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Preface 

Inspired by the structure of the human brain, artificial neural networks 
have been widely apphed to fields such as pattern recognition, optimiza-
tion, coding, control, etc., because of their ability to solve cumbersome or 
intractable problems by learning directly from data. An artificial neural 
network usually consists of a large number of simple processing units, i.e., 
neurons, via mutual interconnection. It learns to solve problems by ade-
quately adjusting the strength of the interconnections according to input 
data. Moreover, the neural network adapts easily to new environments by 
learning, and can deal with information that is noisy, inconsistent, vague, 
or probabilistic. These features have motivated extensive research and 
developments in artificial neural networks. This volume is probably the 
first rather comprehensive treatment devoted to the broad areas of algo-
rithms and architectures for the realization of neural network systems. 
Techniques and diverse methods in numerous areas of this broad subject 
are presented. In addition, various major neural network structures for 
achieving effective systems are presented and illustrated by examples in all 
cases. Numerous other techniques and subjects related to this broadly 
significant area are treated. 

The remarkable breadth and depth of the advances in neural network 
systems with their many substantive applications, both realized and yet to 
be realized, make it quite evident that adequate treatment of this broad 
area requires a number of distinctly titled but well-integrated volumes. 
This is the sixth of seven volumes on the subject of neural network systems 
and it is entitled Fuzzy Logic and Expert Systems Applications. The entire 
set of seven volumes contains 

Volume 1: Algorithms and Architectures 
Volume 2: Optimization Techniques 
Volume 3: Implementation Techniques 
Volume 4: Industrial and Manufacturing Systems 
Volume 5: Image Processing and Pattern Recognition 
Volume 6: Fuzzy Logic and Expert Systems Applications 
Volume 7: Control and Dynamic Systems 

XV 



xvi Preface 

The first contribution to this volume is "Fuzzy Neural Networks Tech-
niques and Their AppHcations," by Hisao Ishibuchi and Manabu Nii. Fuzzy 
logic and neural networks have been combined in various ways. In general, 
hybrid systems of fuzzy logic and neural networks are often referred to as 
fuzzy neural networks, which in turn can be classified into several cate-
gories. The following list is one example of such a classification of fuzzy 
neural networks: 

1. Fuzzy rule-based systems with learning ability, 
2. Fuzzy rule-based systems represented by network architectures, 
3. Neural networks for fuzzy reasoning, 
4. Fuzzified neural networks, 
5. Other approaches. 

The classification of a particular fuzzy neural network into one of these 
five categories is not always easy, and there may be different viewpoints for 
classifying neural networks. This contribution focuses on fuzzy classifica-
tion and fuzzy modeling. Nonfuzzy neural networks and fuzzified neural 
networks are used for these tasks. In this contribution, fuzzy modeling 
means modeling with nonlinear fuzzy number valued functions. Included 
in this contribution is a description of how feedforward neural networks 
can be extended to handle the fuzziness of training data. The many 
implications of this are then treated sequentially and in detail. A rather 
comprehensive set of illustrative examples is included which clearly mani-
fest the significant effectiveness of fuzzy neural network systems in a 
variety of applications. 

The next contribution is "Implementation of Fuzzy Systems," by Chu 
Kwong Chak, Gang Feng, and Marimuthu Palaniswami. The expanding 
popularity of fuzzy systems appears to be related to its ability to deal with 
complex systems using a linguistic approach. Although many applications 
have appeared in systems science, especially in modeling and control, there 
is no systematic procedure for fuzzy system design. The conventional 
approach to design is to capture a set of linguistic fuzzy rules given by 
human experts. This empirical design approach encounters a number of 
problems, i.e., that the design of optimal fuzzy systems is very difficult 
because no systematic approach is available, that the performance of the 
fuzzy systems can be inconsistent because the fuzzy systems depend mainly 
on the intuitiveness of individual human expert, and that the resultant 
fuzzy systems lack adaptation capability. Training fuzzy systems by using a 
set of input-output data captured from the complex systems, via some 
learning algorithms, is known to generate or modify the linguistic fuzzy 
rules. A neural network is a suitable tool for achieving this purpose 



Preface xvii 

because of its capability for learning from data. This contribution presents 
an in-depth treatment of the neural network implementation of fuzzy 
systems for modeling and control. With the new space partitioning tech-
niques and the new structure of fuzzy systems developed in this contribu-
tion, radial basis function neural networks and sigmoid function neural 
networks are successfully applied to implement higher order fuzzy sys-
tems that effectively treat the problem of rule explosion. Two new fuzzy 
neural networks along with learning algorithms, such as the Kalman filter 
algorithm and some hybrid learning algorithms, are presented in this 
contribution. These fuzzy neural networks can achieve self-organiza-
tion and adaptation and hence improve the intelligence of fuzzy systems. 
Some simulation examples are shown to support the effectiveness of 
the fuzzy neural network approach. An array of illustrative examples 
clearly manifests the substantive effectiveness of fuzzy neural network 
system techniques. 

The next contribution is "Neural Networks and Rule-Based Systems," 
by Aldo Aiello, Ernesto Burattini, and Guglielmo Tamburrini. This con-
tribution presents methods of implementing a wide variety of effec-
tive rule-based reasoning processes by means of networks formed by non-
linear thresholded neural units. In particular, the following networks are 
examined: 

1. Networks that represent knowledge bases formed by propositional 
production rules and that perform forward chaining on them. 

2. A network that monitors the elaboration of the forward chaining 
system and learns new production rules by an elementary chunking 
process. 

3. Networks that perform qualitative forms of uncertain reasoning, 
such as hypothetical reasoning in two-level casual networks and 
the application of preconditions in default reasoning. 

4. Networks that simulate elementary forms of quantitative uncertain 
reasoning. 

The utilization of these techniques is exemplified by the overall structure 
and implementation features of a purely neural, rule-based expert system 
for a diagnostic task and, as a result, their substantive effectiveness is 
clearly manifested. 

The next contribution is "Construction of Rule-Based Intelligent Sys-
tems," by Graham P. Fletcher and Chris J. Hinde. It is relatively straight-
forward to transform a propositional rule-based system into a neural 
network. However, the transformation in the other direction has proved a 
much harder problem to solve. This contribution explains techniques that 
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allow neurons, and thus networks, to be expressed as a set of rules. These 
rules can then be used within a rule-based system, turning the neural 
network into an important tool in the construction of rule-based intelligent 
systems. The rules that have been extracted, as well as forming a rule-based 
implementation of the network, have further important uses. They also 
represent information about the internal structures that build up the 
hypothesis and, as such, can form the basis of a verification system. This 
contribution also considers how the rules can be used for this purpose. 
Various illustrative examples are included. 

The next contribution is "Expert Systems in Soft Computing Paradigm," 
by Sankar K. Pal and Sushmita Mitra. This contribution is a rather 
comprehensive treatment of the soft computing paradigm, which is the 
integration of different computing paradigms such as fuzzy set theory, 
neural networks, genetic algorithms, and rough set theory. The intent of 
the soft computing paradigm is to generate more efficient hybrid systems. 
The purpose of soft computing is to provide flexible information process-
ing capability for handhng real life ambiguous situations by exploiting the 
tolerance for imprecision, uncertainty, approximate reasoning, and partial 
truth to achieve tractability, robustness, and low cost. The guiding prin-
ciple is to devise methods of computation which lead to an accept-
able solution at low cost by seeking an approximate solution to an 
imprecisely/precisely formulated problem. Several illustrative examples 
are included. 

The next contribution is "Mean-Value-Based Functional Reasoning 
Techniques in the Development of Fuzzy-Neural Network Control Sys-
tems," by Keigo Watanabe and Spyros G. Tzafestas. This contribution 
reviews first conventional functional reasoning, simplified reasoning, and 
mean-value-based functional reasoning methods. Design techniques which 
utilize these fuzzy reasoning methods based on variable structure systems 
control theory are presented. Techniques for the design of three fuzzy 
Gaussian neural networks that utilize, respectively, conventional functional 
reasoning, simplified reasoning, and mean-value-based functional reason-
ing methods are presented and compared with each other, particularly 
with regard to the number of learning parameters to be learned in the 
result. The effectiveness of the mean-value-based functional reasoning 
technique is made manifest by an illustrative example in the design and 
simulation of a nonlearning fuzzy controller for a satellite attitude control 
system. As another illustrative example, a fuzzy neural network controller 
based on mean-value-based functional reasoning techniques is developed 
and utilized for the tracking control problem of a mobile robot with two 
independent driving wheels. 
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The next contribution is "Fuzzy Neural Network Systems in Model 
Reference Control Systems," by Yie-Chien and Ching-Cheng Teng. This 
contribution presents techniques for model reference control systems 
which utilize fuzzy neural networks. The techniques presented for system 
model reference control belong to the class of systems referred to as 
indirect adaptive control. Techniques for the utilization of fuzzy neural 
network identifiers (FNNI) to identify a controlled plant are presented. 
The FNNI approximate the system and provide the sensitivity of the 
controlled plant for the fuzzy neural network controller (FNNC). The 
techniques presented can be referred to as a genuine adaptation system 
that can learn to control complex systems and adapt to a wide variation in 
system plant parameters. Unlike most other techniques presented for 
adaptive learning neural controllers, the FNNC techniques presented in 
this contribution are based not only on the theory of neural network 
systems, but also on the theory of fuzzy logic techniques. The substantive 
effectiveness of the techniques presented in this contribution are shown by 
an illustrative example. 

The final contribution to this volume is "Wavelets in Identification," by 
A. Juditsky, Q. Zhang, B. Deylon, P-Y. Glorennec, and A. Benveniste. This 
contribution presents a rather spendid self-contained treatment of non-
parametric nonlinear system identification techniques utilizing both neural 
network system methods and fuzzy system theory modeling techniques. 
Wavelet techniques are introduced and a self-contained presentation of 
wavelet principles is included. The advantages and limitations of the 
potentially greatly effective wavelet techniques are presented. Illustrative 
examples are presented throughout this contribution. 

This volume on fuzzy logic and expert systems applications clearly 
reveals the effectiveness and essential significance of the techniques avail-
able and, with further development, the essential role they will play in the 
future. The authors are all to be highly commended for their splendid 
contributions to this volume which will provide a significant and unique 
reference for students, research workers, practitioners, computer scientists, 
and others on the international scene for years to come. 

Cornelius T. Leondes 
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Fuzzy Neural Networks 
Techniques and Their 
Applications 

Hisao Ishibuchi 
Department of Industrial Engineering 
Osaka Prefecture University 
Sakai, Osaka 593, Japan 

Manabu Nil 
Department of Industrial Engineering 
Osaka Prefecture University 
Sakai, Osaka 593, Japan 

I. INTRODUCTION 

Fuzzy logic and neural networks have been combined in a variety of ways. In 
general, hybrid systems of fuzzy logic and neural networks are often referred to 
as fuzzy neural networks [1]. Fuzzy neural networks can be classified into several 
categories. The following is an example of one such classification of fuzzy neural 
networks [2]: 

1. Fuzzy rule-based systems with learning ability. 
2. Fuzzy rule-based systems represented by network architectures. 
3. Neural networks for fuzzy reasoning. 
4. Fuzzified neural networks. 
5. Other approaches. 

The classification of a particular fuzzy neural network into one of these five cat-
egories is not always easy, and there may be different viewpoints for classifying 
fuzzy neural networks. 

Fuzzy neural networks in the first category are basically fuzzy rule-based sys-
tems where fuzzy if-then rules are adjusted by iterative learning algorithms similar 
to neural network learning (e.g., the back-propagation algorithm [3,4]). Adaptive 
fuzzy systems in [5-8] can be classified in this category. In general, fuzzy if-then 

Fuzzy Logic and Expert Systems Applications 
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 1 



2 Hisao Ishibuchi and Manabu Nii 

rules with n inputs and a single output can be written as follows: 

If jci is Aji and X2 is Ay2 and . . . and Xn is Ay„ then y is Bj, 

7 = 1,2,...,A^, (1) 

where x = (jci, JC2, . . . , Jc„) is an ̂ -dimensional input vector, y is an output vari-
able, and Ay 1 , . . . , Ajn and Bj are fuzzy sets. In the first category of fuzzy neural 
networks, membership functions of the antecedent fuzzy sets (i.e., Ayi , . . . , Ajn) 
and the consequent fuzzy set (i.e., Bj) of each fuzzy if-then rule are adjusted in a 
similar manner as in neural networks. 

Usually linguistic labels such as small and large are associated with the fuzzy 
sets in the fuzzy if-then rules. An example of a fuzzy if-then rule with two inputs 
and a single output is 

If jci is small and X2 is large then y is small. (2) 

In a simplified version [5, 6] of fuzzy if-then rules, a real number is used in the 
consequent part instead of the fuzzy number Bj in (1). That is, simplified fuzzy 
if-then rules can be written as follows: 

If jci is Ayi andX2 is Ay2 and . . . and Xn is Aŷ  then y is bj, 

7 = 1,2,...,iV, (3) 

where bj is a real number. Recently these fuzzy if-then rules have frequently been 
used because of the simplicity of the fuzzy reasoning and the learning. 

In the second category of fuzzy neural networks, fuzzy rule-based systems 
are represented by network architectures. Thus learning algorithms for neural 
networks such as the back-propagation algorithm [3, 4] can be easily applied 
to the learning of fuzzy rule-based systems. Various network architectures [9-
24] have been proposed for representing fuzzy rule-based systems. In those ar-
chitectures, usually the membership function of each antecedent fuzzy set (i.e.. 
Ay 1, Ay 2 , . . . , Ay„) corrcspouds to the activation function of each unit in the neu-
ral networks. When the antecedent part (i.e., the condition) of each fuzzy if-then 
rule is defined by a fuzzy set Ay on the /i-dimensional input space rather than 
n fuzzy sets Ayi, Ay2,. . . , Ajn on the n axes in (1), fuzzy if-then rules can be 
written as follows: 

If X is Ay then y is Bj, 7 = 1,2,. . . , Â , (4) 

for the case of the fuzzy consequent, and 

If X is Ay then yisbj, 7 = 1,2,. . . , Â , (5) 

for the case of the real-number consequent. An example of the membership func-
tion of the antecedent fuzzy set Ay is shown in the two-dimensional input space 
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in Fig. 1 where contour lines of the membership function of Ay are depicted. As 
we can intuitively realize from Fig. 1, the membership function of the antecedent 
fuzzy set Aj corresponds to a generalized radial basis function. Thus fuzzy rule-
based systems with fuzzy if-then rules in (4) or (5) can be viewed as a kind of 
radial basis function network [25, 26]. 

Fuzzy neural networks in the third category are neural networks for fuzzy rea-
soning. Standard feedforward neural networks with special preprocessing proce-
dures are used for fuzzy reasoning in this category. For example, in Keller and 
Tahani [27, 28], antecedent fuzzy sets and consequent fuzzy sets are represented 
by membership values at some reference points, and those membership values 
are used as inputs and targets for the training of feedforward neural networks. In 
Fig. 2, we illustrate the learning of a three-layer feedforward neural network by 
the following fuzzy if-then rule: 

If jc is small then y is large. (6) 

where each Unguistic label is denoted by membership values at 11 reference 
points. For example, the linguistic label small is denoted by the 11-dimensional 
real vector (1, 0.6, 0.2, 0, 0, 0, 0,0, 0, 0,0). Because both the inputs and the tar-
gets in Fig. 2 are real-number vectors, the neural network can be trained by 
the standard back-propagation algorithm [3, 4] with no modification. Neural-
network-based fuzzy reasoning methods in [27-33] may be classified in the third 
category. 

The fourth category of fuzzy neural networks consists of fuzzified neural net-
works. Standard feedforward neural networks can be fuzzified by using fuzzy 

A 

0.25 

0 
- > X i 

Figure 1 Antecedent fuzzy set on a two-dimensional input space. 
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Inputs: 10.60.20 0 0 0 0 0 0 0 

1.1 

).0 ' 0.5 1.0 

Figure 2 Inputs and targets for the learning from the fuzzy if-then rule: If x is small then y is large. 

numbers as inputs, targets, and connection weights. This category is clearly dis-
tinguished from the other categories because fuzzified neural networks are de-
fined by fuzzy-number arithmetic [34] based on the extension principle of Zadeh 
[35]. That is, the outputs from fuzzified neural networks are defined by fuzzy 
arithmetic, whereas other fuzzy neural networks use real-number arithmetic for 
calculating their outputs. Some examples of fuzzy-number arithmetic are shown 
in Figs. 3 and 4. The sum and the product of two triangular fuzzy numbers are 
shown in Fig. 3, and the nonlinear mapping of a fuzzy number by a sigmoidal 
activation function is shown in Fig. 4. Architectures of fuzzified neural networks 
and their learning algorithms have been proposed in [36-43]. In Fig. 5, we illus-
trate the learning of a fuzzified neural network from the fuzzy if-then rule "If jc is 
small then y is large'' Both the input and the target in Fig. 5 are fuzzy numbers 
with linguistic labels. 

The fifth category of fuzzy neural networks (i.e., other approaches) includes 
various studies on the combination of fuzzy logic and neural networks. This 
category includes neural fuzzy point processes by Rocha [44], fuzzy percep-
tron by Keller and Hunt [45], fuzzy ART (adaptive resonance system) and fuzzy 
ARTMAP by Carpenter et al [46,47], max-min neural networks by Pedrycz [48], 
fuzzy min-max neural networks by Simpson [49,50], OR/AND neuron by Hirota 
and Pedrycz [51], and Yamakawa's fuzzy neuron [52]. 
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Figure 3 Sum and product of two triangular fuzzy numbers. 

In this chapter, we focus our attention on fuzzy classification and fuzzy mod-
ehng. Nonfuzzy neural networks and fuzzified neural networks are used for these 
tasks. In this chapter, fuzzy modeling means modeling with nonlinear fuzzy-
number-valued functions. This chapter is organized as follows. In Section II, we 
explain fuzzy classification and fuzzy modeling by nonfuzzy neural networks. 
In fuzzy classification, an input pattern is not always assigned to a single class. 
In fuzzy modeling, two nonfuzzy neural networks are trained for realizing an 
interval-valued function from which a fuzzy-number-valued function is derived. 
In Section III, interval-arithmetic-based neural networks are explained as the sim-
plest version of fuzzified neural networks. We describe how interval input vectors 
can be handled in neural networks. Intervals are used for denoting uncertain or 
missing inputs to neural networks. We also describe the extension of connection 
weights to intervals, and derive a learning algorithm of the interval connection 
weights in Section III. Section IV is related to the fuzzification of neural net-

-3.0 Net 3.0 

Figure 4 Nonlinear mapping of a triangular fuzzy number by a sigmoidal activation function. 
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Figure 5 Fuzzy input and fuzzy target for the learning of a fuzzified neural network. 

works. Inputs, targets, and connection weights are extended to fuzzy numbers. 
Fuzzified neural networks are used for the classification of fuzzy inputs, the ap-
proximate realization of fuzzy-number-valued functions, the learning of neural 
networks from fuzzy if-then rules, and the extraction of fuzzy if-then rules from 
neural networks. Section V concludes this chapter. 

IL FUZZY CLASSIFICATION AND FUZZY 
MODELING BY NONFUZZY NEURAL NETWORKS 

A. FUZZY CLASSIFICATION AND FUZZY MODELING 

Let us consider a two-class classification problem on the two-dimensional unit 
cube [0,1]^ in Fig. 6a where training patterns from Class 1 and Class 2 are de-
noted by closed circles and open circles, respectively. As we can see from Fig. 6a, 
the given training patterns are linearly separable. Thus the perceptron learning al-
gorithm [53] can be applied to this problem. On the other hand, training patterns 
in Fig. 6b are not linearly separable. In this case, we can use a multilayer feedfor-
ward neural network. The classification boundary in Fig. 6b was obtained by the 
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Figure 6 Examples of classification problems: (a) linearly separable classification problem; (b) lin-
early nonseparable classification problem. 

learning of a three-layer feedforward neural network with two input units, three 
hidden units, and a single output unit. 

Theoretically, multilayer feedforward neural networks can generate any clas-
sification boundaries because they are universal approximators of nonlinear func-
tions [54-57]. Here let us consider a pattern classification problem in Fig. 7a. 
Even for such a complicated classification problem, there are neural networks 
that can correctly classify all the training patterns. In practice, it is not always an 
appropriate strategy to try to find a neural network with a 100% classification rate 
for the training patterns because a high classification rate for the training patterns 

X2 

1.0 • - • • " • • # • • " • • • 

h-6 6-6 6-6-6>-6-i••' 

0.5^ 

1.0 
XiO.O 

0.0 

(a) (b) 

Figure 7 Example of a complicated classification problem with a overlapping region: (a) classifica-
tion problem; (b) fiizzy boundary. 
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sometimes leads to poor performance for new patterns (i.e., for test patterns). This 
observation is known as the overfitting to the training patterns. 

In this section, we show how the concept of fuzzy classification is applied 
to complicated classification problems with overlapping regions such as Fig. 7. 
Fuzzy classification is also referred to as approximate classification [58, 59]. In 
the fuzzy classification, we assume that classification boundaries between differ-
ent classes are not clear but fuzzy. We show an example of the fuzzy classification 
in Fig. 7b where the dotted area corresponds to the fuzzy boundary between Class 
1 and Class 2. The classification of new patterns in the fuzzy boundary is rejected. 
We can see that the fuzzy boundary in Fig. 7b is intuitively acceptable for the pat-
tern classification problem in Fig. 7a. The fuzzy boundary can be extracted from 
two neural networks trained by leaning algorithms in Ishibuchi et al. [60] based 
on the concept of possibiHty and necessity [61]. Those learning algorithms search 
for the possibility region and the necessity region of each class. Fuzzy classifica-
tion has also been addressed by Karayiannis and Purushothaman [62-65]. They 
tackled classification problems similar to Fig. 7, and proposed neural-network-
based fuzzy classification methods. The basic idea of their fuzzy classification 
is similar to ours, but their neural network architectures and learning algorithms 
are different from those presented in this chapter. Fuzzy classification was also 
discussed by Archer and Wang in a different manner [66]. 

The concept of fuzzy data analysis can be introduced to another major appH-
cation area of neural networks: modeling of nonlinear systems. In general, the 
input-output relation of an unknown nonlinear system is approximately realized 
by the learning of a neural network. Let us assume that we have the input-output 
data in Fig. 8a for an unknown nonlinear system. In this case, we can model the 
unknown nonlinear system by the learning of a neural network. The nonlinear 
curve in Fig. 8a is depicted using the output of the neural network trained by the 

1.0 

I 
§^0.5 
O 

[ 

f 
[ . . 0.0 

0.0 0.5 1.0 0.0 0.5 1.0 

Input X Input X 

(a) (b) 

Figure 8 Examples of input-output data for the training of neural networks. 
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given input-output data. From Fig. 8a, we can see that the input-output relation 
is well represented by the trained neural network. Now, let us consider the input-
output data in Fig. 8b. It does not seem to be an appropriate attempt to represent 
the input-output data in Fig. 8b by a single nonUnear curve. 

For representing such input-output data in an intuitively acceptable way, we 
use an interval-valued function that approximately covers all the given input-
output data. In this section, we describe an identification method [67, 68] of the 
interval-valued function by two nonfuzzy neural networks in addition to the fuzzy 
classification. The two neural networks correspond to the lower limit and the 
upper limit of the interval-valued function, respectively. In this section, we also 
describe how a fuzzy-number-valued function can be derived from the interval-
valued function realized by the two neural networks [68]. Nonlinear modehng by 
interval-valued functions using neural networks can be viewed as an extension 
of fuzzy linear regression [69-71] where linear interval models and linear fuzzy 
models are used for regression analysis (see also [72, 73]). 

B. LEARNING FOR FUZZY CLASSIFICATION 

In this subsection, we explain the fuzzy classification method in [58-60] based 
on the concept of possibility and necessity. For simplicity, we start with two-
class classification problems. Then we extend the fuzzy classification for two-
class problems to the case of multiclass problems. 

Let us assume that we have m training patterns Xp = (xpi, Xp2,..., Xpn), p = 
1, 2 , . . . , m, from two classes (i.e.. Class 1 and Class 2) in an n-dimensional pat-
tern space Q. In this case, the nonfuzzy pattern classification is to divide the pat-
tern space Q into two disjoint decision areas ^ i and ^2- These decision areas 
satisfy the following relations: 

^ l U ^ 2 = ^ , (7) 

^1 n ^2 = 0, (8) 

where 0 denotes an empty set. 
On the other hand, we assume that the class boundary is fuzzy in the fuzzy 

classification. Thus the pattern space Q is divided into three disjoint areas for the 
two-class classification problem: 

^ i U ^ 2 U ^ F B = ^ , (9) 

QinQ2 = 0, ^1 n ^FB = 0, ^2 n ^FB = 0, (lO) 

where ^ F B is the fuzzy boundary between the two classes. The classification of 
new patterns in the fuzzy boundary is rejected. Figure 7b is an example of the 
fuzzy boundary. 
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We use a feedforward neural network with n input units and a single output 
unit for the two-class pattern classification problem in the n-dimensional pattern 
space ^ . In the learning of the neural network, we define the target output tp for 
each training pattern x^ as follows: 

I 1, foTXp e Class 1, 
^ ~ [ 0 , for Xp G Class 2. ^ ^ 

The learning of the neural network is to minimize the following cost function: 

ep = (tp-0pf/2, (12) 

where Op is the output from the neural network. 
Using the output from the trained neural network, we can define the decision 

area of each class as follows: 

^1 = {x I o{x) > 0.5, X G Q], (13) 

^2 = {x I o(x) < 0.5, X G ^ } , (14) 

where o(x) is the output from the trained neural network for the input vector x. 
In this manner, we can use the neural network for the two-class classification 
problem. 

The fuzzy classification can be done by slightly modifying the aforementioned 
procedure. In our fuzzy classification, the cost function is modified for determin-
ing the possibility area and the necessity area of each class. For determining the 
possibility area of Class 1, we use the following cost function: 

^{(h- Opfll. \ixp G Class 1, 
^^ I co{u) ' (tp - Opfll, if Xp G Class 2, ^ ^ 

where u is the number of the iterations of the learning algorithm (i.e., epochs), and 
a>(w) is a monotonically decreasing function such that 0 <&)(«)< land(w(M) ^• 
0 for M -^ oo. For example, we can use the following decreasing function: 

(W(M) = 1 /{1 + (M/1000)^} . (16) 

From the definition of the cost function in (15), we can see that the importance 
of Class 2 patterns is monotonically decreased by the decreasing function o^{u) 
during the learning of the neural network. This means that the relative impor-
tance of Class 1 patterns is monotonically increased. Thus we can expect that the 
following relation will hold for Class 1 patterns after the learning of the neural 
network: 

o(Xp) = 1 forxp G Class 1. (17) 

Let us consider a one-dimensional classification problem in Fig. 9 where train-
ing patterns from Class 1 and Class 2 are shown by closed circles and open circles. 
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Figure 9 One-dimensional pattern classification problem. 

respectively. For this problem, we used the modified back-propagation algorithm 
derived from the cost function Cp in (15) with the decreasing function co(u) in 
(16). A three-layer feedforward neural network with five hidden units was trained 
by iterating the learning algorithm 10,000 times (i.e., 10,000 epochs). In Fig. 10, 
we show the shape of the output from the neural network. From Fig. 10, we can 
see that the output from the neural network approached the training patterns from 
Class 1 (i.e., closed circles in Fig. 10) during the learning. This is because the 
relative importance of Class 1 patterns was monotonically increased by the de-
creasing function CL>(U) attached to Class 2 patterns. 

From Fig. 10b, we can see that the output from the neural network can be 
viewed as the possibility grade of Class 1. For example, the output o(x) in Fig. 
10b is nearly equal to 1 (full possibility) for the input value x = 0.35, whereas 
the training pattern on jc = 0.35 belongs to Class 2. We can define the possibility 
area using the output from the trained neural network. For example, 

Q^""' = {X I ^^^'(x) > 0.5, X G Q], (18) 

where Q\^^ is the possibility area of Class 1 and o^^^(x) is the output from the 
neural network trained for the possibility analysis. Input patterns in this possibility 
area are classified as "having the possibility to belong to Class 1." In Fig. 10b, the 
possibility area of Class 1 is the interval [0.268, 0.734]. 

As we can see from Figs. 9 and 10, input patterns around jc = 0.5 may certainly 
be classified as Class 1 because there are no Class 2 patterns around x = 0.5. For 
extracting such a certain (i.e., nonfuzzy) decision area, we use a different learning 
algorithm based on the concept of necessity. 

For the necessity analysis of Class 1, we use the following cost function in the 
learning of the neural network: 

I (o{u)' (tp - Op)^/2, ifxp e Class 1, 
^ 1 (tp - Op)^/2, if xp e Class 2, ^'^^ 

where u and co(u) are the same as in (15). From (19), we can see that the impor-
tance of Class 1 patterns is monotonically decreased by the decreasing function 
a)(u) during the learning of the neural network. 

For the classification problem in Fig. 9, we used the modified back-propagation 
algorithm derived from the cost function Cp in (19) with the decreasing function 
co(u) in (16). A three-layer feedforward neural network with five hidden units 
was trained by iterating the learning algorithm 10,000 times (i.e., 10,000 epochs). 
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Figure 10 Results by the learning for the possibility analysis. 

In Fig. 11, we show the shape of the output from the neural network. From Fig. 
11, we can see that the output from the neural network approached the training 
patterns from Class 2 (i.e., open circles in Fig. 11). This is because the relative im-
portance of Class 2 patterns is monotonically increased by the decreasing function 
co(u) attached to Class 1 patterns. 

From Fig. l ib , we can see that the output from the neural network can be 
viewed as the necessity grade of Class 1. For example, the output o{x) is nearly 
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Figure 11 Results by the learning for the necessity analysis. 

equal to 1 (full necessity) for input values around x = 0.5. This coincides with 
our intuition. We can define the necessity area using the output from the trained 
neural network in the same manner as the possibility area in (18): 

Q^^' = {X I o^^'ix) > 0.5, X G Q], (20) 

where Q^^^ is the necessity area of Class 1 and o^^^(x) is the output from the 
neural network trained for the necessity analysis. Input patterns in this necessity 
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area are classified as "having the necessity to belong to Class 1." In Fig. 1 lb, the 
necessity area of Class 1 is the interval [0.386,0.607]. All the input patterns in 
this interval are certainly classified as Class 1. 

The fuzzy boundary is the area that is included in the possibility area but ex-
cluded from the necessity area. In the fuzzy boundary, the outputs from the two 
neural networks trained by the possibility analysis and the necessity analysis are 
nearly equal to 1 and 0, respectively (see Figs. 10 and 11). Thus the fuzzy bound-
ary can be defined as follows: 

^PB = {x I 0.25 < fi(x) < 0.75, X € Q], (21) 

where />6(x) is a kind of membership grade of x to Class 1, and defined as follows: 

M(X) = (22) 

where o^^^(x) and o^^^(x) are the outputs from the neural networks trained for 
the possibility analysis and the necessity analysis, respectively. The decision area 
of each class is defined as follows: 

^1 = {x | /x(x) >0.75, XG Q}, 

^2 = jx I A6(x) < 0.25, X G Q}, 

(23) 

(24) 

In Fig. 12, we show the shape of /x(x) that was obtained from the outputs of 
the two neural networks in Figs. 10b and 1 lb. The fuzzy boundary is also shown 
in Fig. 12. From Fig. 12, we can see that the fuzzy classification coincides with 
our intuition. 

0^2 ^^FB ^^1 '^^FB ^'''2 
-isssssss* i^sasisssf— 

OQOQ> JC 
0.5 1.0 

Input value 
Figure 12 Fuzzy boundary and decision areas obtained by the fuzzy classification method. 
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For comparison, we show some results by the standard back-propagation al-
gorithm based on the squared error in (12). Figure 13a and b was obtained af-
ter 50,000 iterations of the back-propagation algorithm for three-layer feedfor-
ward neural networks with five hidden units and ten hidden units, respectively. 

0.0 0.5 1.0 

Input value 

(a) 

0.5 1.0 

Input value 

(b) 
Figure 13 Results by the standard back-propagation algorithm: (a) output from the trained neural 
network with five hidden units; (b) output from the trained neural network with ten hidden units. 
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Figure 14 Shape of the output from the neural network trained for the possibility analysis. 

In Fig. 13a, the learning seems to be incomplete. On the contrary, the learning 
in Fig. 13b seems to be the overfitting to the training data. We can see that the 
result of the fuzzy classification in Fig. 12 coincides very well with our intu-
ition if compared with the results of the standard back-propagation algorithm in 
Fig. 13. 

We also applied our fuzzy classification method to the two-dimensional pattern 
classification problem in Fig. 7. In Fig. 14, we show the shape of the output from 
the neural network with five hidden units trained for the possibility analysis. From 
Fig. 7, we can see that the output from the neural network in Fig. 14 represents 
the grade of possibility of Class 1 very well. On the other hand, in Fig. 15, we 
show the grade of necessity of Class 1 obtained for the necessity analysis. We can 
see from Fig. 7 that Fig. 15 represents the necessity grade of Class 1 very well. 
The function fiix), which is shown in Fig. 16, was obtained by the two outputs 
in Figs. 14 and 15. In Fig. 17, we show the fuzzy boundary obtained from /ji(x) 
in Fig. 16. We can see that an intuitively acceptable fuzzy boundary was obtained 
by the proposed fuzzy classification method in Fig. 17. 

Output 

Input value X2 Input value xi 

Figure 15 Shape of the output from the neural network trained for the necessity analysis. 
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Output 
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Figure 16 Shape of the function At(x). 

The fuzzy classification method for two-class problems can be extended to the 
case of multiclass classification problems. For a c-class classification problem, we 
divide the pattern space Q into the following (c -h 1) areas: 

^ 1 U ^ 2 U • • • U ^ c U ^FB = ^ , 

QhnQk = 0 foTWh,k, h^k. 

(25) 

(26) 

Let us assume that we have m training patterns Xp = (xpi, Xp2,..., Xpn), p = 
1, 2 , . . . , m, from c classes. For this c-class classification problem with the n-
dimensional pattern space Q, we use a feedforward neural network with n input 
units and c output units. The target vector ip = (tpi, tp2,..., tpc) for the input 
pattern Xp is defined as follows: 

tpk = 
1, 
0, 

ifxp € Class A:, 
otherwise, (27) 

forA: = 1, 2 , . . . , c. 

0.0 Q2 -̂5 1-̂  

Figure 17 Fuzzy boundary and decision areas obtained by the fuzzy classification method. 
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Figure 18 Three-class classification problem on the one-dimensional pattern space [0,1]. 

For the possibility analysis, we define the cost function for the input pat-
tern Xp by the target vector tp = (tpi,tp2, -", tpc) and the output vector 
Op = (opi, Op2,..., Opc) from the neural network as follows: 

= J2^P^^ 
k=i 

where epk is the cost function for the /:th output unit, which is defined as 

epk = 
(tpk - Opkf/2, 
o)(u) • (tpk - Opk)^/2, 

ifxp e Class A;, 
otherwise. 

(28) 

(29) 

From the comparison between (15) and (29), we can see that the cost function 
epk for the A;th output unit in (29) is for the possibility analysis of Class k. Let 
us consider a three-class classification problem on the one-dimensional pattern 
space [0,1] in Fig. 18 where closed circles, open circles, and squares denote the 
training patterns from Class 1, Class 2, and Class 3, respectively. We appUed the 
modified back-propagation algorithm derived from the cost function in (28) and 
(29) to this three-class pattern classification problem. We also used the decreasing 
function a; (w) in (16). The outputs from the trained neural network with a single 
input unit, five hidden units, and three output units are shown in Fig. 19. From this 
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Figure 19 Results of the possibiUty analysis. 
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figure, we can see that the output from each output unit represents the possibiUty 
grade of the corresponding class very well. 

For the necessity analysis, we modify the cost function epk for the ^th output 
unit as follows: 

epk = 
_ \ co(u)' (tpk - Opk)^/2, 

(tpk - OpkYll. 
if Xp G Class A:, 
otherwise. 

(30) 

As we can see from the comparison between (19) and (30), the cost function epk 
in (30) is for the necessity analysis of Class k. In Fig. 20, we show the results of 
the learning based on this cost function. From Fig. 20, we can see that the output 
from each unit represents the necessity grade of the corresponding class very well. 

If some region in the pattern space has high possibility grades for at least two 
classes, such a region can be viewed as a fuzzy boundary. On the contrary, if some 
region has a high possibility grade for only a single class, such a region can be 
viewed as the decision area of the corresponding class. To formulate this intuitive 
discussion, let us define /XA:(X) for each class as follows: 

Mit(x) = o[^^(x) max{o^^'(x) I /i = 1, 2 , . . . , c; /i 7̂  A:}, (31) 

where ĉ |̂ °̂ (x) is the output from the A:th output unit of the neural network trained 
for the possibility analysis. When A6jt(x) is large, we can see that the input vector 
X has a high possibiUty grade only for Class k. Thus the input vector x is classified 
as Class k. From this idea, the decision area of each class is defined by /Xjt(x) as 
follows: 

^^ = {x I [ikiX) > 0.5, X € ^ } , A: = 1, 2 , . . . , c. (32) 
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Figure 20 Results of the necessity analysis. 
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The fuzzy boundary is defined from (25) as follows: 

^PB = ^ - {^1 U ^ 2 U • • . U ^ c (33) 

The decision areas and the fuzzy boundary for the classification problem in Fig. 
18 are shown in Fig. 21 together with the shape of /XjtCx). From this figure, we 
can see that intuitively acceptable results were obtained by our fuzzy classification 
method. Our fuzzy classification method is more than the classification with the 
reject option. Because our method is based on the possibility analysis, we can get 
the information about the possible classes for each of the rejected input patterns. 
For example, let us consider an input pattern at x = 0.3 in Fig. 21. As is shown in 
Fig. 21, the classification of this pattern is rejected. Thus we examine the output 
from the trained neural network for the possibility analysis (i.e.. Fig. 19). Because 
the output corresponding to the input jc = 0.3 is (1.00, 1.00, 0.00), we can see that 
the possible classes of this input pattern are Class 1 and Class 2. We can also see 
that there is no possibility that the input pattern belongs to Class 3. 

In order to examine the performance of our fuzzy classification method, we 
applied it to the well-known iris classification data (see, e.g., Fisher [74]). First 
we examined the performance for training data by applying our fuzzy classifica-
tion method to the iris data using all the 150 samples as training patterns. The 
computer simulation was iterated 20 times using a three-layer feedforward neural 
network with four input units, two hidden units, and three output units. The av-
erage simulation results are summarized in Table I. From this table, we can see 
that no pattern was misclassified by the fuzzy classification method. The classifi-
cation of 4.3 patterns was rejected on the average over the 20 trials. From Table I, 
we can also see that Class 1 patterns are clearly separable from the other patterns 
(i.e.. Class 2 and Class 3 patterns). 

Input value x 

Figure 21 Fuzzy boundary and decision areas obtained by the fuzzy classification method. 
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Table I 

Classification Results by the Fuzzy Classification for Training Data 

Correct 
class 

1 
2 
3 

Class 1 

50 
0 
0 

Classification results 

Class 2 

0 
47.7 
0 

Class 3 

0 
0 

48 

Boundary 

0 
2.3 
2 

Next we examined the performance of our fuzzy classification method for test 
data by the leaving-one-out procedure (see, e.g., Weiss and KuHkowski [75]). In 
the leaving-one-out procedure, a single pattern was used as a test pattern and the 
other 149 patterns were used for training. This procedure was iterated 150 times 
so that every pattern was used as a test pattern just once. In our computer simu-
lation, this leaving-one-out procedure was iterated five times. The average results 
are summarized in Table II. From this table, we can see that 2.8 patterns (i.e., 
1.87%) were misclassified on the average over the five iterations of the leaving-
one-out procedure. This error rate is less than almost all the reported results in the 
literature (e.g., 3.3% by the back-propagation algorithm in [75]). This low error 
rate was achieved by rejecting the classification of 10.4 patterns (i.e., 6.93%) on 
the average. 

C. LEARNING FOR FUZZY MODELING 

Modeling of fuzzy systems has been addressed in the field of fuzzy regression 
[69-71] where the following fuzzy regression model is used for a fuzzy system 
with n nonfuzzy inputs and a single fuzzy output: 

y(x) = Ao + Aixi + • • • + AnXn, (34) 

Table II 

Classification Results by the Fuzzy Classification for Test Data 

Correct 
class 

1 
2 
3 

Class 1 

50 
0 
0 

Classification results 

Class 2 

0 
42.2 

1 

Class 3 

0 
1.8 

44.6 

Boundary 

0 
6 
4.4 
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where x = (xi, X2, • • •, ^n) is an n-dimensional real-number input vector, F(x) is 
a fuzzy-number output from the fuzzy regression model, and AQ, A i , . . . , A„ are 
fuzzy-number coefficients. Thus the fuzzy regression model maps the nonfuzzy 
input vector x = (xi, JC2,..., %„) to the fuzzy-number output F(x). 

The simplest version of the fuzzy regression model is the following interval 
regression model: 

F(x) = Ao + Aixi + • • • + (35) 

where y(x) is an interval output from the interval regression model, and 
Ao, A i , . . . , A„ are interval coefficients. 

Let us assume that m input-output pairs (x^; yp), p = 1, 2 , . . . , m, are given 
as training data where x^ = (xpi,Xp2,..., Xpn) is an n-dimensional real-number 
input vector and yp is a real-number output. The interval coefficients of the in-
terval regression model in (35) are determined by solving the following linear 
programming problem: 

Minimize y^w{Y(Xp)), 
p=i 

subject to yp e Y(Xp), p = 1, 2 , . . . , m, 

(36) 

(37) 

where w(') denotes the width of the interval. The objective function (36) is to 
minimize the sum of the widths of the interval outputs y(Xp)'s. The constraint 
condition (37) means that the interval output Y(Xp) has to include the given out-
put yp. The given output yp can be viewed as the target in the learning of neural 
networks. In Fig. 22, we show an example of the interval regression model with 
a single input and a single output. From Fig. 22, we can see that all the given 
input-output pairs are included in the interval regression model. 

In this subsection, we extend the linear interval model in (35) to nonlinear 
models using neural networks. Now let us assume that the input-output pairs in 

0.0 0.5 1.0 
Input X 

Figure 22 Interval regression model and given input-output data. 
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Fig. 8b are given. From this figure, we can see that no Hnear model is appropriate 
for the given data. In Fig. 23a, we show the output from a three-layer feedforward 
neural network with five hidden units trained by the standard back-propagation al-
gorithm. An interval function determined by our method, which will be explained 
in this subsection, is shown in Fig. 23b. From the comparison between Fig. 23a 
and Fig. 23b, we can see that the interval function in Fig. 23b can represent the 
given data much better than the nonlinear curve in Fig. 23a. 

In our method for determining a nonlinear interval function such as Fig. 23b, 
we use two feedforward neural networks. One is used for representing the up-
per bound of the nonlinear interval function, and the other is used for the lower 
bound. 

Let 6>* (x) and o* (x) be the outputs from the two neural networks corresponding 
to the input vector x. Using the two neural networks, a nonlinear interval function 
7(x) can be constructed as follows: 

7(x) = [o*(x),^*(x)], (38) 

where o*(x) and o*(x) are the lower bound and the upper bound of the interval 
function 7(x), respectively. The linear programming problem in (36) and (37) is 
modified for the nonlinear interval function Y(x) as follows: 

Minimize ^2 \^*(^p) ~ o*(^p)\, 
p=i 

subject to (9*(Xp) <yp< <?*(Xp), 

o^(x)<o*(x) forVx. 

P = l ,2 , , . ,m, 

(39) 

(40) 

(41) 

0.5 1.0 

Input ;c 

(a) (b) 

Figure 23 Comparison of two approaches: (a) modeling with a real-number-valued function; (b) 
modeling with an interval-valued function. 
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It is not easy to derive a learning algorithm for this nonlinear optimization 
problem. We show a simple approach for approximately solving this problem 
[67,68]. For determining the lower bound o* (x) of the nonlinear interval function 
F(x), we define the following cost function for the input-output pair (x^; yp): 

iyp ~ o*(Xp))2/2, if yp < o*(Xp), 
o)(u)' (yp - o*(Xp))^/2, if o*(Xp) < yp, 

where u and co(u) are the same as in the last subsection for the fuzzy classifica-
tion. That is, u is the number of iterations of the learning algorithm, and o)(u) is 
a monotonically decreasing function such that 0 < a)(u) < I and co{u) —> 0 for 
M -> oo. From (42), we can see that the squared error is discounted by co(u) when 
the inequality constraint o*(x) < yp in (40) is satisfied by the output o^(x) from 
the neural network. Because co(u) becomes almost zero after enough iterations, 
the cost function is negligible when the inequality constraint is satisfied. On the 
contrary, if the inequality constraint c?*(x) < yp is not satisfied, the cost function 
is the same as in the standard back-propagation algorithm. In this case, the output 
o*(x) from the neural network approaches the given target yp. In this manner, 
it is expected that the inequality constraint o^(\) < yp is approximately satis-
fied after enough iterations of the learning algorithm based on the cost function 
in (42). 

Using the input-output data in Fig. 23, we trained a neural network with five 
hidden units by the modified back-propagation algorithm derived from the cost 
function in (42). As the decreasing function co(u) in (42), we used the following 
function: 

co(u) = 1/{1 + (M/2000)^} . (43) 

In Fig. 24, we show the shape of this decreasing function and the shape of the out-
put (9*(x) from the neural network during the learning. From Fig. 24a, we can see 
that co(u) is very small after 5000 iterations, whereas it is relatively large before 
2000 iterations. From Fig. 24b, we can see that the output o^(x) approximately 
satisfies the inequality constraint c?*(x) < yp for all the given input-output data 
after 10,000 iterations. 

The upper bound o*(x) of the nonlinear interval function F(x) can be also 
determined by the learning of a neural network. The learning is performed in 
order to approximately satisfy the inequality constraint yp < o*(x) in (40). The 
cost function to be minimized in the learning is defined for the input-output pair 
(Xp; yp) as follows: 

M iyp-o*{Xp)f/2, ifo*{Xp)<yp, 
co(u) • {yp - o*(Xp))2/2, if yp < o*iXp), 2n :.-. ^ - -* . . . \ (44) 
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Figure 24 Simulation results by the learning for determining the lower limit of a nonUnear interval 
function: (a) decreasing function co(u); (b) shape of the output from the neural network. 

where the squared error is discounted by co(u) when the inequality constraint 
yp < o*(x) in (40) is satisfied by the output o*(x) from the neural network. In 
a similar manner as in Fig. 24b, we trained the neural network with five hidden 
units by the modified back-propagation algorithm derived from the cost function 
in (44). In Fig. 25, we show the shape of the output o*(x) from the neural network 
during the learning. From Fig. 25, we can see that the output o*(x) approximately 
satisfies the inequality constraint yp < ĉ *(x) after 10,000 iterations. 

1.0 

0.0 

u = 1000 

0.0 

1.0 

0.5 

Input jc 

(a) 

1.0 
0.0 

u =10000 

0.0 0.5 

Input JC 

(b) 

1.0 

Figure 25 Simulation results by the learning for determining the upper Umit of a nonlinear interval 
function. 
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In the fuzzy regression analysis [69-73], the fuzzy-number coefficients of the 
fuzzy regression model in (34) are determined by the following linear program-
ming problem: 

Minimize ^^{[Y(Xp)]^), 
p=\ 

subject to yp e [Y(Xp)\, /? = 1, 2 , . . . , m, 

(45) 

(46) 

where [•]h is the /z-level set of a fuzzy number (see Fig. 26). Because the /z-level 
set of a fuzzy number is a closed interval, the linear programming problem in (45) 
and (46) for the fuzzy regression analysis is basically the same as the problem in 
(36) and (37) for the interval regression analysis. 

Therefore the fuzzy regression model can be derived from the following rela-
tion (see Fig. 26): 

[F(x)]^ = Y(x). (47) 

For the case of nonlinear models, we can also derive nonlinear fuzzy functions 
F(x)'s using the preceding relation from a nonlinear interval function Y(x). Two 
nonUnear fuzzy functions are shown in Fig. 27 for the case of triangular fuzzy 
outputs and trapezoidal fuzzy outputs. Figure 27a is depicted from the nonlinear 
interval function in Fig. 23b by the following relation: 

[Y(^)]h=0.0 = Yi^l (48) 

> X 

Input 

(a) (b) 

Figure 26 Illustration of the /i-level set. 
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Figure 27 Two fuzzy functions derived from the interval function in Fig. 23b. 

where 7(x) is a symmetric triangular fuzzy number (see Fig. 27a). On the other 
hand, Fig. 27b is depicted from the same nonhnear interval function by the rela-
tion: 

where 7 (x) is a symmetric trapezoidal fuzzy number (see Fig. 27b). 

(49) 

III. INTERVAL-ARITHMETIC-BASED 
NEURAL NETWORKS 

A. INTERVAL ARITHMETIC IN NEURAL NETWORKS 

In real-world applications, training data may include uncertain inputs or 
missing inputs. Let us consider a two-class classification problem on the two-
dimensional pattern space [0,1]^. We assume that we have a training pattern 
(0.2, ?) from Class 1 where "?" denotes the missing input. One of the simplest ap-
proaches to the handling of this training pattern with the missing input is to ignore 
this pattern. Another approach is to substitute the most likely value for the missing 
input. Now let us assume that we have a new pattern (?, 0.5) to be classified by a 
trained neural network. In this case, the first approach cannot be used because we 
have to classify this new pattern. The substitution in the second approach is not 
easy because the classification of this new pattern is unknown. In this section, we 
employ an interval-arithmetic-based approach to the handling of missing inputs. 
The new pattern (?, 0.5) is represented as an interval pattern ([0,1], 0.5) in our 
approach. This interval representation can be also used for handling uncertain in-
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puts. For example, let us assume that we have the following information about an 
uncertain pattern on the two-dimensional pattern space [0,1]^: 

(i) The first input is not more than 0.3 (i.e., xi < 0.3). 
(ii) The second input is not less than 0.8 (i.e., 0.8 < X2). 

From these two pieces of information, we can represent this uncertain pattern as 
an interval pattern ([0, 0.3], [0.8, 1]) because the pattern space is the unit square 
[0, 1]^. 

When an interval input pattern is presented to a neural network, interval arith-
metic [76, 77] is used for calculating the input-output relation of the neural net-
work. Interval arithmetic is also used when connection weights of neural networks 
are given as intervals. In this subsection, we briefly describe the interval arithmetic 
that will be used for the handling of interval input patterns and interval connection 
weights. 

Interval arithmetic is the generalization of ordinary arithmetic on real numbers 
to closed intervals. In this section, we denote real numbers and closed intervals 
by lowercase letters (e.g., a, b,c,...) and uppercase letters (e.g.. A, B,C,...), 
respectively. An interval is also represented by its lower Umit and upper limit as 

A = [a^,a% (50) 

where the superscripts "L" and "(7" denote the lower limit and the upper limit, 
respectively. 

The inclusion relation between intervals can be defined as 

A^B <^ b^ <a^ mda^ < b^, (51) 

where A = [a^,a^] and B = [b^, b^]. As a special case of this relation, the 
inclusion relation between an interval and a real number can be defined as 

ae B <^ b^ <a<b^. (52) 

We have already used this inclusion relation in the previous section. 
The following addition and multiplication are used in this section for calculat-

ing the total input to each unit in interval-arithmetic-based neural networks: 

A + B = [a^, a^] + [b\ b""] = [a^ + ft^ a^ + b% (53) 

a.fi=a.[^^^^]:.([«•f^'«•t^!' f̂̂ ^̂ ' (54) 
^ -• \ [a • b'^, a • b'^], if a < 0, 

A•B = [fl^fl^]•[/,^z>^] 

= [mm{a'^b\a'^b^,a^b\a^b^}, 

max{a'^b'^,a'^b'',a^b^,a"b^}l (55) 
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In the case of 0 < a^ < a^ (i.e., if A is nonnegative), the preceding product 
operation on intervals can be simpUfied as 

AB^ [ a ^ a^] • [ft^ fe^] = [min{a^fe^ a^fe^}, max{a^fc^, a^b"}]. (56) 

As an example, let us consider a very simple network with two input units 
(i.e., units 1 and 2) and a single output unit (i.e., unit j) in Fig. 28 where Opi and 
Op2 are interval outputs from the two input units, Wji and Wj2 are real-number 
connection weights, Oj is a real-number bias, and Opj is an interval output from 
the unit j . The total input to the unit j is calculated by interval arithmetic as 
follows (see Fig. 28). 

Nttpj = Wj\' Opi-\- Wj2 ' Op2 + Oj 

= - 2 • [1, 2] + 1 . [2, 3] + 1 = [-4, - 2 ] + [2, 3] + [1, 1] 

= [-1,2], (57) 

where a real number is treated as a special interval whose lower and upper limits 
are the same. 

The sigmoidal function, which is used as an activation function at hidden and 
output units, is extended to the case of interval inputs as follows: 

/(Net) = { / (x ) | xGNet} , (58) 

where Net is an interval input and 

/ (x ) = l / { l + e x p ( - x ) } . (59) 

Because the sigmoidal function in (59) is a strictly increasing function, the interval 
output /(Net) in (58) can be calculated as 

/(Net) = /([net^, net^]) = [/(net^), / (net^)] . (60) 

This is illustrated in Fig. 29. 

0,2 = 12,3] 

Figure 28 Simple network with two interval inputs and an interval output. 
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Figure 29 Interval activation function at hidden and output units. 

The interval output Opj in Fig. 28 is calculated as follows: 

Opj = /(Net,) = / ( [ - I , 2]) = [ / ( - I ) , /(2)] = [0.269,0.881]. (61) 

B. NEURAL NETWORKS FOR HANDLING 
INTERVAL INPUTS 

As we have already described, intervals can be used for representing uncertain 
inputs and missing inputs [78,79]. Interval representation is also useful for utiliz-
ing experts' knowledge in the learning of neural networks [80]. Let us consider a 
two-class classification problem in the pattern space [0,1]^. Now we assume that 
the following two pieces of information are given from domain experts: 

(i) If ;ci < 0.5 and JC2 < 0.5 then Class 1. 
(ii) If jci > 0.8 or X2 > 0.8 then Class 2. 

These two rules are shown in Fig. 30a. We also assume that we have training 
patterns in Fig. 30b where closed circles and open circles are training patterns 
from Class 1 and Class 2, respectively. Our problem is to train a neural network 
from both experts' knowledge (i.e., the if-then rules in Fig. 30a) and the numerical 
data in Fig. 30b. 

We can denote the first rule as an interval pattern ([0,0.5], [0,0.5]) from 
Class 1. This interval pattern is shown as the square in Fig. 30a. The second rule 
can be denoted by two interval patterns ([0.8, 1], [0,1]) and ([0,1], [0.8,1]) from 
Class 2. These two input patterns correspond to the two rectangles in Fig. 30a. 
Because real numbers can be viewed as a special case of closed intervals whose 
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1.0 0.0 0.5 h> 1̂ 1.0' 
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Figure 30 Available information for learning: (a) experts' knowledge; (b) numerical data. 

upper and lower limits are the same (e.g., 0.5 = [0.5,0.5]), we can represent both 
the if-then rules and the numerical patterns as a set of interval patterns. 

In general, let us assume that we have m interval patterns Xp = (Xpi, Xp2,..., 
Xpn), p = 1, 2 , . . . , m, from c classes. For these interval patterns, we use a stan-
dard three-layer feedforward neural network with n input units, nn hidden units, 
and c output units. The input-output relation of each unit can be written as follows 
(see Fig. 31): 

Input units: Opt = Xpi, i = 1,2, . . . , n, (62) 

n 

Hidden units: Netp^ = Y^ Wji • Opt +0j, 7 = 1, 2 , . . . , n^ , (63) 

(64) 

/=i 

Opj = /(Net^y), y = l , 2 , . . . , n / / , 

riH 

Output units: Netpjt = Y^ Wkj • Opj -\-0k, ^ = 1, 2 , . . . , c, (65) 
7=1 

Opk = /(Netpit), ^ = 1,2, . . . , c . (66) 

We can see that these formulations are the same as the architecture of standard 
feedforward neural networks except that the input and the output of each unit 
are intervals. The calculation of the input-output relation of each unit is done by 
interval arithmetic described in the previous subsection. For example, the input-
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Input Hidden Output 
units units units 

Figure 31 Architecture of interval-arithmetic-based neural networks with interval inputs and real-
number connection weights. 

output relation of the ^th output unit can be rewritten from interval arithmetic 
as 

nn riH 

7=1 j=l 
Wkj >0 Wkj <0 

HH riH 

Opk = K„ <,] = [/W,), /W.)]. (69) 
For the learning of the neural network from the interval patterns, we define the 

target vector tp = {tp\,tp2,..., tpc) corresponding to the interval input pattern 
Xp as follows: 

_ J 1, ifXpG Class ^, 
^ ^ ^ - [ 0 , otherwise, ^'^^ 

for A: = 1, 2 , . . . , c. The cost function to be minimized in the learning is defined 
as follows: 

ep = Y. i'p'^ - '>'pkfl^ + E i'pk - o%f/2. (71) 
k=l k=l 

A back-propagation-type learning algorithm can be derived from this cost 
function for adjusting the connection weights and the biases [78-80]. 

To illustrate our approach, we first trained a neural network with two input 
units, five hidden units, and a single output unit by the standard back-propagation 
algorithm using only the numerical data in Fig. 30b. The classification boundary 
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Figure 32 Simulation results: (a) learning from only numerical data; (b) learning from both experts' 
knowledge and numerical data. 

obtained by the learning is shown in Fig. 32a. From this figure, we can see that 
all the given patterns are correctly classified. Because the experts' knowledge in 
Fig. 30a was not used in the learning, the classification boundary violates the 
second if-then rule "If .x:i > 0.8 or X2 > 0.8 then Class 2." 

We next trained the same neural network using both the experts' knowledge 
and the numerical data. That is, the three interval patterns in Fig. 30a and the 
ten patterns in Fig. 30b were used for the learning of the neural network in our 
approach. The classification result obtained by the learning is shown in Fig. 32b. 
From this figure, we can see that the classification boundary is clearly consistent 
with both the given patterns and the experts' knowledge. 

We show another simulation result by our approach in Fig. 33a, which was ob-
tained by the learning using the six interval patterns in this figure. From this figure, 
we can see that all the interval patterns are correctly classified. For comparison, 
we applied the standard back-propagation algorithm to this problem using the four 
vertexes of each interval pattern. We show the simulation result in Fig. 33b. As 
shown in this figure, all the vertexes are correctly classified but the classification 
boundary violates an interval pattern. 

Our interval-arithmetic-based approach can also be employed when a new pat-
tern has uncertain or missing inputs. In the same manner as in the training pat-
terns, we represent the new pattern with uncertain or missing inputs by an interval 
pattern X^ = (Xpi, Xp2,..., Xpn). For example, a new pattern (0.3, ?, 0.8) in 
the three-dimensional pattern space [0, 1]-̂  is represented as an interval pattern 
([0.3, 0.3], [0, 1], [0.8, 0.8]) where real numbers are also represented as closed 
intervals. The classification of the interval pattern X^ is done by presenting this 
pattern to the trained neural network. As we have already explained, an interval 
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Figure 33 Simulation results: (a) learning from interval data; (b) learning from vertexes of interval 
data. 

output vector Op = (Opi, Op2,..., Ope) is obtained from the interval input pat-
tern Xp by interval arithmetic. Now our problem is to assign the interval input 
pattern X^ to one of the given c classes based on the interval output vector O^. 

To classify the interval input pattern X^, we use the following rule [79, 81]: 

If o^j^ > o^^ for /z = 1, 2 , . . . , c, h ^ k then classify X^ as Class k. (72) 

The condition part of this rule means that the following inequality holds: 

Opk > Oph for "iopk e Opk, "ioph e Oph, 

and/i = 1, 2 , . . . , c, h ^ k. (73) 

For example, an interval input pattern is classified as Class 2 if the correspond-
ing interval output vector O^ = (Opi, Opi, Op3, Op4) is as in Fig. 34a. On the 
other hand, in the case of Fig. 34b, the classification of an interval input pattern is 
rejected. This is because the condition part of (72) does not hold for any class in 
Fig. 34b. 

For illustration, first we trained a neural network by the standard back-
propagation algorithm using the training patterns in Fig. 35a where the clas-
sification boundary obtained from the trained neural network is also shown. 
We presented two interval patterns in Fig. 35b to the trained neural network,' 
and examined the corresponding outputs. One interval input pattern X^ is 
([0.1, 0.4], [0.5, 0.8]), and the other interval input pattern X^ corresponds to an 
input pattern (0.8, ?) with a missing input. For the interval input pattern XA, 
the interval output vector ([0.00, 0.00], [0.99, 0.99], [0.00, 0.00]) was obtained. 
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Figure 34 Examples of interval outputs: (a) classifiable case; (b) unclassifiable case. 

From this interval output vector, we can classify XA as Class 2 by the classifica-
tion rule in (72). On the other hand, the classification of X5 is rejected because the 
corresponding interval output vector is ([0.00, 0.99], [0.00,0.02], [0.00,0.99]). 

If the condition part in (72) holds, any patterns included in X^ are also classi-
fied as the same class. This is because the following inclusion relation holds: 

Xqi c Xpi for / 1,2, Oqk£Opkfork=l,2,...,c, (74) 

where X^ = (Xpi, Xp2,..., Xpn) and Xq = (Xqi, Xq2,..., Xqn) are interval 
input patterns, and O^ = (Opi, 0^2, • • •, Ope) and O^ = (Oqi, Oqi,..., Oqc) 
are the corresponding interval output vectors from the neural network. The rela-
tion in (74), which is called "inclusion monotonicity," is one of the basic features 
of interval arithmetic. For example, from this relation, we can see that any interval 
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Figure 35 Classification boundaries obtained by the trained neural network and interval input vec-
tors: (a) classification boundaries and training data; (b) classification boundaries and new interval input 
vectors. 
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(and real number) input patterns included in XA in Fig. 35b are always classified 
as Class 2 because X^ has already been classified as Class 2. 

C. NEURAL NETWORKS WITH INTERVAL WEIGHTS 

In the previous subsection, we described how feedforward neural networks can 
be extended to the case of interval inputs. In this subsection, we extend connection 
weights to intervals. 

Let us start with a feedforward neural network with real-number input vectors 
and interval connection weights. Such a neural network is used for approximately 
realizing a nonlinear interval function. For a nonlinear interval function with n 
inputs and a single output, we use an interval-arithmetic-based neural network 
that maps an /i-dimensional real-number input vector Xp = (xpi,Xp2, • •., Xpn) 
to an interval output Op. The input-output relation of each unit of the interval-
arithmetic-based neural network with interval connection weights is written for 
the real-number input vector Xp = (xpi, Xp2,..., Xpn) as follows: 

Input units: Opt = Xpt, / = 1,2,. . . , n, (75) 

n 

Hidden units: Net̂ y = ^ Wjt - Opt -\-Sj, y = 1, 2 , . . . , n^ , (76) 
1 = 1 

Opj = fiNetpj), 7 = 1,2,. . . , riH, (77) 

Output unit: Netp = ^Wj - Opj + 0 , (78) 
7=1 

Op = fiNctp), (79) 

This interval-arithmetic-based neural network is the same as the standard feed-
forward neural network except that the connection weights Wjt, Wj and the biases 
0y, 0 are given by intervals. The architecture of this neural network and its ex-
ample are shown in Fig. 36. As in Fig. 36a, we denote the interval connection 
weights and the interval biases by their lower and upper limits as 

The input-output relation of each unit in (75)-(79) is calculated by interval arith-
metic. For example, the input-output relation of the output unit can be rewritten 
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(a) (b) 
Figure 36 Interval-arithmetic-based neural networks with real-number input vectors and interval 
connection weights: (a) general architecture; (b) an example. 

because the interval outputs O^/s from the hidden units are always nonnegative 
[see (60) and Fig. 29]: 

riH riH 

net^= Y. ^)'^\j'- E ^ ^ < y + ^ ^ 
J = l 

tlH 

7=1 

riH 

< = E Wi -̂ .• + 
=1 

nU Wj>0 
7=1 

.̂ = K'<] = [/K)'/W)]. 

(81) 

(82) 

(83) 

Let us assume that we have m input-output pairs (x ,̂; Yp), p = 1,2,..., m, 
as training data where Xp = (xpi, Xp2,..., Xpn) is an n-dimensional real-number 
input vector, and Yp = [y^, y^] is the corresponding interval output. The given 
output Yp is used as a target interval. We show an example of such training data in 
Fig. 37a for the case ofn = l. Our problem here is to train the interval-arithmetic-
based neural network using the given training data. 

The learning is performed so that the interval output Op from the neural net-
work becomes approximately equal to the target interval Yp for all the given 
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Figure 37 Simulation result: (a) given training data; (b) shape of the output from the trained neural 
network. 

input-output pairs (x^; 7^), p = 1, 2 , . . . , m. Thus we define the cost function 
for the given input-output pair (x^; Yp) as follows: 

U\2 , .̂ = (^.'--.T/2 + (^r-pTA (84) 

A back-propagation-type learning algorithm can be derived from this cost func-
tion for adjusting the interval connection weights and the interval biases [82, 83]. 
The adjustment of the interval connection weights and the interval biases is per-
formed by updating their lower and upper hmits. For example, the interval con-
nection weight Wj = [wj, w^] is adjusted by updating its lower limit w^ and its 
upper limit w^ using the partial derivatives dcp/divj and dcp/dw^ At should be 
noted that the inequahty w^ <w^ always has to be satisfied. 

In Fig. 37b, we show the result of the learning of the interval-arithmetic-based 
neural network with a single input, five hidden units, and a single output unit. The 
two curves in this figure correspond to the lower limit and the upper limit of the 
interval output from the trained neural network. 

In the previous section, we described how a nonlinear interval function can be 
approximately reaUzed by two standard feedforward neural networks. As shown 
in Fig. 37b, a single interval-arithmetic-based neural network with interval con-
nection weights can also represent a nonhnear interval function. The main differ-
ence between these two approaches is that the two standard neural networks are 
independently trained, whereas the lower and upper limits of the interval connec-
tion weights are adjusted with the inequahty constraints such as w;j- < w^^ . This 
difference is clearly demonstrated in Fig. 38. In Fig. 38a, two curves are outputs 
from two standard neural networks that were independently trained. In this figure, 
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0.5 
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Figure 38 Comparison of two approaches: (a) two standard neural networks; (b) single interval-
arithmetic-based neural network. 

the output from one neural network for the lower limit is larger than that for the 
upper limit in some range (i.e., around x = 0.5). In Fig. 38b, however, the lower 
limit of the interval output is always smaller than the upper limit. 

Interval-arithmetic-based neural networks with interval connection weights 
can be trained so as to include all the given training data as shown in Fig. 39a 
or be included in the target intervals as shown in Fig. 39b. 

0.5 
Input value x 

(a) 

1.0 

! o . 5 | 

I 
O 

0.0 

f%^ 
0.0 0.5 

Input value x 

(b) 

1.0 

Figure 39 Simulation results: (a) learning for including interval targets; (b) learning for being in-
cluded in interval targets. 
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They can also handle real-number targets. For those extensions, see Ishibuchi 
et al [82]. The most general architecture of interval-arithmetic-based neural net-
works has interval input vectors, interval connection weights, and interval target 
vectors. That is, interval-arithmetic-based neural networks for approximately real-
izing nonlinear interval functions are extended to the case of interval input vectors 
and multiple output units. The learning of those neural networks is also performed 
by updating the lower and upper limits of the interval connection weights and 
biases [83]. Those neural networks are used for approximately realizing nonhn-
ear mappings of interval vectors (i.e., mappings from interval vectors to interval 
vectors). 

IV. FUZZIFIED NEURAL NETWORKS 

A. FUZZY ARITHMETIC IN NEURAL NETWORKS 

In the previous section, we extended inputs, connection weights, biases, and 
targets to intervals. Here they are extended to fuzzy numbers for the fuzzification 
of multilayer feedforward neural networks. As we have already shown in Figs. 
3 and 4, fuzzy arithmetic [34] based on the extension principle [35] is used for 
defining the input-output relation of fuzzified neural networks. 

We denote fuzzy numbers by uppercase letters with tildes such as A, B,C, 
etc. A fuzzy number A is specified by its membership function /x^() on the real 
line ^ (i.e., on the set of real numbers). In Fig. 40, we show two examples of 
fuzzy numbers. They can be interpreted as "about 5" and "about 10," respectively. 
Linguistic values such as "smair and "large" are also viewed as fuzzy numbers. 

0 5 10 
Figure 40 Examples of fuzzy numbers. 
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Five linguistic values (S: small, MS: medium small, M: medium, ML: medium 
large, and L: large) defined on the unit interval [0,1] are shown in Fig. 41. Fuzzy 
numbers can be used for representing various linguistic concepts such as "hof 
water, a ''warm'' day, and a "talV man. Fuzzified neural networks can handle such 
a linguistic concept as well as numerical data. 

We use the following addition, multiplication, and nonlinear mapping of fuzzy 
numbers in our fuzzified neural networks (see Figs. 3 and 4): 

/^A+5W = max{/x^(x) A /xg(j) \z=x + y], 

1^A-B(^) = max{/i^(x) A fXg(y) \z=X'y}, 

M/(N5)(^) = max{/XN t̂(x) I z = f(x)}, 

(85) 

(86) 

(87) 

where A is the minimum operator and f(x) = 1/{1 + exp(—x)}. 
These fuzzy-number operations are numerically performed by interval arith-

metic on level sets of fuzzy numbers. The /i-level set of a fuzzy number A is 
defined as follows: 

[A]h = {x\fixM >h, X em] forO < /z < 1. (88) 

The /z-level set [A]h is illustrated in Fig. 42a. A fuzzy number can be approxi-
mately represented by a collection of its /i-level sets for various values of /i. In 
Fig. 42b, a fuzzy number A is approximately represented by its ten /z-level sets 
for/i = 0.1,0.2, . . . , 1.0. 

> ^ 

Figure 41 Five linguistic values (S: small, MS: medium small, M: medium, ML: medium large, and 
L: large). 
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^ X ^ X 

(a) (b) 

Figure 42 Level sets of a fuzzy number A: (a) /z-level set; (b) approximate representation of a fuzzy 
number A by a collection of its level sets. 

As we can see from Fig. 42, /z-level sets of fuzzy numbers are closed intervals. 
Thus we use interval arithmetic for approximately calculating the fuzzy input-
output relation of each unit of our fuzzified neural networks. 

B. NEURAL NETWORKS FOR HANDLING FUZZY INPUTS 

In this subsection, we describe how multilayer feedforward neural networks 
can be extended to the case of fuzzy inputs. Fuzzy inputs may be obtained from 
uncertain measurement or linguistic knowledge of human experts. For example, 
let us assume that we have the following linguistic knowledge for a three-class 
pattern classification problem on the two-dimensional pattern space [0, 1]^: 

If jci is small and X2 is small then Class 1, 

If xi is small and X2 is large then Class 2, 

If jci is large then Class 3, 

where ''smair and ''large'' are fuzzy numbers defined in Fig. 41. These three 
fuzzy if-then rules are shown in Fig. 43. We also assume that we have numerical 
data in Fig. 43 where closed circles, open circles, and squares are training patterns 
from Class 1, Class 2, and Class 3, respectively. Our problem is to train a feedfor-
ward neural network using both the linguistic knowledge and the numerical data 
in Fig. 43. 



Fuzzy Neural Networks Techniques 

1.0, 

43 

g 0.5h 

0.0 

o o o 
Class 2 o 

o ^ o ^ 

o 
D D 

Class 1 • ° 

± 
0.0 0.5 

Input ;ci 

Figure 43 Linguistic information and numerical data. 

1.0 

The previous three fuzzy if-then rules can be viewed as the following fuzzy 
training patterns because the pattern space is the unit square [0,1]^: 

(small, small) =^ Class 1, 

(small, large) =^ Class 2, 

(large, [0, 1]) =^ Class 3. 

Numerical data are also handled as fuzzy training patterns in our fuzzified 
neural networks because real numbers can be viewed as a special case of fuzzy 
numbers. A real number a can be viewed as a fuzzy number with the following 
membership function: 

/la(x) = 
1, 
0, 

if X = a, 
otherwise. (89) 

In this manner, both the expert knowledge and the numerical data are handled as 
fuzzy training patterns. That is, they are simultaneously utiHzed in the learning of 
neural networks. 

In general, for a c-class pattern classification problem on the n-dimensional 
pattem^pace [0, J ] " , let us assume that we have m fuzzy training patterns Xp = 
(Xpi, Xp2,..., Xpn), p = 1,2, . . . ,m. For this pattern classification problem, 
we use a three-layer feedforward neural network with n input units, nn hidden 
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units, and c output units. The input-output relation of each unit of this neural 
network is written for the fuzzy input pattern X^ = (X^i, Xp2,..., Xpn) as 
follows: 

Input units: Opt = Xpt, i = 1,2, . . . , n, (90) 
n 

Hidden units: Net̂ y = Y^ Wjt • Opt -\-0j, 7 = 1, 2 , . . . , n//, (91) 

dpj = /(N^tp;), 7 = 1,2,. . . , HH, (92) 

Output units: Net̂ ĵ  = ^ Wkj • Opj -\-0k, A: = 1, 2 , . . . , c, (93) 

Opk = fi^tpk), /: = l , 2 , . . . , c . (94) 

The input-output relation of each unit is defined by fuzzy-number arithmetic de-
scribed in the previous subsection. These formulations are the same as the ar-
chitecture of standard feedforward neural networks except that the input and the 
output of each unit are fuzzy numbers. The numerical calculation of the input-
output relation is done by interval arithmetic on /z-level sets of fuzzy numbers. 
For example, the input-output relation of the A:th output unit can be rewritten for 
the /i-level sets as follows: 

riH riH 

[Net^Jt = E «'*̂ - • [Opit + E ""^J • [Opjfn+^k, (95) 

Wkj >0 Wkj <0 

riH riH 

[Nev4^= E ^kj-[dpj]l+ E ^^riOpit+Bk, (96) 

Wkj >0 Wkj <0 

Wpk\ = [[Opk\i, [Opkfh] = [f{[^tpk]t), fi[^hk]H)l (97) 

where [']h denotes the /i-level set of a fuzzy number and [^^ and [-J^ denote the 
lower limit and the upper limit of the /i-level set. 

For the learning of the neural network from the fuzzy training patterns, we 
define the target vector tp = (f^i, tp2,..., tpc) corresponding to the fuzzy input 
pattern X^ as follows: 

_ f 1, i fXp€ Class ̂ , 
^P' - 0, otherwise, ^̂ ^̂  
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for A: = 1, 2 , . . . , c. The cost function to be minimized in the learning is defined 
as follows: 

h I k=\ k=\ J 
(99) 

A back-propagation-type learning algorithm can be derived from this cost 
function for adjusting the connection weights and the biases [41, 84]. 

To illustrate our approach, we first trained a neural network with two input 
units, five hidden units, and three output units by the standard back-propagation 
algorithm using only the numerical data in Fig. 43. The classification boundaries 
obtained by the learning are shown in Fig. 44a. Next we trained the same neural 
network using both the experts' knowledge and the numerical data. In the learn-
ing, we used ten levels (i.e., /z = 0.1, 0 .2 , . . . , 1.0) in the cost function in (99). The 
classification boundaries obtained by the learning from both the experts' knowl-
edge and the numerical data are shown in Fig. 44b. From this figure, we can see 
the classification boundaries are clearly consistent with both the experts' knowl-
edge and the numerical data. 

Linguistic information from human experts can also be utilized for modeling 
problems. Let us assume that we have the following linguistic information for the 
modeling of a single-input and single-output nonlinear system: 

If X is small then y is small, 

If jc is large then y is large. 

"- ' ^ >Xi 

(a) (b) 

Figure 44 Simulation results: (a) learning from only numerical data; (b) learning from both numer-
ical data and linguistic information. 
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where "smair and ''large'' are defined in Fig. 41. These fuzzy if-then rules can be 
viewed as the following fuzzy training data: 

{{Xp\ Yp)] = {(small; small), (large; large)}. (100) 

In general, let us assume that we have m fuzzy input-output pairs (X^; Fp), 
£ = 1, 2 , . . . , m, from an n-input and single-output nonlinear system, where 
Xp = (Xpi, Xp2,..., Xpn). As we have already described for classification 
problems, nonfuzzy input-output pairs can also be represented in this form. Thus 
the fuzzy training data (Xp; Yp), p = 1,2,.. .,m, may include nonfuzzy input-
output pairs as well as fuzzy input-output pairs. 

For the modeling of a nonhnear system with n inputs and a single output, we 
use a neural network with n input units and a single output unit. When the n-
dimensional fuzzy vector X^ is presented to the neural network, the correspond-
ing fuzzy outgut Op is defined in the same manner as in (90)-(94). The given 
fuzzy output Yp is used as the fuzzy target. The cost function to be minimized in 
the learning of the neural network is defined as follows: 

ep = EiiiU - [^Pif/^ + (M - [Op]'if/2}. (101) 
h 

A back-propagation-type learning algorithm can be derived from this cost 
function for adjusting the connection weights and the biases of the neural net-
work [41, 85]. 

For illustration, we show simulation results in Fig. 45 where numerical data 
are denoted by closed circles. Figure 45a is the simulation result by the learning 
from only the numerical data where the standard back-propagation algorithm was 

(a) (b) 

Figure 45 Simulation results for a function approximation problem: (a) learning from only numeri-
cal data; (b) learning from both numerical data and linguistic information. 
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Output}; 

Figure 46 Fuzzy outputs from the trained neural network. 

used. In Fig. 45b, both the numerical data and the linguistic information in (100) 
were used for the learning by our approach. The fuzzy outputs from the trained 
neural network are shown in Fig. 46 together with the fuzzy targets (i.e., small and 
large). From Fig. 46, we can see that a good fit to the fuzzy targets was obtained 
by the learning of the neural network. 

As shown in Fig. 46, our fuzzified neural networks for fuzzy inputs can be 
used for approximately reaUzing fuzzy if-then rules. High fitting ability to given 
fuzzy if-then rules and high interpolation ability of sparse fuzzy if-then rules were 
demonstrated in [41, 85]. Our approach can also be used for extracting fuzzy if-
then rules from trained neural networks [86, 87]. For the rule extraction, a linguis-
tic input vector corresponding to the antecedent part of each fuzzy if-then rule was 
presented to the trained neural network, and the corresponding fuzzy output was 
examined to determine the consequent part of the fuzzy if-then rule. 

C. NEURAL NETWORKS WITH FUZZY WEIGHTS 

Multilayer feedforward neural networks can be fuzzified by extending their 
connection weights and biases to fuzzy numbers. Fuzzified neural networks with 
nonfuzzy input vectors are used for the modeling of fuzzy functions [42, 88, 89]. 
Fuzzified neural networks with fuzzy input vectors are used for approximately 
realizing fuzzy if-then rules [42,43, 90]. 

In this subsection, we describe a general architecture of fully fuzzified three-
layer feedforward neural^networks [43]. Let us assume that we have m fuzzy 
input-output pairs (X^; Y^), p = 1, 2 , . . . , m, where Xp = (Xpi, X^i^ • • •, 
Xpn) is an w-dimensional fuzzy ingut vecto£and Y^ = (F^i, Yp2,..., Ypc) is a 
c-dimensional fuzzy target vector. X^ and Y^ may be viewed as the antecedent 
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part and the consequent part of a fuzzy if-then rule, respectively. Our problem 
is to approximately realize a nonlinear fuzzy mapping from X^ to Y^. For this 
problem, we use a fuzzified neural network with fuzzy connection weights and 
fuzzy biases. The input-output relation of each unit of the fuzzified neural net-
work with n input units, HH hidden units, and c output units is written as follows 
(see Fig. 47): 

Input units: Opt = Xpt, / = 1,2,. . . , /t, (102) 
n 

Hidden units: Net^; = ^ Wjt -Opi+^j, 7 = 1, 2 , . . . , n^ , (103) 

(104) 

(105) 

i=\ 

Opj = /(Netp;), 7 = l , 2 , . . . , n H , 

Output units: Net̂ ĵ  = ^ Wkj - Opj -\-Sk. A: = 1, 2 , . . . , c, 

Opk = fi^tpk), k = l,2,...,c. (106) 

In this formulation, the connection weights Wjt, Wkj and the biases 0^, Sk are 
fuzzy numbers. 

