

SOLUTION

$$
\longrightarrow \Sigma F_{x}=0:-F=0
$$

FBD JD:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: V-20 \mathrm{lb}-20 \mathrm{lb}=0 \\
\mathbf{V}=40.0 \mathrm{lb} \uparrow \\
\left(\Sigma M_{J}=0: M-(2 \mathrm{in} .)(20 \mathrm{lb})-(6 \mathrm{in} .)(20 \mathrm{lb})=0\right. \\
\mathbf{M}=160.0 \mathrm{lb} \cdot \mathrm{in} .)
\end{gathered}
$$

SOLUTION

FBD AJ:

$\longrightarrow \Sigma F_{x}=0: 60 \mathrm{lb}-V=0$

$$
\left.\begin{array}{c}
\mathbf{V}=60.0 \mathrm{lb} \longleftarrow \longleftarrow \\
\uparrow \Sigma F_{y}=0:-F=0 \\
\mathbf{F}=0 \\
\left(\Sigma M_{J}=0: M-(1 \mathrm{in} .)(60 \mathrm{lb})=0\right. \\
\mathbf{M}=60.0 \mathrm{lb} \cdot \mathrm{in} .
\end{array}\right)<
$$

SOLUTION

$$
\begin{aligned}
& \rightarrow \Sigma F_{y}=0: A_{y}-80 \mathrm{kN}=0 \quad \mathbf{A}_{y}=80 \mathrm{kN} \uparrow \\
& \left(\Sigma M_{E}=0:(1.2 \mathrm{~m}) A_{x}-(1.5 \mathrm{~m})(80 \mathrm{kN})=0\right. \\
& \mathbf{A}_{x}=100 \mathrm{kN} \longleftarrow \\
& \theta=\tan ^{-1}\left(\frac{0.3 \mathrm{~m}}{0.75 \mathrm{~m}}\right)=21.801^{\circ}
\end{aligned}
$$

FBD AJ:

$\searrow \Sigma F_{x^{\prime}}=0: F-(80 \mathrm{kN}) \sin 21.801^{\circ}-(100 \mathrm{kN}) \cos 21.801^{\circ}=0$

$$
\mathbf{F}=122.6 \mathrm{kN} \backslash \boldsymbol{4}
$$

$$
\nearrow \Sigma F_{y^{\prime}}=0: V+(80 \mathrm{kN}) \cos 21.801^{\circ}-(100 \mathrm{kN}) \sin 21.801^{\circ}=0
$$

$$
\mathbf{V}=37.1 \mathrm{kN}
$$

$$
\begin{array}{r}
\left(\Sigma M_{J}=0: M+(.3 \mathrm{~m})(100 \mathrm{kN})-(.75 \mathrm{~m})(80 \mathrm{kN})=0\right. \\
\mathbf{M}=30.0 \mathrm{kN} \cdot \mathrm{~m})
\end{array}
$$

SOLUTION

FBD Frame:

FBD AJ:

$$
\uparrow \Sigma F_{y}=0: A_{y}-100 \mathrm{~N}=0 \quad \mathbf{A}_{y}=100 \mathrm{~N} \uparrow
$$

$$
\left(\Sigma M_{F}=0:\left[2(0.32 \mathrm{~m}) \cos 30^{\circ}\right] A_{x}-(0.48 \mathrm{~m})(100 \mathrm{~N})=0\right.
$$

$$
\mathbf{A}_{x}=86.603 \mathrm{~N} \longleftarrow
$$

$$
\searrow \Sigma F_{x^{\prime}}=0: F-(100 \mathrm{~N}) \cos 30^{\circ}-(86.603 \mathrm{~N}) \sin 30^{\circ}=0
$$

$$
\mathbf{F}=129.9 \mathrm{~N}
$$

$$
\nearrow \Sigma F_{y^{\prime}}=0: V+(100 \mathrm{~N}) \sin 30^{\circ}-(86.603 \mathrm{~N}) \cos 30^{\circ}=0
$$

$$
\mathbf{V}=25.0 \mathrm{~N}
$$

$$
\left(\Sigma M_{J}=0:\left[(0.16 \mathrm{~m}) \cos 30^{\circ}\right](86.603 \mathrm{~N})\right.
$$

$$
-\left[(0.16 \mathrm{~m}) \sin 30^{\circ}\right](100 \mathrm{~N})-M=0
$$

$$
\mathbf{M}=4.00 \mathrm{~N} \cdot \mathrm{~m})
$$

SOLUTION

FBD Frame:

$A B$ is two-force member, so

$$
\begin{gathered}
\frac{A_{x}}{0.36 \mathrm{~m}}=\frac{A_{y}}{0.15 \mathrm{~m}} \quad A_{y}=\frac{5}{12} A_{x} \\
\left(\Sigma M_{C}=0:(0.3 \mathrm{~m}) A_{x}-(0.48 \mathrm{~m})(390 \mathrm{~N})=0\right. \\
\mathbf{A}_{x}=624 \mathrm{~N} \longleftarrow \\
A_{y}=\frac{5}{12} A_{x}=260 \mathrm{~N} \text { or } \mathbf{A}_{y}=260 \mathrm{~N} \uparrow \\
\rightarrow \Sigma F_{x}=0: F-624 \mathrm{~N}=0
\end{gathered}
$$

FBD AJ:

$$
\uparrow \Sigma F_{y}=0: 260 \mathrm{~N}-V=0
$$

$$
\mathbf{V}=260 \mathrm{~N} \downarrow
$$

$$
\left(\Sigma M_{J}=0: M-(0.2 \mathrm{~m})(260 \mathrm{~N})=0\right.
$$

$$
\mathbf{M}=52.0 \mathrm{~N} \cdot \mathrm{~m})
$$

PROBLEM 7.6

Determine the internal forces at point K of the structure shown.

SOLUTION

FBD Frame:

$$
\begin{gathered}
\left(\Sigma M_{C}=0:(0.3 \mathrm{~m}) A_{x}-(0.48 \mathrm{~m})(390 \mathrm{~N})=0\right. \\
\mathbf{A}_{x}=624 \mathrm{~N} \longleftarrow
\end{gathered}
$$

$A B$ is two-force member, so

$$
\begin{gathered}
\frac{A_{x}}{0.36 \mathrm{~m}}=\frac{A_{y}}{0.15 \mathrm{~m}} \rightarrow A_{y}=\frac{5}{12} A_{x} \quad \mathbf{A}_{y}=260 \mathrm{~N} \uparrow \\
\rightarrow \Sigma F_{x}=0:-A_{x}+C_{x}=0 \quad \mathbf{C}_{x}=\mathbf{A}_{x}=624 \mathrm{~N} \rightarrow \\
\uparrow \Sigma F_{y}=0: A_{y}+C_{y}-390 \mathrm{~N}=0 \\
C_{y}=390 \mathrm{~N}-260 \mathrm{~N}=130 \mathrm{~N} \text { or } \mathbf{C}_{y}=130 \mathrm{~N} \uparrow
\end{gathered}
$$

FBD CK:

$$
\nearrow \Sigma F_{x^{\prime}}=0: F+\frac{12}{13}(624 \mathrm{~N})+\frac{5}{13}(130 \mathrm{~N})=0
$$

$$
F=-626 \mathrm{~N}
$$

$$
\mathbf{F}=626 \mathrm{~N}
$$

$$
\Sigma F_{y^{\prime}}=0: \frac{12}{13}(130 \mathrm{~N})-\frac{5}{13}(624 \mathrm{~N})-V=0
$$

$$
V=-120 \mathrm{~N} \quad \mathbf{V}=120.0 \mathrm{~N}
$$

$$
\left(\Sigma M_{K}=0:(0.1 \mathrm{~m})(624 \mathrm{~N})-(0.24 \mathrm{~m})(130 \mathrm{~N})-M=0\right.
$$

$$
\mathbf{M}=31.2 \mathrm{~N} \cdot \mathrm{~m}
$$

SOLUTION

FBD Rod:

$$
\left(\Sigma M_{B}=0: A_{x}(2 r)=0\right.
$$

$\mathbf{A}_{x}=0$

$$
\left\lceil\Sigma F_{x^{\prime}}=0: V-(30 \mathrm{lb}) \cos 60^{\circ}=0\right.
$$

$$
\mathbf{V}=15.00 \mathrm{lb}
$$

FBD AJ:

$$
\begin{gathered}
\searrow \Sigma F_{y^{\prime}}=0: F+(30 \mathrm{lb}) \sin 60^{\circ}=0 \\
F=-25.98 \mathrm{lb} \\
\left(\Sigma M_{J}=0: M-\left[(9 \mathrm{in} .) \sin 60^{\circ}\right](30 \mathrm{lb})=0\right. \\
M=-233.8 \mathrm{lb} \cdot \mathrm{in} .
\end{gathered}
$$

$$
\mathbf{F}=26.0 \mathrm{lb}
$$

SOLUTION

FBD Rod:

$$
\begin{array}{cl}
\uparrow \Sigma F_{y}=0: B_{y}-30 \mathrm{lb}=0 & \mathbf{B}_{y}=30 \mathrm{lb} \uparrow \\
\left(\Sigma M_{A}=0: 2 r B_{x}=0\right. & \mathbf{B}_{x}=0
\end{array}
$$

$$
\searrow F_{x^{\prime}}=0: V-(30 \mathrm{lb}) \cos 30^{\circ}=0
$$

FBD BK:

$$
V=25.98 \mathrm{lb}
$$

$$
\mathbf{V}=26.0 \mathrm{lb} \backslash 4
$$

$$
\nearrow \Sigma F_{y^{\prime}}=0: F+(30 \mathrm{lb}) \sin 30^{\circ}=0
$$

$$
F=-15 \mathrm{lb}
$$

$$
\mathbf{F}=15.00 \mathrm{lb}, \downarrow
$$

$$
\left(\Sigma M_{K}=0: M-\left[(9 \mathrm{in} .) \sin 30^{\circ}\right](30 \mathrm{lb})=0\right.
$$

$$
\mathbf{M}=135.0 \mathrm{lb} \cdot \mathrm{in} .)
$$

PROBLEM 7.9

An archer aiming at a target is pulling with a $210-\mathrm{N}$ force on the bowstring. Assuming that the shape of the bow can be approximated by a parabola, determine the internal forces at point J.

SOLUTION

FBD Point A:

By symmetry $T_{1}=T_{2}$

$$
\longrightarrow \Sigma F_{x}=0: 2\left(\frac{3}{5} T_{1}\right)-210 \mathrm{~N}=0 \quad T_{1}=T_{2}=175 \mathrm{~N}
$$

Curve CJB is parabolic: $y=a x^{2}$

FBD BJ:

At $B: \quad x=0.64 \mathrm{~m}, \quad y=0.16 \mathrm{~m} \quad a=\frac{0.16 \mathrm{~m}}{(0.64 \mathrm{~m})^{2}}=\frac{1}{2.56 \mathrm{~m}}$
So, at $J: \quad y_{J}=\frac{1}{2.56 \mathrm{~m}}(0.32 \mathrm{~m})^{2}=0.04 \mathrm{~m}$

$$
\text { Slope of parabola }=\tan \theta=\frac{d y}{d x}=2 a x
$$

At $J: \quad \theta_{J}=\tan ^{-1}\left[\frac{2}{2.56 \mathrm{~m}}(0.32 \mathrm{~m})\right]=14.036^{\circ}$
So $\quad \alpha=\tan ^{-1} \frac{4}{3}-14.036^{\circ}=39.094^{\circ}$

$$
\nearrow \Sigma F_{x^{\prime}}=0: V-(175 \mathrm{~N}) \cos \left(39.094^{\circ}\right)=0
$$

$$
\mathbf{V}=135.8 \mathrm{~N} /
$$

$$
\searrow \Sigma F_{y^{\prime}}=0: F+(175 \mathrm{~N}) \sin \left(39.094^{\circ}\right)=0
$$

$$
F=-110.35 \mathrm{~N}
$$

$$
\mathbf{F}=110.4 \mathrm{~N}
$$

$$
\begin{aligned}
& \left(\Sigma M_{J}=0: M+(0.32 \mathrm{~m})\left[\frac{3}{5}(175 \mathrm{~N})\right]\right. \\
& +[(0.16-0.04) \mathrm{m}]\left[\frac{4}{5}(175 \mathrm{~N})\right]=0 \\
& \mathbf{M}=50.4 \mathrm{~N} \cdot \mathrm{~m}) \text { 〈 }
\end{aligned}
$$

PROBLEM 7.10

For the bow of Prob. 7.9, determine the magnitude and location of the maximum (a) axial force, (b) shearing force, (c) bending moment.

SOLUTION

By symmetry $\quad T_{1}=T_{2}=T$

FBD Point A:

FBD BC:

FBD CK:

And

$$
\theta=\tan ^{-1} \frac{d y}{d x}=\tan ^{-1} 2 a x
$$

$$
\begin{gathered}
\backslash \Sigma F_{x^{\prime}}=0:(140 \mathrm{~N}) \cos \theta-(105 \mathrm{~N}) \sin \theta+F=0 \\
F=(105 \mathrm{~N}) \sin \theta-(140 \mathrm{~N}) \cos \theta \\
\frac{d F}{d \theta}=(105 \mathrm{~N}) \cos \theta+(140 \mathrm{~N}) \sin \theta
\end{gathered}
$$

$$
\Sigma \Sigma F_{y^{\prime}}=0: V-(105 \mathrm{~N}) \cos \theta-(140 \mathrm{~N}) \sin \theta=0
$$

So

$$
V=(105 \mathrm{~N}) \cos \theta+(140 \mathrm{~N}) \sin \theta
$$

PROBLEM 7.10 CONTINUED

And $\frac{d V}{d \theta}=-(105 \mathrm{~N}) \sin \theta+(140 \mathrm{~N}) \cos \theta$
$\left(\Sigma M_{K}=0: M+x(105 \mathrm{~N})+y(140 \mathrm{~N})-89.6 \mathrm{~N} \cdot \mathrm{~m}=0\right.$

$$
\begin{aligned}
M & =-(105 \mathrm{~N}) x-\frac{(140 \mathrm{~N}) x^{2}}{(2.56 \mathrm{~m})}+89.6 \mathrm{~N} \cdot \mathrm{~m} \\
\frac{d M}{d x} & =-(105 \mathrm{~N})-(109.4 \mathrm{~N} / \mathrm{m}) x+89.6 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Since none of the functions, F, V, or M has a vanishing derivative in the valid range of $0 \leq x \leq 0.64 \mathrm{~m}\left(0 \leq \theta \leq 26.6^{\circ}\right)$, the maxima are at the limits $(x=0$, or $x=0.64 \mathrm{~m})$.

Therefore,
(a)

$$
\mathbf{F}_{\max }=140.0 \mathrm{~N} \uparrow \text { at } C
$$

(b)

$$
\mathbf{V}_{\max }=156.5 \mathrm{~N}, \downarrow \text { at } B 4
$$

(c)

$$
\left.\mathbf{M}_{\max }=89.6 \mathrm{~N} \cdot \mathrm{~m}\right) \text { at } C \triangleleft
$$

$$
\begin{aligned}
& \text { SOLUTION } \\
& \text { FBD AB: } \\
& \left(\Sigma M_{A}=0: r\left(\frac{4}{5} C\right)+r\left(\frac{3}{5} C\right)-2 r(70 \mathrm{lb})=0\right. \\
& \mathbf{C}=100 \mathrm{lb} / \\
& \longrightarrow \Sigma F_{x}=0:-A_{x}+\frac{4}{5}(100 \mathrm{lb})=0 \\
& \mathbf{A}_{x}=80 \mathrm{lb} \longleftarrow \\
& \uparrow \Sigma F_{y}=0: A_{y}+\frac{3}{5}(100 \mathrm{lb})-70 \mathrm{lb}=0 \\
& \mathbf{A}_{y}=10 \mathrm{lb} \uparrow
\end{aligned}
$$

FBD AJ:

$\searrow \Sigma F_{x^{\prime}}=0: F-(80 \mathrm{lb}) \sin 30^{\circ}-(10 \mathrm{lb}) \cos 30^{\circ}=0$

$$
F=48.66 \mathrm{lb}
$$

$$
\mathbf{F}=48.7 \mathrm{lb} \subset 60^{\circ}
$$

$\nearrow \Sigma F_{y^{\prime}}=0: V-(80 \mathrm{lb}) \cos 30^{\circ}+(10 \mathrm{lb}) \sin 30^{\circ}=0$

$$
V=64.28 \mathrm{lb}
$$

$$
\left(\Sigma M_{0}=0:(8 \mathrm{in} .)(48.66 \mathrm{lb})-(8 \mathrm{in} .)(10 \mathrm{lb})-M=0\right.
$$

$M=309.28 \mathrm{lb} \cdot \mathrm{in}$.

PROBLEM 7.12

A semicircular rod is loaded as shown. Determine the magnitude and location of the maximum bending moment in the rod.

SOLUTION

FBD AB:

$$
\begin{gathered}
\left(\Sigma M_{A}=0: r\left(\frac{4}{5} C\right)+r\left(\frac{3}{5} C\right)-2 r(70 \mathrm{lb})=0\right. \\
\mathbf{C}=100 \mathrm{lb} \\
\longrightarrow \Sigma F_{x}=0:-A_{x}+\frac{4}{5}(100 \mathrm{lb})=0 \\
\mathbf{A}_{x}=80 \mathrm{lb} \longleftarrow \\
\uparrow \Sigma F_{y}=0: A_{y}+\frac{3}{5}(100 \mathrm{lb})-70 \mathrm{lb}=0 \\
\mathbf{A}_{y}=10 \mathrm{lb} \uparrow
\end{gathered}
$$

FBD AJ:

$\left(\Sigma M_{J}=0: M-(8 \mathrm{in}).(1-\cos \theta)(10 \mathrm{lb})-(8 \mathrm{in}).(\sin \theta)(80 \mathrm{lb})=0\right.$
$M=(640 \mathrm{lb} \cdot \mathrm{in}.) \sin \theta+(80 \mathrm{lb} \cdot \mathrm{in}).(\cos \theta-1)$
$\frac{d M}{d \theta}=(640 \mathrm{lb} \cdot \mathrm{in}.) \cos \theta-(80 \mathrm{lb} \cdot \mathrm{in}.) \sin \theta=0$
for $\quad \theta=\tan ^{-1} 8=82.87^{\circ}$,
where $\frac{d^{2} M}{d \theta^{2}}=-(640 \mathrm{lb} \cdot \mathrm{in}.) \sin \theta-(80 \mathrm{lb} \cdot \mathrm{in}.) \cos \theta<0$

$$
M=565 \mathrm{lb} \cdot \text { in. at } \theta=82.9^{\circ} \text { is a } \max \text { for } A C
$$

FBD BK:

$$
\begin{gathered}
\left(\Sigma M_{K}=0: M-(8 \mathrm{in} .)(1-\cos \beta)(70 \mathrm{lb})=0\right. \\
M=(560 \mathrm{lb} \cdot \mathrm{in} .)(1-\cos \beta) \\
\frac{d M}{d \beta}=(560 \mathrm{lb} \cdot \mathrm{in} .) \sin \beta=0 \quad \text { for } \beta=0, \text { where } M=0
\end{gathered}
$$

So, for $\beta=\frac{\pi}{2}, M=560 \mathrm{lb} \cdot \mathrm{in}$. is max for $B C$

$$
\therefore \quad \mathbf{M}_{\max }=565 \mathrm{lb} \cdot \text { in. at } \theta=82.9^{\circ} .
$$

SOLUTION

FBD Frame:

FBD CD:

FBD CJ:

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(0.336 \mathrm{~m})\left(\frac{24}{25} C\right)-(0.252 \mathrm{~m})(480 \mathrm{~N})=0\right. \\
C=375 \mathrm{~N} \\
\rightarrow \Sigma F_{y}=0: A_{x}-\frac{24}{25} C=0 \quad A_{x}=\frac{24}{25}(375 \mathrm{~N})=360 \mathrm{~N} \\
\mathbf{A}_{x}=360 \mathrm{~N} \longrightarrow \\
\uparrow \Sigma F_{y}=0: A_{y}-480 \mathrm{~N}+\frac{7}{24}(375 \mathrm{~N})=0 \\
\mathbf{A}_{y}=375 \mathrm{~N} \uparrow
\end{gathered}
$$

$$
\begin{gathered}
\left(\Sigma M_{C}=0:(0.324 \mathrm{~m})(480 \mathrm{~N})-(0.27 \mathrm{~m}) B=0\right. \\
B=576 \mathrm{~N} \\
\longrightarrow \Sigma F_{x}=0: C_{x}-\frac{24}{25}(375 \mathrm{~N})=0 \\
\mathbf{C}_{x}=360 \mathrm{~N} \longrightarrow
\end{gathered}
$$

$$
\uparrow \Sigma F_{y}=0:-480 \mathrm{~N}+\frac{7}{25}(375 \mathrm{~N})+(576 \mathrm{~N})-C_{y}=0
$$

$$
\mathbf{C}_{y}=201 \mathrm{~N} \downarrow
$$

$$
\searrow \Sigma F_{x^{\prime}}=0: V-(360 \mathrm{~N}) \cos 30^{\circ}-(201 \mathrm{~N}) \sin 30^{\circ}=0
$$

$$
\mathbf{V}=412 \mathrm{~N}
$$

$$
\Sigma \Sigma F_{y^{\prime}}=0: F+(360 \mathrm{~N}) \sin 30^{\circ}-(201 \mathrm{~N}) \cos 30^{\circ}=0
$$

$$
F=-5.93 \mathrm{~N} \quad \mathbf{F}=5.93 \mathrm{~N}
$$

$$
\left(\Sigma M_{0}=0:(0.168 \mathrm{~m})(201 \mathrm{~N}+5.93 \mathrm{~N})-M=0\right.
$$

$$
M=34.76 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\mathbf{M}=34.8 \mathrm{~N} \cdot \mathrm{~m}
$$

SOLUTION

FBD CD:

$$
\longrightarrow \Sigma F_{x}=0: \quad \mathbf{C}_{x}=0
$$

$$
\left(\Sigma M_{B}=0:(0.054 \mathrm{~m})(480 \mathrm{~N})-(0.27 \mathrm{~m}) C_{y}=0\right.
$$

$$
\mathbf{C}_{y}=96 \mathrm{~N} \downarrow
$$

$$
\uparrow \Sigma F_{y}=0: B-C_{y}=0 \quad \mathbf{B}=96 \mathrm{~N} \uparrow
$$

FBD CK:

$$
\left.\begin{array}{c}
\backslash \Sigma F_{y^{\prime}}=0: V-(96 \mathrm{~N}) \cos 30^{\circ}=0 \\
\qquad \Sigma F_{x^{\prime}}=0: F-(96 \mathrm{~N}) \sin 30^{\circ}=0 \\
\mathbf{V}=83.1 \mathrm{~N} \\
\left(\Sigma M_{K}=0: M-(0.186 \mathrm{~m})(96 \mathrm{~N})=0\right. \\
\mathbf{M}=17.86 \mathrm{~N} \cdot \mathrm{~m}
\end{array}\right)
$$

PROBLEM 7.15

Knowing that the radius of each pulley is 7.2 in . and neglecting friction, determine the internal forces at point J of the frame shown.

SOLUTION

FBD Frame:

FBD BCE with pulleys and cord:

FBD EJ:

Note: Tension T in cord is 90 lb at any cut. All radii $=0.6 \mathrm{ft}$

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(5.4 \mathrm{ft}) B_{x}-(7.8 \mathrm{ft})(90 \mathrm{lb})-(0.6 \mathrm{ft})(90 \mathrm{lb})=0\right. \\
\mathbf{B}_{x}=140 \mathrm{lb} \longleftarrow
\end{gathered}
$$

$$
\begin{aligned}
&\left(\Sigma M_{E}=0:(5.4 \mathrm{ft})(140 \mathrm{lb})-(7.2 \mathrm{ft}) B_{y}\right. \\
&+(4.8 \mathrm{ft}) 90 \mathrm{lb}-(0.6 \mathrm{ft}) 90 \mathrm{lb}=0 \\
& \mathbf{B}_{y}= 157.5 \mathrm{lb} \uparrow
\end{aligned}
$$

$$
\rightarrow \Sigma F_{x}=0: E_{x}-140 \mathrm{lb}=0 \quad \mathbf{E}_{x}=140 \mathrm{lb} \longrightarrow
$$

$$
\uparrow \Sigma F_{y}=0: 157.5 \mathrm{lb}-90 \mathrm{lb}-90 \mathrm{lb}+E_{y}=0
$$

$$
\mathbf{E}_{y}=22.5 \mathrm{lb} \uparrow
$$

$$
\Sigma F_{y^{\prime}}=0: F+90 \mathrm{lb}-\frac{4}{5}(140 \mathrm{lb})-\frac{3}{5}(90 \mathrm{lb}-22.5 \mathrm{lb})=0
$$

$$
F=62.5 \mathrm{lb}
$$

$$
\mathbf{F}=62.5 \mathrm{lb}
$$

$$
\left(\Sigma M_{J}=0: M+(1.8 \mathrm{ft})(140 \mathrm{lb})+(0.6 \mathrm{ft})(90 \mathrm{lb})\right.
$$

$$
+(2.4 \mathrm{ft})(22.5 \mathrm{lb})-(3.0 \mathrm{ft})(90 \mathrm{lb})=0
$$

$M=-90 \mathrm{lb} \cdot \mathrm{ft}$
$\mathbf{M}=90.0 \mathrm{lb} \cdot \mathrm{ft}$

$$
\begin{aligned}
& \nearrow \Sigma F_{x^{\prime}}=0:-V+\frac{3}{5}(140 \mathrm{lb})+\frac{4}{5}(22.5 \mathrm{lb}-90 \mathrm{lb})=0 \\
& V=30 \mathrm{lb} \\
& \mathbf{V}=30.0 \mathrm{lb} \text {, }
\end{aligned}
$$

PROBLEM 7.16

Knowing that the radius of each pulley is 7.2 in . and neglecting friction, determine the internal forces at point K of the frame shown.

SOLUTION

FBD Whole:

Note: $T=90 \mathrm{lb}$

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(5.4 \mathrm{ft}) A_{x}-(6 \mathrm{ft})(90 \mathrm{lb})-(7.8 \mathrm{ft})(90 \mathrm{lb})=0\right. \\
\mathbf{A}_{x}=2.30 \mathrm{lb} \longrightarrow
\end{gathered}
$$

FBD AE:

Note: Cord tensions moved to point D as per Problem 6.91

$$
\longrightarrow \Sigma F_{x}=0: 230 \mathrm{lb}-90 \mathrm{lb}-E_{x}=0
$$

$$
\mathbf{E}_{x}=140 \mathrm{lb} \longleftarrow
$$

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(1.8 \mathrm{ft})(90 \mathrm{lb})-(7.2 \mathrm{ft}) E_{y}=0\right. \\
\mathbf{E}_{y}=22.5 \mathrm{lb}
\end{gathered}
$$

FBD KE:

$\longrightarrow \Sigma F_{x}=0: F-140 \mathrm{lb}=0$

$$
\mathbf{F}=140.0 \mathrm{lb} \longrightarrow
$$

$$
\uparrow \Sigma F_{y}=0: V-22.5 \mathrm{lb}=0
$$

$$
\mathbf{V}=22.5 \mathrm{lb}
$$

$$
\left(\Sigma M_{K}=0: M-(2.4 \mathrm{ft})(22.5 \mathrm{lb})=0\right.
$$

$$
\mathbf{M}=54.0 \mathrm{lb} \cdot \mathrm{ft})
$$

PROBLEM 7.17

Knowing that the radius of each pulley is 7.2 in . and neglecting friction, determine the internal forces at point J of the frame shown.

SOLUTION

FBD Whole:

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(5.4 \mathrm{ft}) B_{x}-(7.8 \mathrm{ft})(90 \mathrm{lb})=0\right. \\
\mathbf{B}_{x}=130 \mathrm{lb} \longleftarrow
\end{gathered}
$$

FBD BE with pulleys and cord:

$$
\begin{gathered}
\left(\Sigma M_{E}=0:(5.4 \mathrm{ft})(130 \mathrm{lb})-(7.2 \mathrm{ft}) B_{y}\right. \\
\quad+(4.8 \mathrm{ft})(90 \mathrm{lb})-(0.6 \mathrm{ft})(90 \mathrm{lb})=0 \\
\mathbf{B}_{y}=150 \mathrm{lb} \uparrow \\
\longrightarrow \Sigma F_{x}=0: E_{x}-130 \mathrm{lb}=0 \\
\mathbf{E}_{x}=130 \mathrm{lb} \longrightarrow \\
\uparrow \Sigma F_{y}=0: E_{y}+150 \mathrm{lb}-90 \mathrm{lb}-90 \mathrm{lb}=0 \\
\mathbf{E}_{y}=30 \mathrm{lb} \uparrow
\end{gathered}
$$

FBD JE and pulley:

$$
\begin{gathered}
\triangle \Sigma F_{x^{\prime}}=0:-F-90 \mathrm{lb}+\frac{4}{5}(130 \mathrm{lb})+\frac{3}{5}(90 \mathrm{lb}-30 \mathrm{lb})=0 \\
\mathbf{F}=50.0 \mathrm{lb} \\
\nearrow \Sigma F_{y^{\prime}}=0: V+\frac{3}{5}(130 \mathrm{lb})+\frac{4}{5}(30 \mathrm{lb}-90 \mathrm{lb})=0 \\
V=-30 \mathrm{lb} \quad \mathbf{V}=30.0 \mathrm{lb} \\
\left(\Sigma M_{J}=0:-M+(1.8 \mathrm{ft})(130 \mathrm{lb})+(2.4 \mathrm{ft})(30 \mathrm{lb})+(0.6 \mathrm{ft})(90 \mathrm{lb})\right. \\
-(3.0 \mathrm{ft})(90 \mathrm{lb})=0
\end{gathered}
$$

PROBLEM 7.18

Knowing that the radius of each pulley is 7.2 in . and neglecting friction, determine the internal forces at point K of the frame shown.

SOLUTION

FBD Whole:

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(5.4 \mathrm{ft}) A_{x}-(7.8 \mathrm{ft})(90 \mathrm{lb})=0\right. \\
\mathbf{A}_{x}=130 \mathrm{lb} \longrightarrow
\end{gathered}
$$

FBD AE:

$$
\begin{gathered}
\left(\Sigma M_{E}=0:-(7.2 \mathrm{ft}) A_{y}-(4.8 \mathrm{ft})(90 \mathrm{lb})=0\right. \\
A_{y}=-60 \mathrm{lb} \quad \mathbf{A}_{y}=60 \mathrm{lb}
\end{gathered}
$$

$$
\longrightarrow \Sigma F_{x}=0
$$

$$
\mathbf{F}=0
$$

$$
\uparrow \Sigma F_{y}=0:-60 \mathrm{lb}+90 \mathrm{lb}-\mathrm{V}=0
$$

$$
\mathbf{V}=30.0 \mathrm{lb}
$$

$$
\left(\Sigma M_{K}=0:(4.8 \mathrm{ft})(60 \mathrm{lb})-(2.4 \mathrm{ft})(90 \mathrm{lb})-M=0\right.
$$

$$
\mathbf{M}=72.0 \mathrm{lb} \cdot \mathrm{ft}
$$

PROBLEM 7.19

A $140-\mathrm{mm}$-diameter pipe is supported every 3 m by a small frame consisting of two members as shown. Knowing that the combined mass per unit length of the pipe and its contents is $28 \mathrm{~kg} / \mathrm{m}$ and neglecting the effect of friction, determine the internal forces at point J.

SOLUTION

FBD Whole:

$$
\begin{gathered}
W=(3 \mathrm{~m})(28 \mathrm{~kg} / \mathrm{m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=824.04 \mathrm{~N} \\
\left(\Sigma M_{A}=(0.6 \mathrm{~m}) C_{x}-(0.315 \mathrm{~m})(824.04 \mathrm{~N})=0\right. \\
\mathbf{C}_{x}=432.62 \mathrm{~N} \longleftarrow
\end{gathered}
$$

$$
\begin{aligned}
& \text { By symmetry: } N_{1}=N_{2} \\
& \begin{array}{l}
\uparrow \Sigma F_{y}=0: 2 \frac{21}{29} N_{1}-W=0 \\
N_{1}=\frac{29}{42}(824.04 \mathrm{~N}) \\
\quad=568.98 \mathrm{~N}
\end{array}
\end{aligned}
$$

$$
\text { Also note: } \quad a=r \tan \theta=70 \mathrm{~mm}\left(\frac{20}{21}\right)
$$

$$
a=66.67 \mathrm{~mm}
$$

FBD BC:

$$
\begin{aligned}
\left(\Sigma M_{B}=0:(0.3 \mathrm{~m})\right. & (432.62 \mathrm{~N})-(0.315 \mathrm{~m}) C_{y} \\
& +(0.06667 \mathrm{~m})(568.98 \mathrm{~N})=0 \\
\mathbf{C}_{y} & =532.42 \mathrm{~N} \uparrow
\end{aligned}
$$

PROBLEM 7.19 CONTINUED

FBD CJ:

$$
\begin{gathered}
\searrow \Sigma F_{x^{\prime}}=0: F-\frac{21}{29}(432.62 \mathrm{~N})-\frac{20}{29}(532.42 \mathrm{~N})=0 \\
\mathbf{F}=680 \mathrm{~N} \\
\nearrow \Sigma F_{y^{\prime}}=0: \frac{21}{29}(532.42 \mathrm{~N})-\frac{20}{29}(432.62 \mathrm{~N})-V=0 \\
\mathbf{V}=87.2 \mathrm{~N} \\
\left(\Sigma M_{J}=0:(0.15 \mathrm{~m})(432.62 \mathrm{~N})-(0.1575 \mathrm{~m})(532.42 \mathrm{~N})+M=0\right. \\
\mathbf{M}=18.96 \mathrm{~N} \cdot \mathrm{~m})
\end{gathered}
$$

SOLUTION

FBD Whole:

$$
\begin{gathered}
W=(3 \mathrm{~m})(28 \mathrm{~kg} / \mathrm{m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=824.04 \mathrm{~N} \\
\left(\Sigma M_{C}=0:(.6 \mathrm{~m}) A_{x}-(.315 \mathrm{~m})(824.04 \mathrm{~N})=0\right. \\
\mathbf{A}_{x}=432.62 \mathrm{~N} \longrightarrow
\end{gathered}
$$

FBD pipe

FBD AD:

By symmetry: $N_{1}=N_{2}$

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: 2 \frac{21}{29} N_{1}-W=0 \\
N_{2}=\frac{29}{42} 824.04 \mathrm{~N} \\
=568.98 \mathrm{~N}
\end{gathered}
$$

Also note:
$a=r \tan \theta=(70 \mathrm{~mm}) \frac{20}{21}$

$$
a=66.67 \mathrm{~mm}
$$

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(0.3 \mathrm{~m})(432.62 \mathrm{~N})-(0.315 \mathrm{~m}) A_{y}\right. \\
-(0.06667 \mathrm{~m})(568.98 \mathrm{~N})=0 \\
\mathbf{A}_{y}=291.6 \mathrm{~N} \uparrow
\end{gathered}
$$

PROBLEM 7.20 CONTINUED

SOLUTION

(a) FBD Rod:

FBD AJ:

$$
\begin{gathered}
\Sigma M_{D}=0: a P-2 a A=0 \\
\mathbf{A}=\frac{P}{2} \longleftarrow \\
\longrightarrow \Sigma F_{x}=0: V-\frac{P}{2}=0
\end{gathered}
$$

$$
\begin{aligned}
&\left(\Sigma M_{J}=0: M-a \frac{P}{2}=0\right. \\
&\left.\quad \mathbf{M}=\frac{a P}{2}\right) \\
&\left(\Sigma M_{D}=0: a P-\frac{a}{2}\left(\frac{4}{5} A\right)=0\right. \\
& \mathbf{A}=\frac{5 P}{2}
\end{aligned}
$$

$$
\mathbf{V}=\frac{P}{2} \longrightarrow
$$

$$
\uparrow \Sigma F_{y}=0
$$

$$
\mathbf{F}=0
$$

(b) FBD Rod:

PROBLEM 7.21 CONTINUED

FBD AJ:

$\longrightarrow \Sigma F_{x}=0: \frac{3}{5} \frac{5 P}{2}-V=0$

$$
\uparrow \Sigma F_{y}=0: \frac{4}{5} \frac{5 P}{2}-F=0=\frac{3 P}{2} \longleftarrow 4
$$

(c) FBD Rod:

$$
\begin{gathered}
\left(\Sigma M_{D}=0: a P-2 a\left(\frac{3}{5} A\right)-2 a\left(\frac{4}{5} A\right)=0\right. \\
A=\frac{5 P}{14} \\
\longrightarrow \Sigma F_{x}=0: V-\left(\frac{3}{5} \frac{5 P}{14}\right)=0
\end{gathered}
$$

$$
\mathbf{V}=\frac{3 P}{14} \longrightarrow 4
$$

$$
\uparrow \Sigma F_{y}=0: \frac{4}{5} \frac{5 P}{14}-F=0
$$

$$
\mathbf{F}=\frac{2 P}{7} \downarrow
$$

$$
\left(\Sigma M_{J}=0: M-a\left(\frac{3}{5} \frac{5 P}{14}\right)=0\right.
$$

$$
\mathbf{M}=\frac{3}{14} a P
$$

PROBLEM 7.22

A force \mathbf{P} is applied to a bent rod which is supported by a roller and a pin and bracket. For each of the three cases shown, determine the internal forces at point J.

