

Alexander I. Galushkin

Neural Networks Theory

With 176 Figures

Neural Networks
Theory

Alexander I. Galushkin

Library of Congress Control Number: 2007931627

ISBN 978-3-540-48124-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplica-
tion of this publication or parts thereof is permitted only under the provisions of the German Copy-
right Law of September 9, 1965, in its current version, and permission for use must always be ob-
tained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the rel-
evant protective laws and regulations and therefore free for general use.

Cover design: Erich Kirchner, Heidelberg
Production: Almas Schimmel
Typesetting: Büro Stasch, Susanne Kirchhofer, Bayreuth (stasch@stasch.com)

Printed on acid-free paper 30/3180/as – 5 4 3 2 1 0

Author

Professor Alexander I. Galushkin

Moscow Institute of Physics & Technology
Department Neurocomputers
Institutskiy per 9
141700 Dolgoprudniy
Moskva Region
Russia
E-mail: neurocomputer@yandex.ru

This book is dedicated to my teachers, Russian classics in the field of control theory
and theory of discrete and adaptive systems:

Vladimir V Solodovnikov, Lev T. Kuzin, and Yakov Z. Tsypkin

Foreword

Professor A. I. Galushkin’s monograph “Neural Networks Theory” appears at a time
when the theory has achieved maturity and is the fulcrum of a vast literature. Never-
theless, Professor Galushkin’s work has high importance because it serves a special
purpose which is explained in the following.

The roots of neural networks theory go back to the pioneering work of McCulloch
and Pitts in the early 1940s. As a graduate student at MIT and later as an instructor
at Columbia University, I was a witness to the birth of the digital world that took place
in the years following the end of World War II and the beginning of the Cold War. To
me, the definitive event was Shannon’s first lecture on information theory which took
place in New York in 1946. I attended his lecture and was utterly fascinated by what
I heard. Wiener’s cybernetics and the invention of the transistor were the other defin-
ing events which marked the debut of information revolution and the era of machine
intelligence. The pioneering work of McCulloch and Pitts was too embryonic to at-
tract much attention.

The work of McCulloch and Pitts was followed in the early 1950s by the develop-
ment of threshold logic for pattern classification and automata theory for systems
analysis. These developments were the backdrop for Frank Rosenblatt’s invention of
the perceptron – the forerunner of multilayer neural networks. Frank Rosenblatt was
a visionary who believed that the perceptron could perform miracles. Unfortunately,
his lectures were hard to follow and not persuasive. His revolutionary ideas were not
accorded recognition in his prematurely ended lifetime.

In the early 1960s at Moscow’s famed Institute of Automatics and Telemechanics,
Ya Z. Tsypkin, M. A. Aizerman and others began to develop a theory of adaptive sys-
tems which led to the initiation of research on neural networks in the Soviet Union and
to later work of Vapnik and Cherevonkis on support vector machines and kernel
methods. Professor Galushkin was a student of Ya Z. Tsypkin and has played a pivotal
role in the development of neural networks theory and its applications in the Soviet
Union ever since.

Development of neural networks theory in the Soviet Union paralleled and, in some
areas, especially in the realm of back propagation, was ahead. A detailed comparison
and an overview are presented in Chap. 17 of Professor Galushkin’s work.

The extensive development of neural networks theory in the Soviet Union was largely
unknown in the Western world. One of the objectives of Professor Galushkin’s work is
to bring this fact to light. In this perspective, Professor Galushkin’s monograph serves
an important purpose. But perhaps more importantly, his work stands out as an au-

VIII

thoritative, comprehensive and up-to-date account of neural networks theory and its
wide-ranging applications. Particularly worthy of note are Professor Galushkin’s expo-
sitions of optimal models of neural networks, structure optimization by topological
characteristics, continual neural networks, optimal neural networks for multidimen-
sional signals, multivariable function extremum search algorithms, random search
algorithms for local and global extrema, implementation of minimum average risk
function criteria, closed-loop neural networks operating on nonstationary patterns,
selection of initial conditions for neural network adjustment, design of neural net-
works for matrix inversion problems, informative feature selection, multilayer neural
network functional liability, and neural network diagnostics. In these expositions, there
is much that is new and not readily found in the Western literature.

There is a significant issue which is not addressed in Professor Galushkin’s work,
namely, the role of neural networks theory in soft computing. In science, as in most
other realms of human activity, there is a tendency to adopt a particular methodology
and march under its banner, in the belief that this methodology is superior to all oth-
ers. The principal thesis of soft computing is that there is much to be gained by form-
ing an alliance of various computing methodologies and using them in combination
rather than in a stand-alone mode. In soft computing, the principal members of the
alliance are fuzzy logic, neurocomputing, evolutionary computing, probabilistic com-
puting and machine learning, and the principal objective is to provide a foundation for
the conception, design and utilization of intelligent systems. In recent years, a combi-
nation which has received a great deal of attention is that of neurofuzzy systems. In
such systems, the capability of neural networks to deal with classification, identifica-
tion and adaptation is combined with the capability of fuzzy systems to deal with
imprecision, uncertainty and partiality of information. As a result of synergism of fuzzy
logic and neural networks theory, many applications exist in which better performance
can be achieved through the use of a neurofuzzy system than through the use of a
system which is strictly neuro or strictly fuzzy.

Professor Galushkin’s monograph has many unique features that in totality make
his work an important contribution to the literature of neural networks theory. He
and his publisher deserve profuse thanks and congratulations from all who are seri-
ously interested in the foundations of neural networks theory, its evolution and its
current status.

Lotfi A. Zadeh
Professor in the Graduate School
Director, Berkeley Initiative in Soft Computing (BISC)
Berkeley University, California
May 2006

Foreword

Foreword

The human brain is indeed a triumph of nature. Able to process information rapidly
and efficiently via a system of neural networks consisting of vast numbers of neurons,
the human brain has evolved to enable a greater awareness of itself and its actions
within its environment: the mind.

Natural neural networks are highly complex, nonlinear systems with huge degrees
of freedom that employ different principles of information processing from those of
computers. Consequently, efforts to develop a viable neural networks theory have been
avidly pursued by theoretical scientists for more than half a century. These attempts
have had varying degrees of success (and failure); however, as more remarkable ad-
vances in brain science are made, brain-style computer technology is becoming in-
creasingly more promising.

In the earliest days, neural network theories developed in America, Europe, Russia
and Japan independently. While the scientific traditions for each of these regions are
significantly different, Russian science is most unique due in part to its years of isola-
tion from the Western world. Its researchers were able to deeply develop their own
theories in mathematics, physics, control optimization theory and other disciplines,
and results have been outstanding. Russia’s contribution to neural networks theory is
yet another example.

Professor Galushkin, a leader in neural networks theory in Russia, uses mathematical
methods in combination with complexity theory, nonlinear dynamics and optimiza-
tion, concepts that are solidly grounded in Russian tradition. His theory is expansive:
covering not only the traditional topics such as network architecture; it also addresses
neural continua in function spaces. I am pleased to see his theory presented in its entirety
here, for the first time for many, so that both the theory he developed and the approach
he took to understand such complex phenomena can be fully appreciated.

Shun-ichi Amari
Director of RIKEN Brain Science Institute
June 2004, in Tokyo

Foreword

During the Soviet period, academic achievements in the Soviet Union in many fields
of science and mathematics (particularly those not bearing directly on defense) be-
came widely known and respected. Many important Soviet advances in physics, chem-
istry, and mathematics were widely disseminated and objectively evaluated as being of
the highest rank.

Contemporaneously, Soviet achievements in academic traditions bearing on space
technology and defense were also obviously successful (as evidenced by world-class
achievements in these endeavors). However, the details of the discoveries underlying
these achievements were rarely communicated, and some were actively suppressed.
From before 1960 through about 1990, meaningful contact between Soviet and West-
ern neural network research was all but eliminated. The 1990s were a decade of
‘renormalization of contact’ that followed this long break.

Unlike their Western counterparts, Soviet researchers never experienced the full
brunt of the ‘perceptron ice age,’ although their funding levels were somewhat reduced,
since Soviet research resources were, to a degree, allocated in mimicry of the U.S. re-
search agenda. Thus, as the volume of Western neural network research activity was
reduced to a low level during 1969–1986, Soviet research remained active. This long
period of isolated Soviet research was highly productive. Many themes and concepts
unknown in the West emerged and were extensively pursued. A few of these were seen
in the two learning theory books by Y. Z. Tsypkin (one of Professor Galushkin’s men-
tors) that were translated into English and disseminated worldwide in the 1970s. But
there was little Western follow-through on this unusual and somewhat alien material.

This book is the long-awaited panoramic survey of the Soviet and Russian neural
network intellectual tradition. It is a gold mine of important ideas and powerful results
that are not available anywhere else in English translation. The author, Dr. A. I. Galushkin,
is the leading Russian neural network expert and has been a leading Soviet and Rus-
sian neural network researcher since the 1970s. Throughout this period, Dr. Galushkin
has been afforded access to all significant Western neural network publications. As a
result, this book is doubly valuable because it is written not just by an expert, but some-
one who knows, and refers to in his writing, the intellectual traditions of the West.

Readers will find many unfamiliar and yet well-developed topics in this book, often
with powerful mathematical results (e.g., learning laws) ready to be coded up and put
to work. The book begins with a survey of the field of neural networks from both the
implementation and the architectural points of view. This approach to the subject used
to be popular in the West, back when “supercomputers” were less powerful and capa-

XII

cious than today’s pocket computer. However, just because this approach has fallen out
of favor in the West, there is every reason to believe that it will again become dominant
as neural networks take on such important future areas as real-time engine control
(e.g., for pulse detonation aviation propulsion engines, where every single impulse must
be controlled in detail with many variable parameters uniquely set in a few microsec-
onds), real-time millimeter-scale microwave beam control (at 10-nanosecond time scales
at ranges of thousands of kilometers from the antenna array for space launches using
ground-based energy), and, of course, for large-scale machine intelligence. Thus, a
viewpoint that organizes the subject around implementation and architecture is, in
reality, very forward-looking and valuable. The portions covering implementation re-
liability and failure tolerance are similarly important, notwithstanding the current
disinterest in these topics in the West.

An important fact about the organization of this book is that the topics that are
covered in detail have essentially all found valuable applications (as this is a book on
theory, these are not discussed, which is probably to the liking of the Russian Ministry
of Defense). Not only are these useful topics, in most cases they are topics that have
been less developed in the West. Take forward control, for example. This is NOT just
what is often thought of as ‘open-loop control.’ It is NOT just adaptive-model-reference
control. It encompasses these but allows for anticipatory system response prediction
so that feedback corrections can begin to be issued long before large errors emerge in
the controlled system. Thus, highly sophisticated models with preemptive feedback
(anticipating and correcting errors before they can occur) can be built using this theory
(much along the lines of the most arcane cerebellum-cortex motor control models, but
even more general). This theory supports development of controllers for complex
environments in which almost every system state is novel and far from any training
example (e.g., for walking robots).

Neural Networks Theory is a major contribution to the neural network literature. It
is a treasure trove that should be mined by the thousands of researchers and practitio-
ners worldwide who have not previously had access to the fruits of Soviet and Russian
neural network research. Dr. Galushkin is to be congratulated and thanked for his
completion of this monumental work: a book that only he could write. It is a major gift
to the world.

Robert Hecht-Nielsen
Computational Neurobiology, Institute for Neural Computation, and ECE Department
University of California, San Diego

Foreword

Contents

Introduction . 1
I.1 Neural Computers . 1
I.2 Position of Neural Computers in the Set of Large-Powered Computing Facilities . . . 5
I.3 The Concept of Computer Universalism . 8
I.4 Neural Computer Modularity . 9
I.5 The Class of Problems Adequate to Neural Computers . 10
I.6 Methods of Coefficient Readjustment . 12
I.7 Neural Computer Classification . 12
I.8 Some Remarks Concerning the Neural Computer Elemental Base 14
I.9 Neural Mathematics – Methods and Algorithms of Problem Solving

Using Neurocomputers . 17
I.10 About Neural Networks . 21

I.10.1 Neural Network Structures . 23
I.10.2 Investigation of Neural Network Input Signal Characteristics 24
I.10.3 About the Selection of Criteria for Primary Neural Network Optimization 24
I.10.4 Analysis of Open-Loop Neural Networks . 25
I.10.5 Algorithms for a Multivariable Functional Extremum Search

and Design of Adaptation Algorithms in Neural Networks 25
I.10.6 Investigation of Neural Network Adaptation Algorithms 27
I.10.7 Multilayer Neural Networks with Flexible Structure . 28
I.10.8 Informative Feature Selection in Multilayer Neural Networks 28
I.10.9 Investigation of Neural Network Reliability . 29
I.10.10 Neural Network Diagnostics . 29

I.11 Conclusions . 30
Literature . 31
Appendix . 31
A.1 Theory of Multilayer Neural Networks . 31
A.2 Neural Computer Implementation . 32
A.3 Neural Computer Elemental Base . 32

Part I · The Structure of Neural Networks . 33

1 Transfer from the Logical Basis of Boolean Elements “And, Or, Not”
to the Threshold Logical Basis . 35

1.1 Linear Threshold Element (Neuron) . 35

ContentsXIV

1.2 Multi-Threshold Logics . 37
1.3 Continuous Logic . 38
1.4 Particular Forms of Activation Function . 39

Literature . 40

2 Qualitative Characteristics of Neural Network Architectures . 43
2.1 Particular Types of Neural Network Architectures . 43
2.2 Multilayer Neural Networks with Sequential Connections . 45
2.3 Structural and Symbolic Description of Multilayer Neural Networks 47

Literature . 52

3 Optimization of Cross Connection Multilayer Neural Network Structure 53
3.1 About the Problem Complexity Criterion . 53
3.2 One-Dimensional Variant of the Neural Network with Cross Connections 54
3.3 Calculation of Upper and Lower Estimation of the Number of Regions 55
3.4 Particular Optimization Problem . 57
3.5 Structural Optimization by Some Main Topological Characteristics 60
3.6 Optimization of a Multilayer Neural Network Structure with Kp Solutions 64

Literature . 66

4 Continual Neural Networks . 67
4.1 Neurons with Continuum Input Features . 67
4.2 Continuum of Neurons in the Layer . 68
4.3 Continuum Neurons in the Layer and Discrete Feature Set . 68
4.4 Classification of Continuum Neuron Layer Models . 69

4.4.1 Discrete Set of Neurons . 69
4.4.2 One-Dimensional and Two-Dimensional m2 Feature Space 69
4.4.3 Continuum of Features – One-Dimensional m1 for Several Channels 71
4.4.4 Feature Continuum – Two-Dimensional m1 . 72
4.4.5 Neuron Layer with a Continuum of Output Values . 72
Literature . 74

Part II · Optimal Models of Neural Networks . 75

5 Investigation of Neural Network Input Signal Characteristics . 77
5.1 Problem Statement . 77
5.2 Joint Probability Distribution of the Input Signal for Two Pattern Classes 79
5.3 Joint Distribution Law for the Input Signal Probabilities

in the Case of K Classes of Patterns . 84
Literature . 87

6 Design of Neural Network Optimal Models . 89
6.1 General Structure of the Optimal Model . 89
6.2 Analytical Representation of Divisional Surfaces in Typical Neural Networks . . . 90
6.3 Optimal Neural Network Model for Multidimensional Signals e(n) and y(n) . . 110
6.4 A Priori Information about the Input Signal in the Self-Learning Mode 113

XVContents

6.5 About Neural Network Primary Optimization Criteria
in the Self-Learning Mode . 114

6.6 Optimal Neural Network Models in the Self-Learning Mode
and Arbitrary Teacher Qualification . 116
Literature . 119

7 Analysis of the Open-Loop Neural Networks . 121
7.1 Distribution Laws of Analogous and Discrete Neural Network Errors 121

7.1.1 Neuron with Two Solutions . 121
7.1.2 Neuron with a Solution Continuum . 124
7.1.3 Analysis of a Neuron with Kp Solutions . 126
7.1.4 Analysis of a Pattern Recognition System

with a Nonlinear Divisional Surface . 128
7.2 Selection of the Secondary Optimization Functional . 129
7.3 About Selection of the Secondary Optimization Functional

in the “Adalin” System . 131
7.4 Development of the Secondary Optimization Functionals

Corresponding to the Given Primary Optimization Criterion . 132
7.4.1 The Average Risk Function Minimum Criterion . 132
7.4.2 Minimum Criterion for R under the Condition p1l1 = p2r2 133
7.4.3 The Minimum Criterion for R under the Condition p1r1 = a = Const. . . 134

7.5 Neural Network Continuum Models . 135
7.5.1 Neural Network with a Solution Continuum –

Two Pattern Classes . 135
7.5.2 Neural Network with a Solution Continuum –

Continuum of Pattern Classes . 137
7.5.3 Neural Network with Kp Solutions –

K Pattern Classes . 138
7.5.4 Neural Network with N* Output Channels –

K0 Gradations in Each Class . 139
7.5.5 Neural Network with N* Output Channels –

Neural Network Solution Continuum . 139
7.6 Neural Network in the Self-Learning Mode and Arbitrary Teacher Qualification . 140

Literature . 141

8 Development of Multivariable Function Extremum Search Algorithms 143
8.1 Procedure of the Secondary Optimization Functional Extremum Search

in Multilayer Neural Networks . 143
8.2 Analysis of the Iteration Method for the Multivariable Function

Extremum Search . 143
8.3 About the Stochastic Approximation Method . 146
8.4 Iteration Methods for Multivariable Function Extremum Search

in the Case of Equality-Type Constraints upon Variables . 146
8.4.1 Search Algorithm . 147
8.4.2 Analysis of the Matrix of the Second Derivatives

of the Lagrange Function . 148

ContentsXVI

8.4.3 Operation Speed Optimization for the Extremum Search
Iteration Procedure in the Case of Equality-Type Constraints 148

8.4.4 Optimal Operation Speed under Constraints (8.6) . 149
8.4.5 The Case of Constraints of Equality Type That Can Be Solved 149
8.4.6 Iteration Process Stability under Equality-Type Constraints 150
8.4.7 Convergence of the Iteration Search Method

under the Equality-Type Constraints . 151
8.5 Iteration Extremum Search Methods for Multivariable Functions

under Inequality-Type Constraints . 152
8.5.1 Conditions of Optimality . 152
8.5.2 Algorithm of Extremum Search in the Case of Inequality-Type

Constraints . 153
8.6 Algorithm of Random Search of Local and Global Extrema

for Multivariable Functions . 154
8.7 Development of the Neural Network Adaptation Algorithms with the Use of

Estimations of the Second Order Derivatives of the Secondary Optimization
Functional . 155
8.7.1 Development of Search Algorithms . 155
8.7.2 One-Dimensional Case . 158
Literature . 158

Part III · Adaptive Neural Networks . 161

9 Neural Network Adjustment Algorithms . 163
9.1 Problem Statement . 163
9.2 Neuron with Two-Solution Continuums . 164
9.3 Two-Layer Neural Networks . 167
9.4 Multilayer Neural Networks with Solution Continuum Neurons 169
9.5 Design of Neural Networks with Closed Cycle Adjustment

under Constraints upon Variables . 170
9.6 Implementation of Primary Optimization Criteria for Neurons

with Two Solutions . 173
9.7 Implementation of Minimum Average Risk Function Criterion

for Neurons with Continuum Solutions and Kp Solutions . 175
9.8 Implementation of the Minimum Average Risk Function Criterion

for Neural Networks with N* Output Channels (Neuron Layer) 177
9.9 Implementation of the Minimum Average Risk Function Criterion

for Multilayer Neural Networks . 178
9.10 Development of Closed-Loop Neural Networks of Non-Stationary Patterns . . . 180
9.11 Development of Closed-Cycle Adjustable Neural Networks

with Cross and Backward Connections . 182
9.12 Development of Closed-Loop Neural Networks in the Learning Modes

with Arbitrary Teacher Qualification . 183
9.13 Expressions for the Estimations of the Second Order Derivatives

of the Secondary Optimization Functional . 185
Literature . 187

XVIIContents

10 Adjustment of Continuum Neural Networks . 189
10.1 Adjustment of a Neuron with a Feature Continuum . 190
10.2 Adjustment of the Continuum Neuron Layer . 190
10.3 Selection of the Parameter Matrix for the Learning Procedure

of the Continuum Neuron Layer on the Basis of the Random Sample Data 190
10.4 Selection of the Parameter Matrix K*(i,j) for the Learning Procedure

of the Neuron with a Feature Continuum on the Basis of the Random
Sample Data . 193

10.5 Characteristic Properties of the Two-Layer Continuum Neural Network
Adjustment Algorithm . 195

10.6 Three Variants of Implementation of the Continuum Neuron Layer
Weighting Functions and Corresponding Learning Procedures 195

10.7 Learning Algorithm with a2g Secondary Optimization Functional
(the Five-Feature Space) for the Two-Layer Continuum Neural Network 198
10.7.1 Learning Algorithm for the Second Layer

(Feature Continuum Neuron) . 198
10.7.2 Learning Algorithm for the First Layer

(Continuum Neuron Layer) . 199
10.8 Continuum Neuron Layer with Piecewise Constant Weighting Functions 200

10.8.1 Open-Loop Layer Structure . 200
10.8.2 Recurrent Adjustment Procedure for the Piecewise Constant

Weighting Functions . 201
10.8.3 About Matrix K*(i) Estimation . 202

10.9 Continuum Neuron Layer with Piecewise Linear Weighting Functions 202
10.9.1 Open-Loop Structure of the Neuron Layer . 202
10.9.2 Recurrent Adjustment Procedure for the Piecewise Linear

Weighting Functions . 203
10.10 Continuum Neural Network Layer with Piecewise Constant

Weighting Functions (the Case of Fixed “Footsteps”) . 205
10.10.1 Open-Loop Layer Structure . 205
10.10.2 Recurrent Adjustment Procedure for Piecewise Constant

Weighting Functions with Variable Interval Lengths ts 205
Literature . 206

11 Selection of Initial Conditions During Neural Network Adjustment –
Typical Neural Network Input Signals . 207

11.1 About Selection Methods for Initial Conditions . 207
11.2 Algorithm of Deterministic Selection of the Initial Conditions

in the Adjustment Algorithms for Multilayer Neural Networks 208
11.3 Selection of Initial Conditions in Multilayer Neural Networks . 212
11.4 Initial Condition Formation for Neural Network Coefficient Setting

in Different Problems of Optimization . 216
11.4.1 Linear Equality Systems . 217
11.4.2 Linear Inequality Systems . 217
11.4.3 Approximation and Extrapolation of Functions . 218
11.4.4 Pattern Recognition . 218

ContentsXVIII

11.4.5 Clusterization . 220
11.4.6 Traveling Salesman Problem . 220
11.4.7 Dynamic System Modelling . 220
11.4.8 Conclusion . 221

11.5 Typical Input Signal of Multilayer Neural Networks . 221
Literature . 222

12 Analysis of Closed-Loop Multilayer Neural Networks . 223
12.1 Problem Statement for the Synthesis of the Multilayer Neural Networks

Adjusted in the Closed Cycle . 223
12.2 Investigation of the Neuron Under the Multi-Modal Distribution

of the Input Signal . 224
12.2.1 One-Dimensional Case – Search Adjustment Algorithm 224
12.2.2 Multidimensional Case – Analytical Adjustment Algorithm 226

12.3 Investigation of Dynamics for the Neural Networks of Particular Form
for the Non-Stationary Pattern Recognition . 231

12.4 Dynamics of the Three-Layer Neural Network in the Learning Mode 235
12.5 Investigation of the Particular Neural Network

with Backward Connections . 239
12.6 Dynamics of One-Layer Neural Networks in the Learning Mode 242

12.6.1 Neural Network with the Search
of the Distribution Mode Centers f(x) . 242

12.6.2 Neural Network with N* Output Channels . 245
12.6.3 Neuron with Kp Solutions . 248

12.7 Two-Layer Neural Network in the Self-Learning Mode . 250
12.8 About Some Engineering Methods for the Selection of Matrix Parameters

in the Multilayer Neural Network Closed Cycle Adjustment Algorithms 257
12.9 Design of the Multilayer Neural Network for the Matrix Inversion Problem . . . 258
12.10 Design of the Multilayer Neural Network for the Number Transformation

from the Binary System into the Decimal One . 261
12.11 Investigation of the Multilayer Neural Network

under the Arbitrary Teacher Qualification . 262
12.12 Analytical Methods of Investigations of the Neural Network

Closed Cycle Adjustment . 263
Literature . 272

13 Synthesis of Multilayer Neural Networks with Flexible Structure 273
13.1 Sequential Learning Algorithm for the First Neuron Layer

of the Multilayer Neural Network . 273
13.2 Learning Algorithm for the First Neuron Layer of the Multilayer

Neural Network Using the Method of Random Search of Local
and Global Function Extrema . 277

13.3 Analysis of Algorithm Convergence under the Hyperplane
Number Increase . 280

13.4 Learning Algorithms for the Second Layer Neurons
of the Two-Layer Neural Network . 283

XIXContents

13.4.1 Condition of the Logical Function e(y) Realizability
Using One Neuron . 283

13.4.2 Synthesis of a Neuron by the Functional Minimization Method 285
13.4.3 Neuron Synthesis by the Threshold Function Tables . 290

13.5 Learning Algorithm for Neurons of the Second and Third Layers
in the Three-Layer Neural Network . 290

13.6 General Methods of the Multilayer Neural Network Successive Synthesis 292
13.7 Learning Method for the First-Layer Neurons of a Multilayer

Neural Network with a Feature Continuum . 292
13.8 Application of the Adjustment Algorithm of the Multilayer Neural Networks

with Flexible Structure for the Problem of Initial Condition Selection 293
13.9 About the Self-Learning Algorithm for Multilayer Neural Networks

with Flexible Structure . 294
Literature . 294

14 Informative Feature Selection in Multilayer Neural Networks 295
14.1 Statement of the Informative Feature Selection Problem

in the Learning Mode . 295
14.2 About Structural Methods for the Informative Feature Selection

in the Multilayer Neural Networks with Fixed Structure . 297
14.3 Selection of the Initial Space Informative Features Using Multilayer Neural

Networks with Sequential Algorithms of the First-Layer Neuron Adjustment . . 299
14.4 Neuron Number Minimization . 300
14.5 About the Informative Feature Selection for Multilayer Neural Networks

in the Self-Learning Mode . 302
Literature . 302

Part IV · Neural Network Reliability and Diagnostics . 303

15 Neural Network Reliability . 305
15.1 Methods for the Neural Network Functional Reliability Investigation 305
15.2 Investigation of Functional Reliability of Restoring Organs Implemented

in the Form of Multilayer Neural Networks . 306
15.3 Investigation of Multilayer Neural Network’s Functional Reliability 308
15.4 Investigation of the Neural Network’s Parametrical Reliability 309
15.5 Investigation of the Multilayer Neural Network’s Functional Reliability

in the Case of Catastrophic Failures . 317
Literature . 318

16 Neural Network Diagnostics . 321
16.1 Neural Network State Graph – The Main Notions and Definitions 322
16.2 Algorithm of Failure Localization in the Neural Networks . 323
16.3 Algorithm of the Minimum Test Design for the Failures

of the Logical Constant Type at the Neuron Outputs . 331
16.4 Method of the Neural Network Adaptive Failure Diagnostics . 332

Literature . 338

ContentsXX

Part V · Summary . 339

17 Methods of Problem Solving in the Neural Network Logical Basis 341
17.1 Neuromathematics – A New Perspective Part of Computational Mathematics . 341
17.2 Neural Network Theory – A Logical Basis for the Development

of the Neural Network Problem Solution Algorithms . 343
17.3 Selection of the Problems Adequate to the Neural Network Logical Basis 344
17.4 The General Structure of the Program Package for Problem Solution

in the Neural Network Logical Basis . 349
17.5 Multilayer Neural Networks with Flexible Structure . 350
17.6 Neural Network with Fixed Structure . 352

17.6.1 Generation of the Input Signal of the Neural Network . 352
17.6.2 The Multilayer Neural Network Output Signal Generation 355
17.6.3 Formation of the Primary Optimization Criteria . 355
17.6.4 Selection of the Open Neural Network Structure . 356
17.6.5 Remarks about the Selection of the Open Neural Network Structure

that is Adequate to the Class of Solution Tasks . 356
17.6.6 Remarks about the Activation Function Selection . 358
17.6.7 Selection of the Multilayer Neural Network Structure

According to its Hardware Implementation Technology 359
17.6.8 Generation of the Secondary Optimization Functional

in the Multilayer Neural Networks . 360
17.6.9 Generation of the Algorithm of the Search Procedure

for the Secondary Optimization Functional Extremum 360
17.6.10 Formation of the Adaptation Algorithms

in the Multilayer Neural Networks . 364
17.7 Verification of the Adjusted Multilayer Neural Network . 364
17.8 Elaboration of the Plan of Experiments . 365
17.9 About the Importance of the Unification of Designations in the Process

of Synthesis of the Neural Network Adjustment Algorithms . 367
17.10 About Myths in Neural Network Theory . 368
17.11 Conclusion . 368

References . 376

Conclusion . 377

Literature . 379

Author’s Publications on Neural Network Theory . 381

Index . 391

I.1
Neural Computers

Neurocomputers are computers of a new class. Their appearance was determined for
two objective reasons: first, the principal stages of the development of modern elemental
base technology that mainly determines the development of computer architecture,
and second, practical requirements to solve specific problems in a faster and more
economical manner.

As far back as the 1950s, the main reason for neural computer development appeared
to be a development of the threshold logic that was permanently contradistinguished
to the classical development of the elemental base on the basis of AND, OR, NOT, etc.
This resulted in the implementation of a series of specific problem-oriented and ex-
perimental universal neural computers in the 1960s and 1970s. The terms “neural com-
puter” and “neurocomputer” are not associated with any feature or characteristic of
the human or animal nervous system. They are associated only with the conditional
name of a threshold element with the adjustable or fixed weights that implement an
elementary transfer function of the neural cell. A sharp upswing of LSI technological
development at the beginning of the 1970s, as well as the implementation primarily of
microprocessor chips with the classic computer architecture was realized on the el-
emental base on the basis of AND, OR, NOT, etc., resulting in the slowdown rather than
complete termination of the development of the computing facilities based on the
threshold logic elements. The next upswing at the beginning of the 1980s allowed one
to redefine the problem of neural computers due to the fact that VLSI technology, rather
than LSI technology, allowed one to implement in one or several chips not only a great
number of processing neuron elements, but also a whole set of connections between
them. This was not possible before. Such a possibility was provided by both electronic
as well as optical implementation methods in the middle of the 1980s.

The main idea of the neural computer construction, either a problem-oriented or
universal one, is to develop computers in the analog-digital form. In this regard, the
“fast” analog part performs multidimensional operations on the threshold basis. The
algorithms of the neural network coefficient adjustment are implemented either in the
“fast” manner in the analog form, or in the “low-speed” manner in the form of special-
ized digital circuits emulating neural algorithms, or in the “low-speed” manner in the
digital form, for example, using the universal personal computer.

The development of neural computers requires a design of the principally new
algorithms for the multidimensional solution of problems. The time for the solution
of the specific problem, on the one hand, only linearly depends upon the problem

Introduction

2 I · Introduction

dimensionality and, on the other hand, is determined by the convergence time of the
iteration process for the solution in the particular neural network.

The main formal basis for the design of the neural algorithms is a neural network
theory [I-1 to I-7]. Let us call the main set of operations that are realized in the process
of the algorithm refinement as a “logical basis of the problem”. For the majority of
problems such a basis is the basis {Σa

_
x
_

}. The following problems require this basis: the
problems of vector algebra, Fourier transformation and optimization problems.

A class of tasks including solutions of the ordinary differential equations, Poisson,
Euler, Navier-Stokes equations, elliptical equations and so on can be reduced to the
aforementioned problems.

A logical basis of the computer system is the main group of operations implemented
by the elements of the basic operating device. In the case of classical computers, it is a
basis of AND, OR, NOT that forms, first, the level of more complex basis (Sheffer stroke,
multiple AND, OR, NOT, etc.), and a macro level, i.e., a level of microdevices. The logical
basis of the computer system is not determined by the logical basis of the solved problems
but requires an additional application of a rather complex program development system.

In the case of neural computers, the logical basis of the computer system in the
simplest case is the basis {Σa

_
x
_

, sign}. This basis maximally corresponds to the logical
basis of the major solved problems.

When solving problems with the neural computers’ logical basis, the basis of the
problem is in accordance with the basis of the computer system, and there are no ar-
tificial shifts in any direction:

� one such shift corresponds to the problems with the threshold basis, whereas the
basis of the computer system is AND, OR, NOT;

� another shift corresponds to the problem with the basis that differs from the thresh-
old one, whereas the computer system is neural.

It is supposed that the accordance between the computer system basis and the basis
of the problem provides the highest productivity. This statement is trivial in the case
of problem-oriented computers that are designed for the solution of a given specific
task. However, it is not trivial for the neural computers that pretend to be called uni-
versal at the present time.

All the difficulties of multiextremal search by iteration methods using neural com-
puters are evidently preserved. But these difficulties transfer from the software imple-
mentation (von-Neumann computers, computers with SIMD and MIMD architectures)
to the software/hardware implementation. In short, an algorithmic kernel of the main
array of applied problems can be realized in hardware or software/hardware form with
maximal operation speed. The neural computer is a maximally parallelized system for
a given algorithmic kernel implementation. The number of operation cycles in the
problem solving process, i.e., the number of the adjustment cycles for optimization of
the secondary functional in the neural computer, is not determined by the subjective
intuition of the circuit designer who distributes the processing among the circuit lay-
ers consisting of the Boolean elements. This number is also not determined by the
subjective views of the programmer who organizes the interaction between layers. On
the contrary, it is determined by the physical entity and complexity of the problem.

3

Homogeneous neural networks possess properties of gradual degradation when
some of its elements break down. This phenomenon was noticed by Rosenblatt while
designing the three-layer perceptron with the arbitrary connections in the first layer.
An excessive number of elements in the first layer were taken. In this case, a function
implemented by the neural network is quasi-distributed along the structure. Neural
computers are the first example of an analytically calculated computer structure rather
than an empirically designed structure based on some subjective views about the prob-
lem and the elemental base.

The neural computer implementation methods are mainly divided into three classes:

1. Software emulation of neural algorithms with the help of computers with SISD archi-
tecture (for example, classical personal computers), SIMD architecture (for example,
Connection Machines) or MIMD architecture (for example, transputer networks);

2. Software/hardware emulation of neural units on the digital elemental base that
provides an accelerated performance for the array of operations in the threshold
basis and, first of all, such operations as multiplying and addition (Weitek proces-
sors, signal processors of the TMS32020 type, etc.);

3. Hardware implementation of the neural unit on the elemental base that is charac-
teristic of the neural algorithms (CMOS-neurochip, optically controlled transmis-
sion-type indicators, holographics, etc.);

The efficiency of the neural algorithm implementation for specific problems in-
creases from variant 1 to variant 2 and further to variant 3.

In the case of hardware implementation of the neural unit or software/hardware
emulation, the neural computer represents a classical structure of the problem-ori-
ented computer with SIMD architecture. In more complex cases, it represents a mixed
MSIMD architecture. Then the computer is a network of asynchronously operating
computer units, each one connected with a unit of synchronously operating elements
that implement a part of the neural algorithm.

Supercomputers, such as CRAY XMP, and CYBER 205 had enormous computer ca-
pacity. However, they were very expensive and their architecture was not in accordance
with principles of the neural processing. The high processing capacity was achieved
due to the array processors, special pipelined processors, and reduced cycle time. As a
rule, such supercomputers were constructed on the basis of modern technology, and
they reached a point of their development when further increase of operation speed
was restricted by physical limitations for signal propagation in computer circuits. The
outcome of this “technological” dead-end was achieved by the use of fine-grained pro-
cessing that was implemented by computers with SIMD and MIMD architectures of Con-
nection Machine type, Intel Hypercube type, Ncube type, Meiko Computing Surface type
and so on. In particular, this outcome was achieved by the use of “neural” processing.

Different approaches for the revelation of parallelism and its implementation on
the parallel processors exist:

� Parallelism of sub-problems or events;
� Explicit algorithmic parallelism;
� Geometric parallelism.

I.1 · Neural Computers

4 I · Introduction

The first type of parallelism is efficient for the program that is executed many times
with different parameters. It is desirable in this case to represent this program with a
set of independent sub-problems (each neuron with its own parameters) and to per-
form the sub-problems in parallel on different processors.

The array processor for floating-point multiplication is an example of algorithmic
parallelism implementation. Organization of parallel processing in this case consists
in the appointment of different sub-problems for the pipeline of processors, each of
which performs some operation over the data and transfers the result further. In order
to provide the efficient performance of the pipeline, one must balance the processors’
loading and access and take into account the time required for data transfer from one
processing stage to another.

Geometric parallelism consists in data decomposition among processors in such a
way that all the required data are located in the random access memory of one processor
or also closely located processors. This geometric parallelism is a standard approach
that is used for the computers with SIMD architecture. The practical experience shows
that a lot of calculations required for the neural network modeling are local. This fact
makes real the neural computer implementation related to the geometric parallelism. That
is why neural computers with hardware or software/hardware implementation of the neural
unit are related to the classes of SIMD or MSIMD architecture, as mentioned above.

A shining example of mathematical operation, in which parallel implementation cor-
responds to the processes taking place in the neural network, is the operation of multipli-
cation of matrix by vector. In this case, the vector represents an input signal for a one-layer
neural network, and the matrix represents coefficients of the layer neurons. The output
neural network signals represent a result of multiplication and nonlinear transformation.

Neurocomputers are the object of interdisciplinary research. Consequently, defini-
tions of the neurocomputer can be made only against the background of some more
definitions that are adequate to the different branches of science.

Mathematical statistics. Neurocomputers are systems that allow one to form descrip-
tions of stochastic processes and their assemblies that possess complex and often
multimodal or a priori unknown distribution functions.

Mathematical logic and automata theory. Neurocomputers are systems in which the
algorithm of the solution is represented by the logic network of a particular form, namely
by neurons with the complete elimination of Boolean elements of the AND, OR, NOT
types. As a consequence, specific connections between elements are introduced.

Threshold logic (1950s and 1960s, computers on the base of threshold logic). Neuro-
computers are systems in which the algorithm of the solution is represented in the form
of the network with threshold elements with dynamically tunable coefficients and adjust-
ment algorithms that are independent of the input space and network dimensionalities.

Practically all the approaches based on the threshold logic have limitations similar to
the Boolean elements. They depend on the network dimensionality and on the input space
of elements. It takes place in spite of the fact that these approaches possess external evi-
dence of the neural networks.

5

Control theory. The complexities of nonlinear dynamic control system synthesis
are well known. In the case of neural computers, these complexities are partially
overcome when a special case of a control object is taken. This object is well formal-
ized and represents a multilayer neural network. A dynamic process of its adjustment
represents a solution. Practically all synthesis methods for adaptive systems of con-
trol are transferred to the neural networks in the form of this special case of the control
object.

Computational mathematics. Neural computers implement solution algorithms in the
form of neural networks. This provides the development of algorithms that are poten-
tially much more parallel than any physical implementation. A set of neural network
solution algorithms represents a new perspective field of computational mathematics
conditionally called neural mathematics.

Computer engineering. From the viewpoint of computer engineering, the neural com-
puter is a computer system with MSIMD architecture with the following three princi-
pal technology solutions:

� The processor element of the uniform structure is simplified up to the level of a
neuron;

� Connections between elements are very complex;
� Programming of computational structure is transferred to the adjustment of con-

nection weighting coefficients between processor elements.

A general definition of the neurocomputer. The neurocomputer is a computer sys-
tem with hardware and software architecture that is adequate to the algorithm execu-
tion presented in the neural network logical basis.

I.2
Position of Neural Computers in the Set of Large-Powered
Computing Facilities

One can conditionally divide the large-powered computing facilities into two classes:
“large-grained” (consisting of a small number of processors) and “fine-grained” (con-
sisting of hundreds and thousands of processors) ones. The neural computers relate to
the fine-grained class.

The following class of computers is possible to consider as a new class of computing
facilities. These are computers that solve a rather wide range of universal problems and
require, as compared with the computers of traditional types, a new hardware imple-
mentation, new program development systems and solution algorithms.

According to the given definition of the large-grained processing computer of CRAY
type, the computer class “Elbrus” represents a new class of computers as compared
with von Neumann computers. And the fine-grained processing computers with SIMD
(Single Instruction – Multiple Data) architecture represent a new class of computers as
compared with the large-grained processing computers.

I.2 · Position of Neural Computers in the Set of Large-Powered Computing Facilities

6 I · Introduction

Each of the following computer classes represents a new class with respect to the
previous one:

� Computers with von Neumann architecture;
� Large-grained processing computers of CRAY type such “Elbrus” computers;
� Fine-grained processing computers with SIMD architecture;
� Fine-grained processing computers with MIMD (Multiple Instruction – Multiple

Data) architecture;
� Fine-grained processing computers with the mixed architecture of MSIMD type

(Multiple variant of SIMD);
� Neural computers.

Computers with the SIMD architecture were the first fine-grained computers out of
four such computers shown in Fig. I.1 in their evolutionary development. They were first
designed in the middle of the 1970s. The processor in this case is a single-bit processor
with some local memory. This resulted in the necessity to organize a synchronized
performance of a set of such units in the process of sufficiently complex solutions.

The development of VLSI technology at the beginning of the 1980s gave rise to the
construction of the first production prototypes of the fine-grained computers with
MIMD (Multiple Instruction – Multiple Data) architecture. These devices were imple-
mented in the form of asynchronous networks in the 16- and 32-bit microcomputer,
including transputer networks.

Several designs of computers with mixed architecture were developed from 1985-
1988. They consisted of the kernel in the form of the network of asynchronously func-
tioning processors. Each processor of such a kernel controls a synchronously function-
ing network of the usual processors with local memory. Such an architecture is some-
times called a multiple variant of SIMD (MSIMD).

The MSIMD architecture is a repetition of the attempt for the algorithm parallelizing
on the basis of the network of synchronously functioning processors that is performed
on the new qualitative level (MIMD). Such an attempt has been already implemented
on the basis of SIMD structures.

In general, neural computers can be regarded as a particular case (or further devel-
opment) of the computers with MSIMD architecture in which a synchronized unit at
each of the asynchronously functioning “fine grain” computers represents not a simple
“vulgar” network of single-bit processors with memory, but a meaningful synchro-
nized unit performing a hardware/software (better pure hardware) emulation of the
neural algorithm. In the simplest case, such an algorithm represents an operation of
multiplying a large dimensionality vector or matrix by a vector. But this occurs only in
the simplest case. The neural computers represent a special case of the MSIMD struc-
ture in which a synchronously functioning “cluster” of single-bit processors has a spe-
cial organization that is close to the hardware/software implementation of the main

Fig. I.1. Evolution of fine-grained computer development: SIMD – Single Instruction – Multiple Data;
MIMD – Multiple Instruction – Multiple Data; MSIMD – Multiple variant of SIMD

7

part of the algorithm. In the considered neural case, such a “cluster” represents a hard-
ware/software implementation of the “neural” kernel of a number of algorithms.

The hardware/software implementation of the neural algorithms for the synchro-
nized units of the neural computers most probably also provides the solution of two
additional problems:

1. To minimize (or sometimes to eliminate completely) the information interchange
between the nodes of the neural computer asynchronous kernel in the process of
problem solving. Such a possibility is practically excluded for the majority of prob-
lems in the transputer networks or similar systems.

2. To solve so-called weakly formalized problems, such as learning for the optimal
pattern recognition, self-learning (clusterization), etc.

It must be mentioned that at present, a supercomputing level is the most important
application of neurocomputers out of any other possible applications. This level is
characterized by the lack of a computing facility capacity under the existent limita-
tions. In this case, the objective necessity for the neural computer architectural devel-
opment in the form of the natural development of the MIMD architecture can be also
explained by the fact that the natural desire of a design engineer to increase the capac-
ity of the node or to increase the number of nodes in the MIMD architecture leads to
the “dead state region” (Fig. I.2). According to the price-capacity ratio criterion, the
“dead state region” appears for the following two reasons:

� Objective existence of inter-node exchanges and increase of common losses required
for these exchanges when the number of nodes increases;

� Increase of the node cost when its capacity increases.

A dead-state character of the desire to increase the capacity of a computer with the
MIMD architecture by means of increasing the capacity of the node or by increasing
the number of nodes is determined by the fact that the capacity increases more slowly
(or significantly more slowly) than the system cost. The reason for this observation is
the higher rate of the node cost increase as compared to its capacity increase as well
as the fact that under the increasing number of nodes, the losses required for the inter-
node information exchanges in the process of problem solving also increase.

I.2 · Position of Neural Computers in the Set of Large-Powered Computing Facilities

Fig. I.2.
Illustration of limitation of the
MIMD architectural develop-
ment when the node capacity
or the number of nodes in-
creases

8 I · Introduction

We consider that namely this is the main reason for the use of some synchronously
functioning neural unit in each node of the MIMD architecture. Such a unit imple-
ments the neural network in the hardware/software (purely hardware in future) form.
In turn, this neural network implements some given function.

Economic factors play and will play a significant role in the process of fine-grained
super-computer development, especially in the development of computers with a great
number of nodes. The cost increase of the transputer-like custom-designed LSI related
to its complication and increase of capacity will determine its use not as a base element
of a large array but as a base element of a “middle-size” commutation array. Hence,
each node of the latter array is connected with some unit consisting of more uniform,
i.e., less expensive, LSIs. These LSIs constitute some co-processor that is problem-ori-
ented either by its structure (a network of single-bit processors with memory) or by its
function (for example, a neural calculating machine).

We consider therefore that the role of custom-designed LSI-transputers and trans-
puter-like elements with a structure complication and an enlarged number of transis-
tors will decrease in the domain of computer facility development that corresponds to
super-computers with fine-grained structure. The main tendency will consist in the
massive usage of the aforementioned elements in the class of personal computers
(computer cards, accelerators) and super-personal computers (blocks of several cards
for personal computers). They will be also used to a lesser degree in the class of su-
per-mini computers (a column consisting of several dozen cards and several personal
computers of Meiko and Megaframe types). The appearance of systems containing
several thousands of transputers and transputer-like elements is an objective but tem-
porary phenomenon in the class of super-computers. Moreover, this phenomenon takes
place only in the domain of super-computer applications that require unique super-
computer samples.

This suggests that in perspective, the development of supercomputers with the fine-
grained transputer-type structure containing more than 10 000 nodes is only an utter-
most trend. And evolution of this trend can be found in the architecture of a peripheral
parts of each node in the commutation array of transputer elements of the future sys-
tem. Taking into account all the aforementioned remarks, one can conclude that the
neural computers represent an effective line for the development of super-computer
architectures.

I.3
The Concept of Computer Universalism

Each computer is in some sense problem-oriented to the extent that it solves different
problems with different efficiency. However, such specialization becomes less and less
expressed in the course of development of each new class of computers, at least due to
the enlargement of the application field. One can imagine a qualitative pattern reflect-
ing a degree of universalism of different computer classes at each current time. A
possible example is represented in Fig. I.3. At present, neural computers are “more
problem-oriented” than transputer-like computers. In turn, transputer-like computers
are more problem-oriented than single-processor ones. However, it is a question of
time or resources dedicated by perforce to either line of development.

9

Figure I.4 shows a qualitative illustration of potentialities provided by the
parallelizing of algorithms, presented by computing facilities of different classes ap-
plied to the solution of some specified problem. The number of operations executed
per computer cycle increases due to the increase of potential ability provided by the
parallelizing process. As a result, the time required for the solution decreases.

I.4
Neural Computer Modularity

Neural computer modularity (modular extendibility) is determined by the objective
requirement for the existence of a transputer or transputer-like kernel in its structure.

Concrete examples of neural computer designs show that the intention to increase
their capacity taking into account their real overall-structure characteristics requires
the existence of a transputer or transputer-like kernel in their structure. Such a kernel
is necessary for the organization of an asynchronous process of information transmis-
sion between separate neural units both during preparation for the solution as well as
during the solution process. The structure of such a transputer or transputer-like ker-
nel can be different. Sometimes, when the number of asynchronously functioning nodes

Fig. I.3. Qualitative pattern for the estimation of universalism level for computers of different classes

Fig. I.4.
Illustration of qualitative pos-
sibilities of parallelizing pre-
sented by computing facilities
of different classes

I.4 · Neural Computer Modularity

10 I · Introduction

is sufficiently large (several hundreds or thousands), it is necessary to transfer from the
kernel structure of “lattice” or “torus” type to the structure of “hypercube” type in order
to increase the equivalent traffic of information transmission in the kernel.

As distinct from computers with MIMD architecture (Fig. I.2), the capacity of neu-
ral computers is uncritical to the capacity of the node computers at the asynchronously
functioning kernel. Therefore, there is no need to prove the necessity of capacity in-
crease by means of the obligatory exaggeration of technology-based standards.

It is necessary to notice some properties of the asynchronous kernel of the neural
computer. The hardware and software compatibility of neural computers with
transputers or with other transputer-like elements is preserved in the kernel construc-
tion based on transputers. Neural computers (Fig. I.1) do not represent something exotic,
as it was the case in the 1960s. They are a regular result of the evolutionary develop-
ment of the architecture of fine-grained computers.

Similarly to the transputer systems, neural computers can be used at different levels
of implementation:

� Personal computer built-in boards;
� Personal computer units consisting of several boards;
� Columns with control personal computers;
� Assemblage of columns with control personal computers (super-computer level).

Similar to the case of transputer systems, the main goal of neural computer design
is the achievement of super-computer or supercomputing level. That is why one must
regard the construction of different neural boards for personal computers at present
as a pure technological and instrumental stage or a stage of implementation of some
insignificant problems. The main strategic problem remains to be the problem of neural
super-computer development. As an example, one can consider the development of
neural computers at TRW Company (MARK, Input, II, III, IV, V, etc.).

The asynchronous kernel in neural computers will mainly perform two functions:

� Preparation, transmission of initial data and receipt of calculation results from
separate neural units at each node of the asynchronous kernel before the beginning
of the solution;

� Messaging during the solution process when the problem is insufficiently prepared
for the solution by neural computer. It is necessary to minimize the level of such
insufficiency and to minimize the messaging traffic in the asynchronous kernel.

I.5
The Class of Problems Adequate to Neural Computers

All the problems solved by computer systems can be conditionally divided into three
classes:

1. Formalized;
2. Weakly formalized;
3. Non-formalized.

11

The class of formalized problems consists of problems with an explicit and trans-
parent solution algorithm that directly indicates the corresponding class of computers
and computer architecture (SISD, SIMD, MIMD, etc.) providing the best solution.

The class of weakly formalized problems consists of problems either with a non-
unique solution algorithm or with a solution algorithm that does not provide a simple
estimation of the solution quality or solution accessibility. Usually the problems with
large dimensionality belong to this class. These problems are characterized by so-called
“dimensionality damnation” that leads to the necessity to use iteration procedures for
their solution with very difficult estimation of iteration process convergence and pre-
cision. The iteration procedures adequate to the weakly formalized problems are some-
times used even for the formalized solutions in the case when the formal algorithm is
very laborious (for example, for the solution of the linear equation system with suffi-
ciently large dimensionality).

The class of non-formalized problems consists of problems with solution algorithms
containing parameters or functions that are implicitly given in the form of description
of some input signal class. The examples of such problems are pattern recognition
problems, clusterization or self-learning, search for informative attributes, etc.

Notice that in principle, there is a relationship between the aforementioned prob-
lem classes and the type of computer architecture. But this relationship cannot be directly
expressed. The formalized problems characterized by an essentially consequent algo-
rithm are evidently adequate to the SISD architecture. However, a lot of problems among
well-formalized ones can be solved much more efficiently by the use of special
parallelization methods. This class of problems represents a sufficiently large domain
of the present-day mathematics related to the development of parallelization algorithms.
As a rule, the development of a parallelization algorithm for the formalized problem
is performed on the basis of the concrete computer architecture (SIMD, MIMD, etc.).
The aforementioned weakly formalized problem can evidently be solved using a serial
computer, but these problems are more adequate to computers with SIMD and MIMD
architectures. Moreover, weakly formalized problems to some degree were the reason
for the development of computers with such architectures.

It is possible to consider computers with SIMD and MIMD architectures as devices
conditionally adequate to the formalized problems with a sufficiently parallelized so-
lution algorithm and to the weakly formalized problems.

Namely non-formalized problems were the reason for the development of neural com-
puters about thirty years ago, though in principle, the solutions of neural problems were
performed on the basis of computers with SISD architecture, and there are attempts to
solve such problems on the basis of computers with SIMD and MIMD architectures.

The following main problems must be solved in the process of neural computer
development:

� Development of the solution algorithm adequate to the neural computer structure.
Selection of a kernel in the solution algorithm structure that is adequate by its struc-
ture to the neural network with maximal parallelism (number of neurons in the
layers, dimensionality of the attribute space);

� Development of structures and methods for the neural network implementation
adequate to the given class of problems;

I.5 · The Class of Problems Adequate to Neural Computers

12 I · Introduction

� Development of neural network adjustment algorithms in the process of solution of
given problems and analysis of their convergence;

� Development of the neural network theory sideward universalization of the neural
kernel in the enlarged class of algorithms.

The uniform neural network structure for the selection of the solution algorithm in
the capacity of the architecture kernel was chosen according to the following reasons:

1. Such a structure provides the possibility of massive parallel synchronous execution
of a large number of operations that in turn consist of the simplest operations of
addition, multiplication and nonlinear transformations.

2. Such a structure implements sufficiently complex and flexible functional transfor-
mation of the input space into the output space.

3. Such a structure enables an analytical description of transformation of the input
space of states into the output one.

4. Such a structure enables the organization of the controlled process of the network
coefficient adjustment in the adaptive mode.

5. In the future, the use of the linear sequential Gill machines will allow one to
come to the solution of the analytical description problem. This in turn will pro-
vide the possibility of synthesizing adaptation algorithms in the multilayer neural
networks [I-8].

I.6
Methods of Coefficient Readjustment

Methods of readjustment of the neural network weight coefficients in neural comput-
ers can be classified in the following way:

� Technological methods (used in the stage of production) similar to those used, for
example, in the production of GaAs optical neural chips;

� Schematic design methods (used for the specified user before the exploitation stage);
� System engineering methods (used in the process of functioning) that in turn can

be conditionally classified into several subclasses, for example, low-speed methods
(as during the solution of linear inequalities) and high-speed methods (as during
adaptive processing of the neural network input signal).

I.7
Neural Computer Classification

According to the common opinion of designers, neural networks have a much wider
field of implementation than any other implementations of parallelism concepts due
to the fact that the property of a large massive parallelism in the case of neural net-
works is embedded inside of them.

Figure I.5 shows a structure of the main neural computer types. This structure is
presented in order to determine the main perspectives of the architectural develop-
ment for large-powered computers, in particular, for neural computers.

13

It is assumed that the neural computer capacity increases with the increase of the
type number.

Type 1. Computers of this type are represented by the well-known EC computers, CM
computers and personal computers.

Type 2. Neural computers of the simplest form in which a neural algorithm is soft-
ware emulated on the basis of type-1-computers providing an equivalent ca-
pacity increase in the process of problem solving.

Type 3. This type of computer includes single-processor computers (large-scale com-
puters, mini computers or personal computers) equipped with array processors.
Computers of DAP, IBM with FPS, STARAN, etc. -types can serve as examples.

Type 4. Neural computers with hardware/software emulation of neural algorithms on
the basis of type-3-computers.

Type 5. Computers of different classes, beginning with super-computers up to mul-
tiple-microprocessor computers, equipped with several numbers of proces-
sors (usually not more than 2, 4, 8, or 16). Computers “Elbrus”, WARP, Alliant,
etc. are the examples.

Type 6. Neural computers with software emulation of neural algorithms on the basis
of type-5-computers.

Type 7. Neural computers with SIMD architecture equipped with several (not more
than 2, 4 or 8) command processors.

Type 8. Neural computers of type 7 with the hardware/software implementation neu-
ral algorithm of the solution.

Type 9. Computers of transputer type with a large number of processors (dozens,
hundreds and thousands).

Type 10. Implementation of neural solution algorithms on the basis of type-9-com-
puters.

Fig. I.5. Structure of main types of neural computers

I.7 · Neural Computer Classification

14 I · Introduction

Type 11. Computers with MSIMD architecture equipped with a sufficiently powerful trans-
puter or transputer-like kernel. The increased capacity is achieved by the addi-
tion of a co-processor to each kernel processor. Thus, each such co-processor
represents some unit with SIMD architecture.

Type 12. This computer type is similar to the type-11-computers equipped with synchro-
nously functioning clusters of processor elements implementing neural algorithms.

It is necessary to mention that computers of 4-, 8- and 12-types include a hardware/
software implementation of “neural clusters”. Such an implementation is significantly
oriented namely on the solution based on the neural algorithms with corresponding
elemental base, architecture, and program development systems.

From our viewpoint, it is also noteworthy that at present, the computer systems of
types 9, 11, and 12 are the most perspective.

In type-11-computers, the disadvantages related to the property 1 are partially elimi-
nated. And in type-12-computers, also the disadvantages related to the property 2 are
eliminated.

I.8
Some Remarks Concerning the Neural Computer Elemental Base

The problem of the neural computer elemental base is the most significant one in the
determination of the neural computer type that will be designed in the nearest future.
Classical technology lines of elemental base elaboration oriented on the neural struc-
tures must be developed along with new technology lines appropriate only to the neu-
ral computers. Suggestions concerning the development of the perspective neural com-
puter elemental base are formed on the basis of a wide scope of functions. A detailed
analysis of the efficiency of problem solving with the use of various technologies will
allow one to select in the future the preferences and top-priorities in the neural com-
puter elemental base implementation.

One can consider the following neural computer elemental base as a top-priority one:

� Custom-designed transputer-like 32-bit microprocessor that will allow one to save
in the future the already accumulated experience of technological design of trans-
puter and transputer-like systems and to use the already developed reserve of the
corresponding software;

� Cascade signal processors of IMS A100- and IMS A110-types;
� VLSIC packages and memory microassemblies with high operation speed and digi-

tal capacity of samples;
� Programmable logic IC for the neural processing element implementation.

The following neural computer elemental base can be considered as a second-priority one:

� Custom-designed digital CMOS neural chips;
� Optoelectronic GaAs neural chip;
� Analogous CMOS neural chips.

15

The following neural computer elemental base can be considered as a third-priority one:

� System of neural units on the slab board;
� Neural blocks based on molecular electronics;
� Quantum neural computers.

A majority of new designs of perspective information processing facilities in Russia
and abroad are associated with an obligatory decrease of the requirements of technol-
ogy standards and an increase of the chip integration level. The concept of neural
computers on the one hand provides the increase of the capacity-price ratio during
problem solving based on the current technology standards, and on the other hand
allows one to use principally new technologies (analogous, optical, charge coupled
device, etc.) for the development of high-efficiency systems. We consider that this will
allow one to escape difficulties related to the intention to minimize technology stan-
dards in the process of digital VLSIC manufacturing.

The importance of microelectronic technologies in computer architectural devel-
opment is evident. Moreover, we consider that namely technological development gives
rise to new types of computer architectures. This was the case in the middle of the
1970s when the appearance of medium-scale IC gave rise to the development of com-
puters with SIMD architecture. Similarly, at the beginning of the 1980s, the develop-
ment of large-scale IC gave rise to the development of transputers and computers with
the MIMD architecture.

Namely the development of microelectronic technologies actualized the active de-
velopment of neural computers in the second half of the 1980s. A transputer could
objectively be designed only after the 32-bit micro-processor, on-chip memory, and
channel adapters could be manufactured in a single chip. Similarly, the active develop-
ment of neural computers started after the hardware implementation of a cascaded
segment of the neural network with adjusted or fixed coefficients became possible in
a single chip.

It is important to notice that in the case of the neural technology representation of
the solution algorithms, one can avoid an abnormal (from our viewpoint) intention
towards the “distilment” directed at the submicron technology. Such a trend was char-
acteristic for the computer systems based on the processors of i860, Power PC, Alpha,
Mersed, etc. types. The aforementioned intention towards the “distilment” of the sub-
micron technology usually results in the following:

� Short-term, local, and often illusive results in the development of domestic compu-
tation facilities based on the use of imported micro-processors;

� Practically zero contribution to the development of domestic microelectronics that
constitutes the basis of the future domestic computer science.

Neural computer designs will be efficient by their capacity-price ratio even with the
use of available Russian 1.0-micron technology. Such designs will provide a higher-
priority development of domestic giant-powered computers.

Design engineers developing a line of highly parallel computers with an increased
node capacity must remember that the speed of the information propagation in

I.8 · Some Remarks Concerning the Neural Computer Elemental Base

16 I · Introduction

the human brain is very low. Therefore, one must think about the development of
perspective highly parallel solution algorithms and architectures, including neural
ones, rather than about the operation frequency of the node element. It is also neces-
sary to remember that mankind achieved a certain limit that makes it possible
to create an engineering system consisting of 3–4 billions of neurons (as in the hu-
man brain). However, nobody knows how to organize the system of connections be-
tween them.

Neural chip development is one of the main lines in neural computer design. The
neural chip structure corresponds to the results of structure and adjustment algorithm
development of multilayer neural networks (in the case of commonly used neural
computers) and neural network solution algorithms (in the case of problem-oriented
and special-purpose neural computers).

However, the development of this technology line will require some period of time
during which, for some objects, it will be cost-effective to emulate the neural network
solution algorithm on the basis of large-powered computers.

It is necessary to mention a low efficiency of workstation-type single-processor
computer applications for the solution of complex problems in the neural network
logical basis.

It must be mentioned in addition that in order to emulate neural network algo-
rithms with the use of universal microprocessor facilities, it is more effective to de-
velop architectures oriented on the neural network operation execution than to use
standard algorithms oriented on the modification of a single-processor solution.

We consider the following classes of computer facilities:

� Single-processor computers (personal computers, middle-class computers, etc.);
� Small-processor computers;
� Multi-processor computers (computers with massive parallelization, transputer

computers, psuedo-transputer computers, computers with transputer kernel and
peripheral processors of i860-, Alpha-, Power PC-, etc. types);

� Neural computers.

The priority of Russian computer science belongs to the development of neural
computers.

On the modern stage of the development of microelectronic technology and ad-
joining technologies, neural network technology became adequate not only for the
different types of microelectronic and semiconductor technologies but also for optical,
optoelectronic, molecular, quantum and other technologies.

It must be mentioned that the appearance of slab board system technology and
nanotechnology will result in the development of some new super-parallel architec-
tures. It is clear at present that the neural network architecture technology is adequate
to the slab board technology (American and Japanese engineering designs). That is
why the attempts to develop functional blocks with old architecture on the level of
nano-elements adequate to the single-processor computers can be regarded as dead-
end. Starting from nano-neural elements, one can probably achieve principally new
architecture elements. It is clear that it will be the elements of super-parallel and large-
powered computers.

17

We consider that the investigation of real structure of biological neural networks
aimed at the revelation of their structure peculiarities for its future use in prospective
computers is practically useless without software automation technologies for the
processing of cytological images. Such technologies must include specially designed
software that not only provides fast and high-grade quality input of real images of neural
tissue cuts but also allows one to perform the in-line processing of these images.

At present, the neural computer designers are not limited by the properties of real
specific neural structures because of their relative simplicity or simplicity of considered
problems. The increase in requirements imposed by the used neural structures will cause
the development of a neuro-physiology line for their investigation. First of all, this will
take place in the domain of different vision and acoustic sensor information processing.

Each new technology gives birth to a new class of architectures of computing facili-
ties. This was the case with SIMD architecture at the end of the 1970s and at the begin-
ning of the 1980s. The same situation was with MIMD architecture at the beginning
and at the end of the 1980s. Nowadays it occurs with neurocomputers.

The performance of investigations of real neural network structures aimed at the
development of neurocomputers and molecular computers will result in the appear-
ance of original architecture prototypes, because the technological principles of real-
izing and evolution of biological and molecular neural networks greatly differ from
those used at present when realizing VLSI and optical neural networks.

I.9
Neural Mathematics – Methods and Algorithms
of Problem Solving Using Neurocomputers

The following question is always actual: what class of problems appears to be most
adequate to various computer devices based on some new principles? It was consid-
ered for a long time that neurocomputers are efficient at the solution of so-called non-
formalized problems or weakly formalized problems. Such problems usually relate to
the class of problems that require the inclusion of a learning process based on the real
experimental data into the solution algorithm.

At present, this class of problems also includes a second class of problems that does
not require the process of learning based on the experimental data. However, this sec-
ond problem class can be well represented in the neural network logical basis. This
problem class is characterized first of all by its pronounced natural parallelization
properties in the performance of

� Signal processing;
� Pattern processing, etc.

The use of neural network algorithms will also be efficient in the solution of prob-
lems in which the dimensionality of the input information space can be efficiently
formed by the use of the Monte Carlo method rather than by the use of standard ana-
lytic methods.

We consider that any problem can be solved with the help of a neurocomputer
much more effectively than with a standard computer due to the fact that any problem

I.9 · Neural Mathematics – Methods and Algorithms of Problem Solving Using Neurocomputers

18 I · Introduction

algorithm can be represented in the neural network logical basis with the controlled
neural layers number [I-9]. This means that the neural network algorithm for the
solution of any problem on the logical level is much more parallel than any of its
physical implementation. Notice that in the case of transputer and pseudo-transputer
systems, the solution algorithm that is initially less parallel than the physical imple-
mentation starts to adapt to a more parallel physical implementation. This property
principally differentiates neural computers from such systems as transputer ones or
systems with transputer kernel and peripheral processors of i860-type, Alpha-type,
Power PC-type, etc. All latter systems are usually characterized by modified algorithms
taken initially from single-processor computers in which their designers try to mini-
mize the expenses related to the information exchange between processors in the
solution process.

The argument in favor of the viewpoint that neural computers will be more efficient
than any other architecture is the great enlargement of the problem class solved at
present in the neural network logical basis. In addition to the aforementioned prob-
lems, one can also mention

� Solution of linear and nonlinear algebraic equations of high dimensionality;
� Solution of systems of nonlinear differential equations;
� Solution of partial derivative equations;
� Expert systems;
� Solution of optimization problems (linear and nonlinear programming) and other

problems.

The transfer to the neural network logical basis in all these problems is usually
performed when the dimensionality of the space solution sharply increases or when it
is necessary to significantly decrease the solution time.

In general, two sections of neural mathematics are developed: general neural math-
ematics and applied neural mathematics.

Neural mathematics is one of the fields of computational mathematics in which
solutions are performed with the use of algorithms in the neural network logical basis.
The main goal of neural mathematic development is to elaborate algorithms with a
high degree of parallelism for formalized problems as well as for weakly formalized
and non-formalized ones.

A criterion of neural network algorithm efficiency is a decrease in the time required
for the solution as compared with traditional methods. The comparison of algorithm
efficiency in different neural computer implementations is a separate problem that
requires a special investigation.

We shall call a neural network algorithm such a computational procedure; the main
part of which can be implemented with the help of a neural network. Let us consider P
to be a formal problem statement. P includes a set of initial data D and a set of objects R
that must be determined. A basis for the neural network algorithm development is a
systematic approach in which the problem solving process is represented in the form
of some dynamic system functioning in time. Thus, the system input is the data set D,
and its output is the set of objects R. The objects of the set R are determined and got
their values after the problem solving process.

19

The development of the neural network dynamic system that solves the posed prob-
lem consists of the following stages:

1. Determination of an object that represents an input signal of the neural network. It
can be some element of the initial data, some initial value of the determined param-
eters, etc.;

2. Determination of an object that represents an output signal of the neural network.
It can be a solution itself or some of its characteristics;

3. Determination of a desired output neural network signal;
4. Determination of the neural network structure:

a Number of layers;
b Connections between layers;
c Objects representing weighting coefficients.

5. Determination of system error function, i.e., a function that characterizes a
deviation of the desired neural network output signal from the real output
signal;

6. Determination of a system quality criterion and functional of its optimization, that
depends on the error;

7. Determination of weighting coefficient values. This can be done in different ways
according to the considered problem:
a Analytically, directly being based on the problem statement;
b On the basis of some computational methods;
c Using a procedure of neural network coefficient adjustment.

A solution with the help of a neural network algorithm consists of the use of a
designed computer procedure based on some concrete numerical data values. The
solution process includes the following stages:

1. Determination of a specified neural network structure corresponding to the used
algorithm;

2. Determination of weighting coefficient values or their direct selection from memory
in the case when these coefficients were previously found;

3. Generation of initial parameter approximations, if it is necessary;
4. Transmission of all numerical values to the neural network and activation of this

neural network;
5. Neural network functioning according to the following selected modes:

a A single step mode or a mode with several fixed numbers of steps;
b A mode with a variable number of steps depending upon the required precision

and/or upon the specified numerical values of parameters. In this case, the input
signal adjustment process takes place;

6. Obtaining the solution.

In the case of multiple usage of the aforementioned procedures, points (1) and (2)
can be performed only once.

We shall call a neural computer such a computational system that possesses an ar-
chitecture providing the aforementioned steps 1–6.

I.9 · Neural Mathematics – Methods and Algorithms of Problem Solving Using Neurocomputers

20 I · Introduction

Neural mathematics represents a new field of computational mathematics that is
oriented on the design of algorithms for the solution of a wide class of problems with
the use of neurocomputers. The suggested approach for the algorithm design includes
both well-known computational methods, as well as knowledge already accumulated
in the domain of neural network calculations. However, this approach significantly
differs from both the first and second methods.

Traditional numerical methods are used in neural mathematics only in the case when
these methods can be effectively parallelized and expressed in terms of neural network
operations. However, these methods can be sufficiently overworked.

Practically all known approaches for the neural network design relate in general to
the selection and analysis of some particular structure forms with known properties
(Hopfield, Grossberg or Kohonen networks) or to the analysis of some specific modes
of their functioning. The use of neural networks is reduced to the application of these
structures for the solution of adequate problems in the case of some modifications of
their structural parameters.

The initial point in neural mathematics is the problem statement. This problem
statement determines the neural network structure adequate to this problem. If it is
necessary to perform some adjustment, then one uses the properties of neural network
structure classes that include the obtained structure.

The class of neural network structures is usually sufficiently generalized (multi-
layer neural networks with sequential cross and backward connections).

As a rule, a neural computer must be oriented towards the fast performance of neural
network operations and towards parallelized algorithms of the neural network adjust-
ment.

The development of the neural computer includes the following three parallel lines:

1. Development of the solution algorithms (neural mathematics);
2. Development of the neural network theory, structure classes and methods of their

adjustment;
3. Development of the neural computer as an assembly of hardware and software

orientated towards the solution of neural mathematic problems.

All these levels of development are connected to each other. On the one hand, the
neural network structure for each problem is determined by the problem itself. On the
other hand, the development of the neural network theory results in the use of more and
more complex neural network structures. On the one hand, the level of the used hardware
determines the level of possibilities for neural network and algorithm development.
On the other hand, the development of neural mathematics determines the develop-
ment of neural network theory that in turn develops the hardware implementation.

At present, the line of neural network investigation depends on the line of neural
computer development only in the field of software implementation of specific prob-
lems and their structures. In the future, both neural computer software and hardware
will be determined by the solved problems and by the neural network implementation.

The solution with the help of a neural network computer depends on the adjust-
ment procedure that requires the choice of initial parameter values, the choice of an
iteration method step value, etc.

21

Due to the fact that not all these processes are well formalized and depend on the
field of the problem application, they are usually human-aided.

Two of the following types of dialogue are observed in the procedure of the solution:

1. A dialogue during the process of neural computer preparation for the solution of a
specific problem with foregone limitations on the initial data and on the results. The
main part of such a dialogue consists in the adjustment of weight coefficients. After
the adjustment procedure, the problem can be solved many times with different
initial data and one and the same set of problem parameters and neural network
structure. In the case when the weight coefficient adjustment procedure is absent,
this type of dialogue is reduced to the selection of the required values out of the
neural computer memory.

2. A dialogue during the process of solution. It includes the generation of initial value
parameters. However, the most labor-consuming part is the dialogue during the
process of the input signal tuning. In this stage, a designer can analyze the dynamics
of the system quality functional changes and select the step value in the adjustment
method.

Such a dialogue is critical for the solution process. That is why in the tasks where the
solution time minimization is the most important criterion for the efficiency of the
neural network algorithms, this type of dialogue must be minimized by means of its
shortening or automation. It can also be completely excluded by means of complete
automation of the step value selection or by means of the algorithm complication. In
the case when it cannot be done, one can try to design the algorithm without the input
signal tuning and with the help of a weighting coefficient adjustment.

I.10
About Neural Networks

A neural network represents a highly parallelized dynamic system with a directed graph
topology that can receive the output information by means of a reaction of its state on
the input actions. Processor elements and directed channels are called nodes of the
neural network.

Neural networks at the bottom represent a formal tool for the description of the
main part of the solution algorithm based on the neural network. The frame of the
present book, as well as the book [I-6], is a system approach to the neural network
synthesis, i.e., an approach to the design of the neural networks themselves and adap-
tation algorithms similar to the classic adaptive control systems.

We consider that four approaches to the neural network investigation are possible:

1. Psychological approach, when it is necessary to model some psychological paradigm
that requires a development and investigation of the neural network with some
definite structure.

