PROBLEM 4.1

The boom on a $4300-\mathrm{kg}$ truck is used to unload a pallet of shingles of mass 1600 kg . Determine the reaction at each of the two (a) rear wheels $B,(b)$ front wheels C.

SOLUTION

$$
\begin{aligned}
W_{A} & =m_{A} g=(1600 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =15696 \mathrm{~N}
\end{aligned}
$$

or

$$
\begin{aligned}
& \mathbf{W}_{A}=15.696 \mathrm{kN} \\
W_{G}= & m_{G} g=(4300 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
= & 42183 \mathrm{~N}
\end{aligned}
$$

or

$$
\mathbf{W}_{G}=42.183 \mathrm{kN} \downarrow
$$

(a) From f.b.d. of truck with boom

$$
\begin{array}{r}
+\Sigma M_{C}=0: \quad(15.696 \mathrm{kN})\left[\left(0.5+0.4+6 \cos 15^{\circ}\right) \mathrm{m}\right]-2 F_{B}[(0.5+0.4+4.3) \mathrm{m}] \\
+(42.183 \mathrm{kN})(0.5 \mathrm{~m})=0 \\
\therefore 2 F_{B}=\frac{126.185}{5.2}=24.266 \mathrm{kN}
\end{array}
$$

$$
\text { or } \mathbf{F}_{B}=12.13 \mathrm{kN} \uparrow
$$

(b) From f.b.d. of truck with boom

$$
\begin{gathered}
+) \Sigma M_{B}=0:(15.696 \mathrm{kN})\left[\left(6 \cos 15^{\circ}-4.3\right) \mathrm{m}\right]-(42.183 \mathrm{kN})[(4.3+0.4) \mathrm{m}] \\
+2 F_{C}[(4.3+0.9) \mathrm{m}]=0 \\
\therefore 2 F_{C}=\frac{174.786}{5.2}=33.613 \mathrm{kN}
\end{gathered}
$$

$$
\text { or } \mathbf{F}_{C}=16.81 \mathrm{kN} \uparrow
$$

Check:

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: & (33.613-42.183+24.266-15.696) \mathrm{kN}=0 ? \\
& (57.879-57.879) \mathrm{kN}=0 \text { ok }
\end{aligned}
$$

PROBLEM 4.2

Two children are standing on a diving board of mass 65 kg . Knowing that the masses of the children at C and D are 28 kg and 40 kg , respectively, determine (a) the reaction at $A,(b)$ the reaction at B.

SOLUTION

(a) From f.b.d. of diving board

$$
\begin{gathered}
+\Sigma M_{B}=0:-A_{y}(1.2 \mathrm{~m})-(637.65 \mathrm{~N})(0.48 \mathrm{~m})-(274.68 \mathrm{~N})(1.08 \mathrm{~m})-(392.4 \mathrm{~N})(2.08 \mathrm{~m})=0 \\
\therefore A_{y}=-\frac{1418.92}{1.2}=-1182.43 \mathrm{~N}
\end{gathered}
$$

$$
\text { or } \mathbf{A}_{y}=1.182 \mathrm{kN}
$$

(b) From f.b.d. of diving board
$+\Sigma M_{A}=0: \quad B_{y}(1.2 \mathrm{~m})-637.65 \mathrm{~N}(1.68 \mathrm{~m})-274.68 \mathrm{~N}(2.28 \mathrm{~m})-392.4 \mathrm{~N}(3.28 \mathrm{~m})=0$

$$
\therefore B_{y}=\frac{2984.6}{1.2}=2487.2 \mathrm{~N}
$$

$$
\text { or } \mathbf{B}_{y}=2.49 \mathrm{kN} \uparrow
$$

Check:

$$
+\uparrow \Sigma F_{y}=0: \quad(-1182.43+2487.2-637.65-274.68-392.4) \mathrm{N}=0 ?
$$

$$
(2487.2-2487.2) \mathrm{N}=0 \text { ok }
$$

PROBLEM 4.3

Two crates, each weighing 250 lb , are placed as shown in the bed of a $3000-\mathrm{lb}$ pickup truck. Determine the reactions at each of the two (a) rear wheels $A,(b)$ front wheels B.

SOLUTION

(a) From f.b.d. of truck

$$
\begin{gathered}
+\Sigma M_{B}=0:(250 \mathrm{lb})(12.1 \mathrm{ft})+(250 \mathrm{lb})(6.5 \mathrm{ft})+(3000 \mathrm{lb})(3.9 \mathrm{ft})-\left(2 F_{A}\right)(9.8 \mathrm{ft})=0 \\
\therefore 2 F_{A}=\frac{16350}{9.8}=1668.37 \mathrm{lb}
\end{gathered}
$$

$$
\therefore \quad \mathbf{F}_{A}=834 \mathrm{lb}
$$

(b) From f.b.d. of truck

$$
\begin{gathered}
+\Sigma M_{A}=0:\left(2 F_{B}\right)(9.8 \mathrm{ft})-(3000 \mathrm{lb})(5.9 \mathrm{ft})-(250 \mathrm{lb})(3.3 \mathrm{ft})+(250 \mathrm{lb})(2.3 \mathrm{ft})=0 \\
\therefore 2 F_{B}=\frac{17950}{9.8}=1831.63 \mathrm{lb}
\end{gathered}
$$

$$
\therefore \quad \mathbf{F}_{B}=916 \mathrm{lb}
$$

Check:

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0: \quad(-250+1668.37-250-3000+1831.63) \mathrm{lb}=0 ? \\
\\
(3500-3500) \mathrm{lb}=0 \text { ok }
\end{gathered}
$$

PROBLEM 4.4

Solve Problem 4.3 assuming that crate D is removed and that the position of crate C is unchanged.

P4.3 The boom on a $4300-\mathrm{kg}$ truck is used to unload a pallet of shingles of mass 1600 kg . Determine the reaction at each of the two (a) rear wheels $B,(b)$ front wheels C

SOLUTION

(a) From f.b.d. of truck

$$
\begin{gathered}
+\Sigma M_{B}=0:(3000 \mathrm{lb})(3.9 \mathrm{ft})-\left(2 F_{A}\right)(9.8 \mathrm{ft})+(250 \mathrm{lb})(12.1 \mathrm{ft})=0 \\
\therefore 2 F_{A}=\frac{14725}{9.8}=1502.55 \mathrm{lb}
\end{gathered}
$$

$$
\text { or } \mathbf{F}_{A}=751 \mathrm{lb}
$$

(b) From f.b.d. of truck

$$
\begin{gathered}
+\Sigma M_{A}=0:\left(2 F_{B}\right)(9.8 \mathrm{ft})-(3000 \mathrm{lb})(5.9 \mathrm{ft})+(250 \mathrm{lb})(2.3 \mathrm{ft})=0 \\
\therefore 2 F_{B}=\frac{17125}{9.8}=1747.45 \mathrm{lb}
\end{gathered}
$$

$$
\text { or } \mathbf{F}_{B}=874 \mathrm{lb} \uparrow
$$

Check:

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0:[2(751+874)-3000-250] \mathrm{lb}=0 ? \\
\\
(3250-3250) \mathrm{lb}=0 \text { ok }
\end{gathered}
$$

PROBLEM 4.5

A T-shaped bracket supports the four loads shown. Determine the reactions at A and B if (a) $a=100 \mathrm{~mm}$, (b) $a=70 \mathrm{~mm}$.

SOLUTION

(a)

From f.b.d. of bracket

$$
\begin{gathered}
+\Sigma M_{B}=0:-(10 \mathrm{~N})(0.18 \mathrm{~m})-(30 \mathrm{~N})(0.1 \mathrm{~m})+(40 \mathrm{~N})(0.06 \mathrm{~m})+A(0.12 \mathrm{~m})=0 \\
\therefore A=\frac{2.400}{0.12}=20 \mathrm{~N} \quad \text { or } \mathbf{A}=20.0 \mathrm{~N} \\
+\Sigma M_{A}=0: B(0.12 \mathrm{~m})-(40 \mathrm{~N})(0.06 \mathrm{~m})-(50 \mathrm{~N})(0.12 \mathrm{~m})-(30 \mathrm{~N})(0.22 \mathrm{~m})-(10 \mathrm{~N})(0.3 \mathrm{~m})=0 \\
\therefore B=\frac{18.000}{0.12}=150 \mathrm{~N}
\end{gathered}
$$

(b)

From f.b.d. of bracket

$$
\begin{gathered}
+\Sigma M_{B}=0:-(10 \mathrm{~N})(0.15 \mathrm{~m})-(30 \mathrm{~N})(0.07 \mathrm{~m})+(40 \mathrm{~N})(0.06 \mathrm{~m})+A(0.12 \mathrm{~m})=0 \\
\therefore A=\frac{1.200}{0.12}=10 \mathrm{~N} \\
+\Sigma M_{A}=0: \\
-(0.12 \mathrm{~m})-(40 \mathrm{~N})(0.06 \mathrm{~m})-(50 \mathrm{~N})(0.12 \mathrm{~m})-(30 \mathrm{~N})(0.19 \mathrm{~m}) \\
-(10 \mathrm{~N})(0.27 \mathrm{~m})=0
\end{gathered} \quad \text { or } \mathbf{A}=10.00 \mathrm{~N} \downarrow .
$$

SOLUTION

f.b.d.

The $a_{\text {min }}$ value will be based on $\mathbf{A}=0$
From f.b.d. of bracket
+) $\Sigma M_{B}=0:(40 \mathrm{~N})(60 \mathrm{~mm})-(30 \mathrm{~N})(a)-(10 \mathrm{~N})(a+80 \mathrm{~mm})=0$
$\therefore a=\frac{1600}{40}=40 \mathrm{~mm}$

SOLUTION

$$
\begin{aligned}
a_{1} & =(20 \mathrm{in} .) \sin \alpha-(8 \mathrm{in} .) \cos \alpha \\
a_{2} & =(32 \mathrm{in} .) \cos \alpha-(20 \mathrm{in} .) \sin \alpha \\
b & =(64 \mathrm{in} .) \cos \alpha
\end{aligned}
$$

From f.b.d. of hand truck

$$
\begin{align*}
& +\Sigma M_{B}=0: \quad P(b)-W\left(a_{2}\right)+W\left(a_{1}\right)=0 \tag{1}\\
& +\uparrow \Sigma F_{y}=0: \quad P-2 w+2 B=0 \tag{2}
\end{align*}
$$

For

$$
\alpha=35^{\circ}
$$

$$
a_{1}=20 \sin 35^{\circ}-8 \cos 35^{\circ}=4.9183 \mathrm{in}
$$

$$
a_{2}=32 \cos 35^{\circ}-20 \sin 35^{\circ}=14.7413 \mathrm{in} .
$$

$$
b=64 \cos 35^{\circ}=52.426 \mathrm{in} .
$$

(a) From Equation (1)

$$
\begin{gathered}
P(52.426 \mathrm{in} .)-80 \mathrm{lb}(14.7413 \mathrm{in} .)+80 \mathrm{lb}(4.9183 \mathrm{in} .)=0 \\
\therefore P=14.9896 \mathrm{lb}
\end{gathered}
$$

(b) From Equation (2)

$$
14.9896 \mathrm{lb}-2(80 \mathrm{lb})+2 B=0
$$

$\therefore B=72.505 \mathrm{lb}$
or $\mathbf{B}=72.5 \mathrm{lb}$

SOLUTION

$$
\begin{aligned}
a_{1} & =(20 \mathrm{in} .) \sin \alpha-(8 \mathrm{in} .) \cos \alpha \\
a_{2} & =(32 \mathrm{in} .) \cos \alpha-(20 \mathrm{in} .) \sin \alpha \\
b & =(64 \mathrm{in} .) \cos \alpha
\end{aligned}
$$

From f.b.d. of hand truck

$$
\begin{align*}
& +\Sigma M_{B}=0: \quad P(b)-W\left(a_{2}\right)+W\left(a_{1}\right)=0 \tag{1}\\
& +\uparrow \Sigma F_{y}=0: \quad P-2 w+2 B=0 \tag{2}
\end{align*}
$$

For $\quad \alpha=40^{\circ}$

$$
\begin{aligned}
a_{1} & =20 \sin 40^{\circ}-8 \cos 40^{\circ}=6.7274 \mathrm{in} . \\
a_{2} & =32 \cos 40^{\circ}-20 \sin 40^{\circ}=11.6577 \mathrm{in} . \\
b & =64 \cos 40^{\circ}=49.027 \mathrm{in} .
\end{aligned}
$$

(a) From Equation (1)

$$
\begin{gathered}
P(49.027 \mathrm{in} .)-80 \mathrm{lb}(11.6577 \mathrm{in} .)+80 \mathrm{lb}(6.7274 \mathrm{in} .)=0 \\
\therefore P=8.0450 \mathrm{lb}
\end{gathered}
$$

$$
\text { or } \mathbf{P}=8.05 \mathrm{lb} \uparrow
$$

(b) From Equation (2)

$$
\begin{aligned}
& 8.0450 \mathrm{lb}-2(80 \mathrm{lb})+2 B=0 \\
& \therefore B=75.9775 \mathrm{lb}
\end{aligned}
$$

PROBLEM 4.9

Four boxes are placed on a uniform $14-\mathrm{kg}$ wooden plank which rests on two sawhorses. Knowing that the masses of boxes B and D are 4.5 kg and 45 kg , respectively, determine the range of values of the mass of box A so that the plank remains in equilibrium when box C is removed.

SOLUTION

For $\left(m_{A}\right)_{\max }, F=0$:

f.b.d. for $m_{A(\text { max })}$
+) $\Sigma M_{E}=0: \quad m_{A} g(0.5 \mathrm{~m})-(4.5 g)(0.4 \mathrm{~m})-(14 g)(1 \mathrm{~m})$
$-(45 g)(2.6 \mathrm{~m})=0$
$\therefore m_{A}=265.6 \mathrm{~kg}$

SOLUTION

$$
\begin{gathered}
\left(T_{C}\right)_{\max }, T_{B}=0 \\
+\Sigma \Sigma M_{O}=0:\left(T_{C}\right)_{\max }(0.120 \mathrm{~m})-(400 \mathrm{~N})(0.060 \mathrm{~m})=0 \\
\left(T_{C}\right)_{\max }=200 \mathrm{~N}>T_{\max }=180 \mathrm{~N} \\
\therefore\left(T_{C}\right)_{\max }=180.0 \mathrm{~N}
\end{gathered}
$$

f.b.d. of crank For

$$
\begin{gathered}
\left(T_{C}\right)_{\min }, T_{B}=T_{\max }=180 \mathrm{~N} \\
+\Sigma \Sigma M_{O}=0:\left(T_{C}\right)_{\min }(0.120 \mathrm{~m})+(180 \mathrm{~N})(0.040 \mathrm{~m}) \\
-(400 \mathrm{~N})(0.060 \mathrm{~m})=0 \\
\therefore\left(T_{C}\right)_{\min }=140.0 \mathrm{~N}
\end{gathered}
$$

Therefore,

SOLUTION

From f.b.d. of beam

$$
\begin{array}{cl}
+ \\
+ & F_{x}=0: \\
B_{x}=0 \quad \text { so that } \quad B=B_{y} \\
+\uparrow \Sigma F_{y}=0: & A+B-(100+200+300) \mathrm{N}=0 \\
& A+B=600 \mathrm{~N}
\end{array}
$$

Therefore, if either \mathbf{A} or \mathbf{B} has a magnitude of the maximum of 360 N , the other support reaction will be $<360 \mathrm{~N}(600 \mathrm{~N}-360 \mathrm{~N}=240 \mathrm{~N})$.

$$
\begin{aligned}
&+\Sigma M_{A}=0: \quad(100 \mathrm{~N})(d)-(200 \mathrm{~N})(0.9-d)-(300 \mathrm{~N})(1.8-d) \\
&+B(1.8-d)=0 \\
& \text { or } \quad d=\frac{720-1.8 B}{600-B}
\end{aligned}
$$

Since $B \leq 360 N$,

$$
\begin{aligned}
& \qquad d=\frac{720-1.8(360)}{600-360}=0.300 \mathrm{~m} \quad \text { or } \quad d \geq 300 \mathrm{~mm} \\
& +\Sigma M_{B}=0:(100 \mathrm{~N})(1.8)-A(1.8-d)+(200 \mathrm{~N})(0.9)=0 \\
& \text { or } \quad d=\frac{1.8 A-360}{A}
\end{aligned}
$$

Since $A \leq 360 \mathrm{~N}$,

$$
d=\frac{1.8(360)-360}{360}=0.800 \mathrm{~m} \quad \text { or } \quad d \leq 800 \mathrm{~mm}
$$

or $300 \mathrm{~mm} \leq d \leq 800 \mathrm{~mm}$

SOLUTION

From f.b.d of beam

$$
\begin{gathered}
\xrightarrow{+} \Sigma F_{x}=0: \quad B_{x}=0 \quad \text { so that } \quad B=B_{y} \\
+\uparrow \Sigma F_{y}=0: \\
A+B-(160+200+300) \mathrm{N}=0 \\
A+B=660 \mathrm{~N}
\end{gathered}
$$

Therefore, if either \mathbf{A} or \mathbf{B} has a magnitude of the maximum of 360 N , the other support reaction will be $<360 \mathrm{~N}(660-360=300 \mathrm{~N})$.

$$
\begin{gathered}
+\Sigma M_{A}=0: \quad 160 \mathrm{~N}(d)-200 \mathrm{~N}(0.9-d)-300 \mathrm{~N}(1.8-d) \\
+B(1.8-d)=0 \\
d=\frac{720-1.8 B}{660-B}
\end{gathered}
$$

or
Since $B \leq 360 \mathrm{~N}$,

$$
\begin{gathered}
d=\frac{720-1.8(360)}{660-360}=0.240 \mathrm{~m} \quad \text { or } \quad d \geq 240 \mathrm{~mm} \\
+\Sigma \Sigma M_{B}=0: 160 \mathrm{~N}(1.8)-A(1.8-d)+200 \mathrm{~N}(0.9)=0 \\
d=\frac{1.8 A-468}{A}
\end{gathered}
$$

or

Since $A \leq 360 \mathrm{~N}$,

$$
d=\frac{1.8(360)-468}{360}=0.500 \mathrm{~m} \quad \text { or } \quad d \geq 500 \mathrm{~mm}
$$

or $240 \mathrm{~mm} \leq d \leq 500 \mathrm{~mm}$

PROBLEM 4.13

For the beam of Sample Problem 4.2, determine the range of values of P for which the beam will be safe knowing that the maximum allowable value of each of the reactions is 45 kips and that the reaction at A must be directed upward.

SOLUTION

For the force of \mathbf{P} to be a minimum, $\mathbf{A}=0$.
With $A=0$,

$$
\begin{gathered}
+\Sigma M_{B}=0: \quad P_{\min }(6 \mathrm{ft})-(6 \mathrm{kips})(2 \mathrm{ft})-(6 \mathrm{kips})(4 \mathrm{ft})=0 \\
\therefore P_{\min }=6.00 \mathrm{kips}
\end{gathered}
$$

For the force \mathbf{P} to be a maximum, $\mathbf{A}=\mathbf{A}_{\text {max }}=45 \mathrm{kips} \uparrow$
With $A=45 \mathrm{kips}$,

$$
\begin{gathered}
+\Sigma M_{B}=0:-(45 \mathrm{kips})(9 \mathrm{ft})+P_{\max }(6 \mathrm{ft})-(6 \mathrm{kips})(2 \mathrm{ft})-(6 \mathrm{kips})(4 \mathrm{ft})=0 \\
\therefore P_{\max }=73.5 \mathrm{kips}
\end{gathered}
$$

A check must be made to verify the assumption that the maximum value of \mathbf{P} is based on the reaction force at A. This is done by making sure the corresponding value of B is $<45 \mathrm{kips}$.

$$
\begin{aligned}
& +\uparrow \Sigma F_{y}=0: \quad 45 \mathrm{kips}-73.5 \mathrm{kips}+B-6 \mathrm{kips}-6 \mathrm{kips}=0 \\
& \therefore B=40.5 \mathrm{kips}<45 \mathrm{kips} \quad \therefore \text { ok } \quad \text { or } P_{\max }=73.5 \mathrm{kips}
\end{aligned}
$$

PROBLEM 4.14

For the beam and loading shown, determine the range of values of the distance a for which the reaction at B does not exceed 50 lb downward or 100 lb upward.

SOLUTION

To determine $a_{\text {max }}$ the two $150-\mathrm{lb}$ forces need to be as close to B without having the vertical upward force at B exceed 100 lb .

From f.b.d. of beam with $\mathbf{B}=100 \mathrm{lb} \uparrow$

$$
\begin{gathered}
+\Sigma M_{D}=0:-(150 \mathrm{lb})\left(a_{\max }-4 \mathrm{in} .\right)-(150 \mathrm{lb})\left(a_{\max }-1 \mathrm{in} .\right) \\
-(25 \mathrm{lb})(2 \mathrm{in} .)+(100 \mathrm{lb})(8 \mathrm{in} .)=0 \\
a_{\max }=5.00 \mathrm{in} .
\end{gathered}
$$

To determine $a_{\text {min }}$ the two $150-\mathrm{lb}$ forces need to be as close to A without
 having the vertical downward force at B exceed 50 lb .

From f.b.d. of beam with $\mathbf{B}=50 \mathrm{lb} \downarrow$

$$
\begin{aligned}
+\Sigma M_{D}=0: & (150 \mathrm{lb})\left(4 \mathrm{in} .-a_{\min }\right)-(150 \mathrm{lb})\left(a_{\min }-1 \mathrm{in} .\right) \\
& -(25 \mathrm{lb})(2 \mathrm{in} .)-(50 \mathrm{lb})(8 \mathrm{in} .)=0
\end{aligned}
$$

or

$$
a_{\min }=1.00 \mathrm{in} .
$$

Therefore, or $1.00 \mathrm{in} . \leq a \leq 5.00 \mathrm{in}$.

SOLUTION

Note: From f.b.d. of $A B C D$

$$
\begin{gathered}
A_{x}=A \cos 60^{\circ}=\frac{A}{2} \\
A_{y}=A \sin 60^{\circ}=A \frac{\sqrt{3}}{2}
\end{gathered}
$$

(a) From f.b.d. of $A B C D$

$$
\begin{gathered}
+\Sigma M_{C}=0:\left(\frac{A}{2}\right)(40 \mathrm{~mm})-21 \mathrm{~N}(40 \mathrm{~mm}) \\
+14 \mathrm{~N}(20 \mathrm{~mm})=0 \\
\therefore A=28 \mathrm{~N}
\end{gathered}
$$ or $\mathbf{A}=28.0 \mathrm{~N}$ 【C 60°

(b) From f.b.d. of $A B C D$

$$
\begin{aligned}
& \xrightarrow{+} \Sigma F_{x}=0: \quad C_{x}+14 \mathrm{~N}+(28 \mathrm{~N}) \cos 60^{\circ}=0 \\
& \therefore C_{x}=-28 \mathrm{~N} \quad \text { or } \quad \mathbf{C}_{x}=28.0 \mathrm{~N} \longleftarrow \\
& +\uparrow \Sigma F_{y}=0: \quad C_{y}-21 \mathrm{~N}+(28 \mathrm{~N}) \sin 60^{\circ}=0 \\
& \therefore C_{y}=-3.2487 \mathrm{~N} \quad \text { or } \quad \mathbf{C}_{y}=3.25 \mathrm{~N}
\end{aligned}
$$

Then
and

$$
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(28)^{2}+(3.2487)^{2}}=28.188 \mathrm{~N}
$$

$$
\theta=\tan ^{-1}\left(\frac{C_{y}}{C_{x}}\right)=\tan ^{-1}\left(\frac{-3.2487}{-28}\right)=6.6182^{\circ}
$$

$$
\text { or } \mathbf{C}=28.2 \mathrm{~N} \text { 鸟 } 6.62^{\circ}
$$

SOLUTION

Note:

$$
\begin{aligned}
& \overline{D B}=\sqrt{(2.8)^{2}+(5.25)^{2}}=5.95 \mathrm{~m} \\
& \overline{D C}=\sqrt{(2.8)^{2}+(2.10)^{2}}=3.50 \mathrm{~m}
\end{aligned}
$$

(a) From f.b.d. of pole

$$
\begin{gathered}
+\Sigma M_{A}=0:-(322 \mathrm{~N})(6 \mathrm{~m})+\left[\left(\frac{2.8 \mathrm{~m}}{5.95 \mathrm{~m}}\right)(442 \mathrm{~N})\right](6 \mathrm{~m}) \\
+\left[\left(\frac{2.8 \mathrm{~m}}{3.50 \mathrm{~m}}\right) T_{C D}\right](2.85 \mathrm{~m})=0 \\
\therefore T_{C D}=300 \mathrm{~N}
\end{gathered}
$$

or $T_{C D}=300 \mathrm{~N}$
(b) From f.b.d. of pole

$$
\begin{aligned}
& \xrightarrow{+} \Sigma F_{x}=0: \quad 322 \mathrm{~N}-\left(\frac{2.8 \mathrm{~m}}{5.95 \mathrm{~m}}\right)(442 \mathrm{~N}) \\
& \\
& \quad-\left(\frac{2.8 \mathrm{~m}}{3.50 \mathrm{~m}}\right)(300 \mathrm{~N})+A_{x}=0 \\
& \therefore \quad A_{x}=126 \mathrm{~N} \quad \text { or } \quad \mathbf{A}_{x}=126 \mathrm{~N} \longrightarrow \\
& +\uparrow \Sigma F_{y}=
\end{aligned} \begin{aligned}
& 0: \quad A_{y}-\left(\frac{5.25 \mathrm{~m}}{5.95 \mathrm{~m}}\right)(442 \mathrm{~N})-\left(\frac{2.10 \mathrm{~m}}{3.50 \mathrm{~m}}\right)(300 \mathrm{~N})=0 \\
& \therefore A_{y}=570 \mathrm{~N} \quad \text { or } \quad \mathbf{A}_{y}=570 \mathrm{~N} \uparrow
\end{aligned}
$$

Then

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(126)^{2}+(570)^{2}}=583.76 \mathrm{~N}
$$

and

$$
\theta=\tan ^{-1}\left(\frac{570 \mathrm{~N}}{126 \mathrm{~N}}\right)=77.535^{\circ}
$$

$$
\text { or } \mathbf{A}=584 \mathrm{~N} \not \subset 77.5^{\circ}
$$

SOLUTION

(a)

(a) $\alpha=0^{\circ}$
From f.b.d. of member $A B C$

$$
\begin{gathered}
+\Sigma M_{C}=0:(80 \mathrm{lb})(10 \mathrm{in} .)+(80 \mathrm{lb})(20 \mathrm{in} .)-A(40 \mathrm{in} .)=0 \\
\therefore A=60 \mathrm{lb}
\end{gathered}
$$

or $\mathbf{A}=60.0 \mathrm{lb}$
f.b.d.
Then

$$
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(160)^{2}+(60)^{2}}=170.880 \mathrm{lb}
$$

and

$$
\begin{aligned}
\theta=\tan ^{-1}\left(\frac{C_{y}}{C_{x}}\right)=\tan ^{-1}\left(\frac{-60}{-160}\right) & =20.556^{\circ} \\
\text { or } \mathbf{C} & =170.9 \mathrm{lb} \text { प } 20.6^{\circ}
\end{aligned}
$$

(b) $\alpha=30^{\circ}$

From f.b.d. of member $A B C$
+) $\Sigma M_{C}=0:(80 \mathrm{lb})(10 \mathrm{in})+.(80 \mathrm{lb})(20 \mathrm{in})-.\left(A \cos 30^{\circ}\right)(40 \mathrm{in}$.
$+\left(A \sin 30^{\circ}\right)(20$ in. $)=0$
$\therefore A=97.399 \mathrm{lb}$

PROBLEM 4.17 CONTINUED

$$
\xrightarrow{+} \Sigma F_{x}=0: 80 \mathrm{lb}+80 \mathrm{lb}+(97.399 \mathrm{lb}) \sin 30^{\circ}+C_{x}=0
$$

$$
\therefore C_{x}=-208.70 \mathrm{lb} \quad \text { or } \quad \mathbf{C}_{x}=209 \mathrm{lb} \longleftarrow
$$

$+\uparrow \Sigma F_{y}=0: \quad C_{y}+(97.399 \mathrm{lb}) \cos 30^{\circ}=0$
$\therefore C_{y}=-84.350 \mathrm{lb} \quad$ or $\quad \mathbf{C}_{y}=84.4 \mathrm{lb} \downarrow$
Then

$$
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(208.70)^{2}+(84.350)^{2}}=225.10 \mathrm{lb}
$$

and

$$
\begin{aligned}
\theta=\tan ^{-1}\left(\frac{C_{y}}{C_{x}}\right)=\tan ^{-1}\left(\frac{-84.350}{-208.70}\right) & =22.007^{\circ} \\
\text { or } \mathbf{C} & =225 \mathrm{lb} \\
\searrow & 22.0^{\circ} .
\end{aligned}
$$

SOLUTION

(a) $h=0$

From f.b.d. of plate

$$
\begin{gathered}
+\Sigma M_{A}=0:\left(B \sin 30^{\circ}\right)(20 \mathrm{in} .)-(40 \mathrm{lb})(10 \mathrm{in} .)=0 \\
\therefore B=40 \mathrm{lb}
\end{gathered}
$$

$$
\text { or } \mathbf{B}=40.0 \mathrm{lb} \searrow 30^{\circ}
$$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad A_{x}-(40 \mathrm{lb}) \cos 30^{\circ}=0
$$

$$
\therefore A_{x}=34.641 \mathrm{lb} \quad \text { or } \quad \mathbf{A}_{x}=34.6 \mathrm{lb} \longrightarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad A_{y}-40 \mathrm{lb}+(40 \mathrm{lb}) \sin 30^{\circ}=0
$$

$$
\therefore A_{y}=20 \mathrm{lb} \quad \text { or } \quad \mathbf{A}_{y}=20.0 \mathrm{lb} \uparrow
$$

Then $\quad A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(34.641)^{2}+(20)^{2}}=39.999 \mathrm{lb}$
and

$$
\begin{aligned}
\theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)=\tan ^{-1}\left(\frac{20}{34.641}\right) & =30.001^{\circ} \\
\text { or } \mathbf{A} & =40.0 \mathrm{lb} \angle \subset 30^{\circ}
\end{aligned}
$$

(b)

(b) $h=8$ in.
From f.b.d. of plate
$+\Sigma M_{A}=0: \quad\left(B \sin 30^{\circ}\right)(20 \mathrm{in})-.\left(B \cos 30^{\circ}\right)(8 \mathrm{in}$.

$$
-(40 \mathrm{lb})(10 \mathrm{in} .)=0
$$

$\therefore B=130.217 \mathrm{lb}$

$$
\text { or } \mathbf{B}=130.2 \mathrm{lb} \xrightarrow{\lambda} 0.0^{\circ}
$$

PROBLEM 4.18 CONTINUED

$$
\begin{aligned}
\xrightarrow{+} \Sigma F_{x}= & 0: \quad A_{x}-(130.217 \mathrm{lb}) \cos 30^{\circ}=0 \\
& \therefore A_{x}=112.771 \mathrm{lb} \quad \text { or } \quad \mathbf{A}_{x}=112.8 \mathrm{lb} \longrightarrow \\
+\uparrow \Sigma F_{y}= & 0: \quad A_{y}-40 \mathrm{lb}+(130.217 \mathrm{lb}) \sin 30^{\circ}=0 \\
& \therefore A_{y}=-25.108 \mathrm{lb} \quad \text { or } \quad \mathbf{A}_{y}=25.1 \mathrm{lb}
\end{aligned}
$$

Then

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(112.771)^{2}+(25.108)^{2}}=115.532 \mathrm{lb}
$$

and

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)=\tan ^{-1}\left(\frac{-25.108}{112.771}\right)=-12.5519^{\circ} \\
& \text { or } \mathbf{A}=115.5 \mathrm{lb} \text { ■ } 12.55^{\circ}
\end{aligned}
$$

PROBLEM 4.19

The lever $B C D$ is hinged at C and is attached to a control rod at B. If $P=200 \mathrm{~N}$, determine (a) the tension in $\operatorname{rod} A B,(b)$ the reaction at C.

SOLUTION

(a) From f.b.d. of lever $B C D$

$$
\begin{aligned}
+) \Sigma M_{C}=0: T_{A B}(50 \mathrm{~mm})-200 \mathrm{~N}(75 \mathrm{~mm}) & =0 \\
& \therefore T_{A B}=300 \mathrm{~N} \triangleleft
\end{aligned}
$$

(b) From f.b.d. of lever $B C D$

$$
\begin{aligned}
\xrightarrow{+} \Sigma F_{x}=0: & 200 \mathrm{~N}+C_{x}+0.6(300 \mathrm{~N})=0 \\
& \therefore C_{x}=-380 \mathrm{~N} \quad \text { or } \quad \mathbf{C}_{x}=380 \mathrm{~N} \longleftarrow \\
+\uparrow \Sigma F_{y}=0 & : C_{y}+0.8(300 \mathrm{~N})=0 \\
& \therefore C_{y}=-240 \mathrm{~N} \quad \text { or } \quad \mathbf{C}_{\mathrm{y}}=240 \mathrm{~N} \downarrow
\end{aligned}
$$

Then

$$
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(380)^{2}+(240)^{2}}=449.44 \mathrm{~N}
$$

and

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{C_{y}}{C_{x}}\right)=\tan ^{-1}\left(\frac{-240}{-380}\right)=32.276^{\circ} \\
& \qquad \text { or } \mathbf{C}=449 \mathrm{~N} \text { У } 32.3^{\circ}
\end{aligned}
$$

PROBLEM 4.20

The lever $B C D$ is hinged at C and is attached to a control rod at B. Determine the maximum force \mathbf{P} which can be safely applied at D if the maximum allowable value of the reaction at C is 500 N .

SOLUTION

From f.b.d. of lever $B C D$

$$
\begin{gather*}
+\Sigma M_{C}=0: \quad T_{A B}(50 \mathrm{~mm})-P(75 \mathrm{~mm})=0 \\
\therefore T_{A B}=1.5 P \tag{1}\\
+\Sigma F_{x}=0: \quad 0.6 T_{A B}+P-C_{x}=0 \\
\therefore C_{x}=P+0.6 T_{A B} \tag{2}\\
\\
\text { (ion (1) } \quad C_{x}=P+0.6(1.5 P)=1.9 P
\end{gather*}
$$

From Equation (1)

$$
\begin{array}{r}
+\uparrow \Sigma F_{y}=0: \quad 0.8 T_{A B}-C_{y}=0 \\
\therefore C_{y}=0.8 T_{A B} \tag{3}
\end{array}
$$

From Equation (1)

$$
C_{y}=0.8(1.5 P)=1.2 P
$$

From Equations (2) and (3)

$$
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(1.9 P)^{2}+(1.2 P)^{2}}=2.2472 P
$$

Since $C_{\text {max }}=500 \mathrm{~N}$,
or

$$
\begin{aligned}
\therefore 500 \mathrm{~N} & =2.2472 P_{\max } \\
P_{\max } & =222.49 \mathrm{lb}
\end{aligned}
$$

SOLUTION

(a) From f.b.d. of pedal

$$
\begin{gathered}
+) \Sigma M_{C}=0: \quad P(0.4 \mathrm{~m})-(800 \mathrm{~N})\left[(0.18 \mathrm{~m}) \sin 60^{\circ}\right]=0 \\
\therefore \quad P=311.77 \mathrm{~N}
\end{gathered}
$$

$$
\text { or } \mathbf{P}=312 \mathrm{~N} \downarrow
$$

(b) From f.b.d. of pedal

$$
\begin{aligned}
& \xrightarrow{+} \Sigma F_{x}=0: \quad C_{x}-800 \mathrm{~N}=0 \\
& \therefore \quad C_{x}=800 \mathrm{~N} \\
& \text { or } \\
& \qquad \begin{array}{c}
\mathbf{C}_{x}=800 \mathrm{~N} \longrightarrow \\
+\uparrow \Sigma F_{y}=0: \quad C_{y}-311.77 \mathrm{~N}=0
\end{array} \\
& \qquad \quad C_{y}=311.77 \mathrm{~N} \\
& \text { or } \\
& \text { Then } \quad C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(800)^{2}+(311.77)^{2}}=858.60 \mathrm{~N} \\
& \text { and } \theta=\tan ^{-1}\left(\frac{C_{y}}{C_{x}}\right)=\tan ^{-1}\left(\frac{311.77}{800}\right)=21.291^{\circ} \\
& \text { an } \uparrow \\
& \qquad
\end{aligned}
$$

PROBLEM 4.22

Determine the maximum tension which can be developed in cable $A B$ if the maximum allowable value of the reaction at C is 1000 N .

SOLUTION

$$
\begin{align*}
& \text { Now } \\
& C_{\max }=1000 \mathrm{~N} \\
& C^{2}=C_{x}^{2}+C_{y}^{2} \\
& \therefore \quad C_{y}=\sqrt{(1000)^{2}-C_{x}^{2}} \tag{1}\\
& \text { From f.b.d. of pedal } \\
& \xrightarrow{+} \Sigma F_{x}=0: \quad C_{x}-T_{\max }=0 \\
& \therefore \quad C_{x}=T_{\text {max }} \tag{2}\\
& \text { +) } \Sigma M_{D}=0: \quad C_{y}(0.4 \mathrm{~m})-T_{\max }\left[(0.18 \mathrm{~m}) \sin 60^{\circ}\right]=0 \\
& \therefore \quad C_{y}=0.38971 T_{\max } \tag{3}
\end{align*}
$$

Equating the expressions for C_{y} in Equations (1) and (3), with $C_{x}=T_{\max }$ from Equation (2)
and

$$
\begin{gathered}
\sqrt{(1000)^{2}-T_{\max }^{2}}=0.389711 T_{\max } \\
\therefore \quad T_{\max }^{2}=868,150
\end{gathered}
$$

$$
T_{\max }=931.75 \mathrm{~N}
$$

SOLUTION

(a) From f.b.d. of mounting bracket

$$
\begin{gathered}
+\Sigma M_{E}=0: \quad A(8 \mathrm{in} .)-80 \mathrm{lb} \cdot \mathrm{in} .-(10 \mathrm{lb})(6 \mathrm{in} .) \\
-(20 \mathrm{lb})(12 \mathrm{in} .)=0 \\
\therefore A=47.5 \mathrm{lb}
\end{gathered}
$$

$$
\text { or } \mathbf{A}=47.5 \mathrm{lb} \longrightarrow
$$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad B_{x}-10 \mathrm{lb}+47.5 \mathrm{lb}=0
$$

$$
\therefore \quad B_{x}=-37.5 \mathrm{lb}
$$

or

$$
\mathbf{B}_{x}=37.5 \mathrm{lb} \longleftarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad B_{y}-20 \mathrm{lb}=0
$$

$$
\therefore \quad B_{y}=20 \mathrm{lb}
$$

or
$\mathbf{B}_{y}=20.0 \mathrm{lb} \uparrow$
Then $\quad B=\sqrt{B_{x}^{2}+B_{y}^{2}}=\sqrt{(37.5)^{2}+(20.0)^{2}}=42.5 \mathrm{lb}$
and

$$
\theta=\tan ^{-1}\left(\frac{B_{y}}{B_{x}}\right)=\tan ^{-1}\left(\frac{20}{-37.5}\right)=-28.072^{\circ}
$$

$$
\text { or } \mathbf{B}=42.5 \mathrm{lb} \triangle 28.1^{\circ}
$$

(b) From f.b.d. of mounting bracket
(b)

$+\Sigma M_{B}=0:\left(A \cos 45^{\circ}\right)(8 \mathrm{in})-.80 \mathrm{lb} \cdot \mathrm{in}$.

$$
\begin{aligned}
& -(10 \mathrm{lb})(6 \mathrm{in} .)-(20 \mathrm{lb})(12 \mathrm{in} .)=0 \\
& \therefore \quad A=67.175 \mathrm{lb}
\end{aligned}
$$

$$
\text { or } \mathbf{A}=67.2 \mathrm{lb} \ll 45^{\circ} .
$$

$\xrightarrow{+} \Sigma F_{x}=0: B_{x}-10 \mathrm{lb}+67.175 \cos 45^{\circ}=0$

$$
\therefore \quad B_{x}=-37.500 \mathrm{lb}
$$

$$
\mathbf{B}_{x}=37.5 \mathrm{lb} \longleftarrow
$$

PROBLEM 4.23 CONTINUED

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0: \quad B_{y}-20 \mathrm{lb}+67.175 \sin 45^{\circ}=0 \\
\therefore \quad B_{y}=-27.500 \mathrm{lb} \\
\mathbf{B}_{y}=27.5 \mathrm{lb}
\end{gathered}
$$

$$
\text { Then } \quad B=\sqrt{B_{x}^{2}+B_{y}^{2}}=\sqrt{(37.5)^{2}+(27.5)^{2}}=46.503 \mathrm{lb}
$$

and

$$
\theta=\tan ^{-1}\left(\frac{B_{y}}{B_{x}}\right)=\tan ^{-1}\left(\frac{-27.5}{-37.5}\right)=36.254^{\circ}
$$

$$
\text { or } \mathbf{B}=46.5 \mathrm{lb} \quad \bar{y} 36.3^{\circ} \text { - }
$$

SOLUTION

(a) From f.b.d. of mounting bracket

$$
\begin{aligned}
+\Sigma M_{A}=0: & -B(8 \mathrm{in} .)-(20 \mathrm{lb})(12 \mathrm{in} .) \\
& +(10 \mathrm{lb})(2 \mathrm{in} .)-80 \mathrm{lb} \cdot \mathrm{in} .=0 \\
\therefore \quad & B=-37.5 \mathrm{lb}
\end{aligned}
$$

$$
\text { or } \mathbf{B}=37.5 \mathrm{lb} \longleftarrow
$$

or

$$
\xrightarrow{+} \Sigma F_{x}=0:-37.5 \mathrm{lb}-10 \mathrm{lb}+A_{x}=0
$$

$$
\therefore \quad A_{x}=47.5 \mathrm{lb}
$$

$$
\begin{gathered}
\mathbf{A}_{x}=47.5 \mathrm{lb} \longrightarrow \\
+\uparrow \Sigma F_{y}=0: \quad-20 \mathrm{lb}+A_{y}=0
\end{gathered}
$$

$$
\therefore A_{y}=20 \mathrm{lb}
$$

or

$$
\mathbf{A}_{y}=20.0 \mathrm{lb} \uparrow
$$

Then

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(47.5)^{2}+(20)^{2}}=51.539 \mathrm{lb}
$$

and

$$
\theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)=\tan ^{-1}\left(\frac{20}{47.5}\right)=22.834^{\circ}
$$

$$
\text { or } \mathbf{A}=51.5 \mathrm{lb} \nless^{\circ} 22.8^{\circ}
$$

(b) From f.b.d. of mounting bracket

$$
\begin{aligned}
&+\Sigma \Sigma M_{A}=0: \quad-\left(B \cos 45^{\circ}\right)(8 \mathrm{in} .)-(20 \mathrm{lb})(2 \mathrm{in} .) \\
&-80 \mathrm{lb} \cdot \mathrm{in} .+(10 \mathrm{lb})(2 \mathrm{in} .)=0 \\
& \therefore B=-53.033 \mathrm{lb} \\
& \quad \text { or } \mathbf{B}=53.0 \mathrm{lb} \searrow 45^{\circ} .
\end{aligned}
$$

$\xrightarrow{+} \Sigma F_{x}=0: \quad A_{x}+(-53.033 \mathrm{lb}) \cos 45^{\circ}-10=0$
$\therefore A_{x}=47.500 \mathrm{lb}$
or

$$
\mathbf{A}_{x}=47.5 \mathrm{lb} \longrightarrow
$$

PROBLEM 4.24 CONTINUED

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0: \quad A_{y}-(53.033 \mathrm{lb}) \sin 45^{\circ}-20=0 \\
\therefore A_{y}=-17.500 \mathrm{lb}
\end{gathered}
$$

or

Then

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(47.5)^{2}+(17.5)^{2}}=50.621 \mathrm{lb}
$$

$$
\text { and } \quad \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)=\tan ^{-1}\left(\frac{-17.5}{47.5}\right)=-20.225^{\circ}
$$

$$
\text { or } \mathbf{A}=50.6 \mathrm{lb} \quad 20.2^{\circ}
$$

PROBLEM 4.25

A sign is hung by two chains from mast $A B$. The mast is hinged at A and is supported by cable $B C$. Knowing that the tensions in chains $D E$ and $F H$ are 50 lb and 30 lb , respectively, and that $d=1.3 \mathrm{ft}$, determine (a) the tension in cable $B C,(b)$ the reaction at A.

SOLUTION

First note

$$
\overline{B C}=\sqrt{(8.4)^{2}+(1.3)^{2}}=8.5 \mathrm{ft}
$$

(a) From f.b.d. of mast $A B$

$$
\begin{gathered}
+\Sigma M_{A}=0:\left[\left(\frac{8.4}{8.5}\right) T_{B C}\right](2.5 \mathrm{ft})-(30 \mathrm{lb})(7.2 \mathrm{ft}) \\
-50 \mathrm{lb}(2.2 \mathrm{ft})=0 \\
\therefore \quad T_{B C}=131.952 \mathrm{lb}
\end{gathered}
$$

$$
\text { or } T_{B C}=132.0 \mathrm{lb}
$$

(b) From f.b.d. of mast $A B$

$$
\begin{gathered}
\xrightarrow{+} \Sigma F_{x}=0: \quad A_{x}-\left(\frac{8.4}{8.5}\right)(131.952 \mathrm{lb})=0 \\
\therefore \quad A_{x}=130.400 \mathrm{lb}
\end{gathered}
$$

or

$$
\mathbf{A}_{x}=130.4 \mathrm{lb} \longrightarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad A_{y}+\left(\frac{1.3}{8.5}\right)(131.952 \mathrm{lb})-30 \mathrm{lb}-50 \mathrm{lb}=0
$$

$$
\therefore A_{y}=59.819 \mathrm{lb}
$$

or

$$
\mathbf{A}_{y}=59.819 \mathrm{lb} \uparrow
$$

Then $\quad A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(130.4)^{2}+(59.819)^{2}}=143.466 \mathrm{lb}$
and $\quad \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)=\tan ^{-1}\left(\frac{59.819}{130.4}\right)=24.643^{\circ}$
or $\mathbf{A}=143.5 \mathrm{lb}$ < 24.6°

PROBLEM 4.26

A sign is hung by two chains from mast $A B$. The mast is hinged at A and is supported by cable $B C$. Knowing that the tensions in chains $D E$ and $F H$ are 30 lb and 20 lb , respectively, and that $d=1.54 \mathrm{ft}$, determine (a) the tension in cable $B C,(b)$ the reaction at A.