SOLUTION

(a) FBD Rod:

$$
\longrightarrow \Sigma F_{x}=0: A_{x}=0
$$

$$
\left(\Sigma M_{D}=0: a P-2 a A_{y}=0 \quad A_{y}=\frac{P}{2}\right.
$$

FBD AJ:

$$
\longrightarrow \Sigma F_{x}=0: \mathbf{V}=0
$$

$\uparrow \Sigma F_{y}=0: \frac{P}{2}-F=0$

$$
\begin{array}{r}
\mathbf{F}=\frac{P}{2} \downarrow \\
\left(\Sigma M_{J}=0: \mathbf{M}=0\right.
\end{array}
$$

(b) FBD Rod:

$$
\begin{array}{cc}
\left(\Sigma M_{A}=0\right. & \\
2 a\left(\frac{4}{5} D\right)+2 a\left(\frac{3}{5} D\right)-a P=0 & D=\frac{5 P}{14} \\
\longrightarrow \Sigma F_{x}=0: A_{x}-\frac{4}{5} \frac{5}{14} P=0 & A_{x}=\frac{2 P}{7} \\
\uparrow \Sigma F_{y}=0: A_{y}-P+\frac{3}{5} \frac{5}{14} P=0 & A_{y}=\frac{11 P}{14}
\end{array}
$$

PROBLEM 7.22 CONTINUED

FBD AJ:

$$
\longrightarrow \Sigma F_{x}=0: \frac{2}{7} P-V=0
$$

$$
\mathbf{V}=\frac{2 P}{7} \longleftarrow 4
$$

$$
\uparrow \Sigma F_{y}=0: \frac{11 P}{14}-F=0
$$

$$
\mathbf{F}=\frac{11 P}{14} \downarrow
$$

$$
\left(\Sigma M_{J}=0: a \frac{2 P}{7}-M=0\right.
$$

$$
\mathbf{M}=\frac{2}{7} a P
$$

(c) FBD Rod:

$\left(\Sigma M_{A}=0: \frac{a}{2}\left(\frac{4 D}{5}\right)-a P=0 \quad D=\frac{5 P}{2}\right.$
$\rightarrow \Sigma F_{x}=0: A_{x}-\frac{4}{5} \frac{5 P}{2}=0 \quad A_{x}=2 P$
$\uparrow \Sigma F_{y}=0: A_{y}-P-\frac{3}{5} \frac{5 P}{2}=0 \quad A_{y}=\frac{5 P}{2}$

FBD AJ:

$$
\longrightarrow \Sigma F_{x}=0: 2 P-V=0
$$

$$
\mathbf{V}=2 P
$$

$$
\left.\begin{array}{cc}
\uparrow \Sigma F_{y}=0: \frac{5 P}{2}-F=0 & \\
\left(\begin{array}{l}
\\
\hline
\end{array}=\frac{5 P}{2} \downarrow\right. \\
\left(M_{J}=0: a(2 P)-M=0\right. & \mathbf{M}=2 a P
\end{array}\right)
$$

SOLUTION

$$
\text { Weight of section }=W \frac{120}{270}=\frac{4}{9} W
$$

$$
\Sigma F_{y^{\prime}}=0: F-\frac{4}{9} W \cos 30^{\circ}=0 \quad F=\frac{2 \sqrt{3}}{9} W
$$

$$
\left(\Sigma M_{0}=0: r F-\left(\bar{r} \sin 60^{\circ}\right) \frac{4 W}{9}-M=0\right.
$$

$$
M=r\left[\frac{2 \sqrt{3}}{9}-\frac{3 \sqrt{3}}{2 \pi} \frac{\sqrt{3}}{2} \frac{4}{9}\right] W=\left[\frac{2 \sqrt{3}}{9}-\frac{1}{\pi}\right] W r
$$

$$
\mathbf{M}=0.0666 W r
$$

SOLUTION

(a) FBD Rod:

$$
\begin{gathered}
\longrightarrow \Sigma F_{x}=0: A_{x}=0 \\
\left(\Sigma M_{B}=0: r A_{y}+\frac{2 r}{\pi} \frac{W}{3}-\frac{2 r}{\pi} \frac{2 W}{3}=0\right. \\
A_{y}=\frac{2 W}{3 \pi}
\end{gathered}
$$

FBD AJ:

Note:

$$
\alpha=\frac{60^{\circ}}{2}=30^{\circ}=\frac{\pi}{6}
$$

Weight of segment $=W \frac{60}{270}=\frac{2 W}{9}$

$$
\begin{gathered}
F=\frac{r}{\alpha} \sin \alpha=\frac{r}{\pi / 6} \sin 30^{\circ}=\frac{3 r}{\pi} \\
\left(\Sigma M_{J}=0:\left(\bar{r} \cos \alpha-r \sin 30^{\circ}\right) \frac{2 W}{9}+\left(r-r \sin 30^{\circ}\right) \frac{2 W}{3 \pi}-M=0\right.
\end{gathered}
$$

$$
M=\frac{2 W}{9}\left(\frac{3 r}{\pi} \frac{\sqrt{3}}{2}-\frac{r}{2}+\frac{3 r}{2 \pi}\right)=W r\left(\frac{\sqrt{3}}{3 \pi}-\frac{1}{9}+\frac{1}{3 \pi}\right)
$$

$$
\mathbf{M}=0.1788 W r
$$

SOLUTION

FBD Rod:

$$
\longrightarrow \Sigma F_{x}=0: \mathbf{A}_{x}=0
$$

$\left(\Sigma M_{B}=0: \frac{2 r}{\pi} W-r A_{y}=0 \quad \mathbf{A}_{y}=\frac{2 W}{\pi} \uparrow\right.$

$$
\alpha=15^{\circ}, \text { weight of segment }=W \frac{30^{\circ}}{90^{\circ}}=\frac{W}{3}
$$

FBD AJ:

$$
\begin{gathered}
\bar{r}=\frac{r}{\alpha} \sin \alpha=\frac{r}{\pi / 12} \sin 15^{\circ}=0.9886 r \\
\Sigma F_{y^{\prime}}=0: \frac{2 W}{\pi} \cos 30^{\circ}-\frac{W}{3} \cos 30^{\circ}-F=0 \\
\mathbf{F}=\frac{W \sqrt{3}}{2}\left(\frac{2}{\pi}-\frac{1}{3}\right) \\
\left(\Sigma M_{0}=M+r\left(F-\frac{2 W}{\pi}\right)+\bar{r} \cos 15^{\circ} \frac{W}{3}=0\right. \\
\mathbf{M}=0.0557 W r)
\end{gathered}
$$

SOLUTION

FBD Rod:

$$
\begin{gathered}
\left(\Sigma M_{A}=0: r B-\frac{2 r}{\pi} W=0\right. \\
\mathbf{B}=\frac{2 W}{\pi} \longleftarrow
\end{gathered}
$$

$$
\alpha=15^{\circ}=\frac{\pi}{12}
$$

$$
\bar{r}=\frac{r}{\pi / 12} \sin 15^{\circ}=0.98862 r
$$

Weight of segment $=W \frac{30^{\circ}}{90^{\circ}}=\frac{W}{3}$

$$
\begin{gathered}
\nearrow F_{y^{\prime}}=0: F-\frac{W}{3} \cos 30^{\circ}-\frac{2 W}{\pi} \sin 30^{\circ}=0 \\
\mathbf{F}=\left(\frac{\sqrt{3}}{6}+\frac{1}{\pi}\right) W \\
\left(\Sigma M_{0}=0: r F-\left(\bar{r} \cos 15^{\circ}\right) \frac{W}{3}-M=0\right. \\
M=r W\left(\frac{\sqrt{3}}{6}+\frac{1}{\pi}\right)-\left(0.98862 \frac{\cos 15^{\circ}}{3}\right) W r
\end{gathered}
$$

$$
\mathbf{M}=0.289 W r \text {) }
$$

PROBLEM 7.27

For the rod of Prob.7.26, determine the magnitude and location of the maximum bending moment.

SOLUTION

FBD Bar:

$$
\begin{gathered}
\left(\Sigma M_{A}=0: r B-\frac{2 r}{\pi} W=0 \quad \mathbf{B}=\frac{2 W}{\pi} \longleftarrow\right. \\
\begin{array}{c}
\alpha=\frac{\theta}{2} \quad \text { so } \quad 0 \leq \alpha \leq \frac{\pi}{4} \\
\bar{r}=\frac{r}{\alpha} \sin \alpha
\end{array}
\end{gathered}
$$

Weight of segment $=W \frac{2 \alpha}{\pi / 2}$

$$
=\frac{4 \alpha}{\pi} W
$$

$$
\begin{aligned}
\not \Sigma F_{x^{\prime}}= & 0: F-\frac{4 \alpha}{\pi} W \cos 2 \alpha-\frac{2 W}{\pi} \sin 2 \alpha=0 \\
F & =\frac{2 W}{\pi}(\sin 2 \alpha+2 \alpha \cos 2 \alpha) \\
& =\frac{2 W}{\pi}(\sin \theta+\theta \cos \theta)
\end{aligned}
$$

FBD BJ:

$\left(\Sigma M_{0}=0: r F-(\bar{r} \cos \alpha) \frac{4 \alpha}{\pi} W-M=0\right.$
$M=\frac{2}{\pi} W r(\sin \theta+\theta \cos \theta)-\left(\frac{r}{\alpha} \sin \alpha \cos \alpha\right) \frac{4 \alpha}{\pi} W$
But, $\quad \sin \alpha \cos \alpha=\frac{1}{2} \sin 2 \alpha=\frac{1}{2} \sin \theta$
so $\quad M=\frac{2 W r}{\pi}(\sin \theta+\theta \cos \theta-\sin \theta)$
or $\quad M=\frac{2}{\pi} W r \theta \cos \theta$
$\frac{d M}{d \theta}=\frac{2}{\pi} W r(\cos \theta-\theta \sin \theta)=0 \quad$ at $\theta \tan \theta=1$

PROBLEM 7.27 CONTINUED

Solving numerically $\quad \theta=0.8603 \mathrm{rad} \quad$ and $\quad \begin{gathered}\mathbf{M}=0.357 \mathrm{Wr} \\ \text { at } \theta=49.3^{\circ}\end{gathered}$
(Since $M=0$ at both limits, this is the maximum)

PROBLEM 7.28

For the rod of Prob.7.25, determine the magnitude and location of the maximum bending moment.

SOLUTION

FBD Rod:

FBD AJ:

$$
\longrightarrow \Sigma F_{x}=0: A_{x}=0
$$

$$
\left(\Sigma M_{B}=0: \frac{2 r}{\pi} W-r A_{y}=0 \quad A_{y}=\frac{2 W}{\pi}\right.
$$

$$
\alpha=\frac{\theta}{2}, \quad \bar{r}=\frac{r}{\alpha} \sin \alpha
$$

$$
\text { Weight of segment }=W \frac{2 \alpha}{\pi / 2}=\frac{4 \alpha}{\pi} W
$$

$$
\begin{gathered}
\Sigma F_{x^{\prime}}=0:-F-\frac{4 \alpha}{\pi} W \cos 2 \alpha+\frac{2 W}{\pi} \cos 2 \alpha=0 \\
F=\frac{2 W}{\pi}(1-2 \alpha) \cos 2 \alpha=\frac{2 W}{\pi}(1-\theta) \cos \theta
\end{gathered}
$$

$$
\left(\Sigma M_{0}=0: M+\left(F-\frac{2 W}{\pi}\right) r+(\bar{r} \cos \alpha) \frac{4 \alpha}{\pi} W=0\right.
$$

$$
M=\frac{2 W}{\pi}(1+\theta \cos \theta-\cos \theta) r-\frac{4 \alpha W}{\pi} \frac{r}{\alpha} \sin \alpha \cos \alpha
$$

$$
\text { But, } \quad \sin \alpha \cos \alpha=\frac{1}{2} \sin 2 \alpha=\frac{1}{2} \sin \theta
$$

so

$$
M=\frac{2 r}{\pi} W(1-\cos \theta+\theta \cos \theta-\sin \theta)
$$

$$
\frac{d M}{d \theta}=\frac{2 r W}{\pi}(\sin \theta-\theta \sin \theta+\cos \theta-\cos \theta)=0
$$

$$
\text { for } \quad(1-\theta) \sin \theta=0
$$

$$
\frac{d M}{d \theta}=0 \quad \text { for } \quad \theta=0,1, n \pi(n=1,2, \cdots)
$$

Only 0 and 1 in valid range
At

$$
\begin{aligned}
\theta=0 \quad M=0, \quad \text { at } \theta=1 \mathrm{rad} \\
\text { at } \quad \theta=57.3^{\circ} \quad M=M_{\max }=0.1009 \mathrm{Wr}
\end{aligned}
$$

PROBLEM 7.29

For the beam and loading shown, (a) draw the shear and bendingmoment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

FBD beam:
(a) By symmetry: $A_{y}=D=\frac{1}{2}(w) \frac{L}{2} \quad \mathbf{A}_{y}=\mathbf{D}=\frac{w L}{4} \uparrow$

Along AB:

$$
\uparrow \Sigma F_{y}=0: \frac{w L}{4}-V=0 \quad V=\frac{w L}{4}
$$

$$
\left(\Sigma M_{J}=0: M-x \frac{w L}{4}=0 \quad M=\frac{w L}{4} x\right. \text { (straight) }
$$

Along BC:

$$
\text { straight with } \quad V=0 \quad \text { at } \quad x_{1}=\frac{L}{4}
$$

$$
\left(\Sigma M_{k}=0: M+\frac{x_{1}}{2} w x_{1}-\left(\frac{L}{4}+x_{1}\right) \frac{w L}{4}=0\right.
$$

$$
M=\frac{w}{2}\left(\frac{L^{2}}{8}+\frac{L}{2} x_{1}-x_{1}^{2}\right)
$$

PROBLEM 7.29 CONTINUED

Parabola with

$$
M=\frac{3}{32} w L^{2} \quad \text { at } \quad x_{1}=\frac{L}{4}
$$

Section $C D$ by symmetry
(b) From diagrams:

$$
\begin{gathered}
|V|_{\max }=\frac{w L}{4} \text { on } A B \text { and } C D \\
|M|_{\max }=\frac{3 w L^{2}}{32} \text { at center }
\end{gathered}
$$

PROBLEM 7.30

For the beam and loading shown, (a) draw the shear and bendingmoment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

(a) Along AB:

straight with $\quad V=-\frac{w L}{2} \quad$ at $\quad x=\frac{L}{2}$

$$
\left(\Sigma M_{J}=0: M+\frac{x}{2} w x=0 \quad M=-\frac{1}{2} w x^{2}\right.
$$

$$
\text { parabola with } \quad M=-\frac{w L^{2}}{8} \text { at } x=\frac{L}{2}
$$

Along BC:

$$
\uparrow \Sigma F_{y}=0:-w \frac{L}{2}-V=0 \quad V=-\frac{1}{2} w L
$$

$$
\left(\Sigma M_{k}=0: M+\left(x_{1}+\frac{L}{4}\right) w \frac{L}{2}=0\right.
$$

$$
M=-\frac{w L}{2}\left(\frac{L}{4}+x_{1}\right)
$$

straight with

$$
M=-\frac{3}{8} w L^{2} \text { at } x_{1}=\frac{L}{2}
$$

(b) From diagrams:

$$
\begin{aligned}
& |V|_{\max }=\frac{w L}{2} \text { on } B C . \\
& |M|_{\max }=\frac{3 w L^{2}}{8} \text { at } C .
\end{aligned}
$$

SOLUTION

(a) Along AB:

$$
\begin{array}{cl}
\uparrow \Sigma F_{y}=0: P-V=0 & V=P \\
\Sigma M_{J}=0: M-P x=0 & M=P x
\end{array}
$$

$$
\text { straight with } M=\frac{P L}{2} \text { at } B
$$

Along BC:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: P-P-V=0 \quad V=0 \\
\left(\Sigma M_{K}=0: M+P x_{1}-P\left(\frac{L}{2}+x_{1}\right)=0\right. \\
M=\frac{P L}{2} \quad \text { (constant) }
\end{gathered}
$$

(b) From diagrams:

$$
\begin{gathered}
|V|_{\max }=P \text { along } A B \\
|M|_{\max }=\frac{P L}{2} \text { along } B C
\end{gathered}
$$

PROBLEM 7.32

For the beam and loading shown, (a) draw the shear and bendingmoment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

(a) FBD Beam:

$$
\begin{gathered}
\text { m: }\left(\Sigma M_{C}=0: L A_{y}-M_{0}=0\right. \\
\mathbf{A}_{y}=\frac{M_{0}}{L} \downarrow \\
\uparrow \Sigma F_{y}=0:-A_{y}+C=0 \quad \mathbf{C}=\frac{M_{0}}{L} \uparrow
\end{gathered}
$$

Along AB:

$$
\begin{aligned}
& \uparrow \Sigma F_{y}=0:-\frac{M_{0}}{L}-V=0 \\
& V=-\frac{M_{0}}{L} \\
& \left(\Sigma M_{J}=0: x \frac{M_{0}}{L}+M=0\right.
\end{aligned} \quad M=-\frac{M_{0}}{L} x .
$$

$$
\text { straight with } M=-\frac{M_{0}}{2} \text { at } B
$$

Along BC:

$$
\begin{array}{cc}
\uparrow \Sigma F_{y}=0:-\frac{M_{0}}{L}-V=0 & V=-\frac{M_{0}}{L} \\
\left(\Sigma M_{K}=0: M+x \frac{M_{0}}{L}-M_{0}=0\right. & M=M_{0}\left(1-\frac{x}{L}\right)
\end{array}
$$

$$
\text { straight with } M=\frac{M_{0}}{2} \text { at } B \quad M=0 \text { at } C
$$

(b) From diagrams:

$$
\begin{aligned}
& |V|_{\max }=P \text { everywhere } \\
& \quad|M|_{\max }=\frac{M_{0}}{2} \text { at } B
\end{aligned}
$$

PROBLEM 7.33

For the beam and loading shown, (a) draw the shear and bendingmoment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

(a) FBD Beam:

$$
\begin{aligned}
& \left(\Sigma M_{B}=0:\right. \\
& (.6 \mathrm{ft})(4 \mathrm{kips})+(5.1 \mathrm{ft})(8 \mathrm{kips})+(7.8 \mathrm{ft})(10 \mathrm{kips})-(9.6 \mathrm{ft}) A_{y}=0 \\
& \mathbf{A}_{y}=12.625 \mathrm{kips} \uparrow \\
& \uparrow \Sigma F_{y}=0: 12.625 \mathrm{kips}-10 \mathrm{kips}-8 \mathrm{kips}-4 \mathrm{kips}+B=0 \\
& \mathbf{B}=9.375 \mathrm{kips} \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { Along AC: } \\
& \uparrow \Sigma F_{y}=0: 12.625 \mathrm{kips}-V=0 \\
& V=12.625 \mathrm{kips} \\
& \left(\Sigma M_{J}=0: M-x(12.625 \mathrm{kips})=0\right. \\
& M=(12.625 \mathrm{kips}) x \\
& M=22.725 \mathrm{kip} \cdot \mathrm{ft} \text { at } C
\end{aligned}
$$

Along CD:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: 12.625 \mathrm{kips}-10 \mathrm{kips}-V=0 \\
V=2.625 \mathrm{kips}
\end{gathered}
$$

$$
\begin{gathered}
\left(\Sigma M_{K}=0: M+(x-1.8 \mathrm{ft})(10 \mathrm{kips})-x(12.625 \mathrm{kips})=0\right. \\
M=18 \mathrm{kip} \cdot \mathrm{ft}+(2.625 \mathrm{kips}) x \\
M=29.8125 \mathrm{kip} \cdot \mathrm{ft} \text { at } D(x=4.5 \mathrm{ft})
\end{gathered}
$$

PROBLEM 7.34

For the beam and loading shown, (a) draw the shear and bendingmoment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

(a) FBD Beam:

$\left(\Sigma M_{C}=0\right.$:
$(1.2 \mathrm{~m})(4 \mathrm{kN})-(1 \mathrm{~m})(16 \mathrm{kN})+(2 \mathrm{~m})(8 \mathrm{kN})+(3.2 \mathrm{~m}) B=0$ $\mathbf{B}=-1.5 \mathrm{kN} \uparrow$
$\uparrow \Sigma F_{y}=0:-4 \mathrm{kN}+C_{y}-16 \mathrm{kN}+8 \mathrm{kN}-1.5 \mathrm{kN}=0$

$$
\mathbf{C}_{y}=13.5 \mathrm{kN} \uparrow
$$

Along AC:

$$
\uparrow \Sigma F_{y}=0:-4 \mathrm{kN}-V=0
$$

$$
V=-4 \mathrm{kN}
$$

$$
\begin{gathered}
\left(\Sigma M_{J}=0: M+x(4 \mathrm{kN})=0 \quad M=-4 \mathrm{kN} x\right. \\
M=-4.8 \mathrm{kN} \cdot \mathrm{~m} \text { at } C
\end{gathered}
$$

Along CD:

$$
\uparrow \Sigma F_{y}=0:-4 \mathrm{kN}+13.5 \mathrm{kN}-V=0
$$

$$
V=9.5 \mathrm{kN}
$$

$$
\left(\Sigma M_{K}=0: M+\left(1.2 \mathrm{~m}+x_{1}\right)(4 \mathrm{kN})-x_{1}(13.5 \mathrm{kN})=0\right.
$$

$$
M=-4.8 \mathrm{kN} \cdot \mathrm{~m}+(9.5 \mathrm{kN}) x_{1}
$$

$$
M=4.7 \mathrm{kN} \cdot \mathrm{~m} \text { at } D\left(x_{1}=1 \mathrm{~m}\right)
$$

PROBLEM 7.34 CONTINUED

Along DE:

$$
\begin{gathered}
\text { M } \\
\uparrow \Sigma F_{y}=0: V+8 \mathrm{kN}-1.5 \mathrm{kN}=0 \\
V=-6.5 \mathrm{kN} \\
\left(\Sigma M_{L}=0: M-x_{3}(8 \mathrm{kN})+\left(x_{3}+1.2 \mathrm{~m}\right)(1.5 \mathrm{kN})=0\right. \\
M=-1.8 \mathrm{kN} \cdot \mathrm{~m}+(6.5 \mathrm{kN}) x_{3} \\
M=4.7 \mathrm{kN} \cdot \mathrm{~m} \text { at } D\left(x_{3}=1 \mathrm{~m}\right)
\end{gathered}
$$

Along EB:

$$
\begin{aligned}
& M_{\sim}^{4} \xlongequal{4 V} \begin{array}{l}
\frac{V}{N} x_{2} \\
1.5 \mathrm{kN}
\end{array} \\
& \uparrow \Sigma F_{y}=0: V-1.5 \mathrm{kN}=0 \\
& V=1.5 \mathrm{kN} \\
& \text { (} \Sigma M_{N}=0: x_{2}(1.5 \mathrm{kN})+M=0 \\
& M=-(1.5 \mathrm{kN}) x_{2} \quad M=-1.8 \mathrm{kN} \cdot \mathrm{~m} \text { at } E
\end{aligned}
$$

(b) From diagrams:

$$
\begin{aligned}
& |V|_{\max }=9.50 \mathrm{kN} \cdot \text { on } C D \\
& |M|_{\max }=4.80 \mathrm{kN} \cdot \mathrm{~m} \text { at } C
\end{aligned}
$$

PROBLEM 7.35

For the beam and loading shown, (a) draw the shear and bendingmoment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

Along DE:

$$
\uparrow \Sigma F_{y}=0:-3 \text { kips }-5 \text { kips }+6 \text { kips }-V=0
$$

$$
V=-2 \text { kips }
$$

$$
\left(\Sigma M_{L}=0: M-x_{1}(6 \mathrm{kips})+\left(.9 \mathrm{ft}+x_{1}\right)(5 \mathrm{kips})\right.
$$

$$
+\left(3.9 \mathrm{ft}+x_{1}\right)(3 \mathrm{kips})=0
$$

$$
M=-16.2 \mathrm{kip} \cdot \mathrm{ft}-(2 \mathrm{kips}) x_{1}
$$

$$
M=-18.6 \mathrm{kip} \cdot \mathrm{ft} \text { at } E \quad\left(x_{1}=1.2 \mathrm{ft}\right)
$$

$$
\begin{aligned}
& \text { (a) Along AC: }
\end{aligned}
$$

$$
\begin{aligned}
& \uparrow \Sigma F_{y}=0:-3 \mathrm{kip}-V=0 \quad V=-3 \mathrm{kips} \\
& \left(\Sigma M_{J}=0: M+x(3 \mathrm{kips})=0 \quad M=(3 \mathrm{kips}) x\right. \\
& M=-9 \mathrm{kip} \cdot \mathrm{ft} \text { at } C \\
& \text { Along CD: } \\
& \uparrow \Sigma F_{y}=0:-3 \text { kips }-5 \text { kips }-V=0 \quad V=-8 \text { kips } \\
& \left(\Sigma M_{K}=0: M+(x-3 \mathrm{ft})(5 \text { kips })+x(3 \text { kips })=0\right. \\
& M=+15 \mathrm{kip} \cdot \mathrm{ft}-(8 \mathrm{kips}) x \\
& M=-16.2 \text { kip } \cdot \mathrm{ft} \text { at } D(x=3.9 \mathrm{ft})
\end{aligned}
$$

PROBLEM 7.35 CONTINUED

Along EB:

$\uparrow \Sigma F_{y}=0:-3$ kips -5 kips +6 kips -4 kips $-V=0 \quad V=-6$ kips

$$
\begin{gathered}
\left(\Sigma M_{N}=0: M+(4 \mathrm{kips}) x_{2}+\left(2.1 \mathrm{ft}+x_{2}\right)(5 \mathrm{kips})\right. \\
\\
+\left(5.1 \mathrm{ft}+x_{2}\right)(3 \mathrm{kips})-\left(1.2 \mathrm{ft}+x_{2}\right)(6 \mathrm{kips})=0 \\
M=-18.6 \mathrm{kip} \cdot \mathrm{ft}-(6 \mathrm{kips}) x_{2} \\
M=-33 \mathrm{kip} \cdot \mathrm{ft} \text { at } B \quad\left(x_{2}=2.4 \mathrm{ft}\right)
\end{gathered}
$$

(b) From diagrams:

$$
\begin{aligned}
& |V|_{\max }=8.00 \mathrm{kips} \text { on } C D \leftharpoonup \\
& |M|_{\max }=33.0 \mathrm{kip} \cdot \mathrm{ft} \text { at } B \boldsymbol{4}
\end{aligned}
$$

SOLUTION

(a) FBD Beam:
$\left(\Sigma M_{E}=0:\right.$
$(1.1 \mathrm{~m})(540 \mathrm{~N})-(0.9 \mathrm{~m}) C_{y}+(0.4 \mathrm{~m})(1350 \mathrm{~N})-(0.3 \mathrm{~m})(540 \mathrm{~N})=0$

$$
\mathbf{C}_{y}=1080 \mathrm{~N} \uparrow
$$

$$
\uparrow \Sigma F_{y}=0:-540 \mathrm{~N}+1080 \mathrm{~N}-1350 \mathrm{~N}
$$

$$
-540 \mathrm{~N}+E_{y}=0 \quad \mathbf{E}_{y}=1350 \mathrm{~N} \uparrow
$$

Along AC:

$$
\uparrow \Sigma F_{y}=0:-540 \mathrm{~N}-V=0
$$

$$
V=-540 \mathrm{~N}
$$

$$
\left(\Sigma M_{J}=0: x(540 \mathrm{~N})+M=0 \quad M=-(540 \mathrm{~N}) x\right.
$$

Along CD:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0:-540 \mathrm{~N}+1080 \mathrm{~N}-V=0 \quad V=540 \mathrm{~N} \\
\left(\Sigma M_{K}=0: M+\left(0.2 \mathrm{~m}+x_{1}\right)(540 \mathrm{~N})-x_{1}(1080 \mathrm{~N})=0\right. \\
M=-108 \mathrm{~N} \cdot \mathrm{~m}+(540 \mathrm{~N}) x_{1} \\
M=162 \mathrm{~N} \cdot \mathrm{~m} \text { at } D\left(x_{1}=0.5 \mathrm{~m}\right)
\end{gathered}
$$

PROBLEM 7.36 CONTINUED

Along DE:

$$
\begin{aligned}
& \uparrow \Sigma F_{y}=0: \quad V+1350 \mathrm{~N}-540 \mathrm{~N}=0 \quad V=-810 \mathrm{~N} \\
& \left(\Sigma M_{N}=0: M+\left(x_{3}+0.3 \mathrm{~m}\right)(540 \mathrm{~N})-x_{3}(1350 \mathrm{~N})=0\right.
\end{aligned}
$$

$$
M=-162 \mathrm{~N} \cdot \mathrm{~m}+(810 \mathrm{~N}) x_{3}
$$

$$
M=162 \mathrm{~N} \cdot \mathrm{~m} \text { at } D\left(x_{3}=0.4\right)
$$

Along EB:

$\uparrow \Sigma F_{y}=0: V-540 \mathrm{~N}=0 \quad V=540 \mathrm{~N}$

$$
\begin{gathered}
\left(\Sigma M_{L}=0: M+x_{2}(540 \mathrm{~N})=0 \quad M=-540 \mathrm{~N} x_{2}\right. \\
M=-162 \mathrm{~N} \cdot \mathrm{~m} \text { at } E \quad\left(x_{2}=0.3 \mathrm{~m}\right)
\end{gathered}
$$

(b) From diagrams

$$
|V|_{\max }=810 \mathrm{~N} \text { on } D E
$$

$$
|M|_{\max }=162.0 \mathrm{~N} \cdot \mathrm{~m} \text { at } D \text { and } E
$$

PROBLEM 7.37

For the beam and loading shown, (a) draw the shear and bendingmoment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

(a) FBD Beam:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: A_{y}+(6 \mathrm{ft})(2 \mathrm{kips} / \mathrm{ft})-12 \mathrm{kips}-2 \mathrm{kips}=0 \\
\mathbf{A}_{y}=2 \mathrm{kips} \uparrow \\
\left(\Sigma M_{A}=0: M_{A}+(3 \mathrm{ft})(6 \mathrm{ft})(2 \mathrm{kips} / \mathrm{ft})\right. \\
-(10.5 \mathrm{ft})(12 \mathrm{kips})-(12 \mathrm{ft})(2 \mathrm{kips})=0 \\
\mathbf{M}_{A}=114 \mathrm{kip} \cdot \mathrm{ft}
\end{gathered}
$$

Along AC:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: 2 \mathrm{kips}+x(2 \mathrm{kips} / \mathrm{ft})-V=0 \\
V=2 \mathrm{kips}+(2 \mathrm{kips} / \mathrm{ft}) x \\
V=14 \mathrm{kips} \text { at } C(x=6 \mathrm{ft})
\end{gathered}
$$

$$
\left(\Sigma M_{J}=0: 114 \mathrm{kip} \cdot \mathrm{ft}-x(2 \mathrm{kips})\right.
$$

$$
-\frac{x}{2} x(2 \mathrm{kips} / \mathrm{ft})+M=0
$$

$$
M=(1 \mathrm{kip} / \mathrm{ft}) x^{2}+(2 \mathrm{kips}) x-114 \mathrm{kip} \cdot \mathrm{ft}
$$

$$
M=-66 \mathrm{kip} \cdot \mathrm{ft} \mathrm{at} C(x=6 \mathrm{ft})
$$

Along CD:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: V-12 \mathrm{kips}-2 \mathrm{kips}=0 \quad V=14 \mathrm{kips} \\
\left(\Sigma M_{k}=0:-M-x_{1}(12 \mathrm{kips})-\left(1.5 \mathrm{ft}+x_{1}\right)(2 \mathrm{kips})=0\right.
\end{gathered}
$$

PROBLEM 7.37 CONTINUED

$$
\begin{gathered}
M=-3 \mathrm{kip} \cdot \mathrm{ft}-(14 \mathrm{kips}) x_{1} \\
M=-66 \mathrm{kip} \cdot \mathrm{ft} \text { at } C \quad\left(x_{1}=4.5 \mathrm{ft}\right)
\end{gathered}
$$

Along DB:

$$
\uparrow \Sigma F_{y}=0: \quad V-2 \mathrm{kips}=0 \quad V=+2 \mathrm{kips}
$$

$$
\left(\Sigma M_{L}=0:-M-2 \operatorname{kip} x_{3}=0\right.
$$

$$
M=-(2 \mathrm{kips}) x_{3}
$$

$$
M=-3 \mathrm{kip} \cdot \mathrm{ft} \text { at } D(x=1.5 \mathrm{ft})
$$

(b) From diagrams:

$$
\begin{aligned}
& |V|_{\max }=14.00 \mathrm{kips} \text { on } C D \leftharpoonup \\
& |M|_{\max }=114.0 \mathrm{kip} \cdot \mathrm{ft} \text { at } A
\end{aligned}
$$

PROBLEM 7.38

For the beam and loading shown, (a) draw the shear and bendingmoment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

(a) FBD Beam:

$$
\begin{gathered}
\Sigma M_{A}=(15 \mathrm{ft}) B-(12 \mathrm{ft})(2 \mathrm{kips} / \mathrm{ft})(6 \mathrm{ft})-(6 \mathrm{ft})(12 \mathrm{kips})=0 \\
\mathbf{B}=14.4 \mathrm{kips} \uparrow \\
\uparrow \Sigma F_{y}=0: A_{y}-12 \mathrm{kips}-(2 \mathrm{kips} / \mathrm{ft})(6 \mathrm{ft})+14.4 \mathrm{kips} \\
\mathbf{A}_{y}=9.6 \mathrm{kips} \uparrow
\end{gathered}
$$

Along AC:

$$
\begin{gathered}
9,6 \mathrm{k} / \mathrm{ps} \\
\uparrow \Sigma F_{y}=0: 9.6 \mathrm{kips}-V=0 \\
V=9.6 \mathrm{kips} \\
\left(\Sigma M_{J}=0: M-x(9.6 \mathrm{kips})=0\right. \\
M=(9.6 \mathrm{kips}) x \\
M=57.6 \mathrm{kip} \cdot \mathrm{ft} \text { at } C(x=6 \mathrm{ft})
\end{gathered}
$$

Along CD:

$$
\uparrow \Sigma F_{y}=0: 9.6 \text { kips }-12 \mathrm{kips}-V=0
$$

$$
V=-2.4 \mathrm{kips}
$$

$$
\begin{gathered}
\left(\Sigma M_{K}=0: M+x_{1}(12 \mathrm{kips})-\left(6 \mathrm{ft}+x_{1}\right)(9.6 \mathrm{kips})=0\right. \\
M=57.6 \mathrm{kip} \cdot \mathrm{ft}-(2.4 \mathrm{kips}) x_{1}
\end{gathered}
$$

$$
M=50.4 \mathrm{kip} \cdot \mathrm{ft} \text { at } D
$$

PROBLEM 7.38 CONTINUED

Along DB:

$$
\begin{gathered}
\Sigma F_{y}=0: V-x_{3}(2 \mathrm{kips} / \mathrm{ft})+14.4 \mathrm{kips}=0 \\
V=-14.4 \mathrm{kips}+(2 \mathrm{kips} / \mathrm{ft}) x_{3} \\
V=-2.4 \mathrm{kips} \text { at } D \\
\left(\Sigma M_{L}=0: M+\frac{x_{3}}{2}(2 \mathrm{kips} / \mathrm{ft})\left(x_{3}\right)-x_{3}(14.4 \mathrm{kips})=0\right. \\
M=(14.4 \mathrm{kips}) x_{3}-(1 \mathrm{kip} / \mathrm{ft}) x_{3}^{2} \\
M=50.4 \mathrm{kip} \cdot \mathrm{ft} \text { at } D\left(x_{3}=6 \mathrm{ft}\right)
\end{gathered}
$$

(b) From diagrams:

$$
\begin{aligned}
|V|_{\max } & =14.40 \mathrm{kips} \text { at } B \triangleleft \\
|M|_{\max } & =57.6 \mathrm{kip} \cdot \mathrm{ft} \text { at } C \triangleleft
\end{aligned}
$$

SOLUTION

(a) By symmetry:

$$
A_{y}=B=8 \mathrm{kN}+\frac{1}{2}(4 \mathrm{kN} / \mathrm{m})(5 \mathrm{~m}) \quad \mathbf{A}_{y}=\mathbf{B}=18 \mathrm{kN} \uparrow
$$

Along AC:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: 18 \mathrm{kN}-V=0 \quad V=18 \mathrm{kN} \\
\left(\Sigma M_{J}=0: M-x(18 \mathrm{kN}) \quad M=(18 \mathrm{kN}) x\right. \\
M=36 \mathrm{kN} \cdot \mathrm{~m} \text { at } C(x=2 \mathrm{~m})
\end{gathered}
$$

Along CD:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: 18 \mathrm{kN}-8 \mathrm{kN}-(4 \mathrm{kN} / \mathrm{m}) x_{1}-V=0 \\
V=10 \mathrm{kN}-(4 \mathrm{kN} / \mathrm{m}) x_{1} \\
V=0 \text { at } x_{1}=2.5 \mathrm{~m}(\text { at center }) \\
\left(\Sigma M_{K}=0: M+\frac{x_{1}}{2}(4 \mathrm{kN} / \mathrm{m}) x_{1}+(8 \mathrm{kN}) x_{1}-\left(2 \mathrm{~m}+x_{1}\right)(18 \mathrm{kN})=0\right. \\
M=36 \mathrm{kN} \cdot \mathrm{~m}+(10 \mathrm{kN} / \mathrm{m}) x_{1}-(2 \mathrm{kN} / \mathrm{m}) x_{1}^{2} \\
M=48.5 \mathrm{kN} \cdot \mathrm{~m} \text { at } x_{1}=2.5 \mathrm{~m}
\end{gathered}
$$