2. Neurophysiological approach, when the neural network is developed and investi-
gated on the basis of the knowledge about the structure of some brain part. The
neural network models functions of this brain part.

I.10 · About Neural Networks

22 I · Introduction

3. Algorithmic approach, when some mathematical problem is formulated and an
adequate neural network with the corresponding algorithm adjusted to this solu-
tion is designed on the basis of this formulation.

4. Systematic approach that combines all the aforementioned approaches and repre-
sents the frame of this book. Figure I.6 shows the general structure of the neural
network synthesis basically described in the present study.

Fig. I.6. System approach – the multilayer neural network synthesis

23

I.10.1
Neural Network Structures

The automata theory and the theory of Boolean elements in the 1940s, 1950s and 1960s
formed the basis for the development of architecture and separate units of single-pro-
cessor computers. The same theory of automata based on Boolean elements continues
to serve as the logical basis for small-processor, transputer and similar computers, as
well as for computers with SIMD architecture in which a network of single-bit proces-
sors (STARAN, etc.) represents a peripheral processor.

Similarly, the neural network theory is the logical basis for neural computers. And
this has already been the case for several decades (1950s, 1960s and 1970s). At present,
this fact has become more evident due to the revolutionary development of the neural
computer field.

The neural network represents a network with a finite number of layers consisting
of solitary elements that are similar to neurons with different types of connections
between layers. The number of neurons in the layers is selected to be sufficient for the
provision of the required problem solving quality. The number of layers is desired to
be minimal in order to decrease the problem solving time.

This book is dedicated to the description of neural networks with different struc-
tures. The objective conditions for the transfer from Boolean to the threshold basis in
computer engineering are given. The main types of the threshold elements such as
neuron analogues are described. The reasons for investigations of multilayer neural
networks are analyzed. The interest in such networks appeared in the 1960s after the
publication of the classical work by Rosenblatt [I-1]. Multilayered features are consid-
ered specific properties of transformation structure performed by the open-loop sys-
tem at its topological but not symbolic representation.

Rosenblatt [I-1] investigated multilayer systems with layers consisting of elements
with a peer-to-peer topological relationship between the elements of other layers. The
layers form sensor elements that represent signal sources for the associative elements
of the three-layer perceptron. Associative elements also form a layer of elements whose
input consists of the output signals of the sensor elements of the next layer. A multi-
layer system is a system of elements combined into separate layers with topologically
equal properties and different characteristics of connections between the layers of
elements. Different types of multilayer neural networks are considered. They include
neural networks with sequential connections, cross-connections and backward con-
nection, as well as continual neural networks. Some special types of neural networks
are suggested by different authors.

The following main advantages of neural networks as a logical basis for the complex
solution algorithms can be mentioned:

� Invariance of neural network synthesis methods upon the dimensionality of the
space of features;

� Adequacy of the modern perspective technologies;
� Fault-tolerance in the sense of monotonic but not catastrophic change of the prob-

lem solving quality depending on the number of failing elements.

I.10 · About Neural Networks

24 I · Introduction

The main goal of this section is to explain why the system aimed at the solution of
some specific problem must be designed namely in the form of the neural network and
how to choose this neural network topology (the number of layers, the number of layer
elements, connections characteristics, topology).

I.10.2
Investigation of Neural Network Input Signal Characteristics

In the first chapter of [I-6], at the investigation of the neural network input signal
characteristics in the case of the widely spread task of pattern recognition, a notion of
teacher (supervisor) qualification for the input signal distribution functions is intro-
duced. These functions include, in particular, the well-known modes of learning and
self-learning. In the general case, the teacher qualification is introduced in different
ways for different patterns belonging to objectively different classes. The possibility of
introducing more specific input signal characteristics is shown. For example, “teacher’s
slant about his capabilities” is introduced.

A formal problem statement about neural network learning consists in the approxima-
tion of a given sample function of the teacher’s instructions by some automatic machine
with given properties. A formal problem statement about self-learning is considered a
selection in the input signal space of some areas of pattern distribution function modes
at the input. A formal problem statement about supervised neural network learning with
the teacher of a limited qualifications is a generalization of the first two statements.

The existent investigations in the field of pattern recognition relate mainly to the
stationary patterns. In this case, the neural network input signal distribution is time-
independent. The present book deals with non-stationary patterns with time-depen-
dent neural network input signal distribution.

I.10.3
About the Selection of Criteria for Primary Neural Network Optimization

A class of statistical theory criteria is usually considered criteria for primary multilayer
neural network optimization in the mode of pattern recognition learning. The examples
of such criteria are a criterion with a minimum of the average risk function under the
condition of equality between the average risk function components for patterns of dif-
ferent classes and a criterion with a minimum of the average risk function under the
condition of a given value of the average risk function component for one of the classes.

A precondition for the formation of the criterion and functional for the neural
network primary optimization in the learning mode is a representation of the input
signal distribution density in the form of a multi-modal function. In this case, some
class corresponds to each mode with some probability. Modifications of the average
risk function are used at the initial investigation stage as criteria for the primary neu-
ral network optimization in the self-learning mode. This criterion requires a natural
generalization at the transfer to the continuum of classes and solutions. A separate
question considered in the book is the problem of the primary optimization functional
formation in the case of arbitrary teacher qualification.

25

I.10.4
Analysis of Open-Loop Neural Networks

A formal technique used in the analysis of the open-loop systems is based on the
precise methods of probability analysis of multidimensional nonlinear systems. The
transformation mainly to the analysis of distributions and moments of distribution
of errors is related to the fact that the results of such analysis are formally indepen-
dent of the neural network complexity and type. The exclusion is only characteristic
of the feature space and solution space. Further, the latter significant observation is
widely used in the stages of selection or the secondary optimization functional for-
mation, as well as during closed-loop neural network development.

The secondary optimization functional is a functional expressed through the pa-
rameters of the current signal distributions in the neural networks. It is directly mini-
mized in the multilayer neural networks at the closed-cycle adjustment. At this synthe-
sis stage, mainly two problems are considered.

The first problem concerns the investigation of correspondence between the sec-
ondary optimization functionals used in some known works and some criteria of the
primary optimization. A matter at issue here is the known adaptive system, such as
Adalin, Stainbuh matrix, or Rosenblatt’s three-layer perceptron (or rather its adjust-
able output unit). It is mentioned that the main disadvantage of such approaches is
the absence of analysis of correspondence between the used secondary optimization
functionals and specific criteria of the primary optimization. This results in the prac-
tically complete absence of the operation capability of some systems under the con-
dition of multi-modal distributions of the input signal.

The second problem concerns the formation of the secondary optimization func-
tional corresponding to the given primary optimization criterion. A correspondence
in this case is considered in the sense of the coincidence of neural network parameters
under the minimum of primary and secondary optimization functionals. The book
describes a general method for forming the secondary optimization functional corre-
sponding to the given primary optimization criterion. The results of applying such a
method for multilayer neural networks of different structures and for different pri-
mary criteria are shown.

I.10.5
Algorithms for a Multivariable Functional Extremum Search
and Design of Adaptation Algorithms in Neural Networks

Algorithms for a multivariable functional extremum search and their use for the de-
sign of adaptation algorithms in neural networks are described in the sixth and sev-
enth chapters of [I-6].

The problem of a secondary optimization functional extremum search procedure
is widely discussed in the literature. We shall mainly consider the aspects of possi-
bility and purposefulness of the use of various gradient procedures (newtonian,
relaxation, steepest descent, stochastic approximation, etc.) for the search of local
extremum.

I.10 · About Neural Networks

26 I · Introduction

The use of iteration methods for the design of multivariable functional extremum
search algorithms has some peculiarities at the development of adaptive systems
[I-10]. These peculiarities mainly relate to the fact that under the unknown charac-
teristics of the input signal and under the conditions of so-called a priori insuffi-
ciency, one cannot say anything about the form of the secondary optimization func-
tional even when the neural network structure is fixed. It is only possible to say about
such a property of this functional that it has several local extrema, and all of them,
or at least some of them, must be found in the process of closed-cycle adjustment.
Namely this fact requires the necessity to introduce some elements of a random
nature into the search procedure aimed at the selection of the set of random initial
conditions for some gradient procedure. Hence, the main problem is to find the
probability of revealing some number of secondary optimization functional local
extremums with dependence on the number of emissions of random initial condi-
tions for the gradient procedure of the local extremum search. One of the problems
that must be solved in the stage of the closed system design consists in the estimation
of the secondary optimization functional gradient vector in the neural networks. This
can be done in two ways:

1. Introduction of search oscillations and detection;
2. Representation of gradient vector estimation in the form of expression through the

signals in neural networks (output and intermediate signals).

In the first case, one deals with the adaptive search system. In the second case,
one deals with the analytical system. It is evident that the design of neural net-
works in the form of analytical systems adjusted in the closed cycle is prefer-
able because the introduction of search oscillations adds noise to the system.
However, the design of closed-loop neural networks using analytical methods is not
always possible. The limitations of the analytical approach are shown in the present
book while describing the stage of closed-loop neural network design. The main
attention in the stage of closed-loop neural network design is paid to the imple-
mentation of given primary optimization criteria in the neural networks of different
structures.

An important problem is the development of the neural network adjustment algo-
rithms in the self-learning mode and arbitrary teacher qualification mode. The meth-
ods of closed-loop system design here are the same as in the learning mode. This is the
main idea of the universal approach to the processes of learning and self-learning that
constitutes the basis for multilayer neural network synthesis described in [I-6] and in
the present study.

The analysis of the known heuristic algorithms for the neural network adjustment
based on the idea of a universal approach to the adaptation algorithms synthesis
in the neural networks is represented in the work [I-6]. The material concerning ad-
aptation algorithms in continuum neural networks and the selection of adaptation
algorithms that are adequate to their physical implementation is also represented in
this work.

The peculiarities of the initial condition selection in the neural network adaptation
algorithms are also considered.

27

I.10.6
Investigation of Neural Network Adaptation Algorithms

Investigation of closed-loop neural networks is the final stage of investigation of
multilayer neural networks with fixed structure and with closed-cycle adjustment. This
synthesis stage deals with some problems related to the open-loop multilayer neural
network’s performance quality estimation.

The first of these problems is the problem of selection of initial conditions for the
adjustment of multilayer neural network coefficients. As it is mentioned above, the
secondary optimization functional possesses multiple-extremum properties. This is
the reason why two methods of initial condition selection are usually considered: a
random method when all local and global extrema must be found and a deterministic
method when the multilayer neural network is introduced into the domain of the glo-
bal secondary optimization functional.

The second of these problems is the problem of selecting a class of multilayer neural
network typical input signals that is sufficiently complete to provide the possibility to
estimate in the future the neural network’s performance quality. In the case of automa-
tion control systems, this problem is already solved. In particular, it is solved by the
selection of a polynomial input signal class as a typical one. The signal complexity in
this case is determined by the polynominal order. In the case of multilayer neural
networks, the input signal complexity is determined, in particular, by the modality of
conditional distribution of input signals in the task of pattern recognition.

The third of these problems is the problem of selecting optimal parameters for the
multilayer neural network tuning circuit. In particular, it is necessary to select a para-
metric matrix of the system of secondary optimization functional extremum search.
Special attention here is paid to the selection of optimal parameters of the neural
network tuning circuit based on the estimation of the primary optimization functional
value. The results of investigations of a large number of multilayer neural networks
obtained by means of computer modeling are presented in the studies [I-1, I-6].

In general, one must take into account the following aspects concerning this mul-
tilayer neural network synthesis stage. The consideration of a non-formal problem class
of pattern recognition under the unknown and sufficiently complex functions of dis-
tribution densities causes difficulties not only for the process of development of such
systems, but also for the attempts to estimate theoretically the quality of the solution
of these problems. That is why the investigators mainly use methods of statistical
modeling. The following results are already published: the results of statistical model-
ing for separate neurons under the multi-modal distribution of input signals, investi-
gations of adjustment dynamics of three-layer neural networks with sequential con-
nections, and investigations of adjustment dynamics for multilayer neural networks at
the non-stationary input signals in self-learning modes and in the supervisor learning
mode when the teacher has a finite qualification.

A concrete neural network representing an array of processors with specified con-
nections and implementing adaptation algorithms is a dynamic system which is de-
scribed by some system of differential or difference equations [I-8, I-11]. A represen-
tation of neural networks with closed-loop adaptation circuits in the form of a linear
sequential machine makes it possible to describe its functioning in terms of classical

I.10 · About Neural Networks

28 I · Introduction

z-transformation. This allows one to use classical methods of statistical dynamics of
continuous and discrete automated control systems. This is practically a single effi-
cient way to analyze quantitatively the dynamics of processor array functioning dur-
ing problem solving. And this way is provided namely by the neural computer’s con-
cept. This way makes it possible in the future to analyze and synthesize structures of
distributed computers in the form of a processor array from the neural computer class.

I.10.7
Multilayer Neural Networks with Flexible Structure

It has been aforementioned that multilayer neural networks with fixed structure and
closed-cycle-adjustment provide the optimization functional optimum under the con-
ditional distribution densities for the probability of the arbitrary input signal that is
unknown beforehand. However, the potential quality of such neural networks is lim-
ited by the a priori information concerning the structure of the open-loop system. The
synthesis methods for neural networks consisting of the open-loop structure part that
cannot be fixed a priori and, along with the adjustment coefficients values, represents
a result of the adjustment process are considered in the nineth chapter of [I-6] and in
the present study. The number of layers and the number of neurons in one layer are
determined in the adjustment process. This book also considers some variants of the
design of neural networks with flexible structure. The peculiarities of investigation of
adjustment procedure dynamics on the level of analysis of optimization functional
dependence upon the number of layers and the number of neurons in one layer are
described. As a result, the neural network with flexible structure is implemented in the
form of the uniform multilayer neural network.

I.10.8
Informative Feature Selection in Multilayer Neural Networks

An attempt to analyze from one viewpoint very different and rather numerous works de-
dicated to the informative feature selection was done in [I-6]. It was an attempt to develop
so-called structural methods related to the methods of multilayer neural network synthesis.

The author considers that the widely spread viewpoint about a possibility of a so-
called preliminary feature selection is not valid. The reason is that in the case of any
selection features procedure, either directly or indirectly, one must use some concrete
neural network. That is why any selection features procedure is subjective. And the
subject is the neural network of a specific type.

The second author’s proposition in favor of the suggested approach consists in the
“absoluteness” of the primary optimization functional in the capacity of the index of
features information value. This is the reason that the estimations based on divergence,
averaged conditional entropy, etc., are rough and particular.

The aforementioned notions suggest the necessity to analyze the problem of an
informative feature selection after the completion of synthesis procedures and after
the investigation of the neural network’s dynamics. According to the author’s opinion,
the multilayer neural networks with fixed and flexible structures possess the lowest
degree of subjectivity with respect to the input signal (that represents the subject of

29

investigations with the help of neural networks). The reason is that these neural net-
works are synthesized under the condition that any information about conditional
distribution densities for patterns inside classes is absent. That is why the usual ap-
proach is to use the multilayer neural network for the search of maximally informative
features of the initial feature space.

The use and investigation of multilayer neural networks allows one to formulate a
problem of selection of the most informative features of intermediate spaces, but not
of the initial feature space. These intermediate spaces are formed by the output signals
of neurons of the first, second and other output layers of the neural network. This
problem can be considered the problem of structure minimization (minimization of
the neuron number in each layer) for the multilayer neural network after its adjust-
ment coefficient procedure is finished.

I.10.9
Investigation of Neural Network Reliability

The problem of the neural network reliability is at present in the most initial stage of its
development. It is evident that its solution will cause a revolutionary influence upon the
problem of neural computer implementation on the basis of principally new technolo-
gies. In particular, it can be a technology of the slab board system design. The property
of the perceptron structure to preserve its functional capability under the breakdown of
some number of its elements has been already reported by Rosenblatt in the example of
the three-layer perceptron [I-1]. Modern computers do not possess this property because
of the absence of explicit reservation. Computers with MIMD (Multiple Instructions –
Multiple Data) architecture seem to be the only exclusion. These computers are charac-
terized by the asynchronous principle of the processor’s array functioning. This provides
so-called gradual system degradation when some of its elements are broken down. The
similar property exists in neural computers, too. And this is their great advantage. Meth-
ods for neural network functional reliability investigations are represented below. In par-
ticular, we describe some experimental methods for functional reliability investigations.
In addition, we also describe some methods of parametrical and functional reliability
when catastrophic breakdowns occur. Some methods of the development and investiga-
tion of restoring organs based on the neural networks are considered separately.

I.10.10
Neural Network Diagnostics

The neural computer’s structure is specific to the class of computers designed in the
form of a processor array. This asserts some special requirements for the diagnostic
procedure in those parts of the neural computer that represent a neural network. The
basis for such diagnostic methods was developed in the works [I-12, I-13]. This book
describes some methods of forming the notion of neural network failure, some algo-
rithms of neural network failure localizations, methods of minimum test design, and
methods of adaptive diagnostics of neural network failures. In principle, the described
methods can serve as the basis of development of the neural computer’s operation
systems for neural network testing.

I.10 · About Neural Networks

30 I · Introduction

I.11
Conclusions

As a result of works published in the 1960s, 1970s and 1980s, a line of investigations in
the domain of neural network theory that appeared to be prior to the foreign investi-
gations was formed.

The following methods of adaptive neural network adjustment were developed:

� With arbitrary neuron form;
� With arbitrary number of layers;
� With different connections between layers (direct, cross and backward connections);
� With different forms of optimization criteria;
� With different limitations on the neural network weighting coefficients.

The author’s basic position in the present study is not the use of the neural network
of some given structure that is preferable to some investigator, but the search for the
neural network structure and the search for its methods of adjustment adequate to the
solved problem.

The content of the book represents the author’s current results in the field of neural
network investigations. The main line is the development of the neural network theory.

In general, neural computers represent a prospective line of the modern giant-pow-
ered computer’s development. The neural network theory and neural mathematics
represent a foreground line of development of Russian computer science, and they
require a support. The bases for the development of these lines are the applied com-
puter systems consisting of neural computers that must be designed in the nearest
future.

Development of the following three lines: solutions of neural network algorithms,
theory of neural networks and neural computers are tightly interrelated:

� On the one hand, the neural network structure for each task is determined by this
task itself, while on the other hand, the neural network theory development pro-
vokes the use of more complex structures of neural networks;

� On the one hand, the technology level determines possibilities of neural network
and neural network algorithm design, while on the other hand, the development of
neural mathematics stimulates the neural network theory; that in turn determines
the development of technology;

� At present, the line of neural network investigations is interrelated with the line of
the neural computer’s development only in the domain of software implementation
of the solution of different problems and corresponding structures. In the future,
both hardware as well as software components of the neural computer will be mainly
determined by solved problems and by neural network structures.

Neural computers represent an efficient symbiosis of computer science, adaptive
system automated control theory, and neurodynamics.

The list of additional domestic literature concerning neural computers is given in
the appendix to this section.

31

Literature

[I-1] Rosenblatt F (1962) Principles of neurodynamics. Spartan Books, Washington
[I-2] Minsky M, Papert S (1969) Perceptrons. An introduction to computational geometry. MIT

Press
[I-3] Nillson NJ (1965) Learning machines. McGraw-Hill Book Company
[I-4] Grossberg S (1987) The adaptive brain. T.1,2, Advances in psychology
[I-5] Dertouzos M (1965) Threshold logic. A synthesis approach. MIT Press
[I-6] Galushkin AI (1974) Synthesis of multilayer pattern recognition systems. Moscow, Energiya
[I-7] Ivakhnenko AG (1975) Perceptron – A system of pattern recognition. Kiev, Naukova Dumka
[I-8] Galushkin AI, Fomin Yu I (1991) Neural networks as linear sequential machines. MAI
[I-9] Galushkin AI, Sudarikov VV, Shabanov EV (1991) Neuromathematics: methods of solution

using neural computers. Mathematic Modeling, 8
[I-10] Tsypkin YaZ (1968) Adaptation and learning in automatic systems. Moscow, Nauka
[I-11] Gill A (1974) Linear sequential circuits. Analysis, synthesis, and applications. McGraw-Hill Book

Company
[I-12] Fomin Yu I, Galushkin AI (1980) Methods of technology diagnostics of threshold element

networks. Tekhnika sredstv sviazi, Sistemy sviazy, No. 2
[I-13] Fomin Yu I, Galushkin AI (1981) Methods of failures parallel diagnostics in threshold element

networks. Elektronnoye modelirovaniye, 3

Appendix

A.1
Theory of Multilayer Neural Networks

1. Kholmogorov AN (n.y.) Representation of continuous multivariable functions in the form of super-
position of several one-variable functions and summation. Doklady AN SSSR 114(5):953–956

2. Glushkov VM (1962) Theory of learning of a special class of discrete perceptrons. Journal of Com-
puting Mathematics and Mathematical Physics 2:317–335

3. Ivakhnenko AG (1963) Can the perceptive self-learning system select transformation moments on
the frog retina? Avtomatika 2:31–40

4. Ivakhnenko AG, Kleschev VV, Otkhmezuri GL, Shlezinger MI (1963) Fundamental monograph on
the perceptron theory. Avtomatika 3:84–90

5. Glushkov VM (1964) Introduction to cybernetics. Moscow, Nauka
6. Stafford T (1965) Multilayer learning systems. Foreign radioelectronics 8:58–64
7. Gelig AKh (1988) Identifying systems with arbitrary plane retina. Computer Technology and Cy-

bernetics Problems 1988:80–94
8. Galushkin AI (1970) Multilayer systems for pattern recognition. Moscow
9. Galushkin AI, Yumashev SG (1970) Use of piecewise-linear divisional surfaces in the pattern recog-

nition problems. MIEM proceedings 6:238–254
10. Yumashev GG (1970) Use of linear programming methods for construction of piecewise-linear

divisional surfaces in the task of pattern recognition. MIEM proceedings 6
11. Ivakhnenko AG (1971) Systems of heuristic self-organization in technological cybernetics. Kiev,

Tekhnika
12. Ivakhnenko AG (1971) Polynomial theory of complex systems. IEEE Trans. on System, Man and

Cybernetics v. SMC-1, vol. 4.13
13. Galushkin AI (1971) Implementation of primary optimization criteria in pattern recognition sys-

tems adjusted by the closed cycle in the learning mode. MIEM proceedings 23
14. Galushkin AI, Vasilkova TA, Slobodenyuk VA, Tyukhov VP (1971) Analysis of dynamics of non-

stationary pattern recognition systems. MIEM proceedings 23
15. Agababyan KG (1971) About neural matrices algebra. Dokl. AN SSSR, 199(5):991–993

Appendix

16. Mkrtchyan SO (1971) Neurons and neural networks. Moscow, Energiya 232
17. Vanyushin VA, Galushkin AI, Tyukhov VP (1972) Design and investigation of multilayer pattern

recognition systems. “Some problems of biological cybernetics”. In: Berg AI (ed) Leningrad, Nauka
18. Agababyan KG (1972) About neural matrices. Cybernetics 1:211–214
19. Korelov IV (1972) About one class of networks consisting of elements of continuous and discrete

performance. Izv. AN SSSR. Ser. “Tekhnitcheskaya kibernetika” 1:109–114
20. Galushkin AI (1973) About adaptation algorithms in multilayer pattern recognition systems. Dokl.

AN Ukr.SSR, A, 91(1):15–20
21. Ivakhnenko AG (1975) Perceptrons – systems of pattern recognition. Kiev, Naukova Dumka
22. Galushkin AI, Kudryavtsev AM (1976) Matrix inversion with the help of a multilayer system based

on the threshold elements. “Cybernetics and computer technology”. Kiev, Naukova Dumka 33
23. Agababyan KG (1976) Perception of angle size by neural structures. Cybernetics 5:173–176
24. Galushkin AI (1977) Continual models of multilayer pattern recognition systems. Automatics and

Computer Technology 2:43–48

A.2
Neural Computer Implementation

1. Poupkov KA, Narimanov VK, Galushkin AI (1971) Specialized recognition device. MIEM proceed-
ings, 23:156–165

2. Poupkov KA, Narimanov VK, Galushkin AI (1971) An output cascade of multilayer network of thresh-
old elements. MIEM proceedings, 23:166–178

3. Galushkin AI (1974) Synthesis of multilayer pattern recognition systems. Moscow, Energiya
4. Galushkin AI (1977) Main lines of development of specialized multilayer systems for automated medical

diagnostics. Medical information systems on a computational basis. Moscow, vol. II, pp 191–198
5. Zaytsev SG (1979) Systems of automated diagnostics based on the use of table data and tendency

of their application in medical information systems on a computational basis. Medical information
systems on a computational basis. Moscow, vol. II, pp 187–191

A.3
Neural Computer Elemental Base

1. Treyer VV, Elizarov AV (1971) Electrical integrating devices and analogue memory elements. Mos-
cow, Energiya

2. Boyartchenkov MA, et al. (1973) Analogue memory and adaptation elements. Moscow, Energiya

32 I · Introduction

The Structure of
Neural Networks

Chapter 1 Transfer from the Logical Basis
of Boolean Elements ”AND, OR, NOT"
to the Threshold Logical Basis

Chapter 2 Qualitative Characteristics
of Neural Network Architectures

Chapter 3 Optimization of Cross Connection
Multilayer Neural Network Structure

Chapter 4 Continual Neural Networks

Part I

34 Part I · The Structure of Neural Networks

The neural network structure is the initial axiomatic base for the neural network theory
itself, as well as for the neural network solution algorithms, architecture of neural chips,
and neural computer architecture.

We represent below the main reasons determining the transfer from the logical basis
of Boolean elements to the threshold logical basis. The main threshold elements are
described as well as their relationship with multiple-meaning and continuous logic.
The main neural network types proposed by different authors in the 1960s (by
Rosenblatt, Widrow, etc.) and at present are described. Materials related to continual
neural networks (continuum of features, neurons, etc.) are also presented. We will also
separately consider some objective reasons for introducing cross connections in mul-
tilayer neural networks, as well as a formal description of methods of such neural
networks.

Chapter 1

A fundamental point for the neural computer’s appearance is the refusal of a Boolean
logical basis on the level of computer elements and the transfer to the threshold logical
basis. The latter one models some functions of the nerve cell. This transfer changes not
only the computer element basis but also all of the computer’s architecture.

1.1
Linear Threshold Element (Neuron)

The works concerning threshold logic appeared in the 1960s and 1970s [1-1 to 1-8].
They propose the use of neurons for the design of separate computer units. Here, these
neurons perform the following logical transformation of input signals into output ones:

(1.1)

This is the simplest interpretation of the neuron transfer function. Here, y is a neu-
ron output; ai are weighting coefficients; a0 is a threshold; xi are the neuron input val-
ues (xi ∈ {0,1}); and N is a dimensionality of the neuron input signal. The neuron non-
linear transformation in this case is the following:

(1.2)

Figure 1.1 shows a functional block diagram of a neuron. In this particular case,
when ai = 1 (i = 1, …, n), the neuron represents a majority element, and the threshold
is equal to a0 = N / 2.

A threshold function in the expression for the transfer function (1.1) can take any
arbitrary value but is not only determined by expression (1.2). This changes coefficients
a0 and ai. As a rule, one uses the form (1.2) of the threshold function or the following form:

The choice depends upon physical implementation of this function either in ana-
logue or digital form.

Transfer from the Logical Basis of Boolean Elements
“AND, OR, NOT” to the Threshold Logical Basis

36 Chapter 1 · Transfer from the Logical Basis of Boolean Elements “AND, OR, NOT”

The following advantages of a neuron with respect to the Boolean elements AND,
OR, NOT, etc., can be mentioned:

1. A neuron performs more complex logical functions. This provides the implemen-
tation of a given logical function with the help of a smaller number of elements. As
a result, one obtains the possibility to decrease the equipment size during computer
unit construction;

2. Neural networks possess a high tolerance against the failure of separate elements.
It was mentioned in [I-1] that in the three-layer perceptron, the failure of several
numbers of neurons of the first layer with arbitrary connections did not result in
the sharp catastrophic decrease of the problem solving quality even in the absence
of special diagnostic procedures and structure reconfiguration. Such an ability at
present is observed only in multi-microprocessor computers with extended paral-
lelism and SIMD (Single Instruction – Multiple Data) and MIMD (Multiple Instruc-
tions – Multiple Data) architectures when diagnostics procedures and reconfigura-
tion are implemented on these structures;

One of the properties of such structures is the property of so-called permanent degra-
dation. Accordingly, the main quality of system performance (the probability of correct
recognition and efficiency) is maximal when all the elements are properly functioning,
and this quality decreases when the element failure occurs, but not catastrophically;

3. Neural networks possess an increased tolerance against variation of their circuit
parameters. This property can be illustrated by a simple logical function of two
variables implemented with the help of a neuron (Fig. 1.2). Rather large variances
of weighting coefficients and threshold value do not result in the error of this given
logical function implementation.

4. Implementation in the form of VLSI or optical devices with algorithms adequate to
neural networks is performed in an analogous form. This form possesses much more
operation speed as compared to the digital implementation.

Maximal information parallelization is achieved when hardware neural network
implementation of sufficiently “large” mathematical operations of high dimensio-
nality is realized.

Fig. 1.1.
Functional block diagram of a
neuron

37

5. Neural networks can be formally described as dynamic discrete systems with the
use of the linear sequential machine technique. This provides the possibility not
only to analyze the behavior of such systems by means of control theory methods,
but also to synthesize neural network structures according to the given criteria.

6. It is possible to minimize the VLSI type in the case of uniform neural network design.
This allows one to follow up the tendency of simplification of VLSI computer-aided
design systems. The relative independency of logical neural VLSI algorithm design
upon dimensionality of input and output space forms a basis for standardization of
this procedure in a wider class of functional circuits implemented by neural networks.

1.2
Multi-Threshold Logics

Multi-threshold logics can be regarded as the generalization of threshold logics. The
logical completeness of a multi-threshold element (MTE) that represents a functional
cell of some logical device based on multi-threshold logics is connected with the ex-
istence of a group of thresholds implemented by this MTE. We shall consider MTE as
an element functioning according to the equation

(1.3)

given in [1-6]. The MTE block scheme is shown in Fig. 1.3.
Methods of MTE network synthesis were analyzed during several years [1-7, 1-9, 1-10].

But they did not lead to sufficient results. The most perspective methods for MTE net-
works development are adaptive methods [I-6, I-10]. These methods are characterized by
a weak dependence upon the input space dimensionality and the network complexity.

Fig. 1.2.
Neuron tolerance against varia-
tion of weighting coefficients
and threshold value

1.2 · Multi-Threshold Logics

38 Chapter 1 · Transfer from the Logical Basis of Boolean Elements “AND, OR, NOT”

1.3
Continuous Logic

This field of science is a natural development of double-digit logic through K-digit
logic. It has an important significance for the development of neural network com-
puter theory that considers analogous implementation requiring high operation speed.

Continuous neural logic includes circuits that allow one to perform logical operations
with continuous variables [1-11 to 1-13]. Figure 1.4 shows a general structure of a neuron
with a solution continuum that represents a basis of continuous neural logic circuit de-
sign. The behavior of function f (that is called an activation function) is considered below
according to the neuron model representation or according to the class of solved prob-
lems and to the possibility of designing the adaptation algorithm in the most optimal way.

The transformation performed by the circuit shown in Fig. 1.4 has the form

The function F(g) is a continuous differentiable and steadily increasing function. It
forms a continuous output signal of the neural network element. In this case, the no-
tion of a separating surface implemented by the network in the initial feature space
degenerates. The parameters of F(g) function can be fixed or adjustable.

Fig. 1.3.
A block scheme of MTE

Fig. 1.4.
A block-scheme of a neuron
with continuum solutions

39

1.4
Particular Forms of Activation Function

One can consider several forms of activation function in addition to the aforemen-
tioned ones.

Activation function R is shown in Fig. 1.5. The existence of the linear part allows one
to implement continuous activation functions on the basis of such elements. The ac-
tivation function R can be relatively simply implemented.

Activation function S (sigmoid function). This function is represented in Fig. 1.6. The
expression for this function is y = (1 + e–g)–1.

As distinct from the activation function R, the sigmoid function possesses
inversability properties and continuous differentiability properties. But this function
is difficult for implementation. Its disadvantage is the existence of only positive val-
ues. However, we regard this disadvantage to be insignificant, because it can be elimi-
nated on the level of the network structure by the element threshold change.

Fig. 1.5.
Activation function R

Fig. 1.6.
Activation function S

1.4 · Particular Forms of Activation Function

40 Chapter 1 · Transfer from the Logical Basis of Boolean Elements “AND, OR, NOT”

Activation function tanh(g(n)) and 2/πππππ arctg(g(n)) Represented in Fig. 1.7–1.8. These
functions are similar by their properties to the sigmoid function. The advantages of the
use of any particular activation function are determined by the complexity of their neural
network implementation and by their adaptation to the selected class of problems.

Literature

[1-1] Dertouzos M (1965) Threshold logic: A synthesis approach. MIT Press
[1-2] Pirs Y (1968) Design of reliable computers. Moscow, Mir
[1-3] Shigeo Oyagi, Ryoichi Mori, Noriaki Sanechika (1978) Realization of a Boolean function using

an extended threshold logic. Bulletin of the Electrotechnical Laboratory 42:9–74
[1-4] Lupanov OB (1972) About threshold element circuits. Dokl. AN SSSR 202(6)
[1-5] Butakov EA (1970) Methods of relay-controlled threshold element devices. Moscow, Sov. Radio
[1-6] Gutchin IB, Kuzitchev AS (1967) Bionics and reliability. Moscow, Nauka
[1-7] Vavilov EN, et al. (1970) Threshold element circuit synthesis. Moscow, Sov. Radio
[1-8] Stepanyan AA, Arkhangelsky SV (1967) Design of threshold element logical circuits. Kuybyshev
[1-9] Minsky M (1967) Finite and infinite machines. Prentice-Hall Inc.
[1-10] Anon. (1988) Specialized issue considering multiple-valued logics. Computer 21(4)
[1-11] Ajzenberg NN, Ivaskiv Yu L (1977) Multiple-value threshold logic. Kiev 148
[1-12] King J (1985) Fuzzy logic provides new way to deal with uncertainty. Electronics 12:40–41
[1-13] Pozin NV (1972) Neural circuits of fuzzy logic and classification of assemblies of analogue

signals. Proc. Inst. Stosowane, PAN, Z.II, Warsaw

Fig. 1.7.
Activation function tanh (g(n))

Fig. 1.8.
Activation function
2/π arctg (g(n))

41

[1-14] Pozin NV (1970) Neural structure modeling. Moscow, Nauka
[1-15] Winder R (1968) Logical threshold element circuits. Elektronika 11:3–25
[1-16] Butakov VA (1970) Methods for synthesis of threshold element relay devices. Moscow, Sov. Radio
[1-17] Vavilov EN, Egorov BM, Lantsev VS, Totsenko VG (1970) Threshold element circuit synthesis.

Moscow, Sov. Radio
[1-18] Varshavski VI (1961) Functional capabilities and synthesis of threshold elements. Dokl. AN

SSSR 139(5)
[1-19] Coatec CL, Lewis BM (1964) DONUT – a threshold gate computer. IEEE Trans. on Electronic

Computer EC 13(3)
[1-20] Gutchin IB, Kuzichev AS (1967) Bionics and reliability: elements of formal neuron theory.

Moscow, Nauka
[1-21] Stepanian AA, Arkhangelski SV (1967) Threshold element logical circuit design. Kuybyshev
[1-22] Lebedev VS (1971) About the possibility of implementation of digital devices using threshold

elements. Avtomatika i telemekhanika 3:91–100
[1-23] Mkrtchian SO (1971) Neurons and neural networks. Moscow, Energyia, 231 p
[1-24] Ovchinnikov VV (1971) Method of digital computer arithmetical unit construction using thresh-

old elements. Avtomatika, 6, Kiev, Naukova Dumka, pp 70–77
[1-25] Mkrtchian SO (1972) Complex of threshold elements for the design of digital computers. Voprosy

radioelektroniki, Ser. EVT, 2:133–139
[1-26] Pakulov NI, Ukhanov VF, Chernyshov PN (1974) Majority principle of reliable units and device

design for digital computers. Moscow, Sov. Radio
[1-27] Dobronravov OE, Ovchinnikov VV (1976) Design of computer circuits and units using thresh-

old elements. Moscow, Energyia
[1-28] Mkrtchian SO (1977) Design of computer logical devices using neural elements. Moscow,

Energyia
[1-29] Paljanov IA, Potapov VI (1977) Diagnostics of failures and synthesis of digital structures based

on threshold logical units. Novosibirsk
[1-30] Potapov VI (1977) Analysis and synthesis of logical highly reliable digital computational and

logical structures based on threshold units. Novosibirsk
[1-31] Galushkin AI, Fomin Yu I (1979) About optimization of restoring organs implementing major-

ity voting. Tekhnika sredstv sviazi, Ser. Vychislitelnaja tekhnika 3:56–61
[1-32] Kirsanov E Yu (1980) About the design of cache memory systems using threshold logic ele-

ments. Tekhnika sredstv sviazi, Ser. Systemy sviazi 4:28–37
[1-33] Kirsanov E Yu (1981) About the design of read-only storage using threshold logic elements.

Tekhnika sredstv sviazi, Ser. Systemy sviazi 2:44–52
[1-34] Kirsanov E Yu (1981) About a problem of classification and analysis by means of memory

design on the basis of threshold logics. Tekhnika sredstv sviazi, Ser. Systemy sviazi 2:36–48
[1-35] Kirsanov E Yu (1981) About the selection of structure of one class of memory units using

threshold elements. Elektronnoje modelirovanje, Kiev, 6:88–89

Literature

Chapter 2

The main qualitative characteristics of neural network architectures are the following
[2-1, 2-5]:

1. Input signal type (dimensionality, discreteness, etc.);
2. Types of operations that are implemented in the open-loop neural network (dis-

crete or continuous);
3. Connection topology (direct, cross, lateral, backward, etc.);
4. Absence or presence of desire to simulate a concrete biological system (visual or

acoustic analyzer, cerebellum, thalamus, etc.);
5. A goal to maximally increase the operation speed;
6. Architecture limitations related to the user’s convenience or selected technological

methods;
7. Method of combining into groups of processor elements;
8. Method of performance in time (discrete or continuous);
9. Method of weighting coefficient modification (random or ordered);
10. Method of connection of independently tuned neural networks.

2.1
Particular Types of Neural Network Architectures

We describe below some particular neural network structures used for the solution of
different problems on a neural network basis. Figure 2.1 shows the structure of a so-
called neural network with direct connections.

Qualitative Characteristics
of Neural Network Architectures

Fig. 2.1.
Neural network with direct
connections

44 Chapter 2 · Qualitative Characteristics of Neural Network Architectures

One characteristic property of such a network is the equality of number of inputs,
outputs, and a number of neurons in each of the two network layers. Another charac-
teristic property is the existence of so-called lateral connections between neurons of
the first and second layers. Lateral connections in Fig. 2.1 have a limited structure (lim-
ited area). Figure 2.2 shows a particular structure of a two-layer neural network with
adjustable weighting coefficients of the second layer that are determined by the output
signals of the first layer.

Figure 2.3 shows an example of a neural network structure with ordered backward
connections, and Fig. 2.4 shows an example of a neural network structure with amor-
phous backward connections.

Fig. 2.2.
Neural networks with cross
connections

Fig. 2.3.
Neural networks with ordered
backward connections

Fig. 2.4.
Neural networks with amor-
phous backward connections

45

Figure 2.5 shows particular neural network structures with lateral connections that
are most often used in the systems of signals and pattern processing.

2.2
Multilayer Neural Networks with Sequential Connections

Historically, multilayer neural networks appeared in the theory of pattern recognition
for the following reasons:

1. The linear divisional surface (linear threshold element) does not provide sufficient
probability of correct recognition in the case of distributions that differ from nor-
mal distribution with equal covariance matrices.

2. The hyperplane cannot implement any Boolean function of N binary variables in
N-dimensional space when N ≥ 2.

3. In order to increase the probability of correct recognition in the case when two
assemblages of vectors of two different pattern classes are distributed according to
the law that is more complex than normal distribution with equal covariance ma-
trices, special pattern recognition systems implementing a nonlinear divisional
surface are usually constructed. In particular, such a surface can be defined by the
expression

Fig. 2.5.
The main types of neural net-
works with lateral connec-
tions: a lateral connections
that are repeated on each pro-
cessor element; b lateral con-
nections that are repeated on
each processor element; c each
input has its specific distribu-
tion over the field of processor
elements; d lateral connections
can be of any arbitrary type

2.2 · Multilayer Neural Networks with Sequential Connections

46 Chapter 2 · Qualitative Characteristics of Neural Network Architectures

Implementation of pattern recognition systems with a nonlinear divisional surface is
a complex practical problem. It consists in the adjustment of a large number of coeffi-
cients (the approximate order is (N + r)! /N! r! where N is the dimensionality of the feature
space, and r is the order of the divisional surface).

For example, when N is about several hundreds and r is about 6–8, then the number of
adjustable weighting coefficients amounts to several milliards. The difficulties of the solu-
tion to design a nonlinear divisional hypersurface are overcome by the use of its piecewise
linear approximation. If a hypersurface of r order is sufficiently well approximated from
the viewpoint of the correct recognition probability, then the number of adjustable coef-
ficients is Nr, i.e., in the aforementioned example it amounts to several hundreds. In the
task of pattern recognition and in some other tasks with a neural network having neurons
in the first layer with a finite number of solutions, one must solve a problem to rank dif-
ferent areas of the initial multidimensional feature space as a particular class (Fig. 2.6).

Such areas appear due to the intercrossing between hypersurfaces implemented by the
neurons of the first layer. Each area is determined in the form of set H1 of binary signals
(H1 is a number of neurons in the first layer) whose values are (0,1) or (+1,–1) at the
output of neurons of the first layer and of the corresponding value of the output signal of
the whole system. The unit for ranking areas must implement in this specific case some
function y(y1

h1) of H1 binary elements.
This logical function must in turn be realized by the neural network due to the

known advantages of the threshold logic and due to the requirement of functional
uniformity of the whole system. Figure 2.7 shows a graph of a multilayer neural net-
work with sequential connections.

A detailed classification of multilayer neural networks with sequential connections
is given in the work [2-6]. The classification is based on the following features:

� Number of neuron layers with adjustable coefficient;
� Number of neuron layers with fixed coefficients;
� Method of coefficient fixation.

Fig. 2.6. Block scheme of the neural network implementing piecewise linear divisional surface

47

The following structures are described in particular: a two-layer network with ad-
justable coefficient of neurons of the first layer and fixed or adjustable coefficients of
neurons of the second layer; a three-layer neural network with different variants of
layers with adjustable and fixed coefficients.

The two-layer neural network with adjustable coefficients has limited capabilities in
the sense of implementation of different configurations of divisional surface because the
neuron cannot realize an arbitrary Boolean function of N ≥ 2 binary variables (in this
case, the neuron of the second layer is considered). If limitation on the neuron number of
the second is absent, then the implementation of the piecewise linear surface of arbitrary
configuration requires not more than three layers in the neural network.

The problem of the three-layer neural network synthesis under the given number
of layers in the first and third is reduced to the minimization of the number of neurons
of the second layer and adjustment of neural network coefficients. The investigations
of multilayer neural networks with sequential connections showed that their perfor-
mance quality is a monotone increasing function upon the increase of the number of
layers and number of neurons in each layer.

2.3
Structural and Symbolic Description of Multilayer Neural Networks

One can mention that recently, the significance of structural methods sharply increased
in the investigations of different systems as compared with symbolic methods. The
main reasons for this tendency are such properties of these systems as multilayer char-
acteristics, multiple image and high dimensionality. Namely, these properties possess
modern neural networks. The present study is aimed at the development of a struc-
tural approach. In this approach, the relative role of the learning block development
decreases, and correspondingly the role of choice of the open-loop system structure
increases. This is the reason that in addition to the open-loop system symbolic de-
scriptions, it is necessary to use the structural representation of transformations. We
give below a formal description of the main types of multilayer neural networks.

Fig. 2.7. Graph of a multilayer neural network with sequential connections

2.3 · Structural and Symbolic Description of Multilayer Neural Networks

48 Chapter 2 · Qualitative Characteristics of Neural Network Architectures

a Two-layer neural network

(2.1)

b Multilayer neural network of neurons with continuum solution

(2.2)

Here N = H0 is the dimensionality of the initial feature space.
The arrow and symbol indicate the signal designation that is described in the

equation by the expression to the right of the arrow, and

are respectively the analogue output signal and digital output signal of hW–j+1-th
neuron of (W – j + 1)-th layer for the considered multilayer neural network.

A multilayer neural network with K solutions is obtained by means of the ex-
change of nonlinear transformation f in (2.2) by the expression determined by Eq. (1.3).

49

c Multilayer neural networks with Hw output channels.
A symbolic description of such a system is relatively simple to obtain from Eq. (2.2)

and from the graph of the neural network shown in Fig. 2.7. In particular, one can
consider the case of signals ε(n) and y(n) with equal dimensionalities.

d Multilayer neural networks with cross connections.
In multilayer neural networks with full cross connections [I-6], the set of fea-

tures of j-th layer (j = 1,…,W) consists of features of the initial space and output
signals of all layers with numbers from 1 to (j – 1).

Analysis of particular structures with full cross connections shows that they are
significantly simpler in terms of the number of neurons than those of structures
with full sequential connection under the condition when both structures imple-
ment the same configuration of divisional surfaces in the feature space. In particu-
lar, for the two-layer neural network with cross connections,

A graph-scheme of such a neural network is shown in Fig. 2.8.
It is possible in principle to consider a multilayer cross connection neural net-

work of an arbitrary structure.
e Multilayer neural networks with backward connections.

For the neuron with backward connection (Fig. 2.9):

For the multilayer neural network with backward connections (Fig. 2.10):

Fig. 2.8.
Graph-scheme of the neural
network with cross connec-
tions

Fig. 2.9.
Graph-scheme of a neuron
with backward connection

2.3 · Structural and Symbolic Description of Multilayer Neural Networks

50 Chapter 2 · Qualitative Characteristics of Neural Network Architectures

It is possible in principle to consider multilayer neural networks of arbitrary given
structure with backward and cross connection. The objective reason for cross con-
nections being introduced in a multilayer neural network is proved below in Chap. 3.
As far as backward connections are concerned, they are considered in the present
book in the investigation of closed-loop neural networks for nonstationary pattern
recognition.

f Neural networks with k-valued and binary coefficients.
The difficulties of physical implementation of adjustable variable weighting co-

efficients of multilayer neural networks are well known. They emerged, in particu-
lar, at the development of memistor systems in the 1960s. Their authors tried to
implement an open-loop system and block neural network adjustment in the ana-
logue form [2-12].

These difficulties remained the same on the modern stage of VLSI technology.
However, the sharp increase of the integration level provides implementation of
neural networks with neurons having k-valued weighting coefficients realized, for
example, on the resistor networks. In the simplest case, the binary values (0,1) of
weighting coefficients realized on the monitored switches can be used. This pro-
vides sharp simplification of physical implementation of the multilayer neural net-

Fig. 2.10.
Graph-scheme of a two-layer
neural network with backward
connections

Fig. 2.11.
Hyperplanes realized in the
input feature space by the
neuron with k-valued weight-
ing coefficients

51

work adjustment procedure consisting of such adjustable coefficients. When con-
sidering each neuron with k-valued or binary coefficients, a logical function in the
input variable space is realized. This is done by means of the divisional hyperplane
slope change by some fixed level (Fig 2.11) or by the use of hyperplane “parts” of
three types on the total hypersurface (Fig 2.12).

Evidently, the lower the number of gradations the weighting coefficients of neu-
rons in the neural networks have, the higher the number of neurons in the neural
network is necessary for the solution of some problem.

The modern level of technological development is quite ready to accept a gen-
eral neural network structure represented in Fig. 2.13. Methods of adjustment al-
gorithm synthesis for such neural networks are the main subject considered in the
present book.

Fig. 2.12.
Hyperplanes realized in the
input feature space by the
neuron with binary values of
weighting coefficients (0,1)

Fig. 2.13. Multilayer neural network

2.3 · Structural and Symbolic Description of Multilayer Neural Networks

52 Chapter 2 · Qualitative Characteristics of Neural Network Architectures

Literature

[2-1] Stafford N (1965) Multilayer learning circuits. Foreign radioelectronics 8:58–64
[2-2] Gavronski R (1968) Comparison of some properties of symmetrical layer networks with for-

ward and backward local connections. Biological cybernetics, pp 209–223
[2-3] Nilsen N (1967) Learning machines. Moscow, Mir
[2-4] Gelig A Kh (1968) Recognition systems with unlimited plane retina. Computer technology and

problems of cybernetics, pp 80–94
[2-5] Ajzerman MA, Braverman EM, Roznoer LI (1970) Method of potential functions in the theory

of machine learning, Moscow, Nauka
[2-6] Galushkin AI (1970) Multilayer pattern recognition systems. Moscow, MIEM
[2-7] Galushkin AI, Yumashev SG (1970) About the use of piecewise linear divisional surfaces in the

pattern recognition problem. MIEM proc. 6:238–254
[2-8] Minski M (1969) Computation: Machines, Prentice-Hall, Finite and Infinite
[2-9] Minski M, Pejpert S (1971) Perceptrons, Moscow, Mir
[2-10] Ivakhnenko AG (1971) Systems of heuristic self-organization in technology cybernetics. Kiev,

Tekhnika
[2-11] Ivakhnenko AG (1971) Polynomial theory of complex systems. IEEE Trans. on System. Man

and Cybernetics, vSMC-1, vol. 4
[2-12] Trejer VV, Elizarov AB (1971) Electrical integration elements and analogue storage elements.

Moscow, Energiya
[2-13] Ivakhnenko AG (1975) Perceptrons – Pattern recognition systems. Kiev, Naukova Dumka
[2-14] Yumashev SG (1970) Use of linear programming methods for the design of piecewise linear

divisional surfaces in the pattern recognition problem. MIEM proc. 6:255–260
[2-15] Kohonen T (1980) Associative memory. Moscow, Mir
[2-16] Amari S (1980) Topographic organization of nerve fields. Bull. Of Math Biology 42(3):339–364
[2-17] Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism

pattern recognition unaffected by shift in position. Biol Cybern36:193–202

Chapter 3

The problem of selection of an open-loop multilayer neural network structure is very
complex. This structure can be taken a priori, or according to the aforementioned reasons
while considering a two-layer and three-layer neural network, or according to the limited
technology facilities. We consider below the possibility of the structure selection (number
of layers and number of neurons in the layer) for a multilayer neural network with cross
connections consisting of neurons with two solutions.

3.1
About the Problem Complexity Criterion

It is necessary to discuss the problem of a complexity criterion for a pattern recognition
task solved by the multilayer neural network. The number of reference patterns included
in the closed areas by hyperplanes realized by a neuron of the first layer in the initial feature
space can serve as such a criterion when a deterministic neural network model is used. In
the case of a probabilistic neural network model, each reference pattern corresponds to the
mode of distribution probability function for pattern assemblage at the neural network
input. In each area of the initial feature space, the multilayer neural network selects some
compact pattern set but not the reference pattern. When the assemblage of patterns pos-
sesses multimodal distribution at the neural network input, these compact sets can be char-
acterized by some areas in the multidimensional feature space formed by lines of equal
distribution probability function values (on the certain level). The number and complexity
of such areas characterize together the complexity of the solved problem. The determinis-
tic neural network model can be considered as a particular case of the probabilistic one,
and it realizes at the bottom the system of memory for a finite number of multidimensional
vectors. The number of areas realized by the multilayer neural network in the initial feature
space is considered in this paragraph as a quality criterion of this neural network. The
quality of the aforementioned multilayer neural network with sequential connections in-
creases with the increase of the number of layers and the number of neurons in each layer.

Therefore, the problem of neural network optimization (minimization of numbers of
layers and neurons) is formulated either to eliminate neuron number redundancy, or under
limitation on the number of neurons.

The main attention below is paid to the multilayer neural networks with full cross
connections. In this case, a feature set of each j-th layer consists of features of initial space
and input signals of the first, second and (j–1)-th layers. The problem of structure opti-
mization for such a neural network is relevant.

Optimization of Cross Connection Multilayer
Neural Network Structure

54 Chapter 3 · Optimization of Cross Connection Multilayer Neural Network Structure

3.2
One-Dimensional Variant of the Neural Network
with Cross Connections

Let us consider the principle of cross connection operation on the simplest one-di-
mensional example with N = 1 (one feature x). Figure 3.1 shows a block scheme of such
a neural network. The divisional surface realized by the network without a cross con-
nection is shown in Fig. 3.2.

In regions I, II and III, analogous output signal of the neural network g under the
activated cross connection is represented in the form

The neural network divides each of the regions I, II and III into two subregions,
where g ≥ 0 and g < 0. From the condition of zero values of gI, gII, gIII, one obtains the
expressions for additional thresholds under the activation of a backward connection
in the space X:

Thus, the considered neural network (Fig. 3.1) realizes not more than five thresh-
olds that divide the x axis into six regions. The neural network in this case is equivalent
to the multilayer neural network with sequential connections consisting of five neu-
rons in the first layer. This means that the neural network with cross connections is
realized much more simply than the neural network with sequential connections.

Fig. 3.1.
Two-layer neural network with
a cross connection, one-di-
mensional variant

Fig. 3.2. To the principle of cross connection in multilayer neural networks

55

In the process of analysis of a multilayer neural network, one must know the maxi-
mum number of regions into which the feature space of dimensionality N can be di-
vided by H1 hyperplanes. The maximum number of regions ΨNH1

 is determined ac-
cording to the following recurrent Eq. (3.1):

(3.1)

or in the non-recurrent form

It is implied that Ct
s = 0 if t < s. The following expressions can be derived from (3.1):

(3.2)

and

(3.3)

3.3
Calculation of Upper and Lower Estimation of the Number of Regions

Let us consider a multidimensional variant (i = 1,…,N) of the neural network with the
structure shown in Fig. 3.3.

The number of areas formed by the division of the initial feature space by the
(j – 1)-layer neural network is designated as ΨN,[j–1], where [j–1] conditionally indi-
cates the equivalent number of hyperplanes realized by the multilayer neural network
with full cross connections and with the (j–1)-th layer. Such a network consists of

neurons, where Hi is equal to the number of neurons in the i-th neural network layer.
The input channels of each hj-th neuron of the j-th layer (hj = 1,…,Hj) can be divided
into two sets, as it follows from the block scheme. The first set consists of the input
signals of the neural network. The second one consists of the output signals of the

Fig. 3.3.
To the solution of the problem
of optimization of the open-
loop neural network structure
with full sequential connec-
tions

3.3 · Calculation of Upper and Lower Estimation of the Number of Regions

56 Chapter 3 · Optimization of Cross Connection Multilayer Neural Network Structure

neural network from the first, second, … (j–1)-th layers. Then the equation of the di-
visional surface realized by one hj-th neuron of the j-th layer takes the form

Here ahj1 is the vector of adjustable weights of the neural network input signals of
the hj-th neuron; ahj2 is the vector of adjustable weights of the input and intermediate
signals of the (j–1)-layer network of the hj-th element; a0

hj is the threshold of the hj-th
neuron; and xk,j–1 is the vector of the neuron output signal of the (j–1)-th layer.

Therefore, relative to the initial feature space, each neuron in the j-th layer imple-
ments as much parallel hyperplanes as it is the number of variants of xk,j–1 that are
generated by the (j–1)-layer neural network. Let us assume that there exists such an
adjustment procedure in which all hyperplanes generated by vector xh,j–1 of the j-th layer
belong to the initial feature space area corresponding to it. Then the recurrent equa-
tion for the calculation of the upper estimation of number of regions can be written in
the form

(3.4)

This follows from the fact that each of the ΨN[j–1] regions selected by the (j–1)-layer
sub-network is divided into ΨNHj regions, where ΨNHj is determined by the recurrent
relationship (3.1).

Let us now find a non-recurrent equation. Equation (3.4) and the fact that the first
layer of the neural network divides the feature space into ΨNHj areas result in

(3.5)

In order to derive the estimation for the lower number of regions, let us assume that
several hyperplanes out of ΨN[j–1] hyperplanes can be put through any point of the
initial space by the change of only a free term in the equation of hyperplane. These
hyperplanes can belong to any area. The system of linear equations of relatively adjust-
able weights and the threshold of the hj-th element for the estimation of their numbers
has the form

(3.6)

57

Here qi (i = 1,…,ΨN[j–1]) are arbitrary given values. The number of values qi that
satisfies (3.6) is a required number of hyperplanes out of the number ΨN[j–1] that can
be put through any point of the initial space. This number is (Ls–1 + 1) and equals the
dimensionality of vector ahj2 plus unit, as it follows from (3.5).

Then the following recurrent equation for the calculation of the lower estimation of
number of regions is valid:

Here ΨN[j–1] – (Lj–1 + 1) is the number of regions in which new hyperplanes are not
put through; (Lj–1 + 1)ΨNHj is the number of new regions that emerge after the parti-
tion.

Finally one obtains

(3.7)

Expression (3.7) is the final result. In a one-dimensional case, (3.7) obtains the form

(3.8)

3.4
Particular Optimization Problem

One can formulate several problems of the multilayer cross connection neural net-
work structure optimization.

1. The number of layers and the number of neurons are given. It is required to find the
neuron’s distribution in the layers that maximize the number of regions Ψ formed
piecewise linear divisional surface realized by the given multilayer neural network
in the initial feature space.

2. The total number of neurons is given. It is required to find the number of layers and
neuron’s distribution in the layers that maximize the number of regions Ψ.

3. The number of regions Ψ that must be realized by the network and the number of
neurons are given. It is required to find the structure that minimizes the number of
neural network elements.

4. The number of regions Ψ is given. It is required to find the structure (the number
of layers and neuron’s distribution in the layers) that minimizes the number of
network neurons. Note that the structure optimization by the number of regions
represents a particular optimization criterion of the neural network.

Let us consider the structure synthesis of a one-dimensional variant of the network
for the aforementioned optimization problems.

3.4 · Particular Optimization Problem

58 Chapter 3 · Optimization of Cross Connection Multilayer Neural Network Structure

1. The number of layers W and the number of neurons

are given. Let us find the neuron’s distribution in the layers that maximize the num-
ber of regions Ψ1W. Formally the problem is stated in the form of relationships written
with consideration to (3.5) and (3.1):

The Lagrange method of multipliers gives the solution in the form of the system
of equations

(3.9)

The solution of the system (3.9) is

(3.10)

It follows from (3.10) and (3.5):

(3.11)

i.e., under the given number of layers the given neurons must be uniformly distrib-
uted among layers. In relationship with (3.10), the question about integrality of Hj
(j = 1,…,W) arises. If H cannot be divided by W integrally, then it follows from (3.5)
and (3.10) that the remaining elements must also be distributed uniformly among
layers in an arbitrary way.

In this sense, Eq. (3.11) is the upper estimation of Ψ1
o
[
p
W

t
] that becomes a precise

upper estimation when H = KW, where K is an integer number.

59

2. The total number of layers W is not given beforehand. The number of neurons H in
the network is limited. Let us find an optimum by the upper estimation structure.
This can be expressed in the following form:

From the evident inequality followed from (3.11), one gets

and consequently the number of regions is a monotonic increasing quantity with
the increase of the number of layers. Consequently, the H-layer neural network with
one neuron in each layer is optimal. It follows from (3.11) that for this network,

is the precise upper estimation.
3. The number of layers W and the number of neurons are given. Let us find the struc-

ture optimum by the lower estimation. In order to do that, let us represent (3.8) in
the non-recurrent form:

(3.12)

According to the Lagrange method of multipliers, constrained extremum (3.12),
under condition

is achieved in the case when Hi (i = 1,…,W) is a solution of the system

Then H1 = H2 = … = HW = (1/W)H and under given W,

(3.13)

3.4 · Particular Optimization Problem

60 Chapter 3 · Optimization of Cross Connection Multilayer Neural Network Structure

It follows from (3.13) that Ψ1
o
[
p
W

t
] is a monotonic increasing quantity when W → ∝

and it becomes precise when H = KW, where K is an integer number. Consequently,
Ψ1

o
[
p
W

t
] = 1 + (H + H2)/2 for the H-layer neural network with one neuron in the layer.

Hence, in the one-dimensional case (N = 1), the structure’s optimum by the lower
and upper estimations coincide.

4. Similar to the one-dimensional case, in a multidimensional neural network variant
optimum by the upper estimation, on the basis of (3.5), one can write

(3.14)

It follows from (3.14), (3.2) and (3.3) that a whole class of structures satisfies the
optimal conditions (3.14). Namely, for all structures with Hj ≤ N (j = 1,…,W),

(3.15)

For these structures,

(3.16)

For the structures with Hj > N, for each j = 1,…,W: ΨN
o

[
p
W
t

] < 2H.

3.5
Structural Optimization by Some Main Topological Characteristics

A natural desire to decrease the total number of neural network inputs emerges when
technological implementation of the network is performed. This is due to the fact that
the number of inputs is the number of technologically complex realized multiplier units.
The number of inputs at the selected structure adjustment stage is equal to the tuned
coefficient space dimensionality. Therefore, the decrease of the number of neuron inputs
of the multilayer neural network simplifies both implementation and adjustment.

The total number of neuron inputs in the i-th layer of the neural network with full
cross connections is equal:

Consequently, the expression for the total number of neuron inputs in the W-layer
neural network is

(3.17)

61

The problem of synthesis of the multilayer neural network with full cross connec-
tions and optimal by the upper or lower estimation for the number of regions under
the limitations upon the number γ of network inputs is formulated on the basis of (3.17)
in the following way:

(3.18)

Index * indicates an extremum value. Taking into account (3.17), the inverse prob-
lem, i.e., the problem of synthesis of structure for a multilayer neural network with full
cross connections and minimum total number of inputs under the limitation on the
number of regions Ψ, has the following form:

(3.19)

The number of regions ΨN[W] in (3.18) and (3.19) is determined either by (3.5) or
by (3.7) depending on the form of estimation.

The inverse problem statement for synthesis is less practical then the direct one
because the limitation on the number of input channels in the neural network is more
physically valid then the limitation on the number of regions.

Example 1. Let us show that the structure of the multilayer neural network optimum
by the upper estimation of the number of regions with a limitation on the number of
elements in the one-dimensional case will be optimal by the upper estimation with a
limitation on the total number of inputs. According to the Lagrange method of multi-
pliers and (3.18) with N = 1, optimal H1 and HW are the solutions of the following sys-
tem of equations:

(3.20)

Here λ is the Langrangian multiplier.

3.5 · Structural Optimization by Some Main Topological Characteristics

62 Chapter 3 · Optimization of Cross Connection Multilayer Neural Network Structure

The solution of (3.20) is

(3.21)

Here W is the number of layers. It represents an integer part of the positive root of
the equation W2 + W – γ / 2 = 0.

Equation (3.21) proves the initial statement.

Example 2. Let us consider the synthesis of the neural network taking into account (3.19),
where ΨN[W] is determined by the expression (3.5). Note that transference of a neuron
from the j-th layer into the (j–j2)-th layer causes the decrease of the number of neuron
inputs for the neural network with full cross connections by

(3.22)

and the total increase of the input numbers of the rest of the neural network elements
will amount to

(3.23)

It follows from (3.22) and (3.23) that the transference of a neuron from the j-th
layer into the (j–j2)-th layer causes the decrease of multilayer neural network input
channels if

It follows from (3.22) and (3.23) that two structures with the total number of net-
work neurons H = [log2Ψ] (square brackets mean rounding up) satisfy the optimiza-
tion condition (3.19):

H1 = ∆; Hj = N, j = 2,…,W

H1 = N; HW = ∆, j = 1,…,W – 1

Here ∆ is a remainder of division of H by N;

Both structures correspond to the equal number of inputs determined by (3.17).

63

Example 3. Let us consider the optimization of the neural network structure that is
optimal by the length of connections.

Let us assign some weight Uj1j to each connection from the j1-th to the j-th layer. Let
us also designate the connection length of the input vector with the j-th layer as U0j.

Then the total length of connections between neurons in the j-th layer is described
by the expression

The total connection length in the W-layer neural network is evidently equal to

(3.24)

Similarly to (3.19), one can write

(3.25)

(3.26)

The number of regions Ψ in (3.25) and (3.26) is determined by the expressions (3.5)
or (3.7), depending on the form of estimation. Note that at Uj1j = 1 (j1 = 0, 1,…,W–1;
j = 1,…,W) the expression (3.29) coincides with (3.17), and expressions (3.25) and (3.26)
coincide respectively with (3.18) and (3.19).

Example 4. Let us consider now the most general limitations on the neural network
structure. They include all the aforementioned limitations as particular cases. The cost
of one neuron will be βH, the cost of one input will be βα, and the cost of one connec-
tion unit will be βu. Then according to (3.17) and (3.24), the total cost takes the form

(3.27)

3.5 · Structural Optimization by Some Main Topological Characteristics

64 Chapter 3 · Optimization of Cross Connection Multilayer Neural Network Structure

Let us formulate the problems of neural network synthesis with a limitation on the
co st SW in a similar form t o (3.18) a nd (3.19):

(3.28)

(3.29)

The cos t SW in expression s (3.28) a nd (3.29) is determined b y (3.27), and the
number of regions ΨN[W] is determined by (3.5) or (3.7) depending on the form of
estimation.

All the problem statements considered above for the neural network structure syn-
thesis can be obtained by variation of cost coefficients βH, βα, and βu in (3.28) and (3.29).

3.6
Optimization of a Multilayer Neural Network Structure
with Kp Solutions

The elements of a multilayer neural network with full cross connections are described
by expressions represented in the previous chapter. Each element realizes an assem-
blage of parallel divisional hyperplanes in its feature space. The maximum number of
regions selected in the initial feature space by the equivalent divisional surface does
not exceed Kp

H, where H is the number of network neurons. This estimation is achieved
only for a multilayer neural network with full cross connections.

Let us estimate a number of regions that can emerge as a result of the partitioning of
the N-dimensional feature space by H1 groups of hyperplanes consisting of (Kp–1)-th
hyperplane in each group. Let us designate a maximum number of regions selected by
the [H1–1] group as ΨN

K
[
p
n–1]. Then similar t o (3.3) a nd (3.4)

Let us estimate a z value. When placing each of the (Kp – 1) hyperplanes, the num-
ber of selected regions increases by the number of regions formed on the hyperplane
by lines of its intersection with other hyperplanes, i.e., by ΨN

Kp
–1[H1–1].

Consequently,

and finally

(3.30)

with the initial conditions

65

(3.31)

It can be shown from (3.30) and (3.31) that

(3.32)

Let us consider the hj-th neuron with Kp solutions located in the j-th layer of the
multilayer neural network with full cross connections. The input signals of the hj-th
neuron can be divided into two groups: input signal vector x = [x1,…,xN] and row-
vector y = [y1,…,yL] of output and intermediate signals of the (j–1)-layer neural net-
work. Let us assume that the (j–1)–layer neural network selects ΨN

Kp
[j–1] regions in the

initial feature space.
Then ΨN

Kp
[j–1] different variants of vector y can come through the y-channels to the

inputs of the hj-th neuron. The equation for the output signal of the hj-th neuron with
Kp solutions can be written in the following form:

(3.33)

where Ahj and A1
hj are the vectors of weighting coefficients for x and y, respectively.

Each of the Hj neurons with Kp solutions realizes geometrically (Kp–1) ΨN
Kp

[j–1] par-
allel hyperplanes in the neural network input signal space according to (3.33). The
expression for the upper estimation of the number of regions that emerges as a result
of decomposition of X space by the considered j-layer neural network has the form

(3.34)

Here ΨN
Kp

Hj is determined by (3.30) and (3.31). Taking into consideration that (3.34)
is a recurrent expression and that the first neuron layer with Kp solutions decomposes
the X space into ΨN

Kp
Hj regions, the expression (3.34) can be rewritten as

(3.35)

The expression (3.35) allows one to formulate and to solve the problem of synthesis
of the neural network structure optimum by the upper estimation of the number of
regions under the limitation on the total number N of neurons in the neural network.
It follows from (3.35) and (3.32) that in the W-layer neural network

(3.36)

3.6 · Optimization of a Multilayer Neural Network Structure with Kp Solutions

66 Chapter 3 · Optimization of Cross Connection Multilayer Neural Network Structure

Consequently, the following neural network with full cross connections will be
optimal by the upper estimation of the number of regions: the number of neurons with
Kp solutions in each layer of such a neural network must not exceed the dimensionality
of the initial feature space.

Literature

[3-1] Lupanov OB (1958) About possibilities of synthesis of circuits with arbitrary number of ele-
ments. Proc. of Steklov Mathematical Institute 51:158–173

[3-2] Galushkin AI (1974) Synthesis of multilayer systems of pattern recognition. Moscow, Energyia
[3-3] Galushkin AI, Schmidt AB (1992) Optimization of structure of multilayer neural networks

with cross connections. Neurocomputer 3,4

Chapter 4

A large number of parameters characterizing the input signal must be taken into con-
sideration while developing multilayer neural network structures. An example is a
design of a pattern recognition system with the requirement of maximum probability
of correct recognition [4-1]. It is suggested to take into account continual properties of
multilayer neural network characteristics in its mathematical modeling and in its tech-
nological implementation.

4.1
Neurons with Continuum Input Features

The transfer to the continuum features becomes important when the dimensionality N
of some feature vector xi becomes large (several hundreds or thousands). The feature
vector in this case {xi, i = 1,…,N} is replaced by the function of indiscrete argument
{x(i), i ∈ I}, and the weighting vector {am, m = 1,…,M} is replaced by the weighting
function {a(m), m ∈ M}. The neuron model with a continuum of features, similar to
the classic discrete case [4-2], is determined by the expression

(4.1)

where y is a neuron output signal; x(m) is a neuron input signal; and a0 is a threshold
value.

The transfer to the feature continuum at the input of the first neural network layer
often excludes the requirement to quantize the input signal (for example, electric sig-
nal or pattern, etc.). The method of technological implementation of the neuron weight-
ing function is selected depending on the concrete physical type of the input signal.
For example, when the input signal is an electric one changing in time, the weighting
function must also be generated as an electric signal. In the case of optical patterns, the
weighting function can be realized on the photomask. For the discrete set of neurons
with continuum feature space,

(4.2)

The neural network structure according to (4.2) is shown in Fig. 4.1.

Continual Neural Networks

68 Chapter 4 · Continual Neural Networks

4.2
Continuum of Neurons in the Layer

The transfer to the continuum space of the layer output signals can be interpreted as
a continuum of neurons in the layer. Then the output signal is realized not in the form
of a finite-dimensional vector, for example consisting o f + 1 a nd –1, as it is shown in
Fig. 4.1, but in the form of a y(m2, n) signal having valu es + 1 an d –1 in the interval
of variance of indiscrete argument m2. Consequently, taking into account (4.2), the
output signal is an infinite-dimensional vector with components

(4.3)

The expression (4.3) forms the basis for physical implementation of open-loop sys-
tems of the type considered.

4.3
Continuum Neurons in the Layer and Discrete Feature Set

In the particular case of discrete feature set and continuum neurons in the layer under the
transfer from indiscrete variable m1 to the discrete one, the expression (4.3) takes the form

(4.4)

This expression is the basis for the implementation of the neural network whose
particular case is represented in Fig 4.2.

The neuron’s layer output signal is an electric signal with form features at the n-th
period. Electric signals am1

(m2) and a0(m2) are generated inside the system at each
n-th step. As distinct from the system of signal form recognition, their period is deter-
mined a priori. The electric signal of two values (1, –1) in the interval (0, M2) emerges
at the layer output (Fig. 4.3).

Such a layer model with a continuum of neurons is adequate for the neurophysiologi-
cal neuron model under the pulse-frequency modulation of the layer output signal.

Fig. 4.1.
Neural network layer with
continuum input features

69

4.4
Classification of Continuum Neuron Layer Models

The systems considered below serve as the recognition of one-channel electric signals
of the “bump” type, i.e., the signal with lock-in bump onset and periodic signal with
lock-in at each period (Fig. 4.4).

4.4.1
Discrete Set of Neurons

A basis of the neural network implementation in this case is the expression (4.2) in
which ym2

(n) has two values (1, –1); x(m1, n) and am2
(n) are electric signals at the n-th

period; a0m2
 is a constant coefficient.

4.4.2
One-Dimensional and Two-Dimensional m2 Feature Space

A basis of the neural network implementation in this case is the expression (4.3). The
difficulty for implementation is a multiplier unit for the multiplication of a continuous
function of one variable by a continuous function of two variables, one of which coin-

Fig. 4.3.
Form of the neuron layer out-
put signal

Fig. 4.2.
Discrete feature set. Continu-
um of neurons in the layer

4.4 · Classification of Continuum Neuron Layer Models

70 Chapter 4 · Continual Neural Networks

cides with the variable of the first function. The requirement of the continuum type of
the layer input space makes it necessary to realize the function x(m2, n) in the form of
an electric signal. At the same time, the requirement of the continuum type of the layer
output space makes it necessary to realize the function a(m2, m1) in the form of an
image. The main difficulty is the multiplication of functions x(m1, n) and a(m2, m1).
One can assume the physical existence of the optical element xstr, whose dimness (or
brightness) changes in the real time along one of the coordinates depending on the
form of applied voltage, and the form of the output voltage – depending on the dim-
ness (or brightness) distribution along the coordinate at the integration of the inten-
sity along another one. Such an element can be conditionally called a “spatial optical
coupler”. Then the implementation of this network could have the form shown in

Fig. 4.4. Types of signals received by the neuron layer in the case of features one-dimensional and one-
channel continuum m1: a – bump signal; b – periodic signal

Fig. 4.5. Hypothetical variant of optical system implementation in the case of one-dimensional one-
channel m1 and two-dimensional m2

71

Fig. 4.5, where the layer input electric signal would come to the vertical plate of the
element xstr at its input, and the output signal would be read from the horizontal plate
of the output element xback.

