Flip-Flops with Direct Set and Reset

494 Chapter 12 Standard Graphic Symbols | Section 12-6 Symbols For Registers 495

by the common clock input. The dynamic input symbol associated with €1 indicates that the {load) operation. The seria] input label 1, 3 J indicates that the J input of flip-flop QA is active
flip-flops are triggered on the positive edge of the input clock. The common R mnput resets ail when M1 (shift) is active and C3 goes through a positive clock transition. The other serial
flip-flops when its input is at a low-level state. The 1.D symbol is placed only once in the-upper ' input with Iabel 1, 3K has a polarity symbol in its input line corresponding to the complement
+ section instead of repeating it in each section. T he complement outputs of the flip-flops in this _ ofinputKina /K flip-flop. The third input of QA and the inputs of the other flip-flops are for
diagram are marked with the polarity symbol rather than the negation symbol. - _ the parallel input data. Each input is denoted by the label 2, 3D. The 2 is for M 2 (load), and 3
The standard graphic symbol for a shift register with parallel load is shown in Fig. 12-11. is for the clock C3. If the input in pin number 9 is in the low level, M 1 is active. and a posi-
This is IC type 74195, whose function table can be found in Fig. 11-16. The qualifying sym- , tive transition of the clock at €3 causes a paraliel transfer from the four inputs, A through D,
bol for a shift register is SRG followed by a number that designates the number of stages. Thus, into the four flip-flops, QA through Q1. Note that the parallel input is labeled only in the first
SRG4 denotes a 4-bit shift register. The common control block has two mode dependencies, and second sections. It is assumed to be in the other two sections below,
M 1 and M 2, for the shift and load operations, respectively. Note that the IC has a single input Fig. 12-12 shows the graphic symbol for the bidirectional shift register with parallel load,
labeled SH /LD (shift/load), which is split into two lines to show the two modes. M1 is active IC type 74194. The function table for this IC is listed jn Fig. 11-19. The common control block
when the SH /LD input is high and M 2 is active when the SH /LD input is low. M 2 is recog- shows an R input for resetting all flip-flops to 0 asynchronously. The mode select has two in-
nized as active-low from the polarity indicator along its input line. Note the convention in this puts and the mode dependency M may take binary values from 0 to 3. This is indicated by the
symbology: we must recognize that a single input actually exists in pin 9, but it is split into two symbol M%, which stands for M0, M1, M 2, M 3, and is similar to the notation for the G de-
parts in order to assign to it the two modes, M 1 and M 2. The control dependency C 3 is for the pendency in multiplexers. The symbol associated with the clock is '
clock input. The dynamic symbol along the C3 input indicates that the flip-flops trigger on the
positive edge of the clock. The symbol /1 — following C 3 indicates that the register shifts to Ca/l > /2 «
the right or in the downward direction when mode M1 is active, . _ C 4 is the control dependency for the clock. The /1 = symbol indicates that the register shifis
The four sections below the common control block represent the four flip-flops. Flip-flop : right (down in this case) when the mode isM1 (5,8, = ()1), The /2 « symbol indicates that
- QA has three inputs: two are associated with the serial (shift) operation and one with the parallel ; the register shifts left (up in this case) when the mode js M, (8,5) = 10). The right and left di-
; rections are obtained when the page is turned 90 degrees counterclockwise.
SRG4
Clear —1—5 R
SRG4
SHILD t M1 [SHIFT] Clear ———tll R
M2 [LOAD] Sp——2 of
MIZ
Clock i—> 3L s —20 {7
__’ [__4 Clock — 1 D> C4/1—> /2«
j—2 | 1,37 —' J__J
K3 r] 1,3K S QA Serial input Mz 1,4D 15 oa
: 3
2 1asp A—=—134p
> 2,3D 14 0B 4 14
6 13 B 3,4D)
ac c 5 13
3,4D ——— OC
12 6
———— @D D 3,4D ”
11 — -
D ! 71 Serial input 7 2,4D op

FIGURE 12-11
Graphic Symbol for a Shift Register with Parallel Load, IC Type 74195

FIGURE 12-12
Graphic Symbol for a Bidirectional Shift Register with Parallel Load, IC Type 74194

Chapter 12 Standard Graphic Symbols

The sections below the common control block represent the four flip-flops. The first flip-
flop has a serial input for shift right, denoted by 1, 4 D (mode M 1, clock C4, input D). The last
flip-flop has a serial input for shift left, denoted by 2, 4 D (mode M 2, clock C4, input D). All
four flip-flops have a paralle! input denoted by the label 3, 4 D (mode M 3, clock C 4, input m.
Thus, M3 (SlSo = 11) is for parallel load. The remaining mode M0 (S; So = OO) has no ef-
fect on the outputs because it is not included in the input labels.

