Lecture 1

 Introduction - Course mechanics
e History
e Modern control engineering
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| ntroduction - Course Mechanics

 What this course is about?

e Prerequisites & course place in the curriculum
e Course mechanics

e Qutline and topics

e Your instructor
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What this course 1s about?

« Embedded computing is becoming ubiquitous

* Need to process sensor data and influence physical world.
Thisis control and knowing its main concepts is important.

« Much of control theory is esoteric and difficult

e 90% of the real world applications are based on 10% of the
existing control methods and theory

 The courseis about these 10%
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Prerequisites and course place

* Prereguisites.
— Linear algebra: EE263, Math 103
— Systems and control: EE102, ENGR 105, ENGR 205

e Helpful
— Matlab
— Modeling and ssmulation
— Optimization
— Application fields
— Some control theory good, but not assumed.
e Learn more advanced control theory in:
— ENGR 207, ENGR 209, and ENGR 210
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Course Mechanics

Descriptive in addition to math and theory
Grading

o 25% Homework Assignments (4 at all)
o 35% Midterm Project
* 40% Final Project

Notesat www.stanford.edu/class/ee392M/

Reference texts
« Control System Design, Astrom, posted as PDF

» Feedback Control of Dynamic Systems, Fourth Edition, Franklin,
Powell, Emami-Naeini, Prentice Hall, 2002

» Control System Design, Goodwin, Graebe, Salgado, Prentice Hall,
2001
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Outline and topics

L ectures - Mondays & Fridays _ o
Assignments - Fridays, due on Friday 8. Mode |dent!f|cat|on.
3 9. Processes with deadtime, IMC
L ecture topics % 10. Cont_rollér tuning
2| 11. Multivariable control -
1. Introduction and history < optimization
2. Modeling and simulation 12. Multivariable optimal program
. 3- Control engineering problems 13. MPC - receding horizon control
§ 4. PID control
5. Feedforward % 14. Handling nonlinearity
6. SISO loop analysis 8| 15. System health management
7. SISO system design “' 16. Overview of advanced topics
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Who Is your Instructor?

o Dimitry Gorinevsky
e Consulting faculty (EE)

 Honeywell Labs
— Minneapolis
— Cupertino
« Control applications across many industries

e PhD from Moscow University
— Moscow - Munich - Toronto — Vancouver — Palo Alto
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Some stuff | worked on

Jet engines - Space systems

Powertrain control
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Lecture 1l - Control History

e Watt'sgovernor

e Thermostat

o Feedback Amplifier
« Missile range control
e TCP/IP

« DCS
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Why bother about the history?

* Trying to guess, where the trend goes

« Many of the control techniques that are talked about are
there for historical reasons mostly. Need to understand
that.
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1788 Watt’ s Flyball Governor

o Watt's Steam Engine

 Newcomen's steam engine (1712)
had limited success

* Beginning of systems engineering

o \Walt’'s systems engineering add-
on started the Industrial
Revolution

e Anaysisof James Clark Maxwell
(1868)

e Vyshnegradsky (1877)

EE392m - Winter 2003 Control Engineering
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Rubs

« Mechanical technology use was extended from power to
regulation

« |t worked and improved reliability of steam engines
significantly by automating operator’ s function

e Anaysiswasdone much later (some 100 years) - thisis
typical!

e Parallel discovery of maor theoretical approaches
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Walt’ s governor

o Anaysisof James Clark Maxwell (1868)

me=I (ma)él Sin@Ccos@—mgsing-— bqo)

Linkage from JCUE — k COS¢ — TL
Linkage to Flyball motion
s = Na:

e Linearization

Inlct valve Flyballs ¢ = ¢O T X X << 1
e o N/ @ = nw,‘_/ W = W Ty y << 1
s A

i i y+ay+ay+ay=0
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Walt’ s governor

yt+ay+a,y+ay=0 N
ImA
Characteristic equation:  y =e™ N
X +al+ad+a,=0
Stability condition: + .
Re) <0, (k=1273) Re/
+

o Gidt:
— Modéd; P feedback control; linearization; LHP poles
o All still valid
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1885 Thermostat

1885 Al Butz invented damper-flapper
— bimetal plate (sensor/control)
— motor to move the furnace damper)

Started a company that became
Honeywell in 1927

Dampar Flapper

Thermostat switching on makes the main motor shaft to
turn one-half revolution opening the furnace's air damper.

Thermostat switching off makes the motor to turn another
half revolution, closing the damper and damping the fire.

On-off control based on threshold
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Rubs

o Use of emerging e ectrical system technology
« Significant market for heating regulation (especially in
Minnesota and Wisconsin)

* Increased comfort and fuel savings passed to the customer -
customer value proposition

 Integrated control device with an actuator. Add-on device
Installed with existing heating systems
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1930s Feedback Amplifier

o Signal amplification in first telecom systems (telephone)
Analog vacuum tube amplifier technology R,

* Feedback concept
Ry
V,-V V-V, — RN
I?l RZ Vi / Vs
V, =GV . 0

P e a3 | |

e Bode sanalysisof the transients in the amplifiers (1940)
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Feedback Amplifier - Rubs

» Electronic systems technology
e Large communication market

o Useful properties of large gain feedback realized:
linearization, error insensitivity

e Conceptual step. It was initially unclear why the feedback
loop would work dynamically, why would it not grow
unstable.
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1940s WWI1 Military Applications

o Sperry Gyroscope Company — flight instruments — later
bought by Honeywell to become Honeywell aerospace
control business.

e Servosystem — gun pointing, ship steering, using gyro

* Norden bombsight — Honeywell C-1 autopilot - over
110,000 manufactured.

» Concepts— electromechanical feedback, PID control.
e Nyquist, servomechanism, transfer function analysis,
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Autopilot - Rubs

« Enabled by the navigation technology - Sperry gyro

 Honeywell got the autopilot contract because of its control
system expertise — in thermostats

« Emergence of cross-application control engineering
technology and control business specialization.
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1960s - Rocket science

e SS-7 missile range control
— through the main engine cutoff time.

 Range > :
— _-_ e :::;_&_E{‘l:_h_ s o
r=F (Avx 1 AVy J AX ’AY ) USSR R-16/8K 64/SS-7/Saddler
Copyright © 20(_)1 RussianSpaceWeb.com
PS Range Error http://www.russianspaceweb.com/r16.html|

o (1) = LAV, (t) + T,AV, (t) + T,AX(t) + T,AY(1)
e Algorithm:
— track o (1), cut theengineoffat T whenr(T) =0
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Misslle range control - Rubs

« Nominal trgjectory needs to be pre-computed and optimized

* Need to have an accurate inertial navigation system to
estimate the speed and coordinates

* Need to have feedback control that keeps the missile close to
the nominal trajectory (guidance and flight control system)

e f,, f,, f3, f,, and f; must be pre-computed
* Need to have an on-board device continuously computing

& (t) = LAV, (t) + LAV, (t) + FAX (1) + fAY(t)
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1975 - Distributed Control System

e 1963 - Direct digital control was introduced at a
petrochemical plant. (Texaco)

e 1970 - PLC'swere introduced on the market.
e 1975 - First DCS was introduced by Honeywell
 PID control, flexible software

* Networked control system, configuration tuning and access
from one Ul station

e Auto-tuning technology
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Distnbuied System
Brohite -:b..re

Experian PKS Experion PHE tegration GUS
=1t 'F.J,ne
SHrver imermoey O ST e 18|~

example =N

Tam |pu::r. [HE T hm
e |

Honeywell
Experion PKS

GUWS Rail MO - Serdes N

Supervisor Ethernet-TCPAP
Control
And

Data
Acquisitio

Honeywell PI antscape
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DCS - Rubs

 Digital technology + networking
« Rapid pace of the process industry automation
e The same PID control algorithms

* Deployment, support and maintenance cost reduction for
massive amount of 1oops

e Autotuning technology
* Industrial digital control is becoming a commodity
o Facilitates deployment of supervisory control and monitoring
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1974 - TCP/IP

Host & Hest B
Port ‘ Port | Port | Port ‘ Port ‘ Port ‘
Eeliable
TCF Stack — TCFP Stack
H Communication H

Tnreliable ——

IP Stack o ) IP Stack T SYH recerved

TTIIIIIIIoIIooCos 8K of 5TV receved

Communication

o TCP/IP - Cerf/Kahn, 1974

e Berkeley-LLNL network
crash, 1984

e Congestion control -Van
Jacobson, 1986
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TCP flow control

Round Trip Time T’|
Source 2] W 2] W .
p time
data ACK
Destination ilo] W 2| W .
time
T .. . W
ransmission rate: x = — packets/sec
T
Here:

* Flow control dynamics near the maximal transmission rate
 From S.Low, F.Paganini, J.Doyle, 2000
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TCP Reno congestion avoidance

o packet acknowledgment rate: x

for every loss { » |ost packets. with probability g
;N: W2 AX . =—XW /2

for every ACK { e transmitted: with probability (1-q)
;NJ“ LW AX ., = XIW

AX_,
-

X =

W
k=g 1 (1-q) —
r r

1 e X-transmission rate
X=— _qu e r-round trip time
e (- lossprobability
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TCP flow control - Rubs

* Flow control enables stable operation of the Internet

o Developed by CSfolks - no ‘controls’ analysis

o Ubiquitous, TCP stack ison ‘every’ piece of silicon

* Anaysisand systematic design is being developed some
20 years later

« The behavior of the network isimportant. We looked at a
single transmission.

e Most of analysis and systematic design activity in 4-5 |ast
years and thisis not over yet ...
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Modern Control Engineering

 What BIG control application is coming next?
* Where and how control technology will be used?
 What do we need to know about controlsto get by?
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Modern Control Engineering

Measurement Control Control
sysem Z::> Compu'“ ng ::> handles
Sensors Actuators

11

Physical system = >

e Thiscourseisfocused on control computing algorithms
and their relationship with the overall system design.
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Modern control systems

 Why thisisrelevant and important at present?
e Computing is becoming ubiquitous

e Sensors are becoming miniaturized, cheap, and pervasive.
MEMS sensors

« Actuator technology developments include;
— evolution of existing types

— previously hidden in the system, not actively controlled
— micro-actuators (piezo, MEMS)

— control handles other than mechanical actuators, e.g., in telecom
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Measurement system evolution.

y *Mechanical gyro by Sperry —for ships,
s W\ aircraft. Honeywell acquired Sperry
Aerospace in 1986 - avionics, space.

aerospace presently. o
« MEMS gyro—good for any
vehicle/mobile appliance.

— (1" 3 integrated navigation unit
EE392m - Winter 2003 Control Engineering




Actuator evolution

» Electromechanical actuators: car power everything

e Communication - digital PLL

n-bit Phase

Digital Error Digital

—>»] Phase |—— Loop

|-L|—L|-L|-L Detector Filter

Reference
Signal

. Digitally
Signal < Controlled
Phase-Locked ML Oscillator

to Reference

control
handle

pOM 140, 3.3 mm
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Control computing

o Computing grows much faster than the sensors and actuators

e CAD toals, such as Matlab/Simulink, allow focusing on
algorithm design. Implementation is automated

e Past: control was done by dedicated and highly specialized
experts. Still the case for some very advanced systemsin
aerospace, military, automotive, etc.

e Present: control and signal-processing technology are
standard technol ogies associated with computing.

« Embedded systems are often designed by system/software
engineers.

» This course emphasizes practically important issues of

control computing
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L ecture 2 - Modeling and Simulation

Model types. ODE, PDE, State Machines, Hybrid

Modeling approaches:.
— physics based (white box)
— 1nput-output models (black box)
Linear systems
Simulation
Modeling uncertainty
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Goadls

* Review dynamical modeling approaches used for control
analysis and simulation

e Most of the material us assumed to be known

e Target audience
— people specializing in controls - practical

EE392m - Winter 2003 Control Engineering
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Modeling in Control Engineering

e Control Ina

system

perspective

o Control analysis
perspective

Measurement

system —>
Sensors

Control
computing

Contradl
//_J\l/ computing

=)

Measurement
mode

System mode

Control
handle
modd

EESYZm - Winter 2005

Control Engineering

—>

Control
handles
Actuators
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Models

 Model isamathematical representations of a system
— Mode s alow simulating and analyzing the system
— Models are never exact

* Modeling depends on your goal
— A single system may have many models
— Always understand what is the purpose of the model
— Large‘libraries of standard model templates exist
— A conceptually new model isabig ded

« Main goals of modeling in control engineering
— conceptual analysis
— detailed ssmulation

EE392m - Winter 2003 Control Engineering
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Modeling approaches

Controls analysis uses deterministic models. Randomness and
uncertainty are usually not dominant.

White box models: physics described by ODE and/or PDE
Dynamics, Newton mechanics
X = f(x,1)
Space flight: add control inputs u and measured outputs vy
X = f(x,u,t)

y =g(x.u,t)
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1749-1827

Orbital mechanics example

4 e Newton’s mechanics
ey 5 — fundamental laws
& — dynamicsf
V= —ym EI—B + |:pert (t)
? M \
1643-1736 P =V
- : ul

™« Laplace r,
» — computational dynamics r

% B . . . _ 3

= (pencil & paper computations) X = f(Xx,t) X =

— deterministic model-based Vi
prediction V,

EE392m - Winter 2003 Control Engineering V
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Orbital mechanics example

* Space flight mechanics
t)

V= _J’rnEIrr_3+ |:pert(t) +

r=v R
e Control problems: u- ? rl
state ?
observations |
easurement X= v,
{H(r)} x = f(x,u,t)
y = v,
0 y y=g(xut)
| V3_
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Svstem variables and symbols

Gene Q Total operon concentration

Or Free operon concentration

Mpr  Free mRNA concentration
] Total anthramlate synthase concentration

u
a E4  Active anthranilate synthase concentration
EXPIreSSION z*  mpioptun concenmtion

R Total repressor concentration

R4  Active repressor concentration

i s mRNA polymerase concentration
I I lO I Ribosomal concentration

D mRNA destroying enzyme concentration

Santillan-Mackey Model Equations

g K
Or = f—pry WO — ks PIOr (8 = O (¢ = 7)™ ]} — uOr(®)

Mr = kpPOr(t — Tm)e™ ™ [L — A(T)] — kap[Mr(t) — M (t — 7p)e™" ] — (ka2 + u) M (£)
E L e T
b ;ka}L{F-[t —qe)e™ " — (714 $)E(E)

T=KE4(E,T)—G(T) + F(T,Texe) — pT(t)

. T(t)
tl=R————
el T(t) + K,
A(T) = b(1 — e~ TEN=y
T gy
TR o — E(t
1-':. ] H'E I +Tﬂ.”-|::t:l |,-]
T(t)
FiTMNi=pg—"—
(T ST+ K,

T':.‘I:L

F[T_-Tg.:l:l = df’ o T.::L[l -4 T':t\.ll.‘l..r]
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Sampled Time Models

Time is often sampled because of the digital computer use
— computations, numerical integration of continuous-time ODE

x(t +d)= x(t) +d OF (x,u,t),

— digital (sampled time) control system
X(t+d) = f(x,u,t)

y =g(x,u,t)

t =kd

Time can be sampled because this is how a system works

Example: bank account balance
— X(t) - balancein the end of day t

— u(t) - total of deposits and withdrawals that day

— y(1) - displayed in adaily statement

Unit delay operator z1: z1 x(t) = x(t-1)

EE392m - Winter 2003

Control Engineering
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Hybrid systems

e Combination of continuous-time dynamics and a state machine
e Thermostat example
* Toolsare not fully established yet
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PDE models

 Include functions of spatial variables

— €lectromagnetic fields
— mass and heat transfer E
— fluid dynamics

— structural deformations

« Example: sideways heat equation

X
o _ 0T ’
ot ox Tinsige= U utside™
T(0) = u; T(1) =0
_oT y
oX - heat flux
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Black-box models

» Black-box models - describe P as an operator

EE392m

u

Input data

>

P

y
output data)
.

