

This E-Book and More

From

http://ali-almukhtar.blogspot.com

Fuzzy Logic and Expert
Systems Applications

Neural Network Systems
Techniques and Applications

Edited by Cornelius T. Leondes

VOLUME 1. Algorithms and Architectures

VOLUME 2. optimization Techniques

VOLUME 3. Implementation Techniques

VOLUME 4. Industrial and Manufacturing Systems

VOLUME 5. Image Processing and Pattern Recognition

VOLUME 6. Fuzzy Logic and Expert Systems Applications

VOLUME 7. Control and Dynamic Systems

Fuzzy Logic and Expert
Systems Applications

Edited by

Cornelius T. Leondes
Professor Emeritus
University of California
Los Angeles, California

V O L U M E 6 O F

Neural Network Systems
Techniques and Applications

ACADEMIC PRESS
San Diego London Boston New York Sydney Tokyo Toronto

This book is printed on acid-free paper, fe)

Copyright © 1998 by ACADEMIC PRESS

All Rights Reserved.
No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the publisher.

Academic Press
a division of Harcourt Brace & Company
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
http://www.apnet.com

Academic Press Limited
24-28 Oval Road, London NWl 7DX, UK
http://www.hbuk.co.uk/ap/

Library of Congress Card Catalog Number: 97-80441

International Standard Book Number: 0-12-443866-0

PRINTED IN THE UNITED STATES OF AMERICA
97 98 99 00 01 02 ML 9 8 7 6 5 4 3 2 1

Contents

Contributors xiii
Preface xv

Fuzzy Neural Networks Techniques and
Their Applications
Hisao Ishibuchi and Manabu Nil

I. Introduction 1
II. Fuzzy Classification and Fuzzy Modeling by Nonfuzzy

Neural Networks 6
A. Fuzzy Classification and Fuzzy Modeling 6
B. Learning for Fuzzy Classification 9
C. Learning for Fuzzy Modeling 21

III. Interval-Arithmetic-Based Neural Networks 27
A. Interval Arithmetic in Neural Networks 27
B. Neural Networks for Handling Interval Inputs 30
C. Neural Networks with Interval Weights 36

rV. Fuzzified Neural Networks 40
A. Fuzzy Arithmetic in Neural Networks 40
B. Neural Networks for Handling Fuzzy Inputs 42
C. Neural Networks with Fuzzy Weights 47

V. Conclusion 51
References 52

vi Contents

Implementation of Fuzzy Systems
Chu Kzvong Chak, Gang Feng, and Marimuthu Palaniswami

I. Introduction 57
II. Structure of Fuzzy Systems for Modeling and Control 60

A. Fuzzy Sets and Fuzzy Logic 60
B. Basic Structure of Fuzzy Systems for Modeling

and Control 62
C. Types of Fuzzy Systems for Modeling and Control 62
D. Input Domain and Output Domain 64
E. Rule Base 64
F. Input Fuzzy Partitions 66
G. AND Matrix for Input Fuzzy Terms and Input

Fuzzy Regions 68
H. Output Fuzzy Partitions 69
I. OR Matrix for Input Fuzzy Regions and Output

Fuzzy Regions 69
J. Fuzzification 71
K. Inference Engine 71
L. Defuzzification 75
M. Concluding Remarks 76

III. Design 1: A Fuzzy Neural Network with an Additional
OR Layer 76
A. Introduction 76
B. Input Dimensional Space Partitioning 77
C. Structure of the Fuzzy System 78
D. Architecture of the Proposed Neural Network 80
E. Hybrid Learning Algorithm 82
F. Simulation Examples 86
G. Concluding Remarks 93

IV. Design 2: A Fuzzy Neural Network Based on Hierarchical
Space Partitioning 94
A. Introduction 94
B. Hierarchical Input Space Partitioning 94
C. Structure of the Fuzzy System 97
D. Architecture of Proposed Fuzzy Neural Network 100
E. Learning Algorithm 102
F. Simulation Examples HI
G. Concluding Remarks 117

V. Conclusion 117
Appendix 118
References 120

Contents v

Neural Networks and Rule-Based Systems
Aldo Aiello, Ernesto Burattini, and Guglielmo Tamburrini

I. Introduction 123
II. Nonlinear Thresholded Artificial Neurons 124

III. Production Rules 125
rV. Forward Chaining 127
V. Chunking 132

A. Chunking and Production Systems 132
B. Neural Module for Chunking 134
C. Selecting Indexes 138

VI. Neural Tools for Uncertain Reasoning: Toward
Hybrid Extensions 140
A. Transforming Excitation Values into Sequences

of Firings 141
B. Transforming Sequences of Firings into

Excitation Values 141
C. Product of Positive Integers 143

VII. Qualitative and Quantitative Uncertain Reasoning 145
A. Preconditions in Nonmonotonic Inference 145
B. Qualitative Hypothesis Selection in Two-Level

Causal Networks 152
C. Query Processes and the Probabilistic

Causal Method 156

VIII. Purely Neural, Rule-Based Diagnostic System 158
A. Abduction-Prediction Cycle 158
B. Diagnoses in Pediatric Gastroenterology 160
C. Neural Implementation 163

IX. Conclusions 171
References 173

Construction of Rule-Based Intelligent Systems
Graham P. Fletcher and Chris J. Hinde

I. Introduction 175
II. Representation of a Neuron 176

III. Converting Neural Networks to Boolean Functions 179
A. Boolean Representation of a Natural Neuron 180
B. Boolean Representation of a Real Neuron 182
C. Examples of Boolean Function Derivation 184

Contents

TV. Example Application of Boolean Rule Extraction 185
V. Network Design, Pruning, and Weight Decay 187

A. Network Design 188
B. System Investigation 190
C. Segmentation of System Variables 190
D. Boolean Structure 190
E. Pruning and Weight Decay 190

VI. Simplifying the Derived Rule Base 192
VII. Example of the Construction of a Rule-Based

Intelligent System 197
VIII. Using Rule Extraction to Verify the Networks 202

A. Applying Simple Image Enhancement Techniques
to Rules 204

B. Using Enhancement to Explain the Action of the
Pole-Balancing Network 206

IX. Conclusions 208
References 209

Expert Systems in Soft Computing Paradigm
Sankar K. Pal and Sushmita Mitra

I. Introduction 211
U. Expert Systems: Some Problems and Relevance of

Soft Computing 214
A. Role of Fuzzy Logic 216
B. Use of Connectionist Models 219
C. Need for Integrating Fuzzy Logic and

Neural Networks 221
D. Utility of Knowledge-Based Networks 223

III. Connectionist Expert Systems: A Review 225
IV. Neuro-Fuzzy Expert Systems 227

A. Ways of Integration 227
B. Various Methodologies 229
C. Using Fuzzy Knowledge-Based Networks 233

V. Other Hybrid Models 234
A. Rough Sets 234
B. Genetic Algorithms 236

VI. Conclusions 237
References 237

Contents ix

Mean-Value-Based Functional Reasoning Techniques
in the Development of Fuzzy-Neural Network
Control Systems
Keigo Watanabe and Spyros G. Tzafestas

I. Introduction 243
II. Fuzzy Reasoning Schemes 245

A. Input-Data-Based Functional Reasoning 245
B. Simplified Reasoning 246
C. Mean-Value-Based Functional Reasoning 247

III. Design of the Conclusion Part
in Functional Reasoning 248
A. Input-Data-Based Functional Reasoning 248
B. Mean-Value-Based Functional Reasoning 248

IV. Fuzzy Gaussian Neural Networks 249
A. Construction 249
B. Number of Learning Parameters 253
C. Training 255

V. Attitude Control Application Example 258
A. Two-Input-Single-Output Reasoning 258
B. Three-Input-Single-Output Reasoning 265

VI. Mobile Robot Example 270
A. Model of a Mobile Robot 270
B. Simulation Examples 271

VII. Conclusions 281
References 282

Fuzzy Neural Network Systems in Model Reference
Control Systems
Yie-Chien Chen and Ching-Cheng Teng

I. Introduction 285
II. Fuzzy Neural Network 286

A. Fuzzy Inference System 286
B. Structure of the Fuzzy Neural Network 290
C. Layered Operation of the Fuzzy Neural Network 292
D. Supervised Learning 294
E. Initialization of the Fuzzy Neural Network 297

Contents

III. Mapping Capability of the Fuzzy Neural Network 299
A. Proof of Single-Output Case 300
B. Extension to Multiple-Output Case 304

IV. Model Reference Control System Using a Fuzzy
Neural Network 305
A. Overall Structure of the System 306
B. Training the Fuzzy Neural Network Identifier and the

Fuzzy Neural Network Controller 307
V. Simulation Results 309

VI. Conclusions 312
References 312

Wavelets in Identification
A. Juditsky, Q. Zhang, B. Delyon, P.-Y. Glorennec, and A. Benveniste

I. Introduction, Motivations, Basic Problems 315
A. Two Application Examples 319
B. Basic Mathematical Problems 322

n. "Classical" Methods of Nonlinear
System Identification 327
A. Linear Nonparametric Estimators 327
B. Performance Analysis of the

Nonparametric Estimators 335
C. Nonlinear Estimates 341

III. Wavelets: What They Are, and Their Use
in Approximating Functions 344
A. Continuous Wavelet Transform 344
B. Discrete Wavelet Transform: Orthonormal Bases of

Wavelets and Extensions 346
C. Wavelets and Functional Spaces 350

IV. Wavelets: Their Use in Nonparametric Estimation 356
A. Wavelet Shrinkage Algorithms 356
B. Practical Implementation of Wavelet Estimators 360

V. Wavelet Network for Practical System Identification 363
A. Adaptive Dilation/Translation Sampling 364
B. Wavelet Network and Its Structure 366
C. Constructing the Wavelet Library W 367
D. Selecting the Best Wavelet Regressors 368
E. Combining Regressor Selection

and Backpropagation 370

Contents

VI. Fuzzy Models: Expressing Prior Knowledge in Nonlinear
Nonparametric Models 370
A. Fuzzy Rules and Prior Knowledge in

Nonparametric Models 370
B. Fuzzy Rule Bases for Wavelet-Based Estimators 374

VII. Experimental Results 379
A. Modeling the Gas Turbine System 379
B. Modeling the Hydrauhc Actuator of the

Robot Arm 389
C. Predictive Fuzzy Modeling of

Glycemic Variations 393
VIII. Discussion and Conclusions 397

IX. Appendix: Three Methods for Regressor Selection 400
A. Residual-Based Selection: Details 401
B. Stepwise Selection by Orthogonalization: Details 402
C. Backward Elimination: Details 405
References 409

Index 413

This Page Intentionally Left Blank

Contributors

Numbers in parentheses indicate the pages on which the authors' contributions begin.

Aldo Aiello (123), Istituto di Cibernetica C.N.R., 1-80072 Arco Felice, Italy

A. Benveniste (315), Institut de Recherche en Informatique et Systemes
Aleatoires (IRISA), Campus Universitaire de Beaulieu, 35042 Rennes
Cedex, France

Ernesto Burattini (123), Istituto di Cibernetica C.N.R., 1-80072 Arco
Felice, Italy

Chu Kwong Chak (57), Department of Electrical and Electronic Engineer-
ing, University of Melbourne, Parkville, 3052 Victoria, AustraUa

Yie-Chien Chen (285), Department of Control Engineering, National
Chiao-Tung University, Hsinchu, Taiwan

B. Delyon (315), Institut de Recherche en Informatique et Systemes
Aleatoires (IRISA), Campus Universitaire de Beaulieu, 35042 Rennes
Cedex, France

Gang Feng (57), Department of Systems and Control, School of Electrical
Engineering, University of New South Wales, Sydney, New South
Wales 2052, Australia

Graham P. Fletcher (175), Department of Computer Sciences, University
of Glamorgan, Wales CF37 IDL, United Kingdom

P.-Y. Glorennec (315), Institut de Recherche en Informatique et Systemes
Aleatoires (IRISA), Campus Universitaire de Beaulieu, 35042 Rennes
Cedex, France

Chris J. Hinde (175), Department of Computer Sciences, University of
Glamorgan, Wales CF37 IDL, United Kingdom

Hisao Ishibuchi (1), Department of Industrial Engineering, Osaka Prefec-
ture University, Sakai, Osaka 593, Japan

xiv Contributors

A. Juditsl^ (315), Institut de Recherche en Informatique et Systemes
Aleatoires (IRISA), Campus Universitaire de Beauheu, 35042 Rennes
Cedex, France

Sushmita Mitra (211), Machine InteUigence Unit, Indian Statistical Insti-
tute, Calcutta 700 035, India

Manabu Nii (1), Department of Industrial Engineering, Osaka Prefecture
University, Sakai, Osaka 593, Japan

Sankar K. Pal (211), Machine Intelligence Unit, Indian Statistical Insti-
tute, Calcutta 700 035, India

Marimuthu Palaniswami (57), Department of Electrical and Electronic
Engineering, University of Melbourne, Parkville, 3052 Victoria, Aus-
traha

Guglielmo Tamburrini (123), Istituto di Cibernetica C.N.R., 1-80072 Arco
Felice, Italy

Ching-Cheng Teng (285), Department of Control Engineering, National
Chiao-Tung University, Hsinchu, Taiwan

Spyros G. Tzafestas (243), Department of Electrical and Computer Engi-
neering, Intelligent Robotics and Automation Laboratory, National
Technical University of Athens, Athens 157 73, Greece

Keigo Watanabe (243), Department of Mechanical Engineering, Faculty of
Science and Engineering, Saga University, Saga 840, Japan

Q. Zhang (315), Institut de Recherche en Informatique et Systemes
Aleatoires (IRISA), Campus Universitaire de Beaulieu, 35042 Rennes
Cedex, France

Preface

Inspired by the structure of the human brain, artificial neural networks
have been widely apphed to fields such as pattern recognition, optimiza-
tion, coding, control, etc., because of their ability to solve cumbersome or
intractable problems by learning directly from data. An artificial neural
network usually consists of a large number of simple processing units, i.e.,
neurons, via mutual interconnection. It learns to solve problems by ade-
quately adjusting the strength of the interconnections according to input
data. Moreover, the neural network adapts easily to new environments by
learning, and can deal with information that is noisy, inconsistent, vague,
or probabilistic. These features have motivated extensive research and
developments in artificial neural networks. This volume is probably the
first rather comprehensive treatment devoted to the broad areas of algo-
rithms and architectures for the realization of neural network systems.
Techniques and diverse methods in numerous areas of this broad subject
are presented. In addition, various major neural network structures for
achieving effective systems are presented and illustrated by examples in all
cases. Numerous other techniques and subjects related to this broadly
significant area are treated.

The remarkable breadth and depth of the advances in neural network
systems with their many substantive applications, both realized and yet to
be realized, make it quite evident that adequate treatment of this broad
area requires a number of distinctly titled but well-integrated volumes.
This is the sixth of seven volumes on the subject of neural network systems
and it is entitled Fuzzy Logic and Expert Systems Applications. The entire
set of seven volumes contains

Volume 1: Algorithms and Architectures
Volume 2: Optimization Techniques
Volume 3: Implementation Techniques
Volume 4: Industrial and Manufacturing Systems
Volume 5: Image Processing and Pattern Recognition
Volume 6: Fuzzy Logic and Expert Systems Applications
Volume 7: Control and Dynamic Systems

XV

xvi Preface

The first contribution to this volume is "Fuzzy Neural Networks Tech-
niques and Their AppHcations," by Hisao Ishibuchi and Manabu Nii. Fuzzy
logic and neural networks have been combined in various ways. In general,
hybrid systems of fuzzy logic and neural networks are often referred to as
fuzzy neural networks, which in turn can be classified into several cate-
gories. The following list is one example of such a classification of fuzzy
neural networks:

1. Fuzzy rule-based systems with learning ability,
2. Fuzzy rule-based systems represented by network architectures,
3. Neural networks for fuzzy reasoning,
4. Fuzzified neural networks,
5. Other approaches.

The classification of a particular fuzzy neural network into one of these
five categories is not always easy, and there may be different viewpoints for
classifying neural networks. This contribution focuses on fuzzy classifica-
tion and fuzzy modeling. Nonfuzzy neural networks and fuzzified neural
networks are used for these tasks. In this contribution, fuzzy modeling
means modeling with nonlinear fuzzy number valued functions. Included
in this contribution is a description of how feedforward neural networks
can be extended to handle the fuzziness of training data. The many
implications of this are then treated sequentially and in detail. A rather
comprehensive set of illustrative examples is included which clearly mani-
fest the significant effectiveness of fuzzy neural network systems in a
variety of applications.

The next contribution is "Implementation of Fuzzy Systems," by Chu
Kwong Chak, Gang Feng, and Marimuthu Palaniswami. The expanding
popularity of fuzzy systems appears to be related to its ability to deal with
complex systems using a linguistic approach. Although many applications
have appeared in systems science, especially in modeling and control, there
is no systematic procedure for fuzzy system design. The conventional
approach to design is to capture a set of linguistic fuzzy rules given by
human experts. This empirical design approach encounters a number of
problems, i.e., that the design of optimal fuzzy systems is very difficult
because no systematic approach is available, that the performance of the
fuzzy systems can be inconsistent because the fuzzy systems depend mainly
on the intuitiveness of individual human expert, and that the resultant
fuzzy systems lack adaptation capability. Training fuzzy systems by using a
set of input-output data captured from the complex systems, via some
learning algorithms, is known to generate or modify the linguistic fuzzy
rules. A neural network is a suitable tool for achieving this purpose

Preface xvii

because of its capability for learning from data. This contribution presents
an in-depth treatment of the neural network implementation of fuzzy
systems for modeling and control. With the new space partitioning tech-
niques and the new structure of fuzzy systems developed in this contribu-
tion, radial basis function neural networks and sigmoid function neural
networks are successfully applied to implement higher order fuzzy sys-
tems that effectively treat the problem of rule explosion. Two new fuzzy
neural networks along with learning algorithms, such as the Kalman filter
algorithm and some hybrid learning algorithms, are presented in this
contribution. These fuzzy neural networks can achieve self-organiza-
tion and adaptation and hence improve the intelligence of fuzzy systems.
Some simulation examples are shown to support the effectiveness of
the fuzzy neural network approach. An array of illustrative examples
clearly manifests the substantive effectiveness of fuzzy neural network
system techniques.

The next contribution is "Neural Networks and Rule-Based Systems,"
by Aldo Aiello, Ernesto Burattini, and Guglielmo Tamburrini. This con-
tribution presents methods of implementing a wide variety of effec-
tive rule-based reasoning processes by means of networks formed by non-
linear thresholded neural units. In particular, the following networks are
examined:

1. Networks that represent knowledge bases formed by propositional
production rules and that perform forward chaining on them.

2. A network that monitors the elaboration of the forward chaining
system and learns new production rules by an elementary chunking
process.

3. Networks that perform qualitative forms of uncertain reasoning,
such as hypothetical reasoning in two-level casual networks and
the application of preconditions in default reasoning.

4. Networks that simulate elementary forms of quantitative uncertain
reasoning.

The utilization of these techniques is exemplified by the overall structure
and implementation features of a purely neural, rule-based expert system
for a diagnostic task and, as a result, their substantive effectiveness is
clearly manifested.

The next contribution is "Construction of Rule-Based Intelligent Sys-
tems," by Graham P. Fletcher and Chris J. Hinde. It is relatively straight-
forward to transform a propositional rule-based system into a neural
network. However, the transformation in the other direction has proved a
much harder problem to solve. This contribution explains techniques that

xviii Preface

allow neurons, and thus networks, to be expressed as a set of rules. These
rules can then be used within a rule-based system, turning the neural
network into an important tool in the construction of rule-based intelligent
systems. The rules that have been extracted, as well as forming a rule-based
implementation of the network, have further important uses. They also
represent information about the internal structures that build up the
hypothesis and, as such, can form the basis of a verification system. This
contribution also considers how the rules can be used for this purpose.
Various illustrative examples are included.

The next contribution is "Expert Systems in Soft Computing Paradigm,"
by Sankar K. Pal and Sushmita Mitra. This contribution is a rather
comprehensive treatment of the soft computing paradigm, which is the
integration of different computing paradigms such as fuzzy set theory,
neural networks, genetic algorithms, and rough set theory. The intent of
the soft computing paradigm is to generate more efficient hybrid systems.
The purpose of soft computing is to provide flexible information process-
ing capability for handhng real life ambiguous situations by exploiting the
tolerance for imprecision, uncertainty, approximate reasoning, and partial
truth to achieve tractability, robustness, and low cost. The guiding prin-
ciple is to devise methods of computation which lead to an accept-
able solution at low cost by seeking an approximate solution to an
imprecisely/precisely formulated problem. Several illustrative examples
are included.

The next contribution is "Mean-Value-Based Functional Reasoning
Techniques in the Development of Fuzzy-Neural Network Control Sys-
tems," by Keigo Watanabe and Spyros G. Tzafestas. This contribution
reviews first conventional functional reasoning, simplified reasoning, and
mean-value-based functional reasoning methods. Design techniques which
utilize these fuzzy reasoning methods based on variable structure systems
control theory are presented. Techniques for the design of three fuzzy
Gaussian neural networks that utilize, respectively, conventional functional
reasoning, simplified reasoning, and mean-value-based functional reason-
ing methods are presented and compared with each other, particularly
with regard to the number of learning parameters to be learned in the
result. The effectiveness of the mean-value-based functional reasoning
technique is made manifest by an illustrative example in the design and
simulation of a nonlearning fuzzy controller for a satellite attitude control
system. As another illustrative example, a fuzzy neural network controller
based on mean-value-based functional reasoning techniques is developed
and utilized for the tracking control problem of a mobile robot with two
independent driving wheels.

Preface xix

The next contribution is "Fuzzy Neural Network Systems in Model
Reference Control Systems," by Yie-Chien and Ching-Cheng Teng. This
contribution presents techniques for model reference control systems
which utilize fuzzy neural networks. The techniques presented for system
model reference control belong to the class of systems referred to as
indirect adaptive control. Techniques for the utilization of fuzzy neural
network identifiers (FNNI) to identify a controlled plant are presented.
The FNNI approximate the system and provide the sensitivity of the
controlled plant for the fuzzy neural network controller (FNNC). The
techniques presented can be referred to as a genuine adaptation system
that can learn to control complex systems and adapt to a wide variation in
system plant parameters. Unlike most other techniques presented for
adaptive learning neural controllers, the FNNC techniques presented in
this contribution are based not only on the theory of neural network
systems, but also on the theory of fuzzy logic techniques. The substantive
effectiveness of the techniques presented in this contribution are shown by
an illustrative example.

The final contribution to this volume is "Wavelets in Identification," by
A. Juditsky, Q. Zhang, B. Deylon, P-Y. Glorennec, and A. Benveniste. This
contribution presents a rather spendid self-contained treatment of non-
parametric nonlinear system identification techniques utilizing both neural
network system methods and fuzzy system theory modeling techniques.
Wavelet techniques are introduced and a self-contained presentation of
wavelet principles is included. The advantages and limitations of the
potentially greatly effective wavelet techniques are presented. Illustrative
examples are presented throughout this contribution.

This volume on fuzzy logic and expert systems applications clearly
reveals the effectiveness and essential significance of the techniques avail-
able and, with further development, the essential role they will play in the
future. The authors are all to be highly commended for their splendid
contributions to this volume which will provide a significant and unique
reference for students, research workers, practitioners, computer scientists,
and others on the international scene for years to come.

Cornelius T. Leondes

This Page Intentionally Left Blank

Fuzzy Neural Networks
Techniques and Their
Applications

Hisao Ishibuchi
Department of Industrial Engineering
Osaka Prefecture University
Sakai, Osaka 593, Japan

Manabu Nil
Department of Industrial Engineering
Osaka Prefecture University
Sakai, Osaka 593, Japan

I. INTRODUCTION

Fuzzy logic and neural networks have been combined in a variety of ways. In
general, hybrid systems of fuzzy logic and neural networks are often referred to
as fuzzy neural networks [1]. Fuzzy neural networks can be classified into several
categories. The following is an example of one such classification of fuzzy neural
networks [2]:

1. Fuzzy rule-based systems with learning ability.
2. Fuzzy rule-based systems represented by network architectures.
3. Neural networks for fuzzy reasoning.
4. Fuzzified neural networks.
5. Other approaches.

The classification of a particular fuzzy neural network into one of these five cat-
egories is not always easy, and there may be different viewpoints for classifying
fuzzy neural networks.

Fuzzy neural networks in the first category are basically fuzzy rule-based sys-
tems where fuzzy if-then rules are adjusted by iterative learning algorithms similar
to neural network learning (e.g., the back-propagation algorithm [3,4]). Adaptive
fuzzy systems in [5-8] can be classified in this category. In general, fuzzy if-then

Fuzzy Logic and Expert Systems Applications
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 1

2 Hisao Ishibuchi and Manabu Nii

rules with n inputs and a single output can be written as follows:

If jci is Aji and X2 is Ay2 and . . . and Xn is Ay„ then y is Bj,

7 = 1,2,...,A^, (1)

where x = (jci, JC2, . . . , Jc„) is an ̂ -dimensional input vector, y is an output vari-
able, and Ay 1 , . . . , Ajn and Bj are fuzzy sets. In the first category of fuzzy neural
networks, membership functions of the antecedent fuzzy sets (i.e., Ayi , . . . , Ajn)
and the consequent fuzzy set (i.e., Bj) of each fuzzy if-then rule are adjusted in a
similar manner as in neural networks.

Usually linguistic labels such as small and large are associated with the fuzzy
sets in the fuzzy if-then rules. An example of a fuzzy if-then rule with two inputs
and a single output is

If jci is small and X2 is large then y is small. (2)

In a simplified version [5, 6] of fuzzy if-then rules, a real number is used in the
consequent part instead of the fuzzy number Bj in (1). That is, simplified fuzzy
if-then rules can be written as follows:

If jci is Ayi andX2 is Ay2 and . . . and Xn is Aŷ then y is bj,

7 = 1,2,...,iV, (3)

where bj is a real number. Recently these fuzzy if-then rules have frequently been
used because of the simplicity of the fuzzy reasoning and the learning.

In the second category of fuzzy neural networks, fuzzy rule-based systems
are represented by network architectures. Thus learning algorithms for neural
networks such as the back-propagation algorithm [3, 4] can be easily applied
to the learning of fuzzy rule-based systems. Various network architectures [9-
24] have been proposed for representing fuzzy rule-based systems. In those ar-
chitectures, usually the membership function of each antecedent fuzzy set (i.e..
Ay 1, Ay 2 , . . . , Ay„) corrcspouds to the activation function of each unit in the neu-
ral networks. When the antecedent part (i.e., the condition) of each fuzzy if-then
rule is defined by a fuzzy set Ay on the /i-dimensional input space rather than
n fuzzy sets Ayi, Ay2,. . . , Ajn on the n axes in (1), fuzzy if-then rules can be
written as follows:

If X is Ay then y is Bj, 7 = 1,2,. . . , Â , (4)

for the case of the fuzzy consequent, and

If X is Ay then yisbj, 7 = 1,2,. . . , Â , (5)

for the case of the real-number consequent. An example of the membership func-
tion of the antecedent fuzzy set Ay is shown in the two-dimensional input space

Fuzzy Neural Networks Techniques 3

in Fig. 1 where contour lines of the membership function of Ay are depicted. As
we can intuitively realize from Fig. 1, the membership function of the antecedent
fuzzy set Aj corresponds to a generalized radial basis function. Thus fuzzy rule-
based systems with fuzzy if-then rules in (4) or (5) can be viewed as a kind of
radial basis function network [25, 26].

Fuzzy neural networks in the third category are neural networks for fuzzy rea-
soning. Standard feedforward neural networks with special preprocessing proce-
dures are used for fuzzy reasoning in this category. For example, in Keller and
Tahani [27, 28], antecedent fuzzy sets and consequent fuzzy sets are represented
by membership values at some reference points, and those membership values
are used as inputs and targets for the training of feedforward neural networks. In
Fig. 2, we illustrate the learning of a three-layer feedforward neural network by
the following fuzzy if-then rule:

If jc is small then y is large. (6)

where each Unguistic label is denoted by membership values at 11 reference
points. For example, the linguistic label small is denoted by the 11-dimensional
real vector (1, 0.6, 0.2, 0, 0, 0, 0,0, 0, 0,0). Because both the inputs and the tar-
gets in Fig. 2 are real-number vectors, the neural network can be trained by
the standard back-propagation algorithm [3, 4] with no modification. Neural-
network-based fuzzy reasoning methods in [27-33] may be classified in the third
category.

The fourth category of fuzzy neural networks consists of fuzzified neural net-
works. Standard feedforward neural networks can be fuzzified by using fuzzy

A

0.25

0
- > X i

Figure 1 Antecedent fuzzy set on a two-dimensional input space.

Hisao Ishihuchi and Manabu Nii

Inputs: 10.60.20 0 0 0 0 0 0 0

1.1

).0 ' 0.5 1.0

Figure 2 Inputs and targets for the learning from the fuzzy if-then rule: If x is small then y is large.

numbers as inputs, targets, and connection weights. This category is clearly dis-
tinguished from the other categories because fuzzified neural networks are de-
fined by fuzzy-number arithmetic [34] based on the extension principle of Zadeh
[35]. That is, the outputs from fuzzified neural networks are defined by fuzzy
arithmetic, whereas other fuzzy neural networks use real-number arithmetic for
calculating their outputs. Some examples of fuzzy-number arithmetic are shown
in Figs. 3 and 4. The sum and the product of two triangular fuzzy numbers are
shown in Fig. 3, and the nonlinear mapping of a fuzzy number by a sigmoidal
activation function is shown in Fig. 4. Architectures of fuzzified neural networks
and their learning algorithms have been proposed in [36-43]. In Fig. 5, we illus-
trate the learning of a fuzzified neural network from the fuzzy if-then rule "If jc is
small then y is large'' Both the input and the target in Fig. 5 are fuzzy numbers
with linguistic labels.

The fifth category of fuzzy neural networks (i.e., other approaches) includes
various studies on the combination of fuzzy logic and neural networks. This
category includes neural fuzzy point processes by Rocha [44], fuzzy percep-
tron by Keller and Hunt [45], fuzzy ART (adaptive resonance system) and fuzzy
ARTMAP by Carpenter et al [46,47], max-min neural networks by Pedrycz [48],
fuzzy min-max neural networks by Simpson [49,50], OR/AND neuron by Hirota
and Pedrycz [51], and Yamakawa's fuzzy neuron [52].

Fuzzy Neural Networks Technicjues

1 2 3 4 5 6 7 "0 1 2 3 4 5 6

Figure 3 Sum and product of two triangular fuzzy numbers.

In this chapter, we focus our attention on fuzzy classification and fuzzy mod-
ehng. Nonfuzzy neural networks and fuzzified neural networks are used for these
tasks. In this chapter, fuzzy modeling means modeling with nonlinear fuzzy-
number-valued functions. This chapter is organized as follows. In Section II, we
explain fuzzy classification and fuzzy modeling by nonfuzzy neural networks.
In fuzzy classification, an input pattern is not always assigned to a single class.
In fuzzy modeling, two nonfuzzy neural networks are trained for realizing an
interval-valued function from which a fuzzy-number-valued function is derived.
In Section III, interval-arithmetic-based neural networks are explained as the sim-
plest version of fuzzified neural networks. We describe how interval input vectors
can be handled in neural networks. Intervals are used for denoting uncertain or
missing inputs to neural networks. We also describe the extension of connection
weights to intervals, and derive a learning algorithm of the interval connection
weights in Section III. Section IV is related to the fuzzification of neural net-

-3.0 Net 3.0

Figure 4 Nonlinear mapping of a triangular fuzzy number by a sigmoidal activation function.

Hisao Ishibuchi and Manabu Nii

I 0.5
S 1

0.0

,1.0

I 0.5

I
0.5

Target: large

M - g e ^

1.0

Input: small

^ small
0 . 5 ^

o.oiH^
0.0

JL
0.5 1.0

Figure 5 Fuzzy input and fuzzy target for the learning of a fuzzified neural network.

works. Inputs, targets, and connection weights are extended to fuzzy numbers.
Fuzzified neural networks are used for the classification of fuzzy inputs, the ap-
proximate realization of fuzzy-number-valued functions, the learning of neural
networks from fuzzy if-then rules, and the extraction of fuzzy if-then rules from
neural networks. Section V concludes this chapter.

IL FUZZY CLASSIFICATION AND FUZZY
MODELING BY NONFUZZY NEURAL NETWORKS

A. FUZZY CLASSIFICATION AND FUZZY MODELING

Let us consider a two-class classification problem on the two-dimensional unit
cube [0,1]^ in Fig. 6a where training patterns from Class 1 and Class 2 are de-
noted by closed circles and open circles, respectively. As we can see from Fig. 6a,
the given training patterns are linearly separable. Thus the perceptron learning al-
gorithm [53] can be applied to this problem. On the other hand, training patterns
in Fig. 6b are not linearly separable. In this case, we can use a multilayer feedfor-
ward neural network. The classification boundary in Fig. 6b was obtained by the

Fuzzy Neural Networks Techniques

X2 X2

• • • • | - » - : - « - : - « - T - «

'. Class I H
• • • t -4 - i - * -4 -4- t - *

(a) (b)

Figure 6 Examples of classification problems: (a) linearly separable classification problem; (b) lin-
early nonseparable classification problem.

learning of a three-layer feedforward neural network with two input units, three
hidden units, and a single output unit.

Theoretically, multilayer feedforward neural networks can generate any clas-
sification boundaries because they are universal approximators of nonlinear func-
tions [54-57]. Here let us consider a pattern classification problem in Fig. 7a.
Even for such a complicated classification problem, there are neural networks
that can correctly classify all the training patterns. In practice, it is not always an
appropriate strategy to try to find a neural network with a 100% classification rate
for the training patterns because a high classification rate for the training patterns

X2

1.0 • - • • " • • # • • " • • •

h-6 6-6 6-6-6>-6-i••'

0.5^

1.0
XiO.O

0.0

(a) (b)

Figure 7 Example of a complicated classification problem with a overlapping region: (a) classifica-
tion problem; (b) fiizzy boundary.

8 Hisao Ishibuchi and Manabu Nii

sometimes leads to poor performance for new patterns (i.e., for test patterns). This
observation is known as the overfitting to the training patterns.

In this section, we show how the concept of fuzzy classification is applied
to complicated classification problems with overlapping regions such as Fig. 7.
Fuzzy classification is also referred to as approximate classification [58, 59]. In
the fuzzy classification, we assume that classification boundaries between differ-
ent classes are not clear but fuzzy. We show an example of the fuzzy classification
in Fig. 7b where the dotted area corresponds to the fuzzy boundary between Class
1 and Class 2. The classification of new patterns in the fuzzy boundary is rejected.
We can see that the fuzzy boundary in Fig. 7b is intuitively acceptable for the pat-
tern classification problem in Fig. 7a. The fuzzy boundary can be extracted from
two neural networks trained by leaning algorithms in Ishibuchi et al. [60] based
on the concept of possibiHty and necessity [61]. Those learning algorithms search
for the possibility region and the necessity region of each class. Fuzzy classifica-
tion has also been addressed by Karayiannis and Purushothaman [62-65]. They
tackled classification problems similar to Fig. 7, and proposed neural-network-
based fuzzy classification methods. The basic idea of their fuzzy classification
is similar to ours, but their neural network architectures and learning algorithms
are different from those presented in this chapter. Fuzzy classification was also
discussed by Archer and Wang in a different manner [66].

The concept of fuzzy data analysis can be introduced to another major appH-
cation area of neural networks: modeling of nonlinear systems. In general, the
input-output relation of an unknown nonlinear system is approximately realized
by the learning of a neural network. Let us assume that we have the input-output
data in Fig. 8a for an unknown nonlinear system. In this case, we can model the
unknown nonlinear system by the learning of a neural network. The nonlinear
curve in Fig. 8a is depicted using the output of the neural network trained by the

1.0

I
§^0.5
O

[

f
[. . 0.0

0.0 0.5 1.0 0.0 0.5 1.0

Input X Input X

(a) (b)

Figure 8 Examples of input-output data for the training of neural networks.

Fuzzy Neural Networks Techniques 9

given input-output data. From Fig. 8a, we can see that the input-output relation
is well represented by the trained neural network. Now, let us consider the input-
output data in Fig. 8b. It does not seem to be an appropriate attempt to represent
the input-output data in Fig. 8b by a single nonUnear curve.

For representing such input-output data in an intuitively acceptable way, we
use an interval-valued function that approximately covers all the given input-
output data. In this section, we describe an identification method [67, 68] of the
interval-valued function by two nonfuzzy neural networks in addition to the fuzzy
classification. The two neural networks correspond to the lower limit and the
upper limit of the interval-valued function, respectively. In this section, we also
describe how a fuzzy-number-valued function can be derived from the interval-
valued function realized by the two neural networks [68]. Nonlinear modehng by
interval-valued functions using neural networks can be viewed as an extension
of fuzzy linear regression [69-71] where linear interval models and linear fuzzy
models are used for regression analysis (see also [72, 73]).

B. LEARNING FOR FUZZY CLASSIFICATION

In this subsection, we explain the fuzzy classification method in [58-60] based
on the concept of possibility and necessity. For simplicity, we start with two-
class classification problems. Then we extend the fuzzy classification for two-
class problems to the case of multiclass problems.

Let us assume that we have m training patterns Xp = (xpi, Xp2,..., Xpn), p =
1, 2 , . . . , m, from two classes (i.e.. Class 1 and Class 2) in an n-dimensional pat-
tern space Q. In this case, the nonfuzzy pattern classification is to divide the pat-
tern space Q into two disjoint decision areas ^ i and ^2- These decision areas
satisfy the following relations:

^ l U ^ 2 = ^ , (7)

^1 n ^2 = 0, (8)

where 0 denotes an empty set.
On the other hand, we assume that the class boundary is fuzzy in the fuzzy

classification. Thus the pattern space Q is divided into three disjoint areas for the
two-class classification problem:

^ i U ^ 2 U ^ F B = ^ , (9)

QinQ2 = 0, ^1 n ^FB = 0, ^2 n ^FB = 0, (lO)

where ^ F B is the fuzzy boundary between the two classes. The classification of
new patterns in the fuzzy boundary is rejected. Figure 7b is an example of the
fuzzy boundary.

10 Hisao Ishibuchi and Manabu Nii

We use a feedforward neural network with n input units and a single output
unit for the two-class pattern classification problem in the n-dimensional pattern
space ^ . In the learning of the neural network, we define the target output tp for
each training pattern x^ as follows:

I 1, foTXp e Class 1,
^ ~ [0 , for Xp G Class 2. ^ ^

The learning of the neural network is to minimize the following cost function:

ep = (tp-0pf/2, (12)

where Op is the output from the neural network.
Using the output from the trained neural network, we can define the decision

area of each class as follows:

^1 = {x I o{x) > 0.5, X G Q], (13)

^2 = {x I o(x) < 0.5, X G ^ } , (14)

where o(x) is the output from the trained neural network for the input vector x.
In this manner, we can use the neural network for the two-class classification
problem.

The fuzzy classification can be done by slightly modifying the aforementioned
procedure. In our fuzzy classification, the cost function is modified for determin-
ing the possibility area and the necessity area of each class. For determining the
possibility area of Class 1, we use the following cost function:

^{(h- Opfll. \ixp G Class 1,
^^ I co{u) ' (tp - Opfll, if Xp G Class 2, ^ ^

where u is the number of the iterations of the learning algorithm (i.e., epochs), and
a>(w) is a monotonically decreasing function such that 0 <&)(«)< land(w(M) ^•
0 for M -^ oo. For example, we can use the following decreasing function:

(W(M) = 1 /{1 + (M/1000)^} . (16)

From the definition of the cost function in (15), we can see that the importance
of Class 2 patterns is monotonically decreased by the decreasing function o^{u)
during the learning of the neural network. This means that the relative impor-
tance of Class 1 patterns is monotonically increased. Thus we can expect that the
following relation will hold for Class 1 patterns after the learning of the neural
network:

o(Xp) = 1 forxp G Class 1. (17)

Let us consider a one-dimensional classification problem in Fig. 9 where train-
ing patterns from Class 1 and Class 2 are shown by closed circles and open circles.

Fuzzy Neural Networks Techniques 11

c !) o 6 o 6 o 4 o * » i » * o * o 6 o 6 o (!) > r
0.0 0.5 1.0

Figure 9 One-dimensional pattern classification problem.

respectively. For this problem, we used the modified back-propagation algorithm
derived from the cost function Cp in (15) with the decreasing function co(u) in
(16). A three-layer feedforward neural network with five hidden units was trained
by iterating the learning algorithm 10,000 times (i.e., 10,000 epochs). In Fig. 10,
we show the shape of the output from the neural network. From Fig. 10, we can
see that the output from the neural network approached the training patterns from
Class 1 (i.e., closed circles in Fig. 10) during the learning. This is because the
relative importance of Class 1 patterns was monotonically increased by the de-
creasing function CL>(U) attached to Class 2 patterns.

From Fig. 10b, we can see that the output from the neural network can be
viewed as the possibility grade of Class 1. For example, the output o(x) in Fig.
10b is nearly equal to 1 (full possibility) for the input value x = 0.35, whereas
the training pattern on jc = 0.35 belongs to Class 2. We can define the possibility
area using the output from the trained neural network. For example,

Q^""' = {X I ^^^'(x) > 0.5, X G Q], (18)

where Q\^^ is the possibility area of Class 1 and o^^^(x) is the output from the
neural network trained for the possibility analysis. Input patterns in this possibility
area are classified as "having the possibility to belong to Class 1." In Fig. 10b, the
possibility area of Class 1 is the interval [0.268, 0.734].

As we can see from Figs. 9 and 10, input patterns around jc = 0.5 may certainly
be classified as Class 1 because there are no Class 2 patterns around x = 0.5. For
extracting such a certain (i.e., nonfuzzy) decision area, we use a different learning
algorithm based on the concept of necessity.

For the necessity analysis of Class 1, we use the following cost function in the
learning of the neural network:

I (o{u)' (tp - Op)^/2, ifxp e Class 1,
^ 1 (tp - Op)^/2, if xp e Class 2, ^'^^

where u and co(u) are the same as in (15). From (19), we can see that the impor-
tance of Class 1 patterns is monotonically decreased by the decreasing function
a)(u) during the learning of the neural network.

For the classification problem in Fig. 9, we used the modified back-propagation
algorithm derived from the cost function Cp in (19) with the decreasing function
co(u) in (16). A three-layer feedforward neural network with five hidden units
was trained by iterating the learning algorithm 10,000 times (i.e., 10,000 epochs).

12 Hisao Ishihuchi and Manabu Nii

SOiiterations

0.5 1.0

Input value

(a)

b
'a 0.5
>

I
o

Q Pos

lOOOOiiterations
o{x)

O.oAoeoe/d • o •—'—• o • b>eoeoQ>x
0.0 0.35 0.5 1.0

Input value

(b)
Figure 10 Results by the learning for the possibility analysis.

In Fig. 11, we show the shape of the output from the neural network. From Fig.
11, we can see that the output from the neural network approached the training
patterns from Class 2 (i.e., open circles in Fig. 11). This is because the relative im-
portance of Class 2 patterns is monotonically increased by the decreasing function
co(u) attached to Class 1 patterns.

From Fig. l ib , we can see that the output from the neural network can be
viewed as the necessity grade of Class 1. For example, the output o{x) is nearly

Fuzzy Neural Networks Techniques 13

Iterations

0.5 1.0
Input value

(a)

Nes

10000 iteratibns

O.OooeoQO
0.0

oeoeQeD>x
0.5 1.0

Input value

(b)
Figure 11 Results by the learning for the necessity analysis.

equal to 1 (full necessity) for input values around x = 0.5. This coincides with
our intuition. We can define the necessity area using the output from the trained
neural network in the same manner as the possibility area in (18):

Q^^' = {X I o^^'ix) > 0.5, X G Q], (20)

where Q^^^ is the necessity area of Class 1 and o^^^(x) is the output from the
neural network trained for the necessity analysis. Input patterns in this necessity

14 Hisao Ishibuchi and Manabu Nil

area are classified as "having the necessity to belong to Class 1." In Fig. 1 lb, the
necessity area of Class 1 is the interval [0.386,0.607]. All the input patterns in
this interval are certainly classified as Class 1.

The fuzzy boundary is the area that is included in the possibility area but ex-
cluded from the necessity area. In the fuzzy boundary, the outputs from the two
neural networks trained by the possibility analysis and the necessity analysis are
nearly equal to 1 and 0, respectively (see Figs. 10 and 11). Thus the fuzzy bound-
ary can be defined as follows:

^PB = {x I 0.25 < fi(x) < 0.75, X € Q], (21)

where />6(x) is a kind of membership grade of x to Class 1, and defined as follows:

M(X) = (22)

where o^^^(x) and o^^^(x) are the outputs from the neural networks trained for
the possibility analysis and the necessity analysis, respectively. The decision area
of each class is defined as follows:

^1 = {x | /x(x) >0.75, XG Q},

^2 = jx I A6(x) < 0.25, X G Q},

(23)

(24)

In Fig. 12, we show the shape of /x(x) that was obtained from the outputs of
the two neural networks in Figs. 10b and 1 lb. The fuzzy boundary is also shown
in Fig. 12. From Fig. 12, we can see that the fuzzy classification coincides with
our intuition.

0^2 ^^FB ^^1 '^^FB ^'''2
-isssssss* i^sasisssf—

OQOQ> JC
0.5 1.0

Input value
Figure 12 Fuzzy boundary and decision areas obtained by the fuzzy classification method.

Fuzzy Neural Networks Techniques 15

For comparison, we show some results by the standard back-propagation al-
gorithm based on the squared error in (12). Figure 13a and b was obtained af-
ter 50,000 iterations of the back-propagation algorithm for three-layer feedfor-
ward neural networks with five hidden units and ten hidden units, respectively.

0.0 0.5 1.0

Input value

(a)

0.5 1.0

Input value

(b)
Figure 13 Results by the standard back-propagation algorithm: (a) output from the trained neural
network with five hidden units; (b) output from the trained neural network with ten hidden units.

16 Hisao Ishibuchi and Manabu Nii

Output

Input value X2 Input value xi

Figure 14 Shape of the output from the neural network trained for the possibility analysis.

In Fig. 13a, the learning seems to be incomplete. On the contrary, the learning
in Fig. 13b seems to be the overfitting to the training data. We can see that the
result of the fuzzy classification in Fig. 12 coincides very well with our intu-
ition if compared with the results of the standard back-propagation algorithm in
Fig. 13.

We also applied our fuzzy classification method to the two-dimensional pattern
classification problem in Fig. 7. In Fig. 14, we show the shape of the output from
the neural network with five hidden units trained for the possibility analysis. From
Fig. 7, we can see that the output from the neural network in Fig. 14 represents
the grade of possibility of Class 1 very well. On the other hand, in Fig. 15, we
show the grade of necessity of Class 1 obtained for the necessity analysis. We can
see from Fig. 7 that Fig. 15 represents the necessity grade of Class 1 very well.
The function fiix), which is shown in Fig. 16, was obtained by the two outputs
in Figs. 14 and 15. In Fig. 17, we show the fuzzy boundary obtained from /ji(x)
in Fig. 16. We can see that an intuitively acceptable fuzzy boundary was obtained
by the proposed fuzzy classification method in Fig. 17.

Output

Input value X2 Input value xi

Figure 15 Shape of the output from the neural network trained for the necessity analysis.

Fuzzy Neural Networks Techniques 17

Output

Input value X2 Input value xi

Figure 16 Shape of the function At(x).

The fuzzy classification method for two-class problems can be extended to the
case of multiclass classification problems. For a c-class classification problem, we
divide the pattern space Q into the following (c -h 1) areas:

^ 1 U ^ 2 U • • • U ^ c U ^FB = ^ ,

QhnQk = 0 foTWh,k, h^k.

(25)

(26)

Let us assume that we have m training patterns Xp = (xpi, Xp2,..., Xpn), p =
1, 2 , . . . , m, from c classes. For this c-class classification problem with the n-
dimensional pattern space Q, we use a feedforward neural network with n input
units and c output units. The target vector ip = (tpi, tp2,..., tpc) for the input
pattern Xp is defined as follows:

tpk =
1,
0,

ifxp € Class A:,
otherwise, (27)

forA: = 1, 2 , . . . , c.

0.0 Q2 -̂5 1-̂

Figure 17 Fuzzy boundary and decision areas obtained by the fuzzy classification method.

18 Hisao Ishibuchi and Manabu Nil

i»4»6>6»6o(!)o6D6a6a[! iadi >y
0.0 0.5 1.0

Figure 18 Three-class classification problem on the one-dimensional pattern space [0,1].

For the possibility analysis, we define the cost function for the input pat-
tern Xp by the target vector tp = (tpi,tp2, -", tpc) and the output vector
Op = (opi, Op2,..., Opc) from the neural network as follows:

= J2^P^^
k=i

where epk is the cost function for the /:th output unit, which is defined as

epk =
(tpk - Opkf/2,
o)(u) • (tpk - Opk)^/2,

ifxp e Class A;,
otherwise.

(28)

(29)

From the comparison between (15) and (29), we can see that the cost function
epk for the A;th output unit in (29) is for the possibility analysis of Class k. Let
us consider a three-class classification problem on the one-dimensional pattern
space [0,1] in Fig. 18 where closed circles, open circles, and squares denote the
training patterns from Class 1, Class 2, and Class 3, respectively. We appUed the
modified back-propagation algorithm derived from the cost function in (28) and
(29) to this three-class pattern classification problem. We also used the decreasing
function a; (w) in (16). The outputs from the trained neural network with a single
input unit, five hidden units, and three output units are shown in Fig. 19. From this

Q i
Pos

1.0

I
S 0.5

0.0

Q.
Pos

[
^ ^ • • • • • • • • • • o L.

Q,
• Oi • • • • •

• f 8 « a « a » <

0 1 0 1 0 1
Input value A: Input value JC Input value JC

1st output unit 2nd output unit 3rd output unit

Figure 19 Results of the possibiUty analysis.

Fuzzy Neural Networks Techniques 19

figure, we can see that the output from each output unit represents the possibiUty
grade of the corresponding class very well.

For the necessity analysis, we modify the cost function epk for the ^th output
unit as follows:

epk =
_ \ co(u)' (tpk - Opk)^/2,

(tpk - OpkYll.
if Xp G Class A:,
otherwise.

(30)

As we can see from the comparison between (19) and (30), the cost function epk
in (30) is for the necessity analysis of Class k. In Fig. 20, we show the results of
the learning based on this cost function. From Fig. 20, we can see that the output
from each unit represents the necessity grade of the corresponding class very well.

If some region in the pattern space has high possibility grades for at least two
classes, such a region can be viewed as a fuzzy boundary. On the contrary, if some
region has a high possibility grade for only a single class, such a region can be
viewed as the decision area of the corresponding class. To formulate this intuitive
discussion, let us define /XA:(X) for each class as follows:

Mit(x) = o[^^(x) max{o^^'(x) I /i = 1, 2 , . . . , c; /i 7̂ A:}, (31)

where ĉ |̂ °̂ (x) is the output from the A:th output unit of the neural network trained
for the possibility analysis. When A6jt(x) is large, we can see that the input vector
X has a high possibiUty grade only for Class k. Thus the input vector x is classified
as Class k. From this idea, the decision area of each class is defined by /Xjt(x) as
follows:

^^ = {x I [ikiX) > 0.5, X € ^ } , A: = 1, 2 , . . . , c. (32)

Q
Nes

r

*••• • • — g • mmmi

1 0 1
Input value ;c Input valued Input value :)C

1st output unit 2nd output unit 3rd output unit

Figure 20 Results of the necessity analysis.

20 Hisao Ishibuchi and Manabu Nii

The fuzzy boundary is defined from (25) as follows:

^PB = ^ - {^1 U ^ 2 U • • . U ^ c (33)

The decision areas and the fuzzy boundary for the classification problem in Fig.
18 are shown in Fig. 21 together with the shape of /XjtCx). From this figure, we
can see that intuitively acceptable results were obtained by our fuzzy classification
method. Our fuzzy classification method is more than the classification with the
reject option. Because our method is based on the possibility analysis, we can get
the information about the possible classes for each of the rejected input patterns.
For example, let us consider an input pattern at x = 0.3 in Fig. 21. As is shown in
Fig. 21, the classification of this pattern is rejected. Thus we examine the output
from the trained neural network for the possibility analysis (i.e.. Fig. 19). Because
the output corresponding to the input jc = 0.3 is (1.00, 1.00, 0.00), we can see that
the possible classes of this input pattern are Class 1 and Class 2. We can also see
that there is no possibility that the input pattern belongs to Class 3.

In order to examine the performance of our fuzzy classification method, we
applied it to the well-known iris classification data (see, e.g., Fisher [74]). First
we examined the performance for training data by applying our fuzzy classifica-
tion method to the iris data using all the 150 samples as training patterns. The
computer simulation was iterated 20 times using a three-layer feedforward neural
network with four input units, two hidden units, and three output units. The av-
erage simulation results are summarized in Table I. From this table, we can see
that no pattern was misclassified by the fuzzy classification method. The classifi-
cation of 4.3 patterns was rejected on the average over the 20 trials. From Table I,
we can also see that Class 1 patterns are clearly separable from the other patterns
(i.e.. Class 2 and Class 3 patterns).

Input value x

Figure 21 Fuzzy boundary and decision areas obtained by the fuzzy classification method.

Fuzzy Neural Networks Techniques 21

Table I

Classification Results by the Fuzzy Classification for Training Data

Correct
class

1
2
3

Class 1

50
0
0

Classification results

Class 2

0
47.7
0

Class 3

0
0

48

Boundary

0
2.3
2

Next we examined the performance of our fuzzy classification method for test
data by the leaving-one-out procedure (see, e.g., Weiss and KuHkowski [75]). In
the leaving-one-out procedure, a single pattern was used as a test pattern and the
other 149 patterns were used for training. This procedure was iterated 150 times
so that every pattern was used as a test pattern just once. In our computer simu-
lation, this leaving-one-out procedure was iterated five times. The average results
are summarized in Table II. From this table, we can see that 2.8 patterns (i.e.,
1.87%) were misclassified on the average over the five iterations of the leaving-
one-out procedure. This error rate is less than almost all the reported results in the
literature (e.g., 3.3% by the back-propagation algorithm in [75]). This low error
rate was achieved by rejecting the classification of 10.4 patterns (i.e., 6.93%) on
the average.

C. LEARNING FOR FUZZY MODELING

Modeling of fuzzy systems has been addressed in the field of fuzzy regression
[69-71] where the following fuzzy regression model is used for a fuzzy system
with n nonfuzzy inputs and a single fuzzy output:

y(x) = Ao + Aixi + • • • + AnXn, (34)

Table II

Classification Results by the Fuzzy Classification for Test Data

Correct
class

1
2
3

Class 1

50
0
0

Classification results

Class 2

0
42.2

1

Class 3

0
1.8

44.6

Boundary

0
6
4.4

22 Hisao Ishibuchi and Manabu Nii

where x = (xi, X2, • • •, ^n) is an n-dimensional real-number input vector, F(x) is
a fuzzy-number output from the fuzzy regression model, and AQ, A i , . . . , A„ are
fuzzy-number coefficients. Thus the fuzzy regression model maps the nonfuzzy
input vector x = (xi, JC2,..., %„) to the fuzzy-number output F(x).

The simplest version of the fuzzy regression model is the following interval
regression model:

F(x) = Ao + Aixi + • • • + (35)

where y(x) is an interval output from the interval regression model, and
Ao, A i , . . . , A„ are interval coefficients.

Let us assume that m input-output pairs (x^; yp), p = 1, 2 , . . . , m, are given
as training data where x^ = (xpi,Xp2,..., Xpn) is an n-dimensional real-number
input vector and yp is a real-number output. The interval coefficients of the in-
terval regression model in (35) are determined by solving the following linear
programming problem:

Minimize y^w{Y(Xp)),
p=i

subject to yp e Y(Xp), p = 1, 2 , . . . , m,

(36)

(37)

where w(') denotes the width of the interval. The objective function (36) is to
minimize the sum of the widths of the interval outputs y(Xp)'s. The constraint
condition (37) means that the interval output Y(Xp) has to include the given out-
put yp. The given output yp can be viewed as the target in the learning of neural
networks. In Fig. 22, we show an example of the interval regression model with
a single input and a single output. From Fig. 22, we can see that all the given
input-output pairs are included in the interval regression model.

In this subsection, we extend the linear interval model in (35) to nonlinear
models using neural networks. Now let us assume that the input-output pairs in

0.0 0.5 1.0
Input X

Figure 22 Interval regression model and given input-output data.

Fuzzy Neural Networks Techniques 23

Fig. 8b are given. From this figure, we can see that no Hnear model is appropriate
for the given data. In Fig. 23a, we show the output from a three-layer feedforward
neural network with five hidden units trained by the standard back-propagation al-
gorithm. An interval function determined by our method, which will be explained
in this subsection, is shown in Fig. 23b. From the comparison between Fig. 23a
and Fig. 23b, we can see that the interval function in Fig. 23b can represent the
given data much better than the nonlinear curve in Fig. 23a.

In our method for determining a nonlinear interval function such as Fig. 23b,
we use two feedforward neural networks. One is used for representing the up-
per bound of the nonlinear interval function, and the other is used for the lower
bound.

Let 6>* (x) and o* (x) be the outputs from the two neural networks corresponding
to the input vector x. Using the two neural networks, a nonlinear interval function
7(x) can be constructed as follows:

7(x) = [o*(x),^*(x)], (38)

where o*(x) and o*(x) are the lower bound and the upper bound of the interval
function 7(x), respectively. The linear programming problem in (36) and (37) is
modified for the nonlinear interval function Y(x) as follows:

Minimize ^2 \^*(^p) ~ o*(^p)\,
p=i

subject to (9*(Xp) <yp< <?*(Xp),

o^(x)<o*(x) forVx.

P = l ,2 , , . ,m,

(39)

(40)

(41)

0.5 1.0

Input ;c

(a) (b)

Figure 23 Comparison of two approaches: (a) modeling with a real-number-valued function; (b)
modeling with an interval-valued function.

24 Hisao Ishihuchi and Manabu Nii

It is not easy to derive a learning algorithm for this nonlinear optimization
problem. We show a simple approach for approximately solving this problem
[67,68]. For determining the lower bound o* (x) of the nonlinear interval function
F(x), we define the following cost function for the input-output pair (x^; yp):

iyp ~ o*(Xp))2/2, if yp < o*(Xp),
o)(u)' (yp - o*(Xp))^/2, if o*(Xp) < yp,

where u and co(u) are the same as in the last subsection for the fuzzy classifica-
tion. That is, u is the number of iterations of the learning algorithm, and o)(u) is
a monotonically decreasing function such that 0 < a)(u) < I and co{u) —> 0 for
M -> oo. From (42), we can see that the squared error is discounted by co(u) when
the inequality constraint o*(x) < yp in (40) is satisfied by the output o^(x) from
the neural network. Because co(u) becomes almost zero after enough iterations,
the cost function is negligible when the inequality constraint is satisfied. On the
contrary, if the inequality constraint c?*(x) < yp is not satisfied, the cost function
is the same as in the standard back-propagation algorithm. In this case, the output
o*(x) from the neural network approaches the given target yp. In this manner,
it is expected that the inequality constraint o^(\) < yp is approximately satis-
fied after enough iterations of the learning algorithm based on the cost function
in (42).

Using the input-output data in Fig. 23, we trained a neural network with five
hidden units by the modified back-propagation algorithm derived from the cost
function in (42). As the decreasing function co(u) in (42), we used the following
function:

co(u) = 1/{1 + (M/2000)^} . (43)

In Fig. 24, we show the shape of this decreasing function and the shape of the out-
put (9*(x) from the neural network during the learning. From Fig. 24a, we can see
that co(u) is very small after 5000 iterations, whereas it is relatively large before
2000 iterations. From Fig. 24b, we can see that the output o^(x) approximately
satisfies the inequality constraint c?*(x) < yp for all the given input-output data
after 10,000 iterations.

The upper bound o*(x) of the nonlinear interval function F(x) can be also
determined by the learning of a neural network. The learning is performed in
order to approximately satisfy the inequality constraint yp < o*(x) in (40). The
cost function to be minimized in the learning is defined for the input-output pair
(Xp; yp) as follows:

M iyp-o*{Xp)f/2, ifo*{Xp)<yp,
co(u) • {yp - o*(Xp))2/2, if yp < o*iXp), 2n :.-. ^ - -* . . . \ (44)

Fuzzy Neural Networks Techniques

1.0,

25

no

0 O 0

w = 2000 °

tt=10000

1

0 5000 10000

Number of iterations (u)

(a)

0.0 0.5

Inputs

(b)

1.0

Figure 24 Simulation results by the learning for determining the lower limit of a nonUnear interval
function: (a) decreasing function co(u); (b) shape of the output from the neural network.

where the squared error is discounted by co(u) when the inequality constraint
yp < o*(x) in (40) is satisfied by the output o*(x) from the neural network. In
a similar manner as in Fig. 24b, we trained the neural network with five hidden
units by the modified back-propagation algorithm derived from the cost function
in (44). In Fig. 25, we show the shape of the output o*(x) from the neural network
during the learning. From Fig. 25, we can see that the output o*(x) approximately
satisfies the inequality constraint yp < ĉ *(x) after 10,000 iterations.

1.0

0.0

u = 1000

0.0

1.0

0.5

Input jc

(a)

1.0
0.0

u =10000

0.0 0.5

Input JC

(b)

1.0

Figure 25 Simulation results by the learning for determining the upper Umit of a nonlinear interval
function.

26 Hisao Ishibuchi and Manahu Nii

In the fuzzy regression analysis [69-73], the fuzzy-number coefficients of the
fuzzy regression model in (34) are determined by the following linear program-
ming problem:

Minimize ^^{[Y(Xp)]^),
p=\

subject to yp e [Y(Xp)\, /? = 1, 2 , . . . , m,

(45)

(46)

where [•]h is the /z-level set of a fuzzy number (see Fig. 26). Because the /z-level
set of a fuzzy number is a closed interval, the linear programming problem in (45)
and (46) for the fuzzy regression analysis is basically the same as the problem in
(36) and (37) for the interval regression analysis.

Therefore the fuzzy regression model can be derived from the following rela-
tion (see Fig. 26):

[F(x)]^ = Y(x). (47)

For the case of nonlinear models, we can also derive nonlinear fuzzy functions
F(x)'s using the preceding relation from a nonlinear interval function Y(x). Two
nonUnear fuzzy functions are shown in Fig. 27 for the case of triangular fuzzy
outputs and trapezoidal fuzzy outputs. Figure 27a is depicted from the nonlinear
interval function in Fig. 23b by the following relation:

[Y(^)]h=0.0 = Yi^l (48)

> X

Input

(a) (b)

Figure 26 Illustration of the /i-level set.

Fuzzy Neural Networks Techniques

1.0

27

Figure 27 Two fuzzy functions derived from the interval function in Fig. 23b.

where 7(x) is a symmetric triangular fuzzy number (see Fig. 27a). On the other
hand, Fig. 27b is depicted from the same nonhnear interval function by the rela-
tion:

where 7 (x) is a symmetric trapezoidal fuzzy number (see Fig. 27b).

(49)

III. INTERVAL-ARITHMETIC-BASED
NEURAL NETWORKS

A. INTERVAL ARITHMETIC IN NEURAL NETWORKS

In real-world applications, training data may include uncertain inputs or
missing inputs. Let us consider a two-class classification problem on the two-
dimensional pattern space [0,1]^. We assume that we have a training pattern
(0.2, ?) from Class 1 where "?" denotes the missing input. One of the simplest ap-
proaches to the handling of this training pattern with the missing input is to ignore
this pattern. Another approach is to substitute the most likely value for the missing
input. Now let us assume that we have a new pattern (?, 0.5) to be classified by a
trained neural network. In this case, the first approach cannot be used because we
have to classify this new pattern. The substitution in the second approach is not
easy because the classification of this new pattern is unknown. In this section, we
employ an interval-arithmetic-based approach to the handling of missing inputs.
The new pattern (?, 0.5) is represented as an interval pattern ([0,1], 0.5) in our
approach. This interval representation can be also used for handling uncertain in-

28 Hisao Ishibuchi and Manabu Nii

puts. For example, let us assume that we have the following information about an
uncertain pattern on the two-dimensional pattern space [0,1]^:

(i) The first input is not more than 0.3 (i.e., xi < 0.3).
(ii) The second input is not less than 0.8 (i.e., 0.8 < X2).

From these two pieces of information, we can represent this uncertain pattern as
an interval pattern ([0, 0.3], [0.8, 1]) because the pattern space is the unit square
[0, 1]^.

When an interval input pattern is presented to a neural network, interval arith-
metic [76, 77] is used for calculating the input-output relation of the neural net-
work. Interval arithmetic is also used when connection weights of neural networks
are given as intervals. In this subsection, we briefly describe the interval arithmetic
that will be used for the handling of interval input patterns and interval connection
weights.

Interval arithmetic is the generalization of ordinary arithmetic on real numbers
to closed intervals. In this section, we denote real numbers and closed intervals
by lowercase letters (e.g., a, b,c,...) and uppercase letters (e.g.. A, B,C,...),
respectively. An interval is also represented by its lower Umit and upper limit as

A = [a^,a% (50)

where the superscripts "L" and "(7" denote the lower limit and the upper limit,
respectively.

The inclusion relation between intervals can be defined as

A^B <^ b^ <a^ mda^ < b^, (51)

where A = [a^,a^] and B = [b^, b^]. As a special case of this relation, the
inclusion relation between an interval and a real number can be defined as

ae B <^ b^ <a<b^. (52)

We have already used this inclusion relation in the previous section.
The following addition and multiplication are used in this section for calculat-

ing the total input to each unit in interval-arithmetic-based neural networks:

A + B = [a^, a^] + [b\ b""] = [a^ + ft^ a^ + b% (53)

a.fi=a.[^^^^]:.([«•f^'«•t^!' f̂̂ ^̂ ' (54)
^ -• \ [a • b'^, a • b'^], if a < 0,

A•B = [fl^fl^]•[/,^z>^]

= [mm{a'^b\a'^b^,a^b\a^b^},

max{a'^b'^,a'^b'',a^b^,a"b^}l (55)

Fuzzy Neural Networks Techniques 29

In the case of 0 < a^ < a^ (i.e., if A is nonnegative), the preceding product
operation on intervals can be simpUfied as

AB^ [a ^ a^] • [ft^ fe^] = [min{a^fe^ a^fe^}, max{a^fc^, a^b"}]. (56)

As an example, let us consider a very simple network with two input units
(i.e., units 1 and 2) and a single output unit (i.e., unit j) in Fig. 28 where Opi and
Op2 are interval outputs from the two input units, Wji and Wj2 are real-number
connection weights, Oj is a real-number bias, and Opj is an interval output from
the unit j . The total input to the unit j is calculated by interval arithmetic as
follows (see Fig. 28).

Nttpj = Wj\' Opi-\- Wj2 ' Op2 + Oj

= - 2 • [1, 2] + 1 . [2, 3] + 1 = [-4, - 2] + [2, 3] + [1, 1]

= [-1,2], (57)

where a real number is treated as a special interval whose lower and upper limits
are the same.

The sigmoidal function, which is used as an activation function at hidden and
output units, is extended to the case of interval inputs as follows:

/(Net) = { / (x) | xGNet} , (58)

where Net is an interval input and

/ (x) = l / { l + e x p (- x) } . (59)

Because the sigmoidal function in (59) is a strictly increasing function, the interval
output /(Net) in (58) can be calculated as

/(Net) = /([net^, net^]) = [/(net^), / (net^)] . (60)

This is illustrated in Fig. 29.

0,2 = 12,3]

Figure 28 Simple network with two interval inputs and an interval output.

30 Hisao Ishibuchi and Manabu Nil

1.0

0.0

<^
(̂ \^ r̂

Net
-3.0 ef net"" 3.0

Figure 29 Interval activation function at hidden and output units.

The interval output Opj in Fig. 28 is calculated as follows:

Opj = /(Net,) = / ([- I , 2]) = [/ (- I) , /(2)] = [0.269,0.881]. (61)

B. NEURAL NETWORKS FOR HANDLING
INTERVAL INPUTS

As we have already described, intervals can be used for representing uncertain
inputs and missing inputs [78,79]. Interval representation is also useful for utiliz-
ing experts' knowledge in the learning of neural networks [80]. Let us consider a
two-class classification problem in the pattern space [0,1]^. Now we assume that
the following two pieces of information are given from domain experts:

(i) If ;ci < 0.5 and JC2 < 0.5 then Class 1.
(ii) If jci > 0.8 or X2 > 0.8 then Class 2.

These two rules are shown in Fig. 30a. We also assume that we have training
patterns in Fig. 30b where closed circles and open circles are training patterns
from Class 1 and Class 2, respectively. Our problem is to train a neural network
from both experts' knowledge (i.e., the if-then rules in Fig. 30a) and the numerical
data in Fig. 30b.

We can denote the first rule as an interval pattern ([0,0.5], [0,0.5]) from
Class 1. This interval pattern is shown as the square in Fig. 30a. The second rule
can be denoted by two interval patterns ([0.8, 1], [0,1]) and ([0,1], [0.8,1]) from
Class 2. These two input patterns correspond to the two rectangles in Fig. 30a.
Because real numbers can be viewed as a special case of closed intervals whose

Fuzzy Neural Networks Techniques 31

X2

A
1.0 h

Class 2 0.5 h * * •

1.0 0.0 0.5 h> 1̂ 1.0'

(a) (b)

Figure 30 Available information for learning: (a) experts' knowledge; (b) numerical data.

upper and lower limits are the same (e.g., 0.5 = [0.5,0.5]), we can represent both
the if-then rules and the numerical patterns as a set of interval patterns.

In general, let us assume that we have m interval patterns Xp = (Xpi, Xp2,...,
Xpn), p = 1, 2 , . . . , m, from c classes. For these interval patterns, we use a stan-
dard three-layer feedforward neural network with n input units, nn hidden units,
and c output units. The input-output relation of each unit can be written as follows
(see Fig. 31):

Input units: Opt = Xpi, i = 1,2, . . . , n, (62)

n

Hidden units: Netp^ = Y^ Wji • Opt +0j, 7 = 1, 2 , . . . , n^ , (63)

(64)

/=i

Opj = /(Net^y), y = l , 2 , . . . , n / / ,

riH

Output units: Netpjt = Y^ Wkj • Opj -\-0k, ^ = 1, 2 , . . . , c, (65)
7=1

Opk = /(Netpit), ^ = 1,2, . . . , c . (66)

We can see that these formulations are the same as the architecture of standard
feedforward neural networks except that the input and the output of each unit
are intervals. The calculation of the input-output relation of each unit is done by
interval arithmetic described in the previous subsection. For example, the input-

32 Hisao Ishibuchi and Manabu Nii

Input Hidden Output
units units units

Figure 31 Architecture of interval-arithmetic-based neural networks with interval inputs and real-
number connection weights.

output relation of the ^th output unit can be rewritten from interval arithmetic
as

nn riH

7=1 j=l
Wkj >0 Wkj <0

HH riH

Opk = K„ <,] = [/W,), /W.)]. (69)
For the learning of the neural network from the interval patterns, we define the

target vector tp = {tp\,tp2,..., tpc) corresponding to the interval input pattern
Xp as follows:

_ J 1, ifXpG Class ^,
^ ^ ^ - [0 , otherwise, ^'^^

for A: = 1, 2 , . . . , c. The cost function to be minimized in the learning is defined
as follows:

ep = Y. i'p'^ - '>'pkfl^ + E i'pk - o%f/2. (71)
k=l k=l

A back-propagation-type learning algorithm can be derived from this cost
function for adjusting the connection weights and the biases [78-80].

To illustrate our approach, we first trained a neural network with two input
units, five hidden units, and a single output unit by the standard back-propagation
algorithm using only the numerical data in Fig. 30b. The classification boundary

Fuzzy Neural Networks Techniques 33

1.0 0.0

(a) (b)

Figure 32 Simulation results: (a) learning from only numerical data; (b) learning from both experts'
knowledge and numerical data.

obtained by the learning is shown in Fig. 32a. From this figure, we can see that
all the given patterns are correctly classified. Because the experts' knowledge in
Fig. 30a was not used in the learning, the classification boundary violates the
second if-then rule "If .x:i > 0.8 or X2 > 0.8 then Class 2."

We next trained the same neural network using both the experts' knowledge
and the numerical data. That is, the three interval patterns in Fig. 30a and the
ten patterns in Fig. 30b were used for the learning of the neural network in our
approach. The classification result obtained by the learning is shown in Fig. 32b.
From this figure, we can see that the classification boundary is clearly consistent
with both the given patterns and the experts' knowledge.

We show another simulation result by our approach in Fig. 33a, which was ob-
tained by the learning using the six interval patterns in this figure. From this figure,
we can see that all the interval patterns are correctly classified. For comparison,
we applied the standard back-propagation algorithm to this problem using the four
vertexes of each interval pattern. We show the simulation result in Fig. 33b. As
shown in this figure, all the vertexes are correctly classified but the classification
boundary violates an interval pattern.

Our interval-arithmetic-based approach can also be employed when a new pat-
tern has uncertain or missing inputs. In the same manner as in the training pat-
terns, we represent the new pattern with uncertain or missing inputs by an interval
pattern X^ = (Xpi, Xp2,..., Xpn). For example, a new pattern (0.3, ?, 0.8) in
the three-dimensional pattern space [0, 1]-̂ is represented as an interval pattern
([0.3, 0.3], [0, 1], [0.8, 0.8]) where real numbers are also represented as closed
intervals. The classification of the interval pattern X^ is done by presenting this
pattern to the trained neural network. As we have already explained, an interval

34 Hisao Ishibuchi and Manabu Nil

• ' >Xi 0.0

Figure 33 Simulation results: (a) learning from interval data; (b) learning from vertexes of interval
data.

output vector Op = (Opi, Op2,..., Ope) is obtained from the interval input pat-
tern Xp by interval arithmetic. Now our problem is to assign the interval input
pattern X^ to one of the given c classes based on the interval output vector O^.

To classify the interval input pattern X^, we use the following rule [79, 81]:

If o^j^ > o^^ for /z = 1, 2 , . . . , c, h ^ k then classify X^ as Class k. (72)

The condition part of this rule means that the following inequality holds:

Opk > Oph for "iopk e Opk, "ioph e Oph,

and/i = 1, 2 , . . . , c, h ^ k. (73)

For example, an interval input pattern is classified as Class 2 if the correspond-
ing interval output vector O^ = (Opi, Opi, Op3, Op4) is as in Fig. 34a. On the
other hand, in the case of Fig. 34b, the classification of an interval input pattern is
rejected. This is because the condition part of (72) does not hold for any class in
Fig. 34b.

For illustration, first we trained a neural network by the standard back-
propagation algorithm using the training patterns in Fig. 35a where the clas-
sification boundary obtained from the trained neural network is also shown.
We presented two interval patterns in Fig. 35b to the trained neural network,'
and examined the corresponding outputs. One interval input pattern X^ is
([0.1, 0.4], [0.5, 0.8]), and the other interval input pattern X^ corresponds to an
input pattern (0.8, ?) with a missing input. For the interval input pattern XA,
the interval output vector ([0.00, 0.00], [0.99, 0.99], [0.00, 0.00]) was obtained.

Fuzzy Neural Networks Techniques

1.0

;3

t
O 0.0

1—̂ p—1
\0p2

± T

1.0
t i

t O

0.0

1 z 1

_ * 1

<^/>2
\0p3

^ 1 I<^
4: T 1st 2nd 3rd 4th

unit unit unit unit
1st 2nd 3rd 4th
unit unit unit unit

35

(a) (b)

Figure 34 Examples of interval outputs: (a) classifiable case; (b) unclassifiable case.

From this interval output vector, we can classify XA as Class 2 by the classifica-
tion rule in (72). On the other hand, the classification of X5 is rejected because the
corresponding interval output vector is ([0.00, 0.99], [0.00,0.02], [0.00,0.99]).

If the condition part in (72) holds, any patterns included in X^ are also classi-
fied as the same class. This is because the following inclusion relation holds:

Xqi c Xpi for / 1,2, Oqk£Opkfork=l,2,...,c, (74)

where X^ = (Xpi, Xp2,..., Xpn) and Xq = (Xqi, Xq2,..., Xqn) are interval
input patterns, and O^ = (Opi, 0^2, • • •, Ope) and O^ = (Oqi, Oqi,..., Oqc)
are the corresponding interval output vectors from the neural network. The rela-
tion in (74), which is called "inclusion monotonicity," is one of the basic features
of interval arithmetic. For example, from this relation, we can see that any interval

1.0

0.5

X2

0.0

o 1 • •
° / Class 1

Class 2 0/ • •

o
A A

A A

^ Class 3
A A

0.0 0.5 1.0

X2

1.0

0.5

0.0

XA

0.5
J-^Xi

1.0

(a) (b)

Figure 35 Classification boundaries obtained by the trained neural network and interval input vec-
tors: (a) classification boundaries and training data; (b) classification boundaries and new interval input
vectors.

36 Hisao Ishibuchi and Manabu Nii

(and real number) input patterns included in XA in Fig. 35b are always classified
as Class 2 because X^ has already been classified as Class 2.

C. NEURAL NETWORKS WITH INTERVAL WEIGHTS

In the previous subsection, we described how feedforward neural networks can
be extended to the case of interval inputs. In this subsection, we extend connection
weights to intervals.

Let us start with a feedforward neural network with real-number input vectors
and interval connection weights. Such a neural network is used for approximately
realizing a nonlinear interval function. For a nonlinear interval function with n
inputs and a single output, we use an interval-arithmetic-based neural network
that maps an /i-dimensional real-number input vector Xp = (xpi,Xp2, • •., Xpn)
to an interval output Op. The input-output relation of each unit of the interval-
arithmetic-based neural network with interval connection weights is written for
the real-number input vector Xp = (xpi, Xp2,..., Xpn) as follows:

Input units: Opt = Xpt, / = 1,2,. . . , n, (75)

n

Hidden units: Net̂ y = ^ Wjt - Opt -\-Sj, y = 1, 2 , . . . , n^ , (76)
1 = 1

Opj = fiNetpj), 7 = 1,2,. . . , riH, (77)

Output unit: Netp = ^Wj - Opj + 0 , (78)
7=1

Op = fiNctp), (79)

This interval-arithmetic-based neural network is the same as the standard feed-
forward neural network except that the connection weights Wjt, Wj and the biases
0y, 0 are given by intervals. The architecture of this neural network and its ex-
ample are shown in Fig. 36. As in Fig. 36a, we denote the interval connection
weights and the interval biases by their lower and upper limits as

The input-output relation of each unit in (75)-(79) is calculated by interval arith-
metic. For example, the input-output relation of the output unit can be rewritten

Fuzzy Neural Networks Techniques 37

0,=[o^o,"]

0 = [0^,0^]

[0.28,0.83]

(a) (b)
Figure 36 Interval-arithmetic-based neural networks with real-number input vectors and interval
connection weights: (a) general architecture; (b) an example.

because the interval outputs O^/s from the hidden units are always nonnegative
[see (60) and Fig. 29]:

riH riH

net^= Y. ^)'^\j'- E ^ ^ < y + ^ ^
J = l

tlH

7=1

riH

< = E Wi -̂ .• +
=1

nU Wj>0
7=1

.̂ = K'<] = [/K)'/W)].

(81)

(82)

(83)

Let us assume that we have m input-output pairs (x ,̂; Yp), p = 1,2,..., m,
as training data where Xp = (xpi, Xp2,..., Xpn) is an n-dimensional real-number
input vector, and Yp = [y^, y^] is the corresponding interval output. The given
output Yp is used as a target interval. We show an example of such training data in
Fig. 37a for the case ofn = l. Our problem here is to train the interval-arithmetic-
based neural network using the given training data.

The learning is performed so that the interval output Op from the neural net-
work becomes approximately equal to the target interval Yp for all the given

38 Hisao Ishibuchi and Manahu Nii

Figure 37 Simulation result: (a) given training data; (b) shape of the output from the trained neural
network.

input-output pairs (x^; 7^), p = 1, 2 , . . . , m. Thus we define the cost function
for the given input-output pair (x^; Yp) as follows:

U\2 , .̂ = (^.'--.T/2 + (^r-pTA (84)

A back-propagation-type learning algorithm can be derived from this cost func-
tion for adjusting the interval connection weights and the interval biases [82, 83].
The adjustment of the interval connection weights and the interval biases is per-
formed by updating their lower and upper hmits. For example, the interval con-
nection weight Wj = [wj, w^] is adjusted by updating its lower limit w^ and its
upper limit w^ using the partial derivatives dcp/divj and dcp/dw^ At should be
noted that the inequahty w^ <w^ always has to be satisfied.

In Fig. 37b, we show the result of the learning of the interval-arithmetic-based
neural network with a single input, five hidden units, and a single output unit. The
two curves in this figure correspond to the lower limit and the upper limit of the
interval output from the trained neural network.

In the previous section, we described how a nonlinear interval function can be
approximately reaUzed by two standard feedforward neural networks. As shown
in Fig. 37b, a single interval-arithmetic-based neural network with interval con-
nection weights can also represent a nonhnear interval function. The main differ-
ence between these two approaches is that the two standard neural networks are
independently trained, whereas the lower and upper limits of the interval connec-
tion weights are adjusted with the inequahty constraints such as w;j- < w^^ . This
difference is clearly demonstrated in Fig. 38. In Fig. 38a, two curves are outputs
from two standard neural networks that were independently trained. In this figure,

Fuzzy Neural Networks Techniques

1.0

39

0.5
Input value x

Figure 38 Comparison of two approaches: (a) two standard neural networks; (b) single interval-
arithmetic-based neural network.

the output from one neural network for the lower limit is larger than that for the
upper limit in some range (i.e., around x = 0.5). In Fig. 38b, however, the lower
limit of the interval output is always smaller than the upper limit.

Interval-arithmetic-based neural networks with interval connection weights
can be trained so as to include all the given training data as shown in Fig. 39a
or be included in the target intervals as shown in Fig. 39b.

0.5
Input value x

(a)

1.0

! o . 5 |

I
O

0.0

f%^
0.0 0.5

Input value x

(b)

1.0

Figure 39 Simulation results: (a) learning for including interval targets; (b) learning for being in-
cluded in interval targets.

40 Hisao Ishibuchi and Manabu Nii

They can also handle real-number targets. For those extensions, see Ishibuchi
et al [82]. The most general architecture of interval-arithmetic-based neural net-
works has interval input vectors, interval connection weights, and interval target
vectors. That is, interval-arithmetic-based neural networks for approximately real-
izing nonlinear interval functions are extended to the case of interval input vectors
and multiple output units. The learning of those neural networks is also performed
by updating the lower and upper limits of the interval connection weights and
biases [83]. Those neural networks are used for approximately realizing nonhn-
ear mappings of interval vectors (i.e., mappings from interval vectors to interval
vectors).

IV. FUZZIFIED NEURAL NETWORKS

A. FUZZY ARITHMETIC IN NEURAL NETWORKS

In the previous section, we extended inputs, connection weights, biases, and
targets to intervals. Here they are extended to fuzzy numbers for the fuzzification
of multilayer feedforward neural networks. As we have already shown in Figs.
3 and 4, fuzzy arithmetic [34] based on the extension principle [35] is used for
defining the input-output relation of fuzzified neural networks.

We denote fuzzy numbers by uppercase letters with tildes such as A, B,C,
etc. A fuzzy number A is specified by its membership function /x^() on the real
line ^ (i.e., on the set of real numbers). In Fig. 40, we show two examples of
fuzzy numbers. They can be interpreted as "about 5" and "about 10," respectively.
Linguistic values such as "smair and "large" are also viewed as fuzzy numbers.

0 5 10
Figure 40 Examples of fuzzy numbers.

Fuzzy Neural Networks Techniques 41

Five linguistic values (S: small, MS: medium small, M: medium, ML: medium
large, and L: large) defined on the unit interval [0,1] are shown in Fig. 41. Fuzzy
numbers can be used for representing various linguistic concepts such as "hof
water, a ''warm'' day, and a "talV man. Fuzzified neural networks can handle such
a linguistic concept as well as numerical data.

We use the following addition, multiplication, and nonlinear mapping of fuzzy
numbers in our fuzzified neural networks (see Figs. 3 and 4):

/^A+5W = max{/x^(x) A /xg(j) \z=x + y],

1^A-B(^) = max{/i^(x) A fXg(y) \z=X'y},

M/(N5)(^) = max{/XN t̂(x) I z = f(x)},

(85)

(86)

(87)

where A is the minimum operator and f(x) = 1/{1 + exp(—x)}.
These fuzzy-number operations are numerically performed by interval arith-

metic on level sets of fuzzy numbers. The /i-level set of a fuzzy number A is
defined as follows:

[A]h = {x\fixM >h, X em] forO < /z < 1. (88)

The /z-level set [A]h is illustrated in Fig. 42a. A fuzzy number can be approxi-
mately represented by a collection of its /i-level sets for various values of /i. In
Fig. 42b, a fuzzy number A is approximately represented by its ten /z-level sets
for/i = 0.1,0.2, . . . , 1.0.

> ^

Figure 41 Five linguistic values (S: small, MS: medium small, M: medium, ML: medium large, and
L: large).

42 Hisao Ishihuchi and Manabu Nii

^ X ^ X

(a) (b)

Figure 42 Level sets of a fuzzy number A: (a) /z-level set; (b) approximate representation of a fuzzy
number A by a collection of its level sets.

As we can see from Fig. 42, /z-level sets of fuzzy numbers are closed intervals.
Thus we use interval arithmetic for approximately calculating the fuzzy input-
output relation of each unit of our fuzzified neural networks.

B. NEURAL NETWORKS FOR HANDLING FUZZY INPUTS

In this subsection, we describe how multilayer feedforward neural networks
can be extended to the case of fuzzy inputs. Fuzzy inputs may be obtained from
uncertain measurement or linguistic knowledge of human experts. For example,
let us assume that we have the following linguistic knowledge for a three-class
pattern classification problem on the two-dimensional pattern space [0, 1]^:

If jci is small and X2 is small then Class 1,

If xi is small and X2 is large then Class 2,

If jci is large then Class 3,

where ''smair and ''large'' are fuzzy numbers defined in Fig. 41. These three
fuzzy if-then rules are shown in Fig. 43. We also assume that we have numerical
data in Fig. 43 where closed circles, open circles, and squares are training patterns
from Class 1, Class 2, and Class 3, respectively. Our problem is to train a feedfor-
ward neural network using both the linguistic knowledge and the numerical data
in Fig. 43.

Fuzzy Neural Networks Techniques

1.0,

43

g 0.5h

0.0

o o o
Class 2 o

o ^ o ^

o
D D

Class 1 • °

±
0.0 0.5

Input ;ci

Figure 43 Linguistic information and numerical data.

1.0

The previous three fuzzy if-then rules can be viewed as the following fuzzy
training patterns because the pattern space is the unit square [0,1]^:

(small, small) =^ Class 1,

(small, large) =^ Class 2,

(large, [0, 1]) =^ Class 3.

Numerical data are also handled as fuzzy training patterns in our fuzzified
neural networks because real numbers can be viewed as a special case of fuzzy
numbers. A real number a can be viewed as a fuzzy number with the following
membership function:

/la(x) =
1,
0,

if X = a,
otherwise. (89)

In this manner, both the expert knowledge and the numerical data are handled as
fuzzy training patterns. That is, they are simultaneously utiHzed in the learning of
neural networks.

In general, for a c-class pattern classification problem on the n-dimensional
pattem^pace [0, J] " , let us assume that we have m fuzzy training patterns Xp =
(Xpi, Xp2,..., Xpn), p = 1,2, . . . ,m. For this pattern classification problem,
we use a three-layer feedforward neural network with n input units, nn hidden

44 Hisao Ishibuchi and Manabu Nii

units, and c output units. The input-output relation of each unit of this neural
network is written for the fuzzy input pattern X^ = (X^i, Xp2,..., Xpn) as
follows:

Input units: Opt = Xpt, i = 1,2, . . . , n, (90)
n

Hidden units: Net̂ y = Y^ Wjt • Opt -\-0j, 7 = 1, 2 , . . . , n//, (91)

dpj = /(N^tp;), 7 = 1,2,. . . , HH, (92)

Output units: Net̂ ĵ = ^ Wkj • Opj -\-0k, A: = 1, 2 , . . . , c, (93)

Opk = fi^tpk), /: = l , 2 , . . . , c . (94)

The input-output relation of each unit is defined by fuzzy-number arithmetic de-
scribed in the previous subsection. These formulations are the same as the ar-
chitecture of standard feedforward neural networks except that the input and the
output of each unit are fuzzy numbers. The numerical calculation of the input-
output relation is done by interval arithmetic on /z-level sets of fuzzy numbers.
For example, the input-output relation of the A:th output unit can be rewritten for
the /i-level sets as follows:

riH riH

[Net^Jt = E «'*̂ - • [Opit + E ""^J • [Opjfn+^k, (95)

Wkj >0 Wkj <0

riH riH

[Nev4^= E ^kj-[dpj]l+ E ^^riOpit+Bk, (96)

Wkj >0 Wkj <0

Wpk\ = [[Opk\i, [Opkfh] = [f{[^tpk]t), fi[^hk]H)l (97)

where [']h denotes the /i-level set of a fuzzy number and [^^ and [-J^ denote the
lower limit and the upper limit of the /i-level set.

For the learning of the neural network from the fuzzy training patterns, we
define the target vector tp = (f^i, tp2,..., tpc) corresponding to the fuzzy input
pattern X^ as follows:

_ f 1, i fXp€ Class ̂ ,
^P' - 0, otherwise, ^̂ ^̂

Fuzzy Neural Networks Techniques 45

for A: = 1, 2 , . . . , c. The cost function to be minimized in the learning is defined
as follows:

h I k=\ k=\ J
(99)

A back-propagation-type learning algorithm can be derived from this cost
function for adjusting the connection weights and the biases [41, 84].

To illustrate our approach, we first trained a neural network with two input
units, five hidden units, and three output units by the standard back-propagation
algorithm using only the numerical data in Fig. 43. The classification boundaries
obtained by the learning are shown in Fig. 44a. Next we trained the same neural
network using both the experts' knowledge and the numerical data. In the learn-
ing, we used ten levels (i.e., /z = 0.1, 0 .2 , . . . , 1.0) in the cost function in (99). The
classification boundaries obtained by the learning from both the experts' knowl-
edge and the numerical data are shown in Fig. 44b. From this figure, we can see
the classification boundaries are clearly consistent with both the experts' knowl-
edge and the numerical data.

Linguistic information from human experts can also be utilized for modeling
problems. Let us assume that we have the following linguistic information for the
modeling of a single-input and single-output nonlinear system:

If X is small then y is small,

If jc is large then y is large.

"- ' ^ >Xi

(a) (b)

Figure 44 Simulation results: (a) learning from only numerical data; (b) learning from both numer-
ical data and linguistic information.

