PROBLEM 8.1

Determine whether the block shown is in equilibrium, and find the magnitude and direction of the friction force when $\theta=30^{\circ}$ and $P=200 \mathrm{~N}$.

SOLUTION

FBD block:

$$
\begin{gathered}
V \Sigma F_{n}=0: \quad N-(1000 \mathrm{~N}) \cos 30^{\circ}-(200 \mathrm{~N}) \sin 30^{\circ}=0 \\
N=966.03 \mathrm{~N}
\end{gathered}
$$

Assume equilibrium:

$$
\begin{gathered}
\nearrow \Sigma F_{t}=0: \quad F+(200 \mathrm{~N}) \cos 30^{\circ}-(1000 \mathrm{~N}) \sin 30^{\circ}=0 \\
F=326.8 \mathrm{~N}=F_{\text {eq. }}
\end{gathered}
$$

But

$$
\begin{aligned}
F_{\max }=\mu_{S} N=(0.3) 966 \mathrm{~N} & =290 \mathrm{~N} \\
& F_{\text {eq. }}>F_{\max } \quad \text { impossible } \Rightarrow \text { Block moves }
\end{aligned}
$$

and

$$
\begin{aligned}
F & =\mu_{k} N \\
& =(0.2)(966.03 \mathrm{~N})
\end{aligned}
$$

Block slides down

$$
\mathbf{F}=193.2 \mathrm{~N}
$$

PROBLEM 8.2

SOLUTION

FBD block:

$\forall \Sigma F_{n}=0: \quad N-(1000 \mathrm{~N}) \cos 35^{\circ}-(400 \mathrm{~N}) \sin 35^{\circ}=0$

$$
N=1048.6 \mathrm{~N}
$$

Assume equilibrium:

$$
\begin{gathered}
\nearrow \Sigma F_{t}=0: \quad F-(1000 \mathrm{~N}) \sin 35^{\circ}+(400 \mathrm{~N}) \cos 35^{\circ}=0 \\
F=246 \mathrm{~N}=F_{\text {eq. }} \\
F_{\max }=\mu_{s} N=(0.3)(1048.6 \mathrm{~N})=314 \mathrm{~N}
\end{gathered}
$$

$$
F_{\text {eq. }}<F_{\max } \quad \text { OK } \quad \text { equilibrium }
$$

$\therefore \quad \mathrm{F}=246 \mathrm{~N} /$

SOLUTION

FBD block:

$$
\begin{aligned}
\Sigma F_{n}=0: \quad & N-(20 \mathrm{lb}) \cos 20^{\circ}+(8 \mathrm{lb}) \sin 20^{\circ}=0 \\
& N=16.0577 \mathrm{lb}
\end{aligned}
$$

$$
F_{\max }=\mu_{s} N=(0.3)(16.0577 \mathrm{lb})=4.817 \mathrm{lb}
$$

Assume equilibrium:

$$
\begin{gathered}
\not \Sigma F_{t}=0: \quad(8 \mathrm{lb}) \cos 20^{\circ}-(20 \mathrm{lb}) \sin 20^{\circ}-F=0 \\
F=0.6771 \mathrm{lb}=F_{\text {eq. }}
\end{gathered}
$$

$$
F_{\text {eq. }}<F_{\max } \quad \text { OK } \quad \text { equilibrium }
$$

and

$$
\mathbf{F}=0.677 \mathrm{lb}
$$

PROBLEM 8.4

Determine whether the $20-\mathrm{lb}$ block shown is in equilibrium, and find the magnitude and direction of the friction force when $P=12.5 \mathrm{lb}$ and $\theta=15^{\circ}$.

SOLUTION

FBD block:

$$
\begin{gathered}
\Sigma F_{n}=0: \quad N-(20 \mathrm{lb}) \cos 20^{\circ}+(12.5 \mathrm{lb}) \sin 15^{\circ}=0 \\
N=15.559 \mathrm{lb} \\
F_{\max }=\mu_{s} N=(0.3)(15.559 \mathrm{lb})=4.668 \mathrm{lb}
\end{gathered}
$$

Assume equilibrium:

$$
\begin{gathered}
\nearrow \Sigma F_{t}=0: \quad(12.5 \mathrm{lb}) \cos 15^{\circ}-(20 \mathrm{lb}) \sin 20^{\circ}-F=0 \\
F=5.23 \mathrm{lb}=F_{\mathrm{eq}}
\end{gathered}
$$

but $F_{\text {eq. }}>F_{\max }$ impossible, so block slides up
and

$$
F=\mu_{k} N=(0.25)(15.559 \mathrm{lb})
$$

$$
\mathbf{F}=3.89 \mathrm{lb}
$$

PROBLEM 8.5

Knowing that $\theta=25^{\circ}$, determine the range of values of P for which equilibrium is maintained.

SOLUTION

FBD block:

Block is in equilibrium:

$$
\begin{array}{cl}
\searrow \Sigma F_{n}=0: & N-(20 \mathrm{lb}) \cos 20^{\circ}+P \sin 25^{\circ}=0 \\
& N=18.794 \mathrm{lb}-P \sin 25^{\circ} \\
\nearrow F_{t}=0: & F-(20 \mathrm{lb}) \sin 20^{\circ}+P \cos 25^{\circ}=0
\end{array}
$$

or

$$
F=6.840 \mathrm{lb}-P \cos 25^{\circ}
$$

Impending motion up: $F=\mu_{s} N ; \quad$ Impending motion down: $F=-\mu_{s} N$
Therefore,

$$
6.840 \mathrm{lb}-P \cos 25^{\circ}= \pm(0.3)\left(18.794 \mathrm{lb}-P \sin 25^{\circ}\right)
$$

$$
P_{\mathrm{up}}=12.08 \mathrm{lb} \quad P_{\mathrm{down}}=1.542 \mathrm{lb}
$$

SOLUTION

FBD block (impending motion up)

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1}(0.25)=14.04^{\circ}
$$

(a) Note: For minimum $P, \mathbf{P} \perp \mathbf{R}$ so $\beta=\phi_{s}$

Then

$$
\begin{aligned}
P & =W \sin \left(30^{\circ}+\phi_{s}\right) \\
& =(60 \mathrm{lb}) \sin 44.04^{\circ}=41.71 \mathrm{lb}
\end{aligned}
$$

$$
P_{\min }=41.7 \mathrm{lb}
$$

(b) Have $\beta=\phi_{s}$

$$
\beta=14.04^{\circ}
$$

SOLUTION

FBD block (impending motion to the right)

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1}(0.25)=14.036^{\circ}
$$

$$
\begin{aligned}
& \frac{P}{\sin \phi_{s}}=\frac{W}{\sin \left(\theta-\phi_{s}\right)} \\
& \sin \left(\theta-\phi_{s}\right)=\frac{W}{P} \sin \phi_{s} \quad W=m g \\
& \text { (a) } \quad m=30 \mathrm{~kg}: \quad \theta-\phi_{s}=\sin ^{-1}\left[\frac{(30 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{120 \mathrm{~N}} \sin 14.036^{\circ}\right] \\
& =36.499^{\circ} \\
& \therefore \theta=36.499^{\circ}+14.036^{\circ} \\
& \text { or } \theta=50.5^{\circ} \\
& \text { (b) } \quad m=40 \mathrm{~kg}: \quad \theta-\phi_{s}=\sin ^{-1}\left[\frac{(40 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{120 \mathrm{~N}} \sin 14.036^{\circ}\right] \\
& =52.474^{\circ}
\end{aligned}
$$

SOLUTION

FBD block (impending motion

 downward)
(a) Note: For minimum $P, \quad \mathbf{P} \perp \mathbf{R}$

So $\quad \beta=\alpha=90^{\circ}-\left(30^{\circ}+14.036^{\circ}\right)=45.964^{\circ}$
and $\quad P=(30 \mathrm{lb}) \sin \alpha=(30 \mathrm{lb}) \sin \left(45.964^{\circ}\right)=21.567 \mathrm{lb}$
(b)

$$
\begin{gathered}
P=21.6 \mathrm{lb} \\
\beta=46.0^{\circ}
\end{gathered}
$$

PROBLEM 8.9

SOLUTION

FBD block (impending motion)

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1}(0.4)=21.801^{\circ}
$$

(a) $0^{\circ} \leq \theta \leq 90^{\circ}$:

(b) $90^{\circ} \leq \theta \leq 180^{\circ}$:
(b)

$$
\begin{aligned}
& \theta-\phi_{s}=\sin ^{-1} \frac{58.86 \mathrm{~N}}{40 \mathrm{~N}} \sin \left(21.801^{\circ}\right) \\
& \\
& =33.127^{\circ}, 146.873^{\circ} \\
& \theta=54.9^{\circ} \quad \text { and } \quad \theta=168.674^{\circ}
\end{aligned}
$$

$\therefore \quad(a)$
Equilibrium for $0 \leq \theta \leq 54.9^{\circ}$ and for $168.7^{\circ} \leq \theta \leq 180.0^{\circ}$

SOLUTION

FBD block (impending motion
down)

$$
\begin{gathered}
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1}(0.45)=24.228^{\circ} \\
\frac{25 \mathrm{lb}}{\sin \left(90^{\circ}-\phi_{s}\right)}=\frac{18 \mathrm{lb}}{\sin \left(\theta+\phi_{s}\right)} \\
\theta+\phi_{s}=\sin ^{-1}\left[\frac{18 \mathrm{lb}}{25 \mathrm{lb}} \sin \left(90^{\circ}-24.228^{\circ}\right)\right]=41.04^{\circ}
\end{gathered}
$$

$$
\theta=16.81^{\circ}
$$

Impending motion up:

$$
\begin{gathered}
\frac{25 \mathrm{lb}}{\sin \left(90^{\circ}+\phi_{s}\right)}=\frac{18 \mathrm{lb}}{\sin \left(\theta-\phi_{s}\right)} \\
\theta-\phi_{s}=\sin ^{-1}\left[\frac{18 \mathrm{lb}}{25 \mathrm{lb}} \sin \left(90^{\circ}+24.228^{\circ}\right)\right]=41.04^{\circ} \\
\theta=65.27^{\circ}
\end{gathered}
$$

Equilibrium for $16.81^{\circ} \leq \theta \leq 65.3^{\circ}$

PROBLEM 8.11

The coefficients of friction are $\mu_{s}=0.40$ and $\mu_{k}=0.30$ between all surfaces of contact. Determine the force \mathbf{P} for which motion of the $60-\mathrm{lb}$ block is impending if cable $A B(a)$ is attached as shown, (b) is removed.

SOLUTION

FBDs
Top block:

Bottom block:

FBD blocks:

(a) Note: With the cable, motion must impend at both contact surfaces.

$$
\uparrow \Sigma F_{y}=0: \quad N_{1}-40 \mathrm{lb}=0 \quad N_{1}=40 \mathrm{lb}
$$

Impending slip: $\quad F_{1}=\mu_{s} N_{1}=0.4(40 \mathrm{lb})=16 \mathrm{lb}$

$$
\begin{gathered}
\longrightarrow \Sigma F_{x}=0: \quad T-F_{1}=0 \quad T-16 \mathrm{lb}=0 \quad T=16 \mathrm{lb} \\
\\
\uparrow \Sigma F_{y}=0: \quad N_{2}-40 \mathrm{lb}-60 \mathrm{lb}=0 \quad N_{2}=100 \mathrm{lb}
\end{gathered}
$$

Impending slip: $\quad F_{2}=\mu_{s} N_{2}=0.4(100 \mathrm{lb})=40 \mathrm{lb}$
$\longrightarrow \Sigma F_{x}=0: \quad-P+16 \mathrm{lb}+16 \mathrm{lb}+40 \mathrm{lb}=0$

$$
\mathbf{P}=72.0 \mathrm{lb} \longleftarrow
$$

(b) Without the cable, both blocks will stay together and motion will impend only at the floor.

$$
\uparrow \Sigma F_{y}=0: \quad N-40 \mathrm{lb}-60 \mathrm{lb}=0 \quad N=100 \mathrm{lb}
$$

$$
\text { Impending slip: } \quad F=\mu_{s} N=0.4(100 \mathrm{lb})=40 \mathrm{lb}
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad 40 \mathrm{lb}-P=0
$$

$$
\mathbf{P}=40.0 \mathrm{lb}
$$

PROBLEM 8.12

The coefficients of friction are $\mu_{s}=0.40$ and $\mu_{k}=0.30$ between all surfaces of contact. Determine the force \mathbf{P} for which motion of the $60-\mathrm{lb}$ block is impending if cable $A B(a)$ is attached as shown, (b) is removed.

SOLUTION

(a) With the cable, motion must impend at both surfaces.

FBDs

Top block:

Bottom block:

FBD blocks:

(b) Without the cable, both blocks stay together and motion will impend at the floor surface only.

$$
\uparrow \Sigma F_{y}=0: \quad N-40 \mathrm{lb}-60 \mathrm{lb}=0 \quad N=100 \mathrm{lb}
$$

Impending slip: $\quad F=\mu_{s} N=0.4(100 \mathrm{lb})=40 \mathrm{lb}$
$\longrightarrow \Sigma F_{x}=0: \quad-P+40 \mathrm{lb}=0 \quad P=40 \mathrm{lb}$

$$
\mathbf{P}=40.0 \mathrm{lb} \longleftarrow
$$

PROBLEM 8.13

The $8-\mathrm{kg}$ block A is attached to link $A C$ and rests on the $12-\mathrm{kg}$ block B. Knowing that the coefficient of static friction is 0.20 between all surfaces of contact and neglecting the mass of the link, determine the value of θ for which motion of block B is impending.

SOLUTION

FBDs:

$$
w_{B}=12 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=117.72 \mathrm{~N}
$$

Motion must impend at both contact surfaces
Block A:

$$
\uparrow \Sigma F_{y}=0: \quad N_{1}-W_{A}=0 \quad N_{1}=W_{A}
$$

Block B:

$$
\uparrow \Sigma F_{y}=0: \quad N_{2}-N_{1}-W_{B}=0
$$

$$
N_{2}=N_{1}+W_{B}=W_{A}+W_{B}
$$

Impending motion:

$$
\begin{aligned}
& F_{1}=\mu_{s} N_{1}=\mu_{s} W_{A} \\
& F_{2}=\mu_{s} N_{2}=\mu_{s}\left(N_{1}+W_{B}\right)
\end{aligned}
$$

Block B: $\quad \longrightarrow \Sigma F_{x}=0: 50 \mathrm{~N}-F_{1}-F_{2}=0$
or

$$
50 \mathrm{~N}=\mu_{s}\left(N_{1}+N_{1}+W_{B}\right)=0.2\left(2 N_{1}+117.72 \mathrm{~N}\right)
$$

$$
N_{1}=66.14 \mathrm{~N} \quad F_{1}=0.2(66.14 \mathrm{~N})=13.228 \mathrm{~N}
$$

Block A: $\quad \longrightarrow \Sigma F_{x}=0: 13.228 \mathrm{~N}-F_{A C} \cos \theta=0$
or

$$
F_{A C} \cos \theta=13.228 \mathrm{~N}
$$

$$
\uparrow \Sigma F_{y}=0: \quad 66.14 \mathrm{~N}-78.48 \mathrm{~N}+F_{A C} \sin \theta=0
$$

or
Then, $\frac{\text { Eq. (2) }}{\text { Eq. (1) }}$

$$
\tan \theta=\frac{78.48 \mathrm{~N}-66.14 \mathrm{~N}}{13.228 \mathrm{~N}}
$$

PROBLEM 8.14

The $8-\mathrm{kg}$ block A and the $16-\mathrm{kg}$ block B are at rest on an incline as shown. Knowing that the coefficient of static friction is 0.25 between all surfaces of contact, determine the value of θ for which motion is impending.

SOLUTION

FBDs:

Block A:

$$
\uparrow \Sigma F_{y}=0: \quad N_{1}-W_{A}=0 \quad N_{1}=W_{A}
$$

Impending motion:

$$
F_{1}=\mu_{s} N_{1}=\mu_{s} W_{A}
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad F_{1}-T=0 \quad T=F_{1}=\mu_{s} W_{A}
$$

Block B:

$$
\begin{aligned}
\nearrow F_{y^{\prime}}=0: \quad N_{2} & -\left(N_{1}+W_{B}\right) \cos \theta-F_{1} \sin \theta=0 \\
N_{2} & =3 W_{A} \cos \theta+\mu_{s} W_{A} \sin \theta \\
& =W_{A}(3 \cos \theta+0.25 \sin \theta)
\end{aligned}
$$

Impending motion:

$$
\begin{gathered}
F_{2}=\mu_{s} N_{2}=0.25 W_{A}(3 \cos \theta+0.25 \sin \theta) \\
\Sigma F_{x^{\prime}}=0:-T-F_{2}-F_{1} \cos \theta+\left(N_{1}+W_{B}\right) \sin \theta=0 \\
{[-0.25-0.25(3 \cos \theta+0.25 \sin \theta)-0.25 \cos \theta+3 \sin \theta] W_{A}=0}
\end{gathered}
$$

or

$$
47 \sin \theta-16 \cos \theta-4=0
$$

Solving numerically

PROBLEM 8.15

A $48-\mathrm{kg}$ cabinet is mounted on casters which can be locked to prevent their rotation. The coefficient of static friction between the floor and each caster is 0.30 . Knowing that $h=640 \mathrm{~mm}$, determine the magnitude of the force \mathbf{P} required for impending motion of the cabinet to the right (a) if all casters are locked, (b) if the casters at B are locked and the casters at A are free to rotate, (c) if the casters at A are locked and the casters at B are free to rotate.

SOLUTION

FBD cabinet:

$$
\begin{gathered}
W=48 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
=470.88 \mathrm{~N} \\
\mu_{s}=0.3
\end{gathered}
$$

Note: For tipping,

$$
N_{A}=F_{A}=0
$$

$$
\left(\Sigma M_{B}=0: \quad(0.24 \mathrm{~m}) W-(0.64 \mathrm{~m}) P_{\text {tip }}=0 \quad P_{\text {tip }}=0.375 \mathrm{~W}\right.
$$

(a) All casters locked: Impending slip: $\quad F_{A}=\mu_{s} N_{A}, F_{B}=\mu_{s} N_{B}$

$$
\begin{array}{lll}
\uparrow \Sigma F_{y}=0: & N_{A}+N_{B}-W=0 \quad N_{A}+N_{B}=W \\
& \text { So } & F_{A}+F_{B}=\mu_{s} W \\
\longrightarrow \Sigma F_{x}=0: & P-F_{A}-F_{B}=0 \quad P=F_{A}+F_{B}=\mu_{s} W \\
& \therefore & P=0.3(470.88 \mathrm{~N}) \quad \text { or } \quad P=141.3 \mathrm{~N} .
\end{array}
$$

$$
\left(P=0.3 W<P_{\text {tip }} \quad \text { OK }\right)
$$

(b) Casters at A free, so

Impending slip: $\quad F_{B}=\mu_{s} N_{B}$

$$
\begin{aligned}
\longrightarrow \Sigma F_{x}=0: & P-F_{B}=0 \\
& P=F_{B}=\mu_{s} N_{B} \quad N_{B}=\frac{P}{\mu_{s}}
\end{aligned}
$$

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(0.64 \mathrm{~m}) P+(0.24 \mathrm{~m}) W-(0.48 \mathrm{~m}) N_{B}=0\right. \\
8 P+3 W-6 \frac{P}{0.3}=0 \quad P=0.25 W \\
\left(P=0.25 W<P_{\text {tip }} \quad \text { OK }\right)
\end{gathered}
$$

$$
\therefore \quad P=0.25(470.88 \mathrm{~N})
$$

$$
P=117.7 \mathrm{~N}
$$

PROBLEM 8.15 CONTINUED

(c) Casters at B free, so

$$
F_{B}=0
$$

Impending slip:
$F_{A}=\mu_{s} N_{A}$

$$
\begin{array}{cl}
\longrightarrow \Sigma F_{x}=0: & P-F_{A}=0 \quad P=F_{A}=\mu_{s} N_{A} \\
& N_{A}=\frac{P}{\mu_{s}}=\frac{P}{0.3}
\end{array}
$$

$$
\left(\Sigma M_{B}=0:(0.24 \mathrm{~m}) W-(0.64 \mathrm{~m}) P-(0.48 \mathrm{~m}) N_{A}=0\right.
$$

$$
3 W-8 P-6 \frac{P}{0.3}=0 \quad P=0.10714 W=50.45 \mathrm{~N}
$$

$$
\left(P<P_{\text {tip }} \quad \text { OK }\right)
$$

$$
P=50.5 \mathrm{~N} \text { 4 }
$$

PROBLEM 8.17

The cylinder shown is of weight W and radius r, and the coefficient of static friction μ_{s} is the same at A and B. Determine the magnitude of the largest couple \mathbf{M} which can be applied to the cylinder if it is not to rotate.

SOLUTION

FBD cylinder:

For maximum M, motion impends at both A and B

$$
\begin{gathered}
F_{A}=\mu_{s} N_{A}, F_{B}=\mu_{s} N_{B} \\
\rightarrow \Sigma F_{x}=0: \quad N_{A}-F_{B}=0 \quad \mathrm{~N}_{A}=F_{B}=\mu_{s} N_{B} \\
F_{A}=\mu_{s} N_{A}=\mu_{s}^{2} N_{B} \\
\uparrow \Sigma F_{y}=0: \quad N_{B}+F_{A}-W=0 \quad N_{B}+\mu_{s}^{2} N_{B}=W \\
N_{B}=\frac{W}{1+\mu_{s}^{2}}
\end{gathered}
$$

or
and

$$
\begin{aligned}
& F_{B}=\frac{\mu_{s} W}{1+\mu_{s}^{2}} \\
& F_{A}=\frac{\mu_{s}^{2} W}{1+\mu^{2}}
\end{aligned}
$$

$$
\left(\Sigma M_{C}=0: \quad M-r\left(F_{A}+F_{B}\right)=0\right.
$$

$$
M=r\left(\mu_{s}+\mu_{s}^{2}\right) \frac{W}{1+\mu_{s}^{2}}
$$

$$
M_{\max }=W r \mu_{s} \frac{1+\mu_{s}}{1+\mu_{s}^{2}}
$$

PROBLEM 8.18

The cylinder shown is of weight W and radius r. Express in terms of W and r the magnitude of the largest couple \mathbf{M} which can be applied to the cylinder if it is not to rotate assuming that the coefficient of static friction is (a) zero at A and 0.36 at $B,(b) 0.30$ at A and 0.36 at B.

SOLUTION

FBD cylinder:

For maximum M, motion impends at both A and B

$$
\begin{gathered}
F_{A}=\mu_{A} N_{A} ; \quad F_{B}=\mu_{B} N_{B} \\
\longrightarrow \Sigma F_{x}=0: \quad N_{A}-F_{B}=0 \quad N_{A}=F_{B}=\mu_{B} N_{B} \\
F_{A}=\mu_{A} N_{A}=\mu_{A} \mu_{B} N_{B} \\
\uparrow \Sigma F_{y}=0: \quad N_{B}+F_{A}-W=0 \quad N_{B}\left(1+\mu_{A} \mu_{B}\right)=W \\
N_{B}=\frac{1}{1+\mu_{A} \mu_{B}} W
\end{gathered}
$$

and

$$
\begin{gathered}
F_{B}=\mu_{B} N_{B}=\frac{\mu_{B}}{1+\mu_{A} \mu_{B}} W \\
F_{A}=\mu_{A} \mu_{B} N_{B}=\frac{\mu_{A} \mu_{B}}{1+\mu_{A} \mu_{B}} W \\
\left(\Sigma M_{C}=0: \quad M-r\left(F_{A}+F_{B}\right)=0 \quad M=W r \mu_{B} \frac{1+\mu_{A}}{1+\mu_{A} \mu_{B}}\right.
\end{gathered}
$$

(a) For $\quad \mu_{A}=0$ and $\mu_{B}=0.36$

$$
M=0.360 W r
$$

(b) For $\quad \mu_{A}=0.30$ and $\mu_{B}=0.36$

$$
M=0.422 W r
$$

SOLUTION

FBDs

Drum:

Rotating drum \Rightarrow slip at both sides; constant speed \Rightarrow equilibrium

$$
\therefore \quad F_{1}=\mu_{k} N_{1}=0.3 N_{1} ; \quad F_{2}=\mu_{k} N_{2}=0.3 N_{2}
$$

$A B$:

$$
\begin{aligned}
\left(\Sigma M_{A}=0:\right. & (6 \mathrm{in} .)(680 \mathrm{lb})+(6 \mathrm{in} .)\left(F_{1}\right)-(18 \mathrm{in} .) N_{1}=0 \\
& F_{1}\left(\frac{18 \mathrm{in} .}{0.3}-6 \mathrm{in} .\right)=(6 \mathrm{in} .)(680 \mathrm{lb}) \quad \text { or } \quad F_{1}=75.555 \mathrm{lb}
\end{aligned}
$$

$D E$:

$$
\begin{aligned}
\left(\Sigma M_{D}=0:\right. & (6 \mathrm{in} .) F_{2}+(18 \mathrm{in} .) N_{2}-(6 \mathrm{in} .)(680 \mathrm{lb})=0 \\
& F_{2}\left(6 \mathrm{in} .+\frac{18 \mathrm{in} .}{0.3}\right)=(6 \mathrm{in} .)(680 \mathrm{lb}) \quad \text { or } \quad F_{2}=61.818 \mathrm{lb}
\end{aligned}
$$

Drum:

$$
\begin{aligned}
\left(\Sigma M_{C}=0:\right. & r\left(F_{1}+F_{2}\right)-M=0 \\
& M=(10 \mathrm{in} .)(75.555+61.818) \mathrm{lb}
\end{aligned}
$$

PROBLEM 8.20

A couple \mathbf{M} of magnitude $70 \mathrm{lb} \cdot \mathrm{ft}$ is applied to the drum as shown. Determine the smallest force which must be exerted by the hydraulic cylinder on joints B and E if the drum is not to rotate.

SOLUTION

FBDs

DE:

Drum:

For minimum T, slip impends at both sides, so

$$
F_{1}=\mu_{s} N_{1}=0.4 N_{1} \quad F_{2}=\mu_{s} N_{2}=0.4 N_{2}
$$

$A B:$

$$
\left(\Sigma M_{A}=0:(6 \mathrm{in} .) T+(6 \mathrm{in} .) F_{1}-(18 \mathrm{in} .) N_{1}=0\right.
$$

$$
F_{1}\left(\frac{18 \mathrm{in} .}{0.4}-6 \mathrm{in} .\right)=(6 \mathrm{in} .) T \quad \text { or } \quad F_{1}=\frac{T}{6.5}
$$

$D E:$

$$
\left(\Sigma M_{D}=0: \quad(6 \mathrm{in} .) F_{2}+(18 \mathrm{in} .) N_{2}-(6 \mathrm{in} .) T=0\right.
$$

$$
F_{2}\left(6 \mathrm{in} .+\frac{18 \mathrm{in} .}{0.4}\right)=(6 \mathrm{in} .) T \quad \text { or } \quad F_{2}=\frac{T}{8.5}
$$

Drum: $\quad\left(\Sigma M_{C}=0:(10 \mathrm{in}).\left(F_{1}+F_{2}\right)-840 \mathrm{lb} \cdot \mathrm{in} .=0\right.$

$$
T\left(\frac{1}{6.5}+\frac{1}{8.5}\right)=84 \mathrm{lb}
$$

PROBLEM 8.21

A 19.5-ft ladder $A B$ leans against a wall as shown. Assuming that the coefficient of static friction μ_{s} is the same at A and B, determine the smallest value of μ_{s} for which equilibrium is maintained.