SYMBOLS FOR COUNTERS

The standard graphic symbol of a binary ripple counter is shown in Fig. 12-13. The qualifying
- symbol for a ripple counter is RCTR. The designation DIV 2 stands for the divide-by-2 circnit
that is obtained from the single flip-flop QA. The DIV § designation is for the divide-by-8
counter obtained from the other three flip-flops. The diagram represents IC type 7493, whose
internal circuit diagram is shown in Fig. 11-2. The common control block has an internal AND
gate, with inputs R 1 and R2. When both of these inputs are equal to 1, the content of the count-
er goes to zero. This is indicated by the symbol CT = (. Since the count input does not go to
the clock inputs of all flip-flops, it has no € 1 label and, instead, the symbol + is used to indi-
cate a count-up operation. The dynamic symbol next to the + together with the polarity sym-
bol along the input line signify that the count is affected with a negative-edge transition of the
input signal. The bit grouping from 0 to 2 in the output represents values for the weights to the
power of 2. Thus, 0 represents the value of 2° = | and 2 represents the value 22 = 4.

The standard graphic symbol for the 4-bit counier with parallel load, IC type 74161, is
shown in Fig. 12-14. The qualifying symbol for a synchronous counter is CTR followed by the
symbol DIV 16 (divide by 16), which gives the cycle length of the counter. There js a single

RCTR
Rl 2
3 & |CT=0
R?
14 12
A—— I+ pio 0A
L Divs 9
B ——— D= 0 OB
8
¢r{ —m—— QcC
11
2 oD

FIGURE 12-13 :
Graphic Symbol for Ripple Counter, IC Type 7493

Ciear ﬁlj\—\

9
Load —E

ENT
ENP

T o won

FIGURE 12.14

Graphic Symbol for 4-Bit Binary Counter with Parallel Load, IC Type 74161

load input at pin 9 that is sp
input at pin 9 is low and M
as active-low from the polarity indicator along its inpu

10

Clock — 2 =]

N e | | W

2 is active when the load in

Section 12-7

CT=0
M1
M2
G3
G4

1

CTR DIV16

3Cr=15

C572,3,4 +

1,3D

(1] K

2]

(4

(8]

able. The label associated with the clock is

This means that the circuit counts u
{load = 1, ENT = 1, and ENP
This condition is specified in the
mnputs have the label 1, 5 D, mean
and the clock goes throngh a pos

This is interpreted to mean that the outpl
and the content (C7) of the counter is 15
ed . symbol, indicating that all the flip
bol in the C'5 input desi gnates an invert
is triggered on the negative transition
positive transition. Thus, the outp
should be noted that IC type 74L.8161 (low

flip-flops.

C5/2,3,4 +

ut chan

3CT = 15

Symbols For Counters 497

15

14
13
12

— —— OC

i1

lit into the two modes, M 1 and M2. M 1 is active when the load
put at pin 9 is high. M 1 is recognized
t line. The count-enable inputs use the
G dependencies. G3 is associated with the T input and G 4 with the P input of the count en-

p (the + symbol) when M 2, G3, and G4 are active
= 1) and the clock in C'5 goes through a positive transition.
function table of the 74161 listed in Fig. 11-15. The parallel
ing that the 1D inputs are active when M 1 is active (load = 0)
itive transition. The output carry is designated by the label

ut carry is active (equal to 1) if G3 is active (ENT =1)
(binary 1111). Note that the outputs have an invert-
-flops are of the master—slave type. The polarity sym-
ed pulse for the input clock. This means that the master
of the clock pulse and the slave changes state on the
ges on the positive transition of the clock pulse. It
-power Schottlky version) has positive-edge-triggered