Consequently, it is difficult to consider two-dimensional m2 at the existent level of
technological development because it requires the physical implementation of three-
dimensional function a(m2, m1).

4.4.3
Continuum of Features – One-Dimensional m1 for Several Channels

This case has an important practical meaning because it is often necessary to recog-
nize a multi-channel signal, for example, at the recognition of EEG when the simulta-
neous analysis of several disposals is performed, Fig 4.6.

One can use the expression (4.2) for the neural network implementation in this case.
The neuron structure is shown in Fig. 4.7, and the neuron layer represents a parallel
neuron connection with equal inputs (Fig. 4.8).

Fig. 4.6. Types of signals received by the layer of neurons in the case of a feature continuum and one-
dimensional multi-channel m1: a – bump signal; b – periodic signal

Fig. 4.7.
Block-scheme of physical im-
plementation of the neuron
layer with a feature conti-
nuum and one-dimensional
and multi-channel m1

4.4 · Classification of Continuum Neuron Layer Models

72 Chapter 4 · Continual Neural Networks

4.4.4
Feature Continuum – Two-Dimensional m1

The problem of image recognition is adequate for the variant of a discrete set of neu-
rons in the layer and two-dimensional m1. Taking into account (4.2), the neuron layer
structure in the case of a feature continuum and two-dimensional m1 can be repre-
sented in the form shown in Fig. 4.9. The system of the image’s multiplication can be
realized on the basis of optical fibers or with the help of holographic methods or a
system of mirrors.

4.4.5
Neuron Layer with a Continuum of Output Values

In this case, the output space remains at the bottom to be a space of table features
varying in some interval of indiscrete set of values determined by activation function,
i.e., by nonlinear transformation at the neuron output. This also concerns systems (4.2),
Figs. 4.1, 4.9.

For systems (4.4), the output electric signal has the form of a function of one vari-
able taking two values (1, –1) in some interval of its variance. The transfer to the neu-
rons with a continuum of solutions results in the output electric signal varying indis-
creetly by its amplitude.

Fig. 4.8. Structure of a multi-channel neuron layer with discrete set of neurons in the case of a feature
continuum and one-dimensional feature space

73

A multilayer neural network for the solution of different problems concerning vectors,
signals and pattern processing can be designed as different combinations of the afore-
mentioned continuum systems. The following problems are perspective in this field:

� Search for physical implementation methods for different types of continuum models
of multilayer neural networks;

� Development of structure synthesis methods for continuum models of multilayer
neural networks according to the different criteria;

� Development of other a priori given structures of continuum models of a multilayer
neural network (cross connections and backward connections systems, etc.);

� Use of a system’s “human-machine” for the continuum multilayer network struc-
ture synthesis;

� Introduction of new continuum properties of multilayer neural networks (continuum
number of layers, etc.)

The transfer to the continuum feature space and continuum set of neurons in the
layer becomes important when the number of features becomes large (several hun-
dreds or thousands).

The problem of transfer to the continuum number of layers is not so significant.
The preliminary analysis of this problem shows principle mathematical difficulties for
the implementation of such a transfer. This follows from the expression for the output
signal of the three-layer system:

The solution of the problem for the transfer to the continuum of the number of
layers is complicated due to the nonlinear transducers at the output of each layer and
due to the difficulty of selecting a method of physical implementation of the open-loop
system adequate for such a model.

Fig. 4.9. Block-scheme of a physical implementation of a neuron layer with a feature continuum, two-
dimensional m1 and discrete set of elements in the layer

4.4 · Classification of Continuum Neuron Layer Models

74 Chapter 4 · Continual Neural Networks

Literature

[4-1] Galushkin AI (1974) Synthesis of multilayer systems of pattern recognition. Moscow, Energiya
[4-2] Rosenblatt F (1962) Principles of neurodynamics. Spartan Books, Washington
[4-3] Galushkin AI (1977) Continuum models of multilayer systems for pattern recognition. Auto-

mation and computer technology, Riga, No. 2
[4-4] Galushkin AI (1992) Continuum neural networks. Neurocomputer 2

Optimal Models of
Neural Networks

Chapter 5 Investigation of Neural Network
Input Signal Characteristics

Chapter 6 Design of Neural Network Optimal Models

Chapter 7 Analysis of the Open-Loop Neural Networks

Chapter 8 Development of Multivariable Function
Extremum Search Algorithms

Part II

Chapter 5

5.1
Problem Statement

A neural network can be represented in the form of an equivalent system that adapts
to external conditions. A general block-scheme of such a system is shown in Fig. 5.1,
where x(n) is a multidimensional stochastic process having the form of pattern se-
quence at the neural network input; n is a discrete argument.

Signal εεεεε(n) is determined by supervisor instructions belonging to the current pat-
tern at the neural network input to a particular class. Each class includes some set of
patterns possessing a common property. A multidimensional output signal of the rec-
ognition system y(n) is generated in the form of neural network data belonging to the
current pattern of a particular area in the solution space. The three spaces considered,
X, E, Y, are respectively spaces of patterns, supervisor instructions and neural network
output signals. The unit of neural network parameter adjustment determines vector a(n)
of adjustable coefficients and information about y(n) transformation structure, i.e.,
dependence of the neural network output signal on the input one; g(n) is a vector of
intermediate neural network signals.

The input signal of the neural network is [x(n), εεεεε(n)]. One of its characteristics is
the number of εεεεε(n)-signal level gradations determined by the number of pattern classes.
Signal x(n) of dimensionality N can be in general discrete or indiscrete by its ampli-
tude. If εεεεε(n) is a one-dimensional signal with its level discretized into two or K grada-
tions, then respectively 2 or K pattern classes are considered. If vector εεεεε(n) has a
dimensionality N* and the number of amplitude gradations for each of its components
amounts to K0 then the number of classes is

K = (K0)N*

Investigation of Neural Network Input
Signal Characteristics

Fig. 5.1.
Block-scheme of the neural
network

78 Chapter 5 · Investigation of Neural Network Input Signal Characteristics

A class continuum is considered when signal εεεεε(n) is indiscrete. Then the neural
network adjustment can be considered as the problem of system estimation of some
indiscrete parameter εεεεε for the distribution f (x,εεεεε) of some stochastic process.

A particular problem of adjustment (learning) can be illustrated in the follow-
ing example. Let us consider the formation of the neural network input signal in
the case of a feature continuum in the problem of reliability forecasting of some
device.

In Fig. 5.2, xj(t0) are the curves for the time changes of some device parameter that
serves as an indicator of the device reliability in the test; j is the number of the testing
device; x0 is the parameter’s acceptable value.

The point of the curve xj(t0) intersection with the level x0 determines the device
non-failure operating time. Vector xj(n) corresponding to each curve is the vector ob-
tained by the curve discretization in time in the interval [0, T0], where T0 is the time
of the device testing. Components of the vector correspond to the ordinates xj(t0) in
the points of discretization. This procedure allows one to form the feature space in
this problem.

The supervisor instruction can be formed in the following way. The device opera-
tion life time T0′ is given a priori. Vectors xj(n) determined by the points of inter-
section of the curves xj(t0) and x0 that lie before T0′ belong to the first (failure)
class of devices, and after T0′ – to the second (fitting) class. Respectively, two ampli-
tude gradations of the signal ε(n) are introduced (1, –1). The t0 axis can be parti-
tioned into K intervals with an indication of the device type, and the signal ε(n) will
have K amplitude gradations (for example, ε = 1, …, K). Each vector xj(n) will have
its own value ε.

In the extreme case, when the t0 axis is not partitioned, the supervisor instruction
for the system of the device’s non-failure operating time has indiscrete distribution.

The following characteristics can be the object of analysis in each particular case:
joint distribution f (x,εεεεε), conditional distribution f ′(x/εεεεε) of pattern x assemblage un-
der a given instruction εεεεε about its belonging to the k-th class, distribution of
signals f (x) and f ε(εεεεε) and their different moments of distribution, etc.

The introduction of such a notion as teacher (supervisor) qualification allows one
to develop a unified approach to the problems of learning and self-learning. Joint
distribution of input patterns and instruction signal of patterns belonging to some
class is represented on the basis of a unified approach.

Fig. 5.2.
The formation of a feature
space and supervisor instruc-
tions in the problem of device
reliability forecasting

79

5.2
Joint Probability Distribution of the Input Signal for Two Pattern Classes

In the neural network learning process, learning sample patterns belonging to a par-
ticular class is known with probability 1, i.e., the teacher (supervisor) gives the precise
instruction concerning the learning sample. In the self-learning process, the signals in
the learning sample are not accompanied by the instruction about their belonging,
and the probability is less than 1. In the simplest case of two-mode distribution, this
probability is 0.5. Let us designate as a, the probability of the supervisor instruction
for the pattern to belong to some class.

It is important to analyze intermediate modes of the transfer from the problem of
learning to the problem of self-learning and vice versa in the algorithm block-scheme
represented in Fig. 5.3.

The transfer must be performed by the change of the learning sample member
probability of belonging to a particular class in the range from a = 1 to a = 0.5 (and
vice versa).

The following reasons make it necessary to analyze such intermediate modes:

1. Development of a unified approach to the analysis and synthesis of learning and
self-learning modes for pattern recognition systems;

2. Solution of some practical problems. One such problem is the learning procedure
with the teacher of incomplete qualification.

The expression for the joint distribution f (x,εεεεε) of signals x(n) and εεεεε(n) is

(5.1)

where p1 and p2 are the a priori probabilities of the emergence of the first and second
classes; f1(x) and f2(x) are distributions of signals x1(n) and x2(n) representing pat-
terns of the first and second classes.

Distribution (5.1) is a discrete-continuous one due to the discrete form of εεεεε(n).
However, it can be written in the indiscrete form using the Kronecker delta function.
The discrete representation is taken into account below by means of the replacement
of the integration operations with summation operations.

The level of teacher qualification b is introduced in the following way [5-1, 5-2]:

b = 2a – 1 (5.2)

Fig. 5.3. Structure of mathematical model for the unified approach to the problems of learning and
self-learning in the pattern recognition systems

5.2 · Joint Probability Distribution of the Input Signal for Two Pattern Classes

80 Chapter 5 · Investigation of Neural Network Input Signal Characteristics

Consequently, b = 1 when a = 1, and the teacher qualification is complete; b = 0 when
a = 0.5, and the teacher qualification is zero.

Taking into account (5.2) and (5.1), one obtains the following:

(5.3)

Figure 5.3 represents a structure of a mathematical model for the generation of a neu-
ral network input in the considered case. Expressions (5.3) and (5.2) relate to the equal
teacher qualification level for both sample classes. Equation (5.3) at b = 1 gives the
following joint distribution law for the input signal in the neural network learning mode:

(5.4)

The joint distribution law for the input signal in the self-learning mode at b = 0 has
the form

Here the signal of the supervisor instruction ε(n) gives no information about the
pattern belonging to any class because the conditional probabilities f ′(x/ε = 1) and
f ′(x/ε = –1) are equal.

Expression (5.3) at b = –1 gives

The teacher in this case performs an incorrect classification intentionally (the teacher
is a “saboteur”).

By definition of conditional probability

(5.5)

where

81

Integration of (5.3) gives the following supervisor instruction distribution function:

(5.6)

Equations (5.6), (5.3) and (5.5) give

(5.7)

The conditional distribution law f ′′(ε/x) is similarly defined as

where the integration with discrete argument ε is replaced by summation. One obtains
after substitution and integrating

(5.8)

It follows from (5.7) and (5.8) at b = 0:

f ′(x/ε) = fx(x), f ′′(ε/x) = f ε(ε)

indicating statistical independence of signals x(n) and ε(n) at the neural network in-
put in the self-learning mode.

Let us designate the joint moment of the j-th order of multidimensional stochastic
process x(n) as αj:

5.2 · Joint Probability Distribution of the Input Signal for Two Pattern Classes

82 Chapter 5 · Investigation of Neural Network Input Signal Characteristics

Then the expression for the moments of distribution (5.3) has the form

where aj1 and aj2 are the joint moments of the j-th order for the assemblage of patterns
of the first and second classes. One obtains in the cases of even-numbered and odd-
numbered i

Consequently, the teacher qualification influences the moments of distribution f (x,ε)
at odd-numbered i.

Unequal teacher qualification with respect to the patterns of the first and second classes. In
some practical problems, the teacher qualification of the pattern recognition system is
different for the patterns of the first and second classes. Let us introduce a stochastic matrix

where aij is the probability of the supervisor instruction to consider patterns of the j-th
class as patterns of the i-th class. In this case,

or

(5.9)

The analysis of different variants for the relationship between b1 and b2 is an object
of special discussion. For example, when b1 = 1 and b2 = 0, the teacher qualification is
equal to 1 for the first class, and is equal to 0 for the second class. In this case,

This variant is intermediate between learning and self-learning modes.
Moments of distribution for (5.9) have the form

83

Joint distribution law in the case of “teacher’s slant about his abilities”. The teacher
makes some number of mistakes in the pattern recognition system learning. Let us
introduce the notion “teacher’s slant about his qualification” by some coefficient c. At
c > b we have “teacher’s overestimation” of his abilities c – b. At c < b we have “teacher’s
underestimation” of his abilities b – c. The question concerning the investigation of the
influence of teacher’s slant and his real qualification upon the neural network opera-
tion characteristics arises.

Similar problems can be also formulated in the sense of “sabotage” when
–1 < b < 0.

Let us designate the supervisor instruction in the case of complete teacher overes-
timation as ε ′. It was assumed in the previous text that ε = ε ′. The uncertainty of the
teacher in his abilities results in the fact that the classification of the appeared pattern
as a pattern of the first (ε = –1) or second (ε = 1) class is performed with the probabil-
ity (1 + c)/2. Respectively, the same patterns belonging to the second or first classes are
determined with the probability (1 – c)/2. The joint distribution of random values ε
and ε ′ can be represented in the form

(5.10)

Consequently,

Replacing ε with ε ′ in the joint distribution (5.3), we obtain the following distribu-
tion:

(5.11)

5.2 · Joint Probability Distribution of the Input Signal for Two Pattern Classes

84 Chapter 5 · Investigation of Neural Network Input Signal Characteristics

The derivation of (5.11) is done in the work [5-2] where the analysis of particular
and general cases is performed. It is shown that in the case of different “teacher’s slant
about his abilities” concerning the first and second pattern classes,

The expressions for eigendistribution, conditional distributions and distribution
moments for the input signal can be obtained from the latter equation.

5.3
Joint Distribution Law for the Input Signal Probabilities
in the Case of K Classes of Patterns

The matrix of probability akk′ that the teacher will consider a particular pattern as
belonging to the k-th and k′-th class is introduced a priori when the number of classes
is more than two:

It is evident that

The joint probability distribution law for signals x(n) and εεεεε(n) has the form

(5.12)

where k = 1,…,K.
In the learning mode, matrix A is a unit matrix

In the self-learning mode, the probability of considering the k′-class pattern as
belonging to the k-th class is equal to 1/K for all classes:

85

In the “sabotage” mode, k′-class patterns are considered with some probability of
belonging to any class except this k′-class:

Let us introduce the notion of the teacher qualification bk for the pattern recogni-
tion system in the case of K classes. The relationship between probabilities akk′ and bk
is nonlinear because

(5.13)

If this relationship were approximated by the function of the second order

then after the substitution of (5.13) one obtains

(5.14)

Similarly, the relationship b(a) has the form

(5.15)

Any of the expressions of (5.14) or (5.15) can be used in concrete calculations. The
expression (5.12) allows one to obtain the final expression for the distribution mo-
ment:

The joint probability distribution for the input signal in the case of K pattern classes,
arbitrary teacher qualification and “teacher’s slant about its abilities” with respect to
each class has the form

5.3 · Joint Distribution Law for the Input Signal Probabilities in the Case of K Classes of Patterns

86 Chapter 5 · Investigation of Neural Network Input Signal Characteristics

where the probability matrix C = [clk] characterizes the “teacher’s slant about its abili-
ties” when considering l-class patterns as k-class ones. If the following is designated

then one obtains

The case of a pattern class continuum. The eigendistribution of supervisor instructions
in the learning mode for recognition of K classes has the form

f ε(ε) = pk, when ε = k, k = 1,…,K

This is a function of discrete argument ε. The case of indiscrete distribution func-
tion has a wide practical use when the neural network teacher cannot clearly deter-
mine the patterns belonging to a particular class. It is possible (but not desirable due
to the loss of information) to partition the axis T into K parts and to reduce the prob-
lem with a class continuum to the problem with K pattern classes. In the case of con-
tinuum pattern classes, unit matrix A and continuous function f ε(ε) in the learning
mode, one obtains similar to (5.12) the following:

f (x,ε) = f ε(ε)f ′(x/ε)

and in the self-learning mode,

f (x,ε) = f ε(ε)fx(x)

A function a(ε ′,ε) of the probability of considering patterns objectively correspond-
ing to the distribution f (x,ε ′) as corresponding to the distribution f (x,ε) is introduced
in the case of the arbitrary teacher qualification. Then

The joint probability distribution f (x,ε) of the neural network input signals x(n)
and ε (n) will have the form

For the learning mode, a(ε ′,ε) = δ (ε ′-ε) and f (x,ε) = f (x,ε).

87

About nonstationary neural network input signals. Assemblages of patterns distributed
inside each class according to the time dependent law fk(x,n) are considered in the case
of nonstationary input signals. The change of distribution f (x,ε) with time n can take
place due to the change of conditional densities f ′(x/ε) or distribution of supervisor
instructions fε (ε). The general expression for the joint distribution law of the neural
network input signal has the form

In principle, one can also consider the more general case with time-dependent teacher
qualification and “teacher’s slant about its abilities”. The expression for the moments
of such a distribution at the current time has the form

We describe in this chapter the analysis of distribution functions for the neural
network input signal in the case of arbitrary teacher qualification. In particular, we
consider learning, self-learning and “sabotage” as well as some intermediate cases.
Generally, the teacher can instruct the neural network in the form of a multidimen-
sional vector ε (n) with dimensionality N. The formal expressions for the input signal
distribution function in the majority of cases are the same. The expressions for the
input signal distribution laws can be written in the general form relatively a priori
probability of class appearance and conditional distributions f ′(x/ε).

Literature

[5-1] Galushkin AI (1970) Unified approach to the problem of learning and self-learning for the
pattern recognition systems. MIEM proc. 6:104–120

[5–2] Galushkin AI (1971) About input signal characteristics for the pattern recognition systems.
MIEM proc, 14:125–138

Literature

Chapter 6

Design of Neural Network Optimal Models

6.1
General Structure of the Optimal Model

The optimal neural network model is such optimal transformation of the input signal
[x(n), εεεεε(n)] and acquisition of the output signal y(n) according to the selected primary
optimization criterion (Fig. 6.1).

The upper unit in Fig. 6.1 represents a controlled system, and the lower unit repre-
sents an optimal model that adjusts the controlled system. The general approach for
the design of the optimal models of a pattern recognition system in the learning mode
consists in the learning arbitrary characteristics of the input signal that represents two,
K and continuum classes of patterns. The number of the neural network solutions is
also arbitrary. The solution space has two, K and a continuum of gradations. The super-
visor instructions and solution characteristics are selected a priori and independently.

The design of the optimal model is performed according to the selected criterion of
primary optimization. The model description is performed in the form of a divisional
surface. The divisional surface partitions the multidimensional feature space into non-
overlapping areas with the instruction of the corresponding area belonging to some class.

Table 6.1 represents classification of neural networks according to the input signal charac-
teristics and solution space for a particular form of one-dimensional signals y(n) and ε (n).

System of the first type with two pattern classes with binary output is most widely used.

System of the second type with K pattern classes and with number of solutions equal
to K. The investigation of such a system is given in [6-1 to 6-3] for different criteria of
primary optimization and different a priori information about input signal character-
istics. The idea that the problem of learning during recognition of K pattern classes
can be reduced to the sequential step-by-step use of a learning algorithm for two classes

Fig. 6.1.
To the optimal model definition

90 Chapter 6 · Design of Neural Network Optimal Models

is not correct. This is a separate problem whose optimal solution requires the genera-
tion of an equivalent divisional surface starting from the first step.

The neural network solution space is characterized by the number of amplitude quan-
tization levels for the output signal y(n) in each channel. The neural networks with a
continuum of solutions (5 or 6, Table 6.1) have an indiscrete output signal. The neural
network of 8, 10 or 11 type has an indiscrete distribution of supervisor instructions.

6.2
Analytical Representation of Divisional Surfaces
in Typical Neural Networks

Methods of optimal neural network model designs for K pattern class recognition are
given in [6-1 to 6-3]. The expressions for optimal divisional surfaces can be obtained
from the expression of a minimized functional of primary optimization and a solution
of the minimization problem for this functional with the existent limitations.

The optimal neural network model is determined by the system of inequalities for
the initial space partitioning into K areas. Let us consider the design of the optimal
neural network models shown in Table 6.1.

Neural network of the third type. The system of pattern recognition optimal by the
maximum posterior probability (in the case of two solutions) transforms the input
signal x(n) into the output signal y(n) according to the following expression

The divisional surface is put through those points x that have equal posterior prob-
abilities of belonging to the first and second classes. The multidimensional space area
with higher posterior probability of belonging to the first class is taken as the area of
the first class. However, points belonging to some class in a multidimensional feature
space must be indicated with more definite probability in the majority of practical
tasks. For the system of the first type (one divisional surface), this probability decreases
as the points approach the divisional surface and becomes zero at the surface.

91

The system of pattern recognition of the 3a-type has two divisional surfaces. They
partition the feature space into three parts (I, II, III, Fig. 6.2) with inactive regions in
which the system determines the input pattern: region I – to the first class, region II –
belonging to the second class, and region III – when the current pattern cannot be
classified.

The multidimensional feature space must be divided into three regions:

� Region I corresponds to the neural network decision about its belonging to the first
class

� Region II corresponds to the neural network decision about its belonging to the
second class

� Region III corresponds to the case when the neural network cannot make a decision
about the current pattern belonging to the first or second classes

Here parameters d1 and d2 (0 ≤ d1 ≤ 1, 0 ≤ d2 ≤ 1) determine the probability level
of pattern consideration belonging to the first or second classes. It is possible, in

Fig. 6.2.
The partition of the feature
space by two divisional sur-
faces

6.2 · Analytical Representation of Divisional Surfaces in Typical Neural Networks

92 Chapter 6 · Design of Neural Network Optimal Models

particular, that d1 = d2 = d or d1 = d2 = d = 0. In the latter case, two divisional sur-
faces are reduced to one surface. For two divisional surfaces, the pattern recognition
system with optimal surface parameters transforms the input signal x(n) into the
output signal y(n) in the following way: in the region I y(n) = –1 (first class); in the
region II y(n) = 1 (second class); in the region III y(n) = 0 (first and second classes).

The general expression for the divisional surfaces optimal by the posterior prob-
ability value has the form

One obtains after transformations

(6.1)

This is the final expression for the divisional surface optimum by the posterior
probability value as the primary optimization criterion. A more detailed interpretation
is given in [6-1, 6-2].

The pattern recognition system optimum by minimum average risk function criterion
partitions the multidimensional feature space into three regions: first and second classes
of patterns belonging, and the region where the neural network cannot make a decision:

(6.2)

Conditional risk function is a sum of losses due to consideration of the i-th class
patterns as patterns of j-th class. The losses are calculated as corresponding probabili-
ties multiplied by coefficients lij (i = 1, 2; j = 1, 0, 2) of the loss matrix L

Coefficients l10 and l20 are the loss coefficients when the recognition system cannot
make a decision. It is evident that

l11 < l10 < l12; l21 > l20 > l22

93

The expression for the conditional risk function has the following form:

(6.3)

(6.4)

After averaging of conditional risk functions, one obtains average risk functions

Taking into account that

and

the expression for the average risk function takes the form

6.2 · Analytical Representation of Divisional Surfaces in Typical Neural Networks

94 Chapter 6 · Design of Neural Network Optimal Models

Consequently, the final expression for the average risk function is

(6.5)

It is necessary to derivate the expressions for S ′(x) and S ′′(x) that provide the mini-
mum of R. It is relatively simple to show that this minimum is achieved when the ex-
pressions under the integral sign are negative in the corresponding region and are
positive outside it. Consequently, the minimum of R is achieved when

(6.6)

The expressions (6.2) and (6.6) determine the optimal neural network model for
the recognition of two pattern classes with two divisional surfaces. Let us assume

l11 = l22 = 0, l12 = l21 = 1, l10 = l20 = l0, p1 = p2

and

Figure 6.3 illustrates the changes of thresholds h1 and h2 depending on l0.
The analysis of expressions for divisional surfaces provides the following conclu-

sions:

a If l0 = 0 then the region of the neural network where it cannot make a decision
occupies all of the feature space because the losses are zero;

b If l0 = 0.5 then the neural network with two divisional surfaces is reduced to the
neural network with one divisional surface. In this case, the losses without recogni-
tion are two times fewer than with wrong recognition. The losses with correct rec-
ognition are zero;

c If 0.5 > l0 > 0 then an inactive region exists where the neural network does not con-
sider the current patterns as belonging to any class;

d If 1 > l 0 > 0.5 then the neural network realizes two divisional surfaces. The curves
in Fig. 6.3 for the change of thresholds are symmetrical both relative to the line
f1(x) = f2(x) as well as relative to the level l0 = 0.5. The threshold h1 determines the
surface S′(x) and the threshold h2 determines the surface S′′(x);

e If l0 = 1 then all the multidimensional feature space is considered to belong both to
the first and second classes.

95

The comparison between optimal models designed by a posterior probability cri-
terion (6.1) and minimum risk function criterion (6.5) shows that in the case when

the optimal models coincide. This gives the additional interpretation of coefficients d1
and d2. Both criteria can be used when the a priori information about dj or lij is known.

The analysis of expression for the average risk function shows the possibility of
considering the primary optimization criteria under the following limitations:

1. The equality of the separate average components of the risk function

p1r1 = p2r2 (6.7)

2. Constant component of the average risk function

p2r2 = α = const. (6.8)

Let us write the optimization Lagrange functional for the first limitation in the form

I = R + λ (p1r1 – p2r2)

One obtains from (6.7), (6.3) and (6.4)

(6.9)

Fig. 6.3.
The investigation of the neural
network structure with depen-
dence on the loss coefficient
under the system recognition
refusal

6.2 · Analytical Representation of Divisional Surfaces in Typical Neural Networks

96 Chapter 6 · Design of Neural Network Optimal Models

The equations for the optimal divisional surfaces

(6.10)

are the result of functional I minimization. The value λ is obtained from (6.9) and (6.10)
for corresponding limitation.

In the case of limitation (6.8), the average risk function minimization criterion gives
the following form of the optimal divisional surfaces

(6.11)

The expression for λ is obtained from (6.11) and corresponding limitation

Neural network of the 3b type. Let us consider the neural network of the 3b type
(Table 6.1) for two patterns with (Kp – 1) divisional surfaces. Kp = const. means that the
integer number of the solution amounts to 4 or higher.

Let us consider the neural network optimal model by the posterior probability cri-
terion. The multidimensional space partition is determined in the following way:

The region kp (kp = 1,…, Kp) is determined by the following system of inequalities:

under conditions d0,1 = 1, dKp, Kp+1 = –1, and

Figure 6.4 shows the example of such partitioning in a one-dimensional case. The
neural network output signal must have Kp level gradations, i.e., at two pattern classes,
the neural network makes Kp decisions. The decisions are made with some margins by
the posterior probability, as it is seen from Fig. 6.4.

Using the known expressions for posterior probabilities f (ε = –1/x) and f (ε = 1/x),
one can obtain the expression for the kp-th solution region in the initial feature space:

97

Let us determine the optimal neural network model by the minimum average risk
function criterion. After the learning procedure, the neural network partitions the
multidimensional feature space into Kp regions with a priori losses in each of them.
The matrix of loss coefficients has the form

(6.12)

where likp
 (i = 1, 2; kp = 1,…,Kp) are the loss coefficients for the consideration of the

i-th pattern class as belonging to the kp-th region. It is necessary that

The expressions for conditional risk functions have the following forms

Fig. 6.4. The consideration of the posterior probability primary optimization criterion in the case of
two pattern classes and (Kp – 1) divisional surfaces

6.2 · Analytical Representation of Divisional Surfaces in Typical Neural Networks

98 Chapter 6 · Design of Neural Network Optimal Models

Here Skp(x) > 0 is the region of the multidimensional feature space corresponding
to the kp-th decision. Consequently, the expression for the average risk function is

Let us find the expression for Skp(x) that minimizes the average risk function. With
the following additional notion

one obtains

It can be shown using the given expressions above that minimum R is achieved at

or

The expressions for other aforementioned optimization criteria can be derived simi-
larly.

Neural networks of types 4 and 9. This is the case of the neural network with K pattern
class recognition and with (Kp – 1) divisional surfaces.

The system of inequalities in the case of minimum average risk function in the region
of kp-th decision has the following form:

Neural network of type 5. The neural network has an indiscrete amplitude output signal
with two input pattern classes. However, the input and output signals are discrete in time.

One must have an a priori function d(y) for the probability to exceed in the case of
the use of a posterior probability primary optimization criterion. The equation for the
neural network optimal model with two pattern classes and a continuum of solutions
has the form

99

Consequently,

(6.13)

This is a final expression for the neural network optimal model in this case. It de-
termines the relationship between the input and output neural network signals.

Let us consider the minimum average risk function criterion. Figure 6.5 illustrates this vari-
ant. One must introduce a vector-function of errors instead of a matrix of coefficients (6.12):

Fig. 6.5. The change of error function during transfer from two neural network solutions to Kp or con-
tinuum number of solutions with two pattern recognition classes: a two solutions; b three solutions,
c Kp solutions; d continuum of solutions

6.2 · Analytical Representation of Divisional Surfaces in Typical Neural Networks

100 Chapter 6 · Design of Neural Network Optimal Models

These errors take place during making decisions y to consider different patterns as
belonging to the first and second classes.

In the case of Kp neural network solutions, the expression for the conditional risk
function for the first pattern class has the form

Here

and X is the full multidimensional feature space. Let us introduce additional notions:

Then the expression for the conditional risk function r1 takes the following form:

Similar to the previous cases, function G(x, kp) is an object of synthesis. It deter-
mines the neural network optimal model, i.e., an optimal relationship between neural
network input and output signals.

The transfer to the continuum of solutions results in the following expressions for
the risk function:

Introducing the notion

one obtains the final expression for the average risk function

101

(6.14)

Here function g(x,y) is represented in the general form. The synthesized function
G(x,y) must be expressed through the function g(x,y) in such a way that R is mini-
mized. Figure 6.6 shows this function for the one-dimensional case of the feature space
and for a finite number Kp of the neural network solutions. In the continuum case, this
function is reduced to G(x,y), Fig. 6.7. Its form is a strap with the unit height. The strap
shape is an object of synthesis.

Figure 6.8 shows a geometrical illustration of function G(x,y) in the simplest case.
Consequently, the problem of the average risk function optimization is reduced to the
minimization of the area of the strap G(x,y)g(x,y).

Fig. 6.6.
Form of function G(x,y) for
the discrete set of solutions
and two pattern classes

Fig. 6.7.
Form of function G(x,y) for
continuum of solutions and
two pattern classes

6.2 · Analytical Representation of Divisional Surfaces in Typical Neural Networks

102 Chapter 6 · Design of Neural Network Optimal Models

In the expression for the average risk function (6.14),

where function p(x) is an object of synthesis. It is a transformation of the neural net-
work input signal. Consequently, one obtains for R(x,y)

where function g[x, p(x)] has the form

Minimization of R is the problem of variational calculation. Its minimum is achieved
at

For the particular form of g[x, p(x)]:

Or it can be written

(6.15)

This equation determines the neural network optimal model for two pattern classes
and the continuum of solutions.

Fig. 6.8.
Form of function G(x,y) for
continuum of solutions and
two pattern classes

103

Let us consider some particular cases.

1. The error function has the form shown in Fig. 6.9. Thus

The equation for the neural network optimal model is

Here δ (y) is δ -function with known properties.
2. Error functions for patterns of the first and second classes. These functions are the

functions of the second order l1(y) = (1 + y)2l, l2(y) = (1 – y)2l.
Hence

Inserting these expressions into (6.15), one obtains the equation for the neu-
ral network optimal model P*(x) with a continuum of solutions and quadratic
losses:

Fig. 6.9.
Error function dependences
for the neural network with a
continuum of solutions

6.2 · Analytical Representation of Divisional Surfaces in Typical Neural Networks

104 Chapter 6 · Design of Neural Network Optimal Models

Figure 6.10 is the illustration of the function y = P*(x) realized by the neural
network.

3. Error functions of the first order l1(y) = (1 + y)l, l2(y) = (1 – y)l. In this case,
dl1(y)/dy = l, dl2(y)/dy = –l. Consequently, some difficulties in the neural network
optimal model design arise. Let the error function have the form

where c = 1 and c = 0 correspond to p.2 and p.3, respectively. Then

A general expression for the neural network optimal model is

Or in another form,

The case of p.2 is obtained at c = 1. When c → 0 then y = –1 if p1f1(x) > p2f2(x), and
y = 1 if p1f1(x) < p2f2(x).

Consequently, the continuum solution space is reduced to the space of two solutions.
It is seen that (6.13) and (6.15) coincide when

Fig. 6.10.
Illustration of the neural net-
work optimal model with a
solution continuum and qua-
dratic losses

105

These expressions allow one to introduce an additional physical interpretation of
function 1 – d(y).

Minimization of the average risk function (6.14) under limitations (6.7), (6.8) and
condition

(6.16)

where

gives the following equation for the neural network optimal model:

(6.17)

The Langrangian multiplier λ is determined by (6.16), (6.17).
The limitation in the form of a given average risk function component has the form

(6.18)

If one were to denote

then the expression for the neural network optimal model is

or in the other form,

The multiplier λ is determined by (6.14), (6.18).

Neural network of type 6. The pattern recognition system for K pattern classes and a
continuum of solution under the average risk function minimum criterion has the
following neural network optimal model:

6.2 · Analytical Representation of Divisional Surfaces in Typical Neural Networks

106 Chapter 6 · Design of Neural Network Optimal Models

where P(x) = y is the neural network optimal model.

Neural network of type 7. This is the recognition system for K pattern classes with two
solutions. In the case of the average risk function minimum criterion, instead of matrix
of loss coefficients that emerge at considering the i-th class patterns as belonging to
the j-th class and having the form (p.1)

one must introduce matrix

The latter matrix is the matrix of loss coefficients that emerge when considering the
k-th class patterns (k = 1,…, K) as belonging to the regions of the multidimensional
feature space corresponding to the first and second solutions. The expression for the
conditional risk function is

The average risk function is the conditional risk function averaged across all the
classes

Taking into account that

107

the final expression for the average risk function is

It can be shown that minimum R is achieved at

This is the equation for the optimal divisional surface that determines the neural
network optimal model.

Neural network of type 8. The optimization of the neural network with a pattern class
continuum and two solutions by the minimum risk function criterion requires the
introduction of matrix (row-vector) L = [l1(ε), l2(ε)] of the loss function correspond-
ing to the first and second solutions. The conditional risk function is the risk function
that makes a decision about the neural network input patterns belonging to the assem-
blage with distribution f ′(x/ε). Typical loss functions l1(ε) and l2(ε) are shown in
Fig. 6.11. The expression for the conditional risk function is

The equation S(x) = 0 is the equation for the divisional surface in the multidimen-
sional feature space.

Fig. 6.11.
Loss functions for the case
with a class continuum and
two solutions: a two decisions;
b class continuum

6.2 · Analytical Representation of Divisional Surfaces in Typical Neural Networks

108 Chapter 6 · Design of Neural Network Optimal Models

The average risk function is obtained by averaging across all the ε values

The final expression after transformation is

Or in the other form,

Consequently, the minimum is achieved at

Neural network of type 10. The neural network creates some divisional surface in the
multidimensional feature space in the case of a pattern class continuum and Kp solutions.

The optimization by the minimum risk function criterion requires the introduction
of matrix (row-vector)

for the function of losses emerging due to consideration of patterns related objectively to the
law f ′(x/ε) as belonging to the regions of the multidimensional feature space correspond-
ing to the first, second, Kp-th neural network solutions. The conditional risk function is

The average risk function after averaging r(ε) is

109

Consequently, the optimal neural network model is determined by the system of
inequalities:

Neural network of type 11. This is the system of continuum pattern class recognition
with a solution continuum. The minimum average risk function optimization criterion
requires not the matrix

as in the previous case, but the function of losses l(y,ε) emerging due to consideration of
the neural network input patterns related to the assemblage with distribution f ′(x/ε). The
conditional risk function is

The average risk function after averaging r(ε) is

Let us designate

Then the expression for the average risk function is

Taking into account aforementioned G(x,y) properties, one obtains

6.2 · Analytical Representation of Divisional Surfaces in Typical Neural Networks

110 Chapter 6 · Design of Neural Network Optimal Models

where y = P(x) is the optimal neural network model. The optimization solution gives
the following condition:

and for particular form of g3(x,y),

This is the most general expression for the neural network optimal model that takes
into account each of the aforementioned cases.

6.3
Optimal Neural Network Model for Multidimensional Signals εεεεε (n) and y(n)

The expression for the conditional risk function has the following form:

Then the average risk function is

and after the introduction of additional designations,

As it is mentioned above, E is the neural network supervisor instruction space; and
N* is dimensionality of E and neural network output signal. If N* = 1, then the neural
network has Kp solutions, and function G(x, y) has the form

and for the solution continuum,

111

The transformation described by the system in the case of multidimensional E and Y
can be written in the form

If N* = const. and the neural network has a discrete number of the output signal
(Kp solutions), then function G(x, y) has the form

and for the solution continuum, respectively

Consequently, the expression for the average risk function is

The neural network optimal model is determined by the expression

where derivative

is the function of two variables y and ε .

6.3 · Optimal Neural Network Model for Multidimensional Signals εεεεε (n) and y(n)

112 Chapter 6 · Design of Neural Network Optimal Models

Let each of the N* output channels have K0 amplitude gradations. Then the expres-
sion for the conditional risk function has the form

and the average risk function is

After introducing additional designations

where

the result of the average risk function optimization in this case has the form

i.e., KN* combinations exist.
It is possible to consider the case K = 2 as the most simple one for the implementation.

113

6.4
A Priori Information about the Input Signal in the Self-Learning Mode

The self-learning mode differs from the learning one because of the absence of infor-
mation in the form of supervisor instructions about patterns belonging to a particular
class. Consequently, this information must be represented in the neural network a priori.
The following limitation for class determination in the self-learning mode is reason-
able: only one mode of the input signal x(n) distribution density must correspond to
each pattern class.

The a priori information about the input signal significantly influences the self-
learning problem solving methods. This information can be divided into three main
parts.

1. A priori information about the number of classes, i.e., about the number of input
signal distribution density modes. The neural network input signal distribution can
be represented according to the a priori information in the form

(6.19)

where x(n) is the input signal; f (x) is the input signal distribution density; fk(x) is
the patterns distribution density in the k-th class; pk is the probability of the k-th
class pattern emergence; and K is the number of classes.

2. A priori information about the form of patterns distribution density in each class.
3. A priori information about probabilities pk.

A priori information about the number of classes K (about the number of input signal
distribution density modes) can be of three types ordered by the decrease of the a
priori information: the number of classes (modes) is known exactly; the number of
classes (modes) does not exceed some given Kmax; and the number of classes (modes)
is not known.

The self-learning solution algorithm for the given number of classes must be devel-
oped in the first case. The self-learning algorithm optimal for the maximum number
of classes and optimal for the smaller number of classes must be developed in the
second case. The self-learning algorithm allows one to develop only a qualitative solu-
tion for the gradually increased number Kmax in the third case. The termination crite-
rion must be introduced in the latter case. The absence of the self-learning quality
improvement at the Kmax increase or the excessive algorithm complexity can be such
a termination criterion.

A priori information about the form of pattern distribution density in each class can be
of three types ordered by the decrease of the a priori information: the distribution
form is known exactly; the distribution form is not known but some distribution ap-
proximation can be accepted; and the distribution form is not known.

The neural network optimal model implementation methods are dependent upon
the a priori information quantity.

6.4 · A Priori Information about the Input Signal in the Self-Learning Mode

114 Chapter 6 · Design of Neural Network Optimal Models

A priori information about probability of the k-th class pattern emergence. The a priori
information for the representation (6.19) can be the following: coefficients pk are the
same for all classes; coefficients are different for all classes but unknown.

The first case does not impose any limitations upon the self-learning problem solv-
ing methods. The second case results in the self-learning process complexity due to the
necessity to determine coefficients pk in addition to determining distribution param-
eters for each subclass in the adjustment procedure.

6.5
About Neural Network Primary Optimization Criteria in the Self-
Learning Mode

The primary optimization criterion also represents some additional information em-
bedded in the neural network a priori. This criterion determines the quality of the
recognition system that must be achieved in the self-learning mode.

It is possible to use the primary optimization criterion in all the aforementioned
cases (the known pattern distribution, pattern distribution approximation, the unknown
pattern distribution). Hence, the divisional surface is calculated according to the fol-
lowing expression:

The solution of this equation corresponds to the threshold h1 (Fig. 6.12).
The following criterion can be used when pattern distribution across classes can be

determined or approximated:

p1f1(x) = p2f2(x) (6.20)

The solution of this equation corresponds to the threshold h2 (Fig. 6.12).
The use of the primary optimization criterion (6.20) in the self-learning mode cor-

responds to the idea of self-learning human in the case of two features and two classes
(Fig. 6.13). The goal is to put a divisional surface through the places with the presence
of minimum patterns.

Fig. 6.12.
The introduction of primary
optimization criteria for self-
learning neural networks

115

It can be shown that the optimal solutions according to the aforementioned pri-
mary optimization criteria in the self-learning mode are different. The particular case
shown in Fig. 6.14 illustrates additional features of these criteria. Three possibilities
can be mentioned:

Fig. 6.14.
Comparison between primary
optimization criteria in the
self-learning mode

Fig. 6.13.
Illustration of criterion (6.20)

6.5 · About Neural Network Primary Optimization Criteria in the Self-Learning Mode

116 Chapter 6 · Design of Neural Network Optimal Models

1. Classes are easily selected, i.e., the crosscut is small. In this case, σ1 and σ2 are much
smaller than the distance between centers of classes. The optimal thresholds h1 and h2
correspond to the first and second primary optimization criteria and are close (Fig. 6.14a);

2. The crosscut of classes is so large that the first criterion for the threshold h1 is in-
valid. One of the parameters is larger than half of the distance between the centers
of the classes, and the second one is comparable with it (Fig. 6.14b, σ2 = 1 > 0.5);

3. The crosscut of classes is large, and thresholds h1 and h2 greatly differ. Parameters
σ1 and σ2 are of the same order with half of the distance between the centers of the
classes (Fig. 6.14c).

The obtained results have the following explanation: in the cases (1) and (3) the
input signal distribution f (x) is two-modal, and in case (2) it is one-modal with un-
clear qualitative sense for division of one hump of curve into two classes.

This is the reason for introducing limitations related to the modal characteristics of
distribution density into the definition of classes in the problem of pattern recogni-
tion. The representation of f (x) as a multi-modal function allows one to use a special
average risk function as the primary optimization criterion in the self-learning mode.

6.6
Optimal Neural Network Models in the Self-Learning Mode
and Arbitrary Teacher Qualification

Let us suppose that patterns are grouped around some unknown centers of bkp
 classes.

If the function of the distance between patterns and the k-th class is

then the average risk function of x belonging to the region of the kp-th solution can be
represented in the form

where ||•|| is the norm of a vector. The average risk function is

The region of the kp-th solution (kp = 1,…,K) with minimum R is determined in
this case by the following system of inequalities:

(6.21)

117

The equation for coordinates of class centers with a minimum R is

(6.22)

The systems (6.21), (6.22) determine the optimal neural network model in the self-
learning mode. The loss function

is a rather rough approximation of distribution inside the class. A more precise ap-
proximation can be achieved by complication of the optimal model at the expense of
the loss function complication in the following way:

or by using a more complex function ρ (x, bkp) = ||x–bkp||2.
Similar to the case of the learning mode at the transfer to the solution continuum,

the loss function ρ [x, b(y)] is introduced in the case of the self-learning mode. Here
b(y) is either the final or intermediate result of the neural network synthesis. The
average risk function has the following form in the case of a discrete set of solutions:

where

In the case of a solution continuum one obtains

where

6.6 · Optimal Neural Network Models in the Self-Learning Mode and Arbitrary Teacher Qualification

118 Chapter 6 · Design of Neural Network Optimal Models

or in another form,

The expression for the optimal neural network model is obtained by derivation of R
by y = P(x) similar to the case of the learning mode:

with additional Silvester conditions for the matrix of mixed derivatives.
Let us consider the neural network optimal model with Kp = K solutions under the

arbitrary teacher qualification b.
One must define the loss function l(x, bkp, b, lkpk) in such a way that in the learning

mode, when b = 1 then l = lkpk, in the self-learning mode, when b = 0 then l = ρ (x,bkp),
and when b = –1 then the primary optimization functional with the extreme inverse
respective of the learning mode. Such a loss function can be written in the following
form:

The expression for the average risk function is

The optimal region of the kp-th solution can be represented in the following form:

The expression for optimal values bkpi is similar to (6.22).
It was assumed above that the teacher qualification in the neural network optimal

model development is exactly known. The approximate (not exact) knowledge of the
teacher qualification is usually observed, for example, in the field of medical diagnos-
tic solution. In the case of K = Kp classes and neural network solutions, one obtains

The optimal neural network model determined by the system of K inequalities can
be written in this case in the form

119

(6.23)

where k′p = 1,…, K.
It is supposed in this case that the subjective teacher qualification does not depend

upon the class number.
Consequently, it is seen from (6.23) that when bc = 1 and [akk′] = A1 (A1 is a unit

matrix), then one deals with the learning mode. In the case bc = 0 and arbitrary values
of ak′k, one deals with the self-learning mode. In the general case bc = b, the system is
adjustable. If the teacher qualification is zero then the system is not adjustable in the
learning mode.

All of this indicates a significance of the a priori information required for the neural
network optimal model design. Sometimes, it is not necessary to have such informa-
tion. The amount of the a priori information about the form of f ′(x/ε) determines
methods of the neural network optimal model’s implementation represented in
Table 6.1.

Literature

[6-1] Galushkin AI (1970) Multilayer pattern recognition systems. Moscow, MIEM, p. 167
[6-2] Galushkin AI (1972) The choice of the primary optimization criteria and the optimal model

design for K pattern class recognition in the learning mode. Automated control and computer
technology 10

[6-3] Galushkin AI, Zotov Yu L, Shikunov Yu A (1972) In-line processing of experimental informa-
tion. Moscow, Energiya p 360

[6-4] Galushkin AI (1969) Methods of pattern recognition systems synthesis. MIEM proc., 6:133–172
[6-5] Galushkin AI (1970) Unified approach to the learning and self-learning problems for pattern

recognition systems. MIEM proc. 6:104–120
[6-6] Victorov NV, Galushkin AI (1976) Design and investigation of pattern recognition systems

under the arbitrary teacher qualification. Medical radio-electronics, pp 95–106

Literature

Chapter 7

7.1
Distribution Laws of Analogous and Discrete Neural Network Errors

The initial data for the analysis of the open-loop neural networks are the given dis-
tribution density of the input signal and the structure of the open-loop neural net-
work. The following open-loop neural network structures are usually considered:
neurons with two, Kp, and a continuum of solutions, nonlinear and multilayer neural
networks.

The goal of the open-loop neural network analysis is the investigation of ex-
pressions for distributions and moments of distributions of intermediate and output
neural network signals. This chapter mainly concerns the analysis of distributions
and moments of distributions for the neural network errors. The functionals of the
secondary optimization are selected on the basis of the open-loop neural network
analysis.

The functional of the secondary optimization is considered as a functional expressed
through the distribution parameters of the current neural network signals and errors
that are directly minimized by the multilayer neural network under the closed-cycle
adjustment. The main problem is the creation of the secondary optimization func-
tional corresponding to the given primary optimization criterion. The coincidence of
the neural network parameters providing minimums of primary and secondary
functionals is considered as a desired correspondence.

7.1.1
Neuron with Two Solutions

The transformation performed by the neuron with two solutions can be represented in
the following form:

(7.1)

The expressions for analogous and discrete neuron errors have the form

(7.2)

Analysis of the Open-Loop Neural Networks

122 Chapter 7 · Analysis of the Open-Loop Neural Networks

The input signal distribution function with K = 2 is (Chap. 5)

Here

The analogous error distribution of the considered neural network is

(7.3)

and the discrete error distribution is

(7.4)

Here

123

Expressions for the r-th order distribution moments in the case of analogous
and discrete errors of the considered neural network can be represented in the
form

(7.5)

(7.6)

In the particular case of c1 = c2 = 1 and b1 – b2 = b, the distribution of the analo-
gous error of the considered neural network has the form (7.3) with the substi-
tution

A1 = 2(1 – b)p1; A2 = 2(1 + b)p2

B1 = 2(1 + b)p1; B2 = 2(1 – b)p2

The discrete error distribution has the form

The expression for the neural network discrete error moments of distribution has
in the given case the following form:

and separately for pattern assemblages of the first and second classes:

7.1 · Distribution Laws of Analogous and Discrete Neural Network Errors

124 Chapter 7 · Analysis of the Open-Loop Neural Networks

7.1.2
Neuron with a Solution Continuum

The transformation performed by the neuron with a solution continuum in the learn-
ing mode can be represented in the following form:

In the case of a neural network input class continuum,

The joint distribution for the signal ε(n) and analogous output signal g(n) has the form

The neural network analogous error distribution is

Consequently, the expression for the r-th order moment of the analogous error is

(7.7)

The neural network discrete error distribution is

(7.7a)

Consequently,

(7.8)

125

In the particular case of two pattern recognition learning, one obtains

(7.8a)

(7.9)

and separately for pattern assemblages of the first and second classes

(7.10)

The latter expressions allow one to obtain the expressions for some particular cases:

7.1 · Distribution Laws of Analogous and Discrete Neural Network Errors

126 Chapter 7 · Analysis of the Open-Loop Neural Networks

7.1.3
Analysis of a Neuron with Kp Solutions

The joint probability distribution of the input signal for the recognition system of
K pattern classes in the learning mode has the form

In this case,

For the assemblage of K-class patterns,

The analogous error distribution will have the following form:

The distribution of discrete output signal of the considered neuron type for the k-th
class can be obtained in the following form:

(7.10a)

Similar to the previous case, here

127

Consequently, the discrete error distribution is

The expressions for the r-th order moments of distributions for analogous and dis-
crete errors can be represented in the form

The expression for the r-th moment of distribution for analogous error has the
form

After the change of variables x1 = y1;… xN–1= yN–1,

one obtains

7.1 · Distribution Laws of Analogous and Discrete Neural Network Errors

128 Chapter 7 · Analysis of the Open-Loop Neural Networks

7.1.4
Analysis of a Pattern Recognition System with a Nonlinear Divisional Surface

It was shown in [7-4] that a pattern recognition system with a nonlinear divisional
surface can be represented by the equivalent system consisting of an inertialess layer
of nonlinear transformations and a neuron. It can be shown that if the nonlinear trans-
formation layer forms vector components (x1, …, xN, {zi1,i2

}, …, {zi1,…,ir
}) from vector

components (x1,…, xN), where i1,…, ir = 1,…, N, and zi1,…,ir
= xi1,…,ir

, then the distri-
bution density of this layer output signal can be represented by the distribution den-
sity f (x) in the following way:

The expression for the second moment of distribution for the discrete error of the
considered nonlinear system has the form

where

It must be taken into account that the expression

determines a linear divisional surface in the initial feature space. Let us determine the
change of divisional surface in the initial feature space under the increase of the order r
of nonlinear transformation. In the case of the second order transformation,

129

Consequently, if r = 2, then the equivalent divisional surface in the initial feature
space will be the surface of the second order with coefficients determined in a unique
manner by the coefficients of the output neuron with the input layer of the nonlinear
transformations. In the r-th order transformation,

This proves the equivalence (by the average risk function criterion) of representa-
tion of the pattern recognition system with nonlinear divisional surface in the form of
nonlinear transformations units and a neuron.

7.2
Selection of the Secondary Optimization Functional

Let us consider the secondary optimization functional related to the moments of dis-
tribution of analogous and discrete errors for the neural network with two solutions.
The general requirements for the neural network secondary optimization were men-
tioned in the introduction. The functional parameters that are required for the itera-
tion search procedure must be sufficiently and simply measured and evaluated. This
functional must have a simple form relative to the adjustable neural network coeffi-
cients. It must be minimal at the same adjustable neural network parameter values
that provide an extremum of some primary optimization functional.

The analysis of expressions (7.5) and (7.6) for the moments of distribution ac-
tivation function analogous and discrete error results in the following conclusion
[7-2, 7-3]:

7.2 · Selection of the Secondary Optimization Functional

130 Chapter 7 · Analysis of the Open-Loop Neural Networks

1. The odd-numbered moments of neural network analogous and discrete error dis-
tribution in the learning mode cannot be used as a secondary optimization func-
tional. However, their absolute values can be used as such functionals.

2. The even-numbered moments of the aforementioned distributions can be used as
the secondary optimization functional. In the case of discrete error, only consider-
ation of the first and second moments order must be performed because the mo-
ments of higher order are proportional to α 2g.

3. The main goal of this chapter is the analysis of the primary optimization criterion, the
a priori information about the input signal characteristics and the loss matrix corre-
sponding to the minimization of the selected secondary optimization functional.

4. The analysis of the expressions for |α 1a| and α 2a in the case of a neuron shows that
the minimization of these secondary optimization functionals is equivalent to the
minimization of the average risk function under consideration of only the first order
moments of distribution for pattern assemblages of different classes. It is consid-
ered that the emergence of a priori probability activation function patterns is the
same for all classes, and the following restrictions upon the loss matrix coefficients
takes place: (l22 – l21) = (l11 – l12).

5. The analysis of the expression for the absolute value of the first moment of the discrete
neural network error distribution

shows that the |α 1g| minimization results in satisfying the optimization criterion for
the average risk function under the condition that average risk function components
are equal for both classes and the following restriction upon coefficients of matrix L:

l22 – l21 = l11 – l12

6. The analysis of the expression for the second moment of the discrete neural net-
work error distribution α 2g = 4|P2Φ 2 + P1 – P1Φ 1| shows that the α 2g minimization
results in satisfying the optimization criterion for the average risk function under
the previous conditions.

7. Additional limitations related to the finite number of considered moments for |α 1g|
and α 2g and p1r1 = p2r2 for |α 1g| make these functionals a single-extremum under
the limited structure of the open-loop system and multi-modal input signal distri-
bution. Functional α 2g can be a multi-extremum in the general case local minimum
for the average risk function and l22 – l21 = l11 – l12.

8. In the case of an arbitrary open-loop neural network structure (arbitrary divisional
surface) according to p. 7.1 for b1 = b2 = 1 and c1 = c2 = 1, one obtains

where

131

Here functional α 2g is proportional to the average risk function under the arbi-
trary neural network structure (two pattern classes, two solutions) and aforemen-
tioned limitations upon matrix L.

9. The consideration of the aforementioned functionals of secondary optimization is
interesting in spite of the limitations because it results in the sufficiently simple
adjustable system implementation with the closed-cycle adjustment, and it can be
useful in the design of the neural network with flexible structure.

7.3
About Selection of the Secondary Optimization Functional
in the “Adalin” System

The basis of the closed-cycle adjustment methods represented in the works of Widrow
[7-1] in the so-called “Adalin” systems is the minimization of the second moment of
analogous error distribution. He used the following rule:

It can be shown using some geometric arguments that the mean square of discrete error is a mono-
tone function of the mean square of analogous error and their minimization is a minimization of
the average risk function.

This rule is not correct because the minimization of the average risk function for
Gaussian distributions with different covariance matrices is performed with the help
of the second order divisional surface. Let us consider one neuron system. Then the
coincidence of the optimal solutions by the criteria of α2g and α2a minimization takes
place only in the case of one and the same covariance matrices corresponding to the
first and second pattern classes [7-2].

Let us analyze the extremum properties of the second order moments for analogous
and discrete errors of a one-dimensional neuron in order to estimate the difference
between the optimal solutions by the criteria of α2g and α2a minimization.

To do that, one must (a) calculate the minimizing coefficients a′0 and a′1 for α2a;
(b) calculate the minimizing coefficients a0′′ and a1′′ for α2g; (c) calculate the difference
∆α2a = α2a(a′0, a′1) – α2g(a0′′, a1′′).

Figure 7.1 shows the dependence ∆R = ∆α2g(µ 2) for some particular case from [7-2]
for two normal distributions with fixed mathematical expectations, one of which has
a changing variance µ2 for the distribution of one of classes. The limitation of α2a
minimum criterion is well illustrated by the example of multi-modal distributions

Fig. 7.1.
Comparison of the α 2a and
α 2g minimum criteria

7.3 · About Selection of the Secondary Optimization Functional in the “Adalin” System

132 Chapter 7 · Analysis of the Open-Loop Neural Networks

(Fig. 7.2). Here the neuron thresholds a′0 and a′1 optimized by the α2a and α2g minimum
criteria are shown. The crosshatched area is the difference ∆R between two criteria.

7.4
Development of the Secondary Optimization Functionals
Corresponding to the Given Primary Optimization Criterion

The secondary optimization functional development is performed below for the case
of the open-loop neural networks with the arbitrary structure with Kp = K = 2, i.e., with
the divisional surface of the arbitrary form.

7.4.1
The Average Risk Function Minimum Criterion

The main problem consists in the selection of the neural network discrete error trans-
formation x0(n) = ε (n) – xk(n) to obtain the discrete error x′0(n) with the second mo-
ment of distribution equal to the average risk function. Let us multiply x0(n) by A if
ε (n) = –1, by B if ε (n) = 1, and then add C to the result. Let us determine parameters
(A, B, C) in a way that the second moment of distribution fx′g (x′g) is equal to R:

(7.11)

(7.12)

(7.12a)

Consequently,

(7.13)

Fig. 7.2.
Comparison of the α 2a and
α 2g minimum criteria for
multi-modal distributions

133

To obtain parameters A, B, C providing the coincidence of α2g and R within constant
direct-current component (p1l12 + p2l22), one must put

(7.14)

It is possible to use the following transformation (Z) for the discrete error:

In this case,

(7.14a)

and the conditions for α 2g and R coincidence are

(7.15)

7.4.2
Minimum criterion for R under the condition p1l1 = p2r2

The minimization for R under the condition p1l1 = p2r2, i.e., under the condition

(7.16)

is an equivalent of the Lagrangian functional minimization:

(7.17)

The conditions for parameters (A, B, C) providing α 2g and R coincidence are

(7.18)

7.4 · Development of the Secondary Optimization Functionals

134 Chapter 7 · Analysis of the Open-Loop Neural Networks

The left side of (7.16) represents gradient of R* by λ . This value can be estimated as
the first moment of the transformed (A1, B1, C1) discrete error. The transformation
parameters A1, B1, and C1 are obtained in the following way. It follows from (7.11)

(7.19)

The comparison between (7.19) and (7.16) gives

(7.20)

The use of the previously represented Z-transformation and comparison of (7.14a)
and (7.17) gives the following condition for their coincidence:

(7.21)

The transformation for the discrete error with the first moment of distribution
determined by the left side of (7.16) has the following parameters:

(7.22)

7.4.3
The Minimum Criterion for R under the Condition p1r1 = ααααα = Const.

The minimum criterion for R under the condition p1r1 = α = const., i.e., under the con-
dition

(7.23)

is equivalent to Lagrangian functional minimization:

(7.24)

Expressions (7.24) and (7.12a) give the following conditions for parameters A, B,
and C providing α 2g and R coincidence

(7.25)

135

The transformation parameters A1, B1, and C1 for the discrete error providing coin-
cidence of moment (7.12) and the left side of (7.23) are

(7.26)

The use of the previously represented Z-transformation and comparison of (7.14a)
and (7.24) gives the following condition for their coincidence:

(7.27)

The determination of R* gradient by λ is performed by discrete error x′g(n) forma-
tion with the distribution first moment (7.23) and the following parameters of Z-trans-
formation:

(7.28)

7.5
Neural Network Continuum Models

Let us consider a forming procedure for the secondary optimization functional in the
case of a neural network continuum model. The minimum average risk function cri-
terion will be used because the extension to other optimization criteria is not difficult.

The problem of the optimization functional will be solved for the neural network
with the arbitrary structure and will be illustrated on some concrete example as it was
done above.

7.5.1
Neural Network with a Solution Continuum; Two Pattern Classes

The discrete error transformation has the form

Consequently, the distribution of the transformed error is

and the expression for the second moment of this distribution after transformation of
variables under the condition of monotone form of Z1 and Z2 is

7.5 · Neural Network Continuum Models

136 Chapter 7 · Analysis of the Open-Loop Neural Networks

The relationships y = P(x), xg = ε – P(x) are valid for the neural network with the
arbitrary structure. Then

The discrete error distribution for the k-th class patterns has the form

The following expression for the second moment of discrete error distribution can
be obtained after the corresponding transformations:

(7.29)

It can be shown that in the particular case of the neuron with a continuum of so-
lutions, one gets using (7.8a)

In the general case,

137

The comparison of this expression with the expression for the average risk function

gives the relationships for the discrete error required for α 2g and R equality:

(7.30)

7.5.2
Neural Network with a Solution Continuum; Continuum of Pattern Classes

In this case,

Consequently, under the condition of monotone form of the function Z(xg)

(7.31)

Here

Then one gets after the corresponding transformation of variables and using (7.31)

(7.32)

It can be shown that in the particular case of the neuron with a continuum of so-
lutions, one gets using (7.7a)

7.5 · Neural Network Continuum Models

138 Chapter 7 · Analysis of the Open-Loop Neural Networks

The comparison of this expression with the expression for the average risk function

provides the relation for the discrete error required for α 2g and R equality:

7.5.3
Neural Network with Kp Solutions; K Pattern Classes

The Eq. (7.10a) gives the expression for the distribution of the transformed discrete error
for the neuron with Kp solutions in the case of the k-th pattern class at x′g = (k – kp)Akpk:

Consequently,

In the case of the neural network with the arbitrary structure,

The comparison of this expression with the expression for the average risk function

provides the relation for the discrete error required for α 2g and R equality:

139

7.5.4
Neural Network with N* Output Channels; K0 Gradations in Each Class

The distribution function for the discrete error for the assemblage of patterns of
(k1,…, kN*)-class is

at (x1g,…, xN*g) = (k1,…, kN*) – (k1p,…, kN*p).
Let us use the following transformation for the vector (x1g,…, kN*) required for the

expression of the transformed discrete error x′g(n). Let us multiply vector xg by the scalar
A(k1, …, kN*, k1p, …, kN*p) and calculate the sum of squares of the resultant vector com-
ponents. The result will be the transformed discrete error x′g(n). For the pattern class
assemblage,

The comparison of this expression with the expression for the average risk function
provides the relation for the transformation A parameters in the following form:

(7.33)

This transformation makes equal the values M[x′12
g + … + x′N2

*g] and R.

7.5.5
Neural Network with N* Output Channels – Neural Network Solution Continuum

In this case, vector xg = ε – P(x) is the vector of dimensionality N*. The distribution
density of the sum of squares of the vector xg components has the form

7.5 · Neural Network Continuum Models

140 Chapter 7 · Analysis of the Open-Loop Neural Networks

The distribution of the square of the transformed discrete error is

Consequently, the first moment of this distribution is

After the transformation of variables,

The comparison of this expression with the expression for the average risk function
in the case of the neural networks with N* output channels and a continuum of solu-
tions gives the following form for the equation of discrete error transformation func-
tion:

(7.34)

7.6
Neural Network in the Self-Learning Mode and Arbitrary
Teacher Qualification

The expression for the average risk function in the self-learning mode in the case of
Kp solutions has the form

It can be shown that in the case of the system with Kp solutions, the transformation
of the output signal y forming the signal y′ with the first moment of its distribution
equal to R is

(7.35)

141

and in the case of the arbitrary teacher qualification,

(7.36)

The Eqs. (7.35) and (7.36) are also valid in the case of the neural network with a
continuum of solutions.

Literature

[7-1] Widrow B (1965) Pattern recognition and adaptive control. Foreign radioelectronics 9:87–111
[7-2] Galushkin AI, Zak LS, Tikhov BP (n.y.) To the comparison of optimization criteria for the

adaptive pattern recognition systems. Kiev, Kibernetika 6:122–130
[7-3] Galushkin AI (1971) Implementation of the primary optimization criteria in the pattern rec-

ognition systems adjustable by the closed-cycle in the learning mode. MIEM proc., 23:191–203
[7-4] Galushkin AI (1974) Multilayer pattern recognition system synthesis. Moscow, Energiya

Literature

Chapter 8

8.1
Procedure of the Secondary Optimization Functional Extremum
Search in Multilayer Neural Networks

The secondary optimization functional extremum search is performed in the present study
with the help of iteration methods using a gradient search procedure for the local extre-
mum. The problems of stability and convergence of the gradient procedures and the possi-
bility to accelerate the extremum search are considered. The constraints of the equation and
inequality types are considered in the case of multilayer neural network implementation.

The multivariable function extremum search methods develop mainly in two lines.
The first one includes the design of standard search programs. The function properties
in this case are taken in the sufficiently detailed form. Method convergence and precision
in the stationary state is usually analyzed without investigation of transient processes
dynamics.

The second line includes the design of adaptive system adjustment algorithms. The
function is given in the most general form due to the problem specificity and functioning
in conditions of poor a priori information about the input signal properties [8-1 to 8-29].

a multilayer neural network is a particular case of the adaptive system. The peculiar
properties of the adaptive system design relate to the fact that even in the case of fixed
structure of the open-loop neural network, it is impossible to know anything about the
form of the secondary optimization functional. One can only know that it has some
local extrema to be found in the process of closed-cycle adjustment. The adjustment
circuit optimization problem for the multilayer neural network cannot generally be
solved in the stage of optimization functional extremum search.

That is why the main content of Chap. 12 is the adjustment circuit optimization in
the investigation of closed-loop systems with quality estimation using the current value
of the primary optimization functional.

8.2
Analysis of the Iteration Method for the Multivariable Function
Extremum Search

a general expression for the calculation of the system state vector in the case of func-
tion Y(a) extremum search at the time n + 1 by the state vector at the time n has the
form (for the unit search system memory)

(8.1)

Development of Multivariable Function Extremum
Search Algorithms

144 Chapter 8 · Development of Multivariable Function Extremum Search Algorithms

Here Y(a) is the secondary optimization functional; a(n) is the system state vector
(the current argument value for the extremum function); K* is the [N0 × N0] matrix of
coefficients; and N0 is the dimensionality of vector a.

Selection of the coefficient of matrix K* determines the rate of convergence and
quality of the iteration method.

Procedure (8.1) describes the known search methods: scan-out, steepest descent,
gradient, Gausse-Zeydel, Rosenbrock, Pawell, Sawswell, etc.

The main problem is the selection of constraints upon the matrix K* parameters
providing the necessary quality for the function extremum search system. Let us con-
sider a particular form of the neural network quality function:

(8.1a)

Here a is the matrix of coefficients of the functional Y(a); B is the vector of coeffi-
cients; and C is the coefficient.

Consequently,

(8.2)

Expressions (8.1) and (8.2) give a recurrent expression for the system state vector
at step n + 1 through the state vector at step n in the following form:

a(n + 1) = a(n) + K*[2Ax(n) + B]

or

(8.3)

Here Y is the unit matrix.
Let us determine the coefficients of matrix K* providing the iteration procedure

convergence by one step starting from any initial state. The a(1) value providing the
extremum is determined in the following way:

Putting it into (8.3), one gets the following optimal matrix K*:

The system that provides transition to (n + 1)-th step by the results obtained at
the n-th step is called stable if the function value at the (n + 1)-th step is less than that
at the n-th step. In the opposite case this system is called self-oscillating or an un-
stable one:

145

(8.4)

The solution of this system of equations requires the use of a computer. The search
system with particular forms of matrix K* (particular methods of extremum search)
is stable if matrix K* satisfies (8.4).

Let us obtain the non-recurrent expression for a(n). It follows from (8.3):

a(1) = K*B + [Y + 2AK*]a(0);

a(2) = K*B + [Y + 2AK*]K*B + [Y + 2AK*]2a(0);

a(3) = K*B + [Y + 2AK*]K*B + [Y + 2AK*]2K*B + [Y + 2K*a]3a(0);

By induction

Taking into account that

one can write the expression for a(n) in the following form:

Then the final non-recurrent expression for the search system state vector is

(8.5)

Putting the condition of optimum for the operation speed of the search system
K = –0.5A–1, one obtains the expected result:

that corresponds to the extremum function value.
The analysis of the non-recurrent expression gives the constraints upon the matrix

K* parameters providing the search iteration procedure convergence.

8.2 · Analysis of the Iteration Method for the Multivariable Function Extremum Search

146 Chapter 8 · Development of Multivariable Function Extremum Search Algorithms

It follows from (8.5) that

i.e., it does not depend on a(0) and equals the state vector extremum value if

where O is the zero matrix (Y, a). This expression can be used for the corroboration of
the search system convergence. The expression for K* matrix providing the self-oscil-
lation mode of the search procedure is given in [8-12].

8.3
About the Stochastic Approximation Method

The stochastic approximation method is realized by the search system that is similar
to the gradient one. However, the system parameters (matrix K*) in this case are not
fixed [8-1, 8-3, 8-6, 8-8]. The stochastic approximation method is used in the case of
random erroneous measurements of minimized function gradient vector. The pres-
ence of random errors makes it necessary to introduce variability for the search sys-
tem parameters in order to provide zero random error for the determination of the ex-
treme point. The disadvantages of this method consisting in the increase of systematic
errors in the transient process of the extreme point search are mentioned in [8-29].

The present study deals with the neural network synthesis technique where the
stochastic approximation method can be combined with some other search methods
with fixed parameters. The closed-loop neural network design is performed under the
condition of some initial indeterminateness of matrix K* that is eliminated only in the
stage of analysis of the closed-loop system. The question about an optimal selection of
matrix K* parameters will be ill-posed in this case because the form of the minimized
function is not known in advance.

8.4
Iteration Methods for Multivariable Function Extremum Search
in the Case of Equality-Type Constraints upon Variables

The equality-type constraints upon the adjustable neural network coefficients can be
written in the general in the form

In the real neural networks,

(8.6)

i.e., there are, for example, constraints upon the sum of the coefficients.

147

8.4.1
Search Algorithm

The problem of quality function Y(a) minimization in this case is solved in the mul-
tilayer neural networks by the construction of the Lagrange function

Y(a, λλλλλ) = Y(a) + λλλλλTqT(a)

where λλλλλT= [λ 1,…, λ M1
] is the vector of Langrangian multipliers; and qT(a) = [q1(a),…,

qM1
(a)] is the vector function of constraints.
The solution of the minimization problem is reduced to the solution of the follow-

ing system of equations:

(8.7)

Here

The recurrent relationship for the search algorithm follows from (8.7):

The search system in this case can be represented by the equivalent discrete system
with parameter matrices K*

aa, K*
aλ , K*

λ a, K*
λλ . Taking into account (8.7), the final expres-

sion for the search algorithm can be written in the form

8.4 · Iteration Methods for Multivariable Function Extremum Search

148 Chapter 8 · Development of Multivariable Function Extremum Search Algorithms

In this case of constraints (8.6),

where 1 is the column vector of dimensionality N0 + 1 consisting of 1.

8.4.2
Analysis of the Matrix of the Second Derivatives of the Lagrange Function

If Y(a) is determined by (8.1a) and the following designation is introduced: YT =
[a0,…,a

N0,λ 1,…,λ M1
], then

It is clear that [I] = 2A, [III] = [II]T = Q(a), [IV] = 0.
Consequently, the matrix of the second derivatives of the Lagrange function has the

following form:

8.4.3
Operation Speed Optimization for the Extremum Search Iteration Procedure in
the Case of Equality-Type Constraints

Using the Newton method for minimization of the Lagrange function, one obtains the
following conditions for the optimal operation speed:

149

It can be shown that the existence condition for the matrix, inverse to the matrix of
the input derivatives of the Lagrange function, is the condition of equality of M1 to the
rank of matrix Q. Consequently,

where H = –QTA1
–1Q, A1 = 2A. The expressions for matrices K*

aa(n), K*
aλ(n), K*

λ a(n), and
K*

λλ (n), providing the optimal operation speed for the search procedure, can be de-
rived from the above equations.