SOLUTION

First note

$$
\overline{B C}=\sqrt{(8.4)^{2}+(1.54)^{2}}=8.54 \mathrm{ft}
$$

(a) From f.b.d. of mast $A B$

$$
\begin{aligned}
&+) \Sigma M_{A}=0: {\left[\left(\frac{8.4}{8.54}\right) T_{B C}\right](2.5 \mathrm{ft})-20 \mathrm{lb}(7.2 \mathrm{ft}) } \\
&-30 \mathrm{lb}(2.2 \mathrm{ft})=0 \\
& \therefore \quad T_{B C}=85.401 \mathrm{lb}
\end{aligned}
$$

$$
\text { or } T_{B C}=85.4 \mathrm{lb}
$$

(b) From f.b.d. of mast $A B$

$$
\begin{gathered}
+\Sigma F_{x}=0: \quad A_{x}-\left(\frac{8.4}{8.54}\right)(85.401 \mathrm{lb})=0 \\
\therefore \quad A_{x}=84.001 \mathrm{lb}
\end{gathered}
$$

or

$$
\mathbf{A}_{x}=84.001 \mathrm{lb} \longrightarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad A_{y}+\left(\frac{1.54}{8.54}\right)(85.401 \mathrm{lb})-20 \mathrm{lb}-30 \mathrm{lb}=0
$$

$$
\therefore \quad A_{y}=34.600 \mathrm{lb}
$$

or

$$
\mathbf{A}_{y}=34.600 \mathrm{lb} \uparrow
$$

Then $\quad A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(84.001)^{2}+(34.600)^{2}}=90.848 \mathrm{lb}$
and $\quad \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)=\tan ^{-1}\left(\frac{34.6}{84.001}\right)=22.387^{\circ}$
or $\mathbf{A}=90.8 \mathrm{lb} \angle 22.4^{\circ}$

SOLUTION

(a) Given $\alpha=30^{\circ}$
(a)

From f.b.d. of frame

$$
\begin{array}{r}
+\Sigma M_{A}=0: \quad-(90 \mathrm{~N})(0.2 \mathrm{~m})-(90 \mathrm{~N})(0.06 \mathrm{~m}) \\
+\left(E \cos 60^{\circ}\right)(0.160 \mathrm{~m})+\left(E \sin 60^{\circ}\right)(0.100 \mathrm{~m})=0 \\
\therefore E=140.454 \mathrm{~N} \\
\quad \text { or } \mathbf{E}=140.5 \mathrm{~N} \text { 乙̌ } 60^{\circ} \text { - }
\end{array}
$$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad A_{x}-90 \mathrm{~N}+(140.454 \mathrm{~N}) \cos 60^{\circ}=0
$$

$$
\therefore \quad A_{x}=19.7730 \mathrm{~N}
$$

or

$$
\mathbf{A}_{x}=19.7730 \mathrm{~N} \longrightarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad A_{y}-90 \mathrm{~N}+(140.454 \mathrm{~N}) \sin 60^{\circ}=0
$$

$$
\therefore A_{y}=-31.637 \mathrm{~N}
$$

or

$$
\mathbf{A}_{y}=31.6 \mathrm{~N} \downarrow
$$

Then

$$
\begin{aligned}
A & =\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(19.7730)^{2}+(31.637)^{2}} \\
& =37.308 \mathrm{lb}
\end{aligned}
$$

$$
\text { and } \quad \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)=\tan ^{-1}\left(\frac{-31.637}{19.7730}\right)
$$

$$
=-57.995^{\circ}
$$

PROBLEM 4.27 CONTINUED

(b) Given $\alpha=45^{\circ}$

From f.b.d. of frame

$$
\begin{gathered}
+\Sigma M_{A}=0: \quad-(90 \mathrm{~N})(0.2 \mathrm{~m})-(90 \mathrm{~N})(0.06 \mathrm{~m}) \\
+\left(E \cos 45^{\circ}\right)(0.160 \mathrm{~m})+\left(E \sin 45^{\circ}\right)(0.100 \mathrm{~m})=0 \\
\therefore E=127.279 \mathrm{~N} \\
\text { or } \mathbf{E}=127.3 \mathrm{~N} \measuredangle 45^{\circ} \text { ব } \\
+\Sigma F_{x}=0: A_{x}-90+(127.279 \mathrm{~N}) \cos 45^{\circ}=0 \\
\therefore A_{x}=0 \\
+\uparrow \Sigma F_{y}=0: \quad A_{y}-90+(127.279 \mathrm{~N}) \sin 45^{\circ}=0 \\
\therefore A_{y}=0
\end{gathered}
$$

SOLUTION

First

$$
\begin{aligned}
& x_{A C}=(0.200 \mathrm{~m}) \cos 20^{\circ}=0.187939 \mathrm{~m} \\
& y_{A C}=(0.200 \mathrm{~m}) \sin 20^{\circ}=0.068404 \mathrm{~m}
\end{aligned}
$$

Then

$$
\begin{aligned}
y_{D A} & =0.240 \mathrm{~m}-y_{A C} \\
& =0.240 \mathrm{~m}-0.068404 \mathrm{~m} \\
& =0.171596 \mathrm{~m}
\end{aligned}
$$

and

$$
\tan \alpha=\frac{y_{D A}}{x_{A C}}=\frac{0.171596}{0.187939}
$$

$$
\therefore \quad \alpha=42.397^{\circ}
$$

and

$$
\beta=90^{\circ}-20^{\circ}-42.397^{\circ}=27.603^{\circ}
$$

(a) From f.b.d. of lever $A B$

$$
\begin{aligned}
&+) \Sigma M_{C}=0: \quad T \cos 27.603^{\circ}(0.2 \mathrm{~m}) \\
&-300 \mathrm{~N}\left[(0.3 \mathrm{~m}) \cos 20^{\circ}\right]=0
\end{aligned}
$$

$$
\therefore \quad T=477.17 \mathrm{~N}
$$

or $T=477 \mathrm{~N}$
(b) From f.b.d. of lever $A B$

$$
\begin{gathered}
+\Sigma F_{x}=0: \quad C_{x}+(477.17 \mathrm{~N}) \cos 42.397^{\circ}=0 \\
\therefore \quad C_{x}=-352.39 \mathrm{~N}
\end{gathered}
$$

or

$$
\mathbf{C}_{x}=352.39 \mathrm{~N} \longleftarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad C_{y}-300 \mathrm{~N}-(477.17 \mathrm{~N}) \sin 42.397^{\circ}=0
$$

$$
\therefore \quad C_{y}=621.74 \mathrm{~N}
$$

or

$$
\mathbf{C}_{y}=621.74 \mathrm{~N}^{\uparrow}
$$

PROBLEM 4.28 CONTINUED

Then $\quad C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(352.39)^{2}+(621.74)^{2}}=714.66 \mathrm{~N}$ and $\quad \theta=\tan ^{-1}\left(\frac{C_{y}}{C_{x}}\right)=\tan ^{-1}\left(\frac{621.74}{-352.39}\right)=-60.456^{\circ}$ or $\mathbf{C}=715 \mathrm{~N} \backslash 60.5^{\circ}$ 《

PROBLEM 4.29

Neglecting friction and the radius of the pulley, determine the tension in cable $B C D$ and the reaction at support A when $d=80 \mathrm{~mm}$.

SOLUTION

First

f. b.d.

$$
\begin{gathered}
\alpha=\tan ^{-1}\left(\frac{60}{280}\right)=12.0948^{\circ} \\
\beta=\tan ^{-1}\left(\frac{60}{80}\right)=36.870^{\circ}
\end{gathered}
$$

From f.b.d. of object $B A D$

$$
\begin{aligned}
+\Sigma M_{A}=0: \quad & (40 \mathrm{~N})(0.18 \mathrm{~m})+(T \cos \alpha)(0.08 \mathrm{~m}) \\
+ & (T \sin \alpha)(0.18 \mathrm{~m})-(T \cos \beta)(0.08 \mathrm{~m}) \\
& -(T \sin \beta)(0.18 \mathrm{~m})=0 \\
\therefore \quad T & =\left(\frac{7.2 \mathrm{~N} \cdot \mathrm{~m}}{0.056061}\right)=128.433 \mathrm{~N}
\end{aligned}
$$

$$
\text { or } T=128.4 \mathrm{~N}
$$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad(128.433 \mathrm{~N})(\cos \beta-\cos \alpha)+A_{x}=0
$$

$$
\therefore \quad A_{x}=22.836 \mathrm{~N}
$$

or

$$
\mathbf{A}_{x}=22.836 \mathrm{~N} \longrightarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad A_{y}+(128.433 \mathrm{~N})(\sin \beta+\sin \alpha)+40 \mathrm{~N}=0
$$

$$
\therefore \quad A_{y}=-143.970 \mathrm{~N}
$$

or

$$
\mathbf{A}_{y}=143.970 \mathrm{~N} \downarrow
$$

Then

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(22.836)^{2}+(143.970)^{2}}=145.770 \mathrm{~N}
$$

and

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)=\tan ^{-1}\left(\frac{-143.970}{22.836}\right)=-80.987^{\circ} \\
& \text { or } \mathbf{A}=145.8 \mathrm{~N} \text { ک } 81.0^{\circ}
\end{aligned}
$$

PROBLEM 4.30

Neglecting friction and the radius of the pulley, determine the tension in cable $B C D$ and the reaction at support A when $d=144 \mathrm{~mm}$.

SOLUTION

First note

f.b.d.

$$
\begin{aligned}
\alpha & =\tan ^{-1}\left(\frac{60}{216}\right)=15.5241^{\circ} \\
\beta & =\tan ^{-1}\left(\frac{60}{144}\right)=22.620^{\circ}
\end{aligned}
$$

From f.b.d. of member $B A D$

$$
\begin{aligned}
+\Sigma M_{A}=0: \quad & (40 \mathrm{~N})(0.18 \mathrm{~m})+(T \cos \alpha)(0.08 \mathrm{~m}) \\
& +(T \sin \alpha)(0.18 \mathrm{~m})-(T \cos \beta)(0.08 \mathrm{~m}) \\
& -(T \sin \beta)(0.18 \mathrm{~m})=0 \\
\therefore \quad T= & \left(\frac{7.2 \mathrm{~N} \cdot \mathrm{~m}}{0.0178199 \mathrm{~m}}\right)=404.04 \mathrm{~N}
\end{aligned}
$$

$$
\text { or } T=404 \mathrm{~N}
$$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad A_{x}+(404.04 \mathrm{~N})(\cos \beta-\cos \alpha)=0
$$

$$
\therefore \quad A_{x}=16.3402 \mathrm{~N}
$$

$$
\mathbf{A}_{x}=16.3402 \mathrm{~N} \longrightarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad A_{y}+(404.04 \mathrm{~N})(\sin \beta+\sin \alpha)+40 \mathrm{~N}=0
$$

$$
\therefore \quad A_{y}=-303.54 \mathrm{~N}
$$

or

$$
\mathbf{A}_{y}=303.54 \mathrm{~N} \downarrow
$$

Then

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(16.3402)^{2}+(303.54)^{2}}=303.98 \mathrm{~N}
$$

and

$$
\begin{aligned}
\theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)=\tan ^{-1}\left(\frac{-303.54}{16.3402}\right) & =-86.919^{\circ} \\
\text { or } \mathbf{A} & =304 \mathrm{~N} \times 86.9^{\circ}
\end{aligned}
$$

PROBLEM 4.31

Neglecting friction, determine the tension in cable $A B D$ and the reaction at support C.

SOLUTION

From f.b.d. of inverted T-member

$$
\begin{gathered}
+\Sigma M_{C}=0: T(25 \mathrm{in} .)-T(10 \mathrm{in} .)-(30 \mathrm{lb})(10 \mathrm{in} .)=0 \\
\therefore T=20 \mathrm{lb}
\end{gathered}
$$

or $T=20.0 \mathrm{lb}$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad C_{x}-20 \mathrm{lb}=0
$$

$$
\therefore \quad C_{x}=20 \mathrm{lb}
$$

$$
\mathbf{C}_{x}=20.0 \mathrm{lb} \longrightarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad C_{y}+20 \mathrm{lb}-30 \mathrm{lb}=0
$$

$$
\therefore \quad C_{y}=10 \mathrm{lb}
$$

or

$$
\mathbf{C}_{y}=10.00 \mathrm{lb} \uparrow
$$

Then

$$
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(20)^{2}+(10)^{2}}=22.361 \mathrm{lb}
$$

and

$$
\theta=\tan ^{-1}\left(\frac{C_{y}}{C_{x}}\right)=\tan ^{-1}\left(\frac{10}{20}\right)=26.565^{\circ}
$$

or

$$
\mathbf{C}=22.4 \mathrm{lb} \measuredangle 26.6^{\circ}
$$

PROBLEM 4.32

Rod $A B C$ is bent in the shape of a circular arc of radius R. Knowing that $\theta=35^{\circ}$, determine the reaction (a) at $B,(b)$ at C.

SOLUTION

For $\theta=35^{\circ}$
(a) From the f.b.d. of $\operatorname{rod} A B C$

$$
\begin{gathered}
+\Sigma M_{D}=0: \quad C_{x}(R)-P(R)=0 \\
\therefore \quad C_{x}=P \\
\mathbf{C}_{x}=P \longrightarrow \\
\xrightarrow{+} \Sigma F_{x}=0: \quad P-B \sin 35^{\circ}=0 \\
\therefore B=\frac{P}{\sin 35^{\circ}}=1.74345 P
\end{gathered}
$$

or

$$
\begin{gathered}
\mathbf{C}_{x}=P \longrightarrow \\
\xrightarrow{+} \Sigma F_{x}=0: \quad P-B \sin 35^{\circ}=0 \\
\therefore B=\frac{P}{\sin 35^{\circ}}=1.74345 P \\
\qquad \text { or } \mathbf{B}=1.743 P \quad \searrow 55.0^{\circ}
\end{gathered}
$$

(b) From the f.b.d. of $\operatorname{rod} A B C$

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0: \quad C_{y}+(1.74345 P) \cos 35^{\circ}-P=0 \\
\therefore \quad C_{y}=-0.42815 P
\end{gathered}
$$

or

$$
\mathbf{C}_{y}=0.42815 P
$$

Then

$$
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(P)^{2}+(0.42815 P)^{2}}=1.08780 P
$$

and $\quad \theta=\tan ^{-1}\left(\frac{C_{y}}{C_{x}}\right)=\tan ^{-1}\left(\frac{-0.42815 P}{P}\right)=-23.178^{\circ}$
or $\mathbf{C}=1.088 P$ © 23.2°

PROBLEM 4.33

$\operatorname{Rod} A B C$ is bent in the shape of a circular arc of radius R. Knowing that $\theta=50^{\circ}$, determine the reaction (a) at $B,(b)$ at C.

SOLUTION

For $\theta=50^{\circ}$
(a) From the f.b.d. of $\operatorname{rod} A B C$

$$
\begin{gathered}
+\Sigma M_{D}=0: \quad C_{x}(R)-P(R)=0 \\
\therefore \quad C_{x}=P \\
\mathbf{C}_{x}=P \longrightarrow \\
\xrightarrow{+} \Sigma F_{x}=0: \quad P-B \sin 50^{\circ}=0 \\
\therefore B=\frac{P}{\sin 50^{\circ}}=1.30541 P
\end{gathered}
$$

or

$$
\text { or } \mathbf{B}=1.305 P \searrow 40.0^{\circ}
$$

(b) From the f.b.d. of $\operatorname{rod} A B C$

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0: \quad C_{y}-P+(1.30541 P) \cos 50^{\circ}=0 \\
\therefore \quad C_{y}=0.160900 P
\end{gathered}
$$

or

$$
\mathbf{C}_{y}=0.1609 P \uparrow
$$

Then

$$
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(P)^{2}+(0.1609 P)^{2}}=1.01286 P
$$

and

$$
\theta=\tan ^{-1}\left(\frac{C_{y}}{C_{x}}\right)=\tan ^{-1}\left(\frac{0.1609 P}{P}\right)=9.1405^{\circ}
$$

First note

$$
\begin{aligned}
& \alpha=\tan ^{-1}\left(\frac{15}{36}\right)=22.620^{\circ} \\
& \beta=\tan ^{-1}\left(\frac{15}{20}\right)=36.870^{\circ}
\end{aligned}
$$

(a) From f.b.d. of member $A B C$

$$
\begin{gathered}
+) \Sigma M_{C}=0:(30 \mathrm{lb})(28 \mathrm{in} .)-\left(T \sin 22.620^{\circ}\right)(36 \mathrm{in} .) \\
-\left(T \sin 36.870^{\circ}\right)(20 \mathrm{in} .)=0 \\
\therefore \quad T=32.500 \mathrm{lb}
\end{gathered}
$$

$$
\text { or } T=32.5 \mathrm{lb}
$$

(b) From f.b.d. of member $A B C$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad C_{x}+(32.500 \mathrm{lb})\left(\cos 22.620^{\circ}+\cos 36.870^{\circ}\right)=0
$$

$$
\therefore \quad C_{x}=-56.000 \mathrm{lb}
$$

or

$$
\mathbf{C}_{x}=56.000 \mathrm{lb} \longleftarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad C_{y}-30 \mathrm{lb}+(32.500 \mathrm{lb})\left(\sin 22.620^{\circ}+\sin 36.870^{\circ}\right)=0
$$

$$
\therefore \quad C_{y}=-2.0001 \mathrm{lb}
$$

or

$$
\mathbf{C}_{y}=2.0001 \mathrm{lb}
$$

Then

$$
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(56.0)^{2}+(2.001)^{2}}=56.036 \mathrm{lb}
$$

and

$$
\theta=\tan ^{-1}\left(\frac{C_{y}}{C_{x}}\right)=\tan ^{-1}\left(\frac{-2.0}{-56.0}\right)=2.0454^{\circ}
$$

or $\mathbf{C}=56.0 \mathrm{lb} \quad$ V $^{\prime} .05^{\circ}$

SOLUTION

From f.b.d. of bent $A C D$

$$
\begin{gathered}
+\Sigma M_{C}=0: \quad\left(T \cos 30^{\circ}\right)\left(2 a \sin 60^{\circ}\right)+\left(T \sin 30^{\circ}\right)\left(a+2 a \cos 60^{\circ}\right) \\
-T(a)-P(a)=0 \\
\therefore \quad T=\frac{P}{1.5}
\end{gathered}
$$

or $T=\frac{2 P}{3}$
f.b.d.

$$
\begin{array}{r}
\xrightarrow{+} \Sigma F_{x}=0: \quad C_{x}-\left(\frac{2 P}{3}\right) \cos 30^{\circ}=0 \\
\therefore \quad C_{x}=\frac{\sqrt{3}}{3} P=0.57735 P
\end{array}
$$

or

$$
\mathbf{C}_{x}=0.577 P \longrightarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad C_{y}+\frac{2}{3} P-P+\left(\frac{2 P}{3}\right) \cos 60^{\circ}=0
$$

$$
\therefore \quad C_{y}=0
$$

SOLUTION

From f.b.d. of bent $A C D$

f.b.d.

$$
\begin{gathered}
+\Sigma M_{C}=0: \quad\left(T \cos 60^{\circ}\right)\left(2 a \sin 30^{\circ}\right)+T \sin 60^{\circ}\left(a+2 a \cos 30^{\circ}\right) \\
-P(a)-T(a)=0 \\
\therefore \quad T=\frac{P}{1.86603}=0.53590 P
\end{gathered}
$$

$$
\text { or } T=0.536 P
$$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad C_{x}-(0.53590 P) \cos 60^{\circ}=0
$$

$$
\therefore \quad C_{x}=0.26795 P
$$

or

$$
\mathbf{C}_{x}=0.268 P \longrightarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad C_{y}+0.53590 P-P+(0.53590 P) \sin 60^{\circ}=0
$$

$$
\therefore \quad C_{y}=0
$$

PROBLEM 4.37

Determine the tension in each cable and the reaction at D.

SOLUTION

First note

$$
\begin{aligned}
& \overline{B E}=\sqrt{(20)^{2}+(8)^{2}} \mathrm{in.}=21.541 \mathrm{in} . \\
& \overline{C F}=\sqrt{(10)^{2}+(8)^{2}} \mathrm{in} .=12.8062 \mathrm{in}
\end{aligned}
$$

From f.b.d. of member $A B C D$

$$
\begin{gathered}
+) \Sigma M_{C}=0:(120 \mathrm{lb})(20 \mathrm{in} .)-\left[\left(\frac{8}{21.541}\right) T_{B E}\right](10 \mathrm{in} .)=0 \\
\therefore T_{B E}=646.24 \mathrm{lb}
\end{gathered}
$$

$$
+\uparrow \Sigma F_{y}=0: \quad-120 \mathrm{lb}+\left(\frac{8}{21.541}\right)(646.24 \mathrm{lb})-\left(\frac{8}{12.8062}\right) T_{C F}=0
$$

$$
\therefore \quad T_{C F}=192.099 \mathrm{lb}
$$

or $T_{C F}=192.1 \mathrm{lb}$
$\xrightarrow{+} \Sigma F_{x}=0:\left(\frac{20}{21.541}\right)(646.24 \mathrm{lb})+\left(\frac{10}{12.8062}\right)(192.099 \mathrm{lb})-D=0$
$\therefore D=750.01 \mathrm{lb}$
or $\mathbf{D}=750 \mathrm{lb}$

SOLUTION

f.b.d.
(a) From f.b.d. of rod $A B C D$

$$
\begin{gathered}
+\Sigma M_{E}=0:(25 \mathrm{~N}) \cos 60^{\circ}\left(d_{O E}\right)-\left(T \cos 45^{\circ}\right)\left(d_{O E}\right)=0 \\
\therefore \quad T=17.6777 \mathrm{~N}
\end{gathered}
$$

or $T=17.68 \mathrm{~N}$
(b) From f.b.d. of rod $A B C D$

$$
\begin{array}{r}
+\Sigma F_{x}=0:-(17.6777 \mathrm{~N}) \cos 45^{\circ}+(25 \mathrm{~N}) \cos 60^{\circ} \\
+N_{D} \cos 45^{\circ}-N_{A} \cos 45^{\circ}=0
\end{array}
$$

$$
\therefore N_{A}-N_{D}=0
$$

or

$$
\begin{equation*}
N_{D}=N_{A} \tag{1}
\end{equation*}
$$

$$
+\uparrow \Sigma F_{y}=0: \quad N_{A} \sin 45^{\circ}+N_{D} \sin 45^{\circ}-(17.6777 \mathrm{~N}) \sin 45^{\circ}
$$

$$
-(25 \mathrm{~N}) \sin 60^{\circ}=0
$$

$$
\begin{equation*}
\therefore \quad N_{A}+N_{D}=48.296 \mathrm{~N} \tag{2}
\end{equation*}
$$

Substituting Equation (1) into Equation (2),

$$
\begin{gathered}
2 N_{A}=48.296 \mathrm{~N} \\
N_{A}=24.148 \mathrm{~N}
\end{gathered}
$$

$$
\begin{aligned}
\text { or } \mathbf{N}_{A} & =24.1 \mathrm{~N} \triangle 45.0^{\circ} \\
\text { and } \mathbf{N}_{D} & =24.1 \mathrm{~N} \measuredangle 45.0^{\circ}
\end{aligned}
$$

PROBLEM 4.39

Rod $A B C D$ is bent in the shape of a circular arc of radius 80 mm and rests against frictionless surfaces at A and D. Knowing that the collar at B can move freely on the rod, determine (a) the value of θ for which the tension in cord $O B$ is as small as possible, (b) the corresponding value of the tension, (c) the reactions at A and D.

SOLUTION

(a) From f.b.d. of rod $A B C D$

$$
+\Sigma M_{E}=0: \quad(25 \mathrm{~N}) \cos 60^{\circ}\left(d_{O E}\right)-(T \cos \theta)\left(d_{O E}\right)=0
$$

or

$$
\begin{equation*}
T=\frac{12.5 \mathrm{~N}}{\cos \theta} \tag{1}
\end{equation*}
$$

$\therefore \quad T$ is minimum when $\cos \theta$ is maximum,

$$
\text { or } \theta=0^{\circ}
$$

(b) From Equation (1)

$$
T=\frac{12.5 \mathrm{~N}}{\cos 0}=12.5 \mathrm{~N}
$$

or $T_{\text {min }}=12.50 \mathrm{~N}$
f. b.d.
(c) $\xrightarrow{+} \Sigma F_{x}=0:-N_{A} \cos 45^{\circ}+N_{D} \cos 45^{\circ}+12.5 \mathrm{~N}$

$$
-(25 \mathrm{~N}) \cos 60^{\circ}=0
$$

$$
\therefore \quad N_{D}-N_{A}=0
$$

or

$$
\begin{equation*}
N_{D}=N_{A} \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
+\uparrow \Sigma F_{y}=0: \quad N_{A} \sin 45^{\circ}+N_{D} \sin 45^{\circ}-(25 \mathrm{~N}) \sin 60^{\circ}=0 \\
\therefore \quad N_{D}+N_{A}=30.619 \mathrm{~N} \tag{3}
\end{gather*}
$$

Substituting Equation (2) into Equation (3),

$$
\begin{aligned}
& 2 N_{A}=30.619 \\
& N_{A}=15.3095 \mathrm{~N} \\
& \text { or } \mathbf{N}_{A}=15.31 \mathrm{~N} \searrow 45.0^{\circ} \\
& \text { and } \mathbf{N}_{D}=15.31 \mathrm{~N} \measuredangle 45.0^{\circ}
\end{aligned}
$$

PROBLEM 4.40

Bar $A C$ supports two $100-\mathrm{lb}$ loads as shown. Rollers A and C rest against frictionless surfaces and a cable $B D$ is attached at B. Determine (a) the tension in cable $B D,(b)$ the reaction at $A,(c)$ the reaction at C.

(a) From f.b.d. of bar $A C$

$$
\begin{aligned}
+\Sigma M_{E}=0: & (0.97780 T)(7 \mathrm{in} .)-(0.20953 T)(6 \mathrm{in} .) \\
& -(100 \mathrm{lb})(16 \mathrm{in} .)-(100 \mathrm{lb})(4 \mathrm{in} .)=0
\end{aligned}
$$

$$
\therefore \quad T=357.95 \mathrm{lb}
$$

$$
\text { or } T=358 \mathrm{lb}
$$

(b) From f.b.d. of bar $A C$

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0: \quad A-100-0.20953(357.95)-100=0 \\
\therefore \quad A=275.00 \mathrm{lb}
\end{gathered}
$$

$$
\text { or } \mathbf{A}=275 \mathrm{lb}
$$

(c) From f.b.d of bar $A C$

$$
\begin{gathered}
\xrightarrow{+} \Sigma F_{x}=0: \quad 0.97780(357.95)-C=0 \\
\therefore \quad C=350.00 \mathrm{lb}
\end{gathered}
$$

PROBLEM 4.41

A parabolic slot has been cut in plate $A D$, and the plate has been placed so that the slot fits two fixed, frictionless pins B and C. The equation of the slot is $y=x^{2} / 100$, where x and y are expressed in mm. Knowing that the input force $P=4 \mathrm{~N}$, determine (a) the force each pin exerts on the plate, (b) the output force \mathbf{Q}.

SOLUTION

The equation of the slot is

$$
y=\frac{x^{2}}{100}
$$

Now

$$
\begin{gathered}
\left(\frac{d y}{d x}\right)_{C}=\text { slope of the slot at } C \\
=\left[\frac{2 x}{100}\right]_{x=60 \mathrm{~mm}}=1.200 \\
\therefore \quad \alpha=\tan ^{-1}(1.200)=50.194^{\circ} \\
\theta=90^{\circ}-\alpha=90^{\circ}-50.194^{\circ}=39.806^{\circ}
\end{gathered}
$$

and
Coordinates of C are

$$
x_{C}=60 \mathrm{~mm}, \quad y_{C}=\frac{(60)^{2}}{100}=36 \mathrm{~mm}
$$

Also, the coordinates of D are

$$
x_{D}=60 \mathrm{~mm}
$$

$$
\begin{aligned}
& \begin{aligned}
y_{D} & =46 \mathrm{~mm}+(40 \mathrm{~mm}) \sin \beta \\
& \beta=\tan ^{-1}\left(\frac{120-66}{240}\right)=12.6804^{\circ} \\
\therefore \quad y_{D} & =46 \mathrm{~mm}+(40 \mathrm{~mm}) \tan 12.6804^{\circ} \\
& =55.000 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

PROBLEM 4.41 CONTINUED

Also,

$$
\begin{aligned}
y_{E D} & =\frac{60 \mathrm{~mm}}{\tan \beta}=\frac{60 \mathrm{~mm}}{\tan 12.6804^{\circ}} \\
& =266.67 \mathrm{~mm}
\end{aligned}
$$

From f.b.d. of plate $A D$

$$
\text { +) } \Sigma M_{E}=0: \quad\left(N_{C} \cos \theta\right)\left[y_{E D}-\left(y_{D}-y_{C}\right)\right]+\left(N_{C} \sin \theta\right)\left(x_{C}\right)-(4 \mathrm{~N})\left(y_{E D}-y_{D}\right)=0
$$

$\left(N_{C} \cos 39.806^{\circ}\right)[266.67-(55.0-36.0)] \mathrm{mm}+N_{C} \sin \left(39.806^{\circ}\right)(60 \mathrm{~mm})-(4 \mathrm{~N})(266.67-55.0) \mathrm{mm}=0$
or
$\therefore N_{C}=3.7025 \mathrm{~N}$

$$
\mathbf{N}_{C}=3.70 \mathrm{~N} \searrow 39.8^{\circ}
$$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad-4 \mathrm{~N}+N_{C} \cos \theta+Q \sin \beta=0
$$

$$
-4 \mathrm{~N}+(3.7025 \mathrm{~N}) \cos 39.806^{\circ}+Q \sin 12.6804^{\circ}=0
$$

$$
\therefore Q=5.2649 \mathrm{~N}
$$

or

$$
\mathbf{Q}=5.26 \mathrm{~N} \text { У } 77.3^{\circ}
$$

$$
+\uparrow \Sigma F_{y}=0: \quad N_{B}+N_{C} \sin \theta-Q \cos \beta=0
$$

$$
N_{B}+(3.7025 \mathrm{~N}) \sin 39.806^{\circ}-(5.2649 \mathrm{~N}) \cos 12.6804^{\circ}=0
$$

$$
\therefore \quad N_{B}=2.7662 \mathrm{~N}
$$

or
(a)

$$
\mathbf{N}_{B}=2.77 \mathrm{~N}^{\uparrow}
$$

$$
\begin{array}{r}
\mathbf{N}_{B}=2.77 \mathrm{~N} \uparrow, \quad \mathbf{N}_{C}=3.70 \mathrm{~N} \searrow 39.8^{\circ} \\
\mathbf{Q}=5.26 \mathrm{~N}<277.3^{\circ}(\text { output })
\end{array}
$$

PROBLEM 4.42

A parabolic slot has been cut in plate $A D$, and the plate has been placed so that the slot fits two fixed, frictionless pins B and C. The equation of the slot is $y=x^{2} / 100$, where x and y are expressed in mm . Knowing that ${ }_{x}$ the maximum allowable force exerted on the roller at D is 8.5 N , determine (a) the corresponding magnitude of the input force \mathbf{P}, (b) the force each pin exerts on the plate.

SOLUTION

The equation of the slot is,

$$
y=\frac{x^{2}}{100}
$$

Now

$$
\begin{aligned}
\left(\frac{d y}{d x}\right)_{C} & =\text { slope of slot at } C \\
& =\left[\frac{2 x}{100}\right]_{x=60 \mathrm{~mm}}=1.200
\end{aligned}
$$

f.b.d.

$$
\therefore \quad \alpha=\tan ^{-1}(1.200)=50.194^{\circ}
$$

and

$$
\theta=90^{\circ}-\alpha=90^{\circ}-50.194^{\circ}=39.806^{\circ}
$$

Coordinates of C are

$$
x_{C}=60 \mathrm{~mm}, y_{C}=\frac{(60)^{2}}{100}=36 \mathrm{~mm}
$$

Also, the coordinates of D are
where

$$
\begin{gathered}
x_{D}=60 \mathrm{~mm} \\
y_{D}=46 \mathrm{~mm}+(40 \mathrm{~mm}) \sin \beta \\
\beta=\tan ^{-1}\left(\frac{120-66}{240}\right)=12.6804^{\circ} \\
\therefore y_{D}=46 \mathrm{~mm}+(40 \mathrm{~mm}) \tan 12.6804^{\circ}=55.000 \mathrm{~mm}
\end{gathered}
$$

Note:

$$
x_{E}=0
$$

$$
\begin{aligned}
y_{E} & =y_{C}+(60 \mathrm{~mm}) \tan \theta \\
& =36 \mathrm{~mm}+(60 \mathrm{~mm}) \tan 39.806^{\circ} \\
& =86.001 \mathrm{~mm}
\end{aligned}
$$

(a) From f.b.d. of plate $A D$

$$
\begin{aligned}
+\Sigma M_{E}=0: & P\left(y_{E}\right)-[(8.5 \mathrm{~N}) \sin \beta]\left(y_{E}-y_{D}\right) \\
& -[(8.5 \mathrm{~N}) \cos \beta](60 \mathrm{~mm})=0
\end{aligned}
$$

PROBLEM 4.42 CONITNIUED

$$
\begin{gathered}
P(86.001 \mathrm{~mm})-\left[(8.5 \mathrm{~N}) \sin 12.6804^{\circ}\right](31.001 \mathrm{~mm}) \\
-\left[(8.5 \mathrm{~N}) \cos 12.6804^{\circ}\right](60 \mathrm{~mm})=0 \\
\therefore \quad P=6.4581 \mathrm{~N}
\end{gathered}
$$

$$
\text { or } P=6.46 \mathrm{~N}
$$

(b)

$$
\begin{gathered}
\xrightarrow{+} \Sigma F_{x}=0: \quad P-(8.5 \mathrm{~N}) \sin \beta-N_{C} \cos \theta=0 \\
6.458 \mathrm{~N}-(8.5 \mathrm{~N})\left(\sin 12.6804^{\circ}\right)-N_{C}\left(\cos 39.806^{\circ}\right)=0 \\
\therefore \quad N_{C}=5.9778 \mathrm{~N} \\
\text { or } \mathbf{N}_{C}=5.98 \mathrm{~N} \searrow 39.8^{\circ} \\
+\uparrow \Sigma F_{y}=0: \quad N_{B}+N_{C} \sin \theta-(8.5 \mathrm{~N}) \cos \beta=0 \\
N_{B}+(5.9778 \mathrm{~N}) \sin 39.806^{\circ}-(8.5 \mathrm{~N}) \cos 12.6804^{\circ}=0 \\
\therefore \quad N_{B}=4.4657 \mathrm{~N} \quad \text { or } \mathbf{N}_{B}=4.47 \mathrm{~N} \uparrow
\end{gathered}
$$

PROBLEM 4.43

A movable bracket is held at rest by a cable attached at E and by frictionless rollers. Knowing that the width of post $F G$ is slightly less than the distance between the rollers, determine the force exerted on the post by each roller when $\alpha=20^{\circ}$.

SOLUTION

f. b.d.

From f.b.d. of bracket

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0: \quad T \sin 20^{\circ}-60 \mathrm{lb}=0 \\
\therefore \quad T=175.428 \mathrm{lb} \\
T_{x}=(175.428 \mathrm{lb}) \cos 20^{\circ}=164.849 \mathrm{lb} \\
T_{y}=(175.428 \mathrm{lb}) \sin 20^{\circ}=60 \mathrm{lb}
\end{gathered}
$$

Note: T_{y} and 60 lb force form a couple of

$$
\begin{gathered}
60 \mathrm{lb}(10 \mathrm{in} .)=600 \mathrm{lb} \cdot \mathrm{in} . \\
+\Sigma M_{B}=0: \begin{array}{c}
\\
+\quad 164.849 \mathrm{lb}(5 \mathrm{in} .)-600 \mathrm{lb} \cdot \mathrm{in} .+F_{C D}(8 \mathrm{in} .)=0 \\
\text { or } \\
\therefore F_{C D}=-28.030 \mathrm{lb} \\
+\Sigma F_{x}=0: \quad F_{C D}+F_{A B}-T_{x}=0 \\
-28.030 \mathrm{lb}+F_{A B}-164.849 \mathrm{lb}=0 \\
+F_{A B}=192.879 \mathrm{lb}
\end{array} \\
\text { or } \\
\qquad \mathbf{F}_{A B}=192.9 \mathrm{lb} \longrightarrow
\end{gathered}
$$

Rollers A and C can only apply a horizontal force to the right onto the vertical post corresponding to the equal and opposite force to the left on the bracket. Since \mathbf{F}_{AB} is directed to the right onto the bracket, roller B will react \mathbf{F}_{AB}. Also, since \mathbf{F}_{CD} is acting to the left on the bracket, it will act to the right on the post at roller C.

PROBLEM 4.43 CONTINUED

$$
\begin{gathered}
\therefore \quad \mathbf{A}=\mathbf{D}=0 \\
\mathbf{B}=192.9 \mathrm{lb} \longrightarrow \\
\mathbf{C}=28.0 \mathrm{lb} \longleftarrow
\end{gathered}
$$

Forces exerted on the post are

$$
\begin{array}{r}
\mathbf{A}=\mathbf{D}=0 \text { 4 } \\
\mathbf{B}=192.9 \mathrm{lb} \longleftarrow \text { 4 } \\
\mathbf{C}=28.0 \mathrm{lb}
\end{array}
$$

SOLUTION

f.b.d.
From f.b.d. of bracket

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0: \quad T \sin 30^{\circ}-60 \mathrm{lb}=0 \\
\therefore \quad T=120 \mathrm{lb} \\
T_{x}=(120 \mathrm{lb}) \cos 30^{\circ}=103.923 \mathrm{lb} \\
T_{y}=(120 \mathrm{lb}) \sin 30^{\circ}=60 \mathrm{lb}
\end{gathered}
$$

Note: T_{y} and 60 lb force form a couple of

$$
(60 \mathrm{lb})(10 \mathrm{in} .)=600 \mathrm{lb} \cdot \mathrm{in} .
$$

$$
+\Sigma M_{B}=0: \quad(103.923 \mathrm{lb})(5 \mathrm{in} .)-600 \mathrm{lb} \cdot \mathrm{in} .+F_{C D}(8 \mathrm{in} .)=0
$$

$$
\therefore \quad F_{C D}=10.0481 \mathrm{lb}
$$

or

$$
\mathbf{F}_{C D}=10.05 \mathrm{lb} \longrightarrow
$$

$$
\begin{gathered}
\xrightarrow{+} \Sigma F_{x}=0: \quad F_{C D}+F_{A B}-T_{x}=0 \\
10.0481 \mathrm{lb}+F_{A B}-103.923 \mathrm{lb}=0 \\
\therefore F_{A B}=93.875 \mathrm{lb}
\end{gathered}
$$

or

$$
\mathbf{F}_{A B}=93.9 \mathrm{lb} \longrightarrow
$$

Rollers A and C can only apply a horizontal force to the right on the vertical post corresponding to the equal and opposite force to the left on the bracket. The opposite direction apply to roller B and D. Since both $\mathbf{F}_{A B}$ and $\mathbf{F}_{C D}$ act to the right on the bracket, rollers B and D will react these forces.

$$
\begin{gathered}
\therefore \quad \mathbf{A}=\mathbf{C}=0 \\
\mathbf{B}=93.9 \mathrm{lb} \longrightarrow \\
\mathbf{D}=10.05 \mathrm{lb} \longrightarrow
\end{gathered}
$$

Forces exerted on the post are

$$
\begin{array}{r}
\mathbf{A}=\mathbf{C}=0 \\
\mathbf{B}=93.9 \mathrm{lb} \longleftarrow \\
\mathbf{D}=10.05 \mathrm{lb}
\end{array}
$$

SOLUTION

(a)
(a) From f.b.d. of $A B$

$$
\begin{aligned}
\xrightarrow{+} \Sigma F_{x} & =0: \quad A_{x}=0 \\
+\uparrow \Sigma F_{y} & =0: \quad A_{y}-20 \mathrm{lb}=0 \\
A_{y} & =20.0 \mathrm{lb}
\end{aligned}
$$

or
and $\mathbf{A}=20.0 \mathrm{lb} \uparrow$
+) $\Sigma M_{A}=0: \quad M_{A}-(20 \mathrm{lb})(1.5 \mathrm{ft})=0$
$\therefore M_{A}=30.0 \mathrm{lb} \cdot \mathrm{ft}$
or $\left.\mathbf{M}_{A}=30.0 \mathrm{lb} \cdot \mathrm{ft}\right)$
(b) Note:

$$
4 \mathrm{in} .\left(\frac{1 \mathrm{ft}}{12 \mathrm{in} .}\right)=0.33333 \mathrm{ft}
$$

(b)

From f.b.d. of $A B$

$$
\begin{array}{r}
\xrightarrow{+} \Sigma F_{x}=0: \quad A_{x}-20 \mathrm{lb}=0 \\
A_{x}=20.0 \mathrm{lb}
\end{array}
$$

or

$$
+\uparrow \Sigma F_{y}=0: \quad A_{y}-20 \mathrm{lb}=0
$$

or

$$
A_{y}=20.0 \mathrm{lb}
$$

Then

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(20.0)^{2}+(20.0)^{2}}=28.284 \mathrm{lb}
$$

$$
\therefore \quad \mathbf{A}=28.3 \mathrm{lb} \ll 45^{\circ}
$$

$$
+\Sigma M_{A}=0: \quad M_{A}+(20 \mathrm{lb})(0.33333 \mathrm{ft})
$$

$$
-(20 \mathrm{lb})(1.5 \mathrm{ft}+0.33333 \mathrm{ft})=0
$$

$\therefore \quad M_{A}=30.0 \mathrm{lb} \cdot \mathrm{ft}$

$$
\text { or } \left.\mathbf{M}_{A}=30.0 \mathrm{lb} \cdot \mathrm{ft}\right)
$$

SOLUTION

From f.b.d. of bracket

$$
\begin{array}{r}
\xrightarrow{+} \Sigma F_{x}=0: \quad C_{x}-24 \mathrm{~N}=0 \\
\therefore C_{x}=24 \mathrm{~N} \\
+\uparrow \Sigma F_{y}=0: \quad C_{y}-24 \mathrm{~N}=0 \\
\therefore C_{y}=24 \mathrm{~N}
\end{array}
$$

Then

$$
\begin{gathered}
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(24)^{2}+(24)^{2}}=33.941 \mathrm{~N} \\
\therefore \mathbf{C}=33.9 \mathrm{~N} \measuredangle 45.0^{\circ} \\
+\searrow \Sigma M_{C}=0: \quad M_{C}-(24 \mathrm{~N})[(45-25) \mathrm{mm}] \\
+(24 \mathrm{~N})[(25+50-60) \mathrm{mm}]=0 \\
\therefore \quad M_{C}=120 \mathrm{~N} \cdot \mathrm{~mm}
\end{gathered}
$$

$$
\text { or } \left.\mathbf{M}_{C}=0.120 \mathrm{~N} \cdot \mathrm{~m}\right)
$$

SOLUTION

From f.b.d. of bracket

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad C_{x}-32 \mathrm{~N}=0
$$

$$
\therefore \quad C_{x}=32 \mathrm{~N}
$$

$$
+\uparrow \Sigma F_{y}=0: \quad C_{y}-16 \mathrm{~N}=0
$$

$$
\therefore \quad C_{y}=16 \mathrm{~N}
$$

Then

$$
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(32)^{2}+(16)^{2}}=35.777 \mathrm{~N}
$$

and

$$
\theta=\tan ^{-1}\left(\frac{C_{y}}{C_{x}}\right)=\tan ^{-1}\left(\frac{16}{32}\right)=26.565^{\circ}
$$

$$
\text { or } \mathbf{C}=35.8 \mathrm{~N} \text { < } 26.6^{\circ}
$$

$+\Sigma M_{C}=0: \quad M_{C}-(32 \mathrm{~N})(45 \mathrm{~mm}-25 \mathrm{~mm})$

$$
+(16 \mathrm{~N})(25 \mathrm{~mm}+50 \mathrm{~mm}-60 \mathrm{~mm})-400 \mathrm{~N} \cdot \mathrm{~mm}=0
$$

$\therefore \quad M_{C}=800 \mathrm{~N} \cdot \mathrm{~mm}$

PROBLEM 4.48

A $350-\mathrm{lb}$ utility pole is used to support at C the end of an electric wire. The tension in the wire is 120 lb , and the wire forms an angle of 15° with the horizontal at C. Determine the largest and smallest allowable tensions in the guy cable $B D$ if the magnitude of the couple at A may not exceed $200 \mathrm{lb} \cdot \mathrm{ft}$.

SOLUTION

First note

f.b.d.

$$
L_{B D}=\sqrt{(4.5)^{2}+(10)^{2}}=10.9659 \mathrm{ft}
$$

$T_{\max }$: From f.b.d. of utility pole with $\mathbf{M}_{A}=200 \mathrm{lb} \cdot \mathrm{ft}$)

$$
\begin{gathered}
+\Sigma M_{A}=0: \quad-200 \mathrm{lb} \cdot \mathrm{ft}-\left[(120 \mathrm{lb}) \cos 15^{\circ}\right](14 \mathrm{ft}) \\
+\left[\left(\frac{4.5}{10.9659}\right) T_{\max }\right](10 \mathrm{ft})=0 \\
\therefore \quad T_{\max }=444.19 \mathrm{lb}
\end{gathered}
$$

$$
\text { or } T_{\max }=444 \mathrm{lb}
$$

$T_{\min }: \quad$ From f.b.d. of utility pole with $\mathbf{M}_{A}=200 \mathrm{lb} \cdot \mathrm{ft}$;

$$
\begin{aligned}
&+) \Sigma M_{A}=0: 200 \mathrm{lb} \cdot \mathrm{ft}-\left[(120 \mathrm{lb}) \cos 15^{\circ}\right](14 \mathrm{ft}) \\
&+ {\left[\left(\frac{4.5}{10.9659}\right) T_{\min }\right](10 \mathrm{ft})=0 } \\
& \therefore \quad T_{\min }=346.71 \mathrm{lb}
\end{aligned}
$$

$$
\text { or } T_{\min }=347 \mathrm{lb}
$$

PROBLEM 4.49

In a laboratory experiment, students hang the masses shown from a beam of negligible mass. (a) Determine the reaction at the fixed support A knowing that end D of the beam does not touch support E. (b) Determine the reaction at the fixed support A knowing that the adjustable support E exerts an upward force of 6 N on the beam.

SOLUTION

$$
\begin{aligned}
& W_{B}=m_{B} g=(1 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=9.81 \mathrm{~N} \\
& W_{C}=m_{C} g=(0.5 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=4.905 \mathrm{~N}
\end{aligned}
$$

(a) From f.b.d. of beam $A B C D$

$$
\begin{aligned}
+\Sigma F_{x}=0: & A_{x}=0 \\
+\uparrow \Sigma F_{y}=0: & A_{y}-W_{B}-W_{C}=0 \\
& A_{y}-9.81 \mathrm{~N}-4.905 \mathrm{~N}=0
\end{aligned}
$$

$$
\therefore \quad A_{y}=14.715 \mathrm{~N}
$$

$$
\text { or } \mathbf{A}=14.72 \mathrm{~N}^{\uparrow}
$$

$$
+\Sigma M_{A}=0: \quad M_{A}-W_{B}(0.2 \mathrm{~m})-W_{C}(0.3 \mathrm{~m})=0
$$

$$
M_{A}-(9.81 \mathrm{~N})(0.2 \mathrm{~m})-(4.905 \mathrm{~N})(0.3 \mathrm{~m})=0
$$

$$
\therefore \quad M_{A}=3.4335 \mathrm{~N} \cdot \mathrm{~m}
$$

or $\quad \mathbf{M}_{A}=3.43 \mathrm{~N} \cdot \mathrm{~m}$

(b) From f.b.d. of beam $A B C D$

$$
\begin{gathered}
\xrightarrow{+} \Sigma F_{x}=0: \quad A_{x}=0 \\
+\uparrow \Sigma F_{y}=0: \quad A_{y}-W_{B}-W_{C}+6 \mathrm{~N}=0 \\
A_{y}-9.81 \mathrm{~N}-4.905 \mathrm{~N}+6 \mathrm{~N}=0 \\
\therefore A_{y}=8.715 \mathrm{~N} \quad \text { or } \mathbf{A}=8.72 \mathrm{~N} \uparrow \\
+\Sigma M_{A}=0: M_{A}-W_{B}(0.2 \mathrm{~m})-W_{C}(0.3 \mathrm{~m})+(6 \mathrm{~N})(0.4 \mathrm{~m})=0 \\
M_{A}-(9.81 \mathrm{~N})(0.2 \mathrm{~m})-(4.905 \mathrm{~N})(0.3 \mathrm{~m})+(6 \mathrm{~N})(0.4 \mathrm{~m})=0 \\
\therefore M_{A}=1.03350 \mathrm{~N} \cdot \mathrm{~m}
\end{gathered}
$$

$$
\text { or } \quad \mathbf{M}_{A}=1.034 \mathrm{~N} \cdot \mathrm{~m}
$$

SOLUTION

$$
\begin{aligned}
& W_{B}=m_{B} g=1 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=9.81 \mathrm{~N} \\
& W_{C}=m_{C} g=0.5 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=4.905 \mathrm{~N}
\end{aligned}
$$

Maximum M_{A} value is $2.5 \mathrm{~N} \cdot \mathrm{~m}$ $F_{\min }$: From f.b.d. of beam $A B C D$ with $\mathbf{M}_{A}=2.5 \mathrm{~N} \cdot \mathrm{~m}$)

$$
\begin{gathered}
+\Sigma M_{A}=0: \quad 2.5 \mathrm{~N} \cdot \mathrm{~m}-W_{B}(0.2 \mathrm{~m})-W_{C}(0.3 \mathrm{~m}) \\
+F_{\min }(0.4 \mathrm{~m})=0
\end{gathered}
$$

$$
2.5 \mathrm{~N} \cdot \mathrm{~m}-(9.81 \mathrm{~N})(0.2 \mathrm{~m})-(4.905 \mathrm{~N})(0.3 \mathrm{~m})+F_{\min }(0.4 \mathrm{~m})=0
$$

$$
\therefore \quad F_{\min }=2.3338 \mathrm{~N}
$$

or

$$
F_{\min }=2.33 \mathrm{~N}
$$

$F_{\max }$: From f.b.d. of beam $A B C D$ with $\mathbf{M}_{A}=2.5 \mathrm{~N} \cdot \mathrm{~m}$

$$
+\Sigma M_{A}=0: \quad-2.5 \mathrm{~N} \cdot \mathrm{~m}-W_{B}(0.2 \mathrm{~m})-W_{C}(0.3 \mathrm{~m})
$$

$$
+F_{\max }(0.4 \mathrm{~m})=0
$$

$$
-2.5 \mathrm{~N} \cdot \mathrm{~m}-(9.81 \mathrm{~N})(0.2 \mathrm{~m})-(4.905 \mathrm{~N})(0.3 \mathrm{~m})+F_{\max }(0.4 \mathrm{~m})=0
$$

$$
\therefore \quad F_{\max }=14.8338 \mathrm{~N}
$$

or

$$
\begin{aligned}
& F_{\max }=14.83 \mathrm{~N} \\
& \qquad \text { or } 2.33 \mathrm{~N} \leq F_{E} \leq 14.83 \mathrm{~N}
\end{aligned}
$$

PROBLEM 4.51

Knowing that the tension in wire $B D$ is 300 lb , determine the reaction at fixed support C for the frame shown.