Internal state

AA, ME, Physics - state space, ODE and PDE

EE - black-box,
ChE - use anything

CS - state machines, probablistic models, neural networks

- Winter 2003

Control Engineering
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Linear Systems

|mpulse response

FIR model

IR model

State space model

Frequency domain

Transfer functions

Sampled vs. continuous time
Linearization
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Linear System (black-box)

e Linearity

DM v WOy
au, ()+bu, (PIE  ay, (P+ by, (N

e Linear Time-Invariant systems- LTI
uGFT)IE  y(3FT)

A

\ P

a -
/\ t
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lmpulse response

e Responseto an input impulse

A u Ay

| RN CH AN

o Sampledtime:t=1, 2, ...

e Control history = linear combination of theimpulses =
system response = linear combination of the impulse responses

ut) = 3ot~ kyu(k)

y(®) = 3 h(t-kju(k) = (h*u)y
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Linear PDE System Example

« Heat transfer equation, oT . 9°T
: —  =—k—
— boundary temperature input u ot NG

— heat flux output y u=T(0) T(1) =0
* Pulse response and step response

X 10_2 PULSE RESPONSE _ aT

° TEMPERATURE y - L
/\ 0X x=1

)
] 4 l \
L
|_
S N,
W
- 2 \ 1
0.8
A
0
0 20 40 60 80 100 0.6
STEP I;E%H:DONSE 04
1 .
08 ra 0.2
1
5
T 0.6 / 0
/ 0
|_
E 0.4 /
Tt 0.2
' 1 0 TIME
0 COORDINATE

0 20 40 60 80 100
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FIR model
V(D) =3 heie (t = K)u(k) = (e * u)(D)

 FIR = Finite Impulse Response
o Cut off thetrailing part of the pulse response to obtain FIR
o FIR filter state x. Shift register

u(t) - D—y(t)
z1 Ny /N/
x(t +1) = f (x,u) X,=u(t-1) |

|
y = g(x,u) z1 hy
X,=U(t-2) |
zt h,
X;=U(t-3) |
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IR model

. IRmodel: Y1) =-3ay(t-k)+3 hut-k)

* Filter states: y(t-1), ..., y(t-n,), u(t-1), ..., u(t-n,)

u(t) y(®
u(t-1) y(t-1)
u(t-2) y(t-2)
u(t-3) y(t-3)
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IR model

o Matlab implementationof an IR model: filter
e Transfer function realization: unit delay operator z1

y(t) = H(2)u(t)

H(z) = B(2) = 0, + blz_1+"' + bNZ_N _ bOZN + blz'\"l +...+ by
A2 1tazit.tazt 2 rarit.+a,
(1+ alz—l +...+a, 7N )y(t) — (bo + blz_l Fo.+b, SN )u(t)

A(2) B(2)

 FIR model isaspecia case of an IR with A(z) =1 (or ZV)
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IR approximation example

e Low order |IR approximation of impulse response:
(pr ony in Matlab Signal Processing Toolbox)

Fewer parameters than a FIR model
Example: sideways heat transfer

— pulse response h(t)
— approximation with lIR filter a=[a, a,], b=[b, b, b, b; b,]
0.06 IMPULSE RESPONSE _ bo + blz_l + b22_2 + b32_3 + b4z_4
H(z) = 1 =2
1+a,z" +a,z
0.04
0.02
)
0 M di—iiv e 2 Y V-V VP pppipien
0 20 40 60 80 100
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Linear state space model

Generic state space model: X(t+1) = f(x,u,t)
y =9(x,ut)
LTI state space model X(t+1) = Ax(t) + Bu(t)
— another form of IR model y(t) = Cx(t) + Du(t)

— physics-based linear system model

Transfer function of an LTI model y = K'Z - A)'B+ DJm
— defines an IR representation H(z) = (IZ- A)—lB +D

Matlab commands for model conversion: hel p | ti nodel s

EE392m - Winter 2003 Control Engineering 2-22



Frequency domain description

» Sinusoids are eigenfunctionsof an LTI system: y = H (Z2)u

ATAvirA

LTI
> —>

kel AVAVAVA
—1e|cut — Alw(t-1) _ e—lwelai

Z

e Freguency domain analysis

U= j U(w)e“dw=y = j H (€)l(w)e“dw

——> of ~
U= l(w)
sinusoids

> H (elw):l/'\

EE392m - Winter 2003

y(w)
Packet el at
y(w)
SINUSOI ds

— Y

Control Engineering

2-23



Frequency domain description
M (@) =|H(e?)|

 Bodeplots:
» ¢(w) =argH ()
U=¢€ -
y=H(e“)e" | _
. . TN
« Example: § - NG
1 g N

H(z) = O N

z—0.7 : —~

-45 ‘\
e |H|isoften measured

Phase (deg)

indB N

-180

10° 10™ 10°
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Black-box model from data

Linear black-box model can be determined from the data,
e.d., step response data
e Thisiscaled modd identification

e Lecture8
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Z-transform, Laplace transform

e Formal description of the transfer function:

— function of complex variable Z - _
T H(z) = > h(k)z™
— analytical outside the circle |Z|=r —

— forastablesystem r <1

o Laplacetransform: 00
— function of complex variable S H(s) = jh(t)eStdt
— analytical inahalf plane Res<a —00
— forastablesystem a<1 9(3) =H (S)G(S)
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Stability analysis

« Transfer function polestell you everything about stability
* Model-based analysis for a ssmple feedback example:

H(2)K

y=H(2u _ _
Y= 1+ H (2K Yq = L(2)Y,

u=-K(y-yjy)

« If H(2) isarational transfer function describing an IR
model

 Then L(z) alsoisarational transfer function describing an
IR model
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Poles and Zeros <=> System

Impulse Response
l Y T T t

e ...Nnot quite so! .
« Example: £ os
7 £ 04
=H(z)u= R
y (2 z—0.7 N
e FIR moddl - truncated | IR Time (sec)
_ _77+40.72° +049Z" +...+ 0001628 z + 000114
y_ HFIR(Z)U_ 219
Impulse Response

0 5 10 15 20 25
Time (sec)

EE392m - Winter 2003 Control Engineering 2-28



lIR/FIR example - cont’d

» Feedback control;

Z

=H(z)u=
Y (2 z—0.7
u=-K(y-vy;) =-(y-v,)

o CI Osed Ioop Impulse Response
y = H(2) u=_L(2u o |
1+H(Z) 20.4-

__He@

= u=>L,,(2)u oL ™
y 1+HFIR(Z) FIR() 0 5 10 15 20 25

Time (sec)
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lIR/FIR example - cont’d
Poles and zeros

 Blue Loop
with IR a« X 9
mode! poles x % ®
0.4 Ose Q
and zeros o - ¥
0.2 C)X Q
* Red: Loop o—Ox ® x X
with FIR R o
model poles x
and zeros o 7 "
oe a &
o) o) o}

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
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LTI models - summary

e Linear system can be described by impulse response

e Linear system can be described by frequency response =
Fourier transform of the impulse response

 FIR, IIR, State-space models can be used to obtain close
approximations of alinear system

« A pattern of poles and zeros can be very different for a
small change in approximation error.

e Approximation error <=> model uncertainty
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Nonlinear map linearization

e Nonlinear - detailed

mOdeI Calibration Points for deposition rate

interpolations drawn in

* Linear - conceptual
design model .

 Static map, gain
range, sector £ oo
linearity 3

« Differentiation, 0020
secant method

Af
=f(u)=—(u-u
y= 1= U=
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Nonlinear state space model

linearization
e Linearizether.h.s. map x= f(X, u)~£(x x0)+£(u U,)
d= Ag+Bv
e Secant method {ﬁ] _ T(x+s)
AX S,

s;=[0 .. 1 .. O]

-
#]

* Or ... capture aresponse to small step and build an
Impul se response model
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Sampled time vs. continuous time

e Continuoustime analysis (Digital implementation of
continuous time controller)
— Tustin’s method = trapezoidal rule of integration for H(s) :%

H(s) - H,(2) = H(s: : 'L_Z_lj

T 1+Z°
— Matched Zero Pole: map each zero and a pole in accordance with

S = eST

o Sampled time analysis (Sampling of continuous signals
and system)
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Sampled and continuous time

« Sampled and continuous time together

e Continuous time physical system + digital controller
— ZOH = Zero Order Hold

A/D, Sample Control D/A, ZOH
(\{W —> computing >/[—l_l G
Sensors - Actuators

EE392m - Winter 2003 Control Engineering 2-35



Signal sampling, aliasing

1
05F 4

* Nyquist frequency: & .="il':, LING - L
W= Y2g; Ws= 21T S S AR A S

1 1

« Frequency folding: kwstw maf) t-o the same frequency w
o Sampling Theorem: sampling is OK if there are no frequency
components above wy,

 Practical approach to anti-aliasing: low pass filter (LPF)
e Sampled - continuous: iImpostoring
Low A/D, Sample Digitd D/A, ZOH Low

Pass — computing —) —\ Pass
= Filter >(‘*{W€ @ »J ‘—l_r Filter i
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Simulation

e ODE solution
— dynamica model: X = f(X,t)
— Euler integration method: X(t +d) = x(t) +d Lf (X(t),t)
— Runge-Kutta: ode45 in Matlab
e Can do smple problems by integrating ODES
e [ssues.
— mixture of continuous and sampled time
— hybrid logic (conditions)
— state machines
— stiff systems, algebraic loops
— systemsintegrated out of many subsystems
— large projects, many people contribute different subsystems
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= i | o . .
s-ls 5772 | Simulation environment

o Simulink by Mathworks
» Matlab functions and analysis
» Stateflow state machines

« Block libraries

» Subsystem blocks
developed independently

 Engineered for developing

large simulation models

 Supports code generation

» Ptolemeus -
UC Berkeley




Model block development

e Look up around for available conceptual models
e Physics- conceptual modeling

o Science (analysis, ssimple conceptual abstraction) vs.
engineering (design, detailed models - out of ssimple blocks)
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Modeling uncertainty

e Modeling uncertainty:
— unknown signals
— model errors
e Controllers work with real systems:
— Signal processing: data — algorithm — data
— Control: algorithms in afeedback loop with areal system
e BIG question: Why controller designed for a model would
ever work with areal system?
— Robustness, gain and phase margins,
— Control design model, vs. control analysis model
— Monte-Carlo analysis - afancy name for a desperate approach
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L ecture 3- Model-based Control
Engineering

o Control application and a platform

o Systems platform: hardware, systems software.
Development steps

e Model-based design
e Control solution deployment and support
o Control application areas
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Generality of control

* Modeling abstraction
e Computing element - software

e System, actuator, and sensor physics might be very
different

e Control and system engineering is used across many
applications
— Similar principles
— transferable skills
— mind the application!
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System platform for control computing

 Workstations
— advanced process control
— enterprise optimizers
— computing servers
(QoSadmission control)
o Specialized controllers:

— PLC, DCS, motion controllers,
hybrid controllers

EE392m - Winter 2003 Control Engineering 33



System platform for control computing

MPC555
e Embedded: uP + software

« DSP

| ¥
== e So— [NUERRD (RERTERR | 0aR
e | | —

=y =)
e, T o

a1 _ 5 EIAN
Complex-integer g <]
pipeline £ g E P 133 MHz

-] & s E | max
- 5 = §

o ES 5 o

Z E 8 5=

“# Ed EE)

Simple-integer Branch unil § 133-MHz
ipeli - > SDRAM L DDR
ipeline

2 “— controller |13-bit adares]

32/84-bit data

Processor local bus (PLB) 128 bits, 133 MHz

o
5 @
_ [nD-TLE] gx KB
2 g Lyp=d .
z H = SAAM
z
[ g3
DCR bus 2| g 128
JTAG 5| 2
440 CPU Debug 2| % >
[}
Trace k] 28
. DMA
13 external 48 internal OPB bridge controller
interrupts (4-channel)

interrupts v

On-chip peripheral bus (OPB) 32 bits, 66 MHz

UART1T || UARTO Ethemet1 Ethermnet0
e | (e [ P o fero
controllsr
1 Milor 2 RMII
10/100 MHz

32-bit data
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Embedded
PrOCESSor
range

EE392m - Winter 2003

Performance and power savings

Dedicated
hardware

Reconfigurable
hardware

Configurable
processor

Domain-
specific

processor /
/" General-

pUrpose
processor

Flexibility
Control Engineering 35




System platform, cont’d

* Anaog/mixed electric circuits
— power controllers
— RF circuits

* Anaog/mixed other
— Gbs optical networks

1 |-
Lo | Monioe
Aot lemperatue
lemperilure —®  monigor i 1O iy :
conmal imerf monslo VECE
Hipmal Uy = 'L 1
i T L Updical Dt

[hin = e D0Cifibs outpat | Clock anmd —l"]-'-h-"r'm
EM —»= EM lnsee ——————| 1or— - duin |
Db bar e drver IC | repetErular —'-'!:31 Tk

L—I-‘ Omtical | et put
Shixldenin . i |

Anilemstic | Alarm! ; | i of
nl L. Shutidenwn 3 L LS alarm | Lis
wIgEn B o & "R = W P = — _b'l...'ﬂl,_ll:ﬂl

pi-PD . AGC
jpre-amplifier amuplifier

mpul contral — e A, sl | nliarm
EM = UL | aitpul
. TR
Electr-opt T sttt ¥ Rl
Modulator
Fienc ol Block fiagram of [0-Crbil's r.'.r.lu.'.-.'l' Tramsarifior B oceher AGC = Auto Gain Control
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Controls development cycle

Analysis and modeling
— physical model, or empirical, or datadriven
— use asimplified design model
— system trade study - defines system design
Heavy use of CAD tools

Simulation
— design validation using detailed performance model

System development
— control application, software platform, hardware platform

Validation and verification
— against initial specs
Certification/commissioning

EE392m - Winter 2003 Control Engineering
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Control
application
software
development
cycle

M atlab+toolboxes
Simulink

Stateflow

Real-time Workshop

EE392m - Winter 2003

Measured Data

Engineering

Problem
Y n:::h’;ﬁm::g' A | pehavioral
Yizualization "‘ }" Mode11ng
Control System |
A | pesign and | A&
r Analysis
¥,
‘ Simulatian
_ ) o
‘,l Code Generation
PROTOTYPING _ PROTOTYPING
CODE CODE
f 2 4
Rapid EMBEDDED “‘E:f{;;"'
Protoiyping e Simulation
Y ;
» <«
Embedded System

DEFLOYMENT



Haraware-in-the-loop ssimulation

e Aerospace
e Process control
e Automotive

EE392m - Winter 2003

Beal =time kernel

ol

real-timmie
maodel

Oy driver

'r..[“h'l tunning .

1 visuslisation

COMT e
interface

==

MATLABS
NMMULINK

—f

1/0) hoard
AD | Digitall| DA
e 1o

from sensors ——
L——— | =
L ——3 i

[y actuators

Control Engineering

LA controller
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Embedded Software Develo pment

PC/workstatio
. App. SIW
\ Simulink/
%% ’ E ; Stateflow RT Simulator
Application 0S / RTOS
software: .
models, control / Microprocessor
At/ \W-Deviges)
_ — = =
Real-Time Simulation, Testing, Verification,
Workshop Performance Optimization
_ OO0
Code Generation Embedded Target
N Engine | 7203
App. S/W
g X e
peeware Real Plant
RTOS
. L 1
Microcontroller 1
/H/W’DGWQGS/I [
= |e—easd

Hardware in the loop simulation, ) )
Real-world Ft)est Plant RT Simulation



The Process

Controller
Requirements

Executable Algorithm Model
Test Cases | Expecled Results

control law design

Validation Target Processor Code
Models | Simulation Default Calibration
Design Reviews
e e software development
Model Based Validation = -
Verification
Inspections
Design Reviews
Automatic Code Test
Acceptance Test (HIL) control SY stem
Automatic Code Generation calibration
Calibration
Analytical
Dyno
Vehicle
New/! Refined Requirements
Ford Motor Company
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Requirement Specification

Ld Algorithm Analysis Bl.g Algorithm Design

Algorithm Specifications

Virtual Prototyping

| d Behavioral Modeling Architectural Modeling

[— — - . Architecture
BehaviorIPs A ‘ IP Authnring

Distributed r
Architecture Analysis

ECU Scheduling | Synthesis
Analysis il Export

Algorithm Performance

Physical Prototyping

| Compile/Link/ =25 S . -
Load g o _
Cadence




Control Technology

e Science

— abstraction

— concepts

— simplified models
* Engineering

— building new things

— constrained resources: time, money,
e Technology

— repeatable processes

— control platform technology

— control engineering technology

EE392m - Winter 2003 Control Engineering 3-13



Controlsanalysis

System and software

Controls development cycle

Control design model:

Conceptud control

code: Simulink

Detaled simul ation
Todel <>

Conceptud _
Andysis S — dgorithm:
X(t+1) = x(t) + u(t) U= -K(X-Xq)

Application Detailed control application:

saturation, initidlization, BIT,
fault recovery, bumpless transfer

*

Systems platform:

V\e/ielrcllﬁt::(;[ll ;:\rr]ld Harcllware-.l n-the- | Prototype Ell;:]dt/lv rgri C?gt?o ?”S]
oopSm ] [ controller P
: Deployed
Physicd plant
Depl Oyment y P <:::> controller

EE392m - Winter 2003

Control Engineering

3-14




Controls analysis

Conceptud Data model | dentification & tuning
Andysis Fault mode Accomodation
. a gorithm:
Control design model: Conceptuad control
agorithm:
X(t+1) = X() + u(t) U= -k(x-X)
Application | ==~ Detailed Detailed control application:
pI?:Ode' Sl simulaion <:::> saturation, initialization, BIT,
S I'. K e model fault recovery, manual/auto
mulin e mode, bumpless transfer,
i startup/shutdown
EE392m - Winter 2003 Control Engineering 3-15




Algorithms/Analysis

Much more than real-time control feedback computations
e modeling

e identification

e tuning

e Optimization

o feedforward

o feedback

e estimation and navigation

o user interface

o diagnostics and system self-test
« system level logic, mode change
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Practical 1ssues of Control Design

« Technical requirements

e Economics. value added, # of replications
— automotive, telecom, disk drives - millions of copies produced
— Space, aviation - unigue to dozens to several hundreds
— process control - each process is unique, hundreds of the same type

* Developer interests

 |ntegration with existing system features

o SKill set in engineering development and support
o Field service/support requirements

« Marketing/competition, creation of unique IP

* Regulation/certification: FAA/FDA
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Major control applications

Specialized control groups, formal development processes
e Aviation
— avionics. Guidance, Navigation, & Control
— propulsion - engines
— vehicle power and environmental control
e Automotive
— powertrain
— suspension, traction, braking, steering
e Disk drives

* |Industrial automation and process control
— process industries: refineries, pulp and paper, chemical
— semiconductor manufacturing processes

— home and buildings
EE392m - Winter 2003 Control Engineering 3-18



Commercial applications

Advanced design - commercial
e Embedded mechanical

— mechatronicsdrive control

e Robotics
— |ab automation
— manufacturing plant robots (e.g., automotive)
— semiconductors
 Power
— generation and transmission

e Trangportation

— locomotives, elevators
— marine

* Nuclear engineering
EE392m - Winter 2003 Control Engineering 3-19



High-performance applications

Advanced design

« Defense and space
— aero, ground, space vehicles - piloted and unmanned
— missiles/munitions
— comm and radar: ground, aero, space
— campaign control: C4ISR
— directed energy

e Science instruments
— astronomy

— accelerators
— fusion: TOKAMAKS, LLNL ignition
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Embedded applications

No specialized control groups
 Embedded controllers

— consumer
— test and measurement
— power/current
— thermal control

 Telecom
— PLLSs, equalizers
— antennas, wireless, las comm
— flow/congestion control
— optical networks - analog, physics

EE392m - Winter 2003 Control Engineering
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Emerging control applications