46 Hisao Ishibuchi and Manabu Nii

where "smair and ''large'' are defined in Fig. 41. These fuzzy if-then rules can be
viewed as the following fuzzy training data:

{{Xp\ Yp)] = {(small; small), (large; large)}. (100)

In general, let us assume that we have m fuzzy input-output pairs (X^; Fp),
£ = 1, 2 , . . . , m, from an n-input and single-output nonlinear system, where
Xp = (Xpi, Xp2,..., Xpn). As we have already described for classification
problems, nonfuzzy input-output pairs can also be represented in this form. Thus
the fuzzy training data (Xp; Yp), p = 1,2,.. .,m, may include nonfuzzy input-
output pairs as well as fuzzy input-output pairs.

For the modeling of a nonhnear system with n inputs and a single output, we
use a neural network with n input units and a single output unit. When the n-
dimensional fuzzy vector X^ is presented to the neural network, the correspond-
ing fuzzy outgut Op is defined in the same manner as in (90)-(94). The given
fuzzy output Yp is used as the fuzzy target. The cost function to be minimized in
the learning of the neural network is defined as follows:

ep = EiiiU - [^Pif/^ + (M - [Op]'if/2}. (101)
h

A back-propagation-type learning algorithm can be derived from this cost
function for adjusting the connection weights and the biases of the neural net-
work [41, 85].

For illustration, we show simulation results in Fig. 45 where numerical data
are denoted by closed circles. Figure 45a is the simulation result by the learning
from only the numerical data where the standard back-propagation algorithm was

(a) (b)

Figure 45 Simulation results for a function approximation problem: (a) learning from only numeri-
cal data; (b) learning from both numerical data and linguistic information.

Fuzzy Neural Networks Techniques 47

Fuzzy targets
Actual outputs

0.5 1.0

Output};

Figure 46 Fuzzy outputs from the trained neural network.

used. In Fig. 45b, both the numerical data and the linguistic information in (100)
were used for the learning by our approach. The fuzzy outputs from the trained
neural network are shown in Fig. 46 together with the fuzzy targets (i.e., small and
large). From Fig. 46, we can see that a good fit to the fuzzy targets was obtained
by the learning of the neural network.

As shown in Fig. 46, our fuzzified neural networks for fuzzy inputs can be
used for approximately reaUzing fuzzy if-then rules. High fitting ability to given
fuzzy if-then rules and high interpolation ability of sparse fuzzy if-then rules were
demonstrated in [41, 85]. Our approach can also be used for extracting fuzzy if-
then rules from trained neural networks [86, 87]. For the rule extraction, a linguis-
tic input vector corresponding to the antecedent part of each fuzzy if-then rule was
presented to the trained neural network, and the corresponding fuzzy output was
examined to determine the consequent part of the fuzzy if-then rule.

C. NEURAL NETWORKS WITH FUZZY WEIGHTS

Multilayer feedforward neural networks can be fuzzified by extending their
connection weights and biases to fuzzy numbers. Fuzzified neural networks with
nonfuzzy input vectors are used for the modeling of fuzzy functions [42, 88, 89].
Fuzzified neural networks with fuzzy input vectors are used for approximately
realizing fuzzy if-then rules [42,43, 90].

In this subsection, we describe a general architecture of fully fuzzified three-
layer feedforward neural^networks [43]. Let us assume that we have m fuzzy
input-output pairs (X^; Y^), p = 1, 2 , . . . , m, where Xp = (Xpi, X^i^ • • •,
Xpn) is an w-dimensional fuzzy ingut vecto£and Y^ = (F^i, Yp2,..., Ypc) is a
c-dimensional fuzzy target vector. X^ and Y^ may be viewed as the antecedent

48 Hisao Ishibuchi and Manabu Nii

part and the consequent part of a fuzzy if-then rule, respectively. Our problem
is to approximately realize a nonlinear fuzzy mapping from X^ to Y^. For this
problem, we use a fuzzified neural network with fuzzy connection weights and
fuzzy biases. The input-output relation of each unit of the fuzzified neural net-
work with n input units, HH hidden units, and c output units is written as follows
(see Fig. 47):

Input units: Opt = Xpt, / = 1,2,. . . , /t, (102)
n

Hidden units: Net^; = ^ Wjt -Opi+^j, 7 = 1, 2 , . . . , n^ , (103)

(104)

(105)

i=\

Opj = /(Netp;), 7 = l , 2 , . . . , n H ,

Output units: Net̂ ĵ = ^ Wkj - Opj -\-Sk. A: = 1, 2 , . . . , c,

Opk = fi^tpk), k = l,2,...,c. (106)

In this formulation, the connection weights Wjt, Wkj and the biases 0^, Sk are
fuzzy numbers.

As we have already described, the input-output relation of the fuzzified neural
network is defined by fuzzy-number arithmetic, and the numerical calculation is

Bias unit

Bias unit

X„

^pk ^pc Fuzzy outputs

Output units

Fuzzy weights w

Fuzzy biases Q

Hidden units

Fuzzy weights ur
ji

Fuzzy biases 0

Input units

Y Y Fuzzy inputs
- ^ »"• ^^ pn

Figure 47 Architecture of fully fuzzified neural networks

Fuzzy Neural Networks Techniques 49

performed by interval arithmetic on /i-level sets of fuzzy numbers (see Figs. 3
and 4).

Triangular fuzzy numbers and trapezoidal fuzzy numbers are usually used as
the fuzzy connection weights Wjt, Wkj and the fuzzy biases 0 ; , @k (see Fig.
48). The learning of the fuzzified neural network is performed by adjusting the
fuzzy connection weights and the fuzzy biases. The adjustment of the fuzzy con-
nection weights and the fuzzy biases is done by updating their parameter values.
For example, the adjustment of the nonsymmetric triangular fuzzy weight Wkj in
Fig. 48a is done by updating its three parameter values, that is, its lower Hmit wL,

center w^-, and upper limit w;̂ ..
In the learning, the following cost function is used for the fuzzy input-output

pair(Xp; Y^):

^p = Z \ t ([^P^t - [Op^tfl^ +1 i[^P^]" - [Op^fnf/A (107)
^=1 ^=1

A back-propagation-type learning algorithm can be derived from this cost
function for updating the parameter values of the fuzzy connection weights and
the fuzzy biases [42, 43, 90, 91]. For example, the learning algorithm for adjust-
ing the nonsymmetric triangular fuzzy weight Wkj in Fig. 48a can be derived by
calculating the partial derivatives dep/dit;f •, dep/d w^-, and dep/d w;P..

To illustrate our approach, we show some simulation results. First, we show an
example of fuzzy modeling, that is, approximate realization of a nonlinear fuzzy
function. Let us assume that we have three input-output pairs for a single-input
and single-output nonlinear fuzzy system in Fig. 49a where inputs are real num-
bers and outputs are trapezoidal fuzzy numbers. Using these three input-output
pairs, we trained a fuzzified neural network with nonsymmetric trapezoidal fuzzy
numbers as connection weights and biases. Four parameters of the nonsynmietric
trapezoidal fuzzy numbers (see Fig. 48b) were adjusted by the learning algorithm
derived from the cost function in (107) with ten levels (i.e., h = 0.1, 0 .2 , . . . , 1.0).

(a) (b)

Figure 48 Fuzzy connection weight Wkj: (a) nonsymmetric triangular fuzzy number; (b) nonsym-
metric trapezoidal fuzzy number.

50 Hisao Ishibuchi and Manabu Nii

0.0 0.5 1.0
Input

1.0

BO.5
8

0.0 "1 1 111 1 1 1 1' 1 1 1 1

0.0 0.5 1.0
Input

(a) (b)

Figure 49 Simulation results: (a) training data; (b) fuzzy outputs from the trained neural network.

The fuzzy outputs from the trained neural network are shown in Fig. 49b. From
Fig. 49, we can observe a good fit to the fuzzy targets and a good generalization
for new inputs.

We also trained the same fuzzified neural network using the following fuzzy
if-then rules:

If jc is small then y is small.

If X is medium then y is medium small or medium.

If X is large then y is medium or medium large or large,

where the membership functions of disjunctive combinations of linguistic values
are defined by trapezoidal fuzzy numbers as shown in Fig. 50. In the same manner
as in the previous example, we trained the fuzzified neural network by the learning
algorithm derived from the cost function in (107). The fuzzy outputs from the

Figure 50 Membership functions of disjunctive combinations of linguistic values: (a) medium small
or medium; (b) medium or medium large or large.

Fuzzy Neural Networks Techniques 51

Fuzzy target
• Actual output

Fuzzy target
• Actual output

Figure 51 Fuzzy outputs from the trained neural network.

trained neural network are shown in Fig. 51 together with the fuzzy targets. From
this figure, we can see that a good fit to the fuzzy targets was reaUzed by the
learning of the fuzzified neural network.

V. CONCLUSION

In this chapter, we described how feedforward neural networks can be extended
for handling the fuzziness of training data. First, we explained a fuzzy classifica-
tion method where we assumed that classification boundaries between different
classes are not crisp but fuzzy. In our fuzzy classification method, possible classes
of an input pattern can be suggested by the trained neural network. Next we ex-
plained a fuzzy modeling method by two standard neural networks. One neural
network was used for representing the lower limit of a nonlinear interval func-
tion, and the other was used for the upper limit. The two neural networks were
trained in order that the nonlinear interval function should approximately cover all
the given input-output pairs. Then we explained interval-arithmetic-based neural
networks where inputs, connection weights, biases, and targets were extended to
intervals. Interval-arithmetic-based neural networks can be used for the handling
of uncertain or missing inputs. They can also be used for approximately realiz-
ing nonlinear interval functions. Finally, we extended inputs, connection weights,
biases, and targets to fuzzy numbers in order to fuzzify multilayer feedforward
neural networks. Fuzzified neural networks can be used for the handling of lin-
guistic inputs, the learning from fuzzy if-then rules, and the approximation of
nonlinear fuzzy functions.

As we have mentioned in this chapter, various architectures have been referred
to as "fuzzy neural networks." Most of those architectures have been proposed for
control problems. That is, they map real-number input vectors to real numbers.
Our fuzzy neural networks in this chapter have the abiUty to handle the fuzzi-
ness in training data. Thus they can be trained from linguistic information as well

52 Hisao Ishibuchi and Manabu Nii

as numerical information. They can also be used for extracting linguistic knowl-
edge from neural networks trained by numerical information. In this manner, our
fuzzy neural networks serve as a bridge between two kinds of information, that
is, numerical information and linguistic information.

REFERENCES

[1] S. C. Lee and E. T. Lee. Fuzzy neural networks. Math. Biosci. 23:151-177, 1975.
[2] H. Ishibuchi. Development of fuzzy neural networks. In Fuzzy Modeling: Paradigms and Prac-

tice (W. Pedrycz, Ed.), pp. 185-202. Kluwer Academic, Boston, 1996.
[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating

errors. Nature 323:533-536, 1986.
[4] D. E. Rumelhart, J. L. McClelland, and the PDP Research Group. Parallel Distributed Process-

ing, Vol. 1. MIT Press, Cambridge, MA, 1986.
[5] H. Ichihashi and T. Watanabe. Learning control by fuzzy models using a simplified fuzzy rea-

soning. / Japan Soc. Fuzzy Theory Systems 2:429^37, 1990 (in Japanese).
[6] H. Nomura, I. Hayashi, and N. Wakami. A learning method of fuzzy inference rules by de-

scent method. In Proceedings of the First IEEE International Conference on Fuzzy Systems, San
Diego, pp. 203-210, 1992.

[7] L.-X. Wang and J. M. Mendel. Back-propagation fuzzy system as nonlinear dynamic system
identifiers. In Proceedings of the First IEEE International Conference on Fuzzy Systems, San
Diego, pp. 1409-1418, 1992.

[8] L.-X. Wang. Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Systems
1:146-155, 1993.

[9] C.-T. Lin and C. S. G. Lee. Neural-network-based fuzzy logic control and decision system. IEEE
Trans. Comput. 40:1320-1336, 1991.

[10] C.-T. Lin and C. S. G. Lee. Reinforcement structure/parameter learning for neural-network-based
fuzzy logic control systems. IEEE Trans. Fuzzy Systems 2:46-63, 1994.

[11] H. R. Berenji. A reinforcement learning-based architecture for fuzzy logic control. Intemat. J.
Approximate Reasoning 6:267-292, 1992.

[12] H. R. Berenji and P. Khedkar. Learning and tuning fuzzy logic controllers through reinforce-
ments. IEEE Trans. Neural Networks 3:724-740, 1992.

[13] J.-S. R. Jang. Fuzzy controller design without domain experts. In Proceedings of the First IEEE
International Conference on Fuzzy Systems, San Diego, pp. 289-296, 1992.

[14] J.-S. R. Jang. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Systems Man
Cybernet. 23:665-685, 1993.

[15] S. Horikawa, T. Furuhashi, and Y. Uchikawa. On fuzzy modeling using fuzzy neural networks
with the back-propagation algorithm. IEEE Trans. Neural Networks 3:801-806, 1992.

[16] T. Hasegawa, S. Horikawa, T. Furuhashi, and Y. Uchikawa. On design of adaptive fuzzy con-
troller using fuzzy neural networks and a description of its dynamical behavior. Fuzzy Sets Sys-
tems 1 \'.2>-2X 1995.

[17] C.-T. Sun. Rule-base structure identification in an adaptive-network-based fuzzy inference sys-
tem. IEEE Trans. Fuzzy Systems 2:64-73, 1994.

[18] C. M. Higgins and R. M. Goodman. Fuzzy rule-based networks for control. IEEE Trans. Fuzzy
Systems 2:82-88, 1994.

[19] H. K. Kwan and Y. Cai. A fuzzy neural network and its application to pattern recognition. IEEE
Trans. Fuzzy Systems 2:185-193, 1994.

[20] I. H. Suh and T. W. Kim. Fuzzy membership function based neural networks with applications
to the visual servoing of robot manipulators. IEEE Trans. Fuzzy Systems 2:203-220, 1994.

Fuzzy Neural Networks Techniques 53

[21] C.-L. Chen and W.-C. Chen. Fuzzy controller design by using neural network techniques. IEEE
Trans. Fuzzy Systems 2:235-244, 1994.

[22] C.-T. Lin, C.-J. Lin, and C. S. G. Lee. Fuzzy adaptive learning control network with on-line
neural learning. Fuzzy Sets Systems 71:25-45, 1995.

[23] M. L. Presti, R. Poluzzi, and A. M. Zanaboni. Synthesis of fuzzy controllers through neural
networks. Fuzzy Sets Systems 71:47-70, 1995.

[24] J. J. Shann and H. C. Fu. A fuzzy neural network for rule acquiring on fuzzy control systems.
Fuzzy Sets Systems 71:345-357, 1995.

[25] J. S. R. Jang and C. T. Sun. Functional equivalence between radial basis function networks and
fuzzy inference systems. IEEE Trans. Neural Networks 4:156-163, 1993.

[26] J. Nie and D. A. Linkens. Learning control using fuzzified self-organizing radial basis function
network. IEEE Trans. Fuzzy Systems 1:280-287, 1993.

[27] J. M. Keller and H. Tahani. Backpropagation neural networks for fuzzy logic. Inform. Sci.
62:205-221, 1992.

[28] J. M. Keller and H. Tahani. Implementation of conjunctive and disjunctive fuzzy logic rules with
neural networks. Intemat. J. Approximate Reasoning 6:221-240, 1992.

[29] H. Takagi and L Hayashi. NN-driven fuzzy reasoning. Intemat. J. Approximate Reasoning
5:191-212, 1991.

[30] I. Hayashi, H. Nomura, H. Yamasaki, and N. Wakami. Construction of fuzzy inference rules by
NDF and NDFL. Intemat. J. Approximate Reasoning 6:241-266, 1992.

[31] S. K. Pal and S. Mitra. Multi-layer perceptron, fuzzy sets and classification. IEEE Trans. Neural
Networks 3:683-697, 1992.

[32] S. Mitra. Fuzzy MLP based expert system for medical diagnosis. Fuzzy Sets Systems 65:285-
296, 1994.

[33] S. Mitra and L. L Kuncheva. Improving classification performance using fuzzy MLP and two-
level selective partitioning of the feature space. Fuzzy Sets Systems 70:1-13, 1995.

[34] A. Kaufmann and M. M. Gupta. Introduction to Fuzzy Arithmetic. Van Nostrand-Reinhold, New
York, 1985.

[35] L. A. Zadeh. The concept of a linguistic variable and its appUcation to approximate reasoning.
1, 2, and 3. Inform. Sci. 8:199-249, 8:301-357, 9:43-80, 1975.

[36] Y. Hayashi, J. J. Buckley, and E. Czogala. Fuzzy neural network with fuzzy signals and weights.
Intemat. J. Intelligent Systems 8:527-537, 1993.

[37] J. J. Buckley and Y Hayashi. Fuzzy neural networks: a survey. Fuzzy Sets Systems 66:1-13,
1994.

[38] P. V. Krishnamraju, J. J. Buckley, K. D. Reilly, and Y. Hayashi. Genetic learning algorithms for
fuzzy neural nets. In Proceedings of the Third IEEE Intemational Conference on Fuzzy Systems,
Orlando, pp. 1969-1974, 1994.

[39] J. J. Bucldey and Y. Hayashi. Neural nets for fuzzy systems. Fuzzy Sets Systems 71:265-276,
1995.

[40] J. J. Buckley, K. D. Reilly, and K. V. Penmetcha. Backpropagation and genetic algorithms for
training fuzzy neural nets. In Proceedings of the Fifth IEEE Intemational Conference on Fuzzy
Systems, New Orleans, pp. 2-6, 1996.

[41] H. Ishibuchi, R. Fujioka, and H. Tanaka. Neural networks that learn from fuzzy if-then rules.
IEEE Trans. Fuzzy Systems 1:85-97, 1993.

[42] H. Ishibuchi, K. Kwon, and H. Tanaka. A learning algorithm of fuzzy neural networks with
triangular fuzzy weights. Fuzzy Sets Systems 71:277-293, 1995.

[43] H. Ishibuchi, K. Morioka, and I. B. Turksen. Learning of fuzzified neural networks. Intemat. J.
Approximate Reasoning 13:327-358, 1995.

[44] A. F. Rocha. Neural fuzzy point processes. Fuzzy Sets Systems 5:127-140, 1981.
[45] J. M. Keller and D. J. Hunt. Incorporating fuzzy membership functions into the perceptron algo-

rithm. IEEE Trans. PattemAnal. Machine Intell. 7:693-699, 1985.

54 Hisao Ishibuchi and Manabu Nil

[46] G. A. Carpenter, S. Grossberg, and D. B. Rosen. Fuzzy ART: fast stable learning and categoriza-
tion of analog patterns by an adaptive resonance system. Neural Networks 4:759-771, 1991.

[47] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen. Fuzzy ARTMAP:
a neural network architecture for incremental supervised learning of analog multidimensional
maps. IEEE Trans. Neural Networks 3:698-713, 1992.

[48] W. Pedrycz. Neurocomputations in relational systems. IEEE Trans. Pattern Anal. Machine Intell
13:289-297, 1991.

[49] R K. Simpson. Fuzzy min-max neural networks. 1: Classification. IEEE Trans. Neural Networks
3:776-786, 1992.

[50] R K. Simpson. Fuzzy min-max neural networks. 2: Clustering. IEEE Trans. Fuzzy Systems 1:32-
45, 1993.

[51] K. Hirota and W. Pedrycz. OR/AND neuron in modeling fuzzy set connectives. IEEE Trans.
Fuzzy Systems 2:151-161, 1994.

[52] M. Furukawa and T. Yamakawa. The design algorithms of membership functions for a fuzzy
neuron. Fuzzy Sets Systems 71:329-343, 1995.

[53] F. Rosenblatt. The perceptron: a probabiUstic model for information strategy and organization in
the brain. Psychol. Rev. 65:386-408, 1958.

[54] K. Funahashi. On the approximate realization of continuous mappings by neural networks. Neu-
ral Networks 2:IS3-192, 1989.

[55] K. Homik. Multilayer feedforward networks are universal approximators. Neural Networks
2:359-366, 1989.

[56] H. White. Connectionist nonparametric regression: multilayer feedforward networks can learn
arbitrary mappings. Neural Networks 3:535-549, 1990.

[57] K. Homik. Approximation capabiHties of multilayer feedforward networks. Neural Networks
4:251-257, 1991.

[58] H. Ishibuchi and H. Tanaka. Approximate pattern classification using neural networks. In Fuzzy
Logic: State of the Art (R. Lowen and M. Roubens, Eds.), pp. 225-236. Kluwer Academic,
Dordrecht, 1993.

[59] H. Ishibuchi, K. Nozaki, and R. Weber. Approximate pattern classification with fuzzy boundary.
In Proceedings of the International Joint Conference on Neural Networks, Nagoya, Japan, pp.
693-696, 1993.

[60] H. Ishibuchi, R. Fujioka, and H. Tanaka. Possibility and necessity pattern classification using
neural networks. Fuzzy Sets Systems 48:331-340, 1992.

[61] D. Dubois and R Prade. Possibility Theory. Plenum, New York, 1988.
[62] N. B. Karayiannis and G. Purushothaman. Fuzzy pattern recognition using feed-forward neural

networks with multilevel hidden neurons. In Proceedings of the IEEE International Conference
on Neural Networks, Orlando, pp. 1577-1582, 1994.

[63] G. Purushothaman and N. B. Karayiannis. Feed-forward neural architectures for membership
estimation and fuzzy classification. In Intelligent Engineering Systems Through Artificial Neural
Networks (C. H. DagU, B. R. Fernandez, J. Ghosh, and S. R. T. Kumara, Eds.), Vol. 4, pp. 235-
240. ASME, New York, 1994.

[64] G. Purushothaman and N. B. Karayiaimis. On the capability of feed-forward neural networks
for fuzzy classification. In Intelligent Engineering Systems Through Artificial Neural Networks
(C. H. Dagli, B. R. Fernandez, J. Ghosh, and S. R. T. Kumara, Eds.), Vol. 5, pp. 253-258. ASME,
New York, 1995.

[65] G. Purushothaman and N. B. Karayiannis. Quantum neural networks (QNNs): inherently fuzzy
feedforward neural networks. In Proceedings of the IEEE International Conference on Neural
Networks, Washington, DC, pp. 1085-1090, 1996.

[66] N. P. Archer and S. Wang. Fuzzy set representation of neural network classification boundary.
IEEE Trans. Systems Man Cybernet. 21:735-742, 1991.

Fuzzy Neural Networks Techniques 55

[67] H. Ishibuchi and H.Tanaka. Regression analysis with interval model by neural networks. In Pro-
ceedings of the IEEE International Joint Conference on Neural Networks, Singapore, pp. 1594-
1599, 1991.

[68] H. Ishibuchi and H. Tanaka. Fuzzy regression analysis using neural networks. Fuzzy Sets Systems
50:257-266, 1992.

[69] H. Tanaka, S. Uejima, and K. Asai. Linear regression analysis with fuzzy model. IEEE Trans.
Systems Man Cybernet. 12:903-907, 1982.

[70] H. Tanaka. Fuzzy data analysis by possibilistic linear models. Fuzzy Sets Systems 24:363-375,
1987.

[71] J. Kacprzyk and M. Fedrizzi, Eds. Fuzzy Regression Analysis. Onmitech Press, Warsaw, 1992.
[72] H. Ishibuchi and M. Nii. Fuzzy regression analysis by neural networks with non-symmetric fiizzy

number weights. In Proceedings of the IEEE International Conference on Neural Networks,
Washington, DC, pp. 1191-1196, 1996.

[73] H. Ishibuchi and M. Nii. Fuzzy regression analysis with non-synmietric fuzzy number coeffi-
cients and its neural network implementation. In Proceedings of the Fifth IEEE International
Conference on Fuzzy Systems, New Orleans, pp. 318-324, 1996.

[74] R. A. Fisher. The use of multiple measurements in taxonomic problems. Ann. Eugenics 7:179-
188, 1936.

[75] S. M. Weiss and C. A. Kulikowski. Computer Systems That Learn. Morgan Kaufmann, San
Mateo, CA, 1991.

[76] R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.
[77] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New York,

1983.
[78] H. Ishibuchi, A. Miyazaki, K. Kwon, and H. Tanaka. Learning from incomplete training data with

missing values and medical appUcation. In Proceedings of the International Joint Conference on
Neural Networks, Nagoya, Japan, pp. 1871-1874, 1993.

[79] H. Ishibuchi, A. Miyazaki, and H. Tanaka. Neural-network-based diagnosis systems for incom-
plete data with missing inputs. In Proceedings of the IEEE International Conference on Neural
Networks, Orlando, pp. 3457-3460, 1994.

[80] H. Ishibuchi and H. Tanaka. An extension of the BP-algorithm to interval input vectors—Gleaming
from numerical data and expert's knowledge. In Proceedings of the IEEE International Joint
Conference on Neural Networks, Singapore, pp. 1588-1593, 1991.

[81] H. Ishibuchi and A. Miyazaki. Determination of inspection order for classifying new samples
by neural networks. In Proceedings of the IEEE International Conference on Neural Networks,
Orlando, pp. 2907-2910, 1994.

[82] H. Ishibuchi, H. Tanaka, and H. Okada. An architecture of neural networks with interval weights
and its appUcation to fuzzy regression analysis. Fuzzy Sets Systems 57:27-39, 1993.

[83] K. Kwon, H. Ishibuchi, and H. Tanaka. Neural networks with interval weights for nonlinear
mapping of interval vectors. lEICE Trans. Inform. Systems E77-D:409-417, 1994.

[84] H. Ishibuchi, R. Fujioka, and H. Tanaka. An architecture of neural networks for input vectors
of fuzzy numbers. In Proceedings of the First IEEE International Conference on Fuzzy Systems,
San Diego, pp. 1293-1300, 1992.

[85] H. Ishibuchi, H. Tanaka, and H. Okada. Interpolation of fuzzy if-then rules by neural networks.
Intemat. J. Approximate Reasoning 10:3-27, 1994.

[86] H. Ishibuchi and K. Morioka. Classification of fuzzy input patterns by neural networks. In Pro-
ceedings of the IEEE International Conference on Neural Networks, Perth, Australia, pp. 3118-
3123, 1995.

[87] H. Ishibuchi and M. Nii. Generating fuzzy if-then rules from trained neural networks: linguistic
analysis of neural networks. In Proceedings of the IEEE International Conference on Neural
Networks, Washington, DC, pp. 1133-1138, 1996.

56 Hisao Ishibuchi and Manabu Nii

[88] A. Miyazaki, K. Kwon, H. Ishibuchi, and H. Tanaka. Fuzzy regression analysis by fuzzy neural
networks and its appUcation. In Proceedings of the Third IEEE International Conference on
Fuzzy Systems, Orlando, pp. 52-57,1994.

[89] H. Ishibuchi and K. Morioka. Determination of type II membership functions by fuzzified neural
networks. In Proceedings of the Third European Congress on Intelligent Techniques and Soft
Computing, Aachen, Germany, pp. 529-533, 1995.

[90] H. Ishibuchi, K. Morioka, and H. Tanaka. A fuzzy neural network with trapezoid fuzzy weights.
In Proceedings of the Third IEEE International Conference on Fuzzy Systems, Orlando, pp. 228-
233, 1994.

[91] H. Ishibuchi and M. Nii. Learning of fuzzy connection weights in fuzzified neural networks. In
Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, New Orleans, pp.
373-379, 1996.

Implementation of
Fuzzy Systems

Chu Kwong Chak Gang Feng
Department of Electrical and Electronic Department of Systems and Control
Engineering School of Electrical Engineering
University of Melbourne University of New South Wales
Parkville, 3052 Victoria, Australia Sydney, New South Wales 2052, Australia

Marimuthu Palaniswami
Department of Electrical and Electronic
Engineering
University of Melbourne
Parkville, 3052 Victoria, Australia

I. INTRODUCTION

In the 1960s, Zadeh [1,2] developed a linguistic approach to deal with lin-
guistic vague information based on fuzzy sets and fuzzy logic. Since then there
have been a number of applications of the approach to a variety of fields includ-
ing meteorology, engineering, medicine, management, computer science, expert
systems, and systems science.

In the field of systems science, many complex plants are difficult to deal with
by the conventional approach (precise mathematical equations) because of their
nonlinear, time-varying behavior and imprecise measurement information. Nev-
ertheless, human operators can handle these complex plants by their practical ex-
perience. They only need imprecise system states and a set of imprecise linguistic
if-then rules. The fuzzy system theory developed by Zadeh [3] based on fuzzy
sets and fuzzy logic can be used to deal with such complex systems.

Fuzzy systems accept numeric inputs from the outside world and convert these
into linguistic values that can be manipulated by using fuzzy logic operations
with Hnguistic if-then rules given by human operators. The linguistic outputs, the

Fuzzy Logic and Expert Systems Applications
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 5 7

58 Chu Kwong Chak et al

result of the fuzzy logic operations, are converted into numeric outputs which are
then delivered to the outside world. Thus, fuzzy systems provide a framework of
representing human expert rules with fuzzy logic to infer human decision. Based
on this ability, fuzzy systems can approximate human reasoning and achieve some
intelligence.

Fuzzy systems can be used for different kinds of purposes such as modeling,
prediction, classification, and control in the field of systems science. In particular,
the possible use of fuzzy systems in modeling and control has generated great
attention. Fuzzy systems for modeling and control have emerged as one of the
most active and fruitful areas for research in the appUcation of fuzzy set theory.
The application was pioneered by Mamdani [4], who successfully carried out a
pilot study on a model steam engine using fuzzy systems. His study showed that
fuzzy systems may profitably and easily be used by control engineers. A number
of successful control applications have also been reported. These included heat
exchange process control [5], steam engine control [6, 7], traffic junction control
[8], cement kiln control [9], model car parking control [10], automobile speed
control [11], robot control [12,13], aircraft autopilot control [14], camera autofo-
cus control, and automobile transmission control [15].

However, at present there is no systematic procedure for the design of fuzzy
systems. Usually the linguistic rules are generated by converting the human op-
erator's experience into linguistic form directly or by summarizing the sampled
input-output pairs of the systems to be dealt with. Unfortunately, it is difficult
for systems designers to obtain optimal fuzzy rules because these are most likely
to be influenced by the intuitiveness of the operators and the systems designers.
Moreover, some information will be lost when human operators express their ex-
perience by linguistic rules. This results in a set of less than optimal linguistic
rules. Therefore, fuzzy systems capable of developing and improving the linguis-
tic rules and structures automatically are highly desired [16-18].

Neural network implementation of fuzzy systems has been proposed as a possi-
ble approach for fuzzy systems design [19-29]. The resulting systems, which are
sometimes called fuzzy neural networks or neural-network-based fuzzy systems,
will possess the advantages of both types of systems and overcome the difficulties
of each type of system. In fact, the resulting systems not only support numerical
mathematical analysis, hardware implementation, distributed parallel processing,
and self-learning but are also capable of deaUng with difficulties arising from un-
certainty, imprecision, and noise.

Another aim of developing neural-network-based fuzzy systems is to enhance
fuzzy systems with higher intelligence. Fuzzy systems simulate human reasoning
to achieve intelligence by manipulating a set of heuristic rules given by a human
expert. Thus, the inteUigence is totally limited by the given set of rules. There will
be neither chance for the fuzzy system to improve nor useful rules to be added. To

Implementation of Fuzzy Systems 59

make fuzzy systems more intelligent, fuzzy systems with learning and adaptation
are desired.

The fuzzy neural network discussed in this chapter is a hybrid system which
functions as a fuzzy system with the processing mechanism realized by a neural
network. Thus, the capability of learning imposed upon a fuzzy system can be
achieved by the learning algorithm of a neural network. In principle, a fuzzy neu-
ral network is a fuzzy system implemented within the framework of neural net-
works so as to achieve the capability of learning using input-output data which
will lead to improvement of the fuzzy rules and fuzzy system intelligence.

In general, there are two approaches to the integration of fuzzy systems and
neural networks. In the first approach, one may incorporate the concept of fuzzy
logic into the neural network. A fuzzy neuron is designed to function in much the
same way as a nonfuzzy neuron, except that it reflects the fuzzy nature and has
the ability to cope with fuzzy information [23-26].

The other approach [19-22, 27-29] is to realize the process of fuzzy reason-
ing by the structure of a neural network and to express the parameters of fuzzy
reasoning by the connection weights of the neural network. The resulting fuzzy
neural network can automatically identify the fuzzy rules and tune membership
functions by modifying the connection weights of the network using some learn-
ing algorithm. This second approach is closer to dealing with the problem of fuzzy
systems design. This chapter will deal mainly with the second approach to fuzzy
neural networks. This approach has been discussed by a number of researchers
[19-22].

Horikawa et al [22] described three general structures of fuzzy neural net-
works in accordance with the structure of the consequences of fuzzy rules. The
first type is concerned with the consequence being a crisp constant, the second
one with the consequence being a function of input variables, and the third one
with the consequence being a fuzzy value. The error back-propagation algorithm
was used for training.

Lin and Lee [20, 30] proposed a neural-network-based fuzzy logic control sys-
tem. This work considered finding centers/widths of membership functions by
self-organized clustering and finding fuzzy logic rules by competitive learning.
The fuzzy logic control system implemented was of a conventional type, and er-
ror back propagation was applied to tune the consequence parameters of output
membership functions and premise parameters of input membership functions.
The system was enhanced with a reinforcement learning method when obtaining
exact training data became expensive [31].

Jang [19] implemented the Sugeno-Takagi fuzzy logic system using an adap-
tive network (which can be regarded as a neural network) that utilized hy-
brid learning rules. A gradient descent techniques was applied to tune premise
parameters, and the least-squares estimation techniques was used to estimate

60 Chu Kwong Chak et al

consequence parameters. The membership functions were chosen to be bell-
shaped functions (highly nonlinear functions; e.g., of the Gaussian type). It was
shown that the system was functionally equivalent to a radial basis function net-
work [32].

The fuzzy neural networks proposed in the aforementioned papers suffered
from the Umitation that if the number of input fuzzy partitions is large, the re-
quired number of consequence parameters will be very large, and the least-squares
estimation algorithm cannot be implemented easily because the calculation of
very large matrices is required. Thus, the application of the networks is limited to
some low-dimensional systems. Moreover, the learning processes were typically
slow.

This chapter discusses the neural network implementation of fuzzy systems
based on Takagi-Sugeno fuzzy systems [33] because they have many advantages
for modeling and control. Takagi-Sugeno fuzzy systems differ from conventional
fuzzy systems in that linear systems instead of fuzzy sets are formed in the con-
sequences of the fuzzy rules. The output of the fuzzy systems is a "fuzzy" combi-
nation of a set of linear systems. In what follows, the basic concepts of fuzzy sets,
fuzzy logic, and structure of fuzzy systems are presented first, and fuzzy neural
network designs are then discussed in the latter part of this chapter.

11. STRUCTURE OF FUZZY SYSTEMS
FOR IVIODELING AND CONTROL

This section gives an insight into the structure of fuzzy systems for modeling
and control. Some of the basic vocabulary relating to fuzzy systems is presented,
which is required for the development of fuzzy systems and the design of fuzzy
neural networks in this chapter.

A. FUZZY SETS AND FUZZY LOGIC

In the real world, objects are often classified into different categories. For such
categories as tall man, high inflation rate, pretty woman etc., all of them convey
linguistic vague information. The concept of membership of an object in such
categories is not obvious and not precise. Thus, the application of classical two-
valued logic to the real world is limited in some cases. The idea of fuzzy sets
proposed by Zadeh [1] aims to deal with such information.

Fuzzy set theory is an extension of classical set theory. In classical set theory,
an element either belongs to a set or does not belong to a set. In fuzzy set the-
ory, an element may partially belong to a set. Fuzzy sets have gradations of set

Implementation of Fuzzy Systems 61

membership which is represented by a function referred to as a membership func-
tion, and so they resemble the kinds of categories ordinary people use in natural
thought or communication. The formal presentation of the fuzzy set theory is as
follows:

DEFINITION 1. Letx e U and let 5 be a subset of U. /X(JC) :U ^ [0,1] is
called the membership function which represents the degree of jc belonging to the
subset 5. U is called the universe of discourse. Then the fuzzy set A is defined
to be a set of ordered pairs A = {(JC, MCJC)) | JC G 5, 5 C U). The membership
function is denoted by JJLAM for the fuzzy set A. The support of a fuzzy set A
denoted as Asup is the crisp set of all points x in U such that /XA(JC) > 0. A
fuzzy set A whose support Asup contains a single point xinU with IJLA(X) = 1 is
referred to as a fuzzy singleton. A fuzzy set A whose support Asup is the universe
of discourse U with /x(jc) = 1 is referred to as a fuzzy universe. It is denoted by
Z. If the universe of discourse f/ is a set of real numbers, the fuzzy sets defined
on U are called fuzzy numbers.

The fuzzy set operations are defined via their membership functions.

DEHNITION 2. Let Ai and A2 be fuzzy sets in U and let 5 be a fuzzy set
in V.

(i) Union:

AiUA2 = {x,fjLAiUA2M\xeU}, where/XAiUAzW = />^Ai(̂)V)L6A2(̂);

(ii) Intersection:

AinA2 = {x,fiAinA2(x) \x eU}, where/XAIPIAZC-^) = MAI(^)A/>6A2(^);

(iii) Complement:

Ai = {x,fM^^(x) \x eU}, where/x^^(x) = 1 - fiAiix);

(iv) Cartesian product:

Ai x 5 = {v,/XAix5(v) \v = (xuX2)eW, W = U xV},

where/XAIXB(V) = /XAI(^I) A/XB(X2).

The operators A and v can be any kind of triangular norms and triangular co-
norms, respectively [34], for example, product, sum, max, or min. Refer to [35,
36] for additional fuzzy set operations.

A Unguistic variable can be regarded as a variable whose values are defined
in linguistic terms (e.g., negative large, negative small, positive small, and pos-
itive large). These terms which are imprecise and ill-defined can be represented
by fuzzy sets. In fact, the use of fuzzy sets provides a basis for the systematic
manipulation of such linguistic variables or such linguistic terms.

62 Chu Kwong Chak et al

Based on linguistic information, human experts can describe the behavior of
a system using a set of rules such as "If A then 5 " in which A and B are fuzzy
sets representing linguistic information. Each rule can be expressed as a fuzzy
implication. The ideas of fuzzy implication are as follows:

In classical logic, the rule "If A then 5 " in the form of an implication is written
as A ^- 5 which is equivalent to the relation R := ~A v B (not A or B). For
fuzzy logic, the fuzzy implication "If A then B" where A and B are fuzzy sets with
membership functions fiA and /x^, respectively, which represent linguistic vari-
ables, is expressed in a different way. Instead of using R := ^AvB as its relation,
the fuzzy relation R is defined to be a fuzzy set of the product A x B character-
ized by a membership function IJLR which is obtained by fiR = [JLA ^ t^B- Thus,
the fuzzy rule "If A then B" can be expressed as a fuzzy implication denoted by
A ^^ B using the fuzzy relation R. In the context of fuzzy logic, there are many
ways to define a fuzzy implication. In fuzzy control literature, the conmionly used
fuzzy implication is based on the composition rule of inference for approximate
reasoning suggested in [3].

B. BASIC STRUCTURE OF FUZZY SYSTEMS
FOR M O D E L I N G A N D C O N T R O L

Fuzzy systems for either modeling or control have similar operations. Fig-
ure 1 shows the block diagram of the structure of conventional fuzzy systems for
modeling and control. The fuzzy system is composed of four function blocks:
fuzzification, rule base, inference engine, and defuzzification.

The mechanism of fuzzy systems is as follows: the measurements x of the
outside world in the form of crisp data are transformed by fuzzification into lin-
guistic values. Then the linguistic values are processed by the fuzzy rules in the
rule base in the form of "if-then" through fuzzy implication. The output expressed
in fuzzy sets after fuzzy implication is finally transformed by defuzzification into
a nonfuzzy (crisp) output as the output of the system to the outside world.

C. TYPES OF FUZZY SYSTEMS FOR MODELING
AND C O N T R O L

The evolution of the structure of fuzzy systems is mainly affected by the dif-
ferent reasoning methods developed, a better understanding of fuzzy logic, and
an ambition of wider application. The evolution is too extensive to be fully dis-
cussed. We will restrict our discussion within the context of system modeling and
control.

Implementation of Fuzzy Systems 63

Rule base

^—Jruzzification Fuzzy
sets

Fuzzy
oniverse-

;fozzification

Infeienoe engine

Figure 1 Block diagram for the structure of conventional fuzzy systems for modeling and control.

The first fuzzy system for a control application was developed by Mamdani [4].
In this fuzzy system, one level forward data-driven inference is employed as the
inference mechanism. The format of his fuzzy rules is

If ;̂ i is A\ and X2 is A2 and.. . andXn is A„, then y is B,

where Ai, A2 , . . . , A„ and B are fuzzy sets. It is noted that the consequence of
implication is a fuzzy set.

His study showed that fuzzy systems may profitably and easily be used by
control engineers. A number of successful control applications have been reported
in accordance with the structure of the fuzzy system ever since. These include
heat exchange process control [5], steam engine control [6, 7], traffic junction
control [8], and cement kiln control [9]. The fuzzy system developed by Mamdani
is referred to as a conventional fuzzy system (Fig. 1).

In 1985, Takagi and Sugeno [33] modified the consequence of implication from
fuzzy sets to linear functions and developed the so-called "Takagi-Sugeno fuzzy
systems" which were applied to parking control of a model car [10]. The format
of their fuzzy rules is

\fx\ is Ai and X2 is A2 and . . . and x„ is A„, then 3; = (20 + a\x\ -\ h UnXn.

The structure of these systems varies significantly from that of the previous ones
(the conventional ones). As a consequence of implication, they contain a linear
function by which the output can be computed. (It is noted that the term "Unear
system" may be interchanged with the term "linear function" in the latter part of
this chapter.) The aim of the linear function in Takagi-Sugeno fuzzy systems is
to describe the local linear behavior of the system. Fuzziness, which appears only

64 Chu Kwong Chak et at.

in the premise part of the fuzzy rule, indicates the uncertainty about which the
output range of the Hnear function varies.

Takagi-Sugeno fuzzy systems have a number of advantages by their nature.
The systems can be easily understood and the local system equations can be di-
rectly related to the local behavior of the system. Each local system can be clearly
described and the dynamics are separately modeled. Takagi-Sugeno fuzzy sys-
tems include two kinds of knowledge: one is the qualitative knowledge repre-
sented by the if-then rules, and the other is the quantitative knowledge repre-
sented by the local functions. The systems allow us to formulate these two kinds
of knowledge into a unified mathematical framework.

In the following subsections, we will discuss the details of each part of a fuzzy
system. We will give more precise definitions of the terms which will be used in
the latter sections.

D. INPUT DOMAIN AND OUTPUT DOMAIN

Every system has its input and output domains. The input domain and the
output domain of a fuzzy system are determined in relation to the input universe
of discourse and the output universe of discourse of fuzzy sets in the fuzzy system.
When a fuzzy system is designed, the fuzzy sets of fuzzy rules in the universe of
discourse should have the input domain and output domain covered while the
fuzzy system is operating.

DEHNITION 3. Let ;c = [xi X2 . . . XnV ^ R^ be the input vector and
Sx be the vector space spanned by jc. Ex is called the input space. The subset
of the space Sx from which a fuzzy system accepts inputs is called the input
domain U.

DEFINITION 4. Lety = [yi y2 . . . ymV e R"" he the output vector
and 3y be the vector space spanned by y. Sy is called the output space. The
subset of the space Sy to which a fuzzy system delivers outputs is called the
output domain W.

E. RULE BASE

The behavior of a fuzzy system is characterized by a set of linguistic rules
which constitutes a rule base. A typical linguistic rule is of the following form:

If (a set of conditions is satisfied), then {a set of consequences can be inferred).

Implementation of Fuzzy Systems 65

The premise of a rule is a condition in the input domain U and the consequence is
an action to be performed in the output domain W. Because the premises and the
consequences of these if-then rules are associated with fuzzy concepts, the rules
are expressed as fuzzy rules, for example.

If jci is Ai and;c2 is A2, then y is B, (1)

where xi and X2 are scalar inputs, Ai and A2 are input Unguistic terms repre-
sented by fuzzy sets, and B is an output linguistic term represented by a fuzzy
set.

Now consider a general rule base for n-dimensional fuzzy systems whose
fuzzy rules are in the form

Ri: If (x is A[and x is A2 and.. .and jc is A |)

or (jc is AJ ^^ and x is AJ _̂ 2 ^^^- • -^^^ ^ is A |)

or (x is A | _^_^^ and x is A\^_^_^2 ^^d.. .and x is A |^),

then y is B^ /:/ G {1, 2 , . . . , iiT/}, / = 1, 2 , . . . , L, (2)

where x is the input vector of the fuzzy systems, the Â 's are fuzzy terms of input
(input fuzzy terms) which are represented by fuzzy sets, and B^ is a fuzzy term of
output (output fuzzy terms) which is represented by a fuzzy set. Each rule has Ki
n-dimensional input fuzzy terms the projection of which into each dimensional is
the input linguistic terms. The w-dimensional input fuzzy terms are represented
by n-dimensional fuzzy sets AK A number of input fuzzy terms can be combined
by AND and then OR to form the premise of a fuzzy rule.

It is noted that the input fuzzy terms and output fuzzy terms used here are fuzzy
sets with multidimensional membership functions.

The fuzzy rules given previously are very general so that the fuzzy rules of
conventional fuzzy systems can be included. For example, the fuzzy rule in Eq. (1)
is equivalent to

If (xi is Ai and X2 is Z) and (jci is Z and X2 is A2), then y is B,

where Z is a fuzzy universe (Definition 1), or

If (x is Ai X Z) and (xis Z x A2), then y is B,

where Ai x Z and Z x A2 are two-dimensional fuzzy sets, or

If (x is Ai X A2), then y is B,

where Ai x A2 is a two-dimensional fuzzy set.

66 Chu Kwong Chak et al

It should be noted that the multidimensional fuzzy sets which represent the
input fuzzy terms can be projected into each dimension to obtain the one-
dimensional fuzzy sets to represent input linguistic terms.

The fuzzy rules in the rule base in Eq. (2) can be rewritten in the following
equivalent rule base:

R[: If (jc is A[and jc is A2 and.. .and x is A |), then y is Bi also

R'l^i'. If (JC is AJ _̂ j and x is A | ^2 ^^^' • -^^^ ^ î M)' ^^^^ ^ ^̂ ̂ ^ ̂ ^^^

Ri^Ki • ^̂ (^ ŝ ̂ n _ +1 ^^^ -̂ is ^ i _ +2 ^^^* • -^^^ -̂ is ^/)' ^^^^ ^̂ is 5/ also

/ : / € { ! , 2 , . . . , ^ / } , / = 1 ,2 , . . . ,L . (3)

From the rule base in Eq. (2) and the rule base in Eq. (3), we see that there are
two ways of implementing fuzzy systems. The rule base in Eq. (2) requires more
compUcated reasoning and impHcations but less rules, whereas the rule base in
Eq. (3) requires more rules but less complicated reasoning and implications. The
first one is preferred here because less rule consequences are advantageous for
neural network implementation.

It is noted that the same argument as above can also be applied to Takagi-
Sugeno fuzzy systems by the replacement of the output labels in Eqs. (l)-(3)
with linear functions.

F. INPUT FUZZY PARTITIONS

The input fuzzy partition of the input domain U is related to the interpretation
of the premise of fuzzy rules in a rule base. There are a number of input fuzzy
terms (fuzzy sets) in the premise of a fuzzy rule. An inferred fuzzy set of the
premise of a fuzzy rule can be obtained from the input fuzzy terms (fuzzy sets)
of the fuzzy rule. The support of the inferred fuzzy set occupies a subspace of
the input space. So there are a number of subspaces of the input space due to a
number of fuzzy rules in the rule base. The premise is thus interpreted as a fuzzy
hypervolume in the input space and hence the collection of the inferred fuzzy sets
of all fuzzy rules in the rule base constitutes the so-called input fuzzy partition.
The concept of the input fuzzy partition will be used to describe the mechanism
of fuzzy inference employed in fuzzy systems for modeling and control.

DEFINITION 5. Consider a fuzzy system with the rule base in Eq. (2) or an
equivalent rule base in Eq. (3). Let ^ C Z+ be an indexed set for the input
fuzzy terms and let /XK'- S X -> [0, 1], A: G ^ , be membership functions. Then
A^ = {(x, jjikix)) \ X e U C ax},k e Q,2iic fuzzy sets representing input fuzzy

Implementation of Fuzzy Systems 67

terms in the input domain U C Ex characterized by the membership function
/Xjt. Let ^ be a collection of all subsets of {A^,k e Q). The subset P/ of O =
{ F | F = n X ' X ^ ^ } i s called an input fuzzy partition of the input domain U if
the union of the support of all elements of Pi is equal to the union of the support
of A^, A: G ̂ , and the support of any element of P/ is not a subset of the support
of any other element of Pj. An element of an input fuzzy partition Pj is called
an input fuzzy region. If all elements of Pj are the fuzzy sets A^, k e Q, Pj is
called a direct input fuzzy partition, otherwise P/ is called an indirect input fuzzy
partition.

EXAMPLE. Suppose there are fuzzy sets A^ A^, and A^. Then

vl̂ = {0, {AM, {A^}, {A^}, {A^ A^}, {A\ A^} , {A\ A ^ } , {A\ A^ A^}},

and

= {0, A\ A ,̂ A^ Â n A^ Â n A^ A^ n A^ A^ n A^ n A^}.

Thus a subset P/ of O is an input fuzzy partition if P/ satisfies the requirements
in Definition 5. For example, see Fig. 2.

Remark 1. It is noted that each element of a direct input fuzzy partition is
characterized by the membership function of an input fuzzy term, whereas each
element of an indirect fuzzy partition is characterized by more than one mem-
bership function of input fuzzy terms. Nevertheless, the membership function of
an input fuzzy region in an indirect fuzzy partition can be obtained by fuzzy set
operations of input fuzzy terms and hence the indirect input fuzzy partition is

A

supp

1
supp

A'
supp 1

A' I
supp

supp 1

A'
supp

1 A' I
supp

A2
A

SiXpp

A'
supp 1

Pj={A\A\A'}ot

P,={A\A\A^] only Pj ={A\A^} PJ ={A\A^) only
Figure 2 Examples of input fiizzy partition.

68 Chu Kwong Chak et al

equivalent to the direct input fuzzy partition functionally. They are rooted from
different partitioning methods (which will be discussed in the design examples)
but their characteristics are the same—^representing the premise of fuzzy rules.

DEFINITION 6. Let ^ c Z+ be an index set for the rule base in Eq. (2) or
Eq. (3). Let fuzzy set X^ with membership function ^ik be an input fuzzy region
of an input partition Pi and X^^^ be the support of X^. If Ujtefi ^sup = ^ ^^^
^sup / 0» VA: G ^ , and txk are normalized bell-shaped functions, then the input
fuzzy partition P/ is said to be normal. If an input fuzzy partition Pi is normal, a
set PI = {{x \ ixi{x) > iitJ eQ\ {/}}, / e ^} can be defined and is called the
input crisp partition. An element of the input crisp partition P / is called the input
crisp region.

Remark 2. It is noted that the input fuzzy regions are fuzzy sets and the input
crisp regions are crisp (classical) sets, whereas both the input fuzzy partition and
the input crisp partition are classical sets of input fuzzy regions and input crisp
regions, respectively.

G. AND MATRIX FOR INPUT FUZZY TERMS

AND INPUT FUZZY REGIONS

The premise of a fuzzy rule is represented by input fuzzy regions which are
obtained via AND fuzzy operation of input fuzzy terms. Thus, the linkage of input
fuzzy terms to input fuzzy regions needs to be specified. The linkage of input
fuzzy terms and input fuzzy regions can be many to many, which is expressed by
the AND matrix MAND with binary entries ("1" represents that an input fuzzy term
links to an input fuzzy region and "0" represents no linkage) as shown in Fig. 3.
The structure of the AND matrix depends on the input fuzzy partition selected.
For instance, the AND matrix is an identity matrix for the case that input fuzzy
partition is direct (Definition 5).

Input fuzzy terms

1 0 0 0 0 1 0

Input 0 1 0 1 0 0 0
fuzzy 0 1 0 0 1 0 0
regions

1 0 0 0 0 0 1
Figure 3 AND matrix.

Implementation of Fuzzy Systems 69

H, OUTPUT FUZZY PARTITIONS

The formation of an output fuzzy partition in the output domain W is related
to the setting up of the consequences of fuzzy rules. Same as the input fuzzy par-
tition, the concept of the output fuzzy partition will be used to describe the mech-
anism of fuzzy inferences employed in fuzzy systems for modeling and control.

For conventional fuzzy systems, the consequent parts of fuzzy rules are fuzzy
sets and the fuzzy partition of the output domain is clear. However, for Takagi-
Sugeno fuzzy systems, the consequent parts are linear functions 3; = f(x) without
any fuzzy set. We can imagine that there is a fuzzy set B with ordered pairs of
the output y and the membership function /x(j). Because the output range of the
linear function y = /(;c) of a fuzzy rule with finite input domain t/ is a subset
B of the output domain W, the membership function of the imagined fuzzy set
can be defined as /x(j) = 1, Vj e B. The imagined fuzzy set is thus defined as
B = (B, iJi(y) = I) which is a crisp set, a special case of fuzzy sets.

DEFINITION 7. Consider a fuzzy system with the rule base in Eq. (2) or
the equivalent rule base in Eq. (3). Let ^ C Z+ be an index set for the out-
put terms and let (JLI: Ey -^ [0,1], / G ^ , be membership functions. Then
B^ = {(y, /Jiiiy)) I J € W C Sy}, / G ^ , are fuzzy sets representing output
terms in the output domain W C Sy characterized by the membership function
fjiiiy). Let ^ be the collection of all subsets of {B^, I e Q). The subset PQ of
n = {G I G = f]x^ X € ^ } i s called an output fuzzy partition of the output
domain W if the union of the support of all elements of PQ is equal to the union of
the support of B^,l e Q, and the support of any element of PQ is not a subset of
the support of any other element of Po- An element of an output fuzzy partition
Po is called the output fuzzy region.

DEFINITION 8. Let ^ c Z+ be an index set for output terms. Let the fuzzy
set G ' with a membership function /x/ be the output fuzzy region of the output
fuzzy partition PQ and G[^^ be the support of G^ If U/efi ^sup — ^ ^^^ ^sup /
0, V/, and jjii is a normalized bell-shaped membership function, the output fuzzy
partition PQ is said to be normal. If an output fuzzy partition PQ is normal, a set
PQ = {{y I jjiiiy) > fii, i e Q\ {/}}, / G ^} is called the output crisp partition.
An element of the output crisp partition P o is called the output crisp region.

1. OR MATRIX FOR INPUT FUZZY REGIONS

AND OUTPUT FUZZY REGIONS

The premise and consequence of a fuzzy rule are represented by input fuzzy
regions and output fuzzy regions, respectively. To completely represent a fuzzy
rule, the linkage of input fuzzy regions and output fuzzy regions needs to be spec-

70 Chu Kwong Chak et ah

Figure 4 Linkage of input fuzzy regions into output fiizzy input regions.

ified. The linkage of input fuzzy regions and output fuzzy regions of conventional
fuzzy systems is one to one, whereas in fuzzy systems with the rule base in Eq. (2)
or the equivalent rule base in Eq. (3) the linkage of input fuzzy regions and out-
put fuzzy regions is many to one (Fig. 4). This approach obviously reduces the
number of consequences because a consequence can be shared by a number of
premises of fuzzy rules.

The linkage of input fuzzy regions and output fuzzy regions can be expressed
by the OR matrix MQR with binary entries ("1" represents that an input fuzzy
region links an output fuzzy region and "0" represents no linkage) as shown in
Fig. 5. It should be noted that there is at least one input fuzzy region linked to
each output fuzzy region. The structure of the OR matrix MQR depends on the
input fuzzy partition and the output fuzzy partition selected. For instance, the OR
matrix can be an identity matrix for the case that an output fuzzy region links to
one input fuzzy region only (the conventional fuzzy system).

Input
fiizzy
regions

Output fuzzy regions

10 0 0
0 10 0
0 0 10
0 1 0 0
0 0 0 1
0 0 0 1

Figure 5 OR matrix.

Implementation of Fuzzy Systems 71

J. FUZZIFICATION

The task of fuzzification is to map a crisp input of the system to a fuzzy input.

DEFINITION 9. Fuzzification is a mapping F of the crisp input domain U
with X into the set 3(X) with fuzzified input X.

In fuzzy systems for modeUng and control, singleton fuzzification is usually
employed. The fuzzified input for the crisp input jc is a fuzzy set (fuzzy singleton)
of an ordered pair (x, JJL(X) = 1) only.

K. INFERENCE ENGINE

The inference engine attempts to simulate human decision making based on
fuzzy concepts. It aims to infer fuzzy outputs by employing fuzzy implication
and rules of inference in fuzzy logic. For each "If A then J5" rule, a fuzzy relation
is defined based on fuzzy set operations. The rule can be expressed as a fuzzy im-
plication denoted by A -^ i5 using the defined fuzzy relation. Thus, an individual
fuzzy output can be inferred by a fuzzy rule in response to the input. The fuzzy
output of the system inferred is the aggregated result derived from all individual
fuzzy rules.

1. Fuzzy Relations

A fuzzy rule represents some linguistic relationship of input and output; the
product of the input fuzzy region and the output fuzzy region (linked by MQR)
forms the fuzzy relation of the input and the output for a fuzzy rule. See Fig. 6 for
illustration.

DEFINITION 10. Let A be an input fuzzy region with element JC and mem-
bership function /XA and let B be an output fuzzy region with element y and mem-
bership function /x^. The fuzzy relation on the fuzzy product A x iB is a mapping
such that /JLR: A X B -^ [0,1] where /x/?(jc, y) = /XA(JC) A /Jisiy) and the fuzzy
relation set is defined tohe R = {((x, y), fiRix, y)) \ (x,y) e Ax B}.

For a fuzzy rule in the rule base in Eq. (2), if there is more than one input fuzzy
region in relation to an output fuzzy region, then the fuzzy relation is combined
and defined as follows:

DEHNITION 11. Let Aj,i = 1, 2 , . . . , N, be input fuzzy regions with ele-
ment X and membership functions JJLAJ , j = 1, 2 , . . . , A/̂ , and let 5 be an output

72 Chu Kwong Chak et ah

is a fuzzy relation set

Figure 6 Graphic representation of fuzzy relation on the product of input fuzzy regions and output
fuzzy regions.

fuzzy region with element y and membership function /x^. The combined fuzzy
relation on the fuzzy product Uf=i ^j x ^ is a mapping such that

liRc : I J A; X B ^ [0, 1],

; = i

where

and the combined fuzzy relation set is defined to be

Re = \{{x. y), iJiRcix, y)) I {x, y)e[j Aj x B\,

^ ; = i ^

The fuzzy relation in a fuzzy system is depicted in Fig. 7.

Remark 3. It can be seen that Re = U7=i ^J where Rj is the fuzzy relation
set for rule 7.

2. Fuzzy Implications

Using the defined fuzzy relation, a fuzzy rule can be expressed by fuzzy impli-
cation which means that each point in the input fuzzy region maps a point in the
output fuzzy region.

Implementation of Fuzzy Systems 73

Input fuzzy
regions

Output fuzzy
legion

Figure 7 Fuzzy relation of fuzzy systems.

DEFINITION 12. Fuzzy implication is a mapping 0^ of an input fuzzy region
A into an output fuzzy region B such that, to each ordered pair (x, IJLA{X)) of A,
an ordered pair (y, jiBiy)) = ^((^, l^ai^))) of B is assigned according to the
defined fuzzy relation on A x B.

3. Fuzzy Inference

Fuzzy logic inference is the mechanism to deduce an output y corresponding
to an input x by operating fuzzy rules in the rule base.

In fuzzy systems for modeling and control, one level forward data-driven infer-
ence is employed for inference mechanism, that is, the fuzzy implication inference
rule, which is the generalized modus ponens (GMP). It is of the form

premise 1: jc is X
premise 2: if x is A, then j is J5

consequence: j is F

where A, Z, B, and Y are fuzzy predicates.
For a fuzzy rule expressed as a fuzzy implication using the defined fuzzy re-

lation R, the linguistic value Y of consequence variable y induced from premise
variable x with linguistic value represented by the fuzzy set X with membership

74 Chu Kwong Chak et al

function jxx is given by the fuzzy set 7 = X o /? which is characterized by the
membership function IJLY = l^x ^ I^R-

DEFINITION 13. Fuzzy inference is a mapping cp of the set 3(X) with all
fuzzified inputs X into the set 3(Y) with all fuzzified outputs Y such that, to
each fuzzified input X, a fuzzified output Y = (p{X) is assigned by the operation
Y = X o R according to the fuzzy relation /? of a fuzzy rule.

The inference methods of different fuzzy systems are different because of the
different structures of fuzzy systems although the fuzzy relations of the fuzzy sys-
tems can be expressed as general implication function as mentioned previously.
Takagi-Sugeno fuzzy systems differ from conventional fuzzy systems in that lo-
cal linear functions in the Takagi-Sugeno fuzzy systems are the consequences
of fuzzy rules instead of output fuzzy sets. A local function delivers quantita-
tive information to the consequence of a fuzzy rule in response to a quantitative
input. In conventional fuzzy systems, the local functions are absent so no quantita-
tive output information is available but qualitative output information (the output
fuzzy sets) are given. Figures 8 and 9 illustrate the inference of different fuzzy
systems.

We now consider the overall fuzzy inferences given by all fuzzy rules in a rule
base. Let Y^ be the inferred output fuzzy set and R^ be the fuzzy relation set

Input fuzzy
regioDs

Output fuzzy
xegioD

Figure 8 Inference of conventional fuzzy systems.

Implementation of Fuzzy Systems 75

bipat space
legions

Fuzzy
singletoD

Fuzzy
singleton

O u ^ t fuzzy
legion

Figure 9 Inference of Takagi-Sugeno fuzzy systems.

corresponding to a fuzzy rule k in the rule base in Eq. (3) of K fuzzy rules. The
overall inferred output fuzzy set is given by

K K K

k=l k=l k=l

Let Y^ be the combined inferred output fuzzy set and let R^ be the combined
fuzzy relation set corresponding to a fuzzy rule / in the rule base in Eq. (2) of L
fuzzy rules. The overall inferred output fuzzy set is given by

^ = Û c = U^°^c = ^°U^c-
1=1 1=1 1=1

L. DEFUZZIFICATION

The task of defuzzification is to map a fuzzy output to a crisp output of the
system.

DEFINITION 14. Defuzzification is a mapping D of the set 3(Y) with fuzzi-
fied outputs Y into the crisp output domain W with y.

76 ChuKwongChaketal

A number of schemes have been proposed. A widely used method is the center-
of-area method [35,36]:

where jji^ix) and jJL^iy) are the membership functions of input fuzzy regions and
output fuzzy regions, respectively, or

ELUy^wf^'cM^t^'iyiydy)
j:Lifyew>^c(^'>^t^'(y)dy)'

where />6̂ (̂x) and fi^iy) are the membership functions of combined input fuzzy
regions and output fuzzy regions, respectively.

Remark 4. For a Takagi-Sugeno system with fuzzy singleton input, the in-
ferred output fuzzy regions are crisp sets and hence the center-of-area method can
be reduced to the weighted average of fuzzy singletons:

M. CONCLUDING REMARKS

This section has considered some basic concepts and the structure of fuzzy sys-
tems for modeling and control which are used for the illustration of fuzzy neural
networks. In what follows, we will discuss two fuzzy neural network designs.

IIL DESIGN 1: A FUZZY NEURAL NETWORK
WITH AN ADDITIONAL OR LAYER

A. INTRODUCTION

This section reports the first attempt to solve the problem of neural network
implementation of higher-order fuzzy systems with fewer hardware requirements
and faster learning schemes. The fuzzy system used in this work is based on
Takagi-Sugeno fuzzy systems modified with the introduction of an additional OR
layer. A local linear system may be associated with more than one input fuzzy re-
gion. With this structure, the number of input fuzzy regions can be large, whereas
the size of the matrix for local system parameters estimation remains small. Thus,

Implementation of Fuzzy Systems 77

the proposed system is suitable for higher-order complex system modeling and
control. The proposed system also has the capability of rules generation.

B. INPUT DIMENSIONAL SPACE PARTITIONING

The partitioning method is discussed first because the structure of the fuzzy
system and the architecture of the fuzzy neural network are largely affected by the
partitioning method used. The input dimensional subspace partitioning method, as
it is called in this chapter, is a conventional fuzzy partitioning method which has
been adopted by Takagi [33] and Sugeno [37]. Each dimensional subspace of the
input space is first partitioned into a number of fuzzy regions and the input fuzzy
partition is then the product of all input dimensional subspace partitions. The
partition of the input space depends on the shape of the membership functions.

The idea of this partitioning method can be illustrated by a two-dimensional
input fuzzy system with input vector x = [xi ^2]^. It is assumed that the system
has three fuzzy sets Ai, A2, and A3 with membership functions/>6AI(-^I)» MA2(-^I)»
and MAsC î), respectively, at dimension 1 and two fuzzy sets Bi and B2 with
I^Bi (x2) and IJLB2 (xi), respectively, at dimension 2, and the membership functions
are of the form

/ (Xi-Wij)^\
fij (xi) = expl 2 - " ^ j •

The premises of the fuzzy rules are

Ri: If jci is Ai and X2 is Bi, then ..

R2: If XI is Ai and X2 is B2, then ..

Ry. If jci is A2 andX2 is 5 i , then ..

R4: If jci is A2 and X2 is B2, then ..

R5: If jci is A3 andX2 is Bi, then ..

Re: If Jci is A3 and X2 is B2, then ..

or If jc is Ai X Bi,then..

or If A: is Ai x B2, then..

or If JC is A2 X 5i , then..

or If X is A2 X B2, then..

or If JC is A3 X Bi, then..

or If JC is A3 X J52, then..

where Aj x Bk, j = 1,2,3 and k = 1, 2, are two-dimensional fuzzy sets with
membership function JJLAJ (xi) A M5jt(^2)- If a numeric product is chosen for the
f-norm A, the membership function of Aj x Bk is

l^Ajixi) ' llBki^l) = expf-
{X\ - WijY {X2 -

-I y
Each two-dimensional fuzzy set Aj x Bk is represented by an input fuzzy region.
The input dimensional subspace fuzzy partitions and the resulting input fuzzy
partition of the two-dimensional fuzzy system are shown in Fig. 10.

78 Chu Kwong Chak et al

\

A.xfl,

\ \ ^ ^

^^

A^^B^

\^^2

^

^^^

^x^J
Figure 10 Input dimensional subspace partitioning.

C. STRUCTURE OF THE FUZZY SYSTEM

The proposed fuzzy system is evolved from Takagi-Sugeno fuzzy systems.
The main idea of the structure of the Takagi-Sugeno fuzzy system is that in each
input fuzzy region of the input domain a local linear function is formed. A mem-
bership function />t(jc) e [0,1] of each region is a map indicating the degree of
the output of the associated linear function belonging to the region. The output
of the system is the "fuzzy" combination of the output of linear functions in all
regions. The proposed fuzzy system, on the other hand, has added one more OR
layer, which allows a local linear system to be associated with more than one in-
put fuzzy region. The proposed fuzzy system also uses a singleton fuzzifier, prod-
uct and sum inference, bell-shaped membership functions, and weighted average
defuzzifier.

All input fuzzy terms in the premise part of the fuzzy rules of the proposed
system are associated with a bell-shaped membership function /x(jc) chosen to be

/.W = e x p (- ((^) ')) ,

where w,a, and b are its center, width, and shape, respectively, which are tuned
premise parameters at learning.

The proposed fuzzy system has a rule base of L fuzzy rules of the form

Ri: If (jci is A} andX2 is A>} and . . . andXn is An)

or

or

[^xi IS / ir anu X2 is /lo anu . . . anu Xn is J±ri)

(xi is A^ andX2 is A2 and . . . andXn is An)

(xi is Aj ^ and X2 is A2 ^ and . . . and jc„ is A„ ^),
then fi =aQ-\- a[x\ + â ;̂ 2 H h a\^Xn.

Implementation of Fuzzy Systems 79

Equivalently, the fuzzy rules can be formulated as

Ri^: If xi is A^ and X2 is A2 and . . . and Xn is An ,
then // = (3̂ + a[xi + «̂ X2 H h a^x^
is A j^ and X2 is A2̂ and . . . and x„ is An ,
then // = a^ + a[xi + â X2 H h «^^n

/^/^ : If jci is Aj ^ and ^2 is A2 ^ and . . . and jc„ is A„ ^
then // = a^ + ajxi + â X2 H h a^x^.

The defuzzification is given by

where

qi = X] n^^^^/ (•̂ *̂̂ ' / = 1, 2 , . . . , L,
ki=l i=i '•

is the combined firing strength of a set of rules Rki, h = 1, 2 , . . . , AT/, whose
input fuzzy regions are linked to local system /. The combination of the outputs
of the local linear systems is the output of the system under consideration.

It is not difficult to see that the proposed fuzzy system will have fewer con-
sequence parameters than Takagi-Sugeno fuzzy systems because the number of
local systems may usually be less than the number of input fuzzy regions for
higher-order systems.

Consider an nth-order system with each input dimension partitioned into /
input fuzzy regions. Takagi-Sugeno fuzzy systems require the number of premise
and consequence parameters of all rules to be 3nJ and (1 + n)7", respectively,
and hence the size of the matrix for least-squares estimation is (1 + «) / " x (1 -h
n)J^. As for the proposed fuzzy system, with the input fuzzy regions combined
and mapped to L local systems, the required number of premise parameters and
consequence parameters of all rules are 3nJ and (1 +n)L, respectively, and hence
the size of the matrix for least-squares estimation is (1 + n)L x (1 -h n)L. For a
higher-order system, this leads to a great reduction in matrix size, and hence the
proposed fuzzy system is more suitable for higher-order systems.

80

Layer 1 Layer 2 Layer 3

Chu Kwong Chak et al

Layer 4 Layer 5 Layer 6

^n ^ 2 ^ 1 1

Figure 11 Structure of the proposed neural network.

D. ARCHITECTURE OF THE PROPOSED
NEURAL NETWORK

Figure 11 shows the structure of the proposed fuzzy neural network. The net-
work is composed of six layers which are made up of a number of neurons. All
neurons in the same layer are identical in their functions, but neurons may have
different functions in different layers. A typical neuron is depicted in Fig. 12.

f)

node n in layer r

V (r\
^ %

Figure 12 Neuron in layer r.

Implementation of Fuzzy Systems 81

On the left of Fig. 12 are the multiple inputs o^^~ \ 02 \ • • •»Op ^ to the
node, each arriving from another neuron in the preceding layer r — I. The neuron
performs a function / and delivers output to other neurons in the next layer r +1 :

where On denotes the output of the nth neuron in layer r and Oj denotes the
jth output of the neuron in layer r — 1, 7 = 1, 2 , . . . , P.

We now consider the neurons in each layer.

Layer 1

This is an input layer whose neurons represent input variables. The neurons
just transmit input values to the next layer directly because input fuzzy sets are
fuzzy singletons:

Layer 2

This is an input term layer whose neurons represent the membership functions
associated with each linguistic term of input variables. Links at this layer are fully
connected between input neurons and their corresponding terms. We choose the
bell-shaped membership function as

»f=»p(-(i^)"),

where Wj, CTJ, and bj are the center, width, and shape of the membership function
of the Jth term of the input variable jc/.

Layer 3

Layer 3 is an input partition layer whose neurons represent the premise of
fuzzy rules (input fuzzy regions). Links at this layer are formed in response to
the AND preconditions of the rules (AND matrix). The neurons perform the fuzzy
AND operation

o P =]^o5^^ for some 7. (5)

82 Chu Kwong Chak et al

Layer 4

This is an output partition layer (combined input partition) whose neurons rep-
resent the output fuzzy regions. Links at this layer are formed in response to the
OR preconditions of the rules (OR matrix). The neurons perform the fuzzy OR
operation to integrate the fired rules

[̂4) ^ ^ ^ (3) for some it. (6)

k

Hence, layers 3 and 4 function as the premise of fuzzy rules.

Layer 5

This is a consequence layer whose neurons represent the weighted local linear
systems. Links at this layer are fully connected.

J5) fior

where
m^tn

(n is the system order, i.e., the number of input variable x/, / = 1 , . . . , n).

Layer 6

This is an output layer whose neurons represent the output variables. This ar-
chitecture shows a single output only. It can be extended easily to a multiple-
output system. Links at this layer are fully connected. The output of the network is

y = 0^'^ = J2of\ (8)
/

E. HYBRID LEARNING ALGORITHM

The learning algorithms aim at constructing the fuzzy system by locating
the initial membership functions, generating the required fuzzy rules, tuning the
membership functions, and finding the consequence parameters so that the perfor-
mance is optimized through the whole set of training data pairs. However, before
applying the learning algorithm, we need to choose the input regions for each in-
put variable Xi and the output regions for output y. Because each neuron (input

Implementation of Fuzzy Systems 83

fuzzy region) in layer 3 is connected to one of the input term neurons (input fuzzy
terms) in layer 2, the initial number of rules is equal to the product of the number
of input regions of all input variables f]/ N{T(xi)), where N(T(xi)) denotes the
number of terms of input xi.

All neurons are initially fully interconnected between layers 3 and 4. After rule
generation (which will be discussed in phases 2 and 3 of the learning algorithm
in this subsection), it is expected that the final number of rules will be reduced.
Each neuron in layer 4 is only connected to one neuron in layer 3.

The learning scheme consists of four phases.

Phase 1: Finding the Initial Center and Width
of the Membership Functions

In this phase, the centers Wj and widths aj of the membership functions of
input fuzzy terms are determined. The centers of two membership functions are
placed at the upper limits and lower limits of the input range at each dimension.
The other centers of the remaining membership functions are located evenly over
the input range. The width of the membership function can be simply determined
by

^j = l\^j+i-^j\ or aj = ^\wj -Wj-i\.

As for the output partition layer, the number of output regions needs to be cho-
sen. It is expected that more accurate output can be obtained if the output layer
is assigned more output regions. Each output region is associated with a local
system.

Phase 2: Determining Fuzzy Rules by Competitive Learning

The purpose of this phase is to determine the relationship between input fuzzy
regions and output fuzzy regions. Initially, the links between layers 3 and 4 are
fully interconnected. The weight of the link connecting the kth neuron in layer 3
and the /th neuron in layer 4 is denoted by a[and assigned a value of 0.5. A com-
petitive learning algorithm is adopted. For the set of training data pairs ix,y), the
weights are adjusted as follows:

A a i = o r > (- a i + of>).

(3)
where 0^ ^ is the output of neurons (the output of the input fuzzy region) in layer 3
and Oi ̂ is the output of neurons (the output of the combined input fuzzy region)
in layer 4.

84 Chu Kwong Chak et al

Hence, o\ ^ serves as a win-loss index of competition. After competitive learn-
ing, the weight a[will approach either zero or some other value. The convergence
proof of this law can be found in [20].

Phase 3: Generating Rules

In the previous phase, the links at layer 4 are fully interconnected; that is, a
maximum number of rules are considered. However, not all the rules are vital to
the fuzzy system. The purpose of this phase is to delete those unimportant rules
and to retain the essential ones based on the result of competitive learning through
the whole set of training data pairs. The weight of a link that connects a neuron in
layer 3 (representing an input fuzzy region) and a neuron in layer 4 (representing
an output region) indicates the strength of the rule affecting the output region.
The weights of the Hnks that connect the same neuron in layer 4 are compared.
If the weight of the link is found to be small compared to the maximum one, the
weight of the link is assigned a 0 (10% is chosen in our simulation example). The
remaining weights are then assigned a 1. Hence, a[will be either 1 or 0, which
indicates the existence of the links connecting neuron / in layer 4 and neuron k in
layer 3. If there is no link connecting a neuron in layer 3 and a neuron in layer 4,
the neuron in layer 3 is regarded as deleted (see Tables I and II). The remaining
{a[} of the reduced network forms the OR matrix and represents the linkage of
layers 3 and 4.

Phase 4: Optimizing the Parameters of Membership Functions
by Error Back Propagation and Finding the Parameters of Local
Systems by Recursive Least-Squares Estimation

After the first three phases, the structure of the whole network has been de-
termined. In this phase, error back propagation is applied to tune the parameters
of the membership functions and recursive least-squares estimation is applied to
find the parameters of the local linear systems simultaneously. The network can
be considered as a cascade of a nonlinear system and a linear system. Error back
propagation is applied to the nonlinear part and recursive least-squares estimation
the linear part. Figure 13 shows the block diagram for the learning scheme.

1. Error Back Propagation

For each training pair (x,z), the system output y = ô ^̂ is obtained in forward
pass after feeding x into the network. Thus, the purpose of this learning phase is
that, for a given tih training data pair {x(t), z(t)), the parameters are adjusted so
as to minimize the error function

E(t)=^^{z(t)-y(t))\

Implementation of Fuzzy Systems 85

input \
7

Nonlinear

Part

/

Premise

Paramel

Parameters

Tuning

ters

/
<

N
>

N
/

Least
Squares f
Estimation f

/
V
/
\

1 Consequence
1 Paramet^s

Linear 1

Part 1

EiTor
Back-
propagation

output ^

y

V K
y K

y target

\

Figure 13 Block diagram for the learning scheme.

where z(t) is the target output of the tth training data pair and yit) is the current
output of the network.

The parameter update laws for Wj, GJ, and bj are found to be (see the Ap-
pendix)

and

where

Awj = -r]J2
dE 2b j

o (2) (1)

do)' oy- wj

Dij.

X—̂ dE 2bj ^

Abi =

„, = (M!!^)\.p(_(<fi!_^)'')

86 Chu Kwong Chak et al.

2. Recursive Least-Squares Estimation

In addition to applying error back propagation for tuning the membership func-
tions, recursive least-squares estimation is used to find the consequence parame-
ters of the local linear systems. From Eqs. (7) and (8), we have

(6) _ E/ //^r
y = o'-^ =

Elo] (4)

where // = a^ -\- Yl^^i ^\^i (^ is the system order, i.e., the number of input
variable Xi,i = ! , . . . , «) . a| are the parameters needed to be estimated.

Let us define at the tih training data pair the cost function J:

t t

where e(t) is the estimation error given by

e(t) = z(t) - y(t) = z(t) - (I>(tf0(t - 1),

e(t) = [a\t) a\t) . . . a^iof with a^(t) = [al^(t) a{(t) 4 (0 - - - a i (0] ,

and

0 denotes the Kronecker matrix operator.
Then recursive least-squares estimation can readily be applied to find the pa-

rameters 6 such that the cost function J is minimized. The algorithm for updating
the parameters is

^ ^ ' ^ - ' ^ ^ ' '^ Htypit-imt) '

with ^(0) given and P(—1) a positive-definite matrix.

E SIMULATION EXAMPLES

EXAMPLE 1. The proposed neural network is trained to model a three-input
nonlinear function y = (l-\- x^'^ -h ̂ ^^ + -̂ 3"̂ *̂)̂ which was also used by Takagi
and Hayashi [38] and Sugeno and Kang [37] to verify their approaches. An input

Implementation of Fuzzy Systems 87

Figure 14 Convergence of some strengths of the links between input fuzzy regions and output fuzzy
regions.

range [1, 6] of each dimension is divided into three fuzzy regions, each of which
is associated with a Gaussian membership function. The output range is divided
into eight output fuzzy regions, each of which is associated with a local linear
system. Twenty-seven rules are thus constructed initially, and 216 training data
pairs, the input part of which is randomly generated within the input range, are
used to train the network.

The initial shape of the membership functions after the first phase of hybrid
learning is shown in Fig. 17 (later in this chapter). After the second phase of hy-
brid learning, the strengths of the links connecting input partition neurons and out-
put partition neurons converge. Figure 14 shows the convergence of the strengths.
After the third phase of hybrid learning, the rules are determined. Table I shows
the rules before the rule reduction, and Table II shows the rules after the rule
reduction. Nine rules are deleted. In the last phase, a step size k = 0.001 was
selected for the proposed system. In addition, both the adaptive network fuzzy
inference system (ANFI) [19] and the fuzzy radial basis function (FRBF) [21] are
also simulated in order to evaluate the proposed system. The step sizes for them
are also selected to be A; = 0.001. For the sake of comparison, we use the same
performance index adopted in [37]:

Average percentage error (APE) = — V^ x 100%,

Table I

Chu Kwong Chak et ah

Table 11

R
u
1
e

n
0

d
e

1
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

Output partition

0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0

0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
1
0
0

R
u
1
e

n
0

d
e

0
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

Output partition

0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

deleted

deleted

deleted

deleted

deleted

deleted

deleted

deleted
deleted

where P is the number of data pairs and z{p) and y{p) are the p\h desired output
and network output, respectively.

It is noted that the number of consequence parameters in ANFI is 108 and
in the proposed system it is 32. The results of the performance of the networks
are shown in Figs. 15 and 16. The results indicate that the performance of the
proposed system is close to that of ANFI and is much better than that of FRBF.
Figures 15 and 16 show that the curve is "L" shaped. The average percentage error
approaches its optimal value after two-epoch training. This is due to the fact that
the parameters of the local systems have converged. This impUes that the conver-
gence of the parameters of local systems plays a dominate role for system esti-
mation accuracy. The remaining time is just for fine tuning the parameters of the
membership functions. Thus, the training required to achieve acceptable accuracy

Implementation of Fuzzy Systems 89

5 10 15 20 25 30 35 40 45 50

Figure 15 Performance comparison.

for the proposed network is expected to be fast. Figure 17 shows the membership
functions before training; Figs. 18-20 show the membership functions after train-
ing. Figure 21 shows the convergence of the consequence parameters. Figure 22
shows the performance of the proposed neural network.

FRBF

New
ANW

0 5 10 15 20 25 30 35 40 45 50

EpodB

Figure 16 Performance comparison.

90 Chu Kwong Chak et al

1 2 3 4 5 6

xl^aiidx3

Figure 17 Initial shape of membership functions for :ti, ;t2, and xj •

EXAMPLE 2. The proposed neural network is also trained to model an oper-
ator's control of a chemical plant [39]. In [39] the first three inputs were identified
as being significant to the model. Thus, in this simulation, only the first three in-
puts are selected. Each input range is divided into two fuzzy regions. The output
range is divided into four fuzzy regions. The simulation results after 30-epoch

3 4 5 6 7

xl

Figure 18 Final shape of membership function for ;ci.

Implementation of Fuzzy Systems 91

Figure 19 Final shape of membership function for X2.

training are shown in Fig. 23. These results indicate good performance of the
proposed neural network.

EXAMPLE 3. Finally, we deal with an example of the trend data of stock
prices [39]. The data set consists of ten inputs and one output (a higher-order

0.9

o.t

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

/'"
• /

•

_.y

/
/

/

' f^

1
!

1

1

. . m — - 1 - "

' " • *»

\

\
\
\

SK- '"*

\
\

/

' ' /\
/ \ "

/
/

/
/

/ \
'" 4

j
\ \

1 2 3 4

x3

Figure 20 Final shape of membership function for x-^.

92 Chu Kwong Chak et al

-li'

* * » — i - ' - - ' * » . . - — * - " —\

0 50 100 150 200 250 300 350 400 450

p(IVaiiiigditi)

Figure 21 Convergence of some consequence parameters.

system). Each input range is divided into two fuzzy regions. The output range is
divided into seven fuzzy regions. The simulation results after 100-epoch training
are shown in Fig. 24. The simulation results demonstrate that the proposed neural
network performs well.

1
E

60

Data pair number

Figure 22 Output of the nonlinear function.

Implementation of Fuzzy Systems 93

Actual

Modeled

40 50

Data pair number

Figure 23 Output of plant operation model.

60

G. CONCLUDING REMARKS

A neural network implementation of a new fuzzy system has been proposed.
Unlike the standard Takagi-Sugeno fuzzy system (in which the number of local
linear systems is the same as the number of input fuzzy regions), the proposed
system introduces an additional OR layer, which is a means of controlling the

40

1
s

30

20

10

0

-10

-20

-30
C

-\

u

- y 1

)

Alva

20 40

1 —

k/
60

— 1

Actual

Modeled

\k fA

80

H

H

v '1

100
Data pair number

Figure 24 Output of stock price model.

94 Chu Kwong Chak et al

growth of the number of local linear systems when the order of the system under
consideration increases so that least-squares estimation can be applied without
much performance degradation. The simulation results showed that even though
the number of local linear systems is reduced, the performance of the proposed
system is encouraging. It is expected that a better performance can be achieved
if more local linear systems are allowed by dividing the output domain into more
output fuzzy regions.

IV. DESIGN 2: A FUZZY NEURAL NETWORK BASED
ON HIERARCHICAL SPACE PARTITIONING

A. INTRODUCTION

In this design, the Takagi-Sugeno fuzzy systems is implemented within the
framework of a sigmoid function neural network, which is one of the most popular
feedforward neural networks. The fuzzy neural network adopts the hierarchical
space partitioning method for its structure selection. The partitioning method is
based on the idea of recursively partitioning the regions of the worst performance.
The performance of the system improves as this partitioning process continues
until some performance criterion is satisfied. Thus, the number of input fuzzy
regions (corresponding to fuzzy rules or neurons) is determined automatically in
accordance with the prespecified error. The fuzzy neural network is suitable for
higher-order fuzzy system implementation.

B. HIERARCHICAL INPUT SPACE PARTITIONING

The input fuzzy partition is formed by hierarchical partitioning of the input
domain, that is, by recursive hyperplane cutting of the input domain. Figure 25
illustrates the idea of hierarchical input space partitioning. For each cutting, two
input fuzzy terms A^^~^ and A^^ are formed by the cutting plane gj{x) shown
in Fig. 26. The combination of the input fuzzy terms with fuzzy AND opera-
tions results in a set of input fuzzy regions which represent the premise of fuzzy
rules. The relationship between the input fuzzy terms and the input fuzzy regions
can be expressed by the AND matrix MAND, and the matrix can be constructed
systematically in accordance with the mechanism of hierarchical input space par-
titioning.

The mechanism of hierarchical input space partitioning can be illustrated as
follows. Given a set of input and output data, a Unear cutting plane gi(x) = 0
is searched in the input space, which divides the input domain U into two input

Implementation of Fuzzy Systems 95

1 « '= IL
lA'AA^r

1

X ' . 1
" ^ ^ ^ A I A A ' A'AA

A'AA'^AA"

& - intersection & - intersection

(c) (d)
Figure 25 Hierarchical input space partitioning.

crisp regions, say, G^ and G^, to optimize some performance index. On the linear
cutting plane gi(x) = 0, there are two membership functions assigned which
are complementary to each other. It can be seen that two fuzzy sets (input fuzzy
terms), say, A^ and A^, corresponding to G^ and G^, respectively, can be formed
as shown in Fig. 26. The two fuzzy sets are complementary to each other. The
input fuzzy partition becomes {A^ A^} as shown in Fig. 25a corresponding to the
first step of input space partitioning. The AND matrix

MAND =[J?]

96 Chu Kwong Chak et ah

g.(x)

Figure 26 Input fuzzy terms and membership functions.

can be constructed. The generate rule base consisting of two fuzzy rules is

R\\ If jc is A^ then...,

Rr. Ifxis A2,then....

If the performance is not satisfactory, one of the input fuzzy regions with the
worst performance, say, A^, is selected to be partitioning again. Suppose another
linear cutting plane giix) = 0 is searched in the input domain U, which cuts U
into two other input crisp regions, G^ and G^. On the linear cutting plane giix) =
0, there are two other membership functions assigned which are complementary
to each other. It can be seen that there exist another two fuzzy sets, say, A^ and
A^, corresponding to G^ and G^. The four fuzzy sets (input fuzzy terms) A^ A^,
A^, and A^ with AND fuzzy set operations can constitute a number of different
input fuzzy partitions (Definition 5). Because A^ is selected to be partitioned, the
resulting input fuzzy partition is {A^ A^ Pi A^, A^ fl A"̂ } as shown in Fig. 25b
corresponding to the second step of input space partitioning. The AND matrix
MAND becomes

MAND =

"1 0] 0 0
0 i j 1 0

"0 1 0 1

The generated rule base consisting of three rules is

Ri: If X is A^ then...,

R2: Ifx is A^ and x is A^, then...,

R3: Ifx is A^ and x is A^, then

This procedure is repeated again and again until some criterion is satisfied.

Implementation of Fuzzy Systems 97

After four cuttings, for example, the hierarchical input space partitioning
shown in Fig. 25d is completed. The generated fuzzy rule base consisting of five
fuzzy rules is as follows:

Ri: If jc is A^ andx is A^, then...,

i?2- If-̂ is A^ and x is A^, then...,

R3: If X is A^ and x is A^, then...,

R4: If JC is A^ and x is A^ and x is A^, then...,

Rs: If JC is A^ and A: is A^ and JC is A^, then...,

where A^ are input fuzzy terms.
The corresponding AND matrix which describes the previous structure (the

relationship of the input fuzzy terms and the input fuzzy regions) is updated re-
cursively and can be represented as

MAND =

1 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 0 0 0 1 1 0
1 0 0 0 0 1 0 1

(9)

With the AND matrix, the preceding rule base can be expressed as

Ri: IfjcisX^then.. .

R2: IfjcisZ^, then.

7̂ 3: IfJcisX^then.. .

R4: IfjcisX4,then.

7̂ 5: IfjcisX^,then..,

where XJ are input fuzzy regions. The structure can also be represented by a bi-
nary tree structure shown in Fig. 27. The structure of the fuzzy neural network
shown in Fig. 28 can be evolved because of the hierarchical input space partition-
ing which leads to the generation of fuzzy rules.

C. STRUCTURE OF THE FUZZY SYSTEM

The fuzzy system to be implemented is a Takagi-Sugeno fuzzy system with
a singleton fuzzifier, product inference, sigmoid membership functions, and
weighted average defuzzifier.

Let us consider an n-input and m-output Takagi-Sugeno fuzzy system with
input vector jc = [jci JC2 • • Jc«]^ in input domain U and output vector y =

98 Chu Kwong Chak et al.

Figure 27 Binary tree structure representation of fuzzy rules.

[y\ yi '" ymV in output domain W, The hierarchical space partitioning
method is adopted for the fuzzy system. The cutting plane gk(x) = 1 + WkX = 0
cuts the input domain U to form two input fuzzy terms A^^~^ and A^^. Two
complementary membership functions for the two input fuzzy terms at the cutting

Figure 28 Evolution of the fuzzy neural network.