SOLUTION

From f.b.d. of frame with $T=300 \mathrm{lb}$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad C_{x}-100 \mathrm{lb}+\left(\frac{5}{13}\right) 300 \mathrm{lb}=0
$$

$$
\therefore \quad C_{x}=-15.3846 \mathrm{lb} \quad \text { or } \quad \mathbf{C}_{x}=15.3846 \mathrm{lb} \longleftarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad C_{y}-180 \mathrm{lb}-\left(\frac{12}{13}\right) 300 \mathrm{lb}=0
$$

$$
\therefore C_{y}=456.92 \mathrm{lb} \quad \text { or } \quad \mathbf{C}_{y}=456.92 \mathrm{lb} \uparrow
$$

Then
$C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(15.3846)^{2}+(456.92)^{2}}=457.18 \mathrm{lb}$
and

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{C_{y}}{C_{x}}\right)=\tan ^{-1}\left(\frac{456.92}{-15.3846}\right)=-88.072^{\circ} \\
& \quad \text { or } \mathbf{C}=457 \mathrm{lb} \searrow 88.1^{\circ}
\end{aligned}
$$

$$
+\Sigma M_{C}=0: \quad M_{C}+(180 \mathrm{lb})(20 \mathrm{in} .)+(100 \mathrm{lb})(16 \mathrm{in} .)-\left[\left(\frac{12}{13}\right) 300 \mathrm{lb}\right](16 \mathrm{in} .)=0
$$

$\therefore M_{C}=-769.23 \mathrm{lb} \cdot \mathrm{in}$.

SOLUTION

$T_{\max } \quad$ From f.b.d. of frame with $\left.\left.\mathbf{M}_{C}=75 \mathrm{lb} \cdot \mathrm{ft}\right\rangle=900 \mathrm{lb} \cdot \mathrm{in}.\right)$
$+\Sigma M_{C}=0: \quad 900 \mathrm{lb} \cdot \mathrm{in} .+(180 \mathrm{lb})(20 \mathrm{in})+.(100 \mathrm{lb})(16 \mathrm{in})-.\left[\left(\frac{12}{13}\right) T_{\max }\right](16 \mathrm{in})=$.
$\therefore \quad T_{\text {max }}=413.02 \mathrm{lb}$
$T_{\min } \quad$ From f.b.d. of frame with

$$
\left.\left.\mathbf{M}_{C}=75 \mathrm{lb} \cdot \mathrm{ft}\right)_{\alpha}=900 \mathrm{lb} \cdot \mathrm{in} .\right)
$$

+) $\Sigma M_{C}=0:-900 \mathrm{lb} \cdot \mathrm{in} .+(180 \mathrm{lb})(20 \mathrm{in})+.(100 \mathrm{lb})(16 \mathrm{in})-.\left[\left(\frac{12}{13}\right) T_{\min }\right](16 \mathrm{in})=$.
$\therefore \quad T_{\text {min }}=291.15 \mathrm{lb}$

PROBLEM 4.53

Uniform $\operatorname{rod} A B$ of length l and weight W lies in a vertical plane and is acted upon by a couple \mathbf{M}. The ends of the rod are connected to small rollers which rest against frictionless surfaces. (a) Express the angle θ corresponding to equilibrium in terms of M, W, and l. (b) Determine the value of θ corresponding to equilibrium when $M=1.5 \mathrm{lb} \cdot \mathrm{ft}$, $W=4 \mathrm{lb}$, and $l=2 \mathrm{ft}$.

SOLUTION

(a) From f.b.d. of uniform rod $A B$

$$
\begin{gather*}
\xrightarrow{+} \Sigma F_{x}=0:-A \cos 45^{\circ}+B \cos 45^{\circ}=0 \\
\therefore-A+B=0 \quad \text { or } \quad B=A \tag{1}\\
+\uparrow \Sigma F_{y}=0: A \sin 45^{\circ}+B \sin 45^{\circ}-W=0 \\
\therefore A+B=\sqrt{2} W \tag{2}
\end{gather*}
$$

From Equations (1) and (2)

$$
\begin{aligned}
2 A & =\sqrt{2} W \\
\therefore A & =\frac{1}{\sqrt{2}} W
\end{aligned}
$$

From f.b.d. of uniform $\operatorname{rod} A B$

$$
\begin{align*}
+) \Sigma M_{B}=0: & W\left[\left(\frac{l}{2}\right) \cos \theta\right]+M \\
& -\left(\frac{1}{\sqrt{2}} W\right)\left[l \cos \left(45^{\circ}-\theta\right)\right]=0 \tag{3}
\end{align*}
$$

From trigonometric identity

$$
\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta
$$

Equation (3) becomes

$$
\left(\frac{W l}{2}\right) \cos \theta+M-\left(\frac{W l}{2}\right)(\cos \theta+\sin \theta)=0
$$

PROBLEM 4.53 CONTINUED

or

$$
\begin{aligned}
& \left(\frac{W l}{2}\right) \cos \theta+M-\left(\frac{W l}{2}\right) \cos \theta-\left(\frac{W l}{2}\right) \sin \theta=0 \\
& \therefore \quad \sin \theta=\frac{2 M}{W l}
\end{aligned}
$$

$$
\text { or } \theta=\sin ^{-1}\left(\frac{2 M}{W l}\right) \boldsymbol{\iota}
$$

(b)

$$
\theta=\sin ^{-1}\left[\frac{2(1.5 \mathrm{lb} \cdot \mathrm{ft})}{(4 \mathrm{lb})(2 \mathrm{ft})}\right]=22.024^{\circ}
$$

$$
\text { or } \theta=22.0^{\circ}
$$

PROBLEM 4.54

A slender $\operatorname{rod} A B$, of weight W, is attached to blocks A and B, which move freely in the guides shown. The blocks are connected by an elastic cord which passes over a pulley at C. (a) Express the tension in the cord in terms of W and θ. (b) Determine the value of θ for which the tension in the cord is equal to $3 W$.

SOLUTION

(a) From f.b.d. of $\operatorname{rod} A B$

$$
\begin{gathered}
+) \Sigma M_{C}=0: \quad T(l \sin \theta)+W\left[\left(\frac{l}{2}\right) \cos \theta\right]-T(l \cos \theta)=0 \\
\therefore T=\frac{W \cos \theta}{2(\cos \theta-\sin \theta)}
\end{gathered}
$$

Dividing both numerator and denominator by $\cos \theta$,

$$
T=\frac{W}{2}\left(\frac{1}{1-\tan \theta}\right)
$$

$$
\text { or } T=\frac{\left(\frac{W}{2}\right)}{(1-\tan \theta)}
$$

(b) For $T=3 W$,

$$
\begin{gathered}
3 W=\frac{\left(\frac{W}{2}\right)}{(1-\tan \theta)} \\
\therefore \quad 1-\tan \theta=\frac{1}{6} \\
\text { or } \quad \theta=\tan ^{-1}\left(\frac{5}{6}\right)=39.806^{\circ}
\end{gathered}
$$

or $\theta=39.8^{\circ}$

PROBLEM 4.55

A thin, uniform ring of mass m and radius R is attached by a frictionless pin to a collar at A and rests against a small roller at B. The ring lies in a vertical plane, and the collar can move freely on a horizontal rod and is acted upon by a horizontal force \mathbf{P}. (a) Express the angle θ corresponding to equilibrium in terms of m and P. (b) Determine the value of θ corresponding to equilibrium when $m=500 \mathrm{~g}$ and $P=5 \mathrm{~N}$.

SOLUTION

(a) From f.b.d. of ring

$$
\begin{gathered}
+\Sigma M_{C}=0: \quad P(R \cos \theta+R \cos \theta)-W(R \sin \theta)=0 \\
2 P=W \tan \theta \text { where } W=m g
\end{gathered}
$$

$$
\therefore \quad \tan \theta=\frac{2 P}{m g}
$$

or $\theta=\tan ^{-1}\left(\frac{2 P}{m g}\right) \leftharpoonup$
(b) Have

$$
m=500 \mathrm{~g}=0.500 \mathrm{~kg} \text { and } P=5 \mathrm{~N}
$$

$\therefore \quad \theta=\tan ^{-1}\left[\frac{2(5 \mathrm{~N})}{(0.500 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}\right]$

$$
=63.872^{\circ}
$$

or $\theta=63.9^{\circ}$

SOLUTION

(a) From f.b.d. of $\operatorname{rod} A B$

$$
+\Sigma M_{C}=0: \quad P(l \cos \theta)+P(l \sin \theta)-M=0
$$

$$
\text { or } \sin \theta+\cos \theta=\frac{M}{P l}
$$

(b) For

$$
\begin{gathered}
M=150 \mathrm{lb} \cdot \mathrm{in} ., P=20 \mathrm{lb}, \text { and } l=6 \mathrm{in} . \\
\sin \theta+\cos \theta=\frac{150 \mathrm{lb} \cdot \mathrm{in} .}{(20 \mathrm{lb})(6 \mathrm{in} .)}=\frac{5}{4}=1.25
\end{gathered}
$$

Using identity

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
\sin \theta+\left(1-\sin ^{2} \theta\right)^{\frac{1}{2}}=1.25 \\
\left(1-\sin ^{2} \theta\right)^{\frac{1}{2}}=1.25-\sin \theta
\end{gathered}
$$

$$
\begin{aligned}
& 1-\sin ^{2} \theta=1.5625-2.5 \sin \theta+\sin ^{2} \theta \\
& 2 \sin ^{2} \theta-2.5 \sin \theta+0.5625=0
\end{aligned}
$$

Using quadratic formula

$$
\sin \theta=\frac{-(-2.5) \pm \sqrt{(6.25)-4(2)(0.5625)}}{2(2)}
$$

$$
=\frac{2.5 \pm \sqrt{1.75}}{4}
$$

or

$$
\begin{aligned}
\sin \theta=0.95572 \quad \text { and } \quad \sin \theta=0.29428 \\
\therefore \quad \theta=72.886^{\circ} \quad \text { and } \quad \theta=17.1144^{\circ} \\
\text { or } \theta=17.11^{\circ} \text { and } \theta=72.9^{\circ}
\end{aligned}
$$

SOLUTION

First note
where

$$
\begin{align*}
& T=\text { tension in spring }=k s \\
& s=\text { elongation of spring } \\
&=(\overline{A B})_{\theta}-(\overline{A B})_{\theta=90^{\circ}} \\
&=2 l \sin \left(\frac{\theta}{2}\right)-2 l \sin \left(\frac{90^{\circ}}{2}\right) \\
&=2 l\left[\sin \left(\frac{\theta}{2}\right)-\left(\frac{1}{\sqrt{2}}\right)\right] \\
& \therefore \quad T=2 k l\left[\sin \left(\frac{\theta}{2}\right)-\left(\frac{1}{\sqrt{2}}\right)\right] \tag{1}
\end{align*}
$$

(a) From f.b.d. of $\operatorname{rod} B C$

$$
+) \Sigma M_{C}=0: \quad T\left[l \cos \left(\frac{\theta}{2}\right)\right]-P(l \sin \theta)=0
$$

Substituting T From Equation (1)

$$
\begin{gathered}
2 k l\left[\sin \left(\frac{\theta}{2}\right)-\left(\frac{1}{\sqrt{2}}\right)\right]\left[l \cos \left(\frac{\theta}{2}\right)\right]-P(l \sin \theta)=0 \\
2 k l^{2}\left[\sin \left(\frac{\theta}{2}\right)-\left(\frac{1}{\sqrt{2}}\right)\right] \cos \left(\frac{\theta}{2}\right)-P l\left[2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)\right]=0
\end{gathered}
$$

Factoring out

$$
2 l \cos \left(\frac{\theta}{2}\right), \text { leaves }
$$

PROBLEM 4.57 CONTINUED

$$
k l\left[\sin \left(\frac{\theta}{2}\right)-\left(\frac{1}{\sqrt{2}}\right)\right]-P \sin \left(\frac{\theta}{2}\right)=0
$$

or

$$
\begin{aligned}
\sin \left(\frac{\theta}{2}\right)=\frac{1}{\sqrt{2}} & \left(\frac{k l}{k l-P}\right) \\
& \therefore \quad \theta=2 \sin ^{-1}\left[\frac{k l}{\sqrt{2}(k l-P)}\right]<
\end{aligned}
$$

(b) $P=\frac{k l}{4}$

$$
\begin{aligned}
\theta & =2 \sin ^{-1}\left[\frac{k l}{\sqrt{2}\left(k l-\frac{k l}{4}\right)}\right]=2 \sin ^{-1}\left[\frac{k l}{\sqrt{2}}\left(\frac{4}{3 \mathrm{kl}}\right)\right]=2 \sin ^{-1}\left(\frac{4}{3 \sqrt{2}}\right) \\
& =2 \sin ^{-1}(0.94281) \\
& =141.058^{\circ}
\end{aligned}
$$

PROBLEM 4.58

Solve Sample Problem 4.5 assuming that the spring is unstretched when $\theta=90^{\circ}$.

SOLUTION

First note

$$
\begin{aligned}
& T=\text { tension in spring }=k s \\
& \qquad \begin{array}{c}
s=\text { deformation of spring } \\
=r \beta \\
\therefore F=k r \beta
\end{array}
\end{aligned}
$$

From f.b.d. of assembly
or

$$
+\Sigma M_{0}=0: \quad W(l \cos \beta)-F(r)=0
$$

$W l \cos \beta-k r^{2} \beta=0$
$\therefore \quad \cos \beta=\frac{k r^{2}}{W l} \beta$
For $\quad k=250 \mathrm{lb} / \mathrm{in} ., r=3 \mathrm{in} ., l=8 \mathrm{in} ., W=400 \mathrm{lb}$
$\cos \beta=\frac{(250 \mathrm{lb} / \mathrm{in} .)(3 \mathrm{in} .)^{2}}{(400 \mathrm{lb})(8 \mathrm{in} .)} \beta$
or

$$
\cos \beta=0.703125 \beta
$$

Solving numerically,
or

$$
\beta=0.89245 \mathrm{rad}
$$

$$
\beta=51.134^{\circ}
$$

Then

$$
\theta=90^{\circ}+51.134^{\circ}=141.134^{\circ}
$$

SOLUTION

First note
where

$$
\begin{gathered}
T=k s \\
k=\text { spring constant } \\
s=\text { elongation of spring } \\
=\frac{l}{\cos \theta}-l=\frac{l}{\cos \theta}(1-\cos \theta) \\
\therefore \quad T=\frac{k l}{\cos \theta}(1-\cos \theta)
\end{gathered}
$$

(a) From f.b.d. of collar B

$$
+\uparrow \Sigma F_{y}=0: \quad T \sin \theta-W=0
$$

or

$$
\begin{aligned}
& \frac{k l}{\cos \theta}(1-\cos \theta) \sin \theta-W=0 \\
& \qquad \text { or } \tan \theta-\sin \theta=\frac{W}{k l}
\end{aligned}
$$

(b) For $W=3 \mathrm{lb}, l=6 \mathrm{in} ., k=8 \mathrm{lb} / \mathrm{ft}$

$$
\begin{gathered}
l=\frac{6 \mathrm{in} .}{12 \mathrm{in} . / \mathrm{ft}}=0.5 \mathrm{ft} \\
\tan \theta-\sin \theta=\frac{3 \mathrm{lb}}{(8 \mathrm{lb} / \mathrm{ft})(0.5 \mathrm{ft})}=0.75
\end{gathered}
$$

Solving Numerically,

$$
\theta=57.957^{\circ}
$$

PROBLEM 4.60

A slender rod $A B$, of mass m, is attached to blocks A and B which move freely in the guides shown. The constant of the spring is k, and the spring is unstretched when $\theta=0$. (a) Neglecting the mass of the blocks, derive an equation in m, g, k, l, and θ which must be satisfied when the rod is in equilibrium. (b) Determine the value of θ when $m=2 \mathrm{~kg}, l=750$ mm , and $k=30 \mathrm{~N} / \mathrm{m}$.

SOLUTION

$$
\begin{aligned}
F_{s} & =\text { spring force }=k s \\
k & =\text { spring constant } \\
s & =\text { spring deformation } \\
& =l-l \cos \theta \\
& =l(1-\cos \theta)
\end{aligned}
$$

$$
\therefore \quad F_{s}=k l(1-\cos \theta)
$$

(a) From f.b.d. of assembly

$$
\begin{aligned}
+\Sigma M_{D}=0: & F_{s}(l \sin \theta)-W\left(\frac{l}{2} \cos \theta\right)=0 \\
& k l(1-\cos \theta)(l \sin \theta)-W\left(\frac{l}{2} \cos \theta\right)=0 \\
& k l(\sin \theta-\cos \theta \sin \theta)-\left(\frac{W}{2}\right) \cos \theta=0
\end{aligned}
$$

Dividing by $\cos \theta$

$$
\begin{aligned}
& k l(\tan \theta-\sin \theta)=\frac{W}{2} \\
& \therefore \quad \tan \theta-\sin \theta=\frac{W}{2 k l}
\end{aligned}
$$

or $\tan \theta-\sin \theta=\frac{m g}{2 k l} \boldsymbol{\zeta}$
(b) For $m=2 \mathrm{~kg}, l=750 \mathrm{~mm}, k=30 \mathrm{~N} / \mathrm{m}$

$$
l=750 \mathrm{~mm}=0.750 \mathrm{~m}
$$

PROBLEM 4.60 CONTINUED

Then

$$
\tan \theta-\sin \theta=\frac{(2 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{2(30 \mathrm{~N} / \mathrm{m})(0.750 \mathrm{~m})}=0.436
$$

Solving Numerically,

$$
\theta=50.328^{\circ}
$$

or $\theta=50.3^{\circ}$

PROBLEM 4.61

The bracket $A B C$ can be supported in the eight different ways shown. All connections consist of smooth pins, rollers, or short links. In each case, determine whether (a) the plate is completely, partially, or improperly constrained, (b) the reactions are statically determinate or indeterminate, (c) the equilibrium of the plate is maintained in the position shown. Also, wherever possible, compute the reactions assuming that the magnitude of the force \mathbf{P} is 100 N .

SOLUTION

1. Three non-concurrent, non-parallel reactions
(a)
(b)
(c)

From f.b.d. of bracket:

$$
\begin{aligned}
+\Sigma M_{A}=0: \quad B(1 \mathrm{~m})-(100 \mathrm{~N})(0.6 \mathrm{~m}) & =0 \\
\therefore \quad \mathbf{B} & =60.0 \mathrm{~N} \longleftarrow 4
\end{aligned}
$$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad A_{x}-60 \mathrm{~N}=0
$$

$$
\therefore \quad \mathbf{A}_{x}=60.0 \mathrm{~N} \longrightarrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad A_{y}-100 \mathrm{~N}=0
$$

$$
\therefore \quad \mathbf{A}_{y}=100 \mathrm{~N} \uparrow
$$

Then
and

$$
\begin{gathered}
A=\sqrt{(60.0)^{2}+(100)^{2}}=116.619 \mathrm{~N} \\
\theta=\tan ^{-1}\left(\frac{100}{60.0}\right)=59.036^{\circ}
\end{gathered}
$$

$$
\therefore \quad \mathbf{A}=116.6 \mathrm{~N} \text { < } 59.0^{\circ}
$$

2. Four concurrent reactions through A
(a)
(b)
(c)
3. Two reactions
(a)
(c)

Improperly constrained
Indeterminate
No equilibrium

Partially constrained
Determinate
Equilibrium

SOLUTION

1. Three non-concurrent, non-parallel reactions
(a)
(b)

Completely constrained
Determinate
(c)

Equilibrium
From f.b.d. of plate

$$
\begin{aligned}
+\Sigma M_{A}=0: \quad C(30 \mathrm{in} .)-50 \mathrm{lb}(15 \mathrm{in} .)= & 0 \\
& C=25.0 \mathrm{lb}
\end{aligned}
$$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad A_{x}=0
$$

$$
+\uparrow \Sigma F_{y}=0: \quad A_{y}-50 \mathrm{lb}+25 \mathrm{lb}=0
$$

$$
A_{y}=25 \mathrm{lb}
$$

$$
\mathbf{A}=25.0 \mathrm{lb}
$$

2. Three non-current, non-parallel reactions
(a)
(b)

Completely constrained
Determinate
(c)

Equilibrium
From f.b.d. of plate

$$
\begin{aligned}
& \xrightarrow{+} \Sigma F_{x}=0: \mathbf{B}=0 \\
&+\Sigma \Sigma M_{B}=0:(50 \mathrm{lb})(15 \mathrm{in} .)-D(30 \mathrm{in} .)=0 \\
& \mathbf{D}=25.0 \mathrm{lb} \uparrow .
\end{aligned}
$$

$$
+\uparrow \Sigma F_{y}=0: \quad 25.0 \mathrm{lb}-50 \mathrm{lb}+C=0
$$

$$
\mathbf{C}=25.0 \mathrm{lb}
$$

PROBLEM 4.62 CONTINUED

7. Two parallel reactions
(a)

Improperly constrained
(b)

Reactions determined by dynamics
(c)

No equilibrium
8. Four non-concurrent, non-parallel reactions
(a)

Completely constrained
(b)

Indeterminate
(c)

Equilibrium
From f.b.d. of plate

$$
+\Sigma M_{D}=0: B(30 \mathrm{in} .)-(50 \mathrm{lb})(15 \mathrm{in} .)=0
$$

$$
\mathbf{B}=25.0 \mathrm{lb} \uparrow
$$

$$
+\uparrow \Sigma F_{y}=0: \quad D_{y}-50 \mathrm{lb}+25.0 \mathrm{lb}=0
$$

$\mathbf{D}_{y}=25.0 \mathrm{lb}$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad D_{x}+C=0
$$

PROBLEM 4.63

Horizontal and vertical links are hinged to a wheel, and forces are applied to the links as shown. Knowing that $a=3.0$ in., determine the value of P and the reaction at A.

SOLUTION

As shown on the f.b.d., the wheel is a three-force body. Let point D be the intersection of the three forces.

From force triangle

$$
\begin{aligned}
& \frac{A}{5}=\frac{P}{4}=\frac{21 \mathrm{lb}}{3} \\
\therefore & P=\frac{4}{3}(21 \mathrm{lb})=28 \mathrm{lb}
\end{aligned}
$$

or $P=28.0 \mathrm{lb}$

and

$$
\begin{array}{r}
A=\frac{5}{3}(21 \mathrm{lb})=35 \mathrm{lb} \\
\theta=\tan ^{-1}\left(\frac{3}{4}\right)=36.870^{\circ}
\end{array}
$$

$$
\therefore \quad \mathbf{A}=35.0 \mathrm{lb} \searrow 36.9^{\circ}
$$

SOLUTION

First note

$$
\alpha=\tan ^{-1}\left[\frac{(180 \mathrm{~mm}) \sin 60^{\circ}}{400 \mathrm{~mm}}\right]=21.291^{\circ}
$$

From force triangle
(a)

$$
\begin{aligned}
P & =(800 \mathrm{~N}) \tan 21.291^{\circ} \\
& =311.76 \mathrm{~N}
\end{aligned}
$$

or $\mathbf{P}=312 \mathrm{~N}$
(b)

$$
\begin{aligned}
C & =\frac{800 \mathrm{~N}}{\cos 21.291^{\circ}} \\
& =858.60 \mathrm{~N}
\end{aligned}
$$

or $\mathbf{C}=859 \mathrm{~N}$ ட゙ 21.3°

SOLUTION

Let E be the intersection of the three forces acting on the pedal device.

First note

$$
\alpha=\tan ^{-1}\left[\frac{(180 \mathrm{~mm}) \sin 60^{\circ}}{400 \mathrm{~mm}}\right]=21.291^{\circ}
$$

From force triangle

$$
\begin{aligned}
T_{\max } & =(1000 \mathrm{~N}) \cos 21.291^{\circ} \\
& =931.75 \mathrm{~N}
\end{aligned}
$$

PROBLEM 4.67

To remove a nail, a small block of wood is placed under a crowbar, and a horizontal force \mathbf{P} is applied as shown. Knowing that $l=3.5 \mathrm{in}$. and $P=30 \mathrm{lb}$, determine the vertical force exerted on the nail and the reaction at B.

SOLUTION

Let D be the intersection of the three forces acting on the crowbar.

First note

$$
\theta=\tan ^{-1}\left[\frac{(36 \mathrm{in} .) \sin 50^{\circ}}{3.5 \mathrm{in} .}\right]=82.767^{\circ}
$$

From force triangle

$$
\begin{aligned}
F_{N}=P \tan \theta & =(30 \mathrm{lb}) \tan 82.767^{\circ} \\
& =236.381 \mathrm{lb}
\end{aligned}
$$

$\therefore \quad$ on nail $\mathbf{F}_{N}=236 \mathrm{lb} \uparrow$

$$
R_{B}=\frac{P}{\cos \theta}=\frac{30 \mathrm{lb}}{\cos 82.767^{\circ}}=238.28 \mathrm{lb}
$$

$$
\text { or } \mathbf{R}_{B}=238 \mathrm{lb} \searrow 82.8^{\circ}
$$

PROBLEM 4.68

To remove a nail, a small block of wood is placed under a crowbar, and a horizontal force \mathbf{P} is applied as shown. Knowing that the maximum vertical force needed to extract the nail is 600 lb and that the horizontal force \mathbf{P} is not to exceed 65 lb , determine the largest acceptable value of distance l.

SOLUTION

Let D be the intersection of the three forces acting on the crowbar.

From force diagram

$$
\begin{gathered}
\tan \theta=\frac{F_{N}}{P}=\frac{600 \mathrm{lb}}{65 \mathrm{lb}}=9.2308 \\
\therefore \quad \theta=83.817^{\circ}
\end{gathered}
$$

From f.b.d.

$$
\begin{aligned}
& \tan \theta=\frac{(36 \mathrm{in} .) \sin 50^{\circ}}{l} \\
\therefore \quad l= & \frac{(36 \mathrm{in} .) \sin 50^{\circ}}{\tan 83.817^{\circ}}=2.9876 \mathrm{in} .
\end{aligned}
$$

$$
\text { or } l=2.99 \mathrm{in}
$$

PROBLEM 4.69

For the frame and loading shown, determine the reactions at C and D.

SOLUTION

Since member $B D$ is acted upon by two forces, \mathbf{B} and \mathbf{D}, they must be colinear, have the same magnitude, and be opposite in direction for $B D$ to be in equilibrium. The force \mathbf{B} acting at B of member $A B C$ will be equal in magnitude but opposite in direction to force \mathbf{B} acting on member $B D$. Member $A B C$ is a three-force body with member forces intersecting at E. The f.b.d.'s of members $A B C$ and $B D$ illustrate the above conditions. The force triangle for member $A B C$ is also shown. The angles α and β are found from the member dimensions:

$$
\begin{aligned}
& \alpha=\tan ^{-1}\left(\frac{0.5 \mathrm{~m}}{1.0 \mathrm{~m}}\right)=26.565^{\circ} \\
& \beta=\tan ^{-1}\left(\frac{1.5 \mathrm{~m}}{1.0 \mathrm{~m}}\right)=56.310^{\circ}
\end{aligned}
$$

Applying the law of sines to the force triangle for member $A B C$,

$$
\frac{150 \mathrm{~N}}{\sin (\beta-\alpha)}=\frac{C}{\sin \left(90^{\circ}+\alpha\right)}=\frac{B}{\sin \left(90^{\circ}-\beta\right)}
$$

or

$$
\begin{aligned}
& \frac{150 \mathrm{~N}}{\sin 29.745^{\circ}}=\frac{C}{\sin 116.565^{\circ}}=\frac{B}{\sin 33.690^{\circ}} \\
\therefore & C=\frac{(150 \mathrm{~N}) \sin 116.565^{\circ}}{\sin 29.745^{\circ}}=270.42 \mathrm{~N}
\end{aligned}
$$

$$
\text { or } \mathbf{C}=270 \mathrm{~N} \searrow 56.3^{\circ}
$$

and

$$
D=B=\frac{(150 \mathrm{~N}) \sin 33.690^{\circ}}{\sin 29.745^{\circ}}=167.704 \mathrm{~N}
$$

PROBLEM 4.70

For the frame and loading shown, determine the reactions at A and C.

SOLUTION

Since member $A B$ is acted upon by two forces, \mathbf{A} and \mathbf{B}, they must be colinear, have the same magnitude, and be opposite in direction for $A B$ to be in equilibrium. The force \mathbf{B} acting at B of member $B C D$ will be equal in magnitude but opposite in direction to force \mathbf{B} acting on member $A B$. Member $B C D$ is a three-force body with member forces intersecting at E. The f.b.d.'s of members $A B$ and $B C D$ illustrate the above conditions. The force triangle for member $B C D$ is also shown. The angle β is found from the member dimensions:

$$
\beta=\tan ^{-1}\left(\frac{60 \mathrm{~m}}{100 \mathrm{~m}}\right)=30.964^{\circ}
$$

Applying of the law of sines to the force triangle for member $B C D$,

$$
\frac{130 \mathrm{~N}}{\sin \left(45^{\circ}-\beta\right)}=\frac{B}{\sin \beta}=\frac{C}{\sin 135^{\circ}}
$$

or

$$
\begin{array}{r}
\frac{130 \mathrm{~N}}{\sin 14.036^{\circ}}=\frac{B}{\sin 30.964^{\circ}}=\frac{C}{\sin 135^{\circ}} \\
\therefore \quad A=B=\frac{(130 \mathrm{~N}) \sin 30.964^{\circ}}{\sin 14.036^{\circ}}=275.78 \mathrm{~N}
\end{array}
$$

$$
\text { or } \mathbf{A}=276 \mathrm{~N} \text { ك } 45.0^{\circ}
$$

and

$$
C=\frac{(130 \mathrm{~N}) \sin 135^{\circ}}{\sin 14.036^{\circ}}=379.02 \mathrm{~N}
$$

$$
\text { or } \mathbf{C}=379 \mathrm{~N} \triangle 59.0^{\circ}
$$

SOLUTION

The three-force member $A B C$ has forces that intersect at D, where

$$
\alpha=\tan ^{-1}\left(\frac{90 \mathrm{~mm}}{y_{D C}-y_{B C}-45 \mathrm{~mm}}\right)
$$

and

$$
\begin{aligned}
y_{D C}=\frac{x_{B C}}{\tan 20^{\circ}} & =\frac{(360 \mathrm{~mm}) \cos 35^{\circ}}{\tan 20^{\circ}} \\
& =810.22 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
y_{B C} & =(360 \mathrm{~mm}) \sin 35^{\circ} \\
& =206.49 \mathrm{~mm} \\
\therefore \alpha & =\tan ^{-1}\left(\frac{90}{558.73}\right)=9.1506^{\circ}
\end{aligned}
$$

Based on the force triangle, the law of sines gives
or

PROBLEM 4.72

To remove the lid from a 5 -gallon pail, the tool shown is used to apply an upward and radially outward force to the bottom inside rim of the lid. Assuming that the top and the rim of the lid rest against the tool at A and B, respectively, and that a $60-\mathrm{N}$ force is applied as indicated to the handle, determine the force acting on the rim.

SOLUTION

The three-force member $A B C$ has forces that intersect at point D, where, from the law of sines $(\triangle C D E)$

$$
\begin{gathered}
\frac{L}{\sin 95^{\circ}}=\frac{150 \mathrm{~mm}+(19 \mathrm{~mm}) \tan 35^{\circ}}{\sin 30^{\circ}} \\
\therefore L=325.37 \mathrm{~mm}
\end{gathered}
$$

Then

$$
\alpha=\tan ^{-1}\left(\frac{45 \mathrm{~mm}}{y_{B D}}\right)
$$

where

$$
\begin{aligned}
& y_{B D}=L-y_{A E}-22 \mathrm{~mm} \\
&=325.37 \mathrm{~mm}-\frac{19 \mathrm{~mm}}{\cos 35^{\circ}}-22 \mathrm{~mm} \\
&=280.18 \mathrm{~mm} \\
& \therefore \alpha=\tan ^{-1}\left(\frac{45 \mathrm{~mm}}{280.18 \mathrm{~mm}}\right)=9.1246^{\circ}
\end{aligned}
$$

Applying the law of sines to the force triangle,

$$
\begin{aligned}
& \frac{B}{\sin 150^{\circ}}=\frac{60 \mathrm{~N}}{\sin 9.1246^{\circ}} \\
& \therefore B=189.177 \mathrm{~N}
\end{aligned}
$$

Or, on member

$$
\mathbf{B}=189.2 \mathrm{~N} \text { У } 80.9^{\circ}
$$

and, on lid

$$
\mathbf{B}=189.2 \mathrm{~N} \measuredangle<80.9^{\circ}
$$

From geometry of forces

$$
\begin{gathered}
\beta=\tan ^{-1}\left(\frac{y_{B E}}{1.5 \mathrm{ft}}\right) \\
y_{B E}=2.0-y_{D E} \\
=2.0-1.5 \tan 35^{\circ} \\
=0.94969 \mathrm{ft} \\
\therefore \beta=\tan ^{-1}\left(\frac{0.94969}{1.5}\right)=32.339^{\circ}
\end{gathered}
$$

and

$$
\begin{aligned}
& \alpha=90^{\circ}-\beta=90^{\circ}-32.339^{\circ}=57.661^{\circ} \\
& \theta=\beta+35^{\circ}=32.339^{\circ}+35^{\circ}=67.339^{\circ}
\end{aligned}
$$

Applying the law of sines to the force triangle,

$$
\frac{200 \mathrm{lb}}{\sin \theta}=\frac{T}{\sin \alpha}=\frac{B}{\sin 55^{\circ}}
$$

or
(a)

$$
\begin{aligned}
& \frac{(200 \mathrm{lb})}{\sin 67.339^{\circ}}=\frac{T}{\sin 57.661^{\circ}}=\frac{B}{\sin 55^{\circ}} \\
& T=\frac{(200 \mathrm{lb})\left(\sin 57.661^{\circ}\right)}{\sin 67.339^{\circ}}=183.116 \mathrm{lb}
\end{aligned}
$$

or $T=183.1 \mathrm{lb}$
(b)

$$
B=\frac{(200 \mathrm{lb})\left(\sin 55^{\circ}\right)}{\sin 67.339^{\circ}}=177.536 \mathrm{lb}
$$

From geometry of forces

f.b.d.

$$
\begin{gathered}
\beta=\tan ^{-1}\left(\frac{y_{B E}}{3 \mathrm{ft}}\right) \\
y_{B E}=y_{D E}-2.0 \mathrm{ft} \\
=3 \tan 35^{\circ}-2.0 \\
=0.100623 \mathrm{ft} \\
\therefore \beta=\tan ^{-1}\left(\frac{0.100623}{3}\right)=1.92103^{\circ} \\
\alpha=90^{\circ}+\beta=90^{\circ}+1.92103^{\circ}=91.921^{\circ} \\
\theta=35^{\circ}-\beta=35^{\circ}-1.92103^{\circ}=33.079^{\circ}
\end{gathered}
$$

where
and

Applying the law of sines to the force triangle,

$$
\begin{gathered}
\frac{200 \mathrm{lb}}{\sin \theta}=\frac{T}{\sin \alpha}=\frac{B}{\sin 55^{\circ}} \\
\frac{200 \mathrm{lb}}{\sin 33.079^{\circ}}=\frac{T}{\sin 91.921^{\circ}}=\frac{\mathrm{B}}{\sin 55^{\circ}}
\end{gathered}
$$

or
(a)

$$
T=\frac{(200 \mathrm{lb})\left(\sin 91.921^{\circ}\right)}{\sin 33.079^{\circ}}=366.23 \mathrm{lb}
$$

or $T=366 \mathrm{lb}$
(b)

$$
B=\frac{(200 \mathrm{lb})\left(\sin 55^{\circ}\right)}{\sin 33.079^{\circ}}=300.17 \mathrm{lb}
$$

$$
\text { or } \mathbf{B}=300 \mathrm{lb} \bar{\nearrow} 1.921^{\circ}
$$

SOLUTION

Based on the roller having impending motion to the left, the only contact between the roller and floor will be at the edge of the tile.

First note

$$
W=m g=(20 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=196.2 \mathrm{~N}
$$

From the geometry of the three forces acting on the roller

$$
\begin{gathered}
\alpha=\cos ^{-1}\left(\frac{92 \mathrm{~mm}}{100 \mathrm{~mm}}\right)=23.074^{\circ} \\
\theta=90^{\circ}-30^{\circ}-\alpha \\
=60^{\circ}-23.074 \\
=36.926^{\circ}
\end{gathered}
$$

Applying the law of sines to the force triangle,
or

$$
\begin{aligned}
& \frac{W}{\sin \theta}=\frac{P}{\sin \alpha} \\
& \frac{196.2 \mathrm{~N}}{\sin 36.926^{\circ}}=\frac{P}{\sin 23.074^{\circ}} \\
& \therefore P=127.991 \mathrm{~N} \\
& \quad \text { or } \mathbf{P}=128.0 \mathrm{~N} \text { Ø } 30^{\circ}
\end{aligned}
$$

SOLUTION

First note

$$
W=m g=(120 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=1177.2 \mathrm{~N}
$$

From the geometry of the three forces acting on the small hoist

$$
\begin{aligned}
& x_{A D}=(1.2 \mathrm{~m}) \cos 30^{\circ}=1.03923 \mathrm{~m} \\
& y_{A D}=(1.2 \mathrm{~m}) \sin 30^{\circ}=0.6 \mathrm{~m}
\end{aligned}
$$

and

$$
y_{B E}=x_{A D} \tan 75^{\circ}=(1.03923 \mathrm{~m}) \tan 75^{\circ}=3.8785 \mathrm{~m}
$$

Then

$$
\begin{aligned}
& \alpha=\tan ^{-1}\left(\frac{y_{B E}-0.4 \mathrm{~m}}{x_{A D}}\right)=\tan ^{-1}\left(\frac{3.4785}{1.03923}\right)=73.366^{\circ} \\
& \beta=75^{\circ}-\alpha=75^{\circ}-73.366^{\circ}=1.63412^{\circ} \\
& \theta=180^{\circ}-15^{\circ}-\beta=165^{\circ}-1.63412^{\circ}=163.366^{\circ}
\end{aligned}
$$

Applying the law of sines to the force triangle,
or

$$
\frac{1177.2 \mathrm{~N}}{\sin 1.63412^{\circ}}=\frac{B}{\sin 163.366^{\circ}}=\frac{A}{\sin 15^{\circ}}
$$

$$
B=11816.9 \mathrm{~N}
$$

$$
\text { or } \mathbf{B}=11.82 \mathrm{kN} \backslash 75.0^{\circ}
$$

(b)

$$
A=10684.2 \mathrm{~N}
$$

$$
\text { or } \mathbf{A}=10.68 \mathrm{kN} \mp 73.4^{\circ}
$$

SOLUTION

From the geometry of the three forces acting on the clamp

$$
\begin{aligned}
& y_{A D}=(105 \mathrm{~mm}) \tan 78^{\circ}=493.99 \mathrm{~mm} \\
& y_{B D}=y_{A D}-70 \mathrm{~mm}=(493.99-70) \mathrm{mm}=423.99 \mathrm{~mm}
\end{aligned}
$$

Then $\quad \theta=\tan ^{-1}\left(\frac{y_{B D}}{195 \mathrm{~mm}}\right)=\tan ^{-1}\left(\frac{423.99}{195}\right)=65.301^{\circ}$

$$
\alpha=90^{\circ}-\theta-12^{\circ}=78^{\circ}-65.301^{\circ}=12.6987^{\circ}
$$

(a) Based on the maximum allowable compressive force on the workpiece of 200 N ,

$$
\left(R_{B}\right)_{y}=200 \mathrm{~N}
$$

or

$$
\begin{gathered}
R_{B} \sin \theta=200 \mathrm{~N} \\
\therefore R_{B}=\frac{200 \mathrm{~N}}{\sin 65.301^{\circ}}=220.14 \mathrm{~N} \\
\quad \text { or } \mathbf{R}_{B}=220 \mathrm{~N} \triangle 65.3^{\circ}
\end{gathered}
$$

Applying the law of sines to the force triangle,

$$
\frac{R_{B}}{\sin 12^{\circ}}=\frac{N_{A}}{\sin \alpha}=\frac{T}{\sin \left(90^{\circ}+\theta\right)}
$$

or

$$
\begin{aligned}
\frac{220.14 \mathrm{~N}}{\sin 12^{\circ}} & =\frac{N_{A}}{\sin 12.6987^{\circ}}=\frac{T}{\sin 155.301^{\circ}} \\
N_{A} & =232.75 \mathrm{~N}
\end{aligned}
$$

$$
\text { or } \mathbf{N}_{A}=233 \mathrm{~N}
$$

(c)

$$
T=442.43 \mathrm{~N}
$$

PROBLEM 4.79

A modified peavey is used to lift a $0.2-\mathrm{m}$-diameter \log of mass 36 kg .

Knowing that $\theta=45^{\circ}$ and that the force exerted at C by the worker is perpendicular to the handle of the peavey, determine (a) the force exerted at $C,(b)$ the reaction at A.

SOLUTION

First note

$$
W=m g=(36 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=353.16 \mathrm{~N}
$$

From the geometry of the three forces acting on the modified peavey

$$
\begin{aligned}
& \beta=\tan ^{-1}\left(\frac{1.1 \mathrm{~m}}{1.1 \mathrm{~m}+0.2 \mathrm{~m}}\right)=40.236^{\circ} \\
& \alpha=45^{\circ}-\beta=45^{\circ}-40.236^{\circ}=4.7636^{\circ}
\end{aligned}
$$

Applying the law of sines to the force triangle,

$$
\frac{W}{\sin \beta}=\frac{C}{\sin \alpha}=\frac{A}{\sin 135^{\circ}}
$$

or

$$
\frac{353.16 \mathrm{~N}}{\sin 40.236^{\circ}}=\frac{C}{\sin 4.7636}=\frac{A}{\sin 135^{\circ}}
$$

(a)

$$
C=45.404 \mathrm{~N}
$$

or $\mathbf{C}=45.4 \mathrm{~N}$ ■ 45.0°
(b)

$$
A=386.60 \mathrm{~N}
$$

$$
\text { or } \mathbf{A}=387 \mathrm{~N}^{\searrow} \triangle 85.2^{\circ}
$$

PROBLEM 4.80

A modified peavey is used to lift a 0.2 -m-diameter \log of mass 36 kg . Knowing that $\theta=60^{\circ}$ and that the force exerted at C by the worker is perpendicular to the handle of the peavey, determine (a) the force exerted at $C,(b)$ the reaction at A.

SOLUTION

First note

$$
W=m g=(36 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=353.16 \mathrm{~N}
$$

From the geometry of the three forces acting on the modified peavey

$$
\begin{aligned}
& \beta=\tan ^{-1}\left(\frac{1.1 \mathrm{~m}}{D C+0.2 \mathrm{~m}}\right) \\
& D C=(1.1 \mathrm{~m}+a) \tan 30^{\circ} \\
& a=\left(\frac{R}{\tan 30^{\circ}}\right)-R \\
& \quad=\left(\frac{0.1 \mathrm{~m}}{\tan 30^{\circ}}\right)-0.1 \mathrm{~m} \\
& \quad=0.073205 \mathrm{~m} \\
& \therefore D C=(1.173205) \tan 30^{\circ} \\
& \quad=0.67735 \mathrm{~m}
\end{aligned}
$$

where
and

$$
\begin{array}{r}
\beta=\tan ^{-1}\left(\frac{1.1}{0.87735}\right)=51.424^{\circ} \\
\alpha=60^{\circ}-\beta=60^{\circ}-51.424^{\circ}=8.5756^{\circ}
\end{array}
$$

Applying the law of sines to the force triangle,

$$
\frac{W}{\sin \beta}=\frac{C}{\sin \alpha}=\frac{A}{\sin 120^{\circ}}
$$

or

$$
\frac{353.16 \mathrm{~N}}{\sin 51.424^{\circ}}=\frac{C}{\sin 8.5756^{\circ}}=\frac{A}{\sin 120^{\circ}}
$$

(a)

$$
\begin{aligned}
& C=67.360 \mathrm{~N} \\
& \quad \text { or } \mathbf{C}=67.4 \mathrm{~N} \text { ک. } 30^{\circ} .
\end{aligned}
$$

(b)

$$
A=391.22 \mathrm{~N}
$$

PROBLEM 4.81

Member $A B C$ is supported by a pin and bracket at B and by an inextensible cord at A and C and passing over a frictionless pulley at D. The tension may be assumed to be the same in portion $A D$ and $C D$ of the cord. For the loading shown and neglecting the size of the pulley, determine the tension in the cord and the reaction at B.

SOLUTION

f. b.d.

From the f.b.d. of member $A B C$, it is seen that the member can be treated as a three-force body.