8.4.4
Optimal Operation Speed under Constraints (8.6)

In this case K*
aa(n) = –A1

–1[I + L], where I is a unit matrix of dimensionality,
[(N0 + 1) × (N0 + 1)]; L = QH–1QTA1

–1 = Q(–QTA1
–1Q)–1QTA1

–1.
In the particular case of QT = [1,…,1],

It must be mentioned that at any a priori information, matrix K*
aa differs from matrix

(–A1
–1), and it is non-diagonal even if matrix a is diagonal. Matrix K*

λλ has the following form:

i.e., under one constraint, the optimal K*
λλ is determined only by the sum of elements

of matrix A1
–1 across matrix rows and columns. In this case,

Matrix K*
aλ is not a zero matrix under any a priori information about matrix a, i.e.,

the cross-connections are present in the search algorithm.

8.4.5
The Case of Constraints of Equality Type That Can Be Solved

When constraints have the linear form

(8.8)

8.4 · Iteration Methods for Multivariable Function Extremum Search

150 Chapter 8 · Development of Multivariable Function Extremum Search Algorithms

then one can solve the system of equations for M1 variables and express coefficients
a0, …, aM1–1 through remained (N0 + 1 – M1) variables. Matrix Q in this case is divided
into two blocks:

Then constraints (8.8) take the following form:

where

(8.9)

This expression is substituted into Y(a) and the extremum of the resultant function of
(N0 + 1 – M1) variables is found by the previously described method. Optimal values of
(N0 + 1 – M1) variables are determined. Then optimal values of M1 variables are deter-
mined according to (8.9). Taking into account (8.6), the expression (8.9) takes the form

8.4.6
Iteration Process Stability under Equality-Type Constraints

We shall consider the search process to be stable as the Lagrange function value de-
creases at each step, i.e.,

Y[y(n)] < Y[y(n – 1)] (8.10)

Transforming Y(y) into the Taylor series in the neighborhood of point y(n–1) and
throwing away the terms of higher than the second order, one obtains

Here ∆ is an incremental vector of variables. Taking into account (8.10), one gets the
following condition of stability:

(8.11)

151

The iteration procedure gives the following increment at each step:

(8.12)

Putting (8.12) into (8.11), one gets after some transformations

Consequently, the sufficient stability condition is the negative definiteness of the
following matrix:

This matrix determines the relationship between Lagrange function parameters and
parameters of matrix K* of the search system.

8.4.7
Convergence of the Iteration Search Method under the Equality-Type Constraints

Let us consider the search process convergence in the case of quadratic function. In
this case, Y(aTλ) = aTAa + BTa + C + λ TQa:

(8.13)

This expression can be rewritten in the form

In this case,

As it was done above, the following non-recurrent expression can be written for the
generalized state variable

8.4 · Iteration Methods for Multivariable Function Extremum Search

152 Chapter 8 · Development of Multivariable Function Extremum Search Algorithms

The substitution of Y(n) = A�–1B� into (8.13) shows that gradient vector of the Lagrange
function becomes zero, i.e., the point Y(n) = A�–1B� is the extremum point. It is sufficient
to prove that

for the convergence of the iteration procedure.
In the case of matrix [Y + K*A�] nonsingularity, the last expression is equivalent to

the following one:

8.5
Iteration Extremum Search Methods for Multivariable Functions
under Inequality-Type Constraints

Such constraints for the neural network emerge in particular due to the limits for the
variance of adjustable coefficients and have the form qµ (a) ≤ 0 (µ = 1, …, M2).

The following constraints of this particular type usually emerge for the neural net-
work:

(8.13a)

In the particular case of the neural network design based on the real physical ele-
ments, the following conditions are possible:

amax > 0; amin = 0

amax = –amin > 0

8.5.1
Conditions of Optimality

Conditions of optimality in this case are given by the Kune-Tacker theorem. It repre-
sents the Lagrange method generalization in the case of inequality-type constraints.
According to this theorem, the optimal vector a corresponding to the minimum of
the convex functional is the solution of the following system of equations and in-
equalities:

(8.14)

153

The expression for matrix Q is preserved with exchange of M1 by M2. In the expres-
sion (8.14),

Inequalities δδδδδ ≥ 0 and λλλλλ ≥ 0 mean that all components of these vectors are non-nega-
tive. It is also assumed that there exists such a vector a that satisfies the inequality
qµ (a) ≤ 0. Conditions (8.14) have the following physical sense. If some constraint is not
significant for the optimal vector aopt, i.e., qµ(aopt) < 0 for some µ , then corresponding
λ µ = 0. If λ µ > 0, then it follows from (8.14) that δ µ = qµ(aopt) = 0.

Thus, Langrangian multipliers can be regarded as some estimations of the constraint’s
influence upon the optimal value of the adjustable coefficient vector. If functions Y(a)
and qµ (a) (µ = 1, …, M2) are convex, then the Kune-Tacker theorem gives necessary
and sufficient optimality conditions.

8.5.2
Algorithm of Extremum Search in the Case of Inequality-Type Constraints

The optimality conditions (8.14) give the following system of relationships for the it-
eration extremum search procedure in the case of inequality-type constraints:

Finally one obtains

In the particular case of constraints (8.13a), q1(a) = a – amax ≤ 0; q2(a) = amin – a ≤ 0;

8.5 · Iteration Extremum Search Methods for Multivariable Functions

154 Chapter 8 · Development of Multivariable Function Extremum Search Algorithms

8.6
Algorithm of Random Search of Local and Global Extrema for
Multivariable Functions

The only reason for introducing randomness into the procedure of the neural network
secondary optimization functional extremum search is the multi-modality of the in-
put signal distribution. This property results in multi-extremum characteristics of the
quality function of the open-loop neural network with the given structure. The ran-
dom search methods are described in details in [8-2, 8-16].

The problem is to find local minimums of the multi-extremum functional of the
neural network error and selection of the global minimum. Let us describe one cycle
of the random search algorithm:

a The vector value of the function variables is randomly selected. This vector must be
located in the region of some local extremum;

b This extremum must be found by any of the non-random search methods given
above;

c The value of the found extremum and corresponding vector of variables are com-
pared with those stored in the memory. If this extremum is absent in the memory,
then it is stored too;

d The transfer to the step “a” is performed thereafter.

The results of experimental investigation of this algorithm are given in Chap. 12.
The convergence rate can be in principle increased by eliminating already found re-
gions from the random region set for the initial vector.

Let us analyze the convergence of this random search algorithm with respect to the
number of extrema. Let i modes be already found (0 ≤ i ≤ U). The probability of occur-
rence in the region of these modes under their uniform distribution is i/U. The distri-
bution of the random value ξ i representing the number of steps from the search of the
i-th mode to the search of the (i + 1)-th mode amounts to ξ i = k with the probability

(8.15)

The random search procedure is performed independently at each step. Let us in-
troduce a new random value

representing the number of steps up to the search of j modes out of U. Independent events
ξ i = k1, …, ξ k–1= kj–1, where 1 ≤ k ≤ s + 1, …, 1 ≤ kj–1≤ s + 1 and k1+ k2 + … + kj–1= s + j – 1
give in their combination such an event that η j = ξ 0 + … + ξ j–1= s + j. Hence, ξ 0 = 1 with
the unit probability. Due to the independence of ξ j, the probability of such an event is

P(ξ 1 = k1)…P(ξ j–1 = kj–1)

155

According to the formula of total probability,

(8.16)

In the particular case of j = U,

where P(η U = s + U) is the probability that U modes will be found through s + U steps
of the random search procedure. It can be shown that the average value and variance
of the number of steps required for the search of U modes are

(8.16a)

The analysis of these expressions shows a sufficient convergence rate of this search
procedure. The procedure can be generalized for the case when the region of the al-
ready found mode is excluded from the random search as it was mentioned above. The
above expressions are valid in the multidimensional case.

8.7
Development of the Neural Network Adaptation Algorithms with the
Use of Estimations of the Second Order Derivatives of the Secondary
Optimization Functional

Let us consider the development of the neural network adaptation algorithms with the
use of simultaneous estimations of the first and second order derivatives of the sec-
ondary optimization functional.

8.7.1
Development of Search Algorithms

Let us consider the problem of extremum search in the form of an equivalent problem
of the root search for the following system of equations:

(8.17)

8.7 · Development of the Neural Network Adaptation Algorithms

156 Chapter 8 · Development of Multivariable Function Extremum Search Algorithms

When considering the implicitly given system

(8.18)

that satisfies the Yung theorem, there exist such

(8.19)

that their substitution into (8.18) provides identity. Let us transform functions
F1(y1, …, yN),…, FN(y1, …, yN) into the Taylor series with two terms:

(8.20)

Differentiation of (8.18) with the use of (8.19) results in the following system of
equations:

(8.21)

After differentiation of (8.21), one obtains

157

After multiplying of both sides of the equations by ykyl and summation over k and l,
one obtains

This system can be rewritten in the form

Taking into account that the vector

is the root of the system (8.17),

It follows from (8.20)

8.7 · Development of the Neural Network Adaptation Algorithms

158 Chapter 8 · Development of Multivariable Function Extremum Search Algorithms

Consequently, the general expression for the search algorithm of the multivariable
function extremum with the second order derivatives matrix is

(8.22)

8.7.2
One-Dimensional Case

In this case, D(x) = 0; F(y) = D–1(x); x = F[D(x)], (x∈ [a, b]); y = D[F(y)]. If α is the
root of the equation, then α = F(0). Let us transform F(y) into the series

or in another form,

The differentiation of the initial equations gives

One finally obtains in the case of r = 2

(8.23)

where D′′′(xn) = K*(n).

Literature

[8-1] Tsypkin Ya Z (1966) Adaptation, learning and self-learning in automatic systems. Automatics
and telemechanics1:23–62

[8-2] Rastrigin LA (1965) Random search in the problem of multi-parameter system optimization.
Riga, Zinatne

[8-3] Tsypkin Ya Z (1966) The use of the stochastic approximation method for the estimation of
unknown distribution density by observations. Automatics and telemechanics 3:94–96

[8-4] Deviaterikov IP, Propoj AI, Tsypkin Ya Z (1967) About recurrent learning algorithms for pat-
tern recognition. Automatics and telemechanics 1:122–132

[8-5] Tsypkin Ya Z, Kalmans GK (1967) Recurrent self-learning algorithms. Automatics and
telemechanics 5:78–87

159

[8-6] Tsypkin Ya Z (1968) Adaptation and learning in automatic systems. Moscow, Nauka
[8-7] Tsypkin Ya Z (1968) Optimal hybrid adaptation and learning algorithms. Automatics and

telemechanics 9:96
[8-8] Tsypkin Ya Z (1970) Learning system theory foundation. Moscow, Nauka
[8-9] Tsypkin Ya Z (1970) Generalized learning algorithms. Automatics and telemechanics, pp 97–104
[8-10] Tsypkin Ya Z Learning automatic systems. Automatics and telemechanics 4:55–71
[8-11] Zabrejko PP, Krasnoselski MA, Tsypkin Ya Z (1970) About optimal and sub-optimal learning

algorithms. Automatics and telemechanics 10:91–98
[8-12] Galushkin AI (1970) Analysis of one extremum search iteration method. Automatics and com-

puter engineering, AN Latv.SSR, pp 38–40
[8-13] Tsypkin Ya Z (1971) Smoothed randomized functionals and algorithms in the adaptation and

learning theory. Automatics and telemechanics 8:29–50
[8-14] Galushkin AI, Tiukhov BP, Chigrinov VG (1971) About convergence of one random search method

for the search of local and global extrema of multivariable function. MIEM Proc. 23:205–209
[8-15] Galushkin AI, Scmid AV (1971) Iteration methods for the search of extrema of multivariable

functions under the equality-type constraints. Automatics and computer engineering, AN Latv.
SSR, 4:88–91

[8-16] Rastrigin LA (1971) Random search with linear tactics. Riga, Zinatne
[8-17] Tsypkin Ya Z (1972) Dynamic adaptation algorithms. Automatics and telemechanics 1:68–76
[8-18] Tsypkin Ya Z (1972) Learning algorithms for recognition under the transient conditions. Infor-

mation transmission problems 3:94–102
[8-19] Poliak BT, Tsypkin Ya Z (1973) Pseudo-gradient adaptation and learning algorithms. Automat-

ics and telemechanics 3:45–68
[8-20] Tsypkin Ya Z, Kaplinski AI, Krasnenker AS (1973) Methods of local improvement in the sto-

chastic optimization problems. Izv. AN SSSR, ser. Technology cybernetics, pp 3–11
[8-21] Tsypkin Ya Z (1976) Adaptive methods for solution selection under indeterminateness condi-

tions. Automatics and telemechanics 3:78–91
[8-22] Tsypkin Ya Z (1976) Optimization under the indeterminateness conditions. Dokl. AN SSSR

228(6):1306–1309
[8-23] Tsypkin Ya Z (1977) Stabilization and regularization of optimal solution estimation under the

indeterminateness conditions. Dokl. AN SSSR 236(2):304–306
[8-24] Tsypkin Ya Z (1977) About some properties of the random search. Automatics and telemechanics

11:89–94
[8-25] Poliak BT, Tsypkin Ya Z (1980) Optimal pseudo-gradient stochastic optimization methods. Dokl.

AN SSSR 250(5):1084–1087
[8-26] Poliak BT, Tsypkin Ya Z (1980) Optimal pseudo-gradient adaptation algorithms. Automatics

and telemechanics 8:74–84
[8-27] Poliak BT, Tsypkin Ya Z (1980) Robust pseudo-gradient adaptation algorithms. Automatics

and telemechanics 10:91–97
[8-28] Tsypkin Ya Z, Pozniak AS (1981) Optimal search algorithms of stochastic optimization. Dokl.

AN SSSR 260(3):550–553
[8-29] Ivakhnenko AG (1969) Self-learning recognition and automatic control systems. Kiev, Tekhnika

Literature

Adaptive
Neural Networks

Chapter 9 Neural Network Adjustment Algorithms

Chapter 10 Adjustment of Continuum Neural Networks

Chapter 11 Selection of Initial Conditions
During Neural Network Adjustment –
Typical Neural Network Input Signals

Chapter 12 Analysis of Closed-Loop Multilayer
Neural Networks

Chapter 13 Synthesis of Multilayer Neural Networks
with Flexible Structure

Chapter 14 Informative Feature Selection
in Multilayer Neural Networks

Part III

Chapter 9

9.1
Problem Statement

It was mentioned in Chap. 7 that secondary optimization functional selection is per-
formed on the basis of the given general input signal characteristics, primary optimi-
zation criterion and open-loop neural network structure.

The closed-loop neural network represents an open-loop neural network with in-
cluded adjustment unit. Development of the closed-loop neural network is performed
on the basis of a selected secondary optimization criterion and on the method of ex-
tremum search of the given functional [9-1 to 9-4]. Synthesis of the unit for the calcu-
lation of parameters of the neural network quality functional required for the iteration
search organization is performed. The main problem in this case consists in the esti-
mation of the secondary optimization functional gradient vector. There are two pos-
sibilities to solve this problem. It can be done by the search procedure on the basis of
analysis of search oscillation results or by the determination of gradient vector estima-
tion in the form of analytical expression.

In the first case, the search neural network is used, and in the second one – the
analytical neural network is used. The first case is preferable but not always possible.
If the system does not provide the possibility to select the signal characterizing the
optimization functional gradient, then one must use the search oscillation methods.

We consider below recognition systems of different types: a neuron with two solu-
tions for two pattern classes, a neuron with Kp solutions for K pattern classes, a neuron
with a solution continuum and continuum of pattern classes, multilayer neural net-
works consisting of neurons with a solution continuum and the existence or absence
of constraints upon the adjustable coefficients, multilayer neural networks with
N*-dimensional signals ε (n) and y(n), and multilayer neural networks with cross and
backward connections.

Methods of neural network design can be easily generalized for the case of transient
patterns when the implementation of the gradient vector is the realization of a non-
stationary multidimensional random process. This gradient property determines the
method of multidimensional filter design in the neural network adjustment unit.

A special attention requires the problem of multilayer neural network design in the
learning mode and in the mode with arbitrary teacher qualification. Methods of closed-
loop neural network design in this case are the same as in the learning mode.

Design of a neural network adjustment algorithm with a closed cycle is performed
by putting the expression for the estimation of the functional gradient vector into the
corresponding expression for the search procedure.

Neural Network Adjustment Algorithms

164 Chapter 9 · Neural Network Adjustment Algorithms

9.2
Neuron with Two-Solution Continuums

Four secondary optimization functionals |α 1a|, |α 2a|, |α 1g|, and |α 2a| are considered
below for the neuron with two solutions. The expression for the estimation of the
absolute value for the first moment of the analogous error has the form

Consequently,

The recurrent expression representing a basis for the design of a neuron that is
adjustable through the closed cycle has the following form:

(9.1)

The choice of parameters of matrix K* is the final goal of the analysis and synthesis
of closed-loop neural networks. Some constraints can be imposed upon this matrix
even at the given stage. In [9-5, 9-6], these constraints are determined for the stochastic
approximation method. One can require the convergence of the iteration procedure to
its extremum |α 1a| at each step, i.e., the validity of the following conditions (in a one-
dimensional case):

One of the possible sets of matrix K* elements is

The choice of mn in the expression

is also a problem of analysis and synthesis of the closed-loop neural networks. The
increase of mn results in the increase of the noise level for the measurement of the
secondary optimization functional gradient. But it decreases the delay in the closed-
cycle adjustment circuit.

165

In the case of minimization of the second order moment of the analogous error,

Consequently,

In the case of minimization of the first order moment of the neural network discrete error,

For the extremum search, one can use the information about signs and values of the
first and second derivatives, etc.

The value of the first derivative in this case cannot be determined, and one must use
the information about its sign. Taking into account that

then

Consequently,

(9.2)

Here and below the latter expression is also conditionally termed as an estimation
of a gradient vector, though in principle this is a pseudo-gradient resulting from the
exchange of the derivative ∂y/∂ai by the sign of the derivative.

In this case, there is no possibility to create the closed-cycle adjustment algorithm
satisfying criterion of minimum |α 1g| under the arbitrary value of memory mn for the
gradient estimation filter. To show this, let us present the measured values of the second-

9.2 · Neuron with Two-Solution Continuums

166 Chapter 9 · Neural Network Adjustment Algorithms

ary optimization functional gradient in the form of some random process. In the general
case, including the criterion of minimum α 2g, the measured gradient at the current step
can be conditionally represented in the form of the product of two multipliers x1(n)x2(n).
One of the multipliers, for example ∂[sign g(n)]/∂ai can not be calculated directly through
the neural network signals. Only its sign can be determined in this way. The exchange in
the expression for the gradient under the arbitrary value of mn results in the loss of the
possibility to determine the sign of gradient estimation because in the general case,

Consequently, the design of analytical adjustment algorithms for the neural network
with two solutions and closed-cycle secondary optimization functional for discrete error
can be performed only if mn = 1. Otherwise, if mn > 1, then the search adjustment proce-
dure must be developed. In any case, the adjustment procedure for the estimation of ∂y/
∂a in the expression of the secondary optimization gradient must be introduced.

Expression (9.2) represents a basis for implementation of a corresponding closed-
loop neural network. In the case of the neural network with α2g minimization,

It is evident that the adjustment algorithm with minimization criteria of |α1g| and
α2g are the same if mn = 1.

In the case of a neuron with a solution continuum,

In the case of minimization of |α1g| and α2g respectively,

Recurrent algorithms for the development of the closed-loop neural network in the
considered cases are

167

In the particular case of F(g) = 2/π arctg Bg

9.3
Two-Layer Neural Networks

Let us consider a two-layer neural network with the neurons with full connections
adjustable by a closed cycle. In this case,

Here

9.3 · Two-Layer Neural Networks

168 Chapter 9 · Neural Network Adjustment Algorithms

The main problem is the derivation of the expressions for the secondary optimi-
zation functional gradient through the output and intermediate neural network sig-
nals. Table 9.1 shows these expressions for the adjustable coefficients of the neuron in
the first and second layers.

Tables 9.2 and 9.3 show expressions for the secondary optimization functional gra-
dients in the case of F(g) = sign(g) and F(g) = (2/π)arctg Bg.

Let us mention some features of the learning methods of the two-layer neural net-
work with one layer of nonlinear random connections. Rosenblatt called such a neu-
ral network a three-layer perceptron. Its structure was described in Chap. 2. The sharp
decrease of neuron inputs in the first layer and random connections of this layer with

169

the input space of the neural network result in the requirement to increase the num-
ber of neurons in the first layer.

In this case,

The random connections are fixed at the stage of adjustment. Only connection
coefficients must be adjustable. The adjustment algorithm for neurons of the first layer
has the form (for minimum α2g criterion)

9.4
Multilayer Neural Networks with Solution Continuum Neurons

The neural network in this case has Hj neurons in each j-th layer (j = 1,…, W). The
expression for the output signal of such a neural network has the form (2.2). Let us
find partial derivatives of y(n) and g(n) with respect to coefficients ahW–j+1,W–j

:

(9.3)

(9.4)

Tables 9.4 and 9.5 show expressions for the estimation of the secondary optimiza-
tion functional gradients in the case of arbitrary F and F = sign(g).

In this case,

for all j ≠ W, and it significantly simplifies the expressions for the gradients.

9.4 · Multilayer Neural Networks with Solution Continuum Neurons

170 Chapter 9 · Neural Network Adjustment Algorithms

9.5
Design of Neural Networks with Closed Cycle Adjustment under
Constraints upon Variables

Let us consider the equality-type and inequality-type constraints upon the adjustable
coefficients of multilayer neural networks that were represented in Chap. 8. Such neural
networks are characterized by constraints upon the assemblage of coefficients of all
neural networks, upon the assemblage of coefficients of each separate layer, and upon
the assemblage of each separate neuron of the neural network.

171

Consequently, one obtains for a two-layer neural network

(9.5a)

(9.5b)

(9.5c)

The inequality-type constraints have the form close to that represented in Sect. 8.5.

Neural network in the form of a neuron. In the case of the |α1g| minimization criterion
and constraints (9.5a), the system (9.1) has the following form:

In the case of the |α1g| minimization criterion and inequality-type constraints
(Chap. 8) upon the adjustable coefficients, the recurrent relationship for the closed-
loop neural network design has the form

Two-layer neural network. Let us consider the case of constraints upon the coefficients
of the multilayer neural network. The basic recurrent expressions for the closed-loop
neural network design are given below.

9.5 · Design of Neural Networks with Closed Cycle Adjustment under Constraints upon Variables

172 Chapter 9 · Neural Network Adjustment Algorithms

In the case of equality-type constraints, (a) the second layer, (b) the first layer:

a

b

In the case of inequality-type constraints, (a) the second layer, (b) the first layer:

a

173

b

Here Q and q are defined in the same way as in Chap. 8.
These algorithms can be easily generalized for the case of an arbitrary number of

layers and particular arbitrary forms of constraints.

9.6
Implementation of Primary Optimization Criteria for Neurons
with Two Solutions

Let us consider the minimum average risk function criterion. The expression for the
transformed discrete error can be represented in the form

The gradient required for the closed-loop neural network design is

or in another form,

(9.6)

The values A, B, and C are determined by (7.13) and (7.14). In the case of (7.14),

(9.6a)

9.6 · Implementation of Primary Optimization Criteria for Neurons with Two Solutions

174 Chapter 9 · Neural Network Adjustment Algorithms

In the case of (7.14a), one obtains for the transformed discrete error

(9.7)

After corresponding transformations, we get the expression

(9.8)

that coincides with the above obtained results at Z11 = Z22 = 0. The estimation for the
gradient of the second distribution moment can be derived using the following ex-
pression for x′g:

In the above expressions

in order to provide the equality

The minimum criterion for R under condition p1r1 = p2r2 is determined in the fol-
lowing way. The gradient R* estimation (7.17) using adjustable coefficients is deter-
mined by (9.6) with A, B and C from (7.18). The estimation of gradient R* along λ is
determined in the form of estimation of the first moment of distribution for the trans-
formed discrete error according to (7.19) and (7.20):

(9.8a)

Expressions (9.6), (7.18), (7.20), and (9.8a) form the basis for the corresponding
closed-loop neural network.

The use of Z-transformation and equations (9.8) and (7.21) give the following esti-
mation for gradient R* along λ:

(9.9)

where Z'kpk is determined by (7.22).

175

The minimum criterion for R under condition p1r1 = const. is determined in the
following way. The gradient R* estimation (7.24) using adjustable coefficients is deter-
mined by (9.6) with A, B and C from (7.25). The estimation of gradient R* along λ is
determined in the form of the estimation of the first moment of distribution for the
transformed discrete error according to (9.8a) with A1, B1 and C1 from (7.26). The use
of Z1-transformation and equations (9.8), (7.27), (9.9), and (9.28) give the estimation
for gradient R* along ai and λ.

9.7
Implementation of Minimum Average Risk Function Criterion
for Neurons with Continuum Solutions and Kp Solutions

According to (7.30), in the case of a neuron with a solution continuum (two pattern
classes), one obtains

(9.9a)

where

The expression for the estimation of the average risk function gradient through the current
neural network signals is obtained after some transformations in the following form:

(9.10)

In this particular case,

Consequently,

which corresponds to the neuron with α2g minimization analyzed in Sect. 9.2. Expres-
sion (9.10) gives the known expression for the estimation of gradient R in the case of
two pattern classes and a neuron with two solutions in the form (9.6a).

9.7 · Implementation of Minimum Average Risk Function Criterion

176 Chapter 9 · Neural Network Adjustment Algorithms

In the case of continuum pattern classes,

(9.11)

Expression (9.10) for two pattern classes is a particular case of (9.11). The function

in (9.11) must be given a priori.
In the case of a neuron with Kp solutions (K pattern classes), the output signal has

the form

Similar to the previous case,

(9.12)

where l(y,ε) is a (K × K)-matrix with the elements representing the first order differ-
ence of the corresponding discrete function l(xk,ε). This matrix has the following form
in the particular case

(9.13)

In the expression (9.12),

Consequently,

 and finally

177

9.8
Implementation of the Minimum Average Risk Function Criterion
for Neural Networks with N* Output Channels (Neuron Layer)

Let us consider closed-loop neural networks with N* output channels. The optimal mod-
els of such neural networks and their secondary optimization functionals were analyzed
in Chap. 6 and 7. The case of equal dimensionality of εεεεε and xk is assumed below.

In calculations of discrete error transformations, the output signal has K0 gradations
for each channel. The measured vector of the discrete error has the form

(ε1,…, εN*) – (y1,…, yN*) = (k1,…, kN*) – (k1p,…, kN*p) = (x1g,…, xN*g)

This expression is multiplied by the scalar (7.33), and the norm of the resultant vector
is calculated. Then

if

(ε1,…, εN*) = (k1,…, kN*)

and

(y1,…, yN*) = (k1p,…, kN*p)

Consideration of the general case of K0 gradations of the neural network output
signal in each channel with the form

is not of principle. Let us therefore consider the case K0 = 2:

yi* = sign gi*

It can be shown that

(9.14)

Here l(ε1,…, εN*, y1,…, yN*) is (2N*× 2N*)-matrix. The gradient is calculated as the cor-
responding first order difference along yi* discrete functions. This matrix can have the
form (9.13) in some particular cases. The function ∂yi*/∂aij is determined by its sign

9.8 · Implementation of the Minimum Average Risk Function Criterion for Neural Networks

178 Chapter 9 · Neural Network Adjustment Algorithms

Let the recognition system have a solution continuum in each of the N* channels.
Let function F be the same for each output channel. Let the transformed discrete error
have the first distribution moment equal to the average risk function R. This error is
calculated as a sum of squared components of the vector of measured discrete error
transformed according to (7.34):

In this case,

and finally

This expression forms the basis for the design of the corresponding neural network
with the closed-cycle adjustment.

9.9
Implementation of the Minimum Average Risk Function Criterion
for Multilayer Neural Networks

Three types of closed-cycle adjustment algorithms for multilayer neural networks are rep-
resented below as the implementation of the minimum average risk function criterion.

Expression (9.9a) is valid for the neural network of two pattern classes with one
output channel (N* = 1) and arbitrary open-loop structure. The estimation of the av-
erage risk function gradient has in general the following form:

Here

179

where

is determined by the relationship (9.4). Finally

In the particular case of a multilayer neural network with full connections between
layers,

In the case of multilayer neural networks with neurons of two solutions,

(9.15)

Consideration of multilayer neural networks with continuum pattern classes and
solutions is not of principle. Let us therefore consider the case of K gradations for lev-
els of signals ε(n) and y(n). The open-loop neural network with N* = 1 is described by
the following expression

where gW
hW is determined by expression (2.7) in the case of the neural network with a

continuum of solutions. The expression for the optimization functional gradient is

9.9 · Implementation of the Minimum Average Risk Function Criterion

180 Chapter 9 · Neural Network Adjustment Algorithms

Matrix (∂/∂y)l(ε ,y) is determined here in the same way as it was done in Sect. 9.7.
Taking into account that

the expression for the estimation of the average risk function gradient in the case of
the neural network with neurons of two solutions will have the following form:

(9.16)

This expression represents a basis for the design of the corresponding closed-loop
neural network.

Let us consider the neural network with N* output channels and two gradations of
the output signal by amplitude in each channel. Here

Then, having a (2N*× 2N*)-matrix

one can obtain the adjustment algorithm similar to that of Sect. 9.7 for the last layer
neuron and Sect. 9.8 for the rest of the neurons.

9.10
Development of Closed-Loop Neural Networks
of Non-Stationary Patterns

The main difference as compared with the case of stationary patterns emerges here in
the design of the neural network adjustment algorithm. Let us consider a one-dimen-
sional case of the neural network with minimization of α2a in the closed cycle.

In this case,

The averaging here must be performed across the set of realizations of the non-
stationary random process at the time instant n∆T. Usually one has only a single real-
ization. The value

181

is obtained by averaging across time in the memory interval mn with an additional
constraint of a possible convergence of the process to the stationary state and a priori
information about modification of parameters for the distribution of the non-station-
ary random signal. It must be assumed that the neural network parameters (adjustable
coefficient a0) are constant in the averaging interval mn in order to express the func-
tional gradient estimation in the algebraic form. In this case,

The learning algorithm in the non-stationary case is determined by the following
relationship:

In order to design a closed-loop neural network, one needs the information about
the character of changes of the signal xa(n∆T) distribution. This information can be
unambiguously obtained by the information about the character of changes in the input
signal distribution parameters on the interval of the adjustment unit memory as well
as information about the neural network structure. If one assumes that the pattern
assemblages are normally distributed with a time-dependent mathematical expecta-
tion and that the random and determinate components of the random signal xa(n∆T)
are statistically independent, then the hypothesis for the mathematical expectation
changes is the same as in the case of the x(n∆T) signal. The optimal filtering of the
non-stationary signal and the aforementioned hypothesis for the first moment of dis-
tribution allows one to use in the adjustment unit the same filter as in the case of es-
timation of the secondary optimization functional gradient. The synthesis of such fil-
ters is considered in [9-7]. Hypotheses about the character of changes of the first
moments of distributions in the neural network memory interval are the same for both
classes. If it is not so, then the hypothesis of the higher order for the synthesis of the
estimation filter of

must be taken.
The analysis of corresponding expressions in the case of non-stationary patterns

shows that the estimation of the secondary optimization functional gradient is the
problem of the random signal filtering. Characteristics of the non-stationary imple-
mentation of the secondary optimization functional were determined above under the
assumption of the existence of some a priori information about characteristics of non-
stationary input patterns. However, this method is rather complicated in the case of
multidimensional and multilayer neural networks and secondary optimization
functionals related to the discrete error. To overcome this complexity, we introduce
additional a priori information about the neural network input signal. This informa-
tion allows one to reveal that the class of non-stationary characteristics of pattern

9.10 · Development of Closed-Loop Neural Networks of Non-Stationary Patterns

182 Chapter 9 · Neural Network Adjustment Algorithms

assemblages for which the a priori information about the character of time changes of
gradient distribution parameters is sufficient. On the one hand, such an approach simpli-
fies the filter synthesis procedure in the adjustment block. On the other hand, it allows one
to design the closed-cycle adjustment algorithms with coefficient correction at each step n.
In the previous cases, such a correction was performed after each mn steps.

The results of multidimensional filter synthesis given in [9-8] can be used for the neural
networks with open-cycle adjustment. They can also be used for the design of the neural
networks with closed-cycle adjustment at the estimation of secondary optimization
functional gradients in the case of the non-stationary pattern neural networks.

9.11
Development of Closed-Cycle Adjustable Neural Networks
with Cross and Backward Connections

Let us consider below only the case of the second discrete error distribution moment
in the capacity of the secondary optimization functional.

The two-layer open-loop neural network with cross connections for a pattern rec-
ognition system is described by the following expression (see Chap. 2):

Similar to the above cases, here

(9.17)

In this case,

These expressions form the basis for the design of the corresponding closed-loop
neural network.

The open-loop neural network in the form of neurons with backward connections
is described by the following expression (Chap. 2):

(9.18)

Let us consider the case of mn = 1. If mn = const., then only the condition of y(n – 1)
independent of ai must be satisfied. The Eq. (9.18) gives

183

Consequently, taking into account (9.17), the recurrent relationship for the design
of the corresponding closed-loop neural network is

(9.18a)

Let us consider the two-layer neural network with backward connections. The de-
scription of the open-loop neural network is the following:

(9.18b)

Using the transformation (9.17), one gets

(9.18c)

These expressions form the basis for the design of the corresponding closed-loop neural
network. They can be easily generalized for the case of the neural network with cross and
backward connections, of the neural network with arbitrary number of layers, and of the
neural network with cross and backward connections of different “logical depths”.

9.12
Development of Closed-Loop Neural Networks in the Learning Modes
with Arbitrary Teacher Qualification

The learning algorithms similar in quality to the algorithms for the recovery of distri-
bution density are given in [9-5]. These algorithms can be obtained from the given
calculation at each step of the adjustment procedure for the multilayer neural network
with fixed structure. The adjustment is performed by the vector coordinates of corre-
sponding modes f (x). However, another approach similar to the one used above at the
stage of the learning mode is also possible. The average risk in this case is the first
moment of signal x′k distribution (7.35). Consequently,

(9.19)

In particular, at ρ (x,b) = ||x–b||2:

9.12 · Development of Closed-Loop Neural Networks in the Learning Modes

184 Chapter 9 · Neural Network Adjustment Algorithms

The equation for the unknown functions b(y) represents some recurrent relation-
ship (mn = 1):

(9.20)

Equations (9.19) and (9.20) form the basis for the design of the neural networks
adjustable by the closed cycle in the self-learning mode. Derivative ∂y/∂a in (9.19) is
determined in the learning mode for the neural network with arbitrary structure. In
the case of Kp solutions,

is (Kp× N)-matrix obtained by the solution of (9.20) at threshold current step.
A more detailed development of the closed-loop neural networks with Kp solutions

and N* output channels in the self-learning mode is given in Chap. 12.
The multilayer neural network adjustment algorithm in this case is the following:

1. The initial value y(0) is calculated by the current input signal x(0) having some initial
values of the neural network adjustable coefficients;

2. The column of matrix b(y,0) corresponding to y(0) is selected;
3. The neural network coefficients are adjusted according to (9.19) and so on starting

again from point 1.

The b(y) values at each adjustment step can be determined by parameters and struc-
ture of the multilayer neural network. At the arbitrary teacher qualification,

(9.20a)

Then

(9.20b)

(9.20c)

These two equations form the basis for the design of the closed-loop neural net-
work with arbitrary structure and arbitrary teacher qualification. The adjustment al-
gorithm is divided into two independent parts. One of them is determined by the term
∂y/∂a. It depends upon the open-loop neural network structure and determines the
quality of the recognition solution.

The developed methods for the multilayer neural network adjustment can also be
used for the adjustment of the neural network with several layers and fixed coeffi-
cients.

185

The multilayer neural network adjustment procedure (8.1) provides only the local extre-
mum of the optimization functional. The initial values of the adjustable parameters must
be given randomly in the interval determined by some physical arguments. In this case,
the full adjustment algorithm of the multilayer neural network must consist of the
η0-volume set of injection stages of random initial conditions, the following stages of ad-
justment (8.1) and the stage of adjustment results averaging across η0 (see Chap. 8 and 12).

9.13
Expressions for the Estimations of the Second Order Derivatives
of the Secondary Optimization Functional

The expressions for the estimation of the second order derivatives of the second discrete
error distribution moment (the secondary optimization functional) are given below for
the multilayer neural networks of different types. In the case of a solution continuum,

(9.21)

In the case of a multilayer neural network with sequential connections

9.13 · Expressions for the Estimations of the Second Order Derivatives

186 Chapter 9 · Neural Network Adjustment Algorithms

Here

The use of these expressions for the design of corresponding algorithms for multi-
layer neural networks with a complex structure is complicated. However, the multi-
layer neural network methods determine the decrease of requirement to estimate the
second derivatives of the secondary optimization functional in the case of increasing
the complexity of the open-loop neural network structure. For the two-layer system
with cross connections,

187

In the case of neurons with the feedback loop,

(9.22)

The obtained expressions form the basis for the design of the multilayer neural
network adjustment algorithms with the use of the second derivative of the secondary
optimization functional.

Literature

[9-1] Galushkin AI (1973) About adaptation algorithms in multilayer pattern recognition systems.
Dokl. AN USSR 1:15–20

[9-2] Galushkin AI (1974) Synthesis of multilayer pattern recognition systems. Moscow, Energia
[9-3] Viktorov NV, Galushkin AI (1976) Design and investigation of pattern recognition systems

under the arbitrary “teacher qualification”. Medical radioelectronics, VNII meditsinskoj
tekhniki, pp 95–106

[9-4] Galushkin AI, Totchenov VA (1974) “Human-machine” systems in the pattern recognition theory.
Proceedings of the seminar “Artificial intelligence. Summary and perspectives”, 1974, pp 1–7

[9-5] Tsypkin Ya Z (1968) Adaptation and learning in automatic systems. Moscow, Nauka
[9-6] Tsypkin Ya Z (1970) Foundations of the learning system theory. Moscow, Nauka
[9-7] Galushkin AI, Zotov Yu Ya, Shikunov Yu A (1972) In-line processing of experimental informa-

tion. Moscow, Energia
[9-8] Galushkin AI (1968) Computation and implementation of optimal filters. Moscow, Automatic

control and computer facilities 9:72–128

Literature

Chapter 10

This chapter deals with a continuum model of the two-layer neural network with con-
tinuum neurons in the first layer and with a neuron with a continuum of features at
the input in the second layer. The model structure in this case is described by the ex-
pression

(10.1)

Here x1l(n) is the l-th component of the feature vector; y is the neural network out-
put signal; a1l(i,n) is the l-th component of the weighting vector-function of the first
layer; and a2l(i,n) is the weighting vector-function of the second layer.

The goal of this chapter is the derivation of the expression for recurrent adjustment
procedures of the two-layer continuum neural network weighting coefficients and
analysis of peculiarities of these procedures.

The expression for the recurrent procedure for the neuron with a finite number of
features is taken as the initial one:

(10.1a)

Here Y(a) is the secondary optimization functional; a(n) is the system state vector
(the current value of the extremum function argument); K*[L0 × L0] is the matrix of
coefficients; and L0 is the vector a dimensionality:

Adjustment of Continuum Neural Networks*

* This chapter is written in collaboration with Fomin Yu. I.

190 Chapter 10 · Adjustment of Continuum Neural Networks

10.1
Adjustment of a Neuron with a Feature Continuum

The relationship (10.1a) can be written in the scalar form

(10.2)

The numbers i and j of the vector a components under L → ∝ are replaced by
parameters i and j that are continuously varied in some region I. The summation over j
is replaced by an integral that has taken over parameter j. The expression for the recur-
rent adjustment procedure in the case of the feature continuum is

(10.3)

Here K*(i,j) is the function of two variables i and j.

10.2
Adjustment of the Continuum Neuron Layer

Each neuron from the continuous set in this layer corresponds to some value of
parameter i continuously varying in some region J′. One can consider some interval
(c, d).

The recurrent adjustment procedure of the continuum neuron layer has the form

(10.4)

Here K*(i) – [L0 × L0] is the matrix of functions of parameter i, and L0 is the dimen-
sionality of the feature vector (or vector-function a(i)).

10.3
Selection of the Parameter Matrix for the Learning Procedure of the
Continuum Neuron Layer on the Basis of the Random Sample Data

The structure of the neural network continuum layer used as independent system
(a2(i) = 1) is described by the expression

where L0 is the dimensionality of the feature space.

191

The recurrent procedure of the neuron layer learning has the following form:

(10.5)

We have not yet considered the problem of matrix K* selection. It is evident that
K*(i) = K*(i, n) due to its dependence on the adjustment step. Let us analyze the func-
tion matrix dependence upon the step number n and parameter i under the condition
that a2(i) = 1 for all n (for simplification).

Let us consider the particular case of a diagonal matrix:

The continuum of neurons realizes a continuum of hyperplanes in the feature space.
Each value of parameter i corresponds to the neuron with discriminant function

(10.6)

In the points of the i-th hyperplane, g(y,i) = 0. The distance from some point y to the
hyperplane is proportional to g(y,i). Let us term R(i) = g(y,i) as the distance between
the point y and the hyperplane corresponding to the parameter i. Let us consider that
if y belongs to the first class then the correct orientation for the i-th hyperplane is the
orientation providing R(i) > 0.

Let at the n-th step of the procedure R(i) = R(n,i), where

(10.7)

In the scalar form in this case,

(10.8)

Then

(10.9)

can be written in the form

10.3 · Selection of the Parameter Matrix for the Learning Procedure of the Continuum Neuron Layer

192 Chapter 10 · Adjustment of Continuum Neural Networks

Taking into account (10.9), one obtains

(10.10)

As the sum (integral) of the output signal of the neuron layer is used for the clas-
sification of points in the feature space of the neural network, then the point y will be
classified correctly in advance at the (n + 1)-th step if R(n + 1, i) is selected in the fol-
lowing way:

(10.11)

(it is assumed that y belongs to the first class). Here ε 0 >0. In order to determine Kl
*(n,i),

l = 0,…,L, from (10.10), it is necessary to take the (L + 1)-th point and to calculate
R(n + 1,i) for each point according to (10.11). Then the system of L + 1 linear equations
for the function Kl

*(i), l = 0,…,L, is obtained. Let us rewrite (10.10) in the vector form

(10.12)

Here K(n,i) = (K00(n,i)…KLL(n,i)) is the diagonal of matrix K*(i), and matrix AYX is

It follows from (10.12) that

(10.13)

This is a final expression for the parameter matrix of functions at the n-th step of
the procedure.

193

One must take mn samples each consisting of L + 1 vector for averaging and then
select the matrix

(10.14)

The diagonal of matrix K*
mn

(i,n) is calculated by (10.13) for each sample.
The difficulty of this method is the choice of the optimal ε0 > 0.

10.4
Selection of the Parameter Matrix K*(i,j) for the Learning Procedure
of the Neuron with a Feature Continuum on the Basis of the Random
Sample Data

The distance estimation method from the previous section can be also used for the
parameter matrix in the case of neurons with a feature continuum. The recurrent learn-
ing procedures for the neuron with a feature continuum have the form

(10.15)

The distance from the point x(n,i) to the hyperplane S(x(i)) = ∫a(i)x(i)di + a0 = 0 is

(10.16)

Taking into account (10.15), (10.16), one obtains:

(10.17)

If x(n,i) belongs to the first class and Rn(x(n,i)) < 0, then one selects Rn+1(x(n,i)) =
–ε0Rn(x(n,i)), ε0 > 0.

10.4 · Selection of the Parameter Matrix K*(i,j) for the Learning Procedure of the Neuron

194 Chapter 10 · Adjustment of Continuum Neural Networks

Function Kn(i,j) and coefficient Kn cannot be determined from Eq. (10.17)
unambiguously. Let us put some constraints upon function Kn(i,j) introducing the
function

(10.18)

where K0
* = d–c.

Equation (10.15) in this case is

(10.19)

because taking into account (10.18)

It follows from (10.19) that function (10.18) is a continuum analogue of the unit
parameter matrix K*. Taking into account (10.18), one obtains for (10.17)

(10.20)

Consequently,

In the case of incorrect classification,

(10.21)

One of the possible ways to solve the problem of selection of the parameter coeffi-
cients in the case of a neuron with a feature continuum therefore is the solution deter-
mined by (10.18) and (10.21). Similar to the previous section, it is possible to use the
averaging of Kn and Kn(i,j) across mn points of the function space.

As in the previous section, the difficulty of this method is the choice of the optimal ε0.

195

10.5
Characteristic Properties of the Two-Layer Continuum Neural Network
Adjustment Algorithm

These characteristic properties relate to the exchange of the structural matrix
of coefficients K* by the matrix of functions K*(i) at the transformation to the first
layer continuum or by the function of two variables K*(i,j) at the transformation
from the neuron with a finite number of features to the feature continuum in the
second layer. The selection algorithm for K*(i) requires the solution of a system of
L + 1 equations (if K*(i) is a diagonal matrix of functions). In the case of a finite
number of hyperplanes, one needs to find a diagonal matrix of coefficients for each
hyperplane, i.e., to solve H systems of L + 1 equations (H is the number of neurons
in the layer).

The algorithm of K(i, j) selection consists in the solution of the integral equation for
K(i, j) and coefficient Kn. Figures 10.1 and 10.2 show the open-loop structure of the
continuum neural network and the block scheme of its learning algorithm.

10.6
Three Variants of Implementation of the Continuum Neuron Layer
Weighting Functions and Corresponding Learning Procedures

This section deals with the open-loop continuum neuron layer structure and its ad-
justment depending on the method of weighting function implementation.

Fig. 10.1.
Open-loop structure of the
two-layer continuum neural
network

Fig. 10.2.
Block scheme of the two-layer
continuum neural network at
the (n + 1)-step

10.6 · Three Variants of Implementation of the Continuum Neuron Layer Weighting Functions

196 Chapter 10 · Adjustment of Continuum Neural Networks

The open-loop continuum neuron layer structure is described by the expression

(10.22)

where x2(i) is the layer output signal; xl is the input signal vector; and a(i) is the vector
of weighting functions for the continuum layer belonging to the piecewise differen-
tiable function class with discontinuity of the first kind and a finite number of zeros
(l = 1 … L).

It follows from (10.22) that x2(i) is the function with the form shown in Fig. 10.3. It
represents a sequence of rectangles with different durations and unit amplitude. The
function under the signum sign

can have a complex form. However, the form of the function x2(i) is determined only
by the number and location of zeros of the f (i) function. Its form between the neigh-
boring zeros is not important. Hence, the weighting functions a(i) can be approximated
rather roughly (Fig. 10.4) or more precisely (Fig. 10.5).

The adjustment procedure is organized in the following way. The approximation
interval is divided into S parts. The set of piecewise constant weighting functions
(each one determined by S coefficients) or the piecewise linear weighting functions
(each one determined by 2S coefficients) are constructed thereafter. Then the co-
efficients that determine the weighting functions are adjusted by means of the gradi-
ent method.

The probability of the correct recognition is used as the neural network quality
criterion. It is calculated with the use of the test vector sample. If the correct recogni-
tion probability under the given number of steps of the learning procedure is less than
the required value, then the number S is doubled and the adjustment procedure for the
adjustable coefficients is repeated.

Fig. 10.3.
Output signal of the continu-
um neuron layer

197

As a result, the following important goal is achieved. The layer with the large num-
ber of neurons is replaced by the continuum neuron layer, i.e., N weighting coefficients
(for each feature) are replaced by the weighting function curve. This weighting func-
tion is approximated by the piecewise linear or piecewise constant function required
for sufficient recognition probability. The resultant weighting function is described by
a sufficiently small number of parameters, at least less than the number of parameters
in the case of a discrete neuron layer. The piecewise constant approximation of the
weighting function curve is represented in Fig. 10.6.

The maximally monotone function (with minimum number of sign changes of its
derivative) provides the minimization of the number of the weighting function ap-
proximation intervals using renumbering (ranging) of neurons in the layer.

Fig. 10.4.
Piecewise constant approxima-
tion of the weighting function
of the continuum neuron layer

Fig. 10.5.
Piecewise linear approxima-
tion of the weighting function
of the continuum neuron layer

Fig. 10.6.
Weighting function of the
continuum neuron layer

10.6 · Three Variants of Implementation of the Continuum Neuron Layer Weighting Functions

198 Chapter 10 · Adjustment of Continuum Neural Networks

10.7
Learning Algorithm with α2g Secondary Optimization Functional
(the Five-Feature Space) for the Two-Layer Continuum Neural Network

The structure of such a neural network is described by the functional expression

(10.23)

Let us consider the case of the functional α2g. The square of the discrete error mag-
nitude is

(10.24)

where

10.7.1
Learning Algorithm for the Second Layer (Feature Continuum Neuron)

Let us calculate the derivative:

Let us designate

(10.25)

Then

The value of the first derivative in this case cannot be determined, and it is neces-
sary to use the information about its sign

199

because

(Here and below, the sign of averaging across mn is omitted in all expressions except
the final expressions). Consequently,

(10.26)

Taking into account (10.26) and (10.3), one obtains the expression for the recurrent
adjustment procedure of the second layer neuron weighting function:

(10.27)

where xg(i,n) is determined from (10.24), and x2(i,n) is determined from (10.25).

10.7.2
Learning Algorithm for the First Layer (Continuum Neuron Layer)

Let us calculate the derivative:

Consequently,

(10.28)

Then one obtains the expression for the recurrent adjustment procedure of the first
layer neuron weighting vector-function:

(10.29)

where K*(i) is the [L0× L0]-matrix of functions of parameter i, and L0 is the dimensio-
nality of the feature vector x(n).

10.7 · Learning Algorithm with α2g Secondary Optimization Functional (the Five-Feature Space)

200 Chapter 10 · Adjustment of Continuum Neural Networks

10.8
Continuum Neuron Layer with Piecewise Constant Weighting Functions

10.8.1
Open-Loop Layer Structure

The interval in which the weighting function is generated is divided into the equal
intervals τ. The partition is fixed. The amplitude of rectangles as (s is the number of
the partition interval) is adjustable in the learning process (Fig. 10.7).

Let us introduce functions

then a(i) can be represented as

Let us introduce the designation

Then

(10.30)

The neuron continuum is described by the expression

(10.31)

Fig. 10.7.
Diagram of the open-loop
structure for the neural net-
work continuum layer with
the piecewise constant weight-
ing functions

201

In (10.31),

Then

(10.32)

One obtains using the definition of H(i, s) functions

(10.32a)

It follows from (10.32) that this structure represents such a neuron layer

(10.33)

and in this case the neuron outputs connect the input of the next neuron layer in turn
during the equal time intervals i. Function H(i, s) is used as a commutation switch of
the neuron layer outputs. The structure corresponding to (10.33) is shown in Fig. 10.7.

10.8.2
Recurrent Adjustment Procedure for the Piecewise Constant Weighting Functions

The recurrent adjustment procedure of the continuum neuron layer in the case of a
two-layer neural network has the following form:

(10.34)

Let us consider the particular case of the learning procedure with a diagonal matrix
of functions K*(i).

Let the weighting function of the second layer neuron be piecewise constant. Then
at each s-th interval,

(10.34a)

since

(10.35)

(10.36)

10.8 · Continuum Neuron Layer with Piecewise Constant Weighting Functions

202 Chapter 10 · Adjustment of Continuum Neural Networks

where KS is a diagonal matrix at the s-th interval. Then the adjustment procedure for
the s-th approximation interval will have the form

(10.37)

10.8.3
About Matrix K*(i) Estimation

The expression for the diagonal components of matrix K*(i) was obtained above in the
case of the two-layer continuum neural network:

(10.38)

Here AYX
–1= CYX sign a2(i), where CYX is a numerical matrix (independent of i); a2(i)

in this case is a piecewise constant weighting function of the second layer neuron, i.e.,
it is constant at the s-th interval.

Taking into account (10.35),

(10.39)

Equations (10.36) and (10.39) give for the s-th interval

(10.40)

10.9
Continuum Neuron Layer with Piecewise Linear Weighting Functions

10.9.1
Open-Loop Structure of the Neuron Layer

Let us consider the continuum neuron layer with weighting functions shown in
Fig. 10.8:

(10.41)

The output signal has the form

203

Consequently,

(10.42)

The structure (10.42) can be considered as the layer of S threshold elements with
weighting coefficients linearly dependent on i. The neuron outputs successively con-
nect the input of the next layer by functions H(i, s) at the change of i. The layer struc-
ture is shown in Fig. 10.9.

10.9.2
Recurrent Adjustment Procedure for the Piecewise Linear Weighting Functions

Similar to the previous section, matrix K*(i) has the following form under the condi-
tion of the piecewise constant weighting function of the second layer of neurons:

(10.43)

Fig. 10.8.
Weighting functions with
piecewise linear approxima-
tion for the continuum neural
network

Fig. 10.9.
Diagram of the open-loop
structure for the continuum
neural network layer with
piecewise linear weighting
functions (s-th channel)

10.9 · Continuum Neuron Layer with Piecewise Linear Weighting Functions

204 Chapter 10 · Adjustment of Continuum Neural Networks

Consequently, the layer learning procedure at the s-th interval has the following
form:

(10.44)

It is implied here that

The expression (10.44) is valid only for the aforementioned constraint upon the
weighting function of the second layer neuron. In the general case, the learning pro-
cedure has the following form:

(10.45)

where function Fs(i,n) depends on the output signals of the neuron layers following
the current one. Consequently, if one were to designate the linear function as

then one gets the following for the S-th interval:

(10.46)

The expressions (10.45) and (10.46) are the general adjustment algorithms for the
piecewise linear functions of the continuum neuron layer.

The form of matrix (10.43) is derived from the expression (10.38) under the con-
straints (10.34a) upon the weighting function of the second layer neuron, definition of
vector-functions Rn+1(i), Rn(i), and condition of linearity for the weighting function at
the s-th interval.

In truth, it follows from the definition of vector-functions Rn+1(i), Rn(i), and condi-
tion of linearity for the weighting function at the s-th interval that

(10.47)

Expression (10.43) follows from (10.38) and (10.47).

205

10.10
Continuum Neural Network Layer with Piecewise Constant Weighting
Functions (the Case of Fixed “Footsteps”)

10.10.1
Open-Loop Layer Structure

Let the weighting coefficients have the form shown in Fig. 10.4 and divisional points τs not
be fixed. Let the amplitudes of rectangles be fixed at the value Usl∆a, where Usl is the integer
number; ∆a is the fixed value. The l-th weighting function of the layer has the following form:

(10.48)

where

The output signal of the layer is

Consequently,

(10.49)

The structure (10.49) is similar to the structure (10.32a) under the condition that
time intervals τs, during which corresponding neurons connect the input of the next
layer, variate, and the amplitudes of weights at the s-th interval are fixed. Thus one
obtains an s-dimensional vector of variable parameters τs.

10.10.2
Recurrent Adjustment Procedure for Piecewise Constant Weighting Functions
with Variable Interval Lengths τs.

The recurrent adjustment procedure for vector τττττ has the following form:

(10.50)

where Y(n) is the secondary optimization functional. If

where y(n) is the output neural network signal and ε (n) is the supervisor instruction, then

y(n) = F[x(i)]

10.10 · Continuum Neural Network Layer with Piecewise Constant Weighting Functions

206 Chapter 10 · Adjustment of Continuum Neural Networks

where x(i) is the output signal of the current layer; F is the transformation performed
by the following neural network layers over x(i):

Taking into account the form of x(i):

(10.51)

It follows from the function H(i,s) definition:

It is necessary to use the information about the sign of the first derivative

Finally,

(10.52)

Literature

[10-1] Galushkin AI (1974) Synthesis of multilayer pattern recognition systems. Moscow, Energia
[10-2] Galushkin AI (1977) Continuum models of multilayer pattern recognition systems. Automatic

and computer technology 2
[10-3] Galushkin AI (1992) Continuum neural networks. Neurocomputer 2:9–14

Chapter 11

11.1
About Selection Methods for Initial Conditions

The homogeneous neural network adjusted to the solution of some specific problem
represents a dynamic system described by difference or differential (linear or nonlin-
ear) equations. Therefore, the problem of selecting initial conditions for the system
adjustment is an important part of the neural network theory. The quality of such
selection significantly influences the quality of the solution. Usually this aspect is not
considered.

It seems that only Rosenblatt [11-1] mentioned this problem. However, he took
the zero initial values of coefficients in all the experiments. This does not guarantee
the achievement of extremum with a satisfactory value of optimization functional.
This is especially the case in the problems with multi-extremum optimization
functionals.

One can consider two methods of selection of such initial conditions: selection of
random initial conditions and selection of deterministic initial conditions. In the first
method, the multi-extremum secondary optimization functional is used. The random
elements are introduced into the procedure of the secondary optimization functional
extremum search for the search of the local and global extrema of this functional. The
local extremum search is necessary for the solution of the problem of the structure
minimization for the multilayer neural network. The impression of a too large num-
ber of the local extrema in the space of the adjustable coefficient emerges at the first
stage of the use of the random initial conditions. However, the enlargement of the
open-loop neural network structure results in the increase of the numerosity of the
multilayer neural network states. This numerosity is estimated by the secondary
optimization functional value. This means that the majority of the local extrema
provide one and the same quality of recognition. This remark must be taken into
account in the methods described below of the multilayer neural network quality
estimation by estimation of the secondary optimization functional value. The experi-
mental results obtained in this chapter and the aforementioned comment show the
validity of the approach to the problem of adjustment with the use of the random
initial conditions in spite of the fact that such an approach introduces redundancy in
the time of the neural network adjustment.

The goal of the second method with deterministic initial conditions is the a priori
introduction of the neural network into the region of one of the local extrema of the
secondary optimization functional. The multilayer neural network must be maximally
amorphous at the level of the first, second, etc., layers, i.e., it must be ready to solve the

Selection of Initial Conditions During Neural Network
Adjustment – Typical Neural Network Input Signals

208 Chapter 11 · Selection of Initial Conditions During Neural Network Adjustment

most complex (from the point of modality of f (x)) recognition problem. The prelimi-
nary variant of the possible structure of the divisional surface in this case at the prob-
lem of learning for recognition of two pattern classes is represented in Fig. 11.1. The
final variant can be determined only after introducing the criterion of amorphism or
dispersion.

It is evident that the multilayer neural network with the lowest amorphism and
dispersion is the neural network with equal coefficients of the first layer neurons and
with corresponding divisional surfaces shifted to the “margin” of the feature space. The
physically implemented feature space region is shown in Fig. 11.1 by the dotted line.
This also takes place in the self-learning mode if there is no preliminary information
about the cells in Fig. 11.1 belonging to this or that class. The initial condition for the
adjustable coefficients of the second, etc., layers is calculated by the geometry of the
divisional surface realized by the neurons of the first layer with instruction concerning
belonging of the initial feature space regions to this or that class.

The initial conditions are selected according to the a priori information about dis-
tributions at the already-known structure of the open-loop neural network and se-
lected optimization functional. The selection of initial conditions depends not only on
the selection of vector a(0) but also on the method of calculation of parameter matrix K
elements at each procedure step. Methods for the selection of initial conditions can be
ordered by the form of the used information:

� Random initial conditions without use of the learning sample;
� Deterministic initial conditions without use of the learning sample;
� initial conditions with use of the learning sample.

11.2
Algorithm of Deterministic Selection of the Initial Conditions
in the Adjustment Algorithms for Multilayer Neural Networks

This algorithm uses a priori information about mode configuration in the feature space,
their number and variance.

Let the feature space be normalized into the unit hypercube

(11.1)

Fig. 11.1.
Divisional surface at the selec-
tion of initial conditions:
1 – the first class; 2 – the sec-
ond class

209

where xj is the feature space of j-th pattern of the learning sample; N is the space dimen-
sionality; and M is the learning sample length. Let us consider the case of two classes
with K1 and K2 modes. Designations of corresponding classes are

r1i(i=1,…,K1), r2i(i=1,…,K2)

Let us organize monotone sequences for the mode projections on each coordinate axis:

(11.2)

where i1,2 are the numbers of modes of the first and second classes.
Let us consider differences of the following form:

(11.3)

Let σ1,2 be the estimation of the variance of j-th mode and let the following condi-
tion be valid:

(11.4)

Then hyperplane is drawn through the middle of the segment

(11.5)

square with j-th coordinate axis. If the drawn hyperplane separates also projections of
other modes, then it is drawn through the point obtained by the averaging of middles of
corresponding segments (11.5) whose edges are separated by this hyperplane. If the con-
dition (11.4) is not fulfilled for a given pair of modes, then the hyperplane is not drawn.

Let us consider an example shown in Fig. 11.2 for illustration. The mode configura-
tion has the following form:

One checks the validity of conditions (11.4) for x1. As a result, one draws hyperplane
1 through the middle of the segment R1

1, R1
2, where

Similarly checking for x2, one draws the hyperplane 2 through the middle of the
segment R2

1, R2
2, where

11.2 · Algorithm of Deterministic Selection of the Initial Conditions in the Adjustment Algorithms

210 Chapter 11 · Selection of Initial Conditions During Neural Network Adjustment

Then the first and the third sections can be considered as belonging to the first
class, and the second and the fourth sections can be considered as belonging to the
second class. The error is determined by the hatched regions.

The block scheme of the program that realizes this algorithm and parameter de-
scription is represented in Fig. 11.3 and in Table 11.1.

Fig. 11.2.
Example of the use of algo-
rithm for deterministic selec-
tion of the initial conditions

211

Fig. 11.3. Block scheme of the program realizing the algorithm of deterministic selection of the initial
conditions

11.2 · Algorithm of Deterministic Selection of the Initial Conditions in the Adjustment Algorithms

212 Chapter 11 · Selection of Initial Conditions During Neural Network Adjustment

11.3
Selection of Initial Conditions in Multilayer Neural Networks

The problem of the initial condition selection in multilayer neural networks is divided
into a step-by-step selection of the initial conditions for the first, second, etc., layers. The
first layer was considered above. For example, let the coefficients of the first layer be de-
termined as a result of deterministic selection, and thus the set of sections is obtained.
Each section corresponds to the number consisting of + 1 and –1. If this set provides the
location of the divisional surface close to the optimal one (the recognition error is small),
then the probability that this section configuration will be changed is small. The estima-
tions of such a probability are given below. The learning samples for the second, etc., lay-
ers will be preserved with this probability. The obtained coefficients can remain constant
if they correctly perform decomposition of the output space of the previous layer.

Figure 11.4 shows the example of the second and third neuron layer coefficient values
dependent upon the classes’ number distribution across sections when the configura-
tion is not changed. In the cases a–d, the logic function is realized on the neuron of the
second layer. In the case e, the three-layer neural network is realized.

Let us consider the problem of coefficient fixation in more detail. Let some piece-
wise linear surface be realized in the feature space. Each section must correspond to
some class number in order to form the learning sample.

Fig. 11.4. Example of the second and third neuron layer coefficients value dependent upon the classes’
number distribution across sections

213

It can be done in the following way. First, one obtains the correspondence between
each element of the learning sample and the section number. Then one determines the
class number corresponding to the maximum number of its patterns in each section.
And this class number will correspond to this section. Then it is necessary to select
optimal coefficients for the second layer. Since the piecewise linear surface in the
majority of diagnostic problems is not very complicated, then one can obtain experi-
mental tables of correspondence for the second layer of neurons to the given configu-
ration. Though this task is rather complex and time-consuming, its solution provides
the reduction of the initial condition selection to the deterministic selection of the
initial conditions for the first layer and fixation of the coefficients of the following
layers using such tables. The estimation for the probability of preservation of configu-
ration in the feature space is given below.

Let us consider the deterministic selection of the initial conditions for the multi-
layer neural network with three neurons in the first layer shown in Fig. 11.5. Table 11.2
represents the values of the logic function Y with the first layer outputs as its argu-
ments. The values of this function on sections are represented for the given configu-
ration. Here yi (i = 1,2,3) are the outputs of the first layer neurons. Such a function can
be realized by two neurons of the second layer with coefficients:

(11.6)

Sections in Table 11.2 can be modified in the process of further learning. Their
number is 2H1 – m, where H1 is the number of neurons in the first layer and m is the
number of sections selected as initial conditions. In our example, two sections,
[+ 1, + 1, –1] and [–1, + 1, –1], can arrear. One obtains under the fixed coefficients of

Fig. 11.5.
Example of the deterministic
selection of the initial condi-
tions for the multilayer neural
network with three neurons in
the first layer

11.3 · Selection of Initial Conditions in Multilayer Neural Networks

214 Chapter 11 · Selection of Initial Conditions During Neural Network Adjustment

the first layer that the new sections belong to the first class. It is seen from Fig. 11.4 that
the first section increases the recognition error because the element of the second class
will appear there, and the second section does not increase the error. The classification
error can increase (as a result of fixation the coefficients of all the layers are higher
than the first one) in the following situations: first, if the new sections are considered
as belonging to the other pattern class, and second, if the old section that will change
its configuration in the learning process gets more other class patterns than before.

Let us consider the section ε i = {ε i
1,…, ε i

k}, ε i
j = 1,…, m. Let the first class correspond

to the number of the section ε i and let this section get Si elements of the second class
in the process of the initial condition selection. Then the probability of the wrong clas-
sification obtained due to the surface of this section is Si/Mi, where Mi is the number
of patterns in the section ε i. Further closed-cycle learning must involve those hyper-
planes whose change will decrease the error probability Si/Mi. The probability of the
section deformation in the learning procedure can be defined as

(11.7)

Let us assume that dependence of the section deformation upon the probability Si/
Mi is linear

(11.8)

and that patterns are uniformly distributed along the section with the density Si
ρ. Then,

(11.9)

Evidently, pi → 0 if Vi → 0, Si
ρ = const, and pi → 0 if Si

ρ → 0, Vi = const. This means
that the probability of the section deformation that does not contribute to the recog-
nition error is zero, and that under the constant distribution density Si

ρ, the decrease of
the section volume results in the decrease of the number of elements Si that it gets thus
decreasing the probability (11.9). In the case of Vi → V0, one gets pi → ½ (under the
assumption that the sample includes for M/2 elements of each of two classes). The
averaging of (11.9) for all the m sections gives

and taking into account that

for each pi, one gets the estimation for the average section deformation probability
under the considered configuration:

215

As a result, it is seen that it is possible to estimate the probability of the already
existent section deformation in the learning process at the stage of initial condition
selection for the first layer neurons, i.e., to estimate the validity of the use of fixed
coefficients of the following layers.

Taking into account the above considerations, one can present the initial condition
selection method for the multilayer neural networks.

1. The piecewise linear surface is drawn in the feature space with the help of the de-
terministic algorithm of the initial condition selection for the first layer neurons;

2. The correspondence between the i-th pattern of the learning sample and the sec-
tion number (ε j = 1,…, m) is found with the help of the examination of the first
layer across all of the learning sample;

3. Teacher instruction Ei (i = 1,…, K) is assigned to the section number ε j, where K is
the number of patterns. The values Yij (i = 1,…, p) are calculated for this purpose
for each section (Yij is the number of patterns of the i-th class that occurred in the
j-th section; p is the number of classes whose patterns occurred in the j-th section)
and the maximum value max Yij is found. The corresponding Ei is the required teacher
instruction;

4. The probability of considering the j-th section as belonging to the i-th pattern class
is calculated:

where

5. The logic function realization on one neuron of the second layer is checked. If this
function is realized then the initial condition selection is terminated at the stage of
the second layer neuron learning;

6. If this does not take place, then the initial condition selection is performed on the
neurons of the second layer either in a way similar to p. 1 or with the help of tables
of correspondence of the second layer coefficients to the specified section configu-
rations;

7. A similar procedure is used for the following layers;
8. The sub-samples for the first layer learning are formed: one checks successively for

each section ε j which hyperplanes that form this section contribute to the error Sj,
then it shifts each hyperplane by ±rj (rj > rj

0), where rj
0 is the mean distance between

the nearest patterns that occurred in the given section, and it checks the change
of Sj. The hyperplanes selected in such a way must be exposed to further closed-
cycle learning.

11.3 · Selection of Initial Conditions in Multilayer Neural Networks

216 Chapter 11 · Selection of Initial Conditions During Neural Network Adjustment

The partial learning of the first-layer neurons provides the following: first, not to
train hyperplanes with optimal location, second, to get the reduced learning time.

The aforementioned method reduces the multilayer neural network learning to the
learning of the first neuron layer.

11.4
Initial Condition Formation for Neural Network Coefficient Setting
in Different Problems of Optimization

Generally, multilayer neural networks in solving mathematical problems form the multi-
extremum optimization functional in which the connection is the best, and often the
only decision is reaching during the setting process using a system of a global extre-
mum of the given functional. In the overwhelming majority of works, the initial con-
dition selection is suggested to be made through the following methods:

� To choose ground initial conditions;
� To choose initial conditions of setting casually;

In this work, it is suggested that the initial conditions of setting the multilayer neu-
ral network weight coefficients is chosen for solving mathematical problems in a spe-
cific way of solving every problem. In the first turn it creates the following problems:

� Systems of algebraic equalities;
� Systems of algebraic inequalities;
� Approximation and extrapolation of functions;
� Pattern recognition, as a particular problem of function approximation;
� Clusterization or self-teaching;
� Optimization;
� Dynamic object modeling.

In the succeeding period, a quantity of current problems in the neural network logical
basis will be increased [11-5, 11-6] and correspondingly for other problems the methods
of initial condition formation will be developed for a multilayer neural network setting.

The problem of initial condition choice (formation) in its turn is separated into two
parts:

� Formation of the main idea (algorithm) of the choice of initial conditions;
� Weight coefficients of the neural network calculation of a chosen structure as initial

for setting in an adaptive regime.

Some problems of the initial condition choice in a given work are defined only
without a presentation of a final decision; in our opinion this is what is also important
for a correct orientation of the researchers in this field.

Here the main goal is defining the problem of initial condition formation for the
coefficient setting in the multilayer neural networks by using a specific method for
every concrete problem.

217

11.4.1
Linear Equality Systems

The main idea of the choice of initial conditions for two variants of investigated neural
network algorithms to solve the algebraic equalities is presented in Figs. 11.6a and 11.6b.

In the first version of the neural network algorithm of solving the algebraic equali-
ties systems in the case of a one-layer neural network the initial conditions of X vector
is offered to calculate, solving N equalities of one variable, forming their coefficients by
separation (main) matrix A diagonal, or N equalities of two variables, forming their
coefficients by separation of two matrix A diagonals (main and next to it from above
or below). One can consider the version of three matrix A diagonals separately (main
and two next). The choice of the diagonal number in the matrix is determined by
admissible time for solving the diagonal system equalities using ordinary methods for
X(0) calculating the following solution of linear equality systems by a neural network
algorithm. As mentioned above numerous times, this procedure is effective for big
dimension systems. In this case, the problem is the initial condition choice of weight
coefficients in the second, third etc. layers of the multilayer neural network, which solves
the system of algebraic equalities in the structure presented on Fig. 11.6a.

During the work, [11-6] a modified approach to neural network algorithms of the
solution of algebraic equality systems is offered, which is presented in Fig. 11.6b. Here
the neural network input is A matrix and b vector, and output – required X solution. In
conclusion, the main problem is, in forming the output signal of neural networks that
is found by the first method of algebraic equality system determination, the calculatation
of the neural network coefficients, which could content to ratio X(0) = F{W(0)}, where
F is the conversion made by the neural network, and W(0) is the number of initial
values of weight coefficients of the neural network by a defined structure.

11.4.2
Linear Inequality Systems

By solving linear inequality systems, the initial condition choice of setting multilayer
neural network coefficients is possible to make. This is also possible with a linear
equality system solution with proper signs of inequality substitution in the inequality
systems to the signs of equalities.

Fig. 11.6. Initial conditions choice for two variants of investigated neural network algorithms

11.4 · Initial Condition Formation for Neural Network Coefficient Setting in Problems of Optimization

218 Chapter 11 · Selection of Initial Conditions During Neural Network Adjustment

11.4.3
Approximation and Extrapolation of Functions.

It is widely believed that neural networks are mostly effective approximators and extrapo-
lators of functions. It is directly connected with the natural development of the theory of
filtration and extrapolation signals from linear theory, where the amount of a priori in-
formation about useful signals and noises is quite considerable in nonlinear theory. In
this connection a neural network machine using the filtration and the signal extrapolation
problem includes and summarizes quite a great quantity of attempts to solve the non-
linear processing problem by means of other methods. Neural networks solve the filtration
and signal extrapolation problems for difficult and unknown characteristics of a useful signal,
often variables in time, and variables in time-noise characteristics. In the framework of
neural networks are the initial attempts to build multivariable filters and extrapolators.

From our point of view, the natural choice for initial conditions of a multilayer neural
network setting of equivalent linear filter in adaptive approximators and function
extrapolators is the adaptive filter construction. Linear discrete filter Zadeh/Ragozini
is a z-filter of an order which is equal to the memory of a filtration or extrapolation
system with coefficients that calculate as functions of N memory and extrapolation
time á. Because the linear filter is produced based on a priori information about known
functional form signal and additive noise to a useful signal, particularly in the form of
white noise, a few sets of weight coefficient filters can exist for useful signals of differ-
ent complexity and correspondingly calculate with different computational complex-
ity. The main problem is to calculate the z-filter coefficients to the appropriate initial
coefficients of a neural network of a fixed structure.