A few selected cases

 Biomedica
— life support: pacemakers anesthesia
— diagnostics: MRI scanners, etc
— ophthalmology
— bio-informatics equipment
— robotics surgery
o Computing
— task/load balancing
e Finance and economics
— trading
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Lecture 4 - PID Control

e 90% (or more) of control loopsin industry are PID
o Simple control dessign model — simple controller

EE392m - Winter 2003 Control Engineering
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e Integrator plant:
y=u+d

d(t)

y(t)

A

-u(t)
 Pcontroller:
U= _kP(y_ yd)

EE392m - Winter 2003

P control

Example:
Utilization control in avideo server

Video stream |
— processing time c[i], period p[i]
— CPU utilization: U[i]=c[i]/p[i]

u(t) AU ..,

At
A4 server utilization

>H admission rate =
Y4(t)

y(t)

CPU

-d(t) u completion rate= AU

done

At
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P control

o Closed-loop dynamics

y+koy =k y, +d Y= e Ya S
YTKY =KpYy S+kP ‘ S+kp
1
e Steady-state (s=0) Y = Yy +k_dss
P
° Trangent y(’[) = y(O)e—t/T +(yd +kidSSJ [(Il—e‘t/T) O.é /
p 06[ /
) _ y(t)
T =1/k, 83 —/
0
e Frequency-domain (bandwidth) 0 X 2 4
Vo (t) = 9, ()€™ = Jalie)+di)/ks| s N
d(t) = d(iw)e J(@rk, P +1 12 el \\
2801 0.1 1 10
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| control

y=gll+d, Example:

, _ e Servosystem command
 Introduce integrator into control

a=v, u(t)
V= _k| (y- yd)
e Closed-loop dynamics Y(®
_ gk. y, + S g e More:
S+ gk, s+ gk, I

— flow through avalve
— motor torgue ...
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Sampled time | control

» Step to step update: sampled time
y(t) = g Lui(t) +d(t) integrator
ut) =u(t-1 +v(t-1)

v(t) =k [y(t) - v
o Closed-loop dynamics
y=gll+d

ok, z-1

|:'> = +
d z-1+ gk, % z-1+ gk,

L
u= Z—l[y yd]

+ Deadbeat control: gk, =1 ——> Yy=Z Yy, + (1‘ Z_l)d

EE392m - Winter 2003 Control Engineering
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Run-to-run (R2R) control

« Man APC (Advanced
Process Control) approach in
semiconductor processes

 Modification of a product
recipe between tool "runs"

* Processes:
— vapor phase epitaxy
— lithography
— chemical mechanical
planarization (CMP)

— plasmaetch

EE392m - Winter 2003

y(t) = g lu(t) +d(t)

u(t) =u(t—1) +k [y(t) - v,

l

Run-to-run control

Cdll controller

Tunable
recipe

parameters

)

Runtime
controller

Control Engineering

o

Process

!

T ool

I

)

M etr-ol ogy
system
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Pl control

Example:
 First-order system: « WDM laser-diode temperature control
Z-y : — y + u + d riermemi .@-'?E{i [?{?%Ir.-
] . ?? ???|. i e Lawer Dinda
. Pcontrpl + integrator for b il = /'_! _——
cancelling steady stete error 1l |
Peltier Heatpump Temperature
Controller
e=Y—VYy, y(t) = temperature - ambient temperature
. : heat loss to pumped produced
v=e ’en vironment‘ thGGt
— y=—-y+u+d
U= _kl V- kpe « Other applications
- ATE

» EDFA optical amplifiers
» Fiber optic laser modules

: o * Fiber optic network equipment
EE392m - Winter 2003 Control Engineering



Pl control

e P Control + Integrator for Cascade |oop interpretation:
cancelling steady state error
E=VY—Yy, Inner loop
v=e _
v —kee = k(e -k V) I
Uu=-— |V_ Pe: P e—KYV e(t) y
E 9PI ant

y

Velocity form of the control & ;

0=k e-k.e ki =k kp
u(t +1) = u(t) —k e(t) — k,[e(t) — e(t — 1)

EE392m - Winter 2003 Control Engineering 4-8



Pl control

o Closed-loop dynamics
sk, + K, S

y= Yot
S(rs+1) + sk, +k, S(rs+1) + sk, +k,

o Steady state (s=0): Yss = Ya.
No steady-state error!

 Transient dynamics: look at the —
characteristic equation R VA
A’ + (1+k.)A +k, =0 0 |
. D|Sturbancer eCtlon @ ODIS‘I’URBANCE REJECTION
e A e
Vil =H(@ i) 2/ e
<§( -30/ |
40 -2 io 2
EE392m - Winter 2003 Control Engineering 10 059 10
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» Phase-locked loop is arguably a
most prolific feedback system

e= 2K, LPKr xv)

= 2K, LPF(Asin(at + 6,) x cos(at +6,))
e= AK_sin(at-awt+6,—6,)

6, =Aw =K. u

EE392m - Winter 2003

PLL Example

reference signa

Hi-freq | €| Loop Filter
L PF (controller)

Voltage

>

Oscillator

signal phase-locked

to reference

Controlled <

PLL

Control Engineering
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PLL Loop Modél

o Small-signal mode:

6=at-wt+6, -6, <<1

e=K,sin@)=K,l

Hzga—wo+9dj—

d

e Loop dynamics:

KU
—
6

f=d-K.u
e=K,0
u=kee+k [ et

—— >

EE392m - Winter 2003

d reference error
Eg» K, —>C(s)

K

VCO ——2 i«
S

>0=wt-wt+6,-6,
phase

u

PLL

_ S
@K K k,s+k

Control Engineering
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PD control

e 2-nd order dynamics Example:
e Disk read-write control

y=u+d ' @
 PD control P < ﬁ?‘ -
e=y-y, H f ‘M >
u=-k,e-k.e %%%hﬁ o
e Closed-loop dynamics
g+k,e+k.e=d 19~
1
s> +k,s+k,
e Optimal gains (critical damping)
ko =2r; ko =77

EE392m - Winter 2003 Control Engineering 4-12
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PD control

Derivative (rate of ) can be obtained
— gpeed sensor (tachometer)
— low-level estimation logic

Signal differentiation
— Isnoncausal
— amplifies high-frequency noise

Causal (low-pass filtered) estimate of the derivative

. S 1 1/ 1,
e= e=—e+ e
I,s+l1 1, T1,8+1

Modified PD controller:

S
u=-kj e—k.e
I,S+1

EE392m - Winter 2003 Control Engineering
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PD control performance

The performance seemsto be infinitely improving for
kp =2r;k, =7% T -
Thiswas a simple design model, remember?

Performance is limited by

— system being different from the model
» flexible modes, friction, VCM inductance

— sampling in adigital controller

— rate estimation would amplify noise if too aggressive

— actuator saturation

— you might really find after you have tried to push the performance

If high performance isreally that important, careful
application of more advanced control approaches might help
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Plant Type

Constant gain - | control

Integrator - P control

Double integrator - PD control

o Generic second order dynamics - PID control

EE392m - Winter 2003 Control Engineering 4-15



PID Control

e Generaizationof P, Pl, PD T
o Early motivation: control of first
order processes with deadtime g
ge—TDS
y = u L
1s+1 15
Exam pl e. slice lip gEa“_-, hox 5;:} Isl::lrg
e Paper ]
machine ,: TN | ._
control | ? T d HH A
consistency rewet caliper
shower
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PID Control

Independent sensor
* PID: three-term control e=y-y, or an estimate

u=-ko&=kee~k [ el

_ 1
e Sampled-time PID u:—kD(l—z 1)e+kpe+k, 1_2-19
o
* Velocity form Au = -k Ne—k.Ae—k e
— bumpless transfer between 4
manual and automatic A=1-z

u(t +1) = u(t) — k e(t) — ko (e(t) - e(t - 1))
—k, (e(t) - 2e(t —1) + e(t — 2))
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Tuning PID Control

e Model-based tuning
e Look at the closed-loop poles

 Numerical optimization

— For given parametersrun asim,
compute performance parameters
and a performance index

— Optimize the performance index
over thethree PID gains using
grid search or Nelder method.

EE392m - Winter 2003 Control Engineering

Optimizer

Ky, Ko, K Performance

v T

u= —(sz+ Ko +§'

5
e

L » Plant model

sim
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Zeigler-Nichols tuning rule

* Explorethe plant:
— set the plant under P control and start increasing the gain till the

loop oscillates
— note the critical gain k- and oscillation period T
 Tunethe controller: Ko Kk Ko

P 0.5kc | — —
Pl |0.45kc | 1.2kp/Te| ——
PID| 0.5kc | 2Kp/T: | KpT(/8

o Z and N used a Monte Carlo method to develop the rule

e Z-N rule enablestuning if amodel and a computer are both
unavailable, only the controller and the plant are.
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Integrator anti wind-up

e Inpractice, control authority is ——
C v=¢
aways limited: -
U. = —KV-—K,E

— Uy S U() < Uyax °© i
» Wind up of theintegrator: Uniax » U > Upax

— |if ‘uc‘ > Uy theintegral vV U=19 U, Uyy S U S Uyay

will keep growing while the control Ui U, < Uy

Is constant. This results in aheavy
overshoot later

e Anti wind-up:

— switch the integrator off if the
control has saturated

{e, for Uy, S U, < Uy
0, If U, >u,, Or U, <u,,
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|ndustrial PID Controller

A box, not an algorithm

Auto-tuning functionality:
— pre-tune
— self-tune

M anual/cascade mode switch

Bumpless transfer between
different modes, setpoint ramp

Loop alarms
Networked or serial port

EE392m - Winter 2003 Control Engineering
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| ecture 5 - Feedforward

* Programmed control

« Path planning and nominal trgectory feedforward
» Feedforward of the disturbance

» Reference feedforward, 2-DOF architecture
 Non-causal inversion

 |nput shaping, flexible system control

 |terative update of feedforward

EE392m - Winter 2003 Control Engineering
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Why Feedforward?

» Feedback works even if we know little about the plant
dynamics and disturbances

* Wasthe casein many of thefirst control systems
 Much attention to feedback - for historical reasons

e Open-loop control/feedforward is increasingly used
* Model-based design means we know something

* The performance can be greatly improved by adding open-
loop control based on our system knowledge (models)

EE392m - Winter 2003 Control Engineering 5-2



Feedforward
controller

Feedforward

—>

Plant —

— thisLecture5

Main premise of the feedforward control:
amodel of the plant is known

Model-based design of feedback control -

the same premise

The difference: feedback control isless
sensitive to modeling error

Common use of the feedforward: cascade
with feedback

EE392m - Winter 2003

Plant

I

Feedback

controller

— Lecture4 PID
— Lecture 6 Analysis
— Lecture 7 Design

Plant

Feedforward
controller

Il

Feedback
controller

il
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Open-loop (programmed) control

Control u(t) found by solving an
optimization problem. Constraints on
control and state variables. P
Used in space, missiles, aircraft FM S g peas. R
— Mission planning W o
— Complemented by feedback corrections
Sophisticated mathematical methods

were developed in the 60s to
overcome computing limitations.

L ecture 12 will get into more detail
of control program optimization. xUx,uJu
Optimal control: u = u.(t)

X = f(x,u,t)
J(X,u,t) - min

EE392m - Winter 2003 Control Engineering 5-4



Optimal control

Performance index and constraints

Programmed control

— compute optimal control as a time function for particular initial
(and final) conditions

Optimal control synthesis

— find optimal control for any initial conditions

— at any point in time apply control that is optimal now, based on
the current state. Thisis feedback control!

— example: LQG for linear systems, gaussian noise, quadratic
performance index. Analytically solvable problem.

— simplified model, toy problems, conceptual building block
MPC - will discussin Lecture 12

EE392m - Winter 2003 Control Engineering
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Path/trajectory planning

* The disturbance caused by the change of the command r
Influences the feedback |oop.

e Theerror sengitivity to the reference R(s) is bandpass:
IR(i w)|<<1 for cwsmall

» A practical approach: choose the setpoint command (path) as
a smooth function that has no/little high-frequency
components. No feedforward is used.

e The smooth function can be a spline function etc

B ( ) // Plant :
. t Commanded
Yd / output or Feedback
4 setpoint controller

low level controller

EE392m - Winter 2003 Control Engineering 5-6



Disturbance feedforward

 Disturbance acting on the plant

IS measured

* Feedforward controller can
react before the effect of the
disturbance shows up in the
plant output

Example:

Temperature control. Measure
ambient temperature and adjust
heating/cooling

* homes and buildings

e district heating

e industrial processes -
crystallization

e electronic or optical components

Disturbance

v

Feedforward
controller

1

Plant
Feedback

controller

EE392m - Winter 2003 Control Engineering 5-7




Command/setpoint feedforward

e The setpoint change acts as
disturbance on the feedback loop.

 Thisdisturbance can be measured

e 2-DOF controller

Commanded

Examples:

eServosystems
—robotics
*Process control
—RTP
sAutomotive
— engine torque demand

output or
setpoint

Feedforward
controller

EE392m - Winter 2003

Plant
Feedback

controller

low level controller
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Feedforward as system inversion

y = P(s)u

y=y, =>u=[P)]|™y,

e Simple example:

P(s):1+25
1+s
_ 1+s
P(s)|™ =
[P =

EE392m - Winter 2003

e=P(s)u+ D(s)d
Yo = —D(s)d

Y4(t)| Feedforward [U(t)

Control Engineering

controller

Plant

M or e examples:

*Disk drive long seek *

*Robotics: tracking atrgjectory

A WY 4

\

(+
Yalt

__
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Feedforward as system inversion
y =P(s)u

—. V()
y=y, = u=[PE)y, )= o)

e [ssue
— high-frequency roll-off

o | (o
5 \\ P(S) =

110 \ 1+s

15 \ [P =1+s
Qo1 o1 1 10

NON-Proper

* Approximate inverse solution:
— ignore high frequency in some way

EE392m - Winter 2003 Control Engineering 5-10



Proper transfer functions

* Proper means deg(Denominator) = deg(Numerator)
e Strictly proper <=> high-frequency roll-off, all physical
dynamical systems are like that

 Proper = strictly proper + feedthrough
o State space models are always proper
« Exact differentiation is noncausal, non-proper

« Acceleration measurement example acceler ometer

mxX = u a=x Springs K.
= ronil & m
i Damper
. - S

EE392m - Winter 2003 Control Engineering 5-11



Differentiation

Path/trajectory planning - mechanical servosystems

The derivative can be computed if y,(t) is known ahead of
time (no need to be causal then).

n

_ 1 1 d'y
Pl S — [ [n]’ [n] t) = t
(S) Y4 P & Ve Yo (1) e (t)
P(S):—l Pl(s)y :Ey — 1+£ y :y +y
1+S d S d S d d d

EE392m - Winter 2003 Control Engineering 5-12



Approximate Differentiation

e Add low pass filtering:

P'(s) = 1 gt

(1+1s)" P()

1
P(s) = —
(s) 1+s

P'(8) = ——[{1+)
’S

1+

EE392m - Winter 2003

1
0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

Computed feedforward

e ' .
//' \\ r=0.2
/. \\
N
2 4 6 8 10 12
Desired and produced output
/ s;\‘
£, b
RN
Py R\
% \
i N
2 4 6 8 10 12
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‘Unstable’ zeros

e Nonminimum phase system
— r.h.p. zeros - r.h.p. poles
— approximate solution: replacer.h.p. zeros by |.h.p. zeros

1-5s
1+0.25s 1+s

 RHP zeros might be used to approximate dead time
— exact causal inversion impossible

P(s)=e?" = 1-sT
1+sT

o |If preview isavallable, use alead to compensate for the
deadtime

P(s) =

EE392m - Winter 2003 Control Engineering 5-14



Two sided z-transform,
non-causal system

e Linear system isdefined by a pulse response. Do not constrain
ourselves with a causal pulse response anymore

y(x) = 3 h(x—k)u(k)

k=—00

e 2-sided z-transform gives a“transfer function”

P(2) = Y h(k)Z*

k=—00

 Fourier transform/Inverse Fourier transform are two-sided

» Oppenheim, Schafer, and Buck, Discrete-Time Sgnal Processing,
2nd Edition, Prentice Hall, 1999.

EE392m - Winter 2003 Control Engineering 5-15



|mpulse response decay

« Decay ratefromthe center = logr

NONCAUSAL RESPONSE

-10 0 10
TAP DELAY NUMBER

EE392m - Winter 2003 Control Engineering 5-16



Non-causal Inversion

e Causal/anti-causal decomposition
— 2-sided Laplace-transform

—O.25+1'—25
1-s

«—

IMPULSE RESPONSE OF THE INVERSE

P(s) = 1-s
1+0.25s
P'l(s) _ 1+0.25s _
P'l(i C()) —_ L 0.15
P(i w)
. iFFT o

EE392m - Winter 2003
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Freguency domain inversion

» Regularized inversion: |y, - PuHi + pHuHi ~ min

[ vai@) - Pi@ui@)f + dui @) e - min

W) = P (iw)

P (iw)P(iw)+ p

Va(iw) =P'(iw)y,(iw)

REGULARIZED INVERSE

Systematic solution P(s) =
— simple, use FFT 1-s
— takes care of everything (1+0.25s)(1+5)

— noncausal inverse
— high-frequency roll-off

— Paden & Bayo, 1985(?)

EE392m - Winter 2003
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|nput Shaping: point-to-point control

. L . iy u(t) \

. Feedforward | " f y(t)
(_3|ven |n|t|al_andf|nal conditions o) contro\ll\ller L plant 24
find control input Y

* No intermediate trgjectory
constraints Examples:

. : : .  Disk drive long seek
* Lightly damped, imaginary axis « Flexible space structures
poles » Overhead gantry crane
— preview control does not work X
— other inversion methods do not work frolley] Q.
well /////i 777 77
* FIR notch fliter . }
— Seering and Singer, MIT l |
— Convolvelnc. I
I

Payload

EE392m - Winter 2003 Control Engineering 5-19



Pulse Inputs

e Compute pulse inputs 0.6 =
such that thereis no A 7 A Response
vibration.