Complete diagram by symmetry
(b) From diagrams:

$$
\begin{aligned}
& |V|_{\max }=18.00 \mathrm{kN} \text { on } A C \text { and } D B \\
& \quad|M|_{\max }=48.5 \mathrm{kN} \cdot \mathrm{~m} \text { at center }
\end{aligned}
$$

PROBLEM 7.40

For the beam and loading shown, (a) draw the shear and bendingmoment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

(a) $\left(\Sigma M_{D}=0:(2 \mathrm{~m})(2 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m})-(2.5 \mathrm{~m})(4 \mathrm{kN} / \mathrm{m})(3 \mathrm{~m})\right.$

$$
\begin{gathered}
-(4 \mathrm{~m}) F-(5 \mathrm{~m})(22 \mathrm{kN})=0 \\
\mathbf{F}=22 \mathrm{kN} \downarrow \\
\uparrow \Sigma F_{y}=0:-(2 \mathrm{~m})(2 \mathrm{kN} / \mathrm{m})+D_{y} \\
-(3 \mathrm{~m})(4 \mathrm{kN} / \mathrm{m})-22 \mathrm{kN}+22 \mathrm{kN}=0 \\
\mathbf{D}_{y}=16 \mathrm{kN} \uparrow
\end{gathered}
$$

Along AC:

$\uparrow \Sigma F_{y}=0:-x(2 \mathrm{kN} / \mathrm{m})-V=0$
$V=-(2 \mathrm{kN} / \mathrm{m}) x \quad V=-4 \mathrm{kN}$ at C

$$
\left(\Sigma M_{J}=0: M+\frac{x}{2}(2 \mathrm{kN} / \mathrm{m})(x) \neq 0\right.
$$

$$
M=-(1 \mathrm{kN} / \mathrm{m}) x^{2} \quad M=-4 \mathrm{kN} \cdot \mathrm{~m} \text { at } C
$$

Along CD:

$$
\begin{aligned}
& \uparrow \Sigma F_{y}=0:-(2 \mathrm{~m})(2 \mathrm{kN} / \mathrm{m})-V=0 \quad V=-4 \mathrm{kN} \\
& \left(\Sigma M_{K}=0:\left(1 \mathrm{~m}+x_{1}\right)(2 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m})=0\right. \\
& M=-4 \mathrm{kN} \cdot \mathrm{~m}-(4 \mathrm{kN} / \mathrm{m}) x_{1} \quad M=-8 \mathrm{kN} \cdot \mathrm{~m} \text { at } D
\end{aligned}
$$

PROBLEM 7.40 CONTINUED

Along DE:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0:-(2 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m})+16 \mathrm{kN}-V=0 \quad V=12 \mathrm{kN} \\
\left(\Sigma M_{L}=0: M-x_{2}(16 \mathrm{kN})+\left(x_{2}+2 \mathrm{~m}\right)(2 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m})=0\right. \\
M=-8 \mathrm{kN} \cdot \mathrm{~m}+(12 \mathrm{kN}) x_{2} \quad M=4 \mathrm{kN} \cdot \mathrm{~m} \text { at } E
\end{gathered}
$$

Along EF:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: V-x_{4}(4 \mathrm{kN} / \mathrm{m})-22 \mathrm{kN}+22 \mathrm{kN}=0 \\
V=(4 \mathrm{kN} / \mathrm{m}) x_{4} \quad V=12 \mathrm{kN} \text { at } E \\
\left(\Sigma M_{0}=0: M+\frac{x_{4}}{2}(4 \mathrm{kN} / \mathrm{m}) x_{4}-(1 \mathrm{~m})(22 \mathrm{kN})=0\right. \\
M=22 \mathrm{kN} \cdot \mathrm{~m}-(2 \mathrm{kN} / \mathrm{m}) x_{4}^{2} \quad M=4 \mathrm{kN} \cdot \mathrm{~m} \text { at } E
\end{gathered}
$$

Along FB:

\[

\]

(b) From diagrams:

$$
\begin{aligned}
& |V|_{\max }=22.0 \mathrm{kN} \text { on } F B \\
& |M|_{\max }=22.0 \mathrm{kN} \cdot \mathrm{~m} \text { at } F
\end{aligned}
$$

PROBLEM 7.41

Assuming the upward reaction of the ground on beam $A B$ to be uniformly distributed, (a) draw the shear and bending-moment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

(a)

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0:(12 \mathrm{~m}) w-(6 \mathrm{~m})(3 \mathrm{kN} / \mathrm{m})=0 \\
w=1.5 \mathrm{kN} / \mathrm{m}
\end{gathered}
$$

Along AC:

$$
\uparrow \Sigma F_{y}=0: x(1.5 \mathrm{kN} / \mathrm{m})-V=0 \quad V=(1.5 \mathrm{kN} / \mathrm{m}) x
$$

$$
V=4.5 \mathrm{kN} \text { at } C
$$

$$
\left(\Sigma M_{J}=0: M-\frac{x}{2}(1.5 \mathrm{kN} / \mathrm{m})(x)=0\right.
$$

$$
M=(0.75 \mathrm{kN} / \mathrm{m}) x^{2} \quad M=6.75 \mathrm{~N} \cdot \mathrm{~m} \text { at } C
$$

Along CD:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: x(1.5 \mathrm{kN} / \mathrm{m})-(x-3 \mathrm{~m})(3 \mathrm{kN} / \mathrm{m})-V=0 \\
V=9 \mathrm{kN}-(1.5 \mathrm{kN} / \mathrm{m}) x \quad V=0 \text { at } x=6 \mathrm{~m} \\
\left(\Sigma M_{K}=0: M+\left(\frac{x-3 \mathrm{~m}}{2}\right)(3 \mathrm{kN} / \mathrm{m})(x-3 \mathrm{~m})-\frac{x}{2}(1.5 \mathrm{kN} / \mathrm{m}) x=0\right. \\
M=-13.5 \mathrm{kN} \cdot \mathrm{~m}+(9 \mathrm{kN}) x-(0.75 \mathrm{kN} / \mathrm{m}) x^{2} \\
M=13.5 \mathrm{kN} \cdot \mathrm{~m} \text { at center }(x=6 \mathrm{~m})
\end{gathered}
$$

Finish by symmetry
(b) From diagrams:

$$
\begin{gathered}
|V|_{\max }=4.50 \mathrm{kN} \text { at } C \text { and } D \\
|M|_{\max }=13.50 \mathrm{kN} \cdot \mathrm{~m} \text { at center }
\end{gathered}
$$

PROBLEM 7.42

Assuming the upward reaction of the ground on beam $A B$ to be uniformly distributed, (a) draw the shear and bending-moment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

(a) FBD Beam:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0:(4 \mathrm{~m})(w)-(2 \mathrm{~m})(12 \mathrm{kN} / \mathrm{m})=0 \\
w=6 \mathrm{kN} / \mathrm{m}
\end{gathered}
$$

Along AC:

$\uparrow \Sigma F_{y}=0:-x(6 \mathrm{kN} / \mathrm{m})-V=0 \quad V=-(6 \mathrm{kN} / \mathrm{m}) x$

$$
V=-6 \mathrm{kN} \text { at } C(x=1 \mathrm{~m})
$$

$$
\left(\Sigma M_{J}=0: M+\frac{x}{2}(6 \mathrm{kN} / \mathrm{m})(x)=0\right.
$$

$$
M=-(3 \mathrm{kN} / \mathrm{m}) x^{2} \quad M=-3 \mathrm{kN} \cdot \mathrm{~m} \text { at } C
$$

Along CD:

$$
\uparrow \Sigma F_{y}=0:-(1 \mathrm{~m})(6 \mathrm{kN} / \mathrm{m})+x_{1}(6 \mathrm{kN} / \mathrm{m})-v=0
$$

$$
V=(6 \mathrm{kN} / \mathrm{m})\left(1 \mathrm{~m}-x_{1}\right) \quad V=0 \text { at } x_{1}=1 \mathrm{~m}
$$

$$
\begin{gathered}
\left(\Sigma M_{K}=0: M+\left(0.5 \mathrm{~m}+x_{1}\right)(6 \mathrm{kN} / \mathrm{m})(1 \mathrm{~m})-\frac{x_{1}}{2}(6 \mathrm{kN} / \mathrm{m}) x_{1}=0\right. \\
M=-3 \mathrm{kN} \cdot \mathrm{~m}-(6 \mathrm{kN}) x_{1}+(3 \mathrm{kN} / \mathrm{m}) x_{1}^{2} \\
M=-6 \mathrm{kN} \cdot \mathrm{~m} \text { at center }\left(x_{1}=1 \mathrm{~m}\right)
\end{gathered}
$$

Finish by symmetry
(b) From diagrams:

$$
\begin{gathered}
|V|_{\max }=6.00 \mathrm{kN} \text { at } C \text { and } D \\
|M|_{\max }=6.00 \mathrm{kN} \text { at center }
\end{gathered}
$$

PROBLEM 7.43

Assuming the upward reaction of the ground on beam $A B$ to be uniformly distributed and knowing that $a=0.9 \mathrm{ft},(a)$ draw the shear and bending-moment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

(a) FBD Beam:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0:(4.5 \mathrm{ft}) w-900 \mathrm{lb}-900 \mathrm{lb}=0 \\
w=400 \mathrm{lb} / \mathrm{ft}
\end{gathered}
$$

Along AC:

$$
\uparrow \Sigma F_{y}=0: x(400 \mathrm{lb})-V=0 \quad V=(400 \mathrm{lb}) x
$$

$$
V=360 \mathrm{lb} \text { at } C \quad(x=0.9 \mathrm{ft})
$$

$$
\left(\Sigma M_{J}=0: M-\frac{x}{2}(400 \mathrm{lb} / \mathrm{ft}) x=0\right.
$$

$$
M=(200 \mathrm{lb} / \mathrm{ft}) x^{2} \quad M=162 \mathrm{lb} \cdot \mathrm{ft} \text { at } C
$$

Along CD:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0:\left(0.9 \mathrm{ft}+x_{1}\right)(400 \mathrm{lb} / \mathrm{ft})-900 \mathrm{lb}-V=0 \\
V=-540 \mathrm{lb}+(400 \mathrm{lb} / \mathrm{ft}) x_{1} \quad V=0 \mathrm{at} x_{1}=1.35 \mathrm{ft} \\
\left(\Sigma M_{K}=0: M+x_{1}(900 \mathrm{lb})-\frac{0.9 \mathrm{ft}+x_{1}}{2}(400 \mathrm{lb} / \mathrm{ft})\left(0.9 \mathrm{ft}+x_{1}\right)=0\right. \\
M=162 \mathrm{lb} \cdot \mathrm{ft}-(540 \mathrm{lb}) x_{1}+(200 \mathrm{lb} / \mathrm{ft}) x_{1}^{2} \\
M=-202.5 \mathrm{lb} \cdot \mathrm{ft} \text { at center }\left(x_{1}=1.35 \mathrm{ft}\right)
\end{gathered}
$$

Finish by symmetry
(b) From diagrams:

$$
\begin{aligned}
& |V|_{\max }=540 \mathrm{lb} \text { at } C^{+} \text {and } D^{-} \\
& |M|_{\max }=203 \mathrm{lb} \cdot \mathrm{ft} \text { at center }
\end{aligned}
$$

PROBLEM 7.44

Solve Prob. 7.43 assuming that $a=1.5 \mathrm{ft}$.

SOLUTION

(a) FBD Beam:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0:(4.5 \mathrm{ft}) w-900 \mathrm{lb}-900 \mathrm{lb}=0 \\
w=400 \mathrm{lb} / \mathrm{ft}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Along AC: } \\
& \qquad\left\{F_{y}=0: \quad x(400 \mathrm{lb} / \mathrm{ft})-V=0\right. \\
& V=(400 \mathrm{lb} / \mathrm{ft}) x \quad V=600 \mathrm{lb} \text { at } C(x=1.5 \mathrm{ft}) \\
& \left(\Sigma M_{J}=0: M-\frac{x}{2}(400 \mathrm{lb} / \mathrm{ft}) x=0\right. \\
& M=(200 \mathrm{lb} / \mathrm{ft}) x^{2} \quad M=450 \mathrm{lb} \cdot \mathrm{ft} \text { at } C
\end{aligned}
$$

Along CD:

$$
\uparrow \Sigma F_{y}=0: x(400 \mathrm{lb} / \mathrm{ft})-900 \mathrm{lb}-V=0
$$

$$
\begin{gathered}
V=-900 \mathrm{lb}+(400 \mathrm{lb} / \mathrm{ft}) x \quad V=-300 \mathrm{at} x=1.5 \mathrm{ft} \\
V=0 \mathrm{at} x=2.25 \mathrm{ft} \\
\left(\Sigma M_{K}=0: M+(x-1.5 \mathrm{ft})(900 \mathrm{lb})-\frac{x}{2}(400 \mathrm{lb} / \mathrm{ft}) x=0\right. \\
M=1350 \mathrm{lb} \cdot \mathrm{ft}-(900 \mathrm{lb}) x+(200 \mathrm{lb} / \mathrm{ft}) x^{2} \\
M=450 \mathrm{lb} \cdot \mathrm{ft} \text { at } x=1.5 \mathrm{ft} \\
M=337.5 \mathrm{lb} \cdot \mathrm{ft} \text { at } x=2.25 \mathrm{ft}(\text { center })
\end{gathered}
$$

Finish by symmetry
(b) From diagrams:

$$
\begin{aligned}
|V|_{\max } & =600 \mathrm{lb} \text { at } C^{-} \text {and } D^{+} . \\
|M|_{\max } & =450 \mathrm{lb} \cdot \mathrm{ft} \text { at } C \text { and } D .
\end{aligned}
$$

PROBLEM 7.45

Two short angle sections $C E$ and $D F$ are bolted to the uniform beam $A B$ of weight 3.33 kN , and the assembly is temporarily supported by the vertical cables $E G$ and $F H$ as shown. A second beam resting on beam $A B$ at I exerts a downward force of 3 kN on $A B$. Knowing that $a=0.3 \mathrm{~m}$ and neglecting the weight of the ngle sections, (a) draw the shear and bending-moment diagrams for beam $A B,(b)$ determine the maximum absolute values of the shear and bending moment in the beam.

(a) By symmetry: $\quad T=\frac{3.33 \mathrm{kN}+3 \mathrm{kN}}{2}=3.165 \mathrm{kN}$

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: T-P_{C}=0 \quad P_{C}=T=3.165 \mathrm{kN} \\
\left(\Sigma M_{C}=0: M_{C}-(0.1 \mathrm{~m})(3.165 \mathrm{kN})=0 \quad M_{C}=0.3165 \mathrm{kN} \cdot \mathrm{~m}\right.
\end{gathered}
$$

By symmetry:

$$
P_{D}=3.165 \mathrm{kN} ; M_{D}=0.3165 \mathrm{kN} \cdot \mathrm{~m}
$$

Along AC:

$$
\uparrow \Sigma F_{y}=0:-x(1.11 \mathrm{kN} / \mathrm{m})-V=0
$$

$$
V=-(1.11 \mathrm{kN} / \mathrm{m}) x \quad V=-1.332 \mathrm{kN} \text { at } C \quad(x=1.2 \mathrm{~m})
$$

$$
\left(\Sigma M_{J}=0: M+\frac{x}{2}(1.11 \mathrm{kN} / \mathrm{m}) x=0\right.
$$

$$
M=(0.555 \mathrm{kN} / \mathrm{m}) x^{2} \quad M=-0.7992 \mathrm{kN} \cdot \mathrm{~m} \text { at } C
$$

Along CI:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0:-(1.11 \mathrm{kN} / \mathrm{m}) x+3.165 \mathrm{kN}-V=0 \\
V=3.165 \mathrm{kN}-(1.11 \mathrm{kN} / \mathrm{m}) x \quad V=1.5 \mathrm{kN} \text { at } I \quad(x=1.5 \mathrm{~m})
\end{gathered}
$$

($\Sigma M_{k}=0$:

$$
M+(1.11 \mathrm{kN} / \mathrm{m}) x-(x-1.2 \mathrm{~m})(3.165 \mathrm{kN})-(0.3165 \mathrm{kN} \cdot \mathrm{~m})=0
$$

PROBLEM 7.45 CONTINUED

$$
\begin{gathered}
M=3.4815 \mathrm{kN} \cdot \mathrm{~m}+(3.165 \mathrm{kN}) x-(0.555 \mathrm{kN} / \mathrm{m}) x^{2} \\
M=-0.4827 \mathrm{kN} \cdot \mathrm{~m} \text { at } C \quad M=0.01725 \mathrm{kN} \cdot \mathrm{~m} \text { at } I
\end{gathered}
$$

Note: At I, the downward 3 kN force will reduce the shear V by 3 kN , from +1.5 kN to -1.5 kN , with no change in M. From I to B, the diagram can be completed by symmetry.
(b) From diagrams:

$$
\begin{aligned}
|V|_{\max } & =1.833 \mathrm{kN} \text { at } C \text { and } D \leftharpoonup \\
|M|_{\max } & =799 \mathrm{~N} \cdot \mathrm{~m} \text { at } C \text { and } D \leftharpoonup
\end{aligned}
$$

SOLUTION

FBD angle CE:

(a) By symmetry:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: T-P_{C}=0 \quad P_{C}=T=3.165 \mathrm{kN} \\
\left(\Sigma M_{C}=0: M_{C}-(0.1 \mathrm{~m})(3.165 \mathrm{kN})=0 \quad M_{C}=0.3165 \mathrm{kN} \cdot \mathrm{~m}\right.
\end{gathered}
$$

By symmetry: $\quad P_{D}=3.165 \mathrm{kN} \quad M_{D}=0.3165 \mathrm{kN} \cdot \mathrm{m}$
Along AC:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0:-(1.11 \mathrm{kN} / \mathrm{m}) x-V=0 \\
V=-(1.11 \mathrm{kN} / \mathrm{m}) x \quad V=-0.999 \mathrm{kN} \text { at } C \quad(x=0.9 \mathrm{~m}) \\
\left(\Sigma M_{J}=0: M+\frac{x}{2}(1.11 \mathrm{kN} / \mathrm{m}) x=0\right. \\
M=-(0.555 \mathrm{kN} / \mathrm{m}) x^{2} \quad M=-0.44955 \mathrm{kN} \cdot \mathrm{~m} \text { at } C
\end{gathered}
$$

Along CI:

$$
\uparrow \Sigma F_{y}=0:-x(1.11 \mathrm{kN} / \mathrm{m})+3.165 \mathrm{kN}-V=0
$$

$$
V=3.165 \mathrm{kN}-(1.11 \mathrm{kN} / \mathrm{m}) x \quad V=2.166 \mathrm{kN} \text { at } C
$$

$$
V=1.5 \mathrm{kN} \text { at } I \quad(x=1.5 \mathrm{~m})
$$

$$
\left(\Sigma M_{K}=0:\right.
$$

$$
M-0.3165 \mathrm{kN} \cdot \mathrm{~m}+(x-0.9 \mathrm{~m})(3.165 \mathrm{kN})+\frac{x}{2}(1.11 \mathrm{kN} / \mathrm{m}) x=0
$$

PROBLEM 7.46 CONTINUED

$$
\begin{gathered}
M=-2.532 \mathrm{kN} \cdot \mathrm{~m}+(3.165 \mathrm{kN}) x-(0.555 \mathrm{kN} / \mathrm{m}) x^{2} \\
M=-0.13305 \mathrm{kN} \cdot \mathrm{~m} \text { at } C \quad M=0.96675 \mathrm{kN} \cdot \mathrm{~m} \text { at } I
\end{gathered}
$$

Note: At I, the downward 3 kN force will reduce the shear V by 3 kN , from +1.5 kN to -1.5 kN , with no change in M. From I to B, the diagram can be completed by symmetry.
(b) From diagrams:

$$
\begin{aligned}
& |V|_{\max }=2.17 \mathrm{kN} \text { at } C \text { and } D \measuredangle \\
& \quad|M|_{\max }=967 \mathrm{~N} \cdot \mathrm{~m} \text { at } I
\end{aligned}
$$

SOLUTION

FBD CD:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0:-1.2 \mathrm{kN}+C_{y}=0 \quad \mathbf{C}_{y}=1.2 \mathrm{kN} \uparrow \\
\left(\Sigma M_{C}=0:(0.4 \mathrm{~m})(1.2 \mathrm{kN})-M_{C}=0 \quad M_{C}=0.48 \mathrm{kN} \cdot \mathrm{~m}\right.
\end{gathered}
$$

FBD Beam:

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(1.2 \mathrm{~m}) B+0.48 \mathrm{kN} \cdot \mathrm{~m}-(0.8 \mathrm{~m})(1.2 \mathrm{kN})=0\right. \\
\mathbf{B}=0.4 \mathrm{kN} \uparrow \\
\uparrow \Sigma F_{y}=0: A_{y}-1.2 \mathrm{kN}+0.4 \mathrm{kN}=0 \quad \mathbf{A}_{y}=0.8 \mathrm{kN} \uparrow
\end{gathered}
$$

Along AC:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: 0.8 \mathrm{kN}-V=0 \quad V=0.8 \mathrm{kN} \\
\left(\Sigma M_{J}=0: M-x(0.8 \mathrm{kN})=0 \quad M=(0.8 \mathrm{kN}) x\right. \\
M=0.64 \mathrm{kN} \cdot \mathrm{~m} \text { at } x=0.8 \mathrm{~m}
\end{gathered}
$$

Along CB:

$$
\begin{aligned}
& M(\xlongequal[\sim]{\tau} \stackrel{V}{\sim} \\
& \uparrow \Sigma F_{y}=0: \quad V+0.4 \mathrm{kN}=0 \quad V=-0.4 \mathrm{kN} \\
& \left(\Sigma M_{K}=0: x_{1}(0.4 \mathrm{kN})-M=0 \quad M=(0.4 \mathrm{kN}) x_{1}\right. \\
& M=0.16 \mathrm{kN} \cdot \mathrm{~m} \text { at } x_{1}=0.4 \mathrm{~m}
\end{aligned}
$$

(a)

Just left of C :
$V=800 \mathrm{~N}$

Just right of C :

$$
\begin{array}{r}
M=640 \mathrm{~N} \cdot \mathrm{~m} \\
V=-400 \mathrm{~N}
\end{array}
$$

SOLUTION

FBD angle:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: F_{y}-600 \mathrm{~N}=0 \quad F_{y}=600 \mathrm{~N} \\
\left(\Sigma M_{\text {Base }}=0: \quad M-(0.3 \mathrm{~m})(600 \mathrm{~N})=0 \quad M=180 \mathrm{~N} \cdot \mathrm{~m}\right.
\end{gathered}
$$

All three angles are the same.

FBD Beam:

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(1.8 \mathrm{~m}) B-3(180 \mathrm{~N} \cdot \mathrm{~m})\right. \\
-(0.3 \mathrm{~m}+0.9 \mathrm{~m}+1.5 \mathrm{~m})(600 \mathrm{~N})=0 \\
\mathbf{B}=1200 \mathrm{~N} \uparrow \\
\uparrow \Sigma F_{y}=0: A_{y}-3(600 \mathrm{~N})+1200 \mathrm{~N}=0 \quad \mathbf{A}_{y}=600 \mathrm{~N} \uparrow
\end{gathered}
$$

Along AC:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: 600 \mathrm{~N}-V=0 \quad V=600 \mathrm{~N} \\
\left(\Sigma M_{J}=0: M-x(600 \mathrm{~N})=0\right. \\
M=(600 \mathrm{~N}) x=180 \mathrm{~N} \cdot \mathrm{~m} \text { at } x=.3 \mathrm{~m}
\end{gathered}
$$

Along CD:

$$
\uparrow \Sigma F_{y}=0: 600 \mathrm{~N}-600 \mathrm{~N}-V=0 \quad V=0
$$

$$
\begin{gathered}
\left(\Sigma M_{K}=0: M+(x-0.3 \mathrm{~m})(600 \mathrm{~N})-180 \mathrm{~N} \cdot \mathrm{~m}-x(600 \mathrm{~N})=0\right. \\
M=360 \mathrm{~N} \cdot \mathrm{~m}
\end{gathered}
$$

PROBLEM 7.48 CONTINUED

Along DE:

$$
\begin{gathered}
\Sigma F_{y}=0: V-600 \mathrm{~N}+1200 \mathrm{~N}=0 \quad V=-600 \mathrm{~N} \\
\left(\Sigma M_{N}=0:-M-180 \mathrm{~N} \cdot \mathrm{~m}-x_{2}(600 \mathrm{~N})+\left(x_{2}+0.3 \mathrm{~m}\right)(1200 \mathrm{~N})=0\right. \\
M=180 \mathrm{~N} \cdot \mathrm{~m}+(600 \mathrm{~N}) x_{2}=540 \mathrm{~N} \cdot \mathrm{~m} \text { at } \mathrm{D}, x_{2}=0.6 \mathrm{~m} \\
M=180 \mathrm{~N} \cdot \mathrm{~m} \text { at } \mathrm{E}\left(x_{2}=0\right)
\end{gathered}
$$

Along EB:

$$
M(\overbrace{x_{1}+\frac{V}{-}}
$$

$$
\begin{array}{cc}
\uparrow \Sigma F_{y}=0: V+1200 \mathrm{~N}=0 & V=-1200 \mathrm{~N} \\
\left(\Sigma M_{L}=0: x_{1}(1200 \mathrm{~N})-M=0\right. & M=(1200 \mathrm{~N}) x_{1}
\end{array}
$$

$$
M=360 \mathrm{~N} \cdot \mathrm{~m} \text { at } x_{1}=0.3 \mathrm{~m}
$$

From diagrams:

$$
\begin{gathered}
|V|_{\max }=1200 \mathrm{~N} \text { on } E B \\
|M|_{\max }=540 \mathrm{~N} \cdot \mathrm{~m} \text { at } D^{+}
\end{gathered}
$$

SOLUTION

FBD Whole:

Beam AB, with forces \mathbf{D} and \mathbf{G}

$$
\uparrow \Sigma F_{y}=0: D_{y}-1.5 \mathrm{kN}-6 \mathrm{kN}-1.5 \mathrm{kN}=0 \quad \mathbf{D}_{y}=9 \mathrm{kN} \uparrow
$$ replaced by equivalent force/couples at C and F

Along AD:

$$
\uparrow \Sigma F_{y}=0:-1.5 \mathrm{kN}-V=0 \quad V=-1.5 \mathrm{kN}
$$

$$
\left(\Sigma M_{J}=0: x(1.5 \mathrm{kN})+M=0 \quad M=-(1.5 \mathrm{kN}) x\right.
$$

$$
M=-1.8 \mathrm{kN} \text { at } x=1.2 \mathrm{~m}
$$

Along DE:

$\uparrow \Sigma F_{y}=0:-1.5 \mathrm{kN}+9 \mathrm{kN}-V=0 \quad V=7.5 \mathrm{kN}$

$$
\begin{gathered}
\left(\Sigma M_{K}=0: M+5.4 \mathrm{kN} \cdot \mathrm{~m}-x_{1}(9 \mathrm{kN})+\left(1.2 \mathrm{~m}+x_{1}\right)(1.5 \mathrm{kN})=0\right. \\
M=7.2 \mathrm{kN} \cdot \mathrm{~m}+(7.5 \mathrm{kN}) x_{1} \quad M=1.8 \mathrm{kN} \cdot \mathrm{~m} \text { at } x_{1}=1.2 \mathrm{~m}
\end{gathered}
$$

$$
\begin{aligned}
& \left(\Sigma M_{D}=0:(1.2 \mathrm{~m})(1.5 \mathrm{kN})-(1.2 \mathrm{~m})(6 \mathrm{kN})\right. \\
& -(3.6 \mathrm{~m})(1.5 \mathrm{kN})+(1.6 \mathrm{~m}) G=0 \\
& \mathbf{G}=6.75 \mathrm{kN} \longrightarrow \\
& \longrightarrow \Sigma F_{x}=0:-D_{x}+G=0 \\
& \mathbf{D}_{x}=6.75 \mathrm{kN} \longleftarrow
\end{aligned}
$$

PROBLEM 7.49 CONTINUED

$$
\begin{aligned}
& \text { Along EF: } \\
& \uparrow \Sigma F_{y}=0: V-1.5 \mathrm{kN}=0 \quad V=1.5 \mathrm{kN} \\
& \left(\Sigma M_{N}=0:-M+5.4 \mathrm{kN} \cdot \mathrm{~m}-\left(x_{4}+1.2 \mathrm{~m}\right)(1.5 \mathrm{kN})\right. \\
& M=3.6 \mathrm{kN} \cdot \mathrm{~m}-(1.5 \mathrm{kN}) x_{4} \\
& M=1.8 \mathrm{kN} \cdot \mathrm{~m} \text { at } x_{4}=1.2 \mathrm{~m} ; \quad \mathrm{M}=3.6 \mathrm{kN} \cdot \mathrm{~m} \text { at } x_{4}=0
\end{aligned}
$$

Along FB:

$$
\begin{array}{cc}
\uparrow \Sigma F_{y}=0: V-1.5 \mathrm{kN}=0 & V=1.5 \mathrm{kN} \\
\left(\Sigma M_{L}=0:-M-x_{3}(1.5 \mathrm{kN})=0\right. & M=(-1.5 \mathrm{kN}) x_{3} \\
M=-1.8 \mathrm{kN} \cdot \mathrm{~m} \text { at } x_{3}=1.2 \mathrm{~m}
\end{array}
$$

From diagrams:

$$
\begin{gathered}
|V|_{\max }=7.50 \mathrm{kN} \text { on } D E \\
|M|_{\max }=7.20 \mathrm{kN} \cdot \mathrm{~m} \text { at } D^{+}
\end{gathered}
$$

PROBLEM 7.50

Neglecting the size of the pulley at $G,(a)$ draw the shear and bending-moment diagrams for the beam $A B,(b)$ determine the maximum absolute values of the shear and bending moment.

SOLUTION

FBD Whole:

(a)

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(0.5 \mathrm{~m}) \frac{12}{13} D+(1.2 \mathrm{~m}) \frac{5}{13} D-(2.5 \mathrm{~m})(480 \mathrm{~N})=0\right. \\
D=1300 \mathrm{~N} \\
\uparrow \Sigma F_{y}=0: A_{y}+\frac{5}{13}(1300 \mathrm{~N})-480 \mathrm{~N}=0 \\
A_{y}=-20 \mathrm{~N} \quad \mathbf{A}_{y}=20 \mathrm{~N} \downarrow
\end{gathered}
$$

Along AE:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0:-20 \mathrm{~N}-V=0 \quad V=-20 \mathrm{~N} \\
\left(\Sigma M_{J}=0: M+x(20 \mathrm{~N}) \quad M=-(20 \mathrm{~N}) x\right. \\
M=-24 \mathrm{~N} \cdot \mathrm{~m} \text { at } x=1.2 \mathrm{~m}
\end{gathered}
$$

Along EF:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: V-288 \mathrm{~N}-480 \mathrm{~N}=0 \quad V=768 \mathrm{~N} \\
\left(\Sigma M_{L}=0:-M-x_{2}(288 \mathrm{~N})-(28.8 \mathrm{~N} \cdot \mathrm{~m})-\left(x_{2}+0.6 \mathrm{~m}\right)(480 \mathrm{~N})=0\right. \\
M=-316.8 \mathrm{~N} \cdot \mathrm{~m}-(768 \mathrm{~N}) x_{2} \\
M=-316.8 \mathrm{~N} \cdot \mathrm{~m} \text { at } x_{2}=0 ; \quad M=-624 \mathrm{~N} \cdot \mathrm{~m} \text { at } x_{2}=0.4 \mathrm{~m}
\end{gathered}
$$

Along FB:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: V-480 \mathrm{~N}=0 \quad V=480 \mathrm{~N} \\
\left(\Sigma M_{K}=0:-M-x_{1}(480 \mathrm{~N})=0 \quad M=-(480 \mathrm{~N}) x_{1}\right. \\
M=-288 \mathrm{~N} \cdot \mathrm{~m} \text { at } x_{1}=0.6 \mathrm{~m}
\end{gathered}
$$

(b) From diagrams:

$$
\begin{aligned}
& |V|_{\max }=768 \mathrm{~N} \text { along } E F \text { 4 } \\
& |M|_{\max }=624 \mathrm{~N} \cdot \mathrm{~m} \text { at } E^{+}
\end{aligned}
$$

PROBLEM 7.51

For the beam of Prob. 7.43, determine (a) the distance a for which the maximum absolute value of the bending moment in the beam is as small as possible, (b) the corresponding value of $|M|_{\text {max }}$.
(Hint: Draw the bending-moment diagram and then equate the absolute values of the largest positive and negative bending moments obtained.)

SOLUTION

FBD Beam:

Along AC:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: L w-2 P=0 \\
w=2 \frac{P}{L} \\
\left(\Sigma M_{J}=0: M-\frac{x}{2}\left(\frac{2 P}{L} x\right)=0 \quad M=\frac{P}{L} x^{2}\right. \\
M=\frac{P}{L} a^{2} \text { at } x=a \\
\left(\Sigma M_{K}=0: M+(x-a) P-\frac{x}{2}\left(\frac{2 P}{L} x\right)=0\right. \\
M=P(a-x)+\frac{P}{L} x^{2}=\frac{P a^{2}}{L} \quad \text { at } \quad x=a \\
M=P\left(a-\frac{L}{4}\right) \text { at } x=\frac{L}{2}
\end{gathered}
$$

Along CD:

This is M min by symmetry-see moment diagram completed by symmetry.

For minimum $|M|_{\max }$, set $M_{\max }=-M_{\min }$:
or

$$
\begin{gathered}
P \frac{a^{2}}{L}=-P\left(a-\frac{L}{4}\right) \\
a^{2}+L a-\frac{L^{2}}{4}=0
\end{gathered}
$$

Solving:

$$
a=\frac{-1 \pm \sqrt{2}}{2} L
$$

Positive answer (a)

$$
a=0.20711 L=0.932 \mathrm{ft}
$$

(b) $|M|_{\max }=0.04289 P L=173.7 \mathrm{lb} \cdot \mathrm{ft}$

PROBLEM 7.52

For the assembly of Prob. 7.45, determine (a) the distance a for which the maximum absolute value of the bending moment in beam $A B$ is as small as possible, (b) the corresponding value of $|M|_{\max }$. (See hint for Prob. 7.51.)

By symmetry of whole arrangement:

Along AC:

Along CI:

$$
\begin{gathered}
T=\frac{3.33 \mathrm{kN}+3 \mathrm{kN}}{2}=3.165 \mathrm{kN} \\
\uparrow \Sigma F_{y}=0: T-F=0 \quad F=3.165 \mathrm{kN} \\
\left(\Sigma M_{0}=0: M-(0.1 \mathrm{~m})(3.165 \mathrm{kN})=0 \quad M=0.3165 \mathrm{kN} \cdot \mathrm{~m}\right.
\end{gathered}
$$

$$
\left(\Sigma M_{J}=0: M+\frac{x}{2}(1.11 \mathrm{kN} / \mathrm{m}) x=0\right.
$$

$$
\begin{gathered}
M=-(0.555 \mathrm{kN} / \mathrm{m}) x^{2}=-(0.555 \mathrm{kN} / \mathrm{m})(1.5 \mathrm{~m}-a)^{2} \\
\text { at } C\left(\text { this is } M_{\min }\right) \\
\left(\Sigma M_{K}=0: M-0.3165 \mathrm{kN} \cdot \mathrm{~m}+\frac{x}{2}(1.11 \mathrm{kN} / \mathrm{m}) x\right.
\end{gathered}
$$

$$
-[x-(1.5 \mathrm{~m}-a)](3.165 \mathrm{kN})=0
$$

$$
\begin{gathered}
M=-4.431 \mathrm{kN} \cdot \mathrm{~m}+(3.165 \mathrm{kN})(x+a)-(0.555 \mathrm{kN} / \mathrm{m}) x^{2} \\
M_{\max }(\text { at } x=1.5 \mathrm{~m})=-0.93225 \mathrm{kN} \cdot \mathrm{~m}+(3.165 \mathrm{kN}) a
\end{gathered}
$$

For minimum $|M|_{\max }$, set $M_{\text {max }}=-M_{\text {min }}$:

$$
-0.93225 \mathrm{kN} \cdot \mathrm{~m}+(3.165 \mathrm{kN}) a=(0.555 \mathrm{kN} / \mathrm{m})(1.5 \mathrm{~m}-a)^{2}
$$

Yielding:

$$
a^{2}-(8.7027 \mathrm{~m}) a+3.92973 \mathrm{~m}^{2}=0
$$

Solving: $\quad a=4.3514 \pm \sqrt{13.864}=0.4778 \mathrm{~m}, 8.075 \mathrm{~m}$
Second solution out of range, so

$$
M_{\max }=0.5801 \mathrm{kN} \cdot \mathrm{~m}
$$

(b) $M_{\text {max }}=580 \mathrm{~N} \cdot \mathrm{~m}$

PROBLEM 7.53

For the beam shown, determine (a) the magnitude P of the two upward forces for which the maximum value of the bending moment is as small as possible, (b) the corresponding value of $|M|_{\max }$. (See hint for Prob. 7.51.)