11.4.4
Pattern Recognition

At the outset is the problem of choosing initial conditions for an adaptive neural network
setting; solving the problem of pattern recognition appeared in the work 11.2]. In this
work two methods of choice of mentioned initial conditions are considered: the choice of
accidental initial conditions and the choice of determinate initial conditions. The choice
of Accidental initial conditions is made because of the secondary optimization functional
multi-extreme coupled with the multi-modality of distribution f (x) input signal and limi-
tation of the open-ended neural network structure. Accidental elements are introduced
into the procedure of the extremum search of the secondary optimization functional
because of the necessity of local and global extremum of the mentioned functional search.
The necessity of the local extremum search is determined by the necessity to solve the
problem of the multilayer neural network structure minimization by analysis of setting
results. At the first phase of accidental initial condition use (and the following phase of
setting equalization results for a multitude of accidental overshoot phases of initial con-
ditions) an impression is made about a great number of local extrema of the secondary
optimization functional in space of adjustable coefficients. However because it is neces-
sary to mark that with meshing of an open-ended neural network structure, the multi-
plicity of multilayer neural network conditions increases, which is estimated by the value
of the secondary optimization functional. In other words, the majority of local extremum

219

functionals in the space of adjustable coefficients ensure the same recognition quality.
This remark is necessary to connect with the methods described below of a multilayer
neural network quality estimate by the secondary optimization functional value estimated
by the current signals in the neural network. Taking into account everything that has been
mentioned above, one can mark the accuracy of the approach to the setting using the
accidental initial conditions, although this approach obviously introduces the redundancy
in the neural network setting time with the intention of input signal full learning (par-
ticularly, solving the global extremum functional).

The purpose of determinate initial condition leading is a priori neural network leading
into the area of one of the local extrema of the secondary optimization functional in the
space of adjustable coefficients. On the geometry level, the first, second etc. multilayer
neural network should be maximumly amorphed, distributed, or namely, advanced to
solve the most difficult (from the view of f (x)) modality of the recognition problem.
Thinkable configuration of a shared surface in this case with teaching of recognition of
two class patterns is presented in Fig. 11.7, although it is the preliminary version. The final
version can be determined only by leading of an amorphous criterion, distribution. Ob-
viously that which is smallest amorphed and distributed is a multilayer neural network
where all the coefficients of the first layer of neurons are similar, and appropriately dis-
criminate surfaces are removed to the edge of the feature space. This is physically realized
in the neural network area of the feature space in Fig. 11.7 and is indicated with a dotted
line. This also spreads to the self-teaching regime, if the cell belonging in the Fig. 11.7 to
one or another class was not pointed out before. Initial conditions for adjustable coeffi-
cients of the second layer etc. are estimated by the geometry of the dividing surface, which
is realized by neurons of the first layer with specification of the initial feature space areas
belonging to one or another class. One of the methods of choosing determinate initial
conditions was offered in work [11-2].

In conclusion of this point it is necessary to mark those methods which are used in
the initial condition choice that one can sort by the type of information utilization:

� Accidental initial condition choice without the use of teaching extracts;
� Determinate initial condition choice without the use of teaching extracts.

Fig. 11.7.
Dividing surface with choice
of initial conditions:
1 – first class; 2 – second class

11.4 · Initial Condition Formation for Neural Network Coefficient Setting in Problems of Optimization

220 Chapter 11 · Selection of Initial Conditions During Neural Network Adjustment

The means of choosing initial conditions with the use of extracts is connected with
the possibility of using the initial coefficient neural network utilization of the neural
network with fixed structure of results of teaching neural network with a variable struc-
ture [11-2, 11-4].

11.4.5
Clusterization

The first problem is choosing initial conditions for an adaptive neural network setting
which resolves the problem of clusterization that was applied in work [11-2]. The natural
version of the initial condition choice in the adaptation process in the multilayer neu-
ral networks, solving the problem of clusterization, is the construction of the initial
dividing surface in the multidimensional feature space as it was shown in Fig. 11.7
without indicating which areas belong to one or another class. Weight coefficients of
the first and following neurons are formed based on the geometry of the assumed
dividing surface with equal dissection of the multidimensional feature space to the
areas which are appropriate to the estimated clusters.

11.4.6
Traveling Salesman Problem

The traveling salesman problem is the particular problem of linear programming at
that time when the linear programming problem is the particular problem of optimi-
zation together with quadratic and non-linear programming. The traveling salesman
problem is solved by finding the shortest route between N towns when leaving the
appointed town and returning back there.

A possible version of the choice of initial conditions, of the initial route while solv-
ing the traveling salesman problem is the choice of route, which is logically choosing
from the appointed town the nearest one to it, then the nearest to the chosen one, etc.

11.4.7
Dynamic System Modelling

Dynamic system identification using the neural networks is mostly effective in the case
of substantially nonlinear systems, systems with variable parameters and structure,
and the multivariate and classified systems. In the easiest case of linear systems, the
identification is realized by feeding the system of jump signals of every amplitude to
the input and solving z-transformation of the transition process. In that case, the model
of the system is a z-filter with coefficients of a z-transition function. In the case of
more complicated systems, the initial information specified above of the object one
can get, gives to the input the sequence of jump signals of different amplitudes in the
range of input signal changes from zero to XBxmax (in the Fig. 11.8). At the same time,
in consequence of the material nonlinear object, the reactions to the different jump sig-
nals won’t be linear-contiguous. At the same time, one can use z-transformation of system
reactions to the jump input signals of different amplitudes for forming the initial values
of coefficients of the first layer of a multilayer neural network, which identifies the ex-

221

plored object. The subject matter is still the question of forming the initial values of co-
efficients of the consequent layer of the multilayer neural network with full sequential
connections, and also the feed-back connection coefficients in the case of utilization of
neural network identification for networks with adjustable feedback connections.

11.4.8
Conclusion

The choice of initial conditions for a multilayer neural network setting is an important
means of both speeding up the convergence of adaptive algorithms and ensuring the
convergence to the global extremum optimization functional. Unfortunately, practi-
cally no attention is paid in this matter of the classic computational mathematics to
the development of iterative algorithms of complex problem solving. Every current
problem in the neural network logical basis demands its method of forming initial
conditions for the adaptive algorithm of the multilayer neural network setting. It will
be the matter of developing this research in the future by solving a class of problems,
which are solved on the neural network logical basis.

11.5
Typical Input Signal of Multilayer Neural Networks

The selection of some class of typical signals is performed for the objective compari-
son of the multilayer neural network quality in the adjustment mode and in the sta-
tionary state. This problem is solved in a relatively complete form in the case of the
linear systems of automatic control with deterministic and random input signals. The
relatively complete class of deterministic input signals is the class of polynomial input
signals usually used for the estimation of the control system’s quality. The main char-
acteristics of the signal complexity here is the corresponding polynomial exponential
order or the distribution fx(x) modality. It is reasonable to consider that in the case of
self-learning, the distribution of the typical stationary input signal of the multilayer
neural network is multimodal with a relatively homogeneous location of distribution
fx(x) modes in the physically realized pattern space.

Figure 11.9 shows the complete class of the typical multilayer neural network input
signals in the self-learning mode illustrated by the isolines of fx(x) in the physically
realized pattern space (the two-dimensional representation in the X space is condi-
tional). Here r is the complexity of the typical input signal of the multilayer neural
network. The variance of each fx(x) mode must be chosen in such a way that the modes
are sufficiently pronounced. Figure 11.10 shows isolines f1(x) and f2(x) for the typical

Fig. 11.8.
Choosing initial conditions of
adaptation in the multilayer
neural networks by solving the
problem of dynamic systems
identification

11.5 · Typical Input Signal of Multilayer Neural Networks

222 Chapter 11 · Selection of Initial Conditions During Neural Network Adjustment

input signals in the case of multilayer neural network learning of the recognition of
two pattern classes (f1 – empty circles, f2 – shaded circles).

It must be mentioned that each specific problem solved by the neural network re-
quires its own method of the choice of typical input signals.

Literature

[11-1] Rosenblatt F (1964) Principles of neurodynamics. Moscow, Mir
[11-2] Galushkin AI (1974) Synthesis of multilayer pattern recognition systems. Moscow, Energia
[11-3] Galushkin AI, Sudarikov VA, Shabanov EV (n.y.) Mathematic modelling
[11-4] Galushkin AI (2000) Neural networks theory. (series “Neurocomputers and their application”,

book 1), M., IPRZHR, 2000
[11-5] (in co-authorship) (2002) Neuromathematics, series “Neurocomputers and their application”,

book 6, M., IPRZHR, 2002
[11-6] Galushkin AI (2003) Neuromathematics (problems of development), Neurocomputer 1
[11-7] Galushkin AI (1968) Calculation and design of optimal discrete filters. articles. Automatic control

and computing machinery 9, Machgiz
[11-8] Galushkin AI (1968) Neurocomputers and neuromathematics. Washington
[11-9] Butenko AA, Galushkin AI, Pantyukhin DV (2002) Neural network methods of linear algebraic

equations system solving. VIII All-Russian conference «Neurocomputers and their applica-
tion», NKP-2002, M., 21–22 March 2002

[11-10] Pantyukhin DV (2002) Neural network methods of linear algebraic equations system solving.
XLV Scientific conference of Moscow Institute of Physics and Technology (State University)
“Modern problems of fundamental and applied sciences”. Moscow-Dolgoprudniy, 29–30 No-
vember 2002, part 1, p. 79

[11-11] Pantyukhin DV (2003) Version of neural network algorithm of linear algebraic equations sys-
tem solving. 5 International conference “Digital signals processing and its application” DSPA-
2003, 12–14 March 2003, Moscow, Russia, vol. 2, p. 607

Fig. 11.9. Conditional representation of the typical neural network input signals in the self-learning
mode ordered by the degree of complexity

Fig. 11.10. Conditional representation of two classes of the neural network input signals in the learning
mode ordered by the degree of complexity

Chapter 12

12.1
Problem Statement for the Synthesis of the Multilayer Neural Networks
Adjusted in the Closed Cycle

This chapter represents the final stage for the synthesis of multilayer neural networks
with fixed structure that are adjusted in the closed cycle. It is implied that the open-loop
neural network structure, the general characteristics of the signal, and the multilayer neural
network adjustment algorithm are given. Several problems must be solved for the quality
estimation of the closed-loop multilayer neural networks.

The first one is the selection of initial conditions for the adjustment of the multilayer neural
network weighting coefficients. Two methods of the initial condition selection are consid-
ered: random selection with the averaging of the results across the number of random in-
jections and search of all local and global extrema, and a deterministic method with placing
the neural network into the region of a global extremum of the secondary optimization
functional by means of defining some piecewise linear divisional surface at the initial stage.

The second problem is the selection of the typical input signal class for the multilayer
neural network for the estimation of their functioning quality in the transient and sta-
tionary modes. The complexity of the input signal will be particularly determined by the
modality of the conditional distribution f ′(x/ε).

The third problem is the selection of the parameter matrix K* in the algorithm of
the extremum search for the secondary optimization functional. This problem can be
solved analytically and by means of statistical modeling methods. The general analyti-
cal methods for the closed-loop neural networks consist of the following steps:

1. Determination of the density of probability distribution for the estimation of the
secondary optimization functional gradient vector;

2. Derivation of the stochastic differential equation for the change of the distribution
density of the adjustable neural network coefficients in the adjustment process;

3. Solution of this equation;
4. Search of the primary optimization functional distribution parameters by means of

integrating over the feature space and over the neural network state space.

With the result of the analysis according to the aforementioned steps and according
to the requirement to provide the given quality estimated by the primary functional
value, one can solve the problem of synthesis of the neural network adjustment circuit.
Notice that the analytical solution of the third step is rather complicated. That is why
such methods are illustrated in the present study only by some particular examples.
The statistical analysis is considered to be the main one.

Analysis of Closed-Loop Multilayer Neural Networks

224 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

12.2
Investigation of the Neuron Under the Multi-Modal Distribution
of the Input Signal

12.2.1
One-Dimensional Case – Search Adjustment Algorithm

The neuron with two solutions and with minimization of α2g was modeled. The block
diagram of the modeled system is shown in Fig. 12.1. The possibility of the design of
closed-loop systems with the search adaptation procedure was analyzed. The assem-
blages of the first and second class patterns have multi-modal distributions. This is the
case of the system structure insufficiency. In such a case, the structure complexity is
less than the complexity of the solved problem, and therefore the potential recognition
quality cannot be achieved in principle.

Figure 12.2 represents distribution densities of the first and second class assem-
blages and the dependence of the average density function α2g upon the threshold a0
in the case when the left neuron indicates the first class region, and the right neuron
indicates the second class region. The gradient α2g in the search procedure was calcu-
lated according to the following expression:

Fig. 12.1. Block scheme of the search neural network adjustable in the closed cycle with minimization
of the discrete error second moment: 1 – square-law function generator; 2 – T-cycle delay unit

225

where ∆a0 is the amplitude of the search oscillations. The estimation of dα2g/da0 was
performed by means of averaging across mn realizations of the system input signal.
The main aim of the modeling is the estimation of the influence of ∆a0, K*, mn, a0(0)
upon the dynamics of the adjustment circuit of the coefficient a0. The results of mod-
eling are the following:

1. The search oscillations are suitable for the design of the neural network closed-
cycle adjustment block. The higher value of ∆a0 results in the higher precision of
the adjustment circuit performance in the stationary state (Fig. 12.3);

2. The higher value of K* results in the lower value of the systematic error for the it-
eration procedure of the optimal solution search and in the higher value of the
random error of this procedure (Fig. 12.4);

3. The higher value of mn results in the lower value of the random errors and in the
higher values of dynamic errors in the adjustment circuit (Fig. 12.5);

4. With any initial conditions a0(0) (Fig. 12.6), the iteration procedure of the optimal
solution search converges to one of the local extrema. The results of the algorithm
performance with the introduction of the random elements into the search proce-
dure are represented in Fig. 12.7.

Fig. 12.2.
The input signal and optimi-
zation functional characteris-
tics: I – the first class; II – the
second class

12.2 · Investigation of the Neuron Under the Multi-Modal Distribution of the Input Signal

226 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

12.2.2
Multidimensional Case – Analytical Adjustment Algorithm

The analytical adjustment procedure in the case of multi-modal input signal distribu-
tion was investigated in the example of α2g minimization in the neuron with a solution
continuum (Chap. 1) and arc tangent activation function (B = 10).

The following problems were analyzed experimentally:

1. The influence of the initial conditions on the convergence of the iteration procedure
at the search of one local extremum;

Fig. 12.3.
The investigation of the step
value influence upon the sys-
tem adjustment dynamics
when K = 0.5; mn = 20;
a0(0) = 0: 1 – ∆a0 = 0.25;
2 – ∆a0 = 0.5; 3 – ∆a0 = 1

Fig. 12.4.
The investigation of the K* value
influence upon the system
adjustment dynamics when
∆a0 = 0.25; mn = 20; a0(0) = 4:
1 – K* = 0.25; 2 – K* = 0.5;
3 – K* = 1; 4 – K* = 2

Fig. 12.5.
The investigation of the sys-
tem adjustment block memory
mn influence when ∆a0 = 0.25;
K* = 0.5; a0(0) = 7.32: 1 – mn = 5;
2 – mn = 10; 3 – mn = 20

227

2. The influence of the step value and feature space dimensionality on the convergence
rate of the iteration procedure. Stability of the gradient procedure. The influence of
variance value on the quality of the iteration process convergence;

3. The influence of the gradient calculation method on the search process quality;
4. The influence of the system adjustment block memory mn.

The investigation was carried out with the help of the random-vector generator x
and teacher instruction ε. The multi-modal distribution of the random vectors is shown
in Fig. 12.8. The circles indicate the level of equal values for probability density of each
mode (solid lines – first class patterns, dashed lines – second class patterns). The whole
number of mode was Z = 10, and root-mean-square value for one mode was σ = 2.

Fig. 12.6.
The investigation of the initial
conditions influence upon the
system adjustment dynamics
when ∆a0=0.25; K=10; mn=10:
1 – a0(0) = 0; 2 – a0(0) = 3;
3 – a0(0) = 4; 4 – a0(0) = 7;
5 – a0(0) = 9

Fig. 12.7. The system adjustment dynamics under the set of random initial conditions: 1 – ∆a0 = 0.25;
K = 0.5; mn = 10; 2 – ∆a0 = 0.25; K = 0.25; mn = 20; 3 – ∆a0 = 2; K = 2; mn = 10

12.2 · Investigation of the Neuron Under the Multi-Modal Distribution of the Input Signal

228 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

The first experiment was aimed at testing the stability of the neuron coefficient vector
in the optimal state. For this purpose, the optimal initial conditions corresponding to
one of the local extrema were given to this vector (positions 1 and 1a in Fig. 12.9) and
the learning process started. The initial (1 and 1a) and final (1′ and 1′a) hyperplane
positions show the stability of the extremum corresponding to one of minimums of
the average risk function. Oscillations of the relatively stable positions are the result of
the stochastic properties of the minimized neural network quality functional. The
deviation from the optimal position with rotational displacement 3 and without it 2
results in the hyperplane displacement into the nearest local minimum 2′ and 3′. Fig-
ure 12.9 shows initial (1, 2, 3, 4) and final (1′, 2′, 3′, 4′) divisional hyperplane positions
for different initial conditions.

Figure 2.10 shows the line (hyperplanes in the general case) coefficient adjustment
dynamics under multi-modal input signal distribution. It was convenient in this case
to use the intercept form of the equation of a straight line (Fig. 12.10) and trace these
intercept length changes. It is seen that under the optimal initial conditions (1, 2), the

Fig. 12.8.
Illustration of the neuron
operation capability under
multi-modal input signal:
dashed line indicates the ini-
tial hyperplane position; con-
tinuous line indicates the in-
termediate hyperplane posi-
tion (500 iterations); 1–7 are
the numbers of experiments

229

system oscillates slightly around the optimal position. The large oscillations of line 3
are caused by the large values of the functional gradient. This is the property of the
points close to the local extremum. The points far from the local extremum are char-

Fig 12.9.
Neuron coefficient adjustment
dynamics under multi-modal
input signal distribution and
mn = 30 (numeric characters
are the numbers of experi-
ments): dashed lines are the
initial hyperplane positions;
continuous lines are the final
hyperplane positions

Fig. 12.10.
Neuron coefficient adjustment
dynamics under multi-modal
input signal distribution:
1–4 are the numbers of experi-
ments

12.2 · Investigation of the Neuron Under the Multi-Modal Distribution of the Input Signal

230 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

acterized by the small gradient values, and therefore its movement is slow. Consequently,
it is necessary to know some a priori information about the quality functional (limi-
tation of the search space, expected characteristics of the extrema location, etc.) in
order to select the proper search intervals and initial steps of the gradient procedure.

Interesting results are obtained in the investigation of the variance value (the level of
class quality) on the adjustment process. If the variance is small relative to the distances
between modes, then the optimal position of the divisional surface is not significant be-
cause the classes do not overlap and the local extrema are not sharp. The experiment with
the first class variance being several times greater than the second class variance showed
that the optimal divisional hyperplane position shifted to the mode with the smaller
variance. This could be expected for the system adjusted by the average risk function.

The stability of the gradient procedure is achieved by the experimental selection of
the step value and constraint upon the vector component increments. The component
increments could not be more than the fourth part of the distance between local ex-
trema, and the learning procedure was smooth.

Fig. 12.11.
Neuron coefficient adjustment
dynamics under four modes
of the input signal distribu-
tion: 1 is the first minimum;
2 is the second minimum

231

Two pairs of curves for the search dynamics of two minimums under four modes
of the input signal distribution are represented in Fig. 12.11. The initial optimal gra-
dient procedure step was equal to 4, and constraint for ∆ai was equal to 0.03. Interest-
ingly, the neuron coefficients changed the sign in the adjustment process. The image
point for the first minimum search transfers from the second to the first quadrant of
the adjustable coefficient space, and the image point for the second minimum search
transfers from the third to the first quadrant.

12.3
Investigation of Dynamics for the Neural Networks of Particular Form
for the Non-Stationary Pattern Recognition

This section deals with a one-dimensional neural network and a2g minimization
(Chap. 9). The aim of the investigation was the estimation of different system charac-
teristics upon the closed-loop adjustment circuit functioning.

The expression for the analogous error of the system has the following form:

(12.1)

Consequently,

The lines over the expressions mean the averaging performed at the time instant
n∆T across the set of implementations of the nonstationary random process. Since we
have only one implementation of the nonstationary random process xa(n∆T) then the
averaging across the set must be substituted by the averaging across the time on the
memory interval mn with additional constraints according to the a priori information
about the characteristics of parameter changes for nonstationary random process dis-
tribution across the memory interval. The most suitable in this case is the representa-
tion of the random process in the form of the sum of the stationary process and determin-
istic process with known characteristics of its changes in the functional form [12-1].

Since the derivative

cannot be expressed in the algebraic form then let us assume that the value a0(n∆T) is
fixed on the averaging interval mn. The change of a0(n∆T) is performed in the adap-
tation mode with the cycle equal to the memory mn of the system adjustment block.

Consequently,

12.3 · Dynamics for the Neural Networks of Particular Form for the Non-Stationary Pattern Recognition

232 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

The closed-cycle adjustment algorithm has the following form:

(12.2)

In the case of nonstationary patterns, the process xa(n∆T) is a nonstationary one
with characteristics determined by the input signal nonstationary characteristics
(Chap. 9). The task to determine the average

is the classical problem of filtering of nonstationary discrete random processes
[12-3 to 12-7]. Methods of recurrent implementation of the optimal discrete filters
[12-6] were used for the given neural network modeling.

If mn = m = const, then for each n and ∆T = 1 in this case

where W(i,n) is the optimal impulsive admittance function of the estimation filter

Below we use for W(i,n) the expressions from [12-6, 12-7].
The dependence of the following input signal characteristics upon the dynamic of

the closed-cycle adjustable system were investigated:

1. Time course of the pattern assemblage mathematical expectations (the assemblages
of both classes are assumed to be equal);

2. Level of class intersection determined by the variance equal for both classes under
the fixed difference between the mathematical expectations of pattern assemblages
of the first and second classes);

3. Nonstationary level determined in particular by the change rate of the class centers’
coordinates;

4. Memory value mn in the block of the system closed-cycle adjustment;
5. Prediction time α in the block of the system closed-cycle adjustment at the estima-

tion of the secondary functional gradient;
6. Amplification coefficient K* in the block of the system closed-cycle adjustment.

Figures 12.12–12.19 show the time courses of the neuron threshold changes under
the linear laws for the changes of the class centers’ coordinates. Two laws with different
change rates of these coordinates were used: (2t + 3) and [(1/2)t + 3]. The distances
between class centers is fixed in all the experiments.

Groups of curves I and II correspond to the two aforementioned linear laws. The
data analysis results in the following conclusions:

1. The increase of the memory value mn of the recognition system results in the de-
crease of the class intersection level influence upon the adjustment random error;

2. The increase of mn results in the increase of the systematic error in the coefficient
adjustment (Figs. 12.14, 12.15);

233

Fig. 12.12.
Dynamics of the system closed-
cycle adjustment under the
nonstationary pattern recogni-
tion at σ = 3; α = 0; K* = –0.1:
⎯ ·· ⎯ m = 20; – – ⋅ – – m = 3;
⎯⎯ ideal threshold value

Fig. 12.13.
Dynamics of the system closed-
cycle adjustment under the
nonstationary pattern recogni-
tion at σ = 10; α = 0; K* = –0.1:
⎯ ⋅⋅ ⎯ m = 20; – – ⋅ – – m = 3;
⎯⎯ ideal threshold value

Fig. 12.14.
Dynamics of the system closed-
cycle adjustment under the
non-stationary pattern recog-
nition at K* = –0.5; m = 3:
– – – – – α = 2, σ = 1 (ideal
threshold value); – – ⋅ – – α = 10,
σ = 0.5; ⎯ ⋅⋅ ⎯ α = 20, σ = 5;
⎯⎯ α = 40, σ = 5

Fig. 12.15.
Dynamics of the system closed-
cycle adjustment under the
nonstationary pattern recogni-
tion at K* = –0.5; m = 20:
⎯ ⋅⋅ ⎯ σ = 1, α = 2; – – ⋅ – – σ = 5,
α = 10; ⎯⎯ σ = 5, α = 20;
– – – – – σ = 5, α = 40

12.3 · Dynamics for the Neural Networks of Particular Form for the Non-Stationary Pattern Recognition

234 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

3. The adjustment process is unstable under the small values of mn (mn = 5) and
K* = –2. The increase of mn up to mn = 20 results in the stable adjustment process.
Consequently, the nonstationary pattern recognition systems require the memory
in the adjustment block (mn > 1). The increase of mn compensates to some extent
for the lack of the a priori information about K*:

4. The rate of the classes’ center coordinate changes in time does not practically influ-
ence the errors of the adjustment circuit performance;

5. The requirement K* < –1 is necessary for the stability of the adjustment circuit;
6. The characteristic modulation of the enveloping curve for the system threshold

changes under the unstable conditions is observed;
7. The results of the use of the quadratic law instead of the linear law for the classes’

centers’ coordinate changes in time confirm the previous conclusions (p. 1–6). Under
the sufficiently large values of mn, the systematic error changes of the adjustment
circuit show some regular relationship (negative for K* > –1 and positive for K* < –1).

Figures 12.17–12.19 show that the level of class intersection significantly influences
the adjustment circuit in the self-oscillatory adjustment process when K* = –2. The
adjustment process diverges under the large values of σ. But under the small σ, the
oscillating adjustment process periodically changes its amplitude relatively ideal thresh-
old value and at some time moments become rather precise.

The experiments with solution prediction on the time interval α (Figs. 12.14, 12.15)
showed the following:

Fig. 12.16.
Dynamics of the system closed-
cycle adjustment under the
nonstationary pattern recogni-
tion at σ = 5; α = 0; m = 20:
⎯ ⋅⋅ ⎯ K* = –0.5; – – ⋅ – – K*

= –0.75; ⎯⎯ K* = –2 (ideal
threshold value)

Fig. 12.17.
Dynamics of the system closed-
cycle adjustment under the
nonstationary pattern recogni-
tion at σ = 5; α = 0; m = 5:
⎯ ⋅⋅ ⎯ K* = –0.5; – – ⋅ – – K*

= –0.75; ⎯⎯ K* = –1 (ideal
threshold value); ° ° ° ° ° K* = –2

235

1. The increase of α results in the increase of the random error in the closed-cycle
adjustment circuit;

2. The increase of σ, decrease of m, and fixed α result in the increase of the random
error in the closed-cycle adjustment circuit;

3. The results of comparison between the linear and quadratic laws for the classes’
centers’ coordinate changes in time showed that the random error in the closed-
cycle adjustment circuit increased in the former case.

12.4
Dynamics of the Three-Layer Neural Network in the Learning Mode

The considered neural network is supposed to have a continuum of solutions. The first,
second, and third neural network layers consisted of 3, 2, and 1 neurons, respectively.
The feature space was multidimensional in the general case and was two-dimensional
in the particular case. The open-loop neural network was described by the following
expression:

(12.3)

Fig. 12.18.
Dynamics of the system closed-
cycle adjustment under the
nonstationary pattern recogni-
tion at σ = 3; α = 0; K* = –2:
– – ⋅ – – m = 20; ⎯⎯ ideal
threshold value; ° ° ° ° ° m = 5

Fig. 12.19.
Dynamics of the system closed-
cycle adjustment under the
nonstationary pattern recogni-
tion at σ = 10; α = 0; K* = –2:
– – ⋅ – – m = 20; ⎯⎯ ideal
threshold value; ° ° ° ° ° m = 5

12.4 · Dynamics of the Three-Layer Neural Network in the Learning Mode

236 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

The expressions for the α2g gradients estimations have the following form:

The equal value lines for the first and second pattern class distributions are repre-
sented in Fig. 12.20. The state of the neural network is determined in the following way.
Three neurons of the first layer have respectively the coefficients a10 = –12, a11 = 1, a12 = 1,
a20 = 24, a21 = –1, a22 = –1, a30 = –36, a31 = 1, and a32 = 1. Neurons of the second layer
have the coefficients a′10 = 0, a′11 = 1, a′12 = 1, a′13 = 1, a′20 = 0, a′21 = 1, a′22 = 1, and a′23 = 1.
Neurons of the third layer have the coefficients a′′10 = 0, a′′10 = 1, and a′′12 = 1.

In the experiments, the input feature space dimensionality was N = 2, and the num-
ber of modes f (x) was 4.

Experiments with the first neuron layer (the second and the third layers are optimal).
The conditions in each experiment were the following:

Fig. 12.20. Initial and final positions of divisional surfaces realized by the neurons in the experiment 1–
3: a the first layer; b the second layer

237

1-1. The aforementioned hyperplane coefficients are optimal;
1-2. Parallel shift of hyperplanes realized by the neurons of the first neural network

layer (the initial coefficient: 1, 1, –8, –1, –1.2; 1.1, –32);
1-3. Parallel shift of two hyperplanes realized by the neurons of the first neural net-

work layer in different directions (the initial coefficient: 1.1, –8, –1, –1.24; 1.1, –40).

Experiments with the second neuron layer (the first and the third layers are optimal).

2-1. Rotation of one hyperplane realized by the neurons of the second neural network
layer by the angle α = π (the initial coefficient: –1, –1, –1, 1.1, 1);

2-2. Rotation of two hyperplanes realized by the neurons of the second neural network
layer by the angle α = π.

Experiments with the third neuron layer (the first and the second layers are optimal).

3-1. Rotation of the hyperplane realized by the neuron of the third neural network
layer by the angle α = π.

The following results were obtained.
Figures 12.21–12.23 illustrate the coefficient adjustment procedure. The vertical axis

represents the coefficient values, and the horizontal one represents the number of it-
erations. The coordinate axis level corresponds to the optimal coefficient ratios. Ex-
periment 1-1 confirms the stability of coefficient values in the optimal state (small
deviations of their values from the optimal one at the sufficiently large number of it-
erations). In experiments 1-2 and 1-3, the gradient procedure provides such an adjust-
ment that the divisional surfaces reach the optimal position after 25–30 iterations.

Fig. 12.21.
Coefficient adjustment dy-
namics in experiment 1–2 (the
number of iterations is 50) at
mn = 50; K*

1 = 0.1; K1 = 0.01;
K2 = 0.1;and K3 = 0.1; K1, K2,
K3 are the weighting coeffi-
cients to K* for the neurons
of the first, second, and third
layers: 1 – the first neuron;
2 – the second neuron;
3 – the third neuron

12.4 · Dynamics of the Three-Layer Neural Network in the Learning Mode

238 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

Fig. 12.22.
Coefficient adjustment dy-
namics in experiment 1–4 (the
number of iterations is 32)
at mn = 50; K*

1 = 1; K1 = 0.05;
K2 = 0.05; and K3 = 0.05:
1 – the first neuron; 2 – the
second neuron; 3 – the third
neuron

Fig. 12.23. Coefficient adjustment dynamics in the experiment: a experiment 2-2; b experiment 3.1;
1 – the first neuron; 2 – the second neuron; 3 – the third neuron

239

The results of experiment 1-4 are rather interesting. The initial conditions provided the
optimal positions of the surfaces realized by the neurons of the first, second, and third
layers in such a way that the “inverse” classification took place. The adjustment resulted in
the parallel shifts of the planes, though the rotation by 180° is also possible. The divisional
planes realized by the neurons of the second and third layers are drawn through the origin
of coordinates, i.e., only the rotation of these planes around the origin of coordinates is
possible in the adjustment procedure. Therefore, the experiments with the neurons of
these layers included the adjustment of coefficients for the planes turned through 180°.

Figure 12.23 shows coefficient adjustment dynamics in experiments 2-2 and 3-1. The
adjustment procedure resulted in the turn of the hyperplane realized by the neurons of
the third layer through 180°, thus taking an optimal position. After the adjustment of the
third layer neurons, the coefficients of the first layer neurons also take the optimal values.

The results of the performed experiments confirmed the theoretical analysis of the
investigated adjustment algorithm and demonstrated its high efficiency. The following
wide range of problems remains to be analyzed:

1. Selection of the optimal coefficients K in the gradient procedure and their relation-
ship between multilayer neural network layers;

2. Analysis of the influence of the multilayer neural network structure redundancy
upon the adjustment quality.

12.5
Investigation of the Particular Neural Network with Backward Connections

We consider here a one-dimensional neuron with the feedback described by the fol-
lowing relationships:

(12.4)

where ∆T is the time interval between the presentation of the input patterns. The
minimum α2a criterion is taken as the criterion of the secondary optimization. It is
assumed that the coefficients α0 and αk do not change in the interval of averaging mn
during the closed-cycle adjustment. The expressions for the α2a gradient estimation
have the following form:

(12.5)

The expressions (12.4) and (12.5) form the base for the design of the corresponding
closed system. The averaging of the gradient measurements was performed with the help
of the optimal discrete filter. The a priori hypothesis about the change of the input signal
mathematical expectation (stationary, linear, quadratic, etc.) was used for its synthesis.

12.5 · Investigation of the Particular Neural Network with Backward Connections

240 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

Fig. 12.24.
Dynamics of adjustment
of the neuron with feed-
back (m = 20; K* = –0.5):
⎯⎯ ideal case (a0 = 2t + 3);
– – – – – without feedback;
– – ⋅ – – positive feedback at
K*

1 = 0.5 and negative feed-
back at K*

1 = 0.5; ⎯ × ⎯ posi-
tive feedback at K*

1 = –0.5;
– – – – – ideal case (a0 = 0.5t + 3);
⎯ ⋅⋅ ⎯ without feedback and
positive feedback at K*

1 = 0.5;
⎯ ⋅ ⎯ negative feedback at
K*

1 = –0.5; ⎯ × × ⎯ positive
feedback at K*

1 = –0.5

Fig. 12.25.
Dynamics of adjustment of
the neuron with feedback:
⎯⎯ ideal case (a0 = 2t + 3);
– – – – – without feedback;
– – ⋅ – –positive feedback at
K*

1 = 0.5 and negative feed-
back at K*

1 = 0.5; ⎯ × ⎯ posi-
tive feedback at K*

1 = –0.5;
⎯⎯ ideal case (a0 = 0.5t + 3);
⎯ ⋅⋅ ⎯ without feedback;
– – ⋅ – – positive feedback at
K*

1 = 0.5 and negative feedback
at K*

1 = –0.5; ⎯ × × ⎯ positive
feedback at K*

1 = –0.5

Fig. 12.26.
Dynamics of adjustment
of the neuron with feed-
back (m = 5; K* = –0.5):
⎯⎯ ideal case (a0 = 2t + 3);
– – – – – without feedback;
– – ⋅ – – positive feedback at
K*

1 = 0.5 and negative feed-
back at K*

1 = –0.5; ⎯ × ⎯ posi-
tive feedback at K*

1 = –0.5;
⎯ ⋅⋅ ⎯ without feedback;
– – ⋅ – – negative feedback at
K*

1 = –0.5 and positive feedback
at K*

1 = –0.5; ⎯ ×× ⎯ posi-
tive feedback at K*

1 = –0.5;
⎯⎯ ideal case (a0 = 2t + 3)

241

The analysis of the experimental study for the neuron with feedback partially rep-
resented in Figs. 12.24–12.29 shows the following:

1. The introduction of the positive or negative feedback into the open-loop system
(K* > 0 or K* < 0 in the coefficient ak adjustment circuit) gives the same results of
the system adjustment for the value a0 and total threshold a∑ = a0(n) + ak(n)xk(n–1),
but oppositely signed and equal by the absolute value coefficients ak:

2. At the sufficiently large value of the system memory in the adjustment block (about
mn = 20), the change of a0 and ak has the form of oscillations. At the decrease of the
memory value (to about mn = 5), the oscillations of the adjustment process for the
coefficient ak sharply increase, and for the coefficient a0 – decrease;

Fig. 12.27.
Dynamics of adjustment of
the neuron with feedback:
⎯⎯ ideal case (a0 = 2t + 3);
– – – – – without feedback;
– – ⋅ – – positive feedback at
K*

1 = 0.5 and negative feedback
at K*

1 = –0.5; ⎯⎯ ideal case
(a0 = 0.5t + 3); ⎯ ⋅⋅ ⎯ with-
out feedback; – – ⋅ – – positive
feedback at K*

1 = –0.5 and nega-
tive feedback at K*

1 = –0.5;
⎯ ××× ⎯ positive feedback
at K*

1 = –0.5

Fig. 12.28.
Dynamics of adjustment of
the neuron with feedback
(m = 20; K* = –0.5). For the
ideal case (a0 = 2t + 3):
⎯ × ⎯ positive feedback at
K*

1 = –0.5; ⎯ ⋅ ⎯ negative feed-
back at K*

1 = 0.5; – – ⋅⋅ – – posi-
tive feedback at K*

1 = –0.5; For
the ideal case (a0 = 0.5t + 3):
⎯ ×× ⎯ positive feedback
at K*

1 = –0.5; – – ⋅ – – posi-
tive feedback at K*

1 = 0.5;
⎯ ⋅⋅ ⎯ negative feedback
at K*

1 = –0.5

12.5 · Investigation of the Particular Neural Network with Backward Connections

242 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

3. The systematic error of the coefficient a0 adjustment increases as the system memory
increases or at the introduction of the feedback into the open-loop structure of the
system. The adjustment systematic error for the total neuron threshold is practi-
cally zero. This is an advantage of the neural network with feedback over the neural
network without feedback;

4. The decrease of the coefficient K*
1 in the iteration procedure for the adjustment of

the feedback gain results in the approximation between characteristics of the neu-
ron with the feedback to the neuron without feedback.

12.6
Dynamics of One-Layer Neural Networks in the Learning Mode

Three types of the neural networks in the self-learning mode are considered below:
the neural network with the search of the distribution mode centers f (x); the neural
network in the form of the neuron layer with two solutions; the neural network in the
form of the neuron with Kp solutions.

The main goal of the study is the quality estimation of the developed algorithms
when the input signal x(n) has the arbitrary modality distribution.

12.6.1
Neural Network with the Search of the Distribution Mode Centers f(x)

The self-learning algorithm realizing the following recurrent relationship (Chap. 9)

(12.6)

is considered. The algorithm consists of the following stages:

Fig. 12.29.
Dynamics of adjustment of
the neuron with feedback
(m = 5; K* = –0.5). For the
ideal case (a0 = 2t + 3):
⎯ × ⎯ positive feedback at
K*

1 = –0.5; ⎯ ⋅ ⎯ negative
feedback at K*

1 = –0.5;
– – ⋅⋅ – – positive feedback at
K*

1 = 0.5; For the ideal case
(a0 = 0.5t + 3): ⎯ ×× ⎯ posi-
tive feedback at K*

1 = –0.5;
⎯ ⋅⋅ ⎯ negative feedback at
K*

1 = –0.5; – – ⋅⋅ – – positive
feedback at K*

1 = 0.5

243

1. Coordinates of the Kp-dimensional vector b(xk,0) are randomly selected in the given
interval of variation of x;

2. The successive pattern x is presented to the input. The center b closest to x is calcu-
lated;

3. This coordinate of vector b(xk) is changed according to (12.6);
4. The internal cycle is locked on p. 2. Then the external cycle is locked on p. 1. The

random input signal x(n) distribution is the sum of the normal distributions with
the given variances and mathematical expectations equal to 2, 4, …, 16. The number
of distribution modes f (x) was fixed from 2 to 8.

Figure 12.30 shows the typical change of class center coordinates b(xk,n) in the
adjustment process for some variant of the random initial conditions. The algorithm
functioning results are represented in Tables 12.1 and 12.2. In the tables, i is the num-
ber of mode in the distribution f (x), Z is the modality of the distribution f (x), and j is
the number of cycle for the injection of the random initial conditions b(xk,0) in the
extremum R search. Table 12.1 was calculated at Kp = 5, M = 300 (the number of itera-
tions by n), and K* = 0.02. For each σ here, the number of distribution f (x) modes found
for each j is given in the right column. The number of modes found during all the
previous cycles is given in the left column. The similar data are represented in Table 12.2
for Z = Kp, K* = 0.01, M = 100, and σ = 0.5. The analysis of the obtained results shows
the following:

1. The algorithm is efficient at the solution of a rather complex self-learning task;
2. The experimental results confirm theoretical conclusions (Chap. 9) concerning the

expected local and global function extremum search;
3. The increase of σ results in the decrease of the algorithm functioning quality under

the fixed Z, Kp, K*, i, j.

The considered algorithm was slightly modified (the set of initial conditions in terms
of class center coordinates was substituted by the set in terms of coordinates of the
initially presented Z patterns). The respective quality increase is illustrated by the data
shown in Table 12.3. Here the number of distribution modes obtained at each A-th step
of the initial condition injections and the total number of distribution modes obtained
during the total number of A steps are represented. The search was performed using
both modifications of the described algorithm. The experiment parameters were the

Fig. 12.30.
Typical change of class center
coordinates in the adjustment
process at K* = 0.02; σ = 0.5

12.6 · Dynamics of One-Layer Neural Networks in the Learning Mode

244 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

following: K* = 0.02, σ = 0.5, f (x) coefficients b1–b8 amounted respectively to –9.1, –7,
–3 ,–5, –1, 3.13. The X space was the interval [–11, 5].

245

12.6.2
Neural Network with N* Output Channels

We consider here the neural network in the form of the neuron layer with character-
istics N = 1, N* = 3.

Figure 12.31 represents the structure of this system. In this case,

(12.7)

where the value b(y) is unambiguously determined by the current values of a01, a02, a03
according to Fig. 12.32, Table 12.4, and the following expressions:

12.6 · Dynamics of One-Layer Neural Networks in the Learning Mode

246 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

It follows from (12.7) that

(12.8)

where ∂yi/∂a0i = –1 according to Fig. 12.31. Vector ∂b/∂yi is calculated in the following
way. Table 12.4 can be represented in the form of Table 12.5.

Consequently,

The final algorithm for the coefficient adjustment has the following form:

(12.9)

Vector b(y,n) is calculated either according to the expressions described above or
(in the case of the more complex structure) according to the recurrent expression

Fig. 12.31.
Block diagram of the neuron
layer (N = 1)

Fig. 12.32.
To the class center coordinate
calculation

247

described in the previous section. The experimentally investigated algorithm consists
of the following stages:

1. Pattern x(n) enters the system input;
2. The initial values of the adjustable parameters a0i (i = 1,2,3) are selected in a ran-

dom way in the interval of x variation;
3. The values b1,…, b4 are calculated by the values a0i;
4. The component of vector b(y) that is closest to x(n) is selected;
5. The corresponding value is selected from vector ∂b/∂yi;
6. The system coefficients are adjusted according to p. 1,2,4,5 and expression (12.9);
7. Pattern x(n + 1) enters the system input, and the adjustment process continues start-

ing from p. 3.

Figure 12.33 shows the illustration of the system coefficient adjustment dynamics
under some initial conditions (modes coordinates are 3, 5, 7; solid line – one variant,
dashed line – another variant).

Fig. 12.33.
Dynamics of coefficient ad-
justment for the system repre-
sented in Fig. 12.31

12.6 · Dynamics of One-Layer Neural Networks in the Learning Mode

248 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

Figures 12.34 and 12.35 show some results of the algorithm performance obtained
under the different initial conditions and the same input sample and some results
obtained under the same initial conditions and input samples of different lengths. Thick
lines link the classes’ center coefficients at the adjustment process start (n = 0) and
finish (n = M).

12.6.3
Neuron with Kp Solutions

In this case,

Fig. 12.34.
Results obtained under the dif-
ferent initial conditions and the
same input sample length M

Fig. 12.35.
Results obtained under
the same initial conditions
and different input sample
length M: M1 = 150; M2 = 300;
M3 = 450; M4 = 600

249

Similar to the previous case,

Using the expressions for ∂y/∂a (Chap. 9), one can obtain the recurrent relation-
ships for the design of the corresponding system adjustment algorithm in the learning
mode:

The adjustment algorithm consists of the following stages:

1. The initial values of the adjustable parameters a0 and a1 are selected in a random
way in some given interval;

2. The current threshold values are calculated according to the open-loop system struc-
ture and coefficients a0 and a1:

3. The values b(y) are calculated according to the expressions

4. Pattern x(n + 1) enters the system input at the time instant n, and the y value is
calculated;

5. The corresponding values b(y) and ∂b(y)/∂y are calculated according to the
y value;

6. Coefficients a0 and a1 are adjusted according to the above expressions;
7. The procedure is repeated starting from p. 2;
8. The procedure is repeated starting from p. 1, and results are averaged across the set

of injection of the initial conditions.

12.6 · Dynamics of One-Layer Neural Networks in the Learning Mode

250 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

12.7
Two-Layer Neural Network in the Self-Learning Mode

The two-layer neural network with four neurons of two solutions in the first layer and
a neuron of Kp = 5 solutions in the second layer was considered initially. In this case,

The following expressions obtained using the results of Chap. 9 form the basis for
the design of the closed-loop two-layer neural network in the self-learning mode:

The experimental investigation of this algorithm showed the low convergence rate
at the search of some local mode due to the use of the neurons with two solutions that
“desensitize” the information about the secondary optimization functional gradient. These
neurons were substituted by the neurons with a continuum of solutions. In this case,

(12.10)

(12.11)

251

(12.12)

The realized adjustment algorithm consists of the following stages:

1. The random or deterministic initial values of the classes’ center coordinates and
adjustable coefficients of this two-layer neural network are fed into the memory of
the system;

2. The calculation of number of vectors ∂b(y)/∂y is performed;
3. Pattern x enters the neural network input;
4. The y value is calculated according to the obtained x and multilayer neural network

state at the current time instant;
5. The corresponding vectors b(y) and ∂b(y)/∂y are selected according to the y value;
6. New values of the adjustable neural network coefficient class centers are calculated

using the results of p. 3,5;
7. When the next pattern enters the input, the algorithm according to p. 4–6 is re-

peated;
8. The algorithm is repeated according to p. 1–7 after the detection of the local extre-

mum.

Figure 12.36 shows the equal value lines for the distribution density f (x) used in the
experimental investigation of this algorithm. The optimal values of the adjustable
coefficients for the first layer neurons are a11 = 9; a12 = 15; a13 = 21; a14 = 27; a21 = 1;
a22 = 1; a23 = 1; a24 = 1; a31 = 1; a32 = 1; a33 = 1; and a34 = 1.

The neuron of the second layer with Kp solutions must realize a logical function
represented in Table 12.6. The elaboration of the correct solution y requires the correct
formation of the corresponding intermediate value of the analogous output signal

Fig. 12.36.
The equal value lines for the
distribution density f (x):
1 – optimal position of the
divisional hyperplanes;
2 – equal value lines for the
input signal distribution den-
sity for the different distribu-
tion dispersions representing
f (x) modes

12.7 · Two-Layer Neural Network in the Self-Learning Mode

252 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

g(n) = y – 0.5. The system of algebraic equations for the calculation of the optimal
coefficients for the second layer neuron can be obtained on this basis:

–a1 – a2 – a3 – a4 + 2.5 = 0.5

a1 – a2 – a3 – a4 + 2.5 = 1.5

a1 + a2 – a3 – a4 + 2.5 = 2.5

a1 + a2 + a3 – a4 + 2.5 = 3.5

a1 + a2 + a3 + a4 + 2.5 = 4.5

Consequently,

a1 = a2 = a3 = a4 = 0.5.

The experiments with such a two-layer neural network were carried out according
to the following plan:

1. Experiments with different distribution dispersions representing f (x) modes
(Fig. 12.36);

2. Coefficients of the second layer neuron and the classes’ center values are optimal.
The following different conditions were taken for the first layer neurons:
a Neuron coefficients were optimal;
b Initial values of neuron coefficients were taken with equal deviations from the

optimal ones;
c Initial values of neuron coefficients were taken with different deviations from

the optimal ones.
3. The second layer neuron coefficients were optimal; then they were similar to p. 2a,

2b but with the initial classes’ center values that were not optimal;
4. The first layer neuron coefficients and classes’ center values were optimal. The ini-

tial second layer neuron coefficients were not optimal;
5. Similar to p. 3 but with initial classes’ center values that were not optimal;
6. The first and second layer neuron coefficients and classes’ center values were not optimal;
7. All the aforementioned experiments were performed under different but determinis-

tic initial conditions. The final experiment was based on the random initial conditions
for neuron coefficients and the classes’ centers.

253

Experiment p. 1a showed the stability of the two-layer neural network in the global
extremum of a special average risk function. Figure 12.37 shows the results for the case
when the initial neuron coefficients were optimal in both layers but the classes’ centers
were not optimal. Figure 12.38 shows the results for the case when the first layer initial

Fig. 12.37.
Dynamics of adjustment by
the classes’ center coordinates

Fig. 12.38.
Investigation results for the
two-layer neural network
in the self-learning mode:
⎯⎯ initial hyperplane
position; – – – – – optimal
hyperplane position;
– – ⋅ – – hyperplane position
after 3000 iterations

12.7 · Two-Layer Neural Network in the Self-Learning Mode

254 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

Fig. 12.39.
Investigation results for the
two-layer neural network
in the self-learning mode:
I – initial hyperplane position;
II – optimal hyperplane posi-
tion; III – hyperplane position
after 3000 iterations

Fig. 12.40.
Investigation results for the
two-layer neural network
in the self-learning mode:
1–4 – final positions of hyper-
planes realized by neurons 1–4
of the first layer, respectively

255

neuron coefficients were not optimal but the second initial neuron coefficients and
classes’ centers were optimal. It is seen that the selected location of the input signal
distribution density modes makes the hyperplanes (I, II, III, IV) insensitive to the ro-
tation. The quality functional is almost constant here, and this fact is confirmed ex-
perimentally. It is therefore advisable to investigate only the dynamics of the threshold aij
adjustment (j = 1, 2, 3, 4) under the given fixed f (x) mode location and, as a rule, not
to investigate the dynamics of the hyperplane coefficients.

Figure 12.39 shows the results for the case when the initial coefficients of the second
layer neuron were optimal but the initial values of first layer neuron coefficients and
the classes’ centers were taken with equal negative deviations from their optimal val-
ues. The threshold adjustment dynamics is shown in Fig. 12.40 (solid line). The case of
positive deviations is shown by the dot-and-dash line. Figure 12.40 (dashed line) and
12.41 show the experimental results for the case when the initial coefficients of the
second layer neuron were optimal but the initial values of first layer neuron coeffi-
cients and the classes’ centers were taken with different centers by the sign and mag-
nitude deviations from their optimal values.

The goal of the experiment p. 6 was to investigate the influence of the distribution
dispersion upon the recognition quality. The initial conditions in this experimental
series were the same, whereas the dispersion σ2 was different (Fig. 12.42).

These experiments show that the self-learning problem can be solved for σ 2 not
more than σ 2

max = 1.5. This is reasonable because it is impossible to select locally con-
centrated objects under the large σ 2 (classes with a large intersection). Hence, the self-
learning methods based on such a selection appear to be invalid under such conditions.

Figure 12.43 shows the experimental results for the case when the initial coefficients
of the first layer neuron classes’ centers were optimal but the initial values of the sec-
ond layer neuron coefficients were not optimal.

Fig. 12.41.
Investigation results for the
two-layer neural network
in the self-learning mode:
I – initial hyperplane position;
II – optimal hyperplane posi-
tion; III – hyperplane position
after 3000 iterations

12.7 · Two-Layer Neural Network in the Self-Learning Mode

256 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

The adjustment procedure termination criterion in this experiment was the loca-
tion of the curves inside the “tube” with a diameter of 0.2 (Fig. 12.43) and a length of
5 000 iterations. Figure 12.44 illustrates this experiment.

Figure 12.45 shows the experimental results with another distribution density form
as compared with the typical density form fx(x).

Fig. 12.42.
Investigation results for the
two-layer neural network
in the self-learning mode:
– – – – σ 2 = 1; ⎯⎯ σ 2 = 1.5;
⎯ ⋅⋅ ⎯ σ 2 = 2; – – ⋅ – – σ 2 = 2.5

Fig. 12.43.
Investigation results for the
two-layer neural network
in the self-learning mode:
– – ⋅ – – a1; – – – – a2;
⎯ ⎯ a3; ⎯⎯ a4

257

12.8
About Some Engineering Methods for the Selection of Matrix Parameters
in the Multilayer Neural Network Closed Cycle Adjustment Algorithms

It is unlikely to have enough information for making matrix K* non-diagonal if only
the first derivative of the optimization functional is estimated in the process of the
closed-cycle adjustment algorithm design. This matrix in the simplest case is a unit
matrix multiplied by some constant or time-dependent coefficient. However, as the

Fig. 12.44.
Investigation results for the
two-layer neural network in
the self-learning mode: I , II ,
III , IV – numbers of the re-
spective neurons of the first
layer; – – – – optimal hyper-
plane position; ⎯⎯ ini-
tial hyperplane position;
⎯ ⋅ ⎯ ⋅ ⎯ hyperplane posi-
tion after 5000 iterations

Fig. 12.45.
Investigation results for the
two-layer neural network
in the self-learning mode:
1–4 – numbers of the respec-
tive neurons of the first layer

12.8 · About Some Engineering Methods for the Selection of Matrix Parameters

258 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

above experiments have shown, there are some reasons to make this coefficient differ-
ent for the adjustment of different layers of the multilayer neural network. As it was
mentioned in Chap. 9, the main goal of the use of stochastic approximation methods
is to provide the zero random and dynamic errors in determination of the adjustment
coefficient vector in the stationary state. But the use of such methods results in the
increase of corresponding dynamic errors in the transient state, i.e., in the adjustment
mode. It is unlikely that it is necessary to provide the zero random error in the station-
ary state during the multilayer neural network adjustment. Some finite adjustment
coefficient distribution dispersion is admissible due to the relatively smooth proper-
ties of the secondary optimization functional in its extremum point. This finite disper-
sion of distribution fa(a) does not result in the significant increase of the secondary
optimization functional, and it can be provided by the time-invariant matrix K*. Two
engineering methods are possible in this case for the selection of the matrix K* coef-
ficients. The first one is based on the analysis of the a priori given problem complexity
determined by the modality fx(x) under the fixed dimensions of the feature space.

The second method based also on the analysis of experiments shows that the objec-
tive necessity to estimate the secondary optimization functional emerges in the real
situation during the multilayer neural network adjustment process. If the dependence
of the secondary optimization functional upon n strongly oscillates, then it is neces-
sary to decrease K*. If this dependence is sufficiently smooth, then it is necessary to
increase K* in order to decrease systematic adjustment error up to the emergence of
oscillations. The first method for selection of K* can be used for selection of the initial
value of K* in the second method.

12.9
Design of the Multilayer Neural Network for the Matrix Inversion Problem

Let us consider the design of the multilayer neural network and its closed-cycle adjust-
ment algorithm for matrix inversion when its dimensionality is 2 × 2. Since the result
also represents some matrix 2 × 2 then the multilayer neural network output must consist
of four neurons with a continuum of solutions. The minimum variant of the open-loop
three-layer neural network structure is shown in Fig. 12.46 in the form of a graph-scheme.

The initial conditions on the adjustment coefficients of the first layer neurons must
be selected in such a way that under B = ∝, four hyperplanes must divide the initial

Fig. 12.46.
Graphs of the multilayer neu-
ral network for the matrix
inversion

259

feature space into the regions with equal hyper-volumes. The initial condition selec-
tion for the second and third layers must be performed in a similar way as in the case
of the first layer because the neurons with a continuum of solutions are also used here.

The formation of the learning sample for the considered multilayer system is car-
ried out according to the following expressions:

There are practically no constraints upon the amplitude of the multilayer neural
network input signal. But the amplitude of the output signal is limited by the interval
[–1, + 1] due to the output neurons’ specific character. This requires some normaliza-
tion of the input signal in such a way that all the output signal components do not
exceed the interval [–1, + 1]. Such normalization must be performed in the following
way. Let X be the initial matrix and

Division of X by x gives the matrix X–1 with elements belonging to the interval
[–1, + 1]. Let us designate

Then

Consequently, the multiplication of matrix X elements at the input by 1/xD1 and the
following application of this matrix to the inversion system provide the matrix

with elements inside the interval [–1, + 1]. Multiplication of this matrix by 1/xD1 gives
the final result X–1.

The structure of the open-loop multilayer neural network is described by the fol-
lowing relationships:

12.9 · Design of the Multilayer Neural Network for the Matrix Inversion Problem

260 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

The teacher instruction ε h3 for the multilayer system must be formed in the algorith-
mic way using one of the known matrix inversion algorithms and inversion precision
control. The expressions for the mean-root-square error of the elements of the matrix

have the following form:

Here

These expressions form the basis for the design of the adaptation algorithm of the
multilayer system aimed at the inversion of matrix 2 × 2.

261

12.10
Design of the Multilayer Neural Network for the Number Transformation
from the Binary System into the Decimal One

The transformation of the four-bit binary number will be considered as an example.
The system must realize the desired relationship “input-output” described by the
multiple-valued logic function ε (x) represented in Table 12.7 after the termination of
the closed-cycle adjustment mode.

Table 12.7 provides the formation of the learning sample at the system input along
with the teacher instruction ε by selection of the table columns.

The open-loop neural network is described in this case by the following expres-
sion:

Consequently,

These expressions form the basis for the design of the adjustment algorithm of the
multilayer system aimed at the number transformation from the binary system into
the decimal one.

12.10 · Design of the Multilayer Neural Network for the Number Transformation

262 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

12.11
Investigation of the Multilayer Neural Network under the Arbitrary
Teacher Qualification

The design of the optimal neural network model in the case of the arbitrary objective
and subjective teacher qualification was described in Chap. 5. We considered below
the case K = 2 and arbitrary objective teacher qualification b0.

The pattern recognition system represented a two-layer neural network based on
the neurons with arc tangent characteristics and B = 5. The adjustment algorithm was
modeled in the learning (bc = 1) and self-learning (bc = 0) modes. The algorithm block
diagram is represented in Fig. 12.47.

The main aim of the experimental study was to test the system operation capability.
The plan of experiments included two main points:

1. The investigation of the system behavior under the optimal coefficient values and
different relationships between b0 and bc;

2. The investigation of the system dynamics for different b0 and bc and non-optimal
neurons.

The pseudo-random-number generator with the distribution close to the normal
one and with equal covariance matrices for both classes was used as the generator of
the input signals. The experimental study showed the following results concerning p. 1:

Fig. 12.47. Block diagram of the neural network with subjective teacher qualification: 1 – adder unit;
2 – nonlinear conversion device; 3 – units of gradient calculations; 4 – multiplier unit

263

1. The oscillations of the system coefficients around their optimal values are observed
in the case b0 = bc;

2. The gradual detuning of the system takes place in the case bc = 1. The detuning
increases as b0 changes from 1 to 0;

3. The system remains in the optimal state in the case bc = 0 independently of b0.

The investigations under the non-optimal initial coefficients showed that in the case
b0 = bc, the adjustment procedure leads the system into the optimal state. In the case bc = 1
and bc ≠ b0, the system is not adjustable in spite of the long adjustment duration (Fig. 12.48).

12.12
Analytical Methods of Investigations of the Neural Network
Closed Cycle Adjustment

We describe below the general analytical methods for the investigation of the closed-
cycle neural network adjustment. The particular examples are used for illustration.
The complications of the described methods are discussed.

The general methods of analysis of the closed-cycle neural network adjustment are
similar by its structure to the methods used for the analysis of the open-cycle adjust-
ment. They include the following stages:

1. The analysis of the probability distribution density for the vector of the secondary
optimization functional gradient estimation;

2. The derivation of the stochastic differential equation for the change of the adjust-
able coefficient distribution density in the course of the adjustment procedure;

3. The solution of this equation;
4. The determination of the probability distribution for the correct recognition by

means of integrating across the feature space and across the neural network state
space (the space of the adjustment coefficients).

Fig. 12.48.
Dynamics of the system coef-
ficient changes under bc = 1
and different b0

12.12 · Analytical Methods of Investigations of the Neural Network Closed Cycle Adjustment

264 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

In principle, the problem of the parameter matrix K* selection must be performed
according to the results of p. 3. However, it will be shown below that this task is rather
complicated. In this section, we consider a linear threshold element with the minimum
magnitude of the first discrete error moment optimization criterion.

The recurrent relationship for the neuron with |α1g| minimization in the case
N = mn = 1 was obtained in the following form:

a0(n + 1) = a0(n) – K*xg(n)

The first stage of analysis. This is the problem of the random walk across the one-
dimensional grid. Such a walk is described by the Markovian chain with an infinite
number of states. The probabilities of transition from the state mK* to the state (m + 1)K*,
(m–1)K* and mK* are

Here Φ is the cumulative detection probability.

The second stage of analysis. The stochastic difference equation for the change of the
probability distribution density of the threshold a0 has the following form:

The third stage of analysis. The solution of this stochastic difference equation is rather
difficult. Let us consider the stationary state (n = ∝).

Taking a0(0) = 0 and proceeding to the limit n → ∝ one obtains

Consequently,

265

It follows from the normalization condition for the distribution density of coeffi-
cient a0 by m that W(mK*) = 0. Consequently, C = 0 and

Taking W(0) = A, one obtains

In the general case,

(12.13)

The value A = W(0) is determined from the normalization condition of the density W
by m. Function W(.) represents the distribution density for the adjusted coefficient a0 in
the stationary state. Function ½[1 – Φ 1(mK*)] is a steadily decreasing function from ½ to
0 in the interval –∝ < m∆ < +∝. Function ½Φ 2(mK*) is a steadily increasing function
from 0 to ½ in the interval –∝ < m∆ < +∝. Function ½[1 – Φ 1(mK*)] + Φ 2(mK*) has its
maximum at the root of equation

1 – Φ1[(mK*)] = Φ 2(mK*) (12.14)

Let the root of Eq. (12.14) be mK* = θ�. Then at m∆ ≥ θ�,

 , i.e.

12.12 · Analytical Methods of Investigations of the Neural Network Closed Cycle Adjustment

266 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

Respectively, at mK* ≤ θ� one obtains

Therefore, if θ�/ K* is an integer number, then

Consequently, θ� is the mode of distribution of the threshold value as a random
variable, and it provides the equality of the conditional risk functions for the pattern
assemblages of the first and second classes.

It follows from (12.13) that the mathematical expectation and distribution disper-
sion of the threshold are finite.

For the neuron with arbitrary memory mn in the adjustment block (mn = const, N = 1),

(12.15)

The expression (12.15) is valid in spite of the remark made in Chap. 9 about the
impossibility to design the analytical adjustment algorithm with arbitrary values of
mn in the general case with the minimum |α1g| criterion and the system with two so-
lutions. This is explained by the fact that the expression (12.15) concerns the particular
one–dimensional case (N = 1) with x0 = –1= const. The coefficient adjustment in (12.15)
is performed after each mn cycle of patterns entering the system input.

The expression for the transfer probability in the given Markovian chain is similar
to the case mn = 1:

where mK* is the current value of the adjustment coefficient a0. The value

267

amounts to

This is the case of the polynomial distribution

Here l, t, mn – l – t are respectively the number of times when + 1, –1, 0 emerge in xg.
After the change of variables ξ = l – t, one can obtain the constraints upon the variable
range in the following form:

The expression for the transition probability in the case ξ > 0 has the following form:

The expression for the transition probability in the case ξ < 0 has the same form
with substitution of the lower limit by (–ξ). The expression for the transition probabil-
ity will be unified when the lower limit is taken as {max[0, –ξ]}.

The stochastic difference equation for the distribution density of the adjusted co-
efficient a0 corresponding to the second stage of analysis has the form

where P[] is determined by the above expression for the transition probability.
The recurrent relationship for the closed-loop system with mn = 1 in the multidi-

mensional case can be written in the form

This is the case of the walk problem across the (N + 1)-dimensional grid. Such a
walk is described by the multidimensional Markovian chain. The analysis of the closed-
loop system here consists in the derivation of expressions for the transition probabili-
ties, derivation of the stochastic equation, and investigation of its solution.

The solution of these problems is rather complicated even in the relatively simple
case under consideration.

12.12 · Analytical Methods of Investigations of the Neural Network Closed Cycle Adjustment

268 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

Neuron with the solution continuum and continuum of pattern classes. Let us consider
the case N = mn = 1. Using the criterion of minimization of the discrete error second
moment α2g, one obtains

(12.16)

Here

Let us introduce the following random variables: A0(n), Z[n], L[n], X[n], E[n], G[n],
and Y[n]. Their possible values are a0[n], z[n], l[n], x[n], ε[n], g[n], and y[n].

The value G[n] is the function of the random variables A0[n] and X[n]:

G[n] = X[n] – A0[n]

and Y[n] is the function of the random variable G[n]:

Y[n] = ϕ (G[n])

The value Z[n] is determined in the following way:

The distribution density of A0[n + 1] will be found in the following form:

(12.17)

In order to determine f [a0(n + 1)/x(n)], one needs to determine Φ[z(n)/a0(n),x(n)]:

because the random value ϕ is the certain function of the random values of X and A0:

269

Consequently,

where f4
* is a new function with fixed a0(n).

As a result, one obtains

Let us define

It can be shown that

Then the distribution density of L(n) with respect to X(n) and A0(n) is

12.12 · Analytical Methods of Investigations of the Neural Network Closed Cycle Adjustment

270 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

The cumulative distribution of the random value A0(n + 1) with respect to X(•) has
the following form:

Since

then

Consequently,

One obtains finally

(12.18)

In the limiting case at n → ∝,

This is a homogeneous Fredholm integral equation of the second kind. It can be
solved numerically in the general case. A non-negative function is integrated in the
expression for fn+1[a0(n + 1)]. Then fn+1[a0(n + 1)]≥0. It is evident that at n = 0

271

where a�0 is some given threshold value.
Let us assume that for f n[a0(n)]

Let us show that in this case

Let us make the change of variables

Then

Due to the distribution density properties,

and due to the assumption

12.12 · Analytical Methods of Investigations of the Neural Network Closed Cycle Adjustment

272 Chapter 12 · Analysis of Closed-Loop Multilayer Neural Networks

Consequently,

that was required to be proven.
The similar expressions can be obtained for the cases mn = const and N ≠ 1, as well

as for the cases of more complex multilayer neural network structures. But the com-
plexity of the obtained expressions sharply increases. The analysis of such expres-
sions in the explicit form has no sense. It is necessary to perform the transformation
to the distribution of the correct recognition probability by means of the adjustment
coefficient space integration. This is a rather complex task. One can only write gen-
eral expressions for the mathematical expectation and variance of the average risk
function:

The aforementioned analytical investigation complexity of the closed-loop sys-
tems with the fixed structure results in the requirement to use statistical modeling
methods.

Literature

[12-1] Galushkin AI (1969) Methods of synthesis of the open-loop learning systems for nonstationary
pattern recognition. Abstr. Of the III Ukr. Rep. Conf. on bionics. Kiev

[12-2] Galushkin AI, Vasilkova TA, Slobodeniuk VA, Tyukhov BP (1971) Analysis of the nonstationary
pattern recognition system dynamics. Proc. MIEM 23

[12-3] Vanyushin VA, Galushkin AI, Tyukhov BP (1972) Design and investigation of multilayer pat-
tern recognition systems. In: Some problems of biological cybernetics. Acad. Berg AI (ed)
Moscow, Nauka, pp 315–323

[12-4] Galushkin AI (1974) Synthesis of multilayer pattern recognition systems. Moscow, Energiya
[12-5] Galushkin AI, Koudryavtsev AM (1976) Matrix inversion using a multilayer system of thresh-

old elements. Cybernetics and computer systems 33, Kiev, Naukva doumka
[12-6] Galushkin AI, Zotov Yu Ya, Shikunov Yu Ya (1972) In-line processing of experimental informa-

tion. Moscow, Energiya, 360 p
[12-7] Sterity R, Coleman J, Fiddy MA (1990) Aneral network based matrix inversion algorithm. San

Diego, Calif., IJCNN 1:467–470
[12-8] Sterity R, Coleman J, Fiddy MA (1991) Regularized matrix inversion on a neural network ar-

chitecture. Seattle, Wash., IJCNN – 91 2:938
[12-9] Viktorov NV, Galushkin AI (1976) Design and investigation of pattern recognition systems

under the arbitrary teacher qualification. Medical radio-electronics. VNII of International
technology, pp 95–106

Chapter 13

The design of the multilayer neural networks with fixed structure and closed-cycle
adjustment does not require some a priori information about the input signal, as op-
posed to the case of the open-cycle adjustment. However, the probability of correct
recognition is restricted in the former case by the neural network structure fixation.
This chapter deals with the neural network synthesis with flexible structure (Fig. 13.1)
that is selected in the adjustment process.

Function y(x) in Fig. 13.1 is the structure of the neural network open-loop part.
Methods of adjustment for the multilayer neural network with flexible structure se-
lected on the basis of a given probability of correct recognition include the successive
neuron layer learning.

13.1
Sequential Learning Algorithm for the First Neuron Layer
of the Multilayer Neural Network

Sequential learning algorithms for the first layer of the multilayer neural network are
based on the gradual increase of the hyperplane number. These hyperplanes form the
resultant hypersurface up to the achievement of the required recognition quality or
some other condition for the learning process termination. The learning process is
reduced to the formation of the logical tree. Geometric interpretation is the following.
The feature space is optimally divided into two parts by some fixed structure neural
network. Then the obtained subspaces are divided again, and so on.

Synthesis of Multilayer Neural Networks
with Flexible Structure

Fig. 13.1.
Block diagram of the neural
network with flexible struc-
ture and closed-cycle adjust-
ment

274 Chapter 13 · Synthesis of Multilayer Neural Networks with Flexible Structure

Figures 13.2–13.4 show respectively the general block diagram of the sequential al-
gorithm for the design of the piecewise linear divisional surface realized by the flexible
structure neural network and a logical tree describing the design of the piecewise lin-
ear divisional surface. In Fig. 13.2: I – unit of the fixed structure neural network pa-
rameter calculation; II – unit of the input learning sample partition; and III – adjust-
ment algorithm of the flexible structure neural network at the first step. The resultant
border between two classes is shown in Fig. 13.4 by the double line. The first hyper-
plane ϕ 0(x) divides the feature space Φ 0 into two sub-regions Φ 1 (first class patterns)
and Φ 2 (second class patterns). The learning sample L0 is divided into two ones:
L1 (vectors from Φ 1) and L2 (vectors from Φ 2). The numbers of incorrectly classified
patterns in each of the sub-regions are θ 1 and θ 2. The maximal element from the set
{θ 1, θ 2} is selected, and the corresponding sub-region is further divided. Let us assume

Fig. 13.2.
Block diagram of the sequen-
tial algorithm for the design of
the piecewise linear divisional
surface

Fig. 13.3.
Drawing of the piecewise lin-
ear divisional surface

275

Fig. 13.4. Logical tree: a scheme of the drawing of the piecewise linear divisional surface shown in
Fig. 13.2; b sequential numeration of the tree knots

Fig. 13.5.
The block diagram of the pro-
gram realizing the algorithm
of the piecewise linear divi-
sional surface drawing

that θ 1 > θ 2. Then regions Φ 11 and Φ 12 are obtained after partitioning of Φ 1 by the hy-
perplane. Then θ 11 and θ 12 are calculated and the recognition errors are compared. If
θ 1 > θ 11 + θ 12, then the introduction of the new hyperplane improves the recognition
quality. In this case, the sample L1 is divided into sub-samples L11 and L12. Then the pro-
cess is repeated. As a result, one obtains the set of regions Φ i, Φ i,j,…, Φ i,j,k,…,t, where
indexes i, j, k,…, t take the values 1 and 2. If the drawing of the hyperplane in the sub-
region Φ i,j,k,…,t does not improve the recognition quality, then the partitioning of the
obtained regions must be continued. The number of steps decreasing the recognition

13.1 · Sequential Learning Algorithm for the First Neuron Layer of the Multilayer Neural Network

276 Chapter 13 · Synthesis of Multilayer Neural Networks with Flexible Structure

quality must be limited in the design of the similar algorithms [13-1]. If the error does not
decrease at the given number of steps, then the initial region Φ i,j,k,…,t is excluded. The
following rules for the algorithm termination are considered in [13-1]: (1) Termination at
the given value of the error probability; (2) Termination at the given value of the hyper-
plane number (the number of neurons in the first layer). The block diagram of the pro-
gram realizing the algorithm of the piecewise linear divisional surface drawing is shown
in Fig. 13.5. Let us describe the operators that are not clear from the previous description.

Operator “Logical tree”. As it is seen in Fig. 13.4, the tops of the tree are of two types:
intermediate tops and terminations. The tree root is the knot with index 0, and termina-
tions correspond to certain pattern classes. Each pattern x after the pass of the operator
“Logical tree” enters one of the terminations. Function ϕ i,j,k,…,t(x) is used for making a
decision about further movement direction from the top i, j, k,…, t. If ϕ i,j,k,…,t(x) ≥ 0 then
the movement is to the right branch and vice versa. The logical tree in Fig. 13.4a takes the
form shown in Fig. 13.4b under the sequential numeration of the tree tops. The logical
tree is convenient for describing the following with the three-column matrix:

The s-th row of matrix C corresponds to the s-th top of the logical tree. The matrix
rows, similar to the tops, are of two types. The row (0 s s + 1) describes the intermedi-
ate top of the tree. One takes the divisional surface ϕ s = 0 corresponding to this top,
and the transfer to the top s is performed if sign ϕ s = –1 or to the top s + 1 if sign ϕ s = 1.
If the row has the form (k 0 0), where k = 1,2, then it describes one of the tree termi-
nations. If the point xj appears in such a point after the sequential use of several divi-
sional surfaces, then it belongs to the class Ak. The drawing of the new hyperplane
ϕ i(x) results in the appearance of two new tree branches going from the top i. Matrix
with U rows obtains two new rows (U + 1) and (U + 2) of the following form:

U + 1: 1 0 0

U + 2: 2 0 0

and the i-th row gets the record

0 U + 1 U + 2

i.e., the i-th top now becomes the intermediate top of the logical tree.

