University of Diyala College of Engineering Mechanical Engineering Dep. Final Exam $/ 2^{\text {nd }}$ Attempt

Class:2 $2^{\text {nd }}$ year
Subject: mathematics
Year: 2011-2012
Time: 3 hour

Good Luck
Head of Dep.: \qquad
Name: .Zastiod.....Sa.iHamin oud i

Lecturer:...samir..... Ali
Name: \qquad

Attached Figures and Notes

University of Diyala
College of Engineering Mechanical department Final Exam $/ 2{ }^{\text {nd }}$ Attempt

Class: $4^{\text {th }}$ stage
Subject: Control and Measurements
Year: 2011-2012
Time: 3 hour

Note:-Answer five questions only

Q1	Reduce the block diagram shown in Fig.(1), and find the overall transfer function for this system.	20\%
Q2	For the hydraulic amplifier shown in Fig.(2), determine the block diagram for the walking beam linkage and also the block diagrams relating e to y and y to w.Combine these diagrams to determine the overall block diagram representation for this system.	20\%
Q3	The differential equation of operation for a system is shown below, Determine the response when all the initial conditions are zero, and the input function $f(t)=4 t$. $\left(D^{2}+3 D+2\right) y(t)=f(t)$	20\%
Q4	A system have the following characteristics, sketch the root locus plot and determine: 1-The gain K for stability. 2- The gain K when the damping ratio is $\xi=0.5$. $G(S)=\frac{K}{S(S+4)(S+6)} \quad, \quad H(S)=1$	20\%
Q5	A system has an open loop transfer function given bellow, draw the polar plot and check the stability of this system . $G(S)=\frac{5}{S(S+1)(S+2)}$	20\%
Q6	A: Sketch the bourdon gage, state the functional elements of this instrument. B: Define the passive and the active transducers.	20\%

Name: Zaid S.Hammoudi

Good Luck
Lecturer:
Name: Mohammed Ismael

Attached Figures

Class: $4^{\text {th }}$ stage
Subject:- Engineering Materials Year: 2011-2012
Time:3 hour

Note:-Answer Five Questions Only
 Show All Your Work, Sketches, Be Neat\& Organized

Q1	A- List the mechanical properties. Define each property and write the mathematical expression for it. Also show, what are the factors affecting mechanical properties of the metals? B- Tool steel specimen of 25 mm diameter and 65 mm guage length was tested in a standard test. Following observations were made during the test:- $\begin{array}{cc} \text { Yield Load }=80 \times 10^{3} \mathrm{~N} & \text { Maximum Load }=90.5 \times 10^{3} \mathrm{~N} \\ \text { Fracture Load }=60.5 \times 10^{3} \mathrm{~N} & \text { Gauge Length of Fracture }=85.5 \mathrm{~mm} \end{array}$ Determine: 1. Yield point stress, 2. Ultimate tensile strength 3. Percentage of Elongation, 4. Modulus of Elasticity, 5. Modulus of resilience, 6. Fracture Stress, 7. Percentage of reduction in area and 8. Modulus of toughness.	20\%
Q2	A- Describe four methods of altering the environment to prevent or reduce corrosion and two methods by which cathodic protection can be used to protect a steel pipe from corroding. B- The wall of a low carbon tank containing aerated water is corroding at a rate of 100 mdd. How long will it take for the wall thickness to decrease by 0.25 mm ? If you know the density of Steel $\left(7.87 \mathrm{~g} / \mathrm{cm}^{3}\right)$.	20\%
Q3	A- Classify Five only from the following Non-Ferrous Metals? Give its chemical composition and industrial applications. 1. Cu-Alloys, 3. Pb-Alloys, 4. Tin-Alloys, 5. Zn-Alloys, 6. Ni-Alloys, 7. Mg-Alloys, B- What are nanomaterials, ferroelectric and piezoelectric materials? Describe the use of such materials in an industrials applications and discuss ferroelectric and piezoelectric behavior with examples. And where are these materials used?	20\%
Q4	A- What are Non-Destructive testing. List the methods of NDT? Giveoverview of each method, some uses and its common applications. B- Classify the following:- 1. Ceramic and advanced ceramic materials, 2. Composite and advanced composite materials.3. Thermoplastics materials, 4. Thermosetting plastics materials, 5. Liquid crystal polymers.Give their compositions, characteristics and engineering applications	20\%

Q5	A- What is an aluminum alloy? How are aluminum alloys classified? List four important aluminumalloys and its industrial applications. B- Classify the tool steel and stainless steel? Give the chemical composition\& industrial applications for each type.	20\%
Q6	A- Define the creep, creep failure and creep rate. Then draw the typical creep curve. Also, show what are the major factors that affect the creep strength of a metallic materials? B- The following creep data were obtained for a titanium alloy at 60 Mpa and $700 \mathrm{C}^{\circ}$. Plot the creep strain versus time (hours) and determine the steady-state creep rate for these test conditions.	20\%

Good Luck

Head of Mech. Eng. Dept.
Name:Dr. Ziad S. Hammouch:

Name: Assist. Prof. Dr. Eng. Adel K. M

University of Diyala
College of Engineering Dep:Mechanical Engineering. Final Exam/2. ${ }^{\text {st }}$ Attempt

Class:four.. stage
Subject: theory of vibration. Year: 2012-2011
Times hour

Note:-Answer five questions only

University of Diyala College of Engineering Dep.Of Mechanical

Engineering
Final Exam $/ 2^{\text {nd }}$ Attempt

Class: $4^{\text {th }}$ stage
Subject: Ind. Engineering
Year: 2012-2013
Time:3 hour

س5:- فرع A- أمام إحدى المنشآت الصناعبة المخنصة بصناعة الهو اتف النقالة ثلاث مواقع متاحة هي (الشمال- الوسطالجنوب) (البيانات المتعلقة بكل موقع مبينة في الجدول الثالي و فإذا علمت إن رأس المال المستثـر واللازم