SOLUTION

$$
\begin{aligned}
& \text { By symmetry: } \quad A_{y}=B=60 \mathrm{kN}-P \\
& \left(\Sigma M_{J}=0: M-x(60 \mathrm{kN}-P)=0 \quad M=(60 \mathrm{kN}-P) x\right. \\
& M=120 \mathrm{kN} \cdot \mathrm{~m}-(2 \mathrm{~m}) P \text { at } x=2 \mathrm{~m} \\
& \left(\Sigma M_{K}=0: M+(x-2 \mathrm{~m})(60 \mathrm{kN})-x(60 \mathrm{kN}-P)=0\right. \\
& M=120 \mathrm{kN} \cdot \mathrm{~m}-P x \\
& M=120 \mathrm{kN} \cdot \mathrm{~m}-(4 \mathrm{~m}) P \text { at } x=4 \mathrm{~m}
\end{aligned}
$$

Along DE:

$$
\begin{gathered}
\left(\Sigma M_{L}=0: M-(x-4 \mathrm{~m}) P+(x-2 \mathrm{~m})(60 \mathrm{kN})\right. \\
-x(60 \mathrm{kN}-P)=0
\end{gathered}
$$

$$
M=120 \mathrm{kN} \cdot \mathrm{~m}-(4 \mathrm{~m}) P \quad \text { (const) }
$$

Complete diagram by symmetry
For minimum $|M|_{\max }$, set $M_{\max }=-M_{\text {min }}$

$$
\begin{array}{r}
120 \mathrm{kN} \cdot \mathrm{~m}-(2 \mathrm{~m}) P=-[120 \mathrm{kN} \cdot \mathrm{~m}-(4 \mathrm{~m}) P] \tag{a}\\
\\
\begin{array}{r}
(a) \\
20 \mathrm{kN} \cdot \mathrm{~m}-(4 \mathrm{~m}) P \\
(b) \quad 40.0 \mathrm{kN}
\end{array} \\
\begin{array}{r}
\text { (b) } \\
\max
\end{array}=40.0 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

SOLUTION

FBD Beam:

$$
\begin{gathered}
\Sigma M_{A}=0: M_{A}-(1.5 \mathrm{ft})(1 \mathrm{kip})-(3.5 \mathrm{ft})(4 \mathrm{kips}) \\
+(3.5 \mathrm{ft}+a)(2 \mathrm{kips})=0 \\
\left.\mathbf{M}_{A}=[8.5 \mathrm{kip} \cdot \mathrm{ft}-(2 \mathrm{kips}) a]\right) \\
\uparrow \Sigma F_{y}=0: A_{y}-1 \mathrm{kip}-4 \mathrm{kips}+2 \mathrm{kips}=0 \\
\mathbf{A}_{y}=3 \mathrm{kips} \uparrow
\end{gathered}
$$

Along AC:

Along DB:

Along CD:

$$
\begin{aligned}
\left(\Sigma M_{J}\right. & =0: M-x(3 \mathrm{kips})+8.5 \mathrm{kip} \cdot \mathrm{ft}-(2 \mathrm{kips}) a=0 \\
M & =(3 \mathrm{kips}) x+(2 \mathrm{kips}) a-8.5 \mathrm{kip} \cdot \mathrm{ft} \\
M & =(2 \mathrm{kips}) a-4 \mathrm{kip} \cdot \mathrm{ft} \text { at } C(x=1.5 \mathrm{ft}) \\
M & =(2 \mathrm{kips}) a-8.5 \mathrm{kip} \cdot \mathrm{ft} \text { at } A\left(M_{\min }\right)
\end{aligned}
$$

$$
\begin{gathered}
\left(\Sigma M_{K}=0:-M+x_{1}(2 \mathrm{kips})=0 \quad M=(2 \mathrm{kips}) x_{1}\right. \\
M=(2 \mathrm{kips}) a \text { at } D
\end{gathered}
$$

$$
\left(\Sigma M_{L}=0:\left(x_{2}+a\right)(2 \mathrm{kips})-x_{2}(4 \mathrm{kips})-M=0\right.
$$

$$
M=(2 \mathrm{kips}) a-(2 \mathrm{kips}) x_{2}
$$

$$
M=(2 \mathrm{kips}) a-4 \mathrm{kip} \cdot \mathrm{ft} \text { at } C \quad(\text { see above })
$$

For minimum $|M|_{\text {max }}$, set $M_{\max }($ at $D)=-M_{\text {min }}($ at $A)$

$$
\begin{gathered}
(2 \mathrm{kips}) a=-[(2 \mathrm{kips}) a-8.5 \mathrm{kip} \cdot \mathrm{ft}] \\
4 a=8.5 \mathrm{ft} \quad a=2.125 \mathrm{ft}
\end{gathered}
$$

(a)

$$
a=2.13 \mathrm{ft}
$$

So

$$
M_{\max }=(2 \mathrm{kips}) a=4.25 \mathrm{kip} \cdot \mathrm{ft}
$$

(b) $\quad|M|_{\max }=4.25 \mathrm{kip} \cdot \mathrm{ft}$

PROBLEM 7.55

Knowing that $P=Q=375 \mathrm{lb}$, determine (a) the distance a for which the maximum absolute value of the bending moment in beam $A B$ is as small as possible, (b) the corresponding value of $|M|_{\max }$. (See hint for Prob. 7.51.)

SOLUTION

FBD Beam:

Segment AC:

Segment DB:

$$
\left(\Sigma M_{A}=0:(a \mathrm{ft}) D-(4 \mathrm{ft})(375 \mathrm{lb})-(8 \mathrm{ft})(375 \mathrm{lb})=0\right.
$$

$$
\mathbf{D}=\frac{4500}{a} \mathrm{lb} \uparrow
$$

$$
\uparrow \Sigma F_{y}=0: A_{y}-2(375 \mathrm{lb})+\frac{4500}{a} \mathrm{lb}=0
$$

$$
\mathbf{A}_{y}=\left(750-\frac{4500}{a}\right) \mathrm{lb} \uparrow
$$

It is apparent that $M=0$ at A and B, and that all segments of the M diagram are straight, so the max and min values of M must occur at C and D

$$
\left(\Sigma M_{C}=0: M-(4 \mathrm{ft})\left(750-\frac{4500}{a}\right) \mathrm{lb}=0\right.
$$

$$
M=\left(3000-\frac{18000}{a}\right) \mathrm{lb} \cdot \mathrm{ft}
$$

$$
\left(\Sigma M_{D}=0:-[(8-a) \mathrm{ft}](375 \mathrm{lb})-M=0\right.
$$

$$
M=-375(8-a) \mathrm{lb} \cdot \mathrm{ft}
$$

For minimum $|M|_{\max }$, set $M_{\max }=-M_{\min }$

So

$$
\begin{aligned}
& 3000-\frac{18000}{a}=375(8-a) \\
& a^{2}=48 \quad a=6.9282 \mathrm{ft}
\end{aligned}
$$

(a)
$a=6.93 \mathrm{ft}$

$$
M_{\max }=375(8-a)=401.92 \mathrm{lb} \cdot \mathrm{ft}
$$

(b)

$$
|M|_{\max }=402 \mathrm{lb} \cdot \mathrm{ft}
$$

SOLUTION

FBD Beam:

Segment AC:

Segment DB:

$$
\left(\Sigma M_{D}=0:-(a \mathrm{ft}) A_{y}+[(a-4) \mathrm{ft}](750 \mathrm{lb})\right.
$$

$$
\begin{aligned}
& -[(8-a) \mathrm{ft}](375 \mathrm{lb})=0 \\
& \mathbf{A}_{y}=\left(1125-\frac{6000}{a}\right) \mathrm{lb} \uparrow
\end{aligned}
$$

It is apparent that $M=0$ at A and B, and that all segments of the M-diagram are straight, so $M_{\max }$ and $M_{\min }$ occur at C and D.

$$
\begin{gathered}
\left(\Sigma M_{C}=0: M-(4 \mathrm{ft})\left(1125-\frac{6000}{a}\right) \mathrm{lb}=0\right. \\
M=\left(4500-\frac{24000}{a}\right) \mathrm{lb} \cdot \mathrm{ft} \\
\left(\Sigma M_{D}=0:-M-[(8-a) \mathrm{ft}](375 \mathrm{lb})=0\right.
\end{gathered}
$$

$$
M=-375(8-a) \mathrm{lb} \cdot \mathrm{ft}
$$

For minimum $M_{\text {max }}$, set $M_{\max }=-M_{\text {min }}$

$$
M_{\max }=375(8-a)=657.7 \mathrm{lb} \cdot \mathrm{ft}
$$

(b) $\quad|M|_{\text {max }}=658 \mathrm{lb} \cdot \mathrm{ft}$

$$
\begin{aligned}
& 4500-\frac{24000}{a}=375(8-a) \\
& a^{2}+4 a-64=0 \quad a=-2 \pm \sqrt{68}(\text { need }+) \\
& a=6.2462 \mathrm{ft} \quad(a) \quad a=6.25 \mathrm{ft}
\end{aligned}
$$

PROBLEM 7.57

In order to reduce the bending moment in the cantilever beam $A B$, a cable and counterweight are permanently attached at end B. Determine the magnitude of the counterweight for which the maximum absolute value of the bending moment in the beam is as small as possible and the corresponding value of $|M|_{\max }$. Consider (a) the case when the distributed load is permanently applied to the beam, (b) the more general case when the distributed load may either be applied or removed.

SOLUTION

M due to distributed load:

M due to counter weight:

(a) Both applied:

(b) \boldsymbol{w} may be removed:

$$
\begin{gathered}
\left(\Sigma M_{J}=0:-M-\frac{x}{2} w x=0\right. \\
M=-\frac{1}{2} w x^{2} \\
\left(\Sigma M_{J}=0:-M+x w=0\right. \\
M=w x
\end{gathered}
$$

$$
M=W_{x}-\frac{w}{2} x^{2} \quad \frac{d M}{d x}=W-w x=0 \text { at } x=\frac{W}{w}
$$

And here $M=\frac{W^{2}}{2 w}>0$ so $M_{\max } ; M_{\text {min }}$ must be at $x=L$
So $M_{\min }=W L-\frac{1}{2} w L^{2}$. For minimum $|M|_{\max }$ set $M_{\max }=-M_{\min }$, so

$$
\begin{gathered}
\frac{W^{2}}{2 w}=-W L+\frac{1}{2} w L^{2} \text { or } W^{2}+2 w L W-w^{2} L^{2}=0 \\
W=-w L \pm \sqrt{2 w^{2} L^{2}}(\text { need }+) \quad W=(\sqrt{2}-1) w L=0.414 w L \\
M_{\max }=\frac{W^{2}}{2 w}=\frac{(\sqrt{2}-1)^{2}}{2} w L^{2} \quad M_{\max }=0.858 w L^{2} .
\end{gathered}
$$

Without w,

$$
M=W x, M_{\max }=W L \text { at } A
$$

With $w($ see part $a) \quad M=W x-\frac{w}{2} x^{2}, \quad M_{\max }=\frac{W^{2}}{2 w}$ at $x=\frac{W}{w}$

$$
M_{\min }=W L-\frac{1}{2} w L^{2} \text { at } x=L
$$

PROBLEM 7.57 CONTINUED

For minimum $M_{\max }$, set $M_{\max }($ no $w)=-M_{\min }($ with $w)$

$$
\begin{aligned}
W L=-W L+\frac{1}{2} w L^{2} \rightarrow W=\frac{1}{4} w L \rightarrow \quad M_{\max } & =\frac{1}{4} w L^{2} \\
W & =\frac{1}{4} w L
\end{aligned}
$$

SOLUTION

(a) and (b)

By symmetry: $A_{y}=D=\frac{1}{2}\left(w \frac{L}{2}\right)=\frac{w L}{4} \quad$ or $\quad \mathbf{A}_{y}=\mathbf{D}=\frac{w L}{4} \uparrow$
Shear Diag: $\quad V$ jumps to $A_{y}=\frac{w L}{4}$ at A,

and stays constant (no load) to B. From B to C, V is linear
$\left(\frac{d V}{d x}=-w\right)$, and it becomes $\frac{w L}{4}-w \frac{L}{2}=-\frac{w L}{4}$ at C.
(Note: $V=0$ at center of beam. From C to D, V is again constant.)
Moment Diag: M starts at zero at A
and increases linearly $\left(\frac{d M}{d V}=\frac{w L}{4}\right)$ to B.

$$
M_{B}=0+\frac{L}{4}\left(\frac{w L}{4}\right)=\frac{w L^{2}}{16} .
$$

From B to $C M$ is parabolic
$\left(\frac{d M}{d x}=V\right.$, which decreases to zero at center and $-\frac{w L}{4}$ at $\left.C\right)$,
M is maximum at center. $\quad M_{\max }=\frac{w L^{2}}{16}+\frac{1}{2}\left(\frac{L}{4}\right)\left(\frac{w L}{4}\right)$
Then, M is linear with $\frac{d M}{d y}=-\frac{w L}{4}$ to D

$$
\begin{array}{r}
M_{D}=0 \\
|V|_{\max }=\frac{w L}{4} \\
|M|_{\max }=\frac{3 w L^{2}}{32}
\end{array} .
$$

Notes: Symmetry could have been invoked to draw second half. Smooth transitions in M at B and C, as no discontinuities in V.

SOLUTION

(a) and (b)

Shear Diag: $\quad V=0$ at A and is linear
$\left(\frac{d V}{d x}=-w\right)$ to $-w\left(\frac{L}{2}\right)=-\frac{w L}{2}$ at $B . V$ is constant $\left(\frac{d V}{d x}=0\right)$ from B to C.

Moment Diag: $M=0$ at A and is
parabolic $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$ to B .

$$
M_{B}=\frac{1}{2}\left(\frac{L}{2}\right)\left(-\frac{w L}{2}\right)=-\frac{w L^{2}}{8}
$$

From B to C, M is linear $\left(\frac{d M}{d x}=-\frac{w L}{2}\right)$

$$
\begin{aligned}
& M_{C}=-\frac{w L^{2}}{8}-\left(\frac{L}{2}\right)\left(\frac{w L}{2}\right)=-\frac{3 w L^{2}}{8} \\
& \qquad|M|_{\max }=\frac{3 w L^{2}}{8}
\end{aligned}
$$

Notes: Smooth transition in M at B, as no discontinuity in V.
It was not necessary to predetermine reactions at C.
In fact they are given by $-V_{C}$ and $-M_{C}$.

SOLUTION

Shear Diag:

(a) and (b)
V jumps to P at A, then is constant $\left(\frac{d V}{d x}=0\right)$ to B. V jumps down P to zero at B, and is constant (zero) to C.

$$
|V|_{\max }=P
$$

Moment Diag:

M is linear $\left(\frac{d M}{d y}=V=P\right)$ to B.

$$
M_{B}=0+\left(\frac{L}{2}\right)(P)=\frac{P L}{2} .
$$

M is constant $\left(\frac{d M}{d x}=0\right)$ at $\frac{P L}{2}$ to C

$$
|M|_{\max }=\frac{P L}{2}
$$

Note: It was not necessary to predetermine reactions at C. In fact they are given by $-V_{C}$ and $-M_{C}$.

SOLUTION

$$
\begin{aligned}
&\left(\Sigma M_{B}=0:(0.6 \mathrm{ft})\right.(4 \mathrm{kips})+(5.1 \mathrm{ft})(8 \mathrm{kips}) \\
&+(7.8 \mathrm{ft})(10 \mathrm{kips})-(9.6 \mathrm{ft}) A_{y}=0 \\
& \mathbf{A}_{y}=12.625 \mathrm{kips} \uparrow
\end{aligned}
$$

Shear Diag:

V is piecewise constant, $\left(\frac{d V}{d x}=0\right)$ with discontinuities at each concentrated force. (equal to force)

$$
|V|_{\max }=12.63 \mathrm{kips}
$$

Moment Diag:

M is zero at A, and piecewise linear $\left(\frac{d M}{d x}=V\right)$ throughout.

$$
\begin{aligned}
M_{C} & =(1.8 \mathrm{ft})(12.625 \mathrm{kips})=22.725 \mathrm{kip} \cdot \mathrm{ft} \\
M_{D} & =22.725 \mathrm{kip} \cdot \mathrm{ft}+(2.7 \mathrm{ft})(2.625 \mathrm{kips}) \\
& =29.8125 \mathrm{kip} \cdot \mathrm{ft} \\
M_{E} & =29.8125 \mathrm{kip} \cdot \mathrm{ft}-(4.5 \mathrm{ft})(5.375 \mathrm{kips}) \\
& =5.625 \mathrm{kip} \cdot \mathrm{ft} \\
M_{B} & =5.625 \mathrm{kip} \cdot \mathrm{ft}-(0.6 \mathrm{ft})(9.375 \mathrm{kips})=0
\end{aligned}
$$

$$
|M|_{\max }=29.8 \mathrm{kip} \cdot \mathrm{ft}
$$

PROBLEM 7.63

Using the method of Sec. 7.6, solve Prob. 7.36.

SOLUTION

(a) and (b)

FBD Beam:

$$
\begin{gathered}
\left(\Sigma M_{E}=0:(1.1 \mathrm{~m})(0.54 \mathrm{kN})-(0.9 \mathrm{~m}) C_{y}\right. \\
+(0.4 \mathrm{~m})(1.35 \mathrm{kN})-(0.3 \mathrm{~m})(0.54 \mathrm{kN})=0 \\
\mathbf{C}_{y}=1.08 \mathrm{kN} \uparrow \\
\uparrow \Sigma F_{y}=0:-0.54 \mathrm{kN}+1.08 \mathrm{kN}-1.35 \mathrm{kN}+E-0.54 \mathrm{kN}=0 \\
\mathbf{E}=1.35 \mathrm{kN} \uparrow
\end{gathered}
$$

Shear Diag:

V is piecewise constant, $\left(\frac{d V}{d x}=0\right.$ everywhere $)$ with discontinuities at each concentrated force. (equal to the force)

$$
|V|_{\max }=810 \mathrm{~N}
$$

Moment Diag:

M is piecewise linear starting with $M_{A}=0$

$$
\begin{aligned}
& M_{C}=0-0.2 \mathrm{~m}(0.54 \mathrm{kN})=0.108 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{D}=0.108 \mathrm{kN} \cdot \mathrm{~m}+(0.5 \mathrm{~m})(0.54 \mathrm{kN})=0.162 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{E}=0.162 \mathrm{kN} \cdot \mathrm{~m}-(0.4 \mathrm{~m})(0.81 \mathrm{kN})=-0.162 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{B}=0.162 \mathrm{kN} \cdot \mathrm{~m}+(0.3 \mathrm{~m})(0.54 \mathrm{kN})=0
\end{aligned}
$$

$$
|M|_{\max }=0.162 \mathrm{kN} \cdot \mathrm{~m}=162.0 \mathrm{~N} \cdot \mathrm{~m}
$$

PROBLEM 7.64

For the beam and loading shown, (a) draw the shear and bendingmoment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

Shear Diag:

$$
V=0 \text { at } A \text { and linear }\left(\frac{d V}{d x}=-2 \mathrm{kN} / \mathrm{m}\right) \text { to } C
$$

$$
V_{C}=-1.2 \mathrm{~m}(2 \mathrm{kN} / \mathrm{m})=-2.4 \mathrm{kN}
$$

At C, V jumps 6 kN to 3.6 kN , and is constant to D. From there, V is linear $\left(\frac{d V}{d x}=+3 \mathrm{kN} / \mathrm{m}\right)$ to B

$$
V_{B}=3.6 \mathrm{kN}+(1 \mathrm{~m})(3 \mathrm{kN} / \mathrm{m})=6.6 \mathrm{kN}
$$

$$
|V|_{\max }=6.60 \mathrm{kN}
$$

Moment Diag:

$$
M_{A}=0
$$

From A to C, M is parabolic, $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$.

$$
M_{C}=-\frac{1}{2}(1.2 \mathrm{~m})(2.4 \mathrm{kN})=-1.44 \mathrm{kN} \cdot \mathrm{~m}
$$

From C to D, M is linear $\left(\frac{d M}{d x}=3.6 \mathrm{kN}\right)$

$$
\begin{aligned}
M_{D} & =-1.44 \mathrm{kN} \cdot \mathrm{~m}+(0.6 \mathrm{~m})(3.6 \mathrm{kN}) \\
& =0.72 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

From D to B, M is parabolic $\left(\frac{d M}{d x}\right.$ increasing with $\left.V\right)$

$$
\begin{aligned}
M_{B} & =0.72 \mathrm{kN} \cdot \mathrm{~m}+\frac{1}{2}(1 \mathrm{~m})(3.6+6.6) \mathrm{kN} \\
& =5.82 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

$$
|M|_{\max }=5.82 \mathrm{kN} \cdot \mathrm{~m}
$$

Notes: Smooth transition in M at D. It was unnecessary to predetermine reactions at B, but they are given by $-V_{B}$ and $-M_{B}$

PROBLEM 7.65

For the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

(a) and (b)

$$
\begin{array}{r}
\left(\Sigma M_{B}=0:(3 \mathrm{ft})(1 \mathrm{kip} / \mathrm{ft})(6 \mathrm{ft})+(8 \mathrm{ft})(6 \text { kips })\right. \\
+(10 \mathrm{ft})(6 \text { kips })-(12 \mathrm{ft}) A_{y}=0
\end{array}
$$

Shear Diag:

V is piecewise constant from A to E, with discontinuities at A, C, and E equal to the forces. $V_{E}=-1.5$ kips. From E to B, V is linear

$$
\left(\frac{d V}{d x}=-1 \mathrm{kip} / \mathrm{ft}\right)
$$

so

$$
V_{B}=-1.5 \mathrm{kips}-(6 \mathrm{ft})(1 \mathrm{kip} / \mathrm{ft})=-7.5 \mathrm{kips}
$$

$$
|V|_{\max }=10.50 \mathrm{kips}
$$

Moment Diag: $M_{A}=0$, then M is piecewise linear to E

$$
\begin{aligned}
& M_{C}=0+2 \mathrm{ft}(10.5 \mathrm{kips})=21 \mathrm{kip} \cdot \mathrm{ft} \\
& M_{D}=21 \mathrm{kip} \cdot \mathrm{ft}+(2 \mathrm{ft})(4.5 \mathrm{kips})=30 \mathrm{kip} \cdot \mathrm{ft} \\
& M_{E}=30 \mathrm{kip} \cdot \mathrm{ft}-(2 \mathrm{ft})(1.5 \mathrm{kips})=27 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

From E to B, M is parabolic $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$, and

$$
\begin{aligned}
M_{B}=27 \mathrm{kip} \cdot \mathrm{ft}-\frac{1}{2}(6 \mathrm{ft})(1.5 \mathrm{kips}+7.5 \mathrm{kips}) & =0 \\
|M|_{\max } & =30.0 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

SOLUTION

FBD Beam:

$$
\left.\begin{array}{c}
\uparrow \Sigma F_{y}=0: A_{y}+(6 \mathrm{ft})(2 \mathrm{kips} / \mathrm{ft})-12 \mathrm{kips}-2 \mathrm{kips}=0 \\
\mathbf{A}_{y}=2 \mathrm{kips}
\end{array}\right\}
$$

Shear Diag:

$V_{A}=A_{y}=2 \mathrm{kips}$. Then V is linear $\left(\frac{d V}{d x}=2 \mathrm{kips} / \mathrm{ft}\right)$ to C, where

$$
V_{C}=2 \mathrm{kips}+(6 \mathrm{ft})(2 \mathrm{kips} / \mathrm{ft})=14 \mathrm{kips}
$$

V is constant at 14 kips to D, then jumps down 12 kips to 2 kips and is constant to B

$$
|V|_{\max }=14.00 \mathrm{kips}
$$

Moment Diag:
 $$
M_{A}=-114 \mathrm{kip} \cdot \mathrm{ft} .
$$

From A to C, M is parabolic $\left(\frac{d M}{d x}\right.$ increasing with $\left.V\right)$ and

$$
\begin{aligned}
& M_{C}=-114 \mathrm{kip} \cdot \mathrm{ft}+\frac{1}{2}(2 \mathrm{kips}+14 \mathrm{kips})(6 \mathrm{ft}) \\
& M_{C}=-66 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Then M is piecewise linear.

$$
\begin{aligned}
& M_{D}=-66 \mathrm{kip} \cdot \mathrm{ft}+(14 \mathrm{kips})(4.5 \mathrm{ft})=-3 \mathrm{kip} \cdot \mathrm{ft} \\
& M_{B}=-3 \mathrm{kip} \cdot \mathrm{ft}+(2 \mathrm{kips})(1.5 \mathrm{ft})=0
\end{aligned}
$$

$$
|M|_{\max }=114.0 \mathrm{kip} \cdot \mathrm{ft}
$$

SOLUTION

(a) and (b)

FBD Beam:

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(3 \mathrm{ft})\left(2 \frac{\mathrm{kips}}{\mathrm{ft}}\right)(6 \mathrm{ft})+(9 \mathrm{ft})(12 \mathrm{kips})-(15 \mathrm{ft}) A_{y}=0\right. \\
\mathbf{A}_{y}=9.6 \mathrm{kips} \uparrow
\end{gathered}
$$

Shear Diag:

V jumps to $A_{y}=9.6$ kips at A, is constant to C, jumps down 12 kips to -2.4 kips at C, is constant to D, and then is linear $\left(\frac{d V}{d x}=-2\right.$ kips $\left./ \mathrm{ft}\right)$ to B

$$
\begin{aligned}
V_{B} & =-2.4 \mathrm{kips}-(2 \mathrm{kips} / \mathrm{ft})(6 \mathrm{ft}) \\
& =-14.4 \mathrm{kips}
\end{aligned}
$$

$$
|V|_{\max }=14.40 \mathrm{kips}
$$

Moment Diag:

M is linear from A to $C \quad\left(\frac{d M}{d x}=9.6 \mathrm{kips} / \mathrm{ft}\right)$

$$
M_{C}=9.6 \operatorname{kips}(6 \mathrm{ft})=57.6 \mathrm{kip} \cdot \mathrm{ft}
$$

M is linear from C to D

$$
\left(\frac{d M}{d x}=-2.4 \mathrm{kips} / \mathrm{ft}\right)
$$

$$
\begin{aligned}
& M_{D}=57.6 \mathrm{kip} \cdot \mathrm{ft}-2.4 \mathrm{kips}(3 \mathrm{ft}) \\
& M_{D}=50.4 \mathrm{kip} \cdot \mathrm{ft} .
\end{aligned}
$$

M is parabolic $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$ to B.

$$
\begin{aligned}
M_{B} & =50.4 \mathrm{kip} \cdot \mathrm{ft}-\frac{1}{2}(2.4 \mathrm{kips}+14.4 \mathrm{kips})(6 \mathrm{ft})=0 \\
& =0
\end{aligned}
$$

$$
|M|_{\max }=57.6 \text { kip } \cdot \mathrm{ft}
$$

SOLUTION

FBD Beam:

By symmetry: $\quad A_{y}=B=\frac{1}{2}(5 \mathrm{~m})(4 \mathrm{kN} / \mathrm{m})+8 \mathrm{kN}$

$$
\text { or } \mathbf{A}_{y}=\mathbf{B}=18 \mathrm{kN} \uparrow
$$

Shear Diag:

V jumps to 18 kN at A, and is constant to C, then drops 8 kN to 10 kN . After C, V is linear $\left(\frac{d V}{d x}=-4 \mathrm{kN} / \mathrm{m}\right)$, reaching -10 kN at $D\left[V_{D}=10 \mathrm{kN}-(4 \mathrm{kN} / \mathrm{m})(5 \mathrm{~m})\right]$ passing through zero at the beam center. At D, V drops 8 kN to -18 kN and is then constant to B

$$
|V|_{\max }=18.00 \mathrm{kN}
$$

Moment Diag:

$M_{A}=0$. Then M is linear $\left(\frac{d M}{d x}=18 \mathrm{kN} / \mathrm{m}\right)$ to C
$M_{C}=(18 \mathrm{kN})(2 \mathrm{~m})=36 \mathrm{kN} \cdot \mathrm{m}, M$ is parabolic to D $\left(\frac{d M}{d x}\right.$ decreases with V to zero at center $)$

$$
\begin{array}{r}
M_{\text {center }}=36 \mathrm{kN} \cdot \mathrm{~m}+\frac{1}{2}(10 \mathrm{kN})(2.5 \mathrm{~m})=48.5 \mathrm{kN} \cdot \mathrm{~m}=M_{\max } \\
|M|_{\max }=48.5 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Complete by invoking symmetry.

PROBLEM 7.69

Using the method of Sec. 7.6, solve Prob. 7.40.

SOLUTION

(a) and (b)

FBD Beam:

$$
\begin{gathered}
\left(\Sigma M_{F}=0:(1 \mathrm{~m})(22 \mathrm{kN})+(1.5 \mathrm{~m})(4 \mathrm{kN} / \mathrm{m})(3 \mathrm{~m})\right. \\
-(4 \mathrm{~m}) D_{y}+(6 \mathrm{~m})(2 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m})=0 \\
\mathbf{D}_{y}=16 \mathrm{kN} \uparrow \\
\uparrow \Sigma F_{y}=0: 16 \mathrm{kN}+22 \mathrm{kN}-F_{y}-(2 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m}) \\
-(4 \mathrm{kN} / \mathrm{m})(3 \mathrm{~m})=0 \\
\mathbf{F}_{y}=22 \mathrm{kN}
\end{gathered}
$$

Shear Diag:

$V_{A}=0$, then V is linear $\left(\frac{d V}{d x}=-2 \mathrm{kN} / \mathrm{m}\right)$ to C;

$$
V_{C}=-2 \mathrm{kN} / \mathrm{m}(4 \mathrm{~m})=-4 \mathrm{kN}
$$

V is constant to D, jumps 16 kN to 12 kN and is constant to E.
Then V is linear $\left(\frac{d V}{d x}=-4 \mathrm{kN} / \mathrm{m}\right)$ to F.

$$
V_{F}=12 \mathrm{kN}-(4 \mathrm{kN} / \mathrm{m})(3 \mathrm{~m})=0
$$

V jumps to -22 kN at F, is constant to B, and returns to zero.

$$
|V|_{\max }=22.0 \mathrm{kN}
$$

Moment Diag:

$M_{A}=0, M$ is parabolic $\left(\frac{d M}{d x}\right.$ decreases with $\left.V\right)$ to C.

$$
M_{C}=-\frac{1}{2}(4 \mathrm{kN})(2 \mathrm{~m})=-4 \mathrm{kN} \cdot \mathrm{~m}
$$

PROBLEM 7.69 CONTINUED

Then M is linear $\left(\frac{d M}{d x}=-4 \mathrm{kN}\right)$ to D.
$M_{D}=-4 \mathrm{kN} \cdot \mathrm{m}-(4 \mathrm{kN})(1 \mathrm{~m})=-8 \mathrm{kN} \cdot \mathrm{m}$
From D to E, M is linear $\left(\frac{d M}{d x}=12 \mathrm{kN}\right)$, and

$$
\begin{aligned}
& M_{E}=-8 \mathrm{kN} \cdot \mathrm{~m}+(12 \mathrm{kN})(1 \mathrm{~m}) \\
& M_{E}=4 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

M is parabolic $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$ to F .

$$
M_{F}=4 \mathrm{kN} \cdot \mathrm{~m}+\frac{1}{2}(12 \mathrm{kN})(3 \mathrm{~m})=22 \mathrm{kN} \cdot \mathrm{~m} .
$$

Finally, M is linear $\left(\frac{d M}{d x}=-22 \mathrm{kN}\right)$, back to zero at B.

$$
|M|_{\max }=22.0 \mathrm{kN} \cdot \mathrm{~m} \longleftarrow
$$

SOLUTION

(a) and (b)

FBD Beam:

$$
\begin{aligned}
& \left(\Sigma M_{B}=0:(1.5 \mathrm{~m})(16 \mathrm{kN})\right. \\
& +(3 \mathrm{~m})(8 \mathrm{kN})+6 \mathrm{kN} \cdot \mathrm{~m}-(4.5 \mathrm{~m}) A_{y}=0 \\
& \mathbf{A}_{y}=12 \mathrm{kN} \uparrow
\end{aligned}
$$

Shear Diag:

V is piecewise constant with discontinuities equal to the concentrated forces at A, C, D, B

$$
|V|_{\max }=12.00 \mathrm{kN}
$$

Moment Diag:

After a jump of $-6 \mathrm{kN} \cdot \mathrm{m}$ at A, M is piecewise linear $\left(\frac{d M}{d x}=V\right)$
So

$$
\begin{aligned}
& M_{C}=-6 \mathrm{kN} \cdot \mathrm{~m}+(12 \mathrm{kN})(1.5 \mathrm{~m})=12 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{D}=12 \mathrm{kN} \cdot \mathrm{~m}+(4 \mathrm{kN})(1.5 \mathrm{~m})=18 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{B}=18 \mathrm{kN} \cdot \mathrm{~m}-(12 \mathrm{kN})(1.5 \mathrm{~m})=0 \\
& |M|_{\max }=18.00 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

PROBLEM 7.71

For the beam and loading shown, (a) draw the shear and bendingmoment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

(a)

FBD Beam:

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(8 \mathrm{~m}) F+(11 \mathrm{~m})(2 \mathrm{kN})+10 \mathrm{kN} \cdot \mathrm{~m}-(6 \mathrm{~m})(8 \mathrm{kN})\right. \\
-12 \mathrm{kN} \cdot \mathrm{~m}-(2 \mathrm{~m})(6 \mathrm{kN})=0 \quad \mathbf{F}=5 \mathrm{kN} \uparrow \\
\uparrow \Sigma F_{y}=0: A_{y}-6 \mathrm{kN}-8 \mathrm{kN}+5 \mathrm{kN}+2 \mathrm{kN}=0 \\
\mathbf{A}_{y}=7 \mathrm{kN} \uparrow
\end{gathered}
$$

Shear Diag:

V is piecewise constant with discontinuities equal to the concentrated forces at A, C, E, F, G

Moment Diag:

M is piecewise linear with a discontinuity equal to the couple at D.

$$
\begin{gathered}
M_{C}=(7 \mathrm{kN})(2 \mathrm{~m})=14 \mathrm{kN} \cdot \mathrm{~m} \\
M_{D^{-}}=14 \mathrm{kN} \cdot \mathrm{~m}+(1 \mathrm{kN})(2 \mathrm{~m})=16 \mathrm{kN} \cdot \mathrm{~m} \\
M_{D^{+}}=16 \mathrm{kN} \cdot \mathrm{~m}+12 \mathrm{kN} \cdot \mathrm{~m}=28 \mathrm{kN} \cdot \mathrm{~m} \\
M_{E}=28 \mathrm{kN} \cdot \mathrm{~m}+(1 \mathrm{kN})(2 \mathrm{~m})=30 \mathrm{kN} \cdot \mathrm{~m} \\
M_{F}=30 \mathrm{kN} \cdot \mathrm{~m}-(7 \mathrm{kN})(2 \mathrm{~m})=16 \mathrm{kN} \cdot \mathrm{~m} \\
M_{G}=16 \mathrm{kN} \cdot \mathrm{~m}-(2 \mathrm{kN})(3 \mathrm{~m})=10 \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

(b)

$$
\begin{aligned}
|V|_{\max } & =7.00 \mathrm{kN} \\
|M|_{\max } & =30.0 \mathrm{kN}
\end{aligned}
$$

SOLUTION

(a)

FBD Beam:

$$
\left(\Sigma M_{B}=0:(3 \mathrm{ft})(1.2 \mathrm{kips} / \mathrm{ft})(6 \mathrm{ft})-(8 \mathrm{ft}) A_{y}=0\right.
$$

$$
\mathbf{A}_{y}=2.7 \mathrm{kips} \uparrow
$$

Shear Diag:

$$
\begin{gathered}
V=A_{y}=2.7 \mathrm{kips} \text { at } A \text {, is constant to } C \text {, then linear } \\
\left(\frac{d V}{d x}=-1.2 \mathrm{kips} / \mathrm{ft}\right) \text { to B. } \quad V_{B}=2.7 \mathrm{kips}-(1.2 \mathrm{kips} / \mathrm{ft})(6 \mathrm{ft}) \\
V_{B}=-4.5 \mathrm{kips}
\end{gathered}
$$

$$
V=0=2.7 \mathrm{kips}-(1.2 \mathrm{kips} / \mathrm{ft}) x_{1} \text { at } x_{1}=2.25 \mathrm{ft}
$$

Moment Diag:

$M_{A}=0, M$ is linear $\left(\frac{d M}{d x}=2.7 \mathrm{kips}\right)$ to C.

$$
M_{C}=(2.7 \mathrm{kips})(2 \mathrm{ft})=5.4 \mathrm{kip} \cdot \mathrm{ft}
$$

Then M is parabolic $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$
(b)
$M_{\max }$ occurs where $\frac{d M}{d x}=V=0$

$$
M_{\max }=5.4 \mathrm{kip} \cdot \mathrm{ft}+\frac{1}{2}(2.7 \mathrm{kips}) x_{1} ; \quad x_{1}=2.25 \mathrm{~m}
$$

$$
\begin{aligned}
M_{\max } & =8.4375 \mathrm{kip} \cdot \mathrm{ft} \\
& M_{\max }=8.44 \mathrm{kip} \cdot \mathrm{ft}, 2.25 \mathrm{~m} \text { right of } C
\end{aligned}
$$

Check:

$$
M_{B}=8.4375 \mathrm{kip} \cdot \mathrm{ft}-\frac{1}{2}(4.5 \mathrm{kips})(3.75 \mathrm{ft})=0
$$

PROBLEM 7.73

For the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the magnitude and location of the maximum bending moment.