SOLUTION

FBD ladder:

$a=7.5 \mathrm{ft}$
$b=18 \mathrm{ft}$

Motion impends at both A and B.

$$
\begin{array}{cc}
F_{A}=\mu_{s} N_{A} \quad F_{B}=\mu_{s} N_{B} \\
\longrightarrow \Sigma F_{x}=0: & F_{A}-N_{B}=0 \quad \text { or } \quad N_{B}=F_{A}=\mu_{s} N_{A}
\end{array}
$$

Then

$$
\begin{gathered}
F_{B}=\mu_{s} N_{B}=\mu_{s}^{2} N_{A} \\
\uparrow \Sigma F_{y}=0: \quad N_{A}-W+F_{B}=0 \quad \text { or } \quad N_{A}\left(1+\mu_{s}^{2}\right)=W \\
\left(\Sigma M_{O}=0: \quad b N_{B}+\frac{a}{2} W-a N_{A}=0\right.
\end{gathered}
$$

or

$$
a N_{A}-b \mu_{s} N_{A}=\frac{a}{2} W=\frac{a}{2} N_{A}\left(1+\mu_{s}^{2}\right)
$$

$$
\mu_{s}^{2}+\frac{2 b}{a} \mu_{s}-1=0
$$

$$
\mu_{s}=-\frac{b}{a} \pm \sqrt{\left(\frac{b}{a}\right)^{2}+1}=-2.4 \pm 2.6
$$

The positive root is physically possible. Therefore,

$$
\mu_{s}=0.200
$$

PROBLEM 8.22

SOLUTION

FBD ladder:

$a=7.5 \mathrm{ft}$
$l=19.5 \mathrm{ft}$
$\frac{a}{l}=\frac{5}{13}$
$\frac{b}{l}=\frac{12}{13}$

Motion impends at both A and B, so
or

$$
F_{A}=\mu_{S} N_{A} \quad \text { and } \quad F_{B}=\mu_{S} N_{B}
$$

$$
\int M_{A}=0: \quad l N_{B}-\frac{a}{2} W=0 \quad \text { or } \quad N_{B}=\frac{a}{2 l} W=\frac{7.5 \mathrm{ft}}{39 \mathrm{ft}} W
$$

$$
N_{B}=\frac{2.5}{13} W
$$

Then

$$
F_{B}=\mu_{s} N_{B}=\mu_{s} \frac{2.5 W}{13}
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad F_{A}+\frac{5}{13} F_{B}-\frac{12}{13} N_{B}=0
$$

$$
\mu_{s} N_{A}+\frac{12.5}{(13)^{2}} \mu_{s} W-\frac{30}{(13)^{2}} W=0
$$

$$
N_{A}-\frac{W}{(13)^{2}} \frac{\left(30-12.5 \mu_{s}\right)}{\mu_{s}}
$$

$$
\begin{aligned}
\uparrow \Sigma F_{y}=0: & N_{A}-W+\frac{12}{13} F_{B}+\frac{5}{13} N_{B}=0 \\
& \left(\frac{30-12.5 \mu_{s}}{\mu_{s}}+30 \mu_{s}+12.5\right) \frac{W}{(13)^{2}}=W
\end{aligned}
$$

A 19.5-ft ladder $A B$ leans against a wall as shown. Assuming that the coefficient of static friction μ_{s} is the same at A and B, determine the smallest value of μ_{s} for which equilibrium is maintained.
or

$$
\mu_{s}^{2}-5.6333 \mu_{s}+1=0
$$

$$
\mu_{s}=2.8167 \pm 2.6332
$$

or

$$
\mu_{s}=0.1835 \quad \text { and } \quad \mu_{s}=5.45
$$

The larger value is very unlikely unless the surface is treated with some "non-skid" material.

In any event, the smallest value for equilibrium is $\mu_{s}=0.1835$

PROBLEM 8.23

End A of a slender, uniform rod of weight W and length L bears on a horizontal surface as shown, while end B is supported by a cord $B C$ of length L. Knowing that the coefficient of static friction is 0.40 , determine (a) the value of θ for which motion is impending, (b) the corresponding value of the tension in the cord.

SOLUTION

FBD rod:

(a) Geometry: $\quad B E=\frac{L}{2} \cos \theta \quad D E=\left(\frac{L}{2} \cos \theta\right) \tan \beta$

$$
E F=L \sin \theta \quad D F=\frac{L}{2} \frac{\cos \theta}{\tan \phi_{s}}
$$

$$
L\left(\frac{1}{2} \cos \theta \tan \beta+\sin \theta\right)=\frac{L}{2} \frac{\cos \theta}{\tan \phi_{s}}
$$

or

$$
\begin{equation*}
\tan \beta+2 \tan \theta=\frac{1}{\tan \phi_{s}}=\frac{1}{\mu_{s}}=\frac{1}{0.4}=2.5 \tag{1}
\end{equation*}
$$

Also,

$$
\begin{gather*}
L \sin \theta+L \sin \beta=L \\
\sin \theta+\sin \beta=1 \tag{2}
\end{gather*}
$$

Solving Eqs. (1) and (2) numerically $\quad \theta_{1}=4.62^{\circ} \quad \beta_{1}=66.85^{\circ}$

Therefore,

$$
\theta_{2}=48.20^{\circ} \quad \beta_{2}=14.75^{\circ}
$$

(b) Now
and
or

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.4=21.801^{\circ}
$$

$$
\frac{T}{\sin \phi_{s}}=\frac{W}{\sin \left(90+\beta-\phi_{s}\right)}
$$

$$
T=W \frac{\sin \phi_{s}}{\sin \left(90+\beta-\phi_{s}\right)}
$$

For

PROBLEM 8.24

A slender rod of length L is lodged between peg C and the vertical wall and supports a load \mathbf{P} at end A. Knowing that the coefficient of static friction between the peg and the rod is 0.25 and neglecting friction at the roller, determine the range of values of the ratio L / a for which equilibrium is maintained.

SOLUTION

FBD rod:

$$
\begin{array}{r}
\left(\Sigma M_{B}=0: \frac{a}{\sin 30^{\circ}} N-L \sin 30^{\circ} P=0\right. \\
\\
N=\frac{L}{a} \sin ^{2} 30^{\circ} P=\frac{L}{a} \frac{P}{4}
\end{array}
$$

Impending motion at C : down $\rightarrow F=\mu_{s} N, F= \pm \frac{N}{4}$
$\uparrow \Sigma F_{y}=0: \quad F \cos 30^{\circ}+N \sin 30^{\circ}-P=0$
$\pm \frac{L}{a} \frac{P}{16} \frac{\sqrt{3}}{2}+\frac{L}{a} \frac{P}{4} \frac{1}{2}=P$
$\frac{L}{a}\left[\frac{1}{8} \pm \frac{\sqrt{3}}{32}\right]=1$

$$
\frac{L}{a}=\frac{32}{4 \pm \sqrt{3}}
$$

or

$$
\frac{L}{a}=5.583 \quad \text { and } \quad \frac{L}{a}=14.110
$$

For equilibrium:

$$
5.58 \leq \frac{L}{a} \leq 14.11
$$

SOLUTION

FBD Plate:

$D C$ is three-force member and motion impends at C and D (for minimum μ_{s}).

$$
\angle O C G=20^{\circ}+\phi_{s} \quad \angle O D G=20^{\circ}-\phi_{s}
$$

$$
\overline{O G}=(10 \mathrm{~mm}) \tan \left(20^{\circ}+\phi_{s}\right)=\left(\frac{24 \mathrm{~mm}}{\sin 70^{\circ}}+10 \mathrm{~mm}\right) \tan \left(20^{\circ}-\phi_{s}\right)
$$

or

$$
\tan \left(20^{\circ}+\phi_{s}\right)=3.5540 \tan \left(20^{\circ}-\phi_{s}\right)
$$

Solving numerically

$$
\phi_{s}=10.565^{\circ}
$$

Now

$$
\mu_{s}=\tan \phi_{s}
$$

so that

$$
\mu_{s}=0.1865
$$

SOLUTION

FBD window:

$$
T=(2 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=19.62 \mathrm{~N}=\frac{W}{2}
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad N_{A}-N_{D}=0 \quad N_{A}=N_{D}
$$

$$
\text { Impending motion: } \quad F_{A}=\mu_{s} N_{A} \quad F_{D}=\mu_{S} N_{D}
$$

$W=(4 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=39.24 \mathrm{~N}$

$$
\begin{gathered}
\left(\Sigma M_{D}=0: \quad(0.36 \mathrm{~m}) W-(0.54 \mathrm{~m}) N_{A}-(0.72 \mathrm{~m}) F_{A}=0\right. \\
W=\frac{3}{2} N_{A}+2 \mu_{S} N_{A} \\
N_{A}=\frac{2 W}{3+4 \mu_{s}}
\end{gathered}
$$

$$
\uparrow \Sigma F_{y}=0: \quad F_{A}-W+T+F_{D}=0
$$

$$
F_{A}+F_{D}=W-T
$$

$$
=\frac{W}{2}
$$

Now

$$
F_{A}+F_{D}=\mu_{s}\left(N_{A}+N_{D}\right)=2 \mu_{s} N_{A}
$$

Then $\quad \frac{W}{2}=2 \mu_{s} \frac{2 W}{3+4 \mu_{s}}$
or

PROBLEM 8.27

The steel-plate clamp shown is used to lift a steel plate H of mass 250 kg . Knowing that the normal force exerted on steel cam $E G$ by pin D forms an angle of 40° with the horizontal and neglecting the friction force between the cam and the pin, determine the smallest allowable value of the coefficient of static friction.

SOLUTION

FBDs:

BCD:

(Note: \mathbf{P} is vertical as $A B$ is two force member; also $P=W$ since clamp + plate is a two force $F B D$)

or

$$
\begin{aligned}
\left(\Sigma M_{C}=0: \quad\right. & (0.37 \mathrm{~m}) P-(0.46 \mathrm{~m}) N_{D} \cos 40^{\circ} \\
& -(0.06 \mathrm{~m}) N_{D} \sin 40^{\circ}=0 \\
N_{D}= & 0.94642 P=0.94642 \mathrm{~W}
\end{aligned}
$$

EG:

$$
\left(\Sigma M_{E}=0:(0.18 \mathrm{~m}) N_{G}-(0.26 \mathrm{~m}) F_{G}-(0.26 \mathrm{~m}) N_{D} \cos 40^{\circ}=0\right.
$$

Impending motion:

$$
F_{G}=\mu_{s} N_{G}
$$

Combining

$$
\begin{aligned}
\left(18+26 \mu_{s}\right) N_{G} & =19.9172 N_{D} \\
& =18.850 \mathrm{~W}
\end{aligned}
$$

PROBLEM 8.27 CONTINUED

Plate:

$F_{G}=\frac{W}{2} \quad$ so that $\quad N_{G}=\frac{W}{2 \mu_{s}}$
$\left(18+26 \mu_{s}\right) \frac{W}{2 \mu_{s}}=18.85 \mathrm{~W}$

$$
\mu_{s}=0.283 \text { 《 }
$$

PROBLEM 8.28

The 5-in.-radius cam shown is used to control the motion of the plate $C D$.

Knowing that the coefficient of static friction between the cam and the plate is 0.45 and neglecting friction at the roller supports, determine (a) the force \mathbf{P} for which motion of the plate is impending knowing that the plate is 1 in . thick, (b) the largest thickness of the plate for which the mechanism is self-locking, (that is, for which the plate cannot be moved however large the force \mathbf{P} may be).

SOLUTION

FBDs:

From plate: $\quad \longrightarrow \Sigma F_{x}=0: F-P=0 \quad F=P$

From cam geometry:

$$
\cos \theta=\frac{5 \mathrm{in} .-t}{5 \mathrm{in} .}
$$

$$
\left(\Sigma M_{A}=0:[(5 \mathrm{in} .) \sin \theta] N-[(5 \mathrm{in} .) \cos \theta] F-(5 \mathrm{in} .) Q=0\right.
$$

Impending motion:

$$
F=\mu_{s} N
$$

So

So
(a)

$$
t=1 \mathrm{in} . \Rightarrow \cos \theta=\frac{4 \mathrm{in} .}{5 \mathrm{in} .}=0.8 ; \sin \theta=0.6
$$

$$
P=\frac{(0.45)(15 \mathrm{lb})}{0.6-(0.45)(0.8)}=28.125 \mathrm{lb} ; \mathbf{P}=28.1 \mathrm{lb} \longleftarrow \longleftarrow
$$

(b)

$$
P \rightarrow \infty: \sin \theta-\mu_{s} \cos \theta=\frac{\mu_{s} Q}{P} \longrightarrow 0
$$

Thus $\quad \tan \theta \rightarrow \mu_{s}=0.45$ so that $\theta=24.228^{\circ}$
But (5in.) $\cos \theta=5$ in. $-t \quad$ or $\quad t=(5$ in. $)(1-\cos \theta)$

$$
t=0.440 \mathrm{in}
$$

PROBLEM 8.29

A child having a mass of 18 kg is seated halfway between the ends of a small, $16-\mathrm{kg}$ table as shown. The coefficient of static friction is 0.20 between the ends of the table and the floor. If a second child pushes on edge B of the table top at a point directly opposite to the first child with a force \mathbf{P} lying in a vertical plane parallel to the ends of the table and having a magnitude of 66 N , determine the range of values of θ for which the table will (a) tip, (b) slide.

SOLUTION

FBD table + child:

$$
\begin{aligned}
& W_{C}=18 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=176.58 \mathrm{~N} \\
& W_{T}=16 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=156.96 \mathrm{~N}
\end{aligned}
$$

(a) Impending tipping about $E, N_{F}=F_{F}=0$, and

$$
\begin{aligned}
\left(\Sigma M_{E}=0:\right. & (0.05 \mathrm{~m})(176.58 \mathrm{~N})-(0.4 \mathrm{~m})(156.96 \mathrm{~N})+(0.5 \mathrm{~m}) P \cos \theta-(0.7 \mathrm{~m}) P \sin \theta=0 \\
& 33 \cos \theta-46.2 \sin \theta=53.955
\end{aligned}
$$

Solving numerically $\quad \theta=-36.3^{\circ}$ and $\theta=-72.6^{\circ}$
Therefore
Impending tipping about F is not possible
(b) For impending slip:

$$
F_{E}=\mu_{s} N_{E}=0.2 N_{E} \quad F_{F}=\mu_{s} N_{F}=0.2 N_{F}
$$

$$
\begin{gathered}
\longrightarrow \Sigma F_{x}=0: \quad F_{E}+F_{F}-P \cos \theta=0 \quad \text { or } \quad 0.2\left(N_{E}+N_{F}\right)=(66 \mathrm{~N}) \cos \theta \\
\uparrow \Sigma F_{y}=0: \quad N_{E}+N_{F}-176.58 \mathrm{~N}-156.96 \mathrm{~N}-P \sin \theta=0 \\
N_{E}+N_{F}=(66 \sin \theta+333.54) \mathrm{N}
\end{gathered}
$$

So

$$
330 \cos \theta=66 \sin \theta+333.54
$$

Solving numerically,

$$
\theta=-3.66^{\circ} \quad \text { and } \quad \theta=-18.96^{\circ}
$$

Therefore,

PROBLEM 8.30

A pipe of diameter 3 in. is gripped by the stillson wrench shown. Portions $A B$ and $D E$ of the wrench are rigidly attached to each other, and portion $C F$ is connected by a pin at D. If the wrench is to grip the pipe and be self-locking, determine the required minimum coefficients of friction at A and C.

SOLUTION

FBD ABD:

Pipe:

FBD DF:

$$
\left(\Sigma M_{D}=0: \quad(0.75 \mathrm{in} .) N_{A}-(5.5 \mathrm{in} .) F_{A}=0\right.
$$

Impending motion:

$$
F_{A}=\mu_{A} N_{A}
$$

Then

$$
0.75-5.5 \mu_{A}=0
$$

$$
\mu_{A}=0.13636
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad F_{A}-D_{x}=0 \quad D_{x}=F_{A}
$$

$$
\begin{array}{cc}
\uparrow \Sigma F_{y}=0: & N_{C}-N_{A}=0 \\
& N_{C}=N_{A}
\end{array}
$$

$$
\left(\Sigma M_{F}=0: \quad(27.5 \mathrm{in} .) F_{C}-(0.75 \mathrm{in} .) N_{C}-(25 \mathrm{in} .) D_{x}=0\right.
$$

Impending motion: $\quad F_{C}=\mu_{C} N_{C}$

Then

$$
27.5 \mu_{C}-0.75=25 \frac{F_{A}}{N_{C}}
$$

But

$$
N_{C}=N_{A} \quad \text { and } \quad \frac{F_{A}}{N_{A}}=\mu_{A}=0.13636
$$

So

$$
27.5 \mu_{C}=0.75+25(0.13636)
$$

$$
\mu_{C}=0.1512
$$

PROBLEM 8.31

Solve Problem 8.30 assuming that the diameter of the pipe is 1.5 in .

SOLUTION

FBD ABD:

$$
\left(\Sigma M_{D}=0:(0.75 \mathrm{in} .) N_{A}-(4 \mathrm{in})\right) F_{A}=0
$$

Impending motion: $\quad F_{A}=\mu_{A} N_{A}$
Then
0.75 in. $-(4$ in. $) \mu_{A}=0$
$\mu_{A}=0.1875$ 4
$\rightarrow \Sigma F_{x}=0: \quad F_{A}-D_{x}=0$
so that

$$
D_{x}=F_{A}=0.1875 N_{A}
$$

FBD Pipe:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: \quad N_{C}-N_{A}=0 \\
N_{C}=N_{A}
\end{gathered}
$$

FBD DF:

$$
\left(\Sigma M_{F}=0: \quad(27.5 \mathrm{in} .) F_{C}-(0.75 \mathrm{in} .) N_{C}-(25 \mathrm{in} .) D_{x}=0\right.
$$

Impending motion:

$$
F_{C}=\mu_{C} N_{C}
$$

$27.5 \mu_{C}-0.75=25(0.1875) \frac{N_{A}}{N_{C}}$

But $N_{A}=N_{C}($ from pipe $F B D)$ so

$$
\frac{N_{A}}{N_{C}}=1
$$

and $\mu_{C}=0.1977$

PROBLEM 8.32

The $25-\mathrm{kg}$ plate $A B C D$ is attached at A and D to collars which can slide on the vertical rod. Knowing that the coefficient of static friction is 0.40 between both collars and the rod, determine whether the plate is in equilibrium in the position shown when the magnitude of the vertical force applied at E is $(a) P=0,(b) P=80 \mathrm{~N}$.

SOLUTION

FBD plate:

(a) $P=0$; assume equilibrium:

$$
\begin{aligned}
& \left(\Sigma M_{A}=0: \quad(0.7 \mathrm{~m}) N_{D}-(1 \mathrm{~m}) W=0 \quad N_{D}=\frac{10 W}{7}\right. \\
& \longrightarrow \Sigma F_{x}=0: \quad N_{D}-N_{A}=0 \quad N_{A}=N_{D}=\frac{10 W}{7} \\
& \qquad\left(F_{A}\right)_{\max }=\mu_{s} N_{A} \quad\left(F_{D}\right)_{\max }=\mu_{s} N_{D} \\
& \text { So } \quad \begin{array}{l}
\left(F_{A}+F_{D}\right)_{\max }=\mu_{s}\left(N_{A}+N_{D}\right)=\frac{20 \mu_{s} W}{7}=1.143 W \\
\uparrow \Sigma F_{y}=0: \quad F_{A}+F_{D}-W=0 \\
\therefore \quad F_{A}+F_{D}=W<\left(F_{A}+F_{D}\right)_{\max } \quad \text { OK. }
\end{array} .
\end{aligned}
$$

Plate is in equilibrium
(b) $P=80 \mathrm{~N}$; assume equilibrium:

$$
\begin{array}{ll}
\left(\Sigma M_{A}=0:\right. & (1.75 \mathrm{~m}) P+(0.7 \mathrm{~m}) N_{D}-(1 \mathrm{~m}) W=0 \\
& { }^{\text {or }} \quad \\
& N_{D}=\frac{W-1.75 P}{0.7} \\
\rightarrow \Sigma F_{x}=0: & N_{D}-N_{A}=0 \quad N_{D}=N_{A}=\frac{W-1.75 P}{0.7} \\
& \left(F_{A}\right)_{\max }=\mu_{s} N_{A} \quad\left(F_{B}\right)_{\max }=\mu_{s} N_{B}
\end{array}
$$

So

$$
\left(F_{A}+F_{B}\right)_{\max }=0.4 \frac{2 W-3.5 P}{0.7}=120.29 \mathrm{~N}
$$

$$
\uparrow \Sigma F_{y}=0: \quad F_{A}+F_{D}-W+P=0
$$

$$
F_{A}+F_{D}=W-P=165.25 \mathrm{~N}
$$

$$
\left(F_{A}+F_{D}\right)_{\text {equil }}>\left(F_{A}+F_{D}\right)_{\max }
$$

Impossible, so plate slides downward

PROBLEM 8.33

In Problem 8.32, determine the range of values of the magnitude P of the vertical force applied at E for which the plate will move downward.

SOLUTION

FBD plate:

$$
\left(\Sigma M_{A}=0:(0.7 \mathrm{~m}) N_{D}-(1 \mathrm{~m}) W+(1.75 \mathrm{~m}) P=0\right.
$$

$$
N_{D}=\frac{W-1.75 P}{0.7}
$$

$$
\rightarrow \Sigma F_{x}=0: \quad N_{D}-N_{A}=0 \quad \text { so that } \quad N_{A}=N_{D}=\frac{W-1.75 P}{0.7}
$$

Note: N_{A} and N_{D} will be >0 if $P<\frac{4}{7} W$ and <0 if $P>\frac{4}{7} W$.

$$
\begin{aligned}
W & =(25 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =245.25 \mathrm{~N}
\end{aligned}
$$

Impending motion downward: F_{A} and F_{B} are both >0, so

$$
\begin{gathered}
F_{A}=\mu_{s}\left|N_{A}\right|=\frac{0.4}{0.7}|W-1.75 P|=\left|\frac{4}{7} W-P\right| \\
F_{D}=\mu_{S}\left|N_{D}\right|=\left|\frac{4}{7} W-P\right| \\
\uparrow \Sigma F_{y}=0: \quad F_{A}+F_{D}-W+P=0 \\
2\left|\frac{4}{7} W-P\right|-W+P=0
\end{gathered}
$$

For $P<\frac{4}{7} W$;
$P=\frac{W}{7}=35.04 \mathrm{~N}$
For $P>\frac{4}{7} W$;

$$
P=\frac{5 W}{7}=175.2 \mathrm{~N}
$$

Downward motion for $35.0 \mathrm{~N}<P<175.2 \mathrm{~N}$

Alternative Solution

We first observe that for smaller values of the magnitude of \mathbf{P} that (Case 1) the inner left-hand and right-hand surfaces of collars A and D, respectively, will contact the rod, whereas for larger values of the magnitude of \mathbf{P} that (Case 2) the inner right-hand and left-hand surfaces of collars A and D, respectively, will contact the rod.

First note:

$$
\begin{aligned}
W & =(25 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =245.25 \mathrm{~N}
\end{aligned}
$$

PROBLEM 8.33 CONTINUED

$$
\begin{array}{cl}
\left(\Sigma M_{D}=0:\right. & (0.7 \mathrm{~m}) N_{A}-(1 \mathrm{~m})(245.25 \mathrm{~N})+(1.75 \mathrm{~m}) P=0 \\
& N_{A}=\frac{10}{7}\left(245.25-\frac{7}{4} P\right) \mathrm{N} \\
\longrightarrow \Sigma F_{x}=0: & -N_{A}+N_{D}=0 \\
& N_{D}=N_{A} \\
\uparrow \Sigma F_{y}=0: & F_{A}+F_{D}+P-245.25 \mathrm{~N}=0 \\
& F_{A}+F_{D}=(245.25-P) \mathrm{N}
\end{array}
$$

or
Now

$$
\left(F_{A}\right)_{\max }=\mu_{s} N_{A} \quad\left(F_{D}\right)_{\max }=\mu_{s} N_{D}
$$

so that

$$
\begin{aligned}
\left(F_{A}\right)_{\max }+\left(F_{D}\right)_{\max } & =\mu_{s}\left(N_{A}+N_{D}\right) \\
& =2(0.4)\left[\frac{10}{7}\left(245.25-\frac{7}{4} P\right)\right]
\end{aligned}
$$

For motion:

$$
F_{A}+F_{D}>\left(F_{A}\right)_{\max }+\left(F_{D}\right)_{\max }
$$

Substituting

$$
245.25-P>\frac{8}{7}\left(245.25-\frac{7}{4} P\right)
$$

or
$P>35.0 \mathrm{~N}$

Case 2

From Case 1:

$$
\begin{gathered}
F_{A}+F_{D}=(245.25-P) \mathrm{N} \\
\left(F_{A}\right)_{\max }+\left(F_{D}\right)_{\max }=2 \mu_{S} N_{A} \\
\left(\Sigma M_{D}=0:-(0.7 \mathrm{~m}) N_{A}-(1 \mathrm{~m})(245.25 \mathrm{~N})+(1.75 \mathrm{~m}) P=0\right.
\end{gathered}
$$

or

$$
N_{A}=\frac{10}{7}\left(\frac{7}{4} P-245.25\right) \mathrm{N}
$$

For motion:

$$
F_{A}+F_{D}>\left(F_{A}\right)_{\max }+\left(F_{D}\right)_{\max }
$$

Substituting: $\quad 245.25-P>2(0.4)\left[\frac{10}{7}\left(\frac{7}{4} P-245.25\right)\right]$
or $P<175.2 \mathrm{~N}$

Therefore, have downward motion for

PROBLEM 8.34

A collar B of weight W is attached to the spring $A B$ and can move along the rod shown. The constant of the spring is $1.5 \mathrm{kN} / \mathrm{m}$ and the spring is unstretched when $\theta=0$. Knowing that the coefficient of static friction between the collar and the rod is 0.40 , determine the range of values of W for which equilibrium is maintained when (a) $\theta=20^{\circ}$, (b) $\theta=30^{\circ}$.

SOLUTION

FBD collar:
Impending motion down:

Impending motion up:

Stretch of spring $x=\overline{A B}-a=\frac{a}{\cos \theta}-a$

$$
\begin{aligned}
& F_{s}=k x=k\left(\frac{a}{\cos \theta}-a\right)=(1.5 \mathrm{kN} / \mathrm{m})(0.5 \mathrm{~m})\left(\frac{1}{\cos \theta}-1\right) \\
&=(0.75 \mathrm{kN})\left(\frac{1}{\cos \theta}-1\right) \\
& \longrightarrow \Sigma F_{x}=0: \quad N-F_{s} \cos \theta=0 \\
& N=F_{s} \cos \theta=(0.75 \mathrm{kN})(1-\cos \theta)
\end{aligned}
$$

Impending slip:

$$
F=\mu_{s} N=(0.4)(0.75 \mathrm{kN})(1-\cos \theta)
$$

$$
=(0.3 \mathrm{kN})(1-\cos \theta)
$$

+ down, - up
$\uparrow \Sigma F_{y}=0: \quad F_{s} \sin \theta \pm F-W=0$

$$
(0.75 \mathrm{kN})(\tan \theta-\sin \theta) \pm(0.3 \mathrm{kN})(1-\cos \theta)-W=0
$$

or

$$
W=(0.3 \mathrm{kN})[2.5(\tan \theta-\sin \theta) \pm(1-\cos \theta)]
$$

(a) $\theta=20^{\circ}: \quad W_{\text {up }}=-0.00163 \mathrm{kN} \quad$ (impossible)

$$
W_{\text {down }}=0.03455 \mathrm{kN} \quad(\mathrm{OK})
$$

Equilibrium if $0 \leq W \leq 34.6 \mathrm{~N}$
(b) $\theta=30^{\circ}$:

$$
\begin{aligned}
W_{\text {up }} & =0.01782 \mathrm{kN} \quad(\mathrm{OK}) \\
W_{\text {down }} & =0.0982 \mathrm{kN} \quad(\mathrm{OK})
\end{aligned}
$$

Equilibrium if $17.82 \mathrm{~N} \leq W \leq 98.2 \mathrm{~N}$

PROBLEM 8.35

A collar B of weight W is attached to the spring $A B$ and can move along the rod shown. The constant of the spring is $1.5 \mathrm{kN} / \mathrm{m}$ and the spring is unstretched when $\theta=0$. Knowing that the coefficient of static friction between the collar and the rod is 0.40 , determine the range of values of W for which equilibrium is maintained when (a) $\theta=20^{\circ}$, (b) $\theta=30^{\circ}$.