== Total Response

Position

 Worksfor apulse
seguence input

e Canbegenedlizedto 041, - _
any inpUt {} 0.5 I [.5

[
[
=
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Input Shaping as signal convolution

. Convolution:  f(t)* (S AS(t-1))=> Af(t-t)

N\ *t

A
Ir11t1al Command Input Shaper
A 2+A

Shaped Command

N * 14

D

Initial Command Input Shaper

=

EE392m - Winter 2003 Control Engineering
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Iterative update of feedforward

step
* Repetition of control tasks F‘f;i?ﬂ?{,ﬁj{d —> Plant
: Step-to-st

* Robotics feedEpack upilpate

— Traectory control tasks:

Iterative Learning Control
— Locomotion: steps Example
' One-legged
hopping machine

« Batch process control (M.Raibert)

— Run-to-run control in

semiconductor manufacturing

— |terative Learning Control
(IEEE Control System Magazine,

Dec. 2002)

EE392m - Winter 2003

Height control:

Ya= Yo(t-Tya)
h(n+1)=h(n)+Ga

Control Engineering
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Feedforward | mplementation

Constraints and optimality conditions known ahead of time
— programmed control

Disturbance feedforward in process control
— hasto be causal, system inversion

Setpoint change, trajectory tracking
— smooth trgjectory, do not excite the output error

— 1N some cases have to use causal ‘ system inversion’

— preview might be available from higher layers of control system,
noncausal inverse

Only final state isimportant, special case of inputs
— input shaping - notch filter
— noncausal parameter optimization

EE392m - Winter 2003 Control Engineering 5-23



Feedforward | mplementation

o |terative update
— ILC
— run-to-run
— repetitive dynamics

* Replay pre-computed sequences
— look-up tables, maps
e Not discussed, but used in practice

— Servomechanism, disturbance model
— Sinusoidal disturbance tracking - PLL
— Adaptive feedforward, LM S update

EE392m - Winter 2003 Control Engineering 5-24



Lecture 6 - SISO Loop Analysis

SISO = Single Input Single Output

Analysis:
o Stahility
e Performance
e Robustness

EE392m - Winter 2003 Control Engineering 6-1



ODE stability

o Lyapunov’s stability theory - nonlinear
systems
— stability definition
— first (direct) method
* exponential convergence

— second method: Lyapunov function
« generaization of energy dissipation

Poiiaiie 1 o Lyapunov’s exponent

A — dominant exponent of the
convergence

— for anonlinear system

— for alinear system defined

407= by the poles

men - HUYTA

EE392m - Winter 2003 Control Engineering
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Stability: poles

X = Ax + Bu y:H(S)EJ
y =Cx+Du| H(s)=C(Ils-A'B+D

e Characteristic values = transfer
function poles

— |.h.p. for continuous time

— unit circle for sampled time
e |/O model vs. internal dynamics

H(é): N(s) __ g, ./+\+Ag g,

D(S) S— P | S— Py

EE392m - Winter 2003 Control Engineering



Stability: closed loop

u—{Plant : P(s) »y Y=P(s)u
u=-C(s)gg e=y-y,

PID controller : C(s) i [ ]
e=[1+P(s)C(s)| "y
I(p'|'k|l+kD : € y ) S(s) .
S IS+l

Yd
e Thetransfer function poles arethe zeros of
1+ P(s)C(9)
o Watch for pole-zero cancellations!
* Poles define the closed-loop dynamics (including stability)
« Algebraic problem, easier than state space sSim

EE392m - Winter 2003 Control Engineering 6-4



Stability

For linear system polesdescribe stability
... admost, except the critical stability

For nonlinear systems
— linearize around the equilibrium
— might have to look at the stability theory - Lyapunov
Orbital stability:
— trgectory convergesto the desired

— the state does not - the timing is off
» Spacecraft
 FMS, aircraft arrival

EE392m - Winter 2003 Control Engineering
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Performance

* Need to describe and analyze
performance so that we can
design systems and tune
controllers

 Thereareusualy many
conflicting requirements

e Engineerslook for a
reasonabl e trade-of f

Optimizer

Ky, Ko, K, Performance

T

S K
u=-Kkg +K, +— |ew
IS+l S
| Plant model
sim

EE392m - Winter 2003 Control Engineering
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Performance: Example

» Selecting optimal b in the b Optimi;;mmance
Watt’s governor - HW
Assignment 1 Y T

Plant model, given b

sim

Linkage from . 215 \
Flyball motion darnpl ng b 2 1 \
—~ S\

2,05 \ Performance index —

2 \ Inatransent vsb —
1.95 \

\

adjustment ‘\' \“ / 5 = nw,d 1.9 \
Drive ‘\l Bl ‘\l ﬁ 18 \

/|

7

from «

engine / r '/ 18 \\ /

1.75

Flywheel

EE392m - Winter 2003 Control Engineering  * 25 s N ‘ 67 °
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Performance - poles

o Steady state error: study transfer functionsat s=0.

o Step/pulse response convergence, dominant pole

a=mi n{Re pj} o

// C+ Ae aﬁ)mi nant exponent |

7
/

0

« Caution! Fast response (poles far to the left) leads to peaking

\

\
S

" fast response l

 S~—

AN

| dow response !

EE392m - Winter 2003
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Performance - step response

+ Step response shape ¢

::::::::ﬁ A \\\\\\\\\




Performance - quadratic index

* Quadratic performance /\
— response, mfrequency domain / T
J= j\y(t) Ys (D) dt-—ﬂe('w)\ da= / v
t=0

—“S(m))yd (iw) da)——ﬂS(l 60)\ = oo’ 59 = [+ PeC(S]”

STEP
 If y4(t) Isazero mean random process with the

spectral power Q (Iw)
7 _ 2 .| 1 R P
J= E[t _:“O\y(t) Ya () dtj = [[S(i )" Q(icw) dew
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Transfer functions in control loop

disturbance (
feedf d Pant *
orward v—p— P(3) DT y output
noise I AN u control
Controller x-
C(s) e* e eror

reference vy,

e=3(s)d - S(s)y, +T(s)n+ S (s)v
y=3(s)d +T(s)y, +T(s)n+ S, (s)v
u=-§,(s)d +§,(s)yys + S (s)n+T(s)v

EE392m - Winter 2003 Control Engineering
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Transfer functions in control loop

e=y-y,+n e=3(s)d —3(g)y, +T(s)n+ S (s)v
y=P(g)Uu+Vv)+de=> y=5(s)d +T(s)y, +T(s)n+S,(s)v
u=-C(s)e u=-5,(s)d+S,(s)y, +S,(s)n+T(s)v

Sensitivity S(s) =[1+ P(s)C(s)|™
Complementary sengitivity T(s) = [1+ P(s)C(s)| " P(s)C(s)
Noise sensitivity S,(s) = [1+ P(s)C(s)] C(s)
Load sensitivity S (s) =[L+ P(s)C(s)] " P(s)

EE392m - Winter 2003 Control Engineering 6-12



Sengitivities

disturbance Plant

P(s)
Controller

reference |  C(S)

disturbance d

outpu¥ Feedforward

Yd

y =3(s)d +T ()Y,

error Y4

Plant
P(s)

r F(s)
e

reference

y=d+F(s)P(s)y;

y
outpuit

error

S(iw) =

1+L(iw)

L(s) = P(s)C(s)

* Feedback sensitivity

— |S(iw)|<<1 for
— |IS(lw|=1 for
— can bebad for
EE392m - Winter 2003

L (i)
L (i)
L (i)

Se(lw) =1

» Feedforward sensitivity

>>]
<<1

= 1 - ringing, instability

Control Engineering

— good for any frequency
— never unstable
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Sensitivity requirements

S(a)=—
e=S(s)d - S(5)y, +T(Sn+S, (v 1+ Pllw)C(iw)
_ N P(iw)
y=S(s)d +T(s)y, +T(s)n+ S, (s)v S,(lw) = T+ PGw)C(®)
u=-3,(9)d +,(9) Yy, + S (sn+T(s)V :
Sw) =)

1+ P(iw)C(iw)

Disturbance regjection and reference tracking

— |S(ia)|<<1 for thedisturbanced ; |S(ic)|<<1 for the input ‘noise’ v
Limited control effort

— |S,(iw)|<<1 conflicts with disturbance rejection where |P(i c)|<1
Noise rejection

— [T (lw)|<<1 for the noise n, conflicts with disturbance reection

EE392m - Winter 2003 Control Engineering 6-14



Robustnhess

e Ok, we have a controller that works for anominal mode.

 Why would it ever would work for real system?

— Will know for sure only when wetry - V&V - ssmilar to debugging
process in software
e (Can check that controller works for arange of different
models and hope that the real system is covered by this range

— Thisis called robustness analysis, robust design
— Was an implicit part of the classical control design - Nyquist, Bode
— Multivariable robust control - Honeywell: G.Stein, G.Hartmann, ‘81
— Doyle, Zames, Glover - robust control theory
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Control loop analysis

u(t) Plant vO V= qu
[Feedba‘*j 1=k (y—yg) ) YT Y =0

controller

e Why control might work if the process differs from the model?

o Key factors
— modeling error (uncertainty) characterization
— time scale (bandwidth) of the control loop

Step response for
the design mode!:

y(t)=gu(t)

Uncertainty

4>A

> Plant %

u(t)

-~/ | Actual step response

\ Feedback
AN controller

Modeling error

EE392m - Winter 2003 Control Engineering 6-16



Robusthess - Small gain theorem

e Nonlinear uncertainty!

e QOperator gain
|Gul < |G| il

— G can beanonlinear operator

e L,norm

2 5 1 ¢~,. 2
uf = [u* ()t = [T ) de

A

P

G

1.

|G| g <1

(Open-loop stability assumed)

G.Zames

y(t)

The loop Is guaranteed stable if

Desoer and Vidyasagar, Feedback
Systems: Input-Output Properties, 1975

* L,gan of alinear operator

EE392m - Winter 2003

Control Engineering
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Jul
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Robustness

e Multiplicative uncertainty

e Additive uncertainty

e L y(t)

|[|A(| w)| <1

—» A > A
u(t) 5 P P31 y(t) r P(s) [> :
C(s) « uts C(s) «
S, T(9
Condition of robust stability Condition of robust stability
C(lw) [lﬂ(l )‘ <1 P(lw)C(iw)
1+ Plw)C(lw)| —— H H 1+ P(lw)C(lw) X
Isi| 7]
EE392m - Winter 2003 Control Engineering
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Nyquist stability criterion

=1
u(t) ”g C\5/(_3) 1’ y()

e Homotopy “Proof”

— G(9) Is stable, hence the loop is stable

for y=0. Increase y to 1. The instabil

cannot occur unless yG(iw)+1=0 for

someO<y< 1.
— |G(iwg) <1 is asufficient condition

o Subtleties: r.n.p. poles and zeros

A Im G(io)
Ultimate point
| B »
4 A 5 Re Glim)
i

] {0
Ity

Compare against

— Formulation and real proof using the
agrument principle, encirclements of -1

— stable - unstable - stableas0-y

-1

EE392m - Winter 2003 Control Engineering
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Galn and phase margins

v =g+ P(s) v
g _ =1 f
»TC(S) j‘» y [c(s) ]| P(3)

Y .-

Loop gain /
L(s) = P(s)C(9) 5 !

Nyquist plot for L \
— at high frequency ‘L(i a))\ <1 \

EE392m - Winter 2003 Control Engineering

so=frie]’
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ReL(s) 1
]
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-

e

/
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Galn and phase margins

e Bode plots gain phase
crossover crossover

gain

10 | | — IIII10 a).|.80
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Advanced Control

e Observable and controllable system
— Can put poles anywhere
— Candrive state anywhere
e Why cannot we just do this?
— Large control
— Error peaking
— Poor robustness, margins
e Observability and controllability = matrix rank
» Accuracy of solution is defined by condition number
 Anaysisof thislectureisvalid for any LTI contral,
Including advanced
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Lecture 7 - SISO Loop Design

« Design approaches, given specs

« Loopshaping: in-band and out-of-band specs
e Design example

e Fundamental design limitations for the loop
— Freguency domain limitations

— Structural design limitations
— Engineering design limitations

EE392m - Winter 2003 Control Engineering
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Modern control design

e Observable and controllable system
— Can put poles anywhere
— Candrive state anywhere
— Can design ‘optimal control’

e [ssues
— Large control
— Error peaking in the transient
— Noise amplification
— Poor robustness, margins
— Engineering trade off vs. asingle optimality index

EE392m - Winter 2003 Control Engineering
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Feedback controller design

. : Design process
o Conflicting requirements Ko i
- Stability Indexes
* Engl neerslook for a kI Performance | Constraints
reasonabl e trade-of f K Robustness | Specs
. D
— Educated guess, tria and *
error controller parameter
choice Y
— Optimization, if the S K
: — _ |
performanceis really u=-kg +k, +— e«
important IpS+l S
o optimality parameters are
used as tuning handles - Plant model
Analysisand smulation
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L oopshape requirements
L(iw) =Piw)C(iw)
Performance S(iw) =1+ L(iw)]™

« Disturbance rgection and reference tracking
— |S(iw)|<<1 for thedisturbanced; |P(ic)Siw)|<<1l for theload v
— satisfied for |L (ic)|>>1

* Noisergection
— [T =i L(ic)| < 1is Ok unless |1+ L(ic)]| is small

e Limited control effort

- |Clla) Sia)<1
— works out with large |C(i w)| for low frequency, where |P(i w)[>1

EE392m - Winter 2003 Control Engineering 7-4



L oopshape requirements
Robustness

o Multiplicative uncertainty
— [Tllw)| <A w), where A a) istheuncertainty magnitude

— at high frequencies, relative uncertainty can be large, hence, | T(i )|
must be kept small

— must have |L(iaw)|<<1 for high frequency, where Ja) islarge
e Additive uncertainty

— |IC(lw) Siw)| < /A w), where A @) isthe uncertainty magnitude
e Gan margin of 10-12db and phase margin of 45-50 deg

— this corresponds to the relative uncertainty of the plant transfer
function in the 60-80% range around the crossover
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Galn and phase margins

e Arelessinformative
than the noise
sensitivity .

{

S,(s) = C(9[L+ P()C(9) ™

sensitivity |7~
peak margin

>

[

(
=1

|

\

 Can use uncertainty
characterization and
the sensitivity instead \
* Marginsare useful for -

deciding upon the loo
shape modifications

EE392m - Winter 2003 Control meering
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L oop Shape Requirements

 Low freguency: 2] Performance
— highgainL
=smal S
« High frequency:
— small gain L
=smal T - large & S R | — Robustness |

. Bandwidith P [ Bandwicth
e | |

limited frequency g
band: w < w;

— @, isthe bandwidth G

Fundamental tradeoff: performance vs. robustness
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L oopshaping design

e Loop design
— UseP,l, and D feedback to shape the loop gain
« Loop modification and bandwidth
— Low-passfilter - get rid of high-frequency stuff - robustness

— Notch filter - get rid of oscillatory stuff - robustness

— Lead-lag to improve phase around the crossover - bandwidth
* P+D inthe PID together have alead-lag effect

* Need to maintain stability while shaping the magnitude of
the loop gain

e Formal designtoolsH,, H,,, LMI, H_, loopshaping
— cannot go past the fundamental limitations
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Example - disk drive servo

The problem from HW Assignment 2
— datain di skPI D. m di skdat a. nat

Design model: AP(s)isan uncertainty ~ Disk servo control

P(S) =2 + AP(S) R
Analysis model: description for AP(s) % P C
Design approach: PID control based on N
the smplified model 36 =T

C(s) =k +ﬁ+kD >
S TDS+1 Voice
Caoail
Motor

EE392m - Winter 2003 Control Engineering 7-9



Disk drive servo controller

e Start from designing a PD controller
— poles, characteristic equation

1+C(s)P(s) = 0= (k, +skD)E2—§+1:O

s+ SgokD + gOkP =0
o Critically damped system
kD - 2Wo/go; kP - W02/90
where frequency w, is the closed-loop bandwidth

* Inthederivative term make dynamics faster S

than w,. Select 7, = 0.25/w, o s+l
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Disk drive servo

o Step up from PD to PID control

1+(kp+skD +lkleg—°:O

S s°

S+ S°goK, + SOKs + ok, =0

o Keegp the system close to the critically damped, add integrator
term to correct the steady state error, keep the scaling

Ke =Wo/0Qp; Ko =aWo/ gy k =bwg/g, 7,=clw,
where a, b, and ¢ arethe tuning parameters
 |nitial guess: w, =2000; a=2; b=0.1; c=0.25
 Tunea, b, cand w, by watching performance and robustness
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Disk drive - controller tuning

Tunea, b, w,, and 7, by trial and error

Find atrade off taking into the account
— Closed loop step response
— Loop gain - performance
— Robustness - sengitivity
— Gain and phase margins
Try to match the characteristics of C2 controller (demo)

The final tuned values:
w, =1700; a=1.5; b=0.5; c=0.2
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Disk servo - controller comparison

e PID iscompared
against areference
design

* Reference design: 4-th
order controller: |ead-
lag + notch filter

— Matlab di skdeno

— Datain di skPI D. m
di skdat a. mat

EE392m - Winter 2003

Amplitude

4th-order compensator C2 (blue, dashed), PID (red)
] ]

0.3

0.25F

0.2}

0.15F

0.1F

0.05 |~

i
0 0.005 0.01 0.015

Time (sec)
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Magnitude (dB)

Phase (deg)

L oop shape, margins

LOOP GAIN - C2 (blue, dashed), PID (red)
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-100
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10°
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Disk drive servo - robustness

TRANSFER FUNCTION AND ACCEPTABLE UNCERTAINTY - C2 (blue, dashed), PID (red, dotted)

-10

-20

-30

Robust stabil itﬁ
bounds

-40

-50

/44;£:Funrnode[]

4
ROBUSTNESS TO PLANT UNCERTAINTY (dB) - C2 (bRie, dashed), PID (red)

~§§:E§mMenKnd!