277

Operator “Drawing of a new divisional surface” can use any neuron adjustment algo-
rithm described in Chap. 9. It can realize any fixed structure neural network described
in Chap. 9 and 10.

Operator “Quality improvement estimation” is used for the recognition quality improve-
ment estimation. The results of its application are used for the logical tree design: the
improvement of the quality leads, for example, to the division of the region with the
highest value of the average risk function. In the opposite case, the division of the lastly
obtained regions takes place.

13.2
Learning Algorithm for the First Neuron Layer of the Multilayer
Neural Network Using the Method of Random Search of Local and
Global Function Extrema

This algorithm was designed on the basis of methods described in Chap. 8. One can
ignore in this case the tree structure design, and all the neurons providing local ex-
trema of the average risk function are included in the first layer (Figs. 13.6, 13.7).

Four hyperplanes in the two-dimensional feature space shown in Fig. 13.6 deter-
mine four local extrema of the average risk function. Figures inside the circles corre-
spond to the numbers of the logical function arguments in each region of the multi-
dimensional feature space. Table 13.1 gives the logical function values in the example
shown in Fig. 13.6. Tick marks correspond to the values that are not defined at the
given argument values. Zero index corresponds to the regions without patterns.

Fig. 13.6.
Illustration of the learning
method for the first neuron
layer of the multilayer neural
network using an algorithm of
random search

Fig. 13.7.
Multi-extremum property
of the average risk function
under multi-modal distribu-
tions f (x/ε)

13.2 · Learning Algorithm for the First Neuron Layer of the Multilayer Neural Network

278 Chapter 13 · Synthesis of Multilayer Neural Networks with Flexible Structure

It is evident that deterministic search methods do not provide the local extremum
overrunning. The solution is the introduction of the random elements into the search
procedure.

The main algorithm stages are the following:

a The adjustment coefficient vector components of the current neuron are randomly
selected;

b The next local extremum of the average risk function is found by some neuron learn-
ing method;

c This extremum is recorded if it was not found earlier.

The transfer to the first stage is performed after the termination of the third one,
and the adjustment coefficient vector of the next first layer neuron is determined.

The experimental investigation of one performance cycle of such a learning algo-
rithm for the first layer neuron was described in Chap. 12. Figure 13.8 shows the block
diagram of the program that realizes this algorithm.

The plan of experiments with this program was aimed at the analysis of the learn-
ing process properties. The input signal characteristics and the adjustment algorithm
were similar to those described in Sect. 12.2. The following characteristics must be
analyzed:

1. The experimental estimation of the random procedure convergence;
2. Dependence of the total calculating time on the feature space dimensionality N,

number of extrema U, and step value ∆. The learning procedure is performed until
the sequential random initial condition injection results in the search of all the quality
functional local extrema under the given modality of the distribution functions of
the input signal. The number of the random search steps required for the search of
all the local extrema is given in Table 13.2, where U is the number of the desired
extrema, and η U is the number of the random procedure steps required for the search
of all the U extrema. The approximate estimations for the mathematical expecta-
tion and variance of the step number have the form (8.16a).

Table 13.2 and the data described in Sect. 8.6 provide the estimation of the total
learning time under the particular modality of the input signal. This time increases
linearly with the feature space dimensionality increase.

279

Fig. 13.8. Block diagram of the program realizing learning algorithm for the first neuron layer of the
multilayer neural network using random search methods

13.2 · Learning Algorithm for the First Neuron Layer of the Multilayer Neural Network

280 Chapter 13 · Synthesis of Multilayer Neural Networks with Flexible Structure

13.3
Analysis of Algorithm Convergence under the Hyperplane
Number Increase

The algorithm convergence under the neural network structure complication depends on
the rules for the selection of the sub-region for partitioning and the learning algorithm
at each partition step. The method described above of the selection of the sub-region for
partitioning is optimal by the algorithm convergence rate. The simplified methods of the
feature space sequential partitioning usually used in practice and consisting in the neu-
ron open-cycle adjustment using the initial learning samples moments often result in the
increase of the error probability at some step of the algorithm performance (Fig. 13.9).

The non-shaded area in Fig. 13.9 corresponds to the next partition region, and the
divisional surface is drawn perpendicular to the line linking the centers of two classes.
The error at this partition step increased because some patterns of the first class ap-
peared to be classified as second class patterns. To provide the stable decrease of the
error probability, one must use the closed-cycle adjustment with the second discrete
error distribution moments α 2g minimization at each procedure step. This provides
the minimum number of the first layer neurons. However, it is sometimes necessary to
increase the number of the first layer neurons voluntarily at the expense of the sharp
simplification of the neuron learning algorithm.

The increase of the hyperplane number in the most unfavorable case results in the
error probability estimation convergence to zero due to the finite learning sample length.

Fig. 13.9.
Illustration of the process for
the increase of the error prob-
ability at some step of the
sequential algorithm perfor-
mance: I – the first class;
II – the second class

281

Two stages of the neural network design therefore exist: the algorithm learning stage
and the algorithm precision estimation stage. At the sample length equal to M, only its
minority part M1 is used for the algorithm learning. The trained algorithm is then used
for the recognition performance on the sample part M2 = M – M1, and the real algo-
rithm precision is estimated by the recognition probability error Pp(H1). Function
∆Pp(H1) = Pp(H1) – P0(H1) shown in Fig. 13.10 must in principle increase with the in-
crease of the hyperplane number due to the decrease of the algorithm capability for
generalization. Here P0(H1) is the function of the error probability change on the neu-
ral network learning stage. Function Pp(H1) often has a local minimum under the given
finite value of H1, amounting, for example, to H′1. It is recommended to use namely this
number H′1 of hyperplanes if Pp(H′1) satisfies the initial conditions.

The particular result of the first layer neuron learning in the case of the multilayer
neural network with two solutions is the logical function that determines the sequence
of multidimensional feature space partitioning. This logical function is sometimes not
defined not only on the complete sets of arguments but on some separate arguments.
The simplest illustration of underdefiniteness of such a kind of logical functions is
represented in Fig. 13.11 and Table 13.3. The Roman numerals indicate the initial re-
gions of the feature space for the formation of some set of the logical function ε (y)
arguments. The cells marked by the tick marks indicate variable sets that never appear
at the output of the first neuron layer. The cells marked by the sign ⊕ indicate the
variable values out of the complete set of 2H1 values that also never appear at the output
of the first neuron layer. The procedure of the sequential partitioning shown in Fig. 13.11

Fig. 13.10.
The analysis of algorithm
convergence under the hyper-
plane number increase on the
learning and recognition stages

Fig. 13.11.
Formation of the learning
sample at the first layer neu-
ron output

13.3 · Analysis of Algorithm Convergence under the Hyperplane Number Increase

282 Chapter 13 · Synthesis of Multilayer Neural Networks with Flexible Structure

can be illustrated by the tree and matrix with the form represented in Fig. 13.12. Here
I–IV are the regions obtained as a result of the sequential partitioning.

The problem of the extension of a definition of the logical function ε (y) emerges in
connection with the necessity to form the arrays of the learning vectors at the output
of the first layer neurons required for the adjustment of the following neuron layers.
The main problem here is to extend the logical function definition onto the partially
given sets of its arguments. The definition extension onto set 8 (Fig. 13.11, Table 13.3)
is not necessary because this set never appears in this particular task of the piecewise
linear divisional surface design. The definition extension is carried out in the following
way. Vectors with existent coordinates, initial teacher instruction, and complete sweep-
ing across the absent variable values are recorded in the learning array for the second
layer neurons of the multilayer neural network represented in Table 13.4.

The logical function for the adjustment of all the neuron layers except the first one
is formed in Table 13.4.

Fig. 13.12.
Logical tree and matrix of
transformations for the ex-
ample represented in Fig. 13.11

283

13.4
Learning Algorithms for the Second Layer Neurons
of the Two-Layer Neural Network

13.4.1
Condition of the Logical Function εεεεε (y) Realizability Using One Neuron

The goal of this section is to test the logical function realizability using one second layer
neuron of the two-layer pattern recognition system. If the result of this test is negative,
then the transfer to the synthesis of a three-layer neural network must be performed.

Figure 13.13 is the illustration of the logical function realizability using one neuron.
Here, the value of the neuron output analogous signal g(n) is less than zero across all
sets of the input binary variables y(z) (z is the number of the set) of the first class and
less than zero across all sets of the input binary variables of the second class. The value
∆g = g(2)

min – g(1)
max is termed “interval” [13-5]. The necessary and sufficient condition for the

logical function realizability using one neuron can be written in the following form:

(13.1)

The summation of the first members and second members of equations (13.1) gives
the condition for the logical function realizability using one neuron in the following form:

(13.2)

or in another form

(13.3)

The expressions

Fig. 13.13.
The test of the logical func-
tions realizability using one
neuron

13.4 · Learning Algorithms for the Second Layer Neurons of the Two-Layer Neural Network

284 Chapter 13 · Synthesis of Multilayer Neural Networks with Flexible Structure

are unambiguously determined by the given logical function and can be calculated
before the solution of the problem for the synthesis of the neuron realizing this logical
function. Similarly to [13-5], let us introduce the expression

(13.4)

Notice that

Expressions (13.3) and (13.4) give

or

(13.5)

The expression (13.5) gives the necessary and sufficient condition for the logical
function ε (y) realizability.

Let the logical function ε (z) determined in Z points of H1-dimensional binary ar-
gument y(z) not be realizable using only one neuron with the weighting coefficient
vector a. The scalar product of vector a and characteristic vector of the logical function
is less than the sum of absolute values of the neuron output analogous signal across all
z = 1,…, Z. Consequently, the weighting coefficient vector of the neuron realizing the
given logical function with characteristic vector b must minimize (to zeroth value) the
following functional:

(13.6)

Vector b is to some sense close to the weighting coefficient vector a of the neuron
realizing the logical function that corresponds to b. The difference

can be regarded as an error of the logical function realization [13-5]. Then the mean-
root-square error is minimal at c = b. Consequently, the corresponding vector b can
sometimes be taken as a weighting coefficient vector a realizing the logical function.
However, in general, vector b cannot be always taken as vector a.

285

The expression (13.5) is similar to the expression (13.2). The latter one can be repre-
sented as a system of linear inequalities and the former one as a nonlinear equation. The use
of (13.5) is slightly simplified because the initial logical function ε (y) defined in 2H1 points
of H1-dimensional space of binary (–1, 1) variables is represented in (13.5) by an H1-di-
mensional analogous vector, whereas in (13.2) it is represented by 2H1 binary numbers.

13.4.2
Synthesis of a Neuron by the Functional Minimization Method

The aforementioned correspondence between (13.2) and (13.5) indicates the advantages
of (13.5). However, the complexity of the explicit expression for the nonlinear term

emerges here. This complexity can be overcome by the use of the appropriate approxi-
mation. According to (13.6), the minimized functional has the following form:

(13.7)

Here c is the arbitrary weighting coefficient vector that provides a non-zero analogous
error of the neuron; b is the characteristic vector of the given logical function. The follow-
ing condition is assumed at the determination of the vector providing a minimum of
(13.7): either vector a = c is the weighting coefficient vector realizing the given logical
function, or the given logical function cannot be realized with the use of only one neuron.

Figure 13.14 shows conditionally the dependencies of summands in (13.7) upon ci
for realizable and non-realizable logical functions with the use of only one neuron:
1 – physically realizable logical function; 2 – non-realizable logical function.

Fig. 13.14.
General form of the quality
functional for physically real-
izable and non-realizable logi-
cal function with the use of
only one neuron

13.4 · Learning Algorithms for the Second Layer Neurons of the Two-Layer Neural Network

286 Chapter 13 · Synthesis of Multilayer Neural Networks with Flexible Structure

The described synthesis method for the second layer of the multilayer neural net-
work is based on the following representation:

q|g(z)| ≈ ξ2[q2g2(z)] + ξ4[q4g4(z)] + …

where q is the normalizing factor limiting the approximation region in the following
way: 1 ≤ q|g(z)| < 0. The approximation of q|g(z)| by k terms is the k-th order approxi-
mation.

In the case of k = 1,

|g(z)| ≈ ξ2[qg2(z)]

Consequently,

or

The sum

is totally determined by the given logical function (by its argument values) and can be
calculated before the neuron synthesis solution. The same is valid for its characteristic
vector. The following expression is valid for the whole set of arguments of the logical
function defined in 2H1 points of H1-dimensional space of binary (–1, 1) variables:

(13.8)

where δij is Kronecker symbol. This expression is not valid in the general case of the
multilayer neural network synthesis. In this particular case, taking into account (13.8),
one obtains

(13.9)

287

In the general case,

(13.10)

If (13.9) takes place, then

The expression for the optimal vector c providing minimum I(0) has the following form:

ci ≈ Pibi

where

The realizability of the logical function using one neuron is invariant with respect
to the multiplication of ai by the constant coefficient. Then the expression for the de-
sired weighting coefficient vector realizing the logical function with the characteristic
vector b under condition (13.8) has the following form:

ai≈ bi , i = 0, ... H1 (13.11)

It is seen therefore that at the first-order approximation under the condition (13.8), the
weighting coefficient vector is equal to the logical function characteristic vector. If in this
case the first-order approximation doesn’t appear to be valid, then one usually assumes

ai ≈ bi , only for i = 1, ... H1,

and the value a0 is varied for providing the possibility to realize the logical function
using only one neuron (see an example below).

In the general case, when (13.8) is not valid

and the desired weighting coefficient vector is calculated according to the equation

a = D–1b

This is the main expression for the neuron synthesis by means of the functional
minimization at the first-order approximation. Matrix D–1 and vector b are calculated
by the initial values of the realized logical function. The calculation of a0 is similar to
the case of the validity of (15.8).

13.4 · Learning Algorithms for the Second Layer Neurons of the Two-Layer Neural Network

288 Chapter 13 · Synthesis of Multilayer Neural Networks with Flexible Structure

Example. Let the divisional surface configuration be the same as that which is shown
in Fig. 13.15.

Table 13.5 gives the values of the logical function of four variables. The tick mark
indicates the argument values that do not participate in the formation of the initial
piecewise linear divisional surface. The values of the binary input variables are ordered
by the increase of the corresponding decimal numbers z. The full set of the logical
function values is realized by the following transformation:

ε = x1x3 + x3x4 + x1x2x4

The logical function characteristic vector is

Fig. 13.15.
Illustration of the synthesis of
the second layer neurons in
the two-layer neural network
by method of the functional
minimization

289

In the considered example, b0 = –2, b1 = 6, b2 = –2, b3 = 10, and b4 = 6. It is easy to
check that these neuron coefficients provide the realization of the initial logical func-
tion using this neuron. However, in the case of the first-order approximation, the ad-
ditional variation of coefficient b0 is required. Using the calculated coefficients bi and
(13.11) for i = 1,…, Hi, one obtains the following value (Table 13.6):

The sweeping of the neuron threshold (b0 = a0) values is performed per unit in the
interval [B(z)max – 0.5]÷[B(z)min + 0.5].

The method of the neuron synthesis by means of the functional minimization and
first-order approximation at the incomplete variable set determined by the divisional
surface form (Fig. 13.16, Table 13.7) can be illustrated in a similar way.

Consequently, the general procedure for the neuron synthesis by the method of
functional minimization includes the following stages (step by step with dependence
on the logical function realizability): (1) determination of the characteristic vector b;
(2) determination of the threshold b0; (3) the use of the second-order approximation, etc.

It is evident that the described method of the neuron synthesis is equivalent to the
usual neural network synthesis methods with open-cycle adjustment and input signal
high-order moment consideration. In the described method, at the first-order approxi-
mation, the characteristic vector is the vector of the divisional surface drawn in the
middle between the centers of two classes.

Fig. 13.16.
Illustration of the synthesis of
the second layer neuron in the
two-layer neural network at
the nonstrictly defined logical
function ε (y)

13.4 · Learning Algorithms for the Second Layer Neurons of the Two-Layer Neural Network

290 Chapter 13 · Synthesis of Multilayer Neural Networks with Flexible Structure

13.4.3
Neuron Synthesis by the Threshold Function Tables

The sufficiently large attention paid to the problem of the second layer neuron synthe-
sis in the multilayer neural network with two solutions is explained by characteristic
peculiarities observed in the process of operating with the first-layer neuron output
signals in the binary space.

Neuron synthesis by the threshold function tables [13-5] is based on the use of the
logical function characteristic vectors. This method allows one to obtain the neuron
optimal parameters in the case when the one-neuron logical function realization is
possible [13-5]. The method of the neuron synthesis by the threshold function tables
can be used when the first-layer neuron number is not more than seven. The process
of design of the characteristic vector tables and corresponding weighting coefficient
vectors of the second-layer neuron is described in detail in [13-5]. The procedure con-
sists in the following steps:

1. Vector b determination;
2. Formation of the decreasing sequence of |bi| values (i = 0,…, H1) and checking its

presence in the corresponding table. If it is absent, then the given logical function
is not realizable by one neuron, and the synthesis procedure is terminated;

3. If the sequence in the table is found, then the given logical function is realizable by one
neuron. The weighting coefficient vector a can be found in the following way. Write out
sequence |ai| related in the table to sequence |bi|. Then make the replacements and sign
changes of ai in the precise correspondence with those made in vector b for its canoni-
cal representation in the table. The obtained sequence of H1 + 1 elements ai = (i0,…, H1)
represents the weighting coefficients of the neural network second-layer neuron.

13.5
Learning Algorithm for Neurons of the Second and Third Layers
in the Three-Layer Neural Network

The training of the second and third layers in the three-layer neural network in the
case when the first layer is adjustable is equivalent to the independent learning prob-
lem for the two-layer neural network with binary input signals. This section deals with
two kinds of neural network design: design in the form of a threshold-disjunctive neural
network [13-5] and in the form of two neuron layers with adjustable coefficients.

The initial data in the case of the threshold-disjunctive neural network synthesis is
the completely defined logical function ε (y), and the synthesis is performed in the
following order:

1. Execution of the Kwine-McKlaski procedure over the ε (y) function until all its prime
implicants are obtained;

2. Find all common intersections (centers of gravity) of two or more prime implicants
and combine into wyes the prime implicants that have a common center of gravity;

3. Find characteristic vector of each wye, and check these wyes’ realizability using one
neuron (use any method described in the previous chapter);

291

4. Find all possible sub-wyes for each wye that cannot be realized using one neuron.
The sub-wye is defined as the wye subset that can be realized using one neuron and
that is not a subset of any other wye;

5. Add wyes and sub-wyes from p. 3, 4 to the list with prime implicants realizable by
one neuron and mark the sets covered by each record from this list;

6. Select the minimum number of records covering all the units of the logical function
ε (y). The linear threshold elements that realize these records constitute either the
first layer of the threshold-disjunctive network or the tandem network [13-5] equiva-
lent to this threshold-disjunctive network.

The method of the sub-wye search includes the following procedures:

1. Determine all the implicants that have the intersection with the center of gravity of
the considered wye;

2. These implicants together with the prime implicants are considered thereafter in all
possible combinations, their characteristic vectors are calculated, and then the test
on their one-neuron realizability is performed.

This method appears to be rather complex when the number of prime implicants is
large. One can use therefore another method for the sub-wye search:

1. If the wye that cannot be realized by one neuron consists of the prime implicants,
then one must consider all the groups of these prime implicants (G–1 implicants in
each group) and test each group on its one-neuron realizability;

2. If at least one of such groups is one-neuron realizable then this wye is two-neuron
realizable without its further partitioning;

3. If all the groups are not realizable by one neuron then the procedure must be re-
peated but with (G-2) prime implicants in each group;

4. The described process continues until all the prime implicants are spent. The ob-
tained one-neuron realizable groups are the desired sub-wyes.

The synthesis procedure in the case of a nonstrictly defined logical function ε (y)
consists of the following steps:

1. Extend a definition of the logical function ε (y) to all the variable sets where it takes
the arbitrary values;

2. Perform the process of the threshold-disjunctive network synthesis described above
for the case of a completely defined logical function until it is discovered that all the
wyes and sub-wyes are one-neuron realizable;

3. Compose the table of prime implicants with the number of rows equal to the num-
ber of wyes, sub-wyes and prime implicants obtained at the second step of the syn-
thesis procedure, and with the number of columns equal to the number of logical
function ε (y) sets. Thus, all the arbitrary values of ε (y) are taken equal to (–1);

4. The minimal table record set covering all the units of ε (y) is selected. At that point,
the definition extension of its arbitrary values is automatically performed. Then the
synthesis process is terminated.

13.5 · Learning Algorithm for Neurons of the Second and Third Layers in the Three-Layer Network

292 Chapter 13 · Synthesis of Multilayer Neural Networks with Flexible Structure

The design of two output neural network layers in the form of a neural network with
adjustable coefficients can be carried out on the basis of the following considerations.

The feature space in this case is binary, and the space dimensionality is equal to the
number of the first-layer neurons. Therefore, training of the second-layer neurons in the
three-layer neural network can be performed using any method described in Sects. 13.1
and 13.2. Then, after the second-layer neuron learning termination, the logical-tree struc-
ture of the third layer can be tested on its realizability by one third-layer neuron.

13.6
General Methods of the Multilayer Neural Network Successive Synthesis

The methods described above of successive adjustment of the three-layer neural network
can be generalized for the case of multilayer neural networks in the following way:

1. The first neuron layer of the multilayer neural network is adjusted by the initial samples.
The number of neurons and the values of adjustment coefficients are selected;

2. The one-neuron realizability of the obtained logical function is checked. In the
positive case, the network synthesis is terminated;

3. In the negative case, the second-layer neurons are trained according to p. 1. The
number of neurons and the values of adjustment coefficients are selected;

4. The one-neuron realizability of the obtained logical function is checked…, and so
on similar to p. 2.

It is simple to generalize this technique for the neural network with a solution con-
tinuum. Here, the number of first-class and second-class patterns is preserved at the
transfer from one layer to another. The multilayer neural network quality criterion is
not only the correct recognition probability at the neural network output but also the
function of this probability change during the transfer from one layer to another.

The results of the application of the described technique for the multilayer neural
network synthesis are the neural network layer number, the number of neurons in each
layer, and the adjustable coefficient values. It must be mentioned that the described
method of the multilayer neural network learning allows one to train any structure
considered in Chap. 9 instead of one neuron at each learning step.

The successive adjustment procedure can be simply generalized for the self-learn-
ing mode. The optimization criterion for the next hyperplane drawing in this case is
the criterion of the specific average risk function minimum.

13.7
Learning Method for the First-Layer Neurons of a Multilayer
Neural Network with a Feature Continuum

This section deals with the learning algorithm for the first-layer of a multilayer neural
network with a feature continuum and the ways of its physical realization. The pecu-
liarity of the learning process for the multilayer neural networks with a feature con-
tinuum emerges at the first-layer neuron training. The expressions for a(i)-functions
and coefficients a0 in the simplest case have the following form:

293

a(i) = m1(i) – m2(i)

If x1(i,n) and x2(i,n) are the sets of patterns of the first and second classes, then
functions m1(i) and m2(i) are

The implementation of functional transformations described above can be per-
formed using photographic methods in the case of two-dimensional i. The result of
learning in this case are photomasks realizing functions an(i) that model the light
flux x(i,n), see Chap. 4, and coefficients a0.

In the case of one-dimensional i, at the recognition of curves or electrical signals
inside a fixed observation interval, functions an(i)and coefficients a0 can be sufficiently
and simply obtained by analogous facilities.

The sequential learning technique for the neuron with a feature continuum remains
the same as in the case of the discrete feature set.

13.8
Application of the Adjustment Algorithm of the Multilayer
Neural Networks with Flexible Structure for the Problem
of Initial Condition Selection

Figure 13.17 shows the block diagram of the program realizing the process of sequen-
tial design for the piecewise linear divisional surface at the initial condition selection.

The idea of its application for the initial condition selection at the closed-cycle learn-
ing procedure of multilayer fixed structure neural networks is discussed below. The
fixed structure of the multilayer neural network imposes constraints upon the number
of neurons, at least in the first layer, and the algorithm can diverge. Therefore, the use
of statistical methods for the calculation of the error recognition probability is neces-
sary. However, this can be ignored at the initial condition selection procedure. There is
a possibility to improve the divisional surface position after the algorithm termination
by means of a sequential closed-cycle adjustment of each neuron with the learning
quality test for the whole piecewise linear surface. The closed-cycle adjustment must
be performed 2H1 times, i.e., 2H1× M iterations, where H1 is the number of the first-
layer neurons, and M is the sample length. It is useful to decrease the sub-sample size
up to some optimal value.

One of the methods to design such an optimal sub-sample is the deterministic se-
lection of K (or 2K, 3K, etc.) patterns each belonging to one of the K pattern classes. In
the case of the ultimate decrease of the sample size, one transfers to the deterministic
or random selection of initial conditions in dependence of respective presence or
absence of a priori information.

13.8 · Application of the Adjustment Algorithm of the Multilayer Neural Networks

294 Chapter 13 · Synthesis of Multilayer Neural Networks with Flexible Structure

13.9
About the Self-Learning Algorithm for Multilayer Neural Networks
with Flexible Structure

The described technique for the adjustment of multilayer neural networks with flex-
ible structure can be used to solve the problem of self-learning (clusterization) when
the random sample with multi-modal distribution without instruction for patterns
belonging to a particular class is present at the neural network input. Then the multi-
layer neural network is trained to recognize two pattern classes:

� The first class represents the initial sample;
� The second class represents an artificially generated random sample with the uni-

form probability distribution function in the range of feature variation. The feature
space dimension for the samples of the first and second classes are equal.

Literature

[13-1] Galushkin AI (1970) Multilayer pattern recognition systems. Moscow, MIEM
[13-2] Galushkin AI (1974) Synthesis of multilayer pattern recognition systems. Moscow, Energiya
[13-3] Gratchev LV, Simorov SN (1992) Statistical investigations of multilayer neural networks with.

Neurocomputer 2:5–8
[13-4] Gerasimova AV, Gratchev LV (1992) To the problem of the learning sample representativity for

the paradigm of the neural networks with flexible structure. Neurocomputer 3,4:3–6
[13-5] Dertuzos M (1967) Threshold logic. M, Mir, 343 p

Fig. 13.17.
Block diagram of the program
realizing the algorithm with
flexible structure

Chapter 14

14.1
Statement of the Informative Feature Selection Problem
in the Learning Mode

The problem of the informative feature selection is an independent problem in pat-
tern recognition theory, and it has not yet been solved up to now. The existence ap-
proaches to this solution and description of so-called structural methods based on
the multilayer neural network pattern recognition systems synthesis [14-1, 14-2] are
discussed in this book.

Three statements form the basis of the proposed method:

1. The usual idea about the possibility of a preliminary informative feature selection
before the stage of multilayer neural network adjustment is incorrect because the
trained multilayer neural network already presents, explicitly or implicitly, in any
known selection procedure;

2. Only the primary optimization criterion accepted for the given system can serve as
a criterion of feature informativity. Any other criteria usually introduce additional
errors and restrict their domain of applicability;

3. It is necessary to select multilayer neural networks of such types that are the most
objective in the informative feature selection procedure, i.e., that provide the op-
timal solution in the sufficiently wide variation range of the multilayer neural net-
work input signal characteristics (number of classes, distribution complexity in-
side the classes).

The problem of the informative feature selection was initially stated as the problem
of selection of N1 = const. features out of N initial features. These N1 selected features
are supposed to provide minimum recognition probability error. This problem state-
ment can be interpreted in another form: selection of minimum feature number N1

Informative Feature Selection in Multilayer Neural Networks

Fig. 14.1.
Selection of informative
features in the initial feature
space

296 Chapter 14 · Informative Feature Selection in Multilayer Neural Networks

providing a given probability of correct recognition. Let us determine in this case the
feature informativity criterion. Suppose that NN0, NN1 and NN2 (Neural Network) with
corresponding numbers of features N = N1 + N2, N1 and N2 (Fig. 14.1) provide the prob-
abilities of correct recognition P, P1 and P2. If P1 > P2 then the group of N1 features is
more informative than the group of N2 features. In this case, if the increment ∆P = P – P1
of the correct recognition probability is sufficiently enough to cover the expenses re-
lated to the system complexity increase due to the addition of N2 features, then the use
of the group of N2 features is useful.

Such a problem statement for the informative feature selection is used in a wide
range of practical tasks. For example, in some particular task of feature informativity
estimation; the analysis of correct recognition probability Pcorr can be performed for four
feature groups: (x1,…, xN), ((x1,…, xN) ∩ xi), ((x1,…, xN) ∩ xj), and ((x1,…, xN) ∩ (xi, xj)).
We considered that such a particular problem as the selection of N1

* features out of N
ones for the achievement of maximum correct recognition probability cannot be solved
without a solution in the statements described above.

In the particular case of a multilayer neural network with full connections, the
problem consists in the minimization of the number of threshold elements in each
layer. Further, the minimization criterion described above is also valid. Both aforemen-
tioned statements for the problem of informative feature selection are combined in the
general structural approach to the this problem when the first layer is considered to be
a priori organized in the form shown in Fig. 14.1.

Figure 14.2 shows the block diagram illustrating methods of informative feature
selection in connection with the considered above problem statements and informa-
tive feature selection criteria.

Fig. 14.2. Classification of methods for the informative feature selection

297

This block diagram represents only the main ways of the considered solution, and
it does not pretend to be complete, but it is only aimed at the introduction of the struc-
tural methods for the informative feature selection. The main development relates to
divergence, conditional entropy, and some of their simplified estimations. They also
include the approaches based on the component analysis and analysis of variance.

The main goal of the present chapter is the consideration of structural methods for
the informative feature selection. They are based on the feature informativity estima-
tion by the results of the multilayer neural network adjustment. At the solution of the
adjusted multilayer neural network structure minimization, the minimization method
depends on the adjustment method.

14.2
About Structural Methods for the Informative Feature Selection
in the Multilayer Neural Networks with Fixed Structure

The structural methods of the informative feature selection are based on the initial
feature space informativity estimation by parameters and structure of the optimally
adjusted multilayer neural network. This section illustrates the structural methods for
the informativity estimation in the example of a neuron.

Let us consider the multilayer neural networks of one neuron type or a neuron with
a layer of nonlinear or random-nonlinear transformations (Chap. 1 and 2). The mul-
tilayer neural network in the form of one neuron is optimal for the pattern assem-
blages with normal multidimensional distribution laws and equal covariance matrices.
In the case of the unit (to an accuracy of constant multiplier) covariance matrices, the
level of class intersection by each of the features is determined by the corresponding
inclination of the optimal linear divisional surface (Fig. 14.3).

The circles in Fig. 14.3 indicate the isolines of the densities f1(x) and f2(x). If the
main feature informativity criterion is the correct recognition probability as it was
considered above, then it is easy to show that the i-th coefficient of the optimal divi-
sional surface can serve as the relative estimation of the i-th feature informativity.

Fig. 14.3.
The proof of the possibility to
use the neuron coefficients as
the feature informativity esti-
mations

14.2 · About Structural Methods for the Informative Feature Selection in the Multilayer Networks

298 Chapter 14 · Informative Feature Selection in Multilayer Neural Networks

The coefficients of the optimal neuron can also serve as the estimation of the fea-
ture informativity in the case of abnormal distributions. But it can be done only on the
level of such an open-loop structure as a neuron. In the case of abnormal distributions
and a nonlinear multilayer neural network, the neuron coefficients in the optimal
nonlinear network represent the complex feature informativity estimations determined
by the nonlinear transformation layer. A similar conclusion can be made for the three-
layer Rosenblatt perceptron.

The structure minimization at the multilayer fixed structure neural network adjust-
ment algorithm and the set of adjustment stages with random selection of initial con-
ditions represent a separate problem. It includes the necessity to average the results of
the adjustment procedure across the set of random initial condition injections. These
injections are required for the local optimal adjustable coefficient search. The com-
parison of the minimized structures and the local optimal average risk function pro-
vides a direct rule for minimization of the number of neurons in the fixed structure
multilayer neural network adjusted by the closed cycle.

It is necessary to consider distinctly the problem of minimization of the neuron
number in the independent learning procedure for each neuron with the random ini-
tial condition selection separate for each neuron. After the independent training ter-
mination for H1 neurons of the first layer, and, as a result, search of the local optimi-
zation functional extremum, the problem of selection by the adjustment results for one
of the H1 neurons that provides the optimization functional extremum value becomes
trivial. The problem of selection of H1

0 < H1 neurons that provide the optimization
functional extremum is rather complicated and maybe unsolvable in such a statement.
This is illustrated by the example shown in Fig. 14.4. Here the error probability value
is indicated in percents for each threshold selection. The numeric characters near the
arrows indicate the class number.

Fig. 14.4.
Example of minimization of
the first-layer neuron number
in the multilayer neural net-
work: 1 – the first class;
2 – the second class

299

This approach reveals its limitations in its generalization for the case of unknown
and complicated form of distribution f ′(x/ε). However, this limitation is completely
explained taking into account the impossibility to select the informative features be-
fore the adjustment stage termination. Figure 14.5 illustrates this property in the par-
ticular example. The isolines of f ′(x/ε) in the multi-modal case and four positions of
the piecewise linear divisional surface providing the local extremum Pcorr are shown
here. Consequently, any informativity estimation at the fixed structure of the open-loop
multilayer neural network is not only subjective but is also local because the adjusted
multilayer neural network with fixed structure provides only a local optimization func-
tional extremum. These arguments are also valid in the case of the self-learning mode.

14.3
Selection of the Initial Space Informative Features Using Multilayer Neural
Networks with Sequential Algorithms of the First-Layer Neuron Adjustment

The main problem consists in the possibility to estimate the relative value of the cor-
rect recognition probability by the trained neural network structure form and the results
of learning. Two feature groups are compared. Several methods of feature informativity
can be proposed.

1. Let us assume that the given value of Pcorr = const. is provided (in particular, Pcorr = 1)
using multilayer neural networks with sequential learning algorithms of the first-
layer neurons and some finite learning sample. Then, if the first neural network
with characteristics N1, P1corr has a higher number of neurons than the second neu-
ral network with characteristics N2, P2corr = P1corr,then the group with N1 features is
less informative as compared with the group of N2 features. This method of estima-
tion is valid only under some conditions described below.

2. Let us assume that the minimal recognition error is provided at each step of the first
layer learning procedure. The learning results are represented in Fig. 14.6a by the
curves of Pcorr vs. the number of the first-layer neurons H1 on the feature samples
N1 (NN1) and N2 (NN2). It is seen that feature group N1 is less informative than N2.
This method includes that which is described in p. 1 as its particular case.

Fig. 14.5.
Illustration of the local
optimality property of the
informative feature selection
procedure: 1 – the first class;
2 – the second class

14.3 · Selection of the Initial Space Informative Features

300 Chapter 14 · Informative Feature Selection in Multilayer Neural Networks

3. Dependence Pcorr(H1) has the form shown in Fig. 14.6b when the learning sample is
sufficiently large. The curve Pcorr(H1) is close to its asymptote. This means the trans-
fer from the statistical mode to the deterministic one. The informativity estimation
is reduced to the comparison of the steady values of Pcorr(H1).

4. Fig. 14.6b,c shows the general case of a non-optimal adjustment algorithm for the
first-layer of neurons of the multilayer neural network. The informativity estima-
tion in this case is performed either according to p. 3 or at any H1 but with the re-
mark that this estimation is valid for the given adjustment algorithm and the given
number of the first-layer neurons.

5. It was assumed above that the learning sample is the same as the initial sample. In
order to take into account the case when the representation of the learning sample
in the initial sample is smaller, one must perform the learning procedure on some
part ∆Mi of the initial sample. The recognition by the trained multilayer neural
network is carried out on the full sample. The analysis of the learning Plearn(H1, ∆Mi)
and recognition Precogn(H1) results that are illustrated by Fig. 14.6d allow one to es-
timate the stationary properties and representativity of the learning sample, as well
as informativity of different feature groups.

14.4
Neuron Number Minimization

The adjustment sequence process for the first-layer neurons of the multilayer neural
network (Chap. 13) is described by the graph in the form of the logical tree. Each top
of the tree corresponds to a neuron and an increment Pcorr that takes place after the

Fig. 14.6. Selection of informative features using a multilayer neural network with flexible structure

301

introduction of this neuron. Such a graph represents the initial information for the
aforementioned minimization procedure. This graph can be minimized according to
one of the following statements: to minimize the number of tops under the given Pcorr,
or to provide maximal Pcorr under the given number of tops.

Figure 14.7 represents an illustration of the initial information for the graph mini-
mization. The top number of the initial graph is indicated at the left part of the circle.
The top number of the resultant minimized graph is indicated at the right part of the
circle. The number of each graph rib coincides with the number of the divided region
(Chap. 13). The sub-region containing the maximum number of vectors of the first and
second classes is selected for the next division. The dashed lines correspond to the sub-
regions with a relatively small number of vectors. The corresponding increment Pcorr
(either positive or negative) is written near each graph top in the square brackets. The
logical tree optimization is performed in the following way:

1. The increments Pcorr are compared in the case of the first branching (neurons 3 and
8 in the initial graph). The neuron with maximum Pcorr is selected for the optimized
graph (neuron 3 in this case);

2. Then the neurons of the given and the next branchings are compared by ∆Pcorr (neu-
rons 8 and 4) and again the neuron with maximum Pcorr is included into the opti-
mized graph;

3. The process continues until the sum of correct recognition probability achieves some
given value Pcorr or the number of tops achieves some given value.

The described procedure results in the optimal tree traversal as it is shown in Fig. 14.7a
in the circles (tops) from the right. Figure 14.7b presents the result of optimization of the
graph in Fig. 14.7a for two criteria: Pcorr > 0.7 and Pcorr > 0.73. The course of tree traversal
in the optimal graphic design does not coincide with that on the learning stage.

Fig. 14.7. Minimization of the first-layer neurons of a multilayer neural network with flexible structure

14.4 · Neuron Number Minimization

302 Chapter 14 · Informative Feature Selection in Multilayer Neural Networks

The idea of the use of sequential algorithms for the second-layer neuron learning
consists in the use of sequential algorithms for each learning vector with consideration
of the weight determined by the Perr in the sub-region corresponding to this vector.
The principle of the number minimization for the second-layer neurons as well as for
the neurons of the following layers is the same in this case as for the first-layer neurons.
Notice that the significance of the neuron number minimization decreases with the
increase of the layer number due to the specific properties of the open-loop multilayer
neural network structure (decrease of the neuron number due to the data compression
from the first layer to the output).

14.5
About the Informative Feature Selection for Multilayer Neural Networks
in the Self-Learning Mode

All the problem statements for the informative feature selection described in Sect. 14.1
are valid in the self-learning mode. Only the informative feature selection criterion is
modified. In the learning mode, such a criterion is the value of the average risk func-
tion (in particular, the correct recognition probability) whereas in the self-learning
mode this criterion is the value of the special average risk function. The methods of
the informative feature selection described in Sect. 14.3 concerning the learning mode
and recognition systems with flexible structure, as well as concerning corresponding
methods of the network structure minimization can be methodologically generalized
in a relatively simple manner for the case of the self-learning mode. The structure
minimization for the recognition system with fixed structure must be performed by
means of the analysis of the adjusted multilayer neural network structure as well as
the analysis of the obtained value of the special average risk function.

Literature

[14-1] Galushkin AI (1974) Synthesis of multilayer pattern recognition systems. Moscow, Energiya, p 367
[14-2] Galushkin AI (1996) Summary and perspectives of the multilayer neural network theory de-

velopment (1965–1995) in the proceedings of the Neurocomputer scientific center. Moscow

Neural Network Reliability
and Diagnostics*

Chapter 15 Neural Network Reliability

Chapter 16 Neural Network Diagnostics

Part IV

* This part is written in collaboration with Fomin Yu. I.

Chapter 15

15.1
Methods for the Neural Network Functional Reliability Investigation

The first attempts to estimate the neural network functional reliability were experi-
mental [15-1] or qualitative [15-2]. The qualitative estimations showed that the neu-
ron-like elements are characterized by the logical redundancy [15-2, 15-3], i.e., the
failures of some elements do not result in the errors at the neural network output.

The attempts of the analytical neural network reliability investigation face math-
ematical difficulties. Some works [15-4 to 15-6] claim the impossibility of the full
analytical neural network investigation. Several particular neural networks were con-
sidered in these studies and analyzed on the basis of the Markovian process theory by
means of graphic design. The disadvantage of such an approach is related to the pres-
ence of the system of differential equations that is very complicated for the explicit
solution even in the case of the simplest graphs.

The work [15-7] deals with the neural network reliability in the sense of its logical
stability. The logical stability is investigated with the help of stability maps that can be
written in the explicit form only for the simplest neural networks such as the threshold
element triplet. This approach cannot be used in practice.

In the study [15-7], some empirical expressions for the specific neural networks
with several constraints on their complexity were derived. But the calculations per-
formed according to these expressions cannot simulate the objective estimation of the
reliability functional for the considered threshold element networks.

The attempt to investigate the reliability of one neuron taking into account that its
weighting coefficients and input values are random is performed in [15-9 to 15-12].
The authors failed to obtain an analytical result even in the simplest considered case.
These studies are characterized by several disadvantages: all the analytical calculations
were based on the experimental data and extrapolated neuron probabilistic relay func-
tion (PRF); some intermediate results, for example, the PRF mathematical expectation
in [15-7], were obtained by means of additional simplifications because of their math-
ematical complexity; the final expression can be integrated only using numerical
methods. However, we consider this investigation as the most successful analytical
investigation of the neuron reliability because it takes into account the neuron func-
tional structure and the probabilistic model of its functioning.

Thus, one can conclude that analytical investigation of the multilayer neural net-
work reliability must be based on the principally new approach, or this reliability must
be studied experimentally by means of Monte Carlo methods.

Neural Network Reliability

306 Chapter 15 · Neural Network Reliability

The reliability of the so-called generalized threshold element is analytically inves-
tigated in [15-13]. The originality of such an approach relates to the fact that any combi-
national network of neurons (multilayer neural network with sequential or cross [15-14]
connection) can be realized in the form of a neuron layer. Since the functional reliabil-
ity of the neuron layer can sometimes be reduced to the reliability of one neuron, then
the analysis investigation in this case is principally significant.

The experimental investigation of reliability can be performed on three levels: cir-
cuit, functional, and logical. Functional and logical levels are considered in [15-4, 15-5].
The neuron failures are usually divided [15-15] into two classes: parametrical and
catastrophic failures. The parametrical failures are caused by the gradual changes of
weighting coefficients and threshold under the influence of the external factors (sup-
ply voltage or temperature changes, components aging, etc.). The catastrophic failures
are caused by disconnection faults or short-circuit failures.

Experimental methods of the parametrical failure investigation are based on the
assumption that the weighting coefficients and thresholds of all the neurons are the
random values with normal probability distributions. The distribution parameters are
considered to be known and to be modeled by the Monte Carlo method. Such an in-
vestigation technique allows one not only to analyze a wide class of multilayer neural
networks and make resumptive conclusions, but also to estimate the parametrical re-
liability of particular implementations.

It is clear that the multilayer neural network’s functional reliability investigation is
not complete without catastrophic failure analysis. A special technique for such analy-
sis was developed and used to study failures of the logical constant type at the neuron
input-output (input-output stuck-at faults). The analysis is based on the successive
modeling of stuck-at faults of all types for each neuron and the following calculation
of the failure-free performance probability. Such an approach allows one to reveal “poten-
tially dangerous” failures that result in the drastic decrease of the failure-free performance
as compared with the other failures. The obtained results can be used for eliminating the
possibility of “potentially dangerous” failures in the design planning stage.

The developed experimental technique for reliability investigations allows one to
obtain some quantitative characteristics of multilayer neural network reliability and
provides the practical possibility to perform reliability investigations of concrete neu-
ral network implementations.

15.2
Investigation of Functional Reliability of Restoring Organs
Implemented in the Form of Multilayer Neural Networks

The problem of reliability of digital devices implemented on any basis and particu-
larly on the basis of multilayer neural networks is of great interest at this time due to
the complication of computers and functions performed on their base. This problem
is of special significance for computers functioning in a nonrestorable mode (for ex-
ample, on-board computers), i.e., without access to reparation performance.

After the foundational work of von Neumann [15-16], the synthesis of reliable digi-
tal devices made of unreliable elements was investigated by different researchers. The
works [15-17 to 15-21] must be specially mentioned in this connection. The proposed

307

methods are based on the introduction of some logical redundancy into the digital
device construction. The redundancy can be classified [15-22] as hardware (structural,
[15-23]), temporal and informational. Such a classification is conditional because the
redundancy of any of these types is usually accompanied by redundancies of other
types. The classification represented in Fig. 15.1 is carried out according to the redun-
dancy properties to increase the system reliability.

The hardware redundancy can be used at any functional level beginning from com-
ponents up to the whole system. Three types of hardware redundancy can be imple-
mented according to the activity of the main and redundant components [15-24]: static
[15-25], dynamic [15-4], and hybrid [15-2, 15-26, 15-27].

In the case of static redundancy, all the components, main and redundant, are func-
tioning. Overcoming the failure effects is performed automatically by the error correc-
tion at the expense of redundancy in the system components.

In the case of dynamic redundancy, the redundant devices start functioning only under
the requirement to substitute the failure units. This redundancy provides the system self-
restoration. It requires the use of testing and diagnostic methods for failure detection.

The hybrid redundancy is the combination of static and dynamic redundancies.
Some duplicated devices are permanently functioning. The failure of one of them re-
sults in its substitution by the redundant device.

The following main peculiarities of the static redundancy are usually distinguished:

� Error correction without interruption of functioning;
� Correction of errors that occurs as a result of permanent failures as well as short-

duration failures;
� Significant increase of the failure-free performance probability of the low-reliable

devices at the expense of the low redundancy level;
� Significant advantages of the static redundancy are the universality and the absence of

necessity to develop special software for detection, localization and correction of errors.

Fig. 15.1. Classification of methods for redundancy introduction

15.2 · Investigation of Functional Reliability of Restoring Organs

308 Chapter 15 · Neural Network Reliability

The scheme of the majority redundancy [15-17, 15-28] is often used for the static
redundancy design. It implies the n-fold duplication of components or units, and the
outputs of backup units are loaded by the restoring organ [15-17, 15-29]. The restoring
organ realizes the following decision rule in the case of majority voting: its output is
equal to the value that is accepted by the majority of the restoring organ inputs.

The dependence of the restoring organ free-failure functioning probability upon
the type of decision rule is investigated. Different restoring organ schemes implemented
in the form of multilayer neural networks are considered. Accessible regions of param-
eter variation for the restoration of organ optimal functioning are discussed.

15.3
Investigation of Multilayer Neural Network’s Functional Reliability

Methods of investigation of multilayer neural network’s functional reliability can be
classified as analytical and experimental ones. Analytical investigation at the level of
the neuron deals with mathematical complexity. Consequently, the main attention is
paid to the experimental investigation of multilayer neural network reliability (see Sect. 15.4
below). The main results described below are represented in [15-30, 15-33 to 15-36].

The multilayer neural network class with binary inputs is considered. The investigation
of multilayer neural network’s functional reliability is based on the following settings:

a Functional reliability criterion;
b Probabilistic model of the neural network functioning;
c Set of the input values.

The correct multilayer neural network functioning probability and the output signal
probability distribution function are considered below as a functional reliability criterion.

The probabilistic model of the neural network functioning depends on the physical
essence of the considered failure types (parametrical, catastrophic). For example, in
Sect. 15.4, parametric failures are considered, and the weighting coefficients and thresh-
olds of all the neural network elements are assumed to be random.

It is useful to divide the experimental investigation into several stages according to
the number of neuron failure classes. The neuron failures are usually divided into two
classes [15-15, 15-37]: parametric and catastrophic ones. The experimental investiga-
tion is therefore divided into two stages: the investigation of reliability for parametrical
failures (parametrical reliability) and the investigation of catastrophic failures (cata-
strophic reliability).

The experimental technique was developed for the class of neural networks with se-
quential connections. It allows one to analyze the neural networks with an arbitrary num-
ber of inputs, arbitrary number of neurons in the layers, and arbitrary number of layers.

The parametrical failures of neurons [15-15] include the errors at the neuron outputs
caused by the gradual changes of weighting coefficients and threshold under the influ-
ence of the external physical factors: temperature changes, supply voltage changes, etc.

Experimental methods of the parametrical failure investigation using the Monte
Carlo method include the normal probability distribution modeling for weighting
coefficients and thresholds.

309

The catastrophic failures include the failures caused by disconnection faults or short-
circuit failures. The failures of such a type can be reduced to the failures of the logical
constant type (const. = 0 and const. = 1) at the neuron input-output [15-37]. It is as-
sumed that the neuron failures are random, independent, and equally probable. The
deterministic choice of the failure type and the number of the failure neuron is per-
formed at the catastrophic reliability investigation. The considered approach allows
one to reveal “potentially dangerous” failures that result in the drastic decrease (with
respect to some a priori given value) of the failure-free performance.

The obtained concrete values of the correct recognition probabilities can be used
for eliminating the possibility of “potentially dangerous” failures in the design plan-
ning stage. The advantage of the developed experimental technique for reliability in-
vestigations consists in the fact that it allows one not only to analyze a wide class of
multilayer neural networks and to make resumptive conclusions, but also to estimate
the reliability of particular implementations.

15.4
Investigation of the Neural Network’s Parametrical Reliability

Several logical function implementations and two- and three- layer neural networks
with a different number of neurons in the first layer were considered in the investiga-
tion of the neural network’s parametrical reliability. The following objectives were
pursued in the experimental study:

1. To analyze parametrical reliability, i.e., the correct probability dependence on
variance D[a] of the weighting coefficients and thresholds, at different fixed shifts
of mathematical expectation –∆a for different one-neuron realizations of some logi-
cal function; to find an optimal realization on the base of this analysis;

2. To analyze the change of correct recognition probability with the change of vari-
ance of the weighting coefficients and thresholds with dependence on:

a The increase of the first-layer neurons in the two-layer neural networks;
b The increase of the first-layer neurons in the three-layer neural networks;
c Transfer from the two-layer to the three-layer neural network realizing the same

logical function and fixed number of the first-layer neurons;
d Transfer from the two-layer to the three-layer neural network with the same total

number of neurons.

The stages of the performed investigations are described below.

Stage 1. The optimal realization selection by the maximum parametrical reliability
criterion is shown in the example of three different majority votes. Each neuron real-
izes some hyperplane crossing a unit N-dimensional hypercube (N is the number of
neuron inputs) and separating two vertex classes: (1) vertexes with the unit compo-
nent number less than N/2 and (2) vertexes with the unit component number more
than N/2 (the zero component number is less than N/2). Let us choose a neuron with
unit weighting coefficients out of all of the neuron set realizing the majority decision

15.4 · Investigation of the Neural Network’s Parametrical Reliability

310 Chapter 15 · Neural Network Reliability

rule. Their corresponding hyperplanes are parallel and cross the coordinate axes un-
der 45°. The majority element that determines the majority rule is usually chosen in
this case, and it satisfies the following equation:

(15.1)

where xi ∈ {0,1} are the input values and a0 = (N – 1)/2 is the threshold of the majority
element

(15.2)

This realization is the limiting case for the threshold decrease because (15.2) is not
valid at

where ε is an indefinitely small value. The hyperplane corresponding to the majority
element for the case n = 3 is shown in Fig. 15.2.

Here and below, the criss-crosses indicate the input and intermediate values corre-
sponding to the unit output, and the circles indicate the values corresponding to the
zero output. A realization limiting the threshold increase of the considered family of
neurons is a neuron with the threshold (N + 1)/2 described by the expressions (15.1)
and (15.2).

Figure 15.3 shows a hyperplane corresponding to such a realization for N = 3.
Therefore, let us investigate neurons with unit weights and thresholds from the

interval [(N – 1)/2, (N + 1)/2]. Three neurons with the thresholds (N – 1)/2, (N + 1)/2,
and N/2 were taken for the experimental study.

Fig. 15.2. Hyperplane realized by the majority el-
ement in the space of inputs (a'0 = (N – 1)/2)

Fig. 15.3. Hyperplane realized by the neuron with
unit weights and the threshold (N + 1)/2 in the
space of inputs

311

Since the change of the weighting coefficient mathematical expectation shift –∆a
indicates some hyperplane shift and rotation, then the investigation of the three afore-
mentioned realizations for different ∆a results in the determination of the optimal
realization for the arbitrary ∆a. The experiment was performed for three values of the
mathematical expectation shifts: ∆a = 0.15; 0.0; –0.15. The average experimental curves
are represented in Fig. 15.4a–c.

Fig. 15.4.
Average curves for correct
recognition probability de-
pendence upon the variance
of weighting coefficients in
the case of three realizations
of one neuron: a ∆a = 0;
b ∆a = 0.15; c ∆a = –0.15

15.4 · Investigation of the Neural Network’s Parametrical Reliability

312 Chapter 15 · Neural Network Reliability

Variance D[a] is measured in the same units as for the weighting coefficients. It is
seen that the correct recognition probability decreases in general with the variance
increase. In Fig. 15.4a, at ∆a = 0, the optimal realization is the realization of the neuron
with the threshold a0 = 1.5. In Fig. 15.4b, at ∆a = 0.15, the optimal realization is the
realization of the neuron with the threshold a0 = 2. In Fig. 15.4c, at ∆a = –0.15, the
optimal realization is the realization of the neuron with the threshold a0 = 1.0. The
averaging of all corresponding correct recognition probability values across realiza-
tions for three values of ∆a shows that the neuron with the threshold a0 = 1.5 repre-
sents an optimal realization for arbitrary ∆a. Thus, one can make a general conclusion
for the case of the optimal neuron with the threshold a0 = N/2, and, consequently, with
the thresholds (N – 1)/2 at ∆a > 0 and (N + 1)/2 at ∆a < 0.

The value ∆a for the real neurons can be either positive or negative. The optimal neu-
ron realization in this case corresponds to the hyperplane equidistant from the symmetri-
cal points of both classes, i.e., the hyperplane drawn through the middles of the corre-
sponding hypercube ribs. This hyperplane position for N = 3 is represented in Fig. 15.5.

The following conclusion can be made on the basis of the obtained results. Each
hyperplane must be drawn through the middles of the corresponding hypercube ribs
at the multilayer neural network synthesis on the binary input signal set. Then the
neurons and the neural network possess maximal parametrical reliability with respect
to all other possible realizations. Only such optimal neural networks with optimal
neurons are considered at all the following stages.

Stage 2. Let us consider six different neural networks with two,three,…,seven neu-
rons in the first layer. All the neurons realize the optimal hyperplanes according to the
results obtained at stage 1.

Figure 15.6 shows one of such realizations (two-layer neural network with H1 = 2
neurons in the first layer), where xi

j is the output value of i-th neuron of j-th layer. The
experimental curves for the correct recognition dependence on the variance at ∆a = 0
are represented in Fig. 15.7a,b (curves for H1 = 2,4,6 and H1 = 3,5,7 are displayed in
different figures for clarity).

The obtained results show that the parametrical reliability is constant when H1 in-
creases and variance is small: 0 ≤ D[a] ≤ D*[a] (D*[a] ≅ 0.6). The probability increases
with the increase of H1 in the case D*[a] ≤ D[a] ≤ 2. This probability increase is espe-
cially stressed at H1 = 6.7. Consequently, one can make a conclusion that two-layer neural

Fig. 15.5.
Hyperplane realized by the
optimal neuron

313

networks are characterized by the improvement of the correct recognition probability
dependence upon the variance (the increase of the parametrical reliability) with the
increase of H1.

Fig. 15.6. Hyperplanes realized by the neurons of the two-layer neural network

Fig. 15.7.
Average curves for correct
recognition probability depen-
dence upon the variance of
weighting coefficients in the
case of two-layer neural net-
works with a different number
of neurons in the first layer

15.4 · Investigation of the Neural Network’s Parametrical Reliability

314 Chapter 15 · Neural Network Reliability

Stage 3. Let us consider five different neural networks with three, four,…, seven neu-
rons in the first layer, two neurons in the second layer, and one neuron in the third
layer. All the neurons realize optimal hyperplanes. The parametrical reliability curves
for H1 = 3,5,7 are represented in Fig. 15.8.

On the basis of the obtained curve analysis, one can make a conclusion similar to
that made at stage 2: three-layer neural networks are characterized by the increase of
the parametrical reliability with the increase of H1.

Stage 4. This investigation stage deals with the problem concerning the change of
parametrical reliability at the transfer from the two-layer neural network to the three-
layer neural network that realizes the same logical function under the fixed value of H1.
The previously obtained results at stages 2 and 3 can be used in this case. The corre-
sponding comparative characteristics for two- and three- layer neural networks with
H1 = 3, 5, 7 are represented in Figs. 15.9–15.11.

It is seen that the transfer from the two-layer neural network to the three-layer neural
network results in the decrease of the parametrical reliability. For demonstrativeness,
in addition to the aforementioned curves, the curve for one neuron realizing the same
logical function is represented in Fig. 15.9. One can make a conclusion that the in-
crease of the number of layers results in the decrease of parametrical reliability.

Fig. 15.8.
Average curves for correct
recognition probability depen-
dence upon the variance of
weighting coefficients in the
case of three-layer neural net-
works with a different number
of neurons in the first layer

Fig. 15.9.
Average curves for correct
recognition probability depen-
dence upon the variance of
weighting coefficients in the
case of two- and three- layer
neural networks realizing the
same logical function

315

Stage 5. Let us consider all possible two- and three-layer neural networks from the assem-
blage that was described above. The total number of neurons in these neural networks is
assumed to be equal. There are only three such pairs: with six neurons (3 + 2 + 1 and
5 + 1), seven neurons (4 + 2 + 1 and 6 + 1), and eight neurons (5 + 2 + 1 and 7 + 1). The
corresponding curves are represented in Fig. 15.12a–c. One can conclude that the two-
layer neural network possesses the highest parametrical reliability.

The performed experiments allow one to make the following conclusions:

1. The correct recognition probability decreases with the increase of variance of the
weighting coefficients and threshold at the fixed mathematical expectation shift;

2. The neuron possesses maximal parametrical reliability when the hyperplane real-
ized by this neuron is drawn through the middles of the corresponding hypercube
ribs;

3. Neural network parametrical reliability increases with the increase of the number
of neurons in the first layer in the case of both two- and three-layer neural net-
works;

4. The transfer from the two-layer neural network to the three-layer neural network
realizing the same logical function with the same number of neurons in the first
layer results in the decrease of the parametrical reliability;

Fig. 15.10.
Average curves for correct
recognition probability depen-
dence upon the variance of
weighting coefficients in the
case of two- and three- layer
neural networks with the same
number of neurons in the first
layer (H1 = 5)

Fig. 15.11.
Average curves for correct
recognition probability depen-
dence upon the variance of
weighting coefficients in the
case of two- and three- layer
neural networks with the same
number of neurons in the first
layer (H1 = 7)

15.4 · Investigation of the Neural Network’s Parametrical Reliability

316 Chapter 15 · Neural Network Reliability

5. The comparison between two- and three-layer neural networks with the same total
(across all the layers) number of neurons shows that the two-layer neural network
possesses higher parametrical reliability.

The following plan of experiment can be performed in addition to that described
above in the case of a sufficiently large number of the required multilayer neural net-
work realizations.

Fig. 15.12.
Average curves for correct
recognition probability de-
pendence upon the variance
of weighting coefficients in
the case of two- and three-
layer neural networks with the
same total number of neurons:
a H1 = 6; b H1 = 7; c H1 = 8

317

To investigate the dependence of the neural network parametrical reliability upon

1. The number of layers at the fixed values of H1, H2,…;
2. Dimensionality of the input signal of the neural network H1, W;
3. The number of neurons at the fixed number of the neural network inputs.

15.5
Investigation of the Multilayer Neural Network’s Functional Reliability
in the Case of Catastrophic Failures

The experimental methods for investigation of the multilayer neural network func-
tional reliability in the case of catastrophic failures consist in the successive modeling
of the single-fold failures of the logical constant type at the neuron inputs and outputs
and calculation of the correct recognition probability value for each failure.

15.5 · Investigation of the Multilayer Neural Network’s Functional Reliability

318 Chapter 15 · Neural Network Reliability

Let us describe the process of the “potentially dangerous” failure search on the basis
of the network catastrophic reliability investigation and methods of the network logi-
cal redundancy determination.

The results of the investigation are represented in Table 15.1. They indicate that on
the failure class of the logical constant type at the neuron’s input-output, under the
failure equal probability, the analyzed network possesses the logical redundancy coef-
ficient of 6/46, i.e., at six failures out of 46 possible ones, the correct recognition prob-
ability amounts to 1. One can also select “potentially dangerous” failures taking the
minimum acceptable value of the correct recognition probability. Let it be equal to
0.75. Then only eleven “potentially dangerous” failures having the correct recognition
probability of 0.375 exist. For example, const. = 1 at the output 1 of the first layer neu-
rons; const. = 1 at the input 1 of the second layer neurons, etc.

Thus, the experimental study of the neural network catastrophic reliability allows
one to take into account and to use the logical redundancy for eliminating the possi-
bility of “potentially dangerous” failures. This can significantly increase the reliability
of the designed logical devices.

Literature

[15-1] Coates CL, Lewis PM (1964) DONUT-a threshold gate computer. IEEE Trans. ELEMENT. Comp.;
No. 3, vol. EC-13

[15-2] Abbakumov IS, Chernyshv NA (1979) Majority redundancy systems with readjustable struc-
ture. Automatics and computer facilities 3:31–36

[15-3] Blyum M, Onesto M, Verbik L (1966) Acceptable neuron errors for neural network failure-free
performance. In: Methods of redundancy introduction for computer systems. Pougatchev VS
(ed) – Moscow: Sov. Radio, p 84–87

[15-4] Potapov VI, Palyanov IA (1972) To the functional reliability estimation of the redundancy re-
adjustable homogeneous computer structure. In: Computer facilities in the in the systems of
flight vehicle control, part II, vyp. 23, Moscow

[15-5] Potapov VI (1977) Analysis and synthesis of highly reliable digital and computer threshold
unit logical structures. Novosibirsk, p 80

[15-6] Potapov VI (1968) Functional reliability of the formal neuron networks. Automatics and com-
puter facilities 1:37–43

[15-7] Maitra KK (1966) Reliable automats synthesis and neuron circuit stability. Bionics, parts II and
III. Kiev: KVIITRU, p 37–43

[15-8] Lopin VN (1975) About reliability of the controlled threshold element network under con-
straints upon its complexity. In: Adaptive control systems. Kiev, p 91–97

[15-9] Serapinas KL, Jukauskas KP (1969) Threshold element reliability (1. Probabilistic estimation
of the relay part of the threshold element). Trudy AN LitCCP, ser. B, 2(57):159–162

[15-10] Jukauskas KP, Serapinas KL (1969) Threshold element reliability (2. External noise influence.)
Trudy AN LitCCP, ser. B, 4(59):213–216

[15-11] Jukauskas KP, Serapinas KL (1970) Threshold element reliability (3. Generalized VRF for the
group of threshold elements). Trudy AN LitCCP, ser. B, 3(62):153–157

[15-12] Jukauskas KP, Serapinas KL (1971) Threshold element reliability (5. Determination of the average
threshold element error taking into account the input signals and weighting coefficient pa-
rameter spread). Trudy AN LitCCP, ser. B, 1(64):231–236

[15-13] Gill A. (1974) Linear sequential machines. Moscow: Mir, p. 287
[15-14] Galushkin AI (1974) Synthesis of multilayer pattern recognition systems. Moscow: Energiya, 367 p
[15-15] Palianov IA, Potapov VI (1977) Failure diagnostics and synthesis of digital structures based on

the threshold logical units. Novosibirsk, p 78

319

[15-16] Neumann J (1955) Probabilistic logic and synthesis of reliable organisms on the basis of un-
reliable components. In: Automats, Moscow: Foreign litr., p 68–138

[15-17] Pirs W (1968) Design of reliable computers. Moscow: Mir, p 270
[15-18] Mour E, Shennon K (1960) Reliable schemes of unreliable relays. In: Cybernetics collection.

Moscow: Foreign litr., vyp. 1, p 109–149
[15-19] Trayon J (1966) Quadruplicate logic. In: Methods of redundancy introduction for computer

systems. Moscow: Sov. Radio
[15-20] Elias P (1958) IBM Journal of research and development, No. 3, 1958, posterior probability,

pp 346–353
[15-21] Winograd S, Cowan JD (1963) Reliable computation in the presence of noise, M.I.T. Press,

Cambridge, Mass.
[15-22] Zrelova TI (1978) Review of methods for computer system reliability improvement. In: Com-

puters and readjustable structure systems. Ser. Cybernetics problems, p 152–163
[15-23] Malev VA (1978) Structure redundancy in the logical devices. Moscow: Sviaz, p 192
[15-24] Bennets RG (1978) Designing reliable computer systems. The fault-tolerant approach-I. Elec-

tron and Power, posterior probability, pp 846–851
[15-25] Chernyshov Yu A, Abbakoumov IS (1979) Computing and design of computer devices with

passive reservation. Moscow: Energiya, p 119
[15-26] Mathur FP, de Sousa PT (1975) Reliability modeling and analysis of general modular redun-

dant systems. IEEE Trans. Reliability, vol. R-24, posterior probability, p 296–299
[15-27] Mathur FP, Avizienis A (1970) Reliability analysis and architecture of a highly redundant digi-

tal system. Generalized triple modular redundancy with self repair. Proc. SJCC, vol. 26, poste-
rior probability, p 375–383

[15-28] Pakoulev NI, Ukhanov VM, Chernyshov PN (1974) Majority principle of design of units and
devices of digital computers. Moscow: Sov. Radio, p. 183

[15-29] Losev VV (1971) Restoring organs on the basis of majority elements. Izv. AN SSSR, Technology
cybernetics 2:116–122

[15-30] Fomin Yu I (1980) About restoring organs realizing majority voting. Electronic modeling 2:53–60
[15-31] Fomin Yu I (1980) Program for localization of parametrical failures. Annotated checklist of

new receipts. MosFAP ASU 2:10
[15-32] Fomin Yu I (1980) Program for generation of minimum fault detection test. Ibidem, p 11
[15-33] Fomin Yu I (1980) Program for investigation of catastrophic reliability. Ibidem, p 11–12
[15-34] Fomin Yu I (1980) Program for investigation of parametrical reliability. Ibidem, p 12
[15-35] Fomin Yu I (1980) Program for the calculation of the failure probability of logical device consist-

ing of duplex identical blocks with the network of majority elements at the input. Ibidem,
p 13–14

[15-36] Fomin Yu I (1980) Program for the calculation of the failure probability of logical device consist-
ing of duplex identical blocks with the network of majority elements at the output. Ibidem, p 13

[15-37] Potapov VI, Palianov IA (1973) Design of fault detection tests for the threshold elements. Izv
AN SSSR, Technology cybernetics 4:140–146

[15-38] Fomin Yu I, Galushkin AI (1982) Majority voting and restoring organs for its implementation.
Cybernetics and computer facilities. Vyp. 55, Kiev, Naukova Dumka, p 91–97

[15-39] Mkrtchan SO (1977) Design of computer logical devices on the basis of neuron elements.
Moscow: Energiya, p 199

[15-40] Galushkin AI, Fomin Yu I (1979) About optimality of restoring organs realizing majority vot-
ing. Tekhnika sredstv sviazi, ser. ASU 3:56–61

Literature

Chapter 16

The introduction of dynamic redundancy into the structure of digital devices for re-
liability improvement requires the development of technical diagnostics of failures that
occur in the structures implementing these devices.

Such diagnostic methods proposed in several works can be divided into two groups:
methods of diagnostics and control of separate neurons at the level of separate functional
components (multiplier, adder) and methods of diagnostics of neural networks at the
level of separate neurons. The algorithms of the first group are described in detail in [15-
15, 15-37, 16-1 to 16-4]. The authors made a complete classification of neuron failure types
and developed synthesis algorithms for tests of neuron failure control and localization to
an accuracy of the input-output. The algorithms of the neuron synthesis without logically
indistinguishable failures to an accuracy of the input-output are developed in [15-15]. The
proposed algorithms are sufficiently efficient for the separate neuron diagnostics, but they
are practically inapplicable to the neural networks with a large number of neurons.

The algorithms of the second group are described in [16-5, 16-6]. They include di-
agnostic methods of neuron circuits of special types (2-neurons combination, cascade
circuit, etc.). The disadvantage of the proposed diagnostic procedures is their low prac-
tical applicability.

The algorithms of the neural networks’ technical diagnostics that provide the con-
trol over their performance and failure localization to an accuracy of a separate neu-
ron are described below. The algorithm of neuron failure localization in the neural
network is based on the investigation of the network state graph represented in Sect. 16.1.
This technique provides the algorithm of minimum fault detection test for failures of
the logical constant type. The method of adaptive diagnostics presented in Sect. 16.4
is based on the synthesis of an adaptive diagnostic network in the form of a neural net-
work. It localizes any failure of the logical constant type that occurs in the neural network
at the neuron input-output during one cycle of the neural network performance.

All the diagnostic algorithms considered in this chapter can be divided into two
groups by methods of their realization: software or hardware.

The following algorithms belong to the first group: the algorithm of failure localiza-
tion in the neural network (Sect. 16.2) and the algorithm of the minimum fault detec-
tion test design for the failures of the logical constant type. The former algorithm is
based on the construction and investigation of the neural network state graph. The
latter algorithm is based on the construction of the minimum neural network state
graph corresponding to the minimum fault detection test for the logical constant fail-
ure type at the neuron outputs.

Neural Network Diagnostics

322 Chapter 16 · Neural Network Diagnostics

The second group includes the method of adaptive diagnostics of failures of the
logical constant type at the neuron inputs-outputs. This method is based on the mod-
eling of all possible failures of some given type, learning sample creation, and synthe-
sis of the adaptive diagnostics network.

16.1
Neural Network State Graph – The Main Notions and Definitions

Different methods for the description of the neural network functioning exist: analyti-
cal, structural, geometrical, etc. Though each of these methods provides a complete
description of a given neural network, it mainly reflects one particular characteristic
of the network functioning. We introduce below the notion for the neural network state
that describes the logics of its functioning.

Definition 1. Let us call the value aij that represents the outputs of all the neurons of the
i-th layer and satisfies the condition

as a j-th node of the i-th layer of the state graph. Here Hi is the number of neurons in
the i-th layer; al

ij is the output value of the j-th neuron in the i-th layer.

Definition 2. The state graph branch is a directed segment linking two state graph nodes
and designated as

aij → alk , l = i+1

Definition 3. The state graph nodes of the zero level representing the input variable
values are called the tops of the state graph.

Definition 4. The state graph nodes of the W-th level (W is the number of neural net-
work layers) are called the roots of the state graph.

Definition 5. A path in the state graph is an arbitrary chain consisting of nodes linked by
branches according to the functioning of the neural network possessing a top and a root.

Definition 6. The state graph represents a tree-like directed disconnected graph com-
posed of paths and nodes located at corresponding levels.

Statement 1. Let us show that the state graph completely describes the neural network
functioning for all values of the input variable. Consider all the nodes of the state graph
related to the arbitrary path:

Since the node a0j0 represents the value of the input variable, and the nodes aiji
(i = 1, 2, …,W) represent the outputs of all the neurons and all the layers in the order of
the number increase, then the network functioning, i.e., its total response to the given

323

input action a0j0, is completely determined. Since the state graph is the aggregate of all the
possible paths, then it determines the neural network response to all the input actions.

Definition 7. Neuron failure is considered as critical if the fault that results in the
emergence of the error at this neuron output (when one or several input values occur
at the input of this neuron) finally results in the error at the output of the whole neural
network. Neuron failure is considered as uncritical if any error at its output does not
result in the error at the output of the whole neural network.

Definition 8. A path in the state graph is considered as a faulty one if it corresponds to
the neural network with a critical failure. I.e., the fault path possesses the root corre-
sponding to the wrong value of the logical function realized by the neural network.

Definition 9. A path possessing a required root, i.e., a path corresponding to the neural
network without failures, or with uncritical failures, or with critical failures that do not
influence upon the given neural network input value, is considered as a correct one.

Definition 10. A complete state graph is a graph with 2n tops, where n is the dimensio-
nality of the neural network input.

Definition 11. A closed region formed by hyperplanes (realized by neurons) and
hypercube faces is called a hypercube compartition. Each compartition has its number
determined by the number of the neuron outputs, i.e., the number of compartitions is
the state graph node.

16.2
Algorithm of Failure Localization in the Neural Networks

The essence of the proposed algorithm will be explained in some particular examples.
Let us first consider the case of the single-fold failures and then generalize the ob-
tained results for the case of multiple failures.