As we have already described, the input-output relation of the fuzzified neural 
network is defined by fuzzy-number arithmetic, and the numerical calculation is 

Bias unit 

Bias unit 

X„ 

^pk ^pc Fuzzy outputs 

Output units 

Fuzzy weights w 

Fuzzy biases Q 

Hidden units 

Fuzzy weights ur 
ji 

Fuzzy biases 0 

Input units 

Y Y Fuzzy inputs 
- ^ »"• ^^ pn 

Figure 47 Architecture of fully fuzzified neural networks 
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performed by interval arithmetic on /i-level sets of fuzzy numbers (see Figs. 3 
and 4). 

Triangular fuzzy numbers and trapezoidal fuzzy numbers are usually used as 
the fuzzy connection weights Wjt, Wkj and the fuzzy biases 0 ; , @k (see Fig. 
48). The learning of the fuzzified neural network is performed by adjusting the 
fuzzy connection weights and the fuzzy biases. The adjustment of the fuzzy con-
nection weights and the fuzzy biases is done by updating their parameter values. 
For example, the adjustment of the nonsymmetric triangular fuzzy weight Wkj in 
Fig. 48a is done by updating its three parameter values, that is, its lower Hmit wL, 

center w^-, and upper limit w;̂ .. 
In the learning, the following cost function is used for the fuzzy input-output 

pair(Xp; Y^): 

^p = Z \ t ([^P^t - [Op^tfl^ +1 i[^P^]" - [Op^fnf/A (107) 
^=1 ^=1 

A back-propagation-type learning algorithm can be derived from this cost 
function for updating the parameter values of the fuzzy connection weights and 
the fuzzy biases [42, 43, 90, 91]. For example, the learning algorithm for adjust-
ing the nonsymmetric triangular fuzzy weight Wkj in Fig. 48a can be derived by 
calculating the partial derivatives dep/dit;f •, dep/d w^-, and dep/d w;P.. 

To illustrate our approach, we show some simulation results. First, we show an 
example of fuzzy modeling, that is, approximate realization of a nonlinear fuzzy 
function. Let us assume that we have three input-output pairs for a single-input 
and single-output nonlinear fuzzy system in Fig. 49a where inputs are real num-
bers and outputs are trapezoidal fuzzy numbers. Using these three input-output 
pairs, we trained a fuzzified neural network with nonsymmetric trapezoidal fuzzy 
numbers as connection weights and biases. Four parameters of the nonsynmietric 
trapezoidal fuzzy numbers (see Fig. 48b) were adjusted by the learning algorithm 
derived from the cost function in (107) with ten levels (i.e., h = 0.1, 0 .2 , . . . , 1.0). 

(a) (b) 

Figure 48 Fuzzy connection weight Wkj: (a) nonsymmetric triangular fuzzy number; (b) nonsym-
metric trapezoidal fuzzy number. 
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Figure 49 Simulation results: (a) training data; (b) fuzzy outputs from the trained neural network. 

The fuzzy outputs from the trained neural network are shown in Fig. 49b. From 
Fig. 49, we can observe a good fit to the fuzzy targets and a good generalization 
for new inputs. 

We also trained the same fuzzified neural network using the following fuzzy 
if-then rules: 

If jc is small then y is small. 

If X is medium then y is medium small or medium. 

If X is large then y is medium or medium large or large, 

where the membership functions of disjunctive combinations of linguistic values 
are defined by trapezoidal fuzzy numbers as shown in Fig. 50. In the same manner 
as in the previous example, we trained the fuzzified neural network by the learning 
algorithm derived from the cost function in (107). The fuzzy outputs from the 

Figure 50 Membership functions of disjunctive combinations of linguistic values: (a) medium small 
or medium; (b) medium or medium large or large. 
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Figure 51 Fuzzy outputs from the trained neural network. 

trained neural network are shown in Fig. 51 together with the fuzzy targets. From 
this figure, we can see that a good fit to the fuzzy targets was reaUzed by the 
learning of the fuzzified neural network. 

V. CONCLUSION 

In this chapter, we described how feedforward neural networks can be extended 
for handling the fuzziness of training data. First, we explained a fuzzy classifica-
tion method where we assumed that classification boundaries between different 
classes are not crisp but fuzzy. In our fuzzy classification method, possible classes 
of an input pattern can be suggested by the trained neural network. Next we ex-
plained a fuzzy modeling method by two standard neural networks. One neural 
network was used for representing the lower limit of a nonlinear interval func-
tion, and the other was used for the upper limit. The two neural networks were 
trained in order that the nonlinear interval function should approximately cover all 
the given input-output pairs. Then we explained interval-arithmetic-based neural 
networks where inputs, connection weights, biases, and targets were extended to 
intervals. Interval-arithmetic-based neural networks can be used for the handling 
of uncertain or missing inputs. They can also be used for approximately realiz-
ing nonlinear interval functions. Finally, we extended inputs, connection weights, 
biases, and targets to fuzzy numbers in order to fuzzify multilayer feedforward 
neural networks. Fuzzified neural networks can be used for the handling of lin-
guistic inputs, the learning from fuzzy if-then rules, and the approximation of 
nonlinear fuzzy functions. 

As we have mentioned in this chapter, various architectures have been referred 
to as "fuzzy neural networks." Most of those architectures have been proposed for 
control problems. That is, they map real-number input vectors to real numbers. 
Our fuzzy neural networks in this chapter have the abiUty to handle the fuzzi-
ness in training data. Thus they can be trained from linguistic information as well 
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as numerical information. They can also be used for extracting linguistic knowl-
edge from neural networks trained by numerical information. In this manner, our 
fuzzy neural networks serve as a bridge between two kinds of information, that 
is, numerical information and linguistic information. 
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I. INTRODUCTION 

In the 1960s, Zadeh [1,2] developed a linguistic approach to deal with lin-
guistic vague information based on fuzzy sets and fuzzy logic. Since then there 
have been a number of applications of the approach to a variety of fields includ-
ing meteorology, engineering, medicine, management, computer science, expert 
systems, and systems science. 

In the field of systems science, many complex plants are difficult to deal with 
by the conventional approach (precise mathematical equations) because of their 
nonlinear, time-varying behavior and imprecise measurement information. Nev-
ertheless, human operators can handle these complex plants by their practical ex-
perience. They only need imprecise system states and a set of imprecise linguistic 
if-then rules. The fuzzy system theory developed by Zadeh [3] based on fuzzy 
sets and fuzzy logic can be used to deal with such complex systems. 

Fuzzy systems accept numeric inputs from the outside world and convert these 
into linguistic values that can be manipulated by using fuzzy logic operations 
with Hnguistic if-then rules given by human operators. The linguistic outputs, the 
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result of the fuzzy logic operations, are converted into numeric outputs which are 
then delivered to the outside world. Thus, fuzzy systems provide a framework of 
representing human expert rules with fuzzy logic to infer human decision. Based 
on this ability, fuzzy systems can approximate human reasoning and achieve some 
intelligence. 

Fuzzy systems can be used for different kinds of purposes such as modeling, 
prediction, classification, and control in the field of systems science. In particular, 
the possible use of fuzzy systems in modeling and control has generated great 
attention. Fuzzy systems for modeling and control have emerged as one of the 
most active and fruitful areas for research in the appUcation of fuzzy set theory. 
The application was pioneered by Mamdani [4], who successfully carried out a 
pilot study on a model steam engine using fuzzy systems. His study showed that 
fuzzy systems may profitably and easily be used by control engineers. A number 
of successful control applications have also been reported. These included heat 
exchange process control [5], steam engine control [6, 7], traffic junction control 
[8], cement kiln control [9], model car parking control [10], automobile speed 
control [11], robot control [12,13], aircraft autopilot control [14], camera autofo-
cus control, and automobile transmission control [15]. 

However, at present there is no systematic procedure for the design of fuzzy 
systems. Usually the linguistic rules are generated by converting the human op-
erator's experience into linguistic form directly or by summarizing the sampled 
input-output pairs of the systems to be dealt with. Unfortunately, it is difficult 
for systems designers to obtain optimal fuzzy rules because these are most likely 
to be influenced by the intuitiveness of the operators and the systems designers. 
Moreover, some information will be lost when human operators express their ex-
perience by linguistic rules. This results in a set of less than optimal linguistic 
rules. Therefore, fuzzy systems capable of developing and improving the linguis-
tic rules and structures automatically are highly desired [16-18]. 

Neural network implementation of fuzzy systems has been proposed as a possi-
ble approach for fuzzy systems design [19-29]. The resulting systems, which are 
sometimes called fuzzy neural networks or neural-network-based fuzzy systems, 
will possess the advantages of both types of systems and overcome the difficulties 
of each type of system. In fact, the resulting systems not only support numerical 
mathematical analysis, hardware implementation, distributed parallel processing, 
and self-learning but are also capable of deaUng with difficulties arising from un-
certainty, imprecision, and noise. 

Another aim of developing neural-network-based fuzzy systems is to enhance 
fuzzy systems with higher intelligence. Fuzzy systems simulate human reasoning 
to achieve intelligence by manipulating a set of heuristic rules given by a human 
expert. Thus, the inteUigence is totally limited by the given set of rules. There will 
be neither chance for the fuzzy system to improve nor useful rules to be added. To 
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make fuzzy systems more intelligent, fuzzy systems with learning and adaptation 
are desired. 

The fuzzy neural network discussed in this chapter is a hybrid system which 
functions as a fuzzy system with the processing mechanism realized by a neural 
network. Thus, the capability of learning imposed upon a fuzzy system can be 
achieved by the learning algorithm of a neural network. In principle, a fuzzy neu-
ral network is a fuzzy system implemented within the framework of neural net-
works so as to achieve the capability of learning using input-output data which 
will lead to improvement of the fuzzy rules and fuzzy system intelligence. 

In general, there are two approaches to the integration of fuzzy systems and 
neural networks. In the first approach, one may incorporate the concept of fuzzy 
logic into the neural network. A fuzzy neuron is designed to function in much the 
same way as a nonfuzzy neuron, except that it reflects the fuzzy nature and has 
the ability to cope with fuzzy information [23-26]. 

The other approach [19-22, 27-29] is to realize the process of fuzzy reason-
ing by the structure of a neural network and to express the parameters of fuzzy 
reasoning by the connection weights of the neural network. The resulting fuzzy 
neural network can automatically identify the fuzzy rules and tune membership 
functions by modifying the connection weights of the network using some learn-
ing algorithm. This second approach is closer to dealing with the problem of fuzzy 
systems design. This chapter will deal mainly with the second approach to fuzzy 
neural networks. This approach has been discussed by a number of researchers 
[19-22]. 

Horikawa et al [22] described three general structures of fuzzy neural net-
works in accordance with the structure of the consequences of fuzzy rules. The 
first type is concerned with the consequence being a crisp constant, the second 
one with the consequence being a function of input variables, and the third one 
with the consequence being a fuzzy value. The error back-propagation algorithm 
was used for training. 

Lin and Lee [20, 30] proposed a neural-network-based fuzzy logic control sys-
tem. This work considered finding centers/widths of membership functions by 
self-organized clustering and finding fuzzy logic rules by competitive learning. 
The fuzzy logic control system implemented was of a conventional type, and er-
ror back propagation was applied to tune the consequence parameters of output 
membership functions and premise parameters of input membership functions. 
The system was enhanced with a reinforcement learning method when obtaining 
exact training data became expensive [31]. 

Jang [19] implemented the Sugeno-Takagi fuzzy logic system using an adap-
tive network (which can be regarded as a neural network) that utilized hy-
brid learning rules. A gradient descent techniques was applied to tune premise 
parameters, and the least-squares estimation techniques was used to estimate 
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consequence parameters. The membership functions were chosen to be bell-
shaped functions (highly nonlinear functions; e.g., of the Gaussian type). It was 
shown that the system was functionally equivalent to a radial basis function net-
work [32]. 

The fuzzy neural networks proposed in the aforementioned papers suffered 
from the Umitation that if the number of input fuzzy partitions is large, the re-
quired number of consequence parameters will be very large, and the least-squares 
estimation algorithm cannot be implemented easily because the calculation of 
very large matrices is required. Thus, the application of the networks is limited to 
some low-dimensional systems. Moreover, the learning processes were typically 
slow. 

This chapter discusses the neural network implementation of fuzzy systems 
based on Takagi-Sugeno fuzzy systems [33] because they have many advantages 
for modeling and control. Takagi-Sugeno fuzzy systems differ from conventional 
fuzzy systems in that linear systems instead of fuzzy sets are formed in the con-
sequences of the fuzzy rules. The output of the fuzzy systems is a "fuzzy" combi-
nation of a set of linear systems. In what follows, the basic concepts of fuzzy sets, 
fuzzy logic, and structure of fuzzy systems are presented first, and fuzzy neural 
network designs are then discussed in the latter part of this chapter. 

11. STRUCTURE OF FUZZY SYSTEMS 
FOR IVIODELING AND CONTROL 

This section gives an insight into the structure of fuzzy systems for modeling 
and control. Some of the basic vocabulary relating to fuzzy systems is presented, 
which is required for the development of fuzzy systems and the design of fuzzy 
neural networks in this chapter. 

A. FUZZY SETS AND FUZZY LOGIC 

In the real world, objects are often classified into different categories. For such 
categories as tall man, high inflation rate, pretty woman etc., all of them convey 
linguistic vague information. The concept of membership of an object in such 
categories is not obvious and not precise. Thus, the application of classical two-
valued logic to the real world is limited in some cases. The idea of fuzzy sets 
proposed by Zadeh [1] aims to deal with such information. 

Fuzzy set theory is an extension of classical set theory. In classical set theory, 
an element either belongs to a set or does not belong to a set. In fuzzy set the-
ory, an element may partially belong to a set. Fuzzy sets have gradations of set 
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membership which is represented by a function referred to as a membership func-
tion, and so they resemble the kinds of categories ordinary people use in natural 
thought or communication. The formal presentation of the fuzzy set theory is as 
follows: 

DEFINITION 1. Letx e U and let 5 be a subset of U. /X(JC) :U ^ [0,1] is 
called the membership function which represents the degree of jc belonging to the 
subset 5. U is called the universe of discourse. Then the fuzzy set A is defined 
to be a set of ordered pairs A = {(JC, MCJC)) | JC G 5, 5 C U). The membership 
function is denoted by JJLAM for the fuzzy set A. The support of a fuzzy set A 
denoted as Asup is the crisp set of all points x in U such that /XA(JC) > 0. A 
fuzzy set A whose support Asup contains a single point xinU with IJLA(X) = 1 is 
referred to as a fuzzy singleton. A fuzzy set A whose support Asup is the universe 
of discourse U with /x(jc) = 1 is referred to as a fuzzy universe. It is denoted by 
Z. If the universe of discourse f/ is a set of real numbers, the fuzzy sets defined 
on U are called fuzzy numbers. 

The fuzzy set operations are defined via their membership functions. 

DEHNITION 2. Let Ai and A2 be fuzzy sets in U and let 5 be a fuzzy set 
in V. 

(i) Union: 

AiUA2 = {x,fjLAiUA2M\xeU}, where/XAiUAzW = />^Ai(̂ )V)L6A2(̂ ); 

(ii) Intersection: 

AinA2 = {x,fiAinA2(x) \x eU}, where/XAIPIAZC-^) = MAI(^)A/>6A2(^); 

(iii) Complement: 

Ai = {x,fM^^(x) \x eU}, where/x^^(x) = 1 - fiAiix); 

(iv) Cartesian product: 

Ai x 5 = {v,/XAix5(v) \v = (xuX2)eW, W = U xV}, 

where/XAIXB(V) = /XAI(^I) A/XB(X2). 

The operators A and v can be any kind of triangular norms and triangular co-
norms, respectively [34], for example, product, sum, max, or min. Refer to [35, 
36] for additional fuzzy set operations. 

A Unguistic variable can be regarded as a variable whose values are defined 
in linguistic terms (e.g., negative large, negative small, positive small, and pos-
itive large). These terms which are imprecise and ill-defined can be represented 
by fuzzy sets. In fact, the use of fuzzy sets provides a basis for the systematic 
manipulation of such linguistic variables or such linguistic terms. 
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Based on linguistic information, human experts can describe the behavior of 
a system using a set of rules such as "If A then 5 " in which A and B are fuzzy 
sets representing linguistic information. Each rule can be expressed as a fuzzy 
implication. The ideas of fuzzy implication are as follows: 

In classical logic, the rule "If A then 5 " in the form of an implication is written 
as A ^- 5 which is equivalent to the relation R := ~A v B (not A or B). For 
fuzzy logic, the fuzzy implication "If A then B" where A and B are fuzzy sets with 
membership functions fiA and /x^, respectively, which represent linguistic vari-
ables, is expressed in a different way. Instead of using R := ^AvB as its relation, 
the fuzzy relation R is defined to be a fuzzy set of the product A x B character-
ized by a membership function IJLR which is obtained by fiR = [JLA ^ t^B- Thus, 
the fuzzy rule "If A then B" can be expressed as a fuzzy implication denoted by 
A ^^ B using the fuzzy relation R. In the context of fuzzy logic, there are many 
ways to define a fuzzy implication. In fuzzy control literature, the conmionly used 
fuzzy implication is based on the composition rule of inference for approximate 
reasoning suggested in [3]. 

B. BASIC STRUCTURE OF FUZZY SYSTEMS 
FOR M O D E L I N G A N D C O N T R O L 

Fuzzy systems for either modeling or control have similar operations. Fig-
ure 1 shows the block diagram of the structure of conventional fuzzy systems for 
modeling and control. The fuzzy system is composed of four function blocks: 
fuzzification, rule base, inference engine, and defuzzification. 

The mechanism of fuzzy systems is as follows: the measurements x of the 
outside world in the form of crisp data are transformed by fuzzification into lin-
guistic values. Then the linguistic values are processed by the fuzzy rules in the 
rule base in the form of "if-then" through fuzzy implication. The output expressed 
in fuzzy sets after fuzzy implication is finally transformed by defuzzification into 
a nonfuzzy (crisp) output as the output of the system to the outside world. 

C. TYPES OF FUZZY SYSTEMS FOR MODELING 
AND C O N T R O L 

The evolution of the structure of fuzzy systems is mainly affected by the dif-
ferent reasoning methods developed, a better understanding of fuzzy logic, and 
an ambition of wider application. The evolution is too extensive to be fully dis-
cussed. We will restrict our discussion within the context of system modeling and 
control. 
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Rule base 

^—Jruzzification Fuzzy 
sets 
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oniverse-

;fozzification 

Infeienoe engine 

Figure 1 Block diagram for the structure of conventional fuzzy systems for modeling and control. 

The first fuzzy system for a control application was developed by Mamdani [4]. 
In this fuzzy system, one level forward data-driven inference is employed as the 
inference mechanism. The format of his fuzzy rules is 

If ;̂ i is A\ and X2 is A2 and.. . andXn is A„, then y is B, 

where Ai, A2 , . . . , A„ and B are fuzzy sets. It is noted that the consequence of 
implication is a fuzzy set. 

His study showed that fuzzy systems may profitably and easily be used by 
control engineers. A number of successful control applications have been reported 
in accordance with the structure of the fuzzy system ever since. These include 
heat exchange process control [5], steam engine control [6, 7], traffic junction 
control [8], and cement kiln control [9]. The fuzzy system developed by Mamdani 
is referred to as a conventional fuzzy system (Fig. 1). 

In 1985, Takagi and Sugeno [33] modified the consequence of implication from 
fuzzy sets to linear functions and developed the so-called "Takagi-Sugeno fuzzy 
systems" which were applied to parking control of a model car [10]. The format 
of their fuzzy rules is 

\fx\ is Ai and X2 is A2 and . . . and x„ is A„, then 3; = (20 + a\x\ -\ h UnXn. 

The structure of these systems varies significantly from that of the previous ones 
(the conventional ones). As a consequence of implication, they contain a linear 
function by which the output can be computed. (It is noted that the term "Unear 
system" may be interchanged with the term "linear function" in the latter part of 
this chapter.) The aim of the linear function in Takagi-Sugeno fuzzy systems is 
to describe the local linear behavior of the system. Fuzziness, which appears only 
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in the premise part of the fuzzy rule, indicates the uncertainty about which the 
output range of the Hnear function varies. 

Takagi-Sugeno fuzzy systems have a number of advantages by their nature. 
The systems can be easily understood and the local system equations can be di-
rectly related to the local behavior of the system. Each local system can be clearly 
described and the dynamics are separately modeled. Takagi-Sugeno fuzzy sys-
tems include two kinds of knowledge: one is the qualitative knowledge repre-
sented by the if-then rules, and the other is the quantitative knowledge repre-
sented by the local functions. The systems allow us to formulate these two kinds 
of knowledge into a unified mathematical framework. 

In the following subsections, we will discuss the details of each part of a fuzzy 
system. We will give more precise definitions of the terms which will be used in 
the latter sections. 

D. INPUT DOMAIN AND OUTPUT DOMAIN 

Every system has its input and output domains. The input domain and the 
output domain of a fuzzy system are determined in relation to the input universe 
of discourse and the output universe of discourse of fuzzy sets in the fuzzy system. 
When a fuzzy system is designed, the fuzzy sets of fuzzy rules in the universe of 
discourse should have the input domain and output domain covered while the 
fuzzy system is operating. 

DEHNITION 3. Let ;c = [xi X2 . . . XnV ^ R^ be the input vector and 
Sx be the vector space spanned by jc. Ex is called the input space. The subset 
of the space Sx from which a fuzzy system accepts inputs is called the input 
domain U. 

DEFINITION 4. Lety = [yi y2 . . . ymV e R"" he the output vector 
and 3y be the vector space spanned by y. Sy is called the output space. The 
subset of the space Sy to which a fuzzy system delivers outputs is called the 
output domain W. 

E. RULE BASE 

The behavior of a fuzzy system is characterized by a set of linguistic rules 
which constitutes a rule base. A typical linguistic rule is of the following form: 

If (a set of conditions is satisfied), then {a set of consequences can be inferred). 
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The premise of a rule is a condition in the input domain U and the consequence is 
an action to be performed in the output domain W. Because the premises and the 
consequences of these if-then rules are associated with fuzzy concepts, the rules 
are expressed as fuzzy rules, for example. 

If jci is Ai and;c2 is A2, then y is B, (1) 

where xi and X2 are scalar inputs, Ai and A2 are input Unguistic terms repre-
sented by fuzzy sets, and B is an output linguistic term represented by a fuzzy 
set. 

Now consider a general rule base for n-dimensional fuzzy systems whose 
fuzzy rules are in the form 

Ri: If (x is A[ and x is A2 and.. .and jc is A | ) 

or (jc is AJ ^^ and x is AJ _̂ 2 ^^^- • -^^^ ^ is A | ) 

or (x is A | _^_^^ and x is A\^_^_^2 ^^d.. .and x is A |^ ), 

then y is B^ /:/ G {1, 2 , . . . , iiT/}, / = 1, 2 , . . . , L, (2) 

where x is the input vector of the fuzzy systems, the Â  's are fuzzy terms of input 
(input fuzzy terms) which are represented by fuzzy sets, and B^ is a fuzzy term of 
output (output fuzzy terms) which is represented by a fuzzy set. Each rule has Ki 
n-dimensional input fuzzy terms the projection of which into each dimensional is 
the input linguistic terms. The w-dimensional input fuzzy terms are represented 
by n-dimensional fuzzy sets AK A number of input fuzzy terms can be combined 
by AND and then OR to form the premise of a fuzzy rule. 

It is noted that the input fuzzy terms and output fuzzy terms used here are fuzzy 
sets with multidimensional membership functions. 

The fuzzy rules given previously are very general so that the fuzzy rules of 
conventional fuzzy systems can be included. For example, the fuzzy rule in Eq. (1) 
is equivalent to 

If (xi is Ai and X2 is Z) and (jci is Z and X2 is A2), then y is B, 

where Z is a fuzzy universe (Definition 1), or 

If (x is Ai X Z) and (xis Z x A2), then y is B, 

where Ai x Z and Z x A2 are two-dimensional fuzzy sets, or 

If (x is Ai X A2), then y is B, 

where Ai x A2 is a two-dimensional fuzzy set. 
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It should be noted that the multidimensional fuzzy sets which represent the 
input fuzzy terms can be projected into each dimension to obtain the one-
dimensional fuzzy sets to represent input linguistic terms. 

The fuzzy rules in the rule base in Eq. (2) can be rewritten in the following 
equivalent rule base: 

R[: If (jc is A[ and jc is A2 and.. .and x is A | ), then y is Bi also 

R'l^i'. If (JC is AJ _̂ j and x is A | ^2 ^^^' • -^^^ ^ î  M )' ^^^^ ^ ^̂  ̂ ^ ̂ ^^^ 

Ri^Ki • ^̂  (^ ŝ ̂ n _ +1 ^^^ -̂  is ^ i _ +2 ^^^* • -^^^ -̂  is ^/ )' ^^^^ ^̂  is 5/ also 

/ : / € { ! , 2 , . . . , ^ / } , / = 1 ,2 , . . . ,L . (3) 

From the rule base in Eq. (2) and the rule base in Eq. (3), we see that there are 
two ways of implementing fuzzy systems. The rule base in Eq. (2) requires more 
compUcated reasoning and impHcations but less rules, whereas the rule base in 
Eq. (3) requires more rules but less complicated reasoning and implications. The 
first one is preferred here because less rule consequences are advantageous for 
neural network implementation. 

It is noted that the same argument as above can also be applied to Takagi-
Sugeno fuzzy systems by the replacement of the output labels in Eqs. (l)-(3) 
with linear functions. 

F. INPUT FUZZY PARTITIONS 

The input fuzzy partition of the input domain U is related to the interpretation 
of the premise of fuzzy rules in a rule base. There are a number of input fuzzy 
terms (fuzzy sets) in the premise of a fuzzy rule. An inferred fuzzy set of the 
premise of a fuzzy rule can be obtained from the input fuzzy terms (fuzzy sets) 
of the fuzzy rule. The support of the inferred fuzzy set occupies a subspace of 
the input space. So there are a number of subspaces of the input space due to a 
number of fuzzy rules in the rule base. The premise is thus interpreted as a fuzzy 
hypervolume in the input space and hence the collection of the inferred fuzzy sets 
of all fuzzy rules in the rule base constitutes the so-called input fuzzy partition. 
The concept of the input fuzzy partition will be used to describe the mechanism 
of fuzzy inference employed in fuzzy systems for modeling and control. 

DEFINITION 5. Consider a fuzzy system with the rule base in Eq. (2) or an 
equivalent rule base in Eq. (3). Let ^ C Z+ be an indexed set for the input 
fuzzy terms and let /XK'- S X -> [0, 1], A: G ^ , be membership functions. Then 
A^ = {(x, jjikix)) \ X e U C ax},k e Q,2iic fuzzy sets representing input fuzzy 
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terms in the input domain U C Ex characterized by the membership function 
/Xjt. Let ^ be a collection of all subsets of {A^,k e Q). The subset P/ of O = 
{ F | F = n X ' X ^ ^ } i s called an input fuzzy partition of the input domain U if 
the union of the support of all elements of Pi is equal to the union of the support 
of A^, A: G ̂ , and the support of any element of P/ is not a subset of the support 
of any other element of Pj. An element of an input fuzzy partition Pj is called 
an input fuzzy region. If all elements of Pj are the fuzzy sets A^, k e Q, Pj is 
called a direct input fuzzy partition, otherwise P/ is called an indirect input fuzzy 
partition. 

EXAMPLE. Suppose there are fuzzy sets A^ A^, and A^. Then 

vl̂  = {0, {AM, {A^}, {A^}, {A^ A^}, {A\ A^} , {A\ A ^ } , {A\ A^ A^}}, 

and 

= {0, A\ A ,̂ A^ Â  n A^ Â  n A^ A^ n A^ A^ n A^ n A^}. 

Thus a subset P/ of O is an input fuzzy partition if P/ satisfies the requirements 
in Definition 5. For example, see Fig. 2. 

Remark 1. It is noted that each element of a direct input fuzzy partition is 
characterized by the membership function of an input fuzzy term, whereas each 
element of an indirect fuzzy partition is characterized by more than one mem-
bership function of input fuzzy terms. Nevertheless, the membership function of 
an input fuzzy region in an indirect fuzzy partition can be obtained by fuzzy set 
operations of input fuzzy terms and hence the indirect input fuzzy partition is 
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P,={A\A\A^] only Pj ={A\A^} PJ ={A\A^) only 
Figure 2 Examples of input fiizzy partition. 
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equivalent to the direct input fuzzy partition functionally. They are rooted from 
different partitioning methods (which will be discussed in the design examples) 
but their characteristics are the same—^representing the premise of fuzzy rules. 

DEFINITION 6. Let ^ c Z+ be an index set for the rule base in Eq. (2) or 
Eq. (3). Let fuzzy set X^ with membership function ^ik be an input fuzzy region 
of an input partition Pi and X^^^ be the support of X^. If Ujtefi ^sup = ^ ^^^ 
^sup / 0» VA: G ^ , and txk are normalized bell-shaped functions, then the input 
fuzzy partition P/ is said to be normal. If an input fuzzy partition Pi is normal, a 
set PI = {{x \ ixi{x) > iitJ eQ\ {/}}, / e ^} can be defined and is called the 
input crisp partition. An element of the input crisp partition P / is called the input 
crisp region. 

Remark 2. It is noted that the input fuzzy regions are fuzzy sets and the input 
crisp regions are crisp (classical) sets, whereas both the input fuzzy partition and 
the input crisp partition are classical sets of input fuzzy regions and input crisp 
regions, respectively. 

G. AND MATRIX FOR INPUT FUZZY TERMS 

AND INPUT FUZZY REGIONS 

The premise of a fuzzy rule is represented by input fuzzy regions which are 
obtained via AND fuzzy operation of input fuzzy terms. Thus, the linkage of input 
fuzzy terms to input fuzzy regions needs to be specified. The linkage of input 
fuzzy terms and input fuzzy regions can be many to many, which is expressed by 
the AND matrix MAND with binary entries ("1" represents that an input fuzzy term 
links to an input fuzzy region and "0" represents no linkage) as shown in Fig. 3. 
The structure of the AND matrix depends on the input fuzzy partition selected. 
For instance, the AND matrix is an identity matrix for the case that input fuzzy 
partition is direct (Definition 5). 

Input fuzzy terms 

1 0 0 0 0 1 0 

Input 0 1 0 1 0 0 0 
fuzzy 0 1 0 0 1 0 0 
regions 

1 0 0 0 0 0 1 
Figure 3 AND matrix. 
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H, OUTPUT FUZZY PARTITIONS 

The formation of an output fuzzy partition in the output domain W is related 
to the setting up of the consequences of fuzzy rules. Same as the input fuzzy par-
tition, the concept of the output fuzzy partition will be used to describe the mech-
anism of fuzzy inferences employed in fuzzy systems for modeling and control. 

For conventional fuzzy systems, the consequent parts of fuzzy rules are fuzzy 
sets and the fuzzy partition of the output domain is clear. However, for Takagi-
Sugeno fuzzy systems, the consequent parts are linear functions 3; = f(x) without 
any fuzzy set. We can imagine that there is a fuzzy set B with ordered pairs of 
the output y and the membership function /x(j). Because the output range of the 
linear function y = /(;c) of a fuzzy rule with finite input domain t/ is a subset 
B of the output domain W, the membership function of the imagined fuzzy set 
can be defined as /x(j) = 1, Vj e B. The imagined fuzzy set is thus defined as 
B = (B, iJi(y) = I) which is a crisp set, a special case of fuzzy sets. 

DEFINITION 7. Consider a fuzzy system with the rule base in Eq. (2) or 
the equivalent rule base in Eq. (3). Let ^ C Z+ be an index set for the out-
put terms and let (JLI: Ey -^ [0,1], / G ^ , be membership functions. Then 
B^ = {(y, /Jiiiy)) I J € W C Sy}, / G ^ , are fuzzy sets representing output 
terms in the output domain W C Sy characterized by the membership function 
fjiiiy). Let ^ be the collection of all subsets of {B^, I e Q). The subset PQ of 
n = {G I G = f]x^ X € ^ } i s called an output fuzzy partition of the output 
domain W if the union of the support of all elements of PQ is equal to the union of 
the support of B^,l e Q, and the support of any element of PQ is not a subset of 
the support of any other element of Po- An element of an output fuzzy partition 
Po is called the output fuzzy region. 

DEFINITION 8. Let ^ c Z+ be an index set for output terms. Let the fuzzy 
set G ' with a membership function /x/ be the output fuzzy region of the output 
fuzzy partition PQ and G[^^ be the support of G^ If U/efi ^sup — ^ ^^^ ^sup / 
0, V/, and jjii is a normalized bell-shaped membership function, the output fuzzy 
partition PQ is said to be normal. If an output fuzzy partition PQ is normal, a set 
PQ = {{y I jjiiiy) > fii, i e Q\ {/}}, / G ^} is called the output crisp partition. 
An element of the output crisp partition P o is called the output crisp region. 

1. OR MATRIX FOR INPUT FUZZY REGIONS 

AND OUTPUT FUZZY REGIONS 

The premise and consequence of a fuzzy rule are represented by input fuzzy 
regions and output fuzzy regions, respectively. To completely represent a fuzzy 
rule, the linkage of input fuzzy regions and output fuzzy regions needs to be spec-
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Figure 4 Linkage of input fuzzy regions into output fiizzy input regions. 

ified. The linkage of input fuzzy regions and output fuzzy regions of conventional 
fuzzy systems is one to one, whereas in fuzzy systems with the rule base in Eq. (2) 
or the equivalent rule base in Eq. (3) the linkage of input fuzzy regions and out-
put fuzzy regions is many to one (Fig. 4). This approach obviously reduces the 
number of consequences because a consequence can be shared by a number of 
premises of fuzzy rules. 

The linkage of input fuzzy regions and output fuzzy regions can be expressed 
by the OR matrix MQR with binary entries ("1" represents that an input fuzzy 
region links an output fuzzy region and "0" represents no linkage) as shown in 
Fig. 5. It should be noted that there is at least one input fuzzy region linked to 
each output fuzzy region. The structure of the OR matrix MQR depends on the 
input fuzzy partition and the output fuzzy partition selected. For instance, the OR 
matrix can be an identity matrix for the case that an output fuzzy region links to 
one input fuzzy region only (the conventional fuzzy system). 

Input 
fiizzy 
regions 

Output fuzzy regions 

10 0 0 
0 10 0 
0 0 10 
0 1 0 0 
0 0 0 1 
0 0 0 1 

Figure 5 OR matrix. 
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J. FUZZIFICATION 

The task of fuzzification is to map a crisp input of the system to a fuzzy input. 

DEFINITION 9. Fuzzification is a mapping F of the crisp input domain U 
with X into the set 3(X) with fuzzified input X. 

In fuzzy systems for modeUng and control, singleton fuzzification is usually 
employed. The fuzzified input for the crisp input jc is a fuzzy set (fuzzy singleton) 
of an ordered pair (x, JJL(X) = 1) only. 

K. INFERENCE ENGINE 

The inference engine attempts to simulate human decision making based on 
fuzzy concepts. It aims to infer fuzzy outputs by employing fuzzy implication 
and rules of inference in fuzzy logic. For each "If A then J5" rule, a fuzzy relation 
is defined based on fuzzy set operations. The rule can be expressed as a fuzzy im-
plication denoted by A -^ i5 using the defined fuzzy relation. Thus, an individual 
fuzzy output can be inferred by a fuzzy rule in response to the input. The fuzzy 
output of the system inferred is the aggregated result derived from all individual 
fuzzy rules. 

1. Fuzzy Relations 

A fuzzy rule represents some linguistic relationship of input and output; the 
product of the input fuzzy region and the output fuzzy region (linked by MQR) 
forms the fuzzy relation of the input and the output for a fuzzy rule. See Fig. 6 for 
illustration. 

DEFINITION 10. Let A be an input fuzzy region with element JC and mem-
bership function /XA and let B be an output fuzzy region with element y and mem-
bership function /x^. The fuzzy relation on the fuzzy product A x iB is a mapping 
such that /JLR: A X B -^ [0,1] where /x/?(jc, y) = /XA(JC) A /Jisiy) and the fuzzy 
relation set is defined tohe R = {((x, y), fiRix, y)) \ (x,y) e Ax B}. 

For a fuzzy rule in the rule base in Eq. (2), if there is more than one input fuzzy 
region in relation to an output fuzzy region, then the fuzzy relation is combined 
and defined as follows: 

DEHNITION 11. Let Aj,i = 1, 2 , . . . , N, be input fuzzy regions with ele-
ment X and membership functions JJLAJ , j = 1, 2 , . . . , A/̂ , and let 5 be an output 
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is a fuzzy relation set 

Figure 6 Graphic representation of fuzzy relation on the product of input fuzzy regions and output 
fuzzy regions. 

fuzzy region with element y and membership function /x^. The combined fuzzy 
relation on the fuzzy product Uf=i ^j x ^ is a mapping such that 

liRc : I J A; X B ^ [0, 1], 

; = i 

where 

and the combined fuzzy relation set is defined to be 

Re = \{{x. y), iJiRcix, y)) I {x, y)e[j Aj x B\, 

^ ; = i ^ 

The fuzzy relation in a fuzzy system is depicted in Fig. 7. 

Remark 3. It can be seen that Re = U7=i ^J where Rj is the fuzzy relation 
set for rule 7. 

2. Fuzzy Implications 

Using the defined fuzzy relation, a fuzzy rule can be expressed by fuzzy impli-
cation which means that each point in the input fuzzy region maps a point in the 
output fuzzy region. 
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Input fuzzy 
regions 

Output fuzzy 
legion 

Figure 7 Fuzzy relation of fuzzy systems. 

DEFINITION 12. Fuzzy implication is a mapping 0^ of an input fuzzy region 
A into an output fuzzy region B such that, to each ordered pair (x, IJLA{X)) of A, 
an ordered pair (y, jiBiy)) = ^((^, l^ai^))) of B is assigned according to the 
defined fuzzy relation on A x B. 

3. Fuzzy Inference 

Fuzzy logic inference is the mechanism to deduce an output y corresponding 
to an input x by operating fuzzy rules in the rule base. 

In fuzzy systems for modeling and control, one level forward data-driven infer-
ence is employed for inference mechanism, that is, the fuzzy implication inference 
rule, which is the generalized modus ponens (GMP). It is of the form 

premise 1: jc is X 
premise 2: if x is A, then j is J5 

consequence: j is F 

where A, Z, B, and Y are fuzzy predicates. 
For a fuzzy rule expressed as a fuzzy implication using the defined fuzzy re-

lation R, the linguistic value Y of consequence variable y induced from premise 
variable x with linguistic value represented by the fuzzy set X with membership 
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function jxx is given by the fuzzy set 7 = X o /? which is characterized by the 
membership function IJLY = l^x ^ I^R-

DEFINITION 13. Fuzzy inference is a mapping cp of the set 3(X) with all 
fuzzified inputs X into the set 3(Y) with all fuzzified outputs Y such that, to 
each fuzzified input X, a fuzzified output Y = (p{X) is assigned by the operation 
Y = X o R according to the fuzzy relation /? of a fuzzy rule. 

The inference methods of different fuzzy systems are different because of the 
different structures of fuzzy systems although the fuzzy relations of the fuzzy sys-
tems can be expressed as general implication function as mentioned previously. 
Takagi-Sugeno fuzzy systems differ from conventional fuzzy systems in that lo-
cal linear functions in the Takagi-Sugeno fuzzy systems are the consequences 
of fuzzy rules instead of output fuzzy sets. A local function delivers quantita-
tive information to the consequence of a fuzzy rule in response to a quantitative 
input. In conventional fuzzy systems, the local functions are absent so no quantita-
tive output information is available but qualitative output information (the output 
fuzzy sets) are given. Figures 8 and 9 illustrate the inference of different fuzzy 
systems. 

We now consider the overall fuzzy inferences given by all fuzzy rules in a rule 
base. Let Y^ be the inferred output fuzzy set and R^ be the fuzzy relation set 

Input fuzzy 
regioDs 

Output fuzzy 
xegioD 

Figure 8 Inference of conventional fuzzy systems. 
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Figure 9 Inference of Takagi-Sugeno fuzzy systems. 

corresponding to a fuzzy rule k in the rule base in Eq. (3) of K fuzzy rules. The 
overall inferred output fuzzy set is given by 

K K K 

k=l k=l k=l 

Let Y^ be the combined inferred output fuzzy set and let R^ be the combined 
fuzzy relation set corresponding to a fuzzy rule / in the rule base in Eq. (2) of L 
fuzzy rules. The overall inferred output fuzzy set is given by 

^ = Û c = U^°^c = ^°U^c-
1=1 1=1 1=1 

L. DEFUZZIFICATION 

The task of defuzzification is to map a fuzzy output to a crisp output of the 
system. 

DEFINITION 14. Defuzzification is a mapping D of the set 3(Y) with fuzzi-
fied outputs Y into the crisp output domain W with y. 
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A number of schemes have been proposed. A widely used method is the center-
of-area method [35,36]: 

where jji^ix) and jJL^iy) are the membership functions of input fuzzy regions and 
output fuzzy regions, respectively, or 

ELUy^wf^'cM^t^'iyiydy) 
j:Lifyew>^c(^'>^t^'(y)dy)' 

where />6̂ (̂x) and fi^iy) are the membership functions of combined input fuzzy 
regions and output fuzzy regions, respectively. 

Remark 4. For a Takagi-Sugeno system with fuzzy singleton input, the in-
ferred output fuzzy regions are crisp sets and hence the center-of-area method can 
be reduced to the weighted average of fuzzy singletons: 

M. CONCLUDING REMARKS 

This section has considered some basic concepts and the structure of fuzzy sys-
tems for modeling and control which are used for the illustration of fuzzy neural 
networks. In what follows, we will discuss two fuzzy neural network designs. 

IIL DESIGN 1: A FUZZY NEURAL NETWORK 
WITH AN ADDITIONAL OR LAYER 

A. INTRODUCTION 

This section reports the first attempt to solve the problem of neural network 
implementation of higher-order fuzzy systems with fewer hardware requirements 
and faster learning schemes. The fuzzy system used in this work is based on 
Takagi-Sugeno fuzzy systems modified with the introduction of an additional OR 
layer. A local linear system may be associated with more than one input fuzzy re-
gion. With this structure, the number of input fuzzy regions can be large, whereas 
the size of the matrix for local system parameters estimation remains small. Thus, 
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the proposed system is suitable for higher-order complex system modeling and 
control. The proposed system also has the capability of rules generation. 

B. INPUT DIMENSIONAL SPACE PARTITIONING 

The partitioning method is discussed first because the structure of the fuzzy 
system and the architecture of the fuzzy neural network are largely affected by the 
partitioning method used. The input dimensional subspace partitioning method, as 
it is called in this chapter, is a conventional fuzzy partitioning method which has 
been adopted by Takagi [33] and Sugeno [37]. Each dimensional subspace of the 
input space is first partitioned into a number of fuzzy regions and the input fuzzy 
partition is then the product of all input dimensional subspace partitions. The 
partition of the input space depends on the shape of the membership functions. 

The idea of this partitioning method can be illustrated by a two-dimensional 
input fuzzy system with input vector x = [xi ^2]^. It is assumed that the system 
has three fuzzy sets Ai, A2, and A3 with membership functions/>6AI(-^I)» MA2(-^I)» 
and MAsC î), respectively, at dimension 1 and two fuzzy sets Bi and B2 with 
I^Bi (x2) and IJLB2 (xi), respectively, at dimension 2, and the membership functions 
are of the form 

/ (Xi-Wij)^\ 
fij (xi) = expl 2 - " ^ j • 

The premises of the fuzzy rules are 

Ri: If jci is Ai and X2 is Bi, then .. 

R2: If XI is Ai and X2 is B2, then .. 

Ry. If jci is A2 andX2 is 5 i , then .. 

R4: If jci is A2 and X2 is B2, then .. 

R5: If jci is A3 andX2 is Bi, then .. 

Re: If Jci is A3 and X2 is B2, then .. 

or If jc is Ai X Bi,then.. 

or If A: is Ai x B2, then.. 

or If JC is A2 X 5i , then.. 

or If X is A2 X B2, then.. 

or If JC is A3 X Bi, then.. 

or If JC is A3 X J52, then.. 

where Aj x Bk, j = 1,2,3 and k = 1, 2, are two-dimensional fuzzy sets with 
membership function JJLAJ (xi) A M5jt(^2)- If a numeric product is chosen for the 
f-norm A, the membership function of Aj x Bk is 

l^Ajixi) ' llBki^l) = expf-
{X\ - WijY {X2 -

-I y 
Each two-dimensional fuzzy set Aj x Bk is represented by an input fuzzy region. 
The input dimensional subspace fuzzy partitions and the resulting input fuzzy 
partition of the two-dimensional fuzzy system are shown in Fig. 10. 
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Figure 10 Input dimensional subspace partitioning. 

C. STRUCTURE OF THE FUZZY SYSTEM 

The proposed fuzzy system is evolved from Takagi-Sugeno fuzzy systems. 
The main idea of the structure of the Takagi-Sugeno fuzzy system is that in each 
input fuzzy region of the input domain a local linear function is formed. A mem-
bership function />t(jc) e [0,1] of each region is a map indicating the degree of 
the output of the associated linear function belonging to the region. The output 
of the system is the "fuzzy" combination of the output of linear functions in all 
regions. The proposed fuzzy system, on the other hand, has added one more OR 
layer, which allows a local linear system to be associated with more than one in-
put fuzzy region. The proposed fuzzy system also uses a singleton fuzzifier, prod-
uct and sum inference, bell-shaped membership functions, and weighted average 
defuzzifier. 

All input fuzzy terms in the premise part of the fuzzy rules of the proposed 
system are associated with a bell-shaped membership function /x(jc) chosen to be 

/.W = e x p ( - ( ( ^ ) ' ) ) , 

where w,a, and b are its center, width, and shape, respectively, which are tuned 
premise parameters at learning. 

The proposed fuzzy system has a rule base of L fuzzy rules of the form 

Ri: If (jci is A} andX2 is A>} and . . . andXn is An) 

or 

or 

[^xi IS / ir anu X2 is /lo anu . . . anu Xn is J±ri) 

(xi is A^ andX2 is A2 and . . . andXn is An) 

(xi is Aj ^ and X2 is A2 ^ and . . . and jc„ is A„ ^), 
then fi =aQ-\- a[x\ + â ;̂ 2 H h a\^Xn. 
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Equivalently, the fuzzy rules can be formulated as 

Ri^: If xi is A^ and X2 is A2 and . . . and Xn is An , 
then // = (3̂  + a[xi + «̂ X2 H h a^x^ 
is A j^ and X2 is A2̂  and . . . and x„ is An , 
then // = a^ + a[xi + â X2 H h «^^n 

/^/^ : If jci is Aj ^ and ^2 is A2 ^ and . . . and jc„ is A„ ^ 
then // = a^ + ajxi + â X2 H h a^x^. 

The defuzzification is given by 

where 

qi = X ] n^^^^/ (•̂ *̂̂ ' / = 1, 2 , . . . , L, 
ki=l i=i '• 

is the combined firing strength of a set of rules Rki, h = 1, 2 , . . . , AT/, whose 
input fuzzy regions are linked to local system /. The combination of the outputs 
of the local linear systems is the output of the system under consideration. 

It is not difficult to see that the proposed fuzzy system will have fewer con-
sequence parameters than Takagi-Sugeno fuzzy systems because the number of 
local systems may usually be less than the number of input fuzzy regions for 
higher-order systems. 

Consider an nth-order system with each input dimension partitioned into / 
input fuzzy regions. Takagi-Sugeno fuzzy systems require the number of premise 
and consequence parameters of all rules to be 3nJ and (1 + n)7", respectively, 
and hence the size of the matrix for least-squares estimation is (1 + « ) / " x (1 -h 
n)J^. As for the proposed fuzzy system, with the input fuzzy regions combined 
and mapped to L local systems, the required number of premise parameters and 
consequence parameters of all rules are 3nJ and (1 +n)L, respectively, and hence 
the size of the matrix for least-squares estimation is (1 + n)L x (1 -h n)L. For a 
higher-order system, this leads to a great reduction in matrix size, and hence the 
proposed fuzzy system is more suitable for higher-order systems. 
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Figure 11 Structure of the proposed neural network. 

D. ARCHITECTURE OF THE PROPOSED 
NEURAL NETWORK 

Figure 11 shows the structure of the proposed fuzzy neural network. The net-
work is composed of six layers which are made up of a number of neurons. All 
neurons in the same layer are identical in their functions, but neurons may have 
different functions in different layers. A typical neuron is depicted in Fig. 12. 

f ) 

node n in layer r 

V (r\ 
^ % 

Figure 12 Neuron in layer r. 
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On the left of Fig. 12 are the multiple inputs o^^~ \ 02 \ • • •»Op ^ to the 
node, each arriving from another neuron in the preceding layer r — I. The neuron 
performs a function / and delivers output to other neurons in the next layer r +1 : 

where On denotes the output of the nth neuron in layer r and Oj denotes the 
jth output of the neuron in layer r — 1, 7 = 1, 2 , . . . , P. 

We now consider the neurons in each layer. 

Layer 1 

This is an input layer whose neurons represent input variables. The neurons 
just transmit input values to the next layer directly because input fuzzy sets are 
fuzzy singletons: 

Layer 2 

This is an input term layer whose neurons represent the membership functions 
associated with each linguistic term of input variables. Links at this layer are fully 
connected between input neurons and their corresponding terms. We choose the 
bell-shaped membership function as 

»f=»p(-(i^)"), 

where Wj, CTJ, and bj are the center, width, and shape of the membership function 
of the Jth term of the input variable jc/. 

Layer 3 

Layer 3 is an input partition layer whose neurons represent the premise of 
fuzzy rules (input fuzzy regions). Links at this layer are formed in response to 
the AND preconditions of the rules (AND matrix). The neurons perform the fuzzy 
AND operation 

o P = ]^o5^^ for some 7. (5) 



82 Chu Kwong Chak et al 

Layer 4 

This is an output partition layer (combined input partition) whose neurons rep-
resent the output fuzzy regions. Links at this layer are formed in response to the 
OR preconditions of the rules (OR matrix). The neurons perform the fuzzy OR 
operation to integrate the fired rules 

[̂4) ^ ^ ^ ( 3 ) for some it. (6) 

k 

Hence, layers 3 and 4 function as the premise of fuzzy rules. 

Layer 5 

This is a consequence layer whose neurons represent the weighted local linear 
systems. Links at this layer are fully connected. 

J5) fior 

where 
m^tn 

(n is the system order, i.e., the number of input variable x/, / = 1 , . . . , n). 

Layer 6 

This is an output layer whose neurons represent the output variables. This ar-
chitecture shows a single output only. It can be extended easily to a multiple-
output system. Links at this layer are fully connected. The output of the network is 

y = 0^'^ = J2of\ (8) 
/ 

E. HYBRID LEARNING ALGORITHM 

The learning algorithms aim at constructing the fuzzy system by locating 
the initial membership functions, generating the required fuzzy rules, tuning the 
membership functions, and finding the consequence parameters so that the perfor-
mance is optimized through the whole set of training data pairs. However, before 
applying the learning algorithm, we need to choose the input regions for each in-
put variable Xi and the output regions for output y. Because each neuron (input 
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fuzzy region) in layer 3 is connected to one of the input term neurons (input fuzzy 
terms) in layer 2, the initial number of rules is equal to the product of the number 
of input regions of all input variables f]/ N{T(xi)), where N(T(xi)) denotes the 
number of terms of input xi. 

All neurons are initially fully interconnected between layers 3 and 4. After rule 
generation (which will be discussed in phases 2 and 3 of the learning algorithm 
in this subsection), it is expected that the final number of rules will be reduced. 
Each neuron in layer 4 is only connected to one neuron in layer 3. 

The learning scheme consists of four phases. 

Phase 1: Finding the Initial Center and Width 
of the Membership Functions 

In this phase, the centers Wj and widths aj of the membership functions of 
input fuzzy terms are determined. The centers of two membership functions are 
placed at the upper limits and lower limits of the input range at each dimension. 
The other centers of the remaining membership functions are located evenly over 
the input range. The width of the membership function can be simply determined 
by 

^j = l\^j+i-^j\ or aj = ^\wj -Wj-i\. 

As for the output partition layer, the number of output regions needs to be cho-
sen. It is expected that more accurate output can be obtained if the output layer 
is assigned more output regions. Each output region is associated with a local 
system. 

Phase 2: Determining Fuzzy Rules by Competitive Learning 

The purpose of this phase is to determine the relationship between input fuzzy 
regions and output fuzzy regions. Initially, the links between layers 3 and 4 are 
fully interconnected. The weight of the link connecting the kth neuron in layer 3 
and the /th neuron in layer 4 is denoted by a[ and assigned a value of 0.5. A com-
petitive learning algorithm is adopted. For the set of training data pairs ix,y), the 
weights are adjusted as follows: 

A a i = o r > ( - a i + of>). 

(3) 
where 0^ ^ is the output of neurons (the output of the input fuzzy region) in layer 3 
and Oi ̂  is the output of neurons (the output of the combined input fuzzy region) 
in layer 4. 
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Hence, o\ ^ serves as a win-loss index of competition. After competitive learn-
ing, the weight a[ will approach either zero or some other value. The convergence 
proof of this law can be found in [20]. 

Phase 3: Generating Rules 

In the previous phase, the links at layer 4 are fully interconnected; that is, a 
maximum number of rules are considered. However, not all the rules are vital to 
the fuzzy system. The purpose of this phase is to delete those unimportant rules 
and to retain the essential ones based on the result of competitive learning through 
the whole set of training data pairs. The weight of a link that connects a neuron in 
layer 3 (representing an input fuzzy region) and a neuron in layer 4 (representing 
an output region) indicates the strength of the rule affecting the output region. 
The weights of the Hnks that connect the same neuron in layer 4 are compared. 
If the weight of the link is found to be small compared to the maximum one, the 
weight of the link is assigned a 0 (10% is chosen in our simulation example). The 
remaining weights are then assigned a 1. Hence, a[ will be either 1 or 0, which 
indicates the existence of the links connecting neuron / in layer 4 and neuron k in 
layer 3. If there is no link connecting a neuron in layer 3 and a neuron in layer 4, 
the neuron in layer 3 is regarded as deleted (see Tables I and II). The remaining 
{a[} of the reduced network forms the OR matrix and represents the linkage of 
layers 3 and 4. 

Phase 4: Optimizing the Parameters of Membership Functions 
by Error Back Propagation and Finding the Parameters of Local 
Systems by Recursive Least-Squares Estimation 

After the first three phases, the structure of the whole network has been de-
termined. In this phase, error back propagation is applied to tune the parameters 
of the membership functions and recursive least-squares estimation is applied to 
find the parameters of the local linear systems simultaneously. The network can 
be considered as a cascade of a nonlinear system and a linear system. Error back 
propagation is applied to the nonlinear part and recursive least-squares estimation 
the linear part. Figure 13 shows the block diagram for the learning scheme. 

1. Error Back Propagation 

For each training pair (x,z), the system output y = ô ^̂  is obtained in forward 
pass after feeding x into the network. Thus, the purpose of this learning phase is 
that, for a given tih training data pair {x(t), z(t)), the parameters are adjusted so 
as to minimize the error function 

E(t)=^^{z(t)-y(t))\ 



Implementation of Fuzzy Systems 85 

input \ 
7 

Nonlinear 

Part 

/ 

Premise 

Paramel 

Parameters 

Tuning 

ters 

/ 
< 

N 
> 

N 
/ 

Least 
Squares f 
Estimation f 

/ 
V 
/ 
\ 

1 Consequence 
1 Paramet^s 

Linear 1 

Part 1 

EiTor 
Back-
propagation 

output ^ 

y 

V K 
y K 

y target 

\ 

Figure 13 Block diagram for the learning scheme. 

where z(t) is the target output of the tth training data pair and yit) is the current 
output of the network. 

The parameter update laws for Wj, GJ, and bj are found to be (see the Ap-
pendix) 

and 

where 

Awj = -r]J2 
dE 2b j 

o (2) (1) 

do)' oy- wj 

Dij. 

X—̂  dE 2bj ^ 

Abi = 

„, = (M!!^)\.p(_(<fi!_^)'') 
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2. Recursive Least-Squares Estimation 

In addition to applying error back propagation for tuning the membership func-
tions, recursive least-squares estimation is used to find the consequence parame-
ters of the local linear systems. From Eqs. (7) and (8), we have 

(6) _ E/ //^r 
y = o'-^ = 

Elo] (4) 

where // = a^ -\- Yl^^i ^\^i (^ is the system order, i.e., the number of input 
variable Xi,i = ! , . . . , « ) . a| are the parameters needed to be estimated. 

Let us define at the tih training data pair the cost function J: 

t t 

where e(t) is the estimation error given by 

e(t) = z(t) - y(t) = z(t) - (I>(tf0(t - 1), 

e(t) = [a\t) a\t) . . . a^iof with a^(t) = [al^(t) a{(t) 4 ( 0 - - - a i ( 0 ] , 

and 

0 denotes the Kronecker matrix operator. 
Then recursive least-squares estimation can readily be applied to find the pa-

rameters 6 such that the cost function J is minimized. The algorithm for updating 
the parameters is 

^ ^ ' ^ - ' ^ ^ ' '^ Htypit-imt) ' 

with ^(0) given and P(—1) a positive-definite matrix. 

E SIMULATION EXAMPLES 

EXAMPLE 1. The proposed neural network is trained to model a three-input 
nonlinear function y = (l-\- x^'^ -h ̂ ^^ + -̂ 3"̂ *̂ )̂  which was also used by Takagi 
and Hayashi [38] and Sugeno and Kang [37] to verify their approaches. An input 
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Figure 14 Convergence of some strengths of the links between input fuzzy regions and output fuzzy 
regions. 

range [1, 6] of each dimension is divided into three fuzzy regions, each of which 
is associated with a Gaussian membership function. The output range is divided 
into eight output fuzzy regions, each of which is associated with a local linear 
system. Twenty-seven rules are thus constructed initially, and 216 training data 
pairs, the input part of which is randomly generated within the input range, are 
used to train the network. 

The initial shape of the membership functions after the first phase of hybrid 
learning is shown in Fig. 17 (later in this chapter). After the second phase of hy-
brid learning, the strengths of the links connecting input partition neurons and out-
put partition neurons converge. Figure 14 shows the convergence of the strengths. 
After the third phase of hybrid learning, the rules are determined. Table I shows 
the rules before the rule reduction, and Table II shows the rules after the rule 
reduction. Nine rules are deleted. In the last phase, a step size k = 0.001 was 
selected for the proposed system. In addition, both the adaptive network fuzzy 
inference system (ANFI) [19] and the fuzzy radial basis function (FRBF) [21] are 
also simulated in order to evaluate the proposed system. The step sizes for them 
are also selected to be A; = 0.001. For the sake of comparison, we use the same 
performance index adopted in [37]: 

Average percentage error (APE) = — V^ x 100%, 
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where P is the number of data pairs and z{p) and y{p) are the p\h desired output 
and network output, respectively. 

It is noted that the number of consequence parameters in ANFI is 108 and 
in the proposed system it is 32. The results of the performance of the networks 
are shown in Figs. 15 and 16. The results indicate that the performance of the 
proposed system is close to that of ANFI and is much better than that of FRBF. 
Figures 15 and 16 show that the curve is "L" shaped. The average percentage error 
approaches its optimal value after two-epoch training. This is due to the fact that 
the parameters of the local systems have converged. This impUes that the conver-
gence of the parameters of local systems plays a dominate role for system esti-
mation accuracy. The remaining time is just for fine tuning the parameters of the 
membership functions. Thus, the training required to achieve acceptable accuracy 
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Figure 15 Performance comparison. 

for the proposed network is expected to be fast. Figure 17 shows the membership 
functions before training; Figs. 18-20 show the membership functions after train-
ing. Figure 21 shows the convergence of the consequence parameters. Figure 22 
shows the performance of the proposed neural network. 
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Figure 16 Performance comparison. 
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Figure 17 Initial shape of membership functions for :ti, ;t2, and xj • 

EXAMPLE 2. The proposed neural network is also trained to model an oper-
ator's control of a chemical plant [39]. In [39] the first three inputs were identified 
as being significant to the model. Thus, in this simulation, only the first three in-
puts are selected. Each input range is divided into two fuzzy regions. The output 
range is divided into four fuzzy regions. The simulation results after 30-epoch 

3 4 5 6 7 

xl 

Figure 18 Final shape of membership function for ;ci. 
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Figure 19 Final shape of membership function for X2. 

training are shown in Fig. 23. These results indicate good performance of the 
proposed neural network. 

EXAMPLE 3. Finally, we deal with an example of the trend data of stock 
prices [39]. The data set consists of ten inputs and one output (a higher-order 
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Figure 21 Convergence of some consequence parameters. 

system). Each input range is divided into two fuzzy regions. The output range is 
divided into seven fuzzy regions. The simulation results after 100-epoch training 
are shown in Fig. 24. The simulation results demonstrate that the proposed neural 
network performs well. 
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Figure 22 Output of the nonlinear function. 
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Figure 23 Output of plant operation model. 
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G. CONCLUDING REMARKS 

A neural network implementation of a new fuzzy system has been proposed. 
Unlike the standard Takagi-Sugeno fuzzy system (in which the number of local 
linear systems is the same as the number of input fuzzy regions), the proposed 
system introduces an additional OR layer, which is a means of controlling the 
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Figure 24 Output of stock price model. 
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growth of the number of local linear systems when the order of the system under 
consideration increases so that least-squares estimation can be applied without 
much performance degradation. The simulation results showed that even though 
the number of local linear systems is reduced, the performance of the proposed 
system is encouraging. It is expected that a better performance can be achieved 
if more local linear systems are allowed by dividing the output domain into more 
output fuzzy regions. 

IV. DESIGN 2: A FUZZY NEURAL NETWORK BASED 
ON HIERARCHICAL SPACE PARTITIONING 

A. INTRODUCTION 

In this design, the Takagi-Sugeno fuzzy systems is implemented within the 
framework of a sigmoid function neural network, which is one of the most popular 
feedforward neural networks. The fuzzy neural network adopts the hierarchical 
space partitioning method for its structure selection. The partitioning method is 
based on the idea of recursively partitioning the regions of the worst performance. 
The performance of the system improves as this partitioning process continues 
until some performance criterion is satisfied. Thus, the number of input fuzzy 
regions (corresponding to fuzzy rules or neurons) is determined automatically in 
accordance with the prespecified error. The fuzzy neural network is suitable for 
higher-order fuzzy system implementation. 

B. HIERARCHICAL INPUT SPACE PARTITIONING 

The input fuzzy partition is formed by hierarchical partitioning of the input 
domain, that is, by recursive hyperplane cutting of the input domain. Figure 25 
illustrates the idea of hierarchical input space partitioning. For each cutting, two 
input fuzzy terms A^^~^ and A^^ are formed by the cutting plane gj{x) shown 
in Fig. 26. The combination of the input fuzzy terms with fuzzy AND opera-
tions results in a set of input fuzzy regions which represent the premise of fuzzy 
rules. The relationship between the input fuzzy terms and the input fuzzy regions 
can be expressed by the AND matrix MAND, and the matrix can be constructed 
systematically in accordance with the mechanism of hierarchical input space par-
titioning. 

The mechanism of hierarchical input space partitioning can be illustrated as 
follows. Given a set of input and output data, a Unear cutting plane gi(x) = 0 
is searched in the input space, which divides the input domain U into two input 
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Figure 25 Hierarchical input space partitioning. 

crisp regions, say, G^ and G^, to optimize some performance index. On the linear 
cutting plane gi(x) = 0, there are two membership functions assigned which 
are complementary to each other. It can be seen that two fuzzy sets (input fuzzy 
terms), say, A^ and A^, corresponding to G^ and G^, respectively, can be formed 
as shown in Fig. 26. The two fuzzy sets are complementary to each other. The 
input fuzzy partition becomes {A^ A^} as shown in Fig. 25a corresponding to the 
first step of input space partitioning. The AND matrix 

MAND =[J?] 
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g.(x) 

Figure 26 Input fuzzy terms and membership functions. 

can be constructed. The generate rule base consisting of two fuzzy rules is 

R\\ If jc is A^ then..., 

Rr. Ifxis A2,then.... 

If the performance is not satisfactory, one of the input fuzzy regions with the 
worst performance, say, A^, is selected to be partitioning again. Suppose another 
linear cutting plane giix) = 0 is searched in the input domain U, which cuts U 
into two other input crisp regions, G^ and G^. On the linear cutting plane giix) = 
0, there are two other membership functions assigned which are complementary 
to each other. It can be seen that there exist another two fuzzy sets, say, A^ and 
A^, corresponding to G^ and G^. The four fuzzy sets (input fuzzy terms) A^ A^, 
A^, and A^ with AND fuzzy set operations can constitute a number of different 
input fuzzy partitions (Definition 5). Because A^ is selected to be partitioned, the 
resulting input fuzzy partition is {A^ A^ Pi A^, A^ fl A"̂ } as shown in Fig. 25b 
corresponding to the second step of input space partitioning. The AND matrix 
MAND becomes 

MAND = 

"1 0 ] 0 0 
0 i j 1 0 

"0 1 0 1 

The generated rule base consisting of three rules is 

Ri: If X is A^ then..., 

R2: Ifx is A^ and x is A^, then..., 

R3: Ifx is A^ and x is A^, then 

This procedure is repeated again and again until some criterion is satisfied. 
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After four cuttings, for example, the hierarchical input space partitioning 
shown in Fig. 25d is completed. The generated fuzzy rule base consisting of five 
fuzzy rules is as follows: 

Ri: If jc is A^ andx is A^, then..., 

i?2- If-̂  is A^ and x is A^, then..., 

R3: If X is A^ and x is A^, then..., 

R4: If JC is A^ and x is A^ and x is A^, then..., 

Rs: If JC is A^ and A: is A^ and JC is A^, then..., 

where A^ are input fuzzy terms. 
The corresponding AND matrix which describes the previous structure (the 

relationship of the input fuzzy terms and the input fuzzy regions) is updated re-
cursively and can be represented as 

MAND = 

1 0 0 0 1 0 0 0 
0 1 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 
1 0 0 0 0 1 1 0 
1 0 0 0 0 1 0 1 

(9) 

With the AND matrix, the preceding rule base can be expressed as 

Ri: IfjcisX^then.. . 

R2: IfjcisZ^, then. 

7̂ 3: IfJcisX^then.. . 

R4: IfjcisX4,then. 

7̂ 5: IfjcisX^,then.., 

where XJ are input fuzzy regions. The structure can also be represented by a bi-
nary tree structure shown in Fig. 27. The structure of the fuzzy neural network 
shown in Fig. 28 can be evolved because of the hierarchical input space partition-
ing which leads to the generation of fuzzy rules. 

C. STRUCTURE OF THE FUZZY SYSTEM 

The fuzzy system to be implemented is a Takagi-Sugeno fuzzy system with 
a singleton fuzzifier, product inference, sigmoid membership functions, and 
weighted average defuzzifier. 

Let us consider an n-input and m-output Takagi-Sugeno fuzzy system with 
input vector jc = [jci JC2 • • Jc«]^ in input domain U and output vector y = 
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Figure 27 Binary tree structure representation of fuzzy rules. 

[y\ yi '" ymV in output domain W, The hierarchical space partitioning 
method is adopted for the fuzzy system. The cutting plane gk(x) = 1 + WkX = 0 
cuts the input domain U to form two input fuzzy terms A^^~^ and A^^. Two 
complementary membership functions for the two input fuzzy terms at the cutting 

Figure 28 Evolution of the fuzzy neural network. 
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plane are chosen to be, respectively, 

v/h&re aiPkgkix)) = 0.5(1 + tmhi-PkgkM)) and 

I^A^k(x) =a\Pkgk(x)), 

(10) 

(11) 

where cr\Pkgk(x)) = 0.5(1 - tmh(-Pkgk(x))). 
With hierarchical space partitioning, an input fuzzy partition of the input do-

main is thus formed which is characterized by a structured AND matrix MAND-

The inferred membership function of the input fuzzy region X^ (corresponding 
to the rule Rj) is thus obtained by i^xj (x) = Ylt MA' M ^^^ ̂ H ^^V^^ fuzzy terms 
A^ linking to the input fuzzy region XJ (for all entries x with value 1 in row j of 
the AND matrix). If the input fuzzy terms formed by cutting planes are comple-
mentary to one another, it can be shown that Y^j fixJ M = 1 fo^* ̂H J (inherent 
normalized membership functions). The fuzzy rule Rj is 

RJ: If JC is XJ\ then yJ = a^x. 

where 

a^ = 

*io 

2̂0 

^30 

L^mO 

'n 
^21 

3̂1 

^ml 

'n 
2̂2 

3̂2 

^ml 

'In 

^2n 

^3n 

^mn 

j = l,2,...,L, 

X = [Xl X2 Xn] , ^ = [1 Xl X2 xnf, yj = [yi yi 
yfnV , and X^ is the input fuzzy region derived from input fuzzy terms A' using 
the AND matrix MAND-

The preceding equations form a fuzzy rule with multidimensional input vari-
ables and multidimensional membership functions. The fuzzy rule Rj is imple-
mented by fuzzy imphcation Rj : X^ -> Y^ and defined as follows: 

l^Rj = ^^xi ^ f^YJ = f^xJ' 

where Y^ is a crisp set of local system output 3̂ .̂ 
The fuzzy inference engine is a decision-making logic which employs fuzzy 

rules from the fuzzy rule base to determine the weight output of each local linear 
system. The inference output YJ of the rule Rj is YJ = X o Rj where Y^ is a 
fuzzy set characterized by membership function jjiyj = Mx(^) A JJLRJ with input 
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fuzzy set X. Consider the fact that the input fuzzifier is a singleton. Then we have 
y^ = X o Rj where x and yj are fuzzy singletons. 

The defuzzification is the weighted average of local Unear systems output 

y = —=^7^ — — = 2^f^xjMy M because ^fixjM = l. 

D. ARCHITECTURE OF PROPOSED FUZZY 
NEURAL NETWORK 

In this section, the architecture of the proposed fuzzy neural network is ad-
dressed. The proposed fuzzy neural network is constructed according to hierar-
chical input space partitioning discussed in Section IV.B and the fuzzy system 
structure discussed in Section IV.C. As shown in Fig. 29, the network is a six-
layer sigmoid function neural network with a number of neurons in each layer. 
A typical neuron performs a function / and delivers its output to neurons in the 
next layer 

where o„ denotes the output of the nth neuron in layer r and Oj ^ denotes the 
output of the jth neuron in layer r — 1, j = 1,2,..., P. 

We now consider the neurons in each layer. 

Layer 1 

This is an input layer. Its neurons represent input variables. The neurons just 
transmit input values to the next layer directly because input fuzzy sets are fuzzy 
singletons: 

Layer 2 

This is the cutting plane layer. The output of its neurons represents the output 
of cutting plane gj{x). The links to the neurons represent the coefficients of the 
cutting plane. The neuron function is 

of^ = gj(x) = l-i-WjX, 

where the M;/S are the coefficient vectors of cutting plane gj(x). The neuron 
performs the weighted summation. 
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

Figure 29 Architecture of the proposed fiizzy neural network. 

Layer 3 

This is an input term layer. Each of its neurons represents an input fuzzy term 
of a fuzzy rule. There are two input fuzzy terms associated with one cutting plane. 
The complementary membership functions are chosen to be a sigmoid function 
for the pair of input fuzzy terms A^J~^ and A^J: 

.(2) (2)\ 4-^1 = ^( - Pjor) = 0.5(1 + tanh ( - Pjof^)) 

and 
.(2) (2)\ 4 7 = ^\ - Pjof) = 0.5(1 - tanh ( - ^ ,o f ) ) . 
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The neuron performs the sigmoid function. The weights of the Unks have a value 
of l . 

Layer 4 

This is an input fuzzy partition layer. Each of its neurons represents an input 
fuzzy region. The links represent the entries of the AND matrix MAND- The neu-
rons perform the AND function o| ^ = ]"[ o- for all input fuzzy terms A^ linking 

to input fuzzy regions X^ (for all entries x with value 1 in row / of the AND 
matrix). 

Layer 5 

This is a local system layer whose neurons represent local linear systems. The 
neurons perform multiplication and a local linear function. The weights of the 
input links have a value of 1. The neuron function is 

^/? = ^ r //P' P = 1 , . . . , m and / = 1, 2 , . . . , L, (12) 

where fip=a^pQ-\-Zl^^^^pi^i-

Layer 6 

This is an output layer whose neurons represent the output variables. The out-
puts of the network are 

L 

>'/' = ^f = E^ /? ' P = l,2,...,m. (13) 
1=1 

The neurons perform summation functions. The weights of the links have a value 
of 1. The outputs of the neurons are the outputs of the neural network. 

E. LEARNING ALGORITHM 

A hybrid algorithm with the capability of structure selection and parameter 
tuning is developed for MIMO systems with input x e R^ and output z € R"^. 

The performance index is defined as the normalized root mean square error 
(NRMSE) 6 which is given by 

s = 

N m'^'^V'' 
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where yp is the pth output of the fuzzy neural network and Zp is the pih output of 
the modeled system, Zp = max/(zp(r))—min^ (Zp(0), Â  is the number of training 
data pairs, and m is the number of output dimensions. 

Suppose modeling error s is required to be less than a prespecified error y for 
the fuzzy neural network with the given (x(t), z(t)) data pairs forr = 1, 2 , . . . , Â . 
For the convenience of applying the hybrid algorithm, x's are normalized within 
1. The following hybrid algorithm is developed which consists of a number of 
steps: 

1. Determine a linear system. 
2. Create a cutting plane. 
3. Expand the AÂ D matrix. 
4. Create the structure of local systems and initialize the local system 

parameters. 
5. Calculate the output of the inferred membership function of each input 

fuzzy region. 
6. Search for cutting plane parameters and local system parameters. 
7. Find the derivatives of the output of the fuzzy neural network with 

respect to cutting plane parameters. 
8. Find the derivatives of the output of the fuzzy neural network with 

respect to local system parameters. 
9. Check stopping conditions and find the worst region. 

10. Go to 2. 

1. Determine a Linear System 

When the training starts, there is no partition of input space and thus there 
exists only one linear system and one input fuzzy region which is the input domain 
{/. It is a special case of the fuzzy neural network in which there is no rule because 
there is no input fuzzy partition. In this special case, the fuzzy neural network is 
equivalent to a linear system. 

A pseudo-inverse technique can readily be applied to find the parameter a of 
the linear system by 

a = (XX ) 'XZ 

where 

^ = [ . a ) .(2) ::: . w ] -^ ^=^(^) ^^^^ ••• ^(^>]-

The modeled output is 7 = a^X. If the modeling error e defined in Eq. (14) is 
less than y, the learning is completed. The structure of the fuzzy neural network 
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is merely a linear function. Otherwise, the following learning steps are required. 
In this case, the parameter a of the linear system is denoted by a^ for later use. 

2. Create a Cutting Plane 

There is only one region which can be selected to be cut if this step inmiedi-
ately follows step 1 because fuzzy partitioning has not started yet. Otherwise, the 
region required to be cut has been chosen at step 9 and the output of the inferred 
membership function of each input fuzzy region has been calculated at step 5. At 
this step, a cutting plane is created to cut the selected region. For generaUty, sup-
pose that it is the A;th cutting plane gk{x) and the input fuzzy region X^ is selected 
to be cut. 

The output of the inferred membership function /X;̂ ; {x) = o- of the selected 
region governs the importance of the data to the selected region. The weighted 
average of the input data XQ with respect to this region is used for setting the 
initial cutting plane, that is. 

Xn 
T.til^xii^it))x{t) 

Etif^xji^it)) 

where /JLXJ (x(t)) = Oj \t). It should be noted that XQ cannot be 0. 
The initial setting of the cutting plane is to find an equation gk(x) = l-\- WkX = 

0 such that it passes through the point Xo. However, there are many cutting planes 
passing through XQ. One of the planes is randomly selected as the initial solution. 
The values of the entries of Wk are obtained by 

uJ 

WXo 

where the values of the entries of w are randomly assigned between 0 and 1. If 
w = 0,w will be generated again. 

3. Expand the AND Matrix 

With the cutting plane initially selected, the selected region can be cut into two 
splitting regions. This cutting plane actually cuts the whole input domain U into 
two parts as well as the selected region. Two membership functions fi^ik-i (x) and 
fiji^ikix) are assigned to form two input fuzzy terms A^^~^ and A^ .̂ The mem-
bership functions selected for the input fuzzy terms of the fuzzy neural network 
are, respectively, 

^2k~i = /̂ A2 -̂i M = 0-5(1 + tanh ( - Pkgk(x))) 



Implementation of Fuzzy Systems 105 

and 

41 = /̂ A^K )̂ = 0.5(1 - tanh ( - Pkgkix))). 

The input fuzzy terms A^^~^ and A^^ with the selected membership functions are 
obviously complementary to one another. 

Because the input fuzzy region X^ is selected to be split (one more rule is 
generated) by the cutting plane gk{x) (there are a total of A: + 1 regions formed), 
the AND matrix is expanded and a new matrix is obtained as follows: 

yifnew _ 

0 0' 

1 0 

0 0 
0') 0 1. 

} jih row 

{k + l)th row 

where Mf^r^{j) denotes the yth row of Mf^j^, 

4. Create the Structure of Local Systems and Initialize 
the Local System Parameters 

The additional local system f^^^ is required to be added in response to input 
fuzzy region splitting. The matrix of the newly added local linear system f^^^ 
is initialized by a^^^ = aK It should be noted that the two newly added mem-
bership functions ^.j^ik-i (JC) and ii^^ik (x) will not affect other input fuzzy regions 
except for the region selected to be split. However, because the initial membership 
functions are complementary to each other and the parameters of the newly added 
local linear system a^'^^ is the same as the one a^ associated with the region X^ 
selected to be cut, the performance of the splitting regions remains the same. That 
is, the performance of the fuzzy neural network is retained at the time of splitting. 
This property is very attractive for real-time learning processes. 

5. Calculate the Output of the Inferred Membership 
Function of Each Input Fuzzy Region 

The value of the output of membership functions of input fuzzy regions can be 
obtained by fuzzy set operation on the membership functions of input fuzzy terms. 
With respect to membership functions, the outputs of input fuzzy regions are the 
r-norm of the output of input fuzzy terms. In this design, the numerical product 
is selected as the r-norm for connective AÂ Z). Because the linkage of input fuzzy 
terms and input fuzzy regions is expressed by the structured AND matrix, the 
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matrix provides a systematic way of performing the calculation. Therefore, the 
output of the input fuzzy regions is simply obtained using the AND matrix by 
performing the following steps: 

1. Reversing the O's of the AMD matrix into 1 's and the 1 's into O's. 
2. Adding each row of the AND matrix with the output of input fuzzy terms 

o^^^ (which are obtained by substituting x into the membership functions 
of input fuzzy terms because input is a fuzzy singleton). 

3. Performing min(x, 1) for each entry x of the AND matrix. 
4. Multiplying all entries at the same row of the AND matrix. 

For example, consider the following AND matrix MAND as in Eq. (9) which 
represents five input fuzzy regions (five fuzzy rules) and eight input fuzzy terms 
(four cutting planes). Suppose the output of input fuzzy terms is 

o<̂ ^ = [0.9998 0.0002 1.0000 0.0000 0.6154 0.3846 0.9977 0.0023]. 

Thus, the previously mentioned four steps lead to 

0 1 1 1 0 1 1 1 ' 
1 0 0 1 1 1 1 1 
1 0 1 0 1 1 1 1 
0 1 1 1 1 0 0 1 
0 1 1 1 1 0 1 0 

0.9998 1.0002 2.0000 1.0000 0.6154 1.3846 1.9977 1.0023 
1.9998 0.0002 1.0000 1.0000 1.6154 1.3846 1.9977 1.0023 
1.9998 0.0002 2.0000 0.0000 1.6154 1.3846 1.9977 1.0023 
0.9998 1.0002 2.0000 1.0000 1.6154 0.3846 0.9977 1.0023 
0.9998 1.0002 2.0000 1.0000 1.6154 0.3846 1.9977 0.0023 

0.9998 1.0000 1.0000 1.0000 0.6154 1.0000 1.0000 1.0000' 
1.0000 0.0002 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 0.0002 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 
0.9998 1.0000 1.0000 1.0000 1.0000 0.3846 0.9977 1.0000 
0.9998 1.0000 1.0000 1.0000 1.0000 0.3846 1.0000 0.0023 

'0.6153' 
0.0002 

4. I 0.0000 
0.3836 
0.0009 

ando('̂ ) = [0.6153 0.0002 0.0000 0.3836 0.0009]. 
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6. Search for Cutting Plane Parameters and Local 
System Parameters 

Both the parameters Wk and fik of the new cutting plane gk(x) and the param-
eters Gj and fljt+i of the local systems fj and /^+^ of splitting regions X^ and 
X "̂̂ ,̂ respectively, are required to be searched so as to achieve locally optimal 
performance. 