لإنشاء وإقامة المشروع قد بلغت (900) مليون دولار على افتر الض ثبات كمية الإنتاج .
الٔلطلوب :-1- أي المواقع من وجهة نظرك الهندسية هي الأفضل ولماذا ؟ وضح ذللك بأسلوب هندسي
مستخدما طريقة نقطة التعادل بالمفاضلة في اختيار الموقع.
2- احسب فترة استرداد رأس المال المستشمر لكل موقع ؟

فرع B- التخطيط من أهم الأقسام المشاركة في نجاح العملية الإنتاجية ومن خلال التخطيط السليم يتم الارتقاء بسلم العملية الإنتاجية إلى أقصى درجات النجاح بين المز ايا التي يحفقه التخطيط الجيد للمصنع. (12 درجة)

س6:- تثّم الأنشطة التالية في إحدى المصانع الصغرى وفق البيانات التّالية :-

Time(day)	No. start happen and end happen	happen name
20	$(1-6)$	A
25	$(6-2)$	B
30	$(6-3)$	C
16	$(4-9)$	D
50	$(8-10)$	E
22	$(3-8)$	F
17	$(2-4)$	G
15	$(5-6)$	H
7	$(7-6)$	I
9	$(3-4)$	J
23	$(8-9)$	K
40	$(9-11)$	L

المطلوب:-
1- إعداد شبكة تصور المشروع بطريقة النشاط على اللههم وحساب النشاط أو الأنشطة الحرجة وتأششير ذلك.
2- احتساب الأوقات المبكرة والمتأخرة لبدايات الأنشطة ونهاياتها؟
(12 درجة)

Head of Dep.:
Good Luck
Name: Zacod S.. Hammoud!

Lecturer:

Name:..Sami..Alin awi;

University of Diyala Collège of Engineering
Dep.Of Mechanical
Engineering
Final Exam $/ 2^{\text {nd }}$ Attempt

Class: $4^{\text {th }}$ stage
Subject: Ind. Engineering Year: 2012-2013

Time:3 hour
 فرع B- في سبيل بلوغ الأهداف اللتي يسعى الليها المصنع ينبغي حصر الفعاليات والأنشطة الضرورية ضمن أنشطة او
 واحدة بالتفصنِلِ مع ذكر المزايا والليوب.

$$
\text { (} 12 \text { درجة) }
$$

(250000) منتج سنويا والآخر (المصنع B) طافته السنوية (220000) منتج وتم إجراء توسعات بإضافة ماكينة

(B) بعد مرور سبعة أثهر وقد تعرض اللمصنع (B) لعطل في إحدى مكاننه ذات الطاقة اللسنوية (800) وذلك بعد مرور سثة أشهر بينما تعطلت ماكينة في المصنع (B) طاتقها السنوية(5000) لددة ثلاثة أثهر ' علما بان برنامج الإنتاج لكل مصنع هو (250000) سنويا ، المطلوب :-
1- حساب صافي الطاقة القصوى والطاقة القصوى المتاحة للتشغيل لكل مصنع.
2- حساب مستوى اللتُثغيل على أساس كل مصنع لمـافي الطاقة القتصوى مرة ولصـافي الطاقة المتاحة مرة أخرى. 3- نسبة استغلال الطاقة اللتصميمية لكل مصنع.

فرع B- عملية الترتيب الداخلي للمصنع واحة من المهام الكيرّرة التي يكون للمهنس دور أساسي في وضنعه ويعتمد ذلك على كثير من المتطلبات والمعطيات ومن الأنواع الشانعة الاستخدام التّرتيب الخلوي(Cellular Layout)بين طبيعة هذا النوع من الترتيب وماهي ايجابياتّه وماهي سلبياته .
(12 درجة)
س3:-فرع A- اللسيطرة النوعية قسم مهم في إكــل العملية الإنتاجية وبالتاللي يتطلب صرفيات(تكاليف) مختلفة منها تكاليف الضبط والفحص (تكاليف الوقاية) بين ذلك بالتفصيل

فرع B- إذا كانت الطاقة الإنتاجية لماكينة معينة هي (720) منتج في الساعة الواحدة وذلك طبقا لمواصفةّ ذلك المنتج ، فاذذا
علدت إن عدد ساعات العطل في اليوم الواحد هي (6) ساعات ، احسب كمية إنتاج الماكينة خلال ثلاثة أعوام إذا
كانت الماكينة لاتتوتف إلا في الّحالات المبينة في المطالب ادناه :-

> دقيقة في كل سـاعة لغرض التبريد مع بقاء كفاءة العامل حسب الخطوة (2).
(12 درجة)
س4:- فرع A- جمعت الْيانات التّالية عن الكلفة المتَغيرة لمعمل يصنع منتج معين تباع الحدة الواحدة منه بمبلغ (80) \$ ،

Qكية الإنتاج	1	2	3	4	5	6	7	8
V.C.الكلفة المتغيرة	76	120	150	170	200	250	200	350

فرع B- واحدة من اهم طرق الفحص المستخدمة في عمليات اللرقابة النو عية هي طريقة الفحص الشامل (100\%)اشرحها وبين مزايا وعيوب تلكّ الطريقة مع ذكر بعض الامثلة.

Head of Dep.:

\qquad
Name: \qquad
Lecturer
Name:.. Ahmed.Abee ALi.