Implementation of Fuzzy Systems 99

plane are chosen to be, respectively,

v/h&re aiPkgkix)) = 0.5(1 + tmhi-PkgkM)) and

I^A^k(x) =a\Pkgk(x)),

(10)

(11)

where cr\Pkgk(x)) = 0.5(1 - tmh(-Pkgk(x))).
With hierarchical space partitioning, an input fuzzy partition of the input do-

main is thus formed which is characterized by a structured AND matrix MAND-

The inferred membership function of the input fuzzy region X^ (corresponding
to the rule Rj) is thus obtained by i^xj (x) = Ylt MA' M ^^^ ̂ H ^^V^^ fuzzy terms
A^ linking to the input fuzzy region XJ (for all entries x with value 1 in row j of
the AND matrix). If the input fuzzy terms formed by cutting planes are comple-
mentary to one another, it can be shown that Y^j fixJ M = 1 fo^* ̂H J (inherent
normalized membership functions). The fuzzy rule Rj is

RJ: If JC is XJ\ then yJ = a^x.

where

a^ =

*io

2̂0

^30

L^mO

'n
^21

3̂1

^ml

'n
2̂2

3̂2

^ml

'In

^2n

^3n

^mn

j = l,2,...,L,

X = [Xl X2 Xn] , ^ = [1 Xl X2 xnf, yj = [yi yi
yfnV , and X^ is the input fuzzy region derived from input fuzzy terms A' using
the AND matrix MAND-

The preceding equations form a fuzzy rule with multidimensional input vari-
ables and multidimensional membership functions. The fuzzy rule Rj is imple-
mented by fuzzy imphcation Rj : X^ -> Y^ and defined as follows:

l^Rj = ^^xi ^ f^YJ = f^xJ'

where Y^ is a crisp set of local system output 3̂ .̂
The fuzzy inference engine is a decision-making logic which employs fuzzy

rules from the fuzzy rule base to determine the weight output of each local linear
system. The inference output YJ of the rule Rj is YJ = X o Rj where Y^ is a
fuzzy set characterized by membership function jjiyj = Mx(^) A JJLRJ with input

100 Chu Kwong Chak et al

fuzzy set X. Consider the fact that the input fuzzifier is a singleton. Then we have
y^ = X o Rj where x and yj are fuzzy singletons.

The defuzzification is the weighted average of local Unear systems output

y = —=^7^ — — = 2^f^xjMy M because ^fixjM = l.

D. ARCHITECTURE OF PROPOSED FUZZY
NEURAL NETWORK

In this section, the architecture of the proposed fuzzy neural network is ad-
dressed. The proposed fuzzy neural network is constructed according to hierar-
chical input space partitioning discussed in Section IV.B and the fuzzy system
structure discussed in Section IV.C. As shown in Fig. 29, the network is a six-
layer sigmoid function neural network with a number of neurons in each layer.
A typical neuron performs a function / and delivers its output to neurons in the
next layer

where o„ denotes the output of the nth neuron in layer r and Oj ^ denotes the
output of the jth neuron in layer r — 1, j = 1,2,..., P.

We now consider the neurons in each layer.

Layer 1

This is an input layer. Its neurons represent input variables. The neurons just
transmit input values to the next layer directly because input fuzzy sets are fuzzy
singletons:

Layer 2

This is the cutting plane layer. The output of its neurons represents the output
of cutting plane gj{x). The links to the neurons represent the coefficients of the
cutting plane. The neuron function is

of^ = gj(x) = l-i-WjX,

where the M;/S are the coefficient vectors of cutting plane gj(x). The neuron
performs the weighted summation.

Implementation of Fuzzy Systems 101

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Figure 29 Architecture of the proposed fiizzy neural network.

Layer 3

This is an input term layer. Each of its neurons represents an input fuzzy term
of a fuzzy rule. There are two input fuzzy terms associated with one cutting plane.
The complementary membership functions are chosen to be a sigmoid function
for the pair of input fuzzy terms A^J~^ and A^J:

.(2) (2)\ 4-^1 = ^(- Pjor) = 0.5(1 + tanh (- Pjof^))

and
.(2) (2)\ 4 7 = ^\ - Pjof) = 0.5(1 - tanh (- ^ ,o f)) .

102 Chu Kwong Chak et al

The neuron performs the sigmoid function. The weights of the Unks have a value
of l .

Layer 4

This is an input fuzzy partition layer. Each of its neurons represents an input
fuzzy region. The links represent the entries of the AND matrix MAND- The neu-
rons perform the AND function o| ^ =]"[o- for all input fuzzy terms A^ linking

to input fuzzy regions X^ (for all entries x with value 1 in row / of the AND
matrix).

Layer 5

This is a local system layer whose neurons represent local linear systems. The
neurons perform multiplication and a local linear function. The weights of the
input links have a value of 1. The neuron function is

^/? = ^ r //P' P = 1 , . . . , m and / = 1, 2 , . . . , L, (12)

where fip=a^pQ-\-Zl^^^^pi^i-

Layer 6

This is an output layer whose neurons represent the output variables. The out-
puts of the network are

L

>'/' = ^f = E^ /? ' P = l,2,...,m. (13)
1=1

The neurons perform summation functions. The weights of the links have a value
of 1. The outputs of the neurons are the outputs of the neural network.

E. LEARNING ALGORITHM

A hybrid algorithm with the capability of structure selection and parameter
tuning is developed for MIMO systems with input x e R^ and output z € R"^.

The performance index is defined as the normalized root mean square error
(NRMSE) 6 which is given by

s =

N m'^'^V''

Implementation of Fuzzy Systems 103

where yp is the pth output of the fuzzy neural network and Zp is the pih output of
the modeled system, Zp = max/(zp(r))—min^ (Zp(0), Â is the number of training
data pairs, and m is the number of output dimensions.

Suppose modeling error s is required to be less than a prespecified error y for
the fuzzy neural network with the given (x(t), z(t)) data pairs forr = 1, 2 , . . . , Â .
For the convenience of applying the hybrid algorithm, x's are normalized within
1. The following hybrid algorithm is developed which consists of a number of
steps:

1. Determine a linear system.
2. Create a cutting plane.
3. Expand the AÂ D matrix.
4. Create the structure of local systems and initialize the local system

parameters.
5. Calculate the output of the inferred membership function of each input

fuzzy region.
6. Search for cutting plane parameters and local system parameters.
7. Find the derivatives of the output of the fuzzy neural network with

respect to cutting plane parameters.
8. Find the derivatives of the output of the fuzzy neural network with

respect to local system parameters.
9. Check stopping conditions and find the worst region.

10. Go to 2.

1. Determine a Linear System

When the training starts, there is no partition of input space and thus there
exists only one linear system and one input fuzzy region which is the input domain
{/. It is a special case of the fuzzy neural network in which there is no rule because
there is no input fuzzy partition. In this special case, the fuzzy neural network is
equivalent to a linear system.

A pseudo-inverse technique can readily be applied to find the parameter a of
the linear system by

a = (XX) 'XZ

where

^ = [. a) .(2) ::: . w] -^ ^=^(^) ^^^^ ••• ^(^>]-

The modeled output is 7 = a^X. If the modeling error e defined in Eq. (14) is
less than y, the learning is completed. The structure of the fuzzy neural network

104 Chu Kwong Chak et al

is merely a linear function. Otherwise, the following learning steps are required.
In this case, the parameter a of the linear system is denoted by a^ for later use.

2. Create a Cutting Plane

There is only one region which can be selected to be cut if this step inmiedi-
ately follows step 1 because fuzzy partitioning has not started yet. Otherwise, the
region required to be cut has been chosen at step 9 and the output of the inferred
membership function of each input fuzzy region has been calculated at step 5. At
this step, a cutting plane is created to cut the selected region. For generaUty, sup-
pose that it is the A;th cutting plane gk{x) and the input fuzzy region X^ is selected
to be cut.

The output of the inferred membership function /X;̂ ; {x) = o- of the selected
region governs the importance of the data to the selected region. The weighted
average of the input data XQ with respect to this region is used for setting the
initial cutting plane, that is.

Xn
T.til^xii^it))x{t)

Etif^xji^it))

where /JLXJ (x(t)) = Oj \t). It should be noted that XQ cannot be 0.
The initial setting of the cutting plane is to find an equation gk(x) = l-\- WkX =

0 such that it passes through the point Xo. However, there are many cutting planes
passing through XQ. One of the planes is randomly selected as the initial solution.
The values of the entries of Wk are obtained by

uJ

WXo

where the values of the entries of w are randomly assigned between 0 and 1. If
w = 0,w will be generated again.

3. Expand the AND Matrix

With the cutting plane initially selected, the selected region can be cut into two
splitting regions. This cutting plane actually cuts the whole input domain U into
two parts as well as the selected region. Two membership functions fi^ik-i (x) and
fiji^ikix) are assigned to form two input fuzzy terms A^^~^ and A^ .̂ The mem-
bership functions selected for the input fuzzy terms of the fuzzy neural network
are, respectively,

^2k~i = /̂ A2 -̂i M = 0-5(1 + tanh (- Pkgk(x)))

Implementation of Fuzzy Systems 105

and

41 = /̂ A^K)̂ = 0.5(1 - tanh (- Pkgkix))).

The input fuzzy terms A^^~^ and A^^ with the selected membership functions are
obviously complementary to one another.

Because the input fuzzy region X^ is selected to be split (one more rule is
generated) by the cutting plane gk{x) (there are a total of A: + 1 regions formed),
the AND matrix is expanded and a new matrix is obtained as follows:

yifnew _

0 0'

1 0

0 0
0') 0 1.

} jih row

{k + l)th row

where Mf^r^{j) denotes the yth row of Mf^j^,

4. Create the Structure of Local Systems and Initialize
the Local System Parameters

The additional local system f^^^ is required to be added in response to input
fuzzy region splitting. The matrix of the newly added local linear system f^^^
is initialized by a^^^ = aK It should be noted that the two newly added mem-
bership functions ^.j^ik-i (JC) and ii^^ik (x) will not affect other input fuzzy regions
except for the region selected to be split. However, because the initial membership
functions are complementary to each other and the parameters of the newly added
local linear system a^'^^ is the same as the one a^ associated with the region X^
selected to be cut, the performance of the splitting regions remains the same. That
is, the performance of the fuzzy neural network is retained at the time of splitting.
This property is very attractive for real-time learning processes.

5. Calculate the Output of the Inferred Membership
Function of Each Input Fuzzy Region

The value of the output of membership functions of input fuzzy regions can be
obtained by fuzzy set operation on the membership functions of input fuzzy terms.
With respect to membership functions, the outputs of input fuzzy regions are the
r-norm of the output of input fuzzy terms. In this design, the numerical product
is selected as the r-norm for connective AÂ Z). Because the linkage of input fuzzy
terms and input fuzzy regions is expressed by the structured AND matrix, the

106 Chu Kwong Chak et al.

matrix provides a systematic way of performing the calculation. Therefore, the
output of the input fuzzy regions is simply obtained using the AND matrix by
performing the following steps:

1. Reversing the O's of the AMD matrix into 1 's and the 1 's into O's.
2. Adding each row of the AND matrix with the output of input fuzzy terms

o^^^ (which are obtained by substituting x into the membership functions
of input fuzzy terms because input is a fuzzy singleton).

3. Performing min(x, 1) for each entry x of the AND matrix.
4. Multiplying all entries at the same row of the AND matrix.

For example, consider the following AND matrix MAND as in Eq. (9) which
represents five input fuzzy regions (five fuzzy rules) and eight input fuzzy terms
(four cutting planes). Suppose the output of input fuzzy terms is

o<̂ ^ = [0.9998 0.0002 1.0000 0.0000 0.6154 0.3846 0.9977 0.0023].

Thus, the previously mentioned four steps lead to

0 1 1 1 0 1 1 1 '
1 0 0 1 1 1 1 1
1 0 1 0 1 1 1 1
0 1 1 1 1 0 0 1
0 1 1 1 1 0 1 0

0.9998 1.0002 2.0000 1.0000 0.6154 1.3846 1.9977 1.0023
1.9998 0.0002 1.0000 1.0000 1.6154 1.3846 1.9977 1.0023
1.9998 0.0002 2.0000 0.0000 1.6154 1.3846 1.9977 1.0023
0.9998 1.0002 2.0000 1.0000 1.6154 0.3846 0.9977 1.0023
0.9998 1.0002 2.0000 1.0000 1.6154 0.3846 1.9977 0.0023

0.9998 1.0000 1.0000 1.0000 0.6154 1.0000 1.0000 1.0000'
1.0000 0.0002 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 0.0002 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000
0.9998 1.0000 1.0000 1.0000 1.0000 0.3846 0.9977 1.0000
0.9998 1.0000 1.0000 1.0000 1.0000 0.3846 1.0000 0.0023

'0.6153'
0.0002

4. I 0.0000
0.3836
0.0009

ando('̂) = [0.6153 0.0002 0.0000 0.3836 0.0009].

Implementation of Fuzzy Systems 107

6. Search for Cutting Plane Parameters and Local
System Parameters

Both the parameters Wk and fik of the new cutting plane gk(x) and the param-
eters Gj and fljt+i of the local systems fj and /^+^ of splitting regions X^ and
X "̂̂ ,̂ respectively, are required to be searched so as to achieve locally optimal
performance.

The extended Kalman filter algorithm [40-42] is adopted for the search. The
update laws of the extended Kalman filter algorithm are

Ke(t) = k-^Pe(t-l)H0(t){l-^k-^Hl(t)Pe(k-l)He(t))-\

0(t) = 0(t-l)^Ke(t){zit)-y(t)),

Pe(t) = k-^Pe(t - \)-X-^Ke{t)Hj{t)Pe{t - 1),

where KQ is the Kalman gain and He is the gradient matrix. The entries of the
gradient matrix He are the derivatives of the output of the fuzzy neural network
with respect to the tunable parameters

0 =

Wk

nk+l

that is,

He(t) =

dy^(wk,x(t))

dwk
dy^(Pk,x(t))

dy'^iaJ^xit))

daJ

aa^+i

Wk=Wk(t-l)

aJ=aJ(t-l)

The algorithm is initialized with Pe{0) = / and Wk(0) and a^^^(0) to the values
found at steps 2 and 4, respectively.

7. Find the Derivatives of the Output of the Fuzzy Neural
Network with Respect to Cutting Plane Parameters

The derivatives of the output of the fuzzy neural network with respect to cut-
ting plane parameters can be illustrated by an example. Consider a two-input
m-output fuzzy neural network having four cutting planes with parameter ma-
trix w of size 4 x 2 and five local linear systems with five parameter matrices a^,

108 Chu Kwong Chak et ah

j = 1, 2 , . . . , 5, each of size m x 3. The AND matrix of the fuzzy neural network
is as in Eq. (9).

From Eqs. (12) and (13), the system function is obtained

y = hff^
= a(;8i(l + wix))a{Ml + W3x))fi + a'(;8i(l + wix))a{fi2(l + W2x))f2

+ a ' (^ i (l + wix)y{Mi + mx))h

+ or()Si(l + wix))a'{P3{\ + wzx))a{PA{\ + Wix))U

+ a()Si(l + wxx))a'{p2{\ + W3x))a'{p^i\ + W4x))f5,

where y e /?'" is the output of the neural network and fk e R'",k = 1,2,.. .,5,
are the outputs of the local linear systems.

For implementing the extended Kalman filter algorithm, the derivatives of y
with respect to all wj, j — 1, 2 , . . . , 5, are required, dy^/dw^ are selected for
illustration:

dy^ ^ da(Mi + W3x)) ^j ^ da'iPiil + w^x)) ^ , j ,

9iW3 9u)3 dwi

N3 =(r{Ml+Wix))fi,

N^ = cr(/Si(l + wix))a{Ml + W4x))f4

+ (r{Plil + Wlx)y{P4il + W4X))f5.

+ ^ (0 . 5 (1 - tanh (̂ 63(1 + W3^))))A^f

= 0.5ftA:(l - tanh^ (^3(1 + W3x)))N^

- 0.5jS3;c(l - tanh^ ((63(1 + W3x}))N^^

= 0.5)63^(1 - tanh^ ()33(1 + W3X})){NJ - iVf).

Similarly, the derivatives of y with respect to ^3 are

a ^ " ^ (0 . 5 (1 + t a n h (^ 3 (1 + u;3x))))A^3^

+ 7^(0.5(1 - tanh(ft(l + W3X))))N^^
0P3

where

Then

Implementation of Fuzzy Systems 109

= 0.5(1 + W3;c)(l - tanh^ (psil + W3X)))NJ

- 0.5(1 + u)3Jc)(l - tanh^ (^3(1 + W3X)))N^^

= 0.5(1 + u;3jc)(l - tanh^ (̂ 63(1 + W3X))){NJ - iVf).

The expressions of Â3 and TVj represent outputs of two subnetworks. Thus, the
evaluation of N3 and N^ can be achieved by using reduced MAND, that is,

M^^o = [l 0 0 0 1 0 0 0]

and

^̂ _ r i 0 0 0 0 1 1 0]

'''^AND - [l O O O O l O l J '

which are obtained by deleting the rows of MAND-,

W\

1 0
0 1
0 1
1 0
1 0

W2

0 0
1 0
0 1
0 0
0 0

U>3

1 0
0* 0
0* 0
0* 1
0* 1

IU4

0 0
0 0
0 0
1 0
0 1

delete
delete
delete
delete

and

1 0
0 1
0 1
1 0
1 0

U>2 Wi

0 0
1 0
0 1
0 0
0 0

1 0*
0 0*
0 0*
0 1
0 1

W4

0 0
0 0
0 0
1 0
0 1

delete
delete
delete

corresponding to the O's (which are marked by *) of the first column and the
second column of Wi, respectively.

The procedure for finding N-i and ATj is similar to the procedure described
at step 5 with the modification that the entries of ô ^̂ corresponding to 103 are

replaced by 1 's so the output of input fuzzy terms for Af̂ ŷ ^ and M^^ is modified
to be

[0.9998 0.0002 1.0000 0.0000 1.0000 1.0000 0.9977 0.0023].

Thus, iV3 = 0.9998/1 and N'^ = 0.9915U + 0.0023/$.

no Chu Kzvong Chak et al

In general,

^ = 0.5;6;;c(l - tanĥ {^j{\ + WJX))){NJ - N'/).

The evaluation of Nj and Â .̂ can be achieved by using reduced MAND^ that is,

^AND ^^^ ^AND which are obtained by deleting the rows of MAND corresponding
to the O's of the first column and the second column of Wj, respectively. Using the
same procedure as before, all dy^/dwj can be evaluated. Similarly,

^ = 0.5(1 + wjx){l - tanh2 (^,(1 + WJX))){NT - Nf)
apj

can also be found by the same procedure.

8. Find the Derivatives of the Output of the Fuzzy Neural
Network with Respect to Local System Parameters

The derivatives of the output of the fuzzy neural network with respect to local
system parameters a^ are

dy^(aJ,x(t))

From Eqs. (12) and (13),

daJ aJ=aJ{t-\)

1=1

where o^"^^ has been calculated at step 5. Then

dy^ (4) ^fj (4) T
— - = o) ^ —A- = o) ^x .
daJ J daJ J

9. Check Stopping Conditions and Find the Worst Region

After the selected region is split so as to add a new local system and the re-
quired parameters are updated, the performance of the system is checked. If it
satisfies the criterion, that is, if it is within the prespecified modeling error y,
the learning stops and the trained fuzzy neural network is ready for application.
Otherwise, the fuzzy neural network needs further structure evolution (partition-
ing). The performances of all existing regions are inspected to see which one is

Implementation of Fuzzy Systems 111

the worst. The performance of the input fuzzy region XJ (modeUng error 8j) is
defined as follows:

Ef=iMx>(^(0)

The region with the worst performance is selected to be divided.
where /x^; (jc(0) = ^(0^- •

R SIMULATION EXAMPLES

EXAMPLE 1 (Approximating a Second-Order Highly Nonlinear Function).
The algorithm is illustrated by a simulation example of modeling a two-input one-
output nonlinear function z = 0.5(1 + tanh(5(.y/jcr + ^f ~ ^))) ^^^^ input vector
X = [xi X2V. N = 1000 data pairs are generated randomly for the learning. The
error threshold y is chosen to be 0.03 and membership functions are chosen to be
/XA2;-IM = 0.5(1 + tanhi-Pjgj(x))) and jjLj^y (x) = 0.5(1 - tanh(-^;gj(x)))
with initial fij = 10. The whole set of data is presented one time for each step of
the partitioning.

The progress of learning is listed in Table IIL
Figure 28 shows the evolution of the fuzzy neural network during the learning

period. After learning, the fuzzy neural network has five rules (with modeling

Table IH
Progress of Learning

Step of partitioning
Number of fuzzy rules generated
Modeling error before tuning
Modeling error after tuning
Modeling error of each region

Selected region to be divided

1
1

0.1410
0.1410
0.1410

1

2
2

0.1410
0.0470
0.0417
0.0484

2

3
3

0.0470
0.0396
0.0419
0.0305
0.0259

1

4
4

0.0396
0.0324
0.0181
0.0312
0.0259
0.0314

4

5
5

0.0324
0.0281
0.0172
0.0304
0.0259
0.0197
0.0151
Stop

112 Chu Kwong Chak et at.

error 0.0281). The structure of the fuzzy neural network is described by the AND
matrix in Eq. (9). The matrices for the local systems are

ax = [-0.0654 0.2453 0.1253],

fl2 = [0.1949 0.2973 0.7599],

a3 = [0.4234 0.2856 0.3882],

a4 = [-0.3616 0.7633 0.3296],

and

as = [-0.2263 0.4798 0.4247],

and the parameters for the cutting planes are

w =

-0.8236 -1.1106
-0.7217 -0.6269
-1.9574 -1.0580
-0.5615 -1.9895

and p =

9.9517
10.0018
10.0001
10.0002

The performance is then verified by 2 1 x 2 1 = 4 4 1 checking data pairs. The
checking modeling error is found to be 0.0430. The shapes of the nonlinear func-
tion and the modeling function are shown in Figs. 30 and 31, respectively. The
shape of the input fuzzy regions (partition) is depicted in Fig. 32. The perfor-
mance is shown in Fig. 33.

EXAMPLE 2 (Modeling a Bioreactor [42]). The aim of this simulation is to
show that the proposed fuzzy neural network can model a multioutput dynamical

Figure 30 Shape of the nonlinear function.

Implementation of Fuzzy Systems 113

0 0

Figure 31 Shape of the modeUng function.

system efficiently with a few number of rules. In this simulation, the model of the
bioreactor describing a process involving a continuous-flow stirred tank reactor is
given by

XI = -xiu-\-xi(l - X2)Qxp (^—^y

.2 = - X 2 . + x i (l - X 2) e x p (—) ^ ^ ^ ^ — - ,
1.02

yi = XI, yi = -^2,

0 0

0.S

Figure 32 Shape of input fuzzy regions.

114 Chu Kwong Chak et at.

Figure 33 Outputs of the fuzzy neural network and the function.

where x\ is the cell mass in dimensionless form, X2 is the amount of nutrients in
a constant-volume tank, bounded between zero and unity, and the control u is the
flow rate of nutrients into the tank (the same rate at which contents are removed
from the tank).

The dynamical equations are computed with MATLAB ode23. We define
AT = 0.5 s as the sampUng period which defines the intervals for sampling the
system states. The control u(kAT) to the system was assigned to be a sequence of
random numbers between 0 and 1 at the first 100 samples but was assigned to be
0 and 1 at the last second 50 samples and the last 43 samples, respectively. Thus,
193 data pairs (zi(kAT), Z2(kAT), u(kAT)) were obtained. The first 30 data
pairs and the last 163 data pairs are used for checking and training, respectively.
The structure of the linear local systems j is chosen to be

yl(t) = alQ-\-al^yiit - l)-\-a(2y2(t - l)+ai^yi{t - 2)

+ a^yiit - 2) + al^u(t - 1) + a(^u(t - 2),

yi(t) = a^Q + a^^yiit - 1) + a^^yiit - 1) + 4^yi(t - 2)

+ «24>'2(̂ - 2) -f a^25^(t - 1) + a^2^u{t - 2).

The error threshold y is chosen to be 0.05 and membership functions are
chosen to be IJLJ^2J-I(X) = 0.5(1 + tSinh(-Pjgj(x))) and /x^2;(x) = 0.5(1 -
tmh(-Pjgj(x))) with initial Pj = 10. The whole set of data is presented five
times for each step of the partitioning because the amount of training data is small.
The progress of learning is listed in Table IV.

Implementation of Fuzzy Systems 115

Table IV

Progress of Learning

Step of partitioning
Number of fuzzy rules generated
Modeling error before tuning
Modeling error after tuning
Modeling error of each region

Selected region to be divided

1
1

0.1005
0.1005
0.1005

0
0
0
1

2
2

0.1005
0.0603
0.0597
0.0535

0
0
1

3
3

0.0603
0.0526
0.0526
0.0525
0.0342

0
1

4
4

0.0526
0.0467
0.0557
0.0518
0.0341
0.0212
Stop

After learning, the fuzzy neural network will have four rules (with modeling
error 0.0467). The structure of the fuzzy neural network is described by the AND
matrix

MAND =

1 0 1 0 1 0
0 1 0 0 0 0
1 0 0 1 0 0
1 0 1 0 0 1

the matrices for the local systems

a =

a^ =

a'^

and

a' =

0.4299 -0.0798 -0.5016 0.0155 0.1956 1.3347 -0.4054

0.1991 -0.0019 -0.6027 -0.1158 -0.0488 1.0303 1.2425

0.3709 0.0685 -0.2123 -0.1683 0.1306 0.9048 -0.4515

0.2612 0.1988 -0.3438 -0.1151 0.0553 0.3603 0.6290

0.3497 -0.0119 -0.3407 -0.0549

0.2216 0.2618 -0.7121 -0.0778

0.4023 -0.1009 -0.2157 -0.1350

0.1643 0.0952 -0.5536 -0.1412

0.2623 1.1379

-0.2333 0.8263

-0.4120

1.0669

0.1578 1.1694 -0.4998

-0.0972 0.9290 1.0771

116 Chu Kwong Chak et ah

so 100 150 200

Figure 34 Performance of y\.

and the parameters for the cutting planes

w =

0.0145
-0.3188
-0.0144

0.1322
-0.7451
-0.4121

-0.3542
-0.0080
-0.0557

-0.5017
0.0267

-0.5296

-0.6951
-0.4675
-0.7257

-0.4850
-0.5322
-0.7301

and

P =
9.9938

10.0000
10.0017

$0 100 150 300

Figure 35 Performance of y2.

Implementation of Fuzzy Systems 117

The checking modehng error is found to be 0.0583. The performance is shown in
Figs. 34 and 35.

G. CONCLUDING REMARKS

An adaptive neural network implementation of fuzzy systems has been pro-
posed. The proposed fuzzy neural network has the capabilities of self-organization
and adaptation through the proposed hybrid learning algorithm which can deter-
mine the structure of the fuzzy neural network and tune the parameters of the lin-
ear local systems and the membership functions. By applying hierarchical input
space partitioning, the proposed fuzzy neural network can determine the num-
ber of rules or neurons automatically to achieve a prespecified modeling error. In
addition, the fuzzy neural network has the following attractive properties:

1. Sigmoid neural network structure (i.e., perception neural network).
2. Inherent normalized membership functions.
3. Simple learning algorithm for implementation.
4. The performance of the fuzzy neural network is retained at the time of

region splitting (evolution).

The simulation result showed that the proposed neural network has the capability
of self-organizing and adaptive learning.

V. CONCLUSION

The aim of this chapter has been to investigate the techniques of implementing
fuzzy systems within the framework of neural networks for modeling and control.
Two fuzzy neural network designs have been developed in this chapter.

The structure of the fuzzy neural network in the first design has been intro-
duced with an additional OR layer based on standard Takagi-Sugeno fuzzy sys-
tems. This makes it useful for the implementation of higher-order fuzzy systems;
the proposed fuzzy neural network provides a means of controlling the growth
of the number of local linear systems when the order of the system under con-
sideration increases so that least-squares estimation can be applied without much
performance degradation. In the second design, an attempt has been made to de-
velop an adaptive fuzzy neural network by using hierarchical space partitioning.
It has the capability of determining the structure of the network and the num-
ber of neurons automatically. Together with the extended Kalman filter algorithm
proposed in the fuzzy neural network which requires no tunable parameter, the
performance of the fuzzy neural network can be optimized in one training pro-
cess.

118 Chu Kwong Chak et al

It can be seen that the approach of the fuzzy neural network is a possible so-
lution to fuzzy systems design. The learning capability of fuzzy neural networks
makes the design procedures for fuzzy systems more systematic.

APPENDIX

Recall

^^ = - (, (0 -0^^)) .

From Eqs. (6)-(8), we have

where // = OQ + YTi=\ ^l^i ^"d n is the system order. Thus,

dE _ ^E_do^

From Eq. (6), we have Oi = J^k ^k • Thus,

dE dE do^"^^ dE
(4)-

(Note: dE/do\. of the k\h neuron in layer 3 is the same as dE/doi of the /th
neuron in layer 4 if the two neurons are linked.)

From Eq. (5), we have

i

- V — ^ - V (— FT o(2)̂
~ ^do? do? ~^\^o?\\l' r ^ (2)

00 J j^ UUj^ UUj y. XUC^ q^q^j

We derive the parameter update laws:

dE^_dE^^_^ dE^_dE 9 ^ ^E _ dE ^of^

^^j ~ dof ^^j ' 9^7 "" dof^ ^bj ' 9^; "~ dof^ ^^j '

Implementation of Fuzzy Systems 119

where Wj, bj, and GJ are the tuning parameters. From Eq. (4), we have

;pll)"'-e.p(-(<^)'').
•̂ 3

Thus,

9£ ^̂ (of>-u;,)/(oP-«;,)2\^-l A (2) V- 9^ o,, ioY'-Wj)({oY'-WjYV

From Eq. (4), we also have

Thus,

9^ Ô (of'-»/^y•)V(oP-«^7•)^^*^•"'

From Eq. (4), we also have

'""f =-XoJ^^'-^i^"\(^^'-'"i^"\''''
dbj

J

Thus,

120 Chu Kwong Chak et al

REFERENCES

[1] L. A. Zadeh. Inform, Control 8:338-353, 1965.
[2] L. A. Zadeh. Inform. Control 12:94-102, 1968.
[3] L. A. Zadeh. IEEE Trans. Systems Man Cybernet. 3:28^W, 1973.
[4] E. H. Mamdani. Proc. lEE Control Sci. 121:1585-1588, 1974.
[5] J. J. Ostergaard. In Fuzzy Automation and Decision Process (M. M. Gupta, G. N. Saridis, and

B. R. Gaines, Eds.), pp. 285-320. North-Holland, New York, 1977.
[6] E. H. Mamdani and S. Assilian. Intemat. J. Man Machine Studies 7:1-13, 1975.
[7] P. J. King and E. H. Mamdani. Automatica 13:235-242, 1977.
[8] E. H. Mamdani and C. P. Pappis. IEEE Trans. Systems Man Cybernet. 7:707-717, 1977.
[9] L. P. Holmblad and J. J. Ostergaard. In Fuzzy Information and Decision Processes (M. M. Gupta

and E. Sanchez, Eds.), pp. 389-399. North-Holland, New York, 1982.
[10] M. Sugeno and K. Murakami. In Industrial Application of Fuzzy Control (M. Sugeno, Ed.).

North-Holland, Amsterdam, 1985.
[11] S. Murakami. In Fuzzy Information, Knowledge Representation and Decision Analysis

(E. Sanchez, Ed.), pp. 4 3 ^ 8 . Pergamon, Oxford, 1984.
[12] D. Lakov. Fuzzy Sets Systems 17:1-8,1985.
[13] M. Uragami, M. Mizumoto, and K. Tanaka. /. Cybernet. 6:39-64, 1976.
[14] L. I. Larkin. In Industrial Application of Fuzzy Control (M. Sugeno, Ed.), pp. 87-103. North-

Holland, Amsterdam, 1985.
[15] H. Takahashi, K. Ikeura, and T. Yamamori. In Proceedings of the International Fuzzy Engineer-

ing Symposium '91 (IFES'9I),pp. 1136-1137, 1991.
[16] H. Takagi and M. Sugeno. In Proceedings of the IFAC Symposium on Fuzzy Information, Knowl-

edge Representation and Decision Analysis, pp. 55-60, 1983.
[17] C. C. Lee. Intemat. Intell. Systems 6:71-92, 1991.
[18] L. X. Wang and J. M. Mendel. IEEE Trans. Systems Man Cybernet. 22:1414-1427, 1992.
[19] J.-S. Jang. IEEE Trans. Systems Man Cybernet. 23:665-685, 1993.
[20] C.-T. Lin and C. S. G. Lee. IEEE Trans. Comput. 40:1320-1336, 1991.
[21] L.-X. Wang and J. M. Mendel. IEEE Trans. Neural Networks 3:807-814, 1992.
[22] S. Horikawa, T. Furuhashi, and Y Uchikawa. IEEE Trans. Neural Networks 3:801-806, 1992.
[23] J. M. Keller, R. R. Yager, and H. Tahani. Fuzzy Sets Systems 45:1-12, 1992.
[24] R. R. Yager. Fuzzy Sets Systems 48:53-64, 1992.
[25] W. Pedrycz. Fuzzy Sets Systems 56:1-28, 1993.
[26] M. M. Gupta and D. H. Rao. Fuzzy Sets Systems 61:1-18, 1994.
[27] H. Ishibuchi and H. Tanaka. Fuzzy Sets Systems 50:257-265, 1992.
[28] H. Ishibuchi, R. Fujioka, and H. Tanaka. IEEE Trans. Fuzzy Systems 1:85-97, 1993.
[29] Y. Jin, J. Jiang, and J. Zhu. IEEE Trans. Systems Man Cybernet. 25:990-997, 1995.
[30] C.-T. Lin and C. S. G. Lee. IEEE Proc. 0-7803-0236-2 1283-1291, 1992.
[31] C.-T. Lin and C. S. G. Lee. IEEE Trans. Fuzzy Systems 2:46-63, 1994.
[32] J.-S. Jang and C.-T. Sun. Functional equivalent between radial basis function networks and fuzzy

inference systems. Department of Electrical Engineering and Computer Science, University of
California, Berkeley, 1992.

[33] H. Takagi and M. Sugeno. IEEE Trans. Systems Man Cybernet. 15:116-132, 1985.
[34] W. Pedrycz. Fuzzy Control and Fuzzy Systems. Research Studies Press, 1989.
[35] C. C. Lee. IEEE Trans. Systems Man Cybernet. 20:404-^15, 1990.
[36] C. C. Lee. IEEE Trans. Systems Man Cybernet. 20:419^35, 1990.
[37] M. Sugeno and G. T. Kang. Fuzzy Sets Systems 28:15-23, 1988.
[38] H. Takagi and I. Hayashi. Intemat. J. Approximate Reasoning 5:191-212, 1991.
[39] M. Sugeno and T. Yasukawa. IEEE Trans. Fuzzy Systems 1:7-31, 1993.

Implementation of Fuzzy Systems 121

[40] S. Singhal and L. Wu. In Proceedings of the IEEE International Conference on Acoustics Speech
and Signal Processing, Glasgow, pp. 1187-1190. ffiEE Press, New York, 1989.

[41] G. V. Puskorius and L. A. Feldkamp. In Proceedings of the International Joint Conference on
Neural Networks, Seattle, IEEE Press, New York, 1991.

[42] G. V. Puskorius and L. A. Feldkamp. IEEE Trans. Neural Networks 5:279-297, 1994.

This Page Intentionally Left Blank

Neural Networks and
Rule-Based Systems

Aldo Aiello Ernesto Burattini
Istituto di Cibemetica C.N.R. Istituto di Cibemetica C.N.R.
1-80072 Arco Felice, Italy 1-80072 Arco Felice, Italy

Guglielmo Tamburrini
Istituto di Cibemetica C.N.R.
1-80072 Arco Felice, Italy

I. INTRODUCTION

This chapter presents an approach to simulating, and in several cases efficiently
so, a wide variety of rule-based reasoning processes by means of networks formed
by nonlinear thresholded neural units. In particular, the following networks are
examined:

1. networks representing knowledge bases formed by propositional
production rules and performing forward chaining on them;

2. a network monitoring the elaboration of the forward chaining system and
learning new production rules by an elementary chunking process;

3. networks performing qualitative forms of uncertain reasoning, such as
hypothetical reasoning in two-level causal networks and the application of
preconditions in default reasoning;

4. networks simulating elementary forms of quantitative uncertain reasoning.

The possible uses of these techniques are partially exemplified by the overall
structure and implementation features of a purely neural, rule-based expert sys-
tem for a diagnostic task. Here, the expression "purely neural" indicates that in
addition to knowledge representation and processing proper also the control and
synchronization functions that are needed to schedule the given diagnostic task
are achieved by means of neural networks.

Fuzzy Logic and Expert Systems Applications
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 1 2 3

124 Aldo Aiello et al

The neural representation of rules is based on a localist, rather than distributed,
semantic interpretation: each propositional Uteral appearing in a rule is repre-
sented by means of an individual neuron. Moreover, even when rules are learned,
they are not acquired by standard neural learning techniques. Finally, their appli-
cabihty is governed by essentially rigid conditions, even when rules are used to
simulate forms of uncertain reasoning. In the latter case, rule firing is tailored to
reflect rigorous models of reasoning under incomplete or uncertain knowledge,
so that the uncertainty attached to their conclusions can be evaluated in robust
theoretical settings.

In view of these qualifications, one has to state explicitly what is the interest of
a neural architecture of this sort for rule-based systems, because the learning and
adaptivity typical of neural nets play a secondary role in the present approach:
systems that are designed to fulfill these constraints remain brittle on the whole,
much in the way that traditional symbolic systems are. Clearly, their interest lies
elsewhere:

(i) Neural net implementations of production systems naturally lend them-
selves to parallel execution. Given appropriate hardware or software support,
these networks can be used to build applications in domains where real-time re-
sponses are a crucial demand.

(ii) The absence of semantically opaque, hidden layers of neurons governed
by learning algorithms guarantees the possibility of providing an informative jus-
tification for the conclusions obtained by stepwise inferential processes.

(iii) The neural simulation of various sorts of rule-based reasoning makes
available a wide repertoire of technical tools for unified approaches to neurosym-
bolic integration where, in contrast with hybrid approaches, symbolic processing
is carried out by a neural network, too.

(iv) Revisable reasoning is very naturally modeled by means of neural settings
that include negative weights, as the neuron outputs of these networks are not
intrinsically monotonic functions of their inputs.

These points will be taken up again both in the concluding remarks and in com-
ments accompanying the presentation of more technical material in the main body
of the chapter.

IL NONLINEAR THRESHOLDED
ARTIFICIAL NEURONS

The artificial neurons used throughout this chapter are weighted-sum, nonlin-
ear thresholded elements which may keep memory of past activity by means of a
memory decay function. These artificial neurons are obtained by a modification

Neural Networks and Rule-Based Systems 125

of Caianiello's classical neural equations (see Caianiello [1]). The state equation
for one of these neurons, say, A, is

Uh{t + l) = l ^^^j,h ' Uj{i) 'Sh(t - i) - Sh

.j=li=0
(1)

where Uh(i) is the state (1 or 0) of the neuron h at time /; ajh is the weight
(or coupling coefficient) between neurons j and h; 8h{i) is a monotone, nonin-
creasing function of the discrete time / for neuron h regulating a time variable
memory of the excitation received by h from its neighbors (this memory "de-
cay law" plays a crucial role in modeling various forms of uncertain reasoning
by thresholded neural elements, as it allows one to encode numerical values by
sequences of neuron firings); Sh is the threshold of/i; and

^^^ [0 , i f x < 0 ,

is the step function determining the state of each neural unit.
The specific settings for each neural element h can be described by means of

a "characteristic triple":

Nh = {AhJh.Sh},

where Ah is a set of pairs {{j,x)}, where x is the value of the weight between
neurons j and h;8his the memory decay law for h; and Sh is the threshold of h.

The "characteristic triple" notation will be omitted whenever a detailed de-
scription of particular (types of) neural elements is not needed.

III. PRODUCTION RULES

A production rule is a pair consisting of a condition part and an action part (see,
e.g., Genesereth and Nilsson [2, pp. 274-280] or Grzymala-Busse [3, pp. 17-28]).
The particular production rules that we shall be concerned with can be cast in the
form of conditional expressions of the form

piA'-'Apk^h, (R)

with the restriction that both the k elements of the condition part on the left-hand
side of the arrow and the only element of the action part on the right-hand side are
propositional literals (where a literal is a propositional letter or the negation of a
propositional letter in sentential logic).

Because no specific inference scheme for handling negation will be introduced
in this chapter, no greater inferential power is achieved by permitting literals,
rather than just propositional letters, to appear in rules. Nonetheless, allowing for

126 Aldo Aiello et al

literals in the context of the present approach is useful in at least two respects.
First, it furnishes external sources of information (typically, human users of rule-
based systems) with greater expressive power during query processes (the external
source may directly inform a system handling literals that the negation of a certain
proposition holds). Second, it enables one to introduce a control mechanism for
explicit contradictions, which detects whether contradictory pairs of literals occur
in a database formed by the set of asserted literals expressing known facts (such
as the literals asserted by an external source) and literals obtained by an inference
engine working on production rules and asserted facts.

By adding to a production system formed by a finite set of rules of form (R)
a database containing literals expressing/acr^ and a rule interpreter, one can im-
plement search processes on facts and rules. The facts database is a record of
assertions, whether inferred by applying the rules or asserted by other means (for
instance, by an external source of information). The rule interpreter works itera-
tively in recognize-and-act cycles, which can be used to implement various kinds
of searches. Forward and backward chaining are basic search strategies for pro-
duction systems, which may be suitably amalgamated to obtain mixed strategies.

The inferential strategy we shall be mainly concerned with in this chapter is
forward chaining. In forward chaining, one checks whether the condition parts of
production rules are satisfied and, if so, performs the corresponding action parts.
This process is iterated until no rule with a satisfied condition part can be found.

The main building block of a neural inference engine for parallel forward
chaining is the neural representation of individual rules. In view of the fact that
the state function of the neurons described in the previous section can assume
only values of 1 and 0, these thresholded elements can provide, under a localist
semantic representation. Boolean-valued information about the literals to which
they are associated.

Under such localist semantic interpretation, each rule of the form (R) can be
represented as a net having k neurons pi,..., Pk connected to a neuron h (see
Fig. 1) with the following settings:

aj,h = 1, l< j <k,

Sh — k — s, 0 < £ < 1 ,

n f̂ f 1, if / = 0
Sii(i) = 8^(i), where 8^ is { (i.e., there is no memory).

10, if / 7̂ 0

By (1) and the previous settings, one has

uh(l) = l

• k

J2^pj(0)-(k-s)

Neural Networks and Rule-Based Systems 127

Figure 1 Neural rule model.

Thus,

Uh{\) = l iffV7Wp/0) = l,

that is, the neuron h is active (its state is 1) at time r = 1 if and only if all
pi,.,., Pk sue simultaneously active at time ^ = 0. More in general,

Uh(t + l) = l iffyjupj(t) = l.

Thus, the behavior of the net formed by the neurons pi,..., Pk and h reflects
faithfully the behavior of a rule interpreter used in forward chaining when applied
to a rule of the form (R): whenever the condition part of such a rule is satisfied,
its action part is executed (in the case of an inferential process, this execution
amounts to adding literal h to the database).

IV. FORWARD CHAINING

Using this representation of rules as basic building blocks, one can design neu-
ral networks representing production systems formed by rules of the form (R) and
capable of performing a parallel process of forward chaining on them. Because
the process is parallel, all rules whose condition part is satisfied can be simulta-
neously applied, and therefore no particular scheduling for rule firing is needed.
However, there are some crucial problems that have to be addressed:

• Correctness. How to ensure that rules will fire only when their condition
part is fully satisfied;

• Control. How to verify that the process has come to an end, namely, that no
more literals can be inferred on the basis of the available information;

• Output. How the results of forward chaining are to be read off from the
network when the inference process has been completed.

128 Aldo Aiello et al

Let us examine in some detail how these constraints can be fulfilled in the
specific case of the following system of rules:

b ^ d,

e Ad ^^ a,

-"J Ac ^- (2,

d Aa ^^ b.

A neural inferential engine, capable of carrying out forward search on this
system of rules, starting from an initial set of asserted facts, is formed by five
distinct layers of neurons (see Fig. 2). The first layer {IN) accepts external inputs
to the net. It is formed by as many neurons / Â^ as different propositional literals
appear in the rules (in this particular case, 1 < 7 < 6).

d -.d IN

(I) (f) (p (f) (T) (I)

excitatory
impulses

inhibitory
impulses

DB

OUT

Figure 2 Neural forward chaining.

Neural Networks and Rule-Based Systems 129

Each neuron / Â ; is connected to the neuron DBj representing the same literal
in the second layer DB. The characteristic triple of the generic neuron INt in this
layer is

Its first element represents the action of an external source, EXTi\ the second
element is the decay law, while the third element is the threshold of INt, with
0 < £ < 1. The symbol "s" will assume, unless otherwise stated, an arbitrary
positive value less than 1.

The second layer {DB) is a partial database formed by as many neurons as in
the layer IN. These elements store the premises introduced in the IN layer: the
neuron DBj becomes active at time ^ + 1 whenever the neuron INj is active at
time t and preserves this information by self-excitation. The characteristic triple
for the generic neuron DBi in this layer is

^DBi^{{{INiA)ADBiA)Y8\e].

The third layer {KB) codifies the entire knowledge base. Here, each rule is rep-
resented as in the previous section, with the additional condition that if a literal
p occurs as the right-hand side (or, as we shall also say, as the conclusion) of z
rules, then z distinct neurons—each one representing an occurrence of p in the
conclusion part of those rules—^have to be introduced in this layer. This additional
condition is crucial to ensure that rules are correctly activated. It is needed to avoid
that a neuron representing p can be activated from a combination of premises be-
longing to different rules having /? as a conclusion. These z neurons are connected
to a neuron /?* which represents all occurrences of p as the left-hand sides of pro-
duction rules and fires on the neural representative of the right-hand sides of those
rules.

Because the elements represented by neurons are propositional literals, one
may obtain an inconsistency in this layer if both an atomic proposition and its
negation become simultaneously active. Even supposing that the knowledge base
itself is consistent, inconsistencies may still be introduced if one allows external
sources of information to assert new facts. The system is capable of signaling such
explicit contradictions because each pair of neurons representing contradictory
Hterals is connected to a neuron belonging to the control layer. The latter becomes
active when both elements of the pair are active. (See, e.g., the pair formed by the
neural representatives of J and -^d in Fig. 2.)

The characteristic triples of the neurons KBt vary according to their role in
the system of production rules. For neurons representing literals appearing only
in condition parts of production rules, we have

^KBi^[{{KBiA)ADBiA)]j\8].

130 Aldo Aiello et al

The characteristic triple for a generic neuron KBi representing a Uteral pi occur-
ring only once as conclusion in the system of rules, say in a rule r with q literals
in its condition part, is

where ^ ^ j , . . . , ^ 5 j are the q neurons in KB representing the literals in the
condition part of rule r.

When a literal pt occurs as a conclusion in z different rules (with z > 1), the
characteristic triple for each of the neurons KBJ,..., KBf representing these z
occurrences is

Nj,Bi ^ {{{KBl,qi), {KB]i,l},.. .,{KBf.,l)},S'',qi - s}, l = l,...,z.

These z neurons fire on a neuron KB* which represents all occurrences of p in
the condition parts of the production rules. The characteristic triple for such KB*
is

NKB* = {{{KB*, I), [DBi, 1), [KB}, l) , . . . , [KBj, l)}, 5°, e}.

The inferential process is triggered by exciting neurons in IN and its results are
codified by active neurons in KB. One can easily verify that no scheduling is
necessary for carrying out this process, because all rules whose condition part is
satisfied in the KB layer are simultaneously applied.

The control problem can be solved by introducing a distinct layer C of m neu-
rons, where m is the number of possible different conclusions in the system of
production rules. Each neuron Ct in C represents a literal appearing as a conclu-
sion; it receives impulses from all z neurons, with z > 1, that represent the same
conclusion in KB, and activates the corresponding neuron OUTi in the layer OUT.
The latter, once excited, sends back an inhibition, equal to z + 1, to the neuron
Ci in the layer C. Moreover, each neuron C/ can fire on the special neuron Ctrl
which is active as long as new conclusions are reached. Another special control
neuron end is inhibited by Ctrl, with strength m+1, and is excited by each neuron
OUTi. Thus, end is inactive until Ctrl is active, that is, until new conclusions are
reached. When nothing else can be inferred, Ctrl becomes inactive. As a result,
end is no longer inhibited and becomes active, thus signaling that the forward
process on the input data is terminated.

The characteristic triples for each neuron Ct vary according to the role it plays
in the system of production rules. For a neuron Ct representing a literal appearing
as a conclusion in just one rule, we have

^Ci^[[{KBiA)A0UTi,-\)]j\8].

dec

^end =

Neural Networks and Rule-Based Systems 131

For a neuron C/ representing a literal appearing as a conclusion in z production
rules

Nc, ^ [{{KBl 1>, {KB}, 1) , . . . , {KBl 1), (O^/T;-, - (Z + 1))}, 5^ £}.

And the characteristic triples for the special control neurons are

^ctrl ̂ { U {(C„1>},5^A
^ dec ^

U [{OUTi, 1)} U [{end, 1)} U {{ctrl, -{m + 1))}, S\ sV
OUTteOUT ^

If KB contains pairs of neurons x and -^x representing contradictory literals,
then for each pair a distinguished neuron (-^xx) is created, which becomes active
if and only if both elements of the pair are simultaneously active in KB.

N-.^:c^{{{^x,l)Ax,l)}J^2-s},

This mechanism enables the system to signal that a contradiction has been de-
rived.

The output problem is solved through a layer OUT of m neurons, where m
is again the number of possible different conclusions in the system of production
rules. Each neuron in OUT is excited by the corresponding neuron in C and is self-
excited in order to store this information. The characteristic triple for the generic
neuron in OUT is

NouTt ^ {{{OUTi, 1), {Ci, 1)}, 8^, s}, / = ! , . . . , m.

When the forward process terminates, the end neuron becomes active and signals
that the process has been completed; the active neurons in the layer DB store the
initial input; other active neurons in KB indicate both asserted and inferred facts;
the active neurons in the layer OUT represent the conclusions of production rules
which have been reached by forward chaining under the initial assumptions stored
in DB,

This neural architecture can be used for implementing neural forward chaining
mechanisms for arbitrary systems of production rules of form (R). In particular,
one can specify an algorithm which, given in input a system of propositional pro-
duction rules of form (R) presented in a certain canonical form, outputs a neural
network for executing forward chaining on that system of rules (see Burattini
et al [4]).

Any such system of rules is allowed to contain cycles (unlike, e.g., the KBANN
neural production systems of Towell and Shavlik [5]): a literal appearing as a con-
sequent in one rule can appear in the antecedent of another rule. Moreover, several
rules may share the same consequent. As we pointed out previously, this latter

132 Aldo Aiello et al

possibility requires, to preserve the correctness of forward inferencing, that each
occurrence of a Hteral appearing in the consequent part of the rules be represented
by a distinct neuron.

Finally, it is worth emphasizing that the localist semantic interpretation of neu-
rons in terms of literals enables one to provide an informative justification for the
conclusions reached in each run of this forward chaining mechanism. In Burattini
et al. [4, pp. 97-99], we have described how to organize a neural network moni-
toring the activity of a forward chaining net and exhibiting a trace of the shortest
inferential paths from the initial premises to each one of the conclusions obtained
by forward chaining.

V. CHUNKING

A. CHUNKING AND PRODUCTION SYSTEMS

In his Unified Theories of Cognition, Newell [6, p. 185] gives the following
description of chunking in a rule-based problem solving system:

Chunking is learning from experience. It is a way of converting goal-based problem-
solving into accessible long-term memory (productions). Whenever problem-solving
has provided some result, a new production will be created, whose actions are these
just obtained results and whose conditions are the working-memory elements that ex-
isted before the problem-solving started that were used to produce the results. This
newly minted production will be added to the long-term memory, and will henceforth
be available to add its knowledge to the working memory in any future elaboration
phase where its conditions are satisfied.

In the setting of the forward chaining system described in the previous section,
the condition part of a new chunk that may be added to a long-term knowledge
base is to be identified with the conjunction of the facts (propositional literals)
from which a run of the forward chaining process starts; and the action part of the
same chunk is the conjunction of the literals inferred in the same run of forward
chaining.

More formally, a chunk may be viewed as an ordered pair (/, C), where, for
k,m > I, I = {pi,..., pk) isthc set of initial data provided to the system in a
given run of forward chaining and C = {^i,..., ^^j is the set of literals derived
in that run of forward chaining starting from / . These chunks may be cast in the
form

PI A'" Apk^ qiA'" Aqm

and thus may differ in their right-hand sides from the rules of form (R) we have
considered so far, where m = I.

Neural Networks and Rule-Based Systems 133

Even independently of any consideration about their significance in cognitive
modeling, chunking mechanisms in rule-based systems may play a significant
role in artificial intelligence (AI) applications, both for the automatic acquisi-
tion of knowledge bases and for the design of more efficient problem-solving
strategies. In this section, we are concerned with the use of chunking mechanisms
for addressing the latter problem. In particular, we describe a chunking mech-
anism generating rules which codify associations between initial data and final
outcomes of a forward chaining process. Once these rules are stored, these out-
comes can be immediately recalled upon presentation of the same initial data,
without having to repeat the forward chaining process. Chunking mechanisms
generally give rise to what, following Tambe et al. [7], may be called cognitive
and computational effects. The cognitive effect is the reduction of the number
of (inferential) steps needed to carry out a given task. The computational ef-
fect is the increase in the amount of time needed to carry out each individual
step. Thus, what is gained in efficiency by reducing the number of steps is of-
ten lost by an increase in execution time for each step. Clearly, when chunks
take the form of production rules, the time required for executing the match-
ing process between data in working memory and the conditions of production
rules may increase. In fact, more rules have to be scanned, and the newly intro-
duced rules may contain more complicated conditions than those present in the
original system of rules. Another related phenomenon may be called the memory
saturation effect: given preassigned finite memory capacities, a system endowed
with a chunking mechanism, which cannot "forget" some of the previously stored
chunks, will be eventually unable to make room for newly acquired and possibly
more useful chunks. In view of the computational and memory saturation effects,
an efficient use of chunking mechanisms requires a computational agent capable
of

(a) leaving unaltered the access time to knowledge when new chunks are
added, and

(b) attenuating the incidence of the memory saturation phenomenon.

The neural system for chunking on systems of production rules described here—
extracting associations between initial data and final outcomes of a forward chain-
ing process—does satisfy condition (a). Condition (b) is satisfied as well, if the
relative frequency of the use of chunks is regarded as a satisfactory criterion for
deciding which chunks have to be "unlearned" by the system. The chunks stored
by the system enable it to reduce processing time: whenever a set of input data
coincides with or strictly contains the literals in the first element / of a stored
chunk, at the next step the system outputs the literals in its second element C.

Constructing a chunking mechanism of this sort, which can efficiently cope
with the computational and memory saturation problems, requires solving the

134 Aldo Aiello et al

following problems:

(i) recognizing an input pattern previously presented to the system in order
to recall the chunks with conditions matching the input pattern (or else storing an
input pattern presented for the first time to the system);

(ii) keeping track of how often the stored chunks are used during the system
operation, in order to discard less often used chunks when new chunks have to be
acquired;

(iii) executing operations (i) and (ii) in a preassigned time, independently of
the size of the input patterns and the number of stored chunks.

B. NEURAL MODULE FOR CHUNKING

The neural chunking module (CM for short) and the algorithm Recorder that
we have implemented and described in previous papers affords a sensible solution
to these problems. (See Burattini et al [4] for a discussion of the difficulties which
may arise in attempting to solve simultaneously problems (i)-(iii) by means of
multilayer connectionist networks, Hopfield nets, or Grossberg's ART networks.)

At the end of each run of the forward chaining system, the algorithm Recorder
isolates a chunk (/, C), where, for k,m > I, I = {p i , . . . , pk) is the set of
initial data provided to the system in that run and C = {^i,..., ^^1 is the set
of Uterals derived by forward chaining starting from /. If the chunk (/, C) was
already stored in CM as a result of previous runs of the system, this fact is signaled
by CM, and the algorithm Recorder merely modifies the weights of the neural
units in CM that are devoted to storing data about the relative frequency of use of
chunk (/, C). Otherwise, the chunk (/, C) is stored in CM. In the latter case, the
new chunk (/, C> may replace one of the previously stored chunks that have been
less frequently used during the system operation.

Because the example of a forward chaining network examined in the previous
section was representative of the fine structure of our networks, our descriptions
shall be comparatively more sketchy in this section. The overall structure of the
module CM is outlined in Fig. 3. The various kinds of information provided by
the neural units belonging to its submodular components are briefly described
hereinafter.

Let jc be a variable ranging over literals and let / be the set of initial data
currently provided to the forward chaining system. Then

• at the start, if x is an element of the set / , then the neural representative of
X in PATTERN_0N and the neural representative of x in PATTERN_OFF
become active;

• at the end, if the neural representative oix in PATTERN_OUT is active, this
means that CM retrieves x from recorded chunks: JC is a conclusion already
inferred by a previously performed forward chaining from the set / .

Neural Networks and Rule-Based Systems

Ext

dotCLin

clockO

135

Chunk Module

rIncLof

'ctrind

1 ^ 1 sub_index | — ^ l pattern, out

• o — ^ — ^
Figure 3 Chunk module (CM).

Let j be a variable ranging over indexes which can be associated by the system
to a chunk. Then

• if the neural representative of j in INDEX_BF is active, then j is already
associated to a stored chunk^; the system is not going to select j as the
index for a new chunk;

• if the neural representative of j in INDEX becomes active, then the set /
matches the first part of a chunk that was stored and associated to the
index y;

• if the neural representative of j in SUBJNDEX becomes active, then the
set / contains a subset of literals which matches the first part of a chunk
previously stored and associated to the index j .

The algorithm Recorder stores each chunk (/, C) by constructing two differ-
ent links. The first link (LI) connects every literal (actually, their neural rep-
resentatives) in / with a given index 7, whereas the second link (L2) connects
index j with the neural representatives of all the literals in C. This mechanism
enables one to eliminate interferences between nonorthogonal patterns affecting
traditional neural associative memories, such as the multilayer perceptron (see
Rumelhart and McClelland [8]) and the linear associators (see Kohonen [9, 10]):
links (LI) and (L2) establish a one-one correspondence between the first and
second element of each chunk.

Let us now describe how CM operates.
Upon presentation to the system of an input set of literals / , three different

cases may occur. In the first case, for every index j the first element of the chunk
(/y, Cj) is different from / and the third case described in the following discus-
sion does not hold. In this case, CM does not recall any stored chunk. However,

^ See Section V.C for a description of the selection procedure and the role of the INDEXJBF layer.

136 Aldo Aiello et al

when forward chaining on / is completed and outputs a nonempty set of hterals C,
the algorithm Recorder selects a new index / and stores a new chunk (7^/, Cy),
with Ijf = I and Cy = C.

In the second case, there is an index j such that / = Ij for some previously
acquired chunk {Ij ,Cj). CM recognizes this situation, and provides the elements
of Cj as outputs of the forward chaining process.

In the third case, for every index j the first element of the chunk (7^, Cj) is
different from 7, but there are indexes 7*1,..., jk such that Ij^,..., Ij^. are strictly
included in 7. Then CM provides the elements of S = UjC^j, . . . , Cŷ } as out-
puts. When forward chaining on 7 is completed and outputs a nonempty set of
literals C, the algorithm Recorder selects a new index / and stores a new chunk
(7/, C/) , with Ijf = I and C / = C.

Let us now describe less schematically how the network behaves in each of
these cases.

Case I (ij I / Ij). When 7 is given as input to CM at time t = 0 (and
the neural units representing its elements in PATTERN_0N and PATTERN_OFF
become active at ^ = 1), the relation V7 7 7̂ Ij is recognized to hold at time
r = 2 because, for every y, the neuron Index j , representing the index j in the
layer INDEX, remains inactive at that time. At time t = 3, the impulse from
control neuron clock! activates the other control neuron ctrind, whose activity
is necessary and, together with impulses from PATTERN_0N (which are absent in
this case), sufficient to activating subpattems in SUB_INDEX. Thus, at time t = 4
(resp. at time t = 5), all neurons of layers SUB_INDEX(rQsp. of PATTERN_OUT)
are inactive.

As a consequence, the neural activity triggered by the input set 7 in the CM
module does not recall the second element of any chunk represented by the links
that bring to the layer PATTERNjOUT. So, at time / = 6, only the input set 7
is transferred to the forward chaining system. Finally, when forward chaining on
7 is completed and outputs a nonempty set of literals C, the algorithm Recorder
selects a new index / and stores a new chunk (7^/, Cj'), with 7 = Ijf and C =

Cj'.
The recording of a new chunk consists of the change of the weights of the

following connections: (1) the connections between the neural representatives of
the elements of 7 in PATTERN_0N and PATTERN_OFF on the one hand, and
the neural representatives of the selected index / in INDEX and SUBJNDEX
on the other hand; and (2) the connections between the neuron Sublndexj'
of SUBJNDEX and the neural representatives of the elements of C in PAT-
TERN_OUT.

The weights of the connections between PATTERN_0N and INDEX are ini-
tialized with the following values:

^Pomindexj = 0 , 7 = 1, 2 , . . . , M, / = 1, 2 , . . . , Â ,

Neural Networks and Rule-Based Systems 137

where M is the maximum number of patterns which can be stored by the system
(i.e., the maximum number of index neurons available in INDEX), N is the dimen-
sion (or number of components) of input patterns (i.e., the number of neural units
in each layer of PATTERN_ON md PATTERN_OFF), and Indexj and Pont are
neurons of the INDEX and PATTERN_0N layers, respectively.

The weights of the connections between PATTERNjON and Indexjf are up-
dated according to the rule

/ = n /' ̂ I' ^̂ ̂ ^^' ^̂^̂^̂' m
^ Pont Index J, | Q, Otherwise. ^^

The weights of the connections between PATTERNjOFF and INDEX are initial-
ized with the following values:

^Poffilndexj = - 1 , 7 = 1, 2 , . . . , M , / = 1, 2 , . . . , A .̂

The weights of the connections between PATTERNjOFF and Index j ' are up-
dated according to the rule

_ | 0 , if Po/y;-active,
^Pof fi Index :f ~" I 1 ^^u^^^ri^^ ^-^^ PoffiIndexy I _ i^ Otherwise.

Rules (2) and (3) ensure that exactly one neuron in INDEX becomes active when
Case 2 occurs. (See Pasconcino [11] for a detailed justification of this claim.)

The algorithm Recorder initializes the weights of the connections from units
of SUBJNDEX to the units of PATTERN_OUT in the following way:

^SuhlndexjPouti = 0 , J = 1, . . . , M , / = 1, . . . , A^C,

where Nc is the number of "actions" in the system of rules. The weights of the
connections from the active unit Sublndexj' in SUB_INDEX to the neural repre-
sentatives of the elements of Cj^ in PATTERN_OUT art updated by the following
rule:

^SubindexjfPouti | Q, Otherwise. ^^

Rules (2), (3), and (4) ensure that when the input set Ijf is presented to the network
the neurons representing the elements of Cy in PATTERNjOUT are activated in
the manner described in Case 2.

Case 2 (3j I = Ij). As usual, / is given as input to CM at time r = 0 and
the neural units representing its elements in PATTERNjON and PATTERNjOFF
become active dXt = 1. Now, at time f = 2, the neuron representing index j in
the layer INDEX becomes active, as determined by rules (2) and (3): the system
has identified / with Ij.

138 Aldo Aiello et al

When this identification is successfully completed, CM has to retrieve from
index j the second element of the chunk {Ij, Cj), Because, at time r = 2, the
index neuron Index j is active, then, at time r = 3, the neural unit SublndeXj,
representing the same index j in SUB_INDEX, will become active as well. And,
at time t =4, the neurons in PATTERN_OUTTcprestnting the elements of Cj, as
associated to the input pattern / = Ij by rule (4), will become active.

Case 3 (Vj / / Ij, but 371, . . . , jk'- Iji C / A • • • A /̂ ^ C /) . / contains
subpattems Ij^,..., Ijj^ which consist of the literals in the first element of already
stored chunks. Then the input set / activates in the PATTERN_OUT layer of CM
the neural representatives of the elements of S = U{Cyi,..., C;-̂ }.

Let us describe in more detail how this result is achieved. As in Case 1, all
neurons of INDEX are inactive at time t = 2 when / is presented to CM and, at
time r = 3, the impulse of control neuron clock! (see Fig. 5) activates the control
neurons ctrindoff and ctrind. At time f = 4, the impulse from ctrind, com-
bined with the impulses from the neural representatives of the elements of the sets
/ y i , . . . , 7;̂ in PATTERN_0N, activates the neurons Sublndexj^ in SUBJNDEX
with n = I, ...,k. Thus, at time t = 5, all neural representatives of the elements
of S in PATTERN_OUT 3ie activated.

The activation of the right neurons Sublndexj^ upon presentation of in-
put pattern / is determined by the weight values of connections from the PAT-
TERNjON layer to the SUBJNDEX layer. These weights are initialized with the
following values:

^PoHiSublndexj = 0 , 7 = 1, . . . , M , / = 1, 2, . . . , A .̂

The updating rule for these weights is analogous to (2):

, _ f 1/ | / | . if Pon,-active,
^PoriiSubindexy | Q, Otherwise. ^^

One can easily show that rule (5) guarantees that, if Ij is a subpattem of the new
input set / , then, at time ? = 4, neuron Sublndexj is active.

C. SELECTING INDEXES

Let us now describe the role of the layer INDEX_BF and the selection crite-
rion of indexes used by Recorder to store a new chunk. The algorithm Recorder
modifies the weights of connections from neurons ctrind and ctrindoff to the
neurons of INDEX_BF in order to codify, for every chunk {Ij ,Cj), its frequency
of recall, relative to the total number of network runs. In particular, the weight
of the connection from the ctrind neuron to neuron IndexBfj in INDEX_BF

Neural Networks and Rule-Based Systems 139

is increased by one^ if and only if the presentation of set / activates the neuron
IndexBfj, that is to say, when the network recognizes the situation I = Ij, such
as described in Case 2. At the same time, the weight of the connection from the
ctrindoff neuron to each neuron of INDEX_BF is decreased with a real value
(let us call it a). The parameter a can be interpreted as a frequency threshold suit-
ably chosen by the user. Thus, if the difference between the weighted impulses
from ctrind and ctrindoff to the neuron IndexBfj is positive, then neuron
Index Bfj is activated. This signals that the frequency of recall of chunk {Ij, Cj)
is greater than the a threshold (see Pasconcino [11] for more details).

Thus, when the ctrind and ctrindoff neurons are activated (at time t = 3),
at the next instant of time only those index neurons which have frequency of
recall greater than a are active in INDEX_BF. Every other neuron in INDEX JF
is inactive either because no chunk is associated to it or because the associated
chunk has recall frequency below the a threshold. To store a new chunk in CM,
Recorder randomly selects an index j ^ among the inactive neurons of INDEX JF.
It may be the case that such a "drawing" procedure selects an index j ' which is
associated to a chunk (Ay/, Bjf) below the a threshold, and therefore the new
chunk {Ijf, Cj') replaces an old one that scores a low frequency of use.

This simple criterion based on recall frequency provides a mechanism for man-
aging the preassigned limited resources of the CM module. In other words, this
drawing procedure provides a simple version of a garbage collector which, as is
well known, does not eliminate the phenomenon of memory saturation, but simply
reduces its incidence.

In concluding this section, we wish to emphasize that only one presentation
of an input set / and the corresponding output set C suffices for the system to
acquire a new chunk. Rules (2) and (3), which enable the system to acquire new
chunks, eliminate the interference between the first elements of recorded chunks,
as they change exclusively the weights of the input connections to the selected
index neurons in the INDEX and SUB_INDEX\siyQrs. Furthermore, one can easily
show that the computational complexity of the procedure Recorder is linear with
respect to the size of the sets / and C.

A system endowed with this chunking mechanism can improve its perfor-
mances on the basis of the previous activity. Reduction of the processing time
is due both to the parallelism inherent in the general neural architecture of the
system and to specific features of the CM module; the latter guarantee that the
computational cost of access to stored chunks is independent of the number of
chunks that are in memory. Clearly, the possibility of actually achieving a reduc-
tion in processing time is contingent on the availability of a computational agent
capable of modifying neural weights and executing the parallel computations al-
lowed by this neural model.

^Except for the first updating of this weight which increases the initial value by one plus the total
number of system runs plus the total number of indexes.

140 Aldo Aiello et al

VI. NEURAL TOOLS FOR UNCERTAIN REASONING:
TOWARD HYBRID EXTENSIONS

A naive neural model of prepositional reasoning from incomplete or uncertain
information can be obtained, starting from the rules described in Section III, by
modifying the threshold value for a neuron h representing the literal on the right-
hand side of a rule of type (R) with k literals on its left-hand side, as follows:

Sfj =k - (s -\-r}), 0 < s < I, rj >l.

Of course, rules implemented in this way can "fire" even if the input data match
only partially their left-hand sides. However, the firing of rules under a partial
match, like that achieved by means of the previous setting, may be a desirable
property when rules are used for simulating similarity-based, commonsense rea-
soning, where loose contextual associations play a central role (for discussion,
see, e.g.. Sun [12]). Of course, these considerations must be cautiously general-
ized to the inherently more brittle modes of reasoning used in expert systems:
principled restrictions on rule firing are required when the correctness or plausi-
bility of diagnoses or classifications is at stake. The best one can do, in our view,
to fulfill this desideratum is to have rule firing reflect rigorous models of reason-
ing under incomplete or uncertain knowledge, so that the uncertainty attached to
the conclusions reached by an expert system can be evaluated within relatively
robust conceptual frameworks.

To neurally implement various rigorous models of quantitative uncertain rea-
soning, the neural elements introduced in Section II must be shown to be capable
of coding and operating on arbitrary integer values, in addition to the values 0
and 1 which correspond, respectively, to the active and quiescent state of an in-
dividual neuron. The basic idea pursued in this subsection is that of exploiting
both excitation values and sequences of neuron firings as codes for positive inte-
gers. Various arithmetical functions can be implemented following this strategy,
without modifying the simple neuron model adopted in Section II.

Unbroken sequences of unitary impulses traveling from neuron to neuron can
be regarded as messages representing positive integers (the number of impulses
contained in each such sequence represents an integer). Conversely, positive inte-
gers given in input as unbroken sequences of firings can be stored, for immediate
or later elaboration, under the form of excitation values. Two examples are given
in which excitation is transformed, respectively, into a proportional number of
consecutive outgoing impulses and a number of consecutive incoming impulses
is stored as a proportional excitation. Finally, it is shown that ordinary multipli-
cation between two positive integers can be neurally implemented following this
approach.

Neural Networks and Rule-Based Systems 141

out

i n

Figure 4 Dropper neuron.

A. TRANSFORMING EXCITATION VALUES

INTO S E Q U E N C E S OF F I R I N G S

Transformation of excitation into impulses is the natural activity of neurons.
Thus, to translate a certain value E of excitation into a number m of consecutive
impulses, where m is proportional to E (say, m - c — E), one needs just a single
"dropper" neuron d (Fig. 4) defined by the following characteristic triple:

Nrf = { { (/ i , a i) , . . . , {in,an), {d,-c)},8^,rj}

in which i i , . . . , in are input neurons generating the excitation of rf, (rf, —c) is a
negative feedback, 5̂ = 1 is the constant decay function 8(i) ensuring permanent
memory, and rj < cisa. threshold allowing the neuron d to drop all the excitation
collected from its inputs under the form of consecutive unitary output impulses.

Whenever d emits an impulse, the negative feedback connection determines
a constant value c to be subtracted from the residual excitation value. Thus, d
keeps on firing until all the excitation E stored in it is dropped away in the form
of m = E/c consecutive impulses.

B. TRANSFORMING SEQUENCES OF FIRINGS
INTO EXCITATION V A L U E S

The converse problem is that of counting the number of components in a se-
quence of impulses and transforming this number into an excitation value equal
to the sum of the incoming impulses. A solution to this problem is illustrated with
an example for integer values in the interval [0,10], uniformly modifiable to deal
with different numerical ranges (see Fig. 5).

The device behaves as a spring: unbroken sequences of impulses, coming from
the input neuron a, charge the spring layer a[,..., â Q. As soon as the input se-
quence ends, all the excitation stored up in the spring layer is projected at once
toward the output neuron b through the gate layer a ' / , . . . , a'̂ Q.

142 Aldo Aiello et al

> # T A - •>, '̂ im

a" 10

Figure 5 Spring net converting a train of impulses into an excitation value.

The spring layer is described by the following characteristic triple:

N^; ^ {{(a, 1), « , - 1) , . . . « 0 ' -1)} ' ̂ ^ '̂ - ^ } ' V/ = 1, . . 10.

Each neuron a^. has permanent memory that enables it to cumulate the excitations
due to impulses coming from the input neuron a. Threshold values are assigned
such that neuron a[starts firing after the first impulse, neuron a!^ starts firing af-
ter the second impulse, and so on. Neurons in the gate layer receive excitatory
impulses from the corresponding neurons in the spring layer and inhibitory im-
pulses from the input neuron a. In this way, although their threshold is 0, they
cannot transmit the incoming impulses to the output neuron b before the input
sequence ends. The characteristic triples for neurons in the gate layer are

N^. ^ {{(«;, 1), (a , - 1) } , 5 ^ £ } , V/ = l , . . . , 1 0 .

When at a certain time t the input sequence ends, the neurons in the gate layer
are no longer inhibited by a. Therefore, the neurons in this layer that receive
an impulse from the corresponding neurons in the spring layer fire on b at time
r + 1. One can easily see that all neurons in the spring layer eventually reach

Neural Networks and Rule-Based Systems 143

excitation equal to k if the input sequence was made of k consecutive impulses.
However, only neurons a^, . . . , a^ in the spring layer have threshold lower than
k (as one can easily verify from the characteristic triple for this sort of neuron)
and fire on the corresponding flp . . . , a^j^ in the gate layer. The latter, in turn, fire
on b. Eventually, b receives an excitation proportional (or equal) to the number
of impulses in the input sequence. The negative connections from each neuron a^/
toward all neurons a^. are needed to reset to 0 the excitation of all neurons in the
spring layer at once.

In principle, networks performing this transformation can be designed for ar-
bitrary ranges of integer values of excitation. However, this approach is rather
impractical for large integer intervals, and the boxed subnet of Fig. 5 can be
replaced by another type of processor computing the same function: the neural
system making use of this processor becomes hybrid, but the overall parallel im-
plementation afforded by the equivalent purely neural system including the boxed
subnet is preserved in the simplified hybrid version.

C. PRODUCT OF POSITIVE INTEGERS

Ordinary multiplication between two positive integers requires a more compli-
cated network. The basic idea is that of outputting the product a • b under the form
of a unbroken sequences of b impulses. The value of the integer a is represented
by a sequence of a impulses. A controlling subnet enables a distinguished neuron
to output b impulses for each of the a input impulses. The network in Fig. 6 per-
forms the product between two positive integers a and b codified as sequences of
impulses, sent to the two input neurons a and b {a is not shown).

The structure shown in Fig. 6 includes a spring network quite similar to that
shown in Fig. 5. In the new structure, the terminal neuron b^ is a dropper neuron
which outputs sequences of impulses toward the intermediate neuron C4. The latter
(whose threshold is2 — s) transfers these sequences to other neurons if and only if
it receives simultaneously impulses from the neuron a\ Also, 6' sends its output
sequence back to b. Neuron a' is the terminal node of a network that receives
as input the factor a through the input neuron a. We omit this subnet but it is
structurally equal to the one that codifies the trains of impulses coming from b
into excitation values in 6^ Thus, the neuron a\ which has unbounded memory,
receives an excitation equal to the input sequence a. Because its threshold is e, it
fires until its excitation value is close to 0. The input neuron b has threshold 2 — s
and transmits forward impulses coming back from b^ until a' is active.

The first sequence of b impulses output by b at time t reaches 6' at r -h 3, to be
transmitted to neuron C4 which has been receiving from a^ an unbounded sequence
of impulses. The neuron C4 will fire throughout the time it receives impulses from
both b^ and a^ Moreover, C4 activates a subnet (C5, cg) which sends an inhibition

•A
'-T

>:.
7

3

I a
I

Neural Networks and Rule-Based Systems 145

to a' whenever C4 stops firing. This inhibition decreases by one unit the current
excitation of a^ Because b' sends back its output to b, a new sequence of impulses
will again reach b' with a delay of three instants of time. This process is iterated
as many times as the initial excitation value of a\ because every sequence of
impulses from b^ has the effect of decreasing by one unit this excitation value.

The output of C4 charges the neuron C3, which acts like a dropper neuron (it
has unbounded memory and threshold 2 — s) and fires on the output neuron a • b.
The latter has threshold s and is inhibited by C2 which, in turn, is activated by a\
Thus, a ' b will start firing two instants after a' becomes inactive. The neuron a • b
sends inhibitory impulses back to C3 and, consequently, discharges it completely
after having fired a • b impulses.

VIL QUALITATIVE AND QUANTITATIVE
UNCERTAIN REASONING

A. PRECONDITIONS IN NONMONOTONIC INFERENCE

In many domains of interest for artificial intelligence, but also in everyday
life, reasonings are often just plausible or approximately correct. The conclusions
obtained by means of uncertain reasonings may have to be withdrawn if some
of their premises are no longer verified or some additional piece of information
modifies the inference pattern.

Neural networks seem particularly well suited for designing systems that per-
form "revisable" reasoning. Indeed, such systems should contain "restrictive"
rules of the form "p is a theorem if ^ 1 , . . . , ^„ are not theorems" [13]. Here-
after, we show that similar restrictions can be easily implemented by means of
neural networks set with appropriate inhibitory connections.

There are two main features rendering neural networks suitable for formalizing
revisable reasoning:

(a) Idleness does not encode negation. If the nonlinear thresholded neural el-
ement HA, representing sentence A, is not firing, this does not necessarily mean
that A is (asserted to be) false. Indeed, in a neural representation of knowledge, the
falsehood of A is declared through the activity of neuron n-.^ representing --A.
The inactivity of both HA and n-,A is allowed for and may be interpreted as the
absolute lack of knowledge about A. The neural network which includes the in-
active elements HA and II-,A is intrinsically capable of carrying out processes that
involve neither of them, that is, performing inferences from information which is
unrelated to A. (For a similar view, and its relation to the so-called closed world
assumption, see Valiant [14, pp. 172-177].)

146 Aldo Aiello et al

(b) Neuron outputs are not intrinsically monotonic functions of the inputs. This
is due to the fact that neural connections can be assigned either positive or nega-
tive weights. Indeed, let us consider a neuron n that receives both excitatory inputs
(positive couplings) and inhibitory inputs (negative couphngs). The following sit-
uation is likely to occur: n fires because the sum of positive and negative inputs
exceeds its threshold, while certain neurons, connected to n by means of negative
couplings, are left idle. If, at a later time, some of those idle neurons become ac-
tive, the excitation of n decreases; n may even stop firing if the new inputs are
such as to bring the excitation below its threshold value. The situation can change
again and again in time, as long as there are further positive and negative inputs
being left idle. And clearly, if active neural inputs become idle at a later time,
the state of neuron n can change, too. Accordingly, inferences that are performed
starting from knowledge of certain facts (active neurons) and ignorance of certain
other facts (idle neurons) can be withdrawn if new facts, as well as new uncer-
tainties, are added to the database and this new information changes the state of
knowledge concerning the premises of those inferences (the set of active neurons
and the set of idle neurons involved in the inferences).

In the following, we call "nonmonotonic neural networks" those neural net-
works in which both negative and positive weights are implemented. A non-
monotonic inference system contains rules whose application can dynamically
be blocked. Some of these rules are specified together with applicability condi-
tions or preconditions, whose verification can dynamically change as the set of
available premises changes over time.

A well-known rule of this sort was introduced by Sandewall (see Sande-
wall [15] and Kramosil [16]):

UNLESS(^) I - p, (nmRl)

where the symbol |~ denotes nonmonotonic inference and the argument of the
UNLESS operator is the precondition of the inference. In the context of the rule-
based systems we have been concerned with, UNLESS can be naively defined as
follows:

• UNLESS (^) is true for a given propositional formula q if and only if q
cannot be inferred from the set of facts and rules encoded into the
knowledge base.

The nonmonotonic inference rule (nmRl) states that p can be inferred under the
precondition that q cannot be inferred. In general, this precondition is not equiv-
alent to requiring that -^q can be inferred. We shall focus on the following gener-
alization of rule (nmRl) in which the conclusion of the rule depends on precon-

Neural Networks and Rule-Based Systems 147

ditions qi,... ,qk that are signaled by the operator UNLESS, and finitely many
ordinary premises a i , . . . , a^:

{ai, ...,am, UNLESS(^i,.. . , qk)} |~ p.

Using the metavariables Aforai A- -- Aam and QforqiV-'-Vqk, this rule can
be expressed under the more compact form:

A A UNLESS(e) I-- p. (nmR2)

Because verifying precondition UNLESS(2) may be computationally intractable
or even impossible in some formal settings, in the context of actually imple-
mentable inference systems this rule has been usually (and more aptly) interpreted
in the following way: p can be inferred from A if Q has not been inferred so far.

The neural implementation of this kind of nonmonotonic inference rule is quite
straightforward. If A, 2» and p are represented by neurons «A, wg, and W^, re-
spectively, then the neural subnet of Fig. 7 encodes the rule expressed by (nmR2).
Here, the threshold of w^ is set equal to some constant T (throughout this section,
we assume that thresholds are all given the same value T), the coupling from HA
to Hp has a positive weight WA,p greater than T (e.g., WA,p = T -\- s), and the
inhibitory connection from HQ io rip can nullify the possible excitation coming
from A (e.g., with a negative weight wg^p equal to —2s). Clearly, neuron Hp is
active if and only if HA is active and wg is idle, just as it must be if the neural
system has to encode the rule given by (nmR2).

In a nonmonotonic setting, the verification of the premises, that is, precondi-
tions and ordinary conditions, can dynamically change with the set of formulas
already inferred by the system. Our neural implementation reflects that dynamic
behavior. Indeed, if at any instant t either HA stops firing or ng starts firing (i.e.,
either A no longer holds or Q becomes inferable), then the excitation of Up de-
creases to a value below the threshold and Hp becomes idle (signaling absolute
ignorance about the status of p).

Figure 7 UNLESS operator subnet.

148 Aldo Aiello et al

Setting conditions, preconditions, and any sort of inference scheme on the
same ground can be a source of instabiUty in the inference system (Reiter and
Criscuolo [17]). Indeed, assume p was inferred nonmonotonically applying a cer-
tain rule (nmRA) on the occurrence of certain facts A and the nonoccurrence of
certain other facts Q. It may well happen that by inferring p the system can ap-
ply another rule (nmRB) to produce the nonmonotonic inference of Q. Thus, the
preconditions of (nmRA) no longer hold and p is to be withdrawn. In turn,
the withdrawing of p might trigger the withdrawing of Q, and hence a return
to the starting point, with the net ready to repeat the cycle: apply (nmRA) to in-
fer p, then apply (nmRB) to infer Q, then withdraw p because of Q and then
withdraw Q because of p.

Now, let us examine how neural implementations can cope with such clas-
sical problems of swinging decisions in nonmonotonic reasoning. The situation
described previously can be reproduced in a knowledge base that contains the
following nonmonotonic rules:

A A UNLESS(e) 1-̂ P, (nmRA)

A A UNLESS(P) 1-̂ Q, (nmRB)

Furthermore, it is assumed that, initially, A holds and that nothing is known about
P and Q or their negations. This knowledge base can be encoded in a neural
network in which A is represented by an active neuron WA, whereas P and Q are
represented by two idle neurons np and ng. The connections can be set as in the
scheme of Fig. 8.

In this neural implementation, the two rules are applied in parallel. Assume that
neuron HA starts firing at instant t and keeps on firing indefinitely. Then neurons
np and HQ, excited by #IA, will both fire at instant ^ + 1. However, because they

-28

Figure 8 Swinging subnet.

Neural Networks and Rule-Based Systems 149

send to each other inhibitory impulses, they both stay idle at instant f + 2. The
situation evolves with a swinging behavior in which np and HQ oscillate between
the firing and the idle state, indefinitely.

To find a way out, let us concentrate on just one of these nonmonotonic rules,
say, (nmRA), analyzing in more detail the sequence of facts and inferences in-
volving that rule:

1. A holds.
2. Nothing is known about Q.
3. UNLESS(2) is justified on the basis of step 2.
4. P can be nonmonotonically inferred from steps 1 and 3, by (nmRA).
5. 2 is later on recognized to hold (no matter how).
6. UNLESS(2) must be withdrawn, because of step 5.
7. P, being no longer inferable by (nmRA), must be withdrawn.
8. |2 is withdrawn (may be because of step 7).
9. Go to step 3.

The source of the inferring-withdrawing oscillation is the complete and unlimited
freedom in retracting and reintroducing the same preconditions. This unrestrained
use is perhaps pragmatically justifiable on the ground that preconditions are meant
as signals of untypical situations, rather than normally occurring events. However,
when the need arises for avoiding or at least attenuating the incidence of loops,
solutions have to be searched for in a different model of revisable reasoning. For
example, one may devise a system in which the withdrawing of a conclusion,
previously inferred by application of a certain nonmonotonic rule, should produce
a suitable transformation of that rule. More specifically, convergent nonmonotonic
inference procedures should be developed, by introducing mechanisms that make
nonmonotonicity an expendable property of nonmonotonic rules.

Neural networks are suitable for modeling various degrees of expendable non-
monotonicity. For example, let us consider the following neural implementa-
tion and interpretation of the nonmonotonic rule (nmRA), in which the rule it-
self is practically withdrawn when the precondition is retracted (Fig. 9). Here,
UNLESS(2) is treated as an individual proposition, represented by an appro-
priate neuron nu(Q). Initially, nu(Q) is set in the firing state: nothing is known
about 2 , except that it represents a rare event. Because it is endowed with a self-
excitatory connection, nu(Q) keeps on firing until neuron HQ begins to fire and
inhibits it.

Let us emphasize that neuron nu(Q) cannot be switched on again, after be-
ing switched off the first time. In other words, this network implements a non-
monotonic inference scheme in which inferred statements can be withdrawn and,
in addition, nonmonotonic rules can be suspended indefinitely. Let us now try
to introduce a nonmonotonic inference rule which may be viewed as governing
the behavior of this neural net. A straightforward modification of rule (nmR2),

150 Aldo Aiello et al

Q

Figure 9 UNTIL operator subnet.

obtained by substituting the operator UNTIL for UNLESS, may serve this pur-
pose:

A A U N T I L (0 I - p .

The new operator may be defined in the following way:

(nmtR)

• UNTIL(^) holds for a given propositional formula q, at a certain step of
the inference process, if and only if q has "never" been inferred before that
step.

The reactivating of suspended rules can be modeled by neural networks, too.
Conditions of reactivating must be carefully chosen so as to avoid new sources of
loops. One may allow for the switching on of neuron nu{Q) upon the occurrence
of some special event Z (such as, for example, the reinitiahzation of the system,
the inference of -^Q, etc.). Of course, reactivating UNTIL((2) on the withdraw-
ing of (2, that is, putting Z equivalent to UNLESS((2), boils down to modeUng
the classical nonmonotonic rule (nmR2). Figure 10 shows the neural network sus-
pending (on the occurrence of Q) and reactivating (on the occurrence of Z) the
inference of p from A.

Neural Networks and Rule-Based Systems 151

T+e

\

Figure 10 BETWEEN operator subnet.

After being reactivated by just one firing of neuron wz, the neuron nB(z,Q)
remains active until Q, even if Z is withdrawn at a later time. This means that
neuron nB(z,Q) retains memory of which neuron, out of HQ and wz, fired last:
it is active in the interval between the firing of nz and the firing (if any) of
#ig; it is idle between the firing of ng and the firing (if any) of /iz- A straight-
forward formalization of this behavior can be given by means of the following
rule:

A A BETWEEN(Z, 2) | - p , (nmbR)

where the definition of BETWEEN is

• BETWEEN(Z, Q) holds for the given propositional formulas Z
(representing the resetting event) and Q (representing the suspending
event), at a certain stage of the inference process, if and only if one of the
following situations occurs: (i) Q has never been inferred; or (ii) Z has
been inferred (or asserted by other means) after the last inference of g .

Let us consider in some detail the behavior of the neural network implement-
ing rule (nmBR). The initial conditions are encoded into the setting of the net at

152 Aldo Aiello et al

time t = 0:

t = 0:

t = l:

t = q:

t = q + l:

t = q-\-2:

HA starts firing (A holds)

Wfi(z, Q) is firing (initially nothing is known about Q)

ftp starts firing (P is nonmonotonically inferred)

things keep on unchanged until some time later:

n Q fires (Q is asserted to hold, no matter how)

^B{Z,Q) Stops firing (BETWEEN(Z, Q) must be withdrawn)

np stops firing (P is no longer inferable and is with-
drawn) the rule remains suspended and no new inference
can be performed even if, some time later:

t = s
n Q stops firing (possibly, because of P)

r > 5 + l
the rule remains suspended and no new inference can be
performed until, at a later time, if any, nz fires.
For example, the process may develop as follows:

t = x:
nz fires (Z is asserted to hold, no matter how)

r = ;c + 1:
WB(Z, Q) fii^es (the nonmonotonic rule is reactivated)

elaboration starts again as from r = 1

nz stops firing (but the nonmonotonic rule remains ac-
tive until Q is again asserted to hold).

B. QUALITATIVE HYPOTHESIS SELECTION
IN TWO-LEVEL CAUSAL NETWORKS

In this subsection, we consider a qualitative form of causal reasoning which
is commonly used in diagnostic tasks. A basic inferential strategy of diagnos-
tic problem solving is that of considering the abnormal observed manifestations
OBS relative to the system under examination and isolating hypotheses that may

Neural Networks and Rule-Based Systems 153

explain their occurrence on the basis of known causal relationships between man-
ifestations and hypotheses (see Josephson and Josephson [18] and Peng and Reg-
gia [19]). This strategy is grounded on abductive inference schemes, such as:

m i , . . . , m„ € OBS
hi can cause m i , . . . , m„ {ABl)
~hi

Parsimonious set covering models of diagnosis (see Peng and Reggia [19] and
Reggia et al [20]) are based, for n = 1, on {AB\). A connectionist approach
to parsimonious set covering diagnoses can be found in Ahuja et al [21]. And
clearly, each particular instance of {ABV) can also be represented as a neural pro-
duction rule within a localist semantic approach.

Inferences based on {AB\) do not use any information about the degree of
support that manifestations lend to given hypotheses, even though this sort of
information may prove crucial to converge on the more plausible explanations.
Consider the following schematic example (Fig. 11): the observed manifestations
are mi, m2, and ms, connected via causal relations to hypotheses h\, h2, and
h^,. The only manifestation supporting h\ is mi—^but strongly so, because it is a
highly specific manifestation fox h\. Manifestations mi and mi weakly support
/z2, whereas /z3 is supported by ms.

If one restricts admissible explanations E for this diagnostic problem to mini-
mal cardinality covers of the observed manifestations, one has the counterintuitive
result that {hi, /̂ s} is a solution to this diagnostic problem, whereas h\ is dis-
carded. Reiter [22] replaces the minimal cardinality restriction with the weaker
condition that an explanation E must be an irredundant cover of the observed
manifestations (where E is an irredundant cover of the observed manifestations
iff no proper subset of £" is a cover of the observed manifestations). However, even
in this framework one has that no irredundant cover E includes hypothesis hi.

The inferential scheme {ABl) can be generalized so as to take into account
information enabling one to decide whether the observations provide significant
support for, and thus have to be covered by, candidate explanations (see Console
and Torasso [23]). A reasonable solution to this problem is that of evaluating the
total degree of support for hi provided by the observed data that are causally re-

Figure 11 Causal system.