The extended Kalman filter algorithm [40-42] is adopted for the search. The 
update laws of the extended Kalman filter algorithm are 

Ke(t) = k-^Pe(t-l)H0(t){l-^k-^Hl(t)Pe(k-l)He(t))-\ 

0(t) = 0(t-l)^Ke(t){zit)-y(t)), 

Pe(t) = k-^Pe(t - \)-X-^Ke{t)Hj{t)Pe{t - 1), 

where KQ is the Kalman gain and He is the gradient matrix. The entries of the 
gradient matrix He are the derivatives of the output of the fuzzy neural network 
with respect to the tunable parameters 

0 = 

Wk 

nk+l 

that is, 

He(t) = 

dy^(wk,x(t)) 

dwk 
dy^(Pk,x(t)) 

dy'^iaJ^xit)) 

daJ 

aa^+i 

Wk=Wk(t-l) 

aJ=aJ(t-l) 

The algorithm is initialized with Pe{0) = / and Wk(0) and a^^^(0) to the values 
found at steps 2 and 4, respectively. 

7. Find the Derivatives of the Output of the Fuzzy Neural 
Network with Respect to Cutting Plane Parameters 

The derivatives of the output of the fuzzy neural network with respect to cut-
ting plane parameters can be illustrated by an example. Consider a two-input 
m-output fuzzy neural network having four cutting planes with parameter ma-
trix w of size 4 x 2 and five local linear systems with five parameter matrices a^, 
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j = 1, 2 , . . . , 5, each of size m x 3. The AND matrix of the fuzzy neural network 
is as in Eq. (9). 

From Eqs. (12) and (13), the system function is obtained 

y = hff^ 
= a(;8i(l + wix))a{Ml + W3x))fi + a'(;8i(l + wix))a{fi2(l + W2x))f2 

+ a ' (^ i ( l + wix)y{Mi + mx))h 

+ or()Si(l + wix))a'{P3{\ + wzx))a{PA{\ + Wix))U 

+ a()Si(l + wxx))a'{p2{\ + W3x))a'{p^i\ + W4x))f5, 

where y e /?'" is the output of the neural network and fk e R'",k = 1,2,.. .,5, 
are the outputs of the local linear systems. 

For implementing the extended Kalman filter algorithm, the derivatives of y 
with respect to all wj, j — 1, 2 , . . . , 5, are required, dy^/dw^ are selected for 
illustration: 

dy^ ^ da(Mi + W3x)) ^j ^ da'iPiil + w^x)) ^ , j , 

9iW3 9u)3 dwi 

N3 =(r{Ml+Wix))fi, 

N^ = cr(/Si(l + wix))a{Ml + W4x))f4 

+ (r{Plil + Wlx)y{P4il + W4X))f5. 

+ ^ ( 0 . 5 ( 1 - tanh (̂ 63(1 + W3^))))A^f 

= 0.5ftA:(l - tanh^ (^3(1 + W3x)))N^ 

- 0.5jS3;c(l - tanh^ ((63(1 + W3x}))N^^ 

= 0.5)63^(1 - tanh^ ()33(1 + W3X})){NJ - iVf). 

Similarly, the derivatives of y with respect to ^3 are 

a ^ " ^ ( 0 . 5 ( 1 + t a n h ( ^ 3 ( 1 + u;3x))))A^3^ 

+ 7^(0.5(1 - tanh(ft(l + W3X))))N^^ 
0P3 

where 

Then 
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= 0.5(1 + W3;c)(l - tanh^ (psil + W3X)))NJ 

- 0.5(1 + u)3Jc)(l - tanh^ (^3(1 + W3X)))N^^ 

= 0.5(1 + u;3jc)(l - tanh^ (̂ 63(1 + W3X))){NJ - iVf). 

The expressions of Â3 and TVj represent outputs of two subnetworks. Thus, the 
evaluation of N3 and N^ can be achieved by using reduced MAND, that is, 

M^^o = [l 0 0 0 1 0 0 0] 

and 

^̂  _ r i 0 0 0 0 1 1 0 ] 

'''^AND - [ l O O O O l O l J ' 

which are obtained by deleting the rows of MAND-, 

W\ 

1 0 
0 1 
0 1 
1 0 
1 0 

W2 

0 0 
1 0 
0 1 
0 0 
0 0 

U>3 

1 0 
0* 0 
0* 0 
0* 1 
0* 1 

IU4 

0 0 
0 0 
0 0 
1 0 
0 1 

delete 
delete 
delete 
delete 

and 

1 0 
0 1 
0 1 
1 0 
1 0 

U>2 Wi 

0 0 
1 0 
0 1 
0 0 
0 0 

1 0* 
0 0* 
0 0* 
0 1 
0 1 

W4 

0 0 
0 0 
0 0 
1 0 
0 1 

delete 
delete 
delete 

corresponding to the O's (which are marked by *) of the first column and the 
second column of Wi, respectively. 

The procedure for finding N-i and ATj is similar to the procedure described 
at step 5 with the modification that the entries of ô ^̂  corresponding to 103 are 

replaced by 1 's so the output of input fuzzy terms for Af̂ ŷ ^ and M^^ is modified 
to be 

[0.9998 0.0002 1.0000 0.0000 1.0000 1.0000 0.9977 0.0023]. 

Thus, iV3 = 0.9998/1 and N'^ = 0.9915U + 0.0023/$. 
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In general, 

^ = 0.5;6;;c(l - tanĥ  {^j{\ + WJX))){NJ - N'/). 

The evaluation of Nj and Â .̂ can be achieved by using reduced MAND^ that is, 

^AND ^^^ ^AND which are obtained by deleting the rows of MAND corresponding 
to the O's of the first column and the second column of Wj, respectively. Using the 
same procedure as before, all dy^/dwj can be evaluated. Similarly, 

^ = 0.5(1 + wjx){l - tanh2 (^,(1 + WJX))){NT - Nf) 
apj 

can also be found by the same procedure. 

8. Find the Derivatives of the Output of the Fuzzy Neural 
Network with Respect to Local System Parameters 

The derivatives of the output of the fuzzy neural network with respect to local 
system parameters a^ are 

dy^(aJ,x(t)) 

From Eqs. (12) and (13), 

daJ aJ=aJ{t-\) 

1=1 

where o^"^^ has been calculated at step 5. Then 

dy^ (4) ^fj (4) T 
— - = o) ^ —A- = o) ^x . 
daJ J daJ J 

9. Check Stopping Conditions and Find the Worst Region 

After the selected region is split so as to add a new local system and the re-
quired parameters are updated, the performance of the system is checked. If it 
satisfies the criterion, that is, if it is within the prespecified modeling error y, 
the learning stops and the trained fuzzy neural network is ready for application. 
Otherwise, the fuzzy neural network needs further structure evolution (partition-
ing). The performances of all existing regions are inspected to see which one is 
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the worst. The performance of the input fuzzy region XJ (modeUng error 8j) is 
defined as follows: 

Ef=iMx>(^(0) 

The region with the worst performance is selected to be divided. 
where /x^; (jc(0) = ^(0^- • 

R SIMULATION EXAMPLES 

EXAMPLE 1 (Approximating a Second-Order Highly Nonlinear Function). 
The algorithm is illustrated by a simulation example of modeling a two-input one-
output nonlinear function z = 0.5(1 + tanh(5(.y/jcr + ^f ~ ^))) ^^^^ input vector 
X = [xi X2V. N = 1000 data pairs are generated randomly for the learning. The 
error threshold y is chosen to be 0.03 and membership functions are chosen to be 
/XA2;-IM = 0.5(1 + tanhi-Pjgj(x))) and jjLj^y (x) = 0.5(1 - tanh(-^;gj(x))) 
with initial fij = 10. The whole set of data is presented one time for each step of 
the partitioning. 

The progress of learning is listed in Table IIL 
Figure 28 shows the evolution of the fuzzy neural network during the learning 

period. After learning, the fuzzy neural network has five rules (with modeling 

Table IH 
Progress of Learning 

Step of partitioning 
Number of fuzzy rules generated 
Modeling error before tuning 
Modeling error after tuning 
Modeling error of each region 

Selected region to be divided 

1 
1 

0.1410 
0.1410 
0.1410 

1 

2 
2 

0.1410 
0.0470 
0.0417 
0.0484 

2 

3 
3 

0.0470 
0.0396 
0.0419 
0.0305 
0.0259 

1 

4 
4 

0.0396 
0.0324 
0.0181 
0.0312 
0.0259 
0.0314 

4 

5 
5 

0.0324 
0.0281 
0.0172 
0.0304 
0.0259 
0.0197 
0.0151 
Stop 
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error 0.0281). The structure of the fuzzy neural network is described by the AND 
matrix in Eq. (9). The matrices for the local systems are 

ax = [-0.0654 0.2453 0.1253], 

fl2 = [0.1949 0.2973 0.7599], 

a3 = [0.4234 0.2856 0.3882], 

a4 = [-0.3616 0.7633 0.3296], 

and 

as = [-0.2263 0.4798 0.4247], 

and the parameters for the cutting planes are 

w = 

-0.8236 -1.1106 
-0.7217 -0.6269 
-1.9574 -1.0580 
-0.5615 -1.9895 

and p = 

9.9517 
10.0018 
10.0001 
10.0002 

The performance is then verified by 2 1 x 2 1 = 4 4 1 checking data pairs. The 
checking modeling error is found to be 0.0430. The shapes of the nonlinear func-
tion and the modeling function are shown in Figs. 30 and 31, respectively. The 
shape of the input fuzzy regions (partition) is depicted in Fig. 32. The perfor-
mance is shown in Fig. 33. 

EXAMPLE 2 (Modeling a Bioreactor [42]). The aim of this simulation is to 
show that the proposed fuzzy neural network can model a multioutput dynamical 

Figure 30 Shape of the nonlinear function. 
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0 0 

Figure 31 Shape of the modeUng function. 

system efficiently with a few number of rules. In this simulation, the model of the 
bioreactor describing a process involving a continuous-flow stirred tank reactor is 
given by 

XI = -xiu-\-xi(l - X2)Qxp (^—^y 

.2 = - X 2 . + x i ( l - X 2 ) e x p ( — ) ^ ^ ^ ^ — - , 
1.02 

yi = XI, yi = -^2, 

0 0 

0.S 

Figure 32 Shape of input fuzzy regions. 
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Figure 33 Outputs of the fuzzy neural network and the function. 

where x\ is the cell mass in dimensionless form, X2 is the amount of nutrients in 
a constant-volume tank, bounded between zero and unity, and the control u is the 
flow rate of nutrients into the tank (the same rate at which contents are removed 
from the tank). 

The dynamical equations are computed with MATLAB ode23. We define 
AT = 0.5 s as the sampUng period which defines the intervals for sampling the 
system states. The control u(kAT) to the system was assigned to be a sequence of 
random numbers between 0 and 1 at the first 100 samples but was assigned to be 
0 and 1 at the last second 50 samples and the last 43 samples, respectively. Thus, 
193 data pairs (zi(kAT), Z2(kAT), u(kAT)) were obtained. The first 30 data 
pairs and the last 163 data pairs are used for checking and training, respectively. 
The structure of the linear local systems j is chosen to be 

yl(t) = alQ-\-al^yiit - l)-\-a(2y2(t - l)+ai^yi{t - 2) 

+ a^yiit - 2) + al^u(t - 1) + a(^u(t - 2), 

yi(t) = a^Q + a^^yiit - 1) + a^^yiit - 1) + 4^yi(t - 2) 

+ «24>'2(̂  - 2) -f a^25^(t - 1) + a^2^u{t - 2). 

The error threshold y is chosen to be 0.05 and membership functions are 
chosen to be IJLJ^2J-I(X) = 0.5(1 + tSinh(-Pjgj(x))) and /x^2;(x) = 0.5(1 -
tmh(-Pjgj(x))) with initial Pj = 10. The whole set of data is presented five 
times for each step of the partitioning because the amount of training data is small. 
The progress of learning is listed in Table IV. 
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Table IV 

Progress of Learning 

Step of partitioning 
Number of fuzzy rules generated 
Modeling error before tuning 
Modeling error after tuning 
Modeling error of each region 

Selected region to be divided 

1 
1 

0.1005 
0.1005 
0.1005 

0 
0 
0 
1 

2 
2 

0.1005 
0.0603 
0.0597 
0.0535 

0 
0 
1 

3 
3 

0.0603 
0.0526 
0.0526 
0.0525 
0.0342 

0 
1 

4 
4 

0.0526 
0.0467 
0.0557 
0.0518 
0.0341 
0.0212 
Stop 

After learning, the fuzzy neural network will have four rules (with modeling 
error 0.0467). The structure of the fuzzy neural network is described by the AND 
matrix 

MAND = 

1 0 1 0 1 0 
0 1 0 0 0 0 
1 0 0 1 0 0 
1 0 1 0 0 1 

the matrices for the local systems 

a = 

a^ = 

a'^ 

and 

a' = 

0.4299 -0.0798 -0.5016 0.0155 0.1956 1.3347 -0.4054 

0.1991 -0.0019 -0.6027 -0.1158 -0.0488 1.0303 1.2425 

0.3709 0.0685 -0.2123 -0.1683 0.1306 0.9048 -0.4515 

0.2612 0.1988 -0.3438 -0.1151 0.0553 0.3603 0.6290 

0.3497 -0.0119 -0.3407 -0.0549 

0.2216 0.2618 -0.7121 -0.0778 

0.4023 -0.1009 -0.2157 -0.1350 

0.1643 0.0952 -0.5536 -0.1412 

0.2623 1.1379 

-0.2333 0.8263 

-0.4120 

1.0669 

0.1578 1.1694 -0.4998 

-0.0972 0.9290 1.0771 
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so 100 150 200 

Figure 34 Performance of y\. 

and the parameters for the cutting planes 

w = 

0.0145 
-0.3188 
-0.0144 

0.1322 
-0.7451 
-0.4121 

-0.3542 
-0.0080 
-0.0557 

-0.5017 
0.0267 

-0.5296 

-0.6951 
-0.4675 
-0.7257 

-0.4850 
-0.5322 
-0.7301 

and 

P = 
9.9938 

10.0000 
10.0017 

$0 100 150 300 

Figure 35 Performance of y2. 
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The checking modehng error is found to be 0.0583. The performance is shown in 
Figs. 34 and 35. 

G. CONCLUDING REMARKS 

An adaptive neural network implementation of fuzzy systems has been pro-
posed. The proposed fuzzy neural network has the capabilities of self-organization 
and adaptation through the proposed hybrid learning algorithm which can deter-
mine the structure of the fuzzy neural network and tune the parameters of the lin-
ear local systems and the membership functions. By applying hierarchical input 
space partitioning, the proposed fuzzy neural network can determine the num-
ber of rules or neurons automatically to achieve a prespecified modeling error. In 
addition, the fuzzy neural network has the following attractive properties: 

1. Sigmoid neural network structure (i.e., perception neural network). 
2. Inherent normalized membership functions. 
3. Simple learning algorithm for implementation. 
4. The performance of the fuzzy neural network is retained at the time of 

region splitting (evolution). 

The simulation result showed that the proposed neural network has the capability 
of self-organizing and adaptive learning. 

V. CONCLUSION 

The aim of this chapter has been to investigate the techniques of implementing 
fuzzy systems within the framework of neural networks for modeling and control. 
Two fuzzy neural network designs have been developed in this chapter. 

The structure of the fuzzy neural network in the first design has been intro-
duced with an additional OR layer based on standard Takagi-Sugeno fuzzy sys-
tems. This makes it useful for the implementation of higher-order fuzzy systems; 
the proposed fuzzy neural network provides a means of controlling the growth 
of the number of local linear systems when the order of the system under con-
sideration increases so that least-squares estimation can be applied without much 
performance degradation. In the second design, an attempt has been made to de-
velop an adaptive fuzzy neural network by using hierarchical space partitioning. 
It has the capability of determining the structure of the network and the num-
ber of neurons automatically. Together with the extended Kalman filter algorithm 
proposed in the fuzzy neural network which requires no tunable parameter, the 
performance of the fuzzy neural network can be optimized in one training pro-
cess. 
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It can be seen that the approach of the fuzzy neural network is a possible so-
lution to fuzzy systems design. The learning capability of fuzzy neural networks 
makes the design procedures for fuzzy systems more systematic. 

APPENDIX 

Recall 

^^ = - ( , ( 0 -0^^ ) ) . 

From Eqs. (6)-(8), we have 

where // = OQ + YTi=\ ^l^i ^"d n is the system order. Thus, 

dE _ ^E_do^ 

From Eq. (6), we have Oi = J^k ^k • Thus, 

dE dE do^"^^ dE 
(4)-

(Note: dE/do\. of the k\h neuron in layer 3 is the same as dE/doi of the /th 
neuron in layer 4 if the two neurons are linked.) 

From Eq. (5), we have 

i 

- V — ^ - V (— FT o(2)̂  
~ ^do? do? ~^\^o?\\l' r ^ (2) 

00 J j^ UUj^ UUj y. XUC^ q^q^j 

We derive the parameter update laws: 

dE^_dE^^_^ dE^_dE 9 ^ ^E _ dE ^of^ 

^^j ~ dof ^^j ' 9^7 "" dof^ ^bj ' 9^; "~ dof^ ^^j ' 
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where Wj, bj, and GJ are the tuning parameters. From Eq. (4), we have 

;pll)"'-e.p(-(<^)''). 
•̂  3 

Thus, 

9£ ^̂  (of>-u;,)/(oP-«;,)2\^-l A (2) V- 9^ o,, ioY'-Wj)({oY'-WjYV 

From Eq. (4), we also have 

Thus, 

9^ Ô  (of'-»/^y•)V(oP-«^7•)^^*^•"' 

From Eq. (4), we also have 

'""f =-XoJ^^'-^i^"\(^^'-'"i^"\'''' 
dbj 

J 

Thus, 
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I. INTRODUCTION 

This chapter presents an approach to simulating, and in several cases efficiently 
so, a wide variety of rule-based reasoning processes by means of networks formed 
by nonlinear thresholded neural units. In particular, the following networks are 
examined: 

1. networks representing knowledge bases formed by propositional 
production rules and performing forward chaining on them; 

2. a network monitoring the elaboration of the forward chaining system and 
learning new production rules by an elementary chunking process; 

3. networks performing qualitative forms of uncertain reasoning, such as 
hypothetical reasoning in two-level causal networks and the application of 
preconditions in default reasoning; 

4. networks simulating elementary forms of quantitative uncertain reasoning. 

The possible uses of these techniques are partially exemplified by the overall 
structure and implementation features of a purely neural, rule-based expert sys-
tem for a diagnostic task. Here, the expression "purely neural" indicates that in 
addition to knowledge representation and processing proper also the control and 
synchronization functions that are needed to schedule the given diagnostic task 
are achieved by means of neural networks. 

Fuzzy Logic and Expert Systems Applications 
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 1 2 3 
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The neural representation of rules is based on a localist, rather than distributed, 
semantic interpretation: each propositional Uteral appearing in a rule is repre-
sented by means of an individual neuron. Moreover, even when rules are learned, 
they are not acquired by standard neural learning techniques. Finally, their appli-
cabihty is governed by essentially rigid conditions, even when rules are used to 
simulate forms of uncertain reasoning. In the latter case, rule firing is tailored to 
reflect rigorous models of reasoning under incomplete or uncertain knowledge, 
so that the uncertainty attached to their conclusions can be evaluated in robust 
theoretical settings. 

In view of these qualifications, one has to state explicitly what is the interest of 
a neural architecture of this sort for rule-based systems, because the learning and 
adaptivity typical of neural nets play a secondary role in the present approach: 
systems that are designed to fulfill these constraints remain brittle on the whole, 
much in the way that traditional symbolic systems are. Clearly, their interest lies 
elsewhere: 

(i) Neural net implementations of production systems naturally lend them-
selves to parallel execution. Given appropriate hardware or software support, 
these networks can be used to build applications in domains where real-time re-
sponses are a crucial demand. 

(ii) The absence of semantically opaque, hidden layers of neurons governed 
by learning algorithms guarantees the possibility of providing an informative jus-
tification for the conclusions obtained by stepwise inferential processes. 

(iii) The neural simulation of various sorts of rule-based reasoning makes 
available a wide repertoire of technical tools for unified approaches to neurosym-
bolic integration where, in contrast with hybrid approaches, symbolic processing 
is carried out by a neural network, too. 

(iv) Revisable reasoning is very naturally modeled by means of neural settings 
that include negative weights, as the neuron outputs of these networks are not 
intrinsically monotonic functions of their inputs. 

These points will be taken up again both in the concluding remarks and in com-
ments accompanying the presentation of more technical material in the main body 
of the chapter. 

IL NONLINEAR THRESHOLDED 
ARTIFICIAL NEURONS 

The artificial neurons used throughout this chapter are weighted-sum, nonlin-
ear thresholded elements which may keep memory of past activity by means of a 
memory decay function. These artificial neurons are obtained by a modification 



Neural Networks and Rule-Based Systems 125 

of Caianiello's classical neural equations (see Caianiello [1]). The state equation 
for one of these neurons, say, A, is 

Uh{t + l) = l ^^^j,h ' Uj{i) 'Sh(t - i) - Sh 

.j=li=0 
(1) 

where Uh(i) is the state (1 or 0) of the neuron h at time /; ajh is the weight 
(or coupling coefficient) between neurons j and h; 8h{i) is a monotone, nonin-
creasing function of the discrete time / for neuron h regulating a time variable 
memory of the excitation received by h from its neighbors (this memory "de-
cay law" plays a crucial role in modeling various forms of uncertain reasoning 
by thresholded neural elements, as it allows one to encode numerical values by 
sequences of neuron firings); Sh is the threshold of/i; and 

^^^ [0 , i f x < 0 , 

is the step function determining the state of each neural unit. 
The specific settings for each neural element h can be described by means of 

a "characteristic triple": 

Nh = {AhJh.Sh}, 

where Ah is a set of pairs {{j,x)}, where x is the value of the weight between 
neurons j and h;8his the memory decay law for h; and Sh is the threshold of h. 

The "characteristic triple" notation will be omitted whenever a detailed de-
scription of particular (types of) neural elements is not needed. 

III. PRODUCTION RULES 

A production rule is a pair consisting of a condition part and an action part (see, 
e.g., Genesereth and Nilsson [2, pp. 274-280] or Grzymala-Busse [3, pp. 17-28]). 
The particular production rules that we shall be concerned with can be cast in the 
form of conditional expressions of the form 

piA'-'Apk^h, (R) 

with the restriction that both the k elements of the condition part on the left-hand 
side of the arrow and the only element of the action part on the right-hand side are 
propositional literals (where a literal is a propositional letter or the negation of a 
propositional letter in sentential logic). 

Because no specific inference scheme for handling negation will be introduced 
in this chapter, no greater inferential power is achieved by permitting literals, 
rather than just propositional letters, to appear in rules. Nonetheless, allowing for 
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literals in the context of the present approach is useful in at least two respects. 
First, it furnishes external sources of information (typically, human users of rule-
based systems) with greater expressive power during query processes (the external 
source may directly inform a system handling literals that the negation of a certain 
proposition holds). Second, it enables one to introduce a control mechanism for 
explicit contradictions, which detects whether contradictory pairs of literals occur 
in a database formed by the set of asserted literals expressing known facts (such 
as the literals asserted by an external source) and literals obtained by an inference 
engine working on production rules and asserted facts. 

By adding to a production system formed by a finite set of rules of form (R) 
a database containing literals expressing/acr^ and a rule interpreter, one can im-
plement search processes on facts and rules. The facts database is a record of 
assertions, whether inferred by applying the rules or asserted by other means (for 
instance, by an external source of information). The rule interpreter works itera-
tively in recognize-and-act cycles, which can be used to implement various kinds 
of searches. Forward and backward chaining are basic search strategies for pro-
duction systems, which may be suitably amalgamated to obtain mixed strategies. 

The inferential strategy we shall be mainly concerned with in this chapter is 
forward chaining. In forward chaining, one checks whether the condition parts of 
production rules are satisfied and, if so, performs the corresponding action parts. 
This process is iterated until no rule with a satisfied condition part can be found. 

The main building block of a neural inference engine for parallel forward 
chaining is the neural representation of individual rules. In view of the fact that 
the state function of the neurons described in the previous section can assume 
only values of 1 and 0, these thresholded elements can provide, under a localist 
semantic representation. Boolean-valued information about the literals to which 
they are associated. 

Under such localist semantic interpretation, each rule of the form (R) can be 
represented as a net having k neurons pi,..., Pk connected to a neuron h (see 
Fig. 1) with the following settings: 

aj,h = 1, l< j <k, 

Sh — k — s, 0 < £ < 1 , 

n f̂  f 1, if / = 0 
Sii(i) = 8^(i), where 8^ is { (i.e., there is no memory). 

10, if / 7̂  0 

By (1) and the previous settings, one has 

uh(l) = l 

• k 

J2^pj(0)-(k-s) 



Neural Networks and Rule-Based Systems 127 

Figure 1 Neural rule model. 

Thus, 

Uh{\) = l iffV7Wp/0) = l, 

that is, the neuron h is active (its state is 1) at time r = 1 if and only if all 
pi,.,., Pk sue simultaneously active at time ^ = 0. More in general, 

Uh(t + l) = l iffyjupj(t) = l. 

Thus, the behavior of the net formed by the neurons pi,..., Pk and h reflects 
faithfully the behavior of a rule interpreter used in forward chaining when applied 
to a rule of the form (R): whenever the condition part of such a rule is satisfied, 
its action part is executed (in the case of an inferential process, this execution 
amounts to adding literal h to the database). 

IV. FORWARD CHAINING 

Using this representation of rules as basic building blocks, one can design neu-
ral networks representing production systems formed by rules of the form (R) and 
capable of performing a parallel process of forward chaining on them. Because 
the process is parallel, all rules whose condition part is satisfied can be simulta-
neously applied, and therefore no particular scheduling for rule firing is needed. 
However, there are some crucial problems that have to be addressed: 

• Correctness. How to ensure that rules will fire only when their condition 
part is fully satisfied; 

• Control. How to verify that the process has come to an end, namely, that no 
more literals can be inferred on the basis of the available information; 

• Output. How the results of forward chaining are to be read off from the 
network when the inference process has been completed. 
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Let us examine in some detail how these constraints can be fulfilled in the 
specific case of the following system of rules: 

b ^ d, 

e Ad ^^ a, 

-"J Ac ^- (2, 

d Aa ^^ b. 

A neural inferential engine, capable of carrying out forward search on this 
system of rules, starting from an initial set of asserted facts, is formed by five 
distinct layers of neurons (see Fig. 2). The first layer {IN) accepts external inputs 
to the net. It is formed by as many neurons / Â^ as different propositional literals 
appear in the rules (in this particular case, 1 < 7 < 6). 

d -.d IN 

(I) (f) (p (f) (T) (I) 

excitatory 
impulses 

inhibitory 
impulses 

DB 

OUT 

Figure 2 Neural forward chaining. 
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Each neuron / Â ; is connected to the neuron DBj representing the same literal 
in the second layer DB. The characteristic triple of the generic neuron INt in this 
layer is 

Its first element represents the action of an external source, EXTi\ the second 
element is the decay law, while the third element is the threshold of INt, with 
0 < £ < 1. The symbol "s" will assume, unless otherwise stated, an arbitrary 
positive value less than 1. 

The second layer {DB) is a partial database formed by as many neurons as in 
the layer IN. These elements store the premises introduced in the IN layer: the 
neuron DBj becomes active at time ^ + 1 whenever the neuron INj is active at 
time t and preserves this information by self-excitation. The characteristic triple 
for the generic neuron DBi in this layer is 

^DBi^{{{INiA)ADBiA)Y8\e]. 

The third layer {KB) codifies the entire knowledge base. Here, each rule is rep-
resented as in the previous section, with the additional condition that if a literal 
p occurs as the right-hand side (or, as we shall also say, as the conclusion) of z 
rules, then z distinct neurons—each one representing an occurrence of p in the 
conclusion part of those rules—^have to be introduced in this layer. This additional 
condition is crucial to ensure that rules are correctly activated. It is needed to avoid 
that a neuron representing p can be activated from a combination of premises be-
longing to different rules having /? as a conclusion. These z neurons are connected 
to a neuron /?* which represents all occurrences of p as the left-hand sides of pro-
duction rules and fires on the neural representative of the right-hand sides of those 
rules. 

Because the elements represented by neurons are propositional literals, one 
may obtain an inconsistency in this layer if both an atomic proposition and its 
negation become simultaneously active. Even supposing that the knowledge base 
itself is consistent, inconsistencies may still be introduced if one allows external 
sources of information to assert new facts. The system is capable of signaling such 
explicit contradictions because each pair of neurons representing contradictory 
Hterals is connected to a neuron belonging to the control layer. The latter becomes 
active when both elements of the pair are active. (See, e.g., the pair formed by the 
neural representatives of J and -^d in Fig. 2.) 

The characteristic triples of the neurons KBt vary according to their role in 
the system of production rules. For neurons representing literals appearing only 
in condition parts of production rules, we have 

^KBi^[{{KBiA)ADBiA)]j\8]. 
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The characteristic triple for a generic neuron KBi representing a Uteral pi occur-
ring only once as conclusion in the system of rules, say in a rule r with q literals 
in its condition part, is 

where ^ ^ j , . . . , ^ 5 j are the q neurons in KB representing the literals in the 
condition part of rule r. 

When a literal pt occurs as a conclusion in z different rules (with z > 1), the 
characteristic triple for each of the neurons KBJ,..., KBf representing these z 
occurrences is 

Nj,Bi ^ {{{KBl,qi), {KB]i,l},.. .,{KBf.,l)},S'',qi - s}, l = l,...,z. 

These z neurons fire on a neuron KB* which represents all occurrences of p in 
the condition parts of the production rules. The characteristic triple for such KB* 
is 

NKB* = {{{KB*, I), [DBi, 1), [KB}, l ) , . . . , [KBj, l)}, 5°, e}. 

The inferential process is triggered by exciting neurons in IN and its results are 
codified by active neurons in KB. One can easily verify that no scheduling is 
necessary for carrying out this process, because all rules whose condition part is 
satisfied in the KB layer are simultaneously applied. 

The control problem can be solved by introducing a distinct layer C of m neu-
rons, where m is the number of possible different conclusions in the system of 
production rules. Each neuron Ct in C represents a literal appearing as a conclu-
sion; it receives impulses from all z neurons, with z > 1, that represent the same 
conclusion in KB, and activates the corresponding neuron OUTi in the layer OUT. 
The latter, once excited, sends back an inhibition, equal to z + 1, to the neuron 
Ci in the layer C. Moreover, each neuron C/ can fire on the special neuron Ctrl 
which is active as long as new conclusions are reached. Another special control 
neuron end is inhibited by Ctrl, with strength m+1, and is excited by each neuron 
OUTi. Thus, end is inactive until Ctrl is active, that is, until new conclusions are 
reached. When nothing else can be inferred, Ctrl becomes inactive. As a result, 
end is no longer inhibited and becomes active, thus signaling that the forward 
process on the input data is terminated. 

The characteristic triples for each neuron Ct vary according to the role it plays 
in the system of production rules. For a neuron Ct representing a literal appearing 
as a conclusion in just one rule, we have 

^Ci^[[{KBiA)A0UTi,-\)]j\8]. 
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For a neuron C/ representing a literal appearing as a conclusion in z production 
rules 

Nc, ^ [{{KBl 1>, {KB}, 1 ) , . . . , {KBl 1), (O^/T;-, - ( Z + 1))}, 5^ £}. 

And the characteristic triples for the special control neurons are 

^ctrl ̂  { U {(C„1>},5^A 
^ dec ^ 

U [{OUTi, 1)} U [{end, 1)} U {{ctrl, -{m + 1))}, S\ sV 
OUTteOUT ^ 

If KB contains pairs of neurons x and -^x representing contradictory literals, 
then for each pair a distinguished neuron (-^xx) is created, which becomes active 
if and only if both elements of the pair are simultaneously active in KB. 

N-.^:c^{{{^x,l)Ax,l)}J^2-s}, 

This mechanism enables the system to signal that a contradiction has been de-
rived. 

The output problem is solved through a layer OUT of m neurons, where m 
is again the number of possible different conclusions in the system of production 
rules. Each neuron in OUT is excited by the corresponding neuron in C and is self-
excited in order to store this information. The characteristic triple for the generic 
neuron in OUT is 

NouTt ^ {{{OUTi, 1), {Ci, 1)}, 8^, s}, / = ! , . . . , m. 

When the forward process terminates, the end neuron becomes active and signals 
that the process has been completed; the active neurons in the layer DB store the 
initial input; other active neurons in KB indicate both asserted and inferred facts; 
the active neurons in the layer OUT represent the conclusions of production rules 
which have been reached by forward chaining under the initial assumptions stored 
in DB, 

This neural architecture can be used for implementing neural forward chaining 
mechanisms for arbitrary systems of production rules of form (R). In particular, 
one can specify an algorithm which, given in input a system of propositional pro-
duction rules of form (R) presented in a certain canonical form, outputs a neural 
network for executing forward chaining on that system of rules (see Burattini 
et al [4]). 

Any such system of rules is allowed to contain cycles (unlike, e.g., the KBANN 
neural production systems of Towell and Shavlik [5]): a literal appearing as a con-
sequent in one rule can appear in the antecedent of another rule. Moreover, several 
rules may share the same consequent. As we pointed out previously, this latter 
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possibility requires, to preserve the correctness of forward inferencing, that each 
occurrence of a Hteral appearing in the consequent part of the rules be represented 
by a distinct neuron. 

Finally, it is worth emphasizing that the localist semantic interpretation of neu-
rons in terms of literals enables one to provide an informative justification for the 
conclusions reached in each run of this forward chaining mechanism. In Burattini 
et al. [4, pp. 97-99], we have described how to organize a neural network moni-
toring the activity of a forward chaining net and exhibiting a trace of the shortest 
inferential paths from the initial premises to each one of the conclusions obtained 
by forward chaining. 

V. CHUNKING 

A. CHUNKING AND PRODUCTION SYSTEMS 

In his Unified Theories of Cognition, Newell [6, p. 185] gives the following 
description of chunking in a rule-based problem solving system: 

Chunking is learning from experience. It is a way of converting goal-based problem-
solving into accessible long-term memory (productions). Whenever problem-solving 
has provided some result, a new production will be created, whose actions are these 
just obtained results and whose conditions are the working-memory elements that ex-
isted before the problem-solving started that were used to produce the results. This 
newly minted production will be added to the long-term memory, and will henceforth 
be available to add its knowledge to the working memory in any future elaboration 
phase where its conditions are satisfied. 

In the setting of the forward chaining system described in the previous section, 
the condition part of a new chunk that may be added to a long-term knowledge 
base is to be identified with the conjunction of the facts (propositional literals) 
from which a run of the forward chaining process starts; and the action part of the 
same chunk is the conjunction of the literals inferred in the same run of forward 
chaining. 

More formally, a chunk may be viewed as an ordered pair (/, C), where, for 
k,m > I, I = {pi,..., pk) isthc set of initial data provided to the system in a 
given run of forward chaining and C = {^i,..., ^^j is the set of literals derived 
in that run of forward chaining starting from / . These chunks may be cast in the 
form 

PI A'" Apk^ qiA'" Aqm 

and thus may differ in their right-hand sides from the rules of form (R) we have 
considered so far, where m = I. 
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Even independently of any consideration about their significance in cognitive 
modeling, chunking mechanisms in rule-based systems may play a significant 
role in artificial intelligence (AI) applications, both for the automatic acquisi-
tion of knowledge bases and for the design of more efficient problem-solving 
strategies. In this section, we are concerned with the use of chunking mechanisms 
for addressing the latter problem. In particular, we describe a chunking mech-
anism generating rules which codify associations between initial data and final 
outcomes of a forward chaining process. Once these rules are stored, these out-
comes can be immediately recalled upon presentation of the same initial data, 
without having to repeat the forward chaining process. Chunking mechanisms 
generally give rise to what, following Tambe et al. [7], may be called cognitive 
and computational effects. The cognitive effect is the reduction of the number 
of (inferential) steps needed to carry out a given task. The computational ef-
fect is the increase in the amount of time needed to carry out each individual 
step. Thus, what is gained in efficiency by reducing the number of steps is of-
ten lost by an increase in execution time for each step. Clearly, when chunks 
take the form of production rules, the time required for executing the match-
ing process between data in working memory and the conditions of production 
rules may increase. In fact, more rules have to be scanned, and the newly intro-
duced rules may contain more complicated conditions than those present in the 
original system of rules. Another related phenomenon may be called the memory 
saturation effect: given preassigned finite memory capacities, a system endowed 
with a chunking mechanism, which cannot "forget" some of the previously stored 
chunks, will be eventually unable to make room for newly acquired and possibly 
more useful chunks. In view of the computational and memory saturation effects, 
an efficient use of chunking mechanisms requires a computational agent capable 
of 

(a) leaving unaltered the access time to knowledge when new chunks are 
added, and 

(b) attenuating the incidence of the memory saturation phenomenon. 

The neural system for chunking on systems of production rules described here— 
extracting associations between initial data and final outcomes of a forward chain-
ing process—does satisfy condition (a). Condition (b) is satisfied as well, if the 
relative frequency of the use of chunks is regarded as a satisfactory criterion for 
deciding which chunks have to be "unlearned" by the system. The chunks stored 
by the system enable it to reduce processing time: whenever a set of input data 
coincides with or strictly contains the literals in the first element / of a stored 
chunk, at the next step the system outputs the literals in its second element C. 

Constructing a chunking mechanism of this sort, which can efficiently cope 
with the computational and memory saturation problems, requires solving the 
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following problems: 

(i) recognizing an input pattern previously presented to the system in order 
to recall the chunks with conditions matching the input pattern (or else storing an 
input pattern presented for the first time to the system); 

(ii) keeping track of how often the stored chunks are used during the system 
operation, in order to discard less often used chunks when new chunks have to be 
acquired; 

(iii) executing operations (i) and (ii) in a preassigned time, independently of 
the size of the input patterns and the number of stored chunks. 

B. NEURAL MODULE FOR CHUNKING 

The neural chunking module (CM for short) and the algorithm Recorder that 
we have implemented and described in previous papers affords a sensible solution 
to these problems. (See Burattini et al [4] for a discussion of the difficulties which 
may arise in attempting to solve simultaneously problems (i)-(iii) by means of 
multilayer connectionist networks, Hopfield nets, or Grossberg's ART networks.) 

At the end of each run of the forward chaining system, the algorithm Recorder 
isolates a chunk (/, C), where, for k,m > I, I = {p i , . . . , pk) is the set of 
initial data provided to the system in that run and C = {^i,..., ^^1 is the set 
of Uterals derived by forward chaining starting from /. If the chunk (/, C) was 
already stored in CM as a result of previous runs of the system, this fact is signaled 
by CM, and the algorithm Recorder merely modifies the weights of the neural 
units in CM that are devoted to storing data about the relative frequency of use of 
chunk (/, C). Otherwise, the chunk (/, C) is stored in CM. In the latter case, the 
new chunk (/, C> may replace one of the previously stored chunks that have been 
less frequently used during the system operation. 

Because the example of a forward chaining network examined in the previous 
section was representative of the fine structure of our networks, our descriptions 
shall be comparatively more sketchy in this section. The overall structure of the 
module CM is outlined in Fig. 3. The various kinds of information provided by 
the neural units belonging to its submodular components are briefly described 
hereinafter. 

Let jc be a variable ranging over literals and let / be the set of initial data 
currently provided to the forward chaining system. Then 

• at the start, if x is an element of the set / , then the neural representative of 
X in PATTERN_0N and the neural representative of x in PATTERN_OFF 
become active; 

• at the end, if the neural representative oix in PATTERN_OUT is active, this 
means that CM retrieves x from recorded chunks: JC is a conclusion already 
inferred by a previously performed forward chaining from the set / . 
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Figure 3 Chunk module (CM). 

Let j be a variable ranging over indexes which can be associated by the system 
to a chunk. Then 

• if the neural representative of j in INDEX_BF is active, then j is already 
associated to a stored chunk^; the system is not going to select j as the 
index for a new chunk; 

• if the neural representative of j in INDEX becomes active, then the set / 
matches the first part of a chunk that was stored and associated to the 
index y; 

• if the neural representative of j in SUBJNDEX becomes active, then the 
set / contains a subset of literals which matches the first part of a chunk 
previously stored and associated to the index j . 

The algorithm Recorder stores each chunk (/, C) by constructing two differ-
ent links. The first link (LI) connects every literal (actually, their neural rep-
resentatives) in / with a given index 7, whereas the second link (L2) connects 
index j with the neural representatives of all the literals in C. This mechanism 
enables one to eliminate interferences between nonorthogonal patterns affecting 
traditional neural associative memories, such as the multilayer perceptron (see 
Rumelhart and McClelland [8]) and the linear associators (see Kohonen [9, 10]): 
links (LI) and (L2) establish a one-one correspondence between the first and 
second element of each chunk. 

Let us now describe how CM operates. 
Upon presentation to the system of an input set of literals / , three different 

cases may occur. In the first case, for every index j the first element of the chunk 
(/y, Cj) is different from / and the third case described in the following discus-
sion does not hold. In this case, CM does not recall any stored chunk. However, 

^ See Section V.C for a description of the selection procedure and the role of the INDEXJBF layer. 
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when forward chaining on / is completed and outputs a nonempty set of hterals C, 
the algorithm Recorder selects a new index / and stores a new chunk (7^/, Cy), 
with Ijf = I and Cy = C. 

In the second case, there is an index j such that / = Ij for some previously 
acquired chunk {Ij ,Cj). CM recognizes this situation, and provides the elements 
of Cj as outputs of the forward chaining process. 

In the third case, for every index j the first element of the chunk (7^, Cj) is 
different from 7, but there are indexes 7*1,..., jk such that Ij^,..., Ij^. are strictly 
included in 7. Then CM provides the elements of S = UjC^j, . . . , Cŷ } as out-
puts. When forward chaining on 7 is completed and outputs a nonempty set of 
literals C, the algorithm Recorder selects a new index / and stores a new chunk 
(7/, C/) , with Ijf = I and C / = C. 

Let us now describe less schematically how the network behaves in each of 
these cases. 

Case I (ij I / Ij). When 7 is given as input to CM at time t = 0 (and 
the neural units representing its elements in PATTERN_0N and PATTERN_OFF 
become active at ^ = 1), the relation V7 7 7̂  Ij is recognized to hold at time 
r = 2 because, for every y, the neuron Index j , representing the index j in the 
layer INDEX, remains inactive at that time. At time t = 3, the impulse from 
control neuron clock! activates the other control neuron ctrind, whose activity 
is necessary and, together with impulses from PATTERN_0N (which are absent in 
this case), sufficient to activating subpattems in SUB_INDEX. Thus, at time t = 4 
(resp. at time t = 5), all neurons of layers SUB_INDEX(rQsp. of PATTERN_OUT) 
are inactive. 

As a consequence, the neural activity triggered by the input set 7 in the CM 
module does not recall the second element of any chunk represented by the links 
that bring to the layer PATTERNjOUT. So, at time / = 6, only the input set 7 
is transferred to the forward chaining system. Finally, when forward chaining on 
7 is completed and outputs a nonempty set of literals C, the algorithm Recorder 
selects a new index / and stores a new chunk (7^/, Cj'), with 7 = Ijf and C = 

Cj'. 
The recording of a new chunk consists of the change of the weights of the 

following connections: (1) the connections between the neural representatives of 
the elements of 7 in PATTERN_0N and PATTERN_OFF on the one hand, and 
the neural representatives of the selected index / in INDEX and SUBJNDEX 
on the other hand; and (2) the connections between the neuron Sublndexj' 
of SUBJNDEX and the neural representatives of the elements of C in PAT-
TERN_OUT. 

The weights of the connections between PATTERN_0N and INDEX are ini-
tialized with the following values: 

^Pomindexj = 0 , 7 = 1, 2 , . . . , M, / = 1, 2 , . . . , Â , 
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where M is the maximum number of patterns which can be stored by the system 
(i.e., the maximum number of index neurons available in INDEX), N is the dimen-
sion (or number of components) of input patterns (i.e., the number of neural units 
in each layer of PATTERN_ON md PATTERN_OFF), and Indexj and Pont are 
neurons of the INDEX and PATTERN_0N layers, respectively. 

The weights of the connections between PATTERNjON and Indexjf are up-
dated according to the rule 

/ = n /' ̂  I' ^̂  ̂ ^^' ^̂^̂^̂' m 
^ Pont Index J, | Q, Otherwise. ^^ 

The weights of the connections between PATTERNjOFF and INDEX are initial-
ized with the following values: 

^Poffilndexj = - 1 , 7 = 1, 2 , . . . , M , / = 1, 2 , . . . , A .̂ 

The weights of the connections between PATTERNjOFF and Index j ' are up-
dated according to the rule 

_ | 0 , if Po/y;-active, 
^Pof fi Index :f ~" I 1 ^^u^^^ri^^ ^-^^ PoffiIndexy I _ i^ Otherwise. 

Rules (2) and (3) ensure that exactly one neuron in INDEX becomes active when 
Case 2 occurs. (See Pasconcino [11] for a detailed justification of this claim.) 

The algorithm Recorder initializes the weights of the connections from units 
of SUBJNDEX to the units of PATTERN_OUT in the following way: 

^SuhlndexjPouti = 0 , J = 1, . . . , M , / = 1, . . . , A^C, 

where Nc is the number of "actions" in the system of rules. The weights of the 
connections from the active unit Sublndexj' in SUB_INDEX to the neural repre-
sentatives of the elements of Cj^ in PATTERN_OUT art updated by the following 
rule: 

^SubindexjfPouti | Q, Otherwise. ^^ 

Rules (2), (3), and (4) ensure that when the input set Ijf is presented to the network 
the neurons representing the elements of Cy in PATTERNjOUT are activated in 
the manner described in Case 2. 

Case 2 (3j I = Ij). As usual, / is given as input to CM at time r = 0 and 
the neural units representing its elements in PATTERNjON and PATTERNjOFF 
become active dXt = 1. Now, at time f = 2, the neuron representing index j in 
the layer INDEX becomes active, as determined by rules (2) and (3): the system 
has identified / with Ij. 
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When this identification is successfully completed, CM has to retrieve from 
index j the second element of the chunk {Ij, Cj), Because, at time r = 2, the 
index neuron Index j is active, then, at time r = 3, the neural unit SublndeXj, 
representing the same index j in SUB_INDEX, will become active as well. And, 
at time t =4, the neurons in PATTERN_OUTTcprestnting the elements of Cj, as 
associated to the input pattern / = Ij by rule (4), will become active. 

Case 3 (Vj / / Ij, but 371, . . . , jk'- Iji C / A • • • A /̂ ^ C / ) . / contains 
subpattems Ij^,..., Ijj^ which consist of the literals in the first element of already 
stored chunks. Then the input set / activates in the PATTERN_OUT layer of CM 
the neural representatives of the elements of S = U{Cyi,..., C;-̂ }. 

Let us describe in more detail how this result is achieved. As in Case 1, all 
neurons of INDEX are inactive at time t = 2 when / is presented to CM and, at 
time r = 3, the impulse of control neuron clock! (see Fig. 5) activates the control 
neurons ctrindoff and ctrind. At time f = 4, the impulse from ctrind, com-
bined with the impulses from the neural representatives of the elements of the sets 
/ y i , . . . , 7;̂  in PATTERN_0N, activates the neurons Sublndexj^ in SUBJNDEX 
with n = I, ...,k. Thus, at time t = 5, all neural representatives of the elements 
of S in PATTERN_OUT 3ie activated. 

The activation of the right neurons Sublndexj^ upon presentation of in-
put pattern / is determined by the weight values of connections from the PAT-
TERNjON layer to the SUBJNDEX layer. These weights are initialized with the 
following values: 

^PoHiSublndexj = 0 , 7 = 1, . . . , M , / = 1, 2, . . . , A .̂ 

The updating rule for these weights is analogous to (2): 

, _ f 1/ | / | . if Pon,-active, 
^PoriiSubindexy | Q, Otherwise. ^^ 

One can easily show that rule (5) guarantees that, if Ij is a subpattem of the new 
input set / , then, at time ? = 4, neuron Sublndexj is active. 

C. SELECTING INDEXES 

Let us now describe the role of the layer INDEX_BF and the selection crite-
rion of indexes used by Recorder to store a new chunk. The algorithm Recorder 
modifies the weights of connections from neurons ctrind and ctrindoff to the 
neurons of INDEX_BF in order to codify, for every chunk {Ij ,Cj), its frequency 
of recall, relative to the total number of network runs. In particular, the weight 
of the connection from the ctrind neuron to neuron IndexBfj in INDEX_BF 
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is increased by one^ if and only if the presentation of set / activates the neuron 
IndexBfj, that is to say, when the network recognizes the situation I = Ij, such 
as described in Case 2. At the same time, the weight of the connection from the 
ctrindoff neuron to each neuron of INDEX_BF is decreased with a real value 
(let us call it a). The parameter a can be interpreted as a frequency threshold suit-
ably chosen by the user. Thus, if the difference between the weighted impulses 
from ctrind and ctrindoff to the neuron IndexBfj is positive, then neuron 
Index Bfj is activated. This signals that the frequency of recall of chunk {Ij, Cj) 
is greater than the a threshold (see Pasconcino [11] for more details). 

Thus, when the ctrind and ctrindoff neurons are activated (at time t = 3), 
at the next instant of time only those index neurons which have frequency of 
recall greater than a are active in INDEX_BF. Every other neuron in INDEX JF 
is inactive either because no chunk is associated to it or because the associated 
chunk has recall frequency below the a threshold. To store a new chunk in CM, 
Recorder randomly selects an index j ^ among the inactive neurons of INDEX JF. 
It may be the case that such a "drawing" procedure selects an index j ' which is 
associated to a chunk (Ay/, Bjf) below the a threshold, and therefore the new 
chunk {Ijf, Cj') replaces an old one that scores a low frequency of use. 

This simple criterion based on recall frequency provides a mechanism for man-
aging the preassigned limited resources of the CM module. In other words, this 
drawing procedure provides a simple version of a garbage collector which, as is 
well known, does not eliminate the phenomenon of memory saturation, but simply 
reduces its incidence. 

In concluding this section, we wish to emphasize that only one presentation 
of an input set / and the corresponding output set C suffices for the system to 
acquire a new chunk. Rules (2) and (3), which enable the system to acquire new 
chunks, eliminate the interference between the first elements of recorded chunks, 
as they change exclusively the weights of the input connections to the selected 
index neurons in the INDEX and SUB_INDEX\siyQrs. Furthermore, one can easily 
show that the computational complexity of the procedure Recorder is linear with 
respect to the size of the sets / and C. 

A system endowed with this chunking mechanism can improve its perfor-
mances on the basis of the previous activity. Reduction of the processing time 
is due both to the parallelism inherent in the general neural architecture of the 
system and to specific features of the CM module; the latter guarantee that the 
computational cost of access to stored chunks is independent of the number of 
chunks that are in memory. Clearly, the possibility of actually achieving a reduc-
tion in processing time is contingent on the availability of a computational agent 
capable of modifying neural weights and executing the parallel computations al-
lowed by this neural model. 

^Except for the first updating of this weight which increases the initial value by one plus the total 
number of system runs plus the total number of indexes. 
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VI. NEURAL TOOLS FOR UNCERTAIN REASONING: 
TOWARD HYBRID EXTENSIONS 

A naive neural model of prepositional reasoning from incomplete or uncertain 
information can be obtained, starting from the rules described in Section III, by 
modifying the threshold value for a neuron h representing the literal on the right-
hand side of a rule of type (R) with k literals on its left-hand side, as follows: 

Sfj =k - (s -\-r}), 0 < s < I, rj >l. 

Of course, rules implemented in this way can "fire" even if the input data match 
only partially their left-hand sides. However, the firing of rules under a partial 
match, like that achieved by means of the previous setting, may be a desirable 
property when rules are used for simulating similarity-based, commonsense rea-
soning, where loose contextual associations play a central role (for discussion, 
see, e.g.. Sun [12]). Of course, these considerations must be cautiously general-
ized to the inherently more brittle modes of reasoning used in expert systems: 
principled restrictions on rule firing are required when the correctness or plausi-
bility of diagnoses or classifications is at stake. The best one can do, in our view, 
to fulfill this desideratum is to have rule firing reflect rigorous models of reason-
ing under incomplete or uncertain knowledge, so that the uncertainty attached to 
the conclusions reached by an expert system can be evaluated within relatively 
robust conceptual frameworks. 

To neurally implement various rigorous models of quantitative uncertain rea-
soning, the neural elements introduced in Section II must be shown to be capable 
of coding and operating on arbitrary integer values, in addition to the values 0 
and 1 which correspond, respectively, to the active and quiescent state of an in-
dividual neuron. The basic idea pursued in this subsection is that of exploiting 
both excitation values and sequences of neuron firings as codes for positive inte-
gers. Various arithmetical functions can be implemented following this strategy, 
without modifying the simple neuron model adopted in Section II. 

Unbroken sequences of unitary impulses traveling from neuron to neuron can 
be regarded as messages representing positive integers (the number of impulses 
contained in each such sequence represents an integer). Conversely, positive inte-
gers given in input as unbroken sequences of firings can be stored, for immediate 
or later elaboration, under the form of excitation values. Two examples are given 
in which excitation is transformed, respectively, into a proportional number of 
consecutive outgoing impulses and a number of consecutive incoming impulses 
is stored as a proportional excitation. Finally, it is shown that ordinary multipli-
cation between two positive integers can be neurally implemented following this 
approach. 
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Figure 4 Dropper neuron. 

A. TRANSFORMING EXCITATION VALUES 

INTO S E Q U E N C E S OF F I R I N G S 

Transformation of excitation into impulses is the natural activity of neurons. 
Thus, to translate a certain value E of excitation into a number m of consecutive 
impulses, where m is proportional to E (say, m - c — E), one needs just a single 
"dropper" neuron d (Fig. 4) defined by the following characteristic triple: 

Nrf = { { ( / i , a i ) , . . . , {in,an), {d,-c)},8^,rj} 

in which i i , . . . , in are input neurons generating the excitation of rf, (rf, —c) is a 
negative feedback, 5̂  = 1 is the constant decay function 8(i) ensuring permanent 
memory, and rj < cisa. threshold allowing the neuron d to drop all the excitation 
collected from its inputs under the form of consecutive unitary output impulses. 

Whenever d emits an impulse, the negative feedback connection determines 
a constant value c to be subtracted from the residual excitation value. Thus, d 
keeps on firing until all the excitation E stored in it is dropped away in the form 
of m = E/c consecutive impulses. 

B. TRANSFORMING SEQUENCES OF FIRINGS 
INTO EXCITATION V A L U E S 

The converse problem is that of counting the number of components in a se-
quence of impulses and transforming this number into an excitation value equal 
to the sum of the incoming impulses. A solution to this problem is illustrated with 
an example for integer values in the interval [0,10], uniformly modifiable to deal 
with different numerical ranges (see Fig. 5). 

The device behaves as a spring: unbroken sequences of impulses, coming from 
the input neuron a, charge the spring layer a[,..., â Q. As soon as the input se-
quence ends, all the excitation stored up in the spring layer is projected at once 
toward the output neuron b through the gate layer a ' / , . . . , a'̂ Q. 
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Figure 5 Spring net converting a train of impulses into an excitation value. 

The spring layer is described by the following characteristic triple: 

N^; ^ {{(a, 1), « , - 1 ) , . . . « 0 ' -1 )} ' ̂ ^ '̂ - ^ } ' V/ = 1, . . 10. 

Each neuron a^. has permanent memory that enables it to cumulate the excitations 
due to impulses coming from the input neuron a. Threshold values are assigned 
such that neuron a[ starts firing after the first impulse, neuron a!^ starts firing af-
ter the second impulse, and so on. Neurons in the gate layer receive excitatory 
impulses from the corresponding neurons in the spring layer and inhibitory im-
pulses from the input neuron a. In this way, although their threshold is 0, they 
cannot transmit the incoming impulses to the output neuron b before the input 
sequence ends. The characteristic triples for neurons in the gate layer are 

N^. ^ {{(«;, 1), ( a , - 1 ) } , 5 ^ £ } , V/ = l , . . . , 1 0 . 

When at a certain time t the input sequence ends, the neurons in the gate layer 
are no longer inhibited by a. Therefore, the neurons in this layer that receive 
an impulse from the corresponding neurons in the spring layer fire on b at time 
r + 1. One can easily see that all neurons in the spring layer eventually reach 
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excitation equal to k if the input sequence was made of k consecutive impulses. 
However, only neurons a^, . . . , a^ in the spring layer have threshold lower than 
k (as one can easily verify from the characteristic triple for this sort of neuron) 
and fire on the corresponding flp . . . , a^j^ in the gate layer. The latter, in turn, fire 
on b. Eventually, b receives an excitation proportional (or equal) to the number 
of impulses in the input sequence. The negative connections from each neuron a^/ 
toward all neurons a^. are needed to reset to 0 the excitation of all neurons in the 
spring layer at once. 

In principle, networks performing this transformation can be designed for ar-
bitrary ranges of integer values of excitation. However, this approach is rather 
impractical for large integer intervals, and the boxed subnet of Fig. 5 can be 
replaced by another type of processor computing the same function: the neural 
system making use of this processor becomes hybrid, but the overall parallel im-
plementation afforded by the equivalent purely neural system including the boxed 
subnet is preserved in the simplified hybrid version. 

C. PRODUCT OF POSITIVE INTEGERS 

Ordinary multiplication between two positive integers requires a more compli-
cated network. The basic idea is that of outputting the product a • b under the form 
of a unbroken sequences of b impulses. The value of the integer a is represented 
by a sequence of a impulses. A controlling subnet enables a distinguished neuron 
to output b impulses for each of the a input impulses. The network in Fig. 6 per-
forms the product between two positive integers a and b codified as sequences of 
impulses, sent to the two input neurons a and b {a is not shown). 

The structure shown in Fig. 6 includes a spring network quite similar to that 
shown in Fig. 5. In the new structure, the terminal neuron b^ is a dropper neuron 
which outputs sequences of impulses toward the intermediate neuron C4. The latter 
(whose threshold is2 — s) transfers these sequences to other neurons if and only if 
it receives simultaneously impulses from the neuron a\ Also, 6' sends its output 
sequence back to b. Neuron a' is the terminal node of a network that receives 
as input the factor a through the input neuron a. We omit this subnet but it is 
structurally equal to the one that codifies the trains of impulses coming from b 
into excitation values in 6^ Thus, the neuron a\ which has unbounded memory, 
receives an excitation equal to the input sequence a. Because its threshold is e, it 
fires until its excitation value is close to 0. The input neuron b has threshold 2 — s 
and transmits forward impulses coming back from b^ until a' is active. 

The first sequence of b impulses output by b at time t reaches 6' at r -h 3, to be 
transmitted to neuron C4 which has been receiving from a^ an unbounded sequence 
of impulses. The neuron C4 will fire throughout the time it receives impulses from 
both b^ and a^ Moreover, C4 activates a subnet (C5, cg) which sends an inhibition 
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to a' whenever C4 stops firing. This inhibition decreases by one unit the current 
excitation of a^ Because b' sends back its output to b, a new sequence of impulses 
will again reach b' with a delay of three instants of time. This process is iterated 
as many times as the initial excitation value of a\ because every sequence of 
impulses from b^ has the effect of decreasing by one unit this excitation value. 

The output of C4 charges the neuron C3, which acts like a dropper neuron (it 
has unbounded memory and threshold 2 — s) and fires on the output neuron a • b. 
The latter has threshold s and is inhibited by C2 which, in turn, is activated by a\ 
Thus, a ' b will start firing two instants after a' becomes inactive. The neuron a • b 
sends inhibitory impulses back to C3 and, consequently, discharges it completely 
after having fired a • b impulses. 

VIL QUALITATIVE AND QUANTITATIVE 
UNCERTAIN REASONING 

A. PRECONDITIONS IN NONMONOTONIC INFERENCE 

In many domains of interest for artificial intelligence, but also in everyday 
life, reasonings are often just plausible or approximately correct. The conclusions 
obtained by means of uncertain reasonings may have to be withdrawn if some 
of their premises are no longer verified or some additional piece of information 
modifies the inference pattern. 

Neural networks seem particularly well suited for designing systems that per-
form "revisable" reasoning. Indeed, such systems should contain "restrictive" 
rules of the form "p is a theorem if ^ 1 , . . . , ^„ are not theorems" [13]. Here-
after, we show that similar restrictions can be easily implemented by means of 
neural networks set with appropriate inhibitory connections. 

There are two main features rendering neural networks suitable for formalizing 
revisable reasoning: 

(a) Idleness does not encode negation. If the nonlinear thresholded neural el-
ement HA, representing sentence A, is not firing, this does not necessarily mean 
that A is (asserted to be) false. Indeed, in a neural representation of knowledge, the 
falsehood of A is declared through the activity of neuron n-.^ representing --A. 
The inactivity of both HA and n-,A is allowed for and may be interpreted as the 
absolute lack of knowledge about A. The neural network which includes the in-
active elements HA and II-,A is intrinsically capable of carrying out processes that 
involve neither of them, that is, performing inferences from information which is 
unrelated to A. (For a similar view, and its relation to the so-called closed world 
assumption, see Valiant [14, pp. 172-177].) 
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(b) Neuron outputs are not intrinsically monotonic functions of the inputs. This 
is due to the fact that neural connections can be assigned either positive or nega-
tive weights. Indeed, let us consider a neuron n that receives both excitatory inputs 
(positive couplings) and inhibitory inputs (negative couphngs). The following sit-
uation is likely to occur: n fires because the sum of positive and negative inputs 
exceeds its threshold, while certain neurons, connected to n by means of negative 
couplings, are left idle. If, at a later time, some of those idle neurons become ac-
tive, the excitation of n decreases; n may even stop firing if the new inputs are 
such as to bring the excitation below its threshold value. The situation can change 
again and again in time, as long as there are further positive and negative inputs 
being left idle. And clearly, if active neural inputs become idle at a later time, 
the state of neuron n can change, too. Accordingly, inferences that are performed 
starting from knowledge of certain facts (active neurons) and ignorance of certain 
other facts (idle neurons) can be withdrawn if new facts, as well as new uncer-
tainties, are added to the database and this new information changes the state of 
knowledge concerning the premises of those inferences (the set of active neurons 
and the set of idle neurons involved in the inferences). 

In the following, we call "nonmonotonic neural networks" those neural net-
works in which both negative and positive weights are implemented. A non-
monotonic inference system contains rules whose application can dynamically 
be blocked. Some of these rules are specified together with applicability condi-
tions or preconditions, whose verification can dynamically change as the set of 
available premises changes over time. 

A well-known rule of this sort was introduced by Sandewall (see Sande-
wall [15] and Kramosil [16]): 

UNLESS(^) I - p, (nmRl) 

where the symbol |~ denotes nonmonotonic inference and the argument of the 
UNLESS operator is the precondition of the inference. In the context of the rule-
based systems we have been concerned with, UNLESS can be naively defined as 
follows: 

• UNLESS (^) is true for a given propositional formula q if and only if q 
cannot be inferred from the set of facts and rules encoded into the 
knowledge base. 

The nonmonotonic inference rule (nmRl) states that p can be inferred under the 
precondition that q cannot be inferred. In general, this precondition is not equiv-
alent to requiring that -^q can be inferred. We shall focus on the following gener-
alization of rule (nmRl) in which the conclusion of the rule depends on precon-



Neural Networks and Rule-Based Systems 147 

ditions qi,... ,qk that are signaled by the operator UNLESS, and finitely many 
ordinary premises a i , . . . , a^: 

{ai, ...,am, UNLESS(^i,.. . , qk)} |~ p. 

Using the metavariables Aforai A- -- Aam and QforqiV-'-Vqk, this rule can 
be expressed under the more compact form: 

A A UNLESS(e) I-- p. (nmR2) 

Because verifying precondition UNLESS(2) may be computationally intractable 
or even impossible in some formal settings, in the context of actually imple-
mentable inference systems this rule has been usually (and more aptly) interpreted 
in the following way: p can be inferred from A if Q has not been inferred so far. 

The neural implementation of this kind of nonmonotonic inference rule is quite 
straightforward. If A, 2» and p are represented by neurons «A, wg, and W^, re-
spectively, then the neural subnet of Fig. 7 encodes the rule expressed by (nmR2). 
Here, the threshold of w^ is set equal to some constant T (throughout this section, 
we assume that thresholds are all given the same value T), the coupling from HA 
to Hp has a positive weight WA,p greater than T (e.g., WA,p = T -\- s), and the 
inhibitory connection from HQ io rip can nullify the possible excitation coming 
from A (e.g., with a negative weight wg^p equal to —2s). Clearly, neuron Hp is 
active if and only if HA is active and wg is idle, just as it must be if the neural 
system has to encode the rule given by (nmR2). 

In a nonmonotonic setting, the verification of the premises, that is, precondi-
tions and ordinary conditions, can dynamically change with the set of formulas 
already inferred by the system. Our neural implementation reflects that dynamic 
behavior. Indeed, if at any instant t either HA stops firing or ng starts firing (i.e., 
either A no longer holds or Q becomes inferable), then the excitation of Up de-
creases to a value below the threshold and Hp becomes idle (signaling absolute 
ignorance about the status of p). 

Figure 7 UNLESS operator subnet. 
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Setting conditions, preconditions, and any sort of inference scheme on the 
same ground can be a source of instabiUty in the inference system (Reiter and 
Criscuolo [17]). Indeed, assume p was inferred nonmonotonically applying a cer-
tain rule (nmRA) on the occurrence of certain facts A and the nonoccurrence of 
certain other facts Q. It may well happen that by inferring p the system can ap-
ply another rule (nmRB) to produce the nonmonotonic inference of Q. Thus, the 
preconditions of (nmRA) no longer hold and p is to be withdrawn. In turn, 
the withdrawing of p might trigger the withdrawing of Q, and hence a return 
to the starting point, with the net ready to repeat the cycle: apply (nmRA) to in-
fer p, then apply (nmRB) to infer Q, then withdraw p because of Q and then 
withdraw Q because of p. 

Now, let us examine how neural implementations can cope with such clas-
sical problems of swinging decisions in nonmonotonic reasoning. The situation 
described previously can be reproduced in a knowledge base that contains the 
following nonmonotonic rules: 

A A UNLESS(e) 1-̂  P, (nmRA) 

A A UNLESS(P) 1-̂  Q, (nmRB) 

Furthermore, it is assumed that, initially, A holds and that nothing is known about 
P and Q or their negations. This knowledge base can be encoded in a neural 
network in which A is represented by an active neuron WA, whereas P and Q are 
represented by two idle neurons np and ng. The connections can be set as in the 
scheme of Fig. 8. 

In this neural implementation, the two rules are applied in parallel. Assume that 
neuron HA starts firing at instant t and keeps on firing indefinitely. Then neurons 
np and HQ, excited by #IA, will both fire at instant ^ + 1. However, because they 

-28 

Figure 8 Swinging subnet. 
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send to each other inhibitory impulses, they both stay idle at instant f + 2. The 
situation evolves with a swinging behavior in which np and HQ oscillate between 
the firing and the idle state, indefinitely. 

To find a way out, let us concentrate on just one of these nonmonotonic rules, 
say, (nmRA), analyzing in more detail the sequence of facts and inferences in-
volving that rule: 

1. A holds. 
2. Nothing is known about Q. 
3. UNLESS(2) is justified on the basis of step 2. 
4. P can be nonmonotonically inferred from steps 1 and 3, by (nmRA). 
5. 2 is later on recognized to hold (no matter how). 
6. UNLESS(2) must be withdrawn, because of step 5. 
7. P, being no longer inferable by (nmRA), must be withdrawn. 
8. |2 is withdrawn (may be because of step 7). 
9. Go to step 3. 

The source of the inferring-withdrawing oscillation is the complete and unlimited 
freedom in retracting and reintroducing the same preconditions. This unrestrained 
use is perhaps pragmatically justifiable on the ground that preconditions are meant 
as signals of untypical situations, rather than normally occurring events. However, 
when the need arises for avoiding or at least attenuating the incidence of loops, 
solutions have to be searched for in a different model of revisable reasoning. For 
example, one may devise a system in which the withdrawing of a conclusion, 
previously inferred by application of a certain nonmonotonic rule, should produce 
a suitable transformation of that rule. More specifically, convergent nonmonotonic 
inference procedures should be developed, by introducing mechanisms that make 
nonmonotonicity an expendable property of nonmonotonic rules. 

Neural networks are suitable for modeling various degrees of expendable non-
monotonicity. For example, let us consider the following neural implementa-
tion and interpretation of the nonmonotonic rule (nmRA), in which the rule it-
self is practically withdrawn when the precondition is retracted (Fig. 9). Here, 
UNLESS(2) is treated as an individual proposition, represented by an appro-
priate neuron nu(Q). Initially, nu(Q) is set in the firing state: nothing is known 
about 2 , except that it represents a rare event. Because it is endowed with a self-
excitatory connection, nu(Q) keeps on firing until neuron HQ begins to fire and 
inhibits it. 

Let us emphasize that neuron nu(Q) cannot be switched on again, after be-
ing switched off the first time. In other words, this network implements a non-
monotonic inference scheme in which inferred statements can be withdrawn and, 
in addition, nonmonotonic rules can be suspended indefinitely. Let us now try 
to introduce a nonmonotonic inference rule which may be viewed as governing 
the behavior of this neural net. A straightforward modification of rule (nmR2), 
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Q 

Figure 9 UNTIL operator subnet. 

obtained by substituting the operator UNTIL for UNLESS, may serve this pur-
pose: 

A A U N T I L ( 0 I - p . 

The new operator may be defined in the following way: 

(nmtR) 

• UNTIL(^) holds for a given propositional formula q, at a certain step of 
the inference process, if and only if q has "never" been inferred before that 
step. 

The reactivating of suspended rules can be modeled by neural networks, too. 
Conditions of reactivating must be carefully chosen so as to avoid new sources of 
loops. One may allow for the switching on of neuron nu{Q) upon the occurrence 
of some special event Z (such as, for example, the reinitiahzation of the system, 
the inference of -^Q, etc.). Of course, reactivating UNTIL((2) on the withdraw-
ing of (2, that is, putting Z equivalent to UNLESS((2), boils down to modeUng 
the classical nonmonotonic rule (nmR2). Figure 10 shows the neural network sus-
pending (on the occurrence of Q) and reactivating (on the occurrence of Z) the 
inference of p from A. 
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T+e 

\ 

Figure 10 BETWEEN operator subnet. 

After being reactivated by just one firing of neuron wz, the neuron nB(z,Q) 
remains active until Q, even if Z is withdrawn at a later time. This means that 
neuron nB(z,Q) retains memory of which neuron, out of HQ and wz, fired last: 
it is active in the interval between the firing of nz and the firing (if any) of 
#ig; it is idle between the firing of ng and the firing (if any) of /iz- A straight-
forward formalization of this behavior can be given by means of the following 
rule: 

A A BETWEEN(Z, 2) | - p , (nmbR) 

where the definition of BETWEEN is 

• BETWEEN(Z, Q) holds for the given propositional formulas Z 
(representing the resetting event) and Q (representing the suspending 
event), at a certain stage of the inference process, if and only if one of the 
following situations occurs: (i) Q has never been inferred; or (ii) Z has 
been inferred (or asserted by other means) after the last inference of g . 

Let us consider in some detail the behavior of the neural network implement-
ing rule (nmBR). The initial conditions are encoded into the setting of the net at 
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time t = 0: 

t = 0: 

t = l: 

t = q: 

t = q + l: 

t = q-\-2: 

HA starts firing (A holds) 

Wfi(z, Q) is firing (initially nothing is known about Q) 

ftp starts firing (P is nonmonotonically inferred) 

things keep on unchanged until some time later: 

n Q fires (Q is asserted to hold, no matter how) 

^B{Z,Q) Stops firing (BETWEEN(Z, Q) must be withdrawn) 

np stops firing (P is no longer inferable and is with-
drawn) the rule remains suspended and no new inference 
can be performed even if, some time later: 

t = s 
n Q stops firing (possibly, because of P) 

r > 5 + l 
the rule remains suspended and no new inference can be 
performed until, at a later time, if any, nz fires. 
For example, the process may develop as follows: 

t = x: 
nz fires (Z is asserted to hold, no matter how) 

r = ;c + 1: 
WB(Z, Q) fii^es (the nonmonotonic rule is reactivated) 

elaboration starts again as from r = 1 

nz stops firing (but the nonmonotonic rule remains ac-
tive until Q is again asserted to hold). 

B. QUALITATIVE HYPOTHESIS SELECTION 
IN TWO-LEVEL CAUSAL NETWORKS 

In this subsection, we consider a qualitative form of causal reasoning which 
is commonly used in diagnostic tasks. A basic inferential strategy of diagnos-
tic problem solving is that of considering the abnormal observed manifestations 
OBS relative to the system under examination and isolating hypotheses that may 
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explain their occurrence on the basis of known causal relationships between man-
ifestations and hypotheses (see Josephson and Josephson [18] and Peng and Reg-
gia [19]). This strategy is grounded on abductive inference schemes, such as: 

m i , . . . , m„ € OBS 
hi can cause m i , . . . , m„ {ABl) 
~hi 

Parsimonious set covering models of diagnosis (see Peng and Reggia [19] and 
Reggia et al [20]) are based, for n = 1, on {AB\). A connectionist approach 
to parsimonious set covering diagnoses can be found in Ahuja et al [21]. And 
clearly, each particular instance of {ABV) can also be represented as a neural pro-
duction rule within a localist semantic approach. 

Inferences based on {AB\) do not use any information about the degree of 
support that manifestations lend to given hypotheses, even though this sort of 
information may prove crucial to converge on the more plausible explanations. 
Consider the following schematic example (Fig. 11): the observed manifestations 
are mi, m2, and ms, connected via causal relations to hypotheses h\, h2, and 
h^,. The only manifestation supporting h\ is mi—^but strongly so, because it is a 
highly specific manifestation fox h\. Manifestations mi and mi weakly support 
/z2, whereas /z3 is supported by ms. 

If one restricts admissible explanations E for this diagnostic problem to mini-
mal cardinality covers of the observed manifestations, one has the counterintuitive 
result that {hi, /̂ s} is a solution to this diagnostic problem, whereas h\ is dis-
carded. Reiter [22] replaces the minimal cardinality restriction with the weaker 
condition that an explanation E must be an irredundant cover of the observed 
manifestations (where E is an irredundant cover of the observed manifestations 
iff no proper subset of £" is a cover of the observed manifestations). However, even 
in this framework one has that no irredundant cover E includes hypothesis hi. 

The inferential scheme {ABl) can be generalized so as to take into account 
information enabling one to decide whether the observations provide significant 
support for, and thus have to be covered by, candidate explanations (see Console 
and Torasso [23]). A reasonable solution to this problem is that of evaluating the 
total degree of support for hi provided by the observed data that are causally re-

Figure 11 Causal system. 
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lated to hi, and comparing this value with a threshold at, expressing the minimum 
degree of support needed to advance hi as a candidate hypothesis: for each hy-
pothesis hi and the set Man(/z/) = [ntj: hi can cause m^}, one has to define a 
suitable function fi'. X <z Man(/i,) -^ fi{X) e R: 

m i , . . . ,mn E OBS 
hi can cause m i , . . . , m„ 
fi(mi,..,,mn) >ai 
hi 

Scheme (ABl) is a particular case of {AB2). Within this more general frame-
work, new problems may arise; for example, fi may be computationally in-
tractable or the data needed to compute it may be lacking. Nevertheless, appro-
priate solutions can be found in significant cases: many diagnostic expert systems 
make use of various methods to compute specific fi's that enable the system to 
perform reasonably well. And, in turn, some of these methods lend themselves to 
neural representation and processing. We describe here a neural implementation, 
presented in Burattini and Tamburrini [24], of an instance of (AB2), developed 
within the framework of an expert system for a medical domain [25] and based 
on a qualitative approach to uncertain reasoning [26]. 

Human experts are often reluctant to set precise numerical weights for 
manifestation-hypothesis relationships, and more confidently advance qualitative 
judgments on the support that observable manifestations lend to a hypothesis. 
For example, a physician may consider a given manifestation as "moderately" or 
"very" suggestive of a certain disease. One can reasonably assume that there is a 
finite bound h on such discrimination power of human experts, and, namely, that 
the number of different qualifying labels available to human experts is at most h. 
Thus, when qualitative judgments of this sort are expressed by experts for every 
pair (hi,mj) such that hi can cause rrij (e.g., "mi strongly suggests /i2")» the el-
ements in each set Man(/i/) = {m -̂: hi can cause rrij] can be partitioned into h 
disjoint classes, each class containing all manifestations with a given degree of 
relevance with respect to hi. As a consequence, these classes can themselves be 
ordered according to the degree of relevance of their elements. One can make the 
following additional assumption: 

Assumption 1. The manifestations belonging to a lower-ranked class, even 
when taken as a whole, cannot be more relevant with respect to hi than any man-
ifestation belonging to a higher-ranked class. 

Then this qualitative information can be readily represented and processed in a 
neural system. 

Let 0fi be the neuron representing hypothesis hi, and let Mi = {/ij , . . . , / „ } 
be the set of neurons representing the elements of Man(/i/). Given the qualita-
tive information provided by human experts. Mi can be partitioned into a to-
tally ordered series of h disjoint classes M / j , . . . , M/^. Let their cardinality be 



Neural Networks and Rule-Based Systems 155 

Ki,..., Kh, respectively. For each Mij and each fi^ e Mi-, the weight between 
fi^ and Mi must assume the value 

U + 1). Kj . Kj^x Kh 

A rough idea of the causal net which reflects the previous settings is given in 
Fig. 12. Given these settings, for any j < k < h, one has that the sum of ex-
citations sent to Sf(i by all elements belonging to Mtj is less than the minimum 
excitation sent by any element belonging to M/^. Sf£i receives these excitations 
with weight equal to 1, and their sum expresses the degree of confidence reached 
by hypothesis hi which may or may not exceed 3€i 's threshold. Such a threshold 
is set by the human experts. Furthermore, this value can be compared with the 
degree of confidence reached by other competing hypotheses (see Burattini and 
Tamburrini [24, p. 543]) by means of another neural module. 

Assumption 1 was adopted in the design of an expert system applied to a par-
ticular medical domain (see Section VIII), but is inappropriate in many other di-
agnostic domains. This inferential strategy, however, can be modified to a certain 
extent without having to relinquish neural representation and processing. For ex-
ample, one may wish to model situations in which aggregations of manifestations 
from lower-ranked classes provide more significant evidence with respect to hi 
than manifestations from higher-ranked classes. Aggregations forming so-called 
"typical patterns" for hi are a case in point. These can be dealt with in the frame-
work of neural representation and processing by introducing, between the layers 
of neurons representing individual manifestations and hypotheses, an intermedi-
ate layer of neurons representing such aggregations of manifestations. 

Figure 12 Neural causal network. 
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C. QUERY PROCESSES AND THE PROBABILISTIC 
CAUSAL METHOD 

Once a set of candidate diagnostic hypotheses has been advanced by applying, 
for example, production rules enabling one to perform the qualitative form of 
causal reasoning considered in the previous subsection, a deeper probing of the 
selected hypotheses may be needed for the system to settle on a final diagnosis. 
For example, the system may have to choose between two competing hypotheses 
or to look for additional evidence corroborating the candidate hypotheses. 

At this stage of the diagnostic process, the system has to use the causal knowl-
edge that the candidate hypotheses (e.g., a disease) may give rise to a number of 
manifestations (e.g., symptoms), in order to identify additional observations that 
enable it to turn a prediagnosis into a final diagnosis. Thus, supposing that h\ was 
selected as a candidate hypothesis on the basis of observation m i, the system may 
follow the strategy of testing this hypothesis by verifying whether other manifes-
tations in Man(/zi) are actually present. In many situations, the system will have 
to choose (in view of, e.g., priority criteria set by the experts) which subset of 
Man(/ii) is to be investigated first. An appropriate ranking of the manifestations 
Man(/ii), given that the hypothesis h\ holds, may reflect these selection criteria. 