Attached Figures and Notes

Attached Figures and Notes

Q1

University of Diyala College of Engineering Mechanical Engineering Dep.			Final - Year Examination Second attempt/ 2011-2012	Subject: Turbomachinery Class: Third class Date /9/2012 Time : 3 hrs
Note:-Answer only five questions				
Q1		Complete the sentences ?(20M) 1. Turbomachines are \qquad (2M) 2. Cavitation is the boiling of \qquad (3M) 3. Centrifugal pump are a hydraulic \qquad (3M) 4. Dimensional Analysis is a \qquad (3M) 5. There are three types of similarities 1 \qquad 3. \qquad (1.5M) 6. The two isentropic efficiencies commonly used in axial flow turbine work are \qquad (2M) 7. Steam turbine are usually \qquad or a \qquad stages whereas gas turbine tend to be always of \qquad (1.5M) 8. The types of compounding or staging in steam turbine are 1 \qquad (1.5M) 9. Symmetrical aerofoil is . \qquad (2.5M)		
Q2	A	What are the losses in blade cascade of compressor and turbine?		urbine? (8M)
	B	What are the function of the diffuser that are installed at the end of the last stage of an axial flow compressor?		
	C	How can be classify the hydraulic turbine?		(10M)
Q3		Compare between centrifugal compressor and axial flow compressor ?(20M)		
Q4	A	Find the number of pumps required to take water from a deep well under a total head of 208 m ,the pumps are identical and run at 1000 rpm . The specific speed of each pump is given as 20 while the rated capacity of each pumps is $150 \mathrm{~L} / \mathrm{s}$? (8M)		
	B	An aerofoil having a chord length of 2.25 m and span of 13.5 m moves at a velocity of 125 m / s through standard atmosphere at an elevation of 2500 m . Calculate the lift and drag forces , and power required to drive the aerofoil. Take $\mathrm{C}_{\mathrm{L}}=0.465$ and $\mathrm{C}_{\mathrm{D}}=0.022$, density of air $=1.25$ $\mathrm{kg} / \mathrm{m}^{3}$? (12M)		
Q5		The three jet pelton wheel is required to generate $1 \times 10^{7} \mathrm{~W}$ under a net head of 400 m . The blade angle at outlet is 15° and the reduction in relative velocity while passing over the blade is 5%. If the overall efficiency of the wheel is $80 \% . \mathrm{C}_{v}=0.98$ and speed ratio $=0.46$. find(1) total flow (2)the diameter of the jet (3) the force exerted by a single jet on the buckets in the tangential direction?(20M)		
Q6	A	A multistage axial flow stagnation condition of the stage stagnation pres number of stage. take th	mpressor absorbs 4500W whe bar and 288 K . If polytropic eff re ratio is constant. Calculate emperature rise in the first sta	delivering $20 \mathrm{k} / \mathrm{s}$ of air from ciency of compression is 0.9 and if pressure at compressor outlet(2)the as $20^{\circ} \mathrm{C}$? (10 M)
		Complete the sentences 1. The blade camber an 2. Axial flow compress 3. Priming of centrifuga 4. The breaking jet in p	10M) in compressor cascade is is \qquad (2M) pump is \qquad (3M) on turbine is . \qquad (3M)	$\text { . } 2 \mathrm{M} \text {) }$

University of Diyala
College of Engineering Dep. Of Mechanical Eng. Final Exam/2 ${ }^{\text {st }}$ Attempt

Class: $3^{\text {st }}$ stage
Subject: Engineering. Analysis
Year: 2011-2012
Time: 3 hour

Q1	Using Exact Equation, Solve: $2 x y d x+\left(x^{2}+\text { Cosy }\right) d y=0$	20\%
Q2	Find the general solution of: $y\left(6 y^{2}-x-1\right) d x+2 x d y=0$ Using the standard form of the Bernoulli equation	20\%
Q3	:. Solve $y^{\prime \prime}-4 y=x e^{x}+\cos 2 x$	20\%
Q4	Find the fourier series representation of $\begin{gathered} F(x)=x / 2 \quad 0<x<2 \pi \\ F(x)=F(x+2 \pi) \end{gathered}$	20\%
Q5	A solid as shown in fig. is maintained at zero temp. in the vertical direction. The bottom is heated. Discuss the steady state temp. distribution in the solid. The equation to be solved is two-dimensional Laplace equation. $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ $\mathbf{U}=\mathbf{u}(\mathbf{x}, \mathbf{y}) .$	20\%
Q6	Solve by laplace Transform	20\%

Good Luck

Head of Dep.:
Name: . Z.anied...S.....) H a mmoud;

Lecturer
Name:Dr.Muzher.
-

University of Diyala
College of Engineering
Dep. Of mechanical engineering
Final Exam $/ 2^{\text {nd }}$ Attempt

Class: $3^{\text {rd }}$ stage
Subject: Numerical Analysis
Year: 2011-2012
Time: 3 hour

Note:-Answer five questions only

| Q1 | by using Newton Raphson method, find the positive roots for equation:-
 $f(x)=\sin (x)-\frac{x}{2}$
 Note: - put your scientific calculator on Rad system. | 20% |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Q2 | | |

$$
\Leftrightarrow
$$

	use Taylor series method with $(\mathrm{h}=0.1)$ to find $(\mathrm{y}=0.1)$ to the equation $y^{\prime \prime}+3 x y^{\prime}-6 y=0$ Q5 you given the basic conditions: - $\mathrm{y}(0)=1, y^{\prime}(0)=0.1$, and use the terms at $\left(\mathrm{x}^{5}\right)$.	
Q6	solve the following differential equation by using Runge-Kutta method	
$\frac{d x}{d y}=x+y$, and the basic conditions are $\mathrm{y}(0)=1, \mathrm{x}=0, \mathrm{~h}=0.1$	20%	

Name: Raid Salim Hamoody

Lecturer:

Name: Omar Ahmed Raheem

$$
\star
$$

University of Diyala College of Engineering Class:2 ${ }^{\text {nd }}$ stage Mechanical Engineering Dep. Subject: Thermodynamic Exam/2 ${ }^{\text {nd }}$ Attempt Year: 2011-2012 Time: 3 hour					
Note:-Answer five questions only					
	A. Derive an expression for work ratio and efficiency in Brayton cycle in terms of minimum and maximum cycle temperature and pressure ratio and draw the cycle on (T-s) and (p-v) diagrams. Discuss the effect of each parameter on the work ratio. B. Prove that the isentropic work of a pump in steam power plant is expressed in terms of saturated water specific volume and pressure rise.				
	A $1 \mathrm{~m}^{3}$ rigid tank has air at 1500 kPa and ambient 300 K connected by a valve to a piston cylinder. The piston of area $0.1 \mathrm{~m}^{2}$ requires 250 kPa below it to float. The valve is opened and the piston moves slowly 2 m up and the valve is closed. During the process air temperature remains at 300 K . What is the final pressure in the tank?				
Q3	Find the missing properties (T, P, v, u, h,s and x if applicable) and give the phase of the substance a) $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{u}=1000 \mathrm{~kJ} / \mathrm{kg}$, b) $\mathrm{NH}_{3} \quad \mathrm{~T}=65^{\circ} \mathrm{C}, \quad \mathrm{p}=600 \mathrm{kpa}$ c) $\quad \mathrm{R}-134 \mathrm{a} T=40^{\circ} \mathrm{C}, \quad \mathrm{h}=400 \mathrm{~kJ} / \mathrm{kg}$ d) $\mathrm{N}_{2} \quad \mathrm{~T}=100 \mathrm{~K}, \quad \mathrm{x}=0.75$ e) $\quad \mathrm{R}-22 \quad \mathrm{~T}=-25^{\circ} \mathrm{C}, \quad \mathrm{P}=100 \mathrm{kp}$				
Q4	A rigid tank is divided into two rooms by a membrane, both containing water, shown in Figure (1). Room A is at $200 \mathrm{kPa}, \mathrm{v}=0.5 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{VA}=1 \mathrm{~m}^{3}$, and room B contains 3.5 kg at $0.5 \mathrm{MPa}, 400^{\circ} \mathrm{C}$. The membrane now ruptures and heat transfer takes place so the water comes to a uniform state at $100^{\circ} \mathrm{C}$. Find the heat transfer during the process.				
Q5	Consider the system shown in Figure (2). Tank A has a volume of 100 L and contains saturated vapor $\mathrm{R}-134 \mathrm{a}$ at $30^{\circ} \mathrm{C}$. When the valve is cracked open, $\mathrm{R}-134 \mathrm{a}$ flows slowly into cylinder B. The piston mass requires a pressure of 200 kPa in cylinder B to raise the piston. The process ends when the pressure in tank A has fallen to 200 kPa . During this process heat is exchanged with the surroundings such that the R-134a always remains at $30^{\circ} \mathrm{C}$. Calculate the heat transfer for the process				
Q6	Consider an ideal steam reheat cycle where steam enters the high-pressure turbine at $3.0 \mathrm{MPa}, 400^{\circ} \mathrm{C}$, and then expands to 0.8 MPa . It is then reheated to $400^{\circ} \mathrm{C}$ and expands to 10 kPa in the low-pressure turbine. Calculate the cycle thermal efficiency and the moisture content of the steam leaving the low-pressure turbine.				

Attached Figures and Notes

Q1	The coupling shown in the figure (1) is constructed from steel of rectangular cross section and is designed to transmit a tensile force of 50 kN . If the bolt is of 15 mm diameter. Calculate the shear stress in the bolt, the direct stress in the bolt and the direct stress in the forked end of the coupling.	20\%
Q2	a load P is supported by two steel springs arranged in series. The upper spring has $\mathbf{2 0}$ turns of $20-\mathrm{mm}$ - diameter wire on a mean diameter of 150 mm . The lower spring consists of 15 turns of $10-\mathrm{mm}$-diameter wire on a mean diameter of 130 mm . Determine the maximum shearing stress in each spring if the total deflection is $\mathbf{8 0} \mathbf{~ m m}$ and $G=83 \mathrm{GN} / \mathrm{m}$ \}	
Q3	A thin cylinder 75 mm internal diameter 250 mm long with walls 2.5 mm thick is subjected to an internal pressure of $\mathrm{MN} / \mathrm{m}^{2}$. Determine the change in internal diameter and change in length . If in addition to the internal pressure ,the cylinder is subjected to a torque of 200 Nm , find the magnitude and nature of the principal stresses set up in the cylinder. $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2} \cdot \gamma=0.3$. as shown in figure2	20\%
Q4	Determine the dimensions of a hollow shaft with a diameter ratio of 3:4 which is to transmit 60 kW at $200 \mathrm{rev} / \mathrm{min}$. The maximum shear stress in the shaft is limited to $70 \mathrm{MN} / \mathrm{m}^{2}$ and the angle of to 3.8^{0} in a length of 4 m .For the shaft material $\mathrm{G}=80 \mathrm{GN} / \mathrm{m}^{2}$.	20\%
Q5	A a beam ABC is 9 m long and supported at B and C 6 m apart as shown in Figure (3). The beam carries a triangular distribution of load over the portion $B C$ together with an applied counterclockwise couple of moment 80 KNM at B and a $\mathrm{u} . \mathrm{d} .1$. of $10 \mathrm{KN} / \mathrm{m}$ over AB , as shown. Draw the S.F. and B.M. diagrams for the beam .	20\%
Q6	A $16-\mathrm{mm}$ plate is lapped over and secured, by transverse fillet welds on the inside and outside to from a penstock 1.5 m in diameter . Determine the safe internal pressure ,assuming allowable stresses of $\sigma_{1}=160 \mathrm{MN} / \mathrm{m}^{2}$ for the plate and $\tau=120 \mathrm{MN} / \mathrm{m}^{2}$ through the throats of the welds. Use the maximum size of welds permitted.	20\%

A vertical cylinder of diameter 180 mm rotates concentrically inside another cylinder of diameter 181.2 mm . Both the cylinders are 300 mm high. The space between the cylinders is filled with a liquid whose viscosity is unknown. Determine the viscosity of the fluid if a torque of 20 Nm is required to rotate the inner cylinder at 120 r.p.m.

In the Fig. 1 find the gauge reading at A and B.
A $6 \mathrm{~m} \times 2 \mathrm{~m}$ rectangular gate is hinged at the base and is inclined at on angle of 60 o with the horizontal. The upper end of the gate is kept in position by a weight of 60 kN acting at angle of 90 o as shown in Fig. 2. Neglecting the weight of the gate, find the level of water when the gate begins to fall.

A cube 50 cm side is inserted in a two-layer fluid with specific gravity 1.2 and 0.9 . The upper and lower halves of the cube are composed of materials with specific gravity 0.6 and 1.4 respectively. What is the distance of the top of cube above interface? See Fig. 3

Fig. 4 shows a pipes network in which Q and h_{f} refer to Discharges and pressure drops respectively. By sticking to the values given in the Fig. 5 Find the unknown values and give these computed values at their respective places on a neat sketch of the pipes network along with flow directions.