From the force triangle

$$
\begin{aligned}
& \frac{T-300}{T}=\frac{3}{4} \\
& 3 T=4 T-1200
\end{aligned}
$$

$$
\therefore \quad T=1200 \mathrm{lb}
$$

Also,

$$
\begin{gathered}
\frac{B}{T}=\frac{5}{4} \\
\therefore \quad B=\frac{5}{4} T=\frac{5}{4}(1200 \mathrm{lb})=1500 \mathrm{lb} \\
\theta=\tan ^{-1}\left(\frac{3}{4}\right)=36.870^{\circ}
\end{gathered}
$$

SOLUTION

From the geometry of the forces acting on member $A B C D$

$$
\begin{gathered}
\beta=\tan ^{-1}\left(\frac{200}{300}\right)=33.690^{\circ} \\
\alpha=\tan ^{-1}\left(\frac{375}{200}\right)=61.928^{\circ} \\
\alpha-\beta=61.928^{\circ}-33.690^{\circ}=28.237^{\circ} \\
180^{\circ}-\alpha=180^{\circ}-61.928^{\circ}=118.072^{\circ}
\end{gathered}
$$

or

Then

$$
(T-80 \mathrm{~N}) \sin 33.690^{\circ}=T \sin 28.237^{\circ}
$$

$$
\therefore \quad T=543.96 \mathrm{~N}
$$

or $\mathrm{T}=544 \mathrm{~N}$
and

$$
(543.96 \mathrm{~N}) \sin 118.072=C \sin 33.690^{\circ}
$$

$$
\therefore \quad C=865.27 \mathrm{~N}
$$

$$
\text { or } \mathbf{C}=865 \mathrm{~N} \text { ■ } 33.7^{\circ}
$$

SOLUTION

(a) Based on symmetry

$$
\alpha=30^{\circ}
$$

From force triangle

$$
A=B=40 \mathrm{lb}
$$

or $\mathbf{A}=40.0 \mathrm{lb}$ b 30° and $\mathbf{B}=40.0 \mathrm{lb}>30^{\circ}$

(b) From geometry of forces

$$
\alpha=\tan ^{-1}\left(\frac{8 \mathrm{in} .-(10 \mathrm{in} .) \tan 30^{\circ}}{10 \mathrm{in} .}\right)=12.5521^{\circ}
$$

Also,

$$
\begin{aligned}
& 30^{\circ}-\alpha=30^{\circ}-12.5521^{\circ}=17.4479^{\circ} \\
& 90^{\circ}+\alpha=90^{\circ}+12.5521^{\circ}=102.5521^{\circ}
\end{aligned}
$$

Applying law of sines to the force triangle,
or

$$
\begin{gathered}
\frac{40 \mathrm{lb}}{\sin \left(30^{\circ}-\alpha\right)}=\frac{A}{\sin 60^{\circ}}=\frac{B}{\sin \left(90^{\circ}+\alpha\right)} \\
\frac{40 \mathrm{lb}}{\sin 17.4479^{\circ}}=\frac{A}{\sin 60^{\circ}}=\frac{B}{\sin 102.5521} \\
A=115.533 \mathrm{lb} \\
\quad \text { or } \mathbf{A}=115.5 \mathrm{lb} \quad 12.55^{\circ}
\end{gathered}
$$

$$
B=130.217 \mathrm{lb}
$$

$$
\text { or } \mathbf{B}=130.2 \mathrm{lb} \xrightarrow{\searrow} 30.0^{\circ}
$$

From geometry of forces acting on lever

$$
\alpha=\tan ^{-1}\left(\frac{y_{D A}}{x_{D A}}\right)
$$

where

$$
\begin{aligned}
y_{D A} & =0.24 \mathrm{~m}-y_{A C}=0.24 \mathrm{~m}-(0.2 \mathrm{~m}) \sin 20^{\circ} \\
& =0.171596 \mathrm{~m} \\
x_{D A} & =(0.2 \mathrm{~m}) \cos 20^{\circ} \\
& =0.187939 \mathrm{~m}
\end{aligned}
$$

$$
\therefore \quad \alpha=\tan ^{-1}\left(\frac{0.171596}{0.187939}\right)=42.397^{\circ}
$$

$$
\beta=90^{\circ}-\tan ^{-1}\left(\frac{y_{A C}+y_{E A}}{x_{C E}}\right)
$$

where $\quad x_{C E}=(0.3 \mathrm{~m}) \cos 20^{\circ}=0.28191 \mathrm{~m}$

$$
y_{A C}=(0.2 \mathrm{~m}) \sin 20^{\circ}=0.068404 \mathrm{~m}
$$

$$
y_{E A}=\left(x_{D A}+x_{C E}\right) \tan \alpha
$$

$$
=(0.187939+0.28191) \tan 42.397^{\circ}
$$

$$
=0.42898 \mathrm{~m}
$$

$$
\therefore \quad \beta=90^{\circ}-\tan ^{-1}\left(\frac{0.49739}{0.28191}\right)=29.544^{\circ}
$$

Also,

$$
\begin{aligned}
& 90^{\circ}-(\alpha+\beta)=90^{\circ}-71.941^{\circ}=18.0593^{\circ} \\
& 90^{\circ}+\alpha=90^{\circ}+42.397^{\circ}=132.397^{\circ}
\end{aligned}
$$

PROBLEM 4.84 CONTINUED

Applying the law of sines to the force triangle,

$$
\frac{300 \mathrm{~N}}{\sin \left[90^{\circ}-(\alpha+\beta)\right]}=\frac{T}{\sin \beta}=\frac{C}{\sin \left(90^{\circ}+\alpha\right)}
$$

$$
\frac{300 \mathrm{~N}}{\sin 18.0593^{\circ}}=\frac{T}{\sin 29.544^{\circ}}=\frac{C}{\sin 132.397^{\circ}}
$$

(a) $T=477.18 \mathrm{~N}$
or $T=477 \mathrm{~N}$
(b) $C=714.67 \mathrm{~N}$ or $\mathbf{C}=715 \mathrm{~N} \triangle 60.5^{\circ}$

PROBLEM 4.86
Knowing that $\theta=50^{\circ}$, determine the reaction (a) at $B,(b)$ at C.

SOLUTION

From the geometry of the three forces acting on member $A B C$

$$
\begin{gathered}
\alpha=\tan ^{-1}\left(\frac{y_{D C}}{R}\right) \\
y_{D C}=R-y_{A D}=R\left[1-\tan \left(90^{\circ}-50^{\circ}\right)\right] \\
=0.160900 R
\end{gathered}
$$

where

$$
\therefore \quad \alpha=\tan ^{-1}(0.160900)=9.1406^{\circ}
$$

Then

$$
\begin{aligned}
& 90^{\circ}-\alpha=90^{\circ}-9.1406^{\circ}=80.859^{\circ} \\
& 40^{\circ}+\alpha=40^{\circ}+9.1406^{\circ}=49.141^{\circ}
\end{aligned}
$$

Applying the law of sines to the force triangle,

$$
\frac{P}{\sin \left(40^{\circ}+\alpha\right)}=\frac{B}{\sin \left(90^{\circ}-\alpha\right)}=\frac{C}{\sin 50^{\circ}}
$$

or

$$
\frac{P}{\sin 49.141^{\circ}}=\frac{B}{\sin \left(80.859^{\circ}\right)}=\frac{C}{\sin 50^{\circ}}
$$

(a)

$$
B=1.30540 P
$$

$$
\text { or } \mathbf{B}=1.305 P \searrow 40.0^{\circ}
$$

(b)

$$
\begin{aligned}
& C=1.01286 P \\
& \qquad \text { or } \mathbf{C}=1.013 P \ll 9.14^{\circ}
\end{aligned}
$$

SOLUTION

From the f.b.d of the three-force member $A B$, forces must intersect at D. Since the force T intersects point D, directly above G,

$$
y_{B E}=h
$$

For triangle $A C E$:

$$
\begin{equation*}
S^{2}=(A E)^{2}+(2 h)^{2} \tag{1}
\end{equation*}
$$

For triangle $A B E$:

$$
\begin{equation*}
L^{2}=(A E)^{2}+(h)^{2} \tag{2}
\end{equation*}
$$

Subtracting Equation (2) from Equation (1)

$$
\begin{equation*}
S^{2}-L^{2}=3 h^{2} \tag{3}
\end{equation*}
$$

$$
\text { or } h=\sqrt{\frac{S^{2}-L^{2}}{3}}
$$

As length S increases relative to length L, angle θ increases until $\operatorname{rod} A B$
 is vertical. At this vertical position:

$$
h+L=S \quad \text { or } \quad h=S-L
$$

Therefore, for all positions of $A B$

$$
\begin{equation*}
h \geq S-L \tag{4}
\end{equation*}
$$

or

$$
\sqrt{\frac{S^{2}-L^{2}}{3}} \geq S-L
$$

or
or
and
For

For

$$
\therefore \text { vinimum value of } S \text { is } L
$$

\therefore Minimum value of S is L

$$
S-2 L=0 \quad S=2 L
$$

$\therefore \quad$ Maximum value of S is $2 L$
Therefore, equilibrium does not exist if $S>2 L$

SOLUTION

From the f.b.d of the three-force member $A B$, forces must intersect at D. Since the force T intersects point D, directly above G,

$$
y_{B E}=h
$$

For triangle $A C E$:

$$
\begin{equation*}
S^{2}=(A E)^{2}+(2 h)^{2} \tag{1}
\end{equation*}
$$

For triangle $A B E$:

$$
\begin{equation*}
L^{2}=(A E)^{2}+(h)^{2} \tag{2}
\end{equation*}
$$

Subtracting Equation (2) from Equation (1)

$$
\begin{gathered}
S^{2}-L^{2}=3 h^{2} \\
\text { or } h=\sqrt{\frac{S^{2}-L^{2}}{3}}
\end{gathered}
$$

(a) For $L=200 \mathrm{~mm}$ and $S=300 \mathrm{~mm}$

$$
h=\sqrt{\frac{(300)^{2}-(200)^{2}}{3}}=129.099 \mathrm{~mm}
$$

or $h=129.1 \mathrm{~mm}$
(b) Have

$$
W=m g=(1.5 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=14.715 \mathrm{~N}
$$

and

$$
\theta=\sin ^{-1}\left(\frac{2 h}{s}\right)=\sin ^{-1}\left[\frac{2(129.099)}{300}\right]
$$

$$
\theta=59.391^{\circ}
$$

From the force triangle

$$
T=\frac{W}{\sin \theta}=\frac{14.715 \mathrm{~N}}{\sin 59.391^{\circ}}=17.0973 \mathrm{~N}
$$

or $T=17.10 \mathrm{~N}$
(c)

$$
B=\frac{W}{\tan \theta}=\frac{14.715 \mathrm{~N}}{\tan 59.391^{\circ}}=8.7055 \mathrm{~N}
$$

$$
\text { or } \mathbf{B}=8.71 \mathrm{~N}
$$

SOLUTION

As shown in the f.b.d of the slender rod $A B$, the three forces intersect at C. From the force geometry

$$
\tan \beta=\frac{x_{G B}}{y_{A B}}
$$

where

$$
\begin{gathered}
y_{A B}=L \cos \theta \\
x_{G B}=\frac{1}{2} L \sin \theta \\
\therefore \quad \tan \beta=\frac{\frac{1}{2} L \sin \theta}{L \cos \theta}=\frac{1}{2} \tan \theta
\end{gathered}
$$

and
or $\tan \theta=2 \tan \beta$

PROBLEM 4.90

A $10-\mathrm{kg}$ slender rod of length L is attached to collars which can slide freely along the guides shown. Knowing that the rod is in equilibrium and that $\beta=25^{\circ}$, determine (a) the angle θ that the rod forms with the vertical, (b) the reactions at A and B.

SOLUTION

(a) As shown in the f.b.d. of the slender rod $A B$, the three forces intersect at C. From the geometry of the forces

$$
\tan \beta=\frac{x_{C B}}{y_{B C}}
$$

where
and

$$
\begin{aligned}
& x_{C B}=\frac{1}{2} L \sin \theta \\
& y_{B C}=L \cos \theta \\
\therefore \quad & \tan \beta=\frac{1}{2} \tan \theta
\end{aligned}
$$

or
For

$$
\begin{aligned}
\tan \theta & =2 \tan \beta \\
\beta & =25^{\circ} \\
\tan \theta & =2 \tan 25^{\circ}=0.93262 \\
\therefore \quad \theta & =43.003^{\circ}
\end{aligned}
$$

$$
\text { or } \theta=43.0^{\circ}
$$

(b)

$$
W=m g=(10 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=98.1 \mathrm{~N}
$$

From force triangle

$$
\begin{aligned}
A & =W \tan \beta \\
& =(98.1 \mathrm{~N}) \tan 25^{\circ} \\
& =45.745 \mathrm{~N}
\end{aligned}
$$

or $\quad \mathbf{A}=45.7 \mathrm{~N} \longleftarrow$
and

$$
B=\frac{W}{\cos \beta}=\frac{98.1 \mathrm{~N}}{\cos 25^{\circ}}=108.241 \mathrm{~N}
$$

$$
\text { or } \mathbf{B}=108.2 \mathrm{~N} \text { < } 65.0^{\circ}
$$

From the geometry of the forces acting on the three-force member $A B$ Triangle $A C F$

Triangle $C E F$

$$
\begin{aligned}
& y_{C F}=d \tan \theta \\
& x_{F E}=y_{C F} \tan \theta=d \tan ^{2} \theta
\end{aligned}
$$

Triangle $A G E$

$$
\begin{aligned}
\cos \theta & =\frac{d+x_{F E}}{\left(\frac{L}{2}\right)}=\frac{d+d \tan ^{2} \theta}{\left(\frac{L}{2}\right)} \\
& =\frac{2 d}{L}\left(1+\tan ^{2} \theta\right)
\end{aligned}
$$

Now

$$
\left(1+\tan ^{2} \theta\right)=\sec ^{2} \theta \quad \text { and } \quad \sec \theta=\frac{1}{\cos \theta}
$$

Then

$$
\begin{gathered}
\cos \theta=\frac{2 d}{L} \sec ^{2} \theta=\frac{2 d}{L}\left(\frac{1}{\cos ^{2} \theta}\right) \\
\therefore \quad \cos ^{3} \theta=\frac{2 d}{L}
\end{gathered}
$$

For

$$
d=70 \mathrm{~mm} \quad \text { and } \quad L=250 \mathrm{~mm}
$$

$$
\cos ^{3} \theta=\frac{2(70)}{250}=0.56
$$

$$
\therefore \quad \cos \theta=0.82426
$$

and

$$
\theta=34.487^{\circ}
$$

SOLUTION

f.b.d.

Since

$$
y_{E D}=x_{E D}=a
$$

Slope of $E D$ is $\lambda 45^{\circ}$
\therefore slope of $H C$ is $<45^{\circ}$

Also

$$
D E=\sqrt{2} a
$$

and

$$
D H=H E=\left(\frac{1}{2}\right) D E=\frac{a}{\sqrt{2}}
$$

For triangles $D H C$ and $E H C$

Now

$$
c=R \sin \left(45^{\circ}-\beta\right)
$$

For

$$
a=1 \mathrm{in.} \quad \text { and } \quad R=5 \mathrm{in} .
$$

$$
\sin \beta=\frac{1 \mathrm{in} .}{\sqrt{2}(5 \mathrm{in} .)}=0.141421
$$

$$
\therefore \beta=8.1301^{\circ}
$$

$$
\text { or } \beta=8.13^{\circ}
$$

and

$$
c=(5 \mathrm{in} .) \sin \left(45^{\circ}-8.1301^{\circ}\right)=3.00 \mathrm{in}
$$

PROBLEM 4.93

A uniform $\operatorname{rod} A B$ of weight W and length $2 R$ rests inside a hemispherical B bowl of radius R as shown. Neglecting friction determine the angle θ corresponding to equilibrium.

SOLUTION

Based on the f.b.d., the uniform $\operatorname{rod} A B$ is a three-force body. Point E is the point of intersection of the three forces. Since force A passes through $\mathrm{B} O$, the center of the circle, and since force \mathbf{C} is perpendicular to the rod, triangle $A C E$ is a right triangle inscribed in the circle. Thus, E is a point on the circle.

Note that the angle α of triangle $D O A$ is the central angle corresponding to the inscribed angle θ of triangle $D C A$.

$$
\therefore \alpha=2 \theta
$$

The horizontal projections of $A E,\left(x_{A E}\right)$, and $A G,\left(x_{A G}\right)$, are equal.

$$
\therefore \quad x_{A E}=x_{A G}=x_{A}
$$

or

$$
(A E) \cos 2 \theta=(A G) \cos \theta
$$

and

$$
(2 R) \cos 2 \theta=R \cos \theta
$$

Now

$$
\cos 2 \theta=2 \cos ^{2} \theta-1
$$

then

$$
4 \cos ^{2} \theta-2=\cos \theta
$$

or

$$
4 \cos ^{2} \theta-\cos \theta-2=0
$$

Applying the quadratic equation

$$
\cos \theta=0.84307 \text { and } \cos \theta=-0.59307
$$

$\therefore \quad \theta=32.534^{\circ}$ and $\theta=126.375^{\circ}($ Discard $)$

PROBLEM 4.94

A uniform slender rod of mass m and length $4 r$ rests on the surface shown and is held in the given equilibrium position by the force \mathbf{P}. Neglecting the effect of friction at A and $C,(a)$ determine the angle $\theta,(b)$ derive an expression for P in terms of m.

SOLUTION

(a) The forces acting on the three-force member $A B$ intersect at E. Since triangle $D B C$ is isosceles, $D B=a$.
From triangle $B D E$

$$
E D=D B \tan 2 \theta=a \tan 2 \theta
$$

From triangle $G E D$

$$
E D=\frac{(L-a)}{\tan \theta}
$$

$$
\begin{equation*}
\therefore \quad a \tan 2 \theta=\frac{L-a}{\tan \theta} \quad \text { or } \quad a(\tan \theta \tan 2 \theta+1)=L \tag{1}
\end{equation*}
$$

From triangle $B C D \quad a=\frac{\frac{1}{2}(1.25 L)}{\cos \theta} \quad$ or $\quad \frac{L}{a}=1.6 \cos \theta$
Substituting Equation (2) into Equation (1) yields

Now

$$
\begin{aligned}
1.6 \cos \theta & =1+\tan \theta \tan 2 \theta \\
\tan \theta \tan 2 \theta & =\frac{\sin \theta}{\cos \theta} \frac{\sin 2 \theta}{\cos 2 \theta} \\
& =\frac{\sin \theta}{\cos \theta} \frac{2 \sin \theta \cos \theta}{2 \cos ^{2} \theta-1} \\
& =\frac{2\left(1-\cos ^{2} \theta\right)}{2 \cos ^{2} \theta-1}
\end{aligned}
$$

Then

$$
1.6 \cos \theta=1+\frac{2\left(1-\cos ^{2} \theta\right)}{2 \cos ^{2} \theta-1}
$$

or

$$
3.2 \cos ^{3} \theta-1.6 \cos \theta-1=0
$$

Solving numerically

$$
\theta=23.515^{\circ} \text { or } \theta=23.5^{\circ}
$$

(b) From Equation (2) for $L=200 \mathrm{~mm}$ and $\theta=23.5^{\circ}$

$$
a=\frac{5}{8} \frac{(200 \mathrm{~mm})}{\cos 23.515^{\circ}}=136.321 \mathrm{~mm}
$$

PROBLEM 4.96

Gears A and B are attached to a shaft supported by bearings at C and D. The diameters of gears A and B are 150 mm and 75 mm , respectively, and the tangential and radial forces acting on the gears are as shown. Knowing that the system rotates at a constant rate, determine the reactions at C and D. Assume that the bearing at C does not exert any axial force, and neglect the weights of the gears and the shaft.

Assume moment reactions at the bearing supports are zero. From f.b.d. of shaft

$$
\begin{gathered}
\Sigma F_{x}=0: \quad \therefore D_{x}=0 \\
\Sigma M_{D(z \text {-axis })}=0: \quad-C_{y}(175 \mathrm{~mm})+(482 \mathrm{~N})(75 \mathrm{~mm}) \\
+(2650 \mathrm{~N})(50 \mathrm{~mm})=0 \\
\therefore \quad C_{y}=963.71 \mathrm{~N}
\end{gathered}
$$

or

$$
\mathbf{C}_{y}=(964 \mathrm{~N}) \mathbf{j}
$$

$$
\Sigma M_{D(y \text {-axis })}=0: \quad C_{z}(175 \mathrm{~mm})+(1325 \mathrm{~N})(75 \mathrm{~mm})
$$

$$
+(964 \mathrm{~N})(50 \mathrm{~mm})=0
$$

$$
\therefore \quad C_{z}=-843.29 \mathrm{~N}
$$

or

$$
\mathbf{C}_{z}=(843 \mathrm{~N}) \mathbf{k}
$$

and $\mathbf{C}=(964 \mathrm{~N}) \mathbf{j}-(843 \mathrm{~N}) \mathbf{k}$
$\Sigma M_{C(z \text {-axis })}=0: \quad-(482 \mathrm{~N})(100 \mathrm{~mm})+D_{y}(175 \mathrm{~mm})$

$$
+(2650 \mathrm{~N})(225 \mathrm{~mm})=0
$$

$$
\therefore \quad D_{y}=-3131.7 \mathrm{~N}
$$

or

$$
\begin{gathered}
\mathbf{D}_{y}=-(3130 \mathrm{~N}) \mathbf{j} \\
\Sigma M_{C(y \text {-axis })}=0: \quad-(1325 \mathrm{~N})(100 \mathrm{~mm})-D_{z}(175 \mathrm{~mm}) \\
+(964 \mathrm{~N})(225 \mathrm{~mm})=0 \\
\therefore \quad D_{z}=482.29 \mathrm{~N}
\end{gathered}
$$

or

$$
\begin{aligned}
\mathbf{D}_{z}= & (482 \mathrm{~N}) \mathbf{k} \\
& \text { and } \mathbf{D}=-(3130 \mathrm{~N}) \mathbf{j}+(482 \mathrm{~N}) \mathbf{k}
\end{aligned}
$$

PROBLEM 4.98

Two transmission belts pass over sheaves welded to an axle supported by bearings at B and D. The sheave at A has a radius of 50 mm , and the sheave at C has a radius of 40 mm . Knowing that the system rotates with a constant rate, determine (a) the tension $T,(b)$ the reactions at B and D. Assume that the bearing at D does not exert any axial thrust and neglect the weights of the sheaves and the axle.

SOLUTION

Assume moment reactions at the bearing supports are zero. From f.b.d. of shaft
(a)

$$
\Sigma M_{x \text {-axis }}=0:(240 \mathrm{~N}-180 \mathrm{~N})(50 \mathrm{~mm})+(300 \mathrm{~N}-T)(40 \mathrm{~mm})=0
$$

$$
\therefore T=375 \mathrm{~N}
$$

(b)

$$
\begin{aligned}
& \Sigma F_{x}=0: \quad B_{x}=0 \\
& \Sigma M_{D(z \text {-axis })}=0:(300 \mathrm{~N}+375 \mathrm{~N})(120 \mathrm{~mm})-B_{y}(240 \mathrm{~mm})=0 \\
& \therefore \quad B_{y}=337.5 \mathrm{~N} \\
& \Sigma M_{D(y \text {-axis })}=0:(240 \mathrm{~N}+180 \mathrm{~N})(400 \mathrm{~mm})+B_{z}(240 \mathrm{~mm})=0 \\
& \therefore \quad B_{z}=-700 \mathrm{~N} \\
& \text { or } \mathbf{B}=(338 \mathrm{~N}) \mathbf{j}-(700 \mathrm{~N}) \mathbf{k} \\
& \Sigma M_{B(z \text {-axis })}=0: \quad-(300 \mathrm{~N}+375 \mathrm{~N})(120 \mathrm{~mm})+D_{y}(240 \mathrm{~mm})=0 \\
& \therefore \quad D_{y}=337.5 \mathrm{~N} \\
& \Sigma M_{B(y \text {-axis })}=0:(240 \mathrm{~N}+180 \mathrm{~N})(160 \mathrm{~mm})+D_{z}(240 \mathrm{~mm})=0 \\
& \therefore D_{z}=-280 \mathrm{~N}
\end{aligned}
$$

or $\mathbf{D}=(338 \mathrm{~N}) \mathbf{j}-(280 \mathrm{~N}) \mathbf{k}$

SOLUTION

First, determine the spring force, \mathbf{F}_{E}, at $\theta=180^{\circ}$.
where

$$
F_{E}=k_{s} x
$$

$$
k_{s}=2 \mathrm{lb} / \mathrm{in} .
$$

$$
\begin{gathered}
x=\left(y_{E}\right)_{\mathrm{final}}-\left(y_{E}\right)_{\mathrm{initial}}=(12 \mathrm{in} .+3.5 \mathrm{in} .)-(12 \mathrm{in} .-3.5 \mathrm{in} .)=7.0 \mathrm{in} . \\
\therefore \quad F_{E}=(2 \mathrm{lb} / \mathrm{in} .)(7.0 \mathrm{in} .)=14.0 \mathrm{lb}
\end{gathered}
$$

(a) From f.b.d. of machine part

$$
\begin{aligned}
\Sigma M_{x}=0: & (34 \mathrm{lb})(2 \mathrm{in} .)-T(2 \mathrm{in} .)=0 \\
\therefore & T=34 \mathrm{lb}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \Sigma M_{D(z \text {-axis })}=0:-C_{y}(10 \mathrm{in} .)-F_{E}(2 \mathrm{in.}+1 \mathrm{in} .)=0 \\
&-C_{y}(10 \mathrm{in} .)-14.0 \mathrm{lb}(3 \mathrm{in} .)=0
\end{aligned}
$$

$$
\therefore \quad C_{y}=-4.2 \mathrm{lb} \quad \text { or } \quad \mathbf{C}_{y}=-(4.20 \mathrm{lb}) \mathbf{j}
$$

$$
\Sigma M_{D(y \text {-axis })}=0: \quad C_{z}(10 \mathrm{in} .)+34 \mathrm{lb}(4 \mathrm{in} .)+34 \mathrm{lb}(4 \mathrm{in} .)=0
$$

$$
\therefore \quad C_{z}=-27.2 \mathrm{lb} \quad \text { or } \quad \mathbf{C}_{z}=-(27.2 \mathrm{lb}) \mathbf{k}
$$

PROBLEM 4.99 CONTINUED

$$
\begin{aligned}
& \Sigma F_{x}=0: \quad D_{x}=0 \\
& \Sigma M_{C(z \text {-axis })}=0: \quad D_{y}(10 \mathrm{in} .)-F_{E}(12 \mathrm{in.}+1 \mathrm{in} .)=0 \\
& D_{y}(10 \mathrm{in} .)-14.0(13 \mathrm{in} .)=0 \\
& \therefore D_{y}=18.2 \mathrm{lb} \quad \text { or } \quad \mathbf{D}_{y}=(18.20 \mathrm{lb}) \mathbf{j} \\
& \Sigma M_{C(y \text {-axis })}=0:-2(34 \mathrm{lb})(6 \mathrm{in} .)-D_{z}(10 \mathrm{in} .)=0 \\
& \therefore \quad D_{z}=-40.8 \mathrm{lb} \quad \text { or } \quad \mathbf{D}_{z}=-(40.8 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

or

$$
\text { and } \mathbf{D}=(18.20 \mathrm{lb}) \mathbf{j}-(40.8 \mathrm{lb}) \mathbf{k}
$$

PROBLEM 4.100

Solve Problem 4.99 for $\theta=90^{\circ}$.
P4.99 For the portion of a machine shown, the 4-in.-diameter pulley A and wheel B are fixed to a shaft supported by bearings at C and D. The spring of constant $2 \mathrm{lb} / \mathrm{in}$. is unstretched when $\theta=0$, and the bearing at C does not exert any axial force. Knowing that $\theta=180^{\circ}$ and that the machine is at rest and in equilibrium, determine (a) the tension $T,(b)$ the reactions at C and D. Neglect the weights of the shaft, pulley, and wheel.

SOLUTION

First, determine the spring force, \mathbf{F}_{E}, at $\theta=90^{\circ}$.

$$
F_{E}=k_{s} x
$$

where

$$
k_{s}=2 \mathrm{lb} / \mathrm{in} .
$$

and

$$
\begin{aligned}
x=L_{\text {final }}-L_{\text {initial }}= & \left(\sqrt{(3.5)^{2}+(12)^{2}}\right)-(12-3.5)=12.5-8.5=4.0 \mathrm{in.} \\
& \therefore F_{E}=(2 \mathrm{ib} / \mathrm{in} .)(4.0 \mathrm{in} .)=8.0 \mathrm{lb}
\end{aligned}
$$

Then

$$
\mathbf{F}_{E}=\frac{-12.0}{12.5}(8.0 \mathrm{lb}) \mathbf{j}+\frac{3.5}{12.5}(8.0 \mathrm{lb}) \mathbf{k}=-(7.68 \mathrm{lb}) \mathbf{j}+(2.24 \mathrm{lb}) \mathbf{k}
$$

(a) From f.b.d. of machine part

$$
\begin{aligned}
& \Sigma M_{x}=0:(34 \mathrm{lb})(2 \mathrm{in} .)-T(2 \mathrm{in} .)-(7.68 \mathrm{lb})(3.5 \mathrm{in} .)=0 \\
& \therefore \quad T=20.56 \mathrm{lb}
\end{aligned}
$$

$$
\text { or } T=20.6 \mathrm{lb}
$$

(b)

$$
\begin{aligned}
\Sigma M_{D(z-\mathrm{axis})}=0: & -C_{y}(10 \mathrm{in} .)-(7.68 \mathrm{lb})(3.0 \mathrm{in} .)=0 \\
& \therefore \quad C_{y}=-2.304 \mathrm{lb} \quad \text { or } \quad \mathbf{C}_{y}=-(2.30 \mathrm{lb}) \mathbf{j} \\
\Sigma M_{D(y-\mathrm{axis})}=0: & C_{z}(10 \mathrm{in} .)+(34 \mathrm{lb})(4.0 \mathrm{in} .)+(20.56 \mathrm{lb})(4.0 \mathrm{in} .)-(2.24 \mathrm{lb})(3 \mathrm{in} .)=0 \\
\therefore & C_{z}=-21.152 \mathrm{lb} \quad \text { or } \quad \mathbf{C}_{z}=-(21.2 \mathrm{lb}) \mathbf{k} \\
& \text { and } \mathbf{C}=-(2.30 \mathrm{lb}) \mathbf{j}-(21.2 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

PROBLEM 4.100 CONTINUED

$$
\begin{aligned}
& \Sigma F_{x}=0: \quad D_{x}=0 \\
& \Sigma M_{C(z-\text {-axis })}=0: \quad D_{y}(10 \mathrm{in} .)-(7.68 \mathrm{lb})(13 \mathrm{in} .)=0 \\
& \\
& \therefore D_{y}=9.984 \mathrm{lb} \quad \text { or } \quad \mathbf{D}_{y}=(9.98 \mathrm{lb}) \mathbf{j} \\
& \Sigma M_{C(y \text {-axis })}=0: \\
& \hline(34 \mathrm{lb})(6 \mathrm{in} .)-(20.56 \mathrm{lb})(6 \mathrm{in} .)-D_{z}(10 \mathrm{in} .)-(2.24 \mathrm{lb})(13 \mathrm{in} .)=0 \\
& \therefore \quad D_{z}=-35.648 \mathrm{lb} \quad \text { or } \quad \mathbf{D}_{z}=-(35.6 \mathrm{lb}) \mathbf{k} \\
& \text { and } \mathbf{D}=(9.98 \mathrm{lb}) \mathbf{j}-(35.6 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

SOLUTION

First note

$$
\begin{gathered}
W=m g=(17 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=166.77 \mathrm{~N} \\
h=\sqrt{(1.2)^{2}-(1.125)^{2}}=0.41758 \mathrm{~m}
\end{gathered}
$$

From f.b.d. of plywood sheet

$$
\begin{aligned}
\Sigma M_{z}=0: & C(h)-W\left[\frac{(1.125 \mathrm{~m})}{2}\right]=0 \\
& C(0.41758 \mathrm{~m})-(166.77 \mathrm{~N})(0.5625 \mathrm{~m})=0 \\
\therefore & C=224.65 \mathrm{~N} \quad \text { or } \quad \mathbf{C}=-(225 \mathrm{~N}) \mathbf{i} \\
\Sigma M_{B(y \text {-axis })}=0: & -(224.65 \mathrm{~N})(0.6 \mathrm{~m})+A_{x}(1.2 \mathrm{~m})=0 \\
\therefore & A_{x}=112.324 \mathrm{~N} \quad \text { or } \quad \mathbf{A}_{x}=(112.3 \mathrm{~N}) \mathbf{i} \\
\Sigma M_{B(x-\text {-xis })}=0: & (166.77 \mathrm{~N})(0.3 \mathrm{~m})-A_{y}(1.2 \mathrm{~m})=0 \\
\therefore & A_{y}=41.693 \mathrm{~N} \quad \text { or } \quad \mathbf{A}_{y}=(41.7 \mathrm{~N}) \mathbf{j} \\
\Sigma M_{A(y-\text {-xis })}=0: & (224.65 \mathrm{~N})(0.6 \mathrm{~m})-B_{x}(1.2 \mathrm{~m})=0 \\
\therefore & B_{x}=112.325 \mathrm{~N} \quad \text { or } \quad \mathbf{B}_{x}=(112.3 \mathrm{~N}) \mathbf{i}
\end{aligned}
$$

PROBLEM 4.101 CONTINUED

$$
\begin{aligned}
& \Sigma M_{A(x-\text { axis })}=0: \quad B_{y}(1.2 \mathrm{~m})-(166.77 \mathrm{~N})(0.9 \mathrm{~m})=0 \\
& \therefore \quad B_{y}=125.078 \mathrm{~N} \quad \text { or } \quad \mathbf{B}_{y}=(125.1 \mathrm{~N}) \mathbf{j} \\
& \therefore \quad \mathbf{A}=(112.3 \mathrm{~N}) \mathbf{i}+(41.7 \mathrm{~N}) \mathbf{j} \text { 《 } \\
& \mathbf{B}=(112.3 \mathrm{~N}) \mathbf{i}+(125.1 \mathrm{~N}) \mathbf{j} \text { 4 } \\
& \mathbf{C}=-(225 \mathrm{~N}) \mathbf{i} \text { 《 }
\end{aligned}
$$

PROBLEM 4.102

The $200 \times 200-\mathrm{mm}$ square plate shown has a mass of 25 kg and is supported by three vertical wires. Determine the tension in each wire.

SOLUTION

First note

$$
W=m g=(25 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=245.25 \mathrm{~N}
$$

From f.b.d. of plate

$$
\begin{gather*}
\Sigma M_{x}=0: \quad(245.25 \mathrm{~N})(100 \mathrm{~mm})-T_{A}(100 \mathrm{~mm})-T_{C}(200 \mathrm{~mm})=0 \\
\therefore \quad T_{A}+2 T_{C}=245.25 \mathrm{~N} \tag{1}\\
\Sigma M_{z}=0: \quad T_{B}(160 \mathrm{~mm})+T_{C}(160 \mathrm{~mm})-(245.25 \mathrm{~N})(100 \mathrm{~mm})=0 \\
\therefore T_{B}+T_{C}=153.281 \mathrm{~N} \tag{2}\\
\Sigma F_{y}=0: \quad T_{A}+T_{B}+T_{C}-245.25 \mathrm{~N}=0 \\
\therefore \quad T_{B}+T_{C}=245.25-T_{A} \tag{3}
\end{gather*}
$$

Equating Equations (2) and (3) yields

$$
T_{A}=245.25 \mathrm{~N}-153.281 \mathrm{~N}=91.969 \mathrm{~N}
$$

or

$$
T_{A}=92.0 \mathrm{~N}
$$

Substituting the value of T_{A} into Equation (1)

$$
\begin{equation*}
T_{C}=\frac{(245.25 \mathrm{~N}-91.969 \mathrm{~N})}{2}=76.641 \mathrm{~N} \tag{5}
\end{equation*}
$$

or

$$
T_{C}=76.6 \mathrm{~N}
$$

Substituting the value of T_{C} into Equation (2)

$$
\begin{array}{lll}
T_{B}=153.281 \mathrm{~N}-76.641 \mathrm{~N}=76.639 \mathrm{~N} \quad \text { or } \quad T_{B}=76.6 \mathrm{~N} & \\
& \\
& \\
& \\
& T_{B}=76.6 \mathrm{~N} \\
& T_{C}=76.6 \mathrm{~N}
\end{array}
$$

SOLUTION

f.b.d

First note

$$
\begin{aligned}
& W_{G}=m_{p 1} g=(25 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=245.25 \mathrm{~N} \\
& W_{1}=m g=m\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=(9.81 m) \mathrm{N}
\end{aligned}
$$

From f.b.d. of plate

$$
\begin{align*}
\Sigma F_{y}= & 0: \quad 3 T-W_{G}-W_{1}=0(1) \\
\Sigma M_{x}= & 0: \quad W_{G}(100 \mathrm{~mm})+W_{1}(z)-T(100 \mathrm{~mm})-T(200 \mathrm{~mm})=0 \\
& \text { or }-300 T+100 W_{G}+W_{1} z=0 \tag{2}\\
\Sigma M_{z}= & 0: \quad 2 T(160 \mathrm{~mm})-W_{G}(100 \mathrm{~mm})-W_{1}(x)=0 \\
& \text { or } 320 T-100 W_{G}-W_{1} x=0 \tag{3}
\end{align*}
$$

Eliminate T by forming $100 \times$ [Eq. (1) + Eq. (2) $]$

$$
-100 W_{1}+W_{1} z=0
$$

$$
\therefore \quad z=100 \mathrm{~mm} \quad 0 \leq z \leq 200 \mathrm{~mm}, \quad \therefore \text { okay }
$$

Now, $3 \times[$ Eq. (3) $]-320 \times[$ Eq. (1) $]$ yields

$$
3(320 T)-3(100) W_{G}-3 W_{1} x-320(3 T)+320 W_{G}+320 W_{1}=0
$$

PROBLEM 4.103 CONTINUED

```
or
```

$$
\begin{gathered}
20 W_{G}+(320-3 x) W_{1}=0 \\
\frac{W_{1}}{W_{G}}=\frac{20}{(3 x-320)}
\end{gathered}
$$

The smallest value of $\frac{W_{1}}{W_{G}}$ will result in the smallest value of W_{1} since W_{G} is given.

$$
\therefore \quad \text { Use } x=x_{\max }=200 \mathrm{~mm}
$$

and then

$$
\frac{W_{1}}{W_{G}}=\frac{20}{3(200)-320}=\frac{1}{14}
$$

$$
\therefore \quad W_{1}=\frac{W_{G}}{14}=\frac{245.25 \mathrm{~N}}{14}=17.5179 \mathrm{~N}(\text { minimum })
$$

and

$$
m=\frac{W_{1}}{g}=\frac{17.5179 \mathrm{~N}}{9.81 \mathrm{~m} / \mathrm{s}^{2}}=1.78571 \mathrm{~kg}
$$

SOLUTION

First note

$$
\begin{aligned}
& W_{C}=m_{C} g=(0.24 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=2.3544 \mathrm{~N} \\
& W_{\mathrm{tp}}=m_{\mathrm{tp}} g=(0.20 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=1.9620 \mathrm{~N}
\end{aligned}
$$

For $\theta=0$

$$
\begin{aligned}
& x_{C}=-(60 \mathrm{~mm}-24 \mathrm{~mm})=-36 \mathrm{~mm} \\
& z_{C}=0
\end{aligned}
$$

(a) From f.b.d. of camera and tripod as projected onto plane $A B C D$

$$
\begin{gather*}
\Sigma F_{y}=0: \quad A_{y}+B_{y}+C_{y}-W_{C}-W_{\mathrm{tp}}=0 \\
\therefore A_{y}+B_{y}+C_{y}=2.3544 \mathrm{~N}+1.9620 \mathrm{~N}=4.3164 \mathrm{~N} \tag{1}\\
\Sigma M_{x}=0: \quad C_{y}(38 \mathrm{~mm})-B_{y}(38 \mathrm{~mm})=0 \quad \therefore \quad C_{y}=B_{y} \tag{2}\\
\Sigma M_{z}=0: \\
B_{y}(35 \mathrm{~mm})+C_{y}(35 \mathrm{~mm})+(2.3544 \mathrm{~N})(36 \mathrm{~mm})-A_{y}(45 \mathrm{~mm})=0 \tag{3}\\
\therefore 9 A_{y}-7 B_{y}-7 C_{y}=16.9517
\end{gather*}
$$

Substitute C_{y} with B_{y} from Equation (2) into Equations (1) and (3), and solve by elimination

$$
\begin{aligned}
& 7\left(A_{y}+2 B_{y}=4.3164\right) \\
& \frac{9 A_{y}-14 B_{y}}{}=16.9517 \\
& \hline 16 A_{y}=47.166
\end{aligned}
$$

PROBLEM 4.104 CONTINUED

$$
\therefore \quad A_{y}=2.9479 \mathrm{~N}
$$

or $\mathbf{A}_{y}=2.95 \mathrm{~N} \uparrow$
Substituting $A_{y}=2.9479 \mathrm{~N}$ into Equation (1)

$$
\begin{aligned}
& 2.9479 \mathrm{~N}+2 B_{y}=4.3164 \\
& \therefore \quad B_{y}=0.68425 \mathrm{~N} \\
& \quad C_{y}=0.68425 \mathrm{~N}
\end{aligned}
$$

$$
\text { or } \mathbf{B}_{y}=\mathbf{C}_{y}=0.684 \mathrm{~N}
$$

(b) $\quad B_{y}=0$ for impending tipping

From f.b.d. of camera and tripod as projected onto plane $A B C D$

$$
\begin{gather*}
\Sigma F_{y}=0: \quad A_{y}+C_{y}-W_{C}-W_{\mathrm{tp}}=0 \\
\therefore A_{y}+C_{y}=4.3164 \mathrm{~N} \tag{1}\\
\Sigma M_{x}=0: \quad C_{y}(38 \mathrm{~mm})-(2.3544 \mathrm{~N})[(36 \mathrm{~mm}) \sin \theta]=0 \\
\therefore \quad C_{y}=2.2305 \sin \theta \tag{2}\\
\Sigma M_{z}=0: \quad C_{y}(35 \mathrm{~mm})-A_{y}(45 \mathrm{~mm})+(2.3544 \mathrm{~N})[(36 \mathrm{~mm}) \cos \theta]=0 \\
\therefore 9 A_{y}-7 C_{y}=(16.9517 \mathrm{~N}) \cos \theta \tag{3}
\end{gather*}
$$

Forming $7 \times[$ Eq. (1) $]+[$ Eq. (3) $]$ yields

$$
\begin{equation*}
16 A_{y}=30.215 \mathrm{~N}+(16.9517 \mathrm{~N}) \cos \theta \tag{4}
\end{equation*}
$$

PROBLEM 4.104 CONTINUED

Substituting Equation (2) into Equation (3)

$$
\begin{equation*}
9 A_{y}-(15.6134 \mathrm{~N}) \sin \theta=(16.9517 \mathrm{~N}) \cos \theta \tag{5}
\end{equation*}
$$

Forming $9 \times[$ Eq. (4) $]-16 \times[$ Eq. (5) $]$ yields

$$
(249.81 \mathrm{~N}) \sin \theta=271.93 \mathrm{~N}-(118.662 \mathrm{~N}) \cos \theta
$$

or

$$
\cos ^{2} \theta=[2.2916 \mathrm{~N}-(2.1053 \mathrm{~N}) \sin \theta]^{2}
$$

Now

$$
\cos ^{2} \theta=1-\sin ^{2} \theta
$$

$$
\therefore \quad 5.4323 \sin ^{2} \theta-9.6490 \sin \theta+4.2514=0
$$

Using quadratic formula to solve,

$$
\begin{aligned}
& \sin \theta=0.80981 \text { and } \sin \theta=0.96641 \\
& \therefore \quad \theta=54.078^{\circ} \text { and } \theta=75.108^{\circ}
\end{aligned}
$$

SOLUTION

First note

$$
\begin{aligned}
W_{A B} & =(5 \mathrm{lb} / \mathrm{ft})(2 \mathrm{ft})=10 \mathrm{lb} \\
W_{B C} & =(5 \mathrm{lb} / \mathrm{ft})(4 \mathrm{ft})=20 \mathrm{lb} \\
W & =W_{A B}+W_{B C}=30 \mathrm{lb}
\end{aligned}
$$

To locate the equivalent force of the pipe assembly weight

$$
\mathbf{r}_{G / B} \times \mathbf{W}=\Sigma\left(\mathbf{r}_{\mathbf{i}} \times \mathbf{W}_{\mathbf{i}}\right)=\mathbf{r}_{G(A B)} \times \mathbf{W}_{A B}+\mathbf{r}_{G(B C)} \times \mathbf{W}_{B C}
$$

or

$$
\begin{aligned}
& \left(x_{G} \mathbf{i}+z_{G} \mathbf{k}\right) \times(-30 \mathrm{lb}) \mathbf{j}=(1 \mathrm{ft}) \mathbf{k} \times(-10 \mathrm{lb}) \mathbf{j}+(2 \mathrm{ft}) \mathbf{i} \times(-20 \mathrm{lb}) \mathbf{j} \\
& \therefore \quad-(30 \mathrm{lb}) x_{G} \mathbf{k}+(30 \mathrm{lb}) z_{G} \mathbf{i}=(10 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{i}-(40 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{k}
\end{aligned}
$$

From i-coefficient

$$
z_{G}=\frac{10 \mathrm{lb} \cdot \mathrm{ft}}{30 \mathrm{lb}}=\frac{1}{3} \mathrm{ft}
$$

k-coefficient

$$
x_{G}=\frac{40 \mathrm{lb} \cdot \mathrm{ft}}{30 \mathrm{lb}}=1 \frac{1}{3} \mathrm{ft}
$$

From f.b.d. of piping

$$
\begin{gather*}
\Sigma M_{x}=0: W\left(z_{G}\right)-T_{A}(2 \mathrm{ft})=0 \\
\therefore \quad T_{A}=\left(\frac{1}{2} \mathrm{ft}\right) 30 \mathrm{lb}\left(\frac{1}{3} \mathrm{ft}\right)=5 \mathrm{lb} \quad \text { or } \quad T_{A}=5.00 \mathrm{lb} \\
\Sigma F_{y}=0: 5 \mathrm{lb}+T_{D}+T_{C}-30 \mathrm{lb}=0 \\
\therefore \quad T_{D}+T_{C}=25 \mathrm{lb} \tag{1}
\end{gather*}
$$

PROBLEM 4.105 CONTINUED

$$
\begin{gather*}
\Sigma M_{z}=0: \quad T_{D}(1.25 \mathrm{ft})+T_{C}(4 \mathrm{ft})-30 \mathrm{lb}\left(\frac{4}{3} \mathrm{ft}\right)=0 \\
\therefore \quad 1.25 T_{D}+4 T_{C}=40 \mathrm{lb} \cdot \mathrm{ft} \tag{2}
\end{gather*}
$$

$-4[$ Equation (1)]

$$
\begin{equation*}
-4 T_{D}-4 T_{C}=-100 \tag{3}
\end{equation*}
$$

Equation (2) + Equation (3)

$$
-2.75 T_{D}=-60
$$

$$
\therefore \quad T_{D}=21.818 \mathrm{lb} \quad \text { or } \quad T_{D}=21.8 \mathrm{lb}
$$

From Equation (1)

$$
T_{C}=25-21.818=3.1818 \mathrm{lb} \quad \text { or } \quad T_{C}=3.18 \mathrm{lb}
$$

Results:

$$
\begin{aligned}
& T_{A}=5.00 \mathrm{lb} \measuredangle \\
& T_{C}=3.18 \mathrm{lb} \measuredangle \\
& T_{D}=21.8 \mathrm{lb} \boldsymbol{4}
\end{aligned}
$$

PROBLEM 4.106

For the pile assembly of Problem 4.105, determine (a) the largest permissible value of a if the assembly is not to tip, (b) the corresponding tension in each wire.

P4.105 Two steel pipes $A B$ and $B C$, each having a weight per unit length of $5 \mathrm{lb} / \mathrm{ft}$, are welded together at B and are supported by three wires. Knowing that $a=1.25 \mathrm{ft}$, determine the tension in each wire.

SOLUTION

First note

$$
\begin{aligned}
& W_{A B}=(5 \mathrm{lb} / \mathrm{ft})(2 \mathrm{ft})=10 \mathrm{lb} \\
& W_{B C}=(5 \mathrm{lb} / \mathrm{ft})(4 \mathrm{ft})=20 \mathrm{lb}
\end{aligned}
$$

From f.b.d. of pipe assembly

$$
\begin{gather*}
\Sigma F_{y}=0: \quad T_{A}+T_{C}+T_{D}-10 \mathrm{lb}-20 \mathrm{lb}=0 \\
\therefore \quad T_{A}+T_{C}+T_{D}=30 \mathrm{lb} \tag{1}
\end{gather*}
$$

$$
\Sigma M_{x}=0: \quad(10 \mathrm{lb})(1 \mathrm{ft})-T_{A}(2 \mathrm{ft})=0
$$

or

$$
\begin{equation*}
T_{A}=5.00 \mathrm{lb} \tag{2}
\end{equation*}
$$

From Equations (1) and (2)

$$
T_{C}+T_{D}=25 \mathrm{lb}
$$

$$
\Sigma M_{z}=0: \quad T_{C}(4 \mathrm{ft})+T_{D}\left(a_{\max }\right)-20 \mathrm{lb}(2 \mathrm{ft})=0
$$

or

$$
\begin{equation*}
(4 \mathrm{ft}) T_{C}+T_{D} a_{\max }=40 \mathrm{lb} \cdot \mathrm{ft} \tag{4}
\end{equation*}
$$

PROBLEM 4.106 CONTINUED

Using Equation (3) to eliminate T_{C}
or

$$
\begin{gathered}
4\left(25-T_{D}\right)+T_{D} a_{\max }=40 \\
a_{\max }=4-\frac{60}{T_{D}}
\end{gathered}
$$

By observation, a is maximum when T_{D} is maximum. From Equation (3), $\left(T_{D}\right)_{\max }$ occurs when $T_{C}=0$.
Therefore, $\left(T_{D}\right)_{\max }=25 \mathrm{lb}$ and

$$
\begin{aligned}
a_{\max }= & 4-\frac{60}{25} \\
& =1.600 \mathrm{ft}
\end{aligned}
$$

Results: (a)
(b)

$$
\begin{array}{r}
a_{\text {max }}=1.600 \mathrm{ft} \\
T_{A}=5.00 \mathrm{lb} \\
T_{C}=0 \\
T_{D}=25.0 \mathrm{lb}
\end{array}
$$

PROBLEM 4.107

A uniform aluminum rod of weight W is bent into a circular ring of radius R and is supported by three wires as shown. Determine the tension in each wire.