SOLUTION

FBD Beam:

(a)

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(6 \mathrm{ft})(2 \mathrm{kips} / \mathrm{ft})(8 \mathrm{ft})-(15 \mathrm{ft}) A_{y}=0\right. \\
\mathbf{A}_{y}=6.4 \mathrm{kips} \uparrow
\end{gathered}
$$

Shear Diag:

$V=A_{y}=6.4$ kips at A, and is constant to C, then linear
$\left(\frac{d V}{d x}=-2 \mathrm{kips} / \mathrm{ft}\right)$ to D,

$$
\begin{aligned}
& V_{D}=6.4 \mathrm{kips}-(2 \mathrm{kips} / \mathrm{ft})(8 \mathrm{ft})=-9.6 \mathrm{kips} \\
& V=0=6.4 \mathrm{kips}-(2 \mathrm{kips} / \mathrm{ft}) x_{1} \text { at } x_{1}=3.2 \mathrm{ft}
\end{aligned}
$$

Moment Diag:

$M_{A}=0$, then M is linear $\left(\frac{d M}{d x}=6.4 \mathrm{kips}\right)$ to $M_{C}=(6.4 \mathrm{kips})(5 \mathrm{ft})$.
$M_{C}=32 \mathrm{kip} \cdot \mathrm{ft} . M$ is then parabolic $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$.
(b)

$$
\begin{gathered}
M_{\max } \text { occurs where } \frac{d M}{d x}=V=0 . \\
M_{\max }=32 \mathrm{kip} \cdot \mathrm{ft}+\frac{1}{2}(6.4 \mathrm{kips}) x_{1} ; \quad x_{1}=3.2 \mathrm{ft} \\
M_{\max }=42.24 \mathrm{kip} \cdot \mathrm{ft} \\
M_{\max }=42.2 \mathrm{kip} \cdot \mathrm{ft}, 3.2 \mathrm{ft} \mathrm{right} \mathrm{of} C \\
M_{D}=42.24 \mathrm{kip} \cdot \mathrm{ft}-\frac{1}{2}(9.6 \mathrm{kips})(4.8 \mathrm{ft})=19.2 \mathrm{kip} \cdot \mathrm{ft} \\
M \text { is linear from } D \text { to zero at } B .
\end{gathered}
$$

SOLUTION

$$
\begin{aligned}
& \text { (a) } \\
& \begin{array}{l}
\text { (kN) } \\
\\
\\
\\
\hline
\end{array} \\
& \text { FBD Beam: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \\
& V_{A}=A_{y} \text {. Then } V \text { is linear }\left(\frac{d V}{d x}=-16 \mathrm{kN} / \mathrm{m}\right) \text { to } C . \\
& \text { (a) } \\
& V_{C}=V_{A}-(16 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m})=V_{A}-32 \mathrm{kN} \\
& \text { (b) } \\
& V_{C}=-8 \mathrm{kN} \\
& V_{C}=-14 \mathrm{kN} \\
& V=0=V_{A}-(16 \mathrm{kN} / \mathrm{m}) x_{1} \\
& \text { (a) } \\
& x_{1}=1.5 \mathrm{~m} \\
& \text { (b) } \\
& x_{1}=1.125 \mathrm{~m}
\end{aligned}
$$

V is constant from C to D, decreases by 6 kN at D and is constant to $B($ at $-P)$

PROBLEM 7.74 CONTINUED

Moment Diags:

$M_{A}=M_{A}$ reaction. Then M is parabolic $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$.
The maximum occurs where $V=0 . M_{\max }=M_{A}+\frac{1}{2} V_{A} x_{1}$.
(a)

$$
M_{\max }=17 \mathrm{kN} \cdot \mathrm{~m}+\frac{1}{2}(24 \mathrm{kN})(1.5 \mathrm{~m})=35.0 \mathrm{kN} \cdot \mathrm{~m}
$$

1.5 ft from A
(b)

$$
M_{\max }=47 \mathrm{kN} \cdot \mathrm{~m}+\frac{1}{2}(18 \mathrm{kN})(1.125 \mathrm{~m})=57.125 \mathrm{kN} \cdot \mathrm{~m}
$$

$$
M_{\max }=57.1 \mathrm{kN} \cdot \mathrm{~m} 1.125 \mathrm{ft} \text { from } A
$$

$$
M_{C}=M_{\max }+\frac{1}{2} V_{C}\left(2 \mathrm{~m}-x_{1}\right)
$$

(a)

$$
M_{C}=35 \mathrm{kN} \cdot \mathrm{~m}-\frac{1}{2}(8 \mathrm{kN})(0.5 \mathrm{~m})=33 \mathrm{kN} \cdot \mathrm{~m}
$$

$$
\begin{equation*}
M_{C}=57.125 \mathrm{kN} \cdot \mathrm{~m}-\frac{1}{2}(14 \mathrm{kN})(0.875 \mathrm{~m})=51 \mathrm{kN} \cdot \mathrm{~m} \tag{b}
\end{equation*}
$$

M is piecewise linear along C, D, B, with $M_{B}=0$ and
$M_{D}=(1.5 \mathrm{~m}) P$
(a)

$$
M_{D}=21 \mathrm{kN} \cdot \mathrm{~m}
$$

(b)

$$
M_{D}=30 \mathrm{kN} \cdot \mathrm{~m}
$$

PROBLEM 7.75

For the beam shown, draw the shear and bending-moment diagrams, and determine the magnitude and location of the maximum absolute value of the bending moment knowing that (a) $M=0$,
(b) $M=12 \mathrm{kN} \cdot \mathrm{m}$.

SOLUTION

FBD Beam:

(a)
(a)
(b)

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(4 \mathrm{~m}) B-(1 \mathrm{~m})(20 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m})-M=0\right. \\
B=10 \mathrm{kN}+\frac{M}{4 \mathrm{~m}}
\end{gathered}
$$

(b)
(a)

$$
\mathbf{A}_{y}=30 \mathrm{kN} \uparrow
$$

$$
\mathbf{A}_{y}=27 \mathrm{kN} \uparrow
$$

Shear Diags:

(b)

(a)
(b)

$$
V_{C}=A_{y}-(20 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m})=A_{y}-40 \mathrm{kN}
$$

$$
V_{C}=-10 \mathrm{kN}
$$

$$
V_{C}=-13 \mathrm{kN}
$$

$$
V=0=A_{y}-(20 \mathrm{kN} / \mathrm{m}) x_{1} \text { at } x_{1}=\frac{A_{y} \mathrm{~m}}{20 \mathrm{kN}}
$$

(a)
(b)
V is constant from C to B.

PROBLEM 7.75 CONTINUED

Moment Diags:

$M_{A}=\operatorname{applied} M$. Then M is parabolic $\left(\frac{d M}{d x}\right.$ decreases with $\left.V\right)$
M is max where $V=0 . M_{\max }=M+\frac{1}{2} A_{y} x_{1}$.
(a)
(b)

$$
\begin{gathered}
|M|_{\max }=\frac{1}{2}(30 \mathrm{kN})(1.5 \mathrm{~m})=22.5 \mathrm{kN} \cdot \mathrm{~m} \downarrow \\
1.500 \mathrm{~m} \text { from } A \\
M_{\text {max }}=12 \mathrm{kN} \cdot \mathrm{~m}+\frac{1}{2}(27 \mathrm{kN})(1.35 \mathrm{~m})=30.225 \mathrm{kN} \cdot \mathrm{~m} \downarrow \\
|M|_{\max }=30.2 \mathrm{kN} 1.350 \mathrm{mfrom} A \\
M_{C}=M_{\max }-\frac{1}{2} V_{C}\left(2 \mathrm{~m}-x_{1}\right)
\end{gathered}
$$

(a)
(b)
$M_{C}=20 \mathrm{kN} \cdot \mathrm{m}$
$M_{C}=26 \mathrm{kN} \cdot \mathrm{m}$

Finally, M is linear $\left(\frac{d M}{d x}=V_{C}\right)$ to zero at B.

SOLUTION

FBD Beam:
(a)

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(3 \mathrm{~m})(40 \mathrm{kN} / \mathrm{m})(6 \mathrm{~m})-(30 \mathrm{kN} \cdot \mathrm{~m})-(6 \mathrm{~m}) A_{y}=0\right. \\
\mathbf{A}_{y}=115 \mathrm{kN} \uparrow
\end{gathered}
$$

Shear Diag:

$V_{A}=A_{y}=115 \mathrm{kN}$, then V is linear $\left(\frac{d M}{d x}=-40 \mathrm{kN} / \mathrm{m}\right)$ to B.

$$
\begin{gathered}
V_{B}=115 \mathrm{kN}-(40 \mathrm{kN} / \mathrm{m})(6 \mathrm{~m})=-125 \mathrm{kN} . \\
V=0=115 \mathrm{kN}-(40 \mathrm{kN} / \mathrm{m}) x_{1} \text { at } x_{1}=2.875 \mathrm{~m}
\end{gathered}
$$

Moment Diag:

$M_{A}=0$. Then M is parabolic $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$. Max M occurs where $V=0$,

$$
\begin{aligned}
M_{\max } & =\frac{1}{2}(115 \mathrm{kN} / \mathrm{m})(2.875 \mathrm{~m})=165.3125 \mathrm{kN} \cdot \mathrm{~m} \\
M_{B} & =M_{\max }-\frac{1}{2}(125 \mathrm{kN})\left(6 \mathrm{~m}-x_{1}\right) \\
& =165.3125 \mathrm{kN} \cdot \mathrm{~m}-\frac{1}{2}(125 \mathrm{kN})(6-2.875) \mathrm{m} \\
& =-30 \mathrm{kN} \cdot \mathrm{~m} \text { as expected. }
\end{aligned}
$$

(b) $\quad|M|_{\text {max }}=165.3 \mathrm{kN} \cdot \mathrm{m}(2.88 \mathrm{~m}$ from $A)$

SOLUTION

FBD Beam:

$$
\begin{gathered}
\left(\Sigma M_{B}=0: 30 \mathrm{kN} \cdot \mathrm{~m}+(3 \mathrm{~m})(40 \mathrm{kN} / \mathrm{m})(6 \mathrm{~m})-(6 \mathrm{~m}) A_{y}=0\right. \\
\mathbf{A}_{y}=125 \mathrm{kN} \uparrow
\end{gathered}
$$

Shear Diag:

$V_{A}=A_{y}=125 \mathrm{kN}, V$ is linear $\left(\frac{d V}{d x}=-40 \mathrm{kN} / \mathrm{m}\right)$ to B.

$$
\begin{gathered}
V_{B}=125 \mathrm{kN}-(40 \mathrm{kN} / \mathrm{m})(6 \mathrm{~m})=-115 \mathrm{kN} \\
V=0=115 \mathrm{kN}-(40 \mathrm{kN} / \mathrm{m}) x_{1} \text { at } x_{1}=3.125 \mathrm{~m}
\end{gathered}
$$

Moment Diag:

$M_{A}=0$. Then M is parabolic $\left(\frac{d M}{d x}\right.$ decreases with $\left.V\right)$. Max M occurs where $V=0$,

$$
\begin{aligned}
& M_{\max }=\frac{1}{2}(125 \mathrm{kN})(3.125 \mathrm{~m})=195.3125 \mathrm{kN} \cdot \mathrm{~m} \\
& \quad(b) \quad|M|_{\max }=195.3 \mathrm{kN} \cdot \mathrm{~m}(3.125 \mathrm{~m} \text { from } A) \\
& M_{B}=195.3125 \mathrm{kN} \cdot \mathrm{~m}-\frac{1}{2}(115 \mathrm{kN})(6-3.125) \mathrm{m} \\
& M_{B}=30 \mathrm{kN} \cdot \mathrm{~m} \text { as expected. }
\end{aligned}
$$

PROBLEM 7.78

For beam $A B,(a)$ draw the shear and bending-moment diagrams, (b) determine the magnitude and location of the maximum absolute value of the bending moment.

SOLUTION

(a)

Replacing the load at E with equivalent force-couple at C :

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(6 \mathrm{~m}) D-(8 \mathrm{~m})(2 \mathrm{kN})-(3 \mathrm{~m})(4 \mathrm{kN})\right. \\
-(1.5 \mathrm{~m})(8 \mathrm{kN} / \mathrm{m})(3 \mathrm{~m})-4 \mathrm{kN} \cdot \mathrm{~m}=0 \\
\mathbf{D}=10 \mathrm{kN} \uparrow
\end{gathered}
$$

$$
\uparrow \Sigma F_{y}=0: A_{y}+10 \mathrm{kN}-2 \mathrm{kN}-4 \mathrm{kN}-(8 \mathrm{kN} / \mathrm{m})(3 \mathrm{~m})=0
$$

$$
\mathbf{A}_{y}=20 \mathrm{kN} \uparrow
$$

Shear Diag:

$V_{A}=A_{y}=20 \mathrm{kN}$, then V is linear $\left(\frac{d V}{d x}=-8 \mathrm{kN} / \mathrm{m}\right)$ to C.

$$
\begin{gathered}
V_{C}=20 \mathrm{kN}-(8 \mathrm{kN} / \mathrm{m})(3 \mathrm{~m})=-4 \mathrm{kN} \\
V=0=20 \mathrm{kN}-(8 \mathrm{kN} / \mathrm{m}) x_{1} \text { at } x_{1}=2.5 \mathrm{~m}
\end{gathered}
$$

At C, V decreases by 4 kN to -8 kN .
At D, V increases by 10 kN to 2 kN .

Moment Diag:

$M_{A}=0$, then M is parabolic $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$. Max M occurs where $V=0$.

$$
M_{\max }=\frac{1}{2}(20 \mathrm{kN})(2.5 \mathrm{~m})=25 \mathrm{kN} \cdot \mathrm{~m}
$$

(b) $\quad M_{\max }=25.0 \mathrm{kN} \cdot \mathrm{m}, 2.50 \mathrm{~m}$ from A

PROBLEM 7.78 CONTINUED

$$
M_{C}=25 \mathrm{kN} \cdot \mathrm{~m}-\frac{1}{2}(4 \mathrm{kN})(0.5 \mathrm{~m})=24 \mathrm{kN} \cdot \mathrm{~m} .
$$

At C, M decreases by $4 \mathrm{kN} \cdot \mathrm{m}$ to $20 \mathrm{kN} \cdot \mathrm{m}$. From C to B, M is piecewise linear with $\frac{d M}{d x}=-8 \mathrm{kN}$ to D, then $\frac{d M}{d x}=+2 \mathrm{kN}$ to B.

$$
M_{D}=20 \mathrm{kN} \cdot \mathrm{~m}-(8 \mathrm{kN})(3 \mathrm{~m})=-4 \mathrm{kN} \cdot \mathrm{~m} . \quad M_{B}=0
$$

PROBLEM 7.79

Solve Prob. 7.78 assuming that the $4-\mathrm{kN}$ force applied at E is directed upward.

SOLUTION

(a)

Replacing the load at E with equivalent force-couple at C.

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(6 \mathrm{~m}) D-(8 \mathrm{~m})(2 \mathrm{kN})+(3 \mathrm{~m})(4 \mathrm{kN})\right. \\
-4 \mathrm{kN} \cdot \mathrm{~m}-(1.5 \mathrm{~m})(8 \mathrm{kN} / \mathrm{m})(3 \mathrm{~m})=0 \\
\mathbf{D}=\frac{22}{3} \mathrm{kN} \uparrow \\
\uparrow \Sigma F_{y}=0: A_{y}+\frac{22}{3} \mathrm{kN}-(8 \mathrm{kN} / \mathrm{m})(3 \mathrm{~m})+4 \mathrm{kN}-2 \mathrm{kN}=0 \\
\mathbf{A}_{y}=\frac{44}{3} \mathrm{kN} \uparrow
\end{gathered}
$$

Shear Diag:

$V_{A}=A_{y}=\frac{44}{3} \mathrm{kN}$, then V is linear $\left(\frac{d V}{d x}=-8 \mathrm{kN} / \mathrm{m}\right)$ to C.

$$
\begin{gathered}
V_{C}=\frac{44}{3} \mathrm{kN}-(8 \mathrm{kN} / \mathrm{m})(3 \mathrm{~m})=-\frac{28}{3} \mathrm{kN} \\
V=0=\frac{44}{3} \mathrm{kN}-(8 \mathrm{kN} / \mathrm{m}) x_{1} \text { at } x_{1}=\frac{11}{6} \mathrm{~m}
\end{gathered}
$$

At C, V increases 4 kN to $-\frac{16}{3} \mathrm{kN}$.
At D, V increases $\frac{22}{3} \mathrm{kN}$ to 2 kN .

PROBLEM 7.79 CONTINUED

Moment Diag:

$M_{A}=0$. Then M is parabolic $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$. Max M occurs where $V=0$.

$$
\begin{gathered}
M_{\max }=\frac{1}{2}\left(\frac{44}{3} \mathrm{kN}\right)\left(\frac{11}{6} \mathrm{~m}\right)=\frac{121}{9} \mathrm{kN} \cdot \mathrm{~m} \\
\text { (b) } \quad M_{\max }=13.44 \mathrm{kN} \cdot \mathrm{~m} \text { at } 1.833 \mathrm{~m} \text { from } A \\
M_{C}=\frac{121}{9} \mathrm{kN} \cdot \mathrm{~m}-\frac{1}{2}\left(\frac{28}{3} \mathrm{kN}\right)\left(\frac{7}{6} \mathrm{~m}\right)=8 \mathrm{kN} \cdot \mathrm{~m} .
\end{gathered}
$$

At C, M increases by $4 \mathrm{kN} \cdot \mathrm{m}$ to $12 \mathrm{kN} \cdot \mathrm{m}$. Then M is linear $\left(\frac{d M}{d x}=-\frac{16}{3} \mathrm{kN}\right)$ to D.
$M_{D}=12 \mathrm{kN} \cdot \mathrm{m}-\left(\frac{16}{3} \mathrm{kN}\right)(3 \mathrm{~m})=-4 \mathrm{kN} \cdot \mathrm{m} . \mathrm{M}$ is again linear $\left(\frac{d M}{d x}=2 \mathrm{kN}\right)$ to zero at B.

SOLUTION

Distributed load $w=w_{0}\left(1-\frac{x}{L}\right) \quad\left(\right.$ total $\left.=\frac{1}{2} w_{0} L\right)$

$$
\begin{array}{ll}
\left(\Sigma M_{A}=0: \frac{L}{3}\left(\frac{1}{2} w_{0} L\right)-L B=0\right. & \mathbf{B}=\frac{w_{0} L}{6} \uparrow \\
\uparrow \Sigma F_{y}=0: A_{y}-\frac{1}{2} w_{0} L+\frac{w_{0} L}{6}=0 & \mathbf{A}_{y}=\frac{w_{0} L}{3} \uparrow
\end{array}
$$

Shear:

$$
V_{A}=A_{y}=\frac{w_{0} L}{3},
$$

Then

$$
\begin{gathered}
\frac{d V}{d x}=-w \rightarrow V=V_{A}-\int_{0}^{x} w_{0}\left(1-\frac{x}{L}\right) d x \\
V=\left(\frac{w_{0} L}{3}\right)-w_{0} x+\frac{1}{2} \frac{w_{0}}{L} x^{2}=w_{0} L\left[\frac{1}{3}-\frac{x}{L}+\frac{1}{2}\left(\frac{x}{L}\right)^{2}\right]
\end{gathered}
$$

Note: At $x=L, V=-\frac{w_{0} L}{6}$;
$V=0$ at $\left(\frac{x}{L}\right)^{2}-2\left(\frac{x}{L}\right)+\frac{2}{3}=0 \rightarrow \frac{x}{L}=1-\sqrt{\frac{1}{3}}$

Moment:

$$
M_{A}=0,
$$

Then

$$
\begin{gathered}
\left(\frac{d M}{d x}\right)=V \rightarrow M=\int_{0}^{x} V d x=L \int_{0}^{x / L} V\left(\frac{x}{L}\right) d\left(\frac{x}{L}\right) \\
M=w_{0} L^{2} \int_{0}^{x / L}\left[\frac{1}{3}-\frac{x}{L}+\frac{1}{2}\left(\frac{x}{L}\right)^{2}\right] d\left(\frac{x}{L}\right) \\
M=w_{0} L^{2}\left[\frac{1}{3}\left(\frac{x}{L}\right)-\frac{1}{2}\left(\frac{x}{L}\right)^{2}+\frac{1}{6}\left(\frac{x}{L}\right)^{3}\right]
\end{gathered}
$$

PROBLEM 7．80 CONTINUED

$$
\begin{aligned}
& M_{\max }\left(\text { at } \frac{x}{L}=1-\sqrt{\frac{1}{3}}\right)=0.06415 w_{0} L^{2} \\
& \text { (a) } \quad V=w_{0} L\left[\frac{1}{3}-\frac{x}{L}+\frac{1}{2}\left(\frac{x}{L}\right)^{2}\right] \text { ム } \\
& M=w_{0} L^{2}\left[\frac{1}{3}\left(\frac{x}{L}\right)-\frac{1}{2}\left(\frac{x}{L}\right)^{2}+\frac{1}{6}\left(\frac{x}{L}\right)^{3}\right] \boldsymbol{\iota} \\
& \text { (c) } \\
& M_{\text {max }}=0.0642 w_{0} L^{2} \text { 《 } \\
& \text { at } x=0.423 L \text { < }
\end{aligned}
$$

SOLUTION

Distributed load

$$
w=w_{0}\left[4\left(\frac{x}{L}\right)-1\right]
$$

Shear: $\quad \frac{d V}{d x}=-w$, and $V(0)=0$, so

$$
\begin{aligned}
& V=\int_{0}^{x}-w d x=-\int_{0}^{x / L} L w d\left(\frac{x}{L}\right) \\
& V=\int_{0}^{x / L} w_{o} L\left[1-4\left(\frac{x}{L}\right)\right] d\left(\frac{x}{L}\right)=w_{0} L\left[\left(\frac{x}{L}\right)-2\left(\frac{x}{L}\right)^{2}\right]
\end{aligned}
$$

Notes: At $x=L, V=-w_{0} L$

$$
\text { And } V=0 \text { at } \quad\left(\frac{x}{L}\right)=2\left(\frac{x}{L}\right)^{2} \quad \text { or } \frac{x}{L}=\frac{1}{2}
$$

Also V is max where $w=0\left(\frac{x}{L}=\frac{1}{4}\right)$

$$
V_{\max }=\frac{1}{8} w_{0} L
$$

$$
\begin{array}{r}
M(0)=0, \frac{d M}{d x}=V \\
M=\int_{0}^{x} v d x=L \int_{0}^{x / L} V\left(\frac{x}{L}\right) d\left(\frac{x}{L}\right) \\
M=w_{0} L^{2} \int_{0}^{x / L}\left[\left(\frac{x}{L}\right)-2\left(\frac{x}{L}\right)^{2}\right] d\left(\frac{x}{L}\right)
\end{array}
$$

(a) $\quad V=w_{0} L\left[\left(\frac{x}{L}\right)-2\left(\frac{x}{L}\right)^{2}\right]$ <

$$
M=w_{0} L^{2}\left[\frac{1}{2}\left(\frac{x}{L}\right)^{2}-\frac{2}{3}\left(\frac{x}{L}\right)^{3}\right] \longleftarrow
$$

PROBLEM 7.81 CONTINUED

$$
\begin{gathered}
M_{\max }=\frac{1}{24} w_{0} L^{2} \text { at } x=\frac{L}{2} \\
M_{\min }=-\frac{1}{6} w_{0} L^{2} \text { at } x=L \\
M_{\max }=\frac{w_{0} L^{2}}{24} \text { at } x=\frac{L}{2}
\end{gathered}
$$

(c) $|M|_{\text {max }}=-M_{\text {min }}=\frac{w_{0} L^{2}}{6}$ at $B 4$

PROBLEM 7.82

For the beam shown, (a) draw the shear and bending-moment diagrams, (b) determine the magnitude and location of the maximum bending moment. (Hint: Derive the equations of the shear and bending-moment curves for portion $C D$ of the beam.)

SOLUTION

(a)

FBD Beam:

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(3 a)\left[\frac{1}{2} w_{0}(3 a)\right]-5 a A_{y}=0 \quad \mathbf{A}_{y}=0.9 w_{0} a \uparrow\right. \\
\uparrow \Sigma F_{y}=0: 0.9 w_{0} a-\frac{1}{2} w_{0}(3 a)+B=0 \\
\mathbf{B}=0.6 w_{0} a \uparrow
\end{gathered}
$$

Shear Diag:

$V=A_{y}=0.9 w_{0} a$ from A to C and $V=B=-0.6 w_{0} a$ from B to D. Then from D to $C, w=w_{0} \frac{x_{1}}{3 a}$. If x_{1} is measured right to left, $\frac{d V}{d x_{1}}=+w$ and $\frac{d M}{d x_{1}}=-V$. So, from $D, V=-0.6 w_{0} a+\int_{0}^{x_{1}} \frac{w_{0}}{3 a} x_{1} d x_{1}$,

$$
V=w_{0} a\left[-0.6+\frac{1}{6}\left(\frac{x_{1}}{a}\right)^{2}\right]
$$

Note: $V=0$ at $\left(\frac{x_{1}}{a}\right)^{2}=3.6, x_{1}=\sqrt{3.6} a$

Moment Diag:

$M=0$ at A, increasing linearly $\left(\frac{d M}{d x_{1}}=0.9 w_{0} a\right)$ to $M_{C}=0.9 w_{0} a^{2}$.
Similarly $M=0$ at B increasing linearly $\left(\frac{d M}{d x}=0.6 w_{0} a\right)$ to
$M_{D}=0.6 w_{0} a^{2}$. Between C and D

$$
\begin{aligned}
& M=0.6 w_{0} a^{2}+w_{0} a \int_{0}^{x_{1}}\left[0.6-\frac{1}{6}\left(\frac{x_{1}}{a}\right)^{2}\right] d x_{1}, \\
& M=w_{0} a^{2}\left[0.6+0.6\left(\frac{x_{1}}{a}\right)-\frac{1}{18}\left(\frac{x_{1}}{a}\right)^{3}\right]
\end{aligned}
$$

PROBLEM 7.82 CONTINUED

(b)

At

$$
\begin{gathered}
\frac{x_{1}}{a}=\sqrt{3.6}, M=M_{\max }=1.359 w_{0} a^{2}< \\
x_{1}=1.897 a \text { left of } D
\end{gathered}
$$

PROBLEM 7.83

Beam $A B$, which lies on the ground, supports the parabolic load shown. Assuming the upward reaction of the ground to be uniformly distributed, (a) write the equations of the shear and bending-moment curves, (b) determine the maximum bending moment.

SOLUTION

(a)

$$
\uparrow \Sigma F_{y}=0: w_{g} L-\int_{0}^{L} \frac{4 w_{0}}{L^{2}}\left(L x-x^{2}\right) d x=0
$$

$$
w_{g} L=\frac{4 w_{0}}{L^{2}}\left(\frac{1}{2} L L^{2}-\frac{1}{3} L^{3}\right)=\frac{2}{3} w_{0} L \quad w_{g}=\frac{2 w_{0}}{3}
$$

Define $\xi=\frac{x}{L}$ so $d \xi=\frac{d x}{L} \rightarrow$ net load $w=4 w_{0}\left[\frac{x}{L}-\left(\frac{x}{L}\right)^{2}\right]-\frac{2}{3} w_{0}$
or $\quad w=4 w_{0}\left(-\frac{1}{6}+\xi-\xi^{2}\right)$

$$
\begin{aligned}
& V=V(0)-\int_{0}^{\xi} 4 w_{0} L\left(-\frac{1}{6}+\xi-\xi^{2}\right) d \xi= \\
& 0+4 w_{0} L\left(\frac{1}{6} \xi+\frac{1}{2} \xi^{2}-\frac{1}{3} \xi^{3}\right) \\
& V=\frac{2}{3} w_{0} L\left(\xi-3 \xi^{2}+2 \xi^{3}\right)
\end{aligned}
$$

$$
M=M_{0}+\int_{0}^{x} V d x=0+\frac{2}{3} w_{0} L^{2} \int_{0}^{\xi}\left(\xi-3 \xi^{2}+2 \xi^{3}\right) d \xi
$$

$$
=\frac{2}{3} w_{0} L^{2}\left(\frac{1}{2} \xi^{2}-\xi^{3}+\frac{1}{2} \xi^{4}\right)=\frac{1}{3} w_{0} L^{2}\left(\xi^{2}-2 \xi^{3}+\xi^{4}\right)
$$

(b) Max M occurs where $V=0 \rightarrow 1-3 \xi+2 \xi^{2}=0 \rightarrow \xi=\frac{1}{2}$

$$
\begin{array}{r}
M\left(\xi=\frac{1}{2}\right)=\frac{1}{3} w_{0} L^{2}\left(\frac{1}{4}-\frac{2}{8}+\frac{1}{16}\right)=\frac{w_{0} L^{2}}{48} \\
M_{\max }=\frac{w_{0} L^{2}}{48} \text { at center of beam }
\end{array}
$$

PROBLEM 7.84

The beam $A B$ is subjected to the uniformly distributed load shown and to two unknown forces \mathbf{P} and \mathbf{Q}. Knowing that it has been experimentally determined that the bending moment is +325 lb ft at D and +800 lb ft at $E,(a)$ determine \mathbf{P} and $\mathbf{Q},(b)$ draw the shear and bending-moment diagrams for the beam.

SOLUTION

FBD EB:

FBD Beam:

$$
\left(\Sigma M_{E}=0:(1 \mathrm{ft}) B-0.8 \mathrm{kip} \cdot \mathrm{ft}=0 \quad \mathbf{B}=0.8 \mathrm{kip} \uparrow\right.
$$

(a) $\left(\Sigma M_{D^{-}}=0: 0.325 \mathrm{kip} \cdot \mathrm{ft}-(1 \mathrm{ft}) C_{y}+(1.5 \mathrm{ft})(2 \mathrm{kips} / \mathrm{ft})(1 \mathrm{ft})=0\right.$

$$
\mathbf{C}_{y}=3.325 \mathrm{kips} \uparrow
$$

$$
\begin{gathered}
\left(\Sigma M_{D}=0:(1.5 \mathrm{ft})(2 \mathrm{kips} / \mathrm{ft})(1 \mathrm{ft})-(1 \mathrm{ft})(3.325 \mathrm{kips})\right. \\
-(1 \mathrm{ft}) Q+2 \mathrm{ft}(0.8 \mathrm{kips})=0 \\
Q=1.275 \mathrm{kips} \\
\uparrow \Sigma F_{y}=0: 3.325 \mathrm{kips}+0.8 \mathrm{kips}-1.275 \mathrm{kips} \\
-(2 \mathrm{kips} / \mathrm{ft})(1 \mathrm{ft})-P=0 \quad P=0.85 \mathrm{kip}
\end{gathered}
$$

(a)

$$
\begin{gathered}
\mathbf{P}=850 \mathrm{lb} \\
\mathbf{Q}=1.275 \mathrm{kips}
\end{gathered}
$$

(b) Shear Diag:
V is linear $\left(\frac{d V}{d x}=-2 \mathrm{kips} / \mathrm{ft}\right)$ from 0 at A to
$-(2 \mathrm{kips} / \mathrm{ft})(1 \mathrm{ft})=-2$ kips at C. Then V is piecewise constant with discontinuities equal to forces at C, D, E, B
Moment Diag:
M is parabolic $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$ from 0 at A to $-\frac{1}{2}(2 \mathrm{kips})(1 \mathrm{ft})=-1 \mathrm{kip} \cdot \mathrm{ft}$ at C. Then M is piecewise linear with

$$
\begin{aligned}
& M_{D}=-1 \mathrm{kip} \cdot \mathrm{ft}+(1.325 \mathrm{kips})(1 \mathrm{ft})=0.325 \mathrm{kip} \cdot \mathrm{ft} \\
& M_{E}=0.325 \mathrm{kip} \cdot \mathrm{ft}+(0.475 \mathrm{kips})(1 \mathrm{ft})=0.800 \mathrm{kip} \cdot \mathrm{ft} \\
& M_{B}=0.8 \mathrm{kip} \cdot \mathrm{ft}-(0.8 \mathrm{kip})(1 \mathrm{ft})=0
\end{aligned}
$$

PROBLEM 7.85 CONTINUED

$M_{0}=0.26 \mathrm{kip} \cdot \mathrm{ft}$

$$
M_{E}=0.86 \mathrm{kip} \cdot \mathrm{ft}, \quad M_{B}=0
$$

PROBLEM 7.86

The beam $A B$ is subjected to the uniformly distributed load shown and to two unknown forces \mathbf{P} and \mathbf{Q}. Knowing that it has been experimentally determined that the bending moment is $+7 \mathrm{kN} \cdot \mathrm{m}$ at D and $+5 \mathrm{kN} \cdot \mathrm{m}$ at $E,(a)$ determine \mathbf{P} and $\mathbf{Q},(b)$ draw the shear and bending-moment diagrams for the beam.

SOLUTION

FBD AD:

FBD EB:
(a)

$$
\begin{equation*}
2 A_{y}-P=8.2 \mathrm{kN} \tag{1}
\end{equation*}
$$

$$
\begin{gathered}
\left(\Sigma M_{D}=0: \quad 7 \mathrm{kN} \cdot \mathrm{~m}+(1 \mathrm{~m})(0.6 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m})\right. \\
-(2 \mathrm{~m}) A_{y}=0
\end{gathered}
$$

$$
\left(\Sigma M_{E}=0:(2 \mathrm{~m}) B-(1 \mathrm{~m}) Q-(1 \mathrm{~m})(0.6 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m})\right.
$$

$$
-5 \mathrm{kN} \cdot \mathrm{~m}=0
$$

$$
\begin{align*}
& 2 B-Q=6.2 \mathrm{kN} \tag{2}\\
& \left(\Sigma M_{A}=0: \quad(6 \mathrm{~m}) B-(1 \mathrm{~m}) P-(5 \mathrm{~m}) Q\right. \\
& -(3 \mathrm{~m})(0.6 \mathrm{kN} / \mathrm{m})(6 \mathrm{~m})=0 \\
& 6 B-P-5 Q=10.8 \mathrm{kN}
\end{align*}
$$

$$
\left(\Sigma M_{B}=0:(1 \mathrm{~m}) Q+(5 \mathrm{~m}) P+(3 \mathrm{~m})(0.6 \mathrm{kN} / \mathrm{m})(6 \mathrm{~m})\right.
$$

$$
-(6 \mathrm{~m}) A=0
$$

$$
\begin{equation*}
6 A-Q-5 P=10.8 \mathrm{kN} \tag{4}
\end{equation*}
$$

Solving (1)-(4):

$$
\mathbf{P}=6.60 \mathrm{kN} \downarrow, \mathbf{Q}=600 \mathrm{~N} \downarrow
$$

$$
\mathbf{A}_{y}=7.4 \mathrm{kN} \uparrow, \quad \mathbf{B}=3.4 \mathrm{kN} \uparrow
$$

(b) Shear Diag:

V is piecewise linear with $\frac{d V}{d x}=-0.6 \mathrm{kN} / \mathrm{m}$ throughout, and discontinuities equal to forces at A, C, F, B.

Note $\quad V=0=0.2 \mathrm{kN}-(0.6 \mathrm{kN} / \mathrm{m}) x$ at $x=\frac{1}{3} \mathrm{~m}$

PROBLEM 7.87

Solve Prob. 7.86 assuming that the bending moment was found to be $+3.6 \mathrm{kN} \cdot \mathrm{m}$ at D and $+4.14 \mathrm{kN} \cdot \mathrm{m}$ at E.

SOLUTION

FBD AD:

FBD EB:

$$
-(2 \mathrm{~m}) A_{y}=0
$$

$$
\begin{equation*}
2 A_{y}-P=4.8 \mathrm{kN} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\left(\Sigma M_{E}=0:(2 \mathrm{~m}) B-(1 \mathrm{~m}) Q-(1 \mathrm{~m})(0.6 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m})\right. \\
-4.14 \mathrm{kN} \cdot \mathrm{~m}=0 \\
2 B-Q=5.34 \mathrm{kN} \tag{2}
\end{gather*}
$$

By symmetry:
(a)

$$
\left(\Sigma M_{D}=0: 3.6 \mathrm{kN} \cdot \mathrm{~m}+(1 \mathrm{~m}) P+(1 \mathrm{~m})(0.6 \mathrm{kN} / \mathrm{m})(2 \mathrm{~m})\right.
$$

$$
\begin{gather*}
\Sigma M_{A}=0:(6 \mathrm{~m}) B-(5 \mathrm{~m}) Q-(1 \mathrm{~m}) P-(3 \mathrm{~m})(0.6 \mathrm{kN} / \mathrm{m})(6 \mathrm{~m})=0 \\
6 B-P-5 Q=10.8 \mathrm{kN} \tag{3}
\end{gather*}
$$

Solving (1)-(4)

$$
\begin{equation*}
6 A-Q-5 P=10.8 \mathrm{kN} \tag{4}
\end{equation*}
$$

$$
\mathbf{P}=660 \mathrm{~N} \downarrow, \mathbf{Q}=2.28 \mathrm{kN} \downarrow
$$

$$
A_{y}=2.73 \mathrm{kN} \uparrow, B=3.81 \mathrm{kN} \uparrow
$$

(b) Shear Diag:

V is piecewise linear with $\left(\frac{d V}{d x}=-0.6 \mathrm{kN} / \mathrm{m}\right)$ throughout, and discontinuities equal to forces at A, C, F, B.
Note that $V=0=1.47 \mathrm{kN}-(0.6 \mathrm{kN} / \mathrm{m}) x$ at $x=2.45 \mathrm{~m}$

Moment Diag:

M is piecewise parabolic $\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$, with "breaks" in slope at C and F.