The water levels in the two reservoirs A and B are 104.5 m and 100 m respectively above the datum. A pipe joins each to a common point D, where pressure is $98.1 \mathrm{kN} / \mathrm{m} 2$ gauge and height is 83.5 m above datum. Another pipe connects D to another tank C. what will be the height of water level in C assuming the same value of ' f for all pipes. Take friction co-efficient $=0.0075$.the diameters of the pipes $A D$,, DB and CD are $300 \mathrm{~mm}, 450 \mathrm{~mm}, 600 \mathrm{~mm}$ respectively and their lengths are 240 m 270 m 300 m respectively, see Fig. 5
4.

Fig. 1

Fig. 3

Fig. 2

Fig. 4

Fig. 4

$$
\because
$$

-

Q1	Answer A or B A. What minimum horizontal velocity \boldsymbol{u} can a boy throw a rock at \boldsymbol{A} as shown in Fig (1.A) and have it just clear the obstruction at \boldsymbol{B} ? B. The particle P moves along the space curve and has a velocity $v=4 i-2 j-k m / s$ as shown in Fig (1.B). The particle has an acceleration whose magnitude is 8 $\mathrm{m} / \mathrm{s}^{2}$. Calculat the radius of curvature ρ of the path and the rate of accelerationwhich the magnitude of velocity is increasing.	10\%
Q2	Block 2 kg passes over the top \boldsymbol{B} of the circular portion of the path with a speed of $3.5 \mathrm{~m} / \mathrm{s}$ as shown in Fig (2).Calculate the magnitude N_{B} of the normal force exerted by the path on the block. Determine the maximum speed v which the block can have at \boldsymbol{A} without losing contact with the path.	10\%
Q3	A pendulum consists of two 3.2 kg concentrated masses positioned as shown in Fig (3) on a light but rigid bar. The pendulum is swinging through the vertical position with a clockwise angular velocity $\omega=6 \mathrm{rad} / \mathrm{s}$ when a 50 g bullet traveling with velocity $\nu=300$ m / s in the direction shown strikes the lower mass and becomes embedded in it. Calculate the angular velocity ω 'which the pendulum has immediately after impact and find the maximum angular deflection $\boldsymbol{\theta}$ of the pendulum.	10\%
Q4	Answer A or B A. End \boldsymbol{A} of the link has the velocity as shown in Fig (4.A) at the instant depicted. End \boldsymbol{B} is confined to move in the slot. Calculate the velocity of \boldsymbol{B} and the angular velocity of $A B$. B. A container for waste materials is dumed by the hydraulically-activated linkage. If the piston rod starts from rest in the position indicated and has an acceleration of $0.5 \mathrm{~m} / \mathrm{s}^{2}$ in the direction as shown in Fig (4.B). Calculate the initial angular acceleration of the container.	10\%
Q5	The $2 k g$ plunger is released from rest in the position as shown in Fig (5). The spring of stiffness $k=500 \mathrm{~N} / \mathrm{m}$ has been compressed to one-half its uncompressed length of 200 mm . Calculate the maximum height \boldsymbol{h} above the starting position reached by the plunger.	10\%
Q6	End \boldsymbol{A} of the uniform 5 kg bar is pinned freely to the collar which has acceleration $\alpha=4 \mathrm{~m} / \mathrm{s}^{2}$ along the fixed horizontal shaft as shown in Fig (6). If the bar has a clockwise angular velocity $\omega=2 \mathrm{rad} / \mathrm{s}$ as it swings past the vertical. Determine the components of the force on the bar at \boldsymbol{A} for this instant.	10\%

Attached Figures and Notes

Q1

University of Diyala
College of Engineering
Mechanical Engineering Dep.
Final Exam $/ 2^{\text {st }}$ Attempt

Class:2 ${ }^{\text {st }}$ stage
Subject: Engineering drawing
Year: 2012-2013
Times hour

Note :answer all questions
Q1 : Draw front view half cut for assembly figure

س":- بموجب البيانات التالية ارسم المستط الامامي لترسين متعشتقين مبيناً غليه مايلي : (40 درجة) دانرة الخطوة (Pitch diam.) -

- عمق جنر السن (Dedendum)

مدرس المادة / مم. راند هادي
مع تمنياتي لكم بالنجاح والموفقية

University of Diyala College of Engineering Dep. Of Mech. Eng. Final Exam/2 $\mathbf{2}^{\text {nd }}$ Attempt

Class: $1^{\text {st }}$ stage

Note:-Answer all the questions

Q4: Draw a matrix to show what part of speech is each underlined word:
The most common example of a machine element is a gear. The rotation of a gear on a shaft drives other gears which may rotate faster or slower, depending on the diameter and number of teeth on the basic gear. A gear, fundamentally combination of a wheel and a lever.

Q5: A-Match the definitions on the right with the words on the left.
1.Geocentric
2.Tripod
A. a three - footed stand that can be used to support a camera
3.minute
B. go across a limit or boundary
4.monor
C. train on one track
5.finale
D. having the earth as the center
E. small and unimportant details
F. conclusion of a program

B- Change the following words into nouns. (choose five only)
Transmit, electrify, decide, measure, maintain, able

Q6: Change the following words into numerals : (choose Five only)
1.The cube root of nine.
2.Nough point seven three
3.Forty degrees centigrade
4. subtract a fourth from one .
5. six point seven percent.
6. eight times two is sixteen

With Best Wishes

Head of Dept.
Dr. Zaid S. Hamoody
Lecturer

University of Diyala
College of Engineering Dep. Of Mech. Eng. Final Exam/2 ${ }^{\text {nd }}$ Attempt

Class: $1^{\text {st }}$ stage
Subject :Tech. English
Year: 2011-2012
Time: 2 hrs.

Note:-Answer all the questions

Q1: Your name is Waleed Taha, compose a message about yourself and send it to techenglish @yahoo.com, your message should include the following:

1. Date of birth.
2. Date of graduation from secondary school.
3. Department, College and University.
4. Your opinion about the field of study.
5. The topics you studied during the first academic year.

Q2: Correct the form of the words in parentheses: (choose Five only)
1 . The properties of a material determine (their) use .
2. Lathe is the (important) machine tool.
3.If you learn how to use a lathe, you (be) able to shape a metal.
4. It is no use (lubricate) this machine.
5. They (make) a cutting tool of lead at this moment..
6. The student (submit) the report yet.