SOLUTION

From f.b.d. of ring

f.b.d.

$$
\begin{gather*}
\Sigma F_{y}=0: \quad T_{A}+T_{B}+T_{C}-W=0 \\
\therefore \quad T_{A}+T_{B}+T_{C}=W \tag{1}\\
\Sigma M_{x}=0: \quad T_{A}(R)-T_{C}\left(R \sin 30^{\circ}\right)=0 \\
\therefore \quad T_{A}=0.5 T_{C} \tag{2}\\
\Sigma M_{z}=0: \quad T_{C}\left(R \cos 30^{\circ}\right)-T_{B}(R)=0 \\
\therefore \quad \tag{3}\\
\quad T_{B}=0.86603 T_{C}
\end{gather*}
$$

Substituting T_{A} and T_{B} from Equations (2) and (3) into Equation (1)

$$
\begin{gathered}
0.5 T_{C}+0.86603 T_{C}+T_{C}=W \\
\therefore \quad T_{C}=0.42265 W
\end{gathered}
$$

From Equation (2)

$$
T_{A}=0.5(0.42265 W)=0.21132 W
$$

From Equation (3)

$$
\begin{aligned}
& T_{B}=0.86603(0.42265 \mathrm{~W})=0.36603 \mathrm{~W} \\
& \text { or } T_{A}=0.211 \mathrm{~W} \\
& T_{B}=0.366 \mathrm{~W} \\
& T_{C}=0.423 \mathrm{~W}
\end{aligned}
$$

PROBLEM 4.108

A uniform aluminum rod of weight W is bent into a circular ring of radius R and is supported by three wires as shown. A small collar of weight W^{\prime} is then placed on the ring and positioned so that the tensions in the three wires are equal. Determine (a) the position of the collar, (b) the value of $W^{\prime},(c)$ the tension in the wires.

SOLUTION

Let $\theta=$ angle from x-axis to small collar of weight W^{\prime}
From f.b.d. of ring

$$
\begin{equation*}
\Sigma F_{y}=0: \quad 3 T-W-W^{\prime}=0 \tag{1}
\end{equation*}
$$

$$
\Sigma M_{x}=0: \quad T(R)-T\left(R \sin 30^{\circ}\right)+W^{\prime}(R \sin \theta)=0
$$

$$
\begin{equation*}
W^{\prime} \sin \theta=-\frac{1}{2} T \tag{2}
\end{equation*}
$$

$$
\Sigma M_{z}=0: \quad T\left(R \cos 30^{\circ}\right)-W^{\prime}(R \cos \theta)-T(R)=0
$$

$$
\begin{equation*}
W^{\prime} \cos \theta=-\left(1-\frac{\sqrt{3}}{2}\right) T \tag{3}
\end{equation*}
$$

Dividing Equation (2) by Equation (3)

$$
\begin{gathered}
\tan \theta=\left(\frac{1}{2}\right)\left[1-\left(\frac{\sqrt{3}}{2}\right)\right]^{-1}=3.7321 \\
\therefore \quad \theta=75.000^{\circ} \quad \text { and } \quad \theta=255.00^{\circ}
\end{gathered}
$$

Based on Equations (2) and (3), $\theta=75.000^{\circ}$ will give a negative value for W^{\prime}, which is not acceptable.
(a) $\quad \therefore W^{\prime}$ is located at $\theta=255^{\circ}$ from the x-axis or 15° from A towards B.
(b) From Equation (1) and Equation (2)

$$
\begin{gathered}
W^{\prime}=3\left(-2 W^{\prime}\right)\left(\sin 255^{\circ}\right)-W \\
\therefore W^{\prime}=0.20853 W
\end{gathered}
$$

or $W^{\prime}=0.209 W$
(c) From Equation (1)

$$
\begin{aligned}
T & =-2(0.20853 \mathrm{~W}) \sin 255^{\circ} \\
& =0.40285 \mathrm{~W}
\end{aligned}
$$

PROBLEM 4.109

An opening in a floor is covered by a 3×4-ft sheet of plywood weighing 12 lb . The sheet is hinged at A and B and is maintained in a position slightly above the floor by a small block C. Determine the vertical component of the reaction (a) at $A,(b)$ at $B,(c)$ at C.

SOLUTION

From f.b.d. of plywood sheet

$$
\begin{gathered}
\Sigma M_{x}=0:(12 \mathrm{lb})(2 \mathrm{ft})-C_{y}(3.5 \mathrm{ft})=0 \\
\therefore \quad C_{y}=6.8571 \mathrm{lb} \quad \text { or } \quad C_{y}=6.86 \mathrm{lb} \\
\Sigma M_{B(z \text {-axis })}=0:(12 \mathrm{lb})(1 \mathrm{ft})+(6.8571 \mathrm{lb})(0.5 \mathrm{ft})-A_{y}(2 \mathrm{ft})=0 \\
\therefore \quad A_{y}=7.7143 \mathrm{lb} \quad \text { or } \quad A_{y}=7.71 \mathrm{lb} \\
\Sigma M_{A(z \text {-axis })}=0: \quad-(12 \mathrm{lb})(1 \mathrm{ft})+B_{y}(2 \mathrm{ft})+(6.8571 \mathrm{lb})(2.5 \mathrm{ft})=0 \\
\therefore \quad \\
\therefore B_{y}=2.5714 \mathrm{lb} \quad \text { or } \quad B_{y}=2.57 \mathrm{lb}
\end{gathered}
$$

(a)
(b)
$B_{y}=2.57 \mathrm{lb}$
(c)
$C_{y}=6.86 \mathrm{lb}$

SOLUTION

First,

$$
\begin{aligned}
& \mathbf{r}_{B / A}=(2 \mathrm{ft}) \mathbf{i} \\
& \mathbf{r}_{C / A}=(2 \mathrm{ft}) \mathbf{i}+(4 \mathrm{ft}) \mathbf{k} \\
& \mathbf{r}_{G / A}=(1 \mathrm{ft}) \mathbf{i}+(2 \mathrm{ft}) \mathbf{k}
\end{aligned}
$$

From f.b.d. of plywood sheet

$$
\begin{array}{cc}
\Sigma \mathbf{M}_{A}=0: & \mathbf{r}_{B / A} \times\left(B_{y} \mathbf{j}+B_{z} \mathbf{k}\right)+\mathbf{r}_{C / A} \times C_{y} \mathbf{j}+\mathbf{r}_{G / A} \times(-W \mathbf{j})=0 \\
& (2 \mathrm{ft}) \mathbf{i} \times B_{y} \mathbf{j}+(2 \mathrm{ft}) \mathbf{i} \times B_{z} \mathbf{k}+[(2 \mathrm{ft}) \mathbf{i}+(4 \mathrm{ft}) \mathbf{k}] \times C_{y} \mathbf{j} \\
+ & {[(1 \mathrm{ft}) \mathbf{i}+(2 \mathrm{ft}) \mathbf{k}] \times(-12 \mathrm{lb}) \mathbf{j}=0} \\
2 B_{y} \mathbf{k}-2 B_{z} \mathbf{j}+2 C_{y} \mathbf{k}-4 C_{y} \mathbf{i}-12 \mathbf{k}+24 \mathbf{i}=0 \\
-4 C_{y}+24=0 & \therefore \quad C_{y}=6.00 \mathrm{lb} \\
-2 B_{z}=0 & \therefore B_{z}=0 \\
2 B_{y}+2 C_{y}-12=0 &
\end{array}
$$

i-coeff.
j-coeff.
k-coeff.
or

$$
2 B_{y}+2(6)-12=0 \quad \therefore B_{y}=0
$$

PROBLEM 4.110 CONTINUED

$$
\begin{array}{cc}
\Sigma \mathbf{F}=0: & A_{y} \mathbf{j}+A_{z} \mathbf{k}+B_{y} \mathbf{j}+B_{z} \mathbf{k}+C_{y} \mathbf{j}-W \mathbf{j}=0 \\
A_{y} \mathbf{j}+A_{z} \mathbf{k}+0 \mathbf{j}+0 \mathbf{k}+6 \mathbf{j}-12 \mathbf{j}=0
\end{array}
$$

j-coeff.

$$
A_{y}+6-12=0 \quad \therefore A_{y}=6.00 \mathrm{lb}
$$

k-coeff.

$$
A_{z}=0
$$

$$
A_{z}=0
$$

\therefore a) $A_{y}=6.00 \mathrm{lb}$
b) $B_{y}=0$
c) $C_{y}=6.00 \mathrm{lb}$ ム

PROBLEM 4.111

The $10-\mathrm{kg}$ square plate shown is supported by three vertical wires. Determine (a) the tension in each wire when $a=100 \mathrm{~mm}$, (b) the value of a for which tensions in the three wires are equal.

SOLUTION

First note $\quad W=m g=(10 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=98.1 \mathrm{~N}$

(a) From f.b.d. of plate

$$
\Sigma F_{y}=0: \quad T_{A}+T_{B}+T_{C}-W=0
$$

$$
\begin{equation*}
\therefore \quad T_{A}+T_{B}+T_{C}=98.1 \mathrm{~N} \tag{1}
\end{equation*}
$$

$\Sigma M_{x}=0: W(150 \mathrm{~mm})-T_{B}(300 \mathrm{~mm})-T_{C}(100 \mathrm{~mm})=0$

$$
\begin{equation*}
\therefore \quad 6 T_{B}+2 T_{C}=294.3 \tag{2}
\end{equation*}
$$

$\Sigma M_{z}=0: \quad T_{B}(100 \mathrm{~mm})+T_{C}(300 \mathrm{~mm})-(98.1 \mathrm{~N})(150 \mathrm{~mm})=0$

$$
\begin{equation*}
\therefore \quad-6 T_{B}-18 T_{C}=-882.9 \tag{3}
\end{equation*}
$$

Equation (2) + Equation (3)

$$
\begin{aligned}
& -16 T_{C}=-588.6 \\
& \therefore \quad T_{C}=36.788 \mathrm{~N}
\end{aligned}
$$

or

$$
T_{C}=36.8 \mathrm{~N}
$$

Substitution into Equation (2)

$$
\begin{aligned}
& 6 T_{B}+2(36.788 \mathrm{~N})=294.3 \mathrm{~N} \\
& \therefore \quad T_{B}=36.788 \mathrm{~N} \quad \text { or } \quad T_{B}=36.8 \mathrm{~N}
\end{aligned}
$$

From Equation (1)

$$
\begin{aligned}
& T_{A}+36.788+36.788=98.1 \mathrm{~N} \\
& \quad \therefore \quad T_{A}=24.525 \mathrm{~N} \quad \text { or } \quad T_{A}=24.5 \mathrm{~N}
\end{aligned}
$$

PROBLEM 4.111 CONTINUED

(b)

(b) From f.b.d. of plate

$$
\begin{gather*}
\Sigma F_{y}=0: \quad 3 T-W=0 \\
\therefore \quad T=\frac{1}{3} W \tag{1}\\
\Sigma M_{x}=0: \quad W(150 \mathrm{~mm})-T(a)-T(300 \mathrm{~mm})=0 \\
\therefore \quad T=\frac{150 W}{a+300} \tag{2}
\end{gather*}
$$

Equating Equation (1) to Equation (2)

$$
\begin{aligned}
\frac{1}{3} W & =\frac{150 W}{a+300} \\
a & +300=3(150)
\end{aligned}
$$

or

SOLUTION

$T_{B E}$ can be found from ΣM about line $C E$
From f.b.d. of flagpole

$$
\Sigma M_{C E}=0: \quad \lambda_{C E} \cdot\left(\mathbf{r}_{B / C} \times \mathbf{T}_{B D}\right)+\lambda_{C E} \cdot\left(\mathbf{r}_{A / C} \times \mathbf{F}_{A}\right)=0
$$

where $\quad \lambda_{C E}=\frac{(0.9 \mathrm{~m}) \mathbf{i}+(0.9 \mathrm{~m}) \mathbf{j}}{\sqrt{(0.9)^{2}+(0.9)^{2}} \mathrm{~m}}=\frac{1}{\sqrt{2}}(\mathbf{i}+\mathbf{j})$

$$
\mathbf{r}_{B / C}=\left[(0.9 \mathrm{~m}) \sin 30^{\circ}\right] \mathbf{j}+\left[(0.9 \mathrm{~m}) \cos 30^{\circ}\right] \mathbf{k}
$$

$$
=(0.45 \mathrm{~m}) \mathbf{j}+(0.77942 \mathrm{~m}) \mathbf{k}
$$

$$
\mathbf{T}_{B D}=\lambda_{B D} T_{B D}=\left\{\frac{-(0.9 \mathrm{~m}) \mathbf{i}+\left[0.9 \mathrm{~m}-(0.9 \mathrm{~m}) \sin 30^{\circ}\right] \mathbf{j}-\left[(0.9 \mathrm{~m}) \cos 30^{\circ}\right] \mathbf{k}}{\sqrt{(0.9)^{2}+(0.45)^{2}+(0.77942)^{2}} \mathrm{~m}}\right\} T_{B D}
$$

$$
=[-(0.9 \mathrm{~m}) \mathbf{i}+(0.45 \mathrm{~m}) \mathbf{j}-(0.77942 \mathrm{~m}) \mathbf{k}] \frac{T_{B D}}{\sqrt{1.62}}
$$

$$
=(-0.70711 \mathbf{i}+0.35355 \mathbf{j}-0.61237 \mathbf{k}) T_{B D}
$$

$$
\mathbf{r}_{A / C}=(3 \mathrm{~m}) \sin 30^{\circ} \mathbf{j}+(3 \mathrm{~m}) \cos 30^{\circ} \mathbf{k}=(1.5 \mathrm{~m}) \mathbf{j}+(2.5981 \mathrm{~m}) \mathbf{k}
$$

$$
\mathbf{F}_{A}=-(300 \mathrm{~N}) \mathbf{j}
$$

$$
\therefore\left|\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0.45 & 0.77942 \\
-0.70711 & 0.35355 & -0.61237
\end{array}\right|\left(\left(\frac{T_{B D}}{\sqrt{2}}\right)+\left|\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1.5 & 2.5981 \\
0 & -300 & 0
\end{array}\right|\left(\frac{1}{\sqrt{2}}\right)=0\right.
$$

PROBLEM 4.112 CONTINUED

or

$$
-1.10227 T_{B D}+779.43=0
$$

$$
\therefore \quad T_{B D}=707.12 \mathrm{~N}
$$

Based on symmetry with $y z$-plane,

$$
T_{B E}=T_{B D}=707.12 \mathrm{~N}
$$

or $T_{B D}=707 \mathrm{~N}$ or $T_{B E}=707 \mathrm{~N}$

The reaction forces at C are found from $\Sigma \mathbf{F}=0$

$$
\begin{gathered}
\Sigma F_{x}=0:-\left(T_{B D}\right)_{x}+\left(T_{B E}\right)_{x}+C_{x} \quad \text { or } \quad C_{x}=0 \\
\Sigma F_{y}=0:\left(T_{B D}\right)_{y}+\left(T_{B E}\right)_{y}+C_{y}-300 \mathrm{~N}=0 \\
C_{y}=300 \mathrm{~N}-2(0.35355)(707.12 \mathrm{~N}) \\
\therefore C_{y}=-200.00 \mathrm{~N} \\
\Sigma F_{z}=0: \\
C_{z}-\left(T_{B D}\right)_{z}-\left(T_{B E}\right)_{z}=0 \\
C_{z}=2(0.61237)(707.12 \mathrm{~N}) \\
\therefore C_{z}=866.04 \mathrm{~N}
\end{gathered}
$$

$$
\text { or } \mathbf{C}=-(200 \mathrm{~N}) \mathbf{j}+(866 \mathrm{~N}) \mathbf{k}
$$

PROBLEM 4.113

A $3-\mathrm{m}$ boom is acted upon by the $4-\mathrm{kN}$ force shown. Determine the tension in each cable and the reaction at the ball-and-socket joint at A.

SOLUTION

From f.b.d. of boom

$$
\Sigma M_{A E}=0: \quad \lambda_{A E} \cdot\left(\mathbf{r}_{B / A} \times \mathbf{T}_{B D}\right)+\lambda_{A E} \cdot\left(\mathbf{r}_{C / A} \times \mathbf{F}_{C}\right)=0
$$

where

$$
\begin{aligned}
\lambda_{A E} & =\frac{(2.1 \mathrm{~m}) \mathbf{j}-(1.8 \mathrm{~m}) \mathbf{k}}{\sqrt{(2.1)^{2}+(1.8)^{2}} \mathrm{~m}} \\
& =0.27451 \mathbf{j}-0.23529 \mathbf{k} \\
\mathbf{r}_{B / A} & =(1.8 \mathrm{~m}) \mathbf{i} \\
\mathbf{T}_{B D} & =\lambda_{B D} T_{B D}=\frac{(-1.8 \mathrm{~m}) \mathbf{i}+(2.1 \mathrm{~m}) \mathbf{j}+(1.8 \mathrm{~m}) \mathbf{k}}{\sqrt{(1.8)^{2}+(2.1)^{2}+(1.8)^{2}} \mathrm{~m}} T_{B D} \\
& =(-0.54545 \mathbf{i}+0.63636 \mathbf{j}+0.54545 \mathbf{k}) T_{B D}
\end{aligned}
$$

$$
\mathbf{r}_{C / A}=(3.0 \mathrm{~m}) \mathbf{i}
$$

$$
\mathbf{F}_{C}=-(4 \mathrm{kN}) \mathbf{j}
$$

PROBLEM 4.113 CONTINUED

$$
\begin{aligned}
& \therefore\left|\begin{array}{ccc}
0 & 0.27451 & -0.23529 \\
1.8 & 0 & 0 \\
-0.54545 & 0.63636 & 0.54545
\end{array}\right| T_{B D}+\left|\begin{array}{ccc}
0 & 0.27451 & -0.23529 \\
3 & 0 & 0 \\
0 & -4 & 0
\end{array}\right|=0 \\
&(-0.149731-0.149729) 1.8 T_{B D}+2.82348=0
\end{aligned}
$$

$$
\therefore \quad T_{B D}=5.2381 \mathrm{kN} \quad \text { or } T_{B D}=5.24 \mathrm{kN}
$$

Based on symmetry,

$$
T_{B E}=T_{B D}=5.2381 \mathrm{kN}
$$

or $T_{B E}=5.24 \mathrm{kN}$

$$
\Sigma F_{z}=0: \quad A_{z}+\left(T_{B D}\right)_{z}-\left(T_{B E}\right)_{z}=0 \quad A_{z}=0
$$

$$
\Sigma F_{y}=0: \quad A_{y}+\left(T_{B D}\right)_{y}+\left(T_{B D}\right)_{y}-4 \mathrm{kN}=0
$$

$$
A_{y}+2(0.63636)(5.2381 \mathrm{kN})-4 \mathrm{kN}=0
$$

$$
\therefore A_{y}=-2.6666 \mathrm{kN}
$$

$$
\Sigma F_{x}=0: \quad A_{x}-\left(T_{B D}\right)_{x}-\left(T_{B E}\right)_{x}=0
$$

$$
A_{x}-2(0.54545)(5.2381 \mathrm{kN})=0
$$

$\therefore A_{x}=5.7142 \mathrm{kN}$

PROBLEM 4.114

An 8-ft-long boom is held by a ball-and-socket joint at C and by two cables $A D$ and $B E$. Determine the tension in each cable and the reaction at C.

SOLUTION

From f.b.d. of boom

$$
\Sigma M_{C E}=0: \quad \lambda_{C E} \cdot\left(\mathbf{r}_{A / C} \times \mathbf{T}_{A D}\right)+\lambda_{C E} \cdot\left(\mathbf{r}_{A / C} \times \mathbf{F}_{A}\right)=0
$$

where

$$
\begin{aligned}
& \lambda_{C E}=\frac{(2 \mathrm{ft}) \mathbf{j}-(3 \mathrm{ft}) \mathbf{k}}{\sqrt{(2)^{2}+(3)^{2}} \mathrm{ft}}=\frac{1}{\sqrt{13}}(2 \mathbf{j}-3 \mathbf{k}) \\
& \mathbf{r}_{A / C}=(8 \mathrm{ft}) \mathbf{i} \\
& \mathbf{T}_{A D}=\lambda_{A D} T_{A D}=\frac{-(8 \mathrm{ft}) \mathbf{i}+(1 \mathrm{ft}) \mathbf{j}+(4 \mathrm{ft}) \mathbf{k}}{\sqrt{(8)^{2}+(1)^{2}+(4)^{2}} \mathrm{ft}} T_{A D} \\
& \quad=\left(\frac{1}{9}\right) T_{A D}(-8 \mathbf{i}+\mathbf{j}+4 \mathbf{k})
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{F}_{A}=-(198 \mathrm{lb}) \mathbf{j} \\
& \therefore\left|\begin{array}{ccc}
0 & 2 & -3 \\
8 & 0 & 0 \\
-8 & 1 & 4
\end{array}\right|\left(\frac{T_{A D}}{9 \sqrt{13}}\right)+\left|\begin{array}{ccc}
0 & 2 & -3 \\
8 & 0 & 0 \\
0 & -1 & 0
\end{array}\right|\left(\frac{198}{\sqrt{13}}\right)=0
\end{aligned}
$$

PROBLEM 4.114 CONTINUED

$$
\begin{gathered}
(-64-24) \frac{T_{A D}}{9 \sqrt{13}}+(24) \frac{198}{\sqrt{13}}=0 \\
\therefore T_{A D}=486.00 \mathrm{lb}
\end{gathered}
$$

or $T_{A D}=486 \mathrm{lb}$

$$
\Sigma M_{C D}=0: \quad \lambda_{C D} \cdot\left(\mathbf{r}_{B / C} \times \mathbf{T}_{B E}\right)+\lambda_{C D} \cdot\left(\mathbf{r}_{A / C} \times \mathbf{F}_{A}\right)
$$

where $\quad \lambda_{C D}=\frac{(1 \mathrm{ft}) \mathbf{j}+(4 \mathrm{ft}) \mathbf{k}}{\sqrt{17} \mathrm{ft}}=\frac{1}{\sqrt{17}}(1 \mathbf{j}+4 \mathbf{k})$

$$
\mathbf{r}_{B / C}=(6 \mathrm{ft}) \mathbf{i}
$$

$$
\mathbf{T}_{B E}=\lambda_{B E} T_{B E}=\frac{-(6 \mathrm{ft}) \mathbf{i}+(2 \mathrm{ft}) \mathbf{j}-(3 \mathrm{ft}) \mathbf{k}}{\sqrt{(6)^{2}+(2)^{2}+(3)^{2}} \mathrm{ft}} T_{B E}=\left(\frac{1}{7}\right) T_{B E}(-6 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k})
$$

$$
\therefore\left|\begin{array}{ccc}
0 & 1 & 4 \\
6 & 0 & 0 \\
-6 & 2 & -3
\end{array}\right| \frac{T_{B E}}{7 \sqrt{17}}+\left|\begin{array}{ccc}
0 & 1 & 4 \\
8 & 0 & 0 \\
0 & -1 & 0
\end{array}\right| \frac{198}{\sqrt{17}}=0
$$

$$
(18+48) \frac{T_{B E}}{7}+(-32) 198=0
$$

$$
\therefore \quad T_{B E}=672.00 \mathrm{lb}
$$

or $T_{B E}=672 \mathrm{lb}$

$$
\Sigma F_{x}=0: \quad C_{x}-\left(T_{A D}\right)_{x}-\left(T_{B E}\right)_{x}=0
$$

$$
C_{x}-\left(\frac{8}{9}\right) 486-\left(\frac{6}{7}\right) 672=0
$$

$$
\therefore \quad C_{x}=1008 \mathrm{lb}
$$

$$
\Sigma F_{y}=0: \quad C_{y}+\left(T_{A D}\right)_{y}+\left(T_{B E}\right)_{y}-198 \mathrm{lb}=0
$$

$$
C_{y}+\left(\frac{1}{9}\right) 486+\left(\frac{2}{7}\right) 672-198 \mathrm{lb}=0
$$

$$
\therefore \quad C_{y}=-48.0 \mathrm{lb}
$$

$$
\Sigma F_{z}=0: \quad C_{z}+\left(T_{A D}\right)_{z}-\left(T_{B E}\right)_{z}=0
$$

$$
C_{z}+\left(\frac{4}{9}\right) 486-\left(\frac{3}{7}\right)(672)=0
$$

$$
\therefore \quad C_{z}=72.0 \mathrm{lb}
$$

$$
\text { or } \mathbf{C}=(1008 \mathrm{lb}) \mathbf{i}-(48.0 \mathrm{lb}) \mathbf{j}+(72.0 \mathrm{lb}) \mathbf{k}
$$

PROBLEM 4.115

Solve Problem 4.114 assuming that the given $198-1 \mathrm{lb}$ load is replaced with two $99-\mathrm{lb}$ loads applied at A and B.

P4.114 An 8-ft-long boom is held by a ball-and-socket joint at C and by two cables $A D$ and $B E$. Determine the tension in each cable and the reaction at C.

SOLUTION

From f.b.d. of boom

$$
\Sigma M_{C E}=0: \quad \lambda_{C E} \cdot\left(\mathbf{r}_{A / C} \times \mathbf{T}_{A D}\right)+\lambda_{C E} \cdot\left(\mathbf{r}_{A / C} \times \mathbf{F}_{A}\right)+\lambda_{C E} \cdot\left(\mathbf{r}_{B / C} \times \mathbf{F}_{B}\right)=0
$$

where

$$
\begin{array}{rl}
\lambda_{C E} & =\frac{(2 \mathrm{ft}) \mathbf{j}-(3 \mathrm{ft}) \mathbf{k}}{\sqrt{(2)^{2}+(3)^{2}} \mathrm{ft}}=\frac{1}{\sqrt{13}}(2 \mathbf{j}-3 \mathbf{k}) \\
\mathbf{r}_{A / C} & =(8 \mathrm{ft}) \mathbf{i} \\
\mathbf{r}_{B / C} & =(6 \mathrm{ft}) \mathbf{i} \\
\mathbf{T}_{A D} & =\lambda_{A D} T_{A D}=\frac{-(8 \mathrm{ft}) \mathbf{i}+(1 \mathrm{ft}) \mathbf{j}+(4 \mathrm{ft}) \mathbf{k}}{\sqrt{(8)^{2}+(1)^{2}+(4)^{2}} \mathrm{ft}} T_{A D} \\
& =\left(\frac{1}{9}\right) T_{A D}(-8 \mathbf{i}+\mathbf{j}+4 \mathbf{k}) \\
\mathbf{F}_{A} & =-(99 \mathrm{lb}) \mathbf{j} \\
\mathbf{F}_{B} & =-(99 \mathrm{lb}) \mathbf{j} \\
\therefore \left\lvert\, \begin{array}{cc}
0 & 2
\end{array}\right. & -3 \\
8 & 0
\end{array}\left|\begin{array}{cc}
T_{A D} \\
-8 & 1
\end{array}\right| \frac{4}{9 \sqrt{13}}+\left|\begin{array}{ccc}
0 & 2 & -3 \\
8 & 0 & 0 \\
0 & -1 & 0
\end{array}\right| \frac{99}{\sqrt{13}}+\left|\begin{array}{ccc}
0 & 2 & -3 \\
6 & 0 & 0 \\
0 & -1 & 0
\end{array}\right| \frac{99}{\sqrt{13}}=0 .
$$

PROBLEM 4.115 CONTINUED

$$
(-64-24) \frac{T_{A D}}{9 \sqrt{13}}+(24+18) \frac{99}{\sqrt{13}}=0
$$

or

$$
T_{A D}=425.25 \mathrm{lb}
$$

or $T_{A D}=425 \mathrm{lb}$

$$
\Sigma M_{C D}=0: \quad \lambda_{C D} \cdot\left(\mathbf{r}_{B / C} \times \mathbf{T}_{B E}\right)+\lambda_{C D} \cdot\left(\mathbf{r}_{A / C} \times \mathbf{F}_{A}\right)+\lambda_{C D} \cdot\left(\mathbf{r}_{B / C} \times \mathbf{F}_{B}\right)=0
$$

where

$$
\begin{aligned}
& \lambda_{C D}=\frac{(1 \mathrm{ft}) \mathbf{j}+(4 \mathrm{ft}) \mathbf{k}}{\sqrt{17}}=\frac{1}{\sqrt{17}}(\mathbf{j}+4 \mathbf{k}) \\
& \mathbf{r}_{B / C}=(6 \mathrm{ft}) \mathbf{i} \\
& \mathbf{r}_{A / C}=(8 \mathrm{ft}) \mathbf{j} \\
& \mathbf{T}_{B E}=\lambda_{B E} T_{B E}=\frac{-(6 \mathrm{ft}) \mathbf{i}+(2 \mathrm{ft}) \mathbf{j}-(3 \mathrm{ft}) \mathbf{k}}{\sqrt{(6)^{2}+(2)^{2}+(3)^{2} \mathrm{ft}}} T_{B E}=\frac{T_{B E}}{7}(-6 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k})
\end{aligned}
$$

$$
\therefore\left|\begin{array}{ccc}
0 & 1 & 4 \\
6 & 0 & 0 \\
-6 & 2 & -3
\end{array}\right|\left(\frac{T_{B E}}{7 \sqrt{17}}\right)+\left|\begin{array}{ccc}
0 & 1 & 4 \\
8 & 0 & 0 \\
0 & -1 & 0
\end{array}\right|\left(\frac{99}{\sqrt{17}}\right)+\left|\begin{array}{ccc}
0 & 1 & 4 \\
6 & 0 & 0 \\
0 & -1 & 0
\end{array}\right|\left(\frac{99}{\sqrt{17}}\right)=0
$$

$$
(18+48)\left(\frac{T_{B E}}{7 \sqrt{17}}\right)+(-32-24)\left(\frac{99}{\sqrt{17}}\right)=0
$$

or

$$
\Sigma F_{x}=0: \quad C_{x}-\left(T_{A D}\right)_{x}-\left(T_{B E}\right)_{x}=0
$$

$$
C_{x}-\left(\frac{8}{9}\right) 425.25-\left(\frac{6}{7}\right) 588.00=0
$$

$$
\therefore \quad C_{x}=882 \mathrm{lb}
$$

$$
\Sigma F_{y}=0: \quad C_{y}+\left(T_{A D}\right)_{y}+\left(T_{B E}\right)_{y}-99-99=0
$$

$$
C_{y}+\left(\frac{1}{9}\right) 425.25+\left(\frac{2}{7}\right) 588.00-198=0
$$

$$
\therefore \quad C_{y}=-17.25 \mathrm{lb}
$$

$$
\Sigma F_{z}=0: \quad C_{z}+\left(T_{A D}\right)_{z}-\left(T_{B E}\right)_{z}=0
$$

$$
C_{z}+\left(\frac{4}{9}\right) 425.25-\left(\frac{3}{7}\right) 588.00=0
$$

$$
\therefore \quad C_{z}=63.0 \mathrm{lb}
$$

PROBLEM 4.116

The 18 - ft pole $A B C$ is acted upon by a $210-\mathrm{lb}$ force as shown. The pole is held by a ball-and-socket joint at A and by two cables $B D$ and $B E$. For $a=9 \mathrm{ft}$, determine the tension in each cable and the reaction at A.

SOLUTION

f.b.d.

From f.b.d. of pole $A B C$

$$
\Sigma M_{A E}=0: \quad \lambda_{A E} \cdot\left(\mathbf{r}_{B / A} \times \mathbf{T}_{B D}\right)+\lambda_{A E} \cdot\left(\mathbf{r}_{C / A} \times \mathbf{F}_{C}\right)=0
$$

where

$$
\begin{aligned}
& \lambda_{A E}=\frac{(4.5 \mathrm{ft}) \mathbf{i}+(9 \mathrm{ft}) \mathbf{k}}{\sqrt{(4.5)^{2}+(9)^{2} \mathrm{ft}}=\frac{1}{\sqrt{101.25}}(4.5 \mathbf{i}+9 \mathbf{k})} \\
& \mathbf{r}_{B / A}=(9 \mathrm{ft}) \mathbf{j} \\
& \mathbf{r}_{C / A}=(18 \mathrm{ft}) \mathbf{j} \\
& \mathbf{T}_{B D}=\lambda_{B D} T_{B D}=\frac{(4.5 \mathrm{ft}) \mathbf{i}-(9 \mathrm{ft}) \mathbf{j}-(9 \mathrm{ft}) \mathbf{k}}{\sqrt{(4.5)^{2}+(9)^{2}+(9)^{2} \mathrm{ft}}} T_{B D} \\
& \quad=\left(\frac{T_{B D}}{13.5}\right)(4.5 \mathbf{i}-9 \mathbf{j}-9 \mathbf{k}) \\
& \mathbf{F}_{C}=\lambda_{C F}(210 \mathrm{lb})=\frac{-9 \mathbf{i}-18 \mathbf{j}+6 \mathbf{k}}{\sqrt{(9)^{2}+(18)^{2}+(6)^{2}}}(210 \mathrm{lb})=10 \mathrm{lb}(-9 \mathbf{i}-18 \mathbf{j}+6 \mathbf{k}) \\
& \therefore \quad\left|\begin{array}{ccc}
4.5 & 0 & 9 \\
0 & 9 & 0 \\
4.5 & -9 & -9
\end{array}\right|\left(\frac{T_{B D}}{13.5 \sqrt{101.25}}\right)+\left|\begin{array}{ccc}
4.5 & 0 & 9 \\
0 & 18 & 0 \\
-9 & -18 & 6
\end{array}\right|\left(\frac{10 \mathrm{lb}}{\sqrt{101.25}}\right)=0
\end{aligned}
$$

PROBLEM 4.116 CONTINUED

$$
\frac{(-364.5-364.5)}{13.5 \sqrt{101.25}} T_{B D}+\frac{(486+1458)}{\sqrt{101.25}}(10 \mathrm{lb})=0
$$

and

$$
T_{B D}=360.00 \mathrm{lb}
$$

or $T_{B D}=360 \mathrm{lb}$

$$
\Sigma M_{A D}=0: \quad \lambda_{A D} \cdot\left(\mathbf{r}_{B / A} \times \mathbf{T}_{B E}\right)+\lambda_{A D} \cdot\left(\mathbf{r}_{C / A} \times \mathbf{F}_{C}\right)=0
$$

where $\quad \lambda_{A D}=\frac{(4.5 \mathrm{ft}) \mathbf{i}-(9 \mathrm{ft}) \mathbf{k}}{\sqrt{(4.5)^{2}+(9)^{2}} \mathrm{ft}}=\frac{1}{\sqrt{101.25}}(4.5 \mathbf{i}-9 \mathbf{k})$

$$
\mathbf{r}_{B / A}=(9 \mathrm{ft}) \mathbf{j}
$$

$$
\mathbf{r}_{C / A}=(18 \mathrm{ft}) \mathbf{j}
$$

$$
\mathbf{T}_{B E}=\lambda_{B E} T_{B E}=\frac{(4.5 \mathrm{ft}) \mathbf{i}-(9 \mathrm{ft}) \mathbf{j}+(9 \mathrm{ft}) \mathbf{k}}{\sqrt{(4.5)^{2}+(9)^{2}+(9)^{2} \mathrm{ft}}} T_{B E}=\frac{T_{B E}}{13.5}(4.5 \mathbf{i}-9 \mathbf{j}+9 \mathbf{k})
$$

$$
\therefore\left|\begin{array}{ccc}
4.5 & 0 & -9 \\
0 & 9 & 0 \\
4.5 & -9 & 9
\end{array}\right|\left(\frac{T_{B E}}{13.5 \sqrt{101.25}}\right)+\left|\begin{array}{ccc}
4.5 & 0 & -9 \\
0 & 18 & 0 \\
-9 & -18 & 6
\end{array}\right|\left(\frac{10 \mathrm{lb}}{\sqrt{101.25}}\right)=0
$$

$$
\frac{(364.5+364.5)}{13.5 \sqrt{101.25}} T_{B E}+\frac{(486-1458) 10 \mathrm{lb}}{\sqrt{101.25}}=0
$$

or

$$
T_{B E}=180.0 \mathrm{lb}
$$

or $T_{B E}=180.0 \mathrm{lb}$

$$
\Sigma F_{x}=0: \quad A_{x}+\left(T_{B D}\right)_{x}+\left(T_{B E}\right)_{x}-\left(F_{C}\right)_{x}=0
$$

$$
A_{x}+\left(\frac{4.5}{13.5}\right) 360+\left(\frac{4.5}{13.5}\right) 180-\left(\frac{9}{21}\right) 210=0
$$

$$
\therefore \quad A_{x}=-90.0 \mathrm{lb}
$$

$$
\Sigma F_{y}=0: \quad A_{y}-\left(T_{B D}\right)_{y}-\left(T_{B E}\right)_{y}-\left(F_{C}\right)_{y}=0
$$

$$
A_{y}-\left(\frac{9}{13.5}\right) 360-\left(\frac{9}{13.5}\right) 180-\left(\frac{18}{21}\right) 210=0
$$

$$
\therefore \quad A_{y}=540 \mathrm{lb}
$$

$$
\Sigma F_{z}=0: \quad A_{z}-\left(T_{B D}\right)_{z}+\left(T_{B E}\right)_{z}+\left(F_{C}\right)_{z}=0
$$

$$
A_{z}-\left(\frac{9}{13.5}\right) 360+\left(\frac{9}{13.5}\right) 180+\left(\frac{6}{21}\right) 210=0
$$

$$
\therefore \quad A_{z}=60.0 \mathrm{lb}
$$

$$
\text { or } \mathbf{A}=-(90.0 \mathrm{lb}) \mathbf{i}+(540 \mathrm{lb}) \mathbf{j}+(60.0 \mathrm{lb}) \mathbf{k}
$$

SOLUTION

f.b.d.

From f.b.d. of pole $A B C$
where

$$
\begin{gathered}
\Sigma M_{A E}=0: \lambda_{A E} \cdot\left(\mathbf{r}_{B / A} \times \mathbf{T}_{B D}\right)+\lambda_{A E} \cdot\left(\mathbf{r}_{C / A} \times \mathbf{F}_{C}\right)=0 \\
\lambda_{A E}=\frac{(4.5 \mathrm{ft}) \mathbf{i}+(9 \mathrm{ft}) \mathbf{k}}{\sqrt{(4.5)^{2}+(9)^{2}} \mathrm{ft}}=\frac{1}{\sqrt{101.25}}(4.5 \mathbf{i}+9 \mathbf{k}) \\
\mathbf{r}_{B / A}=(9 \mathrm{ft}) \mathbf{j} \\
\mathbf{r}_{C / A}=(18 \mathrm{ft}) \mathbf{j} \\
\mathbf{T}_{B D}=\lambda_{B D} T_{B D}=\frac{(4.5 \mathrm{ft}) \mathbf{i}-(9 \mathrm{ft}) \mathbf{j}-(9 \mathrm{ft}) \mathbf{k}}{\sqrt{(4.5)^{2}+(9)^{2}+(9)^{2}} \mathrm{ft}} T_{B D} \\
\quad=\left(\frac{T_{B D}}{13.5}\right)(4.5 \mathbf{i}-9 \mathbf{j}-9 \mathbf{k}) \\
\mathbf{F}_{C}=\lambda_{C F}(210 \mathrm{lb})=\frac{-4.5 \mathbf{i}-18 \mathbf{j}+6 \mathbf{k}}{\sqrt{(4.5)^{2}+(18)^{2}+(6)^{2}}}(210 \mathrm{lb}) \\
\quad=\left(\frac{210 \mathrm{lb}}{19.5}\right)(-4.5 \mathbf{i}-18 \mathbf{j}+6 \mathbf{k}) \\
\therefore\left|\begin{array}{ccc}
4.5 & 0 & 9 \\
0 & 9 & 0 \\
4.5 & -9 & -9
\end{array}\right|\left(\frac{T_{B D}}{13.5 \sqrt{101.25}}\right)+\left|\begin{array}{cc}
4.5 & 0 \\
0 & 9 \\
-4.5 & -18
\end{array}\right|\left(\frac{210 \mathrm{lb}}{19.5 \sqrt{101.25}}\right)=0
\end{gathered}
$$

PROBLEM 4.117 CONTINUED

$$
\frac{(-364.5-364.5)}{13.5 \sqrt{101.25}} T_{B D}+\frac{(486+729)}{19.5 \sqrt{101.25}}(210 \mathrm{lb})=0
$$

or

$$
T_{B D}=242.31 \mathrm{lb}
$$

or $T_{B D}=242 \mathrm{lb}$

$$
\Sigma M_{A D}=0: \quad \lambda_{A D} \cdot\left(\mathbf{r}_{B / A} \times \mathbf{T}_{B E}\right)+\lambda_{A D} \cdot\left(\mathbf{r}_{C / A} \times \mathbf{F}_{C}\right)=0
$$

where

$$
\begin{aligned}
& \lambda_{A D}=\frac{(4.5 \mathrm{ft}) \mathbf{i}-(9 \mathrm{ft}) \mathbf{k}}{\sqrt{(4.5)^{2}+(9)^{2}} \mathrm{ft}}=\frac{1}{\sqrt{101.25}}(4.5 \mathbf{i}-9 \mathbf{k}), \\
& \mathbf{r}_{B / A}=(9 \mathrm{ft}) \mathbf{j} \\
& \mathbf{r}_{C / A}=(18 \mathrm{ft}) \mathbf{j} \\
& \mathbf{T}_{B E}=\lambda_{B E} T_{B E}=\frac{(4.5 \mathrm{ft}) \mathbf{i}-(9 \mathrm{ft}) \mathbf{j}+(9 \mathrm{ft}) \mathbf{k}}{\sqrt{(4.5)^{2}+(9)^{2}+(9)^{2}} \mathrm{ft}} T_{B E}=\frac{T_{B E}}{13.5}(4.5 \mathbf{i}-9 \mathbf{j}+9 \mathbf{k}) \\
& \therefore\left|\begin{array}{ccc}
4.5 & 0 & -9 \\
0 & 9 & 0 \\
4.5 & -9 & 9
\end{array}\right|\left(\frac{T_{B E}}{13.5 \sqrt{101.25}}\right)+\left|\begin{array}{ccc}
4.5 & 0 & -9 \\
0 & 18 & 0 \\
-4.5 & -18 & 6
\end{array}\right|\left(\frac{210 \mathrm{lb}}{19.5 \sqrt{101.25}}\right)=0 \\
& \quad \frac{(364.5+364.5)}{13.5 \sqrt{101.25}} T_{B E}+\frac{(486-729)(210 \mathrm{lb})}{19.5 \sqrt{101.25}}=0
\end{aligned}
$$

or

$$
T_{B E}=48.462 \mathrm{lb}
$$

or $T_{B E}=48.5 \mathrm{lb}$

$$
\Sigma F_{x}=0: \quad A_{x}+\left(T_{B D}\right)_{x}+\left(T_{B E}\right)_{x}-\left(F_{C}\right)_{x}=0
$$

$$
A_{x}+\left(\frac{4.5}{13.5}\right) 242.31+\left(\frac{4.5}{13.5}\right) 48.462-\left(\frac{4.5}{19.5}\right) 210=0
$$

$$
\therefore A_{x}=-48.459 \mathrm{lb}
$$

$$
\Sigma F_{y}=0: \quad A_{y}-\left(T_{B D}\right)_{y}-\left(T_{B E}\right)_{y}-\left(F_{C}\right)_{y}=0
$$

$$
A_{y}-\left(\frac{9}{13.5}\right) 242.31-\left(\frac{9}{13.5}\right) 48.462-\left(\frac{18}{19.5}\right) 210=
$$

$$
\therefore \quad A_{y}=387.69 \mathrm{lb}
$$

$$
\Sigma F_{z}=0: \quad A_{z}-\left(T_{B D}\right)_{z}+\left(T_{B E}\right)_{z}+\left(F_{C}\right)_{z}=0
$$

$$
A_{z}-\left(\frac{9}{13.5}\right) 242.31+\left(\frac{9}{13.5}\right) 48.462+\left(\frac{6}{19.5}\right)^{2}
$$

$$
\therefore \quad A_{z}=64.591 \mathrm{lb}
$$

$$
\text { or } \mathbf{A}=-(48.5 \mathrm{lb}) \mathbf{i}+(388 \mathrm{lb}) \mathbf{j}+(64.6 \mathrm{lb}) \mathbf{k}
$$

PROBLEM 4.118

Two steel pipes $A B C D$ and $E B F$ are welded together at B to form the boom shown. The boom is held by a ball-and-socket joint at D and by two cables $E G$ and $I C F H$; cable $I C F H$ passes around frictionless pulleys at C and F. For the loading shown, determine the tension in each cable and the reaction at D.

SOLUTION

From f.b.d. of boom

$$
\Sigma M_{z}=0: \quad \mathbf{k} \cdot\left(\mathbf{r}_{C / D} \times \mathbf{T}_{C I}\right)+\mathbf{k} \cdot\left(\mathbf{r}_{A / D} \times \mathbf{F}_{A}\right)=0
$$

where

$$
\mathbf{r}_{C / D}=(1.8 \mathrm{~m}) \mathbf{i}
$$

$$
\mathbf{T}_{C I}=\lambda_{C I} T_{C I}=\frac{-(1.8 \mathrm{~m}) \mathbf{i}+(1.12 \mathrm{~m}) \mathbf{j}^{2}}{\sqrt{(1.8)^{2}+(1.12)^{2}} \mathrm{~m}} T_{C I}
$$

$$
=\left(\frac{T_{C I}}{2.12}\right)(-1.8 \mathbf{i}+1.12 \mathbf{j})
$$

$$
\begin{aligned}
\mathbf{r}_{A D} & =(3.5 \mathrm{~m}) \mathbf{i} \\
\mathbf{F}_{A} & =-(560 \mathrm{~N}) \mathbf{j}
\end{aligned}
$$

$$
\therefore \quad \Sigma M_{z}=\left|\begin{array}{ccc}
0 & 0 & 1 \\
1.8 & 0 & 0 \\
-1.8 & 1.12 & 0
\end{array}\right|\left(\frac{T_{C I}}{2.12}\right)+\left|\begin{array}{ccc}
0 & 0 & 1 \\
3.5 & 0 & 0 \\
0 & -1 & 0
\end{array}\right|(560 \mathrm{~N})=0
$$

$$
(2.016) \frac{T_{C I}}{2.12}+(-3.5) 560=0
$$

or

$$
T_{C I}=T_{F H}=2061.1 \mathrm{~N}
$$

$$
T_{\text {ICFH }}=2.06 \mathrm{kN}
$$

PROBLEM 4.118 CONTINUED

$$
\Sigma M_{y}=0: \quad \mathbf{j} \cdot\left(\mathbf{r}_{G / D} \times \mathbf{T}_{E G}\right)+\mathbf{j} \cdot\left(\mathbf{r}_{H / D} \times \mathbf{T}_{F H}\right)=0
$$

where $\quad \mathbf{r}_{G / D}=(3.4 \mathrm{~m}) \mathbf{k}$

$$
\mathbf{r}_{H / D}=-(2.5 \mathrm{~m}) \mathbf{k}
$$

$$
\mathbf{T}_{E G}=\frac{-(3.0 \mathrm{~m}) \mathbf{i}+(3.15 \mathrm{~m}) \mathbf{k}}{\sqrt{(3)^{2}+(3.15)^{2} \mathrm{~m}}} T_{E G}=\left(\frac{T_{E G}}{4.35}\right)(-3 \mathbf{i}+3.15 \mathbf{k})
$$

$$
\mathbf{T}_{F H}=\lambda_{F H} T_{F H}=\frac{-(3.0 \mathrm{~m}) \mathbf{i}-(2.25 \mathrm{~m}) \mathbf{k}}{\sqrt{(3)^{2}+(2.25)^{2}} \mathrm{~m}}(2061.1 \mathrm{~N})=\frac{2061.1 \mathrm{~N}}{3.75}(-3 \mathbf{i}-2.25 \mathbf{k})
$$

$$
\therefore\left|\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 3.4 \\
-3 & 0 & 3.15
\end{array}\right|\left(\frac{T_{E G}}{4.35}\right)+\left|\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -2.5 \\
-3 & 0 & -2.25
\end{array}\right|\left(\frac{2061.1 \mathrm{~N}}{3.75}\right)=0
$$

$$
-(10.2) \frac{T_{E G}}{4.35}+(7.5) \frac{2061.1 \mathrm{~N}}{3.75}=0
$$

or

$$
T_{E G}=1758.00 \mathrm{~N}
$$

$\Sigma F_{x}=0: \quad D_{x}-\left(T_{C I}\right)_{x}-\left(T_{F H}\right)_{x}-\left(T_{E G}\right)_{x}=0$

$$
D_{x}-\left(\frac{1.8}{2.12}\right)(2061.1 \mathrm{~N})-\left(\frac{3.0}{3.75}\right)(2061.1 \mathrm{~N})-\left(\frac{3}{4.35}\right)(1758 \mathrm{~N})=0
$$

$$
\therefore \quad D_{x}=4611.3 \mathrm{~N}
$$

$\Sigma F_{y}=0: \quad D_{y}+\left(T_{C I}\right)_{y}-560 \mathrm{~N}=0$

$$
D_{y}+\left(\frac{1.12}{2.12}\right)(2061.1 \mathrm{~N})-560 \mathrm{~N}=0
$$

$$
\therefore \quad D_{y}=-528.88 \mathrm{~N}
$$

$\Sigma F_{z}=0: \quad D_{z}+\left(T_{E G}\right)_{z}-\left(T_{F H}\right)_{z}=0$

$$
D_{z}+\left(\frac{3.15}{4.35}\right)(1758 \mathrm{~N})-\left(\frac{2.25}{3.75}\right)(2061.1 \mathrm{~N})=0
$$

$$
\therefore \quad D_{z}=-36.374 \mathrm{~N}
$$

PROBLEM 4.119

Solve Problem 4.118 assuming that the $560-\mathrm{N}$ load is applied at B.
P4.118 Two steel pipes $A B C D$ and $E B F$ are welded together at B to form the boom shown. The boom is held by a ball-and-socket joint at D and by two cables $E G$ and $I C F H$; cable $I C F H$ passes around frictionless pulleys at C and F. For the loading shown, determine the tension in each cable and the reaction at D.