A method for obtaining this ranking in several diagnostic domains is encom-
passed by the probabilistic causal model (see Peng and Reggia [19] and Reggia 
etal[2Q\). 

Let the expression hi -> rrij denote the event that hi actually causes rrij, and 
let P{hi -^ ntjlhi) be the conditional probability that hi causes rrij given that 
hi is present. Under certain assumptions (see Peng and Reggia [19]) that seem 
reasonable for many types of cause-effect relationships, one can prove that 

P{hi^mj\hi) = P{mj\[hi]), 

where [hi] stands for the event that hi is present and all other possible causes 
of rrij are definitely not present. This result indicates that the value of P(hi -^ 
rrij \hi) can be obtained from the statistical analysis of the population of individu-
als that have hi without being affected by any other possible cause of m^. 

Given the values of the P(hi -^ rrij \hi) for all hi such that hi can cause rrij, 
an algorithm for finding the probability of rrij given the presence of a subset of its 
causes is made available by the following theorem, because the conditional prob-
abilities of rrij are equal to 1 minus the corresponding conditional probabilities 
of rrij: 

THEOREM (Peng and Reggia [19]). Let QJ = P(hi -^ rrij \hi) and let D he 
asuhsetofC2iUses(mj) = {hi: hi can cause rrij]. Then 

P{-^mj\{hi: hi € D}&{--/z/: hi e Causes(my) - D}) = Y\^^~ ^O")-
hiED 
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Figure 13 Causal system. 

A network enabling one to compute these conditional probabilities can be eas-
ily constructed by means of the tools described in previous sections. An example 
is given in the following discussion for the causal system of Fig. 13. The network 
for this causal system, in which probability values are transmitted under the form 
of unbroken sequences of impulses, is formed by four layers (see Fig. 14). 

The neurons of the first layer (HYP) represent hypotheses hi and their nega-
tions -"/^^ A neuron representing a hypothesis hi has, consistent with the schema 
in Fig. 14, as many outgoing arcs as the number of manifestations m / j , . . . , m,„ 
which are possibly caused by hi. The coupling coefficients of these connections 
are (1 — Ci^j),..., (1 — c/„y), respectively. Thus, hi has three arcs, and their cou-
pling coefficients are (1 — en) , (1 — C41), and (1 — C22). Similarly, the element 
representing the negation -"/z/ of some hi has /„ outgoing arcs, but their coupling 

HYP 

^m;^ ni2 1^3 •'• m.4 

Figure 14 Net for the probabilistic causal system. 
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coefficients are equal to 1 (the latter are not displayed in Fig. 14). The second 
layer (P^m) is formed by as many small subnets P-.my as the number of possible 
manifestations. In our example, 1 < y < 4. These subnets perform the product of 
the incoming input values from the layer HYP, outputting conditional probability 
values of the various ^m^, in accordance with the preceding theorem. 

Because the conditional probabilities of nij are equal to 1 minus the corre-
sponding conditional probabilities of --my the remaining part of the network is 
devoted to computing this simple operation. The third synchronizing layer (C) is 
formed by as many neurons as the number of possible manifestations. The layer C 
permits, through a distinguished neuron u and some synchronizing neurons, eval-
uation of the conditional probabilities of my. The impulses fired by P-,mj through 
a negative coupling coefficient are subtracted from the impulses fired by u and 
representing the value 1 (suitably normalized to 10, or to 100, etc.). The output of 
the neurons belonging to the layer P^ is a sequence of impulses equal to the cho-
sen normalization of the value 1 minus the conditional probability of -^rrij given 
the presence or absence of the hypotheses from a given set. 

The parallel execution afforded by this neural implementation may not be ben-
eficial in terms of computation time because of the numerical computations that 
have to be performed by the subnets in layer P-^m- These subnets can be prof-
itably replaced by other types of processors computing the same function. Again, 
the system thus obtained becomes hybrid, but the parallel architecture introduced 
by means of the purely neural system including layer P-.^ is on the whole pre-
served in the simplified hybrid version. 

VIIL PURELY NEURAL, RULE-BASED 
DIAGNOSTIC SYSTEM 

A. ABDUCTION-PREDICTION CYCLE 

The task of a diagnostic expert system can be roughly described as that of 
isolating a set of explanatory hypotheses for the insurgence of anomalies observed 
in objects belonging to its domain of application. Thus, a diagnostic expert system 
can be viewed as a particular type of problem solver. The statement of the problem 
is a description of an abnormal state, and a solution is given by an explanation for 
the occurrence of this abnormal state. 

To produce a diagnosis, an expert system makes use of a knowledge base 
which must include relationships between observable anomalies and their possi-
ble explanations (a simple example being "symptom x is a likely manifestation of 
disease 3;"). However, knowledge bases of diagnostic systems may encompass re-
lationships between observable facts as well as between possible explanatory hy-
potheses (e.g., incompatibility relations between pairs of observables or causes, 
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groups of anomalies characterizing pathological patterns, etc.), and sometimes 
even simplified models of correct or abnormal behaviors of the objects in their 
domains. 

Designing a particular diagnostic expert system involves, as a crucial prelimi-
nary step, analyzing human expert knowledge and reasoning applied to the given 
diagnostic domain. This analysis, which amounts to extracting from human ex-
perts reports on the data, theories, and inferential processes used in their problem-
solving activity, is the starting point for the knowledge engineer engaged in the 
task of specifying the knowledge base and inferential schemes of a particular di-
agnostic expert system. 

However, there are some stages of diagnostic problem solving that remain in-
variant across particular applications: 

(i) Data entry. Abnormality observations to be accounted for have to be 
recorded and possibly refined. 

(ii) Prediagnosis and diagnosis. The data have to be evaluated with the aim 
of focusing on, refining groups of (possibly incompatible) diagnostic hypotheses, 
and advancing a final diagnosis. 

(iii) Hypothesis-driven query. New data may have to be collected, between 
prediagnosis and diagnosis proper, to test the hypotheses selected at the prediag-
nostic stage. 

(iv) Justification. One must be capable of providing, upon request, an infor-
mative justification for the conclusions that have been reached. 

Similarly, there are inferential schemes that play a significant role in most 
cases of diagnostic hypothesis formation and testing. Abductive inferences [such 
as rule {AB\) examined in Section VII.B] enable one to select possible explana-
tory hypotheses for observed facts, and predictive inferences enable one to isolate 
possible observable manifestations of the explanatory hypotheses selected by ab-
ductive inferences. Unlike deductive rules, abductive rules of inference such as 
{ABl) may fail to satisfy the correctness requirement: even when the premises of 
an abductive rule are verified to hold, its conclusion might be shown to be false in 
the light of new evidence, and has to be withdrawn. However, because abductive 
rules enable one to g^n^vdiiQ possible explanatory hypotheses, they play a key role 
in hypothesis formation processes. As already emphasized in Section VII.B, the 
question whether a possible explanation is also di plausible one requires additional 
considerations, transcending observations and relationships involved in simple ab-
ductive inferences such as {AB\). In particular, one may need information about 
how much the various observable facts are suggestive of or support explanatory 
hypotheses, in order to assign a plausibility degree to a hypothesis, and thus to in-
duce a ranking between possible explanations. Various methods for handling this 
information (e.g., probability theory, certainty measures, qualitative nonnumeri-
cal orderings) have been used in the setting of diagnostic problem solving. The 
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Observed facts 

F={fi,f2,..-,fn} 

F' = F 

Abduction 
Hypothesis generation L 

H = {hi,h2,. . . ,hk} 

Prediction 
Search of new facts 

F' = F ' u F 

Figure 15 Abduction-prediction cycle. 

application described in the following section makes use of the particular non-
numerical method for ranking hypotheses described in Section VII.B, whereas 
in other situations numerical methods may be more appropriately adopted and 
neurally implemented by means of tools presented in Sections VI and VII.C. 

Predictive inferences are also involved in the process of assessing the plausibil-
ity of explanatory hypotheses selected by means of abductive rules of inference. 
From the knowledge that <!> is a possible cause for the occurrence of ^ and that 
O is an explanatory hypothesis which is being entertained, one can infer ^ as a 
possible manifestation of this hypothesis. This kind of inference can be applied in 
diagnostic reasoning to test explanatory hypotheses. In fact, suppose one has both 
O -> ^ and O -> X ill a knowledge base, where O is an explanatory hypothesis, 
^ and X are observable facts. After observing ^ one can assume, by applying, for 
example, inference scheme {AB\), O as a possible explanation for the presence of 
^ . Which additional facts could be detected if O were the right hypothesis? Using 
predictive inferences, one produces the set of possible observable manifestations 
of O (in our case just {x}). This information can be used to test hypothesis 0 by 
determining which of the observable manifestations of O are actually present, and 
possibly to advance new explanatory hypotheses. The abduction-prediction cycle 
is schematized in Fig. 15. 

B. DIAGNOSES IN PEDIATRIC GASTROENTEROLOGY 

The abduction-prediction cycle, supplemented by a qualitative method for hy-
pothesis ranking, is at the heart of the inference engine for the diagnosis of pe-
diatric gastroenterological diseases [25], which is schematically described in this 
subsection: from the initial observations, a set of diagnostic hypotheses is fo-
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cused on by abductive inferences; then a hypothesis-driven query process enables 
one to isolate, by predictive inferences, additional evidence that is subsequently 
used to differentiate between the selected hypotheses. A purely neural implemen-
tation of this system is described, and its advantages in terms of computational 
time are emphasized. Physicians use various procedures for gathering informa-
tion about their patients: history taking (i.e., the patients' subjective accounts of 
their medical problems), direct physical examination, and diagnostic tests. Each 
procedure gives rise to a specific class of evidence: histories, symptoms detected 
as a result of physical examination, and test outcomes. Signs belonging to each 
of these classes are further classified as generic signs (those signs that are possi-
ble manifestations of more than one disease) and specific signs (that are possible 
manifestations of one disease only). Accordingly, signs can be divided into six, 
mutually exclusive classes: generic histories, symptoms, and tests; specific histo-
ries, symptoms, and tests. 

In the specific domain of pediatric gastroenterology, medical experts proposed 
a "clinical relevance" hierarchy between these types of evidence, with a clinical 
relevance gradient from generic histories to specific tests: for example, the in-
formation that a patient manifests a specific symptom st, which is associated to 
disease d only, provides more supporting evidence for d than a generic symptom 
Sj which is a possible manifestation of d and other diseases as well. Accordingly, 
if one denotes by "x > j j " the relationship "x provides more support for d than 
J," one has that [si >d Sj]. More in general, one has that 

[any specific test > j any specific symptom >d 
any specific history >d any generic test >d 
any generic symptom > j any generic history]. 

This hierarchical organization can be occasionally overridden when evidences be-
longing to a lower-ranked class constitutes pathological patterns that are highly 
suggestive of a certain diagnostic hypothesis. 

Evidence-disease causal relationships are used by experts to focus on explana-
tory hypotheses, in the sense that each evidence e and each relationship of the 
form "Disease J is a possible explanation for the insurgence of e'' can serve as a 
premise for an abductive inference to disease J as a possible diagnosis. Diagnostic 
hypotheses supported by each type of evidence are more confidently advanced by 
physicians, whereas a collection of evidence of one type only is often regarded as 
insufficient to achieve a diagnosis. When one or more types of evidence are lack-
ing, physicians generally attempt to gather further information, using predictive 
inferences to isolate additional possible manifestations of the diagnostic hypothe-
ses they are already entertaining, and focusing on those manifestations that are 
more significant for assessing the hypotheses. The plausibility of a diagnostic hy-
pothesis d focused on by abductive inferences depends on both the significance 
and approximation to "completeness" of the supporting evidence. By "complete-
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ness" of supporting evidence, in this context, we mean diagnostic hypotheses sup-
ported by evidence from each of the previously mentioned six classes. 

The knowledge base of the expert system designed on the basis of this analysis 
is chiefly formed by causal relationships between evidence and disease. The set 
of such relationships can be visualized as a bipartite graph (see Fig. 16). The 
upper and lower sets of nodes represent evidence and disease, respectively. Edges 
connect the evidence with their possible explanations. 

The set of evidence nodes is partitioned into six classes. Splitting the set 
of evidence nodes into classes allows one to introduce, in accordance with the 
comparative relevance judgments expressed by medical experts, a nonnumerical, 
qualitative evaluation of the support that each evidence lends to a candidate hy-
pothesis. For example, for the evidence present in Fig. 16, one can assert that 

Organizing the knowledge base as a bipartite graph facilitates the implemen-
tation of an inference engine which applies an abductive-predictive inferential 
cycle. Each edge of the graph is interpreted by the system as a causal relationship 
between one evidence and one disease. For example, in Fig. 16 the causal relation-
ships represented by the edges of the graph are: d\ -^ s\,d\ -> 54, . . . , ^4 -> ^g. 

Let Os = {s2, S2,,s%] be the set of initially observed evidence relative to a 
given patient. To explain observations Os, the system goes from evidence nodes 
to disease nodes following the arcs of the graph, so as to obtain a set of possible 
diseases explaining the observations O5. The result of this abductive inference is 
the set of diseases Ds = {̂ 2̂, ^3, ^4}- Then the system makes use of predictive 
inferences to test and differentiate between these hypotheses. 

The arcs of the graph are followed starting from the disease nodes correspond-
ing to d2,d3, d4 so as to isolate, among the evidence nodes, the possible mani-
festations ODs of the diseases in Ds that are not elements of Os. This inferential 

specific signs 

diseases 

Figure 16 Structure of the knowledge base. 



Neural Networks and Rule-Based Systems 163 

step can be viewed as an attempt to answer the following question: "Given Ds, 
which evidence could be detected in addition to the elements of OgT Thus, by 
applying this abductive-predictive cycle, the system is capable of generating a set 
of diagnostic hypotheses Ds for explaining the initial data Os and isolating the 
possible observable consequences ODs of these hypotheses. 

Subsequently, the system starts an interaction with the user concerning the 
elements of ODs, with the goal of collecting information useful for testing and 
differentiating between the diagnostic hypotheses Ds. More specifically, (i) the 
system focuses on the manifestations in ODs which, if observed in the patient, 
would prove more useful for assessing the hypotheses in Ds, and (ii) the system 
initiates a query process asking whether, by applying some medical procedure, 
these manifestations can be actually detected in the patient. 

The selection of the elements in ODs to be investigated must reflect the ba-
sic heuristic strategies adopted by physicians. After collecting information about 
the patient's anamnesis, physicians look for other signs deriving from a physi-
cal examination of the patient, and possibly prescribe tests and/or therapies. This 
heuristic strategy captures the assumption, discussed previously, that the degree of 
support for a disease depends, at least partially, on the diversity or "completeness" 
of the observed evidence (i.e., a diagnostic hypothesis which explains evidence 
belonging to different classes is more credible than a hypothesis which explains 
only evidence belonging to the same class). 

C. NEURAL IMPLEMENTATION 

The main components of a purely neural system for this diagnostic task are 
schematically represented in Fig. 17. The overall system is organized into five 
distinct subnets: evidence, abductive, hypothesis, predictive, dind justification. 

The global network of neurons can also be viewed as formed by two interacting 
parts. The first part codifies the declarative and procedural knowledge relative to 
each specific domain of application (facts, hypotheses, and their relations). The 
second part is the invariant structure of the shell, which embodies computational 
utilities supporting and synchronizing the activity of the whole shell; it is not 
modifiable by experts and users. In the following, we give a brief description of 
the internal organization of each subnet. 

1. Evidence Subnet 

This is an input subnet and accepts the information that a set of facts has been 
detected. A network of neurons stores these data and checks their internal coher-
ence by controlling whether input neurons representing incompatible facts (e.g., 
/ and -"/) have both been erroneously activated. If incoherences are not detected. 
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Figure 17 Global net organization. 

the data are given as input to the abductive subnet; otherwise, the incoherences are 
declared to the user. 

In this subnet, there are four main layers of neurons {entry, memory, fact, 
restart), each layer with n neurons, where n is the number of observable facts 
in the given diagnostic domain. Furthermore, there is a layer of k neurons, whose 
role is that of signaling incompatibility between pairs of facts, and k is the number 
of such incompatible pairs. 

Let us consider first the n entry neurons (e neurons) (Fig. 18). From now on, 
we will associate to each type of neural element its graphical representation and 
characteristic triple. Each e neuron et receives information from (i) the neuron 
exti that fires on et, through a coupling coefficient equal to 1, to signal that fact ft 

exti-
-/fQ ^ 

-1 

• > mi 

• > ICij 

• > fi 

FigurelS et ^ {{{n,!), {exti,l), {cr'^f ., 1), (^/,-DK^^, 1 - e } . 



Neural Networks and Rule-Based Systems 165 

1 
mi y > n 

Figure 19 ni/ ^ {{{et, 1), (m/, 1)}, 5 ,̂ 1 - s}. 

is given as input; (ii) the restart neuron r/ firing on ei when the net is restarted (i.e., 
rt guarantees, when the net is restarted on an augmented input, that the presence 
of fact fi is not forgotten); and (iii) the synchronizing neuron <ĵ ' firing on et 
when the question whether fact fi has been detected obtains a positive answer in 
the predictive subnet (for details, see Burattini and Tamburrini [24]). 

Each active e neuron ei fires on various elements of this subnet: (i) on the 
memory neuron (m neuron) mi with which it is connected, whose role is that 
of storing the information, coming through ei, that fact fi has been detected; 
(ii) on the fact neuron (neuron) / / ; (iii) on itself, sending a self-inhibitory signal 
immediately after activation {e neurons do not retain memory of past events); and 
(iv) on an incoherence signaling neuron icij. Its threshold is 1 —6:, with 0 < e < 1. 

There are n memory neurons (m neurons) (Fig. 19), which retain memory of 
the facts that have been detected and given as input to the system. The memory 
neuron mt is connected to the entry neuron et. Once activated by et, mi remains 
active by means of a self-sustaining mechanism that enables it to "remember" that 
fact fi has been detected and to signal this information, when restarting the net, 
to the restart neuron r,-. mt also fires on neurons in the explanation subnet. The 
m-neuron threshold is again I — s, with 0 < s < I. 

There are nfact neurons ( / neurons) (Fig. 20), transmitting information to the 
abductive subnet about the facts given as input. An / neuron / / can be activated 
by the e neuron et with which it is connected and can send out signals to a collec-
tion WMf. of working-memory neurons (wm neurons) of the abductive subnet. 
The coupling coefficients between / neurons and wm neurons are crucial vari-
able parameters of the net, which must be determined by the expert, possibly in 
the manner described in Burattini and Tamburrini [24]. 

Figure 20 /,• ^ {{(e,-, 1)}, 5 ,̂ 1 - £ } . 
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• i - ^ e . 

1 

1 
• 

Figure 21 n ~ {{{p, 1), (m,-, 1)}, 8^, 2 - s}. 

There are n restart neurons (r neurons) (Fig. 21), already mentioned in con-
nection with the entry and memory neurons, whose task is that of restarting the 
network when new information is obtained via the predictive subnet. They receive 
messages from the m neurons and from a special restart neuron p, while they send 
out impulses to the entry neurons. 

Finally, there are k incoherence neurons (ic neurons) (Fig. 22). For each pair 
ei, ej, whose simultaneous presence is ruled out by the human experts, an ic 
neuron is created which becomes active when both et and ej are activated. This 
neuron signals the presence of an incoherence to the user. 

2. Abductive Subnet 

The facts presented as input to the system may have different significance with 
respect to the problem of eliciting a hypothesis. Therefore, a suitable weight must 
be assigned by the expert, or by the procedure described in [26], to connections 
between the appropriate pairs of neurons "representing" facts and hypotheses. 
Given these weighed relations, the abductive subnet analyzes the information 
flowing from the data given as input under the form of excitatory impulses, check-
ing whether any hypothesis can be elicited as an explanation for some of the ob-
served facts. If this is possible, the hypothesis subnet is activated; otherwise, the 
control is passed over to the predictive subnet. 

In the abductive subnet, there are m working-memory neurons (wm neurons) 
(Fig. 23), where m is the number of possible hypotheses in the given diagnostic 
domain. The task is that of evaluating the relevance of the observed facts for elic-
iting one of the declared hypotheses. Each icm-neuron wmt collects information 
from the elements of a set Fyjnn = [fi, -- -, fk) of f neurons of the evidence 

• . o 
Figure22 ic,j = {{{e,-, 1), («,-, 1), (Jcy,2>},5",2-e). 
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1 

tlj ^ ^ ^ ^ 

Figure23 wmt = {{{fmjaf.^^X {hi,ahj^^rni), (x, l)(control;c/, 1)1, ̂ "''"'•, t^;;^,}. 

subnet, where \ ^ k ^ n. wmt has a threshold set by the expert and corre-
sponding to the minimum amount of information needed to ehcit hypothesis hi. 
Its decay law, by^rnt» differs from 5o- In addition to messages from the / neurons 
of the evidence subnet, each wm neuron also receives inhibitory impulses from 
a special clearing neuron and from some control neurons. When a wm neuron 
receives impulses from the connected / neurons at time t, it starts firing at time 
f + 1 on neurons of the predictive and hypothesis subnets. It keeps on firing until, 
by its decay law, the excitation falls below the threshold value. The impulses sent 
at time t toward the hypothesis subnet reach at r + 1 the connected neurons in that 
subnet, whereas the impulses sent toward the predictive subnet are delayed by 
some "delay" neurons. This retardation mechanism has been introduced to enable 
the system to verify first whether the available information is sufficient to elicit 
explanatory hypotheses, so that the predictive subnet can be activated at a later 
time, only if this condition is not verified. 

Finally, there is also a controlling subnet, whose role is that of terminating the 
process when no more hypotheses can be investigated and of activating the subnet 
outputting the list of hypotheses, ranked according to the excitation level reached 
by their "representing" neurons. 

3. Hypothesis Subnet 

If a set H of hypotheses has been elicited, two different situations may arise: 

(i) The hypotheses in H explain all the facts given as input. H is declared 
to the user and stored for later use in the justification subnet. The hypothesis 
subnet inhibits activation of the predictive subnet and thus the hypothesis selection 
process terminates. 

(ii) Some facts given as input are not explained by any hypothesis in H; H is 
stored, the hypothesis subnet does not inhibit the predictive process about facts 
unexplained by H. The predictive subnet is activated in order to raise questions 
about hypotheses not in H that may explain these facts. 

In this subnet, there are m hypothesis-triggering neurons (ht neurons) 
(Fig. 24), one for each hypothesis declared by the expert. The ht neuron hti re-
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Figure 24 H- ^ {{(w;m/, 1), (x,-r/ , , . )} ,5^^ r^.}. 

ceives impulses from the wm neuron wmt of the abductive subnet. It also receives 
from and sends out impulses to the clear neuron x- An /zr neuron has a suitably 
high threshold value representing the minimum support value needed to trigger 
the associated hypothesis. This threshold can be reached only if the associated 
wm neuron fires for several consecutive instants of time, and; in turn, the number 
of consecutive firings of wmt is proportional to the amount of excitation received 
from the set Fiy^.. By this mechanism, wmi expresses the amount of support 
given by the observed facts in Fwrni to hypothesis hi and hti "decides" whether 
this evidence is sufficient to elicit hi (see Burattini et al. [26] on the minimum 
value of the support): if the sum of the impulses coming from wnii reaches its 
threshold, the ht neuron hti sends impulses to the corresponding hypothesis neu-
ron A/. 

There are also m hypothesis neurons (h neurons) (Fig. 25), one for each hy-
pothesis relative to the given domain. If neuron hi is activated by neuron hti, 
this indicates that hypothesis hi is proposed by the system as an explanation for 
some observed facts. The h neurons store all explanatory hypotheses advanced by 
the system. This is achieved, once an h neuron is activated, by a self-excitatory 
mechanism which keeps its level of excitation above the threshold. An h neuron 
also sends excitatory impulses to neurons of the explanation subnet and inhibitory 
impulses to neurons of the predictive subnet. This subnet outputs a partially or-
dered list of selected hypotheses (if any). The intended meaning of this partial 
order is a nonexclusive preference order for the selected hypotheses. This order is 
obtained by comparing the excitation levels of the ht neurons representing such 
hypotheses. 

. y '"̂ "̂̂ i » q i 

K...-1. 
- • h i - a h . „ . ^ ^ ^ . 

j ^ > WI 

1 

Figure 25 hi = [{{hi, 1), {hti, 1)}. 5^, 1 - £ 

> ^ ^ 



Neural Networks and Rule-Based Systems 169 

4. Predictive Subnet 

From now on, we will omit most implementation details in describing the main 
types of neurons, concentrating on their role in the process of hypothesis selection. 
The predictive subnet is managed by the abductive and hypothesis subnets, and 
is activated when further investigation is needed to explain all observed facts. 
This subnet is, as it were, a mirror image of the abductive subnet: the links from 
evidence to hypotheses in the latter are inverted in the predictive subnet in order 
to infer which evidence might be present if a specific diagnostic hypothesis were 
correct. 

Upon activation of this subnet, two preliminary tasks must be performed: (i) se-
lecting a hypothesis (making sure that it is not in the set H, if any such set has 
been selected in the hypothesis subnet) to be probed first and (ii) asking a question 
that may contribute to test the selected hypothesis. Also at this stage, the heuristic 
strategies enabling the system to raise appropriate questions must be implemented 
by the expert, possibly with the help of a procedure described in [26]. 

Each question formulated in the predictive subnet is about the presence of a 
certain observable phenomenon relevant to test the hypothesis under examination 
(e.g., "Does patient x show symptom yT). Such questions admit three types of 
answers: "yes," "no," or "I don't know." If the answer is "yes", the new informa-
tion is added to the initial input and the system is restarted on the augmented set 
of data. If the answer is "no," the system has obtained negative information (e.g., 
"symptom y has not been observed") which is also added to the initial input if this 
negative information is explicitly represented as a fact in the system's knowledge 
base. The system is then restarted to evaluate the augmented input. In all other 
cases (the answer is "I don't know," or else is "no," but the corresponding neg-
ative information is not explicitly represented in the system's knowledge base), 
the system proceeds to ask a question about another fact relevant to assessing the 
hypothesis under examination. 

When all questions relative to the selected hypothesis have been made, and 
some facts remain unexplained, the predictive subnet starts asking questions con-
cerning the next lower ranked hypothesis. The predictive process terminates either 
when a set H of hypotheses explaining all observed facts is isolated or when there 
are no more questions to be made. 

The predictive subnet is formed by three main layers (question neurons, fact-
mirror neurons, and answer neurons), activated when one of the following situa-
tions occurs: 

1. no explanatory hypothesis has been elicited; 
2. the hypotheses elicited by the system do not explain all observed facts. 

Case 1. In the query layer, there are m question neurons (q neurons). Their 
structure is analogous to that of the ht neurons (same threshold and excitation de-
cay law) and their role is that of selecting a hypothesis to be tested by a question-
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answer process. These neurons receive from the wm neurons the same impulses 
as the ht neurons, but suitably delayed. Because no ht neuron is activated by these 
impulses, a control neuron ^ sends uniform excitatory impulses to the q neurons, 
activating the q neuron qt that first reaches its threshold. Intuitively, the activation 
of qt signals that a question about the presence of a fact relevant to assess hypoth-
esis hi must be raised. However, once a q neuron qt is activated by ^, how is an 
appropriate question about the corresponding hypothesis hi selected? 

In the predictive subnet, there is a set of n fact-mirror neurons (fm neurons). 
These neurons can receive excitation from q neurons in the following way. Each 
q neuron qi is connected to a subset FMq^ of the set of fm neurons. The coupling 
coefficients between qi and each element in FMq. must be determined by the hu-
man experts, possibly with the help of the algorithm described in [26]. When qi 
fires, signaling that a question about hypothesis hi must be raised, it sends exci-
tatory impulses to the elements of FMq.. Only one of the fm neurons in FMq. 
fires in response to the impulses coming from qi and triggers a question about hi 
addressed to the user. This fm neuron, let us call it /m^, enables the system to 
raise the question: "Has fact fs been detected?" The neuron fnis is connected 
with three answer neurons (a neurons) yfms^ ^fms^ ^^^ ^fms^ respectively rep-
resenting the answers "yes," "no," and "I don't know." The user's answer will 
activate one of these a neurons. 

Suppose first that the answer is "yes." The net is restarted by a restart neuron 
activated by y/ms^ augmenting the input of the previous run with the fact repre-
sented by the entry neuron es. 

Suppose now that the answer is "no." We have two subcases: 

(a) If the negative information thus obtained is represented under the form of 
a fact in the system's knowledge base, then the behavior of the net is the same as 
in a "yes" answer situation. 

(b) Otherwise, the process on qi—of asking another question relative to the 
hypothesis hi—continues. If no more questions are available for that hypothesis, 
the question process will be applied to the next lower ranked hypothesis, say, hj, 
via the ^ neuron ^y. 

Finally, let us suppose that the answer is "I don't know." The system will be-
have as in subcase (b). 

Each fm neuron fmj is inhibited by an m neuron (when the fact represented 
by fmj has already been detected and therefore a question about its presence 
is not needed) or by a self-inhibitory impulse (when the user has already given 
one of the admissible answers to the question triggered by fnij). When fmj is 
thus inhibited, it remains excluded from the query process, no matter how much 
excitation it receives from q neurons. 

Case 2. The hypotheses elicited by the system are stored by self-sustaining h 
neurons which send an inhibitory impulse to the corresponding q neurons. In this 
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way, the query process can be activated only on hypotheses that the system has not 
eUcited yet, via those q neurons that are not inhibited by h neurons. Indeed, the 
q neuron qi receives inhibitory impulses from A/, only if hi has been previously 
activated, indicating that hypothesis hi has already been elicited and additional 
investigation is not needed. 

If no more questions to ask and hypotheses to probe are available, the system 
terminates the query process, declaring to the user the list of ranked hypotheses 
that it was able to elicit and the list of facts that are possibly left unexplained by 
these hypotheses. 

5. Justification Subnet 

This subnet is currently capable of answering only one type of question ("On 
the basis of which facts was a certain explanatory hypothesis advanced?"), in ad-
dition to providing the list of all unexplained facts, whenever this is the case. 
However, neurally implemented extensions of this module enabling the system to 
provide a more detailed justification of advanced hypotheses, by tracing the infer-
ential steps leading up to the selection of those hypotheses, are clearly possible. 

The user activates this subnet by asking which facts support a certain hypothe-
sis. Such interaction may be thought of as a backward mechanism which, starting 
from the input hypothesis, looks for all observed facts inducing its elicitation. The 
answer is worked out by two layers of neurons interacting with the m neurons and 
the h neurons. 

6. Control Neurons 

Clearly, a network of neurons performing the abduction-prediction cycle for 
hypothesis selection in the way described here must be controlled and synchro-
nized: this process must be performed in a certain number of sequential steps, in 
each of which the available information is elaborated in parallel. Also this con-
trolling and synchronizing function is performed by various neural elements. The 
role of some controlling neurons was made explicit in the preceding description 
of the evidence, abductive, predictive and hypothesis subnets. 

IX. CONCLUSIONS 

We have shown how to simulate, by means of a localist approach to neural 
representation and processing, various symbolic, rule-based reasoning. Some of 
these technical tools have been applied to designing rule-based expert systems, 
such as the one presented in Section VIII, which exploit the massively parallel 
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processing capacities of neural networks while retaining, in virtue of the local-
ist approach, the full justification capacities of conventional symbolic systems. 
These localist networks, however, remain brittle much in the way of conventional 
symbolic systems. Moreover, some numerical computations involved in quanti-
tative uncertain reasoning require very large networks. These limitations suggest 
the opportunity of extending the present approach toward unified neurosymbolic 
systems which combine localist networks with distributed representations, as well 
as toward strictly hybrid systems. Accordingly, one is led, solely on the basis of 
a balanced assessment of limitations and potentialities of the present approach, to 
distinguishing between three different strategies for neurosymbolic integration: 

(i) using specialized and structured localist networks for symbolic reasoning, 
both crisp and uncertain; 

(ii) combining localist networks for symbolic processing with distributed 
neural networks, the latter representing individual pieces of knowledge as dis-
tributed patterns across a large number of neural units; 

(iii) combining separate localist networks and conventional symbolic systems 
for symbolic processing. 

Additional distinctions, partly overlapping with this classification, can be made 
in the setting of more general analyses of possible approaches to neurosymbolic 
integration (see, e.g.. Sun and Bookman [27] and Hilario [28], and the references 
therein). 

In this chapter, we have mostly worked within approach (i), by presenting spe-
cialized, localist networks for various types of crisp or uncertain symbolic rea-
soning. We have also addressed the problem of learning in a strictly nonconnec-
tionist fashion, by means of a localist network with adjustable weights, which 
can perform an elementary form of chunking and add new rules to a preexisting 
production system. 

Approach (iii) was implicitly considered in our treatment of quantitative uncer-
tain reasoning. In this case, the parallel execution afforded by the localist neural 
implementations may not be beneficial in terms of computation time because of 
the heavy numerical computations that have to be performed by various subnets. 
On account of this fact, we suggested replacing these subnets by conventional 
symbolic processors computing the same function. The resulting system is strictly 
hybrid, but the parallel architecture originally introduced by means of the purely 
neural system is largely preserved in the structure of the new system. 

Approach (ii) is well suited for domains in which a cooperation between neural 
learning and rule-based reasoning is needed to solve specific problems. For exam-
ple, De Gregorio [29] analyzes an object classification problem from visual data 
which is difficult to solve by merely training a neural net, and finds an adequate 
solution by means of a hybrid system performing an abduction-prediction cycle 
(as described in Section VIII. A), with the following division of labor between the 
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neural and the symbolic reasoning modules. The neural net, instead of attempting 
a direct classification of the viewed object, is trained to provide a classification 
of selected visual clues at particular locations of the image. Then the clues are 
symbolically coded and make possible the selective activation of production rules 
in the symbolic reasoning module. The action parts of these rules code possible 
classifications for the viewed objects. If the clues obtained so far are insufficient 
to arrive at a particular classification, the symbolic reasoning module can ask for 
new clues from the neural module in a hypothesis-driven query mode. This cycle 
(again an instance of the abduction-prediction process) is iterated until the system 
settles on a unique classification. The knowledge base of the symbolic reasoning 
module is a set of production rules which is equivalent to a set of rules of the 
form examined in Section III. Therefore, this module can be replaced by a localist 
network as described in Section IV. The new system combines a localist network 
for symboUc processing with a distributed neural network for classification of 
visual clues, and therefore falls squarely within approach (ii) to neurosymbolic 
integration. The massively parallel processing capacities of neural networks are 
exploited in the symbolic processing module, whereas both parallel processing 
and noise-tolerant learning and classification are put to work in the perceptual 
module. In addition to providing an interesting engineering solution, this system 
suggests the potential interest of approach (ii) for the computational modeling 
of high-level perception (such as, e.g., high-level vision; see UUman [30] and 
Kosslyn and Koenig [31]), where bottom-up perceptual processing and top-down 
interpretative reasoning tightly interact. 
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L INTRODUCTION 

Engineers are finding new and different applications for neural networks every 
day. These new applications are exposing many limitations in our current tech-
niques. Perhaps one of the more important of these limitations is the trust that can 
be placed on a neural network, or more correctly the hypothesis that it has con-
structed. With a localized paradigm it is sometimes possible to assign meanings 
to the neurons manually. However, as the networks grow in size beyond several 
different layers, this can become very difficult. 

Hinton [1] expresses the following view: 

the problem is to devise effective ways of representing complex structures in connec-
tionist networks without sacrificing the abiUty to learn the representations. My own 
view is that connectionists are still a very long way from solving this problem. 

It is relatively straightforward to transform a propositional rule base into a neu-
ral network. However, the transformation in the other direction has proved a much 
harder problem to solve. This chapter explains techniques that allow neurons, and 
thus networks, to be expressed as a set of rules. These rules can then be used 
within a rule-based system, turning the neural network into an important tool in 
the construction of rule-based intelligent systems. 

Fuzzy Logic and Expert Systems Applications 
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The rules that have been extracted, as well as forming a rule-based implementa-
tion of the network, have further important uses. They also represent information 
about the internal structures that build up the hypothesis, and, as such, can form 
the basis of a verification system. This chapter also considers how the rules can 
be used for this purpose. 

11. REPRESENTATION OF A NEURON 

Feedforward neural networks can be built to use many types of input parame-
ters. Real-valued or continuous inputs are the most difficult to deal with. Consider 
the example in Fig. 3; there are only two input parameters, but the desired hypoth-
esis requires eight decision planes. These decision planes are implemented in the 
first layer, known as the quantization layer, of any neural network that is built to 
implement this hypothesis (Fig. 1). The weights and biases of these nodes repre-
sent the equations of the decision planes and cannot be simplified. Some of the 
individual decision planes are shown in Fig. 2. 

In the idealized neuron model, thresholding means that all transformations be-
yond the first are Boolean. The quantization layer has split the input space into 

selection 

quantisation 

input 

Figure 1 A two-input network with eight quantization neurons to change real-valued inputs to 
Booleans and a two-layer selection section terminating in a single output neuron. 
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Figure 2 Showing the separation of the input plane into halves by individual neurons in the quanti-
zation layer. The halves are then combined to form the region in Fig. 3. 

regions which are then combined logically by the subsequent layers. In the exam-
ple, the shape is described by 

(a A b A c A d A e) V {d A f A g A h). 

As the quantization layer cannot be simplified, rule extraction has to be concerned 
with the second and subsequent layers of the network. The inequalities that rep-
resent the quantization layer can be stored and substituted into the rules that are 
extracted from the rest of the network. The resulting expression can be quite clear. 

Boolean inputs to a network effective remove the quantization layer, simpli-
fying the process by allowing Boolean rule analysis to begin at the first layer of 

Figure 3 Lines representing the quantization neurons in Fig. 1 separating the plane into various half 
planes which are then selected using the subsequent selection layers resulting in the shaded region 
shown. 
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neurons. Therefore a network with Boolean inputs would give a rule of the form 

If (a Ab)v (FTTa), 

then . . . 

compared to the type of rules produced from networks with real or continuous 
inputs 

If [3.8a + 7Z7 - 4 > 0] A [3.1Z7 - 2c + 9 > 0], 

then 

So far an assumption has been made that a neuron implements a crisp decision 
plane; in other words, it is a perceptron rather than the more common sigmoid-
based neuron. The use of a sigmoid function changes the view of thresholding. 
However, with a fully trained network, the sigmoid function will be a very close 
approximation to a threshold and therefore there is no need to differentiate be-
tween the different types of neurons. There are two reasons for this close approx-
imation: 

• As the networks harden the weights grow in size which makes the range of 
inputs for which the output is not close to Boolean very small. 

• If simulated annealing is used to speed up training, then as the temperature 
approaches zero the activation curve becomes very close to a threshold. 

Although a threshold neuron can always be represented as a Boolean function, 
the form of this function cannot be restricted to a representation where each in-
put variable is mentioned only once. The interest in such representations stems 
from scaleability; the search space for the correct Boolean function grows expo-
nentially as the number of inputs rises. If a set of operators could be found that 
represents any neuron while mentioning each operand only once, then an effective 
algorithm could be produced for finding a concise representation. The problem is 
intractable [2] in that not only does the search space grow exponentially with 
the number of inputs the Boolean representation can also grow exponentially. In 
many cases, however, where there is a concise Boolean representation for the neu-
ron this can be found efficiently. Where the Boolean representation of the neuron 
becomes large and unintelligible, it is clear that a Boolean representation is inap-
propriate and other representations must be sought [3]. 

Previous investigations into this problem used a piecemeal approach, splitting 
off the Boolean problem space into a class of operators which are referred to as O 
and A operators as they are generalizations of OR and AND. 

The problem space covered by the operators was shown to be complete up 
to three dimensions by Mihalaros [4] and therefore to provide a means of repre-
senting all possible neurons with an input dimension of three or less. This work 
by Mihalaros presented no complete analysis of how to find the O operator that 
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matched a general neuron, or even if all possible neurons in higher dimensions 
were covered. Perhaps more significantly and what encouraged further work is 
that the traditionally hard problem of «-input parity neural networks can be sim-
ply represented using O operators [5]. 

Although initially promising, Fletcher and Hinde [3] showed that O operators 
are not complete for four or more dimensions and, as such, cannot in general 
be used to analyze networks in higher dimensions. Where it is possible to use 
O operators, they provide a concise and clear representation and, as such, are 
ideal for large networks with a low connectivity. Unfortunately, as the number of 
dimensions increases, the proportion covered by O and A operators falls until they 
are virtually useless. 

O and A operators are incomplete; they do not have the flexibility to repre-
sent all possible neurons. The aim of finding some form of representation that 
mentions each input once is, in the authors' opinion, basically flawed. A more 
general technique must be adopted. The best understood technique for represent-
ing logical functions is traditional Boolean logic. Although the representation for 
a complex neuron can become unacceptably long. Boolean logic can still provide 
a powerful tool. The aim of the next section is to produce a system for analyzing 
neurons in terms of a Boolean rule. 

III. CONVERTING NEURAL NETWORKS 
TO BOOLEAN FUNCTIONS 

A neural network performs a logical transformation of a set of inputs to a set 
of outputs. The range and domain will contain tuples that consist of real and/or 
Boolean values. The whole problem is to represent the transformation in some 
concise and meaningful way. So far in this chapter we have been looking at how 
this "network transfer function" could be represented. For the purposes of this 
section, real-valued inputs will be ignored. In effect, the nodes in the quantiza-
tion layer of networks that use real inputs are treated as the inputs to a Boolean 
network; thus all networks are Boolean. 

A correct Boolean representation of the network transfer function is logically 
very simple to calculate. A truth table could be calculated by applying every input 
pattern to the network. This truth table could then be turned into a Boolean func-
tion using an algorithmic implementation of Karnaugh maps [6]. Both stages of 
this method have a time complexity of 0(2^). While logically very simple, these 
processes have prohibitively large time and space complexities. So it is necessary 
to break the problem into much smaller problems. The transfer function of the 
network is built up from the transfer functions of the individual neurons. If the 
function of the network is intractable to calculate directly, then it can be derived 
by finding the solutions for all of the neurons that make the network. 
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The possible functions that can be represented by a single neuron fall into dis-
tinct groups. All of the elements of a group are identical except for the negation of 
literals. Further, the groups will contain exactly one "natural" neuron and possibly 
some "real" ones, where we define natural and real to be: 

• Natural: All the weights and the bias of the neuron are positive; that is, the 
transfer function is effectively 

Ŵi * Ini + W2 * In2 + • • -h W„ * In„ > B 

and 

Ŵi > 0, W2 > 0 , . . . , W„ > 0, B>0. 

• Real: At least one of the weights or the bias of the neuron is negative; that 
is, the transfer function is effectively 

Wi * Ini 4- ^2 * In2 + h W„ * In„ > B 

and 

Ŵi < 0 or W2 < 0 or . . . or W„ < 0 or 5 < 0. 

All the following representations are neurons in the same group. The first is the 
natural neuron; subsequent ones represent real neurons from the same group. 

(/i A 73) V (/i A I4) V (I2 AI3 A I4) Natural, 
(/i A -1/3) V (/i A I4) V (I2 A --/3 A 74) Real, 
(/i A 73) V (/i A I4) V (-•/2 A /3 A 74) Real, 
(7i A 73) V (7i A --74) V (72 A 73 A --74) Real. 

A. BOOLEAN REPRESENTATION 
OF A NATURAL NEURON 

Natural neurons can be turned into Boolean functions with relatively little ef-
fort. As none of the inputs is negatively weighted, all we need to find are the 
minimum sets of inputs required to overcome the bias. This problem is similar 
to (but much simpler than) the classic knapsack [2, 7]. Instead of trying to find a 
set of inputs that exactly fit the bias, the required answer is all the sets of inputs 
that just exceed the bias. For example, the neuron in Fig. 4 has four inputs with 
weights of 9, 4, 6, and 7, and a bias of 14. Input 7i & Input 74 just exceeds the 
bias as 9 + 7 > 14, but Input 7i, Input 74 & Input 72 is too large as removing I2 
would still leave the total above 14. (Input 7i & Input 74) is therefore part of the 
answer and (Input 7i & Input 74 & Input 72) is not. 
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Figure 4 Representing a natural neuron as a knapsack problem where the input "parcels" are fitted 
into the bias "package." 

The complete set of solutions or infimums for the problem shown in Fig. 4 
is (/i & I3), (/i & 74), and (I2, h & h)- This represents the complete Boolean 
function of the neuron. In the conventional Boolean format it would be written as 

( / l A / 3 ) / ( / l A / 4 ) / ( / 2 A / 3 A / 4 ) . 

An algorithm to produce one part of the result is given as a PROLOG program 
shown in Fig. 5. By backtracking the procedure, it is possible to derive each part 
in turn until all the infimums have been produced. 

The algorithm so far described will return a solution that is logically correct but 
larger than necessary. As well as the infimums that make up part of the answer, 
the algorithm may also return sets of inputs more specific than infemums. For 
example, if (/i A /s) is an infimum, then it is also possible for the algorithm to 

knapsack(_Unused_inputs,Bias, Answer, Answer): -
Bias = < 0. 

knapsack(Unused_inputs,Bias,SubAnswer,Answer):-
Bias > 0, 
append(_,[(Input_Name,Input_Weight)IInputs], Unused_inputs), 
New_Bias is Bias - Input_Weight, 
knapsack(Inputs,New_Bias, [Input_NamelSub Answer], Answer). 

Figure 5 PROLOG representation of the "knapsack" algorithm used to extract Boolean rules from a 
set of weights associated with a neuron. 
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return (/i AI3AI4), While logically this makes no difference, we require a concise 
and meaningful answer. This added clutter is therefore undesirable. The removal 
of these extra terms can be achieved by sorting the weights into decreasing size. 
A further advantage of this is that sorting is a good heuristic for reducing average 
processing time to find the solution. Let the input to the algorithm be weights 
Wi,W2,W3,...,Wn and the bias value B. 

The mistakes that cause the answer to be nonminimal occur when there is a 
term that could be removed and still overcome the bias, that is, 

Wi-hW2-\-W3-\--"-\-Wm> B, (1) 

W2-\-W3-\-"'-\-Wm> B. (2) 

Because the algorithm stops as soon as the bias is achieved, 

Wi-^W2-\-W3 + "'-\-Wm-Wm<B. (3) 

If the weights were in sorted order, then 

^1 > Wm. (4) 

Substituting (4) into (3) gives 

Wi-\-W2-^W3-\-'"-\-Wm-Wi<B, 
W2-\-W3 + '-'-\-Wm<B, 

(5) 

which contradicts (2). Therefore if the weights are sorted the two requirements 
for added complication in the answer cannot occur. 

B. BOOLEAN REPRESENTATION OF A REAL NEURON 

The transfer function of a real neuron is much harder to calculate directly than 
that of a natural neuron. Earlier in the chapter we stated that "All of the elements 
of a group are identical except for the negation of literals." Therefore finding the 
representation for the natural neuron in the same group as the real neuron provides 
a solution that can be modified to represent the original problem by negating some 
of the inputs. This means that the target of matching a real neuron to a Boolean 
representation has been reduced to two separate problems: 

• How to find the Boolean representation of a natural neuron. This problem 
has already been covered. 

• How to convert the solution for a natural neuron so that it matches one of 
the real neurons in the same group. 
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In2 

Figure 6 Two-dimensional neuron with one negative and one positive weighted input, represented 
as a hyperplane. 

The shaded region in Fig. 6 is represented by the equation In2 — Ini > 0.5. 
To convert this representation of a real neuron into a natural form, it is necessary 
to remove the negative weight without affecting its Boolean characteristics. The 
negative weight associated with Inputi can be removed by moving the origin of 
the axis to position (1,0) and then rotating them. The equation for the graph using 
the new axes (Fig. 7) is In2 + Ins ^ 1-5, where Ins = ""Ini. If a Boolean operator, 
F, is found for this new neuron, then all instances of Ins in F could be replaced 
by --Ini to give a correct solution for the original problem. 

In2 

In3 
Figure 7 Transformed hyperplane with all positive weights. 
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C. EXAMPLES OF BOOLEAN FUNCTION DERIVATION 

A neural network to calculate the function "three-input parity" is shown in 
Fig. 8. The Boolean function for each neuron is calculated separately 

O = H, F = - . ( -D V - E ) , 

H = Gv F, D = - (A A 5) V - (A A C) V - ( 5 A C), 

G = - ( - A V - 5 V -.C), E = AvBvC. 

Combining these gives 

O = - ( - .Av-Bv- .C)v- . ( - . ( - (AA5)v-(AAC)v-- (5AC))v- i (Avi5vC)) . 

64.9 

A B C 

Figure 8 Implementation of three-input parity as a neural network. 
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IV. EXAMPLE APPLICATION OF BOOLEAN 
RULE EXTRACTION 

This application is the dispensing of adhesive in the manufacture of "mixed 
technology" printed circuit boards (PCBs) in which through hole and surface 
mount components are present on the same board. The surface mount components 
are secured to the board, prior to a wave soldering operation, by a small (0.0002 
to 0.005 c^ depending on the component) amount of adhesive. The amount of 
adhesive dispensed is critically dependent on several process environment vari-
ables (e.g., temperature, humidity, erratic thixotropic behavior of the adhesive, air 
bubbles in the flow, and variations in the PCB substrate). 

The dispensing unit consists of a syringe of adhesive coupled to a pressure 
control unit. The unit is made up of a solenoid valve, pressure regulator, tem-
perature sensor, and a pressure transducer to monitor the variation of pressure 
within the syringe. The dispensing unit is fixed to a SEIKO RT3000 robot which 
moves the syringe to locations of the PCB where the adhesive has to be dispensed. 
Feedback data collection is carried out by an image processing system (Imaging 
Technology ITI151) coupled to a Pulnix TM-460 CCD camera incorporating a 
magnifying optical system. 

The original software was developed using the MUSE real-time artificial in-
telligence (AI) toolkit. MUSE is a hybrid modular system supporting a range 
of knowledge representation paradigms: PopTalk, a procedural language with 
object-oriented programming extensions, a forward chaining rule language, a 
backward chaining language, data-directed progranmiing through the use of 
demons, and flexible relation supporting general relations between objects. 

Particular support for real-time operation includes agenda-based priority 
scheduling, interrupt handling, and fast data capture. 

Messom et al. [8] produced a neural network system for controlling the ad-
hesive dispensing machine (Fig. 9). This is the sort of problem that has typically 
been tackled by the use of a rule induction package. The trained neural network 
should therefore be equivalent to a set of rules that could have been learned by 
such a package. 

The first layer of neurons receives real-valued inputs, but produce outputs that 
are very nearly bipolar. These neurons are effectively quantifying the input region, 
and are therefore called quantization nodes. The actions of the quantization nodes 
are described as a set of inequalities. This step does not simplify the information 
but does display it in a manner that is much more natural to read than a set of 
weights on a diagram. Examples of the rules resulting from these inequalities are 
shown in Fig. 10. 

The remainder of the network receives inputs that are close to bipolar and de-
livers bipolar outputs, and, as such, they can be said to be implementing Boolean 
transfer functions. The results from expressing these transfer functions as rules 



186 Graham P. Fletcher and Chris /. Hinde 

Area 

Pulse.height 

Area.change 

Pulse_width 

Risejime 

Box_area_ratio 

FalLtime 

^ 

Rise_timeflag 

^ 

box_area_ratioflag 

FalLtimef lag ̂  

Figure 9 Net implemented by Messom et al. [8] for controlling an adhesive dispensing machine. 

are very similar in format to the first-layer inequalities. Examples of the derived 
rules for the subsequent layers are shown in Fig. 11. 

It is now possible to directly implement this set of rules in a rule base with-
out altering the action of the system. For clarity, some general simplification of 
the Boolean rules is required. Furthermore, substituting the inequalities produces 
much more natural-looking results as shown in Fig. 12. 
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IFrise_time < 1.23 
THEN rise_timefiag 
ELSE -irise_timeflag 

IF pulse_width < 1.0429 
THEN pulse_widthflag 
ELSE -'pulse_widthflag 

IF area > 1.0258 
THENmidnodel 
ELSE -"inidnodel 

IFfall_time> 1.1 
THENfalLtimeflag 
ELSE --falLtimeflag 

IF boxarearatio > 0.8520 
THEN boxarearatioflag 
ELSE -"boxarearatioflag 

IF area > 0.9722 
THEN midnode2 
ELSE -'inidnode2 

IF pulse_height < 1.025 
THEN midnodeS 
ELSE -"inidnodeS 

IF pulse_height > 0.975 
THEN inidnode4 
ELSE -«midnode4 

IF area_change < 0.5500 
THEN midnode5 
ELSE ->midnode5 

IF area_change > 0.4499 
THEN midnode6 
ELSE ->midnode6 

Figure 10 Examples of the rules resulting from the inequalities arising from the first layer of the net 
implemented by Messom et al. [8] for controlling an adhesive dispensing machine. 

The relative ease with which the transformation, from control network to 
rule set, can be made illustrates the usefulness of the interpretation system for 
medium-sized control networks. This type of result is most useful to check that 
the hypothesis is reasonable. It also allows the network to explain its actions; 
something that they cannot classically do. 

V. NETWORK DESIGN, PRUNING, 
AND WEIGHT DECAY 

As the number of inputs to a neuron grows so does the length of the Boolean 
description. In the worst case the number of conjunctions in the disjunctive normal 
form grows at a rate of 2"~^ where there are n inputs to the neuron. The time taken 
to derive a rule is proportional to the number of conjunctions. The rules become 
intractable to compute for neurons with more that 40 inputs, and meaningless for 
a human far earlier. The Boolean rule depicted in Fig. 13 has several thousand 
conjunctions, only the first few are shown. 
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IF (midnodel v -•(midnode2)) 
THEN action 
ELSE -•action 

IF --((midnodel v midnode2)) 
THEN change 
ELSE --action 

IF -.((--(niidnode4) v 
--(midnodeS))) 

THEN pulse.heightflag 
ELSE pulse_heightflag 

IF -'((midnodeS v 
--(niidnode4))) 

THEN pulse_heightdecision 
ELSE --pulse_heightdecision 

IF -i((--(niidnode6) v 
-'(midnodeS))) 

THEN bubbleflag 
ELSE -bubbleflag 

IF --((-^(niidnode6)v 
midnodeS)) 

THEN bubbledecision 
ELSE --bubbledecision 

IF --((-.(midnode6) v 
--(midnodeS))) 

THEN bubbleflag 
ELSE --bubbleflag 

IF -'((--(niidnode6) v 
midnodeS)) 

THEN bubbledecision 
ELSE --bubbledecision 

Figure 11 Examples of the rules resulting from the conversion of the second layer of the net to 
Boolean expressions. 

As the representation grows so quickly, we cannot allow the use of complex 
networks. Therefore we must develop some method of producing a network that 
correctly represents our problem, but simple enough that the analysis produces 
meaningful rules like the ones for the adhesive dispensing machine discussed ear-
lier and unlike the one shown in Fig. 13. The appropriateness of a Boolean rule 
representation for a neural network reflects the appropriateness of a Boolean rule 
representation in the problem domain. 

A. NETWORK DESIGN 

The first and most obvious way to achieve a network of the correct complexity 
is to design its structure by hand. Neural networks are ideal for use in process 
control applications. By designing the network by hand, we are allowing the con-
troller to be informed of certain of the process characteristics and to learn the rest. 
Rule extraction can be used to convert the neural controller back to a more tradi-
tional technology, but after it has learned the balance of the control characteristics. 
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IFrise_time < 1.25 
THEN rise_timeflag 
ELSE -"rise_timeflag 

IFrise_time < 1.25 
THEN rise_timeflag 
ELSE -•rise_timeflag 

IFpulse_width< 1.0429 
THEN pulse_widthflag 
ELSE -•pulse_widthflag 

IF area_change > 0.5500 
THEN bubbledecision 
ELSE -'bubbledecision 

IF (area_change > 0.4499 A 
area_change < 0.5500) 

THENbubbleflag 
ELSE --bubbleflag 

IF (pulse_height > 0.975 A 
pulse_height < 1.025) 

THEN pulse_heightflag 
ELSE -ipulse.heightflag 

IFfall_time< 1.1 
THEN falLtimeflag 
ELSE --falLtimeflag 

IFfalLtime< 1.1 
THEN falLtimeflag 
ELSE --falLtimeflag 

IF boxarearatio > 0.8520 
THEN boxarearatioflag 
ELSE -iboxarearatioflag 

IF (area > 1.02581 v area < 
0.9722) 

THEN action 
ELSE --action 
IF pulse_height > 1.025 
THEN pulse_heightdecision 
ELSE -• pulse_heightdecision 

IF area < 0.9722 
THEN change 
ELSE --change 

Figure 12 Overall rules resulting from amalgamating the inequalities shown in Fig. 10 into the 
Boolean expressions shown in Fig. 11. 

(ip20 A ipl9 A --ipl8 A ->ipl7 A --ipl2 A --ipl 1 A iplO A ip9 A ip4 A -^ip3 A --ip2 A --ipl) 

or 

(-iip26 A ip25 A ipl9 A --iplS A --ipl7 A --ipl2 A --ipl 1 A iplO A ip9 A ip4 A ->ip2 A --ipl) 

or 

(-'ip26 A ip25 A ip7 A iplO A ip5 A ip4 A --ip3 A -iip2 A --ip22) 

or 

(-•ip26 A ip21 A ipl9 A --ipl8 A --ipl7 A --ipl2 A --ipll A iplO A ip9) 

or 

(--ip21 A ipl3 A ipl2 A ipll A --iplO A ip9 A ip4 A --ip3 A ip2 A ipl) 

Figure 13 Showing the unintelligibility of a Boolean rule derived from a digitized set of images fed 
to a neural network in a pattern recognition application. 
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B. SYSTEM INVESTIGATION 

All complex processes will be influenced by many system variables. The first 
problem in any design is to identify these influential system variables from the 
mass of data available. This is achieved by an investigation of the relevance of 
the algebraic combinations of process variables. This is derived from a combina-
tion of polynomial and adaptive linear neurons, which are known as polynomial 
adaptive linear neurons or PADALINEs. 

The basic idea is that new inputs can be formed from functions of the basic 
input nodes. If the function being modeled is the sum of several elementary func-
tions, then the PADALINE can discover the correct input parameters. For a full 
description of PADALINEs and their usage, refer to Hinde [9]. 

C. SEGMENTATION OF SYSTEM VARIABLES 

Before the relevant system variables can be combined logically, they must, in 
effect, be digitized. This is achieved by a quantization layer of neurons. Quantiza-
tion takes several forms: thresholding (a) or regions (b), and it may also be one or 
several variables (c). Figure 14 shows the various strategies that may be employed 
to transform continuous real-valued inputs into Boolean attributes. 

D. BOOLEAN STRUCTURE 

The final part of the network is the Boolean transformation that is applied to the 
selected region. All control problems require specific action to be taken when the 
process system is in a specific state. The controller has to provide suitable outputs 
when the inputs are within a specific region. The Loughborough control architec-
ture developed by Messom [5] solves these problems. For more information on 
the design of this type of network, refer to Messom et al. [8]. 

Network design works well for systems where the underlying structure is un-
derstood. In these situations a designer can build the known portion of the problem 
structure into the control network. The learning by the network and subsequent 
analysis is refining or honing the designer's prior knowledge into an intelligent 
rule-based system. 

E. PRUNING AND WEIGHT DECAY 

There are many domains where the underlying structure of the problem is not 
well understood. In these situations it is not possible to adequately design the 
network topology. Our goal is still to produce a minimal network that correctly 



Rule-Based Intelligent Systems 191 

Unacceptable 
gion 

Figure 14 Quantization takes several forms: thresholding (a) or regions (b), and it may also be one 
or several variables (c). A parallel pair of opposite facing neurons is capable of performing the tasks 
shown in (b) and (c). (a) represents a condition that a variable must be greater than a certain value. 

models the problem, but we must develop a new methodology. All systems can be 
modeled using large generic networks. For example, any system built up solely 
of n Boolean inputs and one output can be always be modeled using n fully 
connected internal nodes in a single layer. Many of today's standard textbooks 
give capacity results for standard classes of problems. So building a network that 
is capable of representing our required hypothesis is not a problem. However, 
many problems do not require the full capacity of the standard network topolo-
gies and we wanted a network of minimal size. The solution is to start with a 
standard network and to remove neurons and links between neurons dynamically 
during learning, thus delivering a result markedly smaller than the standard solu-
tion. 

For the purposes of conversion to rule-based systems, the number of neurons 
in a network does not pose a major problem. The complexity of interconnection 
between the neurons is what dictates the size of the resultant rules. Therefore we 
require a technique to remove as many interconnections as possible. 

When the weight assigned to an interconnection is very small, it may be re-
moved from the network with negligible effect. We therefore want to encourage 
as many of the connections as possible to tend toward zero weight. Standard back 
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propagation minimizes the error function 

= E [Example — Actualf'. 
All_Examples 

By expanding this error function so that a penalty function is incurred for the size 
of the weights in the network, back propagation will attempt to eliminate as many 
weights as possible: 

e = a • 2_] [Example — Actual] + (1 — a) • 2_] f(^^^§ht). 
All_Examples All_weights 

The value of the constant a reflects the relative importance of accuracy versus 
compactness. An a near 1.0 will produce a network that is as correct as possible, 
at the expense of compactness. An a near 0.0 will produce a very small network, 
but one that is less accurate. 

A suitable function for the penalty function was proposed by Setiono and 
Liu [10] 

2 2 

/ ( ^ ) = ^ T T T - ^ + 1 + 10u;2 1 * 10^' 

We now have a method of training a network so that the solution has many con-
nections with small weights, but which ones should be deleted? 

Let the usefulness of a connection be defined as the largest value it passes 
forward over all of the examples. If the usefulness of a connection is below a pre-
defined threshold, then it can be deleted. Similarly, the usefulness of a neuron can 
be defined as the largest value it has in response to any example. If the usefulness 
of a neuron falls below the same threshold, then it too can be deleted. 

Networks are constructed by starting with a standard network, training until 
all of the classifications made by the system are correct and then deleting all 
connections and neurons whose usefulness is too low. These deletions will lower 
the accuracy of the network, so retraining is required. The loop is repeated until no 
more links or neurons can be removed. For more information on this technique, 
refer to Setiono and Liu [10]. 

VL SIMPLIFYING THE DERIVED RULE BASE 

So far in this chapter we have been considering how to produce a rule-based 
system that exactly mirrors the action of the network in every detail. The "knap-
sack/Boolean function" extraction process produces rules that have exactly the 
same functions as the neurons. For example, the neuron depicted in Fig. 15 would 
produce (A A B) v (A A C) v (C A 5) . If the neuron had been trained from the 
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Figure 15 Showing the neural representation of the function (A A B) v (A A C) v (C A B). 

incomplete example shown in Fig. 16, then there are two further, equally correct 
hypotheses that could have been learned instead (see Fig. 21). 

The choice between the three correct hypotheses is completely arbitrary. As all 
are consistent with the data and are therefore arguably correct, we could substitute 
the rules derived from any of these with the rules from the original neuron. If we 

Figure 16 Showing the training set which may be used to represent the function (A A B) v (A A 
C)v (C AB). Notice that there is no data point at (-̂ A AB AC). 
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Figure 17 Two other hypotheses that could have been produced in response to the training examples 
shown in Fig. 16. 

are using the derived rules to produce a rule-based intelligent system, then any of 
these neurons could be used instead of the one learned. The three derived rules are 

(A A 5) V (A A C) V (C A B), 

(AAB)V(C A B), 

(AAB)V C. 

Consider Occam's razor 

The most likely hypothesis is the simplest one that is consistent with all observations. 

Then the shortest and simplest of the three possible solutions should be used. 
This has two advantages. First, it is more likely to be correct and, as importantly, 
the resulting rule base will be much easier to read. Setiono and Liu [10] give 
one method for achieving this. In their system the complete set of input-output 
training pairs is calculated for each neuron. In their words they then 

Find the minimum number of attributes in the attribute Ust that uniquely differentiate 
the items. 

This can be achieved using any standard symbolic rule extraction method. In 
essence, the neural training and weight decay is used to break down the data into 
smaller interconnected data sets. Each of these is then analyzed independently. 
The smaller rule sets could then be recombined to produce a complete represen-
tation. In the following example, a network has been trained to recognize three 
input exclusive or using the training data shown in Fig. 18. 
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INI 
0 
0 
0 
0 
1 
1 
1 
1 

IN2 
0 
0 
1 
1 
0 
0 
1 
1 

INS 
0 
1 
0 
1 
0 
1 
0 
1 

OUT 
0 
1 
1 
0 
1 
0 
0 
1 

Figure 18 Training set and associated neural network for a three-input exclusive or, or even parity. 

The network learning algorithm produces the minimum size network required 
to model this function. Four sets of training data associated with the four neurons 
in the network can be extracted from the network and they are summarized in 
Fig. 19. The first six relate the original input data to the outputs of the three nodes 
in the hidden layer, the seventh relates the inputs and output of the final node. 

Rule extraction from these training sets gives the rules shown in Fig. 20. The 
three inputs are used along with the outputs of nodes 1-3 to calculate their rules. 
The outputs of the three nodes in the second layer and the output to node 4 are 
used to calculate a rule for node 4. Neural training has given the structure of the 
rule base, that is, the number of rules and how they interact. Traditional symbolic 
rule extraction produces the bodies of the rules. 

This method of splitting the extraction of rules from data between the neural 
network and the symbolic rule induction works well. The neural training pro-
duces subhypotheses that are represented by the nodes in the hidden layers and 
the symbolic rule extraction produces good concise rules. However, the rule ex-
traction can be a very complex process, and by starting with just the input-output 

INI 
0 
0 
0 
0 
1 
1 
1 
1 

IN2 
0 
0 
1 
1 
0 
0 
1 
1 

INS 
0 
1 
0 
1 
0 
1 
0 
1 

Nl 
0 

N2 
0 
0 
0 
1 
0 
1 
1 
1 

N3 
0 
0 
0 
0 
0 
0 
0 
1 

N4 
0 
1 
1 
0 
1 
0 
0 
1 

Figure 19 Four sets of training data associated with the four neurons in the network shown in Fig. 18 
can be extracted from the network. 
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If 'More than none input fire' If 'More than one input fire' 
then then 

Nodel Node2 
else else 

Nodel -•Node2 

If 'More than two input fire' If (Nodel A -^Node2)V(Node4) 
then then 

Node3 Output 
else else 

-^Node3 -^Output 

Figure 20 Results of symbolic rule extraction applied to the data generated from the network shown 
in Fig. 18 and tabulated in Fig. 19. 

data pairs for the neuron we have discarded information. Symbolic rule extraction 
assigns a weight to each of the variables. In the example shown in Fig. 19, the 
weight attached to input 1 when building the rule for node 2 is 

I {Number_of_examples_where[In\ = N\])— 1 

{Number_of_examples_where\In\ ^ Nl]) j 

= 6 - 2 

= 4. 

The weight refers to the ability of the input variable to predict the answer. As 
/i is the best predictor, the examples should be split firstly on / i . Symbolic rule 
extraction is based on these weights calculated from the examples. These weights 
already exist within the neural system as the connection weights. Return to the 
knapsack algorithm given earUer in Fig. 5 and reproduced here in Fig. 21 for 
clarity. Previously, we were searching for all sets of inputs whose weights just 
exceed the bias. However, we can extend the algorithm to take account of the 

knapsack(_Unused_inputs,Bias,Answer,Answer):-
Bias =<0. 

knapsack(Unused_inputs,Bias,SubAnswer,Answer):-
Bias > 0, 
append(_, [(Input_Name,Input_Weight) I Inputs], Unused_inputs) , 
New_Bias is Bias - Input_Weight, 
knapsack(Inputs,New_Bias,[Input_NameISubAnswer],Answer). 

Figure 21 Original knapsack algorithm. 
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0 2 4 6 8 10 12 14 16 

Input Ii 

Input l2 

Input l3 

Input l4 

Bias 

Figure 22 Weights assigned to inputs I\, I2,13, and I4 together with the bias shown as a bar graph. 

training examples. For example, given the weights in Fig. 22, /i would be the first 
input considered. Normally, the weight for /i would be removed from the bias 
giving a new bias of 5. The search would then continue for inputs to go with h 
that can overcome this new bias. Given the training examples with /i true, we 
have three cases 

1. All the examples are positive. We need search no further; as far as the 
examples are concerned, h is sufficient to indicate a positive response 
even though the bias value has not been overcome. 

2. All the examples are negative. There is no point searching further as the 
examples tell us that the current set of variables should never give a 
positive response. Therefore the current variables should be changed. 

3. The examples contain both positive and negative examples. The algorithm 
needs to continue by adding further variables until either the bias is 
overcome or one of the first two cases applies. 

The algorithm incorporating these observations is given in PROLOG in Fig. 23. 

VII. EXAMPLE OF THE CONSTRUCTION 
OF A RULE-BASED INTELLIGENT SYSTEM 

In this section a problem is introduced and a rule base derived using the neural 
techniques illustrated in the preceding sections. 

A number of published studies have evaluated the application of artificial neu-
ral networks in the area of medical prediction. This example is based on the 
identification of renal transplant recipients who risk developing cytomegalovirus 
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{The Bias has been overcome} 
knapsack(_Unused_inputs,Bias,_Examples,Answer,Answer):-

Bias =<0. 

{There are no false examples} 
knapsack(_Unused_inputs,_Bias,Examples,Answer,Answer):-

\+(append(_,[(Inputs,Outputs)I_],Examples), 
Outputs = -1). 

{There are both positive and negative examples} 
knapsack([First_InputIOther_Inputs],Bias,Examples,SubAnswer, 

Answer):-

Bias > 0, 
findall((Name,1),append(_,[(Name,1)l_],Examples),Pos_examples), 
findall((Name,-1),append(_,[(Name,-1)l_],Examples),Neg_examples), 
Pos_examples =\= [], 
Neg_examples =\= [], 

{First input is set to true} 
(Input_Name,Input_Weight) = First_Input 
New_Bias is Bias - Input_Weight, 
knapsack(Other_Inputs,New_Bias,Pos_examples, 

[Input_NameISubAnswer],Answer). 

knapsack([First_InputIOther_Inputs],Bias,Examples,SubAnswer, 
Answer):-

Bias > 0, 
findall((Name,1),append(_,[(Name,1)l_],Examples),Pos_examples), 
findall((Name,-1),append(_,[(Name,-1)l_],Examples),Neg_examples), 
Pos_examples =\= [ ] , 
Neg_examples =\= [ ] , 

{first input is set to false} 
(Input_Name,Input_Weight) = First_Input 
knapsack(Other_Inputs, Bias,Neg_examples,SubAnswer,Answer). 

Figure 23 New "knapsack" algorithm in PROLOG incorporating the changes outlined. 

(CMV) disease. CMV infection may be present in a patient prior to transplantation 
or it may be introduced into a patient through a CMV-infected donor organ. The 
infection can lead to the development of CMV disease and this is a significant 
cause of morbidity and mortality among immunocompromised renal recipients. 
The data set represents 548 renal transplants that took place at the Cardiff Royal 
Infirmary, Wales, between 1986 and 1994. 
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Definitions 

Pretransplant Cytomegalovirus Infection 

CMV(+) is recorded if IgG antibodies are present in a pretransplant blood 
sample, and is indicative of the presence of, or previous exposure to, CMV infec-
tion. 

Posttransplant Cytomegalovirus Infection 

For a CMV(—) recipient, posttransplant CMV(+) indicates the appearance of 
IgG antibodies in the blood. For all recipients, the appearance of IgM antibodies, 
the detection of CMV antigen, or the presence of CMV culture from blood or 
urine is recorded as posttransplant CMV(+). 

Posttransplant Cytomegalovirus Disease 

The patient develops fever, pneumonia, gastrointestinal diarrhea, renal insuffi-
ciency, raised alanine amino transferase. 

Cytomegalovirus Prophylaxis 

Donor is CMV(+) and recipient is pretransplant CMV(—). This currently 
forms the basis for treating with Sandoglobulin as part of the posttransplant 
therapy. 

Human Leukocyte Antigen Mismatch Grade 

Scale for measuring the match between tissue types. 0—excellent match; 6— 
complete mismatch. 

Panel Reactive Antibodies 

The percentage of a random panel of cells to which the recipient has antibodies 
and which cause a positive reaction. This percentage gives an indication of the 
number of possible donors to which the recipient would be sensitized. 

The parameters recorded for each patient are shown in Fig. 24. 
The initial network was constructed with 5 real-valued inputs and 11 Boolean 

inputs. There was a single hidden layer of 8 neurons feeding through to a single 
output. The network is illustrated in Fig. 25. Using the network training algo-
rithms previously discussed, the network shown in Fig. 26 was constructed. This 
network classified the appearance of CMV disease with an accuracy of 85%. 

Extracting the rules from this network gives the following contraindicators to 
CMV disease. Any two of these contraindicators, except for the pair 1 and 4, 
suggest that the patient is in a low-risk group. 
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1. Pretransplant CMV status of donor B 
2. Pretransplant CMV status of recipient B 
3. Transplant type (kidney or kidney and pancreas) B 
4. Donor age R 
5. Recipient age R 
6. Donor sex B 
7. Recipient sex B 
8. Recipient diabetes B 
9. CMV prophylaxis B 

10. Had previous transplant B 
11. Donor source B 
12. HLA mismatch R 
13. PRA latest R 
14. PRA highest R 
15. Number of rejections B 
16. Posttransplant CMV infection B 

Figure 24 Definitions of the 16 inputs to the network to classify whether CMV disease would appear 
in the patient. The R or B denotes whether the input is a real continuous-valued input or a Boolean 
input. 

Contraindicator 1 

No previous CMV in DonorA 

(No previous Tx v No CMV Postinfection v Recent Diabetes) 

Contraindicator 2 

Recip Female A (Previous CMV in Donor v K&P Tx V PRA Highest > 31.7) 

or 

Recip Male A Previous CMV in Donor A (K&S Tx v PRA Highest > 31.7) 

Contraindicator 3 

No CMV Postinfection A No previous Tx A No CMV ProphylaxisA 

(No Previous CMV in Donor V PRA latest < 14.01) 
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Fully 
Connected 
Layer 

000 
Boolean Inputs Continuous Inputs 

Figure 25 Initial network used to classify the appearance of CMV disease. The network is fully 
connected but not all the connecting arcs are shown. 

or 

or 

or 

Recept Female A K Tx A 

(No previous Tx V No CMV Postinfection v No CMV Prophylaxis) 

Recept Female A No previous CMV in Donor 

Recept Male A No previous CMV in Donor A PRA latest < 14.01. 

Contraindicator 4 

No previous CMV in Donor A No CMV Postinfection 

Contraindicator 5 

Previous CMV in Donor A PRA latest > 14.01 

The rules represent knowledge about the domain, and could now be used to imple-
ment a rule-based system to identify potential problem patients. The conversion 
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00 000 
Figure 26 Final network used to classify the appearance of CMV disease. The network is now not 
fully connected and the arcs remaining are shown. Note that some of the input nodes are now not 
connected as they have no influence on the output. 

of the neural solution into the rule base has many potential profits. Of these, per-
haps the most important is verification. The knowledge has been converted into a 
form that could now be taken back to the hospital. 

VIII. USING RULE EXTRACTION 
TO VERIFY THE NETWORK 

So far this chapter has argued for, and demonstrated how, to extract Boolean 
rules from neural networks. One of the major uses envisioned is the verification of 
the original neural network. The pole-balancing problem is used to demonstrate 
the usefulness of the network-derived rules in verifying the action of networks. 

The pole-balancing problem is an example of applied adaptive control and has 
become a standard tutorial problem. The control system must balance a pole on 
a motorized cart by moving the cart forward and back in a confined space. The 
implementation of most interest here is the neural network [11] shown in Fig. 27, 
which was successful in balancing the pole under a variety of circumstances. The 
inputs to this system are Boolean, so there is no quantization layer and no need 
for inequalities in the rule set. One of the objectives of the research was to study 
the usefulness of quahtative inputs to a neural network. 

The analysis of the pole-balancing net resulted in the following rule. Careful 
analysis of the rule will make it possible to find, and therefore correct, the errors 
in the network. 



Rule-Based Intelligent Systems 203 

o 
C/3 

1 «4H 

o 

> 
o 

«4H 

C/D 

1) 

OH 

c 

o 

S-

OH 

o 

^ 
c 
o 

c 
O 

^ 

C 

o 

13 

i 
o 

Figure 27 Neural network developed by Zhang and Grant [11] to solve the pole-balancing problem. 

IF (Top of pole is to right A -^Pole is falling over A 
-'Pole speed increasing A Cart accelerating) 

V 

(Top of pole is to right A ~>Pole is falling over A 
-•Pole speed increasing A Cart on right side of track A 
Cart moving away from centre) 

V 

(Top of pole is to right A Pole is falling over A 
Pole speed increasing) 

THEN Apply right force 
ELSE Apply left force 
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Simple image enhancement techniques can be used to simpHfy the rules, resulting 
in the underlying functions of the network and a Hst of exceptions. The underlying 
function can be verified and the exceptions indicate possible problems with the 
network hypothesis. 

A. APPLYING SIMPLE IMAGE ENHANCEMENT 

TECHNIQUES TO RULES 

The rule represented as a Karnaugh map in Fig. 28 has a fairly complex 
Boolean expression: 

(/l A /3 A 74) V (--/2 A --/s A 74) V {I2 A --/i A --/s) V (--/i A -^h A I3 A I4), 

The map gives a better understanding of the simple basic concept. The aim of us-
ing image enhancement techniques is to allow high-dimensional problems to be 
represented in their original form but with much of the complexity removed. En-
hancement will alter the rules, maintaining the main underlying objectives while 
removing superfluous small cases. This makes the analysis of the network hy-
potheses tractable for much larger networks. For example, the Boolean expres-
sion represented in Fig. 28 could be simplified to become the one represented in 
Fig. 29. 

k 
k 
k 

-h I2 I2 -h 

u u -u -u 

I 3 

I 3 

Figure 28 Function with a very simple basic concept but a relatively complex Boolean representa-
tion. 
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-h I2 

^ 1 * ^ ^ ! 

k^^l 
k 
k 

I4 I4 

h -h 

^HhH 
^̂ r̂ ' 

- I 4 - I 4 

k 
13 

Figure 29 Enhanced version of the Boolean rule in Fig. 28. 

There are two separate processes required to enhance a Boolean rule. The first 
reduces it by removing burrs. A burr is an area on the Karnaugh map that is 
separate from or smaller than the main body of the function. The second process 
is the reverse, removing burrs from the inverse function fills any holes on the rules. 
The removal of burrs from a Boolean rule can be achieved easily if the Boolean 
expression is in a minimal disjunction of conjunctions. The example in Fig. 28 
was represented as 

(/l A /3 A 74) V (--/2 A -^h A 74) V {h A ^I\ A -^h) V (--/i A -^h A I3 A I4). 

The Boolean representation for the version after the burrs have been removed is 

(/l A /3 A 74) V (-./2 A -./3 A 74) V (h A ^h A -^h). 

Each of the conjunctions in the Boolean equation represents an area on the Kar-
naugh map. The size of this area is inversely proportional to the length of the 
conjunction. By removing the longer conjunctions from the Boolean rule, it is 
possible to remove the smaller areas on the map; thus removing the burrs from 
the rule. The burr is removed from the Boolean by removing the longest of the 
conjunctions. 

Hole filling is an equally simple task. In effect, hole filling is burr removal of 
the inverse function, which is exactly how it is implemented. 
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11 - Top of pole to right 
12 - Pole is falling over 
13 - Pole speed increasing 

Graham R Fletcher and Chris J. Hinde 

14 - Cart on right side of track 
15 - Cart moving away from center 
16 - Cart accelerating 

IF (II A -12 A -13) 
THEN 

M2 = True 
ELSE 

M2 = False 

IF (Ml V M2) 
THEN 

Apply right force to cart 
ELSE 

Apply left force to cart 
IF (II A -12 A 13) V (II A -12 A 14) V (II A 13 A 14) V 

(II A 13 A 15) V (II A -12 A 16) V (II A 13 A 16) 
THEN 

Ml = True 
ELSE 

Ml = False 

Figure 30 Raw rules extracted from the network trained to balance a pole on a cart. 