Q3: Do as required : (choose Five only)

1. A pump makes a lubricant go into the system .(change into plural)
2.Each molecule remains in a stable position. (insert : in solid, always)
3.Diesel engines, petrol engines, efficient. (use : as... as)
4.Lubrication affects machines . (change into interrogative)
5.This factory produces products obtained from oil. (noun acting as adj.)
6.Ignition of fuel exerts a great pressure. It drives the piston down .
(use :such... that)

Head of Dept.
Dr. Zaid S. Hamoody

M.A Areej S. Dawood

جلمعة بللى ـ كلبة اللهنسة
لّهم المهنسة الموكليكية

r.|r-r. | المتحان اللور الثّاني

المالِة: اللهنسة الوصفية
المرحلة: الاولى
الاجا بـة طـى جمــع الاسنـلة

س' أ :- ارسم المسالّط الثلاثة وبين الزاوبة الزوجية التي تقع فيها كل من النقلط الاتية: (اجب عن ثلاثة نتط)

$$
(r ، r-r)(i
$$

ب) نقطة جـ تَعد ${ }^{\text {ب }}$ (
ج) نتطة د تبعد r سم أمام المستوي الرأسي و r ب سم تحت المستوي الافقي.

س' ب:- متل النقطة| ومعفياً حيت ان س=r سم واحداثييها الانقي والرأسي ع سم و 0 سم على التوالي:- (اجب
عن الشبن تَط)
اـ اذا ونّعت في الزاوبة الزوجية اللرابعة.
r- اذا وتعت في اللزاوية الزورجبة الثانية.
r- اذا وتعت في الزاورية الزوجية الثالثة.

س" أ : - بين العلاتة بين المستقيمت التللية في الفراغ واذكر اللسبب :- (اجب عن الشني فتط)

السبب:- (الاجابة عن الثنين فتّ)

تكهلة الُمُمئلة في نهى الورقة

 بطريق فرق البع.
س" :- عين آثار المستوبت التلاية :- (الجب عن اربعة فتط)
ا- المستوي (- (Y، ، r ،).

تـ المستوي هـ و ي اذا عـت ان كيمة س= - r ، ص= -r و ع = -r. .

(Y.0، o،
 المستوي الذي يحتوبها.

هع تمنياتو لههر بالنجاح والموغقية

مدرس الهادة / م.م. رائد شادى صالح

Note :Answer only five question, all question $\mathbf{2 0}$ marks

Q1/The combined action of the three forces on the base at O may be obtained by establishing their resultant through O . Determine the magnitudes of R and the accompanying couple M ?	Q2/The uniform 5 m bar with a mass of 100 kg is hinged at O and prevented from rotating in the vertical plane beyond the 30° position by the fixed roller at A . Calculate the magnitude of the load supported by the pin at O ?
Q3/Calculate the x-and -y components of the force C which member BC exerts on member ACD . The cables are wrapped securely around the two pulleys, which are fastened together?	Q4/ The light bar is used to support the 50 kg block in its vertical guides, if the coefficient of static friction is 0.3 at the upper end of the bar and 0.4 at the lower end of the bar, find the friction force acting at each end for $x=75 \mathrm{~mm}$, also find the maximum value of x for which the bar not slip, take friction angle $\emptyset=\tan ^{-1} \mu_{\mathrm{s}}$?
Q5/Determine the moment of inertia of the shaded area about x -axis?	Q6/The ratio of the lift force L to the drag force D for the simple airfoil $L / D=5$ if the lift force on a short section airfoil is 25 N , find the magnitude of the resultant force R and the angle which it makes with the horizontal?
W/as	

University of Diyala
College of Engineering Mechanical department Final Exam/2 ${ }^{\text {nd }}$ Attempt

Class: $1^{\text {st }}$ stage
Subject: programming I
Year: 2011-2012
Time: 3 hour

Note:-Answer five questions only

Q1	A: Write a program to calculate the value of x_{1}, y_{1} given by: $\begin{gathered} x_{1}=x \cos \theta+y \sin \theta \\ y_{1}=-x \sin \theta+y \cos \theta \end{gathered}$ \boldsymbol{B} : Write a program to find the summation of the main diagonal elements of the matrix $M(3,3)$.	20\%
Q2	Write a program to print the following data to a file "result.ttt" . metal aluminum $\frac{\text { density }}{2707}$ Lead 11373 steel 7833 copper 8954	20\%
Q3	Write a program to calculate the value of (Z), print (Z) when it is larger than or equal to (1000). $Z=2^{3}+4^{3}+6^{3}+\cdots \cdots$	20\%
Q4	Write a program to compute the larger between three numbers (X, Y, Z).	20\%
Q5	A : Write a subprogram and use it in a main program to calculate the value of V given by : $V=\frac{4}{3} \pi R^{3}$ B: Write a program to calculate the values of (F) given by : $F=1.8 C+32 \quad, C=50,60,70, \cdots \cdots, 100$	20\%
Q6	A : Write a program to find the magnitude of a matrix multiplication $A(2,3)$ by $B(3,4)$. B: Answer the following : 1-Explain how we can create a new folder in the (F :). 2-What is the procedures to form a notepad file. 3-Explain how we can copy a file from (D:) to desktop. 4-Explain how we can create a short cut of a program on the desktop.	20\%

*

Republic of Iraq
Ministry of Higher Education and
Scientific research
University of Diyalya

College of Engineering
Department of Mechanical Engineering Subject: Metallurgical Engineering Classes: First

Lecturer: Dr. Eng. Mustafa Ahmed Rijab / Assistant Professor.
أسنلة الامتحتات النهانية_ اللدور الثاني- للعام الالراسس 2011-2012.