SOLUTION

FBD collar:

Stretch of spring $x=\overline{A B}-a=\frac{a}{\cos \theta}-a$

$$
\begin{gathered}
F_{s}=k\left(\frac{a}{\cos \theta}-a\right)=(1.5 \mathrm{kN} / \mathrm{m})(0.5 \mathrm{~m})\left(\frac{1}{\cos \theta}-1\right) \\
=(0.75 \mathrm{kN})\left(\frac{1}{\cos \theta}-1\right)=(750 \mathrm{~N})(\sec \theta-1) \\
\Sigma F_{y}=0: \quad F_{s} \cos \theta-W+N=0 \\
W=N+(750 \mathrm{~N})(1-\cos \theta)
\end{gathered}
$$

or
Impending slip:

$$
\begin{aligned}
& F=\mu_{s}|N|(F \text { must be }+, \text { but } N \text { may be positive or negative }) \\
& \longrightarrow \Sigma F_{x}=0: \quad F_{s} \sin \theta-F=0
\end{aligned}
$$

or

$$
F=F_{s} \sin \theta=(750 \mathrm{~N})(\tan \theta-\sin \theta)
$$

(a) $\theta=20^{\circ}: \quad F=(750 \mathrm{~N})\left(\tan 20^{\circ}-\sin 20^{\circ}\right)=16.4626 \mathrm{~N}$

Impending motion: $\quad|N|=\frac{F}{\mu_{s}}=\frac{16.4626 \mathrm{~N}}{0.4}=41.156 \mathrm{~N}$
(Note: for $|N|<41.156 \mathrm{~N}$, motion will occur, equilibrium for $|N|>41.156)$

But $\quad W=N+(750 \mathrm{~N})\left(1-\cos 20^{\circ}\right)=N+45.231 \mathrm{~N}$
So equilibrium for $W \leq 4.07 \mathrm{~N}$ and $W \geq 86.4 \mathrm{~N}$
(b) $\theta=30^{\circ}: \quad F=(750 \mathrm{~N})\left(\tan 30^{\circ}-\sin 30^{\circ}\right)=58.013 \mathrm{~N}$

Impending motion: $\quad|N|=\frac{F}{\mu_{s}}=\frac{58.013}{0.4}=145.032 \mathrm{~N}$

$$
\begin{aligned}
W & =N+(750 \mathrm{~N})\left(1-\cos 30^{\circ}\right)=N \pm 145.03 \mathrm{~N} \\
& =-44.55 \mathrm{~N}(\text { impossible }), 245.51 \mathrm{~N}
\end{aligned}
$$

Equilibrium for $W \geq 246 \mathrm{~N}$

SOLUTION

FBD rod + collar:

Note: $d=\frac{a}{\sin \theta}=\frac{4 \mathrm{in} \text {. }}{\sin 30^{\circ}}=8$ in., so $A C=22 \mathrm{in}$.
Neglect weights of rod and collar.

$$
\begin{aligned}
& \qquad \begin{array}{rl}
\left(\Sigma M_{B}=0:\right. & (30 \mathrm{in} .)\left(\sin 30^{\circ}\right)(25 \mathrm{lb})-(8 \mathrm{in} .) C=0 \\
C & C=46.875 \mathrm{lb}
\end{array} \\
& \longrightarrow \Sigma F_{x}=0: \quad N-C \cos 30^{\circ}=0 \\
& \qquad N=(46.875 \mathrm{lb}) \cos 30^{\circ}=40.595 \mathrm{lb} \\
& \qquad F=\mu_{s} N=0.25(40.595 \mathrm{lb}) \\
& \text { Impending motion up: } \\
& \qquad \begin{aligned}
& =10.149 \mathrm{lb}
\end{aligned}
\end{aligned}
$$

$$
\uparrow \Sigma F_{y}=0:-25 \mathrm{lb}+(46.875 \mathrm{lb}) \sin 30^{\circ}-P-10.149 \mathrm{lb}=0
$$

or

$$
P=-1.563 \mathrm{lb}-10.149 \mathrm{lb}=-11.71 \mathrm{lb}
$$

Impending motion down: Direction of \mathbf{F} is now upward, but still have

$$
\begin{gathered}
|F|=\mu_{s} N=10.149 \mathrm{lb} \\
\uparrow \Sigma F_{y}=0:-25 \mathrm{lb}+(46.875 \mathrm{lb}) \sin 30^{\circ}-P+10.149 \mathrm{lb}=0 \\
P=-1.563 \mathrm{lb}+10.149 \mathrm{lb}=8.59 \mathrm{lb}
\end{gathered}
$$

or
$\therefore \quad$ Equilibrium for $-11.71 \mathrm{lb} \leq P \leq 8.59 \mathrm{lb}$

PROBLEM 8.37

The $4.5-\mathrm{kg}$ block A and the $3-\mathrm{kg}$ block B are connected by a slender rod of negligible mass. The coefficient of static friction is 0.40 between all surfaces of contact. Knowing that for the position shown the rod is horizontal, determine the range of values of P for which equilibrium is maintained.

SOLUTION

FBDs:
(a) Block A impending slip \downarrow

$$
\begin{aligned}
F_{A B} & =W_{A} \tan \left(45^{\circ}-\phi_{s}\right) \\
& =(4.5 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \tan \left(23.199^{\circ}\right) \\
& =18.9193 \mathrm{~N}
\end{aligned}
$$

Note: $\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.4=21.801^{\circ}$
(b) Block A impending slip \backslash

$$
F_{A B}=W_{A} \operatorname{ctn}\left(45^{\circ}-\phi_{s}\right)
$$

$$
=(4.5 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \operatorname{ctn}\left(23.199^{\circ}\right)
$$

$$
=103.005 \mathrm{~N}
$$

Block B:

$$
W_{B}=(3 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

$$
=29.43 \mathrm{~N}
$$

From Block B :

[^0]
PROBLEM 8.37 CONTINUED

Case (a) $\quad N=(29.43 \mathrm{~N}) \cos 30^{\circ}+(18.9193 \mathrm{~N}) \sin 30^{\circ}=34.947 \mathrm{~N}$
Impending motion: $\quad F=\mu_{s} N=0.4(34.947 \mathrm{~N})=13.979 \mathrm{~N}$

$$
\begin{aligned}
\nearrow \Sigma F_{x^{\prime}}=0: & F_{A B} \cos 30^{\circ}-W_{B} \sin 30^{\circ}-13.979 \mathrm{~N}-P=0 \\
P & =(18.9193 \mathrm{~N}) \cos 30^{\circ}-(29.43 \mathrm{~N}) \sin 30^{\circ}-13.979 \mathrm{~N} \\
& =-12.31 \mathrm{~N}
\end{aligned}
$$

Case (b)

$$
N=(29.43 \mathrm{~N}) \cos 30^{\circ}+(103.005 \mathrm{~N}) \sin 30^{\circ}=76.9896 \mathrm{~N}
$$

Impending motion:

$$
F=0.4(76.9896 \mathrm{~N})=30.7958 \mathrm{~N}
$$

$$
\begin{gathered}
\not \subset F_{x^{\prime}}=0: \quad(103.005 \mathrm{~N}) \cos 30^{\circ}-(29.43 \mathrm{~N}) \sin 30^{\circ}+30.7958 \mathrm{~N}-P=0 \\
\\
P=105.3 \mathrm{~N}
\end{gathered}
$$

PROBLEM 8.38

Bar AB is attached to collars which can slide on the inclined rods shown. A force \mathbf{P} is applied at point D located at a distance a from end A. Knowing that the coefficient of static friction μ_{s} between each collar and the rod upon which it slides is 0.30 and neglecting the weights of the bar and of the collars, determine the smallest value of the ratio a / L for which equilibrium is maintained.

SOLUTION

FBD bar + collars:
Impending motion

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.3=16.6992^{\circ}
$$

So

$$
\begin{aligned}
& A C=\frac{a}{\cos \left(45^{\circ}+\phi_{s}\right)}=l \sin \left(45^{\circ}-\phi_{s}\right) \\
& \frac{a}{l}=\sin \left(45^{\circ}-16.6992^{\circ}\right) \cos \left(45^{\circ}+16.6992^{\circ}\right) \\
& \qquad \frac{a}{l}=0.225
\end{aligned}
$$

PROBLEM 8.39

The $6-\mathrm{kg}$ slender $\operatorname{rod} A B$ is pinned at A and rests on the $18-\mathrm{kg}$ cylinder C. Knowing that the diameter of the cylinder is 250 mm and that the coefficient of static friction is 0.35 between all surfaces of contact, determine the largest magnitude of the force \mathbf{P} for which equilibrium is B maintained.

SOLUTION

FBD rod:

$\left(\Sigma M_{A}=0:(0.4 \mathrm{~m}) N_{1}-(0.25 \mathrm{~m}) W_{r}=0\right.$

$$
N_{1}=0.625 W_{r}=36.7875 \mathrm{~N}
$$

FBD cylinder:

Cylinder:

$$
\begin{aligned}
& \uparrow \Sigma F_{y}=0: \quad N_{2}-N_{1}-W_{C}=0 \quad \text { or } \quad N_{2}=0.625 W_{r}+3 W_{r}=3.625 W_{r}=5.8 N_{1} \\
& \left(\Sigma M_{D}=0: \quad(0.165 \mathrm{~m}) F_{1}-(0.085 \mathrm{~m}) F_{2}=0 \quad \text { or } \quad F_{2}=1.941 F_{1}\right.
\end{aligned}
$$

Since $\mu_{s 1}=\mu_{s 2}$, motion will impend first at top of the cylinder
So

$$
F_{1}=\mu_{s} N_{1}=0.35(36.7875 \mathrm{~N})=12.8756 \mathrm{~N}
$$

and

$$
F_{2}=1.941(12.8756 \mathrm{~N})=24.992 \mathrm{~N}
$$

[Check $F_{2}=25 \mathrm{~N}<\mu_{S} N_{2}=74.7 \mathrm{~N} \quad$ OK]
$\rightarrow \Sigma F_{x}=0: \quad P-F_{1}-F_{2}=0$
or

$$
P=12.8756 \mathrm{~N}+24.992 \mathrm{~N}
$$

PROBLEM 8.40

Two rods are connected by a collar at B. A couple \mathbf{M}_{A} of magnitude $12 \mathrm{lb} \cdot \mathrm{ft}$ is applied to $\operatorname{rod} A B$. Knowing that $\mu_{s}=0.30$ between the collar and $\operatorname{rod} A B$, determine the largest couple \mathbf{M}_{C} for which equilibrium will be maintained.

SOLUTION

FBD AB:

$$
\begin{aligned}
& \left(\Sigma M_{A}=0: \sqrt{8 \mathrm{in}^{2}+4 \mathrm{in}^{2}}(N)-M_{A}=0\right. \\
& N=\frac{(12 \mathrm{lb} \cdot \mathrm{ft})(12 \mathrm{in} . / \mathrm{ft})}{8.9443 \mathrm{in} .}=16.100 \mathrm{lb}
\end{aligned}
$$

Impending motion:

$$
F=\mu_{s} N=0.3(16.100 \mathrm{lb})=4.83 \mathrm{lb}
$$

(Note: For max, M_{C}, need F in direction shown; see FBD $B C$.)
FBD BC + collar:

$$
\left(\Sigma M_{C}=0: \quad M_{C}-(17 \mathrm{in} .) \frac{1}{\sqrt{5}} N-(8 \text { in. }) \frac{2}{\sqrt{5}} N-(13 \mathrm{in} .) \frac{2}{\sqrt{5}} F=0\right.
$$

or

$$
M_{C}=\frac{17 \mathrm{in} .}{\sqrt{5}}(16.100 \mathrm{lb})+\frac{16 \mathrm{in} .}{\sqrt{5}}(16.100 \mathrm{lb})+\frac{26 \mathrm{in} .}{\sqrt{5}}(4.830 \mathrm{lb})=293.77 \mathrm{lb} \cdot \mathrm{in} .
$$

$$
\left.\left(\mathbf{M}_{C}\right)_{\max }=24.5 \mathrm{lb} \cdot \mathrm{ft}\right)
$$

SOLUTION

FBD AB:

$$
\begin{aligned}
& \qquad\left(\Sigma M_{A}=0: \quad N\left(\sqrt{8 \mathrm{in}^{2}+4 \mathrm{in}^{2}}\right)-M_{A}=0\right. \\
& \qquad N=\frac{(12 \mathrm{lb} \cdot \mathrm{ft})(12 \mathrm{in} . / \mathrm{ft})}{8.9443 \mathrm{in} .}=16.100 \mathrm{lb} \\
& \text { Impending motion: } \quad F=\mu_{S} N=0.3(16.100 \mathrm{lb}) \\
& =4.830 \mathrm{lb}
\end{aligned}
$$

(Note: For min. M_{C}, need F in direction shown; see FBD $B C$.)
FBD BC + collar:

$$
\begin{aligned}
\left(\Sigma M_{C}=0:\right. & M_{C}-(17 \mathrm{in} .) \frac{1}{\sqrt{5}} N-(8 \mathrm{in} .) \frac{2}{\sqrt{5}} N+(13 \mathrm{in} .) \frac{2}{\sqrt{5}} F=0 \\
M_{C} & =\frac{1}{\sqrt{5}}[(17 \mathrm{in} .+16 \mathrm{in} .)(16.100 \mathrm{lb})-(26 \mathrm{in} .)(4.830 \mathrm{lb})] \\
& =181.44 \mathrm{lb} \cdot \mathrm{in} .
\end{aligned}
$$

$$
\left.\left(\mathbf{M}_{C}\right)_{\min }=15.12 \mathrm{lb} \cdot \mathrm{ft}\right)
$$

PROBLEM 8.42

Blocks A, B, and C having the masses shown are at rest on an incline. Denoting by μ_{s} the coefficient of static friction between all surfaces of contact, determine the smallest value of μ_{s} for which equilibrium is maintained.

SOLUTION

For impending motion, C will start down and A will start up. Since, the normal force between B and C is larger than that between A and B, the corresponding friction force can be larger as well. Thus we assume that motion impends between A and B.
FBD A:

$$
\Sigma \Sigma F_{y^{\prime}}=0: \quad N_{A B}-W_{A} \cos 30^{\circ}=0 ; \quad N_{A B}=\frac{\sqrt{3}}{2} W_{A}
$$

Impending motion

$$
F_{A B}=\mu_{s} N_{A B}=\frac{\sqrt{3}}{2} W_{A} \mu_{s}
$$

$$
\nearrow \Sigma F_{x^{\prime}}=0: \quad T-F_{A B}-W_{A} \sin 30^{\circ}=0
$$

or

$$
T=\left(\sqrt{3} \mu_{s}+1\right) \frac{W_{A}}{2}
$$

$$
\backslash \Sigma F_{y^{\prime}}=0: \quad N_{C D}-N_{A B}-\left(W_{B}+W_{C}\right) \cos 30^{\circ}=0
$$

FBD B + C:

$$
N_{C D}=\frac{\sqrt{3}}{2}\left(W_{A}+W_{B}+W_{C}\right)
$$

Impending motion:

$$
F_{C D}=\mu_{s} N_{C D}=\frac{\sqrt{3}}{2}\left(W_{A}+W_{B}+W_{C}\right) \mu_{s}
$$

$$
\nearrow \Sigma F_{x^{\prime}}=0: T+F_{A B}+F_{C D}-\left(W_{B}+W_{C}\right) \sin 30^{\circ}=0
$$

$$
T=\frac{W_{B}+W_{C}}{2}-\frac{\sqrt{3}}{2} \mu_{s}\left(2 W_{A}+W_{B}+W_{C}\right)
$$

Equating T 's: $\quad \sqrt{3} \mu_{s}\left(3 W_{A}+W_{B}+W_{C}\right)=W_{B}+W_{C}-W_{A}$

$$
\begin{array}{r}
\mu_{s}=\frac{m_{B}+m_{C}-m_{A}}{\left(3 m_{A}+m_{B}+m_{C}\right) \sqrt{3}}=\frac{1.5 \mathrm{~kg}+4 \mathrm{~kg}-2 \mathrm{~kg}}{(6 \mathrm{~kg}+1.5 \mathrm{~kg}+4 \mathrm{~kg}) \sqrt{3}} \\
\mu_{s}=0.1757
\end{array}
$$

PROBLEM 8.43

A slender steel rod of length 9 in . is placed inside a pipe as shown. Knowing that the coefficient of static friction between the rod and the pipe is 0.20 , determine the largest value of θ for which the rod will not fall into the pipe.

SOLUTION

FBD rod:

$$
\left(\Sigma M_{A}=0: \frac{3 \mathrm{in} .}{\cos \theta} N_{B}-[(4.5 \mathrm{in} .) \cos \theta] W=0\right.
$$

or

$$
N_{B}=\left(1.5 \cos ^{2} \theta\right) W
$$

Impending motion:

$$
\begin{aligned}
F_{B}=\mu_{s} N_{B} & =\left(1.5 \mu_{s} \cos ^{2} \theta\right) W \\
& =\left(0.3 \cos ^{2} \theta\right) W
\end{aligned}
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad N_{A}-N_{B} \sin \theta+F_{B} \cos \theta=0
$$

or

$$
N_{A}=\left(1.5 \cos ^{2} \theta\right) W(\sin \theta-0.2 \cos \theta)
$$

Impending motion: $\quad F_{A}=\mu_{S} N_{A}$

$$
=\left(0.3 \cos ^{2} \theta\right) W(\sin \theta-0.2 \cos \theta)
$$

$$
\uparrow \Sigma F_{y}=0: \quad F_{A}+N_{B} \cos \theta+F_{B} \sin \theta-W=0
$$

or

$$
F_{A}=W\left(1-1.5 \cos ^{3} \theta-0.3 \cos ^{2} \theta \sin \theta\right)
$$

Equating F_{A} 's

$$
\begin{gathered}
0.3 \cos ^{2} \theta(\sin \theta-0.2 \cos \theta)=1-1.5 \cos ^{3} \theta-0.3 \cos ^{2} \theta \sin \theta \\
0.6 \cos ^{2} \theta \sin \theta+1.44 \cos ^{3} \theta=1
\end{gathered}
$$

PROBLEM 8.44

In Problem 8.43, determine the smallest value of θ for which the rod will not fall out of the pipe.

SOLUTION

FBD rod:

$$
\left(\Sigma M_{A}=0: \frac{3 \text { in. }}{\cos \theta} N_{B}-[(4.5 \mathrm{in} .) \cos \theta] W=0\right.
$$

or

$$
N_{B}=1.5 W \cos ^{2} \theta
$$

Impending motion:

$$
F_{B}=\mu_{S} N_{B}=0.2\left(1.5 W \cos ^{2} \theta\right)
$$

$$
=0.3 W \cos ^{2} \theta
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad N_{A}-N_{B} \sin \theta-F_{B} \cos \theta=0
$$

or

$$
N_{A}=W \cos ^{2} \theta(1.5 \sin \theta+0.3 \cos \theta)
$$

Impending motion: $\quad F_{A}=\mu_{S} N_{A}$

$$
=W \cos ^{2} \theta(0.3 \sin \theta+0.06 \cos \theta)
$$

$$
\uparrow \Sigma F_{y}=0: \quad N_{B} \cos \theta-F_{B} \sin \theta-W-F_{A}=0
$$

or

$$
F_{A}=W\left[\cos ^{2} \theta(1.5 \cos \theta-0.3 \sin \theta)-1\right]
$$

Equating F_{A} 's:

$$
\cos ^{2} \theta(1.44 \cos \theta-0.6 \sin \theta)=1
$$

Solving numerically

$$
\theta=20.5^{\circ}
$$

PROBLEM 8.45

Two slender rods of negligible weight are pin-connected at C and attached to blocks A and B, each of weight W. Knowing that $\theta=70^{\circ}$ and that the coefficient of static friction between the blocks and the horizontal surface is 0.30 , determine the largest value of P for which equilibrium is maintained.

SOLUTION

FBD pin C:

FBD block A:

FBD block B:

$$
\uparrow \Sigma F_{y}=0: \quad N_{A}-W-F_{A B} \sin 30^{\circ}=0
$$

or

$$
N_{A}=W+0.173648 P \sin 30^{\circ}=W+0.086824 P
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad F_{A}-F_{A B} \cos 30^{\circ}=0
$$

or

$$
F_{A}=0.173648 P \cos 30^{\circ}=0.150384 P
$$

For impending motion at A :

$$
F_{A}=\mu_{S} N_{A}
$$

Then

$$
N_{A}=\frac{F_{A}}{\mu_{s}}: \quad W+0.086824 P=\frac{0.150384}{0.3} P
$$

or

$$
P=2.413 \mathrm{~W}
$$

$$
\begin{aligned}
\uparrow \Sigma F_{y}=0: & N_{B}-W-F_{B C} \cos 30^{\circ}=0 \\
& N_{B}=W+0.98481 P \cos 30^{\circ}=W+0.85287 P
\end{aligned}
$$

$\longrightarrow \Sigma F_{x}=0: \quad F_{B C} \sin 30^{\circ}-F_{B}=0$

$$
F_{B}=0.98481 P \sin 30^{\circ}=0.4924 P
$$

For impending motion at B :

$$
F_{B}=\mu_{s} N_{B}
$$

Then

$$
N_{B}=\frac{F_{B}}{\mu_{s}}: \quad W+0.85287 P=\frac{0.4924 P}{0.3}
$$

or

$$
P=1.268 \mathrm{~W}
$$

Thus, maximum P for equilibrium $P_{\max }=1.268 \mathrm{~W}$

PROBLEM 8.46

A 40-lb weight is hung from a lever which rests against a 10° wedge at A and is supported by a frictionless hinge at C. Knowing that the coefficient of static friction is 0.25 at both surfaces of the wedge and that for the position shown the spring is stretched 4 in ., determine (a) the magnitude of the force \mathbf{P} for which motion of the wedge is impending, (b) the components of the corresponding reaction at C.

SOLUTION

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.25=14.036^{\circ} \quad F_{s}=k x=(240 \mathrm{lb} / \mathrm{ft})\left(\frac{4 \mathrm{in} .}{12 \mathrm{in} . / \mathrm{ft}}\right)=80 \mathrm{lb}
$$

FBD lever:

$$
\begin{gathered}
\left(\Sigma M_{C}=0:(12 \mathrm{in} .)(80 \mathrm{lb})-(16 \mathrm{in} .)(40 \mathrm{lb})-(21 \mathrm{in} .) R_{A} \cos \left(\phi_{s}-10^{\circ}\right)\right. \\
+(2 \mathrm{in} .) R_{A} \sin \left(\phi_{s}-10^{\circ}\right)=0
\end{gathered}
$$

or $\quad R_{A}=15.3793 \mathrm{lb}$
(b) $\quad \longrightarrow \Sigma F_{x}=0:(15.379 \mathrm{lb}) \sin \left(4.036^{\circ}\right)-C_{x}=$
$\mathbf{C}_{x}=1.082 \mathrm{lb} \longleftarrow$
$\mathbf{C}_{y}=104.7 \mathrm{lb}$
$\uparrow \Sigma F_{y}=0:(15.379 \mathrm{lb}) \cos \left(4.036^{\circ}\right)-80 \mathrm{lb}-40 \mathrm{lb}+C_{y}=0$
FBD wedge:

$$
\uparrow \Sigma F_{y}=0: \quad R_{W} \cos 14.036^{\circ}-(15.3793 \mathrm{lb}) \cos 4.036^{\circ}=0
$$

or $\quad R_{W}=15.8133 \mathrm{lb}$
(a) $\quad \longrightarrow \Sigma F_{x}=0: \quad P-(15.3793 \mathrm{lb}) \sin 4.036^{\circ}-(15.8133 \mathrm{lb}) \sin 14.036^{\circ}=0$

$$
P=4.92 \mathrm{lb}
$$

PROBLEM 8.47

Solve Problem 8.46 assuming that force \mathbf{P} is directed to the left.

SOLUTION

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.25=14.036^{\circ} \quad F_{s}=k x=(240 \mathrm{lb} / \mathrm{ft})\left(\frac{4 \mathrm{in} .}{12 \mathrm{in} . / \mathrm{ft}}\right)=80 \mathrm{lb}
$$

FBD lever:

$$
\left(\Sigma M_{C}=0: \quad(12 \mathrm{in} .)(80 \mathrm{lb})-(16 \mathrm{in} .)(40 \mathrm{lb})-(21 \mathrm{in} .) R_{A} \cos 24.036^{\circ}\right.
$$

$$
-(2 \mathrm{in} .) R_{A} \sin 24.036^{\circ}=0
$$

or $\quad R_{A}=16.005 \mathrm{lb}$
(b) $\quad \longrightarrow \Sigma F_{x}=0: \quad C_{x}-(16.005 \mathrm{lb}) \sin 24.036^{\circ}=0$

$$
\uparrow \Sigma F_{y}=0: \quad C_{y}-80 \mathrm{lb}-40 \mathrm{lb}+(16.005 \mathrm{lb}) \cos \left(24.036^{\circ}\right)=0
$$

$$
\begin{gathered}
\mathbf{C}_{x}=6.52 \mathrm{lb} \longrightarrow \\
\mathbf{C}_{y}=105.4 \mathrm{lb}
\end{gathered}
$$

FBD wedge:

$$
\uparrow \Sigma F_{y}=0: \quad R_{W} \cos 14.036^{\circ}-(16.005 \mathrm{lb}) \cos 24.036^{\circ}=0
$$

$$
\text { or } \quad R_{W}=15.067 \mathrm{lb}
$$

(a) $\quad \longrightarrow \Sigma F_{x}=0:(16.005 \mathrm{lb}) \sin 24.036^{\circ}+(15.067 \mathrm{lb}) \sin 14.036^{\circ}-P=0$

$$
P=10.17 \mathrm{lb}
$$

PROBLEM 8.48

Two 8° wedges of negligible mass are used to move and position a $240-\mathrm{kg}$ block. Knowing that the coefficient of static friction is 0.40 at all surfaces of contact, determine the magnitude of the force \mathbf{P} for which motion of the block is impending.

SOLUTION

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.4=21.801^{\circ} \quad W=240 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=2354.4 \mathrm{~N}
$$

FBD block:

$$
\frac{R_{2}}{\sin 41.801^{\circ}}=\frac{2354.4 \mathrm{~N}}{\sin 46.398^{\circ}}
$$

$$
R_{2}=2167.12 \mathrm{~N}
$$

FBD wedge:

$P=1.957 \mathrm{kN}$

PROBLEM 8.49

Two 8° wedges of negligible mass are used to move and position a $240-\mathrm{kg}$ block. Knowing that the coefficient of static friction is 0.40 at all surfaces of contact, determine the magnitude of the force \mathbf{P} for which motion of the block is impending.

SOLUTION

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.4=21.801^{\circ} \quad W=240 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=2354.4 \mathrm{~N}
$$

FBD block + wedge:

FBD wedge:

$$
\begin{gathered}
\frac{P}{\sin 51.602^{\circ}}=\frac{2526.6 \mathrm{~N}}{\sin 68.199^{\circ}} \\
P=2132.7 \mathrm{~N}
\end{gathered}
$$

PROBLEM 8.50

The elevation of the end of the steel beam supported by a concrete floor is adjusted by means of the steel wedges E and F. The base plate $C D$ has been welded to the lower flange of the beam, and the end reaction of the beam is known to be 150 kN . The coefficient of static friction is 0.30 between the two steel surfaces and 0.60 between the steel and the concrete. If the horizontal motion of the beam is prevented by the force \mathbf{Q}, determine (a) the force \mathbf{P} required to raise the beam, (b) the corresponding force \mathbf{Q}.

SOLUTION

FBD AB + CD:

FBD top wedge:

FBD bottom wedge:

PROBLEM 8.51

The elevation of the end of the steel beam supported by a concrete floor is adjusted by means of the steel wedges E and F. The base plate $C D$ has been welded to the lower flange of the beam, and the end reaction of the beam is known to be 150 kN . The coefficient of static friction is 0.30 between the two steel surfaces and 0.60 between the steel and the concrete. If the horizontal motion of the beam is prevented by the force \mathbf{Q}, determine (a) the force \mathbf{P} required to raise the beam, (b) the corresponding force \mathbf{Q}.