B \
-20

NG

VIS(1a)|

-30

\
-25 >

N

~

/4§l§¥;;ﬁ4aﬂab(kano!

~

~

~

-~

—
—y - -

PID

10
[ N2, ph2] =bode(f eedback(C2, Gd), w))

[ nP, phP] =bode(f eedback( Pl Dd, G&d), w))

EE392m - Winter 2003
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Fundamental design limitations

* |f wedo not have areference design - how do we know if
we are doing well. May be there is a much better
controller?

e Cannot get around the fundamental design limitations
— frequency domain limitations on the loop shape
— system structure limitations
— engineering design limitations
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Frequency domain limitation

. 3750@ +T(lw) =1
Performance: | (i a)|<<1 Robustness: [T(i c)|<<1 |

e Bode'sintegral constraint - waterbed effect

I Iog‘ S(i a))‘da) =0 (for most red-life stable system, or worse for the rest)
0

log |Si w)|
. . l
0 :
-2 .........................................................................................................................
4 S RSTSRSINS NSNS SIS WSS S OD— O O———_— S ———
o) T EA— EE— EA— S ER—— — ER——
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Structural design limitations

« Delays and non-minimum phase (r.h.s. zeros)
— cannot make the response faster than delay, set bandwidth smaller

e Unstable dynamics
— makes Bode' sintegral constraint worse
— re-design system to make it stable or use advanced control design

e Flexible dynamics

— cannot go faster than the oscillation frequency

— practical approach:
« filter out and use low-bandwidth control (wait till it settles)
 useinput shaping feedforward

EE392m - Winter 2003 Control Engineering 7-18



Unstable dynamics

« Very advanced applications
— need advanced feedback control design

ECS1 491-8 H‘h:tnqr.-iud 189581
‘ X-20 Smoke Test Q
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Flexible dynamics

Antenna Boom Cross Seclion
a
H| ) T
. :

e Very advanced
applications

— really need control of 1-3
flexible modes

Sarnkivis Pus fiaghn m Heaea
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Engineering design limitations
Sensors

— noise - have to reduce |T(i )| - reduced performance
— quantization - same effect as noise
— bandwidth (estimators) - cannot make the loop faster

Actuators
— range/saturation - limit the load sensitivity |C(iw) Siw)|
— actuator bandwidth - cannot make the loop faster
— actuation increment - sticktion, quantization - effect of aload variation
— other control handles

Modeling errors
— have to increase robustness, decrease performance
Computing, sampling time

— Nyquist sampling frequency limits the bandwidth
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ecture 8 - Modedl |dentification

e What is system identification?
 Direct pulse response identification
e Linear regression

e Regularization

e Parametric modd 1D, nonlinear LS
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What Is System |dentification?

Experiment

— Plant » Data — ldentification —— Model

e White-box identification
— estimate parameters of a physical model from data
— Example: aircraft flight model
« Gray-box identification
— given generic model structure estimate parameters from data
— Example: neural network model of an engine

£ £ « Black-box identification

g § — determine model structure and estimate parameters from data
—%’% — Example: security pricing models for stock market

D: e
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Industrial Use of System |D

Process control - most developed |D approaches
— all plants and processes are different
— need to do identification, cannot spend too much time on each
— industrial identification tools

Aerospace

— white-box identification, specially designed programs of tests
Automotive

— white-box, significant effort on model development and calibration
Disk drives

— used to do thorough identification, shorter cycle time

Embedded systems

— simplified models, short cycle time
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|mpulse response identification

» Simplest approach: apply control impulse and collect the
data  weuscreseowe

0.8 \
0.6
0.4 \

O ...................................

« Difficult to apply ashort impulse biE:] er;ouéh si¢h that the
response is much larger than the noise

Jon
L

SSSSSSSSSSSSSSSSSSSS

« Can be used for building simplified
control design models from complex sims
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Step response Identification

+ Step (bump) control input and collect the data
— used in process control 15 STEP RESPONSE OF PAPER WEIGHT

1Lk..

_ Actuator bumpedj

0.5}

ok >ty i '
0 200 400 600 800 1000
TIME (SEC)

e Impulse estimate still noisy: impulse(t) = step(t)-step(t-1)

IMPULSE RESPONSE OF PAPER WEIGHT
L] L] ¥ L]

L]
// N
o.l-..] ‘ ' ‘
0 : ,
i i i i i i
0 100 200 300 400 500 600
TIME (SEC)

0.3

i
— ~if
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Nolse reduction

Noise can be reduced by statistical averaging:

e Collect datafor mutiple steps and do more averaging to
estimate the step/pul se response

e Use aparametric model of the system and estimate afew
model parameters describing the response: dead time, rise
time, gain

* Do both in asequence
— donein real process control ID packages

e Prefilter data
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Linear regression

e Mathematical aside
— linear regression is one of the main System ID tools

y(t):z @ (1) +e(t) y=bf+e
j=1

) . (D) 6| |eD
Pp= L g=] : |e=|
A(N) ... o(N)] |6 e(N)

L y@D)

| Y(N) |
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R

Linear regression

o Makes sense only when matrix @ is
tall, N> K, more data available than
the number of unknown parameters.

— Statistical averaging
e Least square solution: [|€]]? - min
— Matlab pi nv or left matrix division \

e Correlation interpretation:

dgrt)y .. D d(D)e(t)
B 1 t=1 : . t=1 :
—N \ . . \ . y
28080 .. 28

EE392m - Winter 2003 Control Engineering

y=®d+e

f=(0"0) oy

6

=R'c

C=

1
N

PWACIG
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Example: linear first-order mode

y(t) =ay(t—1) + gu(t —1) +&(t)

e Linear regression representation
¢,(t) = y(t-1) g = {a} = ((DT(D)_lq)T y
,() =u(t-1) g

e Thisapproach is considered in most of the technical
literature on identification

Lennart Ljung, System Identification: Theory for the User, 2nd Ed, 1999

e Matlab Identification Toolbox

— Industria use in aerospace mostly

— Not really used much in industrial process control
 Malnissue:

— small error in a might mean large change in response
EE392m - Winter 2003 Control Engineering 8-9



Regularization

Linear regression, where @' isill-conditioned
Instead of ||g]|> —» min solve aregularized problem

el + el — min y=®6+e

r isasmall regularization parameter
Regularized solution

o=@ d+r) 0Ty

Cut off the singular values of ® that are smaller thanr
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Regularization

®=USV';
Regularized solution

o=@ +r1)'dTy=V

diag{

Si
sj2+r

|

Analysis through SVD (singular value decomposition)
VOR™UOR™,; S=diag{s}|,

n

U'y

=1

Cut off the singular values of @ that are smaller thanr

REGULARIZED INVERSE
I

B LTI T T T TT T TTPIT P TP PRI

EE392m - Winter 2003
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Linear regression for FIR model

PRBS EXCITATION SIGNAL
]

e |dentifying impulse response by *

applying multiple steps i

« PRBS excitation signal 05

* FIR (impulse response) model
y(t) = Z h(k)u(t - k) + (t)

* Linear regression representation

¢,(t) =u(t-1) - h(D) |

o

i (1) = u(t - K)  h(K)

EE392m - Winter 2003 Control Engineering

10

]
20 30 40 50

PRBS =
Pseudo-Random Binary Sequence,
see| DI NPUT in Matlab

0= (CDTCD+rI)_1CDTy
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Example: FIR model |1D

PRBS excitation

° PRBS eXC| tatl on 1F—sammEoh a0 - —r—sn
InpUt 05F MHE-HEE A -H R H
oF—HME-HIW-A1-1H-1E-H- BRIV | 1
05 E-JHE-HE-A-L-J-E-L--HHE-H .
L unuuy LuUe b AUOLBRRD
400 600 800

SYSTEM RESPONSE
]

« Simulated system
output: 4000 | Mk kil b
samples, random L. {|}}].]
noise of the 05
amplitude 0.5 At

i i
0 200 400 600 800 1000
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Example: FIR model |1D

FIR estimate

e Linear regression oz}
estimate of the FIR” ™"
model 005

0
-0.05
0

* Impulseresponse .|
for thesmulated o=+

0.1 [
system: 0.05 |..
) i i e
T=tf([1 .5],[1 1.1 1])7?%; : : * ; : : :

P=c2d(T, 0. 25); Time (sec)
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Nonlinear parametric model 1D

* Prediction model depending on
the unknown parameter vector

u(t) — MODEL(8) - ¥(t|6)

e Lossindex

3=y - 919

 |terative numerical optimization.
Computation of V as a subroutine

Optimizer
G Loss Index V
v T

DV =>"y(t) - 9(t|8)[°

y(t)

,—b
u(t)

Model including the
parameters @

sim

Lennart Ljung, “Identification for Control: Simple Process Models,”
| EEE Conf. on Decision and Control, Las Vegas, NV, 2002

EE392m - Winter 2003 Control Engineering
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Parametric |D of step response

e First order process with deadtime
 Most common industrial process model
* Response to a control step applied at t;

y(t|6) :y+{g(1

s N @ <

0,

Example:

Paper
machine
Process

EE392m - Winter 2003

_ Alttg=Tp)/1 T
e e ) fort>t, - T,

fort<t; —-T,

slice lip steam hox

4 ¥ d »
? ¥ / NN

consistency rewet
shower

Control Engineering

scanning
Sensor
|
.{ 1) _'
caliper
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Gan estimation

e Forgiven 7,T,, the modeled step response can be
presented in the form

y(t|6) =y +gD(t]7,Tp)
e Thisisalinear regression

w=g  @()=yl(t|r,Tp)

té’:zwkkt
vele =m0 D

e Parameter estimate and prediction for given 7,1,

Wz, T,) = (@0 "dTy (|7, T,) =5+ GOt T,)
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Rise time/dead time estimation

 Forgiven 7,T,, thelossindex is
N

V=3It - T )
t=1

e Grid 7,T, and find the minimumof V =V (7,T,)
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1

0.8

0.6

0.4r

0.2r

0,

-0.21

-0.4

Examples. Step response | D

 |dentification results for real industrial process data

o Thisagorithm worksin an industrial tool used in 500+
Industrial plants, many processes each

1.6

Nonlinear
Regression ID

Regression ID 7
of thefirst-order| .|
\_ Mmodel /| o

1.4

1.2

1+

0.81

0.6

0.4

Process parameters: Gain = 0.134; Tdel = 0.00; Trise = 119.8969
T T T T T T T

Nonlinear

Regression ID ||

-0.2

0

10 20 30 40
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Linear filtering

e A trick that helps: pre-filter data
e Consider data model

y=h*u+e
* Lisalinear filtering operator, usually LPF

I:Z =L(h*u)+Le
Y S

L(h*u) = (Lh)* u = h* (Lu)

o Can estimate h from filtered y and filtered u
e Or can estimate filtered h from filtered y and ‘raw’ u
o Pre-filter bandwidth will limit the estimation bandwidth
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Multivariable I1D

o Apply SISO ID to various input/output pairs
* Need n tests - excite each input in turn

o Step/pulse response identification is akey part of the
Industrial Multivariable Predictive Control packages.
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Lecture 9 - Processes with
Deadtime, IMC

* Processes with deadtime

* Model-reference control

« Deadtime compensation: Dahlin controller

« IMC

* Youlaparametrization of all stabilizing controllers

e Nonlinear IMC

— Dynamic inversion - Lecture 13
— Receding Horizon - MPC - Lecture 12
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Processes with deadtime

o Examples: transport deadtime in mining, paper, oil, food

— PG ells

Deadfime

g1 Deadfime = Transpartalion Time

Time

EE392m - Winter 2003 control Engineering | | 9-2



Processes with deadtime

« Example: resource allocation in computing

L]

Difference
Equation

Modeling

Computing g O
Tasks -
O
L]
O
Resource
Queues
Resource

EE392m - Winter 2003

Control Engineering

Desired —»
Performance

Feedback Control

9-3




Control of process with deadtime

* PI control of adeadtime process

PLANT:P=2" ; PI CONTROLLER: k,=0.3,k |=0.2

P=e*" continuoustime
P=z" discretetime y ..
0.2 -I_
o s 10 15 20 25 30
. Can We do better? DEADBEAT CONTROL
_ Make PC _ Z_d 0.513
1+ PC o
— Deadbeat controller o2
0
Z‘d 0 5 10 15 20 2 0
PC=—5 = C=—%  u(t)=u(t-d)+e(t)

1-z 1-z
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M odel-reference control

« Deadbeat control has bad robustness, especially w.r.t.
deadtime

« More general model-reference control approach
— make the closed-1oop transfer function as desired

P(2)C(2)

1+PC) 2P
C(2) = 1 - Q(2)
P(2) 1 Q(2)

Worksif Q(z) includes adeadtime, at least aslarge asin
P(2)
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Dahlin’s controller

e Eric Dahlin worked for IBM in San Jose (?)
. : 1 _Q(2
then for Measurex in Cupertino. C(2) = P(2) Dl_Q(Z)

 Dahlin’scontroller, 1968

P(2) = 9l-b) plant, generic first order

1-bz" response with deadtime
Q(2) = 1- 0’_1 z¢ e reference modd
1-az

_1-bz™ o 1-a

= =) — * Dahlin’s controller
g(1-b) 1-az"-(1-a)z

C(2)

e Singletuning parameter: a - tuned controller
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Dahlin’s controller

o Dahlin’scontroller isbroadly used through paper industry
IN supervisory control loops - Honeywell-M easurex, 60%.

o Direct use of the identified model parameters.

e Industrial tuning
guidelines:
Closed loop time
constant = 1.5-2.5
deadtime.

EE392m - Winter 2003

CLOSED-LOOP STEP RESPONSE WITH DAHLIN CONTROLLER
T

1 -----_ ————T——--— —
0.8 o LR
0.6 E —_— T,=2.5T, \
0.4 == T,=15T, ||
""" Open-loo
0.2 P P
0
0 20 30 40 50 60
CONTROL STEP RESPONSE
1.5 ‘L..:'LH
\tL..-
1!‘ —— e
0.5
0
0 10 20 30 40 50 60
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Internal Model Control - IMC

distur

Q mput,é uz>

bancei d
output, y .

noise, w

Controller

e continuoustimes
e discretetimez

EE392m - Winter 2003 Control Engineering
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IMC and Y oula parametrization

+ Sensitivities
S=1-QR, d-y
C= 3 T=QP
1-QR, e Y
+SFQ d-u

Q:1+CP « If Qisstable, then S T, and the loop are stable
>» « |f loop is stable, then Q is stable

Choosing various stable Q parameterizes all stabilizing
controllers

e Thisiscaled Y oulaparameterization
Y oula parameterization is valid for unstable systems as well

EE392m - Winter 2003 Control Engineering
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Q-loopshaping

o Systematic controller design: select Q to achieve the
tradeoff

* The approach used in modern advanced control design:
H,/H., LMI, H_ loopshaping

o (Q-based |loopshaping:

S=1-QP, S<<1=Q=(P)" <«inband

Recall systeminversion  [Invédsion
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Q-loopshaping

* L oopshaping
S=1-QP, S<<1=Q=(P)" * in band
T =QP, T<<1= QPR <<1 e out of band

e Lambdatuned IMC t
Q=FP/, S=1-QR=1-F
1
(1+ 2s)°
 Fiscaled IMCfilter, F=T, reference model for the output

L oopshaping

F =

e For minimum phaseplant Q=FP/ =F(P)", T=F
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|M C extensions

e Multivariable processes

e Nonlinear process IMC

e Dynamic inversion in flight control - Lecture 13 - ?
e Multivariable predictive control - Lecture 12

EE392m - Winter 2003 Control Engineering 0-12



Nonlinear process IMC

e Can be used for nonlinear processes
— linear Q
— nonlinear model P,
— linearized model L

' , ................ e ............................................................ , dlSturbaIlce d tp t
t, » % Input, output,
setpoin Q mpu u’ N y >

noise, w

L
Controller
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Industrial applications of IMC

o Multivariable processes with complex dynamics

« Demonstrated and implemented in process control by
academics and research groups in very large corporations.

e Not used commonly in process control (except Dahlin
controller)
— detailled analytical models are difficult to obtain

— field support and maintenance
 process changes, need to change the model
 actuators/sensors off
 add-on equipment
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Dynamic inversion in flight control

v=F(xV)+G(x,vu LCV
—~-17\,0es v=| MCV
u=G- (v -F) NGOV
w | LCy™
 Honeywell . commang :81 —r o
MACH command | & Mp- Dynamics
*—» 3
. o |Necv™
X-38 - Space Station .
L ifeboat X
Controlled
Variable
Definition

Dynamic
Inversion
and
Effector
Allocation

A
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Dynamic inversion in flight control

NASA JSC study for X-38

Actuator allocation to get desired forcessmoments
Reference model (filter): vehicle handling and pilot ‘fedl’

* Formal robust design/analysis (p-analysis etc)

e

P .:z g5
cmd srror qr.-m 8 rr:md
o, c a|”"| pesired ’ml D S‘Cm; Control
+ omman ; esire ynamic ontro
"? ™ Inverter Dynamics Inversion Surface
‘ ‘ lﬁEL a'r
maas meas X-38
P P |
qmeas qmaas Model
o
¢nms
Sensor <

Output

CCO9ZIl = VVIIIET £UUO CuUluul cCryirieet iy
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Summary

o Dahlin controller isused in practice
— easy to understand and apply
 |IMCisnotreally used much
— maintenance and support issues
e Youlaparameterization is used as abasis of modern
advanced control design methods.
— Industrial useisvery limited.
e Dynamic inversion is used for high performance control of
air and space vehicles

— thiswas presented for breadth, the basic concept is simple
— need to know more of advanced control theory to apply in practice
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L ecture 10 - Optimization

¢ LP
— Process plants - Refineries
— Actuator allocation for flight control
— More interesting examples

 Introduce QP problem

 Moretechnical depth
— EB62 - Introduction to Optimization - basic
— EE364 - Convex Optimization - more advanced
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Real -time Optimization in Control

e Important part of multivariable control systems
« Many actuators, control handles

e Quasistatic control, dynamics are not important
— slow process
— low-level fast control loops
— fast actuators
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Optimization methods

* Need to state problem such that a solution can be
computed quickly, efficiently, reliably

o Least squares - linear quadratic problems
— analytical closed form, matrix multiplication and inversion
e Linear Programming
— simplex method
e Quadratic Programming
— Interior point
o Convex optimization: includes LP, QP, and more
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Optimization in Process Plants

Unit 1 - Conventional Unit 2 - MPC Structure
Structure

Plani-Wide Optimization

v 1

v 1

Unir 2 Local Oprimization

Umit 1 1. |mttiiﬂmlmrhm

v 1

High/Low Select Logie

v 1

I
v 1

'..rud-"l..-up.