Answers All the Questions for First classes for year 2011 -2012

Q1-a) What the Uses of Ceramics?
(2.5 marks)

Q1-b) How there are possibilities, When metal are mixed to form alioys ?
Q1-c) What the two basic types of dislocations? (2.5 marks) -
Q1-d) What the types of Defects? (2.5 marks)
Q1-e) How Classification of Matter Condition?
Q1-f) What the Arrangement of lattice points in the unit cell?
(5 marks)
Q1-g) What the types of Joining of Composites? ($\mathbf{2} .5$ marks)

Q2-A) What the Applications of Nanotechnology?
(5 marks)
Q2-B) How the Nature of Materials?
(5 marks)
Q2-C) What is Nanotechnology?
(5 marks)
Q2-D) How is a composite material?
(5 marks)

Q3-A) Calculation the volume ef an FCC and BCC unit cch in terins of the atomic radias? (5 maths)
Q3-B) Calculation the Number of atoms for SC structure, BCC structure, FCC structure, and HCP structure
unit cell? (5 marks)
Q3-C) Classify Engineering Materials as broad families you shown that by illustration figure and give example of each material fanity? (4 marks)

Q3-D) Show and draw the material tree, Processes tree and give examples of the families and classes of manufacturing processes? (6 marks)

Q4-A) Describe the grain structure of a metallic ingot that was produced by slow- cooling. The metal in a stationary sand mold? And list the factors may be depend on its solidification process and grain structure of any
ingot? (5 marks)

College of Engineering
Department of Mechanical Engineering Subject: Metallurgical Engineering Classes: First

Lecturer: Dr. Eng. Mustafa Ahmed Rijab / Assistant Professor.
أسنلة الامتحاتات النهانية. اللدو الثنانيـ للعام اللراسي 2011-2012.

Q4-B) A material is needed for a tube to carry fuel from the tank to the carburetor of a motor mower. The design requires that the tube can bend and that the fuel be visible. List what you would think to be the designiimiting properties?
(5 marks)
Q4-C) List three applications that, in your judgment, needs optical quality glass?
Q4-D) the $\mathrm{Ag}-\mathrm{Cu}$ equilibrium phase diagram may shown in the following figure. Show the following:
1-From any type this phase diagram?
2-Sign and define the lines $\boldsymbol{\&}$ zones in this phase diagram?
3-What are the melting points of $(\mathrm{Ag}) \&(\mathrm{Cu})$?
4-Draw the cooling curve of $\mathbf{4 0 \%} \mathrm{Cu}-\mathbf{6 0 \% A g}$ Alloy?
5- Draw the cooling curve of $\mathbf{7 1 . 9 \%} \mathbf{C u} \mathbf{- 2 8 . 1 \% A g}$ Alloy?
(5 marks)

University of Diyala College of Engineering
Dep. Of Mechanical Engineering Final Exam $/ 2^{\text {nd }}$ Attempt

Class: $1^{\text {st }}$ stage
Subject: حقّق وحريات
Year: 2012-2013
Time:2 hour

أجب عن أربعة أسئلة فقط

25\%	عرف الحرية ، المهنس ، الدستور	Q1
25\%	ماهي حقوق : لانسان التي أمرت بها الشريعة الاسلامية ،أذكر عشرة فقط	Q2
25\%	كيف تحد من التدخين والمخدرات في مجتمك ؟ ,	Q3
25\%	كيف تنمي قدر اتك كمهند ناجح	Q4
25\%	أذكر بعض أسباب السعادة .	Q5

Good Luck

Head of Dep.: \qquad
Name: \qquad

Lecturer:
Name:.......

Note:-Answer Five questions only

Q1	A: Sketch the conical section $x^{2}-y^{2}-2 x+4 y=4$ and identify its characteristic points. B: Evaluate the integral : $\int_{1}^{4} \ln (\sqrt{x}) d x$	20\%
Q2	A: Calculate the surface area generated by revolving the curve $y=\frac{x^{3}}{9}$ about x-axis from $\mathrm{x}=0$ to $\mathrm{x}=2$. B: Evaluate: $\int_{0}^{\pi} \cot ^{3}(x) \cdot \csc ^{4}(x) \cdot d x$	20\%
Q3	Solve the following system of linear equation using Gauss$x_{1}+2 x_{2}-x_{3}=4$ $2 x_{1}+3 x_{2}-x_{3}=2$ elimination method. $-x_{1}+x_{2}+3 x_{3}=-1$$~$	20\%
Q4	A: Find the roots of : $\sqrt[3]{3+i 4}$ and represent the roots on Argand diagram. B: Find y^{\prime} for : $y=\left(\cos ^{-1} x\right)^{\sin ^{-1} x}$.	20\%
Q5	A: If $v=i+j+2 k, u=-i-k$, find $(v \cdot u),(v \times u)$, the angle between v and u and the vector projection of u on to v. B: Find y^{\prime} for : $y=\csc h^{-1}\left(2^{\theta}\right)$.	20\%
Q6	A: Give the value of : $\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$. B: What is the inverse function of : $y=\ln \left(x+\sqrt{x^{2}+1}\right)$	20\%

Good Luck

Head of Dep.:

\qquad Lecturer:

Name: Zaid S. Hammoudi

University of Diyala
College of Engineering Mechanical Department

Subject : Electrical
Class : Third Year
Time : 3 Hours

Note :- Answer about five questions, $\mathbf{2 0}$ mark for each question.
Q1/ What are the D.C generator types ? Explain and draw these types .
Q2/ The following information is given for a 300 K.W, 600 V long - shunt compound generator : shunt field resistance $=75 \Omega$. Armature resistance including brush resistance $=0.03 \Omega$, commutating field winding resistance $=$ 0.011Ω, series field resistance $=0.012 \Omega$, diverter resistance $=0.036 \Omega$, when the machine is delivering full load.
Calculate the voltage and power generatodby the armature.
Q3/ A single phase transform fition have 400 primary and 1000 secondary turns, the net cross sectional area of the core is $60 \mathrm{~cm}^{2}$, if the primary winding be connected to a 50 Hz supply at 520 V ,calculate :

1- The peak of flux density in the core.
2- The voltage induced in the secondary winding .
Q4/ What are the advantages and disadvantages for the induction motors ?
Q5/ A 250 V shunt motor runs at 1000 r.p.m at no load and takes 8 A , the total armature and shunt residtance are respectively 0.2Ω and 250Ω. Calculate the speed when loaded and taking 50A , assume the flux to be constant.