SOLUTION

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.3=16.70^{\circ} \text { for steel on steel }
$$

FBD AB + CD + top wedge: Assume top wedge doesn't move

(b) $\mathbf{Q}=75.4 \mathrm{kN} \longrightarrow$ <

FBD top wedge:

$\longrightarrow \Sigma F_{x}=0: \quad 75.44 \mathrm{kN}-167.9 \mathrm{kN} \sin 26.70^{\circ}-F=0$

$$
F=0 \text { as expected. }
$$

PROBLEM 8.51 CONTINUED

FBD bottom wedge:

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.6=30.96^{\circ} \text { steel on concrete }
$$

Re

$$
\frac{P}{\sin 57.66^{\circ}}=\frac{167.90 \mathrm{kN}}{\sin 59.04^{\circ}}
$$

(a) $\mathbf{P}=165.4 \mathrm{kN} \longleftarrow 4$

SOLUTION

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.25=14.036^{\circ}
$$

FBD block A:

$$
\frac{R_{2}}{\sin 104.036^{\circ}}=\frac{750 \mathrm{lb}}{\sin 16.928^{\circ}}
$$

$$
R_{2}=2499.0 \mathrm{lb}
$$

FBD wedge B :

$$
\mathbf{P}=2.46 \mathrm{kips} \longleftarrow 4
$$

PROBLEM 8.53

Block A supports a pipe column and rests as shown on wedge B. Knowing that the coefficient of static friction at all surfaces of contact is 0.25 and that $\theta=45^{\circ}$, determine the smallest force \mathbf{P} for which equilibrium is maintained.

SOLUTION

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.25=14.036^{\circ}
$$

FBD block A:

$$
\frac{R_{2}}{\sin \left(75.964^{\circ}\right)}=\frac{750 \mathrm{lb}}{\sin \left(73.072^{\circ}\right)}
$$

$$
R_{2}=760.56 \mathrm{lb}
$$

FBD wedge B:

$$
\begin{aligned}
\frac{P}{\sin 16.928^{\circ}} & =\frac{760.56}{\sin 104.036^{\circ}} \\
P & =228.3 \mathrm{lb}
\end{aligned}
$$

PROBLEM 8.54

A 16° wedge A of negligible mass is placed between two $80-\mathrm{kg}$ blocks B and C which are at rest on inclined surfaces as shown. The coefficient of static friction is 0.40 between both the wedge and the blocks and block C and the incline. Determine the magnitude of the force \mathbf{P} for which motion of the wedge is impending when the coefficient of static friction between block B and the incline is (a) 0.40 , (b) 0.60 .

SOLUTION

(a)

$$
\begin{gathered}
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.4=21.8014^{\circ} ; \\
W=80 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=784.8 \mathrm{~N}
\end{gathered}
$$

FBD wedge:

By symmetry:

$$
\mathbf{R}_{1}=\mathbf{R}_{2}
$$

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: \quad 2 R_{2} \sin \left(8^{\circ}+21.8014^{\circ}\right)-P=0 \\
P=0.99400 R_{2}
\end{gathered}
$$

FBD block C:

$$
\begin{aligned}
\frac{R_{2}}{\sin 41.8014^{\circ}} & =\frac{W}{\sin 18.397^{\circ}} \\
R_{2} & =2.112 \mathrm{~W}
\end{aligned}
$$

PROBLEM 8.54 CONTINUED

$$
\begin{aligned}
P & =0.994 R_{2}=(0.994)(2.112 W) \\
P & =2.099(784.8 \mathrm{~N})=1647.5 \mathrm{~N}
\end{aligned}
$$

(a) $P=1.648 \mathrm{kN}$ 4
(b) Note that increasing the friction between block B and the incline has no effect on the above calculations. The physical effect is that slip of B will not impend.
(b) $P=1.648 \mathrm{kN}$ 4

PROBLEM 8.55

A 16° wedge A of negligible mass is placed between two $80-\mathrm{kg}$ blocks B and C which are at rest on inclined surfaces as shown. The coefficient of static friction is 0.40 between both the wedge and the blocks and block C and the incline. Determine the magnitude of the force \mathbf{P} for which motion of the wedge is impending when the coefficient of static friction between block B and the incline is $(a) 0.40,(b) 0.60$.

SOLUTION

(a) $\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.4=21.801^{\circ}$
$W=80 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=784.8 \mathrm{~N}$

FBD wedge:

FBD block C:

Note that, since $\left(R_{C I}\right)_{y}>\left(R_{C}\right)_{y}$, while the horizontal components are equal,

$$
\begin{aligned}
20^{\circ}+\phi<32.199^{\circ} \\
\phi<12.199^{\circ}<\phi_{s}
\end{aligned}
$$

Therefore, motion of C is not impending; thus, motion of B up the incline is impending.

$$
\begin{gathered}
R_{B} \\
52.198^{\circ} \backslash p \\
\frac{R_{B}}{\sin 52.198^{\circ}}=\frac{P}{\sin 59.603^{\circ}} \\
P=1.0916 R_{B}
\end{gathered}
$$

PROBLEM 8.55 CONTINUED

FBD block B:

(a) Have $\phi_{s B}=\phi_{s}=21.801^{\circ}$

Then

$$
R_{B}=\frac{(784.8 \mathrm{~N}) \sin \left(20^{\circ}+21.801^{\circ}\right)}{\sin \left(68.199^{\circ}-21.801^{\circ}\right)}=722.37 \mathrm{~N}
$$

and

$$
P=1.0916(722.37 \mathrm{~N})
$$

or $P=789 \mathrm{~N}$
(b) Have $\phi_{s B}=\tan ^{-1} \mu_{s B}=\tan ^{-1} 0.6=30.964^{\circ}$

Then

$$
R_{B}=\frac{(784.8 \mathrm{~N}) \sin \left(20^{\circ}+30.964^{\circ}\right)}{\sin \left(68.199^{\circ}-30.964^{\circ}\right)}=1007.45 \mathrm{~N}
$$

and $P=1.0916(1007.45 \mathrm{~N})$ or $P=1100 \mathrm{~N}<$

PROBLEM 8.56

A 10° wedge is to be forced under end B of the $12-\mathrm{lb} \operatorname{rod} A B$. Knowing that the coefficient of static friction is 0.45 between the wedge and the rod and 0.25 between the wedge and the floor, determine the smallest force \mathbf{P} required to raise end B of the rod.

SOLUTION

FBD AB:

$$
\phi_{s 1}=\tan ^{-1}\left(\mu_{s}\right)_{1}=\tan ^{-1} 0.45=24.228^{\circ}
$$

$$
\left(\Sigma M_{A}=0: \quad r R_{1} \cos \left(10^{\circ}+24.228^{\circ}\right)-r R_{1} \sin \left(10^{\circ}+24.228^{\circ}\right)-\frac{2 r}{\pi}(12 \mathrm{lb})=0\right.
$$

$$
R_{1}=28.902 \mathrm{lb}
$$

FBD wedge:

$$
\begin{array}{r}
\phi_{s 2}=\tan ^{-1}\left(\mu_{s}\right)_{2}=\tan ^{-1} 0.25=14.036^{\circ} \\
\frac{P}{\sin \left(38.264^{\circ}\right)}=\frac{28.902 \mathrm{lb}}{\sin 75.964^{\circ}}
\end{array}
$$

$$
\mathbf{P}=22.2 \mathrm{lb} \longleftarrow
$$

SOLUTION

FBD wedge:

By symmetry: $\quad R_{1}=R_{2}$

$$
\uparrow \Sigma F_{y}=0: \quad 2 R_{1} \sin \left(8^{\circ}+\phi_{s}\right)-P=0
$$

Have

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.12=6.843^{\circ} \quad P=0.8 \mathrm{lb}
$$

$$
R_{1}=R_{2}=1.5615 \mathrm{lb}
$$

When \mathbf{P} is removed, the vertical components of R_{1} and R_{2} vanish, leaving the horizontal components, $R_{1} \cos \left(14.843^{\circ}\right)$, only

Therefore, side forces are 1.509 lb
But these will occur only instantaneously as the angle between the force and the wedge normal is $8^{\circ}>\phi_{s}=6.84^{\circ}$, so the screwdriver will slip out.

SOLUTION

As the plates are moved, the angle θ will decrease.
(a) $\quad \phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.2=11.31^{\circ}$. As θ decreases, the minimum angle at the contact approaches $12.5^{\circ}>\phi_{s}=11.31^{\circ}$, so the wedge will slide up and out from the slot.
(b) $\quad \phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.3=16.70^{\circ}$. As θ decreases, the angle at one contact reaches 16.7°. (At this time the angle at the other contact is $25^{\circ}-16.7^{\circ}=8.3^{\circ}<\phi_{s}$) The wedge binds in the slot.

PROBLEM 8.59

A 6° steel wedge is driven into the end of an ax handle to lock the handle to the ax head. The coefficient of static friction between the wedge and the handle is 0.35 . Knowing that a force \mathbf{P} of magnitude 250 N was required to insert the wedge to the equilibrium position shown, determine the magnitude of the forces exerted on the handle by the wedge after force \mathbf{P} is removed.

SOLUTION

FBD wedge:

$$
\begin{gathered}
R_{1}=R_{2} \\
\qquad \begin{array}{c}
\text { By symmetry } \\
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.35=19.29^{\circ} \\
\uparrow \Sigma F_{y}=0: \\
2 R \sin \left(19.29^{\circ}+3^{\circ}\right)-P=0 \\
R_{1}=R_{2}=329.56 \mathrm{~N}
\end{array}
\end{gathered}
$$

When force \mathbf{P} is removed, the vertical components of R_{1} and R_{2} vanish, leaving only the horizontal components $H_{1}=H_{2}=R \cos \left(22.29^{\circ}\right)$

$$
H_{1}=H_{2}=305 \mathrm{~N}
$$

Since the wedge angle $3^{\circ}<\phi_{s}=19.3^{\circ}$, the wedge is "self-locking" and will remain seated.

SOLUTION

FBD pipe:

FBD wedge:
(a) $\left(\Sigma M_{C}=0: \quad r F_{A}-r F_{B}=0\right.$
or

$$
F_{A}=F_{B}
$$

But it is apparent that $N_{B}>N_{A}$, so since $\left(\mu_{s}\right)_{A}=\left(\mu_{s}\right)_{B}$,
motion must first impend at A
and

$$
F_{B}=F_{A}=\mu_{s} N_{A}=0.2 N_{A}
$$

(b)

$$
\oint \Sigma M_{B}=0
$$

$$
\left(r \sin 15^{\circ}\right) W+r\left(1+\sin 15^{\circ}\right) F_{A}-\left(r \cos 15^{\circ}\right) N_{A}=0
$$

$$
0.2588(100 \mathrm{lb})+1.2588\left(0.2 N_{A}\right)-0.9659 N_{A}=0
$$

$$
\text { or } \quad N_{A}=36.24 \mathrm{lb}
$$

and

$$
F_{A}=7.25 \mathrm{lb}
$$

$$
\backslash \Sigma F_{y^{\prime}}=0: \quad N_{B}-N_{A} \sin 15^{\circ}-F_{A} \cos 15^{\circ}-W \cos 15^{\circ}=0
$$

$$
N_{B}=(36.24 \mathrm{lb}) \sin 15^{\circ}+(7.25 \mathrm{lb}+100 \mathrm{lb}) \cos 15^{\circ}
$$

$$
=112.97 \mathrm{lb}
$$

$\left(\right.$ note $N_{B}>N_{A}$ as stated, and $\left.F_{B}<\mu_{S} N_{B}\right)$
$\uparrow \Sigma F_{y}=0: \quad N_{W}+(7.25 \mathrm{lb}) \sin 15^{\circ}-(112.97 \mathrm{lb}) \cos 15^{\circ}=0$

$$
N_{W}=107.24 \mathrm{lb}
$$

Impending slip:

$$
F_{W}=\mu_{s} N_{W}=0.2(107.24)=21.45 \mathrm{lb}
$$

$\longrightarrow \Sigma F_{x}=0: \quad 21.45 \mathrm{lb}+(7.25 \mathrm{lb}) \cos 15^{\circ}+(112.97 \mathrm{lb}) \sin 15^{\circ}-P=0$

$$
\mathbf{P}=57.7 \mathrm{lb}
$$

SOLUTION

FBD pipe:

$$
\zeta \Sigma M_{C}=0: \quad r F_{A}-r F_{B}=0
$$

or

$$
F_{A}=F_{B}
$$

It is apparent that $N_{B}>N_{A}$, so if $\left(\mu_{s}\right)_{A}=\left(\mu_{s}\right)_{B}$, motion must impend first at A. As $\left(\mu_{s}\right)_{A}$ is increased to some $\left(\mu_{s}^{*}\right)_{A}$, motion will impend simultaneously at A and B.

Then

$$
F_{A}=F_{B}=\mu_{s B} N_{B}=0.2 N_{B}
$$

$$
\uparrow \Sigma F_{y}=0: \quad N_{B} \cos 15^{\circ}-F_{B} \sin 15^{\circ}-F_{A}-100 \mathrm{lb}=0
$$

$$
N_{B} \cos 15^{\circ}-0.2 N_{B} \sin 15^{\circ}-0.2 N_{B}=100 \mathrm{lb}
$$

or

$$
N_{B}=140.024 \mathrm{lb}
$$

So

$$
F_{A}=F_{B}=0.2 N_{B}=28.005 \mathrm{lb}
$$

$$
\longrightarrow \Sigma F_{x}=0
$$

$$
N_{A}-N_{B} \sin 15^{\circ}-F_{B} \cos 15^{\circ}=0
$$

$$
N_{A}=140.024 \sin 15^{\circ}+28.005 \cos 15^{\circ}=63.29 \mathrm{lb}
$$

Then

$$
\left(\mu_{s}^{*}\right)_{A}=\frac{F_{A}}{N_{A}}=\frac{28.005 \mathrm{lb}}{63.29 \mathrm{lb}}
$$

or

$$
\left(\mu_{s}^{*}\right)_{A}=0.442
$$

PROBLEM 8.62

Bags of grass seed are stored on a wooden plank as shown. To move the plank, a 9° wedge is driven under end A. Knowing that the weight of the grass seed can be represented by the distributed load shown and that the coefficient of static friction is 0.45 between all surfaces of contact, (a) determine the force \mathbf{P} for which motion of the wedge is impending, (b) indicate whether the plank will slide on the floor.

SOLUTION

FBD plank + wedge:

(a) $\left(\Sigma M_{A}=0:(2.4 \mathrm{~m}) N_{B}-(0.45 \mathrm{~m})(0.64 \mathrm{kN} / \mathrm{m})(0.9 \mathrm{~m})\right.$

$$
\begin{aligned}
& -(0.6 \mathrm{~m}) \frac{1}{2}(0.64 \mathrm{kN} / \mathrm{m})(0.9 \mathrm{~m}) \\
& -(1.4 \mathrm{~m}) \frac{1}{2}(1.28 \mathrm{kN} / \mathrm{m})(1.5 \mathrm{~m})=0
\end{aligned}
$$

$$
N_{B}=0.740 \mathrm{kN}=740 \mathrm{~N}
$$

$$
\uparrow \Sigma F_{y}=0: \quad N_{W}-(0.64 \mathrm{kN} / \mathrm{m})(0.9 \mathrm{~m})-\frac{1}{2}(0.64 \mathrm{kN} / \mathrm{m})(0.9 \mathrm{~m})
$$

$$
-\frac{1}{2}(1.28 \mathrm{kN} / \mathrm{m})(1.5 \mathrm{~m})=0
$$

or

$$
N_{W}=1.084 \mathrm{kN}=1084 \mathrm{~N}
$$

Assume impending motion of the wedge on the floor and the plank on the floor at B.

So

$$
F_{W}=\mu_{s} N_{W}=0.45(1084 \mathrm{~N})=478.8 \mathrm{~N}
$$

and $\quad F_{B}=\mu_{s} N_{B}=0.45(740 \mathrm{~N})=333 \mathrm{~N}$
$\longrightarrow \Sigma F_{x}=0: \quad P-F_{W}-F_{B}=0$
or

$$
P=478.8 \mathrm{~N}+333 \mathrm{~N} \quad P=821 \mathrm{~N}
$$

(b) $\uparrow \Sigma F_{y}=0:(1084 \mathrm{~N}) \cos 9^{\circ}+(821 \mathrm{~N}-479 \mathrm{~N}) \sin 9^{\circ}-N_{A}=0$

Check wedge:

or

$$
N_{A}=1124 \mathrm{~N}
$$

$(821 \mathrm{~N}-479 \mathrm{~N}) \cos 9^{\circ}-(1084 \mathrm{~N}) \sin 9^{\circ}-F_{A}=0$
or
$F_{A}=168 \mathrm{~N}$
$F_{A}<\mu_{S} N_{A}=0.45(1124 \mathrm{~N})=506 \mathrm{~N}$
So, no impending motion at wedge/plank \therefore Impending motion of plank on floor at B

PROBLEM 8.63

Solve Problem 8.62 assuming that the wedge is driven under the plank at B instead of at A.

SOLUTION

FBD plank:

$\longrightarrow \Sigma F_{x}=0: \quad F_{A}-B_{x}=0$

$$
F_{A}=B_{x}
$$

(a) $\left(\Sigma M_{A}=0:(2.4 \mathrm{~m}) B_{y}-(0.45 \mathrm{~m})(0.64 \mathrm{kN} / \mathrm{m})(0.9 \mathrm{~m})\right.$

$$
-(0.6 \mathrm{~m}) \frac{1}{2}(0.64 \mathrm{kN} / \mathrm{m})(0.9 \mathrm{~m})
$$

$$
-(1.4 \mathrm{~m}) \frac{1}{2}(1.28 \mathrm{kN} / \mathrm{m})(1.5 \mathrm{~m})=0
$$

$$
B_{y}=0.740 \mathrm{kN}=740 \mathrm{~N}
$$

$\uparrow \Sigma F_{y}=0: \quad N_{A}-(0.64 \mathrm{kN} / \mathrm{m})(0.9 \mathrm{~m})-\frac{1}{2}(0.64 \mathrm{kN} / \mathrm{m})(0.9 \mathrm{~m})$

$$
-\frac{1}{2}(1.28 \mathrm{kN} / \mathrm{m})(1.5 \mathrm{~m})=0
$$

or

$$
N_{A}=1.084 \mathrm{kN}=1084 \mathrm{~N}
$$

Since $B_{y}<N_{A}$, assume impending motion of the wedge under the plank at B.

FBD wedge:

$\left(R_{B}\right)_{y}=B_{y}=740 \mathrm{~N}$ and $B_{x}=\mu_{s} B_{y}=0.45(740 \mathrm{~N})=333 \mathrm{~N}$

$$
\begin{gathered}
\left(R_{B}\right)_{x}=\left(R_{B}\right)_{y} \tan \left(9^{\circ}+\phi_{s}\right) \\
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.45=24.228^{\circ}
\end{gathered}
$$

So
$\longrightarrow \Sigma F_{x}=0: \quad 485 \mathrm{~N}-333 \mathrm{~N}-P=0$

$$
\mathbf{P}=818 \mathrm{~N} \longleftarrow<
$$

(b) Check:

$$
F_{A}=B_{x}=333 \mathrm{~N} \quad \text { and } \quad \frac{F_{A}}{N_{A}}=\frac{333}{1084}=0.307<\mu_{s} \quad \mathrm{OK}
$$

SOLUTION

FBD's:

Impending motion at all surfaces

$$
\begin{aligned}
F_{A B} & =\mu_{s} N_{A B} \\
F_{B} & =\mu_{s} N_{B}
\end{aligned}
$$

$A+B: \quad \uparrow \Sigma F_{y}=0: \quad N_{B}-30 \mathrm{lb}-20 \mathrm{lb}-100 \mathrm{lb}=0$
or $\quad N_{B}=150 \mathrm{lb}$
and $\quad F_{B}=\mu_{s} N_{B}=(150 \mathrm{lb}) \mu_{s}$
$\longrightarrow \Sigma F_{x}=0: \quad N_{A}-F_{B}=0 \quad$ so that $\quad N_{A}=(150 \mathrm{lb}) \mu_{s}$
A:

$$
\begin{array}{ll}
\Sigma F_{x^{\prime}}=0: & N_{A} \cos 20^{\circ}+(30 \mathrm{lb}+20 \mathrm{lb}) \sin 20^{\circ}-N_{A B}=0 \\
\text { or } & N_{A B}=17.1010 \mathrm{lb}+\mu_{s}(140.954 \mathrm{lb}) \\
\\
\Sigma F_{y^{\prime}}=0: & F_{A B}+N_{A} \sin 20^{\circ}-(30 \mathrm{lb}+20 \mathrm{lb}) \cos 20^{\circ}=0 \\
\text { or } & F_{A B}=46.985 \mathrm{lb}-\mu_{s}(51.303 \mathrm{lb})
\end{array}
$$

But

$$
\begin{gathered}
F_{A B}=\mu_{s} N_{A B}: 46.985-51.303 \mu_{\mathrm{s}}=17.101 \mu_{s}+140.954 \mu_{s}^{2} \\
\mu_{s}^{2}+0.4853 \mu_{s}-0.3333=0 \\
\mu_{s}=-0.2427 \pm 0.6263
\end{gathered}
$$

PROBLEM 8.65

Solve Problem 8.64 assuming that μ_{s} is the coefficient of static friction between all surfaces of contact.

SOLUTION

FBD's:

$$
A+B:
$$

B :

Impending motion at all surfaces, so

$$
\begin{aligned}
& F_{A}=\mu_{s} N_{A} \\
& F_{B}=\mu_{s} N_{B} \\
& F_{A B}=\mu_{s} N_{A B}
\end{aligned}
$$

$A+B: \quad \longrightarrow \Sigma F_{x}=0: \quad N_{A}-F_{B}=0$ or $N_{A}=F_{B}=\mu_{s} N_{B}$
$\uparrow \Sigma F_{y}=0: \quad F_{A}-30 \mathrm{lb}-20 \mathrm{lb}-100 \mathrm{lb}+N_{B}=0$ or $\quad \mu_{S} N_{A}+N_{B}=150 \mathrm{lb}$

So

$$
N_{B}=\frac{150 \mathrm{lb}}{1+\mu_{s}^{2}} \quad \text { and } \quad F_{B}=\frac{\mu_{s}}{1+\mu_{s}^{2}}(150 \mathrm{lb})
$$

B :

$$
\Sigma F_{x^{\prime}}=0: \quad N_{A B}+\left(100 \mathrm{lb}-N_{B}\right) \sin 20^{\circ}-F_{B} \cos 20^{\circ}=0
$$

or

$$
N_{A B}=N_{B} \sin 20^{\circ}+F_{B} \cos 20^{\circ}-(100 \mathrm{lb}) \sin 20^{\circ}
$$

$$
\nearrow F_{y^{\prime}}=0: \quad-F_{A B}+\left(N_{B}-100 \mathrm{lb}\right) \cos 20^{\circ}-F_{B} \sin 20^{\circ}=0
$$

or

$$
F_{A B}=N_{B} \cos 20^{\circ}-F_{B} \sin 20^{\circ}-(100 \mathrm{lb}) \cos 20^{\circ}
$$

PROBLEM 8.65 CONTINUED

Now $\quad F_{A B}=\mu_{s} N_{A B}: \frac{150 \mathrm{lb}}{1+\mu_{s}^{2}} \cos 20^{\circ}-\frac{\mu_{s}}{1+\mu_{s}^{2}}(150 \mathrm{lb}) \sin 20^{\circ}-(100 \mathrm{lb}) \cos 20^{\circ}$

$$
=\frac{\mu_{s}}{1+\mu_{s}^{2}}(150 \mathrm{lb}) \sin 20^{\circ}+\frac{\mu_{s}^{2}}{1+\mu_{s}^{2}}(150 \mathrm{lb}) \cos 20^{\circ}-\mu_{s}(100 \mathrm{lb}) \sin 20^{\circ}
$$

$$
2 \mu_{s}^{3}-5 \mu_{s}^{2} \operatorname{ctn} 20^{\circ}-4 \mu_{s}+\operatorname{ctn} 20^{\circ}=0
$$

Solving numerically:

$$
\mu_{s}=0.330
$$

PROBLEM 8.66

Derive the following formulas relating the load \mathbf{W} and the force \mathbf{P} exerted on the handle of the jack discussed in Section 8.6. (a) $P=(W r / a) \tan \left(\theta+\phi_{s}\right)$, to raise the load; (b) $P=(W r / a) \tan \left(\phi_{s}-\theta\right)$, to lower the load if the screw is selflocking; (c) $P=(W r / a) \tan \left(\theta-\phi_{s}\right)$, to hold the load if the screw is not self-locking.

SOLUTION

FBD jack handle:

See Section 8.6

$$
\left(\Sigma M_{C}=0: \quad a P-r Q=0 \text { or } P=\frac{r}{a} Q\right.
$$

FBD block on incline:
(a) Raising load

$$
Q=W \tan \left(\theta+\phi_{s}\right)
$$

$$
P=\frac{r}{a} W \tan \left(\theta+\phi_{s}\right)
$$

PROBLEM 8.66 CONTINUED

(b) Lowering load if screw is self-locking (i.e.: if $\phi_{s}>\theta$)

$$
Q=W \tan \left(\phi_{s}-\theta\right)
$$

$$
P=\frac{r}{a} W \tan \left(\phi_{s}-\theta\right)
$$

(c) Holding load is screw is not self-locking (i.e. if $\phi_{s}<\theta$)

$Q=W \tan \left(\theta-\phi_{s}\right)$

$$
P=\frac{r}{a} W \tan \left(\theta-\phi_{s}\right)
$$

PROBLEM 8.67

The square-threaded worm gear shown has a mean radius of 30 mm and a lead of 7.5 mm . The larger gear is subjected to a constant clockwise couple of $720 \mathrm{~N} \cdot \mathrm{~m}$. Knowing that the coefficient of static friction between the two gears is 0.12 , determine the couple that must be applied to shaft $A B$ in order to rotate the large gear counterclockwise. Neglect friction in the bearings at A, B, and C.

SOLUTION

FBD large gear:

Block on incline:

$$
\theta=\tan ^{-1} \frac{7.5 \mathrm{~mm}}{2 \pi(30 \mathrm{~mm})}=2.2785^{\circ}
$$

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.12=6.8428^{\circ}
$$

$$
\begin{aligned}
Q & =(3000 \mathrm{~N}) \tan 9.1213^{\circ} \\
& =481.7 \mathrm{~N}
\end{aligned}
$$

PROBLEM 8.67 CONTINUED

Worm gear:

$$
\begin{aligned}
& r=30 \mathrm{~mm} \\
& =0.030 \mathrm{~m} \\
& \left(\Sigma M_{B}=0: r Q-M=0\right. \\
& M=r Q=(0.030 \mathrm{~m})(481.7 \mathrm{~N})
\end{aligned}
$$

PROBLEM 8.68

In Problem 8.67, determine the couple that must be applied to shaft $A B$ in order to rotate the gear clockwise.

SOLUTION

FBD large gear:

Block on incline:

$$
\begin{gathered}
\theta=\tan ^{-1} \frac{7.5 \mathrm{~mm}}{2 \pi(30 \mathrm{~mm})}=2.2785^{\circ} \\
\phi_{s}=\tan ^{-1} \mu=\tan ^{-1} 0.12 \\
\phi_{s}=6.8428^{\circ} \\
\phi_{s}-\theta=4.5643^{\circ}
\end{gathered}
$$

PROBLEM 8.68 CONTINUED

$$
\begin{aligned}
& 3000 \mathrm{~N} \\
& Q=(3000 \mathrm{~N}) \tan 4.5643^{\circ} \\
& =239.5 \mathrm{~N}
\end{aligned}
$$

Worm gear:

$$
\begin{gathered}
r=30 \mathrm{~mm} \\
C \Sigma M_{B}=0: \quad M-r Q=0
\end{gathered}
$$

$$
M=r Q=(0.030 \mathrm{~m})(239.5 \mathrm{~N})=7.18 \mathrm{~N} \cdot \mathrm{~m}
$$

SOLUTION

FBD block on incline:

$$
\theta=\tan ^{-1} \frac{3 \mathrm{~mm}}{(22.6 \mathrm{~mm}) \pi}=2.4195^{\circ}
$$

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.40
$$

$$
\phi_{s}=21.8014^{\circ}
$$

$$
Q=(210 \mathrm{kN}) \tan \left(21.8014^{\circ}+2.4195^{\circ}\right)
$$

$$
Q=94.47 \mathrm{kN}
$$

Torque $=\frac{d}{2} Q=\frac{22.6 \mathrm{~mm}}{2}(94.47 \mathrm{kN})$ $=1067.5 \mathrm{~N} \cdot \mathrm{~m}$

PROBLEM 8.70

The ends of two fixed rods A and B are each made in the form of a singlethreaded screw of mean radius 0.3 in . and pitch 0.1 in . Rod A has a righthanded thread and rod B a left-handed thread. The coefficient of static friction between the rods and the threaded sleeve is 0.12 . Determine the magnitude of the couple that must be applied to the sleeve in order to draw the rods closer together.