Vodel
Predictive
Control
{MPC)

% 1 |

v 1

Systom (PH)

Unit 1 Distributed Control

U mit 2 Dstributed Control

Svstem (PLDV

Y Yy
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Cilobal Steady-Stare
Optimization
fevery day)

Local Steady-State
Crptimization
{every hour)

Dynumic
Constraing
Coniral

{every minufe)

Supervisors
Dy namic
Control

{every minube)

Basic Dhvnamic
Caontrol
{every second)
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Optimization in Process Plants

Material & Production Demand

Equipment - Goals

¥ -

Farecast
Supply & Plan
Distribution

/ Orders
Raw Matenal ‘\'
.-Eu'ucahun Consumer
mventory . Schedule & B On-Market
Management . Optimization Prodct
\Pmduﬁﬁan / Control \ Product /z
Schedule Blending -
; / Measurement \ -y

- Optimzad Production
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Linear programming

e LPProblem:
AX<b X <Y
Gx=h XSy = :
X =Y,

\] — fTX — mln - -
 Might beinfeasible! ... no solution satisfies all constraints

o Matlab Optimization Toolbox: LI NPROG
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Linear programming

Ax<b ‘ ‘ ‘ ‘
Gx=h

J=f"X - min

o Simplex method in anutshell: \ ,
— check the verticesfor value of J, select optimal

— issue: exponential growth of number of vertices with the problem size
— Need to do 10000 variables and 500000 inegualities.

e Modern interior point methods are radically faster
— no need to understand, standard solvers are available
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Refinery Optimization

e Crude supply chain - multiple oil sources

« Digtillation - separating fractions

e Blending - ready products, given octane ratings
e Objective function - profit

 LPworksideadly:
— linear equalities and inequalities, single linear objective function

L]
L i — TR GCLic
Preheated _-_.73* LSR 4
Crude _I
— Shi [ Naphtt
= L Furhace aphtha ]
bt B Kerosene Naphtha * .
Preflash _'_:;'; Spiitter Refarrmer 1_ Stabilizer
Tower | Diesel Feed Reformer
, L Spliter  Feeq
AT
Main | . = Hga_\,:'!lr
Calumn Residug Maphtha
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Blending Example

* A Blending Problem: A refinery produces two grades of
fuel, A and B, which are made by blending five raw stocks
of differing octane rating, cost and availability

Gasol i ne Cct ane Rati ng Price $/B
A 93 37.5
B 85 28. 5
Stock Cctane Rating Price $/B Avai l ability
1 70 9.0 2000
2 80 12. 5 4000
3 85 12. 5 4000
4 90 27.5 5000
) 99 27.5 3000
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Blending Example

SAl, SB1
SA2, SB2
SA3, SB3
SA4, SB4
SA5, SB5

EE392m - Winter 2003
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US1
UuS2
US3
US4
USS
FA

FB
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Blending Example

e LP problem formulation:
J = 9US1 + 12.5US2 + 12.5US3 + 27.5U%4 + 27.5US5 + 37.5FA + 28.5FB -> NMAX

[ Stock Availability]

S1A +S1B +US1 = 2000
S2A + S2B + us2 = 4000
S3A + S3B + US3 = 4000
S4A + S4B + Us4 = 5000
S5A+ S5B + US5 = 3000
[ Fuel Quantity]
S1A+S2A+S3A+SAA+S5A = FA
S1B+S2B+S4B+S5B = FB
[ Fuel Quality]

70S1A + 80S2A + 85S3A + 90S4A + 99S5A
70S1B + 80S2B + 85S3B + 9034B + 99S5B

93FA [Quality Al
85FB [Quality B]

v v

[ Nonnegati vi ty]
S1A, S2A, S3A, S4A, S5A, S1B, S2B, S4B, S5B, US1, US2, US3, US4, US5, FA, FB = 0
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Matlab code for the example

% OCctRt Price $/B

Gas = [93 37. 5;
85 28. 5] ;

5t ock COctRt Price $/B Avail ability
Stock = [70 12.5 2000;

80 12.5 4000;

85 12.5 4000;

90 27.5 5000;

99 27.5 3000] ;

% Revenue

f = [zeros(10,1); Stock(:,3); Gas(:,2)];

% Equal ity constraint

G = [eye(5,5) eye(5, 5) eye(5, 5) zeros(5, 2);
ones(1, 5) zeros(1,5) zeros(l1l,5) -1 0;
zeros(1,5) ones(1,5) zeros(1,5) 0 -1];

h = [Stock(:,3); zeros(2,1)];

% I nequality (fuel quality) constraints

A=1]-[Stock(:,1)" zeros(1,5) zeros(1,5);

zeros(1,5) Stock(:,1)' zeros(1,5)] diag(Gas(:,1))];

b = zeros(2,1);

% X=LI NPROE f, A, b, Aeq, beq, LB, UB)

X = linprog(-f,A b,Gh,zeros(size(f)),[]);

Revenue = f'*x

EE392m - Winter 2003 Control Engineering 10-12



Blending distribution:

5000
4000
3000
2000
1000

5000
4000
3000
2000
1000

Blending Example - Results

SA

1 2 3 4 5

EE392m - Winter 2003

Produced Fuel:
A 2125
B 15875

Control Engineering

Total Revenue:
$532,125
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GPS

Determining coordinates by comparing distances to several
satellites with known positions

e See E62 website:

http://ww. st anf ord. edu/ cl ass/ engr 62e/ handout s/ GPSandLP. ppt

Th

%
\@?\

- X
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Computing Resource Allocation

e Web Server Farm

e LPformulation for
the optimal load
distribution

EE392m - Winter 2003

L~ . Route
Fd

O

>

Endogenous and
exogenous arrivals
for N web sites,

K distinct classes
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Alrcraft actuator allocation

EE392m - Winter 2003 10-16



Alrcraft actuator allocation

e Mutipleflight control surfaces: allerons, elevons, canard
foreplanes, trailing and leading edge flaps, airbrakes, etc

M roll
M | = B(a,¢,V)u
M,
F = Bu_
Allocation
Coeired Algorithm -

EE392m - Winter 2003
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Actuator allocation

o Simplest approach - least squares
u=B'F

B = (BTB)_lBT solves Bu=F, Hqu L min

 LP optimization approach Y . S =
Bu=F, HWTUH1 ~ min U >0
W' => w du), w20 u =0
Bu —-Bu =F

Solvethe LP, get u=u" —u"

EE392m - Winter 2003 Control Engineering 10-18



Actuator allocation

* Need to handle actuator constrains (v - scale factor)

HWTUH1—V ~ min u' <u< uu
Bu = VvF O<v<l
L P can be extended to include actuator constrains
fT:MF w -1
wut+w'u —-v - min J b L
. _ I 0O O u
Bu —-Bu —-vF =0 |
| . y — | 0 0 —-u -
us<u <u 0 -1 0 o
< 1~ <V A= ,b: . X=|Uu
d=u sl 0 I 0 -u
O<v<il o 0 1 1 |
0 0 -1 |0
G=[B -B -F|,h=0

Ax<b
Gx=h
fTX - min

EE392m - Winter 2003 Control Engineering
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Actuator allocation example

* Problem:
HWTuul—v_»min B=[09 -0.7 04 0.
BU = VF w=[0.1 01 0.02 0.00]

-1<ucx<l

e LPproblemsolutionfor F=1.5

SOLUTION FOR F=1.5

ACTUATOR WEIGHTS

) I
-0'5 l

1 2 3 4

EE392m - Winter 2003 Control Engineering 10-20



Actuator allocation example

e LPproblem solution for F from-2.5t0 2.5
1 ) . ) ;

Il-.._ -ll..

EE392m - Winter 2003 Control Engineering 10-21



Extreme actuator allocation

o (Xerox) PARC jet array table

e Jets must be allocated to achieve commanded total force and
torque acting on a paper sheet

EE392m - Winter 2003 Control Engineering 10-22



Actuator allocation

* | east squares + actuator constraint
Bu=F,
2 .
Ju|” - min
u<usu

e ThisisaQP optimization problem

EE392m - Winter 2003 Control Engineering 10-23



Quadratic Programming

* QP Problem:
AX<Db
Gx=h

:%XTHX+ fTx = min

o Matlab Optimization Toolbox: QUADPROG

o Same feasibility issuesasfor LP
e [ast solvers avallable
e Moreinthe next Lecture...

EE392m - Winter 2003 Control Engineering
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Lecture 11 - Optimal Program

» Grade change in process control
— example

* QP optimization

* Flexible dynamics: input shaping, input traectory
— example

* Rocket, ascent

e Robotics

EE392m - Winter 2003 Control Engineering 11-1



Optimization of process transitions

* Process plants manufacture different product varieties (grades)
* Need to optimize transitions from grade to grade

L empilation of process dut Estimation of model
.l parameters in response

Creation of an [nliial L to plant conditions
i

cannliEim

= l - i ¥
DCs = [ Sinmtaton darig /||| Prediction by
P]DL rF Data aperating procedures A hinh—g,puqd bt
+ Sequence | Exchange ! ).
| Evaluation of | T,

iransition pailern , E I
t ‘.. . ~Transition pattern

RIS

Dperating priscedore
sei-up for a DS
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Product Grade Change

Hydrogen

* Therequirement: to change 0.3
manufacture from grade A togradeB 2
with the minimum off-spec production. o

* Theimplementation: using detailed S Time
models of process and operating -
procedures. q

e The results: optimum setpoint .
trajectories for key process controllers |, ...

during the changeover, resulting in
minimum |lost revenue.

Grade B

Grade A

fime

EE392m - Winter 2003 Control Engineering 11-3



Grade change control example

e Simple process model:

— chemical reactor
- severtam - . interna
' 1
=z temperature
U—» %
S quality
Ny Y2 variable

* Theprocessistheinitial steady state: u=0; y,=y,=0
* Need to transition, as quickly as possible, to other steady state:
u = const; y,= const; y, = Yj

EE392m - Winter 2003 Control Engineering 11-4



Grade change control example

* Linear system model in the convolution form
y=h*u
e Quadratic-optimal control
[y = v+ rjuf bt - min
« Equality constraint (process transitioning to the new grade)
v,(1)=0,y,(t) =y, for T<t<T+T,
* Inequality constraints
— Control u(t) < u.
— Temperature ‘yz(t)‘ <d.

EE392m - Winter 2003 Control Engineering 11-5



Grade change control example

o Sampledtime: t = kr, (k=1,...,N);
— YisaZ2N vector
— H isablock-Toeplitz matrix

- u(r) | - y(1)

u=l : |y.=| : |Y,=.
U(NT) Yi(NT) |
H1,2U = h_I.,Z*U

* Dynamics as an equality constraint:

HU-Y =0

EE392m - Winter 2003 Control Engineering

|

Y1
Y,

|

|

H,U
H,U

}:HU
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Grade change control example

e Quadratic-optimal control %@J
(Y, _Yd)T (Y, =Yg) + rU'D'DU +w Y _Ydl)T (Y1 =Yg) - min

U'D'DU +VY,'Y, -2Y,'Y, +... — min

Yy = Yol :

 Inequality constraints
— Control -usU=su

— Temperaure O<Y,<T.

EE392m - Winter 2003 Control Engineering
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Terminal constraint

o Equality constraints (new grade steady state)

- transition
- new steady state

/

t=0 t=T  t=T,

EE392m - Winter 2003 Control Engineering 11-8



Quadratic Programming
e QP Problem:

Ax<b
Gx=h

J :%XTHX+ fTx = min

o Matlab Optimization Toolbox: QUADPROG

EE392m - Winter 2003 Control Engineering 11-9



Sm

QP Program for
the grade
change, no

terminal
constraint

y, =0.75
r=0.1
r =0.05
T.=2
u, =20

EE392m - Winter 2003

N
o

-
al

CONTROL INPUT (MV)
=

=
o

TEMPERATURE
o
ol [N

[N o [ o

QUALITY PARAMETER

'
N

10 15 20

25

30

35

o

10 15 20
TIME (HRS)
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Sm

<20 T T T 1 ] l l !
QP Program for £* I
g s
thegrade £ e
. 3 R
changewith = sf—tp—Vb—1——t—1— 31—,
atermind ) —
constraint at g :s
T=8 :
% 0.5
= 0 : :
Yo = 0.75 0% 1 é 3 ;, ;3 6 7 z; 9 10
r=0.1 x 1 !
r=0.05 5 ol /
T =2 < \ /
u. =20 P \o A
8’ S
G 1 2 3 4 5 6 7 8 9 10

TIME (HRS)
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Flexible Satellite Slew Control

« Single flexible mode model
 Franklin, Section 9.2

J% = —k(x = %) =b(% = %,) + gu
J,X, = k(xl B Xz) t b(X1 - Xz)

- X K =%

o AN First

> Bus flexible
_%'_ mode

EE392m - Winter 2003 Control Engineering 11-12



Flexible Satellite Slew Control

e Linear system model

EE392m - Winter 2003

X = Ax+ Bu
y =CX
"0 1 0 0 0 |
-k/J, -blJ, kI/J, bl g/J,
0 0 0 1 0
| k/J, blI, -kiJ, -blJ, L0
_,Xl —>X2
« dew angle
g. o AMAM  First
« deformation =& Bus flexible
Je dewrate mode

Control Engineering
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Flexible Satellite Slew Control

e Linear system model in the convolution form
y=h*u
e Quadratic-optimal control
j\u(t)\zdt ~ min
e Equality constraint (system coming to at target slew angle)
y(t)=sy,, for T<t<T+T,
* Inequality constraints

— Control u(t)‘ =1

— Deformation |Y, (t)‘ <d.

— Slew rate Y3(t)‘ <\

EE392m - Winter 2003 Control Engineering 11-14



Flexible Satellite Slew Control

o Sampledtime: t = kr, (k=1,...,N); Yisa3N vector; Hisa
block-Toeplitz matrix
Y = HU
e Quadratic-optimal control
U'U - min
e Equality constraint (system coming to at target slew angle)
SY =Y,
Inequality constraints
— Control -1<U <1 ThisisaQP
— Deformation d. < SY <d. problem
— Slew rate V. <SY <V,

EE392m - Winter 2003 Control Engineering 11-15



. 1
SI I I l 3 05
g ..
3 — R
QP Program ©-*
for the " 4 6 8 10 12 14 16 18 20
flexible , °
. ol MIDEEEEES
satellite : o —
slew Yos e
’ 0 e
0 4 6 8 10 12 14 16 18 20
=0.02 0.05
— =
Jl =1 S 0 : e A N
J,=0.1 S —
2 . E \/
k =0.091 0.05
0 4 6 8 10 12 14 16 18 20
b =0.0036 0.15 !
d, =0.02 4 01 ~
0.2 : 0.05 // T~
V., =VU. = -
-0.05 L i
0 4 6 8 10 12 14 16 18 20
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Robust design approach

* Replace exact terminal constraint by agiven residual error

e Congsider the system for several different values of
parameters and group the results together

e Asan optimality index, consider the average performance
Index or the worst residual error

EE392m - Winter 2003 Control Engineering 11-17



Ascend trajectory optimization

* Rocket launch vehicles
— fuel (payload) optimality
— orbital insertion constraint
— flight envelope constraints
— booster drop constraint

e ——

longitwde liep)

EE392m - Winter 2003 Control Engineering
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Ascend tragjectory optimization

bongitude lgeg)

« Nonlinear constraint optimization problem

— not QP, not LP
— iterative optimization methods: Gradient, Newton, Levenberg-

Marquardt, SQP, SSOQP
— can get resultsif supervised by a human

— QP, LP are guaranteed always produce a solution if the problem is
feasible - suitable for one-line use inside control loop

EE392m - Winter 2003 Control Engineering 11-19



Mobile Robot Path Planning

F(&(-)sn(-),tf) — min Point mass model:

- §
&E=p, Pl < Pmas; ./(p',q)

ﬁ =4, ||q|| <_: 9oz,
E(O) — 501 77(0) = Mo, 5(0) — 501 7?(0) — 7:!01

n(ty) =n(ty) = E(t;) =n(ts) =0 . N
NN
- . N N xﬁ}'l.
Constraint optimization problem Pt
of finding an optimal path W A
t'-:,r #H ) 1' .
A~
From V. Lumelsky, Univ. Wisconsin, Madison ﬂq% T
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Future Combat Systems (FCS)

» Ground and air robotics vehicles
 Potential application of robotics research Ed
 Path planning and optimization are important




L ecture 12 - Moddl Predictive Control

e Prediction model

e Control optimization

e Receding horizon update
 Disturbance estimator - feedback
e IMC representation of MPC

e Resource:
— Joe Qin, survey of industrial MPC algorithms
— http://www.che.utexas.edu/~qin/cpcv/cpcvl4.html

EE392m - Winter 2003 Control Engineering 12-1



Control Hierarchy

Unit 1 - Conventional | Unit 2 - MPC Structure
Structure

Plant-Wide Oprimization

v 1

v 1

I Umit 2 Local l.".IErlmIJ.nﬂﬂn

I Lmit 1 Local fiiﬂmjurhm I

~ =

High/Low Select Logic

I
v 1

'_.rud-’Lug,

Model
Predictive
Control
{(MPC)