154 Aldo Aiello et al

lated to hi, and comparing this value with a threshold at, expressing the minimum
degree of support needed to advance hi as a candidate hypothesis: for each hy-
pothesis hi and the set Man(/z/) = [ntj: hi can cause m^}, one has to define a
suitable function fi'. X <z Man(/i,) -^ fi{X) e R:

m i , . . . ,mn E OBS
hi can cause m i , . . . , m„
fi(mi,..,,mn) >ai
hi

Scheme (ABl) is a particular case of {AB2). Within this more general frame-
work, new problems may arise; for example, fi may be computationally in-
tractable or the data needed to compute it may be lacking. Nevertheless, appro-
priate solutions can be found in significant cases: many diagnostic expert systems
make use of various methods to compute specific fi's that enable the system to
perform reasonably well. And, in turn, some of these methods lend themselves to
neural representation and processing. We describe here a neural implementation,
presented in Burattini and Tamburrini [24], of an instance of (AB2), developed
within the framework of an expert system for a medical domain [25] and based
on a qualitative approach to uncertain reasoning [26].

Human experts are often reluctant to set precise numerical weights for
manifestation-hypothesis relationships, and more confidently advance qualitative
judgments on the support that observable manifestations lend to a hypothesis.
For example, a physician may consider a given manifestation as "moderately" or
"very" suggestive of a certain disease. One can reasonably assume that there is a
finite bound h on such discrimination power of human experts, and, namely, that
the number of different qualifying labels available to human experts is at most h.
Thus, when qualitative judgments of this sort are expressed by experts for every
pair (hi,mj) such that hi can cause rrij (e.g., "mi strongly suggests /i2")» the el-
ements in each set Man(/i/) = {m -̂: hi can cause rrij] can be partitioned into h
disjoint classes, each class containing all manifestations with a given degree of
relevance with respect to hi. As a consequence, these classes can themselves be
ordered according to the degree of relevance of their elements. One can make the
following additional assumption:

Assumption 1. The manifestations belonging to a lower-ranked class, even
when taken as a whole, cannot be more relevant with respect to hi than any man-
ifestation belonging to a higher-ranked class.

Then this qualitative information can be readily represented and processed in a
neural system.

Let 0fi be the neuron representing hypothesis hi, and let Mi = {/ij , . . . , / „ }
be the set of neurons representing the elements of Man(/i/). Given the qualita-
tive information provided by human experts. Mi can be partitioned into a to-
tally ordered series of h disjoint classes M / j , . . . , M/^. Let their cardinality be

Neural Networks and Rule-Based Systems 155

Ki,..., Kh, respectively. For each Mij and each fi^ e Mi-, the weight between
fi^ and Mi must assume the value

U + 1). Kj . Kj^x Kh

A rough idea of the causal net which reflects the previous settings is given in
Fig. 12. Given these settings, for any j < k < h, one has that the sum of ex-
citations sent to Sf(i by all elements belonging to Mtj is less than the minimum
excitation sent by any element belonging to M/^. Sf£i receives these excitations
with weight equal to 1, and their sum expresses the degree of confidence reached
by hypothesis hi which may or may not exceed 3€i 's threshold. Such a threshold
is set by the human experts. Furthermore, this value can be compared with the
degree of confidence reached by other competing hypotheses (see Burattini and
Tamburrini [24, p. 543]) by means of another neural module.

Assumption 1 was adopted in the design of an expert system applied to a par-
ticular medical domain (see Section VIII), but is inappropriate in many other di-
agnostic domains. This inferential strategy, however, can be modified to a certain
extent without having to relinquish neural representation and processing. For ex-
ample, one may wish to model situations in which aggregations of manifestations
from lower-ranked classes provide more significant evidence with respect to hi
than manifestations from higher-ranked classes. Aggregations forming so-called
"typical patterns" for hi are a case in point. These can be dealt with in the frame-
work of neural representation and processing by introducing, between the layers
of neurons representing individual manifestations and hypotheses, an intermedi-
ate layer of neurons representing such aggregations of manifestations.

Figure 12 Neural causal network.

156 Aldo Aiello et al

C. QUERY PROCESSES AND THE PROBABILISTIC
CAUSAL METHOD

Once a set of candidate diagnostic hypotheses has been advanced by applying,
for example, production rules enabling one to perform the qualitative form of
causal reasoning considered in the previous subsection, a deeper probing of the
selected hypotheses may be needed for the system to settle on a final diagnosis.
For example, the system may have to choose between two competing hypotheses
or to look for additional evidence corroborating the candidate hypotheses.

At this stage of the diagnostic process, the system has to use the causal knowl-
edge that the candidate hypotheses (e.g., a disease) may give rise to a number of
manifestations (e.g., symptoms), in order to identify additional observations that
enable it to turn a prediagnosis into a final diagnosis. Thus, supposing that h\ was
selected as a candidate hypothesis on the basis of observation m i, the system may
follow the strategy of testing this hypothesis by verifying whether other manifes-
tations in Man(/zi) are actually present. In many situations, the system will have
to choose (in view of, e.g., priority criteria set by the experts) which subset of
Man(/ii) is to be investigated first. An appropriate ranking of the manifestations
Man(/ii), given that the hypothesis h\ holds, may reflect these selection criteria.

A method for obtaining this ranking in several diagnostic domains is encom-
passed by the probabilistic causal model (see Peng and Reggia [19] and Reggia
etal[2Q\).

Let the expression hi -> rrij denote the event that hi actually causes rrij, and
let P{hi -^ ntjlhi) be the conditional probability that hi causes rrij given that
hi is present. Under certain assumptions (see Peng and Reggia [19]) that seem
reasonable for many types of cause-effect relationships, one can prove that

P{hi^mj\hi) = P{mj\[hi]),

where [hi] stands for the event that hi is present and all other possible causes
of rrij are definitely not present. This result indicates that the value of P(hi -^
rrij \hi) can be obtained from the statistical analysis of the population of individu-
als that have hi without being affected by any other possible cause of m^.

Given the values of the P(hi -^ rrij \hi) for all hi such that hi can cause rrij,
an algorithm for finding the probability of rrij given the presence of a subset of its
causes is made available by the following theorem, because the conditional prob-
abilities of rrij are equal to 1 minus the corresponding conditional probabilities
of rrij:

THEOREM (Peng and Reggia [19]). Let QJ = P(hi -^ rrij \hi) and let D he
asuhsetofC2iUses(mj) = {hi: hi can cause rrij]. Then

P{-^mj\{hi: hi € D}&{--/z/: hi e Causes(my) - D}) = Y\^^~ ^O")-
hiED

Neural Networks and Rule-Based Systems 157

Figure 13 Causal system.

A network enabling one to compute these conditional probabilities can be eas-
ily constructed by means of the tools described in previous sections. An example
is given in the following discussion for the causal system of Fig. 13. The network
for this causal system, in which probability values are transmitted under the form
of unbroken sequences of impulses, is formed by four layers (see Fig. 14).

The neurons of the first layer (HYP) represent hypotheses hi and their nega-
tions -"/^^ A neuron representing a hypothesis hi has, consistent with the schema
in Fig. 14, as many outgoing arcs as the number of manifestations m / j , . . . , m,„
which are possibly caused by hi. The coupling coefficients of these connections
are (1 — Ci^j),..., (1 — c/„y), respectively. Thus, hi has three arcs, and their cou-
pling coefficients are (1 — en) , (1 — C41), and (1 — C22). Similarly, the element
representing the negation -"/z/ of some hi has /„ outgoing arcs, but their coupling

HYP

^m;^ ni2 1^3 •'• m.4

Figure 14 Net for the probabilistic causal system.

158 Aldo Aiello et al

coefficients are equal to 1 (the latter are not displayed in Fig. 14). The second
layer (P^m) is formed by as many small subnets P-.my as the number of possible
manifestations. In our example, 1 < y < 4. These subnets perform the product of
the incoming input values from the layer HYP, outputting conditional probability
values of the various ^m^, in accordance with the preceding theorem.

Because the conditional probabilities of nij are equal to 1 minus the corre-
sponding conditional probabilities of --my the remaining part of the network is
devoted to computing this simple operation. The third synchronizing layer (C) is
formed by as many neurons as the number of possible manifestations. The layer C
permits, through a distinguished neuron u and some synchronizing neurons, eval-
uation of the conditional probabilities of my. The impulses fired by P-,mj through
a negative coupling coefficient are subtracted from the impulses fired by u and
representing the value 1 (suitably normalized to 10, or to 100, etc.). The output of
the neurons belonging to the layer P^ is a sequence of impulses equal to the cho-
sen normalization of the value 1 minus the conditional probability of -^rrij given
the presence or absence of the hypotheses from a given set.

The parallel execution afforded by this neural implementation may not be ben-
eficial in terms of computation time because of the numerical computations that
have to be performed by the subnets in layer P-^m- These subnets can be prof-
itably replaced by other types of processors computing the same function. Again,
the system thus obtained becomes hybrid, but the parallel architecture introduced
by means of the purely neural system including layer P-.^ is on the whole pre-
served in the simplified hybrid version.

VIIL PURELY NEURAL, RULE-BASED
DIAGNOSTIC SYSTEM

A. ABDUCTION-PREDICTION CYCLE

The task of a diagnostic expert system can be roughly described as that of
isolating a set of explanatory hypotheses for the insurgence of anomalies observed
in objects belonging to its domain of application. Thus, a diagnostic expert system
can be viewed as a particular type of problem solver. The statement of the problem
is a description of an abnormal state, and a solution is given by an explanation for
the occurrence of this abnormal state.

To produce a diagnosis, an expert system makes use of a knowledge base
which must include relationships between observable anomalies and their possi-
ble explanations (a simple example being "symptom x is a likely manifestation of
disease 3;"). However, knowledge bases of diagnostic systems may encompass re-
lationships between observable facts as well as between possible explanatory hy-
potheses (e.g., incompatibility relations between pairs of observables or causes,

Neural Networks and Rule-Based Systems 159

groups of anomalies characterizing pathological patterns, etc.), and sometimes
even simplified models of correct or abnormal behaviors of the objects in their
domains.

Designing a particular diagnostic expert system involves, as a crucial prelimi-
nary step, analyzing human expert knowledge and reasoning applied to the given
diagnostic domain. This analysis, which amounts to extracting from human ex-
perts reports on the data, theories, and inferential processes used in their problem-
solving activity, is the starting point for the knowledge engineer engaged in the
task of specifying the knowledge base and inferential schemes of a particular di-
agnostic expert system.

However, there are some stages of diagnostic problem solving that remain in-
variant across particular applications:

(i) Data entry. Abnormality observations to be accounted for have to be
recorded and possibly refined.

(ii) Prediagnosis and diagnosis. The data have to be evaluated with the aim
of focusing on, refining groups of (possibly incompatible) diagnostic hypotheses,
and advancing a final diagnosis.

(iii) Hypothesis-driven query. New data may have to be collected, between
prediagnosis and diagnosis proper, to test the hypotheses selected at the prediag-
nostic stage.

(iv) Justification. One must be capable of providing, upon request, an infor-
mative justification for the conclusions that have been reached.

Similarly, there are inferential schemes that play a significant role in most
cases of diagnostic hypothesis formation and testing. Abductive inferences [such
as rule {AB\) examined in Section VII.B] enable one to select possible explana-
tory hypotheses for observed facts, and predictive inferences enable one to isolate
possible observable manifestations of the explanatory hypotheses selected by ab-
ductive inferences. Unlike deductive rules, abductive rules of inference such as
{ABl) may fail to satisfy the correctness requirement: even when the premises of
an abductive rule are verified to hold, its conclusion might be shown to be false in
the light of new evidence, and has to be withdrawn. However, because abductive
rules enable one to g^n^vdiiQ possible explanatory hypotheses, they play a key role
in hypothesis formation processes. As already emphasized in Section VII.B, the
question whether a possible explanation is also di plausible one requires additional
considerations, transcending observations and relationships involved in simple ab-
ductive inferences such as {AB\). In particular, one may need information about
how much the various observable facts are suggestive of or support explanatory
hypotheses, in order to assign a plausibility degree to a hypothesis, and thus to in-
duce a ranking between possible explanations. Various methods for handling this
information (e.g., probability theory, certainty measures, qualitative nonnumeri-
cal orderings) have been used in the setting of diagnostic problem solving. The

160 Aldo Aiello et al

Observed facts

F={fi,f2,..-,fn}

F' = F

Abduction
Hypothesis generation L

H = {hi,h2,. . . ,hk}

Prediction
Search of new facts

F' = F ' u F

Figure 15 Abduction-prediction cycle.

application described in the following section makes use of the particular non-
numerical method for ranking hypotheses described in Section VII.B, whereas
in other situations numerical methods may be more appropriately adopted and
neurally implemented by means of tools presented in Sections VI and VII.C.

Predictive inferences are also involved in the process of assessing the plausibil-
ity of explanatory hypotheses selected by means of abductive rules of inference.
From the knowledge that <!> is a possible cause for the occurrence of ^ and that
O is an explanatory hypothesis which is being entertained, one can infer ^ as a
possible manifestation of this hypothesis. This kind of inference can be applied in
diagnostic reasoning to test explanatory hypotheses. In fact, suppose one has both
O -> ^ and O -> X ill a knowledge base, where O is an explanatory hypothesis,
^ and X are observable facts. After observing ^ one can assume, by applying, for
example, inference scheme {AB\), O as a possible explanation for the presence of
^ . Which additional facts could be detected if O were the right hypothesis? Using
predictive inferences, one produces the set of possible observable manifestations
of O (in our case just {x}). This information can be used to test hypothesis 0 by
determining which of the observable manifestations of O are actually present, and
possibly to advance new explanatory hypotheses. The abduction-prediction cycle
is schematized in Fig. 15.

B. DIAGNOSES IN PEDIATRIC GASTROENTEROLOGY

The abduction-prediction cycle, supplemented by a qualitative method for hy-
pothesis ranking, is at the heart of the inference engine for the diagnosis of pe-
diatric gastroenterological diseases [25], which is schematically described in this
subsection: from the initial observations, a set of diagnostic hypotheses is fo-

Neural Networks and Rule-Based Systems 161

cused on by abductive inferences; then a hypothesis-driven query process enables
one to isolate, by predictive inferences, additional evidence that is subsequently
used to differentiate between the selected hypotheses. A purely neural implemen-
tation of this system is described, and its advantages in terms of computational
time are emphasized. Physicians use various procedures for gathering informa-
tion about their patients: history taking (i.e., the patients' subjective accounts of
their medical problems), direct physical examination, and diagnostic tests. Each
procedure gives rise to a specific class of evidence: histories, symptoms detected
as a result of physical examination, and test outcomes. Signs belonging to each
of these classes are further classified as generic signs (those signs that are possi-
ble manifestations of more than one disease) and specific signs (that are possible
manifestations of one disease only). Accordingly, signs can be divided into six,
mutually exclusive classes: generic histories, symptoms, and tests; specific histo-
ries, symptoms, and tests.

In the specific domain of pediatric gastroenterology, medical experts proposed
a "clinical relevance" hierarchy between these types of evidence, with a clinical
relevance gradient from generic histories to specific tests: for example, the in-
formation that a patient manifests a specific symptom st, which is associated to
disease d only, provides more supporting evidence for d than a generic symptom
Sj which is a possible manifestation of d and other diseases as well. Accordingly,
if one denotes by "x > j j " the relationship "x provides more support for d than
J," one has that [si >d Sj]. More in general, one has that

[any specific test > j any specific symptom >d
any specific history >d any generic test >d
any generic symptom > j any generic history].

This hierarchical organization can be occasionally overridden when evidences be-
longing to a lower-ranked class constitutes pathological patterns that are highly
suggestive of a certain diagnostic hypothesis.

Evidence-disease causal relationships are used by experts to focus on explana-
tory hypotheses, in the sense that each evidence e and each relationship of the
form "Disease J is a possible explanation for the insurgence of e'' can serve as a
premise for an abductive inference to disease J as a possible diagnosis. Diagnostic
hypotheses supported by each type of evidence are more confidently advanced by
physicians, whereas a collection of evidence of one type only is often regarded as
insufficient to achieve a diagnosis. When one or more types of evidence are lack-
ing, physicians generally attempt to gather further information, using predictive
inferences to isolate additional possible manifestations of the diagnostic hypothe-
ses they are already entertaining, and focusing on those manifestations that are
more significant for assessing the hypotheses. The plausibility of a diagnostic hy-
pothesis d focused on by abductive inferences depends on both the significance
and approximation to "completeness" of the supporting evidence. By "complete-

162 Aldo Aiello et ah

ness" of supporting evidence, in this context, we mean diagnostic hypotheses sup-
ported by evidence from each of the previously mentioned six classes.

The knowledge base of the expert system designed on the basis of this analysis
is chiefly formed by causal relationships between evidence and disease. The set
of such relationships can be visualized as a bipartite graph (see Fig. 16). The
upper and lower sets of nodes represent evidence and disease, respectively. Edges
connect the evidence with their possible explanations.

The set of evidence nodes is partitioned into six classes. Splitting the set
of evidence nodes into classes allows one to introduce, in accordance with the
comparative relevance judgments expressed by medical experts, a nonnumerical,
qualitative evaluation of the support that each evidence lends to a candidate hy-
pothesis. For example, for the evidence present in Fig. 16, one can assert that

Organizing the knowledge base as a bipartite graph facilitates the implemen-
tation of an inference engine which applies an abductive-predictive inferential
cycle. Each edge of the graph is interpreted by the system as a causal relationship
between one evidence and one disease. For example, in Fig. 16 the causal relation-
ships represented by the edges of the graph are: d\ -^ s\,d\ -> 54, . . . , ^4 -> ^g.

Let Os = {s2, S2,,s%] be the set of initially observed evidence relative to a
given patient. To explain observations Os, the system goes from evidence nodes
to disease nodes following the arcs of the graph, so as to obtain a set of possible
diseases explaining the observations O5. The result of this abductive inference is
the set of diseases Ds = {̂ 2̂, ^3, ^4}- Then the system makes use of predictive
inferences to test and differentiate between these hypotheses.

The arcs of the graph are followed starting from the disease nodes correspond-
ing to d2,d3, d4 so as to isolate, among the evidence nodes, the possible mani-
festations ODs of the diseases in Ds that are not elements of Os. This inferential

specific signs

diseases

Figure 16 Structure of the knowledge base.

Neural Networks and Rule-Based Systems 163

step can be viewed as an attempt to answer the following question: "Given Ds,
which evidence could be detected in addition to the elements of OgT Thus, by
applying this abductive-predictive cycle, the system is capable of generating a set
of diagnostic hypotheses Ds for explaining the initial data Os and isolating the
possible observable consequences ODs of these hypotheses.

Subsequently, the system starts an interaction with the user concerning the
elements of ODs, with the goal of collecting information useful for testing and
differentiating between the diagnostic hypotheses Ds. More specifically, (i) the
system focuses on the manifestations in ODs which, if observed in the patient,
would prove more useful for assessing the hypotheses in Ds, and (ii) the system
initiates a query process asking whether, by applying some medical procedure,
these manifestations can be actually detected in the patient.

The selection of the elements in ODs to be investigated must reflect the ba-
sic heuristic strategies adopted by physicians. After collecting information about
the patient's anamnesis, physicians look for other signs deriving from a physi-
cal examination of the patient, and possibly prescribe tests and/or therapies. This
heuristic strategy captures the assumption, discussed previously, that the degree of
support for a disease depends, at least partially, on the diversity or "completeness"
of the observed evidence (i.e., a diagnostic hypothesis which explains evidence
belonging to different classes is more credible than a hypothesis which explains
only evidence belonging to the same class).

C. NEURAL IMPLEMENTATION

The main components of a purely neural system for this diagnostic task are
schematically represented in Fig. 17. The overall system is organized into five
distinct subnets: evidence, abductive, hypothesis, predictive, dind justification.

The global network of neurons can also be viewed as formed by two interacting
parts. The first part codifies the declarative and procedural knowledge relative to
each specific domain of application (facts, hypotheses, and their relations). The
second part is the invariant structure of the shell, which embodies computational
utilities supporting and synchronizing the activity of the whole shell; it is not
modifiable by experts and users. In the following, we give a brief description of
the internal organization of each subnet.

1. Evidence Subnet

This is an input subnet and accepts the information that a set of facts has been
detected. A network of neurons stores these data and checks their internal coher-
ence by controlling whether input neurons representing incompatible facts (e.g.,
/ and -"/) have both been erroneously activated. If incoherences are not detected.

164

observed
facts

Aldo Aiello et al.

hypotheses to
be justified

answers to
system

questions

elicited
hypotheses

Figure 17 Global net organization.

the data are given as input to the abductive subnet; otherwise, the incoherences are
declared to the user.

In this subnet, there are four main layers of neurons {entry, memory, fact,
restart), each layer with n neurons, where n is the number of observable facts
in the given diagnostic domain. Furthermore, there is a layer of k neurons, whose
role is that of signaling incompatibility between pairs of facts, and k is the number
of such incompatible pairs.

Let us consider first the n entry neurons (e neurons) (Fig. 18). From now on,
we will associate to each type of neural element its graphical representation and
characteristic triple. Each e neuron et receives information from (i) the neuron
exti that fires on et, through a coupling coefficient equal to 1, to signal that fact ft

exti-
-/fQ ^

-1

• > mi

• > ICij

• > fi

FigurelS et ^ {{{n,!), {exti,l), {cr'^f ., 1), (^/,-DK^^, 1 - e } .

Neural Networks and Rule-Based Systems 165

1
mi y > n

Figure 19 ni/ ^ {{{et, 1), (m/, 1)}, 5 ,̂ 1 - s}.

is given as input; (ii) the restart neuron r/ firing on ei when the net is restarted (i.e.,
rt guarantees, when the net is restarted on an augmented input, that the presence
of fact fi is not forgotten); and (iii) the synchronizing neuron <ĵ ' firing on et
when the question whether fact fi has been detected obtains a positive answer in
the predictive subnet (for details, see Burattini and Tamburrini [24]).

Each active e neuron ei fires on various elements of this subnet: (i) on the
memory neuron (m neuron) mi with which it is connected, whose role is that
of storing the information, coming through ei, that fact fi has been detected;
(ii) on the fact neuron (neuron) / / ; (iii) on itself, sending a self-inhibitory signal
immediately after activation {e neurons do not retain memory of past events); and
(iv) on an incoherence signaling neuron icij. Its threshold is 1 —6:, with 0 < e < 1.

There are n memory neurons (m neurons) (Fig. 19), which retain memory of
the facts that have been detected and given as input to the system. The memory
neuron mt is connected to the entry neuron et. Once activated by et, mi remains
active by means of a self-sustaining mechanism that enables it to "remember" that
fact fi has been detected and to signal this information, when restarting the net,
to the restart neuron r,-. mt also fires on neurons in the explanation subnet. The
m-neuron threshold is again I — s, with 0 < s < I.

There are nfact neurons (/ neurons) (Fig. 20), transmitting information to the
abductive subnet about the facts given as input. An / neuron / / can be activated
by the e neuron et with which it is connected and can send out signals to a collec-
tion WMf. of working-memory neurons (wm neurons) of the abductive subnet.
The coupling coefficients between / neurons and wm neurons are crucial vari-
able parameters of the net, which must be determined by the expert, possibly in
the manner described in Burattini and Tamburrini [24].

Figure 20 /,• ^ {{(e,-, 1)}, 5 ,̂ 1 - £ } .

166 Aldo Aiello et al

• i - ^ e .

1

1
•

Figure 21 n ~ {{{p, 1), (m,-, 1)}, 8^, 2 - s}.

There are n restart neurons (r neurons) (Fig. 21), already mentioned in con-
nection with the entry and memory neurons, whose task is that of restarting the
network when new information is obtained via the predictive subnet. They receive
messages from the m neurons and from a special restart neuron p, while they send
out impulses to the entry neurons.

Finally, there are k incoherence neurons (ic neurons) (Fig. 22). For each pair
ei, ej, whose simultaneous presence is ruled out by the human experts, an ic
neuron is created which becomes active when both et and ej are activated. This
neuron signals the presence of an incoherence to the user.

2. Abductive Subnet

The facts presented as input to the system may have different significance with
respect to the problem of eliciting a hypothesis. Therefore, a suitable weight must
be assigned by the expert, or by the procedure described in [26], to connections
between the appropriate pairs of neurons "representing" facts and hypotheses.
Given these weighed relations, the abductive subnet analyzes the information
flowing from the data given as input under the form of excitatory impulses, check-
ing whether any hypothesis can be elicited as an explanation for some of the ob-
served facts. If this is possible, the hypothesis subnet is activated; otherwise, the
control is passed over to the predictive subnet.

In the abductive subnet, there are m working-memory neurons (wm neurons)
(Fig. 23), where m is the number of possible hypotheses in the given diagnostic
domain. The task is that of evaluating the relevance of the observed facts for elic-
iting one of the declared hypotheses. Each icm-neuron wmt collects information
from the elements of a set Fyjnn = [fi, -- -, fk) of f neurons of the evidence

• . o
Figure22 ic,j = {{{e,-, 1), («,-, 1), (Jcy,2>},5",2-e).

Neural Networks and Rule-Based Systems 167

1

tlj ^ ^ ^ ^

Figure23 wmt = {{{fmjaf.^^X {hi,ahj^^rni), (x, l)(control;c/, 1)1, ̂ "''"'•, t^;;^,}.

subnet, where \ ^ k ^ n. wmt has a threshold set by the expert and corre-
sponding to the minimum amount of information needed to ehcit hypothesis hi.
Its decay law, by^rnt» differs from 5o- In addition to messages from the / neurons
of the evidence subnet, each wm neuron also receives inhibitory impulses from
a special clearing neuron and from some control neurons. When a wm neuron
receives impulses from the connected / neurons at time t, it starts firing at time
f + 1 on neurons of the predictive and hypothesis subnets. It keeps on firing until,
by its decay law, the excitation falls below the threshold value. The impulses sent
at time t toward the hypothesis subnet reach at r + 1 the connected neurons in that
subnet, whereas the impulses sent toward the predictive subnet are delayed by
some "delay" neurons. This retardation mechanism has been introduced to enable
the system to verify first whether the available information is sufficient to elicit
explanatory hypotheses, so that the predictive subnet can be activated at a later
time, only if this condition is not verified.

Finally, there is also a controlling subnet, whose role is that of terminating the
process when no more hypotheses can be investigated and of activating the subnet
outputting the list of hypotheses, ranked according to the excitation level reached
by their "representing" neurons.

3. Hypothesis Subnet

If a set H of hypotheses has been elicited, two different situations may arise:

(i) The hypotheses in H explain all the facts given as input. H is declared
to the user and stored for later use in the justification subnet. The hypothesis
subnet inhibits activation of the predictive subnet and thus the hypothesis selection
process terminates.

(ii) Some facts given as input are not explained by any hypothesis in H; H is
stored, the hypothesis subnet does not inhibit the predictive process about facts
unexplained by H. The predictive subnet is activated in order to raise questions
about hypotheses not in H that may explain these facts.

In this subnet, there are m hypothesis-triggering neurons (ht neurons)
(Fig. 24), one for each hypothesis declared by the expert. The ht neuron hti re-

168

-%u

^ ^ — i — •
1 ^ ^ -

1

:x..,J>hi

Aldo Aiello et al

wmi

Figure 24 H- ^ {{(w;m/, 1), (x,-r/ , , .)} ,5^^ r^.}.

ceives impulses from the wm neuron wmt of the abductive subnet. It also receives
from and sends out impulses to the clear neuron x- An /zr neuron has a suitably
high threshold value representing the minimum support value needed to trigger
the associated hypothesis. This threshold can be reached only if the associated
wm neuron fires for several consecutive instants of time, and; in turn, the number
of consecutive firings of wmt is proportional to the amount of excitation received
from the set Fiy^.. By this mechanism, wmi expresses the amount of support
given by the observed facts in Fwrni to hypothesis hi and hti "decides" whether
this evidence is sufficient to elicit hi (see Burattini et al. [26] on the minimum
value of the support): if the sum of the impulses coming from wnii reaches its
threshold, the ht neuron hti sends impulses to the corresponding hypothesis neu-
ron A/.

There are also m hypothesis neurons (h neurons) (Fig. 25), one for each hy-
pothesis relative to the given domain. If neuron hi is activated by neuron hti,
this indicates that hypothesis hi is proposed by the system as an explanation for
some observed facts. The h neurons store all explanatory hypotheses advanced by
the system. This is achieved, once an h neuron is activated, by a self-excitatory
mechanism which keeps its level of excitation above the threshold. An h neuron
also sends excitatory impulses to neurons of the explanation subnet and inhibitory
impulses to neurons of the predictive subnet. This subnet outputs a partially or-
dered list of selected hypotheses (if any). The intended meaning of this partial
order is a nonexclusive preference order for the selected hypotheses. This order is
obtained by comparing the excitation levels of the ht neurons representing such
hypotheses.

. y '"̂ "̂̂ i » q i

K...-1.
- • h i - a h . „ . ^ ^ ^ .

j ^ > WI

1

Figure 25 hi = [{{hi, 1), {hti, 1)}. 5^, 1 - £

> ^ ^

Neural Networks and Rule-Based Systems 169

4. Predictive Subnet

From now on, we will omit most implementation details in describing the main
types of neurons, concentrating on their role in the process of hypothesis selection.
The predictive subnet is managed by the abductive and hypothesis subnets, and
is activated when further investigation is needed to explain all observed facts.
This subnet is, as it were, a mirror image of the abductive subnet: the links from
evidence to hypotheses in the latter are inverted in the predictive subnet in order
to infer which evidence might be present if a specific diagnostic hypothesis were
correct.

Upon activation of this subnet, two preliminary tasks must be performed: (i) se-
lecting a hypothesis (making sure that it is not in the set H, if any such set has
been selected in the hypothesis subnet) to be probed first and (ii) asking a question
that may contribute to test the selected hypothesis. Also at this stage, the heuristic
strategies enabling the system to raise appropriate questions must be implemented
by the expert, possibly with the help of a procedure described in [26].

Each question formulated in the predictive subnet is about the presence of a
certain observable phenomenon relevant to test the hypothesis under examination
(e.g., "Does patient x show symptom yT). Such questions admit three types of
answers: "yes," "no," or "I don't know." If the answer is "yes", the new informa-
tion is added to the initial input and the system is restarted on the augmented set
of data. If the answer is "no," the system has obtained negative information (e.g.,
"symptom y has not been observed") which is also added to the initial input if this
negative information is explicitly represented as a fact in the system's knowledge
base. The system is then restarted to evaluate the augmented input. In all other
cases (the answer is "I don't know," or else is "no," but the corresponding neg-
ative information is not explicitly represented in the system's knowledge base),
the system proceeds to ask a question about another fact relevant to assessing the
hypothesis under examination.

When all questions relative to the selected hypothesis have been made, and
some facts remain unexplained, the predictive subnet starts asking questions con-
cerning the next lower ranked hypothesis. The predictive process terminates either
when a set H of hypotheses explaining all observed facts is isolated or when there
are no more questions to be made.

The predictive subnet is formed by three main layers (question neurons, fact-
mirror neurons, and answer neurons), activated when one of the following situa-
tions occurs:

1. no explanatory hypothesis has been elicited;
2. the hypotheses elicited by the system do not explain all observed facts.

Case 1. In the query layer, there are m question neurons (q neurons). Their
structure is analogous to that of the ht neurons (same threshold and excitation de-
cay law) and their role is that of selecting a hypothesis to be tested by a question-

170 Aldo Aiello et al

answer process. These neurons receive from the wm neurons the same impulses
as the ht neurons, but suitably delayed. Because no ht neuron is activated by these
impulses, a control neuron ^ sends uniform excitatory impulses to the q neurons,
activating the q neuron qt that first reaches its threshold. Intuitively, the activation
of qt signals that a question about the presence of a fact relevant to assess hypoth-
esis hi must be raised. However, once a q neuron qt is activated by ^, how is an
appropriate question about the corresponding hypothesis hi selected?

In the predictive subnet, there is a set of n fact-mirror neurons (fm neurons).
These neurons can receive excitation from q neurons in the following way. Each
q neuron qi is connected to a subset FMq^ of the set of fm neurons. The coupling
coefficients between qi and each element in FMq. must be determined by the hu-
man experts, possibly with the help of the algorithm described in [26]. When qi
fires, signaling that a question about hypothesis hi must be raised, it sends exci-
tatory impulses to the elements of FMq.. Only one of the fm neurons in FMq.
fires in response to the impulses coming from qi and triggers a question about hi
addressed to the user. This fm neuron, let us call it /m^, enables the system to
raise the question: "Has fact fs been detected?" The neuron fnis is connected
with three answer neurons (a neurons) yfms^ ^fms^ ^^^ ^fms^ respectively rep-
resenting the answers "yes," "no," and "I don't know." The user's answer will
activate one of these a neurons.

Suppose first that the answer is "yes." The net is restarted by a restart neuron
activated by y/ms^ augmenting the input of the previous run with the fact repre-
sented by the entry neuron es.

Suppose now that the answer is "no." We have two subcases:

(a) If the negative information thus obtained is represented under the form of
a fact in the system's knowledge base, then the behavior of the net is the same as
in a "yes" answer situation.

(b) Otherwise, the process on qi—of asking another question relative to the
hypothesis hi—continues. If no more questions are available for that hypothesis,
the question process will be applied to the next lower ranked hypothesis, say, hj,
via the ^ neuron ^y.

Finally, let us suppose that the answer is "I don't know." The system will be-
have as in subcase (b).

Each fm neuron fmj is inhibited by an m neuron (when the fact represented
by fmj has already been detected and therefore a question about its presence
is not needed) or by a self-inhibitory impulse (when the user has already given
one of the admissible answers to the question triggered by fnij). When fmj is
thus inhibited, it remains excluded from the query process, no matter how much
excitation it receives from q neurons.

Case 2. The hypotheses elicited by the system are stored by self-sustaining h
neurons which send an inhibitory impulse to the corresponding q neurons. In this

Neural Networks and Rule-Based Systems 171

way, the query process can be activated only on hypotheses that the system has not
eUcited yet, via those q neurons that are not inhibited by h neurons. Indeed, the
q neuron qi receives inhibitory impulses from A/, only if hi has been previously
activated, indicating that hypothesis hi has already been elicited and additional
investigation is not needed.

If no more questions to ask and hypotheses to probe are available, the system
terminates the query process, declaring to the user the list of ranked hypotheses
that it was able to elicit and the list of facts that are possibly left unexplained by
these hypotheses.

5. Justification Subnet

This subnet is currently capable of answering only one type of question ("On
the basis of which facts was a certain explanatory hypothesis advanced?"), in ad-
dition to providing the list of all unexplained facts, whenever this is the case.
However, neurally implemented extensions of this module enabling the system to
provide a more detailed justification of advanced hypotheses, by tracing the infer-
ential steps leading up to the selection of those hypotheses, are clearly possible.

The user activates this subnet by asking which facts support a certain hypothe-
sis. Such interaction may be thought of as a backward mechanism which, starting
from the input hypothesis, looks for all observed facts inducing its elicitation. The
answer is worked out by two layers of neurons interacting with the m neurons and
the h neurons.

6. Control Neurons

Clearly, a network of neurons performing the abduction-prediction cycle for
hypothesis selection in the way described here must be controlled and synchro-
nized: this process must be performed in a certain number of sequential steps, in
each of which the available information is elaborated in parallel. Also this con-
trolling and synchronizing function is performed by various neural elements. The
role of some controlling neurons was made explicit in the preceding description
of the evidence, abductive, predictive and hypothesis subnets.

IX. CONCLUSIONS

We have shown how to simulate, by means of a localist approach to neural
representation and processing, various symbolic, rule-based reasoning. Some of
these technical tools have been applied to designing rule-based expert systems,
such as the one presented in Section VIII, which exploit the massively parallel

172 Aldo Aiello et al

processing capacities of neural networks while retaining, in virtue of the local-
ist approach, the full justification capacities of conventional symbolic systems.
These localist networks, however, remain brittle much in the way of conventional
symbolic systems. Moreover, some numerical computations involved in quanti-
tative uncertain reasoning require very large networks. These limitations suggest
the opportunity of extending the present approach toward unified neurosymbolic
systems which combine localist networks with distributed representations, as well
as toward strictly hybrid systems. Accordingly, one is led, solely on the basis of
a balanced assessment of limitations and potentialities of the present approach, to
distinguishing between three different strategies for neurosymbolic integration:

(i) using specialized and structured localist networks for symbolic reasoning,
both crisp and uncertain;

(ii) combining localist networks for symbolic processing with distributed
neural networks, the latter representing individual pieces of knowledge as dis-
tributed patterns across a large number of neural units;

(iii) combining separate localist networks and conventional symbolic systems
for symbolic processing.

Additional distinctions, partly overlapping with this classification, can be made
in the setting of more general analyses of possible approaches to neurosymbolic
integration (see, e.g.. Sun and Bookman [27] and Hilario [28], and the references
therein).

In this chapter, we have mostly worked within approach (i), by presenting spe-
cialized, localist networks for various types of crisp or uncertain symbolic rea-
soning. We have also addressed the problem of learning in a strictly nonconnec-
tionist fashion, by means of a localist network with adjustable weights, which
can perform an elementary form of chunking and add new rules to a preexisting
production system.

Approach (iii) was implicitly considered in our treatment of quantitative uncer-
tain reasoning. In this case, the parallel execution afforded by the localist neural
implementations may not be beneficial in terms of computation time because of
the heavy numerical computations that have to be performed by various subnets.
On account of this fact, we suggested replacing these subnets by conventional
symbolic processors computing the same function. The resulting system is strictly
hybrid, but the parallel architecture originally introduced by means of the purely
neural system is largely preserved in the structure of the new system.

Approach (ii) is well suited for domains in which a cooperation between neural
learning and rule-based reasoning is needed to solve specific problems. For exam-
ple, De Gregorio [29] analyzes an object classification problem from visual data
which is difficult to solve by merely training a neural net, and finds an adequate
solution by means of a hybrid system performing an abduction-prediction cycle
(as described in Section VIII. A), with the following division of labor between the

Neural Networks and Rule-Based Systems 173

neural and the symbolic reasoning modules. The neural net, instead of attempting
a direct classification of the viewed object, is trained to provide a classification
of selected visual clues at particular locations of the image. Then the clues are
symbolically coded and make possible the selective activation of production rules
in the symbolic reasoning module. The action parts of these rules code possible
classifications for the viewed objects. If the clues obtained so far are insufficient
to arrive at a particular classification, the symbolic reasoning module can ask for
new clues from the neural module in a hypothesis-driven query mode. This cycle
(again an instance of the abduction-prediction process) is iterated until the system
settles on a unique classification. The knowledge base of the symbolic reasoning
module is a set of production rules which is equivalent to a set of rules of the
form examined in Section III. Therefore, this module can be replaced by a localist
network as described in Section IV. The new system combines a localist network
for symboUc processing with a distributed neural network for classification of
visual clues, and therefore falls squarely within approach (ii) to neurosymbolic
integration. The massively parallel processing capacities of neural networks are
exploited in the symbolic processing module, whereas both parallel processing
and noise-tolerant learning and classification are put to work in the perceptual
module. In addition to providing an interesting engineering solution, this system
suggests the potential interest of approach (ii) for the computational modeling
of high-level perception (such as, e.g., high-level vision; see UUman [30] and
Kosslyn and Koenig [31]), where bottom-up perceptual processing and top-down
interpretative reasoning tightly interact.

ACKNOWLEDGIVIENTS

We are most grateful to Massimo De Gregorio and Andrea Pasconcino for many invaluable discus-
sions which contributed to shaping various materials presented in this chapter. Moreover, Pasconcino
developed the software for the chunking system and improved an earlier version of the forward chain-
ing network. Aldo Filosa and Umberto Giani contributed in a crucial way to designing the knowledge
base and the inferential strategies for the nonneural version of the diagnostic system in Section VHI.
Parts of this chapter were adapted from Aiello et al. [32, 33], and Burattini and Tamburrini [24].
© 1992, 1995 Wiley, New York.

REFERENCES

[1] E. R. Caianiello. J. Theoret. Biol 2:204-235, 1961.
[2] M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kauf-

mann, Los Altos, CA, 1987.
[3] J. W. Grzymala-Busse. Managing Uncertainty in Expert Systems. Kluwer Academic, Dordrecht,

1991.
[4] E. Burattini, A. Pasconcino, and C. Tamburrini. Mathware Soft Comput. 2:85-116, 1995.

174 Aldo Aiello et al

[5] G. G. Towell and J. W. Shavlik. Artificial Intell 70:119-165, 1994.
[6] A. Newell. Unified Theories of Cognition. Harvard University Press, Cambridge, MA, 1990.
[7] M. Tambe, A. Nev̂ êll, and P. S. Rosenbloom. Machine Learning 5:299-348, 1990.
[8] D. E. Rumelhart and J. L. McClelland, Eds. Parallel Distributed Processing: Explorations in the

Microstructure of Cognition Vol. I. MIT Press, Cambridge, MA, 1986.
[9] T. Kohonen. Associative Memory: A System-Theoretical Approach. Springer-Verlag, Heidelberg,

1977.
[10] T. Kohonen. In Proceedings of the Sixth International Conference on Pattern Recognition (M.

Lang, Ed.), pp. 114-125. IEEE Computer Society Press, Silver Spring, MD, 1982.
[11] A. Pasconcino. Sistemi Esperti e Reti Neuroniche: realizzazione di un sistema composito paral-

lelo. Tesi di Laurea, Universita degli Studi di Napoli "Federico II," 1994.
[12] R. Sun. Integrating Rules and Connectionism for Robust Commonsense Reasoning. Wiley, New

York, 1994.
[13] M. L. Minsky. In The Psychology of Computer Vision (P. Winston, Ed.), pp. 34-57. McGraw-

Hill, New York, 1974.
[14] L. G. Valiant. Circuits of the Mind. Oxford University Press, Oxford, 1994.
[15] E. Sandewall. Machine Intelligence (B. Meltzer and D. Michie, Eds.), Vol. 7, pp. 195-204. Wiley,

New York, 1972.
[16] I. Kramosil. In Proceedings IJCAI-75, pp. 53-56, 1975.
[17] R. Reiter and G. Criscuolo. In Proceedings IJCAI-8I, pp. 270-276, 1981.
[18] J. R. Josephson and S. G. Josephson. Abductive Inference. Cambridge University Press, Cam-

bridge, 1996.
[19] Y. Peng and J. A. Reggia. Abductive Inference Models for Diagnostic Problem-Solving. Springer-

Verlag, Heidelberg, 1990.
[20] J. A. Reggia, D. S. Nau, and R Y. Wang. Intemat. J. Man Machine Studies 19:437^60, 1983.
[21] S. B. Ahuja. Y. S. Woo, and A. Schwartz. Intemat. J. Intelligent Systems 4:155-180, 1989.
[22] "^.KQUQT. Artificial Intell 32:81-132, 1987.
[23] L. Console and P Torasso. In Proceedings of the Ninth ECAI, Stockholm, pp. 160-166, 1990.
[24] E. Burattini and G. Tamburrini. Intemat. J. Intelligent Systems 7:521-545, 1992.
[25] E. Burattini, G. Criscuolo, A. Filosa, U. Giani, and F. Mele. In Proceedings of the Ninth European

Meeting on Cybernetics and Systems Research, Vienna, pp. 467-473, 1988.
[26] E. Burattini, M. De Glas, and M. De Gregorio. In IEEE International Conference on Systems,

Man, and Cybemetics, Chicago, pp. 272-278, 1992.
[27] R. Sun and L. A. Bookman, Eds. Computational Architectures Integrating Neural and Symbolic

Processes. Kluwer Academic, Dordrecht, 1995.
[28] M. Hilario. In Connectionist-Symbolic Integration: From Unified to Hybrid Approaches, Work-

ing Notes (R. Sun and F. Alexandre, Eds.), pp. 1-6, 1995.
[29] M. De Gregorio. Mathware Soft Comput. 3:271-279, 1996.
[30] S. Ulhnan. High-level Vision. MIT Press, Cambridge, MA, 1996.
[31] S. M. Kosslyn and O. Koenig. Wet Mind, The New Cognitive Neuroscience. Free Press, New

York, 1995.
[32] A. Aiello, E. Burattini, and G. Tamburrini. Intemat. J. Intelligent Systems 10:735-749, 1995.
[33] A. Aiello, E. Burattini, and G. Tamburrini. Intemat. J. Intelligent Systems 10:751-769, 1995.
[34] E. Burattini and M. De Gregorio. Inform. Decision Technol. 19:471^81, 1994.

Construction of Rule-Based
Intelligent Systems

Graham P. Fletcher
Department of Computer Sciences
University of Glamorgan
Wales CF37 IDL, United Kingdom

Chris J. Hinde
Department of Computer Sciences
University of Glamorgan
Wales CF37 IDL, United Kingdom

L INTRODUCTION

Engineers are finding new and different applications for neural networks every
day. These new applications are exposing many limitations in our current tech-
niques. Perhaps one of the more important of these limitations is the trust that can
be placed on a neural network, or more correctly the hypothesis that it has con-
structed. With a localized paradigm it is sometimes possible to assign meanings
to the neurons manually. However, as the networks grow in size beyond several
different layers, this can become very difficult.

Hinton [1] expresses the following view:

the problem is to devise effective ways of representing complex structures in connec-
tionist networks without sacrificing the abiUty to learn the representations. My own
view is that connectionists are still a very long way from solving this problem.

It is relatively straightforward to transform a propositional rule base into a neu-
ral network. However, the transformation in the other direction has proved a much
harder problem to solve. This chapter explains techniques that allow neurons, and
thus networks, to be expressed as a set of rules. These rules can then be used
within a rule-based system, turning the neural network into an important tool in
the construction of rule-based intelligent systems.

Fuzzy Logic and Expert Systems Applications
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 175

176 Graham P. Fletcher and Chris J. Hinde

The rules that have been extracted, as well as forming a rule-based implementa-
tion of the network, have further important uses. They also represent information
about the internal structures that build up the hypothesis, and, as such, can form
the basis of a verification system. This chapter also considers how the rules can
be used for this purpose.

11. REPRESENTATION OF A NEURON

Feedforward neural networks can be built to use many types of input parame-
ters. Real-valued or continuous inputs are the most difficult to deal with. Consider
the example in Fig. 3; there are only two input parameters, but the desired hypoth-
esis requires eight decision planes. These decision planes are implemented in the
first layer, known as the quantization layer, of any neural network that is built to
implement this hypothesis (Fig. 1). The weights and biases of these nodes repre-
sent the equations of the decision planes and cannot be simplified. Some of the
individual decision planes are shown in Fig. 2.

In the idealized neuron model, thresholding means that all transformations be-
yond the first are Boolean. The quantization layer has split the input space into

selection

quantisation

input

Figure 1 A two-input network with eight quantization neurons to change real-valued inputs to
Booleans and a two-layer selection section terminating in a single output neuron.

Rule-Based Intelligent Systems 177

Figure 2 Showing the separation of the input plane into halves by individual neurons in the quanti-
zation layer. The halves are then combined to form the region in Fig. 3.

regions which are then combined logically by the subsequent layers. In the exam-
ple, the shape is described by

(a A b A c A d A e) V {d A f A g A h).

As the quantization layer cannot be simplified, rule extraction has to be concerned
with the second and subsequent layers of the network. The inequalities that rep-
resent the quantization layer can be stored and substituted into the rules that are
extracted from the rest of the network. The resulting expression can be quite clear.

Boolean inputs to a network effective remove the quantization layer, simpli-
fying the process by allowing Boolean rule analysis to begin at the first layer of

Figure 3 Lines representing the quantization neurons in Fig. 1 separating the plane into various half
planes which are then selected using the subsequent selection layers resulting in the shaded region
shown.

178 Graham P. Fletcher and Chris J. Hinde

neurons. Therefore a network with Boolean inputs would give a rule of the form

If (a Ab)v (FTTa),

then . . .

compared to the type of rules produced from networks with real or continuous
inputs

If [3.8a + 7Z7 - 4 > 0] A [3.1Z7 - 2c + 9 > 0],

then

So far an assumption has been made that a neuron implements a crisp decision
plane; in other words, it is a perceptron rather than the more common sigmoid-
based neuron. The use of a sigmoid function changes the view of thresholding.
However, with a fully trained network, the sigmoid function will be a very close
approximation to a threshold and therefore there is no need to differentiate be-
tween the different types of neurons. There are two reasons for this close approx-
imation:

• As the networks harden the weights grow in size which makes the range of
inputs for which the output is not close to Boolean very small.

• If simulated annealing is used to speed up training, then as the temperature
approaches zero the activation curve becomes very close to a threshold.

Although a threshold neuron can always be represented as a Boolean function,
the form of this function cannot be restricted to a representation where each in-
put variable is mentioned only once. The interest in such representations stems
from scaleability; the search space for the correct Boolean function grows expo-
nentially as the number of inputs rises. If a set of operators could be found that
represents any neuron while mentioning each operand only once, then an effective
algorithm could be produced for finding a concise representation. The problem is
intractable [2] in that not only does the search space grow exponentially with
the number of inputs the Boolean representation can also grow exponentially. In
many cases, however, where there is a concise Boolean representation for the neu-
ron this can be found efficiently. Where the Boolean representation of the neuron
becomes large and unintelligible, it is clear that a Boolean representation is inap-
propriate and other representations must be sought [3].

Previous investigations into this problem used a piecemeal approach, splitting
off the Boolean problem space into a class of operators which are referred to as O
and A operators as they are generalizations of OR and AND.

The problem space covered by the operators was shown to be complete up
to three dimensions by Mihalaros [4] and therefore to provide a means of repre-
senting all possible neurons with an input dimension of three or less. This work
by Mihalaros presented no complete analysis of how to find the O operator that

Rule-Based Intelligent Systems 179

matched a general neuron, or even if all possible neurons in higher dimensions
were covered. Perhaps more significantly and what encouraged further work is
that the traditionally hard problem of «-input parity neural networks can be sim-
ply represented using O operators [5].

Although initially promising, Fletcher and Hinde [3] showed that O operators
are not complete for four or more dimensions and, as such, cannot in general
be used to analyze networks in higher dimensions. Where it is possible to use
O operators, they provide a concise and clear representation and, as such, are
ideal for large networks with a low connectivity. Unfortunately, as the number of
dimensions increases, the proportion covered by O and A operators falls until they
are virtually useless.

O and A operators are incomplete; they do not have the flexibility to repre-
sent all possible neurons. The aim of finding some form of representation that
mentions each input once is, in the authors' opinion, basically flawed. A more
general technique must be adopted. The best understood technique for represent-
ing logical functions is traditional Boolean logic. Although the representation for
a complex neuron can become unacceptably long. Boolean logic can still provide
a powerful tool. The aim of the next section is to produce a system for analyzing
neurons in terms of a Boolean rule.

III. CONVERTING NEURAL NETWORKS
TO BOOLEAN FUNCTIONS

A neural network performs a logical transformation of a set of inputs to a set
of outputs. The range and domain will contain tuples that consist of real and/or
Boolean values. The whole problem is to represent the transformation in some
concise and meaningful way. So far in this chapter we have been looking at how
this "network transfer function" could be represented. For the purposes of this
section, real-valued inputs will be ignored. In effect, the nodes in the quantiza-
tion layer of networks that use real inputs are treated as the inputs to a Boolean
network; thus all networks are Boolean.

A correct Boolean representation of the network transfer function is logically
very simple to calculate. A truth table could be calculated by applying every input
pattern to the network. This truth table could then be turned into a Boolean func-
tion using an algorithmic implementation of Karnaugh maps [6]. Both stages of
this method have a time complexity of 0(2^). While logically very simple, these
processes have prohibitively large time and space complexities. So it is necessary
to break the problem into much smaller problems. The transfer function of the
network is built up from the transfer functions of the individual neurons. If the
function of the network is intractable to calculate directly, then it can be derived
by finding the solutions for all of the neurons that make the network.

180 Graham P. Fletcher and Chris J. Hinde

The possible functions that can be represented by a single neuron fall into dis-
tinct groups. All of the elements of a group are identical except for the negation of
literals. Further, the groups will contain exactly one "natural" neuron and possibly
some "real" ones, where we define natural and real to be:

• Natural: All the weights and the bias of the neuron are positive; that is, the
transfer function is effectively

Ŵi * Ini + W2 * In2 + • • -h W„ * In„ > B

and

Ŵi > 0, W2 > 0 , . . . , W„ > 0, B>0.

• Real: At least one of the weights or the bias of the neuron is negative; that
is, the transfer function is effectively

Wi * Ini 4- ^2 * In2 + h W„ * In„ > B

and

Ŵi < 0 or W2 < 0 or . . . or W„ < 0 or 5 < 0.

All the following representations are neurons in the same group. The first is the
natural neuron; subsequent ones represent real neurons from the same group.

(/i A 73) V (/i A I4) V (I2 AI3 A I4) Natural,
(/i A -1/3) V (/i A I4) V (I2 A --/3 A 74) Real,
(/i A 73) V (/i A I4) V (-•/2 A /3 A 74) Real,
(7i A 73) V (7i A --74) V (72 A 73 A --74) Real.

A. BOOLEAN REPRESENTATION
OF A NATURAL NEURON

Natural neurons can be turned into Boolean functions with relatively little ef-
fort. As none of the inputs is negatively weighted, all we need to find are the
minimum sets of inputs required to overcome the bias. This problem is similar
to (but much simpler than) the classic knapsack [2, 7]. Instead of trying to find a
set of inputs that exactly fit the bias, the required answer is all the sets of inputs
that just exceed the bias. For example, the neuron in Fig. 4 has four inputs with
weights of 9, 4, 6, and 7, and a bias of 14. Input 7i & Input 74 just exceeds the
bias as 9 + 7 > 14, but Input 7i, Input 74 & Input 72 is too large as removing I2
would still leave the total above 14. (Input 7i & Input 74) is therefore part of the
answer and (Input 7i & Input 74 & Input 72) is not.

Rule-Based Intelligent Systems

0 2 4

181

10 12 14 16

Figure 4 Representing a natural neuron as a knapsack problem where the input "parcels" are fitted
into the bias "package."

The complete set of solutions or infimums for the problem shown in Fig. 4
is (/i & I3), (/i & 74), and (I2, h & h)- This represents the complete Boolean
function of the neuron. In the conventional Boolean format it would be written as

(/ l A / 3) / (/ l A / 4) / (/ 2 A / 3 A / 4) .

An algorithm to produce one part of the result is given as a PROLOG program
shown in Fig. 5. By backtracking the procedure, it is possible to derive each part
in turn until all the infimums have been produced.

The algorithm so far described will return a solution that is logically correct but
larger than necessary. As well as the infimums that make up part of the answer,
the algorithm may also return sets of inputs more specific than infemums. For
example, if (/i A /s) is an infimum, then it is also possible for the algorithm to

knapsack(_Unused_inputs,Bias, Answer, Answer): -
Bias = < 0.

knapsack(Unused_inputs,Bias,SubAnswer,Answer):-
Bias > 0,
append(_,[(Input_Name,Input_Weight)IInputs], Unused_inputs),
New_Bias is Bias - Input_Weight,
knapsack(Inputs,New_Bias, [Input_NamelSub Answer], Answer).

Figure 5 PROLOG representation of the "knapsack" algorithm used to extract Boolean rules from a
set of weights associated with a neuron.

182 Graham P. Fletcher and Chris J. Hinde

return (/i AI3AI4), While logically this makes no difference, we require a concise
and meaningful answer. This added clutter is therefore undesirable. The removal
of these extra terms can be achieved by sorting the weights into decreasing size.
A further advantage of this is that sorting is a good heuristic for reducing average
processing time to find the solution. Let the input to the algorithm be weights
Wi,W2,W3,...,Wn and the bias value B.

The mistakes that cause the answer to be nonminimal occur when there is a
term that could be removed and still overcome the bias, that is,

Wi-hW2-\-W3-\--"-\-Wm> B, (1)

W2-\-W3-\-"'-\-Wm> B. (2)

Because the algorithm stops as soon as the bias is achieved,

Wi-^W2-\-W3 + "'-\-Wm-Wm<B. (3)

If the weights were in sorted order, then

^1 > Wm. (4)

Substituting (4) into (3) gives

Wi-\-W2-^W3-\-'"-\-Wm-Wi<B,
W2-\-W3 + '-'-\-Wm<B,

(5)

which contradicts (2). Therefore if the weights are sorted the two requirements
for added complication in the answer cannot occur.

B. BOOLEAN REPRESENTATION OF A REAL NEURON

The transfer function of a real neuron is much harder to calculate directly than
that of a natural neuron. Earlier in the chapter we stated that "All of the elements
of a group are identical except for the negation of literals." Therefore finding the
representation for the natural neuron in the same group as the real neuron provides
a solution that can be modified to represent the original problem by negating some
of the inputs. This means that the target of matching a real neuron to a Boolean
representation has been reduced to two separate problems:

• How to find the Boolean representation of a natural neuron. This problem
has already been covered.

• How to convert the solution for a natural neuron so that it matches one of
the real neurons in the same group.

Rule-Based Intelligent Systems 183

In2

Figure 6 Two-dimensional neuron with one negative and one positive weighted input, represented
as a hyperplane.

The shaded region in Fig. 6 is represented by the equation In2 — Ini > 0.5.
To convert this representation of a real neuron into a natural form, it is necessary
to remove the negative weight without affecting its Boolean characteristics. The
negative weight associated with Inputi can be removed by moving the origin of
the axis to position (1,0) and then rotating them. The equation for the graph using
the new axes (Fig. 7) is In2 + Ins ^ 1-5, where Ins = ""Ini. If a Boolean operator,
F, is found for this new neuron, then all instances of Ins in F could be replaced
by --Ini to give a correct solution for the original problem.

In2

In3
Figure 7 Transformed hyperplane with all positive weights.

184 Graham P. Fletcher and Chris J. Hinde

C. EXAMPLES OF BOOLEAN FUNCTION DERIVATION

A neural network to calculate the function "three-input parity" is shown in
Fig. 8. The Boolean function for each neuron is calculated separately

O = H, F = - . (-D V - E) ,

H = Gv F, D = - (A A 5) V - (A A C) V - (5 A C),

G = - (- A V - 5 V -.C), E = AvBvC.

Combining these gives

O = - (- .Av-Bv- .C)v- . (- . (- (AA5)v-(AAC)v-- (5AC))v- i (Avi5vC)) .

64.9

A B C

Figure 8 Implementation of three-input parity as a neural network.

Rule-Based Intelligent Systems 185

IV. EXAMPLE APPLICATION OF BOOLEAN
RULE EXTRACTION

This application is the dispensing of adhesive in the manufacture of "mixed
technology" printed circuit boards (PCBs) in which through hole and surface
mount components are present on the same board. The surface mount components
are secured to the board, prior to a wave soldering operation, by a small (0.0002
to 0.005 c^ depending on the component) amount of adhesive. The amount of
adhesive dispensed is critically dependent on several process environment vari-
ables (e.g., temperature, humidity, erratic thixotropic behavior of the adhesive, air
bubbles in the flow, and variations in the PCB substrate).

The dispensing unit consists of a syringe of adhesive coupled to a pressure
control unit. The unit is made up of a solenoid valve, pressure regulator, tem-
perature sensor, and a pressure transducer to monitor the variation of pressure
within the syringe. The dispensing unit is fixed to a SEIKO RT3000 robot which
moves the syringe to locations of the PCB where the adhesive has to be dispensed.
Feedback data collection is carried out by an image processing system (Imaging
Technology ITI151) coupled to a Pulnix TM-460 CCD camera incorporating a
magnifying optical system.

The original software was developed using the MUSE real-time artificial in-
telligence (AI) toolkit. MUSE is a hybrid modular system supporting a range
of knowledge representation paradigms: PopTalk, a procedural language with
object-oriented programming extensions, a forward chaining rule language, a
backward chaining language, data-directed progranmiing through the use of
demons, and flexible relation supporting general relations between objects.

Particular support for real-time operation includes agenda-based priority
scheduling, interrupt handling, and fast data capture.

Messom et al. [8] produced a neural network system for controlling the ad-
hesive dispensing machine (Fig. 9). This is the sort of problem that has typically
been tackled by the use of a rule induction package. The trained neural network
should therefore be equivalent to a set of rules that could have been learned by
such a package.

The first layer of neurons receives real-valued inputs, but produce outputs that
are very nearly bipolar. These neurons are effectively quantifying the input region,
and are therefore called quantization nodes. The actions of the quantization nodes
are described as a set of inequalities. This step does not simplify the information
but does display it in a manner that is much more natural to read than a set of
weights on a diagram. Examples of the rules resulting from these inequalities are
shown in Fig. 10.

The remainder of the network receives inputs that are close to bipolar and de-
livers bipolar outputs, and, as such, they can be said to be implementing Boolean
transfer functions. The results from expressing these transfer functions as rules

186 Graham P. Fletcher and Chris /. Hinde

Area

Pulse.height

Area.change

Pulse_width

Risejime

Box_area_ratio

FalLtime

^

Rise_timeflag

^

box_area_ratioflag

FalLtimef lag ̂

Figure 9 Net implemented by Messom et al. [8] for controlling an adhesive dispensing machine.

are very similar in format to the first-layer inequalities. Examples of the derived
rules for the subsequent layers are shown in Fig. 11.

It is now possible to directly implement this set of rules in a rule base with-
out altering the action of the system. For clarity, some general simplification of
the Boolean rules is required. Furthermore, substituting the inequalities produces
much more natural-looking results as shown in Fig. 12.

Rule-Based Intelligent Systems 187

IFrise_time < 1.23
THEN rise_timefiag
ELSE -irise_timeflag

IF pulse_width < 1.0429
THEN pulse_widthflag
ELSE -'pulse_widthflag

IF area > 1.0258
THENmidnodel
ELSE -"inidnodel

IFfall_time> 1.1
THENfalLtimeflag
ELSE --falLtimeflag

IF boxarearatio > 0.8520
THEN boxarearatioflag
ELSE -"boxarearatioflag

IF area > 0.9722
THEN midnode2
ELSE -'inidnode2

IF pulse_height < 1.025
THEN midnodeS
ELSE -"inidnodeS

IF pulse_height > 0.975
THEN inidnode4
ELSE -«midnode4

IF area_change < 0.5500
THEN midnode5
ELSE ->midnode5

IF area_change > 0.4499
THEN midnode6
ELSE ->midnode6

Figure 10 Examples of the rules resulting from the inequalities arising from the first layer of the net
implemented by Messom et al. [8] for controlling an adhesive dispensing machine.

The relative ease with which the transformation, from control network to
rule set, can be made illustrates the usefulness of the interpretation system for
medium-sized control networks. This type of result is most useful to check that
the hypothesis is reasonable. It also allows the network to explain its actions;
something that they cannot classically do.

V. NETWORK DESIGN, PRUNING,
AND WEIGHT DECAY

As the number of inputs to a neuron grows so does the length of the Boolean
description. In the worst case the number of conjunctions in the disjunctive normal
form grows at a rate of 2"~^ where there are n inputs to the neuron. The time taken
to derive a rule is proportional to the number of conjunctions. The rules become
intractable to compute for neurons with more that 40 inputs, and meaningless for
a human far earlier. The Boolean rule depicted in Fig. 13 has several thousand
conjunctions, only the first few are shown.

188 Graham P. Fletcher and Chris J. Hinde

IF (midnodel v -•(midnode2))
THEN action
ELSE -•action

IF --((midnodel v midnode2))
THEN change
ELSE --action

IF -.((--(niidnode4) v
--(midnodeS)))

THEN pulse.heightflag
ELSE pulse_heightflag

IF -'((midnodeS v
--(niidnode4)))

THEN pulse_heightdecision
ELSE --pulse_heightdecision

IF -i((--(niidnode6) v
-'(midnodeS)))

THEN bubbleflag
ELSE -bubbleflag

IF --((-^(niidnode6)v
midnodeS))

THEN bubbledecision
ELSE --bubbledecision

IF --((-.(midnode6) v
--(midnodeS)))

THEN bubbleflag
ELSE --bubbleflag

IF -'((--(niidnode6) v
midnodeS))

THEN bubbledecision
ELSE --bubbledecision

Figure 11 Examples of the rules resulting from the conversion of the second layer of the net to
Boolean expressions.

As the representation grows so quickly, we cannot allow the use of complex
networks. Therefore we must develop some method of producing a network that
correctly represents our problem, but simple enough that the analysis produces
meaningful rules like the ones for the adhesive dispensing machine discussed ear-
lier and unlike the one shown in Fig. 13. The appropriateness of a Boolean rule
representation for a neural network reflects the appropriateness of a Boolean rule
representation in the problem domain.

A. NETWORK DESIGN

The first and most obvious way to achieve a network of the correct complexity
is to design its structure by hand. Neural networks are ideal for use in process
control applications. By designing the network by hand, we are allowing the con-
troller to be informed of certain of the process characteristics and to learn the rest.
Rule extraction can be used to convert the neural controller back to a more tradi-
tional technology, but after it has learned the balance of the control characteristics.

Rule-Based Intelligent Systems 189

IFrise_time < 1.25
THEN rise_timeflag
ELSE -"rise_timeflag

IFrise_time < 1.25
THEN rise_timeflag
ELSE -•rise_timeflag

IFpulse_width< 1.0429
THEN pulse_widthflag
ELSE -•pulse_widthflag

IF area_change > 0.5500
THEN bubbledecision
ELSE -'bubbledecision

IF (area_change > 0.4499 A
area_change < 0.5500)

THENbubbleflag
ELSE --bubbleflag

IF (pulse_height > 0.975 A
pulse_height < 1.025)

THEN pulse_heightflag
ELSE -ipulse.heightflag

IFfall_time< 1.1
THEN falLtimeflag
ELSE --falLtimeflag

IFfalLtime< 1.1
THEN falLtimeflag
ELSE --falLtimeflag

IF boxarearatio > 0.8520
THEN boxarearatioflag
ELSE -iboxarearatioflag

IF (area > 1.02581 v area <
0.9722)

THEN action
ELSE --action
IF pulse_height > 1.025
THEN pulse_heightdecision
ELSE -• pulse_heightdecision

IF area < 0.9722
THEN change
ELSE --change

Figure 12 Overall rules resulting from amalgamating the inequalities shown in Fig. 10 into the
Boolean expressions shown in Fig. 11.

(ip20 A ipl9 A --ipl8 A ->ipl7 A --ipl2 A --ipl 1 A iplO A ip9 A ip4 A -^ip3 A --ip2 A --ipl)

or

(-iip26 A ip25 A ipl9 A --iplS A --ipl7 A --ipl2 A --ipl 1 A iplO A ip9 A ip4 A ->ip2 A --ipl)

or

(-'ip26 A ip25 A ip7 A iplO A ip5 A ip4 A --ip3 A -iip2 A --ip22)

or

(-•ip26 A ip21 A ipl9 A --ipl8 A --ipl7 A --ipl2 A --ipll A iplO A ip9)

or

(--ip21 A ipl3 A ipl2 A ipll A --iplO A ip9 A ip4 A --ip3 A ip2 A ipl)

Figure 13 Showing the unintelligibility of a Boolean rule derived from a digitized set of images fed
to a neural network in a pattern recognition application.

190 Graham P. Fletcher and Chris J. Hinde

B. SYSTEM INVESTIGATION

All complex processes will be influenced by many system variables. The first
problem in any design is to identify these influential system variables from the
mass of data available. This is achieved by an investigation of the relevance of
the algebraic combinations of process variables. This is derived from a combina-
tion of polynomial and adaptive linear neurons, which are known as polynomial
adaptive linear neurons or PADALINEs.

The basic idea is that new inputs can be formed from functions of the basic
input nodes. If the function being modeled is the sum of several elementary func-
tions, then the PADALINE can discover the correct input parameters. For a full
description of PADALINEs and their usage, refer to Hinde [9].

C. SEGMENTATION OF SYSTEM VARIABLES

Before the relevant system variables can be combined logically, they must, in
effect, be digitized. This is achieved by a quantization layer of neurons. Quantiza-
tion takes several forms: thresholding (a) or regions (b), and it may also be one or
several variables (c). Figure 14 shows the various strategies that may be employed
to transform continuous real-valued inputs into Boolean attributes.

D. BOOLEAN STRUCTURE

The final part of the network is the Boolean transformation that is applied to the
selected region. All control problems require specific action to be taken when the
process system is in a specific state. The controller has to provide suitable outputs
when the inputs are within a specific region. The Loughborough control architec-
ture developed by Messom [5] solves these problems. For more information on
the design of this type of network, refer to Messom et al. [8].

Network design works well for systems where the underlying structure is un-
derstood. In these situations a designer can build the known portion of the problem
structure into the control network. The learning by the network and subsequent
analysis is refining or honing the designer's prior knowledge into an intelligent
rule-based system.

E. PRUNING AND WEIGHT DECAY

There are many domains where the underlying structure of the problem is not
well understood. In these situations it is not possible to adequately design the
network topology. Our goal is still to produce a minimal network that correctly

Rule-Based Intelligent Systems 191

Unacceptable
gion

Figure 14 Quantization takes several forms: thresholding (a) or regions (b), and it may also be one
or several variables (c). A parallel pair of opposite facing neurons is capable of performing the tasks
shown in (b) and (c). (a) represents a condition that a variable must be greater than a certain value.

models the problem, but we must develop a new methodology. All systems can be
modeled using large generic networks. For example, any system built up solely
of n Boolean inputs and one output can be always be modeled using n fully
connected internal nodes in a single layer. Many of today's standard textbooks
give capacity results for standard classes of problems. So building a network that
is capable of representing our required hypothesis is not a problem. However,
many problems do not require the full capacity of the standard network topolo-
gies and we wanted a network of minimal size. The solution is to start with a
standard network and to remove neurons and links between neurons dynamically
during learning, thus delivering a result markedly smaller than the standard solu-
tion.

For the purposes of conversion to rule-based systems, the number of neurons
in a network does not pose a major problem. The complexity of interconnection
between the neurons is what dictates the size of the resultant rules. Therefore we
require a technique to remove as many interconnections as possible.

When the weight assigned to an interconnection is very small, it may be re-
moved from the network with negligible effect. We therefore want to encourage
as many of the connections as possible to tend toward zero weight. Standard back

192 Graham P. Fletcher and Chris J. Hinde

propagation minimizes the error function

= E [Example — Actualf'.
All_Examples

By expanding this error function so that a penalty function is incurred for the size
of the weights in the network, back propagation will attempt to eliminate as many
weights as possible:

e = a • 2_] [Example — Actual] + (1 — a) • 2_] f(^^^§ht).
All_Examples All_weights

The value of the constant a reflects the relative importance of accuracy versus
compactness. An a near 1.0 will produce a network that is as correct as possible,
at the expense of compactness. An a near 0.0 will produce a very small network,
but one that is less accurate.

A suitable function for the penalty function was proposed by Setiono and
Liu [10]

2 2

/ (^) = ^ T T T - ^ + 1 + 10u;2 1 * 10^'

We now have a method of training a network so that the solution has many con-
nections with small weights, but which ones should be deleted?

Let the usefulness of a connection be defined as the largest value it passes
forward over all of the examples. If the usefulness of a connection is below a pre-
defined threshold, then it can be deleted. Similarly, the usefulness of a neuron can
be defined as the largest value it has in response to any example. If the usefulness
of a neuron falls below the same threshold, then it too can be deleted.

Networks are constructed by starting with a standard network, training until
all of the classifications made by the system are correct and then deleting all
connections and neurons whose usefulness is too low. These deletions will lower
the accuracy of the network, so retraining is required. The loop is repeated until no
more links or neurons can be removed. For more information on this technique,
refer to Setiono and Liu [10].

VL SIMPLIFYING THE DERIVED RULE BASE

So far in this chapter we have been considering how to produce a rule-based
system that exactly mirrors the action of the network in every detail. The "knap-
sack/Boolean function" extraction process produces rules that have exactly the
same functions as the neurons. For example, the neuron depicted in Fig. 15 would
produce (A A B) v (A A C) v (C A 5) . If the neuron had been trained from the

Rule-Based Intelligent Systems 193

Figure 15 Showing the neural representation of the function (A A B) v (A A C) v (C A B).

incomplete example shown in Fig. 16, then there are two further, equally correct
hypotheses that could have been learned instead (see Fig. 21).

The choice between the three correct hypotheses is completely arbitrary. As all
are consistent with the data and are therefore arguably correct, we could substitute
the rules derived from any of these with the rules from the original neuron. If we

Figure 16 Showing the training set which may be used to represent the function (A A B) v (A A
C)v (C AB). Notice that there is no data point at (-̂ A AB AC).

194 Graham P. Fletcher and Chris J. Hinde

Figure 17 Two other hypotheses that could have been produced in response to the training examples
shown in Fig. 16.

are using the derived rules to produce a rule-based intelligent system, then any of
these neurons could be used instead of the one learned. The three derived rules are

(A A 5) V (A A C) V (C A B),

(AAB)V(C A B),

(AAB)V C.

Consider Occam's razor

The most likely hypothesis is the simplest one that is consistent with all observations.

Then the shortest and simplest of the three possible solutions should be used.
This has two advantages. First, it is more likely to be correct and, as importantly,
the resulting rule base will be much easier to read. Setiono and Liu [10] give
one method for achieving this. In their system the complete set of input-output
training pairs is calculated for each neuron. In their words they then

Find the minimum number of attributes in the attribute Ust that uniquely differentiate
the items.

This can be achieved using any standard symbolic rule extraction method. In
essence, the neural training and weight decay is used to break down the data into
smaller interconnected data sets. Each of these is then analyzed independently.
The smaller rule sets could then be recombined to produce a complete represen-
tation. In the following example, a network has been trained to recognize three
input exclusive or using the training data shown in Fig. 18.

Rule-Based Intelligent Systems 195

INI
0
0
0
0
1
1
1
1

IN2
0
0
1
1
0
0
1
1

INS
0
1
0
1
0
1
0
1

OUT
0
1
1
0
1
0
0
1

Figure 18 Training set and associated neural network for a three-input exclusive or, or even parity.

The network learning algorithm produces the minimum size network required
to model this function. Four sets of training data associated with the four neurons
in the network can be extracted from the network and they are summarized in
Fig. 19. The first six relate the original input data to the outputs of the three nodes
in the hidden layer, the seventh relates the inputs and output of the final node.

Rule extraction from these training sets gives the rules shown in Fig. 20. The
three inputs are used along with the outputs of nodes 1-3 to calculate their rules.
The outputs of the three nodes in the second layer and the output to node 4 are
used to calculate a rule for node 4. Neural training has given the structure of the
rule base, that is, the number of rules and how they interact. Traditional symbolic
rule extraction produces the bodies of the rules.

This method of splitting the extraction of rules from data between the neural
network and the symbolic rule induction works well. The neural training pro-
duces subhypotheses that are represented by the nodes in the hidden layers and
the symbolic rule extraction produces good concise rules. However, the rule ex-
traction can be a very complex process, and by starting with just the input-output

INI
0
0
0
0
1
1
1
1

IN2
0
0
1
1
0
0
1
1

INS
0
1
0
1
0
1
0
1

Nl
0

N2
0
0
0
1
0
1
1
1

N3
0
0
0
0
0
0
0
1

N4
0
1
1
0
1
0
0
1

Figure 19 Four sets of training data associated with the four neurons in the network shown in Fig. 18
can be extracted from the network.

196 Graham P. Fletcher and Chris J. Hinde

If 'More than none input fire' If 'More than one input fire'
then then

Nodel Node2
else else

Nodel -•Node2

If 'More than two input fire' If (Nodel A -^Node2)V(Node4)
then then

Node3 Output
else else

-^Node3 -^Output

Figure 20 Results of symbolic rule extraction applied to the data generated from the network shown
in Fig. 18 and tabulated in Fig. 19.

data pairs for the neuron we have discarded information. Symbolic rule extraction
assigns a weight to each of the variables. In the example shown in Fig. 19, the
weight attached to input 1 when building the rule for node 2 is

I {Number_of_examples_where[In\ = N\])— 1

{Number_of_examples_where\In\ ^ Nl]) j

= 6 - 2

= 4.

The weight refers to the ability of the input variable to predict the answer. As
/i is the best predictor, the examples should be split firstly on / i . Symbolic rule
extraction is based on these weights calculated from the examples. These weights
already exist within the neural system as the connection weights. Return to the
knapsack algorithm given earUer in Fig. 5 and reproduced here in Fig. 21 for
clarity. Previously, we were searching for all sets of inputs whose weights just
exceed the bias. However, we can extend the algorithm to take account of the

knapsack(_Unused_inputs,Bias,Answer,Answer):-
Bias =<0.

knapsack(Unused_inputs,Bias,SubAnswer,Answer):-
Bias > 0,
append(_, [(Input_Name,Input_Weight) I Inputs], Unused_inputs) ,
New_Bias is Bias - Input_Weight,
knapsack(Inputs,New_Bias,[Input_NameISubAnswer],Answer).

Figure 21 Original knapsack algorithm.

Rule-Based Intelligent Systems ' 197

0 2 4 6 8 10 12 14 16

Input Ii

Input l2

Input l3

Input l4

Bias

Figure 22 Weights assigned to inputs I\, I2,13, and I4 together with the bias shown as a bar graph.

training examples. For example, given the weights in Fig. 22, /i would be the first
input considered. Normally, the weight for /i would be removed from the bias
giving a new bias of 5. The search would then continue for inputs to go with h
that can overcome this new bias. Given the training examples with /i true, we
have three cases

1. All the examples are positive. We need search no further; as far as the
examples are concerned, h is sufficient to indicate a positive response
even though the bias value has not been overcome.

2. All the examples are negative. There is no point searching further as the
examples tell us that the current set of variables should never give a
positive response. Therefore the current variables should be changed.

3. The examples contain both positive and negative examples. The algorithm
needs to continue by adding further variables until either the bias is
overcome or one of the first two cases applies.

The algorithm incorporating these observations is given in PROLOG in Fig. 23.

VII. EXAMPLE OF THE CONSTRUCTION
OF A RULE-BASED INTELLIGENT SYSTEM

In this section a problem is introduced and a rule base derived using the neural
techniques illustrated in the preceding sections.

A number of published studies have evaluated the application of artificial neu-
ral networks in the area of medical prediction. This example is based on the
identification of renal transplant recipients who risk developing cytomegalovirus

198 Graham P. Fletcher and Chris J. Hinde

{The Bias has been overcome}
knapsack(_Unused_inputs,Bias,_Examples,Answer,Answer):-

Bias =<0.

{There are no false examples}
knapsack(_Unused_inputs,_Bias,Examples,Answer,Answer):-

\+(append(_,[(Inputs,Outputs)I_],Examples),
Outputs = -1).

{There are both positive and negative examples}
knapsack([First_InputIOther_Inputs],Bias,Examples,SubAnswer,

Answer):-

Bias > 0,
findall((Name,1),append(_,[(Name,1)l_],Examples),Pos_examples),
findall((Name,-1),append(_,[(Name,-1)l_],Examples),Neg_examples),
Pos_examples =\= [],
Neg_examples =\= [],

{First input is set to true}
(Input_Name,Input_Weight) = First_Input
New_Bias is Bias - Input_Weight,
knapsack(Other_Inputs,New_Bias,Pos_examples,

[Input_NameISubAnswer],Answer).

knapsack([First_InputIOther_Inputs],Bias,Examples,SubAnswer,
Answer):-

Bias > 0,
findall((Name,1),append(_,[(Name,1)l_],Examples),Pos_examples),
findall((Name,-1),append(_,[(Name,-1)l_],Examples),Neg_examples),
Pos_examples =\= [] ,
Neg_examples =\= [] ,

{first input is set to false}
(Input_Name,Input_Weight) = First_Input
knapsack(Other_Inputs, Bias,Neg_examples,SubAnswer,Answer).

Figure 23 New "knapsack" algorithm in PROLOG incorporating the changes outlined.

(CMV) disease. CMV infection may be present in a patient prior to transplantation
or it may be introduced into a patient through a CMV-infected donor organ. The
infection can lead to the development of CMV disease and this is a significant
cause of morbidity and mortality among immunocompromised renal recipients.
The data set represents 548 renal transplants that took place at the Cardiff Royal
Infirmary, Wales, between 1986 and 1994.

Rule-Based Intelligent Systems 199

Definitions

Pretransplant Cytomegalovirus Infection

CMV(+) is recorded if IgG antibodies are present in a pretransplant blood
sample, and is indicative of the presence of, or previous exposure to, CMV infec-
tion.

Posttransplant Cytomegalovirus Infection

For a CMV(—) recipient, posttransplant CMV(+) indicates the appearance of
IgG antibodies in the blood. For all recipients, the appearance of IgM antibodies,
the detection of CMV antigen, or the presence of CMV culture from blood or
urine is recorded as posttransplant CMV(+).

Posttransplant Cytomegalovirus Disease

The patient develops fever, pneumonia, gastrointestinal diarrhea, renal insuffi-
ciency, raised alanine amino transferase.

Cytomegalovirus Prophylaxis

Donor is CMV(+) and recipient is pretransplant CMV(—). This currently
forms the basis for treating with Sandoglobulin as part of the posttransplant
therapy.

Human Leukocyte Antigen Mismatch Grade

Scale for measuring the match between tissue types. 0—excellent match; 6—
complete mismatch.

Panel Reactive Antibodies

The percentage of a random panel of cells to which the recipient has antibodies
and which cause a positive reaction. This percentage gives an indication of the
number of possible donors to which the recipient would be sensitized.

The parameters recorded for each patient are shown in Fig. 24.
The initial network was constructed with 5 real-valued inputs and 11 Boolean

inputs. There was a single hidden layer of 8 neurons feeding through to a single
output. The network is illustrated in Fig. 25. Using the network training algo-
rithms previously discussed, the network shown in Fig. 26 was constructed. This
network classified the appearance of CMV disease with an accuracy of 85%.

Extracting the rules from this network gives the following contraindicators to
CMV disease. Any two of these contraindicators, except for the pair 1 and 4,
suggest that the patient is in a low-risk group.

200 Graham P. Fletcher and Chris J. Hinde

1. Pretransplant CMV status of donor B
2. Pretransplant CMV status of recipient B
3. Transplant type (kidney or kidney and pancreas) B
4. Donor age R
5. Recipient age R
6. Donor sex B
7. Recipient sex B
8. Recipient diabetes B
9. CMV prophylaxis B

10. Had previous transplant B
11. Donor source B
12. HLA mismatch R
13. PRA latest R
14. PRA highest R
15. Number of rejections B
16. Posttransplant CMV infection B

Figure 24 Definitions of the 16 inputs to the network to classify whether CMV disease would appear
in the patient. The R or B denotes whether the input is a real continuous-valued input or a Boolean
input.

Contraindicator 1

No previous CMV in DonorA

(No previous Tx v No CMV Postinfection v Recent Diabetes)

Contraindicator 2

Recip Female A (Previous CMV in Donor v K&P Tx V PRA Highest > 31.7)

or

Recip Male A Previous CMV in Donor A (K&S Tx v PRA Highest > 31.7)

Contraindicator 3

No CMV Postinfection A No previous Tx A No CMV ProphylaxisA

(No Previous CMV in Donor V PRA latest < 14.01)

Rule-Based Intelligent Systems 201

Fully
Connected
Layer

000
Boolean Inputs Continuous Inputs

Figure 25 Initial network used to classify the appearance of CMV disease. The network is fully
connected but not all the connecting arcs are shown.

or

or

or

Recept Female A K Tx A

(No previous Tx V No CMV Postinfection v No CMV Prophylaxis)

Recept Female A No previous CMV in Donor

Recept Male A No previous CMV in Donor A PRA latest < 14.01.

Contraindicator 4

No previous CMV in Donor A No CMV Postinfection

Contraindicator 5

Previous CMV in Donor A PRA latest > 14.01

The rules represent knowledge about the domain, and could now be used to imple-
ment a rule-based system to identify potential problem patients. The conversion

202 Graham P. Fletcher and Chris J. Hinde

00 000
Figure 26 Final network used to classify the appearance of CMV disease. The network is now not
fully connected and the arcs remaining are shown. Note that some of the input nodes are now not
connected as they have no influence on the output.

of the neural solution into the rule base has many potential profits. Of these, per-
haps the most important is verification. The knowledge has been converted into a
form that could now be taken back to the hospital.

VIII. USING RULE EXTRACTION
TO VERIFY THE NETWORK

So far this chapter has argued for, and demonstrated how, to extract Boolean
rules from neural networks. One of the major uses envisioned is the verification of
the original neural network. The pole-balancing problem is used to demonstrate
the usefulness of the network-derived rules in verifying the action of networks.

The pole-balancing problem is an example of applied adaptive control and has
become a standard tutorial problem. The control system must balance a pole on
a motorized cart by moving the cart forward and back in a confined space. The
implementation of most interest here is the neural network [11] shown in Fig. 27,
which was successful in balancing the pole under a variety of circumstances. The
inputs to this system are Boolean, so there is no quantization layer and no need
for inequalities in the rule set. One of the objectives of the research was to study
the usefulness of quahtative inputs to a neural network.

The analysis of the pole-balancing net resulted in the following rule. Careful
analysis of the rule will make it possible to find, and therefore correct, the errors
in the network.

Rule-Based Intelligent Systems 203

o
C/3

1 «4H

o

>
o

«4H

C/D

1)

OH

c

o

S-

OH

o

^
c
o

c
O

^

C

o

13

i
o

Figure 27 Neural network developed by Zhang and Grant [11] to solve the pole-balancing problem.

IF (Top of pole is to right A -^Pole is falling over A
-'Pole speed increasing A Cart accelerating)

V

(Top of pole is to right A ~>Pole is falling over A
-•Pole speed increasing A Cart on right side of track A
Cart moving away from centre)

V

(Top of pole is to right A Pole is falling over A
Pole speed increasing)

THEN Apply right force
ELSE Apply left force

204 Graham P. Fletcher and Chris J. Hinde

Simple image enhancement techniques can be used to simpHfy the rules, resulting
in the underlying functions of the network and a Hst of exceptions. The underlying
function can be verified and the exceptions indicate possible problems with the
network hypothesis.

A. APPLYING SIMPLE IMAGE ENHANCEMENT

TECHNIQUES TO RULES

The rule represented as a Karnaugh map in Fig. 28 has a fairly complex
Boolean expression:

(/l A /3 A 74) V (--/2 A --/s A 74) V {I2 A --/i A --/s) V (--/i A -^h A I3 A I4),

The map gives a better understanding of the simple basic concept. The aim of us-
ing image enhancement techniques is to allow high-dimensional problems to be
represented in their original form but with much of the complexity removed. En-
hancement will alter the rules, maintaining the main underlying objectives while
removing superfluous small cases. This makes the analysis of the network hy-
potheses tractable for much larger networks. For example, the Boolean expres-
sion represented in Fig. 28 could be simplified to become the one represented in
Fig. 29.

k
k
k

-h I2 I2 -h

u u -u -u

I 3

I 3

Figure 28 Function with a very simple basic concept but a relatively complex Boolean representa-
tion.

Rule-Based Intelligent Systems 205

-h I2

^ 1 * ^ ^ !

k^^l
k
k

I4 I4

h -h

^HhH
^̂ r̂ '

- I 4 - I 4

k
13

Figure 29 Enhanced version of the Boolean rule in Fig. 28.

There are two separate processes required to enhance a Boolean rule. The first
reduces it by removing burrs. A burr is an area on the Karnaugh map that is
separate from or smaller than the main body of the function. The second process
is the reverse, removing burrs from the inverse function fills any holes on the rules.
The removal of burrs from a Boolean rule can be achieved easily if the Boolean
expression is in a minimal disjunction of conjunctions. The example in Fig. 28
was represented as

(/l A /3 A 74) V (--/2 A -^h A 74) V {h A ^I\ A -^h) V (--/i A -^h A I3 A I4).

The Boolean representation for the version after the burrs have been removed is

(/l A /3 A 74) V (-./2 A -./3 A 74) V (h A ^h A -^h).

Each of the conjunctions in the Boolean equation represents an area on the Kar-
naugh map. The size of this area is inversely proportional to the length of the
conjunction. By removing the longer conjunctions from the Boolean rule, it is
possible to remove the smaller areas on the map; thus removing the burrs from
the rule. The burr is removed from the Boolean by removing the longest of the
conjunctions.

Hole filling is an equally simple task. In effect, hole filling is burr removal of
the inverse function, which is exactly how it is implemented.

206

11 - Top of pole to right
12 - Pole is falling over
13 - Pole speed increasing

Graham R Fletcher and Chris J. Hinde

14 - Cart on right side of track
15 - Cart moving away from center
16 - Cart accelerating

IF (II A -12 A -13)
THEN

M2 = True
ELSE

M2 = False

IF (Ml V M2)
THEN

Apply right force to cart
ELSE

Apply left force to cart
IF (II A -12 A 13) V (II A -12 A 14) V (II A 13 A 14) V

(II A 13 A 15) V (II A -12 A 16) V (II A 13 A 16)
THEN

Ml = True
ELSE

Ml = False

Figure 30 Raw rules extracted from the network trained to balance a pole on a cart.

B. USING ENHANCEMENT TO EXPLAIN THE ACTION
OF THE P O L E - B A L A N C I N G N E T W O R K

By using the simple image enhancement techniques described previously on
the rules derived for the pole-balancing network, it is possible to reveal informa-
tion about the internal hypothesis. The rules for the network in their raw form
are shown in Fig. 30. Repeatedly enhancing these rules gives the three versions
shown in Figs. 31-33. Each is enhanced one step further than the preceding copy.
Substituting the simplest rules for Ml & M2 shown in Fig. 33 into the top-level
rule gives the rule shown in Fig. 34.

The basic main rule (Fig. 34) is saying follow the top of the pole. This is
clearly the correct basic rule. At the higher level of complexity shown in Fig. 32,
we can check that the shape of the more important input variables is correct using

IF (II A -12 A 13) V (II A -12 A 14) V
(II A -12 A 16) V (II A 13)

THEN
Ml = True

ELSE
Ml = False

IF (II A -12 A13)
THEN

M2 = True
ELSE

M2 = False

Figure 31 Rule shown in Fig. 30 enhanced one stage.

Rule-Based Intelligent Systems 207

IF (II A-12) V (II A13) IF (II A-12 A13)
THEN THEN

Ml = True M2 = True
ELSE ELSE

Ml = False M2 = False

Figure 32 Rule shown in Fig. 31 enhanced one further stage.

IF II IF True
THEN THEN

Ml = True M2 = True
ELSE ELSE

Ml = False M2 = False

Figure 33 Rule shown in Fig. 32 enhanced yet again.

IF Top of the pole is to right
THEN

Apply right force
ELSE

Apply left force

Figure 34 Rule shown in Fig. 35 with the basic input values and output names substituted to aid
readabihty and understanding.

IF (Top of pole is to right A Pole speed increasing) v
(Top of pole is to right A Pole is falling over)

THEN
Apply right force

ELSE
Apply left force

Figure 35 Rule shown in Fig. 32 with the basic input values and output names substituted to aid
readability and understanding.

208 Graham P. Fletcher and Chris J. Hinde

13
-nI3

-.11 1 11 1 11

12 ^ ^ - - 1 2

-.11

-.12
Figure 36 Map of the rule after some simplification. This shows an asymmetrical response.

a Karnaugh map. The rule for applying force is shown in Fig. 35. The map for
this rule is shown in Fig. 36. The map shows that the rule need not be synmietric.
This means that the network will respond differently to the same situation on
different sides. Although the network balanced the pole under test conditions, it
cannot be exactly correct. The reasons for moving the cart to the right should
mirror the reasons for moving the cart to the left; so one of the rules must be
wrong.