SOLUTION

Block on incline:

$\theta=\tan ^{-1} \frac{0.1 \mathrm{in} .}{2 \pi(0.3 \mathrm{in} .)}=3.0368^{\circ}$
$\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.12=6.8428^{\circ}$

$$
Q=(500 \mathrm{lb}) \tan 9.8796^{\circ}=87.08 \mathrm{lb}
$$

Couple on each side

$$
M=r Q=(0.3 \mathrm{in} .)(87.08 \mathrm{lb})=26.12 \mathrm{lb} \cdot \mathrm{in} .
$$

PROBLEM 8.71

Assuming that in Problem 8.70 a right-handed thread is used on both rods A and B, determine the magnitude of the couple that must be applied to the sleeve in order to rotate it.

SOLUTION

Block on incline A :

$\theta=\tan ^{-1} \frac{0.1 \mathrm{in} .}{2 \pi(0.3 \mathrm{in} .)}=3.0368^{\circ}$

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.12=6.8428^{\circ}
$$

$$
\overbrace{\sim}^{R_{A}} \overbrace{\sim}^{Q} 500 \mathrm{lb}
$$

$$
\begin{aligned}
Q & =(500 \mathrm{lb}) \tan 9.8796^{\circ} \\
& =87.08 \mathrm{lb}
\end{aligned}
$$

$$
\text { Couple at } \begin{aligned}
A & =(0.3 \mathrm{in} .)(87.08 \mathrm{lb}) \\
& =26.124 \mathrm{lb} \cdot \mathrm{in} .
\end{aligned}
$$

Block on incline B :

$$
\begin{aligned}
Q & =(500 \mathrm{lb}) \tan 3.806^{\circ} \\
& =33.26 \mathrm{lb}
\end{aligned}
$$

$$
\text { Couple at } \begin{aligned}
B & =(0.3 \mathrm{in} .)(33.26 \mathrm{lb}) \\
& =9.979 \mathrm{lb} \cdot \mathrm{in} .
\end{aligned}
$$

Total couple $=26.124 \mathrm{lb} \cdot \mathrm{in} .+9.979 \mathrm{lb} \cdot \mathrm{in}$.

PROBLEM 8.72

The position of the automobile jack shown is controlled by a screw $A B C$ that is single-threaded at each end (right-handed thread at A, left-handed thread at C). Each thread has a pitch of 2 mm and a mean diameter of 7.5 mm . If the coefficient of static friction is 0.15 , determine the magnitude of the couple \mathbf{M} that must be applied to raise the automobile.

SOLUTION

FBD joint D :

By symmetry:

$$
F_{A D}=F_{C D}
$$

$$
\uparrow \Sigma F_{y}=0: \quad 2 F_{A D} \sin 25^{\circ}-4 \mathrm{kN}=0
$$

$$
F_{A D}=F_{C D}=4.7324 \mathrm{kN}
$$

FBD joint \boldsymbol{A} :

By symmetry:
$F_{A E}=F_{A D}$
$\longrightarrow \Sigma F_{x}=0: \quad F_{A C}-2(4.7324 \mathrm{kN}) \cos 25^{\circ}=0$

$$
F_{A C}=8.5780 \mathrm{kN}
$$

Block and incline A :

$$
\begin{gathered}
\theta=\tan ^{-1} \frac{2 \mathrm{~mm}}{\pi(7.5 \mathrm{~mm})}=4.8518^{\circ} \\
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.15=8.5308^{\circ}
\end{gathered}
$$

PROBLEM 8.73

For the jack of Problem 8.72, determine the magnitude of the couple \mathbf{M} that must be applied to lower the automobile.

SOLUTION

FBD joint D :

By symmetry:

$$
F_{A D}=F_{C D}
$$

$$
\uparrow \Sigma F_{y}=0: \quad 2 F_{A D} \sin 25^{\circ}-4 \mathrm{kN}=0
$$

$$
F_{A D}=F_{C D}=4.7324 \mathrm{kN}
$$

FBD joint \boldsymbol{A} :

By symmetry:

$$
F_{A E}=F_{A D}
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad F_{A C}-2(4.7324 \mathrm{kN}) \cos 25^{\circ}=0
$$

$$
F_{A C}=8.5780 \mathrm{kN}
$$

Block and incline at A :

$$
\begin{gathered}
\theta=\tan ^{-1} \frac{2 \mathrm{~mm}}{\pi(7.5 \mathrm{~mm})}=4.8518^{\circ} \\
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.15 \\
\phi_{s}=8.5308^{\circ}
\end{gathered}
$$

PROBLEM 8.73 CONTINUED

$$
\begin{aligned}
& R A 8.5780 \mathrm{kN} \\
& Q \\
& \phi_{s}-\theta=3.679^{\circ} \\
& Q=(8.5780 \mathrm{kN}) \tan 3.679^{\circ} \\
& Q=0.55156 \mathrm{kN}
\end{aligned}
$$

Couple at $A: \quad M_{A}=Q r$

$$
\begin{aligned}
& =(0.55156 \mathrm{kN})\left(\frac{7.5 \mathrm{~mm}}{2}\right) \\
& =2.0683 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

By symmetry:
Couple at $C: \quad M_{C}=2.0683 \mathrm{~N} \cdot \mathrm{~m}$
Total couple $M=2(2.0683 \mathrm{~N} \cdot \mathrm{~m})$
$M=4.14 \mathrm{~N} \cdot \mathrm{~m}$

SOLUTION

Block on incline:

$$
\theta=\tan ^{-1} \frac{6 \mathrm{~mm}}{2 \pi(22.5 \mathrm{~mm})}=2.4302^{\circ}
$$

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.1
$$

$$
\phi_{s}=5.7106^{\circ}
$$

$$
\begin{aligned}
Q & =(4.5 \mathrm{kN}) \tan 8.1408^{\circ} \\
& =0.6437 \mathrm{kN}
\end{aligned}
$$

Couple $M=r Q$

$$
\begin{aligned}
& =(22.5 \mathrm{~mm})(0.6437 \mathrm{kN}) \\
& =14.483 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

NOTE FOR PROBLEMS 8.75-8.89

Note to instructors: In this manual, the singular $\sin \left(\tan ^{-1} \mu\right) \approx \mu$ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of μ, there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76-8.79, $\mu_{s}=0.40$, and the error made by using the approximation is about 7.7%.

PROBLEM 8.75

A $120-\mathrm{mm}$-radius pulley of mass 5 kg is attached to a $30-\mathrm{mm}$-radius shaft which fits loosely in a fixed bearing. It is observed that the pulley will just start rotating if a $0.5-\mathrm{kg}$ mass is added to block A. Determine the coefficient of static friction between the shaft and the bearing.

SOLUTION

FBD pulley:

$$
\uparrow \Sigma F_{y}=0: \quad R-103.005 \mathrm{~N}-49.05 \mathrm{~N}-98.1 \mathrm{~N}=0
$$

$$
\begin{gathered}
\left(\Sigma M_{O}=0:(0.12 \mathrm{~m})(103.005 \mathrm{~N}-98.1 \mathrm{~N})-r_{f}(250.155 \mathrm{~N})=0\right. \\
r_{f}=0.0023529 \mathrm{~m}=2.3529 \mathrm{~mm}
\end{gathered}
$$

$$
\phi_{s}=\sin ^{-1} \frac{r_{f}}{r_{s}}
$$

$$
\mu_{s}=\tan \phi_{s}=\tan \left(\sin ^{-1} \frac{r_{f}}{r_{s}}\right)=\tan \left(\sin ^{-1} \frac{2.3529 \mathrm{~mm}}{30 \mathrm{~mm}}\right)
$$

SOLUTION

FDB pulley:

$$
\begin{gathered}
r_{f}=r_{s} \sin \phi_{s}=r_{s} \sin \left(\tan ^{-1} \mu_{s}\right)^{*} \\
r_{f}=(0.5 \mathrm{in} .) \sin \left(\tan ^{-1} 0.40\right)=0.185695 \mathrm{in} . \\
\left(\Sigma M_{C}=0: \quad(4.5 \mathrm{in} .+0.185695 \mathrm{in} .)(40 \mathrm{lb})\right. \\
-(2.25 \mathrm{in} .-0.185695 \mathrm{in} .) P=0 \\
P
\end{gathered} \begin{array}{r}
P 0.8 \mathrm{lb}
\end{array}
$$

* See note before Problem 8.75.

SOLUTION

FBD pulley:

$$
\begin{gathered}
r_{f}=r_{s} \sin \phi_{s}=r_{s} \sin \left(\tan ^{-1} \mu_{s}\right)=(0.5 \mathrm{in} .) \sin \left(\tan ^{-1} 0.4\right)^{*} \\
r_{f}=0.185695 \mathrm{in} . \\
\left(\Sigma M_{C}=0: \quad(4.5 \mathrm{in} .-0.185695 \mathrm{in} .)(40 \mathrm{lb})\right. \\
\quad-(2.25 \mathrm{in} .-0.185695 \mathrm{in} .) P=0
\end{gathered}
$$

$$
P=83.6 \mathrm{lb}
$$

* See note before Problem 8.75.

PROBLEM 8.78

The double pulley shown is attached to a 0.5 -in.-radius shaft which fits loosely in a fixed bearing. Knowing that the coefficient of static friction between the shaft and the poorly lubricated bearing is 0.40 , determine the magnitude of the force \mathbf{P} required to maintain equilibrium.

SOLUTION

FBD pulley:

$$
\begin{gathered}
r_{f}=r_{s} \sin \phi_{s}=r_{s} \sin \left(\tan ^{-1} \mu_{s}\right)^{*} \\
r_{f}=(0.5 \mathrm{in} .) \sin \left(\tan ^{-1} 0.40\right)=0.185695 \mathrm{in} \\
\left(\Sigma M_{C}=0:(4.5 \mathrm{in} .-0.185695 \mathrm{in} .)(40 \mathrm{lb})\right. \\
-(2.25 \mathrm{in} .+0.185695 \mathrm{in} .)(P)=0 \\
P
\end{gathered} \begin{aligned}
& =70.9 \mathrm{lb}
\end{aligned}
$$

* See note before Problem 8.75.

SOLUTION

FBD pulley:

$$
\begin{gathered}
r_{f}=r_{s} \sin \phi_{s}=r_{s} \sin \left(\tan ^{-1} \mu_{s}\right)^{*} \\
r_{f}=(0.5 \mathrm{in} .) \sin \left(\tan ^{-1} 0.4\right)=0.185695 \mathrm{in} . \\
\left(\Sigma M_{C}=0: \quad(4.5 \mathrm{in} .+0.185695 \mathrm{in} .)(40 \mathrm{lb})\right. \\
-(2.25 \mathrm{in} .+0.185695 \mathrm{in} .) P
\end{gathered} \begin{aligned}
& =0 \\
P & =77.0 \mathrm{lb}
\end{aligned}
$$

* See note before Problem 8.75.

SOLUTION

(a) FBD lever (Impending $C W$ rotation):

(b) FBD lever (Impending $C C W$ rotation):

$$
\begin{gathered}
\left(\Sigma M_{C}=0:\left(0.2 \mathrm{~m}+r_{f}\right)(75 \mathrm{~N})-\left(0.12 \mathrm{~m}-r_{f}\right)(130 \mathrm{~N})=0\right. \\
r_{f}=0.0029268 \mathrm{~m}=2.9268 \mathrm{~mm} \\
\sin \phi_{s}=\frac{r_{f}}{r_{s}} \\
\mu_{s}=\tan \phi_{s}=\tan \left(\sin ^{-1} \frac{r_{f}}{r_{s}}\right)=\tan \left(\sin ^{-1} \frac{2.9268 \mathrm{~mm}}{18 \mathrm{~mm}}\right)^{*} \\
=0.34389 \quad \mu_{s}=0.344
\end{gathered}
$$

$$
\left(\Sigma M_{D}=0: \quad(0.20 \mathrm{~m}-0.0029268 \mathrm{~m})(75 \mathrm{~N})\right.
$$

$$
-(0.12 \mathrm{~m}+0.0029268 \mathrm{~m}) P=0
$$

$$
P=120.2 \mathrm{~N}
$$

* See note before Problem 8.75.

PROBLEM 8.81

The block and tackle shown are used to raise a $600-\mathrm{N}$ load. Each of the $60-\mathrm{mm}$-diameter pulleys rotates on a $10-\mathrm{mm}$-diameter axle. Knowing that the coefficient of kinetic friction is 0.20 , determine the tension in each portion of the rope as the load is slowly raised.

SOLUTION

Pulley FBD's:

Left:

$$
r_{p}=30 \mathrm{~mm}
$$

$$
\begin{aligned}
r_{f}=r_{\mathrm{axle}} \sin \phi_{k} & =r_{\mathrm{axle}} \sin \left(\tan ^{-1} \mu_{k}\right)^{*} \\
& =(5 \mathrm{~mm}) \sin \left(\tan ^{-1} 0.2\right) \\
& =0.98058 \mathrm{~mm}
\end{aligned}
$$

Left:

$$
\left(\Sigma M_{C}=0:\left(r_{p}-r_{f}\right)(600 \mathrm{lb})-2 r_{p} T_{A B}=0\right.
$$

Right:

or

$$
T_{A B}=\frac{30 \mathrm{~mm}-0.98058 \mathrm{~mm}}{2(30 \mathrm{~mm})}(600 \mathrm{~N})=290.19 \mathrm{~N}
$$

$$
T_{A B}=290 \mathrm{~N}
$$

$$
\uparrow \Sigma F_{y}=0: \quad 290.19 \mathrm{~N}-600 \mathrm{~N}+T_{C D}=0
$$

or $\quad T_{C D}=309.81 \mathrm{~N} \quad T_{C D}=310 \mathrm{~N}$
Right:

$$
\begin{aligned}
& \left(\Sigma M_{G}=0:\left(r_{p}+r_{f}\right) T_{C D}-\left(r_{p}-r_{f}\right) T_{E F}=0\right. \\
& \text { or } \quad T_{E F}=\frac{30 \mathrm{~mm}+0.98058 \mathrm{~mm}}{30 \mathrm{~mm}-0.98058 \mathrm{~mm}}(309.81 \mathrm{~N})=330.75 \mathrm{~N} \\
& T_{E F}=331 \mathrm{~N}
\end{aligned}
$$

[^1]

SOLUTION

Pulley FBDs:

Left:

$$
r_{p}=30 \mathrm{~mm}
$$

$$
\begin{aligned}
r_{f}=r_{\mathrm{axle}} \sin \phi_{k} & =r_{\mathrm{axle}} \sin \left(\tan ^{-1} \mu_{k}\right)^{*} \\
& =(5 \mathrm{~mm}) \sin \left(\tan ^{-1} 0.2\right) \\
& =0.98058 \mathrm{~mm}
\end{aligned}
$$

$$
\left(\Sigma M_{C}=0:\left(r_{p}+r_{f}\right)(600 \mathrm{~N})-2 r_{p} T_{A B}=0\right.
$$

or

$$
T_{A B}=\frac{30 \mathrm{~mm}+0.98058 \mathrm{~mm}}{2(30 \mathrm{~mm})}(600 \mathrm{~N})=309.81 \mathrm{~N}
$$

$$
T_{A B}=310 \mathrm{~N}
$$

$$
\uparrow \Sigma F_{y}=0: \quad T_{A B}-600 \mathrm{~N}+T_{C D}=0
$$

or

$$
T_{C D}=600 \mathrm{~N}-309.81 \mathrm{~N}=290.19 \mathrm{~N}
$$

$$
T_{C D}=290 \mathrm{~N}
$$

$$
\begin{aligned}
\left(\Sigma M_{H}=0:\right. & \left(r_{p}-r_{f}\right) T_{C D}-\left(r_{p}+r_{f}\right) T_{E F}=0 \\
& T_{E F}=\frac{30 \mathrm{~mm}-0.98058 \mathrm{~mm}}{30 \mathrm{~mm}+0.98058 \mathrm{~mm}}(290.19 \mathrm{~N})
\end{aligned}
$$

or

$$
T_{E F}=272 \mathrm{~N}
$$

[^2]
PROBLEM 8.83

The link arrangement shown is frequently used in highway bridge construction to allow for expansion due to changes in temperature. At each of the 3-in.-diameter pins A and B the coefficient of static friction is 0.20 . Knowing that the vertical component of the force exerted by $B C$ on the link is 50 kips , determine (a) the horizontal force which should be C exerted on beam $B C$ to just move the link, (b) the angle that the resulting force exerted by beam $B C$ on the link will form with the vertical.

SOLUTION

FBD link AB:

Note that $A B$ is a two force member. For impending motion, the pin forces are tangent to the friction circles.

$$
\theta=\sin ^{-1} \frac{r_{f}}{25 \mathrm{in} .}
$$

where

$$
\begin{aligned}
r_{f}=r_{p} \sin \phi_{s} & =r_{p} \sin \left(\tan ^{-1} \mu_{s}\right)^{*} \\
& =(1.5 \mathrm{in} .) \sin \left(\tan ^{-1} 0.2\right)=0.29417 \mathrm{in} .
\end{aligned}
$$

Then

$$
\theta=\sin ^{-1} \frac{0.29417 \mathrm{in} .}{12.5 \mathrm{in} .}=1.3485^{\circ}
$$

(b) $\theta=1.349^{\circ}$

$$
R_{\text {vert }}=R \cos \theta \quad R_{\text {horiz }}=R \sin \theta
$$

$$
R_{\text {horiz }}=R_{\text {vert }} \tan \theta=(50 \mathrm{kips}) \tan 1.3485^{\circ}=1.177 \mathrm{kips}
$$

(a) $R_{\text {horiz }}=1.177 \mathrm{kips}$

* See note before Problem 8.75.

PROBLEM 8.84

A gate assembly consisting of a $24-\mathrm{kg}$ gate $A B C$ and a $66-\mathrm{kg}$ counterweight D is attached to a $24-\mathrm{mm}$-diameter shaft B which fits loosely in a fixed bearing. Knowing that the coefficient of static friction is 0.20 between the shaft and the bearing, determine the magnitude of the force \mathbf{P} for which counterclockwise rotation of the gate is impending.

BEER • JOHNSTON Fig. P8-84 and P8-86
Vector Mechanics for Engineers: Statics \& Dynamics, 7e
100% of size Fine Line Illustrations (516) 501-0400

SOLUTION

FBD gate:

$$
\begin{gathered}
W_{1}=66 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=647.46 \mathrm{~N} \\
W_{2}=24 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=235.44 \mathrm{~N} \\
r_{f}=r_{s} \sin \phi_{s}=r_{s} \sin \left(\tan ^{-1} \mu_{s}\right) \\
=(0.012 \mathrm{~m}) \sin \left(\tan ^{-1} 0.2\right)=0.0023534 \mathrm{~m} \\
\left(\Sigma M_{C}=0:\left(0.6 \mathrm{~m}-r_{f}\right) W_{1}+\left(0.15 \mathrm{~m}-r_{f}\right) P-\left(1.8 \mathrm{~m}+r_{f}\right) W_{2}=0\right. \\
P=\frac{(1.80235 \mathrm{~m})(235.44 \mathrm{~N})-(0.59765 \mathrm{~m})(647.46 \mathrm{~N})}{(0.14765 \mathrm{~m})} \\
=253.2 \mathrm{~N}
\end{gathered}
$$

$$
P=253 \mathrm{~N}
$$

PROBLEM 8.85

A gate assembly consisting of a $24-\mathrm{kg}$ gate $A B C$ and a $66-\mathrm{kg}$ counterweight D is attached to a 24-mm-diameter shaft B which fits loosely in a fixed bearing. Knowing that the coefficient of static friction is 0.20 between the shaft and the bearing, determine the magnitude of the force \mathbf{P} for which counterclockwise rotation of the gate is impending.

BEER • JOHNSTON Fig. P8-85 and P8-87
Vector Mechanics for Engineers: Statics \& Dynamics, 7e
100\% of size Fine Line Illustrations (516) 501-0400

SOLUTION

It is convenient to replace the $(66 \mathrm{~kg}) g$ and $(24 \mathrm{~kg}) g$ weights with a single combined weight of $(90 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=882.9 \mathrm{~N}$, located at a distance $x=\frac{(1.8 \mathrm{~m})(24 \mathrm{~kg})-(0.6 \mathrm{~m})(24 \mathrm{~kg})}{90 \mathrm{~kg}}=0.04 \mathrm{~m}$ to the right of B.

$$
\begin{aligned}
r_{f}=r_{s} \sin \phi_{s}=r_{s} \sin \left(\tan ^{-1} \mu_{s}\right)^{*} & =(0.012 \mathrm{~m}) \sin \left(\tan ^{-1} 0.2\right) \\
& =0.0023534 \mathrm{~m}
\end{aligned}
$$

FBD pulley + gate:

$$
\begin{gathered}
\alpha=\tan ^{-1} \frac{0.04 \mathrm{~m}}{0.15 \mathrm{~m}}=14.931^{\circ} \quad O B=\frac{0.15}{\cos \alpha}=0.15524 \mathrm{~m} \\
\beta=\sin ^{-1} \frac{r_{f}}{O B}=\sin ^{-1} \frac{0.0023534 \mathrm{~m}}{0.15524 \mathrm{~m}}=0.8686^{\circ} \quad \text { then } \quad \theta=\alpha+\beta=15.800^{\circ} \\
P=W \tan \theta=248.9 \mathrm{~N}
\end{gathered}
$$

$$
P=250 \mathrm{~N}
$$

* See note before Problem 8.75.

PROBLEM 8.86

A gate assembly consisting of a $24-\mathrm{kg}$ gate $A B C$ and a $66-\mathrm{kg}$ counterweight D is attached to a $24-\mathrm{mm}$-diameter shaft B which fits loosely in a fixed bearing. Knowing that the coefficient of static friction is 0.20 between the shaft and the bearing, determine the magnitude of the force \mathbf{P} for which clockwise rotation of the gate is impending.

SOLUTION

FBD gate:

$$
\begin{aligned}
& W_{1}=66 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=647.46 \mathrm{~N} \\
& W_{2}=24 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=235.44 \mathrm{~N} \\
& r_{f}=r_{s} \sin \phi_{s}=r_{s} \sin \left(\tan ^{-1} \mu_{s}\right)^{*} \\
& =(0.012 \mathrm{~m}) \sin \left(\tan ^{-1} 0.2\right)=0.0023534 \mathrm{~m} \\
& \left(\Sigma M_{C}=0:\left(0.6 \mathrm{~m}+r_{f}\right) W_{1}+\left(0.15 \mathrm{~m}+r_{f}\right) P-\left(1.8 \mathrm{~m}-r_{f}\right) W_{2}=0\right. \\
& P=\frac{(1.79765 \mathrm{~m})(235.44 \mathrm{~N})-(0.60235 \mathrm{~m})(647.46 \mathrm{~N})}{0.15235 \mathrm{~m}} \\
& =218.19 \mathrm{~N}
\end{aligned}
$$

$$
P=218 \mathrm{~N}
$$

* See note before Problem 8.75.

PROBLEM 8.87

A gate assembly consisting of a $24-\mathrm{kg}$ gate $A B C$ and a $66-\mathrm{kg}$ counterweight D is attached to a 24-mm-diameter shaft B which fits loosely in a fixed bearing. Knowing that the coefficient of static friction is 0.20 between the shaft and the bearing, determine the magnitude of the force \mathbf{P} for which clockwise rotation of the gate is impending.

BEER • JOHNSTON Fig. P8-85 and P8-87
Vector Mechanics for Engineers: Statics \& Dynamics, 7e
100\% of size Fine Line Illustrations (516) 501-0400

SOLUTION

It is convenient to replace the $(66 \mathrm{~kg}) g$ and $(24 \mathrm{~kg}) g$ weights with a single weight of $(90 \mathrm{~kg})(9.81 \mathrm{~N} / \mathrm{kg})=882.9 \mathrm{~N}$, located at a distance $x=\frac{(1.8 \mathrm{~m})(24 \mathrm{~kg})-(0.15 \mathrm{~m})(66 \mathrm{~kg})}{90 \mathrm{~kg}}=0.04 \mathrm{~m}$ to the right of B.
FBD pulley + gate:

$$
\begin{gathered}
r_{f}=r_{s} \sin \phi_{s}=r_{s} \sin \left(\tan ^{-1} \mu_{s}\right)^{*}=(0.012 \mathrm{~m}) \sin \left(\tan ^{-1} 0.2\right) \\
r_{f}=0.0023534 \mathrm{~m}
\end{gathered}
$$

$$
\begin{gathered}
\alpha=\tan ^{-1} \frac{0.04 \mathrm{~m}}{0.15 \mathrm{~m}}=14.931^{\circ} \quad O B=\frac{0.15 \mathrm{~m}}{\cos \alpha}=0.15524 \mathrm{~m} \\
\beta=\sin ^{-1} \frac{r_{f}}{O B}=\sin ^{-1} \frac{0.0023534 \mathrm{~m}}{0.15524 \mathrm{~m}}=0.8686^{\circ} \quad \text { then } \quad \theta=\alpha-\beta=14.062^{\circ} \\
P=W \tan \theta=221.1 \mathrm{~N}
\end{gathered}
$$

$$
P=221 \mathrm{~N}
$$

* See note before Problem 8.75.

PROBLEM 8.88

A loaded railroad car has a weight of 35 tons and is supported by eight 32 -in.-diameter wheels with 5-in.-diameter axles. Knowing that the coefficients of friction are $\mu_{s}=0.020$ and $\mu_{k}=0.015$, determine the horizontal force required (a) for impending motion of the car, (b) to keep the car moving at a constant speed. Neglect rolling resistance between the wheels and the track.

SOLUTION

FBD wheel:

(a) For impending motion use $\mu_{s}=0.02$: then $\theta_{s}=0.179014^{\circ}$
(b) For steady motion use $\mu_{k}=0.15$: then $\theta_{k}=0.134272^{\circ}$

$$
P_{w}=W_{w} \tan \theta \quad P_{c}=W_{c} \tan \theta=8 W_{w} \tan \theta
$$

(a)

$$
P_{c}=(70,000 \mathrm{lb}) \tan \left(0.179014^{\circ}\right)
$$

$$
P_{c}=219 \mathrm{lb}
$$

$$
\begin{equation*}
P_{c}=(70,000 \mathrm{lb}) \tan \left(0.134272^{\circ}\right) \tag{b}
\end{equation*}
$$

$$
P_{c}=164.0 \mathrm{lb}
$$

* See note before Problem 8.75.

PROBLEM 8.89

A scooter is designed to roll down a 2 percent slope at a constant speed. Assuming that the coefficient of kinetic friction between the 1-in.diameter axles and the bearing is 0.10 , determine the required diameter of the wheels. Neglect the rolling resistance between the wheels and the ground.

SOLUTION

FBD wheel:
Note: The wheel is a two-force member in equilibrium, so \mathbf{R} and \mathbf{W} must be collinear and tangent to friction circle.

$$
2 \% \text { slope } \Rightarrow \tan \theta=0.02
$$

Also

$$
\sin \theta=\frac{r_{f}}{r_{w}} \sin \left(\tan ^{-1} 0.02\right)=0.019996
$$

But

$$
\begin{aligned}
r_{f}=r_{a} \sin \phi_{k} & =r_{a} \sin \left(\tan ^{-1} \mu_{k}\right)^{*} \\
& =(1 \mathrm{in} .) \sin \left(\tan ^{-1} 0.1\right)=0.099504 \mathrm{in}
\end{aligned}
$$

Then

$$
r_{w}=\frac{r_{f}}{\sin \theta}=\frac{0.099504}{0.019996}=4.976 \mathrm{in}
$$

and

$$
d_{w}=2 r_{w} \quad d_{w}=9.95 \mathrm{in}
$$

* See note before Problem 8.75.