Let us take the three-layer neural network with three neurons in the first layer, two
neurons in the second layer, and one neuron in the third layer. The location of hyper-
planes realized by the first-, second-, and third-layer neurons is shown in Fig. 16.1a–c
respectively, where xi

j is the output value of the i-th neuron in the j-th layer (at j = 0, it is
an input variable value). The criss-crosses indicate the values that provide 1 at the neural
network output, and circles indicate the value providing 0 at the neural network output.
The numeric characters at each hyperplane indicate the number of neurons in the layer.

The full state graph corresponding to the considered neural network is represented in
Fig. 16.2. Let us consider, for example, a parametrical critical failure of the first neuron in
the first layer. The hyperplane positions in this case are represented in Fig. 16.3a–c. As a
result of the failure neuron weighting coefficient changes, the hypercube top 110 appeared
in another compartition with the number 100 (it was initially in compartition 000). This
results in the neural network output error: not all the criss-crosses and circles are in the
different compartitions. The full state graph corresponding to this failure is shown in
Fig. 16.4. The dashed line indicates the one-valued branches of the fault paths.

16.2 · Algorithm of Failure Localization in the Neural Networks

324 Chapter 16 · Neural Network Diagnostics

A single path in the state graph corresponds to each neural network input value.
Consequently, the transfer of the hypercube top into the given compartition corre-
sponds to the path transformation, related to this given top, into some fault path. This
new path has the same top but some of its other tops are changed.

Fig. 16.1. Hyperplanes realized by the three-layer network without failures

Fig. 16.2.
The state graph of the free-
failure three-layer neural net-
work (Fig. 16.1)

Fig. 16.3. Hyperplanes realized by the three-layer neural network with failure

Fig. 16.4.
The state graph of the three-
layer neural network with
failure (Fig. 16.3)

325

Figure 16.5a–c represents another example of the parametrical failure of the con-
sidered neuron. As a result of the fault, the tops 100 and 110 of the unit hypercube
appeared in the new compartitions 000 and 100, respectively. It corresponds to the
emergence of two fault paths in the state graph in Fig. 16.6.

The problem of the failure neuron search using the state graph consists in the search
of such a transformation of one or several fault paths into correct paths that does not
result in the emergence of additional fault paths. The form of this transformation (num-
bers of node positions in the state graph that changed their values) must indicate the
number of the failure neuron. In the example represented in Fig. 16.4, the only fault path

110 → 100 → 00 → 1 (16.1)

must be transformed into another path

110 → 000 → 10 → 0 (16.2)

It is seen from (16.1) and (16.2) that some node positions changed their values. The
first distinct position indicates the possible failure of the first neuron in the first layer.
The validity of such a proposition can be shown if proving the following statement.

Statement 2. Only one-valued branches of the fault paths can be transformed with the
help of the state graph at the search of the neuron failure in the neural network. Let us
prove this. The values of the logical function (the roots of the state graph) are correctly
and unambiguously put into correspondence with all the tops of the state graph cor-
responding to the failure-free neural network. Some of the branches change, and the

Fig. 16.5. Hyperplanes realized by the three-layer neural network with failure

Fig. 16.6.
The state graph of the three-
layer neural network with
failure (Fig. 16.5)

16.2 · Algorithm of Failure Localization in the Neural Networks

326 Chapter 16 · Neural Network Diagnostics

fault branch emerges at the failure occurrence. Each of the fault paths corresponds to
a single error at the neural network output. The required transformation is the inverse
to the failure emergence transformation, i.e., the transformation that eliminates the
failure and does not add any new failure. Let us assume that we transform the many-
valued branch of the fault path. This means that all the other paths possessing this
node will obtain another root. And since these paths were correct according to the
initial assumption, then the transformation converts them into the fault ones. But this
contradicts the transformation feasibility, and therefore the statement is proved.

In the case of another failure in the state graph shown in Fig. 16.6, one observes two
fault paths with the tops 100 and 110. The first path has the single one-value branch at
the zero level. Let us consider all the possible transformations of this branch into the
branches of the corresponding parts of correct paths: (→ 100 → 00 → 1) and
(→ 010 → 11 → 1). As a result, the transformations have the following form:

100 → (0 → 1)00 → 00 → 1 (16.3)

100 → (0 → 1)0 → 11 → 1 (16.3)

where two values in brackets indicate the value change at this position during the trans-
formation performance. One can expect from (16.3) that the failure neuron is the first
neuron in the first layer. Similarly, one can expect from (16.4) that the failure neuron
is the second neuron in the first layer. It can be written for the branch of the zero level
in the second fault path:

110 → (1 → 0)00 → 10 → 0 (16.5)

i.e., the first neuron of the first layer is under a cloud. The second path is also one-
valued at the first layer. Consequently, the following transformation is possible:

110 → 100 → (0 → 1)0 → 0 (16.6)

This suggests the possible failure of the first neuron in the second layer. Let us prove
the following statement in order to reveal the required neuron out of the whole assem-
blage of the suspected neurons.

Statement 3. Let us assume that one critical neuron failure exists in the neural network,
and more than one fault path exists in the state graph. If the set of neuron numbers
suspected to be the numbers of the failure neurons is obtained, then there exists a
neuron number that is found in this set a maximum number of times, and it represents
the number of the failure neuron. Let us assume that there are N fault paths and one
critical neuron failure in the state graph. It follows from the nature of any failure that
there always exists a transformation inverse to the failure. Let us assume that this trans-
formation corresponds to the neuron number that is not maximal out of all suspected
neuron numbers. It means that not all the fault paths are transformed (as it follows
from the search procedure for the suspected neuron). And the latter conclusion contra-
dicts the above assumptions.

327

According to the above statements, the first neuron in the first layer in the afore-
mentioned example is the failure neuron because its number is found twice among the
suspected neurons.

The search process of the failure neuron number can be simplified on the basis of
the following statement.

Statement 4. Let us perform a sequential (from the top to the root) comparison be-
tween the fault path in the state graph and the corresponding correct path. The first
distinct position indicates the number of the failure neuron. Let us prove this state-
ment. According to the above statement 2, in the case of several one-valued branches
in the considered fault path, it is necessary to search the individual transformation for
each branch. However, we want to prove that it is sufficient to find the only one trans-
formation for one correct branch belonging to the uppermost level.

Let us consider one failure in the neural network. Compare sequentially the nodes
of the fault path in the state graph. Let the node aij be distinct, and the branches of the
j-th and (j + 1)-th level be one-valued. The noncoincidence of the node aij indicates the
error at the output of the i-th neuron in the j-th layer. Since the nodes of the previous
layers coincided, then namely the i-th neuron in the j-th layer is a failure neuron.

Only a single failure occurred in the neural network according to the assumption.
Then all other noncoincidences of the nodes are caused by the failure of namely the
i-th neuron in the j-th layer.

Let us list the sequence of the main stages of the algorithm for the failure neuron
localization in the case of the single-fold failure. The state graph of the correct func-
tioning neural network is considered to be given.

1. The values of the input variable are sequentially applied to the neural network input;
2. The neuron outputs are stored for each input value (a path in the state graph is

created);
3. The obtained output value is compared with the root of the corresponding path in

the given state graph (a path with the same top). If the roots coincide then go to p. 1,
otherwise go to p. 4;

4. The positions of both paths in the state graph are compared from the top to the
root;

5. The first distinct position indicates the number of the failure neuron, and the pro-
cess terminates because the failures are single-fold.

The proposed algorithm can be easily generalized for the case of multi-fold failures.
The example represented in Figs. 16.5 and 16.6 shows that the failure can influence the
appearance of errors in the following layers, and the comparison between nodes can
result in the wrong consideration of the failure after-effect as the failure itself. The
failure search algorithm in the case of many-fold failures is

1. The values of the input variable are sequentially applied to the neural network input;
2. The neuron outputs are stored for each input value (a path in the state graph is

created);

16.2 · Algorithm of Failure Localization in the Neural Networks

328 Chapter 16 · Neural Network Diagnostics

3. The obtained output value is compared with the root of the corresponding path in
the given state graph (a path with the same top). If the roots coincide and the ap-
plied input value is not the last one then go to p. 1, otherwise go to p. 4;

4. Positions of both paths in the state graph are compared from the top to the root;
5. The first distinct position indicates the number of the failure neuron. If the applied

input value is not the last one then go to p. 1, otherwise, go to p. 6;
6. Perform the failure correction and go to p. 6.

If the failure neurons are located in W layers, then the process is repeated W times.
In order to estimate the operation speed of the proposed method, let us compare it

with the enumerative technique consisting in the test of each neuron in the neural
network with single-fold failures. The state graph of the correct functioning neural
network is considered to be given. Let us create the state graph corresponding to the
neural network with failures.

A. Apply sequentially all the input variable values to the neural network input and obtain
a state graph path and an output value for each input value. Compare the result with
a correct neural network (without failures). If both outputs coincide, then apply the
next input value, otherwise go to p. B. Thus, 2H0 elementary operations of bit-by-bit
comparison are performed after the application of the full set of values to the neural
network input.

B. A fault path is detected in the state graph. Compare it with the corresponding path
of the correct neural network. The first distinct position indicates the number of the
failure neuron. If only one neuron failure exists, then

of elementary comparisons is performed after the application of the full set of the
input values. Then the maximum comparison operation number in the case of the failure
localization algorithm can be expressed in the following form:

(16.7)

The value N1 reaches its maximum (16.7) because the suspected failure neuron
possesses the last number in the last layer and the last fault path.

Let us consider now the neural network test using the enumerative technique. If the
complete test for one neuron has a length of 2Ni, and all the neurons must be tested
(Ni is the number of neurons inputs in the i-th layer; Ni = Hi–1), then the number of
elementary comparisons in the case of enumeration is

(16.8)

329

The value N2 reaches its maximum in the sense that the test length for one neuron
is estimated as 2Ni.

Let us show the validity if the inequality

N1max < N2max (16.9)

Taking into account (16.7) and (16.8), one obtains for the inequality (16.9)

Removing the summation symbols in the latter expression, one gets

(16.10)

Taking into account the evident inequalities,

the inequality (16.10) takes the following form:

(16.11)

The cases of practical interest are H0 ≥ 3 and H1max = 2H0.
The expression (16.11) in this case takes the following form:

(16.12)

Taking the logarithm of (16.12), one gets H0 > 1, which is always valid. The inequal-
ity (16.9) is therefore proved.

Thus, the proposed failure localization algorithm is always faster than the algorithms
based on the enumerative technique.

Let us perform the similar operation speed estimations in the case of multi-fold
failures. Consider the case of m failures in k layers. Additionally, let the neuron failure
localization be the worst one: k = kmax = W. Then the inequality (16.9) has the follow-
ing form:

(16.13)

16.2 · Algorithm of Failure Localization in the Neural Networks

330 Chapter 16 · Neural Network Diagnostics

Since W ≤ H1, then the inequality (16.13) takes the form

(16.14)

In the case H1 ≥ H2 > 1, W ≤ H1, one obtains

and the inequality (16.14) takes the following form:

(16.15)

The inequality (16.15) is valid if H1 > H2 > … > HW and H1 = … = HW. Then the in-
equality (16.13) is also valid.

Let us estimate now (by the lower-bound estimation) the relative speed gain at the
transfer from the enumerative technique to the failure localization algorithm in the
case of multi-fold failures:

(16.16)

where N*
1max is the lower-bound estimation for the failure localization algorithm op-

eration speed in the case of multi-fold failures. If H1 = H2 = … = HW, then the inequal-
ity (16.16) takes the following form:

(16.17)

If H1 > H2 > … > HW, then one can use some average value H
–

 instead of H in (16.17).
For example, one can take

 or

It is evident that one can ignore the second summand in the sum (16.17) at suffi-
ciently high values of H. Hence, according to the lower-bound estimation, the relative
speed gain at the transfer from the sequential enumerative testing to the proposed
failure localization algorithm increases linearly with the increase of the number of
neurons in the layers.

331

16.3
Algorithm of the Minimum Test Design for the Failures
of the Logical Constant Type at the Neuron Outputs

The proposed algorithm for the minimum fault detection test design has a restricted
application field because this test checks not all the faults of the constant type, but only
the faults of the logical constant types at the neuron outputs. It can be used only in the
cases of failure-free neuron inputs.

Let us consider the neural network input space representing a unit hypercube divided
by hyperplanes into compartitions. The considered hyperplanes are realized by the first-
layer neurons. Let all the compartitions except one include one hypercube corner, and the
selected compartition includes n corners. Let the number of compartition be aij|j=1

Let us assume that the failure of some neuron results in the change of some value al
i1.

Then the compartition number for all n corners lying inside it will change because
only the failures of the logical constant types are considered. Consequently, this failure
appeared to be displayed at all n input values. However, it is necessary that one failure
must be displayed at not more than one input value. Then the procedure for the full test
minimization (the test with 2n input values) consists in the search of compartitions
including more than one corner and eliminating any excessive corners in this
compartition in order to provide only one corner inside it.

Since the hypercube corners are simultaneously the tops of the state graph, then the
process of the full test minimization described above is similar to the full state graph
minimization. Let us consider the case represented in Figs. 16.1 (neural network) and
16.2 (state graph). The belonging of several hypercube corners to one compartition is
reflected in the state graph by the fact that all the paths with these corners have com-
mon branches beginning from the first level. Let us eliminate such corners. There are
five of them in the considered example:

(000, 011, 101, 110, 111) (16.18)

Let us compose one top, for example 000, from the assemblage (16.18). Then the
state graph looks like that represented in Fig. 16.7.

Fig. 16.7.
Minimized state graph

16.3 · Algorithm of the Minimum Test Design for the Failures of the Logical Constant Type

332 Chapter 16 · Neural Network Diagnostics

The tops of this minimized state graph represent the input values for the minimized test

(000, 001, 010, 100) (16.19)

Let us prove that this test is minimal across the given above set of failures.

Statement 5. The number of tops of the neural network minimized state graph in the
case of logical constant type failures is equal to the length of the minimum test disclos-
ing all the failures of the given class.

The number of tops determines the length of the corresponding test according to
the definition of the state graph. Let us prove now that the corresponding test is mini-
mal for the given number of failures.

The state graph minimization consists in the sequential enumeration of the nonempty
compartitions formed by the first layer neurons and in the elimination of the second,
third, etc., input space hypercube corners belonging to one compartition. This proce-
dure results in the state graph minimization corresponding to the state with only one
argument value in each nonempty compartition.

Let us assume that the obtained test is not minimal. Then the elimination of any top
from the obtained assemblage results in the emergence of a new empty compartition,
and the logical function value in this compartition is undetermined. Therefore, the
neural network minimized test cannot result in the emergence of the fault path corre-
sponding to the eliminated top. Taking into account a single-valued correspondence
between any path in the minimized state graph and some failure group, it appears that
this failure group becomes undetectable at this test. This contradicts the test definition,
i.e., the detectability of all the failures of a given class. Since the eliminated top was an
arbitrary one, then the test corresponding to the minimized state graph is minimal,
and the statement is therefore proved.

Taking into account all the aforesaid, the procedure for the minimal test design in
the case of the logical constant type failures at the neuron output can be performed
according to the following scheme:

1. Two levels of the full state graph (zero-order and first-order ones) are constructed
for the correct functioning neural network. In this case, each input value corresponds
to the first-level state graph node;

2. The number of non-recurrent graph nodes gives the length of the minimal test, and
their corresponding tops provide the minimal test input values.

16.4
Method of the Neural Network Adaptive Failure Diagnostics

If the neural network must function in the continuous mode with high reliability, then
it is impossible to interrupt its functioning for the diagnostic performance. The failure
neuron therefore must be localized at the first application of the input signal that cor-
responds to the neuron failure. The method of the neural network adaptive failure
diagnostics is used in this case. The adaptive diagnostic network is synthesized in the

333

form of the neural network with full sequential connections. It must be able to localize
any failure of the logical constant type at the neuron input-output at the first applica-
tion of the input value that corresponds to the neuron failure, i.e., to perform diagnos-
tics parallel to the neural network functioning. This method can be therefore called as
“a method of parallel diagnostics”.

Let us consider the case of the learning sample generation for the adaptive diagnos-
tic network synthesis in the example of the two-layer neural network with two neurons
in the first layer and one neuron in the second layer (Fig. 16.8).

Let us assume here and below the existence of only one failure in the neural net-
work. The test is carried out during one cycle of the neural network functioning. Fig-
ure 16.9 represents the full state graph of the considered neural network without fail-
ures. Figures 16.10–16.12 represent state graphs for all the possible failures of the given
class, where xl

ij is the value of the j-th input of the i-th neuron in the j-th layer, and xl
ki

is the value of the i-th output of the l-th layer.
Let us divide all the failures into classes corresponding to their neurons. The num-

ber of classes is equal to the number of neurons plus 1 (the last class is the class of the
neural network without failures). Figures 16.10–16.12 represent state graphs of the two-
layer neural network for all failures of constant types respectively of the first neuron
in the first layer, of the second neuron in the first layer, and of the second-layer neuron
output. Let us compose aggregates of the state graph fault paths (in the case of failure
classes) or failure-free paths (in the case of failure-free classes). All the repeated paths
in all the classes are excluded. Each fault path corresponds to one failure. All the fault
paths are considered as a part of the learning sample that represents the failures classes.

Fig. 16.8. Hyperplanes realized by the two-layer neural network

Fig. 16.9.
State graph of the two-layer
neural network (Fig. 16.8)

16.4 · Method of the Neural Network Adaptive Failure Diagnostics

334 Chapter 16 · Neural Network Diagnostics

Fig. 16.10. State graphs of the two-layer neural network (Fig. 16.8) for all failures of constant types of
the first neuron in the first layer

Fig. 16.11. State graphs of the two-layer neural network (Fig. 16.8) for all failures of constant types of
the second neuron in the first layer

335

It has the following form in the considered example:

(16.20)

Let us take all the failure-free paths from the state graph represented in Fig. 16.9.
They are considered as the second part of the learning sample that represents the fail-
ure-free neural networks class:

(16.21)

The numeric characters near the curly braces indicate the class numbers.
It is evident that all the paths in the state graph from the obtained aggregate (16.20),

(16.21) represent the tops of the unit hypercube with dimensionality

N = 5 in the considered example. The problem of the adaptive diagnostic network
synthesis is solved as a usual pattern recognition problem. The neural network is syn-
thesized using the learning samples (16.20), (16.21) by some adaptive algorithm. This
neural network divides the unit N-dimensional hypercube into several compartitions
consisting of the elements of one class. Such a partition is possible with the unit prob-
ability if there are no equal elements in different classes. Let us prove the following
statement.

Statement 6. Any two paths in the neural network state graph are different if they cor-
respond to the failures of two different neurons.

Let us consider two fault paths in the state graph:

(16.22)

Fig. 16.12.
State graphs of the two-layer
neural network (Fig. 16.8) for
all failures of constant types of
the second-layer neuron output

16.4 · Method of the Neural Network Adaptive Failure Diagnostics

336 Chapter 16 · Neural Network Diagnostics

They are equal under the following requirements:

Consequently, the equal paths in the state graph have equal tops:

Thus, in order to prove the statement, one must show that the corresponding fail-
ure-free path at the different failure neurons transforms into the different fault paths.
Let this failure-free path be

(16.23)

There are two different failure types: (1) the failures corresponding to the neurons
of different layers and (2) the failures corresponding to the neurons of the same layer.

Let us consider the first case, when the failure neurons are located in the l-th and
k-th layers. Then it is evident that cljl → aljl, ckjk → bkjk, where the arrows indicate to the
transformation of one node to another one in the case of neuron failures. Thus, when
the neuron failure in the failure-free path (16.23) occurs in the l-th layer, then the nodes
ciji with the numbers l, l + 1,…,W transform into the nodes biji with the numbers l,
l + 1,…,W respectively. When the neuron failure in the failure-free path (16.23) occurs
in the k-th layer, then the nodes ciji transform into the nodes biji with the numbers k,
k + 1,…,W respectively. Consequently, one can write

(16.24)

Let us assume that l<k, then according to (16.24), aiji
≠ biji, i = l, l + 1, …, k – 1, k, i.e.,

the paths a and b are different.
Let us consider the second case, when the failure neurons are located in the same

layer. Let the l-th and s-th neurons in the i-th layer be the failure neurons. Then

and consequently, ak
iji ≠ bk

iji, k = l, s, i.e., the paths a and b are different.
Since there are no other neural network failure types beside the aforementioned

ones, then the statement is proved.
As an example, the adaptive diagnostic neural network was synthesized using the

learning samples (16.20), (16.21) according to an adaptive algorithm. Its block diagram
is represented in Fig. 16.13.

The block diagram is reduced to the form of the neural network with full sequential
connections. The connections with zero weights are not shown. The weights between

337

Fig. 16.13.
Block diagram of the adaptive
diagnostic network in the case
of the two-layer neural net-
work (Fig. 16.8)

the neurons of the first and second layers are + 1. The weighting coefficients of the
first-layer neurons are indicated near the corresponding inputs by the numerical char-
acters. The threshold values are indicated inside the rectangles corresponding to the
respective neurons. The neural network has four outputs, and it is synthesized in such
a way that the emergence of 1 at one of the outputs (with 0 at all other outputs) means
that the input value is considered to belong to the corresponding class.

The high structure redundancy observed at the adaptive diagnostic network syn-
thesis is related to the disadvantages of this method. Such a redundancy is the “pay-
ment” for the high operation speed provided by such an approach. Another disadvan-

16.4 · Method of the Neural Network Adaptive Failure Diagnostics

338 Chapter 16 · Neural Network Diagnostics

tage of this method is the existence of only one neuron at the neural network output.
In this case, the failures at the outputs of neurons in the penultimate layer and the
corresponding inputs of the last layer are logically undistinguishable. But the advan-
tage of high operation speed makes this disadvantage insignificant for the neural net-
works with a large number of neurons.

Let us consider the peculiarities of the adaptive diagnostics method. The learning
sample generation requires the modeling of all the failures of the given class. This is
the most time-consuming part of the adaptive diagnostic neural network synthesis.
The automation of this process allows one to simplify significantly the adaptive diag-
nostic network synthesis, and the use of the advanced algorithms allows one to obtain
the optimal implementation of this network.

The realization of the neural network itself, as well as of the adaptive diagnostic net-
work using mono-functional element with single-type connections, provides an advan-
tage at the implementation of the whole device in the form of VLSI circuit. It also allows
one to use one and the same synthesis technique for both networks. Since the neuron
redundancy exists in the process of the adaptive diagnostic network synthesis, then it is
advisable to use this method for production of devices with high reliability requirements.

The enhancement of the described approach application can be performed at the
expense of the parametrical failure class. In order to prove this statement, one must
show that all possible fault paths corresponding to the parametrical failures belong to
the set of fault paths for the failures of the logical constant type at the neuron inputs-
outputs. The check of this condition in the case of the simplest neural networks showed
its validity. However, its proof in the general case seems to be rather complicated.

Literature

[16-1] Palianov IA (1975) Localization of failures in the threshold logical elements within the input-
output precision. Radio-instrument engineering and microelectronics, vyp. 4, Omsk, p. 160–166

[16-2] Palianov IA, Potapov VI (1973) Failure diagnostics of the multi-functional threshold units. In:
Mechanisation and automation devices for technical quality control, p. 73–83

[16-3] Palianov IA (1975) Design of fault detection tests for multi-threshold threshold elements. In:
Computer facilities and control systems. Omsk, p. 70–78

[16-4] Potapov VI, Palianov I.A. (1976) Threshold element failure diagnostics. Izv. SO AN SSSR, ser.
Tekhnicheskije nauki 8(2):126–133

[16-5] Charayev GG (1971) Technical diagnostics of threshold element circuits. Automatics and
teleautomatics 1:151–158

[16-6] Charayev GG (1974) Technical diagnostics of discrete devices of integrated electronics. Mos-
cow: Energiya, p 105

[16-7] Fomin Yu I, Galushkin AI (1980) Methods of technology diagnostics of threshold element
networks. Tekhnika sredstv sviazi, “Sistemy sviazy” 2:84–94

[16-8] Fomin Yu I, Galushkin AI (1981) Methods of failure parallel diagnostics in threshold element
networks. “Elektronnoye modelirovaniye”, Kiev, Naukova Dumka, No. 3, p 89–92

[16-9] Sarje AK (1984) Implication chart for testing threshold functions. J. Inst. Eng. (India), Electron.
And Telecommun. Engineering. Div.” 65(2):46–77

[16-10] Mourad Samiha, Hughes Joseph LA, McCluskey Edward J (1986) Multiple fault detection in
parity trees, COMPCON Spring 86, 31 step IEEE Comput.Soc.Interval.Conf., San Francisco,
Calif., p 441–444

[16-11] Brown DP (1992) Matrix tests for period 1 and 2 limit cycles in discrete threshold networks,
IEEE Trans Syst. Man and Cybernetics 22(3):532–534

[16-12] Eijkman Eg GJ (1992) Neural nets tested by psychophysical methods, Neural networks 5(1):153–162

Summary

Chapter 17 Methods of Problem Solving
in the Neural Network Logical Basis

Conclusions

Part V

Chapter 17

17.1
Neuromathematics – a New Perspective Part
of Computational Mathematics

Neuromathematics is a branch of computational mathematics dealing with the devel-
opment of methods and algorithms for the solution in the neural network basis. The
objective reason for providing the development of this new part of computational
mathematics is a 30-year stock in the field of neural network theory that allows for the
development of the universal approach of the neural network algorithms aimed at the
solution in the domain of general and applied mathematics.

We shall call the computational procedure that can be realized mainly by the neural
network of a different structure the neuron algorithm (or neural network algorithm).
The main task that solves by the neurocomputer is the fast problem solving.

The first attempts to solve the computational problems with the help of
neurocomputers relate to the 1960s and 1970s when the pattern recognition task was
actual and included the problem of function approximation (K-classes of patterns in
the multi-dimensional feature space). Thereafter, some other attempts to solve the clas-
sical computational problems with the help of neural networks were taken. One of the
examples of such tasks is the matrix inversion problem. The number of problems solved
with the help of neurocomputers was significantly enlarged at the end of the 1980s.
One can tell now about the potential universalism of neurocomputers. It is clear that
any mathematical problem can be solved on the neural network logical basis.

Even such problems that seem to be trivial (addition, multiplication, division, ex-
tracting a root, numerical inversion, etc.) can be solved with the help of neurocomputers
much more effectively than with the help of the usual Boolean elements.

The field of application of the tasks that can be efficiently solved by neurocomputers
is permanently and rapidly widening. The class of general mathematic tasks that can
be efficiently solved by neurocomputers is rather wide. It includes, for example, the
following kinds of tasks:

� Systems of linear and nonlinear algebraic equations and inequalities;
� The tasks of function approximation and extrapolation;
� The optimization tasks (linear, nonlinear, and dynamic programming; combinato-

rial tasks; the commercial traveler task; the task of the timetable arrangement; dif-
ferent tasks with graphs);

� The solution of ordinary nonlinear differential equations;
� The solution of differential equations in partial derivatives.

Methods of Problem Solving in the Neural Network
Logical Basis

342 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

Various transformations can be realized in the neural network logical basis whereas
their implementation using classical computers requires the development of special
algorithms (algorithms of direct and inverse trigonometric and exponential functions
that are the activation functions in the neural network approach).

An especially important part of general neuromathematics is a complex of prob-
lems related to graphs. In particular, these are the problems of the search formalization
and calculation of the routes, cycles and cutsets in graphs, and the problems of parti-
tion of graph, its drawing and arrangement.

It is evident that the class of problems of general neuromathematics will increase in
the nearest future. In the world, the number of scientific studies related to the neural
network algorithms is rather large. The peculiarity of the Russian school of neuro-
mathematics is the use of effective scientific results in the field of neural networks and
corresponding effective methods for the neural network algorithm development ad-
equate to the specific solution.

The development of neuromathematics was initiated not by mathematicians
but by the specialists in the theory of control and neurocomputers under the “nonver-
bal behavior” of the single-functioned workers in the field of computational math-
ematics. The methods of control theory, analytical self-adaptive systems and adaptive
filtering formed the basis of the development of the neural network algorithm
methods. The neural network algorithms are rather “similar” for different mathematical
tasks because a large number of common problems are present in the methods of
neural network algorithm development in the wide variety of solutions. The majority
of these common problems are either not taken into consideration or passed over
in silence.

The objective reasons for the transition to the neural network algorithms for the
solution of different tasks are the following:

� The inability to solve complex tasks of general and applied mathematics in a given
time by the use of computational systems of other architectures (at the equal cost
of neurocomputers and these computational systems);

� The objective necessity for the use of the neural network algorithm and its adequacy
to the task under consideration.

This results in the following main distinctions between the neural network algo-
rithm and any other one:

� The super-high parallelism (the parallelism of the neural network algorithms is
always higher than that of technical facilities for their implementation);

� The high capacity-to-cost (or capacity-to-size) ratio of technical facilities for the
neural network algorithms implementation.

As the development of neuromathematics (a part of computational mathematics
realizing the tasks of general and applied mathematics in the neural network logical
basis) is in progress, neurocomputers will pretend to the role of universal computa-
tional systems.

The main reasons to write the present article are the following:

343

� The primitiveness of the neural network algorithm that is used in the initial stages
of the tasks’ solution (as a rule, after some solution quality is achieved, there are no
methods for its further improvement);

� The necessity for the elaboration of the neural network algorithms adequate to the
task under consideration in the framework of some unified tasks solution technique
in the neural network logical basis.

A large number of the known works in the domain of the neural network theory,
neuromathematics, neural control and neurocomputers can be conditionally divided
into two parts. The first one resulted from the general reflections of different authors
who are interested in these problems and who want to improve the solutions which
they have found in the scientific publications or which they invented on the basis of
some general ideas. The second one deals with the development of ideas that are born
in the process of specific problem solving. The long-term practice shows that the real
and serious theoretical statements and studies in this field of activity are developed
namely in the second part of these works. This fact is not a simple appeal for the more
active solution of practical problems but is a result of the long-term analysis of the
large number of theoretical studies in this field of knowledge.

The present study defines in some sense the logical pathway for the development of
the neural network algorithms for the problem solutions and can serve as a basis for
the creation of the intellectual program package implementing the neural network
program solution algorithms.

17.2
Neural Network Theory – A Logical Basis for the Development
of the Neural Network Problem Solution Algorithms

The neural network theory presents the logical basis for the solution of the tasks of
general and applied mathematics in the same way as earlier Boolean logic was the
basis for the solution of the tasks by the computers with Neumann architecture.

The neural network is a network with a finite number of layers consisting of single-
type elements. Each element is similar to the neuron with different types of connec-
tions between layers. The number of neurons in the layers must provide the given quality
of the solution, and the number of layers must be as small as possible in order to
minimize the time for this solution.

The main properties of the neural networks are given below:

� The homogeneous neural networks are characterized by the gradual degradation
due to the breakdown of separate elements. This fact was shown by Rosenblatt who
constructed the three-layer perceptron with random connections in the first layer
with a redundant number of elements in this layer. Here, the function realized by
the neural network is distributed across the structure;

� The structure of the homogeneous neural network provides the possibility of large-
scale parallelism during the performance of the large number of synchronous op-
erations (addition, multiplication, and nonlinear fast-response transformation. The
neural network structure does not contain complicated and “long” irrational opera-

17.2 · Neural Network Theory – A Logical Basis for the Development of Problem Solution Algorithms

344 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

tions over the operands (division, extraction of root, etc.) that the algorithms used
in the monoprocessor computers;

� The neural networks implement a rather flexible and complex functional transforma-
tion of the input state space into the output one. Hence, the flexibility of this transfor-
mation can be controlled by the number of layers and type of the used connection.

� The neural network structure allows for the analytical description of the input space
transformation into the output one;

� The previous property of the neural network structure allows for the analytical
adjustment of the neural network and for the control of the algorithm functioning
in the process of solution;

� The complexity of the neural network used for the solution of the particular prob-
lem reflects the complexity of the problem itself;

� In the future, with the use of the linear serial Gill machines, the neural network
structure will allow for the solution of the problem of analytical description and the
design of the adaptation algorithm synthesis in multilayer neural networks.

The main advantages of the neural networks being the logical basis of the complex
problem solution algorithms are the following:

� The invariance of the neural network synthetic procedure, respectively the feature
space dimensionality and size;

� Correspondence to the modern and cutting-edge technology in microelectronics;
� Fault-tolerance in the sense of monotonous, rather than catastrophic quality changes

sums depending on the number of hors de combat elements in the sense of monoto-
nous, rather than catastrophic problem-solution quality changes depending on the
number of the breakdown elements.

The postulatory base of the neural network theory is the stochastic Bayesian model
of the outward things. In this connection, the formation input signal is carried out in
terms of the pattern channel and the channel of supervisor instructions. Additionally,
the input signal represents in general the nonstationary random signal with a complex,
unknown, multimodal density of probability distribution.

17.3
Selection of the Problems Adequate to the Neural Network Logical Basis

The bottom-line goal of the present study is the design of the program package in the
neural network logical basis. The use of such a program package is necessary when the
development engineer working over the solution algorithm has already finished the
stage of decision concerning the necessity of the neural network approach and has
assured himself that such an approach is necessary for him.

The investigator begins the development of the neural network algorithm from the
physical problem statement. The description of the physical problem statement must
be performed not verbally, but in the form of the specific document, describing the
initial data and the essence of the physical result that must be obtained as the result of
calculations. If the development engineer of the neural network algorithm gets the

345

physical problem statement from some other person, then he must update the problem
statement together with the problem originator. At any rate, the problem originator
must not necessarily be a specialist in neural network algorithms.

All the problems in the physical (not mathematical) problem statement are divided
into two parts: unformalized and the formalized problems. Unformalized problems
are the problems that cannot be formalized in the form of some mathematical terms,
formulas, structures, graphs, etc. As it was mentioned above, the number of such prob-
lems permanently grows. These problems are usually complex and hypercomplex and
they can be solved only in the framework of the neural network approach. The formal-
ized problems are the problems that can be represented in the form of the system of
linear or nonlinear algebraic equations, or in the form of the system of ordinary non-
linear differential equations, in terms of the system of equations in partial derivatives.

The question concerning the class of problems that can be solved in the most effi-
cient manner by different computing devices designed according to the new principles
is always topical. It was considered for a long time that neurocomputers are efficient in
the solution of the unformalized or ill-formalized problems that obligatorily include
the algorithms with the learning procedure using real experimental data.

The problem of approximation of the particular functions with the discrete domain
of variation is one of the main problems of this type. This is the problem of pattern
recognition. The unformalized problems are evidently an important argument for the
use of neurocomputers. However, it is necessary to remember that the problem of pattern
recognition is only a special case of function approximation. And not statistical (re-
gression models) but rather flexible nonlinear (neural network) approximation meth-
ods are used in this case.

At the present time, a new class of problems with pronounced natural parallelism
has emerged (signal processing, image processing). This class of problems does not
require the learning procedure using the experimental data. However, it is well repre-
sented in the neural network logical basis.

It is also efficient to use the neural network algorithms for the problems with the
input information space (input data) generated by the Monte Carlo method, rather
then analytically.

The question about the efficiency and necessity of the representation and solution
of the problem class in the neural network logical basis is very important.

The first problem class was the problem of pattern recognition. A lot of different algo-
rithms and different architectures of computers were used for its solution in the 1960s. In
the 1970s and 1980s, the neural network algorithms for its solution became dominant.

The second problem class with the dominant use of the neural network algorithms
is the problem of function approximation and extrapolation. At present, the main prob-
lem consists in the methods of the neural network solution algorithm development in
each particular case.

The third problem class in which the advantages of the neural network algorithms
are practically proofed is the problem of the dynamic system control or neural control.
Two main tasks concerning the dynamic object identification (analysis) and construction
of the correcting filters in the control loop (synthesis) that can be solved in the neural
network logical basis make the use of the approximation methods unnecessary for the
nonlinear differential equation solutions that are oriented on von Neumann computers.

17.3 · Selection of the Problems Adequate to the Neural Network Logical Basis

346 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

The aforementioned problems can be conditionally divided into two groups: the
first one is adequate to the neural network logical basis and the second one is “general”.
The time required for the solution of the “general” problems of large dimensionality
using von Neumann computers or transputer-like (claster) computers can exceed the
admissible time. The achievement of the admissible time in this case can result in
exceeding the capacity or the cost of the computer system. Then the necessity to de-
velop the neural network algorithms and the neural network hardware emerges.

The necessity of the solution of mathematical problems of high dimensionality
appears as a rule in the case of the solution of practical tasks related to high technolo-
gies in various scientific studies, industry and economics. Namely the widespread
development and application of neurocomputers are an indication of the development
of high technologies.

The problems that cannot be solved by the computational facilities of the current
development level were always observed in the history of computer engineering. Gen-
erally, at the present time, the transfer to the neural network logical basis is used in the
case of the sharp increase of the solution space dimensionality or in the case of the
requirement of a sharp decrease of the solution time.

The iteration algorithms are the natural solution under the condition of the prob-
lem of high dimensionality. The known iteration solution algorithms in the neural
network logical basis such as, for example, the algorithms for the solution of the sys-
tems of linear algebraic equations, are often rather primitive, consisting of only one
layer. This decreases the problem solving quality. The use of the neural networks with
different structures including the neural networks with feedback coupling opens a broad
perspective of development in such a field of neuromathematics.

The increase of the class of problems solved in the neural network logical basis can
be efficiently estimated by the ratio of the productivity rate to the cost as compared with
the classical von Neumann computers. This estimation shows that neurocomputers are
close to the class of general-purpose computers.

It is assumed that the algorithms and programs will be efficiently used on any ex-
istent and prospective neurocomputer and form the basis of the future mathematical
program libraries for neurocomputers, i.e., the basis of the applied software for the
prospective neurocomputers as general-purpose computers. The developed algorithm
software will constitute the basis of neuromathematics.

It must be mentioned that the neural network solution algorithms for different
problems are often “similar” to each other. They have a canonical neural network struc-
ture selected for some particular problem: the number of layers and the number of
neurons in the layers, the neural network adjustment procedure. Therefore develop-
ment engineers and users obtain the possibility for the objective quantitative compari-
son of the different algorithms.

We consider that any problem can be solved with the help of the neurocomputer
much more effectively than with the usual computer due to the fact that any problem
algorithm can be represented in the neural network logical basis with the controlled neural
layer number and minimized number of iterations of the adjustment procedure.

This means that the neural network algorithm for the solution of any problem on
the logical level is much more parallel than any of its physical implementation. This
property differentiates neural computers from such systems as transputer-like ones in

347

which the software designers usually modify the solution algorithms developed ini-
tially for the single-processor computers. These modifications are aimed at minimiz-
ing the expenses related to the information exchange between processors in the prob-
lem solving process.

According to the aforementioned remarks, it is necessary to comment on Fig. 17.1
that represents the logical structure of the selection procedure for the problems ad-
equate to the neural network logical basis. As it was mentioned, all the problems can
be divided into two types as formalized and unformalized problems. The author con-
siders that the unformalized problems can practically be solved only on the neural
network logical basis.

After the development of the neural network solution algorithm for the unformalized
problem, its programming on the workstation computer, and analysis of the solution
time dependence on the neural network parameters (in particular, such a parameter
is the problem dimensionality), one can determine if the time required for the solution
is sufficient for the customer. If this time is sufficient enough, then the neurocomputer
implementation is the workstation computer program. In the opposite case, one can
choose, in practice, only two possible decisions:

1. The design of the hardware for the neural network problem solving accelerator based
on some technology with dependence on the customer’s requirements concerning
the duration of the development work and concerning the weight, size and cost of
the hardware unit.

In this case, for the particular selected technology of the neurochip and neuro-
plate implementation, one can approximately calculate the number of these
neurochips and neuro-plates in the hardware accelerator. Then the neuro-plate, the
unit or the pillar of the neural network hardware accelerator with the host-com-
puter, represents the neurocomputer’s implementation.

2. In the case of the strict requirements concerning the duration of the development
work and the absence of the requirements concerning the weight, size and cost of
the hardware unit, the development of the program for the claster computer with
parallelizing of the neural network algorithm using several processors can be done.
The number of processors required for the problem implementation in this case can
be approximately estimated because the use of the neural network algorithms al-
lows for the control performed by the neural network algorithm. The algorithm can
provide smoothness of the processors’ loading and minimize the expenses related
to the information exchange between processors. Then the neurocomputer imple-
mentation is the program for the claster computer realizing the parallel neural
network algorithm.

Computational mathematics deals with the solution of formalized problems. And if
the customer is satisfied with the operation speed that provides the solution algorithm
in the classical logical basis adequate to the von Neumann architecture then there is no
necessity in the use of the neural network logical basis. The development of advanced
technology and the complexity of the formalized problems due to the increase of the
dimensionality often result in the unsatisfactory time required for the solution on the
workstation computers with the use of the classical algorithms.

17.3 · Selection of the Problems Adequate to the Neural Network Logical Basis

348 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

Then, as it was mentioned above, the designer has only two possible decisions:

1. To develop the neural network algorithm for the formalized problem and then use
the procedure described above for the unformalized problems, see [17-4], and ref-
erences in that study, see also [17-6] and references in that study given in the section
“Neuromathematics;”

2. To develop the program for the claster computer with parallelizing of the classic
algorithm. This method is used by the majority of the claster computer users. How-
ever, one must take into account that the designer is solving
– Either a purely scientific problem without constraints on the weight, size and

cost of the computer, i.e. using the claster computer that is available to him;
– Or the practical problem with significant constraints on the weight, size and cost

of the computer. Then the designer is often forced to use the neural network
logical basis and to develop the neurocomputer, i.e., to elaborate the neural net-
work solution algorithm.

Notice that even in the case of the solution of purely scientific problems without
constraints on the weight, size and cost of the computer, it is sometimes necessary to
use the neural network logical basis for the solution of the problem of optimization of
the loading distribution between processors of the claster computers. Therefore, Fig. 17.1
shows a set of possibilities for the neurocomputer implementation with the reasonable
selection of the problems adequate to the neural network logical basis.

Fig. 17.1.
Logical structure of the selec-
tion procedure

349

17.4
The General Structure of the Program Package for Problem Solution
in the Neural Network Logical Basis

The foundation of the unified method for the problem solution in the neural network
logical basis is the method of the adaptation algorithm synthesis for the multilayer neural
networks. According to this method, the following adjustment algorithms for the mul-
tilayer neural networks were developed:

Neural networks for the general performance mode (learning, self-learning, learning
with the supervisor of the finite qualification, etc.);

Neural networks for the wide class of the primary optimization criteria (minimum of the
average risk function, average risk function under the constraints on its components,
maximum of the a priory probability, maximum of the a-posteriori probability, etc.);

Neural networks for the wide class of the secondary optimization functionals (gradient,
gradient with memory, combination of the gradient procedure with the random search
for the initial condition selection, etc.);

Neural networks for the different multilayer neural network structures (with the arbi-
trary number of neuron layers, with complete sequential, cross and feedback connec-
tions, etc.).

The following principles form the basis of the neural network solution algorithm
development:

� The refusal from the known neuro-packages of neural network programs and para-
digms;

� The synthesis of the neural network algorithms adequate to each particular math-
ematical problem;

� The synthesis of the neural network algorithms and structures of the tuned neural
networks without intrusion from the stated problem but with flexible and desired
structure selection aimed at the improvement of the problem solving quality.

We consider the problem solving quality as the precision of the solution and the
operation speed determined, in particular, by the number of iterations in the adapta-
tion procedure of the neural network.

The general methods of the mathematical problem solution in the neural network logical
basis were described in [17-2]. The neural network solution algorithms are represented in
this study in the whole structure defined by the methods of synthesis of the multilayer
neural networks that include the following stages of the problem statement:

� Physical, geometrical;
� Mathematical;
� Neural network.

17.4 · The General Structure of the Program Package for Problem Solution

350 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

The neural network problem statement includes in turn the following stages:

� Description of the initial data;
� Determination of the input signal x(n) of the neural network;
� Generation of the primary optimization functional of the neural network for the

solution of the problem;
� Determination of the output signal y(n) of the neural network;
� Determination of the desired output signal of the neural network;
� Determination of the neural network error signal vector for the solution of the problem;
� Generation of the neural network secondary optimization functional through the sig-

nals in the system;
� Selection of the secondary optimization functional extremum search method;
� Analytical determination of the transformation performed by the neural network;
� Selection of the particular structure of the neural network;
� The search of the analytical expression for the gradient of the secondary optimiza-

tion functional through the adjustment parameter;
� Generation of the neural network adjustment algorithm for the solution;
� Selection of the initial conditions for the neural network adjustment;
� Selection of the typical input signals for the verification of the solution procedure

for the problem;
� Development of the plan of experiments.

The aforementioned stages of the neural network solution algorithm synthesis deter-
mine the complete circuit diagram of the user work with the program package (Fig. 17.2).

Figure 17.2 (see p. 372/373) represents the current version of the general structure of
the program package for the solution in the neural network logical basis. This structure
is the pathway for the development of the neural network solution algorithm and can
serve as the basis for the design of the menu for the considered program package.

After the designer’s decision to use namely the neural network solution algorithm,
he can use the two following types of neural networks:

� Neural network with flexible (variable) structure [17-1];
� Neural network with the fixed structure.

The author believes that there is no third possibility at the present time.
It must be mentioned that in the Russian school of the neural network solution

algorithms, the process of the solution for both possibilities was considered as some
dynamical process with the use of some significantly nonlinear neural network envi-
ronment. This approach was formed on the basis of the general theory of adaptive
search and analytical systems.

17.5
Multilayer Neural Networks with Flexible Structure

The main advantage of the multilayer neural networks with flexible structure is the
absence of the obligatory a priori information about the neural network structure (the

351

number of layers and the number of neurons in the layers). This structure is formed
in the process of the neural network adjustment, i.e., in the process of the solution. The
obtained structure indirectly reflects the problem complexity. The more complex the
trained neural network is (the number of layers and the number of neurons in the
layers), the more complex the solution is.

The neural networks with flexible structure [17-1], [17-2], and [17-3] can be effi-
ciently used for different types of the input feature space:

� Binary, when the variables of the input N-dimensional vectors are represented by
the set of zeros and units;

� Κ-digital variables of the N-dimensional vector;
� Real-valued variables of the N-dimensional vector.

The multilayer neural networks with flexible structure were mostly used for the
case of the N-dimensional space of the real-valued feature when the input information
represents the continuum signals from some fixed time interval.

The limitation of the multilayer neural networks with flexible structure is the fact
that they can be used only for the solution of two problem classes:

� Recognition of two classes of patterns;
� Recognition of Κ classes of patterns (with generation of κΚ neural networks, rec-

ognizing each κ-th (κ = 1, …, Κ) class from the other one);
� Self-learning (clasterization), when the input sample presented for the clasterization

without the supervisor instruction about belonging to the different classes is the
sample of the first class for the multilayer neural network with flexible structure,
whereas the output of the white noise generator is the sample of the second class.

It is evident that the number of problems solved with the help of the multilayer
neural networks with flexible structure will increase in the future.

In the procedure of the adjustment of the multilayer neural network with flexible
structure, the first layer is trained at the beginning of the procedure when the required
number of neurons H1 of this layer is determined. Thereafter, the results of the first
layer adjustment are used for the adjustment of the second and third layers. The num-
ber of layers in the solution of the two-pattern recognition equals 2 or 3 and only the
single neuron is at the output.

Then the stages of development of tests for verification of the trained neural net-
work quality are executed. Thereafter, the plan of experiments is elaborated for the
investigation of the quality of the neural network performance. These stages are com-
mon for the multilayer neural networks with flexible structure, and they will be con-
sidered below after the consideration of the neural networks with fixed structure.

At the end of the section dedicated to the multilayer neural networks with flexible
structure, one must notice that at the present time, these neural networks are used for
the solution of the problems of a relatively narrow class including the recognition of
patterns of two or Κ classes and clasterization (self-learning). There is a potential
probability of using such neural networks for the solution of wider classes of the prob-
lems (function approximation and extrapolation, etc.).

17.5 · Multilayer Neural Networks with Flexible Structure

352 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

17.6
Neural Network with Fixed Structure

According to author’s opinion, in contrast to the neural networks with flexible struc-
ture, the neural networks with the fixed structure can be used for the solution of any
problems in the case that they satisfy the aforementioned selection criterion No. 3. The
restriction on the neural network structure selected a priori is the payment for this
universalism in the problems that can be solved. The neural network structure in this
case is one of the components of the vector that includes all the types of the a priori
information that are required for the neural network solution algorithm development.
The complete description of this vector will be given in the conclusion of the present
study. The stages of the neural network solution algorithm development with the help of
the neural networks with fixed structure are given below. These stages are the following:

1. Generation of the input signal including the formation of the supervisor instructions;
2. Generation of the output signal;
3. Formation of the primary optimization functional;
4. Generation of the open neural network structure;
5. Formation of the secondary optimization functional;
6. Formation of the search algorithm for the secondary optimization functional extremum;
7. Formation of the algorithm for the adaptation of the coefficients of the multilayer

neural network with fixed structure;
8. Development of tests for the verification of the performance quality of the trained

neural network;
9. Elaboration of the plan of experiments for the verification of the performance quality

of the trained neural network.

The last two items in this list are common for the neural networks of flexible as well
as fixed structures.

17.6.1
Generation of the Input Signal of the Neural Network

This problem is not trivial and sometimes it is not single-valued but has several solu-
tions. It can be relatively simply formulated in the pattern recognition tasks where the
patterns are already represented by the vectors of features. However, in the particular
problems of signals or pattern recognition, the generation of these patterns is a rather
complicated problem. This problem is complicated even in such a transparent task as
the function extrapolation because of the introduction of the additional parameter
(filter memory) and the special method for the further generation of the supervisor
instructions for the neural network. Similar problems exist in the tasks of the neural
network equalizer development, systems of neuron control, etc.

The input signal of the neural network is the signal [x–(n), ε–(n)], where x–(n) is the
series of the input patterns, ε–(n) is the supervisor instruction about the patterns x–(n)
belonging to a particular class. Thus, both x–(n) as well as ε–(n) can be represented in
different ways with dependence on the particular problem statement. The series x–(n)

353

can be the vector of the real-valued variables, the function of some argument, some
vector-function, etc.; the series ε–(n) can be the real-valued variable that takes two, Κ
or a continuum of values, or it can be the vector or some vector function.

The probabilistic approach to the perception of the outside makes it necessary to
generate the input signal for the neural network in the form of the joint distribution
function f (x–, ε–). The detailed form of this function in the different particular cases can
be rather different. In the majority of the investigations of the neural network learning
algorithms, it is assumed that the supervisor qualification is complete, i.e., the super-
visor can exactly determine the belonging of the particular pattern to a given class.

17.6.1.1
About the Supervisor Qualification

However, in practice, the problems with the limited supervisor qualification also exist
and they are not sufficiently investigated.

The elaboration of the neural network algorithms adequate to the real conditions of
getting information for their adjustment requires an estimation of real supervisor
qualification. Due to this requirement, along with the widespread learning modes of
the multilayer neural network in which it is assumed that the supervisor is aware about
the patterns’ belonging to a particular class with unit probability, one must consider in
more detail three more learning modes introduced in [17-2]:

� Learning with the supervisor having zero qualification (self-learning, clasterization);
� Learning with the supervisor having finite qualification;
� Learning with the supervisor having negative qualification (the “harm” mode in

which the supervisor wittingly gives false information about the pattern belonging
to a particular class).

Neural networks in the self-learning mode. Clasterization. In spite of the long-term his-
tory of this problem, it remains still poorly investigated. The main task here consists in
the processing of the set of multi-dimensional vectors aimed at the selection, according
to a certain rule, of compact vectors’ groups termed clasters. The investigations in this
domain were not activated during last decades due to the absence of the socio-significant
problems in which the self-learning mode would play an important role. But today such
problems have begun to appear. From our viewpoint, the most significant one is the prob-
lem of information compression (compression of images, speech information, etc.) the
solution of which by the existent classical methods have achieved the real limits of its
capacity. In the scope of this problem, the aforementioned tasks that accompany the prob-
lem must also be further developed. Namely these tasks are the following:

� The typical input signals;
� The initial adjustment conditions;
� The control over the iteration procedure parameters, etc.

Neural networks in the mode of learning with supervisor having finite qualification.
Since the 1970s, when designing some specific systems of electrocardiogram recogni-

17.6 · Neural Network with Fixed Structure

354 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

tion, it has been noted that in the process of electrocardiogram archive verification, an
expert physician or a group of expert physicians cannot relate some electrocardio-
grams to a particular class of diseases with full reliability. The investigation of the
dynamics and of the results of the multilayer neural network adjustment as a function
of the real idea about supervisor qualification is an important subject for future inves-
tigations in the field of neural network theory.

Neural networks in the “harm” mode of learning. The neural network operation mode
in which the supervisor wittingly gives false information about the pattern belonging
to a certain class is completely unstudied. Probably this mode will be used under war
information conditions in order to estimate the information safety of the corporate
systems and regions with the help of multilayer neural networks in the case of infor-
mation about weapon utilization.

Notice that in the known scientific literature, two different operating modes of the
neural networks, namely the learning mode (the supervisor qualification is complete)
and the self-learning mode (the supervisor qualification is zero), are regarded inde-
pendently from each other. In the proposed methods, these two modes differ only by
the value of some parameter. The variation of this parameter allows for the consider-
ation of a lot of new modes.

17.6.1.2
Taking into Account A Priori Probabilities of the Classes’ Emergence

The necessity of taking into account the a priori probabilities of the classes’ emergence
appears in different practical tasks. A typical example is the task of letter recognition
in the printed text of the scanned document in the case when the probability of any
letter appearance is known. The possibility to use the a priori probabilities of the classes’
emergence during the adjustment of the multilayer systems for image recognition is
investigated in the study [17-2]. This possibility was permanently used in that study
for the construction of the different particular systems. However, this technique re-
quires additional investigation in order to use it efficiently.

17.6.1.3
Continuum of Classes

The general representation of the input signal for the multilayer neural networks of
two, Κ and continuum pattern classes in the learning mode with the limited supervi-
sor qualification allows for the use of the neural networks in the problem of quantita-
tive estimation of the object state described by the signal x–(n). In this case, the series
ε–(n) is real-valued and varies in some limited interval.

17.6.1.4
About the Nonstationarity of the Input Signal

In the majority of the practical problems, the neural network input signal is consid-
ered to be stationary with some unknown and complex distribution function f (x–, ε–).

355

However, problems with the non-stationary input signal f (x–, ε–) exist, and it must in-
fluence the characteristics of the multilayer neural network adjustment algorithms. In
the learning mode, the pattern distribution functions of each class are time depen-
dent. In the self-learning mode (clasterization), both coordinates of the classes’ centers
as well as their characteristics can be time dependent.

17.6.2
The Multilayer Neural Network Output Signal Generation

The output signal of the neural network is formed according to the type of solved
problem. This signal can be the binary value (or the vector of the binary values),
Κ-digit value (or the vector of Κ-digit values) and real-valued variable (or the vector
of the real-valued variables). The number of neurons in the output layer of the neural
network and the form of the activation function of the neurons in the output layer are
determined according to the output signal type. In the particular case, the output sig-
nal represents some spatial argument. The output layer in this case represents the neuron
continuum with the real-valued output signals rather than the discrete set.

17.6.3
Formation of the Primary Optimization Criteria

The basis of the multilayer neural network primary optimization criteria includes the
following items:

� The assumed probability concept of the external world;
� The consideration of the external world as a significantly nonlinear one.

Namely this basis allows for the formation of the primary optimization criterion as
the main goal that the designer wants to achieve in the development of the multilayer
neural network with the adaptation algorithm for the particular solution. The prob-
ability criteria described below are valid for the relatively wide class of problems, but
this class can be further enlarged.

The recently developed methods for the multilayer neural network adaptation algo-
rithm synthesis can be used for the following primary optimization criteria:

� min R = p1r1 + p2r2 of the average risk function;
� min p1r1 under p2r2 = const.;
� min R for K and continuum of classes;
� The aforementioned variants for two Kp and continuum of classes;
� Different modifications of the aforementioned criteria, for example, the criterion of

maximum of the a-posteriori probability.

All these criteria can be used for the solution of the particular practical problems. One
must consider the aforementioned criteria for the neural network synthesis in the proce-
dure of the formation of the error-cost matrix. This matrix is used to make the decision that
the pattern of one class belongs to another class (the error function in the continuum case).

17.6 · Neural Network with Fixed Structure

356 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

As a rule, in the known studies, the error-cost matrices that emerge in the course of
the assignment of the particular pattern to a particular class are assumed to be diago-
nal. However, it is not often in agreement with reality. For example, in the case of the
neurocomputer design for the mine recognition system with the use of the geolocator,
in the matrix of costs for errors

the coefficients l21 (the cost for the error to consider the mine as an irrelevant object)
and l21 (the cost for the error to consider the irrelevant object as a mine) cannot be
equal in principle, and it must be taken into account during the adjustment of the
multilayer neural network in a similar way to how it was carried out in the studies
[17-2, 17-3].

The often used criterion of the minimum of the mean-root square error is the primi-
tive and particular case of the aforementioned criteria.

17.6.4
Selection of the Open Neural Network Structure.

The a priori information about the neural network structure that is used in this stage
of the neural network synthesis is the payment for the solution universalism. It is
necessary to mention two main classes of the neural network structure that are used
at the present time for the solution:

� Neural networks with complete sequential connections;
� Neural networks with complete feedback connections.

The selection of the neural network structure results in the following:

� The selection of the number of neuron layers;
� The selection of the number of neurons in all the layers except the last one (the

number of neurons in the last layer is selected in the stage of the generation of the
neural network output signal).

� The selection of the activation function in all the neuron layers except the last one
(the activation function for the last layer is also selected in the stage of the genera-
tion of the neural network output signal).

17.6.5
Remarks about the Selection of the Open Neural Network Structure
that is Adequate to the Class of Solution Tasks

In the majority of the scientific literature, the structure of the open neural network is
introduced by the authors without any explanation. The main idea of the Russian works
in this field is the development of the multilayer neural network adjustment algorithms
adequate to the particular solution.

357

If the class of solution tasks allows one to define the class of effective neural net-
work structures adequate to these tasks, then the elaboration of the special methods
for the coefficient adjustment namely for this class of the neural network structures
will increase the adaptation effectiveness for the task solution of this specific class. We
describe below some variants of the neural network structures and the task classes
adequate to them.

Neural networks with random connections. In his classical monograph, Rosenblat sug-
gested introducing the random connections between the retina and the first layer of
the multilayer neural network. Under the proper increase in the number of neurons,
the systems’ reliability, related to the possible break-down of several neurons, increases.
At present and in perspective of the development of microelectronic technology, the
number of emulated neurons inside the super-large-scale integration on the board and
in the unit is quite large. And this number will continue to increase in the future. This
makes the variant of the random connections more and more necessary for implemen-
tation and research.

Neural networks with lateral connections. This specific type of connections between
layers in the multilayer neural network is interesting from the viewpoint of imple-
mentation of the invariance to the transformation group and has been poorly inves-
tigated. This is not only the invariance to the simplest affinity transformations, such
as rotation, transition and the change of the affinity ratio, but also the invariance to
the more complex transformations and the search of the connections’ structures
ensuring such invariance.

Cell-like neural networks. Cell-like neural networks are networks with a special topo-
logical structure that is adequate, in particular, to the task of pattern processing. In this
case, the natural task parallelism results in the natural parallelism in the structure
organization of the processing neural network. It is necessary to note that the cell-like
neural networks are adequate to the other tasks with natural parallelism; for example,
to the task of lattice generation and other tasks emerging at the solution of two-dimen-
sional differential equations in partial derivatives. When changing from 2D- to 3D-tasks,
the similar three-dimensional cell-like neural networks will be adequate to the tasks of
three-dimensional pattern processing, 3D-lattice generation, virtual reality, and the
solution of three-dimensional differential equations in partial derivatives.

Neural networks with feedback loops. The conception of the neural network with feed-
back loops in its classical sense was introduced in [17-2]. In this case, the feedback
channels are present in the structure of the adjusted multilayer neural network. These
channels are used for the transmission of the intermediate and output signals of the
neural network to the input channels of the previous layers through the delay lines
(for a given number of cycles). In the past, in the 1960s–1970s, it was considered that
such neural network structures could be used only for the design of the memory units
of a different functional destination. In the last ten to fifteen years, in foreign litera-
ture, the investigations of such neural networks, conventionally called recurrent ones,
were sharply activated. Moreover, the range of their application increased including

17.6 · Neural Network with Fixed Structure

358 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

the tasks of function approximation and extrapolation and the systems’ dynamic
control tasks. The neural networks with feedback (recurrent neural networks) are the
natural control devices and nonlinear controlled object identification devices in the
nonlinear systems of control. This is similar to the case of the linear systems of con-
trol in which Z-filter is the linear control device and Z-transformation is the formal
description of the controlled object. The neural network with feedback channels is a
typical example of how the structure of the adjusted multilayer neural network is
selected from the criterion of adequacy to the solution task but not from the simple
fact that an author is familiar with this or that neural network structure. In case of a
neural network with feedback channels, such additional problems for investigations
emerge as the determination of the degree of an equivalent decrease in the number
of neurons in the adjusted multilayer neural network after introducing the feedback
into its structure.

Neural networks with variable (flexible) structure. Since the 1960s, the multilayer neu-
ral networks with variable structure have been an effective tool in solving the task of
pattern recognition [17-1]. This is the variant of the adjustment algorithms whose neural
network structure (the number of neurons in the layers and the number of layers)
grows in the process of adjustment up to a certain value of the solution quality index.
The synthesis of the adjustment algorithms for the multilayer neural network with
variable structure is a promising technique to solve a wide range of practical tasks.

Continual neural networks. Continual neural networks [17-3] are used mainly in two cases:

� When the number of indications in the layer is large;
� When the signal or pattern processing is performed on a real time basis and with-

out preliminary quantification of the input information.

It is shown in [17-2] that the neural network adjustment algorithms under the con-
tinuum of indications or under the continuum of the neurons in the layer are the objects
of independent consideration and research.

Complex neural networks. The input signals and the weighting coefficients in the neu-
ral networks of this type are represented in the form of complex numbers, and all the
operations in the open neural networks and in the adjustment algorithms include the
complex numbers. This type of neural network is widely used for nonlinear signal
processing.

Interval neural networks. In this case, the input signals are determined not by their
values but rather by the interval to which they belong.

17.6.6
Remarks about the Activation Function Selection

The activation function selection is an important element of the neural network syn-
thesis procedure. More than ten types of the neuron activation function are described

359

in the known literature. Usually their selection is performed arbitrarily. In the studies
[17-1, 17-2] the activation function (2/π)arctg Bg was used, where g – is the analogous
output signal of the neuron. At the end of the 1980s to the beginning of the 1990s, the
sigmoid activation function became widely used. Wavelet and RBF networks are in
fact the neural network with the activation function of a particular type.

As a rule, the introduction of the new peculiar type of the activation function rep-
resents an attempt to make the neural network be more adequate to the solution task
in order to decrease the number of neurons and adjusted coefficients. However, the
desired goal is not always achieved because the task of the neural network adjustment
simplification is also desired, in addition to the task of the simplification for the cal-
culations of the output signal from the input signal. It is necessary to note that the
complication of the activation function results in the sufficiently sharp complication of
the adjustment algorithm due to the fact that the computational units for the activa-
tion function derivatives’ calculations are used in the adjustment algorithm.

On the whole, at present, the problem of selection of the neurons’ activation func-
tion in the multilayer neural network is far from its solution.

17.6.7
Selection of the Multilayer Neural Network Structure According to its Hardware
Implementation Technology

Some types of the open neural network structures are used due to the constraints of
the neural network hardware implementation technology. The following neural net-
works belong to this class:

� The neural networks with cross-connections (from the i-th to the i + 2,… layers) for
the decrease of the number of the realized neurons with some increase of the num-
ber of weight coefficients [17-2, 17-3];

� The neural networks that realize the feature continuum, the continuum of the neu-
ron number in the layer, etc., for the implementation of the analog-to-digital
neurocomputers and the signals and pattern processing [17-3];

� The neural networks with the weight coefficients of the finite digit capacity or with
the adaptation algorithms for the weight coefficient digit capacity control.

The problem of the weight coefficient digit capacity for processing signals and
patterns of different digit capacity representation is independent and very important.
The low digit capacity of the weight coefficients results in additional errors, and the
high digit capacity results in the high cost of the system and long processing time.
This problem was correctly solved in the implementation of the linear z-filter
hardware using very large-scale IC IMS A100 of the Inmos firm in 1986. These very
large-scale IC z-filters have the digit capacity that can be programmatically changed
in the range 2 … 16 with the corresponding decrease of the processing speed. In
nonlinear filtering, this digit capacity can be changed according to some complex
criterion. The problem of the adaptation algorithm development for the digit capac-
ity control using very large-scale IC is the problem of future investigation. It emerges
in the following domains:

17.6 · Neural Network with Fixed Structure

360 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

� The neural networks with the Boolean values of the weight coefficients for the sim-
plification of the implementation of the open neural network. This simplification
increases the number of neurons in the solution of the given quality;

� The neural networks without multiplier units because the multiplier units represent
the main difficulty of the hardware implementation;

� The neural networks with the limitations on the weight coefficients that must be
considered during the formal description of the open neural network structure and
during the adjustment algorithm development [17-2, 17-3].

The introduction of constraints on the open neural network structure is a very signifi-
cant problem in the analogous, analog-to-digital, optical, molecular and quantum
neurocomputers, as well as in the development of neurocomputers based on the single-
electron nanocircuits.

17.6.8
Generation of the Secondary Optimization Functional in the Multilayer
Neural Networks

In general, the primary optimization functional describes the neural network optimi-
zation criterion implemented in the hardware level. In contrast, the secondary optimi-
zation functional must be defined through the input and intermediate signals in the
multilayer neural network and through the formal description of the open neural
network structure. In the simple case, the goal of the secondary optimization func-
tional development is the development of the analytical transformation at the neural
network output that provides the second distribution moment of the signal correspond-
ing or equal to the primary optimization functional [17-2, 17-3].

17.6.9
Generation of the Algorithm of the Search Procedure
for the Secondary Optimization Functional Extremum

During the period of the 1960s and the beginning of the 1970s, neural networks were
considered as the particular case of the nonlinear multi-dimensional object with the
adjustable parameters implementing the adaptation self-learning control system.

In that period, the adaptation self-learning systems were developed mainly in the
following two domains:

� The search systems with artificial search oscillations of the adjustment parameters
for the following calculation of the optimization functional gradient;

� The analytical systems without artificial search oscillations of the adjustment param-
eters. The optimization functional gradient was calculated directly through the cur-
rent input and output neural network signals as in the particular object of control.

The analytical methods of self-learning were developed mainly in Russian investi-
gations, though in the theory and practice of the self-learning automated control, the
search methods were dominant.

361

The following four variants of the secondary optimization functional gradient search
were used before 1974:

� Gradient method;
� Gradient method with the time averaging of the gradient value estimation;
� Gradient method with the constraints on the neural network weight coefficients;
� Combination of the random selection of the search initial conditions and the gra-

dient procedure for the search and analysis of the local extremum values.

The experience showed the high efficiency of the analytical search methods when
the estimation of the secondary optimization functional gradient is performed by the
current output and intermediate signals.

The main problems considered in the field of the secondary optimization functional
extremum search are related to the fact that this functional is multi-extremal and it
exists in a rather multi-dimensional space of the neural network adjustment coeffi-
cients.

This is the reason that the modern neural network methods of the secondary opti-
mization functional extremum search require the development in different directions,
and some of them are described below.

17.6.9.1
The Control of Parameters in the Extremum Search Procedure
for the Multi-Extremum Secondary Optimization Functional

The gradient local extremum search procedure for the multi-extremum optimization
functional is a very important element of the multilayer neural network adjustment
algorithm. In the simplest case, the weight coefficient K* at the functional gradient is
determined in the empirical way in the process of solution of each specific task and is
left constant in the adjustment procedure. Since the 1960s, researches have tried to
make coefficient K* be variable (decreasing) with time during the adjustment proce-
dure. This was done in order to decrease the adjustment error in the steady state. But
this led to the significantly sharp increase in the adjustment duration (in the transient
process of the multilayer neural network adjustment). At present, a considerable part
of this problem remains open. Some efforts are made to control the value of the
coefficient K* by the current error value and by the gradient functional.

17.6.9.2
The Modifications of the Global Extremum Search Algorithms for the Multi-Extremal
Secondary Optimization Functional

The secondary optimization functional in the multilayer neural network is multi-
extremal by definition. The reasons for this are the following:

� The input signal is rather complex (for example, the distribution of patterns aggre-
gate in the multi-dimensional space of indications at the patterns’ recognition task
solution is multi-modal);

17.6 · Neural Network with Fixed Structure

362 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

� The variants of the task solution are multivariate;
� The open neural network structure is flexible.

The search methods for the global extremum (or, in addition, for several local ex-
trema) are at present only in the stage of formation.

One of such methods related to the set of ejections of the random initial conditions
in the space of the neural network weight coefficients and to the search of the global
extremum for the secondary optimization functional was presented and investigated
in [17-2]. The convergence of the presented procedure by the number of initial condi-
tions under the fixed number of local extrema was shown there. Some methods of this
procedure resulting in the time decrease for the global extremum search are known.
The method of “annealing” is an example.

The method of “annealing” can be used in the adjustment process in the following
way. The independent variables (the neuron weights in the case of the neural network)
undergo random changes. The values of the minimized neural network’s functional
are stored for each changed set of variables, and then the best set is selected. A rela-
tively large range of the random-value generator that changes the neuron weights is
taken at the beginning of the process. The set of the variables’ values (weights) corre-
sponding to the best functional value is then selected after several changes. And this
set of variables is then taken as the initial one for the following procedure of random
changes but with the decreased range of the random-value generator.

The gradient algorithm is effective in finding the local minimums in the case of
neural network weight adjustment during the learning procedure. In general, the mix-
ture of the “annealing” and gradient methods is the most effective algorithm. First, the
“annealing” algorithm is used to find the initial weights. The gradient descent algo-
rithm is used thereafter to bring the system to the nearest local minimum. Then the
“annealing” algorithm is used at this point again in order to leave this local minimum.
These stages are repeated until one has the possibility to leave the recurrent local
minimum. In the latter case, it can be considered that the global minimum is obtained.

17.6.9.3
Filtering and Extrapolation of the Signal corresponding to the Estimation of the
Secondary Optimization Functional Gradient

As a rule, the decision to change the weight coefficients in the known neural network
adaptation algorithms is taken in each operation cycle according to the results of one
single pattern passing through the network. The experience of using the filter with the
memory mn ≠ 1 [17-2] in the adjustment circuit showed the increase in the adjustment
effectiveness for stationary and non-stationary patterns at the multilayer neural net-
work input. Some attempts to speed up the learning process through the application of
the weight coefficients’ extrapolation procedure during the neural network adjustment
are known from the literature. The filter synthesis in the weight coefficients’ adjust-
ment circuit is poorly investigated though it is a perspective algorithm in the general
procedure of the multilayer neural network synthesis.

The following parameters must be determined in the process of the multilayer neural
network adjustment algorithm:

363

� The filter memory;
� The filter type according to the a priori selected form of the neural network input

signal nonstationarity.

17.6.9.4
The Multilayer Neural Network Adaptation Algorithms with the Adjustment
of the Coefficients for the “Slope” of the Activation Function

When using the activation function with a variable “slope,” the separate neuron in the
neural network is described by the expression

It is seen therefore that there is no sense in organizing the adjustment circuit for the
coefficients B and ai at the construction of adaptation algorithms. In the neural network
consisting of the neuron set that contains a separate neuron subset or all the sets with the
activation function of the same “slope,” the organization of the adjustment circuit for the
coefficient B, as well as for the separate coefficients, is necessary in order to decrease the
whole adjustment duration, i.e., to decrease the time required for the task solution.

17.6.9.5
About the Use of the Second Derivative of the Secondary Optimization Functional

The multilayer neural network adjustment algorithms with the use of the second de-
rivative of the secondary optimization functional were developed at the end of the
1960s. The works of the 1990s did not contribute significantly in this field. However, at
the beginning of the 1970s, the experiments using the second derivatives showed that
the noise level in this case is very high and the use of the second derivative becomes
inefficient. At present, this situation is the same.

17.6.9.6
Selection of the Initial Conditions for the Gradient Procedure of the Extremum
Search of the Secondary Optimization Functional

The choice of the initial weight coefficients of the adaptive neural network is an im-
portant condition to speed up the task solution procedure. Therefore, from our point
of view, the widespread approach to choose the zero values for the weight coefficients
or the random values with the uniform distribution in the given turn-down as the
initial conditions is incorrect.

Even during the solution of the problem of recognition of two pattern classes, it was
clear that the initial weight coefficient values must be selected by generating the dividing
surface configuration, implemented by the neural network, in the form of a multidimen-
sional “chess-board” with the uniform distribution of “black” and “white” squares. Each
color corresponds to the first and second classes of patterns in the physically implemented
multidimensional space of indications [17-2, 17-3]. Such a multidimensional “chess-board”
is formed by the hyperplanes corresponding to the neurons of the first layer.