1 1‘

\ =

Umit 1 Distributed Control
Sysbem (P

Umit 2 Distributed Conirol
Svstem (P10

EP¥ ¥y

EE392m - Winter 2003

3 Py

Control Engineering

Cilobal Steady-State
Optimization
{every day)

Local Steady-State
Crplimization
{every hour)

Dy muwmie
Constraint
Control

{every minufe)

Supervisory
Dy mamiic
Cantrol

{Every minute)

Basic Dyvnamic
Control
{every second)
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Modelsfor MPC

Plant structure:

e CV -controlled variables - y

« MYV - manipulated variables - u
DV - disturbance variables - v DV:v—

MV: u—*

 FSR - Finite Step Response model
N N
y(t) = > S’ (k)Au(t —k) + > SP(K)Av(t - k) +d
k=1 k=1

— compact notation

y(t) = (s~ * Au)(t) + (s° * Av)(t) +d h =As;

A=1-7"

EE392m - Winter 2003 Control Engineering 12-3
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FSR Model

_ '\."(k-1]____|
FSR model -
|
vi{k-2}
y(t) =D S(K)Av(t —k) +d
k=1 ‘ Av{k=1)
k=1
* |Ignores anything that :
happened more than n +
steps in the past
+ Thisisatributedtoa 1™
constant disturbance d +
v{k-n}

EE392m - Winter 2003 Control Engineering

—  y{k)

— 8§ Av(k-1}

+
-+
—
+
—*  $ vik-n)
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MPC Process Model Example

L T e
T
LU LB LR
R AR e
DR A
N
DT o
DR mm
LI LT
DN e
TR T nmm
LT
_===_==_E________________==______-____E_________==_._

__________Eﬁ e
R A
OO LU R
LR LR LR L
_Egm__E__________________=====E======.===_
[ 11000
__=_=_==__=========__.,___-______________E___
N
TR

l
i
I
i
I

L

LN

I
1
Tl

UL o

e

AN nnmm

D"

AGAGCALRE N =

>
@,

BRIV ISESERT

- T
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U(t) =

U(t) =

Au(t-1)

Au(t—N+1) |

 Au(t) |

_Au(t. +n) |

EE392m - Winter 2003

Prediction Model

past input trajectory

S

on
U

1

-l
-

past

B
L

future

hypothesized future input
trajectory

"Dynamic
statos”™
X(k) :
memory of
past

PREHCTOR

/

FSR model

Control Engineering

/[Discuss |ater

Predicted future output

past

Y(t) =




Prediction Model

y(t) = (s’ * Au)(t) +(s” * Av)(t) +d

Future MV Hankel matrix Hankel matrix
E’oeplltz matrix O e e
disturbance

[cv predicﬂoF Y(t) =WU (1) + ® [U (t) + P°V(t) + Dd

0 0 -+ 0 _SD(l) sP2) - SD(N)_ I
v = S“.(l) 9 5 9 |sP@ sP(@® - 0 D=

'S'(n) S’(n-1) - O

S°(N) 0 - O

Toeplitz matrix Hankel matrix Future impact
of the disturbance

EE392m - Winter 2003 Control Engineering 12-7




Optimization of future Inputs
Y(t) =WU(t) +D () + DOV (t) + Dd

Y (1)

e Optimization problem
J=(Y () - Y, (1)) QY (t) — Yy (1)) +UT ()RU () — min

ERACHE
Y, (t) = :
| Yq(t+N)
QY - 0| R ... O
Q= : . : [|R=|: L
0 - QY 0 -+ K

EE392m - Winter 2003
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Optimization constraints

e MV constraints
-Au_, <Au(t)<Au__ -Au__ <U({)<Au,_
u_ <u(t)su_ Upnp <2U (1) -C=u,,
u(t +k) = u(t -1) + Zk:Au(t)
e CV constraints 8
Youin(D S YO S Vo) —=—> Y. <Y@R)LY,

e Termina constraint:
y(t+k) =y,;;Au(t+k)=0 for k=p

EE392m - Winter 2003 Control Engineering 12-9



QP solution

e QP Problem:
AX<Db

AX=b,
J :%XTQX+ fTX - min
U]

= Y(t) Predicted MVs, CVs

o Standard QP codes are available

EE392m - Winter 2003 Control Engineering 12-10



Receding horizon control

e Optimization problem solution at step't :
JU) > min = U =Ug (1)

e Usethefirst computed control value only
uit)=[1 0 ... O] ()

* Repeat at each t

1

Multiple Moves

_______________

____________________

1
past fu:tu re

' control horizon M

P
o~

\%
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Control dynamics

e System dynamics as an equality constraint in optimization
Y(t) =WU (1) +Y (1)
Y'(t)=|o o°|X(t)+d(t)

o Update of the system state
X (t+1) = AX(t) + BAu(t) + BPAv(t)

e Optimization problem solution at step't :
JUYU)) - mn = U=U,(t)

o Usethefirst of the computed control values
uit)=[1 0 ... O] (1)

EE392m - Winter 2003 Control Engineering 12-12



State update and estimation

o State update - shift register

[ Aut) V()
[u( Au(t-1) | - Av(t-1) |

X“)‘&(t)} U= vi=|
Au(t=N+1) _AVW)_

 Disturbance estimator (feedback)
d(t+2) =d(t) + (yn(t) - y(1))

Unmeasured Actually CV Prediction based on
disturbance measured CV the current state X(t)

e Integrator feedback

EE392m - Winter 2003 Control Engineering 12-13



e Zone \
e Tragectory

e Funneds

« Soft constraints (qu
penalties) and hard
constraintsfor MV, CV

e Regularization
— penalty
— singular value thresholding

past

EE392m - Winter 2003 Control Engineering
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Advantages and Conveniences

 Industrial strength products that can be used for a broad
range of applications

o Flexibility to plant size, automated setup
e Based on step response/impul se response model

* Onthefly reconfiguration if plant is changing
— MV, CV, DV channelstaken off control / returned into MPC
— measurement problems, actuator failures

o Systematic handling of multi-rate measurements and
missed measurement points
— do not update d if no data

EE392m - Winter 2003 Control Engineering 12-15



Technica detall

e Tuning of MPC feedback control performance is an issue.
— Worksin practice, without formal analysis
— Theory requires
« Large (infinite) prediction horizon
e Terminal constraint

e Additional tricksfor
— aseparate static optimization step
— Integrating and unstable dynamics
— active constraints
— regularization
— shape functions for control
— different control horizon and prediction horizon

EE392m - Winter 2003 Control Engineering 12-16



MPC as IMC

« MPCisaspecia caseof IMC

o Closed-loop dynamics (filter dynamics)
— Integrator - in disturbance estimator
— N poles z=0 - in the FSR model update

disturbance l l
reference — Optimizer > Plant > output
| Prediction _
model Ad

EE392m - Winter 2003 Control Engineering 12-17



Emerging M PC applications

* Vehicle path planning and control
— nonlinear vehicle models

— world models

— receding horizon preview ,’/
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Emerging M PC applications

o Spacecraft rendezvous with space station
— vighbility cone constraint
— fuel optimality

w 10 —J-‘—-——---.——'-::.__—..:IF'_—'-F:_ =
& 0 /‘//’
i
S -10 Yy
g | ;
'H].-".
;
_-'hll -
0
407\ _—T 60
\ -70 .
In-Track 2 Radial

From Richards& How, MIT
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Emerging M PC applications

e Nonlinear plants

— just need a computable model (simulation)
e Hybrid plants

— combination of dynamics and discrete mode change
e Engine control

» Large scale operation control problems
— operations management
— campaign control

EE392m - Winter 2003 Control Engineering 12-20



L ecture 13 - Handling Nonlinearity

« Nonlinearity issues in control practice
 Setpoint scheduling/feedforward
— path planning replay - linear interpolation
* Nonlinear maps
— B-splines
— Multivariable interpolation: polynomials/splines/RBF
— Neural Networks
— Fuzzy logic
e Galn scheduling
e Loca modeling

EE392m - Winter 2003 Control Engineering 13-1



Nonlinearity in control practice

Here are the nonlinearities we already |ooked into

e Constrants - saturation in control
— anti-windup in PID control
— MPC handles the constraints

e Control program, path planning
o Static optimization
e Nonlinear dynamics

— dynamic inversion

— nonlinear IMC

— nonlinear MPC

One additional nonlinearity in this lecture

e Controller gain scheduling
EE392m - Winter 2003 Control Engineering 13-2



Dealing with nonlinear functions

Analytical expressions
— models are given by analytical formulas, computable as required
— rarely sufficient in practice
Models are computable off line
— pre-compute simple approximation
— on-line approximation
Models contain data identified in the experiments

— nonlinear maps
— Interpolation or look-up tables

Advanced approximation methods
— neural networks

EE392m - Winter 2003 Control Engineering 13-3



Path planning

* Real-time replay of apre-computed reference trgectory

y4(t) or feedforward v(t)
» Reproduce anonlinear function y,(t)

Path planner, | (0 _
dataarraysY,0 Yal) Y =

I —

Code:
1.Findj, suchthat 6, <t<#6,,
2. Comp(l:t)e_Y -t N t-6
yd ] Hj_,_l _9. j+1 6 _e'

J J+1 J
EE392m - Winter 2003 Control Engineering

In acontrol system

_Yl = Y4 (‘91)_ 6,
Y, = 3.’d (6,) o= 9.2
_Yn = yd (gn)_ _Hn_

A
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Linear interpolation vs. table look-up

 linear interpolation is more accurate
e requires less data storage
e simple computation

(a) Fit to unknown function (b) Error normalized to function maximum

100

1.5

Function/approximations
B o %
=3 2 =

Absoclute normalized error [%6]
I~
r=

1 1 1 0 1
-1 —0.5 0 0.5 1 -1 —0.5 0
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Empirical models

o Aerospace - most developed nonlinear approaches
— automotive and process control have second place

o Aerodynamic tables Example
 Engine maps "
— Jet turbines 0.03
— automotive o
 Processmaps, eg.,in |~ .uk
semiconductor .:
manufacturing a0 |
° Empiricgl map for a Roollingﬁ-Mo:;enthoei';icie:;t asaoa Falincti400n 04f5
altenuation vs. Angle of Attack with TEF Deflections, B = 10°.
temperature in an TEF=Trailing Edge Flap
optical fiber
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Approximation

 Interpolation:
— compute function that will provide given values Yj In the nodes Hj
— not concerned with accuracy in-between the nodes

o Approximation

— compute function that closely corresponds to given data, possibly
with some error

— might provide better accuracy throughout

A -
A
*
/7 o
/
e
-------- ke, ,’/ _*7
L]
;*r’“‘/;l- _______ —*—'-......_t.. //_+_ “,’
o P -———___'_.. 7 o
":P.// —’I-._Ti. ——————— +
———————
SRt R ey w “+
7
7
O
P
-
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B-spline interpolation

e Ist-order 0
— look-up table, nearest neighbor || _—_
 2nd-order B
— linear interpolation o o e
Ya(t) =D Y,B;(1)
]
order 2 order 3 order 4

e n-th order: A AN TN

— Piece-wise n-th order polynomials, matched n-2 derivatives
— zero outside alocal support interval
— support interval extends to n nearest neighbors
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B-splines

o Accurate interpolation of smooth

functions with relative few nodes |

e For 1-D function the gain from
using high-order B-splinesis not

worth an added complexity

* Introduced and developed in CAD
for 2-D and 3-D curve and surface X W

data

e Areused for defining
multidimensional nonlinear maps
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Multivariable B-splines

e Regular grid in multiple variables
e Tensor product B-splines
o Used asabasis of finite-element models

y(u,v) = ij,k B, (u)B, (V)

¥

A

NG
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Linear regression for nonlinear map

e Linear regression X
y(X)=2.6¢,(X)=6"p(x)  X=| :
. Multidimensional B-splines | %

Multivariate polynomials
B (X %) = () 0. %)
Y =6, + 0% + 6% +0,(X)° +O, %%, +...
RBF - Radial Basis Functions

$,(x) = R(x-c|)=e

EE392m - Winter 2003 Control Engineering 13-11



Linear regression approximation

« Nonlinear map data Y :Ly(l) ﬁy(N)]
— available at scattered nodal points xD o x(N)

Linear regression map
Y =6 Qpx®) ... axV)|=6"0

Linear regression approximation
— regularized least square estimate of the weight vector

f=(@d" +r1) oY

Works just the same for vector-valued datal

EE392m - Winter 2003 Control Engineering 13-12



Nonlinear map example - Epl

o Epitaxia growth (semiconductor process)
— process map for run-to-run control

0.061
0.0605
o 006
2 g -
o i e 00895
o 0059 S
g .2 oosed:
£ g
% : z
& oos z
S 2 oo0ses
[3 3
[} A 9
0.057 ] i
0.0575
s
o
100 DTSl
1
4 : 40
Radius o Radius i s
5 Dep. Temperature Center Gas Flow Valve
071 0"
0061
0.0605
008
o 2 00595
0085 5
[~ & 0059
= 5 =
g .S 00585
= 585 E=
z 00ss 2 oo
(=% T
o' 0058 2
o a
0.0575
0057,
100

o : = 0
H, Flow 05 Quter Gas Flow Valve
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Linear regression for Epl map
e Linear regression model for epitaxial grouth

Y = CX Py (%) + ¢ (1= %) Po(X,)
Pp =W TWX, + Ws(X2)2 + W4(X2)3

COX1 pl = VVOCOxl + W1CO X1X2 + WSCO Xl(x2)2 + W4C0 Xl(X2)3
C(1=X)P(X,) =
Vol (1= %) + VG (1= X)X, +VGy(1= X )(%,)” + WGy (1= %) (%)

6 Gs 6; Gy
V(X %) =D 6.0, (%, %) = 8" (X, X,)
i
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Neural Networks

* Any nonlinear approximator might be called a Neural Network
— RBF Neura Network
— Polynomia Neural Network
— B-spline Neural Network
— Wavelet Neural Network

« MPL - Multilayered Perceptron
— Nonlinear in parameters
— Works for many inputs

Y(X) =W, + f[ZWLJV} Y= W0+ f[sz,jxjj
i i

1 yA —f(x
f(X) = Y=
(%) 1+e™” i

EE392m - Winter 2003 Control Engineering 13-15
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Multi-Layered Perceptrons

Network parameter computation
— training data set
— parameter identification
y(X) = F(X;6)
Noninear LS problem

V = ZHy(i) _ F(Y(j);H)HZ . min
j

Iterative NL S optimization
— Levenberg-Marquardt
Backpropagation
— variation of agradient descent
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Fuzzy Logic

Function defined at nodes. Interpolation scheme
Fuzzyfication/de-fuzzyfication = interpolation
Linear interpolation in 1-D
2. Vil (%)
y(X) = —
D 4 (%)

2 H(x) =1

)
very pale right too brown black

pale colour

Marketing (communication) and social value

Computer science: emphasis on interaction with a user
— EE - emphasis on mathematical computations

EE392m - Winter 2003 Control Engineering
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Neural Net application

NO, [gfs] P
Internal Combustion Engine .., . .- 2 2=2 &
maps B8

Experimental map:
— data collected in a steady state

regime for various combination
of parameters

— 2-D table

NN map

— approximation of the
experimental map

— MLP wasused in this example

— works better for a smooth
surface

calculated from NN

stat. measured
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Linear feedback in anonlinear plant

¢ Simple example Ya
= f (X) s g(X)u ’ [’Controllerj>
U= —K(X)(Y = Yg) + Uy (X) Pant Y
| | Example:
« Control design requires varying
K(X), Uy (X), Yy (X) process
. Thesevariables are gan
scheduled on x
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Gain scheduling

B: Linecarized
setpoint models,
error model

e Singleout severd

regimes - model A(@»B(@-)}A _ _
linearization or e vec(A)
experiments _| vec(B)
« Design linear controllers vec(C)
In these regimes: DG c:timar | veC(D)
%tpOi nt, f%back’ schcauled controlicr setpo CO Crs
A[0) BAO) 40, B(©)
feedforward [cK(e) DU©) C®) D(®))
« Approximate controller
dependence on the Linear interpolation:
regime parameters Y(©) = ZYj¢j (©)
j
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Gain scheduling - example

Flight control 1o
. 4.5
Flight envelope
parametersareused [ A T T o 1
for &hedUHng 35_ ______________ e _____________ _____________ , _____________ ___________ .
; s i - Mnx =055
Shown 3_ """"""" """"""" """"""" """"""" """"""" o """""" 1
_ ApprOXimation nodes %25_ ______________ _____________ _____________ 6 _____________ ______________ ___________ i
— Evauation points % 2_ _____________ ______________ ______________ ______________ _____________ ___________ |
Key assumpti()n 15 ____________ ______________ ______________ _____________ . ____________ ____________ §
— Attitudeand Machare 4./ ... . oo S ;...Y.‘?ﬁf??.?.'ft?..._
changing much slower j ;
thar] ti me Congar]t Of 0.5_ ........... ' ............. ............. ‘, ............. ............. .............. ............ _
theflight control loop 9055205 o6 07 o8 09
Mach number [-]
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Local Modeling Based on Data

L Heat Loads
« Datamining in the loop —

 Honeywell product

Multidimensional

< Data Cube
Relational .
Database
~_ i o®
e —pe Heat’
i T demand'\
P _ Forecasted
— 'I;lro?e variable
Query point Outdoor oT day

( What if 2 ) temperature G
T Explanatory

variables
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L ecture 14 - Health Management

— Engines

— Vehicles: space, air, ground, marine, rail

— Industria plants

Fault detection and accommodation
Health management applications

— Semiconductor manufacturing

— Computing

Parameter estimation

EE392m - Winter 2003

Abnormality detection - SPC

Fault tolerance - redundancy
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Diagnostics in Control Systems

Control agorithms are less than 20% of the embedded
control application code in safety-critical systems