SOLUTION

From f.b.d. of boom

$$
\Sigma M_{z}=0: \quad \mathbf{k} \cdot\left(\mathbf{r}_{C / D} \times \mathbf{T}_{C I}\right)+\mathbf{k} \cdot\left(\mathbf{r}_{B / D} \times \mathbf{F}_{B}\right)=0
$$

where

$$
\begin{aligned}
& \mathbf{r}_{C / D}=(1.8 \mathrm{~m}) \mathbf{i} \\
& \mathbf{T}_{C I}=\lambda_{C I} T_{C I}=\frac{-(1.8 \mathrm{~m}) \mathbf{i}+(1.12 \mathrm{~m}) \mathbf{j}}{\sqrt{(1.8)^{2}+(1.12)^{2}} \mathrm{~m}} T_{C I} \\
&=\left(\frac{T_{C I}}{2.12}\right)(-1.8 \mathbf{i}+1.12 \mathbf{j})
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{r}_{B / D}= & (3.0 \mathrm{~m}) \mathbf{i} \\
\mathbf{F}_{B}= & -(560 \mathrm{~N}) \mathbf{j} \\
\therefore & \left|\begin{array}{ccc}
0 & 0 & 1 \\
1.8 & 0 & 0 \\
-1.8 & 1.12 & 0
\end{array}\right|\left(\frac{T_{C I}}{2.12}\right)+\left|\begin{array}{rrr}
0 & 0 & 1 \\
3 & 0 & 0 \\
0 & -1 & 0
\end{array}\right|(560 \mathrm{~N})=0 \\
& (2.016) \frac{T_{C I}}{2.12}+(-3) 560=0
\end{aligned}
$$

or

$$
\begin{aligned}
& T_{C I}=T_{F H}=1766.67 \mathrm{~N} \\
& T_{I C F H}=1.767 \mathrm{kN}
\end{aligned}
$$

PROBLEM 4.119 CONTINUED

$$
\Sigma M_{y}=0: \quad \mathbf{j} \cdot\left(\mathbf{r}_{G / D} \times \mathbf{T}_{E G}\right)+\mathbf{j} \cdot\left(\mathbf{r}_{H / D} \times \mathbf{T}_{F H}\right)=0
$$

$$
\begin{aligned}
& \text { where } \begin{aligned}
& \mathbf{r}_{G / D}=(3.4 \mathrm{~m}) \mathbf{k} \\
& \mathbf{r}_{H / D}=-(2.5 \mathrm{~m}) \mathbf{k} \\
& \mathbf{T}_{E G}= \lambda_{E G} T_{E G}=\frac{-(3.0 \mathrm{~m}) \mathbf{i}+(3.15 \mathrm{~m}) \mathbf{k}}{\sqrt{(3)^{2}+(3.15)^{2}} \mathrm{~m}} T_{E G}=\frac{T_{E G}}{4.35}(-3 \mathbf{i}+3.15 \mathbf{k}) \\
& \mathbf{T}_{F H}= \lambda_{F H} T_{F H}=\frac{-(3.0 \mathrm{~m}) \mathbf{i}-(2.25 \mathrm{~m}) \mathbf{k}}{\sqrt{(3)^{2}+(2.25)^{2}} \mathrm{~m}} T_{F H}=\frac{1766.67 \mathrm{~N}}{3.75}(-3 \mathbf{i}-2.25 \mathbf{k}) \\
& \therefore \quad\left|\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 3.4 \\
-3 & 0 & 3.15
\end{array}\right|\left(\frac{T_{E G}}{4.35}\right)+\left|\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -2.5 \\
-3 & 0 & -2.25
\end{array}\right|\left(\frac{1766.67}{3.75}\right)=0 \\
&-(10.2) \frac{T_{E G}}{4.35}+(7.5) \frac{1766.67}{3.75}=0
\end{aligned}
\end{aligned}
$$

or

$$
T_{E G}=1.507 \mathrm{kN}
$$

$$
\Sigma F_{x}=0: \quad D_{x}-\left(T_{C I}\right)_{x}-\left(T_{F H}\right)_{x}-\left(T_{E G}\right)_{x}=0
$$

$$
D_{x}-\left(\frac{1.8}{2.12}\right)(1766.67 \mathrm{~N})-\left(\frac{3}{3.75}\right)(1766.67 \mathrm{~N})-\left(\frac{3}{4.35}\right)(1506.86 \mathrm{~N})=0
$$

$$
\therefore D_{x}=3952.5 \mathrm{~N}
$$

$$
\Sigma F_{y}=0: \quad D_{y}+\left(T_{C I}\right)_{y}-560 \mathrm{~N}=0
$$

$$
D_{y}+\left(\frac{1.12}{2.12}\right)(1766.67 \mathrm{~N})-560 \mathrm{~N}=0
$$

$$
\therefore \quad D_{y}=-373.34 \mathrm{~N}
$$

$$
\Sigma F_{z}=0: \quad D_{z}+\left(T_{E G}\right)_{z}-\left(T_{F H}\right)_{z}=0
$$

$$
D_{z}+\left(\frac{3.15}{4.35}\right)(1506.86 \mathrm{~N})-\left(\frac{2.25}{3.75}\right)(1766.67 \mathrm{~N})=0
$$

$$
\therefore \quad D_{z}=-31.172 \mathrm{~N}
$$

$$
\mathbf{D}=(3950 \mathrm{~N}) \mathbf{i}-(373 \mathrm{~N}) \mathbf{j}-(31.2 \mathrm{~N}) \mathbf{k}
$$

SOLUTION

(a) From f.b.d. of assembly

$$
\begin{gathered}
\mathbf{T}_{D G}=\lambda_{D G} T_{D G}=\left[\frac{-(0.12 \mathrm{~m}) \mathbf{j}-(0.225 \mathrm{~m}) \mathbf{k}}{\sqrt{(0.12)^{2}+(0.225)^{2}} \mathrm{~m}}\right]=\frac{T_{D G}}{0.255}[-(0.12) \mathbf{j}-(0.225) \mathbf{k}] \\
\Sigma M_{y}=0:-(220 \mathrm{~N})(0.24 \mathrm{~m})+\left[T_{D G}\left(\frac{0.225}{0.255}\right)\right](0.16 \mathrm{~m})=0 \\
\therefore T_{D G}=374.00 \mathrm{~N}
\end{gathered}
$$

or $T_{D G}=374 \mathrm{~N}$
(b) From f.b.d. of assembly

$$
\begin{gathered}
\Sigma M_{F(z \text {-axis })}=0:(220 \mathrm{~N})(0.19 \mathrm{~m})-E_{x}(0.13 \mathrm{~m})-\left[374 \mathrm{~N}\left(\frac{0.120}{0.255}\right)\right](0.16 \mathrm{~m})=0 \\
\therefore E_{x}=104.923 \mathrm{~N} \\
\Sigma F_{x}=0: \quad F_{x}+104.923 \mathrm{~N}-220 \mathrm{~N}=0 \\
\therefore F_{x}=115.077 \mathrm{~N} \\
\Sigma M_{F(x \text {-axis })}=0: \quad E_{z}(0.13 \mathrm{~m})+\left[374 \mathrm{~N}\left(\frac{0.225}{0.255}\right)\right](0.06 \mathrm{~m})=0 \\
\therefore \quad E_{z}=-152.308 \mathrm{~N}
\end{gathered}
$$

PROBLEM 4.120 CONTINUED

$$
\begin{aligned}
& \Sigma F_{z}=0: \quad F_{z}-152.308 \mathrm{~N}-(374 \mathrm{~N})\left(\frac{0.225}{0.255}\right)=0 \\
& \therefore \quad F_{z}=482.31 \mathrm{~N} \\
& \Sigma F_{y}=0: \quad F_{y}-(374 \mathrm{~N})\left(\frac{0.12}{0.255}\right)=0 \\
& \therefore \quad F_{y}=176.0 \mathrm{~N} \\
& \mathbf{E}=(104.9 \mathrm{~N}) \mathbf{i}-(152.3 \mathrm{~N}) \mathbf{k} 4 \\
& \mathbf{F}=(115.1 \mathrm{~N}) \mathbf{i}+(176.0 \mathrm{~N}) \mathbf{j}+(482 \mathrm{~N}) \mathbf{k}
\end{aligned}
$$

PROBLEM 4.121

A $30-\mathrm{kg}$ cover for a roof opening is hinged at corners A and B. The roof forms an angle of 30° with the horizontal, and the cover is maintained in a horizontal position by the brace $C E$. Determine (a) the magnitude of the force exerted by the brace, (b) the reactions at the hinges. Assume that the hinge at A does not exert any axial thrust.

SOLUTION

First note

$$
\begin{gathered}
W=m g=(30 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=294.3 \mathrm{~N} \\
\mathbf{F}_{E C}=\lambda_{E C} F_{E C}=\left[\left(\sin 15^{\circ}\right) \mathbf{i}+\left(\cos 15^{\circ}\right) \mathbf{j}\right] F_{E C}
\end{gathered}
$$

From f.b.d. of cover
(a)

$$
\Sigma M_{z}=0: \quad\left(F_{E C} \cos 15^{\circ}\right)(1.0 \mathrm{~m})-W(0.5 \mathrm{~m})=0
$$

or
(b)

$$
\Sigma M_{x}=0: W(0.4 \mathrm{~m})-A_{y}(0.8 \mathrm{~m})-\left(F_{E C} \cos 15^{\circ}\right)(0.8 \mathrm{~m})=0
$$

or

$$
(294.3 \mathrm{~N})(0.4 \mathrm{~m})-A_{y}(0.8 \mathrm{~m})-\left[(152.341 \mathrm{~N}) \cos 15^{\circ}\right](0.8 \mathrm{~m})=0
$$

$$
\therefore \quad A_{y}=0
$$

$\Sigma M_{y}=0: \quad A_{x}(0.8 \mathrm{~m})+\left(F_{E C} \sin 15^{\circ}\right)(0.8 \mathrm{~m})=0$
or

$$
\begin{gathered}
A_{x}(0.8 \mathrm{~m})+\left[(152.341 \mathrm{~N}) \sin 15^{\circ}\right](0.8 \mathrm{~m})=0 \\
\therefore A_{x}=-39.429 \mathrm{~N} \\
\Sigma F_{x}=0: A_{x}+B_{x}+F_{E C} \sin 15^{\circ}=0 \\
-39.429 \mathrm{~N}+B_{x}+(152.341 \mathrm{~N}) \sin 15^{\circ}=0 \\
\therefore \quad B_{x}=0
\end{gathered}
$$

PROBLEM 4.121 CONTINUED

$$
\Sigma F_{y}=0: \quad F_{E C} \cos 15^{\circ}-W+B_{y}=0
$$

or
$(152.341 \mathrm{~N}) \cos 15^{\circ}-294.3 \mathrm{~N}+B_{y}=0$
$\therefore \quad B_{y}=147.180 \mathrm{~N}$

$$
\begin{aligned}
\text { or } \mathbf{A} & =-(39.4 \mathrm{~N}) \mathbf{i} \mathbf{4} \\
\mathbf{B} & =(147.2 \mathrm{~N}) \mathbf{j} \mathbf{~}
\end{aligned}
$$

PROBLEM 4.122

The rectangular plate shown has a mass of 15 kg and is held in the position shown by hinges A and B and cable $E F$. Assuming that the hinge at B does not exert any axial thrust, determine (a) the tension in the cable, (b) the reactions at A and B.

SOLUTION

First note

$$
W=m g=(15 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=147.15 \mathrm{~N}
$$

$$
\mathbf{T}_{E F}=\lambda_{E F} T_{E F}=\left[\frac{(0.08 \mathrm{~m}) \mathbf{i}+(0.25 \mathrm{~m}) \mathbf{j}-(0.2 \mathrm{~m}) \mathbf{k}}{\sqrt{(0.08)^{2}+(0.25)^{2}+(0.2)^{2}} \mathrm{~m}}\right] T_{E F}=\frac{T_{E F}}{0.33}(0.08 \mathbf{i}+0.25 \mathbf{j}-0.2 \mathbf{k})
$$

From f.b.d. of rectangular plate

$$
\Sigma M_{x}=0: \quad(147.15 \mathrm{~N})(0.1 \mathrm{~m})-\left(T_{E F}\right)_{y}(0.2 \mathrm{~m})=0
$$

or

$$
14.715 \mathrm{~N} \cdot \mathrm{~m}-\left[\left(\frac{0.25}{0.33}\right) T_{E F}\right](0.2 \mathrm{~m})=0
$$

or

$$
T_{E F}=97.119 \mathrm{~N}
$$

or $T_{E F}=97.1 \mathrm{~N}$ <

$$
\begin{aligned}
\Sigma F_{x}=0: & A_{x}+\left(T_{E F}\right)_{x}=0 \\
& A_{x}+\left(\frac{0.08}{0.33}\right)(97.119 \mathrm{~N})=0
\end{aligned}
$$

$$
\therefore \quad A_{x}=-23.544 \mathrm{~N}
$$

PROBLEM 4.122 CONTINUED

or

$$
\begin{gathered}
\Sigma M_{B(z \text {-axis })}=0:-A_{y}(0.3 \mathrm{~m})-\left(T_{E F}\right)_{y}(0.04 \mathrm{~m})+W(0.15 \mathrm{~m})=0 \\
-A_{y}(0.3 \mathrm{~m})-\left[\left(\frac{0.25}{0.33}\right) 97.119 \mathrm{~N}\right](0.04 \mathrm{~m})+147.15 \mathrm{~N}(0.15 \mathrm{~m})=0 \\
\therefore A_{y}=63.765 \mathrm{~N} \\
\Sigma M_{B(y \text {-axis })}=0: A_{z}(0.3 \mathrm{~m})+\left(T_{E F}\right)_{x}(0.2 \mathrm{~m})+\left(T_{E F}\right)_{z}(0.04 \mathrm{~m})=0 \\
A_{z}(0.3 \mathrm{~m})+\left[\left(\frac{0.08}{0.33}\right) T_{E F}\right](0.2 \mathrm{~m})-\left[\left(\frac{0.2}{0.33}\right) T_{E F}\right](0.04 \mathrm{~m})=0 \\
\therefore A_{z}=-7.848 \mathrm{~N} \\
\text { and } \mathbf{A}=-(23.5 \mathrm{~N}) \mathbf{i}+(63.8 \mathrm{~N}) \mathbf{j}-(7.85 \mathrm{~N}) \mathbf{k}
\end{gathered}
$$

$\Sigma F_{y}=0: \quad A_{y}-W+\left(T_{E F}\right)_{y}+B_{y}=0$

$$
63.765 \mathrm{~N}-147.15 \mathrm{~N}+\left(\frac{0.25}{0.33}\right)(97.119 \mathrm{~N})+B_{y}=0
$$

$$
\therefore \quad B_{y}=9.81 \mathrm{~N}
$$

$\Sigma F_{z}=0: \quad A_{z}-\left(T_{E F}\right)_{z}+B_{z}=0$

$$
-7.848 \mathrm{~N}-\left(\frac{0.2}{0.33}\right)(97.119 \mathrm{~N})+B_{z}=0
$$

$\therefore \quad B_{z}=66.708 \mathrm{~N}$

SOLUTION

$$
W=m g=(15 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=147.15 \mathrm{~N}
$$

$$
\mathbf{T}_{E H}=\lambda_{E H} T_{E H}=\left[\frac{-(0.3 \mathrm{~m}) \mathbf{i}+(0.12 \mathrm{~m}) \mathbf{j}-(0.2 \mathrm{~m}) \mathbf{k}}{\sqrt{(0.3)^{2}+(0.12)^{2}+(0.2)^{2}} \mathrm{~m}}\right] T_{E H}=\frac{T_{E H}}{0.38}[-(0.3) \mathbf{i}+(0.12) \mathbf{j}-(0.2) \mathbf{k}]
$$

From f.b.d. of rectangular plate

$$
\Sigma M_{x}=0:(147.15 \mathrm{~N})(0.1 \mathrm{~m})-\left(T_{E H}\right)_{y}(0.2 \mathrm{~m})=0
$$

or

$$
(147.15 \mathrm{~N})(0.1 \mathrm{~m})-\left[\left(\frac{0.12}{0.38}\right) T_{E H}\right](0.2 \mathrm{~m})=0
$$

or

$$
T_{E H}=232.99 \mathrm{~N}
$$

or $T_{E H}=233 \mathrm{~N}$

$$
\begin{aligned}
\Sigma F_{x}=0: & A_{x}+\left(T_{E H}\right)_{x}=0 \\
& A_{x}-\left(\frac{0.3}{0.38}\right)(232.99 \mathrm{~N})=0
\end{aligned}
$$

$$
\therefore \quad A_{x}=183.938 \mathrm{~N}
$$

PROBLEM 4.123 CONTINUED

$$
\begin{aligned}
\Sigma M_{B(z \text {-axis })}=0:-A_{y} & (0.3 \mathrm{~m})-\left(T_{E H}\right)_{y}(0.04 \mathrm{~m})+W(0.15 \mathrm{~m})=0 \\
& -A_{y}(0.3 \mathrm{~m})-\left[\frac{0.12}{0.38}(232.99 \mathrm{~N})\right](0.04 \mathrm{~m})+(147.15 \mathrm{~N})(0.15 \mathrm{~m})=0
\end{aligned}
$$

or

$$
\therefore \quad A_{y}=63.765 \mathrm{~N}
$$

$$
\Sigma M_{B(y \text {-axis })}=0: \quad A_{z}(0.3 \mathrm{~m})+\left(T_{E H}\right)_{x}(0.2 \mathrm{~m})+\left(T_{E H}\right)_{z}(0.04 \mathrm{~m})=0
$$

or

$$
A_{z}(0.3 \mathrm{~m})-\left[\left(\frac{0.3}{0.38}\right)(232.99 \mathrm{~N})\right](0.2 \mathrm{~m})-\left[\left(\frac{0.2}{0.38}\right)(232.99)\right](0.04 \mathrm{~m})=0
$$

$$
\therefore \quad A_{z}=138.976 \mathrm{~N}
$$

$$
\text { and } \mathbf{A}=(183.9 \mathrm{~N}) \mathbf{i}+(63.8 \mathrm{~N}) \mathbf{j}+(139.0 \mathrm{~N}) \mathbf{k}
$$

$\Sigma F_{y}=0: \quad A_{y}+B_{y}-W+\left(T_{E H}\right)_{y}=0$

$$
63.765 \mathrm{~N}+B_{y}-147.15 \mathrm{~N}+\left(\frac{0.12}{0.38}\right)(232.99 \mathrm{~N})=0
$$

$$
\therefore \quad B_{y}=9.8092 \mathrm{~N}
$$

$\Sigma F_{z}=0: \quad A_{z}+B_{z}-\left(T_{E H}\right)_{z}=0$

$$
138.976 \mathrm{~N}+B_{z}-\left(\frac{0.2}{0.38}\right)(232.99 \mathrm{~N})=0
$$

$$
\therefore \quad B_{z}=-16.3497 \mathrm{~N}
$$

and $\quad \mathbf{B}=(9.81 \mathrm{~N}) \mathbf{j}-(16.35 \mathrm{~N}) \mathbf{k}<$

PROBLEM 4.124

A small door weighing 16 lb is attached by hinges A and B to a wall and is held in the horizontal position shown by rope $E F H$. The rope passes around a small, frictionless pulley at F and is tied to a fixed cleat at H. Assuming that the hinge at A does not exert any axial thrust, determine (a) the tension in the rope, (b) the reactions at A and B.

SOLUTION

First note

$$
\left.\begin{array}{rl}
\mathbf{T}=\lambda_{E F} T & =\frac{(12 \mathrm{in} .) \mathbf{i}+(54 \mathrm{in} .) \mathbf{j}-(28 \mathrm{in} .) \mathbf{k}}{\sqrt{(12)^{2}+(54)^{2}+(28)^{2}} \mathrm{in} .} T \\
& =\frac{T}{62}(12 \mathbf{i}+54 \mathbf{j}-28 \mathbf{k})=\frac{T}{31}(6 \mathbf{i}+27 \mathbf{j}-14 \mathbf{k})
\end{array}\right\} \begin{aligned}
& \mathbf{W}=-(16 \mathrm{lb}) \mathbf{j} \quad \text { at } G
\end{aligned}
$$

From f.b.d. of door $A B C D$
(a)

$$
\begin{aligned}
& \Sigma M_{x}=0: T_{y}(28 \mathrm{in} .)-W(14 \mathrm{in} .)=0 \\
& {\left[T\left(\frac{27}{31}\right)\right](28 \mathrm{in} .)-(16 \mathrm{lb})(14 \mathrm{in} .)=0 } \\
& \therefore \quad T=9.1852 \mathrm{lb}
\end{aligned}
$$

or $T=9.19 \mathrm{lb}$
(b)

$$
\begin{aligned}
\Sigma M_{B(z-\mathrm{axis})}=0: & -A_{y}(30 \mathrm{in} .)+W(15 \mathrm{in} .)-T_{y}(4 \mathrm{in} .)=0 \\
& -A_{y}(30 \mathrm{in} .)+(16 \mathrm{lb})(15 \mathrm{in} .)-\left[(9.1852 \mathrm{lb})\left(\frac{27}{31}\right)\right](4 \mathrm{in} .)=0
\end{aligned}
$$

$$
\therefore \quad A_{y}=6.9333 \mathrm{lb}
$$

PROBLEM 4.124 CONTINUED

$$
\begin{gathered}
\Sigma M_{B(y \text {-axis })}=0: A_{z}(30 \mathrm{in} .)+T_{x}(28 \mathrm{in} .)-T_{z}(4 \mathrm{in} .)=0 \\
A_{z}(30 \mathrm{in} .)+\left[(9.1852 \mathrm{lb})\left(\frac{6}{31}\right)\right](28 \mathrm{in} .)-\left[(9.1852 \mathrm{lb})\left(\frac{14}{31}\right)\right](4 \mathrm{in} .)=0 \\
\therefore A_{z}=-1.10617 \mathrm{lb}
\end{gathered}
$$

$$
\text { or } \mathbf{A}=(6.93 \mathrm{lb}) \mathbf{j}-(1.106 \mathrm{lb}) \mathbf{k} \boldsymbol{4}
$$

$$
\Sigma F_{x}=0: \quad B_{x}+T_{x}=B_{x}+(9.1852 \mathrm{lb})\left(\frac{6}{31}\right)=0
$$

$$
\therefore \quad B_{x}=-1.77778 \mathrm{lb}
$$

$$
\Sigma F_{y}=0: \quad B_{y}+T_{y}-W+A_{y}=0
$$

$$
B_{y}+(9.1852 \mathrm{lb})\left(\frac{27}{31}\right)-16 \mathrm{lb}+6.9333 \mathrm{lb}=0
$$

$$
\therefore \quad B_{y}=1.06666 \mathrm{lb}
$$

$$
\Sigma F_{z}=0: \quad A_{z}-T_{z}+B_{z}=0
$$

$$
-1.10617 \mathrm{lb}-(9.1852 \mathrm{lb})\left(\frac{14}{31}\right)+B_{z}=0
$$

$$
\therefore \quad B_{z}=5.2543 \mathrm{lb}
$$

$$
\text { or } \mathbf{B}=-(1.778 \mathrm{lb}) \mathbf{i}+(1.067 \mathrm{lb}) \mathbf{j}+(5.25 \mathrm{lb}) \mathbf{k}
$$

PROBLEM 4.125

Solve Problem 4.124 assuming that the rope is attached to the door at I.
P4.124 A small door weighing 16 lb is attached by hinges A and B to a wall and is held in the horizontal position shown by rope $E F H$. The rope passes around a small, frictionless pulley at F and is tied to a fixed cleat at H. Assuming that the hinge at A does not exert any axial thrust, determine (a) the tension in the rope, (b) the reactions at A and B.

SOLUTION

First note

$$
\begin{aligned}
\mathbf{T}=\lambda_{I F} T & =\frac{(3 \mathrm{in} .) \mathbf{i}+(54 \mathrm{in} .) \mathbf{j}-(10 \mathrm{in} .) \mathbf{k}}{\sqrt{(3)^{2}+(54)^{2}+(10)^{2}} \mathrm{in} .} T \\
& =\frac{T}{55}(3 \mathbf{i}+54 \mathbf{j}-10 \mathbf{k}) \\
\mathbf{W} & =-(16 \mathrm{lb}) \mathbf{j}
\end{aligned}
$$

From f.b.d. of door $A B C D$
(a)

$$
\begin{aligned}
\Sigma M_{x}=0: & W(14 \mathrm{in} .)-T_{y}(10 \mathrm{in} .)=0 \\
& (16 \mathrm{lb})(14 \mathrm{in} .)-\left(\frac{54}{55}\right) T(10 \mathrm{in} .)=0
\end{aligned}
$$

$$
\therefore \quad T=22.815 \mathrm{lb}
$$

or $T=22.8 \mathrm{lb}$
(b)

$$
\begin{gathered}
\Sigma M_{B(z \text {-axis })}=0:-A_{y}(30 \mathrm{in} .)+W(15 \mathrm{in} .)+T_{y}(5 \mathrm{in} .)=0 \\
-A_{y}(30 \mathrm{in} .)+(16 \mathrm{lb})(15 \mathrm{in} .)+(22.815 \mathrm{lb})\left(\frac{54}{55}\right)(5 \mathrm{in} .)=0 \\
\therefore A_{y}=11.7334 \mathrm{lb}
\end{gathered}
$$

PROBLEM 4.125 CONTINUED

$$
\begin{aligned}
& \Sigma M_{B(y \text {-axis })}=0: \quad A_{z}(30 \mathrm{in} .)+T_{x}(10 \mathrm{in} .)+T_{z}(5 \mathrm{in} .)=0 \\
& A_{z}(30 \mathrm{in} .)+\left[(22.815 \mathrm{lb})\left(\frac{3}{55}\right)\right](10 \mathrm{in} .)+\left[(22.815 \mathrm{lb})\left(\frac{10}{55}\right)\right](5 \mathrm{in} .)=0 \\
& \therefore A_{z}=-1.10618 \mathrm{lb} \\
& \text { or } \mathbf{A}=(11.73 \mathrm{lb}) \mathbf{j}-(1.106 \mathrm{lb}) \mathbf{k} \boldsymbol{<} \\
& \Sigma F_{x}=0: \quad B_{x}+T_{x}=0 \\
& B_{x}+\left(\frac{3}{55}\right)(22.815 \mathrm{lb})=0 \\
& \therefore \quad B_{x}=-1.24444 \mathrm{lb} \\
& \Sigma F_{y}=0: \quad A_{y}-W+T_{y}+B_{y}=0 \\
& 11.7334 \mathrm{lb}-16 \mathrm{lb}+(22.815 \mathrm{lb})\left(\frac{54}{55}\right)+B_{y}=0 \\
& \therefore \quad B_{y}=-18.1336 \mathrm{lb} \\
& \Sigma F_{z}=0: \quad A_{z}-T_{z}+B_{z}=0 \\
& -1.10618 \mathrm{lb}-(22.815 \mathrm{lb})\left(\frac{10}{55}\right)+B_{z}=0 \\
& \therefore \quad B_{z}=5.2544 \mathrm{lb} \\
& \text { or } \mathbf{B}=-(1.244 \mathrm{lb}) \mathbf{i}-(18.13 \mathrm{lb}) \mathbf{j}+(5.25 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

PROBLEM 4.126

A 285-lb uniform rectangular plate is supported in the position shown by hinges A and B and by cable $D C E$, which passes over a frictionless hook at C. Assuming that the tension is the same in both parts of the cable, determine (a) the tension in the cable, (b) the reactions at A and B. Assume that the hinge at B does not exert any axial thrust.

SOLUTION

First note

$$
\begin{aligned}
\lambda_{C D} & =\frac{-(23 \mathrm{in} .) \mathbf{i}+(22.5 \mathrm{in} .) \mathbf{j}-(15 \mathrm{in} .) \mathbf{k}}{35.5 \mathrm{in} .} \\
& =\frac{1}{35.5}(-23 \mathbf{i}+22.5 \mathbf{j}-15 \mathbf{k}) \\
\lambda_{C E} & =\frac{(9 \mathrm{in} .) \mathbf{i}+(22.5 \mathrm{in} .) \mathbf{j}-(15 \mathrm{in} .) \mathbf{k}}{28.5 \mathrm{in} .} \\
& =\frac{1}{28.5}(9 \mathbf{i}+22.5 \mathbf{j}-15 \mathbf{k}) \\
\mathbf{W} & =-(285 \mathrm{lb}) \mathbf{j}
\end{aligned}
$$

From f.b.d. of plate
(a)

$$
\Sigma M_{x}=0:(285 \mathrm{lb})(7.5 \mathrm{in} .)-\left[\left(\frac{22.5}{35.5}\right) T\right](15 \mathrm{in} .)-\left[\left(\frac{22.5}{28.5}\right) T\right](15 \mathrm{in} .)=0
$$

$$
\therefore T=100.121 \mathrm{lb}
$$

PROBLEM 4.126 CONTINUED

(b)

$$
\begin{aligned}
& \Sigma F_{x}=0: \quad A_{x}-T\left(\frac{23}{35.5}\right)+T\left(\frac{9}{28.5}\right)=0 \\
& A_{x}-(100.121 \mathrm{lb})\left(\frac{23}{35.5}\right)+(100.121 \mathrm{lb})\left(\frac{9}{28.5}\right)=0 \\
& \therefore A_{x}=33.250 \mathrm{lb} \\
& \Sigma M_{B(z-\text { axis })}=0:-A_{y}(26 \text { in. })+W(13 \text { in. })-\left[T\left(\frac{22.5}{35.5}\right)\right](6 \text { in. })-\left[T\left(\frac{22.5}{28.5}\right)\right](6 \text { in. })=0 \\
& -A_{y}(26 \mathrm{in} .)+(285 \mathrm{lb})(13 \mathrm{in} .)-\left[(100.121 \mathrm{lb})\left(\frac{22.5}{35.5}\right)\right](6 \mathrm{in} .) \\
& -\left[(100.121 \mathrm{lb})\left(\frac{22.5}{28.5}\right)\right](6 \mathrm{in} .)=0 \\
& \therefore A_{y}=109.615 \mathrm{lb} \\
& \Sigma M_{B(y-\text {-axis })}=0: \quad A_{z}(26 \mathrm{in} .)-\left[T\left(\frac{15}{35.5}\right)\right](6 \text { in. })-\left[T\left(\frac{23}{35.5}\right)\right](15 \mathrm{in} .) \\
& -\left[T\left(\frac{15}{28.5}\right)\right](6 \text { in. })+\left[T\left(\frac{9}{28.5}\right)\right](15 \text { in. })=0
\end{aligned}
$$

or
or

$$
\begin{gathered}
A_{z}(26 \mathrm{in} .)+\left[\frac{-1}{35.5}(90+345)-\frac{1}{28.5}(90-135)\right](100.121 \mathrm{lb})=0 \\
\therefore \quad A_{z}=41.106 \mathrm{lb} \\
\text { or } \mathbf{A}=(33.3 \mathrm{lb}) \mathbf{i}+(109.6 \mathrm{lb}) \mathbf{j}+(41.1 \mathrm{lb}) \mathbf{k} \\
\Sigma F_{y}=0: \quad B_{y}-W+T\left(\frac{22.5}{35.5}\right)+T\left(\frac{22.5}{28.5}\right)+A_{y}=0 \\
B_{y}-285 \mathrm{lb}+(100.121 \mathrm{lb})\left(\frac{22.5}{35.5}+\frac{22.5}{28.5}\right)+109.615 \mathrm{lb}=0 \\
\therefore \quad B_{y}=32.885 \mathrm{lb} \\
\Sigma F_{z}=0: \quad B_{z}+A_{z}-T\left(\frac{15}{35.5}\right)-T\left(\frac{15}{28.5}\right)=0 \\
B_{z}+41.106 \mathrm{lb}-(100.121 \mathrm{lb})\left(\frac{15}{35.5}+\frac{15}{28.5}\right)=0 \\
\therefore \quad B_{z}=53.894 \mathrm{lb}
\end{gathered}
$$

SOLUTION

First note

$$
\begin{aligned}
\lambda_{C E} & =\frac{(9 \mathrm{in} .) \mathbf{i}+(22.5 \mathrm{in} .) \mathbf{j}-(15 \mathrm{in} .) \mathbf{k}}{28.5 \mathrm{in} .} \\
& =\frac{1}{28.5}(9 \mathbf{i}+22.5 \mathbf{j}-15 \mathbf{k}) \\
\mathbf{W} & =-(285 \mathrm{lb}) \mathbf{j}
\end{aligned}
$$

From f.b.d. of plate
(a)

$$
\Sigma M_{x}=0:(285 \mathrm{lb})(7.5 \mathrm{in} .)-\left[\left(\frac{22.5}{28.5}\right) T\right](15 \mathrm{in} .)=0
$$

$$
\therefore \quad T=180.500 \mathrm{lb}
$$

(b)

$$
\begin{aligned}
\Sigma F_{x}=0: & A_{x}+T\left(\frac{9}{28.5}\right)=0 \\
& A_{x}+180.5 \mathrm{lb}\left(\frac{9}{28.5}\right)=0
\end{aligned}
$$

$$
\therefore \quad A_{x}=-57.000 \mathrm{lb}
$$

PROBLEM 4.127 CONTINUED

$$
\begin{gathered}
\Sigma M_{B(z \text {-axis })}=0:-A_{y}(26 \mathrm{in} .)+W(13 \mathrm{in} .)-\left[T\left(\frac{22.5}{28.5}\right)\right](6 \mathrm{in} .)=0 \\
-A_{y}(26 \mathrm{in} .)+(285 \mathrm{lb})(13 \mathrm{in} .)-\left[(180.5 \mathrm{lb})\left(\frac{22.5}{28.5}\right)\right](6 \mathrm{in} .)=0 \\
\therefore \quad A_{y}=109.615 \mathrm{lb} \\
\Sigma M_{B(y \text {-axis })}=0: \quad A_{z}(26 \mathrm{in} .)-\left[T\left(\frac{15}{28.5}\right)\right](6 \mathrm{in} .)+\left[T\left(\frac{9}{28.5}\right)\right](15 \mathrm{in} .)=0 \\
A_{z}(26 \mathrm{in.})+(180.5 \mathrm{lb})\left(\frac{45}{28.5}\right)=0 \\
\therefore \quad A_{z}=-10.9615 \mathrm{lb} \\
\text { or } \mathbf{A}=-(57.0 \mathrm{lb}) \mathbf{i}+(109.6 \mathrm{lb}) \mathbf{j}-(10.96 \mathrm{lb}) \mathbf{k} \boldsymbol{4} \\
\Sigma F_{y}=0: \quad B_{y}-W+T\left(\frac{22.5}{28.5}\right)+A_{y}=0 \\
B_{y}-285 \mathrm{lb}+(180.5 \mathrm{lb})\left(\frac{22.5}{28.5}\right)-109.615 \mathrm{lb}=0
\end{gathered}
$$

$$
\therefore \quad B_{y}=32.885 \mathrm{lb}
$$

$$
\Sigma F_{z}=0: \quad B_{z}+A_{z}-T\left(\frac{15}{28.5}\right)=0
$$

$$
B_{z}-10.9615 \mathrm{lb}-180.5 \mathrm{lb}\left(\frac{15}{28.5}\right)=0
$$

$$
\therefore \quad B_{z}=105.962 \mathrm{lb}
$$

PROBLEM 4.128

The tensioning mechanism of a belt drive consists of frictionless pulley A, mounting plate B, and spring C. Attached below the mounting plate is slider block D which is free to move in the frictionless slot of bracket E. Knowing that the pulley and the belt lie in a horizontal plane, with portion F of the belt parallel to the x axis and portion G forming an angle of 30° with the x axis, determine (a) the force in the spring, (b) the reaction at D.

SOLUTION

From f.b.d. of plate B
(a)

$$
\Sigma F_{x}=0: \quad 12 \mathrm{~N}+(12 \mathrm{~N}) \cos 30^{\circ}-T=0
$$

$$
\therefore \quad T=22.392 \mathrm{~N}
$$

or $T=22.4 \mathrm{~N}$
(b)

$$
\begin{aligned}
& \Sigma F_{y}=0: \quad D_{y}=0 \\
& \Sigma F_{z}=0: \quad D_{z}-(12 \mathrm{~N}) \sin 30^{\circ}=0 \\
& \therefore D_{z}=6 \mathrm{~N} \\
& \Sigma M_{x}=0: \quad M_{D_{x}}-\left[(12 \mathrm{~N}) \sin 30^{\circ}\right](22 \mathrm{~mm})=0 \\
& \therefore \quad M_{D_{x}}=132.0 \mathrm{~N} \cdot \mathrm{~mm} \\
& \Sigma M_{D(y \text {-axis })}=0: \quad M_{D_{y}}+(22.392 \mathrm{~N})(30 \mathrm{~mm})-(12 \mathrm{~N})(75 \mathrm{~mm})-\left[(12 \mathrm{~N}) \cos 30^{\circ}\right](75 \mathrm{~mm})=0 \\
& \therefore \quad M_{D_{y}}=1007.66 \mathrm{~N} \cdot \mathrm{~mm} \\
& \Sigma M_{D(z \text {-axis })}=0: \quad M_{D_{z}}+(22.392 \mathrm{~N})(18 \mathrm{~mm})-(12 \mathrm{~N})(22 \mathrm{~mm})-\left[(12 \mathrm{~N}) \cos 30^{\circ}\right](22 \mathrm{~mm})=0 \\
& \therefore \quad M_{D_{z}}=89.575 \mathrm{~N} \cdot \mathrm{~mm} \\
& \text { or } \mathbf{M}_{D}=(0.1320 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{i}+(1.008 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{j}+(0.0896 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{k}
\end{aligned}
$$

PROBLEM 4.129

The assembly shown is welded to collar A which fits on the vertical pin shown. The pin can exert couples about the x and z axes but does not prevent motion about or along the y axis. For the loading shown, determine the tension in each cable and the reaction at A.

SOLUTION

First note

$$
\begin{aligned}
\mathbf{T}_{C F}=\lambda_{C F} T_{C F} & =\frac{-(0.16 \mathrm{~m}) \mathbf{i}+(0.12 \mathrm{~m}) \mathbf{j}}{\sqrt{(0.16)^{2}+(0.12)^{2}} \mathrm{~m}} T_{C F} \\
& =T_{C F}(-0.8 \mathbf{i}+0.6 \mathbf{j}) \\
\mathbf{T}_{D E}=\lambda_{D E} T_{D E} & =\frac{(0.24 \mathrm{~m}) \mathbf{j}-(0.18 \mathrm{~m}) \mathbf{k}}{\sqrt{(0.24)^{2}+(0.18)^{2}} \mathrm{~m}} T_{D E} \\
& =T_{D E}(0.8 \mathbf{j}-0.6 \mathbf{k})
\end{aligned}
$$

(a) From f.b.d. of assembly

$$
\Sigma F_{y}=0: \quad 0.6 T_{C F}+0.8 T_{D E}-800 \mathrm{~N}=0
$$

or

$$
\begin{equation*}
0.6 T_{C F}+0.8 T_{D E}=800 \mathrm{~N} \tag{1}
\end{equation*}
$$

$$
\Sigma M_{y}=0: \quad-\left(0.8 T_{C F}\right)(0.27 \mathrm{~m})+\left(0.6 T_{D E}\right)(0.16 \mathrm{~m})=0
$$

or

$$
\begin{equation*}
T_{D E}=2.25 T_{C F} \tag{2}
\end{equation*}
$$

PROBLEM 4.129 CONTINUED

Substituting Equation (2) into Equation (1)

$$
\begin{array}{rlr}
0.6 T_{C F}+0.8\left[(2.25) T_{C F}\right]=800 \mathrm{~N} & \\
\therefore \quad T_{C F}=333.33 \mathrm{~N} & \text { or } T_{C F}=333 \mathrm{~N} \\
T_{D E}=2.25(333.33 \mathrm{~N})=750.00 \mathrm{~N} & \text { or } T_{D E}=750 \mathrm{~N}
\end{array}
$$

and from Equation (2)
(b) From f.b.d. of assembly

$$
\begin{gathered}
\Sigma F_{z}=0: \quad A_{z}-(0.6)(750.00 \mathrm{~N})=0 \quad \therefore A_{z}=450.00 \mathrm{~N} \\
\Sigma F_{x}=0: \quad A_{x}-(0.8)(333.33 \mathrm{~N})=0 \quad \therefore A_{x}=266.67 \mathrm{~N} \\
\Sigma M_{x}=0: \\
\hline M_{A_{x}}+(800 \mathrm{~N})(0.27 \mathrm{~m})-[(333.33 \mathrm{~N})(0.6)](0.27 \mathrm{~m})-[(750 \mathrm{~N})(0.8)](0.18 \mathrm{~m})=0 \\
\therefore \quad M_{A_{x}}=-54.001 \mathrm{~N} \cdot \mathrm{~m} \\
\Sigma M_{z}=0: \\
\hline M_{A_{z}}-(800 \mathrm{~N})(0.16 \mathrm{~m})+[(333.33 \mathrm{~N})(0.6)](0.16 \mathrm{~m})+[(750 \mathrm{~N})(0.8)](0.16 \mathrm{~m})=0 \\
\therefore M_{A_{z}}=0
\end{gathered}
$$

PROBLEM 4.130

The lever $A B$ is welded to the bent $\operatorname{rod} B C D$ which is supported by bearing E and by cable $D G$. Assuming that the bearing can exert an axial thrust and couples about axes parallel to the x and z axes, determine (a) the tension in cable $D G,(b)$ the reaction at E.

SOLUTION

First note

$$
\begin{aligned}
\mathbf{T}_{D G}=\lambda_{D G} T_{D G} & =\frac{-(0.12 \mathrm{~m}) \mathbf{j}-(0.225 \mathrm{~m}) \mathbf{k}}{\sqrt{(0.12)^{2}+(0.225)^{2}} \mathrm{~m}} T_{D G} \\
& =\frac{T_{D G}}{0.255}(-0.12 \mathbf{j}-0.225 \mathbf{k})
\end{aligned}
$$

(a) From f.b.d. of weldment

$$
\Sigma M_{y}=0:\left[\left(\frac{0.225}{0.255}\right) T_{D G}\right](0.16 \mathrm{~m})-(220 \mathrm{~N})(0.24 \mathrm{~m})=0
$$

$$
\therefore \quad T_{D G}=374.00 \mathrm{~N} \quad \text { or } T_{D G}=374 \mathrm{~N}
$$

(b) From f.b.d. of weldment

$$
\begin{gathered}
\Sigma F_{x}=0: \quad E_{x}-220 \mathrm{~N}=0 \\
\therefore \quad E_{x}=220.00 \mathrm{~N} \\
\Sigma F_{y}=0: \quad E_{y}-(374.00 \mathrm{~N})\left(\frac{0.12}{0.255}\right)=0
\end{gathered}
$$

$$
\therefore \quad E_{y}=176.000 \mathrm{~N}
$$

PROBLEM 4.130 CONTINUED

$$
\begin{aligned}
& \Sigma F_{z}=0: \quad E_{z}-(374.00 \mathrm{~N})\left(\frac{0.225}{0.255}\right)=0 \\
& \therefore \quad E_{z}=330.00 \mathrm{~N} \\
& \text { or } \mathbf{E}=(220 \mathrm{~N}) \mathbf{i}+(176.0 \mathrm{~N}) \mathbf{j}+(330 \mathrm{~N}) \mathbf{k} \boldsymbol{<} \\
& \Sigma M_{x}=0: \quad M_{E_{x}}+(330.00 \mathrm{~N})(0.19 \mathrm{~m})=0 \\
& \therefore \quad M_{E_{x}}=-62.700 \mathrm{~N} \cdot \mathrm{~m} \\
& \Sigma M_{z}=0:(220 \mathrm{~N})(0.06 \mathrm{~m})+M_{E_{z}}-\left[(374.00 \mathrm{~N})\left(\frac{0.12}{0.255}\right)\right](0.16 \mathrm{~m})=0 \\
& \therefore \quad M_{E_{z}}=-14.9600 \mathrm{~N} \cdot \mathrm{~m} \\
& \text { or } \mathbf{M}_{E}=-(62.7 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{i}-(14.96 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{k}
\end{aligned}
$$

PROBLEM 4.131

Solve Problem 4.124 assuming that the hinge at A is removed and that the hinge at B can exert couples about the y and z axes.
P4.124 A small door weighing 16 lb is attached by hinges A and B to a wall and is held in the horizontal position shown by rope $E F H$. The rope passes around a small, frictionless pulley at F and is tied to a fixed cleat at H. Assuming that the hinge at A does not exert any axial thrust, determine (a) the tension in the rope, (b) the reactions at A and B.