B. USING ENHANCEMENT TO EXPLAIN THE ACTION 
OF THE P O L E - B A L A N C I N G N E T W O R K 

By using the simple image enhancement techniques described previously on 
the rules derived for the pole-balancing network, it is possible to reveal informa-
tion about the internal hypothesis. The rules for the network in their raw form 
are shown in Fig. 30. Repeatedly enhancing these rules gives the three versions 
shown in Figs. 31-33. Each is enhanced one step further than the preceding copy. 
Substituting the simplest rules for Ml & M2 shown in Fig. 33 into the top-level 
rule gives the rule shown in Fig. 34. 

The basic main rule (Fig. 34) is saying follow the top of the pole. This is 
clearly the correct basic rule. At the higher level of complexity shown in Fig. 32, 
we can check that the shape of the more important input variables is correct using 

IF (II A -12 A 13) V (II A -12 A 14) V 
(II A -12 A 16) V (II A 13) 

THEN 
Ml = True 

ELSE 
Ml = False 

IF (II A -12 A13) 
THEN 

M2 = True 
ELSE 

M2 = False 

Figure 31 Rule shown in Fig. 30 enhanced one stage. 
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IF (II A-12) V (II A13) IF (II A-12 A13) 
THEN THEN 

Ml = True M2 = True 
ELSE ELSE 

Ml = False M2 = False 

Figure 32 Rule shown in Fig. 31 enhanced one further stage. 

IF II IF True 
THEN THEN 

Ml = True M2 = True 
ELSE ELSE 

Ml = False M2 = False 

Figure 33 Rule shown in Fig. 32 enhanced yet again. 

IF Top of the pole is to right 
THEN 

Apply right force 
ELSE 

Apply left force 

Figure 34 Rule shown in Fig. 35 with the basic input values and output names substituted to aid 
readabihty and understanding. 

IF (Top of pole is to right A Pole speed increasing) v 
(Top of pole is to right A Pole is falling over) 

THEN 
Apply right force 

ELSE 
Apply left force 

Figure 35 Rule shown in Fig. 32 with the basic input values and output names substituted to aid 
readability and understanding. 
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13 
-nI3 

-.11 1 11 1 11 

12 ^ ^ - - 1 2 

-.11 

-.12 
Figure 36 Map of the rule after some simplification. This shows an asymmetrical response. 

a Karnaugh map. The rule for applying force is shown in Fig. 35. The map for 
this rule is shown in Fig. 36. The map shows that the rule need not be synmietric. 
This means that the network will respond differently to the same situation on 
different sides. Although the network balanced the pole under test conditions, it 
cannot be exactly correct. The reasons for moving the cart to the right should 
mirror the reasons for moving the cart to the left; so one of the rules must be 
wrong. 

The part of the rule missed by the network corresponds to accelerating right 
when the top is to the left so as to slow down the movement of the pole if it is 
about to overshoot the center line. It is not surprising this has been missed as it is 
not a conmion case. However, the training could be modified to force this example 
to occur. 

The benefits of being able to extract the underlying hypothesis of a neural 
network are the ability to understand the hypothesis of the network either to gain 
new insights into the behavior of the mechanism being modeled or to check that 
the hypothesis embodied in the network makes sense. 

IX. CONCLUSIONS 

This chapter has shown how trained neural networks can be transformed into 
understandable Boolean rule-based systems. It has also made observations about 
when this might be appropriate and when it may be unwise. Transforming neu-
ral networks into rule-based systems is an effective way of inducing rules from 
examples, although it is clearly not the only way. Transforming neural networks 
can expose deficiencies in the network which further training can rectify, thus 
taking neural networks away from and art form and brining it into line with more 
conventional software validation methods. 
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I. INTRODUCTION 

There has recently been a spurt of activity to integrate different computing 
paradigms, such as fuzzy set theory, neural networks, genetic algorithms, and 
rough set theory, under the heading soft computing [1-3], for generating more 
efficient hybrid systems. The purpose of soft computing is to provide flexible 
information processing capability for handling real-life ambiguous situations by 
exploiting the tolerance for imprecision, uncertainty, approximate reasoning, and 
partial truth to achieve tractability, robustness, and low cost [4]. The guiding prin-
ciple is to devise methods of computation which lead to an acceptable solution at 
low cost by seeking an approximate solution to an imprecisely/precisely formu-
lated problem. 

One such integration that has been made by several researchers during the last 
five to seven years is neuro-fuzzy computing [5, 6], where the merits of fuzzy 
set theory [7, 8] and artificial neural networks (ANNs) [9-12] are fused to im-
prove the performance in decision-making systems. The integration promises 
to provide both generic (parallelism, fault tolerance, adaptivity, and uncertainty 
management) and application-specific advantages to handle real-life problems. In 
many cases these models perform better than either a neural network or a fuzzy 
system considered individually. Neuro-fuzzy hybridization is performed broadly 
in two ways: a neural network equipped with the capability of handling fuzzy 
information (termed fuzzy-neural network), and a fuzzy system augmented by 
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neural networks to enhance some of its characteristics like flexibility, speed, and 
adaptibility (termed neural-fuzzy system). 

Other hybridizations include the genetic-neural [13, 14], fuzzy-genetic [15], 
neuro-fuzzy-genetic [16], rough-fuzzy [17], and rough-neuro-fuzzy [18] ap-
proaches, where the characteristics of genetic algorithms (GAs) [19, 20] and 
rough sets [21, 22] are being exploited. Such appHcations are relatively new as 
compared to the neuro-fuzzy approaches. The primary role of GAs here is to pro-
vide techniques for efficient searching and optimization, whereas that of rough 
sets is the management of uncertainty and knowledge extraction. These hybrid 
paradigms are suitable for solving complex real-world problems for which only 
one tool may not be adequate. In other words, during hybridization the individual 
tools act synergetically (not competitively) to increase the application domain of 
each other when used in a soft computing paradigm. 

In this chapter we discuss the issue of designing expert systems in a soft com-
puting environment. As the knowledge base of an expert system is a repository 
of human knowledge and because some of these may be imprecise in nature, this 
may often result in a collection of rules and facts which, for the most part, are 
neither totally certain nor totally consistent. The expert system is also likely to 
be required to infer from premises that are imprecise, incomplete, or not totally 
reliable. The uncertainty of information in the knowledge base of the question-
answering system thus induces some uncertainty in the validity of its conclusions 
[23]. Hence a basic problem in the design of expert systems is the analysis of the 
transmitted uncertainty from the premises to the conclusion and the association of 
a certainty factor [24]. Fuzzy expert systems [24, 25], incorporating the concept 
of fuzzy sets at various stages, help to a reasonable extent in the management of 
uncertainty in such situations. 

Artificial neural networks (ANNs) are also used in designing expert systems. 
Such models are called connectionist expert systems [26], and they use the set 
of connection weights of a trained neural net for encoding the knowledge base 
for the problem under consideration. The use of ANNs helps in (a) incorporat-
ing parallelism and (b) tackling optimization problems in the knowledge base 
space. These models are usually suitable in data-rich environments and seem to 
be capable of overcoming the problem of the knowledge acquisition bottleneck 
of traditional expert systems. They help in minimizing human interaction and the 
associated inherent bias during the phase of knowledge base formation (which is 
time consuming in the case of traditional models), and they also reduce the pos-
sibility of generating contradictory rules. Powerful learning techniques exist for 
generating connectionist architectures from training samples. This enables us to 
automate the construction of knowledge bases for classification-type expert sys-
tems. When the connection weights of a trained fuzzy neural net are used as the 
knowledge base, we call the model a neuro-fuzzy expert system. This enables one 
to acconmiodate the merits of neuro-fuzzy computing in expert system design. 
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Generally, ANNs consider a fixed topology of neurons connected by links in 
a predefined manner. These connection weights are usually initialized by small 
random values. Knowledge-based networks [27, 28] constitute a special class of 
ANNs that consider crude domain knowledge to generate the initial network ar-
chitecture which is later refined in the presence of training data. This process 
helps in reducing the searching space and time while the network traces the op-
timal solution. Node growing and link pruning are also performed to generate 
the optimal network architecture. A knowledge-based network can be used for 
designing a knowledge-based connectionist expert system. Rough sets, known 
to be effective in knowledge reduction, have very recently been used in extract-
ing domain knowledge for encoding knowledge-based networks [18]. GAs, being 
efficient search techniques, have been utilized for optimizing the network param-
eters [14]. Both these tools hold promise in generating efficient knowledge-based 
connectionist expert systems in the framework of rough-neuro-genetic or rough-
neuro-fuzzy-genetic computing. 

The block diagrams of the basic modules of an expert system, fuzzy expert 
system, fuzzy neural net, connectionist expert system, neuro-fuzzy expert system, 
and knowledge-based connectionist expert system are shown in Fig. 1. As stated 
previously, a fuzzy neural net constitutes the knowledge base of a neuro-fuzzy 
expert system. (Note that this excludes other possible integrations, such as bring-
ing the concept of ANN into the framework of a fuzzy expert system.) Whereas 
the rules are collected by knowledge engineers for designing the knowledge base 
of a traditional expert system (or fuzzy expert system), the connectionist models 
use the trained link weights of the neural net/fuzzy neural net to automatically 
generate the rules, either for later use in a traditional version or for providing jus-
tification in the case of an inferred decision. This automates and also speeds up 
the knowledge acquisition process. The use of fuzzy neural nets helps in the han-
dling of uncertainty at various levels (e.g., input, output, learning, and neuronal) 
and generates fuzzy rules capable of more realistically representing real-life sit-
uations. The knowledge-based connectionist expert systems, on the other hand, 
initially encode crude domain knowledge among the connection weights of the 
neural net, thereby speeding up the training phase and generating better perfor-
mance. Refined rules are later extracted from the less redundant trained network. 

Section II is devoted to the general problems of expert system design, and 
the relevance of fuzzy sets, connectionist models, and neuro-fuzzy computing 
along this line. The utility of knowledge-based networks and the feasibility of 
using other soft computing tools, for example, GAs and rough sets in this context, 
are also described. A survey on connectionist expert systems (without fuzzy) is 
included in Section III, for the convenience of the reader. In Section IV we provide 
a review on existing models of neuro-fuzzy expert systems, keeping in mind the 
rich literature currently available in this field. A comparative study is provided in 
tabular form. A brief discussion on other hybrid models is provided in Section V. 
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Figure 1 Block diagram of the basic modules of various expert systems. 

II. EXPERT SYSTEMS: SOME PROBLEMS 
AND RELEVANCE OF SOFT COMPUTING 

The major components of an expert system [29] are the knowledge base, in-
ference engine, and user interface. The knowledge base contains the expert-level 
information necessary to solve problems in a specific domain. This information 
is generally represented in the form of a set of rules, although frames [30], se-
mantic nets [31], and belief networks [32] are also in vogue. We shall consider 
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rule-based systems in this discussion. Knowledge bases, being domain specific, 
are nontransferable. The inference engine interacts both with the knowledge base 
and a working memory (that records facts about the current problem and is up-
dated with the availability of new information). Pattern matching occurs between 
the rules in the knowledge base and the facts in the working memory to select the 
relevant rules applicable. Note that when no matching occurs, no rule is selected. 
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whereas when multiple rules apply, conflict resolution strategies are used to se-
lect the most specific one. The same inference engine can be used with different 
knowledge bases. 

We provide here, first of all, a mathematical formulation of expert systems. 
This is followed by a discussion on fuzzy logic and its role in the management 
of uncertainties, the relevance of connectionist models, the need for neuro-fuzzy 
computing, and the utility of knowledge-based networks. 

Let us consider finding a decision consisting of a sequence of hypotheses op-
timizing some criteria in an environment characterized by available information. 
Let D be a candidate decision consisting of n decision elements dt, where each 
decision element dt belongs to a finite, discrete set D': 

D = (dud2,...,dn), di eD\ 

As a link between the decision and the available information, a number Â  of 
measurements (or observations) are available 

mr. D-^ M: D -^ mi(D), i = l,...,N, 

where M is the measurement space. Heuristic functions are used for rating the 
different candidate decisions according to these measurements. These ratings de-
scribe how well (or how likely) a decision (and its associated measurement) fits 
in with the environment 

hi: M->n: mi -^ hiirm), i = l,...,N, (1) 

where TZ is the space of the possible rating values (mostly a subset of the real num-
bers). Each heuristic can be considered as a piece of knowledge, usually coming 
from an expert, and is used for partially assessing the quality of the decision. 
Heuristics are combined to form a global rating r, which is a measure of the qual-
ity of the decision 

r = 0[/ii(mi(D)), /z2(m2(D)),..., hN{mN(D))l (2) 

where O is the combination operator across all heuristics. 

A. ROLE OF FUZZY LOGIC 

Fuzzy logic is based on the theory of fuzzy sets and, unlike classical logic, 
it aims at modeling the imprecise (or inexact) modes of reasoning and thought 
processes (with linguistic variables) that play an essential role in the remarkable 
human ability to make rational decisions in an environment of uncertainty and 
imprecision. This ability depends, in turn, on our ability to infer an approximate 
answer to a question based on a store of knowledge that is inexact, incomplete, or 
not totally reliable. In fuzzy logic everything, including truth, is a matter of degree 
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[24]. Zadeh has developed a theory of approximate reasoning based on fuzzy set 
theory. By approximate reasoning we refer to a type of reasoning that is neither 
very exact nor very inexact. This theory aims at modehng the human reasoning 
and thinking process with hnguistic variables [33] in order to handle both soft and 
hard data, as well as various types of uncertainties. Many aspects of the underly-
ing concept have been incorporated in designing decision-making systems [34]. 
Because fuzzy sets are a generalization of classical set theory, the embedding 
of conventional models into a larger setting endows fuzzy models with greater 
flexibility to capture various aspects of incompleteness or imperfection (i.e., defi-
ciencies) in whatever information and data are available about a real process. Let 
us now explain the role of fuzzy logic in the management of uncertainty in expert 
systems. 

The knowledge base of an expert system contains human knowledge, most 
of which is imprecise and qualitative. To describe situations where the boundary 
between competing hypotheses is vaguely defined, human experts use terms such 
as very likely, likely, more or less likely, low, medium, high, etc. Encoding this sort 
of expertise by probabilities results in the loss of information about this vagueness 
or imprecision. Using linguistic variables for such terms enables a knowledge 
engineer to capture the essence of the experts' experience and judgment without 
attempting to overquantify intuition. Moreover, facts about the world are rarely 
known with certainty. Conventional rule-based systems, with two-valued logic, 
usually evade this issue of partial matching. 

In conventional statistical designs, the input patterns are quantitatively exact to 
within the resolution of the sensors used to collect them. However, real processes 
also may possess imprecise or incomplete input features. In such cases it may 
become convenient to use linguistic variables and hedges [35] like low, medium, 
high, very, more or less, etc. to augment or even replace numerical input feature 
information. Any input feature value can be described in terms of some combina-
tion of membership values in the linguistic property sets low, medium, and high. 

The importance of fuzzy logic to the management of uncertainty in expert sys-
tems mainly lies in its ability to deal with fuzzy quantifiers and modifiers. Fuzzy 
logical systems allow a proposition or conclusion to range over fuzzy subsets 
(like very true, more or less true, likely true, etc.) of truth-value sets character-
ized by their possibility distributions. Fuzzy modifiers like not, very, more or less, 
extremely, slightly, much, a little, etc. can also be represented. A fuzzy certainty 
factor is associated with the conclusion to analyze the transmission and cumula-
tion of uncertainty from the premises to the conclusion. Deduction of conclusions 
from observations and rules in the knowledge base is made using either truth 
value restriction or compositional rule of inference. Hence, partial match can oc-
cur between the antecedent of a rule and a fact supplied by the user. 

In short, fuzzy logic or reasoning [24] provides a natural conceptual frame-
work for knowledge representation and inferencing from knowledge bases that 
are imprecise, incomplete, or not totally reliable. The advantage of using fuzzy 
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reasoning is that it can yield an approximate answer even when probabiHstic the-
ories are not appUcable, as the latter often require idealized assumptions such as 
the independence of evidence and the mutual exclusiveness and exhaustiveness of 
hypotheses. 

The range of the space of the measurement values in Eq. (1) can now be divided 
into a number of classes, each characterized by a membership function and a 
linguistic variable describing how well it fits the hypothesis that the candidate is 
the solution to the problem. Mathematically, 

hi'. M -> [0,1]^: m -^ hfim) = {^i\{m), fij{m),..., fif(m)), (3) 

where K indicates the number of classes. Each linguistic term is a fuzzy set which 
designates a category partially qualifying a candidate solution in the sense of the 
considered heuristic (e.g., very likely, likely, not unlikely, etc.). The set of heuris-
tics forms a knowledge base of fuzzy rules whose antecedents are related to the 
measurements or observations and whose consequent part determines the fuzzy 
(partial) quality of the decision. 

Fuzzy rule-based systems can be incorporated in fuzzy expert systems. Such a 
system can be expressed by a set of fuzzy inference rules. In each rule, there is a 
premise and a consequence. The premise is described by a fuzzy proposition and 
the consequence can be a fuzzy conclusion. A typical fuzzy inference rule for an 
A^-input ^-output system can be expressed as 

If jci is Aii,X2 is Af2,... ,XN i^ AIM, 

then yi is Bn, y2 is ^/2, • • •, yM is BIK, 

where X = [xj, j = 1, 2 , . . . , A/̂} e TZ^ are the inputs to the fuzzy system, 
Y = [yj, j = 1,2,..., K] e IZ^ are the outputs, and Aij, j = 1,2, ...,N, and 
Bij, j = 1, 2 , . . . , A', are fuzzy subsets, such that 5/j = An 0A/20-•-OA/AT and 
O is a fuzzy compositional operator. Thus a fuzzy rule-based system implements a 
mapping TZ^ -> TZ^. Fuzzy inference methods are algorithms that deduce results 
from the inference rules and the presented inputs. Note that the consequent part 
of the rules can also be represented by scalars or membership values iJij(m), j = 
1,2,..., K, where m refers to the measurement of the input variable x. These 
rules constitute the knowledge base of the fuzzy expert system. 

The various approaches in fuzzy inferencing for expert systems include the 
approximate analogical reasoning based on similarity measures by Turksen and 
Zhong [36], the problem reduction method of Ishizuka et al [37], modeling of 
physicians' decision processes by Esogbue and Elder [38], and inferencing in 
the framework of inflammatory protein variations by Sanchez and Bartolin [39] 
(using weighting). Wang and Mendel [40] developed a slightly different method 
for creating a fuzzy rule base made up of a combination of rules generated from 
numerical examples and linguistic rules supplied by human experts. The input and 
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M H ^ R a number o r a l i s output domain spaces are d i v W W I ^ a number oH^pis t ic subspaces. Human 
intervention is sought to assign degrees to the rules, and conflicts are resolved by 
selecting those rules yielding the maximum of a computed measure corresponding 
to each linguistic subspace. For other details on fuzzy expert systems, one may 
refer to the standard Uterature [23,25]. 

B. USE OF CONNECTIONIST MODELS 

The various uncertainty management schemes of traditional expert systems 
share some conmion problems. For example, a willing human expert able to ac-
curately quantify expertise is needed. The transfer of the knowledge takes place 
gradually through many interviews between the expert and the system, and is 
therefore very time consuming. Usually humans are prone to be easily biased 
and thus the quality of knowledge extracted from the experts depends greatly on 
the methods used for assessment. Moreover, large knowledge bases need to be 
searched quickly and it is also very important to check that this knowledge base 
remains consistent as more information is accumulated. It would therefore be 
welcome if knowledge assessment could be automated by freeing it from human 
intervention, thereby avoiding human bias and subjectivity. 

It is worth mentioning that the most difficult, time-consuming, and expensive 
task in building an expert system is constructing and debugging its knowledge 
base. In practice, the knowledge base construction can be said to be the only real 
task in building an expert system considering the proliferating presence of expert 
shells. Several approaches have been explored for easing this knowledge acquisi-
tion bottleneck. 

Connectionist expert systems [26] offer an alternative approach both to the 
knowledge base construction and to the inferencing phase, providing interaction 
with the user accompanied by justification(s) of the conclusion(s) reached. Rules 
are not required to be supplied by humans. Instead, the connection weights of 
a trained neural network encode among themselves, in a distributed fashion, the 
information conveyed by the input-output combinations of the training set. The 
problems faced by traditional expert systems regarding the difficulties in normal-
izing across different experts' scales, conversion from human expressions to nu-
merical terms, bias of the expert(s), generation of contradictory rules by the ex-
perts, etc., may be overcome here. The use of the learning technique of neural 
networks enables the model to extract the information inherent in the data (which 
is not utilized in traditional models) and allows dynamical adjustments to changes 
in the environment. It also enables one to handle a complicated environment for 
which either no mathematical model exists or, even if it exists, is so strongly non-
linear that a design method does not exist. Besides, the various characteristics 
of neural nets, namely, generalization, tolerance to noise, graceful degradation at 
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the border of the domain of expertise, abiUty to discover new relations between 
variables, etc., are built in and hence can be exploited by the connectionist expert 
systems. A detailed review is provided in Section III. 

Let us now provide a mathematical formulation of a layered neural network 
that can be used for constructing a connectionist expert system. A neuron can be 
depicted as an information-processing element which receives an n-dimensional 
input vector 

X(t) = [xi(t),X2(t),.,,,Xn(t)]eTV (4) 

and yields a scalar neural output y{t) e TZ^ at instant t (which can correspond 
to a pattern presentation in one epoch). The input vector, X(t) e TZ^, represents 
the signals being transmitted from the n-neighboring neurons (including the self-
feedback signal) and/or the outputs (measurements) from the sensory neurons. 
Mathematically, the information-processing ability of a neuron can be represented 
as a nonlinear mapping operation 

X(t)eTV' -^y(t)en\ (5) 

A confluence operation 0 essentially provides a measure of similarity between the 
neural input vector X(t) (new information) and the synaptic weight vector W(0 
(accumulated knowledge base). Generally summation and product operations are 
used in this stage. A nonlinear activation function then performs a nonlinear map-
ping on the similarity measure through a nonlinear activation function V^[]. Hence 

yit) = xlr[W(t)^X(t)l (6) 

A neural network can be viewed as a collection of such neurons connected to each 
other according to a specific topology. It therefore performs a mapping from the 
«-dimensional input space (input layer) to a i^-dimensional output space (output 
layer) such that 

X(0 G T I " ^ Y(0 G7^^, (7) 

where K refers to the number of output classes in case of a classifier. 
The supervised learning uses a collection of Â  input-output training pairs 
{(X(0, D(0), t = 1 , . . . , A }̂, where X(0 e TV" and D(0 € 7^^ are the in-
put pattern and desired output, respectively. The objective is to optimize a cost 
function 

N N 

£iV = 5^^r = X]^(Y(0,D(0), (8) 
r= l t=l 

where d(-) is a distance in TZ^ and Y(t) is the computed output given by Eq. (7). 
A conmion choice, which simplifies the mathematical analysis, is that of con-
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sidering the distance induced by an Lp norm (1 < /? < oo). The error-based 
gradient-descent learning algorithm for weight updating is represented as 

W(r + 1) = W(0 + riAW(t) (9) 

for the Nyi) connection weights of the neural net. 
Connectionist expert systems use the connection weights W of the trained neu-

ral network [Eq. (9)] to form the knowledge base. The magnitudes of these con-
nection weights are used to generate rules to justify any decision. The maximum 
weighted paths from the output layer to the input layer are used in the process 
[26,41]. Note that in traditional expert systems the knowledge base is formulated 
in terms of rules by interaction with the experts. On the other hand, here the rules 
may be automatically extracted from the trained connection weights that form the 
knowledge base. This procedure will be discussed in more detail in Sections III 
andlV.B. 

C. NEED FOR INTEGRATING FUZZY LOGIC 

AND N E U R A L N E T W O R K S 

Both neural networks and fuzzy systems are trainable dynamic systems that 
estimate input-output functions. They estimate a function without any mathemat-
ical model and learn from experience with sample data. A fuzzy system adaptively 
infers and modifies its fuzzy associations from representative numerical samples. 
Neural networks, on the other hand, can blindly generate and refine fuzzy rules 
from training data [42]. Fuzzy systems and neural networks also differ in how 
they estimate sampled functions, the kind of samples used, and how they rep-
resent and store these samples. Fuzzy systems estimate functions with fuzzy set 
samples (A/, Bi), whereas neural systems use numerical point samples (x/, yt), 
where both kinds of samples reside in the input-output product space X x F. 
Hence the input-output mapping corresponds to / : X ^- F in both cases. 

Fuzzy theory is considered to be advantageous in the logical field, and in han-
dling higher-order processing easily. The higher flexibility is a characteristic fea-
ture of neural nets produced by learning, and hence this suits data-driven process-
ing better [43]. 

For the last few years, researchers all over the world [5, 6, 44-46] have been 
trying to combine the merits of fuzzy and neural approaches under the heading 
neuro-fuzzy computing for building more intelUgent decision-making systems. 
This enables one to incorporate the generic advantages of artificial neural net-
works like massive parallelism, robustness, and learning in data-rich environ-
ments into the expert system model. The modeling of imprecise and qualitative 
knowledge as well as the transmission of uncertainty are possible through the use 
of fuzzy logic. Besides this generic advantage, the neuro-fuzzy approach provides 
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some application-specific merits in the following way. For example, in the case 
of classification-type connectionist expert systems, one is typically interested in 
exploiting the capability of neural nets in generating the required (linearly non-
separable) decision regions. The uncertainties involved in the input description 
and output decision are also taken care of by the concept of fuzzy sets. It is ob-
served that in certain cases a neuro-fuzzy model performs better than either a 
neural network or a fuzzy system considered individually [47,48]. 

Keeping in mind Eqs. (4)-(9) defining a neural net, let us now provide a math-
ematical formulation of a layered fuzzy neural net that can be used for designing 
a neuro-fuzzy expert system. A fuzzy neural network can incorporate fuzziness at 
the input-output level, in the connection weights, in the confluence operation, or 
in the activation function. Let the fuzzy input and output vectors be represented 
as X and Y, respectively, where these correspond to fuzzy numbers or intervals 
or the augmented space consisting of linguistic terms. Similarly, the connection 
weight vector may be represented as W. Arithmetic operations like fuzzy addi-
tion and fuzzy multiplication can be used in the new confluence operation 0 . The 
nonlinear activation function x// can incorporate fuzzy logic operations like and, 
or, and not. Hence the resultant mapping from the /i-dimensional input space to 
the A'-dimensional output space becomes 

X(0 en^ -^ Y(0 e n^, (10) 

where a single fuzzy neuron implements the nonlinear operation 

y(t) = Hm)^Xit)]. (11) 

The training data {(X(0,6(0), X(0 e 7^", D(0 e 7^^, t = l,...,N]is used 
to optimize the cost function 

£;v = ^ J ( Y ( 0 , D ( 0 ) , (12) 

t=i 

where J ( ) is a distance in TZ^. The learning algorithm now becomes 

W(r + 1) = W(0 -h rjAWit) (13) 
for the Nyu connection weights of the fuzzy neural net. 

Neuro-fuzzy expert systems use the connection weights W of the fuzzy neural 
net [Eq. (13)] to form the corresponding knowledge base. The connection weights 
encode the knowledge base of the problem during training by using the training set 
{X(r), D(Ok = 1' •^-' ^ } ' where the implemented mapping is W ^ Tl^. Note 
that the antecedent X(r) and the consequent D(0 may involve linguistic terms, or 
fuzzy intervals/numbers, or fuzzy membership values in [0,1]. Fuzzy rules may 
be extracted using the connection weights of the network by backtracking along 
the maximum weighted paths [41]. 
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D. UTILITY OF KNOWLEDGE-BASED NETWORKS 

Recently, there have been some attempts to improve the performance of ex-
pert systems by using knowledge-based networks (KBNs) which use the domain 
knowledge to determine the initial structure of the network. This process helps 
in reducing the searching space and time while the network traces the optimal 
solution. Such a model has the capability of outperforming a standard multilayer 
perceptron (MLP) as well as other related algorithms including symbolic and nu-
merical ones [27, 28]. However, in the absence of knowledge, one has to resort 
to a purely data-driven mode of learning as in simple connectionist expert mod-
els. When the initial knowledge fails to explain many instances, additional hidden 
units and connections need to be added (often empirically). The initial encoded 
knowledge may be refined with experience by performing learning in the data 
environment. The resulting networks generally involve less redundancy in their 
topology. 

Let us provide here a mathematical formulation in line with the modeling in 
Eqs. (4)-(9). The knowledge-based nets implement a mapping 

X'(0 G TV"' -^ Y(0 e n^ (14) 

from the n'-dimensional input space to the ^-dimensional output space, where 
n' <n and 

y{t) = i;[W{t)^^{t)\ (15) 

The training data { ( r ( 0 , D ( 0 ) , X'(0 ^ Tl""'. D(0 G 7e^, r = 1 , . . . , A/̂} is 
used to optimize the cost function Ef^ of Eq. (8). The learning algorithm becomes 

W\f -f 1) = W'(0 + r?AW'(0 (16) 

for the Â ^ connection weights such that Â ^ < N^^j of Eq. (9). 

1. Incorporating Fuzziness 

Some attempts on using fuzzy sets for the design of knowledge-based systems 
have also been recently reported. Analogous to the idea of Eqs. (10)-(13), the 
mapping from the n'-dimensional input space to the AT-dimensional output space 
can be represented here as 

x'(0 G n^' -^ Y(o G n^, (17) 

where h' <h and 

y{t) = iA[W'(O0X'(O]. (18) 
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The training data {(X^(0,6(0), X'(t) e n^\ D(0 G TZ^, t = I,,.., N] is 
used to optimize the cost function EN of Eq. (12). The learning algorithm be-
comes 

y/\t + 1) = W'(0 + rjA\V\t) (19) 

for the Â ^ connection weights such that Â ^ < Nyj of Eq. (13). 

2. Using Rough Sets and Genetic Algorithms 

One of the major problems in connectionist/neuro-fuzzy expert system design 
is the choice of the optimal network structure. This has an important bearing on 
any performance evaluation. Moreover, the models are generally very much data 
dependent and the appropriate network size also depends on the available training 
data. Various methodologies developed for selecting the optimal network struc-
ture include growing and pruning of nodes/links, employing genetic search, and 
embedding initial knowledge in the network topology. The last approach has been 
investigated to some extent in knowledge-based networks. The soft computing 
tools, used effectively in this connection, are rough sets [21, 22] and genetic al-
gorithms [19, 20]. 

The theory of rough sets [21] has recently emerged as another major math-
ematical approach for managing uncertainty that arises from inexact, noisy, or 
incomplete information. It has been investigated in the context of expert systems, 
decision support systems, machine learning, inductive learning, and various other 
areas of application. It is found to be particularly effective in the area of knowl-
edge reduction. The focus of rough set theory is on the ambiguity caused by 
limited discemibility of objects in the domain of discourse. The intention is to 
approximate a rough (imprecise) concept in the domain of discourse by a pair 
of exact concepts, called the lower and upper approximations. These exact con-
cepts are determined by an indiscemibility relation on the domain, which, in turn, 
may be induced by a given set of attributes ascribed to the objects of the domain. 
These approximations are used to define the notions of discemibility matrices, 
discemibility functions [49], reducts, and dependency factors [21], all of which 
play a fundamental role in the reduction of knowledge. 

Genetic algorithms (GAs) [19, 20] are randomized search and optimization 
techniques guided by the principles of evolution and natural genetics. They are 
efficient, adaptive, and robust search processes, producing near optimal solutions 
and have a large amount of implicit parallelism. The algorithm starts the search 
from an initial population of chromosomes, encoded as bit strings, and applies 
several genetic operators like selection, crossover, and mutation (over a sequence 
of generations) to finally arrive at a globally optimal solution based on a fitness 
function. Unlike conventional search techniques, GAs work simultaneously on 
multiple points in the search space. Owing to their stochastic character, they have 
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a very low chance of getting stuck at local minima. The criterion of "survival of 
the fittest" provides evolutionary pressure for populations to grow with increas-
ingly fit individuals. 

Before we describe various neuro-fuzzy and other hybrid expert systems in 
Sections IV and V, let us provide a brief survey on existing connectionist (non-
fuzzy) expert systems, including those using knowledge-based networks, for the 
convenience of the reader. Note that all the hybrid models to be described here 
have their origin in connectionist expert systems. 

III. CONNECTIONIST EXPERT SYSTEMS: 
A REVIEW 

Here we consider a few of the existing layered connectionist expert systems 
modeled by Gallant [26], Saito and Nakano [50], Lacher et al [51], and PoU et al 
[52]. The inputs and outputs consist of crisp variables in all cases. Generally the 
symptoms are represented by the input nodes, whereas the diseases and possible 
treatments correspond to the intermediate and/or output nodes [26,50]. The linear 
discriminant network of [26] (dealing with sacrophagal problems) is generated 
from the dependency information regarding the variables, which is provided by 
the expert in the form of an adjacency matrix. This is then trained by the simple 
pocket algorithm. The absence of hidden nodes and nonlinearity limit the utility 
of the system in modeling complex decision surfaces. The multilayer network in 
[50] is designed for detecting headache. A patient responds to a questionnaire 
regarding his or her perceived symptoms and these constitute the input to the 
network. 

Lacher et al. [51] have designed event-driven, acyclic networks of neural ob-
jects called expert networks. The network is built under the commercial shell M. 1. 
There are regular nodes and operation nodes (for conjunction and negation). In-
put weights are hard wired, whereas the output weights of a node are adaptive. 
Antecedents of a disjunction in a rule are simplified to generate a set of individ-
ual rules before formulating the initial network architecture. The backpropagation 
algorithm is modified to work in the event-driven environment, where both for-
ward and backward signals propagate in dataflow fashion. The form of the rules 
(coarse knowledge) is tuned with the associated certainty factors (fine knowledge) 
and the resultant network trained for better performance. 

A novel approach to designing a modular connectionist expert system, called 
Hypemet, has been reported by Poll et al. [52]. The feedforward network consists 
of a reference-generating module, a drug compatibility module, and a therapy-
selecting module in order to simulate the physician's reasoning as closely as pos-
sible. The user-friendly system provides a graphics interface for easy handling as 
well as verification of decisions. The model is implemented for diagnosing and 
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treating hypertension. The performance is good owing to the embedded modular-
ity of the network. 

Rule generation is also possible for the models in [26, 50]. In [50] the doc-
tor is supplied with information regarding possible diagnoses based on output 
node values. Relation factors, estimating the strength of the relationship between 
symptom(s) and disease(s), are extracted from the network and used to help doc-
tors. Rules are generated from the changes in levels of input and output units; the 
connection weights are not involved in the process. These rules are then used to 
allow the patient to confirm the symptoms initially provided by him or her to the 
system, in order to eliminate noise from the answers. The model in [26] incor-
porates inferencing/forward chaining, confidence estimation, backward chaining, 
and explanation of conclusions by if-then rules. To generate a rule, the attributes 
with greater inference strength (magnitude of connection weights) are selected 
and a conjunction of the more significant premises is formed to justify the out-
put concept. Here, the user can also be queried to supplement incomplete input 
information. 

Ishikawa [53] demonstrates the extraction of rules from a network trained 
by structural learning with forgetting with mushroom data. The nonredundant 
network architecture, so generated, is examined to detect the regularities in the 
training data. Omlin and Lee Giles [54] use trained discrete-time recurrent neu-
ral networks to correctly classify strings of a regular language. Rules defining 
the learned grammar can be extracted from networks in the form of determinis-
tic finite-state automata (DFAs) by applying clustering algorithms in the output 
space of recurrent state neurons. A heuristic is used to choose among the consis-
tent DFAs the model which best approximates the learned regular grammar. 

An MLP-based model for the identification of electroencephalogram (EEG) 
power spectra of rats in depression has recently been reported by Mitra et al. [55]. 
The input consists of frequency, represented both as individual values and as 
nonoverlapping bands, normalized in the range [0, 1]. The output refers to the 
control and depressed states. It has been observed that the role of exercise reverses 
the effect of stress. Rules have also been generated in terms of the linguistic la-
bels small and large corresponding to the relative values of the features. Note that 
this is slightly different from the crisp rules, indicating the presence or absence of 
certain features (symptoms) as in [26, 50]. 

The knowledge-based models discussed here [27, 28, 56] involve crisp inputs 
and outputs. The initial domain knowledge, in the form of rules, is mapped into 
the multilayer feedforward network topology using binary link weights to main-
tain the semantics. Yin and Liang [56] have employed a gradually-augmented-
node learning algorithm to incrementally build a dynamic knowledge base capa-
ble of both acquiring new knowledge and releaming existing information. The 
rules are explicitly represented among the condition nodes, rule nodes, and ac-
tion nodes and the algorithm gradually builds the multilayer feedforward net-
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work. This connectionist incremental expert model is used as an animal identifi-
cation system whose network structure is changed dynamically according to the 
new environment or through human intervention. In Fu's model [27] hidden units 
and additional connections are introduced appropriately when the network perfor-
mance stagnates during training using backpropagation. Weight decay, pruning of 
weights, and clustering of hidden units are incorporated to improve the general-
ization of the network. 

Towell and Shavlik [28] have designed a hybrid learning system for problems 
from molecular biology. Disjunctive rules are rewritten as multiple conjunctive 
rules while building the network structure. Nodes and links are incorporated, upon 
instructions from the user, to augment the knowledge-based module. Expansion 
of the network guided by both the domain theory and training data has been re-
ported by Opitz and Shavlik [57]. Dynamic addition of hidden nodes is made 
by heuristically searching through the space of possible network topologies, in a 
manner analogous to the adding of rules and conjuncts to the symbolic rule base. 

A way of using the knowledge of the trained neural model to extract the re-
vised rules for the problem domain is described in [27, 58]. Meaningful rules 
can be extracted from the knowledge-based network in refined form by employ-
ing clustering, averaging, eUmination, optimization, and simpUfication [58]. The 
algorithm considers groups of links as equivalence classes, thereby generating a 
bound on the number of rules rather than establishing a ceiling on the number of 
antecedents. Note that this approach differs from that in [50], where a breadth-
first search is employed to exhaustively find those input settings that cause the 
weighted sum to exceed the bias at a node. 

IV. NEURO-FUZZY EXPERT SYSTEIMS 

This section provides a review on neuro-fuzzy models for inferencing and rule 
generation, with the objective of generating expert systems. A comparative anal-
ysis of the basic features of these models with those of the traditional and connec-
tionist (nonfuzzy) versions is provided in Table I. 

A. WAYS OF INTEGRATION 

The state of the art for the various techniques of combining neural networks 
and fuzzy sets involves synthesis at various levels. We categorize the different 
fusion methodologies, made so far, as follows [59]. 

1. Incorporating fiizziness into the neural network framework. This involves 
fuzzifying the input data, assigning fuzzy labels to the training samples. 
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Table I 

Comparative Study of Various Expert Systems 

Expert system 
Connectionist 
expert system 

Neuro-fuzzy 
expert system 

Knowledge-based 
connectionist/neuro-fuzzy 

expert system 

Knowledge 
base 

Knowledge ac-
quisition and 
representation 
in the form of 
rules, frames, 
semantic nets, 
or belief net-
works 

Connection 
weights of 
trained neural 
net that were 
initialized with 
small random 
values 

Connection 
weights of 
trained fuzzy 
neural net that 
were initiaUzed 
with small 
random values 

Connection weights of 
trained nonfuzzy/fuzzy 
neural net that were 
initialized with crude 
domain knowledge in 
rule form with binary Unk 
weights [27, 28, 56, 80-
83], a priori class infor-
mation and distribution 
of pattern points [85] 

Knowledge 
refinement 

Inferencing 

Rule gener-
ation 

Addition of new 
knowledge 
(say, as new rules) 

Matching facts 
with the exist-
ing knowledge 
base 

— 

Empirical addi-
tion of hidden 
nodes/links 

Presentation of 
crisp input. 
forward pass, 
and generation 
of crisp output 

Crisp rules 
obtained during 
backward pass 
using changes 
in levels of 
input and out-
put units [50], 
magnitude of 
connection 
weights [26, 55] 

Empirical addi-
tion of hidden 
nodes/links 

Presentation of 
fuzzy input. 
forward pass, 
and generation 
of fuzzy output 

Fuzzy rules 
obtained during 
backward pass 
using node 
activations and 
Unk weights 
[41, 70-75] 

Network optimization us-
ing growing and pruning 
of nodes/links, based on 
training data and addi-
tional knowledge [27, 28, 
56, 57, 85] 

Presentation of input, for-
ward pass, and generation 
of output 

Rules obtained during 
backward pass 
[27, 58, 81]; negative 
rules also possible [85] 

possibly fuzzifying the learning procedure, and obtaining neural network 
outputs in terms of fuzzy sets [60,61]. 

2. Designing neural networks guided hy fuzzy logic formalism. Neural 
networks are designed to implement fuzzy logic and fuzzy decision 
making, and to realize membership functions representing fuzzy sets 
[62,63]. 
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3. Changing the basic characteristics of the neurons. Neurons are designed 
to perform various operations used in fuzzy set theory (like fuzzy union, 
intersection, aggregation represented by andy or, and hybrid operators) 
instead of the standard multiplication and addition operations [64, 65]. 

4. Making the individual neurons fuzzy. The input and output of the neurons 
are fuzzy sets and the activity of the networks involving the fuzzy neurons 
is also a fuzzy process [66]. 

5. Using measures offuzziness as the error or instability of a network. The 
fuzziness/uncertainty measures of a fuzzy set are used to model the error 
or instability or energy function of the neural-network-based system [67]. 

As the existing neuro-fuzzy expert systems fall under categories 1 and 3 only, we 
shall not be concerned with the remaining groups (dealing mainly with classifica-
tion or control problems) in this discussion. 

B. VARIOUS IVIETHODOLOGIES 

Neuro-fuzzy expert systems use the connection weights of trained fuzzy neu-
ral nets for encoding the knowledge base, thereby enabling one to incorporate 
the advantages of fuzzy set theory into the connectionist expert system model. 
Besides the generic advantages of neural networks and fuzzy systems, like par-
allelism, robustness, adaptivity, and handling of uncertainty, one can incorporate 
their application-specific merits in this paradigm. For example, the capability of 
neural nets in generating linearly nonseparable decision regions can be exploited. 
Moreover, the modeling of uncertainty in the input description and output decision 
can be tackled by the concept of fuzzy sets. As an illustration of the characteristics 
of neuro-fuzzy expert systems, the models by Hayashi [68], Hudson et al. [69], 
Sanchez [61], Mitra and Pal [41], and Romaniuk and Hall [70] are described here. 
Note that while the last model falls under category 3 of the fusion methodologies, 
the remaining models pertain to category 1. 

Yoshida et al. [71] have defuzzified real-life fuzzy data, using the level set rep-
resentation, to produce the crisp inputs {+1,-1 ,0} required by the distributed 
single-layer perceptron-based model trained with the pocket algorithm for diag-
nosing hepatobiliary disorders. All contradictory training data are excluded, as 
these cannot be tackled by the model. In Hayashi's extension [68], the input layer 
consists of both fuzzy and crisp cell groups, whereas the output is modeled only 
by fuzzy cell groups. The crisp cell groups are represented by m cells taking on 
two values in {(+1, + 1 , . . . , +1), (—1, — 1 , . . . , —1)}. Fuzzy cell groups, on the 
other hand, use binary m-dimensional vectors, each taking on values in {+1, — 1}. 
Linguistic relative importance terms like very important and moderately impor-
tant are allowed in each proposition; linguistic truth values like completely true, 
true, possibly true, unknown, possibly false, false, and completely false are also 
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assigned by the domain experts depending on the output values. Multiple correct 
pattern classes, using different linguistic truth values, are possible. 

Hudson et al [69] use input nodes that simply represent the data values for 
signs, symptoms, and test results (may be continuous or discrete). The interactive 
nodes account for the interactions which may occur between these parameters. 
A feedforward neural network model is used for detecting carcinoma of the lung. 
Information is extracted directly from the accumulated data and then combined 
with a rule-based expert system incorporating approximate reasoning techniques. 
The learning method is an adaptation of iht potential function approach to pattern 
recognition and is used to determine the weighting factors as well as the relative 
strengths of rules for two-class problems. 

Sanchez [61] has associated two types of connection weights, namely, primary 
linguistic weights and secondary numerical weights, to generate the knowledge 
base for a biomedical application {inflammatory protein variations) using a feed-
forward network. Triangular membership functions like negative large, negative 
medium, negative small, approximately zero, positive small, positive medium, and 
positive large; or, decreased, normal, and increased account for the linguistic 
weights, whereas the quantitative weights lie in the range [0, 1]. The linguistic 
weights are tuned according to the information provided from the input-output 
examples, whereas the numeric weights and the network topology are determined 
by solving fuzzy relation equations. 

A cell recruitment learning algorithm, capable of forgetting previously learned 
facts by learning new information, has been employed by Romaniuk and Hall [70] 
to build a fuzzy connectionist expert system for determining the creditworthiness 
of credit applicants. The network consists oi positive and negative collector cells 
along with unknown and intermediate cells and can handle^zzy or uncertain data. 
Fuzzy functions like maximum, minimum, and negation are applied at the neuronal 
levels depending on the corresponding bias values. This incremental learning al-
gorithm can be used either in conjunction with an existing knowledge base or 
alone. 

Extraction of fuzzy if-then production rules is possible in [70-72], using a 
top-down traversal involving analysis of the node activations, their bias, and the 
associated link weights. Rhee and Krishnapuram [72] have reported a method for 
rule generation from minimal approximate fuzzy aggregation networks. They esti-
mate the linguistic labels and the corresponding triangular membership functions 
for the input features from the training data. Hybrid operators with compensatory 
behavior, whose parameters can be learned during gradient descent to estimate 
the type of aggregation, are employed at the neuronal level. Pruning of redun-
dant features and/or hidden nodes helps in generating appropriate rules in terms 
of and-or operators that are represented by these hybrid functions. 

Mitra and Pal [41] have reported the use of a fuzzy MLP for classification 
and rule generation. The input is represented in terms of jr-functions correspond-
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ing to the linguistic properties low, medium, and high. Handling of inputs in 
numeric, linguistic, and set forms is possible. The output is in terms of fuzzy 
class membership values and enables efficient handling of overlapping pattern 
classes. The antecedent parts of rules are generated by backtracking along the 
maximum-weighted connection paths of the trained network. The consequent part 
is determined from a certainty measure which expresses the confidence (belief) 
of an output decision. The node excitations corresponding to a test pattern de-
termines the appropriate if-then parts of a rule generated to justify an inferred 
decision. Note that this investigation provides a basic module for designing a 
classification-type connectionist expert system. The rules thus obtained can also 
constitute the knowledge base of a traditional expert system in the same applica-
tion domain. Here (unlike the other models) both the antecedent and the conse-
quent parts of these rules are provided in linguistic (or natural) form. Linguistic 
hedges/modifiers like very, more, or less and not can be represented as antecedent 
clauses. 

Consider the simple three-layered network given in Fig. 2 demonstrating a sim-
ple rule generation instance regarding class 1 [41]. A sample set of connection 
weights M;'?-, input activation y?, and the corresponding linguistic labels are de-
picted in the figure. The solid and dotted-dashed paths (that have been selected) 
terminate at input neurons is and in, respectively. The dashed lines indicate the 

^ 

/ 
/ 

/ 
/ 

/ 
/ / 

%' § 
/ 

/ 

/ ^ ^ - " ' 

v̂ *̂"̂^ 
\ ^ v \ ^ 

\ \ " 
\ \ 

<̂ . \ 

X 
X \ 

\'P^' 
7 

0.49 0.97 
L M 
\ ^ 

\ / 
I 

^ Class 1 
^r 'N 

"v. 

y > ^ 

^ / / / / / i \ 
^ ^ / / / / \ >w '^ / / / 

\ ^ — ^^ ^ / 1 

\ N.' ^ c / / /<" ^̂ ^ >C ' 
A >\ ^ ^ X ^ / ^^ ' ^^ 

0.49 0.02 
H L 

_ y V 

• \ : \ 
I \ 
! O \ (^ 

1 \ 

i \ 
. i \ 

! ^ < ^ \ 

^0 >b 
0.6 0.95 
M H 

^ ^ / 
•s^ 

F2 

Selected paths with 
neurons i^ 
Selected paths with 
neurons f„ 
Paths not selected 

Input pattern 

Figure 2 Example to demonstrate rule generation scheme by backtracking. 
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paths not selected, using the w^-- and yf values during backtracking. We select 
only those maximum weighted paths from the output to the input layer, such that 
all neurons lying along them have y^ > 0.5. Let the certainty measure for the 
output neuron under consideration be 0.7. This corresponds to the label likely in 
the consequent part. Then the rule generated by the model in this case to justify 
its conclusion regarding class 1 would be 

If Fi is very medium AND F2 is high, then likely class 1. 

We generate clauses for an if-then rule until the net path weights wetio satisfy the 
relation 

y ^ wetio > 2 22 ^^^/o. 

Here the net path weights are found to be 2.7 (= 1.6+1.1) and 1.05 for the is 
and /„ neurons, respectively, such that 2.7 > 2 * 1.05. The modifier very (cor-
responding to Fi) is obtained by selecting the one having the minimum distance 
from the input vector. Similarly, in the case of F2, modifiers are required using 
this minimum distance criterion. 

The user can be queried in case of unknown or unavailable input features. Han-
dling of missing or incomplete inputs is also possible. AppUcations have been 
made for vowel recognition and detection of Kala-azar (a tropical disease). This 
has been extended in [73] to design a neuro-fuzzy expert system for diagnosing 
hepatobiliary disorders. Here the linguistic labels at the input can be automati-
cally tuned from the training data. 

Another interesting application has also been reported [74] using the unsuper-
vised, self-organizing Kohonen net. This approach is completely different from 
the fuzzy Kohonen net, in unsupervised mode, as reported in [62, 63]. The net-
work has been modified to incorporate linguistic TT-functions and contextual class 
information at the input, thereby enabling it to function under partial supervision. 
Unlike the other methods (involving layered feedforward nets under full supervi-
sion), this fuzzy version of the Kohonen net has been effectively used for classifi-
cation, querying, and rule generation. Note that the three models [41, 73, 74] fall 
under category 1 of the fusion methodology. 

A fourth model, using logical and-or functions (in terms of product-
probabilistic sum and max-min) at the neuronal level, has been reported [75]. This 
is grouped under category 3. It has been observed that more meaningful rules (in 
terms of and-or clauses) can be generated here in case of simpler problems, al-
though the classification performance is better in case of the more generalized 
sigmoidal function of [41, 73]. 

It is worth mentioning that all these models incorporate overlapping linguistic 
labels, represented by TT-functions, at the input. This is different from the ap-
proach of Keller et al [76] where trapezoidal possibility distributions, sampled 
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at discrete points, are used to represent fuzzy linguistic terms and modifiers. The 
concept of class membership helps the models to tackle overlapping and fuzzy 
pattern classes. This approach is an extension of the work of Keller and Hunt [60] 
for multiclass problems using multilayer networks. Another approach for fuzzifi-
cation at input and output has been reported by Ishibuchi et al. [77] using interval 
vectors. Although this is different, it will not be elaborated here as it does not 
cover the domain of connectionist expert system design or rule generation. More-
over, the conventional triangular membership functions used in control problems 
are also slightly different from the TT-functions. It is to be noted that the triangu-
lar functions can be used in place of the more general continuous TT-functions if 
desired. 

C. USING FUZZY KNOWLEDGE-BASED NETWORKS 

A brief survey of this field is provided here based on the studies of Masuoka 
et al. [78], Kasabov [79], Kosko [80], Machado and Rocha [81], Pedrycz and 
Rocha [82], and Hirota and Pedrycz [83]. The first three approaches fall under 
category 1 of the fusion methodologies, whereas the rest can be grouped under 
category 3. 

Knowledge extracted from experts in the form of membership functions and 
fuzzy rules (in and-or form) is used to build and preweight the neural net struc-
ture which is then tuned using training data. The model by Masuoka et al [78] 
consists of the input variable membership net, the rule net, and the output variable 
net. Kasabov [79] uses three neural subnets, namely, production memory, work-
ing memory, and variable binding space to encode the production rules, which 
can later be updated. A fuzzy signed digraph with feedback, termed the fuzzy 
cognitive map, has been used by Kosko [80] to represent knowledge. An additive 
combination of augmented connection matrices is employed to include the views 
of a number of experts for generating the knowledge network. 

Machado and Rocha [81] have used a connectionist knowledge base involving 
fuzzy numbers at the input layer, fuzzy and at the hidden layers, and fuzzy or at 
the output layer. The hidden layers chunk input evidence into clusters of informa-
tion for representing regular patterns of the environment. The output layer com-
putes the degree of possibility of each hypothesis. The initial network architecture 
is generated using knowledge graphs elicited from experts by the application of 
the knowledge acquisition technique of [84]. The experts express their knowledge 
about each hypothesis of the problem domain by selecting an appropriate set of 
evidence and building an acyclic weighted and-or graph to describe how these 
must be combined to support decision making. 

Pedrycz and Rocha [82] have used basic aggregation neurons {and/or) and ref-
erential processing units (matching, dominance, and inclusion neurons) to design 
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knowledge-based networks. The inhibitory and excitatory characteristics are cap-
tured by embodying direct and complemented input signals and fully supervised 
learning is employed. Another related approach by Hirota and Pedrycz [83] has 
incorporated the use of fuzzy clustering for developing the geometric constructs 
leading to the design of knowledge-based networks. 

Most of these models are mainly concerned with the encoding of initial knowl-
edge by a fuzzy neural network followed by refinement during training. Extraction 
of fuzzy rules in this framework has been attempted in [78, 79, 81]. Inference, in-
quiry, and explanation are possible during consultation in [81]. Mitra et al [85] 
have recently designed a knowledge-based neuro-fuzzy system for classification 
and rule generation. This approach falls under category 1 of the fusion method-
ologies. Here crude initial domain knowledge is encoded among the connection 
weights using the a priori class information (and their complements) and the dis-
tribution of pattern points in the feature space. An accurate estimation of the links 
connecting the output, and hidden layers (in terms of the preceding layer link 
weights and node activations) is provided. The input, output, and learning scheme 
are similar to that in [41]. Node growing and link pruning are incorporated to gen-
erate the optimal network architecture. Inferencing, querying, and rule generation 
are demonstrated (as in [41]) for recognizing vowels and diagnosing hepatobil-
iary disorders. Negative rules, indicative of cases where a pattern does not belong 
to a class, can also be generated. This is specially suitable in the ambiguous cases 
where positive rules (dealing with the belongingness of a pattern to a particular 
class) cannot be obtained. The performance of the knowledge-based net is seen to 
be superior as compared to the models incorporating no initial knowledge. 

V. OTHER HYBRID JVIODELS 

The relevance of rough sets and genetic algorithms to the design of expert 
systems has been described in Section II.D.2. As mentioned before, the literature 
on various approaches along this line is scarce as compared to neuro-fuzzy expert 
systems. However, we provide here some of the attempts recently reported in this 
area. A few methods related to expert system design are also described. 

A. ROUGH SETS 

Many have looked into the implementation of decision rules extracted from op-
eration data using rough-set formalism, especially in problems of machine learn-
ing from examples and control theory [22]. In the context of neural networks, an 
attempt at such an implementation has been made by Yasdi [86]. The intention 
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was to use rough sets as a tool for structuring the neural networks. The methodol-
ogy consisted of generating rules from training examples by rough-set learning, 
and mapping the dependency factors of the rules into a single layer of connection 
weights of a four-layered neural network. The input and output layers involved 
fixed binary weights. Max, min, and or operators were applied at the hidden nodes. 
Application of rough sets in neurocomputing has also been made in [87]. How-
ever, in this method, rough sets were used for knowledge discovery at the level of 
data acquisition (i.e., in preprocessing of the feature vectors) and not for structur-
ing the network. 

Banerjee et al [18] have proposed an integration of rough sets and fuzzy 
neural networks for designing a knowledge-based system. Rough-set-theoretic 
techniques are utilized for extracting crude domain knowledge that is encoded 
among the connection weights. Methods are derived to model (i) convex deci-
sion regions with single-object representatives and (ii) arbitrary decision regions 
with multiple-object representatives. A three-layered (fully adaptive) fuzzy MLP 
is considered. The feature space gives the condition attributes and the output 
classes the decision attributes, resulting in a decision table. This table, however, 
may be transformed, keeping the complexity of the network to be constructed in 
mind. Rules are then generated from the (transformed) table by computing relative 
reducts. The dependency factors of these rules are encoded as the initial connec-
tion weights of the fuzzy MLP, propagating their effect in a top-down manner in 
proportion to the fan-in at any particular neuron. The network is next trained to 
refine its weight values. The effectiveness of the model is demonstrated on both 
real-life and artificial data. The knowledge encoding procedure, unlike most other 
methods [27,28], involves a nonbinary weighting mechanism based on a detailed 
and systematic estimation of the available domain information. It may be noted 
that the optimal number of hidden nodes is automatically determined from the 
syntax of the generated rules. 

Figure 3 illustrates an example demonstrating the knowledge encoding proce-
dure [18] for class C2 using a three-layered network. Let us consider the reduct 
set 5 = (Li A Ml A M3). Then the discemibility functions f^ (in conjunctive 
normal form) for the six classes / = 1 , . . . , 6, obtained from the discemibility 
matrix, are 

fj,' - Li A (Ml V M3), /^^ = Li A (Ml V M3), fj,' = Ml A M^, 

f^' = Li A Ml A M3, /^^ = Ml A M3, fj,' = Li A Ml A M3. 

The dependency factors dft for the resulting rules r ,̂ / = 1 , . . . , 6, are 2/3, 
2/3, 1,1,1,1. These factors are encoded as the initial connection weights of the 
fuzzy MLP. Consider rule r2, namely, L\ A (Mi V M3) -^ C2, with dependency 
factor df2 = 2/3. Here we require two hidden nodes corresponding to class C2 
to model the operator A. The two links from the output node representing class 
C2 to these two hidden nodes are assigned weights of J/2/2 to keep the weights 
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o 
A Ml Hi L2 M2 H2 L3 M3 H3 

Figure 3 Example to demonstrate the initial weight encoding scheme using rough-set-theoretic tech-
niques. 

equally distributed. The signs of the weights are set to positive (negative) accord-
ing to the values 1 (0) of the corresponding entries in the attribute value table. The 
attributes Mi and M3, connected by the operator v, are combined at one hidden 
node with link weights of —df2/4, df2/4, respectively, whereas the link weight 
for attribute L1 is clamped to —df2/2 (because there is no further bifurcation). All 
other connection weights are assigned very small random weights 6, lying in the 
range [—0.005, +0.005]. The resultant network is finally refined during training 
using a set of labeled samples. 

B. GENETIC ALGORITHMS 

Genetic algorithms have found various applications in fields like pattern recog-
nition, image processing, and neural networks [88]. They have been used in deter-
mining the optimal set of connection weights [14] as well as the optimal topology 
of a layered neural network [89, 90]. These hold significance for designing con-
nectionist expert systems. Pal and Bhandari [14] incorporated a new concept of 
nonlinear selection for creating mating pools and a weighted error as a fitness 
function. A fixed-topology MLP was used to determine the optimal solution for 
selecting a decision boundary for the pattern recognition problem. Maniezzo [89] 
used variable-length chromosomes, incorporating the concept of presence and ab-
sence bits, for encoding various topologies of an MLP. The concept of a GA sim-
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plex was also introduced. In another investigation, Pal and Bhandari [16] have 
demonstrated a way of integrating fuzzy sets, ANNs, and GAs for automatic se-
lection of cloning templates when a cellular neural network is used in extracting 
object regions from noisy images. Fuzzy geometrical properties of image were 
used as the basis of the fitness function. 

Opitz and Shavlik [90] have used the domain theory of Towell and Shavlik [28] 
(with random perturbation) to create an initial population of knowledge-based 
nets. Crossover and mutation operators are specifically designed to function on 
these networks. The algorithm uses these genetic operators to search the topology 
space in order to find networks, which are then trained using backpropagation. 

VI. CONCLUSIONS 

The problem of designing an expert system in the Ught of soft computing has 
been addressed. The relevance, characteristics, and merits of integrating differ-
ent soft computing tools such as fuzzy sets, artificial neural networks, genetic 
algorithms, and rough sets in various forms have been described, with greater 
emphasis on neuro-fuzzy computing. Neuro-fuzzy models have been found to in-
corporate both the generic and the application-specific merits of neural networks 
as well as fuzzy systems. This has resulted in the generation of more intelligent 
decision-making systems. We have also included a brief survey on connection-
ist expert systems (without incorporating fuzzy sets) for the convenience of the 
reader. The use of knowledge-based networks has been discussed as one of the 
latest entrants in this field. A comparative study of the various methodologies has 
been provided in tabular form. Recent attempts at using rough sets for knowl-
edge encoding and genetic algorithms for finding optimal net parameters have 
also been mentioned. 

REFERENCES 

[1] Proceedings of the Third Workshop on Rough Sets and Soft Computing (San Jose), 1994. 
[2] Proceedings of the Fourth International Conference on Soft Computing (lizuka, Japan), 1996. 
[3] S. K. Pal and N. R. Pal. Soft computing: goals, tools and feasibility. J. Inst. Electron. Telecomm. 

Engineers 42:195-204, 1996. 
[4] L. A. Zadeh. Fuzzy logic, neural networks, and soft computing. Comm. ACM 37:77-84, 1994. 
[5] J. C. Bezdek and S. K. Pal, Eds. Fuzzy Models for Pattern Recognition: Methods that Search for 

Structures in Data. ffiEE Press, New York, 1992. 
[6] Proceedings of the IEEE International Conference on Fuzzy Systems, 1996. 
[7] L. A. Zadeh. Fuzzy sets. Inform. Control 8:338-353, 1965. 
[8] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, 

Englewood Cliffs, NJ, 1995. 



238 Sankar K. Pal and Sushmita Mitra 

[9] D. E. Rumelhart and J. L. McClelland, Eds. Parallel Distributed Processing: Explorations in the 
Microstructures of Cognition, Vol. 1. MIT Press, Cambridge, MA, 1986. 

[10] R. R Lippmann. An introduction to computing with neural nets. IEEE Acoustics Speech Signal 
Process. Mag. 4:4-22, 1987. 

[11] T. Kohonen. Self-Organization and Associative Memory. Springer-Veriag, Beriin, 1989. 
[12] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation. 

Addison-Wesley, Reading, MA, 1994. 
[13] H. Muhlenbein. Limitations of multi-layer perceptron networks—step towards genetic neural 

networks. Parallel Comput. 14:249-260, 1990. 
[14] S. K. Pal and D. Bhandari. Selection of optimum set of weights in a layered network using 

genetic algorithms. Inform. Sci. 80:213-234, 1994. 
[15] A. Homaifar and E. McCormick. Simultaneous design of membership functions and rule sets for 

fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Systems 3:129-139, 1995. 
[16] S. K. Pal and D. Bhandari. Genetic algorithms with fuzzy fitness function for object extraction 

using cellular neural networks. Fuzzy Sets Systems 65:129-139, 1994. 
[17] M. Banerjee and S. K. Pal. Roughness of a fuzzy set. Inform, Sci. 93:235-246, 1996. 
[18] M. Banerjee, S. Mitra, and S. K. Pal. Rough fuzzy MLP: knowledge encoding and classification. 

IEEE Trans. Neural Networks, to appear. 
[19] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley, Reading, MA, 1989. 
[20] Z. Michalewicz. Genetic Algorithms -\- Data Structures = Evolutionary Programs. Springer-

Veriag, Berlin, 1994. 
[21] Z. Pawlak. Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer Academic, Dor-

drecht, 1991. 
[22] R. Slowiriski, Ed. Intelligent Decision Support, Handbook of Applications and Advances of the 

Rough Sets Theory. Kluwer Academic, Dordrecht, 1992. 
[23] H.-J. Zimmermann. Fuzzy Sets, Decision Making and Expert Systems. Kluwer Academic, 

Boston, 1987. 
[24] L. A. Zadeh. The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy 

Sets Systems 11:199-227, 1983. 
[25] A. Kandel, Ed. Fuzzy Expert Systems. CRC Press, Boca Raton, 1991. 
[26] S. I. Gallant. Connectionist expert systems. Comm. ACM 31:152-169, 1988. 
[27] L. M. Fu. Knowledge-based connectionism for revising domain theories. IEEE Trans. Systems 

Man Cybernet. 23:173-182, 1993. 
[28] G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks. Artificial Intell. 

70:119-165, 1994. 
[29] F. Hayes-Roth, D. A. Waterman, and D. B. Lenat. Building Expert Systems. Addison-Wesley, 

London, 1983. 
[30] M. Minsky. A framework for representing knowledge. In The Psychology of Computer Vision 

(R Winston, Ed.). McGraw-Hill, New York, 1975. 
[31] R. Quillian. Semantic memory. In Semantic Information Processing (M. Minsky, Ed.). MIT 

Press, Cambridge, MA, 1968. 
[32] J. Pearl. Distributed revision of composite beliefs. Artificial Intell. 33:173-215, 1987. 
[33] L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning, 

1, 2, and 3. Inform. Sci. 8, 8, 9:199-249, 301-357, 43-80, 1975. 
[34] M. M. Gupta, A. Kandel, W. Bandler, and J. B. Kiszka, Eds. Approximate Reasoning in Expert 

Systems. North-Holland, Amsterdam, 1985. 
[35] S. K. Pal and D. Dutta Majumder. Fuzzy Mathematical Approach to Pattern Recognition. Wiley 

(Halsted Press), New York, 1986. 



Expert Systems in Soft Computing Paradigm 239 

[36] I. B. Turksen and Z. Zhong. An approximate analogical reasoning schema based on similarity 
measures and interval-valued fuzzy sets. Fuzzy Sets Systems 34:323-346, 1990. 

[37] M. Ishizuka, K. S. Fu, and J. T. P. Yao. Inference procedures under uncertainty for the problem-
reduction method. Inform. Set 28:179-206, 1982. 

[38] A. O. Esogbue and R. C. Elder. Fuzzy sets and the modelling of physician decision processes, I: 
The initial interview - information gathering session. Fuzzy Sets Systems 2:279-291, 1979. 

[39] E. Sanchez and R. Bartolin. Fuzzy inference and medical diagnosis, a case study. Biomedical 
Fuzzy Systems Bull. 1:4-21, 1990. 

[40] L. X. Wang and J. M. Mendel. Generating fuzzy rules by learning from examples. IEEE Trans. 
Systems Man Cybernet. 22:1414-1427, 1992. 

[41] S. Mitra and S. K. Pal. Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE 
Trans. Neural Networks 6:51-63, 1995. 

[42] B. Kosko. Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood Cliffs, NJ, 1991. 
[43] H. Takagi. Fusion technology of fiizzy theory and neural network—survey and future direc-

tions. In Proceedings of the 1990 International Conference on Fuzzy Logic and Neural Networks 
(Hzuka, Japan) pp. 13-26, 1990. 

[44] Y. H. Pao. Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, Reading, MA, 
1989. 

[45] M. M. Gupta and D. H. Rao. On the principles of fuzzy neural networks. Fuzzy Sets Systems 
3:1-18, 1994. 

[46] J. J. Buckley and Y. Hayashi. Fuzzy neural networks: a survey. Fuzzy Sets Systems 3:1-13, 1994. 
[47] S. K. Pal and S. Mitra. Multi-layer perceptron, fuzzy sets and classification. IEEE Trans. Neural 

Networks 3:683-697, 1992. 
[48] S. K. Pal and D. P. Mandal. Linguistic recognition system based on approximate reasoning. 

Inform. Sci. 61:135-161, 1992. 
[49] A. Skowron and C. Rauszer. The discemibility matrices and functions in information systems. In 

Intelligent Decision Support, Handbook of Applications and Advances of the Rough Sets Theory 
(R. Slowinski, Ed.), pp. 331-362. Kluwer Academic, Dordrecht, 1992. 

[50] K. Saito and R. Nakano. Medical diagnostic expert system based on PDP model. In Proceedings 
of the IEEE International Conference on Neural Networks (San Diego), pp. I.255-I.262, 1988. 

[51] R. C. Lacher, S. I. Hruska, and D. C. Kuncicky. Back-propagation learning in expert networks. 
IEEE Trans. Neural Networks 3:62-72, 1992. 

[52] R. PoH, S. Cagnoni, R. Livi, G. Coppini, and G. VaUi. A neural network expert system for 
diagnosing and treating hypertension. IEEE Computer 64—71, 1991. 

[53] M. Ishikawa. Structural learning with forgetting. Neural Networks 9:509-521, 1996. 
[54] C. W. Omlin and C. Lee Giles. Extraction of rules from discrete-time recurrent neural networks. 

Neural Networks 9:41-52, 1996. 
[55] S. Mitra, S. N. Sarbadhikari, and S. K. Pal. An MLP-based model for identifying qEEG in de-

pression. Internal J. Biomedical Comput. 43:179-187, 1996. 
[56] H. F. Yin and P. Liang. A connectionist incremental expert system combining production systems 

and associative memory. Intemat. J. Pattern Recognition Artificial Intell. 5:523-544, 1991. 
[57] D. W. Opitz and J. W. Shavlik. Heuristically expanding knowledge-based neural networks. In 

Proceedings of the 13th International Joint Conference on Artificial Intelligence (Chambery, 
France), pp. 1360-1365, 1993. 

[58] G. G. Towell and J. W. Shavlik. Extracting refined rules from knowledge-based neural networks. 
Machine Learning 13:71-101, 1993. 

[59] S. K. Pal and A. Ghosh. Neuro-fuzzy image processing: relevance and feasibility. In Neural and 
Fuzzy Systems: The Emerging Science of Intelligence and Computing (S. Mitra, W. Kraske, and 
M. M. Gupta, Eds.). SPIE Press, New York, 1993. 



240 Sankar K. Pal and Sushmita Mitra 

[60] J. K. Keller and D. J. Hunt. Incorporating fiizzy membership functions into the perceptron algo-
ritiim. IEEE Trans. Pattern Anal. Machine Intell. 7:693-699, 1985. 

[61] E. Sanchez. Fuzzy connectionist expert systems. In Proceedings of the 1990 International Con-
ference on Euzzy Logic and Neural Networks (lizuka, Japan), pp. 31-35, 1990. 

[62] T. L. Huntsberger and P. Ajjimarangsee. Parallel self-organizing feature maps for unsupervised 
pattern recognition. Intemat. J. General Systems 16:357-372, 1990 

[63] J. C. Bezdek, E. C. Tsao, and N. R. Pal. Fuzzy Kohonen clustering networks. In Proceedings of 
the First IEEE International Conference on Fuzzy Systems (San Diego), pp. 1035-1043, 1992. 

[64] J. M. Keller, R. Krishnapuram, and F. C.-H. Rhee. Evidence aggregation networks for fuzzy logic 
inference. IEEE Trans. Neural Networks 3:761-769, 1992. 

[65] W. Pedrycz. Fuzzy neural networks with reference neurons as pattern classifiers. IEEE Trans. 
Neural Networks 3:770-775, 1992. 

[66] S. C. Lee and E. T. Lee. Fuzzy neural networks. Math. Biosci. 23:151-177, 1975. 
[67] A. Ghosh, N. R. Pal, and S. K. Pal. Self-organization for object extraction using multilayer neural 

network and fuzziness measures. IEEE Trans. Fuzzy Systems 1:54-68, 1993. 
[68] Y. Hayashi. Neural expert system using fuzzy teaching input and its application to medical diag-

nosis. Inform. Sci. Appl. 1:47-58, 1994. 
[69] D. L. Hudson, M. E. Cohen, and M. F. Anderson. Use of neural network techniques in a medical 

expert system. Intemat. J. Intell. Systems 6:213-223, 1991. 
[70] S. G. Romaniuk and L. O. Hall. Decision making on creditworthiness, using a fuzzy connection-

ist model. Fuzzy Sets Systems 48:15-22, 1992. 
[71] K. Yoshida, Y Hayashi, A. Imura, and N. Shimada. Fuzzy neural expert system for diagnosing 

hepatobiliary disorders. In Proceedings of the 1990 International Conference on Fuzzy Logic 
and Neural Networks (lizuka, Japan), pp. 539-543, 1990. 

[72] F. C. H. Rhee and R. Krishnapuram. Fuzzy rule generation methods for high-level computer 
vision. Fuzzy Sets Systems 60:245-258, 1993. 

[73] S. Mitra. Fuzzy MLP based expert system for medical diagnosis. Fuzzy Sets Systems 65:285-
296, 1994. 

[74] S. Mitra and S. K. Pal. Fuzzy self organization, inferencing and rule generation. IEEE Trans. 
Systems Man Cybernet. 26:608-620, 1996. 

[75] S. Mitra and S. K. Pal. Logical operation based fuzzy MLP for classification and rule generation. 
Neural Networks 7:353-373, 1994. 

[76] J. M. Keller, R. R. Yager, and H. Tahani. Neural network implementation of fuzzy logic. Fuzzy 
Sets Systems 45:1-12, 1992. 

[77] H. Ishibuchi, R. Fujioka, and H. Tanaka. Neural networks that learn from fuzzy if-then rules. 
IEEE Trans. Fuzzy Systems 1:85-97, 1993. 

[78] R. Masuoka, N. Watanabe, A. Kawamura, Y Owada, and K. Asakawa. Neuro-fuzzy system— 
fuzzy inference using a structured neural network. In Proceedings of the 1990 International 
Conference on Fuzzy Logic and Neural Networks (lizuka, Japan), pp. 173-177, 1990. 

[79] N. K. Kasabov. Adaptable neuro production systems. Neurocomputing 13:95-117, 1996. 
[80] B. Kosko. Hidden patterns in combined and adaptive knowledge networks. Intemat. J. Approx. 

Reasoning 2:377-393, 1988. 
[81] R. J. Machado and A. F. Rocha. A hybrid architecture for connectionist expert systems. In Intel-

ligent Hybrid Systems (A. Kandel and G. Langholz, Eds.). CRC Press, Boca Raton, 1992. 
[82] W. Pedrycz and A. F. Rocha. Fuzzy-set based models of neurons and knowledge-based networks. 

IEEE Trans. Fuzzy Systems 1:254-266, 1993. 
[83] K. Hirota and W. Pedrycz. Knowledge-based networks in classification problems. Fuzzy Sets 

Systems 59:271-279, 1993. 
[84] B. F. Leao and A. F. Rocha. Proposed methodology for knowledge acquisition: a study on con-

genital heart disease diagnosis. Methods Inform. Medicine 29:3(M-0, 1990. 



Expert Systems in Soft Computing Paradigm 241 

[85] S. Mitra, R. K. De, and S. K. Pal. Knowledge-based fuzzy MLP for classification and rule gen-
eration. IEEE Trans. Neural Networks, to appear. 

[86] R. Yasdi. Combining rough sets learning and neural learning method to deal with uncertain and 
imprecise information. Neurocomputing 7:61-84, 1995. 

[87] A. Czyzewski and A. Kaczmarek. Speech recognition systems based on rough sets and neural 
networks. In Proceedings of the Third Workshop on Rough Sets and Soft Computing (San Jose), 
pp. 97-100, 1994. 

[88] S. K. Pal and P. P. Wang, Eds. Genetic Algorithms for Pattern Recognition. CRC Press, Boca 
Raton, 1996. 

[89] V. Maniezzo. Genetic evolution of the topology and weight distribution of neural networks. IEEE 
Trans. Neural Networks 5:39-53, 1994. 

[90] D. W. Opitz and J. W. Shavlik. Using genetic search to refine knowledge-based neural networks. 
In Machine Learning: Proceedings of the 11th International Conference (San Francisco), 1994. 



This Page Intentionally Left Blank



Mean-Value-Based 
Functional Reasoning 
Techniques in the 
Development of Fuzzy 
Neural Network Control 
Systems 

Keigo Watanabe Spyros G. Tzafestas 
Faculty of Science and Engineering Department of Electrical and 
Department of Mechanical Engineering Computer Engineering 
Saga University Intelligent Robotics and 
1-Honjo-machi, Saga 840, Japan Automation Laboratory 

National Technical University of Athens 
Zografou, Athens 157 73, Greece 

L INTRODUCTION 

Functional reasoning [1,2] and simplified reasoning [3, 4], which are special 
cases of the so-called min-max-centroidal method [5,6], have been proposed as 
fuzzy reasoning methods for treating fuzzy control and fuzzy modeling problems. 
These methods have the advantage that the fuzzy operation is simplified, because 
instead of using a membership function the conclusion part can be composed of 
a function of input data or be simply a constant value. However, it is not readily 
known to control engineers how to rationally design some parameters in the con-
clusion part using available control theories. One can refer either to a basic method 
[3, 4] in which a constant parameter is determined as a value on the support set 
when the membership function in the conclusion is assumed to be a singleton or to 
a method [7] in which a constant parameter is determined by averaging the mean 
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values for the membership functions in the antecedent with respect to the number 
of input data and which is finely adjusted for every control rule. However, it is 
unclear whether these methods are truly vaUd or not. As a more systematic design 
approach to the conventional fuzzy controller, a fuzzy model-based approach [8-
11] and a variable structure system (VSS) or sliding mode approach [12-14] have 
been proposed. 

As an alternative approach to the design of fuzzy controllers, neuro-fuzzy 
controllers (NFCs) or fuzzy neural network controllers (FNNCs) [15-24] are in-
tensively studied, in which a fuzzy reasoning method such as those discussed 
previously is realized within a multilayered hierarchical neural network and the 
parameters that are represented by connection weights or involved in unit func-
tions can be learned by using the actual data. The number of learning parameters 
or trials and errors for learning fuzzy control can be effectively reduced, if we can 
rationally design some parameters in the conclusion in advance. 

In this chapter, we start by reviewing the conventional functional reasoning 
[1, 2] and simphfied reasoning [3,4] methods. Then, as a new reasoning method, 
we further introduce a mean-value-based functional reasoning [25, 26], in which 
the conclusion part consists of the mean values of the membership functions that 
are assigned to each input data. It is shown that if the conclusion is regarded as 
a VSS controller [27], then any parameter in the conclusion of the conventional 
functional reasoning can be rationally designed as the parameters for constructing 
r stable switching planes (or lines), while those of the mean-value-based func-
tional reasoning can be designed as the parameters for constructing only one sta-
ble switching plane (or line). Here, r denotes the number of control rules. Next 
we describe a fuzzy Gaussian neural network (FGNN) [28-30] by applying the 
preceding fuzzy reasoning methods. It is then clarified that by using the mean-
value-based functional reasoning the FGNN allows the number of learning pa-
rameters in the conclusion to be reduced drastically, compared with those of the 
conventional functional reasoning and simplified reasoning. 

The chapter is organized as follows. The conventional functional reasoning, 
simplified reasoning, and mean-value-based functional reasoning methods are re-
viewed in Section II. In Section III, a design method for the conclusion of the 
preceding fuzzy reasoning schemes, based on VSS control theory, is described. In 
Section IV, three FGNNs are constructed using the conventional functional rea-
soning, simplified reasoning, and mean-value-based functional reasoning meth-
ods, and compared with each other, especially with regard to the number of learn-
ing parameters to be learned in the conclusion. In Section V, the effectiveness of 
the mean-value-based functional reasoning method is illustrated by designing and 
simulating a nonleaming fuzzy controller for controUing the attitude of a satellite. 
Finally, in Section VI, a fuzzy neural network controller based on mean-value-
based functional reasoning is applied to the tracking control problem for a mobile 
robot with two independent driving wheels. 
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In this section, we review the conventional, the simpUfied, and the mean-value-
based functional reasoning schemes. 

A. INPUT-DATA-BASED FUNCTIONAL REASONING 

The conventional or input-data-based functional reasoning [1,2] method (see 
Fig. 1) is also called Sugeno's fuzzy reasoning method [3]. For n input variables 
(jci,. . . , jc„) and p output variables (MI, . . . , M^) in the consequent part, the ith 
control rule Rt is described by 

Ri'. If A:I = Ail and- • andjc^ = A/„, 

then Ml = fiiixi,..., x„) and • • • and Up = fip(xi,..., Xn), (1) 

where Aij denotes the fuzzy set in the antecedent associated with the yth in-
put variable in the ith control rule, and fij(xi,... ,Xn) is the function associated 
with the jih variable in the conclusion of the /th control rule. Applying n confi-
dences /XAji (xi),..., iJiAin (xn), the confidence in the antecedent hi is, by defini-
tion, given by 

hi = I^Anixi) ' flAi2(X2) f^Aini^n), (2) 

where "•" denotes the algebraic product operation. Then the 7 th output consequent 
can be calculated as the following weighted mean of //;(•) with respect to the 
weight hi: 

Uj = 
T:;=ihi 

j = \,...,p, (3) 

Input data Confidences 
of 

membership 
functions 

Confidences 
in 

antecedent 

Normalized 
confidences 

Defuzzi-
fication 

Output 

Construction 
of 

conclusion 

Figure 1 Concept of input-data-based functional fuzzy reasoning. 
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where r denotes the total number of control rules; if the number of member-
ship functions (i.e., the number of labels) in the antecedent is €, then, in general. 

