
By: Eng. YOUNIS FAKHER

Resolution & Composition of a force

<u>Engineering Mechanics</u>: may be defined as a science which describes and predicts the condition of rest or motion of bodies under the action of forces.

Vector & Scalar quantities:

Vector quantities: are the quantities which have magnitude and direction .such as:

Force, weight, distance, speed, displacement, acceleration, velocity.

Scalar quantities: are the quantities which have only magnitude, such as:

Time, size, sound, density, light, volume.

Force:

A "force" is an action that changes, or tends to change, the state of motion of the body upon which it acts. It is a vector quantity that can be represented either mathematically or graphically

A complete description of a force MUST include its:

- 1. MAGNITUDE
- 2. DIRECTION and SENSE
- 3. POINT OF ACTION

Resolution & Composition of a force:

Let the force (F) shown in fig.(1) with the direction (θ)

We can resolve this force into two components:

- 1- horizontal component (Fx) which lies on x- axis
- 2- vertical component (Fy) which lies on y-axis as shown in fig.(2)

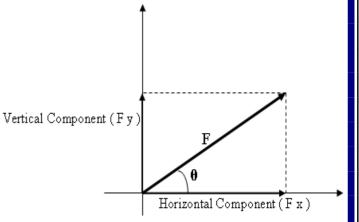
fig.(1)

Engineering Mechanics – Statics For 1st Year Students – Mechanic Department 1st & 2nd Week 2008 - 2009

By: Eng. YOUNIS FAKHER

from fig.(2):

The horizontal component may be determined as :


$$Fx = F \cdot \cos \theta$$

The vertical component may be

determined as:

Fy =
$$F \cdot \sin \theta$$

$$F_x = F \cos \theta$$
 $F = \sqrt{F_x^2 + F_y^2}$ $F_y = F \sin \theta$ $\theta = \tan^{-1} \frac{F_y}{F_x}$

EX (1):

Find the two components of the force (100~N) if : θ = 30° , 120° , 270° fig. (2)

Solution:

$$\theta = 30^{\circ}$$
 :

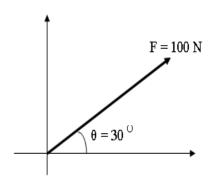
$$Fx = F \cdot \cos \theta$$

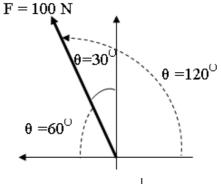
= 100 *
$$\frac{\sqrt{3}}{2}$$
 = 50 $\sqrt{3}$ N

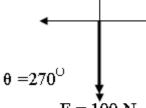
$$Fy = F \cdot \sin \theta$$

$\theta = 120^{\circ}$:

$$Fx = F \cdot \cos \theta$$


$$Fy = F \cdot \sin \theta$$


= 100 *
$$\frac{\sqrt{3}}{2}$$
 = 50 $\sqrt{3}$ N


$\theta = 270^{\circ}$:

$$Fx = F \cdot \cos \theta$$

$$Fy = F \cdot \sin \theta$$

EX (2):

The direction of the force (P) is ($30^{\rm o}$) , Find the horizontal component if the vertical component is (30~N) ?

Solution:

From the diagram shown:

$$Fy = 30 N$$

Fy = F .
$$\sin \theta$$

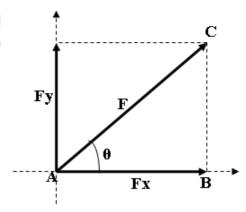
$$30 = P * sin 30$$

$$30 = P * 0.5$$

$$P = 30 / 0.5 = 60 N$$

$$Fx = F \cdot \cos \theta$$

= 60 * cos 30 = 60 *
$$\frac{\sqrt{3}}{2}$$
 = 30 $\sqrt{3}$ N


Let we have (Fx) is the horizontal component and (Fy) is the vertical component for the force (F) shown in fig.

From the shape ABC we get:

$$AC^2 = AB^2 + BC^2$$

$$F^2 = Fx^2 + Fy^2$$

$$F = \sqrt{(Fx)^2 + (Fy)^2}$$

Fy=30 N4

Determination of the direction of a force:

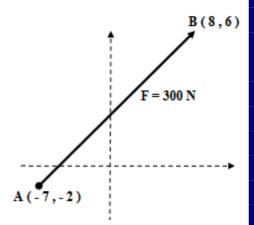
The direction of a force can be determined by :

$$\theta = \tan^{-1} \left(\frac{Fy}{Fx} \right)$$

EX (3):

Determine the magnitude and direction of a force (P) , if the horizontal and vertical components are ($20\;N$) , ($40\;N$) respectively ?