PROBLEM 8.90

A $25-\mathrm{kg}$ electric floor polisher is operated on a surface for which the coefficient of kinetic friction is 0.25 . Assuming that the normal force per unit area between the disk and the floor is uniformly distributed, determine the magnitude Q of the horizontal forces required to prevent motion of the machine.

SOLUTION

Couple exerted on handle

$$
M_{H}=d Q=(0.4 \mathrm{~m}) Q
$$

Couple exerted on floor

$$
\left.M_{F}=\frac{2}{3} \mu_{k} P R \quad \text { (Equation } 8.9\right)
$$

where

$$
\mu_{k}=0.25, \quad P=(25 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=245.25 \mathrm{~N}, \quad R=0.18 \mathrm{~m}
$$

For equilibrium

$$
\begin{gathered}
M_{H}=M_{F}, \\
Q=\frac{\frac{2}{3}(0.25)(245.25 \mathrm{~N})(0.18 \mathrm{~m})}{0.4 \mathrm{~m}}
\end{gathered}
$$

PROBLEM 8.91

The pivot for the seat of a desk chair consists of the steel plate A, which supports the seat, the solid steel shaft B which is welded to A and which turns freely in the tubular member C, and the nylon bearing D. If a person of weight $W=180 \mathrm{lb}$ is seated directly above the pivot, determine the magnitude of the couple \mathbf{M} for which rotation of the seat is impending knowing that the coefficient of static friction is 0.15 between the tubular member and the bearing.

SOLUTION

For an annular bearing area

$$
M=\frac{2}{3} \mu_{s} P \frac{R_{2}^{3}-R_{1}^{3}}{R_{2}^{2}-R_{1}^{2}} \quad(\text { Equation } 8.8)
$$

Since $R=\frac{D}{2}$

$$
M=\frac{1}{3} \mu_{S} P \frac{D_{2}^{3}-D_{1}^{3}}{D_{2}^{2}-D_{1}^{2}}
$$

Now

$$
\begin{gathered}
\mu_{s}=0.15, P=W=180 \mathrm{lb}, D_{1}=1.00 \mathrm{in} ., D_{2}=1.25 \mathrm{in} . \\
M=\frac{0.15}{3}(180 \mathrm{lb}) \frac{(1.25 \mathrm{in} .)^{3}-(4 \mathrm{in} .)^{3}}{(1.25 \mathrm{in} .)^{2}-(1 \mathrm{in} .)^{2}}
\end{gathered}
$$

$$
M=15.25 \mathrm{lb} \cdot \mathrm{in}
$$

PROBLEM 8.92

As the surfaces of a shaft and a bearing wear out, the frictional resistance of a thrust bearing decreases. It is generally assumed that the wear is directly proportional to the distance traveled by any given point of the shaft and thus to the distance r from the point to the axis of the shaft. Assuming, then, that the normal force per unit area is inversely proportional to r, show that the magnitude M of the couple required to overcome the frictional resistance of a worn-out end bearing (with contact over the full circular area) is equal to 75 percent of the value given by formula (8.9) for a new bearing.

SOLUTION

Let the normal force on ΔA be ΔN, and $\frac{\Delta N}{\Delta A}=\frac{k}{r}$
As in the text

$$
\Delta F=\mu \Delta N, \Delta M=r \Delta F
$$

The total normal force

$$
\begin{aligned}
& P=\lim _{\Delta A \rightarrow 0} \Sigma \Delta N=\int_{0}^{2 \pi}\left(\int_{0}^{R} \frac{k}{r} r d r\right) d \theta \\
& P=2 \pi\left(\int_{0}^{R} k d r\right)=2 \pi k R \quad \text { or } \quad k=\frac{P}{2 \pi R}
\end{aligned}
$$

The total couple

$$
M_{\mathrm{worn}}=2 \pi \mu k \int_{0}^{R} r d r=2 \pi \mu k \frac{R^{2}}{2}=2 \pi \mu \frac{P}{2 \pi R} \frac{R^{2}}{2}
$$

or

$$
M_{\mathrm{worn}}=\frac{1}{2} \mu P R
$$

Now

$$
\begin{equation*}
M_{\mathrm{new}}=\frac{2}{3} \mu P R \tag{8.9}
\end{equation*}
$$

Thus

$$
\frac{M_{\mathrm{worn}}}{M_{\mathrm{new}}}=\frac{\frac{1}{2} \mu P R}{\frac{2}{3} \mu P R}=\frac{3}{4}=75 \%
$$

PROBLEM 8.93

Assuming that bearings wear out as indicated in Problem 8.92, show that the magnitude M of the couple required to overcome the frictional resistance of a worn-out collar bearing is $M=\frac{1}{2} \mu_{k} P\left(R_{1}+R_{2}\right)$
where $P=$ magnitude of the total axial force $R_{1}, R_{2}=$ inner and outer radii of collar

SOLUTION

Let normal force on ΔA be ΔN, and $\frac{\Delta N}{\Delta A}=\frac{k}{r}$
As in the text

$$
\Delta F=\mu \Delta N, \Delta M=r \Delta F
$$

The total normal force P is

$$
\begin{aligned}
& P=\lim _{\Delta A \rightarrow 0} \Sigma \Delta N=\int_{0}^{2 \pi}\left(\int_{R_{1}}^{R_{2}} \frac{k}{r} r d r\right) d \theta \\
& P=2 \pi \int_{R_{1}}^{R_{2}} k d r=2 \pi k\left(R_{2}-R_{1}\right) \quad \text { or } \quad k=\frac{P}{2 \pi\left(R_{2}-R_{1}\right)}
\end{aligned}
$$

The total couple is $\quad M_{\text {worn }}=\lim _{\Delta A \rightarrow 0} \Sigma \Delta M=\int_{0}^{2 \pi}\left(\int_{R_{1}}^{R_{2}} r \mu \frac{k}{r} r d r\right) d \theta$

$$
\begin{array}{r}
M_{\mathrm{worn}}=2 \pi \mu k \int_{R_{1}}^{R_{2}}(r d r)=\pi \mu k\left(R_{2}^{2}-R_{1}^{2}\right)=\frac{\pi \mu P\left(R_{2}^{2}-R_{1}^{2}\right)}{2 \pi\left(R_{2}-R_{1}\right)} \\
M_{\mathrm{worn}}=\frac{1}{2} \mu P\left(R_{2}+R_{1}\right)
\end{array}
$$

SOLUTION

Let normal force on ΔA be ΔN, and $\frac{\Delta N}{\Delta A}=k$,
so

$$
\Delta N=k \Delta A \quad \Delta A=r \Delta s \Delta \phi \quad \Delta s=\frac{\Delta r}{\sin \theta}
$$

where ϕ is the azimuthal angle around the symmetry axis of rotation

$$
\Delta F_{y}=\Delta N \sin \theta=k r \Delta r \Delta \phi
$$

Total vertical force

$$
P=\lim _{\Delta A \rightarrow 0} \Sigma \Delta F_{y}
$$

$$
P=\int_{0}^{2 \pi}\left(\int_{R_{1}}^{R_{2}} k r d r\right) d \phi=2 \pi k \int_{R_{1}}^{R_{2}} r d r
$$

$$
P=\pi k\left(R_{2}^{2}-R_{1}^{2}\right) \quad \text { or } \quad k=\frac{P}{\pi\left(R_{2}^{2}-R_{1}^{2}\right)}
$$

Friction force

$$
\Delta F=\mu \Delta N=\mu k \Delta A
$$

Moment

$$
\Delta M=r \Delta F=r \mu k r \frac{\Delta r}{\sin \theta} \Delta \phi
$$

Total couple

$$
M=\lim _{\Delta A \rightarrow 0} \Sigma \Delta M=\int_{0}^{2 \pi}\left(\int_{R_{1}}^{R_{2}} \frac{\mu k}{\sin \theta} r^{2} d r\right) d \phi
$$

$$
M=2 \pi \frac{\mu k}{\sin \theta} \int_{R_{1}}^{R_{2}} r^{2} d r=\frac{2}{3} \frac{\pi \mu}{\sin \theta} \frac{P}{\pi\left(R_{2}^{2}-R_{3}^{2}\right)}\left(R_{2}^{3}-R_{3}^{3}\right)
$$

$$
M=\frac{2}{3} \frac{\mu P}{\sin \theta} \frac{R_{2}^{3}-R_{1}^{3}}{R_{2}^{2}-R_{1}^{2}}
$$

PROBLEM 8.95

Solve Problem 8.90 assuming that the normal force per unit area between the disk and the floor varies linearly from a maximum at the center to zero at the circumference of the disk.

SOLUTION

Let normal force on ΔA be ΔN, and $\frac{\Delta N}{\Delta A}=k\left(1-\frac{r}{R}\right)$

$$
\begin{gathered}
\Delta F=\mu \Delta N=\mu k\left(1-\frac{r}{R}\right) \Delta A=\mu k\left(1-\frac{r}{R}\right) r \Delta r \Delta \theta \\
P=\lim _{\Delta A \rightarrow 0} \Sigma \Delta N=\int_{0}^{2 \pi}\left[\int_{0}^{R} k\left(1-\frac{r}{R}\right) r d r\right] d \theta \\
P=2 \pi k \int_{0}^{R}\left(1-\frac{r}{R}\right) r d r=2 \pi k\left(\frac{R^{2}}{2}-\frac{R^{3}}{3 R}\right) \\
P=\frac{1}{3} \pi k R^{2} \quad \text { or } \quad k=\frac{3 P}{\pi R^{2}} \\
M=\lim _{\Delta A \rightarrow 0} \Sigma r \Delta F=\int_{0}^{2 \pi}\left[\int_{0}^{R} r \mu k\left(1-\frac{r}{R}\right) r d r\right] d \theta \\
=2 \pi \mu k \int_{0}^{R}\left(r^{2}-\frac{r^{3}}{R}\right) d r=2 \pi \mu k\left(\frac{R^{3}}{3}-\frac{R^{4}}{4 R}\right)=\frac{1}{6} \pi \mu k R^{3} \\
=\frac{\pi \mu}{6} \frac{3 P}{\pi R^{2}} R^{3}=\frac{1}{2} \mu P R
\end{gathered}
$$

where

$$
\mu=\mu_{k}=0.25 \quad R=0.18 \mathrm{~m}
$$

$$
P=W=(25 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=245.25 \mathrm{~N}
$$

Then

$$
M=\frac{1}{2}(0.25)(245.25 \mathrm{~N})(0.18 \mathrm{~m})=5.5181 \mathrm{~N} \cdot \mathrm{~m}
$$

Finally,

$$
Q=\frac{M}{d}=\frac{5.5181 \mathrm{~N} \cdot \mathrm{~m}}{0.4 \mathrm{~m}}
$$

$$
Q=13.80 \mathrm{~N}
$$

SOLUTION

FBD pipe:

$$
\theta=\sin ^{-1} \frac{0.025 \mathrm{in} .+0.0625 \mathrm{in} .}{5 \mathrm{in} .}=1.00257^{\circ}
$$

$P=W \tan \theta$ for each pipe, so also for total

$$
P=(2000 \mathrm{lb}) \tan \left(1.00257^{\circ}\right)
$$

$$
P=35.0 \mathrm{lb}
$$

PROBLEM 8.97

Knowing that a $120-\mathrm{mm}$-diameter disk rolls at a constant velocity down a 2 percent incline, determine the coefficient of rolling resistance between the disk and the incline.

SOLUTION

FBD disk:

$$
\begin{gathered}
\tan \theta=\text { slope }=0.02 \\
b=r \tan \theta=(60 \mathrm{~mm})(0.02)
\end{gathered}
$$

PROBLEM 8.98

Determine the horizontal force required to move a $1-\mathrm{Mg}$ automobile with $460-\mathrm{mm}$-diameter tires along a horizontal road at a constant speed. Neglect all forms of friction except rolling resistance, and assume the coefficient of rolling resistance to be 1 mm .

SOLUTION

FBD wheel:

$$
\begin{aligned}
r & =230 \mathrm{~mm} \\
b & =1 \mathrm{~mm} \\
\theta & =\sin ^{-1} \frac{b}{r}
\end{aligned}
$$

$P=W \tan \theta=W \tan \left(\sin ^{-1} \frac{b}{r}\right)$ for each wheel, so for total

$$
P=(1000 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \tan \left(\sin ^{-1} \frac{1}{230}\right)
$$

PROBLEM 8.99

Solve Problem 8.88 including the effect of a coefficient of rolling resistance of 0.02 in.

SOLUTION

FBD wheel:

$$
\begin{aligned}
r_{f} & =r_{a} \sin \phi=r_{a} \sin \left(\tan ^{-1} \mu\right) \\
& =(2.5 \mathrm{in} .) \sin \left(\tan ^{-1} \mu\right)
\end{aligned}
$$

$P=W \tan \theta$ for each wheel, so also for total $P=W \tan \theta$

$$
\tan \theta \approx \frac{b+r_{f}}{r_{w}} \text { for small } \theta
$$

So

$$
P=(70,000 \mathrm{lb}) \frac{(0.02 \mathrm{in} .)+r_{f}}{16 \mathrm{in} .}
$$

(a) For impending motion, use $\mu_{s}=0.02$:

Then $\quad r_{f}=0.04999 \mathrm{in} . \quad$ and $\quad P=306 \mathrm{lb}$
(b) For steady motion, use $\mu_{k}=0.015$:

Then
$r_{f}=0.037496$ in. and $P=252 \mathrm{lb}$

PROBLEM 8.100

Solve Problem 8.89 including the effect of a coefficient of rolling resistance of 0.07 in .

SOLUTION

FBD wheel:

The wheel is a two-force body, so \mathbf{R} and \mathbf{W} are colinear and tangent to the friction circle.

$$
\begin{gathered}
\tan \theta=\text { slope }=0.02 \\
\tan \theta \approx \frac{b+r_{f}}{r_{w}} \quad \text { or } \quad r_{w} \approx \frac{b+r_{f}}{\tan \theta}
\end{gathered}
$$

Now

$$
\begin{aligned}
r_{f} & =r_{a} \sin \phi_{k}=r_{a} \sin \left(\tan ^{-1} \mu_{k}\right) \\
& =(0.5 \mathrm{in} .) \sin \left(\tan ^{-1} 0.1\right) \\
& =0.049752 \\
\therefore \quad r_{w} \approx & \frac{0.07 \mathrm{in} .+0.049752 \mathrm{in} .}{0.02}=5.9876 \mathrm{in} .
\end{aligned}
$$

$$
d=2 r_{w}
$$

PROBLEM 8.101

A hawser is wrapped two full turns around a bollard. By exerting a $320-\mathrm{N}$ force on the free end of the hawser, a dockworker can resist a force of 20 kN on the other end of the hawser. Determine (a) the coefficient of static friction between the hawser and the bollard, (b) the number of times the hawser should be wrapped around the bollard if a $80-\mathrm{kN}$ force is to be resisted by the same $320-\mathrm{N}$ force.

SOLUTION

Two full turns of rope \rightarrow

$$
\beta=4 \pi \mathrm{rad}
$$

(a)

$$
\begin{aligned}
\mu_{s} \beta & =\ln \frac{T_{2}}{T_{1}} \quad \text { or } \quad \mu_{s}=\frac{1}{\beta} \ln \frac{T_{2}}{T_{1}} \\
\mu_{s} & =\frac{1}{4 \pi} \ln \frac{20000 \mathrm{~N}}{320 \mathrm{~N}}=0.329066
\end{aligned}
$$

$$
\mu_{s}=0.329
$$

(b)

$$
\begin{aligned}
\beta & =\frac{1}{\mu_{s}} \ln \frac{T_{2}}{T_{1}} \\
& =\frac{1}{0.329066} \ln \frac{80000 \mathrm{~N}}{320 \mathrm{~N}} \\
& =16.799 \mathrm{rad}
\end{aligned}
$$

$$
\beta=2.67 \text { turns }
$$

SOLUTION

FBD A:

$$
T_{A}=10 \mathrm{lb}
$$

FBD B:

$$
\searrow \Sigma F_{x^{\prime}}=0: \quad W_{B} \sin 30^{\circ}-T_{B}=0
$$

$$
T_{B}=\frac{W_{B}}{2}
$$

From hint, $\beta=60^{\circ}=\frac{\pi}{3}$ rad regardless of shape of support C
(a) For motion of B up incline when $W_{B}=16 \mathrm{lb}, \quad T_{B}=\frac{W_{B}}{2}=8 \mathrm{lb}$
and

$$
\mu_{s} \beta=\ln \frac{T_{A}}{T_{B}} \quad \text { or } \quad \mu_{s}=\frac{1}{\beta} \ln \frac{T_{A}}{T_{B}}=\frac{3}{\pi} \ln \frac{10 \mathrm{lb}}{8 \mathrm{lb}}=0.213086
$$

$$
\mu_{s}=0.213
$$

(b) For maximum W_{B}, motion of B impends down and $T_{B}>T_{A}$

So

$$
T_{B}=T_{A} e^{\mu_{s} \beta}=(10 \mathrm{lb}) e^{0.213086 \pi / 3}=12.500 \mathrm{lb}
$$

Now

$$
W_{B}=2 T_{B}
$$

So that

$$
W_{B}=25.0 \mathrm{lb}
$$

SOLUTION

FBD A:

FBD B:

$\searrow \Sigma F_{t^{\prime}}=0: \quad W_{B} \sin 30^{\circ}-T_{B}=0$

$$
T_{B}=\frac{W_{B}}{2}
$$

From hint, $\beta=60^{\circ}=\frac{\pi}{3} \mathrm{rad}$, regardless of shape of support C.
For impending motion of B up, $T_{A}>T_{B}$, so

$$
\begin{gathered}
T_{A}=T_{B} e^{\mu_{\mathrm{s}} \beta} \quad \text { or } \quad T_{B}=T_{A} e^{-\mu_{s} \beta}=(10 \mathrm{lb}) e^{-0.5 \pi / 3}=5.924 \mathrm{lb} \\
W_{B}=2 T_{B}=11.85 \mathrm{lb}
\end{gathered}
$$

For impending motion of B down, $T_{B}>T_{B}$, so

$$
\begin{gathered}
T_{B}=T_{A} e^{\mu_{\mathrm{s}} \beta}=(10 \mathrm{lb}) e^{0.5 \pi / 3}=16.881 \mathrm{lb} \\
W_{B}=2 T_{B}=33.76 \mathrm{lb}
\end{gathered}
$$

For equilibrium
$11.85 \mathrm{lb} \leq W_{B} \leq 33.8 \mathrm{lb}$

SOLUTION

For impending motion of W up

$$
\begin{aligned}
P & =W e^{\mu_{\mathrm{s}} \beta}=(1177.2 \mathrm{~N}) e^{(0.15) 3 \pi} \\
& =4839.7 \mathrm{~N}
\end{aligned}
$$

For impending motion of W down

$$
\begin{aligned}
P & =W e^{-\mu_{s} \beta}=(1177.2 \mathrm{~N}) e^{-(0.15) 3 \pi} \\
& =286.3 \mathrm{~N}
\end{aligned}
$$

For equilibrium

PROBLEM 8.105

The coefficient of static friction between block B and the horizontal surface and between the rope and support C is 0.40 . Knowing that $W_{A}=30 \mathrm{lb}$, determine the smallest weight of block B for which equilibrium is maintained.

SOLUTION

Support at C:

$$
\uparrow \Sigma F_{y}=0: \quad N_{B}-W_{B}=0 \quad \text { or } \quad N_{B}=W_{B}
$$

Impending motion

$$
\begin{gathered}
F_{B}=\mu_{s} N_{B}=0.4 N_{B}=0.4 W_{B} \\
\rightarrow \Sigma F_{x}=0: \quad F_{B}-T_{B}=0 \quad \text { or } \quad T_{B}=F_{B}=0.4 W_{B}
\end{gathered}
$$

At support, for impending motion of W_{A} down,

$$
W_{A}=T_{B} e^{\mu_{s} \beta}
$$

so

$$
T_{B}=W_{A} e^{-\mu_{s} \beta}=(30 \mathrm{lb}) e^{-(0.4) \pi / 2}=16.005 \mathrm{lb}
$$

Now

$$
W_{B}=\frac{T_{B}}{0.4}
$$

so that

$$
W_{B}=40.0 \mathrm{lb}
$$

PROBLEM 8.106

The coefficient of static friction μ_{s} is the same between block B and the horizontal surface and between the rope and support C. Knowing that $W_{A}=W_{B}$, determine the smallest value of μ_{s} for which equilibrium is maintained.

SOLUTION

Support at C

FBD B:

$$
\uparrow \Sigma F_{y}=0: \quad N_{B}-W=0 \quad \text { or } \quad N_{B}=W
$$

Impending motion:

$$
F_{B}=\mu_{s} N_{B}=\mu_{s} W
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad F_{B}-T_{B}=0 \quad \text { or } \quad T_{B}=F_{B}=\mu_{s} W
$$

Impending motion of rope on support:

$$
W=T_{B} e^{\mu_{s} \beta}=\mu_{s} W e^{\mu_{s} \beta}
$$

or

$$
1=\mu_{s} e^{\mu_{s} \beta}
$$

or

$$
\mu_{s} e^{\frac{\pi}{\mu_{s}}}=1
$$

Solving numerically:

PROBLEM 8.107

In the pivoted motor mount shown, the weight \mathbf{W} of the $85-\mathrm{kg}$ motor is used to maintain tension in the drive belt. Knowing that the coefficient of static friction between the flat belt and drums A and B is 0.40 , and neglecting the weight of platform $C D$, determine the largest torque which can be transmitted to drum B when the drive drum A is rotating clockwise.

SOLUTION

FBD motor + mount:

For impending slipping of belt,

$$
T_{2}=T_{1} e^{\mu_{s} \beta}=T_{1} e^{0.4 \pi}=3.5136 T_{1}
$$

$$
\begin{aligned}
\left(\Sigma M_{D}=0:\right. & (0.24 \mathrm{~m})(833.85 \mathrm{~N})-(0.14 \mathrm{~m}) T_{2}-(0.26 \mathrm{~m}) T_{1}=0 \\
& {[(0.14 \mathrm{~m})(3.5136)+0.26 \mathrm{~m}] T_{1}=200.124 \mathrm{~N} \cdot \mathrm{~m} }
\end{aligned}
$$

or

$$
T_{1}=266.16 \mathrm{~N}
$$

and

$$
T_{2}=3.5136 T_{1}=935.18 \mathrm{~N}
$$

FBD drum:

$$
\begin{gathered}
266.16 \mathrm{~N} \\
\left(\Sigma M_{B}=0: M_{B}-(0.06 \mathrm{~m})(266.16 \mathrm{~N}-935.18 \mathrm{~N})=0\right.
\end{gathered}
$$

$$
M_{B}=40.1 \mathrm{~N} \cdot \mathrm{~m}
$$

(Compare to $M_{B}=81.7 \mathrm{~N} \cdot \mathrm{~m}$ using V-belt, Problem 8.130.)

SOLUTION

FBD motor + mount:

Impending slipping of belt:

$$
T_{1}=T_{2} e^{\mu_{s} \beta}=T_{1} e^{0.4 \pi}=3.5136 T_{2}
$$

$$
\begin{aligned}
\left(\Sigma M_{D}=0:\right. & (0.24 \mathrm{~m}) W-(0.26 \mathrm{~m}) T_{1}-(0.14 \mathrm{~m}) T_{2}=0 \\
& {[(0.26 \mathrm{~m})(3.5136)+0.14 \mathrm{~m}] T_{2}=(0.24 \mathrm{~m})(833.85 \mathrm{~N}) }
\end{aligned}
$$

or

$$
T_{2}=189.95 \mathrm{~N}
$$

and

$$
T_{1}=667.42 \mathrm{~N}
$$

FBD drum:

$$
\begin{gathered}
667.42 \mathrm{~N} \\
/ 59.95 \mathrm{~N} \\
\left(\Sigma M_{B}=0:(0.06 \mathrm{~m})(667.42 \mathrm{~N}-189.95 \mathrm{~N})-M_{B}=0\right.
\end{gathered}
$$

PROBLEM 8.109

A flat belt is used to transmit a torque from pulley A to pulley B. The radius of each pulley is 3 in ., and a force of magnitude $P=225 \mathrm{lb}$ is applied as shown to the axle of pulley A. Knowing that the coefficient of static friction is 0.35 , determine (a) the largest torque which can be transmitted, (b) the corresponding maximum value of the tension in the belt.

SOLUTION

FBD pulley A:

Impending slipping of belt:

$$
T_{2}=T_{1} e^{\mu_{s} \beta}
$$

$$
\begin{gathered}
T_{2}=T_{1} e^{0.35 \pi}=3.0028 T_{1} \\
\longrightarrow \Sigma F_{x}=0: \quad T_{1}+T_{2}-225 \mathrm{lb}=0 \\
T_{1}(1+3.0028)=225 \mathrm{lb} \quad \text { or } \quad T_{1}=56.211 \mathrm{lb} \\
T_{2}=3.0028 T_{1} \quad \text { or } \quad T_{2}=168.79 \mathrm{lb}
\end{gathered}
$$

(a) $\quad\left(\Sigma M_{A}=0: M_{A}+(6 \mathrm{in}).\left(T_{1}-T_{2}\right)=0 \quad\right.$ or $\quad M_{A}=(3 \mathrm{in}).(168.79 \mathrm{lb}-56.21 \mathrm{lb})$
\therefore max. torque: $M_{A}=338 \mathrm{lb} \cdot \mathrm{in}$.
(b) max. tension: $T_{2}=168.8 \mathrm{lb}$
(Compare with $M_{A}=638 \mathrm{lb} \cdot \mathrm{in}$. with V-belt, Problem 8.131.)

SOLUTION

FBDs pulleys:

$$
\begin{gathered}
\theta=\sin ^{-1} \frac{3 \text { in. }}{6 \text { in. }}=30^{\circ}=\frac{\pi}{6} \mathrm{rad} . \\
\beta=\pi+2 \frac{\pi}{6}=\frac{4 \pi}{3}
\end{gathered}
$$

Impending belt slipping:

$$
T_{2}=T_{1} e^{\mu_{s} \beta}
$$

$$
T_{2}=T_{1} e^{(0.35) 4 \pi / 3}=4.3322 T_{1}
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad T_{1} \cos 30^{\circ}+T_{2} \cos 30^{\circ}-225 \mathrm{lb}=0
$$

$$
\left(T_{1}+4.3322 T_{1}\right) \cos 30^{\circ}=225 \mathrm{lb} \quad \text { or } \quad T_{1}=48.7243 \mathrm{lb}
$$

$$
T_{2}=4.3322 T_{1} \quad \text { so that } \quad T_{2}=211.083 \mathrm{lb}
$$

(a) $\quad\left(\Sigma M_{A}=0: \quad M_{A}+(3 \mathrm{in}).\left(T_{1}-T_{2}\right)=0 \quad\right.$ or $\quad M_{A}=(3 \mathrm{in}).(211.083 \mathrm{lb}-48.224 \mathrm{lb})$
(b)

$$
M_{\max }=M_{A}=487 \mathrm{lb} \cdot \mathrm{in}
$$

$$
T_{\max }=T_{2}=211 \mathrm{lb}
$$

PROBLEM 8.111

A couple \mathbf{M}_{B} of magnitude $2 \mathrm{lb} \cdot \mathrm{ft}$ is applied to the drive drum B of a portable belt sander to maintain the sanding belt C at a constant speed. The total downward force exerted on the wooden workpiece E is 12 lb , and $\mu_{k}=0.10$ between the belt and the sanding platen D. Knowing that $\mu_{s}=0.35$ between the belt and the drive drum and that the radii of drums A and B are 1.00 in., determine (a) the minimum tension in the lower portion of the belt if no slipping is to occur between the belt and the drive drum, (b) the value of the coefficient of kinetic friction between the belt and the workpiece.