The part of the rule missed by the network corresponds to accelerating right
when the top is to the left so as to slow down the movement of the pole if it is
about to overshoot the center line. It is not surprising this has been missed as it is
not a conmion case. However, the training could be modified to force this example
to occur.

The benefits of being able to extract the underlying hypothesis of a neural
network are the ability to understand the hypothesis of the network either to gain
new insights into the behavior of the mechanism being modeled or to check that
the hypothesis embodied in the network makes sense.

IX. CONCLUSIONS

This chapter has shown how trained neural networks can be transformed into
understandable Boolean rule-based systems. It has also made observations about
when this might be appropriate and when it may be unwise. Transforming neu-
ral networks into rule-based systems is an effective way of inducing rules from
examples, although it is clearly not the only way. Transforming neural networks
can expose deficiencies in the network which further training can rectify, thus
taking neural networks away from and art form and brining it into line with more
conventional software validation methods.

Rule-Based Intelligent Systems 209

REFERENCES

[1] G. E. Hinton. Preface. Artificial Intel!. 46:1-5, 1990.
[2] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, New York, 1979.
[3] G. P. Fletcher and C. J. Hinde. Using neural networks as a tool for constructing rule based

systems. Knowledge-Based Systems 8:183-189, 1995.
[4] M. Mihalaros. Studying the interpretation of feedforward neural networks using logical func-

tions. M.S. Thesis, Loughborough University, Uunited Kingdom, 1992.
[5] C. H. Messom. Engineering reliable neural network systems. Ph.D. Thesis, Loughborough Uni-

versity, United Kingdom, 1992.
[6] R. D. Dowsing, V. J. Rayward-Smith, and C. D. Walter. A First Course in Formal Logic and Its

Application in Computer Science. Blackwell Scientific, Oxford, 1986.
[7] R. M. Karp. Reducibility among comnbinatorial problems. In Complexity of computer computa-

tions (R. E. Miller and J. W. Thatcher, Eds.), pp. 85-103. Plenum, New York, 1972.
[8] C. H. Messom, C. J. Hinde, A. A. West, and D. J. WilUams. Designing neural networks for man-

ufacturing process control systems. In Proceedings of the International Symposium on Intelligent
Control. IEEE, New York, 1992.

[9] C. J. Hinde. Heuristic techniques appUed to an industrial situation. Ph.D. Thesis Brunei Univer-
sity, 1974.

[10] R. Setiono and H. Liu. Symbolic representation of neural networks. Computer pp. 71-78, 1996.
[11] B. Zhang and E. Grant. A neural net approach to autonomous machine learning of pole balancing.

In Proceedings ELUL'89 p. 123. IEEE, New York, 1989.

This Page Intentionally Left Blank

Expert Systems in Soft
Computing Paradigm

Sankar K. Pal Sushmita Mitra
Machine Intelligence Unit Machine Intelligence Unit
Indian Statistical Institute Indian Statistical Institute
Calcutta 700 035, India Calcutta 700 035, India

I. INTRODUCTION

There has recently been a spurt of activity to integrate different computing
paradigms, such as fuzzy set theory, neural networks, genetic algorithms, and
rough set theory, under the heading soft computing [1-3], for generating more
efficient hybrid systems. The purpose of soft computing is to provide flexible
information processing capability for handling real-life ambiguous situations by
exploiting the tolerance for imprecision, uncertainty, approximate reasoning, and
partial truth to achieve tractability, robustness, and low cost [4]. The guiding prin-
ciple is to devise methods of computation which lead to an acceptable solution at
low cost by seeking an approximate solution to an imprecisely/precisely formu-
lated problem.

One such integration that has been made by several researchers during the last
five to seven years is neuro-fuzzy computing [5, 6], where the merits of fuzzy
set theory [7, 8] and artificial neural networks (ANNs) [9-12] are fused to im-
prove the performance in decision-making systems. The integration promises
to provide both generic (parallelism, fault tolerance, adaptivity, and uncertainty
management) and application-specific advantages to handle real-life problems. In
many cases these models perform better than either a neural network or a fuzzy
system considered individually. Neuro-fuzzy hybridization is performed broadly
in two ways: a neural network equipped with the capability of handling fuzzy
information (termed fuzzy-neural network), and a fuzzy system augmented by

Fuzzy Logic and Expert Systems Applications
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 2 1 1

212 Sankar K. Pal and Sushmita Mitra

neural networks to enhance some of its characteristics like flexibility, speed, and
adaptibility (termed neural-fuzzy system).

Other hybridizations include the genetic-neural [13, 14], fuzzy-genetic [15],
neuro-fuzzy-genetic [16], rough-fuzzy [17], and rough-neuro-fuzzy [18] ap-
proaches, where the characteristics of genetic algorithms (GAs) [19, 20] and
rough sets [21, 22] are being exploited. Such appHcations are relatively new as
compared to the neuro-fuzzy approaches. The primary role of GAs here is to pro-
vide techniques for efficient searching and optimization, whereas that of rough
sets is the management of uncertainty and knowledge extraction. These hybrid
paradigms are suitable for solving complex real-world problems for which only
one tool may not be adequate. In other words, during hybridization the individual
tools act synergetically (not competitively) to increase the application domain of
each other when used in a soft computing paradigm.

In this chapter we discuss the issue of designing expert systems in a soft com-
puting environment. As the knowledge base of an expert system is a repository
of human knowledge and because some of these may be imprecise in nature, this
may often result in a collection of rules and facts which, for the most part, are
neither totally certain nor totally consistent. The expert system is also likely to
be required to infer from premises that are imprecise, incomplete, or not totally
reliable. The uncertainty of information in the knowledge base of the question-
answering system thus induces some uncertainty in the validity of its conclusions
[23]. Hence a basic problem in the design of expert systems is the analysis of the
transmitted uncertainty from the premises to the conclusion and the association of
a certainty factor [24]. Fuzzy expert systems [24, 25], incorporating the concept
of fuzzy sets at various stages, help to a reasonable extent in the management of
uncertainty in such situations.

Artificial neural networks (ANNs) are also used in designing expert systems.
Such models are called connectionist expert systems [26], and they use the set
of connection weights of a trained neural net for encoding the knowledge base
for the problem under consideration. The use of ANNs helps in (a) incorporat-
ing parallelism and (b) tackling optimization problems in the knowledge base
space. These models are usually suitable in data-rich environments and seem to
be capable of overcoming the problem of the knowledge acquisition bottleneck
of traditional expert systems. They help in minimizing human interaction and the
associated inherent bias during the phase of knowledge base formation (which is
time consuming in the case of traditional models), and they also reduce the pos-
sibility of generating contradictory rules. Powerful learning techniques exist for
generating connectionist architectures from training samples. This enables us to
automate the construction of knowledge bases for classification-type expert sys-
tems. When the connection weights of a trained fuzzy neural net are used as the
knowledge base, we call the model a neuro-fuzzy expert system. This enables one
to acconmiodate the merits of neuro-fuzzy computing in expert system design.

Expert Systems in Soft Computing Paradigm 213

Generally, ANNs consider a fixed topology of neurons connected by links in
a predefined manner. These connection weights are usually initialized by small
random values. Knowledge-based networks [27, 28] constitute a special class of
ANNs that consider crude domain knowledge to generate the initial network ar-
chitecture which is later refined in the presence of training data. This process
helps in reducing the searching space and time while the network traces the op-
timal solution. Node growing and link pruning are also performed to generate
the optimal network architecture. A knowledge-based network can be used for
designing a knowledge-based connectionist expert system. Rough sets, known
to be effective in knowledge reduction, have very recently been used in extract-
ing domain knowledge for encoding knowledge-based networks [18]. GAs, being
efficient search techniques, have been utilized for optimizing the network param-
eters [14]. Both these tools hold promise in generating efficient knowledge-based
connectionist expert systems in the framework of rough-neuro-genetic or rough-
neuro-fuzzy-genetic computing.

The block diagrams of the basic modules of an expert system, fuzzy expert
system, fuzzy neural net, connectionist expert system, neuro-fuzzy expert system,
and knowledge-based connectionist expert system are shown in Fig. 1. As stated
previously, a fuzzy neural net constitutes the knowledge base of a neuro-fuzzy
expert system. (Note that this excludes other possible integrations, such as bring-
ing the concept of ANN into the framework of a fuzzy expert system.) Whereas
the rules are collected by knowledge engineers for designing the knowledge base
of a traditional expert system (or fuzzy expert system), the connectionist models
use the trained link weights of the neural net/fuzzy neural net to automatically
generate the rules, either for later use in a traditional version or for providing jus-
tification in the case of an inferred decision. This automates and also speeds up
the knowledge acquisition process. The use of fuzzy neural nets helps in the han-
dling of uncertainty at various levels (e.g., input, output, learning, and neuronal)
and generates fuzzy rules capable of more realistically representing real-life sit-
uations. The knowledge-based connectionist expert systems, on the other hand,
initially encode crude domain knowledge among the connection weights of the
neural net, thereby speeding up the training phase and generating better perfor-
mance. Refined rules are later extracted from the less redundant trained network.

Section II is devoted to the general problems of expert system design, and
the relevance of fuzzy sets, connectionist models, and neuro-fuzzy computing
along this line. The utility of knowledge-based networks and the feasibility of
using other soft computing tools, for example, GAs and rough sets in this context,
are also described. A survey on connectionist expert systems (without fuzzy) is
included in Section III, for the convenience of the reader. In Section IV we provide
a review on existing models of neuro-fuzzy expert systems, keeping in mind the
rich literature currently available in this field. A comparative study is provided in
tabular form. A brief discussion on other hybrid models is provided in Section V.

214 Sankar K. Pal and Sushmita Mitra

Rules

(a)

Knowledge base + Inference engine ^ Expert system

(b) Fuzzy sets Expert system Fuzzy expert
system

(c) Fuzzy sets (FS) + Neural Net (NN) Fuzzy neural net
(FNN)

Trained
connection wts.

ofNN

(d) Knowledge base + Inferencing Connectionist
expert system

Rules

Figure 1 Block diagram of the basic modules of various expert systems.

II. EXPERT SYSTEMS: SOME PROBLEMS
AND RELEVANCE OF SOFT COMPUTING

The major components of an expert system [29] are the knowledge base, in-
ference engine, and user interface. The knowledge base contains the expert-level
information necessary to solve problems in a specific domain. This information
is generally represented in the form of a set of rules, although frames [30], se-
mantic nets [31], and belief networks [32] are also in vogue. We shall consider

Expert Systems in Soft Computing Paradigm 215

Trained
connection

weights of FNN

(e)
+ Inferencing

Neuro-fuzzy
expert system

(f)

Crude
rules

Trained
connection

weights of NN

Knowledge base

y

Refined
rules

Inferencing \
y

Knowledge based
connectionist

expert systems

Figure 1 (Continued)

rule-based systems in this discussion. Knowledge bases, being domain specific,
are nontransferable. The inference engine interacts both with the knowledge base
and a working memory (that records facts about the current problem and is up-
dated with the availability of new information). Pattern matching occurs between
the rules in the knowledge base and the facts in the working memory to select the
relevant rules applicable. Note that when no matching occurs, no rule is selected.

216 Sankar K. Pal and Sushmita Mitra

whereas when multiple rules apply, conflict resolution strategies are used to se-
lect the most specific one. The same inference engine can be used with different
knowledge bases.

We provide here, first of all, a mathematical formulation of expert systems.
This is followed by a discussion on fuzzy logic and its role in the management
of uncertainties, the relevance of connectionist models, the need for neuro-fuzzy
computing, and the utility of knowledge-based networks.

Let us consider finding a decision consisting of a sequence of hypotheses op-
timizing some criteria in an environment characterized by available information.
Let D be a candidate decision consisting of n decision elements dt, where each
decision element dt belongs to a finite, discrete set D':

D = (dud2,...,dn), di eD\

As a link between the decision and the available information, a number Â of
measurements (or observations) are available

mr. D-^ M: D -^ mi(D), i = l,...,N,

where M is the measurement space. Heuristic functions are used for rating the
different candidate decisions according to these measurements. These ratings de-
scribe how well (or how likely) a decision (and its associated measurement) fits
in with the environment

hi: M->n: mi -^ hiirm), i = l,...,N, (1)

where TZ is the space of the possible rating values (mostly a subset of the real num-
bers). Each heuristic can be considered as a piece of knowledge, usually coming
from an expert, and is used for partially assessing the quality of the decision.
Heuristics are combined to form a global rating r, which is a measure of the qual-
ity of the decision

r = 0[/ii(mi(D)), /z2(m2(D)),..., hN{mN(D))l (2)

where O is the combination operator across all heuristics.

A. ROLE OF FUZZY LOGIC

Fuzzy logic is based on the theory of fuzzy sets and, unlike classical logic,
it aims at modeling the imprecise (or inexact) modes of reasoning and thought
processes (with linguistic variables) that play an essential role in the remarkable
human ability to make rational decisions in an environment of uncertainty and
imprecision. This ability depends, in turn, on our ability to infer an approximate
answer to a question based on a store of knowledge that is inexact, incomplete, or
not totally reliable. In fuzzy logic everything, including truth, is a matter of degree

Expert Systems in Soft Computing Paradigm 217

[24]. Zadeh has developed a theory of approximate reasoning based on fuzzy set
theory. By approximate reasoning we refer to a type of reasoning that is neither
very exact nor very inexact. This theory aims at modehng the human reasoning
and thinking process with hnguistic variables [33] in order to handle both soft and
hard data, as well as various types of uncertainties. Many aspects of the underly-
ing concept have been incorporated in designing decision-making systems [34].
Because fuzzy sets are a generalization of classical set theory, the embedding
of conventional models into a larger setting endows fuzzy models with greater
flexibility to capture various aspects of incompleteness or imperfection (i.e., defi-
ciencies) in whatever information and data are available about a real process. Let
us now explain the role of fuzzy logic in the management of uncertainty in expert
systems.

The knowledge base of an expert system contains human knowledge, most
of which is imprecise and qualitative. To describe situations where the boundary
between competing hypotheses is vaguely defined, human experts use terms such
as very likely, likely, more or less likely, low, medium, high, etc. Encoding this sort
of expertise by probabilities results in the loss of information about this vagueness
or imprecision. Using linguistic variables for such terms enables a knowledge
engineer to capture the essence of the experts' experience and judgment without
attempting to overquantify intuition. Moreover, facts about the world are rarely
known with certainty. Conventional rule-based systems, with two-valued logic,
usually evade this issue of partial matching.

In conventional statistical designs, the input patterns are quantitatively exact to
within the resolution of the sensors used to collect them. However, real processes
also may possess imprecise or incomplete input features. In such cases it may
become convenient to use linguistic variables and hedges [35] like low, medium,
high, very, more or less, etc. to augment or even replace numerical input feature
information. Any input feature value can be described in terms of some combina-
tion of membership values in the linguistic property sets low, medium, and high.

The importance of fuzzy logic to the management of uncertainty in expert sys-
tems mainly lies in its ability to deal with fuzzy quantifiers and modifiers. Fuzzy
logical systems allow a proposition or conclusion to range over fuzzy subsets
(like very true, more or less true, likely true, etc.) of truth-value sets character-
ized by their possibility distributions. Fuzzy modifiers like not, very, more or less,
extremely, slightly, much, a little, etc. can also be represented. A fuzzy certainty
factor is associated with the conclusion to analyze the transmission and cumula-
tion of uncertainty from the premises to the conclusion. Deduction of conclusions
from observations and rules in the knowledge base is made using either truth
value restriction or compositional rule of inference. Hence, partial match can oc-
cur between the antecedent of a rule and a fact supplied by the user.

In short, fuzzy logic or reasoning [24] provides a natural conceptual frame-
work for knowledge representation and inferencing from knowledge bases that
are imprecise, incomplete, or not totally reliable. The advantage of using fuzzy

218 Sankar K. Pal and Sushmita Mitra

reasoning is that it can yield an approximate answer even when probabiHstic the-
ories are not appUcable, as the latter often require idealized assumptions such as
the independence of evidence and the mutual exclusiveness and exhaustiveness of
hypotheses.

The range of the space of the measurement values in Eq. (1) can now be divided
into a number of classes, each characterized by a membership function and a
linguistic variable describing how well it fits the hypothesis that the candidate is
the solution to the problem. Mathematically,

hi'. M -> [0,1]^: m -^ hfim) = {^i\{m), fij{m),..., fif(m)), (3)

where K indicates the number of classes. Each linguistic term is a fuzzy set which
designates a category partially qualifying a candidate solution in the sense of the
considered heuristic (e.g., very likely, likely, not unlikely, etc.). The set of heuris-
tics forms a knowledge base of fuzzy rules whose antecedents are related to the
measurements or observations and whose consequent part determines the fuzzy
(partial) quality of the decision.

Fuzzy rule-based systems can be incorporated in fuzzy expert systems. Such a
system can be expressed by a set of fuzzy inference rules. In each rule, there is a
premise and a consequence. The premise is described by a fuzzy proposition and
the consequence can be a fuzzy conclusion. A typical fuzzy inference rule for an
A^-input ^-output system can be expressed as

If jci is Aii,X2 is Af2,... ,XN i^ AIM,

then yi is Bn, y2 is ^/2, • • •, yM is BIK,

where X = [xj, j = 1, 2 , . . . , A/̂} e TZ^ are the inputs to the fuzzy system,
Y = [yj, j = 1,2,..., K] e IZ^ are the outputs, and Aij, j = 1,2, ...,N, and
Bij, j = 1, 2 , . . . , A', are fuzzy subsets, such that 5/j = An 0A/20-•-OA/AT and
O is a fuzzy compositional operator. Thus a fuzzy rule-based system implements a
mapping TZ^ -> TZ^. Fuzzy inference methods are algorithms that deduce results
from the inference rules and the presented inputs. Note that the consequent part
of the rules can also be represented by scalars or membership values iJij(m), j =
1,2,..., K, where m refers to the measurement of the input variable x. These
rules constitute the knowledge base of the fuzzy expert system.

The various approaches in fuzzy inferencing for expert systems include the
approximate analogical reasoning based on similarity measures by Turksen and
Zhong [36], the problem reduction method of Ishizuka et al [37], modeling of
physicians' decision processes by Esogbue and Elder [38], and inferencing in
the framework of inflammatory protein variations by Sanchez and Bartolin [39]
(using weighting). Wang and Mendel [40] developed a slightly different method
for creating a fuzzy rule base made up of a combination of rules generated from
numerical examples and linguistic rules supplied by human experts. The input and

Expert Systems in Soft Computing Paradigm . 219

M H ^ R a number o r a l i s output domain spaces are d i v W W I ^ a number oH^pis t ic subspaces. Human
intervention is sought to assign degrees to the rules, and conflicts are resolved by
selecting those rules yielding the maximum of a computed measure corresponding
to each linguistic subspace. For other details on fuzzy expert systems, one may
refer to the standard Uterature [23,25].

B. USE OF CONNECTIONIST MODELS

The various uncertainty management schemes of traditional expert systems
share some conmion problems. For example, a willing human expert able to ac-
curately quantify expertise is needed. The transfer of the knowledge takes place
gradually through many interviews between the expert and the system, and is
therefore very time consuming. Usually humans are prone to be easily biased
and thus the quality of knowledge extracted from the experts depends greatly on
the methods used for assessment. Moreover, large knowledge bases need to be
searched quickly and it is also very important to check that this knowledge base
remains consistent as more information is accumulated. It would therefore be
welcome if knowledge assessment could be automated by freeing it from human
intervention, thereby avoiding human bias and subjectivity.

It is worth mentioning that the most difficult, time-consuming, and expensive
task in building an expert system is constructing and debugging its knowledge
base. In practice, the knowledge base construction can be said to be the only real
task in building an expert system considering the proliferating presence of expert
shells. Several approaches have been explored for easing this knowledge acquisi-
tion bottleneck.

Connectionist expert systems [26] offer an alternative approach both to the
knowledge base construction and to the inferencing phase, providing interaction
with the user accompanied by justification(s) of the conclusion(s) reached. Rules
are not required to be supplied by humans. Instead, the connection weights of
a trained neural network encode among themselves, in a distributed fashion, the
information conveyed by the input-output combinations of the training set. The
problems faced by traditional expert systems regarding the difficulties in normal-
izing across different experts' scales, conversion from human expressions to nu-
merical terms, bias of the expert(s), generation of contradictory rules by the ex-
perts, etc., may be overcome here. The use of the learning technique of neural
networks enables the model to extract the information inherent in the data (which
is not utilized in traditional models) and allows dynamical adjustments to changes
in the environment. It also enables one to handle a complicated environment for
which either no mathematical model exists or, even if it exists, is so strongly non-
linear that a design method does not exist. Besides, the various characteristics
of neural nets, namely, generalization, tolerance to noise, graceful degradation at

220 Sankar K. Pal and Sushtnita Mitra

the border of the domain of expertise, abiUty to discover new relations between
variables, etc., are built in and hence can be exploited by the connectionist expert
systems. A detailed review is provided in Section III.

Let us now provide a mathematical formulation of a layered neural network
that can be used for constructing a connectionist expert system. A neuron can be
depicted as an information-processing element which receives an n-dimensional
input vector

X(t) = [xi(t),X2(t),.,,,Xn(t)]eTV (4)

and yields a scalar neural output y{t) e TZ^ at instant t (which can correspond
to a pattern presentation in one epoch). The input vector, X(t) e TZ^, represents
the signals being transmitted from the n-neighboring neurons (including the self-
feedback signal) and/or the outputs (measurements) from the sensory neurons.
Mathematically, the information-processing ability of a neuron can be represented
as a nonlinear mapping operation

X(t)eTV' -^y(t)en\ (5)

A confluence operation 0 essentially provides a measure of similarity between the
neural input vector X(t) (new information) and the synaptic weight vector W(0
(accumulated knowledge base). Generally summation and product operations are
used in this stage. A nonlinear activation function then performs a nonlinear map-
ping on the similarity measure through a nonlinear activation function V^[]. Hence

yit) = xlr[W(t)^X(t)l (6)

A neural network can be viewed as a collection of such neurons connected to each
other according to a specific topology. It therefore performs a mapping from the
«-dimensional input space (input layer) to a i^-dimensional output space (output
layer) such that

X(0 G T I " ^ Y(0 G7^^, (7)

where K refers to the number of output classes in case of a classifier.
The supervised learning uses a collection of Â input-output training pairs
{(X(0, D(0), t = 1 , . . . , A }̂, where X(0 e TV" and D(0 € 7^^ are the in-
put pattern and desired output, respectively. The objective is to optimize a cost
function

N N

£iV = 5^^r = X]^(Y(0,D(0), (8)
r= l t=l

where d(-) is a distance in TZ^ and Y(t) is the computed output given by Eq. (7).
A conmion choice, which simplifies the mathematical analysis, is that of con-

Expert Systems in Soft Computing Paradigm 221

sidering the distance induced by an Lp norm (1 < /? < oo). The error-based
gradient-descent learning algorithm for weight updating is represented as

W(r + 1) = W(0 + riAW(t) (9)

for the Nyi) connection weights of the neural net.
Connectionist expert systems use the connection weights W of the trained neu-

ral network [Eq. (9)] to form the knowledge base. The magnitudes of these con-
nection weights are used to generate rules to justify any decision. The maximum
weighted paths from the output layer to the input layer are used in the process
[26,41]. Note that in traditional expert systems the knowledge base is formulated
in terms of rules by interaction with the experts. On the other hand, here the rules
may be automatically extracted from the trained connection weights that form the
knowledge base. This procedure will be discussed in more detail in Sections III
andlV.B.

C. NEED FOR INTEGRATING FUZZY LOGIC

AND N E U R A L N E T W O R K S

Both neural networks and fuzzy systems are trainable dynamic systems that
estimate input-output functions. They estimate a function without any mathemat-
ical model and learn from experience with sample data. A fuzzy system adaptively
infers and modifies its fuzzy associations from representative numerical samples.
Neural networks, on the other hand, can blindly generate and refine fuzzy rules
from training data [42]. Fuzzy systems and neural networks also differ in how
they estimate sampled functions, the kind of samples used, and how they rep-
resent and store these samples. Fuzzy systems estimate functions with fuzzy set
samples (A/, Bi), whereas neural systems use numerical point samples (x/, yt),
where both kinds of samples reside in the input-output product space X x F.
Hence the input-output mapping corresponds to / : X ^- F in both cases.

Fuzzy theory is considered to be advantageous in the logical field, and in han-
dling higher-order processing easily. The higher flexibility is a characteristic fea-
ture of neural nets produced by learning, and hence this suits data-driven process-
ing better [43].

For the last few years, researchers all over the world [5, 6, 44-46] have been
trying to combine the merits of fuzzy and neural approaches under the heading
neuro-fuzzy computing for building more intelUgent decision-making systems.
This enables one to incorporate the generic advantages of artificial neural net-
works like massive parallelism, robustness, and learning in data-rich environ-
ments into the expert system model. The modeling of imprecise and qualitative
knowledge as well as the transmission of uncertainty are possible through the use
of fuzzy logic. Besides this generic advantage, the neuro-fuzzy approach provides

222 Sankar K, Pal and Sushmita Mitra

some application-specific merits in the following way. For example, in the case
of classification-type connectionist expert systems, one is typically interested in
exploiting the capability of neural nets in generating the required (linearly non-
separable) decision regions. The uncertainties involved in the input description
and output decision are also taken care of by the concept of fuzzy sets. It is ob-
served that in certain cases a neuro-fuzzy model performs better than either a
neural network or a fuzzy system considered individually [47,48].

Keeping in mind Eqs. (4)-(9) defining a neural net, let us now provide a math-
ematical formulation of a layered fuzzy neural net that can be used for designing
a neuro-fuzzy expert system. A fuzzy neural network can incorporate fuzziness at
the input-output level, in the connection weights, in the confluence operation, or
in the activation function. Let the fuzzy input and output vectors be represented
as X and Y, respectively, where these correspond to fuzzy numbers or intervals
or the augmented space consisting of linguistic terms. Similarly, the connection
weight vector may be represented as W. Arithmetic operations like fuzzy addi-
tion and fuzzy multiplication can be used in the new confluence operation 0 . The
nonlinear activation function x// can incorporate fuzzy logic operations like and,
or, and not. Hence the resultant mapping from the /i-dimensional input space to
the A'-dimensional output space becomes

X(0 en^ -^ Y(0 e n^, (10)

where a single fuzzy neuron implements the nonlinear operation

y(t) = Hm)^Xit)]. (11)

The training data {(X(0,6(0), X(0 e 7^", D(0 e 7^^, t = l,...,N]is used
to optimize the cost function

£;v = ^ J (Y (0 , D (0) , (12)

t=i

where J () is a distance in TZ^. The learning algorithm now becomes

W(r + 1) = W(0 -h rjAWit) (13)
for the Nyu connection weights of the fuzzy neural net.

Neuro-fuzzy expert systems use the connection weights W of the fuzzy neural
net [Eq. (13)] to form the corresponding knowledge base. The connection weights
encode the knowledge base of the problem during training by using the training set
{X(r), D(Ok = 1' •^-' ^ } ' where the implemented mapping is W ^ Tl^. Note
that the antecedent X(r) and the consequent D(0 may involve linguistic terms, or
fuzzy intervals/numbers, or fuzzy membership values in [0,1]. Fuzzy rules may
be extracted using the connection weights of the network by backtracking along
the maximum weighted paths [41].

Expert Systems in Soft Computing Paradigm 223

D. UTILITY OF KNOWLEDGE-BASED NETWORKS

Recently, there have been some attempts to improve the performance of ex-
pert systems by using knowledge-based networks (KBNs) which use the domain
knowledge to determine the initial structure of the network. This process helps
in reducing the searching space and time while the network traces the optimal
solution. Such a model has the capability of outperforming a standard multilayer
perceptron (MLP) as well as other related algorithms including symbolic and nu-
merical ones [27, 28]. However, in the absence of knowledge, one has to resort
to a purely data-driven mode of learning as in simple connectionist expert mod-
els. When the initial knowledge fails to explain many instances, additional hidden
units and connections need to be added (often empirically). The initial encoded
knowledge may be refined with experience by performing learning in the data
environment. The resulting networks generally involve less redundancy in their
topology.

Let us provide here a mathematical formulation in line with the modeling in
Eqs. (4)-(9). The knowledge-based nets implement a mapping

X'(0 G TV"' -^ Y(0 e n^ (14)

from the n'-dimensional input space to the ^-dimensional output space, where
n' <n and

y{t) = i;[W{t)^^{t)\ (15)

The training data { (r (0 , D (0) , X'(0 ^ Tl""'. D(0 G 7e^, r = 1 , . . . , A/̂} is
used to optimize the cost function Ef^ of Eq. (8). The learning algorithm becomes

W\f -f 1) = W'(0 + r?AW'(0 (16)

for the Â ^ connection weights such that Â ^ < N^^j of Eq. (9).

1. Incorporating Fuzziness

Some attempts on using fuzzy sets for the design of knowledge-based systems
have also been recently reported. Analogous to the idea of Eqs. (10)-(13), the
mapping from the n'-dimensional input space to the AT-dimensional output space
can be represented here as

x'(0 G n^' -^ Y(o G n^, (17)

where h' <h and

y{t) = iA[W'(O0X'(O]. (18)

224 Sankar K. Pal and Sushmita Mitra

The training data {(X^(0,6(0), X'(t) e n^\ D(0 G TZ^, t = I,,.., N] is
used to optimize the cost function EN of Eq. (12). The learning algorithm be-
comes

y/\t + 1) = W'(0 + rjA\V\t) (19)

for the Â ^ connection weights such that Â ^ < Nyj of Eq. (13).

2. Using Rough Sets and Genetic Algorithms

One of the major problems in connectionist/neuro-fuzzy expert system design
is the choice of the optimal network structure. This has an important bearing on
any performance evaluation. Moreover, the models are generally very much data
dependent and the appropriate network size also depends on the available training
data. Various methodologies developed for selecting the optimal network struc-
ture include growing and pruning of nodes/links, employing genetic search, and
embedding initial knowledge in the network topology. The last approach has been
investigated to some extent in knowledge-based networks. The soft computing
tools, used effectively in this connection, are rough sets [21, 22] and genetic al-
gorithms [19, 20].

The theory of rough sets [21] has recently emerged as another major math-
ematical approach for managing uncertainty that arises from inexact, noisy, or
incomplete information. It has been investigated in the context of expert systems,
decision support systems, machine learning, inductive learning, and various other
areas of application. It is found to be particularly effective in the area of knowl-
edge reduction. The focus of rough set theory is on the ambiguity caused by
limited discemibility of objects in the domain of discourse. The intention is to
approximate a rough (imprecise) concept in the domain of discourse by a pair
of exact concepts, called the lower and upper approximations. These exact con-
cepts are determined by an indiscemibility relation on the domain, which, in turn,
may be induced by a given set of attributes ascribed to the objects of the domain.
These approximations are used to define the notions of discemibility matrices,
discemibility functions [49], reducts, and dependency factors [21], all of which
play a fundamental role in the reduction of knowledge.

Genetic algorithms (GAs) [19, 20] are randomized search and optimization
techniques guided by the principles of evolution and natural genetics. They are
efficient, adaptive, and robust search processes, producing near optimal solutions
and have a large amount of implicit parallelism. The algorithm starts the search
from an initial population of chromosomes, encoded as bit strings, and applies
several genetic operators like selection, crossover, and mutation (over a sequence
of generations) to finally arrive at a globally optimal solution based on a fitness
function. Unlike conventional search techniques, GAs work simultaneously on
multiple points in the search space. Owing to their stochastic character, they have

Expert Systems in Soft Computing Paradigm 225

a very low chance of getting stuck at local minima. The criterion of "survival of
the fittest" provides evolutionary pressure for populations to grow with increas-
ingly fit individuals.

Before we describe various neuro-fuzzy and other hybrid expert systems in
Sections IV and V, let us provide a brief survey on existing connectionist (non-
fuzzy) expert systems, including those using knowledge-based networks, for the
convenience of the reader. Note that all the hybrid models to be described here
have their origin in connectionist expert systems.

III. CONNECTIONIST EXPERT SYSTEMS:
A REVIEW

Here we consider a few of the existing layered connectionist expert systems
modeled by Gallant [26], Saito and Nakano [50], Lacher et al [51], and PoU et al
[52]. The inputs and outputs consist of crisp variables in all cases. Generally the
symptoms are represented by the input nodes, whereas the diseases and possible
treatments correspond to the intermediate and/or output nodes [26,50]. The linear
discriminant network of [26] (dealing with sacrophagal problems) is generated
from the dependency information regarding the variables, which is provided by
the expert in the form of an adjacency matrix. This is then trained by the simple
pocket algorithm. The absence of hidden nodes and nonlinearity limit the utility
of the system in modeling complex decision surfaces. The multilayer network in
[50] is designed for detecting headache. A patient responds to a questionnaire
regarding his or her perceived symptoms and these constitute the input to the
network.

Lacher et al. [51] have designed event-driven, acyclic networks of neural ob-
jects called expert networks. The network is built under the commercial shell M. 1.
There are regular nodes and operation nodes (for conjunction and negation). In-
put weights are hard wired, whereas the output weights of a node are adaptive.
Antecedents of a disjunction in a rule are simplified to generate a set of individ-
ual rules before formulating the initial network architecture. The backpropagation
algorithm is modified to work in the event-driven environment, where both for-
ward and backward signals propagate in dataflow fashion. The form of the rules
(coarse knowledge) is tuned with the associated certainty factors (fine knowledge)
and the resultant network trained for better performance.

A novel approach to designing a modular connectionist expert system, called
Hypemet, has been reported by Poll et al. [52]. The feedforward network consists
of a reference-generating module, a drug compatibility module, and a therapy-
selecting module in order to simulate the physician's reasoning as closely as pos-
sible. The user-friendly system provides a graphics interface for easy handling as
well as verification of decisions. The model is implemented for diagnosing and

226 Sankar K. Pal and Sushmita Mitra

treating hypertension. The performance is good owing to the embedded modular-
ity of the network.

Rule generation is also possible for the models in [26, 50]. In [50] the doc-
tor is supplied with information regarding possible diagnoses based on output
node values. Relation factors, estimating the strength of the relationship between
symptom(s) and disease(s), are extracted from the network and used to help doc-
tors. Rules are generated from the changes in levels of input and output units; the
connection weights are not involved in the process. These rules are then used to
allow the patient to confirm the symptoms initially provided by him or her to the
system, in order to eliminate noise from the answers. The model in [26] incor-
porates inferencing/forward chaining, confidence estimation, backward chaining,
and explanation of conclusions by if-then rules. To generate a rule, the attributes
with greater inference strength (magnitude of connection weights) are selected
and a conjunction of the more significant premises is formed to justify the out-
put concept. Here, the user can also be queried to supplement incomplete input
information.

Ishikawa [53] demonstrates the extraction of rules from a network trained
by structural learning with forgetting with mushroom data. The nonredundant
network architecture, so generated, is examined to detect the regularities in the
training data. Omlin and Lee Giles [54] use trained discrete-time recurrent neu-
ral networks to correctly classify strings of a regular language. Rules defining
the learned grammar can be extracted from networks in the form of determinis-
tic finite-state automata (DFAs) by applying clustering algorithms in the output
space of recurrent state neurons. A heuristic is used to choose among the consis-
tent DFAs the model which best approximates the learned regular grammar.

An MLP-based model for the identification of electroencephalogram (EEG)
power spectra of rats in depression has recently been reported by Mitra et al. [55].
The input consists of frequency, represented both as individual values and as
nonoverlapping bands, normalized in the range [0, 1]. The output refers to the
control and depressed states. It has been observed that the role of exercise reverses
the effect of stress. Rules have also been generated in terms of the linguistic la-
bels small and large corresponding to the relative values of the features. Note that
this is slightly different from the crisp rules, indicating the presence or absence of
certain features (symptoms) as in [26, 50].

The knowledge-based models discussed here [27, 28, 56] involve crisp inputs
and outputs. The initial domain knowledge, in the form of rules, is mapped into
the multilayer feedforward network topology using binary link weights to main-
tain the semantics. Yin and Liang [56] have employed a gradually-augmented-
node learning algorithm to incrementally build a dynamic knowledge base capa-
ble of both acquiring new knowledge and releaming existing information. The
rules are explicitly represented among the condition nodes, rule nodes, and ac-
tion nodes and the algorithm gradually builds the multilayer feedforward net-

Expert Systems in Soft Computing Paradigm 227

work. This connectionist incremental expert model is used as an animal identifi-
cation system whose network structure is changed dynamically according to the
new environment or through human intervention. In Fu's model [27] hidden units
and additional connections are introduced appropriately when the network perfor-
mance stagnates during training using backpropagation. Weight decay, pruning of
weights, and clustering of hidden units are incorporated to improve the general-
ization of the network.

Towell and Shavlik [28] have designed a hybrid learning system for problems
from molecular biology. Disjunctive rules are rewritten as multiple conjunctive
rules while building the network structure. Nodes and links are incorporated, upon
instructions from the user, to augment the knowledge-based module. Expansion
of the network guided by both the domain theory and training data has been re-
ported by Opitz and Shavlik [57]. Dynamic addition of hidden nodes is made
by heuristically searching through the space of possible network topologies, in a
manner analogous to the adding of rules and conjuncts to the symbolic rule base.

A way of using the knowledge of the trained neural model to extract the re-
vised rules for the problem domain is described in [27, 58]. Meaningful rules
can be extracted from the knowledge-based network in refined form by employ-
ing clustering, averaging, eUmination, optimization, and simpUfication [58]. The
algorithm considers groups of links as equivalence classes, thereby generating a
bound on the number of rules rather than establishing a ceiling on the number of
antecedents. Note that this approach differs from that in [50], where a breadth-
first search is employed to exhaustively find those input settings that cause the
weighted sum to exceed the bias at a node.

IV. NEURO-FUZZY EXPERT SYSTEIMS

This section provides a review on neuro-fuzzy models for inferencing and rule
generation, with the objective of generating expert systems. A comparative anal-
ysis of the basic features of these models with those of the traditional and connec-
tionist (nonfuzzy) versions is provided in Table I.

A. WAYS OF INTEGRATION

The state of the art for the various techniques of combining neural networks
and fuzzy sets involves synthesis at various levels. We categorize the different
fusion methodologies, made so far, as follows [59].

1. Incorporating fiizziness into the neural network framework. This involves
fuzzifying the input data, assigning fuzzy labels to the training samples.

228 Sankar K. Pal and Sushmita Mitra

Table I

Comparative Study of Various Expert Systems

Expert system
Connectionist
expert system

Neuro-fuzzy
expert system

Knowledge-based
connectionist/neuro-fuzzy

expert system

Knowledge
base

Knowledge ac-
quisition and
representation
in the form of
rules, frames,
semantic nets,
or belief net-
works

Connection
weights of
trained neural
net that were
initialized with
small random
values

Connection
weights of
trained fuzzy
neural net that
were initiaUzed
with small
random values

Connection weights of
trained nonfuzzy/fuzzy
neural net that were
initialized with crude
domain knowledge in
rule form with binary Unk
weights [27, 28, 56, 80-
83], a priori class infor-
mation and distribution
of pattern points [85]

Knowledge
refinement

Inferencing

Rule gener-
ation

Addition of new
knowledge
(say, as new rules)

Matching facts
with the exist-
ing knowledge
base

—

Empirical addi-
tion of hidden
nodes/links

Presentation of
crisp input.
forward pass,
and generation
of crisp output

Crisp rules
obtained during
backward pass
using changes
in levels of
input and out-
put units [50],
magnitude of
connection
weights [26, 55]

Empirical addi-
tion of hidden
nodes/links

Presentation of
fuzzy input.
forward pass,
and generation
of fuzzy output

Fuzzy rules
obtained during
backward pass
using node
activations and
Unk weights
[41, 70-75]

Network optimization us-
ing growing and pruning
of nodes/links, based on
training data and addi-
tional knowledge [27, 28,
56, 57, 85]

Presentation of input, for-
ward pass, and generation
of output

Rules obtained during
backward pass
[27, 58, 81]; negative
rules also possible [85]

possibly fuzzifying the learning procedure, and obtaining neural network
outputs in terms of fuzzy sets [60,61].

2. Designing neural networks guided hy fuzzy logic formalism. Neural
networks are designed to implement fuzzy logic and fuzzy decision
making, and to realize membership functions representing fuzzy sets
[62,63].

Expert Systems in Soft Computing Paradigm 229

3. Changing the basic characteristics of the neurons. Neurons are designed
to perform various operations used in fuzzy set theory (like fuzzy union,
intersection, aggregation represented by andy or, and hybrid operators)
instead of the standard multiplication and addition operations [64, 65].

4. Making the individual neurons fuzzy. The input and output of the neurons
are fuzzy sets and the activity of the networks involving the fuzzy neurons
is also a fuzzy process [66].

5. Using measures offuzziness as the error or instability of a network. The
fuzziness/uncertainty measures of a fuzzy set are used to model the error
or instability or energy function of the neural-network-based system [67].

As the existing neuro-fuzzy expert systems fall under categories 1 and 3 only, we
shall not be concerned with the remaining groups (dealing mainly with classifica-
tion or control problems) in this discussion.

B. VARIOUS IVIETHODOLOGIES

Neuro-fuzzy expert systems use the connection weights of trained fuzzy neu-
ral nets for encoding the knowledge base, thereby enabling one to incorporate
the advantages of fuzzy set theory into the connectionist expert system model.
Besides the generic advantages of neural networks and fuzzy systems, like par-
allelism, robustness, adaptivity, and handling of uncertainty, one can incorporate
their application-specific merits in this paradigm. For example, the capability of
neural nets in generating linearly nonseparable decision regions can be exploited.
Moreover, the modeling of uncertainty in the input description and output decision
can be tackled by the concept of fuzzy sets. As an illustration of the characteristics
of neuro-fuzzy expert systems, the models by Hayashi [68], Hudson et al. [69],
Sanchez [61], Mitra and Pal [41], and Romaniuk and Hall [70] are described here.
Note that while the last model falls under category 3 of the fusion methodologies,
the remaining models pertain to category 1.

Yoshida et al. [71] have defuzzified real-life fuzzy data, using the level set rep-
resentation, to produce the crisp inputs {+1,-1 ,0} required by the distributed
single-layer perceptron-based model trained with the pocket algorithm for diag-
nosing hepatobiliary disorders. All contradictory training data are excluded, as
these cannot be tackled by the model. In Hayashi's extension [68], the input layer
consists of both fuzzy and crisp cell groups, whereas the output is modeled only
by fuzzy cell groups. The crisp cell groups are represented by m cells taking on
two values in {(+1, + 1 , . . . , +1), (—1, — 1 , . . . , —1)}. Fuzzy cell groups, on the
other hand, use binary m-dimensional vectors, each taking on values in {+1, — 1}.
Linguistic relative importance terms like very important and moderately impor-
tant are allowed in each proposition; linguistic truth values like completely true,
true, possibly true, unknown, possibly false, false, and completely false are also

230 Sankar K. Pal and Sushmita Mitra

assigned by the domain experts depending on the output values. Multiple correct
pattern classes, using different linguistic truth values, are possible.

Hudson et al [69] use input nodes that simply represent the data values for
signs, symptoms, and test results (may be continuous or discrete). The interactive
nodes account for the interactions which may occur between these parameters.
A feedforward neural network model is used for detecting carcinoma of the lung.
Information is extracted directly from the accumulated data and then combined
with a rule-based expert system incorporating approximate reasoning techniques.
The learning method is an adaptation of iht potential function approach to pattern
recognition and is used to determine the weighting factors as well as the relative
strengths of rules for two-class problems.

Sanchez [61] has associated two types of connection weights, namely, primary
linguistic weights and secondary numerical weights, to generate the knowledge
base for a biomedical application {inflammatory protein variations) using a feed-
forward network. Triangular membership functions like negative large, negative
medium, negative small, approximately zero, positive small, positive medium, and
positive large; or, decreased, normal, and increased account for the linguistic
weights, whereas the quantitative weights lie in the range [0, 1]. The linguistic
weights are tuned according to the information provided from the input-output
examples, whereas the numeric weights and the network topology are determined
by solving fuzzy relation equations.

A cell recruitment learning algorithm, capable of forgetting previously learned
facts by learning new information, has been employed by Romaniuk and Hall [70]
to build a fuzzy connectionist expert system for determining the creditworthiness
of credit applicants. The network consists oi positive and negative collector cells
along with unknown and intermediate cells and can handle^zzy or uncertain data.
Fuzzy functions like maximum, minimum, and negation are applied at the neuronal
levels depending on the corresponding bias values. This incremental learning al-
gorithm can be used either in conjunction with an existing knowledge base or
alone.

Extraction of fuzzy if-then production rules is possible in [70-72], using a
top-down traversal involving analysis of the node activations, their bias, and the
associated link weights. Rhee and Krishnapuram [72] have reported a method for
rule generation from minimal approximate fuzzy aggregation networks. They esti-
mate the linguistic labels and the corresponding triangular membership functions
for the input features from the training data. Hybrid operators with compensatory
behavior, whose parameters can be learned during gradient descent to estimate
the type of aggregation, are employed at the neuronal level. Pruning of redun-
dant features and/or hidden nodes helps in generating appropriate rules in terms
of and-or operators that are represented by these hybrid functions.

Mitra and Pal [41] have reported the use of a fuzzy MLP for classification
and rule generation. The input is represented in terms of jr-functions correspond-

Expert Systems in Soft Computing Paradigm 231

ing to the linguistic properties low, medium, and high. Handling of inputs in
numeric, linguistic, and set forms is possible. The output is in terms of fuzzy
class membership values and enables efficient handling of overlapping pattern
classes. The antecedent parts of rules are generated by backtracking along the
maximum-weighted connection paths of the trained network. The consequent part
is determined from a certainty measure which expresses the confidence (belief)
of an output decision. The node excitations corresponding to a test pattern de-
termines the appropriate if-then parts of a rule generated to justify an inferred
decision. Note that this investigation provides a basic module for designing a
classification-type connectionist expert system. The rules thus obtained can also
constitute the knowledge base of a traditional expert system in the same applica-
tion domain. Here (unlike the other models) both the antecedent and the conse-
quent parts of these rules are provided in linguistic (or natural) form. Linguistic
hedges/modifiers like very, more, or less and not can be represented as antecedent
clauses.

Consider the simple three-layered network given in Fig. 2 demonstrating a sim-
ple rule generation instance regarding class 1 [41]. A sample set of connection
weights M;'?-, input activation y?, and the corresponding linguistic labels are de-
picted in the figure. The solid and dotted-dashed paths (that have been selected)
terminate at input neurons is and in, respectively. The dashed lines indicate the

^

/
/

/
/

/
/ /

%' §
/

/

/ ^ ^ - " '

v̂ *̂"̂^
\ ^ v \ ^

\ \ "
\ \

<̂ . \

X
X \

\'P^'
7

0.49 0.97
L M
\ ^

\ /
I

^ Class 1
^r 'N

"v.

y > ^

^ / / / / / i \
^ ^ / / / / \ >w '^ / / /

\ ^ — ^^ ^ / 1

\ N.' ^ c / / /<" ^̂ ^ >C '
A >\ ^ ^ X ^ / ^^ ' ^^

0.49 0.02
H L

_ y V

• \ : \
I \
! O \ (^

1 \

i \
. i \

! ^ < ^ \

^0 >b
0.6 0.95
M H

^ ^ /
•s^

F2

Selected paths with
neurons i^
Selected paths with
neurons f„
Paths not selected

Input pattern

Figure 2 Example to demonstrate rule generation scheme by backtracking.

232 Sankar K. Pal and Sushmita Mitra

paths not selected, using the w^-- and yf values during backtracking. We select
only those maximum weighted paths from the output to the input layer, such that
all neurons lying along them have y^ > 0.5. Let the certainty measure for the
output neuron under consideration be 0.7. This corresponds to the label likely in
the consequent part. Then the rule generated by the model in this case to justify
its conclusion regarding class 1 would be

If Fi is very medium AND F2 is high, then likely class 1.

We generate clauses for an if-then rule until the net path weights wetio satisfy the
relation

y ^ wetio > 2 22 ^^^/o.

Here the net path weights are found to be 2.7 (= 1.6+1.1) and 1.05 for the is
and /„ neurons, respectively, such that 2.7 > 2 * 1.05. The modifier very (cor-
responding to Fi) is obtained by selecting the one having the minimum distance
from the input vector. Similarly, in the case of F2, modifiers are required using
this minimum distance criterion.

The user can be queried in case of unknown or unavailable input features. Han-
dling of missing or incomplete inputs is also possible. AppUcations have been
made for vowel recognition and detection of Kala-azar (a tropical disease). This
has been extended in [73] to design a neuro-fuzzy expert system for diagnosing
hepatobiliary disorders. Here the linguistic labels at the input can be automati-
cally tuned from the training data.

Another interesting application has also been reported [74] using the unsuper-
vised, self-organizing Kohonen net. This approach is completely different from
the fuzzy Kohonen net, in unsupervised mode, as reported in [62, 63]. The net-
work has been modified to incorporate linguistic TT-functions and contextual class
information at the input, thereby enabling it to function under partial supervision.
Unlike the other methods (involving layered feedforward nets under full supervi-
sion), this fuzzy version of the Kohonen net has been effectively used for classifi-
cation, querying, and rule generation. Note that the three models [41, 73, 74] fall
under category 1 of the fusion methodology.

A fourth model, using logical and-or functions (in terms of product-
probabilistic sum and max-min) at the neuronal level, has been reported [75]. This
is grouped under category 3. It has been observed that more meaningful rules (in
terms of and-or clauses) can be generated here in case of simpler problems, al-
though the classification performance is better in case of the more generalized
sigmoidal function of [41, 73].

It is worth mentioning that all these models incorporate overlapping linguistic
labels, represented by TT-functions, at the input. This is different from the ap-
proach of Keller et al [76] where trapezoidal possibility distributions, sampled

Expert Systems in Soft Computing Paradigm 233

at discrete points, are used to represent fuzzy linguistic terms and modifiers. The
concept of class membership helps the models to tackle overlapping and fuzzy
pattern classes. This approach is an extension of the work of Keller and Hunt [60]
for multiclass problems using multilayer networks. Another approach for fuzzifi-
cation at input and output has been reported by Ishibuchi et al. [77] using interval
vectors. Although this is different, it will not be elaborated here as it does not
cover the domain of connectionist expert system design or rule generation. More-
over, the conventional triangular membership functions used in control problems
are also slightly different from the TT-functions. It is to be noted that the triangu-
lar functions can be used in place of the more general continuous TT-functions if
desired.

C. USING FUZZY KNOWLEDGE-BASED NETWORKS

A brief survey of this field is provided here based on the studies of Masuoka
et al. [78], Kasabov [79], Kosko [80], Machado and Rocha [81], Pedrycz and
Rocha [82], and Hirota and Pedrycz [83]. The first three approaches fall under
category 1 of the fusion methodologies, whereas the rest can be grouped under
category 3.

Knowledge extracted from experts in the form of membership functions and
fuzzy rules (in and-or form) is used to build and preweight the neural net struc-
ture which is then tuned using training data. The model by Masuoka et al [78]
consists of the input variable membership net, the rule net, and the output variable
net. Kasabov [79] uses three neural subnets, namely, production memory, work-
ing memory, and variable binding space to encode the production rules, which
can later be updated. A fuzzy signed digraph with feedback, termed the fuzzy
cognitive map, has been used by Kosko [80] to represent knowledge. An additive
combination of augmented connection matrices is employed to include the views
of a number of experts for generating the knowledge network.

Machado and Rocha [81] have used a connectionist knowledge base involving
fuzzy numbers at the input layer, fuzzy and at the hidden layers, and fuzzy or at
the output layer. The hidden layers chunk input evidence into clusters of informa-
tion for representing regular patterns of the environment. The output layer com-
putes the degree of possibility of each hypothesis. The initial network architecture
is generated using knowledge graphs elicited from experts by the application of
the knowledge acquisition technique of [84]. The experts express their knowledge
about each hypothesis of the problem domain by selecting an appropriate set of
evidence and building an acyclic weighted and-or graph to describe how these
must be combined to support decision making.

Pedrycz and Rocha [82] have used basic aggregation neurons {and/or) and ref-
erential processing units (matching, dominance, and inclusion neurons) to design

234 Sankar K. Pal and Sushmita Mitra

knowledge-based networks. The inhibitory and excitatory characteristics are cap-
tured by embodying direct and complemented input signals and fully supervised
learning is employed. Another related approach by Hirota and Pedrycz [83] has
incorporated the use of fuzzy clustering for developing the geometric constructs
leading to the design of knowledge-based networks.

Most of these models are mainly concerned with the encoding of initial knowl-
edge by a fuzzy neural network followed by refinement during training. Extraction
of fuzzy rules in this framework has been attempted in [78, 79, 81]. Inference, in-
quiry, and explanation are possible during consultation in [81]. Mitra et al [85]
have recently designed a knowledge-based neuro-fuzzy system for classification
and rule generation. This approach falls under category 1 of the fusion method-
ologies. Here crude initial domain knowledge is encoded among the connection
weights using the a priori class information (and their complements) and the dis-
tribution of pattern points in the feature space. An accurate estimation of the links
connecting the output, and hidden layers (in terms of the preceding layer link
weights and node activations) is provided. The input, output, and learning scheme
are similar to that in [41]. Node growing and link pruning are incorporated to gen-
erate the optimal network architecture. Inferencing, querying, and rule generation
are demonstrated (as in [41]) for recognizing vowels and diagnosing hepatobil-
iary disorders. Negative rules, indicative of cases where a pattern does not belong
to a class, can also be generated. This is specially suitable in the ambiguous cases
where positive rules (dealing with the belongingness of a pattern to a particular
class) cannot be obtained. The performance of the knowledge-based net is seen to
be superior as compared to the models incorporating no initial knowledge.

V. OTHER HYBRID JVIODELS

The relevance of rough sets and genetic algorithms to the design of expert
systems has been described in Section II.D.2. As mentioned before, the literature
on various approaches along this line is scarce as compared to neuro-fuzzy expert
systems. However, we provide here some of the attempts recently reported in this
area. A few methods related to expert system design are also described.

A. ROUGH SETS

Many have looked into the implementation of decision rules extracted from op-
eration data using rough-set formalism, especially in problems of machine learn-
ing from examples and control theory [22]. In the context of neural networks, an
attempt at such an implementation has been made by Yasdi [86]. The intention

Expert Systems in Soft Computing Paradigm 235

was to use rough sets as a tool for structuring the neural networks. The methodol-
ogy consisted of generating rules from training examples by rough-set learning,
and mapping the dependency factors of the rules into a single layer of connection
weights of a four-layered neural network. The input and output layers involved
fixed binary weights. Max, min, and or operators were applied at the hidden nodes.
Application of rough sets in neurocomputing has also been made in [87]. How-
ever, in this method, rough sets were used for knowledge discovery at the level of
data acquisition (i.e., in preprocessing of the feature vectors) and not for structur-
ing the network.

Banerjee et al [18] have proposed an integration of rough sets and fuzzy
neural networks for designing a knowledge-based system. Rough-set-theoretic
techniques are utilized for extracting crude domain knowledge that is encoded
among the connection weights. Methods are derived to model (i) convex deci-
sion regions with single-object representatives and (ii) arbitrary decision regions
with multiple-object representatives. A three-layered (fully adaptive) fuzzy MLP
is considered. The feature space gives the condition attributes and the output
classes the decision attributes, resulting in a decision table. This table, however,
may be transformed, keeping the complexity of the network to be constructed in
mind. Rules are then generated from the (transformed) table by computing relative
reducts. The dependency factors of these rules are encoded as the initial connec-
tion weights of the fuzzy MLP, propagating their effect in a top-down manner in
proportion to the fan-in at any particular neuron. The network is next trained to
refine its weight values. The effectiveness of the model is demonstrated on both
real-life and artificial data. The knowledge encoding procedure, unlike most other
methods [27,28], involves a nonbinary weighting mechanism based on a detailed
and systematic estimation of the available domain information. It may be noted
that the optimal number of hidden nodes is automatically determined from the
syntax of the generated rules.

Figure 3 illustrates an example demonstrating the knowledge encoding proce-
dure [18] for class C2 using a three-layered network. Let us consider the reduct
set 5 = (Li A Ml A M3). Then the discemibility functions f^ (in conjunctive
normal form) for the six classes / = 1 , . . . , 6, obtained from the discemibility
matrix, are

fj,' - Li A (Ml V M3), /^^ = Li A (Ml V M3), fj,' = Ml A M^,

f^' = Li A Ml A M3, /^^ = Ml A M3, fj,' = Li A Ml A M3.

The dependency factors dft for the resulting rules r ,̂ / = 1 , . . . , 6, are 2/3,
2/3, 1,1,1,1. These factors are encoded as the initial connection weights of the
fuzzy MLP. Consider rule r2, namely, L\ A (Mi V M3) -^ C2, with dependency
factor df2 = 2/3. Here we require two hidden nodes corresponding to class C2
to model the operator A. The two links from the output node representing class
C2 to these two hidden nodes are assigned weights of J/2/2 to keep the weights

236 Sankar K. Pal and Sushmita Mitra

o
A Ml Hi L2 M2 H2 L3 M3 H3

Figure 3 Example to demonstrate the initial weight encoding scheme using rough-set-theoretic tech-
niques.

equally distributed. The signs of the weights are set to positive (negative) accord-
ing to the values 1 (0) of the corresponding entries in the attribute value table. The
attributes Mi and M3, connected by the operator v, are combined at one hidden
node with link weights of —df2/4, df2/4, respectively, whereas the link weight
for attribute L1 is clamped to —df2/2 (because there is no further bifurcation). All
other connection weights are assigned very small random weights 6, lying in the
range [—0.005, +0.005]. The resultant network is finally refined during training
using a set of labeled samples.

B. GENETIC ALGORITHMS

Genetic algorithms have found various applications in fields like pattern recog-
nition, image processing, and neural networks [88]. They have been used in deter-
mining the optimal set of connection weights [14] as well as the optimal topology
of a layered neural network [89, 90]. These hold significance for designing con-
nectionist expert systems. Pal and Bhandari [14] incorporated a new concept of
nonlinear selection for creating mating pools and a weighted error as a fitness
function. A fixed-topology MLP was used to determine the optimal solution for
selecting a decision boundary for the pattern recognition problem. Maniezzo [89]
used variable-length chromosomes, incorporating the concept of presence and ab-
sence bits, for encoding various topologies of an MLP. The concept of a GA sim-

Expert Systems in Soft Computing Paradigm 237

plex was also introduced. In another investigation, Pal and Bhandari [16] have
demonstrated a way of integrating fuzzy sets, ANNs, and GAs for automatic se-
lection of cloning templates when a cellular neural network is used in extracting
object regions from noisy images. Fuzzy geometrical properties of image were
used as the basis of the fitness function.

Opitz and Shavlik [90] have used the domain theory of Towell and Shavlik [28]
(with random perturbation) to create an initial population of knowledge-based
nets. Crossover and mutation operators are specifically designed to function on
these networks. The algorithm uses these genetic operators to search the topology
space in order to find networks, which are then trained using backpropagation.

VI. CONCLUSIONS

The problem of designing an expert system in the Ught of soft computing has
been addressed. The relevance, characteristics, and merits of integrating differ-
ent soft computing tools such as fuzzy sets, artificial neural networks, genetic
algorithms, and rough sets in various forms have been described, with greater
emphasis on neuro-fuzzy computing. Neuro-fuzzy models have been found to in-
corporate both the generic and the application-specific merits of neural networks
as well as fuzzy systems. This has resulted in the generation of more intelligent
decision-making systems. We have also included a brief survey on connection-
ist expert systems (without incorporating fuzzy sets) for the convenience of the
reader. The use of knowledge-based networks has been discussed as one of the
latest entrants in this field. A comparative study of the various methodologies has
been provided in tabular form. Recent attempts at using rough sets for knowl-
edge encoding and genetic algorithms for finding optimal net parameters have
also been mentioned.

REFERENCES

[1] Proceedings of the Third Workshop on Rough Sets and Soft Computing (San Jose), 1994.
[2] Proceedings of the Fourth International Conference on Soft Computing (lizuka, Japan), 1996.
[3] S. K. Pal and N. R. Pal. Soft computing: goals, tools and feasibility. J. Inst. Electron. Telecomm.

Engineers 42:195-204, 1996.
[4] L. A. Zadeh. Fuzzy logic, neural networks, and soft computing. Comm. ACM 37:77-84, 1994.
[5] J. C. Bezdek and S. K. Pal, Eds. Fuzzy Models for Pattern Recognition: Methods that Search for

Structures in Data. ffiEE Press, New York, 1992.
[6] Proceedings of the IEEE International Conference on Fuzzy Systems, 1996.
[7] L. A. Zadeh. Fuzzy sets. Inform. Control 8:338-353, 1965.
[8] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall,

Englewood Cliffs, NJ, 1995.

238 Sankar K. Pal and Sushmita Mitra

[9] D. E. Rumelhart and J. L. McClelland, Eds. Parallel Distributed Processing: Explorations in the
Microstructures of Cognition, Vol. 1. MIT Press, Cambridge, MA, 1986.

[10] R. R Lippmann. An introduction to computing with neural nets. IEEE Acoustics Speech Signal
Process. Mag. 4:4-22, 1987.

[11] T. Kohonen. Self-Organization and Associative Memory. Springer-Veriag, Beriin, 1989.
[12] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation.

Addison-Wesley, Reading, MA, 1994.
[13] H. Muhlenbein. Limitations of multi-layer perceptron networks—step towards genetic neural

networks. Parallel Comput. 14:249-260, 1990.
[14] S. K. Pal and D. Bhandari. Selection of optimum set of weights in a layered network using

genetic algorithms. Inform. Sci. 80:213-234, 1994.
[15] A. Homaifar and E. McCormick. Simultaneous design of membership functions and rule sets for

fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Systems 3:129-139, 1995.
[16] S. K. Pal and D. Bhandari. Genetic algorithms with fuzzy fitness function for object extraction

using cellular neural networks. Fuzzy Sets Systems 65:129-139, 1994.
[17] M. Banerjee and S. K. Pal. Roughness of a fuzzy set. Inform, Sci. 93:235-246, 1996.
[18] M. Banerjee, S. Mitra, and S. K. Pal. Rough fuzzy MLP: knowledge encoding and classification.

IEEE Trans. Neural Networks, to appear.
[19] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley, Reading, MA, 1989.
[20] Z. Michalewicz. Genetic Algorithms -\- Data Structures = Evolutionary Programs. Springer-

Veriag, Berlin, 1994.
[21] Z. Pawlak. Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer Academic, Dor-

drecht, 1991.
[22] R. Slowiriski, Ed. Intelligent Decision Support, Handbook of Applications and Advances of the

Rough Sets Theory. Kluwer Academic, Dordrecht, 1992.
[23] H.-J. Zimmermann. Fuzzy Sets, Decision Making and Expert Systems. Kluwer Academic,

Boston, 1987.
[24] L. A. Zadeh. The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy

Sets Systems 11:199-227, 1983.
[25] A. Kandel, Ed. Fuzzy Expert Systems. CRC Press, Boca Raton, 1991.
[26] S. I. Gallant. Connectionist expert systems. Comm. ACM 31:152-169, 1988.
[27] L. M. Fu. Knowledge-based connectionism for revising domain theories. IEEE Trans. Systems

Man Cybernet. 23:173-182, 1993.
[28] G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks. Artificial Intell.

70:119-165, 1994.
[29] F. Hayes-Roth, D. A. Waterman, and D. B. Lenat. Building Expert Systems. Addison-Wesley,

London, 1983.
[30] M. Minsky. A framework for representing knowledge. In The Psychology of Computer Vision

(R Winston, Ed.). McGraw-Hill, New York, 1975.
[31] R. Quillian. Semantic memory. In Semantic Information Processing (M. Minsky, Ed.). MIT

Press, Cambridge, MA, 1968.
[32] J. Pearl. Distributed revision of composite beliefs. Artificial Intell. 33:173-215, 1987.
[33] L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning,

1, 2, and 3. Inform. Sci. 8, 8, 9:199-249, 301-357, 43-80, 1975.
[34] M. M. Gupta, A. Kandel, W. Bandler, and J. B. Kiszka, Eds. Approximate Reasoning in Expert

Systems. North-Holland, Amsterdam, 1985.
[35] S. K. Pal and D. Dutta Majumder. Fuzzy Mathematical Approach to Pattern Recognition. Wiley

(Halsted Press), New York, 1986.

Expert Systems in Soft Computing Paradigm 239

[36] I. B. Turksen and Z. Zhong. An approximate analogical reasoning schema based on similarity
measures and interval-valued fuzzy sets. Fuzzy Sets Systems 34:323-346, 1990.

[37] M. Ishizuka, K. S. Fu, and J. T. P. Yao. Inference procedures under uncertainty for the problem-
reduction method. Inform. Set 28:179-206, 1982.

[38] A. O. Esogbue and R. C. Elder. Fuzzy sets and the modelling of physician decision processes, I:
The initial interview - information gathering session. Fuzzy Sets Systems 2:279-291, 1979.

[39] E. Sanchez and R. Bartolin. Fuzzy inference and medical diagnosis, a case study. Biomedical
Fuzzy Systems Bull. 1:4-21, 1990.

[40] L. X. Wang and J. M. Mendel. Generating fuzzy rules by learning from examples. IEEE Trans.
Systems Man Cybernet. 22:1414-1427, 1992.

[41] S. Mitra and S. K. Pal. Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE
Trans. Neural Networks 6:51-63, 1995.

[42] B. Kosko. Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood Cliffs, NJ, 1991.
[43] H. Takagi. Fusion technology of fiizzy theory and neural network—survey and future direc-

tions. In Proceedings of the 1990 International Conference on Fuzzy Logic and Neural Networks
(Hzuka, Japan) pp. 13-26, 1990.

[44] Y. H. Pao. Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, Reading, MA,
1989.

[45] M. M. Gupta and D. H. Rao. On the principles of fuzzy neural networks. Fuzzy Sets Systems
3:1-18, 1994.

[46] J. J. Buckley and Y. Hayashi. Fuzzy neural networks: a survey. Fuzzy Sets Systems 3:1-13, 1994.
[47] S. K. Pal and S. Mitra. Multi-layer perceptron, fuzzy sets and classification. IEEE Trans. Neural

Networks 3:683-697, 1992.
[48] S. K. Pal and D. P. Mandal. Linguistic recognition system based on approximate reasoning.

Inform. Sci. 61:135-161, 1992.
[49] A. Skowron and C. Rauszer. The discemibility matrices and functions in information systems. In

Intelligent Decision Support, Handbook of Applications and Advances of the Rough Sets Theory
(R. Slowinski, Ed.), pp. 331-362. Kluwer Academic, Dordrecht, 1992.

[50] K. Saito and R. Nakano. Medical diagnostic expert system based on PDP model. In Proceedings
of the IEEE International Conference on Neural Networks (San Diego), pp. I.255-I.262, 1988.

[51] R. C. Lacher, S. I. Hruska, and D. C. Kuncicky. Back-propagation learning in expert networks.
IEEE Trans. Neural Networks 3:62-72, 1992.

[52] R. PoH, S. Cagnoni, R. Livi, G. Coppini, and G. VaUi. A neural network expert system for
diagnosing and treating hypertension. IEEE Computer 64—71, 1991.

[53] M. Ishikawa. Structural learning with forgetting. Neural Networks 9:509-521, 1996.
[54] C. W. Omlin and C. Lee Giles. Extraction of rules from discrete-time recurrent neural networks.

Neural Networks 9:41-52, 1996.
[55] S. Mitra, S. N. Sarbadhikari, and S. K. Pal. An MLP-based model for identifying qEEG in de-

pression. Internal J. Biomedical Comput. 43:179-187, 1996.
[56] H. F. Yin and P. Liang. A connectionist incremental expert system combining production systems

and associative memory. Intemat. J. Pattern Recognition Artificial Intell. 5:523-544, 1991.
[57] D. W. Opitz and J. W. Shavlik. Heuristically expanding knowledge-based neural networks. In

Proceedings of the 13th International Joint Conference on Artificial Intelligence (Chambery,
France), pp. 1360-1365, 1993.

[58] G. G. Towell and J. W. Shavlik. Extracting refined rules from knowledge-based neural networks.
Machine Learning 13:71-101, 1993.

[59] S. K. Pal and A. Ghosh. Neuro-fuzzy image processing: relevance and feasibility. In Neural and
Fuzzy Systems: The Emerging Science of Intelligence and Computing (S. Mitra, W. Kraske, and
M. M. Gupta, Eds.). SPIE Press, New York, 1993.

240 Sankar K. Pal and Sushmita Mitra

[60] J. K. Keller and D. J. Hunt. Incorporating fiizzy membership functions into the perceptron algo-
ritiim. IEEE Trans. Pattern Anal. Machine Intell. 7:693-699, 1985.

[61] E. Sanchez. Fuzzy connectionist expert systems. In Proceedings of the 1990 International Con-
ference on Euzzy Logic and Neural Networks (lizuka, Japan), pp. 31-35, 1990.

[62] T. L. Huntsberger and P. Ajjimarangsee. Parallel self-organizing feature maps for unsupervised
pattern recognition. Intemat. J. General Systems 16:357-372, 1990

[63] J. C. Bezdek, E. C. Tsao, and N. R. Pal. Fuzzy Kohonen clustering networks. In Proceedings of
the First IEEE International Conference on Fuzzy Systems (San Diego), pp. 1035-1043, 1992.

[64] J. M. Keller, R. Krishnapuram, and F. C.-H. Rhee. Evidence aggregation networks for fuzzy logic
inference. IEEE Trans. Neural Networks 3:761-769, 1992.

[65] W. Pedrycz. Fuzzy neural networks with reference neurons as pattern classifiers. IEEE Trans.
Neural Networks 3:770-775, 1992.

[66] S. C. Lee and E. T. Lee. Fuzzy neural networks. Math. Biosci. 23:151-177, 1975.
[67] A. Ghosh, N. R. Pal, and S. K. Pal. Self-organization for object extraction using multilayer neural

network and fuzziness measures. IEEE Trans. Fuzzy Systems 1:54-68, 1993.
[68] Y. Hayashi. Neural expert system using fuzzy teaching input and its application to medical diag-

nosis. Inform. Sci. Appl. 1:47-58, 1994.
[69] D. L. Hudson, M. E. Cohen, and M. F. Anderson. Use of neural network techniques in a medical

expert system. Intemat. J. Intell. Systems 6:213-223, 1991.
[70] S. G. Romaniuk and L. O. Hall. Decision making on creditworthiness, using a fuzzy connection-

ist model. Fuzzy Sets Systems 48:15-22, 1992.
[71] K. Yoshida, Y Hayashi, A. Imura, and N. Shimada. Fuzzy neural expert system for diagnosing

hepatobiliary disorders. In Proceedings of the 1990 International Conference on Fuzzy Logic
and Neural Networks (lizuka, Japan), pp. 539-543, 1990.

[72] F. C. H. Rhee and R. Krishnapuram. Fuzzy rule generation methods for high-level computer
vision. Fuzzy Sets Systems 60:245-258, 1993.

[73] S. Mitra. Fuzzy MLP based expert system for medical diagnosis. Fuzzy Sets Systems 65:285-
296, 1994.

[74] S. Mitra and S. K. Pal. Fuzzy self organization, inferencing and rule generation. IEEE Trans.
Systems Man Cybernet. 26:608-620, 1996.

[75] S. Mitra and S. K. Pal. Logical operation based fuzzy MLP for classification and rule generation.
Neural Networks 7:353-373, 1994.

[76] J. M. Keller, R. R. Yager, and H. Tahani. Neural network implementation of fuzzy logic. Fuzzy
Sets Systems 45:1-12, 1992.

[77] H. Ishibuchi, R. Fujioka, and H. Tanaka. Neural networks that learn from fuzzy if-then rules.
IEEE Trans. Fuzzy Systems 1:85-97, 1993.

[78] R. Masuoka, N. Watanabe, A. Kawamura, Y Owada, and K. Asakawa. Neuro-fuzzy system—
fuzzy inference using a structured neural network. In Proceedings of the 1990 International
Conference on Fuzzy Logic and Neural Networks (lizuka, Japan), pp. 173-177, 1990.

[79] N. K. Kasabov. Adaptable neuro production systems. Neurocomputing 13:95-117, 1996.
[80] B. Kosko. Hidden patterns in combined and adaptive knowledge networks. Intemat. J. Approx.

Reasoning 2:377-393, 1988.
[81] R. J. Machado and A. F. Rocha. A hybrid architecture for connectionist expert systems. In Intel-

ligent Hybrid Systems (A. Kandel and G. Langholz, Eds.). CRC Press, Boca Raton, 1992.
[82] W. Pedrycz and A. F. Rocha. Fuzzy-set based models of neurons and knowledge-based networks.

IEEE Trans. Fuzzy Systems 1:254-266, 1993.
[83] K. Hirota and W. Pedrycz. Knowledge-based networks in classification problems. Fuzzy Sets

Systems 59:271-279, 1993.
[84] B. F. Leao and A. F. Rocha. Proposed methodology for knowledge acquisition: a study on con-

genital heart disease diagnosis. Methods Inform. Medicine 29:3(M-0, 1990.

Expert Systems in Soft Computing Paradigm 241

[85] S. Mitra, R. K. De, and S. K. Pal. Knowledge-based fuzzy MLP for classification and rule gen-
eration. IEEE Trans. Neural Networks, to appear.

[86] R. Yasdi. Combining rough sets learning and neural learning method to deal with uncertain and
imprecise information. Neurocomputing 7:61-84, 1995.

[87] A. Czyzewski and A. Kaczmarek. Speech recognition systems based on rough sets and neural
networks. In Proceedings of the Third Workshop on Rough Sets and Soft Computing (San Jose),
pp. 97-100, 1994.

[88] S. K. Pal and P. P. Wang, Eds. Genetic Algorithms for Pattern Recognition. CRC Press, Boca
Raton, 1996.

[89] V. Maniezzo. Genetic evolution of the topology and weight distribution of neural networks. IEEE
Trans. Neural Networks 5:39-53, 1994.

[90] D. W. Opitz and J. W. Shavlik. Using genetic search to refine knowledge-based neural networks.
In Machine Learning: Proceedings of the 11th International Conference (San Francisco), 1994.

This Page Intentionally Left Blank

Mean-Value-Based
Functional Reasoning
Techniques in the
Development of Fuzzy
Neural Network Control
Systems

Keigo Watanabe Spyros G. Tzafestas
Faculty of Science and Engineering Department of Electrical and
Department of Mechanical Engineering Computer Engineering
Saga University Intelligent Robotics and
1-Honjo-machi, Saga 840, Japan Automation Laboratory

National Technical University of Athens
Zografou, Athens 157 73, Greece

L INTRODUCTION

Functional reasoning [1,2] and simplified reasoning [3, 4], which are special
cases of the so-called min-max-centroidal method [5,6], have been proposed as
fuzzy reasoning methods for treating fuzzy control and fuzzy modeling problems.
These methods have the advantage that the fuzzy operation is simplified, because
instead of using a membership function the conclusion part can be composed of
a function of input data or be simply a constant value. However, it is not readily
known to control engineers how to rationally design some parameters in the con-
clusion part using available control theories. One can refer either to a basic method
[3, 4] in which a constant parameter is determined as a value on the support set
when the membership function in the conclusion is assumed to be a singleton or to
a method [7] in which a constant parameter is determined by averaging the mean

Fuzzy Logic and Expert Systems Applications
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 2 4 3

244 Keigo Watanabe and Spyros G. Tzafestas

values for the membership functions in the antecedent with respect to the number
of input data and which is finely adjusted for every control rule. However, it is
unclear whether these methods are truly vaUd or not. As a more systematic design
approach to the conventional fuzzy controller, a fuzzy model-based approach [8-
11] and a variable structure system (VSS) or sliding mode approach [12-14] have
been proposed.

As an alternative approach to the design of fuzzy controllers, neuro-fuzzy
controllers (NFCs) or fuzzy neural network controllers (FNNCs) [15-24] are in-
tensively studied, in which a fuzzy reasoning method such as those discussed
previously is realized within a multilayered hierarchical neural network and the
parameters that are represented by connection weights or involved in unit func-
tions can be learned by using the actual data. The number of learning parameters
or trials and errors for learning fuzzy control can be effectively reduced, if we can
rationally design some parameters in the conclusion in advance.

In this chapter, we start by reviewing the conventional functional reasoning
[1, 2] and simphfied reasoning [3,4] methods. Then, as a new reasoning method,
we further introduce a mean-value-based functional reasoning [25, 26], in which
the conclusion part consists of the mean values of the membership functions that
are assigned to each input data. It is shown that if the conclusion is regarded as
a VSS controller [27], then any parameter in the conclusion of the conventional
functional reasoning can be rationally designed as the parameters for constructing
r stable switching planes (or lines), while those of the mean-value-based func-
tional reasoning can be designed as the parameters for constructing only one sta-
ble switching plane (or line). Here, r denotes the number of control rules. Next
we describe a fuzzy Gaussian neural network (FGNN) [28-30] by applying the
preceding fuzzy reasoning methods. It is then clarified that by using the mean-
value-based functional reasoning the FGNN allows the number of learning pa-
rameters in the conclusion to be reduced drastically, compared with those of the
conventional functional reasoning and simplified reasoning.

The chapter is organized as follows. The conventional functional reasoning,
simplified reasoning, and mean-value-based functional reasoning methods are re-
viewed in Section II. In Section III, a design method for the conclusion of the
preceding fuzzy reasoning schemes, based on VSS control theory, is described. In
Section IV, three FGNNs are constructed using the conventional functional rea-
soning, simplified reasoning, and mean-value-based functional reasoning meth-
ods, and compared with each other, especially with regard to the number of learn-
ing parameters to be learned in the conclusion. In Section V, the effectiveness of
the mean-value-based functional reasoning method is illustrated by designing and
simulating a nonleaming fuzzy controller for controUing the attitude of a satellite.
Finally, in Section VI, a fuzzy neural network controller based on mean-value-
based functional reasoning is applied to the tracking control problem for a mobile
robot with two independent driving wheels.

Mean-Value-Based Functional Reasoning Techniques

11. FUZZY REASONING SCHEMES

245

In this section, we review the conventional, the simpUfied, and the mean-value-
based functional reasoning schemes.

A. INPUT-DATA-BASED FUNCTIONAL REASONING

The conventional or input-data-based functional reasoning [1,2] method (see
Fig. 1) is also called Sugeno's fuzzy reasoning method [3]. For n input variables
(jci,. . . , jc„) and p output variables (MI, . . . , M^) in the consequent part, the ith
control rule Rt is described by

Ri'. If A:I = Ail and- • andjc^ = A/„,

then Ml = fiiixi,..., x„) and • • • and Up = fip(xi,..., Xn), (1)

where Aij denotes the fuzzy set in the antecedent associated with the yth in-
put variable in the ith control rule, and fij(xi,... ,Xn) is the function associated
with the jih variable in the conclusion of the /th control rule. Applying n confi-
dences /XAji (xi),..., iJiAin (xn), the confidence in the antecedent hi is, by defini-
tion, given by

hi = I^Anixi) ' flAi2(X2) f^Aini^n), (2)

where "•" denotes the algebraic product operation. Then the 7 th output consequent
can be calculated as the following weighted mean of //;(•) with respect to the
weight hi:

Uj =
T:;=ihi

j = \,...,p, (3)

Input data Confidences
of

membership
functions

Confidences
in

antecedent

Normalized
confidences

Defuzzi-
fication

Output

Construction
of

conclusion

Figure 1 Concept of input-data-based functional fuzzy reasoning.

246 Keigo Watanahe and Spyros G. Tzafestas

where r denotes the total number of control rules; if the number of member-
ship functions (i.e., the number of labels) in the antecedent is €, then, in general.

Note here that, in the single consequent case, the conclusion function is usually
represented by a linear function:

wi = aoi + aiiXi + a2iX2 H h aniXn. (4)

As a special case of this representation, one can use the actual deviations of the
membership functions in the antecedent as [23]:

wi = aoi + aiiixi - cii) H h ani(xn - Cni), (5)

where Cjt denotes the center value (e.g., the mean value of a Gaussian-like mem-
bership function) associated with the jth membership function in the antecedent
of the ith control rule.

B. SIMPLIFIED REASONING

A further special case of input-data-based functional reasoning, called simpli-
fied reasoning [3,4] (see Fig. 2), is based on the formula:

w 1 = aoi. (6)

The design parameters Ujt in the conclusion, as well as the scalers for the input
data, significantly govern the performance of the unlearning fuzzy controller. An
effective method for designing this parameter is not known at present. There exists
an elementary method [7] in which the parameters are determined by averaging
the mean values Cjt of the membership functions in the antecedent, with respect
to the number of input data, and they are finely adjusted for every control rule
by means of trial and error. In what follows, a more general design method for

Input data Confidences
of

membership
functions

Confidences
in

antecedent

Normalized
confidences

Defuzzi-
fication

Output

Constant
conclusion

Figure 2 Concept of simplified fuzzy reasoning.

Mean-Value-Based Functional Reasoning Techniques 247

the parameter in the conclusion will be presented, which includes this elementary
method as a special case.

C. MEAN-VALUE-BASED FUNCTIONAL REASONING

The confidence IXAIJ (XJ) of the membership function indicates the degree of
matching between the actual input data Xj and the hypothetical data distribution
(membership function) on the support set [—L, L] allocated by the control de-
signer. It is then observed that the conclusion of the input-data-based functional
reasoning given by (4) or of the simpHfied reasoning given by (6) does not include
the allocation information for the membership function in the antecedent. For this
allocation information, a mean-value-based functional reasoning has been pro-
posed [25, 26], in which the mean values Cji of each membership function in the
antecedent are used in the conclusion as shown in Fig. 3. In this reasoning, the
conclusion function in (1) is replaced by

wi = fiiicii,..., Cni) and • • • and Up = ftpicu,..., Cni) (7)

and the output consequent is determined by

^j = EU hi
; = ! , . . . , / ? . (8)

For the two-input data case (xi, ^2), the output wi in a linear function can be
represented by

Ml = aoi + aiiCii + a2iC2i (9)

or by the simpler form

Ml = «o + aicii + a2C2i (10)

considering that the mean-values Cjt are already dependent on the control rule.

Input data Confidences
of

membership
functions

Confidences
in

antecedent

Normalized
confidences

Defuzzi-
fication

Output

Mean values Construction
of

conclusion

Figure 3 Concept of mean-value-based functional fuzzy reasoning.

248 Keigo Watanabe and S]:)yros G. Tzafestas

III. DESIGN OF THE CONCLUSION PART
IN FUNCTIONAL REASONING

In this section, a design technique for the conclusion of the three fuzzy reason-
ing methods stated previously through VSS control theory is described.

A. INPUT-DATA-BASED FUNCTIONAL REASONING

For a linear function of input-data-based functional reasoning with ao/ = 0,
the following hyperplane is defined:

at = Si\, / = l , . . . , r , (11)

where x^ = [xi, JC2,..., A:„] is regarded as a state vector and St denotes a 1 x n
design row vector that depends on the index / of the control rules. Now, consider
the following VSS control law [27]:

Ml = ki sgn((T/), ki > 0. (12)

Then taking a switching gain as ki = |a/1 gives

Ml = at (13)

because {at \ sgn((ji) = at. Thus, if the input data in the antecedent are regarded as
state vectors, the design problem of the conclusion for input-data-based functional
reasoning can be reduced to that of r stable switching planes (or lines) in (11).

B. MEAN-VALUE-BASED FUNCTIONAL REASONING

For a linear function of mean-value-based functional reasoning with ao = 0 in
the form of (10), we define the following switching plane:

at = Sci, / = 1, . . . , r , (14)

where c/ = [cu, C2/,... , Cni] is regarded as a state vector and S denotes a 1 x w
design row vector which is independent of the index / of the control rules. If we
consider the same control law as used previously, then we have the same result
as in (13). Note, however, that the design vector S and the mean-value vector c/
are constant, and hence lima^-^o ^i^^i = 0, because at = 0. This implies that
(12) and (14) do not satisfy the condition \ima^^ocricyi < 0, which is required
for the existence of a sliding mode at the neighborhood of the switching plane
ai = 0. Therefore, Eqs. (12) and (14) do not generate an actual sUding mode as

Mean-Value-Based Functional Reasoning Techniques 249

in a usual sliding mode control system, and they can be only formally regarded as
VSS controllers.

Thus, it is seen that the design problem for the conclusion of mean-value-based
functional reasoning can be reduced to that of only one stable switching plane (or
line) in (14), if the mean value ĉ- on the membership functions in the antecedent
is regarded as a state vector. The conclusion part of mean-value-based functional
reasoning is completely constant, whereas that of input-data-based functional rea-
soning is time-varying and all r switching planes (or lines) in (11) must be de-
signed to be stable; this yields an unrealistic design procedure if the number of
control rules is very large. Furthermore, it is easy to see that the conclusion part
of the simplified reasoning can also be directly replaced by the at value which is
computed from (14) off-line.

Because mean-value-based functional reasoning assumes that the mean values
of the membership functions in the antecedent are utilized in the conclusion, the
form of the membership function must be of an isosceles triangle, Gaussian-type,
or an isosceles trapezoid, etc., which possess the information of the mean value.
Therefore, in such a functional reasoning, the knowledge of an expert cannot nec-
essarily be reflected in the determination of the form of the membership function
in the antecedent, whereas, in traditional functional or simplified reasoning, a
membership function of any form can be selected to reflect the knowledge of an
expert in the form determination of the membership function in the antecedent.

IV. FUZZY GAUSSIAN NEURAL NETWORKS

In this section, three fuzzy Gaussian neural networks (FGNNs) are constructed
using the reasonings stated previously, and compared with each other, especially
in the number of learning parameters to be learned in the conclusion.

A. CONSTRUCTION

Figures 4-6 illustrate three FGNNs based on input-data-based fuzzy reasoning,
simplified fuzzy reasoning, and mean-value-based fuzzy reasoning, respectively.
Here, it is assumed that there are two inputs (;ci, JC2), a single output (w*), and
three labels for a Gaussian membership function in the antecedent part. Then the
number of identifiable control rules is r = 3^.

The variable within the curly brackets denotes a signal passing through the
neural network, the circle symbol is the unit, it;^ is the connection weight that
represents the center value for the jth Gaussian membership function of the /th
input data, and the connection weight u;̂ • denotes the reciprocal value of the

deviation from the center w^j to which the y th Gaussian function of /th input data

250 Keigo Watanabe and Spyros G. Tzafestas

Conclusion

Figure 4 Fuzzy Gaussian neural network using input-data-based functional reasoning. Reprinted
from K. Watanabe etal. Fuzzy-neural network controllers using mean-value-based functional reason-
ing, Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara Burgerhart-
straat 25, 1055 KV Amsterdam, The Netheriands.

Mean-Value-Based Functional Reasoning Techniques 251

Figure 5 Fuzzy Gaussian neural network using simplified reasoning. Reprinted from K. Watanabe
etal. Fuzzy-neural network controllers using mean-value-based functional reasoning, Neurocomput-
ing 9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV
Amsterdam, The Netherlands.

on the standardized support set has value 0.5. In addition, the unit with the symbol
— 1 generates the output of — 1; the unit with the symbol Yl outputs the sunmiation
of the inputs. Similarly, the unit with the symbol]~[outputs the product of the
inputs. The input-output relation at the unit with the symbol / is defined by the
following Gaussian function:

fix) = exp(ln(0.5) • x^) (15)

as a unit function. Furthermore, the unit with no symbols simply distributes the
input to the output.

Layers A-E in Figs. 4-6 correspond to the antecedent part of the fuzzy control
rule, and layers G and H correspond to the conclusion part. The inputs xt applied
to layer A are scaled by using an adaptive input scaling technique [31]. At layer C,
the connection weight — M;̂ , which is a bias, is added to the scaled input, and it is
multiplied by u;̂ •, which is an input to the Gaussian function at layer D. At layer
E in all figures, we obtain the confidences hi in the antecedent part for every

252 Keigo Watanabe and Spyros G. Tzafestas

Conclusion

Figure 6 Fuzzy Gaussian neural network using mean-value-based functional reasoning. Reprinted
from K. Watanabe etal. Fuzzy-neural network controllers using mean-value-based functional reason-
ing, Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara Burgerhart-
straat 25, 1055 KV Amsterdam, The Netiieriands.

Mean-Value-Based Functional Reasoning Techniques 253

control rule. At the first unit of layer F, a summation of inputs and the inverse
calculation are performed. That is, the unit that has symbols J] and g generates
the output through the following function:

Six) = - , (16)
X

with a linear sunmied input.
At layers G and H in Fig. 5, we directly obtain the consequent as the weighted

mean of Wai with respect to the weight hi, where Wai denotes a constant parameter
aoi in the conclusion. As seen from Figs. 4 and 6, for input-data-based or mean-
value-based functional reasoning, the conclusion part is calculated at these layers
(G and H), and we finally have the similar consequent at layers / and J.

Note here that Horikawa et al [15] have already developed some FNNs sim-
ilar to those shown in Figs. 4 and 5 by using a sigmoidal function with range
[0,1]. However, to construct a pseudo-trapezoidal membership function in their
approach, two sigmoidal functions with ranges [0,1] and [-1,0] must be super-
imposed. Therefore, their FNNs require additional intermediate layers to generate
the membership function in the antecedent, because a pseudo-trapezoidal mem-
bership function is constructed by summing two sigmoidal functions with differ-
ent signs. This also causes the number of units at the corresponding intermediate
layer to grow as the number of fuzzy labels becomes larger. On the contrary, our
approach does not suffer from this problem and also gives a reduced number of
learning parameters in the conclusion, as will be discussed in the next subsection.

B. NUMBER OF LEARNING PARAMETERS

All of the preceding FGNNs have the same number of parameters to be learned
in the antecedent. However, they have different numbers of parameters to be
learned in the conclusion. By introducing two kinds of parameters a and fi,
Eq. (11) can be rewritten as

Gi = —[at 1]
Pi

x\
X2

/ = l , . . . , r , (17)

where at is the slope of a switching line and fit is usually an averaging constant
with respect to the number of inputs. Following this construction, the input-data-
based functional reasoning approach must learn 49 Wai and 49 Wbi parameters, if
seven labels for each input are used. Here, Wai = oii/Pi and Wbi = 1/A- Further-
more, if the parameter ^i is regarded as the averaging parameter with respect to
the number of inputs, then it is required to learn 49 parameters Wai, because we
can fix the parameter ^t as 2, that is, u;̂ / = 0.5, / = 1 , . . . , 49. At this stage, both
the input-data-based functional reasoning and the simplified reasoning methods

254 Keigo Watanabe and Spyros G. Tzafestas

have the same number of learning parameters to be learned in the conclusion. Note
also that, to obtain all of the different learned parameters Wai for / = 1 , . . . , 49,
one must set all different initial parameters for Wai, i = 1 , . . . , 49, because all
units at layer H have the same "delta" quantities in the back-propagation algo-
rithm.