Solution:


We have : Fx = 20 N , Fy = 40 N ,
$$F = \sqrt{(Fx)^2 + (Fy)^2}$$

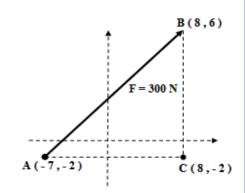
$$F = \sqrt{(20)^2 + (40)^2} = \sqrt{400 + 1600} = \sqrt{20000} = 44.72$$
 N

$$\theta = \tan^{-1}(\frac{Fy}{Fx}) = \tan^{-1}(\frac{40}{20}) = 63.43^{\circ}$$

EX (4):

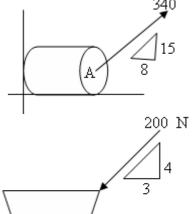
The line of action of the (300 N) force runs through the points (A) and (B) as shown in fig . Determine the (X) and (Y) scalar components of (F) .

Solution:


$$L_{AB} = \sqrt{(-7-8)^2 + (-2-6)^2} = 17$$

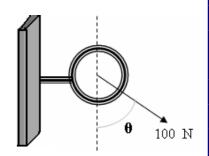
$$L_{AC} = \sqrt{(-7-8)^2} = 15$$

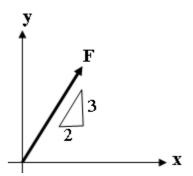
$$L_{BC} = \sqrt{(6+2)^2} = 8$$


$$F_x = F \cdot \cos\theta = 300 * \frac{15}{17} = 264.7N$$

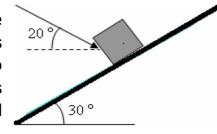
$$F_y = F \cdot \sin\theta = 300 * \frac{8}{17} = 141.2N$$

PROBLEMS

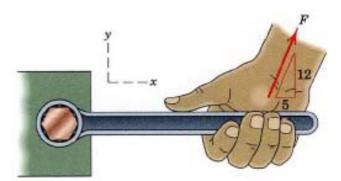

1 - Determine a pair of horizontal and vertical components of the (340 N) force ?


2 - Determine the horizontal & vertical components of the force (200 $\,$ N $) \,$?

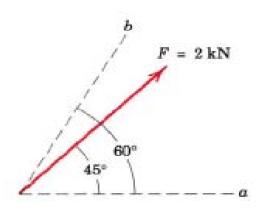
By: Eng. YOUNIS FAKHER


3 - Resolve the (100 N) force into horizontal and vertical components for each of the following values of (θ): a- 20° b- 80° c- 240° d- 210°

4 - The horizontal component of the force (F) is (60 N) to the right through the original point. Determine the vertical component and the magnitude of (F)?

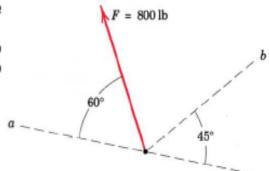


5 - The body on the (30°) incline is acted upon by a force (P) inclined at (20°) with the horizontal . if (P) is resolved into components parallel and perpendicular to the incline and the value of the parallel component is ($300\ N$) , Compute the value of the perpendicular , and of (P) ?

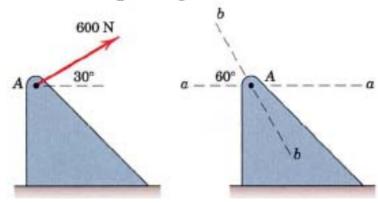


6 - The Y - component of the force (F) which a person exerts on the handle of the box wrench is known to be (70 N). Determine the (X) component, and the magnitude of (F).

Ans : Fx = 29.5 N , F= 75.8 N



7 – Determine the components of the (2 KN) force along the oblique axes (a) and (b) . Determine the projections of (F) onto the a – and b- axes .



8 - Determine the components of the 800-lb force F along the oblique axes a and b. Also, determine the projections of F onto the a- and b-axes.

Ans. Components: $F_a = 1093$ lb, $F_b = 980$ lb Projections: $F_a = 400$ lb, $F_b = 207$ lb

9 - The 600-N force applied to the bracket at A is to be replaced by two forces, F_a in the a-a direction and F_b in the b-b direction, which together produce the same effect on the bracket as that of the 600-N force. Determine F_a and F_b.

10: Write whether the following quantities are vectors or scalars:

Force , sound , density , velocity , weight , time , mass , acceleration , light , area

11 : Determine the angle ($\boldsymbol{\theta}$) and locate the force on the coordinates when :

$$Fx = Fy$$
 , $Fx = -Fy$, $-Fx = -Fy$, $-Fx = Fy$