SOLUTION

FBD lower portion of belt:

$$
\uparrow \Sigma F_{y}=0: \quad N_{E}-N_{D}=0
$$

or

$$
N_{D}=N_{E}=12 \mathrm{lb}
$$

Slipping:

$$
\begin{aligned}
& F_{D}=\left(\mu_{k}\right)_{\text {belt } / \text { platen }} N_{D} \\
& \qquad F_{D}=0.1(12 \mathrm{lb})=1.2 \mathrm{lb}
\end{aligned}
$$

and

$$
F_{E}=\left(\mu_{k}\right)_{\text {belt/wood }} N_{E}
$$

$$
\begin{equation*}
F=(12 \mathrm{lb})\left(\mu_{k}\right)_{\mathrm{belt} / \mathrm{wood}} \tag{1}
\end{equation*}
$$

FBD drum A: (assumed free to rotate)

$$
\begin{align*}
& \longrightarrow \Sigma F_{x}=0: \quad T_{B}-T_{A}-F_{D}-F_{E}=0 \tag{2}\\
& \left(\Sigma M_{A}=0:\right. \\
& r_{A}\left(T_{A}-T_{T}\right)=0 \quad \text { or } \quad T_{T}=T_{A}
\end{align*}
$$

PROBLEM 8.111 CONTINUED

FBD drum B:

$$
\left(\Sigma M_{B}=0: \quad M_{B}+r\left(T_{T}-T_{B}\right)=0\right.
$$

or

$$
T_{B}-T_{T}=\frac{M_{B}}{r}=\left(\frac{2 \mathrm{lb} \cdot \mathrm{ft}}{1 \mathrm{in} .}\right)\left(\frac{12 \mathrm{in} .}{\mathrm{ft}}\right)=24 \mathrm{lb}
$$

Impending slipping:

$$
T_{B}=T_{T} e^{\mu_{s} \beta}=T_{T} e^{0.35 \pi}
$$

$$
\left(e^{0.35 \pi}-1\right) T_{T}=24 \mathrm{lb} \quad \text { or } \quad T_{T}=11.983 \mathrm{lb}
$$

Now

$$
T_{A}=T_{T}=11.983 \mathrm{lb} \text { then } T_{B}=(11.983 \mathrm{lb}) e^{0.35 \pi}=35.983 \mathrm{lb}
$$

From Equation (2):

$$
35.983 \mathrm{lb}-11.983 \mathrm{lb}-1.2 \mathrm{lb}=F_{E}=22.8 \mathrm{lb}
$$

From Equation (1):

$$
\left(\mu_{k}\right)_{\text {belt } / \mathrm{wood}}=\frac{F_{E}}{12 \mathrm{lb}}=\frac{22.8 \mathrm{lb}}{12 \mathrm{lb}}=1.900
$$

Therefore
(a) $T_{\min }=T_{A}=11.98 \mathrm{lb}$
(b) $\left(\mu_{k}\right)_{\text {belt } / \text { wood }}=1.900$

PROBLEM 8.112

A band belt is used to control the speed of a flywheel as shown. Determine the magnitude of the couple being applied to the flywheel knowing that the coefficient of kinetic friction between the belt and the flywheel is 0.25 and that the flywheel is rotating clockwise at a constant speed. Show that the same result is obtained if the flywheel rotates counterclockwise.

SOLUTION

FBD wheel:

$$
\begin{gathered}
\left(\Sigma M_{E}=0:-M_{E}+(7.5 \mathrm{in} .)\left(T_{2}-T_{1}\right)=0\right. \\
M_{E}=(7.5 \mathrm{in} .)\left(T_{2}-T_{1}\right)
\end{gathered}
$$

or

FBD lever:

or

$$
T_{1}+T_{2}=100 \mathrm{lb}
$$

Impending slipping:

$$
T_{2}=T_{1} e^{\mu_{s} \beta}
$$

or

$$
\left(\Sigma M_{C}=0:(4 \mathrm{in} .)\left(T_{1}+T_{2}\right)-(16 \mathrm{in} .)(25 \mathrm{lb})=0\right.
$$

So

$$
\begin{gathered}
T_{1}(1+3.2482)=100 \mathrm{lb} \\
T_{1}=23.539 \mathrm{lb}
\end{gathered}
$$

and

$$
\begin{array}{r}
M_{E}=(7.5 \mathrm{in} .)(3.2482-1)(23.539 \mathrm{lb})=396.9 \mathrm{lb} \cdot \mathrm{in} . \\
M_{E}=397 \mathrm{lb} \cdot \mathrm{in} .
\end{array}
$$

Changing the direction of rotation will change the direction of M_{E} and will switch the magnitudes of T_{1} and T_{2}.

The magnitude of the couple applied will not change.

SOLUTION

FBD lever:

$$
\begin{gathered}
\left(\Sigma M_{B}=0: \quad(25 \mathrm{~mm}) T_{C}-(62.5 \mathrm{~mm}) T_{A}=0\right. \\
T_{C}=2.5 T_{A}
\end{gathered}
$$

Impending ccw rotation:

FBD lever:

(a)

But

$$
T_{C}=2.5 T_{A}
$$

So

$$
T_{C}=T_{\max }=7.2 \mathrm{kN}
$$

$$
T_{A}=\frac{7.2 \mathrm{kN}}{2.5}=2.88 \mathrm{kN}
$$

$$
\left(\Sigma M_{D}=0: \quad M_{D}+(100 \mathrm{~mm})\left(T_{A}-T_{C}\right)=0\right.
$$

$$
M_{D}=(100 \mathrm{~mm})(7.2-2.88) \mathrm{kN}
$$

(b) Also, impending slipping: $\quad \mu_{s} \beta=\ln \frac{T_{C}}{T_{A}}$

$$
\mu_{s}=\frac{1}{\beta} \ln \frac{T_{C}}{T_{A}}=\frac{1}{\frac{4 \pi}{3}} \ln 2.5=0.2187
$$

Therefore,

$$
\left(\mu_{s}\right)_{\min }=0.219
$$

PROBLEM 8.114

A differential band brake is used to control the speed of a drum which rotates at a constant speed. Knowing that the coefficient of kinetic friction between the belt and the drum is 0.30 and that a couple of magnitude is $150 \mathrm{~N} \cdot \mathrm{~m}$ applied to the drum, determine the corresponding magnitude of the force \mathbf{P} that is exerted on end D of the lever when the drum is rotating (a) clockwise, (b) counterclockwise.

SOLUTION

FBD lever:

FBD drum:

(a) For cw rotation, M_{E})

$$
\begin{aligned}
\left(\Sigma M_{E}=0:\right. & (0.14 \mathrm{~m})\left(T_{A}-T_{C}\right)-M_{E}=0 \\
& T_{A}-T_{C}=\frac{150 \mathrm{~N} \cdot \mathrm{~m}}{0.14 \mathrm{~m}}=1071.43 \mathrm{~N}
\end{aligned}
$$

Impending slipping:

$$
\begin{gathered}
T_{A}=T_{C} e^{\mu_{k} \beta}=T_{C} e^{(0.3) \frac{7 \pi}{6}} \\
T_{A}=3.00284 T_{C}
\end{gathered}
$$

$$
(3.00284-1) T_{C}=1071.43 \mathrm{~N} \quad \text { or } \quad T_{C}=534.96 \mathrm{~N}
$$

and

$$
T_{A}=1606.39 \mathrm{~N}
$$

PROBLEM 8.114 CONTINUED

From Equation (1):

$$
P=\frac{15(1606.39 \mathrm{~N})-4(534.96 \mathrm{~N})}{34}
$$

$$
P=646 \mathrm{~N}
$$

(b) For ccw rotation,

Also, impending slip \Rightarrow and

And Equation (1) \Rightarrow
$\left.M_{E}\right\rangle \quad$ and $\quad \Sigma M_{E}=0 \Rightarrow T_{C}-T_{A}=1071.43 \mathrm{~N}$

$$
T_{C}=3.00284 T_{A}, \text { so } T_{A}=534.96 \mathrm{~N}
$$

$$
T_{C}=1606.39 \mathrm{~N}
$$

$P=\frac{15(534.96 \mathrm{~N})-4(1606.39 \mathrm{~N})}{34}$

$$
P=47.0 \mathrm{~N}
$$

SOLUTION

FBD lever:

For self-locking $\mathbf{P}=0$

$$
\begin{gathered}
\left(\Sigma M_{B}=0: \quad(0.04 \mathrm{~m}) T_{C}-(0.15 \mathrm{~m}) T_{A}=0\right. \\
T_{C}=3.75 T_{A}
\end{gathered}
$$

FBD drum:

For impending slipping of belt

$$
T_{C}=T_{A} e^{\mu_{s} \beta}
$$

or

$$
\mu_{s} \beta=\ln \frac{T_{C}}{T_{A}}
$$

Then

$$
\mu_{s}=\frac{1}{\beta} \ln \frac{T_{C}}{T_{A}}=\frac{1}{\frac{7 \pi}{6}} \ln 3.75=0.3606
$$

SOLUTION

FBD block:

$$
\begin{array}{cl}
\Sigma F_{n}=0: & N_{C}-(200 \mathrm{lb}) \cos 30^{\circ}=0 ; N=100 \sqrt{3} \mathrm{lb} \\
\Sigma F_{t}=0: & T_{C}-(200 \mathrm{lb}) \sin 30^{\circ} \mp F_{C}=0 \\
& T_{C}=100 \mathrm{lb} \pm F_{C} \tag{1}
\end{array}
$$

where the upper signs apply when F_{C} acts \downarrow
(a) For impending motion of block $\left.\searrow, F_{C}\right\rangle$, and

$$
F_{C}=\mu_{s} N_{C}=0.35(100 \sqrt{3} \mathrm{lb})=35 \sqrt{3} \mathrm{lb}
$$

$$
T_{C}=(100-35 \sqrt{3}) \mathrm{lb}
$$

But belt slips on drum, so

$$
T_{C}=W_{A} e^{\mu_{k} \beta}
$$

$$
W_{A}=[(100-35 \sqrt{3}) \mathrm{lb}] e^{-0.25\left(\frac{2 \pi}{3}\right)}
$$

$$
W_{A}=23.3 \mathrm{lb}
$$

(b) For impending motion of block $\bigvee, F_{C} \backslash$ and $F_{C}=\mu_{s} N_{C}=35 \sqrt{3} \mathrm{lb}$

From Equation (1):

$$
T_{C}=(100+35 \sqrt{3}) \mathrm{lb}
$$

Belt still slips, so

$$
W_{A}=T_{C} e^{-\mu_{k} \beta}=[(100+35 \sqrt{3}) \mathrm{lb}] e^{-0.25\left(\frac{2 \pi}{3}\right)}
$$

$$
W_{A}=95.1 \mathrm{lb}
$$

PROBLEM 8.116 CONTINUED

(c) For steady motion of block $\downarrow, F_{C} \downarrow$, and $F_{C}=\mu_{k} N_{C}=25 \sqrt{3} \mathrm{lb}$

Then, from Equation (1):

$$
T=(100+25 \sqrt{3}) \mathrm{lb} .
$$

Also, belt is not slipping on drum, so

$$
W_{A}=T_{C} e^{-\mu_{s} \beta}=[(100+25 \sqrt{3}) \mathrm{lb}] e^{-0.35\left(\frac{2 \pi}{3}\right)}
$$

$$
W_{A}=68.8 \mathrm{lb}
$$

FBD drum:

$$
\begin{gather*}
\not \Sigma F_{n}=0: \quad N_{C}-(200 \mathrm{lb}) \cos 30^{\circ}=0 ; N_{C}=100 \sqrt{3} \mathrm{lb} \\
\searrow \Sigma F_{t}=0: \quad \pm F_{C}+(200 \mathrm{lb}) \sin 30^{\circ}-T=0 \\
T=100 \mathrm{lb} \pm F_{C} \tag{1}
\end{gather*}
$$

where the upper signs apply when F_{C} acts \downarrow
(a) For impending motion of block $\searrow, F_{C} \backslash$ and $F_{C}=\mu_{s} N_{C}$

So

$$
\begin{aligned}
& F_{C}=0.35(100 \sqrt{3} \mathrm{lb})=35 \sqrt{3} \mathrm{lb} \\
& \\
& \quad T=100 \mathrm{lb}-35 \sqrt{3} \mathrm{lb}=39.375 \mathrm{lb}
\end{aligned}
$$

Also belt slipping is impending so

$$
T=W_{A} e^{\mu_{s} \beta}
$$

or

$$
W_{A}=T e^{-\mu_{s} \beta}=(39.378 \mathrm{lb}) e^{-0.35\left(\frac{2 \pi}{3}\right)}
$$

$$
W_{A}=18.92 \mathrm{lb}
$$

(b) For impending motion of block $\downarrow, F_{C} \downarrow$, and $F_{C}=\mu_{S} N_{C}=35 \sqrt{3} \mathrm{lb}$

But $\quad T=(100+35 \sqrt{3}) \mathrm{lb}=160.622 \mathrm{lb}$.
Also belt slipping is impending)

So

$$
W_{A}=T e^{+\mu_{s} \beta}=(160.622 \mathrm{lb}) e^{0.35\left(\frac{2 \pi}{3}\right)}
$$

$$
W_{A}=334 \mathrm{lb}
$$

(c) For steady motion of block $\downarrow, F_{C} \downarrow$, and $F_{C}=\mu_{k} N_{C}=25 \sqrt{3} \mathrm{lb}$

Then

$$
T=(100 \mathrm{lb}+25 \sqrt{3} \mathrm{lb})=143.301 \mathrm{lb}
$$

Now belt is slipping)

So

$$
\begin{aligned}
W_{A}=T e^{\mu_{k} \beta}=(143.301 \mathrm{lb}) e^{0.25\left(\frac{2 \pi}{3}\right)} & \\
& W_{A}=242 \mathrm{lb}
\end{aligned}
$$

SOLUTION

Note:

$$
\theta=\sin ^{-1} \frac{r}{2 r}=30^{\circ}=\frac{\pi}{6} \mathrm{rad}
$$

So

$$
\beta_{C}=\beta_{D}=\frac{2 \pi}{3} \quad \text { and } \quad \beta_{E}=\pi
$$

(a) All pulleys locked \Rightarrow slipping impends at all surface simultaneously.

If A impends \uparrow,

$$
T_{2}=W_{A} e^{\mu_{s} \beta_{C}} ; T_{1}=T_{2} e^{\mu_{s} \beta_{D}} ; W_{B}=T_{1} e^{\mu_{s} \beta_{E}}
$$

So

$$
W_{B}=W_{A} e^{\mu_{s}\left(\beta_{C}+\beta_{D}+\beta_{E}\right)} \quad \text { or } \quad W_{A}=W_{B} e^{-\mu_{s}\left(\beta_{C}+\beta_{D}+\beta_{E}\right)}
$$

Then

$$
m_{A}=m_{B} e^{-\mu_{s}\left(\beta_{C}+\beta_{D}+\beta_{E}\right)}=(8 \mathrm{~kg}) e^{-0.2\left(\frac{2 \pi}{3}+\frac{2 \pi}{3}+\pi\right)}=1.847 \mathrm{~kg}
$$

If A impends

$$
W_{A}=T_{2} e^{\mu_{s} \beta_{C}}=T_{1} e^{\mu_{s} \beta_{D}} e^{\mu_{s} \beta_{C}}=W_{B} e^{\mu_{s}\left(\beta_{E}+\beta_{D}+\beta_{C}\right)}
$$

So

$$
m_{A}=m_{B} e^{\mu_{S}\left(\beta_{E}+\beta_{D}+\beta_{C}\right)}=(8 \mathrm{~kg}) e^{0.2\left(\pi+\frac{2 \pi}{3}+\frac{2 \pi}{3}\right)}=34.7 \mathrm{~kg}
$$

Equilibrium for $1.847 \mathrm{~kg} \leq m_{A} \leq 34.7 \mathrm{~kg}$

PROBLEM 8.118 CONTINUED

(b) Pulleys $C \& E$ locked, pulley D free $\Rightarrow T_{1}=T_{2}$, other relations remain the same.

If A impends \uparrow,

$$
T_{2}=W_{A} e^{\mu_{S} \beta_{C}}=T_{1} \quad W_{B}=T_{1} e^{\mu_{S} \beta_{E}}=W_{A} e^{\mu_{S}\left(\beta_{C}+\beta_{E}\right)}
$$

So

$$
m_{A}=m_{B} e^{-\mu_{s}\left(\beta_{C}+\beta_{E}\right)}=(8 \mathrm{~kg}) e^{-0.2\left(\frac{2 \pi}{3}+\pi\right)}=2.807 \mathrm{~kg}
$$

If A impends \downarrow slipping is reversed,

$$
W_{A}=W_{B} e^{+\mu_{S}\left(\beta_{C}+\beta_{E}\right)}
$$

Then

$$
m_{A}=m_{B} e^{\mu_{s}\left(\beta_{C}+\beta_{E}\right)}=(8 \mathrm{~kg}) e^{0.2\left(\frac{5 \pi}{3}\right)}=22.8 \mathrm{~kg}
$$

Equilibrium for $2.81 \mathrm{~kg} \leq m_{A} \leq 22.8 \mathrm{~kg} 4$

SOLUTION

Note:

$$
\begin{gathered}
\theta=\sin ^{-1} \frac{r}{2 r}=30^{\circ}=\frac{\pi}{6} \mathrm{rad} \\
\beta_{C}=\beta_{D}=\frac{2 \pi}{3} \quad \text { and } \quad \beta_{E}=\pi
\end{gathered}
$$

Mass A moves up
(a) C rotates λ, for maximum W_{A} have no belt slipping on C, so

$$
W_{A}=T_{2} e^{\mu_{s} \beta_{C}}
$$

D and E are fixed, so

$$
T_{1}=T_{2} e^{\mu_{k} \beta_{D}}
$$

and

$$
W_{B}=T_{1} e^{\mu_{k} \beta_{E}}=T_{2} e^{\mu_{k}\left(\beta_{D}+\beta_{E}\right)} \Rightarrow T_{2}=W_{B} e^{-\mu_{k}\left(\beta_{D}+\beta_{E}\right)}
$$

Thus

$$
m_{A} g=m_{B} g e^{\mu_{s} \beta_{C}-\mu_{k}\left(\beta_{D}+\beta_{E}\right)} \quad \text { or } \quad m_{A}=(8 \mathrm{~kg}) e^{\left(\frac{0.4 \pi}{3}-0.1 \pi-0.15 \pi\right)}
$$

$$
m_{A}=5.55 \mathrm{~kg}
$$

PROBLEM 8.119 CONTINUED

(b) E rotates λ, no belt slip on E, so

$$
T_{1}=W_{B} e^{\mu_{s} \beta_{E}}
$$

C and D fixed, so

$$
\begin{gathered}
T_{1}=T_{2} e^{\mu_{k} \beta_{D}}=W_{A} e^{\mu_{k}\left(\beta_{C}+\beta_{D}\right)} \\
m_{A} g=T_{1} e^{-\mu_{k}\left(\beta_{C}+\beta_{D}\right)}=m_{B} g e^{\mu_{s} \beta_{E}-\mu_{k}\left(\beta_{C}+\beta_{D}\right)} \\
m_{A}=(8 \mathrm{~kg}) e^{(0.2 \pi-0.1 \pi-0.1 \pi)}=8.00 \mathrm{~kg}
\end{gathered}
$$

or

$$
m_{A}=8.00 \mathrm{~kg}
$$

Note:

$$
\theta=\sin ^{-1} \frac{0.075 \mathrm{~m}}{0.15 \mathrm{~m}}=30^{\circ}=\frac{\pi}{6} \mathrm{rad}
$$

So

$$
\beta_{C}=\frac{5}{6} \pi, \beta_{D}=\frac{2}{3} \pi, \beta_{E}=\frac{1}{2} \pi
$$

(a) All pulleys locked, slipping at all surfaces.

For m_{A} impending $\uparrow, \quad T_{1}=W_{A} e^{\mu_{s} \beta_{C}}$,

$$
T_{2}=T_{1} e^{\mu_{s} \beta_{D}}, \quad \text { and } \quad W_{B}=T_{2} e^{\mu_{k} \beta_{E}}
$$

So

$$
m_{B} g=m_{A} g e^{\mu_{s}\left(\beta_{C}+\beta_{D}+\beta_{E}\right)}
$$

$$
8 \mathrm{~kg}=m_{A} e^{0.2\left(\frac{5}{6}+\frac{2}{3}+\frac{1}{2}\right) \pi} \quad \text { or } \quad m_{A}=2.28 \mathrm{~kg}
$$

For m_{A} impending down, all tension ratios are inverted, so

$$
m_{A}=(8 \mathrm{~kg}) e^{0.2\left(\frac{5}{6}+\frac{2}{3}+\frac{1}{2}\right) \pi}=28.1 \mathrm{~kg}
$$

Equilibrium for $2.28 \mathrm{~kg} \leq m_{A} \leq 28.1 \mathrm{~kg}$
(b) Pulleys C and E locked, D free $\Rightarrow T_{1}=T_{2}$, other ratios as in (a)

$$
m_{A} \text { impending } \uparrow, \quad T_{1}=W_{A} e^{\mu_{s} \beta_{C}}=T_{2}
$$

and

$$
W_{B}=T_{2} e^{\mu_{s} \beta_{E}}=W_{A} e^{\mu_{s}\left(\beta_{C}+\beta_{E}\right)}
$$

So $\quad m_{B} g=m_{A} g e^{\mu\left(\beta_{C}+\beta_{E}\right)} \quad$ or $\quad 8 \mathrm{~kg}=m_{A} e^{0.2\left(\frac{5}{6}+\frac{1}{2}\right) \pi}$

$$
m_{A}=3.46 \mathrm{~kg}
$$

m_{A} impending \downarrow, all tension ratios are inverted, so

$$
\begin{aligned}
m_{A} & =8 \operatorname{kg} e^{0.2\left(\frac{5}{6}+\frac{1}{2}\right) \pi} \\
& =18.49 \mathrm{~kg}
\end{aligned}
$$

Equilibrium for $3.46 \mathrm{~kg} \leq m_{A} \leq 18.49 \mathrm{~kg}$

PROBLEM 8.121

A cable passes around three $30-\mathrm{mm}$-radius pulleys and supports two blocks as shown. Two of the pulleys are locked to prevent rotation, while the third pulley is rotated slowly at a constant speed. Knowing that the coefficients of friction between the cable and the pulleys are $\mu_{s}=0.20$ and $\mu_{k}=0.15$, determine the largest mass m_{A} which can be raised (a) if pulley C is rotated, (b) if pulley E is rotated.

SOLUTION

Note:

$$
\begin{aligned}
\theta & =\sin ^{-1} \frac{0.075 \mathrm{~m}}{0.15 \mathrm{~m}}=30^{\circ}=\frac{\pi}{6} \mathrm{rad} \\
\beta_{C} & =\frac{5}{6} \pi, \beta_{D}=\frac{2}{3} \pi, \beta_{E}=\frac{1}{2} \pi
\end{aligned}
$$

(a) To raise maximum m_{A}, with C rotating) $W_{A}=T_{1} e^{\mu_{s} \beta_{C}}$. If D and E are fixed, cable must slip there, so $T_{2}=T_{1} e^{\mu_{k} \beta_{D}}$
and

$$
\begin{aligned}
W_{B} & =T_{2} e^{\mu_{k} \beta_{E}}=T_{1} e^{\mu_{k}\left(\beta_{D}+\beta_{E}\right)} \\
& =W_{A} e^{-\mu_{s} \beta_{C}} e^{\mu_{k}\left(\beta_{D}+\beta_{E}\right)}
\end{aligned}
$$

$$
(8 \mathrm{~kg}) g=m_{A} g e^{-0.2\left(\frac{5}{6} \pi\right)} e^{0.15\left(\frac{2}{3}+\frac{1}{2}\right) \pi}
$$

$$
m_{A}=7.79 \mathrm{~kg}
$$

(b) With E rotating $\lambda, T_{2}=W_{B} e^{\mu_{s} \beta_{E}}$. With C and D fixed.

$$
\begin{aligned}
& \qquad T_{1}=W_{A} e^{\mu_{k} \beta_{C}} \quad \text { and } \quad T_{2}=T_{1} e^{\mu_{k} \beta_{D}}=W_{A} e^{\mu_{k}\left(\beta_{C}+\beta_{D}\right)} \\
& \text { so } \\
& \qquad W_{B}=W_{A} e^{\mu_{k}\left(\beta_{C}+\beta_{D}\right)} e^{-\mu_{s} \beta_{E}} \\
& \qquad(8 \mathrm{~kg}) g=m_{A} g e^{0.15\left(\frac{5}{6}+\frac{2}{3}\right) \pi} e^{-0.2\left(\frac{1}{2} \pi\right)}
\end{aligned}
$$

$$
m_{A}=5.40 \mathrm{~kg}
$$

SOLUTION

FBD drive drum:

$$
\begin{array}{ll}
\int M_{B}=0: & r\left(T_{A}-T\right)-M=0 \\
& T_{A}-T=\frac{M}{r}=\frac{2.7 \mathrm{lb} \cdot \mathrm{in} .}{1 \mathrm{in} .}=2.7 \mathrm{lb}
\end{array}
$$

Impending slipping:

$$
T_{A}=T e^{\mu_{S} \beta}=T e^{0.4 \pi}
$$

So

$$
T\left(e^{0.4 \pi}-1\right)=2.7 \mathrm{lb}
$$

or

$$
T=1.0742 \mathrm{lb}
$$

If C is free to rotate, $P=T$ $P=1.074 \mathrm{lb}$

SOLUTION

FBD drive drum:

$$
\begin{array}{ll}
\left(\Sigma M_{B}=0:\right. & r\left(T_{A}-T\right)-M=0 \\
& T_{A}-T=\frac{M}{r}=\frac{2.7 \mathrm{lb} \cdot \mathrm{in.}}{1 \mathrm{in} .}=2.7 \mathrm{lb}
\end{array}
$$

Impending slipping:

$$
T_{A}=T e^{\mu_{s} \beta}=T e^{0.4 \pi}
$$

So

$$
\left(e^{0.4 \pi}-1\right) T=2.7 \mathrm{lb}
$$

or

$$
T=1.07416 \mathrm{lb}
$$

If C is fixed, the tape must slip (
So

$$
P=T e^{\mu_{k} \beta_{C}}=1.07416 \mathrm{lb} e^{0.3 \frac{\pi}{2}}=1.7208 \mathrm{lb}
$$

PROBLEM 8.124

For the band brake shown, the maximum allowed tension in either belt is 5.6 kN . Knowing that the coefficient of static friction between the belt and the 160 -mm-radius drum is 0.25 , determine (a) the largest clockwise moment \mathbf{M}_{0} that can be applied to the drum if slipping is not to occur, (b) the corresponding force \mathbf{P} exerted on end E of the lever.

SOLUTION

FBD pin B:
(a) By symmetry: $\quad T_{1}=T_{2}$

$$
\begin{equation*}
\uparrow \Sigma F_{y}=0: \quad B-2\left(\frac{\sqrt{2}}{2} T_{1}\right)=0 \quad \text { or } \quad B=\sqrt{2} T_{1}=\sqrt{2} T_{2} \tag{1}
\end{equation*}
$$

For impending rotation

$$
T_{3}>T_{1}=T_{2}>T_{4}, \text { so } T_{3}=T_{\max }=5.6 \mathrm{kN}
$$

Then

$$
T_{1}=T_{3} e^{-\mu_{s} \beta_{L}}=(5.6 \mathrm{kN}) e^{-0.25\left(\frac{\pi}{4}+\frac{\pi}{6}\right)}
$$

or

$$
T_{1}=4.03706 \mathrm{kN}=T_{2}
$$

and

$$
T_{4}=T_{2} e^{-\mu_{s} \beta_{R}}=(4.03706 \mathrm{kN}) e^{-0.25\left(\frac{3 \pi}{4}\right)}
$$

or

$$
T_{4}=2.23998 \mathrm{kN}
$$

$\searrow \Sigma M_{F}=0: \quad M_{0}+r\left(T_{4}-T_{3}+T_{2}-T_{1}\right)=0$
or

$$
M_{0}=(0.16 \mathrm{~m})(5.6 \mathrm{kN}-2.23998 \mathrm{kN})=0.5376 \mathrm{kN} \cdot \mathrm{~m}
$$

Lever:

$$
\mathbf{M}_{0}=538 \mathrm{~N} \cdot \mathrm{~m}
$$

(b) Using Equation (1)

$$
\begin{aligned}
B=\sqrt{2} T_{1} & =\sqrt{2}(4.03706 \mathrm{kN}) \\
& =5.70927 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
\left(\Sigma M_{D}=0:(0.05 \mathrm{~m})(5.70927 \mathrm{kN})-(0.25 \mathrm{~m}) P\right. & =0 \\
\mathbf{P} & =1.142 \mathrm{kN}
\end{aligned}
$$

PROBLEM 8.125

Solve Problem 8.124 assuming that a counterclockwise moment is applied to the drum.