Similarly, by introducing two kinds of parameters a and ^ in the mean-value-
based functional reasoning, Eq. (14) can be rewritten as

- >
7 , ^ = 1 , . . . , 7 . (18)

Note here that both parameters a and P are independent of the index i of the con-
trol rules. Therefore, to learn their parameters, it is sufficient to learn the minimum
number of w;fly and Wbk by using it;^., 7 = 1 , . . . , 7, w;̂ ,̂ fc = 1 , . . . , 7, and 5//.
Here, Waj — otj^, Wbk = l/)^» and 8H denotes the "delta" quantity for any unit
in layer H. As shown in Fig. 7, the connection weights Waj and Wbj between two
jih units with respect to wlj and w^j at layer G and the /th unit at layer H, where
/ = (7 — 1) * 7 H - 7 , j = 1 , . . . , 7, can be concretely learned. Note that the remain-
ing unlearned connection weights, which have the same wl- and w^- as the learned
connection weights, should be simply replaced by the learned ones: Waj and Wbj.

w:
y^.

<

<

<

<

<

w p , w 7

wry'*'V ^^

(G) (H)
_ J

Conclusion

learned
connections

unlearned
connections

Figure 7 Learning method of parameters in the conclusion for mean-value-based functional reason-
ing. Reprinted from K. Watanabe et al. Fuzzy-neural network controllers using mean-value-based
functional reasoning, Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL,
Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.

Mean-Value-Based Functional Reasoning Techniques 255

learned
connections
unlearned
connections

fixed
connections

(G) (H)
I

Conclusion

Figure 8 Learning method of parameters in the conclusion for mean-value-based functional reason-
ing (there are partially fixed connections). Reprinted from K. Watanabe et al. Fuzzy-neural network
controllers using mean-value-based functional reasoning, Neurocomputing 9:39-61, 1995, with kind
permission of Elsevier Science-NL, Sara Burgerhartstraat 25,1055 KV Amsterdam, The Netherlands.

Thus, the mean-value-based functional reasoning model learns 14 parameters
{waj, Wbk), j^k = 1 , . . . , 7. Furthermore, if the parameter ^ is fixed as an aver-
aging parameter with respect to the number of inputs, then only seven parameters
Waj, 7 = 1 , . . . , 7, are learned (see Fig. 8). Consequently, the mean-value-based
functional approach can drastically reduce the number of parameters that have to
be learned in the conclusion.

C. TRAINING

By applying the back-propagation algorithm [32-34], one can train the con-
nection weights of the FGNN controller, and consequently identify the control
rules and finely tune the membership functions in the antecedent part. In the fol-
lowing, a case based on the specialized learning architecture will be explained,
in which the FGNN is trained so that the output deviations of the plant are mini-
mized without using the pattern data generated by an expert. However, note that
we merely change the delta quantities in the output layer for a case based on the
generalized learning architecture or the feedback error learning architecture.

256 Keigo Watanabe and Spyros G. Tzafestas

Consider the hierarchical multilayered neural network consisting of M layers,
and denote the input-output relation of any unit by /(•) , the input to the jth unit
at the A:th layer by / j , and the corresponding output from its unit by o^. The weight
that connects the jth unit at the kth layer and the /th unit at the (k + l)th layer is
denoted by u;^f'^^

Let Case A denote the case when the input to the A:th layer is the output through
the function/(•) and the input to the (A:+l)thlayeris calculated by the summation
(i.e., J2) operation. Similarly, let Case B be the case when the input to the A;th
layer is output through the function /(•) and the input to the (k + l)th layer is
calculated by the product (i.e., J~[) operation.

Under the preceding conditions, we have the following input-output relation
of a unit:

if^'= Y,r^f+'o], o^^'=fiif^') (19)
J

for Case A, and

if^^ = Ylwf+Vj, o\^' = fii\^') (20)

for Case B.
For the specialized learning, the following cost function is considered:

m

which gives the weights ^if^^ that minimize / . Here, m denotes the number of
plant outputs, ydi the / th desired reference, and yt the / th output of the plant. Then
the delta quantities, 8^ in the jth unit at the output layer M and 8^j in the jth unit
at any intermediate layer k, are given by

Output layer: Sf = f{if) Tiydi - yi)^\ (22)

Intermediate layer:

/'('•*) E ^ r ' " ^ *) ' ^ ' forcaseA,

(23)

where Uj denotes the jth input to the plant.

Mean-Value-Based Functional Reasoning Techniques 257

Thus, the application of Case B to the delta calculation is used at layers D
and F. Here, from the definitions of Eqs. (15) and (16), / ' in the first unit at
layers D and F is evaluated by

f(i^j) = 2ln(0.5)i^jO^j for layer D, (24)

f(i^.) = -(o^.f for the first unit of layer F, (25)

and / '(i^) = 1 for other linear units. Note also that the Jacobian dyi/duj in
Eq. (21) can be approximated as

Aj/ dyt ^^-^ dyt AM/

+ES^ p« AM/ dui f-̂ dui AM/

if the control inputs are coupled, or

dyiJkT) ^ AytikT)

dujikT) ~ AujikT)'
i = ; , (27)

if the control inputs are decoupled, where Auj(-) and Aj/() are generated from
the input and output data at the sampling instant kT, A = 1 — z~^ z~^ is the
one-step delay operator, k is the discrete time, and T is the sampling period. If the
plant is originally a discrete-time system with no time delay in the input, then one
must evaluate dyi(kT)/duj[(k — 1)T] instead of the previous equation.

The preceding results yield the following update equations for the connection
weights:

w^r'-'it +1) = w^r^'^it) + rjs'jot' + ^Awlr''\t)
for Case A, (28)

.^r^^'it + 1) = u ; ^ ^ ' ^ 0 + . 4 - ? - ^ (n - ^ ^ V - ^) + ? A u ; ^ ^ '

for Case B, (29)

where t denotes the tth update time, ry is a small positive constant that means
a learning rate, AM;- ~ ' (t) is an increment of the connection weight at the rth
step, and § is a small positive constant used as a stabilizing factor. Therefore,
the connection weights Wc,Wd,Wa, and Wb can be updated by using Eq. (28).
Note that Eq. (29) is not required to update any connection weight, because the
connection weights associated with Case B are all fixed as unity.

258 Keigo Watanabe and Spyros G. Tzafestas

V. ATTITUDE CONTROL APPLICATION EXAMPLE

In this section, the effectiveness of the mean-value-based functional reasoning
method is illustrated by designing and simulating an unlearning fuzzy controller
for the attitude control problem of a flexible satellite.

A. TWO-INPUT-SINGLE-OUTPUT REASONING

In this subsection, the design method of the conclusion is illustrated by using
an example for two-input-single-output reasoning.

Consider the following attitude control problem of a flexible satellite described
by [35]:

0(t) = 1.764M(0,

0(0 = -a;^0(O+4.358M(O,

y(t) = ^ (0 + 4 . 3 5 8 0 (0 ,

(30)

(31)

(32)

where aP' = 33.15 x 10~^ [rad^/s^], ̂ (0 is the center body rotation due to rigid
body motion, 0 (0 is the center body rotation due to flexural motion, >'(0 is the
measurement of the attitude, and u(t) is the control input torque produced by
reaction jets.

Although this control is a regulator problem, to retain the generality of the
problem, it is regarded as a tracking problem with a reference yd = 0. Then
the tracking error is defined by e = yd — y and the corresponding derivative is
assumed to be constructed as ^ = {e[kT] — e[{k — l)T]}/T, where A: = 0 , 1 , . . .
and T is the sampling period of 0.01 [s].

Define each membership function of five labels for e and e on the support set
[—L, L] = [—6, 6] as shown in Fig. 9. Let the mean values on e and e, defined
on the support set, be respectively ecj and Cck, j^ k = NB, NM,..., PB. In
addition, introducing two new parameters a and P in (18) gives the following

NB NM ZO PM PB

-6 -3 0 3 6 e,e

Figure 9 Membership functions of five labels for e and e.

Mean-Value-Based Functional Reasoning Techniques

Table!

Control Rules for Five Labels (a = 1, p = 2)

259

e

NB
NM
ZO
PM
PB

NB

- 6
-4.5
- 3
-1.5

0

NM

-4.5
- 3
-1.5

0
1.5

e

ZO

- 3
-1.5

0
1.5
3

PM

-1.5
0
1.5
3
4.5

PB

0
1.5
3
4.5
6

Reprinted with the permission of the Society of Instrument and Control Engineers, Japan.

representation:

ai=[a/p l/P] [::;]• "" < L . (33)

Note here that the upper and lower Umits of the conclusion are constrained as
\u\ <L.

Case 1. Table I shows the control rule for a = 1 and ^ = l.li we pick up
the rule 1 of ^ = NB, e = NB as an example, it is seen that the deviation data
are assumed to be distributed on the sliding Hne 2a\ = —12, that is, G\ = - 6
(see Fig. 10). For the regulator problem of yd = 0, this is equivalent to the output

2oi = -12

Figure 10 Switching Une for rule 1 with a = 1, p =2. Reprinted with tiie permission of the Society
of Instrument and Control Engineers, Japan.

260 Keigo Watanabe and Spyros G. Tzafestas

u 0

Figure 11 Conclusion constants for a = 1, ^ = 2. Reprinted with the permission of the Society of
Instrument and Control Engineers, Japan.

data being distributed on the sliding line y -\- y = 6. Therefore, it is found that
the control is determined so as to obtain the output data distribution on an ideal
sliding line y -{- y = 0 by moving j + j = 6 to the origin. Figure 11 depicts
the constant values in the conclusion for this case. It should be noted that, when
defining the deviation error as ^ = j — j ^ / , we must use the relation such that
ki = —\cri\ as in (12).

Case 2. Table II shows the control rule for the case when the conclusion is a
sliding line faster than that of Case 1 by setting a = 2 and p = 2. The interpreta-
tion ofthe sliding line is shown in Fig. 12forrule 1 consisting of ^ = NB and^ =
NB. The corresponding constant values in the conclusion are shown in Fig. 13.

In the following, we will show some cases that blend Cases 1 and 2 for any
control rule.

Table U

Control Rules for Five Labels (a = 2, p = 2)

e

NB
NM
ZO
PM
PB

NB

- 6
- 6
- 3

0
3

NM

- 6
-4.5
-1.5

1.5
4.5

e

ZO

- 6
- 3

0
3
6

PM

-4.5
-1.5

1.5
4.5
6

PB

- 3
0
3
6
6

Reprinted with the permission of the Society of Instrument and Control Engineers, Japan.

Mean-Value-Based Functional Reasoning Techniques 261

2oi = -18

Figure 12 Switching line for rule 1 with a = 2, ^ = 2. Reprinted with the permission of the Society
of Instrument and Control Engineers, Japan.

u 0

Figure 13 Conclusion constants for a = 2, ^ = 2. Reprinted with the permission of the Society of
Instrument and Control Engineers, Japan.

Table III
Control Rules for Five Labels (a = 2, p = 2ife = NB or PB; otherwise

a = l, fi = 2)

e

NB
NM
ZO
PM
PB

NB

- 6
- 6
- 3

0
3

NM

-4 .5
- 3
-1 .5

0
1.5

e

ZO

- 3
-1 .5

0
1.5
3

PM

-1.5
0
1.5
3
4.5

PB

- 3
0
3
6
6

Reprinted with the permission of the Society of Instrument and Control Engineers, Japan.

262

u 0

Keigo Watanabe and Spyros G. Tzafestas

Figure 14 Conclusion constants for a = 2, ^=2 if e = NB or PB. Reprinted with the permission
of the Society of Instrument and Control Engineers, Japan.

Case 3. For the case when |^| is very large, to set a sUding Hne faster than
that of Case 1, we determine the parameters a and p such that

a = 2,)S = 2,
a = l,)S = 2,

if e = NBoTPB,
otherwise.

The corresponding control rule is tabulated in Table III and the constant values in
the conclusion are shown in Fig. 14.

Case 4. For the case when |^| is relatively small, to set a sliding line faster
than that of Case 1, we determine the parameters a and p such that

a = 2,)g = 2,

a = 1, ^ = 2,

if^ = Â M or ZO or PM,

otherwise.

Table IV
Control Rules for Five Labels (a = 2, p = 2ife = NM or ZO or PM;

otherwise a = 1, P = 2)

e

NB
NM
ZO
PM
PB

NB

-6
- 6
- 3

0
0

NM

-4.5
-4.5
-1.5

1.5
1.5

e

ZO

- 3
- 3

0
3
3

PM

-1.5
-1.5

1.5
4.5
4.5

PB

0
0
3
6
6

Reprinted with the permission of the Society of Instrument and Control Engineers, Japan.

Mean-Value-Based Functional Reasoning Techniques

6 -

u 0

263

Figure 15 Conclusion constants for a = 2,)6 = 2 if ^ = NM or ZO oi PM. Reprinted with the
permission of the Society of Instrument and Control Engineers, Japan.

The corresponding control rule is tabulated in Table IV and the constant values in
the conclusion are shown in Fig. 15.

Case 5. As a mix of Cases 3 and 4, we determine the parameters a and fi
such that

Of = 2, P =2, if e = NB or PB, or e = NM or ZO ov PM,

a = 1, P =2, otherwise.

The corresponding control rule is tabulated in Table V and the constant values in
the conclusion are shown in Fig. 16.

Table V

Control Rules for Five Labels (a = 2, p = 2ife = NB or PB or
e = NM or ZO or PM; otherwise a = 1, P = 2)

e

NB
NM
ZO
PM
PB

NB

-6
- 6
- 3

0
3

NM

-4.5
-4.5
-1.5

1.5
1.5

e

ZO

- 3
- 3

0
3
3

PM

-1.5
-1.5

1.5
4.5
4.5

PB

- 3
0
3
6
6

Reprinted with the permission of the Society of Instrument and Control Engineers, Japan.

264 Keigo Watanabe and Spyros G. Tzafestas

u 0

Figure 16 Conclusion constants for a = 2, p = 2 if e = NB or PB or e = NM or ZO or PM.
Reprinted with the permission of the Society of Instrument and Control Engineers, Japan.

Figure 17 shows the attitude control results when the control rules determined
by Cases 1-5 were applied to the control object. Note here that an adaptive input
scaling method with the initial scalers 10"̂ was used [31] and the output scaler was
fixed to the value 1.6. It is seen from this figure that the result of Case 4 is good
for the case when the undershoot is not allowed, whereas the result of Case 5 is
good for the case when a little undershoot is allowed.

CO

(D
• D
3

CTJ

0.4

0.2

1

f\

-L

' 1 '

1
11
11

•I

1

1 ' 1 • 1 • 1

Case 1

Case 2

Case 3 j

Case 4

" ^ " Case 5

.

1 . 1 1 1 1 i

Time [s]

Figure 17 Control results using control rules: Cases 1-5. Reprinted with the permission of the So-
ciety of Instrument and Control Engineers, Japan.

Mean-Value-Based Functional Reasoning Techniques

B. THREE-INPUT-SINGLE-OUTPUT REASONING

265

In this subsection, we further consider a case in which the accelerative er-
ror information is taken into account, in addition to the deviation error and its
derivative information. The accelerative error is assumed to be constructed by

e = {e[kT] - e[(k - l)T]}/T. Introducing the parameters a, p, and y, Eq. (14)
can be rewritten as

C7i = [a/y p/y l/y] eck
ectJ

\cri\<L, (34)

Here, the membership functions for e and e are defined as shown in Fig. 6, but
those for e are assumed to consist of three labels as shown in Fig. 18, where their
mean values are denoted hycd, I = NB, ZO, PB.

1. Design of Switching Plane as an Overdamped
or Critically Damped Response

Using three inputs e, e, e and defining the following sliding plane:

e -\- Pe -h ae = 0, (35)

we determine the parameters a and p such that the characteristic equation as-
sociated with (35) has two real and unequal roots, or two real and equal roots,
which are, respectively, overdamped and critically damped responses. Hereafter,
it is assumed that y = 3.

Case 6. When allocating the characteristic roots for (35) as multiple roots of
— 1, it follows that a = 1 and P = 2, and the corresponding control rules are
tabulated in Table VI.

Case 7. When allocating the characteristic roots for (35) as two distinct roots
of —1 and —2, it follows that a = 2 and p = 3, and the corresponding control
rules are tabulated in Table VII.

-6 0 6 e

Figure 18 Membership functions of three labels for e.

266 Keigo Watanabe and Spyros G. Tzafestas

Table VI
Control Rules for Five Labels

e

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

(Ci =

NB

- 6
- 6
- 6
- 5
- 4

- 6
- 5
- 4
- 3

2

- 4
- 3
- 2
- 1

0

h P =

NM

(a) e =

- 6
- 5
- 4
- 3
- 2

(b) -̂ =

- 4
- 3
- 2
- 1

0

(c) e --

- 2
- 1

0
1
2

= 2, y

e

ZO

= NB

- 4
- 3
- 2
- 1

0

- 2
- 1

0
1
2

0
1
2
3
4

= 3)

PM

- 2
- 1

0
1
2

0
1
2
3
4

2
3
4
5
6

Pfi

0
1
2
3
4

2
3
4
5
6

4
5
6
6
6

Table VII
Control Rules for Five Labels

e

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

(ct =

NB

- 6
- 6
- 6
- 6
- 4

- 6
- 6
- 6
- 4
- 2

- 6
- 6
- 4
- 2

0

2, i8 =

iVM

(a) e =

-6
- 6
- 5
- 3
- 1

(b)^- =

- 6
- 5
- 3
- 1

1

(c) e --

-5
- 3
- 1

1
3

= 3, y

e

ZO

= NB

- 4
- 4
- 2

0
2

= Z(9

- 4
- 2

0
2
4

= PJ5

- 2
0
2
4
6

= 3)

PM

- 3
- 1

1
3
5

- 1
1
3
5
6

1
3
5
6
6

PB

0
2
4
6
6

2
4
6
6
6

4
6
6
6
6

Ca5^ 8. When allocating the characteristic roots for (35) as multiple roots of
—2, it follows that a = 4 and ^ = 4, and the corresponding control rules are
tabulated in Table VIII.

Case 9. When allocating the characteristic roots for (35) as multiple roots of
—3, it follows that a = 9 and P = 6, and the corresponding control rules are
tabulated in Table IX.

Figure 19 shows the attitude control results when the control rules determined
by Cases 6-9 were applied to the control object. It is seen from this figure that the
faster control result with no oscillations is obtained from Case 6 to Case 9.

2. Design of Switching Plane as an Underdamped Response

In this subsection, we will determine the parameters a and fi such that the roots
(—P ± y/p^ — Aa)/2 of the characteristic equation for (35) are complex numbers,
in which case we have the so-called underdamped response.

Mean-Value-Based Functional Reasoning Techniques 267

Table VIII
Control Rules for Five Labels

(a = 4, i8 = 4, y = 3)

e NB

e

NM ZO PM PB

(a) e = NB

Table IX
Control Rules for Five Labels

(a = 9, i8 = 6, y = 3)

£

e NB NM ZO PM PB

(a) e = NB

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

- 6
- 6
- 6
- 6
- 2

- 6
- 6
- 6
- 4

0

- 6
- 6
- 6
- 2

2

- 6
- 6
- 6
- 2

2

(b)e

- 6
- 6
- 4

0
4

- 6
- 6
- 2

2
6

- 6
- 6
- 2

2
6

= Z0

- 6
- 4

0
4
6

- 6
- 2

2
6
6

- 6
- 2

2
6
6

- 4
0
4
6
6

- 2
2
6
6
6

- 2
2
6
6
6

0
4
6
6
6

2
6
6
6
6

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

-6
- 6
- 6
- 5

4

- 6
- 6
- 6
- 3

6

- 6
- 6
- 6
- 1

6

- 6
- 6
- 6

1
6

(b)e

- 6
- 6
- 6

3
6

- 6
- 6
- 4

5
6

- 6
- 6
- 2

6
6

= Z 0

- 6
- 6

0
6
6

= PB

-6
- 6

2
6
6

- 6
- 5

4
6
6

- 6
- 3

6
6
6

- 6
- 1

6
6
6

- 6
1
6
6
6

- 6
3
6
6
6

- 4
5
6
6
6

0.4

•D
CO

•D
3

le 0.2

B
CO

1 ' 1 ' 1

-k
iVV\

" \ \
- i \ \ \

i \ \ \ - ' \ 1 \
1 \ \ \
\ \ I \
\ \ \ \
\ V
\ 1

\
I . I . I

• 1 > 1 < 1 1

Case 6

Case 7
Case 8 ^
Case 9

Vw^ J

H ^*'"**^»,,„^

"̂"""-̂ --̂ " • » * ^ * " ' * * * *

**"»».^
• * • " * .

".» **-
• » ^ ^

^•x»^^

1 . 1 1 1

0 1 2 3 4 5

Time [s]

Figure 19 Control results using control rules: Cases 6-9. Reprinted with the permission of the So-
ciety of Instrument and Control Engineers, Japan.

268 Keigo Watanabe and Spyros G. Tzafestas

Case 10. When setting the imaginary part of the complex conjugate roots as
y/3 with a fixed)S = 1, it follows that a = 1. The corresponding control rules are
tabulated in Table X. Note that in the following jS = 1 is used for all cases.

Case 11. Setting the imaginary part of the complex conjugate roots as \ / 5
gives Of = 1.5. The corresponding control rules are tabulated in Table XI.

Case 12. Setting the imaginary part of the complex conjugate roots as V 7
yields a = 2. The corresponding control rules are tabulated in Table XII.

Case 13. Setting the imaginary part of the complex conjugate roots as V l T
gives a = 3. The corresponding control rules are tabulated in Table XIII.

Figure 20 depicts the attitude control results when the control rules determined
by Cases 10-13 were applied to the control object. It is seen from this figure

Tabl< tX
Control Rules for Five Labels

e

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

(a =

NB

- 6
- 5
- 4
- 3
- 2

- 4
- 3
- 2
- 1

0

- 2
- 1

0
1
2

l.P-

NM

(a) e :

- 5
- 4
- 3
- 2
- 1

(b) e :

- 3
- 2
- 1

0
1

- 1
0
1
2
3

= 1, y

e

ZO

= NB

- 4
- 3
- 2
- 1

0

= zo
-2
- 1

0
1
2

= PB

0
1
2
3
4

= 3)

PM

- 3
- 2
- 1

0
1

- 1
0
1
2
3

0
2
3
4
5

PB

-2
1
0
1
2

0
1
2
3
4

2
3
4
5
6

1 rableXI

Control Rules for Five Labels
1

e

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

[a = L5, jS = 1, y :

NB

- 6
-5.5
- 4
-2.5
- 1

- 5
-3.5
- 2
-0.5

1

- 3
-1.5

0
1.5
3

e

NM ZO

(a) e = NB

- 6 - 5
-4.5 -3.5
- 3 - 2
-1.5 -0.5

0 1

ih)e = Z0

- 4 - 3
-2.5 -1.5
- 1 0

0.5 1.5
2 3

ic)e = PB

-2 - 1
-0.5 0.5

1 2
2.5 3.5
4 5

= 3)

PM

- 4
-2.5
- 1

0.5
2

- 2
-0.5

1
2.5
4

0
1.5
3
4.5
6

PB

- 3
-1.5

0
1.5
3

- 1
0.5
2
3.5
5

1
2.5
4
5.5
6

Mean-Value-Based Functional Reasoning Techniques 269

Table XII
Control Rules for Five Labels

(a = 2, p = h y = 3)

Table Xni
Control Rules for Five Labels

(a = 3, P = h y = 3)

NB NM ZO PM PB NB NM ZO PM PB

NB
NM
ZO
PM
PB

(a) e = NB

{h)e = ZO

(a) e = NB

NB
NM
ZO
PM
PB

ih)e = ZO

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

- 6
- 4
- 2

0
2

- 4
- 2

0
2
4

- 5
- 3
- 1

1
3

(c)e =

- 3
- 1

1
3
5

- 4
- 2

0
2
4

= PB

-2
0
2
4
6

- 3
- 1

1
3
5

- 1
1
3
5
6

- 2
0
2
4
6

0
2
4
6
6

NB
NM
ZO
PM
PB

NB
NM
ZO
PM
PB

- 6
- 5
- 2

1
4

- 6
- 3

0
3
6

- 6
- 4
- 1

2
5

- 5
- 2

1
4
6

- 6
- 3

0
3
6

- 4
- 1

2
5
6

- 5
- 2

1
4
6

- 3
0
3
6
6

- 4
- 1

2
5
6

- 2
1
4
6
6

Figure 20 Control results using control rules: Cases 10-13. Reprinted with the permission of the
Society of Instrument and Control Engineers, Japan.

270 Keigo Watanabe and Spyros G. Tzafestas

that the larger the imaginary part allocated, the larger is the oscillating control
response obtained, as expected.

VL MOBILE ROBOT EXAMPLE

In this section, an FGNN controller based on mean-value-based functional rea-
soning is applied to the tracking control problem of a mobile robot with two in-
dependent driving wheels.

A. MODEL OF A MOBILE ROBOT

Let the mobile robot be rigidly moving on a plane as shown in Fig. 21. The
absolute coordinate system O — XY is assumed to be fixed on the plane. Then
the dynamic behavior of the robot is described by the following equations of
motion [36]:

I J = Drl - DiU (36)

Mv = Dr-hDi. (37)

For the right and left wheels, the dynamics of the driving system is described by

lyjOi 4- cOi = kui -rDi, i =rj, (38)

where the parameters and variables are defined as follows: ly, the moment of
inertia around the center of gravity (e.g.) of the robot; M, the mass of the robot;
DuDr, the left and right driving forces; /, the distance between the left or the

Left wheel

Mv

'̂ <l> V ^ Right wheel

O

Figure 21 Mobile robot model.

Mean-Value-Based Functional Reasoning Techniques 271

right wheel and the e.g. of the robot; (p, the azimuth of the robot; i;, the velocity
of the robot; /„;, the moment of inertia of the wheel; c, the viscous friction factor;
k, the driving gain factor; r, the radius of the wheel; Oi, the rotational angle of the
wheel; and M/, the driving input.

On the other hand, the geometrical relationships among the variables 0, f, /̂
are given by

rOi = V — /0.

(39)

(40)

From these equations, defining the state variable for the robot as x = [i; 0 0] ̂ ,
the manipulated variable as u = [wr w/]^, and the output variable as y =
[v (f)]^, one obtains the following state equations:

where

A =
ai
0
0

0 0 -
0 1
0 a2.

X = Ax + Bu,
y = Cx,

B =
rbi bi

0 0
. b2 -bi

c =
1 0 0"
0 1 0

(42)

5

ai = -2c/(Mr^ + 2/^;), a2 = -Icf/^y + 2/^/^),

bi = kr/(Mr^ + 2/^), b2 = krl/{iy + 2IJ^).

B. SIMULATION EXAMPLES

Figure 22 shows the block diagram of the path control system of the mobile
robot. This system consists of two FGNNs; one is for processing the information
of the velocity error Cy = Vd — v and its rate ky; and the other is for processing
the information of the azimuth error Ccp = (pd — (p and its rate Cff,. Here, Vd and
(pd denote the reference velocity and reference azimuth, respectively. The system
also contains a net which combines two consequent torques Uy and M^ generated
from two FGNNs and determines the right and left driving torques, that is, Ur
and ui.

In the simulations, we apply the FGNN using the mean-value-based func-
tional reasoning described in Section II.C. To simulate the mobile robot model,
the fourth-order Runge-Kutta-Gill method was used with an integration step
of 1 [ms]. It is also assumed that the control sampling period is 50 [ms]. The

272 Keigo Watanahe and Spyros G. Tzafestas

Figure 22 Fuzzy Gaussian neural network controller for a mobile robot with two independent drive
wheels. Reprinted from K. Watanabe et al. Fuzzy-neural network controllers using mean-value-based
functional reasoning, Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL,
Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.

physical parameters of the mobile robot are as follows:

ly = 10 [kgm^], M = 200 [kg], / = 0.3 [m],

/u; = 0.005 [kgm^], c = 0.05 [kgm^/s], r = 0.1 [m], ^ = 5.

A circular trajectory with a radius of 1.5 [m] is considered, in which the reference
velocity Vd is 0.25 [m/s] and the initial value of the state variable is given as
x = [0 0 0]^.

We used the 49 control rules in which the seven membership functions shown
in Fig. 23 were applied to each input variable. The center values of the seven

NB NM PS PM PB

-2 0

Figure 23 Gaussian membership functions with seven labels. Reprinted from K. Watanabe etal.
Fuzzy-neural network controllers using mean-value-based functional reasoning, Neurocomputing
9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV
Amsterdam, The Netherlands.

Mean-Value-Based Functional Reasoning Techniques 273

membership functions, Wc, were —6, —4, —2, 0, 2,4, 6, and the reciprocal values
of the deviation Wd were all unity so as to equally allocate all membership func-
tions on the support set [—6, 6]. Note that all initial scalers of the adaptive input
scaling method were set as 10^. Note also that the weights of the connection net,
Wen, are usually fixed as 1.0,1.0, 1.0, —1.0 as discussed in [11]. However, here
we set them as 1.5,1.5, 5.0, —5.0, which means that the output torque Uy from
FGNNi was scaled as l.Suy and the output torque ŵ from FGNN2 was also
scaled as 5.OM0.

1. Effect of Input Scaling

In this simulation, the connection weights Wa and Wb for each FGNN were
learned, under the assumption that the other connection weights in the FGNNs
were not learned; that is, the learning rates of Wc and Wd were all fixed to 0.

The control results of the velocity and azimuth for the case where a = 3
and P = 2, that is, when the initial parameters for Wa and Wb are 1.5 and 0.5,
respectively, are given in Figs. 24 and 25, where the learning rates of Wa and

• I—•

o

>

0.3h

0.2h

0.lh

reference

0th trial

1st trial

2nd trial

20

Time [s]

40

Figure 24 Velocity control results for the case of initial parameters Wa = 1.5 and Wh = 0.5.
Reprinted from K. Watanabe et al. Fuzzy-neural network controllers using mean-value-based func-
tional reasoning, Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara
Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.

274 Keigo Watanahe and Spyros G. Tzafestas

"D
2

-e-
x:
3
F
N

<

0

-2

-4

-6

1

_ y 1

-

_

-

1

' 1

'viAj\
•Tl'\

1

' 1 '

\ L
M<L

v^

1st trial

2nd trial

1 1

1 > 1

reference

0th trial 1
J

J

W "1

1 1 1

20

Time [s]

40

Figure 25 Azimuth control results for the case of initial parameters Wa = 1.5 and Wh = 0.5.
Reprinted from K. Watanahe et al. Fuzzy-neural network controllers using mean-value-based func-
tional reasoning, Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara
Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.

0)

T3
O
O
o

0

-2

-4

/ / /
/ /

I / I (\

1 1 1

Start

W.
reference

0th trial

1 . 1

' 1 ' 1 '

M 1
' 1 \

1 1 J

1 r t t rm 1
1 ST iriai

^nd trial

I I I .

X- coordinate [m]

Figure 26 Trajectory control results for the case of initial parameters Wa = 1.5 and w^ = 0.5.
Reprinted from K. Watanahe et al, Fuzzy-neural network controllers using mean-value-based func-
tional reasoning, Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara
Burgerhartstraat 25,1055 KV Amsterdam, The Netherlands.

Mean-Value-Based Functional Reasoning Techniques 275

Wb were separately determined for the velocity and azimuth: rjl = 0.0005 and
rjl = 0.001 for the FGNN associated with the velocity, and rj^ = 0.001 and
TJI = 0.0005 for the FGNN associated with the azimuth. It is seen from these
figures that, after the first trial, a very fast response is obtained for the velocity
and azimuth of the robot. The corresponding circular path in the (x, y) coordinate
is also depicted in Fig. 26.

It is also remarked that, in this case, the learning of the parameters Wa and Wb
does not necessarily contribute to the control of the velocity and azimuth of the

30

^

20

10

_l

-

-

~ l
0

1 ' 1 ' 1 ' 1

-
0th trial

1st trial

2nd trial

1 . 1 . 1 . 1

20 40

^ 4

X 2

Time [s]

(a)

0th trial

1st trial

2nd trial

20

Time [s]

(c)

40

0 ^

3nr

Oth trial

1st trial

2nd trial

20

Time [s]

(b)

40

Oth trial

1st trial

2nd trial

20

Time [s]

(d)

40

Figure 27 Input scalers for the case of initial parameters Wa = 1.5 and Wb = 0.5. Reprinted from
K. Watanabe et at.. Fuzzy-neural network controllers using mean-value-based functional reasoning,
Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara Burgerhartstraat
25, 1055 KV Amsterdam, The Netheriands.

276 Keigo Watanabe and Spyros G. Tzafestas

robot, because the initial parameters for Wa and Wb are set suitably. This was con-
firmed by the fact that setting all learning rates to 0 for Wa and Wb in both FGNNs
gave the same results as before. As seen from Fig. 27a-d, the main contribution to
the control of the trajectory of the robot is only the adjustment of the input scaling
for^0 and^0.

2. Effect of the Learning of Parameters in the Conclusion

In this case, the parameters in the conclusion were modified using the values
a = 3.2 and Ŝ = 2; that is, the initial parameters for Wa and Wb were 1.6 and
0.5, respectively. In addition, the learning rates of Wa and Wb were also changed
as r)l = r]l = 0.005 for the FGNN associated with the velocity, and r)l = ril =
0.001 for the FGNN associated with the azimuth.

The corresponding control results are shown in Figs. 28-30, together with their
input scaling adjustments shown in Fig. 31. It is seen from these figures that sat-
isfactory trajectory and azimuth are obtained after the second trial. As observed
from Fig. 28, the velocity response is still improved up to the sixth trial.

0.2

*̂
"o
_o

>
T. 0.1

reference

0th trial

2nd trial

4th trial

6th trial

20

Time [s]

40

Figure 28 Velocity control results for the case of initial parameters Wa = 1.6 and Wb = 0.5, where
T]^ = r]j^ = 0.005 and r)^ = r]^ = 0.001. Reprinted from K. Watanabe et al. Fuzzy-neural network
controllers using mean-value-based functional reasoning, Neurocomputing 9:39-61, 1995, with kind
permission of Elsevier Science-NL, Sara Burgerhartstraat 25,1055 KV Amsterdam, The Netherlands.

Mean-Value-Based Functional Reasoning Techniques 277

• D
(0

- -2

3
E
N
<

reference H

0th trial

2nd trial

4th trial

6th trial

0 20

Time [s]

Figure 29 Azimuth control results for the case of initial parameters lu^ = 1.6 and Wf, = 0.5, where
r)\ = T]^ = 0.005 and Y]^ = r\^ = 0.001. Reprinted from K. Watanabe et al. Fuzzy-neural network
controllers using mean-value-based functional reasoning, Neurocomputing 9:39-61, 1995, with kind
permission of Elsevier Science-NL, Sara Burgerhartstraat 25,1055 KV Amsterdam, The Netherlands.

0)

"5
c
-̂.

O
O
o

reference —

0th trial —

2nd trial

- 4th trial

— 6th trial

-2 0 2

X- coordinate [m]

Figure 30 Trajectory control results for the case of initial parameters lUa = 1.6 and Wb = 0.5, where
rj^ = r]j^ = 0.005 and rj^ = t]^ = 0.001. Reprinted from K. Watanabe et at.. Fuzzy-neural network
controllers using mean-value-based functional reasoning, Neurocomputing 9:39-61, 1995, with kind
permission of Elsevier Science-NL, Sara Burgerhartstraat 25,1055 KV Amsterdam, The Netherlands.

278 Keigo Watanabe and Spyros G. Tzafestas

30

^
0)

rt 20

Q .

10

1 ' 1 ' 1 • 1 ' 1

0th trial

2ncl trial

1 1 1 1 1 • 1 • 1

20

Time [s]

(a)

40

t; 2h

-T ' r

0th trial

2nd trial

20

Time [s]

(b)

40

X 4

Tl ' r-

0th trial

2nd trial

3nr

0th trial

2nd trial

40 " 0 20 40 " 0 20
Time [s] Time [s]

(c) (d)

Figure 31 Input scalers for the case of initial parameters Wa = 1.6 and Wh = 0.5, where r}^ = rjj^ .

0.005 and r]l = r}l= 0.001.

To check the effect of the learning of the parameter Wb on the control perfor-
mance, the results for the case where the learning rate of wt was fixed to 0 are
depicted in Figs. 32-34. From these figures, it is seen that the control of the veloc-
ity is inferior to that of the case where both Wa and Wb are learned simultaneously.
Therefore, to improve the velocity response, the learning rate of Wa was change to
rjl = 0.05 for the FGNN associated with the velocity. The corresponding results
are shown in Figs. 35-37. From Fig. 35, it is understood that a very fast velocity
response is obtained, even though the parameter Wb is not learned.

Mean-Value-Based Functional Reasoning Techniques 279

0.2

o
o % 0.1
>

. 1

-

-

-
-

-

1

c

' 1

// i
[

1

' 1 ' 1 ' 1 1

j
H

reference

0th trial J

2nd trial

4th trial]

6th trial •

I . I . I

20 40

Time [s]

Figure 32 Velocity control results for the case of initial parameters Wa = 1-6 and Wh = 0.5, where
r]l = 0.005 and w^ was fixed. Reprinted from K. Watanabe et al., Fuzzy-neural network controllers
using mean-value-based functional reasoning, Neurocomputing 9:39-61, 1995, with kind permission
of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.

"D

1 -2

ZJ

E -4
N
<

reference

0th trial

2nd trial

4th trial

6th trial

20

Time [s]

40

Figure 33 Azimuth control results for the case of initial parameters Wa = 1.6 and Wh =0 .5 , where
r]l = 0.005 and w^ was fixed. Reprinted from K. Watanabe et al. Fuzzy-neural network controllers
using mean-value-based functional reasoning, Neurocomputing 9:39-61, 1995, with kind permission
of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.

280 Keigo Watanabe and Spyros G. Tzafestas

0
c5
c
o
o
o

0

-2

-4

1 1 ' 1 ' 1 ' 1

/ / "T^ /(start \
/ (1

• K-^.
reference

nth trini
uin Trial
2nd trial

- . 1 . 1 . 1 . 1

' ' '

J
\

/

4th trial -

6th trial -

•

. 1

X- coordinate [m]

Figure 34 Trajectory control results for the case of initial parameters Wa = 1.6 and w}, = 0.5, where
T]l = 0.005 and w^ was fixed. Reprinted from K. Watanabe et al. Fuzzy-neural network controllers
using mean-value-based functional reasoning, Neurocomputing 9:39-61, 1995, with kind permission
of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.

0.2

"o
o
^ 0.1h
>

reference

0th trial

2nd trial

4th trial

6th trial

20

Time [s]

40

Figure 35 Velocity control results for the case of initial parameters u;̂ = 1.6 and Wb = 0.5, where
r]\ = 0.05 and Wfj was fixed. Reprinted from K. Watanabe et al, Fuzzy-neural network controllers
using mean-value-based functional reasoning, Neurocomputing 9:39-61, 1995, with kind permission
of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.

Mean-Value-Based Functional Reasoning Techniques 281

reference i

0th trial

2nd trial

_L
20 40

Time [s]

Figure 36 Azimuth control results for the case of initial parameters Wa = 1.6 and w;̂ = 0.5, where
TJI = 0.05 and Wh was fixed.

VII. CONCLUSIONS

We have presented a mean-value-based functional reasoning scheme, in ad-
dition to the usual input-data-based functional reasoning and the simplified rea-
soning schemes, in which the conclusion consists of a function of mean values
on each membership function in the antecedent. It was shown that the constant

C3

o
o

0

-2

-4

1 ' 1 • 1 • 1

/(start \

: (jv_.y
reference

0th trial

2nd trial

- . 1 . 1 . 1 . 1

' 1 1

.

1

4th trial -

6th trial -

•

. 1 . -

X- coordinate [m]

Figure 37 Trajectory control results for the case of initial parameters Wa
where rj^ = 0.05 and Wh was fixed.

1.6 and Wb = 0.5,

282 Keigo Watanabe and Spyros G. Tzafestas

parameters in the conclusion of these functional reasoning schemes can be ratio-
nally designed through the use of VSS control theory. Furthermore, some fuzzy
neural network controllers were developed by using these functional reasoning
schemes. It was proved that the fuzzy neural network which uses the mean-value-
based functional reasoning scheme allows the number of learning parameters in
the conclusion to be reduced drastically, compared to those of the input-data-
based functional reasoning and the usual simplified reasoning schemes.

Recently, a stochastic fuzzy control approach that includes the present result
as a special case has been proposed [37-^1]. This approach is based on using the
so-called multiple model adaptive control [42], and is closely related to the con-
ventional model-based control. The proposed stochastic fuzzy controller can be
designed as a conventional stochastic control consisting of a static fuzzy observer
part and a feedback gain part [39]. Also, this type of fuzzy controller can assure
the bounded stability of the controlled system through a robust control approach
[43], instead of assuring an ideally asymptotic stability [9-11]. For their practical
application to robotics and mechatronics, the reader is referred to [44-46].

REFERENCES

[1] M. Sugeno. Fuzzy Control, pp. 67-136. Nikkan-kogyo-shinbun-sha, Tokyo, 1988 (in Japanese).
[2] T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to modeling and

control. IEEE Trans. Systems Man Cybernet. 15:116-132, 1985.
[3] M. Mizumoto. Simple fuzzy theories. Computrol 28:32-45, 1989 (in Japanese).
[4] M. Mizumoto. Fuzzy reasoning methods for fuzzy control. J. Soc. Instrument Control Engineers

28:959-963, 1989 (in Japanese).
[5] E. H. Mamdani. Application of fuzzy algorithms for control of simple dynamic plant. Proc. lEE

121:1585-1588, 1974.
[6] E. H. Mamdani. Advances in the linguistic synthesis of fuzzy controller. Intemat. J. Man Ma-

chine Studies 8:669-679, 1976.
[7] H. Ichihashi and H. Tanaka. PID-Fuzzy Hybrid Controller. In Proceedings of the Fourth Fuzzy

System Symposium (Tokyo), pp. 97-102, 1988 (in Japanese).
[8] K. Tanaka. Advanced Fuzzy Control. Kyoritsu-syuppan, Tokyo, 1994 (in Japanese).
[9] K. Tanaka and M. Sano. A robust stabilization problem of fuzzy control systems and its applica-

tion to backing up control of a truck-trailer. IEEE Trans. Fuzzy Systems 2:119-134, 1994.
[10] K. Tanaka, T. Ikeda, and H. O. Wang. Robust stabilization of a class of uncertain nonlinear sys-

tems via fuzzy control: quadratic stabiHzation, H^ control theory, and linear matrix inequalities.
IEEE Trans. Fuzzy Systems 4:1-13, 1996.

[11] H. O. Wang, K. Tanaka, and M. F. Griffin. An approach to fuzzy control of nonlinear systems:
stability and design issues. IEEE Trans. Fuzzy Systems 4:14-23, 1996.

[12] N. Matsunaga and S. Kawaji. Fuzzy control of VSS type and its robustness. J. Japan Soc. Fuzzy
Theory Systems 4:1147-1155, 1992 (in Japanese).

[13] C.-C. Kung and S.-C. Lin. Fuzzy controller design: a sliding mode approach. In Fuzzy Reasoning
in Information, Decision and Control Systems (S. G. Tzafestas and A. N. Venetsanopoulos, Eds.),
pp. 277-306. Kluwer Academic, Dordrecht, 1994.

Mean-Value-Based Functional Reasoning Techniques 283

[14] J. C. Wu and T. S. Liu. A sliding-mode approach to fuzzy control design. IEEE Trans. Control
Systems Technol. 4:141-151, 1996.

[15] S. Horikawa, T. Furuhashi, and Y. Uchikawa. On fuzzy modeling using fuzzy neural networlcs
with the back-propagation algorithm. IEEE Trans. Neural Networks 3:801-806, 1992.

[16] K. Watanabe and J. Tang. Learning controller based on fuzzy Gaussian neural network. In
Proceedings of the Second Intelligent System Symposium (Nagoya), pp. 255-260, 1992 (in
Japanese).

[17] K. Watanabe and J. Tang. Control of a robot vehicle using fuzzy Gaussian neural network.
In Proceedings of the Second Intelligent System Symposium (Nagoya), pp. 261-266, 1992 (in
Japanese).

[18] J.-S. Roger Jang and C.-T. Sun. Functional equivalence between radial basis function networks
and fuzzy inference systems. IEEE Trans. Neural Networks 4:156-159, 1993.

[19] J. Nie and D. A. Linkens. Learning control using fuzzified self-organizing radial basis function
network. IEEE Trans. Fuzzy Systems 1:280-287, 1993.

[20] K. Watanabe, J. Tang, M. Nakamura, S. Koga, and T. Fukuda. Mobile robot control using fuzzy
Gaussian neural networks. In Proceedings of the 1993 lEEE/RSJ International Conference on
Intelligent Robots and Systems (Yokohama), Vol. 2, pp. 919-925, 1993.

[21] I. Hayashi and M. Umano. Perspectives and trends of fuzzy-neural networks. /. Japan Soc. Fuzzy
Theory Systems 5:nS-l90, 1993.

[22] H. Ichihashi, T. Miyoshi, and K. Nagasaka. Computed tomography by neuro-fuzzy inversion.
In Proceedings of the International Joint Conference on Neural Networks (Nagoya), Vol. 1,
pp. 709-712, 1993.

[23] T. Watanabe and H. Ichihashi. Fuzzy control of a robotic manipulator by the feedback error
learning. Trans. Inst. Systems Control Inform. Engineers 3:212-217, 1990 (in Japanese).

[24] K. Watanabe, J. Tang, M. Nakamura, S. Koga, and T. Fukuda. A fuzzy-Gaussian neural network
and its application to a mobile robot control. IEEE Trans. Control Systems Technol. 4:193-199,
1996.

[25] K. Watanabe, K. Hara, and S. G. Tzafestas. Fuzzy controller design using the mean-value-based
functional reasoning. In Proceedings of the International Joint Conference on Neural Networks
(Nagoya), Vol. 3, pp. 2983-2986, 1993.

[26] K. Watanabe. Fuzzy controller design using the mean-value-based functional reasoning. Trans.
Soc. Instrument Control Engineers 31:1106-1113, 1995 (in Japanese).

[27] R. A. DeCarlo, S. H. Zak, and G. R Matthews. Variable structure control of nonhnear multivari-
able systems: a tutorial. Proc. IEEE 76:212-232, 1988.

[28] K. Watanabe, K. Hara, S. Koga, and S. G. Tzafestas. Mean-value-based functional reasoning and
its reahzation as a fuzzy-neural-network controller. In Proceedings of the First Asian Control
Conference (Tokyo), Vol. 3, pp. 435^38, 1994.

[29] K. Watanabe, K. Hara, S. Koga, and S. G. Tzafestas. Fuzzy-neural network controllers using the
mean-value-based functional reasoning. Neurocomputing 9:39-61, 1995.

[30] M. Teshnehlab and K. Watanabe. A fuzzy neural network controller based on Gaussian potential
functions. In Proceedings of the Third International Conference on Fuzzy Logic, Neural Nets
and Soft Computing (lizuka), pp. 193-196, 1994.

[31] K. Watanabe and S. G. Tzafestas. Fuzzy logic controller as a compensator in the problem of
tracking control of manipulators. In Proceedings IFToMM-jc International Symposium on The-
ory of Machines and Mechanisms (Nagoya), pp. 98-103, 1992.

[32] D. E. Rumelhart and J. L. McClelland, and the PDF Research Group, Eds., Parallel Distributed
Processing: Explorations in the Microstructures of Cognition, Vol. 1: Foundations. MIT Press,
Cambridge, MA, 1986.

[33] R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, New York, 1987.

284 Keigo Watanahe and Spyros G. Tzafestas

[34] K. Watanabe and S. G, Tzafestas. Learning algorithms for neural networks with the Kalman
filters. J. Intell Robotic Systems 3:305-319, 1990.

[35] S. Daley and K. F. Gill. A justification for the wider use of fuzzy logic control algorithms. Proc.
Inst. Mechanical Engineers 199-Cl: 43^9, 1985.

[36] M. Saito and T. Tsumura. Collision avoidance among multiple mobile robots—a local approach
based on non-linear programming. Trans. Inst. Systems Control Inform. Engineers 3:252-260,
1990 (in Japanese).

[37] K. Watanabe. Stochastic fuzzy control (1st report, theoretical derivation). Trans. Japan Soc. Me-
chanical Engineers C 62:1005-1012, 1996.

[38] K. Watanabe. Stochastic fuzzy control (2nd report, relationships among a priori probabilities,
fuzzy sets and control rules). Trans. Japan Soc. Mechanical Engineers C 62:1013-1018, 1996.

[39] K. Watanabe and A. Nomiyama. Stochastic fuzzy control (3rd report, appUcation to trajectory
tracking control of a mobile robot). Trans. Japan Soc. Mechanical Engineers C 62:1019-1025,
1996.

[40] K. Watanabe. Stochastic fuzzy control, I: Theoretical derivation. In Proceedings FUZZ-
lEEE/IFES '95 (Yokohama), Vol. 2, pp. 547-554, 1995.

[41] K. Watanabe and A. Nomiyama, and J. Tang. Stochastic fuzzy control, II: relationships among
a priori probabilities, fuzzy sets, and control rules. In Proceedings of the Fourth International
Conference on Soft Computing (lizuka). Vol. 1, pp. 359-362, 1996.

[42] K. Watanabe. Adaptive Estimation and Control. Prentice-Hall, Hemel Hempstead, 1992.
[43] K. Watanabe, A. Nomiyama, and J. Tang. A design of stochastic fuzzy controller using a ro-

bust state feedback stabilization. In Proceedings of the Fourth International Conference on Soft
Computing (lizuka). Vol. 1, pp. 378-383, 1996.

[44] J. Tang, A. Nomiyama, and K. Watanabe. Stochastic fuzzy control law for path tracking in mobile
robot. In Proceedings of the 1996 Japan-U.S.A. Symposium on Flexible Automation (Boston),
Vol. 1, pp. 615-622,1996.

[45] J. Tang, A. Nomiyama, and K. Watanabe. Stochastic fuzzy control for an autonomous mobile
robot. In Proceedings of the 1996 IEEE International Conference on Systems, Man and Cyber-
netics (Beijing), Vol. 1, pp. 316-321, 1996.

[46] K. Watanabe and K. Noda. Position control of prismatic Unk using a stochastic fuzzy controller
with a robust servo structure. In Proceedings of the 1996 IEEE International Conference on
Systems, Man and Cybernetics (Beijing), Vol. 1, pp. 304-309, 1996.

Fuzzy Neural Network
Systems in Model
Reference Control Systems

Yie-Chien Chen
Department of Control Engineering
National Chiao-Tung University
Hsinchu, Taiwan

Ching-ChengTeng
Department of Control Engineering
National Chiao-Tung University
Hsinchu, Taiwan

I. INTRODUCTION

In this chapter, we propose a model reference control system that uses fuzzy
neural networks (FNNs). The proposed model reference control system belongs
to indirect adaptive control. The controlled plant is identified by the fuzzy neu-
ral network identifier (FNNI), which approximates the system and provides the
sensitivity of the plant for the fuzzy neural network controller (FNNC). This is a
real adaptation system that can learn to control a complex system and adapt to a
wide range of variations in plant parameters. Unlike most other adaptive learning
neural controllers [1-8], the FNNC presented in this chapter is based not only on
the theory of neural network computing but also on that of fuzzy logic [9].

Though the proposed control scheme is a sHght modification of those in [6,
10], we believe that our structure is more reasonable for a fuzzy logic control
system. Because the place for the reference model (RM) in the proposed system
is specially considered, the FNNC is designed such that the actual output of the
system will track the desired output of the reference model. Moreover, we can
simply take the error (between the actual output and the desired output) and the
change in this error as the input for the FNNC [2].

Ftizzy Logic and Expert Systems Applications
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 285

286 Yie-Chien Chen and Ching-Cheng Teng

11. FUZZY NEURAL NETWORK

In this section, we study the fuzzy inference system first. Later, such a system
is implemented by using the FNN which is a four-layered fuzzy neural network.
Because the generalized fuzzy neural network (GFNN) is the basis of the FNN,
the FNN will inherit the general properties from the GFNN. To capture the im-
portant concept of the FNN, the construction, learning process, and corresponding
operations of the FNN will be described in the following subsections.

A. FUZZY INFERENCE SYSTEM

The main goal of fuzzy inference systems is to model human decision mak-
ing within the conceptual framework of fuzzy logic and approximate reasoning.
As is well known, a fuzzy inference system consists of four important parts: the
fuzzification interface, knowledge base, decision-making unit, and defuzzifica-
tion interface [11]. A fuzzy inference system is a model having the format of a
fuzzy controller, which has been the most developed area of fuzzy set theory in
engineering [12].

1. Generalized Modus Ponens

In this subsection, the operations of a fuzzy inference system are discussed
based on the generalized modus ponens (GMP) [13]. A general fuzzy inference
system with n inputs and p outputs can be described in the following format:

Premise: x is A'

Implication 1: If jc is A^, then y is B^ else
Implication 2: If jc is A^, then y is B^ else

Implication m: If jc is A'", then y is B^
Conclusion: y is B^

where Xi e Xt, yi e 7/, and Xt and Yi are the universe of discourse of the corre-
sponding inputs and outputs, respectively. The n-array variable x = [xi,... ,Xn]
denotes the input vector and the /7-array variable y = [yi, -. - ,yp] denotes the
output vector. Vectors A'' = [A\, A^, . . . , AĴ] and B'' = [J5|, 5 ^ , . . . , 5^] are
vectors of linguistic values referring to the fuzzy variables x and y, respectively.
Vector A' = [A^,. . . , A^] is the input observation vector and B^ = [B[,..., Bp]
is the output observation vector [14]. In a fuzzy inference system, Â is the result

Fuzzy Neural Network Systems 287

of applying fuzzification for numerical input Xi. This is the first step for rule rea-
soning. This means that a fuzzy inference system can be used for any nonfuzzy
application.

2. Rule Inference

According to the compositional rule of inference [15], B- can be obtained by

taking the sup-* composition of fuzzy set A' and fuzzy relation A^ -^ B- :

B'i = (A[and A^ and • • • A^) o (A{ and A{ and • • • AI), (1)

where o denotes the sup-* composition operation. "*" is the r-norm opera-
tor. The sup-min and sup-product composition are often used. The fuzzy re-
lation used here is fuzzy implication. Note that Eq. (1) calculates only the
jih individual consequence for B-. Now, let us consider the whole set of
rules in the generaUzed modus ponens. The overall output fuzzy set B^ can
be obtained by taking the union of all the individual conclusions [13], that
is,

5 ; = (A ; and A^ and • • • A^) o | J [{A{ and A{ and• • • A{) -> 5 /] . (2)
j=l,...,m

If we take Larsen's product fuzzy implication [13] and the sup-product composi-
tion on Eq. (2), then we obtain the membership function of output fuzzy set B- in
the following equation:

f^B'Xyi) = V n ^^i (̂) • V n ^A{ (̂ ^̂ 5/ ̂ y^^
X L / = / ; = / 1 = 1

(3)

where v denotes the pairwise maximum operator. For simplicity, we take fuzzy
singletons [15] on Aj for / = 1 , . . . , n, that is.

[1, if̂ .X = XI,

' ' ^ otherwise.

Substituting Eq. (4) into Eq. (3), we obtain the following equation:

m / n

j=l\l=l ^ / '

Because we want to use numerical output in most of the applications, Eq. (5)
must be transformed to a numerical output by taking defuzzification. There are
various methods of the defuzzification. Here we use the center of area (COA)

288 Yie-Chien Chen and Ching-Cheng Teng

method. Then the numerical output yt inferred from the fuzzy logical rules can be
determined from the output fuzzy set B^ as follows:

ly.iJ^B'Xydyidyi , . ,
yi = "7 r ~ T 3 — fori = l,...,p, (6)

JYif^B:(yi)dyi

3. Simplified Fuzzy Inference System

Many researchers have dealt with the modification of fuzzy inference systems
by using different types of fuzzy logical rules, for example, [11, 16-18]. The
motivation for modifying the fuzzy inference systems is as follows:

1. The pairwise maximum operation in Eq. (3) causes extreme difficulty in
parameterizing the fuzzy logical rules. Also, it makes conventional
estimation methods inapplicable.

2. The integral in Eq. (6) requires numerical analysis methods in computer
simulations.

We can see that the modification of fuzzy inference systems is practically
needed. However, the modified fuzzy inference system must still be a univer-
sal approximator [19]. A universal approximator means that, given a function
F: R"^ -> R which is continuous, there exists a fuzzy inference system / such
that / can approximate F uniformly on a compact subset of R^ to any degree of
accuracy.

By taking the fuzzy singletons to represent the output fuzzy sets Bj, that is,

[O, i f y , -) 8 / ,

where the fij are the fuzzy singletons, then a discrete form to calculate the ith
numerical output yt is obtained as follows:

ET=i^/(n/=iMw(^/))
yi = 7^ '—T^- (7)

The simplified fuzzy inference system in Eq. (7) has been proved to be a universal
approximator by Jou [12] and Wang [19]. Because Eq. (7) is only an algebraical
form, the disadvantages mentioned previously have disappeared.

We rewrite the generalized modus ponens based on the simplified fuzzy infer-
ence system as follows:

Fuzzy Neural Network Systems 289

Premise: x is A'

Implication 1: If jc is A^ then y is [^l, p\,..., ^^] else
Implication 2: If x is A^, then y is [)6 ,̂ ̂ S^,. . . ,)S]̂ else

Implication m: If JC is A^, then y is [̂ g ,̂)6^ , . . . , ^g^]

Conclusion: j is [)gj,)g2' • • •»)^p]

Each fuzzy if-then rule has the format

If xi is A \ and • • • andx„ is AjJ, then y\ is fi[, . . . , j ^ is Pp.

We can see that this fuzzy rule representation is exactly the same as Sugeno's
fuzzy rules [17]. This indicates that if we use max-product inference to Sugeno's
type of fuzzy rules, then we will get the same equation as Eq. (7).

4. Fuzzy Inference System and Neural Network

We know that neural networks have the capability of highly parallel distributed
processing and learning from experience. An automatic structure for a fuzzy in-
ference system utilizing the learning capability of a neural network is reasonable.
In this subsection, we will construct a four-layered neural network structure to
implement the fuzzy inference system as stated in Eq. (7). The construction of the
neural network is restricted by the following conditions:

1. The fuzzy inference system can be directly pointed out in the neural
network.

2. Every node at each layer has the physical meaning according to the fuzzy
inference system.

3. The overall operations are equal to Eq. (7).

Figure 1 shows a GFNN. This fuzzy neural network consists of four layers. Nodes
at layer 1 are input nodes which represent input linguistic variables. Nodes at layer
2 are membership nodes which act like membership functions. The membership
node is responsible for mapping an input Hnguistic variable into a possibility dis-
tribution [13] for the variable being equal to it. The rule node resides in layer
3. Thus, all the connections between membership nodes and rule nodes indicate
the if part or premise of fuzzy rules. The last layer node is the output node. The
connections between rule nodes and output nodes indicate the then part or conse-
quence of fuzzy rules.

In Fig. 1, we use the feedforward arrow to represent the whole connection links
between the term nodes and the rule nodes. The arrow is used to indicate the con-
nections of the antecedent part (if part) of the fuzzy rules. All of the connections

290 Yie-Chien Chen and Ching-Cheng Teng

output vector

O

Layer 4

}

}

Layer 3

Layer 2

input vector I J Layer 1

Figure 1 Generalized fuzzy neural network (GFNN).

of the fuzzy neural network must be predetermined because we want to develop
an automatic fuzzy inference system. Obviously, there are many ways to set up a
fuzzy neural network. In this chapter, we introduce an FNN based on the GFNN.
It will be stated in the next section.

B. STRUCTURE OF THE FUZZY NEURAL NETWORK

The structure diagram of the proposed FNN is shown in Fig. 2. The specialty
of the proposed FNN lies in the conditions for setting up the connections between
layer 2 and layer 3. Its construction is directly based on the fuzzy rules without
adjustment. For example, if we encounter the 7 th fuzzy rule described as follows:

If jci is A-[and JC2 is A2 • • • and jc„ is AjJ, then y is Pj,

then a connection structure based on these fuzzy rules is illustrated in Fig. 3. This
forms the jth component of the FNN. For generality, we must consider m fuzzy
rules which can be considered independently like dealing with the jth fuzzy rules.
The complete fuzzy neural network is illustrated in Fig. 2.

Fuzzy Neural Network Systems 291

Layer 4

Layer 3

J Layer 2

Figure 2 Structure diagram of the FNN.

} Layer 1

output node

rule node

term node

Figure 3 Construction of the jih component of the FNN.

292 Yie-Chien Chen and Ching-Cheng Teng

However, we must emphasize that the FNN does not ensure that Aj ^ AĴ for
j / k. The advantages of the FNN are as follows:

1. The structure of the FNN allows us to construct the fuzzy system rule by
rule. In other words, we can implement each fuzzy rule without
considering the other fuzzy rules.

2. If the prior knowledge of an expert is available, then we can directly add
some nodes (rules nodes and term nodes) on the FNN.

3. We do not take an ordinary fuzzy partition of the input space; thus, the
number of rules will not increase exponentially with the number of inputs.

4. Elimination of the redundant nodes (rule nodes and term nodes) are also
rule by rule. This means that if we eliminate a rule node, then the
associated terms are also removed from the FNN.

The disadvantage of the FNN lies in the requirements of a large amount of
term nodes. As we see in Fig. 2, although some term sets are almost the same, we
still require m x n term nodes at layer 2 for n inputs and m fuzzy rules.

C. LAYERED OPERATION OF THE FUZZY
NEURAL NETWORK

We will consider the proposed FNN as a special type of neural network. Here,
special type means both the special connections and the node operations. In the
FNN, every layer and every node have the practical meaning because the FNN is
constructed directly based on both fuzzy rules and fuzzy inference.

With the four-layer structure of the FNN, we will define the basic function of a
node [20]; each node performs two actions using two different functions. The first
function is the aggregation function g^(-) which provides the input for the node,
that is.

Net input = / (x ^ W ^) , (8)

where the superscript indicates the layer number, x^ denotes the input vector,
and W^ denotes the connection weights vector. This notation will also be used in
the following equations. The second function is the nonlinear activation function
f^(') which gives the output an activation value as a function of its net input,
that is,

Outputs of = / (/) , (9)

where Of is the ith output of the /:th layer. Next, we will indicate the signal
propagation, the basic function, and the practical meaning for every node at each
layer.

Fuzzy Neural Network Systems 293

Layer 1 (Input Layer)

The nodes at this layer are used to directly transmit the numerical inputs to the
next layer. The output of the iih input node (O/) is equal to the numerical input
(jc/), that is,

g]{x};Wy) = wlj-xl (10)

0] = fj{g])=g]{xl;W!j), (11)

where the weights at layer 1 are assumed to be unity, so no weight is adjusted
here.

Layer 2 (Linguistic Term Layer)

At this layer, every node performs a membership function. The Gaussian func-
tion, a particular example of a radially symmetric function [21], is used as the
membership function. The 7th term set of the ith input maps the input xf into the
membership degree, that is,

gfjixf; Wlj) = gfjixf; ntij; o",-,) = JAJI^L^ (12)

'̂O
Ofj = f?j{gfj) = cW 4 (13)

where mij and crtj denote the mean (center) and variance (width) with respect to

A^. The adjusted weights at layer 2 are mij 's and a/y 's.

Layer 3 (Rule Layer)

This layer implements the related links for the term nodes and rule nodes. In
other words, the antecedent matching will be determined here. The node at layer 3
performs the product operation. The net input and output of the j th rule node are

n

4(4;̂)̂ = n^^4' (14)
(= 1

l3 _ f3l„3_ „3 / 3. w3 0]^f]{^=^(x^^,Wf^i, (15)

where W^- is the connection weight between the yth term node of the /th input

and the yth rule node. There is no weight adjusted here, that is, Wf- — 1, V/, j .

294 Yie-Chien Chen and Ching-Cheng Teng

Layer 4 (Output Layer)

This layer performs the defuzzification to get numerical outputs. The W^j con-
nection weight between the iih rule node and the 7th output node represents the
consequence fuzzy singletons. If we use COA defuzzification, the node opera-
tion is

m

Equation (17) is fully based on Eq. (7), so the FNN with COA defuzzification
will be a universal approximator. However, we need to note that the adopted FNN
here is modified to be nonnormalized, that is, the operation in layer 4 is simply
modified as

m

0,4 = gf(̂ f;W;5.) = E ^ ^ ^ ' - (18)

A nonnormalized FNN exhibits the desired performance for the identification and
control of nonlinear systems. Moreover, there are two advantages of an FNN with-
out a normahzation process:

1. A faster training rate than the one which is normalized.
2. A much simpler form of the input-output sensitivity equations than in a

normalized FNN.

In the next section, we will show that such a nonnormalized FNN can approximate
any real continuous function.

D. SUPERVISED LEARNING

The adjusted parameters in the FNN can be divided into two categories based
on the if (premise) part and then (consequence) part of the fuzzy rules. In the
premise part, we are asked to fine tune the mean and variance of the Gaussian
functions, whereas, in the consequence part, the adjusted parameters are the con-
sequence weights. Once the FNN has been initiaUzed, a gradient-descent-based
back-propagation (BP) algorithm [22-24] is employed to adjust the parameters of
the FNN by using the training patterns. The main goal of supervised learning is
to minimize the error function:

E = \{d{k)-y{k))\ (19)

Fuzzy Neural Network Systems 295

where y{k) is the output of the FNN and d(k) is the desired output for the ith
input pattern. If Otj is the adjusted parameter, then the learning rule used is

Oij(k + 1) = Oijik) - ,7. ̂ + a . AOijik), (20)

AOijik) =0ij(k)-0ij(k-l), (21)

where rj is the learning rate and a, between 0 and 1, is the momentum parameter
(a value of 0.9 is often chosen for a).

To derive the learning law based on the back-propagation algorithm, we shall
derive the computation of the dE/dWtj layer. We start this procedure from layer
4 because the error is back-propagated from this layer.

Layer 4

At this layer, the adjusted weights are W^j. Using Eqs. (20) and (21), the adap-

tive rule of W^j is derived as follows:

dE _ dE ^O]

(22)

where

and 5J is the error signal with respect to the 7th output node. Hence, the conse-
quence weights are updated by

Wfj(/:+!) = Wfj + r)w • ^]{k) • x^{k) + aw • ^Wf^{k), (23)

where TJW and aw are the learning rate and the momentum parameter for adjusting
the parameter Wf-, respectively.

Layer 3

Only the error signal 5? needs to be computed and propagated because there is
no weight adjustment at this layer. The error signal 5? is derived as follows:

, dE ^ dE BO'j dOf / . 4 4

dgf fr[dO^ dOf dgf fr{' ''

where p is the number of output nodes.

^K

^1 =

do^' dw^j

= id^-o^).4
= S'j-xt,

-id^-0%

296 Yie-Chien Chen and Ching-Cheng Teng

Layer 2

The adjusted parameters are mtj and atj at this layer. Using Eqs. (20) and (21),
we can derive the adaptive rule of mtj as follows:

dE dE ^g] dOfj

dmij dg^j dOfjdmij

s3 I I I / 12 I f-J 1

' ^
2{xf--mij)

^0'

where

4=^-n^o' (26)
1=1

and 5?- is the error signal with respect to the 7 th term set of the ith input. Similarly,
the adaptive rule of aij is derived as follows:

dE _ _dE_ dg^ 9 0 §

l{xl-mijf

2 (4 - ttiijf
= Sfj • '̂ 3 V (27)

'̂ (̂

Thus, the update rules for mtj and Cij are

2 2(xfj-mij)
mij{k + 1) = m,7(^) + m̂ • cffj '-^ + otm • ^mij(k), (28)

Oij (Jc + \) = Oij ik) + va • <rfj • '^ 3 '̂ + aa • A(T,7 (k), (29)

where y/;„, rja and a^, (7̂ are the learning rates and the momentum parameters
for adjusting the parameters mtj and atj, respectively.

Fuzzy Neural Network Systems 297

E. INITIALIZATION OF THE FUZZY
NEURAL NETWORK

The parameters of the FNN have clear physical meanings. This is one of
the differences between the FNN and a typical back-propagation neural network
(BPNN) [25, 26]. To initialize the connection weights of the BPNN, random val-
ues are frequently used because the relation between the weights and input-output
data of the BPNN is unknown. In contrast to the BPNN, the parameters of the
FNN have a clear relationship with the input-output data. Thus, the initial FNN
can be constructed to a good approximation of an unknown function based on
input-output data. Now, we will briefly describe an on-line initialization.

On-Line Initialization

In the on-line initialization method, the initialization takes place immediately
after each training pattern has been presented. Let m be the default fuzzy rule
number. Let Xi denote the universe of discourse of the input xi and let at, bt
be the lower and upper bounds of Xi, that is, if jc/ G Z/, then x/ € [at, bi].
Suppose, at instant /:, l < ^ < m — 2, a training pattern {x\{k),.. .,Xn{k)\ y{k))
is presented. We can directly set the parameters

^^ = y{k) and rriik = Xi(k), l<i<nforl<k<m-2,

P^ = I and mtk = a/, I < i < n for k = m — 1, (30)

[^^ = 1 and rttik = bt, I <i <n fork = m.

In this way, when m — 2 training patterns are presented, we can obtain m con-
sequence weights (P^, k = 1 , . . . , m) and the centers for the input fuzzy sets
(Af, A : = l , . . . , m) .

The remaining problem is how to determine the corresponding width (aik) for
A^; this is also the main problem in the on-line initialization method. Though we
can match the first m—2 training pairs quite well by choosing atk to be sufficiently
small, we will have large approximation errors for other input-output pairs [19].
Therefore, the reasonable choice of atk should make the input membership func-
tions cover the input range in a good way. Moreover, the method in [19] results in
a fixed value of atk once the m training pairs are fed into the fuzzy neural network.
We expect to obtain a more flexible result to satisfy our requirements.

In the fuzzy neural network systems [11, 16, 27], the initial parameter values
can be easily set in such a way that the membership functions are equally spaced
along the operating range of each input variable. Then these membership func-
tions will satisfy €-completeness [13, 15], which means that, given a value x of
one of the inputs in the operating range, we can always find a linguistic label A

298 Yie-Chien Chen and Ching-Cheng Teng

such that ijiA(x) > 6. In this manner, the fuzzy inference system can provide a
smooth transition and sufficient overlapping from one linguistic label to another.
Note especially that if the 6-completeness condition is not satisfied, there may be
no fuzzy rules fired when the input data are fed into the fuzzy neural network.
Thus, we want to present a flexible method to properly choose atk such that the
input membership functions can satisfy 6-completeness.

Before going further to show the choice and characteristic of aik, we want to
introduce the following notation. We note that the following notation is based on
a fixed k or A^ I <k <m:

Af: the closet fuzzy set of A^ on the right side of A^
A^: the closet fuzzy set of A^ on the left side of A^
jfiiR: the corresponding center of Af,
mn: the corresponding center of A^. The special choice for Oik is

mdLx[\mik - miR\, \mik-miL\} ,^,,
(^ik = 7==== , (31)

where kt is the overlapping factor, 0 < Xt < 1. We now show that, by choosing
(Jik this way, the membership functions of the linguistic labels A^, j = 1 , . . . , m,
will cover Xt with a good property.

THEOREM 1. The fuzzy set At = (AJ, A? , . . . , A^), where each linguistic
label Aj has a Gaussian membership function constructed by the preceding initial
mik [see Eq. (30)] and oik [see Eq. (31)], will satisfy. That is,

for all Xi e Xt, there exists he 1, 2 , . . . , m such that fx^k (xi) > e = ki,

where A./, 0 < A,/ < 1, is the overlapping factor

Proof Because Xi e Xt, there must exist A: G 1, 2 , . . . , m, such that mtk <
Xi < mtR or miL < xt < mik. We will prove this theorem under several different
cases as follows:

1. If mik ^ Xi < miR and \mik — miR\ > \mik — mul, then we have

__ Imik-miRl

By using the Gaussian membership function, we can obtain

L \mik-miR; J
= ki.

Fuzzy Neural Network Systems 299

2. IfrriiL < Xi < rriik and \mik — miR\ > \mik — mul, then aik is the same as
shown in case 1. Thus, we have

r ,, , , frriiL -mtkV
= exp - | l n A / | -

L \mik-miRj
r M . I f^iR-^ikV

> exp - I InA/l •
L \mik-miRj

The proof for the other cases induced by \mik — mtRl < \mik — mul is very
similar to cases 1 and 2. This completes the proof. •

Although we can incorporate prior expert information to choose a better initial
parameter of the FNN, we finally gave up this attempt, because we believe that
the proposed on-line initialization method is efficient and sufficient in practical
applications. In fact, based on our simulation results in Section V, this is indeed
true.

The on-line initialization method can be summarized as follows:

Step L

For A: = 1, 2 , . . . , m and / = 1, 2 , . . . , « , let

^^ z= y{k) and rriik — Xi(k), 1 < / < w for 1 < A: < m - 2,

P^ = 1 and rriik = «/, 1 < / < n for A; = m — 1,

[pk = I and rriik = bi, 1 < i <n fork = m.

Step 2.

Let

_ m2ix{\mik-miR\, \mik-miL\}

HI. MAPPING CAPABILITY OF THE FUZZY
NEURAL NETWORK

In this section, we will show that the FNN can be used effectively for any
real continuous function approximation. That is, an FNN with an arbitrarily large
number of fuzzy logical rules can approximate any continuous function in C(R^)
over a compact subset of /?". It is described in the following theorem.

300 Yie-Chien Chen and Ching-Cheng Teng

UNIVERSAL APPROXIMATION THEOREM. For any given real function h:
j^n ^^ j^m continuous on a compact set K C R^ and arbitrary € > 0, there
exists an FNNsystem f such that \\f(x) — h(x)\\ < e. Here \\ - \\ can be referred
to any norm.

This theorem will be proved by using the Stone-Weierstrass theorem. We begin
with a single-output case and extend it to a multiple-output case later.

A. PROOF OF SINGLE-OUTPUT CASE

The structure diagram of the proposed FNN is shown in Fig. 2. The single
output of the FNN can be expressed as

m

y(x) = J2Pj'^jM^ (32)

where

" ^ r / \2-\

^^Ai(^i^ = 1 l ^ X p 2 " ^
/ = 1 i=l L CTij J

is a function of the input x = (xi, X2,. . . , Jc„) and the link weight Pj is the
output action strength. Let 0 be of the form: YYi=i exp(—((jc/ — b)/a)^), where
a, b e R. Let F" be the family of the function y: R^ ^^ Rin the form of

m

y{x) = Y.^r<t>j. forPjeR, {0;} € O, x e R\ 7 = 1,2, . . . ,m. (33)

To prove the universal approximation, the following definitions [28] are nec-
essary. A family A of real-valued functions defined on a set K is an algebra if A
is closed under addition, multiplication, and scalar multiplication. For example,
the set of all polynomials is an algebra. A family A is uniformly closed if A has
the property that f e A whenever /„ G A, n = 1, 2 , . . . , and fn^^f uni-
formly on K, The uniform closure of A, denoted by B, is the set of all functions
which are limits of uniformly convergent sequences of members of A. By Weier-
strass' famous theorem, it is known that the set of continuous functions on [a, b]
is the uniform closure of the set of polynomials on [a, b]. A separates points on
a set K if for every jc, y m K, x / y, there exists a function / in A such that
/(jc) / f{y)\ A vanishes at no point of K if for each JC in ^ there exists / in A
such that /(JC) / 0.

STONE-WEIERSTRASS THEOREM [28]. Let Abe a set of real continuous
functions on a compact set K. If (I) A is an algebra; (2) A separates points on K;

Fuzzy Neural Network Systems 301

(3) A vanishes at no point ofK; then the uniform closure of A consists of all real
continuous functions on K.

To prove our main result, we will begin with the following lemmas:

LEMMA 1. Let F^ be defined as in Eq. (33). Then F" is an algebra.

Proof Let gi, g2 e F", andgi = Yfp==i ^P ' P^ 82 = E^=i Yq'bq, where
ap, Yq € R, ap, bq e^, /? = 1, 2 , . . . , 5, q = l,2,...,t, with

1. Since

s t

p=l q=\

= (ai'ai-\-a2-a2-\ \-as -as)

-\-(yi'bi-\-y2-b2-\- \-yfbt)
s+t

k=l

thus, rk =akifk < s, and rk = Yk-s ^^k > s.Sork e R (ak, Yk ^ ^)-
Furthermore, Ok== akifk>s, and Ok = bk-s iik > s,^o9k ^^
{ak, bk-s ^ ^) - That is, ^1+^2 € F^. This proves that F^ is closed under
addition.

2. Let d e RbQSi scalar. Then we have d - g\= ^^p^iid • ap)ap =
Z!p=i Pp ' «p» where fip e R. That is, d - gi e F"". This proves that F" is
closed under scalar multiplication.

3. Let

St

= J2'Pk'^k, (34)
^=1

where

(Pk = OCp 'Yq^

Ck = ap ' bq

302 Yie-Chien Chen and Ching-Cheng Teng

and

p = [(k-l)/t]-^h

q = ((k- 1) mod 0 + 1.

Thus

Ck =n-(-(^)>ne^-(^/)
=n»p(-(^r(^)>

After some computations, Eq. (34) can be written as

2^

m .nexp(-(^))=.;..?„ (36)

where

m n ({mip-Viqf\

u%'mip + af 'Viq
cok = -^ 5 ^ ,

A-k

and ^k ^ ^- Substituting into Eq. (33), we obtain

St St St

^(pk' Ck = Y^n 'm'^k = J2^^' ^^'
k=l k=l k=l

That is, gi, g2 ̂ F^' This proves that F^ is closed under multipUcation.

By cases 1-3 we conclude that F"^ is an algebra. •

LEMMA 2. F" separates points on K.

Proof. We prove this by constructing a function / . That is, we specify the
number of fuzzy sets defined in K, the parameters of the Gaussian membership
functions, and the number of fuzzy rules, such that the resulting / [in the form of
(33)] has the property that f(x^) # f(y^) for arbitrary x^, y^ e K with x^ # y^.

Fuzzy Neural Network Systems 303

Let x^ = (xj, JC2,..., x^) and y^ = (y^, ^2»' * *» yn)- We choose two fuzzy rules
for the fuzzy rule base, and let the Gaussian membership functions be

f^A}(^i^ = expl I,

fij^iixi) = exp (j .

Then / can be expressed as

where)0i, 6̂2 are the Hnk weights. With this / , we have

Because ^ ^ y^, there must be some / such that jc? ^ y^. Hence, we have
n?=i exp(—(jc/ — yf)^/2) ^ 1. If we choose 8̂1 = 1 and ̂ 82 = 0, then it is easy
to find that f(x^ = fii^ f(f). m

LEMMA 3. F" vanishes at no point of K.

Proof. From Eq. (33), if we choose Pj > 0, j = 1, 2 , . . . , m, then y > 0
for any x e K. That is, any y e F^ with fij > 0 can serve as the required / .

Therefore, that the FNN having only a single output is a universal approxima-
tor is a direct consequence of the Stone-Weierstrass theorem and Lemmas 1-3.

•
From the previous proof, we can conclude that, given a real function h: R^ -^

R, continuous on K, and 6 > 0, there exists an FNN system y e B, where B is
the uniform closure of F", such that \y(x) — h(x)\ < € for every x in K. That
is, an FNN system with an arbitrarily large number of fuzzy logical rules can
approximate any real continuous function in C(R^) over a compact subset of i?".

304 Yie-Chien Chen and Ching-Cheng Teng

B. EXTENSION TO MULTIPLE-OUTPUT CASE

In the following, we will extend the previous results to the FNN of multiple
outputs. Let us consider the following example.

Suppose / i and /2 are functions of x, where x = (A:I, A:2, . . . , Jc„). Further-
more, assume function / i can be approximated with m rules, whose structure is
shown in Fig. 4a and function /2 can be approximated with p rules, whose struc-
ture is shown in Fig. 4b.

(a)

(b) I ^1 \Xn

Figure 4 Structure diagrams of /j and /2.

Fuzzy Neural Network Systems 305

1-̂ 1 I ^«

Figure 5 Structure diagram of a multiple-output system.

It is easy for us to combine these two individual FNNs, each with a single out-
put, into a new FNN having two outputs. The new structure is shown in Fig. 5. The
new structure has m-^p rules; the first m rules are constructed from / i and the last
p rules are constructed from /2. With this assignment, the consequence weights
of the last p rules associated with the first output (/i) are set to zero, so are the
consequence weights of the first m rules associated with the second output (/2).

Based on the previous discussion, because the FNN of a single output can per-
form the universal approximation, there must exist an FNN of multiple outputs
with an arbitrarily large number of fuzzy logical rules that can perform the uni-
versal approximation on each output. This completes the proof of the universal
approximation theorem.

IV. MODEL REFERENCE CONTROL SYSTEM
USING A FUZZY NEURAL NETWORK^

Figure 6 shows the proposed model reference control system using a fuzzy
neural network. The control scheme must perform two major tasks: (1) system
identification and (2) plant control. The former is achieved by using the fuzzy

^Parts of this section are reprinted from Fuzzy Sets and Systems 73:291-312, 1995 with kind per-
mission of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.

306 Yie-Chien Chen and Ching-Cheng Teng

Figure 6 Model reference control system using a fuzzy neural network.

neural network identifier (FNNI) to estimate the dynamics of the controlled plant.
The latter is achieved by using the fuzzy neural network controller (FNNC) to
generate the control signals. The control action generated by the FNNC is updated
by observing the controlled results through the FNNI.

A. OVERALL STRUCTURE OF THE SYSTEM

Fuzzy Neural Network Identifier

The objective of the FNNI is to mimic the dynamic characteristics of the con-
trolled plant. Training of the FNNI is similar to plant identification except that the
plant identification here is done automatically by a fuzzy neural network which
is capable of modeling nonlinear plants [9]. The FNNI is trained by the preced-
ing algorithm to predict the state vector of the plant yi, with the actual value of
the state of the plant yp used as the desired response. The training process stops
when the error signal between yi and yp is small enough. If changes in the sys-
tem parameters or the environment occur, the FNNI is triggered on again to begin
releaming.

Fuzzy Neural Network Controller

The fuzzy neural network here serves as a controller. The FNNC is expected
to approximate an optimal control surface. The surface is encoded in the form
of fuzzy rules, which are represented by the interconnection weights embedded
in the FNNC. Thus, the weights can be modified to established different control

Fuzzy Neural Network Systems 307

rules. As time goes on and the system accumulates more experience, it learns to
control the plant more effectively. A controlled plant is identified by the FNNI,
which provides the sensitivity of the plant to the FNNC. The plant sensitivity is
used in Eq. (41).

Reference Model

The reference model specifies the desired output performance of the control
system. The controller is designed such that the actual output of the system will
track the desired output of the reference model. This goal can be achieved by
minimizing e = (yr — yp).

Note that our structure is different from that in [6], in which the reference
model is placed on the left side. We believe that our structure is more reasonable
for a fuzzy system.

B, TRAINING THE FUZZY NEURAL
NETWORK IDENTIFIER AND THE FUZZY
NEURAL NETWORK CONTROLLER

Let the cost function, Ej, for training pattern k be proportional to the sum of
the square of the difference between the plant output y(k) and the actual output
yi(k) of FNNI, and let Ei be defined by

Ei = \[y(k)-yi(k)f. (37)

Then the gradient of error in Eq. (37) with respect to an arbitrary weighting vector
Wi e R^ is as follows:

dEi nj^ijk) nJyi^^)
= eiUi) = —etik)

where ei (k) = y(k) — yiik) is the error between the plant and the FNNI response.
Oi(k) is the actual output of the identifier (FNNI).

The weight can be adjusted by the following formula:

Wiik + 1) = Wiik) + AWiik) = Wiik) + T]i[- ^] , (39)

where TJ/ is a learning rate.
Similarly, let the cost function, Ec, for training pattern k be proportional to

the sum of the square of the difference between the desired output yr(k) of the

308 Yie-Chien Chen and Ching-Cheng Teng

reference model and the plant output y(k), and let Ec be defined by

Ec = \[yAk)-y(k)]\ (40)

Then the gradient of error in Eq.(40) with respect to an arbitrary weighting vector
Wc e R^ is as follows:

dWc ~ ^^^ 3Wc ~ ""^^ dWc
dy{k) du(k) dOcJk) ^ ,̂̂

= -''^'^^m • 1 ^ = -^c(k)yM • - ^ ^ , (41)

where ec(k) = yr(k) — y(k) is the error between the actual plant and desired
reference output, Oc(k) is the output of the controller (FNNC), and S = yu(k) =
dy(k)/du(k) is called the plant sensitivity.

The weight can be adjusted by the following formula:

Wc(k + 1) = Wc(k) + AWcik) = Wc(k) + iic(- ^ \ (42)

where rjc is a learning rate.
The plant sensitivity can be computed as follows:

a=l ^ b^i

= i;^.r{^£^-(-2)-^^^}. (43)

where mik and aik are, respectively, the mean (or center) and the variance (or
width) of the Gaussian function in the fcth term of the /th input linguistic vari-
able Ui. The superscript denotes the layer number. The link weight Waj is the
output action strength of the y th output associated with the a\h rule. Nmi is the
number of fuzzy sets of the /th input linguistic variable M/. RI is the number of
rules in the FNNI. Some convergence theorems for selecting appropriate learning
rates have been proved in [29]. The interested reader is referred to [29].

Fuzzy Neural Network Systems

V. SIMULATION RESULTS

309

In this section, we test the model reference control system with an example.
The number of inputs for the FNNC is denoted by nc and that of the FNNI by n/.
Re and R[denote the number of rules in the FNNC and FNNI. Pc and Pj are the
inputs to the FNNC and FNNI.

Example: A Nonlinear Unstable Plant

In this case the plant is described by the differential equation [8]

•y-\-u. y = ky'

The reference model is 1. The objective is to control the nonlinear plant such
that the desired value is 2.0. This problem is a stability regulation problem.

Initial membership funtion of error(e) Initial membership funtion of error rate(e*)

I
g 0.5

-2 0
(a)

Final membership funtion of error(e) Final membership funtion of error rate(e')

1

o
U

- 2 0 2 4 - 6 - 4 -2
(C) (d)

Figure 7 Initial membership functions of controller: (a) error and (b) error rate. Final membership
functions of controller: (c) error and (d) error rate.

310 Yie-Chien Chen and Ching-Ckeng Teng

Assume that for the FNNC, Pc = {e{t), e(t)}', each input variable has three
fuzzy partition sets. We have/?c = 3x3 = 9rules, andnc = 9+2x(3+3) = 21.
For the FNNI, Pi = {u(t),y(t)}', each input variable has three fuzzy partition sets.
We have 7?/ = 3 x 3 = 9 rules, and n/ = 9 + 2 x (3 + 3) = 21. See Figs. 7a
and b and 8a and b.

Each cycle takes 6 seconds. After 10 cycles, the plant can be controlled very
effectively, with a step size of 0.015 seconds.

In the simulation, we find a way to cancel the redundant rules. In each cycle,
if the value of a particular consequence link rule is smaller than I/Re = 1/9
for the FNNC or l/Rj = 1/9 for the FNNI, then we eUminate that rule. In the
final simulation result, we find that the FNNC has five rules and the FNNI has
four rules. See Figs. 7c and d and 8c and d and Tables I and II. The final result is
shown in Fig. 9.

1

u

1 -̂̂
0

Initial membership funtion of u

^ / T \
..ZNZ \̂̂

-4 -2 0
(a)

Final membership funtion of u

I 0.5

0

Initial membership funtion of y

\ /

/ \

; / •

, • • ' ^ ^ ^

- 4 - 2 0 2 4

(b)

s

1

0.5

n

Final membership funtion of y

;Y
^ ^

..---/ \ N_
0 2 4 6 -2 0 2 4 6

(c) (d)
Figure 8 Initial membership functions of identifier: (a) u and (b) y. Final membership functions of
identifier: (c) u and (d) 3;.

Fuzzy Neural Network Systems

Table I

Learned Rule Weight Matrix for the FNNC

e

NM
ZE
PM

NM

0.000
1.165
0.012

e

ZE

-2.880
0.042
1.161

PM

0.000
0.000
0.000

Table II

Learned Rule Weight Matrix for the FNNI

y

NM
ZE
PM

NM

0.000
0.000
0.000

u

ZE

0.000
0.305
2.059

PM

0.000
-0.608

2.477

311

2.5
Example 4: final response

1.5

0.5

1 2 3 4 5

Time (sec)

Figure 9 Final system response for the example.

312 Yie-Chien Chen and Ching-Cheng Teng

VI. CONCLUSIONS

We have investigated a fuzzy neural network structure which can be success-
fully applied to a model reference control system. First, we study a simple fuzzy-
logic-based neural network system, in which the knowledge of rules is explicitly
expressed in the weights of the neural network and inferences are executed effi-
ciently at a high rate. Then the capability of the universal approximation of the
fuzzy neural network is proved in detail.

In model reference control, two fuzzy neural networks are used. One is for
a controller (FNNC); the other is for an identifier (FNNI). The system has been
tested for its on-line adaptive ability, robustness, and interpolation ability. The
simulation result showed that combining fuzzy logic and neural network comput-
ing appears to be a feasible way of dealing with real-time application.

REFERENCES

[1] C. W. Anderson. Learning to control an inverted pendulum using neural networks. IEEE Control
Systems Mag. 9:31-37, 1989.

[2] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuron like adaptive elements that can solve
difficult learning control problems. IEEE Trans. Systems Man Cybernet. 13:834-846, 1983.

[3] A. Guez and J. Selinsky. A trainable neuromorphic controller. J. Robotics Systems 5:363-388,
1988.

[4] C. C. Ku and K. Y. Lee. Diagonal recurrent neural networks for dynamic systems control. IEEE
Trans. Neural Networks 6:144-156, 1995.

[5] Y. Li, A. K. C. Wang, and F. Yang. Optimal neural network control. In IFAC-INCOM, pp. 41-46,
1992.

[6] K. S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using neu-
ral networks. IEEE Trans. Neural Networks 1:4-27, 1990.

[7] G. J. Wang and D. K. Miu. Unsupervised adaptation neural-network control. In Proceedings of
the IEEE International Joint Conference on Neural Networks, Vol. 3, pp. 421^28, 1990.

[8] H. Ying, W. Siler, and J. J. Buckley. Fuzzy control theory: a nonlinear case. Automatica 26:513-
520, 1990.

[9] Y. C. Chien. Adaptive fiizzy logic controller using neural networks. Masters Thesis, National
Chiao-Tung University, 1992.

[10] Y. C. Chien, Y C. Chen, and C. C. Teng. Model reference adaptive fuzzy logic controller de-
sign using fuzzy neural network. In Proceedings of the First Asian Fuzzy Systems Symposium,
(Singapore), pp. 334-340, 1993.

[11] J. S. Jang. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Systems Man

Cybernet. 23:665-684, 1993.
[12] C. C. Jou. On the mapping capabiUty of fuzzy inference system. In Proceedings of the Interna-

tional Joint Conference on Neural Networks, (Baltimore), pp. 708-713, 1992.
[13] C. C. Lee. Fuzzy logical in controller system: fuzzy logical controller, II. IEEE Trans. Systems

Man Cybernet. 20:419^35, 1990.
[14] A. Lotfi and A. C. Tsoi. Adaptive membership function for fuzzy inference systems. In Proceed-

ings of the First Asian Fuzzy Systems Symposium, (Singapore), pp. 628-635, 1993.