Note here that, in the single consequent case, the conclusion function is usually 
represented by a linear function: 

wi = aoi + aiiXi + a2iX2 H h aniXn. (4) 

As a special case of this representation, one can use the actual deviations of the 
membership functions in the antecedent as [23]: 

wi = aoi + aiiixi - cii) H h ani(xn - Cni), (5) 

where Cjt denotes the center value (e.g., the mean value of a Gaussian-like mem-
bership function) associated with the jth membership function in the antecedent 
of the ith control rule. 

B. SIMPLIFIED REASONING 

A further special case of input-data-based functional reasoning, called simpli-
fied reasoning [3,4] (see Fig. 2), is based on the formula: 

w 1 = aoi. (6) 

The design parameters Ujt in the conclusion, as well as the scalers for the input 
data, significantly govern the performance of the unlearning fuzzy controller. An 
effective method for designing this parameter is not known at present. There exists 
an elementary method [7] in which the parameters are determined by averaging 
the mean values Cjt of the membership functions in the antecedent, with respect 
to the number of input data, and they are finely adjusted for every control rule 
by means of trial and error. In what follows, a more general design method for 

Input data Confidences 
of 

membership 
functions 

Confidences 
in 

antecedent 

Normalized 
confidences 

Defuzzi-
fication 

Output 

Constant 
conclusion 

Figure 2 Concept of simplified fuzzy reasoning. 
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the parameter in the conclusion will be presented, which includes this elementary 
method as a special case. 

C. MEAN-VALUE-BASED FUNCTIONAL REASONING 

The confidence IXAIJ (XJ) of the membership function indicates the degree of 
matching between the actual input data Xj and the hypothetical data distribution 
(membership function) on the support set [—L, L] allocated by the control de-
signer. It is then observed that the conclusion of the input-data-based functional 
reasoning given by (4) or of the simpHfied reasoning given by (6) does not include 
the allocation information for the membership function in the antecedent. For this 
allocation information, a mean-value-based functional reasoning has been pro-
posed [25, 26], in which the mean values Cji of each membership function in the 
antecedent are used in the conclusion as shown in Fig. 3. In this reasoning, the 
conclusion function in (1) is replaced by 

wi = fiiicii,..., Cni) and • • • and Up = ftpicu,..., Cni) (7) 

and the output consequent is determined by 

^j = EU hi 
; = ! , . . . , / ? . (8) 

For the two-input data case (xi, ^2), the output wi in a linear function can be 
represented by 

Ml = aoi + aiiCii + a2iC2i (9) 

or by the simpler form 

Ml = «o + aicii + a2C2i (10) 

considering that the mean-values Cjt are already dependent on the control rule. 

Input data Confidences 
of 

membership 
functions 

Confidences 
in 

antecedent 

Normalized 
confidences 

Defuzzi-
fication 

Output 

Mean values Construction 
of 

conclusion 

Figure 3 Concept of mean-value-based functional fuzzy reasoning. 
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III. DESIGN OF THE CONCLUSION PART 
IN FUNCTIONAL REASONING 

In this section, a design technique for the conclusion of the three fuzzy reason-
ing methods stated previously through VSS control theory is described. 

A. INPUT-DATA-BASED FUNCTIONAL REASONING 

For a linear function of input-data-based functional reasoning with ao/ = 0, 
the following hyperplane is defined: 

at = Si\, / = l , . . . , r , (11) 

where x^ = [xi, JC2,..., A:„] is regarded as a state vector and St denotes a 1 x n 
design row vector that depends on the index / of the control rules. Now, consider 
the following VSS control law [27]: 

Ml = ki sgn((T/), ki > 0. (12) 

Then taking a switching gain as ki = |a/1 gives 

Ml = at (13) 

because {at \ sgn((ji) = at. Thus, if the input data in the antecedent are regarded as 
state vectors, the design problem of the conclusion for input-data-based functional 
reasoning can be reduced to that of r stable switching planes (or lines) in (11). 

B. MEAN-VALUE-BASED FUNCTIONAL REASONING 

For a linear function of mean-value-based functional reasoning with ao = 0 in 
the form of (10), we define the following switching plane: 

at = Sci, / = 1, . . . , r , (14) 

where c/ = [cu, C2/,... , Cni] is regarded as a state vector and S denotes a 1 x w 
design row vector which is independent of the index / of the control rules. If we 
consider the same control law as used previously, then we have the same result 
as in (13). Note, however, that the design vector S and the mean-value vector c/ 
are constant, and hence lima^-^o ^i^^i = 0, because at = 0. This implies that 
(12) and (14) do not satisfy the condition \ima^^ocricyi < 0, which is required 
for the existence of a sliding mode at the neighborhood of the switching plane 
ai = 0. Therefore, Eqs. (12) and (14) do not generate an actual sUding mode as 
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in a usual sliding mode control system, and they can be only formally regarded as 
VSS controllers. 

Thus, it is seen that the design problem for the conclusion of mean-value-based 
functional reasoning can be reduced to that of only one stable switching plane (or 
line) in (14), if the mean value ĉ- on the membership functions in the antecedent 
is regarded as a state vector. The conclusion part of mean-value-based functional 
reasoning is completely constant, whereas that of input-data-based functional rea-
soning is time-varying and all r switching planes (or lines) in (11) must be de-
signed to be stable; this yields an unrealistic design procedure if the number of 
control rules is very large. Furthermore, it is easy to see that the conclusion part 
of the simplified reasoning can also be directly replaced by the at value which is 
computed from (14) off-line. 

Because mean-value-based functional reasoning assumes that the mean values 
of the membership functions in the antecedent are utilized in the conclusion, the 
form of the membership function must be of an isosceles triangle, Gaussian-type, 
or an isosceles trapezoid, etc., which possess the information of the mean value. 
Therefore, in such a functional reasoning, the knowledge of an expert cannot nec-
essarily be reflected in the determination of the form of the membership function 
in the antecedent, whereas, in traditional functional or simplified reasoning, a 
membership function of any form can be selected to reflect the knowledge of an 
expert in the form determination of the membership function in the antecedent. 

IV. FUZZY GAUSSIAN NEURAL NETWORKS 

In this section, three fuzzy Gaussian neural networks (FGNNs) are constructed 
using the reasonings stated previously, and compared with each other, especially 
in the number of learning parameters to be learned in the conclusion. 

A. CONSTRUCTION 

Figures 4-6 illustrate three FGNNs based on input-data-based fuzzy reasoning, 
simplified fuzzy reasoning, and mean-value-based fuzzy reasoning, respectively. 
Here, it is assumed that there are two inputs (;ci, JC2), a single output (w*), and 
three labels for a Gaussian membership function in the antecedent part. Then the 
number of identifiable control rules is r = 3^. 

The variable within the curly brackets denotes a signal passing through the 
neural network, the circle symbol is the unit, it;^ is the connection weight that 
represents the center value for the jth Gaussian membership function of the /th 
input data, and the connection weight u;̂  • denotes the reciprocal value of the 

deviation from the center w^j to which the y th Gaussian function of /th input data 
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Conclusion 

Figure 4 Fuzzy Gaussian neural network using input-data-based functional reasoning. Reprinted 
from K. Watanabe etal. Fuzzy-neural network controllers using mean-value-based functional reason-
ing, Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara Burgerhart-
straat 25, 1055 KV Amsterdam, The Netheriands. 
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Figure 5 Fuzzy Gaussian neural network using simplified reasoning. Reprinted from K. Watanabe 
etal. Fuzzy-neural network controllers using mean-value-based functional reasoning, Neurocomput-
ing 9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV 
Amsterdam, The Netherlands. 

on the standardized support set has value 0.5. In addition, the unit with the symbol 
— 1 generates the output of — 1; the unit with the symbol Yl outputs the sunmiation 
of the inputs. Similarly, the unit with the symbol ]~[ outputs the product of the 
inputs. The input-output relation at the unit with the symbol / is defined by the 
following Gaussian function: 

fix) = exp(ln(0.5) • x^) (15) 

as a unit function. Furthermore, the unit with no symbols simply distributes the 
input to the output. 

Layers A-E in Figs. 4-6 correspond to the antecedent part of the fuzzy control 
rule, and layers G and H correspond to the conclusion part. The inputs xt applied 
to layer A are scaled by using an adaptive input scaling technique [31 ]. At layer C, 
the connection weight — M;̂  , which is a bias, is added to the scaled input, and it is 
multiplied by u;̂  •, which is an input to the Gaussian function at layer D. At layer 
E in all figures, we obtain the confidences hi in the antecedent part for every 
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Conclusion 

Figure 6 Fuzzy Gaussian neural network using mean-value-based functional reasoning. Reprinted 
from K. Watanabe etal. Fuzzy-neural network controllers using mean-value-based functional reason-
ing, Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara Burgerhart-
straat 25, 1055 KV Amsterdam, The Netiieriands. 
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control rule. At the first unit of layer F, a summation of inputs and the inverse 
calculation are performed. That is, the unit that has symbols J ] and g generates 
the output through the following function: 

Six) = - , (16) 
X 

with a linear sunmied input. 
At layers G and H in Fig. 5, we directly obtain the consequent as the weighted 

mean of Wai with respect to the weight hi, where Wai denotes a constant parameter 
aoi in the conclusion. As seen from Figs. 4 and 6, for input-data-based or mean-
value-based functional reasoning, the conclusion part is calculated at these layers 
(G and H), and we finally have the similar consequent at layers / and J. 

Note here that Horikawa et al [15] have already developed some FNNs sim-
ilar to those shown in Figs. 4 and 5 by using a sigmoidal function with range 
[0,1]. However, to construct a pseudo-trapezoidal membership function in their 
approach, two sigmoidal functions with ranges [0,1] and [-1,0] must be super-
imposed. Therefore, their FNNs require additional intermediate layers to generate 
the membership function in the antecedent, because a pseudo-trapezoidal mem-
bership function is constructed by summing two sigmoidal functions with differ-
ent signs. This also causes the number of units at the corresponding intermediate 
layer to grow as the number of fuzzy labels becomes larger. On the contrary, our 
approach does not suffer from this problem and also gives a reduced number of 
learning parameters in the conclusion, as will be discussed in the next subsection. 

B. NUMBER OF LEARNING PARAMETERS 

All of the preceding FGNNs have the same number of parameters to be learned 
in the antecedent. However, they have different numbers of parameters to be 
learned in the conclusion. By introducing two kinds of parameters a and fi, 
Eq. (11) can be rewritten as 

Gi = —[at 1] 
Pi 

x\ 
X2 

/ = l , . . . , r , (17) 

where at is the slope of a switching line and fit is usually an averaging constant 
with respect to the number of inputs. Following this construction, the input-data-
based functional reasoning approach must learn 49 Wai and 49 Wbi parameters, if 
seven labels for each input are used. Here, Wai = oii/Pi and Wbi = 1/A- Further-
more, if the parameter ^i is regarded as the averaging parameter with respect to 
the number of inputs, then it is required to learn 49 parameters Wai, because we 
can fix the parameter ^t as 2, that is, u;̂ / = 0.5, / = 1 , . . . , 49. At this stage, both 
the input-data-based functional reasoning and the simplified reasoning methods 
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have the same number of learning parameters to be learned in the conclusion. Note 
also that, to obtain all of the different learned parameters Wai for / = 1 , . . . , 49, 
one must set all different initial parameters for Wai, i = 1 , . . . , 49, because all 
units at layer H have the same "delta" quantities in the back-propagation algo-
rithm. 

Similarly, by introducing two kinds of parameters a and ^ in the mean-value-
based functional reasoning, Eq. (14) can be rewritten as 

- > 
7 , ^ = 1 , . . . , 7 . (18) 

Note here that both parameters a and P are independent of the index i of the con-
trol rules. Therefore, to learn their parameters, it is sufficient to learn the minimum 
number of w;fly and Wbk by using it;^., 7 = 1 , . . . , 7, w;̂ ,̂ fc = 1 , . . . , 7, and 5//. 
Here, Waj — otj^, Wbk = l/)^» and 8H denotes the "delta" quantity for any unit 
in layer H. As shown in Fig. 7, the connection weights Waj and Wbj between two 
jih units with respect to wlj and w^j at layer G and the /th unit at layer H, where 
/ = (7 — 1 ) * 7 H - 7 , j = 1 , . . . , 7, can be concretely learned. Note that the remain-
ing unlearned connection weights, which have the same wl- and w^- as the learned 
connection weights, should be simply replaced by the learned ones: Waj and Wbj. 

w: 
y^. 

< 

< 

< 

< 

< 

w p , w 7 

wry'*'V ^^ 

(G) (H) 
_ J 

Conclusion 

learned 
connections 

unlearned 
connections 

Figure 7 Learning method of parameters in the conclusion for mean-value-based functional reason-
ing. Reprinted from K. Watanabe et al. Fuzzy-neural network controllers using mean-value-based 
functional reasoning, Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL, 
Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands. 
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learned 
connections 
unlearned 
connections 

fixed 
connections 

(G) (H) 
I 

Conclusion 

Figure 8 Learning method of parameters in the conclusion for mean-value-based functional reason-
ing (there are partially fixed connections). Reprinted from K. Watanabe et al. Fuzzy-neural network 
controllers using mean-value-based functional reasoning, Neurocomputing 9:39-61, 1995, with kind 
permission of Elsevier Science-NL, Sara Burgerhartstraat 25,1055 KV Amsterdam, The Netherlands. 

Thus, the mean-value-based functional reasoning model learns 14 parameters 
{waj, Wbk), j^k = 1 , . . . , 7. Furthermore, if the parameter ^ is fixed as an aver-
aging parameter with respect to the number of inputs, then only seven parameters 
Waj, 7 = 1 , . . . , 7, are learned (see Fig. 8). Consequently, the mean-value-based 
functional approach can drastically reduce the number of parameters that have to 
be learned in the conclusion. 

C. TRAINING 

By applying the back-propagation algorithm [32-34], one can train the con-
nection weights of the FGNN controller, and consequently identify the control 
rules and finely tune the membership functions in the antecedent part. In the fol-
lowing, a case based on the specialized learning architecture will be explained, 
in which the FGNN is trained so that the output deviations of the plant are mini-
mized without using the pattern data generated by an expert. However, note that 
we merely change the delta quantities in the output layer for a case based on the 
generalized learning architecture or the feedback error learning architecture. 
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Consider the hierarchical multilayered neural network consisting of M layers, 
and denote the input-output relation of any unit by /(•) , the input to the jth unit 
at the A:th layer by / j , and the corresponding output from its unit by o^. The weight 
that connects the jth unit at the kth layer and the /th unit at the (k + l)th layer is 
denoted by u;^f'^^ 

Let Case A denote the case when the input to the A:th layer is the output through 
the function/(•) and the input to the (A:+l)thlayeris calculated by the summation 
(i.e., J2) operation. Similarly, let Case B be the case when the input to the A;th 
layer is output through the function /(•) and the input to the (k + l)th layer is 
calculated by the product (i.e., J~[) operation. 

Under the preceding conditions, we have the following input-output relation 
of a unit: 

if^'= Y,r^f+'o], o^^'=fiif^') (19) 
J 

for Case A, and 

if^^ = Ylwf+Vj, o\^' = fii\^') (20) 

for Case B. 
For the specialized learning, the following cost function is considered: 

m 

which gives the weights ^if^^ that minimize / . Here, m denotes the number of 
plant outputs, ydi the / th desired reference, and yt the / th output of the plant. Then 
the delta quantities, 8^ in the jth unit at the output layer M and 8^j in the jth unit 
at any intermediate layer k, are given by 

Output layer: Sf = f{if) Tiydi - yi)^\ (22) 

Intermediate layer: 

/'('•*) E ^ r ' " ^ * ) ' ^ ' forcaseA, 

(23) 

where Uj denotes the jth input to the plant. 
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Thus, the application of Case B to the delta calculation is used at layers D 
and F. Here, from the definitions of Eqs. (15) and (16), / ' in the first unit at 
layers D and F is evaluated by 

f(i^j) = 2ln(0.5)i^jO^j for layer D, (24) 

f(i^.) = -(o^.f for the first unit of layer F, (25) 

and / '( i^) = 1 for other linear units. Note also that the Jacobian dyi/duj in 
Eq. (21) can be approximated as 

Aj/ dyt ^^-^ dyt AM/ 

+ES^ p« AM/ dui f-̂  dui AM/ 

if the control inputs are coupled, or 

dyiJkT) ^ AytikT) 

dujikT) ~ AujikT)' 
i = ; , (27) 

if the control inputs are decoupled, where Auj(-) and Aj/() are generated from 
the input and output data at the sampling instant kT, A = 1 — z~^ z~^ is the 
one-step delay operator, k is the discrete time, and T is the sampling period. If the 
plant is originally a discrete-time system with no time delay in the input, then one 
must evaluate dyi(kT)/duj[(k — 1)T] instead of the previous equation. 

The preceding results yield the following update equations for the connection 
weights: 

w^r'-'it +1) = w^r^'^it) + rjs'jot' + ^Awlr''\t) 
for Case A, (28) 

.^r^^'it + 1) = u ; ^ ^ ' ^ 0 + . 4 - ? - ^ ( n - ^ ^ V - ^ ) + ? A u ; ^ ^ ' 

for Case B, (29) 

where t denotes the tth update time, ry is a small positive constant that means 
a learning rate, AM;- ~ ' (t) is an increment of the connection weight at the rth 
step, and § is a small positive constant used as a stabilizing factor. Therefore, 
the connection weights Wc,Wd,Wa, and Wb can be updated by using Eq. (28). 
Note that Eq. (29) is not required to update any connection weight, because the 
connection weights associated with Case B are all fixed as unity. 
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V. ATTITUDE CONTROL APPLICATION EXAMPLE 

In this section, the effectiveness of the mean-value-based functional reasoning 
method is illustrated by designing and simulating an unlearning fuzzy controller 
for the attitude control problem of a flexible satellite. 

A. TWO-INPUT-SINGLE-OUTPUT REASONING 

In this subsection, the design method of the conclusion is illustrated by using 
an example for two-input-single-output reasoning. 

Consider the following attitude control problem of a flexible satellite described 
by [35]: 

0(t) = 1.764M(0, 

0(0 = -a;^0(O+4.358M(O, 

y(t) = ^ ( 0 + 4 . 3 5 8 0 ( 0 , 

(30) 

(31) 

(32) 

where aP' = 33.15 x 10~^ [rad^/s^], ̂ (0 is the center body rotation due to rigid 
body motion, 0 (0 is the center body rotation due to flexural motion, >'(0 is the 
measurement of the attitude, and u(t) is the control input torque produced by 
reaction jets. 

Although this control is a regulator problem, to retain the generality of the 
problem, it is regarded as a tracking problem with a reference yd = 0. Then 
the tracking error is defined by e = yd — y and the corresponding derivative is 
assumed to be constructed as ^ = {e[kT] — e[{k — l)T]}/T, where A: = 0 , 1 , . . . 
and T is the sampling period of 0.01 [s]. 

Define each membership function of five labels for e and e on the support set 
[—L, L] = [—6, 6] as shown in Fig. 9. Let the mean values on e and e, defined 
on the support set, be respectively ecj and Cck, j^ k = NB, NM,..., PB. In 
addition, introducing two new parameters a and P in (18) gives the following 

NB NM ZO PM PB 

-6 -3 0 3 6 e,e 

Figure 9 Membership functions of five labels for e and e. 
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Table! 

Control Rules for Five Labels (a = 1, p = 2) 

259 

e 

NB 
NM 
ZO 
PM 
PB 

NB 

- 6 
-4.5 
- 3 
-1.5 

0 

NM 

-4.5 
- 3 
-1.5 

0 
1.5 

e 

ZO 

- 3 
-1.5 

0 
1.5 
3 

PM 

-1.5 
0 
1.5 
3 
4.5 

PB 

0 
1.5 
3 
4.5 
6 

Reprinted with the permission of the Society of Instrument and Control Engineers, Japan. 

representation: 

ai=[a/p l/P] [::;]• "" < L . (33) 

Note here that the upper and lower Umits of the conclusion are constrained as 
\u\ <L. 

Case 1. Table I shows the control rule for a = 1 and ^ = l.li we pick up 
the rule 1 of ^ = NB, e = NB as an example, it is seen that the deviation data 
are assumed to be distributed on the sliding Hne 2a\ = —12, that is, G\ = - 6 
(see Fig. 10). For the regulator problem of yd = 0, this is equivalent to the output 

2oi = -12 

Figure 10 Switching Une for rule 1 with a = 1, p =2. Reprinted with tiie permission of the Society 
of Instrument and Control Engineers, Japan. 
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u 0 

Figure 11 Conclusion constants for a = 1, ^ = 2. Reprinted with the permission of the Society of 
Instrument and Control Engineers, Japan. 

data being distributed on the sliding line y -\- y = 6. Therefore, it is found that 
the control is determined so as to obtain the output data distribution on an ideal 
sliding line y -{- y = 0 by moving j + j = 6 to the origin. Figure 11 depicts 
the constant values in the conclusion for this case. It should be noted that, when 
defining the deviation error as ^ = j — j ^ / , we must use the relation such that 
ki = —\cri\ as in (12). 

Case 2. Table II shows the control rule for the case when the conclusion is a 
sliding line faster than that of Case 1 by setting a = 2 and p = 2. The interpreta-
tion ofthe sliding line is shown in Fig. 12forrule 1 consisting of ^ = NB and^ = 
NB. The corresponding constant values in the conclusion are shown in Fig. 13. 

In the following, we will show some cases that blend Cases 1 and 2 for any 
control rule. 

Table U 

Control Rules for Five Labels (a = 2, p = 2) 

e 

NB 
NM 
ZO 
PM 
PB 

NB 

- 6 
- 6 
- 3 

0 
3 

NM 

- 6 
-4.5 
-1.5 

1.5 
4.5 

e 

ZO 

- 6 
- 3 

0 
3 
6 

PM 

-4.5 
-1.5 

1.5 
4.5 
6 

PB 

- 3 
0 
3 
6 
6 

Reprinted with the permission of the Society of Instrument and Control Engineers, Japan. 
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2oi = -18 

Figure 12 Switching line for rule 1 with a = 2, ^ = 2. Reprinted with the permission of the Society 
of Instrument and Control Engineers, Japan. 

u 0 

Figure 13 Conclusion constants for a = 2, ^ = 2. Reprinted with the permission of the Society of 
Instrument and Control Engineers, Japan. 

Table III 
Control Rules for Five Labels (a = 2, p = 2ife = NB or PB; otherwise 

a = l, fi = 2) 

e 

NB 
NM 
ZO 
PM 
PB 

NB 

- 6 
- 6 
- 3 

0 
3 

NM 

-4 .5 
- 3 
-1 .5 

0 
1.5 

e 

ZO 

- 3 
-1 .5 

0 
1.5 
3 

PM 

-1.5 
0 
1.5 
3 
4.5 

PB 

- 3 
0 
3 
6 
6 

Reprinted with the permission of the Society of Instrument and Control Engineers, Japan. 



262 

u 0 

Keigo Watanabe and Spyros G. Tzafestas 

Figure 14 Conclusion constants for a = 2, ^=2 if e = NB or PB. Reprinted with the permission 
of the Society of Instrument and Control Engineers, Japan. 

Case 3. For the case when |^| is very large, to set a sUding Hne faster than 
that of Case 1, we determine the parameters a and p such that 

a = 2, )S = 2, 
a = l, )S = 2, 

if e = NBoTPB, 
otherwise. 

The corresponding control rule is tabulated in Table III and the constant values in 
the conclusion are shown in Fig. 14. 

Case 4. For the case when |^| is relatively small, to set a sliding line faster 
than that of Case 1, we determine the parameters a and p such that 

a = 2, )g = 2, 

a = 1, ^ = 2, 

if^ = Â M or ZO or PM, 

otherwise. 

Table IV 
Control Rules for Five Labels (a = 2, p = 2ife = NM or ZO or PM; 

otherwise a = 1, P = 2) 

e 

NB 
NM 
ZO 
PM 
PB 

NB 

-6 
- 6 
- 3 

0 
0 

NM 

-4.5 
-4.5 
-1.5 

1.5 
1.5 

e 

ZO 

- 3 
- 3 

0 
3 
3 

PM 

-1.5 
-1.5 

1.5 
4.5 
4.5 

PB 

0 
0 
3 
6 
6 

Reprinted with the permission of the Society of Instrument and Control Engineers, Japan. 
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6 -

u 0 
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Figure 15 Conclusion constants for a = 2, )6 = 2 if ^ = NM or ZO oi PM. Reprinted with the 
permission of the Society of Instrument and Control Engineers, Japan. 

The corresponding control rule is tabulated in Table IV and the constant values in 
the conclusion are shown in Fig. 15. 

Case 5. As a mix of Cases 3 and 4, we determine the parameters a and fi 
such that 

Of = 2, P =2, if e = NB or PB, or e = NM or ZO ov PM, 

a = 1, P =2, otherwise. 

The corresponding control rule is tabulated in Table V and the constant values in 
the conclusion are shown in Fig. 16. 

Table V 

Control Rules for Five Labels (a = 2, p = 2ife = NB or PB or 
e = NM or ZO or PM; otherwise a = 1, P = 2) 

e 

NB 
NM 
ZO 
PM 
PB 

NB 

-6 
- 6 
- 3 

0 
3 

NM 

-4.5 
-4.5 
-1.5 

1.5 
1.5 

e 

ZO 

- 3 
- 3 

0 
3 
3 

PM 

-1.5 
-1.5 

1.5 
4.5 
4.5 

PB 

- 3 
0 
3 
6 
6 

Reprinted with the permission of the Society of Instrument and Control Engineers, Japan. 
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u 0 

Figure 16 Conclusion constants for a = 2, p = 2 if e = NB or PB or e = NM or ZO or PM. 
Reprinted with the permission of the Society of Instrument and Control Engineers, Japan. 

Figure 17 shows the attitude control results when the control rules determined 
by Cases 1-5 were applied to the control object. Note here that an adaptive input 
scaling method with the initial scalers 10"̂  was used [31] and the output scaler was 
fixed to the value 1.6. It is seen from this figure that the result of Case 4 is good 
for the case when the undershoot is not allowed, whereas the result of Case 5 is 
good for the case when a little undershoot is allowed. 

CO 

(D 
• D 
3 

CTJ 

0.4 

0.2 

1 

f\ 

-L 

' 1 ' 

1 
11 
11 

•I 

1 

1 ' 1 • 1 • 1 

Case 1 

Case 2 

Case 3 j 

Case 4 

" ^ " Case 5 

. 

1 . 1 1 1 1 i 

Time [s] 

Figure 17 Control results using control rules: Cases 1-5. Reprinted with the permission of the So-
ciety of Instrument and Control Engineers, Japan. 
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B. THREE-INPUT-SINGLE-OUTPUT REASONING 

265 

In this subsection, we further consider a case in which the accelerative er-
ror information is taken into account, in addition to the deviation error and its 
derivative information. The accelerative error is assumed to be constructed by 

e = {e[kT] - e[(k - l)T]}/T. Introducing the parameters a, p, and y, Eq. (14) 
can be rewritten as 

C7i = [a/y p/y l/y] eck 
ectJ 

\cri\<L, (34) 

Here, the membership functions for e and e are defined as shown in Fig. 6, but 
those for e are assumed to consist of three labels as shown in Fig. 18, where their 
mean values are denoted hycd, I = NB, ZO, PB. 

1. Design of Switching Plane as an Overdamped 
or Critically Damped Response 

Using three inputs e, e, e and defining the following sliding plane: 

e -\- Pe -h ae = 0, (35) 

we determine the parameters a and p such that the characteristic equation as-
sociated with (35) has two real and unequal roots, or two real and equal roots, 
which are, respectively, overdamped and critically damped responses. Hereafter, 
it is assumed that y = 3. 

Case 6. When allocating the characteristic roots for (35) as multiple roots of 
— 1, it follows that a = 1 and P = 2, and the corresponding control rules are 
tabulated in Table VI. 

Case 7. When allocating the characteristic roots for (35) as two distinct roots 
of —1 and —2, it follows that a = 2 and p = 3, and the corresponding control 
rules are tabulated in Table VII. 

-6 0 6 e 

Figure 18 Membership functions of three labels for e. 
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Table VI 
Control Rules for Five Labels 

e 

NB 
NM 
ZO 
PM 
PB 

NB 
NM 
ZO 
PM 
PB 

NB 
NM 
ZO 
PM 
PB 

(Ci = 

NB 

- 6 
- 6 
- 6 
- 5 
- 4 

- 6 
- 5 
- 4 
- 3 

2 

- 4 
- 3 
- 2 
- 1 

0 

h P = 

NM 

(a) e = 

- 6 
- 5 
- 4 
- 3 
- 2 

(b) -̂ = 

- 4 
- 3 
- 2 
- 1 

0 

(c) e --

- 2 
- 1 

0 
1 
2 

= 2, y 

e 

ZO 

= NB 

- 4 
- 3 
- 2 
- 1 

0 

- 2 
- 1 

0 
1 
2 

0 
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Ca5^ 8. When allocating the characteristic roots for (35) as multiple roots of 
—2, it follows that a = 4 and ^ = 4, and the corresponding control rules are 
tabulated in Table VIII. 

Case 9. When allocating the characteristic roots for (35) as multiple roots of 
—3, it follows that a = 9 and P = 6, and the corresponding control rules are 
tabulated in Table IX. 

Figure 19 shows the attitude control results when the control rules determined 
by Cases 6-9 were applied to the control object. It is seen from this figure that the 
faster control result with no oscillations is obtained from Case 6 to Case 9. 

2. Design of Switching Plane as an Underdamped Response 

In this subsection, we will determine the parameters a and fi such that the roots 
(—P ± y/p^ — Aa)/2 of the characteristic equation for (35) are complex numbers, 
in which case we have the so-called underdamped response. 
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Figure 19 Control results using control rules: Cases 6-9. Reprinted with the permission of the So-
ciety of Instrument and Control Engineers, Japan. 
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Case 10. When setting the imaginary part of the complex conjugate roots as 
y/3 with a fixed )S = 1, it follows that a = 1. The corresponding control rules are 
tabulated in Table X. Note that in the following jS = 1 is used for all cases. 

Case 11. Setting the imaginary part of the complex conjugate roots as \ / 5 
gives Of = 1.5. The corresponding control rules are tabulated in Table XI. 

Case 12. Setting the imaginary part of the complex conjugate roots as V 7 
yields a = 2. The corresponding control rules are tabulated in Table XII. 

Case 13. Setting the imaginary part of the complex conjugate roots as V l T 
gives a = 3. The corresponding control rules are tabulated in Table XIII. 

Figure 20 depicts the attitude control results when the control rules determined 
by Cases 10-13 were applied to the control object. It is seen from this figure 
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Figure 20 Control results using control rules: Cases 10-13. Reprinted with the permission of the 
Society of Instrument and Control Engineers, Japan. 
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that the larger the imaginary part allocated, the larger is the oscillating control 
response obtained, as expected. 

VL MOBILE ROBOT EXAMPLE 

In this section, an FGNN controller based on mean-value-based functional rea-
soning is applied to the tracking control problem of a mobile robot with two in-
dependent driving wheels. 

A. MODEL OF A MOBILE ROBOT 

Let the mobile robot be rigidly moving on a plane as shown in Fig. 21. The 
absolute coordinate system O — XY is assumed to be fixed on the plane. Then 
the dynamic behavior of the robot is described by the following equations of 
motion [36]: 

I J = Drl - DiU (36) 

Mv = Dr-hDi. (37) 

For the right and left wheels, the dynamics of the driving system is described by 

lyjOi 4- cOi = kui -rDi, i =rj, (38) 

where the parameters and variables are defined as follows: ly, the moment of 
inertia around the center of gravity (e.g.) of the robot; M, the mass of the robot; 
DuDr, the left and right driving forces; /, the distance between the left or the 

Left wheel 

Mv 

'̂ <l> V ^ Right wheel 

O 

Figure 21 Mobile robot model. 
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right wheel and the e.g. of the robot; (p, the azimuth of the robot; i;, the velocity 
of the robot; /„;, the moment of inertia of the wheel; c, the viscous friction factor; 
k, the driving gain factor; r, the radius of the wheel; Oi, the rotational angle of the 
wheel; and M/, the driving input. 

On the other hand, the geometrical relationships among the variables 0, f, /̂ 
are given by 

rOi = V — /0. 

(39) 

(40) 

From these equations, defining the state variable for the robot as x = [i; 0 0] ̂ , 
the manipulated variable as u = [wr w/]^, and the output variable as y = 
[v (f)]^, one obtains the following state equations: 

where 

A = 
ai 
0 
0 

0 0 -
0 1 
0 a2. 

X = Ax + Bu, 
y = Cx, 

B = 
rbi bi 

0 0 
. b2 -bi 

c = 
1 0 0" 
0 1 0 

(42) 

5 

ai = -2c/(Mr^ + 2/^;), a2 = -Icf/^y + 2/^/^), 

bi = kr/(Mr^ + 2/^), b2 = krl/{iy + 2IJ^). 

B. SIMULATION EXAMPLES 

Figure 22 shows the block diagram of the path control system of the mobile 
robot. This system consists of two FGNNs; one is for processing the information 
of the velocity error Cy = Vd — v and its rate ky; and the other is for processing 
the information of the azimuth error Ccp = (pd — (p and its rate Cff,. Here, Vd and 
(pd denote the reference velocity and reference azimuth, respectively. The system 
also contains a net which combines two consequent torques Uy and M^ generated 
from two FGNNs and determines the right and left driving torques, that is, Ur 
and ui. 

In the simulations, we apply the FGNN using the mean-value-based func-
tional reasoning described in Section II.C. To simulate the mobile robot model, 
the fourth-order Runge-Kutta-Gill method was used with an integration step 
of 1 [ms]. It is also assumed that the control sampling period is 50 [ms]. The 
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Figure 22 Fuzzy Gaussian neural network controller for a mobile robot with two independent drive 
wheels. Reprinted from K. Watanabe et al. Fuzzy-neural network controllers using mean-value-based 
functional reasoning, Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL, 
Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands. 

physical parameters of the mobile robot are as follows: 

ly = 10 [kgm^], M = 200 [kg], / = 0.3 [m], 

/u; = 0.005 [kgm^], c = 0.05 [kgm^/s], r = 0.1 [m], ^ = 5. 

A circular trajectory with a radius of 1.5 [m] is considered, in which the reference 
velocity Vd is 0.25 [m/s] and the initial value of the state variable is given as 
x = [ 0 0 0]^. 

We used the 49 control rules in which the seven membership functions shown 
in Fig. 23 were applied to each input variable. The center values of the seven 

NB NM PS PM PB 

-2 0 

Figure 23 Gaussian membership functions with seven labels. Reprinted from K. Watanabe etal. 
Fuzzy-neural network controllers using mean-value-based functional reasoning, Neurocomputing 
9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV 
Amsterdam, The Netherlands. 
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membership functions, Wc, were —6, —4, —2, 0, 2,4, 6, and the reciprocal values 
of the deviation Wd were all unity so as to equally allocate all membership func-
tions on the support set [—6, 6]. Note that all initial scalers of the adaptive input 
scaling method were set as 10^. Note also that the weights of the connection net, 
Wen, are usually fixed as 1.0,1.0, 1.0, —1.0 as discussed in [11]. However, here 
we set them as 1.5,1.5, 5.0, —5.0, which means that the output torque Uy from 
FGNNi was scaled as l.Suy and the output torque ŵ  from FGNN2 was also 
scaled as 5.OM0. 

1. Effect of Input Scaling 

In this simulation, the connection weights Wa and Wb for each FGNN were 
learned, under the assumption that the other connection weights in the FGNNs 
were not learned; that is, the learning rates of Wc and Wd were all fixed to 0. 

The control results of the velocity and azimuth for the case where a = 3 
and P = 2, that is, when the initial parameters for Wa and Wb are 1.5 and 0.5, 
respectively, are given in Figs. 24 and 25, where the learning rates of Wa and 
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Figure 24 Velocity control results for the case of initial parameters Wa = 1.5 and Wh = 0.5. 
Reprinted from K. Watanabe et al. Fuzzy-neural network controllers using mean-value-based func-
tional reasoning, Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara 
Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands. 
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Wb were separately determined for the velocity and azimuth: rjl = 0.0005 and 
rjl = 0.001 for the FGNN associated with the velocity, and rj^ = 0.001 and 
TJI = 0.0005 for the FGNN associated with the azimuth. It is seen from these 
figures that, after the first trial, a very fast response is obtained for the velocity 
and azimuth of the robot. The corresponding circular path in the (x, y) coordinate 
is also depicted in Fig. 26. 

It is also remarked that, in this case, the learning of the parameters Wa and Wb 
does not necessarily contribute to the control of the velocity and azimuth of the 

30 

^ 

20 

10 

_l 

-

-

~ l 
0 

1 ' 1 ' 1 ' 1 

-
0th trial 

1st trial 

2nd trial 

1 . 1 . 1 . 1 

20 40 

^ 4 

X 2 

Time [s] 

(a) 

0th trial 

1st trial 

2nd trial 

20 

Time [s] 

(c) 

40 

0 ^ 

3nr 

Oth trial 

1st trial 

2nd trial 

20 

Time [s] 

(b) 

40 

Oth trial 

1st trial 

2nd trial 

20 

Time [s] 

(d) 

40 

Figure 27 Input scalers for the case of initial parameters Wa = 1.5 and Wb = 0.5. Reprinted from 
K. Watanabe et at.. Fuzzy-neural network controllers using mean-value-based functional reasoning, 
Neurocomputing 9:39-61, 1995, with kind permission of Elsevier Science-NL, Sara Burgerhartstraat 
25, 1055 KV Amsterdam, The Netheriands. 
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robot, because the initial parameters for Wa and Wb are set suitably. This was con-
firmed by the fact that setting all learning rates to 0 for Wa and Wb in both FGNNs 
gave the same results as before. As seen from Fig. 27a-d, the main contribution to 
the control of the trajectory of the robot is only the adjustment of the input scaling 
for^0 and^0. 

2. Effect of the Learning of Parameters in the Conclusion 

In this case, the parameters in the conclusion were modified using the values 
a = 3.2 and Ŝ = 2; that is, the initial parameters for Wa and Wb were 1.6 and 
0.5, respectively. In addition, the learning rates of Wa and Wb were also changed 
as r)l = r]l = 0.005 for the FGNN associated with the velocity, and r)l = ril = 
0.001 for the FGNN associated with the azimuth. 

The corresponding control results are shown in Figs. 28-30, together with their 
input scaling adjustments shown in Fig. 31. It is seen from these figures that sat-
isfactory trajectory and azimuth are obtained after the second trial. As observed 
from Fig. 28, the velocity response is still improved up to the sixth trial. 
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Figure 28 Velocity control results for the case of initial parameters Wa = 1.6 and Wb = 0.5, where 
T]^ = r]j^ = 0.005 and r)^ = r]^ = 0.001. Reprinted from K. Watanabe et al. Fuzzy-neural network 
controllers using mean-value-based functional reasoning, Neurocomputing 9:39-61, 1995, with kind 
permission of Elsevier Science-NL, Sara Burgerhartstraat 25,1055 KV Amsterdam, The Netherlands. 
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controllers using mean-value-based functional reasoning, Neurocomputing 9:39-61, 1995, with kind 
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Figure 31 Input scalers for the case of initial parameters Wa = 1.6 and Wh = 0.5, where r}^ = rjj^ . 

0.005 and r]l = r}l= 0.001. 

To check the effect of the learning of the parameter Wb on the control perfor-
mance, the results for the case where the learning rate of wt was fixed to 0 are 
depicted in Figs. 32-34. From these figures, it is seen that the control of the veloc-
ity is inferior to that of the case where both Wa and Wb are learned simultaneously. 
Therefore, to improve the velocity response, the learning rate of Wa was change to 
rjl = 0.05 for the FGNN associated with the velocity. The corresponding results 
are shown in Figs. 35-37. From Fig. 35, it is understood that a very fast velocity 
response is obtained, even though the parameter Wb is not learned. 



Mean-Value-Based Functional Reasoning Techniques 279 

0.2 

o 
o % 0.1 
> 

. 1 

-

-

-
-

-

1 

c 

' 1 

// i 
[ 

1 

' 1 ' 1 ' 1 1 

j 
H 

reference 

0th trial J 

2nd trial 

4th trial ] 

6th trial • 

I . I . I 

20 40 

Time [s] 

Figure 32 Velocity control results for the case of initial parameters Wa = 1-6 and Wh = 0.5, where 
r]l = 0.005 and w^ was fixed. Reprinted from K. Watanabe et al., Fuzzy-neural network controllers 
using mean-value-based functional reasoning, Neurocomputing 9:39-61, 1995, with kind permission 
of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands. 
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Figure 33 Azimuth control results for the case of initial parameters Wa = 1.6 and Wh =0 .5 , where 
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VII. CONCLUSIONS 

We have presented a mean-value-based functional reasoning scheme, in ad-
dition to the usual input-data-based functional reasoning and the simplified rea-
soning schemes, in which the conclusion consists of a function of mean values 
on each membership function in the antecedent. It was shown that the constant 
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parameters in the conclusion of these functional reasoning schemes can be ratio-
nally designed through the use of VSS control theory. Furthermore, some fuzzy 
neural network controllers were developed by using these functional reasoning 
schemes. It was proved that the fuzzy neural network which uses the mean-value-
based functional reasoning scheme allows the number of learning parameters in 
the conclusion to be reduced drastically, compared to those of the input-data-
based functional reasoning and the usual simplified reasoning schemes. 

Recently, a stochastic fuzzy control approach that includes the present result 
as a special case has been proposed [37-^1]. This approach is based on using the 
so-called multiple model adaptive control [42], and is closely related to the con-
ventional model-based control. The proposed stochastic fuzzy controller can be 
designed as a conventional stochastic control consisting of a static fuzzy observer 
part and a feedback gain part [39]. Also, this type of fuzzy controller can assure 
the bounded stability of the controlled system through a robust control approach 
[43], instead of assuring an ideally asymptotic stability [9-11]. For their practical 
application to robotics and mechatronics, the reader is referred to [44-46]. 
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I. INTRODUCTION 

In this chapter, we propose a model reference control system that uses fuzzy 
neural networks (FNNs). The proposed model reference control system belongs 
to indirect adaptive control. The controlled plant is identified by the fuzzy neu-
ral network identifier (FNNI), which approximates the system and provides the 
sensitivity of the plant for the fuzzy neural network controller (FNNC). This is a 
real adaptation system that can learn to control a complex system and adapt to a 
wide range of variations in plant parameters. Unlike most other adaptive learning 
neural controllers [1-8], the FNNC presented in this chapter is based not only on 
the theory of neural network computing but also on that of fuzzy logic [9]. 

Though the proposed control scheme is a sHght modification of those in [6, 
10], we believe that our structure is more reasonable for a fuzzy logic control 
system. Because the place for the reference model (RM) in the proposed system 
is specially considered, the FNNC is designed such that the actual output of the 
system will track the desired output of the reference model. Moreover, we can 
simply take the error (between the actual output and the desired output) and the 
change in this error as the input for the FNNC [2]. 

Ftizzy Logic and Expert Systems Applications 
Copyright © 1998 by Academic Press. All rights of reproduction in any form reserved. 285 
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11. FUZZY NEURAL NETWORK 

In this section, we study the fuzzy inference system first. Later, such a system 
is implemented by using the FNN which is a four-layered fuzzy neural network. 
Because the generalized fuzzy neural network (GFNN) is the basis of the FNN, 
the FNN will inherit the general properties from the GFNN. To capture the im-
portant concept of the FNN, the construction, learning process, and corresponding 
operations of the FNN will be described in the following subsections. 

A. FUZZY INFERENCE SYSTEM 

The main goal of fuzzy inference systems is to model human decision mak-
ing within the conceptual framework of fuzzy logic and approximate reasoning. 
As is well known, a fuzzy inference system consists of four important parts: the 
fuzzification interface, knowledge base, decision-making unit, and defuzzifica-
tion interface [11]. A fuzzy inference system is a model having the format of a 
fuzzy controller, which has been the most developed area of fuzzy set theory in 
engineering [12]. 

1. Generalized Modus Ponens 

In this subsection, the operations of a fuzzy inference system are discussed 
based on the generalized modus ponens (GMP) [13]. A general fuzzy inference 
system with n inputs and p outputs can be described in the following format: 

Premise: x is A' 

Implication 1: If jc is A^, then y is B^ else 
Implication 2: If jc is A^, then y is B^ else 

Implication m: If jc is A'", then y is B^ 
Conclusion: y is B^ 

where Xi e Xt, yi e 7/, and Xt and Yi are the universe of discourse of the corre-
sponding inputs and outputs, respectively. The n-array variable x = [xi,... ,Xn] 
denotes the input vector and the /7-array variable y = [yi, -. - ,yp] denotes the 
output vector. Vectors A'' = [A\, A^, . . . , AĴ ] and B'' = [J5|, 5 ^ , . . . , 5^] are 
vectors of linguistic values referring to the fuzzy variables x and y, respectively. 
Vector A' = [A^,. . . , A^] is the input observation vector and B^ = [B[,..., Bp] 
is the output observation vector [14]. In a fuzzy inference system, Â  is the result 
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of applying fuzzification for numerical input Xi. This is the first step for rule rea-
soning. This means that a fuzzy inference system can be used for any nonfuzzy 
application. 

2. Rule Inference 

According to the compositional rule of inference [15], B- can be obtained by 

taking the sup-* composition of fuzzy set A' and fuzzy relation A^ -^ B- : 

B'i = (A[ and A^ and • • • A^) o (A{ and A{ and • • • AI), (1) 

where o denotes the sup-* composition operation. "*" is the r-norm opera-
tor. The sup-min and sup-product composition are often used. The fuzzy re-
lation used here is fuzzy implication. Note that Eq. (1) calculates only the 
jih individual consequence for B-. Now, let us consider the whole set of 
rules in the generaUzed modus ponens. The overall output fuzzy set B^ can 
be obtained by taking the union of all the individual conclusions [13], that 
is, 

5 ; = ( A ; and A^ and • • • A^) o | J [{A{ and A{ and• • • A{) -> 5 / ] . (2) 
j=l,...,m 

If we take Larsen's product fuzzy implication [13] and the sup-product composi-
tion on Eq. (2), then we obtain the membership function of output fuzzy set B- in 
the following equation: 

f^B'Xyi) = V n ^^i (̂ ) • V n ^A{ (̂ ^̂ 5/ ̂ y^^ 
X L / = / ; = / 1 = 1 

(3) 

where v denotes the pairwise maximum operator. For simplicity, we take fuzzy 
singletons [15] on Aj for / = 1 , . . . , n, that is. 

[ 1, if̂  .X = XI, 

' ' ^ otherwise. 

Substituting Eq. (4) into Eq. (3), we obtain the following equation: 

m / n 

j=l\l=l ^ / ' 

Because we want to use numerical output in most of the applications, Eq. (5) 
must be transformed to a numerical output by taking defuzzification. There are 
various methods of the defuzzification. Here we use the center of area (COA) 
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method. Then the numerical output yt inferred from the fuzzy logical rules can be 
determined from the output fuzzy set B^ as follows: 

ly.iJ^B'Xydyidyi , . , 
yi = "7 r ~ T 3 — fori = l,...,p, (6) 

JYif^B:(yi)dyi 

3. Simplified Fuzzy Inference System 

Many researchers have dealt with the modification of fuzzy inference systems 
by using different types of fuzzy logical rules, for example, [11, 16-18]. The 
motivation for modifying the fuzzy inference systems is as follows: 

1. The pairwise maximum operation in Eq. (3) causes extreme difficulty in 
parameterizing the fuzzy logical rules. Also, it makes conventional 
estimation methods inapplicable. 

2. The integral in Eq. (6) requires numerical analysis methods in computer 
simulations. 

We can see that the modification of fuzzy inference systems is practically 
needed. However, the modified fuzzy inference system must still be a univer-
sal approximator [19]. A universal approximator means that, given a function 
F: R"^ -> R which is continuous, there exists a fuzzy inference system / such 
that / can approximate F uniformly on a compact subset of R^ to any degree of 
accuracy. 

By taking the fuzzy singletons to represent the output fuzzy sets Bj, that is, 

[O, i f y , - ) 8 / , 

where the fij are the fuzzy singletons, then a discrete form to calculate the ith 
numerical output yt is obtained as follows: 

ET=i^/(n/=iMw(^/)) 
yi = 7^ '—T^- (7) 

The simplified fuzzy inference system in Eq. (7) has been proved to be a universal 
approximator by Jou [12] and Wang [19]. Because Eq. (7) is only an algebraical 
form, the disadvantages mentioned previously have disappeared. 

We rewrite the generalized modus ponens based on the simplified fuzzy infer-
ence system as follows: 
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Premise: x is A' 

Implication 1: If jc is A^ then y is [^l, p\,..., ^^] else 
Implication 2: If x is A^, then y is [)6 ,̂ ̂ S^,. . . , )S ]̂ else 

Implication m: If JC is A^, then y is [̂ g ,̂ )6^ , . . . , ^g^] 

Conclusion: j is [)gj, )g2' • • •»)^p] 

Each fuzzy if-then rule has the format 

If xi is A \ and • • • andx„ is AjJ, then y\ is fi[, . . . , j ^ is Pp. 

We can see that this fuzzy rule representation is exactly the same as Sugeno's 
fuzzy rules [17]. This indicates that if we use max-product inference to Sugeno's 
type of fuzzy rules, then we will get the same equation as Eq. (7). 

4. Fuzzy Inference System and Neural Network 

We know that neural networks have the capability of highly parallel distributed 
processing and learning from experience. An automatic structure for a fuzzy in-
ference system utilizing the learning capability of a neural network is reasonable. 
In this subsection, we will construct a four-layered neural network structure to 
implement the fuzzy inference system as stated in Eq. (7). The construction of the 
neural network is restricted by the following conditions: 

1. The fuzzy inference system can be directly pointed out in the neural 
network. 

2. Every node at each layer has the physical meaning according to the fuzzy 
inference system. 

3. The overall operations are equal to Eq. (7). 

Figure 1 shows a GFNN. This fuzzy neural network consists of four layers. Nodes 
at layer 1 are input nodes which represent input linguistic variables. Nodes at layer 
2 are membership nodes which act like membership functions. The membership 
node is responsible for mapping an input Hnguistic variable into a possibility dis-
tribution [13] for the variable being equal to it. The rule node resides in layer 
3. Thus, all the connections between membership nodes and rule nodes indicate 
the if part or premise of fuzzy rules. The last layer node is the output node. The 
connections between rule nodes and output nodes indicate the then part or conse-
quence of fuzzy rules. 

In Fig. 1, we use the feedforward arrow to represent the whole connection links 
between the term nodes and the rule nodes. The arrow is used to indicate the con-
nections of the antecedent part (if part) of the fuzzy rules. All of the connections 
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output vector 

O 

Layer 4 

} 

} 

Layer 3 

Layer 2 

input vector I J Layer 1 

Figure 1 Generalized fuzzy neural network (GFNN). 

of the fuzzy neural network must be predetermined because we want to develop 
an automatic fuzzy inference system. Obviously, there are many ways to set up a 
fuzzy neural network. In this chapter, we introduce an FNN based on the GFNN. 
It will be stated in the next section. 

B. STRUCTURE OF THE FUZZY NEURAL NETWORK 

The structure diagram of the proposed FNN is shown in Fig. 2. The specialty 
of the proposed FNN lies in the conditions for setting up the connections between 
layer 2 and layer 3. Its construction is directly based on the fuzzy rules without 
adjustment. For example, if we encounter the 7 th fuzzy rule described as follows: 

If jci is A-[ and JC2 is A2 • • • and jc„ is AjJ, then y is Pj, 

then a connection structure based on these fuzzy rules is illustrated in Fig. 3. This 
forms the jth component of the FNN. For generality, we must consider m fuzzy 
rules which can be considered independently like dealing with the jth fuzzy rules. 
The complete fuzzy neural network is illustrated in Fig. 2. 



Fuzzy Neural Network Systems 291 

Layer 4 

Layer 3 

J Layer 2 

Figure 2 Structure diagram of the FNN. 

} Layer 1 

output node 

rule node 

term node 

Figure 3 Construction of the jih component of the FNN. 
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However, we must emphasize that the FNN does not ensure that Aj ^ AĴ  for 
j / k. The advantages of the FNN are as follows: 

1. The structure of the FNN allows us to construct the fuzzy system rule by 
rule. In other words, we can implement each fuzzy rule without 
considering the other fuzzy rules. 

2. If the prior knowledge of an expert is available, then we can directly add 
some nodes (rules nodes and term nodes) on the FNN. 

3. We do not take an ordinary fuzzy partition of the input space; thus, the 
number of rules will not increase exponentially with the number of inputs. 

4. Elimination of the redundant nodes (rule nodes and term nodes) are also 
rule by rule. This means that if we eliminate a rule node, then the 
associated terms are also removed from the FNN. 

The disadvantage of the FNN lies in the requirements of a large amount of 
term nodes. As we see in Fig. 2, although some term sets are almost the same, we 
still require m x n term nodes at layer 2 for n inputs and m fuzzy rules. 

C. LAYERED OPERATION OF THE FUZZY 
NEURAL NETWORK 

We will consider the proposed FNN as a special type of neural network. Here, 
special type means both the special connections and the node operations. In the 
FNN, every layer and every node have the practical meaning because the FNN is 
constructed directly based on both fuzzy rules and fuzzy inference. 

With the four-layer structure of the FNN, we will define the basic function of a 
node [20]; each node performs two actions using two different functions. The first 
function is the aggregation function g^(-) which provides the input for the node, 
that is. 

Net input = / ( x ^ W ^ ) , (8) 

where the superscript indicates the layer number, x^ denotes the input vector, 
and W^ denotes the connection weights vector. This notation will also be used in 
the following equations. The second function is the nonlinear activation function 
f^(') which gives the output an activation value as a function of its net input, 
that is, 

Outputs of = / ( / ) , (9) 

where Of is the ith output of the /:th layer. Next, we will indicate the signal 
propagation, the basic function, and the practical meaning for every node at each 
layer. 
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Layer 1 (Input Layer) 

The nodes at this layer are used to directly transmit the numerical inputs to the 
next layer. The output of the iih input node (O/) is equal to the numerical input 
(jc/), that is, 

g]{x};Wy) = wlj-xl (10) 

0] = fj{g])=g]{xl;W!j), (11) 

where the weights at layer 1 are assumed to be unity, so no weight is adjusted 
here. 

Layer 2 (Linguistic Term Layer) 

At this layer, every node performs a membership function. The Gaussian func-
tion, a particular example of a radially symmetric function [21], is used as the 
membership function. The 7th term set of the ith input maps the input xf into the 
membership degree, that is, 

gfjixf; Wlj) = gfjixf; ntij; o",-,) = JAJI^L^ (12) 

'̂O 
Ofj = f?j{gfj) = cW 4 (13) 

where mij and crtj denote the mean (center) and variance (width) with respect to 

A^. The adjusted weights at layer 2 are mij 's and a/y 's. 

Layer 3 (Rule Layer) 

This layer implements the related links for the term nodes and rule nodes. In 
other words, the antecedent matching will be determined here. The node at layer 3 
performs the product operation. The net input and output of the j th rule node are 

n 

4(4;̂ )̂ = n^^4' (14) 
( = 1 

l3 _ f3l„3\_ „3 / 3. w3 0]^f]{^=^(x^^,Wf^i, (15) 

where W^- is the connection weight between the yth term node of the /th input 

and the yth rule node. There is no weight adjusted here, that is, Wf- — 1, V/, j . 
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Layer 4 (Output Layer) 

This layer performs the defuzzification to get numerical outputs. The W^j con-
nection weight between the iih rule node and the 7th output node represents the 
consequence fuzzy singletons. If we use COA defuzzification, the node opera-
tion is 

m 

Equation (17) is fully based on Eq. (7), so the FNN with COA defuzzification 
will be a universal approximator. However, we need to note that the adopted FNN 
here is modified to be nonnormalized, that is, the operation in layer 4 is simply 
modified as 

m 

0,4 = gf(̂ f;W;5.) = E ^ ^ ^ ' - (18) 

A nonnormalized FNN exhibits the desired performance for the identification and 
control of nonlinear systems. Moreover, there are two advantages of an FNN with-
out a normahzation process: 

1. A faster training rate than the one which is normalized. 
2. A much simpler form of the input-output sensitivity equations than in a 

normalized FNN. 

In the next section, we will show that such a nonnormalized FNN can approximate 
any real continuous function. 

D. SUPERVISED LEARNING 

The adjusted parameters in the FNN can be divided into two categories based 
on the if (premise) part and then (consequence) part of the fuzzy rules. In the 
premise part, we are asked to fine tune the mean and variance of the Gaussian 
functions, whereas, in the consequence part, the adjusted parameters are the con-
sequence weights. Once the FNN has been initiaUzed, a gradient-descent-based 
back-propagation (BP) algorithm [22-24] is employed to adjust the parameters of 
the FNN by using the training patterns. The main goal of supervised learning is 
to minimize the error function: 

E = \{d{k)-y{k))\ (19) 
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where y{k) is the output of the FNN and d(k) is the desired output for the ith 
input pattern. If Otj is the adjusted parameter, then the learning rule used is 

Oij(k + 1) = Oijik) - ,7. ̂  + a . AOijik), (20) 

AOijik) =0ij(k)-0ij(k-l), (21) 

where rj is the learning rate and a, between 0 and 1, is the momentum parameter 
(a value of 0.9 is often chosen for a). 

To derive the learning law based on the back-propagation algorithm, we shall 
derive the computation of the dE/dWtj layer. We start this procedure from layer 
4 because the error is back-propagated from this layer. 

Layer 4 

At this layer, the adjusted weights are W^j. Using Eqs. (20) and (21), the adap-

tive rule of W^j is derived as follows: 

dE _ dE ^O] 

(22) 

where 

and 5J is the error signal with respect to the 7th output node. Hence, the conse-
quence weights are updated by 

Wfj(/:+!) = Wfj + r)w • ^]{k) • x^{k) + aw • ^Wf^{k), (23) 

where TJW and aw are the learning rate and the momentum parameter for adjusting 
the parameter Wf-, respectively. 

Layer 3 

Only the error signal 5? needs to be computed and propagated because there is 
no weight adjustment at this layer. The error signal 5? is derived as follows: 

, dE ^ dE BO'j dOf / . 4 4 

dgf fr[dO^ dOf dgf fr{' '' 

where p is the number of output nodes. 

^K 

^1 = 

do^' dw^j 

= id^-o^).4 
= S'j-xt, 

-id^-0% 
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Layer 2 

The adjusted parameters are mtj and atj at this layer. Using Eqs. (20) and (21), 
we can derive the adaptive rule of mtj as follows: 

dE dE ^g] dOfj 

dmij dg^j dOfjdmij 

s3 I I I / 12 I f-J 1 

' ^ 
2{xf--mij) 

^0' 

where 

4=^-n^o' (26) 
1=1 

and 5?- is the error signal with respect to the 7 th term set of the ith input. Similarly, 
the adaptive rule of aij is derived as follows: 

dE _ _dE_ dg^ 9 0 § 

l{xl-mijf 

2 ( 4 - ttiijf 
= Sfj • '̂  3 V (27) 

'̂ (̂  

Thus, the update rules for mtj and Cij are 

2 2(xfj-mij) 
mij{k + 1) = m,7(^) + m̂ • cffj '-^ + otm • ^mij(k), (28) 

Oij (Jc + \) = Oij ik) + va • <rfj • '^ 3 '̂  + aa • A(T,7 (k), (29) 

where y/;„, rja and a^, (7̂  are the learning rates and the momentum parameters 
for adjusting the parameters mtj and atj, respectively. 
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E. INITIALIZATION OF THE FUZZY 
NEURAL NETWORK 

The parameters of the FNN have clear physical meanings. This is one of 
the differences between the FNN and a typical back-propagation neural network 
(BPNN) [25, 26]. To initialize the connection weights of the BPNN, random val-
ues are frequently used because the relation between the weights and input-output 
data of the BPNN is unknown. In contrast to the BPNN, the parameters of the 
FNN have a clear relationship with the input-output data. Thus, the initial FNN 
can be constructed to a good approximation of an unknown function based on 
input-output data. Now, we will briefly describe an on-line initialization. 

On-Line Initialization 

In the on-line initialization method, the initialization takes place immediately 
after each training pattern has been presented. Let m be the default fuzzy rule 
number. Let Xi denote the universe of discourse of the input xi and let at, bt 
be the lower and upper bounds of Xi, that is, if jc/ G Z/, then x/ € [at, bi]. 
Suppose, at instant /:, l < ^ < m — 2, a training pattern {x\{k),.. .,Xn{k)\ y{k)) 
is presented. We can directly set the parameters 

^^ = y{k) and rriik = Xi(k), l<i<nforl<k<m-2, 

P^ = I and mtk = a/, I < i < n for k = m — 1, (30) 

[ ^^ = 1 and rttik = bt, I <i <n fork = m. 

In this way, when m — 2 training patterns are presented, we can obtain m con-
sequence weights (P^, k = 1 , . . . , m) and the centers for the input fuzzy sets 
(Af, A : = l , . . . , m ) . 

The remaining problem is how to determine the corresponding width (aik) for 
A^; this is also the main problem in the on-line initialization method. Though we 
can match the first m—2 training pairs quite well by choosing atk to be sufficiently 
small, we will have large approximation errors for other input-output pairs [19]. 
Therefore, the reasonable choice of atk should make the input membership func-
tions cover the input range in a good way. Moreover, the method in [19] results in 
a fixed value of atk once the m training pairs are fed into the fuzzy neural network. 
We expect to obtain a more flexible result to satisfy our requirements. 

In the fuzzy neural network systems [11, 16, 27], the initial parameter values 
can be easily set in such a way that the membership functions are equally spaced 
along the operating range of each input variable. Then these membership func-
tions will satisfy €-completeness [13, 15], which means that, given a value x of 
one of the inputs in the operating range, we can always find a linguistic label A 
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such that ijiA(x) > 6. In this manner, the fuzzy inference system can provide a 
smooth transition and sufficient overlapping from one linguistic label to another. 
Note especially that if the 6-completeness condition is not satisfied, there may be 
no fuzzy rules fired when the input data are fed into the fuzzy neural network. 
Thus, we want to present a flexible method to properly choose atk such that the 
input membership functions can satisfy 6-completeness. 

Before going further to show the choice and characteristic of aik, we want to 
introduce the following notation. We note that the following notation is based on 
a fixed k or A^ I <k <m: 

Af: the closet fuzzy set of A^ on the right side of A^ 
A^: the closet fuzzy set of A^ on the left side of A^ 
jfiiR: the corresponding center of Af, 
mn: the corresponding center of A^. The special choice for Oik is 

mdLx[\mik - miR\, \mik-miL\} ,^,, 
(^ik = 7==== , (31) 

where kt is the overlapping factor, 0 < Xt < 1. We now show that, by choosing 
(Jik this way, the membership functions of the linguistic labels A^, j = 1 , . . . , m, 
will cover Xt with a good property. 

THEOREM 1. The fuzzy set At = (AJ, A? , . . . , A^), where each linguistic 
label Aj has a Gaussian membership function constructed by the preceding initial 
mik [see Eq. (30)] and oik [see Eq. (31)], will satisfy. That is, 

for all Xi e Xt, there exists he 1, 2 , . . . , m such that fx^k (xi) > e = ki, 

where A./, 0 < A,/ < 1, is the overlapping factor 

Proof Because Xi e Xt, there must exist A: G 1, 2 , . . . , m, such that mtk < 
Xi < mtR or miL < xt < mik. We will prove this theorem under several different 
cases as follows: 

1. If mik ^ Xi < miR and \mik — miR\ > \mik — mul, then we have 

__ Imik-miRl 

By using the Gaussian membership function, we can obtain 

L \mik-miR; J 
= ki. 
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2. IfrriiL < Xi < rriik and \mik — miR\ > \mik — mul, then aik is the same as 
shown in case 1. Thus, we have 

r ,, , , frriiL -mtkV 
= exp - | l n A / | -

L \mik-miRj 
r M . I f^iR-^ikV 

> exp - I InA/l • 
L \mik-miRj 

The proof for the other cases induced by \mik — mtRl < \mik — mul is very 
similar to cases 1 and 2. This completes the proof. • 

Although we can incorporate prior expert information to choose a better initial 
parameter of the FNN, we finally gave up this attempt, because we believe that 
the proposed on-line initialization method is efficient and sufficient in practical 
applications. In fact, based on our simulation results in Section V, this is indeed 
true. 

The on-line initialization method can be summarized as follows: 

Step L 

For A: = 1, 2 , . . . , m and / = 1, 2 , . . . , « , let 

^^ z= y{k) and rriik — Xi(k), 1 < / < w for 1 < A: < m - 2, 

P^ = 1 and rriik = «/, 1 < / < n for A; = m — 1, 

[ pk = I and rriik = bi, 1 < i <n fork = m. 

Step 2. 

Let 

_ m2ix{\mik-miR\, \mik-miL\} 

HI. MAPPING CAPABILITY OF THE FUZZY 
NEURAL NETWORK 

In this section, we will show that the FNN can be used effectively for any 
real continuous function approximation. That is, an FNN with an arbitrarily large 
number of fuzzy logical rules can approximate any continuous function in C(R^) 
over a compact subset of /?". It is described in the following theorem. 
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UNIVERSAL APPROXIMATION THEOREM. For any given real function h: 
j^n ^^ j^m continuous on a compact set K C R^ and arbitrary € > 0, there 
exists an FNNsystem f such that \\f(x) — h(x)\\ < e. Here \\ - \\ can be referred 
to any norm. 

This theorem will be proved by using the Stone-Weierstrass theorem. We begin 
with a single-output case and extend it to a multiple-output case later. 

A. PROOF OF SINGLE-OUTPUT CASE 

The structure diagram of the proposed FNN is shown in Fig. 2. The single 
output of the FNN can be expressed as 

m 

y(x) = J2Pj'^jM^ (32) 

where 

" ^ r / \2-\ 

^^Ai(^i^ = 1 l ^ X p 2 " ^ 
/ = 1 i=l L CTij J 

is a function of the input x = (xi, X2,. . . , Jc„) and the link weight Pj is the 
output action strength. Let 0 be of the form: YYi=i exp(—((jc/ — b)/a)^), where 
a, b e R. Let F" be the family of the function y: R^ ^^ Rin the form of 

m 

y{x) = Y.^r<t>j. forPjeR, {0;} € O, x e R\ 7 = 1,2, . . . ,m. (33) 

To prove the universal approximation, the following definitions [28] are nec-
essary. A family A of real-valued functions defined on a set K is an algebra if A 
is closed under addition, multiplication, and scalar multiplication. For example, 
the set of all polynomials is an algebra. A family A is uniformly closed if A has 
the property that f e A whenever /„ G A, n = 1, 2 , . . . , and fn^^f uni-
formly on K, The uniform closure of A, denoted by B, is the set of all functions 
which are limits of uniformly convergent sequences of members of A. By Weier-
strass' famous theorem, it is known that the set of continuous functions on [a, b] 
is the uniform closure of the set of polynomials on [a, b]. A separates points on 
a set K if for every jc, y m K, x / y, there exists a function / in A such that 
/(jc) / f{y)\ A vanishes at no point of K if for each JC in ^ there exists / in A 
such that /(JC) / 0. 

STONE-WEIERSTRASS THEOREM [28]. Let Abe a set of real continuous 
functions on a compact set K. If (I) A is an algebra; (2) A separates points on K; 
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(3) A vanishes at no point ofK; then the uniform closure of A consists of all real 
continuous functions on K. 

To prove our main result, we will begin with the following lemmas: 

LEMMA 1. Let F^ be defined as in Eq. (33). Then F" is an algebra. 

Proof Let gi, g2 e F", andgi = Yfp==i ^P ' P^ 82 = E^=i Yq'bq, where 
ap, Yq € R, ap, bq e^, /? = 1, 2 , . . . , 5, q = l,2,...,t, with 

1. Since 

s t 

p=l q=\ 

= (ai'ai-\-a2-a2-\ \-as -as) 

-\-(yi'bi-\-y2-b2-\- \-yfbt) 
s+t 

k=l 

thus, rk =akifk < s, and rk = Yk-s ^^k > s.Sork e R (ak, Yk ^ ^)-
Furthermore, Ok== akifk>s, and Ok = bk-s iik > s,^o9k ^^ 
{ak, bk-s ^ ^ ) - That is, ^1+^2 € F^. This proves that F^ is closed under 
addition. 

2. Let d e RbQSi scalar. Then we have d - g\= ^^p^iid • ap)ap = 
Z!p=i Pp ' «p» where fip e R. That is, d - gi e F"". This proves that F" is 
closed under scalar multiplication. 

3. Let 

St 

= J2'Pk'^k, (34) 
^=1 

where 

(Pk = OCp 'Yq^ 

Ck = ap ' bq 
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and 

p = [(k-l)/t]-^h 

q = ((k- 1) mod 0 + 1. 

Thus 

Ck =n-(-(^)>ne^-(^/) 
=n»p(-(^r(^)> 

After some computations, Eq. (34) can be written as 

2^ 

m .nexp(-(^) )=.;..?„ (36) 

where 

m n ( {mip-Viqf\ 

u%'mip + af 'Viq 
cok = -^ 5 ^ , 

A-k 

and ^k ^ ^- Substituting into Eq. (33), we obtain 

St St St 

^(pk' Ck = Y^n 'm'^k = J2^^' ^^' 
k=l k=l k=l 

That is, gi, g2 ̂  F^' This proves that F^ is closed under multipUcation. 

By cases 1-3 we conclude that F"^ is an algebra. • 

LEMMA 2. F" separates points on K. 

Proof. We prove this by constructing a function / . That is, we specify the 
number of fuzzy sets defined in K, the parameters of the Gaussian membership 
functions, and the number of fuzzy rules, such that the resulting / [in the form of 
(33)] has the property that f(x^) # f(y^) for arbitrary x^, y^ e K with x^ # y^. 
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Let x^ = (xj, JC2,..., x^) and y^ = (y^, ^2»' * *» yn)- We choose two fuzzy rules 
for the fuzzy rule base, and let the Gaussian membership functions be 

f^A}(^i^ = expl I, 

fij^iixi) = exp ( j . 

Then / can be expressed as 

where )0i, 6̂2 are the Hnk weights. With this / , we have 

Because ^ ^ y^, there must be some / such that jc? ^ y^. Hence, we have 
n?=i exp(—(jc/ — yf)^/2) ^ 1. If we choose 8̂1 = 1 and ̂ 82 = 0, then it is easy 
to find that f(x^ = fii^ f(f). m 

LEMMA 3. F" vanishes at no point of K. 

Proof. From Eq. (33), if we choose Pj > 0, j = 1, 2 , . . . , m, then y > 0 
for any x e K. That is, any y e F^ with fij > 0 can serve as the required / . 

Therefore, that the FNN having only a single output is a universal approxima-
tor is a direct consequence of the Stone-Weierstrass theorem and Lemmas 1-3. 

• 
From the previous proof, we can conclude that, given a real function h: R^ -^ 

R, continuous on K, and 6 > 0, there exists an FNN system y e B, where B is 
the uniform closure of F", such that \y(x) — h(x)\ < € for every x in K. That 
is, an FNN system with an arbitrarily large number of fuzzy logical rules can 
approximate any real continuous function in C(R^) over a compact subset of i?". 
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B. EXTENSION TO MULTIPLE-OUTPUT CASE 

In the following, we will extend the previous results to the FNN of multiple 
outputs. Let us consider the following example. 

Suppose / i and /2 are functions of x, where x = (A:I, A:2, . . . , Jc„). Further-
more, assume function / i can be approximated with m rules, whose structure is 
shown in Fig. 4a and function /2 can be approximated with p rules, whose struc-
ture is shown in Fig. 4b. 

(a) 

( b ) I ^1 \Xn 

Figure 4 Structure diagrams of /j and /2. 
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1-̂ 1 I ^« 

Figure 5 Structure diagram of a multiple-output system. 

It is easy for us to combine these two individual FNNs, each with a single out-
put, into a new FNN having two outputs. The new structure is shown in Fig. 5. The 
new structure has m-^p rules; the first m rules are constructed from / i and the last 
p rules are constructed from /2. With this assignment, the consequence weights 
of the last p rules associated with the first output (/i) are set to zero, so are the 
consequence weights of the first m rules associated with the second output (/2). 

Based on the previous discussion, because the FNN of a single output can per-
form the universal approximation, there must exist an FNN of multiple outputs 
with an arbitrarily large number of fuzzy logical rules that can perform the uni-
versal approximation on each output. This completes the proof of the universal 
approximation theorem. 

IV. MODEL REFERENCE CONTROL SYSTEM 
USING A FUZZY NEURAL NETWORK^ 

Figure 6 shows the proposed model reference control system using a fuzzy 
neural network. The control scheme must perform two major tasks: (1) system 
identification and (2) plant control. The former is achieved by using the fuzzy 

^Parts of this section are reprinted from Fuzzy Sets and Systems 73:291-312, 1995 with kind per-
mission of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands. 
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Figure 6 Model reference control system using a fuzzy neural network. 

neural network identifier (FNNI) to estimate the dynamics of the controlled plant. 
The latter is achieved by using the fuzzy neural network controller (FNNC) to 
generate the control signals. The control action generated by the FNNC is updated 
by observing the controlled results through the FNNI. 

A. OVERALL STRUCTURE OF THE SYSTEM 

Fuzzy Neural Network Identifier 

The objective of the FNNI is to mimic the dynamic characteristics of the con-
trolled plant. Training of the FNNI is similar to plant identification except that the 
plant identification here is done automatically by a fuzzy neural network which 
is capable of modeling nonlinear plants [9]. The FNNI is trained by the preced-
ing algorithm to predict the state vector of the plant yi, with the actual value of 
the state of the plant yp used as the desired response. The training process stops 
when the error signal between yi and yp is small enough. If changes in the sys-
tem parameters or the environment occur, the FNNI is triggered on again to begin 
releaming. 

Fuzzy Neural Network Controller 

The fuzzy neural network here serves as a controller. The FNNC is expected 
to approximate an optimal control surface. The surface is encoded in the form 
of fuzzy rules, which are represented by the interconnection weights embedded 
in the FNNC. Thus, the weights can be modified to established different control 



Fuzzy Neural Network Systems 307 

rules. As time goes on and the system accumulates more experience, it learns to 
control the plant more effectively. A controlled plant is identified by the FNNI, 
which provides the sensitivity of the plant to the FNNC. The plant sensitivity is 
used in Eq. (41). 

Reference Model 

The reference model specifies the desired output performance of the control 
system. The controller is designed such that the actual output of the system will 
track the desired output of the reference model. This goal can be achieved by 
minimizing e = (yr — yp). 

Note that our structure is different from that in [6], in which the reference 
model is placed on the left side. We believe that our structure is more reasonable 
for a fuzzy system. 

B, TRAINING THE FUZZY NEURAL 
NETWORK IDENTIFIER AND THE FUZZY 
NEURAL NETWORK CONTROLLER 

Let the cost function, Ej, for training pattern k be proportional to the sum of 
the square of the difference between the plant output y(k) and the actual output 
yi(k) of FNNI, and let Ei be defined by 

Ei = \[y(k)-yi(k)f. (37) 

Then the gradient of error in Eq. (37) with respect to an arbitrary weighting vector 
Wi e R^ is as follows: 

dEi nj^ijk) nJyi^^) 
= eiUi) = —etik) 

where ei (k) = y(k) — yiik) is the error between the plant and the FNNI response. 
Oi(k) is the actual output of the identifier (FNNI). 

The weight can be adjusted by the following formula: 

Wiik + 1) = Wiik) + AWiik) = Wiik) + T]i[ - ^ ] , (39) 

where TJ/ is a learning rate. 
Similarly, let the cost function, Ec, for training pattern k be proportional to 

the sum of the square of the difference between the desired output yr(k) of the 
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reference model and the plant output y(k), and let Ec be defined by 

Ec = \[yAk)-y(k)]\ (40) 

Then the gradient of error in Eq.(40) with respect to an arbitrary weighting vector 
Wc e R^ is as follows: 

dWc ~ ^^^ 3Wc ~ ""^^ dWc 
dy{k) du(k) dOcJk) ^ ,̂̂  

= -''^'^^m • 1 ^ = -^c(k)yM • - ^ ^ , (41) 

where ec(k) = yr(k) — y(k) is the error between the actual plant and desired 
reference output, Oc(k) is the output of the controller (FNNC), and S = yu(k) = 
dy(k)/du(k) is called the plant sensitivity. 

The weight can be adjusted by the following formula: 

Wc(k + 1) = Wc(k) + AWcik) = Wc(k) + iic(- ^ \ (42) 

where rjc is a learning rate. 
The plant sensitivity can be computed as follows: 

a=l ^ b^i 

= i;^.r{^£^-(-2)-^^^}. (43) 

where mik and aik are, respectively, the mean (or center) and the variance (or 
width) of the Gaussian function in the fcth term of the /th input linguistic vari-
able Ui. The superscript denotes the layer number. The link weight Waj is the 
output action strength of the y th output associated with the a\h rule. Nmi is the 
number of fuzzy sets of the /th input linguistic variable M/. RI is the number of 
rules in the FNNI. Some convergence theorems for selecting appropriate learning 
rates have been proved in [29]. The interested reader is referred to [29]. 
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V. SIMULATION RESULTS 

309 

In this section, we test the model reference control system with an example. 
The number of inputs for the FNNC is denoted by nc and that of the FNNI by n/. 
Re and R[ denote the number of rules in the FNNC and FNNI. Pc and Pj are the 
inputs to the FNNC and FNNI. 

Example: A Nonlinear Unstable Plant 

In this case the plant is described by the differential equation [8] 

•y-\-u. y = ky' 

The reference model is 1. The objective is to control the nonlinear plant such 
that the desired value is 2.0. This problem is a stability regulation problem. 

Initial membership funtion of error(e) Initial membership funtion of error rate(e*) 

I 
g 0.5 

-2 0 
(a) 

Final membership funtion of error(e) Final membership funtion of error rate(e') 

1 

o 
U 

- 2 0 2 4 - 6 - 4 -2 
(C) (d) 

Figure 7 Initial membership functions of controller: (a) error and (b) error rate. Final membership 
functions of controller: (c) error and (d) error rate. 
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Assume that for the FNNC, Pc = {e{t), e(t)}', each input variable has three 
fuzzy partition sets. We have/?c = 3x3 = 9rules, andnc = 9+2x(3+3) = 21. 
For the FNNI, Pi = {u(t),y(t)}', each input variable has three fuzzy partition sets. 
We have 7?/ = 3 x 3 = 9 rules, and n/ = 9 + 2 x (3 + 3) = 21. See Figs. 7a 
and b and 8a and b. 

Each cycle takes 6 seconds. After 10 cycles, the plant can be controlled very 
effectively, with a step size of 0.015 seconds. 

In the simulation, we find a way to cancel the redundant rules. In each cycle, 
if the value of a particular consequence link rule is smaller than I/Re = 1/9 
for the FNNC or l/Rj = 1/9 for the FNNI, then we eUminate that rule. In the 
final simulation result, we find that the FNNC has five rules and the FNNI has 
four rules. See Figs. 7c and d and 8c and d and Tables I and II. The final result is 
shown in Fig. 9. 