Output carry

QA

—— OB

498

12-8

Chapter 12 Standard Graphic Symbols

SYMBOL FOR RAM

The standard graphic symbol for the random-access memory (RAM} 74189 is shown in
Fig. 12-15. The numbers 16 X 4 that follow the qualifying symbol RAM designate the num-
ber of words and the number of bits per word. The common control block is shown with four
address lines and two control inputs. Each bit of the word is shown in a separate section with
an input and output data line. The address dependency A is used to identify the address inputs
of the memory. Data inputs and outputs affected by the address are labeled with the letter A.
The bit grouping from O through 3 provides the binary address that ranges from A0 through
A15. The inverted triangle signifies three-state outputs. The polarity symbol specifies the in-
version of the outputs. _

The operation of the memory is specified by means of the dependency notation. The
RAM graphic symbol uses four dependencies: A (address), G (AND), EN (enable), and C
(control). Input G'1 is to be considered ANDed with 1EN and 1C2 because Glhasal
after the letter G and the other two have a 1 in their label. The EN dependency is used to
identify an enable input that controls the data outputs. The dependency C2 controls the in-
puts as indicated by the 2D label. Thus, for a write operation, we have the G 1 and 1C2 de-
pendency (CS = 0), the C2 and 2D dependency (WE = 0), and the A dependency, which
specifies the binary address in the four address inputs. For a read operation, we have the G1
and 1EN dependencies (CS = 0, WE = 1) and the A dependency for the outputs. The in-
terpretation of these dependencies results in the operation of the memory as listed in the func-
tion table of Fig. 11-18.

) RAM 16 x 4
A0 0
“ 15
D
A
14
1 15
13
A3 2
2
s —— =l
3

WE 1EN [READ]
ll 1C2 [WRITE]
] [

References 499

FIGURE 12-15

p1 ! A,2D AV LI $1
m 6 ~ T 52
p3—2 S 83
ps1Z ~

Graphic Symbol for 16 x 4 RAM, IC Type 74189

PROBLEMS

12-1 Figure 11-1 shows various small-scale integration circuits with pin assignment. Using this in-
formation, draw the rectangular-shaped graphic symbeols for the 7400, 7404, and 7486 1Cs.

12-2 Define the following in your own words:
(a)} Positive and negative logic. (b) Active-high and active-low.
(c) Polarity indicator. (d) Dynamic indicator.
(e) Dependency notation.

12-3 Show an example of a graphic symbol that has the three Boolean dependencies—G, V, and N.
Draw the equivalent interpretation.

12-4 Draw the graphic symbol of a BCD-to-decimal decoder. This is similar to a decoder with 4 in-
puts and 10 outputs.

12-5 Draw the graphic symbol for a binary-to-octal decoder with three enable inputs, £'1, £2, and

12-6

12-7

12-8
12-9

12-10

12-11

12-12

REFERENCES

E 3. The circuit is enabled if E1 = 1, E2 = 0, and E3 = 0 (assuming positive logic).

Draw the graphic symbol of dual 4-to-1-line multiplexers with common selection inputs and
a separate enable input for each multiplexer.

Draw the graphic symbol for the following flip-flops:
(a) Negative-edge-triggered D flip-flop. {b) Master—slave RS flip-flop.
{c) Positive-edge-triggered T flip-flop.

Explain the function of the common control block when used with the standard graphic symbols.

Draw the graphic symbol of a 4-bit register with parallel load using the label M 1 for the load
input and C2 for the clock.

Explain all the symbols used in the standard graphic diagram of Fig. 12-12.

Draw the graphic symbol of an up—down synchronous binary counter with mode input (for up
or down) and count-enable input with G dependency. Show the output carries for the up count
and the down count.

Draw the graphic symbol of a 256 X 1 RAM. Include the symbol for three-state outputs,

1. 1984, IEEE Standard Graphic Symbols for Logic Functions (ANSIIEEE Std. 91-1984). New
York: Institute of Electrical and Electronics Engineers.