Fuzzy Neural Network Systems 313

[15] C. C. Lee. Fuzzy logical in controller system: fuzzy logical controller, I. IEEE Trans. Systems
Man Cybernet 20:404^18, 1990.

[16] S. Horilcawa, T. Furuhashi, and Y. Uchikawa. On fuzzy modeling using fuzzy neural networks
with back-propagation algorithm. IEEE Trans. Neural Networks 3:801-806, 1992.

[17] M. Sugeno and T. Yasukawa. A fuzzy-logical-based approach to qualitative modeling. IEEE
Trans. Fuzzy Systems 1:7-31, 1993.

[18] M. Sugeno and G. T. Kang. Structure identification of fuzzy model. Fuzzy sets systems 28:15-33,
1988.

[19] L. X. Wang. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall,
Englewood Cliffs, NJ, 1994.

[20] C. T. Lin and C. S. G. Lee. Neural-network-based fuzzy logical control and decision system.
IEEE Trans. Comput. 40:1320-1336, 1991.

[21] J. Moody and C. J. Darken. Fast learning in networks of locally-turned procession units. Neural
Comput. 1:281-294, 1989.

[22] D. E. Rumelhart and J. L. McClelland, Eds. Parallel Distributed Processing, Vol. L MIT Press,
Cambridge, MA, 1986.

[23] P. J. Webos. Back propagation through time: what it does and how to do it. Proc. IEEE 78:1550-
1560, 1990.

[24] R. Hecht-Nielsen. Theory of the backup-propagation neural network. In Proceedings of the IEEE
International Joint Conference on Neural Networks, Vol. 1, pp. 593-605, 1989.

[25] Y. F. Wang, J. B. Cruz, and J. H. MulUgan. Multiple training for back-propagation neural net-
works for use in associative memories. Neural Networks 6:1169-1175, 1993.

[26] B. Kosko. Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood CUffs, NJ, 1992.
[27] C. W. Xu and Y. Z. Lu. Fuzzy modeUng identification and self-learning for dynamical systems.

IEEE Trans. Systems Man Cybernet. 17:683-689, 1987.
[28] W Rudin. Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, New York, 1976.
[29] Y. C. Chen and C. C. Teng. A model reference control structure using a fuzzy neural network.

Fuzzy Sets Systems 73:291-312, 1995.

This Page Intentionally Left Blank

Wavelets in Identification

A. Juditsky
Institut de Recherche en
Informatique et Systemes
Aleatoires (IRISA)
Campus Universitaire de
Beaulieu
35042 Rennes Cedex
France

Q. Zhang
Institut de Recherche en
Informatique et Systemes
Aleatoires (IRISA)
Campus Universitaire de
Beaulieu
35042 Rennes Cedex
France

B. Delyon
Institut de Recherche en
Informatique et Systemes
Aleatoires (IRISA)
Campus Universitaire de
Beaulieu
35042 Rennes Cedex
France

P.-Y. Glorennec
Institut de Recherche en
Informatique et Systemes
Aleatoires (IRISA)
Campus Universitaire de
Beaulieu
35042 Rennes Cedex
France

A. Benveniste
Institut de Recherche en
Informatique et Systemes
Aleatoires (IRISA)
Campus Universitaire de
Beaulieu
35042 Rennes Cedex
France

I. INTRODUCTION, MOTIVATIONS,
BASIC PROBLEMS

In his inspiring tutorial [1], Ljung quoted the following:
An engineer, who is faced with [characterizing, or predicting, the behavior of

his or her plant based on recorded data] has the following perspective:

• How can I best use the information in the observed data to calculate a
model of the system's properties?

• How can I know if the model is any good, and how can I trust it for
simulation and design purposes?

• How shall I manipulate the input signals to obtain as much information as
possible about the system?

• What kind of software support is available for doing the tasks?

Fuzzy Logic and Expert Systems Applications
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 315

316 A. Juditsky et al

Later on in the same article, Ljung discusses the question of model nature and
structure. By model nature, we have in mind the following classification:

• physical models,
• semiphysical models, also called "gray-box" models,
• black-box models.

This chapter mainly concentrates on the last category, namely black-box models.
And, within black-box models, we shall concentrate on the less popular ones in
the control community, namely those that are nonlinear and nonparametric in na-
ture. Here "nonlinear" means that our model class will not be restricted to linear
input-output maps. And "nonparametric" means that our models do have param-
eters, but in a quantity that is not a priori fixed, but fully depends on the data;
consequently, convergence issues and quality of fit cannot be assessed in terms of
the involved parameters, but rather more globally in terms of the global behav-
ior. "Nonlinear and nonparametric" thus will be our general perspective through-
out this chapter. Although this setting may appear quite technical, more familiar
and even some exotic ones will also be covered, such as neural networks [2-4],
wavelets [5, 6], and fuzzy models [7]. A typical form of the kind of model class
that we shall consider is the popular single hidden layer neural network for static
systems:

n

fnix) = Y^Cia{afx + ti) + CO, (1)
/=i

where a is the sigmoid function, jc G R^ is the input, n is the number of neurons,
and the {ci.at, tiYs are the adjustable parameters. This is clearly nonlinear in x,
and the size n of the network is to be tuned on the data. In addition, in this case,
the model is also nonlinear in the parameters.

Such models have gained increasing interest, as reflected, for instance, in the
articles [2-4]. This is due to their ability to encompass truly nonlinear behaviors,
including those involved in classification and, more generally, decision proce-
dures. Referring to Ljung's practical problem setting given previously, the follow-
ing practical questions must be investigated when using nonlinear nonparametric
models such as (1):

• How can good nonlinear nonparametric models extrapolate or predict be-
haviors outside the range of data used for their identification, fitting, tuning, or
trainingl^ Predicting behaviors is one of the main purposes of system identifica-
tion. It is not usual to ask such a question about linear system identification, be-
cause good linear model fitting generally also provides good prediction for truly

^ These are more or less equivalent words used by different communities; we shall use any one of
these indifferently.

Wavelets in Identification 317

linear plants. However, this is of primary concern in our case, because nonlinear
systems are in essence not easily predictable outside the range of available obser-
vations. This question is also related to that of the appropriate choice of inputs for
identification.

• How can nonlinear nonparametric models be used for system monitoring
and diagnostics? Such models are, in principle, good candidates for system mon-
itoring, because they are able to describe systems behaviors at all operating points
simultaneously, thus preventing confusion between changes in operating point
and changes in systems behavior. However, it is not clear how changes could be
interpreted using such models, that is, how diagnostics could be performed.

Then the user is faced with a second question, namely how identification should
be performed:

• How should data be used to fit a nonlinear nonparametric model! Though
different situations can occur, we shall mainly investigate the classical situation
in which noisy input-output measurements are available.

• How can one take advantage of any kind of prior knowledge for some partial
tuning orpretuning of the model! Such a coarsely tuned model is sometimes suffi-
cient, and sometimes used as an initial guess for system identification. Also, prior
information can be critical for diagnostics. Again, linear systems engineering can
serve as a guide for us: response times, resonant modes, delay, and others are typ-
ical qualitative information that engineers may have from experience about their
plants, and they know how to reflect this prior knowledge into linear models. For
nonlinear nonparametric models, no obvious alternative seems to exist: what kind
of prior knowledge is relevant for such models, and how does one express it? Thus
it seems that the engineer must entirely rely on fitting from data, without taking
advantage of some prior knowledge he or she may have; we shall see that fuzzy
models and their rules may be good candidates to express such prior knowledge.

• What kind of software support is available for doing the tasks!

Moving one step further toward a mathematical formulation of our problems, we
may translate some of these questions into the following more technical ones:

• How does one assess the quality of approximation! Given a true system /
and an approximation / of it, how does one measure the quality of approxima-
tion? No parametric distance can be used. And because nonlinear systems are
considered, the usual operator norms from linear system theory cannot be con-
sidered. In the second part of this section, based on a few examples, we shall
introduce the distance measures we shall use throughout this chapter. These will
mainly be L^-type norms involving f — f and possibly some derivatives of it.
Note that using such distance measures involves some kind of prior knowledge,
namely the assumption that the system under consideration belongs to the consid-
ered space, and this is a smoothness prior information.

318 A. Juditsky et at.

• How does one measure the quality of fit from noisy data! This is really as-
sessing the quality of system identification. We shall naturally use figures of merit
of the form E11/ — /AT II, where || • || denotes a norm such as discussed previously,
fN is the estimate of / based on an A^-sample record, and E is the expectation
with respect to all kinds of uncertainties (input, output, and noise).

• What plays the role of "Cramer-Rao bounds,'' and what does it mean for
an estimator to be ''optimal Such criteria are important in assessing the relative
performance of estimators, especially because of the very large variety of models
and identification procedures proposed so far.

• How efficient are identification algorithms really in terms of computational
cost and quality of conditioning! Because our model classes often are nonlinear in
the parameters, tuning procedures may be of prohibitive cost and may further be
ill-behaved (cf. the well-known "backpropagation" algorithm for neural network
training).

• What kind of coarse or qualitative property can be asserted about the mod-
els we consider, apart from smoothness prior information such as discussed pre-
viously?

These are some of the issues that we shall discuss throughout this chapter. The
chapter is organized as follows. The remainder of this section is devoted to the two
applications we selected for a more detailed discussion. Then we discuss some
basic mathematical problems relevant to our nonparametric setting, and justify,
by the way, the use of some specific distance measures between systems and their
estimates.

In Section II, the classical background of nonparametric estimation is visited.
First, so-called "linear" estimators (be careful that systems and models are nev-
ertheless nonlinear) are presented and discussed: kernel, piecewise-polynomial,
and projection estimators are typical instances. Then the issue of selecting the
"model order" is discussed and generalized cross validation is introduced. In a
second subsection, convergence rates and performance criteria are analyzed, and
it is shown that classical linear estimators perform poorly for systems with sparse
singularities—such nonlinear systems frequently occur in practice. Some existing
nonlinear estimation techniques which provide spatial adaptation are briefly dis-
cussed in the last subsection; these include sigmoid-based neural networks and
an interesting alternative proposed by Leo Breiman, namely the "hinging hyper-
planes" which are, in fact, piecewise linear models such as used in control by
Sontag in the early 1980s [8]. Such nonlinear estimators with spatial adaptation
are not supported by satisfactory mathematical analysis, however. This motivates
investigating wavelets.

Wavelets are introduced in Section III and their contribution to function
approximation theory is briefly reported. In particular, orthonormal bases of
wavelets for L^-type spaces are presented. The importance of Besov spaces of
functions is emphasized, for modeling smooth systems with sparse singularities.

Wavelets in Identification 319

Besov spaces are closely related to the more usual Sobolev spaces. The optimality
of wavelet expansions in Besov spaces of functions is discussed. The central role
of Besov spaces for wavelets was pointed out by Yves Meyer.

How wavelets can be best used for estimation is the topic of Section IV. We
report on and discuss the simple and elegant method of "wavelet shrinking" as
introduced by David Donoho and co-workers.

Building orthonormal bases of wavelets, for even medium-large-dimensional
input spaces (say, >10), becomes prohibitive in terms of memory requirements.
Thus an alternative method is proposed in Section V, which is still based on
wavelets, but in a different manner. This method is suitable for sparse training
data sets, that is, data sets whose cardinality does not grow exponentially with the
dimension of the input space.

Now, the question of how to practically express available prior knowledge for
nonparametric models is still open. In Section VI, we discuss a proposal toward
achieving this, which is based on fuzzy models and their associated rules. An
extension of the usual fuzzy models is proposed to capture the multiresolution
aspects of wavelet-based estimators.

The experimental results of some of these methods are reported in Section VII.
Finally, both the practical and the mathematical aspects are sunmiarized and

discussed in Section VIII.

A. Two APPLICATION EXAMPLES

1. Modeling a Gas Turbine System:
An Example of Identification of a Static Nonlinear System

Here we briefly present the case study of a gas turbine system, as an example
of identification of a static nonlinear system. Results and experiments will be
reported in Section VII. Gas turbines are power motors, typically used in electrical
power generators and aircraft. Usually a gas turbine system is composed of a
compressor, one or several combustion chambers, and an expansion turbine. The
compressor produces high-pressure air which is then mixed with the fuel. This
mixed gas is burned in the combustion chambers to increase its temperature and
pressure. The burned gas is then forwarded to the expansion turbine. The pressure
of the gas drives the rotor of the expansion turbine, which, in turn, drives the
compressor. The residual energy can then be used for producing electricity, and
the gas is rejected at the exhaust of the expansion turbine.

One of the purposes of our joint study with European Gas Turbine SA, Belfort,
and Alcatel-Alsthom-Recherche, Marcoussis, was to develop a monitoring and di-
agnostics system for the joint system (combustion chambers, expansion turbine).
Monitoring is based on the measured pressure in the compressor, the rotation ve-
locity of the turbine, and measurements from the thermocouples available at the

320 A. Juditsh/ et al

exhaust of the expansion turbine. Thus no direct observation is available on the
status of the combustion chambers. Hence a semiphysical model has been devel-
oped that predicts the profile of the temperature at the exhaust of the expansion
turbine using the pressure in the compressor, the mean temperature at the ex-
haust of the expansion turbine, and the rotation velocity of the turbine [9, 10].
This model consists of two parts: first the unknown temperature profile within the
chambers is modeled as a linear regression involving one parameter per chamber;
then, based on basic thermodynamics, a relation between this profile and the tem-
perature profile at the exhaust of the expansion turbine is given. Because the gas
flow rotates within the turbine during its expansion, a phase shift between the two
input and output temperature profiles is exhibited. Therefore, some phase shift
parameter appears in the model which makes it strongly nonlinear. This model
is semiphysical and inaccurate because the input temperature profile uses as a
regression function some waveform based on qualitative knowledge, and very
simpHfied thermodynamics is used for gas diffusion in the expansion turbine.

This semiphysical modeUng was for the purpose of monitoring the turbine
system. Despite its inaccurate nature, the model has been successfully used for
developing a monitoring system of the combustion chambers; see [10]. Unfortu-
nately, this model is not entirely satisfactory for some other purposes, such as the
monitoring of the thermocouples installed at the exhaust of the expansion turbine.
The purpose of this discussion is to compare results from this semiphysical model
with some alternative nonparametric identification method based on wavelets, and
to discuss the two questions of the respective accuracy of fit and explicative power
of these two styles of models.

2. Modeling the Hydraulic Actuator of a Robot Arm:
An Example of Identification of a Dynamic
Nonlinear System

Now let us consider the modeling of the actuator of a robot arm.^ It is a hy-
draulically driven arm. By controlling the position of a valve, the oil pressure in
the transmission circuit is regulated. The oil pressure drives the motion of the arm.
What we want to model is the relationship between the position of the valve and
the oil pressure, both quantities being measured. In fact, the valve directly regu-
lates the oil streams injected in the transmission circuit. Hence variation of the oil
pressure depends not only on the position of the valve, but also on the quantity of
the oil accumulated in the transmission circuit, which, in turn, is reflected by the
oil pressure. Clearly this is a dynamic system: variation of its output (oil pressure)
depends on both its input (the position of the valve) and its state (reflected by the

^This application has been borrowed from Linkoping University, while Q. Zhang was visitor at the
Automatic Control Group.

Wavelets in Identification 321

oil pressure). We tried to model this dynamic system with linear autoregressive
exogenous (ARX) models, but the results were not satisfactory. Therefore, we de-
cided to apply some nonlinear nonparametric model and see if we could improve
the performance of the modeling.

3. Prediction of Glycemic Variations: An Example
of Identification of a Dynamic Nonlinear System
with Imprecise and Incomplete Data

Glycemic variations depend on several factors which are not easily quantifiable
and, moreover, may vary with time. Diet, physical activity, stress and emotions,
and proximity of meal have effects that doctors know how to qualitatively assess.
For a healthy person, glycemic regulation is ensured via the secretion of insulin
by the pancreas. In the case of organic deficiency, for diabetic persons, insulin
must be artificially injected. Deciding the amount for injection is very difficult,
because morphology, future physical activity, time of meal, glucide richness of
meal, present glucose concentration, and results of the previous day have to be
taken into account. Moreover, injected insulin acts with delay, and its efficiency is
reduced as glucose concentration becomes higher. Lastly, hypoglycemia is almost
always followed by hyperglycemia. For optimum glycemic control, it would be
better to anticipate before the glucose level rises, as it occurs for endogenic insulin
secretion in healthy persons. To summarize, we have to deal with a nonlinear,
unstable system, with time delay.

Doctors have devised empirical rules allowing diabetic persons to approxima-
tively compute for themselves the insulin level for injection. For diabetic persons
using a pump, the insulin injection rate has two parts: the basic flow rate, denoted
Ba(t), and providing about 50% of daily insulin needs, and a variable part, the
bolus, denoted Bo(t), which is a flash injection to assimilate a recent meal.

Nevertheless, despite the doctor's experience, it is very difficult to manually
obtain a more or less constant glycemic level, in part because a good control
should take into account up to six input variables, which is far beyond human
control capability. This motivated us to propose a predictive glycemic model, as a
basis for automatic injection control. This model uses as a basis the empirical rules
of doctors, and takes into account the qualitative nature of the available data. For
this proposal, we have several "self-supervision notebooks," that is, daily support
to control the context and the treatment of insulin-dependent diabetic patients
under pump operation. Thus each day the diabetic writes in his notebook 1/time
and actual glycemia, 2/time, importance, and quality of his meal, 3/activity, and
4/insulin injection. The experimental results on this case study are reported in
Section VII.C.

322 A. Juditsky et al

B. BASIC MATHEMATICAL PROBLEMS

Here we establish the general framework of the nonparametric regression we
shall use throughout this chapter, and we justify the use of particular distance
measures between a true system and its estimate in the sequel.

Problem 1 (Nonparametric regression). Let (X, Y) be a pair of random vari-
ables with values in A* = R^ and ^ = R, respectively. A function / : X \-^ y'l^
said to be the regression function ofYonX if

E(Y\X) = fiX). (2)

A typical case is F = f(X) + e, where e is zero mean and independent of X.
For N > \, /N shall denote an estimator of / based on the random sample
O^ = {(Xi, F i) , . . . , (Xiv, YN)} of size Â from the distribution of (X, F), that
is, a map

/N:C7f ^ / i v (0 ^ •) , (3)

where, for fixed O^, x \-^ fyiOf, x) is an estimate of the regression function
/ (x) . The family of estimators//v, Â > l,issaidtobe/7aram^m'cif/AT e Ffor
all N > 1, where F is some set of functions which are defined in terms of di fixed
number of unknown parameters. Otherwise the family of estimators /N, N > I,
is said to be nonparametric.

For the sake of convenience, we shall often refer to X and F as the input and
output, respectively (although they do not need to be such in actual applications).
Our objective in this section is to give a short overview of some basic instances of
nonparametric regression. Two typical problems are considered in the statistical
literature, namely the

• nonparametric regression with random design (or sampling), where it is
assumed that the variables Xt are random, independent, and identically
distributed on [0, 1]^ with density g(x), and the

• nonparametric regression with deterministic design (or sampling), where it
is assumed that the input variables Z/ are nonrandom; the simplest case of
deterministic design is the regular design, where the inputs Xt form a
regular grid (for instance, / : R -> R and Xt = i/N).

In the remainder of this section, we consider the random design only, although
the observations (Xt, F/) are allowed to be dependent.

Wavelets in Identification 323

Nonparametric Regression for Static Systems

This is the simplest case. The considered system has the form

Yi = f(Xi)-\-ei, i = h...,N, (4)

where f{x): R^ h^ R, and, for the sake of simpUcity, we assume that et are
independent Gaussian random variables with Eet = 0 and Eef = a^.

Adaptive Classification and Density Estimation^

The problem of classification (discriminant analysis or statistical pattern recog-
nition) is usually formulated as follows. Let X be a random variable with values
in R^, and let the label Z denote a random variable which takes values in some
finite set ^ = {z i , . . . , ZM}; the symbol z shall denote a generic element of this
finite set. We want to guess the value of Z when X is observed. We consider the
case in which the random vector X has probability density f{x) and conditional
densities f{x\z) given that Z = z\ the general case is handled similarly. We call
a solution any measurable function g\ X y-^ Z, and V{g{X) ^ Z) is the corre-
sponding error probability. The distribution of the pair (X, Z) is defined by the
distribution /x of X and the regression functions

p(z|x) = P(Z = z\X = x) = — — - — , X e R^,
f(x)

where Bayes' rule has been used for the second equality, and p(z) = P(Z = z).
The functions f(x\z) are also cailed a posteriori densities. The solution g*(x) is
called Bayesian or maximum a posteriori (MAP), if

p(^*(^))/(^l^*(^)) = maxp(z)/(jc|z) a.e. x. (5)

The Bayesian solution g* minimizes the error probability, that is,

r 4 minP(g(X) ^Z)= FigHX) / Z), (6)
8

and £* is called the Bayesian error probability.
In adaptive classification, we want to minimize the error probability when the

true p(z) and f{x\z) are unknown and a training sample O^ = {(Xi, Z i) , . . . ,
(XN, ZN)} of Â independent observations distributed as (X, Z) is available. We
assume that the training sample O^ and the test sample (X, Z) are independent.
The estimate gN(X) of Z is now a measurable function of X and O^, and the
following conditional error probability is a quantity of interest:

/:N = ngNix)^z\o^). (7)
^In this section we follow the presentation of [11, Chap. 10].

324 A. Juditsky et al

In particular, we search for a sequence of estimates gN such that

CN -^ C* almost surely. (8)

Referring to (5), the Bayesian solution can be approximated by the function gN
characterized by

V(8N(x))f(x\gN(x)) = maxp(z)/(x|z), (9)
z

where fi'\z) are estimates of f(-\z) based on ON- There is a simple way to mea-
sure the conditional error probability CN for the adaptive classifiers which satisfy
(9): Devroye and Gyorfi [11] have shown that, if the random vector X is dis-
tributed with some density / and gN is defined via (9), then

0<CN-C<J^ f \v(z)f(x\z) - v(z)f\x\z)\dx.

Different versions of this result were proved in [12-14], among others. This re-
sult implies that the classification error can be bound using the L i -norm^ of the
estimation error of the density p(z)f(x\z). Thus we have related the problem of
adaptive classification to that of estimating the density of a random variable in the
Li-norm. Other advantages of considering the averaged Li-norm are discussed
in [11]. Alternative distance measures for densities are often considered, for ex-
ample, the averaged L2-norm (often used, because it seems to be the easiest to
estimate) or Loo-norm.

Nonparametric Regression with Dynamics

Consider the following dynamical system:

where 7/ e R and <t>i e R^ are observed, and et is a white noise as before. We
assume that

<t>i = (Yi-u,..,Yi-m\Ui,...,Ui-p), (10)

where Ui e R denote the inputs {m -\- p = d). For example, if Ô - = {Yi-\,...,
Yi-d), then

Yi=f{Yi.x,,.,,Yi-d) + ei. (11)

In analogy with the corresponding parametric model, we call this system a
nonparametric autoregression or a functional autoregression of dimension d

^Recall that for a function g: R^ -> R the Lp-norm is defined for 0 < /? < oo: \\g\\p =
{f\g{x)\Pdx)yP,2i^diovp = oo: llglloo =esssupjg(;c)|.

Wavelets in Identification 325

[FAR(^)]. As an interesting application, we can consider a simple controlled FAR
model for adaptive control:

Yi = f{^i) + Ui^ei, (12)

where O/ = (Fz- i , . . . , Yi-m)^ and Ui is the control. The following question can
be considered: how does one choose the control {Ui) for the system (12) to track
some reference trajectory y — (j/), or, at least, how does one choose Ui in order
to minimize EF^ ,̂ or, simply, to stabilize the system (12)? If the function / (O)
was known, we could use the control

Ui = -f(<Pi)

to obtain F/ = Ci. Clearly, this is a "minimum variance" control, since EF? >
a^ = Eef, If / is unknown, a possible solution consists in performing nonpara-
metric "certainty equivalence control": compute an estimate fy of the regression
function / based on the observations of the input-output pair (4>/, Yi — Ui), and
then take

Ui=-M<^i)- (13)

To analyze the certainty equivalence control (13), let us consider the control cost

It is easily checked that

E(/- (O/) - f(<t>i))^ -^ 0 when i -> cx) (14)

implies EQN -> cr^, and fi(^i) — f(^i) -> 0 a.e. implies QN -^ cr^ a.e. Thus
condition (14) is instrumental in analyzing this problem, and we shall informally
discuss how it can be guaranteed.

Denote by <E>Q~̂ = (OQ, . . . , 0 / - i) ^ the vector of all available inputs up to
time / — 1, and by ^Q~ ̂ = (cpo,..., cpi-i)^ thQ corresponding vector of integration
variables. Let P denote the distribution of the vector sequence (O^) when driven
by the unknown "true" model (12)-(13), let P^,_i() be a distribution of 4>Q~\

and let p<jj.|<j)i-i (•) be a conditional density of the distribution of Ô given OQ"^

(we assume that such a density exists). We have

E|̂ (<t>,) - /(*,•)!' ~ j \Mx) - f{x)\\^^^-iix)dxP^^-i{dcpi-').

Note that, if the closed-loop system (12)-(13) is stable, one would reasonably
take equal weights for the observations OQ, . . . , O/ in the estimate fi. In such a

326 A. Juditsky et al

case the estimate ft (O) is asymptotically (as / -^ oo) slowly varying, that is,
fi ^ fi-\. Thus we can write informally

E|^(4>,) - fi^df ^ jv^-,{d<p^-') j \fi-i(x) - fix)\\^^^iMx)dx.

The latter integral can be bound in several ways. For instance,

|2

/
\fi-lM- f(x)\ p^,^^i-i(x)dx

< sup\fi-i(x) - f(x)\^ / p^.\^i^-i{x)dx

= suip\fi-i(x)- f(x)\ ,
X

which yields the bound

E|/;-(<i>,-) - /(cD,)|' < Esup|y;-_i(x) - f(x)f = E||/;-_I - / | | ^ .

On the other hand, if the conditional density is bounded, that is, p<j).|<jj/-i < Cp,

then

/ \fi-i(x) - f(x)\\^,^^i-i{x)dx < Cp \fi-i(x)- f{x)\^dx

= Cp\\fU-f\\l
Thus, as a conclusion, in any case, the crux in analyzing this adaptive minimum
variance nonlinear control consists in getting bounds for the error in estimating the
unknown function / . Hence, in addition to proving consistency for the estimates,
getting such bounds is an important question.

Discussion

This section about basic mathematical issues can be summarized as follows:

1. Nonparametric estimation of regression functions is instrumental in
various problems such as adaptive identification, classification, and
control.

2. The averaged L^-norms of estimation error for various p's are natural
candidates as a figure of merit. We shall see later that error measures also
involving derivatives of / and / will be useful, so that smoothness of
estimates can also be guaranteed.

3. Having bounds for the estimation error is of paramount importance. This
has been illustrated by the adaptive control example. However, we shall

Wavelets in Identification 327

see later that some estimators can exhibit arbitrarily poor performance for
some "bad" systems, so that having error bounds is really needed to
prevent the user from getting bad results.

11. "CLASSICAL" METHODS
OF NONLINEAR SYSTEM IDENTIFICATION

Throughout this section, Problem 1 is considered. We first discuss some esti-
mators that are linear, that is, that satisfy f -^ g = f -\- g\ note that the functions
/ , g, and their estimates, are generally nonlinear as functions of their input x. Lin-
ear estimators build the folklore of nonparametric estimation; kernel estimators
and projections on linear subspaces of functions are typical instances we shall
describe. We shall then discuss, both practically and theoretically, some severe
practical limitations of linear estimators. Roughly speaking, linear estimators are
suitable for systems with "uniform smoothness"; systems with sparse singulari-
ties (e.g., hard limiters, quantizers, some mechanical systems) are poorly handled.
This motivates the search for new nonlinear estimators; neural networks and some
related methods are candidates we shall briefly scan.

A. LINEAR NONPARAMETRIC ESTIMATORS

All estimators presented in this subsection are linear ones, that is, they have a
common general form

N

fN(x) = J2 YiWNjix), WNJM = WNAX^ ^ 1 . . . •. ̂ iv), (15)
i=i

where we recall that O^ = {(Xi, F i) , . . . , (XN , FA)̂ } is the given random sample
observation, and the weights WNJ (X) only may differ.

1. Some Linear Nonparametric Estimators

Kernel Estimators for Regression Functions and Densities

Kernel estimators were first proposed by Nadaraya and Watson in 1964 [15,
16]. The Nadaraya-Watson kernel estimator is an interpolation procedure. It is
given by

fNix) = —-jv . (16)
Ztl Kiix - Xi)/hN)

328 A. Juditsky et al

where (/ZA)̂ is a sequence of positive numbers, /ZÂ ^- 0 as Â -> oo, and A' is a
function on R satisfying

/

CX)

\K{u)\du < CX),
-00 ..„.

/

oo ^ ' ^
K(u) = 1.

-00

The positive number h^ is called the bandwidth and the function K satisfy-
ing (17) is called a kernel; in fact, h^ is better interpreted as a scaling factor.
Clearly, the Nadaraya-Watson estimator is linear, and has the form (15). Typi-
cal examples of kernels are K(u) = (1/2)1{|M|<I} (rectangular window kernel),
K{u) = (l/\/27r)exp(—|Mp/2) (Gaussian kernel), etc. Usually K is chosen to
be an even function.

The idea of kernel estimation is simple. Let us explain it for the case of the
rectangular kernel in one dimension. In this case the estimator (16) is a simple
moving average with equal weights: the estimate at point x is the average of ob-
servations Yi corresponding to Xi 's belonging to the "window" [x — hN,x-\- /ijv].
If hM -> oo, then the estimator tends to N~^ Yl^ 7/, the average of all observa-
tions, and thus for functions / which are far from being constant, the bias be-
comes large. If h^ is very small (say, smaller than the pairwise distance between
sample points Xi), then the estimator reproduces the observations: fy = F/. In
this extremal case the variance of the error becomes high. Thus increasing HN
tends to increase the bias of estimator, while reducing h^ leads to a larger vari-
ance. The optimal choice for h^ corresponds to an equal balance between bias
and variance.

Also closely related to estimator (16) is the Parzen-Rosenblatt kernel estimator
for densities. Let X i , . . . , XN be independent and identically distributed random
variables with common density f(x), x e R^. The Parzen-Rosenblatt estimator
of density f(x) is a suitably smoothed histogram. It is defined as [17,18]

/«« = 4 E < ^) . OS)

where d is the state-space dimension of X and K is SL kernel as in (17). Kernel
estimate (16) can be easily derived from the Parzen-Rosenblatt one. Recall defini-
tion (2) of the regression function, take the Parzen-Rosenblatt estimator (18) for
the joint density f(x,y) of (X, Y), and denote it by /AT (A:, y). Then, replacing, in
the following formula

. . . ^ fyf(^^y)dy
^ ^ ^ " ff(x.y)dy^

Wavelets in Identification 329

/(jc) and /(jc, y) by their corresponding Parzen-Rosenblatt estimates, yields ker-
nel estimate (16).

We now state a sample of results about the properties of kernel estimates for
the ^/-dimensional case. Assume that it is known a priori that / belongs to the
ball C^{L) in the so-called Holder space: for s and L positive, let C^{L) be the
family of functions f{x), x e [0, 1]^, defined by^

C'{L) = {/: \f^^\x) - f^^\x')\ < L\x-x'r^ forany x,x' € [0,1]^},

k=lsi. (19)

Note that this is a smoothness prior of the kind we discussed in our introduction.
If ^ > 1 is an integer, then C^(L) contains continuous functions having Lipschitz
(5 — l)th derivative. We can now give a result on the rate of convergence of the
kernel estimate. We acknowledge Rosenblatt [19] for the first two statements of
it, though it probably belongs to the earlier folklore of nonparametric statistics.

THEOREM 1 (Rosenblatt [19]). Let fy be a kernel estimate with bandwidth
hN such that h^ -^ 0 and Nhjs/ -> 00, with kernel K satisfying f x^ K(x) dx =
0 for j = 1 , . . . , A:. Here, x^ denotes any product of the form x^^X2 " - x^^,
where 7*1 + 7*2 + • • • + jd = j CLndxi,... ,Xd are the coordinates ofx. Assume
that the observations Xt are independent and identically distributed on [0, 1]^
with density g{x) > c > 0, g e C^(L), and that the noise satisfies Eei = 0 and

,2
i

1.

< G^ < CX).

Uniformly

Then

over f G

E|A

C^{L)andx e

W-

[0,1]'', we

-fi.x)\^<cU}h]^

have the pointwise bound

+ ^ \ (2(

The optimal value ofh^ which minimizes the right-hand side of (20) is
given by

/ 2 xl/(2.+^)

For this value ofh^, 2\2s/(2s-\-d)

2. If we consider instead the global error measure E||/// — /||2» using again
the same optimal value (21) for h^, yields the same bound, uniformly over
f e C'(L).

^ [sj denotes the maximal integer k < s.

330 A. Juditsky et al

Comments

1. As expected from the preceding informal discussion concerning the
rectangular kernel, the bound for the estimation error variance given on the
right-hand side of (20) is decomposed into bias and variance terms. And,
as expected, the optimal choice of h^ in (21) exactly balances these two
terms.

2. Note that we have both pointwise and global bounds, which reflects the
local nature of kernel estimates.

3. The properties of the Parzen-Rosenblatt algorithm of density estimation
are identical when the unknown density / satisfies / € C^(L). Note that,
because supp / ^ [0,1]^, the Li-norm of the error (restricted to the
[0,1]^) is dominated by the L2-norm. So we get from the second
statement of the theorem

/ _ 2 \ 25/(2.4-1)

provided HN is chosen as in (21).
4. Often the following recursive version of the kernel estimator is considered

[20,21]:

(O i f r„ (;c)=0 .

/=0

or

fn(x) = fn-l(x) + r-\x)(Yn-h-'^K(^^-^^

Fnix) = r„_i(x) + / i - ^ i ^ (^ ^ ^ Y (22)

In this form the algorithm resembles very much the recursive least squares
algorithm for estimating the parameters of linear models. When the
bandwidth is such that hi = hi~^ for some 0 < a < 1, the properties of
the algorithm (22) in the static regression problem are essentially the same
as those of the "off-line version" (16). In [20-22] this algorithm was used
to identify stable nonparametric autoregression models of the form (11),
and the convergence of this estimator was proved. Furthermore, the same
algorithm was used to provide the estimates of /„ in the closed-loop
system (12)-(13), and the stability of such an adaptive control scheme was
proved—[21] and [22] consider essentially the one-dimensional case, and
in [20] the general multidimensional case is studied.

Wavelets in Identification 331

Piecewise-Polynomial Estimators

Another nonparametric regression estimator which is commonly used is the
piecewise-polynomial one. The idea is the same as for the kernel estimator, though
the averaging is made over bins (i.e., small cubes) of fixed size 8N rather than in
the /lA^-neighborhood of the current point x. It is also closely related to radial-
basis function (RBF) networks with rigid location for the radial functions; see
[2, 23]. The simplest example of this method is the piecewise-constant estimator
or regressogram. The value of the estimate f^ in each bin equals the average
of observations Yt such that corresponding X/ belong to the bin. For the sake of
clarity, we consider the one-dimensional case.

The piecewise-polynomial estimator can be formally defined in terms of the
following optimization problem. Let 8^ -> 0 be a positive sequence, and as-
sume that 8^^ = M is an integer. Define M/ = 18N, I = 0 , . . . , M, and di-
vide the interval [0, 1] into M cubes (bins) of the form Ui = [0, MI), U2 =
[ui,U2),... ,UM = [WM-1, 1]» so each bin has length 8^- Set F{x) =
(1, X, Jc^/2,. . . , x^/k\f and, for each bin [//,/ = 1 , . . . , M, solve for 0 e R^+^
in the least squares sense the system of equations

Y,=e^F(^^i^^, XteUi, (23)

and denote by ON,I the corresponding solution. Then the piecewise-polynomial
estimate f^ of order k in each bin Ui is expressed as

fN(x) = ^h^(^~^l^~')^ ^ ^ ^i' (24)

The value 8^ is called the binwidth. As for the bandwidth hf^ of the kernel es-
timate, the binwidth tunes the smoothness: larger 8^ leads to a higher bias, and
smaller Â̂ results in a higher variance. In order for the least-squares problem in
(24) to be nondegenerate, we require that the number of points Xt in each bin be
larger than A: + 1.

Stone [24] has proved a result similar to Theorem 1 for this type of estimate
[see (19) for the definition of the Holder space C^{L)]. We state this result in the
general J-dimensional case. Assume that the observations X/ satisfy the assump-
tions of Theorem 1. Let fjq be a piecewise-polynomial estimate of order k — [s\,
with binwidth 5Â ^ 0 and A^̂ A^ ^- 00 as A^ ^- 00. Then statement 1 of Theo-
rem 1 holds with binwidth 8^ substituted for the bandwidth h^.

Comments

1. Note that, unlike kernel estimates, piecewise-polynomial estimates compute
projections on the fixed set of functions F((x — MZ-O/^AT), X e UI (the /th bin).
The same remark holds for the projection estimate to follow.

332 A. Juditsky et al

2. As can be seen, piecewise-polynomial and kernel estimates have the same
asymptotic accuracy when N ^^ oo.

3. If / is a smooth function (i.e., s > 1), the optimal number of bins is
ns ~ 5^ which is much less than the number of observations (ns ^ N^^^ for
5 = 1). This number is equivalent to the memory size required to implement the
algorithm: to reconstruct the estimate, k = [s} coefficients are necessary. Thus,
if Â is large, this algorithm offers a significant advantage, in terms of memory
requirements, over kernel estimates in which all measurements should be kept to
reconstruct f(x). Also, computing (23)-(24) is of lower computational burden
than computing (16). These two points make the piecewise-polynomial estimate
more attractive.

4. Unfortunately, there is no reasonable recursive version of the estimate fn.
Although one can use the recursive least squares algorithm to compute linear re-
gression coefficients 6M,i in (24), the derivations quickly become messy, because
the number M of bins depends on Â , and so does the number of equations in the
algorithm.

Projection Estimates

Another class of function estimates was introduced by Cencov [25], who called
them projection estimates. The idea consists of expanding the unknown function
into its "empirical" Fourier series. Consider the set W^ (L) of functions /(JC) , x €
[0, 1]^, defined as follows. Each / can be represented by its Fourier series

oo

fix) = J2 ̂ J^jM^ (25)

where j = (7*1,..., jd) is a multi-index, x = (x^,..., x^)^,

^j{x) = (pj^ix^) X . . . X (^;I(A:^),

(fi = 1, (p2k(x) = \/2sin(27rA:x), and(^2A;+i(x) = >/2cos(27rA:jc), k = 1,
Suppose that the following condition is satisfied:

00

Y,\^j\\l-^\j\^')<L\ (26)
7=1

In fact, we have X^Jli k ; f (l + Ijf 0 < C||/ | |^ 2' where ||/|U,2 is the norm of
the Sobolev space VV2 of functions with all derivatives up to order s being square
integrable. Note that this is again a smoothness prior. We assume that input X is

Wavelets in Identification

uniformly distributed.^ We construct the estimate f^ as follows:

m

333

(27)

where m is the "model order," and the empirical estimates c ̂ of Fourier coeffi-

cients

"̂ = ^E^^-^.(^^) (28)
i=l

are substituted for the true ones Cj, j = I,... ,m. Note that the assumption that
X is uniformly distributed has been used. Note also that the estimate (27)-(28) is
linear [cf. (15)] with weights given by

m ^

Wiv,/(;c) = ^ - c D , (x) c D , (X ,) .

Cencov [25] has proved the following counterpart of statement 1 of Theorem 1:
Let fN be a projection estimate. Then, uniformly over / e VV2(L) and x e
[0, 1]^,

E||/iv(^) - f(x)\\l < c(T?m-^^ + ^ Y

The optimal order m of the model is

-m) r 2 AT \ 1/(25+^)

m

It balances bias and variance error estimates, and yields the bound

/ 2\2s/{2s+d)
niNix) - f{x)\\l < CL2/(^+2.)/ _^ \

(29)

(30)

(31)

The following result, due to Ibragimov and Khas'minskij [26], provides a global
uniform bound. Take

l/(2s-\-d) I 1 / Â Y
m = I I

LVinA ŷ

^See Section IV for a thorough discussion of this assumption.

334 A. Juditsky et at.

for the model order [note that this is sHghtly different from (30)]. Then, uniformly
over / G C'{L) [the class C'{L) is defined in (19)], it holds that

2 /lnAr\2^/(2^+^>
nfN-f\\lo<0[j^j (32)

Comments

1. Projection estimates have the same rate of convergence (up to a constant)
as kernel or piecewise-polynomial ones.

2. The bound (29) for the quadratic error of the algorithms appears rather nat-
urally if we consider the following argument: when we approximate / G W2 us-
ing m terms of its Fourier decomposition, the approximation error is
Furthermore, the stochastic error in each term is of order 0(N~^). This sim-
ple calculus can be repeated for any nonparametric estimate. Obviously, it is be-
yond our capabilities to reduce the stochastic component of the error. On the con-
trary, the bias part depends on the method we choose to approximate the function
(piecewise-polynomial, trigonometric series, etc.), and this choice of approximant
is of primary importance.

3. From the computational point of view, projection estimates are more attrac-
tive than piecewise-polynomial estimates, because they use an orthonormal basis
of functions (the Fourier basis), which dramatically simplifies the computation of
the least squares estimates Cj of the Fourier coefficients CJ; cf. (28).

2. Practical Implementation of the Algorithms:
Adaptation and Tuning of Their Various Design
Parameters, Generalized Cross Validation

As we have seen, the convergence of the estimates strongly depends on the
choice of the bandwidth h^ for the kernel estimator, the model order m for the
projection estimator, and the binwidth 8N (or, equivalently, the "model order"
M = 5~^) for the piecewise-polynomial estimator. These design parameters de-
pend on the parameters of the smoothness class C^(L) or W2(L), which are a
priori unknown—see definition (19) of this class and the use of parameters (5, L)
in Theorem 1 and corresponding results for the other estimators. Even if some
information about the smoothness parameter s is available, the knowledge of
the value L is of importance when the data sample is of bounded length. Let
us illustrate this with the following example, where input x is a scalar. Con-
sider the problem of estimating a function f{x) in additive white noise e, with
â ^ = 1. Assume that / has support [0, 1], that all its derivatives are continu-
ous, and that / (1/2) = 1, /(O) = / (I) = 0. Note that in this case, typically,
sup^ I /^^^x) I ^ s^\ that is, higher-order derivatives become very large in uniform
bound. In this case the bounds in Theorem 1 are of order af^{s) = (̂ /A)̂2 /̂(2'y+i)

Wavelets in Identification 335

when the parameter is selected for the smoothness s. Assume that the size of the
observation sample is N = 10000, then aN(2) = 0.0110, aN(3) = 0.0095,
but we already have a^i^) = 0.0122 [the value of s which minimizes a AT is
s ^ 3.4814 with aN(s) ^ 0.00946]. This illustrates the fact that the tightest
bound is not obtained by taking the largest possible s, but rather by selecting the
most favorable pair (s, L), which is obviously much more difficult.

Given that we only have in practice samples of finite size N, we shall not try
to estimate the most favorable pair (s, L), but we shall proceed differently. The
model order (or bandwidth, or binwidth, depending on the different estimates)
shall be estimated from data using a procedure usually referred to as the general-
ized cross validation (GCV) test. GCV procedures were studied for kernel (see,
e.g., [27, 28]), spline (e.g., [29, 30]), and projection estimates (cf. [31, 32]). Let
us consider, for instance, the procedure for the projection estimates.^ To make
the model order explicit in formula (27), we shall write fm,N instead of fy. Set
S^ ^ = N~^ YliLi W^i ~ fm,N(^i)\\^- As for the prediction error variance
estimate in parametric prediction error methods, 5^ ^ is a biased estimate of the
error. Thus one cannot minimize S^ ^ with respect to m directly: the result of
such a brute-force procedure would give a function fmN,NM which perfectly
fits the noisy data; this is known as "overfitting" in the neural network literature.
The solution rather consists in introducing a penalty which is proportional to the
model order m; that is, we search for MN such that

m^ = a r g n u n (4 , ^ + ^) . (33)

This technique is clearly equivalent to the celebrated Mallows-Akaike criterion
[33, 34]. The following result, due to Polyak and Tsybakov [31], shows the con-
sistency of this procedure. Assume that the Fourier coefficients of / in expansion
(25) satisfy \cj\ < Sj, Y1T=\ ^j < ^^^ (J^j) is nonincreasing, and a^ is known.
Set Vm,N = \\fm,N - fWl' Then for the estimate (27), (28), and (33), it holds that

" 1 a.e. 3iS N ^^ oo.
niin^ Vm,N

B. PERFORMANCE ANALYSIS
OF THE NONPARAMETRIC ESTIMATORS

The performance analysis of nonparametric estimation algorithms and/or iden-
tification procedures is much more difficult than for parametric estimation. In fact,
the following specific issues are important:

^In fact, a similar result holds for the spUne or piecewise-polynomial ones.

336 A. Juditsky et al

1. What plays the role of the Cramer-Rao bound and Fisher information ma-
trix in our case? Recall that the Cramer-Rao bound reveals the best performance
one can expect in identifying the unknown parameter 0 from sample data arising
from some parametrized distribution pe, 0 e S, where 0 is the domain over
which the unknown parameter 0 ranges. In the nonparametric case, lower bounds
for the best achievable performance are provided by minimax risk functions. We
shall introduce these lower bounds and discuss associated notions of optimality.

2. For lower bounds, the class of systems on which the best achievable perfor-
mance is considered, is another important issue. For nonparametric representa-
tions of linear systems, L2, Loo, ^2, ^00, with their associated norms, are typical
spaces to work with. For (even static) nonlinear systems, however, the choice is
much wider. How wide should be the class T of the systems under consideration;
what kind of smoothness should be required? Are we interested in the behavior of
the estimate at one particular point x of interest, or are we interested in the global
behavior of the estimate? Different distance measures should be used in these two
different cases.

1. Lower Bounds for Best Achievable Performance

To compare different nonparametric estimators, it is necessary to introduce
suitable figures of merit. It seems first reasonable to build on the mean square de-
viation (or mean absolute deviation) of some seminorm^ of the error; we denote it
t>y WIN — f\\' The following seminorms are commonly used in nonparametericre-
gression: 11/11 = {ffP(x)dxy/P, 0 < /7 < 00 (Lp-norm), | | / | | = sup^ \f(x)\
(uniform norm, C- or Loo-norm), | | / | | = |/(xo)| (absolute value at a fixed point
jco). Then we consider the risk function

RaAfN, f) = E[a-i | | / iv - / | |] ^ (34)

where UN is a normalizing positive sequence. Letting a^ decrease as fast as pos-
sible so that the risk still remains bounded yields a notion of a convergence rate.
Let ^ be a set of functions which contains the "true" regression function / . Then
the maximal risk r^^ {f^) of estimator f^ on T is defined as follows:

raN^M = sup RaNifN, /) •
feT

If the maximal risk is used as a figure of merit, the optimal estimator / ^ is the
one for which the maximal risk is minimized, that is, such that^

^aN(fN) = nn^n sup RaNifN, /) •
fN feT

° A seminorai is a norm, except it does not satisfy the condition: || / 1 | = 0 implies / = 0.
^To properly understand the statement to follow, the reader should pay attention to definition (3)

of an estimator.

Wavelets in Identification 337

We call f^ the minimax estimator and the value

minsup RaN^fN, f)
IN feT

the minimax risk on T. The construction of minimax nonparametric regression
estimators for different sets ^ is a hard problem. Today, it is only solved asymp-
totically (for large samples) for some special cases (see, e.g., [35-37]). How-
ever, letting UN decrease as fast as possible so that the minimax risk still remains
bounded yields a notion of a best achievable convergence rate, similar to that of
parametric estimation. More precisely, we state the following definition:

DEFINITION 1 (Lower rate and minimax rate of convergence).

1. The positive sequence a^si is a lower rate of convergence for the set T in
the seminorm || • || if

liminfr«^(/;;) = liminfinf sup E[^-i| |/;v - / | |] > Co (35)

for some positive CQ. The inequality (35) is a kind of negative statement
that says that no estimator of the function / can converge to / faster than
ÂT. This notion can be refined as follows.

2. The positive sequence ai^ is called the minimax rate of convergence for the
set T in seminorm || • ||, if it is a lower rate of convergence, and if, in
addition, there exists an estimator / ^ achieving this rate, that is, such that

limsupr«^(/;^) < oo.

Thus, a coarser, but easier approach consists of assessing the estimators by
their convergence rates. In this setting, by definition, optimal estimators reach the
lower bound as defined in (35) (recall that the minimax rate is not unique: it is
defined to within a constant).

Some Negative Results

We state first a negative result, due to Devroye and Gyorfi [11, 38], which
expresses that no convergence rate exists if no smoothness assumption about the
unknown regression function / is stated. ̂ ^ Consider the following classes of func-
tions on R:

!F*: the class of all functions / such that f{x) = OfoTx > 1 or jc < 0, and
| / (j c) | < C f o r x G [0 , l] .

^Q: the class of all continuous functions f e J^*.

^^Note that convergence can sometimes be proved without any smoothness assumption [39].

338 A. Juditsky et al

T^: the class of all functions f e J^* having all continuous derivatives on
[0,1) (be careful that the interval is right open).

Let fy be an arbitrary estimate of / . Then for the classes ^*, ^Q , and J^^ defined
previously (we denote them generically by J^

suplimsupE a^^ / {/NM- f(x)\dx
T N^oo L Jo

= 00

for any positive sequence ^A^ -^ 0.
There is also a similar result for the adaptive classification problem: consider

the classification problem of Section LB and the notation therein. Suppose that
there are only two classes, that is, M = \Z\ = 2, Let a^ be any positive sequence
such that aM -^ 0 and X e [0, 1/2). Let g^ be an arbitrary estimator. Then there
exists a distribution of the pair (Z, Z), with X uniformly distributed on [0, 1],
such that

limsupfl^^(E£A^ - £*) = oo,
n->oo

where CN is associated with gM through (7).
Thus, no convergence rate exists for any of the preceding classes ^*, J^Q, and

T^. In other words, the convergence can be arbitrary slow, depending on the
unknown function or density / to be estimated! It is a natural consequence of
the fact that the preceding classes J^*, J^Q, and J^^ are too rich: they contain
functions which are extremely difficult to approximate. In other words, to obtain
any interesting rate of convergence, smoothness conditions should be imposed.

Some Positive Results

Let us now concentrate on the case of deterministic uniform design; that is,
the input data X are uniformly sampled in the considered interval. The following
result in the case of regular design can be attributed to [26] (for the random design
case, see [24,40]).

THEOREM 2. Let us consider the Holder class C^ (L) on [0, 1]^; see (19) for
the definition of C^ (L). Consider

\\g\\ = (f\gix)\'dx\ , 0 < / 7 < o o ,

or

\\g\\ = \8(xo)\.

Wavelets in Identification 339

Then N~^/^'^^~^^^ is a lower rate of convergence for the class C^(L) in the semi-
norm II • II. Furthermore, {N/lnN)~^^^^^~^^^ is a lower rate of convergence for
the class C^(L) in the norm \\g\\ = sup^^^o,!] Î (-̂)I-

Note that to obtain the correct rate of convergence for the distance at a fixed
point jco, the corresponding Lipschitz property is required at XQ only. Similar re-
sults hold when the class C^(L) is replaced by the class Wp(L), p > 2, where
yVp(L) is the set of A:-times differentiable functions / on [0, 1]^ such that

ii/ii2<i, \\f^'Ht+h)-f^'\t)\\^<L\\hr,

0 < Q f < l , s = k-{-a}^

Then fsfs/i^^+d) is also a lower rate of convergence for this class in the Lp-norm
of the error.

2. Discussion

Criticizing the Minimax Paradigm

Let us compare the lower rates of convergence of Theorem 2 and the upper
bounds obtained in this section for different estimators. One can see that the es-
timators considered are optimal on the classes W2 and C^ in the sense that they
reach the minimax optimal rate of convergence.^^ Despite many impressive tech-
nical achievements in the preceding work, the general reaction within the statistics
community has not been really enthusiastic. For example, according to Donoho,
" . . . a large number of computer packages appeared over last fifteen years, but the
work on the minimax paradigm has relatively little impact on software" [41]. One
of the arguments supporting this skepticism about methods based on the minimax
paradigm—^kernel estimators, spline methods, or orthogonal series—is that they
are spatially nonadaptive, whereas real functions exhibit a variety of shapes and
spatial inhomogeneities. To illustrate this point, let us look at the following ex-
ample. Consider the function /(JC) = l{o<jc<a} for some 0 < a < I. The Fourier
coefficients of this function are

r-^ir^iitka) r-sm{7Tka)co^{nka)
co = a, C2jt = V 2 , C2k-\-i = v2 .

nk nk

Hence the condition in (26) is not verified for 5 > 1/2. Thus we conclude from
(32) that the rate of convergence (31) for the projection estimate (27), (28) will
not be better than A^~ /̂̂ . Furthermore, because / does not belong to the Sobolev
space W2 for ^ > 1 /2, this rate of convergence is minimax. On the other hand, one

^̂ Although defined in a different way, this Wp(L) space coincides for p = 2 with the space
introduced in formula (25) and subsequent ones.

^^The projection estimates are also minimax on Wp (see [26, Theorem 4.3]).

340 A. Juditsky et al

naturally expects that a procedure to detect the edges of / can be designed which
would have a rate of convergence "close" to A^~^ Indeed, the linear methods
fit very well functions which are, say, "uniformly smooth" or "uniformly nons-
mooth." Facing the problem of estimating a function with sparse singularities, the
projection method will infer erroneously that the function is "uniformly smooth,"
but with a pessimistic smoothness parameter.

The minimax paradigm as discussed before does not seem to provide methods
with convergence rates of order N~^ for the preceding example. Thus the authors
of [41] argue that one should construct methods (heuristically, if necessary) which
address the "real problem," namely spatial adaptation. This point of view has had
considerable influence on software development and daily statistical practice, ap-
parently much more than the minimax paradigm. Interesting spatially adaptive
methods include all sorts of neural networks, projection pursuit [42], classifica-
tion and regression trees (CARTs) [43], multivariate adaptive regression splines
(MARS) [44], variable bandwidth kernel methods [45], and others. These meth-
ods implicitly or explicitly attempt to adapt the fitting method to the form of the
function being estimated, by ideas like recursive dyadic partitioning of the space
on which the function is defined (CART and MARS) and adaptively estimating a
local bandwidth function (variable kernel methods). Citing again David Donoho,
one could say that "the spatial adaptivity camp is, to date, a-theoretical, as op-
posed to anti-theoretical, motivated by the heuristic plausibility of their methods,
and pursuing practical improvements rather than hard theoretical results which
might demonstrate specific quantitative advantages of such methods. But, in our
experience, the need to adapt spatially is so compelling that the methods have
spread far in the last decade, even though the case for such methods is not proven
rigorously" [41]. To conclude, a deeper investigation is needed to find the proper
framework.

Adequate Answer: Besov Spaces and Wavelets

This short analysis reveals the crux in the route to both practical efficiency and
mathematical support of the methods. It consists of finding a parametrized family
offiinctional classes which

1. fits our prior knowledge about the smoothness of the fiinction to be
estimated {in particular, that f is smooth everywhere, except at a sparse
set of points), and

2. has associated with it an estimation technique which is minimax within
these classes.

It was the merit of Donoho and Johnstone [46] to recognize that Besov spaces,
which play a central role in Meyer's mathematical theory of wavelets [5], provide
an adequate answer. They are perfectly suited to nonlinear systems which have

Wavelets in Identification 341

sparse singularities and otherwise are smooth. This material will be the topic of
Section IV.

However, before discussing wavelets and their use in identification, we briefly
scan some popular nonlinear estimates. They all provide the kind of "spatial adap-
tation" that we advocated before. Some of them are supported by efficient soft-
ware. And some of them have become extremely successful and their names are
now buzzwords widely known beyond the scientific community.

C. NONLINEAR ESTIMATES

Starting in the early 1980s, a variety of techniques have been proposed in
the statistics literature, which exhibit this desirable feature of "spatial adaptiv-
ity." Among them are the projection pursuit algorithm developed in [42] (a very
good review of these results can be found in [47]), recursive partitioning [43,48],
and related methods (cf., e.g., [44] with discussion). These methods are derived
from some mixture of statistic and heuristic arguments and give impressive results
in simulations. Their drawback lies in the almost total absence of any theoretical
results on their convergence. We refer the reader to the previous references for
additional information.

Surprisingly enough, the artificial intelligence (AI) literature has proposed in-
dependently and at the same time different techniques with the same feature of
"spatial adaptivity." These include various forms of neural networks [3]; see the
other tutorial [49] by Ljung. We shall briefly describe these. In addition, we shall
sketch a recent technique due to Breiman [50], which practically combines some
advantages of neural networks (in particular, the ability to handle very large di-
mensional inputs) and of constructive wavelet-based estimators (the availability
of very fast training algorithms).

Relationship with Neural Networks: Barron's Result

The following result, which was recently published in [51], is the most accurate
theoretical result about neural networks available today. Let or(x) be a sigmoidal
function [i.e., a bounded measurable function on the real line for which a (jc) -> 1
as jc ^- oo and a{x) -> 0 as x -> — oo]. Consider a compactly supported
function / with supp(/) c [0,1]^, and assume that

Cf= I \co\\f{co)\dco< oo, (36)

where ficci) denotes the Fourier transform of / . The main result of [51] can be
roughly stated as follows: there exists an approximation /„ of the compactly sup-

342 A. Juditsky et al

ported function / , of the form

n

fn{x) = Y^ Ci a {ajx + ?/) + CO (37)

(note that fn is not compactly supported), such that

| | (/ . - /)1[0,1]^||2 ^ 2V^C/n-i/2. (38)

This result provides an upper bound of the minimum distance (in the L2-norm)
between any / satisfying condition (36) and the class of all neural networks of
size not larger than n. In the same article, this upper bound is compared with the
best achievable convergence rate for any linear estimator in class (36). It is shown
that a lower rate for linear estimators is n~^/^, compared with the much better rate
n~^/^ for neural networks, especially for large dimension d. No result is available
which takes advantage of the possible improved smoothness of the unknown sys-
tem / . An iterative algorithm for the construction of the approximation (37) is
also proposed. The true problem of system identification, that is, that of neural
network training based on noisy input-output data, is not addressed in this paper.
Also, neural networks need the backpropagation procedure for their training, a
stochastic gradient procedure which is known to be of prohibitive cost. In turn,
neural network training works even for very large dimensional input data.

Breiman's Hinging Hyperplanes

We now briefly discuss a recent technique due to Breiman [50], which prac-
tically combines some advantages of neural networks (in particular, the ability
to handle very large dimensional inputs) and of constructive wavelet-based esti-
mators (the availability of very fast training algorithms). Breiman's technique is
a very elegant and efficient way of identifying piecewise linear models based
on data collected from an unknown nonlinear system; see [8] for the use of
such models in control. Following [50], we call a hinge function a function
y z= h(x), X e R^, which consists of two hyperplanes continuously joined to-
gether, that is, an open book; see Fig. 1.

If the two hyperplanes are given as

y = {P^,x)+p^, y = {r,x)-^P^,

where {•, •) denotes a scalar product in EucHdean spaces, then an expUcit form for
the hinge function is either

h(x) = max(()6+, X) + p^, i r , X) + p~),

or

h(x) = rmn((P^,x)+p^, {r,x)-\-p-).

Wavelets in Identification 343

least squares

fit

least squares

fit

Figure 1 Hinge function on R^. On each side of the comer, the best fit is just performed via linear
least squares.

It is proved in [50], using the methods of Barron [51], that there is a constant C
such that for any n there are hinge functions / i i , . . . , A„ such that

/-E^'i [0,1]^

/=1

< Cn -1/2 (39)

for any / such that

/ \(o\^\f{a))\d(o <oo\

that is, Breiman's hinge model is as efficient as neural networks for the L2-norm.
An iterative projection algorithm is proposed to compute the approximation. The
interesting point about this iterative approximation technique is that it converges
with a magnitude order faster than back propagation does. To understand why
this can happen, consider the simplest case where x is of dimension 1, / itself
is a hinge function, and we try to fit a single hinge approximant [i.e., n = 1 in
(39)]. Thus we have to estimate the four unknown parameters (^S ,̂ p^). This is
done iteratively as follows. First, guess the comer of the hinge (i.e., the x where
both arguments in the "max" or "min" are equal); call it jc(0). Selecting only those
X > x(0) with corresponding j ' s , a first estimate for, say, {p^, PQ) is obtained
by ordinary linear least squares fit, and similarly for x < x(0). Thus we now have

344 A. Juditsky et al

a first hinge / (I) , which yields a new comer ;c(l), and so on. This converges ex-
tremely rapidly. In contrast there is no such fast procedure for a single neuron with
adjustable parameters to estimate an unknown single neuron, because the stochas-
tic gradient must be used even in this case. A method based on nested iterations of
the preceding kind is proposed in (39) to fit general / ' s . Reported experimental
results show the efficiency of this technique. These experiments show that practi-
cally the approximation obtained is much more accurate than is suggested by the
estimate in (39). On the other hand, note that a superposition of hinge functions
is not smooth, because it is piecewise Hnear. Also the use of the superposition of
hinge functions is especially advocated in (39) for large-dimensional jc's. How-
ever, as indicated at the beginning of this section, no convergence rate is given
for models identified from noisy data [the bound (39) is not a convergence rate
for identification, but only a rate of approximation of a given function by some
finitely parametrized class of approximants].

III. WAVELETS: WHAT THEY ARE, AND THEIR
USE IN APPROXIMATING FUNCTIONS

Warning. Throughout this section, the notation (p{(o) denotes the Fourier
transform of the function (p{x), and not the estimator of cp.

A. CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform and inverse transform of a function / are,
respectively, given by Eqs. (41) and (42). These transforms use two functions
ylr{x) and (p{x) e L2(R^), both radial (i.e., depending only on |jc|), known as the
analysis and synthesis wavelets:

THEOREM 3. Let i// and cp be radial functions satisfying

/•OO

VO^GR"^: / a-^^{aco)if(aa))da = l, (40)
Jo

where we recall that 0ico) denotes the Fourier transform of the function (pix).
Then for any function f e L2(R^), the following formulas define an isometry
between L2(R^) and a subspace o/L2(R^ x R+) [6]:

u(a, t) = a^-^f^ f f(x)i/{a(x - t)) dx, (41)

f(x) = f u{a, t)(p{a(x - t))a^-^''^dadt. (42)

Wavelets in Identification 345

Here, a e R"̂ and t € R^ are, respectively, the dilation and translation fac-
tors. Note that the integral (40) does not depend on co :J^ 0 because the functions
x/r and cp are radial. For this integral to be properly defined, it is sufficient that,
for example, 0((o)ir((o) = 0(\(o\)\ this happens if (p(x) and (1 + |x|)i/r(A:) are
in Li(R^) n L2(R^) and ^ has zero integral. Once the integral (40) is well de-
fined and finite, a simple normalization leads to a pair ((p, yj;) which satisfies the
assumption.

Examples

One can verify that the following pairs i/r, cp satisfy the assumption:

^{x) = 4l{d - |jc|^)exp(-|;c|V2), ip(x) = V2exp(-|;c|V2),

V (̂x) = ip(x) = -^{d - \x\^)cxp{-\x\^/2)

and, in the one-dimensional case:

1 — | jc |
xirix) = -sign(x)l{|;c|<i}, (pM = —-—l{|x|<l},

i^(x) = - l { - l < j c < - l / 2 } + 1 { - 1 / 2 < A : < 1 / 2 } " 1{1/2<A:<1} ,

(p(x) = A~^exp(-|x|V2),

with X = -0.03527343656... and 1{A} is the indicator function of the set A.
The choice of possible pairs i/r, (p is very large. In particular, pairs (V̂ , (p), with x//
nonsmooth but cp smooth, are allowed.

Time-Frequency Localization

Even this simple construction provides a very interesting property: roughly
speaking, the behavior of the function u(aj), when the scaling factor a is fixed,
measures the smoothness of / in the neighborhood of point t. This focusing effect
is called "time-frequency localization" (see the discussion in [6, Chap. 2]). It is
not provided by the Fourier transform [the behavior of the Fourier transform f{co)
reflects the global smoothness of /] . Unfortunately, these localization properties
of the continuous wavelet transform cannot be used for estimation, because there
is no associated algorithm to compute this transform. For practical purposes, the
reconstruction formula (42) has to be discretized:

fix) = J^Ui(p(aiX-ti); (43)

this point will be discussed in Section III.B and in the following sections.

346 A. Juditsky et al

B. DISCRETE WAVELET TRANSFORM:
ORTHONORMAL BASES OF WAVELETS
AND E X T E N S I O N S

Multiresolution analysis introduced by Mallat and further developed by
Daubechies provides orthonormal bases of L2(R) of the form il/j^kM =
{2J^^\l/(2Jx — k): 7, k e Z}; that is, each element of the basis is a translated
and dilated version of a single wavelet ^fr. For a function / G L 2 (R) , the inner
product (/, V̂ y,jt> performs zooming on / over an 0(2~J) width interval centered
at point 2~'^k. Thus large j corresponds to checking the function f at fine scales.
This implies that a local singularity of a function / will affect only a small part of
its coefficients in this wavelet basis. This is the main difference with the Fourier
basis: a local singularity of / would affect the whole Fourier representation.

1. Definition and Construction of Orthogonal Wavelet Bases

To begin, we first discuss the scalar case, that is, that of functions defined
on R . Otherwise explicitly stated, all results in this subsection are borrowed from
monograph [6].

DEFINITION 2 (Multiresolution analysis). A multiresolution analysis (MA)
consists of a function^, \\(p\\2 = 1, and a sequence (V))yGZ of spaces defined by

(pjk = V'MVx-k), j,keZ,

Vj = Spm{(pjk, k€Z],

with the properties:

(MAO) ((pok)keZ is an orthonormal family;
(MAI) Cijezyj = {0};
(MA2) [jj^^V.=L2iR);
(MA3) Vj C Vy+i.

Property (MAS) is equivalent to the existence of a square integrable sequence (hk)
such that

(p(x) = V2j2hk(p(2x - k). (44)

We call such a function the scale fiinction (also known as the father wavelet [5]).
Theorem 4 to follow is the basis of the theory; it shows how, starting from a
multiresolution analysis and its scale function <p, we can construct very simply an
orthonormal basis of L2(R).

Wavelets in Identification 347

THEOREM 4. Assume that conditions (MA0)-(MA3) are satisfied. Set^^

gk = (-l)*+i^i_fc, fix) = VlJ^gkfi^x-k),
ifjk = V'^f{Vx-k),

Wj = Sipsaifjk, k e Z). (45)

Then

1. Vy+i = Vj 0 Wj and {tl/jk'- j.k eZ] is an orthonormal basis in L2(R);
2. L2(R) = Vb 0 ^0 © Ŵi 0 • • • cind {(pok, i^jk- j ^0,k eZ] is an

orthonormal basis in L2(R).

The function ir{x) defined in (45) is often referred to as the ''mother wavelet!'

Multiresolution analysis and orthonormal wavelets are depicted in Fig. 2.
Then Theorem 5 gives the basic tool for building scale functions.

THEOREM 5. Let mo {(o) be a trigonometric polynomial

mo(
iko)

V2 k^K

such that

(QMFl) mo(0) = l;
(QMF2) m o M ^Oifcoe [-7t/2, n/l];
(QMF3) \mo(co)\^ + \mo(o) 4- 7r)|2 = 1.

MMIMpilMll i l l l l i imi l l^^

W W W W
Figure 2 Haar basis (left side) and a wavelet basis (right side). The first row shows the scale function
(p and the subsequent rows show wavelets i/r at two successive scales.

^^h denotes the complex conjugate ofh.

348 A. Juditsky et al

Then the function cp, with Fourier transform given by

00

satisfies assumptions (MA0)-(MA3) and supp((p) C [K, L].

Examples of polynomials satisfying assumptions (QMF1)-(QMF3) are given
in [6] and the smoothness properties of (p and x/r are studied. Links with multirate
digital signal processing and quadrature mirror filter (QMF) banks are discussed
in [52]; see the next subsection.

We now move on to discuss the multidimensional case. There exist two main
types of constructions of the wavelet basis with dilation factor 2 in R^ [6, 10.1].
A first guess simply consists of taking tensor product functions generated by d
one-dimensional bases:

^Jl,ku-.;Jd,kdM = ^ji,ki(^l) X • . • X \l/jj,kA^d)' (46)

This construction has the drawback of mixing different resolution levels ji. Al-
ternatively, if such a mixing is not desired, we proceed as follows. Introduce the
scale function

O(^) = (p{xi) X . . . X (p(xd) (47)

and the 2 ^ - 1 mother wavelets ^^^\x), i = 1 , . . . , 2^ — 1, obtained by substitut-
ing in (47) some cpixjYs by V (̂jCy)'s. Then the following family is an orthonormal
basis of L2(R^):

{<^Ok(x), vl/ j \ jc), . . . , ^fk~^\x)}, 7 e No, /: = (/:i , . . . , kd) e Z^, (48)

where No = N U 0, and

(t>jk(x) = V^f^^iVxi - / : i , . . . , Vxd - kd)

vi/f>(x) = V^'^^^^\Vxi ~ fci,..., Vxd - kd).

Note. As formula (48) shows, constructing and storing orthonormal wavelet
bases become prohibitively costly for large-dimensional d. This is the main limi-
tation for using the otherwise very efficient techniques which rely on orthonormal
wavelet bases (and their generalizations).

Wavelets in Identification 349

2. Orthogonal Wavelet Bases and Quadrature Mirror Filters

For the sake of simplicity, we only discuss the one-dimensional case. Equations
(44) and (45) imply that,̂ '̂ for / € L2(R),

satisfy ̂ ^

(Xjk = {f,cPjk), Pjk = {f,irjk) (49)

oijk = ^hi-2kOCj-^ih (50)

Introduce the polynomial filters

H{z) = J2^kZ-^^ G(z) = ^ ^ i t ^ - ^ (52)
k k

where the coefficients hk, gk are as in (44) and (45). Also denote by |̂ ^^ the
decimation of a signal by a factor of 2:

1^^^ (Xn) = (X2n).

Thus, if we consider ajk as a signal indexed by k and denote it by a^, relations
(51) translate into

and property (QMF3) expresses that the pair (H, G) is QMF [52, 53]. Equations
(50) and (51) are used to compute recursively from fine scales to coarse scales
the orthonormal wavelet decomposition. Assume that, in addition, the scale func-
tion (p is selected so that the computation of the inner product {/, (pjk) in (49) is
performed efficiently for some scale j . Then formulas (49)-(51) together build
a highly efficient procedure for computing the wavelet decomposition of f. As
pointed out at the end of the preceding subsection, orthonormal wavelet bases be-
come prohibitively costly to store for large-dimensional d, however. Scale func-
tions ip are proposed in [6], with vanishing moment conditions, for which

(/,^,-^> = /(2-^/:) + 0(2-^^') (53)

holds, where the integer M is related to the number of vanishing moments (such
scale functions are often referred to as "coiflets"). Note that the preceding approx-

^^Recall that (•, •) denotes the inner product in L2.
^̂ Recall that h denotes the complex conjugate of h.

350 A. Juditsky et al

imation is at the same time good and very easy to compute. Alternative techniques
to get simple approximations similar to (53) are proposed in [54, 55].

Because QMF pairs are known to allow exact reconstruction of filtered-and-
decimated signals [52, 53], Eqs. (50) and (51) can be "inverted" to yield the syn-
thesis equation

otjk = ^hk-2ioij-i,i + gk-2iPj-i,h (54)
/

For / € VjQ, we have, by definition of this space,

f = Yl^Jok(Pjok^ (55)
k

and, because V/Q = Vb ® Wo 0 Wi 0 • • • ® WJQ,

f = Y^ aok(pOk + Yl Pjk'^Jk- (56)
k j,k

Formulas (50) and (51) allow us to switch from representation (55) to represen-
tation (56). The latter one is generally much more compact because, when / is
smooth, most Pjk are neghgible. In the multidimensional case, / e L2(R^), for-
mula (56) generalizes as follows:

00 2^-1

ctjk = {/, <^jk), Pjl = (/, ^Jl), (57)

where the Ooit's and ̂ 2'^ are the basis functions defined in (48).

C. WAVELETS A N D F U N C T I O N A L S P A C E S

We first state a result [5, 56] concerning functions that satisfy Holder-type
conditions. This result then motivates introducing Besov functional spaces. Recall
that a function / is called Holder continuous with exponent s at point JCQ, written
/ € Ĉ Q, if there is a polynomial P of degree at most L̂ J such that^^

\nx)-P(x^xo)\<C\x-xo\'.

^^Recall that [sj denotes the largest integer < s.

Wavelets in Identification 351

If / is Holder continuous, with exponent s at XQ, then there exists C < oo such
that, for j > 0,

max {/, xlTjk) < C2--̂ '̂ "+ /̂2>. (58)
{k: xoesuppxj/jk}

Conversely, if (58) holds and / is known to be C^^ for some £ > 0, then

2
| / (^) - P(x -xo)\< C\x - xo\' log

\x -xo\

This result states that local smoothness of Holder type can be characterized
with the vanishing rate of the wavelet coefficients in the neighborhood of this
point. This property is specific to the wavelet transform, and does not hold for
other orthogonal bases. This remark also motivates introducing Besov spaces of
functions.

1. Besov Spaces as Spaces of Smooth Functions
with Localized Singularities

Smooth functions with sparse singularities are typically encountered in nonUn-
ear systems, for example, in mechanical and chemical systems. As we shall see,
Besov spaces are spaces

• of smooth functions with possibly localized singularities,
• in which norms are easily evaluated using wavelet coefficients.

For the sake of clarity we consider only compactly supported functions
/ : supp/ c [0, 1]^, though all of the following definitions can be general-
ized for the noncompact and multidimensional case (we recomend [57, 58] as
extremely complete presentations of the current state of the theory of functional
spaces).

For / € Li and M G N we define the local oscillation of order M (or M-
oscillation for short) at the point jc G [0, 1] by

OSCM/(:C, t) = inf ^ / \f(y) - Piy)\dy, (59)
P t J\x-y\<t

where the infimum is taken over all polynomials P of degree less than or equal
to M. This quantity measures the quality of the local fit of / by polynomials on
balls of radius r.

352 A. Juditski/ et at.

Select p,q > 0, s > d(p~^ — 1), and take M = Is}. The following set of
functions:

S ^ ^ = / € L u p : \\f\\Bs^^ = \\f\\p

(00 \ ^̂ ^ 1

J^i^J'WoscMfix, 2-J)\\pr J < oo (60)
(with the usual modification for p or q = oo) is identical to the Besov spaces of
functions [59], and it is shown in [57] that || • \\jss is equivalent to the classical
Besov norm.

Comments

1. The triple parametrization using s, p, and q provides a very accurate
characterization of the smoothness properties. As usual for Holder or Sobolev
spaces, the index s indicates how many derivatives are smooth. Then, for larger
P^ 11/II5^ is more sensitive to details. Finally, the index q has no useful practi-
cal interpretation, but it is a convenient instrument that serves to compare Besov
spaces with the more usual Sobolev spaces W^, as indicated next. It is interesting
to notice that the indicator functions of intervals belong to the spaces B^_^ for
all ^ > 0, this illustrates our claim in the title of this subsection.

2. It can be shown that (cf. [57]) for ^ > 0, 0 < /?, ^ < oo:

• The family of Besov spaces includes some more classical spaces. For s
noninteger. Holder classes C^ = S^QQ, and Sobolev spaces Wl = S22'

• B'pq C B'p,^, ifp'^p,q'^q,s'< s-d/p-^d/p' (strict inequality if
p = oo);

• B^pq c Lp c S^^, where ^ = 2 A /? and ^' = 2 v p;
.B^ppCW^pCB^p^forp^l;
• B'p^cW;cB'ppfovp^2.

In particular, if ^ > d/p, then S^^ C C.

2. Approximation in Besov Spaces: Some General Results

We consider the J-dimensional case and supp/ c [0,1]^. Free-knot spline
approximations have been analyzed in [60, Theorems 7.3 and 7.4] using Besov
spaces. Recall that a function /„ is called the spline function on [0, 1] of order k
with n knots if /„ G C^"^ and there exist points (knots) 0 = JCQ < JCi < JC2 <

• < Xn-i < Xn = I such that /„ is an algebraic polynomial of degree k — I

Wavelets in Identification 353

in each interval (jc/_i, jc/). Therefore, a spHne is a smooth piecewise-polynomial
function. One can also consider a J-dimensional spline which is the natural gen-
eralization of the one-dimensional one.

We now state the so-called Jackson inequality for spline approximations. Con-
sider / G B^pq, p,q > 0. Then there exists a spline function with n free knots fn
such that the following bound holds:

11/. - fWu < C(5, p, ^)«-^/^ | | / | l5^^, (61)

where u satisfies s — d/p -\- d/u > 0. The converse bound is provided by the
Bernstein inequality: For any f e Lu, s — d/p + d/u = 0 , u < oo,

\\f\\Bs^^<C(s,p,q)(l-^n'/^mf\\f-fn\\u),

where the infimum ranges over the set of spline functions /„ of order A: > ^ + 2
with n free knots. A similar result holds for «-order rational fraction approxima-
tions', see [60, Theorem 8.3].

In contrast, linear approximations perform poorly in Besov spaces. Consider
some increasing family (£„) of fz-dimensional linear subspaces of Lu, u > p.
Let /„ denote the linear projection of / € B^^ on £„ using the L^-norm. Then,
for any such family (>C„), there exists a least favorable / such that the following
lower bound holds:

\\f-fn\\u>Cn-''^''\\f\\g,, (62)

where s^ = s — d/p + d/u. Consider again the example of the indicator func-
tion f(x) = l{o<;c<a}- Recall that / e B^_i for any ^ > 0. On the one hand,
(61) shows that / is approximated using rational fractions with an L^-error of
order 0[Qxp(—C^)], where n is the order of the rational fraction [60]. Thus
rational approximations are very efficient for such a function, and the same is true
for splines with free knots. On the other hand, by (62), linear approximations of
the same function have an Lw-error of order 0(n~^/"), where n is the dimension
of the linear subspace, which is extremely poor for large u. This remark would
make rational approximations or splines with free knots very attractive for ap-
proximation in Besov spaces. Unfortunately, such approximations are very hard
to compute, for example, the optimal positioning of the knots of the spline ap-
proximation is very hard to find. It is amazing that wavelet approximations are as
good as spline or rational ones, but are much more easily constructed. We discuss
this next.

354 A. Juditsky et al.

3. Wavelets and Besov Spaces: Mathematically Efficient
and Practically Effective

Let (̂ be a piecewise-continuous scale function satisfying the following condi-
tions:

3a > 0: suppcp e [\x\ < a], (63)

3r>s:cpe B^^. (64)

We have the following result (cf. [61, Theorem 4]):

THEOREM 6 (Besov norms and wavelet decompositions). Let s > d(l/u —
1) and let cpbea scale function satisfying conditions (63) and (64). For any / €
B'pq, define

and WPj. \\p = (Zi,k \Pfk 1)̂̂ ^ '̂ see (49) and (57) for the definition of coefficients
ak = oiok and Pj^. Then (65) is equivalent to the norm of Besov space B^ ' that
is, there exist constants Ci and C2, independent of / , such that

Cl\\f\\B^^^<\\f\\spq<C2\\f\\B^^^. (66)

Theorem 6 states that norms in Besov spaces are suitably evaluated using or-
thonormal wavelet decompositions. This fact can be used to obtain very efficient
approximations.

We now indicate how such a wavelet approximation of / can be constructed.
Consider the full wavelet decomposition of / :

00 2^-1

fix) = E«o^^oit(^)+E E E ^MkM' (67)
keZ j=OkeZd 1=1

1. Keep the projection of / on the subspace Vb; this corresponds to the
leftmost sum in (67). When / and O are both compactly supported, this
requires computing only a fixed amount of coefficients, say m.

2. Select in the second (triple) sum those coefficients Px, X = (i, j,k), with
largest absolute value; denote by A the set of the n — mso selected
wavelet coefficients.

3. Add n -m detail terms ^x^k to the sum taken in step 1.

Wavelets in Identification 355

This procedure yields the approximation

m coeffs. 7̂ 0 keep the largest n—m coeffs.
(/,<!> compact, supp.)

and the following theorem provides corresponding approximation bounds.

THEOREM 7 (DeVore et al [62]). Consider f e B^p, s, p > 0 and s -
d/p + d/u > 0. Let Wn denote the approximation (68) of f. If the scale function
satisfies conditions (63) and (64), then

\\f -Wn\\u<C{s,p)n-'/^\\f\\Bs^^

holds. If, in addition, u satisfies s — d/p + d/u = 0, M < cx), and it is a priori
known that f e Lu, then the following converse bound holds:

\\f\\B^^^<C(s,p,q){l-\-n'/^\\f-Wn\\u)-

This result is very interesting to us. It implies that, in the wavelet decompo-
sition of a function / e Bp^, p < 2, only a small number of coefficients are
important, and the other ones can be neglected. Consider once more our example
f(x) = l{o<x<a}' Consider the wavelet decomposition of this function using a
compactly supported wavelet xl/(x) such that/ \lr(x) dx = 0. It is evident that the
coefficient ^jk vanishes for any wavelet i^jk(x) which does not cross the (local)
singularities of / . Thus, if we consider the projection of / on the subspace V),
only O (j) coefficients of the decomposition significantly differ from zero (among
2^ potential candidates).

Discussion

At this point, we have the requested background for understanding how to per-
form wavelet-based estimation. Roughly speaking, the crux is the following. The
function / e B^p^ to be estimated can be approximated using the expansion Wn in
(68) with n terms. This is achieved with a rate of 0(n~^^^). Then the coefficients
ak and Px in (68) are estimated via empirical means based on N noisy observa-
tions, exactly as for the projection estimates in Section II, formula (28). The mean
square error on the estimate of each coefficient is 0(1/N). Thus the total mean
square error of the estimate will be, as usual, the sum of the stochastic part and
of the bias due to the approximation error: this yields 0(n/N) + 0{n~^^f^). The
optimal choice for n balances these two terms: n = }j^/0'^+^). This choice for n
yields a quadratic error of order fsj-'^s/iis^-d) (independent of /?, q). As we shall
see, this is the typical minimax rate of convergence on Besov spaces. Thus we

356 A. Juditsky et al.

might be ready to deduce that wavelet estimators are minimax optimal in Besov
spaces. Unfortunately, the set A of "important" coefficients in truncation (68) is
not known a priori when noisy data sets are at hand for estimation. Thus some
kind of hypothesis-testing problem must be solved to obtain the optimal approx-
imation. This adds to the estimation problem a nice stochastic flavor. We address
this point in the next section.

IV. WAVELETS: THEIR USE
IN NONPARAMETRIC ESTIMATION

We consider here some simple results concerning the estimation of a regression
function or a density / : R^ -> R, and we assume / to be compactly supported
(supp / c [0,1]^). For the sake of simpHcity, we measure the estimation error in
the L2-norm. Similar results were proved for a general ^/-dimensional case and a
variety of error measures, which includes, for instance, L^-norms for 0 < /? < oo
(see the references at the end of the section). We successively discuss the problems
of nonparametric regression and density estimation.

A. WAVELET SHRINKAGE ALGORITHMS

Nonparametric Regression

Assume an A^-sample of input-output observations of the following system are
available:

Yi=f{Xi) + Wi,

where (X/) and {wt) are i.i.d. sequences of random variables, X/ is uniformly dis-
tributed on [0,1]^, and Ewi = 0, Ew^ < a^. These assumptions are introduced
for the sake of simplicity. They can be weakened, in particular, the (unusual) as-
sumption that X is uniformly distributed can easily be relaxed; see [63]. This
would introduce additional burden to our presentation, however.

For / G L2, recall the wavelet expansion

00 i^^-i

fix) = ^ao^cDo^(^) + i ; X] E ^fMkM^ (69)
keZ j=Ok€Z^ /=1

where

ctok = j f(x)<t>ok(x) dx and pfl = j f(x)^fl(x) dx. (70)

Wavelets in Identification 357

To construct an estimate of / , a first idea consists of using the law of large num-
bers and replacing, in expansion (69), the coefficients ak and ^^-l by their empir-
ical estimates

N ^ N

aok(N) = ^ E Yi<^Ok(Xi) and pfl(N) = ^ E ^^-^y^^^)- (^D

Note that the assumption that input X is uniformly distributed has been used at
this point.

Density Estimation

Assume independent observations Xi, ...,XN of some random variable X
with unknown density / (x) are available. Again / can be expanded using (69)
and (70). However, it turns out that

ciok = / f(x)^ok(x)dx = Ef^ok(Xi),

where E / denotes expectation with respect to density / , and the same holds for
the P's. Thus empirical estimates of the wavelet coefficients ak and Pjk are given
by

N N

Thus both nonparametric regression and density estimation are faced with the
same issue: in formulas (71) and (72), there may not even be available X/ 's within
the support of many of the O's and ^ ' s ! We shall now discuss this key point for
the case of density estimation.

Obviously, to compute the empirical coefficient fiV, we need that at least sev-
eral observations Z/ hit the support of ^jl(x). Statistical laws of loglog type
guarantee that this would generically hold for scales that are not too fine. More
specifically, for j < 7max» where

Thus, using brute force, we set pV = 0 for j > jmax- At this point, we have
built an estimator of the linear projection type, as in the case of Fourier series in
Section II.A. Because these estimators are linear, we cannot expect them to be
efficient for Besov spaces [64].

358 A. Juditsky et al

First Proposal

Our first attempt to construct an "interesting estimate" is, following the intu-
ition at the end of the previous section, to keep a properly chosen number of co-
efficients with largest absolute values and set the others to zero. More precisely,
let us consider the set A„ of pairs X = (j, k) corresponding to the n estimated
wavelet coefficients ^jj^^ with largest absolute values. We construct the estimate
/N as follows:

00 2^-1

k j=OkeZ^ 1=1
V ^ ' V ^ .

m coeffs. /O keep the largest n-m coeffs.
(/,4> compact, supp.)

The following result can be proved about estimate (73) [see (60) for the definition
of the Besov spaces]:

THEOREM 8. Let f e B ^ ^ with s > d/p, ||/||oo < oo. Ifn = Ari/(2^+^) is
selected in (73), then

E\\fN-f\\l = 0\^—j . (74)

The idea of the proof of Theorem 8 is quite intuitive and typical for wavelet
estimators. We follow the argument at the end of the previous section with the only
following difference: because no information is available about the distribution of
the error IPx — fixl^ork e An, we take a cautious upper bound for it:

m, - .̂Pi,4,o, ̂ E sup |̂ 7> - <>f = o (^) ,
which explains the extra logarithmic factor in (74).

Final Solution

Note that n in Theorem 8 depends on s, which is generally unknown. Hence,
to complete the estimation algorithm, we need a method to estimate our model
order n. Though generalized cross-validation techniques could be used, we prefer
a somewhat different estimation approach developed by Donoho et al. (see the
following references). It uses simple thresholding rules^^:

^^We consider here the so-called "hard thresholding"; meanwhile, other rules can also be studied,
for example, "soft thresholding" [65]. See also the discussion in [66].

Wavelets in Identification 359

where Xj is a threshold parameter, so we set

00 2^-1

In other words, in expansion (69), we keep those empirical estimates of wavelet
coefficients which exceed some properly selected threshold. How this threshold
should be selected is provided by the following result:

THEOREM 9 (Donohoetal [41,67]). Let f e B'p^ withs > d/p, \\f\\oo <
oo. Select Xj = k = v^C In N/N, with an appropriate C < oo. Then

/lnA^\^"/^^"+^^ E\\fN-f\\l = 0l^^^

The constant C in the expression for the threshold parameter A is a sort of a
"hyperparameter" of the procedure, which can easily be estimated; see [66, 67]
for related discussions. Note that the estimator fy is adaptive because it does not
require prior knowledge of the regularity parameter

Discussion

• Theorem 9 has the following intuitive explanation. As already mentioned,
Besov classes S^^ for /? < 2 have a special structure: a relatively small number
of "important" wavelet coefficients are sufficient for obtaining a good function
approximation. In the wavelet decomposition (ak, pj) using noisy data, all coef-
ficients are "contaminated" by noise. A central limit theorem argument suggests
that this noise is approximately Gaussian with zero mean and variance 0(l/N).
Thus loglog law implies that the maximal error in the estimates has magnitude
given by

Thus, when small (according to the threshold X in Theorem 9) coefficients are
shrinked to zero, noise is canceled with very high probability. On the other hand,
coefficients exceeding this threshold are likely to be significantly different from
zero. This property of thresholding explains another useful feature of the estima-
tor: the estimate fN has the same regularity as the unknown function / to be
estimated (cf. the discussion in [41]).

• Let us now consider again our example of estimating the regression func-
tion or density f(x) = l{o<x<a}- Theorem 9 states that the mean square rate of
convergence of the wavelet estimator for any bounded function / e B^_i is

360 A. Juditsky et al

very close to OiN"^), which is nearly as good as the "parametric" rate of con-
vergence, though the function we estimate is not even continuous. Let us compare
the preceding results with the lower rate of convergence for this problem obtained
in [68]. Using Comment 2 of Section III.C.l, the following lower bound is a di-
rect corollary of the results of [68] which were originally formulated in terms of
Sobolev spaces:

inf sup EWfN- fh > C7V-̂ /̂(̂ ^+^> (77)

for any estimator //v. As compared to (77), there is an extra logarithmic factor
in the upper bound of Theorem 9. In the more subtle construction presented in
[46], this logarithmic factor is eliminated (and even a precise minimax constant
is obtained) in the case of Gaussian noises and deterministic design (observations
are xt = i/N, / = ! , . . . , A)̂. In [69] a cross-validation procedure is proposed to
adapt the optimal algorithm to unknown smoothness. Finally, in [66] the authors
of this paper showed that properly selecting the threshold k for shrinking pro-
vides the optimal rate of convergence (without a logarithmic factor). An adaptive
version of this algorithm is developed in [70].

B. PRACTICAL IMPLEMENTATION
OF WAVELET ESTIMATORS

We now move to the practical implementation of wavelet estimators. We pro-
pose two versions of it which differ in the way the empirical estimates of the
wavelet coefficients ajk and Pjk are computed. The first one, called it direct real-
ization, is based on the explicit formulas (71) and (72) for empirical coefficients.
The second one, called the fast realization procedure, relies on the quadrature
mirror filters (QMFs) presented in Section III.B.2.

Direct Wavelet Estimation Procedure for an NSample Length
(Put Yi = Ifor Density Estimation): The Wavelet Shrinkage
Algorithm Procedure

(Recall that the assumption that X is uniformly distributed is required for the
case of regression.)