SOLUTION

From f.b.d. of door
(a)

$$
\Sigma \mathbf{M}_{B}=0: \quad \mathbf{r}_{G / B} \times \mathbf{W}+\mathbf{r}_{E / B} \times \mathbf{T}_{E F}+\mathbf{M}_{B}=0
$$

where

$$
\begin{aligned}
\mathbf{W} & =-(16 \mathrm{lb}) \mathbf{j} \\
\mathbf{M}_{B} & =M_{B_{y}} \mathbf{j}+M_{B_{z}} \mathbf{k}
\end{aligned}
$$

$$
\mathbf{T}_{E F}=\lambda_{E F} T_{E F}=\frac{(12 \mathrm{in} .) \mathbf{i}+(54 \mathrm{in} .) \mathbf{j}-(28 \mathrm{in} .) \mathbf{k}}{\sqrt{(12)^{2}+(54)^{2}+(28)^{2}} \mathrm{in} .} T_{E F}
$$

$$
=\frac{T_{E F}}{31}(6 \mathbf{i}+27 \mathbf{j}-14 \mathbf{k})
$$

$$
\begin{aligned}
& \mathbf{r}_{G / B}=-(15 \mathrm{in} .) \mathbf{i}+(14 \mathrm{in} .) \mathbf{k} \\
& \mathbf{r}_{E / B}=-(4 \mathrm{in} .) \mathbf{i}+(28 \mathrm{in} .) \mathbf{k}
\end{aligned}
$$

$$
\therefore\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-15 & 0 & 14 \\
0 & -1 & 0
\end{array}\right|(16 \mathrm{lb})+\left|\begin{array}{rcc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-4 & 0 & 28 \\
6 & 27 & -14
\end{array}\right|\left(\frac{T_{E F}}{31}\right)+\left(M_{B_{y}} \mathbf{j}+M_{B_{z}} \mathbf{k}\right)=0
$$

or

$$
\begin{gathered}
\left(224-24.387 T_{E F}\right) \mathbf{i}+\left(3.6129 T_{E F}+M_{B_{y}}\right) \mathbf{j} \\
+\left(240-3.4839 T_{E F}+M_{B_{z}}\right) \mathbf{k}=0
\end{gathered}
$$

From i-coefficient

$$
224-24.387 T_{E F}=0
$$

$$
\therefore \quad T_{E F}=9.1852 \mathrm{lb}
$$

or $T_{E F}=9.19 \mathrm{lb}$
(b) From \mathbf{j}-coefficient $\quad 3.6129(9.1852)+M_{B_{y}}=0$

$$
\therefore \quad M_{B_{y}}=-33.185 \mathrm{lb} \cdot \mathrm{in} .
$$

PROBLEM 4.131 CONTINUED

$$
\begin{aligned}
& \text { From k-coefficient } 240-3.4839(9.1852)+M_{B_{z}}=0 \\
& \qquad \begin{array}{c}
\therefore \quad M_{B_{z}}=-208.00 \mathrm{lb} \cdot \mathrm{in} . \\
\\
\text { or } \mathbf{M}_{B}=-(33.2 \mathrm{lb} \cdot \mathrm{in} .) \mathbf{j}-(208 \mathrm{lb} \cdot \mathrm{in} .) \mathbf{k} \\
\Sigma F_{x}=0: \quad B_{x}+\frac{6}{31}(9.1852 \mathrm{lb})=0 \\
\therefore \quad B_{x}=-1.77778 \mathrm{lb} \\
\Sigma F_{y}=0: \quad B_{y}-16 \mathrm{lb}+\frac{27}{31}(9.1852 \mathrm{lb})=0 \\
\therefore \quad B_{y}=8.0000 \mathrm{lb} \\
\Sigma F_{z}=0: \quad B_{z}-\frac{14}{31}(9.1852 \mathrm{lb})=0 \\
\therefore \quad B_{z}=4.1482 \mathrm{lb} \\
\text { or } \mathbf{B}=-(1.778 \mathrm{lb}) \mathbf{i}+(8.00 \mathrm{lb}) \mathbf{j}+(4.15 \mathrm{lb}) \mathbf{k}
\end{array}
\end{aligned}
$$

PROBLEM 4.132

The frame shown is supported by three cables and a ball-and-socket joint at A. For $\mathbf{P}=0$, determine the tension in each cable and the reaction at A.

SOLUTION

First note

$$
\begin{aligned}
\mathbf{T}_{D I}=\lambda_{D I} T_{D I} & =\frac{-(0.65 \mathrm{~m}) \mathbf{i}+(0.2 \mathrm{~m}) \mathbf{j}-(0.44 \mathrm{~m}) \mathbf{k}}{\sqrt{(0.65)^{2}+(0.2)^{2}+(0.44)^{2}} \mathrm{~m}} T_{D I} \\
& =\frac{T_{D I}(-0.65 \mathbf{i}+0.2 \mathbf{j}-0.44 \mathbf{k})}{0.81} \\
\mathbf{T}_{E H}=\lambda_{E H} T_{E H} & =\frac{-(0.45 \mathrm{~m}) \mathbf{i}+(0.24 \mathrm{~m}) \mathbf{j} \mathbf{j}}{\sqrt{(0.45)^{2}+(0.24)^{2} \mathrm{~m}}} T_{E H} \\
& =\frac{T_{E H}}{0.51}(-0.45 \mathbf{i})+(0.24 \mathbf{j}) \\
\mathbf{T}_{F G}=\lambda_{F G} T_{F G} & =\frac{-(0.45 \mathrm{~m}) \mathbf{i}+(0.2 \mathrm{~m}) \mathbf{j}+(0.36 \mathrm{~m}) \mathbf{k}}{\sqrt{(0.45)^{2}+(0.2)^{2}+(0.36)^{2}} \mathrm{~m}} T_{F G} \\
& =\frac{T_{F G}}{0.61}(-0.45 \mathbf{i}+0.2 \mathbf{j}+0.36 \mathbf{k})
\end{aligned}
$$

From f.b.d. of frame

$$
\Sigma \mathbf{M}_{A}=0: \quad \mathbf{r}_{D / A} \times \mathbf{T}_{D I}+\mathbf{r}_{C / A} \times(-280 \mathrm{~N}) \mathbf{j}+\mathbf{r}_{H / A} \times \mathbf{T}_{E H}+\mathbf{r}_{F / A} \times \mathbf{T}_{F G}+\mathbf{r}_{F / A} \times(-360 \mathrm{~N}) \mathbf{j}=0
$$

or $\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0.65 & 0.2 & 0 \\ -0.65 & 0.2 & -0.44\end{array}\right|\left(\frac{T_{D I}}{0.81}\right)+\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0.65 & 0 & 0 \\ 0 & -1 & 0\end{array}\right|(280 \mathrm{~N})+\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 0.32 & 0 \\ -0.45 & 0.24 & 0\end{array}\right|\left(\frac{T_{E H}}{0.51}\right)+\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0.45 & 0 & 0.06 \\ -0.45 & 0.2 & 0.36\end{array}\right|\left(\frac{T_{F G}}{0.61}\right)$

$$
+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0.45 & 0 & 0.06 \\
0 & -1 & 0
\end{array}\right|(360 \mathrm{~N})=0
$$

or $\quad(-0.088 \mathbf{i}+0.286 \mathbf{j}+0.26 \mathbf{k}) \frac{T_{D I}}{0.81}+(-0.65 \mathbf{k}) 280 \mathrm{~N}+(0.144 \mathbf{k}) \frac{T_{E H}}{0.51}$

$$
+(-0.012 \mathbf{i}-0.189 \mathbf{j}+0.09 \mathbf{k}) \frac{T_{F G}}{0.61}+(0.06 \mathbf{i}-0.45 \mathbf{k})(360 \mathrm{~N})=0
$$

PROBLEM 4.132 CONTINUED

From i-coefficient $\quad-0.088\left(\frac{T_{D I}}{0.81}\right)-0.012\left(\frac{T_{F G}}{0.61}\right)+0.06(360 \mathrm{~N})=0$

$$
\begin{equation*}
\therefore \quad 0.108642 T_{D I}+0.0196721 T_{F G}=21.6 \tag{1}
\end{equation*}
$$

From j-coefficient $\quad 0.286\left(\frac{T_{D I}}{0.81}\right)-0.189\left(\frac{T_{F G}}{0.61}\right)=0$

$$
\begin{equation*}
\therefore \quad T_{F G}=1.13959 T_{D I} \tag{2}
\end{equation*}
$$

From k-coefficient

$$
\begin{align*}
& 0.26\left(\frac{T_{D I}}{0.81}\right)- \\
& 0.65(280 \mathrm{~N})+0.144\left(\frac{T_{E H}}{0.51}\right)+0.09\left(\frac{T_{F G}}{0.61}\right) \\
& -0.45(360 \mathrm{~N})=0 \tag{3}\\
\therefore \quad & 0.32099 T_{D I}+0.28235 T_{E H}+0.147541 T_{F G}=344 \mathrm{~N}
\end{align*}
$$

Substitution of Equation (2) into Equation (1)

$$
0.108642 T_{D I}+0.0196721\left(1.13959 T_{D I}\right)=21.6
$$

$$
\therefore \quad T_{D I}=164.810 \mathrm{~N}
$$

or

$$
T_{D I}=164.8 \mathrm{~N}
$$

Then from Equation (2)

$$
T_{F G}=1.13959(164.810 \mathrm{~N})=187.816 \mathrm{~N}
$$

or

$$
T_{F G}=187.8 \mathrm{~N}
$$

And from Equation (3)

$$
\begin{gathered}
0.32099(164.810 \mathrm{~N})+0.28235 T_{E H}+0.147541(187.816 \mathrm{~N})=344 \mathrm{~N} \\
\therefore \quad T_{E H}=932.84 \mathrm{~N}
\end{gathered}
$$

or
The vector forms of the cable forces are:

$$
\begin{aligned}
\mathbf{T}_{D I} & =\frac{164.810 \mathrm{~N}}{0.81}(-0.65 \mathbf{i}+0.2 \mathbf{j}-0.44 \mathbf{k}) \\
& =-(132.25 \mathrm{~N}) \mathbf{i}+(40.694 \mathrm{~N}) \mathbf{j}-(89.526 \mathrm{~N}) \mathbf{k} \\
\mathbf{T}_{E H} & =\frac{932.84 \mathrm{~N}}{0.51}(-0.45 \mathbf{i}+0.24 \mathbf{j})=-(823.09 \mathrm{~N}) \mathbf{i}+(438.98 \mathrm{~N}) \mathbf{j} \\
\mathbf{T}_{F G} & =\frac{187.816 \mathrm{~N}}{0.61}(-0.45 \mathbf{i}+0.2 \mathbf{j}+0.36 \mathbf{k}) \\
& =-(138.553 \mathrm{~N}) \mathbf{i}+(61.579 \mathrm{~N}) \mathbf{j}+(110.842 \mathrm{~N}) \mathbf{k}
\end{aligned}
$$

PROBLEM 4.132 CONTINUED

Then, from f.b.d. of frame

$$
\begin{gathered}
\Sigma F_{x}=0: A_{x}-132.25-823.09-138.553=0 \\
\therefore A_{x}=1093.89 \mathrm{~N} \\
\Sigma F_{y}=0: A_{y}+40.694+438.98+61.579-360-280=0 \\
\therefore A_{y}=98.747 \mathrm{~N}
\end{gathered}
$$

$$
\Sigma F_{z}=0: \quad A_{z}-89.526+110.842=0
$$

$\therefore \quad A_{z}=-21.316 \mathrm{~N}$

$$
\mathbf{A}=(1094 \mathrm{~N}) \mathbf{i}+(98.7 \mathrm{~N}) \mathbf{j}-(21.3 \mathrm{~N}) \mathbf{k} \boldsymbol{4}
$$

PROBLEM 4.133

The frame shown is supported by three cables and a ball-and-socket joint at A. For $P=50 \mathrm{~N}$, determine the tension in each cable and the reaction at A.

SOLUTION

First note

$$
\begin{aligned}
\mathbf{T}_{D I}=\lambda_{D I} T_{D I} & =\frac{-(0.65 \mathrm{~m}) \mathbf{i}+(0.2 \mathrm{~m}) \mathbf{j}-(0.44 \mathrm{~m}) \mathbf{k}}{\sqrt{(0.65)^{2}+(0.2)^{2}+(0.44)^{2}} \mathrm{~m}} T_{D I} \\
& =\frac{T_{D I}}{81}(-65 \mathbf{i}+20 \mathbf{j}-44 \mathbf{k}) \\
\mathbf{T}_{E H}=\lambda_{E H} T_{E H} & =\frac{-(0.45 \mathrm{~m}) \mathbf{i}+(0.24 \mathrm{~m}) \mathbf{j}}{\sqrt{(0.45)^{2}+(0.24)^{2} \mathrm{~m}}} T_{E H} \\
& =\frac{T_{E H}}{17}(-15 \mathbf{i}+8 \mathbf{j}) \\
\mathbf{T}_{F G}=\lambda_{F G} T_{F G} & =\frac{-(0.45 \mathrm{~m}) \mathbf{i}+(0.2 \mathrm{~m}) \mathbf{j}+(0.36 \mathrm{~m}) \mathbf{k}}{\sqrt{(0.45)^{2}+(0.2)^{2}+(0.36)^{2}} \mathrm{~m}} T_{F G} \\
& =\frac{T_{F G}}{61}(-45 \mathbf{i}+20 \mathbf{j}+36 \mathbf{k})
\end{aligned}
$$

From f.b.d. of frame

$$
\begin{array}{r}
\Sigma \mathbf{M}_{A}=0: \quad \mathbf{r}_{D / A} \times \mathbf{T}_{D I}+\mathbf{r}_{C / A} \times[-(280 \mathrm{~N}) \mathbf{j}+(50 \mathrm{~N}) \mathbf{k}] \\
+\mathbf{r}_{H / A} \times \mathbf{T}_{E H}+\mathbf{r}_{F / A} \times \mathbf{T}_{F G}+\mathbf{r}_{F / A} \times(-360 \mathrm{~N}) \mathbf{j} \\
\text { or }\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0.65 & 0.2 & 0 \\
-65 & 20 & -44
\end{array}\right|\left(\frac{T_{D I}}{81}\right)+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0.65 & 0 & 0 \\
0 & -280 & 50
\end{array}\right|+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 0.32 & 0 \\
-15 & 8 & 0
\end{array}\right|\left(\frac{T_{E H}}{17}\right) \\
\\
\quad+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0.45 & 0 & 0.06 \\
-45 & 20 & 36
\end{array}\right|\left(\frac{T_{F G}}{61}\right)+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0.45 & 0 & 0.06 \\
0 & -1 & 0
\end{array}\right|(360 \mathrm{~N})=0 \\
\text { and } \quad(-8.8 \mathbf{i}+28.6 \mathbf{j}+26 \mathbf{k})\left(\frac{T_{D I}}{81}\right)+(-32.5 \mathbf{j}-182 \mathbf{k})+(4.8 \mathbf{k})\left(\frac{T_{E H}}{17}\right) \\
\\
\quad+(-1.2 \mathbf{i}-18.9 \mathbf{j}+9.0 \mathbf{k})\left(\frac{T_{F G}}{61}\right)+(0.06 \mathbf{i}-0.45 \mathbf{k})(360)=0
\end{array}
$$

PROBLEM 4.133 CONTINUED

From i-coefficient $\quad-8.8\left(\frac{T_{D I}}{81}\right)-1.2\left(\frac{T_{F G}}{61}\right)+0.06(360)=0$

$$
\begin{equation*}
\therefore \quad 0.108642 T_{D I}+0.0196721 T_{F G}=21.6 \tag{1}
\end{equation*}
$$

From j-coefficient $28.6\left(\frac{T_{D I}}{81}\right)-32.5-18.9\left(\frac{T_{F G}}{61}\right)=0$

$$
\begin{equation*}
\therefore 0.35309 T_{D I}-0.30984 T_{F G}=32.5 \tag{2}
\end{equation*}
$$

From \mathbf{k}-coefficient

$$
\therefore \quad T_{F G}=100.864 \mathrm{~N}
$$

or

$$
T_{F G}=100.9 \mathrm{~N} .
$$

Then from Equation (1)

$$
\begin{gathered}
0.108642 T_{D I}+0.0196721(100.864)=21.6 \\
\therefore \quad T_{D I}=180.554 \mathrm{~N}
\end{gathered}
$$

or

$$
T_{D I}=180.6 \mathrm{~N}
$$

and from Equation (3)

$$
\begin{gathered}
0.32099(180.554)+0.28235 T_{E H}+0.147541(100.864)=344 \\
\therefore T_{E H}=960.38 \mathrm{~N}
\end{gathered}
$$

or

$$
T_{E H}=960 \mathrm{~N}
$$

The vector forms of the cable forces are:

$$
\begin{aligned}
\mathbf{T}_{D I} & =\frac{180.554 \mathrm{~N}}{81}(-65 \mathbf{i}+20 \mathbf{j}-44 \mathbf{k}) \\
& =-(144.889 \mathrm{~N}) \mathbf{i}+(44.581 \mathrm{~N}) \mathbf{j}-(98.079 \mathrm{~N}) \mathbf{k} \\
\mathbf{T}_{E H} & =\frac{960.38 \mathrm{~N}}{17}(-15 \mathbf{i}+8 \mathbf{j})=-(847.39 \mathrm{~N}) \mathbf{i}+(451.94 \mathrm{~N}) \mathbf{j} \\
\mathbf{T}_{F G} & =\frac{100.864 \mathrm{~N}}{61}(-45 \mathbf{i}+20 \mathbf{j}+36 \mathbf{k}) \\
& =-(74.409 \mathrm{~N}) \mathbf{i}+(33.070 \mathrm{~N}) \mathbf{j}+(59.527 \mathrm{~N}) \mathbf{k}
\end{aligned}
$$

$$
\begin{aligned}
& 26\left(\frac{T_{D I}}{81}\right)-182+4.8\left(\frac{T_{E H}}{17}\right)+9.0\left(\frac{T_{F G}}{61}\right)-0.45(360)=0 \\
& \therefore 0.32099 T_{D I}+0.28235 T_{E H}+0.147541 T_{F G}=344 \\
& -3.25 \times \text { Equation }(1) \quad-0.35309 T_{D I}-0.063935 T_{F G}=-70.201 \\
& \text { Add Equation (2) } \\
& \begin{aligned}
0.35309 T_{D I}-0.30984 T_{F G} & =32.5 \\
\hline-0.37378 T_{F G} & =-37.701
\end{aligned}
\end{aligned}
$$

PROBLEM 4.133 CONTINUED

Then from f.b.d. of frame

$$
\begin{gathered}
\Sigma F_{x}=0: \quad A_{x}-144.889-847.39-74.409=0 \\
\therefore A_{x}=1066.69 \mathrm{~N} \\
\Sigma F_{y}=0: \quad A_{y}+44.581+451.94+33.070-360-280=0 \\
\therefore A_{y}=110.409 \mathrm{~N} \\
\Sigma F_{z}=0: \quad A_{z}-98.079+59.527+50=0 \\
\therefore A_{z}=-11.448 \mathrm{~N}
\end{gathered}
$$

Therefore,

$$
\mathbf{A}=(1067 \mathrm{~N}) \mathbf{i}+(110.4 \mathrm{~N}) \mathbf{j}-(11.45 \mathrm{~N}) \mathbf{k}
$$

PROBLEM 4.134

The rigid L-shaped member $A B F$ is supported by a ball-and-socket joint at A and by three cables. For the loading shown, determine the tension in each cable and the reaction at A.

SOLUTION

First note

$$
\begin{aligned}
\mathbf{T}_{B G}=\lambda_{B G} T_{B G} & =\frac{-(18 \mathrm{in} .) \mathbf{i}+(13.5 \mathrm{in} .) \mathbf{k}}{\sqrt{(18)^{2}+(13.5)^{2}} \mathrm{in} .} T_{B G} \\
& =T_{B G}(-0.8 \mathbf{i}+0.6 \mathbf{k}) \\
\mathbf{T}_{D H}=\lambda_{D H} T_{D H} & =\frac{-(18 \mathrm{in} .) \mathbf{i}+(24 \mathrm{in} .) \mathbf{j}}{\sqrt{(18)^{2}+(24)^{2} \mathrm{in.}}} T_{D H} \\
& =T_{D H}(-0.6 \mathbf{i}+0.8 \mathbf{j})
\end{aligned}
$$

Since $\lambda_{F J}=\lambda_{D H}$,

$$
\mathbf{T}_{F J}=T_{F J}(-0.6 \mathbf{i}+0.8 \mathbf{j})
$$

From f.b.d. of member $A B F$

$$
\begin{gather*}
\Sigma M_{A(x-a x i s)}=0: \quad\left(0.8 T_{F J}\right)(48 \mathrm{in} .)+\left(0.8 T_{D H}\right)(24 \mathrm{in} .)-(120 \mathrm{lb})(36 \mathrm{in} .)-(120 \mathrm{lb})(12 \mathrm{in} .)=0 \\
 \tag{1}\\
\therefore 3.2 T_{F J}+1.6 T_{D H}=480 \\
\Sigma M_{A(z-a x i s)}=0: \quad\left(0.8 T_{F J}\right)(18 \mathrm{in} .)+\left(0.8 T_{D H}\right)(18 \mathrm{in} .)-(120 \mathrm{lb})(18 \mathrm{in} .)-(120 \mathrm{lb})(18 \mathrm{in} .)=0 \tag{2}\\
\therefore \quad-3.2 T_{F J}-3.2 T_{D H}=-960
\end{gather*}
$$

Equation (1) + Equation (2)

$$
\begin{array}{r}
T_{D H}=300 \mathrm{lb} \\
T_{F J}=0
\end{array}
$$

$$
\Sigma M_{A(y-\alpha x i s)}=0:\left(0.6 T_{F J}\right)(48 \mathrm{in} .)+[0.6(300 \mathrm{lb})](24 \mathrm{in} .)-\left(0.6 T_{B G}\right)(18 \mathrm{in} .)=0
$$

PROBLEM 4.134 CONTINUED

$$
\begin{array}{cc}
\Sigma F_{x}=0: & -0.6 T_{F J}-0.6 T_{D H}-0.8 T_{B G}+A_{x}=0 \\
& -0.6(300 \mathrm{lb})-0.8(400 \mathrm{lb})+A_{x}=0 \\
\therefore A_{x}=500 \mathrm{lb} \\
\Sigma F_{y}=0: & 0.8 T_{F J}+0.8 T_{D H}-240 \mathrm{lb}+A_{y}=0 \\
0.8(300 \mathrm{lb})-240+A_{y}=0 \\
\therefore A_{y}=0 \\
\Sigma F_{z}=0: & 0.6 T_{B G}+A_{z}=0 \\
0.6(400 \mathrm{lb})+A_{z}=0 \\
\therefore A_{z}=-240 \mathrm{lb}
\end{array}
$$

Therefore,

$$
\mathbf{A}=(500 \mathrm{lb}) \mathbf{i}-(240 \mathrm{lb}) \mathbf{k}
$$

PROBLEM 4.135

Solve Problem 4.134 assuming that the load at C has been removed.
P4.134 The rigid L-shaped member $A B F$ is supported by a ball-andsocket joint at A and by three cables. For the loading shown, determine the tension in each cable and the reaction at A.

SOLUTION

First

$$
\begin{aligned}
& \begin{aligned}
\mathbf{T}_{B G}=\lambda_{B G} T_{B G} & =\frac{-(18 \mathrm{in} .) \mathbf{i}+(13.5 \mathrm{in} .) \mathbf{k}}{\sqrt{(18)^{2}+(13.5)^{2}} \mathrm{in} .} T_{B G} \\
& =T_{B G}(-0.8 \mathbf{i}+0.6 \mathbf{k})
\end{aligned} \\
& \begin{aligned}
\mathbf{T}_{D H}=\lambda_{D H} T_{D H} & =\frac{-(18 \mathrm{in} .) \mathbf{i}+(24 \mathrm{in} .) \mathbf{j}}{\sqrt{(18)^{2}+(24)^{2}} \mathrm{in} .} T_{D H} \\
& =T_{D H}(-0.6 \mathbf{i}+0.8 \mathbf{j})
\end{aligned} \\
& \text { Since } \quad \lambda_{F J}=\lambda_{D H}
\end{aligned}
$$

From f.b.d. of member $A B F$

$$
\begin{gather*}
\Sigma M_{A(x-a x i s)}=0: \quad\left(0.8 T_{F J}\right)(48 \mathrm{in} .)+\left(0.8 T_{D H}\right)(24 \mathrm{in} .)-(120 \mathrm{lb})(36 \mathrm{in} .)=0 \\
\therefore 3.2 T_{F J}+1.6 T_{D H}=360 \tag{1}\\
\Sigma M_{A(z-a x i s)}=0: \quad\left(0.8 T_{F J}\right)(18 \mathrm{in} .)+\left(0.8 T_{D H}\right)(18 \mathrm{in} .)-(120 \mathrm{lb})(18 \mathrm{in} .)=0 \\
\therefore \quad-3.2 T_{F J}-3.2 T_{D H}=-480 \tag{2}
\end{gather*}
$$

Equation (1) + Equation (2)

$$
\begin{aligned}
T_{D H} & =75.0 \mathrm{lb} \\
T_{F J} & =75.0 \mathrm{lb}
\end{aligned}
$$

Substituting into Equation (2)

$$
\Sigma M_{A(y-a x i s)}=0: \quad\left(0.6 T_{F J}\right)(48 \mathrm{in} .)+\left(0.6 T_{D H}\right)(24 \mathrm{in} .)-\left(0.6 T_{B G}\right)(18 \mathrm{in} .)=0
$$

or

$$
(75.0 \mathrm{lb})(48 \mathrm{in} .)+(75.0 \mathrm{lb})(24 \mathrm{in} .)=T_{B G}(18 \mathrm{in} .)
$$

$$
T_{B G}=300 \mathrm{lb}
$$

PROBLEM 4.135 CONTINUED

$$
\begin{array}{cc}
\Sigma F_{x}=0: & -0.6 T_{F J}-0.6 T_{D H}-0.8 T_{B G}+A_{x}=0 \\
& -0.6(75.0+75.0)-0.8(300)+A_{x}=0 \\
\therefore A_{x}=330 \mathrm{lb} \\
\Sigma F_{y}=0: & 0.8 T_{F J}+0.8 T_{D H}-120 \mathrm{lb}+A_{y}=0 \\
0.8(150 \mathrm{lb})-120 \mathrm{lb}+A_{y}=0 \\
\therefore A_{y}=0 \\
\Sigma F_{z}=0: & 0.6 T_{B G}+A_{z}=0 \\
& 0.6(300 \mathrm{lb})+A_{z}=0 \\
\therefore A_{z}=-180 \mathrm{lb}
\end{array}
$$

SOLUTION

From f.b.d. of pipe assembly $A B C D$

$$
\begin{gathered}
\Sigma F_{x}=0: \quad B_{x}=0 \\
\Sigma M_{D(x \text {-axis })}=0: \quad(60 \mathrm{~N})(2.5 \mathrm{~m})-B_{z}(2 \mathrm{~m})=0 \\
\therefore \quad B_{z}=75.0 \mathrm{~N}
\end{gathered}
$$

and $\mathbf{B}=(75.0 \mathrm{~N}) \mathbf{k}$

$$
\begin{gathered}
\Sigma M_{D(z \text {-axis })}=0: \quad C_{y}(3 \mathrm{~m})-108 \mathrm{~N} \cdot \mathrm{~m}=0 \\
\therefore \quad C_{y}=36.0 \mathrm{~N} \\
\Sigma M_{D(y \text {-axis })}=0:-C_{z}(3 \mathrm{~m})-(75 \mathrm{~N})(4 \mathrm{~m})+(60 \mathrm{~N})(4 \mathrm{~m})=0
\end{gathered}
$$

$$
\therefore \quad C_{z}=-20.0 \mathrm{~N}
$$

$$
\text { and } \mathbf{C}=(36.0 \mathrm{~N}) \mathbf{j}-(20.0 \mathrm{~N}) \mathbf{k}
$$

$$
\Sigma F_{y}=0: \quad D_{y}+36.0=0
$$

$$
\therefore \quad D_{y}=-36.0 \mathrm{~N}
$$

$$
\Sigma F_{z}=0: \quad D_{z}-20.0 \mathrm{~N}+75.0 \mathrm{~N}-60 \mathrm{~N}=0
$$

$$
\therefore \quad D_{z}=5.00 \mathrm{~N}
$$

and $\mathbf{D}=-(36.0 \mathrm{~N}) \mathbf{j}+(5.00 \mathrm{~N}) \mathbf{k}$

PROBLEM 4.137

Solve Problem 4.136 assuming that the plumber exerts a force $\mathbf{F}=-(60 \mathrm{~N}) \mathbf{k}$ and that the motor is turned off $(\mathbf{M}=0)$.

P4.136 In order to clean the clogged drainpipe $A E$, a plumber has disconnected both ends of the pipe and inserted a power snake through the opening at A. The cutting head of the snake is connected by a heavy cable to an electric motor which rotates at a constant speed as the plumber forces the cable into the pipe. The forces exerted by the plumber and the motor on the end of the cable can be represented by the wrench $\mathbf{F}=-(60 \mathrm{~N}) \mathbf{k}, \quad \mathbf{M}=-(108 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{k}$. Determine the additional reactions at B, C, and D caused by the cleaning operation. Assume that the reaction at each support consists of two force components perpendicular to the pipe.

SOLUTION

From f.b.d. of pipe assembly $A B C D$

$$
\Sigma F_{x}=0: \quad B_{x}=0
$$

$$
\Sigma M_{D(x \text {-axis })}=0: \quad(60 \mathrm{~N})(2.5 \mathrm{~m})-B_{z}(2 \mathrm{~m})=0
$$

$$
\therefore \quad B_{z}=75.0 \mathrm{~N}
$$

and $\mathbf{B}=(75.0 \mathrm{~N}) \mathbf{k}$
$\Sigma M_{D(z \text {-axis })}=0: \quad C_{y}(3 \mathrm{~m})-B_{x}(2 \mathrm{~m})=0$

$$
\therefore \quad C_{y}=0
$$

$$
\Sigma M_{D(y \text {-axis })}=0: \quad C_{z}(3 \mathrm{~m})-(75.0 \mathrm{~N})(4 \mathrm{~m})+(60 \mathrm{~N})(4 \mathrm{~m})=0
$$

$$
\therefore \quad C_{z}=-20 \mathrm{~N}
$$

and $\mathbf{C}=-(20.0 \mathrm{~N}) \mathbf{k}$

$$
\Sigma F_{y}=0: \quad D_{y}+C_{y}=0
$$

$$
\therefore \quad D_{y}=0
$$

$$
\Sigma F_{z}=0: \quad D_{z}+B_{z}+C_{z}-F=0
$$

$$
D_{z}+75 \mathrm{~N}-20 \mathrm{~N}-60 \mathrm{~N}=0
$$

$$
\therefore D_{z}=5.00 \mathrm{~N}
$$

PROBLEM 4.138 CONTINUED

Substituting C_{x} from Equation (4) into Equation (2)

$$
\begin{equation*}
-B_{z}=1.2 A_{z} \tag{7}
\end{equation*}
$$

Using Equations (1), (6), and (7)

$$
\begin{equation*}
C_{y}=\frac{B_{z}}{1.25}=\frac{-A_{z}}{1.25}=\frac{1}{1.25}\left(\frac{B_{x}}{1.2}\right)=\frac{B_{x}}{1.5} \tag{8}
\end{equation*}
$$

From Equations (3) and (8)

$$
C_{y}=\frac{1.5 A_{y}}{1.5} \quad \text { or } \quad C_{y}=A_{y}
$$

and substituting into Equation (5)

$$
\begin{align*}
2 A_{y} & =240 \mathrm{~N} \\
\therefore \quad A_{y}=C_{y} & =120 \mathrm{~N} \tag{9}
\end{align*}
$$

Using Equation (1) and Equation (9)

$$
B_{z}=1.25(120 \mathrm{~N})=150.0 \mathrm{~N}
$$

Using Equation (3) and Equation (9)

$$
B_{x}=1.5(120 \mathrm{~N})=180.0 \mathrm{~N}
$$

From Equation (4)

$$
C_{x}=-180.0 \mathrm{~N}
$$

From Equation (6)

$$
A_{z}=-150.0 \mathrm{~N}
$$

Therefore

$$
\begin{array}{r}
\mathbf{A}=(120.0 \mathrm{~N}) \mathbf{j}-(150.0 \mathrm{~N}) \mathbf{k} \\
\mathbf{B}=(180.0 \mathrm{~N}) \mathbf{i}+(150.0 \mathrm{~N}) \mathbf{k} \\
\mathbf{C}=-(180.0 \mathrm{~N}) \mathbf{i}+(120.0 \mathrm{~N}) \mathbf{j}
\end{array}
$$

SOLUTION

From f.b.d. of weldment

$$
\Sigma \mathbf{M}_{O}=0: \quad \mathbf{r}_{A / O} \times \mathbf{A}+\mathbf{r}_{B / O} \times \mathbf{B}+\mathbf{r}_{C / O} \times \mathbf{C}+\mathbf{M}=0
$$

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0.12 & 0 & 0 \\
0 & A_{y} & A_{z}
\end{array}\right|+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 0.08 & 0 \\
B_{x} & 0 & B_{z}
\end{array}\right|+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 0 & 0.1 \\
C_{x} & C_{y} & 0
\end{array}\right|+(6 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{j}=0
$$

$$
\left(-0.12 A_{z} \mathbf{j}+0.12 A_{y} \mathbf{k}\right)+\left(0.08 B_{z} \mathbf{j}-0.08 B_{x} \mathbf{k}\right)
$$

$$
+\left(-0.1 C_{y} \mathbf{i}+0.1 C_{x} \mathbf{j}\right)+(6 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{j}=0
$$

From i-coefficient

$$
0.08 B_{z}-0.1 C_{y}=0
$$

or

$$
\begin{equation*}
C_{y}=0.8 B_{z} \tag{1}
\end{equation*}
$$

j-coefficient

$$
-0.12 A_{z}+0.1 C_{x}+6=0
$$

$$
\begin{equation*}
C_{x}=1.2 A_{z}-60 \tag{2}
\end{equation*}
$$

k-coefficient

$$
0.12 A_{y}-0.08 B_{x}=0
$$

$$
\begin{equation*}
B_{x}=1.5 A_{y} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
\Sigma \mathbf{F}=0: & \mathbf{A}+\mathbf{B}+\mathbf{C}=0 \\
& \left(B_{x}+C_{x}\right) \mathbf{i}+\left(A_{y}+C_{y}\right) \mathbf{j}+\left(A_{z}+B_{z}\right) \mathbf{k}=0
\end{aligned}
$$

From i-coefficient

$$
\begin{equation*}
C_{x}=-B_{x} \tag{4}
\end{equation*}
$$

j-coefficient

$$
\begin{equation*}
C_{y}=-A_{y} \tag{5}
\end{equation*}
$$

k-coefficient

$$
\begin{equation*}
A_{z}=-B_{z} \tag{6}
\end{equation*}
$$

Substituting C_{x} from Equation (4) into Equation (2)

$$
\begin{equation*}
A_{z}=50-\left(\frac{B_{x}}{1.2}\right) \tag{7}
\end{equation*}
$$

PROBLEM 4.139 CONTINUED

Using Equations (1), (6), and (7)

$$
\begin{equation*}
C_{y}=0.8 B_{z}=-0.8 A_{z}=\left(\frac{2}{3}\right) B_{x}-40 \tag{8}
\end{equation*}
$$

From Equations (3) and (8)

$$
C_{y}=A_{y}-40
$$

Substituting into Equation (5)

$$
2 A_{y}=40
$$

$$
\therefore \quad A_{y}=20.0 \mathrm{~N}
$$

From Equation (5)
Equation (1)

$$
B_{z}=-25.0 \mathrm{~N}
$$

Equation (3)

$$
B_{x}=30.0 \mathrm{~N}
$$

Equation (4)

$$
C_{x}=-30.0 \mathrm{~N}
$$

Equation (6)
Therefore

$$
A_{z}=25.0 \mathrm{~N}
$$

$$
\begin{gathered}
\mathbf{A}=(20.0 \mathrm{~N}) \mathbf{j}+(25.0 \mathrm{~N}) \mathbf{k} \\
\mathbf{B}=(30.0 \mathrm{~N}) \mathbf{i}-(25.0 \mathrm{~N}) \mathbf{k} \boldsymbol{4} \\
\mathbf{C}=-(30.0 \mathrm{~N}) \mathbf{i}-(20.0 \mathrm{~N}) \mathbf{j} \boldsymbol{~}
\end{gathered}
$$

(a) The force acting at E on the f.b.d. of $\operatorname{rod} A B$ is perpendicular to $A B$ and $C D$. Letting $\lambda_{E}=$ direction cosines for force \mathbf{E},

$$
\begin{aligned}
\lambda_{E} & =\frac{\mathbf{r}_{B / A} \times \mathbf{k}}{\left|\mathbf{r}_{B / A} \times \mathbf{k}\right|} \\
& =\frac{[-(32 \mathrm{in} .) \mathbf{i}+(24 \mathrm{in} .) \mathbf{j}-(40 \mathrm{in} .) \mathbf{k}] \times \mathbf{k}}{\sqrt{(32)^{2}+(24)^{2}} \mathrm{in} .} \\
& =0.6 \mathbf{i}+0.8 \mathbf{j}
\end{aligned}
$$

Also, $\quad \mathbf{W}=-(10 \mathrm{lb}) \mathbf{j}$

$$
\begin{aligned}
& \mathbf{B}=B \mathbf{k} \\
& \mathbf{E}=E(0.6 \mathbf{i}+0.8 \mathbf{j})
\end{aligned}
$$

From f.b.d. of $\operatorname{rod} A B$

$$
\begin{gathered}
\Sigma \mathbf{M}_{A}=0: \quad \mathbf{r}_{G / A} \times \mathbf{W}+\mathbf{r}_{E / A} \times \mathbf{E}+\mathbf{r}_{B / A} \times \mathbf{B}=0 \\
\therefore\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-16 & 12 & -20 \\
0 & -1 & 0
\end{array}\right|(10 \mathrm{lb})+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-24 & 18 & -30 \\
0.6 & 0.8 & 0
\end{array}\right| E+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-32 & 24 & -40 \\
0 & 0 & 1
\end{array}\right| B=0 \\
(-20 \mathbf{i}+16 \mathbf{k})(10 \mathrm{lb})+(24 \mathbf{i}-18 \mathbf{j}-30 \mathbf{k}) E+(24 \mathbf{i}+32 \mathbf{j}) B=0
\end{gathered}
$$

From k-coefficient

$$
160-30 E=0
$$

$$
\therefore E=5.3333 \mathrm{lb}
$$

and $\quad \mathbf{E}=5.3333 \mathrm{lb}(0.6 \mathbf{i}+0.8 \mathbf{j})$
or
(b) From \mathbf{j}-coefficient

$$
\begin{aligned}
& \mathbf{E}=(3.20 \mathrm{lb}) \mathbf{i}+(4.27 \mathrm{lb}) \mathbf{j} \\
& -18(5.3333 \mathrm{lb})+32 B=0
\end{aligned}
$$

$\therefore B=3.00 \mathrm{lb}$
or $\mathbf{B}=(3.00 \mathrm{lb}) \mathbf{k}$

PROBLEM 4.140 CONTINUED

From f.b.d. of $\operatorname{rod} A B$

$$
\begin{aligned}
& \Sigma \mathbf{F}=0: \quad \mathbf{A}+\mathbf{W}+\mathbf{E}+\mathbf{B}=0 \\
& A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}-(10 \mathrm{lb}) \mathbf{j}+[(3.20 \mathrm{lb}) \mathbf{i}+(4.27 \mathrm{lb}) \mathbf{j}]+(3.00 \mathrm{lb}) \mathbf{k}=0 \\
& \text { From i-coefficient } \quad A_{x}+3.20 \mathrm{lb}=0 \\
& \therefore \quad A_{x}=-3.20 \mathrm{lb} \\
& \mathbf{j} \text {-coefficient } \quad A_{y}-10 \mathrm{lb}+4.27 \mathrm{lb}=0 \\
& \therefore A_{y}=5.73 \mathrm{lb} \\
& \text { k-coefficient } \quad A_{z}+3.00 \mathrm{lb}=0 \\
& \therefore \quad A_{z}=-3.00 \mathrm{lb} \\
& \mathbf{A}=-(3.20 \mathrm{lb}) \mathbf{i}+(5.73 \mathrm{lb}) \mathbf{j}-(3.00 \mathrm{lb}) \mathbf{k} \boldsymbol{\downarrow}
\end{aligned}
$$

SOLUTION

First note

$$
\begin{aligned}
& \mathbf{W}=-(6.4 \mathrm{lb}) \mathbf{j} \\
& \mathbf{N}_{B}= N_{B}(0.8 \mathbf{j}+0.6 \mathbf{k}) \\
& L_{A B}= 21 \mathrm{in.} \\
&=\sqrt{\left(x_{B}\right)^{2}+(13+3)^{2}+(4)^{2}}=\sqrt{x_{B}^{2}+(16)^{2}+(4)^{2}} \\
& \therefore x_{B}=13 \mathrm{in} . \\
& \mathbf{T}_{B C}= \lambda_{B C} T_{B C}= \\
& \quad=\frac{(13 \mathrm{in} .) \mathbf{i}+(16 \mathrm{in} .) \mathbf{j}-(4 \mathrm{in} .) \mathbf{k}}{21 \mathrm{in} .} T_{B C} \\
&=\frac{T_{B C}}{21}(13 \mathbf{i}+16 \mathbf{j}-4 \mathbf{k})
\end{aligned}
$$

From f.b.d. of $\operatorname{rod} A B$

$$
\begin{gathered}
\Sigma \mathbf{M}_{A}=0: \quad \mathbf{r}_{G / A} \times \mathbf{W}+\mathbf{r}_{B / A} \times \mathbf{N}_{B}+\mathbf{r}_{C / A} \times \mathbf{T}_{B C}=0 \\
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
6.5 & -8 & 2 \\
0 & -6.4 & 0
\end{array}\right|+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
13 & -16 & 4 \\
0 & 0.8 & 0.6
\end{array}\right| N_{B}+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 0 \\
13 & 16 & -4
\end{array}\right| \frac{26 T_{B C}}{21}=0 \\
(12.8 \mathbf{i}-41.6 \mathbf{k})+(-12.8 \mathbf{i}-7.8 \mathbf{j}+10.4 \mathbf{k}) N_{B}+(4 \mathbf{j}+16 \mathbf{k}) \frac{26 T_{B C}}{21}=0
\end{gathered}
$$

PROBLEM 4.141 CONTINUED

From i-coeff.
or

$$
12.8-12.8 N_{B}=0 \quad \therefore \quad N_{B}=1.00 \mathrm{lb}
$$

$$
\mathbf{N}_{B}=(0.800 \mathrm{lb}) \mathbf{j}+(0.600 \mathrm{lb}) \mathbf{k}
$$

$$
-7.8 N_{B}+4\left(\frac{26}{21}\right) T_{B C}=0 \quad \therefore \quad T_{B C}=1.575 \mathrm{lb}
$$

From f.b.d. of $\operatorname{rod} A B$

$$
\begin{aligned}
\Sigma \mathbf{F}=0: & \mathbf{A}+\mathbf{W}+\mathbf{N}_{B}+\mathbf{T}_{B C}=0 \\
& \left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right)-(6.4 \mathrm{lb}) \mathbf{j}+(0.800 \mathrm{lb}) \mathbf{j}+(0.600 \mathrm{lb}) \mathbf{k}+\left(\frac{1.575}{21}\right)(13 \mathbf{i}+16 \mathbf{j}-4 \mathbf{k})=0
\end{aligned}
$$

From i-coefficient
j-coefficient
k-coefficient

$$
\begin{aligned}
A_{x} & =-0.975 \mathrm{lb} \\
A_{y} & =4.40 \mathrm{lb} \\
A_{z} & =-0.3 \mathrm{lb}
\end{aligned}
$$

$\therefore(a)$

$$
\begin{array}{r}
T_{B C}=1.575 \mathrm{lb} \\
\mathbf{A}=-(0.975 \mathrm{lb}) \mathbf{i}+(4.40 \mathrm{lb}) \mathbf{j}-(0.300 \mathrm{lb}) \mathbf{k} \\
\mathbf{N}_{B}=(0.800 \mathrm{lb}) \mathbf{j}+(0.600 \mathrm{lb}) \mathbf{k}
\end{array}
$$

PROBLEM 4.142

While being installed, the $56-\mathrm{lb}$ chute $A B C D$ is attached to a wall with brackets E and F and is braced with props $G H$ and $I J$. Assuming that the weight of the chute is uniformly distributed, determine the magnitude of the force exerted on the chute by prop $G H$ if prop $I J$ is removed.

SOLUTION

First note

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{42 \mathrm{in} .}{144 \mathrm{in} .}\right)=16.2602^{\circ} \\
x_{G} & =(50 \mathrm{in} .) \cos 16.2602^{\circ}=48 \mathrm{in} . \\
y_{G} & =78 \mathrm{in} .-(50 \mathrm{in} .) \sin 16.2602^{\circ}=64 \mathrm{in} . \\
\lambda_{B A} & =\frac{-(144 \mathrm{in} .) \mathbf{i}+(42 \mathrm{in} .) \mathbf{j}}{\sqrt{(144)^{2}+(42)^{2}} \mathrm{in} .}=\frac{1}{25}(-24 \mathbf{i}+7 \mathbf{j}) \\
\mathbf{r}_{K / A} & =(72 \mathrm{in} .) \mathbf{i}-(21 \mathrm{in} .) \mathbf{j}+(9 \mathrm{in} .) \mathbf{k} \\
\mathbf{r}_{G / A} & =(48 \mathrm{in} .) \mathbf{i}-(78 \mathrm{in} .-64 \mathrm{in} .) \mathbf{j}+(18 \mathrm{in} .) \mathbf{k}=(48 \mathrm{in} .) \mathbf{i}-(14 \mathrm{in} .) \mathbf{j}+(18 \mathrm{in} .) \mathbf{k} \\
\mathbf{W} & =-(56 \mathrm{lb}) \mathbf{j} \\
\mathbf{P}_{H G} & =\lambda_{H G} P_{H G} \\
& =\frac{-(2 \mathrm{in} .) \mathbf{i}+(64 \mathrm{in} .) \mathbf{j}-(16 \mathrm{in} .) \mathbf{k}}{\sqrt{(2)^{2}+(64)^{2}+(16)^{2}} \mathrm{in} .} P_{H G} \\
& =\frac{P_{H G}}{33}(-\mathbf{i}+32 \mathbf{j}-8 \mathbf{k})
\end{aligned}
$$

PROBLEM 4.142 CONTINUED

From the f.b.d. of the chute

$$
\begin{gathered}
\Sigma M_{B A}=0: \quad \lambda_{B A} \cdot\left(\mathbf{r}_{K / A} \times \mathbf{W}\right)+\lambda_{B A} \cdot\left(\mathbf{r}_{G / A} \times \mathbf{P}_{H G}\right)=0 \\
\left|\begin{array}{rrr}
-24 & 7 & 0 \\
72 & -21 & 9 \\
0 & -1 & 0
\end{array}\right|\left(\frac{56}{25}\right)+\left|\begin{array}{rrr}
-24 & 7 & 0 \\
48 & -14 & 18 \\
-1 & 32 & -8
\end{array}\right|\left[\frac{P_{H G}}{33(25)}\right]=0 \\
\frac{-216(56)}{25}+[-24(-14)(-8)-(-24)(18)(32)+7(18)(-1)-(7)(48)(-8)] \frac{P_{H G}}{33(25)}=0 \\
\therefore \quad P_{H G}=29.141 \mathrm{lb}
\end{gathered}
$$

PROBLEM 4.143

While being installed, the $56-\mathrm{lb}$ chute $A B C D$ is attached to a wall with brackets E and F and is braced with props $G H$ and $I J$. Assuming that the weight of the chute is uniformly distributed, determine the magnitude of the force exerted on the chute by prop $I J$ if prop $G H$ is removed.