SOLUTION

FBD pin B:
(a) By symmetry: $\quad T_{1}=T_{2}$

$\uparrow \Sigma F_{y}=0: \quad B-2\left(\frac{\sqrt{2}}{2} T_{1}\right)=0 \quad$ or $\quad B=\sqrt{2} T_{1}$
For impending rotation $;$:
FBD Drum

$$
T_{4}>T_{2}=T_{1}>T_{3}, \text { so } T_{4}=T_{\max }=5.6 \mathrm{kN}
$$

Then

$$
T_{2}=T_{4} e^{-\mu_{s} \beta_{R}}=(5.6 \mathrm{kN}) e^{-0.25\left(\frac{3 \pi}{4}\right)}
$$

or

$$
T_{2}=3.10719 \mathrm{kN}=T_{1}
$$

and

$$
T_{3}=T_{1} e^{-\mu_{s} \beta_{L}}=(3.10719 \mathrm{kN}) e^{-0.25\left(\frac{\pi}{4}+\frac{\pi}{6}\right)}
$$

or $\quad T_{3}=2.23999 \mathrm{kN}$

$$
\begin{aligned}
\left(\Sigma M_{F}=0:\right. & M_{0}+r\left(T_{2}-T_{1}+T_{3}-T_{4}\right)=0 \\
& M_{0}=(160 \mathrm{~mm})(5.6 \mathrm{kN}-2.23999 \mathrm{kN})=537.6 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\mathbf{M}_{0}=538 \mathrm{~N} \cdot \mathrm{~m}
$$

FBD Lever:

(b) Using Equation (1)

$$
\begin{aligned}
B & =\sqrt{2} T_{1}=\sqrt{2}(3.10719 \mathrm{kN}) \\
B & =4.3942 \mathrm{kN}
\end{aligned}
$$

$$
\left(\Sigma M_{D}=0:(0.05 \mathrm{~m})(4.3942 \mathrm{kN})-(0.25 \mathrm{~m}) P=0\right.
$$

$$
\mathbf{P}=879 \mathrm{~N}
$$

PROBLEM 8.126

The strap wrench shown is used to grip the pipe firmly without marring the surface of the pipe. Knowing that the coefficient of static friction is the same for all surfaces of contact, determine the smallest value of μ_{s} for which the wrench will be self-locking when $a=10$ in., $r=1.5$ in., and $\theta=65^{\circ}$.

SOLUTION

For the wrench to be self-locking, friction must be sufficient to maintain equilibrium as P is increased from zero to $P_{\max }$, as well as to prevent slipping of the belt on the pipe.

FBD wrench:

$$
\begin{array}{r}
\left(\Sigma M_{E}=0:\left(\frac{10 \mathrm{in} .}{\sin 65^{\circ}}-1.5 \mathrm{in} .\right) F-\left(\frac{10 \mathrm{in} .}{\tan 65^{\circ}}-1.5 \mathrm{in} .\right) T_{2}=0\right. \\
9.5338 F=3.1631 T_{2} \quad \text { or } \quad 3.01406=\frac{T_{2}}{F} \tag{1}
\end{array}
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad-T_{2}+N \sin 65^{\circ}+F \cos 65^{\circ}=0
$$

Impending slipping:

$$
\begin{gather*}
N=F / \mu_{s} \\
F\left(\frac{\sin 65^{\circ}}{\mu_{s}}+\cos 65^{\circ}\right)=T_{2} \\
\frac{0.90631}{\mu_{s}}+0.42262=\frac{T_{2}}{F} \tag{2}
\end{gather*}
$$

Solving Equations (1) and (2) yields $\mu_{s}=0.3497$; must still check belt on pipe.

PROBLEM 8.126 CONTINUED

Small portion of belt at A :

$$
\Sigma \Sigma F_{t}=0: \quad 2 F-T_{1}=0
$$

or

Belt impending slipping:

$$
T_{1}=2 F
$$

$$
\ln \frac{T_{2}}{T_{1}}=\mu_{s} \beta
$$

$$
\mu_{s}=\frac{1}{\beta} \ln \frac{T_{2}}{T_{1}}=\frac{1}{\beta} \ln \frac{T_{2}}{2 F}
$$

Using Equation (1)

$$
\begin{aligned}
\mu_{s} & =\frac{180}{295 \pi} \ln 1.50703 \\
& =0.0797
\end{aligned}
$$

SOLUTION

For the wrench to be self-locking, friction must be sufficient to maintain equilibrium as P is increased from zero to $P_{\max }$, as well as to prevent slipping of the belt on the pipe.

FBD wrench:

or

$$
\begin{gather*}
\frac{T_{2}}{F}=7.5056 \tag{1}\\
\rightarrow \Sigma F_{x}=0:-T_{2}+N \sin 75^{\circ}+F \cos 75^{\circ}=0
\end{gather*}
$$

Impending slipping:

$$
N=F / \mu_{s}
$$

So

$$
F\left(\frac{\sin 75^{\circ}}{\mu_{s}}+\cos 75^{\circ}\right)=T_{2}
$$

$$
\begin{equation*}
\frac{T_{2}}{F}=\frac{0.96593}{\mu_{s}}+0.25882 \tag{2}
\end{equation*}
$$

Solving Equations (1) and (2): $\mu_{s}=0.13329$; must still check belt on pipe.

PROBLEM 8.127 CONTINUED

Small portion of belt at A :

$$
\Sigma F_{t}=0: \quad 2 F-T_{1}=0
$$

or
Impending belt slipping:

$$
\ln \frac{T_{2}}{T_{1}}=\mu_{s} \beta
$$

So

$$
\mu_{s}=\frac{1}{\beta} \ln \frac{T_{2}}{T_{1}}=\frac{1}{\beta} \ln \frac{T_{2}}{2 F}
$$

Using Equation (1):

$$
\begin{aligned}
\mu_{s} & =\frac{180}{285 \pi} \ln \frac{7.5056}{2} \\
& =0.2659
\end{aligned}
$$

SOLUTION

So

$$
\Delta T \cos \frac{\Delta \theta}{2}=\mu_{s} 2 T \sin \frac{\Delta \theta}{2}+\mu_{s} \Delta T \frac{\sin \Delta \theta}{2}
$$

In limit as

$$
\Delta \theta \rightarrow 0: \quad d T=\mu_{s} T d \theta, \quad \text { or } \quad \frac{d T}{T}=\mu_{s} d \theta
$$

So

$$
\begin{aligned}
\int_{T_{1}}^{T_{2}} \frac{d T}{T} & =\int_{0}^{\beta} \mu_{s} d \theta \\
\ln \frac{T_{2}}{T_{1}} & =\mu_{s} \beta
\end{aligned}
$$

$$
\text { or } T_{2}=T_{1} e^{\mu_{s} \beta}
$$

Note: Nothing above depends on the shape of the surface, except it is assumed smooth.

PROBLEM 8.129

Complete the derivation of Equation (8.15), which relates the tension in both parts of a V belt.

SOLUTION

Small belt section:

side view:	
	$\rightarrow \Sigma F_{y}=0: 2 \frac{\Delta N}{2} \sin \frac{\alpha}{2}-[T+(T+\Delta T)] \sin \frac{\Delta \theta}{2}=0$
	view:

Impending slipping:

$$
\Delta F=\mu_{s} \Delta N \Rightarrow \Delta T \cos \frac{\Delta \theta}{2}=\mu_{s} \frac{2 T+\Delta T}{\sin \frac{\alpha}{2}} \sin \frac{\Delta \theta}{2}
$$

In limit as $\Delta \theta \rightarrow 0$:

$$
d T=\frac{\mu_{s} T d \theta}{\sin \frac{\alpha}{2}} \quad \text { or } \quad \frac{d T}{T}=\frac{\mu_{s}}{\sin \frac{\alpha}{2}} d \theta
$$

So

$$
\int_{T_{1}}^{T_{2}} \frac{d T}{T}=\frac{\mu_{s}}{\sin \frac{\alpha}{2}} \int_{0}^{\beta} d \theta
$$

or

$$
\ln \frac{T_{2}}{T_{1}}=\frac{\mu_{s} \beta}{\sin \frac{\alpha}{2}}
$$

or

$$
T_{2}=T_{1} e^{\mu_{s} \beta / \sin \frac{\alpha}{2}}
$$

SOLUTION

FBD motor + mount:

FBD Drum:

$1385.369 N$

$$
\left(\Sigma M_{D}=0: \quad(0.24 \mathrm{~m}) W-(0.26 \mathrm{~m}) T_{1}-(0.14 \mathrm{~m}) T_{2}=0\right.
$$

Impending slipping: $\quad T_{2}=T_{1} e^{\mu_{S} \beta / \sin \frac{\alpha}{2}}$

$$
T_{2}=T_{1} e^{\frac{0.4 \pi}{\sin 18^{\circ}}}=58.356 T_{1}
$$

Thus

$$
\begin{gathered}
(0.24 \mathrm{~m})(833.85 \mathrm{~N})-[0.26 \mathrm{~m}+(0.14 \mathrm{~m})(58.356)] T_{1}=0 \\
T_{1}=23.740 \mathrm{~N} \\
T_{2}=1385.369 \mathrm{~N}
\end{gathered}
$$

$$
\begin{array}{r}
\left(\Sigma M_{B}=0: \quad M_{B}+(0.06 \mathrm{~m})(23.740 \mathrm{~N}-1385.369 \mathrm{~N})=0\right. \\
M_{B}=81.7 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

(Compare to $M_{B}=40.1 \mathrm{~N} \cdot \mathrm{~m}$ using flat belt, Problem 8.107.)

SOLUTION

FBD pulley A:

$$
\begin{array}{r}
T_{2}=T_{1} e^{0.35 \pi / \sin 18^{\circ}}=35.1015 T_{1} \\
\longrightarrow \Sigma F_{x}=0: \quad T_{1}+T_{2}-225 \mathrm{lb}=0 \\
T_{1}(1+35.1015)=225 \mathrm{lb}
\end{array}
$$

So

$$
T_{1}=6.2324 \mathrm{lb}
$$

$$
T_{2}=218.768 \mathrm{lb}=T_{\max }
$$

$$
\left(\Sigma M_{A}=0: \quad M+(3 \mathrm{in} .)\left(T_{1}-T_{2}\right)=0\right.
$$

$$
M=(3 \mathrm{in} .)(218.768 \mathrm{lb}-6.232 \mathrm{lb})
$$

(a)

$$
M=638 \mathrm{lb} \cdot \mathrm{in}
$$

(Compare to $338 \mathrm{lb} \cdot$ in. with flat belt, Problem 8.109.)
(b)

$$
T_{\max }=219 \mathrm{lb}
$$

PROBLEM 8.132

$\mu_{s}=0.25$
$\mu_{k}=0.20$
Considering only values of θ less than 90°, determine the smallest value of θ required to start the block moving to the right when (a) $W=75 \mathrm{lb}$, (b) $W=100 \mathrm{lb}$.

SOLUTION

FBD block: (motion impending)

$$
\phi_{s}=\tan ^{-1} \mu_{s}=14.036^{\circ}
$$

$$
\frac{30 \mathrm{lb}}{\sin \phi_{s}}=\frac{W}{\sin \left(\theta-\phi_{s}\right)}
$$

$$
\sin \left(\theta-\phi_{s}\right)=\frac{W \sin 14.036^{\circ}}{30 \mathrm{lb}}
$$

or

$$
\sin \left(\theta-14.036^{\circ}\right)=\frac{W}{123.695 \mathrm{lb}}
$$

(a)

$$
W=75 \mathrm{lb}: \quad \theta=14.036^{\circ}+\sin ^{-1} \frac{75 \mathrm{lb}}{123.695 \mathrm{lb}}
$$

$$
\theta=51.4^{\circ}
$$

(b)

$$
W=100 \mathrm{lb}: \quad \theta=14.036^{\circ}+\sin ^{-1} \frac{100 \mathrm{lb}}{123.695 \mathrm{lb}}
$$

PROBLEM 8.133

The machine base shown has a mass of 75 kg and is fitted with skids at A and B. The coefficient of static friction between the skids and the floor is 0.30 . If a force \mathbf{P} of magnitude 500 N is applied at corner C, determine the range of values of θ for which the base will not move.

SOLUTION

FBD machine base (slip impending):

$\frac{W}{\sin \left(90^{\circ}-\phi_{s}-\theta\right)}=\frac{P}{\sin \phi_{s}}$

$$
\sin \left(90^{\circ}-\phi_{s}-\theta\right)=\frac{W \sin 16.699^{\circ}}{P}
$$

$$
90^{\circ}-16.699^{\circ}-\theta=\sin ^{-1}\left[\frac{735.75 \mathrm{lb}}{500 \mathrm{lb}}(0.28734)\right]
$$

$$
\theta=73.301^{\circ}-25.013^{\circ}
$$

$$
\theta=48.3^{\circ}
$$

FBD machine base (tip about B impending):

PROBLEM 8.133 CONTINUED

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(0.2 \mathrm{~m})(735.75 \mathrm{~N})+(0.5 \mathrm{~m})[(500 \mathrm{~N}) \cos \theta]\right. \\
-(0.4 \mathrm{~m})[(500 \mathrm{~N}) \sin \theta]=0 \\
0.8 \sin \theta-\cos \theta=0.5886
\end{gathered}
$$

Solving numerically

$$
\theta=78.7^{\circ}
$$

So, for equilibrium

PROBLEM 8.134

Knowing that a couple of magnitude $30 \mathrm{~N} \cdot \mathrm{~m}$ is required to start the vertical shaft rotating, determine the coefficient of static friction between the annular surfaces of contact.

SOLUTION

For annular contact regions, use Equation 8.8 with impending slipping:

$$
M=\frac{2}{3} \mu_{s} N \frac{R_{2}^{3}-R_{1}^{3}}{R_{2}^{2}-R_{1}^{2}}
$$

So,

$$
30 \mathrm{~N} \cdot \mathrm{~m}=\frac{2}{3} \mu_{s}(4000 \mathrm{~N}) \frac{(0.06 \mathrm{~m})^{3}-(0.025 \mathrm{~m})^{3}}{(0.06 \mathrm{~m})^{2}-(0.025 \mathrm{~m})^{2}}
$$

$$
\mu_{s}=0.1670
$$

SOLUTION

FBD's

A: $\quad \int F_{n}=0: \quad N_{A}-(20 \mathrm{lb}) \cos \theta=0 \quad$ or $\quad N_{A}=(20 \mathrm{lb}) \cos \theta$
Block A:
B: $\quad \int F_{n}=0: \quad N_{B}-N_{A}-(30 \mathrm{lb}) \cos \theta=0$

or

$$
N_{B}=N_{A}+(30 \mathrm{lb}) \cos \theta=(50 \mathrm{lb}) \cos \theta
$$

Impending motion at all surfaces:

$$
\begin{aligned}
F_{A} & =\mu_{S} N_{A} \\
& =0.15(20 \mathrm{lb}) \cos \theta \\
& =(3 \mathrm{lb}) \cos \theta
\end{aligned}
$$

Block B:
$\mathrm{A}: ~ \searrow \Sigma F_{t}=0: \quad F_{A}+(20 \mathrm{lb}) \sin \theta-T=0$

B: $\searrow \Sigma F_{t}=0:-F_{A}+(30 \mathrm{lb}) \sin \theta-T=0$

So

$$
(10 \mathrm{lb}) \sin \theta-2 F_{A}=0
$$

$(10 \mathrm{lb}) \sin \theta=2(3 \mathrm{lb}) \cos \theta$

$$
\theta=\tan ^{-1} \frac{6 \mathrm{lb}}{10 \mathrm{lb}}=30.96^{\circ}
$$

SOLUTION

FBD's
Block A:

A: $\not \subset F_{n}=0: \quad N_{A}-(20 \mathrm{lb}) \cos \theta=0 \quad$ or $\quad N_{A}=(20 \mathrm{lb}) \cos \theta$
B: $\not \subset F_{n}=0: \quad N_{B}-N_{A}-(30 \mathrm{lb}) \cos \theta=0$
or

$$
N_{B}=N_{A}+(30 \mathrm{lb}) \cos \theta=(50 \mathrm{lb}) \cos \theta
$$

Impending motion at all surfaces; B impends \backslash

$$
\begin{aligned}
& F_{A}=\mu_{s} N_{A}=(0.15)(20 \mathrm{lb}) \cos \theta=(3 \mathrm{lb}) \cos \theta \\
& F_{B}=\mu_{s} N_{B}=(0.15)(50 \mathrm{lb}) \cos \theta=(7.5 \mathrm{lb}) \cos \theta
\end{aligned}
$$

Block B:

A: $\searrow \Sigma F_{t}=0:(20 \mathrm{lb}) \sin \theta+F_{A}-T=0$
B: $\forall \Sigma F_{t}=0:(30 \mathrm{lb}) \sin \theta-F_{A}-F_{B}-T=0$
So

$$
(10 \mathrm{lb}) \sin \theta-2 F_{A}-F_{B}=0
$$

$(10 \mathrm{lb}) \sin \theta=2(3 \mathrm{lb}) \cos \theta+(7.5 \mathrm{lb}) \cos \theta$

$$
\tan \theta=\frac{13.5 \mathrm{lb}}{10 \mathrm{lb}}=1.35 ; \quad \theta=53.5^{\circ}
$$

SOLUTION

For impending motion of A up:

$$
T=W_{A} e^{\mu_{s} \beta_{B}}
$$

and

$$
\begin{aligned}
& W_{D}=T e^{\mu_{s} \beta_{C}}=W_{A} e^{\mu_{s}\left(\beta_{B}+\beta_{C}\right)} \\
& m_{D} g=(50 \mathrm{~kg}) g e^{0.4\left(\frac{\pi}{2}+\frac{\pi}{2}\right)} \\
& m_{D}=175.7 \mathrm{~kg}
\end{aligned}
$$

For impending motion of A down, the tension ratios are inverted, so

$$
\begin{gathered}
W_{A}=W_{D} e^{\mu_{s}\left(\beta_{C}+\beta_{B}\right)} \\
(50 \mathrm{~kg}) g=m_{D} g e^{0.4\left(\frac{\pi}{2}+\frac{\pi}{2}\right)} \\
m_{D}=14.23 \mathrm{~kg}
\end{gathered}
$$

For equilibrium:

SOLUTION

(a) Motion of D impends upward, so

$$
\begin{gathered}
T_{B C}=W_{D} e^{\mu_{s} \beta_{C}} \\
W_{A}=T_{B C} e^{\mu_{s} \beta_{B}}=W_{D} e^{\mu_{s}\left(\beta_{C}+\beta_{B}\right)} \\
\text { So } \mu_{S}\left(\frac{\pi}{2}+\frac{\pi}{2}\right)=\ln \frac{W_{A}}{W_{D}}=\ln \left(\frac{50 \mathrm{~kg}}{20 \mathrm{~kg}}\right) \\
\mu_{s}=0.29166
\end{gathered}
$$

$$
\mu_{s}=0.292
$$

(b) From Equation (1): $\quad T_{B C}=(20 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) e^{0.29166 \pi / 2}$

$$
T_{B C}=310 \mathrm{~N}
$$

SOLUTION

FBD wedge (impending

 motion \downarrow):

$$
\phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.35=19.29^{\circ}
$$

By symmetry:

$$
R_{1}=R_{2}
$$

$$
\begin{aligned}
\uparrow \Sigma F_{y}=0: & 2 R_{1} \sin \left(5^{\circ}+\phi_{s}\right)-600 \mathrm{lb}=0 \\
& R_{1}=R_{2}=\frac{300 \mathrm{lb}}{\sin \left(5^{\circ}+19.29^{\circ}\right)}=729.30 \mathrm{lb}
\end{aligned}
$$

When P is removed, the vertical components of R_{1} and R_{2} vanish, leaving the horizontal components

$$
\begin{aligned}
R_{1 x}=R_{2 x} & =R_{1} \cos \left(5^{\circ}+\phi_{s}\right) \\
& =(729.30 \mathrm{lb}) \cos \left(5^{\circ}+19.29^{\circ}\right)
\end{aligned}
$$

$$
R_{1 x}=R_{2 x}=665 \mathrm{lb}
$$

(Note that $\phi_{s}>5^{\circ}$, so wedge is self-locking.)

SOLUTION

FBD's drums:

So

$$
\begin{aligned}
& \beta_{A}=180^{\circ}+30^{\circ}=\pi+\frac{\pi}{6}=\frac{7 \pi}{6} \\
& \beta_{B}=180^{\circ}-30^{\circ}=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}
\end{aligned}
$$

Since $\beta_{B}<\beta_{A}$, slipping will impend first on B (friction coefficients being equal)

$$
\begin{aligned}
T_{2} & =T_{\max }=T_{1} e^{\mu_{s} \beta_{B}} \\
450 \mathrm{~N} & =T_{1} e^{(0.4) 5 \pi / 6} \quad \text { or } \quad T_{1}=157.914 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\Sigma M_{A}=0: \quad M_{A}+(0.12 \mathrm{~m})\left(T_{1}-T_{2}\right)=0\right. \\
& M_{A}=(0.12 \mathrm{~m})(450 \mathrm{~N}-157.914 \mathrm{~N})=35.05 \mathrm{~N} \cdot \mathrm{~m} \\
& M_{A}=35.1 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

PROBLEM 8.141

SOLUTION

FBD block B:

FBD block A:

10 kb
(b) For $P_{\max }$, motion impends at both surfaces
$B: \quad \uparrow \Sigma F_{y}=0: \quad N_{B}-10 \mathrm{lb}-F_{A B} \cos 30^{\circ}=0$

$$
\begin{equation*}
N_{B}=10 \mathrm{lb}+\frac{\sqrt{3}}{2} F_{A B} \tag{1}
\end{equation*}
$$

Impending motion:

$$
F_{B}=\mu_{s} N_{B}=0.3 N_{B}
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad F_{B}-F_{A B} \sin 30^{\circ}=0
$$

$$
\begin{equation*}
F_{A B}=2 F_{B}=0.6 N_{B} \tag{2}
\end{equation*}
$$

Solving (1) and (2)

$$
\begin{aligned}
N_{B} & =10 \mathrm{lb}+\frac{\sqrt{3}}{2}\left(0.6 N_{B}\right) \\
& =20.8166 \mathrm{lb}
\end{aligned}
$$

Then

$$
F_{A B}=0.6 N_{B}=12.4900 \mathrm{lb}
$$

$A: \quad \longrightarrow \Sigma F_{x}=0: \quad F_{A B} \sin 30^{\circ}-N_{A}=0$
$N_{A}=\frac{1}{2} F_{A B}=\frac{1}{2}(12.4900 \mathrm{lb})=6.2450 \mathrm{lb}$
Impending motion: $\quad F_{A}=\mu_{S} N_{A}=0.3(6.2450 \mathrm{lb})=1.8735 \mathrm{lb}$

$$
\uparrow \Sigma F_{y}=0: \quad F_{A}+F_{A B} \cos 30^{\circ}-P-10 \mathrm{lb}=0
$$

$$
P=F_{A}+\frac{\sqrt{3}}{2} F_{A B}-10 \mathrm{lb}
$$

$$
=1.8735 \mathrm{lb}+\frac{\sqrt{3}}{2}(12.4900 \mathrm{lb})-10 \mathrm{lb}=2.69 \mathrm{lb}
$$

$$
P=2.69 \mathrm{lb}
$$

(a)

Since $P=2.69 \mathrm{lb}$ to initiate motion, equilibrium exists with $P=0$

SOLUTION

FBD block (Impending motion down):

$$
\begin{aligned}
& \phi_{s}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.25 \\
& \qquad=(500 \mathrm{lb}) \tan \left(30^{\circ}-\tan ^{-1} 0.25\right) \\
& \quad=143.03 \mathrm{lb}
\end{aligned}
$$

(Impending motion up):

Equilibrium for $143.0 \mathrm{lb} \leq P \leq 483 \mathrm{lb}$

PROBLEM 8.143

Two identical uniform boards, each of weight 40 lb , are temporarily leaned against each other as shown. Knowing that the coefficient of static friction between all surfaces is 0.40 , determine (a) the largest magnitude of the force \mathbf{P} for which equilibrium will be maintained, (b) the surface at which motion will impend.

SOLUTION

Board FBDs:

Assume impending motion at C, so

$$
\begin{aligned}
F_{C} & =\mu_{s} N_{C} \\
& =0.4 N_{C}
\end{aligned}
$$

FBD II:

$$
\begin{aligned}
\left(\Sigma M_{B}=0:\right. & (6 \mathrm{ft}) N_{C}-(8 \mathrm{ft}) F_{C}-(3 \mathrm{ft})(40 \mathrm{lb})=0 \\
& {[6 \mathrm{ft}-0.4(8 \mathrm{ft})] N_{C}=(3 \mathrm{ft})(40 \mathrm{lb}) }
\end{aligned}
$$

or

$$
N_{C}=42.857 \mathrm{lb}
$$

and

$$
F_{C}=0.4 N_{C}=17.143 \mathrm{lb}
$$

$$
\longrightarrow \Sigma F_{x}=0: \quad N_{B}-F_{C}=0
$$

$$
N_{B}=F_{C}=17.143 \mathrm{lb}
$$

$$
\uparrow \Sigma F_{y}=0:-F_{B}-40 \mathrm{lb}+N_{C}=0
$$

$$
F_{B}=N_{C}-40 \mathrm{lb}=2.857 \mathrm{lb}
$$

Check for motion at $B: \quad \frac{F_{B}}{N_{B}}=\frac{2.857 \mathrm{lb}}{17.143 \mathrm{lb}}=0.167<\mu_{s}$, OK, no motion.

PROBLEM 8.143 CONTINUED

FBD I:

$$
\begin{aligned}
& \left(\Sigma M_{A}=0: \quad(8 \mathrm{ft}) N_{B}+(6 \mathrm{ft}) F_{B}-(3 \mathrm{ft})(P+40 \mathrm{lb})=0\right. \\
& \\
& P=\frac{(8 \mathrm{ft})(17.143 \mathrm{lb})+(6 \mathrm{ft})(2.857 \mathrm{lb})}{3 \mathrm{ft}}-40 \mathrm{lb}=11.429 \mathrm{lb}
\end{aligned}
$$

Check for slip at A (unlikely because of P)

$$
\begin{gathered}
\longrightarrow \Sigma F_{x}=0: \quad F_{A}-N_{B}=0 \quad \text { or } \quad F_{A}=N_{B}=17.143 \mathrm{lb} \\
\uparrow \Sigma F_{y}=0: \\
N_{A}-P-40 \mathrm{lb}+F_{B}=0 \quad \text { or } \quad N_{A}=11.429 \mathrm{lb}+40 \mathrm{lb}-2.857 \mathrm{lb} \\
=48.572 \mathrm{lb}
\end{gathered}
$$

Then $\quad \frac{F_{A}}{N_{A}}=\frac{17.143 \mathrm{lb}}{48.572 \mathrm{lb}}=0.353<\mu_{s}, \quad$ OK, no slip \Rightarrow assumption is correct
Therefore,
(a) $P_{\max }=11.43 \mathrm{lb}$
(b) Motion impends at C

[^0]: $\backslash \Sigma F_{y^{\prime}}=0: \quad N-W_{B} \cos 30^{\circ}-F_{A B} \sin 30^{\circ}=0$

[^1]: * See note before Problem 8.75.

[^2]: * See note before Problem 8.75.