1. Select y'lnax scales for the wavelet expansion, where

<; '2 Jmax <̂

InN - - InN

Wavelets in Identification 361

2. For j < 7niax, compute the empirical estimates

N . N

«̂ =]^ E Yi'^OkiXi), pfl = -J2 Yi'^jkiXi)- (78)

3. Shrink these estimates according to

where Xj is a properly selected threshold (cf. Theorem 9).
4. The final estimate is given by

k i,j,k

This procedure for nonparametric regression can be extended to the case in
which X is not uniformly distributed over [0,1]^, and has density g(x). In this
case, we have

Oik = — ̂ y,<l>oit(X/) ^ / f(x)^ok(x)g(x)dx = / [fg](x)^ok(x)dx

and similarly for the Pj^^- Thus applying the WSA to estimate the regression
function / (with the Yt in the empirical estimates) as if X was uniformly dis-
tributed yields, in fact, an estimate [fg]^ of [fg]. From this remark the following
procedure follows:

1. apply the WSA to estimate the density g (without the 7/ in the empirical
estimates); this yields g;

2. apply the WSA to estimate the regression function / (with the Yi in the
empirical estimates) as if X was uniformly distributed; this yields /uniform;

3. the final estimate is / = /uniform/^-

Comment

The preceding direct estimate has some drawbacks (we consider only the com-
putational aspect for a moment). First, we know that there is no closed form for
the scale function O or wavelet ^ . Thus, to compute ajk and ^jk, we would
have to compute and store the values of O and ^ on a fine grid, which is pro-
hibitive. Second, we would like to take advantage of the fast QMF algorithms of
Section III.B.2 for computing orthonormal wavelet decompositions. We cannot
apply these algorithms directly on the data, because the available observations
X i , . . . , XN are randomly sampled and do not form a regular grid. To circumvent
this difficulty, we preprocess the observations to obtain the empirical coefficients

362 A Juditsky et al.

^jmaK,k at the finest resolution level 7max; then we can apply the QMF algorithms
of Section III.B.2 to compute the coefficients at coarser scales. The proposed pro-
cedure is close to the empirical wavelet transform or hybrid transform, studied
in [71, Sect. 5]; mathematical details can be found in [55]. We assume that the
function / is supported on [0,1]^.

Fast Wavelet Estimator (X Does Not Need to Be
Uniformly Distributed)

1. Preprocessing. Select again jmax such that

2^JmaK ^

InA^ - InN

Let A: = (A:i,..., A:̂)̂ be a multi-index, and consider the bin

Ak = [2"-̂ ""̂ ^A:i, 2"-̂ "^ (̂iti + 1)] X • • • X [I'J'^^kd, I'^'^^ikd + 1)].

For density estimation, we first take the empirical probability of bin Aĵ (recall
that Ajt has volume 2~^^"^^); this yields

1 ^

and then

For nonparametric regression, similarly, compute

fN,k = ^
2. /=! ^{XteAk}

and then

At this point, we have constructed synthetic input-output pairs, where the input
is the considered bin and the output is the associated otj^^^^k estimate. Getting the
full wavelet expansion is then performed by applying to these synthetic data the
QMF fast formulas (50) and (51).

2. QMF filtering. Use the multidimensional version of filters (50) and (51) to
computeotjk, ^f^, 7 = 0 , . . . , jmax - 1, / = 1 , . . . , 2^ - 1:

i

Wavelets in Identification 363

3. Shrink the estimates fijl according to

where Xj is a properly selected threshold (cf. Theorem 9).
4. Use the "inverse" filter (54) to obtain otj^^x.

il

5. Finally, set

fN(2-J^^k) = fN,k = 2-^^--/2a,-^.

In this way we obtain estimates of f(2~J'^^k). If this accuracy is not sufficient,
it is possible to interpolate fy at a finer grid by applying upsampling (81), using
the filters that are biorthogonal to those associated with the Haar basis (see [6,
Chap. 8, 71]).

V. WAVELET NETWORK FOR PRACTICAL
SYSTEM IDENTIFICATION

The estimation procedure described in the previous section may not be ef-
fective for X of higher dimension and for sparse input data sets for training. In
this section we attempt to cope with highly dimensional problems and bad data
sampling using an alternative technique of wavelet estimation. We present here a
method for constructing estimators with nonorthogonal wavelets; the correspond-
ing software is available [72]. We investigate Problem 1 of Section LB in the
case of additive noise; that is, we suppose that the pair of random variables X, Y
satisfies

Y = f(X)-\-e, (82)

where f(x): R^ i-> R and e is some noise of zero mean and independent of
X. We want to estimate / based on a sample of size Â that we shall refer to
as the training data set: O^ = {(Xi, Y\),..., {X^, Yjsi)}^ We are particularly
interested in training with sparse data sets. Sparse data often occur in classification
problems and in the modeling of control systems, where available data can be
relatively few as compared to the dimension of input X. Throughout this section,
(p shall denote a radial wavelet as defined in Theorem 3; thus we are not using
orthonormal wavelets.

364 A. Juditsky et al.

A. ADAPTIVE DILATION/TRANSLATION SAMPLING

We present here a result which can be regarded as a theoretical justification of
the techniques in this section. Note that in the orthonormal wavelet expansion

f{x) = ^aok<^ok{x) + X^i^g^J2(^),
k Ijk

the dilation and translation parameters - 2~^J and k do not depend on the function
to expand and only the linear weights ajk and ^jl depend on / . Suppose that
we construct a wavelet "basis" with dilations and translations depending on the
function / . The wavelet expansion of / using these basis functions is expected
to use less wavelets, and thus we expect it to be more convenient for estimation
purposes. To obtain such a basis, we discretize the continuous wavelet transform
(42) (see Section III.A).

We first recall the following algorithm proposed in [73]. Consider the continu-
ous wavelet transform (42), which we rewrite as

/(jc) = / M(a, t)(p{a{x - t))a'^~^^^dadt

= f (p(a(x - 0)sign(M(fl, t))a^'^-^^/^\u(a, t)\ dadt

= — / (p(a(x — t))sign(u(a,t))w(a,t)dadt,

where we have renormalized u(a,t) by a. constant factor C so that the function
w(a, t) = Ca^^~^'^/^\u{a, t)\ can be considered as a probability density. Then
we draw n independent random samples {ai, ^̂)/=!,...,« from the distribution with
density w(a,t). Then we build

1 ^
fnix) = - ^af^ip{ai{x - ti)) sign (M(«/, r,)),

^ • = l

(83)

which, owing to the law of large numbers, converges to the true wavelet transform.
Some faster implementations of this algorithm are given in [73]. Improving this
estimate by some "bootstrapping" technique yields the following approximation
result:

THEOREM 10 (Delyon et al [73]). (p is any radial wavelet function such
that there exists a related radial function ij/ which satisfies condition (40). Let
p, fji,l, p be real numbers satisfying

Wavelets in Identification 365

and let f be a function of the Sobolev space Wf (R^); then, for any n > 0, there
exists a function fn of the form

n

fn(x) = Y^Ui(p{at(x - ti)) (84)

such that

\\fn-f\\w',<Cn-n\f\\wf.

In particular, if p > d/2 then

\\fn-f\\i<n-'f^C\\ff,.

Comment

Theorem 10 provides us with an upper bound for the rate of approximation
when adaptive dilation/translation sampling is used to discretize the continuous
wavelet transform. We should compare this rate with rates of convergence for ap-
proximations based on fixed dilation/translation sampling. For example, the fol-
lowing theorem is proved in [73]:

THEOREM 11. Let p = 2 and p = d/2 -\- s, s > 0. For a collection
hi,,. .,hn of basis functions}^ consider the error

Vn = , inf sup 11/ - span{/ii,..., hn}\\2,
hi,...,hn 11/11

where span{- • •} denotes the linear space spanned by the listed functions, and
the supremum is taken over the unit ball B = {/: | |/ | |^ < 1} of the Sobolev
space W p Then there exists a universal constant C such that, for any fixed basis
hi, ...,hn,

Vn > Cn-'f^.

The result of the theorem implies that for any ̂ e J basis hi, ...,hn and any set
of(Xi,...,an, there are "worst functions" / for which a projection approximation
/^'^(A:) of the form

fl:(x) = J2^ihi
i=l

can take, for instance, the trigonometric basis on [0,1]", or a truncated wavelet basis with
fixed dilation and translation sampling.

366 A. Juditsky et al

converges much slower than the approximation (84). Note that this is not in con-
tradiction with the optimahty of wavelet shrinkage procedures, because shrinking
coefficients in the wavelet expansion make the estimator nonlinear.

B. WAVELET NETWORK AND ITS STRUCTURE

Though the preceding adaptive dilation/translation sampling algorithm pro-
vides us with a good basis, its implementation using a Monte Carlo technique is of
prohibitive computational cost. We rather implement adaptive sampling in a dif-
ferent way, by combining regressor selection and backpropagation algorithms to
find good dilations and translations. The resulting estimator is called the wavelet
network. Related works have been reported in [74-76]. We refer the reader to [74]
for heuristic comparisons between neural and wavelet networks. For any wavelet
function (p\ R^ ^^ R, the wavelet network is written as follows:

n

fnix) = ^Ui(p{ai * (x - ti)), (85)
/=1

where ui e R, at e R^, tt e R^, and "•" denotes the component-wise product
of two vectors. Note that we could have used scalar dilation parameters at, but we
prefer vectorial dilation parameters because they considerably increase the flexi-
bility of network (85) at a reasonable price. The structure of the wavelet network
is depicted in Fig. 3.

In this section we present an efficient comprehensive method for wavelet net-
work training. The following is an outline of this method:

1. Construct a library W of dilated/translated versions of a given wavelet cp.
This library W is adapted to the available training data set, by selecting a
subset from all dilated/translated versions of (̂ on a regular grid. This
technique makes it feasible to build the library W even for significantly
large input dimension when the training data are sparse.

2. Not all wavelets from library W are useful in fitting / from noisy data,
however. This leads to the problem of selecting the best wavelet regressors
among W. Three heuristic methods will be proposed for this. When the
regressors are conveniently selected, fitting model (85) amounts to
identifying the w/ coefficients, which is a standard least squares estimation
problem.

3. Steps 1 and 2 yield a fast training procedure. The result can still be further
improved by subsequently applying an iterative backpropagation algorithm
with steps 1 and 2 as fast initialization. In fact, because initialization was
good, a faster Newton procedure can be used.

More details of each step are given in the following discussion.

Wavelets in Identification 367

a wavelon

Figure 3 Wavelet network. A wavelon is shown, which corresponds to one term (p{ai • (;c — r/)).
Dashed arrows figure output connections to other wavelons.

C. CONSTRUCTING THE WAVELET LIBRARY W

First, we should build a library W of wavelets which will be considered as
candidates of regressors. We have to restrict ourselves to a finite set of regressor
candidates, in order to apply regressor selection algorithms. Naturally W is cho-
sen to be a subset of the continuously parameterized family {(p{a{x — t)): a e
R"̂ , r G R^}. The choice of W is in principle the same problem as discretizing
the continuous wavelet reconstruction (42) to obtain the discrete reconstruction
(43). The standard discretization is a regular lattice:

[(pia^x - into): n eZ, me Z^}, (86)

where ao, ô > 0 are two scalar constants defining the discretization step sizes
for dilation and translation, respectively. Typically we take a dyadic lattice. Now
the countable family (86) should be truncated into a finite set. Usually we only
want to estimate f{x) on a compact domain Z) c R^ and the wavelet function
(p{x)is chosen to have compact or rapidly vanishing support. Therefore, we can
replace in (86) m e Z^ by m e St with a finite set St C Z^; on the other hand.

368 A. Juditsky et at.

n eTj should be replaced hy n e Sa with a finite set Sa CIJ corresponding to the
"desired" resolution levels of the estimation. In practice, four or five consecutive
dilation levels are usually sufficient, with the largest wavelet scale corresponding
to the size of D, the compact domain on which / is to be estimated. After such a
truncation is performed, the family (86) is replaced by

{(p{alx - mto): n G Sa, m e St(n)}. (87)

Note that the cardinality of this wavelet library grows exponentially with the di-
mension d. The following procedure is used to overcome this curse of dimension-
ality when the training data are sparse: scan the training data set Of\ for each
sample point in O^, determine the wavelets in (87) whose supports^^ contain
this data point; and add these wavelets to W if they have not figured in it. With
this method, the dimension d is not a critical factor of complexity, because the
family (87) does not need to be actually created. For a sparse training data set,
this method allows us to handle problems of relatively large input dimension d.
In particular, if the supports of the wavelets are approximated by hypercubes in
R^, this method is easily implemented. From now on we denote by W the result-
ing library of wavelet regressor candidates. For computational convenience, we
normalize the wavelets and get the library W composed of the wavelets:

(Piix) = ai(p{ai(x — ti)), / = 1 , . . . , L,

/ N \ - l / 2

where L is the number of elements in W, at, ti correspond to the dilation and
translation parameters ag and a^^mto of the wavelet cpt, and at is the normalizing
factor. The numbering order with / is arbitrary.

D. SELECTING THE BEST WAVELET REGRESSORS

The problem of regressor selection is to select a number M ^ L of wavelets,
which are the "best" ones from W for building the regression

/ M (^) = ^ M / < ^ K ^) , (88)

iel

where / is an M-element subset of the index set {1, 2 , . . . , L}. This is a classical
problem in regression analysis [77]. Let XM be the set of all the M-element subsets
of {1, 2 , . , . , L}. For any / € XM, the optimal linear weights Ui of (88) are found

^^For noncompactly supported but rapidly vanishing wavelets, the term "support" should be inter-
preted in an approximative way as some domain around the center of the wavelet.

Wavelets in Identification 369

using the least squares method. Then the question is how to choose / e I M which
minimizes the averaged square residuals

/ (/) = , min - V y* - F u m i X k) . (89)

Determining the optimal number M should be performed using generalized cross
validation; cf. Section ILA.2. For given M, selecting the M optimal regressors
from W must be performed via exhaustive search which may involve massive
computations. To overcome this difficulty, three different heuristics are proposed
instead; details can be found in Section IX.

Residual-Based Selection

The idea of residual-based selection (RBS) is to select, for the first stage,
the wavelet in W that best fits the observations O^. Then repeatedly select the
wavelet that best fits the residual of the fitting of the previous stage. In the litera-
ture of the classical regression analysis, it is considered as a simple, but not quite
effective method, for example, in [77] where it is called the stagewise regression
procedure. For classical regressions the number of regressor candidates is usu-
ally small; hence alternative more complicated and more effective procedures are
preferred. In our situation the number of regressor candidates may reach several
hundreds or even more, the computational efficiency becomes more important,
and the simple residual-based selection should be a first choice. Recently it has
also been used in the matching pursuit algorithm of Mallat and Zhang [78] and the
adaptive signal representation of Qian and Chen [79]. This procedure is described
in Section IX.A

Stepwise Selection by Orthogonalization

The idea of stepwise selection by orthogonalization (SSO) is to select, for the
first stage, the wavelet in W which best fits the observations O^, then repeat-
edly select the wavelet that best fits O^ while working together with the previ-
ously selected wavelets. This method has been used in radial basis function (RBF)
networks and other nonlinear modeling problems by Chen et al. [80, 81]. This
procedure is described in Section IX.B.

Backward Elimination

In contrast to the previous methods, the backward elimination (BE) method
starts building the regression (88) by using all wavelets in W, then eliminates one
wavelet per stage, while trying to increase as little as possible the residual at each
stage. This procedure is described in Section IX.C.

370 A. Juditsky et al

E. COMBINING REGRESSOR SELECTION
AND B A C K P R O P A G A T I O N

Any of the procedures mentioned previously can be used to initialize the
wavelet network (85). This network is then further trained using a backpropa-
gation procedure. Note that in (85) we use vectorial dilation parameters a/, but
for the regressor selection procedures the dilation parameters at in W are scalars.
Before applying any backpropagation procedure, change the scalar dilation pa-
rameters resulting from the regressor selection procedures into vectors with iden-
tical components. Standard backpropagation is a stochastic gradient procedure; a
quasi-Newton algorithm is, however, preferred for training the wavelet network,
owing to the good performance of the initialization procedures. Finally, to better
capture linear properties in regressions, we replace (85) by

n

fn{x) = ^ Ui(p{ai * (x - ti)) + Jx + b, (90)

with the additional parameters c G R^, b eR. The initialization procedures are
slightly modified accordingly.

VI. FUZZY MODELS:
EXPRESSING PRIOR KNOWLEDGE
IN NONLINEAR NONPARAMETRIC MODELS

A. FUZZY RULES AND PRIOR KNOWLEDGE
IN NONPARAMETRIC MODELS

We first begin by introducing fuzzy models such as typically used in fuzzy
control [7]. Several presentations are possible; see, for instance, [82]. The presen-
tation we give now is slightly heterodox, but is simple and consistent.

1. Input variables are scalar and are written as jc i , . . . , xj . Input locations are
encoded via fuzzy set membership functions, that is, functions /XA (xt) with values
in [0, 1] where the symbol A is just a label; the fuzzy set membership function
/XA is the mathematical meaning of "fuzzy set A." Thus, for each actual value
of Xi, the statement "x_ i i s A" has a value equal to fiAixt), such statements
are premises of so-called "fuzzy rules." Be careful that a typical form of such
statements is "x_ i i s l a r g e , " which does not convey as much information as
formula fMAixi) does, because the function /ZA is not explicitly specified by this
statement.

Wavelets in Identification 371

2. Fuzzy sets can be combined using the "and, o r , n o t " operators of
first-order predicate logic. For instance,

(x_ l i s A_l) and (x_2 i s A_2) . . . and (x_d i s A_d)

is a fuzzy set involving the vector (xi,...,Xd). The keyword "and" is a com-
binator of fuzzy sets which must be defined formally in terms of combination of
membership set functions. Several choices have been proposed by various authors
[83]. The most widely used ones are

and(M, v) = min(M, v), or(u, v) = max(M, v),
and(M, v) = uv, or(u, v) = u -^v — uv, (91)

and(M, v) = max(0, u-\-v — I), or(u, v) = min(l, u-\-v)

(corresponding definitions for and and o r are written on the same line) and
not(M) = 1—w. Then, as usual in logic, the implication " (x i s A) i m p l i e s
(y i s B)," also written as

i f X i s A t h e n y i s B

is a macro which expands into^^

(y i s B) o r n o t (x i s A)

In the sequel >v̂ shall encode the " and'' as the product: and(u, v) = uv, with
corresponding codings for the " not, or." Finally the implication is expanded
as stated previously.

3. Fuzzy rules are statements of the form

i f X i s A t h e n y i s B

Note that more complex premises can be used, using and, or , no t . Here we state
the mathematical translation of the classical "modus-ponens" mechanism, which
can be written as

Rule:
Fact:

Conclusion:

i f X i s A
X i s A'

t h e n y i s B

y i s ?B

Modus ponens is a mechanism which combines membership functions and yields
a membership function. It can be viewed as a mechanism to express interpolation.
Denote by ^IAM the membership function associated with the fuzzy set x i s
A, and denote by IJLA^B{^, y) the membership function of " i f x i s A t h e n

^^This is the point where we deviate from the usual presentation: in the fuzzy literature, impUcation
is often encoded as an "and," and the modus-ponens mechanism is modified accordingly. We pre-
ferred this presentation, because it is fully consistent and in accordance with the usual predicate cal-
culus.

372 A. Juditsky et al

y i s B." We now state the mathematical translation of the modus ponens [83],
It is defined as

MBiy) = proĵ {/XA/(M) andiXA=^Biu,y)}

= max f/XA^w) and /XA=^5(W, y)], (92)

where elimination of component u has been performed via maximization. We
now consider the particular case in which the fact is a crisp statement, that is, has
the standard form "x i s x," where x is an ordinary value. In this case, we have
/^^/(M) = 1 if M = JC, and /JLA'W = 0 otherwise. Hence, for such a case, the
modus-ponens mechanism (92) reduces to

f^wiy) = t^A=^B(x, y) = l - I^A{X){1 - /XB(J)) , (93)

where we have used the formulas M =^ v = u o r n o t w = v-\-(l—u) — v(l—u) =
1 — M(1 — u). To conclude, because we only consider crisp facts, the fuzzy rule

i f X i s A t h e n y i s B

represents fuzzy set (93).
4. A "fuzzy rule basis" is a collection of fuzzy rules of the form, say,

if (x_l is A_l_l) and (x_2 is A_l_2) ...
and (x_d is A_l_d) then (y is B_l)

if (x_l is A_p_l) and (x_2 is A_p_2) ...
and (x_d is A_p_d) then (y is B_p)

where the Aj^t are doubly indexed labels, / is the index of the input coordinate,
and j is the index of the rule. The mathematical translation of this rule basis is
now given. We assume that the fuzzy sets form SL fuzzy partition of the space, that
is,

P d

Then, combining fuzzy rules within our fuzzy rule basis is interpreted as taking
the ''and' of their conclusions. Thus, using the notation of item 3, the preceding
fuzzy rule basis represents the fuzzy set ?B equal to

y i s ?B_1 and . . . and y i s ?B_p

Wavelets in Identification 373

where the ? B_ j 's are defined according to (93). Expressing the and combinator
as the product of membership functions, we get

p

7=1

= n (l - n M A , . (x .) (l - / X 5 , W)) [by(93)]
;=1 \ /=1 /

P d

j=l i=l

P d

= E fiBj (y) n f^Aj, (Xi), [by (94)] (95)

where we have used the property (94) of fuzzy partition, and approximation
n j = i (l - W;) ^ 1 - Z!y=i ";•' which is vaUd for Uj small and p large. Next,
we also assume that sets Bj are crisp', that is, they are of the form "y i s jy."
Thus fiBj (y) = lify = yj, = 0 otherwise. Hence, assuming that both the conse-
quences of the rules and the facts are crisp statements, we get for the conclusion
the fuzzy set "y i s ?B," where

P d

f^wiy) = ^ ^{y=yj} n ^Aj,i fc)- (96)
7=1 ^ = 1

At this point, setting x = (xi,... ,Xd), formula (96) defines a function mapping
points X eR^ into fuzzy sets. To get a function in the usual setting R^ h^ R, we
perform defuzzification of /x?^ {y) in (96). That is, we replace IJL^B by its center of
gravity, using again fuzzy partition property (94); see [7, 83]. This finally yields
the ordinary function

P / d \ ^

y = Y.yj\]\ ^Aj,i te) = E yj^'j^^^^ ^^^^

where jc = (x i , . . . , Xd); this defines the weights Wj (x). If property (94) does not
hold, that is, if our fuzzy rule basis is sparse so that the range of each coordinate
Xi is not covered by a fuzzy partition, then the preceding defuzzification formula
is modified accordingly:

J2^i-iyji^j(x)
y= jTp , • (98)

374 A. Juditsky et al

Usually, fuzzy set membership functions are parametrized functions of the form

lJiA{x) = ii{a{x-t)), (99)

where /x(jc) is a given function with values in [0,1], a is a dilation factor, and t
is a translation factor, and the pair {a, t) encodes the fuzzy set A. Mostly used is
the piecewise-linear function /x such that /x(l) = 1 and /x(x) = 0 for x outside
the interval [0, 2], that is, a spline of order 1. In this case, the defuzzification
mechanism (97) just performs interpolation. If the fuzzy partition is fixed and not
adjustable, then we get a particular case of the kernel estimate (15). Obviously,
fuzzy models such as (97) or (98) are amenable to identification because they have
some unknown parameters for tuning, namely, the j ' s , A'S, and r's. Identified
fuzzy models are often referred to as "neuro-fuzzy models" in the AI literature
[84], because standard backpropagation (i.e., stochastic gradient) can be used for
their training, exactly as for neural networks. It is also proved that fuzzy models
are universal approximants [85], which is not surprising.

To summarize, fuzzy models are described by fuzzy rule bases, plus some ad-
ditional parameters which make vague statements such as "large," "small," etc.,
to be precise in terms of fuzzy set membership functions. The fuzzy rule basis ex-
hibits the structure of the model, plus some coarse features related to the location
of the elementary functions in the decomposition (97) or (98). Thus/wzzy mod-
els are just particular instances of the kind of nonlinear nonparametric model we
consider here, with the advantage of providing the fuzzy rules as a way to describe
some possibly available prior knowledge. In the experiments reported in Section
VII.A.2, neuro-fuzzy modeling is used in this sense.

B. F U Z Z Y R U L E B A S E S

FOR W A V E L E T - B A S E D E S T I M A T O R S

In this short section, we briefly discuss a proposal for blending the practical
advantages of fuzzy models with the mathematical quality of wavelet-based iden-
tification techniques. Further development of this proposal will be the subject of
future work and will be reported elsewhere.

Requirements

Formulas (94) and (97) reveal that fuzzy models can be viewed as interpolation
procedures: interpolation is performed between points where the set membership
function takes value 1, with associated y value. Thus fuzzy models cannot reflect
hierarchical or multiresolution approximations of a function such as performed by
wavelet-based identification techniques. So the following natural question can be
considered: how does one provide fuzzy rule bases for wavelet-based estimators!

Wavelets in Identification 375

Thus what we need is to abstract wavelet networks, say, of the form (85), in the
form of syntax similar to fuzzy rule bases. Such syntax would not specify the
considered wavelet network exactly, but should capture some essential features of
it. Objectives would be to use such a syntax for a rough but easy description of
a wavelet network based on some qualitative prior knowledge on the system, or
to use it as an initial guess for some iterative identification procedure based on
recorded data from the system.

Reflecting the notion of multiresolution or hierarchy within rules calls for a
syntactic notion of context. For instance, in the context "x i s l a r g e , " we
may want to write "x i s s m a l l " to express that x is not too large, and
"x i s l a r g e " again to insist that x is very large indeed. This calls for logics
handling context-dependent statements. Such logics are studied under different
frameworks independently in the AI and theoretical computer science commu-
nities. The notion of a "conditional object" proposed and studied by Dubois and
Prade [86] in the AI conmiunity is a candidate model for such "context-dependent
rules." In [86] various definitions are investigated for such "conditional objects,"
based on some reasonable requirements accepted as axioms. On the other hand,
"structured operational semantics" (SOS) was introduced by Plotkin [87] in theo-
retical computer science. SOS rules describe the legal transitions of a considered
program/<9r a given context. SOS rules are used to specify primitives as well as
the various combinators for program contruction. We shall not elaborate any fur-
ther on possible theoretical models for the kind of context-dependent statements
we shall take the liberty to write in the sequel.

Let us propose the following syntax we call hierarchical fuzzy models.

1. Standard fuzzy rules are hierarchical fuzzy rules. Thus we can still write

i f (x_ l i s A_l) and (x_2 i s A_2) . . .

and (x_d i s A_d) t h e n (y i s B)

with the same mathematical meaning as before.
2. Let us give names to the fuzzy rule bases, for example,

RULE_BASE is
if (x_l is A_l_l) and (x_2 is A_l_2) ...
and (x_d is A_l_d)

then (y is B_l)

if (x_l is A_p_l) and (x_2 is A_p_2)
and (x_d is A_p_d)

then (y is B_p)
end

376 A. Juditsky et al

Then the following statement:

if (x_l is C_l) and (x_2 is C_2) ...

and (x_d is C_d) then RULE_BASE applies

is a hierarchical fuzzy rule. Its premise is an ordinary fuzzy statement

(x_ l i s C_l) and (x_2 i s C_2) . . . and (x_d i s C_d)

as before. The second part of this statement, namely, " t h e n RULE_BASE a p -
p l i e s , " has " then" and " a p p l i e s " as keywords and RULE_BASE as a pa-
rameter. This hierarchical fuzzy rule has the following interpretation:

(a) The reference space for input x, which was, say, [0, 1]^, is now stretched
down, to enforce validity of the statement

(x_ l i s C_l) and (x_2 i s C_2) . . .

and (x_d i s C_d)

Thus all premises of RULE_BASE are stretched down accordingly.
(b) Since RULE_BASE was a standard fuzzy rule basis, our new rule is a

hierarchical fuzzy rule.

3. Collections of hierarchical fuzzy rules are termed hierarchical fuzzy rule
bases. Hierarchical fuzzy rules can call hierarchical fuzzy rule bases; this cap-
tures multiresolution. Obviously, in doing so, the question of recursivity in the
computer science setting occurs: does it happen that a rule recursively calls itself?
Recursion may or may not be accepted. Anyway, simple syntactic constraints in
writing rule bases would prevent recursivity.

"Down Stretching'' Mechanism

The key issue in this informal discussion is the precise mathematical meaning
of the "down stretching" mechanism. We assume for convenience that the default
context is [0, \Y. Consider a fuzzy partition satisfying condition (94), which we
recall now

P d

7 = 1 ^ = 1

Down stretching this fuzzy partition to a given membership function ^ici^i) con-
sists of building a collection iJi{Aji\C)^ J = 1,...,/?, of membership functions
which satisfy

P d

^Y\l^i^j,i\C)^^i^ = l^ciXi) (101)
; = i i=l

Wavelets in Identification 377

fuzzy partition

stretching down within a context

Figure 4 Down stretching mechanism.

and, in addition, preserve the "geometry" of the original fuzzy partition. This is
illustrated in Fig. 4. A possible procedure achieving this is described now.

We first need to define the notion of a fuzzy set more accurately. A fuzzy set A
is a triple A = (/XAC^), «» b), where

jXA'- [a, b] -> [0, 1] is the membership function and — oo < a ^b < -\-oo.

The interval [a, b] is the context of the fuzzy set A. For example, when we define
a fuzzy set "smal l , " we must specify its context interval [a, b] in addition to
its membership function. This " s m a l l " label means that the /XA membership
function is mainly concentrated on the small values of this context interval. Note
that this set may not be " s m a l l " within other context intervals.

Now consider a fuzzy set C = {jicM, ci', V), We consider its left and right
boundaries defined by

IQ = inf jc, re = sup x\

that is, [/c, re] is the support of /xc- Consider a pair (A, C) of fuzzy sets, and
define the contextual fuzzy set (A|C) as follows:

(A|C) = (/X(A|C),/c,^c),

M(A|C)(^) = M A (— — j - { x - l c) + a\ixc{x). (102)

Hence (A|C) has the support of C as context, and its membership function is
obtained by mapping the interval [a, b] onto [Ic, re] and then multiplying by jxc-
With this definition of contextual fuzzy sets, a fuzzy partition having the default
context, that is, satisfying property (100), is down stretched to a fuzzy partition
satisfying property (101).

378 A. Juditsk}/et al

Mathematical Implementation of the Hierarchy

Here we formalize what it means for a rule base to be called within a given
context. As an example, we give the meaning of the hierarchical statement

if (x_l is C_l) and (x_2 is C_2) ... and (x_d is C_d)

then (y = y_o)

if (x_l is C_l) and (x_2 is C_2) ... and (x_d is C_d)

then RULE_BASE applies

where RULE_BASE has been defined before. We may also rewrite this as

if (x_l is C_l) and (x_2 is C_2) ... and (x_d is C_d)

then (y = y_0) and RULE_BASE applies

First, we have to combine two rules, and this is performed using the general for-
mula (97). Then we must recall that RULE_BASE is called within the context of
Ci X • • • X Q ; hence we use definition (102) of contextual fuzzy sets. This yields
the following mathematical interpretation of the previous hierarchical rule base:

>'=jc^f n^^'^^^M + J2yj\Y\f^(Aj,i\Ci)ixi)
7=1 \ /= l /

(103)

This shows that the value yo can be interpreted as a "first-order approximant,"
whereas the yj's, j = 1 , . . . , p, are increments corresponding to a refinement
of our modeled function. Thus truncating such an approximation is simply per-
formed by truncating the tree of the nested calls of rule bases.

Thus what we have at this point is a flexible way to associate syntax with
multiresolution expansions of functions. If, in addition, we carefully choose our
membership functions p. A to be derived from scale functions cp associated with
wavelets, we now have a way to abstract wavelet networks in the form of hier-
archical fuzzy rule bases. See Section III.A for scale functions which are non-
negative and bounded, and thus satisfy the requirements for being prototypes of
membership functions. The "call" mechanism provides some kind of genericity,
because the same rule base can be called within different contexts. This generic-
ity is expected to be useful mainly when adjustable parameters, which are hidden
inside fuzzy rules, are identified from data. On the other hand, for fuzzy models
specified based on the prior knowledge of the user, it is not expected that the same
rule base will be called under different contexts.

Wavelets in Identification 379

VIL EXPERIMENTAL RESULTS

In this section we consider the apphcation examples introduced in Section LA.
We provide detailed results obtained with the wavelet networks and the fuzzy
network. For the gas turbine example, we also compare them with alternative
semiphysical models which were developed in [88] for the purpose of monitoring
and diagnostics.

A. MODELING THE GAS TURBINE SYSTEM

1. Using the Wavelet Network

In the gas turbine system we introduced in Section I.A.I, the temperature pro-
file at the exhaust of the turbine is considered as the output. We need a model
which predicts this temperature profile from available measurements. For the
semiphysical model we mentioned in Section I.A.l, the temperature profile is
predicted from the mean temperature in the combustion chambers T ,̂ the mean
temperature at the exhaust of the turbine T ,̂ and the rotation velocity of the tur-
bine A'̂ . The velocity Â is directly measured, Ts is given by the average of a set
of thermocouples installed at the exhaust of the turbine, and Te is computed from
Ts and the compression rate n of the compressor [9, 10]. By substituting Te, the
temperature profile at the exhaust of the turbine depends on T ,̂ n, and Â . As
suggested by this semiphysical model, we assume that the temperature measured
by each of the thermocouples installed at the exhaust of the turbine is a function of
Ts, 7T, and Â , which are all measured. Therefore, we can try to construct, for each
of the thermocouples, a wavelet network with Ts, n, and N as its input variables,
and train it to predict the temperature measured by the thermocouples.

We have experimented with this approach on the data taken from a gas turbine
of European Gas Turbine SA. The training data were collected during about 48
hours. We have resampled the data and kept only 1000 measurement points. This
gas turbine system is equipped with 18 thermocouples at its exhaust. For the sake
of brevity, we show only the results concerning the first thermocouple. The resam-
pled data are depicted in Fig. 5 where the plots correspond to T ,̂ n, and N and
y = h — Ts, where t\ is the measurement of the first thermocouple. These 1000
measurement points, which we refer to as the training data, are used for training
models whose input vector is jc = (Ts,7t, N)^. The obtained models are tested
on another set of measured data, which we refer to as the test data set and depict
in Fig. 6.

We have chosen the radial wavelet function (p(x) = (d — x^x) exp(—^x^x)
with d = dim(x). The number of wavelets used in the networks is set to 40. Note
that there are 18 thermocouples.

380 A. Juditsky et ah

900

500
0 100 200 300 400 500 600 700 800 900 1000

5070 h

5060
0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

Figure 5 Training data. The plots correspond to, from top to bottom, Tg, TT, N, and y = ti —Tg.

Wavelets in Identification 381

250 300 400

400

400

0 50 100 150 200 250 300 350 400

Figure 6 Test data. The plots correspond to, from top to bottom, Ts, n, N, and y = ti —Tg.

382 A. Juditsky et ah

0 50 100 150 200 250 300 350 400

Figure 7 Result with the semiphysical model on the test data set. The solid line represents the true
measurement and the dashed line represents the output of the model.

We initialize the wavelet networks with each of the proposed (RBS, SSO, BE)
procedures and train them with the Gauss-Newton procedure.

To show the performance of the resulting models, we compare their results
with those of the semiphysical model and a third-order polynomial model. In
Figs. 7 and 8 the results obtained with the semiphysical model and the third-order
polynomial model are, respectively, shown. The results obtained with the wavelet
networks initialized with procedures RBS, SSO, and BE, and the results after 10
iterations of the Gauss-Newton procedure are given in Figs. 9-11. In Table I we
list the mean of square errors (MSE) of these models on the training data set as
well as on the test data set. For each of these networks, we give the result of its
initialization (init. MSE) and the result after 10 iterations of the Gauss-Newton
procedure (final MSE). The time of computation for building these models is also
listed in Table I, based on our programs in MATLAB 4.1 language executed on
a Sun Sparc-2 workstation. Because the execution time of the programs is per-
turbed by other processes on the workstation, another figure of merit is provided,
namely the the MATLAB's Flop which measures the computational complexity of
a program.

Wavelets in Identification

0

383

100 150 200 250 300 350 400

Figure 8 Result with the third-order polynomial model on the test data set. The soUd line represents
the true measurement and the dashed Une represents the output of the model.

The following observations can be made:

• The semiphysical model performs quite poorly in predicting the output of
the system.

• The system is truly nonlinear; in addition, the results obtained with the
polynomial model are quite poor.

• The wavelet networks do improve the performance on prediction. Recall,
however, that we get in turn increasing computational complexity and loss
of the physical meaning of the model parameters.

2. Using the Fuzzy Network

We also applied the (classical) neuro-fuzzy network as briefly introduced in
Section VI for modeUng the gas turbine system. Similarly to the wavelet network,
we train the fuzzy network using the training data set, and then evaluate it on the
test data set.

To build the network, we have taken a fuzzy partition of the state space using
triangular membership functions (i.e., first-order splines); this divides the varia-

384 A. Juditsky et ah

50 100 150 200 250 300 350 400

Figure 9 Results with wavelet network initialized by procedure RBS (top) and after 10 iterations of
the Gauss-Newton procedure (bottom). The soUd lines represent the true measurement and the dashed
lines represent the output of the model.

Wavelets in Identification 385

50 100 150 200 250 300 350 400

Figure 10 Results with wavelet network initialized by procedure SSO (top) and after 10 iterations of
the Gauss-Newton procedure (bottom). The solid Unes represent the true measurement and the dashed
lines represent the output of the model.

386 A. Juditsky et at.

50 100 150 200 250 300 350 400

Figure 11 Results with wavelet network initialized by procedure BE (top) and after 10 iterations of
the Gauss-Newton procedure (bottom). The solid lines represent the true measurement and the dashed
lines represent the output of the model.

Wavelets in Identification 387

Models

Train, init. MSE
Train, final MSE
Test. init. MSE
Test, final MSE
Init. flops
Train, flops
Init. time (s)
Train, time (s)

Table I

Performance Evaluation of the Models

RBSnet

1.2656
0.5395
1.2368
1.1886

2.0718 X 10'̂
1.5365 X 10^

41.6
2461.8

SSO net

1.0453
0.4239
1.1229
1.2348

4.3714 X 10^
1.5365 X 10^

251.2
2383.8

BE net

1.0381
0.4503
1.1576
1.0898

7.5143 X 10^
1.5365 X 10^

87.2
2456.5

Semiphysical

3.5268

2.8914

9.8041 X 10^

2265.0

Polynomial

2.8438

2.1135

4.7056 X 10^

1.5362

tion domain of each input into five equal parts. Following Section VI, the math-
ematical translation for both conjunction and implication operators is taken to be
the product.

Before learning, we have initialized the network using a simple interpolation
procedure. Consider the "defuzzification" formula (97) which we recall now:

where the index j labels the rules. For each rule j , select the training input data
point Xnj closest to the center of the corresponding fuzzy set, that is, Wj(x) is
maximal for x = Xnj. Then take yj = Ynj where Ynj is the output value corre-
sponding to Xnj. Results of this procedure are shown in Fig. 12.

The second stage consists of performing a least squares fit of the parameters
Oj in the function feix) = J2^j=i OjWj(x), where 0 = (Oi,... ,0p) based on
the whole training data sample O^ = {(Xi, F i) , . . . , (XN, FA^)}. A brute-force
implementation of least squares would be difficult, due to the need for inverting
the Hessian of the least squares functional. Thus an iterative stochastic gradi-
ent procedure has been preferred instead, using the preceding simple initializa-
tion technique. Training was stopped after only three successive scannings of the
learning set.

The identified fuzzy network is then evaluated on the test data set. The output
of the identified fuzzy network is plotted in Fig. 12, and is compared to the actual
one. The solid line represents the true measurement and the dashed line represents
the output of the model. The mean of square errors (MSE) on the test data set
is 1.5860.

388 A. Juditsky et ah

-14
50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

Figure 12 Results with the initialized (top) and trained (bottom) neuro-fuzzy networks on the test
data set. The solid lines represent the true measurement and the dashed Unes represent the output of
the model.

Wavelets in Identification 389

B. MODELING THE HYDRAULIC ACTUATOR
OF THE R O B O T A R M

Let us denote by u{t) and p(t) the position of the valve and the oil pressure at
time t, respectively. A sample of 1024 pairs of (u(t), p(t)) was registered.^^ We
divide it into two equal parts for training and testing the models. The training data
are depicted in Fig. 13, and the test data in Fig. 14.

We first tried to model this system with linear autoregressive exogenous (ARX)
models. More precisely, we tried to use models of the following form:

p(t) = aip(t - 1) + aipit - 2) + .. • + UnPit - n)

+ b\u{t -X - l)+b2u{t -T - 2) H \-bmu(t -X m)^-e{t).

where the pure time delay x is assumed to be an integer and e{t) is some noise
independent oiu(t) and past values of p{t). After the identification of the model
parameters Ui ,bj,x,we plot the output of the following system to visually evalu-

- i 1 1 1 1 1 r -

i i _i 1_

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

Figure 13 Training data: the input u{t) (top) and the output p(t) (bottom).

21 We gratefully acknowledge Jonas Sjoberg and Svante Gunnarsson from Linkoping University for
providing the data.

390 A. Juditsky et al

0 50 100 150 200 250 300 350 400 450 500

Figure 14 Test data: the input u{t) (top) and the output p(t) (bottom).

ate the quality of the model:

pit) = aip(t-l)-\-a2p(t 2) + '"-^anp(t-n)
+ biu(t - r - 1) + b2u(t - r - 2) H h bmu(t m).

We processed the data with Ljung's System Identification Toolbox, Version 3.0a.
It turns out that the ARX model that gives the best simulation result on the test
data set has the model order with n = 3, m = 2, r = 0 . This result is shown
in Fig. 15. It does not seem to be satisfactory. The wavelet networks as defined in
(90) are then considered as candidates of nonlinear models.

In analogy with the Unear ARX model, we build models of the following form:

Pit) = fipit - 1), Pit - 2), Pit - 3), uit - 1), uit - 2)) + eit),

where the nonlinear estimator / is a wavelet network composed of six wavelets,
and eit) represents the modeling error. To train the network, compose its input
and output vectors with the training data {uit), pit)}:

xit) = [pit - 1), Pit - 2), Pit - 3), uit - 1), uit - 2)f,

yit) = Pit).

Wavelets in Identification 391

\ r~

50 100 150 200 250 300 350 400 450 500

Figure 15 Result with the Hnear ARX model on the test data set. The soUd line represents the true
measurement and the dashed line represents the simulated output.

Then apply the initiaUzation algorithms and the Gauss-Newton procedure. Again
we take

(p(x) = (d — x^x) exp(—^jc^jc),

with d = dim(.x) as the wavelet function. It happens that for this example the
Gauss-Newton procedure does not significantly improve the performance of the
wavelet models, so we only show the results obtained with the initialized net-
works.

We then simulate the output p(t) on the test data set with the wavelet models,
in a similar way as with the linear ARX model:

P(t) = f{p(t - 1), Pit - 2), Pit - 3), Hit - 1), uit - 2)).

The simulation results obtained with the wavelet networks initialized with algo-
rithms RBS, SSO and BE are depicted in Figs. 16-18.

Clearly, the wavelet models significantly improve the results of the simulation.
Although the results obtained with initialization algorithms SSO and BE are very
similar, the result of algorithm RBS is obviously not as good.

392 A. Juditsky et al.

50 100 150 200 250 300 350 400 450 500

Figure 16 Result with the wavelet network initialized with algorithm RBS. The solid line represents
the true measurement and the dashed Hne represents the simulated output.

50 100 150 200 250 300 350 400 450 500

Figure 17 Result with the wavelet network initialized with algorithm SSO. The solid line represents
the true measurement and the dashed line represents the simulated output.

Wavelets in Identification

4

393

100 150 200 250 300 350 400 450 500

Figure 18 Result with the wavelet network initialized with algorithm BE. The solid line represents
the true measurement and the dashed line represents the simulated output.

C. PREDICTIVE FUZZY MODELING
OF GLYCEMIC VARIATIONS

1. Variables of Interest and Their Qualitative Labels

Diabetologists' knowledge is expressed under the form of "rule of thumb" ad-
vice. We have used this knowledge to build a two-hour-ahead predictive model of
glycemic variations. This predictive model will be subsequently used in a control
system. We have restricted our model to six inputs as shown in Table II (current
instant t is omitted for simplicity).

The ouput is the predicted variation of glycemia at time t-\-2 hours, DG (t+2)
e {PVB, PB, PM, PS, Z, NS, NM, NB, NVB}, where P means "Positive," N "Neg-
ative," S "Small," B "Big," etc. Figure 19 shows the membership functions of
glycemia, where the (g/)f^o P^^ni^t^rs must be determined by learning because
their optimal value depends on the patient. Membership functions have been rep-
resented by simple first-order splines with free knots.

394 A. Juditsky et ah

Table II

Fuzzy Variables for Glycemic Variation Modeling

Item

Glycemia

Basis insulin
injection rate

Flash insulin
injection rate

Elapsed time
since previous

Diet
meal

Expected future activity

Symbol

Gl

Ba

Bo

Dr

Nr
Ac

Very Low
(VL)

Fa r B e f o r e

Low
(L)

Low,

Low,

, Nea r ,

F i b e r ,
Low

Fuzzy values

Normal
(N)

Normal,

Normal,

J u s t A f t e r ,

High Very High
(H) (VH)

High

High

F a r

Normal , G l u c i d i c
Normal , High

Our method follows the following two steps:

1. start with an initial guess of the model, based on available (qualitative)
prior knowledge;

2. tune this model to the particular patient under consideration, by
performing learning from data.

2. Expressing Prior Knowledge

Combining all possible qualitative values for the different inputs yields 1620
different cases, corresponding to the same amount of candidate fuzzy rules. In
fact, only 50 rules were considered for our prior model, thus reflecting the actual
domain for the input variables where meaningful knowledge exists. Example of
such rules are

if
if

(GL(t) is VL)
(GL(t) is L)

and
and

(Nr(t) is N)
(Ba(t) is L)

then
then

DG(t+2) is PB
DG(t+2) is NS

go Si %2 ^3

Figure 19 Fuzzy partition for glycemia.

Wavelets in Identification 395

0 100 200 300 400 500 600 700 800

Figure 20 Prior model: two-hour-ahead prediction (dashed line) vs. actual (solid line) glycemia.

Figure 20 shows predicted glycemia ait -\- 8 from glycemia at time t, with 8 =
2 hours, before learning, that is, with only use of the prior model. The solid line
shows the actual glycemia and the dashed line the predicted one. The doctor's
rules are quite efficient in predicting the effect of insulin injections. Still some
spikes occur in the prediction error. The prediction error has mean /JL = —0.20
and standard deviation a = 0.38.

3. Tuning the Model for Each Patient

Using data from the patient's notebook, we divided the data file into two parts,
one for learning and the other for generalization (i.e., testing). Figure 21 shows
predicted glycemia ait + 2 from glycemia at time t, after learning, that is, sub-
sequent learning of the gi parameters on the data. A simple stochastic gradient
was used. The prediction error has mean jx = —0.0003 and standard deviation
a = 0.29. Some improvement is seen; note that such an improvement is likely to
be patient dependent. The errors around time steps 700 and 800 are due to catheter
changes (as marked in the notebook) which usually lead to the injection of more
insulin than expected.

396 A. Juditsky et al.

800

Figure 21 Model after learning: two-hour-ahead prediction (dashed line) vs. actual (solid line)
glycemia.

4. Comments and Conclusions about This Example

The following conclusions can be drawn from this case study:

• Fuzzy rules turned out to be a convenient way to express prior knowledge
from doctors, in part because this prior knowledge is mainly qualitative. It is im-
portant to notice that this fuzzy rule basis was far from being equivalent to an
exhaustive table describing the input-output map, because about only a few per-
cent (50/1620) of this table was described by the rules. This restriction is by itself
a useful prior information about the range of validity of the modeling.

• Subsequent tuning of the prior model was performed while preserving the
structure of the model; that is, the fuzzy rules were not modified, only the gi
parameters hidden in the splines were adjusted. It would also be possible to use
our prior model as an initial guess but allow other "rules" (i.e., additional spHnes)
to be introduced via learning; corresponding experiments are under progress.

• Another advantage of describing the model via fuzzy rules is the possibility
to "decompile" the model after learning, again in the form of fuzzy rules, for

Wavelets in Identification 397

return to the user (doctor or patient). Returning a mathematical model would be
of little use for the average user having no training in mathematics.

• In this application, high accuracy was not a key point. For other cases where
model accuracy is more important, replacing fuzzy membership functions in the
form of first order spHnes by more efficient wavelets could be easily performed.

• On the practical side, on can notice from both Figs. 20 and 21 that human
control of glycemia injection performs quite poorly. The desired range would be,
say, about 1 db 0.3, which is far from being accessible to human control. Thus
nonUnear fuzzy control design is now under progress for this application.

VIII. DISCUSSION AND CONCLUSIONS

In this chapter we have discussed the wide area of nonparametric nonlinear
estimation from the point of view of system identification. We have seen that a
huge amount of work has been pursued in the statistics conmiunity. We also know
from numerous press releases that, in parallel, the AI community revitalized the
same area by advertising neural networks, fuzzy models, and neuro-fuzzy mod-
els. In addition, AI scientists and engineers packaged these techniques with user-
oriented software and even hardware. It is not until recently that the AI conmiunity
become interested in the mathematical developments and algorithms from statis-
tics. At the same time, statisticians became involved in the mathematical study of
the methods advertized by the AI conmiunity and engineering practice. In paral-
lel, the control community recognized those models and estimation algorithms as
possible candidates for nonlinear black-box system identification. In this chapter
we have tried to put together material—^both classical and very modem—from
different areas, and have discussed both mathematical and practical issues. Here
is a sunmiary of our tentative conclusions and suggestions for future work.

Practical Issues

• Models for prediction and simulation. As reflected by the reported exper-
iments, our experience has been that nonlinear nonparametric models are very
good at predicting behaviors, provided that the training data set reflects all actual
operating conditions that can occur. This is especially true for models that are
multiresolution in nature, for example, wavelet-based models. More interesting,
prediction is still efficient even for a sparse training data set—a situation which
is almost unavoidable for high-dimensional input data. The quality of prediction
can rapidly vanish outside the range of the training data set, however, but this is
not really surprising.

398 A. Juditsky et al

• System monitoring and diagnostics. The reported experiments on the gas
turbine case study show that the data fit is much better for our wavelet network
(and even for the neuro-fuzzy network) than for our semiphysical model. Accord-
ingly, one may expect a better performance in change detection and diagnostics
by using the wavelet network. Designing a change detection procedure based on
the wavelet network can be performed by applying the general asymptotic local
approach discussed in [10, 89]. However because the parameters of the network
have no useful interpretation, diagnostics would require learning the failure modes
from training data sets: this is unrealistic because real data corresponding to fail-
ure modes are (fortunately) seldom. Thus diagnostics requires a combination of
data and prior knowledge, preferably in the form of a (semi)-physical model: data
are the current data (from safe or failure mode), and the model is used to describe
prior knowledge about failure modes. In fact, gas turbine monitoring and diagnos-
tics were successfully performed using our seemingly poor semiphysical model;
see [10, 88] for an account of the results.

• Describing prior knowledge. Fuzzy models and their associated rules can be
used to describe prior knowledge for nonlinear nonparametric models. Now if it is
desired to blend the style of fuzzy rules with the mathematical quality of modem
nonparametric models, we are faced with the need for a notion of "multiresolu-
tion" or "hierarchical" fuzzy rule bases. We have discussed a possible proposal
toward this objective. This has to be further explored. In addition, it would be
interesting to develop statistical methods checking for violation of a particular
subset of fuzzy rules; this would blend methods from artificial intelligence and
statistics model-based diagnostics.

• Software support. Our current experience can be summarized as follows.
There are three different kinds of needs for nonlinear black-box identification:
low-dimensional input (say, 1, 2, 3), medium-dimensional input (in the range of
tens), and large-dimensional input (in the range of hundreds or thousands). The
first case typically corresponds to curve fitting and is useful in signal or im-
age processing and sometimes in control. High-performance algorithms based
on wavelets are available today, which outperform others in both accuracy and
computational cost (see Section IV), and software is available, such as Taswell's
WavBox in the Matlab language [90]. The second case has its main applica-
tions in system identification and control. There, RBF (radial basis function) net-
works, which provide fast noniterative training procedures, are preferred; theoret-
ical studies and experiments suggest that wavelet networks [72], such as discussed
in this chapter, are likewise more efficient candidates. Finally, sigmoid-based neu-
ral networks with their iterative backpropagation algorithm, both simple and time
consuming, are still effective for very large dimensional cases such as encountered
in some pattern recognition applications. We have seen that alternative models
with much more efficient iterative training procedures can also work well, such

Wavelets in Identification 399

as Breiman's hinge functions [50]; Breiman's hinging hyperplane algorithm fits
piecewise-linear models on nonlinear systems in a very efficient way.

Mathematical Issues

• Assessing the quality of an approximation. What is the convenient figure of
merit for the estimation error | | / — / | | ? We have emphasized in this chapter the
central role played by Besov spaces: this is a triply parametrized family of spaces
of functions that are generally smooth but may have sparse singularities. Being
smooth outside localized singularities is a common feature of most of the nonlin-
ear systems encountered in practice; thus Besov spaces are suitable to assess the
quality of an estimator

• Quality of fit from noisy data, and ''Cramer-Rao bounds^ Maximal risks
and lower rates of convergence provide adequate frameworks; they have to be
used in combination with Besov spaces. And we have shown that wavelet-based
estimators are optimal for systems in Besov spaces.

• How efficient identification algorithms really are in terms of computational
cost and quality of conditioning. When orthonormal wavelet librairies can be ef-
ficiently built (this is feasible for low-dimensional input, say, up to 4 or sUghtly
more), wavelet estimators from Section IV are the fastest ones. For very large di-
mensions, wavelet librairies cannot be built today, and standard sigmoid-based
neural networks are preferred; Breiman's hinging hyperplane models are very
promising alternative candidates. In the medium-range situation, wavelet net-
works using partial wavelet librairies seem to be efficient alternatives to RBF
networks.

Research Directions

Based on the material of this chapter, we can suggest the following three major
challenges for future research.

• Providing wavelet-based identification methods for higher-dimensional
inputs. The central question here lies in the efficient construction of
wavelet librairies in higher dimensions.

• Taking advantage of multiresolution in both time and space is a major
challenge for dynamical system identification. Functional nonlinear
autoregressions of the form Yk = f(Yk-i,..., Yk-p) + Ck, or their
state-space counterparts, are naturally used with both neural and wavelet
networks. These models do not allow playing with multiresolution for time,
however, because discretization is fixed and rigid. Thus a new framework
would be needed for this purpose.

• Investigating the interplay between the syntax of fuzzy modeling and
modem nonparametric models certainly is a topic of major practical

400 A Juditsky et al

interest. It would provide the user with ways of describing prior knowledge
within nonparametric models.

IX. APPENDIX: THREE METHODS
FOR REGRESSOR SELECTION

Recall that W = {(pt: i = 1 , . . . , L} is the library of the wavelet regressor
candidates. Introduce the following notation:

Vi =

(Pi(xi)

(105)

(Pi(XN)

where cpi e W and x i , . . . , XÂ are input observations in the training data set

Oi = {{xi,yi),...,(xN.yN)}'

(Pi has been normaUzed so that vt is unitary:

vfvi = 1, / = 1, . . . ,L.

Now collect all the u/, / = ! , . . . , L, in a set V:

V = { I ; I , . . . , I ; L } . (106)

We also define the output observation vector

J =

yi

LyN J

(107)

where y i , . . . , JA^ are output observations in O^.
Let span{i;/: / e I] he the space linearly spanned by the vectors vt, i e I,

and let TM be the set of all the M-element subsets of the index set {1 ,2 , . . . , L}.
Using this notation, selecting / G I M so that the corresponding M wavelets in
W minimize the mean square residual / (/) in (89) is equivalent to selecting the
M vectors vi from V which minimize the Euclidean distance from the vector y to
the space span{i;/: / G / } . Such an optimal solution requires an exhaustive exam-
ination of all the M-element subsets of W, which may not be feasible in practice,
because of its massive computational burden. Some suboptimal and heuristic so-
lutions have to be considered. Here we present three heuristic procedures.

Wavelets in Identification 401

A. RESIDUAL-BASED SELECTION: DETAILS

Define the initial residual yoik) = yk, k = 1 , . . . , Â , with yk the output
observations in O^. Set fo(x) = 0.

At stage /, / = 1 , . . . , M, search among W the wavelet (pj that minimizes

1 ^
J((Pj) = T7 X ! (yi-^^^^ ~ ^J^j(^k)) ,

k=l

where

it=l / it=l

and yi-i(k), A: = 1 , . . . , Â , are the residuals of stage / — 1. Note

/̂ - = arg min J((pj).

Then (̂ /. is the wavelet selected at stage /. Update ft and y/:

fiM = fi-iix)-{-uii(pi.(x),

Yi(k) = Yi-i(k) - uii(pi.te), ^ = 1 , . . . , Â .

This procedure can be more conveniently described with the aid of vectorial no-
tation as follows. Define the initial residual vector yo = y with y as defined in
(107) and set fo(x) = 0. At stage /, / = 1 , . . . , M, search among V the vector
Vj that minimizes

J(vj) = (Vi-i - UjVjfiVi-i - UjVj),

with

uj = (vjvjr^jn-i = vjn-u

where the last equality is due to the normality vjvj = 1.
Substituting Uj into J(vj) yields

Ji'^j) = {vi-i - ̂ Jvi-i^j) {n-i - ̂ Jn-i^j) (108)
= y.̂ iy,_i + (vjn-ifvjvj - 2{vjyi-if (109)

= yl,yi.,-{vjyi-i)\ (110)

It turns out that minimizing J(vj) at stage / is equivalent to maximizing
(vjyt-i)^-

The algorithm is summarized as follows.

402 A. Juditsky et al

Regressor Selection Algorithm for Residual-Based Selection

Step 0, Set YQ = y and /O(JC) = 0.

Step /, / = 1 , . . . , M. Let /,• = {7: 7 = 1 , . . . , L and ; ^̂^ / i , . . . , / /_i}.
Find

T \2

and set

/,• =argmax(i;[y/_i)

fi(x) = fi-i(x)-{-ui.(pi.(x),

Yi = Yi-l -^iVii.

It is easy to prove (see [78])

\2
Yi^Yi = Yi^-iYi-l - {^liYi-l) ,

so y^Yi monotonically decreases as / increases. It also means that the ith term
added to /MM has a contribution to the minimization of y^/M measured

B. STEPWISE SELECTION

BY ORTHOGONALIZATION: DETAILS

At stage / of this procedure, assume that the / — 1 already selected wavelets cor-
respond to the vectors f / j , . . . , vi._^. To select the ith wavelet, we have to compute
the distance from y to the space span(i;/i,..., vi-_^, Vj) for each 7 = 1 , . . . , L and
j ^h,. ..Ji-i. For computational efficiency, we orthogonalize the later selected
vectors Vj to the earlier selected ones. Assume that vi^,..., i;/._i are already
orthonormalized and renamed as u ; / j , . . . , M;/._I, then span(i;/j,..., i;/._j ,Vj) =
span(ic;/i,..., wi^_^, i;^). For each 7 = 1 , . . . , L and j ^h,..., / / - i , compute

Pj = ^j - {(vJmOmi +"' + (i^Jw;/._i)u;/._i), (111)

qj = {p]pj)-''^Pj. (112)

Then we should search the Vj, or equivalently the qj, that minimizes

J{Vj) = Jiqj)

= [y- (w/iu;/i + • • • + M/._iU;/._i + Ujqj)]

x[y- {ui^wi^ + • • • + W/._IM;/._I + Ujqj)]

= {y-WjUjf[y-WjUjl

Wavelets in Identification 403

with the matrix Wj = (wi^,..., u;/._i, qj) and the vector

Uj = (ui„ . . . , ui,_,,iijf = {WJWj)-^Wjy = Wjy, (113)

where the last equality is due to the orthonormality of u;/p . . . , M;/._I , qj. Continue
the computation:

Jivj) =: J{vj) = y^y + UjwJWjUj - 2UjwJy

= y'y + UjUj-2UjWjy.

By (113) we have Uj = wTy. Therefore,

JiVj) = y^y + UjUj-2UjUj

= y^y - V]Vj

Consequently, minimizing J{vj) is equivalent to maximizing u^ -\ \-uf._ +w/•
By (113) we have

^ik = ^ly^ A: = 1 , . . . , / - 1 ,

so M̂ + h uf,_ is independent of qj. We conclude that minimizing J{vj) is

equivalent to maximizing My = (^J^j)^.
After M iterations, the values of / i , . . . , /M are determined, as well as

till,..', iiiM' We still need to determine the values of M/p . . . , M/^ in

M

fM(x) = ^M/.(;p/.(x).
1=1

By the definitions of wi and M/,

y = [u;/i , . . . , U;/^][M/I , . . . , iiij^f + KM-

On the other hand,

y = [u/ i , . . . , vij^][ui^,..., M/^]^ + XM.

Therefore,

[u;/i,...,M;/^][w/p...,M/^]^ = K , . . . , I ^ / M] [W / P - - - . W / M] ^ - (H ^)

In (111) and (112) let j = //. Then combining them yields

vi- = {(vlwi^)wi^ + • • • + (vf.wi._^)wi._^) + /?/,.

= {{vf.wi,)wi, + . • • + (i;/yw;/._i)w;/._i) + {plpuf^^qu

404 A. Juditsky et al

with

otki = %yoi^. / : = 1 , . . . , / - 1,
r „ \i/2

oiii = {PuPh)

Consequently,

[M ; / P . . . , M ; / ^] A = [f/i,...,i;/A^], (115)

where A is the triangular matrix

A =

Then M/. can be obtained by solving the triangular system of equations obtained
by combining (114) and (115):

Qfll

0
0

0
0

a i 2

«22

0

0
0

Ofl3

^23

^33

0 GtM-\M-\

0

Ot\M

OtlM

Ot^M

OiM-lM

OtMM

Let us sunmiarize the algorithm as follows.

(116)

Regressor Selection Algorithm for Stepwise Selection
by Orthogonalization

Step 1. Find

Set

l\ = arg max (î f y) .

M/i = Vi^y, wi^ =i;/i , orii = 1.

Step /, / = 2 , . . . , M. Let // = {7: 7 = 1 , . . . , L and j ^h,.,., k-i). For
each j e It, compute

Pj = ^j - {(vjmi)mi + • • • + (vjw;/._i)u;/._i),

qj = (pJpjr'^^Pj-

Wavelets in Identification 405

Find

U =argmax(^j3;)

and set

T ^ xl /2

oiki = vlmk^ ^ = 1 , . . . , / - 1,

Oil a = {PiiPii)

Step M -\-\. Solve (116) to obtain M/. , / = 1 , . . . , M, and build

M

/=i

C. BACKWARD ELIMINATION: DETAILS

The regression with all the wavelets of W is written as

L

where ui are determined by the least squares algorithm:

(MI, . . . , uif = [(vu . . . , VLV(VU . . . , VL)]~ (VU . . . , viVy. (117)

Note that inverting the matrix (i ; i , . . . , VL)^(VI, . . . , VL) may cause a prob-
lem when it is singular. This situation rarely occurs with the set V of vectors
corresponding to the wavelet library W. Whenever it happens, the two previously
presented regressor selection algorithms should be used.

The residuals

nik) = yk- fiixk), k = l,...,N,

can be written in their vectorial form as

yL = y - (vi,..., VL)(UU . . . , uif. (118)

Combining (117) and (118), we get

rln = y^y^ - y^Vo(V^Vo)-'v^y.
where the matrix VQ = (vi,..., vi).

406 A. Juditsky et al

If we remove one wavelet, say (pj, from fiix), the same computation can be
repeated to get a similar result

y[-iyL-i = y^y^-y^C(vj\Vo){Civj\VofC{vj\Vo))~^C{vj\Vof

where the operator C means the complement of a matrix; that is, if a matrix
U = [Ui, U2, U3], then C(U2\U) = [Ui, U3I Hence the increment of the sum of
square residual caused by removing (pj from fiix) is

J((Pj) = YL-in-i-YLn

X {C(vj\VofC(vj\Vo)y^C{vj\Vofy. (119)

Removing from fiix) the wavelet (pj that minimizes (119) yields fi-iix).
Repeat the same procedure to remove another wavelet from fi-i (x), and so on.
This results in the following algorithm.

Regressor Selection Algorithm for Full Backward Elimination

StepO. Set Vb = (1̂ 1, • • •, ^L) .

Step I, i = 1 , . . . , L — M. Let // = {7: j = 1 , . . . , L and j ^l\,..., / j-i}.
Find

li = argmax/C(i;;|y/_i)(C(i;^|V,_i)^C(i;;|V,-_i))"^C(i;;|V,_i)^>^.

SttVi=C(vi,\Vi-i).

Step L - M + 1. Let / L - M + I = [j- 7 = 1 , . . . , L and j ^h,..., IL-M)-

Build

fM(x) = ^ Uj(pj(x),

with Uj the components of the vector u given by

'^ = {VI-MVL-M)~'vl_j^y.

The computation required by this procedure is quite heavy. For instance L —
/ + 1 matrices need to be inverted at step /. The computation for inverting the
matrices can be reduced in the following way.

Wavelets in Identification 407

For any matrix U = [U\,U2,Uz\ where C/i, t/2, ^3 are subblocks of U,

r U^Ux UfU2 UjU^

U^Ui U^U2 U^Us

U^Ui U^Ui U^U3

Assume (U^U)~^ is already calculated and partitioned in the same way asU^U:

U^U =

- 1
{u^u)-' =

All A12 Ai3
A21 A22 A23
A31 A32 A33

Then the following formula can be easily verified:

- 1 {[UuU3y[UuU3]) =
UfUi Uf U3 •

U^Ui U^U3

All Ai3

A31 A33
-/

- 1

. - 1
^22

A12I

A32J
[A21 A23]. (120)

In this way only VQ VQ needs to be actually inverted using the conventional
method. Using (120), (C{vj\VifCivj\Vi))~^ can be obtained from subblocks
of (V^^VtrK

This procedure can be further simpUfied as follows.
Assume that fiix) is built with all the wavelets of W as before. Now elim-

inate one wavelet from ftix), say (pj, but keep the values of M/ unchanged,
/ = 1 , . . . , L. The residual becomes

n-iik) = yk- (fiixk) - Uj(pj(xk)) = nik) + Uj(pj(xk), k=l,...,N,

so

Then

YL-l =yL+UjVj,

vl-iYL-i = YIYL + u^vjvj + 2UJYLVJ

= YIYL+U]^2UJYIVJ,

The last term of this equation can be neglected under the assumptions that yi is
close to zero mean and independent of vi. Therefore,

YI-\YL-\ -YIYL ^U].

408 A. Juditsky et al

This means that removing (pj from fiix) will cause an increment of the sum of
square residuals approximatively equal to M^. Repeating the same reasoning on
fi-iM, fi-iix), etc. yields the following procedure.

Regressor Selection Algorithm for Backward Elimination

StepO. Set Vb = (vi , . . . , i ;L).

Step /, / = 1 , . . . , L - M. Let // = [j: 7 = 1 , . . . , L and j i^h,..., U-i)
and compute

where M is a vector composed of Wy, j e U. Find

// = argminw^.

SetV,-=C(i;;|y,-_i).

Step L - M + 1. Let / L - M + I = {7: 7 = 1 , . . . , L and 7 / / i , . . . , IL-MY

Build

with My the components of the vector u given by

" = {VI-MVL-Mr'vl_j^y.

Note that Eq. (120) is used for inverting V^^Vt, i > 0; only VQ^^O is inverted
using the conventional algorithm. Alternatively, if the mother wavelet function (p
is chosen to have compact support, then the matrices Vi and V^ Vi are sparse.
VT Vi is symmetric and usually has diagonal dominance. In such situations, and
for large matrices V^ Vi, instead of directly computing

iterative methods [91] should be used for solving

The preceding RBS, SSO, and BE algorithms have been implemented in the
Matlab 4.1 language. The full BE algorithm has not been implemented due to its
high computational cost.

Wavelets in Identification 409

REFERENCES

[1] L. Ljung. Perspectives on the process of identification. In Proceedings of the 12th IFAC World
Congress (Sydney), 1993.

[2] T. Poggio and F. Girosi. Networks for approximation and learning. Proc. IEEE 78:1481-1497,
1990.

[3] K. Hunt, D. Sbarbaro, R. Zbikowski, and P. Gawthrop. Neural networks for control systems—a
survey. AMtomfliftca 28:1083-1112, 1992.

[4] K. Narendra and K. Parthasarathy. Identification and control of dynamical systems using neural
networks. IEEE Trans. Neural Networks 1:4-27, 1990.

[5] Y. Meyer. Ondelettes et Operateurs. Hermann, Paris, 1990.
[6] I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Series in Applied Mathematics,

1992.
[7] C. Lee. Fuzzy logic in control systems, 1 and 2. IEEE Trans. Systems Man Cybernet. 20:1990.
[8] E. Sontag. Nonlinear regulation: the piecewise linear approach. IEEE Trans. Automat. Control

26:346-358, 1981.
[9] Q. Zhang. Contribution a la surveillance de procedes industriels. Ph.D. Thesis, University de

RennesI, 1991.
[10] Q. Zhang, M. Basseville, and A. Benveniste. Early warning of slight changes in systems. Auto-

matica 30:95-113,1994.
[11] L. Devroye and L. Gyorfi. Nonparametric Density Estimation L\ View. Wiley, New York, 1985.
[12] J. Van Ryzin. Bayes risk consistency of classification procedures using density estimation.

Sankhya 28:261-270, 1966.
[13] C. Wolverton and T. Wagner. Asymptotically optimal discriminant functions for pattern classifi-

cations. IEEE Trans. Inform. Theory 15:258-265, 1969.
[14] S. Csibi. Stochastic Processes with Learning Properties. Springer-Verlag, Berlin, 1975.
[15] E. Nadaraya. On estimating regression. Theory Probab. Appl. 9:141-142, 1964.
[16] G. Watson. Smooth regression analysis. Sankhya Ser A 26:359-372, 1969.
[17] E. Parzen. On estimation of probability density function and the mode. Ann. Math. Statist.

33:1065-1076, 1962.
[18] M. Rosenblatt. Remarks on some nonparametric estimates of density functions. Ann. Math.

Statist. 27:832-835, 1956.
[19] M. Rosenblatt. Curve estimation. Ann. Math. Statist. 42:1815-1842, 1971.
[20] M. Duflo. Recursive Stochastic Methods. Springer-Verlag, Berlin, 1993.
[21] G. Oppenheim and B. Portier. Conmiande adaptative du processus de Markov jc^+i = /^ + M̂ +

xt, ten. Technical Report 90-18, Universite d'Orsay, 1990.
[22] B. Portier. Estimation non parametrique et commande adaptative de processus Markoviens non

lineaires. Ph.D. Thesis, Universite Paris Sud, Orsay, 1992.
[23] G. Wahba. Spline Functions for Observational Data. SIAM, Philadelphia, 1991.
[24] C. Stone. Optimal global rates of convergence for nonparametric regression. Ann. Statist.

10:1040-1053, 1982.
[25] N. Cencov. Statistical decision rules and optimal inference. Amen Math. Soc. Transl. 53:1982.
[26] I. Ibragimov and R. Khasminskij. Statistical Estimation Asymptotic Theory. Springer-Verlag,

Berlin, 1981.
[27] J. Rice. Bandwidth choice for nonparametric regression. Ann. Statist. 12:1215-1230, 1984.
[28] W. Hardle and J. Marron. Optimal bandwidth selection in nonparametric regression function

estimation. Ann. Statist. 13:1465-1481, 1985.
[29] K. Li. Asymptotic optimality of ci and generalized cross-validation in ridge regression and

application to tiie spline smoothing. Ann. Statist. 14:1101-1112, 1986.

410 A. Juditsky et al

[30] P. Craven and G. Wahba. Smoothing noisy data with spUne functions. Numer. Math. 31:337^03,
1979.

[31] B. Polyak and A. Tsybakov. Asymptotical optimality of Cp criterion for projection regression
estimates. Theory Probab. Appl 35:305-317, 1990.

[32] K. Li. Asymptotic optimality of ci and generalized cross-validation: discrete index set. Ann.
Statist. 15:958-975, 1987.

[33] C. Mallows. Statistical predictor identification. Technometrics 15:661-675, 1973.
[34] H. Alcailce. Statistical predictor identification. Ann. Inst. Math. Statist. 22:203-217, 1970.
[35] S. Efiroimovich and M. Pinsker. Estimation of square-integrable spectral density based on a se-

quence of observations. Problems Inform. Transmission 182-196, 1982 (in Russian).
[36] S. Efroimovich and M. Pinsker. Estimation of square-integrable probability density of a random

variable. Problems Inform. Transmission 175-189, 1983 (in Russian).
[37] S. Efroimovich and M. Pinsker. A learning algorithm for nonparametric filtering. Avtomat. i

Telemekh. 11:58-65, 1984 (in Russian).
[38] L. Devroye. Any discrimination rule can have an arbitrary bad probability of error for final

sample size. IEEE Trans. Pattern Anal. Machine Intell. 4:154-157, 1982.
[39] L. Devroye and T. Wagner. Distribution free consistency result in nonparametric discrimination

and regression function estimation. Ann. Statist. 8:231-239, 1980.
[40] A. Korostelev and A. Tsybakov. Minimax Theory of Image Reconstruction. Springer-Verlag,

Berlin, 1981.
[41] D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: asymptopia.

Technical Report, 1993. Available at ftp playfair.stanford.edu.
[42] J. Friedman and W. Stuetzle. Projection pursuit regression. J. Amen Statist. Assoc. 76:817-823,

1981.
[43] L. Breiman, J. Friedman, J. Olshen, and C. Stone. Classification and Regression Trees.

Wadsworth, Belmont, CA, 1984.
[44] J. Friedman. Multivariate adaptive regression splines (with discussion). Ann. Statist. 19:1-141,

1991.
[45] H.-G. Miiller and U. Stadtmiiller. Variable bandwidth kernel estimators of regression curves.

Ann. Statist. 15:182-201, 1987.
[46] D. Donoho and I. Johnstone. Minimax estimation via wavelet shrinkage. Technical Report, De-

partment of Statistics, Stanford University, 1992. Available at ftp playfair.stanford.edu.
[47] P. Huber. Projection pursuit (with discussion). Ann. Statist. 13:435-475, 1985.
[48] J. Morgan and J. Sonquist. Problems in the analysis of survey data, and a proposal. J. Amen

Statist. Assoc. 58:415-434, 1963.
[49] L. Ljung. Neural networks in identification, a tutorial. In Proceedings of the 10th IFAC Sympo-

sium on Identification and System Parameter Estimation (Copenhagen), 1994.
[50] L. Breiman. Hinging hyperplanes for regression, classification and function approximation. IEEE

Trans. Inform. Theory 39:999-1013, 1993.
[51] A. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE

Trans. Inform. Theory 39:1993.
[52] A. Benveniste. Digital Signal Processing Techniques and Applications. Academic Press, San

Diego, 1993.
[53] P. Vaidyanathan. Quadrature mirror filters banks, m-band extensions and perfect reconstruction

techniques. lEEE-ASSP Mag. 4:4-20, 1987.
[54] D. Donoho. Interpolating wavelet transforms. Technical Report, Department of Statistics, Stan-

ford University, 1993. Available at ftp playfair.stanford.edu.
[55] B. Delyon. Orthogonal and biorthogonal wavelets. Technical Report 732, IRISA, 1993.
[56] S. Jaffard and P. Laurent^ot. Wavelets: A Tutorial. Academic Press, San Diego, 1989.
[57] H. Triebel. Theory of Function Spaces. Birkhauser, Berlin, 1983.

Wavelets in Identification 411

[58] H. Triebel. Theory of Function Spaces 11. Birkhauser, Berlin, 1993.
[59] O. Besov. On a family of functional spaces: embedding theorems and applications. Dokl. Akad.

NaukSSSR 126:1163-1165, 1959.
[60] P. Petrushev and V. Popov. Rational Approximation of Real Functions. Cambridge University

Press, 1987.
[61] W. Sickel. Spline representations of functions in Besov-Triebel-Lizorkin spaces on r". Forum

Math. 2:451^76, 1990.
[62] R. DeVore, B. Jawerth, and V. Popov. Compression of wavelet decompositions. Amer. J. Math.,

to appear.
[63] B. Delyon and A. Juditsky. Optimal estimators for functional autoregression. Technical Report,

IRISA, in preparation.
[64] G. Kerkyacharian and D. Picard. Density estimation in Besov spaces. Statist. Probab. Lett.

13:15-24, 1992.
[65] D. Donoho and I. Johnstone. Minimax risk over /^-balls. Technical Report, Department of Statis-

tics, Stanford University, 1992. Available at ftp playfair.stanford.edu.
[66] B. Delyon and A. Juditsky. Wavelet estimators, global error measures revisited. Technical Report

782, IRISA, 1993.
[67] D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard. Density estimation by wavelet thresh-

olding. Technical Report, Department of Statistics, Stanford University, 1993. Available at ftp
playfair.stanford.edu.

[68] A. Nemirovskij. Nonparametric estimation of smooth regression functions. Izv. Akad. Nauk SSSR
Techn. Kibem. 3:50-60, 1985 (in Russian).

[69] D. Donoho and I. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. Technical
Report, Department of Statistics, Stanford University, 1993.
Available at ftp playfair.stanford.edu.

[70] A. Juditsky. Adaptive wavelet estimators. Technical Report 815, ERISA, 1994.
[71] D. Donoho. Smooth wavelet decompositions with blocky coefficient kernels. Technical Report,

Department of Statistics, Stanford University, 1993. Available at ftp playfair.stanford.edu.
[72] Q. Zhang. Wavenet. Public domain Matiab toolbox, 1993.

Available at ftp://ftp.irisa.fr/local/wavenet/wnet2.l.tar.Z.
[73] B. Delyon, A. Juditsky, and A. Benveniste. Accuracy analysis for wavelet approximations. IEEE

Trans. Neural Networks 6:332-348, 1995.
[74] Q. Zhang and A. Benveniste. Wavelet networks. IEEE Trans. Neural Networks 3:889-898, 1992.
[75] Q. Zhang. Wavelet networks: the radial structure and an efficient initialization procedure. Tech-

nical Report LiTH-ISY-I-1423, Linkoping University, 1992.
[76] Q. Zhang. Regressor selection and wavelet network construction. Technical Report 709, Inria,

1993.
[77] N. Draper and H. Smith. Applied Regression Analysis, 2nd ed. Wiley, New York, 1981.
[78] S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictionaries. Technical Report

619, Computer Science Department, New York University, 1993.
[79] S. Qian and D. Chen. Signal representation using adaptive normalized Gaussian functions. Signal

Process. 36:1994.
[80] S. Chen, S. Billings, and W. Luo. Orthogonal least squares methods and their application to

non-linear system identification. Intemat. J. Control 50:1873-1896, 1989.
[81] S. Chen, C. Cowan, and P. Grant. Orthogonal least squares learning algorithm for radial basis

function networks. IEEE Trans. Neural Networks 2:302-309, 1991.
[82] L. Zadeh. Fuzzy logic, neural networks, and soft computing. Comm. ACM 31:71-S6, 1994.
[83] D. Dubois and H. Prade. Fuzzy sets in approximate reasoning, 1. Fuzzy Sets Systems 40:1992.
[84] P. Glorennec. A general class of fuzzy inference systems. In Proceedings of the CES2 Conference

(Prague), 1993.

412 A. Juditsky et al

[85] L. Wang. Fuzzy systems are universal approximators. In Proceedings of the First IEEE Confer-
ence on Fuzzy Systems (San Diego), pp. 1163-1169,1992.

[86] D. Dubois and H. Prade. Conditional Logic in Expert Systems, pp. 115-158. North-Holland,
Amsterdam, 1991.

[87] G. Plotkin. A Structural Approach to Operational Semantics. Lecture Notes, Aarhus University,
1981.

[88] M. Basseville, A. Benveniste, G. Mathis, and Q. Zhang. Monitoring the combustion set of a gas
turbine. In Proceedings of SAFEPROCESS'94 (Helsinki), 1994.

[89] A. Benveniste, M. Basseville, and G. Moustakides. The asymptotic local approach to change
detection and model validation. IEEE Trans. Automat. Control 32:583-592, 1987.

[90] C. Taswell. Wavbox. Public domain Matlab toolbox, 1993. Available at anonymous ftp: simplic-
ity. stanford.edu:/pub/taswell.

[91] D. M. Young. Iterative Solution of Large Linear Systems. Academic Press, San Diego, 1971.

Index

Adaptive fuzzy systems, 1
AND matrix for input fuzzy terms and input

fuzzy regions, 68
Antecedent fuzzy set on a two-dimensional

input space, 3
Antecedent fuzzy sets, 2
Approximate fuzzy classification, 8

B
Back propagation learning algorithms

for neural networks to fuzzy neural sys-
tems, application, 2

in neural network learning, 1
Boolean function derivation examples, 184
Boolean representation of a real neuron, 182
Boolean representations of natural neurons,

180
Boolean rule extraction application example,

185

Chunking learning from experience in rule-
based neural network systems, 132

Classification boundary in fuzzy classifica-
tion, 6

Comparative study of various neuro-fuzzy ex-
pert systems, 228

Complicated classification problem with
overlapping region, examples, 7

Connectionist expert systems, 225
Connectionist models in the soft computing

paradigm, 219
Continuous wavelet transform, 344

Converting neural networks to Boolean
functions, 179

Defuzzification, 75
Diagnostics in pediatric gastroenterology by

fuzzy neural systems, 160
Diagnostic tasks by purely neural systems,

163
Discrete wavelet transforms, 346
Dynamic nonlinear systems

identification, 320
with imprecise and incomplete data, iden-

tification, 321

Expert systems in soft computing paradigm,
211

Extension of feedforward neural networks to
handling the fuzziness of training data,
57

Extension of mapping capability of fuzzy
neural networks to multiple-output case,
304

Fuzzification, 71
Fuzzified neural networks, 1, 3, 40

architecture, 4
definition by fuzzy arithmetic, 4
in classification and modeling, 5

Fuzzy adaptive resonance systems (ART), 4
Fuzzy arithmetic in neural networks, 40

413

414 Index

Fuzzy boundary and decision areas obtained
by the fuzzy classification method, 14,
17

Fuzzy classification, 5-6, 8
Fuzzy Gaussian neural networks, 249-257
Fuzzy if-then rules, 1

adjusted by iterative learning algorithms, 1
Fuzzy input and fuzzy target for the learning

of a fuzzified network, 6
Fuzzy logic and neural networks, 1

combinations, 4
Fuzzy max-min neural networks, 4
Fuzzy modeling, 5-6

by nonfuzzy neural networks, 6
Fuzzy neural networks

advantages, 291
initialization, 297
structure, 290

Fuzzy neural network
techniques, 1
with an additional OR layer, design, 76

Fuzzy number arithmetic, 4
Fuzzy perceptrons, 4
Fuzzy reasoning schemes, 245-247
Fuzzy rule-based systems

represented by network architectures, 1-2
with learning ability, 1

Fuzzy sets and fuzzy logic, 60
Fuzzy systems

for modeling and control
structure, 60, 62
types, 62

implementation within the framework of
neural networks, 57

I

Illustration of the learning rule of a three-
layer feedforward neural network by
fuzzy if-then rules, 3

Inference engine, 71
Inference systems

by fuzzy neural systems, 289
by fuzzy techniques, 286

Input-data-based functional reasoning, 245
Input domain and output domain of a fuzzy

system, 64
Input fuzzy partitions in the interpolation of

fuzzy rules, 66
Input output data for training of neural net-

works, 8
Inputs and targets for the learning rule from

the fuzzy if-then rule, 4
Integrating fuzzy logic and neural networks,

requirement, 221
Interval-arithmetic-based neural networks,

27
Interval arithmetic in neural networks, 27

Layered operation of fuzzy neural networks,
292

Learning
algorithms of fuzzified neural networks, 4
for fuzzy classification, 9
for fuzzy modeling, 21

Linearly separable classification problem, 7
Linear nonparametric estimators, 327
Linguistic rules for fuzzy systems, 64
Linkage of input fuzzy regions into output

fuzzy regions, 70

Generalized fuzzy neural networks, 290
Genetic algorithms, 236
Glycemic variations

prediction, 321
predictive fuzzy modeling, 393-397

H

Hybrid learning algorithms for the construc-
tion of fuzzy systems, 82

Hybrid models of neuro-fuzzy expert sys-
tems, 234

M

Mapping capability of the fuzzy neural net-
work, 299

Max-min neural networks, 4
Mean-value-based functional reasoning tech-

niques
application to mobile robots, 270
application to satellite attitude control, 257
in the development of fuzzy neural net-

work systems, 243
Membership function in antecedent fuzzy

sets, 2

Index 415

Modeling
a gas turbine system, 319
gas turbines by fuzzy networks, 383-388
gas turbine systems by wavelets, 379-388
the hydraulic actuator

of a robot arm, 320
of the robot arm by fuzzy wavelet tech-

niques, 389-393
Model reference control systems

by fuzzy neural networks, 285
using fuzzy neural networks, 305-306

N
Network design, pruning, and weight decay,

187
Neural fuzzy point processes, 4
Neural methods for uncertain reasoning and

their hybrid extensions, 140
Neural model for chunking learning from

experience, 134
Neural networks

and rule based systems, 123, 175
based on forward chaining rules, 127
for fuzzy reasoning, 1-2
for handling fuzzy inputs, 42
for handling interval inputs, 30
with fuzzy weights, 47
with interval weights, 36

Neuro-Fuzzy expert systems, 227
Nonfuzzy neural networks in classification

and modeling, 4
Nonlinear estimation relation with neural

networks, 341
Nonlinear mapping

of a fuzzy number by a sigmoidal activa-
tion function, 4

of a triangular fuzzy number by a sigmoid
activation function, 5

Nonlinear system identification, classical
methods, 327

Nonlinear thresholded artificial neurons, 124

O
One-dimensional pattern classification prob-

lem, 11
OR/AND neurons in fuzzy systems, 4
OR matrix for input fuzzy regions and output

fuzzy regions, 69
Orthonormal bases of wavelets, 346

Output fuzzy partitions, 69
Output from neural network trained by pos-

sibility analysis, 16

Performance analysis of nonparametric esti-
mators, 335

Purely neural, rule-based diagnostic systems,
158

Qualitative and quantitative uncertain rea-
soning in artificial intelligence, 145

Qualitative hypothesis selection in two-level
causal networks, 152

Query processes and the probabilistic causal
method, 156

R
Results

in learning by possibility analysis, 12
in learning in necessity analysis, 13
in possibility analysis, 18

Role of fuzzy logic in the soft computing
paradigm, 216

Rule-based intelligent systems construction
examples, 197

Rule-based neural systems, simplification,
192

Rule inference in fuzzy neural networks, 287

Schematic diagram of multiple output fuzzy
neural network system, 305

Shape of output from neural network trained
by necessity analysis, 16

Simplified fuzzy inference systems, 286
Simulation examples for the implementation

of fuzzy systems within the framework
of neural networks, 86-92

Simulation results for application of fuzzy
neural networks, 309-311

Soft computing, i.e., the integration of differ-
ent computing paradigms including fuzzy
set theory, neural networks, genetic al-
gorithms, rough set theory, and others

problems, 231
relevance, 231

416 Index

Static nonlinear systems, identification, 319
Structure diagram of fuzzy neural networks,

291
Sum and product of two triangular fuzzy

numbers, 5
Supervised learning of fuzzy neural net-

works, 294

Three-class classification problem on a one-
dimensional pattern space, 18

Training fuzzy neural network identifiers and
the fuzzy neural network controller, 307

Training of two nonfuzzy neural networks
for realizing fuzzy-number-valued func-
tions, 5

U
Utilization of feedforward neural networks

in fuzzy reasoning, 3
Utility of knowledge-based systems, 223

W
Wavelet based estimators for fuzzy-based

rules, 374
Wavelet estimators, practical implementa-

tion, 360
Wavelets

and functional spaces, 350
and fuzzy models, 370-378
for practical system identification, 363
in approximating functions, 344
in identification, 315
utilization in nonparametric estimation,

356

	Front Cover
	Fuzzy Logic and Expert Systems Applications
	Copyright Page
	Contents
	Contributors
	Preface
	Chapter 1. Fuzzy Neural Networks Techniques and Their Applications
	I. Introduction
	II. Fuzzy Classification and Fuzzy Modeling by Nonfuzzy Neural Networks
	III. Interval-Arithmetic-Based Neural Networks
	IV. Fuzzified Neural Networks
	V. Conclusion
	References

	Chapter 2. Implementation of Fuzzy Systems
	I. Introduction
	II. Structure of Fuzzy Systems for Modeling and Control
	III. Design 1: A Fuzzy Neural Network with an Additional OR Layer
	IV. Design 2: A Fuzzy Neural Network Based on Hierarchical Space Partitioning
	V. Conclusion
	Appendix
	References

	Chapter 3. Neural Networks and Rule-Based Systems
	I. Introduction
	II. Nonlinear Thresholded Artificial Neurons
	III. Production Rules
	IV. Forward Chaining
	V. Chunking
	VI. Neural Tools for Uncertain Reasoning: Toward Hybrid Extensions
	VII. Qualitative and Quantitative Uncertain Reasoning
	VIII. Purely Neural, Rule-Based Diagnostic System
	IX. Conclusions
	References

	Chapter 4. Construction of Rule-Based Intelligent Systems
	I. Introduction
	II. Representation of a Neuron
	III. Converting Neural Networks to Boolean Functions
	IV. Example Application of Boolean Rule Extraction
	V. Network Design, Pruning, and Weight Decay
	VI. Simplifying the Derived Rule Base
	VII. Example of the Construction of a Rule-Based Intelligent System
	VIII. Using Rule Extraction to Verify the Networks
	IX. Conclusions
	References

	Chapter 5. Expert Systems in Soft Computing Paradigm
	I. Introduction
	II. Expert Systems: Some Problems and Relevance of Soft Computing
	III. Connectionist Expert Systems: A Review
	IV. Neuro-Fuzzy Expert Systems
	V. Other Hybrid Models
	VI. Conclusions
	References

	Chapter 6. Mean-Value-Based Functional Reasoning Techniques in the Development of Fuzzy-Neural Network Control Systems
	I. Introduction
	II. Fuzzy Reasoning Schemes
	III. Design of the Conclusion Part in Functional Reasoning
	IV. Fuzzy Gaussian Neural Networks
	V. Attitude Control Application Example
	VI. Mobile Robot Example
	VII. Conclusions
	References

	Chapter 7. Fuzzy Neural Network Systems in Model Reference Control Systems
	I. Introduction
	II. Fuzzy Neural Network
	III. Mapping Capability of the Fuzzy Neural Network
	IV. Model Reference Control System Using a Fuzzy Neural Network
	V. Simulation Results
	VI. Conclusions
	References

	Chapter 8. Wavelets in Identification
	I. Introduction, Motivations, Basic Problems
	II "Classical" Methods of Nonlinear System Identification
	III. Wavelets: What They Are, and Their Use in Approximating Functions
	IV. Wavelets: Their Use in Nonparametric Estimation
	V. Wavelet Network for Practical System Identification
	VI. Fuzzy Models: Expressing Prior Knowledge in Nonlinear Nonparametric Models
	VII. Experimental Results
	VIII. Discussion and Conclusions
	IX. Appendix: Three Methods for Regressor Selection
	References

	Index