2. KampeL, 1. 1985, A Practical Introduction to the New Logic Symbols. Boston: Butterworth.

3. Many, F. A. 1984. Explanation of New Logic Symbols. Dallas: Texas Instruments.

4., 1985. The TTL Data Book, Volume 1. Dailas: Texas Instruments.

	ch.1.pdf
	ch.2.pdf
	ch.3 part1.pdf
	ch.3 part2.pdf
	ch.4 part1.pdf
	ch.4 part2.pdf
	ch.4 part3.pdf
	ch.4 part4.pdf
	ch.5part1.pdf
	ch.5part2.pdf
	ch.5part3.pdf
	ch.6part1.pdf
	ch.6part2.pdf
	ch.7part1.pdf
	ch.7part2.pdf
	ch.8part1.pdf
	ch.8part2.pdf
	ch.9part1.pdf
	ch.9part2.pdf
	ch.9part3.pdf
	ch.10part1.pdf
	ch.10part2.pdf
	ch.11part1.pdf
	ch.11part2.pdf
	ch.11part3.pdf
	ch.12.pdf

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 3
 2
 3

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 7
 6
 7

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 11
 10
 11

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 11
 10
 11

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 11
 10
 11

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 7
 6
 7

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 4
 3
 4

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 9
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 72.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 72.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 16

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 15
 14
 15

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 16

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 15
 14
 15

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 16

 CurrentAVDoc

 Smaller
 72.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 15
 14
 15

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 72.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 72.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 72.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 72.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 72.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 72.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 21.60 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 21.6000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 9
 10
 9
 10

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 3
 2
 3

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 72.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 148
 61

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 16

 PDDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 11
 10
 11

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 11
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 SubDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 11
 10
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: cut right edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 CurrentPage
 11

 CurrentAVDoc

 Smaller
 36.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 11
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: cut left edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 CurrentPage
 11

 CurrentAVDoc

 Smaller
 108.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 11
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 11
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132

 None
 Down
 14.4000
 0.0000

 Both
 2
 SubDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 11
 10
 10

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 16

 PDDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 11
 10
 11

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 11
 10
 11

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 11
 10
 11

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 16

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 144.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 144.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 72.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 72.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 21.60 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 21.6000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 72.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 14.40 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 14.4000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 144.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 144.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 13
 12
 13

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 21.60 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 21.6000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 13
 12
 13

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 3
 13
 12
 13

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 13
 12
 13

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: cut top edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 CurrentPage
 11

 CurrentAVDoc

 Smaller
 36.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 13
 1
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: cut top edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132

 None
 Down
 14.4000
 0.0000

 Both
 2
 CurrentPage
 11

 CurrentAVDoc

 Smaller
 36.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 2
 13
 2
 1

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 175
 92
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 36.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 108.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 175
 92
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 108.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 175
 92

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 11

 CurrentAVDoc

 Smaller
 180.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 QI2base

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 16
 Trim: cut bottom edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 450
 194
 None
 Down
 14.4000
 0.0000

 Both
 2
 SubDoc
 16

 CurrentAVDoc

 Smaller
 72.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 16
 15
 15

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 16
 Trim: cut bottom edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 450
 194
 None
 Down
 14.4000
 0.0000

 Both
 2
 SubDoc
 16

 CurrentAVDoc

 Smaller
 72.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 16
 15
 15

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 16
 Trim: cut bottom edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 450
 194
 None
 Down
 14.4000
 0.0000

 Both
 2
 SubDoc
 16

 CurrentAVDoc

 Smaller
 36.0000
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 16
 15
 15

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: cut top edge by 180.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 CurrentPage
 16

 CurrentAVDoc

 Smaller
 180.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 0
 16
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 16

 CurrentAVDoc

 Smaller
 72.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 16
 15
 16

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132
 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 16

 CurrentAVDoc

 Smaller
 36.0000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 16
 15
 16

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 72.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 355
 132

 None
 Down
 14.4000
 0.0000

 Both
 2
 AllDoc
 16

 CurrentAVDoc

 Smaller
 72.0000
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0g
 Quite Imposing Plus 2
 1

 1
 16
 15
 16

 1

 HistoryList_V1
 QI2base