PROBLEM 7.87 CONTINUED

$$
M_{C}=\frac{1}{2}(2.73+2.13) \mathrm{kN}(1 \mathrm{~m})=2.43 \mathrm{kN} \cdot \mathrm{~m}
$$

$$
\begin{aligned}
M_{\max } & =2.43 \mathrm{kN} \cdot \mathrm{~m}+\frac{1}{2}(1.47 \mathrm{kN})(2.45 \mathrm{~m})=4.231 \mathrm{kN} \cdot \mathrm{~m} \\
M_{F} & =4.231 \mathrm{kN} \cdot \mathrm{~m}-\frac{1}{2}(0.93 \mathrm{kN})(1.55 \mathrm{~m})=3.51 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

PROBLEM 7.88

Two loads are suspended as shown from cable $A B C D$. Knowing that $d_{C}=1.5 \mathrm{ft}$, determine (a) the distance $d_{B},(b)$ the components of the reaction at $A,(c)$ the maximum tension in the cable.

SOLUTION

FBD cable:

$$
\begin{gather*}
\left(\Sigma M_{A}=0:(10 \mathrm{ft}) D_{y}-8 \mathrm{ft}(450 \mathrm{lb})-4 \mathrm{ft}(600 \mathrm{lb})=0\right. \\
D_{y}=600 \mathrm{lb} \uparrow \\
\uparrow \Sigma F_{y}=0: A_{y}+600 \mathrm{lb}-600 \mathrm{lb}-450 \mathrm{lb}=0 \\
A_{y}=450 \mathrm{lb} \\
\leftarrow \Sigma F_{x}=0: A_{x}-D_{x}=0 \tag{1}\\
\frac{600 \mathrm{lb}}{3}=\frac{D_{x}}{4}=\frac{T_{C D}}{5}: D_{x}=800 \mathrm{lb} \longrightarrow=A_{x}
\end{gather*}
$$

FBD pt D:

$$
T_{C D}=1000 \mathrm{lb}
$$

FBD pt A:
(c)

$$
T_{\text {max }}=T_{C D}=1000 \mathrm{lb}
$$

Note: $T_{C D}$ is $T_{\text {max }}$ as cable slope is largest in section $C D$.

PROBLEM 7.89

Two loads are suspended as shown from cable $A B C D$. Knowing that the maximum tension in the cable is 720 lb , determine (a) the distance d_{B}, (b) the distance d_{C}.

SOLUTION

FBD cable:

FBD pt D:

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(10 \mathrm{ft}) D_{y}-(8 \mathrm{ft})(450 \mathrm{lb})-(4 \mathrm{ft})(600 \mathrm{lb})=0\right. \\
\mathbf{D}_{y}=600 \mathrm{lb} \uparrow \\
\uparrow \Sigma F_{y}=0: A_{y}+600 \mathrm{lb}-600 \mathrm{lb}-450 \mathrm{lb}=0 \\
\mathbf{A}_{y}=450 \mathrm{lb} \uparrow
\end{gathered}
$$

$\longleftarrow \Sigma F_{x}=0: A_{x}-B_{x}=0$

FBD pt. A:

Since $A_{x}=B_{x}$; And $D_{y}>A_{y}$, Tension $T_{C D}>T_{A B}$
So $\quad T_{C D}=T_{\text {max }}=720 \mathrm{lb}$

$$
\begin{aligned}
& D_{x}=\sqrt{(720 \mathrm{lb})^{2}-(600 \mathrm{lb})^{2}}=398 \mathrm{lb}=A_{x} \\
& \frac{d_{C}}{600 \mathrm{lb}}=\frac{2 \mathrm{ft}}{398 \mathrm{lb}} \quad d_{C}=3.015 \mathrm{ft}
\end{aligned}
$$

$$
\frac{d_{B}}{450 \mathrm{lb}}=\frac{4 \mathrm{ft}}{398 \mathrm{lb}}
$$

(a) $\quad d_{B}=4.52 \mathrm{ft}$
(b) $\quad d_{C}=3.02 \mathrm{ft}$

SOLUTION

(a) FBD cable:

$$
\begin{align*}
\left(\Sigma M_{E}=0:\right. & (4 \mathrm{~m})(1.2 \mathrm{kN})+(8 \mathrm{~m})(0.8 \mathrm{kN})+(12 \mathrm{~m})(1.2 \mathrm{kN}) \\
& -(3 \mathrm{~m}) A_{x}-(16 \mathrm{~m}) A_{y}=0 \\
3 A_{x}+16 A_{y}= & 25.6 \mathrm{kN} \quad \tag{1}
\end{align*}
$$

FBD ABC:

$$
\begin{align*}
& \quad\left(\Sigma M_{C}=0:(4 \mathrm{~m})(1.2 \mathrm{kN})+(1 \mathrm{~m}) A_{x}-(8 \mathrm{~m}) A_{y}=0\right. \\
& A_{x}-8 A_{y}=-4.8 \mathrm{kN} \tag{2}
\end{align*}
$$

Solving (1) and (2) $\quad A_{x}=3.2 \mathrm{kN} \quad A_{y}=1 \mathrm{kN}$
(b)

$$
\begin{gathered}
\text { So } \mathbf{A}=3.35 \mathrm{kN} \triangle 17.35^{\circ} \\
\text { cable: } \longrightarrow \Sigma F_{x}=0:-A_{x}+E_{x}=0 \\
E_{x}=A_{x}=3.2 \mathrm{kN} \\
\uparrow \Sigma F_{y}=0: A_{y}-(1.2+0.8+1.2) \mathrm{kN}+E_{y}=0 \\
E_{y}=3.2 \mathrm{kN}-A_{y}=(3.2-1) \mathrm{kN}=2.2 \mathrm{kN} \\
\text { So } \mathbf{E}=3.88 \mathrm{kN} \angle 34.5^{\circ}
\end{gathered}
$$

PROBLEM 7.91

Knowing that $d_{C}=2.25 \mathrm{~m}$, determine (a) the reaction at $A,(b)$ the reaction at E.

SOLUTION

FBD Cable:

(a) $\quad\left(\Sigma M_{E}=0:(4 \mathrm{~m})(1.2 \mathrm{kN})+(8 \mathrm{~m})(0.8 \mathrm{kN})\right.$

$$
\begin{align*}
& \quad+(12 \mathrm{~m})(1.2 \mathrm{kN})-(3 \mathrm{~m}) A_{x}-(16 \mathrm{~m}) A_{y}=0 \\
& 3 A_{x}+16 A_{y}=25.6 \mathrm{kN} \tag{1}
\end{align*}
$$

$$
\left(\Sigma M_{C}=0:(4 \mathrm{~m})(1.2 \mathrm{kN})-(0.75 \mathrm{~m}) A_{x}-(8 \mathrm{~m}) A_{y}=0\right.
$$

FBD ABC:

$$
\begin{equation*}
0.75 A_{x}+8 A_{y}=4.8 \mathrm{kN} \tag{2}
\end{equation*}
$$

Solving (1) and (2)

$$
A_{x}=\frac{32}{3} \mathrm{kN}, \quad A_{y}=-0.4 \mathrm{kN}
$$

$$
\text { So } \quad \mathbf{A}=10.67 \mathrm{kN}>2.15^{\circ}
$$

Note: this implies $d_{B}<3 \mathrm{~m}$ (in fact $\left.d_{B}=2.85 \mathrm{~m}\right)$
(b) FBD cable: $\rightarrow \Sigma F_{x}=0:-\frac{32}{3} \mathrm{kN}+E_{x}=0 \quad E_{x}=\frac{32}{3} \mathrm{kN}$

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0:-0.4 \mathrm{kN}-1.2 \mathrm{kN}-0.8 \mathrm{kN}-1.2 \mathrm{kN}+E_{y}=0 \\
E_{y}=3.6 \mathrm{kN}
\end{gathered}
$$

$$
\mathbf{E}=11.26 \mathrm{kN} \angle 18.65^{\circ}
$$

SOLUTION

FBD Cable:

(a) $\quad\left(\Sigma M_{A}=0:(2.4 \mathrm{ft}) E_{x}+(8 \mathrm{ft}) E_{y}-(2 \mathrm{ft})(360)\right.$

$$
-(4 \mathrm{ft})(720 \mathrm{lb})-(6 \mathrm{ft})(240 \mathrm{lb})=0
$$

$$
\begin{equation*}
0.3 E_{x}+E_{y}=630 \mathrm{lb} \tag{1}
\end{equation*}
$$

FBD CDE:

$$
\left(\Sigma M_{C}=0:-(1.2 \mathrm{ft}) E_{x}+(4 \mathrm{ft}) E_{y}-(2 \mathrm{ft})(240 \mathrm{lb})=0\right.
$$

$$
\begin{equation*}
-0.3 E_{x}+E_{y}=+120 \mathrm{lb} \tag{2}
\end{equation*}
$$

Solving (1) and (2)

$$
E_{x}=850 \mathrm{lb} \quad E_{y}=375 \mathrm{lb}
$$

(a)

$$
\mathbf{E}=929 \mathrm{lb} \angle 23.8^{\circ}
$$

(b) cable: $\rightarrow \Sigma F_{x}=0:-A_{x}+E_{x}=0 \quad A_{x}=E_{x}=850 \mathrm{lb}$

$$
\uparrow \Sigma F_{y}=0: A_{y}-360 \mathrm{lb}-720 \mathrm{lb}-240 \mathrm{lb}+375 \mathrm{lb}=0
$$

Point A:

$$
A_{y}=945 \mathrm{lb}
$$

$$
\frac{d_{B}}{2 \mathrm{ft}}=\frac{945 \mathrm{lb}}{850 \mathrm{lb}}
$$

$$
d_{B}=2.22 \mathrm{ft}
$$

PROBLEM 7.92 CONTINUED

$$
\left(\Sigma M_{D}=0:(2 \mathrm{ft})(375 \mathrm{lb})-\left(d_{D}-2.4 \mathrm{ft}\right)(850 \mathrm{lb})=0\right.
$$

Segment DE:

$$
d_{D}=3.28 \mathrm{ft} \boldsymbol{4}
$$

PROBLEM 7.93

Cable $A B C D E$ supports three loads as shown. Determine (a) the distance d_{C} for which portion $C D$ of the cable is horizontal, (b) the corresponding reactions at the supports.

SOLUTION

Segment DE:

$$
\uparrow \Sigma F_{y}=0: E_{y}-240 \mathrm{lb}=0 \quad \mathbf{E}_{y}=240 \mathrm{lb} \uparrow
$$

FBD Cable:

$$
\begin{gathered}
\left(\Sigma M_{A}=(2.4 \mathrm{ft}) E_{x}+(8 \mathrm{ft})(240 \mathrm{lb})-(6 \mathrm{ft})(240 \mathrm{lb})\right. \\
-(4 \mathrm{ft})(720 \mathrm{lb})-(2 \mathrm{ft})(360 \mathrm{lb})=0 \\
\mathbf{E}_{x}=1300 \mathrm{lb} \longrightarrow
\end{gathered}
$$

$$
\begin{gathered}
\left(\Sigma M_{D}=0:(2 \mathrm{ft}) E_{y}-\left(d_{C}-2.4 \mathrm{ft}\right) E_{x}=0\right. \\
d_{C}=2.4 \mathrm{ft}+\frac{E_{y}}{E_{x}}(2 \mathrm{ft})=(2.4 \mathrm{ft})+\frac{240 \mathrm{lb}}{1300 \mathrm{lb}}(2 \mathrm{ft})=2.7692 \mathrm{ft} \\
(\mathrm{a}) \quad d_{C}=2.77 \mathrm{ft}
\end{gathered}
$$

From FBD Cable:

$$
\begin{aligned}
& \longrightarrow \Sigma F_{x}=0:-A_{x}+E_{x}=0 \quad \mathbf{A}_{x}=1300 \mathrm{lb} \longleftarrow \\
& \uparrow \Sigma F_{y}=0: A_{y}-360 \mathrm{lb}-720 \mathrm{lb}-240 \mathrm{lb}+E_{y}=0
\end{aligned}
$$

$\mathbf{A}_{y}=1080 \mathrm{lb} \uparrow$
(b)

$$
\begin{aligned}
& \mathbf{A}=1.690 \mathrm{kips} \triangle 39.7^{\circ} \\
& \mathbf{E}=1.322 \mathrm{kips} \angle 10.46^{\circ}
\end{aligned}
$$

PROBLEM 7.94

An oil pipeline is supported at 6-m intervals by vertical hangers attached to the cable shown. Due to the combined weight of the pipe and its contents, the tension in each hanger is 4 kN . Knowing that $d_{C}=12 \mathrm{~m}$, determine (a) the maximum tension in the cable, (b) the distance d_{D}.

SOLUTION

FBD Cable:

FBD ABC:

FBD DEF:

Solving (1) and (2)

$$
\mathbf{A}_{x}=8 \mathrm{kN} \longrightarrow \quad \mathbf{A}_{y}=\frac{20}{3} \mathrm{kN} \uparrow
$$

From FBD Cable:

$$
\begin{gathered}
\longrightarrow \Sigma F_{x}=0:-A_{x}+F_{x}=0 \quad F_{x}=A_{x}=8 \mathrm{kN} \\
\uparrow \Sigma F_{y}=0: A_{y}-4(4 \mathrm{kN})+F_{y}=0 \\
F_{y}=16 \mathrm{kN}-A_{y}=\left(16-\frac{20}{3}\right) \mathrm{kN}=\frac{28}{3} \mathrm{kN}>A_{y} \\
\text { So } \quad T_{E F}>T_{A B} \quad T_{\max }=T_{E F}=\sqrt{F_{x}^{2}+F_{y}^{2}}
\end{gathered}
$$

Note: \mathbf{A}_{y} and \mathbf{F}_{y} shown are forces on cable, assuming the 4 kN loads at A and F act on supports.

$$
\begin{gather*}
\left(\Sigma M_{F}=0:(6 \mathrm{~m})[1(4 \mathrm{kN})+2(4 \mathrm{kN})+3(4 \mathrm{kN})+4(4 \mathrm{kN})]\right. \\
-(30 \mathrm{~m}) A_{y}-(5 \mathrm{~m}) A_{x}=0 \\
A_{x}+6 A_{y}=48 \mathrm{kN} \tag{1}
\end{gather*}
$$

$$
\begin{gather*}
\left(\Sigma M_{C}=0:(6 \mathrm{~m})(4 \mathrm{kN})+(7 \mathrm{~m}) A_{x}-(12 \mathrm{~m}) A_{y}=0\right. \\
7 A_{x}-12 A_{y}=-24 \mathrm{kN} \tag{2}
\end{gather*}
$$

(Cable
(a) $\quad T_{\max }=\sqrt{(18 \mathrm{kN})^{2}+\left(\frac{28}{3} \mathrm{kN}\right)^{2}}=12.29 \mathrm{kN}$

$$
\left(\Sigma M_{D}=0:(12 \mathrm{~m})\left(\frac{28}{3} \mathrm{kN}\right)-d_{D}(8 \mathrm{kN})-(6 \mathrm{~m})(4 \mathrm{kN})=0\right.
$$

(b)

$$
d_{D}=11.00 \mathrm{~m}
$$

PROBLEM 7.95

Solve Prob. 7.94 assuming that $d_{C}=9 \mathrm{~m}$.

SOLUTION

Note: 4 kN loads at A and F act directly on supports, not on cable.

FBD Cable:

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(30 \mathrm{~m}) F_{y}-(5 \mathrm{~m}) F_{x}\right. \\
-(6 \mathrm{~m})[1(4 \mathrm{kN})+2(4 \mathrm{kN})+3(4 \mathrm{kN})+4(4 \mathrm{kN})]=0 \\
F_{x}-6 F_{y}=-48 \mathrm{kN}
\end{gathered}
$$

$$
\left(\Sigma M_{C}=0:(18) F_{y}-(9 \mathrm{~m}) F_{x}-(12 \mathrm{~m})(4 \mathrm{kN})-(6 \mathrm{~m})(4 \mathrm{kN})=0\right.
$$

FBD CDEF:

Solving (1) and (2) $\quad \mathbf{F}_{x}=12 \mathrm{kN} \longrightarrow \quad \mathbf{F}_{y}=10 \mathrm{kN} \uparrow$ $\xrightarrow[12 \mathrm{kN}]{\longrightarrow} T_{E F}=\sqrt{(10 \mathrm{kN})^{2}+(12 \mathrm{kN})^{2}}=15.62 \mathrm{kN}$

Since slope $E F>$ slope $A B$ this is $T_{\text {max }}$

$$
\text { (a) } \quad T_{\text {max }}=15.62 \mathrm{kN}
$$

Also could note from FBD cable

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: A_{y}+F_{y}-4(4 \mathrm{kN})=0 \\
A_{y}=16 \mathrm{kN}-12 \mathrm{kN}=4 \mathrm{kN}
\end{gathered}
$$

Thus $\quad A_{y}<F_{y} \quad$ and $\quad T_{A B}<T_{E F}$

FBD DEF:

(b) $\quad\left(\Sigma M_{D}=0:(12 \mathrm{~m})(10 \mathrm{kN})-d_{D}(12 \mathrm{kN})-(6 \mathrm{~m})(4 \mathrm{kN})=0\right.$

$$
d_{D}=8.00 \mathrm{~m}
$$

SOLUTION

FBD BC:

$$
W=(8 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=78.48 \mathrm{~N}
$$

$$
\begin{gather*}
\left(\Sigma M_{A}=0:(3.6 \mathrm{~m}) P-(2.4 \mathrm{~m}) \frac{3 W}{2}-a W=0\right. \\
P=W\left(1+\frac{a}{3.6 \mathrm{~m}}\right) \tag{1}\\
\longrightarrow \Sigma F_{x}=0:-T_{1 x}+P=0
\end{gather*} T_{1 x}=P \quad \begin{array}{cc}
\\
\uparrow \Sigma F_{y}=0: T_{1 y}-W-\frac{3}{2} W=0 & T_{1 y}=\frac{5 W}{2}
\end{array}
$$

But

$$
\begin{gather*}
\frac{T_{1 y}}{T_{1 x}}=\frac{2.8 \mathrm{~m}}{a} \quad \text { so } \quad \frac{5 W}{2 P}=\frac{2.8 \mathrm{~m}}{a} \\
P=\frac{5 W a}{5.6 \mathrm{~m}} \tag{2}
\end{gather*}
$$

Solving (1) and (2): $\quad a=1.6258 \mathrm{~m}, \quad P=1.4516 \mathrm{~W}$
So
(a)

$$
P=1.4516(78.48)=113.9 \mathrm{~N}
$$

(b)

$$
a=1.626 \mathrm{~m}
$$

PROBLEM 7.97

Cable $A B C$ supports two boxes as shown. Determine the distances a and b when a horizontal force \mathbf{P} of magnitude 100 N is applied at C.

SOLUTION

FBD pt C:

Segment BC:

$$
\begin{gathered}
\frac{2.4 \mathrm{~m}-a}{100 \mathrm{~N}}=\frac{0.8 \mathrm{~m}}{117.72 \mathrm{~N}} \\
a=1.7204 \mathrm{~m}
\end{gathered}
$$

$$
a=1.720 \mathrm{~m}
$$

$$
\begin{gathered}
\left(\Sigma M_{A}=0: b(100 \mathrm{~N})-(2.4 \mathrm{~m})(117.72 \mathrm{~N})\right. \\
-(1.7204 \mathrm{~m})\left(\frac{2}{3} 117.72 \mathrm{~N}\right)=0 \\
b=4.1754 \mathrm{~m}
\end{gathered}
$$

$$
b=4.18 \mathrm{~m}
$$

SOLUTION

FBD CD:

$$
\begin{gather*}
\left(\Sigma M_{C}=0:(12 \mathrm{ft}) D_{y}-(9 \mathrm{ft}) D_{x}=0\right. \\
3 D_{x}=4 D_{y} \tag{1}\\
\left(\Sigma M_{B}=0:(30 \mathrm{ft}) D_{y}-(15 \mathrm{ft}) D_{x}-(18 \mathrm{ft})(50 \mathrm{lb})=0\right. \tag{2}
\end{gather*}
$$

FBD BCD:

$2 D_{y}-D_{x}=60 \mathrm{lb}$

$$
\mathbf{D}_{x}=120 \mathrm{lb} \longrightarrow \quad \mathbf{D}_{y}=90 \mathrm{lb} \uparrow
$$

FBD Cable:

$$
\begin{aligned}
\left(\Sigma M_{A}=0:(42 \mathrm{ft})\right. & (90 \mathrm{lb})-(30 \mathrm{ft})(50 \mathrm{lb}) \\
& -(12 \mathrm{ft})(150 \mathrm{lb})-(15 \mathrm{ft}) P=0
\end{aligned}
$$

$$
P=32.0 \mathrm{lb}
$$

SOLUTION

FBD CD:

$$
\begin{gather*}
\left(\Sigma M_{C}=0:(12 \mathrm{ft}) D_{y}-(9 \mathrm{ft}) D_{x}=0\right. \\
4 D_{y}=3 D_{x} \tag{1}
\end{gather*}
$$

FBD BCD:

$$
\begin{equation*}
10 D_{y}-5 D_{x}=132 \mathrm{lb} \tag{2}
\end{equation*}
$$

Solving (1) and (2) $\quad \mathbf{D}_{x}=52.8 \mathrm{lb} \longrightarrow \quad \mathbf{D}_{y}=39.6 \mathrm{lb} \uparrow$

FBD Whole:

$$
\begin{aligned}
&\left(\Sigma M_{A}=0:(42 \mathrm{ft})\right.(39.6 \mathrm{lb})-(30 \mathrm{ft})(22 \mathrm{lb}) \\
&-(12 \mathrm{ft})(40 \mathrm{lb})-(15 \mathrm{ft}) P=0
\end{aligned}
$$

$$
P=34.9 \mathrm{lb}
$$

SOLUTION

FBD pt C:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: 2\left(\frac{1}{\sqrt{5}} T\right)-180 \mathrm{kN}=0 \quad T=90 \sqrt{5} \mathrm{kN} \\
T_{x}=180 \mathrm{kN} \quad T_{y}=90 \mathrm{kN}
\end{gathered}
$$

Segment DE:

$$
\left(\Sigma M_{E}=0:(7.5 \mathrm{~m})(P-180 \mathrm{kN})+(6 \mathrm{~m})(90 \mathrm{kN})=0\right.
$$

$$
P=108.0 \mathrm{kN}
$$

Segment AB:

$\left(\Sigma M_{A}=0:(4.5 \mathrm{~m})(180 \mathrm{kN})-(6 \mathrm{~m})(Q+90 \mathrm{kN})=0\right.$

$$
Q=45.0 \mathrm{kN}
$$

SOLUTION

FBD pt C:
By symmetry: $\quad T_{B C}=T_{C D}=T$

$$
\begin{aligned}
\uparrow \Sigma F_{y}=0: 2\left(\frac{1}{\sqrt{5}} T\right)-180 \mathrm{kN} & =0 \quad T=90 \sqrt{5} \mathrm{kN} \\
T_{x}=180 \mathrm{kN} \quad T_{y} & =90 \mathrm{kN}
\end{aligned}
$$

FBD DE:

$\left(\Sigma M_{E}=0:(9 \mathrm{~m})(P-180 \mathrm{kN})+(6 \mathrm{~m})(90 \mathrm{kN})=0\right.$

$$
P=120.0 \mathrm{kN}
$$

FBD AB:

$$
\begin{aligned}
\left(\Sigma M_{A}=0:(6 \mathrm{~m})(180 \mathrm{kN})-(6 \mathrm{~m})(Q+90 \mathrm{kN})\right. & =0 \\
Q & =90.0 \mathrm{kN}
\end{aligned}
$$

PROBLEM 7.102

A transmission cable having a mass per unit length of $1 \mathrm{~kg} / \mathrm{m}$ is strung between two insulators at the same elevation that are 60 m apart. Knowing that the sag of the cable is 1.2 m , determine (a) the maximum tension in the cable, (b) the length of the cable.

SOLUTION

(a) Since $h=1.2 \mathrm{~m} \ll L=30 \mathrm{~m}$ we can approximate the load as evenly distributed in the horizontal direction.

$$
\begin{aligned}
w & =1 \mathrm{~kg} / \mathrm{m}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=9.81 \mathrm{~N} / \mathrm{m} . \\
w & =(60 \mathrm{~m})(9.81 \mathrm{~N} / \mathrm{m}) \\
w & =588.6 \mathrm{~N}
\end{aligned}
$$

Also we can assume that the weight of half the cable acts at the $\frac{1}{4}$ chord point.
FBD half-cable:

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(15 \mathrm{~m})(294.3 \mathrm{~N})-(1.2 \mathrm{~m}) T_{\min }=0\right. \\
T_{\min }=3678.75 \mathrm{~N}=T_{\max x} \\
\uparrow \Sigma F_{y}=0: T_{\max y}-294.3 \mathrm{~N}=0 \\
T_{\max y}=294.3 \mathrm{~N} \\
T_{\max }=3690.5 \mathrm{~N}
\end{gathered}
$$

$$
T_{\max }=3.69 \mathrm{kN}
$$

(b)

$$
\begin{aligned}
& s_{B}=x_{B}\left[1+\frac{2}{3}\left(\frac{y_{B}}{x_{B}}\right)^{2}-\frac{2}{5}\left(\frac{y_{B}}{x_{B}}\right)^{4}+\cdots\right] \\
& \quad=(30 \mathrm{~m})\left[1+\frac{2}{3}\left(\frac{1.2}{30}\right)^{2}-\frac{2}{5}\left(\frac{1.2}{30}\right)^{4}+\cdots\right]=30.048 \mathrm{~m} \quad \text { so } \quad s=2 s_{B}=60.096 \mathrm{~m} \\
& s=60.1 \mathrm{~m}
\end{aligned}
$$

Note: The more accurate methods of section 7.10, which assume the load is evenly distributed along the length instead of horizontally, yield $T_{\max }=3690.5 \mathrm{~N}$ and $s=60.06 \mathrm{~m}$. Answers agree to 3 digits at least.

PROBLEM 7.103

Two cables of the same gauge are attached to a transmission tower at B. Since the tower is slender, the horizontal component of the resultant of the forces exerted by the cables at B is to be zero. Knowing that the mass per unit length of the cables is $0.4 \mathrm{~kg} / \mathrm{m}$, determine (a) the required sag h, (b) the maximum tension in each cable.

SOLUTION

Half-cable FBDs:

$T_{1 x}=T_{2 x}$ to create zero horizontal force on tower \rightarrow thus $T_{01}=T_{02}$
FBD I:

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(15 \mathrm{~m})[w(30 \mathrm{~m})]-h_{1} T_{0}=0\right. \\
h_{1}=\frac{\left(450 \mathrm{~m}^{2}\right) w}{T_{0}}
\end{gathered}
$$

FBD II:

$$
\begin{aligned}
& \left(\Sigma M_{B}=0:(2 \mathrm{~m}) T_{0}-(10 \mathrm{~m})[w(20 \mathrm{~m})]=0\right. \\
& T_{0}=(100 \mathrm{~m}) w \\
& \\
& \quad(a) \quad h_{1}=\frac{\left(450 \mathrm{~m}^{2}\right) w}{(100 \mathrm{~m}) w}=4.50 \mathrm{~m}
\end{aligned}
$$

FBD I:

$$
\begin{gathered}
\longrightarrow \Sigma F_{x}=0: T_{1 x}-T_{0}=0 \\
T_{1 x}=(100 \mathrm{~m}) w \\
\uparrow \Sigma F_{y}=0: T_{1 y}-(30 \mathrm{~m}) w=0 \\
T_{1 y}=(30 \mathrm{~m}) w \\
T_{1}=\sqrt{(100 \mathrm{~m})^{2}+(30 \mathrm{~m})^{2}} w \\
=(104.4 \mathrm{~m})(0.4 \mathrm{~kg} / \mathrm{m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
=409.7 \mathrm{~N}
\end{gathered}
$$

PROBLEM 7.103 CONTINUED

FBD II:

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: T_{2 y}-(20 \mathrm{~m}) w=0 \\
T_{2 y}=(20 \mathrm{~m}) w \\
T_{2 x}=T_{1 x}=(100 \mathrm{~m}) w \\
T_{2}=\sqrt{(100 \mathrm{~m})^{2}+(20 \mathrm{~m})^{2}} w=400.17 \mathrm{~N}
\end{gathered}
$$

(b) $\quad T_{1}=410 \mathrm{~N}$

$$
T_{2}=400 \mathrm{~N}
$$

* Since $h \ll L$ it is reasonable to approximate the cable weight as being distributed uniformly along the horizontal. The methods of section 7.10 are more accurate for cables sagging under their own weight.

PROBLEM 7.104

The center span of the George Washington Bridge, as originally constructed, consisted of a uniform roadway suspended from four cables. The uniform load supported by each cable was $w=9.75$ kips/ ft along the horizontal. Knowing that the span L is 3500 ft and that the sag h is 316 ft , determine for the original configuration (a) the maximum tension in each cable, (b) the length of each cable.

SOLUTION

FBD half-span:

$$
\begin{gathered}
W=(9.75 \mathrm{kips} / \mathrm{ft})(1750 \mathrm{ft})=17,062.5 \mathrm{kips} \\
\left(\Sigma M_{B}=0:(875 \mathrm{ft})(17,065 \mathrm{kips})-(316 \mathrm{ft}) T_{0}=0\right. \\
T_{0}=47,246 \mathrm{kips} \\
T_{\max }=\sqrt{T_{0}^{2}+W^{2}}=\sqrt{(47,246 \mathrm{kips})^{2}+(17,063 \mathrm{kips})^{2}}
\end{gathered}
$$

(a) $T_{\text {max }}=50,200 \mathrm{kips}$
$s=x\left[1+\frac{2}{3}\left(\frac{y}{x}\right)^{2}-\frac{2}{5}\left(\frac{y}{x}\right)^{4}+\cdots\right]$
$s_{B}=(1750 \mathrm{ft})\left[1+\frac{2}{3}\left(\frac{316 \mathrm{ft}}{1750 \mathrm{ft}}\right)^{2}-\frac{2}{5}\left(\frac{316 \mathrm{ft}}{1750 \mathrm{ft}}\right)^{4}+\cdots\right]$
$=1787.3 \mathrm{ft}$

$$
\begin{equation*}
l=2 s_{B}=3575 \mathrm{ft} \tag{b}
\end{equation*}
$$

* To get 3-digit accuracy, only two terms are needed.

PROBLEM 7.105

Each cable of the Golden Gate Bridge supports a load $w=11.1 \mathrm{kips} / \mathrm{ft}$ along the horizontal. Knowing that the span L is 4150 ft and that the $\operatorname{sag} h$ is 464 ft , determine (a) the maximum tension in each cable, (b) the length of each cable.

SOLUTION

FBD half-span:

(a)
$\left(\Sigma M_{B}=0:\left(\frac{2075 \mathrm{ft}}{2}\right)(23032.5 \mathrm{kips})-(464 \mathrm{ft}) T_{0}=0\right.$

$$
T_{0}=47,246 \mathrm{kips}
$$

$T_{\max }=\sqrt{T_{0}^{2}+W^{2}}=\sqrt{(47,246 \mathrm{kips})^{2}+(23,033 \mathrm{kips})^{2}}=56,400 \mathrm{kips}$
(b)

$$
\begin{aligned}
& s=x\left[1+\frac{2}{3}\left(\frac{y}{x}\right)^{2}-\frac{2}{5}\left(\frac{y}{x}\right)^{4}+\cdots\right] \\
& s_{B}=(2075 \mathrm{ft})\left[1+\frac{2}{3}\left(\frac{464 \mathrm{ft}}{2075 \mathrm{ft}}\right)^{2}-\frac{2}{5}\left(\frac{464 \mathrm{ft}}{2075 \mathrm{ft}}\right)^{4}+\cdots\right] \\
& s_{B}=2142 \mathrm{ft} \quad l=2 s_{B} \\
& l=4284 \mathrm{ft}
\end{aligned}
$$

PROBLEM 7.106

To mark the positions of the rails on the posts of a fence, a homeowner ties a cord to the post at A, passes the cord over a short piece of pipe attached to the post at B, and ties the free end of the cord to a bucket filled with bricks having a total mass of 20 kg . Knowing that the mass per unit length of the rope is $0.02 \mathrm{~kg} / \mathrm{m}$ and assuming that A and B are at the same elevation, determine (a) the sag $h,(b)$ the slope of the cable at B. Neglect the effect of friction.

SOLUTION

FBD pulley:

$$
\begin{gathered}
\text { max } \underline{W}_{B}=(20 \log)\left(9.81 \frac{\mathrm{M}}{\mathrm{~S}^{2}}\right)=196.2 \mathrm{~N} \\
\left(\Sigma M_{P}=0:\left(T_{\max }-W_{B}\right) r=0\right. \\
T_{\max }=W_{B}=196.2 \mathrm{~N}
\end{gathered}
$$

FBD half-span:*

$$
\begin{gathered}
\frac{T_{\text {max }}}{T_{0}} \Theta_{B} \\
T_{0}=\sqrt{T_{\max }^{2}-W^{2}}=\sqrt{(196.2 \mathrm{~N})^{2}-(4.91 \mathrm{~N})^{2}}=196.139 \mathrm{~N} \\
\left(\Sigma M_{B}=0:\left(\frac{25 \mathrm{~m}}{2}\right)(4.905 \mathrm{~N})-h(196.139 \mathrm{~N})=0\right.
\end{gathered}
$$

(a) $\quad h=0.3126 \mathrm{~m}=313 \mathrm{~mm}$
(b)

$$
\theta_{B}=\sin ^{-1} \frac{W}{T_{\max }}=\sin ^{-1}\left(\frac{4.905 \mathrm{~N}}{196.2 \mathrm{~N}}\right)=1.433^{\circ} .
$$

*See note Prob. 7.103

PROBLEM 7.107

A small ship is tied to a pier with a 5-m length of rope as shown. Knowing that the current exerts on the hull of the ship a $300-\mathrm{N}$ force directed from the bow to the stern and that the mass per unit length of the rope is $2.2 \mathrm{~kg} / \mathrm{m}$, determine (a) the maximum tension in the rope,
(b) the sag h. [Hint: Use only the first two terms of Eq. (7.10).]

SOLUTION

(a) FBD ship:

$$
\longrightarrow \Sigma F_{x}=0: T_{0}-300 \mathrm{~N}=0 \quad T_{0}=300 \mathrm{~N}
$$

FBD half-span:*

$$
T_{\max }=\sqrt{T_{0}^{2}+W^{2}}=\sqrt{(300 \mathrm{~N})^{2}=(54 \mathrm{~N})^{2}}=305 \mathrm{~N}
$$

(b)

$$
\begin{aligned}
& \left(\Sigma M_{A}=0: h T_{x}-\frac{L}{4} W=0 \quad h=\frac{L W}{4 T_{x}}\right. \\
& s=x\left[1+\frac{2}{3}\left(\frac{4}{x}\right)^{2}+\cdots\right] \text { but } \quad y_{A}=h=\frac{L W}{4 T_{x}} \quad \text { so } \quad \frac{y_{A}}{x_{A}}=\frac{W}{2 T_{x}} \\
& \qquad(2.5 \mathrm{~m})=\frac{L}{2}\left[1+\frac{2}{3}\left(\frac{53.955 \mathrm{~N}}{600 \mathrm{~N}}\right)^{2}-\cdots\right] \rightarrow L=4.9732 \mathrm{~m}
\end{aligned}
$$

$$
\text { So } \quad h=\frac{L W}{4 T_{x}}=0.2236 \mathrm{~m} \quad h=224 \mathrm{~mm}
$$

*See note Prob. 7.103

PROBLEM 7.108

The center span of the Verrazano-Narrows Bridge consists of two uniform roadways suspended from four cables. The design of the bridge allowed for the effect of extreme temperature changes which cause the sag of the center span to vary from $h_{w}=386 \mathrm{ft}$ in winter to $h_{s}=394 \mathrm{ft}$ in summer. Knowing that the span is $L=4260 \mathrm{ft}$, determine the change in length of the cables due to extreme temperature changes.

SOLUTION

Knowing

$$
s=x\left[1+\frac{2}{3}\left(\frac{y}{x}\right)^{2}-\frac{2}{5}\left(\frac{y}{x}\right)^{4}+\cdots\right]
$$

$$
l=2 s_{\mathrm{TOT}}=L\left[1+\frac{2}{3}\left(\frac{h}{L / 2}\right)^{2}-\frac{2}{5}\left(\frac{h}{L / 2}\right)^{2}+\cdots\right]
$$

Winter:

$$
l_{w}=(4260 \mathrm{ft})\left[1+\frac{2}{3}\left(\frac{386 \mathrm{ft}}{2130 \mathrm{ft}}\right)^{2}-\frac{2}{5}\left(\frac{386 \mathrm{ft}}{2130 \mathrm{ft}}\right)^{4}+\cdots\right]=4351.43 \mathrm{ft}
$$

Summer:

$$
l_{s}=(4260 \mathrm{ft})\left[1+\frac{2}{3}\left(\frac{394 \mathrm{ft}}{2130 \mathrm{ft}}\right)^{2}-\frac{2}{5}\left(\frac{394 \mathrm{ft}}{2130 \mathrm{ft}}\right)^{4}+\cdots\right]=4355.18 \mathrm{ft}
$$

$$
\Delta l=l_{s}-l_{w}=3.75 \mathrm{ft}
$$

PROBLEM 7.109

A cable of length $L+\Delta$ is suspended between two points which are at the same elevation and a distance L apart. (a) Assuming that Δ is small compared to L and that the cable is parabolic, determine the approximate sag in terms of L and Δ. (b) If $L=30 \mathrm{~m}$ and $\Delta=1.2 \mathrm{~m}$, determine the approximate sag. [Hint: Use only the first two terms of Eq. (7.10).]