SOLUTION

First note

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{42 \mathrm{in} .}{144 \mathrm{in} .}\right)=16.2602^{\circ} \\
x_{I} & =(100 \mathrm{in} .) \cos 16.2602^{\circ}=96 \mathrm{in} . \\
y_{I} & =78 \mathrm{in} .-(100 \mathrm{in} .) \sin 16.2602^{\circ}=50 \mathrm{in} . \\
\lambda_{B A} & =\frac{-(144 \mathrm{in} .) \mathbf{i}+(42 \mathrm{in} .) \mathbf{j}}{\sqrt{(144)^{2}+(42)^{2}} \mathrm{in} .}=\frac{1}{25}(-24 \mathbf{i}+7 \mathbf{j}) \\
\mathbf{r}_{K / A} & =(72 \mathrm{in} .) \mathbf{i}-(21 \mathrm{in} .) \mathbf{j}+(9 \mathrm{in} .) \mathbf{k} \\
\mathbf{r}_{I / A} & =(96 \mathrm{in} .) \mathbf{i}-(78 \mathrm{in} .-50 \mathrm{in} .) \mathbf{j}+(18 \mathrm{in} .) \mathbf{k}=(96 \mathrm{in} .) \mathbf{i}-(28 \mathrm{in} .) \mathbf{j}+(18 \mathrm{in} .) \mathbf{k} \\
\mathbf{W} & =-(56 \mathrm{lb}) \mathbf{j} \\
\mathbf{P}_{J I} & =\lambda_{J I} P_{J I} \\
& =\frac{-(1 \mathrm{in} .) \mathbf{i}+(50 \mathrm{in} .) \mathbf{j}-(10 \mathrm{in} .) \mathbf{k}}{\sqrt{(1)^{2}+(50)^{2}+(10)^{2}} \mathrm{in} .} P_{J I} \\
& =\frac{P_{J I}}{51}(-\mathbf{i}+50 \mathbf{j}-10 \mathbf{k})
\end{aligned}
$$

PROBLEM 4.143 CONTINUED

From the f.b.d. of the chute

$$
\begin{gathered}
\Sigma M_{B A}=0: \quad \lambda_{B A} \cdot\left(\mathbf{r}_{K / A} \times \mathbf{W}\right)+\lambda_{B A} \cdot\left(\mathbf{r}_{I / A} \times \mathbf{P}_{J I}\right)=0 \\
\left|\begin{array}{rrr}
-24 & 7 & 0 \\
72 & -21 & 9 \\
0 & -1 & 0
\end{array}\right|\left(\frac{56}{25}\right)+\left|\begin{array}{rrr}
-24 & 7 & 0 \\
96 & -28 & 18 \\
-1 & 50 & -10
\end{array}\right|\left[\frac{P_{J I}}{51(25)}\right]=0 \\
\frac{-216(56)}{25}+[-24(-28)(-10)-(-24)(18)(50)+7(18)(-1)-(7)(96)(-10)] \frac{P_{J I}}{51(25)}=0 \\
\therefore \quad P_{J I}=28.728 \mathrm{lb}
\end{gathered}
$$

SOLUTION

First note $\quad \mathbf{r}_{G / A}=(1.5 \mathrm{ft}) \mathbf{i}$

$$
\begin{aligned}
\mathbf{W}_{A B} & =-(0.85 \mathrm{lb} / \mathrm{ft})(3 \mathrm{ft}) \mathbf{j}=-(2.55 \mathrm{lb}) \mathbf{j} \\
\mathbf{r}_{F / A} & =(2 \mathrm{ft}) \mathbf{i} \\
\mathbf{T}=\lambda_{F E} T & =\frac{-(2 \mathrm{ft}) \mathbf{i}+(3 \mathrm{ft}) \mathbf{j}-(4.5 \mathrm{ft}) \mathbf{k}}{\sqrt{(2)^{2}+(3)^{2}+(4.5)^{2}} \mathrm{ft}} T \\
& =\left(\frac{T}{\sqrt{33.25}}\right)(-2 \mathbf{i}+3 \mathbf{j}-4.5 \mathbf{k})
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{r}_{B / A}=(3 \mathrm{ft}) \mathbf{i} \\
& \mathbf{W}_{B C}=-(0.85 \mathrm{lb} / \mathrm{ft})(1 \mathrm{ft}) \mathbf{j}=-(0.85 \mathrm{lb}) \mathbf{j} \\
& \mathbf{r}_{H / A}=(3 \mathrm{ft}) \mathbf{i}-(2.25 \mathrm{ft}) \mathbf{k} \\
& \mathbf{W}_{C D}=-(0.85 \mathrm{lb} / \mathrm{ft})(4.5 \mathrm{ft}) \mathbf{j}=-(3.825 \mathrm{lb}) \mathbf{j} \\
& \boldsymbol{\lambda}_{A D}=\frac{(3 \mathrm{ft}) \mathbf{i}-(1 \mathrm{ft}) \mathbf{j}-(4.5 \mathrm{ft}) \mathbf{k}}{\sqrt{(3)^{2}+(1)^{2}+(4.5)^{2}} \mathrm{ft}}=\frac{1}{5.5}(3 \mathbf{i}-\mathbf{j}-4.5 \mathbf{k})
\end{aligned}
$$

PROBLEM 4.144 CONTINUED

From f.b.d. of the pipe assembly

$$
\begin{aligned}
& \Sigma M_{A D}=0: \quad \lambda_{A D} \cdot\left(\mathbf{r}_{G / A} \times \mathbf{W}_{A B}\right)+\lambda_{A D} \cdot\left(\mathbf{r}_{F / A} \times \mathbf{T}\right) \\
& \quad+\lambda_{A D} \cdot\left(\mathbf{r}_{B / A} \times \mathbf{W}_{B C}\right)+\lambda_{A D} \cdot\left(\mathbf{r}_{H / A} \times \mathbf{W}_{C D}\right)=0 \\
& \therefore\left|\begin{array}{ccc}
3 & -1 & -4.5 \\
1.5 & 0 & 0 \\
0 & -2.55 & 0
\end{array}\right|\left(\frac{1}{5.5}\right)+\left|\begin{array}{ccc}
3 & -1 & -4.5 \\
2 & 0 & 0 \\
-2 & 3 & -4.5
\end{array}\right|\left(\frac{T}{5.5 \sqrt{33.25}}\right) \\
& \quad+\left|\begin{array}{ccc}
3 & -1 & -4.5 \\
3 & 0 & 0 \\
0 & -0.85 & 0
\end{array}\right|\left(\frac{1}{5.5}\right)+\left|\begin{array}{ccc}
3 & -1 & -4.5 \\
3 & 0 & -2.25 \\
0 & -3.825 & 0
\end{array}\right|\left(\frac{1}{5.5}\right)=0 \\
& (17.2125)+(-36)\left(\frac{T}{\sqrt{33.25}}\right)+(11.475)+(25.819)=0 \\
& \therefore \quad T=8.7306 \mathrm{lb}
\end{aligned}
$$

SOLUTION

First note $\quad \mathbf{r}_{G / A}=(1.5 \mathrm{ft}) \mathbf{i}$

$$
\left.\begin{array}{rl}
\mathbf{W}_{A B} & =-(0.85 \mathrm{lb} / \mathrm{ft})(3 \mathrm{ft}) \mathbf{j}=-(2.55 \mathrm{lb}) \mathbf{j} \\
\mathbf{r}_{C / A}=(3 \mathrm{ft}) \mathbf{i}-(1 \mathrm{ft}) \mathbf{j} \\
\mathbf{T} & =\lambda_{C E} T
\end{array}=\frac{-(3 \mathrm{ft}) \mathbf{i}+(4 \mathrm{ft}) \mathbf{j}-(4.5 \mathrm{ft}) \mathbf{k}}{\sqrt{(3)^{2}+(4)^{2}+(4.5)^{2}} \mathrm{ft}} T\right] \text { } \quad \begin{aligned}
& =\left(\frac{T}{\sqrt{45.25}}\right)(-3 \mathbf{i}+4 \mathbf{j}-4.5 \mathbf{k})
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{r}_{B / A} & =(3 \mathrm{ft}) \mathbf{i} \\
\mathbf{W}_{B C} & =-(0.85 \mathrm{lb} / \mathrm{ft})(1 \mathrm{ft}) \mathbf{j}=-(0.85 \mathrm{lb}) \mathbf{j} \\
\mathbf{r}_{H / A} & =(3 \mathrm{ft}) \mathbf{i}-(2.25 \mathrm{ft}) \mathbf{k} \\
\mathbf{W}_{C D} & =-(0.85 \mathrm{lb} / \mathrm{ft})(1 \mathrm{ft}) \mathbf{j}=-(3.825 \mathrm{lb}) \mathbf{j} \\
\boldsymbol{\lambda}_{A D} & =\frac{(3 \mathrm{ft}) \mathbf{i}-(1 \mathrm{ft}) \mathbf{j}-(4.5 \mathrm{ft}) \mathbf{k}}{\sqrt{(3)^{2}+(1)^{2}+(4.5)^{2}} \mathrm{ft}}=\frac{1}{5.5}(3 \mathbf{i}-\mathbf{j}-4.5 \mathbf{k})
\end{aligned}
$$

PROBLEM 4.145 CONTINUED

From f.b.d. of the pipe assembly

$$
\begin{aligned}
& \Sigma M_{A D}=0: \quad \lambda_{A D} \cdot\left(\mathbf{r}_{G / A} \times \mathbf{W}_{A B}\right)+\lambda_{A D} \cdot\left(\mathbf{r}_{C / A} \times \mathbf{T}\right) \\
& +\quad \lambda_{A D} \cdot\left(\mathbf{r}_{B / A} \times \mathbf{W}_{B C}\right)+\lambda_{A D} \cdot\left(\mathbf{r}_{H / A} \times \mathbf{W}_{C D}\right)=0 \\
& \therefore\left|\begin{array}{ccc}
3 & -1 & -4.5 \\
1.5 & 0 & 0 \\
0 & -2.55 & 0
\end{array}\right|\left(\frac{1}{5.5}\right)+\left|\begin{array}{ccc}
3 & -1 & -4.5 \\
3 & -1 & 0 \\
-3 & 4 & -4.5
\end{array}\right|\left(\frac{T}{5.5 \sqrt{45.25}}\right) \\
& +\left|\begin{array}{ccc}
3 & -1 & -4.5 \\
3 & 0 & 0 \\
0 & -0.85 & 0
\end{array}\right|\left(\frac{1}{5.5}\right)+\left|\begin{array}{ccc}
3 & -1 & -4.5 \\
3 & 0 & -2.25 \\
0 & -3.825 & 0
\end{array}\right|\left(\frac{1}{5.5}\right)=0 \\
& (17.2125)+(-40.5)\left(\frac{T}{\sqrt{45.25}}\right)+(11.475)+(25.819)=0 \\
& \therefore \quad T=9.0536 \mathrm{lb}
\end{aligned}
$$

SOLUTION

First note

$$
\begin{aligned}
\lambda_{A E} & =\frac{-(70 \mathrm{~mm}) \mathbf{i}+(240 \mathrm{~mm}) \mathbf{k}}{\sqrt{(70)^{2}+(240)^{2}} \mathrm{~mm}}=\frac{1}{25}(-7 \mathbf{i}+24 \mathbf{k}) \\
\mathbf{r}_{C / A} & =(90 \mathrm{~mm}) \mathbf{i}+(100 \mathrm{~mm}) \mathbf{k} \\
\mathbf{F}_{C} & =-(600 \mathrm{~N}) \mathbf{j} \\
\mathbf{r}_{D / A} & =(90 \mathrm{~mm}) \mathbf{i}+(240 \mathrm{~mm}) \mathbf{k} \\
\mathbf{T} & =\lambda_{D F} T=\frac{-(160 \mathrm{~mm}) \mathbf{i}+(110 \mathrm{~mm}) \mathbf{j}-(80 \mathrm{~mm}) \mathbf{k}}{\sqrt{(160)^{2}+(110)^{2}+(80)^{2}} \mathrm{~mm}} T \\
& =\frac{T}{21}(-16 \mathbf{i}+11 \mathbf{j}-8 \mathbf{k})
\end{aligned}
$$

From the f.b.d. of the bend rod

$$
\begin{aligned}
& \Sigma M_{A E}=0: \quad \lambda_{A E} \cdot\left(\mathbf{r}_{C / A} \times \mathbf{F}_{C}\right)+\lambda_{A E} \cdot\left(\mathbf{r}_{D / A} \times \mathbf{T}\right)=0 \\
& \therefore\left|\begin{array}{ccc}
-7 & 0 & 24 \\
90 & 0 & 100 \\
0 & -1 & 0
\end{array}\right|\left(\frac{600}{25}\right)+\left|\begin{array}{ccc}
-7 & 0 & 24 \\
90 & 0 & 240 \\
-16 & 11 & -8
\end{array}\right|\left[\frac{T}{25(21)}\right]=0 \\
& (-700-2160)\left(\frac{600}{25}\right)+(18480+23760)\left[\frac{T}{25(21)}\right]=0
\end{aligned}
$$

$$
\therefore \quad T=853.13 \mathrm{~N}
$$

SOLUTION

First note

$$
\begin{aligned}
& \lambda_{A E}=\frac{-(70 \mathrm{~mm}) \mathbf{i}+(240 \mathrm{~mm}) \mathbf{k}}{\sqrt{(70)^{2}+(240)^{2}} \mathrm{~mm}}=\frac{1}{25}(-7 \mathbf{i}+24 \mathbf{k}) \\
& \mathbf{r}_{C / A}=(90 \mathrm{~mm}) \mathbf{i}+(100 \mathrm{~mm}) \mathbf{k} \\
& \mathbf{F}_{C}=-(600 \mathrm{~N}) \mathbf{j} \\
& \mathbf{r}_{B / A}=(90 \mathrm{~mm}) \mathbf{i} \\
& \mathbf{T}=\lambda_{B F} T=\frac{-(160 \mathrm{~mm}) \mathbf{i}+(110 \mathrm{~mm}) \mathbf{j}+(160 \mathrm{~mm}) \mathbf{k}}{\sqrt{(160)^{2}+(110)^{2}+(160)^{2}} \mathrm{~mm}} T \\
& \quad=\frac{1}{251.59}(-160 \mathbf{i}+110 \mathbf{j}+160 \mathbf{k})
\end{aligned}
$$

From the f.b.d. of the bend rod

$$
\begin{aligned}
& \Sigma M_{A E}=0: \quad \lambda_{A E} \cdot\left(\mathbf{r}_{C / A} \times \mathbf{F}_{C}\right)+\lambda_{A E} \cdot\left(\mathbf{r}_{B / A} \times \mathbf{T}\right)=0 \\
\therefore & \left|\begin{array}{ccc}
-7 & 0 & 24 \\
90 & 0 & 100 \\
0 & -1 & 0
\end{array}\right|\left(\frac{600}{25}\right)+\left|\begin{array}{ccc}
-7 & 0 & 24 \\
90 & 0 & 0 \\
-160 & 110 & 160
\end{array}\right|\left[\frac{T}{25(251.59)}\right]=0 \\
& (-700-2160)\left(\frac{600}{25}\right)+(237600)\left[\frac{T}{25(251.59)}\right]=0
\end{aligned}
$$

$$
\therefore \quad T=1817.04 \mathrm{~N}
$$

PROBLEM 4.148

Two rectangular plates are welded together to form the assembly shown. The assembly is supported by ball-and-socket joints at B and D and by a ball on a horizontal surface at C. For the loading shown, determine the reaction at C.

SOLUTION

First note

$$
\begin{aligned}
\lambda_{B D} & =\frac{-(80 \mathrm{~mm}) \mathbf{i}-(90 \mathrm{~mm}) \mathbf{j}+(120 \mathrm{~mm}) \mathbf{k}}{\sqrt{(80)^{2}+(90)^{2}+(120)^{2}} \mathrm{~mm}} \\
& =\frac{1}{17}(-8 \mathbf{i}-9 \mathbf{j}+12 \mathbf{k}) \\
\mathbf{r}_{A / B} & =-(60 \mathrm{~mm}) \mathbf{i} \\
\mathbf{P} & =(200 \mathrm{~N}) \mathbf{k} \\
\mathbf{r}_{C / D} & =(80 \mathrm{~mm}) \mathbf{i} \\
\mathbf{C} & =(C) \mathbf{j}
\end{aligned}
$$

From the f.b.d. of the plates

$$
\begin{aligned}
& \Sigma M_{B D}=0: \quad \lambda_{B D} \cdot\left(\mathbf{r}_{A / B} \times \mathbf{P}\right)+\lambda_{B D} \cdot\left(\mathbf{r}_{C / D} \times \mathbf{C}\right)=0 \\
& \therefore\left|\begin{array}{ccc}
-8 & -9 & 12 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right|\left[\frac{60(200)}{17}\right]+\left|\begin{array}{ccc}
-8 & -9 & 12 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|\left[\frac{C(80)}{17}\right]=0 \\
& (-9)(60)(200)+(12)(80) C=0
\end{aligned}
$$

$$
\therefore \quad C=112.5 \mathrm{~N}
$$

$$
\text { or } \mathbf{C}=(112.5 \mathrm{~N}) \mathbf{j}
$$

PROBLEM 4.149

Two $1 \times 2-\mathrm{m}$ plywood panels, each of mass 15 kg , are nailed together as shown. The panels are supported by ball-and-socket joints at A and F and by the wire $B H$. Determine (a) the location of H in the $x y$ plane if the tension in the wire is to be minimum, (b) the corresponding minimum tension.

SOLUTION

Let

$$
\begin{aligned}
\mathbf{W}_{1}=\mathbf{W}_{2} & =-(m g) \mathbf{j}=-(15 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \mathbf{j} \\
& =-(147.15 \mathrm{~N}) \mathbf{j}
\end{aligned}
$$

From the f.b.d. of the panels

$$
\Sigma M_{A F}=0: \quad \lambda_{A F} \cdot\left(\mathbf{r}_{G / A} \times \mathbf{W}_{1}\right)+\lambda_{A F} \cdot\left(\mathbf{r}_{B / A} \times \mathbf{T}\right)+\lambda_{A F} \cdot\left(\mathbf{r}_{T / A} \times \mathbf{W}_{2}\right)=0
$$

where

$$
\begin{aligned}
& \lambda_{A F}=\frac{(2 \mathrm{~m}) \mathbf{i}-(1 \mathrm{~m}) \mathbf{j}-(2 \mathrm{~m}) \mathbf{k}}{\sqrt{(2)^{2}+(1)^{2}+(2)^{2}} \mathrm{~m}}=\frac{1}{3}(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}) \\
& \mathbf{r}_{G / A}=(1 \mathrm{~m}) \mathbf{i} \\
& \mathbf{r}_{B / A}=(2 \mathrm{~m}) \mathbf{i} \\
& \mathbf{r}_{I / A}=(2 \mathrm{~m}) \mathbf{i}-(1 \mathrm{~m}) \mathbf{k}
\end{aligned}
$$

PROBLEM 4.149 CONTINUED

$$
\left.\begin{array}{c}
\lambda_{B H}=\frac{(x-2) \mathbf{i}+(y) \mathbf{j}-(2) \mathbf{k}}{\sqrt{(x-2)^{2}+y^{2}+(2)^{2}}} \\
\mathbf{T}=\lambda_{B H} T=\frac{(x-2) \mathbf{i}+(y) \mathbf{j}-(2) \mathbf{k}}{\sqrt{(x-2)^{2}+y^{2}+(2)^{2}}} \\
\therefore\left|\begin{array}{ccc}
2 & -1 & -2 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right|\left(\frac{147.15}{3}\right)+\left|\begin{array}{ccc}
2 & -1 & -2 \\
2 & 0 & 0 \\
x-2 & y & -2
\end{array}\right|\left(\frac{T}{3 \sqrt{(x-2)^{2}+y^{2}+(2)^{2}}}\right)+\left|\begin{array}{ccc}
2 & -1 & -2 \\
2 & 0 & -1 \\
0 & -1 & 0
\end{array}\right|\left(\frac{147.15}{3}\right)=0 \\
\frac{2(147.15)}{3}+(-4-4 y) \frac{T}{3 \sqrt{(x-2)^{2}+y^{2}+(2)^{2}}}+(-2+4) \frac{147.15}{3}=0 \\
T
\end{array}=\frac{147.15}{1+y} \sqrt{(x-2)^{2}+y^{2}+(2)^{2}}\right) .
$$

or

For $x-2 \mathrm{~m}, T=T_{\text {min }}$

$$
\therefore \quad T_{\min }=\frac{147.15}{(1+y)}\left(y^{2}+4\right)^{\frac{1}{2}}
$$

The y-value for $T_{\min }$ is found from $\quad\left(\frac{d T}{d y}\right)=0: \frac{(1+y) \frac{1}{2}\left(y^{2}+4\right)^{-\frac{1}{2}}(2 y)-\left(y^{2}+4\right)^{\frac{1}{2}}(1)}{(1+y)^{2}}=0$
Setting the numerator equal to zero, $\quad(1+y) y=y^{2}+4$

$$
y=4 \mathrm{~m}
$$

Then

$$
T \min =\frac{147.15}{(1+4)} \sqrt{(2-2)^{2}+(4)^{2}+(2)^{2}}=131.615 \mathrm{~N}
$$

$\therefore(a)$
(b)

$$
\begin{array}{r}
x=2.00 \mathrm{~m}, y=4.00 \mathrm{~m} \\
T_{\min }=131.6 \mathrm{~N}
\end{array}
$$

PROBLEM 4.150

Solve Problem 4.149 subject to the restriction that H must lie on the y axis.

P4.149 Two $1 \times 2-\mathrm{m}$ plywood panels, each of mass 15 kg , are nailed together as shown. The panels are supported by ball-and-socket joints at A and F and by the wire $B H$. Determine (a) the location of H in the $x y$ plane if the tension in the wire is to be minimum, (b) the corresponding minimum tension.

SOLUTION

Let

$$
\mathbf{W}_{1}=\mathbf{W}_{2}=-(m g) \mathbf{j}=-(15 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \mathbf{j}=-(147.15 \mathrm{~N}) \mathbf{j}
$$

From the f.b.d. of the panels

$$
\Sigma M_{A F}=0: \quad \lambda_{A F} \cdot\left(\mathbf{r}_{G / A} \times \mathbf{W}_{1}\right)+\lambda_{A F} \cdot\left(\mathbf{r}_{B / A} \times \mathbf{T}\right)+\lambda_{A F} \cdot\left(\mathbf{r}_{I / A} \times \mathbf{W}_{2}\right)=0
$$

where

$$
\begin{aligned}
\lambda_{A F} & =\frac{(2 \mathrm{~m}) \mathbf{i}-(1 \mathrm{~m}) \mathbf{j}-(2 \mathrm{~m}) \mathbf{k}}{\sqrt{(2)^{2}+(1)^{2}+(2)^{2}} \mathrm{~m}}=\frac{1}{3}(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}) \\
\mathbf{r}_{G / A} & =(1 \mathrm{~m}) \mathbf{i} \\
\mathbf{r}_{B / A} & =(2 \mathrm{~m}) \mathbf{i} \\
\mathbf{r}_{I / A} & =(2 \mathrm{~m}) \mathbf{i}-(1 \mathrm{~m}) \mathbf{k} \\
\mathbf{T} & =\lambda_{B H} T=\frac{-(2 \mathrm{~m}) \mathbf{i}+(y) \mathbf{j}-(2 \mathrm{~m}) \mathbf{k}}{\sqrt{(2)^{2}+(y)^{2}+(2)^{2}} \mathrm{~m}} T \\
& =\frac{T}{\sqrt{8+y^{2}}}(-2 \mathbf{i}+y \mathbf{j}-2 \mathbf{k})
\end{aligned}
$$

PROBLEM 4.150 CONTINUED

$$
\begin{gathered}
\therefore\left|\begin{array}{rrr}
2 & -1 & -2 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right|\left(\frac{147.15}{3}\right)+\left|\begin{array}{ccc}
2 & -1 & -2 \\
2 & 0 & 0 \\
-2 & y & -2
\end{array}\right|\left(\frac{T}{3 \sqrt{8+y^{2}}}\right)+\left|\begin{array}{ccc}
2 & -1 & -2 \\
2 & 0 & -1 \\
0 & -1 & 0
\end{array}\right|\left(\frac{147.15}{3}\right)=0 \\
2(147.15)+(-4-4 y)\left(T \sqrt{8+y^{2}}\right)+(2) 147.15=0 \\
\therefore \quad T=\frac{(147.15) \sqrt{8+y^{2}}}{(1+y)} \\
\left(\frac{d T}{d y}\right)=0 \quad \therefore \quad \frac{(1+y) \frac{1}{2}\left(8+y^{2}\right)^{-\frac{1}{2}}(2 y)-\left(8+y^{2}\right)^{\frac{1}{2}}(1)}{(1+y)^{2}}=0
\end{gathered}
$$

For $T_{\text {min }}$,

Setting the numerator equal to zero,

$$
\begin{aligned}
& \quad(1+y) y=8+y^{2} \\
& \therefore y=8.00 \mathrm{~m} \\
& T_{\min }=\frac{(147.15) \sqrt{8+(8)^{2}}}{(1+8)}=138.734 \mathrm{~N}
\end{aligned}
$$

and
(b)

$$
\begin{gathered}
x=0, y=8.00 \mathrm{~m} \\
T_{\min }=138.7 \mathrm{~N}
\end{gathered}
$$

PROBLEM 4.151

A uniform 20×30-in. steel plate $A B C D$ weighs 85 lb and is attached to ball-and-socket joints at A and B. Knowing that the plate leans against a frictionless vertical wall at D, determine (a) the location of $D,(b)$ the reaction at D.

SOLUTION

(a) Since $\mathbf{r}_{D / A}$ is perpendicular to $\mathbf{r}_{B / A}$,

$$
\mathbf{r}_{D / A} \cdot \mathbf{r}_{B / A}=0
$$

where coordinates of D are $(0, y, z)$, and

$$
\begin{aligned}
& \mathbf{r}_{D / A}=-(4 \mathrm{in} .) \mathbf{i}+(y) \mathbf{j}+(z-28 \mathrm{in} .) \mathbf{k} \\
& \mathbf{r}_{B / A}=(12 \mathrm{in} .) \mathbf{i}-(16 \mathrm{in} .) \mathbf{k} \\
& \therefore \mathbf{r}_{D / A} \cdot \mathbf{r}_{B / A}=-48-16 z+448=0
\end{aligned}
$$

$$
\text { or } \quad z=25 \mathrm{in} \text {. }
$$

Since

$$
L_{A D}=30 \mathrm{in} .
$$

$$
30=\sqrt{(4)^{2}+(y)^{2}+(25-28)^{2}}
$$

$$
900=16+y^{2}+9
$$

$$
y=\sqrt{875} \mathrm{in} .=29.580 \mathrm{in} .
$$

\therefore Coordinates of $D: \quad x=0, y=29.6$ in., $z=25.0$ in.
(b) From f.b.d. of steel plate $A B C D$

$$
\begin{aligned}
& \Sigma M_{A B}=0: \quad \lambda_{A B} \cdot\left(\mathbf{r}_{D / A} \times \mathbf{N}_{D}\right)+\lambda_{A B} \cdot\left(\mathbf{r}_{G / B} \times \mathbf{W}\right)=0 \\
& \text { where } \quad \lambda_{A B}=\frac{(12 \mathrm{in} .) \mathbf{i}-(16 \mathrm{in} .) \mathbf{k}}{\sqrt{(12)^{2}+(16)^{2}} \mathrm{in} .}=\frac{1}{5}(3 \mathbf{i}-4 \mathbf{k}) \\
& \mathbf{r}_{D / A}=-(4 \mathrm{in} .) \mathbf{i}+(29.580 \mathrm{in} .) \mathbf{j}-(3 \mathrm{in} .) \mathbf{k} \\
& \mathbf{N}_{D}=N_{D} \mathbf{i}
\end{aligned}
$$

PROBLEM 4.151 CONTINUED

$$
\begin{gathered}
\mathbf{r}_{G / B}=\frac{1}{2} \mathbf{r}_{D / B}=\frac{1}{2}[-(16 \mathrm{in} .) \mathbf{i}+(29.580 \mathrm{in} .) \mathbf{j}+(25 \mathrm{in} .-12 \mathrm{in} .) \mathbf{k}] \\
\mathbf{W}=-(85 \mathrm{lb}) \mathbf{j} \\
\therefore\left|\begin{array}{ccc}
3 & 0 & -4 \\
-4 & 29.580 & -3 \\
1 & 0 & 0
\end{array}\right|\left(\frac{N_{D}}{5}\right)+\left|\begin{array}{ccc}
3 & 0 & -4 \\
-16 & 29.580 & 13 \\
0 & -1 & 0
\end{array}\right|\left[\frac{85}{2(5)}\right]=0 \\
118.32 N_{D}+(39-64) 42.5=0 \\
\therefore N_{D}=8.9799 \mathrm{lb} \\
\text { or } \mathbf{N}_{D}=(8.98 \mathrm{lb}) \mathbf{i} \boldsymbol{4}
\end{gathered}
$$

PROBLEM 4.152

Beam $A D$ carries the two $40-\mathrm{lb}$ loads shown. The beam is held by a fixed support at D and by the cable $B E$ which is attached to the counter-weight W. Determine the reaction at D when (a) $W=100 \mathrm{lb},(b) W=90 \mathrm{lb}$.

SOLUTION

(a) $W=100 \mathrm{lb}$

From f.b.d. of beam $A D$

$$
\begin{array}{cl}
\xrightarrow{+} \Sigma F_{x}=0: & D_{x}=0 \\
+\uparrow \Sigma F_{y}=0: & D_{y}-40 \mathrm{lb}-40 \mathrm{lb}+100 \mathrm{lb}=0 \\
\therefore D_{y}=-20.0 \mathrm{lb} \\
+\Sigma \Sigma M_{D}=0: & M_{D}-(100 \mathrm{lb})(5 \mathrm{ft})+(40 \mathrm{lb})(8 \mathrm{ft}) \\
& \quad \text { or } \mathbf{D}=20.0 \mathrm{lb} \\
+(40 \mathrm{lb})(4 \mathrm{ft})=0
\end{array}
$$

(b) $W=90 \mathrm{lb}$

From f.b.d. of beam $A D$

$$
\begin{aligned}
& \xrightarrow{+} \Sigma F_{x}=0: \quad D_{x}=0 \\
& +\uparrow \Sigma F_{y}=0: \quad D_{y}+90 \mathrm{lb}-40 \mathrm{lb}-40 \mathrm{lb}=0 \\
& \therefore D_{y}=-10.00 \mathrm{lb} \\
& \qquad \begin{array}{r}
\text { or } \mathbf{D}=10.00 \mathrm{lb} \\
+) \Sigma M_{D}=0: \\
\quad M_{D}-(90 \mathrm{lb})(5 \mathrm{ft})+(40 \mathrm{lb})(8 \mathrm{ft}) \\
\\
+(40 \mathrm{lb})(4 \mathrm{ft})=0
\end{array} \\
& \therefore M_{D}=-30.0 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned} \quad \begin{aligned}
& \text { or } \mathbf{M}_{D}=30.0 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

SOLUTION

For $W_{\min }, \quad M_{D}=-40 \mathrm{lb} \cdot \mathrm{ft}$
From f.b.d. of beam $A D$

$$
\begin{gathered}
+\Sigma M_{D}=0:(40 \mathrm{lb})(8 \mathrm{ft})-W_{\min }(5 \mathrm{ft})+(40 \mathrm{lb})(4 \mathrm{ft})-40 \mathrm{lb} \cdot \mathrm{ft}=0 \\
\therefore W_{\min }=88.0 \mathrm{lb}
\end{gathered}
$$

For $W_{\max }, \quad M_{D}=40 \mathrm{lb} \cdot \mathrm{ft}$
From f.b.d. of beam $A D$

$$
\begin{array}{r}
+\Sigma M_{D}=0: \quad(40 \mathrm{lb})(8 \mathrm{ft})-W_{\max }(5 \mathrm{ft})+(40 \mathrm{lb})(4 \mathrm{ft})+40 \mathrm{lb} \cdot \mathrm{ft}=0 \\
\therefore W_{\max }=104.0 \mathrm{lb} \\
\text { or } 88.0 \mathrm{lb} \leq W \leq 104.0 \mathrm{lb}
\end{array}
$$

PROBLEM 4.154

Determine the reactions at A and D when $\beta=30^{\circ}$.

From f.b.d. of frame $A B C D$

$$
\begin{gathered}
+\Sigma M_{D}=0:-A(0.18 \mathrm{~m})+\left[(150 \mathrm{~N}) \sin 30^{\circ}\right](0.10 \mathrm{~m}) \\
+\left[(150 \mathrm{~N}) \cos 30^{\circ}\right](0.28 \mathrm{~m})=0 \\
\therefore A=243.74 \mathrm{~N}
\end{gathered}
$$

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad(243.74 \mathrm{~N})+(150 \mathrm{~N}) \sin 30^{\circ}+D_{x}=0
$$

$$
\therefore D_{x}=-318.74 \mathrm{~N}
$$

$$
+\uparrow \Sigma F_{y}=0: \quad D_{y}-(150 \mathrm{~N}) \cos 30^{\circ}=0
$$

$$
\therefore D_{y}=129.904 \mathrm{~N}
$$

Then $\quad D=\sqrt{\left(D_{x}\right)^{2}+D_{x}^{2}}=\sqrt{(318.74)^{2}+(129.904)^{2}}=344.19 \mathrm{~N}$
and

$$
\theta=\tan ^{-1}\left(\frac{D_{y}}{D_{x}}\right)=\tan ^{-1}\left(\frac{129.904}{-318.74}\right)=-22.174^{\circ}
$$

$$
\text { or } \mathbf{D}=344 \mathrm{~N} \triangle 22.2^{\circ}
$$

SOLUTION

From f.b.d. of frame $A B C D$

$$
\begin{array}{rl}
+\Sigma M_{D}=0:-A & A(0.18 \mathrm{~m})+\left[(150 \mathrm{~N}) \sin 60^{\circ}\right](0.10 \mathrm{~m}) \\
+ & {\left[(150 \mathrm{~N}) \cos 60^{\circ}\right](0.28 \mathrm{~m})=0} \\
\therefore A=188.835 \mathrm{~N}
\end{array}
$$

$$
\text { or } \mathbf{A}=188.8 \mathrm{~N} \longrightarrow \text { 【 }
$$

$$
\xrightarrow{+} \Sigma F_{x}=0:(188.835 \mathrm{~N})+(150 \mathrm{~N}) \sin 60^{\circ}+D_{x}=0
$$

$$
\therefore D_{x}=-318.74 \mathrm{~N}
$$

$$
+\uparrow \Sigma F_{y}=0: \quad D_{y}-(150 \mathrm{~N}) \cos 60^{\circ}=0
$$

$$
\therefore D_{y}=75.0 \mathrm{~N}
$$

Then

$$
D=\sqrt{\left(D_{x}\right)^{2}+\left(D_{y}\right)^{2}}=\sqrt{(318.74)^{2}+(75.0)^{2}}=327.44 \mathrm{~N}
$$

and

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{D_{y}}{D_{x}}\right)=\tan ^{-1}\left(\frac{75.0}{-318.74}\right)=-13.2409^{\circ} \\
& \text { or } \mathbf{D}=327 \mathrm{~N} \searrow 13.24^{\circ}
\end{aligned}
$$

PROBLEM 4.156

A 2100-lb tractor is used to lift 900 lb of gravel. Determine the reaction at each of the two (a) rear wheels $A,(b)$ front wheels B.

SOLUTION

(a) From f.b.d. of tractor

$$
\begin{array}{cc}
+\Sigma M_{B}=0:(2100 \mathrm{lb})(40 \mathrm{in} .)-(2 A)(60 \mathrm{in} .)-(900 \mathrm{lb})(50 \mathrm{in} .)=0 & \\
\therefore A=325 \mathrm{lb} & \text { or } \mathbf{A}=325 \mathrm{lb}
\end{array}
$$

(b) From f.b.d. of tractor

$$
\begin{array}{cc}
+\Sigma M_{A}=0:(2 B)(60 \mathrm{in} .)-(2100 \mathrm{lb})(20 \mathrm{in} .)-(900 \mathrm{lb})(110 \mathrm{in} .)=0 \\
\therefore B=1175 \mathrm{lb} & \text { or } \mathbf{B}=1175 \mathrm{lb}
\end{array}
$$

PROBLEM 4.157

A tension of 5 lb is maintained in a tape as it passes the support system shown. Knowing that the radius of each pulley is 0.4 in ., determine the reaction at C.

SOLUTION

From f.b.d. of system

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad C_{x}+(5 \mathrm{lb})=0
$$

$$
\therefore C_{x}=-5 \mathrm{lb}
$$

$$
+\uparrow \Sigma F_{y}=0: \quad C_{y}-(5 \mathrm{lb})=0
$$

$$
\therefore C_{y}=5 \mathrm{lb}
$$

Then

$$
C=\sqrt{\left(C_{x}\right)^{2}+\left(C_{y}\right)^{2}}=\sqrt{(5)^{2}+(5)^{2}}=7.0711 \mathrm{lb}
$$

and

$$
\theta=\tan ^{-1}\left(\frac{+5}{-5}\right)=-45^{\circ}
$$

or $\mathbf{C}=7.07 \mathrm{lb} \backslash 45.0^{\circ}$

$$
+\Sigma M_{C}=0: \quad M_{C}+(5 \mathrm{lb})(6.4 \mathrm{in} .)+(5 \mathrm{lb})(2.2 \mathrm{in} .)=0
$$

$\therefore M_{C}=-43.0 \mathrm{lb} \cdot$ in
or $\mathbf{M}_{C}=43.0 \mathrm{lb} \cdot \mathrm{in}$.

SOLUTION

From f.b.d of system

$$
\begin{aligned}
+\Sigma F_{x}=0: \quad C_{x}+(5 \mathrm{lb}) & =0 \\
\therefore C_{x} & =-5 \mathrm{lb} \\
+\uparrow \Sigma F_{y}=0: \quad C_{y}-(5 \mathrm{lb}) & =0
\end{aligned}
$$

$$
\therefore C_{y}=5 \mathrm{lb}
$$

Then

$$
C=\sqrt{\left(C_{x}\right)^{2}+\left(C_{y}\right)^{2}}=\sqrt{(5)^{2}+(5)^{2}}=7.0711 \mathrm{lb}
$$

and

$$
\theta=\tan ^{-1}\left(\frac{5}{-5}\right)=-45.0^{\circ}
$$

$$
\text { or } \mathbf{C}=7.07 \mathrm{lb} \searrow 45.0^{\circ}
$$

$$
+\Sigma M_{C}=0: \quad M_{C}+(5 \mathrm{lb})(6.6 \mathrm{in} .)+(5 \mathrm{lb})(2.4 \mathrm{in} .)=0
$$

$$
\therefore M_{C}=-45.0 \mathrm{lb} \cdot \mathrm{in} .
$$

$$
\text { or } \mathbf{M}_{C}=45.0 \mathrm{lb} \cdot \mathrm{in} \text {. }
$$

or $T=462 \mathrm{~N}$

PROBLEM 4.159 CONTINUED

(b) From f.b.d. of bent rod

$$
\begin{gathered}
\Sigma F_{x}=0: C_{x}=0 \\
\Sigma M_{D(z \text {-axis })}=0: \quad-\left[(461.88 \mathrm{~N}) \sin 30^{\circ}\right](0.35 \mathrm{~m})-C_{y}(0.3 \mathrm{~m}) \\
-(400 \mathrm{~N})(0.05 \mathrm{~m})=0 \\
\therefore C_{y}=-336.10 \mathrm{~N} \\
\Sigma M_{D(y \text {-axis })}=0: \quad C_{z}(0.3 \mathrm{~m})-\left[(461.88 \mathrm{~N}) \cos 30^{\circ}\right](0.35 \mathrm{~m})=0 \\
\therefore C_{z}=466.67 \mathrm{~N} \\
\text { or } \mathbf{C}=-(336 \mathrm{~N}) \mathbf{j}+(467 \mathrm{~N}) \mathbf{k} \\
\Sigma F_{y}=0: \quad D_{y}-336.10 \mathrm{~N}+(461.88 \mathrm{~N}) \sin 30^{\circ}-400 \mathrm{~N}=0 \\
\therefore D_{y}=505.16 \mathrm{~N} \\
\Sigma F_{z}=0: \quad D_{z}+466.67 \mathrm{~N}-(461.88 \mathrm{~N}) \cos 30^{\circ}=0 \\
\therefore D_{z}=-66.670 \mathrm{~N} \\
\text { or } \mathbf{D}=(505 \mathrm{~N}) \mathbf{j}-(66.7 \mathrm{~N}) \mathbf{k}
\end{gathered}
$$

PROBLEM 4.160

For the beam and loading shown, determine (a) the reaction at $A,(b)$ the tension in cable $B C$.

SOLUTION

(a) From f.b.d of beam

$$
\begin{gathered}
\xrightarrow{+} \Sigma F_{x}=0: \quad A_{x}=0 \\
+\Sigma M_{B}=0: \quad(15 \mathrm{lb})(28 \mathrm{in} .)+(20 \mathrm{lb})(22 \mathrm{in} .)+(35 \mathrm{lb})(14 \mathrm{in} .) \\
+(20 \mathrm{lb})(6 \mathrm{in} .)-A_{y}(6 \mathrm{in} .)=0 \\
\therefore A_{y}=245 \mathrm{lb}
\end{gathered}
$$

$$
\text { or } \mathbf{A}=245 \mathrm{lb}
$$

(b) From f.b.d of beam

$$
\begin{gathered}
+\Sigma M_{A}=0:(15 \mathrm{lb})(22 \mathrm{in} .)+(20 \mathrm{lb})(16 \mathrm{in} .)+(35 \mathrm{lb})(8 \mathrm{in} .) \\
-(15 \mathrm{lb})(6 \mathrm{in} .)-T_{B}(6 \mathrm{in} .)=0 \\
\therefore T_{B}=140.0 \mathrm{lb}
\end{gathered}
$$

$$
\text { or } T_{B}=140.0 \mathrm{lb}
$$

Check:

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0: \quad-15 \mathrm{lb}-20 \mathrm{lb}-35 \mathrm{lb}-20 \mathrm{lb} \\
-15 \mathrm{lb}-140 \mathrm{lb}+245 \mathrm{lb}=0 ? \\
245 \mathrm{lb}-245 \mathrm{lb}=0 \mathrm{ok}
\end{gathered}
$$

SOLUTION

First note

$$
\begin{aligned}
\mathbf{T}_{D G}=\lambda_{D G} T_{D G} & =\frac{-(0.48 \mathrm{~m}) \mathbf{i}+(0.14 \mathrm{~m}) \mathbf{j}}{\sqrt{(0.48)^{2}+(0.14)^{2}} \mathrm{~m}} T_{D G} \\
& =\frac{-0.48 \mathbf{i}+0.14 \mathbf{j}}{0.50} T_{D G} \\
& =\frac{T_{D G}}{25}(24 \mathbf{i}+7 \mathbf{j}) \\
\mathbf{T}_{B E}=\lambda_{B E} T_{B E} & =\frac{-(0.48 \mathrm{~m}) \mathbf{i}+(0.2 \mathrm{~m}) \mathbf{k}}{\sqrt{(0.48)^{2}+(0.2)^{2}} \mathrm{~m}} T_{B E} \\
& =\frac{-0.48 \mathbf{i}+0.2 \mathbf{k}}{0.52} T_{B E} \\
& =\frac{T_{B E}}{13}(-12 \mathbf{j}+5 \mathbf{k})
\end{aligned}
$$

From f.b.d. of frame $A B C D$

$$
\begin{aligned}
& \Sigma M_{x}=0:\left(\frac{7}{25} T_{D G}\right)(0.3 \mathrm{~m})-(350 \mathrm{~N})(0.15 \mathrm{~m})=0 \\
& \text { or } T_{D G}=62 \\
& \Sigma M_{y}=0:\left(\frac{24}{25} \times 625 \mathrm{~N}\right)(0.3 \mathrm{~m})-\left(\frac{5}{13} T_{B E}\right)(0.48 \mathrm{~m})=0 \\
& \text { or } T_{B E}=97 \\
& \Sigma M_{z}=0: \quad T_{C F}(0.14 \mathrm{~m})+\left(\frac{7}{25} \times 625 \mathrm{~N}\right)(0.48 \mathrm{~m}) \\
& -(350 \mathrm{~N})(0.48 \mathrm{~m})=0
\end{aligned}
$$

$$
\text { or } T_{D G}=625 \mathrm{~N}
$$

$$
\text { or } T_{B E}=975 \mathrm{~N}
$$

PROBLEM 4.161 CONTINUED

$$
\begin{gathered}
\Sigma F_{x}=0: A_{x}+T_{C F}+\left(T_{B E}\right)_{x}+\left(T_{D G}\right)_{x}=0 \\
A_{x}-600 \mathrm{~N}-\left(\frac{12}{13} \times 975 \mathrm{~N}\right)-\left(\frac{24}{25} \times 625 \mathrm{~N}\right)=0 \\
\therefore A_{x}=2100 \mathrm{~N} \\
\Sigma F_{y}=0: A_{y}+\left(T_{D G}\right)_{y}-350 \mathrm{~N}=0 \\
A_{y}+\left(\frac{7}{25} \times 625 \mathrm{~N}\right)-350 \mathrm{~N}=0 \\
\therefore A_{y}=175.0 \mathrm{~N} \\
\Sigma F_{z}=0: \\
A_{z}+\left(T_{B E}\right)_{z}=0 \\
A_{z}+\left(\frac{5}{13} \times 975 \mathrm{~N}\right)=0 \\
\therefore A_{z}=-375 \mathrm{~N}
\end{gathered}
$$

Therefore

$$
\mathbf{A}=(2100 \mathrm{~N}) \mathbf{i}+(175.0 \mathrm{~N}) \mathbf{j}-(375 \mathrm{~N}) \mathbf{k}
$$

SOLUTION

First note

$$
\begin{aligned}
\mathbf{T}_{D G}=\lambda_{D G} T_{D G} & =\frac{-(0.48 \mathrm{~m}) \mathbf{i}+(0.14 \mathrm{~m}) \mathbf{j}}{\sqrt{(0.48)^{2}+(0.14)^{2}} \mathrm{~m}} T_{D G} \\
& =\frac{-0.48 \mathbf{i}+0.14 \mathbf{j}}{0.50} T_{D G} \\
& =\frac{T_{D G}}{25}(24 \mathbf{i}+7 \mathbf{j}) \\
\mathbf{T}_{B E}=\lambda_{B E} T_{B E} & =\frac{-(0.48 \mathrm{~m}) \mathbf{i}+(0.2 \mathrm{~m}) \mathbf{k}}{\sqrt{(0.48)^{2}+(0.2)^{2}} \mathrm{~m}} T_{B E} \\
& =\frac{-0.48 \mathbf{i}+0.2 \mathbf{k}}{0.52} T_{B E} \\
& =\frac{T_{B E}}{13}(-12 \mathbf{i}+5 \mathbf{k})
\end{aligned}
$$

From f.b.d of frame $A B C D$

$$
\Sigma M_{x}=0:\left(\frac{7}{25} T_{D G}\right)(0.3 \mathrm{~m})-(350 \mathrm{~N})(0.3 \mathrm{~m})=0
$$

$$
\begin{aligned}
\text { or } T_{D G} & =1250 \mathrm{~N} \\
\Sigma M_{y}=0:\left(\frac{24}{25} \times 1250 \mathrm{~N}\right)(0.3 \mathrm{~m})-\left(\frac{5}{13} T_{B E}\right)(0.48 \mathrm{~m}) & =0 \\
\text { or } T_{B E} & =1950 \mathrm{~N}
\end{aligned}
$$

$$
\Sigma M_{z}=0: \quad T_{C F}(0.14 \mathrm{~m})+\left(\frac{7}{25} \times 1250 \mathrm{~N}\right)(0.48 \mathrm{~m})
$$

$$
-(350 \mathrm{~N})(0.48 \mathrm{~m})=0
$$

or $\quad T_{C F}=0$

PROBLEM 4.162 CONTINUED

$$
\begin{gathered}
\Sigma F_{x}=0: A_{x}+T_{C F}+\left(T_{B E}\right)_{x}+\left(T_{D G}\right)_{x}=0 \\
A_{x}+0-\left(\frac{12}{13} \times 1950 \mathrm{~N}\right)-\left(\frac{24}{25} \times 1250 \mathrm{~N}\right)=0 \\
\therefore A_{x}=3000 \mathrm{~N} \\
\Sigma F_{y}=0: A_{y}+\left(T_{D G}\right)_{y}-350 \mathrm{~N}=0 \\
A_{y}+\left(\frac{7}{25} \times 1250 \mathrm{~N}\right)-350 \mathrm{~N}=0 \\
\therefore A_{y}=0 \\
\Sigma F_{z}=0: \\
A_{z}+\left(T_{B E}\right)_{z}=0 \\
A_{z}+\left(\frac{5}{13} \times 1950 \mathrm{~N}\right)=0 \\
\therefore A_{z}=-750 \mathrm{~N}
\end{gathered}
$$

$$
\mathbf{A}=(3000 \mathrm{~N}) \mathbf{i}-(750 \mathrm{~N}) \mathbf{k}
$$

SOLUTION

(a)

$(a)+\Sigma \Sigma M_{B}=0:(300 \mathrm{lb})(16 \mathrm{in})-.T(16 \mathrm{in})+.T(a)=0$
or

$$
T=\frac{(300 \mathrm{lb})(16 \mathrm{in} .)}{(16-a) \mathrm{in} .}
$$

$\therefore \quad T$ becomes infinite when

$$
16-a=0
$$

or $a=16.00 \mathrm{in}$.
(b) $\quad+) \Sigma M_{C}=0:(T-80 \mathrm{~N})(0.2 \mathrm{~m})-\left(\frac{8}{17} T\right)(0.175 \mathrm{~m})$

$$
\begin{gathered}
-\left(\frac{15}{17} T\right)(0.4 \mathrm{~m}-a)=0 \\
0.2 T-16.0-0.82353 T-0.35294 T+0.88235 T a=0
\end{gathered}
$$

or

$$
T=\frac{16.0}{0.88235 a-0.23529}
$$

$\therefore T$ becomes infinite when

$$
\begin{gathered}
0.88235 a-0.23529=0 \\
a=0.26666 \mathrm{~m}
\end{gathered}
$$