Q6/ Each coil of a double - layer wound 20 - pole 180 slot , 3 - Φ, Y connected synchronous generator has 12 turns, the rotor driven at a speed of 300 r.p.m , the r.m.s value of generated voltage per phase 1300 V , each phase winding is connected in two - parallel path , determine :-

1- Frequency of induced e.m.f
2- The flux per pole, per phase
-

University of Diyala
College of Engineering
Mechmical Department

Final - Year Examination
Second Attempt 2011-2012
Subject :internal combustion Date:

Note :- Answer all questions, 20 mark each question .
Q1/A/ How do we classify the internal combustion engines?
B/ Define the following ?

1) Bottom dead center ,
2) Cylinder Volume ,
3) Displacement Volume
4) Compression Ratio ,
5) Clearance Volume .

Q2/ Four stroke, Ignition engine produced (48) bhp, in mechanical efficiency $\mathbf{8 0} \%$, consumption fuel (0.3) Kg per one horse brake power / hour .
The air - fuel ratio ($14: 1$), the fuel heating value (42000) $\mathrm{KJ} / \mathrm{Kg}$, Calculate

1) Indicated horse power ,
2) Friction horse power ,
3) Brake thermal efficiency
4) Indicated thermal efficiency , 5) Consumption Fuel and air per hour .

Q3/ Diesel engine produce (5) brake horse power, indicated thermal efficiency 30\% and mechanical efficiency 75% Calculate :-

1) Fuel Consumption in Litters / hour and Kg / hour .
2) Indicated specific Fuel Consumption (I.s.F.c) and
3) Brake specific Fuel Consumption (b . s.f.c) if the heating value of the Fuel (42000) KJ / Kg and density of the Fuel (0.87) Kg / Litter .

Q4/ In an ideal otto cycle the air at beginning of isentropic compression is at
($1 \mathrm{Kg} / \mathrm{cm}^{2}$) and ($15^{\circ}{ }^{\circ} \mathrm{C}$). The ratio of Compression is (8). if the heat added during the constant volume process is ($250 \mathrm{kcal} / \mathrm{Kg}$), determine :-

1) The maximum temperature in the cycle .
2) The air standard efficiency .
3) The work done per Kg of air .
4) The heat rejected, Take $\mathrm{Cv}=0.17, \mathrm{Y}=1.4$.

Q5/ A duel Combustion cycle has an adiabatic compression volume ratio of ($15: 1$) the conditions at the commencement of compression are ($1 \mathrm{Kg} / \mathrm{cm}^{2}$), $\left(250{ }^{\circ} \mathrm{c}\right)$ and $\left(0.1 \mathrm{~m}^{3}\right)$. The maximum pressure of the cycle is $\left(66 \mathrm{Kg} / \mathrm{cm}^{2}\right)$) and the maximum temperature of the cycle is ($1500{ }^{\circ} \mathrm{c}$), if $\mathbf{C v}=0.17$ and $\mathrm{Y}=1.4$, Calculate the pressure in $\mathrm{Kg} / \mathrm{cm}^{2}$, Volume in $\mathbf{m}^{\mathbf{3}}$ and temperature in ${ }^{\circ} \mathrm{C}$ at the corners of the cycle and the thermal efficiency of the cycle .

GOOD LUCK

Class: $1^{\text {st }}$ stage
Subject: Production process
Year: 2012-2013
Time: 3 hour

الإجابة عن خمسة أسنلة فقط
س1: فُرع A - أشُر حم الرسم كيفية أنتاج الحديد الزهر (Production of Cast Iron)، وما هي الوسائل المؤثرة في تحديد نو عيتّه بينها بإيجاز. فرع B - بين بالتفصيل أنواع ومواصفات وطبيعة الخامات الاولية للحديد (Iron Ores). (10درجات)

س2: فرع A ـ أشرح طبيعة عمل وكيفية استخدام جهاز فيكرز لقياس الصلادة ثم أحسب الصلادة إذا علمت إن طول البعد التطري للاثثر هو(4)ملم وكان الوزن المستعل في القياس هو(100)كغم . فرع B - تعتبر الفجّوات الغازية (Gas Cavities) من العيوب الثائعة في المسبوكات (Casting)،أشرح هنا العيب مبين بالتفصيل أنوا اعه ومصادره وكيفية معالجتّه .
(10)

س3:فرع A - ماهو الفحص الاتلافي (Destructive Testing)،أشرح طريقة لفحص المسبوكات وما هي الاستنتاجات التّي سوف يتم الحصول عليها من هذا الفحص . الاني
فرع B- ماهي العناصر الأساسية لعملية التشنيل للمعادن (العناصر التي تؤثر على عملية قطع المعادن)
(10درجات)
س4: فرع A- ما هي أنواع الشبكات الحيزية للمعادن الثنقة وما هي أنواع الثبكات الحيزية للسباتك مع ذكر مثال لكل نوع، اشر حمع الرسم لو احدة من كل نوع عـ فرع B -ـقارن بين لحام السمكرة أو مايعرف بلحام الكاوية (Soldering) وبين لحام المونة (Prizing). (10درجات)

س5: فرع A- بين من خلال الرسم طبيعة وأنواع القوى المسلطة على القطعة في عمليات التشثكيل المختلفة. فرع B- عدد عمليات التشكيل على البارد واشثر و واحدة بالتفصيل مع الرسم ،و أذكر مز ايا و عيوب التشكيل على (10)

س6: فرع A - على ماذا تُتْمد ضروف ومتطلبات التشثغيل في مكائن قطع المعادن ،بينها بالتفصيل . فرع B أسطوانة من الحديد غير القابل للصدأ(Stainlessness Steel) من الابعاد قطر ها (200)ملم
وطولها(144)ملم شكلت بالطرق في درجة حرارة الغرفة إلى تخصر بالطول لكي يصبح (120)ملم
وكان معامل الاحتكاك(0.22) والإجهاد الحقيقي (1000 MPa) أحسب قوة الطرق ؟
(10درجات)

Head of Dep.:
Good Luck
Name: Zuid....S...Hommoud;

Name: Saimi Ati Nawi