80% is dealing with specia conditions, fault accomodation
— BIT (Built-in Test - software)
— BITE (Built-in Test Equipment - hardware)
— Binary results
— Messages
— Used in development and in operation

eyl

Honeywell

EE392m - Winter 2003 Control Engineering 14-2



Health Management

Emerging technology - recent severa years
— less established than most of what was discussed in the lectures

Systems fault management functions
— Abnormality detection and warning - something iswrong
— Diagnostics - what iswrong
— Prognostics - predictive maintenance
— Accomodation - recover

On-line functions - control system
— Fault accommodation - FDIR

Off-line functions - enterprise system
— Maintenance automation
— Logistics automation

EE392m - Winter 2003 Control Engineering 14-3



Vehicle Health Management

 |VHM - Integrated Vehicle Health Management - On-board
 PHM - Prognostics and Health Management - On-ground

« Vehicles: space, air, ground, rail, marine
— Integrated systems, many complex subsystems
— Sdfety critical, on-going mai ntenance, on-board fault diagnostics

AR :
s T
3 ': r g
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Alrline enterprise - maintenance

 Integrated on-board and on-ground system M@y
* Maintenance automation N

Main expense/revenue
Current developments

& AVITIES kK ¥ (5
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Industrial plants

Layers of Protection

e Abnormal Situation Management
— large cost associated with failures and
production disruption
— solutions are presently being deployed 1
Level 4

Level 3
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Semiconductor manufacturing

e E-diagnosticsinitiative by SEMATECH

Global
EE Data

o I N O Y e
o N

" Fire Wall =

EE Applications

EE Data APC App 1
Collection
And Storage APC App 2

e-Diag App 1

Oz Jort FICS/MES

OEE App2 | *Equipment Control
*WIP Tracking
*Factory Scheduling

Interface B

Interface C

Factory Network

ork

Interface A

SECS/GEM
Interface

EE392m - Winter 2003
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INTERNATIONAL

SEMATECH
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Computing

« Autonomic computing @ Catbrate
— Fault tolerance Hee
— Automated management, Online
support, security ool
— IBM, Sun, HP - Scientific L Wi
American, May 2002 foan. B coiemation
* Sun Storage Automated | L :
Diagnostic Environment Detecior

— Health Management and
Diagnostic Services

Alarm or
Control
Action

K.Gross, Sun Microsystems
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Abnormality detection - SPC

SPC - Statistical Process Control (univariate)
— discrete-time monitoring of manufacturing processes
— early warning for an off-target quality parameter
SPC vs EPC
— EPC (Engineering Process Control) - ‘normal’ feedback control

— SPC - operator warning of abnormal operation
SPC has been around for 80 years

Three main methods of SPC:
— Shewhart chart (209)
— EWMA (409)
— CuSum (50s)
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Abnormality detection - SPC

 Process modd - SISO

— quality variable randomly changes around a steady state value
— the goal isto detect change of the steady state value

N(u,,0%), t<T
X (t) ~ (ILIO ) ,
N(t4 # 1, 07), t>T
e Shewhart Chart
X —

g detection: Y(t)>Z=c
— Simplethresnolding for deviation from the nominal value 4,
— Typical threshold of 30 <=> 0.27% probablity of false dlarm

EE392m - Winter 2003 Control Engineering 14-10



SPC - EWMA

« EWMA = Exponentially Weighted Moving Average
e First order low pass filter
Yt+D)=(1-A)Y(t -1+ AX(t)

— Detection threshold

Two-sided EWMA chart

Z — C2 ‘\/A (2 - A) —— | larnbda =0.10, in-control ARL = 300 o I

N /A/
v vavf’v\ A, rj\/"\_f\ i
WU eV

T
4] 30 100
1
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SPC - CuSum

e CuSum = Cumulative Sum
— afew modifications
— one-sided CuSum most common

Y(t+1) = max{O,Y(t) + X(tzf_ Ho _ k}

One-sided CUSUM chart

k p— ﬂl + ﬂo | k=050, incantmal ARL = 300
=
20
— Detection thresholdﬁ
/= C3 »

EE392m - Winter 2003
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Multivariate SPC - Hotdlling's T4

 Thedatafollow multivariate normal distribution
X(t) = N(u,2) X (t) = ZY2Y (1) + u

e Empirical parameter estimates
1< Uncorrelated
H = E(X):Hzx(t) white noise
t=1

2= (X - (X =) )=2 2 (X - X (O - 1)
e TheHotelling's T? statisticsis h

T2=(X() - ) 2 (X)) - 1) =Y (Y
e T can betrended as a univariate SPC variable (almost)
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97% 1

limit

Multivariate SPC

95% limits

|
Samples———»-° 0 O
with misleading !

univariate $L
information |
X1
A UCL
r L ] L * .
® o o
* «f 8 97%
-
. 0. e * limits
k 'Y « 0 *o
Y LCL

EE392m - Winter 2003
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Control Engineering

Example:
« MSPC for Cyber
attack detection

600
500 2 1
400 L ) .? s L 2
N 300 '
200
100 -

X(t) consists of 284

audit eventsin Sun’'s

Solaris Basic Security

Module

Ye & Chen, Arizona State

0

0

2

4

6

8
2021
2223

- = = v

Event Number

2425

2627
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Model-based fault detection

Plant
Data Batch

I nput
data

Collected on-line
processed off-line

Output
data

Input
variables

Fault
Detection
algorithms

o Compute model-based
prediction residual

— result of asimulation run
X=Y-1U,0H
e If 8 =0 (nominal case)

we should have X = 0.

X reflects faults

EE392m - Winter 2003

I uts: ———— >

I x,,=Fuel

I ¥, ,= Controls

| - Monitoring
l: System
Outputs:, :
l:
Speed _ =
Temp i
Plant P Decision
y’s . Procedure
i uses
l: deviations
. -.I:II:I:II:I:II:II—: ﬂom
i St predictions .
34
— Malfunction:
dI')rf- > Indicator &
cted (Alarm) *
Model |Outputs| »~/ .2) :
7,.9)
E—
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Model-based fault detection

Compute model-based prediction residual X(t) at cyclet
— flight/trip/maneuver for avehicle
— update time interval or a batch for a plant
— semiconductor process run

X(1) reflects modeling error, process randomness, and fault

Use MSPC for detecting abnormality through X(t)
— Hotdling's T?
— CuSum
Does not tell us what the fault might be (diagnostics)
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Parameter estimation

 Residual model: X=Y-f(U,H

X=pa+¢£& cD:_(ﬁ(U,H)
06

e Fault models - meaning of &
— Sensor fault model - additive output change
— Actuator fault model - additive input change

e Estimation technique
— Fault parameter estimation - regression

g=(@ @+l ) dTX
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Fault tolerance: Hardware redundancy

e Boeing 777 Primary Fllght Computer (PFC) Architecture

Left PFC
Power i Power i Power V . d d
| | faulty channel
Micro- i Micro- i Micro-
Processor i Processor i Processor
AMD 29050 | | |Motorola 68040 | | INTEL 80486 Center PEC Right PFC
ARINC629 | | | ARINC629 | | | ARINC 629
Interface i Interface i Interface
Lane 1 Lane 2 Lane 3

AT L] | | | E——
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Analytical redundancy

Analytical Redundancy

— correlate data from diverse measurements through an analytical
model of the system

Estimation techniques
— KF observer

Taked about in the literature

Used only in much ssmplified form:

— onloss of asensor, use inferential estimate of the variable using
other sensor measurements

— onloss of an actuator, re-allocate control to other actuators

EE392m - Winter 2003 Control Engineering 14-19



Lecture 15 - Distributed Control

o Spatially distributed systems

« Motivation

» Paper machine application

e Feedback control with regularization

e Optical network application

e Few words on good stuff that was | eft out
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Distributed Array Control

e Sensors and actuators are organized in large arrays distributed
IN space.
e Controlling spatial distributions of physical variables

* Problem ssmplification: the process and the arrays are
uniform in spatial coordinate
* Problems:
— modeling
— Iidentification
— control N

SenSOfS"""'
Actuators_ _ |. . _ _ |.
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Distributed Control Motivation

e Sensors and actuators are becoming cheaper
— électronics almost free

e Integration density increases
« MEMS sensors and actuators
e Control of spatially distributed systems increasingly common
e Applications:
— paper machines
— fiberoptic networks
— adaptive and active optics
— semiconductor processes
— flow control
— image processing
EE392m - Winter 2003 Control Engineering 15-3



___Paper Machine Process
AutoSlice/ProSlice Devronizer

InfraTrol InfraZone Calendizer
Weight Profile Control Hot Pressing and Molsture Profile Coating Drying and Smoothness and
J Moisture Profile Control Control Moisture Profile Control Gloss Control
J ———> i
, SN Ay machine Tl
4 # _" 1l d . I|| Cr0$
4 ah | N N [T 7 o o direction
f.‘"l( Ay = . \ g N ; F I *.I ' ' II'I. \ "'.:"-.I AR
_ | . i | | | & | .
;? i N :.- . f_'r_.- rlli : ':..l _.\.::.I_.-':I { f i .I i 1 t ' J:L 5 II T ' et \5—‘% j] . “ - \
A\ (L ' ‘ = 4
- | |
ProFlow AquaTrol ProCoat Calcoil/CalTrol
Consistency Profiling Moisture Profile Control Coat Weight Contr Caliper Profile Control
© Honeywsell

Scanning gauge
« Control objective: flat profilesin the cross-direction

* The same control technology for different actuator types: flow
uniformity control, thermal control of deformations, and others
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Headbox with Slice Lip CD Actuators

15-5
© Honeywell

Control Engineering
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Profile Control System

SO Comirod
Actuators

Actuator
Imierinice
15 Hoead
Campubar

-
e

Paper Machine
[ ]

EE392m - Winter 2003

GO Canmral
Actunicrs

D Comndrod
BAciealors

Bctusior
Interfsce
by Mol
Compisles

Paper maching
Hewt Cantral’
Sysiem Measunemen

Control Engineering

Actunbor
Iriprince
10 Haost
Carmpibar

Maasgrement
Plmtfoenm

Standand Laptop PC
o5 e S

802.3 Open Network

© Honeywell



Biaxial Plastic Line Control

Metering
Pump

Machine Direction Orientation

Width Orientatio

Cast Film Finished Film
Measurement Measurement

© Honeywsell
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Model Structure

Process-independent model structure

AY = GAU
yoomuooh,coom™

G - spatial response matrix with

measurement g

actuator setpoin

columns g,

Known parametric form of the spatial

response (noncausal FIR)

Green Function of the distributed
system

EE392m - Winter 2003 Control Engineering

1,

CD data box/actuator number

J;x = 99(% —¢))
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Pro%%ss Modedl |dentification

< >

Actuator setpoint
N array, U(t)

-

MD

Measured profile
response, Y(t)

e Extract noncausal FIR model
 Fit parameterized response shape
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el Tl FLETCHER CHALLENGE J Phi# 3

INTELLIMAP

PROCESS IDENTIFICATION OVERVIEW

Bump Test Excitation Profile

MD Bump Profile Weight

v|

Honeyw
measur|

Current Gradi

10148

74
4] AUTOMATIC ID ON vl S canner Stal
||||||||||||||||||||||||||||||||||||| 0
----l o 0DX Link Sta
Bazeline E Rise Time E Im
1

I I I I I I I I I I I q
40 B0 80 100 120 140 160 180 200 220 235 e T'meﬂ
Current and Predicted High Resolution Profile

I
1 20

Ouerview
Screen

dih hofoa i
lﬂhﬂﬂhﬂﬂﬂ$lﬁﬂwWWHHMUﬁﬂﬂﬁﬂhﬂﬁﬂHNlﬂﬂﬁl!ﬂlﬁlﬂll@lﬂﬂlﬂlﬂﬁlmHI
T R IR T T

R IRRIFIAREET B NN

Bump Test

Configuration

Result
Implementatio

50 100 150 200 250 300 350 400 450 500 550 GO0 RSO 720

CD Identification

Start

ODXLink

Stop

.- ODXLink

g L
1 1 1 1 1 1 1 1 1 1 1 1 1 1 -

50 100 150 200 250 300 350 400 450 500 550 GO0 G50 720 |-0.050 - M S i ,d,.,.,.,.,.,.,., —

Low Shest Edge|[3.325 | Overall Shrinkage %| [4.14 High Shest Edoe| [118 135 165 10 15 20 25 30 35 40 45 60 55 kO EBS 70 I':t'::lrl“h:lz;;;

Cantroller Gain |:|:|_|:|3}'25|Fixed Delay |30 00 |Ctr| Time Canst 181 78 |

Confidence |J.§9  |Hish Actustor Offset| |39 365

Low Actustor Oftset| (152 363

E B 1D12141E182D222425283032343538404244454850525455585052545558?0?2?4
Bump Test Progress

Start Stop Load/Save Identify Identify Identify Identify Color
Bump Test Bump Test Test Data Overall Model Time Response CD Model Honlinear Shrinkage Topography




Simple | control

Compareto Lecture 4, Slide 5 [ ol
Step to step update;
Y(t) =G MU(t) + D(t)
U)=U@t-)-klyt-1-Y,]
Closed-loop dynamics

Y =((z-1)I +kG)*[kGY, +(z-1)D]

Steady state: z=1
Y=Y, U=G7(Y,-D)
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Simple | control

|ssues with ssimple | control B —

e G not square positive definite ZL
— use G" asagpatia pre-filter % 5 rroAthone 150 500
Yo(t) = GTG (1) + Dg (1)
Y.=G'Y, D.=G'D 0 VWWVAVAUAUAVAVA}\ MY A AVAVW\VAVA YW

« For ill-conditioned G get very ..
large control, picketing
— useregularized inverse
« Slowly growing instability
— control not robust
— regularization helps again

0

-20

i i i
20 40 60 80 100
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Frequency Domain - Time

LTI system isaconvenient engineering model
o LTI system as an input/output operator

e Causal

e Can bediagonalized by harmonic functions

* For each frequency, the response is defined by amplitude
and phase

LTI
— > —>
/\/\/\/\ Plant /\/\/\/\
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Frequency Domain - Space

* Linear Spatialy Invariant (LSI) system

e LSl system isaconvenient engineering model

e LSl system as an input/output operator

* Noncausal

e Can bediagonalized by harmonic functions

e Diagonalization = modal analysis; spatial
modes are harmonic functions

EE392m - Winter 2003 Control Engineering

VW

v

LSI
Plant

v

VY
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Control with Regularization

e Add integrator |leakage term
AU (1) =-K(Y(t-1)-Y,)-SU(t-1)

* Feedback operator K
— gpatial loopshaping
« KG=1atlow spatial frequencies
« KG =0 at high spatial frequencies
e Smoothing operator S
— regularization
« S=O0atlow spatial frequencies
« S= g, at high spatial frequencies - regularization

EE392m - Winter 2003 Control Engineering
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Spatial Frequency Analysis

« MatrixG - convolution operator g (noncausal FIR) -
spatial frequency domain (Fourier) g(v)
e Smilarly: K = k(v)and S - s(V)
o Each spatial frequency - mode - evolves independently
V)K(V z—-1+5s(v
)= WK» v)
z=1+s(v) +g(v)k(v) z=1+g(V)k(v)
« Steady state
V)k(v S(v
)= JWK©) o sw)
s(v) +gW)k) = s(v)+g(V)k(v)

. k) _
W)= s gk e ~d0)
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Sample Controller Design

o Spatial domain loopshaping is easy - it is noncausal

« Example controller with regularization

PLANT
1
0??.!...!.??
5432l 340
0.4
P(OB
0.2
0.1
0
543200192345
0.03
0.02
0.01
OF—m -
-0.01 I I ]

EE392m - Winter 2003

5-4-32-1012345

2
15

1

0.5

0.5

0.5
0.5

0.5
0.5

0.04

0.03

0.02
0.01

0

ERROR NORM

T T T

BRROR PROMIPE 400 500

CARTROL PRORILE 80 100

20

40 60 80 100

For more depth and references, see: Gorinevsky, Boyd, Stein, ACC 2003

Control Engineering
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WDM network egualization

« WDM (Wave Division Multiplexing) networks

— multiple (say 40) independent laser signals with closely space
wavelength packed (multiplexed) into asingle fiber

— each wavelength is independently modulated
— Inthe end the signals are unpacked (de-mux) and demodul ated
— Increases bandwidth 40 times without laying new fiber

Transmitting Recevin

Tx1 Mux Demux Rx 1
1530 nm 4 1560 nm /

Tx 2 ek

Tx 39 > > > ’ ’ ™ Rx39
EDFAs on \\

Tx N 80 km spacing Rx N

2.5 or 10 Gb/s per channel
% 40 channels = 100 GHz spacing
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WDM network egualization

» Analog optical amplifiers (EDFA) -
amplify al channels =
« Attenuation and amplification distort = |
carrier intensity profile o
w1l
. The profile can be flattened through = - ) L}UMUUJNMMWWMLWK
aCti Ve Control 1525 1535 1545 1555 1\65
Mmr-MhMMmzﬁay
i )
Legsr

See more detail at:
ww126. nort el net wor ks. conl news/ papers_pdf/el ectroni cast 1030011. pdf
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WDM network egualization

1
e Logarithmic (dB) 0
attenuation for a g
=
sequence of notch £, e
fllters E a nalch hillsrs
A - 'Aﬁ_ D . mN A 5 Individual
N g nateh filkers
|O A= |O 1?¢Eﬂ 1530 1640 1650 1660 1670
g ; g A< Wavelength (nm} Bl Mowers
N
a(l) = ZWM(A - A, — ck) 5
k=1

Attenuation gain - _
control hand|e\6|otch filter Shapa
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Good stuff that was left out

o Estimation and Kalman filtering
— navigation systems
— datafusion and inferential sensing in fault tolerant systems
« Adaptive control
— adaptive feedforward, noise cancellation, LMS
— industrial processes
— thermostats
— bio-med applications, anesthesia control
— flight control
o System-level logic
* Integrated system/vehicle control
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