SOLUTION

(a)

$$
\begin{gathered}
s=x\left[1+\frac{2}{3}\left(\frac{y}{x}\right)^{2}-\cdots\right] \\
L+\Delta=2 s_{\mathrm{TOT}}=L\left[1+\frac{2}{3}\left(\frac{h}{L / 2}\right)^{2}-\cdots\right] \\
\frac{\Delta}{L}=\frac{2}{3}\left(\frac{2 h}{L}\right)^{2}=\frac{8}{3}\left(\frac{h}{L}\right)^{2} \rightarrow h=\sqrt{\frac{3}{8} L \Delta}
\end{gathered}
$$

(b)

For
$L=30 \mathrm{~m}$,
$\Delta=1.2 \mathrm{~m}$
$h=3.67 \mathrm{~m}$

PROBLEM 7.110

Each cable of the side spans of the Golden Gate Bridge supports a load $w=10.2 \mathrm{kips} / \mathrm{ft}$ along the horizontal. Knowing that for the side spans the maximum vertical distance h from each cable to the chord $A B$ is 30 ft and occurs at midspan, determine (a) the maximum tension in each cable, (b) the slope at B.

SOLUTION

FBD AB:

$$
\begin{gather*}
\left(\Sigma M_{A}=0:(1100 \mathrm{ft}) T_{B y}-(496 \mathrm{ft}) T_{B x}-(550 \mathrm{ft}) W=0\right. \\
11 T_{B y}-4.96 T_{B x}=5.5 \mathrm{~W} \tag{1}
\end{gather*}
$$

FBD CB:

PROBLEM 7.111

A steam pipe weighting $50 \mathrm{lb} / \mathrm{ft}$ that passes between two buildings 60 ft apart is supported by a system of cables as shown. Assuming that the weight of the cable is equivalent to a uniformly distributed loading of 7.5 $\mathrm{lb} / \mathrm{ft}$, determine (a) the location of the lowest point C of the cable, (b) the maximum tension in the cable.

SOLUTION

FBD AC:

FBD CB:

$$
\begin{align*}
& \left(\Sigma M_{A}=0:(13.5 \mathrm{ft}) T_{0}-\frac{a}{2}(57.5 \mathrm{lb} / \mathrm{ft}) a=0\right. \\
& T_{0}=\left(2.12963 \mathrm{lb} / \mathrm{ft}^{2}\right) a^{2} \tag{1}\\
& \left(\Sigma M_{B}=0: \frac{60 \mathrm{ft}-a}{2}(57.5 \mathrm{lb} / \mathrm{ft})(60 \mathrm{ft}-a)-(6 \mathrm{ft}) T_{0}=0\right. \\
& 6 T_{0}=\left(28.75 \mathrm{lb} / \mathrm{ft}^{2}\right)\left[3600 \mathrm{ft}^{2}-(120 \mathrm{ft}) a+a^{2}\right] \tag{2}
\end{align*}
$$

Using (1) in (2) $\quad 0.55 a^{2}-(120 \mathrm{ft}) a+3600 \mathrm{ft}^{2}=0$
Solving: $\quad a=(108 \pm 72) \mathrm{ft} \quad a=36 \mathrm{ft}$ (180 ft out of range)

So
 C is 36 ft from A

(a) C is 6 ft below and 24 ft left of B

$$
\begin{gathered}
T_{0}=2.1296 \mathrm{lb} / \mathrm{ft}^{2}(36 \mathrm{ft})^{2}=2760 \mathrm{lb} \\
W_{1}=(57.5 \mathrm{lb} / \mathrm{ft})(36 \mathrm{ft})=2070 \mathrm{lb}
\end{gathered}
$$

(b) $\quad T_{\text {max }}=T_{A}=\sqrt{T_{0}^{2}+W_{1}^{2}}=\sqrt{(2760 \mathrm{lb})^{2}+(2070 \mathrm{lb})^{2}}=3450 \mathrm{lb}$

PROBLEM 7.112

Chain $A B$ supports a horizontal, uniform steel beam having a mass per unit length of $85 \mathrm{~kg} / \mathrm{m}$. If the maximum tension in the cable is not to exceed 8 kN , determine (a) the horizontal distance a from A to the lowest point C of the chain, (b) the approximate length of the chain.

SOLUTION

$$
\left(\Sigma M_{A}=0: y_{A} T_{0}-\frac{a}{2} w a=0\right.
$$

$$
\left(\Sigma M_{B}=0:-y_{B} T_{0}+\frac{b}{2} w b=0\right.
$$

$$
y_{A}=\frac{w a^{2}}{2 T_{0}}
$$

$$
y_{B}=\frac{w b^{2}}{2 T_{0}}
$$

$$
d=\left(y_{B}-y_{B}\right)=\frac{w}{2 T_{0}}\left(b^{2}-a^{2}\right)
$$

But

$$
T_{0}=\sqrt{T_{B}^{2}-(w b)^{2}}=\sqrt{T_{\max }^{2}-(w b)^{2}}
$$

$$
\therefore(2 d)^{2}\left[T_{\max }^{2}-(w b)^{2}\right]=w^{2}\left(b^{2}-a^{2}\right)^{2}=L^{2} w^{2}\left(4 b^{2}-4 L b+L^{2}\right)
$$

or

$$
4\left(L^{2}+d^{2}\right) b^{2}-4 L^{3} b+\left(L^{4}-4 d^{2} \frac{T_{\max }^{2}}{w^{2}}\right)=0
$$

Using $\quad L=6 \mathrm{~m}, \quad d=0.9 \mathrm{~m}, \quad T_{\max }=8 \mathrm{kN}, \quad w=(85 \mathrm{~kg} / \mathrm{m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=833.85 \mathrm{~N} / \mathrm{m}$

$$
\text { yields } \quad b=(2.934 \pm 1.353) \mathrm{m} \quad b=4.287 \mathrm{~m} \quad(\text { since } b>3 \mathrm{~m})
$$

(a) $\quad a=6 \mathrm{~m}-b=1.713 \mathrm{~m}$

PROBLEM 7.112 CONTINUED

$$
\begin{align*}
& T_{0}=\sqrt{T_{\text {max }}^{2}-(w b)^{2}}=7156.9 \mathrm{~N} \\
& \frac{y_{A}}{x_{A}}= \frac{w a}{2 T_{0}}=0.09979 \quad \frac{y_{B}}{x_{B}}=\frac{w b}{2 T_{0}}=0.24974 \\
& l=s_{A}+s_{B}=a\left[1+\frac{2}{3}\left(\frac{y_{A}}{x_{A}}\right)^{2}+\cdots\right]+b\left[1+\frac{2}{3}\left(\frac{y_{B}}{x_{B}}\right)^{2}+\cdots\right] \\
&=(1.713 \mathrm{~m})\left[1+\frac{2}{3}(0.09979)^{2}\right]+(4.287 \mathrm{~m})\left[1+\frac{2}{3}(0.24974)^{2}\right]=6.19 \mathrm{~m} \\
& l=6.19 \mathrm{~m} \text { 乙 } \tag{b}
\end{align*}
$$

PROBLEM 7.113

Chain $A B$ of length 6.4 m supports a horizontal, uniform steel beam having a mass per unit length of $85 \mathrm{~kg} / \mathrm{m}$. Determine (a) the horizontal distance a from A to the lowest point C of the chain, (b) the maximum tension in the chain.

SOLUTION

$$
\left(\Sigma M_{P}=0: \frac{x}{2} w x-y T_{0}=0\right.
$$

Geometry:

FBD Segment:

$$
y=\frac{w x^{2}}{2 T_{0}} \quad \text { so } \quad \frac{y}{x}=\frac{w x}{2 T_{0}}
$$

$$
\text { and } d=y_{B}-y_{A}=\frac{w}{2 T_{0}}\left(b^{2}-a^{2}\right)
$$

Also

$$
\begin{aligned}
l & =s_{A}+s_{B}=a\left[1+\frac{2}{3}\left(\frac{y_{A}}{a}\right)^{2}\right]+b\left[1+\frac{2}{3}\left(\frac{y_{B}}{b}\right)^{2}\right] \\
l-L & =\frac{2}{3}\left[\left(\frac{y_{A}}{a}\right)^{2}+\left(\frac{y_{B}}{b}\right)^{2}\right]=\frac{w^{2}}{6 T_{0}^{2}}\left(a^{3}+b^{3}\right) \\
& =\frac{1}{6} \frac{4 d^{2}}{\left(b^{2}-a^{2}\right)^{2}}\left(a^{3}+b^{3}\right)=\frac{2}{3} \frac{d^{2}\left(a^{3}+b^{3}\right)}{\left(b^{2}-a^{2}\right)^{2}}
\end{aligned}
$$

Using $l=6.4 \mathrm{~m}, L=6 \mathrm{~m}, d=0.9 \mathrm{~m}, b=6 \mathrm{~m}-a$, and solving for a, knowing that $a<3 \mathrm{ft}$

$$
a=2.2196 \mathrm{~m} \quad \text { (a) } \quad a=2.22 \mathrm{~m}
$$

Then

$$
T_{0}=\frac{w}{2 d}\left(b^{2}-a^{2}\right)
$$

And with

$$
w=(85 \mathrm{~kg} / \mathrm{m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=833.85 \mathrm{~N} / \mathrm{m}
$$

And

$$
b=6 \mathrm{~m}-a=3.7804 \mathrm{~m} \quad T_{0}=4338 \mathrm{~N}
$$

$$
\begin{aligned}
T_{\max } & =T_{B}=\sqrt{T_{0}^{2}+(w b)^{2}} \\
& =\sqrt{(4338 \mathrm{~N})^{2}+(833.85 \mathrm{~N} / \mathrm{m})^{2}(3.7804 \mathrm{~m})^{2}}
\end{aligned}
$$

$T_{\text {max }}=5362 \mathrm{~N}$

$$
\begin{equation*}
T_{\max }=5.36 \mathrm{kN} \tag{b}
\end{equation*}
$$

SOLUTION

FBD Cable:

$$
\begin{equation*}
\zeta \Sigma M_{B}=0: L A_{C y}+a T_{0}-\Sigma M_{B \text { loads }}=0 \tag{1}
\end{equation*}
$$

FBD AC:

FBD Beam:

FBD AC:

A

(Where $\Sigma M_{C \text { left }}$ includes all loads left of C)

$$
\begin{equation*}
\frac{x}{L}(1)-(2): \quad h T_{0}-\frac{x}{L} \Sigma M_{B \text { loads }}+\Sigma M_{C \text { left }}=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left(\Sigma M_{C}=0: x A_{C y}-\left(h-a \frac{x}{L}\right) T_{0}-\Sigma M_{C \text { left }}=0\right. \tag{2}
\end{equation*}
$$

PROBLEM 7.115

Making use of the property established in Prob. 7.114, solve the problem indicated by first solving the corresponding beam problem. Prob. 7.89a.

SOLUTION

FBD Beam:

$$
\left(\Sigma M_{D}=0:(2 \mathrm{ft})(450 \mathrm{lb})+(6 \mathrm{ft})(600 \mathrm{lb})-(10 \mathrm{ft}) \mathbf{A}_{B y}=0\right.
$$

Section AB:

$$
\left(\Sigma M_{A}=0:(10 \mathrm{ft}) D_{C y}-(8 \mathrm{ft})(450 \mathrm{lb})-(4 \mathrm{ft})(600 \mathrm{lb})=0\right.
$$

Cable:

$$
D_{C y}=600 \mathrm{lb}
$$

(Note: $D_{y}>A_{y}$ so $T_{\max }=T_{C D}$)

$$
\begin{gathered}
T_{T_{0}}^{T_{c D}} \\
T_{0}=\sqrt{T_{\max }^{2}-D_{C y}^{2}} \\
T_{0}=398 \mathrm{lb} \\
d_{B}=\frac{M_{B}}{T_{0}}=\frac{1800 \mathrm{lb} \cdot \mathrm{ft}}{398 \mathrm{lb}}=4.523 \mathrm{ft}
\end{gathered}
$$

$$
d_{B}=4.52 \mathrm{ft}
$$

PROBLEM 7.116

Making use of the property established in Prob. 7.114, solve the problem indicated by first solving the corresponding beam problem. Prob. 7.92b.

SOLUTION

FBD Beam:

$$
\left(\Sigma M_{B}=0: M_{B}-(2 \mathrm{ft})(690 \mathrm{lb})=0\right.
$$

$$
\begin{gathered}
\left(\Sigma M_{E}=0:(2 \mathrm{ft})(240 \mathrm{lb})+(4 \mathrm{ft})(720 \mathrm{lb})\right. \\
+(6 \mathrm{ft})(360 \mathrm{lb})-(8 \mathrm{ft}) A_{B y}=0 \\
\mathbf{A}_{B y}=690 \mathrm{lb} \uparrow
\end{gathered}
$$

$$
M_{B}=1380 \mathrm{lb} \cdot \mathrm{ft}
$$

$$
\left(\Sigma M_{B}=0: M_{C}+(2 \mathrm{ft})(360 \mathrm{lb})-(4 \mathrm{ft})(690 \mathrm{lb})=0\right.
$$

$$
M_{C}=2040 \mathrm{lb} \cdot \mathrm{ft}
$$

$$
\left(\Sigma M_{D}=0: M_{D}+(2 \mathrm{ft})(720 \mathrm{lb})+(4 \mathrm{ft})(360 \mathrm{lb})\right.
$$

$$
-(6 \mathrm{ft})(690 \mathrm{lb})=0
$$

$$
M_{D}=1260 \mathrm{lb} \cdot \mathrm{ft}
$$

$$
\begin{gathered}
h_{C}=d_{C}-1.2 \mathrm{ft}=3.6 \mathrm{ft}-1.2 \mathrm{ft}=2.4 \mathrm{ft} \\
T_{0}=\frac{M_{C}}{h_{C}}=\frac{2040 \mathrm{lb} \cdot \mathrm{ft}}{2.4 \mathrm{ft}}=850 \mathrm{lb}
\end{gathered}
$$

Cable:

$$
\begin{array}{rlr}
h_{B}=\frac{M_{B}}{T_{0}}=\frac{1380 \mathrm{lb} \cdot \mathrm{ft}}{850 \mathrm{lb}}=1.6235 \mathrm{ft} & \\
& d_{B}=h_{B}+0.6 \mathrm{ft} & d_{B}=2.22 \mathrm{ft} \\
& h_{0}=\frac{M_{D}}{T_{0}}=\frac{1260 \mathrm{lb} \cdot \mathrm{ft}}{850 \mathrm{lb}}=1.482 \mathrm{ft} &
\end{array}
$$

$$
d_{B}=h_{0}+1.8 \mathrm{ft}
$$

$$
d_{D}=3.28 \mathrm{ft}
$$

PROBLEM 7.117

Making use of the property established in Prob. 7.114, solve the problem indicated by first solving the corresponding beam problem. Prob. 7.94b.

SOLUTION

FBD Beam:

By symmetry: $\quad \mathbf{A}_{B y}=\mathbf{F}=8 \mathrm{kN}$

$$
M_{B}=M_{E} ; \quad M_{C}=M_{D}
$$

AC:

$$
\begin{aligned}
& \left(\Sigma M_{C}=0: M_{C}+(6 \mathrm{~m})(4 \mathrm{kN})-(12 \mathrm{~m})(8 \mathrm{kN})=0\right. \\
& M_{C}=72 \mathrm{kN} \cdot \mathrm{~m} \quad \text { so } \quad M_{D}=72 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Cable:

Since $\quad M_{D}=M_{C}$

$$
\begin{gathered}
h_{D}=h_{C}=12 \mathrm{~m}-3 \mathrm{~m}=9 \mathrm{~m} \\
d_{D}=h_{D}+2 \mathrm{~m}=11 \mathrm{~m}
\end{gathered}
$$

$$
d_{D}=11.00 \mathrm{~m}
$$

PROBLEM 7.118

Making use of the property established in Prob. 7.114, solve the problem indicated by first solving the corresponding beam problem. Prob. $7.95 b$.

SOLUTION

FBD Beam:

By symmetry: $M_{B}=M_{E} \quad$ and $\quad M_{C}=M_{D}$

Cable:

$$
\begin{array}{r}
\text { Since } M_{D}=M_{C}, h_{D}=h_{C} \\
h_{D}=h_{C}=d_{C}-3 \mathrm{~m}=9 \mathrm{~m}-3 \mathrm{~m}=6 \mathrm{~m}
\end{array}
$$

Then

$$
d_{D}=h_{D}+2 \mathrm{~m}=6 \mathrm{~m}+2 \mathrm{~m}=8 \mathrm{~m}
$$

$$
d_{D}=8.00 \mathrm{~m}
$$

Show that the curve assumed by a cable that carries a distributed load $w(x)$ is defined by the differential equation $d^{2} y / d x^{2}=w(x) / T_{0}$, where T_{0} is the tension at the lowest point.

SOLUTION

FBD Elemental segment:

$$
\uparrow \Sigma F_{y}=0: T_{y}(x+\Delta x)-T_{y}(x)-w(x) \Delta x=0
$$

$$
\frac{T_{y}(x+\Delta x)}{T_{0}}-\frac{T_{y}(x)}{T_{0}}=\frac{w(x)}{T_{0}} \Delta x
$$

So

$$
\begin{gathered}
\frac{T_{y}}{T_{0}}=\frac{d y}{d x} \\
\frac{\left.\frac{d y}{d x}\right|_{x+\Delta x}-\left.\frac{d y}{d x}\right|_{x}}{\Delta x}=\frac{w(x)}{T_{0}} \\
\text { In } \lim _{\Delta x \rightarrow 0}: \quad \frac{d^{2} y}{d x^{2}}=\frac{w(x)}{T_{0}} \quad \text { Q.E.D. }
\end{gathered}
$$

PROBLEM 7.120

Using the property indicated in Prob. 7.119, determine the curve assumed by a cable of span L and sag h carrying a distributed load $w=w_{0} \cos (\pi x / L)$, where x is measured from mid-span. Also determine the maximum and minimum values of the tension in the cable.

SOLUTION

From Problem 7.119

$$
\frac{d^{2} y}{d x^{2}}=\frac{w(x)}{T_{0}}=\frac{w_{0}}{T_{0}} \cos \frac{\pi x}{L}
$$

So

$$
\frac{d y}{d x}=\frac{W_{0} L}{T_{0} \pi} \sin \frac{\pi x}{L} \quad\left(\text { using }\left.\frac{d y}{d x}\right|_{0}=0\right)
$$

$$
y=\frac{w_{0} L^{2}}{T_{0} \pi^{2}}\left(1-\cos \frac{\pi x}{L}\right) \quad[\operatorname{using} y(0)=0]
$$

But $y\left(\frac{L}{2}\right)=h=\frac{w_{0} L^{2}}{T_{0} \pi^{2}}\left(1-\cos \frac{\pi}{2}\right) \quad$ so $\quad T_{0}=\frac{w_{0} L^{2}}{\pi^{2} h}$

And

$$
\begin{equation*}
T_{0}=T_{\min } \tag{so}
\end{equation*}
$$

$T_{\min }=\frac{w_{0} L^{2}}{\pi^{2} h}$

$$
\begin{gathered}
T_{\max }=T_{A}=T_{B}: \frac{T_{B y}}{T_{0}}=\left.\frac{d y}{d x}\right|_{x=\frac{L}{2}}=\frac{w_{0} L}{T_{0} \pi} \\
T_{B y}=\frac{w_{0} L}{\pi}
\end{gathered}
$$

$$
T_{B}=\sqrt{T_{B y}^{2}+T_{0}^{2}}=\frac{w_{0} L}{\pi} \sqrt{1+\left(\frac{L}{\pi h}\right)^{2}}
$$

SOLUTION

Elemental Segment:

$$
\text { Load on segment* } \quad w(x) d x=\frac{w_{0}}{\cos ^{2} \theta} d s
$$

$$
\text { But } \quad d x=\cos \theta d s, \quad \text { so } \quad w(x)=\frac{w_{0}}{\cos ^{3} \theta}
$$

From Problem 7.119

$$
\frac{d^{2} y}{d x^{2}}=\frac{w(x)}{T_{0}}=\frac{w_{0}}{T_{0} \cos ^{3} \theta}
$$

In general

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(\tan \theta)=\sec ^{2} \theta \frac{d \theta}{d x}
$$

So

$$
\frac{d \theta}{d x}=\frac{w_{0}}{T_{0} \cos ^{3} \theta \sec ^{2} \theta}=\frac{w_{0}}{T_{0} \cos \theta}
$$

or

$$
\frac{T_{0}}{w_{0}} \cos \theta d \theta=d x=r d \theta \cos \theta
$$

$$
\text { Giving } r=\frac{T_{0}}{w_{0}}=\text { constant. So curve is circular arc } \quad \text { Q.E.D. }
$$

*For large sag, it is not appropriate to approximate $d s$ by $d x$.

SOLUTION

Half-span:

$$
w=0.05 \mathrm{lb} / \mathrm{ft}, \quad L=30 \mathrm{ft}, \quad \mathrm{~s}_{B}=\frac{35}{2} \mathrm{ft}
$$

$$
s_{B}=c \sinh \frac{y_{B}}{x_{B}}
$$

$$
17.5 \mathrm{ft}=c \sinh \left(\frac{15 \mathrm{ft}}{c}\right)
$$

Solving numerically,

$$
c=15.36 \mathrm{ft}
$$

Then
$y_{B}=c \cosh \frac{x_{B}}{c}=(15.36 \mathrm{ft}) \cosh \frac{15 \mathrm{ft}}{15.36 \mathrm{ft}}=23.28 \mathrm{ft}$
(a)

$$
h_{B}=y_{B}-c=23.28 \mathrm{ft}-15.36 \mathrm{ft}=7.92 \mathrm{ft}
$$

(b)

$$
T_{B}=w y_{B}=(0.05 \mathrm{lb} / \mathrm{ft})(23.28 \mathrm{ft})=1.164 \mathrm{lb}
$$

PROBLEM 7.123

A $60-\mathrm{ft}$ chain weighing 120 lb is suspended between two points at the same elevation. Knowing that the sag is 24 ft , determine (a) the distance between the supports, (b) the maximum tension in the chain.

SOLUTION

$$
s_{B}=30 \mathrm{ft}, \quad w=\frac{120 \mathrm{lb}}{60 \mathrm{ft}}=2 \mathrm{lb} / \mathrm{ft}
$$

$$
h_{B}=24 \mathrm{ft}, \quad x_{B}=\frac{L}{2}
$$

$$
y_{B}^{2}=c^{2}+s_{B}^{2}=\left(h_{B}+c\right)^{2}
$$

$$
=h_{B}^{2}+2 c h_{B}+c^{2}
$$

$$
c=\frac{s_{B}^{2}-h_{B}^{2}}{2 h_{B}}=\frac{(30 \mathrm{ft})^{2}-(24 \mathrm{ft})^{2}}{2(24 \mathrm{ft})}
$$

$$
c=6.75 \mathrm{ft}
$$

Then

$$
\begin{gathered}
s_{B}=c \sinh \frac{x_{B}}{c} \rightarrow x_{B}=c \sinh ^{-1} \frac{s_{B}}{c} \\
x_{B}=(6.75 \mathrm{ft}) \sinh ^{-1}\left(\frac{30 \mathrm{ft}}{6.75 \mathrm{ft}}\right)=14.83 \mathrm{ft} \\
(\text { a }) \quad L=2 x_{B}=29.7 \mathrm{ft} \leftharpoonup \\
T_{\max }=T_{B}=w y_{B}=w\left(c+h_{B}\right)=(2 \mathrm{lb} / \mathrm{ft})(6.75 \mathrm{ft}+24 \mathrm{ft})=61.5 \mathrm{lb} \\
\text { (b) } \quad T_{\max }=61.5 \mathrm{lb}
\end{gathered}
$$

PROBLEM 7.124

A $200-\mathrm{ft}$ steel surveying tape weighs 4 lb . If the tape is stretched between two points at the same elevation and pulled until the tension at each end is 16 lb , determine the horizontal distance between the ends of the tape. Neglect the elongation of the tape due to the tension.

SOLUTION

$$
s_{B}=100 \mathrm{ft}, \quad w=\frac{4 \mathrm{lb}}{200 \mathrm{ft}}=0.02 \mathrm{lb} / \mathrm{ft}
$$

$$
T_{\max }=16 \mathrm{lb}
$$

$$
T_{\max }=T_{B}=w y_{B}
$$

$$
y_{B}=\frac{T_{B}}{w}=\frac{16 \mathrm{lb}}{0.02 \mathrm{lb} / \mathrm{ft}}=800 \mathrm{ft}
$$

$$
c^{2}=y_{B}^{2}-s_{B}^{2}
$$

$$
c=\sqrt{(800 \mathrm{ft})^{2}-(100 \mathrm{ft})^{2}}=793.73 \mathrm{ft}
$$

But

$$
\begin{aligned}
y_{B} & =x_{B} \cosh \frac{x_{B}}{c} \rightarrow x_{B}=c \cosh ^{-1} \frac{y_{B}}{c} \\
& =(793.73 \mathrm{ft}) \cosh ^{-1}\left(\frac{800 \mathrm{ft}}{793.73 \mathrm{ft}}\right)=99.74 \mathrm{ft}
\end{aligned}
$$

$$
L=2 x_{B}=2(99.74 \mathrm{ft})=199.5 \mathrm{ft}
$$

PROBLEM 7.125

An electric transmission cable of length 130 m and mass per unit length of $3.4 \mathrm{~kg} / \mathrm{m}$ is suspended between two points at the same elevation. Knowing that the sag is 30 m , determine the horizontal distance between the supports and the maximum tension.

SOLUTION

$$
s_{B}=65 \mathrm{~m}, \quad h_{B}=30 \mathrm{~m}
$$

$$
w=(3.4 \mathrm{~kg} / \mathrm{m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=33.35 \mathrm{~N} / \mathrm{m}
$$

$$
y_{B}^{2}=c^{2}+s_{B}^{2}
$$

$$
\left(c+h_{B}\right)^{2}=c^{2}+s_{B}^{2}
$$

$$
c=\frac{s_{B}^{2}-h_{B}^{2}}{2 h_{B}}=\frac{(65 \mathrm{~m})^{2}-(30 \mathrm{~m})^{2}}{2(30 \mathrm{~m})}
$$

$$
=55.417 \mathrm{~m}
$$

Now

$$
\begin{gathered}
s_{B}=c \sinh \frac{x_{B}}{c} \rightarrow x_{B}=c \sinh ^{-1} \frac{s_{B}}{c}=(55.417 \mathrm{~m}) \sinh ^{-1}\left(\frac{65 \mathrm{~m}}{55.417 \mathrm{~m}}\right) \\
=55.335 \mathrm{~m} \\
L=2 x_{B}=2(55.335 \mathrm{~m})=110.7 \mathrm{~m} \\
T_{\max }=w y_{B}=w\left(c+h_{B}\right)=(33.35 \mathrm{~N} / \mathrm{m})(55.417 \mathrm{~m}+30 \mathrm{~m})=2846 \mathrm{~N} \\
T_{\max }=2.85 \mathrm{kN}
\end{gathered}
$$

PROBLEM 7.126

A $30-\mathrm{m}$ length of wire having a mass per unit length of $0.3 \mathrm{~kg} / \mathrm{m}$ is attached to a fixed support at A and to a collar at B. Neglecting the effect of friction, determine (a) the force \mathbf{P} for which $h=12 \mathrm{~m}$, (b) the corresponding span L.

SOLUTION

FBD Cable:

$$
s=30 \mathrm{~m} \quad\left(\text { so } s_{B}=\frac{30 \mathrm{~m}}{2}=15 \mathrm{~m}\right)
$$

$$
w=(0.3 \mathrm{~kg} / \mathrm{m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=2.943 \mathrm{~N} / \mathrm{m}
$$

$$
h_{B}=12 \mathrm{~m}
$$

$$
y_{B}^{2}=\left(c+h_{B}\right)^{2}=c^{2}+s_{B}^{2}
$$

So

$$
c=\frac{s_{B}^{2}-h_{B}^{2}}{2 h_{B}}
$$

$$
c=\frac{(15 \mathrm{~m})^{2}-(12 \mathrm{~m})^{2}}{2(12 \mathrm{~m})}=3.375 \mathrm{~m}
$$

Now

$$
\begin{gathered}
s_{B}=c \sinh \frac{x_{B}}{c} \rightarrow x_{B}=c \sinh ^{-1} \frac{s_{B}}{c}=(3.375 \mathrm{~m}) \sinh ^{-1}\left(\frac{15 \mathrm{~m}}{3.375 \mathrm{~m}}\right) \\
x_{B}=7.4156 \mathrm{~m}
\end{gathered}
$$

$$
\begin{align*}
P=T_{0}=w c & =(2.943 \mathrm{~N} / \mathrm{m})(3.375 \mathrm{~m}) \tag{a}\\
L & =2 x_{B}=2(7.4156 \mathrm{~m}) \tag{b}
\end{align*}
$$

$$
\begin{gathered}
\mathbf{P}=9.93 \mathrm{~N} \longrightarrow \\
L=14.83 \mathrm{~m}
\end{gathered}
$$

PROBLEM 7.127

A 30-m length of wire having a mass per unit length of $0.3 \mathrm{~kg} / \mathrm{m}$ is attached to a fixed support at A and to a collar at B. Knowing that the magnitude of the horizontal force applied to the collar is $P=30 \mathrm{~N}$, determine (a) the sag h, (b) the corresponding span L.

SOLUTION

FBD Cable:

$$
s_{T}=30 \mathrm{~m}, \quad w=(0.3 \mathrm{~kg} / \mathrm{m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=2.943 \mathrm{~N} / \mathrm{m}
$$

$$
P=T_{0}=w c \quad c=\frac{P}{w}
$$

$$
c=\frac{30 \mathrm{~N}}{2.943 \mathrm{~N} / \mathrm{m}}=10.1937 \mathrm{~m}
$$

$$
y_{B}^{2}=\left(h_{B}+c\right)^{2}=c^{2}+s_{B}^{2}
$$

$$
h^{2}+2 c h-s_{B}^{2}=0 \quad \mathrm{~s}_{B}=\frac{30 \mathrm{~m}}{2}=15 \mathrm{~m}
$$

$$
h^{2}+2(10.1937 \mathrm{~m}) h-225 \mathrm{~m}^{2}=0
$$

$$
h=7.9422 \mathrm{~m}
$$

(a) $\quad h=7.94 \mathrm{~m}$

$$
\begin{aligned}
s_{B}=c \sinh \frac{x_{A}}{c} \rightarrow x_{B}=c \sinh ^{-1} \frac{s_{B}}{c} & =(10.1937 \mathrm{~m}) \sinh ^{-1}\left(\frac{15 \mathrm{~m}}{10.1937 \mathrm{~m}}\right) \\
& =12.017 \mathrm{~m}
\end{aligned}
$$

$$
L=2 x_{B}=2(12.017 \mathrm{~m})
$$

$$
\text { (b) } \quad L=24.0 \mathrm{~m}
$$

PROBLEM 7.128

A $30-\mathrm{m}$ length of wire having a mass per unit length of $0.3 \mathrm{~kg} / \mathrm{m}$ is attached to a fixed support at A and to a collar at B. Neglecting the effect of friction, determine (a) the sag h for which $L=22.5 \mathrm{~m}$, (b) the corresponding force \mathbf{P}.

SOLUTION

FBD Cable:

$$
s_{T}=30 \mathrm{~m} \rightarrow s_{B}=\frac{30 \mathrm{~m}}{2}=15 \mathrm{~m}
$$

$$
w=(0.3 \mathrm{~kg} / \mathrm{m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=2.943 \mathrm{~N} / \mathrm{m}
$$

$$
L=22.5 \mathrm{~m}
$$

$$
s_{B}=c \sinh \frac{x_{B}}{c}=c \sinh \frac{L / 2}{c}
$$

$$
15 \mathrm{~m}=c \sinh \frac{11.25 \mathrm{~m}}{c}
$$

Solving numerically: $c=8.328 \mathrm{~m}$

$$
\begin{gathered}
y_{B}^{2}=c^{2}+s_{B}^{2}=(8.328 \mathrm{~m})^{2}+(15 \mathrm{~m})^{2}=294.36 \mathrm{~m}^{2} \quad y_{B}=17.157 \mathrm{~m} \\
h_{B}=y_{B}-c=17.157 \mathrm{~m}-8.328 \mathrm{~m}
\end{gathered}
$$

(a)

$$
P=w c=(2.943 \mathrm{~N} / \mathrm{m})(8.328 \mathrm{~m}) \quad \text { (b) } \quad \mathbf{P}=24.5 \mathrm{~N} \longrightarrow
$$

PROBLEM 7.129

A $30-\mathrm{ft}$ wire is suspended from two points at the same elevation that are 20 ft apart. Knowing that the maximum tension is 80 lb , determine (a) the sag of the wire, (b) the total weight of the wire.

SOLUTION

$$
L=20 \mathrm{ft} \quad x_{B}=\frac{20 \mathrm{ft}}{2}=10 \mathrm{ft}
$$

$$
s_{B}=\frac{30 \mathrm{ft}}{2}=15 \mathrm{ft}
$$

$$
s_{B}=c \sinh \frac{x_{B}}{c}=c \sinh \frac{10 \mathrm{ft}}{c}
$$

Solving numerically: $\quad c=6.1647 \mathrm{ft}$

$$
\begin{gathered}
y_{B}=c \cosh \frac{x_{B}}{c}=(6.1647 \mathrm{ft}) \cosh \left(\frac{10 \mathrm{ft}}{1.1647 \mathrm{ft}}\right) \\
y_{B}=16.217 \mathrm{ft} \\
h_{B}=y_{B}-c=16.217 \mathrm{ft}-6.165 \mathrm{ft}
\end{gathered}
$$

(a) $\quad h_{B}=10.05 \mathrm{ft}$

$$
T_{\max }=w y_{B} \quad \text { and } \quad W=w\left(2 s_{B}\right)
$$

So
$W=\frac{T_{\max }}{y_{B}}\left(2 s_{B}\right)=\frac{80 \mathrm{lb}}{16.217 \mathrm{ft}}(30 \mathrm{ft})$
(b)
$\mathbf{W}_{m}=148.0 \mathrm{lb}$

PROBLEM 7.130

Determine the sag of a 45 - ft chain which is attached to two points at the same elevation that are 20 ft apart.

SOLUTION

$$
s_{B}=\frac{45 \mathrm{ft}}{2}=22.5 \mathrm{ft} \quad L=20 \mathrm{ft}
$$

$$
x_{B}=\frac{L}{2}=10 \mathrm{ft}
$$

$$
s_{B}=c \sinh \frac{x_{B}}{c}
$$

$$
22.5 \mathrm{ft}=c \sinh \frac{10 \mathrm{ft}}{c}
$$

Solving numerically: $\quad c=4.2023 \mathrm{ft}$

$$
\begin{aligned}
y_{B} & =c \cosh \frac{x_{B}}{c} \\
& =(4.2023 \mathrm{ft}) \cosh \frac{10 \mathrm{ft}}{4.2023 \mathrm{ft}}=22.889 \mathrm{ft} \\
& h_{B}=y_{B}-c=22.889 \mathrm{ft}-4.202 \mathrm{ft}
\end{aligned}
$$

PROBLEM 7.131

A $10-\mathrm{m}$ rope is attached to two supports A and B as shown. Determine (a) the span of the rope for which the span is equal to the sag, (b) the corresponding angle θ_{B}.

SOLUTION

We know

$$
y=c \cosh \frac{x}{c}
$$

At B,

$$
y_{B}=c+h=c \cosh \frac{h}{2 c}
$$

or

$$
1=\cosh \frac{h}{2 c}-\frac{h}{c}
$$

Solving numerically

$$
\frac{h}{c}=4.933
$$

$$
s_{B}=c \sinh \frac{x_{B}}{c} \rightarrow \frac{s_{T}}{2}=c \sinh \frac{h}{2 c}
$$

So $\quad c=\frac{s_{T}}{2 \sinh \left(\frac{h}{2 c}\right)}=\frac{10 \mathrm{~m}}{2 \sinh \left(\frac{4.933}{2}\right)}=0.8550 \mathrm{~m}$
$h=4.933 c=4.933(0.8550) \mathrm{m}=4.218 \mathrm{~m} \quad h=4.22 \mathrm{~m}$
(a)
$L=h=4.22 \mathrm{~m}$
From $\quad y=c \cosh \frac{x}{c}, \quad \frac{d y}{d x}=\sinh \frac{x}{c}$
At $B, \quad \tan \theta=\left.\frac{d y}{d x}\right|_{B}=\sinh \frac{L}{2 c}=\sinh \frac{4.933}{2}=5.848$

$$
\theta=\tan ^{-1} 5.848 \quad(b) \quad \theta=80.3^{\circ}
$$

PROBLEM 7.132

A cable having a mass per unit length of $3 \mathrm{~kg} / \mathrm{m}$ is suspended between two points at the same elevation that are 48 m apart. Determine the smallest allowable sag of the cable if the maximum tension is not to exceed 1800 N .