1 

u 

1 -̂̂  
0 

Initial membership funtion of u 

^ / T \ 
..ZNZ \̂̂  

-4 -2 0 
(a) 

Final membership funtion of u 

I 0.5 

0 

Initial membership funtion of y 

\ / 

/ \ 

; / • 

, • • ' ^ ^ ^ 

- 4 - 2 0 2 4 

(b) 

s 

1 

0.5 

n 

Final membership funtion of y 

;Y 
^ ^ 

..---/ \ N_ 
0 2 4 6 -2 0 2 4 6 

(c) (d) 
Figure 8 Initial membership functions of identifier: (a) u and (b) y. Final membership functions of 
identifier: (c) u and (d) 3;. 
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Table I 

Learned Rule Weight Matrix for the FNNC 

e 

NM 
ZE 
PM 

NM 

0.000 
1.165 
0.012 

e 

ZE 

-2.880 
0.042 
1.161 

PM 

0.000 
0.000 
0.000 

Table II 

Learned Rule Weight Matrix for the FNNI 

y 

NM 
ZE 
PM 

NM 

0.000 
0.000 
0.000 

u 

ZE 

0.000 
0.305 
2.059 

PM 

0.000 
-0.608 

2.477 

311 

2.5 
Example 4: final response 

1.5 

0.5 

1 2 3 4 5 

Time (sec) 

Figure 9 Final system response for the example. 
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VI. CONCLUSIONS 

We have investigated a fuzzy neural network structure which can be success-
fully applied to a model reference control system. First, we study a simple fuzzy-
logic-based neural network system, in which the knowledge of rules is explicitly 
expressed in the weights of the neural network and inferences are executed effi-
ciently at a high rate. Then the capability of the universal approximation of the 
fuzzy neural network is proved in detail. 

In model reference control, two fuzzy neural networks are used. One is for 
a controller (FNNC); the other is for an identifier (FNNI). The system has been 
tested for its on-line adaptive ability, robustness, and interpolation ability. The 
simulation result showed that combining fuzzy logic and neural network comput-
ing appears to be a feasible way of dealing with real-time application. 
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I. INTRODUCTION, MOTIVATIONS, 
BASIC PROBLEMS 

In his inspiring tutorial [1], Ljung quoted the following: 
An engineer, who is faced with [characterizing, or predicting, the behavior of 

his or her plant based on recorded data] has the following perspective: 

• How can I best use the information in the observed data to calculate a 
model of the system's properties? 

• How can I know if the model is any good, and how can I trust it for 
simulation and design purposes? 

• How shall I manipulate the input signals to obtain as much information as 
possible about the system? 

• What kind of software support is available for doing the tasks? 

Fuzzy Logic and Expert Systems Applications 
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316 A. Juditsky et al 

Later on in the same article, Ljung discusses the question of model nature and 
structure. By model nature, we have in mind the following classification: 

• physical models, 
• semiphysical models, also called "gray-box" models, 
• black-box models. 

This chapter mainly concentrates on the last category, namely black-box models. 
And, within black-box models, we shall concentrate on the less popular ones in 
the control community, namely those that are nonlinear and nonparametric in na-
ture. Here "nonlinear" means that our model class will not be restricted to linear 
input-output maps. And "nonparametric" means that our models do have param-
eters, but in a quantity that is not a priori fixed, but fully depends on the data; 
consequently, convergence issues and quality of fit cannot be assessed in terms of 
the involved parameters, but rather more globally in terms of the global behav-
ior. "Nonlinear and nonparametric" thus will be our general perspective through-
out this chapter. Although this setting may appear quite technical, more familiar 
and even some exotic ones will also be covered, such as neural networks [2-4], 
wavelets [5, 6], and fuzzy models [7]. A typical form of the kind of model class 
that we shall consider is the popular single hidden layer neural network for static 
systems: 

n 

fnix) = Y^Cia{afx + ti) + CO, (1) 
/=i 

where a is the sigmoid function, jc G R^ is the input, n is the number of neurons, 
and the {ci.at, tiYs are the adjustable parameters. This is clearly nonlinear in x, 
and the size n of the network is to be tuned on the data. In addition, in this case, 
the model is also nonlinear in the parameters. 

Such models have gained increasing interest, as reflected, for instance, in the 
articles [2-4]. This is due to their ability to encompass truly nonlinear behaviors, 
including those involved in classification and, more generally, decision proce-
dures. Referring to Ljung's practical problem setting given previously, the follow-
ing practical questions must be investigated when using nonlinear nonparametric 
models such as (1): 

• How can good nonlinear nonparametric models extrapolate or predict be-
haviors outside the range of data used for their identification, fitting, tuning, or 
trainingl^ Predicting behaviors is one of the main purposes of system identifica-
tion. It is not usual to ask such a question about linear system identification, be-
cause good linear model fitting generally also provides good prediction for truly 

^ These are more or less equivalent words used by different communities; we shall use any one of 
these indifferently. 
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linear plants. However, this is of primary concern in our case, because nonlinear 
systems are in essence not easily predictable outside the range of available obser-
vations. This question is also related to that of the appropriate choice of inputs for 
identification. 

• How can nonlinear nonparametric models be used for system monitoring 
and diagnostics? Such models are, in principle, good candidates for system mon-
itoring, because they are able to describe systems behaviors at all operating points 
simultaneously, thus preventing confusion between changes in operating point 
and changes in systems behavior. However, it is not clear how changes could be 
interpreted using such models, that is, how diagnostics could be performed. 

Then the user is faced with a second question, namely how identification should 
be performed: 

• How should data be used to fit a nonlinear nonparametric model! Though 
different situations can occur, we shall mainly investigate the classical situation 
in which noisy input-output measurements are available. 

• How can one take advantage of any kind of prior knowledge for some partial 
tuning orpretuning of the model! Such a coarsely tuned model is sometimes suffi-
cient, and sometimes used as an initial guess for system identification. Also, prior 
information can be critical for diagnostics. Again, linear systems engineering can 
serve as a guide for us: response times, resonant modes, delay, and others are typ-
ical qualitative information that engineers may have from experience about their 
plants, and they know how to reflect this prior knowledge into linear models. For 
nonlinear nonparametric models, no obvious alternative seems to exist: what kind 
of prior knowledge is relevant for such models, and how does one express it? Thus 
it seems that the engineer must entirely rely on fitting from data, without taking 
advantage of some prior knowledge he or she may have; we shall see that fuzzy 
models and their rules may be good candidates to express such prior knowledge. 

• What kind of software support is available for doing the tasks! 

Moving one step further toward a mathematical formulation of our problems, we 
may translate some of these questions into the following more technical ones: 

• How does one assess the quality of approximation! Given a true system / 
and an approximation / of it, how does one measure the quality of approxima-
tion? No parametric distance can be used. And because nonlinear systems are 
considered, the usual operator norms from linear system theory cannot be con-
sidered. In the second part of this section, based on a few examples, we shall 
introduce the distance measures we shall use throughout this chapter. These will 
mainly be L^-type norms involving f — f and possibly some derivatives of it. 
Note that using such distance measures involves some kind of prior knowledge, 
namely the assumption that the system under consideration belongs to the consid-
ered space, and this is a smoothness prior information. 
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• How does one measure the quality of fit from noisy data! This is really as-
sessing the quality of system identification. We shall naturally use figures of merit 
of the form E11/ — /AT II, where || • || denotes a norm such as discussed previously, 
fN is the estimate of / based on an A^-sample record, and E is the expectation 
with respect to all kinds of uncertainties (input, output, and noise). 

• What plays the role of "Cramer-Rao bounds,'' and what does it mean for 
an estimator to be ''optimal Such criteria are important in assessing the relative 
performance of estimators, especially because of the very large variety of models 
and identification procedures proposed so far. 

• How efficient are identification algorithms really in terms of computational 
cost and quality of conditioning! Because our model classes often are nonlinear in 
the parameters, tuning procedures may be of prohibitive cost and may further be 
ill-behaved (cf. the well-known "backpropagation" algorithm for neural network 
training). 

• What kind of coarse or qualitative property can be asserted about the mod-
els we consider, apart from smoothness prior information such as discussed pre-
viously? 

These are some of the issues that we shall discuss throughout this chapter. The 
chapter is organized as follows. The remainder of this section is devoted to the two 
applications we selected for a more detailed discussion. Then we discuss some 
basic mathematical problems relevant to our nonparametric setting, and justify, 
by the way, the use of some specific distance measures between systems and their 
estimates. 

In Section II, the classical background of nonparametric estimation is visited. 
First, so-called "linear" estimators (be careful that systems and models are nev-
ertheless nonlinear) are presented and discussed: kernel, piecewise-polynomial, 
and projection estimators are typical instances. Then the issue of selecting the 
"model order" is discussed and generalized cross validation is introduced. In a 
second subsection, convergence rates and performance criteria are analyzed, and 
it is shown that classical linear estimators perform poorly for systems with sparse 
singularities—such nonlinear systems frequently occur in practice. Some existing 
nonlinear estimation techniques which provide spatial adaptation are briefly dis-
cussed in the last subsection; these include sigmoid-based neural networks and 
an interesting alternative proposed by Leo Breiman, namely the "hinging hyper-
planes" which are, in fact, piecewise linear models such as used in control by 
Sontag in the early 1980s [8]. Such nonlinear estimators with spatial adaptation 
are not supported by satisfactory mathematical analysis, however. This motivates 
investigating wavelets. 

Wavelets are introduced in Section III and their contribution to function 
approximation theory is briefly reported. In particular, orthonormal bases of 
wavelets for L^-type spaces are presented. The importance of Besov spaces of 
functions is emphasized, for modeling smooth systems with sparse singularities. 
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Besov spaces are closely related to the more usual Sobolev spaces. The optimality 
of wavelet expansions in Besov spaces of functions is discussed. The central role 
of Besov spaces for wavelets was pointed out by Yves Meyer. 

How wavelets can be best used for estimation is the topic of Section IV. We 
report on and discuss the simple and elegant method of "wavelet shrinking" as 
introduced by David Donoho and co-workers. 

Building orthonormal bases of wavelets, for even medium-large-dimensional 
input spaces (say, >10), becomes prohibitive in terms of memory requirements. 
Thus an alternative method is proposed in Section V, which is still based on 
wavelets, but in a different manner. This method is suitable for sparse training 
data sets, that is, data sets whose cardinality does not grow exponentially with the 
dimension of the input space. 

Now, the question of how to practically express available prior knowledge for 
nonparametric models is still open. In Section VI, we discuss a proposal toward 
achieving this, which is based on fuzzy models and their associated rules. An 
extension of the usual fuzzy models is proposed to capture the multiresolution 
aspects of wavelet-based estimators. 

The experimental results of some of these methods are reported in Section VII. 
Finally, both the practical and the mathematical aspects are sunmiarized and 

discussed in Section VIII. 

A. Two APPLICATION EXAMPLES 

1. Modeling a Gas Turbine System: 
An Example of Identification of a Static Nonlinear System 

Here we briefly present the case study of a gas turbine system, as an example 
of identification of a static nonlinear system. Results and experiments will be 
reported in Section VII. Gas turbines are power motors, typically used in electrical 
power generators and aircraft. Usually a gas turbine system is composed of a 
compressor, one or several combustion chambers, and an expansion turbine. The 
compressor produces high-pressure air which is then mixed with the fuel. This 
mixed gas is burned in the combustion chambers to increase its temperature and 
pressure. The burned gas is then forwarded to the expansion turbine. The pressure 
of the gas drives the rotor of the expansion turbine, which, in turn, drives the 
compressor. The residual energy can then be used for producing electricity, and 
the gas is rejected at the exhaust of the expansion turbine. 

One of the purposes of our joint study with European Gas Turbine SA, Belfort, 
and Alcatel-Alsthom-Recherche, Marcoussis, was to develop a monitoring and di-
agnostics system for the joint system (combustion chambers, expansion turbine). 
Monitoring is based on the measured pressure in the compressor, the rotation ve-
locity of the turbine, and measurements from the thermocouples available at the 
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exhaust of the expansion turbine. Thus no direct observation is available on the 
status of the combustion chambers. Hence a semiphysical model has been devel-
oped that predicts the profile of the temperature at the exhaust of the expansion 
turbine using the pressure in the compressor, the mean temperature at the ex-
haust of the expansion turbine, and the rotation velocity of the turbine [9, 10]. 
This model consists of two parts: first the unknown temperature profile within the 
chambers is modeled as a linear regression involving one parameter per chamber; 
then, based on basic thermodynamics, a relation between this profile and the tem-
perature profile at the exhaust of the expansion turbine is given. Because the gas 
flow rotates within the turbine during its expansion, a phase shift between the two 
input and output temperature profiles is exhibited. Therefore, some phase shift 
parameter appears in the model which makes it strongly nonlinear. This model 
is semiphysical and inaccurate because the input temperature profile uses as a 
regression function some waveform based on qualitative knowledge, and very 
simpHfied thermodynamics is used for gas diffusion in the expansion turbine. 

This semiphysical modeUng was for the purpose of monitoring the turbine 
system. Despite its inaccurate nature, the model has been successfully used for 
developing a monitoring system of the combustion chambers; see [10]. Unfortu-
nately, this model is not entirely satisfactory for some other purposes, such as the 
monitoring of the thermocouples installed at the exhaust of the expansion turbine. 
The purpose of this discussion is to compare results from this semiphysical model 
with some alternative nonparametric identification method based on wavelets, and 
to discuss the two questions of the respective accuracy of fit and explicative power 
of these two styles of models. 

2. Modeling the Hydraulic Actuator of a Robot Arm: 
An Example of Identification of a Dynamic 
Nonlinear System 

Now let us consider the modeling of the actuator of a robot arm.^ It is a hy-
draulically driven arm. By controlling the position of a valve, the oil pressure in 
the transmission circuit is regulated. The oil pressure drives the motion of the arm. 
What we want to model is the relationship between the position of the valve and 
the oil pressure, both quantities being measured. In fact, the valve directly regu-
lates the oil streams injected in the transmission circuit. Hence variation of the oil 
pressure depends not only on the position of the valve, but also on the quantity of 
the oil accumulated in the transmission circuit, which, in turn, is reflected by the 
oil pressure. Clearly this is a dynamic system: variation of its output (oil pressure) 
depends on both its input (the position of the valve) and its state (reflected by the 

^This application has been borrowed from Linkoping University, while Q. Zhang was visitor at the 
Automatic Control Group. 
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oil pressure). We tried to model this dynamic system with linear autoregressive 
exogenous (ARX) models, but the results were not satisfactory. Therefore, we de-
cided to apply some nonlinear nonparametric model and see if we could improve 
the performance of the modeling. 

3. Prediction of Glycemic Variations: An Example 
of Identification of a Dynamic Nonlinear System 
with Imprecise and Incomplete Data 

Glycemic variations depend on several factors which are not easily quantifiable 
and, moreover, may vary with time. Diet, physical activity, stress and emotions, 
and proximity of meal have effects that doctors know how to qualitatively assess. 
For a healthy person, glycemic regulation is ensured via the secretion of insulin 
by the pancreas. In the case of organic deficiency, for diabetic persons, insulin 
must be artificially injected. Deciding the amount for injection is very difficult, 
because morphology, future physical activity, time of meal, glucide richness of 
meal, present glucose concentration, and results of the previous day have to be 
taken into account. Moreover, injected insulin acts with delay, and its efficiency is 
reduced as glucose concentration becomes higher. Lastly, hypoglycemia is almost 
always followed by hyperglycemia. For optimum glycemic control, it would be 
better to anticipate before the glucose level rises, as it occurs for endogenic insulin 
secretion in healthy persons. To summarize, we have to deal with a nonlinear, 
unstable system, with time delay. 

Doctors have devised empirical rules allowing diabetic persons to approxima-
tively compute for themselves the insulin level for injection. For diabetic persons 
using a pump, the insulin injection rate has two parts: the basic flow rate, denoted 
Ba(t), and providing about 50% of daily insulin needs, and a variable part, the 
bolus, denoted Bo(t), which is a flash injection to assimilate a recent meal. 

Nevertheless, despite the doctor's experience, it is very difficult to manually 
obtain a more or less constant glycemic level, in part because a good control 
should take into account up to six input variables, which is far beyond human 
control capability. This motivated us to propose a predictive glycemic model, as a 
basis for automatic injection control. This model uses as a basis the empirical rules 
of doctors, and takes into account the qualitative nature of the available data. For 
this proposal, we have several "self-supervision notebooks," that is, daily support 
to control the context and the treatment of insulin-dependent diabetic patients 
under pump operation. Thus each day the diabetic writes in his notebook 1/time 
and actual glycemia, 2/time, importance, and quality of his meal, 3/activity, and 
4/insulin injection. The experimental results on this case study are reported in 
Section VII.C. 
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B. BASIC MATHEMATICAL PROBLEMS 

Here we establish the general framework of the nonparametric regression we 
shall use throughout this chapter, and we justify the use of particular distance 
measures between a true system and its estimate in the sequel. 

Problem 1 (Nonparametric regression). Let (X, Y) be a pair of random vari-
ables with values in A* = R^ and ^ = R, respectively. A function / : X \-^ y'l^ 
said to be the regression function ofYonX if 

E(Y\X) = fiX). (2) 

A typical case is F = f(X) + e, where e is zero mean and independent of X. 
For N > \, /N shall denote an estimator of / based on the random sample 
O^ = {(Xi, F i ) , . . . , (Xiv, YN)} of size Â  from the distribution of (X, F), that 
is, a map 

/N:C7f ^ / i v ( 0 ^ • ) , (3) 

where, for fixed O^, x \-^ fyiOf, x) is an estimate of the regression function 
/ (x ) . The family of estimators//v, Â  > l,issaidtobe/7aram^m'cif/AT e Ffor 
all N > 1, where F is some set of functions which are defined in terms of di fixed 
number of unknown parameters. Otherwise the family of estimators /N, N > I, 
is said to be nonparametric. 

For the sake of convenience, we shall often refer to X and F as the input and 
output, respectively (although they do not need to be such in actual applications). 
Our objective in this section is to give a short overview of some basic instances of 
nonparametric regression. Two typical problems are considered in the statistical 
literature, namely the 

• nonparametric regression with random design (or sampling), where it is 
assumed that the variables Xt are random, independent, and identically 
distributed on [0, 1]^ with density g(x), and the 

• nonparametric regression with deterministic design (or sampling), where it 
is assumed that the input variables Z/ are nonrandom; the simplest case of 
deterministic design is the regular design, where the inputs Xt form a 
regular grid (for instance, / : R -> R and Xt = i/N). 

In the remainder of this section, we consider the random design only, although 
the observations (Xt, F/) are allowed to be dependent. 
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Nonparametric Regression for Static Systems 

This is the simplest case. The considered system has the form 

Yi = f(Xi)-\-ei, i = h...,N, (4) 

where f{x): R^ h^ R, and, for the sake of simpUcity, we assume that et are 
independent Gaussian random variables with Eet = 0 and Eef = a^. 

Adaptive Classification and Density Estimation^ 

The problem of classification (discriminant analysis or statistical pattern recog-
nition) is usually formulated as follows. Let X be a random variable with values 
in R^, and let the label Z denote a random variable which takes values in some 
finite set ^ = {z i , . . . , ZM}; the symbol z shall denote a generic element of this 
finite set. We want to guess the value of Z when X is observed. We consider the 
case in which the random vector X has probability density f{x) and conditional 
densities f{x\z) given that Z = z\ the general case is handled similarly. We call 
a solution any measurable function g\ X y-^ Z, and V{g{X) ^ Z) is the corre-
sponding error probability. The distribution of the pair (X, Z) is defined by the 
distribution /x of X and the regression functions 

p(z|x) = P(Z = z\X = x) = — — - — , X e R^, 
f(x) 

where Bayes' rule has been used for the second equality, and p(z) = P(Z = z). 
The functions f(x\z) are also cailed a posteriori densities. The solution g*(x) is 
called Bayesian or maximum a posteriori (MAP), if 

p(^*(^))/(^l^*(^)) = maxp(z)/(jc|z) a.e. x. (5) 

The Bayesian solution g* minimizes the error probability, that is, 

r 4 minP(g(X) ^Z)= FigHX) / Z), (6) 
8 

and £* is called the Bayesian error probability. 
In adaptive classification, we want to minimize the error probability when the 

true p(z) and f{x\z) are unknown and a training sample O^ = {(Xi, Z i ) , . . . , 
(XN, ZN)} of Â  independent observations distributed as (X, Z) is available. We 
assume that the training sample O^ and the test sample (X, Z) are independent. 
The estimate gN(X) of Z is now a measurable function of X and O^, and the 
following conditional error probability is a quantity of interest: 

/:N = ngNix)^z\o^). (7) 
^In this section we follow the presentation of [11, Chap. 10]. 
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In particular, we search for a sequence of estimates gN such that 

CN -^ C* almost surely. (8) 

Referring to (5), the Bayesian solution can be approximated by the function gN 
characterized by 

V(8N(x))f(x\gN(x)) = maxp(z)/(x|z), (9) 
z 

where fi'\z) are estimates of f(-\z) based on ON- There is a simple way to mea-
sure the conditional error probability CN for the adaptive classifiers which satisfy 
(9): Devroye and Gyorfi [11] have shown that, if the random vector X is dis-
tributed with some density / and gN is defined via (9), then 

0<CN-C<J^ f \v(z)f(x\z) - v(z)f\x\z)\dx. 

Different versions of this result were proved in [12-14], among others. This re-
sult implies that the classification error can be bound using the L i -norm^ of the 
estimation error of the density p(z)f(x\z). Thus we have related the problem of 
adaptive classification to that of estimating the density of a random variable in the 
Li-norm. Other advantages of considering the averaged Li-norm are discussed 
in [11]. Alternative distance measures for densities are often considered, for ex-
ample, the averaged L2-norm (often used, because it seems to be the easiest to 
estimate) or Loo-norm. 

Nonparametric Regression with Dynamics 

Consider the following dynamical system: 

where 7/ e R and <t>i e R^ are observed, and et is a white noise as before. We 
assume that 

<t>i = (Yi-u,..,Yi-m\Ui,...,Ui-p), (10) 

where Ui e R denote the inputs {m -\- p = d). For example, if Ô - = {Yi-\,..., 
Yi-d), then 

Yi=f{Yi.x,,.,,Yi-d) + ei. (11) 

In analogy with the corresponding parametric model, we call this system a 
nonparametric autoregression or a functional autoregression of dimension d 

^Recall that for a function g: R^ -> R the Lp-norm is defined for 0 < /? < oo: \\g\\p = 
{f\g{x)\Pdx)yP,2i^diovp = oo: llglloo =esssupjg(;c)|. 



Wavelets in Identification 325 

[FAR(^)]. As an interesting application, we can consider a simple controlled FAR 
model for adaptive control: 

Yi = f{^i) + Ui^ei, (12) 

where O/ = (Fz- i , . . . , Yi-m)^ and Ui is the control. The following question can 
be considered: how does one choose the control {Ui) for the system (12) to track 
some reference trajectory y — (j/), or, at least, how does one choose Ui in order 
to minimize EF^ ,̂ or, simply, to stabilize the system (12)? If the function / (O) 
was known, we could use the control 

Ui = -f(<Pi) 

to obtain F/ = Ci. Clearly, this is a "minimum variance" control, since EF? > 
a^ = Eef, If / is unknown, a possible solution consists in performing nonpara-
metric "certainty equivalence control": compute an estimate fy of the regression 
function / based on the observations of the input-output pair (4>/, Yi — Ui), and 
then take 

Ui=-M<^i)- (13) 

To analyze the certainty equivalence control (13), let us consider the control cost 

It is easily checked that 

E(/- (O/) - f(<t>i))^ -^ 0 when i -> cx) (14) 

implies EQN -> cr^, and fi(^i) — f(^i) -> 0 a.e. implies QN -^ cr^ a.e. Thus 
condition (14) is instrumental in analyzing this problem, and we shall informally 
discuss how it can be guaranteed. 

Denote by <E>Q~̂  = (OQ, . . . , 0 / - i ) ^ the vector of all available inputs up to 
time / — 1, and by ^Q~ ̂  = (cpo,..., cpi-i)^ thQ corresponding vector of integration 
variables. Let P denote the distribution of the vector sequence (O^) when driven 
by the unknown "true" model (12)-(13), let P^,_i() be a distribution of 4>Q~\ 

and let p<jj.|<j)i-i (•) be a conditional density of the distribution of Ô  given OQ"^ 

(we assume that such a density exists). We have 

E|̂ (<t>,) - /(*,•)!' ~ j \Mx) - f{x)\\^^^-iix)dxP^^-i{dcpi-'). 

Note that, if the closed-loop system (12)-(13) is stable, one would reasonably 
take equal weights for the observations OQ, . . . , O/ in the estimate fi. In such a 
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case the estimate ft (O) is asymptotically (as / -^ oo) slowly varying, that is, 
fi ^ fi-\. Thus we can write informally 

E|^(4>,) - fi^df ^ jv^-,{d<p^-') j \fi-i(x) - fix)\\^^^iMx)dx. 

The latter integral can be bound in several ways. For instance, 

|2 

/ 
\fi-lM- f(x)\ p^,^^i-i(x)dx 

< sup\fi-i(x) - f(x)\^ / p^.\^i^-i{x)dx 

= suip\fi-i(x)- f(x)\ , 
X 

which yields the bound 

E|/;-(<i>,-) - /(cD,)|' < Esup|y;-_i(x) - f(x)f = E||/;-_I - / | | ^ . 

On the other hand, if the conditional density is bounded, that is, p<j).|<jj/-i < Cp, 

then 

/ \fi-i(x) - f(x)\\^,^^i-i{x)dx < Cp \fi-i(x)- f{x)\^dx 

= Cp\\fU-f\\l 
Thus, as a conclusion, in any case, the crux in analyzing this adaptive minimum 
variance nonlinear control consists in getting bounds for the error in estimating the 
unknown function / . Hence, in addition to proving consistency for the estimates, 
getting such bounds is an important question. 

Discussion 

This section about basic mathematical issues can be summarized as follows: 

1. Nonparametric estimation of regression functions is instrumental in 
various problems such as adaptive identification, classification, and 
control. 

2. The averaged L^-norms of estimation error for various p's are natural 
candidates as a figure of merit. We shall see later that error measures also 
involving derivatives of / and / will be useful, so that smoothness of 
estimates can also be guaranteed. 

3. Having bounds for the estimation error is of paramount importance. This 
has been illustrated by the adaptive control example. However, we shall 
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see later that some estimators can exhibit arbitrarily poor performance for 
some "bad" systems, so that having error bounds is really needed to 
prevent the user from getting bad results. 

11. "CLASSICAL" METHODS 
OF NONLINEAR SYSTEM IDENTIFICATION 

Throughout this section, Problem 1 is considered. We first discuss some esti-
mators that are linear, that is, that satisfy f -^ g = f -\- g\ note that the functions 
/ , g, and their estimates, are generally nonlinear as functions of their input x. Lin-
ear estimators build the folklore of nonparametric estimation; kernel estimators 
and projections on linear subspaces of functions are typical instances we shall 
describe. We shall then discuss, both practically and theoretically, some severe 
practical limitations of linear estimators. Roughly speaking, linear estimators are 
suitable for systems with "uniform smoothness"; systems with sparse singulari-
ties (e.g., hard limiters, quantizers, some mechanical systems) are poorly handled. 
This motivates the search for new nonlinear estimators; neural networks and some 
related methods are candidates we shall briefly scan. 

A. LINEAR NONPARAMETRIC ESTIMATORS 

All estimators presented in this subsection are linear ones, that is, they have a 
common general form 

N 

fN(x) = J2 YiWNjix), WNJM = WNAX^ ^ 1 . . . •. ̂ iv), (15) 
i=i 

where we recall that O^ = {(Xi, F i ) , . . . , (XN , FA )̂ } is the given random sample 
observation, and the weights WNJ (X) only may differ. 

1. Some Linear Nonparametric Estimators 

Kernel Estimators for Regression Functions and Densities 

Kernel estimators were first proposed by Nadaraya and Watson in 1964 [15, 
16]. The Nadaraya-Watson kernel estimator is an interpolation procedure. It is 
given by 

fNix) = —-jv . (16) 
Ztl Kiix - Xi)/hN) 
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where (/ZA )̂ is a sequence of positive numbers, /ZÂ  ^- 0 as Â  -> oo, and A' is a 
function on R satisfying 

/

CX) 

\K{u)\du < CX), 
-00 ..„. 

/

oo ^ ' ^ 
K(u) = 1. 

-00 

The positive number h^ is called the bandwidth and the function K satisfy-
ing (17) is called a kernel; in fact, h^ is better interpreted as a scaling factor. 
Clearly, the Nadaraya-Watson estimator is linear, and has the form (15). Typi-
cal examples of kernels are K(u) = (1/2)1{|M|<I} (rectangular window kernel), 
K{u) = (l/\/27r)exp(—|Mp/2) (Gaussian kernel), etc. Usually K is chosen to 
be an even function. 

The idea of kernel estimation is simple. Let us explain it for the case of the 
rectangular kernel in one dimension. In this case the estimator (16) is a simple 
moving average with equal weights: the estimate at point x is the average of ob-
servations Yi corresponding to Xi 's belonging to the "window" [x — hN,x-\- /ijv]. 
If hM -> oo, then the estimator tends to N~^ Yl^ 7/, the average of all observa-
tions, and thus for functions / which are far from being constant, the bias be-
comes large. If h^ is very small (say, smaller than the pairwise distance between 
sample points Xi), then the estimator reproduces the observations: fy = F/. In 
this extremal case the variance of the error becomes high. Thus increasing HN 
tends to increase the bias of estimator, while reducing h^ leads to a larger vari-
ance. The optimal choice for h^ corresponds to an equal balance between bias 
and variance. 

Also closely related to estimator (16) is the Parzen-Rosenblatt kernel estimator 
for densities. Let X i , . . . , XN be independent and identically distributed random 
variables with common density f(x), x e R^. The Parzen-Rosenblatt estimator 
of density f(x) is a suitably smoothed histogram. It is defined as [17,18] 

/«« = 4 E < ^ ) . OS) 

where d is the state-space dimension of X and K is SL kernel as in (17). Kernel 
estimate (16) can be easily derived from the Parzen-Rosenblatt one. Recall defini-
tion (2) of the regression function, take the Parzen-Rosenblatt estimator (18) for 
the joint density f(x,y) of (X, Y), and denote it by /AT (A:, y). Then, replacing, in 
the following formula 

. . . ^ fyf(^^y)dy 
^ ^ ^ " ff(x.y)dy^ 



Wavelets in Identification 329 

/(jc) and /(jc, y) by their corresponding Parzen-Rosenblatt estimates, yields ker-
nel estimate (16). 

We now state a sample of results about the properties of kernel estimates for 
the ^/-dimensional case. Assume that it is known a priori that / belongs to the 
ball C^{L) in the so-called Holder space: for s and L positive, let C^{L) be the 
family of functions f{x), x e [0, 1]^, defined by^ 

C'{L) = {/: \f^^\x) - f^^\x')\ < L\x-x'r^ forany x,x' € [0,1]^}, 

k=lsi. (19) 

Note that this is a smoothness prior of the kind we discussed in our introduction. 
If ^ > 1 is an integer, then C^(L) contains continuous functions having Lipschitz 
(5 — l)th derivative. We can now give a result on the rate of convergence of the 
kernel estimate. We acknowledge Rosenblatt [19] for the first two statements of 
it, though it probably belongs to the earlier folklore of nonparametric statistics. 

THEOREM 1 (Rosenblatt [19]). Let fy be a kernel estimate with bandwidth 
hN such that h^ -^ 0 and Nhjs/ -> 00, with kernel K satisfying f x^ K(x) dx = 
0 for j = 1 , . . . , A:. Here, x^ denotes any product of the form x^^X2 " - x^^, 
where 7*1 + 7*2 + • • • + jd = j CLndxi,... ,Xd are the coordinates ofx. Assume 
that the observations Xt are independent and identically distributed on [0, 1]^ 
with density g{x) > c > 0, g e C^(L), and that the noise satisfies Eei = 0 and 

,2 
i 

1. 

< G^ < CX). 

Uniformly 

Then 

over f G 

E|A 

C^{L)andx e 

W-

[0,1]'', we 

-fi.x)\^<cU}h]^ 

have the pointwise bound 

+ ^ \ (2( 

The optimal value ofh^ which minimizes the right-hand side of (20) is 
given by 

/ 2 xl/(2.+^) 

For this value ofh^, 2\2s/(2s-\-d) 

2. If we consider instead the global error measure E||/// — /||2» using again 
the same optimal value (21) for h^, yields the same bound, uniformly over 
f e C'(L). 

^ [sj denotes the maximal integer k < s. 
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Comments 

1. As expected from the preceding informal discussion concerning the 
rectangular kernel, the bound for the estimation error variance given on the 
right-hand side of (20) is decomposed into bias and variance terms. And, 
as expected, the optimal choice of h^ in (21) exactly balances these two 
terms. 

2. Note that we have both pointwise and global bounds, which reflects the 
local nature of kernel estimates. 

3. The properties of the Parzen-Rosenblatt algorithm of density estimation 
are identical when the unknown density / satisfies / € C^(L). Note that, 
because supp / ^ [0,1]^, the Li-norm of the error (restricted to the 
[0,1]^) is dominated by the L2-norm. So we get from the second 
statement of the theorem 

/ _ 2 \ 25/(2.4-1) 

provided HN is chosen as in (21). 
4. Often the following recursive version of the kernel estimator is considered 

[20,21]: 

(O i f r„ ( ;c )=0 . 

/=0 

or 

fn(x) = fn-l(x) + r-\x)(Yn-h-'^K(^^-^^ 

Fnix) = r„_i(x) + / i - ^ i ^ ( ^ ^ ^ Y (22) 

In this form the algorithm resembles very much the recursive least squares 
algorithm for estimating the parameters of linear models. When the 
bandwidth is such that hi = hi~^ for some 0 < a < 1, the properties of 
the algorithm (22) in the static regression problem are essentially the same 
as those of the "off-line version" (16). In [20-22] this algorithm was used 
to identify stable nonparametric autoregression models of the form (11), 
and the convergence of this estimator was proved. Furthermore, the same 
algorithm was used to provide the estimates of /„ in the closed-loop 
system (12)-(13), and the stability of such an adaptive control scheme was 
proved—[21] and [22] consider essentially the one-dimensional case, and 
in [20] the general multidimensional case is studied. 
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Piecewise-Polynomial Estimators 

Another nonparametric regression estimator which is commonly used is the 
piecewise-polynomial one. The idea is the same as for the kernel estimator, though 
the averaging is made over bins (i.e., small cubes) of fixed size 8N rather than in 
the /lA^-neighborhood of the current point x. It is also closely related to radial-
basis function (RBF) networks with rigid location for the radial functions; see 
[2, 23]. The simplest example of this method is the piecewise-constant estimator 
or regressogram. The value of the estimate f^ in each bin equals the average 
of observations Yt such that corresponding X/ belong to the bin. For the sake of 
clarity, we consider the one-dimensional case. 

The piecewise-polynomial estimator can be formally defined in terms of the 
following optimization problem. Let 8^ -> 0 be a positive sequence, and as-
sume that 8^^ = M is an integer. Define M/ = 18N, I = 0 , . . . , M, and di-
vide the interval [0, 1] into M cubes (bins) of the form Ui = [0, MI), U2 = 
[ui,U2),... ,UM = [WM-1, 1]» so each bin has length 8^- Set F{x) = 
(1, X, Jc^/2,. . . , x^/k\f and, for each bin [//,/ = 1 , . . . , M, solve for 0 e R^+^ 
in the least squares sense the system of equations 

Y,=e^F(^^i^^, XteUi, (23) 

and denote by ON,I the corresponding solution. Then the piecewise-polynomial 
estimate f^ of order k in each bin Ui is expressed as 

fN(x) = ^h^(^~^l^~')^ ^ ^ ^i' (24) 

The value 8^ is called the binwidth. As for the bandwidth hf^ of the kernel es-
timate, the binwidth tunes the smoothness: larger 8^ leads to a higher bias, and 
smaller Â̂  results in a higher variance. In order for the least-squares problem in 
(24) to be nondegenerate, we require that the number of points Xt in each bin be 
larger than A: + 1. 

Stone [24] has proved a result similar to Theorem 1 for this type of estimate 
[see (19) for the definition of the Holder space C^{L)]. We state this result in the 
general J-dimensional case. Assume that the observations X/ satisfy the assump-
tions of Theorem 1. Let fjq be a piecewise-polynomial estimate of order k — [s\, 
with binwidth 5Â  ^ 0 and A^̂ A^ ^- 00 as A^ ^- 00. Then statement 1 of Theo-
rem 1 holds with binwidth 8^ substituted for the bandwidth h^. 

Comments 

1. Note that, unlike kernel estimates, piecewise-polynomial estimates compute 
projections on the fixed set of functions F((x — MZ-O/^AT), X e UI (the /th bin). 
The same remark holds for the projection estimate to follow. 
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2. As can be seen, piecewise-polynomial and kernel estimates have the same 
asymptotic accuracy when N ^^ oo. 

3. If / is a smooth function (i.e., s > 1), the optimal number of bins is 
ns ~ 5^ which is much less than the number of observations (ns ^ N^^^ for 
5 = 1). This number is equivalent to the memory size required to implement the 
algorithm: to reconstruct the estimate, k = [s} coefficients are necessary. Thus, 
if Â  is large, this algorithm offers a significant advantage, in terms of memory 
requirements, over kernel estimates in which all measurements should be kept to 
reconstruct f(x). Also, computing (23)-(24) is of lower computational burden 
than computing (16). These two points make the piecewise-polynomial estimate 
more attractive. 

4. Unfortunately, there is no reasonable recursive version of the estimate fn. 
Although one can use the recursive least squares algorithm to compute linear re-
gression coefficients 6M,i in (24), the derivations quickly become messy, because 
the number M of bins depends on Â , and so does the number of equations in the 
algorithm. 

Projection Estimates 

Another class of function estimates was introduced by Cencov [25], who called 
them projection estimates. The idea consists of expanding the unknown function 
into its "empirical" Fourier series. Consider the set W^ (L) of functions /(JC) , x € 
[0, 1]^, defined as follows. Each / can be represented by its Fourier series 

oo 

fix) = J2 ̂ J^jM^ (25) 

where j = (7*1,..., jd) is a multi-index, x = (x^,..., x^)^, 

^j{x) = (pj^ix^) X . . . X (^;I(A:^), 

(fi = 1, (p2k(x) = \/2sin(27rA:x), and(^2A;+i(x) = >/2cos(27rA:jc), k = 1, 
Suppose that the following condition is satisfied: 

00 

Y,\^j\\l-^\j\^')<L\ (26) 
7=1 

In fact, we have X^Jli k ; f ( l + Ijf 0 < C||/ | |^ 2' where ||/|U,2 is the norm of 
the Sobolev space VV2 of functions with all derivatives up to order s being square 
integrable. Note that this is again a smoothness prior. We assume that input X is 
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uniformly distributed.^ We construct the estimate f^ as follows: 

m 

333 

(27) 

where m is the "model order," and the empirical estimates c ̂  of Fourier coeffi-

cients 

"̂ = ^E^^-^.(^^) (28) 
i=l 

are substituted for the true ones Cj, j = I,... ,m. Note that the assumption that 
X is uniformly distributed has been used. Note also that the estimate (27)-(28) is 
linear [cf. (15)] with weights given by 

m ^ 

Wiv,/(;c) = ^ - c D , ( x ) c D , ( X , ) . 

Cencov [25] has proved the following counterpart of statement 1 of Theorem 1: 
Let fN be a projection estimate. Then, uniformly over / e VV2(L) and x e 
[0, 1]^, 

E||/iv(^) - f(x)\\l < c(T?m-^^ + ^ Y 

The optimal order m of the model is 

-m) r 2 AT \ 1/(25+^) 

m 

It balances bias and variance error estimates, and yields the bound 

/ 2\2s/{2s+d) 
niNix) - f{x)\\l < CL2/(^+2.)/ _^ \ 

(29) 

(30) 

(31) 

The following result, due to Ibragimov and Khas'minskij [26], provides a global 
uniform bound. Take 

l/(2s-\-d) I 1 / Â  Y 
m = I I 

LVinA ŷ 

^See Section IV for a thorough discussion of this assumption. 
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for the model order [note that this is sHghtly different from (30)]. Then, uniformly 
over / G C'{L) [the class C'{L) is defined in (19)], it holds that 

2 /lnAr\2^/(2^+^> 
nfN-f\\lo<0[j^j (32) 

Comments 

1. Projection estimates have the same rate of convergence (up to a constant) 
as kernel or piecewise-polynomial ones. 

2. The bound (29) for the quadratic error of the algorithms appears rather nat-
urally if we consider the following argument: when we approximate / G W2 us-
ing m terms of its Fourier decomposition, the approximation error is 
Furthermore, the stochastic error in each term is of order 0(N~^). This sim-
ple calculus can be repeated for any nonparametric estimate. Obviously, it is be-
yond our capabilities to reduce the stochastic component of the error. On the con-
trary, the bias part depends on the method we choose to approximate the function 
(piecewise-polynomial, trigonometric series, etc.), and this choice of approximant 
is of primary importance. 

3. From the computational point of view, projection estimates are more attrac-
tive than piecewise-polynomial estimates, because they use an orthonormal basis 
of functions (the Fourier basis), which dramatically simplifies the computation of 
the least squares estimates Cj of the Fourier coefficients CJ; cf. (28). 

2. Practical Implementation of the Algorithms: 
Adaptation and Tuning of Their Various Design 
Parameters, Generalized Cross Validation 

As we have seen, the convergence of the estimates strongly depends on the 
choice of the bandwidth h^ for the kernel estimator, the model order m for the 
projection estimator, and the binwidth 8N (or, equivalently, the "model order" 
M = 5~^) for the piecewise-polynomial estimator. These design parameters de-
pend on the parameters of the smoothness class C^(L) or W2(L), which are a 
priori unknown—see definition (19) of this class and the use of parameters (5, L) 
in Theorem 1 and corresponding results for the other estimators. Even if some 
information about the smoothness parameter s is available, the knowledge of 
the value L is of importance when the data sample is of bounded length. Let 
us illustrate this with the following example, where input x is a scalar. Con-
sider the problem of estimating a function f{x) in additive white noise e, with 
â ^ = 1. Assume that / has support [0, 1], that all its derivatives are continu-
ous, and that / (1/2) = 1, /(O) = / ( I ) = 0. Note that in this case, typically, 
sup^ I /^^^x) I ^ s^\ that is, higher-order derivatives become very large in uniform 
bound. In this case the bounds in Theorem 1 are of order af^{s) = (̂ /A )̂2 /̂(2'y+i) 
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when the parameter is selected for the smoothness s. Assume that the size of the 
observation sample is N = 10000, then aN(2) = 0.0110, aN(3) = 0.0095, 
but we already have a^i^) = 0.0122 [the value of s which minimizes a AT is 
s ^ 3.4814 with aN(s) ^ 0.00946]. This illustrates the fact that the tightest 
bound is not obtained by taking the largest possible s, but rather by selecting the 
most favorable pair (s, L), which is obviously much more difficult. 

Given that we only have in practice samples of finite size N, we shall not try 
to estimate the most favorable pair (s, L), but we shall proceed differently. The 
model order (or bandwidth, or binwidth, depending on the different estimates) 
shall be estimated from data using a procedure usually referred to as the general-
ized cross validation (GCV) test. GCV procedures were studied for kernel (see, 
e.g., [27, 28]), spline (e.g., [29, 30]), and projection estimates (cf. [31, 32]). Let 
us consider, for instance, the procedure for the projection estimates.^ To make 
the model order explicit in formula (27), we shall write fm,N instead of fy. Set 
S^ ^ = N~^ YliLi W^i ~ fm,N(^i)\\^- As for the prediction error variance 
estimate in parametric prediction error methods, 5^ ^ is a biased estimate of the 
error. Thus one cannot minimize S^ ^ with respect to m directly: the result of 
such a brute-force procedure would give a function fmN,NM which perfectly 
fits the noisy data; this is known as "overfitting" in the neural network literature. 
The solution rather consists in introducing a penalty which is proportional to the 
model order m; that is, we search for MN such that 

m^ = a r g n u n ( 4 , ^ + ^ ) . (33) 

This technique is clearly equivalent to the celebrated Mallows-Akaike criterion 
[33, 34]. The following result, due to Polyak and Tsybakov [31], shows the con-
sistency of this procedure. Assume that the Fourier coefficients of / in expansion 
(25) satisfy \cj\ < Sj, Y1T=\ ^j < ^^^ (J^j) is nonincreasing, and a^ is known. 
Set Vm,N = \\fm,N - fWl' Then for the estimate (27), (28), and (33), it holds that 

" 1 a.e. 3iS N ^^ oo. 
niin^ Vm,N 

B. PERFORMANCE ANALYSIS 
OF THE NONPARAMETRIC ESTIMATORS 

The performance analysis of nonparametric estimation algorithms and/or iden-
tification procedures is much more difficult than for parametric estimation. In fact, 
the following specific issues are important: 

^In fact, a similar result holds for the spUne or piecewise-polynomial ones. 
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1. What plays the role of the Cramer-Rao bound and Fisher information ma-
trix in our case? Recall that the Cramer-Rao bound reveals the best performance 
one can expect in identifying the unknown parameter 0 from sample data arising 
from some parametrized distribution pe, 0 e S, where 0 is the domain over 
which the unknown parameter 0 ranges. In the nonparametric case, lower bounds 
for the best achievable performance are provided by minimax risk functions. We 
shall introduce these lower bounds and discuss associated notions of optimality. 

2. For lower bounds, the class of systems on which the best achievable perfor-
mance is considered, is another important issue. For nonparametric representa-
tions of linear systems, L2, Loo, ^2, ^00, with their associated norms, are typical 
spaces to work with. For (even static) nonlinear systems, however, the choice is 
much wider. How wide should be the class T of the systems under consideration; 
what kind of smoothness should be required? Are we interested in the behavior of 
the estimate at one particular point x of interest, or are we interested in the global 
behavior of the estimate? Different distance measures should be used in these two 
different cases. 

1. Lower Bounds for Best Achievable Performance 

To compare different nonparametric estimators, it is necessary to introduce 
suitable figures of merit. It seems first reasonable to build on the mean square de-
viation (or mean absolute deviation) of some seminorm^ of the error; we denote it 
t>y WIN — f\\' The following seminorms are commonly used in nonparametericre-
gression: 11/11 = {ffP(x)dxy/P, 0 < /7 < 00 (Lp-norm), | | / | | = sup^ \f(x)\ 
(uniform norm, C- or Loo-norm), | | / | | = |/(xo)| (absolute value at a fixed point 
jco). Then we consider the risk function 

RaAfN, f) = E[a-i | | / iv - / | | ] ^ (34) 

where UN is a normalizing positive sequence. Letting a^ decrease as fast as pos-
sible so that the risk still remains bounded yields a notion of a convergence rate. 
Let ^ be a set of functions which contains the "true" regression function / . Then 
the maximal risk r^^ {f^) of estimator f^ on T is defined as follows: 

raN^M = sup RaNifN, / ) • 
feT 

If the maximal risk is used as a figure of merit, the optimal estimator / ^ is the 
one for which the maximal risk is minimized, that is, such that^ 

^aN(fN) = nn^n sup RaNifN, / ) • 
fN feT 

° A seminorai is a norm, except it does not satisfy the condition: || / 1 | = 0 implies / = 0. 
^To properly understand the statement to follow, the reader should pay attention to definition (3) 

of an estimator. 
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We call f^ the minimax estimator and the value 

minsup RaN^fN, f) 
IN feT 

the minimax risk on T. The construction of minimax nonparametric regression 
estimators for different sets ^ is a hard problem. Today, it is only solved asymp-
totically (for large samples) for some special cases (see, e.g., [35-37]). How-
ever, letting UN decrease as fast as possible so that the minimax risk still remains 
bounded yields a notion of a best achievable convergence rate, similar to that of 
parametric estimation. More precisely, we state the following definition: 

DEFINITION 1 (Lower rate and minimax rate of convergence). 

1. The positive sequence a^si is a lower rate of convergence for the set T in 
the seminorm || • || if 

liminfr«^(/;;) = liminfinf sup E[^-i| |/;v - / | | ] > Co (35) 

for some positive CQ. The inequality (35) is a kind of negative statement 
that says that no estimator of the function / can converge to / faster than 
ÂT. This notion can be refined as follows. 

2. The positive sequence ai^ is called the minimax rate of convergence for the 
set T in seminorm || • ||, if it is a lower rate of convergence, and if, in 
addition, there exists an estimator / ^ achieving this rate, that is, such that 

limsupr«^(/;^) < oo. 

Thus, a coarser, but easier approach consists of assessing the estimators by 
their convergence rates. In this setting, by definition, optimal estimators reach the 
lower bound as defined in (35) (recall that the minimax rate is not unique: it is 
defined to within a constant). 

Some Negative Results 

We state first a negative result, due to Devroye and Gyorfi [11, 38], which 
expresses that no convergence rate exists if no smoothness assumption about the 
unknown regression function / is stated. ̂ ^ Consider the following classes of func-
tions on R: 

!F*: the class of all functions / such that f{x) = OfoTx > 1 or jc < 0, and 
| / ( j c ) | < C f o r x G [ 0 , l ] . 

^Q: the class of all continuous functions f e J^*. 

^^Note that convergence can sometimes be proved without any smoothness assumption [39]. 



338 A. Juditsky et al 

T^: the class of all functions f e J^* having all continuous derivatives on 
[0,1) (be careful that the interval is right open). 

Let fy be an arbitrary estimate of / . Then for the classes ^*, ^Q , and J^^ defined 
previously (we denote them generically by J^ 

suplimsupE a^^ / {/NM- f(x)\dx 
T N^oo L Jo 

= 00 

for any positive sequence ^A^ -^ 0. 
There is also a similar result for the adaptive classification problem: consider 

the classification problem of Section LB and the notation therein. Suppose that 
there are only two classes, that is, M = \Z\ = 2, Let a^ be any positive sequence 
such that aM -^ 0 and X e [0, 1/2). Let g^ be an arbitrary estimator. Then there 
exists a distribution of the pair (Z, Z), with X uniformly distributed on [0, 1], 
such that 

limsupfl^^(E£A^ - £*) = oo, 
n->oo 

where CN is associated with gM through (7). 
Thus, no convergence rate exists for any of the preceding classes ^*, J^Q, and 

T^. In other words, the convergence can be arbitrary slow, depending on the 
unknown function or density / to be estimated! It is a natural consequence of 
the fact that the preceding classes J^*, J^Q, and J^^ are too rich: they contain 
functions which are extremely difficult to approximate. In other words, to obtain 
any interesting rate of convergence, smoothness conditions should be imposed. 

Some Positive Results 

Let us now concentrate on the case of deterministic uniform design; that is, 
the input data X are uniformly sampled in the considered interval. The following 
result in the case of regular design can be attributed to [26] (for the random design 
case, see [24,40]). 

THEOREM 2. Let us consider the Holder class C^ (L) on [0, 1]^; see (19) for 
the definition of C^ (L). Consider 

\\g\\ = (f\gix)\'dx\ , 0 < / 7 < o o , 

or 

\\g\\ = \8(xo)\. 
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Then N~^/^'^^~^^^ is a lower rate of convergence for the class C^(L) in the semi-
norm II • II. Furthermore, {N/lnN)~^^^^^~^^^ is a lower rate of convergence for 
the class C^(L) in the norm \\g\\ = sup^^^o,!] Î (-̂ )I-

Note that to obtain the correct rate of convergence for the distance at a fixed 
point jco, the corresponding Lipschitz property is required at XQ only. Similar re-
sults hold when the class C^(L) is replaced by the class Wp(L), p > 2, where 
yVp(L) is the set of A:-times differentiable functions / on [0, 1]^ such that 

ii/ii2<i, \\f^'Ht+h)-f^'\t)\\^<L\\hr, 

0 < Q f < l , s = k-{-a}^ 

Then fsfs/i^^+d) is also a lower rate of convergence for this class in the Lp-norm 
of the error. 

2. Discussion 

Criticizing the Minimax Paradigm 

Let us compare the lower rates of convergence of Theorem 2 and the upper 
bounds obtained in this section for different estimators. One can see that the es-
timators considered are optimal on the classes W2 and C^ in the sense that they 
reach the minimax optimal rate of convergence.^^ Despite many impressive tech-
nical achievements in the preceding work, the general reaction within the statistics 
community has not been really enthusiastic. For example, according to Donoho, 
" . . . a large number of computer packages appeared over last fifteen years, but the 
work on the minimax paradigm has relatively little impact on software" [41]. One 
of the arguments supporting this skepticism about methods based on the minimax 
paradigm—^kernel estimators, spline methods, or orthogonal series—is that they 
are spatially nonadaptive, whereas real functions exhibit a variety of shapes and 
spatial inhomogeneities. To illustrate this point, let us look at the following ex-
ample. Consider the function /(JC) = l{o<jc<a} for some 0 < a < I. The Fourier 
coefficients of this function are 

r-^ir^iitka) r-sm{7Tka)co^{nka) 
co = a, C2jt = V 2 , C2k-\-i = v2 . 

nk nk 

Hence the condition in (26) is not verified for 5 > 1/2. Thus we conclude from 
(32) that the rate of convergence (31) for the projection estimate (27), (28) will 
not be better than A^~ /̂̂ . Furthermore, because / does not belong to the Sobolev 
space W2 for ^ > 1 /2, this rate of convergence is minimax. On the other hand, one 

^̂  Although defined in a different way, this Wp(L) space coincides for p = 2 with the space 
introduced in formula (25) and subsequent ones. 

^^The projection estimates are also minimax on Wp (see [26, Theorem 4.3]). 
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naturally expects that a procedure to detect the edges of / can be designed which 
would have a rate of convergence "close" to A^~^ Indeed, the linear methods 
fit very well functions which are, say, "uniformly smooth" or "uniformly nons-
mooth." Facing the problem of estimating a function with sparse singularities, the 
projection method will infer erroneously that the function is "uniformly smooth," 
but with a pessimistic smoothness parameter. 

The minimax paradigm as discussed before does not seem to provide methods 
with convergence rates of order N~^ for the preceding example. Thus the authors 
of [41 ] argue that one should construct methods (heuristically, if necessary) which 
address the "real problem," namely spatial adaptation. This point of view has had 
considerable influence on software development and daily statistical practice, ap-
parently much more than the minimax paradigm. Interesting spatially adaptive 
methods include all sorts of neural networks, projection pursuit [42], classifica-
tion and regression trees (CARTs) [43], multivariate adaptive regression splines 
(MARS) [44], variable bandwidth kernel methods [45], and others. These meth-
ods implicitly or explicitly attempt to adapt the fitting method to the form of the 
function being estimated, by ideas like recursive dyadic partitioning of the space 
on which the function is defined (CART and MARS) and adaptively estimating a 
local bandwidth function (variable kernel methods). Citing again David Donoho, 
one could say that "the spatial adaptivity camp is, to date, a-theoretical, as op-
posed to anti-theoretical, motivated by the heuristic plausibility of their methods, 
and pursuing practical improvements rather than hard theoretical results which 
might demonstrate specific quantitative advantages of such methods. But, in our 
experience, the need to adapt spatially is so compelling that the methods have 
spread far in the last decade, even though the case for such methods is not proven 
rigorously" [41]. To conclude, a deeper investigation is needed to find the proper 
framework. 

Adequate Answer: Besov Spaces and Wavelets 

This short analysis reveals the crux in the route to both practical efficiency and 
mathematical support of the methods. It consists of finding a parametrized family 
offiinctional classes which 

1. fits our prior knowledge about the smoothness of the fiinction to be 
estimated {in particular, that f is smooth everywhere, except at a sparse 
set of points), and 

2. has associated with it an estimation technique which is minimax within 
these classes. 

It was the merit of Donoho and Johnstone [46] to recognize that Besov spaces, 
which play a central role in Meyer's mathematical theory of wavelets [5], provide 
an adequate answer. They are perfectly suited to nonlinear systems which have 
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sparse singularities and otherwise are smooth. This material will be the topic of 
Section IV. 

However, before discussing wavelets and their use in identification, we briefly 
scan some popular nonlinear estimates. They all provide the kind of "spatial adap-
tation" that we advocated before. Some of them are supported by efficient soft-
ware. And some of them have become extremely successful and their names are 
now buzzwords widely known beyond the scientific community. 

C. NONLINEAR ESTIMATES 

Starting in the early 1980s, a variety of techniques have been proposed in 
the statistics literature, which exhibit this desirable feature of "spatial adaptiv-
ity." Among them are the projection pursuit algorithm developed in [42] (a very 
good review of these results can be found in [47]), recursive partitioning [43,48], 
and related methods (cf., e.g., [44] with discussion). These methods are derived 
from some mixture of statistic and heuristic arguments and give impressive results 
in simulations. Their drawback lies in the almost total absence of any theoretical 
results on their convergence. We refer the reader to the previous references for 
additional information. 

Surprisingly enough, the artificial intelligence (AI) literature has proposed in-
dependently and at the same time different techniques with the same feature of 
"spatial adaptivity." These include various forms of neural networks [3]; see the 
other tutorial [49] by Ljung. We shall briefly describe these. In addition, we shall 
sketch a recent technique due to Breiman [50], which practically combines some 
advantages of neural networks (in particular, the ability to handle very large di-
mensional inputs) and of constructive wavelet-based estimators (the availability 
of very fast training algorithms). 

Relationship with Neural Networks: Barron's Result 

The following result, which was recently published in [51 ], is the most accurate 
theoretical result about neural networks available today. Let or(x) be a sigmoidal 
function [i.e., a bounded measurable function on the real line for which a (jc) -> 1 
as jc ^- oo and a{x) -> 0 as x -> — oo]. Consider a compactly supported 
function / with supp(/) c [0,1]^, and assume that 

Cf= I \co\\f{co)\dco< oo, (36) 

where ficci) denotes the Fourier transform of / . The main result of [51] can be 
roughly stated as follows: there exists an approximation /„ of the compactly sup-
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ported function / , of the form 

n 

fn{x) = Y^ Ci a {ajx + ?/) + CO (37) 

(note that fn is not compactly supported), such that 

| | ( / . - /)1[0,1]^||2 ^ 2V^C/n-i/2. (38) 

This result provides an upper bound of the minimum distance (in the L2-norm) 
between any / satisfying condition (36) and the class of all neural networks of 
size not larger than n. In the same article, this upper bound is compared with the 
best achievable convergence rate for any linear estimator in class (36). It is shown 
that a lower rate for linear estimators is n~^/^, compared with the much better rate 
n~^/^ for neural networks, especially for large dimension d. No result is available 
which takes advantage of the possible improved smoothness of the unknown sys-
tem / . An iterative algorithm for the construction of the approximation (37) is 
also proposed. The true problem of system identification, that is, that of neural 
network training based on noisy input-output data, is not addressed in this paper. 
Also, neural networks need the backpropagation procedure for their training, a 
stochastic gradient procedure which is known to be of prohibitive cost. In turn, 
neural network training works even for very large dimensional input data. 

Breiman's Hinging Hyperplanes 

We now briefly discuss a recent technique due to Breiman [50], which prac-
tically combines some advantages of neural networks (in particular, the ability 
to handle very large dimensional inputs) and of constructive wavelet-based esti-
mators (the availability of very fast training algorithms). Breiman's technique is 
a very elegant and efficient way of identifying piecewise linear models based 
on data collected from an unknown nonlinear system; see [8] for the use of 
such models in control. Following [50], we call a hinge function a function 
y z= h(x), X e R^, which consists of two hyperplanes continuously joined to-
gether, that is, an open book; see Fig. 1. 

If the two hyperplanes are given as 

y = {P^,x)+p^, y = {r,x)-^P^, 

where {•, •) denotes a scalar product in EucHdean spaces, then an expUcit form for 
the hinge function is either 

h(x) = max(()6+, X) + p^, i r , X) + p~), 

or 

h(x) = rmn((P^,x)+p^, {r,x)-\-p-). 
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least squares 

fit 

least squares 

fit 

Figure 1 Hinge function on R^. On each side of the comer, the best fit is just performed via linear 
least squares. 

It is proved in [50], using the methods of Barron [51], that there is a constant C 
such that for any n there are hinge functions / i i , . . . , A„ such that 

/-E^'i [0,1]^ 

/=1 

< Cn -1/2 (39) 

for any / such that 

/ \(o\^\f{a))\d(o <oo\ 

that is, Breiman's hinge model is as efficient as neural networks for the L2-norm. 
An iterative projection algorithm is proposed to compute the approximation. The 
interesting point about this iterative approximation technique is that it converges 
with a magnitude order faster than back propagation does. To understand why 
this can happen, consider the simplest case where x is of dimension 1, / itself 
is a hinge function, and we try to fit a single hinge approximant [i.e., n = 1 in 
(39)]. Thus we have to estimate the four unknown parameters (^S ,̂ p^). This is 
done iteratively as follows. First, guess the comer of the hinge (i.e., the x where 
both arguments in the "max" or "min" are equal); call it jc(0). Selecting only those 
X > x(0) with corresponding j ' s , a first estimate for, say, {p^, PQ) is obtained 
by ordinary linear least squares fit, and similarly for x < x(0). Thus we now have 
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a first hinge / ( I ) , which yields a new comer ;c(l), and so on. This converges ex-
tremely rapidly. In contrast there is no such fast procedure for a single neuron with 
adjustable parameters to estimate an unknown single neuron, because the stochas-
tic gradient must be used even in this case. A method based on nested iterations of 
the preceding kind is proposed in (39) to fit general / ' s . Reported experimental 
results show the efficiency of this technique. These experiments show that practi-
cally the approximation obtained is much more accurate than is suggested by the 
estimate in (39). On the other hand, note that a superposition of hinge functions 
is not smooth, because it is piecewise Hnear. Also the use of the superposition of 
hinge functions is especially advocated in (39) for large-dimensional jc's. How-
ever, as indicated at the beginning of this section, no convergence rate is given 
for models identified from noisy data [the bound (39) is not a convergence rate 
for identification, but only a rate of approximation of a given function by some 
finitely parametrized class of approximants]. 

III. WAVELETS: WHAT THEY ARE, AND THEIR 
USE IN APPROXIMATING FUNCTIONS 

Warning. Throughout this section, the notation (p{(o) denotes the Fourier 
transform of the function (p{x), and not the estimator of cp. 

A. CONTINUOUS WAVELET TRANSFORM 

The continuous wavelet transform and inverse transform of a function / are, 
respectively, given by Eqs. (41) and (42). These transforms use two functions 
ylr{x) and (p{x) e L2(R^), both radial (i.e., depending only on |jc|), known as the 
analysis and synthesis wavelets: 

THEOREM 3. Let i// and cp be radial functions satisfying 

/•OO 

VO^GR"^: / a-^^{aco)if(aa))da = l, (40) 
Jo 

where we recall that 0ico) denotes the Fourier transform of the function (pix). 
Then for any function f e L2(R^), the following formulas define an isometry 
between L2(R^) and a subspace o/L2(R^ x R+) [6]: 

u(a, t) = a^-^f^ f f(x)i/{a(x - t)) dx, (41) 

f(x) = f u{a, t)(p{a(x - t))a^-^''^dadt. (42) 
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Here, a e R"̂  and t € R^ are, respectively, the dilation and translation fac-
tors. Note that the integral (40) does not depend on co :J^ 0 because the functions 
x/r and cp are radial. For this integral to be properly defined, it is sufficient that, 
for example, 0((o)ir((o) = 0(\(o\)\ this happens if (p(x) and (1 + |x|)i/r(A:) are 
in Li(R^) n L2(R^) and ^ has zero integral. Once the integral (40) is well de-
fined and finite, a simple normalization leads to a pair ((p, yj;) which satisfies the 
assumption. 

Examples 

One can verify that the following pairs i/r, cp satisfy the assumption: 

^{x) = 4l{d - |jc|^)exp(-|;c|V2), ip(x) = V2exp(-|;c|V2), 

V (̂x) = ip(x) = -^{d - \x\^)cxp{-\x\^/2) 

and, in the one-dimensional case: 

1 — | jc | 
xirix) = -sign(x)l{|;c|<i}, (pM = —-—l{|x|<l}, 

i^(x) = - l { - l < j c < - l / 2 } + 1 { - 1 / 2 < A : < 1 / 2 } " 1{1/2<A:<1} , 

(p(x) = A~^exp(-|x|V2), 

with X = -0.03527343656... and 1{A} is the indicator function of the set A. 
The choice of possible pairs i/r, (p is very large. In particular, pairs (V̂ , (p), with x// 
nonsmooth but cp smooth, are allowed. 

Time-Frequency Localization 

Even this simple construction provides a very interesting property: roughly 
speaking, the behavior of the function u(aj), when the scaling factor a is fixed, 
measures the smoothness of / in the neighborhood of point t. This focusing effect 
is called "time-frequency localization" (see the discussion in [6, Chap. 2]). It is 
not provided by the Fourier transform [the behavior of the Fourier transform f{co) 
reflects the global smoothness of / ] . Unfortunately, these localization properties 
of the continuous wavelet transform cannot be used for estimation, because there 
is no associated algorithm to compute this transform. For practical purposes, the 
reconstruction formula (42) has to be discretized: 

fix) = J^Ui(p(aiX-ti); (43) 

this point will be discussed in Section III.B and in the following sections. 
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B. DISCRETE WAVELET TRANSFORM: 
ORTHONORMAL BASES OF WAVELETS 
AND E X T E N S I O N S 

Multiresolution analysis introduced by Mallat and further developed by 
Daubechies provides orthonormal bases of L2(R) of the form il/j^kM = 
{2J^^\l/(2Jx — k): 7, k e Z}; that is, each element of the basis is a translated 
and dilated version of a single wavelet ^fr. For a function / G L 2 ( R ) , the inner 
product (/, V̂ y,jt> performs zooming on / over an 0(2~J) width interval centered 
at point 2~'^k. Thus large j corresponds to checking the function f at fine scales. 
This implies that a local singularity of a function / will affect only a small part of 
its coefficients in this wavelet basis. This is the main difference with the Fourier 
basis: a local singularity of / would affect the whole Fourier representation. 

1. Definition and Construction of Orthogonal Wavelet Bases 

To begin, we first discuss the scalar case, that is, that of functions defined 
on R . Otherwise explicitly stated, all results in this subsection are borrowed from 
monograph [6]. 

DEFINITION 2 (Multiresolution analysis). A multiresolution analysis (MA) 
consists of a function^, \\(p\\2 = 1, and a sequence (V))yGZ of spaces defined by 

(pjk = V'MVx-k), j,keZ, 

Vj = Spm{(pjk, k€Z], 

with the properties: 

(MAO) ((pok)keZ is an orthonormal family; 
(MAI) Cijezyj = {0}; 
(MA2) [jj^^V.=L2iR); 
(MA3) Vj C Vy+i. 

Property (MAS) is equivalent to the existence of a square integrable sequence (hk) 
such that 

(p(x) = V2j2hk(p(2x - k). (44) 

We call such a function the scale fiinction (also known as the father wavelet [5]). 
Theorem 4 to follow is the basis of the theory; it shows how, starting from a 
multiresolution analysis and its scale function <p, we can construct very simply an 
orthonormal basis of L2(R). 
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THEOREM 4. Assume that conditions (MA0)-(MA3) are satisfied. Set^^ 

gk = (-l)*+i^i_fc, fix) = VlJ^gkfi^x-k), 
ifjk = V'^f{Vx-k), 

Wj = Sipsaifjk, k e Z). (45) 

Then 

1. Vy+i = Vj 0 Wj and {tl/jk'- j.k eZ] is an orthonormal basis in L2(R); 
2. L2(R) = Vb 0 ^0 © Ŵi 0 • • • cind {(pok, i^jk- j ^0,k eZ] is an 

orthonormal basis in L2(R). 

The function ir{x) defined in (45) is often referred to as the ''mother wavelet!' 

Multiresolution analysis and orthonormal wavelets are depicted in Fig. 2. 
Then Theorem 5 gives the basic tool for building scale functions. 

THEOREM 5. Let mo {(o) be a trigonometric polynomial 

mo( 
iko) 

V2 k^K 

such that 

(QMFl) mo(0) = l; 
(QMF2) m o M ^Oifcoe [-7t/2, n/l]; 
(QMF3) \mo(co)\^ + \mo(o) 4- 7r)|2 = 1. 

MMIMpilMll i l l l l i imi l l^^ 

W W W W 
Figure 2 Haar basis (left side) and a wavelet basis (right side). The first row shows the scale function 
(p and the subsequent rows show wavelets i/r at two successive scales. 

^^h denotes the complex conjugate ofh. 
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Then the function cp, with Fourier transform given by 

00 

satisfies assumptions (MA0)-(MA3) and supp((p) C [K, L]. 

Examples of polynomials satisfying assumptions (QMF1)-(QMF3) are given 
in [6] and the smoothness properties of (p and x/r are studied. Links with multirate 
digital signal processing and quadrature mirror filter (QMF) banks are discussed 
in [52]; see the next subsection. 

We now move on to discuss the multidimensional case. There exist two main 
types of constructions of the wavelet basis with dilation factor 2 in R^ [6, 10.1]. 
A first guess simply consists of taking tensor product functions generated by d 
one-dimensional bases: 

^Jl,ku-.;Jd,kdM = ^ji,ki(^l) X • . • X \l/jj,kA^d)' (46) 

This construction has the drawback of mixing different resolution levels ji. Al-
ternatively, if such a mixing is not desired, we proceed as follows. Introduce the 
scale function 

O(^) = (p{xi) X . . . X (p(xd) (47) 

and the 2 ^ - 1 mother wavelets ^^^\x), i = 1 , . . . , 2^ — 1, obtained by substitut-
ing in (47) some cpixjYs by V (̂jCy)'s. Then the following family is an orthonormal 
basis of L2(R^): 

{<^Ok(x), vl/ j \ jc), . . . , ^fk~^\x)}, 7 e No, /: = (/:i , . . . , kd) e Z^, (48) 

where No = N U 0, and 

(t>jk(x) = V^f^^iVxi - / : i , . . . , Vxd - kd) 

vi/f>(x) = V^'^^^^\Vxi ~ fci,..., Vxd - kd). 

Note. As formula (48) shows, constructing and storing orthonormal wavelet 
bases become prohibitively costly for large-dimensional d. This is the main limi-
tation for using the otherwise very efficient techniques which rely on orthonormal 
wavelet bases (and their generalizations). 
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2. Orthogonal Wavelet Bases and Quadrature Mirror Filters 

For the sake of simplicity, we only discuss the one-dimensional case. Equations 
(44) and (45) imply that,̂ '̂  for / € L2(R), 

satisfy ̂ ^ 

(Xjk = {f,cPjk), Pjk = {f,irjk) (49) 

oijk = ^hi-2kOCj-^ih (50) 

Introduce the polynomial filters 

H{z) = J2^kZ-^^ G(z) = ^ ^ i t ^ - ^ (52) 
k k 

where the coefficients hk, gk are as in (44) and (45). Also denote by |̂ ^^ the 
decimation of a signal by a factor of 2: 

1^^^ (Xn) = (X2n). 

Thus, if we consider ajk as a signal indexed by k and denote it by a^, relations 
(51) translate into 

and property (QMF3) expresses that the pair (H, G) is QMF [52, 53]. Equations 
(50) and (51) are used to compute recursively from fine scales to coarse scales 
the orthonormal wavelet decomposition. Assume that, in addition, the scale func-
tion (p is selected so that the computation of the inner product {/, (pjk) in (49) is 
performed efficiently for some scale j . Then formulas (49)-(51) together build 
a highly efficient procedure for computing the wavelet decomposition of f. As 
pointed out at the end of the preceding subsection, orthonormal wavelet bases be-
come prohibitively costly to store for large-dimensional d, however. Scale func-
tions ip are proposed in [6], with vanishing moment conditions, for which 

(/,^,-^> = /(2-^/:) + 0(2-^^') (53) 

holds, where the integer M is related to the number of vanishing moments (such 
scale functions are often referred to as "coiflets"). Note that the preceding approx-

^^Recall that (•, •) denotes the inner product in L2. 
^̂  Recall that h denotes the complex conjugate of h. 
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imation is at the same time good and very easy to compute. Alternative techniques 
to get simple approximations similar to (53) are proposed in [54, 55]. 

Because QMF pairs are known to allow exact reconstruction of filtered-and-
decimated signals [52, 53], Eqs. (50) and (51) can be "inverted" to yield the syn-
thesis equation 

otjk = ^hk-2ioij-i,i + gk-2iPj-i,h (54) 
/ 

For / € VjQ, we have, by definition of this space, 

f = Yl^Jok(Pjok^ (55) 
k 

and, because V/Q = Vb ® Wo 0 Wi 0 • • • ® WJQ, 

f = Y^ aok(pOk + Yl Pjk'^Jk- (56) 
k j,k 

Formulas (50) and (51) allow us to switch from representation (55) to represen-
tation (56). The latter one is generally much more compact because, when / is 
smooth, most Pjk are neghgible. In the multidimensional case, / e L2(R^), for-
mula (56) generalizes as follows: 

00 2^-1 

ctjk = {/, <^jk), Pjl = (/, ^Jl), (57) 

where the Ooit's and ̂ 2'^ are the basis functions defined in (48). 

C. WAVELETS A N D F U N C T I O N A L S P A C E S 

We first state a result [5, 56] concerning functions that satisfy Holder-type 
conditions. This result then motivates introducing Besov functional spaces. Recall 
that a function / is called Holder continuous with exponent s at point JCQ, written 
/ € Ĉ Q, if there is a polynomial P of degree at most L̂ J such that^^ 

\nx)-P(x^xo)\<C\x-xo\'. 

^^Recall that [sj denotes the largest integer < s. 
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If / is Holder continuous, with exponent s at XQ, then there exists C < oo such 
that, for j > 0, 

max {/, xlTjk) < C2--̂ '̂ "+ /̂2>. (58) 
{k: xoesuppxj/jk} 

Conversely, if (58) holds and / is known to be C^^ for some £ > 0, then 

2 
| / (^ ) - P(x -xo)\< C\x - xo\' log 

\x -xo\ 

This result states that local smoothness of Holder type can be characterized 
with the vanishing rate of the wavelet coefficients in the neighborhood of this 
point. This property is specific to the wavelet transform, and does not hold for 
other orthogonal bases. This remark also motivates introducing Besov spaces of 
functions. 

1. Besov Spaces as Spaces of Smooth Functions 
with Localized Singularities 

Smooth functions with sparse singularities are typically encountered in nonUn-
ear systems, for example, in mechanical and chemical systems. As we shall see, 
Besov spaces are spaces 

• of smooth functions with possibly localized singularities, 
• in which norms are easily evaluated using wavelet coefficients. 

For the sake of clarity we consider only compactly supported functions 
/ : supp/ c [0, 1]^, though all of the following definitions can be general-
ized for the noncompact and multidimensional case (we recomend [57, 58] as 
extremely complete presentations of the current state of the theory of functional 
spaces). 

For / € Li and M G N we define the local oscillation of order M (or M-
oscillation for short) at the point jc G [0, 1] by 

OSCM/(:C, t) = inf ^ / \f(y) - Piy)\dy, (59) 
P t J\x-y\<t 

where the infimum is taken over all polynomials P of degree less than or equal 
to M. This quantity measures the quality of the local fit of / by polynomials on 
balls of radius r. 
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Select p,q > 0, s > d(p~^ — 1), and take M = Is}. The following set of 
functions: 

S ^ ^ = / € L u p : \\f\\Bs^^ = \\f\\p 

( 00 \ ^̂ ^ 1 

J^i^J'WoscMfix, 2-J)\\pr J < oo (60) 
(with the usual modification for p or q = oo) is identical to the Besov spaces of 
functions [59], and it is shown in [57] that || • \\jss is equivalent to the classical 
Besov norm. 

Comments 

1. The triple parametrization using s, p, and q provides a very accurate 
characterization of the smoothness properties. As usual for Holder or Sobolev 
spaces, the index s indicates how many derivatives are smooth. Then, for larger 
P^ 11/II5^ is more sensitive to details. Finally, the index q has no useful practi-
cal interpretation, but it is a convenient instrument that serves to compare Besov 
spaces with the more usual Sobolev spaces W^, as indicated next. It is interesting 
to notice that the indicator functions of intervals belong to the spaces B^_^ for 
all ^ > 0, this illustrates our claim in the title of this subsection. 

2. It can be shown that (cf. [57]) for ^ > 0, 0 < /?, ^ < oo: 

• The family of Besov spaces includes some more classical spaces. For s 
noninteger. Holder classes C^ = S^QQ, and Sobolev spaces Wl = S22' 

• B'pq C B'p,^, ifp'^p,q'^q,s'< s-d/p-^d/p' (strict inequality if 
p = oo); 

• B^pq c Lp c S^^, where ^ = 2 A /? and ^' = 2 v p; 
.B^ppCW^pCB^p^forp^l; 
• B'p^cW;cB'ppfovp^2. 

In particular, if ^ > d/p, then S^^ C C. 

2. Approximation in Besov Spaces: Some General Results 

We consider the J-dimensional case and supp/ c [0,1]^. Free-knot spline 
approximations have been analyzed in [60, Theorems 7.3 and 7.4] using Besov 
spaces. Recall that a function /„ is called the spline function on [0, 1] of order k 
with n knots if /„ G C^"^ and there exist points (knots) 0 = JCQ < JCi < JC2 < 

• < Xn-i < Xn = I such that /„ is an algebraic polynomial of degree k — I 
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in each interval (jc/_i, jc/). Therefore, a spHne is a smooth piecewise-polynomial 
function. One can also consider a J-dimensional spline which is the natural gen-
eralization of the one-dimensional one. 

We now state the so-called Jackson inequality for spline approximations. Con-
sider / G B^pq, p,q > 0. Then there exists a spline function with n free knots fn 
such that the following bound holds: 

11/. - fWu < C(5, p, ^)«-^/^ | | / | l5^^, (61) 

where u satisfies s — d/p -\- d/u > 0. The converse bound is provided by the 
Bernstein inequality: For any f e Lu, s — d/p + d/u = 0 , u < oo, 

\\f\\Bs^^<C(s,p,q)(l-^n'/^mf\\f-fn\\u), 

where the infimum ranges over the set of spline functions /„ of order A: > ^ + 2 
with n free knots. A similar result holds for «-order rational fraction approxima-
tions', see [60, Theorem 8.3]. 

In contrast, linear approximations perform poorly in Besov spaces. Consider 
some increasing family (£„) of fz-dimensional linear subspaces of Lu, u > p. 
Let /„ denote the linear projection of / € B^^ on £„ using the L^-norm. Then, 
for any such family (>C„), there exists a least favorable / such that the following 
lower bound holds: 

\\f-fn\\u>Cn-''^''\\f\\g,, (62) 

where s^ = s — d/p + d/u. Consider again the example of the indicator func-
tion f(x) = l{o<;c<a}- Recall that / e B^_i for any ^ > 0. On the one hand, 
(61) shows that / is approximated using rational fractions with an L^-error of 
order 0[Qxp(—C^)], where n is the order of the rational fraction [60]. Thus 
rational approximations are very efficient for such a function, and the same is true 
for splines with free knots. On the other hand, by (62), linear approximations of 
the same function have an Lw-error of order 0(n~^/"), where n is the dimension 
of the linear subspace, which is extremely poor for large u. This remark would 
make rational approximations or splines with free knots very attractive for ap-
proximation in Besov spaces. Unfortunately, such approximations are very hard 
to compute, for example, the optimal positioning of the knots of the spline ap-
proximation is very hard to find. It is amazing that wavelet approximations are as 
good as spline or rational ones, but are much more easily constructed. We discuss 
this next. 
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3. Wavelets and Besov Spaces: Mathematically Efficient 
and Practically Effective 

Let (̂  be a piecewise-continuous scale function satisfying the following condi-
tions: 

3a > 0: suppcp e [\x\ < a], (63) 

3r>s:cpe B^^. (64) 

We have the following result (cf. [61, Theorem 4]): 

THEOREM 6 (Besov norms and wavelet decompositions). Let s > d(l/u — 
1) and let cpbea scale function satisfying conditions (63) and (64). For any / € 
B'pq, define 

and WPj. \\p = (Zi,k \Pfk 1 )̂̂ ^ '̂ see (49) and (57) for the definition of coefficients 
ak = oiok and Pj^. Then (65) is equivalent to the norm of Besov space B^ ' that 
is, there exist constants Ci and C2, independent of / , such that 

Cl\\f\\B^^^<\\f\\spq<C2\\f\\B^^^. (66) 

Theorem 6 states that norms in Besov spaces are suitably evaluated using or-
thonormal wavelet decompositions. This fact can be used to obtain very efficient 
approximations. 

We now indicate how such a wavelet approximation of / can be constructed. 
Consider the full wavelet decomposition of / : 

00 2^-1 

fix) = E«o^^oit(^)+E E E ^MkM' (67) 
keZ j=OkeZd 1=1 

1. Keep the projection of / on the subspace Vb; this corresponds to the 
leftmost sum in (67). When / and O are both compactly supported, this 
requires computing only a fixed amount of coefficients, say m. 

2. Select in the second (triple) sum those coefficients Px, X = (i, j,k), with 
largest absolute value; denote by A the set of the n — mso selected 
wavelet coefficients. 