17.6 · Neural Network with Fixed Structure

364 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

The initial weight coefficients of the adaptive neural network can also be chosen as
the weight coefficients of the neural network with variable structure after its learning
stage termination. As it was mentioned above, this is possible only for the pattern rec-
ognition solution and for clasterization (self-learning) with the developed adjustment
algorithms for the multilayer neural networks with flexible structure.

The problem of function approximation (extrapolation) is an example of the effective
solution of the problem of the initial weight coefficients’ selection for the multilayer neural
network adjustment. In this case, assuming that the neural network is an effective nonlinear
filter (extrapolator), it is expedient to choose the weight coefficients of the neural network
implementing the equivalent nonlinear filter or extrapolator as the initial conditions.

Hence, the choice of the initial conditions for the multilayer neural network adjust-
ment possesses the following properties:

� It is specific for each specific task that is solved by the neural network;
� It is aimed at the acceleration of the adjustment process (and therefore at the accel-

eration of the task solution) by putting the neural network into the domain of the
global extremum of the secondary optimization functional;

� As a result, it allows one to increase the equivalent ratio between productivity and
the cost during the specific task solution.

The examples of the particular solutions for the problem of the initial condition
choice are given in [17-7].

17.6.10
Formation of the Adaptation Algorithms in the Multilayer Neural Networks

The base for the formation of the adjustment (adaptation) algorithms in the multi-
layer neural networks includes

� The analytical expression for the secondary optimization functional and the analytical
expression for its first derivative or the estimation of the sign of the first derivative;

� The analytical expression for the secondary optimization functional extremum
search with the use of its first derivative expressed through the input and output
signals of the adjusted multilayer neural network.

17.7
Verification of the Adjusted Multilayer Neural Network

The elaboration of the special test system for the neural networks with different structures
is an important element for the increase in the reliability of prospective neurocomputers.
The development of such tests for the adjusted neural network is a branch of the perspec-
tive investigations in the neural network theory domain. This section relates both to the
neural networks with variable structure as well as to those with fixed structure.

The elaboration of the typical neural network input signal classes is necessary for
the objective test of the adaptive neural network performance quality. Furthermore,
the system of tests is always specific for the specific solution task.

365

The class of signals with Laplace transformation

is a typical example of the neural network input signal class. In this case, the test of the
control system performance quality is carried out by the feed of the corresponding
typical signals (δ -function, unit step, linear signal, etc.) to the system input with the
following analysis of the transient process and of the error in the terminal steady state
(the order of the control system astaticism).

The typical neural network input signal class must always possess some parameter
characterizing the complexity of the solution task. This parameter is apparent in the
aforementioned example. As far back as the beginning of the 1960s, for the pattern
recognition tasks oriented onto the performance with the random samples of complex
unknown multi-modal distributions, the random samples of multi-modal distributions
were suggested as typical neural network input signals. Hence, the distribution modes
represented a normal distribution and the mode centers were situated along the
hyperbisector of the multidimensional space of indications alternating for each class
[17-2, 17-3]. Two parameters were taken as the solution task complexity indexes, namely
the number of the distribution modes and the variance of each separate mode. The
indications of the modes belonging to the specific class in the case of a self-learning
neural network performance mode were absent.

The selection of the typical neural network input signal class is an important task for
the researcher who desires to demonstrate, more or less objectively, the advantages of his
neural network algorithm elaborated for the solution of the specific formulated task. The
typical neural network input signal class must always possess some parameter characteriz-
ing the complexity of the solution task. This parameter is apparent in the aforementioned
example. As far back as the beginning of the 1960s, for the pattern recognition tasks ori-
ented onto the performance with the random samples of complex unknown multi-modal
distributions, the random samples of multi-modal distributions were suggested as typical
neural network input signals. Hence the distribution modes represented a normal distri-
bution, and the mode centers were situated along the hyperbisector of the multidimen-
sional space of indications alternating for each class [17-2, 17-3]. Two parameters were
taken as the solution task complexity indexes, namely the number of the distribution modes
and the variance of each separate mode. The indications of the modes belonging to the
specific class in the case of a self-learning neural network performance mode were absent.

The selection of the typical neural network input signal class is an important task for
the researcher who desires to demonstrate, more or less objectively, the advantages of his
neural network algorithm elaborated for the solution of the specific formulated task.

17.8
Elaboration of the Plan of Experiments

All the undefined parameters of the neural network and the input and output test signals
must be taken into account during the elaboration of the plan of experiments. These
parameters must be ordered and represented in the form of the experimental plan with
the elaborated neural network solution algorithm.

17.8 · Elaboration of the Plan of Experiments

366 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

The problem of the small-size sample of the input signal presented to the neural
network for its training must be considered separately. This problem is a significant
problem in the large number of information processes aimed at decision making. This
problem was also significant in the process of standard statistical decision making.
However, in this case, the strict limitations related to the small-size sample made it
necessary to take into account the a priori information concerning the distribution
function of the processed signals. The neural network methods of the information
processing were elaborated namely because this a priori information is absent and
therefore the distribution functions can be very different, complex or unknown.

The problem of the small-size sample is very significant in the following two cases:

1. When the number of measurements is small and cannot be increased in principle;
2. When the number of measurements is increasing but the decision must be made as

far as the measurement results are obtained.

We present below the part of the technique for planning of experiments. This part
deals with the specific multilayer neural network performance under the conditions of
the small-size learning sample for the adjustment of the multilayer neural network
with fixed structure:

1. The procedure of multiple repetition of the sample with a relatively small size on
the input of the neural network is an effective technique to increase the adequacy
of decision making by the multilayer neural network. The adequacy of decision means
the estimation of the correct recognition probability, the mean-square error of the
function approximation, or any other evaluation depending on the task that the
multilayer neural network solves;

2. One of the possible ways the neural network is implemented for the property of
generalization by the similarity is the artificial generation of additional samples on
the neural network input. Moreover, the additional samples must possess the math-
ematical expectation in the form of initial small-size sample components, and they
must have a different variance. With that, the value of the variance may change in
the process of execution in the plan of experiments;

3. The initial conditions’ selection at the multilayer neural network adjustment is a
very important problem that actively influences the speed of computations in the
neural network logical basis (the speed of the adjustment algorithms’ convergence
with one of the local extrema or with the global extremum of the optimization
functional) and the quality of the task solution. Under the different methods of the
initial conditions’ selection, each time different adjustment results will be obtained.
Averaging across the results will give thereafter, at the limited specified sample,
additional information about the neural network performance quality. In this case,
the initial conditions can be taken either randomly (by the initial weight coefficient
generation through the random-value generator) or by calculation across the lim-
ited sample with the help of the adjustment algorithms with variable structure;

4. The division of the initial sample into the smaller samples, the multilayer neural
network adjustment with the use of technique mentioned in points 2 and 3, and the
results’ averaging across the set of the mentioned smaller parts of the initial sample

367

can be regarded as an additional method to analyze the neural network generaliza-
tion properties;

5. The resultant stage of the suggested technique is the stage of the averaging of the
adjustment results across the set of variants mentioned in points 2, 3 and 4. The
obtained distribution function for the quality index will have some mathematical
expectation and variance. The mathematical expectation of the quality index is the
main characteristic of the multilayer neural network operation with the sample of
the ultimate object. The value of the quality index variance is the evaluation of its
uncertainty. At the high value of the obtained variance, one must undertake some
efforts that would result in the improvement of the solution quality. One of such
possible efforts consists in the increase of the structure complexity of the multilayer
neural network.

One can use methods mentioned in points 2 and 4 when operating with the small-
size sample in the case of the multilayer neural network with flexible structure.

The presented technique is an illustration of the possibility to partially compensate
the shortage of the experimental information by the additional computational resource.
This technique can be used not only for the recognition pattern or function approxi-
mation task solutions under the relatively small number of the experimental observa-
tions but also for the general task solutions.

17.9
About the Importance of the Unification of Designations in the
Process of Synthesis of the Neural Network Adjustment Algorithms

The investigations in this field show that the understanding of the essence of the stud-
ies and of the peculiarities in the different algorithmic approaches will be much more
transparent in the case of some unification of designations in the scientific literature.
We present below some version of such a unification.

Designations

x – the neural network input signal;
N – the dimensionality of the feature space;
w – the neural network weight coefficient;
i – the number of the feature (i = 0, …, N);
g – the analogous output signal of the neuron (the input signal of the unit imple-

menting the activation function after the multi-input summation unit);
y – the output signal of the neuron or the neural network;
K – the number of classes;
Kp – the number of solutions;
f (g) – the activation function;
H1 – the number of neurons in the first layer;
W – the number of layers in the multilayer neural network;
Hw – (w = 1, …, W) – the number of neurons in the m-th layer of the multilayer neu-

ral network.

17.9 · Importance of Unification of Designations in the Synthesis of Neural Network Adjustment

368 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

17.10
About Myths in Neural Network Theory

Fuzzy logic is one of the bases of neural network theory development. The neural
network is one of the most efficient methods for the implementation of the fuzzy
logic concept.

Along with that, different scientific fields emerge in neural network theory develop-
ment. But the detailed analysis shows that these fields are only some narrow and par-
ticular case of the separate aspects of neural network theory. Therefore, we propose
discussing some of the definitions, such as

� Genetic algorithms;
� Support vector machines;
� Wavelet networks;
� RBF-networks;
� Principle component analysis;
� Evolutionary programming.

The attempts to pull out some parts of the neural network theory and to make them
independent only weaken these parts. The aforementioned list shows the examples of
such neural network theory divisions.

The same particular interpretations of the neural network theory are the classic
methods of the mathematical statistics and methods of the potential functions that
were actively discussed at the end of the 1960s and the beginning of the 1970s.

The main idea consists in the proposition to transform the earlier suggestions con-
cerning the “emotional” definition of the algorithm and the similar suggestions that will
be made in the future for some vector of quantitative parameters with the corresponding
quantitative explanation of why the new algorithm changes this or that parameter.

Such a qualitative description can be made for the various known neural network types:

� Kohonen networks;
� Elman networks;
� Hopfield networks;
� ART neural network, etc.

In this case, the quantitative limitation of the different neural networks will be
immediately seen for their users.

17.11
Conclusion

In this section, we represent the most optimal, from our point of view, design cycle for
the neural network solution algorithms that can be implemented at present.

The number of investigations in the domain of the neural network theory is in-
creasing. This strengthens the requirements for the comparison and the detailed clas-
sification of the different neural network synthesis algorithms. It must be done by means

369

of the comparison of the a priori information on the neural network synthesis in each
particular case.

1. A priori characteristics of the neural network “supervisor instruction” space, i.e.,
the number of the pattern classes (two, Κ, continuum);

2. A priori characteristics of the neural network input signal nonstationarity;
3. The two-argument function of the “supervisor qualification” of the neural network.

The arguments are the indexes of the corresponding classes;
4. The function of the “supervisor’s own opinion” about its abilities. This is also the

two-argument function with the arguments that are the indexes of the correspond-
ing classes;

5. A priori probabilities of the classes’ emergence;
6. A priori characteristics of the neural network solution space (two, Κp, continuum of

solutions);
7. The class of criteria for the primary neural network optimization;
8. The function of losses that emerges when one pattern system is erroneously taken

as the pattern system belonging to another class;
9. A priori information about the conditional distribution function f '(x/ε);
10. A priori information about the fixed structure of the open neural network during

the development of the neural network with fixed structure that is tuned through
the closed-cycle procedure;

11. A priori information about the class of structures during the development of the
neural network with flexible structure;

12.A priori information about the difference between the primary and secondary op-
timization functionals during the development of the neural network with fixed
structure that is tuned through the closed-cycle procedure;

13.A priori information about the method of searching of the secondary optimization
functional extremum;

14.A priori information about the limitations on the adjustment coefficients;
15.A priori information about the procedure of selection of the elements of the para-

metric matrix K* of the search system for the secondary optimization functional
extremum;

16.A priori information about the search oscillation parameters in the case of when
the neural network adaptation algorithm cannot be designed in the analytical form;

17.A priori information about the initial conditions for the adjustment procedure;
18.A priori information about the class of the typical neural network input signals;
19.A priori information about the degree of complication of the open neural network

structure on each iteration step and about the form of this complication.

The objective comparison between the multilayer neural networks of different types
must be performed through the comparison of the a priori information about their
design and the comparison of their performance quality with the typical and real in-
put signals.

Table 17.1 shows the comparison of the neural network synthesis procedures de-
scribed in [17-2, 17-3] and in the large number of American studies concerning the
error back-propagation methods.

17.11 · Conclusion

370 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

37117.11 · Conclusion

372 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis
Fi

g
. 1

7.
2.

D
es

ig
n

cy
cl

e
st

ru
ct

ur
e

fo
r

th
e

ne
ur

al
 n

et
w

or
k

ap
pl

ic
at

io
n

37317.11 · Conclusion

374 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

Figure 17.2 represents the structure of the neural network synthesis for the solu-
tion algorithms. This structure was developed for several years. On the one hand,
it includes the results of the large number of investigations that are represented by
their authors as “a new method…” or “original approach…”. However, these ap-
proaches are rather particular. On the other hand, this structure is incomplete and
represents only the additional line in the neural network theory that might not be
known to the author.

However, the author does not consider each new study that comes in his sight, from
the point of view reflected in this figure. And he asks himself if this new study might
be the particular case of some already known works. This was the reason for writing
the aforementioned section “About Myths in the Neural Network Theory”. At any rate,
the author conceives all the works that further develop the structure shown in Fig. 17.2
with great satisfaction.

When considering the neural network solution algorithms, the problem of a so-
called “false” statement of the mathematical problem often arises. Let us explain it in
some examples. The solution of the systems of the linear algebraic equations is some-
times considered as the problem of the matrix inversion in the classical mathematic
approach. However, the neural network algorithms for the solution of these two prob-
lems are very different. And the problem of the matrix inversion becomes not neces-
sary, i.e., this problem becomes “false”. A similar situation is observed in the problem
of solution of the systems of the ordinary nonlinear differential equations. These equa-
tions are the formalized description of the behavior of physical objects. The use of the
neurocomputers eliminates both the necessity of the formalized description of the
physical objects as well as the necessity of the solution of the systems of the ordinary
nonlinear differential equations. In this case, the formalized description of the physical
objects is performed by the use of the neural networks of different structures. Namely
due to this reason, the neural network control decreases significantly the interest in the
solution of the systems of the ordinary nonlinear differential equations.

Neuromathematics establishes some new problems for computational mathematics
that either were not solved before or were solved insufficiently. Some of these problems
are the following:

� The initial condition selection;
� The universalization of the different problem solution algorithms;
� The selection of the classes of typical input signals for the test (verification) of the

neural network performance quality;
� The selection and rejection of the “false” problem statements;
� The investigation and dynamic control of the solution procedure;
� The problem of the number of solutions related to the multi-extremum properties

of the optimization functional.

The development of the neural network solution algorithms allows for the efficient
selection of the initial conditions as well as for the use of several methods for the
dynamic control of the problem solving procedure including the control of the rate
of convergence:

375

� The control of parameters (the modification selection) of the iteration procedure
for the multi-extremum optimization functional search in the problem solving pro-
cess;

� The filtering and extrapolation of the signal corresponding to the estimation of the
optimization functional gradient in the problem solving process;

� The adjustment of the multilayer neural network’s activation function slope;
� The selection and analysis of the special structures of the neural networks adequate

to the class of the solved problems (cellular-like or continuum neural networks, neural
networks with lateral, random and feedback coupling, neural networks with flexible
structure).

The problem of the number of solutions in the algorithms development is very
important. In the case of the neural network algorithms, this problem is related to the
multi-extremum characteristics of the optimization functional and to the possibility
of the formation of the multi-extremum functional through the variation of the open
neural network structure.

The neural network theory at the present time represents an independent field of
science. The main prospective lines of the neural network theory relate to the solution
of the complex practical problems. Some of them are the following:

� The continuum neural networks with the formal consideration of the con-
tinuum number of the input signals, of the input channels or of the neurons in the
layers;

� The investigation of the structural or parametric reliability of the neural networks
used in the neurocomputer implementation technology;

� The parallelizing of the neural network algorithms for the different types of the
commutation kernels in the super-neurocomputers;

� The neural networks that provide the invariance to the group of transforma-
tions (for example, the scale-invariance or signal-invariance, Lorentz invari-
ance, etc.);

� The analytical description of the neural networks with continuum adaptation using
the apparatus of the linear sequential Gill machines, etc.

Unfortunately, perhaps due to poor awareness, a large number of “home-bred” neural
network algorithms emerge. The achievement of the first positive results on the basis
of these algorithms can provoke an illusion about the “completeness” of the neural
network theory. However, this theory is only in the initial phase of its development.
Evidently, in the present work, the entire list of neural network theory problems is not
all enumerated. The gradual progress in this domain must improve the solution of the
vast number of existent problems as well as pose new problems. We consider that the
neural networks will be the foremost essential tool for the investigation of complex
problems of the modern world.

The present study was performed in the framework of the state agreement
with the Federal Agency for Science and Innovations in the development works
No. 02.435.11.1003.

17.11 · Conclusion

376 Chapter 17 · Methods of Problem Solving in the Neural Network Logical Basis

References

[17-1] Galushkin AI (1970) Multilayer systems of pattern recognition, Moscow: MIEM
[17-2] Galushkin AI (1974) Synthesis of multilayer systems for pattern recognition. Moscow: “Energiya”
[17-3] Galushkin AI (2000) Neural network theory, Moscow: IPRGR
[17-4] Neuromathematics (2002) V. 6. series “Neurocomputers and their application”. Moscow:

Radiotechnika
[17-5] Galushkin AI (2003) Neuromathematics (problems of development). Neurocomputer 1
[17-6] Galushkin AI (2004) Neurocomputers and their application in China on the boundary of

millenniums. Moscow: Goryatchaya liniya – Telekom
[17-7] Galushkin AI (2005) Generation of the initial conditions for the fastening of neural network

coefficients tuning in the optimization tasks. Neurocomputer 5

Conclusion

Neural network theory is an independent branch of science at present. The main per-
spective lines of the neural network theory relate to the solution of complex practical
problems. The following fundamental problems can be mentioned:

� Continuum neural networks with a formally considered continuum of input chan-
nels, neurons in the layers, etc.;

� Neural network reliability;
� Neural networks providing the invariance to the group of transformations (for

example, to the shift, rotation, patterns or signal scaling);
� Analytical description of neural networks with adaptation circuits using technique

of Gill linear sequential machines, etc.

The number of scientific investigations in the field of neural network theory is in-
creasing. That is why the analytical approach is required for detailed classification of
different methods for the neural network synthesis problem solutions. And the most
important domain for the application of such approaches is the selection of the a priori
information required for the multilayer neural network synthesis in each particular case.

1. A priori characteristics of the neural network teacher instruction space – the num-
ber of pattern classes (2, K, continuum);

2. A priori nonstationary characteristics of the neural network input signal;
3. Neural network teacher qualification function of two arguments representing the

indexes of corresponding classes;
4. Function of “teacher’s slant about his capabilities” of the neural network. This is

also a function of two arguments representing the indexes of corresponding classes;
5. A priori probabilities of classes’ appearance;
6. A priori characteristics of the neural network solution space (2, Kp, continuum);
7. Class of the neural network primary optimization criteria;
8. Function of losses that take place when the system considers a pattern to belong to

a wrong class;
9. A priori information about conditional distribution functions f ′(x/ε);
10.A priori information about the fixed structure of the open-loop neural network in

the design of the neural network with fixed structure adjustable in the closed cycle;
11.A priori information about the structure class in the design of the neural network

with flexible structure;

378 Conclusion

12.A priori information about the distinguishing features of the primary and second-
ary functionals in the design of the neural network with fixed structure adjustable
in the closed cycle;

13.A priori information about a search method for the secondary optimization func-
tional;

14.A priori information about the presence and form of the constraints imposed upon
the adjustable coefficients;

15.A priori information about a selection method for the coefficients of the parametric
matrix K* of the secondary optimization functional extremum search system;

16.A priori information about the search oscillation parameters in the case of when
the neural network adaptation algorithm cannot be designed in the form of the
analytical system;

17.A priori information about the initial conditions for the adjustment procedure;
18.A priori information about the class of the neural network’s typical input signals;
19.A priori information about the degree of the open-loop neural network structure

complication at each step and about a method of such a complication realization;

The objective comparison between the multilayer neural networks of different types
must be performed on the basis of comparison of the available a priori information for
their design and their operation quality at the typical and real input signals.

Literature

1. Solodovnikov VV (ed) (1965) Analytical self-adaptive systems. Moscow: Mashinistrojenije, p 355
2. Rosenblatt F (1965) Principles of neurodynamics. Moscow: Mir, 480 p
3. Galushkin AI (1970) Multilayer pattern recognition systems. Moscow: MIEM, p 167
4. Galushkin AI, Yumashev SG (1970) Use of piecewise-linear divisional surfaces in pattern recogni-

tion problems. MIEM proceedings 6:238–254
5. Galushkin AI (1974) Synthesis of multilayer pattern recognition systems. Moscow: Energiya, 367 p
6. Galushkin AI, Shmid AV (1992) Structure optimization of multilayer neural networks with cross

connections. RNNS/IEEE Symposium, p 509–520
7. Galushkin AI, Shmid AV (1992) Structure optimization of multilayer neural networks with cross

connections. Neurocomputer 2:7–11
8. Galushkin AI (1977) Continuum models of multilayer systems for pattern recognition. Automa-

tion and computer technology 2:43–48
9. Galushkin AI (1992) Continual neural networks. RNNS/IEEE Symposium, p 1056–1067
10. Galushkin AI (1992) Continual neural networks. Neurocomputer 2:9–14
11. Galushkin AI (1993) Continual neural network. Int. Joint Conf. on neural network, IJCNN’93, Nagoya,

Japan, p 345–398
12. Galushkin AI (1970) Unified approach to the problem of learning and self-learning for the pattern

recognition systems. MIEM proc. 6:104–120
13. Galushkin AI (1972) Selection of the primary optimization criteria and optimal model of the pattern

recognition system for K classes in the learning mode. In: Automatic control and computer facili-
ties (pattern recognition). Mashgiz 10:101–115

14. Galushkin AI, Zak LS, Tiukhov BP (n.y.) To the comparison of optimization criteria for the adap-
tive pattern recognition systems. Kiev: Kibernetika 6:122–130

15. Galushkin AI (1971) Implementation of the primary optimization criteria in the pattern recogni-
tion systems adjustable by the closed-cycle in the learning mode. MIEM proc. 23:191–203

16. Galushkin AI (1970) Analysis of one extremum search iteration method. Riga: Automatics and
computer engineering 2:38–40

17. Tsypkin Ya Z (1968) Adaptation and learning in automatic systems. Moscow: Nauka, p 399
18. Tsypkin Ya Z (1970) Learning system theory foundation. Moscow: Nauka, p 251
19. Galushkin AI, Shmid AV (1971) Iteration methods for the search of extremum of multivariable

functions under equality-type constraints. Riga, Automatics and computer engineering 4:88–91
20. Galushkin AI, Tiukhov BP, Chigrinov VG (1971) About convergence of one random search method

for the search of local and global extrema of a multivariable functions. MIEM Proc. 23:205–209
21. Rastrigin LA (1968) Statistical search methods. Moscow: Nauka, p 376
22. Galushkin AI (1973) About adaptation algorithms in multilayer pattern recognition systems. Dokl.

AN USSR
23. Galushkin AI (1970) Methods of pattern recognition system synthesis. MIEM proc. 6:133–171
24. Victorov NV, Galushkin AI (1976) Design and investigation of pattern recognition systems under

the arbitrary teacher qualification. Medical radio-electronics, pp 96–106
25. Vanyushin VA, Galushkin AI (1972) Design and investigation of multilayer pattern recognition

systems. In: Acad. Berg AI (ed) Some problems of biological cybernetics. Leningrad: Nauka

380 Literature

26. Galushkin AI, Vasilkova TA, Slobodeniuk VA, Tyukhov BP (1971) Analysis of the nonstationary
pattern recognition system dynamics. Proc. MIEM 23:210–227

27. Victorov NV, Galushkin AI (1976) Design and investigation of pattern recognition systems under
the arbitrary teacher qualification. Medical radio-electronics, VNII Mejdounarodnoy tekhniki

28. Galushkin AI, Koudryavtsev AM (1976) Matrix inversion with the help of a multilayer system
based on the threshold elements. Kiev, Naukova Dumka: Cybernetics and computer facilities 33

29. Galushkin AI, et al. (1991) The pattern recognition system with variable structure on the base of
the personal computer and transputer system. SERC/DTI Transputer Initiative Mailshot, p 56–73

30. Grachev LV, Simorov SN (1992) Statistical research into multilayer neural network. RNNS/IEEE
Symp., p 1172–1178

31. Grachev LV, Reznitsky IV (1992) Synthesis of recognition systems with variable structure by three-
layer neural networks. Simorov S.N. Statistical research into multilayer neural networks. RNNS/
IEEE Symp., p 1086–1097

32. Gerasimova AV, Grachev LV (1992) Representativeness of learning samples for paradigm of vari-
able-structure neural networks. RNNS/IEEE Symp., p 449–456

33. Gerasimova AV, Grachev LV (1992) To the problem of the learning sample representativity for the
paradigm of the neural networks with flexible structure. Neurocomputer 3,4:3–6

34. Fomin Yu I, Galushkin AI (1980) Methods of technology diagnostics of threshold element net-
works. Tekhnika sredstv sviazi, Sistemy sviazy, 2:84–94

35. Fomin Yu I, Galushkin AI (1981) Methods of failures parallel diagnostics in threshold elements
networks. Kiev, Naukova Dumka: Elektronnoye modelirovaniye 3:89–92

36. Galushkin AI, Fomin Yu I (1979) About optimality of restoring organs realizing majority voting.
Tekhnika sredstv sviazi, ser. ASU 3:56–61

37. Fomin Yu I, Galushkin AI (1982) Majority voting and restoring organs for its implementation.
Kiev, Naukova Dumka: Cybernetics and computer facilities 55:91–97

38. Gill A (1974) Linear sequential machines. Moscow: Mir, p 287
39. Faradjev RG (1975) Linear sequential machines. Moscow: Sov. Radio
40. Galushkin AI (1996) Summary and perspectives of the multilayer neural network theory develop-

ment (1965–1995). In: Proceedings of the Neurocomputer scientific center. Moscow

Author’s Publications on Neural Network Theory

1. Galushkin AI (1965) Calculation of the optimal integrating filters. Izvestia VUZov, Electromechanics
Series No. 2

2. Galushkin AI (1966) Some problems of the optimal digital filter designing. Questions of Radio-
electronics, Technics in general Series No. 21

3. Galushkin AI (1967) Method of the logarithmical frequency characteristic construction. Collec-
tion “World in a young scientist’s opinion”. First Moscow conference of young scientists. Science

4. Galushkin AI (1968) Method of the frequency characteristic construction. Machgiz: Collection
“Automatic management and computing machinery”, No. 8

5. Galushkin AI (1968) Some problems of the theory and the realization of optimal discrete filters. In:
Solodovnikov VV (ed) Collection Automatic management and computing machinery, No. 9, Machgiz

6. Galushkin AI (1968) Equipment for electric signal recognition. Certificate of recognition No. 235420
dated 01.02. 1968

7. Galushkin AI (1968) Pattern recognition. Radio-electronics 1967. Review over the foreign press
materials, NIIEIR

8. Galushkin AI (1969) Introduction to the mathematic model of septron. Seminar Works for infor-
mational methods in the systems of management, dimension and control, Vladivostok

9. Galushkin AI (1969) The synthesis of pattern recognition systems. Russian seminar on adaptive
systems, Russia, Leningrad

10. Galushkin AI (1969) About input signal characteristics on pattern recognition systems. The re-
port theses of the Russian conference on Technical cybernetic, Russia, Minsk

11. Galushkin AI (1969) About piecewise-linear separating surfaces in problems of pattern recogni-
tion. The reports theses of I. Russian interuniversity conference on technical cybernetics, Moscow,
(in co-authorship)

12. Galushkin AI (1969) Synthesis of non-stationary pattern recognition systems trained on an opened
cycle. Works MIEM, issue 6

13. Galushkin AI (1970) Prediction of individual safety of electronic and semiconductor instruments
using the methods of pattern recognition theory. Works MIEM, issue 10

14. Galushkin AI (1970) Problems of using the pattern recognition systems for management and
optimization of technological processes of production and projecting electronic plans. Works II All-
Union seminar for High school workers “Construction and industry of radio-technique", Novgorod

15. Galushkin AI (1970) Electric signal recognition system on fiber optics with two orthogonal fixed
piezo-transformers. Certificate of recognition No. 1354081, 18–24 (att.)

16. Galushkin AI (1970) The common approach to construction of optimum models of pattern rec-
ognition systems in a training mode. Works MIEM, issue 12, Editor: Armenski EV

17. Galushkin AI (1970) About non-stationary pattern recognition systems. Works MIEM, issue 12,
Editor: Armenski EV, (in co-authorship)

18. Galushkin AI (1970) Introduction to the mathematical model of signal recognition on septrons.
MIEM Monography

19. Galushkin AI (1970) Multilayered pattern recognition systems. Works MIEM, monograph
20. Galushkin AI (1970) Determination of intervals between signals with septron assistance. Materials of

IV Republic Scientific Conference for young researchers for system technics, vol. 3, IK AN USSR, Kiev

382 Author’s Publications on Neural Network Theory

21. Galushkin AI (1970) Iterative methods of search of an extremum: multivariable functions under
constraints of equality type. Materials of IV Republic Scientific Conference for young researchers
for system machinery, vol. 3, IK AN USSR, Kiev

22. Galushkin AI (1971) Synthesis of non-stationary pattern recognition systems trained on an opened
cycle. Technical cybernetics Izv. AN USSR No. 1

23. Galushkin AI (1971) About the arrangement of objects of geometric recognition. Works MIEM,
Some questions of cybernetic system theory, issue 14

24. Galushkin AI (1971) Moment approach to determinate tasks of self-learning pattern recognition
systems. Works MIEM, Some questions of cybernetic system theory, issue 14

25. Galushkin AI (1971) Arrangement of recognition systems of signal groups on septrons. Works
MIEM, Some questions of cybernetic system theory, issue 14

26. Galushkin AI (1971) About signal recognition systems on septrons with cut photo elements. Works
MIEM, Some questions of cybernetic system theory, issue 14

27. Galushkin AI (1971) About pattern recognition system adaptation for control and optimization of
technological processes of industry of semiconductors. Works MIEM, Some questions of cyber-
netic systems theory, issue 14

28. Galushkin AI (1971) Research of technological diffusion operation with pattern recognition theory
methods. Works MIEM, Some questions of cybernetic system theory, issue 14

29. Galushkin AI (1971) Adaptation of learning algorithms of K-class pattern recognition systems for
the analysis analyze of technological operation sputtering. Works MIEM, Some questions of cy-
bernetic systems theory, issue 14

30. Galushkin AI (1971) Tailored recognition equipment. Works MIEM, Some questions of cybernetic
systems theory, issue 14

31. Galushkin AI, et al. (1973) Requirements for planning and testing of equipment for automatic
medical diagnostics. Digest of the Int. Conf. On Med. And Biol. Eng., Dresden

32. Galushkin AI (1974) Recognition signals on septrons. Publ. “Energy” monography
33. Galushkin AI (1974) Mathematic grounds of cybernetics. Publ. “High School”
34. Galushkin AI (1974) Multilayered pattern recognition systems and using possibility in medical

diagnostics. Symposium “Theory and projection control system”
35. Galushkin AI (1976) Medical information systems on the computer. Thesis Russian conference

“EVM-76” (in co-authorship)
36. Galushkin AI (1976) Requirements for planning and testing of equipment for automatic medical

diagnostics. Medical radio-electronics, Coll. VNIIIMT, (in co-authorship)
37. Galushkin AI (1976) Signals recognition equipment. Cert. of Recognition No. 546910
38. Galushkin AI (1977) Diagnostics method of acquired heart diseases. Cert. of Recognition No. 562267
39. Galushkin AI (1979) Fluorography diagnostics equipment. Cert. of Recognition No. 686726 publ.

28.05. 1979
40. Galushkin AI (1980) Diagnostics method of acquired heart diseases. Cert. of Recognition No. 789103

publ. 21.08. 1980
41. Galushkin AI (n.y.) About a method of an adaptive diagnostics in threshold elements networks.

Methods and tools of parallel diagnostics information. Lectures of All-Union school-seminar
“Multisequencing of information processing”, Lvov

42. Galushkin AI (1982) Some questions of progress fault-tolerance manager computing complexes
in connection systems. Technical vehicles for communication, series “Vehicles for communica-
tion”, issue 3

43. Galushkin AI (1990) Reconfiguration algorithms in multimicroprocessor systems. Cybernetic, AS
USSR, No. 2, (in co-authorship)

44. Galushkin AI (1990) The architectures of neural computer. Joint British-Soviet Workshop on the
transputer system Moscow, 26–29 June 1990

45. Galushkin AI (1990) The neural computers on the base of transputers and signal processors. Joint
British-Soviet Workshop on the transputer system, Moscow, 26–29 June 1990

46. Galushkin AI (1990) The organization of studing and improvement of professional skills on the
transputer system. Joint British-Soviet Workshop on the transputer system, Moscow, 26–29 June
1990 (in co-authorship)

383Author’s Publications on Neural Network Theory

47. Galushkin AI (1991) Neuromathematics: methods of object solutions on neurocomputers.
Mathematical modeling 3, N8

48. Galushkin AI (1991) Neuron memory system (book 1, book 2). Publ. MAI, (in co-authorship)
49. Galushkin AI (1992) Neurocomputing technique. Auth. Ph. Wasserman, Publ. Mir
50. Galushkin AI (1992) Cytological image processing system on the transputer basis. Second Confer-

ence Transputer Systems and their application, (in co-authorship)
51. Galushkin AI (1992) Neuron EVM and neuromathematics (development conception). Transputer

and neuron computers. Workshop Russian knowledge house
52. Galushkin AI (1992) Neuromathematics. Transputer and neuron computers. Workshop Russian

knowledge house, (in co-authorship)
53. Galushkin AI (1992) Neuromathematics: problem-solving and algorithm procedure on neuro-

computers. RNNS/IEEE Symposium on Neuroinformatics and Neurocomputers, Rostov-Don,
Russia (in co-authorship)

54. Galushkin AI (1992) Adaptive neuronet algorithms for linear algebra decision problems. (p 1, p 2).
RNNS/IEEE Symposium on Neuroinformatics and Neurocomputers, Rostov-Don, Russia (in co-
authorship)

55. Galushkin AI (1992) Sorting on neural networks. RNNS/IEEE Symposium on Neuroinformatics
and Neurocomputers, Rostov-Don, Russia (in co-authorship)

56. Galushkin AI (1992) Neurocomputers and neuromathematics: information highway. RNNS/IEEE
Symposium on Neuroinformatics and Neurocomputers, Rostov-Don, Russia

57. Galushkin AI (1992) The custom-made digital neurochip. RNNS/IEEE Symposium on Neuro-
informatics and Neurocomputers, Rostov-Don, Russia (in co-authorship)

58. Galushkin AI (1992) Information base of publications on neurocomputers. RNNS/IEEE Sympo-
sium on Neuroinformatics and Neurocomputers, Rostov-Don, Russia (in co-authorship)

59. Galushkin AI (1992) About joint Neurocomputers (introductory article for the editor-in-chief).
Neurocomputer 1:3–7

60. Galushkin AI (1992) Methods of solving problems on neurocomputers. Neurocomputer 1:24–24,
(in co-authorship)

61. Galushkin AI (1992) Adaptive neuronet algorithms for linear algebra decision problems. Neuro-
computer 2:67–72, (in co-authorship)

62. Galushkin AI (1992) The custom-made digital neurochip. Neurocomputer N2:67–72 (in co-au-
thorship)

63. Galushkin AI (1992) Structure optimization of multilayered neural networks with cross connec-
tions. Neurocomputer 3–4 (in co-authorship)

64. Galushkin AI (1993) Linguistics, neuronets and neurocomputers. Lecture on “Mathematical lin-
guistics” seminar EVREKA, Nancy France, 15–17 February 1993

65. Galushkin AI (1993) Supertransputer EVM – bloc on desktop. “Poisk” 29.1–42.92 N5 (195)
66. Galushkin AI (1993) On the way to teraflops. Poisk 26.2–4.3.93 N9 (199)
67. Galushkin AI (1993) Transputer network-based general purpose neurocomputer. Int. Joint Conf.

on Neural Networks Nagoja, Japan 25 October 1993 (in co-authorship)
68. Galushkin AI (1994) About problems of the sorting procedure using the neuronet. Neurocomput-

ers 3–4:35–40
69. Galushkin AI (1994) About the edition of the collection history of neurocomputer development.

Neurocomputers 3–4:66–76, (in co-authorship)
70. Galushkin AI (1995) The theory neuronet, neuromathematics and neurocomputers. Report on

Conference Neurocomputers and their application. 15–18 February 1995
71. Galushkin AI (1995) Neural network algorithms of the decision of the special partial differential

equation. Report on Conference Neurocomputers and their application. 15–18 February 1995
72. Galushkin AI (1995) Neural network algorithm decision graph theoretic problem. Report on

Conference Neurocomputers and their application. 15–18 February 1995
73. Galushkin AI (1995) About the development of the SGI Neurochip-1 on the base of BMK Ispolin 60T.

Report on Conf. Neurocomputers and their application. 15–18 February 1995, (in co-authorship)
74. Galushkin AI (1995) Foreign elemental base of neurocomputers and their using perspectives. Report

on Conf. Neurocomputers and their application. 15–18 February 1995

384 Author’s Publications on Neural Network Theory

75. Galushkin AI (1995) About the development of the complete set of neurochips for the computer
complex Baget. Report on Conf. Neurocomputers and their application. 15–18 February 1995, (in
co-authorship)

76. Galushkin AI (1995) Neurocomputers in the development of military technics in the USA. NCS RAS
77. Galushkin AI (1995) Results of the development of the neural network theory (1965–1995) in works

of the neurocomputer science centre and prospects of its development. NCS RAS
78. Galushkin AI (1995) Neurocomputers in the development of military technics in the USA. Foreign

radio electronics N5, N6
79. Galushkin AI (1996) Results of the development of the neural network theory (1965–1995) in works

of the neurocomputer science centre and prospects of its development. Neurocomputer 1, 2
80. Galushkin AI (1996) Neural network theory, neuromathematics and neurocomputers. Report on

the second Russian conference Neurocomputers and their application. 14–16 February 1996
81. Galushkin AI (1995) About the development of the superneurocomputer for the decision

of problems of mathematical physics. Report on Conf. Neurocomputers and their application.
15–18 February

82. Galushkin AI (1996) About the development of the SGI Neurochip-1 on the base of BMK Ispolin
60T. Report on Conf. Neurocomputers and their application. 14–16 February 1996, (in co-au-
thorship)

83. Galushkin AI (1996) About the common technique for the decision of problems in the neural
network logical basis. Report on Conf. Neurocomputers and their application. 14–16 February 1996

84. Galushkin AI (1996) About manuals and monographies in the field of neurocomputers, prepared
by employees of the Centre of neurocomputer science. Report on Conf. Neurocomputers and their
application, 14–16 February 1996

85. Galushkin AI (1997) About the comparison of native and foreign techniques of adaptation in
multilayered neural networks. Report on the third Conf. Neurocomputers and their application.
12–14 February 1997

86. Galushkin AI (1997) Actual problems of evolution in neurocomputer development. Report on the
third Conf. Neurocomputers and their application. 12–14 February 1997

87. Galushkin AI (1997) Some conceptual questions of the neurocomputer’s development. Foreign
radio electronic 2, (in co-authorship)

88. Galushkin AI (1997) About modern directions of the neurocomputer’s development. Information
technology 5

89. Galushkin AI (1997) About modern directions of the neurocomputer’s development. Information
technology 1,2 (5–22)

90. Galushkin AI (1997) Neuronet algorithms of an optimum choice of a subset of vectors of a causal
multivariate sample. Neurocomputer 1, 2

91. Galushkin AI (1997) Results of the third Russian Conference Neurocomputers and their applica-
tion. Neurocomputer 3, 4

92. Galushkin AI (1998) Results of International conference MICRONEURO’97. Report on the fourth
Russian conference “Neurocomputers and their application” 18–20 February 1998

93. Galushkin AI (1998) The concept of the development of the SGI-neurochip on the basis of native
technology. Report on the fourth Russian conference Neurocomputers and their application, 18–
20 February 1998 (in co-authorship)

94. Galushkin AI (1998) About the development of the program “Neuromathemathic”. Report on the
fourth Russian conference Neurocomputers and their application, 18–20 February 1998

95. Galushkin AI (1998) Modern line of the development of neurocomputers in Russia. Foreign radio
electronic 1

96. Galushkin AI (1998) Performance evaluation of neurocomputers. Foreign radio electronic 1, (in
co-authorship)

97. Galushkin AI (1999) The neurocomputer is a promising supercomputer. Workshop of
“Neuromathematic-99”, Debate about neurocomputers (84–89)

98. Galushkin AI (1999) Neural network theory and neuromathematics. IJCNN’99, Washington,
July 10–16 1999

99. Galushkin AI (1999) Debate about neurocomputers – 10 years later. Neurocomputer 1

385Author’s Publications on Neural Network Theory

100. Galushkin AI (1999) Neurocontrol: main principles and directions of application neurocom-
puters for the decision of problems of dynamic object management. Neurocomputers 1, (in co-
authorship)

101. Galushkin AI (1999) Neurocomputers of 80th (the beginning of the next revolution in neuro-
computers). Foreign radio electronic 1

102. Galushkin AI (1999) Prospects of application neurocomputer technologies in space systems. Re-
port on the fifth Russian conference of Neurocomputers and their application, 17–19 February
1999 (in co-authorship)

103. Galushkin AI (1999) Neuro methods of space image processing. Report on the fifth Russian con-
ference Neurocomputers and their application, 17–19 February 1999 (in co-authorship)

104. Galushkin AI (1999) Prospects of application neurocomputer technologies in professional medi-
cine. Report on the fifth Russian conference Neurocomputers and their application, 17–19 Febru-
ary 1999 (in co-authorship)

105. Galushkin AI (1999) “Neuromathematic” – program package for mathematical problem decision
on a neural basis. Report on the fifth Russian conference Neurocomputers and their application,
17–19 February 1999 (in co-authorship)

106. Galushkin AI (1999) Digital neurochip. Foreign radio electronic 1, (in co-authorship)
107. Galushkin AI (2000) Neural network theory. Collection Neurocomputers and their application,

book 1. Russia, Moscow, Radiotechnika
108. Galushkin AI (2000) Neurocontrol and their application (translation from English). Collection

Neurocomputers and their application, book 2. Russia, Moscow, Radiotechnika, (in co-authorship)
109. Galushkin AI (2000) Neurocomputers. Collection Neurocomputers and their application, book 3.

Russia, Moscow, Radiotechnika
110. Galushkin AI (2000) Prospective problems of neuronet theory. Neurocomputer 3
111. Galushkin AI (2000) Neurocontrol. Report on the sixth Russian conference Neurocomputers and

their application, 16–18 February 2000 (in co-authorship)
112. Galushkin AI (2000) Prospects of neurocomputer information technologies in space means. Re-

port on the sixth Russian conference Neurocomputers and their application, 16–18 February 2000
(in co-authorship)

113. Galushkin AI (2000) Neurocomputers in control of helicopters. Report on the fifth Russian con-
ference Neurocomputers and their application, 16–18 February 2000 (in co-authorship)

114. Galushkin AI (2000) About ICNN’99 (Washington 1999). Report on VI Russian conference Neuro-
computers and their application, 16–18 February 2000

115. Galushkin AI (2000) Neurocomputers in CALL-centre. Report on VI Russian conference Neuro-
computers and their application, 16–18 February 2000 (in co-authorship)

116. Galushkin AI (2000) The decision of a problem of extrapolation non-negative function on a neu-
ral network with the fixed structure with full consecutive connections. Report on VI Russian
conference Neurocomputers and their application, 16–18 February 2000 (in co-authorship)

117. Galushkin AI (2000) The account of artifacts at the formation of the training sample for a problem
of function extrapolation. Report on the sixth Russian conference Neurocomputers and their
application, 16–18 February 2000 (in co-authorship)

118. Galushkin AI (2000) Substantiation of necessity of feedback introduction and the decision of a
problem of non-negative function extrapolation on a three-layer neural network of the fixed struc-
ture with feedback. Report on the sixth Russian conference Neurocomputers and their applica-
tion, 16–18 February 2000 (in co-authorship)

119. Galushkin AI (2000) Some historical aspects of the development of the elemental base of comput-
ing systems with mass parallelism (1980s–1990s). Report on the sixth Russian conference Neuro-
computers and their application, 16–18 February 2000 (in co-authorship)

120. Galushkin AI (2000) On the debate about neurocomputers. 10 years later. Report on the sixth Russian
conference Neurocomputers and their application, 16–18 February 2000 (in co-authorship)

121. Galushkin AI (2000) Some historical aspects of development of the elemental base of computing
systems with mass parallelism (1980s–1990s). Neurocomputers 1

122. Galushkin AI (2000) Modern directions of the development of neurocomputer technologies in
Russia. The Computer chronicle 3

386 Author’s Publications on Neural Network Theory

123. Galushkin AI (2000) Neural network algorithms for the optimal selection of the vector subset
from the random multidimensional sample. Neurocomputers: design and applications 1, 2:1–15

124. Galushkin AI (2000) Neural network algorithms for function extrapolation and their Application
in CALL-center Forecasting Tasks, Part 1. Neurocomputers: design and applications 1, 3:9–33, (in
co-authorship)

125. Galushkin AI (2000) Neural network algorithms for function extrapolation and their Application
in CALL-center Forecasting Tasks, Part 2. Neurocomputers: design and applications 1, 4, (in co-
authorship)

126. Galushkin AI (2000) Neural network algorithms for function extrapolation and their Application
in CALL-center Forecasting Tasks, Part 3. Neurocomputers: design and applications 1, 5:12–26,
(in co-authorship)

127. Galushkin AI (2000) Problems of neural network theory in their perspective. Neurocomputers:
design and applications 1 6:2–15

128. Galushkin AI (2000) Supercomputers and neurocomputers. Neurocomputers: design and applica-
tions 1, 6:22–34

129. Galushkin AI (2001) Sphere of the neurocomputer’s application. Works of the International con-
federation Intellectual and multiprocessing systems IMS, 1–6 October 2001

130. Galushkin AI (2001) Fizteh and the Russian agency on control systems – on the development of
neurocomputers. Magazine the artificial intelligence 3:391–410

131. Galushkin AI (2001) Neural networks: training, the organization and application. Series Neurocom-
puters and their application the book 5. Publishing house Radio engineering, (in co-authorship)

132. Galushkin AI (2001) Neural networks: history of the development of the theory. Series Neurocom-
puters and their application the Book 5. Radio engineering, (in co-authorship)

133. Galushkin AI (2001) Neural network algorithms for function extrapolation and their application
in CALL-center forecasting tasks, part 3. Neurocmputer 1:10–21 (in co-authorship)

134. Galushkin AI (2001) Supercomputers and neurocomputers. Neurocomputer 6:16–25
135. Galushkin AI (2001) The sphere of application neurocomputers extends. Neurocomputer 1:60–70
136. Galushkin AI (2001) Methods for realization of invariance to linear transformations at recognition

of bidimentional images. The appendix to magazine Information technologies 1, (in co-authorship)
137. Galushkin AI (2001) The sphere of application neurocomputers extends. The appendix to maga-

zine Information technologies 10
138. Galushkin AI (2001) Fizteh the Russian agency on control systems – on the development of

neurocomputers. Fizteh: a sight in the future of p 425–458. M, AST
139. Galushkin AI (2001) Problem of neural network theory in their perspective. Int. Conf. On Neural

Information Processing Shanghai, ICONIP’01
140. Galushkin AI (2001) Supercomputers and neurocomputers. Int. Conf. On Neural Information

Processing Shanghai, ICONIP’01
141. Galushkin AI (2001) Physical model of spatial system active vibration isolation and promptings.

The patent for the invention 2224295 (in co-authorship)
142. Galushkin AI (2001) “Neurocomputer” and “Neurocomputers: design and applications” on a bound-

ary of a new millennium. Report on the eighth Russian conference Neurocomputers and their
application, 14–16 February 2001, (in co-authorship)

143. Galushkin AI (2001) Supercomputers and neurocomputers. Report on the eighth Russian confer-
ence Neurocomputers and their application, 14–16 February 2001

144. Galushkin AI (2001) System active vibration isolator and high-frequency prompting of large-sized
aerials of space radio telescopes with neurocontrol. Report on the eighth Russian conference
Neurocomputers and their application, 14–16 February 2001 (in co-authorship)

145. Galushkin AI (2001) Problems of neural network theory in their perspective. Report on VIII Russian
conference Neurocomputers and their application, 14–16 February 2001

146. Galushkin AI (2001) The field of neurocomputer application expands. Neurocomputer design and
applications 2,1:2–18

147. Galushkin AI (2002) Neurocomputer processing of the images in the task of tuberculosis conta-
gion identification. Int. Conf. On Neural Information Processing Singapore, ICONIP’02 (in co-
authorship)

387Author’s Publications on Neural Network Theory

148. Galushkin AI (2002) Perspective of neurocomputers in biometric identification systems. Work-
shop of first biometric conference in Russia, Moscow, 10 December 2002, (in co-authorship)

149. Galushkin AI (2002) The Complex neuronet algorithms and programs for processing of the im-
ages received from a fluorescent microscope, with the purpose of microscopic object recognition
(neurodiagnostic). The Certificate on official registration of the computer program 2002611587,
(in co-authorship)

150. Galushkin AI (2002) Problem of Neural Networks Theory in Their perspective. Workshop Inter-
national Conference Mathematical Methods in intellectual information systems, Smolensk on
16–17 May 2002

151. Galushkin AI (2002) Biomolecular neural device. Neurocomputers and their application, book 33.
Radiotechnika, (in co-authorship)

152. Galushkin AI (2002) Neuromathematic. Neurocomputers and their application, book 6.
Radiotechnika, (in co-authorship)

153. Galushkin AI (2002) Fundamentals of neurocontrol. The appendix to magazine Information tech-
nologies 10

154. Galushkin AI (2002) Neural network control systems. Neurocomputers and their application, book 8.
Radiotechnika, (in co-authorship)

155. Galushkin AI (2002) Fundamentals of neurocontrol. Neurocomputer 9, 10:87–106
156. Galushkin AI (2001) About prospects in the development and application of neurocomputers. Re-

port on the eighth Russian Conference Neurocomputers and their application, 21–22 March 2001
157. Galushkin AI (2002) About the book “Application of neurocomputers”. Report on the eighth Rus-

sian conference Neurocomputers and their application, 21–22 March 2002
158. Galushkin AI (2002) Development and research of neural network methods and algorithms for

space image processing. Report on the eighth Russian conference Neurocomputers and their
application, 21–22 March 2002, (in co-authorship)

159. Galushkin AI (2002) Vibration isolator and precision prompting gravity and inertial sensitive
space designs. Report on the eighth Russian conference Neurocomputers and their application,
21–22 March 2002, (in co-authorship)

160. Galushkin AI (2002) The way and means of realization neural network algorithms. Report on
the eighth Russian conference Neurocomputers and their application, 21–22 March 2002, (in
co-authorship)

161. Galushkin AI (2001) Neural network algorithms for the decision of the linear algebraic equation
systems. Report on the eighth Russian conference Neurocomputers and their application,
21–22 March 2001

162. Galushkin AI (2003) Neural network theory. Publishing house of university Sinhua Pekin, (in Chinese)
163. Galushkin AI (2003) Neurocomputers in processing image systems. Neurocomputers and their

application, book 7, Radiotechnika, (in co-authorship)
164. Galushkin AI (2003) Neurocomputers in residual classes. Neurocomputers and their application,

book 7, Radiotechnika, (in co-authorship)
165. Galushkin AI (2003) Neurocomputer for processing signal systems. Neurocomputers and their

application, book 9, Radiotechnika, (in co-authorship)
166. Galushkin AI (2003) Neurocomputers for the decision of regional problems of the field theory.

Neurocomputers and their application, book 10, Radiotechnika, (in co-authorship)
167. Galushkin AI (2003) Intellectual systems. Neurocomputers and their application, book 12,

Radiotechnika, (in co-authorship)
168. Galushkin AI (2003) Neurocontrol construction and systems. Neurocomputers and their applica-

tion, book 13, Radiotechnika, (in co-authorship)
169. Galushkin AI (2003) Neuromathematic (problems of development). Neurocomputer 1
170. Galushkin AI (2003) Paralleling methods and hardware-software realization neural network algo-

rithms for image processing. Neurocomputer 1:3–21, (in co-authorship)
171. Galushkin AI (2003) Neurocomputer processing of the images in the task of tuberculosis conta-

gions identification. Neurocomputer 1:45–52, (in co-authorship)
172. Galushkin AI (2003) Application of neural networks in chemistry and chemical technology.

Neurocomputer 1:66–107, (in co-authorship)

388 Author’s Publications on Neural Network Theory

173. Galushkin AI (2003) Perspective of neurocomputers in biometric identification systems. Neuro-
computer 5:39–61, (in co-authorship)

174. Galushkin AI (2004) Neurocomputers and their application in China on a boundary of a millen-
nium (b. 1 and b. 2). Publishing house the Hot line – a TV set of M

175. Galushkin AI (2003) Neurocomputers in aircraft (planes). Series Neurocomputers and their appli-
cation the book 14, publishing house the Radio engineering of M, (in co-authorship)

176. Galushkin AI (2003) Neural network algorithms for biometric identification. Neurocomputers and
their application book 15, publishing house the Radio engineering of M, (in co-authorship)

177. Galushkin AI (2003) Neurocomputers with parallel architecture. Neurocomputers and their appli-
cation book 16, publishing house the Radio engineering of M, (in co-authorship)

178. Galushkin AI (2003) Neurocomputers in space technics. Neurocomputers and their application
book 17, publishing house the Radio engineering of M, (in co-authorship)

179. Galushkin AI (2001) Neurocontrol. Base direction for the development of the theory and practice
of management by complex dynamic systems (the plenary report). Workshop the second Interna-
tional conference Parallel processing and management problem, (in co-authorship)

180. Galushkin AI (2004) Neural networks in problems of recognition of images and processing of im-
ages (the plenary report). Workshop the seventh International conference Recognition of images
and processing of images: new information technologies 2004, St.-Petersburg on 18–23 October 2004

181. Galushkin AI (2004) Neurocomputers in problems of image recognition, processing of signals,
images and management of dynamic systems (the plenary report). The International conference
Supercomputer systems and their application Minsk SSA’ on 26–28 October 2004

182. Galushkin AI (2004) System and a method of adaptive neural network computing of granulom-
etric composition for crushed, balled and\or granulated material. The Application for patenting
No. 2004128312, 23.9. 2004 (in co-authorship)

183. Galushkin AI (2005) Neurocomputers for the decision problems of information safety mainte-
nance. The Report at the St.-Petersburg conference Information safety of regions of Russia

184. Galushkin AI (2005) Formation of entry conditions for acceleration of adjustment of weight fac-
tors of neural networks. Neurocomputer 5

185. Galushkin AI (2005) Artificial intelligence problem and the neurocomputer. Neurocomputer 6
186. Galushkin AI (2005) Transputer systems – the beginning of the development in Russia of the

computer with mass parallelism. Neurocomputer, No. 3, (in co-authorship)
187. Galushkin AI (2005) Certification and standardization of biometric identification systems. Mate-

rials of the International scientific and technical conference Intellectual and multiprocessing sys-
tems, Divnomorsk, Russia, (in co-authorship)

188. Galushkin AI (2005) Neurocomputers for the decision of problems of maintenance of information
safety. Materials of the International scientific and technical conference Intellectual and multipro-
cessing systems, Divnomorsk, Russia

189. Galushkin AI (2005) About modern problems of neurocontrol for complex dynamic systems. First
Workshop on Russian Section of IEEE Computational Intelligence Society

190. Galushkin AI (2005) Neurocontrol in China on the boundary of a millennium. First Workshop on
Russian Section of IEEE Computational Intelligence Society

191. Galushkin AI (2005) Neurocomputers for the decision problems of information safety mainte-
nance. Neurocomputer 12

192. Galushkin AI (2005) About ways of development of integrated neuronet systems for robot control.
“International program on perspective robotics” Conference “Adaptive intelligence robots: mod-
ern state and perspective”, Moscow, 24–26 November 2005

193. Galushkin AI (2005) About the technique for the decision of problems on a neural network logical
basis. Second workshop of Russian section of IEEE computational Intelligence Society, Moscow,
16.11. 2005

194. Galushkin AI (2005) Problem solving for function approximation in a small sample. Second work-
shop of Russian section of IEEE computational Intelligence Society, Moscow, 16.11. 2005

195. Galushkin AI (2005) The development of the technique for the decision of problems on a neural
network logical basis. International Society conf “Neurotechnologies and their applications”,
Kramatorsk

389Author’s Publications on Neural Network Theory

196. Galushkin AI (2005) Information safety on neurocomputers systems. International Society conf.
“Neurotechnologies and their applications”, Kramatorsk

197. Galushkin AI (2005) Principles of formation of entry conditions for acceleration of adjustment of
weight factors of neural networks. International Society conf “Neurotechnologies and their appli-
cations”, Kramatorsk

198. Galushkin AI (2005) Construction of high-accuracy measuring device based on neurocomputers:
the developmental principles. International Society conf “Neurotechnologies and their applica-
tions”, Kramatorsk

199. Galushkin AI (2005) Construction of high-accuracy measuring device based on neurocomputers:
the developmental principles. Third Workshop “Biometric System” of Russian Section of IEEE
CIS, Moscow, 14.12. 2005

200. Galushkin AI (2005) Neurocomputers in biometric identification systems. Third Workshop “Bio-
metric system” of Russian section of IEEE Computational intelligence society, Moscow, 14.12. 2005

201. Galushkin AI (n.y.) Research of application technologies for engineering problems with tight
systems of equations and giant-scale number unknown. Draft Project Goscontract FAN code IT–
13.3/001

202. Galushkin AI (2006) About methods of solving problems on a neural net logical basis. Reports the
eighth Russian Scientific-technical conference “Neuroinformatics’, 24–27 January 2006, MIFI, Moscow

203. Galushkin AI (2006) Formation of beginning terms for acceleration of neural net coefficient tool-
ing in optimization problems. Reports the eighth Russian Scientific-technical conference
“Neuroinformatics”, 24–27 January 2006, MIFI, Moscow

204. Galushkin AI (2006) Development of an integrated neural net system of perspective robot control.
Russian scientific-practical conference “Perspective systems and control problems” Dombai,
13–17 March 2006

205. Galushkin AI (2006) Development of an integrated neural net system of perspective robot control.
Russian seminar “Actual methods of navigation and motion control”, Institute of control prob-
lems RAN, 18–19 April 2006

206. Galushkin AI (2006) Integration of controlling functions of actual robotechnical systems. Confer-
ence MIREA, 15–24 May 2006

207. Galushkin AI (2006) Neural net technologies – base of the integrated control systems of perspec-
tive robot construction. MIREA, Scientific-practical seminar “Perspective problems and control
systems”, June 2006

208. Galushkin AI (2006) Neurocomputers: from the program to apparatus realization. Int. conference
“Development of computing technique in Russia and ex GUS countries: history and perspectives”
SORUCOM-2006, Petrozavodsk, 3–7 June 2006

209. Galushkin AI (2006) Transputer systems – the beginning of making EVM with mass parallelism
in Russia. International Conference “Development of computing technique in Russia and ex GUS
countries: history and perspectives” SORUCOM-2006, Petrozavodsk, 3–7 June 2006

210. Galushkin AI (2006) Neural network recognition of spherical body set grain-size distribution using
envelope of surface. IEEE World Congress on Computational Intelligence Vancouver, B.C. Canada,
July 16–21 2006

211. Galushkin AI (2006) Neural net solution algorithms of complex mathematic problems and clus-
ter EVM based on graphic processors. The third International Conference “Parallel Computing
and control problems” 2–4 October 2006. Institute of control problems named academician
V. A. Trapeznikov

212. Galushkin AI (2006) Neurocomputers: from the program to apparatus realization. Monography,
Publ. “Hot-line-telecom”

213. Galushkin AI (2006) Neural network theory second edition, remake, add. Monography, Publ. “Ra-
dio-technique”, Moscow

214. Galushkin AI (2006) History of neural network development second edition remake, add. Collec-
tion of articles, Publ. “Radio-technics”, Moscow

215. Galushkin AI (2006) Methods of solving problems on a neural net logical basis. Attachment to
Intellectual Technologies 6

216. Galushkin AI (2006) Problems in neuronet logical basis solution. Neurocomputer 2:49–70

Index

–, stage of 264
analytical system 360
approach

–, algorithmic 22
–, neurophysiological 21
–, psychological 21
–, systematic 22

approximation
–, constant 197
–, linear 197
–, method, stochastic 146

architecture of neural network 43
automata theory 4

B

backward connection 239

C

characteristics, topological 60
class

–, continuum 354
–, number 113

closed cycle adjustment 170, 273
closed-loop

–, neural network 180, 223
clusterization 220
CMOS-neurochip 3
coefficient

–, adjustment 247
–, readjustment 12
–, setting 216

complexity criterion 53
computer

–, class 5
–, CRAY type 5
–, development 1

–, economic factors 8
–, Elbrus 6
–, engineering 5

A

activation 39, 40, 358
–, slope 363

adaptation
–, algorithm 364
–, neural network 27

adjustment
–, algorithm 195, 224, 257, 293

–, analytical 226
–, closed cycle 170, 273
–, neural network 207

–, continuum 189
–, dynamics 237, 238, 240–242
–, neuron 190
–, process 243
–, recurrent 201, 203, 205

algorithm
–, adaptation 25, 155, 364
–, adjustment 195, 224, 257, 293

–, analytical 226
–, convergence 280
–, deterministic selection 208
–, failure localization 323
–, learning 198, 277, 283, 290

–, sequential 273
–, neural 2, 3

–, implementation 7
–, problem

–, solution 343
–, solving 17

–, search 143, 147, 224
–, development 155
–, extremum 153
–, multivariable functional extremum

25
–, random 154

–, self-learning 294
–, test design 331

analysis
–, matrix 148

392 Index

–, fine-grained 6
–, large-grained 6
–, MIMD architecture 2
–, neural 1, 6, 19

–, capacity 13
–, classification 12
–, development 1
–, elemental base 14, 32
–, implementation 3, 32
–, modularity 9
–, position 5
–, preparation 21
–, type 12, 13

–, personal 10
–, science, Russian 16
–, SIMD architecture 2, 3
–, SISD architecture 3
–, universalism 8, 9
–, von-Neumann 2

computing facility class 5
condition

–, initial 207, 210, 211, 213, 216, 248, 363
–, selection method 207

connection
–, backward 44, 49, 50
–, cross 49, 54
–, direct 43
–, lateral 45, 357
–, random 357
–, sequential 45, 47

Connection Machine 3
constant pproximation 197
continual neural network 67
continuum

–, model 135
–, neural layer 205
–, neuron 68, 198

–, classification 69
–, layer 190, 195, 199, 200, 202
–, layer model 69

–, of classes 354
–, of features 71
–, of solutions 101, 102
–, pattern class 86
–, solution 137, 139

control theory 5
CRAY type computer 5
CRAY XMP 3
criterion

–, minimum 133, 134
–, optimization 132

cross connection 54
–, optimization 53

CYBER 205 3

D

derivative
–, estimation 185
–, second 363

design of neural network 170
designation unification 367
deterministic

–, selection 208, 213
development

–, closed-cycle adjustable neural network 182
–, neural network closed-loop 180
–, search algorithm 155

diagnostics 29, 303, 321
distribution

–, error 121
–, law 83, 84, 121
–, multi-modal 132

divisional surface 90

E

element, boolean 35
engineering method 257
equation

–, differential 2
–, Euler 2
–, Navier-Stokes 2
–, Poisson 2

error
–, distribution 121
–, function 99, 103
–, probability 280

estimation
–, matrix 202
–, quality improvement 277

Euler equation 2
extrapolation 362
extrema

–, global 154
–, local 154
–, search 143, 146

–, algorithm 143, 153, 361
–, iteration 148, 152
–, parameters 361

F

failure
–, catastrophic 317
–, diagnostics, method 332
–, localization algorithm 323

feature
–, continuum 71–73

393Index

–, informative 28
–, selection 295, 297

–, informative 296, 297, 299, 300, 302
–, problem 295

–, space 69, 78, 91
feedback 240–242
filtering 362
five-feature space 198
Fourier transformation 2
function

–, activation 39, 358
–, slope 363

–, approximation 218
–, error 99, 103
–, extrapolation 218
–, extrema 277

–, search 143, 146
–, Lagrange 148
–, loss 107
–, multivariable 154
–, risk 132, 177, 178, 277

–, minimum average 175, 177, 178
–, weighting 195, 197, 202, 203, 205

functional
–, optimization 132, 143, 225, 360

–, generation 360
–, secondary 185, 198, 363

H

hardware
–, emulation 3
–, implementation 359

hyperplane 50, 51, 310, 312, 313, 324, 325,
333
–, number 280, 281
–, position 253–255, 257

I

initial condition 207, 210, 211, 213, 216, 248,
363
–, selection 207, 212

input signal 113, 207, 219, 221, 224
–, characteristics 77
–, generation 352
–, nonstationary 87, 354
–, pattern 79
–, probability 84

–, distribution 79
iteration

–, extremum search 152
–, method 146
–, process stability 150

K

K* value 226
Kp solution 64, 138

L

Lagrange function 148
layer, open-loop 205
learning

–, algorithm 198, 277, 283, 290
–, sequential 273

–, method 292
–, mode 183, 219

–, harm 354
–, procedure 190, 193, 195

linear
–, approximation 197
–, equality system 217
–, inequality system 217

logic
–, continuous 38
–, mathematical 4
–, multi-threshold 37
–, threshold 4

logical tree 276
loss

–, coefficient 95
–, function 107

M

mathematical
–, logic 4
–, statistics 4

mathematics
–, computational 5, 341
–, neural 17

matrix
–, analysis 148
–, estimation 202
–, inversion 258

–, problem 258
–, parameter 257
–, transformation 282

method
–, analytical 263
–, engineering 257
–, failure diagnostics 332
–, functional minimization 285, 288
–, iteration 146

–, extremum search 151, 152
–, learning 292
–, problem solving 341

394 Index

–, reliability investigation 305
–, selection 207
–, stochastic approximation 146
–, synthesis 292

MIMD (Multiple Instruction – Multiple Data) 2,
3, 6–8, 10, 11, 17, 29, 36

minimization, neuron number 300
minimum criterion 133, 134
mode

–, learning 219
–, self-learning 113, 140, 217

model
–, continuum 135
–, definition 89
–, mathematical 79
–, optimal 75, 104, 110

–, structure 89
–, self-learning mode 116

modelling, dynamic system 220
modularity 9
MSIMD (Multiple variant of SIMD) 6, 14
multi-threshold 37
myths, neural network theory 368

N

Navier-Stokes equation 2
network, neural 21, 77, 250

–, adaptation 27
–, algorithm 155

–, adaptive 161
–, diagnostic 337

–, adjustment 195, 207
–, algorithm 163
–, closed-cycle 182, 263

–, algorithm 18, 341
–, analysis 223
–, architecture 43
–, backward connections 239
–, cell-like 357
–, classification 90
–, closed-cycle adjustment 182, 263
–, closed-loop 180, 183

–, multilayer 223
–, coefficient setting 216
–, complex 358
–, connections

–, amorphous backward 44
–, cross 44, 53
–, direct 43
–, lateral 45, 357
–, ordered backward 44
–, random 357

–, sequential 47
–, continual 67, 358
–, continuum 189, 205

–, model 135
–, description 47
–, design 170, 258
–, diagnostics 29, 303, 321
–, dynamics 231
–, errors 121
–, feedback loop 357
–, functional reliability 308
–, functioning 322, 323
–, informative feature selection 295
–, initial conditions 212
–, input signal 24, 77, 221
–, interval 358
–, investigation 262

–, approaches 21
–, Kp solution 138
–, layer 68
–, learning mode 235, 242
–, logical basis 344, 349
–, main types 45
–, model 104, 110, 116
–, multilayer 22, 28, 31, 45, 51, 169, 178
–, open-loop 25, 121
–, optimal model 89
–, optimization 24, 64, 114
–, output channel 139
–, parametrical reliability 309
–, reliability 29, 303, 305, 317
–, self-learning mode 140, 256, 302
–, solution continuum 135, 137
–, state graph 322
–, structure 23, 28, 33, 356, 359

–, fixed 352
–, flexible 350
–, variable 358

–, synthesis 223, 273
–, successive 292

–, theory 343, 368
–, two-layer 54, 167

–, continuum 198
–, type 89, 90, 96, 98, 105–109
–, verification 364

Neumann architecture 6
neural

–, computer
–, adequate problems 10
–, definition 5

–, network, model 75
neuromathematics 341
neuron 35, 190, 193

395Index

–, adjustment 190
–, algorithm 341

–, learning 290
–, continuum 68, 69, 198–200

–, adjustment 190
–, classification 69
–, input feature 67
–, solution 38, 164, 169, 175, 268

–, diagram 36
–, discrete set 69
–, failures 331
–, investigation 224
–, Kp solution 126, 175, 248
–, layer 71, 202, 246

–, coefficient 212
–, continuum 196
–, experiments 236, 237
–, feature continuum 71, 73
–, multi-channel 72
–, output values 72
–, structure 202
–, weighting function 197

–, number
–, minimization 300

–, output 331
–, solution 121, 124, 173

–, continuum 164, 169, 175, 268
–, synthesis 285, 290
–, tolerance 37

node 21
–, capacity 7

number
–, regions 55
–, transformation 261

O

open-loop
–, layer 205

–, structure 200
–, network 121
–, structure 195, 200, 202, 203

operation speed 149
–, optimal 149
–, optimization 148

operator 276, 277
optimal model 104

–, definition 89
optimality conditions 152
optimization

–, criterion 97, 132
–, cross connection 53
–, functional 129, 131, 132, 225

–, secondary 143, 363
–, primary 114, 115, 173, 355
–, problem 55, 57, 216
–, secondary 129, 155
–, speed 148
–, structural 60

output
–, channel 139, 245
–, signal 196

–, generation 355

P

parallelism
–, algorithmic 3
–, events 3
–, geometric 3

parameter matrix 190, 193
pattern recognition 128, 218

–, non-stationary 231
plan experiment 365
Poisson equation 2
possibility, qualitative 9
primary optimization 114, 115, 173
probability 354
problem 163

–, algorithm 17
–, class 10
–, complexity criterion 53
–, formalized 10
–, matrix inversion 258
–, non-formalized 10
–, optimization 55
–, selection 344
–, solution

–, algorithm 343
–, program package 349

–, solving 17, 341, 349
–, methods 341

–, statement 77
–, traveling salesman 220
–, weakly formalized 10

procedure, learning 195
process iteration 150
processor

–, signal 3
–, Weitek 3

Q

qualification
–, supervisor 353
–, teacher, arbitrary 116, 140

396 Index

R

random search 154, 277, 279
–, algorithm 154

readjustment of coefficient 12
recognition

–, pattern 128
–, probability 313–316

recurrent adjustment 203, 205
region number 55
reliability 29, 303, 305

–, functional 306
–, investigation 305
–, parametrical 309

risk function 132, 175, 177, 178, 277
–, minimum criterion 132

S

search
–, algorithm 143, 147, 224

–, development 155
–, distribution mode center 242
–, extremum 148

–, algorithm 153
–, function 143, 146

–, random 154, 277, 279
–, system 360

selection
–, deterministic 208, 211, 213
–, method 207

self-learning mode 115, 140, 217
signal

–, generation 352, 355
–, input 77, 113, 207, 219, 221, 224
–, multidimensional 110
–, output 196
–, self-learning mode 113
–, types 70, 71

SIMD (Single Instruction – Multiple Data) 5, 6,
11, 13–15, 23

software emulation 3
solution 121

–, continuum 124, 135, 137, 139
–, discrete 101
–, Kp 64
–, process 21
–, task 356

space, initial 299
speed

–, operation 149
–, optimization 148

state graph 322–325, 331, 333–335
statistics, mathematical 4

structural optimization 60
structure

–, neural network 23
–, open-loop 195, 200, 202, 203

–, layer 200
supercomputer 3

–, fine-grained transputer-type 8
supervisor qualification 353
surface

–, divisional 90, 208, 236, 277
–, linear 46
–, nonlinear 128
–, piecewise linear 274, 275

synthesis methods 292
system

–, adjustment 226, 227
–, closed-cycle 233–235

–, analytical 360
–, approach 22
–, binary 261
–, decimal 261
–, linear

–, equality 217
–, inequality 217

–, modelling, dynamic 220
–, search 360

T

teacher qualification
–, arbitrary 140, 183, 262
–, subjective 262
–, unequal 82

theory control 5
threshold 35

–, function
–, tables 290

–, linear element 35
–, logic 4
–, multi- 37
–, value 37

transputer 8
–, network 3

traveling salesman problem 220

V

verification 364

W

weighting
–, coefficient 37, 50
–, function 195, 197, 202, 203, 205

	cover-image-large.jpg
	front-matter.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	back-matter.pdf