SOLUTION

Solving numerically $\quad c=55.935 \mathrm{~m}$

$$
h=y_{B}-c=61.162 \mathrm{~m}-55.935 \mathrm{~m}
$$

$$
h=5.23 \mathrm{~m}
$$

*Note: There is another value of c which will satisfy this equation. It is much smaller, thus corresponding to a much larger h.

$$
\begin{aligned}
& w=(3 \mathrm{~kg} / \mathrm{m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=29.43 \mathrm{~N} / \mathrm{m} \\
& L=48 \mathrm{~m}, \quad T_{\max } \leq 1800 \mathrm{~N} \\
& T_{\max }=w y_{B} \rightarrow y_{B}=\frac{T_{\max }}{w} \\
& y_{B} \leq \frac{1800 \mathrm{~N}}{29.43 \mathrm{~N} / \mathrm{m}}=61.162 \mathrm{~m} \\
& y_{B}=c \cosh \frac{x_{B}}{c} \quad 61.162 \mathrm{~m}=c \cosh \frac{48 \mathrm{~m} / 2}{c} *
\end{aligned}
$$

SOLUTION

$\longleftarrow \operatorname{lm} \rightarrow \leftarrow \mid m \rightarrow 1$

Neglect pulley size and friction

$$
T_{B}=w a
$$

But $\quad T_{B}=w y_{B} \quad$ so $\quad y_{B}=a$

$$
\begin{gathered}
y_{B}=c \cosh \frac{x_{B}}{c} \\
c \cosh \frac{1 \mathrm{~m}}{c}=a
\end{gathered}
$$

But $s_{B}=c \sinh \frac{x_{B}}{c} \quad \frac{8 \mathrm{~m}-a}{2}=c \sinh \frac{1 \mathrm{~m}}{c}$

So

$$
\begin{aligned}
& 4 \mathrm{~m}=c \sinh \frac{1 \mathrm{~m}}{c}+\frac{c}{2} \cosh \frac{1 \mathrm{~m}}{c} \\
& 16 \mathrm{~m}=c\left(3 e^{1 / \mathrm{c}}-e^{-1 / \mathrm{c}}\right) \\
& 1 \mathrm{ly} \quad c=0.3773 \mathrm{~m}, 5.906 \mathrm{~m}
\end{aligned}
$$

Solving numerically

$$
a=c \cosh \frac{1 \mathrm{~m}}{c}=\left\{\begin{array}{l}
(0.3773 \mathrm{~m}) \cosh \frac{1 \mathrm{~m}}{0.3773 \mathrm{~m}}=2.68 \mathrm{~m} \\
(5.906 \mathrm{~m}) \cosh \frac{1 \mathrm{~m}}{5.906 \mathrm{~m}}=5.99 \mathrm{~m}
\end{array}\right.
$$

PROBLEM 7.134

A motor M is used to slowly reel in the cable shown. Knowing that the weight per unit length of the cable is $0.5 \mathrm{lb} / \mathrm{ft}$, determine the maximum tension in the cable when $h=15 \mathrm{ft}$.

SOLUTION

$w=0.5 \mathrm{lb} / \mathrm{ft} \quad L=30 \mathrm{ft} \quad h_{B}=15 \mathrm{ft}$

$$
\begin{gathered}
y_{B}=c \cosh \frac{x_{B}}{c} \\
h_{B}+c=c \cosh \frac{L}{2 c}
\end{gathered}
$$

$$
15 \mathrm{ft}=c\left(\cosh \frac{15 \mathrm{ft}}{c}-1\right)
$$

Solving numerically $c=9.281 \mathrm{ft}$

$$
\begin{aligned}
& y_{B}=(9.281 \mathrm{ft}) \cosh \frac{15 \mathrm{ft}}{9.281 \mathrm{ft}}=24.281 \mathrm{ft} \\
& T_{\max }=T_{B}=w y_{B}=(0.5 \mathrm{lb} / \mathrm{ft})(24.281 \mathrm{ft})
\end{aligned}
$$

$$
T_{\max }=12.14 \mathrm{lb}
$$

	PROBLEM 7.135 ${ }^{\text {A motor }} M$ is used to slowly reel in the cable shown. Knowing that the weight per unit length of the cable is $0.5 \mathrm{lb} / \mathrm{ft}$, determine the maximum tension in the cable when $h=9 \mathrm{ft}$.

SOLUTION

$$
w=0.5 \mathrm{lb} / \mathrm{ft}, \quad L=30 \mathrm{ft}, \quad h_{B}=9 \mathrm{ft}
$$

$$
y_{B}=h_{B}+c=c \cosh \frac{x_{B}}{c}=c \cosh \frac{L}{2 c}
$$

$$
9 \mathrm{ft}=c\left(\cosh \frac{15 \mathrm{ft}}{c}-1\right)
$$

Solving numerically $c=13.783 \mathrm{ft}$

$$
\begin{gathered}
y_{B}=h_{B}+c=9 \mathrm{ft}+13.783 \mathrm{ft}=21.783 \mathrm{ft} \\
T_{\max }=T_{B}=w y_{B}=(0.5 \mathrm{lb} / \mathrm{ft})(21.78 \mathrm{ft})
\end{gathered}
$$

$$
T_{\max }=11.39 \mathrm{lb}
$$

SOLUTION

$$
\begin{aligned}
& y_{D}=c \cosh \frac{x_{D}}{c} \\
& h+c=c \cosh \frac{a}{c}
\end{aligned}
$$

$$
12 \mathrm{~m}=c\left(\cosh \frac{10.8 \mathrm{~m}}{c}-1\right)
$$

Solving numerically

$$
c=6.2136 \mathrm{~m}
$$

Then $\quad y_{B}=(6.2136 \mathrm{~m}) \cosh \frac{10.8 \mathrm{~m}}{6.2136 \mathrm{~m}}=18.2136 \mathrm{~m}$

$$
F=T_{\max }=w y_{B}=(1.5 \mathrm{lb} / \mathrm{ft})(18.2136 \mathrm{~m})
$$

$$
\mathbf{F}=27.3 \mathrm{lb} \longrightarrow
$$

SOLUTION

$$
\begin{gathered}
y_{D}=c \cosh \frac{x_{D}}{c} \\
c+h=c \cosh \frac{a}{c} \\
h=c\left(\cosh \frac{a}{c}-1\right) \\
12 \mathrm{ft}=c\left(\cosh \frac{18 \mathrm{ft}}{c}-1\right)
\end{gathered}
$$

Solving numerically $\quad c=15.162 \mathrm{ft}$

$$
y_{B}=h+c=12 \mathrm{ft}+15.162 \mathrm{ft}=27.162 \mathrm{ft}
$$

$$
F=T_{D}=w y_{D}=(1.5 \mathrm{lb} / \mathrm{ft})(27.162 \mathrm{ft})=40.74 \mathrm{lb}
$$

$$
\mathbf{F}=40.7 \mathrm{lb} \longrightarrow
$$

PROBLEM 7.138

A uniform cable has a mass per unit length of $4 \mathrm{~kg} / \mathrm{m}$ and is held in the position shown by a horizontal force \mathbf{P} applied at B. Knowing that $P=800 \mathrm{~N}$ and $\theta_{A}=60^{\circ}$, determine (a) the location of point $B,(b)$ the length of the cable.

SOLUTION

$$
\begin{aligned}
& w=4 \mathrm{~kg} / \mathrm{m}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=39.24 \mathrm{~N} / \mathrm{m} \\
& P=T_{0}=w c \quad c=\frac{P}{w}=\frac{800 \mathrm{~N}}{39.24 \mathrm{~N} / \mathrm{m}} \\
& c=20.387 \mathrm{~m} \\
& y=c \cosh \frac{x}{c} \\
& \frac{d y}{d x}=\sinh \frac{x}{c} \\
& \tan \theta=-\left.\frac{d y}{d x}\right|_{-a}=-\sinh \frac{-a}{c}=\sinh \frac{a}{c} \\
& a=c \sinh ^{-1}(\tan \theta)=(20.387 \mathrm{~m}) \sinh ^{-1}\left(\tan 60^{\circ}\right) \\
& a=26.849 \mathrm{~m} \\
& y_{A}=c \cosh \frac{a}{c}=(20.387 \mathrm{~m}) \cosh \frac{26.849 \mathrm{~m}}{20.387 \mathrm{~m}}=40.774 \mathrm{~m} \\
& b=y_{A}-c=40.774 \mathrm{~m}-20.387 \mathrm{~m}=20.387 \mathrm{~m}
\end{aligned}
$$

So (a) $\quad B$ is 26.8 m right and 20.4 m down from A

$$
s=c \sinh \frac{a}{c}=(20.387 \mathrm{~m}) \sinh \frac{26.849 \mathrm{~m}}{20.387 \mathrm{~m}}=35.31 \mathrm{~m} \quad \text { (b) } \quad s=35.3 \mathrm{~m}
$$

PROBLEM 7.139

A uniform cable having a mass per unit length of $4 \mathrm{~kg} / \mathrm{m}$ is held in the position shown by a horizontal force \mathbf{P} applied at B. Knowing that $P=600 \mathrm{~N}$ and $\theta_{A}=60^{\circ}$, determine (a) the location of point B, (b) the length of the cable.

SOLUTION

$$
\begin{aligned}
& w=(4 \mathrm{~kg} / \mathrm{m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=39.24 \mathrm{~N} / \mathrm{m} \\
& P=T_{0}=w c \quad c=\frac{P}{w}=\frac{600 \mathrm{~N}}{39.24 \mathrm{~N} / \mathrm{m}}
\end{aligned}
$$

$$
c=15.2905 \mathrm{~m}
$$

$$
y=c \cosh \frac{x}{c} \quad \frac{d y}{d x}=\sinh \frac{x}{c}
$$

At $A: \quad \tan \theta=-\left.\frac{d y}{d x}\right|_{-a}=-\sinh \frac{-a}{c}=\sinh \frac{a}{c}$
So $\quad a=c \sinh ^{-1}(\tan \theta)=(15.2905 \mathrm{~m}) \sinh ^{-1}\left(\tan 60^{\circ}\right)=20.137 \mathrm{~m}$

$$
\begin{aligned}
y_{B} & =h+c=c \cosh \frac{a}{c} \\
h & =c\left(\cosh \frac{a}{c}-1\right) \\
& =(15.2905 \mathrm{~m})\left(\cosh \frac{20.137 \mathrm{~m}}{15.2905 \mathrm{~m}}-1\right) \\
& =15.291 \mathrm{~m}
\end{aligned}
$$

So $\quad(a) \quad B$ is 20.1 m right and 15.29 m down from A

$$
s=c \sinh \frac{a}{c}=(15.291 \mathrm{~m}) \sinh \frac{20.137 \mathrm{~m}}{15.291 \mathrm{~m}}=26.49 \mathrm{~m} \quad(b) \quad s=26.5 \mathrm{~m}
$$

PROBLEM 7.140

The cable $A C B$ weighs $0.3 \mathrm{lb} / \mathrm{ft}$. Knowing that the lowest point of the cable is located at a distance $a=1.8 \mathrm{ft}$ below the support A, determine (a) the location of the lowest point $C,(b)$ the maximum tension in the cable.

SOLUTION

$$
\begin{aligned}
y_{A} & =c \cosh \frac{-a}{c}=c+1.8 \mathrm{ft} \\
a & =c \cosh ^{-1}\left(1+\frac{1.8 \mathrm{ft}}{c}\right) \\
y_{B} & =c \cosh \frac{b}{c}=c+7.2 \mathrm{ft} \\
b & =c \cosh ^{-1}\left(1+\frac{7.2 \mathrm{ft}}{c}\right)
\end{aligned}
$$

But $\quad a+b=36 \mathrm{ft}=c\left[\cosh ^{-1}\left(1+\frac{1.8 \mathrm{ft}}{c}\right)+\cosh ^{-1}\left(1+\frac{7.2 \mathrm{ft}}{c}\right)\right]$

$$
\text { Solving numerically } \quad c=40.864 \mathrm{ft}
$$

Then $\quad b=(40.864 \mathrm{ft}) \cosh ^{-1}\left(1+\frac{7.2 \mathrm{ft}}{40.864 \mathrm{ft}}\right)=23.92 \mathrm{ft}$
(a) $\quad C$ is 23.9 ft left of and 7.20 ft below B

$$
\begin{equation*}
T_{\max }=w y_{B}=(0.3 \mathrm{lb} / \mathrm{ft})(40.864 \mathrm{ft}+7.2 \mathrm{ft}) \tag{b}
\end{equation*}
$$

$$
T_{\max }=14.42 \mathrm{lb}
$$

PROBLEM 7.141

The cable $A C B$ weighs $0.3 \mathrm{lb} / \mathrm{ft}$. Knowing that the lowest point of the cable is located at a distance $a=6 \mathrm{ft}$ below the support A, determine (a) the location of the lowest point C, (b) the maximum tension in the cable.

SOLUTION

$$
\begin{aligned}
y_{A} & =c \cosh \frac{-a}{c}=c+6 \mathrm{ft} \\
a & =c \cosh ^{-1}\left(1+\frac{6 \mathrm{ft}}{c}\right) \\
y_{B} & =c \cosh \frac{b}{c}=c+11.4 \mathrm{ft} \\
b & =c \cosh ^{-1}\left(1+\frac{11.4 \mathrm{ft}}{c}\right)
\end{aligned}
$$

So

$$
a+b=c\left[\cosh ^{-1}\left(1+\frac{6 \mathrm{ft}}{c}\right)+\cosh ^{-1}\left(1+\frac{11.4 \mathrm{ft}}{\mathrm{c}}\right)\right]=36 \mathrm{ft}
$$

Solving numerically

$$
c=20.446 \mathrm{ft}
$$

$$
b=(20.446 \mathrm{ft}) \cosh ^{-1}\left(1+\frac{11.4 \mathrm{ft}}{20.446 \mathrm{ft}}\right)=20.696 \mathrm{ft}
$$

(a) C is 20.7 ft left of and 11.4 ft below B

$$
T_{\max }=w y_{B}=(0.3 \mathrm{lb} / \mathrm{ft})(20.446 \mathrm{ft}) \cosh \left(\frac{20.696 \mathrm{ft}}{20.446 \mathrm{ft}}\right)=9.554 \mathrm{lb}
$$

(b)

$$
T_{\max }=9.55 \mathrm{lb}
$$

PROBLEM 7.142

Denoting by θ the angle formed by a uniform cable and the horizontal, show that at any point (a) $s=c \tan \theta$, (b) $y=c \sec \theta$.

SOLUTION

(a) $\tan \theta=\frac{d y}{d x}=\sinh \frac{x}{c}$

$$
s=c \sinh \frac{x}{c}=c \tan \theta \text { Q.E.D. }
$$

(b) Also $y^{2}=s^{2}+c^{2}\left(\cosh ^{2} x=\sinh ^{2} x+1\right)$

So $\quad y^{2}=c^{2}\left(\tan ^{2} \theta+1\right)=c^{2} \sec ^{2} \theta$
And $\quad y=c \sec \theta$ Q.E.D.

PROBLEM 7.143

(a) Determine the maximum allowable horizontal span for a uniform cable of mass per unit length m^{\prime} if the tension in the cable is not to exceed a given value T_{m}. (b) Using the result of part a, determine the maximum span of a steel wire for which $m^{\prime}=0.34 \mathrm{~kg} / \mathrm{m}$ and $T_{m}=32 \mathrm{kN}$.

SOLUTION

$$
\begin{aligned}
T_{B} & =T_{\max }=w y_{B} \\
& =w c \cosh \frac{x_{B}}{c}=w \frac{L}{2}\left(\frac{2 c}{L}\right) \cosh \frac{L}{2 c}
\end{aligned}
$$

Let $\quad \xi=\frac{L}{2 c} \quad$ so $\quad T_{\max }=\frac{w L}{2 \xi} \cosh \xi$

$$
\frac{d T_{\max }}{d \xi}=\frac{w L}{2 \xi}\left(\sinh \xi-\frac{1}{\xi} \cosh \xi\right)
$$

For $\quad \min T_{\max }, \quad \tanh \xi-\frac{1}{\xi}=0$
Solving numerically $\quad \xi=1.1997$
$\left(T_{\text {max }}\right)_{\text {min }}=\frac{w L}{2(1.9997)} \cosh (1.1997)=0.75444 w L$
(a) $\quad L_{\max }=\frac{T_{\max }}{0.75444 w}=1.3255 \frac{T_{\max }}{w}$

If $\quad T_{\max }=32 \mathrm{kN}$ and $w=(0.34 \mathrm{~kg} / \mathrm{m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=3.3354 \mathrm{~N} / \mathrm{m}$

$$
L_{\max }=1.3255 \frac{32.000 \mathrm{~N}}{3.3354 \mathrm{~N} / \mathrm{m}}=12717 \mathrm{~m}
$$

$$
L_{\max }=12.72 \mathrm{~km}
$$

PROBLEM 7.144

A cable has a weight per unit length of $2 \mathrm{lb} / \mathrm{ft}$ and is supported as shown. Knowing that the span L is 18 ft , determine the two values of the sag h for which the maximum tension is 80 lb .

SOLUTION

$$
y_{\max }=c \cosh \frac{L}{2 c}=h+c
$$

$$
T_{\max }=w y_{\max } \quad y_{\max }=\frac{T_{\max }}{w}
$$

$$
y_{\max }=\frac{80 \mathrm{lb}}{2 \mathrm{lb} / \mathrm{ft}}=40 \mathrm{ft}
$$

$$
c \cosh \frac{9 \mathrm{ft}}{c}=40 \mathrm{ft}
$$

Solving numerically $\quad c_{1}=2.6388 \mathrm{ft}$

$$
\begin{aligned}
& c_{2}=38.958 \mathrm{ft} \\
& h=y_{\text {max }}-c \\
& h_{1}=40 \mathrm{ft}-2.6388 \mathrm{ft} \\
& h_{2}=40 \mathrm{ft}-38.958 \mathrm{ft} \\
& h_{1}=37.4 \mathrm{ft} \\
& h_{2}=1.042 \mathrm{ft}
\end{aligned}
$$

PROBLEM 7.145

Determine the sag-to-span ratio for which the maximum tension in the cable is equal to the total weight of the entire cable $A B$.

SOLUTION

$$
\begin{aligned}
& T_{\max }=w y_{B}=2 w s_{B} \\
& y_{B}=2 s_{B} \\
& c \cosh \frac{L}{2 c}=2 c \sinh \frac{L}{2 c} \\
& \tanh \frac{L}{2 c}=\frac{1}{2} \\
& \frac{L}{2 c}=\tanh ^{-1} \frac{1}{2}=0.549306 \\
& \frac{h_{B}}{c}=\frac{y_{B}-c}{c}=\cosh \frac{L}{2 c}-1 \\
& =0.154701 \\
& \frac{h_{B}}{L}=\frac{h_{B} / c}{2(L / 2 c)} \\
& =\frac{0.5(0.154701)}{0.549306}=0.14081
\end{aligned}
$$

$$
\frac{h_{B}}{L}=0.1408
$$

PROBLEM 7.146

A cable of weight w per unit length is suspended between two points at the same elevation that are a distance L apart. Determine (a) the sag-to-span ratio for which the maximum tension is as small as possible, (b) the corresponding values of θ_{B} and T_{m}.

SOLUTION

(a)

$$
\begin{aligned}
& T_{\max }=w y_{B}=w c \cosh \frac{L}{2 c} \\
& \frac{d T_{\max }}{d c}=w\left(\cosh \frac{L}{2 c}-\frac{L}{2 c} \sinh \frac{L}{2 c}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { For } \begin{array}{c}
\min T_{\max }, \quad \frac{d T_{\max }}{d c}=0 \\
\tanh \frac{L}{2 c}=\frac{2 c}{L} \rightarrow \frac{L}{2 c}=1.1997 \\
\frac{y_{B}}{c}=\cosh \frac{L}{2 c}=1.8102 \\
\frac{h}{c}=\frac{y_{B}}{c}-1=0.8102 \\
\frac{h}{L}=\left[\frac{1}{2} \frac{h}{c}\left(\frac{2 c}{L}\right)\right]=\frac{0.8102}{2(1.1997)}=0.3375 \\
\frac{h}{L}=0.338
\end{array}
\end{gathered}
$$

(b)

$$
T_{0}=w c \quad T_{\max }=w c \cosh \frac{L}{2 c} \quad \frac{T_{\max }}{T_{0}}=\cosh \frac{L}{2 c}=\frac{y_{B}}{c}
$$

$$
\text { But } \quad T_{0}=T_{\max } \cos \theta_{B} \quad \frac{T_{\max }}{T_{0}}=\sec \theta_{B}
$$

$$
\text { So } \quad \theta_{B}=\sec ^{-1}\left(\frac{y_{B}}{c}\right)=\sec ^{-1}(1.8102)
$$

$$
=56.46^{\circ}
$$

$$
\theta_{B}=56.5^{\circ}
$$

$$
T_{\max }=w y_{B}=w \frac{y_{B}}{c}\left(\frac{2 c}{L}\right)\left(\frac{L}{2}\right)=w(1.8102) \frac{L}{2(1.1997)}
$$

PROBLEM 7.147

For the beam and loading shown, (a) draw the shear and bending moment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

SOLUTION

FBD Beam:

(a) $\left(\Sigma M_{A}=0:(6 \mathrm{ft}) E-(8 \mathrm{ft})(4.5 \mathrm{kips})\right.$

$$
-(4 \mathrm{ft})(12 \mathrm{kips})-(2 \mathrm{ft})(6 \mathrm{kips})=0
$$

$$
\begin{gathered}
\mathbf{E}=16 \mathrm{kips} \uparrow \\
\left(\Sigma M_{E}=0:-(6 \mathrm{ft}) A_{y}+(4 \mathrm{ft})(6 \mathrm{kips})\right. \\
+(2 \mathrm{ft})(12 \mathrm{kips})-(2 \mathrm{ft})(4.5 \mathrm{kips})=0
\end{gathered}
$$

$$
\mathbf{A}_{y}=6.5 \mathrm{kips} \uparrow
$$

Shear Diag: V is piece wise constant with discontinuities equal to the forces at A, C, D, E, B

Moment Diag: M is piecewise linear with slope changes at C, D, E

$$
\begin{gathered}
M_{A}=0 \\
M_{C}=(6.5 \mathrm{kips})(2 \mathrm{ft})=13 \mathrm{kip} \cdot \mathrm{ft} \\
M_{C}=13 \mathrm{kip} \cdot \mathrm{ft}+(0.5 \mathrm{kips})(2 \mathrm{ft})=14 \mathrm{kip} \cdot \mathrm{ft} \\
M_{D}=14 \mathrm{kip} \cdot \mathrm{ft}-(11.5 \mathrm{kips})(2 \mathrm{ft})=-9 \mathrm{kip} \cdot \mathrm{ft} \\
M_{B}=-9 \mathrm{kip} \cdot \mathrm{ft}+(4.5 \mathrm{kips})(2 \mathrm{ft})=0 \\
(b) \quad|V|_{\max }=11.50 \mathrm{kips} \text { on } D E \\
|M|_{\max }=14.00 \mathrm{kip} \cdot \mathrm{ft} \mathrm{at} D
\end{gathered}
$$

SOLUTION

FBD Beam:

(a)

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(4 \mathrm{ft})(12 \mathrm{kips})+(7 \mathrm{ft})(2.5 \mathrm{kips} / \mathrm{ft})(6 \mathrm{ft})\right. \\
-(10 \mathrm{ft}) A_{y}=0
\end{gathered}
$$

$$
\mathbf{A}_{y}=15.3 \mathrm{kips} \uparrow
$$

Shear Diag: $V_{A}=A_{y}=15.3 \mathrm{kips}$, then V is linear

$$
\begin{aligned}
& \left(\frac{d V}{d x}=-2.5 \mathrm{kips} / \mathrm{ft}\right) \text { to } C . \\
& \quad V_{C}=15.3 \mathrm{kips}-(2.5 \mathrm{kips} / \mathrm{ft})(6 \mathrm{ft})=0.3 \mathrm{kips}
\end{aligned}
$$

At C, V decreases by 12 kips to -11.7 kips and is constant to B.
Moment Diag: $M_{A}=0$ and M is parabolic
$\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$ to C

$$
\begin{gathered}
M_{C}=\frac{1}{2}(15.3 \mathrm{kips}+0.3 \mathrm{kip})(6 \mathrm{ft})=46.8 \mathrm{kip} \cdot \mathrm{ft} \\
M_{B}=46.8 \mathrm{kip} \cdot \mathrm{ft}-(11.7 \mathrm{kips})(4 \mathrm{ft})=0
\end{gathered}
$$

(b)

$$
\begin{aligned}
|\mathrm{V}|_{\max } & =15.3 \mathrm{kips} \\
|M|_{\max } & =46.8 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

PROBLEM 7.149

Two loads are suspended as shown from the cable $A B C D$. Knowing that $h_{B}=1.8 \mathrm{~m}$, determine (a) the distance $h_{C},(b)$ the components of the reaction at $D,(c)$ the maximum tension in the cable.

SOLUTION

FBD Cable:

FBD AB:

FBD CD:

$$
\begin{gathered}
\left(\Sigma M_{A}=0:(10 \mathrm{~m}) D_{y}-(6 \mathrm{~m})(10 \mathrm{kN})-(3 \mathrm{~m})(6 \mathrm{kN})=0\right. \\
\mathbf{D}_{y}=7.8 \mathrm{kN} \uparrow \\
\uparrow \Sigma F_{y}=0: A_{y}-6 \mathrm{kN}-10 \mathrm{kN}+7.8 \mathrm{kN}=0
\end{gathered}
$$

$$
\longrightarrow \Sigma F_{x}=0:-A_{x}+D_{x}=0 \quad A_{x}=D_{x}
$$

$$
\begin{gathered}
\mathbf{D}_{y}=7.8 \mathrm{kN} \uparrow \\
\uparrow \Sigma F_{y}=0: A_{y}-6 \mathrm{kN}-10 \mathrm{kN}+7.8 \mathrm{kN}=0 \\
\mathbf{A}_{y}=8.2 \mathrm{kN} \uparrow
\end{gathered}
$$

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(1.8 \mathrm{~m}) A_{x}-(3 \mathrm{~m})(8.2 \mathrm{kN})=0\right. \\
\mathbf{A}_{x}=\frac{41}{3} \mathrm{kN} \longleftarrow
\end{gathered}
$$

From above $\quad D_{x}=A_{x}=\frac{41}{3} \mathrm{kN}$

$$
\begin{gathered}
\left(\Sigma M_{C}=0:(4 \mathrm{~m})(7.8 \mathrm{kN})-h_{C}\left(\frac{41}{3} \mathrm{kN}\right)=0\right. \\
h_{C}=2.283 \mathrm{~m}
\end{gathered}
$$

(a) $\quad h_{C}=2.28 \mathrm{~m}$
(b)

$$
\begin{array}{r}
D_{x}=13.67 \mathrm{kN} \longrightarrow \\
D_{y}=7.80 \mathrm{kN} \uparrow .
\end{array}
$$

Since $A_{x}=B_{x}$ and $A_{y}>B_{y}, \max T$ is $T_{A B}$

$$
\begin{aligned}
& T_{A B}=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{\left(\frac{41}{3} \mathrm{kN}\right)^{2}+(8.2 \mathrm{kN})^{2}} \\
&(c) \quad T_{\max }=15.94 \mathrm{kN}
\end{aligned}
$$

SOLUTION

FBD Cable:

$$
\left(\Sigma M_{A}=0:(10 \mathrm{~m}) D_{y}-(6 \mathrm{~m})(10 \mathrm{kN})-(3 \mathrm{~m})(6 \mathrm{kN})=0\right.
$$

$$
\mathbf{D}_{y}=7.8 \mathrm{kN} \uparrow
$$

$$
\uparrow \Sigma F_{y}=0: A_{y}-6 \mathrm{kN}-10 \mathrm{kN}+7.8 \mathrm{kN}=0
$$

$$
\mathbf{A}_{y}=8.2 \mathrm{kN} \uparrow
$$

$$
\begin{gathered}
\text { Since } A_{x}=D_{x} \quad \text { and } \quad A_{y}>D_{y}, \quad T_{\max }=T_{A B} \\
\uparrow \Sigma F_{y}=0: 8.2 \mathrm{kN}-(15 \mathrm{kN}) \sin \theta_{A}=0
\end{gathered}
$$

FBD pt A:

$$
\longrightarrow \Sigma F_{x}=0:-A_{x}+D_{x}=0 \quad A_{x}=D_{x}
$$

$$
\begin{aligned}
\theta_{A} & =\sin ^{-1} \frac{8.2 \mathrm{kN}}{15 \mathrm{kN}}=33.139^{\circ} \\
\rightarrow \Sigma F_{x} & =0:-A_{x}+(15 \mathrm{kN}) \cos \theta_{A}=0
\end{aligned}
$$

$$
A_{x}=(15 \mathrm{kN}) \cos \left(33.139^{\circ}\right)=12.56 \mathrm{kN}
$$

FBD CD:

From FBD cable: $\quad h_{B}=(3 \mathrm{~m}) \tan \theta_{A}=(3 \mathrm{~m}) \tan \left(33.139^{\circ}\right)$
(a) $\quad h_{B}=1.959 \mathrm{~m}$

$$
\left(\Sigma M_{C}=0:(4 \mathrm{~m})(7.8 \mathrm{kN})-h_{C}(12.56 \mathrm{kN})=0\right.
$$

(b)

$$
h_{C}=2.48 \mathrm{~m}
$$

PROBLEM 7.151

A semicircular rod of weight W and uniform cross section is supported as shown. Determine the bending moment at point J when $\theta=60^{\circ}$.

SOLUTION

FBD Rod:

FBD BJ:

$$
\begin{gathered}
\left(\Sigma M_{A}=0: \frac{2 r}{\pi} W-2 r B=0\right. \\
\mathbf{B}=\frac{W}{\pi} \longrightarrow
\end{gathered}
$$

$$
\downarrow \Sigma F_{y^{\prime}}=0: F+\frac{W}{3} \sin 60^{\circ}-\frac{W}{\pi} \cos 60^{\circ}=0
$$

$$
F=-0.12952 W
$$

$$
\begin{aligned}
& \left(\Sigma M_{0}=0: r\left(F-\frac{W}{\pi}\right)+\frac{3 r}{2 \pi}\left(\frac{W}{3}\right)+M=0\right. \\
& M=W r\left(0.12952+\frac{1}{\pi}-\frac{1}{2 \pi}\right)=0.28868 W r
\end{aligned}
$$

On $\left.B J \quad \mathbf{M}_{J}=0.289 W r\right)$

SOLUTION

FBD rod:

$$
\begin{aligned}
\uparrow \Sigma F_{y} & =0: A_{y}-W=0 \quad \mathbf{A}_{y}=W \uparrow \\
\Sigma M_{B} & =0: \frac{2 r}{\pi} W-2 r A_{x}=0 \\
\mathbf{A}_{x} & =\frac{W}{\pi}
\end{aligned}
$$

FBD AJ:

$$
\begin{gathered}
\backslash \Sigma F_{x^{\prime}}=0: \frac{W}{\pi} \cos 30^{\circ}+\frac{5 W}{6} \sin 30^{\circ}-F=0 F=0.69233 W \backslash \\
\left(\Sigma M_{0}=0: 0.25587 r\left(\frac{W}{6}\right)+r\left(F-\frac{W}{\pi}\right)-M=0\right. \\
M=W r\left[\frac{0.25587}{6}+0.69233-\frac{1}{\pi}\right]
\end{gathered}
$$

$$
M=W r(0.4166)
$$

PROBLEM 7.153

Determine the internal forces at point J of the structure shown.

SOLUTION

FBD ABC:

$$
\begin{gathered}
\left(\Sigma M_{D}=0:(0.375 \mathrm{~m})(400 \mathrm{~N})-(0.24 \mathrm{~m}) C_{y}=0\right. \\
\mathbf{C}_{y}=625 \mathrm{~N} \uparrow \\
\left(\Sigma M_{B}=0:-(0.45 \mathrm{~m}) C_{x}+(0.135 \mathrm{~m})(400 \mathrm{~N})=0\right. \\
\mathbf{C}_{x}=120 \mathrm{~N} \longrightarrow
\end{gathered}
$$

FBD CJ:

$$
\begin{aligned}
& \uparrow \Sigma F_{y}=0: 625 \mathrm{~N}-F=0 \\
& \mathbf{F}=625 \mathrm{~N} \downarrow \\
& \rightarrow \Sigma F_{x}=0: 120 \mathrm{~N}-V=0 \\
& \mathbf{V}=120.0 \mathrm{~N} \longleftarrow 4 \\
& \left(\Sigma M_{J}=0: M-(0.225 \mathrm{~m})(120 \mathrm{~N})=0\right. \\
& \mathbf{M}=27.0 \mathrm{~N} \cdot \mathrm{~m} \text {) }
\end{aligned}
$$

SOLUTION

FBD AK:

$$
\begin{gathered}
\longrightarrow \Sigma F_{x}=0: V=0 \\
\uparrow \Sigma F_{y}=0: F-400 \mathrm{~N}=0 \\
\mathbf{F}=400 \mathrm{~N} \uparrow \\
\left(\Sigma M_{K}=0:(0.135 \mathrm{~m})(400 \mathrm{~N})-M=0\right. \\
\mathbf{M}=54.0 \mathrm{~N} \cdot \mathrm{~m})
\end{gathered}
$$

PROBLEM 7.155

Two small channel sections $D F$ and $E H$ have been welded to the uniform beam $A B$ of weight $W=3 \mathrm{kN}$ to form the rigid structural member shown. This member is being lifted by two cables attached at D and E. Knowing the $\theta=30^{\circ}$ and neglecting the weight of the channel sections, (a) draw the shear and bending-moment diagrams for beam $A B$, (b) determine the maximum absolute values of the shear and bending moment in the beam.

SOLUTION

FBD Beam + channels:

FBD Beam:
With cable force replaced by equivalent force-couple system at F and G

(a) By symmetry:

$$
T_{1}=T_{2}=T
$$

$$
\begin{gathered}
\uparrow \Sigma F_{y}=0: 2 T \sin 60^{\circ}-3 \mathrm{kN}=0 \\
T=\frac{3}{\sqrt{3}} \mathrm{kN} \quad T_{1 x}=\frac{3}{2 \sqrt{3}} \quad T_{1 y}=\frac{3}{2} \mathrm{kN} \\
M=(0.5 \mathrm{~m}) \frac{3}{2 \sqrt{3}} \mathrm{kN}=0.433 \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

Shear Diagram: V is piecewise linear

$$
\left(\frac{d V}{d x}=-0.6 \mathrm{kN} / \mathrm{m}\right) \text { with } 1.5 \mathrm{kN}
$$

discontinuities at F and H.

$$
V_{F^{-}}=-(0.6 \mathrm{kN} / \mathrm{m})(1.5 \mathrm{~m})=0.9 \mathrm{kN}
$$

V increases by 1.5 kN to +0.6 kN at F^{+}

$$
V_{G}=0.6 \mathrm{kN}-(0.6 \mathrm{kN} / \mathrm{m})(1 \mathrm{~m})=0
$$

Finish by invoking symmetry

Moment Diagram: M is piecewise parabolic
$\left(\frac{d M}{d x}\right.$ decreasing with $\left.V\right)$ with discontinuities of .433 kN at F and H.

$$
M_{F^{-}}=-\frac{1}{2}(0.9 \mathrm{kN})(1.5 \mathrm{~m})=-0.675 \mathrm{kN} \cdot \mathrm{~m}
$$

M increases by $0.433 \mathrm{kN} \cdot \mathrm{m}$ to $-0.242 \mathrm{kN} \cdot \mathrm{m}$ at F^{+}

$$
M_{G}=-0.242 \mathrm{kN} \cdot \mathrm{~m}+\frac{1}{2}(0.6 \mathrm{kN})(1 \mathrm{~m})=0.058 \mathrm{kN} \cdot \mathrm{~m}
$$

Finish by invoking symmetry
(b)

$$
\begin{gathered}
|V|_{\max }=900 \mathrm{~N} \\
\text { at } F^{-} \text {and } G^{+} \\
|M|_{\max }=675 \mathrm{~N} \cdot \mathrm{~m} \\
\text { at } F \text { and } G
\end{gathered}
$$

PROBLEM 7.156

(a) Draw the shear and bending moment diagrams for beam $A B$,
(b) determine the magnitude and location of the maximum absolute value of the bending moment.

PROBLEM 7.157

Cable $A B C$ supports two loads as shown. Knowing that $b=4 \mathrm{ft}$, determine (a) the required magnitude of the horizontal force $\mathbf{P},(b)$ the corresponding distance a.

SOLUTION

FBD ABC:

$$
\uparrow \Sigma F_{y}=0:-40 \mathrm{lb}-80 \mathrm{lb}+C_{y}=0
$$

$\mathbf{C}_{y}=120 \mathrm{lb} \uparrow$

FBD BC:

$$
\begin{gathered}
\left(\Sigma M_{B}=0:(4 \mathrm{ft})(120 \mathrm{lb})-(10 \mathrm{ft}) C_{x}=0\right. \\
\mathbf{C}_{x}=48 \mathrm{lb} \longrightarrow
\end{gathered}
$$

From $\mathrm{ABC}: \quad \longrightarrow \Sigma F_{x}=0:-P+C_{x}=0$

$$
P=C_{x}=48 \mathrm{lb}
$$

(a) $\quad P=48.0 \mathrm{lb}$

$$
\left(\Sigma M_{C}=0:(4 \mathrm{ft})(80 \mathrm{lb})+a(40 \mathrm{lb})-(15 \mathrm{ft})(48 \mathrm{lb})=0\right.
$$

(b) $\quad a=10.00 \mathrm{ft}$

FBD BC:

$\left(\Sigma M_{B}=0: b(120 \mathrm{lb})-(10 \mathrm{ft})(60 \mathrm{lb})=0\right.$

$$
b=5.00 \mathrm{ft}
$$

FBD AB:

$$
\begin{gathered}
\Sigma M_{B}=0:(a-b)(40 \mathrm{lb})-(5 \mathrm{ft}) 60 \mathrm{lb}=0 \\
a-b=7.5 \mathrm{ft} \\
a=b+7.5 \mathrm{ft} \\
=5 \mathrm{ft}+7.5 \mathrm{ft}
\end{gathered}
$$