3. Add n -m detail terms ^x^k to the sum taken in step 1. 
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This procedure yields the approximation 

m coeffs. 7̂ 0 keep the largest n—m coeffs. 
(/,<!> compact, supp.) 

and the following theorem provides corresponding approximation bounds. 

THEOREM 7 (DeVore et al [62]). Consider f e B^p, s, p > 0 and s -
d/p + d/u > 0. Let Wn denote the approximation (68) of f. If the scale function 
satisfies conditions (63) and (64), then 

\\f -Wn\\u<C{s,p)n-'/^\\f\\Bs^^ 

holds. If, in addition, u satisfies s — d/p + d/u = 0, M < cx), and it is a priori 
known that f e Lu, then the following converse bound holds: 

\\f\\B^^^<C(s,p,q){l-\-n'/^\\f-Wn\\u)-

This result is very interesting to us. It implies that, in the wavelet decompo-
sition of a function / e Bp^, p < 2, only a small number of coefficients are 
important, and the other ones can be neglected. Consider once more our example 
f(x) = l{o<x<a}' Consider the wavelet decomposition of this function using a 
compactly supported wavelet xl/(x) such that/ \lr(x) dx = 0. It is evident that the 
coefficient ^jk vanishes for any wavelet i^jk(x) which does not cross the (local) 
singularities of / . Thus, if we consider the projection of / on the subspace V), 
only O (j) coefficients of the decomposition significantly differ from zero (among 
2^ potential candidates). 

Discussion 

At this point, we have the requested background for understanding how to per-
form wavelet-based estimation. Roughly speaking, the crux is the following. The 
function / e B^p^ to be estimated can be approximated using the expansion Wn in 
(68) with n terms. This is achieved with a rate of 0(n~^^^). Then the coefficients 
ak and Px in (68) are estimated via empirical means based on N noisy observa-
tions, exactly as for the projection estimates in Section II, formula (28). The mean 
square error on the estimate of each coefficient is 0(1/N). Thus the total mean 
square error of the estimate will be, as usual, the sum of the stochastic part and 
of the bias due to the approximation error: this yields 0(n/N) + 0{n~^^f^). The 
optimal choice for n balances these two terms: n = }j^/0'^+^). This choice for n 
yields a quadratic error of order fsj-'^s/iis^-d) (independent of /?, q). As we shall 
see, this is the typical minimax rate of convergence on Besov spaces. Thus we 
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might be ready to deduce that wavelet estimators are minimax optimal in Besov 
spaces. Unfortunately, the set A of "important" coefficients in truncation (68) is 
not known a priori when noisy data sets are at hand for estimation. Thus some 
kind of hypothesis-testing problem must be solved to obtain the optimal approx-
imation. This adds to the estimation problem a nice stochastic flavor. We address 
this point in the next section. 

IV. WAVELETS: THEIR USE 
IN NONPARAMETRIC ESTIMATION 

We consider here some simple results concerning the estimation of a regression 
function or a density / : R^ -> R, and we assume / to be compactly supported 
(supp / c [0,1]^). For the sake of simpHcity, we measure the estimation error in 
the L2-norm. Similar results were proved for a general ^/-dimensional case and a 
variety of error measures, which includes, for instance, L^-norms for 0 < /? < oo 
(see the references at the end of the section). We successively discuss the problems 
of nonparametric regression and density estimation. 

A. WAVELET SHRINKAGE ALGORITHMS 

Nonparametric Regression 

Assume an A^-sample of input-output observations of the following system are 
available: 

Yi=f{Xi) + Wi, 

where (X/) and {wt) are i.i.d. sequences of random variables, X/ is uniformly dis-
tributed on [0,1]^, and Ewi = 0, Ew^ < a^. These assumptions are introduced 
for the sake of simplicity. They can be weakened, in particular, the (unusual) as-
sumption that X is uniformly distributed can easily be relaxed; see [63]. This 
would introduce additional burden to our presentation, however. 

For / G L2, recall the wavelet expansion 

00 i^^-i 

fix) = ^ao^cDo^(^) + i ; X ] E ^fMkM^ (69) 
keZ j=Ok€Z^ /=1 

where 

ctok = j f(x)<t>ok(x) dx and pfl = j f(x)^fl(x) dx. (70) 
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To construct an estimate of / , a first idea consists of using the law of large num-
bers and replacing, in expansion (69), the coefficients ak and ^^-l by their empir-
ical estimates 

N ^ N 

aok(N) = ^ E Yi<^Ok(Xi) and pfl(N) = ^ E ^^-^y^^^)- (^D 

Note that the assumption that input X is uniformly distributed has been used at 
this point. 

Density Estimation 

Assume independent observations Xi, ...,XN of some random variable X 
with unknown density / (x ) are available. Again / can be expanded using (69) 
and (70). However, it turns out that 

ciok = / f(x)^ok(x)dx = Ef^ok(Xi), 

where E / denotes expectation with respect to density / , and the same holds for 
the P's. Thus empirical estimates of the wavelet coefficients ak and Pjk are given 
by 

N N 

Thus both nonparametric regression and density estimation are faced with the 
same issue: in formulas (71) and (72), there may not even be available X/ 's within 
the support of many of the O's and ^ ' s ! We shall now discuss this key point for 
the case of density estimation. 

Obviously, to compute the empirical coefficient fiV, we need that at least sev-
eral observations Z/ hit the support of ^jl(x). Statistical laws of loglog type 
guarantee that this would generically hold for scales that are not too fine. More 
specifically, for j < 7max» where 

Thus, using brute force, we set pV = 0 for j > jmax- At this point, we have 
built an estimator of the linear projection type, as in the case of Fourier series in 
Section II.A. Because these estimators are linear, we cannot expect them to be 
efficient for Besov spaces [64]. 
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First Proposal 

Our first attempt to construct an "interesting estimate" is, following the intu-
ition at the end of the previous section, to keep a properly chosen number of co-
efficients with largest absolute values and set the others to zero. More precisely, 
let us consider the set A„ of pairs X = (j, k) corresponding to the n estimated 
wavelet coefficients ^jj^^ with largest absolute values. We construct the estimate 
/N as follows: 

00 2^-1 

k j=OkeZ^ 1=1 
V ^ ' V ^ . 

m coeffs. /O keep the largest n-m coeffs. 
(/,4> compact, supp.) 

The following result can be proved about estimate (73) [see (60) for the definition 
of the Besov spaces]: 

THEOREM 8. Let f e B ^ ^ with s > d/p, ||/||oo < oo. Ifn = Ari/(2^+^) is 
selected in (73), then 

E\\fN-f\\l = 0\^—j . (74) 

The idea of the proof of Theorem 8 is quite intuitive and typical for wavelet 
estimators. We follow the argument at the end of the previous section with the only 
following difference: because no information is available about the distribution of 
the error IPx — fixl^ork e An, we take a cautious upper bound for it: 

m, - .̂Pi,4,o, ̂  E sup |̂ 7> - <>f = o ( ^ ) , 
which explains the extra logarithmic factor in (74). 

Final Solution 

Note that n in Theorem 8 depends on s, which is generally unknown. Hence, 
to complete the estimation algorithm, we need a method to estimate our model 
order n. Though generalized cross-validation techniques could be used, we prefer 
a somewhat different estimation approach developed by Donoho et al. (see the 
following references). It uses simple thresholding rules^^: 

^^We consider here the so-called "hard thresholding"; meanwhile, other rules can also be studied, 
for example, "soft thresholding" [65]. See also the discussion in [66]. 
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where Xj is a threshold parameter, so we set 

00 2^-1 

In other words, in expansion (69), we keep those empirical estimates of wavelet 
coefficients which exceed some properly selected threshold. How this threshold 
should be selected is provided by the following result: 

THEOREM 9 (Donohoetal [41,67]). Let f e B'p^ withs > d/p, \\f\\oo < 
oo. Select Xj = k = v^C In N/N, with an appropriate C < oo. Then 

/lnA^\^"/^^"+^^ E\\fN-f\\l = 0l^^^ 

The constant C in the expression for the threshold parameter A is a sort of a 
"hyperparameter" of the procedure, which can easily be estimated; see [66, 67] 
for related discussions. Note that the estimator fy is adaptive because it does not 
require prior knowledge of the regularity parameter 

Discussion 

• Theorem 9 has the following intuitive explanation. As already mentioned, 
Besov classes S^^ for /? < 2 have a special structure: a relatively small number 
of "important" wavelet coefficients are sufficient for obtaining a good function 
approximation. In the wavelet decomposition (ak, pj) using noisy data, all coef-
ficients are "contaminated" by noise. A central limit theorem argument suggests 
that this noise is approximately Gaussian with zero mean and variance 0(l/N). 
Thus loglog law implies that the maximal error in the estimates has magnitude 
given by 

Thus, when small (according to the threshold X in Theorem 9) coefficients are 
shrinked to zero, noise is canceled with very high probability. On the other hand, 
coefficients exceeding this threshold are likely to be significantly different from 
zero. This property of thresholding explains another useful feature of the estima-
tor: the estimate fN has the same regularity as the unknown function / to be 
estimated (cf. the discussion in [41]). 

• Let us now consider again our example of estimating the regression func-
tion or density f(x) = l{o<x<a}- Theorem 9 states that the mean square rate of 
convergence of the wavelet estimator for any bounded function / e B^_i is 
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very close to OiN"^), which is nearly as good as the "parametric" rate of con-
vergence, though the function we estimate is not even continuous. Let us compare 
the preceding results with the lower rate of convergence for this problem obtained 
in [68]. Using Comment 2 of Section III.C.l, the following lower bound is a di-
rect corollary of the results of [68] which were originally formulated in terms of 
Sobolev spaces: 

inf sup EWfN- fh > C7V-̂ /̂(̂ ^+^> (77) 

for any estimator //v. As compared to (77), there is an extra logarithmic factor 
in the upper bound of Theorem 9. In the more subtle construction presented in 
[46], this logarithmic factor is eliminated (and even a precise minimax constant 
is obtained) in the case of Gaussian noises and deterministic design (observations 
are xt = i/N, / = ! , . . . , A )̂. In [69] a cross-validation procedure is proposed to 
adapt the optimal algorithm to unknown smoothness. Finally, in [66] the authors 
of this paper showed that properly selecting the threshold k for shrinking pro-
vides the optimal rate of convergence (without a logarithmic factor). An adaptive 
version of this algorithm is developed in [70]. 

B. PRACTICAL IMPLEMENTATION 
OF WAVELET ESTIMATORS 

We now move to the practical implementation of wavelet estimators. We pro-
pose two versions of it which differ in the way the empirical estimates of the 
wavelet coefficients ajk and Pjk are computed. The first one, called it direct real-
ization, is based on the explicit formulas (71) and (72) for empirical coefficients. 
The second one, called the fast realization procedure, relies on the quadrature 
mirror filters (QMFs) presented in Section III.B.2. 

Direct Wavelet Estimation Procedure for an NSample Length 
(Put Yi = Ifor Density Estimation): The Wavelet Shrinkage 
Algorithm Procedure 

(Recall that the assumption that X is uniformly distributed is required for the 
case of regression.) 

1. Select y'lnax scales for the wavelet expansion, where 

<; '2 Jmax <̂  

InN - - InN 
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2. For j < 7niax, compute the empirical estimates 

N . N 

«̂  = ]^ E Yi'^OkiXi), pfl = -J2 Yi'^jkiXi)- (78) 

3. Shrink these estimates according to 

where Xj is a properly selected threshold (cf. Theorem 9). 
4. The final estimate is given by 

k i,j,k 

This procedure for nonparametric regression can be extended to the case in 
which X is not uniformly distributed over [0,1]^, and has density g(x). In this 
case, we have 

Oik = — ̂ y,<l>oit(X/) ^ / f(x)^ok(x)g(x)dx = / [fg](x)^ok(x)dx 

and similarly for the Pj^^- Thus applying the WSA to estimate the regression 
function / (with the Yt in the empirical estimates) as if X was uniformly dis-
tributed yields, in fact, an estimate [fg]^ of [fg]. From this remark the following 
procedure follows: 

1. apply the WSA to estimate the density g (without the 7/ in the empirical 
estimates); this yields g; 

2. apply the WSA to estimate the regression function / (with the Yi in the 
empirical estimates) as if X was uniformly distributed; this yields /uniform; 

3. the final estimate is / = /uniform/^-

Comment 

The preceding direct estimate has some drawbacks (we consider only the com-
putational aspect for a moment). First, we know that there is no closed form for 
the scale function O or wavelet ^ . Thus, to compute ajk and ^jk, we would 
have to compute and store the values of O and ^ on a fine grid, which is pro-
hibitive. Second, we would like to take advantage of the fast QMF algorithms of 
Section III.B.2 for computing orthonormal wavelet decompositions. We cannot 
apply these algorithms directly on the data, because the available observations 
X i , . . . , XN are randomly sampled and do not form a regular grid. To circumvent 
this difficulty, we preprocess the observations to obtain the empirical coefficients 
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^jmaK,k at the finest resolution level 7max; then we can apply the QMF algorithms 
of Section III.B.2 to compute the coefficients at coarser scales. The proposed pro-
cedure is close to the empirical wavelet transform or hybrid transform, studied 
in [71, Sect. 5]; mathematical details can be found in [55]. We assume that the 
function / is supported on [0,1]^. 

Fast Wavelet Estimator (X Does Not Need to Be 
Uniformly Distributed) 

1. Preprocessing. Select again jmax such that 

2^JmaK ^ 

InA^ - InN 

Let A: = (A:i,..., A:̂ )̂  be a multi-index, and consider the bin 

Ak = [2"-̂ ""̂ ^A:i, 2"-̂ "^ (̂iti + 1)] X • • • X [I'J'^^kd, I'^'^^ikd + 1)]. 

For density estimation, we first take the empirical probability of bin Aĵ  (recall 
that Ajt has volume 2~^^"^^); this yields 

1 ^ 

and then 

For nonparametric regression, similarly, compute 

fN,k = ^ 
2. /=! ^{XteAk} 

and then 

At this point, we have constructed synthetic input-output pairs, where the input 
is the considered bin and the output is the associated otj^^^^k estimate. Getting the 
full wavelet expansion is then performed by applying to these synthetic data the 
QMF fast formulas (50) and (51). 

2. QMF filtering. Use the multidimensional version of filters (50) and (51) to 
computeotjk, ^f^, 7 = 0 , . . . , jmax - 1, / = 1 , . . . , 2^ - 1: 

i 
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3. Shrink the estimates fijl according to 

where Xj is a properly selected threshold (cf. Theorem 9). 
4. Use the "inverse" filter (54) to obtain otj^^x. 

il 

5. Finally, set 

fN(2-J^^k) = fN,k = 2-^^--/2a,-^. 

In this way we obtain estimates of f(2~J'^^k). If this accuracy is not sufficient, 
it is possible to interpolate fy at a finer grid by applying upsampling (81), using 
the filters that are biorthogonal to those associated with the Haar basis (see [6, 
Chap. 8, 71]). 

V. WAVELET NETWORK FOR PRACTICAL 
SYSTEM IDENTIFICATION 

The estimation procedure described in the previous section may not be ef-
fective for X of higher dimension and for sparse input data sets for training. In 
this section we attempt to cope with highly dimensional problems and bad data 
sampling using an alternative technique of wavelet estimation. We present here a 
method for constructing estimators with nonorthogonal wavelets; the correspond-
ing software is available [72]. We investigate Problem 1 of Section LB in the 
case of additive noise; that is, we suppose that the pair of random variables X, Y 
satisfies 

Y = f(X)-\-e, (82) 

where f(x): R^ i-> R and e is some noise of zero mean and independent of 
X. We want to estimate / based on a sample of size Â  that we shall refer to 
as the training data set: O^ = {(Xi, Y\),..., {X^, Yjsi)}^ We are particularly 
interested in training with sparse data sets. Sparse data often occur in classification 
problems and in the modeling of control systems, where available data can be 
relatively few as compared to the dimension of input X. Throughout this section, 
(p shall denote a radial wavelet as defined in Theorem 3; thus we are not using 
orthonormal wavelets. 
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A. ADAPTIVE DILATION/TRANSLATION SAMPLING 

We present here a result which can be regarded as a theoretical justification of 
the techniques in this section. Note that in the orthonormal wavelet expansion 

f{x) = ^aok<^ok{x) + X^i^g^J2(^), 
k Ijk 

the dilation and translation parameters - 2~^J and k do not depend on the function 
to expand and only the linear weights ajk and ^jl depend on / . Suppose that 
we construct a wavelet "basis" with dilations and translations depending on the 
function / . The wavelet expansion of / using these basis functions is expected 
to use less wavelets, and thus we expect it to be more convenient for estimation 
purposes. To obtain such a basis, we discretize the continuous wavelet transform 
(42) (see Section III.A). 

We first recall the following algorithm proposed in [73]. Consider the continu-
ous wavelet transform (42), which we rewrite as 

/(jc) = / M(a, t)(p{a{x - t))a'^~^^^dadt 

= f (p(a(x - 0)sign(M(fl, t))a^'^-^^/^\u(a, t)\ dadt 

= — / (p(a(x — t))sign(u(a,t))w(a,t)dadt, 

where we have renormalized u(a,t) by a. constant factor C so that the function 
w(a, t) = Ca^^~^'^/^\u{a, t)\ can be considered as a probability density. Then 
we draw n independent random samples {ai, ^̂  )/=!,...,« from the distribution with 
density w(a,t). Then we build 

1 ^ 
fnix) = - ^af^ip{ai{x - ti)) sign (M(«/, r,)), 

^ • = l 

(83) 

which, owing to the law of large numbers, converges to the true wavelet transform. 
Some faster implementations of this algorithm are given in [73]. Improving this 
estimate by some "bootstrapping" technique yields the following approximation 
result: 

THEOREM 10 (Delyon et al [73]). (p is any radial wavelet function such 
that there exists a related radial function ij/ which satisfies condition (40). Let 
p, fji,l, p be real numbers satisfying 
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and let f be a function of the Sobolev space Wf (R^); then, for any n > 0, there 
exists a function fn of the form 

n 

fn(x) = Y^Ui(p{at(x - ti)) (84) 

such that 

\\fn-f\\w',<Cn-n\f\\wf. 

In particular, if p > d/2 then 

\\fn-f\\i<n-'f^C\\ff,. 

Comment 

Theorem 10 provides us with an upper bound for the rate of approximation 
when adaptive dilation/translation sampling is used to discretize the continuous 
wavelet transform. We should compare this rate with rates of convergence for ap-
proximations based on fixed dilation/translation sampling. For example, the fol-
lowing theorem is proved in [73]: 

THEOREM 11. Let p = 2 and p = d/2 -\- s, s > 0. For a collection 
hi,,. .,hn of basis functions}^ consider the error 

Vn = , inf sup 11/ - span{/ii,..., hn}\\2, 
hi,...,hn 11/11 

where span{- • •} denotes the linear space spanned by the listed functions, and 
the supremum is taken over the unit ball B = {/: | |/ | |^ < 1} of the Sobolev 
space W p Then there exists a universal constant C such that, for any fixed basis 
hi, ...,hn, 

Vn > Cn-'f^. 

The result of the theorem implies that for any ̂ e J basis hi, ...,hn and any set 
of(Xi,...,an, there are "worst functions" / for which a projection approximation 
/^'^(A:) of the form 

fl:(x) = J2^ihi 
i=l 

can take, for instance, the trigonometric basis on [0,1]", or a truncated wavelet basis with 
fixed dilation and translation sampling. 



366 A. Juditsky et al 

converges much slower than the approximation (84). Note that this is not in con-
tradiction with the optimahty of wavelet shrinkage procedures, because shrinking 
coefficients in the wavelet expansion make the estimator nonlinear. 

B. WAVELET NETWORK AND ITS STRUCTURE 

Though the preceding adaptive dilation/translation sampling algorithm pro-
vides us with a good basis, its implementation using a Monte Carlo technique is of 
prohibitive computational cost. We rather implement adaptive sampling in a dif-
ferent way, by combining regressor selection and backpropagation algorithms to 
find good dilations and translations. The resulting estimator is called the wavelet 
network. Related works have been reported in [74-76]. We refer the reader to [74] 
for heuristic comparisons between neural and wavelet networks. For any wavelet 
function (p\ R^ ^^ R, the wavelet network is written as follows: 

n 

fnix) = ^Ui(p{ai * (x - ti)), (85) 
/=1 

where ui e R, at e R^, tt e R^, and "•" denotes the component-wise product 
of two vectors. Note that we could have used scalar dilation parameters at, but we 
prefer vectorial dilation parameters because they considerably increase the flexi-
bility of network (85) at a reasonable price. The structure of the wavelet network 
is depicted in Fig. 3. 

In this section we present an efficient comprehensive method for wavelet net-
work training. The following is an outline of this method: 

1. Construct a library W of dilated/translated versions of a given wavelet cp. 
This library W is adapted to the available training data set, by selecting a 
subset from all dilated/translated versions of (̂  on a regular grid. This 
technique makes it feasible to build the library W even for significantly 
large input dimension when the training data are sparse. 

2. Not all wavelets from library W are useful in fitting / from noisy data, 
however. This leads to the problem of selecting the best wavelet regressors 
among W. Three heuristic methods will be proposed for this. When the 
regressors are conveniently selected, fitting model (85) amounts to 
identifying the w/ coefficients, which is a standard least squares estimation 
problem. 

3. Steps 1 and 2 yield a fast training procedure. The result can still be further 
improved by subsequently applying an iterative backpropagation algorithm 
with steps 1 and 2 as fast initialization. In fact, because initialization was 
good, a faster Newton procedure can be used. 

More details of each step are given in the following discussion. 
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a wavelon 

Figure 3 Wavelet network. A wavelon is shown, which corresponds to one term (p{ai • (;c — r/)). 
Dashed arrows figure output connections to other wavelons. 

C. CONSTRUCTING THE WAVELET LIBRARY W 

First, we should build a library W of wavelets which will be considered as 
candidates of regressors. We have to restrict ourselves to a finite set of regressor 
candidates, in order to apply regressor selection algorithms. Naturally W is cho-
sen to be a subset of the continuously parameterized family {(p{a{x — t)): a e 
R"̂ , r G R^}. The choice of W is in principle the same problem as discretizing 
the continuous wavelet reconstruction (42) to obtain the discrete reconstruction 
(43). The standard discretization is a regular lattice: 

[(pia^x - into): n eZ, me Z^}, (86) 

where ao, ô > 0 are two scalar constants defining the discretization step sizes 
for dilation and translation, respectively. Typically we take a dyadic lattice. Now 
the countable family (86) should be truncated into a finite set. Usually we only 
want to estimate f{x) on a compact domain Z) c R^ and the wavelet function 
(p{x)is chosen to have compact or rapidly vanishing support. Therefore, we can 
replace in (86) m e Z^ by m e St with a finite set St C Z^; on the other hand. 



368 A. Juditsky et at. 

n eTj should be replaced hy n e Sa with a finite set Sa CIJ corresponding to the 
"desired" resolution levels of the estimation. In practice, four or five consecutive 
dilation levels are usually sufficient, with the largest wavelet scale corresponding 
to the size of D, the compact domain on which / is to be estimated. After such a 
truncation is performed, the family (86) is replaced by 

{(p{alx - mto): n G Sa, m e St(n)}. (87) 

Note that the cardinality of this wavelet library grows exponentially with the di-
mension d. The following procedure is used to overcome this curse of dimension-
ality when the training data are sparse: scan the training data set Of\ for each 
sample point in O^, determine the wavelets in (87) whose supports^^ contain 
this data point; and add these wavelets to W if they have not figured in it. With 
this method, the dimension d is not a critical factor of complexity, because the 
family (87) does not need to be actually created. For a sparse training data set, 
this method allows us to handle problems of relatively large input dimension d. 
In particular, if the supports of the wavelets are approximated by hypercubes in 
R^, this method is easily implemented. From now on we denote by W the result-
ing library of wavelet regressor candidates. For computational convenience, we 
normalize the wavelets and get the library W composed of the wavelets: 

(Piix) = ai(p{ai(x — ti)), / = 1 , . . . , L, 

/ N \ - l / 2 

where L is the number of elements in W, at, ti correspond to the dilation and 
translation parameters ag and a^^mto of the wavelet cpt, and at is the normalizing 
factor. The numbering order with / is arbitrary. 

D. SELECTING THE BEST WAVELET REGRESSORS 

The problem of regressor selection is to select a number M ^ L of wavelets, 
which are the "best" ones from W for building the regression 

/ M ( ^ ) = ^ M / < ^ K ^ ) , (88) 

iel 

where / is an M-element subset of the index set {1, 2 , . . . , L}. This is a classical 
problem in regression analysis [77]. Let XM be the set of all the M-element subsets 
of {1, 2 , . , . , L}. For any / € XM, the optimal linear weights Ui of (88) are found 

^^For noncompactly supported but rapidly vanishing wavelets, the term "support" should be inter-
preted in an approximative way as some domain around the center of the wavelet. 



Wavelets in Identification 369 

using the least squares method. Then the question is how to choose / e I M which 
minimizes the averaged square residuals 

/ ( / ) = , min - V y* - F u m i X k ) . (89) 

Determining the optimal number M should be performed using generalized cross 
validation; cf. Section ILA.2. For given M, selecting the M optimal regressors 
from W must be performed via exhaustive search which may involve massive 
computations. To overcome this difficulty, three different heuristics are proposed 
instead; details can be found in Section IX. 

Residual-Based Selection 

The idea of residual-based selection (RBS) is to select, for the first stage, 
the wavelet in W that best fits the observations O^. Then repeatedly select the 
wavelet that best fits the residual of the fitting of the previous stage. In the litera-
ture of the classical regression analysis, it is considered as a simple, but not quite 
effective method, for example, in [77] where it is called the stagewise regression 
procedure. For classical regressions the number of regressor candidates is usu-
ally small; hence alternative more complicated and more effective procedures are 
preferred. In our situation the number of regressor candidates may reach several 
hundreds or even more, the computational efficiency becomes more important, 
and the simple residual-based selection should be a first choice. Recently it has 
also been used in the matching pursuit algorithm of Mallat and Zhang [78] and the 
adaptive signal representation of Qian and Chen [79]. This procedure is described 
in Section IX.A 

Stepwise Selection by Orthogonalization 

The idea of stepwise selection by orthogonalization (SSO) is to select, for the 
first stage, the wavelet in W which best fits the observations O^, then repeat-
edly select the wavelet that best fits O^ while working together with the previ-
ously selected wavelets. This method has been used in radial basis function (RBF) 
networks and other nonlinear modeling problems by Chen et al. [80, 81]. This 
procedure is described in Section IX.B. 

Backward Elimination 

In contrast to the previous methods, the backward elimination (BE) method 
starts building the regression (88) by using all wavelets in W, then eliminates one 
wavelet per stage, while trying to increase as little as possible the residual at each 
stage. This procedure is described in Section IX.C. 
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E. COMBINING REGRESSOR SELECTION 
AND B A C K P R O P A G A T I O N 

Any of the procedures mentioned previously can be used to initialize the 
wavelet network (85). This network is then further trained using a backpropa-
gation procedure. Note that in (85) we use vectorial dilation parameters a/, but 
for the regressor selection procedures the dilation parameters at in W are scalars. 
Before applying any backpropagation procedure, change the scalar dilation pa-
rameters resulting from the regressor selection procedures into vectors with iden-
tical components. Standard backpropagation is a stochastic gradient procedure; a 
quasi-Newton algorithm is, however, preferred for training the wavelet network, 
owing to the good performance of the initialization procedures. Finally, to better 
capture linear properties in regressions, we replace (85) by 

n 

fn{x) = ^ Ui(p{ai * (x - ti)) + Jx + b, (90) 

with the additional parameters c G R^, b eR. The initialization procedures are 
slightly modified accordingly. 

VI. FUZZY MODELS: 
EXPRESSING PRIOR KNOWLEDGE 
IN NONLINEAR NONPARAMETRIC MODELS 

A. FUZZY RULES AND PRIOR KNOWLEDGE 
IN NONPARAMETRIC MODELS 

We first begin by introducing fuzzy models such as typically used in fuzzy 
control [7]. Several presentations are possible; see, for instance, [82]. The presen-
tation we give now is slightly heterodox, but is simple and consistent. 

1. Input variables are scalar and are written as jc i , . . . , xj . Input locations are 
encoded via fuzzy set membership functions, that is, functions /XA (xt) with values 
in [0, 1] where the symbol A is just a label; the fuzzy set membership function 
/XA is the mathematical meaning of "fuzzy set A." Thus, for each actual value 
of Xi, the statement "x_ i i s A" has a value equal to fiAixt), such statements 
are premises of so-called "fuzzy rules." Be careful that a typical form of such 
statements is "x_ i i s l a r g e , " which does not convey as much information as 
formula fMAixi) does, because the function /ZA is not explicitly specified by this 
statement. 
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2. Fuzzy sets can be combined using the "and, o r , n o t " operators of 
first-order predicate logic. For instance, 

(x_ l i s A_l) and (x_2 i s A_2) . . . and (x_d i s A_d) 

is a fuzzy set involving the vector (xi,...,Xd). The keyword "and" is a com-
binator of fuzzy sets which must be defined formally in terms of combination of 
membership set functions. Several choices have been proposed by various authors 
[83]. The most widely used ones are 

and(M, v) = min(M, v), or(u, v) = max(M, v), 
and(M, v) = uv, or(u, v) = u -^v — uv, (91) 

and(M, v) = max(0, u-\-v — I), or(u, v) = min(l, u-\-v) 

(corresponding definitions for and and o r are written on the same line) and 
not(M) = 1—w. Then, as usual in logic, the implication " (x i s A) i m p l i e s 
(y i s B)," also written as 

i f X i s A t h e n y i s B 

is a macro which expands into^^ 

(y i s B) o r n o t ( x i s A) 

In the sequel >v̂  shall encode the " and'' as the product: and(u, v) = uv, with 
corresponding codings for the " not, or." Finally the implication is expanded 
as stated previously. 

3. Fuzzy rules are statements of the form 

i f X i s A t h e n y i s B 

Note that more complex premises can be used, using and, or , no t . Here we state 
the mathematical translation of the classical "modus-ponens" mechanism, which 
can be written as 

Rule: 
Fact: 

Conclusion: 

i f X i s A 
X i s A' 

t h e n y i s B 

y i s ?B 

Modus ponens is a mechanism which combines membership functions and yields 
a membership function. It can be viewed as a mechanism to express interpolation. 
Denote by ^IAM the membership function associated with the fuzzy set x i s 
A, and denote by IJLA^B{^, y) the membership function of " i f x i s A t h e n 

^^This is the point where we deviate from the usual presentation: in the fuzzy literature, impUcation 
is often encoded as an "and," and the modus-ponens mechanism is modified accordingly. We pre-
ferred this presentation, because it is fully consistent and in accordance with the usual predicate cal-
culus. 
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y i s B." We now state the mathematical translation of the modus ponens [83], 
It is defined as 

MBiy) = proĵ {/XA/(M) andiXA=^Biu,y)} 

= max f/XA^w) and /XA=^5(W, y)], (92) 

where elimination of component u has been performed via maximization. We 
now consider the particular case in which the fact is a crisp statement, that is, has 
the standard form "x i s x," where x is an ordinary value. In this case, we have 
/^^/(M) = 1 if M = JC, and /JLA'W = 0 otherwise. Hence, for such a case, the 
modus-ponens mechanism (92) reduces to 

f^wiy) = t^A=^B(x, y) = l - I^A{X){1 - /XB(J)) , (93) 

where we have used the formulas M =^ v = u o r n o t w = v-\-(l—u) — v(l—u) = 
1 — M(1 — u). To conclude, because we only consider crisp facts, the fuzzy rule 

i f X i s A t h e n y i s B 

represents fuzzy set (93). 
4. A "fuzzy rule basis" is a collection of fuzzy rules of the form, say, 

if (x_l is A_l_l) and (x_2 is A_l_2) ... 
and (x_d is A_l_d) then (y is B_l) 

if (x_l is A_p_l) and (x_2 is A_p_2) ... 
and (x_d is A_p_d) then (y is B_p) 

where the Aj^t are doubly indexed labels, / is the index of the input coordinate, 
and j is the index of the rule. The mathematical translation of this rule basis is 
now given. We assume that the fuzzy sets form SL fuzzy partition of the space, that 
is, 

P d 

Then, combining fuzzy rules within our fuzzy rule basis is interpreted as taking 
the ''and' of their conclusions. Thus, using the notation of item 3, the preceding 
fuzzy rule basis represents the fuzzy set ?B equal to 

y i s ?B_1 and . . . and y i s ?B_p 
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where the ? B_ j 's are defined according to (93). Expressing the and combinator 
as the product of membership functions, we get 

p 

7=1 

= n ( l - n M A , . ( x . ) ( l - / X 5 , W ) ) [by(93)] 
;=1 \ /=1 / 

P d 

j=l i=l 

P d 

= E fiBj (y) n f^Aj, (Xi), [by (94)] (95) 

where we have used the property (94) of fuzzy partition, and approximation 
n j = i ( l - W;) ^ 1 - Z!y=i ";•' which is vaUd for Uj small and p large. Next, 
we also assume that sets Bj are crisp', that is, they are of the form "y i s jy." 
Thus fiBj (y) = lify = yj, = 0 otherwise. Hence, assuming that both the conse-
quences of the rules and the facts are crisp statements, we get for the conclusion 
the fuzzy set "y i s ?B," where 

P d 

f^wiy) = ^ ^{y=yj} n ^Aj,i fc)- (96) 
7=1 ^ = 1 

At this point, setting x = (xi,... ,Xd), formula (96) defines a function mapping 
points X eR^ into fuzzy sets. To get a function in the usual setting R^ h^ R, we 
perform defuzzification of /x?^ {y) in (96). That is, we replace IJL^B by its center of 
gravity, using again fuzzy partition property (94); see [7, 83]. This finally yields 
the ordinary function 

P / d \ ^ 

y = Y.yj\]\ ^Aj,i te) = E yj^'j^^^^ ^^^^ 

where jc = ( x i , . . . , Xd); this defines the weights Wj (x). If property (94) does not 
hold, that is, if our fuzzy rule basis is sparse so that the range of each coordinate 
Xi is not covered by a fuzzy partition, then the preceding defuzzification formula 
is modified accordingly: 

J2^i-iyji^j(x) 
y= jTp , • (98) 
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Usually, fuzzy set membership functions are parametrized functions of the form 

lJiA{x) = ii{a{x-t)), (99) 

where /x(jc) is a given function with values in [0,1], a is a dilation factor, and t 
is a translation factor, and the pair {a, t) encodes the fuzzy set A. Mostly used is 
the piecewise-linear function /x such that /x(l) = 1 and /x(x) = 0 for x outside 
the interval [0, 2], that is, a spline of order 1. In this case, the defuzzification 
mechanism (97) just performs interpolation. If the fuzzy partition is fixed and not 
adjustable, then we get a particular case of the kernel estimate (15). Obviously, 
fuzzy models such as (97) or (98) are amenable to identification because they have 
some unknown parameters for tuning, namely, the j ' s , A'S, and r's. Identified 
fuzzy models are often referred to as "neuro-fuzzy models" in the AI literature 
[84], because standard backpropagation (i.e., stochastic gradient) can be used for 
their training, exactly as for neural networks. It is also proved that fuzzy models 
are universal approximants [85], which is not surprising. 

To summarize, fuzzy models are described by fuzzy rule bases, plus some ad-
ditional parameters which make vague statements such as "large," "small," etc., 
to be precise in terms of fuzzy set membership functions. The fuzzy rule basis ex-
hibits the structure of the model, plus some coarse features related to the location 
of the elementary functions in the decomposition (97) or (98). Thus/wzzy mod-
els are just particular instances of the kind of nonlinear nonparametric model we 
consider here, with the advantage of providing the fuzzy rules as a way to describe 
some possibly available prior knowledge. In the experiments reported in Section 
VII.A.2, neuro-fuzzy modeling is used in this sense. 

B. F U Z Z Y R U L E B A S E S 

FOR W A V E L E T - B A S E D E S T I M A T O R S 

In this short section, we briefly discuss a proposal for blending the practical 
advantages of fuzzy models with the mathematical quality of wavelet-based iden-
tification techniques. Further development of this proposal will be the subject of 
future work and will be reported elsewhere. 

Requirements 

Formulas (94) and (97) reveal that fuzzy models can be viewed as interpolation 
procedures: interpolation is performed between points where the set membership 
function takes value 1, with associated y value. Thus fuzzy models cannot reflect 
hierarchical or multiresolution approximations of a function such as performed by 
wavelet-based identification techniques. So the following natural question can be 
considered: how does one provide fuzzy rule bases for wavelet-based estimators! 
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Thus what we need is to abstract wavelet networks, say, of the form (85), in the 
form of syntax similar to fuzzy rule bases. Such syntax would not specify the 
considered wavelet network exactly, but should capture some essential features of 
it. Objectives would be to use such a syntax for a rough but easy description of 
a wavelet network based on some qualitative prior knowledge on the system, or 
to use it as an initial guess for some iterative identification procedure based on 
recorded data from the system. 

Reflecting the notion of multiresolution or hierarchy within rules calls for a 
syntactic notion of context. For instance, in the context "x i s l a r g e , " we 
may want to write "x i s s m a l l " to express that x is not too large, and 
"x i s l a r g e " again to insist that x is very large indeed. This calls for logics 
handling context-dependent statements. Such logics are studied under different 
frameworks independently in the AI and theoretical computer science commu-
nities. The notion of a "conditional object" proposed and studied by Dubois and 
Prade [86] in the AI conmiunity is a candidate model for such "context-dependent 
rules." In [86] various definitions are investigated for such "conditional objects," 
based on some reasonable requirements accepted as axioms. On the other hand, 
"structured operational semantics" (SOS) was introduced by Plotkin [87] in theo-
retical computer science. SOS rules describe the legal transitions of a considered 
program/<9r a given context. SOS rules are used to specify primitives as well as 
the various combinators for program contruction. We shall not elaborate any fur-
ther on possible theoretical models for the kind of context-dependent statements 
we shall take the liberty to write in the sequel. 

Let us propose the following syntax we call hierarchical fuzzy models. 

1. Standard fuzzy rules are hierarchical fuzzy rules. Thus we can still write 

i f (x_ l i s A_l) and (x_2 i s A_2) . . . 

and (x_d i s A_d) t h e n (y i s B) 

with the same mathematical meaning as before. 
2. Let us give names to the fuzzy rule bases, for example, 

RULE_BASE is 
if (x_l is A_l_l) and (x_2 is A_l_2) ... 
and (x_d is A_l_d) 

then (y is B_l) 

if (x_l is A_p_l) and (x_2 is A_p_2) 
and (x_d is A_p_d) 

then (y is B_p) 
end 
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Then the following statement: 

if (x_l is C_l) and (x_2 is C_2) ... 

and (x_d is C_d) then RULE_BASE applies 

is a hierarchical fuzzy rule. Its premise is an ordinary fuzzy statement 

(x_ l i s C_l) and (x_2 i s C_2) . . . and (x_d i s C_d) 

as before. The second part of this statement, namely, " t h e n RULE_BASE a p -
p l i e s , " has " then" and " a p p l i e s " as keywords and RULE_BASE as a pa-
rameter. This hierarchical fuzzy rule has the following interpretation: 

(a) The reference space for input x, which was, say, [0, 1]^, is now stretched 
down, to enforce validity of the statement 

(x_ l i s C_l) and (x_2 i s C_2) . . . 

and (x_d i s C_d) 

Thus all premises of RULE_BASE are stretched down accordingly. 
(b) Since RULE_BASE was a standard fuzzy rule basis, our new rule is a 

hierarchical fuzzy rule. 

3. Collections of hierarchical fuzzy rules are termed hierarchical fuzzy rule 
bases. Hierarchical fuzzy rules can call hierarchical fuzzy rule bases; this cap-
tures multiresolution. Obviously, in doing so, the question of recursivity in the 
computer science setting occurs: does it happen that a rule recursively calls itself? 
Recursion may or may not be accepted. Anyway, simple syntactic constraints in 
writing rule bases would prevent recursivity. 

"Down Stretching'' Mechanism 

The key issue in this informal discussion is the precise mathematical meaning 
of the "down stretching" mechanism. We assume for convenience that the default 
context is [0, \Y. Consider a fuzzy partition satisfying condition (94), which we 
recall now 

P d 

7 = 1 ^ = 1 

Down stretching this fuzzy partition to a given membership function ^ici^i) con-
sists of building a collection iJi{Aji\C)^ J = 1,...,/?, of membership functions 
which satisfy 

P d 

^Y\l^i^j,i\C)^^i^ = l^ciXi) (101) 
; = i i=l 
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fuzzy partition 

stretching down within a context 

Figure 4 Down stretching mechanism. 

and, in addition, preserve the "geometry" of the original fuzzy partition. This is 
illustrated in Fig. 4. A possible procedure achieving this is described now. 

We first need to define the notion of a fuzzy set more accurately. A fuzzy set A 
is a triple A = (/XAC^), «» b), where 

jXA'- [a, b] -> [0, 1] is the membership function and — oo < a ^b < -\-oo. 

The interval [a, b] is the context of the fuzzy set A. For example, when we define 
a fuzzy set "smal l , " we must specify its context interval [a, b] in addition to 
its membership function. This " s m a l l " label means that the /XA membership 
function is mainly concentrated on the small values of this context interval. Note 
that this set may not be " s m a l l " within other context intervals. 

Now consider a fuzzy set C = {jicM, ci', V), We consider its left and right 
boundaries defined by 

IQ = inf jc, re = sup x\ 

that is, [/c, re] is the support of /xc- Consider a pair (A, C) of fuzzy sets, and 
define the contextual fuzzy set (A|C) as follows: 

(A|C) = (/X(A|C),/c,^c), 

M(A|C)(^) = M A ( — — j - { x - l c ) + a\ixc{x). (102) 

Hence (A|C) has the support of C as context, and its membership function is 
obtained by mapping the interval [a, b] onto [Ic, re] and then multiplying by jxc-
With this definition of contextual fuzzy sets, a fuzzy partition having the default 
context, that is, satisfying property (100), is down stretched to a fuzzy partition 
satisfying property (101). 
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Mathematical Implementation of the Hierarchy 

Here we formalize what it means for a rule base to be called within a given 
context. As an example, we give the meaning of the hierarchical statement 

if (x_l is C_l) and (x_2 is C_2) ... and (x_d is C_d) 

then (y = y_o) 

if (x_l is C_l) and (x_2 is C_2) ... and (x_d is C_d) 

then RULE_BASE applies 

where RULE_BASE has been defined before. We may also rewrite this as 

if (x_l is C_l) and (x_2 is C_2) ... and (x_d is C_d) 

then (y = y_0) and RULE_BASE applies 

First, we have to combine two rules, and this is performed using the general for-
mula (97). Then we must recall that RULE_BASE is called within the context of 
Ci X • • • X Q ; hence we use definition (102) of contextual fuzzy sets. This yields 
the following mathematical interpretation of the previous hierarchical rule base: 

>'=jc^f n^^'^^^M + J2yj\Y\f^(Aj,i\Ci)ixi) 
7=1 \ /= l / 

(103) 

This shows that the value yo can be interpreted as a "first-order approximant," 
whereas the yj's, j = 1 , . . . , p, are increments corresponding to a refinement 
of our modeled function. Thus truncating such an approximation is simply per-
formed by truncating the tree of the nested calls of rule bases. 

Thus what we have at this point is a flexible way to associate syntax with 
multiresolution expansions of functions. If, in addition, we carefully choose our 
membership functions p. A to be derived from scale functions cp associated with 
wavelets, we now have a way to abstract wavelet networks in the form of hier-
archical fuzzy rule bases. See Section III.A for scale functions which are non-
negative and bounded, and thus satisfy the requirements for being prototypes of 
membership functions. The "call" mechanism provides some kind of genericity, 
because the same rule base can be called within different contexts. This generic-
ity is expected to be useful mainly when adjustable parameters, which are hidden 
inside fuzzy rules, are identified from data. On the other hand, for fuzzy models 
specified based on the prior knowledge of the user, it is not expected that the same 
rule base will be called under different contexts. 
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VIL EXPERIMENTAL RESULTS 

In this section we consider the apphcation examples introduced in Section LA. 
We provide detailed results obtained with the wavelet networks and the fuzzy 
network. For the gas turbine example, we also compare them with alternative 
semiphysical models which were developed in [88] for the purpose of monitoring 
and diagnostics. 

A. MODELING THE GAS TURBINE SYSTEM 

1. Using the Wavelet Network 

In the gas turbine system we introduced in Section I.A.I, the temperature pro-
file at the exhaust of the turbine is considered as the output. We need a model 
which predicts this temperature profile from available measurements. For the 
semiphysical model we mentioned in Section I.A.l, the temperature profile is 
predicted from the mean temperature in the combustion chambers T ,̂ the mean 
temperature at the exhaust of the turbine T ,̂ and the rotation velocity of the tur-
bine A'̂ . The velocity Â  is directly measured, Ts is given by the average of a set 
of thermocouples installed at the exhaust of the turbine, and Te is computed from 
Ts and the compression rate n of the compressor [9, 10]. By substituting Te, the 
temperature profile at the exhaust of the turbine depends on T ,̂ n, and Â . As 
suggested by this semiphysical model, we assume that the temperature measured 
by each of the thermocouples installed at the exhaust of the turbine is a function of 
Ts, 7T, and Â , which are all measured. Therefore, we can try to construct, for each 
of the thermocouples, a wavelet network with Ts, n, and N as its input variables, 
and train it to predict the temperature measured by the thermocouples. 

We have experimented with this approach on the data taken from a gas turbine 
of European Gas Turbine SA. The training data were collected during about 48 
hours. We have resampled the data and kept only 1000 measurement points. This 
gas turbine system is equipped with 18 thermocouples at its exhaust. For the sake 
of brevity, we show only the results concerning the first thermocouple. The resam-
pled data are depicted in Fig. 5 where the plots correspond to T ,̂ n, and N and 
y = h — Ts, where t\ is the measurement of the first thermocouple. These 1000 
measurement points, which we refer to as the training data, are used for training 
models whose input vector is jc = (Ts,7t, N)^. The obtained models are tested 
on another set of measured data, which we refer to as the test data set and depict 
in Fig. 6. 

We have chosen the radial wavelet function (p(x) = (d — x^x) exp(—^x^x) 
with d = dim(x). The number of wavelets used in the networks is set to 40. Note 
that there are 18 thermocouples. 
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Figure 5 Training data. The plots correspond to, from top to bottom, Tg, TT, N, and y = ti —Tg. 
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Figure 6 Test data. The plots correspond to, from top to bottom, Ts, n, N, and y = ti —Tg. 
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Figure 7 Result with the semiphysical model on the test data set. The solid line represents the true 
measurement and the dashed line represents the output of the model. 

We initialize the wavelet networks with each of the proposed (RBS, SSO, BE) 
procedures and train them with the Gauss-Newton procedure. 

To show the performance of the resulting models, we compare their results 
with those of the semiphysical model and a third-order polynomial model. In 
Figs. 7 and 8 the results obtained with the semiphysical model and the third-order 
polynomial model are, respectively, shown. The results obtained with the wavelet 
networks initialized with procedures RBS, SSO, and BE, and the results after 10 
iterations of the Gauss-Newton procedure are given in Figs. 9-11. In Table I we 
list the mean of square errors (MSE) of these models on the training data set as 
well as on the test data set. For each of these networks, we give the result of its 
initialization (init. MSE) and the result after 10 iterations of the Gauss-Newton 
procedure (final MSE). The time of computation for building these models is also 
listed in Table I, based on our programs in MATLAB 4.1 language executed on 
a Sun Sparc-2 workstation. Because the execution time of the programs is per-
turbed by other processes on the workstation, another figure of merit is provided, 
namely the the MATLAB's Flop which measures the computational complexity of 
a program. 
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Figure 8 Result with the third-order polynomial model on the test data set. The soUd line represents 
the true measurement and the dashed Une represents the output of the model. 

The following observations can be made: 

• The semiphysical model performs quite poorly in predicting the output of 
the system. 

• The system is truly nonlinear; in addition, the results obtained with the 
polynomial model are quite poor. 

• The wavelet networks do improve the performance on prediction. Recall, 
however, that we get in turn increasing computational complexity and loss 
of the physical meaning of the model parameters. 

2. Using the Fuzzy Network 

We also applied the (classical) neuro-fuzzy network as briefly introduced in 
Section VI for modeUng the gas turbine system. Similarly to the wavelet network, 
we train the fuzzy network using the training data set, and then evaluate it on the 
test data set. 

To build the network, we have taken a fuzzy partition of the state space using 
triangular membership functions (i.e., first-order splines); this divides the varia-
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Figure 9 Results with wavelet network initialized by procedure RBS (top) and after 10 iterations of 
the Gauss-Newton procedure (bottom). The soUd lines represent the true measurement and the dashed 
lines represent the output of the model. 
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Figure 10 Results with wavelet network initialized by procedure SSO (top) and after 10 iterations of 
the Gauss-Newton procedure (bottom). The solid Unes represent the true measurement and the dashed 
lines represent the output of the model. 
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Figure 11 Results with wavelet network initialized by procedure BE (top) and after 10 iterations of 
the Gauss-Newton procedure (bottom). The solid lines represent the true measurement and the dashed 
lines represent the output of the model. 
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Models 

Train, init. MSE 
Train, final MSE 
Test. init. MSE 
Test, final MSE 
Init. flops 
Train, flops 
Init. time (s) 
Train, time (s) 

Table I 

Performance Evaluation of the Models 

RBSnet 

1.2656 
0.5395 
1.2368 
1.1886 

2.0718 X 10'̂  
1.5365 X 10^ 

41.6 
2461.8 

SSO net 

1.0453 
0.4239 
1.1229 
1.2348 

4.3714 X 10^ 
1.5365 X 10^ 

251.2 
2383.8 

BE net 

1.0381 
0.4503 
1.1576 
1.0898 

7.5143 X 10^ 
1.5365 X 10^ 

87.2 
2456.5 

Semiphysical 

3.5268 

2.8914 

9.8041 X 10^ 

2265.0 

Polynomial 

2.8438 

2.1135 

4.7056 X 10^ 

1.5362 

tion domain of each input into five equal parts. Following Section VI, the math-
ematical translation for both conjunction and implication operators is taken to be 
the product. 

Before learning, we have initialized the network using a simple interpolation 
procedure. Consider the "defuzzification" formula (97) which we recall now: 

where the index j labels the rules. For each rule j , select the training input data 
point Xnj closest to the center of the corresponding fuzzy set, that is, Wj(x) is 
maximal for x = Xnj. Then take yj = Ynj where Ynj is the output value corre-
sponding to Xnj. Results of this procedure are shown in Fig. 12. 

The second stage consists of performing a least squares fit of the parameters 
Oj in the function feix) = J2^j=i OjWj(x), where 0 = (Oi,... ,0p) based on 
the whole training data sample O^ = {(Xi, F i ) , . . . , (XN, FA^)}. A brute-force 
implementation of least squares would be difficult, due to the need for inverting 
the Hessian of the least squares functional. Thus an iterative stochastic gradi-
ent procedure has been preferred instead, using the preceding simple initializa-
tion technique. Training was stopped after only three successive scannings of the 
learning set. 

The identified fuzzy network is then evaluated on the test data set. The output 
of the identified fuzzy network is plotted in Fig. 12, and is compared to the actual 
one. The solid line represents the true measurement and the dashed line represents 
the output of the model. The mean of square errors (MSE) on the test data set 
is 1.5860. 
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Figure 12 Results with the initialized (top) and trained (bottom) neuro-fuzzy networks on the test 
data set. The solid lines represent the true measurement and the dashed Unes represent the output of 
the model. 
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B. MODELING THE HYDRAULIC ACTUATOR 
OF THE R O B O T A R M 

Let us denote by u{t) and p(t) the position of the valve and the oil pressure at 
time t, respectively. A sample of 1024 pairs of (u(t), p(t)) was registered.^^ We 
divide it into two equal parts for training and testing the models. The training data 
are depicted in Fig. 13, and the test data in Fig. 14. 

We first tried to model this system with linear autoregressive exogenous (ARX) 
models. More precisely, we tried to use models of the following form: 

p(t) = aip(t - 1) + aipit - 2) + .. • + UnPit - n) 

+ b\u{t -X - l)+b2u{t -T - 2 ) H \-bmu(t -X m)^-e{t). 

where the pure time delay x is assumed to be an integer and e{t) is some noise 
independent oiu(t) and past values of p{t). After the identification of the model 
parameters Ui ,bj,x,we plot the output of the following system to visually evalu-

- i 1 1 1 1 1 r -

_i i_ _i 1_ 

0 50 100 150 200 250 300 350 400 450 500 

0 50 100 150 200 250 300 350 400 450 500 

Figure 13 Training data: the input u{t) (top) and the output p(t) (bottom). 

21 We gratefully acknowledge Jonas Sjoberg and Svante Gunnarsson from Linkoping University for 
providing the data. 
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Figure 14 Test data: the input u{t) (top) and the output p(t) (bottom). 

ate the quality of the model: 

pit) = aip(t-l)-\-a2p(t 2) + '"-^anp(t-n) 
+ biu(t - r - 1) + b2u(t - r - 2) H h bmu(t m). 

We processed the data with Ljung's System Identification Toolbox, Version 3.0a. 
It turns out that the ARX model that gives the best simulation result on the test 
data set has the model order with n = 3, m = 2, r = 0 . This result is shown 
in Fig. 15. It does not seem to be satisfactory. The wavelet networks as defined in 
(90) are then considered as candidates of nonlinear models. 

In analogy with the Unear ARX model, we build models of the following form: 

Pit) = fipit - 1), Pit - 2), Pit - 3), uit - 1), uit - 2)) + eit), 

where the nonlinear estimator / is a wavelet network composed of six wavelets, 
and eit) represents the modeling error. To train the network, compose its input 
and output vectors with the training data {uit), pit)}: 

xit) = [pit - 1), Pit - 2), Pit - 3), uit - 1), uit - 2)f, 

yit) = Pit). 
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Figure 15 Result with the Hnear ARX model on the test data set. The soUd line represents the true 
measurement and the dashed line represents the simulated output. 

Then apply the initiaUzation algorithms and the Gauss-Newton procedure. Again 
we take 

(p(x) = (d — x^x) exp(—^jc^jc), 

with d = dim(.x) as the wavelet function. It happens that for this example the 
Gauss-Newton procedure does not significantly improve the performance of the 
wavelet models, so we only show the results obtained with the initialized net-
works. 

We then simulate the output p(t) on the test data set with the wavelet models, 
in a similar way as with the linear ARX model: 

P(t) = f{p(t - 1), Pit - 2), Pit - 3), Hit - 1), uit - 2)). 

The simulation results obtained with the wavelet networks initialized with algo-
rithms RBS, SSO and BE are depicted in Figs. 16-18. 

Clearly, the wavelet models significantly improve the results of the simulation. 
Although the results obtained with initialization algorithms SSO and BE are very 
similar, the result of algorithm RBS is obviously not as good. 
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Figure 16 Result with the wavelet network initialized with algorithm RBS. The solid line represents 
the true measurement and the dashed Hne represents the simulated output. 

50 100 150 200 250 300 350 400 450 500 

Figure 17 Result with the wavelet network initialized with algorithm SSO. The solid line represents 
the true measurement and the dashed line represents the simulated output. 
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Figure 18 Result with the wavelet network initialized with algorithm BE. The solid line represents 
the true measurement and the dashed line represents the simulated output. 

C. PREDICTIVE FUZZY MODELING 
OF GLYCEMIC VARIATIONS 

1. Variables of Interest and Their Qualitative Labels 

Diabetologists' knowledge is expressed under the form of "rule of thumb" ad-
vice. We have used this knowledge to build a two-hour-ahead predictive model of 
glycemic variations. This predictive model will be subsequently used in a control 
system. We have restricted our model to six inputs as shown in Table II (current 
instant t is omitted for simplicity). 

The ouput is the predicted variation of glycemia at time t-\-2 hours, DG (t+2 ) 
e {PVB, PB, PM, PS, Z, NS, NM, NB, NVB}, where P means "Positive," N "Neg-
ative," S "Small," B "Big," etc. Figure 19 shows the membership functions of 
glycemia, where the (g/)f^o P^^ni^t^rs must be determined by learning because 
their optimal value depends on the patient. Membership functions have been rep-
resented by simple first-order splines with free knots. 
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Table II 

Fuzzy Variables for Glycemic Variation Modeling 

Item 

Glycemia 

Basis insulin 
injection rate 

Flash insulin 
injection rate 

Elapsed time 
since previous 

Diet 
meal 

Expected future activity 

Symbol 

Gl 

Ba 

Bo 

Dr 

Nr 
Ac 

Very Low 
(VL) 

Fa r B e f o r e 

Low 
(L) 

Low, 

Low, 

, Nea r , 

F i b e r , 
Low 

Fuzzy values 

Normal 
(N) 

Normal, 

Normal, 

J u s t A f t e r , 

High Very High 
(H) (VH) 

High 

High 

F a r 

Normal , G l u c i d i c 
Normal , High 

Our method follows the following two steps: 

1. start with an initial guess of the model, based on available (qualitative) 
prior knowledge; 

2. tune this model to the particular patient under consideration, by 
performing learning from data. 

2. Expressing Prior Knowledge 

Combining all possible qualitative values for the different inputs yields 1620 
different cases, corresponding to the same amount of candidate fuzzy rules. In 
fact, only 50 rules were considered for our prior model, thus reflecting the actual 
domain for the input variables where meaningful knowledge exists. Example of 
such rules are 

if 
if 

(GL(t) is VL) 
(GL(t) is L) 

and 
and 

(Nr(t) is N) 
(Ba(t) is L) 

then 
then 

DG(t+2) is PB 
DG(t+2) is NS 

go Si %2 ^3 

Figure 19 Fuzzy partition for glycemia. 
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Figure 20 Prior model: two-hour-ahead prediction (dashed line) vs. actual (solid line) glycemia. 

Figure 20 shows predicted glycemia ait -\- 8 from glycemia at time t, with 8 = 
2 hours, before learning, that is, with only use of the prior model. The solid line 
shows the actual glycemia and the dashed line the predicted one. The doctor's 
rules are quite efficient in predicting the effect of insulin injections. Still some 
spikes occur in the prediction error. The prediction error has mean /JL = —0.20 
and standard deviation a = 0.38. 

3. Tuning the Model for Each Patient 

Using data from the patient's notebook, we divided the data file into two parts, 
one for learning and the other for generalization (i.e., testing). Figure 21 shows 
predicted glycemia ait + 2 from glycemia at time t, after learning, that is, sub-
sequent learning of the gi parameters on the data. A simple stochastic gradient 
was used. The prediction error has mean jx = —0.0003 and standard deviation 
a = 0.29. Some improvement is seen; note that such an improvement is likely to 
be patient dependent. The errors around time steps 700 and 800 are due to catheter 
changes (as marked in the notebook) which usually lead to the injection of more 
insulin than expected. 
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800 

Figure 21 Model after learning: two-hour-ahead prediction (dashed line) vs. actual (solid line) 
glycemia. 

4. Comments and Conclusions about This Example 

The following conclusions can be drawn from this case study: 

• Fuzzy rules turned out to be a convenient way to express prior knowledge 
from doctors, in part because this prior knowledge is mainly qualitative. It is im-
portant to notice that this fuzzy rule basis was far from being equivalent to an 
exhaustive table describing the input-output map, because about only a few per-
cent (50/1620) of this table was described by the rules. This restriction is by itself 
a useful prior information about the range of validity of the modeling. 

• Subsequent tuning of the prior model was performed while preserving the 
structure of the model; that is, the fuzzy rules were not modified, only the gi 
parameters hidden in the splines were adjusted. It would also be possible to use 
our prior model as an initial guess but allow other "rules" (i.e., additional spHnes) 
to be introduced via learning; corresponding experiments are under progress. 

• Another advantage of describing the model via fuzzy rules is the possibility 
to "decompile" the model after learning, again in the form of fuzzy rules, for 
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return to the user (doctor or patient). Returning a mathematical model would be 
of little use for the average user having no training in mathematics. 

• In this application, high accuracy was not a key point. For other cases where 
model accuracy is more important, replacing fuzzy membership functions in the 
form of first order spHnes by more efficient wavelets could be easily performed. 

• On the practical side, on can notice from both Figs. 20 and 21 that human 
control of glycemia injection performs quite poorly. The desired range would be, 
say, about 1 db 0.3, which is far from being accessible to human control. Thus 
nonUnear fuzzy control design is now under progress for this application. 

VIII. DISCUSSION AND CONCLUSIONS 

In this chapter we have discussed the wide area of nonparametric nonlinear 
estimation from the point of view of system identification. We have seen that a 
huge amount of work has been pursued in the statistics conmiunity. We also know 
from numerous press releases that, in parallel, the AI community revitalized the 
same area by advertising neural networks, fuzzy models, and neuro-fuzzy mod-
els. In addition, AI scientists and engineers packaged these techniques with user-
oriented software and even hardware. It is not until recently that the AI conmiunity 
become interested in the mathematical developments and algorithms from statis-
tics. At the same time, statisticians became involved in the mathematical study of 
the methods advertized by the AI conmiunity and engineering practice. In paral-
lel, the control community recognized those models and estimation algorithms as 
possible candidates for nonlinear black-box system identification. In this chapter 
we have tried to put together material—^both classical and very modem—from 
different areas, and have discussed both mathematical and practical issues. Here 
is a sunmiary of our tentative conclusions and suggestions for future work. 

Practical Issues 

• Models for prediction and simulation. As reflected by the reported exper-
iments, our experience has been that nonlinear nonparametric models are very 
good at predicting behaviors, provided that the training data set reflects all actual 
operating conditions that can occur. This is especially true for models that are 
multiresolution in nature, for example, wavelet-based models. More interesting, 
prediction is still efficient even for a sparse training data set—a situation which 
is almost unavoidable for high-dimensional input data. The quality of prediction 
can rapidly vanish outside the range of the training data set, however, but this is 
not really surprising. 
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• System monitoring and diagnostics. The reported experiments on the gas 
turbine case study show that the data fit is much better for our wavelet network 
(and even for the neuro-fuzzy network) than for our semiphysical model. Accord-
ingly, one may expect a better performance in change detection and diagnostics 
by using the wavelet network. Designing a change detection procedure based on 
the wavelet network can be performed by applying the general asymptotic local 
approach discussed in [10, 89]. However because the parameters of the network 
have no useful interpretation, diagnostics would require learning the failure modes 
from training data sets: this is unrealistic because real data corresponding to fail-
ure modes are (fortunately) seldom. Thus diagnostics requires a combination of 
data and prior knowledge, preferably in the form of a (semi)-physical model: data 
are the current data (from safe or failure mode), and the model is used to describe 
prior knowledge about failure modes. In fact, gas turbine monitoring and diagnos-
tics were successfully performed using our seemingly poor semiphysical model; 
see [10, 88] for an account of the results. 

• Describing prior knowledge. Fuzzy models and their associated rules can be 
used to describe prior knowledge for nonlinear nonparametric models. Now if it is 
desired to blend the style of fuzzy rules with the mathematical quality of modem 
nonparametric models, we are faced with the need for a notion of "multiresolu-
tion" or "hierarchical" fuzzy rule bases. We have discussed a possible proposal 
toward this objective. This has to be further explored. In addition, it would be 
interesting to develop statistical methods checking for violation of a particular 
subset of fuzzy rules; this would blend methods from artificial intelligence and 
statistics model-based diagnostics. 

• Software support. Our current experience can be summarized as follows. 
There are three different kinds of needs for nonlinear black-box identification: 
low-dimensional input (say, 1, 2, 3), medium-dimensional input (in the range of 
tens), and large-dimensional input (in the range of hundreds or thousands). The 
first case typically corresponds to curve fitting and is useful in signal or im-
age processing and sometimes in control. High-performance algorithms based 
on wavelets are available today, which outperform others in both accuracy and 
computational cost (see Section IV), and software is available, such as Taswell's 
WavBox in the Matlab language [90]. The second case has its main applica-
tions in system identification and control. There, RBF (radial basis function) net-
works, which provide fast noniterative training procedures, are preferred; theoret-
ical studies and experiments suggest that wavelet networks [72], such as discussed 
in this chapter, are likewise more efficient candidates. Finally, sigmoid-based neu-
ral networks with their iterative backpropagation algorithm, both simple and time 
consuming, are still effective for very large dimensional cases such as encountered 
in some pattern recognition applications. We have seen that alternative models 
with much more efficient iterative training procedures can also work well, such 



Wavelets in Identification 399 

as Breiman's hinge functions [50]; Breiman's hinging hyperplane algorithm fits 
piecewise-linear models on nonlinear systems in a very efficient way. 

Mathematical Issues 

• Assessing the quality of an approximation. What is the convenient figure of 
merit for the estimation error | | / — / | | ? We have emphasized in this chapter the 
central role played by Besov spaces: this is a triply parametrized family of spaces 
of functions that are generally smooth but may have sparse singularities. Being 
smooth outside localized singularities is a common feature of most of the nonlin-
ear systems encountered in practice; thus Besov spaces are suitable to assess the 
quality of an estimator 

• Quality of fit from noisy data, and ''Cramer-Rao bounds^ Maximal risks 
and lower rates of convergence provide adequate frameworks; they have to be 
used in combination with Besov spaces. And we have shown that wavelet-based 
estimators are optimal for systems in Besov spaces. 

• How efficient identification algorithms really are in terms of computational 
cost and quality of conditioning. When orthonormal wavelet librairies can be ef-
ficiently built (this is feasible for low-dimensional input, say, up to 4 or sUghtly 
more), wavelet estimators from Section IV are the fastest ones. For very large di-
mensions, wavelet librairies cannot be built today, and standard sigmoid-based 
neural networks are preferred; Breiman's hinging hyperplane models are very 
promising alternative candidates. In the medium-range situation, wavelet net-
works using partial wavelet librairies seem to be efficient alternatives to RBF 
networks. 

Research Directions 

Based on the material of this chapter, we can suggest the following three major 
challenges for future research. 

• Providing wavelet-based identification methods for higher-dimensional 
inputs. The central question here lies in the efficient construction of 
wavelet librairies in higher dimensions. 

• Taking advantage of multiresolution in both time and space is a major 
challenge for dynamical system identification. Functional nonlinear 
autoregressions of the form Yk = f(Yk-i,..., Yk-p) + Ck, or their 
state-space counterparts, are naturally used with both neural and wavelet 
networks. These models do not allow playing with multiresolution for time, 
however, because discretization is fixed and rigid. Thus a new framework 
would be needed for this purpose. 

• Investigating the interplay between the syntax of fuzzy modeling and 
modem nonparametric models certainly is a topic of major practical 
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interest. It would provide the user with ways of describing prior knowledge 
within nonparametric models. 

IX. APPENDIX: THREE METHODS 
FOR REGRESSOR SELECTION 

Recall that W = {(pt: i = 1 , . . . , L} is the library of the wavelet regressor 
candidates. Introduce the following notation: 

Vi = 

(Pi(xi) 

(105) 

(Pi(XN) 

where cpi e W and x i , . . . , XÂ  are input observations in the training data set 

Oi = {{xi,yi),...,(xN.yN)}' 

(Pi has been normaUzed so that vt is unitary: 

vfvi = 1, / = 1, . . . ,L. 

Now collect all the u/, / = ! , . . . , L, in a set V: 

V = { I ; I , . . . , I ; L } . (106) 

We also define the output observation vector 

J = 

yi 

LyN J 

(107) 

where y i , . . . , JA^ are output observations in O^. 
Let span{i;/: / e I] he the space linearly spanned by the vectors vt, i e I, 

and let TM be the set of all the M-element subsets of the index set {1 ,2 , . . . , L}. 
Using this notation, selecting / G I M so that the corresponding M wavelets in 
W minimize the mean square residual / ( / ) in (89) is equivalent to selecting the 
M vectors vi from V which minimize the Euclidean distance from the vector y to 
the space span{i;/: / G / } . Such an optimal solution requires an exhaustive exam-
ination of all the M-element subsets of W, which may not be feasible in practice, 
because of its massive computational burden. Some suboptimal and heuristic so-
lutions have to be considered. Here we present three heuristic procedures. 
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A. RESIDUAL-BASED SELECTION: DETAILS 

Define the initial residual yoik) = yk, k = 1 , . . . , Â , with yk the output 
observations in O^. Set fo(x) = 0. 

At stage /, / = 1 , . . . , M, search among W the wavelet (pj that minimizes 

1 ^ 
J((Pj) = T7 X ! (yi-^^^^ ~ ^J^j(^k)) , 

k=l 

where 

it=l / it=l 

and yi-i(k), A: = 1 , . . . , Â , are the residuals of stage / — 1. Note 

/̂ - = arg min J((pj). 

Then (̂ /. is the wavelet selected at stage /. Update ft and y/: 

fiM = fi-iix)-{-uii(pi.(x), 

Yi(k) = Yi-i(k) - uii(pi.te), ^ = 1 , . . . , Â . 

This procedure can be more conveniently described with the aid of vectorial no-
tation as follows. Define the initial residual vector yo = y with y as defined in 
(107) and set fo(x) = 0. At stage /, / = 1 , . . . , M, search among V the vector 
Vj that minimizes 

J(vj) = (Vi-i - UjVjfiVi-i - UjVj), 

with 

uj = (vjvjr^jn-i = vjn-u 

where the last equality is due to the normality vjvj = 1. 
Substituting Uj into J(vj) yields 

Ji'^j) = {vi-i - ̂ Jvi-i^j) {n-i - ̂ Jn-i^j) (108) 
= y.̂ iy,_i + (vjn-ifvjvj - 2{vjyi-if (109) 

= yl,yi.,-{vjyi-i)\ (110) 

It turns out that minimizing J(vj) at stage / is equivalent to maximizing 
(vjyt-i)^-

The algorithm is summarized as follows. 
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Regressor Selection Algorithm for Residual-Based Selection 

Step 0, Set YQ = y and /O(JC) = 0. 

Step /, / = 1 , . . . , M. Let /,• = {7: 7 = 1 , . . . , L and ; ^̂^ / i , . . . , / /_i}. 
Find 

T \2 

and set 

/,• =argmax(i;[y/_i) 

fi(x) = fi-i(x)-{-ui.(pi.(x), 

Yi = Yi-l -^iVii. 

It is easy to prove (see [78]) 

\2 
Yi^Yi = Yi^-iYi-l - {^liYi-l) , 

so y^Yi monotonically decreases as / increases. It also means that the ith term 
added to /MM has a contribution to the minimization of y^/M measured 

B. STEPWISE SELECTION 

BY ORTHOGONALIZATION: DETAILS 

At stage / of this procedure, assume that the / — 1 already selected wavelets cor-
respond to the vectors f / j , . . . , vi._^. To select the ith wavelet, we have to compute 
the distance from y to the space span(i;/i,..., vi-_^, Vj) for each 7 = 1 , . . . , L and 
j ^h,. ..Ji-i. For computational efficiency, we orthogonalize the later selected 
vectors Vj to the earlier selected ones. Assume that vi^,..., i;/._i are already 
orthonormalized and renamed as u ; / j , . . . , M;/._I, then span(i;/j,..., i;/._j ,Vj) = 
span(ic;/i,..., wi^_^, i;^). For each 7 = 1 , . . . , L and j ^h,..., / / - i , compute 

Pj = ^j - {(vJmOmi +"' + (i^Jw;/._i)u;/._i), (111) 

qj = {p]pj)-''^Pj. (112) 

Then we should search the Vj, or equivalently the qj, that minimizes 

J{Vj) = Jiqj) 

= [y- (w/iu;/i + • • • + M/._iU;/._i + Ujqj)] 

x[y- {ui^wi^ + • • • + W/._IM;/._I + Ujqj)] 

= {y-WjUjf[y-WjUjl 
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with the matrix Wj = (wi^,..., u;/._i, qj) and the vector 

Uj = (ui„ . . . , ui,_,,iijf = {WJWj)-^Wjy = Wjy, (113) 

where the last equality is due to the orthonormality of u;/p . . . , M;/._I , qj. Continue 
the computation: 

Jivj) =: J{vj) = y^y + UjwJWjUj - 2UjwJy 

= y'y + UjUj-2UjWjy. 

By (113) we have Uj = wTy. Therefore, 

JiVj) = y^y + UjUj-2UjUj 

= y^y - V]Vj 

Consequently, minimizing J{vj) is equivalent to maximizing u^ -\ \-uf._ +w/• 
By (113) we have 

^ik = ^ly^ A: = 1 , . . . , / - 1 , 

so M̂  + h uf,_ is independent of qj. We conclude that minimizing J{vj) is 

equivalent to maximizing My = (^J^j)^. 
After M iterations, the values of / i , . . . , /M are determined, as well as 

till,..', iiiM' We still need to determine the values of M/p . . . , M/^ in 

M 

fM(x) = ^M/.(;p/.(x). 
1=1 

By the definitions of wi and M/, 

y = [u;/i , . . . , U;/^][M/I , . . . , iiij^f + KM-

On the other hand, 

y = [u/ i , . . . , vij^][ui^,..., M/^]^ + XM. 

Therefore, 

[u;/i,...,M;/^][w/p...,M/^]^ = K , . . . , I ^ / M ] [ W / P - - - . W / M ] ^ - ( H ^ ) 

In (111) and (112) let j = //. Then combining them yields 

vi- = {(vlwi^)wi^ + • • • + (vf.wi._^)wi._^) + /?/,. 

= {{vf.wi,)wi, + . • • + (i;/yw;/._i)w;/._i) + {plpuf^^qu 
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with 

otki = %yoi^. / : = 1 , . . . , / - 1, 
r „ \i/2 

oiii = {PuPh) 

Consequently, 

[ M ; / P . . . , M ; / ^ ] A = [f/i,...,i;/A^], (115) 

where A is the triangular matrix 

A = 

Then M/. can be obtained by solving the triangular system of equations obtained 
by combining (114) and (115): 

Qfll 

0 
0 

0 
0 

a i 2 

«22 

0 

0 
0 

Ofl3 

^23 

^33 

0 GtM-\M-\ 

0 

Ot\M 

OtlM 

Ot^M 

OiM-lM 

OtMM 

Let us sunmiarize the algorithm as follows. 

(116) 

Regressor Selection Algorithm for Stepwise Selection 
by Orthogonalization 

Step 1. Find 

Set 

l\ = arg max (î f y) . 

M/i = Vi^y, wi^ =i;/i , orii = 1. 

Step /, / = 2 , . . . , M. Let // = {7: 7 = 1 , . . . , L and j ^h,.,., k-i). For 
each j e It, compute 

Pj = ^j - {(vjmi)mi + • • • + (vjw;/._i)u;/._i), 

qj = (pJpjr'^^Pj-
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Find 

U =argmax(^j3;) 

and set 

T ^ xl /2 

oiki = vlmk^ ^ = 1 , . . . , / - 1, 

Oil a = {PiiPii) 

Step M -\-\. Solve (116) to obtain M/. , / = 1 , . . . , M, and build 

M 

/=i 

C. BACKWARD ELIMINATION: DETAILS 

The regression with all the wavelets of W is written as 

L 

where ui are determined by the least squares algorithm: 

(MI, . . . , uif = [(vu . . . , VLV(VU . . . , VL)]~ (VU . . . , viVy. (117) 

Note that inverting the matrix ( i ; i , . . . , VL)^(VI, . . . , VL) may cause a prob-
lem when it is singular. This situation rarely occurs with the set V of vectors 
corresponding to the wavelet library W. Whenever it happens, the two previously 
presented regressor selection algorithms should be used. 

The residuals 

nik) = yk- fiixk), k = l,...,N, 

can be written in their vectorial form as 

yL = y - (vi,..., VL)(UU . . . , uif. (118) 

Combining (117) and (118), we get 

rln = y^y^ - y^Vo(V^Vo)-'v^y. 
where the matrix VQ = (vi,..., vi). 
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If we remove one wavelet, say (pj, from fiix), the same computation can be 
repeated to get a similar result 

y[-iyL-i = y^y^-y^C(vj\Vo){Civj\VofC{vj\Vo))~^C{vj\Vof 

where the operator C means the complement of a matrix; that is, if a matrix 
U = [Ui, U2, U3], then C(U2\U) = [Ui, U3I Hence the increment of the sum of 
square residual caused by removing (pj from fiix) is 

J((Pj) = YL-in-i-YLn 

X {C(vj\VofC(vj\Vo)y^C{vj\Vofy. (119) 

Removing from fiix) the wavelet (pj that minimizes (119) yields fi-iix). 
Repeat the same procedure to remove another wavelet from fi-i (x), and so on. 
This results in the following algorithm. 

Regressor Selection Algorithm for Full Backward Elimination 

StepO. Set Vb = (1̂ 1, • • •, ^L) . 

Step I, i = 1 , . . . , L — M. Let // = {7: j = 1 , . . . , L and j ^l\,..., / j-i}. 
Find 

li = argmax/C(i;;|y/_i)(C(i;^|V,_i)^C(i;;|V,-_i))"^C(i;;|V,_i)^>^. 

SttVi=C(vi,\Vi-i). 

Step L - M + 1. Let / L - M + I = [j- 7 = 1 , . . . , L and j ^h,..., IL-M)-

Build 

fM(x) = ^ Uj(pj(x), 

with Uj the components of the vector u given by 

'^ = {VI-MVL-M)~'vl_j^y. 

The computation required by this procedure is quite heavy. For instance L — 
/ + 1 matrices need to be inverted at step /. The computation for inverting the 
matrices can be reduced in the following way. 
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For any matrix U = [U\,U2,Uz\ where C/i, t/2, ^3 are subblocks of U, 

r U^Ux UfU2 UjU^ 

U^Ui U^U2 U^Us 

U^Ui U^Ui U^U3 

Assume (U^U)~^ is already calculated and partitioned in the same way asU^U: 

U^U = 

- 1 
{u^u)-' = 

All A12 Ai3 
A21 A22 A23 
A31 A32 A33 

Then the following formula can be easily verified: 

- 1 {[UuU3y[UuU3]) = 
UfUi Uf U3 • 

U^Ui U^U3 

All Ai3 

A31 A33 
-/ 

- 1 

. - 1 
^22 

A12I 

A32J 
[A21 A23]. (120) 

In this way only VQ VQ needs to be actually inverted using the conventional 
method. Using (120), (C{vj\VifCivj\Vi))~^ can be obtained from subblocks 
of (V^^VtrK 

This procedure can be further simpUfied as follows. 
Assume that fiix) is built with all the wavelets of W as before. Now elim-

inate one wavelet from ftix), say (pj, but keep the values of M/ unchanged, 
/ = 1 , . . . , L. The residual becomes 

n-iik) = yk- (fiixk) - Uj(pj(xk)) = nik) + Uj(pj(xk), k=l,...,N, 

so 

Then 

YL-l =yL+UjVj, 

vl-iYL-i = YIYL + u^vjvj + 2UJYLVJ 

= YIYL+U]^2UJYIVJ, 

The last term of this equation can be neglected under the assumptions that yi is 
close to zero mean and independent of vi. Therefore, 

YI-\YL-\ -YIYL ^U]. 
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This means that removing (pj from fiix) will cause an increment of the sum of 
square residuals approximatively equal to M^. Repeating the same reasoning on 
fi-iM, fi-iix), etc. yields the following procedure. 

Regressor Selection Algorithm for Backward Elimination 

StepO. Set Vb = (vi , . . . , i ;L). 

Step /, / = 1 , . . . , L - M. Let // = [j: 7 = 1 , . . . , L and j i^h,..., U-i) 
and compute 

where M is a vector composed of Wy, j e U. Find 

// = argminw^. 

SetV,-=C(i;;|y,-_i). 

Step L - M + 1. Let / L - M + I = {7: 7 = 1 , . . . , L and 7 / / i , . . . , IL-MY 

Build 

with My the components of the vector u given by 

" = {VI-MVL-Mr'vl_j^y. 

Note that Eq. (120) is used for inverting V^^Vt, i > 0; only VQ^^O is inverted 
using the conventional algorithm. Alternatively, if the mother wavelet function (p 
is chosen to have compact support, then the matrices Vi and V^ Vi are sparse. 
VT Vi is symmetric and usually has diagonal dominance. In such situations, and 
for large matrices V^ Vi, instead of directly computing 

iterative methods [91] should be used for solving 

The preceding RBS, SSO, and BE algorithms have been implemented in the 
Matlab 4.1 language. The full BE algorithm has not been implemented due to its 
high computational cost. 
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